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1. Introduction

Babies can distinguish some textures right from birth.

1.1. Haptics
Touch sense is one of the most important ways, which give human being the senses
of its environment. By some means, it is the oldest sense of a person, the first
sense of baby and the last remained sense before the death. In medicine, the human
senses are defined as the traditional five sensations. The four among them are
defined as special senses, i.e. the vision, audition, gustation and olfaction. Whereas,
the touch sensation is known as tactile. It is also noted as the somatosensory
system, including verity modalities of pressure, vibration, pain, kinesthesis and
temperature [4]. Each modality includes the receptors, the central nervous system
and the pathways, Fig. 1.1. The receptors of touch sensation are mechanoreceptors,
which are sensitive to mechanical signals, such as pressure and vibration, and can
convert them to nervous signals. They are located in human skin, muscles, joints
and many other organs. However they are not uniformly distributed in the whole
body. The hands contain a large number of these receptors and contribute more
to this sensation system than any other parts of human body. These effects are
illustrated by using the homunculus [33]. The signals form the mechanoreceptors
are transmitted though the pathway to the central nervous system. The information
from the complete somatosensory system are integrated and processed in the central
nervous system. By this means, one person can obtain the global image of his whole
body [86]. What it can do, is much more than normal considerations, for instance a
health person can walk and keep balance without vision, this is based on the internal
contact information of muscles, skeletons and tendons. Within the Collaborative
Research Centre SFB453 “High-Fidelity Telepresence and Teleaction” supported by
the German Research Foundation (DFG), the technical representation of sensations
in a remote or unaccessible environment is investigated. Specially, the subproject
M7 concentrates on the presentation of haptic information.

In this thesis, the contact situations are different manual operations, i.e. contacts
between hands and objects. Therefore, the touch sensation of skin should be
introduced briefly as biological background. It can be divided into two kinds for
human being, i.e. the glabrous skin and hairy skin. The touch sensation of glabrous
skin have attracted more interest in the touch sensation, whereas the cells in hairs
have also mechanoreceptors, and those in the cochlea are the most sensitive receptors,
which can convert air vibrations into audio signals. This is already investigated
as another theme [14]. The nerve endings of the first kind have been detailed in
some works [86, 45], and the two major mechanoreceptors in skin are the Meissner’s
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Figure 1.1.: The Somatosensory system for contact and position sensation, including the re-
ceptors and the central pathway and the central nervous system. The Meissner’s corpuscle
and the Pacinian corpuscle are important mechanical receptors, [45].

corpuscles for light and low frequency signals [21] and the Pacinian corpuscles for
deep pressure and high frequency mechanical vibrations, Fig. 1.2. It should be
noted that during human movement, the information from human receptors and
actuators, for instance muscles, can not be separated completely. By this means,
the touch sensation provides humans the necessary information in almost all areas,
whenever actions are going to be done, from handling tools to manipulating modern
instruments, from household chores to high level operations and accurate surgery.
In robotics and computer science, the touch sense is generally called haptics,

which comes from the according Greek word. With the development of mechanical
engineering, mechatronics and computer science, the haptic technology is rising as
a new research area in recent years. It can present the haptic sensation to users
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Figure 1.2.: Haptic receptors of skin, the Meissner’s corpuscle (a) and the Pacinian corpus-
cle (b) [24]

in virtual and real environments, which may be remote, dangerous or unaccessible,
for instance blue water explorers and telerobots. By this means, these systems can
be regarded as an extension of the human haptic sensation, illustrated in Fig. 1.3.
From the mechanical aspect, the haptic information is in the form of contact force
in connection with the corresponding motion characteristics, such as boundary
displacements and velocities.
Hence, in robotics and virtual reality, haptic information is also important to

users for robotic-environment interactions and sensing of a virtual environment [96].
However in many situations, accurate contact information is unavailable. This may
lead to difficulties and inconvenience during operations in these applications. Then
the haptic simulations have been developed to solve these problems.

As shown above, the human sensation system is extremely complicated, for instance,
two concurrent contacts, which are as close together as 2[mm], on the finger can
already be felt separately. Hence, it should be noticed that the modern science and
technology at present can not yet rebuilt the human sensation system completely.
Furthermore, there are always different distortion sources during the measurement,
representation and transmission of the haptic information. Therefore, the goal of
the haptic technology is to take the most important information into consideration,
and to provide the possibly accurate high-fidelity haptic information in another
environment to users.
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Figure 1.3.: Haptic technology. Three major components are involved, the real or virtual
environment information, the haptic interface including the associated transmission of
force feedback, and the human operator. The haptic information in a remote environment
can be presented to the user through the haptic interface. This diagram illustrates mainly
the information flow for the haptic sensation. In the opposite direction, human operations
can be performed in the environment using some actuators.

1.2. Contact Model and Haptic Simulation
In many situations, the measurement of contact force may be unavailable in real-time,
for instance it may be delayed during communication. In virtual reality, haptic
information must be simulated. In this cases, the contact force models can be used
for the simulation of the contact reaction force, i.e. the above mentioned haptic
simulations are based on the models.
The contact force models of deformable solids can simulate the materials’ inter-

nal mechanical states, the stress-strain states under boundary conditions, such as
boundary tractions and displacements. Eventually, the contact reaction forces and
the displacements on the boundary are determined by numerical simulations. These
force models are investigated in many areas, for instance surgical robots, virtual
reality, aerospace technology and computer graphics. The major requirements of the
contact force models are accuracy and computational expense.

Research in this area is based on diverse modeling methods. Analytical models are
potentially promising approaches [35]. They are easy for implementation, economical
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in computing time, and they can provide accurate simulations in many applications.
However, these methods are not suitable for the modeling of continuous materials,
because the behavior of these materials is analytically unsolvable. Thus, for the
modeling of general solid objects, numerical approaches are necessary. The mass-
spring model [69] has been implemented in some works, however the finite volume
method (FVM) [114], the boundary element method (BEM) [61], and the finite
element method (FEM) can provide better performance and flexibility for modeling
of objects with complex material behavior and geometry. Generally, the FEM is
more accurate than the FVM. For solid deformable bodies, a number of research
using the FEM has shown its capability for high level contact force simulations in
varying situations, [125, 74, 31].

From application aspects, virtual reality is a notable area of these force models, from
computer games to professional simulators. The haptic models give user the possibility
to feel the “virtual” environment “really and truly”. Another important application
area is robotics. The performance of telerobots can be enhanced significantly by
integration of force feedback. However commutation time delay is an important
challenge to applying the force measurements as force feedback. To overcome this
difficulty, telepresence systems with contact force models can be used, to estimate
the contact situation and to compensate for the time delay [124, 27, 101]. These
telerobotic systems can assistant human being in many areas, such as the onboard
operations of satellites and other space vehicles, blue water explorations and bomb
defusing. Another high interest research area of his interest is medical robotics
technology, as a new kind of instruments [12], including surgery robots and medical
training simulators. In connection with these equipments, new treatments can be
developed, such as telemedicine. It is reasonable to expect, that quite a number of
patients may benefit to recover quickly by using these new technologies in the future.
For material behavior, the linear elastic material is implemented in a number of

research projects, because of its simplicity of implementation and low complexity of
computation. Furthermore, most materials can be modeled as linear elastic material
in some range. Hyperelastic, also known as the Green elastic or rubber-like, materials
also attract some researchers, as a kind of typical and idealized models [71]. With
the rapid development of computer science, more and more interest has been shown
to the modeling of viscoelastic materials, for their time dependent stress-strain
relations, [52, 62, 22], since almost all natural solid materials simultaneously have the
elastic and viscous behavior, more or less. Especially, the development of the above
mentioned medical technology accelerates the research of accurate haptic models of
animal tissues in the recent years [103, 102], and the viscoelastic material is the most
suitable theoretical model for these objects [43]. For continuum mechanics and the
analytical description of diverse materials, the work of Haupt [52] may be referred
to, for more detailed information.

In practice, the contact force models should always simulate some expected objects.
This condition is one of the dominant requirements of the force models, especially
for advanced applications. This ability can be measured as the comparability of the
haptic simulations and the according reference data. Hence it is also a measure for
the accuracy of the models. For this reason, model identification and optimization
are necessary. In many works, the optimization is formulated as a least squares
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problem. To solve this problem, curve fitting and other optimization algorithms are
investigated. Generally these solving methods are based on the Gauss-Newton method.
However the original Gauss-Newton method can not guarantee the global minimum
of the objective functions. This is especially important for the optimizations with a
number local minima. There are different algorithms and ideas to obtain the global
minimum [58], for instance implicit filtering [46]. In this way, the Gauss-Newton
method can be modified for global optimization.

In order to model objects, which are completely unknown in the beginning, a model
learning procedure is normally necessary, using initial data. Artificial neural networks
(ANN), which are a series of biomimetic methods of brains, are widely applied for data
mining and model learning [98]. Many mathematical approaches can be implemented
in the form of an ANN. Some of them are based on traditional statistic methods, such
as the principal component analysis (PCA) and some classification methods. ANN
can also be employed for the parameter estimation of finite element models [90, 51].

The computational expense is another important requirement for contact force
models, and it is frequently the main challenge to applying the finite element (FE)
models in real-time applications, especially for complex nonlinear FE models. Some
methods have been investigated to solve this problem, for instance the multi-mesh
structure [6], precalculation and prerecording [103]. However the computational
efficiency of multi-mesh FE models is also limited because of the FEM, and the
multi-mesh structure may influence the performance and the accuracy of force
simulations, since the numerical evaluation depends on the model mesh as well. And
the prerecording may restrict the flexibility and robustness of the method in many
applications, because the objects have to predefined.

In this thesis, to deliver real time haptic rendering, the FEM based haptic model is
integrated with an analytical contact force model (ACFM), which is less accurate, but
available with high output rate, such as more than 1000[Hz]. The information from
both models is fused by using an extended Kalman filter (EKF). Two main purposes
can be achieved with this implementation. One is smoothed haptic simulations
without strong step changes, and the other is the real time reaction by taking
boundary displacement information into account during the computation of the FE
models.

The general procedure of contact force modeling and haptic simulations using the
finite element method begins with geometric modeling. The first steps is to create
the geometric (volume) models of the objects with mesh structure. Subsequently, the
constitutive equations should be implemented in the volume models. Then the force
models have not only the volume definition but also the mechanical properties. This
means they can describe deformable bodies. Model identification and model learning
are executed to adjust the model behavior to specific object. Eventually, the models
are prepared for haptic simulations, and during the simulations, the models can be
verified continuously, Fig. 1.4.
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Figure 1.4.: The modeling procedure of the contact reaction force model.

1.3. Objectives and Organizations
The thesis focuses on the modeling of the mechanical behavior of deformable solid
objects using the finite element method. The goal is to develop the modeling methods
for real time haptic simulations with the consideration of the dominant conditions,
accuracy and computational expense. For real time haptic simulations, the output
rate is critical, especially for high level applications. The basic criterion is that the
haptic rendering should be smooth enough without significant effects on the user.
For this case, the computing time for force evaluation should not be greater than
20 ∼ 30[ms]. Further, in order to take full advantage of the haptic devices, an output
rate of 1000[Hz] is expected. And for the accuracy, as mentioned above, the model
identification is required.
The performance of the contact force models depends on the physical properties

of the materials, the contact conditions and the complexity of implementations.
The fundamental thought here is to develop a set of modeling methods as modules,
including geometric modeling, material modeling, model identification and varying
approaches to reduce the computing time. For material modeling, just the basic
and applicable material characteristics have been taken into account. In order to
model a concrete object efficiently, the modeling modules should be combined and
integrated appropriately. Therefore, besides the different modeling methods, an
adaptive method is also developed to select the most suitable material model and
modeling methods for a given object.

There are diverse theoretical models and constitutive equations for the description
of material features. Since the modeling approaches and the haptic simulations
in this thesis are primarily considered to be applied in telepresence and medical
technology, the selection of implemented materials’ properties is corresponding to
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Figure 1.5.: Contact Force Model. The structure and the major components in the con-
tact force models are illustrated, such as the geometric model, the material parameters,
the model identification and the haptic simulation. They are detailed in the following
chapters.

this aim. However, the modeling method can also be used for varying situations in
other areas.

Furthermore, as a modular system, there is an important advantage: it is possible
to extend the system with new functionalities just by importing and integrating some
corresponding modules and defining the necessary settings, without modifications of
the complete system.

This work is organized according to the procedure to solve a universal contact force
modeling problem. Generally, the geometric models are the necessary requirements
for the force models, and it is assumed that there is not any available information in
the beginning. Hence, as the first step, the geometric modeling is detailed in Chapter
2, including the measurement methods of surfaces, the surface reconstruction using
a set of discrete points, mesh generation with volume elements and the contact
detection, as well as the determination of the boundary displacements. Chapter 3
focuses on the implementation of the material features, i.e. constitutive equations,
into the geometric models. This means the models are not only volumes anymore, but
virtual objects with physical properties. For different materials, there are different
constitutive equations, and some of them are selected and are implemented. Chapter
4 presents the contact force evaluation for the finite element force models. In order
to obtain real time simulations, the modeling methods for the analytical models
are also elaborated, and the model based data fusion method is applied. By this
means, the computational latency of the FEM force models can be compensated.
The model identification is detailed in the fifth chapter, including the model learning,
model parameter optimization, the identification for different models and the model
verification. Furthermore, the adaptive modeling method is detailed as well. In
Chapter 6, the modeling methods and the haptic simulation are tested and illustrated
with experiments, using different objects with varying mechanical properties. The
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experimental system and application examples are detailed. Finally, the work is
concluded and summarized in the last chapter.
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2. Geometric Modeling

There can be no contact force models and haptic simulations without the available
geometric models of objects. Therefore, the geometric modeling of the objects is one
of the necessary preparations, and should be the first step of modeling of deformable
bodies.
Geometric modeling is the procedure to create numerical models which can de-

scribe the geometric properties of objects, including area, volume and contour. For
the contact force model, mesh generation and geometric interactions, i.e. contact
detection, also provide necessary geometric information for the following numerical
implementation and contact force evaluation. Thus, they are also considered as parts
of geometric modeling in this chapter.
In some cases, the geometric models may be imported, or there is information

of the objects available. Some well known examples are the CAD models, which
are widely used in diverse engineering areas, and the computer tomography (CT)
scanners are standard equipments in medicine at present. However for more general
situations, it is assumed in this chapter, that there is no geometric information of
the objects available at the beginning. Hence the procedure starts with geometric
measurements, and eventually, the models with geometric mesh should be created,
Fig. 2.1.

2.1. Geometric Measurement
Without imported models, the geometric modeling has to start with the surface
measurement, from which the original information of the geometry can be obtained.
There are many possibilities for this task, such as the image processing using image
sequence [66, 67] and varying scanning methods [124]. The expected data format
of the result is a scatter plot of sample points, which are suitable for the following
modeling procedure.

The image processing is based on the photos of objects from different viewpoints
and aspects. With the optic flow, the corresponding pixes of an identical 3D position
in different pictures can be found. In connection with the geometric relation of the
viewpoints, the 3D position can be subsequently determined. Analogously, a scatter
plot with a number of 3D points can be created.

The scanning procedures can be with and without contact, for example mechanical
and optical scanning, respectively. They can measure the sample positions on the
surface directly in the sensor coordinate system, and then using some methods, for
instance the robot forward kinematics, the positions in inertial coordinate system can
be determined. The computer tomography (CT) measurements are also scanning,
however they measure several sections of the objects, this means not only the exterior
geometry but also the interior structure are measured. For this case, sample points
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Figure 2.1.: Procedure of the Geometric Modeling. It is assumed that there is not any
geometric information at the beginning. If the geometry is known by other means, the
corresponding process may be shortened.

on the interior and exterior surface can be drawn simply from the sections without
image processing.
Both methods have their advantages for different applications, laser scanning is

more accurate than the stereo images, whereas the image processing is efficient for
large and geometrically complex objects. The accuracy of the surface has strong
influence on the contact force simulation in connection with deformation on the
boundary. Since the objects, which are considered in this thesis, are generally not
longer than 50[cm], the geometry measurements here are obtained with the laser
scanning. And the CT scanners are widely used in medicine to examine human
internal tissues.
Furthermore, it should be noted that, for latter modeling of closed surfaces, the

sample points on all sides of an object are necessary. And yet, the measurements of
the bottom side of the objects are often problematic, and it may be nearly impossible
in many situations, such as the experimental setting in Chapter 6. To solve this
problem, the bottom surface is considered as a plane, and can be created by projecting
the upper surface on the base plane. It should be taken into account that some
redundant nodes and triangles have to be eliminated, and some additional triangles
must be inserted. By this means, the sample points on all sides can be obtained.

2.2. Surface Reconstruction
The surface reconstruction is the process to establish the numerical model, which is a
closed surface, of an object surface, based on sample points. The surface is presented
in the form of triangles. Hence, this reconstruction is also known as triangulation.
The Delaunay method is popular for this purpose [16]. It can maximize the minimum
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Table 2.1.: Stl file format (ASCII).

facet normal nx ny nz
outer loop

vertex v1x v1y v1z
vertex v2x v2y v2z
vertex v3x v3y v3z

endloop
endfacet

Table 2.2.: Ply file format (ASCII).

ply
... (definition:)
... (- format, elements, properties and so on)
... (- comments ...)
end_header
x1 y1 z1
... (position of the vertices, the vertex vi has the index i)
xn yn zn
(the first polygon)
... (definition of polygons using the index of the vertices)
(the last polygon)

angle in all triangles, however the default results of the Delaunay algorithm are convex
surfaces, and concave surfaces can be obtained only by setting up the algorithms
properly, i.e. the constrained Delaunay triangulation [63], for example with defined
limit of the minimum angle [106]. For the Delaunay triangulation algorithms, there
are open source programs available, for instance the Visualization Toolkit(VTK) [65].
The results of triangulations are closed surfaces, which are suitable for the mesh

generation. They can be described in the arrays of triangulations and vertices.
However, in order to implement the modeling methods as different modules, flexible
data interfaces are always valuable. In computer graphics, some geometry file formats
are defined for this purpose, and they are applied in many open source and commercial
software and diverse applications [19], for instance the stl (stereo-lithography) files
and the ply (polygon file format) files [20]. In the ASCII stl format, a file starts with
the string “solid (surface name)” and is terminated with the string “endsolid (surface
name)”. Between them, there is the description of the triangles. Each triangle is
defined as a block, Tab. 2.1, in which the normal vector and the position of the
three triangle vertices are defined. The format of the ply files has two parts, the
header block and the data block. The header defines the format, element and other
properties of the ply geometry, and the data block describes the position of the
vertices and the polygons. This format is illustrated in Tab. 2.2. The stl files are
easy for checking, because of the clear definition of the triangles, while the ply format
is compact. For the same geometry, the ply file is normally much shorter than the stl
file.
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Besides the ASCII formats, the two geometry file formats have the corresponding
binary formats as well. In this implementation, both kinds of geometry files are
applied with the ASCII format, because they are intuitive for users to read. For the
visualization of the reconstructed surfaces, the software Blender [18] and Matlab [77]
are used.
Furthermore, there exist other file formats and programming languages to define

geometry, such as the VRML (virtual reality modeling language) [76], which is much
more powerful than the stl and ply. It can provide animation, lighting and many
other functions to establish a virtual world. However it is too complex for this simple
task of describing triangulations. Hence, the VRML is suitable for the visualization
of varying simulations [97, 56].

The triangulation algorithms are detailed as follows. The Voronoi diagram is the
basis of both the Delaunay algorithm and the power crust, and is introduced at first.

2.2.1. Voronoi Diagram
The Voronoi diagram [10] is the geometric structure of a domain, based on a set of
sample positions. It is the subdivision of the domain according to specific criteria.
The Voronoi diagram has been used in many areas, for instance robotics, physic and
geography. In different applications, the criteria may be different, such as distance,
cost and time. In the surface reconstruction, it is connected with the triangulation
methods, and the subdivision is according to distances between the sample points.
Assuming n available sample points, also known as vertices {pi : i = 1,...,n},

Fig. 2.2(a), which are not collinear, the Voronoi diagram of them is the subdivision
with n cells {cvi : i = 1,...,n}. This means each cell contains and only contains
one vertex inside of it, as the central vertex. The vertex in connection with the
corresponding cell are noted with the identical index i. For an arbitrary position p̃
in the cell cvi , the vertex pi is always the nearest vertex, that is

dip̃ < djp̃ with i 6= j, (2.1)

where d is the distance between two positions. And the cell cvi is defined by the
bisectors of line segments pipj, with i 6= j,

cvi = ∩i 6=jDh
ij, (2.2)

where Dh
ij is the half domain which contains the vertex pi, defined by the bisector of

pipj . This means the cells are convex polygons and the boundary of the cells are the
segments of the bisectors, Fig. 2.2(b). For n collinear points, the Voronio diagram is
defined directly by n− 1 parallel lines.

