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Zusammenfassung

Rückkopplungsschleifen (”Feedback Loops”) bilden ein zentrales Motiv in biologischen
regulatorischen Netzwerken. Sie spielen außerdem eine wichtige Rolle im Auffinden von
Hysterese-Effekten und/oder oszillativem Verhalten. In dieser Arbeit entwickeln wir ein
allgemeines Model für gekoppelte Feedback Loops, wobei wir einen schnellen positiven
mit einem langsamen negativen Feedback Loop verbinden. Das Einführen der verschiede-
nen Zeitskalen erlaubt eine tiefere mathematische Analyse eines drei-dimensionalen Pro-
totyps. Wir beweisen die Existenz einer Linie von Hopf-Bifurkationen, einer Linie von
homoklinen Orbits und Canard Orbits. Desweiteren untersuchen wir vier verschiedene
generische Systeme in einem assoziierten planaren Fall numerisch. Als eine möglich An-
wendung gekoppelter Feedback Loops analysieren wir ein Model für die Blutgerinnung.

Abstract

Feedback loops are a central motive in biological regulatory networks, playing an impor-
tant role finding hysteresis effects and oscillatory behavior. In this thesis we develop a
general system of coupled feedback loops, combining a fast positive feedback loop with a
slow negative one. The introduction of different time scales allows a deeper investigation
of a three-dimensional prototype. We prove the existence of a line of Hopf bifurcations, a
line of homoclinic orbits, and canard cycles. Furthermore we give a numerical description
of four generic cases in an associated planar case. As an application of coupled feedback
loops we investigate a model of the blood coagulation system.
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1 Introduction

Searching the internet for the term ”feedback loop” one finds the following statement:
”Scientists: ’Feedback Loops’ Are the Single-Biggest Threat to Civilization From Global
Warming” (abcNEWS, [52]). The thawing of the vast tundra reveals old decayed
vegetation, which releases carbon dioxide influencing the warming of the atmosphere
again. As it becomes clear, the knowledge about feedback loops is of central importance
to understand physical and biological behavior, even if the example above is a little
over the top. However, feedback loops arise often in biological networks and play an
important role in the overall biological processes. Thus this work deals with the analysis
of coupled feedback loops to get a better understanding of the underlying biological
features.

In chapter 2 we give a short overview of feedback loops arising in biological sys-
tems. We derive systems of ordinary differential equations, describing positive as well as
negative feedback loops. After the introduction of time scales we formulate our starting
system of coupled feedback loops, which will be the subject of investigation throughout
this work. Furthermore we are dealing with some mathematical tools from geometric
singular perturbation theory used in the following chapters.

Chapter 3 is dedicated to some first investigations of general concepts underlying
our system of coupled feedback loops. After analyzing steady states and their stabilities
we reduce our system to three dimensions in order to get the possibility to treat our
system analytically. The layer problem of this simplified system is investigated and
bifurcations are determined.

In an approach to use known results from geometric singular perturbation theory
we artificially introduce a third time scale to further reduce our system in chapter 4. We
derive a singularly perturbed two-dimensional system, where the existence of a canard
explosion is proven. Furthermore the small Hopf cycles local to the canard point grow
to canard cycles and eventually end in an homoclinic orbit.

In chapter 5 we return to our three-dimensional system. With the help of center
manifold theory we show that the flow local to the canard point remains equivalently
to that in the two-dimensional case. We then recover Hopf cycles, which grow to
canard cycles, as well as an homoclinic orbit. The approach remains the same as in the
two-dimensional case, however, some additional statements are necessary.
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1 Introduction

Numerical simulations are the subject of chapter 6. We inspect four different sys-
tems, which lead to different bifurcation diagrams. It is shown, that under generical
conditions these systems develop a Takens - Bogdanov bifurcation (TB) and that the
canard bifurcation point and the TB are connected by a line of Hopf points. Numerical
simulations show that the line of homoclinic orbits emanating at the canard bifurcation
point also connects to the TB. We give a full numerical description of the flow for
different regions in the parameter space.

A system of coupled feedback loops arises in modelling the extrinsic coagulation
cascade. Chapter 7 focuses on the description of an modelling approach towards an
explanation, why blood flow may play a crucial role in the biological coagulation system.
It is meant as an application for the insight we got in the last chapters.

2



2 Fundamental Setting And Requisites

From a biomathematical viewpoint, the analysis of feedback loops are of central impor-
tance. We give a short introduction in modelling such loops, where we derive systems of
ordinary differential equations for positive as well as negative feedback loops. Some basic
properties of such systems are mentioned. Under the additional assumption of different
time scales we then formulate a model for coupled feedback loops, i.e. the combination
of a fast positive feedback loop with a slow negative one, which is the subject of inves-
tigation throughout this work. Afterwards we give a short overview of the tools from
geometric singular perturbation theory used within our analysis.

2.1 Biological Motivation

Over the last years mathematics has become more and more important to model, describe
and predict complex biological behavior. Biomathematics has proved to be useful not
only to predict quantitative results but also to analyze biological systems qualitatively.
In the meantime there are quite a few biomathematical models, which helped to under-
stand general concepts underlying the biological universe. Examples of such successful
mathematical descriptions of biological systems are, among others, the Hodgkin-Huxley
and Fitzhugh-Nagumo models of neural firing, the Field-Noyes model of the Belousov-
Zhabotinskii reaction and epidemic models with applications to HIV. A great summary
of the achievements of mathematical biology can be found in the books of Murray,
[43, 44] and also in the book of Jones and Sleeman [31]. The first important appearance
of feedback control mechanisms in biological systems was in the model of Goodwin [19]
for the repression of enzymes by certain metabolites. A few years later this model was
analytically treated by Hastings [24], who showed the existence of periodic solutions, see
also [20, 21]. An overview of both positive and negative feedback loops can be found in
the paper of Tyson and Othmer, [51].

Feedback Loops

To explain the term ”feedback loop” we start with the generalized system of Goodwin’s
model, see [43, chapter 7]. Consider an enzyme (E) reacting with a substrate to form
a complex, which in turn is converted into a product P . The enzyme E is produced
by transcription of DNA to messenger-RNA M . However, the product P represses this

3



2 Fundamental Setting And Requisites

transcription of DNA to M . A schematic picture of this situation is shown in figure 2.1.

DNA mRNA (M) Enzyme (E)

Substrate

Product (P)
Repression

Figure 2.1: A sketch of Goodwin’s model.

The mathematical model describing the above situation reads

dM
dt

= V
D+Pm − aM,

dE
dt

= bM − cE,
dP
dt

= dE − eP,

where all parameters are positive constants. This model is a standard example for a
negative feedback loop. The situation when output from an event in the past influences
the same event in the present or future, we call that feedback. When such an event is
part of a chain that forms a circuit, we call that a feedback loop. On a more abstract
way feedback loops can schematically be seen as shown in figure 2.2. As for all biological
substances there is a certain death rate involved, i.e. there is always a degradation term
existent, here denoted by ci.
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Figure 2.2: A sketch of a general feedback loop.
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2.1 Biological Motivation

Deriving a mathematical model for feedback loops, we obtain

ẋ1 = f1(xn)− c1x1,
ẋi = fi(xi−1)− cixi, i = 2, ..., n,

(2.1)

where ci > 0, i = 1, ..., n and f ′
i(x) > 0, i = 2, ..., n for all x ≥ 0. We call the feedback

loop positive if f ′
1(x) > 0 for all x > 0 and negative if f ′

1(x) < 0 for all x > 0. From
a biological viewpoint it is natural to assume that all substances involved are limited
in the magnitude of their concentrations due to limited resources. Thus we always
assume that the functions fi are bounded. In most applications of feedback loops one
concentrates on the case fi(x) = αix for i = 2, ..., n, αi > 0 and Hill shapes for the
activating function f1. We note, that in most cases the above system can be reduced to
such a problem, see [51]. It is now well known, that under these assumptions a positive
feedback loop has a region of bistability considering the product of degradation rates as
a bifurcation parameter. For negative feedback loops on the other hand oscillations may
occur due to a Hopf bifurcation with the same bifurcation parameter considered. For a
review of this behavior see the mentioned papers above. Since often feedback loops are
only part of biological regulatory networks the question arises what qualitative behavior
is present in coupled feedback loops, i.e. a combination of a positive with a negative
one.

Some work is done in identifying non-coupled and coupled feedback loops as gen-
eral network motifs in biological systems. They have been discussed in microRNAs,
[49], cell-cycles, [47] and in diabetes, [4]. More general approaches can be found in the
paper of Alon, [1] or in Kim et al, [34]. We are here interested in the case that the two
involved loops live on different time scales, i.e. the negative feedback is considered to
be very slow compared to the fast positive one.

Time Scales

Biochemical reactions are influenced by a lot of different factors. An important factor is
the time it takes to complete the process. Take the above example of Goodwin’s model.
Here we have to take into account the time for each individual step, for example how
much time does the transcription of DNA to M need or at what rate the enzyme binds
to the substrate. In most cases one can assume one time scale for a whole process.
However, if we couple different processes, we probably have to distinguish different time
scales for each of them.

A positive feedback loop has the property to stay activated once a certain threshold is
achieved and does not have the ability to down-regulate itself without further influence
from outside. There are different possibilities for this influence, for example the
limitation of resources. However, there are cases, where it is not possible to determine,
how the down-regulation is achieved. This question gets particularly interesting in
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2 Fundamental Setting And Requisites

trauma patients, considering shock or blood coagulation (see chapter 7). An interesting
approach is the assumption, that the positive feedback loop itself starts another process,
namely a negative feedback loop on a slow time scale. In the beginning of the whole
process this negative feedback does not have any influence, but after some time passes
gets stronger and finally is able to down-regulate the system. Time scales could be
modelled differently. One possibility is to extend the length of the reaction chain for the
negative feedback, another possibility would be to use some delay in the model. Here
we take the approach of fast-slow systems, meaning we derive a singularly perturbed
dynamical system.

Modelling approaches in biology with different time scales is not new, it is al-
ready used in the now famous FitzHugh-Nagumo model of neural firing, [15, 45] and
in the Oregonator system of the Belousov-Zhabotinskii reaction, see for instance [50].
Especially the last one has had a great influence on analyzing singularly perturbed
systems.

Coupling Of The Loops

As mentioned above we assume that a positive feedback loop gives rise to a negative one
on a slow time scale. An abstract sketch of this situation is shown in figure 2.3.

We derive the following singularly perturbed system for coupled feedback loops.

ẋ1 = f1(xn)− c1x1;
ẋm = fm(xm−1)− (cm + h(yl))xm; 1 ≤ m ≤ n;
ẋi = fi(xi−1)− cixi; i = 2, ..., n; i �= m;

ẏ1 = ε[g1(xk)− d1y1];
ẏj = ε[gj(yj−1)− djyj]; j = 2, ..., l,

where 0 < ε � 1. As before we assume that the constants ci > 0 for all i = 1, ..., n
and dj > 0 for all j = 1, ..., l. The positive feedback loop is written in x, so that the
functions fi are strictly increasing functions and we assume that this holds even at the
origin, i.e. we obtain f ′

i(x) > 0 for all i = 1, ..., n and x ≥ 0. The assumption for gj is
equivalent, i.e. g′j(x) > 0 for all j = 1, ..., l and x ≥ 0. The negative influence of the
y chain is achieved by increasing the degradation rate of xm by the function h. Since
this negative influence should be increasing, when the negative feedback gets stronger
we assume h′(x) > 0 for all x ≥ 0. As already mentioned above, the general restrictions
of resources (space) demand the functions fi and gj to be bounded, i.e.

lim
x→∞

fi(x) < ∞, lim
x→∞

gj(x) < ∞,

for i = 1, ..., n, j = 1, ..., l. Since the negative feedback loop should be able to totally
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Figure 2.3: A sketch of a coupled feedback loop.

switch off the system, we assume for the function h

lim
x→∞

h(x) → ∞.

Finally we assume that this system is not active at all, when there is no input, i.e. there
is no activation of any substance as long as the concentration of the predecessor is zero.
We obtain

fi(0) = gj(0) = h(0) = 0.

Despite the fact that for most statements smoothness of the functions is only required
up to order three, we consider here for an easier mathematical treatment

fi, gj, h ∈ C∞(R+,R+).

This system will be the starting point of our analysis beginning in chapter 2. Before
we return to that we give a short introduction into the methods used within the next
chapters.
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2 Fundamental Setting And Requisites

2.2 Tools From Geometric Singular Perturbation Theory

Fast And Slow System

In this work we deal with singularly perturbed dynamical systems of the following form.

System (Fast System)

ẋ = F (x,y, ε, λ),
ẏ = ε ·G(x,y, ε, λ),

(2.2)

with the definitions

x ∈ R
n, y ∈ R

l, λ ∈ R, 0 < ε � 1,
F ∈ C∞(Rn × R

l × R× R,Rn), G ∈ C∞(Rn × R
l × R× R,Rl).

Here the dot, ” ˙ ”, means derivation by time t. The system (2.2) is called the fast system
and the independent variable t is referred to as the fast time scale. By switching to the
slow time scale we get an equivalent dynamical system. This is achieved by the time
transformation τ = εt.

System (Slow System)

ε · x′ = F (x,y, ε, λ),
y′ = G(x,y, ε, λ),

(2.3)

This new equivalent system is called the slow system and the dash, ” ′ ”, means derivation
by time τ , which is referred to as the slow time scale. The general idea of analyzing
systems of the form (2.2) is the description of the dynamics of the associated limiting
problems for ε = 0 in both the fast system (2.2) and the slow system (2.3). From there
one suitably combines the dynamics, i.e. one concatenates orbits of these two systems
and proves, that orbits of the fast system (2.2) stay close to the concatenated structures
and converge for ε → 0 to them. Here we define the two limiting problems.

Definition 2.3 (Layer Problem, Reduced Problem)
The layer problem is defined as the limiting problem of the fast system (2.2) for ε = 0.
It reads

ẋ = F (x,y, 0, λ),
ẏ = 0.

(2.4)

The reduced problem is defined as the limiting problem of the slow system (2.3) for
ε = 0. It reads

0 = F (x,y, 0, λ),
y′ = G(x,y, 0, λ).

(2.5)

8



2.2 Tools From Geometric Singular Perturbation Theory

For this first part we let λ be a constant. The construction of concatenated orbits can now
be described the following way. First one analyzes the dynamics of the layer problem in
dependence of y = y0 with constant y0, which defines a flow. If this flow finally reaches a
stationary point (x∗,y0), which is contained in the set {(x,y) ∈ R

n×R
l : F (x,y, 0, λ) =

0} the dynamics of the reduced problem takes over. This will generate a flow on the set
{(x,y) ∈ R

n × R
l : F (x,y, 0, λ) = 0}, which possibly reaches a stationary point of the

reduced problem and from there the dynamics of the layer problem take over again. We
see that the set {(x,y) ∈ R

n ×R
l : F (x,y, 0, λ) = 0} plays a crucial role in the analysis

of the combined dynamics. We define the critical manifold.

Definition 2.4 (Critical Manifold)
The critical manifold S is defined as the set

S := {(x,y) ∈ R
n × R

l : F (x,y, 0, λ) = 0}, (2.6)

which defines the set of stationary points of the layer problem and the phase space of
the reduced problem.

Persistence Of Manifolds

This section is dedicated to the work of Fenichel in [13], see also [12]. He proved three
important theorems, that, under certain conditions, give a complete description of the
ε �= 0 flow in the neighborhood of subsets of the critical manifold S. Here we follow [27],
see also [28].

Definition 2.5 (Normally Hyperbolic Manifold)
A l-dimensional subset S0 ⊂ S is said to be normally hyperbolic, if the linearization of

the layer problem (2.4) at each point (x̂, ŷ) ∈ Ŝ0 has exactly l eigenvalues with zero real
part, where Ŝ0 ⊂ S is an l-dimensional manifold containing S0 in its interior.

In the following we use the notation x · t to denote the application of a flow after time t
to the initial condition x.

Definition 2.6 (Local Invariance)
A set S is locally invariant under the flow of (2.2) if it has a neighborhood V so that
no trajectory can leave S without also leaving V . In other words, it is locally invariant
if for all x ∈ S, x · [0, t] ⊂ V implies that x · [0, t] ⊂ M , similarly with [0, t] replaced by
[t, 0] when t < 0.

We make the following assumptions throughout this chapter:

(H1) The set S0 is a compact manifold, possibly with boundary, and is normally hyper-
bolic relative to (2.4).

9



2 Fundamental Setting And Requisites

(H2) The set S0 is given as the graph of the C∞ function s0(y) for y ∈ K. The set K
is a compact, simply connected domain whose boundary is a (l− 1) - dimensional
C∞ submanifold.

We state Fenichel’s first theorem.

Theorem 2.7 (Fenichel’s First Theorem)
If ε > 0, but sufficiently small, there exists a manifold Sε that lies within O(ε) of S0 and
is diffeomorphic to S0. Moreover it is locally invariant under the flow of (2.2), and Cr,
including in ε, for any r < ∞.

The manifold Sε is referred to as the slow manifold. If the slow manifold Sε is represented
in terms of x given as a function of y, i.e. x = sε(y), then the system governing the flow
on Sε can be written as

y′ = g(sε(y), y, ε, λ). (2.7)

and because sε(y) → s0(y) as ε → 0 the limit of this system is given by the flow of the
reduced problem (2.5)

y′ = g(s0(y), y, 0, λ). (2.8)

The great advantage of this approach is that equation (2.7) can be interpreted as a
regular perturbation of (2.8) so that the singular nature of the perturbation has been
suppressed. If we have some robust structure in the flow on the critical manifold (2.8)
we can reasonably expect it to perturb to the flow on the slow manifold (2.7). Fenichel’s
first theorem now guarantees that under the above hypotheses (H1) and (H2) there
exists such a function sε(y) defined on K so that Sε = {(x, y) : x = sε(y)}, see also
Theorem 2 in [27].

Fenichel’s first theorem gives a picture of the flow on the slow manifold but it is
also important to understand the flow in a neighborhood of the slow manifold. Let
p ∈ S0 be a point on the critical manifold. The linearized flow at p has exactly l
eigenvalues with zero real part as S0 is normally hyperbolic. The corresponding l
eigenvectors span the critical manifold. The normal directions are either stable or
unstable. Therefor there is a stable manifold W s(p) attached to p spanned by the
eigenvectors corresponding to the eigenvalues with negative real part and there is an
unstable manifold W u(p) attached to p spanned by the eigenvectors corresponding to
the eigenvalues with positive real part. These manifolds can be collected together to
make manifolds for the full critical manifold S0:

W s(S0) = ∪p∈S0W
s(p),

W u(S0) = ∪p∈S0W
u(p).

The persistence of these manifolds for ε �= 0 is described in Fenichel’s second theorem.

10



2.2 Tools From Geometric Singular Perturbation Theory

Theorem 2.8 (Fenichel’s Second Theorem)
If ε > 0 but sufficiently small, there exist manifolds W s(Sε) and W u(Sε) that lie within
O(ε) of, and are diffeomorphic to, W s(S0) and W u(S0) respectively. Moreover, they are
each locally invariant under the flow of (2.2), and Cr, including in ε, for any r < ∞.

We use the terms stable and unstable manifolds for W s(Sε) and W u(Sε) respectively,
which is justified by the connection with the corresponding objects when ε = 0. Recall
the stable and unstable manifolds W s(p) and W u(p) for a point p ∈ S0. Since their base
points do not remain as critical points when ε �= 0, it seems absurd that these manifolds
perturb. The answer to this question gives the third theorem of Fenichel.

Theorem 2.9 (Fenichel’s Third Theorem)
Let ε > 0 but sufficiently small. For every pε ∈ Sε, there exists a manifold W s(pε) ⊂
W s(Sε), and a manifold W u(pε) ⊂ W u(Sε), lying within O(ε) of, and diffeomorphic to,
W s(p0) and W u(p0) respectively. The family {W s(pε) : pε ∈ Sε}is invariant in the sense
that

W s(pε) · t ⊂ W s(pε · t),

and the family {W u(pε) : pε ∈ Sε} is invariant in the sense that

W u(pε) · t ⊂ W u(pε · t).

Here pε · t denotes the trajectory through pε evolved after time t. The manifolds W s(pε)
and W u(pε) for points p ∈ Sε are referred to as the Fenichel fibers.

Fenichel Normal Form

As a consequence of the theorems of Fenichel above, one derives the Fenichel Normal
Form for singularly perturbed equations in the neighborhood of a slow manifold. Assume
that dimW s(S0) = m and dimW u(S0) = k, m+k = n. Then the Fenichel Normal Form
reads

a′ = Λ(a, b, y, ε)a,
b′ = Γ(a, b, y, ε)b,

y′ = ε[h(y, ε) +H(a, b, y, ε)(a, b)],

(2.9)

which holds in the set D = {(a, b, y, ε) : |a| ≤ Δ, |b| ≤ Δ, y ∈ K, ε ∈ [0, ε0]}. Here
a ∈ R

k, b ∈ R
m, Λ and Γ are matrices with Λ(0, 0, y, 0) = A(y), where A(y) is a matrix

whose eigenvalues have positive real parts, and with Γ(0, 0, y, 0) = B(y), where B(y) is
a matrix whose eigenvalues have negative real parts. H(a, b, y, ε) is a bilinear function
of a and b. This version of the normal form was derived in [29], a slightly different one
in [30].
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3 Coupled Feedback Loops

After introducing the modelling approach for coupled feedback loops in the last chapter,
we now deal with the mathematical analysis of the resulting system. In this chapter we
describe some of the properties of the layer problem in the general system. Afterwards,
we concentrate our attention to the special case of a three-dimensional system and
formulate assumptions which allow us to describe the picture of the flow for ε = 0 in
the layer and the reduced problem.

3.1 General System

3.1.1 Fast And Slow System

To be precise about the assumptions, we start this chapter with restating the general
system of coupled feedback loops developed in the last chapter.

System (Fast System)
The general system for coupled feedback loops is defined by

ẋ1 = f1(xn)− c1x1;
ẋm = fm(xm−1)− (cm + h(yl))xm; 1 ≤ m ≤ n;
ẋi = fi(xi−1)− cixi; i = 2, ..., n; i �= m;

ẏ1 = ε[g1(xk)− d1y1];
ẏj = ε[gj(yj−1)− djyj]; j = 2, ..., l;

(3.1)

where

ci, dj ∈ R
+, fi, gj, h ∈ C∞(R+,R+),

fi(0) = gj(0) = h(0) = 0, 0 < ε � 1,

f ′
i(x), g

′
j(x), h

′(x) > 0 ∀ x ∈ R+,

lim
x→∞

fi(x) < ∞, lim
x→∞

gj(x) < ∞,

lim
x→∞

h(x) → ∞

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

i = 1, ..., n;
j = 1, ..., l;

and the initial values (
x
y

)
(0) =

(
x0

y0

)
∈ R

n
+ × R

l
+.

12



3.1 General System

From a mathematical view this defines a singularly perturbed dynamical system as
described in the previous chapters. Before we start with the analysis we slightly adapt
the system, and extend it to allow negative values as well. Of course, this does not have
a biological meaning but for the mathematical description it provides useful insight. At
the end, we are only interested in the dynamics within the positive cone. This gives us
the freedom to extend fi, gj and h to R in such a way that

fi, gj , h ∈ C∞(R,R),

f ′
i(x), g

′
j(x), h

′(x) > 0 ∀ x ∈ R,

lim
x→±∞

|fi(x)| < ∞, lim
x→±∞

|gj(x)| < ∞,

lim
x→∞

h(x) → ∞, lim
x→−∞

h(x) → −∞.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

i = 1, ..., n;
j = 1, ..., l;

Furthermore we now allow negative values for the initial values as well. The initial
conditions then read

x(0) = x0 ∈ R, yj(0) = yj,0 ∈ R, j = 1, ..., l − 1, yl(0) = yl,0 ∈ (h−1(−cm),∞).

Remark 3.2 (Restriction)
We restrict the initial value of yl,0 ∈ (h−1(−cm),∞) to ensure, that cm + h(yl,0) > 0.

Recalling the terms of chapter 2 we introduce the equivalent slow system as well as the
two limiting problems for ε = 0, i.e. the layer and the reduced problem. As before the
dot ” ˙ ” means derivation by the fast time t whereas derivation by the slow time τ is
denoted by the dash ” ′ ”. Applying now the time transformation τ = εt we get the slow
system.

System (Slow System)
The slow system, which is equivalent to system (3.1), has the following form.

εx′
1 = f1(xn)− c1x1;

εx′
m = fm(xm−1)− (cm + h(yl)) xm; 1 ≤ m ≤ n;

εẋ′
i = fi(xi−1)− cixi; i = 2, ..., n; i �= m;

y′1 = g1(xk)− d1y1;
y′j = gj(yj−1)− djyj; j = 2, ..., l;

(3.2)

Letting ε → 0 in both systems we get the limiting problems. In order to simplify the
notation we define

c̃i := ci; i = 1, ..., n; i �= m;
c̃m := cm + h(yl,0).

(3.3)

With this notation the layer problem and the reduced problem can be written in the
following form.

13



3 Coupled Feedback Loops

System (Layer Problem)
The layer problem is defined as the limiting problem of system (3.1) for ε = 0,

ẋi = fi(xi−1)− c̃ixi; i = 1, ..., n; , x0 := xn, (3.4)

System (Reduced Problem)
The reduced problem is defined as the limiting problem of system (3.2) for ε = 0,

0 = f1(xn)− c1x1;
0 = fm(xm−1)− (cm + h(yl)) xm; 1 ≤ m ≤ n;
0 = fi(xi−1)− cixi; i = 2, ..., n; i �= m;

y′1 = g1(xk)− d1y1;
y′j = gj(yj−1)− djyj; j = 2, ..., l;

(3.5)

As stated before the next step in analyzing the dynamics of (3.1) is to suitably combine
the dynamics of the layer problem (3.4) and the reduced problem (3.5). It is beneficial
to analyze the dynamics of the layer problem (3.4) in this general setting first.

3.1.2 The Layer Problem

The layer problem (3.4) corresponds for all positive initial values and for yl,0 ∈
(h−1(−cm),∞) to the classical model of a positive feedback loop. A lot is known for
such systems, see for example [20], [21] and [51]. We state some of the properties of such
systems in order to use them during the analysis of the general system (3.1). A natural
condition for a model describing biochemical densities is the invariance of the positive
cone and the boundedness. We first state a (generalized) result first introduced by [20].

Theorem 3.6 (Absorbing Hypercubes)
Let

C = max
i,x

fi(x) < ∞, x ∈ R, i = 1, ..., n.

Then for all C̃ > C the hypercubes defined by the two vertices (0, 0, ..., 0) and

( C̃
c̃1
, C̃
c̃2
, ..., C̃

c̃n
) are absorbing.

Proof.
Let KC̃ be the hypercube defined by the two vertices (0, 0, ..., 0) and ( C̃

c̃1
, C̃
c̃2
, ..., C̃

c̃n
) for

some C̃ > C. Then the flow on the faces ofKC̃ is directed inwards, since for any 1 ≤ i ≤ n
with xi = 0 it is

ẋi = fi(xi−1) ≥ 0

and for any 1 ≤ i ≤ n with xi =
C̃
c̃i
it is

ẋi = fi(xi−1)− c̃ixi ≤ C − C̃ < 0. �

14



3.1 General System

One of the most interesting properties in the stability analysis of the layer problem (3.4)
is the connection between equilibria (with their respective stability) and the solutions
of a fixed point equation (with characteristics of their derivatives). In order to describe
this relation we first introduce the Jacobian for an equilibrium x∗ = (x∗

1, ..., x
∗
n)

T ∈ R
n

of (3.4). It reads

Jx∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c̃1 0 · · · 0 f ′
1(x

∗
n)

f ′
2(x

∗
1) −c̃2 0 · · · 0

...
. . . . . . . . .

...

0 · · · f ′
n−1(x

∗
n−2) −c̃n−1 0

0 · · · 0 f ′
n(x

∗
n−1) −c̃n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

Throughout the rest of the chapter, we formally define x∗
0 := x∗

n. Using

βi = f ′
i(x

∗
i−1) ∀i = 1, ..., n, (3.7)

the characteristic polynomial reads

P (λ) = det(J − λI) = (−1)n [
n∏

i=1

(c̃i + λ)−
n∏

i=1

βi]. (3.8)

Now we are able to describe the previously mentioned relation between a fixed point
equation and the equilibria of (3.4).

Theorem 3.7 (Fixed Point Equation)
Let

Q : R → R, Q(x) :=
1

c̃n
fn(

1

c̃n−1

fn−1(. . .
1

c̃2
f2(

1

c̃1
f1(x)) . . .)). (3.9)

Then there exists a bijective map between the set of solutions of the fixed point equation
x = Q(x) and the equilibria x∗ of system (3.4). Especially, the n-th component x∗

n of
x∗ satisfies x∗

n = Q(x∗
n). An equilibrium x∗ is locally asymptotically stable if Q′(x∗

n) < 1
and locally unstable if Q′(x∗

n) > 1. If x∗ is linearly stable, then Q′(x∗
n) < 1 and if x∗ is

linearly unstable, then Q′(x∗
n) > 1.

Proof.
The equilibria of (3.4) are given by

x∗
i =

fi(x
∗
i−1)

c̃i
∀i = 1, ..., n. (3.10)
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3 Coupled Feedback Loops

Inserting iteratively into the equation for x∗
n, we obtain

x∗
n =

1

c̃n
fn(

1

c̃n−1

fn−1(. . .
1

c̃2
f2(

1

c̃1
f1(x

∗
n)) . . .)).

Therefore we get a solution of the fixed point equation for every equilibrium of (3.4). If
we have a solution of the fixed point equation, then it is possible to construct an equi-
librium using (3.10). Now we investigate the correspondence between the local stability
of equilibria and the derivative of Q.

Q′(x∗
n) = 1

c̃n
f ′
n(

1
c̃n−1

fn−1(...(
1
c̃2
f2(

1
c̃1
· f1(x∗

n)))...))

1
c̃n−1

f ′
n−1(

1
c̃n−2

fn−2(...(
1
c̃2
f2(

1
c̃1
f1(x

∗
n)))...))

...

1
c̃1
f ′
1(x

∗
n)

This equation together with equation (3.10) and notation (3.7) yields

Q′(x∗
n) =

1

c̃n
f ′
n(x

∗
n−1)

1

c̃n−1

· f ′
n−1(x

∗
n−2)...

