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Cover illustration: Optical control of a magnetic Feshbach resonance. Upper panel:
Autler-Townes splitting of a magnetic Feshbach resonance caused by applying a laser that
drives a bound-to-bound transition between the bound state of a Feshbach molecule and
an electronically excited bound state. The splitting occurs in the two-body loss coefficient
K2 as a function of the magnetic field B (red circles). Five data sets are shown for different
laser detunings in steps of 1 MHz. The magnetic field values Bres at which K2 has its
maxima are indicated (green squares). The blue lines are fits of a theoretical model to the
experimental data. Lower panel: Bres as a function of the laser detuning. The plot shows
an avoided level crossing between the two bound states. Details about this measurement
are described in Chapter 5.
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Abstract

This thesis reports on experiments on the interaction control in ultracold quantum
gases. Starting point for all experiments is a Bose-Einstein condensate of 87Rb atoms.
The interaction between the particles is controlled either magnetically using a magnetic
Feshbach resonance or optically using a combination of a magnetic Feshbach resonance
with a laser induced bound-to-bound transition.

The first part of this thesis discusses experiments, in which the interaction control is
used to associate diatomic Feshbach molecules from ultracold atom pairs. One experi-
ment demonstrates the association of molecules inside a three-dimensional optical lattice
by ramping the magnetic field adiabatically across a magnetic Feshbach resonance. The
system ends up in a state with exactly one molecule at each lattice site. Another ex-
periment induces coherent atom-molecule oscillations in an optical lattice by applying a
sudden jump of the magnetic field to a magnetic Feshbach resonance. A third experiment
realizes a dissipative analog of the Tonks-Girardeau gas, where bosons behave much like
fermions. Here, the bosonic Feshbach molecules are confined in one-dimensional tubes us-
ing an optical lattice. Inelastic collisions between the molecules cause strong dissipation
that inhibits losses and induces correlations in the molecular gas.

The central part of this thesis explores a novel scheme for controlling the scattering
properties of an ultracold atomic gas with laser light. We show theoretically and experi-
mentally that light near-resonant with a molecular bound-to-bound transition can be used
to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes
it possible to tune the interaction strength with laser light and at the same time induce
considerably less loss than an optical Feshbach resonance would do. To find an appro-
priate bound-to-bound transition for this scheme, we perform excited-state spectroscopy.
When applying laser light resonant with one such bound-to-bound transition we observe
an Autler-Townes splitting of the magnetic Feshbach resonance. We find good agreement
between the theoretical model and experimental data. Our scheme can be used for a
variety of future applications. For example, light patterns created by holographic masks
could serve as a tool for changing the scattering length of ultracold atoms on very short
time and length scales.

The last part of this thesis reports on experimental progress towards localization of
matter waves in a disorder potential. The disorder potential is created using impurity
particles with a random spatial distribution. This is realized by particles that are frozen
at randomly distributed sites of a deep optical lattice. A second species experiences a
much shallower lattice potential, so that the particles are mobile. These particles probe
the random distribution of the frozen particles due to the on-site interaction. Theory
predicts that the matter waves should localize in this system, but a clear experimental
signature of this effect was not found.
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Zusammenfassung

Die vorliegende Arbeit berichtet von Experimenten, in denen die Wechselwirkung in ul-
trakalten Quantengasen kontrolliert wird. Ausgangspunkt hierfür bildet ein Bose-Einstein
Kondensat aus 87Rb Atomen. Die Wechselwirkung zwischen den Teilchen wird entweder
magnetisch mit Hilfe einer magnetischen Feshbach Resonanz oder optisch mit Hilfe ei-
ner Kombination aus magnetischer Feshbach Resonanz und Laser getriebenem Molekül-
Molekül-Übergang kontrolliert.

Der erste Teil dieser Arbeit beschreibt Experimente, in denen die Kontrolle über die
Wechselwirkung benutzt wird, um zwei-atomige Feshbach-Moleküle aus ultrakalten Atom-
paaren zu assoziieren. Ein Experiment demonstriert die Assoziation von Molekülen in
einem optischen Gitter durch adiabatisches Rampen des Magnetfelds durch eine magneti-
sche Feshbach Resonanz. Das System nimmt dabei einen Zustand mit exakt einem Molekül
pro Gitterplatz ein. In einem weiteren Experiment induzieren wir kohärente Atom-Molekül
Oszillationen in einem optischen Gitter durch plötzliches Springen des Magnetfelds auf
eine magnetische Feshbach Resonanz. Ein drittes Experiment realisiert ein dissipatives
Analogon zum Tonks-Girardeau Gas, in welchem sich Bosonen sehr ähnlich zu Fermio-
nen verhalten. Hierbei sind die bosonischen Feshbach-Moleküle entlang eindimensionaler
Röhren eines optischen Gitters gesperrt. Inelastische Kollisionen zwischen den Molekülen
verursachen starke Dissipation, welche Teilchenverluste unterdrückt und Korrelationen im
molekularen Gas erzeugt.

Der zentrale Bestandteil dieser Arbeit stellt die Untersuchung eines neuartigen Schemas
zur Kontrolle der Wechselwirkung in einem ultrakalten atomaren Gas mit Laserlicht dar.
Wir zeigen mit Hilfe eines theoretischen Modells als auch anhand experimenteller Daten,
dass zu einem Molekül-Molekül-Übergang nahresonantes Licht verwendet werden kann,
um die Magnetfeldstärke zu verändern, an welchem eine magnetische Feshbach Resonanz
auftritt. Dies ermöglicht es, die Wechselwirkungsstärke mit Laserlicht bei wesentlich ge-
ringeren Teilchenverlusten durchzustimmen als bei optischen Feshbach Resonanzen. Um
einen geeigneten Molekül-Molekül-Übergang zu finden, führen wir Spektroskopie von an-
geregten Zuständen durch. Durch Anwenden von Laserlicht, welches nahresonant zu einem
solchen Molekül-Molekül-Übergang ist, beobachten wir eine Autler-Townes Aufsplatung
der magnetischen Feshbach Resonanz. Dabei stimmen das theoretische Modell gut mit den
experimentellen Daten überein. Unser Schema kann für eine Vielzahl zukünftiger Experi-
mente eingesetzt werden. Zum Beispiel könnte ein Lichtmuster aus einer holographischen
Maske dazu dienen, um die Wechselwirkungseigenschaften von ultrakalten Atomen auf
sehr kurzen Zeit- und Längenskalen zu variieren.

Der letzte Teil dieser Arbeit stellt Experimente mit Zielsetzung zur Lokalisierung von
Materiewellen in einem Unordnungspotenzial vor. Das Unordnungspotenzial setzt sich
aus Verunreinigungen in einer räumlichen Zufallsverteilung zusammen. Diese Verteilung
wird durch Teilchen erzeugt, welche auf zufällig verteilten Plätzen eines optischen Gitters
festgefroren sind. Eine zweite Spezies nimmt ein wesentlich flacheres Gitterpotential wahr,
so dass sich deren Teilchen mobil bewegen. Letztere sondieren durch Wechselwirkung mit
den eingefrorenen Teilchen das Zufallspotential. Theoretische Modelle sagen Lokalisierung
von Materiewellen der mobilen Teilchen in einem solchen System voraus. Experimentell
konnte allerdings kein eindeutiger Hinweis auf diesen Effekt gefunden werden.
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1. Introduction

1.1. Ultracold Quantum Gases

Ultracold gases with temperatures close to absolute zero reveal a plethora of fascinating
phenomena in the world of quantum mechanics. Much of this is a consequence of the fact
that at very low temperatures the behavior of a gas deviates from Boltzmann’s theory of
a classical gas. This was first noticed when in 1905 W. Nernst established the third law
of thermodynamics because this law implies that at very low temperatures the equations
describing a classical gas must break down resulting in a degenerate behavior of the gas.

In 1925, based on S. Bose’s work for photons, A. Einstein developed a theory of a
degenerate gas and predicted a quantum statistical effect, that is referred to as Bose-
Einstein condensation. This effect occurs in a gas of undistinguishable bosons, when the
de-Broglie wavelength of the particles is comparable to the interparticle distance. Below
a critical temperature, the wave functions of the particles overlap and a macroscopic
number of particles occupies the ground state of the system. A macroscopic matter wave
forms, a so-called Bose-Einstein condensate (BEC).

In 1995, seventy years after its theoretical prediction, the first BECs were experimentally
observed in dilute gases of 87Rb [And95], 7Li [Bra95], and 23Na [Dav95]. This was the
starting point for an enormous progress in the field of ultracold quantum gases, which has
been developing rapidly ever since. Today more than a hundred groups worldwide [Dan]
perform research on quantum degenerate gases.

However, producing a BEC experimentally is still challenging. Due to the low densities
of ∼ 1014 cm−3 in the dilute gases, temperatures on the order of 500 nK are required. To
reach such low temperatures in the laboratory, the following two step scheme is commonly
used. In the first step, laser cooling and trapping techniques are used, where a momentum
transfer between the atoms and a radiation field causes a dissipative optical force. This
force decelerates the atoms and cools the sample to typical temperatures of ∼ 100 µK.
To reach quantum degeneracy, evaporative cooling is applied in a second step. This
technique relies on the selective removal of particles with the highest energy, so that
the remaining cloud has a lower mean energy per atom. Elastic collisions between the
particles re-thermalize the sample. Typically, experiments reach BECs with around 106

atoms. For further details on the general principles of the creation of a BEC and the
physics of ultracold quantum gases, the reader is referred to Refs. [Met99, Pet02, Pit03].

1.2. Magnetic and Optical Feshbach Resonances

Interparticle interactions determine many properties of an ultracold quantum gas such as
the re-thermalization rate during the evaporative cooling, static and dynamic properties of
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2 Introduction

the BEC, and correlations between the particles. Therefore, controlling the interparticle
interaction opens up a large variety of exciting experiments.

As the particles form a dilute gas, they typically interact by two-body collisions. If
during a collision the atom pair state couples to a molecular bound state, then the atom
pair can temporarily form a molecule. If the collision energy of the two atoms is degenerate
with the energy of the molecular state, the population of the molecular state will be
resonantly enhanced. In the vicinity of this resonance the scattering properties drastically
change. To obtain control over the interaction properties it is thus desirable to tune the
system in and out of resonance.

One option is to apply a static magnetic field to change the collisional properties by
addressing a so-called magnetic Feshbach resonance. The impact of a Feshbach resonance
on the scattering properties between the particles was first proposed for inelastic scattering
leading to loss of particles [Stw76, Tie92]. Later, it was suggested to magnetically tune
the elastic scattering properties [Tie93], too. The first experimental observation of a
magnetic Feshbach resonance was reported in 1998 [Ino98]. By now, magnetic Feshbach
resonances have been found in a variety of atomic species, including mixtures [Chi09]. The
occurrence of a magnetic Feshbach resonance was demonstrated both by an enhancement
of inelastic collisions leading to particle loss and by the desired change of the elastic part
of the scattering length.

Especially the latter capability is of great interest for investigating the reduction or
even disappearance of interaction induced effects in ultracold quantum gases as the scat-
tering length is tuned to zero using a magnetic Feshbach resonance. For example, it was
experimentally demonstrated that a reduction of the interaction strength leads to the
observation of anisotropic dipolar effects in quantum gases [Lah07, Pol09]. In another ex-
periment, the interaction induced dephasing of Bloch oscillations for a BEC in an optical
lattice was controlled experimentally [Gus08, Fat08]. Furthermore, a magnetic Feshbach
resonance was used for studying the dynamics of a controlled collapse with attractive
interaction [Don01].

Alternative techniques for tuning the scattering properties were proposed, replacing the
static magnetic field by a radio-frequency field [Moe96], a static electric field [Mar98], or
a light field [Fed96, Boh97, Jon06]. The latter method is called an optical Feshbach reso-
nance. Experiments demonstrated the change of the scattering wave function [Fat00] and
of the elastic scattering properties [The04]. Unfortunately, optical Feshbach resonances
induce rapid loss of particles due to light-induced inelastic collisions. This is the reason
why this technique was not used much yet. Alkaline earth atoms offer the possibility
to use optical Feshbach resonances on narrow intercombination lines, which results in
smaller loss rates [Eno08]. Recently, a scheme was proposed combining the two ideas of a
magnetic and a radio-field induced Feshbach resonance for independently controlling two
scattering lengths in three-component atomic gases [Zha09]. The radio-frequency dressing
of several magnetic Feshbach resonances was demonstrated experimentally [Kau09].
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1.3. Ultracold Molecules

In 2000, the Julienne group pointed out that it should be possible to associate stable
molecules from ultracold atoms using a magnetic field ramp across a magnetic Fesh-
bach resonance to transfer population from the atomic pair state to the molecular bound
state [Mie00]. This idea was adopted in 2003, when ultracold molecules were associated
with this method in 6Li [Str03, Cub03, Joc03a, Zwi03], 23Na [Xu03], 40K [Reg03], 87Rb
[Dür04a], and 133Cs [Her03]. This technique represents a chemical reaction under complete
experimental control. The reaction is reversible and no latent heat is released. Therefore,
the associated Feshbach molecules are as cold as the atoms in the initial ultracold sample.

Feshbach molecules are typically created in highly excited rovibrational states. Hence,
inelastic collisions can lead to rovibrational relaxation and the released binding energy is
converted into kinetic energy of the colliding particles. Since the kinetic energy is typically
much larger than the trapping potential, the colliding particles are lost. These inelastic
collisions limit the lifetime of molecules associated from bosonic atoms. Measurements
in bosonic systems, 23Na, 87Rb and 133Cs, revealed two-body loss-rate coefficients on the
order of 10−10 cm3/s [Muk04, Chi05, Sya06]. In fermionic systems, like 6Li and 40K, the
loss-rate coefficients far away from the Feshbach resonance are similar, but the loss can
be suppressed by orders of magnitude for magnetic fields close to the Feshbach resonance
[Cub03, Reg04a]. An explanation based on the Pauli exclusion principle for fermions was
put forward [Pet04].

In 2003, the long lifetimes in the fermionic systems were exploited to produce the first
molecular BECs [Joc03b, Gre03, Zwi03]. Subsequently, condensation of fermionic pairs on
the Fermi-side of the Feshbach resonance was observed [Reg04b, Bar04, Zwi04]. In 2005,
the superfluidity of these pairs was proven by the creation of vortices on the Fermi-side
of the BEC-BCS crossover [Zwi05].

The short lifetimes of molecules associated from bosonic atoms made experiments com-
paratively difficult and prevented the creation of molecular BECs in these systems so
far. Experiments rather concentrated on the systematic investigation of the association
[Mar05, Hod05] and dissociation process [Muk04, Dür04b, Vol05] as well as on one- and
two-body decay [Muk04, Tho05a, Chi05, Sya06]. Experiments on coherent molecular op-
tics were performed [AS05], and an alternative method for the production of molecules
was shown by applying a radio-frequency field near a Feshbach resonance [Tho05b].

One idea for increasing the lifetime of Feshbach molecules associated from bosons is to
de-excite the molecules in a controlled way by transferring them from the highly excited
rovibrational state to the internal absolute ground state. Considerable progress towards
this goal was reported for a sample of homonuclear 133Cs2 molecules to which a Raman
transfer was applied [Dan08]. This shows that the creation of a BEC of molecules in their
rovibrational ground state seems within reach.

Recently, heteronuclear Feshbach molecules were associated from a Bose-Bose mixture
of 85Rb and 87Rb [Pap06] as well as from a Bose-Fermi mixture of 40K and 87Rb [Osp06].
Heteronuclear molecules posses a permanent electric dipole moment if transferred to low-
lying vibrational levels. This dipole moment gives rise to a dipole-dipole interaction which
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is of great interest because of its long-range character. A sample of 40K–87Rb Feshbach
molecules was lately transferred to the rovibrational ground state of the singlet potential
using a Raman transfer [Ni08].

1.4. Optical Lattices

Another option to increase the lifetime of bosonic Feshbach molecules is the application
of an optical lattice. An optical lattice is a periodic array of microtraps created by the ac-
Stark shift of standing light waves. Recently, 87Rb2 Feshbach molecules were associated
in an optical lattice. By preparing a quantum state with one molecule at each lattice site,
the molecules are isolated from each other and inelastic collisions are suppressed thus
leading to considerably longer lifetimes [Tha06, Vol06].

But optical lattices are interesting for more than just this reason. They resemble solid-
state systems in condensed matter physics with a real time parameter control and can
be used as quantum simulators [Blo05, Blo08]. One vision is, that open problems of
solid-state physics like high-temperature superconductivity could be addressed in future
experiments using ultracold quantum gases in optical lattices.

By now, several experiments demonstrated the potential of optical lattices to offer
an approach to understanding the physics of strongly correlated systems. A prominent
example is the realization of a quantum phase transition from a superfluid to a Mott
insulator of bosonic atoms by changing the depth of the optical lattice potential [Gre02].
In a Mott insulator the interaction dominates over the kinetic energy of the particles, so
that the number of atoms on each lattice site is the same and the particles cannot move.

Strongly correlated systems were also studied in lower dimensions. In 1960, it was
shown that bosons with infinitely strong elastic interactions confined to 1D are described
by a many-body wave function that closely resembles the one describing identical fermions
[Gir60]. This model was generalized to the case of finite repulsive interactions [Lie63].
Such a 1D gas of strongly interacting bosons is called a Tonks-Girardeau gas. The strong
repulsion dominates the dynamics and the bosons are forced to behave much like fermions.
In 2004, the first experimental realization of such a system was demonstrated using an
optical lattice [Par04, Kin04].

1.5. Localization in Disorder Potentials

In an optical lattice, laser light is used to create a spatially periodic potential. This allows
for resonant tunneling of particles between lattice sites, because all sites are identical. In
contrast, a disorder potential consists of sites with randomly differing properties. Here,
tunneling between sites is off-resonant and therefore suppressed. As a result, a wave
packet with finite spatial extension can be prevented from dispersing. This is referred
to as localization [Ste08]. Originally, localization was discussed for electron transport in
condensed matter systems [And58]. However, localization can be generalized to other
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physical systems, where wave properties are dominant, because localization is caused by
the interference between multiple scattering paths [Tig99].

Localization has been reported experimentally for light waves [Wie97, Sch99, Stö06,
Sch07, Lah08], microwaves [Dal91, Cha00], sound waves [Wea90] and for electron gases
[Akk07]. However, in these reports localization of matter waves was not observed directly
[Bil08]. Recently, disorder potentials were also studied in the field of ultracold quantum
gases, both experimentally [Lye05, Clé05, For05, Sch05, Sch06, Fal07] and theoretically
[Rot03, Dam03, San04, Kuh05, Gim05, Clé06, Lug07, SP07, Sen07]. These systems offer a
high degree of parameter control: the gas can be confined to lower dimensions using optical
lattices, the interatomic interaction can be controlled by the density of the ultracold
atomic sample or by addressing a Feshbach resonance, and the profile of the sample can
be measured by absorbtion imaging.

First investigations aiming at matter wave localization in the field of ultracold quantum
gases used disorder potentials created by the ac-Stark shift of a laser speckle pattern
[Lye05, Clé05, For05, Sch05, Sch06] or by a quasi-periodic lattice potential generated
from a superposition of standing waves with incommensurate wavelengths [Fal07]. But
in these pioneering experiments the observation of localization was precluded either by
insufficient randomness of the disorder or by interaction induced screening of the disorder.

In 2008, after optimizing the randomness and reducing the interaction energy of the
quantum gas, two groups reported the direct observation of Anderson localization. The
Aspect group demonstrated the absence of diffusion of an ultracold sample of weakly
interacting 87Rb atoms with very low density inside a disorder potential created by a laser
speckle pattern [Bil08]. The Inguscio group presented experimental proof for Anderson
localization in a BEC of 39K, that was made non-interacting using a Feshbach resonance.
This experiment employed a disorder potential created by superimposing two standing
waves with incommensurate wavelengths [Roa08].

1.6. This Thesis

In Chapter 2, this thesis begins with an introduction of the relevant theoretical background
for the experiments of this thesis work. We describe the principles of magnetic and optical
Feshbach resonances and introduce the Bose-Hubbard model, that describes ultracold
bosons in an optical lattice.

Chapter 3 describes the setup, in which the experiments were carried out. This appa-
ratus was built before my thesis work began but it was considerably extended during this
thesis work. In particular, a three-dimensional optical lattice was implemented. The ho-
mogeneity of the strong magnetic field for addressing magnetic Feshbach resonances was
optimized. The optical dipole trap was redesigned and optimized for the reproducible
creation of BECs with small density. Moreover, the imaging system was improved.

Chapter 4 briefly summarizes three experiments to which I contributed during my thesis
work, and which were already described in detail in previous PhD theses in our group
[Vol07, Sya08a]. The first experiment realized a quantum state with exactly one molecule
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at each site of a three-dimensional optical lattice [Vol06, Dür06]. We used this state as a
starting point for a second experiment, in which we demonstrated the dissipative analog of
a Tonks-Girardeau gas induced by inelastic scattering between bosonic Feshbach molecules
confined in 1D tubes of an optical lattice [Sya08b, Dür08]. We performed analytical and
numerical calculations to gain a deeper understanding of the underlying physics of this
experiment [Dür09, GR09]. In a third experiment, we presented coherent oscillations
between a molecular state and an atom-pair state [Sya08a].

Chapter 5 reports the central results of this thesis work. It presents our theoretical
and experimental achievements concerning the optical control of a magnetic Feshbach
resonance [Bau09b, Bau09a]. We show, that the combination of a magnetic Feshbach
resonance and an optical bound-to-bound transition makes it possible to change the elastic
part of the atomic scattering length with laser light. As the light intensity can vary on
a length scale of one optical wavelength and the pattern can also be varied rapidly in
time, this technique offers high flexibility. Optical Feshbach resonances also offer this
possibility in principle, but our scheme induces considerably less particle loss than an
optical Feshbach resonance would do. We present spectroscopic data for various eligible
bound-to-bound transitions. Moreover, we demonstrate an Autler-Townes splitting of
the magnetic Feshbach resonance for laser light near resonant with a bound-to-bound
transition. The experimental results are in good agreement with our theoretical model.

In Chapter 6 we discuss our experimental progress towards localization of matter waves
in a disorder potential. We generate a disorder potential using impurity particles in a
random spatial distribution [Gav05, Par05, Mas06]. Mobile particles of a second species
scatter off these impurities and experience a spatial disorder potential. We discuss a
theoretical model for this system [Ros07, Hor07], which predicts that the matter wave
describing mobile particles should localize. We made considerable experimental progress
towards this goal, but our experiment did not produce a clear proof of localization.

This thesis ends with an Outlook in Chapter 7.



2. Theoretical Background

In this chapter we introduce the theoretical background of this thesis work. Sec. 2.1 covers
the principle of Feshbach resonances with magnetic and optical tunability. This section
also encompasses the application of Feshbach resonances in the association of molecules
from ultracold atoms. In Sec. 2.2 we introduce the theoretical description of ultracold
bosons in an optical lattice. For more theoretical details on the topics of this chapter, we
refer the reader to Refs. [Tay72, Joa75, Pet02, Pit03, Chi09, Jak98].

2.1. Feshbach Resonances and Association of Molecules

2.1.1. Collisions between Ultracold Particles

In dilute gases, like a BEC, the scattering of particles can be reduced to the problem
of two-body collisions, since the average interatomic separation is much larger than the
typical range of the interaction potential. If the particles are ultracold, the scattering
process can be fully described by one parameter, namely the s-wave scattering length a
[Tay72, Sch98]. Elastic and inelastic scattering are described by the real and imaginary
parts of a, respectively.

In a many-body system like a BEC, elastic collisions between the particles lead to a shift
of the energy eigenvalues. This shift is commonly described in a mean-field approximation
that yields the Gross-Pitaevskii equation [Pet02, Pit03](

−~2∇2

2m
+ Vtrap(~x) +

4π~2Re(a)

m
|ψ(~x, t)|2

)
ψ(~x, t) = i~

d

dt
ψ(~x, t). (2.1)

Here, m is the mass of one boson, Vtrap the trapping potential for the particles, and ψ(~x, t)
the condensate wave function. The non-linear term proportional to the spatial density of
atoms, n(~x) = |ψ(~x)|2, represents the interatomic interactions. It is proportional to Re(a).
For Re(a) > 0 (Re(a) < 0) the mean-field interaction is effectively repulsive (attractive).