It should be noted that not all vertices and bisectors are necessary to determine a
cell cvi in general, if there are a number of sample points. I.e. it is not necessary to
consider all vertices for one cell at the same time. For the computing of the Voronoi
diagram, the Fortune’s algorithm [40] is optimal in terms of computational expense.
The basic idea of it is to scan the expected domain, and create the Voronoi diagram
step by step. In the two dimensional case, i.e. a plane, the scanning is using a sweep
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Figure 2.2.: Voronoi diagram and Delaunay triangulation. This is a two dimensional exam-
ple using 12 points, including the original discrete sample points (a), the Voronoi diagram
of these points (b) and the dalaunay triangulation of them (c)

line, from one side to the opposite side over the plane. Applying the consideration
into three dimensional situations, the similar sweep algorithms can also be applied
and the Voronoi diagram of 3D vertices can be created for the surface reconstruction.

2.2.2. Delaunay Triangulation
The original Delaunay triangulation is based on the subdivision, derived by the
Voronoi diagram [16, 41]. If the cells cvi and cvj have a common edge, the corresponding
vertices pi and pj should be connected with a straight-line. Then, the embedding of
the vertices {pi} can be created, Fig. 2.2(c), and this network is called the Delaunay
graph of the vertices.

In comparison with the Voronoi diagram, it can be concluded that they both are
the same to each other in graphic theory. The bounded areas in the Delaunay graph
are always triangles, i.e. the Delaunay triangulation. It is the optimal triangulation
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of the given vertices by means of maximization of the minimum angle of all angles in
the triangles during the triangulation. The circumcircle of each triangle is an empty
circle, without any other vertices.
Since the original Delaunay triangulation is a triangulation of the convex hull

of the points, the constrained Delaunay triangulation [23] is applied to make the
triangulation according to the boundary defined by the sample points accurately.
The similar thought is applied for mesh generation in the next section too, as the
constrained Delaunay tetrahedralization.

2.2.3. Power Crust
The power crust is also an algorithm for surface reconstruction, based on the power
diagram [9], which is a kind of generalized Voronoi diagram with weight, and the
medial axis transform (MAT) [2]. It is also suitable for concave surfaces. The open
source program power crust is available for this algorithm.
Both the Delaunay triangulation and the power crust have been implemented

and applied in this thesis. In practice, the power crust is easier to use for complex
surface than the original Delaunay triangulation. However, it should be noticed
that the reconstructions of contours with sharp edges are often problematic, and
the triangulation may provide better results, if the sample points distributed nearly
uniformly over the object surface.

2.3. Mesh Generation
The domains, which are defined by the closed surfaces, can be regarded as volume
objects. In order to determine the stress-strain relations of them numerically in the
latter chapters, a geometric model has to be discretely divided into a number of
sub-domains, which are also called the volume elements, for the implementation of
the finite element method (FEM).
As the last step for the geometric modeling, the mesh generation is performed

according to the Delaunay algorithm [107, 82], i.e. the volume elements are well-
shaped tetrahedra, and the quality mesh can be generated. This means the shape of
each tetrahedron is bounded by specific limits, such as the smallest angle and the
aspect ratio. It is suggested to apply the radius-edge ratio as the measure of the
element shape [83]. The radius-edge ratio of a element is defined as the ratio of the
radius of the circumscribed sphere rcs to the minimum edge lmin of the tetrahedron,

rtet = rcs
lmin

. (2.3)

Well shaped tetrahedra have small values. By this means, thin and flat tetrahedra
can be avoid, Fig 2.3(a) and (b). These geometric conditions of tetrahedra are
necessary for the accuracy and the convergence of the contact force evaluation using
the finite element method.

Similar to the Delaunay triangulation, the Delaunay tetrahedralizations are always
convex. However, general volumes, which are defined by the close surfaces, are not
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Figure 2.3.: Tetradedra with different shapes. The flat (a) and thin (b) tetrahedra have
relative large radius-edge ratios and should be avoid. Whereas the tetrahedra with good
shape (c) have small values and are more suitable for the evaluation using the finite ele-
ment method.

always in this case. During the mesh generation, the domain boundary must be
respected. Different methods are investigated to solve this problem, such as the
incorporation of special tetrahedra [54]. The conforming Delaunay algorithm can
be applied for concave domains [85], however it may generate a number of small
scale elements and the associated additional vertices. In this implementation, the
constrained Delaunay tetrahedralization (CDT) [108, 109] is applied. Using the CDT,
not all but the most important advantages of the original Delaunay algorithm can be
maintained, and the CDT inserts merely few vertices in comparison with the other
methods.

In this section, the mesh generation starts with the closed surface, which is defined
in the form of piecewise linear complex (PLC). It is a set of fundamental geometric
elements, such as vertices, segments and facets. The geometry files stl and ply are
used as the container of the PLC. The constrained Delaunay tetrahedralization is
implemented using the linear tetrahedra for the quality mesh generation to fill the
domain of the closed surface. The open source program TetGen [111, 110] is used
for this task.

2.4. Contact Detection
In the previous sections, the geometric modeling of objects is introduced. However,
in multi-body systems, not only the geometry but also the position, orientation and
interaction of the bodies are important. In virtual reality, the multi-body simulation
can present the relation and motion of the bodies [42]. Different objects can be
modeled as rigid or deformable bodies, according to the application conditions. As a
kind of universal interactions, contacts should be taken into account in this systems,
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especially for haptic simulations.
The contacts depend on varying physical effects, for instance deformation, velocity,

sliding and friction [11], as well as the contact situations. In this section, the following
conditions are presumed for the tool-object contacts.

• The objects are much softer than the operation tools.

• In comparison with the contact surface of the objects, the sectional area of the
tools is very small.

• The velocity of the tools with respect to the objects is low during the contacts.

• The objects are static in the inertial system, and there are always some fixed
constraints at the boundary. This means the objects can not translate and
rotate freely as complete bodies.

Hence the contacts are regarded as point-surface interactions. The tools can be
considered as rigid bodies, and just the objects are modeled as deformable. Due to
the boundary constraints, the objects always have deformations during the contacts.
Moreover, since the interactions are always in low speed, the contacts are quasi-static.
Furthermore, sliding and friction are not considered in this contact force model.

A contact detection algorithm is implemented for this point-surface contact prob-
lem [124]. At first, the tool and the object are defined in the same inertial coordinate
system. Then, for the given position and velocity of the tool, the three nearest nodes
(pc1, pc3 and pc3) from the tool (t) are found on the object surface, based on the
distance between the tool and nodes. Defining the tool position as

[
xt yt zt

]
, the

distances can be calculated as follows,

dti =
√

(xt − xni)2 + (yt − yni)2 + (zt − zni)2. (2.4)

Subsequently, a plane (o) can be determined by the three nodes, written in the
general form,

ax+ by + cz = d. (2.5)

The coefficients in the plane equation can be determined by solving the linear system

[
a b c

]
·

pc1
pc2
pc3

 =

dd
d



→


ax1 + by1 + cz1 = d

ax2 + by2 + cz2 = d

ax3 + by3 + cz3 = d.

(2.6)

The vector vo =
[
a b c

]
is the normal vector of the plane. Since there are always

two normal vectors, no1 and no2, for a plane in opposite directions, the velocity
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vector (vt) of the tool has to be considered. Defining the angles between the normal
vectors and the velocity vector as θ1 and θ2:

θi = arccos
(

noi · vt
|noi||vt|

)
. (2.7)

Then the normal vector with greater angle should be selected. The border case
θ1 = θ2 = 90◦ can be neglected, because this case should not happen in this contact
situation.

Then the signed point-surface distance between the tool (t) and the plane (o) can
be calculated,

dto = axT + byT + czT + d√
a2 + b2 + c2

. (2.8)

According to the definition of the normal vector, a positive dto indicates that the
tool and the object are divided, and a negative distance means that contacts appear.
Then the contact position is defined at the nearest node, and without sliding, the
contact node is constant during a single contact. Using a location index, the searching
procedure may be accelerated significantly, that means searching is only done in a
small region in the near from the tool. This contact detection is implemented in
Algorithm 2.1.

Algorithm 2.1: Contact detection
Define the current position of the tool, pt
if the node index is available then

Searching in the index
Determinate the three nearest nodes

else
Traversal all nodes one by one,
Calculate the distance dti
Select the three nearest nodes

end if
Determine the plain P
Determine the normal vector
Calculate the distance D
Judging the contact
if there is contact then

Determine the boundary displacement
else

There is neither any deformation, nor contact force
end if

For other operation situations, there are also approaches for the tool-object haptic
problem, takeing sliding into account [73]. Furthermore, for general contact problems,
the contact situations may be complex and different. In these cases, different
algorithms of contact detection have been investigated, such as the bounding volume
hierarchies (BVH), which has been proved to be one of the most efficient methods for
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the contact detection [116, 122]. Some stochastic methods are also developed, which
are especially suitable for real time and interaction applications. The spatial division
has also be applied in this area [115]. There are professional multi-body simulation
software packages, which are suitable for the collision detection, for instance the
program Bullet.
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3. Modeling of Solid Material

Solid materials can be modeled numerically and analytically. The analytical models
are more accurate and simple in implementation and computation. However, there is
not any analytical way for the modeling of universal objects in continuum mechanics,
thus the numerical methods are used here. The material characteristics are imple-
mented using the finite element method (FEM). First of all, some typical material
features should be introduced.

3.1. Constitutive Equation

In continuum mechanics, the material behavior is generally described by the stress-
strain relations in the form constitutive equations, which are mathematical models of
real materials. There are many diverse materials, however some typical mechanical
characteristics are contained by varying materials. In order to present them accurately
in mathematic formulations, different constitutive equations are developed. Each of
them can describe some principal material behavior, respectively. To apply these
theoretical models in practice, the aim is to determine the most suitable constitutive
equations for some given real materials. In this thesis, the modeling tasks are
concentrated on soft solid materials. Elasticity is implemented as the most basic
material feature, and viscoelasticity is also considered, since nearly all real materials
behave in this way more or less, especially the animal tissues, which have been highly
interesting objects for haptic simulations in medical and biological areas in recent
years. Furthermore, inhomogeneous materials are common in real world, therefore it
is also valuable to develop the modeling methods for them.

The constitutive equations describe the relations of stress-strain processes. In the
following derivations, stress and strain are formulated in the tensor form [72], i.e.
the stress tensor,

σ =

σx τxy τxz
τyx σy τyz
τzx τzy σz

 , (3.1)

and the strain tensor

ε =

 εx γxy γxz
γyx εy γyz
γzx γzy εz

 . (3.2)

Based on the principle of conservation of angular momentum, the stress tensor is
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symmetric with the following property,

τxy = τyx τyz = τzy τzx = τxz. (3.3)

In the strain tensor, the similar relations are also available for the shear entries,

γxy = γyx γyz = γzy γzx = γxz. (3.4)

Then both tensors can be defined by 6 different entries, respectively. Then the
constitutive equation can be written in the general form

σ = Fc(ε). (3.5)

The general function Fc is defined for varying material models, respectively. In this
chapter, the thermo effects of materials during deformations are omitted.

3.1.1. Linear Elastic Material
Linear elasticity is based on the geometric linearization, and it is fundamental to the
classic theory of the solid mechanics [118]. The well known simplified Hooke’s law

σ = Eε (3.6)

is the simplest situation of this material under one dimensional load. The complete
constitutive equation of linear elastic materials, the Hooke’s law, in tensor form is as
follows,

σ = E

1 + ν

[
ε+ ν

1− 2ν · tr ε · I
]
, (3.7)

where E is the Young’s modulus, and ν is the Poisson’s ratio. For real materials,
ν is always in the range (0 ∼ 0.5), and the boundary value 0.5 corresponds to
incompressible materials, which are idealized cases. There are also other coefficient
settings for the linear elastic materials, for instance the bulk modulus K and the
shear modulus G. These parameters can be converted into each other,

K = E

3(1− 2ν) (3.8)

and

G = E

2(1 + ν) . (3.9)

Thus, at the same time, just two of them are necessary to describe the material
behavior completely. Hence, in the following derivation, the Young’s modulus and
the Poisson’s ratio are used, as well as for the corresponding modeling and model
identification. It should be noted that this material model is merely available for
small deformations, since in this area, both the material feature and the strain state
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can be approximated as linear relations [49].

3.1.2. Linear Viscous Material
The perfect fluid is modeled as the linear viscous material, which neglects a general
effect of fluid, i.e. the internal friction. It is also known as the Newtonian fluid, the
idealization of fluid material [119]. The constitutive equation of it is

σ = −p(ρ) · I + η · ∇v + λ · tr∇v · I, (3.10)

in which η is the viscosity and ρ is the density of the fluid, v is the velocity of the
material points.

Since the central point is the modeling of solid materials, the introduction of the
linear viscous fluid is for the following derivation of the viscoelastic constitutive
equation in the next section. It is sufficient merely to take the viscous effects
into consideration, while the other effects are described by the other terms in the
viscoelastic constitutive equation. For this reason, further simplifications can be
assumed. If the fluid is incompressible, the third term can be omitted, i.e. tr∇v = 0.
And for the fluid with constant flow velocity, the diagonal entries vanish. Sometimes
the effects of material density to the internal-strain state can also be neglected, then
only the shear stress is remained. Eventually, the linear viscous constitutive equation
is simplified as follows, in Cartesian coordinate system,

σ = ηε̇ = η


0 ∂vx

∂y
+ ∂vy

∂x
∂vx
∂z

+ ∂vz
∂x

∂vy
∂x

+ ∂vx
∂y

0 ∂vz
∂z

+ ∂vz
∂y

∂vz
∂x

+ ∂vx
∂z

∂vz
∂y

+ ∂vy
∂z

0

 , (3.11)

where ε̇ is the rate of strain tensor. In the one dimension case, for instance in
direction x, it can be formulated as

τxy = η
∂vx
∂y

= ηγ̇xy. (3.12)

The analogous relations of this reduced constitutive equation are applied in the
derivation in next section. This simplified formulation is suitable, because the other
material feature can be presented by the elastic components in the viscoelastic
models.

3.1.3. Linear Viscoelastic Material
As mentioned above, the viscoelastic materials are nonlinear materials and have the
features of pure elastic and viscous materials at the same time. For the modeling
of these materials in this implementation, the linear viscoelastic behaviors [89] is
assumed, analogous to linear elastic and the Newton fluid, that is the Boltzmann
superposition is valid. Furthermore, it is also presumed that the material in the
considered region is isotropic and homogeneous. For anisotropic materials, the
approach is similar, but the material parameters are dependent on the directions.
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Figure 3.1.: Spring-dashpot models for viscoelastic materials. The basic elements are
springs and dashpots for the elastic and viscous components, respectively. Different
models can be established by diverse combinations of the elements, such as the Maxwell
model (a), the Kelvin model (b) and the generalized model (c) with 2n− 1 elements.

For inhomogeneous materials, the modeling method is introduced in the following
sections.
The constitutive equation of linear viscoelastic materials can be defined in the

relaxation form or the creep form. In latter derivations in this section, the relaxation
formulation is used, which is also known as the stress process. It is the stress response
corresponding to a series of given strain states. The external effects of this process is
the traction or reaction force response to the given boundary displacement history.

Based on the Boltzmann superposition, the linear viscoelastic constitutive relation
can be formulated as follows,

σ =
t∫

0

Γ (t− τ)ε̇(τ)dτ, (3.13)

where ε̇ is the time derivative of the strain tensor, and Γ is the relaxation function,
which depends on the strain, the strain rate and the time scale. Hence (3.13) can
explain the dependence of the stress-strain relation on the loading history. However,
the details of the effects are hidden in the relaxation functions. In order to determine
them, the spring-dashpot models are used [26], and the elastic and the viscous
contributions are described by the springs and dashpots, respectively, Fig. 3.1. For
the one dimensional case in the figures, the constitutive equations of both linear
materials, (3.7) and (3.10), can be simplified into the following stress-strain relations,
respectively, as mentioned above,

σe = E · εe
σv = η · ε̇v.

(3.14)

There are three different rheological models, using springs and deshpots, i.e. the
Maxwell model, the Kelvin model and the generalized model. The last one consists
of varying Maxwell elements and a spring, which are parallel to each other. Fig. 3.1.
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Figure 3.2.: The simplest generalized model with three parameters, a spring Es and a
Maxwell element E1 and η1.

The boundary condition of the Maxwell model is

lim
t→∞

σ = 0, (3.15)

and for the Kelvin model, it is

lim
t→∞

ε = 0. (3.16)

The generalized model can provide varying behavior by using n diverse Maxwell
elements, and the following relations are always available,

σs +
n∑
i=1

σi = σ

εs = εei + εvi = ε,

(3.17)

where s is the index of the static term described by the single spring.
As an example, considering the simplest generalized model with only one spring

(Es) and a single Maxwell element (E1 and η1), Fig.3.2. Since, σs + σ1 = σ and
ε1e + ε1v = εs = ε, the linear differential equation of this spring-dashpot system can
be formulated as follows,

σ̇ + E1

η1
σ = EsE1

η1
ε+ (Es + E1)ε̇. (3.18)

It can be solved with the relaxations boundary condition, σ(0) = 0, and then the
solution, including the homogeneous and particular parts, is

σ(t) =
t∫

0

[
Es + E1e

−E1
η1

(t−τ)
]
ε̇(τ)dτ. (3.19)

This equation is the constitutive relation of this model, with the relaxation equation

Γ = Es + E1e
−E1
η1

(t−τ)
. (3.20)

Analogously, applying the relation (3.17) for a generalized model with N Maxwell
elements, the linear viscoelastic constitutive equation in the general form can be
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derived,

σ(t) =
t∫

0

[
Es +

N∑
i=1

Eie
−Ei
ηi

(t−τ)
]
ε̇(τ)dτ, (3.21)

and the relaxation function is defined accordingly in connection with a Prony series,
as follows,

Γ (t) = Es +
N∑
i=1

Eie
− t
τi , (3.22)

where Es is the elastic modulus of the static component, Ei and τi are the relaxation
amplitude and the relaxation time of the i-th Maxwell element, respectively. The
viscosities are relevant for in the relaxation times,

τi = ηi
Ei
. (3.23)

Since (3.21) just describes the stress-strain relation under 1-dimensional load, however
for a general 3-dimensional deformable body, the influence of the strains in other
directions on the stress should be taken into account as well. Thus, analogous to
(3.7), the Poisson’s ratio ν is involved. Then in connection with Es, the static linear
elasticity can be implemented in the viscoelastic model. The material parameters of
a linear viscoelastic model can be defined as

x =
[
Es ν E1 τ1 · · · EN τN

]T
. (3.24)

3.2. Finite Element Method
In order to implement the above shown material feature in the contact force models
and to use them to solve practical problems, the finite element method (FEM) [127,
126] is applied. The FEM can solve problems in many different areas, for instance
thermodynamics and electro magnetic fields. In this thesis, it is implemented to solve
continuum mechanic problems. In this chapter, it is assumed that the geometric
models with mesh are available, and the goal is just to apply the material feature
into them.

3.2.1. Basic Concept
The finite element method (FEM) is a series of numerical methods to solve a
differential equation system,

D(u) = 0, (3.25)

with certain boundary conditions,

B(u) = 0. (3.26)
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Then it is reasonable to transform this problem into an equivalent integration form
as follows,∫

V

vTdD(u)dV +
∫
S

vTb B(u)dS = 0, (3.27)

in which V and S are the effective volume of the differential equations and the effective
area of the boundary conditions. The vectors vd and vb are two vectors of arbitrary
functions. The FEM can try to solve u in the following form as approximations,

u ≈
n∑
a=1

Naũa = Nũ, (3.28)

where Na are shape functions. Applying the Galerkin method, the approximation of
the arbitrary functions in v can be defined in a finite discrete form,

v =
n∑
b=1

Nbδub. (3.29)

In (3.28-29), a and b are the indices of nodes. Then, if the differential equations are
linear, the integration (3.27) can be rewritten into the form,

A1u + A2u̇ + A3ü + · · ·+ f = 0. (3.30)

In this thesis, the contact problem can be modeled as the following case,

Ku + f = 0. (3.31)

This formulation is suitable to solve solid mechanics problems under the contact
conditions defined in Chapter 2, with the stiffness matrix K, the force vector f and
the displacement vector u.