1

c̃1
· f ′

1(x
∗
n) =

n∏
i=1

βi

c̃i
.

Define the polynomial

P̃ (λ) :=
n∏

i=1

(c̃i + λ)−
n∏

i=1

βi.

Because the function P̃ (λ) is strictly increasing for λ > 0, there is a zero of P̃ (λ) (and
therefore of the characteristic polynomial P (λ)) in R

+ if and only if P̃ (0) < 0. Since

Q′(x∗
n) > 1 ⇔ P̃ (0) < 0,

the equilibrium x∗ is unstable if Q′(x∗
n) > 1.

Next we show that Q′(x∗
n) < 1 implies that the corresponding equilibrium x∗ is

locally asymptotically stable. Let c̃ = (max
i

c̃i) + 1 and define Jc̃,x∗ := Jx∗ + c̃I,

where I ∈ R
(n,n) denotes the identity matrix. Jc̃,x∗ is nonnegative and it follows

(Perron-Frobenius-theorem for nonnegative matrices, see for instance Gantmacher [17])
for the spectrum σ(Jc̃,x∗), that

σ(Jc̃,x∗) ⊂ {z : 
(z) ≤ ρ(Jc̃,x∗)},

where ρ(Jc̃,x∗) is the spectral radius. Moreover, the spectral radius ρ(Jc̃,x∗) is a real
eigenvalue of Jc̃,x∗ . For Jx∗ we obtain

σ(Jx∗) ⊂ {z : 
(z) ≤ ρ(Jc̃,x∗)− c̃ =: μx∗},
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3.1 General System

where μx∗ is a real eigenvalue of Jx∗ . Now consider

Q′(x∗
n) < 1 ⇔ P̃ (0) > 0.

As a consequence of P̃ (0) > 0 all real eigenvalues of Jx∗ are negative and therefore μx∗ is
negative. We conclude, that all eigenvalues of Jx∗ have negative real parts and therefore
the equilibrium x∗ is locally asymptotically stable. The last point to show is that a
linearly stable equilibrium x∗ forces the inequality Q′(x∗

n) < 1 and a linearly unstable
equilibrium x∗ forces the inequality Q′(x∗

n) > 1. If all eigenvalues of Jx∗ have negative
real parts, there is no real eigenvalue in R

+. With lim
λ→∞

P̃ (λ) = ∞ it is P̃ (0) > 0. If all

eigenvalues of Jx∗ have positive real parts, we consider again Jc̃,x∗ := Jx∗ + c̃I. Then the
spectral radius ρ(Jc̃,x∗) is a real eigenvalue of Jc̃,x∗ and ρ(Jc̃,x∗) − c̃ is a real eigenvalue
of Jx∗ , which is positive and therefore P̃ (0) < 0. �

We will show an ordering property of the stationary points. Therefore we define the
partial ordering on R

n.

Definition 3.8 (Partial Ordering on R
n generated by an orthant)

Let x, y ∈ R
n, p = (p1, p2, ..., pn), pi ∈ {0, 1}, 1 ≤ i ≤ n and Kp = {x ∈ R

n : (−1)pixi ≥
0, 1 ≤ i ≤ n}. Then we define �Kp as

x �Kp y ⇔ y − x ∈ Kp.

If pi = 0, 1 ≤ i ≤ n, this is the usual partial ordering on R
n and we write x ≤ y, if and

only if y − x ∈ R
n
+.

Remark 3.9
Note, that

Q(x)− x ∈ C∞, lim
x→±∞

|Q(x)− x| → ∞.

Therefore, if all zeros of Q(x) − x are simple, then there exists only a finite number of
zeros of Q(x)− x.

By using the fixed point equation, we now get another statement for the equilibria of
system (3.4).

Corollary 3.10 (Ordering Of Equilibria)
Assume that all zeros of Q(x) − x are simple and ordered, x

(1)
n ≤ ... ≤ x

(m̃)
n . Then the

corresponding equilibria in R
n are also ordered, x(1) ≤ ... ≤ x(m̃), and the stability of the

equilibria alternates, i.e.

x(q) stable ⇒ x(q+1) unstable
x(q) unstable ⇒ x(q+1) stable

}
1 ≤ q < m̃.

The equilibria x(1) and x(m̃) are locally asymptotically stable. As a consequence there is
an odd number of equilibria.
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3 Coupled Feedback Loops

Proof.
Since fi(x) is strictly increasing for all i = 1, ..., n we conclude for all 1 ≤ q < m̃ using
(3.10), that

x(q)
n < x(q+1)

n ⇒ x
(q)
i < x

(q+1)
i ∀ i = 1, ..., n.

As x
(q)
n is a simple root of Q(x) − x the derivative Q′(x(q)

n ) < 1 implies Q′(x(q+1)
n ) > 1

and vice versa. Because

lim
x→±∞

|Q(x)| < ∞,

the equilibria x(1) with x
(1)
n = min{x : Q(x) − x = 0} and x(m̃) with x

(m̃)
n = max{x :

Q(x)− x = 0} are stable. �

3.2 Simplified System

A complete analysis of the high-dimensional system (3.1) is out of the scope of the
present work. Therefore we consider the special case x ∈ R

2 and y ∈ R. We first recall
some terms and formulate assumptions on the layer problem.

System (Simplified System)
The simplified system reads

ẋ1 = f1(x2)− c1x1;
ẋ2 = f2(x1)− (c2 + h(y))x2;

ẏ = ε[g(x1)− dy];

(3.11)

where, like before,

ci, d ∈ R
+, fi, g, h ∈ C∞(R),

fi(0) = g(0) = h(0) = 0, 0 < ε � 1,

f ′
i(x), g

′(x), h′(x) > 0 ∀ x ∈ R,

lim
x→±∞

|fi(x)| < ∞, lim
x→±∞

|g(x)| < ∞,

lim
x→∞

h(x) → ∞, lim
x→−∞

h(x) → −∞

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

i = 1, 2

and we consider initial values

x(0) = x0 ∈ R
2 y(0) = y0 ∈ (h−1(−c2,∞)).
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3.2 Simplified System

We proceed with the analysis of the layer problem, which now reads

ẋ1 = f1(x2)− c1x1;
ẋ2 = f2(x1)− (c2 + h(y0))x2.

(3.12)

The initial value y0 = 0 is of special interest. In this case, we obtain

ẋ1 = f1(x2)− c1x1;
ẋ2 = f2(x1)− c2x2.

(3.13)

For the system (3.12), the fixed point equation (3.9) introduced in the previous section
reads

Q(x) =
1

c2 + h(y0)
f2(

1

c1
f1(x)) = x. (3.14)

In order to get a deeper insight in the dynamics of the layer problem (3.12), we superim-
pose additional assumptions, which are usually given in biomathematical applications.

(A1’) There are exactly three equilibria in the system (3.13) and the corresponding zeros
of Q(x)− x are simple. The two non-trivial zeros are positive.

(A2’) For any y0 ∈ (h−1(−c2),∞) there are not more than three equilibria in the system
(3.12).

(A3’) If there are three equilibria in the system (3.12) for any y0 ∈ (h−1(−c2),∞), then
these equilibria are normally hyperbolic.

(A4’) All emerging bifurcations in the system (3.12) are generic.

Remark 3.12
The assumption [(A4’)] will be specified throughout this chapter, see assumption [(A4)].

These assumptions allow us to analyze the system mathematically, but are not too
restrictive for biological applications.

Remark 3.13 (Stability Of The Origin)
The assumptions imply that the trivial equilibrium x = 0 is locally asymptotically stable
in the system (3.13) according to corollary (3.10).

Most approaches in modelling feedback loops use a Hill shape for the activating function,
which implies the assumptions [(A1’) - (A4’)], see for example [51]. It turns out, that
it is useful to rewrite our assumptions in terms of the fixed point equation with help of
theorem (3.7). For that purpose, we define the following associated function.

F : R× (h−1(−c2),∞) → R, F (x, y) := f2(
1
c1
f1(x))− (c2 + h(y))x. (3.15)

Obviously the following relations are true, since F (x, y0) = (c2 + h(y0))(Q(x)− x).

F (x, y0) = 0 ⇔ Q(x) = x, ∂
∂x
F (x, y0) ≷ 0 ⇔ Q′(x) ≷ 1.
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3 Coupled Feedback Loops

Notation 3.14
In the following, we will talk about zeros of F (x, y0). Here we interpret y0 as a given
parameter and aim - for given y0 - to find x ∈ R so that F (x, y0) = 0. Accordingly, we
call x a simple zero of F (x, y0) if F (x, y0) = 0 and ∂

∂x
F (x, y0) �= 0.

In terms of this function, our assumptions read:

(A1) There are exactly three simple zeros of F (x, 0). The two non-trivial zeros are
positive.

(A2) For any y0 ∈ (h−1(−c2),∞) there are not more than three zeros of F (x, y0).

(A3) Let y0 ∈ (h−1(−c2),∞). If there are three zeros of F (x, y0), then they are simple.

(A4) Let y0 ∈ (h−1(−c2),∞). For every non-simple zero xb of F (x, y0) we require
∂2

∂x2F (xb, 0) �= 0.

Remark 3.15
It is not obvious, that the previous assumption [(A4’)] can be written in terms of our
associated function F . However, we will see in the next section, that there exists a
saddle-node and a transcritical bifurcation in the layer problem, for which assumption
[(A4)] guarantees that the non-degeneracy conditions are fulfilled.

Our assumptions now allow us to analyze the layer problem with respect to the descrip-
tion of bifurcations.

3.2.1 Bifurcations In The Layer Problem

If one only considers the layer problem, then y0 can be treated as a bifurcation parameter.
This will give a picture of the flow in this system. We show that there exists a saddle -
node bifurcation as well as a transcritical bifurcation. The first lemma is connected to
the saddle - node bifurcation.

Lemma 3.16
Suppose [(A1) - (A3)] hold. Then there exists a yc > 0, so that:

a) For y0 ∈ [0, yc) there exist exactly three simple zeros of F (x, y0).

b) There exist exactly two zeros of F (x, yc).

c) For y0 ∈ (yc,∞) there exists only the trivial zero of F (x, y0).

Let xc be the nontrivial zero of F (x, yc). Then

yc := h−1

(
1

c1
f ′
1(xc)f

′
2(

1

c1
f1(xc))− c2

)
.
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Proof.
F (x, 0) has exactly three distinct ordered zeros. We denote them by x(1) = 0 < x(2) <

x(3). The assumption [(A1)] together with corollary (3.10) guarantees that

∂
∂x
F (0, 0) < 0, ∂

∂x
F (x(2), 0) > 0, ∂

∂x
F (x(3), 0) < 0.

We conclude that F (x, 0) ≥ 0 for x ≤ 0 and for x ∈ [x(2), x(3)] and that F (x, 0) ≤ 0 for
x ∈ [0, x(2)] and for x ≥ x(3).

Note that F (x, y0) = F (x, 0) − h(y0)x. For every y0 ≥ 0 it is also h(y0) ≥ 0 be-
cause of the definition of the function h. As a consequence we get that F (x, y0) > 0 for
x < 0 and that F (x, y0) < 0 for x ∈ (0, x(2)] and for x ≥ x(3). If there are more zeros
than the trivial one, we find them in the interval (x(2), x(3)).

As F (x, y0) ∈ C0, this function is bounded in the interval [x(2), x(3)]. Let
C = max{F (x, y0) : x ∈ [x(2), x(3)]}. It is

F (x, y0) = F (x, 0)− h(y0)x < C − h(y0)x
(2), x ∈ (x(2), x(3)).

Now if there exists a x ∈ (x(2), x(3)) so that F (x, y0) = 0 for a y0, then

0 < C − h(y0)x
(2) ⇔ h(y0) <

C
x(2) ⇔ y0 < h−1( C

x(2) ).

Now let y∗ = h−1( C
x(2) ). We have shown, that for all y0 ≥ y∗ there is no zero of F (x, y0)

in the interval (x(2), x(3)).

Since F (x, y∗) has no zero in the interval (x(2), x(3)) and F (x, 0) has two zeros in
this interval, we conclude, that there exists a yc ∈ (0, y∗) so that for every y0 > yc there
is no zero of F (x, y0) in the interval (x(2), x(3)) and F (x, yc) has at least one zero in this
interval. We show by contradiction that there is exactly one zero of F (x, yc) in (x(2), x(3)) .

Assumption [(A2)] allows only one or two zeros of F (x, yc) in the interval (x(2), x(3)).
Assume there are two zeros. Then the assumption [A(3)] guarantees, that these
zeros are simple and with corollary (3.10), that F (x, yc) > 0 in the closed interval
bounded by the two zeros. Since F (x, yc) is continuous, there exists a local maximum
in this interval, which we denote by (xmax, ymax). Let 0 < b < min{ ymax

xmax
, h(yc)} and

y∗∗ = h−1(h(yc) + b) > yc so that

F (x, yc)− bx = F (x, 0)− (h(yc) + b)x = F (x, 0)− h(y∗∗)x = F (x, y∗∗).

Then obviously F (x, y∗∗) has two zeros in (x(2), x(3)), which is a contradiction to the
choice of yc.
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3 Coupled Feedback Loops

With a parallel argument one concludes, that there are exactly two zeros in the
interval (x(2), x(3)) for every y0 ∈ [0, yc).

Denote the one zero of F (x, yc) in the interval (x(2), x(3)) by xc. Since xc is a
local maximum of F (x, yc) it is

∂
∂x
F (xc, yc) = 0. Hence

h(yc) =
∂
∂x
F (xc, 0) =

1
c1
f ′
1(xc)f

′
2(

1
c1
f1(xc))− c2,

and

yc := h−1

(
1

c1
f ′
1(xc)f

′
2(

1

c1
f1(xc))− c2

)
.

which concludes the statement. �

Next we prove a lemma related to a transcritical bifurcation in system (3.12).

Lemma 3.17
Suppose [(A1) - (A3)] hold and let ytr = h−1( 1

c1
f ′
1(0)f

′
2(0)− c2) ∈ (h−1(−c2), 0). Then:

a) There exist exactly two zeros of F (x, ytr).

b) For y0 ∈ (h−1(−c2), 0), y0 �= ytr there are exactly three zeros of F (x, y0).

Proof.
We mainly use the Intermediate Value Theorem. Let x(1) = 0 < x(2) < x(3) be again
the three distinct ordered zeros of F (x, 0). As before we note that F (x, 0) ≥ 0 for
x ∈ (−∞, 0] ∪ [x(2), x(3)] and that F (x, 0) ≤ 0 for x ∈ [0, x(2)] ∪ [x(3),∞). Furthermore

lim
x→+∞

F (x, y0) = lim
x→+∞

f2(
1
c1
f1(x))− (c2 + h(y0))x → −∞,

lim
x→−∞

F (x, y0) = lim
x→−∞

f2(
1
c1
f1(x))− (c2 + h(y0))x → +∞,

since c2 + h(y0) > 0 and f2(
1
c1
f1(x)) is bounded.

Since h(y0) < 0 for y0 ∈ (h−1(−c2), 0), we conclude, that F (x(3), y0) =
F (x(3), 0) − h(y0)x

(3) > 0. And we conclude, that for all y0 ∈ (h−1(−c2), 0) there
exists at least on zero of F (x, y0) in the interval (x(3),∞).

The choice of ytr guarantees, that

∂
∂x
F (0, y0) > 0 for y0 ∈ (h−1(−c2), ytr),

∂
∂x
F (0, ytr) = 0,

∂
∂x
F (0, y0) < 0 for y0 ∈ (ytr, 0).
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3.2 Simplified System

Let y0 ∈ (h−1(−c2), ytr), then F (x−, y0) < 0 for some x− ∈ (−∞, 0). And we obtain
that for all y0 ∈ (h−1(−c2), ytr) there exists at least one zero of F (x, y0) in the interval
(−∞, 0).

Let y0 ∈ (ytr, 0), then F (x+, y0) < 0 for some x+ ∈ (0, x(2)) and F (x(2), y0) > 0.
And we get that for all y0 ∈ (ytr, 0) there exists at least one zero of F (x, y0) in the
interval (0, x(2)).

The statements above together with assumption [A(2)] prove b). Finally, since 0
is a double zero of F (x, ytr), assumption [A(3)] guarantees, that there are exactly two
zeros of F (x, ytr). This proves a). �

The last two lemmata give rise to a saddle-node and a transcritical bifurcation in the
layer problem. We state our main theorem.

Theorem 3.18 (Bifurcation Points)
Consider system (3.12) and suppose [(A1) - (A4)] hold. Then there exist a xc > 0, so
that there is a saddle-node bifurcation at point (x1, x2, y0) = ( 1

c1
f1(xc), xc, yc), where

yc = h−1

(
1

c1
f ′
1(xc)f

′
2(

1

c1
f1(xc))− c2

)
. (3.16)

Furthermore there is a transcritical bifurcation at point (x1, x2, y0) = (0, 0, ytr), where

ytr = h−1

(
1

c1
f ′
1(0)f

′
2(0)− c2

)
. (3.17)

It is 0 < yc < ∞ and h−1(−c2) < ytr < 0.

Proof.
At both points there exist center manifolds. Center manifold reduction methods (see
for instance [23]) lead to the following statements.

Assumption [(A4)], i.e. ∂2

∂x2F (0, 0) �= 0 guarantees, that in a neighborhood of the
point (0, 0, ytr) system (3.12) is locally topologically equivalent to the system

u̇ = −( 1
c1
f ′
1(0)f

′
2(0) + c1)u,

v̇ = 1
2

c21
f ′
1(0)f

′
2(0)+c21

[ ∂2

∂x2F (0, 0)v2 − 2(h(y0)− ∂
∂x
F (0, 0)v)].

The equation for v̇ is the restriction to the center manifold and defines the normal form
of the transcritical bifurcation. Let

g̃(v, y0) = ∂2

∂x2F (0, 0)v2 − 2(h(y0)− ∂
∂x
F (0, 0))v.
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3 Coupled Feedback Loops

Indeed the conditions for a transcritical bifurcation at (0, 0, ytr) are satisfied. Since
1
2

c21
f ′
1(0)f

′
2(0)+c21

> 0 they read (see for instance [37])

g̃(0, ytr) = 0, ∂
∂v
g̃(0, ytr) = 2( ∂

∂x
F (0, 0)− h(ytr)) = 0,

∂
∂y0

g̃(0, ytr) = 0.

The non-degeneracy conditions are

∂2

∂v2
g̃(0, ytr) =

∂2

∂x2F (0, 0) �= 0,

∂2

∂v∂y0
g̃(0, ytr) = −2h′(ytr) �= 0.

This proves the statement about the transcritical bifurcation.

Again assumption [(A4)], here ∂2

∂x2F (xc, 0) �= 0, guarantees that in a neighbor-
hood of the point ( 1

c1
f1(xc), xc, yc) system (3.12) is locally topologically equivalent to

the system

u̇ = −( 1
c1
f ′
1(xc)f

′
2(

1
c1
f1(xc)) + c1)(u− 1

c1
f1(xc)),

v̇ = 1
2

c21
f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21
[ ∂2

∂x2F (xc, 0)(v − xc)
2 − 2xc(h(y0)− ∂

∂x
F (xc, 0))].

And again the equation for v̇ is the restriction to the center manifold. Here it defines the
normal form of the saddle-node bifurcation. Analogously to the transcritical bifurcation,
one can show that the conditions for the saddle-node bifurcation hold. �

The previous analysis gives a description of the flow in the layer problem, i.e. a descrip-
tion of the critical manifold. However, to get a description for the flow of the full system
(3.11) for ε = 0 one has to describe the flow on the critical manifold as well. This will
be done in the next section.

3.2.2 A Picture Of The Flow For ε = 0

As stated above the analysis in the last section characterize the critical manifold of
system (3.11), which we call S3D. We have also investigated the stability of points in
S3D considered as equilibrium points of the layer problem. The critical manifold can be
written as

S3D := {(x1, x2, y) ∈ R
2 × (h−1(−c2),∞) : F (x2, y) = 0, x1 =

1
c1
f1(x2)}. (3.18)

We note that we can divide the critical manifold into two branches.

24



3.2 Simplified System

Remark 3.19
It is f2(

1
c1
f1(x)) ∈ C∞(R,R) and f2(

1
c1
f1(0)) = 0. Thus a function f̃(x) ∈ C∞(R,R)

exists with

f2(
1
c1
f1(x)) = f̃(x)x.

This leads to the following description of S3D.

S3D = {(x1, x2, y) ∈ R
2 × (h−1(−c2),∞) : x1 = x2 = 0} ∪

{(x1, x2, y) ∈ R
2 × (h−1(−c2),∞) :

x2 �= 0, x1 =
1
c1
f1(x2), y = h−1(f̃(x2)− c2)}.

We draw a first sketch of the critical manifold, see figure 3.1.

y

x

x

1

2
S

S

3D

3D

(1)

(2)

Figure 3.1: A picture of the critical manifold.

System (Slow System)
The slow system equivalent to system 3.1 is given by

εẋ1 = f1(x2)− c1x1;
εẋ2 = f2(x1)− (c2 + h(y))x2;

ẏ = g(x1)− dy.

(3.19)

Again letting formally ε → 0 this reduces to
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3 Coupled Feedback Loops

System (Reduced Problem)

0 = f1(x2)− c1x1;
0 = f2(x1)− (c2 + h(y))x2;

ẏ = g(x1)− dy.

(3.20)

This system can equivalently be written as

0 = F (x2, y);

ẏ = g( 1
c1
f1(x2))− dy.

To analyze the flow on the critical manifold S3D, which is given by the flow of the
reduced problem, we describe the zero set of g( 1

c1
f1(x2))− d y.

We introduce a new parameter λ by d = c3 + λ with

c3 := 1
yc
g( 1

c1
f1(xc)). (3.21)

The idea is to use ε and λ as bifurcation parameters in the analysis of system (3.11).
The zero set Zλ

3D of g( 1
c1
f1(x2))− (c3 + λ)y for c3 + λ �= 0 can be written as

Zλ
3D = {(x1, x2, y) ∈ R

2 × (h−1(−c2),∞) : y = 1
c3+λ

g( 1
c1
f1(x2))}.

We directly conclude, that

(0, 0, 0) ∈ S3D ∩ Zλ
3D,

and with the help of the definition of c3 we also find, that

( 1
c1
f1(xc), xc, yc) ∈ S3D ∩ Z0

3D.

Furthermore it is trivial to see that there has to be at least one more intersection point
of S3D and Z0

3D for x2 ∈ (0, xc) using again the Intermediate Value Theorem. According
to this observations we formulate our assumptions for the zero set Zλ

3D.

(A5) There exist exactly three intersection points of S3D and Z0
3D.

(A6) For every λ with |λ| < c3 there exist not more than three intersection points of
S3D and Zλ

3D.

Remark 3.22 (Assumptions)
For all further calculations and results, we implicitly assume, that all assumptions (A1)
- (A6) hold.
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3.2 Simplified System

The intersection points of S3D and Z0
3D are (0, 0, 0), ( 1

c1
f1(xc), xc, yc) and a third point,

which we denote by ( 1
c1
f1(xh), xh, yh), where yh = 1

c3
g( 1

c1
f1(xh)).

As stated above the critical manifold can be divided into two branches. Let

S
(1)
3D := {(x1, x2, y) ∈ R

2 × (h−1(−c2),∞) : x1 = x2 = 0}

and

S
(2)
3D := {(x1, x2, y) ∈ R

2 × (h−1(−c2),∞) :

x2 �= 0, x1 =
1
c1
f1(x2), y = h−1(f̃(x2)− c2)},

so that S3D = S
(1)
3D ∪ S

(2)
3D.

Lemma 3.23 (Flow On The Critical Manifold)
Consider system (3.20) for λ = 0. For the flow on S

(1)
3D it is ẏ < 0 for y > 0 and ẏ > 0

for y < 0. For the flow on S
(2)
3D it is ẋ2 < 0 for x2 > xh and ẋ2 > 0 for x2 < xh.

Proof.
The flow on S

(1)
3D is given by the equation ẏ = −c3y, which proves the first statement.

Let ϕ(x) = h−1(f̃(x)− c2). Then

ϕ′(x) = [h−1]′(f̃(x)− c2)f̃
′(x)

Since f̃(x) = 1
x
f2(

1
c1
f1(x)) for every x �= 0, it follows that

ϕ′(x) = [h−1]′(f̃(x)−c2)
x2 [ 1

c1
f ′
1(x)f

′
2(

1
c1
f1(x))x− f2(

1
c1
f1(x))].

Substituting y = ϕ(x2), i.e. the y component of S
(2)
3D, into system (3.20) we obtain for

the flow on S
(2)
3D with x2 �= 0

ẋ2 = 1
ϕ′(x2)

[g( 1
c1
f1(x2))− c3ϕ(x2)] =

=
x2
2

[h−1]′(f̃(x2)−c2)

g( 1
c1

f1(x2))−c3ϕ(x2)

1
c1

f ′
1(x2)f ′

2(
1
c1

f1(x2))x2−f2(
1
c1

f1(x2))
.

We are only interested in the changes of the sign of ẋ2. There are only two possibilities,
where these changes can happen. The first one is at intersection points of S

(2)
3D and Z0

3D,
i.e. for x2 = xh and for x2 = xc. The second one is at the bifurcation points of the layer
problem, i.e. for x2 = 0 and again for x2 = xc. Since ( 1

c1
f1(xc), xc, yc) is an intersection

point as well as a bifurcation point in the layer problem, we show that there is no change
of the sign of ẋ2 at x2 = xc, i.e. both numerator and denominator change sign at x2 = xc.
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3 Coupled Feedback Loops

We note that

g( 1
c1
f1(x2))− c3ϕ(x2) > 0, ∀x2 ∈ (−∞, xh) ∪ (xc,∞),

g( 1
c1
f1(x2))− c3ϕ(x2) < 0, ∀x2 ∈ (xh, xc)

and

x2
2

[h−1]′(f̃(x2)−c2)
> 0, ∀x2 �= 0.

Furthermore

∂2

∂x2F (x, y) = ∂2

∂x2F (x, 0) = d2

dx2 [f2(
1
c1
f1(x))] =

d
dx
[ 1
c1
f ′
1(x)f

′
2(

1
c1
f1(x))]. (3.22)

We find d
dx
[ 1
c1
f ′
1(x)f

′
2(

1
c1
f1(x))]|x=xc < 0 since xc is a maximum of F (x, 0). We define

f̂(x) := 1
c1
f ′
1(x)f

′
2(

1
c1
f1(x))x− f2(

1
c1
f1(x)).

Then f̂(xc) = 0, since yc = h−1( 1
c1
f ′
1(xc)f

′
2(

1
c1
f1(xc))− c2) = h−1(f̃(xc)− c2). As

f̂ ′(x) = 1
c1
f ′
1(x)f

′
2(

1
c1
f1(x)) + x d

dx
[ 1
c1
f ′
1(x)f

′
2(

1
c1
f1(x))]− 1

c1
f ′
1(x)f

′
2(

1
c1
f1(x)) =

= x d
dx
[ 1
c1
f ′
1(x)f

′
2(

1
c1
f1(x))]

we conclude that f̂ ′(xc) < 0. There exists a sufficiently small κ > 0, so that f̂(x) > 0
for x ∈ (xc − κ, xc) and f̂(x) < 0 for x ∈ (xc, xc + κ). Consequently, since the expression
for ẋ2 does not have a singularity at x2 = xc, we get

ẋ2 < 0, x2 ∈ (xh,∞).

We proceed to show the change of sign at x2 = xh, which corresponds to show that
f̂(xh) > 0. Obviously it is yh ∈ (0, yc) and xh is a simple zero of F (x, yh) for yh fixed,
indeed it is the middle zero of the three ordered zeros of F (x, yh). We obtain

0 < ∂
∂x
F (x, yh)|x=xh

= ∂
∂x
F (x, 0)|x=xh

− h(yh) =

= 1
c1
f ′
1(xh)f

′
2(

1
c1
f1(xh))− c2 − h(h−1(f̃(xh)− c2)) =

= 1
c1
f ′
1(xh)f

′
2(

1
c1
f1(xh))− f̃(xh) =

= 1
xh
[ 1
c1
f ′
1(xh)f

′
2(

1
c1
f1(xh))xh − f2(

1
c1
f1(xh))] =

= 1
xh
f̂(xh).

(3.23)

Finally we get

ẋ2 < 0, x2 ∈ (0, xh).
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3.2 Simplified System

The last thing remaining to show is, that there is no change of sign at x2 = 0. For every
point on S

(2)
3D which satisfies x2 < 0, it is

∂
∂x
F (x, h−1(f̃(x)− c2))|x=x2 < 0,

since the x2 - component of such a point on S
(2)
3D is the left zero of the three ordered zeros

of F (x, y0) for fixed y0 = h−1(f̃(x2)−c2). As
∂
∂x
F (x, h−1(f̃(x)−c2))|x=x2 =

1
x2
f̂(x2) with

the same computation as in (3.23) it follows that

ẋ2 < 0, x2 ∈ (−∞, xh),

since again the expression for ẋ2 does not have a singularity at x2 = 0. �

The last lemma now guarantees, that the flow for ε = 0 is as shown in figure 3.2 (left
panel) for λ = 0 and in figure 3.2 (right panel) for λ < 0.

y

x

x

1

2

y

x

x

1

2

Figure 3.2: The flow on the critical manifold for λ = 0 (left panel) and for λ < 0 (right
panel).

To further analyze system (3.11), it is beneficial to first describe a closely related
two-dimensional system. Therefore we change our focus here and continue with a two-
dimensional approach.
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4 Two-dimensional Approach

This chapter is dedicated to the study of a two-dimensional system, which is closely
related to the three-dimensional system of the last chapter. We first introduce artifi-
cially a new time scale, that allows us to reduce the three-dimensional system to a
two-dimensional one. After some transformations, we investigate the flow in neighbor-
hoods of both the canard point and the homoclinic point. This leads to the description of
properties of the global flow. We prove the transition of small periodic orbits emanating
from the canard point to a homoclinic orbit with respect to the homoclinic point for
every small ε > 0 as λ varies.

4.1 A New Time Scale

We assume that the activation of a substance with concentration x2 is much slower than
the activation of the substance with concentration x1 but still much faster than the
negative feedback. This assumption is not motivated by the application but mainly by
technical considerations. This structure leads to the introduction of a new time scale in
the fast system (3.11) of the last chapter. We consider two time scale parameters ε1 and
ε2, 0 < εi � 1, i = 1, 2 and define our new system according to

System (Three Time Scales System)

ẋ1 = f1(x2)− c1x1,

ẋ2 = ε2[f2(x1)− (c2 + h(y))x2],

ẏ = ε1ε2[g(x1)− (c3 + λ)y].

