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Zusammenfassung

Die interzelluläre Kommunikation spielt eine zentrale Rolle bei der Optimierung der
Aktivität verschiedener, zum Beispiel pathogener, Bakterien. Im Rahmen dieser Arbeit
entwickeln und untersuchen wir Modelle, die das Quorum Sensing System, einen gängigen
Mechanismus der Zell-Zell-Kommunikation, beschreiben. Zunächst betrachten wir ein
intrazelluläres regulatorisches Netzwerk um die Signal-Integration zu untersuchen. An-
schließend werden Modelle für Populationsdynamik entwickelt, wobei wir zum einen ein
stochastisches Modell für kleine, gleichmäßig verteilte Populationen, und zum anderen
ein deterministisches Modell für räumlich angeordnete Populationen betrachten.

Abstract

Intercellular communication is a central optimization strategy for activities of, for ex-
ample, root colonizing bacteria or pathogenic bacteria. In this PhD thesis we develop
and analyze different models for the Quorum Sensing system, a common mechanism
for cell-cell communication. First, we build up a model for a intracellular regulatory
network to understand the information integration. Subsequently, we investigate the
mechanism of Quorum Sensing on the population level. Therefore, on the one hand we
state a model for small, homogeneously structured populations, based on a stochastic ap-
proach, and on the other hand a deterministic model for spatially structured populations
is considered.

vii





Acknowledgement

It is my pleasure to acknowledge the support I got from so many people during the last
years. Even though I cannot mention all of them here, I want them to know that I am
very thankful for all the help and encouragement I received.

This thesis was carried out at the Helmholtz Zentrum München - German Research
Center for Environmental Health, Neuherberg. A special thank goes to Prof. Dr. Rupert
Lasser, who gave me the possibility to work at the Institute of Biomathematics and
Biometry.

I wish to express my deep gratitude to Prof. Dr. Johannes Müller for the kind intro-
duction into the subject, for proposing this research topic, and for many interesting and
helpful discussions.

I want to thank Prof. Dr. Hannes Uecker, Universität Oldenburg, and Dr. Robert Schlicht
for the collaboration. I am also much obliged to Prof. Dr. Kirsten Jung and Dr. Nina
Stambrau, LMU München, for providing the biological data.

Moreover, I am grateful to my colleagues at the Institute of Biomathematics and Biom-
etry for their support and for the enjoyable company during the last years. Among
many others, I want to thank Burkhard Hense, Georg Berschneider, Kristine Ey, Moritz
Simon, and Wolfgang Castell.

Last but not least, I am indebted to my parents for their understanding, patience and
encouragement when it was most required and to Stefan for his patience and support.

ix





Contents

1. Introduction 1
1.1. Quorum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Mathematical Modeling of Quorum Sensing . . . . . . . . . . . . . . . . . 3
1.3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Information Integration by Vibrio harveyi 7
2.1. Biological Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Model for one sensor kinase . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Combination of the two pathways without further interaction . . . . . . . 16
2.4. Additional component: conformational change of LuxU . . . . . . . . . . 22

3. Communication in Small Bacterial Population 26
3.1. Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1. Dynamics of One Cell . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2. Mathematical Model for the Complete System . . . . . . . . . . . 35

3.2. Formal Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1. Expansion of the Transport Equation . . . . . . . . . . . . . . . . 43
3.2.2. Hyperbolic Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3. Parabolic Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3. The Parabolic Limit Equation . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1. Scaling of the Limit Equation . . . . . . . . . . . . . . . . . . . . . 54
3.3.2. Stationary Solution and Asymptotic Behavior . . . . . . . . . . . . 58

4. Approximating the Dynamics of Active Cells in a Diffusive Medium 68
4.1. Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2. Approximative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A. Appendix to Chapter 2 79
A.1. Biological Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2. Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B. Appendix to Chapter 3 82
B.1. Transition Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.2. Parameter and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 96

xi





1. Introduction

Cells can be seen as highly sophisticated entities that process and respond on environ-
mental stimuli. Only if a cell has some information about nutrients, temperature, flow,
or more refined parameters like crowdedness and the presence of allies or enemies, it is
possible for the cell to act successfully in a heterogeneous and complex ecosystem. One
method cells utilize to interact with each other is the so-called Quorum Sensing.

1.1. Quorum Sensing

Quorum Sensing is a cell-cell communication system based on small diffusible signaling
molecules. An increasing number of bacteria is known to use the Quorum Sensing
system to coordinate gene expression patterns in situations where single cells cannot
act successfully on their own. Examples are bioluminescence, formation of biofilm or
secretion of antibiotics respectively virulence factors [6, 9, 53].