The matrices and vectors of one FE model are the sum of all the corresponding
element and nodal terms, and noted as

m

A
i=1

(·). That is, the model stiffness is the
assembly of all element stiffness matrices according to nodes,

K =
m

A
e=1

(Ke). (3.32)

Analogously, for the nodal displacement

u =
m

A
e=1

(ue), (3.33)

and the force vectors

f =
m

A
e=1

(f e), (3.34)

the similar summary relations are available. The nodal displacement and nodal force
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vectors of a single element can be defined node-wise, as follows,

ue =
[
ux1 uy1 uz1 · · · uxl uyl uzl

]T
, (3.35)

and

f e =
[
fx1 fy1 fz1 · · · fxl fyl fzl

]T
, (3.36)

where l is the number of the nodes of each element.
On the opposite side, the nodal terms can be determined from the model vectors

and matrices, as unassemble. They are marked directly as the inverse of the assembly,
n

A−1
i=1

(·), such as the element nodal displacement,

ue =
m

A−1
e=1

(u). (3.37)

Furthermore, it should be noticed that the model stiffness matrices are sparse matrices,
and there are mathematic and numerical methods to calculate them efficiently [48,
117]. By this means, the calculations, especially the matrix multiplications, can be
accelerated significantly.
In the FEM, the strain inside of a tetrahedron can be determined based on the

nodal displacement, in the vector form, and for a single node, it yields,

ε =



εx
εy
εz
γxy
γyz
γxz


=



∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x


=



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
0 ∂

∂z
∂
∂y

∂
∂y

0 ∂
∂x


·

uv
w

 . (3.38)

where u, v and w are displacements, and the stress is also defined in the vector form
accordingly,

ε =
[
σx σy σz τxy τyz τxz

]T
. (3.39)

3.2.2. Boundary Conditions

Some interactions of the test objects and the environment are modeled as boundary
conditions. They can be divided into two kinds, the boundary displacement and the
boundary traction. The displacement boundary conditions at some positions should
be transformed to the corresponding nodes, and the nodal displacements of them
are specified using the given boundary displacement vector u0,

u = u0. (3.40)
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The boundary conditions with known boundary tractions f0 are formulated as

f = f0 = GTσ (3.41)

for accordant nodes, and the matrix G is the transformation matrix from stress to
nodal force, which contains the direction cosines as follows,

G =



nx 0 0
0 ny 0
0 0 nz
ny nx 0
0 nx ny
nz 0 nx


, (3.42)

where nx, nx and nx are the direction cosines.

3.3. Linear Elastic Model

The linear finite element model means not only the constitutive equation but also
the geometry and the elements are linear. That is, as basic FE models, they are
complete linear. In this implementation, the linear tetrahedron, which contains 4
nodes and 6 edges, is used as the volume element, Fig. 2.3.

As mentioned above, the elastic constitutive equation (3.7) can be implemented in
the vector form in these models as

K · u = f , (3.43)

where u and f are the nodal displacement and nodal force vectors, respectively. The
matrix K is the model stiffness matrix, which is the sum of all element stiffness
matrices {Ke}. A single element stiffness matrix is defined as follows,

Ke = V eBTCeB, (3.44)

in which V e is the volume of the tetrahedron. If the coordinate of a node is noted as
ũi =

[
xi yi zi

]
, it yields for the tetrahedron defined by the nodes ũ1, ũ2, ũ3 and

ũ4,

V e = 1
6

∣∣∣∣∣∣∣∣∣
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣∣ . (3.45)

The matrix B contains the shape functions. It can describe the relation between the
strain and the corresponding nodal displacements,

ε ≈ Bũ linearization−−−−−−−→ ε = Bũ. (3.46)
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Matrix B is a constant matrix for linear tetrahedra here. The matrix Ce is the
elastic matrix of the elements and defines the material characteristics of them. It is
identical for the same materials,

Ce = E

d



(1− ν) ν ν 0 0 0
ν (1− ν) ν 0 0 0
ν ν (1− ν) 0 0 0
0 0 0 (1− 2ν)/2 0 0
0 0 0 0 (1− 2ν)/2 0
0 0 0 0 0 (1− 2ν)/2


, (3.47)

in which E is the Young’s modulus, ν is the Poisson’s ratio and the scalar coefficient
d is defined as d = (1 + ν)(1− 2ν).

For a single tetrahedron, the nodal displacement and force vectors are noted as,

ue =
[
x1 y1 z1 x2 y2 · · · y4 z4

]T
, (3.48)

and

f e =
[
fx1 fy1 fz1 fx2 fy2 · · · fy4 fz4

]T
. (3.49)

These are in the component wise formulation. They can also be written node
wise, and the implementation is analogous. Then the coordinate of an arbitrary
position

[
x y z

]
in the tetrahedron can be defined using the volume coordinate[

ξ1 ξ2 ξ3 ξ4
]
,

1 = ξ1 + ξ2 + ξ3 + ξ4

x = ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4

y = ξ1y1 + ξ2y2 + ξ3y3 + ξ4y4

z = ξ1z1 + ξ2z2 + ξ3z3 + ξ4z4.

(3.50)

The shape functions Na can be determined subsequently. Then the matrix B is as
follows,

B =



1 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 1 0 1 0 0 0 0 0 −1 −1 0
0 0 0 0 0 1 0 1 0 0 −1 −1
0 0 1 0 0 0 1 0 0 −1 0 −1


.

Assembling them of all tetrahedra into (3.43) using the relations (3.32-34), a
complete linear elastic FE model can be established. And the evaluation of the
contact reaction force is directly according to (3.43), using the numerical methods in
the next chapter.
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3.4. Linear Viscoelastic Model

The linear viscoelastic contact force models are also implemented using finite element
method. They are nonlinear models because of the constitutive equation. However,
the above shown viscoelastic constitutive equation (3.21) is dependent on the time
scale, and cannot be applied directly in the FEM. Since the numerical methods are
based on the discrete model, the relation (3.21) have to be transformed into the
discrete formulation, in the first step.

The goal is the discrete relation with recursive form, which is suitable for the FE
implementation. Then the current states are merely dependent on previous states,
generally the states at the last time step, and only a few storage spaces are necessary.
For a single Maxwell element, the following relation can be split from the complete
constitutive equation (3.21),

σi =
t∫

0

Eie
−Ei
ηi

(t−τ)
ε̇dτ . (3.51)

After the time discretization, it yields for the point of time k + 1

σik+1 = Ei

k+1∫
0

e
−Ei
ηi

(k−τ)
ε̇dτ , (3.52)

and the discrete time form can be derived as follows, for a given time interval ∆t,

σik+1 = e
−Ei
ηi
∆t
Ei

k∫
0

e
−Ei
ηi

(k−τ)
ε̇dτ + Ei

k+1∫
k

e
−Ei
ηi

(k+1−τ)
ε̇dτ

= e
−Ei
ηi
∆t
σik + Ei

k+1∫
k

e
−Ei
ηi

(k+1−τ)
ε̇dτ

= e
−Ei
ηi
∆t
σik + Ei

k+1∫
k

e
−Ei
ηi

(k+1−τ)
dτ
∆εk+1

∆t

= e
−Ei
ηi
∆t
σik + ηi

(
1− e−

Ei
ηi
∆t
)
∆εk+1

∆t
.

(3.53)

With (3.23), it can be rewritten as,

σik+1 = e
−∆t
τi σik + Eic

t
i∆εk+1, (3.54)

where the coefficient cti is defined as

cti = τi
∆t

(
1− e−

∆t
τi

)
. (3.55)

Substituting (3.54) into the stress relation of generalized models (3.17) yields the
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discrete time constitutive equation,

σk+1 = Esεk+1 +
N∑
i=1

(
e
−∆t
τi σki + Eic

t
i∆εk+1

)
, (3.56)

which is suitable for the FE implementation.

The second step is the implementation of the discrete constitutive relation. To
apply the one dimensional constitutive equation (3.56) in practical deformable models
and to solve the stress-strain relations numerically, the finite element method in this
section is also implemented using linear tetrahedra. Considering the equation of the
linear elastic models,

K · u = f , (3.57)

in order to formulate the finite element relation of linear viscoelastic materials
analogous to that, (3.56) can be transformed as(

Es +
N∑
i=1

Eic
t
i

)
εk+1 = σk+1 −

N∑
i=1

e
−∆t
τi σik +

N∑
i=1

Eic
t
iεk. (3.58)

For the static term, analogous to linear elastic models, the Poisson’s ratio has been
taken into (3.58), applying it for each tetrahedron in a given FE model, the relation
between u and f is available in the following form,

Kv · uk+1 = f ek+1 − fhk+1 = f̃k+1, (3.59)

where Kv is the viscoelastic stiffness matrix, f̃k+1 is the pseudo nodal force vector,
including the external force vector f ek+1 and the stress history term fhk+1. This equation
can explain that the contact reaction force at some point of time is dependent not
only on the current displacement on the boundary but also on the previous loading
history, which is described by the stress history terms. In detail, the viscoelastic
stiffness matrix of the FE model, analogously, is the sum of all element stiffness
matrices {Ke

v}, which are defined as,

Ke
v = BTCeBV e

(
1 +

N∑
i=1

Ei
Es
cti

)
. (3.60)

They can be determined by using the following tetrahedral parameters, V e is the
volume of a single tetrahedron, the matrix B contains the shape functions, and is
still a constant matrix, as that of the linear models. The matrix Ce is the elastic
matrix, which defines the effects of the static elastic material parameters, and it is
identical to (3.47). The stress history term of each tetrahedron is illustrated in the
form of the element history force,

f ehk+1 = BTV e
N∑
i=1

e
−∆t
τi f ik −BTCeBV e

N∑
i=1

Ei
Es
ctiuk, (3.61)
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where i is the index of the Maxwell elements and the element nodal force component
f ik of the i-th Maxwell element can be calculated recursively as follows,

f ik+1 = e
−∆t
τi f ik + Ei

Es
ctiCeB∆uk+1. (3.62)

Then the model history force fh in (3.59) is the sum of f ehk+1 of all elements,

fhk+1 =
n

A
b=1

(f ehk+1,b). (3.63)

By this means the FE models with linear viscoelastic behavior are created. Com-
pared with the linear models, the contact force evaluation of these models is compu-
tationally more expensive, because the matrices and vectors in (3.60-63) have to be
calculated. The evaluation is detailed in Chapter 4.

3.5. Inhomogeneous Model
In continuum mechanics, inhomogeneity characterizes the physical property, if the
behavior of a object is variable for different regions under mechanical loads. This
difference of the force-displacement relations is the external reflection of the internal
variety of the stress-strain relations in the heterogeneous regions. This means the
theoretical models, constitutive equations, of the material are not identical for the
whole body. There are some typical examples of this material, such as composites,
however, in the strict sense, most solid bodies in the real world are more or less
inhomogeneous. Thus, it is an important and universal phenomena for haptic
simulations. In this case, it is necessary to implement the most suitable material
feature for each region, for instance different material values should be assigned for
these regions. Then the inhomogeneous contact force models with different regions
can present this material feature. In many works, the inhomogeneous materials have
been taken into account, especially in medical applications [31, 1]. However, the
modeling and the identification of the inhomogeneous models are always problematic
and computationally expensive. In connection with identification of inhomogeneous
FE models in Chapter 5, a general modeling method of the material inhomogeneity
is introduced.

During the modeling, the implementation of a single region is the same as that of
the homogeneous models in the former sections. The difference is to model varying
regions and to integrate them together as a whole body. There are two alternatives,
one is generating the mesh of different regions separately, and then all the components
of the regions are integrated as the complete model [125]. The other is based on the
identical geometric mesh structure, which is independent on the region boundaries,
and each tetrahedron should be determined in which region it belongs. The first one
has the advantage that the region boundary is always along the element boundary,
however, the remesh is necessary, which is extremely expensive in computing time
for the latter model identification. Moreover, the force evaluation may be affected by
the different mesh structure as well. The simulations and experiments in Chapter 6
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have shown that the second method is more efficient. It is also suitable for the model
identification and real time haptic simulations. After exact model identification,
the influence of the boundary derivation can be neglected. Furthermore, the effects
of the mesh structure on the model accuracy can be eliminated using the second
modeling method.
As an example, considering a model with n heterogeneous regions, and all the

regions are linear elastic, however the material characteristics are different. According
to (3.44), the element stiffness matrices are as follows,

Ke
j = V eBTCe

jB, (3.64)

where j is the region index. For homogeneous linear elastic materials, the matrices
Ce and B are identical for all the tetrahedra in the model. But for inhomogeneous
materials, as mentioned above, the elastic matrix Ce

j is dependent on the position,
i.e. the inhomogeneous regions. Hence, the material differences among these regions
are described in the elastic matrices,

Ce
j = Ej

dj



(1− νj) νj νj 0 0 0
νj (1− νj) νj 0 0 0
νj νj (1− νj) 0 0 0
0 0 0 (1− 2νj)/2 0 0
0 0 0 0 (1− 2νj)/2 0
0 0 0 0 0 (1− 2νj)/2


,

(3.65)

with

dj = (1 + νj)(1− 2νj). (3.66)

Eventually, there is the collection {Ce
i} available for a given inhomogeneous material.

If it is assumed that the region boundaries are estimated, which will be shown in
Chapter 5, then the goal is to assign the correct Ce

j and Ke
j to each tetrahedron, i.e.

to determine which elements belong to which regions. Since the region boundaries
are generally modeled as polyhedrons in computational graphics, and the boundary
of each region is closed, it can be imaged for one tetrahedron, that a ray starts from
the center of the tetrahedron and extends in an arbitrary direction, then several
line-surface intersections between the ray and the closed region boundary can be
determined. As the criterion, if the number of intersections is odd, the tetrahedron
lies inside of this region, otherwise outside of it.

In many applications, the inhomogeneous regions are distributed two dimensionally,
for example in the x-y plane, or sometimes the inhomogeneous objects can be modeled
in this way, if there is not enough information of the material, and the central purpose
is to simulate the haptic behavior of the objects. These models can be called the
simplified inhomogeneous models. In these cases, the intersection problem is also
simplified as line-line intersections, since only the projections of the boundaries,
which are polygons in computer graphics, should be taken into account, then the
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Figure 3.3.: Region determination of two given position points A and B using rays. The
rays a and b are in arbitrary directions from the points, respectively, whereas c and d are
horizontal.

principle remains the same, however the computational expense can be reduced.
Fig. 3.3 illustrates this method in a 2D example for the points A and B with the
arbitrary rays a and b. In this implementation, the horizontal rays, c and d, are used,
so that the computational expense can be reduced further. This region detection
approach is detailed in Algorithm 3.1.
This method has the advantage that the geometric mesh of the model is always

identical, and a remesh is not necessary, even if the region boundary is modified. This
way, the influence of the mesh structure on the accuracy of the models is reduced as
well.

If the regions are not linear elastic, the modeling approach is the same, merely the
material characteristics, which should be assigned to each element, are not E and ν
in Ce, but the corresponding parameters in the constitutive relations.
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Algorithm 3.1: Region detection
Initialization:
- Import the geometric model
- Number of the regions, nreg
- Import the region boundaries
- Whether simplified inhomogeneous models or not
for each tetrahedron do

tetrahedron i
Calculate the center of the i-th tetrahedron
Create the horizontal ray
for each region do

counter cintersection = 0
for each primitive (polygon or segment) of this boundary do
if intersection of the current primitive then
cintersection = cintersection + 1

end if
end for
if cintersection is odd then

Inside of the region
Assign the corresponding material characteristics
Break

end if
end for
Next element

end for
Inhomogeneous FE model with nreg regions
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4. Contact Force Evaluation

This chapter focuses on the contact force evaluation using FE models and the methods
for haptic rendering. Since FE models are computationally expensive, especially the
nonlinear models, a model based data fusion method is also introduced for real time
haptic simulations.

4.1. Finite Element Evaluation
The finite element models are generally large scale systems. In order to solve them,
considering (3.43) and (3.59), the relations between the boundary displacement
and the nodal force of the FE models in the last chapter can be formulated as the
following form,

Ax = b, (4.1)

where A is a symmetric and positive definite matrix, A ∈ <n×n. Hence the contact
force evaluation of these FE models can be regarded as the solving of this linear
system. There are two well known methods for this problem, the conjugate gradient
method (CG) and the Gaussian elimination.

4.1.1. Conjugate Gradient Method
In this chapter, the evaluations of the FE models are based on the conjugate gradient
method [8, 88, 55]. The basic idea of the CG is the generation of a set of conjugate
vectors pi, which satisfy the following relation,

pTi Apj = 0 with i 6= j. (4.2)

This means that the conjugate vectors are linearly independent of each other.
The CG algorithm is also an optimization algorithm, thus in principle, the linear

system (4.1) should be rewritten as an optimization problem with the objective
function of the vector x,

f(x) = 1
2xTAx− bTx. (4.3)

This is a convex quadratic function, and the residual of the linear system, r, is defined
as follows, which is also equal to the gradient of the objective function. Transforming
(4.1) into the following form,

Ax− b def= r = ∇f , (4.4)
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the solution of (4.1) is equivalent to the minimization of the residual iteratively, using
the linear search method. Then in each iteration, x can be determined according to

xk = xk−1 − αk−1pk−1, (4.5)

where α is the one dimensional minimizer along the direction p,

αk+1 = −rTk+1pk+1

pTkApk
. (4.6)

The algorithm converges in at most n steps, for a problem with arbitrary start
values, x0. Furthermore, the convergence of a concrete problem is dependent on the
distribution of the eigenvalues of the coefficient matrix.

Applying the CG algorithm to the evaluation of FE models, the coefficient matrix
corresponds to the stiffness matrix, and x and b are the nodal displacement and the
nodal force vectors. For the solid mechanic problems, most entries in the vector u are
generally unknown. There are two situations of this problem, one is the calculation
of the deformation by some boundary traction, and the other is the evaluation of the
contact reaction force based on the known boundary displacements.
From the aspect of the model evaluation, the boundary conditions are critical

factors, and they can be divided into two kinds, constraints and boundary loads.
The load may be variable displacements and external forces at some boundary nodes,
whereas for the constraints, the displacements of the corresponding nodes are always
constant, and generally they are equal to zero. Both of the two boundary conditions
are implemented in the nodal displacement and force vectors, u and f , respectively.
Then, the CG algorithm solves the FE deformable bodies problems in three phases:

• Initialize: Given the matrix K, the starting value u0, the boundary conditions,
including the traction in vector f and the constraints of the model.

• Loop: Iterative solution of (4.1). The optimization should be terminated if
specific conditions are satisfied, such as the convergence criterion and the
maximal number of iterations. In each iteration, the following terms should be
determined, including the deformation,

uk+1 = uk + αkpk, (4.7)

and the optimizer

αk+1 = −rTk+1pk+1

pTkKpk
. (4.8)

The descent direction pk+1 is dependent on the steepest descent direction,

rk+1 = rk + αkKpk, (4.9)

and the previous direction pk, that is,

pk+1 = −rk + βk+1pk. (4.10)
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The auxiliary factor β is required to ensure that pk+1 and pk are conjugate
with respect to K,

βk+1 = rTk+1rk+1

rTk rk
. (4.11)

• Output: Extract the required values from the corresponding nodes, if the
convergent criterion is satisfied.

In this chapter, since the contact force is more important for the haptic simulation
in comparison to the boundary displacement, the emphasis is to evaluate the nodal
force using the algorithm, if the boundary deformation at some positions is given.
Eventually, the contact reaction force can be extracted as the sum of the according
nodal forces.

f react Extract←−−−− fnodal (4.12)

As mentioned above, the stiffness matrices are sparse matrices, and the according
algorithms are used for the matrix multiplications. Then the computational expense
is obviously reduced. For the evaluation of the boundary displacement, the algorithm
is similar, but the boundary conditions are different.

The conjugate gradient (CG) method is especially suitable for large scale problems,
since it does not need to modify the coefficient matrix and it converges sometimes
more quickly than other methods. It should be noticed that the convergence of
the CG method depends on the distribution of the matrix K, and further on the
mesh of the FE model as well. Hence the models with better mesh structures are
converging more quickly than those with bad mash. The simulations have confirmed
this conclusion by using the models with quality mesh, shown in Chapter 2, and
normal mesh.