(4.1)

Rescaling according to the time transformation t = ε2τ the equivalent system reads

ε2ẋ1 = f1(x2)− c1x1,

ẋ2 = f2(x1)− (c2 + h(y))x2,

ẏ = ε1[g(x1)− (c3 + λ)y]
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4.1 A New Time Scale

and taking the limit ε2 = 0 this reduces to

x1 = 1
c1
f1(x2),

ẋ2 = f2(x1)− (c2 + h(y))x2,

ẏ = ε1[g(x1)− (c3 + λ)y],

which can equivalently be written as the two-dimensional system.

ẋ2 = f2(
1
c1
f1(x2))− (c2 + h(y))x2,

ẏ = ε1[g(
1
c1
f1(x2))− (c3 + λ)y].

We implicitly assume that the activation of the substance with concentration x1 is suffi-
ciently fast so that it changes its state almost immediately. Thus we can assume that x1

is in its steady state. The relation of this system to our three-dimensional system (3.11)
can easily be seen, since ẋ2 = F (x2, y). In the following we will analyze the dynamics of
this system, starting with the description of the flow for ε1 = 0 and λ = 0. To simplify
the notation, we drop the subscripts on ε1 and x2 and define

G(x, y, λ) := g( 1
c1
f1(x))− (c3 + λ)y,

so that our basic system for this chapter is the following one.

System (Two-dimensional System)

ẋ = F (x, y),

ẏ = εG(x, y, λ).
(4.2)

We use the observations of the last chapter to describe the critical manifold, which leads
to

S2D := {(x, y) ∈ R× (h−1(−c2),∞) : F (x, y) = 0}.

We divide the critical manifold as before into two branches S
(1)
2D and S

(2)
2D defined anal-

ogously to S
(1)
3D and S

(2)
3D. Let Zλ

2D also be defined analogously to Zλ
3D. Lemma 3.16,

lemma 3.17 as well as lemma 3.23 guarantee, that the flow for ε = 0, λ = 0 is as shown
in figure 4.1.

Our previous analysis assures that the point (xc, yc) defines a canard point for λ = 0 as
the following lemma shows.
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y

x0

S2D

(1)

S2D

(2)

Z2D
0

Figure 4.1: A picture for the flow for ε = 0, λ = 0.

Lemma 4.3 (Canard Point)
For λ = 0 the point (xc, yc) defines a non-degenerated canard point for system (4.2) .

Proof.
We prove the defining equations (see [36]) in the definition of the canard point.

(xc, yc) is an intersection point of S
(2)
2D and Z0

2D and xc is a maximum of F (x, yc).
This and the definition of c3 leads to

F (xc, yc) = 0, ∂
∂x
F (xc, yc) = 0,

G(xc, yc, 0) = g( 1
c1
f1(xc))− c3yc = 0.

(4.3)

The non-degeneracy conditions are also satisfied. With xc, yc > 0, h′(yc) > 0,
g′( 1

c1
f1(xc)) > 0 and f ′

1(xc) > 0 we obtain

∂2

∂x2F (xc, yc) < 0, ∂
∂y
F (xc, yc) = −h′(yc)xc < 0.

∂
∂x
G(xc, yc, 0) =

1
c1
g′( 1

c1
f1(xc))f

′
1(xc) > 0, ∂

∂λ
G(xc, yc, 0) = −yc < 0.

(4.4)

This concludes the statement. �

As stated at the beginning we continue with the analysis of the local flow near the canard
point. This is done analogously to the paper of Krupa and Szmolyan, [36].
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4.2 The Canard Point

4.2 The Canard Point

We transform our system such that we derive the canonical form (3.3) in [36]. We obtain
the following statement.

Lemma 4.4 (Canonical Form)
In a neighborhood of the non-degenerated canard point system (4.2) can be transformed
to the following canonical form.

ξ̇ = −ηh1(ξ, η) + ξ2h2(ξ, η),

η̇ = ε̃[ξh3(ξ, η)− λ̃h4(ξ, η) + ηh5(ξ, η)],

(4.5)

where

hj(ξ, η) = 1 +O(ξ, η), j = 1, ..., 4.

Proof.
We use the Taylor expansions of F with respect to (xc, yc) and of G with respect to
(xc, yc, 0). Note that

∂3

∂x2∂y
F (x, y) = 0, ∂2

∂x∂y
G(x, y, λ) = 0,

∂2

∂x∂λ
G(x, y, λ) = 0, ∂2

∂y2
G(x, y, λ) = 0,

which is a direct consequence of the definitions of F and G. This fact and the equations
defining the canard point (4.3) lead to the system

˙̃x = a1x̃
2 + a2x̃

3 + a3ỹ + a4ỹ
2 + a5ỹ

3 + a6x̃ỹ + a7x̃ỹ
2 +O(x̃4 + |x̃ỹ3|+ ỹ4),

˙̃y = ε[b1x̃+ b2x̃
2 + b3λ+ b4ỹ +O(x̃3)],

where the constants are defined by

a1 =
1
2

∂2

∂x2F (xc, yc), a2 =
1
6

∂3

∂x3F (xc, yc),

a3 =
∂
∂y
F (xc, yc), a4 =

∂2

∂y2
F (xc, yc), a5 =

∂3

∂y3
F (xc, yc),

a6 =
∂2

∂x∂y
F (xc, yc), a7 =

∂3

∂x∂y2
F (xc, yc).

and

b1 =
∂
∂x
G(xc, yc, 0), b2 =

1
2

∂2

∂x2G(xc, yc, 0),

b3 =
∂
∂λ
G(xc, yc, 0), b4 =

∂
∂y
G(xc, yc, 0).
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4 Two-dimensional Approach

Due to the non - degeneracy conditions of the canard point (4.4) we find a1 < 0, a3 < 0,
b1 > 0 and b3 < 0. We define the parameters

θ1 = a1, θ2 = −a1a3, θ3 = −a3b1, θ4 = −a1b3
b1

. (4.6)

Scaling the system according to ξ = θ1x̃, η = θ2ỹ, ε̃ = θ3ε and λ̃ = θ4λ, it reads

1
θ1
ξ̇ = 1

θ21
ξ2[a1 + a2

1
θ1
ξ +O(ξ2)]

− 1
θ2
η[−a3 − a4

1
θ2
η − a5

1
θ22
η2 − a6

1
θ1
ξ − a7

1
θ1
ξ 1
θ2
η +O(ξη2) +O(η3)],

1
θ2
η̇ = 1

θ3
ε̃[ 1

θ1
ξ(b1 + b2

1
θ1
ξ +O(ξ2)) + 1

θ4
λ̃(b3) +

1
θ2
η(b4)].

and finally

ξ̇ = −η[1 + α02η + α11ξ +O(ξη) +O(η2)] + ξ2[1 + α30ξ +O(ξ2)],

η̇ = ε̃[ξ(1 + β20ξ +O(ξ2))− λ̃(1) + η(β01)],

where

α02 =
a4

a1a23
, α11 = − a6

a1a3
, α30 =

a2
a21
,

β20 =
b2

a1b1
, β01 = − b4

a3b1
.

This concludes the statement. �

This lemma allows us to follow the paper of Krupa and Szmolyan [36] for the description
of the flow near the canard point. We proceed with translating their results into our
setting. We have

h1(ξ, η) = 1 + α02η + α11ξ +O(ξη) +O(η2), h2(ξ, η) = 1 + α30ξ +O(ξ2),

h3(ξ, η) = 1 + β20ξ +O(ξ2), h4(ξ, η) = 1, h5(ξ, η) = β01.
(4.7)

Let

k1 :=
∂
∂ξ
h1(0, 0) = α11, k2 :=

∂
∂ξ
h2(0, 0) = α30,

k3 :=
∂
∂ξ
h3(0, 0) = β20, k4 := h5(0, 0) = β01

and define the constant

A = −k1 + 3k2 − 2k3 − 2k4 = −α11 + 3α30 − 2(β20 + β01). (4.8)

The sign of A plays an important role in the dynamic phenomena related to the flow
near the canard point. The main tool to analyze this flow is the technique of blow-up
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4.2 The Canard Point

transformations. The transformation, which is used to desingularize the flow near the
canard point, is defined by

Φ : S3 × [0, ρ] → R
4

given by

ξ = r ξ, η = r2 η, ε̃ = r2 ε, λ̃ = r λ, (ξ, η, λ, ε) ∈ S3.

We will use two charts here, K1 and K2. K1 is given by

ξ = r1ξ1, η = r21, ε̃ = r21ε1, λ̃ = r1λ1 (4.9)

and K2 is given by

ξ = r2ξ2, η = r22η2, ε̃ = r22, λ̃ = r2λ2. (4.10)

Let Φ1(ξ1, r1, ε1, λ1) be the map defined by K1. As the domain of Φ1 we use the set V1

given by

V1 = (−ξ1,0, ξ1,0)× (−ρ, ρ)× [0, 1)× (−μ, μ),

with ξ1,0 > 0 sufficiently large and ρ > 0, μ > 0 sufficiently small and define

V1,ε̃ = {(ξ1, r1, ε1, λ1) ∈ V1 : ε̃ = r21ε1}.

Let P(ξ,η) be the projection onto the (ξ, η) coordinates, then

P(ξ,η)(Φ1(V1,ε̃)) = {(ξ, η) : η ∈ (ε̃, ρ2), ξ ∈ (−ξ1,0
√
η, ξ1,0

√
η)}.

Let Φ2(ξ2, η2, r2, λ2) the map defined by K2. As the domain of Φ2 we use the set

V2 = D × [0, ρ)× (−μ, μ),

where D is a disk of large radius centered at the origin and μ is small and define

V2,ε̃ = {(ξ2, η2,
√
ε̃, λ2) ∈ V2}.

Then P(ξ,η)(Φ2(V2,ε̃)) is a neighborhood of the origin of size O(
√
ε̃) in ξ-direction and

O(ε̃) in η-direction. We define

Vε̃ = P(ξ,η)(Φ1(V1,ε̃) ∪ Φ2(V2,ε̃)).
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4 Two-dimensional Approach

Before we state the main theorems for the flow in a neighborhood V = Vε0 of the origin,
we concentrate again on the critical manifold S2D. From our previous observations it is
clear that for ε0 > 0 sufficiently small, only a part of S

(2)
2D lies in the neighborhood Vε0

and is defined by the solution of

−ηh1(ξ, η) + ξ2h2(ξ, η) =

−η[1 + α02η + α11ξ +O(ξη) +O(η2)] + ξ2[1 + α30ξ +O(ξ2)] = 0.

Then the critical manifold in V can be written as

η = ϕS(ξ) = ξ2(1 +O(ξ))

and we can split the critical manifold in V into the two branches Sl and Sr, defined by

Sl := {(ξ, ϕs(ξ)) : ξ < 0},
Sr := {(ξ, ϕs(ξ)) : ξ > 0}. (4.11)

The fast and slow flow for ε̃ = 0, λ̃ = 0 in V is as shown in figure 4.2. We are now able
to describe the flow near the canard point.

o ξ

η

Figure 4.2: Fast and slow flow in V .

4.2.1 The Flow Near The Canard Point

The following results are taken from the paper of Szmolyan and Krupa [36]. The first
statement is the existence of a Hopf bifurcation.

Theorem 4.5
There exists ε0 > 0, λ0 > 0 such that for each 0 < ε̃ < ε0, |λ̃| < λ0 equation (4.5)

has precisely one equilibrium pe ∈ V which converges to the canard point as (ε̃, λ̃) → 0.
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4.2 The Canard Point

Moreover, there exists a curve λH(
√
ε̃) such that pe is stable for λ̃ < λH(

√
(ε̃)) and loses

stability through a Hopf bifurcation as λ̃ passes through λH(
√
ε̃). The curve λH(

√
ε̃) has

the expansion

λH(
√
ε̃) = −k4

2
ε̃+O(ε̃

3
2 ).

The Hopf bifurcation is non-degenerate if the constant A defined in (4.8) is nonzero. It
is supercritical if A < 0 and subcritical if A > 0.

By Fenichel theory both Sl and Sr perturb as normally hyperbolic pieces of the critical
manifold to nearby invariant manifolds Sl,ε̃ and Sr,ε̃. Under perturbation the critical
manifold will break up at the non-hyperbolic canard point. However, the next statement
shows that the connection of Sl,ε̃ and Sr,ε̃ is valid for a specific λ̃.

Theorem 4.6
Consider system (4.5). There exists a smooth function λc(

√
ε̃) such that a solution start-

ing in Sl,ε̃ connects to Sr,ε̃, if and only if λ̃ = λc(
√
ε̃). The function λc(

√
ε̃) has the

expansion

λc(
√
ε̃) = −(k4

2
+ 1

8
A)ε̃+O(ε̃

3
2 ).

As we see, the sign of A is essential for the dynamics near the canard point. The following
two theorems now describe the flow near the canard point for both cases, A < 0 and
A > 0. For A < 0 we get the following statement.

Theorem 4.7
Suppose ε0, λ0 and V = Vε0 are sufficiently small and A < 0. Fix ε̃ ∈ (0, ε0]. Then the
following statements hold:

(i) For λ̃ ∈ (−λ0, λH(
√
ε̃)) all orbits starting in V converge to pe or leave V .

(ii) There exists a curve λ̃ = λsc(
√
ε̃) and a constant K > 0, with

0 < λc(
√
ε̃)− λsc(

√
ε̃) = O(e−

K
ε̃ ),

such that for each λ̃ ∈ (λH(
√
ε̃), λsc(

√
ε̃)) equation (4.5) has a unique, attracting

limit cycle Γ(λ̃,ε̃) contained in V . All orbits starting in V , except for pe, either leave
V or are attracted to Γ(λ̃,ε̃).

(iii) For λ̃ ∈ (λsc(
√
ε̃), λ0] all orbits starting in V , except for pe leave V .

Similarly, for A > 0 we get the next statement.
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4 Two-dimensional Approach

Theorem 4.8
Suppose ε0, λ0 and V = Vε0 are sufficiently small and A > 0. Fix ε̃ ∈ (0, ε0]. Then the
following statements hold:

(i) There exists a curve λ̃ = λsc(
√
ε̃) and a constant K > 0, with

0 < λsc(
√
ε̃)− λc(

√
ε̃) = O(e−

K
ε̃ ),

such that for each λ̃ ∈ (λsc(
√
ε̃), λH(

√
ε̃)) equation (4.5) has a unique, repelling

limit cycle Γ(λ̃,ε̃) contained in V .

(ii) For λ̃ ∈ (−λ0, λH(
√
ε̃)) all orbits starting in V , except for Γ(λ̃,ε̃) either leave V or

are attracted to pe.

(iii) For λ̃ ∈ [λH(
√
ε̃), λ0) all orbits starting in V , except for pe, leave V .

Based on the results of these theorems we can draw phase portraits, for both cases A < 0
and A > 0, for the dynamics near the canard point. These corresponding phase portraits
are shown in figure 4.4 for A < 0 and in figure 4.5 for A > 0. Figure 4.3 shows the (λ̃, ε̃)
- plane for both cases, A < 0 in the left and A > 0 in the right panel.

21 3

4

ε

λ

λ

λ

λ

H

c

sc

1 2 3

4

λ
ε

λ

λH

λ
sc

c

Figure 4.3: Bifurcation curves for A < 0 (left) and A > 0 (right).

For both the convenience of the reader and the use of some of the results in the description
of aspects of the global flow, we outline the strategy for proving the results for the local
dynamics near the canard point as developed by Krupa and Szmolyan [36, 35]. As already
mentioned, the results are carried out with the help of the two charts of the blow-up
transformation.

4.2.2 The Chart K2

In this subsection we discuss some aspects for the flow in K2. We first transform our
system to K2.
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4.2 The Canard Point

1

V V

2

V

3

V

4

Figure 4.4: Phase portraits for A < 0 in the regions 1 to 4.

Lemma 4.9 (K2 System)
Our system transformed to K2 has the form

ξ̇2 = ξ22 − η2 + r2G1(ξ2, η2) +O(r22),

η̇2 = ξ2 − λ2 + r2G2(ξ2, η2) +O(r22),
(4.12)

where

G1(ξ2, η2) = −k1ξ2η2 + k2ξ
3
2 ,

G2(ξ2, η2) = k3ξ
2
2 + k4η2.

Proof.
Applying the transformation of K2 we get

ξ2ṙ2 + r2ξ̇2 = −r22η2(1 + k1r2ξ2 +O(r22)) + r22ξ
2
2(1 + k2r2ξ2 +O(r22)),

2r2η2ṙ2 + r22η̇2 = r22[r2ξ2(1 + k3r2ξ2 +O(r22))− r2λ2(1 +O(r22)) + k4r
2
2η2],

2r2ṙ2 = 0,

λ2ṙ2 + r2λ̇2 = 0,
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4 Two-dimensional Approach

1

V V

3

V

3

V

4

Figure 4.5: Phase portraits for A > 0 in the regions 1 to 4.

which yields

ξ̇2 = r2[−η2 + ξ22 + r2(−k1ξ2η2 + k2ξ
3
2) +O(r22)],

η̇2 = r2[ξ2 − λ2 + r2(k3ξ
2
2 + k4η2) +O(r22)],

ṙ2 = 0,

λ̇2 = 0.

Desingularized according to the time transformation t = r2τ the assertion follows. �

For ε2 = r2 = 0 the system reduces to

ξ̇2 = ξ22 − η2,

η̇2 = ξ2.
(4.13)

Lemma 4.10
System (4.13) is integrable with

H(ξ2, η2) = 1
2
e−2η2

(
η2 − ξ22 +

1
2

)
(4.14)
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4.2 The Canard Point

the corresponding constant of motion.

The function H(ξ2, η2) has a continuous family of closed level curves

Γh
2 = {(ξ2, η2) : H(ξ2, η2) = h}, h ∈ (0, 1

4
),

contained in the interior of the parabola ξ22 − η2 = 1
2
, which corresponds to the level

curve for h = 0. The corresponding special solution is given by

γc,2 = (ξc,2(t2), ηc,2(t2)) = (1
2
t2,

1
4
t22 − 1

2
), t2 ∈ R. (4.15)

The idea for proving the statements for the flow near the canard point is now to study
the persistence of periodic orbits Γh

2 for (ε̃, λ̃) �= (0, 0). The usual approach is to use
the function H to measure the separation between forward and backward trajectories
emanating from a given point. We will come back to this later.

Outline of the Proof (Theorem 4.5)
The proof of theorem 4.5 can be done entirely in system (4.12). Equation (4.12) has an
equilibrium at pe,2 = (ξe,2, ηe,2) with ξe,2 = λ2 + O(2) and ηe,2 = O(2), where O(2) =
O(r22 + |r2λ2|+λ2

2). The linearization at pe,2 has purely imaginary eigenvalues for λH,2 =
−k4

2
r2 + O(r22) and one can show, that the conditions of theorem 2.6 in chapter 3 of [8]

hold. The result follows. �

We continue with the discussion of the dynamics in the chart K1.

4.2.3 The Chart K1

As in the chart K2 we start with transforming our system to the chart K1.

Lemma 4.11 (K1 System)
Our system transformed to K1 and desingularized has the form

ξ̇1 = ξ21 − 1 + r1(−k1ξ1 + k2ξ
3
1)− 1

2
ε1ξ1G3(ξ1, r1, ε1, λ1),

ṙ1 = 1
2
ε1r1G3(ξ1, r1, ε1, λ1),

ε̇1 = −ε21G3(ξ1, r1, ε1, λ1),

λ̇1 = −1
2
ε1λ1G3(ξ1, r1, ε1, λ1),

(4.16)

where

G3(ξ1, r1, ε1, λ1) = ξ1 − λ1 + r1(k3ξ
2
1 + k4) +O(r21).
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4 Two-dimensional Approach

Proof.
Inserting the transformation of K1 leads to the system

ξ1ṙ1 + r1ξ̇1 = −r21(1 + k1r1ξ1 +O(r21)) + r21ξ
2
1(1 + k2r1ξ1 +O(r21)),

2r1ṙ1 = r21ε1[r1ξ1(1 + k3r1ξ1 +O(r21))− r1λ1(1 +O(r21)) + k4r
2
1],

2r1ε1ṙ1 + r21 ε̇1 = 0,

λ1ṙ1 + r1λ̇1 = 0,

which leads to

ξ̇1 = r1(−1 + ξ21 + r1(−k1ξ1 + k2ξ
3
1) +O(r21))− 1

r1
ξ1ṙ1,

ṙ1 = 1
2
r21ε1[ξ1 − λ1 + r1(k3ξ

2
1 + k4) +O(r21)],

ε̇1 = −2 1
r1
ε1ṙ1,

λ̇1 = − 1
r1
λ1ṙ1

and finally we have

ξ̇1 = r1(−1 + ξ21 + r1(−k1ξ1 + k2ξ
3
1))− 1

2
r1ε1ξ1G3(ξ1, r1, ε1, λ1),

ṙ1 = 1
2
r21ε1G3(ξ1, r1, ε1, λ1),

ε̇1 = −r1ε
2
1G3(ξ1, r1, ε1, λ1),

λ̇1 = −1
2
r1ε1λ1G3(ξ1, r1, ε1, λ1).

Desingularized according to the time transformation t = r1τ the assertion follows. �

As stated above we are interested in the perturbation of the closed level curves Γ2
h. For

that reason we define the formulae for coordinate changes between the two charts K1

and K2.

Lemma 4.12 (Coordinate Changes)
Let κ12 denote the change of coordinates from K1 to K2. Then κ12 is given by

ξ2 = ξ1ε
− 1

2
1 , η2 = ε−1

1 , r2 = r1ε
1
2
1 , λ2 = ε

− 1
2

1 λ1, for ε1 > 0, (4.17)

and κ21 = κ−1
12 is given by

ξ1 = ξ2η
− 1

2
2 , ε1 = η−1

2 , r1 = η
1
2
2 r2, λ1 = η

− 1
2

2 λ2, for η2 > 0. (4.18)
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4.2 The Canard Point

To find the corresponding closed level curves Γh
1 we restrict system (4.16) to the invariant

plane r1 = λ1 = 0, which leads to

ξ̇1 = ξ21 − 1− 1
2
ε1ξ

2
1 ,

ε̇1 = −ε21ξ1.
(4.19)

Now define H̃ = H ◦ κ12. Then

H̃(ξ1, r1, ε1, λ1) = H̃(ξ1, ε1) = H( ξ1√
ε1
, 1
ε1
) =

= e
− 2

ε1 (1
4
+ 1

2ε1
− ξ21

2ε1
)

(4.20)

and system (4.19) is integrable with H̃ being a constant of motion. The curves

Γh
1 = κ21({(ξ2, η2) ∈ Γh

2 : η2 > 0})

are level curves of H̃ and are invariant for system (4.19). We continue here now with
the discussion of the K1 system.

Clearly the hyperplanes r1 = 0, ε1 = 0 and λ1 = 0 are invariant under the flow
of system (4.16). Their intersection is the invariant line l1 := {(ξ1, 0, 0, 0) : ξ1 ∈ R},
which contains the two equilibria pl = (−1, 0, 0, 0) and pr = (1, 0, 0, 0). The dynamics
in the invariant plane ε1 = λ1 = 0 is governed by the system

ξ̇1 = ξ21 − 1 +O(r1),

ṙ1 = 0.
(4.21)

We conclude, that pl and pr are endpoints of the lines of equilibria Sl,1 and Sr,1, which
are the two branches of S0

2D defined in (4.11) in chart K1. We can write system (4.21)
as the layer problem in chart K1 dropping the equation for ṙ1.

ξ̇1 = ξ21 − 1 +O(r1).

Note, that we have gained normal hyperbolicity of the lines of equilibria Sl,1 at the
point pl and Sr,1 at the point pr within the ξ1 - axis due to the blow-up transformation.
Indeed, pl is stable with eigenvalue −2 and pr is unstable with eigenvalue 2. Considered
as equilibria of the whole K1 system (4.16), both pl and pr have a triple eigenvalue zero.
Now consider again the system (4.19) in the invariant plane r1 = λ1 = 0. We recover
both the equilibria pl and pr. In this system there exists a second eigenvalue zero due
to the second equation. The corresponding eigenvector at pl is given by (−1, 4) and at
pr by (1, 4). We conclude that there exists a one-dimensional attracting center manifold
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4 Two-dimensional Approach

Nl,1 at pl, which is unique in the half space ε1 > 0 and there exists a one-dimensional
repelling center manifold Nr,1 at pr, which is also unique in the half space ε1 > 0. Let

D1 := {(ξ1, r1, ε1, λ1) : −2 < ξ1 < 2, 0 ≤ r1 ≤ ρ, 0 ≤ ε1 ≤ δ,−μ < λ1 < μ},

where δ, ρ and μ will be chosen small. We restate proposition 3.4 in the paper of Krupa
and Szmolyan [35].

Proposition 4.13 (Proposition 3.4 in [35])
Choose q1 < 2 < q2. The constants δ, ρ and μ can be chosen sufficiently small such that
the following assertions hold for system:

1. There exists an attracting three-dimensional Ck - center manifold Ml,1 at pl that
contains the line of equilibria Sl,1 and the center manifold Nl,1. In D1 the manifold
Ml,1 is given as a graph ξ1 = hl(r1, ε1, λ1). The branch of Nl,1 in r1 = λ1 = 0,
ε1 > 0 is unique and equal to γc,1 := κ21(γc,2), where γc,2 is the part of the special
trajectory introduced in (4.15), corresponding to ξ2 close to −∞.

2. There exists a repelling three-dimensional Ck - center manifold Mr,1 at pr which
contains the line of equilibria Sr,1 and the center manifold Nr,1. In D1 the manifold
Mr,1 is given as a graph ξ1 = hr(r1, ε1, λ1). The branch of Nr,1 in r1 = λ1 = 0,
ε > 0 is unique and equal to κ21(γc,2) for ξ2 close to ∞.

3. There exists a stable invariant foliation F s with base Ml,1 and one-dimensional
fibers. There exists positive constants Kl,1 and Kl,2 such that the contraction rates
along F s in a time interval of length T can be estimated by Kl,2e

−q2T from below
and by Kl,1e

−q1T from above.

4. There exists an unstable invariant foliation Fu with base Mr,1 and one-dimensional
fibers. There exists positive constants Kr,1 and Kr,2 such that the expansion rates
along Fu in a time interval of length T can be estimated by Kr,1e

q1T from below
and by Kr,2e

q2T from above.

This proposition is a direct conclusion of center manifold theory. Now define the sections

Σin
l,1 := {(x1, r1, ε1, λ1) ∈ V1 : r1 = ρ, |1 + x1| < ϑ},

Σout
l,1 := {(x1, r1, ε1, λ1) ∈ V1 : ε1 = δ, |1 + x1| < ϑ},

Σin
r,1 := {(x1, r1, ε1, λ1) ∈ V1 : ε1 = δ, |1− x1| < ϑ},

Σout
r,1 := {(x1, r1, ε1, λ1) ∈ V1 : r1 = ρ, |1− x1| < ϑ},

(4.22)

with ϑ defined sufficiently small. For our analysis we need an estimation of the minimal
time of a trajectory from a point in Σin

l,1 resp. Σin
r,1 to a point in Σout

l,1 resp. Σout
r,1 . Let

Π1 : Σin
l,1 → Σout

l,1 and Π2 : Σin
r,1 → Σout

r,1 be the transition maps defined by the flow of
(4.16).
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4.2 The Canard Point

Lemma 4.14 (Transition Time)
The transition time T of a solution of the blown-up vector field in K1 from a point p =
(x1, ρ, ε1, λ1) ∈ Σin

l,1 (p = (x1, ρ, ε1, λ1) ∈ Σin
r,1) to the point Π1(p) ∈ Σout

l,1 (Π2(p) ∈ Σout
r,1 )

satisfies

T ≥ 1
μ+2+O(ρ)

( 1
ε1
− 1

δ
).

Proof.
The evolution of ε1 determines the transition time of solutions from Σin

l,1 (Σin
r,1) to Σout

l,1

(Σout
r,1 ). The relevant equation is

ε̇1 = −ε21G3(x1, r1, ε1, λ1).

Integration leads to

ε1(t) = 1∫ t
0 G3(x1,r1,ε1,λ1)ds+c

.

Then

1
ε1(t+T )

− 1
ε1(t)

=
∫ t+T

t
G3(x1, r1, ε1, λ1)ds.

Since G3(x1, r1, ε1, λ1) = x1 − λ1 +O(r1) it follows, that

| ∫ t+T

t
G3(x1, r1, ε1, λ1)ds| ≤ ∫ t+T

t
|x1|+ |λ1|+ |O(r1)|ds ≤

≤ ∫ t+T

t
[2 + μ+O(ρ)]ds =

= [2 + μ+O(ρ)]T.

Finally we get

|1
δ
− 1

ε1(t)
| ≤ [2 + μ+O(ρ)]T.

The result follows. �

Lemma 4.14 and proposition 4.13 directly lead to the following statement. Let Il(ε̂1) be
the line Σin

l,1 ∩ {ε1 = ε̂1} and Ir(ε̂1) be the line Σout
r,1 ∩ {ε1 = ε̂1}.

Proposition 4.15
Let ρ, δ and � be sufficiently small. The transition maps Π1 : Σin

l,1 → Σout
l,1 and Π2 :

Σin
r,1 → Σout

r,1 defined by the flow of system (4.16) have the following properties:

1. Π1(Σ
in
l,1) is a wedge-like region in Σout

l,1 and Π−1
2 (Σout

r,1 ) is a wedge-like region in Σin
r,1.

2. For fixed q < 2 there exists a constant K depending on the constants ρ, δ, � and
q such that for every ε1 ∈ (0, ρ] the map Π1|Il(ε1) and the map Π−1

2 |Ir(ε1) are
contractions with contraction rate bounded by

Ke
− q

2+μ+O(ρ)
( 1
ε1

− 1
δ
)
.
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4.2.4 Outlines Of Proofs

For the convenience of the reader we outline the proofs for theorem 4.6 and theorem
4.7. The proof of theorem 4.8 is similar to that of theorem 4.7. For details of the proofs,
see [36, 35].