2.1.2. Magnetic Feshbach Resonances

The interatomic interactions have a substantial impact on many properties of a BEC.
For many applications, it is therefore desirable to adjust the interaction strength. This is
possible with a Feshbach resonance [Fes93, Chi09], that is a scattering resonance in which
two channels are resonantly coupled to each other.

This coupling can result either from an appropriate term in the molecular Hamiltonian
or from an externally applied light field. The first case is called magnetic Feshbach

7
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Figure 2.1.: Theory of Feshbach resonances. (a) Magnetic Feshbach resonance. Atoms entering
in the open channel |a〉 can populate a bound state |g〉 in the closed channel at small internuclear
distances due to an inter-channel coupling. The energy difference between the open-channel
threshold and the bound state, ∆E, can be controlled by an external magnetic field. For
∆E ∼ 0, the population in the bound state is resonantly enhanced. (b) Optical Feshbach
resonance. The closed channel is an electronically excited potential which supports a bound
state |e〉. This state can be populated using a light field with angular frequency ωL, that is
detuned from the |a〉-to-|e〉 transition by a small energy ∆E.

resonance because one uses a magnetic field to tune the system into and out of resonance.
The second case is called optical Feshbach resonance or photoassociation resonance and
will be discussed in Sec. 2.1.3.

Fig. 2.1(a) shows the basic mechanism underlying a magnetic Feshbach resonance. Two
atoms enter the collision in the open channel with a kinetic energy, that is very close to the
dissociation threshold of this channel. The closed channel represents a different molecular
potential and supports a bound state |g〉 with an energy that differs by only a small amount
∆E from the dissociation threshold of the open channel. During the scattering process,
the bound state can be temporarily populated if the molecular Hamiltonian provides a
coupling between the two channels. Such a coupling typically arises from the Coulomb
exchange interaction, the magnetic dipole-dipole interaction of the valence electrons, or
the second-order spin-orbit coupling [Sto88, Mie96].

For the magnetic Feshbach resonance, ∆E can be tuned by applying a magnetic field B
because the open and the closed channels have different spin configurations. In the vicinity
of the Feshbach resonance, the magnetic field dependence of ∆E can be approximated as
linear

∆E ' ∆µ(B −Bres). (2.2)

Here, the expansion coefficient ∆µ represents a magnetic moment and Bres denotes the
value of B where ∆E = 0. At this magnetic field, the population of the bound state is
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Figure 2.2.: Magnetic Feshbach resonance. (a) The real part of the scattering length Re(a)
shows a dispersive behavior close to the Feshbach resonance Bres. abg is the value of the scattering
length far away from Bres. (b) The imaginary part of the scattering length Im(a) is described
by a Lorentzian centered at Bres.

resonantly enhanced and this is where the magnetic Feshbach resonance occurs.
The resonantly enhanced population of the bound state results in a drastic change of the

scattering length a. In the vicinity of the Feshbach resonance, a(B) is well approximated
by a Breit-Wigner form [Moe95, Tim99, vA99a, Gór04]

a(B) = abg

(
1− ∆B

B −Bres + i ~Γ
2∆µ

)
. (2.3)

Far away from the Feshbach resonance the scattering length a approaches its background
value abg. ∆B is the width of the Feshbach resonance. Γ describes the decay rate of
the population in the bound state. Typically, all parameters on the right-hand side of
Eq. (2.3) are real.

Re(a) has a dispersive behavior as a function of B, as shown in Fig. 2.2(a). Im(a) is a
Lorentzian centered at B = Bres with a full width at half maximum (FWHM) of ~Γ/∆µ,
see Fig. 2.2(b). Inelastic two-body collisions are thus strongest on resonance. In the
special case Γ = 0, we find that Im(a) vanishes, and that Re(a) has a pole at B = Bres.

2.1.3. Optical Feshbach Resonances

An alternative technique for tuning a is an optical Feshbach resonance [Fed96, Boh97,
The04, Tha05]. The principle of an optical Feshbach resonance is shown in Fig. 2.1(b)
and largely resembles that of a magnetic Feshbach resonance. The only differences are
the following: The closed channel is an electronically excited potential which supports a
dimer state |e〉 that is coupled to |a〉 of the incoming particles by applying a light field.
Thus ∆E can be controlled with the angular frequency ωL of the light field.

The behavior of Re(a) and Im(a) for an optical Feshbach resonance is analog to that
of a magnetic Feshbach resonance, see Fig. 2.2, except that now, for tuning a, the laser
frequency ωL substitutes the role of the magnetic field B.

The excited state |e〉 can decay with the rate Γ. The disadvantage of optical Feshbach
resonances is that typically Γ is fairly large, whereas for magnetic Feshbach resonances Γ
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Figure 2.3.: Physical concept of molecule association and dissociation. The solid (dashed)
lines represent the energy eigenstate of two atoms in a harmonic trap as a function of the
magnetic field in the presence (absence) of coupling between the open and the closed channels.
An adiabatic decrease in the magnetic field across the Feshbach resonance transfers population
from the atomic-pair state to the bound dimer state. As this ramp is adiabatic, this chemical
reaction is reversible.

can be small or even zero. Hence, optical Feshbach resonances typically lead to rapid loss
of particles.

2.1.4. Molecule Association using a Magnetic Feshbach Resonance

Besides offering experimental control over a, magnetic Feshbach resonances have proven
to be an efficient tool for the association of molecules from ultracold atoms [Köh06].
Several of the publications reported in the present thesis rely on molecule association and
subsequent dissociation using a magnetic Feshbach resonance. In the following, we sketch
the physical concept underlying this molecule association [Chi09].

Consider two atoms in a confining trap. Here the continuum of atom-pair states above
the dissociation threshold of the entrance channel is replaced by a ladder of discrete
vibrational energy levels, as illustrated in Fig. 2.3. The zero of the energy scale is chosen to
coincide with the energy of the motional ground state of the entrance channel. Therefore,
the free atom pair state is flat as a function of the magnetic field. The slope of the
molecular state is positive (∆µ > 0). The solid (dashed) lines represent energy eigenstates
in the presence (absence) of a magnetic Feshbach coupling. The coupling leads to a series
of avoided crossings between the bound dimer state and the open-channel trap states. If
the coupling strength is small compared to the energy spacing of the trap states and if the
magnetic field is close to Bres, the crossing between the lowest trap state and the bound
dimer states can be described as a two-level system.

In order to create molecules, an atom pair is prepared on the high-field side of the
magnetic Feshbach resonance (B � Bres) in the lowest trap state. Now, the magnetic
field is decreased adiabatically across resonance to follow the avoided crossing and transfer
the unbound atom pair into a bound molecule, as indicated by the arrow in Fig. 2.3. As
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this process is adiabatic, it is reversible. That means by reversing the magnetic field
back to a high value far away from the resonance the molecule is dissociated back into
a free atom pair. Note, that this ramping scheme for association and dissociation is also
applicable in free space.

2.2. Bosons in an Optical Lattice

Optical lattices are periodic, conservative potentials created by far-detuned standing wave
light fields. They are commonly used to confine atoms or molecules in geometric configu-
rations of reduced dimensionality [Blo08] and offer the possibility to perform quantum
simulations of certain Hamiltonians, for example from solid state physics. A prominent
example is the Bose-Hubbard Hamiltonian, that describes the physics of a bosonic many-
particle system in an optical lattice [Jak98]. A great strength of optical lattices lies in
the realtime control over system parameters like the lattice depth and the inter-particle
interaction strength. With this high degree of control one can force the many-body system
in the lattice to undergo the quantum phase transition between a superfluid and a Mott
insulator [Gre02].

In Sec. 2.2.1 we briefly review the Bose-Hubbard model. A discussion of the quantum
phase transition between a superfluid and a Mott insulator is given in Sec. 2.2.2. Finally,
we dedicate Sec. 2.2.3 to the inhomogeneous Mott insulator.

2.2.1. Bose-Hubbard Model

Consider the simplest three-dimensional (3D) configuration for an optical lattice, namely
the simple cubic lattice. It is created by three intersecting, mutually orthogonal laser
beams in standing wave configuration. For details about the experimental realization of
such an optical lattice see Sec. 3.4. The 3D potential can be replaced by the following
pseudo-potential [Gre03]

V3D(~r) '
∑

j

(
−Vlat,j · cos2(klat,j xj) +

m

2
ω2

j x
2
j

)
. (2.4)

Here, Vlat,j is the lattice depth along xj and klat the wave-vector of the lattice light. m
is the mass of one particle. The last term represents an additional external harmonic
confinement with angular trap frequency ωj. This term summarizes the contributions
from the finite diameters of the lattice beams and a magnetic trap or an optical dipole
trap.

For a single boson in potential Eq. (2.4) one finds great similarity to the behavior of
electrons in solid-state crystals: Due to the periodic nature of the lattice potential the
motion of the particle is governed by the energy eigenstates of a band structure. If the
energies involved in the dynamics of the system are much smaller than the band gap
between the two lowest bands, only the lowest band has to be considered. In this case,
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the many-body system of all bosons is described by the following bosonic field operator
in second quantization

Ψ̂a(~x) =
∑

i

w(~x− ~xi)âi, (2.5)

which is expanded in the basis of tight-binding Wannier functions w(xi). âi annihilates
an atom at the lattice site i, that is located at ~xi.

For a deep lattice, insertion of the ansatz (2.5) into Eq. (2.4) together with a mean-field
interaction term of Eq. (2.1) yields the Bose-Hubbard Hamiltonian [Jak98]

Ĥ = −J
∑
〈i,j〉

â†i âj +
Re(U)

2

∑
i

n̂i(n̂i − 1) +
∑

i

(εi − µ)n̂i. (2.6)

The first term describes tunneling of bosons between nearest neighboring sites. 〈i, j〉
denotes the sum over nearest neighboring sites. This term determines the kinetic energy
of the particles. J is the tunneling amplitude between adjacent sites i and j, and can be
calculated from

J = −
∫

d3r w∗(~x− ~xi)

(
− ~2

2m
∇2 + Vlat(~x)

)
w(~x− ~xj). (2.7)

The second term in Eq. (2.6) describes the on-site interaction between the atoms. n̂i =
â†i âi is the particle number operator for the lattice site i. The interaction energy is
calculated from

U =
4π~2 a

m

∫
d3r |w(~x)|4. (2.8)

The third term in Eq. (2.6) yields an energy offset εi at site i arising from the external
confinement in Eq. (2.4). µ is the chemical potential.

Note that both J and U are functions of the lattice depth Vlat in Eq. (2.4) as the
Wannier functions adapt to the lattice potential. The lattice depth is commonly quoted
in units of the recoil energy Erec = ~2k2

lat/2m.

2.2.2. Superfluid–to–Mott-Insulator Phase Transition

Consider the homogeneous case of Eq. (2.6), where εi is independent of i. By resetting
the zero point of the energy, one can set εi = 0 for all lattice sites i. Then the tunneling
term and the interaction term compete with each other and the ground state of the Bose-
Hubbard Hamiltonian depends on the ratio U/J . In the limit U/J � 1, the tunneling
term dominates. It is favorable for the particles to be delocalized among all the lattice
sites in order to lower their kinetic energy. The many-particle ground state is a superfluid
state

|ΨSF〉 ∝

(
M∑
i=1

â†i

)N

|0〉 , (2.9)
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where N is the number of particles, M is the number of lattice sites, and |0〉 is the
vacuum state. All particles occupy the same wave function and the total wave function
is the product of N identical single-particle wave functions. Eq. (2.9) is not an eigenstate
of the number operators n̂i. Therefore, a measurement of the particle number for each
lattice site would reveal shot-noise fluctuations.

In the other limit, where U/J � 1, the interaction term dominates and the on-site
interaction between particles forces the fluctuations of the atom number to be small. The
particles tend to be localized at a single site. In this regime, the ground state is a Mott
insulator state

|ΨMI〉 ∝
M∏
i=1

(
â†i

)n

|0〉 , (2.10)

where each site is occupied by n = N/M atoms1. The well-defined particle number results
in a maximum uncertainty in the condensate phase.

The superfluid and the Mott insulating regime are connected by a quantum phase
transition. The phase transition is theoretically predicted to occur at U/J ≈ 35 for a
simple cubic lattice [Jak98]. This value corresponds to Vlat/Erec ≈ 12.

2.2.3. Inhomogeneous Lattice Potential

In Sec. 2.2.2 we considered the case, where εi is constant for all lattice sites i. However,
in the experiment, there is usually a harmonic confinement in addition to the lattice
potential, see the last term in Eq. (2.4). For a deep lattice (J → 0), the confinement leads
to a position-dependent atom distribution. In 3D, shells of Mott insulating regions with
constant filling factor n form. For given U , µ, and εi, steps in the lattice filling occur at
radial distances where

εi ni + Uni(ni − 1) = µni (2.11)

for some integer ni. The result is an inhomogeneous Mott insulator structure, which
is shown in Fig. 2.4. Each site is occupied with particles up to the constant chemical
potential µ. For increasing εi the number of atoms per site decreases.

For some experiments performed within this thesis (Sec. 4 and Sec. 6) it is favorable
to maximize the Mott insulator region with filling factor n = 2. An atom pair on one
of these doubly-occupied lattice sites can then be associated to a single molecule that is
isolated from other particles. It can be shown theoretically [Han06], that the maximum
fraction of n = 2 sites is ∼ 53% forming a core surrounded by a shell of singly-occupied
sites.

1For the ground state Eq. (2.10) to exist, n = N/M has to be an integer.
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Figure 2.4.: Inhomogeneous Mott insulator for a deep lattice (J → 0 and T = 0). The external
confinement gives rise to a position dependent energy offset. Thus, the atoms fill the lattice up
to the position-independent chemical potential leading to an onion-shell structure in 3D.



3. Experimental Setup

This section describes the experimental setup used in this thesis. The first components
were assembled in 1995 and the apparatus has been growing steadily ever since. A thor-
ough description of all the components presently in use could easily fill 100 pages. We
refrain from such a description, especially because much of this can be found in several
previous theses of our group Refs. [Sch02, Mar03, Vol05, Sya08a]. Instead, this section
puts a strong emphasis on novel components and techniques that were implemented during
this thesis work.

The experimental production of a BEC is a highly complex task, in which a variety
of cooling techniques like Doppler cooling, polarization gradient cooling, and evaporative
cooling need to be mastered. This experimental procedure has been described in great
detail in previous theses of our group. In Sec. 3.1, we sketch the experimental route to
BEC only briefly. A thorough treatment of the theoretical aspects of BEC can be found
in textbooks, e.g. in Ref. [Pet02, Pit03]. A general description of cooling techniques like
Doppler- and polarization gradient cooling is given e.g. in Ref. [Met99].

In many of our experiments we control the interaction properties of the particles using
magnetic Feshbach resonances which are addressed with strong magnetic fields. The
homogeneity of these fields had to be improved during this thesis work, which is described
in Sec. 3.2.

The Feshbach resonances used in this thesis require the atoms to be in spin states that
cannot be held in a magnetic trap. Hence, we transfer the BEC into an optical dipole
trap. The basic physical concepts of dipole traps and the technical realization of such a
trap can be found in Sec. 3.3.

Finally, Sec. 3.4 is devoted to a 3D optical lattice, the implementation of which was a
major part of this thesis work and opened up the possibility to perform a new class of
experiments with our apparatus.

3.1. Creation of a Bose-Einstein Condensate

Bose-Einstein condensation ia a phenomenon that occurs if the phase-space density of
indistinguishable bosons exceeds a critical value [Pet02, Pit03]

nλ3
dB & 2.612 , (3.1)

where n is the spatial density, λdB = h/
√

2πmkBT the thermal de-Broglie wavelength,
m the mass of one boson, and T the temperature. Our experiments start from a vapor
of 87Rb atoms at room temperature. From here, 19 orders of magnitude in phase-space
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Figure 3.1.: Phase-space odyssey. To reach the BEC phase transition, the phase-space density
has to be increased drastically. This is achieved by employing a combination of laser cooling
techniques and evaporation cooling.

density must be bridged to reach the phase transition to BEC. This ’phase-space odyssey’
is illustrated in Fig. 3.1.

The experimental procedure has been described in detail in previous theses of our group.
Hence, we refer the reader to these Refs. [Sch02, Mar03, Vol05, Sya08a] and only sketch
the main experimental route to BEC in brief. In order to create a BEC in our setup,
we use a two stage cooling scheme. The first stage employs cooling of atoms with laser
light in a magneto-optical trap (MOT). This yields a cold sample consisting of up to
1010 atoms at temperatures around 10− 100µK and a phase-space density of up to 10−6.
For an introduction into the physics of a MOT, see e.g. Ref. [Met99]. The experimental
implementation of the MOT in our apparatus is detailed in Ref. [Sch02].

In a second step, the cloud is transferred into a magnetic trap, that creates a conser-
vative, harmonic potential. Then evaporative cooling is applied. To this end, a radio-
frequency (rf) field is used to cut off the trap at a specific particle energy. This allows the
hottest particles in the cloud to escape from the trap so that the mean energy per atom
decreases. Elastic scattering between the remaining particles re-thermalizes the cloud,
which can increase phase-space density if the loss of atoms is overcompensated by the
reduction of the temperature. As the temperature decreases steadily, it will eventually
drop so far below the trap depth that the evaporation rate becomes negligible. This is
avoid by slowly lowering the trap depth with the rf field in such a way that a reasonable
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Figure 3.2.: Coil configuration in the experimental setup. (a) The Ioffe-Pritchard magnetic
trap consists of the Ioffe bars, the pinch coil pair and the compensation coil pair. In combination
with the fast ramp coil pair the latter is also used to create a homogeneous field to address
magnetic Feshbach resonances. (b) The magnetic field inhomogeneities of the compensation
coils are compensated by the fields of the two gradient compensation coil pairs and the MOT
coils. Not drawn to scale.

evaporation rate is maintained as the temperature of the atomic sample is lowered contin-
uously. At the critical temperature TC , the ground-state population becomes noticeable
and grows constantly during further evaporation cooling. The atoms in the ground state
form the condensate, while the remaining atoms in excited states represent the thermal
cloud.

The evaporative cooling reduces the atom number by ∼ 3 orders of magnitude, which
in itself would reduce the phase-space density. Nevertheless, the corresponding decrease
in temperature is so large that the system crosses the phase transition to BEC. This
transition is typically reached for a critical temperature TC around 500 nK. We typically
cool the gas to such low temperatures that there is no discernable thermal fraction left.
The cloud contains up to ∼ 2×106 87Rb atoms in the hyperfine state |F,mF 〉 = |1,−1〉.
The central density is on the order of 1014 cm−3. Fig. 3.2(a) shows the coil configuration
of the magnetic trap. For further details of the experimental creation of a BEC in our
setup refer to Ref. [Mar03].

3.2. Magnetic Field for Feshbach Resonances

In the experiments performed within this thesis, we use magnetic Feshbach resonances
for spin states that are not magnetically trappable. Hence, it is necessary to transfer the
BEC from the magnetic trap to an optical dipole trap, which will be described in Sec. 3.3.
During the transfer from the magnetic trap to the dipole trap, a guiding field of ∼ 1 G
preserves the spin polarization of the atoms. When the atoms are confined in the dipole
trap we apply a strong homogeneous magnetic field of typically 1000 G in the direction
opposite to the guiding field. This field is switched on rapidly thus transferring the atom
spins from state |1,−1〉 to state |1,+1〉 with almost 100% efficiency [Vol03]. Alternatively,
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by deliberately creating an angle between the guiding field and the strong field, the ratio
of atoms in states |1,−1〉,|1, 0〉 and |1,+1〉 can be adjusted.

The 1000 G field is used to address magnetic Feshbach resonances. There are two
requirements on this strong magnetic field namely temporal stability and spatial homo-
geneity which are discussed in Sects. 3.2.1 and 3.2.2, respectively.

3.2.1. Temporal Stability

87Rb has a variety of magnetic Feshbach resonances [Mar03]. Unfortunately, all of them
are rather narrow. The broadest resonance is located at Bres = 1007.4 G and has a width
of ∆B = 210 mG [Dür04b], corresponding to a ratio of ∆B/Bres ∼ 2×10−4. Hence, the
magnetic field for addressing the magnetic Feshbach resonances must be stabilized very
accurately.

For addressing the magnetic Feshbach resonances two separate pairs of coils are used,
see Fig. 3.2(a). The first pair consists of the compensation coils of the magnetic trap.
They provide a strong offset field of up to 1270 G at a current of ∼ 1760 A. The driving
currents are stabilized with a home-built servo loop. The magnetic field noise caused by
current fluctuations is below 4 mG (rms) [Dür04b] and thus meets the stringent stability
requirements. The second pair of coils adds a few gauss to the strong offset field. This pair
of small coils is optimized for fast ramps with ramp speeds of up to 1 G/µs [Vol07]. Such
fast magnetic field ramps are required for experiments [Vol05] that control fast dynamics
of the atoms near the Feshbach resonance.

3.2.2. Spatial Homogeneity

The compensation coils are close to, but not quite perfectly in Helmholtz configuration.
As a result their magnetic field is not ideally homogeneous. The Stern-Gerlach force on a
particle with magnetic moment ~µ in an inhomogeneous magnetic field is ~F = |~µ| ∇| ~B(~r)|
if the direction of ~µ follows adiabatically the direction of ~B. If atoms in different spin
states are exposed to this field, they will experience different forces, which will lead to a
spatial separation of the particles.

Experiments with spin mixtures in this apparatus performed prior to the present thesis
used tight confinement in deep optical dipole traps to minimize this problem [Mar03].
The experiments reported here, however, require low atomic densities and thus weak
confinement. To avoid a spatial separation, the existing gradients therefore have to be
compensated by additional coils. Their design is based on the following considerations.
The components of the magnetic offset field are expanded in a Taylor series

Bi = Bi

∣∣
r=0

+
∑

j

∂Bi

∂xj

∣∣
r=0
· xj +O

(
r2
)
, i ∈ {x, y, z}, (3.2)

where r = 0 is the trap center. The magnetic field created by the compensation coils is
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essentially parallel to the z axis, see Fig. 3.2(b). Hence, to lowest order

| ~B| ' Bz

∣∣
r=0

+
∑

j

∂Bz

∂xj

∣∣
r=0
· xj. (3.3)

Thus, to minimize the Stern-Gerlach force it suffices to compensate only gradients in
Bz(~r). For convenience in daily operation, it is desirable to design the gradient compen-
sation coils so that they cancel the gradients without producing an offset field at r = 0.

Experimentally, we measured the following uncompensated magnetic field gradients at
| ~B| ∼ 1005 G

∂Bz

∂x

∣∣
r=0

= −2.2
G

cm
(3.4)

∂Bz

∂y

∣∣
r=0

= −7.9
G

cm
(3.5)

∂Bz

∂z

∣∣
r=0

= −2.1
G

cm
. (3.6)

The sign of the measured values is related to the directions indicated by the coordinate
system in Fig. 3.2.

The gradient in Eq. (3.6) is compensated using a pair of coils in anti-Helmholtz config-
uration which is part of the magneto-optical trap, see Fig. 3.2(b). The geometry of this
pair of coils yields (∂Bz/∂z)/I ∼ 4 G/(A cm) at a current I [Mar03]. Instead of canceling
the field gradient, a gradient of up to 100 G/cm can be applied deliberately to separate
different species using the Stern-Gerlach effect. This is particularly useful if applied while
the particles are in free flight.

The two remaining gradients given in Eqs. (3.4) and (3.5) are compensated by two
additional pairs of square coils which were designed and implemented in the experimental
setup during this thesis work. One pair compensates ∂Bz/∂x and the other pair com-
pensates ∂Bz/∂y. Pictures of these coils are shown in Fig. 3.3. Each coil lies in a plane
parallel to the x-y plane. The center of each coil is offset from the symmetry axis of the
magnetic trap, see Fig. 3.2(b). The current in one of the coils of a pair is circulating clock-
wise in the x-y plane, while the current in the other coil of the same pair is circulating
counterclockwise. In Fig. 3.4 the magnetic field component Bz created by the gradient
∂Bz/∂x compensation coils is depicted in a contour plot. The figure shows that the line
of constant Bz at the position of the atom cloud is not parallel to the z axis. Hence,
the pair of coils produces an undesired gradient ∂Bz/∂z on top of the desired gradient
∂Bz/∂x. Lack of space forces us to choose a geometry in which the undesired gradient
is larger than the desired one. Luckily the undesired gradient can be compensated with
the MOT coils. Note that the pair of coils that cancel ∂Bz/∂x contributes Bz = 0 G
at the position of the atom cloud. Similar considerations apply to the ∂Bz/∂y gradient
compensation coils.