4.1.2. Practical Implementation
The conjugate gradient (CG) method can be implemented for the linear elastic
models by substituting the vectors u and f directly into the algorithms, i.e. u→ x

f → b.
(4.13)

Then the boundary displacements and the contact reaction forces can be determined.
However, for the viscoelastic models, the CG algorithms can not by used directly

with external force f ek+1, but by using the pseudo nodal force f̃k+1. Furthermore, it
should be noted that the evaluation of the viscoelastic models is according to each
point of time, uk+1 → x

f̃k+1 → b.
(4.14)
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This way, f̃k+1 can be determined. Since the history terms depend only on the states
of the previous time step, it can be calculated directly, using (3.61-62). Subsequently,
the external force f ek+1 can be determined recursively, (3.59), and the contact reaction
force at the corresponding nodes can be extracted from it.

In principle, the more the parallel Maxwell elements are implemented, the more ac-
curate and detailed effects can be described, however the computational requirements
also increase significantly with it. Furthermore, some time constants may have little
importance in practice. Hence as the trade-off, referring to the simulation results,
the generalized models involving one spring and two Maxwell elements are often
applied in many implementations, so that the three most important characteristics
can be taken into account: the static elastic component, the short-term and the
long-term relaxations. This means N = 2 in (3.56), and the corresponding model
parameters are

χ =
[
Es ν E1 τ1 E2 τ2

]T
. (4.15)

In some applications, it may be necessary to include more Maxwell elements, however
the algorithm remains still analogously. Then for viscoelastic models, the practical
implementation of (3.59-63) for a time sequence of force evaluation is illustrated in
Algorithm 4.1.

Algorithm 4.1: Force evaluation of linear viscoelastic FE models
Initialization:
- u0 and f eh0
- Define ∆t
- Time scale t = 0
loop

Determine f̃k+1 and uk+1, using the CG method.
Calculate f ehk+1
Determine fhk+1, using (3.63)
Determine f ek+1:
- f ck+1 − fhk+1 = f̃k+1
Extract the contact force from the corresponding nodes
Calculate the contact reaction force
t = t+∆t
if t > tmax then

Break
end if
if Quit then

Break
end if

end loop

For inhomogeneous models, the evaluations of elements with different material
features are according to the associated methods.
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Figure 4.1.: Haptic rendering. The users send operations and receive force feedback
through some haptic devices as interface. And the contact force model provide the haptic
simulations and haptic rendering.

4.2. Haptic Rendering
The haptic rendering [100] gives human being the chance to apply the haptic ability
in other real or virtual environments. Some works present the haptic simulation
of human hands in virtual reality [70, 112]. In this section, the central point is to
represent the haptic information based on contact models and haptic simulations,
Fig. 4.1.
The haptic simulations are presented to users by using haptic devices [53], as

the user interface, which have been employed in a lot of research [27, 103]. Most
haptic devices can provide contact force at 1000[Hz], however the implementation
of the above mentioned finite element models with normal PCs is computationally
too expensive for the real time haptic rendering using these haptic devices. Several
quantitative examples are detailed in Chapter 6. In the simulations, time delays
at about 50[ms] may already lead to significant roughness in feeling and affect the
operations. Furthermore, if the computational expense depends on the model mesh
structure, the output rates of different models may be different as well. That is an
additional difficulty for users to learn through experience and training, such as by
using surgical simulators.
To solve this problem, data fusion methods for real time haptic simulations are

developed in the following sections.

4.3. Analytical Contact Force Model
The analytical solution of the contact reaction force has also been investigated in some
papers [35]. The most important advantage of it is the simplicity in implementation
and the computational expense. Furthermore, the analytical solutions are more
accurate than the numerical ones. There are two kinds of the analytical models, one
is based on the system dynamic equation

Mẍ + Dẋ + Kx + f = 0, (4.16)
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Figure 4.2.: Analytical contact force model of viscoelastic materials. This diagram show a
component at a single position, consisting of the generalized models in each coordinate
direction.

using idealized models, for instance springs. These models can merely describe
limited material behavior. Therefore, they can just be applied for simple systems.
The other is using the constitutive equations. However, they are solvable only for
some special cases, for instance the plane stress state and the plane strain state.

In this section, a new modeling method of analytical contact force models (ACFM)
is developed, based on the spring-dashpot elements. The concrete implementation
of these models depends on the according material features. For the linear elastic
materials merely the spring elements are necessary, whereas for the viscoelastic
materials the generalized Maxwell elements are used, analogously to Section 3.1.3.
The following descriptions are according to the viscoelastic analytical models, that
of linear elastic materials is analogous.

The basic structure of the ACFM is that in each coordinate direction, a generalized
model is applied, respectively, Fig. 4.2. However, he differential equations describe
not the stress-strain states but the force-displacement relation. Thus, the parameters
are not the Young’s modulus and the viscosity, but the spring constant k and the
mechanical damping coefficient d. These models are less accurate, however they are
computationally efficient for real time haptic simulations, and the output rate may
by over 1000[Hz] with most PCs in recent years.
Moreover, in order to improve the accuracy of the ACFMs, the analytical force

models in Fig. 4.2 are defined as sub-models in connection with their positions, this
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means the analytical models are defined discrete at several positions. For an object,
the ACFM can be divided into two parts, the known part and the unknown part.
The known part is a set of sub-models at the positions, where the corresponding
information is available. The number of these sub-models are finite. Whereas the
unknown part consists of infinite sub-models, at arbitrary positions. The features of
the unknown components can be determined based on the known sub-models. Since
the structure of each sub-model is relatively simple and it is always the same for all
sub-models, the ACFMs are noted using the parameters of it. For a single sub-model,
the parameters are defined as a function of positions,

χi = f(xi,yi,zi), (4.17)

where χi is the vector of the model parameters. Then the known part of the complete
ACFM is formulated as the collection of χi, which are components at available
positions with definitive characteristics,

{χi,xi,yi,zi : i = 1,...,m}. (4.18)

During the force estimations, a template component, an unknown sub-model, is
created at the desired position, and the parameters of it are determined by using
interpolation based on the known components. Some known sub-models are selected
as samples and it must be noticed, that the samples in the similar direction of the
current position should be neglected. Then the local parameters of the template
component are determined as the weighted mean of the parameters of the selected
samples,

χtemp =
n∑
i=1

d̄i∑n
j=1 d̄j

χi, (4.19)

where d̄ is the distance between the required position and the known components. It
is assumed that there are enough available components, and n of them are involved
in the calculation. By this means, although the sub-models are merely material
models, without geometric information, the effects of the geometry can be taken into
consideration by calculating the weighted average of the components at different
positions.

The analytical method can be applied for linear and nonlinear models. However, it
should be mentioned that the linear models are generally economical in computation,
and the expense can be limited to fit the requirements of real time simulation by
some implementation techniques, such as using selected numerical methods and
appropriate algorithm settings in Section 4.1. Hence the ACFMs are especially
suitable for the nonlinear, viscoelastic models.

4.4. Data Fusion Algorithms
To obtain real time haptic simulations using the two modeling methods, some
difficulties have to be overcome. For the finite element models, the computational
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expense is one of the most dominant challenges. The analytical contact force models
(ACFM) are computationally efficient, however the accuracy of the ACFM can not
satisfy the requirement of high level haptic simulations. Hence, suitable data fusion
approaches should be developed, and the basic idea is to fuse the accurate, low
frequency haptic simulations derived by the FE models with the high frequency
information derived the analytical contact force models using the data fusion method.
As a time sequence problem, this fusion procedure can be considered as a Bayesian
estimation problem. That is to estimate the current probability of system states
using all available measurements [17].

The Kalman filter (KF), introduced by Kalman [64], is a model based optimal
estimation method for the Bayesian problems. It is suitable for linear systems.
In order to apply the filtering algorithm to nonlinear systems, several KF based
approaches have been developed, for instance the extended Kalman filter (EKF)
and the sigma-point Kalman filters (SPKF) [80]. The fundamental thought of these
approaches is the linearization of the nonlinear system at a system state. In all of these
estimation methods, a Gaussian distribution is assumed. A more capable approach
for the Bayesian estimations is the sequential Monte Carlo method (SMC) [32, 5],
also known as the particle filtering (PF). As a simulation based method, it is suitable
for arbitrary posterior distributions of the system states, also for non-Gaussian and
nonlinear systems.

The system models can be written in the following general form, i.e. the system
equation

ẋ = f(x,u,w), (4.20)

and the observation equation

z = g(x,v). (4.21)

Both functions f and g can be nonlinear, the vectors w and v are the system and
measurement noises, respectively.

The goal of the data fusion in haptic rendering is to provide haptic simulations
with high frequency, such as 1000[Hz]. The original data come from the two models,
one is relatively accurate with low output rate, the other is suitable for high output
rate. In this case, the noises w and v can be better determined, as the weights
of the information in the fusion procedure. Therefore the non-Gaussian effects
are not dominant, and the computational expense of the SMC has little meaning.
Furthermore, the nonlinear components in an analytical model can be modeled as a
set of piecewise linear models, hence the extended Kalman filter is suitable for this
application.

It should be noted that the “measurement” in the following sections in this chapter
means the measurement in the state-space models not the factual measurement in
experiments.
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4.4.1. Extended Kalman Filter

The extended Kalman filter (EKF) is a widely used model estimation and data fusion
algorithm [78, 123]. There is a variety of algorithms based on the EKF. The typical
applications of it are for example motion estimation systems, navigation systems
and inertial measurement system (IMS). Here, the EKF is applied in a new area as
an engine for haptic rendering, i.e. to provide force feedback.

As a sub-optimal observer, the EKF estimates the system states based on linearized
system models, which are derived by the linearization and time discretization of the
general system model (4.20) and (4.21), with the system equation,

xk+1 = Φkxk + Gk+1uk+1 + wk+1, (4.22)

and the observation equation

zk+1 = Hk+1xk+1 + vk+1, (4.23)

where x is the state vector, u is the input vector and z is the output vector. The
matrices Φ, G and H are the transition matrix, input matrix and output matrix,
respectively. Since the system equations of the ACFMs are linear, analogous to
(3.56), they can be implemented directly in these equations. However the transition
and input matrices are nonlinear functions of positions,

Φ = Φ(x,y,z)
G = G(x,y,z)

. (4.24)

The vectors are defined as follows: the system state vector,

x = fACFM =
[
fx fy fz

]T
, (4.25)

the input vector

u =
[
∆sx ∆sy ∆sz ∆ṡx ∆ṡy ∆ṡz

]T
, (4.26)

and the output vector

z = fFEM =
[
fxm fym fzm

]T
. (4.27)

where ∆s is the boundary displacement.
The extended Kalman filter estimates system states in two steps, the first is the

prediction based on previous measurements {z1:k},

xk+1|k = Φkxk|k + Gkuk. (4.28)

The predictions of the measurements

zpk+1 = Hkxk+1|k (4.29)
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and the covariance matrix

Pk+1|k = ΦkPk|kΦT
k + Qn

k (4.30)

are also determined with available information. The second step is the state update
using the current measurements zk+1, the simulation from the FE model,

xk+1|k+1 = xk+1|k + Kk+1(zk+1 − zpk+1). (4.31)

The covariance matrix is also updated,

Pk+1|k+1 = Pk+1|k + Kk+1Sk+1KT
k+1, (4.32)

with the Kalman gain matrix

Kk+1 = Pk+1|kHT
k+1

Sk+1
, (4.33)

and the auxiliary matrix

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rn

k+1. (4.34)

Applying the model (4.22) and (4.23) to the EKF, the data fusion algorithm
for haptic simulations is illustrated in Algorithm 4.2. The EKF predicts the

Algorithm 4.2: Extended Kalman filter
Initialization.
loop

Step k
Prediction using (4.28-30)
Update using (4.31-34)
k = k + 1
if Quit then

Break
end if

end loop

contact reaction force using the system equation (4.28), which is according to the
analytical models, and updates the force using available information from the finite
element models, as the system measurements, (4.31). With this means, multifarious
information is fused. The dominant parameters of performance of the EKF are the
noise densities in the diagonal matrices Qn and Rn,

Qn = diag
[
qii
]

= diag
[
σfx σfy σfz

]
Rn = diag

[
rii
]

= diag
[
σfxm σfym σfzm

]
.

(4.35)

The diagonal entries qii and rii are the noise densities of the corresponding noises wi,
vi in the system and measurement noise vectors, respectively. If there are enough
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available samples, they can be calculated as follows,

σ2
i = 1

n− 1

n∑
j

(xij − x̄i). (4.36)

4.4.2. Example
The modeling methods of the ACFM and the data fusion approaches are introduced
in the last sections. In order to explain them intuitively, they are here illustrated in
an example. Considering the simplest analytical model of the viscoelastic materials
with only one Maxwell element and a spring in each coordinate direction, the relation
of the force f and the displacement ∆s in one dimension is described in the following
equation, analogous to (3.18),

ḟ + k1

d1
f = ksk1

k1
∆s+ (ks + k1)∆̇s

⇒ḟ = −k1

d1
f + ksk1

k1
∆s+ (ks + k1)∆̇s.

(4.37)

Substituting the time derivative of contact force ḟ = fk+1−fk
∆t

into this equation, and
applying it in three coordinate directions, it yields

 fx,k+1
fy,k+1
fz,k+1

 =


−kx1
dx1
fx,k + kxskx1

kx1
∆sx,k + (kxs + kx1)∆ṡx,k + fx,k

−ky1
dy1
fy,k + kysky1

ky1
∆sy,k + (kys + ky1)∆ṡy,k + fy,k

−kz1
dz1
fz,k + kzskz1

kz1
∆sz,k + (kzs + kz1)∆ṡz,k + fz,k

 . (4.38)

Subsequently, the matrices can be determined corresponding to the system equation
(4.38), including the transition matrix,

Φ =


1− kx1

dx1
∆t 0 0

0 1− ky1
dy1
∆t 0

0 0 1− kz1
dz1
∆t

 , (4.39)

the input matrix

G =

g
1
x 0 0 g2

x 0 0
0 g1

y 0 0 g2
y 0

0 0 g1
z 0 0 g2

z

 (4.40)

and the output matrix

H = I3×3, (4.41)

where the factors are defined as

g1
i = ki1kis

di1
∆t

g2
i = (ki1 + kis)∆t.

(4.42)
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As mentioned above, since the ACFM is less accurate, the parameters

χACFM =
[
kxs kx1 dx1 kys ky1 dy1 kzs kz1 dz1

]T
(4.43)

are defined as a function of positions,

χACFM = f(x,y,z), (4.44)

to improve the accuracy. The noise density matrices are identical as (3.45).
Furthermore, the numerically determined contact reaction forces are dependent

on the time interval ∆t = tk+1 − tk as well, hence it is reasonable to define ∆t as a
constant for accurate haptic simulations.
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5. Model Identification

The force models must represent the behavior of corresponding real or virtual objects.
The geometry of the objects can be measured or imported as shown in Chapter 2,
however it is difficult to measure the material parameters directly. Therefore, the
material characteristics of the force models should be identified.

5.1. Problem Statement
The models with the geometric mesh and some predefined values of the model
parameters can already simulate the contact force in principle. These models can be
used, for instance in virtual reality, if the model parameters are known. However in
many situations, the model parameters are at least partially unknown or inaccurate,
hence they should be determined based on available reference data, which are
generally measurements during experiments. The model parameters in the force
models involve mainly the geometric parameters and the material parameters. The
geometric parameters specify the model geometry, as well as the mesh structure.
On the one hand, some of them can be measured directly, and the accuracy of the
geometric measurements is normally sufficient for haptic simulations, for instance the
object surface. On the other hand, some geometric parameters can be determined
according to application conditions. In many applications, there is a trade-off among
these conditions, such as the mesh density for the computational expense and the
model accuracy. The measurement of material characteristics is more problematic.
Therefore, the model identification here is concentrated on the material parameters,
which describe the material feature and behavior, as shown in Chapter 3. Thus, it is
assumed in this chapter that the geometric models are already established, but the
material features, the constitutive relations, are not implemented in them.
This model identification can be divided into two steps. The first one is the

determination of which theoretical model is suitable for a given object and which
parameters should be implemented. The second step is assigning values to the
material parameters so that the models can be adjusted to simulate the given
objects. These two steps are known as the model learning and the model parameter
optimization, which are detailed in the following sections.

5.2. Model Learning
The model learning can be regarded as a data mining procedure [104], i.e. extracting
the most valuable information from diverse data. There are different methods for this
task, such as varying classification methods. For the contact force models, the direct
information of materials is initially unavailable, hence it is assumed in the beginning
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that the model is homogeneous and linear elastic. If the material is inhomogeneous,
significant differences will be detected among the samples from different sample
positions in the subsequent classification. This means if the material is linear elastic,
the model can be optimized directly, otherwise if the material is inhomogeneous or
nonlinear, the primary estimations of the heterogeneous regions and the theoretical
models are necessary. This unsupervised model learning is especially important for
the inhomogeneous models, because it is much more difficult in comparison to other
nonlinear effects, such as the viscoelasticity.

At first, the measurements from a single sample position are used for the estimation
of the local material parameters using the Gauss-Newton method, detailed in Section
5.3.2, under the assumption of homogeneity, and the parameters are defined as the
location sample xl. In the second step, the location samples should be classified to
estimate the inhomogeneous regions. However, the correlation of the information in
xl may be complex, and the computational expense of the classification increases
significantly with the size of the location sample vectors. Hence preprocessing
methods [15] are valuable to extract the feature and to reduce the dimension. The
principal component analysis (PCA) is a well known approach for this purpose [95,
120]. Using the PCA, the location samples are transformed into the corresponding
principal component vectors. The accuracy and efficiency of the classification can be
improve obviously.
The classification of the location samples, or the principal component vectors, is

implemented using the hierarchical cluster analysis [75]. If the distances of different
layers are beyond a threshold, the inhomogeneous regions in the material should be
recognized, and the samples should be divided into several groups, which correspond
to the different regions, respectively. Otherwise the linear elastic assumption should
be accepted in the subsequent modeling.
For the inhomogeneous models, after the identification of the inhomogeneous

regions, the boundaries between them are estimated using virtual scan points and
the quadratic discriminant analysis (QDA) [113]. Subsequently, the average material
parameters of the location samples in the same region are defined as the corresponding
values of it, then the primary model is established, Fig. 5.1. The applied methods
and the data processing are detailed in the following sections.

5.2.1. Location Sample Estimation
The original data of a test object for the model identification are a set of contact
reaction force with the associated boundary displacements at different positions.
They are defined as a collection of the original samples {xoi : i = 1,...,m}

xoi =
[
fTs pTs ∆pT

]T
=
[
fx fy fz x y z ∆x ∆y ∆z

]T
,

(5.1)

in which m is the number of the samples. The vectors fs, ps and ∆p are the force
measurement, the sample position and the boundary displacement.
The aim is to obtain suitable direction information of the material, i.e. the
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Figure 5.1.: Unsupervised model learning. The preprocessing using the PCA is an optional
function, which can improve the performance of the model learning.

constitutive relation and the corresponding material parameters. Since the material
behavior is unknown at the beginning, the basic material model, elasticity, is assumed.
That means, the object is modeled as homogeneous material with the linear elastic
constitutive equation, and the material parameters are assigned with default values.
This is the initial estimation of the test object.

As a simple constitutive equation, it is naturally not sufficient in many situations.
However, just with this initial estimation, the following detailed modeling of different
materials can be carried out. In order to include the material diversity within the
object as much as possible, the original samples are sorted according to their sample
positions, and the samples at the same sample position are used to created the
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location samples, which are defined as follows,

xli =
[
(psi )

T
(
χli
)T ]T

=
[
x y z E ν

]T
,

(5.2)

where χli is the material parameters of the i-th location sample. For linear elastic
materials, the material characteristics are the Young’s modulus (E) and the Poisson’s
ratio (ν). The estimation of the two parameters is based on the comparison of the
simulation and the original samples. It is modeled as a least squares problem, and
can be solved using the Gauss-Newton method, Section 5.3. This initial estimation
of the location samples is illustrated in Algorithm 5.1.

Algorithm 5.1: Initial estimation of the location samples
Import samples {xoi }
Sorting them according to sample positions.
Import the geometric models with the mesh structure.
Set the default values E0 and ν0.
for i = 0 to m do

Assign the material parameter:
E = E0 and ν = ν0
Parameter identification using Gauss-Newton Method, Section 5.3.
Defining the location sample xli
i = i+ 1

end for
The set of location samples: {xli}

Then the location samples are the first direct estimations of the material.