The idea to prove theorem 4.6 is to use a Melnikov like computation of the sep-
aration between Ml,2 and Mr,2. These are the corresponding manifolds in chart K2

to Ml,1 and Mr,1. It is clear, that Ml,2 and Mr,2 intersect along the special trajectory
γc,2 for r2 = λ2 = 0. Now fix r2 ∈ [0, ρ], ρ sufficiently small. Let γl,1 be the trajectory
of system (4.16) contained in Ml,1 for which r1

√
ε1 = r2 starting at Σin

l,1, and let
γl,2 = (ξl,2, ηl,2) be the continuation of γl,1 to chart K2. γl,2 is a solution of (4.12) being
parameterized such that ξl,2(0) = 0. Analogously, let γr,1 be the trajectory of system
(4.16) contained in Mr,1 for which r1

√
ε1 = r2 starting at Σin

r,1, and let γr,2 = (ξr,2, ηr,2)
be the corresponding backward continued solution of (4.12) parameterized such that
ξr,2(0) = 0. Then measuring the separation of Ml,2 and Mr,2 corresponds to measuring
ηl,2(0)− ηr,2(0), which is equivalent to estimating the distance function

Dc(r2, λ2) = H(0, ηl,2(0))−H(0, ηr,2(0)), (4.23)

where H is defined in (4.14). Note that ∂
∂η2

H(0, η2) �= 0 for η2 > 0. We get the following
proposition.

Proposition 4.16 (Proposition 3.5 in [35])
For ρ and μ small enough, the distance function Dc(r2, λ2) has the expansion

Dc(r2, λ2) = dr2r2 + dλ2λ2 +O(2),

where

dr2 =

∫ ∞

−∞
∇H(γc,2(t)) ·G(γc,2(t))dt

and

dλ2 =

∫ ∞

−∞
∇H(γc,2(t)) ·

(
0
−1

)
dt.

Now we are able to outline the proof of theorem 4.6.

Outline of the Proof (Theorem 4.6)
The function Dc(r2, λ2) = 0 can be solved for λ2 by the implicit function theorem given
that dλ2 �= 0. The two parameters can be computed by repeated integration, which leads
to the desired statement. Indeed, we get

dλ2 = − e
2

∫∞
−∞ e−

t2

2 dt and dr2 = − e
4
(k4 +

1
4
A)
∫∞
−∞ e−

t2

2 dt. �
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4.2 The Canard Point

As we have stated earlier, we now deal with finding periodic orbits as perturbations of
the family Γh

2 , h ∈ (0, 1
4
). For h close to 1

4
the existence of periodic orbits are a direct

conclusion of theorem 4.5. Let h0 ∈ (0, 1
4
) and consider h ∈ (0, h0). Then let γh

2 (t) =
(ξh2 (t), η

h
2 (t)) be a solution corresponding to Γh

2 such that ξh2 (0) = 0 and ηh2 (0) > 0.
Let γh

r2,λ2
and γ̂h

r2,λ2
be the forward and backward solution of (4.12) for each (r2, λ2) ∈

[0,
√
ε0)× (−μ, μ) satisfying γh

r2,λ2
(0) = γ̂h

r2,λ2
(0) = γh

2 (0). Let (0, η
h
r2,λ2

) (resp. (0, η̂hr2,λ2
))

be the intersection points of γh
r2,λ2

(resp. γ̂h
r2,λ2

) with the negative part of the η2 - axis,
respectively. We define the distance function

Ds(h, r2, λ2) = H(0, ηhr2,λ2
)−H(0, η̂hr2,λ2

).

Since ∂
∂η2

H(0, η2) �= 0 it follows that periodic orbits of (4.12) correspond to solutions of

Ds(h, r2, λ2) = 0.

Let σ(h) = (ηh2 (0))
−1 and define

U0 = (0, h0)× [0, ρ
√

σ(h))× (−μ, μ).

We have the following proposition.

Proposition 4.17 (Proposition 4.1 in [36])
Let ρ be sufficiently small. Then for r2 ≤ ρ

√
σ(h), λ2 ∈ (−μ, μ) and h ∈ (0, h0) the

function Ds has the expansion

Ds(h, r2, λ2) = dhr2r2 + dhλ2
λ2 + Q̂(h, r2, λ2),

where, with Th being the half period of Γh,

dhr2 =

∫ Th

−Th

∇H(γh
2 (t)) ·G(γh

2 (t))dt,

dhλ2
=

∫ Th

−Th

∇H(γh
2 (t)) ·

(
0
−1

)
dt

and Q̂ satisfies for some constant K > 0

|Q̂(h, r2, λ2)| ≤ K(r2 + |λ2|)2,

| ∂
∂h

Q̂(h, r2, λ2)| ≤ Kρ(r2 + |λ2|)σ(h)− 3
2 .

Moreover, the partial derivatives | ∂
∂r2

Ds(h, r2, λ2)|, | ∂
∂λ2

Ds(h, r2, λ2)|, | ∂2

∂r22
Ds(h, r2, λ2)|,

| ∂2

∂λ2
2
Ds(h, r2, λ2)| and | ∂2

∂r2∂λ2
Ds(h, r2, λ2)| are uniformly bounded.
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4 Two-dimensional Approach

And we outline the proof of theorem 4.7.

Outline of the Proof (Theorem 4.7)
We drop the proof for statements (i) and (iii) here. For details see [36].

For (ii) first let h0 ∈ (0, 1
4
) arbitrary, fixed. One concludes the existence of a

curve λ2(r2, h0) such that there is a unique attracting periodic orbit for the flow
of (4.12) restricted to a large disc centered at the origin for any r2 ∈ (0, ρ) and
λH(r2) < λ̃ < λ2(r2, h0) using theorem 4.5 and the relative position of Sl,ε̃ and Sr,ε̃.

Now let h ∈ (0, h0). With the help of proposition 4.17 one obtains

∂

∂λ2

Ds(h, r2, λ2) �= 0 for (h, r2, λ2) ∈ U0.

Hence a solution λ2(h, r2) of Ds(h, r2, λ2) = 0 can be obtained by repeated application
of the implicit function theorem. Uniqueness can be shown by a direct argumentation.

It can directly be shown that the curve λsc can be written as

λsc(r2) = r2λ2(hsc(r2), r2),

where for all h ≥ hsc the constructed periodic orbit lies entirely in V and for all h < hsc

the constructed periodic orbit leaves V .

The orbit Γ1,sc in chart K1 corresponding to λ2(hsc(r2), r2) passes O(e−
K
ε̃ ) close

to both Ml,1 and Mr,1, where K > 0 is some constant. We get

Dc(r2, λ2(hsc, r2)) = O(e−
K
ε̃ )

and finally , since ∂
∂λ2

Dc(0, 0) �= 0,

|λ2(hsc, r2)− λc,2(r2)| = O(e−
K
ε̃ ). �

Remark 4.18
We note, that we have not yet proved the statement of stabilities of the periodic orbits
in V . However, we address this issue in the context of the analysis of the global flow.

We continue with the local flow near the homoclinic point (xs, ys).
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4.3 The Homoclinic Point

4.3 The Homoclinic Point

This section is dedicated to the local flow near the homoclinic point (xs, ys). The ho-
moclinic point (xs, ys) is a stationary point of system (4.2) for λ = 0, i.e. the following
equations hold.

0 = f2(
1
c1
f1(xs))− (c2 + h(ys))xs = F (xs, ys),

0 = g( 1
c1
f1(xs))− c3ys = G(xs, ys, 0).

Taylor expansion of the functions F with respect to (xs, ys) and G with respect to
(xs, ys, 0) leads to the following system in some neighborhood of the homoclinic point.

ξ̇ = â1ξ + â2η + â3ξ
2 + â4ξη + â5η

2 +O(ξ3 + |ξ2η|+ |ξη2|+ η3),

η̇ = ε[b̂1ξ + b̂2η + b̂3λ+O(ξ2)],

(4.24)

where

â1 =
∂
∂x
F (xs, ys), â2 =

∂
∂y
F (xs, ys),

â3 =
1
2

∂2

∂x2F (xs, ys), â4 =
1
2

∂2

∂x∂y
F (xs, ys), â5 =

1
2

∂2

∂y2
F (xs, ys),

and

b̂1 =
∂
∂x
G(xs, ys, 0), b̂2 =

∂
∂y
G(xs, ys, 0), b̂3 =

∂
∂λ
G(xs, ys, 0).

We have the following lemma.

Lemma 4.19
Define a sufficiently small neighborhood Us of (xs, ys). Then there exists an ε0 > 0
and a λ0 > 0 such that for each 0 < ε < ε0, |λ| < λ0 equation (4.24) has precisely
one equilibrium ps ∈ Us which converges to (xs, ys) as (ε, λ) → 0. Moreover, ps is an
equilibrium of saddle type with a slow stable manifold and a fast unstable manifold.

Proof.
We first note that since (xs, ys) is a stationary point of the layer problem of system
(4.2) lying on the unstable part of the critical manifold, i.e. it is the middle zero of the
three ordered zeros of F (x, ys), the constant â1 is positive. A simple calculation shows,
that additionally b̂1 > 0 and â2, b̂2, b̂3 < 0.

Further note that −â1
â2

is the slope of the critical manifold and −b̂1
b̂2

is the slope of

Z0
2D, both evaluated at the homoclinic point (xs, ys). This leads to the following

inequalities.

−â1
â2

> −b̂1
b̂2

⇔ â1b̂2 − â2b̂1 < 0 ⇔ b̂2 − â2b̂1
â1

< 0. (4.25)
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4 Two-dimensional Approach

The only stationary point in Us takes the form ps,λ = (ξs,λ, ηs,λ) with ξs,λ = k̂1λ+O(λ2)

and ηs,λ = k̂2λ + O(λ2), where k̂1 =
â2b̂3

â1b̂2−â2b̂1
and k̂2 = − â1b̂3

â1b̂2−â2b̂1
. The Jacobian at the

equilibrium ps,λ reads

Js,ε,λ =

(
â1 + (2â3k̂1 + â4k̂2)λ+O(λ2) â2 + (â4k̂1 + 2â5k̂2)λ+O(λ2)

εb̂1 +O(ελ) εb̂2 +O(ελ)

)
.

And the eigenvalues are

â1 +
â2b̂1
â1

ε+ (2â3k̂1 + â4k̂2)λ+O(ε2 + |ελ|+ λ2)

and

(b̂2 − â2b̂1
â1

)ε+O(ε2 + |ελ|+ λ2).

The result follows with (4.25). �

We further note that the eigenvectors of the Jacobian have the expressions (1 +

O(ε, λ), b̂1
â1
ε+O((ε+λ)2))T and (−â2+O(ε, λ), â1+O(ε, λ))T for their respective eigen-

values, so that the flow in Us is as shown in figure 4.6.

(x , y )s s

sU

Figure 4.6: A picture for the flow near the homoclinic point.

Analyzing the global aspects of the flow, we will be interested in backward trajectories
reaching a neighborhood of ps. Here we investigate the local behavior of such trajectories.
For this reason we rescale time according to the transformation τ = −t. The resulting
system can locally be written in Fenichel coordinates, since we are in a neighborhood
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4.3 The Homoclinic Point

of a normally hyperbolic subset of the critical manifold. In this new coordinates, the
system of the local flow near the homoclinic point reads (see (2.9))

˙̃w = Λ(w̃, z̃, ε, λ)w̃,
˙̃z = εh(z̃, ε) = εh̃(z̃, ε)z̃,

(4.26)

where Λ(0, 0, z̃, 0) < 0 and h̃(0, 0) > 0. The last equality in the second equation is due
to the fact, that the origin as the homoclinic point remains stationary. After a simple
time transformation we obtain

ẇ = Λ̃(w, z, ε, λ)w,
ż = εz.

(4.27)

Let � > 0 be fixed and sufficiently small and define the section Δ by

Δ = {(w, z) : 0 ≤ w ≤ �, 0 ≤ z ≤ �}.
Theorem 4.20 (Trajectories near ps)
There exist � > 0, ε0 > 0 and λ0 > 0 small enough, such that for every ε ∈ (0, ε0]
and |λ| < λ0 the following statement holds. Every trajectory (w(t), z(t)) entering Δ
parameterized such that (w(0), z(0)) = (�, δ) with 0 < δ < � leaves Δ after time T =
1
ε
ln (�

δ
). For δ → 0 it holds that

|w(T )| → 0, | ∂
∂δ
w(T )| → 0.

Proof.
The first step is to compute the time T , for which the trajectory (w(t), z(t)) with the
initial conditions (w(0), z(0)) = (�, δ) stays in Δ. The evolution of z determines this
transition time. We obtain

δeεT = �.

Solving this equation for T leads to

T = 1
ε
ln (�

δ
).

The second step now estimates |w(T )|. First note, that for (w, z) ∈ Δ the following
estimate holds if �, ε0 and λ0 are small enough.

Λ̃(w, z, ε, λ) ≤ −q,

for some q > 0. Then applying the method of variation of parameters yields

|w(T )| = w(0)e
∫ T
0 Λ̃(w,z,ε,λ)dt ≤ �e−qT = �( δ

�
)
q
ε . (4.28)
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4 Two-dimensional Approach

For the third step we differentiate our system with respect to the initial value δ. We
obtain the system

ẇδ = ∂
∂w

Λ̃(w, z, ε, λ)wwδ +
∂
∂z
Λ̃(w, z, ε, λ)wzδ + Λ̃(w, z, ε, λ)wδ,

żδ = εzδ,
(4.29)

with the initial conditions wδ(0) = 0 and zδ(0) = 1. For t ≥ 0 it holds that |w(t) ≤ �e−qt|,
analogously to (4.28). Now note that for (w, z) ∈ Δ the following inequalities hold if �,
ε0 and λ0 are small enough.

Λ̃(w, z, ε, λ) + ∂
∂w

Λ̃(w, z, ε, λ)w ≤ −μ,

| ∂
∂z
Λ̃(w, z, ε, λ)w| ≤ q̃e−μ̂t,

where q̃ > 0, μ > 0 and μ̂ > 0 are constants. Using the method of variation of parameters
for the second equation now yields

|wδ(T )| = | ∫ T

0
e
∫ T
t Λ̃+ ∂

∂w
Λ̃wdτ ∂

∂z
Λ̃weεtdt| ≤

≤ ∫ T

0
e−

∫ T
t μdτ q̃e−μ̃teεtdt =

= q̃e−μT
∫ T

0
e(μ+ε−μ̃)tdt =

= q̃
μ+ε−μ̃

(e(ε−μ̃)T − e−μT ) ≤
≤ Le−CT ≤ L( δ

�
)
C
ε

(4.30)

for μ+ ε− μ̃ �= 0 and otherwise

|w�(T )| ≤ q̃T e−μT = q̃
ε
(ln �

δ
)( δ

�
)
μ
ε . (4.31)

This proves the statement. �

This theorem now allows us to describe properties of the global flow of system (4.2). We
will see that local Hopf cycles near the canard point will grow to canard cycles, finally
reaching a homoclinic orbit and afterwards vanishing as λ varies.

4.4 Global Aspects Of The Flow

For easier notation and description we scale our two-dimensional system (4.2) according
to the same transformations used in the local analysis of the canard point. More precisely
recall the parameters θi, i = 1, ..., 4 in (4.6) and define

F̃ (ξ, η) := θ1F ( 1
θ1
ξ + xc,

1
θ2
η + yc),

G̃(ξ, η, λ̃) := θ2
θ3
G( 1

θ1
ξ + xc,

1
θ2
η + yc,

1
θ4
λ̃).
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4.4 Global Aspects Of The Flow

Then system (4.2) can be written in new coordinates according to the transformation
ξ = θ1(x− xc), η = θ2(y − yc), ε̃ = θ3ε and λ̃ = θ4λ as

ξ̇ = F̃ (ξ, η),

η̇ = ε̃G̃(ξ, η, λ̃).

(4.32)

Also note, that system (4.5) is the local linearization of system (4.32) in a neighborhood
of the canard point.

For the description of the global flow of (4.32) we patch forward and backward
trajectories emanating from points (0, s) on the positive η-axis. The analysis of the
local flow near the canard point guarantees the existence of ”small” periodic orbits for
small values of s. We have the following proposition, compare proposition 4.3 in [36].

Proposition 4.21 (Proposition 4.3 in [36])
Assume that A �= 0 and that ρ and ε0 are sufficiently small. Then, for ε̃ ∈ (0, ε0), there
exists a continuous family of periodic orbits

s → (λ(s,
√
ε̃),Γ(s,

√
ε̃)), s ∈ (0, ρ2), Γ(s,

√
ε̃) ⊂ V,

where λ(s,
√
ε) is Ck in (s,

√
ε̃) and Γ(s,

√
ε̃)) passes through the point (0, s). If A < 0

then ∂
∂s
λ(s,

√
ε̃) > 0 and the periodic orbit is stable. If A > 0 then ∂

∂s
λ(s,

√
ε̃) < 0 and the

periodic orbit is unstable. Any periodic orbit in V is a member of the family Γ(s,
√
ε̃)).

Outline of the Proof
The existence of a family of periodic orbits

h → (λ(h, r2),Γ(h, r2))

is guaranteed by the proof of theorem 4.7. After a parametrization change this proof
shows the statements on the sign of ∂

∂s
λ(s,

√
ε̃) as well as the uniqueness of periodic

orbits in V . Again, see [36] for details. The statement about the stability, which was
skipped earlier, now follows from considering the return map of Δs to itself, where

Δs := {(0, s, λ̃, ε̃) : s ∈ (0, s0), ε̃ ∈ (0, ε0), λ̃ ∈ (−λ0, λ0)}.

Let Πs : Δs → Δs be this return map. Differentiating the identity Πs(s, λ(s, r2), r2) = s
with respect to s yields

1− ∂Πs

∂s
= ∂Πs

∂λ̃
(s, λ(s, r2), r2)

∂λ
∂s
(s, r2).

Note that ∂Πs

∂s
> 0 due to the order preserving property of the flow. Furthermore, if

A < 0 the right hand side is positive and ∂Πs

∂s
< 1 and if A > 0 the right hand side is

negative and ∂Πs

∂s
> 1. The statements on the right hand side are direct conclusions of

the relative positions of λH , λsc and λc. This concludes the statement. �
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4 Two-dimensional Approach

As λ̃ varies the periodic orbits will grow and limit in an homoclinic orbit with respect
to the homoclinic point. The existence and uniqueness of the homoclinic orbit is stated
in the next theorem.

Theorem 4.22
Suppose ε0 is sufficiently small and fix ε̃ ∈ (0, ε0]. There exists a smooth function

λHo(
√
ε̃) and a constant K > 0, with

|λHo(
√
ε̃)− λc(

√
ε̃)| < O(e−

K
ε̃ ),

such that equation (4.32) has a unique, unstable homoclinic orbit with respect to the
homoclinic point (ξs,λHo(

√
ε̃), ηs,λHo(

√
ε̃)).

Proof.
We consider the forward trajectory γu(t) emanating from a point on the fast unstable

manifold of the homoclinic point (ξs,λ̃, ηs,λ̃) in dependence of λ̃. This trajectory is
exponentially attracted by Sl,ε̃ and we have γu(t) ∈ V in some interval Iu ⊂ [0,∞).
So γu(t) gives rise to a trajectory in the blow-up system and therefore to associated
trajectories γu,j, j = 1, 2, in charts K1 and K2. Let (0, ηu,2) be the point, where
γu,2(t) crosses the ξ2 - axis. The backward trajectory γ̂u(t) emanating from a point on
the stable manifold of the homoclinic point gives rise to a point (0, η̂u,2) in the same way.

Furthermore remember the solutions γl,2(t) = (ξl,2(t), ηl,2(t)) and γr,2(t) = (ξr,2(t), ηr,2(t))
contained in Ml,2 and Mr,2, respectively, with ξl,2(0) = ξr,2(0) = 0. We consider ηl,2(0)
and ηr,2(0) defined analogously as for equation (4.23).

Since γu,1(t) and γ̂u,1(t) pass through Σout
l,1 and Σin

r,1, respectively, we obtain for
ε̃ = r22 and some constant K > 0

|ηu,2 − ηl,2(0)| = O(e−
K
ε̃ ),

|η̂pu,2 − ηr,2(0)| = O(e−
K
ε̃ )

and analogous estimates for the partial derivatives of ηu,2−ηl,2(0) and η̂u,2−ηr,2(0) with
respect to r2 and λ2 according to Fenichel theory and proposition 4.15. We define

Du(r2, λ2) = ηu,2 − η̂u,2

and consider Du(r2, λ2)−Dc(r2, λ2), where Dc has been introduced in (4.23). The above

estimates implies that Du(r2, λ2) − Dc(r2, λ2) and its partial derivatives are O(e−
K
ε̃ ) -

small. Hence Du(r2, λ2) can be solved for λ2 as a function of r2, called λHo(r2). Further-
more for this λHo(r2) the above estimates hold, so that the separation of Ml,2 and Mr,2

is bounded by O(e−
K
ε̃ ), i.e Dc(r2, λHo(r2)) = O(e−

K
ε̃ ). Hence, since ∂

∂λ2
Dc(0, 0) �= 0

|λHo(
√
ε̃)− λc(

√
ε̃)| < O(e−

K
ε̃ ).
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4.4 Global Aspects Of The Flow

The instability of the homoclinic orbit is a direct consequence of the time scales. The
positive eigenvalue of the Jacobian at the homoclinic point is independent of ε̃, whereas
the negative eigenvalue is multiplied with ε̃, see proof of lemma 4.19. This proves the
statement. �

Now consider the intersection of the fast stable manifold of the homoclinic point with
the positive η - axis for ε̃ ∈ (0, ε0). Let s∗(λ̃) be this intersection. This function has
an infimum and a supremum for λ̃ ∈ (−λ0, λ0) on the positive η - axis. We denote the
infimum with s∗− and the supremum with s∗+. Define the section Δm by

Δm := {(0, s, λ̃, ε̃) : s ∈ (s̃0, s
∗
− − s̃0), ε̃ ∈ (0, ε0), λ̃ ∈ (−λ0, λ0)},

where s̃0 > 0 is sufficiently small and fixed. We consider forward and backward trajecto-
ries emanating from points in Δm under the flow of (4.32). For p ∈ Δm let γp(t) be the
forward trajectory of p and γ̂p(t) be the backward trajectory of p. Then γp(t) is expo-
nentially attracted by Sl,ε̃ and γ̂p(t) is exponentially attracted by Sr,ε̃. Both trajectories
enter V and give rise to trajectories in the blow-up system and therefore to associated
trajectories γp,j and γ̂p,j, j = 1, 2, in the charts K1 and K2. As in the proof of theorem
4.22 let (0, ηp,2) be the point, where γp,2 crosses the ξ2 - axis and let (0, η̂p,2) be the point,
where γ̂p,2 crosses the ξ2 - axis.

Lemma 4.23
There exists K > 0 such that, for any p ∈ Δm,

|ηp,2 − ηl,2(0)| = O(e−
K
ε̃ ),

|η̂p,2 − ηr,2(0)| = O(e−
K
ε̃ ),

where ε̃ = r22. Analogous estimates hold for the partial derivatives of ηp,2 − ηl,2(0) and
η̂p,2 − ηr,2(0) with respect to r2 and λ2.

Proof.
The trajectories γp,1 and γ̂p,1 pass through Σout

l,1 and Σin
r,1, respectively. The estimate

follows from proposition 4.15. �

By the following proposition we construct ”medium” periodic orbits.

Proposition 4.24
Consider s ∈ (s̃0, s

∗
− − s̃0) and ε̃ ∈ (0, ε0). There exists a Ck smooth function λ(s,

√
ε̃)

such that the orbit of (4.12) passing through (0, s) is periodic if and only if λ̃ = λ(s,
√
ε̃).

Proof.
Let r2 =

√
ε̃ and λ̃ = r2λ2. Define

D(s, r2, λ2) := ηp,2 − η̂p,2.
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4 Two-dimensional Approach

Lemma 4.23 implies that the expressionD(s, r2, λ2)−Dc(r2, λ2) and its partial derivatives

with respect to r2 and λ2 are O(e−
K
ε̃ ) small, where Dc is again the function defined in

(4.23). Hence the equation D(s, r2, λ2) = 0 can be solved for λ2 as a function of s and
r2. The result follows. �

We note that Δs and Δm have overlapping domains. The families of periodic orbits
constructed in proposition 4.21 and in proposition 4.24 can be combined to one family

(λ(s,
√
ε̃),Γ(s,

√
ε̃)), s ∈ (0, s∗− − s̃0),

with s̃0 fixed, but arbitrary small, since both families satisfy an uniqueness property.
For every s ∈ (0, s0), respectively s ∈ (s̃0, s

∗
− − s̃0), there exists an unique λ̃ and a

corresponding periodic orbit, unique with respect to the property, that it passes through
(0, s). Now define

Δl := {(0, s, λ̃, ε̃) : s ∈ (s∗− − ŝ0, s
∗
+ + ŝ0), ε̃ ∈ (0, ε0), λ̃ ∈ (−λ0, λ)}.

The approach is the same as for Δm. However, the backward trajectory for p ∈ Δl may
not reach V . For the forward trajectory emanating from a given point p ∈ Δl define
γp(t) as before. Clearly this defines a point (0, ηp,2) as before.

We change the definition of γ̂p(t) for a given point p = (0, sp, λ̃p, ε̃p) ∈ Δl slightly. For
sp < s∗(λ̃) let γ̂p(t) be the backward trajectory of p just as before. For sp ≥ s∗(λ̃)
let γ̂p(t) be the backward trajectory emanating from a given point (ξsp , ηsp) on the
slow stable manifold of the homoclinic point (ξh,λ̃, ηh,λ̃) with dη = ηh,λ̃) − ηsp > 0, dη
sufficiently small. Then the construction of γ̂p(t) gives rise to a point (0, η̂p,2) the same
way as before. η̂p,2 is a C1 - function of its arguments, which is guaranteed by theorem
(4.20).

Lemma 4.25
There exists a K > 0 such that, for any p ∈ Δl,

|ηp,2 − ηl,2(0)| = O(e−
K
ε̃ ),

|η̂p,2 − ηr,2(0)| = O(e−
K
ε̃ ),

where ε̃ = r22. Analogous estimates hold for the partial derivatives of ηp,2 − ηl,2(0) and
η̂p,2 − ηr,2(0) with respect to r2 and λ2.

Proof.
Analogously to the proof of lemma 4.23.

In the next step, we construct ”large” periodic orbits.
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4.4 Global Aspects Of The Flow

Proposition 4.26
Consider ε̃ ∈ (0, ε0) and s ∈ (s∗− − ŝ0, s

∗(λHo(
√
ε̃))). There exists a Ck smooth function

λ(s,
√
ε̃) such that the orbit of (4.12) passing through (0, s) is periodic if and only if

λ̃ = λ(s,
√
ε̃). For s ∈ (s∗(λHo(

√
ε̃)), s∗+ + ŝ0) there is no periodic orbit passing through

(0, s).

Proof.
As in the proof of proposition 4.24 define

D(s, r2, λ2) := ηp,2 − η̂p,2.

With the same arguments we conclude, thatD(s, r2, λ2) can be solved for λ2 as a function
of s and r2. The homoclinic orbit is unique, i.e. there is exactly one λ2 = λHo(

√
ε̃)

for which there exists a homoclinic orbit with respect to the homoclinic point, and
the right hand side of equation (4.32) is continuous in λ̃. Assume that there exists
a s ∈ (s∗− − ŝ0, s

∗(λHo(
√
ε̃))) for which there exists no λ̃ such that the orbit passing

through (0, s) is periodic, then there would be a ŝ ≤ s and a corresponding λ̃, such
that the orbit passing through (0, ŝ) is a homoclinic orbit. This is a contradiction to the
uniqueness property of the homoclinic orbit. With the same reasoning one excludes the
existence of periodic orbits passing through (0, s) for s ∈ (s∗(λHo(

√
ε̃)), s∗+ + ŝ0). This

concludes the statement. �

Our observations can be combined to prove the existence of a family of periodic orbits.

Theorem 4.27 (Family Of Periodic Orbits)
Suppose ε0 is sufficiently small. Then there exists a smooth family of periodic solutions

(λ(s,
√
ε̃),Γ(s,

√
ε̃)), ε̃ ∈ (0, ε0), s ∈ (0, s∗(λHo(

√
ε̃)).

Proof.
Note, that we have overlapping domains of Δm and Δl and the uniqueness property of
the periodic solutions holds as before. This concludes the statement. �

We close this chapter with a remark on stability.

Remark 4.28 (Stability)
• Krupa and Szmolyan [36] have introduced the so-called ”way in-way out” function
R(s), see also [6]. Since the homoclinic orbit is always unstable due to the different
time scales, we obtain similar statements to theorem 3.4 and theorem 3.6 in [36].

• Under the assumptions of theorem 4.8 assume additionally R(s) > 0 for all s ∈
(0, s∗(λHo(

√
ε̃)). Then all periodic orbits are unstable and the functions λ(s,

√
ε̃)

are monotonic in s.
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4 Two-dimensional Approach

• Under the assumptions of theorem 4.7 assume that R(s) has exactly one simple
zero slp in (0, s∗(λHo(

√
ε̃)). Then there exists a C1 function slp(

√
ε̃) such that,

for each ε̃ ∈ (0, ε0), the curve (s, λ(s,
√
ε̃)) has a unique, non-degenerated limit

point for s = slp(
√
ε̃)). The cycles Γ(s,

√
ε̃) are attracting for s ∈ (0, slp(

√
ε̃)) and

repelling for s ∈ (slp(
√
ε̃), s∗(λHo(

√
ε̃)).

• The bifurcation diagram for fixed ε̃ is as shown in figure 4.7.

A > 0:

Amplitude

λ

λ λ λHo Hs A < 0:

Amplitude

λ λH s

λ

λHo

Figure 4.7: Bifurcation diagram for fixed ε̃ and A > 0 (left panel) resp. A < 0 (right
panel).
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5 Three-dimensional Approach

After analyzing properties of the flow of the two-dimensional system in the last chapter
we return to the discussion of the three-dimensional one introduced in the third chapter.
With the help of center manifold theory we reduce the discussion of the local flow in
a neighborhood of the canard point to two dimensions, so that we are able to apply
the results of the last chapter. The construction principles for ”small” and ”medium”
periodic orbits as well as for the homoclinic orbit carry over; we only need to control one
additional degree of freedom corresponding to the third dimension. The proof of ”large”
homoclinic orbits and the transition of the periodic orbits into the homoclinic one are
only discussed under an additional mathematical hypothesis.