Before the gradient compensation coils were integrated into the experiment we charac-
terized the gradients using a Förster sensor (Foerster Magnetoscop 1.069 ). The measured
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Figure 3.3.: Gradient compensation coils. (a) After winding the wire. (b) After casting the
coil into a two component epoxy resin (STYCAST 2850FT3 ). (c) After adding a layer of copper
tubing for water cooling. The copper tube is also cast into STYCAST.

gradients are

∂Bz/∂x coils:
1

I
· ∂Bz

∂x

∣∣
r=0

= +48
G

A cm
, (3.7)

1

I
· ∂Bz

∂z

∣∣
r=0

= −65
G

A cm
(3.8)

∂Bz/∂y coils:
1

I
· ∂Bz

∂y

∣∣
r=0

= +7.5
G

A cm
, (3.9)

1

I
· ∂Bz

∂z

∣∣
r=0

= +44
G

A cm
, (3.10)

and agree well with the theoretical expectation. The coils are water cooled to allow for
driving currents of up to 40 A for operation times of up to a few seconds within the 15 s
cycle time of the experiment. Typical currents are ∼ 25 A. The servo loops for these
currents have step response times of ∼ 100 µs.

3.3. Optical Dipole Trap

Here, the basic principle of dipole traps is presented. For a detailed discussion see e.g.
Ref. [Gri00].

An optical dipole trap is created by laser light. The oscillating electric field ~E(t)
induces an oscillating dipole moment in the atom due to its frequency-dependent complex
polarizability. This dipole moment in turn interacts with the electric field of the laser.
This results in an effective energy Vdip of the atom, which is proportional to the laser
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Figure 3.4.: Field created by the gradient compensation coils for ∂Bz/∂x. The color coding
shows the theoretically expected values of Bz at y = 0 and a current of 5 A. The yellow bars
represent the two coils, the blue rectangle indicates the profile of the science chamber and the
red circle is the position of the atom cloud.

intensity, I ∝ | ~E|2. Therefore, one can use a spatial intensity distribution I(~r) of the
light field to create a trapping potential landscape for the atoms. If the laser light is
far-detuned from the atomic transition, it can be shown, that the dipole potential is given
by [Gri00]

Vdip(~r) =
3πc2Γ0

2ω3
0

I(~r)

∆
, (3.11)

where ∆ = ω − ω0 denotes the detuning of the angular frequency ω of the light field
with respect to the atomic resonance frequency ω0, Γ0 is the spontaneous emission rate,
and c is the speed of light. Beside this conservative potential, the presence of the laser
field results also in a spontaneous scattering of laser photons off the atom: photons are
absorbed by the atom and re-emitted into the full solid angle. The scattering rate for
large detuning is given by [Gri00]

Γsp(~r) =
3πc2Γ2

0

2~ω3
0

I(~r)

∆2
=
Vdip(~r)

~
Γ0

∆
. (3.12)

This leads to heating of the atom cloud due to the photon recoil. The sign of ∆
determines the sign of Vdip(~r): in the red-detuned case (∆ < 0) atoms will be attracted to
regions of maximum intensity, such as the focus of a laser beam. Laser beams typically
have a Gaussian transverse intensity profile [Sie86]

I(r, z) =
2P

πw2(z)
e−2r2/w2(z), (3.13)
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Figure 3.5.: Configuration of laser beams in the experimental setup. (a) The crossed optical
dipole trap consists of two intersecting beams. The atoms are trapped in the intersection point
inside the science chamber. For orientation, the magnetic trap is also shown in grey. (b) Optical
lattice. Three retro-reflected laser beams, one along each coordinate axis, form a 3D optical
lattice. Not drawn to scale.

where w(z) = w0

√
1 + (z/zR)2 is the 1/e2 radius of the intensity, w0 is the waist of the

beam, zR = πw2
0/λ the Rayleigh-length, λ the light wavelength , and P the power of the

beam. For the far red-detuned case such a Gaussian beam forms a cylindrically symmetric
atom trap. Close to the center, the trapping potential is approximately harmonic with
the radial and axial angular trap frequencies

ωr =

√
4V0

mw2
0

and ωz =

√
2V0

mz2
R

, (3.14)

respectively, where V0 = |Vdip(~r = 0)|. Since zR

w0
= πw0

λ
is typically much larger than 1, the

axial confinement is much weaker than the radial confinement. In order to have similar
confinement in all spatial directions, a crossed dipole trap consisting of two intersecting
laser beams can be used. Interference between the two beams can be avoided by using
mutually orthogonal polarizations or by choosing different laser wavelengths. In the latter
case, the interference pattern moves across the trap with a speed determined by the
difference of the laser frequencies. For large enough speed the atomic motion cannot
follow the rapid change of the potential and reacts merely to the time-averaged potential,
in which the interference term vanishes.

The dipole trap configuration of our setup is shown in Fig. 3.5(a). One beam propagates
along the symmetry axis of the magnetic trap (z-axis). It has a beam with an elliptic
profile: the waist in the x-direction is 60 µm and the waist in the y-direction is 900 µm.
The light for this beam is provided by a single-mode fiber laser (IPG YLR-20-LP-SF )
with an output power of up to 20 W and a wavelength of 1064 nm. In our experiments
the laser power at the position of the atom cloud is typically 1− 3 W.

The second laser beam has a circular profile with a waist of 55 µm and propagates
along the vertical direction (x-axis) from the bottom of the glass cell. The light source for
this beam is a single frequency Nd:YAG laser (Innolight Mephisto 2000 ) that delivers a
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Figure 3.6.: A retro-reflected Gaussian laser beams creates a standing wave pattern.

maximum power of 2 W at a wavelength of 1064 nm. Typically, the power for this beam
is around 150 mW at the atoms.

We measured the angular trap frequencies for this crossed dipole trap using parametric
heating [Sav97]. Typical frequencies for the experiments performed within this thesis are
(ωx, ωy, ωz) ' 2π × (74, 33, 33) Hz.

3.4. Optical Lattice

An optical lattice is a regular array of thousands of microtraps formed by a standing wave
pattern of an optical dipole potential. Bringing a BEC into such a periodic potential makes
it possible to study physical effects that are similar to those occurring in condensed matter
systems. However, in contrast to solid state physics, in experiments using an optical lattice
most parameters are freely adjustable in real time.

All experiments performed within this thesis use an optical lattice. This section de-
scribes the theoretical (Sec. 3.4.1) and the experimental realization (Sec. 3.4.2) of a 3D
optical lattice in our apparatus. Lattice alignment and gauging is discussed in Sec. 3.4.3.
Finally, in Sec. 3.4.4 we describe the implementation of a new imaging system, that is
-in combination with the already existing one- useful for measuring the lattice depth and
magnetic field gradients in all three spatial directions.

3.4.1. Periodic Lattice Potentials

The ability of light beams to interfere with each other offers an easy way to create a
periodic light intensity pattern. If the Gaussian beam of Eq. (3.13) is retro-reflected, as
illustrated in Fig. 3.6, then the intensity pattern becomes

I(~r) =
8P

πw2(z)
e−2(x2+y2)/w2(z) · cos2(kz), (3.15)

where k = 2π/λ is the absolute value of the wave vector. At x = y = 0, the corresponding
dipole potential (3.11) becomes

V (z) = −Vlat cos2(kz). (3.16)
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Figure 3.7.: Lattice potential configurations. (a) Two orthogonally intersecting standing waves
create a 2D array of tube-shaped atom traps. (b) A simple-cubic optical-lattice potential is
formed at the intersection of three mutually orthogonal standing waves.

The lattice depth Vlat in units of the recoil energy Erec = ~2k2/2m is obtained from
Eqs. (3.11) and (3.15)

Vlat

Erec

= − 3mc2

~2k2ω3
0

8P

w2
0

Γ0

∆
. (3.17)

By superimposing more than one standing wave, multidimensional periodic potentials
can be formed. As examples, 2D and 3D lattices are shown in Fig. 3.7. A 2D lattice
potential can be used to create an array of tube-shaped 1D traps.

Three standing waves with Gaussian envelope intersecting at right angles form the
lattice potential

V3D(~r) '− Vlat,x · e
−2 y2+z2

w2
0,x · cos2(klat,x x)

− Vlat,y · e
−2x2+z2

w2
0,y · cos2(klat,y y)

− Vlat,z · e
−2x2+y2

w2
0,z · cos2(klat,z z).

(3.18)

This is the realization of the 3D simple cubic lattice shown in Fig. 3.7(b). In our
experiment we use Gaussian beams with waists w0,x, w0,y and w0,z that are large compared
to the size of the atomic sample. As a consequence, the relevant characteristics of the 3D
lattice potential can be approximated by the following pseudo-potential

V3D(~r) '
∑

j

(
−Vlat,j · cos2(klat,j xj) +

m

2
ω2

eff,j x
2
j

)
, (3.19)

where the Gaussian lattice beam shapes result in a harmonic confinement with angular
trap frequencies

ωeff,x =

√
4Vlat,x

m

(
1

w0,y

+
1

w0,z

)
, and ωy, ωz by cyclic permutation. (3.20)
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Close to its center, each individual lattice site forms an approximately harmonic poten-
tial, with an angular trapping frequency in the direction of xj

ωlat,j =

√
2
Vlat,j k2

lat,j

m
. (3.21)

3.4.2. Experimental Setup

It was part of this thesis to set up a 3D optical lattice configurations. It is simple cubic
and operated at a laser wavelength of 830 nm. The three lattice beams intersect at right
angles at the position of the atoms, see Fig. 3.5(b). Each lattice beam has a Gaussian
transverse profile and is linearly polarized. The polarizations of the three beams are
chosen to be mutually orthogonal to avoid interference.

The light is provided by a titanium-sapphire laser (Coherent MBR E-110 ) that is
pumped by a frequency-doubled Nd:YVO4 laser (Coherent Verdi V-10 ) at 532 nm with
a power of 10 W. The output power of the Ti:Sa laser is ∼ 2 W at a wavelength of
830 nm. The laser has been stabilized onto its internal reference cavity which allows free
tuning of the wavelength of the lattice light. The laser has a line width of ∼ 100 kHz
measured on a time scale of 10 ms at a bandwidth of 50 kHz. The output of the Ti:Sa
laser is split up into three beams with a power of 400-450 mW each, see Fig. 3.8. To
enable separate intensity control for each beam, we use three acousto-optic modulators
(AOM). Mechanical shutters block leakage light at times where the lattice is supposed
to be off. The AOM driving frequencies are detuned with respect to each other by 40-
200 MHz to eliminate any interference effects between the beams, that would lead to
undesired checkerboard lattice structures [Gre03]. Three polarization maintaining optical
fibers transfer the beams to the experiment.

Lenses with focal lengths between 600 and 800 mm focus the beams down to waists of
wj ' 135 µm at the position of the atoms, resulting in Rayleigh lengths of around 70 mm.
After leaving the science chamber, the beams are collimated again and retro-reflected to
provide the standing wave configuration of each single lattice beam. The focussing lenses
are mounted on 2D translation stages to allow for accurate and reproducible alignment
perpendicular to the direction of propagation. The maximum power of each beam is
∼ 200 mW at the atom cloud resulting in a lattice depth of up to ∼ 35 Erec.

For the experiments described in Sec. 6, the lattice beam propagating along z is replaced
by a retro-reflected, circularly polarized laser beam at a wavelength of ∼ 785 nm. This
light is provided by a grating-stabilized diode laser (Toptica DL100 ). Its frequency is beat-
locked to an optical frequency comb from the Hänsch group. The comb has a repetition
rate of 100 MHz ± 3 kHz and its carrier envelope offset is 20 MHz ± 3 kHz. The frequency
gap between adjacent comb lines is covered by sending the light through a double-pass
AOM with a driving frequency between 60 and 100 MHz. The line-width of this diode
laser is ∼ 100 kHz.
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Figure 3.8.: Optical beam path for the 3D optical lattice. The laser light is provided by a
titanium-sapphire laser. The output power of the laser is split up into three channels for the
x−, y− and z−axis of the optical lattice. The power in each channel is controlled by acousto-
optic modulators. The lattice light is transferred to the experiment by optical, polarization-
maintaining (PM) fibers. For coarse alignment near resonant light can be coupled into the same
fibers. (M = mirror, HWP = half-wave plate, PBS = polarizing beam cube)

3.4.3. Lattice Alignment

Coarse alignment of the lattice is achieved by overlapping the lattice light with near
resonant laser light. The latter removes atoms from the dipole trap by photon recoil,
which makes coarse alignment easy. Good spatial overlap between the lattice beam and
the near-resonant beam is ensured by sending both beams into the same fiber, see Fig. 3.8.
For fine alignment, one lattice beam at a time is used in combination with one of the
beams of the optical dipole trap to form a crossed dipole trap. To this end, the retro-
reflected part of the lattice beam is blocked. By optimizing the atom number and the
temperature of the atomic cloud, the lattice beam can be fine adjusted. After this step,
the retro-reflected beam is unblocked and coupled back into the optical fiber.

Alternatively or additionally to the former adjustment method, another alignment tech-
nique turns out to be rather efficient and easy-to-use in daily operation. This method
utilizes the excitation of a sloshing mode inside the optical dipole trap as follows: one
lattice beam at a time (without its retro-reflected part) is pulsed on to illuminate the
BEC in the optical dipole trap with high power (∼ 100 mW). The pulse duration is short
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Camera Andor DV887 ImagingSource DMX 31BF03
detector size 512px × 512px 1024 × 768px
pixel size 16 µm × 16 µm 4.65 µm × 4.65 µm

(for 3 × 3 binning)
dynamic range 14 bit 10 bit
EMCCD mode optional –
numerical aperture 0.170 0.006

(measured)
transversal magnification 3.85(1) 3.29(1)

(measured)

Table 3.1.: Comparison of the two imaging systems. All numbers are the manufacturer’s
specifications if not stated otherwise.

(∼ 1 ms) compared to the largest trap frequency of the dipole trap (< 80 Hz). If the
focus of the lattice beam is offset from the trap center, this pulse excites a sloshing mode
of the atom cloud inside the dipole trap resulting in a shift of the BEC position from the
undisturbed position in time-of-flight pictures. By minimizing such shifts in all three lat-
tice directions we usually obtain excellent overall lattice alignments within approximately
one hour.

Finally, the lattice depth is characterized by employing the calibration method described
in Refs. [Han06, Vol07].

3.4.4. Imaging

For detection of the BEC we use absorption imaging. To this end, a near-resonant laser
beam illuminates the BEC after it is released from all trapping potentials. The atom
cloud absorbs part of the light and casts a shadow in the beam. The shadow is imaged
onto a CCD camera. From the spatial distribution of the light intensity in these images,
the atomic density distribution and the atom number can be calculated [Mar03, Die07].

If only one imaging system were used, it would be difficult to align and calibrate the
lattice beam that propagates along the imaging axis. Similar problems would occur when
trying to measure the magnetic field gradients along the imaging axis. This is why a
second imaging system was implemented during this thesis work. Some properties of the
two imaging systems are listed in Tab. 3.1. Their setup is shown in Fig. 3.9.
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Figure 3.9.: Experimental setup of the two imaging systems. All lengths are given in mm. The
atomic cloud is located in the center of the science chamber and is illuminated by near-resonant
laser light (red) either along y or z. The atoms absorb photons from the beam. The resulting
shadow is imaged onto CCD cameras. Not drawn to scale.



4. Ultracold Feshbach Molecules

During this thesis work, we performed a set of experiments with ultracold Feshbach
molecules. This chapter is dedicated to a brief review of these experiments. For more
details, we refer to our publications [Vol06, Dür06, Sya07, Sya08b, Dür08, Dür09, GR09]
or to previous theses of our group [Vol07, Sya08a].

All the work in this chapter has a common theme, namely a quantum state with exactly
one molecule at each site of an optical lattice. In Sec. 4.1, we show the experimental
preparation of this state using an adiabatic ramp of the magnetic field across a Feshbach
resonance [Vol06, Dür06]. If, however, the ramp is diabatic, a coherent superposition of
the atomic and molecular state is created. In Sec. 4.2, we study this superposition for
the special case of a square pulse [Sya07]. In Sec. 4.3, we lower the optical lattice depth
after preparing the molecular state. This allows the molecules to move and collide along
a one-dimensional geometry. These collisions are predominantly inelastic. This offers an
alternative route into the strongly correlated regime because our experiment shows that
strong dissipation inhibits losses and induces strong correlations [Sya08b, Dür08, Dür09,
GR09].

4.1. Preparation of a Quantum State with one Molecule
at each Site of an Optical Lattice

A variety of interesting proposals for quantum information processing and quantum sim-
ulations [DeM02, Gór02, Lee05, Mic06, Bar06] require as a prerequisite a quantum state
of ultracold polar molecules in an optical lattice, where each lattice site is occupied by
exactly one molecule. A promising strategy for the creation of such molecules is based
on association of ultracold atoms using a Feshbach resonance or photoassociation and a
subsequent transfer to a much lower ro-vibrational level using Raman transitions [Sag05].
If the molecule-molecule interactions are predominantly elastic and effectively repulsive,
then a state with one molecule per lattice site can finally be obtained using a quantum
phase transition from a superfluid to a Mott insulator by ramping up the depth of an
optical lattice [Gre02]. However, many molecular species do not have such convenient
interaction properties, so that alternative strategies are needed. Here, we demonstrate
a technique that is independent of the molecule-molecule interaction properties. The
technique relies on first forming an atomic Mott insulator and then associating molecules
[Vol06].

The experiment begins with the creation of a BEC of 87Rb atoms in a magnetic trap,
see Sec. 3.1. Once created, the BEC is transferred into a crossed-beam optical dipole trap,

29
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Figure 4.1.: Quantum phase transition from a superfluid to a Mott insulator [Dür06]. The
lattice depth is increased to a maximum level and then suddenly switched off simultaneously
with all trapping potentials of the atomic sample. After some time of flight, an absorption image
is taken. Parts (a)-(d) show images corresponding to a maximum lattice depth of V0/Erec = 0,
5, 12, and 22. For small lattice depth, the system is superfluid and diffraction from the lattice
light leads to an atomic interference pattern. For a deep lattice, however, the system is in the
Mott phase, corresponding to a fixed atom number per lattice site. This results in a maximum
uncertainty of the relative phase between sites and therefore the interference pattern is washed
out.

see Sec. 3.3. Then a magnetic field of approximately 1000 G is applied, see Sec. 3.2. The
atoms are transferred [Vol03] to the absolute ground state |F = 1,mF = 1〉, which has a
Feshbach resonance at 1007.4 G [Mar02] with a width of 0.2 G [Vol03, Dür04b]. Next, a
simple-cubic optical lattice is created by illuminating the BEC with three retro-reflected
light beams at a wavelength of 2π/k = 830.44 nm, see Sec. 3.4. We create an atomic Mott
insulator by slowly ramping up the depth of the optical lattice.

As an experimental signature for the quantum phase transition from a superfluid to the
atomic Mott insulator, one can use time-of-flight images of the atomic sample released
from the optical lattice, see Fig. 4.1. The phase transition is predicted [Jak98] to occur
at U/J ≈ 35, corresponding to a lattice depth V0/Erec ≈ 12, where Erec = ~2k2/2m is the
recoil energy. This prediction agrees well with the experimental results [Gre02, Vol07]. We
carefully checked that an atomic Mott insulator is obtained by repeating all measurements
of Ref. [Gre02].

The system has an external harmonic confinement due to the finite waist of the lattice
beams and due to the additional dipole trap. This makes the atomic Mott insulator
inhomogeneous, see Sec. 2.2.3. By choosing appropriate parameters [Vol06], we ensure
that the core of the cloud contains exactly n = 2 atoms per lattice site. This core contains
47(3)% out of a total population of 105 atoms, which is close to the theoretical limit of
53% [Han06].

After preparing the atomic Mott insulator at a magnetic field of B = 1008.8 G,
molecules are associated as described in Sec. 2.1.4 [Dür04a]. To this end, the magnetic
field is slowly (at 2 G/ms) ramped across the Feshbach resonance at 1007.4 G to a final
value of B = 1006.6 G. At sites with n > 1, atom pairs are associated to molecules. If the
site contained n > 2 atoms, then the molecule can collide with other atoms or molecules
at the same lattice site. This leads to fast loss of the molecule and its collision partner
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Figure 4.2.: Restoration of phase coherence when probing the quantum state with exactly one
molecule per lattice site. (a) An atomic Mott insulator is melted by reducing the lattice depth
slowly. The system returns to the superfluid phase and phase coherence is restored. This phase
coherence is probed by quickly switching the lattice off and observing an atomic interference
pattern in time of flight. (b) After association of molecules, only lattice sites occupied by n = 1
atoms contribute to the signal. (c) After association and dissociation of molecules, the satellite
peaks are much stronger than in (b), thus proving that the molecular part of the cloud was in
a molecular n = 1 state. (d) Pure molecular n = 1 state. Same as (c) but between association
and dissociation, remaining atoms were removed with blast light.

from the trap. The association ramp lasts long enough to essentially empty all sites with
n > 2 atoms. For lattice sites with n = 2 atoms, the association efficiency is close to
unity. At a lattice depth of V0 = 24Erec for atoms, the tunneling amplitude for molecules
is negligible compared to the hold time between association and dissociation, so that the
positions of the molecules are frozen.

In order to show that the molecular part of the sample really is in the n = 1 state
(with exactly one molecule at each lattice site), the molecules are first dissociated back
into atom pairs by slowly ramping the magnetic field back across the Feshbach resonance.
This brings the system back into the atomic Mott insulator state with shells with n = 1
and n = 2. Then, the atomic Mott insulator is melted by slowly ramping down the lattice
from V0 = 24Erec to V0 = 4Erec. Finally, the lattice is quickly switched off and after some
time of flight an absorption image is taken.

Such images are shown in Fig. 4.2. Part (a) shows the result if the magnetic-field ramp
for association and dissociation of molecules is omitted. This matter-wave interference
pattern shows that phase coherence is restored when ramping down the lattice, thus
demonstrating that an atomic Mott insulator is realized at 1008.8 G. Part (b) shows the
pattern obtained if molecules are associated but not dissociated, so that they remain
invisible in the detection. This signal comes only from sites with n = 1 atoms. Part
(c) shows the result obtained for the full sequence with association and dissociation of
molecules. Obviously, the satellite peaks regain considerable population compared to (b),
which proofs that after dissociation, we recover an atomic Mott insulator. This shows
that association and dissociation must have been coherent and adiabatic. Combined with
the freezing of the molecules’ positions and the fact that the association starts from an
atomic Mott insulator with an n = 2 core, this implies that the molecular part of the
cloud must have been in a quantum state with one molecule per lattice site.
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After associating the molecules, remaining atoms can be removed from the trap using
microwave radiation and a blast laser as in Refs. [Xu03, Tha06]. This produces a pure
molecular sample. A sub-sequent lattice ramp-down restores phase coherence, as shown
in Fig. 4.2(d).

Additional information about the system can be obtained from measurements of the
excitation spectrum, which we reported in Refs. [Vol06, Dür06].

4.2. Coherent Atom-Molecule Oscillations

In the last section we discussed the preparation of a quantum state with exactly one
molecule on each lattice site using an adiabatic ramp of the magnetic field. Here we
report on the preparation of the same quantum state using a diabatic change of the
magnetic field. This leads to coherent oscillations between the atomic and the molecular
state [Sya07].