5.2.2. Preprocessing
For the subsequent model identification and analysis, the location samples should be
prepared and processed. However the location samples are varied and sometimes
they are correlated complexly with each other, so that they may not represent
the characteristics of the test objects accurately, and the differences may be not
distinguished enough. Thus, the efficiency and accuracy of the classification can
be affected significantly. For this reason, it is not suitable to apply them directly
for the model learning in some cases. To reduce these effects, preprocessing can be
used as an optional procedure. That means the preprocessing is not necessary for
all model identifications. But it can improve the quality of the input data as well
as the following data processing by extracting the most important information and
difference from the input data.
In this application, the principal component analysis method (PCA) is imple-

mented [59]. The aim is to reduce the dimensionality of the input data by extracting
the most important feature into the first few entries of the principal component
vectors. The central point of the PCA is a set of linear combinations, known as the
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principal component transformation of input variables, which is an orthogonal trans-
formation. This means, the new variables after the transformation are uncorrelated
with each other. For an original n-row sample vector xi, the linear transformation is

iq = U · xi, (5.3)

where the output vector q is the principal component vector, and the entries in it
are principal components of xi,

iq =
[
iq1 · · · iqn

]T
. (5.4)

The transformation matrix U consists of the eigenvectors of the covariance matrix
of the input vectors {xi}. Hence the output principal components are orthogonal
to each other, and the variance of the outputs is reduced in comparison with that
of the inputs. The size of the input vector and the principal component vector is
the same, however the variance of the input data is concentrated in the first few
principal components. Hence the dimension of the data can be reduced, and the
principal component vectors can be reduced in the following form, for example with
just two entries,

iq → iqr =
[
iq1

iq2
]T
. (5.5)

The PCA can also be implemented in a linear neural network.
Applying xl as the input data, the corresponding reduced principal component

vectors qrl can be used as an alternative to the location samples for the classification
in the next section.

5.2.3. Location Sample Classification
After the primary estimation of the location samples, the first direct material
information is available. However, the initial assumption is not sufficient in many
cases, and the material features of the whole object should be estimated subsequently
in more detailed ways. For this reason, the location samples are further investigated.
A basic question is whether there are significant differences among them and how
distinguishable the differences are. The physical meaning of the significant differences
may be diverse material regions.
The mathematic formulation of this problem is the unsupervised classification

as follows. Defining a collection of n samples, {xi : i = 1,...,n}, as the input data,
which may be the location samples or the corresponding principal components after
the principal component analysis.

xi =
xli without PCA

ql or qrl with PCA
(5.6)

Then the goal is to divide the samples into g homogeneous classes, and g is the
unknown number of the classes. The cluster analysis is suitable for this task [75],
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and the classes are also called clusters.

The cluster analysis, as a classification method, has been used in many applica-
tions [94, 3]. In this chapter, the hierarchical clustering is implemented to sort the
location samples into different groups. This procedure is based on the distances
between the samples. There are diverse methods for the distance calculation, for in-
stance the Euclidean distance, the Manhattan distance and the Mahalanobis distance.
Here the normal Euclidean distances are calculated,

dij = ||xli − xlj||2. (5.7)

Then a cluster tree, or dendrogram, which involves all the location samples, can be
created based on these distances. In order to verify the cluster tree, the cophenetic
correlation coefficient, ĉcoph, is used as a measure to characterize the correlation
between the normal distances of the location samples and the cophenetic distances
in the cluster tree,

ĉcoph =
∑
i<j (dij − d̄) · (lij − l̄)√∑

i<j (dij − d̄)2 ·∑i<j (lij − l̄)2
, (5.8)

where dij is the normal distance between the i-th and j-th samples, and d̄ is the
average distance, whereas lij and l̄ are the similar terms of cophenetic distances,
respectively. Since the cophenetic distances lij are the distances between different
layers, they can be calculated using different values, i.e. the positions of the layers
can be defined as the middle, the furthest or the nearest values of them. This
difference may affect the cluster tree and the cophenetic correlation coefficient. In
order to take all samples into account uniformly, the middle values are calculated in
this implementation. As a correlation coefficient, ĉcoph is in the range ĉcoph ∈

[
0 1

]
,

and the higher the value, the more original information is represented in the cluster
tree.

Since the cluster tree links all the location samples in different hierarchies, the
classification of the samples is according to the division of the cluster tree into
different partitions, whereas over fitting should also be avoided. The partitions
correspond to the inhomogeneous regions in the model. Therefore a division criterion
should be defined suitably. There are two alternatives, one is the number of the
groups, if it is known or presumed. According to the given number of the groups, the
cluster tree is cut at some proper height. The other is the natural division, which is
based on the difference among the entries in the cluster tree. This division can be
concluded as: if significant differences exist, suitable groups should be recognized.
To evaluate the differences, the measure is defined as the ratio of the distances of
the neighbor layers,

rica = di

1
n

∑n
l=1 d

i−l , (5.9)

where di is the distance of the i-th layer, and n is the number of layers, which are
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taken into account. If some threshold thrca is exceeded,

rica > thrca, (5.10)

it is satisfactory to create a new group with the associated samples in the cluster
tree. Checking all the layers over the cluster tree, then the samples can be classified
completely. The selection of the criterion depends on the application conditions.

Algorithm 5.2: Hierarchical cluster analysis
Import the input samples, xl or qrl
Calculate the distances between the samples {dij}.
Determine the mean, d̄
loop

Define the settings of the cophenetic distances
Calculate the cophenetic distances of the samples {lij}.
Determine the mean, l̄
Determine the dendrogram to illustrate the samples.
Calculate the cophenetic correlation coefficient ĉcoph
if ĉcoph below the threshold ĉcoph < tĉcoph then

The dendrogram can present the input data properly
Break

end if
end loop
if the number of groups ng1 is defined then

Classification according to ng1
Assign the samples into ng1 groups
ng = ng1

else if threshold thrca is defined then
Natural classification
Calculate rica for each layer
Classification according to thrca
Assign the samples into ng2 groups
ng = ng2

end if
Output ng and the classified location samples

After the classification, Algorithm 5.2, ng groups are created, and each sample
is assigned into some group unambiguously. This means ng heterogeneous regions
should be modeled in the contact force model. Then the corresponding location
samples can be extended as,

xli =
[
x y z E ν ig

]T
, (5.11)

where ig is the group index of each location sample. Since the material parameters,
especially the Young’s modulus, have the dominant influence on the principal compo-
nents and the cluster analysis, this classification is mainly according to the material
attributes. This way, the connection between the sample positions on the object and



5.2. Model Learning 55

the material feature can be established, and the number of the partitions after the
division of the cluster tree is the estimation of the inhomogeneous regions in the
material. Then the values of the material parameters in each region are defined as
the averages of the location samples in this region. Assuming m location samples
are located in a region i, it yields,

χri = 1
m

m∑
j=1
χlj, (5.12)

where χri and χlj are the according material parameters of the region and of the j-th
location sample, respectively.

Furthermore, it should be noted that some other effects can also lead to significant
difference among location samples, besides the inhomogeneity, for instance different
boundary constraints at the bottom or the geometry of the bottom, which are
problematic for laser scanning, image processing and other normal measurement
technologies. However, if there is not enough information, and the concrete situations
of the object are not clear, these effects can not be model accurately. Because the
aim is to provide model based haptic simulations, these effects can be modeled as
inhomogeneity of material as well, and it can be assumed that the inhomogeneous
models may be suitable for the simulation of these objects.

5.2.4. Material Region Estimation
If the material is inhomogeneous, different material models and parameter values
should be assigned in the heterogeneous regions. In addition, it is also necessary to
determine the regions’ boundaries. A classification algorithm is developed for this
purpose, using the discriminant analysis (DA).

The discriminant analysis is a statistic classification method, which is bases on the
Bayesian decision. It is widely applied in varying areas [68, 84]. For a known division
of sample space {ki : i = 1,2,...}, the DA establishes a classification rule and applies
it to allocate an arbitrary given sample into a division with the largest likelihood.
Hence this classification is different from the classification using the cluster analysis,
because it is supervised with learning data. Varying approaches are investigated
based on the DA, and they are called according to the discriminant functions, such
as the linear discriminant analysis (LDA) and the quadratic discriminant analysis
(QDA). In these methods, a multivariate Gaussian distributed conditional probability
is assumed.

In this section, the quadratic discriminant analysis (QDA) is implemented, which
is better than the linear discriminant analysis (LDA) for data fitting. A multi-class,
N , classification problem can be formulated as the posterior probability p(k|x). The
mathematic meaning of it is the likelihood of the class k, for the given particular
sample x, then this classification problem can be solved by

c(z̃) = arg max
k

p(k|z̃). (5.13)

If the prior probability of the class k is defined as p(k), and f(x|k) is the conditional
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probability density of sample x, given the class k. With the Bayes theorem, the
posterior probability can be determined as,

p(k|x) = p(x|k) · p(k)∑N
n=1 p(x|i) · p(i)

. (5.14)

Substituting (5.14) into (5.13), and considering the maximum a posteriori (MAP)
hypotheses, the solution of the classification problem can be rewritten,

c(z̃) = arg max
k

p(x|k) · p(k). (5.15)

As mentioned above, the conditional density is presumed as

f(x|k) = 1
(2π)N/2|Σk|1/2 e

− 1
2 (x−µk)TΣ−1

k
(x−µk), (5.16)

then substituting (5.16) into (5.15) leads to the quadratic discriminant function
(5.17) of the class k, given x,

gk(x) = −1
2 log |Σk| −

1
2(x− µk)TΣ−1

k (x− µk) + log p(k). (5.17)

Eventually, the classification rule can be concluded as follows, with the discriminant
function,

c(z̃) = arg max
k

gk(z̃). (5.18)

Applying the quadratic discriminant analysis for the boundary estimation of
heterogeneous regions, the basic thought is to check a large number of arbitrary points
in the domain, and to determine to which region belong these points respectively.
This is also a classification problem, however unlike the location samples, the material
feature of an arbitrary point is naturally unknown, therefore the classification can
not be according to the material parameters in the accurate way but to the position
of the points, and here it is assumed that the regions are continuous. Therefore, it is
just an estimation of the region boundaries. The selection of the arbitrary points is
regarded as a virtual scanning process, and the points are called scan points. The
parameters of them are their positions.

xvci =
[
x y z

]T
(5.19)

In this implementation, the scan points are created uniformly in the domain.
Since the QDA is a supervised learning method, the classified location samples,

derived by the hierarchical cluster analysis, are the training data of the discriminant
functions. However, different from the former classification according to the material
feature, in the training, the important relation is the membership of the location
samples in groups and the corresponding positions. After the training, the virtual scan
points are classified according to their positions. Then the points at the boundary
of different regions can be used to reconstruct the boundary surface. By this
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means, the boundaries between varying material regions can be primarily estimated,
Algorithm 5.3. These identification methods are verified by the experiments in
Chapter 6.

Algorithm 5.3: Region boundary estimation
Import the classified location samples, xl
Training of the QDA using the location samples
- Calculated the probabilities
- Determine the discriminant function gk(x)
Define the domain of the object
Create n scan points in the domain
for i = 0 to n do

Classification of xvci , using the QDA
Sort xvci

end for
Determine the boundary points
Create the regions’ boundary

Sequentially, a FE model can be recreated using all available classification informa-
tion, including the estimation of the material parameters and the regions’ boundaries.
This model is a primary inhomogeneous model, although the model parameters are
not accurate enough, it has the basic behavior of the inhomogeneous test object.

5.3. Model Parameter Optimization
Generally, the model learning and classification can just determine the model param-
eters in some range, but not accurately. For high level haptic simulations, the model
parameters have to be adjusted using reference data, i.e. the contact reaction force
fr, so that the simulations fs can be a good match with the reference. The deviation
of simulations can be defined as the residual sum of squares (rss),

rssr(χ) = ||fr − fs(χ)||2. (5.20)

In this formulation, the numbers of the entries (n) of both force vectors must be the
same, i.e. f ∈ IRn×1

It is certainly understandable, the more available reference data, the more accu-
rately the model parameters can be optimized, because the random errors can be
averaged by large quantity of samples. However the computational expense increases
with the data size. Thus a trade-off is sometimes necessary. There is another condi-
tion: in order to optimize the model parameters, the number of reference data must
be greater than or at least equal to the number of the to be optimized parameters,

nref > nparameters. (5.21)

The border case is enough for the optimization in principle, however the effects of
random errors can disturb the optimization completely. Thus, in this implementation,
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the following condition is satisfied, to reduce the stochastic effects,

nref > copt · nparameters with copt > 1, (5.22)

where copt is a scalar coefficient. In the experiments in Chapter 6, it is normally
defined copt = 10.

5.3.1. Optimization Problem
Generally, the material parameters are determined experimentally by using special
equipment, such as one dimensional tension and torsion tests. But in many cases these
tests are impossibly, hence the parameters should be identified and optimized using
simple reference data, which can be already obtained even in common experimental
conditions. For haptics, the most general contact data of deformable bodies are the
measurements of the contact force and the boundary displacements at some positions,
this information is available in almost all tests and operations.

With the comparison of the force measurements fr and the simulations fs, derived
by the force models, the parameter optimization should be formulated as the mini-
mization of the error function (5.20), subject to constraints. This problem can be
stated as a least squares problem [88, 13] by minimization of the objective function
f obj on the model parameters,

min
χ
f obj(χ)

f obj(χ) = 1
2

n∑
i=1

(
robji

)2
= 1

2

n∑
i=1

(fri − fsi(χ))2 ,
(5.23)

where the vector χ consists of the material parameters implemented in the models,
robji is an entry of the residual vector robj.
Since the model parameters have the corresponding physical meanings, they are

constrained in some ranges. Hence this parameter optimization is a constrained
optimization problem, and the constraints are presented as a number of equations
and inequalities,{

f ci (χ) = 0
f cj (χ) ≥ 0,

(5.24)

where {f ci : i = 1...n} is the collection of functions which describe the constraints
in the optimization. Thus, the constraints are regarded as equality constraints and
inequality constraints separately. The concrete definitions of them are presented in
Section 5.4 for each kind of model.

5.3.2. Gauss-Newton Method
This nonlinear least squares problem of the material parameter vector χ can be solved
using the Gauss-Newton method, which is an iterative algorithm. The parameters
will be correctly optimized, if convergence criterion is satisfied.
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In each iteration, the objective function (5.23) is linearized locally. Thus, the
algorithm seeks the steepest decent direction δk as a line search method, by means
of solving the following equation,

JTk Jkδk = −JTk (fr − fs(χk)),

where the Jacobian matrix Jk is the first-order partial derivative of robj. The entries
in J are determined at each point of time,

jij = ∂robji
∂χj

. (5.25)

They can be calculated numerically or analytically. The numerical solutions can be
obtained, whenever the corresponding data are ready, whereas the accurate analytical
solutions are available, only if f obj is also analytical. However, this is not always the
case. For the finite element contact force models, the Jacobian matrices should be
determined using the numerical method,

jij = ∂robji
∂χj

= robji (χj +∆χj)− robji (χj)
∆χj

. (5.26)

In order to simplify the calculation, the QR-decomposition of the Jacobian matrix
is implemented as follows,

Jk =
[
Q1k Q2k

]
·
[
Rk

0

]
= Q1k ·Rk. (5.27)

The algorithm of it has been detailed in Appendix A.1. By this means, the search
direction can be determined,

δk = −R−1
k ·QT

1k(fr − fs(χk)). (5.28)

Then the parameters are modified along this direction for the next iteration, with
step length λk,

χk+1 = χk + λk · δk. (5.29)

The effects of the constraints are different for the equality constraints and the
inequality constraints. For the first kind, the descent direction must be along the
constraint equations. Hence the derivative of the constraints,∇f c, has dominant
effects in the optimization. The Lagrangian function is defined,

fL(χ,λL) = f obj(χ)−
m∑
i=1

λLi f
c
i (χ), (5.30)
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with the Lagrange multiplier λLi . The derivative of it is as follows,

∇χfL(χ,λL) = ∇f obj(χ)−
m∑
i=1

λLi∇f ci (χ). (5.31)

Then the optimization is equivalent to seek a χ to satisfy the following condition,

∇χfL(χ,λL) = 0. (5.32)

For the second one, the inequality constraints affect the parameter optimization only
if the current step or the next step is in contact with the boundary of the constraints.
Otherwise, the optimizations can be considered as unconstrained problems. When
some constraints are active, the Lagrangian function can also be defined. Hence, this
can also be specified as the definition of factor λLi for each constraint,λLi = 0 i-th constraint inactive

λLi > 0 i-th constraint active.
(5.33)

It can be formulated as a complementarity condition at some solution point,

λLi f
c
i (χ) = 0.

The factors δ and λ in (5.28-29) are the original step length and the corrective
coefficient, which can ensure the convergence according to the relevant conditions. It
can be determined by using the backtracking method, Algorithm 5.4.

Algorithm 5.4: Backtracking
Set the initial step length
Define the factor c
while the step length condition is not fulfilled do

Modify the step length factor
Calculate the objective function
λ = c · λ
if minimal step length: λ < λmin then

Break
end if

end while

The simplest step length condition is

rssrk+1 <rss rk. (5.34)

However, this criterion may be ineffective and can lead to errors for some objective
functions. The Wolfe condition

f obj(χk+1) 6 f obj(χk) + ckλk∇f obj,Tk δk (5.35)

is better than the first one. With it, the efficient convergence can be ensured. For
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the least squares problem, both criteria can be applied, because its objective function
(5.23) has always non-negative values.

In the practical implementation in this thesis, constraints are taken into account by
calculating the projection of search direction according to the constraints. Eventually,
the complete algorithm of the Gauss-Newton method is illustrated in Algorithm 5.5.
The optimization conditions include the maximal number of iterations, λmin, and the
convergence condition. To define a general convergence criterion, which is independent
on the size of the force vectors, the deviation defined in (5.20) is replaced by root
mean square (rms),

rmsr(χ) = 1√
n
||fr − fs(χ)||2, (5.36)

where n is the size of the force vectors. Then the convergence criterion is

rmsrk+1 <rms rmax. (5.37)

Algorithm 5.5: Gauss-Newton Method
Initialization
while iterative number i < imax do

Calculate the derivative of the objective function, J
Determine the descent direction of the next step δk
Calculate the initial step length
Checking the constraints
if Active then

Calculate the projection of δk
end if
Determine the step length using the backtracking
if Convergence criterion then

Break
end if
i← i+ 1
rmsrk ←rms rk+1

end while

5.3.3. Global Optimization Algorithm
With respect to the model parameters, the value space of the objective function (5.23)
may contain numerous local minima. In order to determine the global minimum
of the objective function, the global optimizations are necessary to overleap the
local minima. Global optimizations are always problematic, and different techniques
and methods are investigated [57, 58]. Furthermore, these problems are always
computationally expensive.

As a solution, the implicit filtering can be selected to seek the minimum [47], and
the open source program IFFCO [25] (implicit filtering for constrained optimization),
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which is implemented using Fortran and Matlab, has been used by some applica-
tions [87]. For the parameter optimization in this chapter, the similar thought is
applied, and the Gauss-Newton method is enhanced as the global Gauss-Newton
method, with varying settings. Since the force models are often employed in real
time systems, and the computing expense should be reduced as low as possible, the
algorithm is implemented using C++, and the software library lapack [30] has been
integrated to accelerate the calculation of large scale matrices.
The basic idea is to execute the Gauss-Newton method repeatedly with different

starting values and coefficients, for instance factors λ and c. This global Gauss-
Newton algorithm is illustrated in Algorithm 5.6.

Algorithm 5.6: Global Optimization
Initialization:
- Determine the possible value space of the parameters
- Determine a set of values in this range as the candidates of the start values, n entries.
while j < n do

Initial setting of the optimization
Select the start value
Run the Gauss-Newton method, Algorithm 5.5
if Convergence then

Storage the result
Storage the associated settings and start values
next

else
next

end if
j ← j + 1

end while
Select the minimum of rssr or rmsr
Check the global convergence condition
if Convergence condition (global) then

Assign the corresponding parameter values as the global minimum setting
end if

5.4. Implementation of Model Identification

Applying the learning and optimization methods for the force models, the procedures
may be different in varying applications. For the above introduced force models,
they are described as follows. In this chapter, the model identification methods are
implemented as modules, and can be combined in different ways. Furthermore, an
adaptive algorithm is developed for unknown materials as general situations.
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5.4.1. Linear Elastic Model Identification
As the simplest model in this thesis, the linear isotropic elastic model contains merely
two parameters, i.e. E and ν, and the constraints are{

E > 0
0 < ν < 0.5.