5.1 Local Flow Near The Canard Point

We start by recalling the three-dimensional system. The system we discuss in this chapter
reads

ẋ1 = f1(x2)− c1x1;
ẋ2 = f2(x1)− (c2 + h(y))x2;

ẏ = ε[g(x1)− (c3 + λ)y].

(5.1)

Since we are interested in transferring the results of the last chapter, we reduce our
three-dimensional system locally to the canard point using center manifold theory, see
for instance [23]. As usual we extend the system by the two equations ε̇ = 0 and λ̇ = 0
to obtain the five-dimensional system

ẋ1 = f1(x2)− c1x1;
ẋ2 = f2(x1)− (c2 + h(y))x2;

ẏ = ε[g(x1)− (c3 + λ)y],

ε̇ = 0,

λ̇ = 0.

(5.2)

Let F (x, y) = f2(
1
c1
f1(x)) − (c2 + h(y))x be defined as before and let Gλ(x1, x2, y) =

g(x1)− (c3 + λ)y.
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5 Three-dimensional Approach

Proposition 5.1
Consider system (5.2). Then there exists a four-dimensional Cr center manifold CM ,
r < ∞, corresponding to the canard point (x1, x2, y, ε, λ) = ( 1

c1
f1(xc), xc, yc, 0, 0) such

that the flow on CM is locally topologically equivalent to the system

ξ̇ = −ηh1(ξ, η, λ̃, ε̃) + ξ2h2(ξ, η, λ̃, ε̃) + ε̃h3(ξ, η, λ̃, ε̃),

η̇ = ε̃(ξh4(ξ, η, λ̃, ε̃)− λ̃h5(ξ, η, λ̃, ε̃) + ηh6(ξ, η, λ̃, ε̃)),

˙̃ε = 0,
˙̃λ = 0,

(5.3)

where

h3(ξ, η, λ̃, ε̃) = O(ξ, η, λ̃, ε̃),

hk̃(ξ, η, λ̃, ε̃) = 1 +O(ξ, η, λ̃, ε̃), k̃ = 1, 2, 4, 5.

Proof.
We apply the method of center manifold reduction as described in [23]. As the computa-
tions are straight and standard but lengthy and tedious, they have been performed using
Mathematica [53] and have been checked by hand. We only present the result. Since we
expand our system in a neighborhood of the canard point, define x̃1 = x1 − 1

c1
f1(xc),

x̃2 = x2 − xc and ỹ = y − yc. The Jacobian of (5.2) at the canard point has one
negative eigenvalue and four zero eigenvalues, so that the desired center manifold is
four-dimensional. The geometric multiplicity of the zero eigenvalues is three, so that
we have to chose a basis of generalized eigenvectors, such that the linear part of the
bifurcating system is in block diagonal form. For the variables on the center manifold
we obtain

v =
c1f ′

2(
1
c1

f1(xc))

f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21
x̃1 +

c21
f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21
x̃2+

+
c21xch′(yc)

(f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21)
2 (f

′
1(xc)f

′
2(

1
c1
f1(xc)) + c21 + c1) ỹ,

w = − c21xch′(yc)
f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21
ỹ.

(5.4)

After applying the center manifold reduction the resulting system on the center manifold
reads

v̇ = w (1 +O(v, w, ε, λ)) +

+ v2 (1
2

c21
f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21

∂2

∂x2F (xc, 0) +O(v, w, ε, λ)) +

+ ε O(v, w, ε, λ),

ẇ =
c21h

′(yc)xc

f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21
ε [ − v ( 1

c1
f ′
1(xc)g

′( 1
c1
f1(xc)) +O(v, w, ε, λ))+

+ λ (yc +O(v, w, ε, λ))−
− w (ĥ6(v, w, ε, λ))],

ε̇ = 0, λ̇ = 0.
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5.2 Periodic Orbits I

Now we apply a coordinate change according to

v =
2[f ′

1(xc)f ′
2(

1
c1

f1(xc))+c21]

c21
∂2

∂x2
F (xc,0)

ξ, w = −2[f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21]

c21
∂2

∂x2
F (xc,0)

η,

ε =
f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21

c1h′(yc)xcf ′
1(xc)g′( 1

c1
f1(xc))

ε̃, λ =
2[f ′

1(xc)f ′
2(

1
c1

f1(xc))+c21][f
′
1(xc)g′( 1

c1
f1(xc))]

c31
∂2

∂x2
F (xc,0)yc

λ̃.

(5.5)

The result follows. �

We drop the two equations ˙̃ε = 0 and ˙̃λ = 0 again and obtain the normal form of [36]
for the local flow near the canard point. The last proposition guarantees that the flow
local to the canard point on the center manifold is equivalent to the flow local to the
canard point in the last chapter, respectively to the local flow in [36]. The existence of
small periodic orbits is thus guaranteed like before by a Hopf bifurcation. As λ̃ varies
these periodic orbits will grow, eventually leaving the neighborhood of the canard point
and not lying entirely in the center manifold CM anymore.

For every fixed pair (ε̂, λ̂) denote the plane {(v, w, ε, λ) : ε̃ = ε̂, λ̃ = λ̂} ∩ CM
by CMε̂,λ̂. Every CMε̂,λ̂ defines a two-dimensional invariant manifold, which can be
written in (x1, x2, y) - coordinates and thus lying in the three-dimensional (x1, x2, y) -
space.

5.2 Periodic Orbits I

Since we are interested in carrying over the findings of the last chapter we construct a
two-dimensional manifold transversal to the flow of (5.1). Remember the layer problem
(3.12) in chapter 3. We need the definition of monotone systems here.

Definition 5.2 (Type R
n
+ monotone systems)

The solution operator Φt of an autonomous ordinary differential equation preserves the
partial ordering ≤ and is type R

n
+ monotone, if whenever x ≤ y then Φt(x) ≤ Φt(y) for

all t ≥ 0 (wherever defined).

After the definition we state a lemma from Smith [48].

Lemma 5.3
Consider ẋ = f(x), where f ∈ C1(U), U open and convex in R

n. Then Φt preserves the
partial ordering ≤ for t ≥ 0 if and only if Df(x) has nonnegative off-diagonal elements
for every x ∈ U .

As a direct consequence we state the following lemma.
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5 Three-dimensional Approach

Lemma 5.4
System (3.12) is type R

2
+ monotone.

Proof.
Consider the Jacobian (3.6) and apply lemma 5.3. �

In order to parameterize the periodic orbits in a similar way like that in the two-
dimensional setting we construct a two-dimensional manifold, which we use in a similar
way like a Poincarè section. For every y ∈ (h−1(−c2),∞) there exists a positive invariant

rectangle due to theorem 3.6 with vertices (0, 0) and ( C̃
c̃1
, C̃
c̃2
). Furthermore

∂

∂x1

[f1(x2)− c1x1]
∂

∂x2

[f2(x1)− (c2 + h(y))x2] = (−c1)(−c2 − h(y)) > 0

and we conclude, that there exists no periodic orbit for the layer problem due to the
negative Bendixson criterion. The theorem of Poincarè-Bendixson together with the
monotonicity of solutions now guarantees the existence of a monotone heteroclinic orbit
connecting the saddle point with the positive stable node for every y ∈ (ytr, yc). For
fixed y ∈ (ytr, yc) this heteroclinic orbit can be parameterized by its length. Let L
denote its complete length. The central point py of the heteroclinic orbit is defined as
the point corresponding to L

2
and we consider the associated straight line orthogonal to

that heteroclinic orbit at py. The conjunction of these lines for every y ∈ (ytr, yc) defines
a two-dimensional C∞ manifold in the three-dimensional (x1, x2, y)-space. Denote the so
constructed manifold by Mft. The manifold Mft is by construction orthogonal to CM0,λ̂

for every |λ̂| < λ0, λ0 sufficiently small. Additionally define the one-dimensional smooth
manifold P̃ consisting of the conjunction of points py, y ∈ (ytr, yc). A sketch of this
construction is shown in figure 5.1. On the left hand side we see the (x1, x2) space for
fixed y ∈ (ytr, yc), the point py and the straight line orthogonal to the heteroclinic orbit.
The right hand side shows Mft in the three-dimensional setting.

Lemma 5.5 (Transversality)
There exists a band B of uniform width larger zero on Mft symmetric around P̃ such
that the flow of (5.1) is transversal to Mft at every point of B for every ε̃ ∈ (0, ε0], ε0
sufficiently small.

Proof.
We first construct a band B̃ such that the flow of the layer problem is transversal to

Mft at every point of B̃ for every y ∈ (ytr, yc).

Fix y ∈ (ytr, yc) and consider the point py. By construction the flow of the layer
problem is orthogonal to Mft at py. Let the associated straight line be written as
py + ıy · vy, ‖vy‖ = 1. Then there exists a ıy,max such that the flow of the layer problem
is transversal to Mft at every point py + ıy · vy for |ıy| < ıy,max. Let ı̃ =

1
2
( min
y∈(ytr,yc)

ıy,max).

Define the conjunction of py + ıy · vy for all y ∈ (ytr, yc) and |ıy| < ı̃ as B̃.
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5.2 Periodic Orbits I

x1

x2

p
y

heteroclinic orbit

P

Mft

y

x

x

1

2

Figure 5.1: Left hand side: The heteroclinic orbit for fixed y ∈ (ytr, yc), the point py and
the orthogonal straight line. Right hand side: The manifold Mft.

Since the vector field is changed only by O(ε) for ε > 0 there exists a band B,
which fulfills the statements of the lemma. �

P

Mft

B

Figure 5.2: A sketch of B on Mft.

A sketch of B is shown in figure 5.2. In the following the parameter A is meant to be the
parameter defined according to [36] for system (5.3) on the center manifold, (see also
(4.8)). As a consequence of the analysis of the flow local to the canard point we obtain
the following statement.

Proposition 5.6 (”Small” Periodic Orbits)
Assume that A �= 0 and that ρ and ε0 are sufficiently small. Consider s ∈ (yc, yc−ρ) and
ε ∈ (0, ε0). There exists a Ck smooth function λ(s,

√
ε) and a point (x1,o, x2,o, s) ∈ B

such that the orbit passing through (x1,o, x2,o, s) is periodic if and only if λ = λ(s,
√
ε).

Proof.
Consider the system on the center manifold (5.3). Proposition 4.3 in [36] (see also
proposition 4.21 in chapter 4) guarantees, that there exists a Ck smooth function
λ̃(s̃,

√
ε̃) and a ρ̃ > 0 sufficiently small, such that there exists a periodic orbit passing
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5 Three-dimensional Approach

through (0, s̃) for s̃ ∈ (0, ρ̃) on the center manifold if and only if λ̃ = λ̃(s̃,
√
ε̃).

The interval (0, ρ̃) on the center manifold corresponds to the interval (yc, yc − ρ)
for a suitable ρ > 0, since we can express y by η. Equating the two equations for w in
(5.4) and (5.5) we obtain

− c21xch
′(yc)

f ′
1(xc)f ′

2(
1
c1
f1(xc)) + c21

(y − yc) = −2[f ′
1(xc)f

′
2(

1
c1
f1(xc)) + c21]

c21
∂2

∂x2F (xc, 0)
η,

and therefore

y =
2[f ′

1(xc)f
′
2(

1
c1
f1(xc)) + c21]

2

c41xch′(yc) ∂2

∂x2F (xc, 0)
η + yc.

Note that the coefficient in front of η is negative, since ∂2

∂x2F (xc, 0) is negative as xc is a
maximum of F (x, 0) considered as a function of x.

The interval (0, ε̃0] corresponds to the interval (0, ε0] for a suitable ε0, since ε̃ re-
lates to ε as given by equation (5.5).

Now fix ε ∈ (0, ε0] and thus also the associated ε̃ ∈ (0, ε̃0]. Then there exists an
associated CMε̃,λ̃(s̃,

√
ε̃) which contains the periodic orbit and is transversal to Mft.

Therefore the periodic orbit will intersect Mft at one point (x1,o, x2,o, s) ∈ B. This
proves the statement. �

The last proposition guarantees the existence of ”small” periodic orbits for s near yc due
to the center manifold reduction. Like in the two-dimensional case we continue with the
proof of the existence of an homoclinic orbit with respect to the homoclinic point.

5.3 Homoclinic Orbit

The general idea for the construction of the homoclinic orbit is to follow the forward
trajectory in the fast unstable manifold of the homoclinic point. Since this trajectory
is exponentially attracted by the opposite branch of the slow manifold it will arrive in
a neighborhood of the canard point. In accordance to the last chapter we denote the
branch of S

(2)
3D (for definition see chapter 3) between the canard point and the transcrit-

ical bifurcation point by Sr,0 an its perturbed equivalence by Sr,ε. Equivalently denote

the stable branch of S
(2)
3D on the other side of the canard point by Sl,0 an its perturbed

equivalence by Sl,ε. In the two-dimensional case in the last chapter we followed the back-
ward trajectory emanating from the homoclinic point. Here we substitute this backward
trajectory by the stable manifold W s(Sr,ε), whose existence is guaranteed by Fenichel’s
second theorem, see theorem 2.8. The idea is to use the information of the flow on the
center manifold to patch the forward trajectory with the stable manifold W s(Sr,ε).
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5.3 Homoclinic Orbit

Preliminary Constructions

We construct another manifold, which is used in a similar way like a Poincarè section,
on which we can control the distance of Sl,ε and Sr,ε. Let ε0 and λ0 be sufficiently small
and fix ε ∈ (0, ε0] and λ ∈ (−λ0, λ0). The associated ε̃ and λ̃ are thus also fixed with
equation (5.5) and we consider CMε̃,λ̃. Now define the two-dimensional manifold Mps

containing the η-axis of CMε̃,λ̃ and orthogonal to CMε̃,λ̃ defined for every y, where CMε̃,λ̃

is defined. Both Sl,ε and Sr,ε enter CMε̃,λ̃ and intersect Mps∩CMε̃,λ̃, which we know from
the two-dimensional case. Note, that there are some technical difficulties in following the
forward trajectory as well as W s(Sr,ε) near the canard point, since Fenichel theory is no
longer valid. However, the center manifold reduction gives a description of the flow near
CMε̃,λ̃.

Theorem 5.7 (Homoclinic Orbit)
Suppose ε0 is sufficiently small and fix ε ∈ (0, ε0]. Then there exists a smooth function
λHo(

√
ε) such that equation (5.1) has an unique homoclinic orbit with respect to the

homoclinic point.

Proof.
The center manifold reduction above (proposition 5.1) implies that system (5.1) is locally
topologically equivalent to

u̇ = −f ′
1(xc)f ′

2(
1
c1

f1(xc))+c21

c1
u,

ξ̇ = −ηh1(ξ, η, λ̃, ε̃) + ξ2h2(ξ, η, λ̃, ε̃) + ε̃h3(ξ, η, λ̃, ε̃),

η̇ = ε̃(ξh4(ξ, η, λ̃, ε̃)− λ̃h5(ξ, η, λ̃, ε̃) + ηh6(ξ, η, λ̃, ε̃)).

(5.6)

As already mentioned, we follow the forward trajectory emanating from a point of the
fast unstable manifold of the homoclinic point in dependence of λ. This trajectory is
exponentially attracted by Sl,ε and therefore arrives in a neighborhood of the canard

point O(e−
K
ε ) close to CMε̃,λ̃, giving rise to a trajectory in (u, ξ, η)-coordinates. The

projection along u onto CMε̃,λ̃ defines a trajectory γπ entering V , the blow-up region
in CMε̃,λ̃, close to Sl,ε. With the same arguments as in the two-dimensional case we
retrieve trajectories γπ,1 resp. γπ,2 in the charts K1 and K2 and finally a point (0, ηπ,2),
where γπ,2 crosses the η2-axis. Let (0, ηp,2) be the intersection point of the trajectory
in K2 associated with Sl,ε and the η2-axis. Since γπ,1 pass through Σout

l,1 , there exists a

K > 0 such that |ηp,2 − ηπ,2| = O(e−
K
ε ) as well as | ∂

∂λ2
(ηp,2 − ηπ,2)| = O(e−

K
ε ).

Now consider Sr,ε and the associated stable manifold W s(Sr,ε). As Sr,ε reaches a
neighborhood of CMε̃,λ̃, so does W s(Sr,ε) and we can express W s(Sr,ε) in (u, ξ, η)-
coordinates. For ε = 0 the stable manifold W s(Sr,ε) intersects CMε̃,λ̃ orthogonally.

Now note, that Fenichel theory is valid until Sr,ε reaches V at some point (0, ξ̂, η̂).

On the plain {(u, ξ, η) : ξ = ξ̂} the stable manifold W s(Sr,ε) is given as a graph
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5 Three-dimensional Approach

O(ε) close to that of W s(Sr,0). Now we take the projection of every point p̃W s in

W s(Sr,ε)∩ {(u, ξ, η) : ξ = ξ̂} with |p̃W s − (u, ξ, η)T | = O(e−
K
ε ) along u onto CMε̃,λ̃. This

projection can be expressed by the points (0, ξ̂, η̃) with η̃ ∈ (η̂ −O(e−
K
ε ), η̂ +O(e−

K
ε )).

Consider the backward flow of every point (0, ξ̂, η̃). This gives rise to trajectories
in K1 and K2 again with every trajectory in K1 passing through Σin

l,1. Let (0, ηπ̂,2) be
the intersection point of such a trajectory in K2 with the η2-axis and let (0, ηp̂,2) be the
intersection point of the trajectory in K2 associated with the backward trajectory on
Sr,ε. Then again we get |ηp̂,2 − ηπ̂,2| = O(e−

K
ε ) as well as | ∂

∂λ2
(ηp̂,2 − ηπ̂,2)| = O(e−

K
ε ).

The original forward trajectory passes O(e−
K
ε ) close to Sl,ε, eventually intersecting Mps.

On the other hand we take the backward flow of p̃W s in W s(Sr,ε) ∩ {(u, ξ, η) : ξ = ξ̂}
with |p̃W s − (u, ξ, η)T | = O(e−

K
ε ), and its intersection with Mps. Since this backward

flow is repelled by the center manifold in u direction and remains close to Sr,ε in η
direction, the intersection of this backward flow with Mps is a two-dimensional manifold,

which can be represented by a graph in u and is defined for all u with |u| = O(e−
K
ε ).

We denote this intersection by pW s . Figure 5.3 shows a sketch of the construction.

Ws

Sr, ε

l,εS

Mps

homoclinic point

Figure 5.3: A three-dimensional sketch of the forward trajectory of the homoclinic point
and of the stable manifold of Sr,ε.

Furthermore denote the intersection of Sl,ε with Mps by pSl
and the intersection of Sr,ε

with Mps by pSr . For a sketch of the situation on Mps see figure 5.4. Denote the η
component of ptr, pSl

and pSr by ptr,η, pSl,η and pSr,η. For all ε, λ fixed pick pbt ∈ pW s

by the condition pbt,u = ptr,u, where pbt,u, resp. ptr,u, is the u component of pbt, resp. ptr.
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5.3 Homoclinic Orbit

Accordingly denote the η component of pbt by pbt,η. Then

|ptr − pbt| = |ptr,η − pbt,η| ≤
≤ |ptr,η − pSl,η|+ |pSl,η − pSr ,η|+ |pSr,η − pW s,η|.

Mps

ε λ,
CM

W
sp

p
bt

Sr
p

lS
p

p
tr

Figure 5.4: The manifold Mps with the points ptr, pbt, pSl
and pSr .

The right hand side can be completely translated into the blow-up space, since the η-axis
corresponds to the η2-axis in chart K2. We obtain

|ηp,2 − ηπ,2|+ |ηp,2 − ηp̂,2|+ |ηp̂,2 − ηπ̂,2| = |ηp,2 − ηp̂,2|+O(e−
K
ε )

and

| ∂
∂λ2

(ηp,2 − ηπ,2)|+ | ∂
∂λ2

(ηp,2 − ηp̂,2)|+ | ∂
∂λ2

(ηp̂,2 − ηπ̂,2)| = | ∂
∂λ2

(ηp,2 − ηp̂,2)|+O(e−
K
ε )

as well as

| ∂
∂r2

(ηp,2 − ηπ,2)|+ | ∂
∂r2

(ηp,2 − ηp̂,2)|+ | ∂
∂r2

(ηp̂,2 − ηπ̂,2)| = | ∂
∂r2

(ηp,2 − ηp̂,2)|+O(e−
K
ε ).

Thus |ηπ,2−ηπ̂,2| = 0 can be solved by the implicit function theorem for λ2 as a function

of r2, called λHo(r2). Furthermore we retrieve |λHo(
√
ε) − λc(

√
ε)| < O(e−

K
ε ) as in the

two-dimensional setting (see proof of theorem 4.22). Here λc(
√
ε) is the function defined

as in the two-dimensional case for the system on the center manifold as a function of√
ε. This proves the statement. �
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5 Three-dimensional Approach

5.4 Periodic Orbits II

We return to the construction of periodic orbits. Since we transfer the approach from the
two-dimensional setting, we take points in B, whose forward and backward trajectories
arrive in a neighborhood of the canard point. The line P̃ in B is the intersection of the
unstable manifold W u(Sr,0) of the critical manifold Sr,0 with Mft. Therefore there exists
a one-dimensional manifold P̃ε lying in B which is O(ε) close to P̃ for every ε ∈ (0, ε0],
which has the property that backward trajectories of points in P̃ε are lying on the
unstable manifold W u(Sr,ε) and thus are exponentially attracted by Sr,ε. The forward
trajectory emanating from a point of the fast unstable manifold of the homoclinic point
intersects P̃ε at some point. Let s∗(λ) be the y component of this intersection point. As
in the two-dimensional setting, this function has an infimum s∗− and a supremum s∗+ on

P̃ε for λ ∈ (−λ0, λ0). We note, that backward trajectories of points in B for a given y
component lying in (s∗+ + s̃0, yc − s̃0) do not reach a neighborhood of the canard point,

if their distance to P̃ε is not sufficiently small. For given ε, λ let Bε,λ be a band in B
symmetric with respect to P̃ε and O(ε) close to P̃ε. Define the section Δm by

Δm := {(x1, x2, s, λ, ε) : ε ∈ (0, ε0], λ ∈ (−λ0, λ0),
s ∈ (s∗+ + s̃0, yc − s̃0), (x1, x2, s) ∈ Bε,λ},

where s̃0 > 0 is sufficiently small and fixed. Again we consider forward and backward
trajectories emanating from points in Δm. We construct periodic orbits of ”medium”
size.

Proposition 5.8 (”Medium” Periodic Orbits)
Consider s ∈ (s∗+ + s̃0, yc − s̃0) and ε ∈ (0, ε0]. There exists a Ck smooth function
λ(s,

√
ε) and a unique point (x1,o, x2,o, s) ∈ Bε,λ, unique with respect to its x1 and x2

component, such that the orbit of (5.1) passing through (x1,o, x2,o, s) is periodic if and
only if λ = λ(s,

√
ε).

Proof.
Fix s ∈ (s∗+ + s̃0, yc − s̃0), ε ∈ (0, ε0] and λ ∈ (−λ0, λ0), the corresponding ε̃ and λ̃ are
also fixed. We consider the forward and backward trajectories emanating from points
on the straight line Lm = {(x1, x2, s) : (x1, x2, s) ∈ Bε,λ}.

The forward trajectories of each of those points are exponentially attracted by
Sl,ε, thus reaching a neighborhood of the canard point O(e−

K
ε ) close to CMε̃,λ̃ and

eventually intersect Mps. Let the conjunction of the u components of those intersection
points be the interval (û−, û+).

Not all of the backward trajectories of points in Lm reach a neighborhood of the
canard point. However, close to P̃ε ∩ Lm they do, since the backward trajectory
of P̃ε ∩ Lm lies in the unstable manifold of Sr,ε, thus is exponentially attracted by
Sr,ε and reaches the neighborhood of the canard point. Continuity arguments now
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5.4 Periodic Orbits II

guarantee, that there is an interval in Lm, which is O(e−
K
ε ) close around P̃ε ∩ Lm,

such that the backward trajectory of each of the points in this interval reaches a
neighborhood of the canard point. On the plain {(u, ξ, η) : ξ = ξ̂} defined in the proof
of theorem 5.7 the conjunction of the intersection points of these backward trajectories
with {(u, ξ, η) : ξ = ξ̂} can be written as a graph O(ε) close to that of that of W s(Sr,0),
since every trajectory is exponentially attracted by W s(Sr,ε). As for W s(Sr,ε) in the
proof of theorem 5.7 we continue this graph to Mps. Figure 5.5 shows a sketch of the
construction. This intersection can be written as a graph in u and is defined for all u
with |u| = O(e−

K
ε ). Denote this intersection by pLm . Now define the map, which maps

the interval |u| = O(e−
K
ε ) to itself according to the forward trajectory emanating from

the points in pLm to the u component of the intersection of this trajectory with Mps

again. This map is C∞ and a contraction. Therefore we get an unique fixed point ufix.
There is an unique trajectory emanating from the point in pLm , whose u component is
ufix, defining also an unique point pufix

in Lm.

Mps

Mft

l,εS

Sr, ε

Figure 5.5: A three-dimensional sketch of the forward and backward trajectories of points
in Lm.

Fix ε ∈ (0, ε0]. For λ ∈ (−λ0, λ0) we patch the forward and backward trajectories
emanating from pufix

in dependence of s and λ. The forward trajectory reaches a
neighborhood of the canard point and can be expressed in (u, ξ, η) coordinates. The
projection along u onto CMε̃,λ̃ defines a trajectory γpu entering V , the blow-up region
in CMε̃,λ̃, close to Sl,ε. This gives rise to trajectories in charts K1 and K2 and as
always we obtain (0, ηpu,2) as the intersection of the trajectory in K2 with the negative
η2-axis. The backward trajectory also reaches a neighborhood of the canard point and
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5 Three-dimensional Approach

can be expressed in (u, ξ, η) coordinates. The projection along u onto CMε̃,λ̃ defines a
trajectory γp̂u entering V , the blow-up region in CMε̃,λ̃, close to Sr,ε. We obtain (0, ηp̂u,2)
as the intersection of the associated trajectory in chart K2 with the negative η2-axis.

Let pf be the intersection point of the forward trajectory emanating from pufix

with Mps and let pf̂ be the intersection point of the backward trajectory emanating
from pufix

with Mps. As before pSl
is the intersection point of Sl,ε with Mps and pSr is

the intersection point of Sr,ε with Mps. A sketch of the situation on Mps is shown in
figure 5.6. Denote the η, component of pf , pf̂ , pSl

and pSr by pf,η, pf̂ ,η, pSl,η and pSr,η.
We obtain

|pf − pf̂ | = |pf,η − pf̂ ,η| ≤
≤ |pf,η − pSl,η|+ |pSl,η − pSr,η|+ |pSr,η − pf̂ ,η|.

Mps

ε λ,
CM

Sr
p

lS
p

p
f

f
p

Figure 5.6: The manifold Mps with the points pf , pf̂ , pSl
and pSr .

The right hand side can be completely translated into the blow-up space, since the η-axis
corresponds to the η2-axis in chart K2. We obtain

|ηp,2 − ηpu,2|+ |ηp,2 − ηp̂,2|+ |ηp̂,2 − ηp̂u,2| = |ηp,2 − ηp̂,2|+O(e−
K
ε ).

and

| ∂
∂λ2

(ηp,2 − ηpu,2)|+ | ∂
∂λ2

(ηp,2 − ηp̂,2)|+ | ∂
∂λ2

(ηp̂,2 − ηp̂u,2)| = | ∂
∂λ2

(ηp,2 − ηp̂,2)|+O(e−
K
ε )

as well as

| ∂
∂r2

(ηp,2 − ηpu,2)|+ | ∂
∂r2

(ηp,2 − ηp̂,2)|+ | ∂
∂r2

(ηp̂,2 − ηp̂u,2)| = | ∂
∂r2

(ηp,2 − ηp̂,2)|+O(e−
K
ε ).

Thus |ηpu,2−ηp̂u,2| = 0 can be solved by the implicit function theorem for λ2 as a function
of s and r2. The result follows. �
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5.4 Periodic Orbits II

For the construction of ”large” periodic orbits, we would have to adapt theorem 4.20
from the two-dimensional case into the three-dimensional setting, i.e. we investigate
properties of trajectories entering a neighborhood of the homoclinic point. As in the
two-dimensional case we consider a neighborhood of a normally hyperbolic subset of
the slow manifold near the homoclinic point. There we write our system in Fenichel
coordinates. The resulting equations are

˙̃v = Λ(ṽ, w̃, z̃, ε, λ)ṽ,
˙̃w = Θ(ṽ, w̃, z̃, ε, λ)w̃,
˙̃z = ε(h̃(z̃, ε)z̃ + Ξ(ṽ, w̃, z̃, ε, λ)(ṽ, w̃)),

where Λ(ṽ, 0, 0, 0, 0) < 0, Θ(0, w̃, 0, 0, 0) > 0 and h̃(0, 0) < 0. After a simple time
transformation we obtain

v̇ = Λ̃(v, w, z, ε, λ)v,

ẇ = Θ̃(v, w, z, ε, λ)w,

ż = ε(−z + Ξ̃(v, w, z, ε, λ)(v, w)),

Now define the section Δ by

Δ = {(v, w, z) : 0 ≤ v ≤ �, 0 ≤ w ≤ �, 0 ≤ z ≤ �}.
Theorem 5.9 (Trajectories Near The Homoclinic Point)
There exist � > 0, ε0 > 0 and λ0 > 0 sufficiently small, such that for every ε ∈ (0, ε0]
and |λ| < λ0 the following statement holds. Every trajectory entering Δ parameterized
such that (v(0), w(0), z(0)) = (δ1, δ2, �) leaves Δ after time T ≥ 1

μ̂
ln ( �

δ2
). For δ2 → 0 it

holds that

|v(T )| → 0, |z(T )| → 0.

Proof.
We start by estimating the time, for which the trajectory (v(t), w(t), z(t)) with ini-
tial condition (v(0), w(0), z(0)) = (δ1, δ2, �) stays in Δ. This time is given here by the
evolution of w(t). Note that in Δ we obtain the following estimates for 0 < μ < ∞,
0 < μ̂ < ∞.

|Λ̃(v, w, z, ε, λ)| ≤ −μ, |Θ̃(v, w, z, ε, λ)| ≤ μ̂.

Therefore we have

|w(T )| = � = |δ2e
∫ T
0 Θ̃(v,w,z,ε,λ)dt| ≤ δ2e

μ̂T

The estimation for T then reads

T ≥ 1
μ̂
ln ( �

δ2
).
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5 Three-dimensional Approach

For v(T ) we get

|v(T )| = |δ1e
∫ T
0 Λ̃(v,w,z,ε,λ)dt| ≤ δ1(

δ2
�
)
μ
μ̂ .