The observation of atom-molecule oscillations requires a pulse shape that is strongly
diabatic. In free space, such pulses populate [Don02] the continuum of above-threshold
entrance-channel states thus leading to oscillations between many levels, typically with
small molecular amplitude. We avoid this by working in a deep three-dimensional op-
tical lattice, where the entrance-channel states are discrete. For weak enough coupling,
the coupling of the molecular state to only one entrance-channel state is noticeable. In
addition, the lattice isolates the molecules from each other, thus suppressing loss due to
inelastic collisions [Tha06]. Our experiment starts from an atomic Mott insulator [Gre02]
prepared such that the central region of the cloud contains exactly two atoms at each
lattice site. The quantum state reached after a half-cycle of the atom-molecule oscillation
therefore contains exactly one molecule at each lattice site in this central region, as in
Sec. 4.1 [Vol06, Dür06].

We use an optical lattice that is deep enough that tunneling is negligible. In contrast
to the free-space case, the closed-channel molecular state |ψm〉 is coupled to only one
discrete state, namely the motional ground state |ψa〉 of two entrance-channel atoms at
one lattice site, see Sec. 2.1.4. The matrix element Ham = 〈ψa|H|ψm〉 of the Hamiltonian
H is [Sya07, Die07]

Ham =

[
4π~2abg∆µ∆B

m
(√

2π aho

)3 (1 + 0.490
abg

aho

)]1/2

, (4.1)

where aho =
√

~/mωho is the harmonic oscillator length, ωho = k
√

2V0/m as in Eq. (3.21),
2π/k = 830.44 nm the wavelength of the lattice light (see Sec. 3.4.2), m the mass of an
atom, V0 the lattice depth seen by an atom [Vol06], abg the background scattering length,
∆B the width of the Feshbach resonance, and ∆µ the difference between the magnetic
moments of an entrance-channel atom pair and a closed-channel molecule. At resonance,
oscillations between the two states are expected to occur with angular frequency Ωres =
2Ham/~.
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Figure 4.3.: Time-resolved coherent oscillations between the atomic and the molecular state.
The experimental data (•) show the number of entrance-channel atoms. The line shows a fit of
N(t) = N1 + N2e

−t/τ (1− cos(Ωt))/2 that yields Ω = 2π × 3.221(2) kHz and τ = 5.9(4) ms.

In this experiment, we choose a Feshbach resonance in 87Rb near 414 G with both
incoming atoms in the hyperfine state |F = 1,mF = 0〉 [Mar02]. A coupled-channels
calculation [Kok] predicts abg = 100.8 Bohr radii and ∆B = 18 mG. The Breit-Rabi
formula predicts ∆µ = 2π~ × 111 kHz/G. This is an unusually small value that helps
reducing Ωres as well as the sensitivity to magnetic field noise.

The experiment begins with the preparation of an atomic Mott insulator with a core
containing exactly two atoms at each lattice site, as described in Sec. 4.1. Subsequently,
the magnetic field is jumped to a value right at or very close to the Feshbach resonance and
is hold for a variable time. Finally, magnetic field, lattice, and dipole trap are abruptly
switched off and after 4 ms of free flight an absorption image is taken. The imaging light
is resonant with an atomic transition so that molecules remain invisible.

The number of atoms as a function of hold time right at the Feshbach resonance Bres

is shown in Fig. 4.3. The experimental data clearly show atom-molecule oscillations up
to the 29th cycle. The data show damping in a way that the minimum atom number
is essentially unchanged. This suggests that the decay is due to loss of population, as
opposed to dephasing which would lead to damping towards the mean atom number. We
therefore attribute the decay observed in Fig. 4.3 fully to the state |ψm〉. During a cycle,
half of the time on average is spent in this state. Hence, the decay rate Γ of population
in |ψm〉 can be extracted from the fit in Fig. 4.3 yielding Γ = 2/τ = 0.34(2) kHz.

The fraction of the population that participates in the oscillation at short time is
N2/(N1 +N2) = 0.46(1). This value reflects the fraction of lattice sites that are initially
occupied by two atoms [Vol06]. The conversion efficiency at these sites is nearly 100%.
We repeated the measurements of Ref. [Vol06] in order to verify that the state produced
here really is a quantum state in which the central region of the cloud contains exactly
one molecule at each lattice site.

The frequency and amplitude of the oscillations depend on the magnetic-field value
during the hold time. This dependence is shown in Fig. 4.4. As in any two-level system,
the oscillation frequency is expected to follow a hyperbola

Ω(B) =
√

Ω2
res + [(B −Bres)∆µ/~]2 , (4.2)
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Figure 4.4.: Magnetic-field dependence of (a) the frequency and (b) the amplitude of the
oscillations. The lines show fits to the experimental data (•). Dependence of (c) the on-resonance
frequency and (d) the Feshbach resonance position on lattice depth. The lines show fits to the
data (•).

where Bres is the resonance position which depends on the lattice depth V0, as discussed
further below. A fit to the data is shown in Fig. 4.4(a). The best-fit values are Ωres =
2π × 3.2(1) kHz and ∆µ = 2π~ × 112(2) kHz/G, in good agreement with the result of
Fig. 4.3 and the theoretical prediction, respectively.

The amplitude of the oscillation is shown in Fig. 4.4(b) as a function of magnetic
field. This amplitude follows a Lorentzian N2(B) = NresΩ

2
res/Ω

2(B) which is shown in
Fig. 4.4(b). We use only Nres as a free fit parameter and copy the values of the other
parameters from the fit to Fig. 4.4(a).

Ωres depends on the atomic density in the entrance-channel state. In Eq. (4.1) the
corresponding effective volume is (

√
2πaho)

3/(1 + 0.49abg/aho). We varied the lattice
depth V0 in order to verify this density dependence. Results are shown in Fig. 4.4(c). The
line shows a fit of Eq. (4.1) to the data, where the only free fit parameter is the overall
amplitude. As ∆µ and abg can typically be predicted much more accurately than ∆B, we
use this fit to determine ∆B = 15(1) mG which agrees fairly well with theory.

The measurements of Ωres in Fig. 4.4(c) rely on a measurement of Bres as a function
of lattice depth V0. Results of this measurement are shown in Fig. 4.4(d). Based on the
zero-point energy of the three-dimensional harmonic oscillator for the relative motion of
the two atoms, one expects [Mor05] Bres = B0 + 3~ωho/2∆µ, where B0 is the value at
V0 = 0. The background scattering length abg causes a correction [Bus98] yielding

Bres = B0 +
~ωho

∆µ

(
3

2
+

√
2

π

abg

aho

)
. (4.3)

For magnetic fields between B0 and Bres, the confinement thus stabilizes the molecules
against dissociation that would occur in free space [Mor05]. Such confinement induced
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molecules can also exist in a 3D band gap in an optical lattice because here dissociation
is suppressed by a lack of final states for energies inside the band gap. We use this effect
to map the band structure of the optical lattice, as reported in Ref. [Sya07].

The oscillations observed here can be used for precisions measurements of atomic scat-
tering properties that could be employed in sensitive tests for drifts of fundamental con-
stants [Chi06]. In addition, confinement-induced molecules offer more general perspectives
to manipulate the stability of molecules by structured environments. Finally, the produc-
tion of a coherent atom-molecule superposition state with controllable amplitude and
phase opens up new possibilities for quantum simulations.

4.3. Strong Dissipation Induces Correlations in a Cold
Molecular Gas

In Sec. 4.1 and 4.2, we reported on the preparation of a quantum state with exactly
one molecule on each lattice site. As mentioned, this state is interesting for a variety
of applications and it is a strength of the state preparation procedure that it does not
require specific molecule-molecule interaction properties. This is because the lattice is so
deep that the tunneling of molecules is irrelevant on the timescale of the experiment.

An interesting aspect of the atomic Mott insulator at moderate lattice depth is that it is
a strongly-correlated many-body state induced by the interparticle interaction. This raise
the question what happens if the lattice depth is lowered after preparing the molecular
state. Will it also evolve into an interaction-induced strongly correlated state? This very
question is answered in the present section. We prepare the molecular state as in Sec. 4.1
and subsequently lower the lattice depth of one lattice beam to allow the molecules to
tunnel along this direction. We find that an interaction-induced strongly-correlated state
is obtained despite the fact that the molecule-molecule interactions are predominantly
inelastic [Sya08b].

The molecules studied here are bosons and bosons confined to one dimension are known
to form a strongly-correlated state, called Tonks-Girardeau gas [Ton36, Gir60], if they have
a strong repulsive interaction. This state, in which bosons are forced to behave much
like fermions was observed with atoms in optical lattices [Par04, Kin04]. All this work
dealt with conservative interactions. Here we demonstrate an interesting generalization,
namely that inelastic collisions produce a dissipative analogue of the Tonks-Girardeau
gas [Sya08b]. Inelastic collisions between the molecules create strong correlations that
suppress the molecule loss rate. We dramatically increase this suppression by adding a
lattice along the 1D direction. This work offers perspectives to create other, and possible
new, strongly correlated states using dissipation [Sac99, Wen04].

It may seem surprising that inelastic interactions can be used to reach the strong
correlation regime because inelastic collisions are generally associated with particle losses.
This behavior can be understood by using an analogy in classical optics, where light
absorption is expressed by an imaginary part of the electric susceptibility χ, which gives
rise to a complex refractive index n =

√
1 + χ. If an electromagnetic wave impinges
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Figure 4.5.: Time-resolved loss of the number of molecules in 1D tubes. If the system
were uncorrelated the loss would be expected to follow the dashed line, which is way off the
experimental data (•). A fit to the data (solid line) reveals that the probability to find two
particles at the same position is reduced by a factor of ∼ 10 compared to an uncorrelated
system, thus showing that the system is strongly correlated [Sya08b].

perpendicularly on a surface between two media with complex refractive indices n1 and
n2, then a fraction |(n1 − n2)/(n1 + n2)|2 of the intensity will be reflected. In the limit
|n2| → ∞, the light is perfectly reflected off the surface, irrespective of whether n2 is real
or complex. In our case, bosons interacting with large imaginary [Ver94, Boh97, Dür09]
scattering length almost perfectly reflect off each other for an analogous reason, thereby
giving rise to the same constraints in the particles’ wave function as the ones corresponding
to elastic collisions, and thus to the same physical phenomena. In our experiment, the
correlations manifest themselves in a strong suppression of the rates at which particles
are lost due to inelastic collisions.

Our experiment starts from the pure molecular state, as described in Sec. 4.1. After
state preparation, the lattice depth along one direction V‖ is linearly ramped down to a
final value. After this ramp, we have an array of tubes of 1D molecular gases (see also
Sec. 3.4.1) and the system is allowed to evolve for a variable hold time at the final value
of V‖. During this hold time, molecules collide inelastically, leading to loss. After the
hold time, all molecules are dissociated into atom pairs using the Feshbach resonance.
The dissociation terminates the loss. Finally, the magnetic field and the lattice light are
switched off simultaneously, and the number of atoms is determined from a time-of-flight
absorption image.

Loss of particles due to inelastic two-body collisions occurs only if the particles come
close together. The rate at which the loss occurs thus depends on the pair correlation
function g(2) according to [Sya08b]

dn

dt
= −K2n

2g(2), (4.4)

where n is the 1D density of particles and K2 is a rate coefficient, which can be determined
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Figure 4.6.: Understanding the loss in terms of the quantum Zeno effect. The initial state |1〉
contains exactly one particle at each site of a double-well potential. Tunneling with amplitude
Ω coherently couples this state to state |2〉, where both particles occupy the same site. In
this configuration, the particles can collide inelastically, resulting in loss of both particles, thus
transferring the system into state |3〉. The rate coefficient for this incoherent loss is Γ. In the
limit Ω � Γ, loss from the initial state occurs at an effective rate Γeff = Ω2/Γ [CT92]. If Γ is
large, then Γeff becomes small. Fast dissipation thus freezes the system in its initial state, which
can be interpreted as a manifestation of the continuous quantum Zeno effect [Mis77].

from independent measurements. A measurement of the loss rate can thus serve as a probe
whether the strongly correlated regime is reached.

Figure 4.5 shows experimental data (•) for the decay of the molecule number as a
function of the hold time. No noticeable loss is observed during the lattice ramp down,
which begins at t = −0.5 ms and ends at t = 0. The subsequent loss differs significantly
from the expectation for an uncorrelated system (dashed line), which is calculated from
the independently determined parameters of the system, including a measurement of the
3D loss rate coefficient in Ref. [Sya06]. The solid line shows a fit to the data that reveals
a value of g(2) = 0.11±0.01, see Ref. [Sya08b] for details. The fact that g(2) differs from 1
by a large factor shows that the system is strongly correlated, thus realizing a dissipative
Tonks-Girardeau gas.

An interesting variation of this experiment is obtained when considering the situation
where the lattice depth V‖ along the 1D tubes is lowered to a nonzero value. Of course,
this is closely related to the above experiment, but there are three aspects that make this
system interesting: first, the case V‖ 6= 0 offers new physical insight because the reduction
of the loss can be interpreted in terms of the quantum Zeno effect as illustrated in Fig. 4.6,
second, time-resolved calculations of the dynamics of the loss become numerically feasible,
and third, a much larger suppression of g(2) is obtained.

The pair-correlation function can again be determined from time-resolved measurements
of the loss of molecule number. Results are shown in Fig. 4.7(a) for three different lattice
depths. We extract g(2) from such loss curves and show them in (b) as a function of
V‖/Er, where Erec is the molecular recoil energy. The solid line shows an analytical model
discussed in Refs. [Sya08b, Dür09] that represents essentially the Zeno effect illustrated in
Fig. 4.6. In addition, we performed time-resolved numerical calculations that make much
fewer approximations than the analytical model [GR09]. The numerical results are also
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Figure 4.7.: Loss at different lattice depths V‖. (a) Solid lines show fits to the experimental
data (solid symbols) that reveal the pair correlation function g(2). Open symbols show results of
our numerical calculations [GR09]. Black squares, red circles, and green triangles correspond to
V‖/Erec values of 1.8, 3.9, and 6.0, respectively. (b) g(2) as a function of the lattice depth applied
along the one dimension. Experimental data (•), numerical results (◦) [GR09], and analytical
model (sold line) [Sya08b] agree well with each other.

shown in Fig. 4.7 and agree well with the analytical model and the experimental data.
The lowest value of g(2) measured here is ∼ 1/2000.

The experimental results presented here show that strong inelastic collisions can inhibit
particle losses and drive a system into a strongly-correlated regime. Strong interactions
are responsible for many interesting quantum phenomena in many-body systems: high-TC

superconductivity [And87], excitations with fractional statistic [Wil82], topological quan-
tum computation [Kit03], and a plethora of exotic behaviors in magnetic systems [Aue94].
The mechanism introduced here could also give rise to other strongly-correlated states,
such as a Laughlin state [Sto99] or one with anyonic excitation [Wil82]. The present work
opens up the possibility of observing exotic quantum many-body phenomena in systems
that suffer from strong inelastic collisions. Furthermore, the rate coefficients for those col-
lisions may be artificially increased using photoassociation or Feshbach resonances, thus
further reducing the actual loss rate in the strongly-correlated regime.



5. Optical Control of a Magnetic
Feshbach Resonance

In this chapter we explore a novel scheme for controlling the scattering length with laser
light [Bau09b, Bau09a]. We show theoretically (Sec. 5.2) and experimentally (Sec. 5.5),
that light near-resonant with a molecular bound-to-bound transition in 87Rb can be used
to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes
it possible to tune the interaction strength with laser light and at the same time in-
duce considerably less loss than an optical Feshbach resonance would do. To find an
appropriate bound-to-bound transition, we perform excited-state spectroscopy (Sec. 5.3).
Furthermore, when applying laser light resonant with such a bound-to-bound transition
we observe an Autler-Townes splitting of the magnetic Feshbach resonance (Sec. 5.4).

5.1. General Concept

Many properties of ultracold gases are determined by the interparticle interaction which
is characterized by the s-wave scattering length a, see Sec. 2.1. This makes it de-
sirable to tune this parameter. A much-used method for this purpose is a magnetic
Feshbach resonance [Moe95, Ino98, Chi09], see Sec. 2.1.2. An alternative method is a
photoassociation resonance, which is sometimes also called optical Feshbach resonance
[Fed96, Boh97, Fat00, The04, Tha05, Jon06], see Sec. 2.1.3. A major advantage of optical
Feshbach resonances is that the light intensity can be varied on short length and time
scales, thus offering more flexible experimental control over the scattering length. The
problem with photoassociation resonances is that the light induces inelastic collisions be-
tween atoms which lead to rapid loss of atoms. The experiments in Refs. [The04, Tha05]
both demonstrated a change of Re(a)/abg− 1 ∼ ±1 in 87Rb, where abg is the background
value of a by applying an optical Feshbach resonance. For these parameters, both experi-
ments incurred losses characterized by a two-body rate coefficient K2 with an estimated
value of ∼ 10−10 cm3/s. Typical densities on the order of 1014 cm−3 result in lifetimes on
the order of 100 µs, which is too short for many applications. This is why photoassocia-
tion resonances have only rarely been used experimentally to tune the scattering length.
Alkaline earth atoms offer the possibility to use photoassociation on narrow intercombi-
nation lines which results in smaller loss rates [Eno08]. But this is not feasible in the
large number of experiments with alkali atoms.

Our method makes an optical manipulation of the scattering length possible, which
offers great flexibility for future experiments because the interaction strength can be
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Figure 5.1.: Level scheme. (a) The Feshbach resonance couples atoms at threshold in the
incoming channel |a〉 ⊗ |a〉 to a bound dimer state |g〉 in a different potential. A laser is near
resonant with a bound-to-bound transition from |g〉 to an electronically excited dimer state |e〉.
(b) Different couplings in our scheme. The coupling strength α induces a magnetic Feshbach
resonance between |a〉 and |g〉. The laser couples |g〉 to |e〉 with Rabi frequency ΩR. This causes
an ac-Stark shift (not shown) of state |g〉 which leads to a shift of the magnetic field at which
the Feshbach resonance occurs. Typically, the same light can also drive photoassociation from
state |a〉 ⊗ |a〉 to state |e〉 with coupling strength β. The light frequency is typically somewhat
detuned from both transitions.

controlled rapidly and with high spatial resolution using light intensity patterns. The
advantage compared to an optical Feshbach resonance is that much less particle loss is
induced. We show that our method reduces the light-induced atom-loss rate by up to two
orders of magnitude.

A further application is to shift one Feshbach resonance on top of another to explore
the coupling between the two. Yet another possible application can be found in 133Cs. Its
hyperfine state |F = 3,mF = 3〉 has a very broad Feshbach resonance at a slightly negative
magnetic field. Applications of this Feshbach resonance are hampered by rapid loss due
to dipolar relaxation at negative magnetic field. Shifting this resonance to a positive
magnetic field would make it accessible for experiments, such as studies of Efimov physics
[Kra06].

5.2. Combination of a Magnetic Feshbach Resonance
and an Optical Bound-to-bound Transition

A basic level scheme for our technique is shown in Fig. 5.1. A light field is near-resonant
with a bound-to-bound transition from the dimer state |g〉 in the electronic ground state
to an electronically excited dimer state |e〉. The scheme uses the existing coupling between
an atom-pair state |a〉 ⊗ |a〉 and a molecular state |g〉 near a Feshbach resonance with
coupling strength α, as shown in Fig. 5.1(b). By adding a light field with Rabi frequency
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ΩR that is somewhat detuned from a bound-to-bound transition between state |g〉 and
an electronically excited molecular state |e〉, one can induce an ac-Stark shift of state |g〉.
This results in a shift of the magnetic field Bres at which the Feshbach resonance occurs.
If the magnetic field B is held close to the Feshbach resonance, then spatial or temporal
variations of the light intensity affect the scattering length. In general, the light field can
also drive a transition from state |a〉 ⊗ |a〉 to state |e〉 with coupling strength β.

This model is closely related to previous studies of the combination of a Feshbach
resonance with a photoassociation resonance, see e.g. Refs. [vA98, Jun08, Mac08]. Unlike
those references, we are mostly interested in the Feshbach resonance and the bound-to-
bound transition. The photoassociation is a nuisance in our scheme, because any useful
change of Re(a) that it induces is inevitably accompanied by the loss rates that limited
the photoassociation experiments in Refs. [The04, Tha05].

5.2.1. Mean-Field Model

Our theoretical model can be developed as follows. We assume that the population in
each state is Bose condensed and can be described by a mean field ψa, ψg and ψe for
the atomic state |a〉, the dimer state |g〉 and the electronically excited dimer state |e〉,
respectively. Generalizing Ref. [Tim99], we obtain the following equations [Bau09a]

i
d

dt
ψa =

Eint
a

~
ψa +

Ubg

~
|ψa|2ψa + 2α∗ψ∗

aψg + 4β∗ψ∗
aψe cos(ωLt) (5.1a)

i
d

dt
ψg = αψ2

a +
Eint

g

~
ψg + Ω∗

Rψe cos(ωLt) (5.1b)

i
d

dt
ψe = (2βψ2

a + ΩRψg) cos(ωLt) +
Eint

e

~
ψe. (5.1c)

Eint
j is the internal energy of the state j ∈ {a, g, e} and depends nonlinearly on the

magnetic field B. Near the pole of the unshifted Feshbach resonance Bpole, it can be
approximated as linear

Eint
j = −µj(B −Bpole) + ~ωegδej, (5.2)

where µj is a magnetic dipole moment and δij is the Kronecker symbol. At B = Bpole,
the internal states |a〉 and |g〉 are degenerate whereas the internal state |e〉 has an energy
offset ~ωeg.
Ubg = 4π~2abg/m describes the atomic mean-field energy between atoms and is related

to the background scattering length abg and the atomic mass m.
The electric field of the laser light is of the form E = −E0 cos(ωLt) with amplitude

E0 and angular frequency ωL and causes a coupling on the bound-to-bound transition
|g〉 ↔ |e〉. The corresponding Rabi frequency is ΩR = degE0/~, where deg = 〈e|d|g〉 is the
matrix element of the electric dipole moment.

The parameter α describes the coupling between states |a〉 and |g〉, which causes the
Feshbach resonance. The parameter β ∝ E0 describes photoassociation from state |a〉 to
|e〉.
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We move to an interaction picture by replacing ψe → ψee
−iωLt and perform a rotating-

wave approximation by neglecting coefficients rotating as e±2iωLt. We then move to an-
other interaction picture by replacing ψj → ψj exp((2− δaj)iE

int
a t/~). Hence

i
d

dt
ψa =

Ubg

~
|ψa|2ψa + 2α∗ψ∗

aψg + 2β∗ψ∗
aψe (5.3a)

i
d

dt
ψg = αψ2

a + ∆gψg +
1

2
Ω∗

Rψe (5.3b)

i
d

dt
ψe = βψ2

a +
1

2
ΩRψg +

(
∆e −

i

2
γe

)
ψe, (5.3c)

where we abbreviated

∆g =
1

~
µag(B −Bpole) (5.4a)

∆e = −∆L +
1

~
µae(B −Bpole) (5.4b)

∆L = ωL − ωeg (5.4c)

with µag = 2µa − µg and µae = 2µa − µe. In Eq. (5.3c) we included an ad hoc decay
rate γe that represents spontaneous radiative decay from state |e〉 into states that are not
included in the model, similar to Ref. [vA99b].

Note that the typical interatomic distance is orders of magnitude larger in the atomic
gas than within a single molecule. For a typical excited state, this results in

|βψa| � |ΩR|. (5.5)

5.2.2. Scattering Length

We assume that all the population is initially prepared in state |a〉 and that the popula-
tions in states |g〉 and |e〉 will remain small at all times so that they can be eliminated
adiabatically, similar to Refs. [vA99b, Mac08]. This is a good approximation, e.g., if the
angular frequencies αψa and βψa are both small compared to ΩR and γe or compared
to ∆e and ∆g. This condition is always satisfied in the low-density limit, but for a very
broad Feshbach resonance it might be difficult to reach this regime experimentally.

The adiabatic elimination is achieved by formally setting (d/dt)ψg = (d/dt)ψe = 0.
This is used to eliminate ψg and ψe from Eq. 5.3. We obtain

i
d

dt
ψa =

4π~a
m
|ψa|2ψa (5.6)

with the complex-valued scattering length [Bau09b, Bau09a]

a = abg −
m

2π~
|α|2(∆e − iγe/2)− Re(α∗Ω∗

Rβ) + |β|2∆g

(∆e − iγe/2)∆g − |ΩR/2|2
. (5.7)
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The term Re(α∗Ω∗
Rβ) represents interference between the two possible ways to go from

state |a〉 to state |e〉, either directly or indirectly through state |g〉.
The real part of the scattering length is responsible for the mean-field energy [Dür09].