(5.38)

The model parameter vectors of these linear elastic models are defined as,

χle = [ E ν ], (5.39)

the model identification is according to (5.28) and (5.29).
In some applications, it is only necessary that the Young’s modulus is identified,

whereas the Poisson’s ratio is assigned as a constant. Then, the identified E can
partially compensate for the influence of the deviation of the Poisson’s ratio. This
setting has its advantage in computational expense, i.e. only a few steps are
required for the optimization. Hence, it is especially suitable for the real time model
identification, such as in telepresence, and the accuracy of the simulation is still
sufficient with small deformations [124]. The algorithm is illustrated in Algorithm 5.7.

Algorithm 5.7: Identification of linear elastic models
Initialization:
- Initial settings
- E = E0
if optimization: ν then

- ν = ν0
- Define the constraints

end if
Run the Gauss-Newton method, Algorithm 5.5 or the global optimization algorithm,
Algorithm 5.6
if Convergence then

Assign the identified parameter values to the model
end if

Since these models are linear, the optimizations of them are relatively economical
in computing time. Normally, if a suitable convergence criterion is defined, the
algorithm is always convergent in a few iterations, especially if the identification of
the Poisson’s rate is not involved. The global optimization algorithm is not necessary
in general.

5.4.2. Viscoelastic Model Identification
The viscoelastic models are nonlinear, thus in the optimization, more effects have to
be taken into account in comparison with the optimization of linear models.Therefore,
the global optimization algorithm is more robust and should be selected for these
models. Moreover, the settings and constraints of the parameters are more complex
as well.
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During the optimization, the parameter vector (3.24) or in the special case (4.15)
are substituted into Algorithm 5.6. And the complete optimization algorithm of the
viscoelastic models is shown as follows, Algorithm 5.8.

Algorithm 5.8: Optimization of linear viscoelastic models
Initialization:
- Initial settings,
- ES = E0 and ν = ν0
- Define the number of the terms in the Prony series (n)
- Assign the relaxation parameters:
- E1 . . . En and τ1 . . . τn
- Define the constraints
Run the global optimization algorithm, Algorithm 5.6
Check the results of the global optimization
if convergence then

Assign the identified parameter values to the model
end if

The constraints of the model parameters are in the following form,

E > 0
0 < ν < 0.5
Ei > 0
Ti− < τi < Ti+.

(5.40)

Normally, the material parameters are constrained according to their physical mean-
ing, however the relaxation time coefficients are defined subjectively in different time
intervals. This setting is according not only to the physical meaning, but also to
the expected performance of the model. As mentioned, only finite entries in the
Prony series can be implemented in practice, generally less than 5 terms. On the
one hand, the computing time increases obviously with this number, and on the
other hand, some terms have little practical importance, for instance the relaxation
amplitudes may be relatively small and the relaxation times may be extremely long.
In order to take the most important and valuable information into consideration
with few entries, the time coefficients are defined corresponding to some periods,{[
Ti− Ti+

]
: i = 1,...,n

}
. It should also be avoid that different relaxation times with

respect to overlapping time intervals, as redundancy. Another advantage of this
constraint is that each time factor has its own scope, and the performance of the
force models can be better adjusted. The experiments and simulations have verified
the advantages of this setting. Furthermore, the effects of reference data are also
important, that is that periods with few samples are meaningless.

5.4.3. Inhomogeneous Model Identification
The major differences between the optimization of homogeneous and inhomogeneous
models lie in the parameters to be optimized. The model parameters of the inho-
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Figure 5.2.: Model parameter optimization of inhomogeneous force models. The optimiza-
tion begins with the primary models, this means the heterogeneous regions are already
identified and the boundaries are already estimated. In each iteration, the optimization of
the material materials and the boundaries are separated.

mogeneous models consist of not only the material parameters in the corresponding
constitutive equations, but also the parameters, which describe the heterogeneous
regions, i.e. the regions’ boundary.

As shown in Fig. 5.1, the identification for the inhomogeneous models begins with
the unsupervised learning, hence the model parameters are defined as follows in the
primary models,

χ =
[
χm χb

]
, (5.41)

where the vectors χm and χb are for the material parameters and regions’ boundaries,
in the form of boundary points, respectively.

Substituting χ into the optimization algorithms, the parameters can be optimized
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iteratively. It should be noted that the effects of the model parameters on the
components of contact force in different directions, fx, fy and fz, are different.
Hence the following adjustments may improve the performance of the parameter
optimizations. The optimizations of the material parameters and the region boundary
are separated in each iteration, and different measurements are used separately for
the different parameters as well, i.e. the force components, which are vertical to
the contact surface, should have more weight, about 3 ∼ 10 times, in the material
parameter optimization. Whereas the parallel components involve more information
of the distribution of the inhomogeneous regions. The simulations have confirmed
these adjustments.
If it is known that there are m heterogeneous regions and n boundary points,

which have been determined in the primary model, and all the regions are linear
elastic, then the model parameter vector is defined as follows,

χ = [ E1 ν1 · · · Em νm x1 y1 z1 · · · xn yn zn ]. (5.42)

This parameter optimization procedure of inhomogeneous models is illustrated in
Fig. 5.2.
According to the model parameters (5.41), there are two kinds of parameter

constraints. They are for the material parameters and region boundary, respectively.
The first kind is dependent on the material characteristics of each region, and is
similar as those of the linear models or the viscoelastic models. In the second
one, the boundaries are constrained in some range,

[
∆x ∆y ∆z

]
, surrounding the

estimation in the primary models
[
xp yp zp

]
. Furthermore, it is certainly clear that

the boundaries must lie within the object. Then these constraints are formulated as
follows,

(xpi −∆x < xi < xpi +∆x) ∩ (x ∈ Vd)
(ypi −∆y < yi < ypi +∆y) ∩ (y ∈ Vd)
(zpi −∆z < zi < zpi +∆z) ∩ (z ∈ Vd),

(5.43)

where Vd is the domain of the object. For the simplified inhomogeneous models in
Section 3.5, it is merely necessary to optimize the coordinates in one direction.

5.4.4. Analytical Contact Force Model

For the analytical contact force model (ACFM) parameters, the formulation of the
least squares problem and the according optimization algorithms are also available.
This means they can be optimized analogously as the FEM parameters. However for
analytical models, there is the important advantage, that the derivative matrix can
be calculated analytically. By this means, one of the most computationally expensive
parts of the model identification can be reduced significantly.

Considering the objective function of the least squares problem, the derivatives of
the objective function f obj are equivalent to those of the force simulation fs, because
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of the following relation:

∇robj = −∇fs(χ)
⇒∇robji = −∇fsi(χ)

(5.44)

Hence, the matrix J can is determined analytically, by calculating the partial
derivatives of f obj with respect to the parameters χ.

Jk = ∂robjk
∂χ

= −∂fs,k(χ)
∂χ

=
{
−∂fsi,k
∂χj

: i = x,y,z; j = 1,2...
}

(5.45)

It can be concluded, that the optimization of ACFM is different from that of the FE
model by the calculation of the Jacobian matrix.

As an example, the introduced simple model with one Maxwell element in Section
4.4.2 is further investigated in this section. According to (4.38)-(4.43), the Jacobian
matrix of the objective function at time step k + 1 is written in the following form,

Jk =


∂fsx,k
∂kxs

∂fsx,k
∂kx1

∂fsx,k
∂dx1

0 0 0 0 0 0
0 0 0 ∂fsy,k

∂kys

∂fsy,k
∂ky1

∂fsy,k
∂dy1

0 0 0
0 0 0 0 0 0 ∂fsz,k

∂kzs

∂fsz,k
∂kz1

∂fsz,k
∂dz1

 . (5.46)

As mentioned in Section 4.3, the different directions are decoupled in the analytical
models. Thus, the derivative of the components in a single direction is

∂fsi,k
∂χi

=
[
ji1 ji2 ji3

]
·∆t, (5.47)

with

ji1 = ki1
di1
∆si +∆ṡi

ji2 = −fsi,k−1

di1
+ kis
di1
∆si +∆ṡi

ji3 = ki1
d2
i1
fsi,k−1 −

kiski1
d2
i1

∆si

(5.48)

where i is the direction index, and the parameters of the same direction is defined as

χi =
[
kis ki1 di1

]T
. (5.49)

The parameters in the analytical models are also constrained as,
kis > 0
kij > 0
Dij− < dij < Dij+,

(5.50)

where i is the index of the coordinate directions, and j is the index of the Maxwell
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elements in ACFM. For coefficients k, the constraints are according to their physical
meaning. Whereas the constraints of the damping d are analogous to those of the
relaxation times of the viscoelastic models. The principle is also to limit the effects
of each Maxwell element in its range, and to better adjust the performance of the
ACFM.

Since the geometric information of the object is not involved in the analytical
models, as mentioned above, the parameters of the ACFM are defined as a function
of positions to improve the accuracy. The sub-models are created at all sample
positions, where the reference data are available. Thus, the parameter optimization
of them also depends on the position. After that, a set of parameters in connection
with the associated positions is calculated, (4.18). When there is contact at some
position, a temporary sub-model is going to be created at the current position.
Defining n = 3, then the three nearest known samples are found, if there are enough
entries. Subsequently, the parameters of the temporary component are determined
as the weighted mean of the parameters of the selected samples, using (4.19),

χtemp =
3∑
i=1

d̄i
d̄1 + d̄2 + d̄3

χi. (5.51)

Then the contact force at this position can be simulated using the temporary sub-
model.

5.4.5. Extended Kalman Filter

The parameters in the extended Kalman filter algorithm have strong effects on the
performance of the data fusion. Hence they should also be determined appropriately.
The important parameters in EKF are the system and measurement noise densities in
the matrices Qn and Rn, which determine the influence of different data in the fusion
process. They can also be optimized using an optimization algorithm, just as the FE
model parameters. However in the case of haptic rendering, all the information is
from simulations, hence there is not any stochastic noises in the system. Thus, these
noise densities can be determined merely to adjust the simulation results. Since the
information from the FE model is much more authentic than that derived by the
ACFM, the FE simulations are regarded as the reference in the data fusion. This
means the high frequency data from the ACFM are adjusted by the low frequency
accurate data from the FE model. Therefore the matrices Qn and Rn can be
determined definitively based on experience.

However, it has to be mentioned that during the time of the force evaluation by the
FE model, the boundary displacement and the displacement rate may have already
changed. For these cases, the simulation derived by the analytical model should
be considered to have more weight than normal, especially for contacts with high
boundary displacement rate. Thus the noise densities are defined as linear functions
of the boundary displacement rate, for the system noise

σfi = ci ·∆ṡi · σ̃fi + σ0
fi, (5.52)
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and for the measurement noise

σfim = −cim ·∆ṡi · σ̃fim + σ0
fim, (5.53)

where σ̃fi and σ0
fi are the boundary displacement rate dependent and independent

parts of the system noise, respectively. Analogously, σ̃fim and σ0
fim are the according

terms of the measurement noise. The nonnegative factors ci and cim are the gains
for both noises, which describe the effects of the displacement rate. For a given
application, the maximum boundary displacement rate is normally known. The
expected performances of the data fusion at static conditions and with the maximal
boundary displacement rate are also defined. Then the noise densities at these states,

σfi,min = σ0
fi

σfim,min = σ0
fim

∆ṡi = 0
σfi,max = σ̃fi + σ0

fi

σfim,max = σ̃fim + σ0
fim

∆ṡi = ∆ṡmax,

(5.54)

can be determined based on simulations and experiments. With the following settings
and definitions,

ci = cim

σ̃fi = σ̃fim,
(5.55)

the coefficients in (5.52) and (5.53) can be determined. Then applying the linear
relations with an arbitrary displacement rate in the range,

∆ṡi ∈
[
0 ∆ṡmax

]
, (5.56)

the corresponding noise densities can be calculated directly.

5.5. Adaptive Model Identification

The basic model identification methods and the implementation of different models
are presented above. The content of this section is to derive a way to model completely
unknown materials. The introduced modeling approaches are regarded as modules
in a library. An adaptive model identification algorithm is developed, in order to
select the most suitable items to model an object based on reference data.

At the beginning, the geometry should be measured or imported, and the mesh is
generated. Then the reference data are sorted according to the contact positions.
Furthermore, the data at the same contact positions with the same or similar
boundary displacements should be noted specially, if they are available.
Then the modeling procedure begins with criteria. In this chapter, the necessary
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criteria are as follows:
thrca for the identification of heterogeneous regions
∆s0 for the same or similar boundary displacement
thrft for the change rate of contact force in respect to time scale.

(5.57)

The last two are applied for the identification of viscoelastic effects. In comparing
with the thrca and the judgment of inhomogeneous materials, which are detailed
as model unsupervised learning in the former sections, the identification of the
viscoelasticity is much more simple. The criterion

∆sε =
[
∆xε ∆yε ∆zε

]
(5.58)

defines a very small range. The boundary displacement in this range

∆s ∈
[
∆s̄−∆sε ∆s̄ +∆sε

]
with ∆sε → 0 (5.59)

can be regarded as similar, in which ∆s̄ is some average boundary displacement.
The ratio rft measures the rate of change of contact forces at different points in time
during one relaxation process, i.e.

rft = ∆f

∆t
. (5.60)

If it is beyond a threshold, the viscoelasticity should be modeled in the force models,

rft > thrft. (5.61)

However, it should be noted if the number of these samples is not sufficient, (5.20),
the viscoelastic model still cannot be established.

The identification of the FE models is illustrated in Fig. 5.3. If real time simulations
are expected, and the analytical models are needed, they can be created and identified
according to the FE models directly. No additional judgments and criteria are
necessary for the ACFM.
In addition, some measures may improve the contact force modeling further.

Firstly, since the parameter optimization depends on the reference data and the
start values, the material parameters of different models can be stored in a model
library, according to the model characteristics, such as the material, the element
shape and the average element size. Then the model identification with the selected
initial values can be accelerated significantly. Secondly, the quality of the reference
data has important effects on the model identification and the accuracy of the
haptic simulations. Since the samples may be drawn during the manually controlled
operations, sometimes they are not accurate enough, and in some experiments, the
samples may be not sufficient for the optimization of model parameters. Especially,
during the modeling of the region boundary, the identification depends closely on
the sample positions. For instance, the lack of samples in some areas may affect
the boundary identification in these areas obviously. For this reason, some sampling
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Figure 5.3.: Adaptive model identification. The detailed model learning and optimization
methods are developed in the former sections.

methods and data mining algorithms could provide better performance of the force
models.

5.6. Model Verification and Update
After the model identification, the contact force models can provide haptic simulations
in diverse applications, however the simulations may sometimes not satisfy the
accuracy requirements. There are two major reasons for these cases. One is that the
operation environment and contact situations have been modified during operations.
In many telerobotic applications, such as satellite repair on orbit, the position and
orientation of objects may have changed after the model identification. The other is,
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since the model identification is based on measurements, as reference data, it may
contain varying deviations. To reduce or eliminate the effects of these disturbances,
large quantities of data are used, (5.22). However, the effects of some strong stochastic
errors can still not be neglected completely. In order to recognize the modifications
and errors, the model should be continuously monitored and verified, if possible.
The necessary information is the reference data during the operation, for instance
delayed measurements. They should be compared with simulations, and if significant
deviations are detected and the corresponding reference data are available, the
model parameters should be identified again using the introduced modeling methods,
completely or partially, depending on the conditions. Then the contact force model
can be updated, Algorithm 5.9.

Algorithm 5.9: Model verification and model update
Starting the simulations
loop
if reference data available then

Simulation with model verification
Read the reference data
Sort of the simulation and the reference data
Comparing fs and fr
if significant deviation, rmsr >rms rth then

Determine for geometric update, material update or both
collection reference data
Model Identification
Rebuild the model or assign parameter with new values.

end if
else

Simulation without model verification
end if
if stop simulation then

Break
end if

end loop
Quit

According to the model parameters, the modifications can be geometric or material,
including the geometry, the position and the material feature of objects. For instance,
if the contact forces vanish at some position where they should exist, there is a high
likelihood that the position of the object has changed. When the new geometric
measurements are obtained, the geometric model can be rebuilt.
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6. Experiments and Simulations

In this chapter, the force modeling methods and haptic simulations are verified
and tested. Two major parts are involved. Firstly, the experimental system is
detailed. Secondly, different experiments are carried out with diverse objects. They
can be divided into three kinds. Virtual reality tests have shown the basic functions
of the modeling methods and model based haptic simulations. Then individual
experiments focus on the modeling of materials using different fundamental theoretical
models, including linear elastic, viscoelastic and inhomogeneous models. Eventually,
the last experiments are demonstrations of the haptic simulations in applications
with complete modeling procedures. As examples, they illustrate the practical
implementations of the real time haptic simulations in medical technology and
telepresence.

6.1. Experimental System

6.1.1. Experimental Robot
The experiments are carried out with an experimental robotic system, which can
execute manipulation, measurement, modeling and control tasks. The system contains
a 6 degree-of-freedom robot, haptic user interface, control computers, communication
units and support devices, such as power supply unit and breakout box. It can be
configured for varying applications, such as the laser scanner, the haptic experiment
table and the telepresence system. In this experiment, the robot is mainly used as an
operator for haptic tasks. Based on the measurements during the manipulations, the
performance of the force modeling and real time haptic simulations are investigated.
First of all, the experimental robot and its subsystems are detailed.
The contact operations are executed by the 6 degree-of-freedom robot, which

consists of 5 PowerCube modules and a robotic end effector, which is illustrated in
Fig. 6.1. A force/torque sensor is mounted on the robotic end effector to measure
the contact force during the contact operations. There is also a laser distance sensor,
for the measurement of geometry, as mentioned in Chapter 2. Its structure and the
montage of the sensors ensure that the central line of the bar is parallel with the laser
rays, and coincides with the rotation axis of the last joint. This condition simplifies
the calculation of the position of the laser measurements, Appendix A.2.
The multi-axis analogue output force/torque sensor (ATI Mini 40) [7] has the

measurement range ±40[N ] for the sensor x and y directions and ±120[N ] for the
z axis for force measurements. For torque measurements, they are ±2[Nm] for
all axes. It should be noticed that, in addition to the random noises during the
measurements, the force measurements contain system deviations, including sensor
drift and orientation errors of the sensors’ sensitive axes. However the most important
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Figure 6.1.: The robotic end effector.

one is the mounting error of the force sensor. During the assembling of the sensor on
the last robot joint with a flange, there may be significant unknown deviation between
the robot coordinate system and the sensor system. Fortunately, it can be determined
with an initialization procedure. This means the force sensor should be calibrated,
especially before the first use. In the calibration procedure, the robot moves the
sensor to several programed positions, then the transformation matrix from the
sensor system to the robot system can be determined. The laser sensor (LD1605-20,
Micro-epsilon) has the measurement range 55 ∼ 75[mm] [81], and in connection
with the forward kinematics of the robot, the positions of the sample points can
be transformed to the inertial coordinate system. Both sensors are illustrated in
the Fig. 6.2. Furthermore, since the characteristics of some materials depend on
temperature, for instance the viscoelastic objects, the temperature measurements
of the object, using the DS1820 thermometer from the Dallas Semiconductor [29],
during the experiments are considered as additional information to the models. The
sensor has an accurate measurement range from −10◦C to +85◦C, and it is illustrated
in Fig. 6.3 with the sensor adapter (DS9097).

Each of the first four actuators of the modular robot has one rotational degree of
freedom, whereas the last one has two degrees of freedom, as well as a flange to fix the
robotic end effector. The motion control of the robot is detailed in Algorithm 6.1. As
a robot, the modules can be mounted as diverse configurations [34], the configuration
for the following experiments is illustrated in Fig. 6.4.
The haptic device in the experiments is the Phantom Desktop from “Sens-
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Figure 6.2.: The force/torque sensor (a) and the laser distance sensor (b).

Able” [105], which can reproduce the force signal in 3 dimensions in the range
of 0 ∼ 7.9[N ]. As the haptic interface, on one hand, it can convert the motion signal
of human operators to control the robot. On the other hand, it can present the force
feedback to the user. The Phantom, in connection with the control system of the
robot, is illustrated in Fig. 6.5.
The contact situation is also an important condition in haptics, however in the

experiments, the haptic scenarios are different. Generally the bar touches some
objects, and the measurements are drawn during the operations as the reference data
for the model parameter identification. The actual contact situations are described
in every experiment.