In Δ we have (see [27]) for some q > 0

|Ξ̃(v(t), w(t), z(t), ε, λ)(v(t), w(t))| ≤ c|v(t)||w(t)| ≤ q�δ1e
−μt.

And finally we obtain for |z(T )| for some q̃ > 0

|z(T )| = |�e−εT +
∫ T

0
e−ε(T−t)εΞ̃(v(t), w(t), z(t), ε, λ)(v(t), w(t))dt| ≤ �(e−εT + q̃e−μT ).

Therefore

|z(T )| ≤ �[( δ2
�
)

ε
μ̂ + q̃( δ2

�
)
μ
μ̂ ]

This proves the statement. �

The last theorem can be seen as the C0 version of theorem 4.20 for the three-dimensional
setting. A picture of the situation is shown in figure 5.7.

Δ

Figure 5.7: A sketch of the flow in Δ.
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5.4 Periodic Orbits II

Parenthesis: On the C1 version of theorem 5.9

Theorem 5.9 shows, that for s ∈ (s∗(λHo(
√
ε)), s∗+ + ŝ0) the intervals around Pε in B

for which the backward trajectories reach a neighborhood of the canard point become
smaller and smaller as s → s∗(λHo(

√
ε)). The backward flow of such an interval passes

through Δ, leaving Δ as a two-dimensional manifold near W s(Sr,ε). A C1 version of
theorem 5.9 would allow to take W s(Sr,ε) as the limiting exit manifold of backward
trajectories as s passes through s∗(λHo(

√
ε)). The proof of such a C1 version would

involve the same ingredients as the proof of the Exchange Lemma (see [27, 30]) and is
omitted in the context of this work. For the reason of completeness in transferring the
results of the two-dimensional setting, we formulate the hypothesis:

(H) A C1 version of theorem 5.9 holds.

Under the assumption of (H) the proof of ”large” periodic solutions limiting in the
homoclinic orbit is possible.

End Parenthesis

Now follow the forward flow of every such trajectory passing through Δ in the
way as described in proposition 5.9 and take its intersection with Mft For s ∈
(s∗(λHo(

√
ε)), s∗+ + ŝ0) define Bε,λ as the conjunction of this intersection points. For

s ∈ (s∗− − ŝ0, s
∗(λHo(

√
ε))) define Bε,λ as only the line Pε. Then we obtain the following

statement under the hypothesis (H).

Proposition 5.10 (”Large” Periodic Orbits)
Assume that (H) holds. Consider ε ∈ (0, ε0] and s ∈ (s∗(λHo(

√
ε)), s∗+ + ŝ0). There

exists a Ck smooth function λ(s,
√
ε) and a unique point (x1,o, x2,o, s) ∈ Bε,λ, unique

with respect to its x1 and x2 component, such that the orbit of (5.1) passing through
(x1,o, x2,o, s) is periodic if and only if λ = λ(s,

√
ε). Furthermore

lim
s→s∗(λHo(

√
ε))
(x1,o, x2,o, s) = (x1,Ho, x2,Ho, s

∗(λHo(
√
ε))).

Proof.
Fix s ∈ (s∗− − ŝ0, s

∗
+ + ŝ0), ε ∈ (0, ε0] and λ ∈ (−λ0, λ0). Again consider the forward flow

of the straight line Lm = {(x1, x2, s) : (x1, x2, s) ∈ Bε,λ} (Lm reduces to a point for s >
s∗(λHo(

√
ε))). For s ∈ (s∗(λHo(

√
ε)), s∗++ŝ0) take the backward flow of Lm = {(x1, x2, s) :

(x1, x2, s) ∈ Bε,λ} and for s ∈ (s∗− − ŝ0, s
∗(λHo(

√
ε))) substitute this backward flow

by the backward flow on W s(Sr,ε). Then the proof continues exactly like the proof of
theorem 5.8. The result follows. �

We combine our observations in the following theorem.
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5 Three-dimensional Approach

Theorem 5.11 (Family Of Periodic Orbits)
Assume that (H) holds. Suppose ε0 is sufficiently small. Then there exists a smooth
family of periodic solutions

(λ(s,
√
ε),Γ(s,

√
ε)), ε ∈ (0, ε0), s ∈ (s∗(λHo(

√
ε)), yc).

Proof.
As in the two-dimensional case, we have overlapping domains for the small, medium and
large periodic solutions as well as the analogously defined uniqueness property for every
s ∈ (s∗(λHo(

√
ε)), yc). The result follows. �
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6 Global Behavior Of Prototypical
Examples

In this chapter we return to the canonical form (4.5) of the two-dimensional system.
The aim is to sketch some aspects of the global behavior. First we investigate properties
that lead to a Takens-Bogdanov bifurcation in some point (ε, λ) of the parameter space.
We find that the appearance of the Takens - Bogdanov bifurcation is rather generic in
the sense that the genericity conditions form manifolds with higher co-dimensions in the
parameter space. Afterwards, we consider four different examples which correspond to
the four cases defined by either A > 0 or A < 0 near the canard point and either stable
or unstable closed orbits near the Takens - Bogdanov point. We show that the line of
Hopf points, i.e. the curve in the parameter space at which the canard point has two
purely imaginary eigenvalues, connects the origin, where the canard bifurcation takes
place, with the Takens - Bogdanov bifurcation point. Numerical analysis reveals that
also the homoclinic line starting at the Takens - Bogdanov bifurcation point connects
to the origin. Thus, if the stability of the lines do not match, a global bifurcation is to
expect. The detailed analysis of these systems is by far out of the scope of the present
work. We give a detailed picture of the global behavior in every case using numerical
simulations. All simulations within this chapter are performed with XPPAUT, [10].

6.1 Takens - Bogdanov Bifurcation

Recall the canonical form (4.5) introduced in chapter 3. For simplicity reasons we use
here x, y as variables and ε, λ as parameters. We consider

ẋ = −y(1 + h̃1(x, y)) + x2(1 + h̃2(x)),

ẏ = ε[x(1 + h̃3(x))− λ− κy],
(6.1)

where h̃1(x, y) = O(x, y), h̃2(x) = O(x) and h̃3 = O(x) in accordance to the functions hi,
i = 1, ..., 5 given by (4.7). Now assume that there exists a λ

TB
such that for every ε > 0

the isoclines are tangent to each other at the point (x
TB

, y
TB

). Then the determinant of
the Jacobian

J =

(
2x(1 + h̃2(x)) + x2h̃′

2(x)− y∂1h̃1(x, y) −(1 + h̃1(x, y))− y∂2h̃1(x, y)

ε(1 + h̃3(x) + xh̃′
3(x)) −κε

)
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6 Global Behavior Of Prototypical Examples

vanishes at (x
TB

, y
TB

). Furthermore assume, that 2x
TB

(1 + h̃2(xTB
)) + x2

TB
h̃′
2(xTB

) −
y
TB

∂1h̃1(xTB
, y

TB
) > 0 and κ > 0. Then there exists a ε

TB
= 1

κ
[2x

TB
(1 + h̃2(xTB

)) +

x2
TB

h̃′
2(xTB

) − y
TB

∂1h̃1(xTB
, y

TB
)] > 0 such that the trace of the Jacobian vanishes at

(x
TB

, y
TB

, ε
TB

, λ
TB

) as well. Define W (x) = 1 + h̃3(x) + xh̃′
3(x) and W = W (x

TB
) and

note that W �= 0. With these definitions the Jacobian at (x
TB

, y
TB

, ε
TB

, λ
TB

) reads

JTB =

(
κε

TB
−κ2

W
ε
TB

Wε
TB

−κε
TB

)
.

We transform our system such that the point (x
TB

, y
TB

, ε
TB

, λ
TB

) is shifted to the origin.
Then the system reads

˙̃x = −(ỹ + y
TB

)(1 + h̃1(x̃+ x
TB

, ỹ + y
TB

)) + (x̃+ x
TB

)2(1 + h̃2(x̃+ x
TB

)),

˙̃y = (ε̃+ ε
TB

)[(x̃+ x
TB

)(1 + h̃3(x̃+ x
TB

))− (λ̃+ λ
TB

)− κ(y + y
TB

)].
(6.2)

We follow here Kuznetsov theorem 8.4 [37] and give requirements for (BT.0) - (BT.3)
defined there. Under the assumption that there exists such a λ

TB
as described above we

have already that

2x
TB

(1 + h̃2(xTB
)) + x2

TB
h̃′
2(xTB

)− y
TB

∂1h̃1(xTB
, y

TB
) > 0 and κ > 0 ⇒ (BT.0).(6.3)

The generalized eigenvectors of the Jacobian at the critical point are given by(
κ
W

)
,

(
1

2ε
TB− W

2κε
TB

)
.

We define M as the matrix with the eigenvectors as columns and we obtain

M =

(
κ 1

2ε
TB

W − W
2κε

TB

)
, M−1 =

(
1
2κ

1
2W

ε
TB

− κ
W
ε
TB

)
.

Transforming our system according to the transformation (u, v)T = M(x̃, ỹ)T results
in a system of the form (8.37) in [37]. We are only interested in the non-degeneracy
conditions. After a tedious computation using the transformation above we obtain with
the notation of [37]

a20(0) + b11(0) = κ(2 + 2h̃2(xTB
) + 4x

TB
h̃′
2(xTB

) + x2
TB

h̃′′
2(xTB

)− y
TB

∂2
1 h̃1(xTB

, y
TB

))

−W (∂1h̃1(xTB
, y

TB
) + y

TB
∂1∂2h̃1(xTB

, y
TB

))
(6.4)

and

b20(0) = ε
TB

[κ2(2 + 2h̃2(xTB
) + 4x

TB
h̃′
2(xTB

) + x2
TB

h̃′′
2(xTB

)− y
TB

∂2
1 h̃1(xTB

, y
TB

))

−W 2(2∂1h̃1(xTB
, y

TB
) + y

TB
∂2
2 h̃1(xTB

, y
TB

))

−κW (2∂1h̃1(xTB
, y

TB
) + 2y

TB
∂1∂2h̃1(xTB

, y
TB

))

−κ3

W
ε
TB

h̃′
3(xTB

)].

(6.5)
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Another tedious computation yields for the non-degeneracy condition (BT.3), that it is
equivalent to

κ2

W 2 εTB
[W 2(1 + h̃3(xTB

))(2∂1h̃1(xTB
, y

TB
) + y

TB
∂2
2 h̃1(xTB

, y
TB

))

+κW 2(2∂1h̃1(xTB
, y

TB
) + 2y

TB
∂1∂2h̃1(xTB

, y
TB

)))

−κ2(W + x
TB

h̃′
3(xTB

))

(2 + 2h̃2(xTB
) + 4x

TB
h̃′
2(xTB

) + x2
TB

h̃′′
2(xTB

)− y
TB

∂2
1 h̃1(xTB

, y
TB

))

−2κ3ε
TB

h̃′
3(xTB

)] �= 0.

(6.6)

We recapitulate our findings in the following proposition.

Lemma 6.1
Consider system (6.1) and assume that there exists a λ

TB
such that for every ε > 0

the isoclines are tangent to each other at the point (x
TB

, y
TB

). Additionally assume that
2x

TB
(1 + h̃2(xTB

)) + x2
TB

h̃′
2(xTB

)− y
TB

∂1h̃1(xTB
, y

TB
) > 0 and κ > 0. Then there exists

an ε
TB

= 1
κ
[2x

TB
(1+ h̃2(xTB

))+x2
TB

h̃′
2(xTB

)−y
TB

∂1h̃1(xTB
, y

TB
)] > 0 such that the point

(x
TB

, y
TB

, ε
TB

, λ
TB

) exhibits a Takens - Bogdanov bifurcation if and only if the terms in
(6.4), (6.5) and (6.6) are non-zero.

In our following examples we always chose h̃1(x, y) = 0 and κ > 0. Therefore our
conditions for the Takens - Bogdanov bifurcation reduce to

2x
TB

(1 + h̃2(xTB
)) + x2

TB
h̃′
2(xTB

) > 0

a20(0) + b11(0) = κ[2 + 2h̃2(xTB
) + 4x

TB
h̃′
2(xTB

) + x2
TB

h̃′′
2(xTB

)] �= 0

b20(0) = ε
TB

[κ2(2 + 2h̃2(xTB
) + 4x

TB
h̃′
2(xTB

) + x2
TB

h̃′′
2(xTB

))

−κ3

W
ε
TB

h̃′
3(xTB

)] �= 0

κ2

W 2 εTB
[−κ2(W + x

TB
h̃′
3(xTB

))(2 + 2h̃2(xTB
) + 4x

TB
h̃′
2(xTB

) + x2
TB

h̃′′
2(xTB

))

−2κ3ε
TB

h̃′
3(xTB

)] �= 0

(6.7)

The stability of the periodic orbits near the Takens - Bogdanov bifurcation is determined
by the sign of the product of a20(0)+ b11(0) and b20(0). We have unstable periodic orbits
if b20(0)(a20(0)+ b11(0)) > 0 and stable periodic orbits if b20(0)(a20(0)+ b11(0)) < 0. The
parameter A, which indicates the local stability of periodic orbits near the canard point
is given by

A = 3h̃′
2(0)− 2h̃′

3(0) + 2κ. (6.8)
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6.2 Unstable TB Orbits, A > 0

In this first section we consider the following system.

ẋ = x2 − y;

ẏ = ε[x− λ− 2y],
(6.9)

which means that h̃2(x) = 0, h̃3(x) = 0 and κ = 2. Thus A = 4 > 0 and the periodic
orbits near the canard point are unstable as well as the homoclinic orbit. The stationary
states of this system are the canard point (1

4
(1 − √

1− 8λ), 1
8
(1 − √

1− 8λ) − 1
2
λ) and

the homoclinic point reads (1
4
(1 +

√
1− 8λ), 1

8
(1 +

√
1− 8λ) − 1

2
λ). For λ = 1

8
the two

isoclines are tangent to each other at the point (x, y) = (1
4
, 1
16
) and we have a Takens

- Bogdanov bifurcation at ε = 1
4
. Indeed, a20(0) + b11(0) = 4, b20(0) = 2 and (BT.3)

reduces to −8 �= 0. Since a20(0) + b11(0) and b20(0) are both positive, we have unstable
periodic orbits and unstable homoclinic orbits near the Takens - Bogdanov bifurcation
point.

Lemma 6.2 (Line Of Hopf Points)
For every ε ∈ (0, 1

4
) there exists a λ = λ(ε) ∈ (0, 1

8
) so that the Jacobian of the right

hand side of (6.9) at the canard point has a pair of purely imaginary eigenvalues.

Proof.
The Jacobian at the canard point reads

Jc =

(
1
2
(1−√

1− 8λ) −1
ε −2ε

)
.

The requirements for a pair of purely imaginary eigenvalues are that the trace vanishes
and that the determinant is positive. The trace vanishes for λ = λ(ε) = 1

8
− 1

8
(1− 4ε)2.

The determinant reads ε(
√
1− 8λ), which is positive for all λ ∈ (0, 1

8
). �

We note that λ(ε) is strictly increasing for ε ∈ (0, 1
4
) and connects the canard point

with the Takens - Bogdanov point in the parameter space. Further note that the line of
Hopf points corresponds to λH(

√
ε) local to the origin in the parameter space. Indeed,

theorem 4.5 tells that λH(
√
ε) = ε+O(ε

3
2 ), which corresponds to λ(ε) = ε− 2ε2.

We conjecture that the homoclinic line emanating from the canard point (ε, λ) = (0, 0)
in the parameter space connects as well to the Takens - Bogdanov point (ε, λ) = (1

4
, 1
8
)

as shown in figure 6.1, where the homoclinic line is determined by numerical simulations.

Note that this sketch of the parameter space, as well as all following ones, is the result
of numerical simulations. In this example, every periodic orbit is unstable and limits
in an unstable homoclinic orbit. We have four different regions in the parameter space.
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Figure 6.1: The parameter space for system (6.9)

1 2

3 4

Figure 6.2: The flow for system (6.9) for regions 1 (top left) to 4 (bottom right)

The pictures in figure 6.2 show the behavior in each of these regions.

These sketches display the flow for ε = 0.1 and different values of λ. In the pic-
ture for region 1 (top left) we see, that the canard point is stable. The picture for
region 2 (top right) shows an unstable periodic orbit, while in the picture for region 3
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6 Global Behavior Of Prototypical Examples

(bottom left) the canard point has lost its stability through the Hopf bifurcation. In
the last picture for region 4 there is no equilibrium anymore. A sketch for the flow on
the homoclinic line is given in figure 6.3.

Figure 6.3: The flow for system (6.9) on the homoclinic line

This example is the easiest case that arises in systems like (6.1). Since every closed orbit,
i.e. every periodic and homoclinic orbit, is unstable, there is no further bifurcation to
see. This will change, when we change the sign of A.

6.3 Unstable TB Orbits, A < 0

Our second example reads

ẋ = x2 − y;

ẏ = ε[x(1 + 6
5
x− 7

2
x2 − 16

5
x3 − x4)− λ− y].

(6.10)

In this case it is h̃2(x) = 0, h̃3(x) =
6
5
x− 7

2
x2 − 16

5
x3 − x4 and κ = 1. The parameter A

is now negative, since A = 2(κ− h̃′
3(0)) = −2

5
< 0, which means that the periodic orbits

emanating from the canard point are stable for small ε. Numerically we obtain a Takens
- Bogdanov bifurcation at the point (x, y, ε, λ) ≈ (0.26, 0.06, 0.52, 0.18). The conditions
(BT.0) - (BT.3) approximately read in that order 0.52, 2, 2.83 and 3.35, which implies
that (a20(0) + b11(0))b20(0) > 0. The periodic orbits as well as the homoclinic ones near
the Takens - Bogdanov bifurcation remain unstable as in our first example. Again we
conjecture that the line of Hopf points and the homoclinic line both emanating at the
origin in the parameter space connect to the point in the parameter space, where the
Takens Bogdanov bifurcation takes place. Numerical simulations lead to the following
figure for the parameter space, see figure 6.4 (top left). We see that the picture has not
changed much. We have the same four regions and the flow in these regions looks the
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Figure 6.4: The parameter space for system (6.10)

same as in our first example, see figure 6.5. However, the local analysis of the canard point
tells us that the relative position of the homoclinic line and the line of Hopf points has
changed near the origin in the parameter space in comparison to our previous example.
If we zoom near the origin, we get the following picture, figure 6.4 (top right). We see
that the homoclinic line crosses the line of Hopf points. At the origin there emanates
another line, a line of a saddle - node bifurcation of periodic orbits. Since this line is
exponentially close to the homoclinic line, we have to zoom in one more time. In figure
6.4 (bottom) we see the parameter space in a neighborhood of the intersection of the
homoclinic line and the line of Hopf points.

This results are in accordance to our findings for the flow local to the canard point, see
also [36] Fig. 7. After the homoclinic line crosses the line of Hopf points, the line of saddle
- node bifurcations of periodic orbits eventually hits the line of Hopf points changing the
Hopf - bifurcation from supercritical to subcritical. Thus we conjecture the existence of
a Bautin bifurcation at this branching point. In the next figure we see the flow in the
two different regions 5 and 6 of the parameter space, marked in figure 6.4 (bottom). The
homoclinic orbit is always unstable, but we have two different sketches of the flow on
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1 2

3 4

Figure 6.5: The flow for system (6.10) for regions 1 (top left) to 4 (bottom right)

the homoclinic line for ε small, i.e. smaller than the value of ε at the Bautin bifurcation
point, and ε large, see figure 6.7. The last two examples have in common that the closed
orbits near the Takens - Bogdanov bifurcation are unstable, which means, that the sign
of (a20(0)+b11(0))b20(0) is positive. The next two examples will show the behavior of the
global flow when the closed orbits near the Takens - Bogdanov bifurcation are stable.

5 6

Figure 6.6: The flow for system (6.10) for regions 5 (left) and 6 (right)
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6.4 Stable TB Orbits, A < 0

Figure 6.7: The flow for system (6.10) on the homoclinic line for small ε (left) and large
ε (right)

6.4 Stable TB Orbits, A < 0

Our third example system reads

ẋ = x2(1− 2x+ 4
3
x2)− y;

ẏ = ε[x(1− x)− λ− y],
(6.11)

so that h̃2(x) = −2x + 4
3
x2, h̃3(x) = −x and κ = 1. Again numerical simula-

tions suggest a Takens - Bogdanov bifurcation, here located at the point (x, y, ε, λ) ≈
(0.41, 0.07, 0.18, 0.17). The conditions (BT.0) - (BT.3) read in that order 0.21, −0.23,
0.95 and 1.68. The parameter A in this case takes the value −2, meaning that again
we have stable periodic orbits emanating from the canard point for small ε. However,
we have changed the stability of closed orbits near the Takens - Bogdanov bifurcation,
meaning that there has to be a change in the stability of the homoclinic orbit. As in
the last example, locally to the canard point there is a line of saddle - node bifurcations
of periodic orbits. Since the homoclinic line does not intersect the line of Hopf points
and the homoclinic orbit changes its stability, we conjecture that the line of saddle -
node bifurcation hits the homoclinic line forming a point of a Bautin - like bifurcation
for homoclinic orbits. In figure 6.8 (left) we see exactly this situation for our example,
where the lines again are numerically determined.

Again the line of saddle - node bifurcations is exponentially close to the homoclinic line.
Enlarging the sketch near the origin yields figure 6.8 (right). The lines distinguish five
different regions 1 - 5. In the next figure we see sketches of the flow in each of this
regions inspired by numerical results, figure 6.9. The flow on the homoclinic line is again
divided into two different regions, one for small ε, i.e. smaller than the value of ε at the
Bautin-like bifurcation point, and one for large ε, figure 6.10.

Another interesting peculiarity is the behavior of the flow for ε > 0.18. Here we see
that the line of Hopf points continues above the value of ε

TB
, then turn around and

finally reach the Takens - Bogdanov bifurcation point from above. Thus there exists a
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Figure 6.8: The parameter space for system 6.11

1 2

3 4

5

Figure 6.9: The flow for system (6.11) for regions 1 (top left) to 5 (bottom)
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6.5 Stable TB Orbits, A > 0

Figure 6.10: The flow for system (6.11) on the homoclinic line for small ε (left) and large
ε (right)

region for which there are two different Hopf bifurcation points for different values of
λ. The homoclinic line shows the same behavior. This behavior appears naturally since
the change of the stability changed the relative position of both the line of Hopf points
and the homoclinic line. However, we are not able to exclude the existence of global
bifurcations here. We see the same behavior local to the Takens - Bogdanov bifurcation
point also in the last example. There we again change the sign of A.

6.5 Stable TB Orbits, A > 0

Our last example system reads

ẋ = x2(1− 2x+ 4
3
x2)− y;

ẏ = ε[x(1− 1
2
x)− λ− 7

2
y].

(6.12)

Again we have h̃2(x) = −2x + 4
3
x2. Furthermore we obtain h̃3(x) = −1

2
x and

κ = 7
2
. The numerical Takens - Bogdanov bifurcation point is located at (x, y, ε, λ) ≈

(0.27, 0.04, 0.06, 0.09). (BT.0) - (BT.3) take the numerical values 0.25, −0.31, 0.08 and
4.38, the parameter A the value 2. The closed orbits near the Takens - Bogdanov bi-
furcation point are stable while the closed orbits near the canard bifurcation point are
unstable. This means that the Hopf bifurcation has to change from subcritical to su-
percritical along the line of Hopf points and also the homoclinic orbit has to change
its stability along the homoclinic line. The conjecture now is a combination of example
2 and 3. The change of the Hopf bifurcation is achieved through a Bautin bifurcation,
which gives rise to a line of saddle - node bifurcations of periodic orbits. This line will
then connect to the homoclinic line where we again have a Bautin - like bifurcation of
homoclinic orbits. This will then change the stability of the homoclinic orbit. Figure
6.11 (left) shows the numerical results in the parameter space of this behavior.

The flow in regions 1 to 3 is shown in figure 6.12. We enlarge the sketch of the parameter
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Figure 6.11: The parameter space for system 6.12

space at the intersection of the homoclinic line with the line of Hopf points, figure 6.11
(right). As one can see there are three additional regions in the parameter space. The
flow for region 4 to 6 is shown in figure 6.13. As stated before, the behavior of the
flow near the Takens - Bogdanov bifurcation point is as in Example 3. The flow on the
homoclinic line in this example splits into three different regions.

1 2

3

Figure 6.12: The flow for system (6.12) for regions 1 (top left) to 3 (bottom)

For small ε, i.e. smaller than the value of ε at the Bautin-like bifurcation point, we have
an unstable homoclinic orbit with the canard point being stable. For ε taking values
between the Bautin-like bifurcation point and the Bautin bifurcation point there exists
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6.5 Stable TB Orbits, A > 0

a stable homoclinic orbit having an unstable periodic orbit in its interior. And for ε
large, i.e. larger than the value of ε at the Bautin bifurcation point, the homoclinic orbit
is stable and the canard point is unstable. These situations are shown in figure 6.14.

4 5

6

Figure 6.13: The flow for system (6.12) for regions 4 (top left) to 6 (bottom)
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Figure 6.14: The flow for system (6.12) on the homoclinic line for small (top left), middle
(top right) and large (bottom) ε
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7 Application: The Extrinsic
Coagulation System

This chapter focuses on the quest for mechanisms that are able to create tolerance and an
activation threshold in the extrinsic coagulation cascade. We propose that the interplay
of coagulation inhibitor and blood flow creates threshold behavior. First we test this
hypothesis in a minimal, four dimensional model. This model can be analyzed by means
of time scale analysis. We find indeed that only the interplay of blood flow and inhibition
together are able to produce threshold behavior. The mechanism relies on a combination
of raw substance supply and wash-out effect by the blood flow and a stabilization of the
resting state by the inhibition. We use the insight into this minimal model to interpret
the simulation results of a large model. Here, we find that the initiating steps (TF that
produces together with VII(a) factor Xa) does not exhibit threshold behavior, but the
overall system does. Hence, the threshold behavior appears via the feedback loop (in
that IIa produces indirectly Xa that in turn produces IIa again) by ATIII and blood flow.

Our aim here is to describe a biological application for systems of coupled feed-
back loops. The main interest is in the outcome of the biological interpretation. Hence
the mathematical aspect in this chapter is short and for some parts hand waving
arguments are used. The full analysis in terms of time scale analysis is out of the scope
of this chapter. However, it turns out that the general concept of modelling coupled
feedback loops can give useful insight into biological applications.

7.1 Motivation

Physiologic signalling systems are typically tolerant towards very small signal levels;
this tolerance protects against noise, rendering them robust against arbitrary yet
physiologically subcritical events. Only a distinct signal induces a reaction. An excellent
and prototypic example is the activation of neurons: they will fire only if a distinct
stimulus is present. There are several sources of noise in the neuronal system: a noisy
input signal, a noisy transport of the signal in the ganglion, and the processing system
in the neuron itself has some intrinsic noise. The neuronal system handles these noise
sources on two levels. The basic level is the threshold behavior of the single neuron. The
second level concerns the network structure; e.g. feedback loops and redundant elements
in the network topology are able to provide reliable responses on noisy signals. The
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7 Application: The Extrinsic Coagulation System

neuronal system is able to filter input signals in standard situations. Small amplitudes
and fluctuations of high frequency are likely to be discarded as noise. It is to expect
that such an essential system like the coagulation cascade exhibits similar mechanisms
that provide stability against noise, e.g. caused by the expression of tissue factor by
endothelial cells in case of localized inflammatory events. The intrinsic noise of the
cascade due to small molecule numbers is less likely to play a role, as due to the
powerful amplification mechanisms most parts of the signaling cascade are based on
high molecule numbers.

Quite often, mechanisms of tolerance are connected with separation of two time
scales, a fast and a slow one. The fast time scale corresponds to the natural time scale
of the input signal, while the slow one is used to process the input signal, to act like a
low pass filter that averages out fluctuations and to generate an output signal: nonlinear
feedback yields bistability of the slow system with respect to the fast time scale; the
two stable branches of (with respect to the fast time scale) stationary states correspond
to two different output signals. Hysteresis will generically prevent the system to jump
arbitrarily fast between these two states if the input signal is perturbed by noise. This
feedback mechanism is able to realize switches with different properties. For an overview
see eg. [51] or [43, Chapter 6]. Here we investigate mechanisms in the coagulation
system that may lead to tolerance.

The historical model of the coagulation system assumed two different starting points of
the coagulation process. The intrinsic pathway is activated by contact of plasma with
charged surfaces and aims to handle very small lesions. The extrinsic pathway was
thought to target on larger lesions and was thus considered the faster and more effective
pathway. Both pathways enter a common final pathway leading to fibrin formation.
However, this concept has been revised as tissue factor (TF) has been identified as the
universal initiator of all clinically relevant coagulation events (subendothelial TF initi-
ates coagulation following vascular damage, TF on plaque surfaces initiates coagulation
e.g. in coronary heart disease, TF on monocyte surface initiates coagulation in in-
flammatory states ultimately resulting in disseminated intravascular coagulation (DIC)).

The omnipresence of TF and its enormous biological potency warrant a regula-
tion mechanism that exerts sufficient tolerance against minor events, e.g. a localized
inflammatory reaction or minor vascular damage while providing a fast and complete
activation of the coagulation cascade in case of a major event. Thus bistable feedback
mechanisms should be a key component of the regulatory mechanisms of the coagulation
system.

Coagulation disorders are a common problem in trauma patients. The trauma in-
duced tissue damage results in an exposure of large amounts of TF, i.e. consumption of
coagulation factors, while trauma induced haemorrhage also reduces the concentrations
of coagulation factors. The therapeutic approach is based mainly on substitution of
coagulation factors and control of haemorrhage (i.e. surgery). However, while surgical
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control of haemorrhage is usually successful and prevents acute exsanguination, the
coagulation disorder often persists and transfusion even of large amounts of coag-
ulation factors cannot stabilize the coagulation system. Coagulation physiology in
trauma patients is only incompletely understood. It is unclear when the coagula-
tion disorder actually starts, how the progress of the coagulation disorder is affected
by medical interventions (e.g. drug application, infusion of fluids etc.) to name but a few.