We assume that abg is real and obtain

Re(a) = abg −
m

2π~

(
|α|2∆e−Re(α∗Ω∗

Rβ) + |β|2∆g

)(
∆e∆g − |ΩR/2|2

)
+ |α|2∆g(γe/2)2

(∆g∆e − |ΩR/2|2)2 + (∆gγe/2)2
.

(5.8)
The imaginary part of the scattering length gives rise to two-body loss with a rate

equation

dn

dt
= −K2n

2g(2) (5.9a)

K2 = −8π~
m

Im(a), (5.9b)

where n = |ψa|2 is the atomic density, K2 is the two-body loss coefficient for a BEC, and
g(2) is the pair correlation function at zero relative distance. For a BEC with N atoms
g(2) = 1− 1/N . Insertion of Eq. (5.7) yields

K2 = 2γe

|αΩR/2|2 −∆gRe(α∗Ω∗
Rβ) + |β|2∆2

g

(∆g∆e − |ΩR/2|2)2 + (∆gγe/2)2
. (5.10)

All terms in the numerator are ∝ E2
0 , so that the relative importance of the terms is

independent of laser intensity.
Figure 5.2 shows predictions for Re(a)/abg and K2 as a function of B. For large |ΩR|,

one can clearly see two resonances in K2 each of which is approximately Lorentzian. Each
of these resonances is accompanied by a dispersive feature in Re(a)/abg.

We show now that our model reproduces known results from the literature in the special
cases of a pure magnetic Feshbach resonance or a pure photoassociation resonance. For
a pure magnetic Feshbach resonance (β = ΩR = 0), see Sec. 2.1.2, Eq. (5.7) yields the
familiar result [Moe95]

a = abg

(
1− ∆B

B −Bpole

)
(5.11)

with the width of the Feshbach resonance

∆B =
2~2|α|2

Ubgµag

. (5.12)

For a pure photoassociation resonance (α = ΩR = 0), see Sec. 2.1.3, Eq. (5.7) yields

a = abg −
m

2π~
|β|2

∆e − iγe/2
, (5.13)
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Figure 5.2.: Predictions for Re(a)/abg and K2 as a function of B from Eqs. (5.8) and (5.10).
For all curves, we choose ~γe/µae = 2 G, β = 0, and ∆B = 0.2 G; with ∆B defined in Eq. (5.12).
The dotted lines (red) are for resonant laser light ∆L = 0 and ~|ΩR|2/γeµag = 100 G. They
show two resonances that are symmetrically split around Bpole. These resonances represent
an Autler-Townes doublet. The solid lines (blue) are for large laser detuning ∆L/γe = 5 and
~|ΩR|2/γeµag = 100 G. They also show two resonances, but their heights, widths, and distances
from Bpole are quite different. The dashed line (black) is a reference without any light ΩR = 0.

which is a Breit-Wigner form [Bre36] as a function of ∆L or B. The real and imaginary
parts are

Re(a) = abg −
m

2π~
∆e

|β|2

∆2
e + (γe/2)2

(5.14a)

K2 = 2γe
|β|2

∆2
e + (γe/2)2

, (5.14b)

which is identical to Eq. (10) in Ref. [Boh97] in the limit Γstim � Γspon.

5.2.3. Large Detuning

A good part of our experiments is performed in the limit of large laser detuning where
|∆L| � |µae(B − Bpole)/~| and |∆L| � γe and with β = 0. From Eq. (5.7) we obtain a
Breit-Wigner form

a = abg

(
1− ∆B

B −Bres − iW/2

)
(5.15)
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with ∆B from Eq. (5.12). The real and imaginary parts are a dispersive line shape and
a Lorentzian, respectively,

Re(a) = abg

(
1− ∆B(B −Bres)

(B −Bres)2 +W 2/4

)
(5.16a)

K2 =
Kmax

2

1 + 4(B −Bres)2/W 2
. (5.16b)

The resonance position Bres, the maximum loss rate coefficient Kmax
2 , and the full width

at half maximum W of the Lorentzian are given by

Kmax
2 =

~
µag

8|α|2

W
(5.17a)

W =
~
µag

|ΩR|2

4∆2
L

γe (5.17b)

Bres = Bpole −
~
µag

|ΩR|2

4∆L

. (5.17c)

The far-detuned bound-to-bound coupling yields the well-known ac-Stark shift of state
|g〉 and this shifts Bres.

In general, it is possible that several excited states contribute noticeably to a. Our
model is easily adapted to this situation by introducing a separate version of Eq. (5.3c) for
each excited state and by including sums over the excited states in Eqs. (5.3a) and (5.3b).
In the limit of large laser detuning and with β = 0 for each excited state, Eqs. (5.15)–
(5.17a) remain unchanged and a sum over the excited states appears on the right hand
side of Eqs. (5.17b) and (5.17c).

5.2.4. Autler-Townes Model

More insight into the physics of the problem can be gained from an Autler-Townes model
[Aut55, CT92]. In addition, analytic expressions for the position, height and width of the
resonances in K2(B) can be derived.

This approach is based on the assumption that the dominant frequencies in the problem
are ΩR and/or (∆g−∆e). In this case, one can first diagonalize the driven two-level system
spanned by |g〉 and |e〉 and subsequently treat the coupling to state |a〉 ⊗ |a〉 as a weak
probe.

For the first step, we diagonalize the two-level system spanned by |g〉 and |e〉, setting
α = β = γe = 0. We assume without loss of generality that the relative phase between
states |g〉 and |e〉 is chosen such that ΩR is real. This yields energy eigenvalues and
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eigenvectors

E± =
~
2
(∆e + ∆g ± Ωeff) (5.18a)

|+〉 = cos
ϑ

2
|e〉+ sin

ϑ

2
|g〉 (5.18b)

|−〉 = − sin
ϑ

2
|e〉+ cos

ϑ

2
|g〉, (5.18c)

where the effective Rabi angular frequency Ωeff and the mixing angle ϑ are real-valued
and must satisfy the implicit equations

Ωeff cosϑ = ∆e −∆g (5.19a)

Ωeff sinϑ = ΩR. (5.19b)

This determines a unique value of ϑ modulo 2π and it yields

Ωeff =
√

Ω2
R + (∆e −∆g)2. (5.20)

For the second step, we rewrite the mean-field model (5.3) in the new basis and obtain
with β = 0

i
d

dt
ψa =

Ubg

~
|ψa|2ψa + 2ψ∗

a(C
∗
+ψ+ + C∗

−ψ−) (5.21a)

i
d

dt
ψ+ = C+ψ

2
a +

(
E+

~
− i

2
γ+

)
ψ+ −

i

2
γmixψ− (5.21b)

i
d

dt
ψ− = C−ψ

2
a −

i

2
γmixψ+ +

(
E−

~
− i

2
γ−

)
ψ− (5.21c)

with C+ = α sin ϑ
2
, C− = α cos ϑ

2
, γ+ = γe cos2 ϑ

2
, γ− = γe sin2 ϑ

2
, and γmix = −γe sin ϑ

2
cos ϑ

2
.

So far we only rotated the basis and the model is still exact. We now approximate the loss
as being diagonal in the states |+〉 and |−〉 by setting γmix = 0. Adiabatic elimination of
the populations in states |+〉 and |−〉 then yields

a = abg + a+ + a−, (5.22)

where the states |+〉 and |−〉 each contribute a Breit-Wigner form as a function of E±

a± = − m

2π~
|C±|2

E±/~− iγ±/2
. (5.23)

Thus, the states |+〉 and |−〉 each cause a single resonance and their contributions to a
are simply added. This corresponds to the intuitive understanding of an Autler-Townes
doublet [CT92].

The above approximation γmix = 0 is self-consistent if the system is close to one reso-
nance and the resonances are well separated (γe � Ωeff), because in this case the states |±〉
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have very different populations, so that a possible coherence between these populations
has little effect and γmix is negligible.

If the resonances are narrow and well separated, then K2(B) becomes a Lorentzian and
the maxima of K2(B) will then occur at the magnetic fields [Bau09a]

Bres = Bpole +
~

2µae

(
∆L ±

√
∆2

L +
µae

µag

Ω2
R

)
. (5.24)

The values of K2 at these maxima are [Bau09a]

Kmax
2 =

8|α|2

γe

µae

µag

1− 2∆L

∆L ±
√

∆2
L + µae

µag
Ω2

R

 . (5.25)

The full width at half maximum of the Lorentzian K2(B) is given by [Bau09a]

W =
~γe

2µae

1± ∆L√
∆2

L + µae

µag
Ω2

R

 . (5.26)

We will compare these results with experimental data in Sec. 5.4.

5.3. Laser Spectroscopy

The scheme described in Sec. 5.2 requires an appropriate excited molecular state |e〉.
A state is particularly well suited, if it offers a strong coupling for the bound-to-bound
transition and weak or even negligible coupling for the photoassociation transition. To
find such a state |e〉 we perform laser spectroscopy.

The starting point for all experiments in this chapter is an essentially pure BEC of 87Rb
atoms in the hyperfine state |F,mF 〉 = |1, 1〉 close to the Feshbach resonance at 1007 G,
except for the spectrum in Fig. 5.3(a), where we used a BEC of atoms in the states
|F,mF 〉 = |1,−1〉 at B ' 1 G. We use a Feshbach resonance that is characterized by the
parameters [Mar02, Dür04b, Dür04a, Vol03] Bpole = 1007.4 G, ∆B = 0.21 G, µa/2π~ =
1.02 MHz/G, µag/2π~ = 3.8 MHz/G, and abg = 100.5a0, where a0 is the Bohr radius.
With these parameters Eq. (5.12) yields |α|/2π = 1.8 mHz cm3/2. The peak density of the
BEC is typically n = |ψa|2 ∼ 2× 1014 cm−3. The quantity |

√
8αψa| = 2π× 0.07 MHz can

be regarded as a Rabi angular frequency. For typical parameters of our experiment, this
value is small compared to γe and |ΩR|, so that the adiabatic elimination performed in
Sec. 5.2.2 is justified. The atoms are held in a crossed-beam optical dipole trap with both
beams operated at 1064 nm and with trap frequencies of (ωx, ωy, ωz)/2π = (74, 33, 33)
Hz, see Sec. 3.3. The magnetic field B points along the z axis and is held several Gauss
away from the Feshbach resonance.

For the excited-state spectroscopy, we use two techniques which complement each other.
The first technique is ordinary photoassociation spectroscopy. For this, we simply illumi-
nate the BEC with photoassociation light. The light intensity is slowly increased within
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Figure 5.3.: Photoassociation spectroscopy for 87Rb. The spectra are taken (a) for atoms in
state |F = 1,mF = −1〉 at B ' 1 G and (b) for atoms in state |F = 1,mF = +1〉 at B = 1006 G.
The two narrow resonances are related to bound states in the 1g potential with vibrational
quantum numbers v = 119 and v = 120. The two broad resonances are probably caused by
bound states in the 0+

u potential [Jon06, Kem04, Tsa08].

80 ms to a final power of ∼ 10 mW and held there for 100 ms. Next, the photoassociation
light, B, and the dipole trap are switched off simultaneously. Finally, the remaining atom
number is extracted from a time-of-flight image.

The photoassociation light is implemented as a traveling-wave laser beam with a waist
(1/e2 radius of intensity) of w = 0.17 mm and a wavelength of ∼ 784.7 nm. In order to
address as many excited states as possible in the spectroscopy measurements, we let the
photoassociation beam propagate along the vertical x axis and choose a specific linear
polarization which corresponds to 1/3 of the intensity in each of the polarizations π, σ+,
and σ−. As the population is initially in the atomic state |a〉, the loss signal is typically
dominated by photoassociation processes so that the technique is particularly sensitive to
excited states that have a large value of the photoassociation coupling strength β.

For coarse orientation, we perform spectroscopy covering a frequency range of∼ 160 GHz
with moderate frequency resolution. Fig. 5.3(a) shows data taken at a magnetic field of
∼1 G with the atoms in state |F = 1,mF = −1〉. Fig. 5.3(b) was recorded at a magnetic
field of 1006 G with the atoms in state |F = 1,mF = +1〉.

Three attractive potentials could in principle contribute to the photoassociation signal
in the frequency range studied here, which lies ∼ 2 THz below the 2P3/2 + 2S1/2 threshold.
All three potentials are adiabatically connected to the 2P3/2 + 2S1/2 threshold. They are
characterized by the quantum numbers 0+

u , 1g, and 2u [Kem04, Jon06]. A comparison
with photoassociation data at B ' 0 G from the Heinzen group [Tsa08] shows that two
of the observed resonances are related to bound states in the 1g potential with vibrational
quantum numbers v = 119 and v = 120. The same comparison suggests that the two other
observed resonances are caused by bound states in the 0+

u potential. The potential 2u does
not seem to contribute any noticeable signal in Fig. 5.3. Each observed vibrational level
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Figure 5.4.: Excited-state spectroscopy for 87Rb. (a) Photoassociation spectrum taken at
B = 1000.0 G. (b) Bound-to-bound spectrum taken at B = 1000.0 G. Arrows indicate the
resonances characterized in Tab. 5.1.

is expected to display hyperfine splitting, which is unresolved in Fig. 5.3. The hyperfine
splitting of the 2P3/2 + 2S1/2 threshold is approximately the atomic ground-state hyperfine
splitting of ∼ 6.8 GHz because this threshold involves one ground state atom and one
excited state atom and the atomic excited-state hyperfine splitting is much smaller. This
explains the observed widths of the resonance lines in Fig. 5.3 within a factor ∼ 2.

The reaction of the photoassociation lines to a magnetic field of 1006 G can be estimated
as follows: This magnetic field shifts the energy of the ground state |F = 1,mF = +1〉 by
−2π~× 0.88 GHz [see Appendix, Eq. (A.6)], whereas the barycenter of each excited-state
hyperfine manifold is expected to be unshifted. Hence, the barycenters of the photoasso-
ciation lines are estimated to be shifted by ∼ +1.76 GHz with respect to the spectrum at
1 G. The Bohr magneton probably sets a reasonable upper bound for the magnetic mo-
ment of the excited state so that application of the magnetic field is expected to broaden
each manifold by at most 2.8 GHz. These estimates are confirmed by the spectrum at
1006 G, as shown in Fig. 5.3(b). All loss features in 5.3(b) are pretty deep. This is likely
to result in an additional broadening of the observed loss features. It remains unclear
why the loss features at 1006 G are deeper than the ones at 1 G.

The resonance at ∼ 382, 045 GHz (1g, v = 120) is used in all our following experiments.
It is shown with much better frequency resolution in Fig. 5.4(a). This measurement
resolves the hyperfine and Zeeman substructure of this vibrational level. A method for
the assignment of a complete set of quantum numbers to such a hyperfine manifold at
∼ 0 G was presented recently in Ref. [Ham09].

We extended the frequency scan in Fig. 5.4(a) down to 382,037.3 GHz but did not find
any further loss resonances. We determined the corresponding zero-field frequencies by
performing a similar measurement at B ∼ 0. We took data between 382,034 GHz and
382,051 GHz and found photoassociation loss resonances in the range between 382,041.8
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Polarization ωeg/2π |deg|/ea0 γe/2π µae/2π~
(MHz) (MHz) (MHz/G)

σ− 382,045,759.4(3) 0.24(5) 4.4(5) 2.2(1)
σ+ 382,045,818.2(3) 0.29(5) 4.7(5) 1.7(1)
π 382,046,942.8(3) 0.28(5) 4.7(5) 2.6(1)
π 382,047,581.8(3) 0.18(5) 5.3(5) 2.7(1)

Table 5.1.: Parameters of four selected bound-to-bound resonances. e is the elementary charge,
a0 the Bohr radius. β is negligible for all these resonances.

GHz and 382,044.5 GHz.

Since our technique for shifting a Feshbach resonance with laser light relies on a bound-
to-bound transition, not on photoassociation, we developed a second spectroscopy tech-
nique that is particularly sensitive to excited states with a large value of ΩR. The basic
idea is to first use the Feshbach resonance to associate molecules into state |g〉 and then
illuminate them with light that resonantly drives bound-to-bound transitions. We call
this the bound-to-bound light and employ the same laser beam previously used for the
photoassociation spectroscopy.

In order to avoid loss of particles due to inelastic collisions between molecules, the
atoms must be loaded into a deep optical lattice before associating the molecules [Tha06].
As in Sec. 4.1, we prepare a state, which contains exactly one molecule at each lattice
site in the central region of the lattice. This core is surrounded by a shell of sites that
contain exactly one atom each. After loading the lattice, the laser power of one of the
dipole trapping beams is ramped to zero, as in Ref. [Vol06].

Next, the bound-to-bound light is turned on for 0.2 ms at a power of ∼ 0.1 µW.
This light has the same linear polarization as for the photoassociation spectroscopy. If
a molecule in state |g〉 is excited on a bound-to-bound transition, then it is likely to
undergo spontaneous radiative decay into a different internal state. After turning off the
bound-to-bound light, the magnetic field is ramped back across the Feshbach resonance
to dissociate the molecules that remained in state |g〉. Subsequently, the optical dipole
trap at 1064 nm is turned back on, the lattice depth is slowly ramped to zero, the cloud
is released, B is switched off, and the atom number is determined from a time-of-flight
image. Molecules that were excited by the laser are not dissociated and thus not detected.

A bound-to-bound spectrum measured at B = 1000.0 G is shown in Fig. 5.4(b). Com-
parison with the photoassociation spectrum in part (a) shows that many of the excited
states are visible with both techniques. But identifying promising candidates with large
ΩR is not easily possible from part (a). The light frequency calibration for both spectra
has a precision of ∼ 30 MHz and can fluctuate within a single scan. This causes devia-
tions in the resonance positions between the photoassociation spectrum and the bound-
to-bound spectrum. In addition, the states |a〉 and |g〉 are degenerate at B = 1007.4 G.
At B = 1000.0 G, the internal energies of a molecule in state |g〉 and a pair of atoms in
state |a〉 differ by 2π~ × 20 MHz [Dür04a]. In Fig. 5.4 this yields a 20-MHz shift of all
bound-to-bound resonances with respect to the photoassociation resonances.
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Very different values of the light intensity and the illumination time were used when
recording the two spectra. This tremendous difference in the sensitivity of the two meth-
ods is a result of Eq. (5.5).

5.4. Autler-Townes Splitting of a Magnetic Feshbach
Resonance

To determine all parameters of a specific bound-to-bound resonance, we study the regime
of much smaller detuning of the laser light. In this regime, we observe an Autler-Townes
doublet as a function of B. Fitting the model of Sec. 5.2.4 to the data of one of the
bound-to-bound resonances, allows us to extract all parameters of this resonance.

5.4.1. Observation of an Autler-Townes Doublet

The experimental sequence is as follows: We start with a BEC of 87Rb atoms in the hyper-
fine state |F = 1,mF = 1〉 in an optical dipole trap with trap frequencies (ωx, ωy, ωz)/2π =
(74, 33, 33) Hz. The magnetic field B is held at a value that is a few Gauss away from the
Feshbach resonance at 1007.4 G. At time t = 0, B is jumped to a certain value at which
it is held for 2 ms. During the 2 ms hold time of B, the bound-to-bound light is applied
at a power of 0.47 mW. After the 2 ms hold time of B, the bound-to-bound light, the
optical dipole trap, and B are switched off simultaneously. This is followed by free flight
and the atom cloud is imaged 18 ms after release from the dipole trap.

The evolution of the cloud size during this sequence can be modeled in analogy to
Refs. [Cas96, Vol03] as follows. Initially, the density distribution n(~r) of the BEC inside
the optical dipole trap is described by a Thomas-Fermi parabola

n(~r) = npeak

[
1−

3∑
k=1

(
rk

Wk

)]
, (5.27)

and n(~r) = 0 if the above expression is negative. npeak is the peak intensity. The Thomas-
Fermi radii along the coordinate axes rk are

Wk(0) =
1

ωk

(
15

~2

m2
ωxωyωza(0)N(0)

)1/5

, (5.28)

where N(0) is the initial atom number in the BEC, and the initial scattering length a(0)
equals abg. At t = 0, B is changed to its final value and the bound-to-bound light is
applied. The system is allowed to evolve under these conditions for 2 ms. During this
hold time, a(t) and N(t) may be time dependent. The model is based on the assumption
that the BEC profile remains a Thomas-Fermi parabola at all times. Its Thomas-Fermi
radii are scaled by the dimensionless parameters

λk(t) =
Wk(t)

Wk(0)
. (5.29)
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The evolution of the scaling parameters λk(t) can be calculated following the model in
Ref. [Cas96]. Eq. (11) from Ref. [Cas96] reads

λ̈j =
1

λxλyλz

ω2
j (0)

λj

− ω2
j (t)λj (5.30)

with j ∈ {1, 2, 3}, where ωj(t) are the time-dependent trap angular frequencies. The
first term describes the outward force caused by the mean-field energy, the second term
represents the harmonic confinement. The initial condition is a BEC in equilibrium in a
trap at time t = 0, corresponding to λj(0) = 1 and λ̇j(0) = 0. Following Ref. [Vol03], we
include the possibility that the scattering length a and the particle number N are time
dependent

λ̈j =
N(t)

N(0)

Re[a(t)]

Re[a(0)]

1

λxλyλz

ω2
j (0)

λj

− ω2
j (t)λj. (5.31)

The additional factor represents the fact that the mean-field energy is proportional to
N(t)Re[a(t)]. Here, the approximation that the cloud shape remains a Thomas-Fermi
parabola is assumed to be valid even in the presence of loss.

If the loss is due to inelastic two-body collisions, then the evolution of the atomic density
n(t) is governed by Eq. (5.9). In a BEC g(2) ∼ 1 and spatial integration of Eq. (5.9a) for
a Thomas-Fermi parabola yields

Ṅ = −4

7
K2(t)npeak(t)N(t), (5.32)

with the time-dependent peak density

npeak(t) =
15N(t)

8πWx(t)Wy(t)Wz(t)
. (5.33)

Hence,

Ṅ = −4

7
K2(t)

npeak(0)

N(0)

N2(t)

λx(t)λy(t)λz(t)
. (5.34)

For our experimental sequence, the scattering length is given by

a(t) =

{
a
abg

:
:

0 < t ≤ 2ms
otherwise

, (5.35)

where abg is real, but a might be complex. Eqs. (5.31) and (5.34) form a set of coupled
differential equations. This model is used to extract Re(a) and K2 [see Eq. (5.9b)] from
the measured atom number and cloud size after expansion1.

Experimental results are shown in Fig. 5.5. We clearly observe an Autler-Townes dou-
blet in K2(B). We fit Eq. (5.10) to all the data in this figure simultaneously. The fit
agrees well with the experimental data.

1For a given pair of measured values of λj(t) and N(t) there is usually more than one possible pair
of values for Re(a) and Im(a). But the fact that a(B) is continuous (except at the pole) is usually
sufficient to single out the physical solution.
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Figure 5.5.: Autler-Townes splitting of a magnetic Feshbach resonance caused by application
of a laser that drives a bound-to-bound transition with a power of P = 0.47 mW. The loss
rate coefficient K2 is measured as a function of magnetic field B for different values of the laser
frequency, that increase from (a) to (e) in steps of 1 MHz. Part (c) is recorded at 382,046,942.62
MHz very close to resonance, where the Autler-Townes doublet becomes symmetric. The lines
show a simultaneous fit to all these data sets.

We apply this method to four reasonably strong bound-to-bound resonances which are
fairly close to the high-frequency end of the spectrum in Fig. 5.4 (indicated by arrows).
The best-fit values for the parameters of these resonances are listed in Tab. 5.1. The laser
producing the bound-to-bound light was beat-locked to a frequency comb, resulting in
a much better precision of the frequency calibration (see Sec. 3.4.2). The polarization
of each resonance was determined from a series of measurements in which the bound-to-
bound light had only one of the polarizations π, σ+, or σ−. The latter two polarizations
were implemented with the bound-to-bound beam propagating along the z axis. Each
resonance in Tab. 5.1 responded to only one of these polarizations.