Furthermore, in order to illustrate the position and orientation unambiguously in
the following experiments, the inertial coordinate system (I) is used. It is identical
with the robotic coordinate system (R), which is defined at the basis of the robot.
The origin of it is defined at the center of the robot foot, the z axis points upward
vertically, the x axis directs forward and the y axis is according to the right hand
rule, Fig. 6.4.

6.1.2. Robot Kinematics
As a kind of mechanical structures, the kinematics and dynamics of robots are inves-
tigated in detail [39]. For this experimental robot, the position and the orientation
of the robot tool are defined as

pe =
[
xe ye ze φe θe ϕe

]
, (6.1)
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Figure 6.3.: The Temperature sensor, including sensor (a) and the DS9097 adapter (b), and
(c) shows the detail of the temperature sensor.

in which the orientation is presented in the form of Euler angles. These states can
be determined based on the rotation angles of all robot joints,

αrj =
[
α1 α2 α3 α4 α5 α6

]T
. (6.2)

This process is known as the robotic forward kinematics [60]. The transformation
matrix of a robot link (i) can be calculated recursively through each link before it
one by one,

AiI = Ai(i−1) ·A(i−1)I , (6.3)

as well as the position vector,

irIb,i = Ai(i−1) · (i−1)rIb,(i−1) + Ai(i−1)Irbj,(i−1) + irjb,i, (6.4)

where the index j and b are for the joint and the barycenter of the robot links. As a
serial robot, rbj and rjb are the vectors from the barycenter to the next joint and
from the last joint to the barycenter, respectively. Then the position in the inertial
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Figure 6.4.: The experimental robot and the robot coordinate system. This state is defined
as the zero-position of the robot, i.e. all the joints are at 0◦. The robot coordinate system
is an inertial system, defined at the robot bases.

Figure 6.5.: Phantom Desktop. The computer screen shows the interface of the robot
motion control system.
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Algorithm 6.1: Robot control using CAN-bus
Initialization
- CAN-bus communication
- force/torque sensor
- laser sensor
if calibration then

- Force/torque sensor calibration
end if
Search the modules
Define the motion mode
Move to the home position
Move to the zero position
loop

(for each module)
Set velocity
Set acceleration
Set position
Move ...
Checking status
if quit then

Break
end if

end loop

coordinate system (I) is

IrIb,i = AIi · irIb,i. (6.5)

By this means, the position and orientation of the robotic end effector can be
calculated as the last link of the robot. Since the I system is identical to the robot
system (R), it yields for the robot foot as the first link,

A1I = I3×3. (6.6)

On the opposite side, for a given operation, the position and the orientation of the
robotic end effector can be determined directly. The unknown terms are the rotation
angles of the joints. They have to be determined using the inverse kinematics,

{Ire,IAe}
inverse kinematics−−−−−−−−−−→ αrj . (6.7)

For a robot, if three rotation axes share an identical intersection point, the inverse
kinematics has analytical solutions [91], hence the applied configuration in this
experiment has an important advantage, i.e. its inverse kinematics can be solved
analytically.
It should be noticed that the solutions of an inverse kinematics problem are not

unique in general. However, only one of them defines the best suitable motion
of the robot to reach the goal position. There are different criteria to select the
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best solution as optimization problems, for example velocity, acceleration or energy
expenditure [34].

6.1.3. Communication
In order to use the robotic system in diverse experiments, the robot, the haptic
interface and the control computers are set with divided configurations. The connec-
tions among them are based on general communication technologies, for which two
principles are taken into consideration. For the direct control, the robot is connected
to the control computer with CAN-bus. For remote operations, internet connections
are established.

The communication between the robot and the control computer is ensured with
a controller area network (CAN), using the PCI133 CAN-bus card [36]. As a
communication standard, the CAN-bus protocol allows high-speed communication
between varying devices without any network host. The information is transmitted
in the CAN data format as packages from the sender to the receiver, which are
generally sensors, actuators and micro-controllers. The priority of the messages is
given according to the message identifier. In this robotic system, communication
is necessary among the electronic motors, encoders and the control computer. The
information is the motion commands from the controller and the acknowledgment
and statues of the sensors and actuators. In the set-up, programmable interface is
also used [37, 38].
The communication between the computers is based on the internet technology.

The most popular protocols of internet communications are the transmission control
protocol (TCP) [93] and the user diagram protocol (UDP) [92]. The TCP provides
reliable and error free communications by using “data stream”, acknowledgment,
retransmission and other mechanisms, while the sent data using UDP are in the form
of datagrams, and the data transmission is unreliable. However the TCP network
is heavily loaded by looking after the communication and correcting errors. Hence,
the unreliable UDP communication is more efficient than the TCP. Therefore, real
time data are generally transmitted using UPD. A well known example is the real
time video and audio in the internet. In this chapter, the UDP is used for the
transmission of real time haptic information using the program ’SFBComm’ from
the SFB 453. This implementation is especially suitable for the telepresence and
telerobot applications.

6.2. Virtual Reality
In this section, the experiments using contact force models of virtual objects are
investigated. The models with different constitutive equations and material feature
are used with the same geometric model, which is a cuboid, 120[mm]× 210[mm]×
60[mm]. Then the results of these models are analyzed and compared. Furthermore,
the simulations are presented using the Phantom as a typical virtual reality example.
There are two aspects in the haptic simulation, one is the computational time.

To keep the comparability, an identical computer with a 3.0GHz processor (CPU)
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Figure 6.6.: The relation of boundary displacement and according contact reaction force,
including the contact force response to a cyclic process with constant absolute value
of the boundary displacement rate (a), and the curves of contact force and boundary
displacement in connection with time scale (b).

is used for the different models. The other is the accuracy. In the simulations, the
material behavior and the stress-strain relations are verified. However in this section,
the models are based on virtual deformable bodies, hence the reference data and
model identifications are not available for these models. The quantitative accuracy
analyses of the haptic simulations are detailed in the following experiments.
The linear elastic and viscoelastic constitutive equations are implemented in two

models, respectively. As the most important mechanical behavior, the stress-strain
relations are presented by the relations of the boundary displacement and the
according contact reaction force. For Hooke’s materials, they are lines, Fig. 6.6(a).
The time processes of the contact force are illustrated in Fig. 6.6(b), with respect to
the boundary displacements. It is obvious that they have linear relations, and are
independent on the former states.

In viscoelastic materials, the stress-strain relations, as well as the force-displacement
relations, show hysteresis, Fig. 6.7(a). The curves of some typical relaxation processes
are shown in Fig. 6.7(b). Both diagrams have merely shown the basic features of
viscoelastic materials. In order to analyze the detailed effects of different material
parameters, the following tests are carried out, and the effects of the motion functions,
the boundary displacement rates and the relaxation times are investigated separately,
Fig. 6.8. As the conclusion, the theoretical feature of the viscoelasticity is modeled
and verified by these simulations, including the dependence of the internal stress
on the loading history and time scale. The time processes of these experiments
are illustrated in Fig. 6.9, 6.10, 6.11, 6.12 and 6.13, as reference, and the concrete
settings of these virtual viscoelastic materials are given in Appendix A.3.
These models validate the fundamental functionality of the modeling of material

features, the methods can be used for other implementations latter. However, as
another basic performance, the computational expense also has to be surveyed
explicitly. For this reason, both models and an inhomogeneous model with linear
elastic materials are considered. Furthermore, the models with different mesh
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Figure 6.7.: The relation of boundary displacement and according contact reaction force
with different material parameters. (a) illustrates the contact force response to a cyclic
process with constant absolute value of the boundary displacement rate, material a:
Es = 2000[N/m2], E1 = 20000[N/m2], E2 = 8000[N/m2] and the relaxation times are
0.6 and 0.1 second; material b: the elastic modulus are 20000, 10000 and 8000[N/m2]
for Es, E1, and E2, τ1 and τ2 are the same as those of material a; material c: the elastic
modulus are 20000, 10000 and 6000[N/m2], respectively, and the time constants are 0.1
and 0.2[s]. And the displacement rates are 0.01[m/s] for material a and c, and 0.05[m/s]
for the third material. The Poisson’s ratio is 0.3 for all materials. The curves of contact
force and boundary displacement in connection with time scale are shown in (b).

structures are also taken into account, i.e. the normal mesh and the quality mesh.
The computing time is compared in Tab. 6.1. For the creation of the models, the
linear model is efficient, with about 95[ms], and the inhomogeneous model is the
most expensive one due to the region determination of the tetrahedra, about 395[ms].
The creation of the viscoelastic model is a little more expensive than the linear
model, because there are some additional vectors and matrices for the model and
each element with respect to the effect of loading history, it takes about 120[ms].
In detail, the computation expense of this procedure includes two major parts, the
geometric mesh, circa 90[ms], which is identical for all models, and the assignment of
the stiffness matrix. The second part is significantly different for the diverse models,
the inhomogeneous model takes about 300[ms], inclusive of the region determination
of the tetrahedra, whereas for the other models, it is not so heavily loaded. These
creation procedures are merely necessary in the initialization phase. In the simulation
phase, the computational expenses of the contact force evaluations are identical for
the linear and inhomogeneous models. It is about 15[ms] at each step. Whereas with
the viscoelastic model, it takes about 30[ms], because of the calculation of the stress
history terms. As special cases, if the boundary displacement is the same as that at
the last evaluation, the conjugate gradient (CG) algorithm can take the previous
values, and outputs it without iteration. Hence the force evaluation takes just a few
milliseconds.
As introduced in Chapter 2, the quality mesh has significant advantages for FE

models in connection with the accuracy of FEM and the convergence of the CG
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Figure 6.8.: The relation of boundary displacement and contact force with different motion
functions (a), different boundary displacement rates (b) and different relaxation time
coefficients (c).

Figure 6.9.: Experiment setting 1 (a) and 2 (b).
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Figure 6.10.: Experiment setting 3 (a) and 4 (b).

Figure 6.11.: Experiment setting 5 (a) and 6 (b).

Table 6.1.: Comparison the computational expense of the models, in [ms]. All the models
are using the quality mesh.

force model model creation force evaluation [ms]

linear model 95 6 or 15

viscoelastic model 120 10 or 30

inhomogeneous model 395 6 or 15
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Figure 6.12.: Experiment setting 7 (a) and 8 (b).

Figure 6.13.: Experiment setting 9 (a) and 10 (b).

algorithm. Generally, the quality mesh may insert some nodes and create more
elements than the normal mesh. That means the model initialization may become
slightly longer. However, without thin and flat elements, the CG algorithm will
converge more quickly. By this means, the computing time for force evaluations
can be reduced to about 1

3 ∼
1
4 of that of the normal mesh in this experiment. In

Tab. 6.2, the computing times of different models with both the mesh methods, also
including the models from the latter sections, are summarized and compared. It
should be noticed that the heart model with normal mesh has accuracy problem,
Section 6.6. Hence, the following conclusion can be drawn: the quality mesh is much
more accurate and economical for numerical solution processes in comparison with
the normal mesh. In this Chapter, without special note the models are always with
quality mesh.
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Figure 6.14.: Measurements during contact with the polyurethane cuboid, including the
relation of the contact force and boundary displacement (a) and the time process (b).

6.3. Polyurethane
Polyurethanes (PU) are a special kind of polymers. They have a notable advantage
that the physical characteristics of them with different micro structures can be
adjusted in a very extensive range, including the mechanical properties. Thus they
are widely used in industrial and research areas.

In this experiment, a homogeneous cuboid is tested, made of polyurethane, Sylomer
from Getzner [44]. Then it is modeled as linear elastic and viscoelastic material
respectively, without and with respect to the effects of the loading history. The
identical measurements are provided as reference data. Furthermore, the geometric
measurements and the mesh, with 230 nodes and 568 tetrahedra, are also the same for
both models, to keep the comparability of them. The goal is to verify both modeling
methods, and to compare the performance of the linear elastic and viscoelastic
models.

The contact situation is: a bar presses the cuboid with different depths and holds
the positions for some seconds. For the identification of the models, the cuboid is
tested at five different positions on the surface, one of them is illustrated in Fig. 6.14
as an example. Then samples are selected from the measurements as reference data.
As mentioned above, they involve the contact reaction force and associated boundary
displacements.

6.3.1. Linear Model
As the first model, the cuboid is modeled as linear elastic material. The linear
tetrahedra and linear constitutive equations in Chapter 3 are implemented. The
initial values of the material are assigned to the model parameters, i.e.

E = 20000[N/m2] and ν = 0.3. (6.8)
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Figure 6.15.: Simulation of the polyurethane cuboid using the linear elastic model, includ-
ing the relation of the contact force and boundary displacement (a) and the time process
(b).

The force evaluation is directly according to the conjugate gradient algorithm, and
the computation time is about 15[ms]. In this case, the analytical models are not
implemented, since the force feedback with more than 60[Hz] is already acceptable
using the Phantom in this application.

As shown in Fig. 6.14, the x and y components of contact force are in the vicinity
of zero, and the force components in the z direction are much greater than the
other two. Hence the simulation of the contact reaction force in the z direction is
investigated in detail.
Since the to be optimized parameters are just the Young’s modulus and the

Poisson’s ratio, it is not necessary to use a large number of samples. The time stamp
has no effects in the linear models. For this reason, 20 ∼ 30 samples are sufficient for
the identification of this linear model at each sample position, i.e. location samples.
Substituting the samples into Algorithm 5.7, the optimizations converge after several
iterations, and then five location samples are available.
Since there is no significant derivation among the material parameters of the

location samples, the cuboid can be regarded as homogeneous, and the unsupervised
model learning and the subsequent inhomogeneous modeling procedure are not
necessary. This conclusion is a good match with the fact of this cuboid. Eventually,
assigning the average material values to the model, the corresponding simulations
are illustrated in Fig. 6.15.

6.3.2. Viscoelastic Model
However the deviations between the simulations and the reference are obvious in the
relaxation periods. Considering the adaptive model identification, the criteria for
the viscoelastic models are checked. Subsequently, the contact forces at the same
sample position with similar boundary displacement are compared, and significant
deviations in the form of rft are detected. For this reason, the viscoelastic model is
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Figure 6.16.: Simulation of the polyurethane cuboid using the viscoelastic model, including
the relation of the contact force and boundary displacement (a) and the time process (b).

implemented as an attempt, to investigate and simulate the polyurethane cuboid
with more details.

The modeling in this section is based on the same measurements and using the
identical geometric model. The difference is that the selected samples are recorded
with the time stamps, since the loading history should be taken into consideration
in viscoelastic materials. Being aware that the material parameters here are more
than those of the linear model, more samples should be drawn. The first term of the
Prony series is implemented in this model, thus the model parameters are defined as

χ =
[
Es ν E1 τ1

]T
. (6.9)

The sample time are 30[ms].
After the model identification and model parameter optimization, the viscoelastic

model provides better simulations in comparison with the linear model, Fig. 6.16.
It can be recognized that the curves in Fig. 6.16 are different from those in

Fig. 6.14. The reasons lie in the fact that only one Maxwell element is implemented.
In comparing with the experiments of animal tissue in Section 6.6, in which the
simulations can fit the measurements better with more Maxwell elements, the effects
of the Maxwell elements can be explained.

6.4. Inhomogeneous Material
The experiment with inhomogeneous material is carried out also by the robotic
system, and the simulations are presented by using the Phantom. The test object
is an inhomogeneous cuboid, 120[mm]× 210[mm]× 60[mm], Fig. 6.17. It consists
of two heterogeneous regions, made of different kinds of polyurethane foam with
different material values. Both regions are distributed over the horizontal x-y plane,
the boundary between them is a curve, Fig. 6.18(b).
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Figure 6.17.: The inhomogeneous object, lying on the test table, the dark material is softer
then the light one.

The central goal of this experiment is to model the inhomogeneity in materials,
with the different regions being modeled as linear elastic materials. The detailed
modeling of polyurethanes has been illustrated in Section 6.3.2.

6.4.1. Modeling
As an object with simple geometry, which is similar to the former experiment, it is
also measured with laser scanning. The FE model consists of 230 nodes and 568
tetrahedra, with the stiffness matrix K ∈ <690×690.
During the operation, the bar contacts the upper surface at 20 sample positions,

and 500 samples are drawn from the measurements as the reference. A force model is
established just using the samples, and then the model has been carefully compared
with the test object.

At the beginning, 20 location samples with the material parameter

{Ei,νi : i = 1,2,...,20} (6.10)

are directly created using the initial estimation and the Gauss-Newton method.
Then they are sorted by the hierarchical cluster analysis. The cluster tree of them,
according to the material parameters, is illustrated in Fig. 6.18(a).
The cophenetic correlation coefficient is about 0.92, this means the cluster tree

has represented the original samples properly. Then the location samples can be
further classified based on this cluster tree. Subsequently, the proportions of the
distances of adjacent layers are calculated, and it is reasonable to divide the location
samples into two groups, which correspond to two heterogeneous regions. There are
respectively seven and thirteen location samples in the soft and the hard regions,
Fig. 6.18(b). Then the average values of the material parameters are assigned to the
according regions.
In the following step, these classified location samples are used as the training
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Figure 6.18.: Classification of the location samples. The location samples are sorted in the
cluster tree (a) and then classified into two groups (b). The boundary is also illustrated as
reference.

data to establish the discriminant equation. Then twenty thousand scan points are
generated and classified, according to their positions, by the quadratic discriminant
analysis (QDA). By this means, the region boundary is estimated, Fig. 6.19. Eight
points are selected uniformly from the boundary between the two regions as the key
points of it. Thus the primary model is created.
Subsequently, the model parameters can be optimized in detail using the global

Gauss-Newton algorithm, and the optimized region boundary is illustrated in Fig. 6.20.
It should be noticed during the parameter optimization that the positions of the
boundary points are constrained in a small range surrounding the estimations derived
by the QDA, according to (5.43).

6.4.2. Results
As shown in Fig. 6.20, all the location samples are classified correctly, and the
identified boundary has similar tendency with the actual one. The left part of
the boundary has more deviations than right part, because, in this experiment,
the sample positions are selected randomly in the complete area domain, and few
reference data are located in the right zone, especially in the near from the estimated
boundary.
As the result, the haptic simulations are also represented to users as the force

feedback, and the root mean square (rms) value of the simulations is about 0.1−0.3[N ],
depending on the sample positions. Generally, the errors of the hard region are much
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Figure 6.19.: Estimation of the region boundary using the quadratic discriminant analysis.
The actual boundary is shown as the reference.

smaller then those of the soft region.
The similar modeling procedure can also be done using some commercial software,

such as Ansys, however the programming interface of data exchange and contact
detection using Ansys are sometimes problematic. Furthermore, the model mesh is
dependent on the region boundary, it may even lead to convergence problems during
force evaluations. Thus, the finite element analysis using Ansys is not satisfied for
real time haptic simulations.

6.5. Telerobotic Operation

6.5.1. Problem Statement
In this section an application example is introduced. Telepresence systems give
users the possibility to obtain the feeling in a remote or unreachable environment,
including visual and auditory senses. Latter, the haptic information is also involved
in the telepresence technology as another important component. These systems
can be widely applied in many areas, for instance for aerospace and blue water
explorers, robotic surgery and defusing robot in dangerous situations. A typical
telepresence system consists of three components: an operator, a teleoperator and the
communication between both sides, Fig. 6.21(a). Generally, in haptic workspace, the
teleoperators contain diverse actuators and sensors for the manipulations of the test
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Figure 6.20.: Comparison of the identified boundary and the reference boundary.

objects, as well as the corresponding measurements. The human operators exchange
the haptic information, including the displacement and the contact force, with the
computer by using a haptic devices, the haptic human-machine interfaces [53], such
as the Phantom. One of the most important challenges of these telepresence systems
is the time delay due to communication, which leads to the inconsistency of the
boundary displacement and the force feedback. It may be so difficult to control the
teleoperator manually, that the complete system is instable [124, 27], if notable time
delay exists, for example more than 50[ms]. In order to compensate for this time
delay, the force models can be used at the operator side to provide force predictions,
and then the delayed measurements can be replaced by the real time simulation from
the models, Fig. 6.21(b).
As shown in the former chapters, the mechanical behavior of materials are de-

scribed in the force models with the constitutive equations using the finite element
method (FEM). Two major requirements of the force predictions in telepresence
are consistent with those of the contact force models. The computational expense
of the force evaluations has to satisfy real time force simulations, and the haptic
simulations should be comparable with the corresponding reference, by means of
model identifications.