Most experiments seem to hint that the coagulation cascade is basically unsta-
ble, i.e. a small activating challenge finally leads to clot formation [7]. Once initiated
(TF, fVIIa), the coagulation process consists of two major steps: first, small amounts
of factor X are cleaved to its activated form fXa. This small amount of fXa is able
to cleave factor II to its activated form fIIa. The second step comprises a powerful
positive feedback loop of fIIa enhanced fIIa production by a factor around 105 to 109

[7], resulting in a fIIa burst. This large amount of IIa is able to cleave factor fI to fIa
- Ia being the substance that organizes the clot (for details see e.g. the review articles
[7, 41, 42] and below). Experiments in vitro seem to hint that even smallest amount of
fTF are able to initiate the coagulation cascade [5]. Due to the self-amplifying positive
feedback loops, namely the fIIa burst, the coagulation process is then completely
activated [38]. As minor amounts of either TF or soluble tissue factor (sTF) are
ubiquitously present (e.g. localized tissue damage or locally contained inflammatory
reaction), the coagulation cascade is challenged stochastically. However, spontaneous
thromboembolic events are extremely rare in vivo. Consequently, a certain tolerance
against arbitrary stimuli within the regulatory system can be expected. For a deeper
understanding of trauma associated coagulopathy it is necessary to understand the
regulatory mechanisms within the coagulation cascade. Due to methodological and
ethical considerations the regulatory and activating mechanisms of the coagulation
system can hardly be investigated in a clinical context.

The modelling approach is quite accepted in the coagulation community. We find
the whole spectrum of models, from small toy models that focus on the understand-
ing of special mechanisms to large simulation models that quantitatively reproduce
experiments. The large simulation models mostly address the behavior of “artificial
plasma” in a closed reactor [7]. The advantage of these models is the connection to
experimental data - a lot of work is done to develop an experimental model system
where different aspects like the lack of certain factors can be manipulated in a controlled
way. The models are able to reproduce and to predict these experimental data quite
satisfyingly [32]. However, the coagulation system is also influenced by cells like platelets
or endothelial cells, which are not present in the “artificial plasma”. Furthermore,
biophysical processes e.g. blood flow, which is severely impaired in trauma patients
suffering from haemorrhagic shock, mostly are not taken into account. Only recently
the effect of blood flow attracted attention [2, 16, 39, 9].

Some work is done with respect to threshold behavior of the former extrinsic
pathway. One of the first investigations in this field was conducted by Khanin and
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Semenov [33]. Their model basically assumes Michaelis Menten kinetics with one
positive feedback loop. The network topology of this model is sufficient to produce
threshold behavior in the sense that a minimal stimulus is necessary to induce a
reaction. If this stimulus is above the threshold, the effect will grow linearly with this
stimulus. There is no bistability or hysteresis. Experiments show that the system tends
to complete activation. This finding indicates that there are other relevant mechanisms
that need to be implemented into the model. From the mathematical point of view
more nonlinear terms are necessary to obtain a model that adequately reproduces
the expected behavior. One approach might be to add mechanisms that are related
to the surface of cellular components involved in the coagulation process. Activated
platelets provide high concentrations of phospholipids. The expression of phospholipids
can be induced by activated zymogenes, i.e. coagulation factors [3]. Thus, if there
are enough coagulation factors to stimulate the platelets, the cascade is able to work
much more efficient than in states of low coagulation activation. This process creates
bistable behavior [54]. Fogelson and Tania [16] found evidence that blood flow may be
a crucial control mechanism as their simulation model exhibited threshold behavior of
the extrinsic pathway after blood flow was integrated into the model. These results are
in accordance with experimental evidence presented by Gemmell et al. in 1988 [18].

As our clinical focus is set on trauma patients with hemodynamic alterations
due to haemorrhagic shock, i.e. impaired tissue blood flow, we aim at a deeper
understanding of the interplay of biochemistry with biophysics. The rest of the chapter
is organized as follows. First, we describe briefly the coagulation system with respect to
its clinically relevant components. We then introduce a minimal model of this system,
taking into account blood flow in a very simple manner: the substances may flow into
resp. out of the system at a certain rate. For this model we are able to perform a
bifurcation analysis and find bistable behavior. As a second step we then focus on
experimental findings respectively on models validated by experiments. We equip one
of these models with our concept of blood flow and investigate the change of behavior
due to this biophysical process by means of numerical simulations. This is first done for
a submodel that focuses on the very first step of the coagulation cascade, and then for
a large simulation model that takes into account most physiological relevant parts of
the whole system.

7.2 Key Players

The most prominent molecules of the extrinsic pathway are TF (tissue factor), factor
fVII and fVIIa, TFPI (tissue factor pathway inhibitor), fX and fXa, fV and fVa, XIII
and fXIIIa, fIX and fXIa, fII (prothrombin) and fIIa (thrombin), fATIII (antithrombin
III) and protein C (PC) resp. activated protein C (APC) (see Fig. 7.1). Most of these
substances are present in the plasma in their non-active form. Activation is achieved by
enzymatic reactions.
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The cascade is induced by contact of TF with factor fVII resp. fVIIa. They form
a membrane-bound complex. TF is expressed constitutionally on the surface of tissue
cells, but not on endothelial cells. Until recently, it has been common sense that
sufficient amounts of TF and blood (i.e. factor fVII resp. fVIIa) are in contact only in
case of a major lesion to the vessel wall. However, experimental evidence clearly shows
that sTF, a soluble form of TF, is constitutively present in the blood. sTF seems to play
an important role for the growth of thrombi. If the activation process of the coagulation
cascade is determined by an “all-or-none” mechanism, the coagulation cascade needs
to distinguish between blood borne and tissue related TF to avoid permanent, un-
controlled coagulation. Alternatively a concentration dependent activation mechanism
might regulate this pathway.

In the complex TF/fVII, the ligand fVII is transformed into its active form fVIIa. The
complex TF/fVIIa is the first key player of the coagulation cascade: this complex is
able to enhance its own production due to its ability to activate free fVII. The resulting
fVIIa binds even faster to free TF. Beyond this positive feedback loop TF/fVIIa is able
to activate the second key player of the coagulation cascade, i.e. fX is converted to fXa,
which in turn is controlled by TFPI and ATIII.

The positive feedback is regulated by several inhibitory molecules, the most prominent
of which are TFPI (tissue factor pathway inhibitor) and ATIII (antithrombin III).
TFPI forms a complex with fXa, and this complex as well as ATIII react with TF/fVIIa
and TF/fVII; the resulting complexes are enzymatically inactive. The second part of
the cascade couples on fXa. fXa activates the third key player, prothrombin (fII). fIIa
has its own positive feedback: fIIa activates the conversion of fV to fVa, which forms
a complex with fXa. The complex fXa/fVa is much more potent in activating fII then
fXa alone. Furthermore, it activates fVIII, which forms a complex with fIX (which is
activated by TF/fVIIa). This complex activates fX, resulting in higher concentrations
of fXa and fXa/fVa complexes, which in turn activate more fII. Finally Thrombin (fIIa)
induces fIa production. fIa (also called fibrin) produces the thrombus and “glues” the
lesion. The anticoagulant ATIII forms complexes with almost all activated factors and
deactivates them in this way; furthermore, on a slow time scale, the density of ATIII is
increased by fIIa (e.g. upregulated by heparin). fIIa is also able to cleave PC to APC,
which deactivates the factors fVa and fVIIIa by cleavage, resulting in the inhibition of
the positive feedback loop. Most of these reactions take place on a cell membrane, i.e;
either on the surface of tissue cells or on the surface of platelets. Only fXa and fIIa are
able to diffuse freely.
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Figure 7.1: Scheme of the most important processes of the coagulation cascade. Left
hand side: only most important processes; right hand side: more detailed
system.
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7.3 Threshold Behavior: A Minimal Model

In this section, we develop a toy model for the coagulation system. We will perform an
analysis of this model. These results will guide us when considering large, more realistic
models in Section 7.5. Let x be the amount of II, and y the amount of activated enzyme
IIa. The primary pathway allows a positive auto-feedback at rate r, i.e. (see Fig 7.2)

ẋ = −rx y, ẏ = rx y.

We now add an anticoagulative substance z (e.g., ATIII). This substance forms a complex
with IIa at rate b, ultimately resulting in the inactivation of this substance. In addition
to purely biochemical processes, we also consider a biophysical process: blood flow. This
effect is introduced by defining in- and outflow rates. I.e., we assume that there is a
small region (at the surface of a lesion) where the reaction takes place. We assume
that the substances are homogeneously mixed in this region, such that we are allowed
to assume mass action dynamics. Substances x and z are washed in at their natural
density, and all substances (x, y and z) are washed out at the same rate. The flow rate
depends on the location of the region of interest: as a rule, the smaller the vessel, the
smaller is the flow velocity. In order to concentrate on the most basic effects of blood flow
(transport of substances), we deliberately neglect spatial effects. These effects sometimes
have surprising consequences. E.g., many enzymes are located at the surface of cells. In
this case, the rate limiting step sometimes is the transport of substrate to the surface
rather then the reaction rates [18]. Basically, our region of interest is this small that
density gradients can be neglected. Let the mean time a particle stays within the region
of interest be 1/ζ, i.e. the average flow rate is ζ. Let furthermore μx resp. μz be the
natural densities of coagulation factors resp. anticoagulant substances in the plasma.
The equations for the minimal model read

x′ = −rxy + ζμx − ζx
y′ = rxy − by z − ζy
z′ = −by z + ζμz − ζz.

(7.1)

We first investigate this model with fixed rates; in Section 7.4, we add a slow increase of
anticoagulant substances triggered by activated zymogen. In the following we consider
model (7.1) and investigate the stationary points, the local stability analysis of these
points and perform a global analysis that shows that any trajectory eventually tends to
one of these stationary points.

Stationary States

First note that a stationary solution of system (7.1) with a non-negative y-component
also has non-negative x- and z-components – we may solve the equations x′ = 0 and
z′ = 0 for x and z, respectively. It is thus sufficient to concentrate on y. The trivial
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Figure 7.2: Flow diagram of the minimal model.

stationary point is given if y = 0. Then, we find x = μx and z = μz.

Let y �= 0. Under this circumstance

rx− bz − ζ = 0
0 = x′ + y′ − z′ = ζμx − ζμz − ζ(x+ y − z).

Let us assume that ζ �= 0 (for ζ = 0 see below)

z = (rx− ζ)/b,
0 = μx − μz − (x+ y + (ζ − rx)/b)

= μx − μz − ((1− r/b)x+ y + ζ/b)
= μx − μz − ζ/b− (x(b− r)/b+ y)

x = b(μx−μz)−ζ
b−r

− b
(b−r)

y

Let

A = b(μx−μz)−ζ
b−r

, B = 1− r/b = (b− r)/b

then x = A− y/B. Thus, we find for y (from x′ = 0)

−ry(A− y/B) + ζμx − ζA+ ζy/B = 0 ⇒ r/B y2 − (rA− ζ/B)y + ζμx − ζA = 0,

i.e.

y2 − (AB − ζ/r)y + ζ(μx B − AB)/r = 0.
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Thus, the nontrivial stationary points read (x±, y±, z±)T where the y-component is given
by

y± = 1
2

(
AB − ζ/r ±√(AB − ζ/r)2 − 4ζ(μx B − AB)/r

)
= 1

2

(
AB − ζ/r ±√(AB + ζ/r)2 − 4ζμxB/r

)
.

We now find AB − ζ/r = μx − μz − ζ/b − ζ/r, AB + ζ/r = μx − μz − ζ/b + ζ/r,
ζμxB/r = ζμx(b− r)/(br) = ζμx(1/r − 1/b) i.e.

y± = 1
2

[
μx − μz − ζ

b
− ζ

r
±
√(

μx − μz − ζ
b
+ ζ

r

)2 − 4ζ (b−r)
br

μx

]
(7.2)

We use μz as bifurcation parameter, y± = y±(μz). Interesting effects (i.e. stationary
solutions in the positive octant) are only possible for y+(0) > 0. Under this condition,
there are three cases to distinguish:

Case 1: b = r.

Then, y+ = μx − μz − ζ/b, y− = −ζ/r < 0. I.e., we have at most one non-negative
solution apart from y = 0, and this solution is linearly decreasing in μz and is only
non-negative if μz is small.

Case 2: b < r.

For all values of μz, there are two real branches y±(μz). y−(μz) < 0 is always negative
and thus not interesting for the dynamics in the positive octant. y+(μz) is decreasing
in μz. Thus, also in this case there is (like in case 1) at most one more non-negative
solution apart of y = 0. We cannot expect bistable behavior in the positive octant.

Case 3: b > r.

There is an interval for μz, where we do not find real solutions y±(μz). At the boundaries
of this interval where no real solutions exist, two saddle-node bifurcations (one sub- and
one supercritical) occur. These bifurcation points are located at the μz-values where the
discriminant vanishes,

μz = μx − ζ
b
+ ζ

r
± 2
√

(b−r)
br

ζμx.

The first (left) branch connects the positive value y+(0) with the negative value y−(0),
i.e. crosses necessarily at least once y±(.) = 0. Since there is only one value μz for that
a solution y± = 0, i.e. μxB − AB = 0, there is only one value for μz s.t. y+(μz) = 0 or
y−(μz) = 0. Since B �= 0, in case 3, we find A = μx, i.e. μz = rμx−ζ

b
. Thus, the second

(right) branch does not change sign. Since y−(μz) < 0 if μz is large, the right branch is
completely below zero. The only interesting manifold of stationary points is the positive
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part of the left branch. This raises the question, if always y−(μz) < 0. The value of y±
at the left bifurcation point reads

y± =
√

(b−r)
br

ζ μx − ζ
r

i.e. is positive, if
(
1− r

b

)
μx > ζ

r
. Thus, we find two subcases.

Case 3(a): b > r, (1− r/b)μx < ζ/r.

There is at most one more non-negative stationary solution in the positive octant apart
of y = 0. Bistability is not possible.

Case 3(b): b > r, (1− r/b)μx > ζ/r.

Hence, if

μz ∈
(
Max{0, (rμx − ζ)/b}, μx − ζ

b
+ ζ

r
− 2
√

(b−r)
br

ζμx

)
,

there are the trivial and two further strictly positive stationary points. In this parameter
region is bistability possible (see stability analysis below). For

μz = μx − ζ
b
+ ζ

r
− 2
√

(b−r)
br

ζμx

a saddle-node bifurcation takes place, while at μz = 0 and μz = (rμx − ζ)/b (if positive)
transcritical bifurcations happen.

Local Stability Analysis

The Jacobian reads

J =

⎛
⎝ −ry − ζ −rx 0

ry rx− bz − ζ −by
0 −bz −by − ζ

⎞
⎠ =

⎛
⎝ −ry −rx 0

ry rx− bz −by
0 −bz −by

⎞
⎠ − ζ I.

Consider the trivial stationary point, (x, y, z) = (μx, 0, μz). The Jacobian reads

J0 =

⎛
⎝ 0 −rμx 0

0 rμx − bμz 0
0 −bμz 0

⎞
⎠ − ζI.

Due to the simple structure of this matrix, we directly find a double eigenvalue λ1,2 = −ζ
and one eigenvalue λ3 = rμx−bμz−ζ. The last one determines the stability of the trivial
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solution. If rμx− bμz− ζ < 0, the trivial solution is stable, and rμx− bμz− ζ > 0 implies
instability. Now we return to the general case and consider the spectrum of the matrix
Ĵ = J + ζI. We find for the characteristic polynomial

p(λ) = det(Ĵ − λI) = −λ{λ2 + λ[(r + b)y − rx+ bz] + rby[y + z − x]},

i.e. we have one zero eigenvalue for Ĵ , corresponding to one eigenvalue −ζ for J . To
find the remaining eigenvalues, we use the fact that we consider a non-trivial stationary
point, i.e. rx− bz = ζ and x− z = μx − μz − y,

p(λ) = −λq(λ), q(λ) = {λ2 + λ[(r + b)y − ζ] + rby[2y + μz − μx]}.

Now consider the negative branch of nontrivial stationary points, corresponding to y−.
Here, we know that

q(ζ) = y−[(r + b)ζ + rb(2y− + μz − μx)]

= y−

[
(r + b)ζ + rb

(
− ζ

b
− ζ

r
−
√(

μx − μz − ζ
b
+ ζ

r

)2 − 4 (b−r)
br

μx ζ

)]
= − y− rb

√(
μx − μz − ζ

b
+ ζ

r

)2 − 4 (b−r)
br

μx ζ.

Thus q(ζ) < 0 if the stationary point lies within the positive octant (y− > 0). Since
q(λ) → +∞ for |λ| → ∞, the polynomial q(.) has one eigenvalue below and one above
ζ. Thus, the spectrum of the stationary point corresponding to y− has two negative
eigenvalues and one positive eigenvalue. If the stationary point (x−, y−, z−)T is in the
positive octant, it is always unstable. Last, we inspect the stationary point corresponding
to y+. Here we find

q(ζ) = y+ rb

√(
μx − μz − ζ

b
+ ζ

r

)2 − 4 (b−r)
br

μx ζ > 0.

Furthermore, q(0) = rby+[2y+ + μz − μx] < y+[ζ(r + b) + rb(2y+ + μz − μx)] = q(ζ).
Since q(.) is only a quadratic polynomial, all real roots are left of λ = ζ. In any case, the
minimum of q(.) is left to λ = 1, and thus also the real part of the roots are left to ζ.
Thus, the stationary point corresponding to y+ is always locally asymptotically stable,
if we are not in a saddle-node or transcritical bifurcation.

Global analysis

We will show that any trajectory tends to an equilibrium point. We first observe that
the system preserves positivity and that x+ y − z satisfies a closed equation,

d
dt

(x+ y − z) = ζ(μx − μz)− ζ(x+ y − z).
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Thus,

x(t) + y(t)− z(t) → μx − μz

exponentially fast for ζ > 0. From the theory of asymptotically autonomous systems we
know that any ω-limit set will be obtained in the plane x+ y− z = μx−μz, i.e. satisfies
the two-dimensional set of equations

ẋ = −rxy + ζμx − ζx
ẏ = (r − b)xy − by2 − by(μz − μx)− ζy.

Thus, we know from the theorem of Poincaré-Bendixon that the ω-limit sets are either
stationary points, or periodic orbits or a cycle of heteroclinic/homoclinic orbits. We
apply the negative criterion of Bendixon in order to exclude the last two options: If we
rescale the vector field by 1/y (we may do that since y > 0 is invariant as well as the
line y = 0), we find for the divergence of the resulting vector field(

−rxy+ζμx−ζx
y

)
x
+
(

(r−b)xy−by2−by(μz−μx)−ζy
y

)
y
=
(
−r − ζ

y

)
− b < 0.

The divergence of the rescaled vector field does not change sign, and thus neither a
periodic orbit nor a cycle of heteroclinic/homoclinic orbits may appear. Hence, any
trajectory eventually tends to a stationary point.

Flow Rate As Bifurcation Parameter

In order to keep the analysis simple, we used μz as bifurcation parameter. However,
we rather aim at the analysis of the behavior w.r.t. ζ. We thus need to rearrange the
considerations from above in terms of ζ. First of all, r ≥ b, no bistable behavior is
possible. Now let’s assume r < b. If ζ is small, then we are automatically in case 3(b),
s.t. in principle we could have bistable behavior. If μz satisfies the inequalities

(rμx − ζ)/b < μz and μz < μx − ζ
b
+ ζ

r
− 2
√

(b−r)
br

ζμx

we do have this behavior. If we solve the inequalities for ζ, we find

rμx − bμz < ζ < br
b−r

(
√
μz −√

μx)
2.

Please note, that these two inequalities always can be satisfied simultaneously if r2μx �=
b2μz, since under this condition

−(
√
r2μx −

√
b2μz)

2 < 0
⇒ −r2μx − b2μz < −2br

√
μxμz

⇒ brμx − r2μx + brμz − b2μz < br(μx + μz −√
μxμz)

⇒ rμx − bμz < br
b−r

(
√
μz −√

μx)
2.
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If r2μx = b2μz and b < r, the transcritical and the saddle-node-bifurcation happen at
the same location, i.e. the trivial solution is involved. Thus, also under this non-generic
condition we do not have a bistable behavior.

The degenerate case: μz = 0 or ζ = 0

In this section we will investigate the degenerate cases, ζ = 0 and μz = 0. Since the two
cases require slightly different methods, we look at them separately.

Case 1: ζ = 0.

We may follow the argumentation of the global analysis and find that

x(t) + y(t)− z(t) = a

where a = x(0) + y(0) − z(0). Thus, we again derive a two-dimensional system, where
we again may rescale time by 1/y(t). Let τ be the rescaled time, then

d
dτ
x = −rx

d
dτ
y = (r − b)x− by + ba.

These two equations can be solved explicitly. First, we note that x(τ) = x(0) exp(−rτ).
Next, we find

y(τ) = y(0)e−bτ + (r − b)x(0)
∫ τ

0
e−b(τ−σ)e−rσ dσ + b a

∫ τ

0
e−b(τ−σ) dσ

= y(0)e−bτ + x(0)e−bτ
(
1− e−(r−b)τ

)
+ a

(
1− e−bτ

)
.

Thus, y(τ) → a if a > 0 and, since y = 0 is a singularity in the time transformation,
y(τ) → 0 if a ≤ 0. Thus, if at time t = 0 more z than x and y together is present in the
system, z will “eat up” all zymogenes, otherwise the surplus of zymogenes will be left.
There is no bistability present in the system.

Case 2: μz = 0.

The analysis of μz = 0 is the same like that for μz > 0. If we consider the stationary
points y± for μz = 0, we find

y± = ζ
2

[
μx

ζ
− 1

b
− 1

r
±
√(

μx

ζ
− 1

b
+ 1

r

)2
− 4 (b−r)

br
μx

ζ

]

= ζ
2

[
μx

ζ
− b+r

br
±
√(

μx

ζ
− b−r

br

)2 ]
,

i.e. y+ = μ+ − ζ/r and y− = − ζ
b
. Thus, apart form the trivial stationary point, there is

only one more non-negative stationary point, s.t. no bistable behavior is possible.
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Bifurcation behaviour

One of the main outcomes of the analysis is that threshold behavior occurs only if
the coagulation system is modelled within its physiological context, i.e. if physiological
phenomena like blood flow are taken into account. We postpone the proof of the following
result to the next subsection.Let us now concentrate on the case ζ > 0 and μz > 0, i.e.
at the situation where blood flow as well as anticoagulant are present; the situations for
ζ = 0 or μz = 0 are only discussed the last subsection.

Result of the bifurcation analysis:

(I) All trajectories tend to stationary points (see global analysis).

(II) Trivial stationary point: There is always a trivial stationary state (y = 0) present.
At ζ = 0, this trivial state undergoes a transcritical bifurcation (see last subsec-
tion).

(III) Non-trivial stationary states: There may be no, one or two positive stationary
points. We find three scenarios (see Fig. 7.3).

(III.a) Assume b ≤ r or assume b < r and b2μz = r2μx: No bistable behavior is possible.
For ζ < rμx−bμz the trivial stationary point is unstable and there is a non-trivial,
locally asymptotically stable stationary point. At ζ = rμx − bμz, these two sta-
tionary points undergo a transcritical bifurcation; the non-trivial stationary point
vanishes from the positive octant and the non-trivial stationary point becomes
locally asymptotically stable.

(III.b) Assume b > r, b2μz �= r2μx and rμx > bμz: In this case, two bifurcations take place
if we vary ζ: for ζ ∈ (0, rμx − bμz) the trivial stationary point is unstable while
we have a positive, non-trivial, locally asymptotically stable stationary point. At
ζ = rμx − bμz a transcritical bifurcation happens, and the trivial stationary state
becomes locally asymptotically stable (and stays locally stable for all ζ > rμx −
bμz), while a saddle invades the positive octant. We observe a bistable behavior
until the saddle and the locally asymptotically stable, nontrivial stationary point
undergo a saddle-node bifurcation at ζ = br(

√
μx −√

μz)/(b− r) and vanish from
the system.

(III.c) Assume b > r, b2μz �= r2μx and rμx ≤ bμz: Then, for

0 < ζ < br
b−r

(
√
μx −√

μz)

we have a bistable behavior: the trivial stationary point and a positive, non-trivial
stationary point are both locally asymptotically stable, while we have a second
positive, non-trivial stationary point that is a saddle. At ζ = br(

√
μx−√

μz)/(b−r),
the two non-trivial points are annihilated in a saddle-node bifurcation.

Especially in case (b) we find distinctly that the anticoagulant has in some sense similar
effects like the blood flow: since rμx > bμz, the anticoagulant is not able to control
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Figure 7.3: y-components of stationary points over ζ for the three cases (see text). Lo-
cally stable stationary points are indicated by a bold line, unstable stationary
points by a dashed line. Negative values have no physiological meaning and
are added only for better comprehensibility. The location of the saddle-node
and the transcritical bifurcation on the ζ-axis are denoted by ζsn and ζtrans,
respectively. Parameters: (a) μx = 4, μz = 0.8, b = 1, r = 0.5, (b) μx = 4,
μz = 1.5, b = 1, r = 0.5, (c) μx = 4, μz = 1.5, b = 1.5, r = 0.2.

103



7 Application: The Extrinsic Coagulation System

the system, and the trivial stationary state is unstable. If, however, the blood flow is
strong enough, then the combined effect of anticoagulant and wash-out stabilizes the
non-activated state. The positive feedback loop for y increases pro-coagulative forces s.t.
nevertheless an activated stationary state can exist (bistable behavior) as long as the
blood flow is not too strong.

7.4 Minimal Model For The Whole Story

We now consider a fixed blood flow rate ζ. For appropriate parameter settings, we find
a bistable regime: the trivial state is locally stable and a certain strength of the initial
stimulus is necessary to activate the system. If the stimulus is above this threshold,
the system eventually is completely activated. We now add a further process on a slow
time scale, the increase of the density of anticoagulant. E.g., fIIa cleaves protein C to
activated protein C, which suppresses the positive feedback loop of fIIa. Or, heparin is
released that enhances the effect and the amount of ATIII. Thus, one may add to system
(7.1) the differential equation

μ̇z = ε(y − k (μz − μ∗
z)), (7.3)

where ε is a small constant that separates time scales, μ∗
z denotes the density of anti-

coagulants in the resting state and k the strength of the force that moves the system
back in the resting state. Time scale arguments give an impression of the life cycle of
the clot formation (see Fig. 7.4, “one spike”): a subcritical stimulus yields to the ac-
tivation of the system. On the fast time scale, the system is completely activated and
settles on the activated, stationary point. Then the slow time scale takes over and μz

increases until the point of the saddle-node bifurcation is reached. Here, the coagulation
process breaks down, and consequently the amount of anti-coagulants is reduced until
the system reaches the resting state. There are three pathologic situation possible:

(1) The line y = k(μ∗
z−μz) hits the (w.r.t. the fast field) stable branch of the stationary

points. In this case, this intersection point is a locally stable stationary point of
the complete system, and - once activated - the trajectory will tend to this point
and settle there. The system never returns to the resting state but stays activated.

(2) μ∗
z is left of the transcritical bifurcation at rμx − bμz. We then find relaxation

oscillations: after activation, the trajectory follows the locally stable branch of
stationary points until it reaches the saddle-node-bifurcation, where the trajectory
jumps to the resting state y ≈ 0. Here, μz slowly proceeds towards μ∗

z. On this
way, however, the trajectory crosses the stability change of the trivial solution,
i.e. the point of the transcritical bifurcation. The trivial solution becomes locally
unstable, s.t. the system eventually is repelled from the trivial branch and jumps
to the activated branch again.
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(3) μ∗
z is right of the saddle-node bifurcation. Then, the system cannot be activated.

This may (cum grano salis) correspond to diseases like haemophilia.

It would be interesting to see, if the case (2) can appear in a well stirred flow reactor
that works with “artificial plasma”. As the assumptions underlying these mechanisms
are very fundamental and structural stability can be assumed these phenomena might
be amenable to experimental validation. Scenario (2) is close to the non-stirred reactor
with only weak anti-coagulant substances, e.g. with only TFPI and no ATII or PC. In
this case, we find complete, sustained activation. Only limited resources are able to stop
the coagulation. Normally, the experiments are finished before this time is reached.
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Figure 7.4: Time course of the complete model (7.1), (7.3) with flow and activation of
anti-coagulatory substances. We find three cases: one spike only (b = 1.5,
r = 0.2, μx = 4, μ∗

z = 0.8, ε = 0.02, k = 0.4, ζ = 0.1), sustained activation (
b = 1.5, r = 0.2, μx = 4, μ∗

z = 0.8, ε = 0.02, k = 1.0, ζ = 0.1), and relaxation
oscillations (b = 1.5, r = 0.2, μx = 4, μ∗

z = 0.05, ε = 0.01, k = 0.4, ζ = 0.1).
Upper row and lower, left panel: the three situations are presented in the
phase plane (y over μz). The bold line denotes the trajectory, the stationary
points are indicated by filled circles. Furthermore, the slow manifold (stable:
dashes, unstable: dots) and the isocline of μz are shown. Panel at the lower
r.h.s: the time course of y for relaxation oscillations.
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7 Application: The Extrinsic Coagulation System

Time Scale Analysis

In this section we briefly sketch the bifurcation analysis of the model (7.1), (7.3) by
means of time scale arguments and their results. In order to use the established theory of
fold points here, the system is reduced to two dimensions by center manifold techniques.
Consequently, fast solutions and slow manifold are identified. The orbit for 0 < ε � 1
follows closely singular orbits, i.e. orbits that are concatenated by pieces of the slow
manifold and jumps through the fast field. In order to identify parameter regions that
induce one of the three patterns (one spike, sustained activation, relaxation oscillations)
it is necessary to inspect (a) the location of the intersection point of the line given by
μ̇z = 0 with the slow manifold and (b) the stability of the resting state. If the line μ̇z = 0
crosses the slow manifold in its stable region, then we always find sustained activation.
If this intersection point is in the unstable part, the trajectory jumps through the fast
field (close) to the μz-axis and drifts slowly towards the resting state. If the resting state
is stable, it will finally stay there and we get one spike. If the resting state is unsta-
ble, the trajectory is eventually repelled from the μz-axis and the trajectory will oscillate.

The corresponding parameter regions can be thus identified as given in Figure
7.5. The extended Jacobian (see also local stability) for the trivial stationary point
(x, y, z, μz) = (μx, 0, μ

∗
z, μ

∗
z) and ε > 0 reads

J0,ε =

⎛
⎜⎜⎝

−ζ −rμx 0 0
0 rμx − bμ∗

z − ζ 0 0
0 −bμ∗

z −ζ ζ
0 ε 0 −kε

⎞
⎟⎟⎠ .