5.4.2. Laser Frequency and Laser Power Dependence

We can also determine the position of the two loss resonances associated with the Autler-
Townes doublet systematically as a function of laser frequency and laser power, as shown
in Fig. 5.6. The data exhibit typical features of an Autler-Townes doublet, namely an
avoided level crossing in (a) and a splitting approximately proportional to the square root
of the laser power in (b). The data are well described both by the full model [Eq. (5.10)]
and by the Autler-Townes model [Eq. (5.24)].

Finally, we compare the theoretical results for the height and the width of the Autler-
Townes resonances in K2(B) from Sec. 5.2.4 with experimental results. We measured
Autler-Townes doublets in K2(B), as shown in Fig. 5.5(b). We fit a Lorentzian (5.16b) to
each of the two peaks in the experimental data. The best-fit values for Kmax

2 and W are
shown in Fig. 5.7. The dotted lines show the corresponding predictions (5.25) and (5.26).

For comparison, we numerically determined the peaks in K2(B) from the full model
(5.10) with the parameters of Tab. 5.1. The corresponding maximum values Kmax

2 are
shown as solid lines in Fig. 5.7(a). As the full model (5.10) does not predict Lorentzian
lines, a direct comparison with the width W is not straightforward. We decide to use
the second derivative of K2(B) at the maximum for a comparison. The solid lines in
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Figure 5.6.: Systematic study of the resonance positions associated with the Autler-Townes
doublet. The magnetic fields at which the loss resonances occur are shown as a function of laser
frequency (a) and laser power (b). Part (a) was recorded at a power of 0.47 mW and clearly
shows an avoided level crossing. Part (b) was recorded at a laser frequency of 382,046,943.00
MHz. The solid [dashed] lines show the prediction of the full model Eq. (5.10) [Autler-Townes
model Eq. (5.24)] with the parameter values from Tab. 5.1.

Fig. 5.7(b) therefore show the values of

W =

(
− 1

8K2

d2K2

dB2

)−1/2

(5.36)

at the peaks calculated from the full model (5.10). If the peaks in the model were
Lorentzian, this would yield the width W . The solid lines also agree well with the exper-
imental data and with the dotted lines.

5.5. Shifting a Magnetic Feshbach Resonance with Laser
Light

We now use the spectroscopic information from Sec. 5.3 and the parameters gathered in
Sec. 5.4 to shift the Feshbach resonance with far-detuned light. As in most applications
of ac-Stark shifts, we wish to achieve a certain value of |ΩR|2/∆L and at the same time
keep the rates for incoherent processes as low as possible. Hence, it is advantageous to
increase the detuning and power of the laser in a way that keeps |ΩR|2/∆L constant. This
yields W → 0 and K2(B) → (4π~|α|2/µag)δ(B − Bres), where δ denotes the Dirac delta
function (see Sec. 5.2.3). For any given value of B 6= Bres one can thus decrease K2(B)
by increasing the detuning and the laser power sufficiently far.

The experimental sequence of this section is the same as in Sec. 5.4.1 with the only
difference that here the optical dipole trap is switched off at t = 0 ms. The experimental
data in Fig. 5.8 were recorded in a regime where the detuning of the light from the bound-
to-bound resonance is much larger than the natural line width of state |e〉 and much larger
than the energy width of the Feshbach resonance, as discussed in Sec. 5.2.3. In this regime,
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Figure 5.7.: Systematic study of the loss resonances. K2(B) was measured for certain values
of the laser frequency at a fixed laser power of 0.47 mW. (a) The maximum Kmax

2 and (b) the
width W were determined from a fit to Eq. (5.16b). The experimental data for the resonances
that occur at the lower (◦) and higher (•) value of B both agree well with the predictions of the
full model Eq. (5.10) (solid lines) which is well approximated by Eqs. (5.25) and (5.26) of the
Autler-Townes model (dashed lines).

the light causes an ac-Stark shift of state |g〉, which results in a corresponding shift of
the magnetic field at which the Feshbach resonance occurs. For the data in Fig. 5.8 we
choose the bound-to-bound transition resonance at 382, 046, 942.8 MHz, which is sensitive
to π polarized light (see Tab. 5.1). Fig. 5.8(a) shows Re(a) as a function of B for a
laser detuning of +107 MHz and -107 MHz. The corresponding shifts which amount to
∼ ±0.5 G are clearly visible. The solid lines are fits of Eq. (5.11) to the data.

Fig. 5.8(b) shows the corresponding two-body loss rate coefficient K2 for a BEC. The
solid lines are the predictions for K2, see Eq. (5.16b). In the absence of light, K2 is zero.
With the light on, we attribute all observed particle loss to K2. This overestimates K2 on
the low-field side of the resonance, where part of the loss is actually caused by inelastic
three-body collisions [Smi07]. On the high-field side of the resonance, the three-body loss
is less important [Vol03] and the extracted values for K2 for blue detuning (�) agree well
with the solid line. The agreement for red detuning (•) is not quite as good.

In order to compare with an optical Feshbach resonance, we consider the data points in
Fig. 5.8(a) with Re(a)/abg− 1 ∼ ±1. For these data points Fig. 5.8(b) shows K2 ∼ 10−11

cm3/s, which is an improvement by one order of magnitude compared to Refs. [The04,
Tha05].

For any given value of B 6= Bres in Fig. 5.8, the two-body losses can be reduced even
further than by increasing the laser detuning and the laser power much further. When
following this approach, two new issues have to be addressed.

First, the detunings are no longer small compared to the typical splitting between
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Figure 5.8.: Shifting a Feshbach resonance with laser light. (a) Real part of the scattering
length as a function of magnetic field. In the absence of light (N), the pole in the scattering
length occurs at 1007.4 G. With 4.2 mW of light applied the Feshbach resonance is shifted to
a different magnetic field. The data were recorded at a detuning of the light frequency with
respect to the bound-to-bound resonance of ∆L/2π = +107 MHz (�) and −107 MHz (•). The
resonance frequency of the nearest bound-to-bound transition is 382,046,943 MHz. (b) The
application of the light induces two-body loss described by the rate coefficient K2 for a BEC.
The observed loss when changing Re(a)/abg by ±1 is typically one order of magnitude lower
than the loss that would be incurred when using an optical Feshbach resonance.

the various hyperfine and magnetic substates of the excited state. Achieving a large
detuning with respect to all excited states thus requires knowledge of the positions of
all nearby excited states, so that the excited-state spectroscopy data of Sec. 5.3 comes
into play. In order to achieve a large detuning from all excited states, the light must
be detuned either to the left or to the right of the complete multiplet in Fig. 5.4. The
three outermost resonances at the low-frequency end of the spectrum in Fig. 5.4 have
fairly strong photoassociation loss features, but show hardly any bound-to-bound features,
which is unfortunate. The high-frequency end of the spectrum looks more promising. We
therefore perform all the following experiments at the high-frequency end of the spectrum
in Fig. 5.4. According to Tab. 5.1, the two strongest bound-to-bound resonances near this
end of the spectrum both respond to π polarized light. Hence, we choose π polarization
for the bound-to-bound light in all the following experiments.

Second, if the laser that drives the bound-to-bound transition is now operated at much
larger power, then it creates a noticeable dipole trap. Its rapid turn-on induces large-
amplitude oscillations of the cloud size which are difficult to model. We therefore explore
an alternative way of measuring Re(a) and K2. To this end, we pin the positions of the
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atoms with a deep optical lattice which minimizes the effect of the additional dipole trap.
In the lattice, we use excitation spectroscopy and a loss measurement to determine Re(a)
and K2, respectively.

In order to measure Re(a), we first load the atoms into the lattice as described in
Sec. 5.3. We then use excitation spectroscopy [Stö04] in the lattice, i.e., we modulate
the power of one retro-reflected lattice beam sinusoidally as a function of time around
an average lattice depth of V0 ∼ 15Erec. The modulation amplitude is ∼ 4Erec. The
modulation lasts for 10 or 20 ms. During the modulation, the atoms are illuminated
with the bound-to-bound light and B is held at a specific value close to the Feshbach
resonance. The bound-to-bound light is on for a long enough time that sites containing
two or more atoms are essentially emptied by light-induced inelastic collisions. The signal
in the excitation spectrum that is sensitive to the modulation frequency thus stems from
sites that were initially populated by one atom. For certain modulation frequencies,
tunneling of an atom between two such sites is resonantly enhanced. This leads to a
frequency-dependent loss of atoms and of atomic phase coherence. At the end of the
modulation, we switch the bound-to-bound light off and simultaneously jump B back to
a value several Gauss away from the Feshbach resonance. Next, the dipole trap at 1064
nm is turned back on and the lattice depth is slowly reduced to V0 ∼ 6Erec, where the gas
is superfluid, thus restoring phase coherence between neighboring lattice sites. Finally,
the dipole trap, B, and the lattice are simultaneously switched off. The time-of-flight
image shows satellite peaks due to the restored phase coherence, as discussed in Sec. 4.1.

The visibility [Ger05] of the satellite peaks displays a minimum at a modulation fre-
quency where tunneling processes between two initially singly occupied sites are resonant.
This minimum is located at a frequency f = Re(U)/2π~ with the on-site interaction
matrix-element U = g

∫
d3x|w(x)|4, where g = 4π~2a/m and w is a tight-binding Wan-

nier function, see Sec. 2.2.1. The measurement of f thus yields Re(a).

A sequence of such measurements for various values of B yields Fig. 5.9(a). For para-
meters where Re(a) is reduced drastically, the system becomes superfluid and the peak
in the excitation spectrum is smeared out so much that its center cannot be determined
any more. Hence, this method is not applicable in this regime. For comparison, the figure
also shows Re(a) measured with the same method, but in the absence of bound-to-bound
light. Clearly, the position Bres of the Feshbach resonance is shifted by ∼ −0.35 G due to
the presence of the light.

We now turn to the question, how large a loss-rate coefficient K2 is associated with
this shift. In order to determine K2, we load the atoms into the lattice and associate
molecules as described in Sec. 5.3. Right after association, we dissociate the molecules.
This association-dissociation sequence serves the purpose of emptying all sites that contain
three or more atoms, which will become important below. The lattice depth is V0 ∼
20Erec so that tunneling is negligible. We then switch on the bound-to-bound light and
simultaneously jump B to a value close to the Feshbach resonance. These conditions are
maintained for a variable hold time. During this hold time, the bound-to-bound light
causes rapid loss of atoms in doubly occupied sites. Next, B is switched to a value several
Gauss away from the Feshbach resonance and the bound-to-bound light is switched off.
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Figure 5.9.: Further reduction of the two-body losses. (a) Elastic and (b) inelastic two-body
scattering properties are shown as a function of magnetic field B. Experimental data in the
presence (•) and absence (�) of the light are compared. The light power is 11.2 mW and the
frequency is ωL/2π = 382, 048, 158 MHz, which is 576 MHz blue detuned from the nearest
bound-to-bound transition. The solid lines in (a) and (b) show fits of Eqs. (5.11) and (5.16b),
respectively, to the data. The Feshbach resonance is shifted by ∼ −0.35 G. At B = 1006.91 G,
we measure Re(a)/abg − 1 ∼ 1 and K2 ∼ 1× 10−12 cm3/s which is two orders of magnitude less
than for an optical Feshbach resonance [The04, Tha05].

The dipole trap light at 1064 nm is turned back on and the lattice depth is slowly lowered
to zero. Finally, the cloud is released and B is switched off. The remaining number of
atoms is extracted from a time-of-flight image.

To describe the two-body loss during the hold time, we use the master equation of
Ref. [Sya08b]. We consider a lattice site initially occupied by exactly two atoms and
we neglect tunneling between sites. The master equation then yields the density matrix
ρ = p|2〉〈2| + (1 − p)|0〉〈0|, where p = exp(−Γt) is the probability that a decay at this
site occurred and |n〉 denotes a Fock state with n atoms. The parameter Γ is given by
[Sya08b]2

Γ = K2

∫
d3x|w(x)|4. (5.37)

The decay of the total atom number N in the experiment is obtained by taking the sum
over a large number of isolated lattice sites, yielding

N(t) = N1 +N2 exp(−Γt), (5.38)

2Here we use a and K2 from Eqs. (5.7) and (5.10). We derived these equations assuming that the sample
is Bose condensed which is not the case in a deep optical lattice. But a and K2 express only properties
of two-body scattering processes. They are unaffected by the many-body state of the system.
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where N1 and N2 are the initial atom numbers on singly and doubly occupied sites,
respectively. It is crucial that there are no sites with three or more atoms, because they
would give rise to an additional term that would decay more rapidly, thus making it more
difficult to extract Γ from the measured N(t).

We measured N(t) at a fixed hold time t = 2.1 ms for various values of B and used
Eqs. (5.37) and (5.38) to extract K2(B). Results are shown in Fig. 5.9(b). At B =
1006.91 G, we measure Re(a)/abg − 1 ∼ 1 and K2 ∼ 1 × 10−12 cm3/s, which is one
order of magnitude lower than in Fig. 5.8(b) and two orders of magnitude lower than the
corresponding result reported for photoassociation resonances in 87Rb [The04, Tha05].

We use the results of Sec. 5.2.3 to calculate the theoretical expectations from the sum
of the two π resonances in Tab. 5.1. We thus expect Bres − Bpole = −0.24 G and K2 =
3× 10−13 cm3/s at |B −Bres| = ∆B which in the model corresponds to Re(a)/abg − 1 =
±1. Both experimentally observed values are somewhat larger than the expectation.
This might be due to contributions from other bound-to-bound and photoassociation
resonances that we did not include in this estimate.

We tried to reduce K2 even further by setting the power of the bound-to-bound light to
66 mW and its frequency to 382,050,911 MHz which corresponds to a detuning of ∆L/2π =
3.33 GHz from the nearest bound-to-bound resonance. The expected and observed shifts
were −0.35 G and ∼ −0.65 G, respectively. But here we observed K2 ∼ 3× 10−12 cm3/s
at |B−Bres| = ∆B, which is much worse than the expectation K2 = 1× 10−13 cm3/s. As
the detuning is much larger than in Fig. 5.9, other bound-to-bound and photoassociation
resonances contribute even more strongly to the signal, which might explain the increased
deviation between the observed values and the estimates based on the two π resonances
of Tab. 5.1.
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6. Experimental Progress towards
Localization of Matter Waves in a
Disorder Potential

When a particle is subjected to a disorder potential, its wave function may be local-
ized under certain circumstances. In this chapter we study the realization of a disorder
potential and the physical behavior of matter waves in such a random potential.

Sec. 6.1 summarizes Refs. [Ros06a, Ros07, Hor07], in which the phase diagram for
particles in the presence of a disorder potential is investigated theoretically. Characteristic
signatures of relevant quantum phases are presented. In Sec. 6.2, we discuss the experi-
mental realization of a random potential in our setup and present experimental progress
towards localization of matter waves.

6.1. A Mobile and a Frozen Species in an Optical Lattice

6.1.1. General Concept

The absence of diffusion of a wave packet in a random potential is known as localization.
Localization of matter waves in disordered media was originally predicted in the context of
electron transport in condensed matter systems, where impurities and defects cause the
randomness [And58]. However, matter wave localization can be generalized to various
physical systems [Tig99]. The localization originates from the interference between mul-
tiple scattering paths. To observe localization of a wave packet inside a disorder potential
due to quantum interference, certain conditions need to be met.

The first condition is that the spatial extension ∆z of the wave packet must exceed the
typical length scale ξ of the disorder fluctuations. Interference of the wave components
between multiple scattering paths only emerges, if the wave packet samples a part of the
potential that actually shows disorder and thus probes numerous local extrema of the
random potential. Otherwise, the wave packet might be trapped in a single extremum of
the disorder potential. The latter phenomenon is a classical form of localization, where
no quantum interference occurs.

A second condition occurs in many-particle systems. Localization of a matter wave
is a single-particle phenomenon. If more than one particle is subjected to a random
potential, the interaction energy between the particles becomes relevant. This energy
can be characterized by the chemical potential µ. An energy scale that characterizes
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Figure 6.1.: Screening of the disorder potential. If the interaction strength between the
particles is so strong that the corresponding chemical potential µ is larger than twice the standard
deviation ∆V of the disorder potential, then the random potential is screened by parts of the
mobile particles. The rest of the particles forms a superfluid which is delocalized over the entire
sample.

the typical potential depth of the local extrema in the random potential is the standard
deviation ∆V of the disorder potential. If µ & 2∆V , some fraction of the particles may
be localized in the local minima of the disorder potential and flatten out the random
potential, as shown in Fig. 6.1. The remaining fraction resides in a delocalized state that
is spread out over the entire potential. Possible localization signatures are then washed
out [Sca91, Sch06]. To avoid this so-called screening effect, low particle densities or a low
interaction strength are necessary.

Meeting these two conditions in an experiment, is a challenging task. Ultracold atomic
quantum gases are a good candidate for studying the appearance of matter wave local-
ization experimentally [Dam03, Blo08, Lew07]. This is because they offer the possibility
to implement trapping geometries in one, two, and three dimensions employing optical
lattices, to control the interatomic interactions, either by density control or with Fesh-
bach resonances, to measure atomic density profiles, and to design well controlled disorder
potentials.

One way to design a disorder potential for an ultracold quantum gas is to use the
ac-Stark shift created by light with a random spatial intensity distribution. A first re-
alization of this technique was performed with the introduction of laser speckle patterns
[Lye05] and quasi-periodic optical lattices [Fal07]. In initial investigations [Lye05, Clé05,
For05, Sch05, Fal07, Lye07, Whi09] the observation of localization was precluded either
by insufficient length scales of the disorder (ξ > ∆z) or by screening effects (µ > 2∆V ).
Recently, these limitations were overcome by two experiments, that directly observed An-
derson localization: In the Aspect group a BEC of 87Rb atoms with very low density was
subjected to a laser speckle pattern [Bil08], whereas in the Inguscio group a quasi-periodic
lattice created by superimposing two standing waves with incommensurate wavelengths
was used as a disorder potential for a BEC of 39K, in which the interaction strength was
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tuned close to zero using a magnetic Feshbach resonance [Roa08].
Before the Aspect group and the Inguscio group observed localization at the end of

2008, we pursued an alternative approach, in which the disorder potential is created using
impurity particles with a random spatial distribution [Gav05, Par05, Mas06]. This is
realized by particles that are frozen on randomly distributed sites of a deep optical lattice.
A second species experiences a much shallower lattice potential and its particles are thus
mobile. The lattice essentially discretizes the spatial coordinate. The wave functions of
the mobile particles are spread out over various lattice sites and thus probe the random
distribution of the frozen particles due to an on-site interaction between a mobile and a
frozen particle. If the distribution of frozen particles shows no correlation for neighboring
sites, then the issue of a too large correlation length ξ is solved. In addition, in our setup
a screening of the disorder potential is prevented by tuning the interaction between the
mobile particles to zero using a magnetic Feshbach resonance.

In our system, the disorder potential is superimposed with a harmonic trap with angular
frequency ωho. The oscillator length z0 =

√
~/ωhom of a mobile particle with mass m

inside this harmonic trap is much larger than ξ. The mobile particles are confined by the
harmonic trap and thus do not disperse in our experiments. They essentially populate
the ground state of the combined trap. Nevertheless, effects related to localization are
predicted to be observable in this ground state [Ros06a, Ros07].

6.1.2. A Two Species Bose-Hubbard Model

Localization in a mixture of a frozen and a mobile bosonic species inside an optical
lattice has been explored theoretically in Refs. [Ros06a, Ros07, Hor07]. Here, we briefly
summarize the central results of these investigations.

We consider the case of completely frozen |↓〉 particles inside an optical lattice, where
the number of frozen particles n↓,i ∈ {0, 1} is random for each lattice site i. The frozen
particles serve as impurities for particles of the mobile species |↑〉 inside the optical lattice.
The Hamiltonian of this system reads

H = J↑
∑
〈i,j〉

(
a↑,ia

†
↑,j +H.c.

)
+
U↑↑

2

∑
i

n↑,i(n↑,i − 1) + U↑↓
∑

i

n↓,i n↑,i, (6.1)

where J↑ is the tunneling amplitude of the mobile atoms and U↑↑ the on-site interaction

strength between mobile atoms, in analogy to Eq. (2.6). n↑,i = a†↑,ia↑,i is the number
of mobile particles at lattice site i. U↑↓ is the on-site interaction strength between one
mobile and one frozen particle. The last term in Eq. (6.1) creates a random potential for
the mobile particles, as sketched in Fig. 6.2. In the experiment, such a Hamiltonian can
be realized with a spin state dependent ac-Stark shift in an optical lattice, as described in
the Sec. 6.1.3. The on-site interaction U↑↑ of the mobile species is tunable with a Feshbach
resonance, see Sec. 2.1.

Signatures of the ground state of the Hamiltonian in Eq. (6.1) for a 1D system were
studied theoretically using quantum Monte Carlo simulations [Ros06a, Ros07]. Fig. 6.3
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Figure 6.2.: Creation of a disorder potential. (a) A deep optical lattice (blue line) prevents
particles of the frozen species |↓〉 from hopping from site to site. The particle number n↓,i at site
number i equals 0 or 1 and is random from site to site. The frozen particles serve as scattering
impurities for a mobile species |↑〉. (b) The mobile species (not shown) experiences a shallow
lattice depth (red line) that discretizes the spatial coordinate to single lattice sites. An on-site
interaction U↑↓ between mobile |↑〉 and frozen |↓〉 particles maps the random spatial distribution
of the frozen particles to on-site energy shifts for mobile particles and creates a disorder potential
for the mobile species (black line).

shows the peak density in momentum space n↑(k = 0) and the superfluid fraction ρs,↑
of the mobile species as functions of U↑↑/J↑. In the studied parameter range four phases
are identified: a localized phase (LOC), a superfluid (SF), a Bose glass (BG), and a
Mott insulator (MI). For what follows, we are interested in the weakly interacting regime
U↑↑/J↑ . 8, where only the LOC phase and the SF phase appear. In this regime, the
values for n↑(k = 0) and ρs,↑ can serve as a measure to assign the quantum phase, in
which the mobile species resides for a given ratio U↑↑/J↑. Experimentally, n↑(k = 0) is
accessible by time-of-flight imaging.

We briefly describe the physical properties of the LOC and the SF phase. In the
localized phase the single wave functions of the mobile particles are spatially localized by
the interference of wave components between multiple scattering paths reflected off frozen
impurity atoms. The spatial extension of the wave functions covers various impurity
centers of the disorder potential. In time-of-flight images the experimental signature of
this phase is a small atomic peak density at zero momentum n↑(k = 0), see Fig. 6.3(a) at
U↑↑/J↑ . 3.

If the interaction strength U↑↑ of the mobile particles is comparable to the interaction
strength U↑↓ between mobile and frozen particles, the disorder potential is screened by
some fraction of the mobile particles and the remaining atoms reside in a delocalized,
spatially extended superfluid state, as sketched in Fig. 6.1. This phase exhibits a large
atomic density n↑(k = 0) around zero momentum and a significant superfluid fraction
ρs,↑, see Fig. 6.3(a) at 3 . U↑↑/J↑ . 8.

The value of U↑↑/J↑, at which the behavior of the system changes from localized to
superfluid, depends on the impurity concentration 〈n↓,i〉, as shown in the phase diagram
of Fig. 6.3(b). Note, that the simulations of Fig. 6.3 were performed for n↓,i ∈ {0, 1}. Thus,
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Figure 6.3.: Predictions for the ground state properties of the Hamiltonian in Eq. (6.1) for
a 1D system. (a) The peak density at zero momentum n↑(k = 0) and the superfluid fraction
ρs,↑ of the mobile species are shown as a function of U↑↑/J↑. Based on the values of n↑(k = 0),
ρs,↑, and the compressibility (not shown), different quantum phases of the mobile species can
be identified (LOC: localized phase, SF: superfluid, BG: Bose glass, and MI: Mott insulator).
The simulation was performed with parameters 〈n↓,i〉 = 0.5, 〈n↑,i〉 ' 1, and U↑↓ = 5J↑. (b)
Phase diagram arising from a set of simulations as in (a) with different impurity concentrations
〈n↓,i〉 showing the ratio of U↑↑/J↑, where the quantum phase changes its character. The dashed
lines are guides to the eye. The exact position of the phase boundary between LOC and SF
around ’?’ is difficult to determine. The red and green arrow represent experiments discussed
in Figs. 6.7 and 6.8, see Sec. 6.2.3. Adapted from Ref. [Ros06a].