6.5.2. Telepresence Scenario
The teleoperation scenario is modeled as a robot tool in contact with a deformable
object. Concretely in this experiment, the experimental robot is configured as the
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Figure 6.21.: A telepresence system (a), in which the force feedback to the users is the
delayed force measurements. For the force prediction at the operator side (b), the mea-
surements are used as the reference data for the learning and verification of the force
model.

telerobot, i.e. the teleoperator, and the Phantom is used as the haptic interface of
the human operator. The operation is the effector pressing a deformable sphere with
a bar, illustrated in Fig. 6.22.

In order to establish the communication and keep the cooperation of the operator
and the teleoperator, the system has to be set and configured properly. The imple-
mentations for the teleoperator and the operator are illustrated in Algorithm 6.2
and 6.3. In them, the vector s defines the state of operator. It can help the system
to select the actual function during the experiments. The meaning of each entry
in the vector has been introduced in the algorithms. Furthermore, ∗i→ and ∗i←
denote the sending and receiving of communication signals in the i-th channel.
The goal is to provide model based haptic simulation as contact force prediction

to compensate for the communication time delay. However in this experiment, the
teleoperator is close to the operator, and the UDP communication between the them
takes only few milliseconds. This time delay is relative short and has little disturbance
for users during the operations. In order to illustrate the force prediction clearly, an
additional time delay is implemented. The force feedback from the teleoperator and
the motion commands sent by the operator are buffered in two stacks, respectively,
which are illustrated in Fig. 6.23, the time delay is defined as ∆tdelay. The data are
pushed into the stacks at the current point of time tpushc with their time stamp. Then
after the time interval ∆tdelay, they should be outputted from the stacks. Thus, the
time delayed is simulated by means of using the data from the time tpushc at the time
tpopc = tpushc +∆tdelay. In the actual setting, the simulated time delay is defined as
300[ms], which is comparable with that of the communication between earth stations
and satellites.
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Figure 6.22.: Operation during the telepresence experiment. Teleoperator in contact with
the test object (a) and the laser scanning procedure (b).

Algorithm 6.2: Teleoperator
Initialization:
- program
- UPD Communication
- Robot, Algorithm 6.1
Start “telerobotic mode”
loop

Read the force/torque Sensor
Receive motion command from the operator (∗1←)
Send contact force to the operator (∗2→)
Check the desired position
if accessable position then

Move to the next desired position
else

Hold the current position
end if
if quit then

Exit “telerobotic mode”
end if

end loop
Quit
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Algorithm 6.3: Operator
Initialization:
- program
- Phantom
- UPD Communication
loop

Get input: cinput
Define state: s
Get the Phantom position
Send motion command to the teleoperator (∗1→)
Receive contact force from the teleoperator (∗2←)
if s1 =′ forceprediction′ then

Using the haptic simulation as force feedback
else

Using the received force measurements as force feedback
end if
if s2 =′ timedelay′ then

Simulated time delay is effective, Fig. 6.23
end if
if s3 =′ learning′ then
if sufficient samples:nsample > nthreshold then

Model identification
else

Draw samples
The sample counter: nsample = nsample + 1

end if
end if
if cinput =′ quit′ then

Break
end if

end loop
Quit

Figure 6.23.: Simulated time delay. The index i specifies a data entry, tc denotes the cur-
rent time. Data can be pushed into the stack at any time, but to pop them out from the
stack, the corresponding condition have to be satisfied.
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Figure 6.24.: The Geometric measurement of the Sphere. The sample points are drawn dur-
ing the laser scanning, the grey curves illustrate the scanning path and the approximate
contour of the sphere.

6.5.3. Modeling

The force modeling methods are used in the experimental telepresence system as an
application example. At the beginning, the geometry of the sphere is measured by
the laser scanning. The measured area is 130× 100[mm], and the 3D samples at 130
positions are drawn in this area. Fig. 6.24 shows the positions of these points, and
with the virtual grey curve, the geometry of the object can be identified. Among
them, 72 measurements (nodes) lie on the upper hemisphere. After the selection of
the suitable samples, the closed surface of the object, including the projections, is
created by using the surface reconstruction. Fig. 6.25 illustrates the outlook of the
geometric model. It consists of the upper hemisphere, side surface and bottom, while
the useless samples are eliminated. Based on the geometric mesh, the FE model
with 120 nodes and 285 tetrahedra is established, which has the similar aspect as
the closed surface. Then the linear elastic constitutive equation can be applied in
the finite element model with arbitrary default material values. The computational
expense to solve a batch of contact force needs approximately 30[ms], by a 3.0GHz
computer.
During contact experiments, the robot drives the effector to contact the object

on the upper surface, and the reaction forces are measured at the same time.
Subsequently 20 chosen measurements are used to optimize the Young’s modulus.
The measurements during motion without contact should be neglected. There is a
significant reduction of the residual sum of squares (rss) at the first few iterations,
then the convergence condition is satisfied. Eventually, the FE model of the sphere
with suitable material values is created.
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Figure 6.25.: The Geometric model of the Sphere. After the surface reconstruction using
these points, the closed surface is created, and the final geometric model with mesh has
the same aspect as the closed surface.

Figure 6.26.: Comparison of the measurements with the simulations derived by the contact
force model. The force-displacement relation during manual motion is illustrated in (a),
(b) is the detailed comparison using 20 samples.

6.5.4. Results
After the parameter identification, a series of press tests is executed. The simulated
contact forces and the measurements are compared to verify the contact force
model. Fig. 6.26(a) illustrates the relation between the contact forces and boundary
displacements. 200 samples are drawn during several tests. Since the manual motion
is carried out, there are some samples with greater random deviations in comparison
with the program controlled motion. Moreover, the detailed comparison of the
simulations with the corresponding reference data is also shown in Fig. 6.26(b), with
20 samples during a single test, the rms values are in the range of 0.1 ∼ 0.2[N ].

The performance of the telerobotic system and the model based force prediction
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Figure 6.27.: Comparison of the force measurement and the force prediction derived by the
FE model, with respect to the boundary displacement. The measurement curve is the
force measurement at the teleoperator, and the delayed measurement is the measurement
at the operator after the communication. Both should be the same. The model identi-
fication is at about 9[s], and takes circa 150[ms]. Before 15[s], there is not any force
prediction, and the force curve is not synchronous with the boundary displacement. After
it, the force prediction derived by the force model is used as the force feedback, which is
always coincide with the displacement curve.

can be concluded as follows. Before the model identification, the force feedback
comes from the delayed measurements, Fig. 6.21(a). It is extremely difficult for users
to control the teleoperator using the Phantom, since the displacement and the force
feedback are not synchronous, so that the system is instable. At the same time
during the manually controlled motion and operation, the measurements, including
the contact force and the associated boundary displacements, are memorized as the
reference data for the model identification. Once the available data are sufficient,
the model parameters are online identified during the operation. After that, the
force model is used at the operator side, and it is prepared for the force prediction
and haptic simulation, Fig. 6.21(b). Subsequently, the simulation derived by the
identified model is applied as the force feedback to replace the force measurements,
Fig. 6.27. Then the manual control of the telerobot is much easier than before, and
remains always stable. The rms value in this experiment is about 0.2 ∼ 0.3[N ]. If
significantly disturbed samples are filtered, the rms values can be reduced obviously.
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6.6. Animal Tissue

6.6.1. Problem Statement
As mentioned above, the application of haptics in medical and biological equipments
is a highly interesting research field. Surgery robots have been intensively investigated
in many works as new instruments [79, 99, 50]. In comparison with the traditional
surgery technology, the surgery robots are more suitable for inversive operations.
With these robots, it is also possible to enhance the telemedicine systems by carrying
out operations in special situations or for patients in remote environments. In these
cases, contact force modeling and simulation methods can be used to compensate
for time delay or provide better performance, analogous to the telepresence system
in the last experiment. There has also been a lot of research concentrated on some
special effects, for instance the needle insertion [31]. Furthermore, these modeling
and simulation methods can be used for medical simulators for trainings, to improve
the skill of doctors.
In this section, the robot is used as an experimental medical instrument. An

animal tissues is tested and modeled as a deformable body, using the modeling
methods in former chapters, and the real time haptic simulation of it is implemented
as well.

6.6.2. Experimental Setting
In this experiment, the test object is a pig heart, and the contact scenario is the bar
pressing the heart at some positions, and the measurements are stored for the model
identification. Then the model is imaged to be used in a telemedicine application.
The telerobotic settings are similar as those in the last experiment.

As animal tissues, the hearts are inhomogeneous, anisotropic, nonlinear materials.
Their behavior is dependent on the loading history as well. Furthermore, it should
be noticed that the main components of hearts are the myocardium, which is a kind
of muscles, and similar to the skeletal muscle [43]. The behavior of muscles can be
both active and passive. There has been biomechanical research for the detailed
modeling of the skeletal muscle [121] and the hearts muscle [28], using the FEM,
from the biological and medical aspects. In this experiment, the heart is regarded as
a passive viscoelastic deformable body, the aim is to create a model for the real time
haptic simulation for the compensation for the communication time delay.

The contacts are typical relaxation tests, this means the bar presses the tissue at
some position, and then it holds the position for an interval of time. During this
period, the contact reaction force decreases monotonously with the time, Fig. 6.29.
Based on this mechanical behavior, it is reasonable to model the tissue as viscoelastic
material.

6.6.3. Modeling
The modeling of the heart starts also with the scanning procedure using the laser
sensor. 130 sample points are measured, 83 of them are on the heart surface. Since
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Figure 6.28.: The robot during the experiment. The light point on the heart is the current
position during the scanning.

all the sample points are located on the upper or side surface, the bottom plane
is also defined as the projection of the upper area. In total, there are 161 points,
which define the whole surface, Fig. 6.30. Then the closed surface is established by
using the surface reconstruction, and the geometric mesh structure, using Tetgen, is
created to fill the volume of the closed surface, Fig. 6.31. Eventually, the complete
geometric model of the heart consists of 535 nodes and 1763 tetrahedra.
At the beginning, the heart model, with two Maxwell elements, is assigned with

the default parameter values. The computational time of the FE heart model is
20 ∼ 90[ms], depending on the convergence of the force evaluations. The sample
period of the haptic simulation is defined as 100[ms], which is sufficient for all
situations. Using the measurements, the FE model parameters and the ACFM
parameters are identified. Since the vertical force components are much greater than
the other two horizontal components, the contact reaction force in the z direction is
investigated intensively. 300 samples within 60 seconds during a single relaxation
test are uniformly selected as the reference data for the FE model identification. As
mentioned above, the model parameters are constrained, for the two time constants
in the FE model, they are defined as

0.001 < τ1 < 5[s]
5 < τ2 < 60[s],

(6.11)
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Figure 6.29.: Contact reaction force using a relaxation test. The force is monotonously
decreasing with constant boundary displacement.

Figure 6.30.: The Geometric measurements of the heart. The grey curves illustrate the
scanning path, and the approximate contour of the tissue.
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Figure 6.31.: The geometric model of the heart. Its aspect is the same as that of the
closed surface after the triangulation. The contour of the model in this experiment is
relative rough, because the computational expense of the model is limited by the actual
experimental computer. In robotic surgery using the identical modeling method, models
are generally created based on the measurements from a CT. With high-end hardware, the
computing power can be sufficient for the evaluation of more complex models.

for the short-term and the long-term relaxations, respectively.
During the model parameter optimization, the algorithm may not be converging

with the specified start values. Among the convergence optimizations, the parameter
setting with the least root mean square (rms) value is assigned as the identified
values of the model parameters. The corresponding rms value is about 0.1[N ]. The
optimization of the ACFM parameters is similar, using just 100 samples within 20
seconds for each sample position. The rms values are much larger than those of the
FE model.

As shown in Chapter 5, the boundary displacement rate independent noise densities
are defined as 0.9 for the system noise and 0.1 for the measurement noise in all
directions. In this experimental setting, the boundary displacement rate lies in
the range of 0 ∼ 0.1[m/s]. The basic layout is to limit the noise densities in the
range 0.9 ∼ 0.1 for the system and measurement noises, then the coefficients in
(5.52) and (5,53) can be determined, and the matrices Qn and Rn can be calculated
subsequently during the runtime. By this means, the FE simulations have enough
weight in the EKF, so that the model states can be adjusted, whereas during the
periods with high boundary displacement rate, the model can also respond quickly
enough.

6.6.4. Results
In order to verify the identified haptic model, it is implemented in the experimental
telerobotic and telepresence system for the contact force prediction to compensate for
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Figure 6.32.: Comparing the force measurements with the simulations derived by the finite
element model and the EKF.

100[ms] time delay. This means the real time haptic simulations are used as the force
feedback to replace the delayed force measurements. The experiments show that the
system is always stable, and the manually controlled operations can be much easier in
comparison with those without force predictions. The performance is investigated in
detail by comparing the simulations with the corresponding measurements, Fig. 6.32.
The deviations between them are illustrated as rms values, Fig. 6.34.

It should be noticed that the output of the haptic simulations is step by step, and
in the FE simulation, the changes of the contact force may be extremely intense
inside of a very short time interval, for instance 1[ms], due to the computationally
expensive force evaluations, Fig. 6.33. They are a problem for high level haptic
rendering. Whereas the real time simulation derived by the EKF shows its advantage
in comparison with the pure FE simulation, i.e. the changes of the boundary displace-
ments are taken into account with the 1000[Hz] sample rate, and the trajectory of
the simulated contact force is smoothed. The intense changes, about 0.5 ∼ 0.8[N ], in
the FE simulation have been eliminated as well. Furthermore, the rms error has also
decreased clearly, Fig. 6.34. It is obvious that the rms values of the EKF simulations
are always less than those of the pure finite element simulations.
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Figure 6.33.: Detailed comparison of the measurements with the simulations derived by the
finite element model and the EKF. During large boundary displacement rate, the inten-
sive changes in the FE simulations are eliminated by the EKF (a). During the relaxation
procedure, the EKF provides smooth contact force simulations (b).

Figure 6.34.: Comparison of the rms values of the simulations derived by the pure finite
element model and the EKF.



105

7. Conclusion
Haptic sensation is an important interaction and information between human being
and the environment. In recent years, with the rapid development of computer
science, it is possible to apply haptic simulations in more and more situations, for
instance the aerospace, medical and biological technology. At the same time, the
requirement for simulations are becoming stricter and stricter, mainly including
the accuracy and the output rate. For this purpose, different force models and the
appropriate modeling methods are developed and investigated. This tendency fulfills
the desires of many applications to improve their performance of operations and
manipulations. Connecting both sides, haptic technology has been developed as an
inter-discipline. The most important application areas of it can be involved in the
robotics, such as the telerobotic, haptic devices and virtual reality. Typical examples
are the surgery robots. As a kind of modern medical instruments, on one hand
they can provide patients with more flexibilities such as telemedicine, on the other
hand, the doctors can obtain experience during virtual trainings, and the intensity
of operations can be decreased. This also means that the efficiency and security of
operations can be raised.

This thesis presents the methods for model based real time haptic simulations using
the finite element method. They can be used in diverse applications to provide user
high-fidelity haptic sensations. This modeling procedure can be divided into three
parts. During the modeling and simulation, two major requirements are emphasized,
the accuracy and the efficiency.
The first part concentrates on the modeling of the target objects, including the

geometric modeling and the implementation of constitutive equations in the volume
mesh. The modeling begins with the geometric measurements of the object surface,
then the geometric model is established step by step, including surface reconstruction,
geometric mesh and contact detection. Subsequently, material characteristics are
given to these volume meshes. Eventually, the modeling procedure ceases with the
FE models with default material values. By this means, the models of the objects
are established with basic feature.
The second part is the model evaluation and model identification. The finite

element evaluation is detailed for different FE models. Furthermore, for real time
applications, the FE models are integrated with the analytical models with a data
fusion method, in order to compensate for the computing time of the FEM.

For the case, both the model simulations and reference data are available simulta-
neously, the force models can be identified and optimized. Especially, an unknown
object can be modeled with the most suitable material characteristics and modeling
methods by using the adaptive model identification.

In the model parameter optimization, three primary error sources should be noticed:
the first is the theoretical model, this deviation can be reduced by the selection
of suitable theoretical models according to the objects and application conditions.
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The second is the influence of varying noises, the EKF can taken some stochastic
information into consideration. If it is necessary, other stochastic methods may
also be used. Furthermore, the reference data should be denser in the interesting
areas than those of the others, to adjust the model identification and to improve the
accuracy of the simulation in these areas.

The third part is the verification and application of the contact force models and
the haptic simulations. For this purpose, different objects are tested and modeled
in experiments and simulations, as well as some practical implementations. It is
especially emphasized in this thesis to apply the modeling methods in telepresence
and medical technology.

During the experiments, several effects are detected, and some experience can be
obtained. Since high-fidelity real time haptic simulations are the main requirements
in this area, the modeling methods have to be configured appropriately to fit the
requirements. For instance, haptic simulations more than 50[Hz] can offer users
unproblematic haptic sensation during contacts. With 1000[Hz] output rate, the
smooth manipulations are reasonable expectation. In these cases, the analytical
contact force model (ACFM) and the extended Kalman filter are necessary and
capable components for the finite element models, especially for nonlinear models,
however the parameters of all the methods have to be constrained and optimized
correctly. Furthermore, the adjustments and settings can obviously affect and
accelerate the parameter optimization.
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A. Appendix

A.1. QR-Decomposition

The QR-decomposition of matrix A ∈ IRm×n, with m > n, is defined as

A = Q ·R, (A.1)

where

Q ∈ IRm×m orthogonal matrix
R ∈ IRm×n upper triangular
rank(A) = n full column rank

(A.2)

There are several methods to execute the QR-decomposition, for instance the House-
holder transformation, the Gram-Schmidt method and the Givens transformation [48].
The Householder transformation is implemented in this thesis, with the Householder
matrix H ∈ <m×m, defined as

H = I + 2vvT

||v||2
, (A.3)

and the Householder vector v. Defining v as follows,

v = a ± ||a||e1, (A.4)

in which vector a is the first column of matrix A, and

e1 =
[
1 0 ... 0

]T
. (A.5)

Then, the matrix H1 can be calculated according to (A.3). Multiplying H1 with a,
it yields

H1 · a = r11 · e1. (A.6)

Thus, the following result can be obtained,

H1 ·A = H1 ·A(1) =
[
r11 r12 · · · r1n
0 A(2)

]
. (A.7)
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Figure A.1.: The structure of the robotic end effector with the montage of the sensors and
the bar. The laser sensor is at the lowest position.

Applying the algorithm recursively, all the matrices {Hi : i = 1,...n} can be deter-
mined, and the decomposition can be obtained as follows,

Q =
n∏
i=1

Hi

R = QTA =
(

n∏
i=n

Hi

)
·A

(A.8)

A.2. Robotic End Effector
The robotic end effector of the experimental robot contains the force/torque sensor,
the laser distance sensor and a bar for operations. The central line of the bar is
parallel with the emergent laser ray, and the distance is constant. Furthermore, it
is also coaxial with the force/torque sensor and the flange of the last robot link, so
that the geometric relations of the sensors and the actuators can be simplified. The
effector is illustrated in Fig. A.1

The position of the laser sensor is adjustable in the direction of the emergent ray.
By this means, the measurement range of the laser sensor can be extended, and
some complex surfaces may also be measured, Fig. A.2. The adjustable range is
0 ∼ 30[mm].

Moreover, it should be noticed that the bar is made of aluminum. That is during
contacts with soft materials, such as the soft animal tissues, it is reasonable to be
regarded as a rigid body.

A.3. Material Value in Section 6.2
In Section 6.2, six and ten different experiment settings are used respectively for the
linear elastic materials and the viscoelastic materials in the virtual reality experiment,
to define virtual objects and contact situations. For the linear elastic models, merely
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Figure A.2.: The design of the robotic end effector. The position of the laser sensor is
adjustable, for instance the upper (a), middle (b) and lower positions (c).

Table A.1.: Material values of the virtual linear elastic objects.

Index Young’s modulus (E) [N/m2] Poisson’s ratio (ν)

1 10000 0.3
2 20000 0.3
3 30000 0.3
4 50000 0.3
5 60000 0.3
6 70000 0.3

the material parameters are necessary, whereas for the viscoelastic models, the
material characteristics as well as the boundary displacement are specified. The
values of the parameters and settings are listed in Tab. A.1 and Tab. A.2, respectively.
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