The eigenvalues are λ1,2 = −ζ, λ3 = rμx − bμ∗
z − ζ and λ4 = −kε. Therefor the resting

state is stable if μ∗
z > rμx−ζ

b
and unstable if μ∗

z < rμx−ζ
b

. The saddle-node bifurcation is
located at (see stationary points)

(y, μz) = (
√

b−r
br

ζμx − ζ
r
, μx − ζ

b
− ζ

r
− 2
√

b−r
br

ζμx).

We assume that the resting state is left of the saddle-node bifurcation point, i.e. μ∗
z <

μx− ζ
b
− ζ

r
−2
√

b−r
br

ζμx, as only under this condition interesting behavior occurs (existence

of non-trivial stationary points). The line μ̇z = 0 crosses the slow manifold in its stable
region if

k(μx − ζ
b
− ζ

r
− 2
√

b−r
br

ζμx − μ∗
z) >

√
b−r
br

ζμx − ζ
r
.

In terms of μ∗
z, this happens if

μ∗
z < μx + (1 + 1

k
) ζ
r
− ζ

b
− (2 + 1

k
)
√

b−r
br

ζμx.
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7.4 Minimal Model For The Whole Story

μ∗
z > rμx−ζ

b μ∗
z < rμx−ζ

b

μ∗
z < μx + (1 + 1

k )
ζ
r − ζ

b − (2 + 1
k )
√

b−r
br ζμx sustained activation sustained activation

μ∗
z > μx + (1 + 1

k )
ζ
r − ζ

b − (2 + 1
k )
√

b−r
br ζμx one spike relaxation oscillation

Figure 7.5: Table of parameter regions.

Transient Behavior And Clot-Formation

From the practical point of view, the bifurcation structure gives a certain hint about
the behavior we shall expect, but perhaps even not the most important hint: bifurcation
analysis focuses on asymptotic analysis. However, even if the system eventually becomes
completely activated, but this activation takes a very long time (which may be the
case for y(0) small), the result may be not different to that of a system that cannot be
activated at all. Also relaxation oscillations may not play any role, if the time period
between the localized spike-like bursts of activation is very long. In order to get an idea
about the transient behavior and the performance of the system for different values
of ζ, we focus on the situation that may reflect the physiological situation, i.e. those
parameters that guarantee that one spike occurs. We are especially interested in the
overall strength of the response on a given stimulus.

We compare on the one hand the time course of y(t) for different parameters
and different initial activation (i.e. different size of y(0)) and different flow rates (see
Fig. 7.6). We find that the system may be activated if the initial condition is above the
threshold that separates the trivial stationary point form the activated state. In the
simulations, this threshold is close to the y-component of the unstable stationary point.
The magnitude of the activation depends on the flow and is lower for higher flow. This
fact is also observed in experiments [18]. This finding reflects the simple fact that the
average time the zymogen is presented to the active zymogen becomes shorter if the
blood flow is faster. If a certain threshold is exceeded, this washing-out effect is strong
enough to break the positive feedback loop.

Another magnitude of interest is the total yield of fIa. Since factor IIa cleaves
factor I to factor Ia, this amount is more or less proportional to the integral of IIa
formed during the whole time; of course, this magnitude only takes into account the
cleavage process and not the amount of fI available for cleavage; the latter may strongly
depend on the flow. We thus determine this integral for different values of ζ and different
values of y(0). This integral is closely related to the time the system stays activated, i.e.
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7 Application: The Extrinsic Coagulation System

the relaxation time. We will compare these findings with similar computations of more
realistic models. In Fig. 7.7 the result is drawn. We find, that - on a logarithmic scale
- the flow rate resp. the initial condition influence the result rather weakly, as long as
we are above (resp. below) the activation threshold. Below this threshold, the yield is
one to two magnitudes less. This threshold nicely agrees with the analysis of stationary
points: if we consider the y-component of the saddle point y−, then this line (shown at
the bottom of the graph) agrees with the activation threshold.

y

300 400 500 600

0.
00

0.
05

0.
10

0.
15

y

time

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

ζ

trans sn

y

ζ = 0.1

0 100 200 300 400 500 600

0.
0

1.
0

2.
0

3.
0

time

y

ζ = 0.35

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

time

ζ = 0.5

0 100 200

Figure 7.6: Time course of the complete model (7.1), (7.3) with flow and activation
of anti-coagulatory substances. The trajectory for ζ ∈ {0.1, 0.35, 0.5} and
y(0) = 0.05 (dashed line) resp. y(0) = 0.2 (solid line) are shown. The struc-
ture of the stationary points in the fast system (together with the initial
conditions for y are presented in the left, lower corner (parameter values:
b = 1.5, r = 0.2, μx = 4, μ∗

z = 0.8, ε = 0.02, k = 0.4).

7.5 Realistic coagulation models

The basis of the present section is a large simulation model introduced by Hockin et
al. [26]. The model has 29 players and describes the most important pathways of the
intrinsic coagulation system. We adapt the model to our needs: we added the APC-
inhibitory pathway to this model and we introduce the blood flow formulated as inflow
and outflow rates. Here, we need to distinguish between molecules bound to surfaces
(cell surfaces resp. PSPL-particle surface) and factors that diffuse freely (for details of
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Figure 7.7: Logarithm over the integral over y(t) for t ∈ [0, 600] for different initial
conditions and different flow rates ζ. The level curves for 3,, 2, 1 and 0 are
indicated by dashed curves on the surface of the graph. The solid line at
the base of the graph represents the stationary point y− in dependence of
ζ. Above this line, the initial condition is able to activate the system, below
this line this is not possible. (b = 1.5, r = 0.2, μx = 4, μ∗

z = 0.8, ε = 0.02,
k = 0.4).

this model see the article of Hockin [26]). Of course, this simple way to introduce the
blood flow is perhaps not able to model the situation in a vessel. We rather model a
well stirred flow reactor, that parallels the well stirred tank reactors for the “artificial
plasma”. We nevertheless expect the system to have enough properties in common with
the physiologic situation, s.t. the overall outcome allows to gain insight in mechanisms
of the in vivo situation.

If we first consider the model only for the first part of the pathway, from TF to Xa,
we do not find a sign for an activation threshold (see Fig. 7.8, upper panel). Also the
stability analysis of the trivial stationary state (TF=0, all other substances like indicated
in Tab. 7.4, third column) yields the stability of the trivial stationary state for ζ > 0.
Like in the small model above, the stationary point undergoes at ζ = 0 always a stability
change. Since TF vanishes in the long run (due to the fact that ATIII withdraws the
system irreversibly TF-VIIa), the feedback has no chance to reach a self sustained state.
Nevertheless, and this is the important finding, there is no threshold for the minimal
amount of TF present. The efficacy, i.e. amount of Xa per amount of TF is about the
same range – a detailed analysis shows a variation of this ratio of at most two if we
vary the initial amount of TF in a reasonable manner. This is in accordance to dose-
dependency curves measured in a system without flow [5].

Now we go to the full model in order to investigate the threshold behavior of IIa. If
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7 Application: The Extrinsic Coagulation System

Reaction Rate

TF + VII → TF-VII 3.2 · 10e5/(Mol · sec)
TF-VII → TF + VII 3.1 · 10e-4/sec
TF + VIIa → TF-VIIa 2.3 · 10e6/(Mol · sec)
TF-VIIa → TF + VIIa 3.1 · 10e-4/sec
TF-VIIa + VII → TF-VIIa + VIIa 4.4 · 10e4/(Mol · sec)
Xa + VII → Xa + VIIa 1.3 · 10e6/(Mol · sec)
IIa + VII → IIa + VIIa 2.3 · 10e3/(Mol · sec)
TF-VIIa + X → TF-VIIa-X 2.5 · 10e6/(Mol · sec)
TF-VIIa-X → TF-VIIa + X 1.05/sec
TF-VIIa-X → TF-VIIa-Xa 6/sec
TF-VIIa + Xa → TF-VIIa-Xa 2.2 · 10e6/(Mol · sec)
TF-VIIa-Xa → TF-VIIa + Xa 19/sec
TF-VIIa + IX → TF-VIIa-IX 1.0 · 10e6/(Mol · sec)
TF-VIIa-IX → TF-VIIa + IX 2.4/sec
TF-VIIa-IX → TF-VIIa + IXa 1.8/sec
Xa + II → Xa + IIa 7.5 · 10e2/(Mol · sec)
IIa + VIII → IIa + VIIIa 2.0 · 10e6/(Mol · sec)
VIIIa + IXa → IXa-VIIIa 1.0 · 10e6/(Mol · sec)
IXa-VIIIa → VIIIa + IXa 5.0 · 10e-4/sec
IXa-VIIIa + X → IXa–VIIIa-X 1.0 · 10e7/(Mol · sec)
IXa–VIIIa-X → IXa-VIIIa + X 1.0 · 10e-4/sec
IXa–VIIIa-X → IXa-VIIIa + Xa 8.2/sec
VIIIa → 2 ·VIIIa1-L 6.0 · 10e-4/sec
2 ·VIIIa1-L → VIIIa 2.2 · 10e3/(Mol · sec)
IXa–VIIIa-X → 2 ·VIIIa1-L + X + IXa 1.0 · 10e-4/sec
IXa-VIIIa → 2 ·VIIIa1-L + IXa 1.0 · 10e-4/sec
IIa + V → IIa + Va 2.0 · 10e6/(Mol · sec)
Xa + Va → Xa-Va 4.0 · 10e7/(Mol · sec)
Xa-Va → Xa + Va 0.2/sec
Xa-Va + II → Xa-Va-II 1.0 · 10e7/(Mol · sec)
Xa-Va-II → Xa-Va + II 103/sec
Xa-Va-II → Xa-Va + mIIa 63.5/sec
mIIa + Xa-Va → IIa + Xa-Va 1.5 · 10e6/(Mol · sec)
Xa + TFPI → Xa-TFPI 9.0 · 10e4/(Mol · sec)
Xa-TFPI → Xa + TFPI 3.6 · 10e-5/sec
TF-VIIa-Xa + TFPI → TF-VIIa-TFPI-Xa 3.2 · 10e7/(Mol · sec)
TF-VIIa-TFPI-Xa → TF-VIIa-Xa + TFPI 1.1 · 10e-5/sec
TF-VIIa + Xa-TFPI → TF-VIIa-TFPI-Xa 5.0 · 10e6/(Mol · sec)
Xa + ATIII → 1.5 · 10e2/(Mol · sec)
mIIa + ATIII → 7.1 · 10e2/(Mol · sec)
IXa + ATIII → 4.9 · 10e1/(Mol · sec)
IIa + ATIII → 7.1 · 10e2/(Mol · sec)
TF-VIIa + ATIII → 2.3 · 10e1/(Mol · sec)

Table 7.1: Reactions of the simulation original model of Hockin [26]. All reaction prod-
ucts withdrawn from the system do not appear on the right hand side.
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Reaction Rate Source
PC → APC 480/min ·muMol · IIa/(6.1 ·muMol+PC) [22]
PC → APC 480/min ·mIIa/(6.1 ·muMol+PC) [22]
Va + APC → APC 10e5/(Mol · sec) [40]
Xa-Va + APC → APC 10e5/(Mol · sec) [40]
Xa-Va-II + APC → APC 10e5/(Mol · sec) [40]
APC → 1/(18 ·min) [25]
VIII + APC → APC 1/(1.25 ·muMol · sec) [11]
VIIIa + APC → APC 1/(muMol ·min) [11]
IXa-VIIIa + APC → APC 1/(muMol ·min) [11]
IXa–VIIIa-X + APC → APC 1/(muMol ·min) [11]
VIIIa1-L + APC → APC 1/(muMol ·min) [11]

Table 7.2: APC-pathway added to the model. We assumed that rates for complexes are
the same like the rates for single zymogenes. Note, that we assumed here for
the activation of PC Michaelis-Menten kinetics.

we incorporate the flow we find a strong dependency of the amount of IIa produced on
the initial amount of TF. This effect is not present for ζ = 0. This finding indicates
that there is a flow-dependent activation threshold in the coagulation system. In the
first step, TF will always create a small amount of Xa. The strength of the local loss
of Xa by washing out will determine if or if not the motor of positive feedback loop
(IIa produces Va and VIIIa, Va-Xa and VIIIa-IXa produce Xa that again produces IIa)
is able to be activated such that this loop can life self-sustained. Of course, the acti-
vation of APC by IIa will finally shut down this motor and bring the system to rest again.

The simple model of section three seems to catch most aspects of this finding.
However, there are some differences that do not allow a direct analysis of the complete
system by means of the methods used for the minimal model (also not by means of
numerical bifurcation tools). According to the model used, the factors VIIIa and Va
resp. the complexes they are part of will accumulate on the cell wall if no PC and APC
is present in the system. Since we did not introduce a bounded capacity of the cell wall,
we cannot prevent this to happen. In order to obtain an impression about the behavior
of the system, this bounded carrying capacity is not important, since APC will destroy
these complexes before they start to grow unlimited. However, if one desires to perform
a bifurcation analysis it may be desirably to find stationary states in absence of PC, i.e.
to investigate the fast system alone. In this case we would need the bounded carrying
capacity.
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Substance Rate
VIIa → ζ

→ VIIa ζ*VIIa0
Xa → ζ
X → ζ

→ X ζ*X0
IX → ζ

→ IX ζ*IX0
II → ζ

→ II ζ*II0
VIII → ζ

→ VIII ζ*VIII0
V → ζ

→ V ζ*V0
mIIa → ζ
IIa → ζ
TFPI → ζ

→ TFPI ζ*TFPI0
ATIII → ζ

→ ATIII ζ*ATIII0
Xa-TFPI → ζ
PC → ζ

→ PC ζ*PC0

Table 7.3: Effect of blood flow added to the model. If a substance flows into the sys-
tem, the left hand side is left blank, if a substance flows out of the system,
the right hand side is left blank. The constants in the rates are the plasma
concentrations of different substances (see also Table 7.4).
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Substance scale Initialvalue (TF to Xa) initial value (complete model)
TF pMol 25 pMol (varied) 25 pMol (varied)
VII nMol 10 nMol 10 nMol
TF–VII pMol 0 nMol 0 nMol
VIIa nMol 0.1 nMol=VIIa0 0.1 nMol=VIIa0
TF–VIIa pMol 0 Mol 0 Mol
Xa nMol 0 Mol 0 Mol
IIa muMol 0 Mol 0 Mol
X nMol 0.16 muMol=X0 0.16 muMol=X0
TF–VIIa–X pMol 0 Mol 0 Mol
TF–VIIa–Xa pMol 0 Mol 0 Mol
IX nMol 0 nMol=IX0 90 nMol=IX0
TF–VIIa–IX nMol 0 Mol 0 Mol
IXa nMol 0 Mol 0 Mol
II muMol 0 muMol=II0 1.4 muMol=II0
VIII nMol 0 nMol=VIII0 0.7 nMol=VIII0
VIIIa nMol 0 Mol 0 Mol
IXa–VIIIa nMol 0 Mol 0 Mol
IXa–VIIIa–X nMol 0 Mol 0 Mol
VIIIa1–L nMol 0 Mol 0 Mol
V nMol 0 nMol=V0 20 nMol=V0
Va nMol 0 nMol 0 nMol
Xa–Va nMol 0 Mol 0 Mol
Xa–Va–II nMol 0 Mol 0 Mol
mIIa muMol 0 Mol 0 Mol
TFPI nMol 2.5 nMol=TFPI0 2.5 nMol=TFPI0
Xa–TFPI nMol 0 Mol 0 Mol
TF–VIIa–TFPI–Xa nMol 0 Mol 0 Mol
ATIII muMol 3.4 muMol=ATIII0 3.4 muMol=ATIII0
PC muMol 0 muMol=PC0 0.08 muMol=PC0
APC nMol 0 nMol 0 nMol
time 10 sec 0 sec 0 sec

Table 7.4: Initial conditions for the system. The second column has been used for the
investigation of the production of Xa by TF, the third column for the sim-
ulation of the complete model. The scale gives the information hw to relate
the de-demensionalized magnitude to their dimensional counterpart. E.g, if,
in the de-demensionalized ODE we have t = 10, then time is 10 · 10 sec =
100 sec.
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7.6 Discussion

To better understand the basic mechanisms that may be responsible for threshold be-
havior of the coagulation cascade we investigated a minimal model of the coagulation
pathway. This minimal model consists of a coagulation factor (fII) that is able to activate
itself, blood flow that transports new coagulation factors into the region of interest resp.
washes away activated coagulation factors and an anticoagulatorive substance (AT III).
Additionally the density of anticoagulative (ATII and APC) is increased by activated
fII.

Under some circumstances “blood flow” may be replaced by biochemical reactions
that sustain the process in making new zymogen available and suppress the process in
eliminating all three kinds of molecules, the zymogen, the activated zymogen and the
inhibitor. This observation may be of value if one addresses the question why sTF alone
does not activate the coagulation system. Since sTF is in the whole blood, the blood
flow is not of outstanding importance for tolerance in this case, but rather the limited
halftime of the sTF-VII-complex and its low affinity to the cell wall [46, 14]. These
properties together with the low density of sTF and the overall structure exploited here
may provide an explanation.

We used time scale arguments in order to reveal the basic dynamics. If the anti-
coagulatorive substances are assumed to be increased on a slow time scale, we find
parameter regions with the desired bistable behavior, i.e. with threshold behavior.
Both, the blood flow as well as the anticoagulatorive substance are needed to produce
this behavior. If the system can be activated at all, and no flow is present, we then
find that the resting state is unstable. This behavior is in accordance with experimental
findings [38]. The blood has a detractive as well as a beneficial effect on the activation
of the system: blood flow transports new raw material to the region of interest. On
the other hand the wash-out effect reduces the efficiency of the auto-feedback loop.
This is reflected by a steep increase of the yield for very small flow rates, followed by a
slow decrease for higher flow rates (if the system is subcritical). The latter observation
is supported by experimental evidence [18] as well as clinical knowledge as a reduced
blood flow is a known risk factor for the development of thrombosis.

Adding the slow time scale, we find four classes of behavior: (1) after a complete
activation of the coagulation cascade, the system will be finally deactivated by the
increasing amount of anticoagulants. This may describe the physiological situation. (2)
The anticoagulants are not able to shut down the system; once the system has been
activated it stays activated. (3) Relaxation oscillations occur. However, the outbreaks
of activated zymogen are quite localized, and the time between two outbreaks is long
enough s.t. they perhaps play no larger role. From a practical point of view, they may
be indistinguishable from the first scenario. Nevertheless, the phenomenon that some
patients develop a thrombosis without any elicitating event and with no abnormalities
concerning the densities and activities of coagulation factors might be explained by this
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mechanism. (4) The system is not able to be activated, either because the blood flow is
too high or because the concentrations of anticoagulative substances are to high. This
scenario may correspond to coagulation failures like haemophilia. This effect might also
be of interest in a situation of hyperdynamic hemodynamics like in hemorrhagic shock
or sepsis.

In a second step we investigated a simulation model of the coagulation cascade.
It is not the aim of this model to provide an exact picture of the coagulation cascade in
vivo. The aim was to analyze the overall mechanisms governing the activation behavior
in a physiologic context, i.e. the dependence of the coagulation process from blood
flow. Thus certain simplifications had to be accepted. Consequently the model is not
sophisticated enough to allow quantitative conclusions; however, qualitative conclusions
can be drawn.

We find that the first step, from TF to the initially triggered fXa, does not ex-
hibit a threshold but is completely driven by TF: the more TF, the more fXa will
appear. The connection between TF and fXa is approximately linear. This finding is
supported by experiments [5], where the time course of fXa does not show exponential
growth in time, which would be expected for an unstable resp. subcritical situation.
Since blood flow affects rather fXa than the membrane bound TF-fVII(a), it is
reasonable that the mechanism under consideration (the blood flow) does not affect to
system behavior at this point.

This is different if we consider the complete cascade. The positive auto-feedback loop
relays on fIIa and fXa. Hence, the wash out of these two substances critically affects this
feedback loop. With respect to the complete cascade threshold behavior can be observed.
Since the first step of the cascade does not show this threshold behavior, we conclude
that this observation is caused by the wash out of fXa resp. fIIa, and takes only place
in the second part of the coagulation system.

In accordance with our minimal model we conclude that the threshold behavior is
created by the interplay of blood flow and ATIII, while the deactivation of the system
basically is due to the activation of PC to APC and the effect of APC on the feedback
loop (via fVa and fXIIIa). Also in accordance with feedback the minimal model as well
as with the experiments we find a sharp increase of the yield (total fIIa produced) for
very small flow rates that slowly decreases for higher flow rates.

From the clinical point of view the model presented here offers several interest-
ing aspects that warrant further investigation. The effects of blood flow are of special
interest in trauma patients, as these patients typically present with severe coagulation
disorders. The blood loss by itself as well as the therapeutic interventions (e.g. infusion
of large amounts of fluids) result in marked alterations of tissue blood flow. The model
presented here might be a valuable tool to analyze the interactions of these phenomena,
which are difficult to analysis experimentally. Emerging therapeutic concepts for trauma
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associated coagulation disorders, which mostly rely on substitution of fVIIa, can also
be evaluated, or optimized, on the basis of the present model of coagulation.

117



Bibliography

[1] U. Alon. Network motifs: theory and experimental approaches. Nat. Rev. Genet.,
8:450–461, 2007.

[2] M. Anand, K. Rajagopal, and K.R. Rajagopal. A model incorporating some of the
mechanical and biochemical factors underlying clot formation and dissolution in
flowing blood: review article. J. Theoret. Med., 5:183–218, 2003.

[3] M. Anand, K. Rajagopal, and K.R. Rajagopal. A model for the formation and lysis
of blood clots. Pathophys. Haemost. Thromb., 34:109–120, 2005.

[4] S. Banerjee and I. Bose. Functional characteristics of a double positive feedback
loop coupled with autorepression. Phys. Biol., 5, 2008.

[5] R. Baugh, G. Bronze, and S. Krishnaswamy. Regulation of extrinsic pathway factor
Xa formation by tissue factor pathway inhibitor. J. Biol. Chem., 273:4378–4386,
1998.

[6] E. Benoit, J.F. Callot, F. Diener, and M. Diener. Chasse au canard. Collectanea
Mathematica, 31-32:37–119, 1981.

[7] S. Butenas and K.G. Mann. Blood coagulation. Biochem., 67:5–15, 2002.

[8] S-N. Chow, C. Li, and D. Wang. Normal Forms and Bifurcations of Planar Vector
Fields. Cambridge University Press, 1994.

[9] E.A. Ermakova, M.A. Panteleev, and E.E. Shnol. Blood coagulation and propaga-
tion of autowaves in flow. Pathophys. Haemost. Thromb., 34:135–142, 2005.

[10] B. Ermentraut. XPPAUT 5.85 the differential tool. 2003.

[11] P. Fay, T.M. Smudzin, and F.J. Walker. Activated protein c-catalyzed inactivation
of human factor viii and factor viiia. J. Biol. Chem., 266:20139–20145, 1991.

[12] N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Math. J.,
Indiana Univ., 21:193–226, 1971.

[13] N. Fenichel. Geometric singular perturbation theory. J. Diff. Equ., 31:53–98, 1979.

[14] M.M. Fiore, P.F. Neuenschwander, and J.H. Morrissey. The biochemical basis for
the apparent defect of soluble mutant tissue factor in enhancing the proteolytic
activities. J. Biol. Chem., 269:143–149, 1994.

118



Bibliography

[15] R. FitzHugh. Impulses and physiological states in theoretical models of nerve mem-
branes. Biophys J., 1:445–466, 1961.

[16] A.L. Fogelson and N. Tania. Coagulation under flow: The influence of flow-mediated
transport on the initiation and inhibition of coagulation. Pathophys. Haemost.
Thromb., 34:91–108, 2005.

[17] F.R. Gantmacher. Matrizentheorie. Springer: New York, Berlin, Heidelberg, 1986.

[18] C.H. Gemmell, V.T. Turitto, and Y. Nemerson. Flow as a regulator of the activation
of factor X by tissue factor. Blood, 72:1404–1406, 1988.

[19] B.C. Goodwin. Oscillatory behavior in enzymatic control processes. Adv. in Enzyme
Regulation, 3:425–438, 1965.

[20] J.S. Griffith. Mathematics of cellular control processes i. J. Theoret. Biol., 20:202–
208, 1968.

[21] J.S. Griffith. Mathematics of cellular control processes ii. J. Theoret. Biol., 20:209–
216, 1968.

[22] B.W. Grinnell, J.D. Walls, and B.Gerli. Glycosylation of human protein c affects
its secretion, processing, functional activities, and activation by thrombin. J. Biol.
Chem., 266:9778–9785, 1991.

[23] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer: New York, Berlin, Heidelberg, 1983.

[24] S.P. Hastings, J.J. Tyson, and D. Webster. Existence of periodic solutions for
negative feedback control systems. J. Diff. Eq., 25:39–64, 1977.

[25] M. Heerb, A. Gruber, and J. Griffin. Identification of divalent metal ion-dependent
inhibition of activated protein c by alpha 2-macroglobulin and alpha 2-antiplasmin
in blood and comparisons to inhibition of factor xa, thrombin, and plasmin. J. Biol.
Chem., 266:17606–17612, 1991.

[26] M.F. Hockin, K.C. Jones, S.J. Everse, and K.G. Mann. A model for the stoichio-
metric regulation of blood coagulation. J. Biol. Chem., 277:18322–18333, 2002.

[27] C.K.R.T. Jones. Geometric singular perturbation theory. Johnson, Russell (ed.),
Dynamical systems. Lectures given at the 2nd session of the Centro Internazionale
Matematico Estivo (CIME) held in Montecatini Terme, Italy, June 13-22, 1994.
Berlin: Springer-Verlag. Lect. Notes Math. 1609, 44-118 (1995)., 1995.

[28] C.K.R.T. Jones. A geometric approach to systems with multiple time scales. Bull.
JSIAM, 7:No. 4, 1997.

[29] C.K.R.T. Jones, T. Kaper, and N. Kopell. Tracking invariant manifolds up to
exponentially small errors. SIAM J. Math. Analysis, 27:558–577, 1996.

119



Bibliography

[30] C.K.R.T. Jones and N. Kopell. Tracking invariant manifolds with differential forms
in singularly perturbed systems. J. Diff. Eq., 108:64–88, 1994.

[31] D.S. Jones and B.D. Sleeman. Differential equations and mathematical biology.
London: CRC Press, 2003.

[32] K.C. Jones and K.G. Mann. A model for the tissue factor pathway to thrombin. J.
Biol. Chem., 269:23367–23373, 1994.

[33] M.A. Khanin and V.V. Semenov. A mathematical model of the kinetics of blood
coagulation. J. Theor. Biol., 136:127–134, 1989.

[34] J.-R. Kim, Y. Yoon, and K.-H. Cho. Coupled feedback loops form dynamic motifs
of cellular networks. Biophys. J., 94(2):359–364, 2008.

[35] M. Krupa and P. Szmolyan. Extending singular perturbation theory to non-
hyperbolic points - fold and canard points in two dimensions. SIAM J. Math.
Analysis, 33:No. 2, 2001.

[36] M. Krupa and P. Szmolyan. Relaxation oscillation and canard explosion. J. Diff.
Equ., 174:312–368, 2001.

[37] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer: New York,
Berlin, Heidelberg, 1995.

[38] J.H. Lawson, M. Kalafatis, Sh. Stram, and K.G. Mann. A model for the tissue
factor pathway to thrombin. J. Biol. Chem., 269:23357–23366, 1994.

[39] A.I. Lobanov and T.K. Starozhilova. The effect of convective flows on blood coag-
ulation processes. Pathophys. Haemost. Thromb., 34:121–134, 2005.

[40] L.Yang, C. Manithody, and A. Rezale. The functional significance of the autolysis
loop in protein c and activated protein c. Thromb. Haemost., 94:60–68, 2005.

[41] K. Mann, S. Butenas, and K. Brummel. The dynamics of thrombin formation.
Arterioscler. Thromb. Vasc. Biol., 23:17–25, 2003.

[42] K. Mann, M. Nesheim, W. Church, P. Haley, and S. Krishnaswamy. Surface-
dependent reactions of the vitamin k-dependent enzyme complexes. Blood, 76:1–16,
1990.

[43] J.D. Murray. Mathematical Biology I: An Introduction. Springer: New York, Berlin,
Heidelberg, 2002.

[44] J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications.
Springer: New York, Berlin, Heidelberg, 2002.

[45] J.S. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
simulating nerve axon. Proc. IRE, 50:2061–2071, 1962.

[46] L.V.M. Rao, O.Nordfang, A.D. Hoang, and U.R. Pendurthi. Mechanism of an-

120



Bibliography

tithrombin III inhibition of factor VIIa/tissue factor activity on cell surfaces. Com-
parison with tissue factor pathway inhibitodfactor Xa-induced inhibition of factor
VIIa/tissue factor activity. Blood, 85:121–129, 1995.

[47] W. Sha, J. Moore, K. Chen, A.D. Lassaletta, C.-S. Yi, J.J. Tyson, and J.C. Sible.
Hysteresis drives cell-cycle transitions in xenopus iaevis egg extracts. Cell Biol.,
100:975–980, 2003.

[48] H.L. Smith. Systems of ordinary differential equations which generate an order
preserving flow. a survey of results. SIAM Rev., 30:No. 1, 1988.

[49] J. Tsang, J. Zhu, and A.v. Oudenaarden. MicroRNA-mediated feedback and feed-
forward loops are recurrent network motifs in mammals. Mol. Cell, 26:753–767,
2007.

[50] J.J. Tyson. What everyone should know about the Belousov-Zhabotinsky reaction,
volume 100 of Lect. Notes in Biomathematics, pages 569–587. Springer: New York,
Berlin, Heidelberg, 1994.

[51] J.J. Tyson and H. Othmer. The dynamics of feedback control circuits in biochemical
pathways. Prog. Theor. Biol., 5:1–62, 1978.

[52] ABC News Internet Ventures. What is a ”feedback loop”?, February 2006.

[53] Wolfram Research Inc. Mathematica 5.0. 1988-2003.

[54] C.Q. Xu, Y.J. Zeng, and H. Gregersen. Dynamic model of the role of platelets in
the blood coagulation system. Med. Engin. Phys., 24:587–593, 2002.

121