〈n↓,i〉 = 1 implies n↓,i = 1 for all i so that there is no disorder. For this reason, the phase
diagram in Fig. 6.3(b) is roughly symmetric under reflection off the line 〈n↓,i〉 = 0.5. In
the more realistic scenario with n↓,i ∈ {0, 1, 2, . . . } this artificial vanishing of the disorder
is expected to disappear [Ros06b].

6.1.3. An ac-Stark Shift that Depends on the Zeeman State

The mobile and the frozen species in the scheme discussed so far could be different chemical
elements, isotopes, or internal states. Our experimental implementation uses different
hyperfine states in 87Rb. We now describe, how a different lattice depth for these states
can be realized.

In Sec. 3.3, the ac-Stark shift for a two-level atom was described, see Eq. (3.11). In a
multi-level atom, however, the various electric dipole matrix elements typically differ. This
makes it possible to implement an optical lattice with different depths for different Zeeman
states. In the limit of large detuning, several excited states may contribute noticeable
to the ac Stark shift. The ground and excited states can be characterized by angular
momentum quantum numbers. For alkali atoms, the spin ~S and the orbital angular
momentum ~L of the valence electron couple to a total electronic angular momentum
~J = ~L + ~S. This coupling leads to fine structure splitting. Moreover, the coupling of ~J
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with the nuclear spin ~I results in hyperfine splitting for different values of ~F = ~J + ~I.
We assume that the detuning of the light frequency from the transition frequencies is

much larger than all hyperfine splittings and that there is only one value of J for atoms
in the ground state, namely J = 1/2. The ac-Stark shifts at B = 0 are known from the
literature [Cho97, Mil02]

∆E = ∆Ecyc
1/2

1− gFmF q

3
+ ∆Ecyc

3/2

2 + gFmF q

3
, (6.2)

where mF is the magnetic quantum number. gF ∼ gJ [F (F + 1) + S(S + 1) − I(I +
1)]/[2F (F + 1)] and gJ are the Landé factors belonging to F and J , respectively. q =
−1, 0,+1 for σ−, π, and σ+ polarization, respectively. We abbreviate ∆Ecyc

J = |E dcyc|2/(4~∆J)
where E is the electric field amplitude, ∆J ′ is the detuning for the excited state with
quantum number J ′ and dcyc is the dipole matrix element of the cycling transition
|F = mF = I + 1/2〉 ↔ |F ′ = m′

F = I + 3/2〉. For σ+ or σ− polarization, the energies
of states with different values of mF are split equidistantly. This property of the split-
ting is reminiscent of the linear Zeeman effect and therefore sometimes referred to as a
fictitious magnetic field [CT72].

Our experiments are performed with a magnetic field applied. The resulting level
shifts are much larger than the ac-Stark shift so that the latter can be treated as a weak
perturbation. Following the calculations in Appendix A, we obtain the ac-Stark shift of
an alkali ground state atom in spin state |F,mF 〉 as

∆E = ∆Ecyc
1/2

1− βq
3

+ ∆Ecyc
3/2

2 + βq

3
, (6.3)

where for |mF | < I + 1/2

β = ±cos θ for states adiabatically connected to F = I ± 1

2
(6.4a)

cos θ =
α+ χ√

1 + 2αχ+ χ2
(6.4b)

α = mF/(I + 1/2) (6.4c)

χ = (gJ − gI)µBB/(~ωHFS) (6.4d)

with 0 ≤ θ ≤ π. In addition, β = ±1 for mF = ±(I+1/2). Here, µB is the Bohr magneton,
~ωHFS the hyperfine splitting, and gI the Landé factor of the nucleus, see Tab. A.1.

For the rest of this chapter, we only consider two specific spin states of atomic 87Rb,
namely

|↑〉 = |F = 1,mF = 1〉 (6.5a)

|↓〉 = |F = 2,mF = 2〉 . (6.5b)

In a 1D optical lattice created by a standing wave with σ+ polarization, Eq. (6.3) results
in different lattice depths1 for atoms of spin states |↑〉 and |↓〉, as shown in Fig. 6.4(a)

1Throughout this chapter, lattice depths are given in units of Erec = h2/(2mλ2) = 3.33 kHz, which is
the recoil energy for a 87Rb atom absorbing a photon of wavelength λ = 830 nm.
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Figure 6.4.: ac-Stark shift for 87Rb atoms in states |↑〉 = |F = 1,mF = 1〉 and |↓〉 =
|F = 2,mF = 2〉 of the electronic ground state. (a) Eq. (6.3) is shown at the antinodes of a
standing light wave with σ+ polarization. The resulting lattice depth1 Vlat is plotted as a func-
tion of the light wavelength for B = 1007 G, a traveling-wave power of 25 mW, and a beam waist
of 135 µm. (b) Experimental data for the ac-Stark shift as a function of the lattice wavelength
at ∼ 1007 G. The solid lines represent the theory from (a) with the light intensity as the only
fit parameter.

at B = 1007 G as a function of the lattice wavelength. For the experiments of this
chapter, we typically use lattice wavelengths between 784 and 786 nm. Therefore, state
|↑〉 represents the mobile species, whereas |↓〉 represents the frozen species. To illustrate
the size of the effect of the magnetic field, we consider the so-called magic wavelength
where the ac-Stark shift vanishes. For state |↑〉 this lies at 787.54 nm for B = 0 and at
786.44 nm for B = 1007 G.

In Fig. 6.4(b), we present experimental data of the ac-Stark shift in our setup for states
|↑〉 and |↓〉 as a function of the lattice wavelength. The lattice depth was characterized by
employing the calibration method described in Refs. [HD02, Vol07]. The solid lines repre-
sent the theoretical expectation from Eq. (6.3), where the light intensity was determined
from a fit of both curves to all data points simultaneously. The value obtained from the fit
agrees with an independent measurement of the light power and the waist within a factor
of 1.4. Within the range from 784 to 786 nm, the lattice depth for the mobile species
varies by a factor of ∼ 3, whereas the lattice depth for the frozen particles changes only
moderately. The lattice wavelength thus allows for tuning J↑ without changing the fact
that the |↓〉 particles are frozen.

The boundaries of the wavelength range that is useful for our experiments are set by
the following considerations. First, too far away from the magic wavelength, the values of
J↑ and J↓ become too similar, and second, too close to the magic wavelength, achieving an
appreciable lattice depth V↑ requires so large laser intensities that spontaneous scattering
of photons becomes an issue, see Sec. 6.2.1.
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6.1.4. Creation of a Random Spatial Distribution

To prepare a mixture of |↑〉 and |↓〉 atoms in our experiment, we start with a sample of
|↑〉 atoms and apply a microwave field to coherently transfer the atoms from state |↑〉
into a superposition state cosα |↑〉+sinα |↓〉. Experimental details about the transfer are
discussed in Secs. 6.2.1 and 6.2.2. Here, we describe why this results in a random spatial
distribution.

As in Eq. (2.9), the many-particle state of the initial superfluid sample of N |↑〉 atoms
reads in second quantization

|Ψ〉 =

(∑
i

φi a
†
↑,i

)N

|0〉 , (6.6)

where a†↑,i creates an |↑〉 atom at lattice site i. |0〉 is the vacuum state.
∑

i φia
†
↑,i thus

creates an |↑〉 atom delocalized over many sites with amplitudes φi that must meet∑
i |φi|2 = 1. The power of N in Eq. (6.6) means that N atoms are created in the

same single-particle wave function. The transfer from state |↑〉 to |↓〉 is fast in compar-
ison to all relevant time scales of the Hamiltonian in Eq. (6.1). We thus represent the
transfer by the substitution

a†↑,i → sinα a†↓,i + cosα a†↑,i, (6.7)

where a†↓,i creates a |↓〉 atom at lattice site i. We assume, that the transfer takes place
in the Lamb-Dicke regime [CT92], so that it is possible to occupy almost exclusively the
lowest motional state of the |↓〉 atoms at site i. After the transfer, the many-particle state
in Eq. (6.6) becomes

|Ψ〉 =
∑
N↓

b (N↓, α)

(∑
i

φi a
†
↓,i

)N−N↓ (∑
i

φi a
†
↑,i

)N↓
 |0〉 , (6.8)

where we used the binomial formula and b(N↓, α) =

(
N
N↓

)
sinN−N↓α cosN↓α.

As atoms in state |↓〉 are frozen on single lattice sites, it will be convenient for the
following calculation to describe them in a Fock state representation in first quantization.
We thus rewrite Eq. (6.8) as a tensor product

|Ψ〉 =
∑
{n↓,i}

c{n↓,i} |{n↓,i}〉 ⊗

(∑
i

φi a
†
↑,i

)N↓

|0〉

 , (6.9)

where {n↓,i} represents all possible distributions of frozen atoms across the available
lattice sites that are compatible with a given total particle number N . c{n↓,i} are the
corresponding expansion coefficients, which also include b(N↓, α). The Hamiltonian in
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Eq. (6.1) determines the time evolution of this state. Atoms in state |↓〉 are prevented
from tunneling. Thus, the eigenstates |{n↓,i}〉 are conserved and only pick up a time
dependent phase, which can be absorbed in the time dependent evolution of the mobile
species. Hence,

|Ψ(t)〉 =
∑
{n↓,i}

[
c{n↓,i} |{n↓,i}〉 ⊗

∣∣Ψ{n↓,i}(t)
〉]
, (6.10)

where
∣∣Ψ{n↓,i}(t)

〉
is the time evolved many-particle state of the mobile species, that

depends on the atom number distribution {n↓,i} of the frozen species. As discussed in

Sec. 6.1.2, we are interested in the measurement of a physical observable Â↑ that acts
only on state

∣∣Ψ{n↓,i}(t)
〉
. The corresponding expectation value is given by

〈Ψ(t)| 1̂↓ ⊗ Â↑ |Ψ(t)〉 =
∑
{n↓,i}

[∣∣c{n↓,i}
∣∣2 ⊗ 〈Ψ{n↓,i}(t)

∣∣ Â↑
∣∣Ψ{n↓,i}(t)

〉]
. (6.11)

Due to the summation over {n↓,i}, all possible spatial distributions of the frozen species

are probed by measurement of Â within a single experimental shot. In general, the
combinations in {n↓,i} include ordered and disordered spatial distributions of the frozen
atoms. For example, consider three lattices sites occupied by N↓ = 3 frozen atoms. Here,
the possible combinations for {n↓,i} are (3,0,0), (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0),
(1,0,2), (0,2,1), (0,1,2), and (1,1,1). Obviously, the majority of these terms that contribute
to the sum in Eq. (6.11) show disorder.

Note, that the coherence of the superposition in Eq. (6.10) might be lost due to ex-
perimental imperfections, such as magnetic field fluctuation. However, as only |c{n↓,i}|2
enters in Eq. (6.11) the observation of localization in our experiments does not rely on
the coherent character of the superposition.

6.2. Experimental Attempt to Localize Matter Waves in
a Disorder Potential

6.2.1. Experimental Sequence

Experimentally, it is possible to create a disorder potential for the mobile particles in state
|↑〉 by preparing a disordered distribution of the frozen |↓〉 particles using the Zeeman
dependent ac-Stark shift of an optical lattice. The general idea is to probe the quantum
phase transition from a superfluid to a localized ground state for the mobile species
by decreasing the interaction strength between the mobile particles using a magnetic
Feshbach resonance.

The experimental sequence is the following: We start with a BEC of atoms in spin
state |↑〉 in an optical dipole trap at a magnetic field a few Gauss away from a Feshbach
resonance at 1007.4 G. Details of the optical dipole trap are given in Sec. 3.3. The
initial BEC is approximately spherical with a Thomas-Fermi radius of ∼ 20 µm. The
BEC is transferred into an optical lattice, that consists of three mutually orthogonal
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standing waves, as described in Sec. 3.4.2. Along x and y we employ linearly polarized
light with wavelengths λx = λy = 830.44 nm. During the transfer the power of the x
and y beam is exponentially increased within 40 ms to final lattice depths of typically
Vx = Vy = 20(2) Erec. This corresponds to tunneling amplitudes of Jx = Jy = h/(120 ms)
independent of the hyperfine state of an atom. Particles in both states |↑〉 and |↓〉 are
thus confined in an array of tubes and the essential physics takes place in a 1D geometry
along z. Along the z direction we apply σ+ polarized lattice light with a wavelength of
λz ∼ 785 nm. The beam power along z is increased exponentially within 5 ms and reaches
its final value simultaneously with the x and y lattice beams. The shorter ramp-up time
for the z-beam is possible because of the smaller final lattice depth. The lattice depth,
polarization, and wavelength of the z lattice beam are chosen such that the |↑〉 atoms are
allowed to easily tunnel from site to site and are thus delocalized along z. Furthermore,
the parameters meet the condition U↑↓/J↑ = 5, as used in the simulations of Fig. 6.3.

After loading the cloud of |↑〉 atoms into the lattice, a microwave field is applied for
50 µs to coherently transfer the atoms in state |↑〉 to a superposition state 1√

2
(|↑〉+ |↓〉),

see Sec. 6.2.2. According to Sec. 6.1.4, this results in a spatial disorder potential for the
mobile species and the characteristic length scale ξ of disorder fluctuations is expected to
be on the order of λz/2. This is much smaller than the spatial extension ∆z of the wave
function of the mobile atoms, which is on the order of the Thomas-Fermi radius of the
initial BEC.

Note that in 87Rb the singlet and the triplet scattering lengths are almost identical
[vK02], which results in a↑↑ ∼ a↑↓ ∼ a↓↓. However, U↑↑, U↑↓, and U↓↓differ somewhat
because of the different lattice depths V↑,z and V↓,z, see Eq. (2.8). U↑↑ is large enough
that the mobile particles remain superfluid due to screening, as shown in Fig. 6.1. A
further step of our experiments is to reduce U↑↑ close to zero using a Feshbach resonance
to probe the quantum phase transition from a superfluid to a localized phase, as predicted
in Sec. 6.1.2. Experimental results on this topic are presented in Sec. 6.2.3.

For detection, we first release the atoms by switching off all trapping potentials si-
multaneously and then take a time-of-flight image after an expansion time of 7-15 ms.
Optionally, we can apply a Stern-Gerlach field during an early stage of the expansion for
∼ 2 ms to separate the clouds of the two species from each other. Ideally, the time-of-flight
images would directly reflect the momentum distribution before release. In practice, this
relation is complicated somewhat by the mean-field energy which is converted into kinetic
energy, mostly during the early expansion phase. In our experiments in this section, the
magnetic field is always switched off at the moment where the cloud is released, so that
the scattering length takes on its background value during the complete time of flight.

Spontaneous scattering of lattice photons can become an issue in the experiment. The
dominant contribution comes from the ∼ 785 nm light. Combination of Eqs. (3.12) and
(6.3) yields a scattering rate of

Γsp =
Γ0

~

[
∆Ecyc

1/2

∆1/2

1− βq
3

+
∆Ecyc

3/2

∆3/2

2 + βq

3

]
. (6.12)

We typically choose the experimental parameters such that we estimate an average
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number of scattered photons of only ∼ 0.03 per atom. The corresponding recoil heating
adds two photon recoil energies per average scattering event. Given the low number of
scattering events, recoil heating is negligible compared to U↑↓ ∼ 0.37Erec. Spontaneous
scattering also leads to optical pumping into other ground states. With these low numbers
of scattering events, optical pumping is negligible. By deliberately leaving the lattice light
on for much longer times, we were able to observe optical pumping in images with Stern-
Gerlach separation. We thus confirmed Eq. (6.12) experimentally.

The requirement to keep the number of scattered photons low forces us to have the
lattice light on for only a limited time. This time includes the ramp up of the ∼ 785 nm
lattice. As we are interested in ground state properties, this ramp should be ideally be
rather long in order to guarantee adiabaticity. Our choice of parameters is a compromise
between photon scattering and adiabaticity. A similar argument applies to the ramps in B
which tune U↑↑ and should be adiabatic as well. They also take place with the ∼ 785 nm
light on so that a similar compromise must be found. For these ramps, light-induced
two-body loss near the Feshbach resonance is also an issue, see Sec. 6.2.3. This forces
us to use even shorter ramp times for B than if we were fighting only normal photon
scattering.

6.2.2. State Preparation

A crucial point of the experimental sequence described in Sec. 6.2.1 is the partial transfer
of population in spin state |↑〉 to state |↓〉 using a microwave pulse. This transfer must
meet three conditions: First, the magnetic field must be temporally stable. To this end,
the magnetic field noise at ∼ 1007 G is suppressed below 4 mG (rms) on a time scale
of 50 ms using a home-built servo loop [Dür04b], see Sec. 3.2.1. Additionally, we trigger
the microwave pulse on the ac line voltage [Näg08]. Second, spatial homogeneity of the
magnetic field is necessary. Otherwise, atoms could be transferred only in a small spatial
region and/or the corresponding Stern-Gerlach force could spatially separate the two
species after the transfer. Two additional pairs of coils in our setup solve these problems
(see Sec. 3.2.2).

We confirm the temporal stability and spatial homogeneity of the magnetic field by
observing a time-resolved 2π Rabi oscillation between states |↑〉 and |↓〉 at a magnetic field
of 1009.18 G. For this experiment, we load a sample of |↑〉 atoms into the optical lattice as
described in Sec. 6.2.1. Here, we use λz = 785.22 nm and V↑,z = 2(1) Erec. A microwave
pulse at a frequency of 9133.523 MHz is applied for a variable time. Subsequently, the
power of all lattice beams is ramped down slowly and a time-of-flight image with Stern-
Gerlach separation is taken. Fig. 6.5 shows the atom number in each species as a function
of the pulse duration. The almost complete transfer from the initial state |↑〉 to state
|↓〉 for a pulse duration of ∼ 100 µs shows that the frequency of the microwave pulse is
resonant with the atomic transition and that the magnetic field is spatially homogeneous.

The third requirement is that the transfer should not create band excitations in the op-
tical lattice because this would lead to noticeable tunneling of the frozen species. In addi-
tion, interspecies collisions could heat the mobile species. When scanning the microwave
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Figure 6.5.: Rabi oscillation between two hyperfine states in an optical lattice at 1009.18 G.
The atom number oscillates between the spin state |↑〉 (red) and |↓〉 (blue) as a function of the
pulse duration of the microwave field. The blue line is a fit of A [1 − e−t/τ cos(ωt)] to 4. The
best fit parameters are used for plotting the red line which shows A [1 + e−t/τ cos(ωt)]. For a
pulse duration of ∼ 100 µs, 92(2)% of the initial population in state |↑〉 are transferred to state
|↓〉. A π/2-pulse is realized at ∼ 50 µs.

frequency we can resolve the band structure2, as seen in Fig. 6.6, which is recorded
with the same experimental sequence as for Fig. 6.5 except that now B = 1009.10 G,
λz = 786.09 nm, and V↑,z = 5(2) Erec corresponding to V↓,z = 22(9) Erec. The microwave
pulse lasts 90 µs. Fig. 6.6(a) shows the number of |↓〉 atoms as a function of the mi-
crowave frequency. The spectrum displays two resonances corresponding to the lowest
energy band and the second excited band. The energy gap between these two bands is
45(3) kHz, which agrees with the theoretical expectation of 53(18) kHz. We think, that a
population of the first excited band is suppressed due to odd parity at quasi momentum
zero. The width of the resonance of the lowest band in Fig. 6.6(a) is 4.6(3) kHz (rms),
which sets an upper bound for the magnetic field noise of 1.9 mG (rms) for the 90 µs time
scale of the microwave pulse. We note, that a measurement for the same transition inside
a dipole trap at B ∼ 1.5 G yields a comparable upper bound for the magnetic field noise.

Fig. 6.6(b) shows the cloud width (FWHM) of the mobile species after time-of-flight
which represents the momentum spread. The width increases for microwave frequencies
that transfer atoms either to the upper band edge of the lowest band or to the second
excited band because surplus energy is stored in the system. We attribute this heating
to elastic collisions between mobile and frozen atoms. In the following, we avoid heating
and population of excited lattice bands using a microwave frequency as indicated by the
dashed line in Fig. 6.6(b).

Note, that for the experimental parameters of our system the microwave wavelength
is much longer than the size of the wave packet at an individual lattice site. Thus, the
transfer from state |↑〉 to |↓〉 is deeply in the Lamb-Dicke regime, as assumed in Sec. 6.1.4.

2A similar experiment resolved the lattice band structure when creating molecules with a Raman tran-
sition instead of the microwave transition [Rom04].
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Figure 6.6.: Microwave spectroscopy of the band structure in an optical lattice at 1009.10 G.
(a) Atom number in the frozen state |↓〉. The lowest and the second excited energy band of the
lattice potential are resolved. The first excited band is not populated due to symmetry. (b)
Momentum spread of atoms in the mobile state |↑〉. When atoms are transferred either to the
upper band edge of the lowest band or to the second excited band, the momentum spread of
the mobile species increases. This is probably due to collisions that transfer energy from the
frozen to the mobile species. In the following, we choose a microwave frequency indicated by
the dashed line, where the population transfer is high and the heating is small.

6.2.3. Probing the Phase Transition

The controlled transfer of atoms from spin state |↑〉 to state |↓〉 in the lowest band of
the optical lattice allows us to perform experiments aiming for the localization of matter
waves as proposed in Sec. 6.1. As a crucial step in these experiments, a reduction of the
interaction strength between the mobile particles is required to probe the phase transition
to a localized phase. Here, we present experimental results of this attempt.

We prepare the system as described in Sec. 6.2.1. We use B = 1009.18 G, λz =
784.142 nm, and V↑,z = 5.8(5) Erec corresponding to V↓,z = 20(2) Erec. The estimated
tunneling amplitudes are J↑,z ∼ h/(5.0 ms) and J↓,z ∼ h/(105 ms). A microwave π/2-
pulse is applied. The peak density of the initial BEC is 8.3 × 1013 cm−3 resulting in
a maximum atom number of 1.6 per spatial volume λxλyλz/8. This corresponds to a
maximum of 〈n↓,i〉 ∼ 0.8 after the transfer.

In the next experimental step, we employ a magnetic field ramp to address a Feshbach
resonance for state |↑〉 at Bpole = 1007.4 G with a width of ∆B = 0.2 G [Vol03, Dür04b].
Close to the Feshbach resonance, the scattering length a↑↑ and thus the interaction
strength U↑↑ are functions of B, see Eqs. (2.3) and (2.8). The changes in U↑↓ and U↓↓
are negligible. The magnetic field ramp belongs to one of the three following schemes. In
the first scheme, we just hold the magnetic field for 18 ms at Binit = 1009.18 G, where
a/abg ∼ 0.9 and U↑↑/J↑ ∼ 5.8. In this case, the mobile species is expected to reside in the
superfluid phase due to screening. In the second scheme, we decrease the magnetic field
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Figure 6.7.: Searching for the quantum phase transition. The upper panels show time-of-
flight images where the optical depth corresponds to the 2D density distribution of the mobile
species 7 ms after release from the optical lattice. The lower panels show the corresponding
x-integrated 1D density profiles. In (a), U↑↑/J↑ is held at ∼ 5.8. In (b), U↑↑/J↑ is ramped from
∼ 5.8 to ∼ 1.7 within 2 ms and held there for 16 ms before releasing the cloud from the lattice.
This ramp corresponds to the green arrow in Fig. 6.3. In (c), U↑↑/J↑ is ramped as in (b) and
subsequently ramped back to U↑↑/J↑ ∼ 5.8 before release from the lattice corresponding to the
red curved arrow in Fig. 6.3. The decrease in the peak density n↑(k = 0) from (a) to (b) is a
possible signature for a phase transition from a superfluid to a localized state. However, in (c)
after a round trip, the initial peak density is not restored and thus a clear proof for localization
is missing.

linearly within 2 ms to a value Bhold and hold it subsequently for a time of thold = 16 ms.
For Bhold − Bpole ∼ ∆B, a/abg ∼ 0 and U↑↑/J↑ ∼ 0. Here, the mobile particles are ex-
pected to be localized. This ramp is indicated by the green arrow in the phase diagram of
Fig. 6.3(b). As a third ramping scheme, we employ a timing sequence, where the magnetic
field is ramped as in the latter scheme but subsequently ramped back linearly to its initial
value Binit within 2 ms. For this ramp the system is expected to undergo a round-trip in
the phase diagram from a superfluid to a localized phase and then back to a superfluid,
as indicated by the red curved arrow in Fig. 6.3(b).

After the magnetic field ramp, all trapping potentials are switched off simultaneously
and a time-of-flight image with Stern-Gerlach separation is taken. The peak density
n↑(k = 0) in time-of-flight images serves as an indication for the corresponding quantum
phase of the mobile species after each ramping scheme.

Typical time-of-flight images are shown in Fig. 6.7 along with the corresponding x-
integrated 1D density profiles. The images were taken after an expansion time of 7 ms.
In (a), we employ no magnetic field ramp, holding the magnetic field at Binit corresponding
to a/abg ∼ 0.9 and U↑↑/J↑ = 5.7. The high peak density n↑(k = 0) indicates that the
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Figure 6.8.: Particle loss causes problems in our localization experiments. (a) n↑(k = 0) as
a function of Bhold. Green squares were recorded with a magnetic field ramp as in Fig. 6.7(b).
The decrease in n↑(k = 0) for a decrease in U↑↑/J↑ is expected. Red circles were recorded with
a magnetic field ramp as in Fig. 6.7(c). Ideally, these data should fall onto the red dashed line.
(b) The number of frozen particles stays constant (cyan star for ← and blue diamond for ↪→),
whereas the number of mobile particles shows a disastrous decrease (green squares for ← and
red circles for ↪→). We suspect, that this loss results from bound-to-bound transitions.

mobile species is in the superfluid phase. In (b), the magnetic field is decreased from
Binit to Bhold = 1007.67 G resulting in a/abg ∼ 1/4 and U↑↑/J↑ = 1.7. The decrease of
n↑(k = 0) might indicate that the mobile particles are localized. In order to exclude other
effects like heating or particle loss as possible reasons for the decrease in n↑(k = 0), we
perform the third ramping scheme, where B is ramped from Binit to Bhold as in (b) and
subsequently re-increased to Binit. Results are shown in Fig. 6.7(c). A restoration of the
peak density to its initial value from (a) indicated by the red dashed line, however, is not
observed and a proof for localization is missing.

We aggressively explored the parameter space in our experiment changing the lattice
depth along z, the total particle number, the ratio between the particle numbers in the
mobile and the frozen species, and the parameters of the timing sequence. Nonetheless,
a restoration of the peak density after a round trip in the phase diagram could not be
observed.

We think that the dominant reason for the non-restoration of the initial peak density
is most likely particle loss. In Fig. 6.8(a), n↑(k = 0) is shown as a function of Bhold

for the same experiment as in Fig. 6.7. Green squares and red circles correspond to the
ramping schemes as in Fig. 6.7(b) and (c), respectively. As in Fig. 6.7(b) and (c), the
peak density is reduced when the Feshbach resonance is approached, and it is not restored
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in a round-trip.

Fig. 6.8(b) displays the atom numbers of the mobile and the frozen species for the same
measurements as in Fig. 6.8(a). If B approaches the Feshbach resonance, the number of
frozen atoms stays constant whereas the number of mobile atoms decreases. We observed
in an independent measurement that no loss occurs if the ∼ 785 nm light is absent.
We thus face a light-induced loss mechanism for the mobile species near the Feshbach
resonance.

These characteristics of the loss suggest3 that it is due to a bound-to-bound transition
driven by the ∼ 785 nm light, as discussed in Chapter 5. Using Eqs. (5.16) and (5.17),
we now estimate the resulting two-body loss. Based on Tab. 5.1 and Sec. 5.3, we assume
|deg|/(ea0) = 0.3, γe = 2π × 5 MHz, and α/(2π) = 1.8 mHz cm3/2. A traveling-wave
laser power of 1.8 mW as applied in Fig. 6.8 yields ΩR/(2π) = 42 MHz at an antinode of
the standing wave. A comparison with data from the Heinzen group [Tsa08] shows that
the ∼ 785 nm light is detuned by ∆L/(2π) ∼ +3 GHz and ∆L/(2π) ∼ −60 GHz from
the barycenters of the two closest vibrational levels of the 1g molecular potential. We
neglect the existence of the vibrational levels of the 0+

u and the 2u molecular potentials.
Furthermore, we guess that each vibrational level supports 10 hyperfine states that all
contribute equally to the bound-to-bound loss. We find4 K2 ∼ 1 × 10−13 cm3/s at B =
1007.60 G. For a density of 8.3 × 1013 cm−3 and thold = 16 ms we thus estimate a loss
of Nloss/Ninit ∼ 0.2. Given how coarsely the number and strengths of the lines were
estimated, the agreement with the experimentally observed loss of Nloss/Ninit ∼ 0.4 in
Fig. 6.8(b) is reasonable.

We tried to reduce the loss by trying out a variety of other light wavelengths. Unfortu-
nately, this was unsuccessful. We discuss two examples here. First, we tried a frequency
difference of +12 GHz relative to the previous data set, thus increasing the smallest de-
tuning to a 1g state by a factor of ∼ 5. We would expect this to reduce K2 by a factor of
∼ 25, but we observed no noticeable change of the loss in the experiment.

In a second example, we chose λz = 786.093 nm, which is near the other end of the
wavelength range that is useful for our experiment, see Sec. 6.1.3. The experimental
sequence was otherwise identical to Fig. 6.8, except that we used a 30 ms ramp up
time for the z lattice beam. Results are depicted in Fig. 6.9. For this wavelength, we
expect detunings of ∆L/(2π) ∼ −42 GHz and ∆L/(2π) ∼ +47 GHz from the two closest
vibrational levels of the 1g molecular potential. Unfortunately, the loss in Fig. 6.9(b) is
approximately as bad as in Fig. 6.8(b).

It is conceivable, at least in principle, that the 0+
u and 2g potentials are responsible for

the observed excess loss, but it would be a rather strange coincidence if all the wavelengths
we tried out would have happened to lie close to such excited states. The physical origin
of the observed loss is thus not quite clear. This problem might be circumvented by

3The loss cannot be attributed to photoassociation which is essentially independent of B for large
detuning, see Eqs. (5.4b) and (5.14b).

4In principle, fast two-body loss might compromise the tunability of Re(a), see Fig. 5.2. But according
to Eq. (5.9b) the value of K2 corresponds to Im(a)/abg ∼ −1 × 10−3 which has little effect on the
tunability of Re(a).
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Figure 6.9.: Attempt to reduce particle loss by choosing a wavelength λz that is much further
detuned from the closest bound-to-bound transition. (a) n↑(k = 0) as a function of Bhold. Same
behavior as in Fig. 6.8(a). (b) Again, the number of frozen particles stays constant (cyan star
for ←), whereas the number of mobile particles shows a disastrous decrease (green squares for
←).

replacing the mobile species by another chemical element, isotope, or internal species in
future experiments, but this is beyond the scope of the present thesis.
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7. Outlook

Interaction control of interatomic properties has a substantial impact in the field of ultra-
cold quantum gases. The experiments described in this thesis reveal important aspects
of both interacting ultracold atoms and molecules and offer valuable techniques that are
relevant for further experiments.

The preparation of a quantum state with exactly one molecule at each site of an optical
lattice [Vol06] might contribute to the creation of a quantum register with single polar
molecules on single lattice sites. With a long-range dipole-dipole interaction between the
polar molecules, such a register might bear great potential for applications in quantum
simulations and quantum information processing [DeM02, Lee05, And06, Gór02, Mic06,
Bar06]. Beside this, our quantum state of molecules serves as a good starting point
to transfer molecules into their internal ground state by applying a sequence of Raman
transitions. An absence of inelastic interactions would then allow to ramp down the
optical lattice and to create a BEC of molecules in the internal ground state [Jak02].

Our experiment on coherent oscillations between atom-pairs and molecules [Sya07]
demonstrates how atomic scattering properties can be inferred from a frequency mea-
surement. Since frequencies can be measured with high precision, this technique offers
prospects in high-precision measurements, e.g. in experiments searching for temporal
drifts of fundamental constants [Chi06]. Additionally, the production of a coherent atom-
molecule superposition state with controllable amplitude and phase opens up new possi-
bilities for quantum simulations [Ess03].

Our observation that an increased loss coefficient can slow down the actual loss from
the correlated many-body system of molecules [Sya08b] could be used to increase the
lifetime of other systems that suffer from loss by drastically increasing the loss coefficient,
e.g. using photoassociation or Feshbach resonances. The demonstration that dissipation
can be used to reach the strongly correlated regime may pave the way for the observation
of spin liquid behavior or topological effects [Sac99, Wen04].

The experimental progress towards localization of matter waves in a disorder potential
created by an impurity species can serve as a starting point for future experiments, where
the rich variety of new quantum phases can be explored [Fis89, Ros06b, Hor07].

Finally, the optical control of a magnetic Feshbach resonance presented in this thesis
[Bau09b, Bau09a] demonstrates how the great potential of Feshbach resonances can be
further exploited in future experiments. Light patterns created by holographic masks
could serve as a tool for changing the scattering length of ultracold atoms on very short
time and length scales. This could be used for a variety of applications, such as the
investigation of the bosonic analog of Andreev reflection at a normal-superfluid interface
[Zap09], the simulation of the physics of black holes [Gar00, Car08, Lah09], the controlled
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creation of solitons [RV05], studies of the collapse of a BEC in an unusual regime [Don06],
and the simulation of certain Hamiltonians in which the scattering length needs to be
different at different sites of an optical lattice [Abd08, Den08]. Moreover, in combination
with our technique to create a state with exactly two atoms per lattice site [Vol06], one
could associate molecules at every second lattice site, thus producing a quantum state
which resembles that of a supersolid [Isk09, Kei09]. Furthermore, if a spatially random
light intensity pattern is applied, the scattering length would vary randomly with position
which might give rise to new quantum phases of the atomic gas. A further example is to
shift one Feshbach resonance on top of another to explore the coupling between the two.
Another possible application for the manipulation of the scattering length with light exists
in gases consisting of a mixture of different species or spin states. With our technique one
could tune the various scattering lengths in such systems independently. Finally, with
our scheme it should be possible to change the interaction energy of a whole sample of
ultracold atoms inside a cavity [Bre07, Col07, Bre08] with a single photon.



A. ac-Stark Shift for an Alkali Atom in
a Magnetic Field

In this Appendix, we calculate the ac-Stark shift for an alkali atom caused by a light
field in the presence of a magnetic field. We assume that the ac-Stark shift is much
smaller than the energy splittings within the ground state manifold due to the hyperfine
interaction and/or the magnetic field. Hence, we first diagonalize the sum of the hyperfine
Hamiltonian and the magnetic field Hamiltonian in Sec. A.1. As a second step, the ac-
Stark shift of the light field is treated as a weak perturbation in Sec. A.2. Throughout
this Appendix, we consider an alkali atom in the ground state 2S1/2, where the ac-Stark
shift results from transitions to excited states 2P1/2 and 2P3/2.

A.1. An Atom with Hyperfine Structure in an External
Magnetic Field

In an alkali atom, the ground state is typically split into a manifold of substates charac-
terized by the quantum numbers F and mF , see Sec. 6.1.3. We assume that an external
magnetic field is applied along the z axis, ~B = B~ez. As B increases, the ground state
manifold undergoes a crossover from the Zeeman regime with good quantum numbers F ,
mF to the Paschen Back regime with good quantum numbers mJ , mI . We are particularly
interested in the intermediate regime, where none of these quantum numbers are good.

The Hamiltonian for an atom with hyperfine structure in an external magnetic field B
is [Ram56]

H =
a

~2
~J · ~I +

µB

~
B(gJJz + gIIz), (A.1)

where a is the hyperfine coupling constant, which is proportional to the energy splitting
of the two hyperfine ground states. µB is the Bohr magneton. gJ and gI are the Landé
factors of the valence electron and the nucleus1, respectively.

In the following, we calculate the eigenstates of this Hamiltonian. The magnetic field
interaction is diagonal in the basis |J,mJ , I,mI〉, whereas the hyperfine interaction is
diagonal in the basis |J, I, F,mF 〉. As mJ +mI = mF , only states |J,mJ , I,mI〉 with the
same value of mF are coupled by the hyperfine interaction. For values mF = ±(I + 1/2),
there exists only one state each. These so-called stretched states are therefore energy
eigenstates at all values of B. Hence, we restrict the following considerations to the

1For 87Rb, this sign convention yields a > 0 and gI < 0, see Tab. A.1. For other atoms, a and gI can
have either sign.
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nontrivial case |mF | < I + 1/2. For a given value of mF , we choose the basis {|mJ =
+1/2,mI = mF − 1/2〉, |mJ = −1/2,mI = mF + 1/2〉} for a matrix representation.

According to Ref. [Ram56], the Hamiltonian in this subspace for a given mF can be
written as

H

~ωHFS

= ϕ

(
1 0
0 1

)
+

1

2
(α+ χ)

(
1 0
0 −1

)
+

1

2

√
1− α2

(
0 1
1 0

)
, (A.2)

where we abbreviate the hyperfine splitting2 ~ωHFS = a
(
I + 1

2

)
and

α =
mF

I + 1
2

(A.3a)

χ = (gJ − gI)
µBB

~ωHFS

(A.3b)

ϕ = − 1

2(2I + 1)
+ gImF

µBB

~ωHFS

. (A.3c)

In order to diagonalize the two-level Hamiltonian in Eq. (A.2), we define an angle θ
with 0 ≤ θ ≤ π by

cos θ =
α+ χ√

1 + 2αχ+ χ2
. (A.4)

One can show that the energy eigenstates are

|g〉F=I+ 1
2

=

(
cos θ

2

sin θ
2

)
and |g〉F=I− 1

2
=

(
−sin θ

2

cos θ
2

)
, (A.5)

where the subscript F = I ± 1/2 indicates to which hyperfine quantum number the state
is adiabatically connected at B = 0. The energy eigenvalues are given by the Breit-Rabi
formula [Bre31, Ram56]

E± = ~ωHFS

(
ϕ± 1

2

√
1 + 2αχ+ χ2

)
. (A.6)

Our experiment is performed with 87Rb. The relevant parameters of this isotope are
listed in Tab. A.1.

A.2. Zeeman State Dependent ac-Stark Shift

If an alkali atom is illuminated with far-detuned light, a ground state |g〉 will experience
an ac-Stark shift [Pet02]

∆E =
∑

e

1

4~∆eg

∣∣∣〈e| ~d · ~E |g〉∣∣∣2 . (A.7)

2Note that ωHFS can be positive or negative.
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hyperfine splitting ωHFS : 2π · 6.834 682 610 904 29 (9) GHz [Biz99]
electron Landé-factor gJ : 2.002 331 12 (20) [Ari77]
nuclear Landé-factor gI : −0.000 995 141 49 (90) [Whi68]
nuclear spin I : 3/2 [Ari77]
Bohr magneton µB/h : 1.399 624 604 (35) MHz/G [Moh08]

Table A.1.: Parameters of the ground state of 87Rb.

Here, the electric field of the light has the form ~E = ~E cos(ωt), ~d is the electric dipole
moment, and ∆eg = ω − ωeg is the detuning from the atomic resonance ωeg. The sum
extends over all excited states |e〉.

It is convenient to introduce the spherical tensor components of any vector ~v [Edm63]

v
(1)
±1 =

1√
2

(∓vx − ivy), v
(1)
0 = vz. (A.8)

Hence, ~d · ~E = −d(1)
1 E

(1)
−1 − d

(1)
−1E

(1)
1 + d

(1)
0 E

(1)
0 . We assume that the light contains only

one spherical tensor component E
(1)
−q with q = −1, 0, or 1. These polarizations are called

σ−, π, and σ+, respectively.
We assume that the light field is weak enough not to induce considerable mixing between

the ground states and that the overall detuning from the excited states is much larger
than all hyperfine splittings. Then ∆eg = ∆J ′ depends only on J ′ ∈ {1/2, 3/2}. The
nuclear spin depends on the internal structure of the nucleus and is not changed by the
light field (I = I ′). Hence, Eq. (A.7) can be written as

∆E =
∑
J ′

|E(1)
−q |2

4~∆J ′

∑
m′

J ,m′
I

∣∣〈J ′,m′
J , I,m

′
I | d(1)

q |g〉
∣∣2 . (A.9)

Now we expand |g〉 in the |J,mJ , I,mI〉 basis and use that there is only one value each
for J and I, so that we do not have to sum over J, I. Hence,

∆E =
∑
J ′

|E(1)
−q |2

4~∆J ′

∑
m′

J ,m′
I

∣∣∣∣∣ ∑
mJ ,mI

〈J ′,m′
J , I,m

′
I | d(1)

q |J,mJ , I,mI〉 〈J,mJ , I,mI | g〉

∣∣∣∣∣
2

(A.10)

As we consider only electric dipole transitions, m′
I = mI . Moreover, the fact that d

(1)
q is

a spherical tensor operator implies m′
J = mJ + q. Hence

〈J ′,m′
J , I,m

′
I | d(1)

q |J,mJ , I,mI〉 = 〈J ′,m′
J | d(1)

q |J,mJ〉 δm′
J ,mJ+q δm′

I ,mI
. (A.11)

We use the Kronecker symbols to collapse the sums over mJ ,mI in Eq. (A.10). Sub-
sequently, we relabel the summation indices mJ = m′

J − q and m′
I = mI , and obtain

∆E =
∑
J ′

|E(1)
−q |2

4~∆J ′

∑
mJ ,mI

∣∣〈J ′,mJ + q| d(1)
q |J,mJ〉 〈J,mJ , I,mI | g〉

∣∣2 . (A.12)
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mF = −2 mF = −1 mF = 0 mF = +1 mF = +2

F = 2 −1 −0.099821 +0.381819 +0.725569 +1
F = 1 – +0.099821 −0.381819 −0.725569 –

Table A.2.: Values of β for the ground state manifold in 87Rb at B = 1007 G calculated from
Eqs. (A.3), (A.4), and (A.15).

The dipole matrix elements for the L = 0 ↔ L′ = 1 transitions with S = S ′ = 1/2 in
the |J,mJ〉 basis are given by [Met99, Rot59]

D1-line: 〈J ′ = 1/2,mJ + q| d(1)
q |J = 1/2,mJ〉 = dcyc (−1)3/2−mJ

√
1− 2mJq

3
(A.13a)

D2-line: 〈J ′ = 3/2,mJ + q| d(1)
q |J = 1/2,mJ〉 = dcyc

√
2 + 2mJq

3
. (A.13b)

where dcyc denotes the dipole matrix element on the cycling transition |F = mF =
I + 1/2〉 ↔ |F ′ = m′

F = I + 3/2〉. Using Eqs. (A.5), (A.12), and (A.13), we obtain the
ac-Stark shift

∆E = ∆Ecyc
1/2

1− βq
3

+ ∆Ecyc
3/2

2 + βq

3
(A.14)

with ∆Ecyc
J ′ = |E(1)

−q dcyc|2/(4~∆J ′) and

β = ±cos θ for states adiabatically connected to F = I ± 1

2
(A.15)

for |mF | < I + 1/2 and β = ±1 for mF = ±(I + 1/2). For B = 0, Eq. (A.4) and (A.15)
fields β = ±α so that Eq. (A.14) reproduces Eq. (6.2). Our experiment is performed with
87Rb at B ∼ 1007 G. The resulting values for β at B = 1007 G are given in Tab. A.2.
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Feshbach resonance with laser light. Nature physics 5, 339, 2009.

[Bil08] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément,
L. Sanchez-Palencia, P. Bouyer, and A. Aspect. Direct observation of Anderson
localization of matter waves in a controlled disorder. Nature 453, 891, 2008.

[Biz99] S. Bize, Y. Sortais, M. S. Santos, C. Mandache, A. Clairon, and C. Salomon.
High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an
atomic fountain. Europhys. Lett. 45, 558, 1999.

[Blo05] I. Bloch. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23, 2005.

[Blo08] I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases.
Rev. Mod. Phys. 80, 885, 2008.

[Boh97] J. L. Bohn and P. S. Julienne. Prospects for influencing scattering lengths with
far-off-resonant light. Phys. Rev. A 56, 1486, 1997.

[Bra95] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-
Einstein condensation in an atomic gas with attractive interactions. Phys. Rev.
Lett. 75, 1687, 1995. Erratum Phys. Rev. Lett. 79, 1170, 1997.

[Bre31] G. Breit and I. I. Rabi. Measurement of nuclear spin. Phys. Rev. 38, 2082,
1931.

[Bre36] G. Breit and E. Wigner. Capture of slow neutrons. Phys. Rev. 49, 519, 1936.

[Bre07] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger.
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Proc., volume 869, pages 278–283. AIP, 2006.
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[GR09] J. J. Garćıa-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M. Lettner, G. Rempe,
and J. I. Cirac. Dissipation-induced hard-core boson gas in an optical lattice.
New J. Phys. 11, 013053, 2009.

[Gre02] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Quantum
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J. I. Cirac, G. Rempe, and S. Dürr. Strong dissipation inhibits losses and
induces correlations in cold molecular gases. Science 320, 1329, 2008.

[Tay72] J. R. Taylor. Scattering Theory . Wiley, New York, 1972.

[Tha05] G. Thalhammer, M. Theis, K. Winkler, R. Grimm, and J. Hecker-Denschlag.
Inducing an optical Feshbach resonance via stimulated Raman coupling. Phys.
Rev. A 71, 033403, 2005.

[Tha06] G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm, and J. Hecker-
Denschlag. Long-lived Feshbach molecules in a three-dimensional optical lattice.
Phys. Rev. Lett. 96, 050402, 2006.



98 Bibliography

[The04] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and
J. Hecker-Denschlag. Tuning the scattering length with an optically induced
Feshbach resonance. Phys. Rev. Lett. 93, 123001, 2004.

[Tho05a] S. T. Thompson, E. Hodby, and C. E. Wieman. Spontaneous dissociation of
85Rb Feshbach molecules. Phys. Rev. Lett. 94, 020401, 2005.

[Tho05b] S. T. Thompson, E. Hodby, and C. E. Wieman. Ultracold molecule production
via a resonant oscillating magnetic field. Phys. Rev. Lett. 95, 190404, 2005.

[Tie92] E. Tiesinga, A. J. Moerdijk, B. J. Verhaar, and H. T. C. Stoof. Conditions for
Bose-Einstein condensation in magnetically trapped atomic cesium. Phys. Rev.
A 46, R1167, 1992.

[Tie93] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof. Threshold and resonance
phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114, 1993.

[Tig99] B. V. Tiggelen. Wave Diffusion in Complex Media 1998 . Kluwer, Dordrecht,
1999.

[Tim99] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman. Feshbach reso-
nances in atomic Bose-Einstein condensates. Phys. Rep. 315, 199, 1999.

[Ton36] L. Tonks. The complete equation of state of one, two and three-dimensional
gases of hard elastic spheres. Phys. Rev. 50, 955, 1936.

[Tsa08] C.-C. Tsai and D. Heinzen. Personal communication, 2008.

[vA98] F. A. van Abeelen, D. J. Heinzen, and B. J. Verhaar. Photoassociation as a
probe of Feshbach resonances in cold-atom scattering. Phys. Rev. A 57, R4102,
1998.

[vA99a] F. A. van Abeelen. Interaction processes in cold gases of alkali atoms . Ph.D.
thesis, Technical University Eindhoven, 1999.

[vA99b] F. A. van Abeelen and B. J. Verhaar. Time-dependent Feshbach resonance
scattering and anomalous decay of a Na Bose-Einstein condensate. Phys. Rev.
Lett. 83, 1550, 1999.

[Ver94] B. J. Verhaar. Collisions of ultracold atoms: Theory and examples. Laser Phys.
4, 1050, 1994.

[vK02] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J.
Verhaar. Interisotope determination of ultracold rubidium interactions from
three high-precision experiments. Phys. Rev. Lett. 88, 93201, 2002.
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überaus würdigen Neuzugang erhalten, der mit seinem Einsatz sicherlich zu weiteren inter-
essanten Arbeiten beitragen wird. Sein auf einen Frequenzkamm stabilisierter

”
Karlson“

katapultierte einige unserer Messungen in Sphären hochpräziser Laserspektroskopie.
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