The mechanism of Quorum Sensing enables bacteria to coordinate their behavior. Since
the environmental conditions can change, the bacteria need to respond to new situations
in order to survive. These responses include adaptation to availability of nutrients,
defence against other microorganisms which may compete with the bacteria for the
same nutrients, and the avoidance of toxic compounds that are potentially dangerous
for the bacteria. It is also very important for pathogenic bacteria during infection of a
host to coordinate their virulence, in order to escape the immune response of the host,
so that they are able to establish a successful infection.
The regulation by Quorum Sensing was found in Gram-negative as well as Gram-positive
bacteria [4]. Common classes of signaling molecules are oligopeptides in Gram-positive
bacteria, N-Acyl Homoserine Lactones (AHL) in Gram-negative bacteria and a family
of autoinducers known as AI-2 in both Gram-negative and Gram-positive bacteria [31].
Different bacterial species use different signaling molecules to communicate. In many
cases a single bacterial species can have more than one Quorum Sensing system and
therefore may use more than one kind of signaling molecules [33]. The bacteria may
respond to each molecule in a differing or in an interacting manner. In this sense the
signaling molecules can be thought of as words within a language, each having a different
meaning.

Quorum Sensing is based on the continuous production of usually small amounts of
diffusible signaling molecules, also called autoinducers, which are released into the en-
vironment. Moreover the cells have the ability to sense the concentration of the signal-
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1. Introduction

ing molecules in the surrounding environment [8, 37, 53]. The extracellular signaling
molecule concentration therefore depends on the cell density, see Figure 1.1.

Figure 1.1.: Dependence of the extracellular signaling molecule concentration on the cell
density.

If the extracellular concentration exceeds a certain threshold, which correspond to a
critical cell density (quorum), the cell initiates a cellular response by gene transcription.
In most bacterial taxa this response also includes an increased production of the signaling
molecules, which results in a rapid increase of the signaling molecule concentration in
the surrounding (positive feedback).

Quorum Sensing was described for the first time about 40 years ago in a bioluminescent
bacterium called Vibrio fischeri [13, 38]. Due to the historical fact, Vibrio fischeri
presents the best investigated Quorum Sensing system, so that it can be regarded as
model organism for the understanding of Quorum Sensing regulation.
As marine bacteria, Vibrio fischeri exist naturally either in a free-living planktonic state
or as a symbiont of certain luminescent fishes or squids, where they colonize in specialized
light organs. Accumulated in the light organs, the bacteria luminesce as a result of
Quorum Sensing. The regulation is based on a member of the AHL family. It turns out
that the underlying gene regulation network that implements Quorum Sensing is quite
similar across different bacteria taxa. As an example of a Quorum Sensing system, we
regard the molecular mechanism of the Lux system in Vibrio fischeri (Figure 1.2).

In Vibrio fischeri the signaling molecule, AHL, is synthesized by the protein LuxI and
sensed by the receptor protein LuxR. At low cell densities, AHL is produced by the
bacteria at a low constitutive level. The AHL diffuses out of the bacterial cells and into
the surrounding environment and it can diffuse back into the cells. As the cell density
increases, AHL accumulates in the surrounding of the bacteria. Within the cell, AHL is
able to interact with the LuxR receptor protein. The LuxR/AHL complexes polymerize
to higher clusters and are then able to act as a transcription factor. That means they
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1. Introduction

Figure 1.2.: Scheme of the regulatory Lux Quorum Sensing pathway in Vibrio fischeri

bind to a region of the DNA called ”lux box”, causing the expression of the luminescence
genes and additionally LuxI, resulting in a high production of AHL. Thus the regulatory
pathway contains a positive feedback.

Usually, Vibrio fischeri exist at low level densities when free-living and at high cell
densities when colonized in the light organs. Therefore Quorum Sensing explains why
the bacteria are dark when free-living and luminesce in the light organ.

However, in the literature the mechanism of producing, releasing and sensing signaling
molecules is also interpreted as diffusion sensing [42], where the extracellular concen-
tration is determined by the diffusible area around a cell. In this case the critical
concentration threshold is exceeded if the diffusible area is sufficiently restricted. In
[19] the discussion about quorum or diffusion sensing was united in the more general
concept called efficiency sensing. In this concept it makes no difference for the cell if the
signaling molecule concentration is high either because of a high cell density or due to
limited space. The cell only needs to know that any released substance will accumulate
in the exterior, no matter for which reason.

1.2. Mathematical Modeling of Quorum Sensing

Mathematical models for the Quorum Sensing system have only recently been developed.
Primarily in the last few years, cell-cell communication has received much attention in
the mathematical modeling community. It basically started with nearly simultaneous
publications from three different groups, namely James et al. [23], Dockery and Keener
[10] and Ward et al. [51].
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1. Introduction

In the literature one can find two different aspects in modeling the Quorum Sensing
system. On the one hand the molecular mechanism of Quorum Sensing is investigated
and modeled, on the other hand population dynamical models of bacteria using the
Quorums sensing system are developed. The population-based approach can be distin-
guished between spatially homogeneous and spatially structured models. In general, the
mathematical modeling is mainly based on either deterministic or stochastic models.

At the molecular level the Quorum Sensing system was modeled in single cells using
the law of mass action. These models consist of a system of ordinary differential equa-
tions. For example, in [10] the authors focused on the specific system of Pseudomonas
aeruginosa and in [23] the molecular Quorum Sensing mechanism in Vibrio fischeri was
modeled. However, as mentioned above, the mathematical principles are quite similar in
most models for Quorum Sensing. The mathematical models of the intracellular path-
way reveals bistable behavior as a result of the positive feedback based on the increased
production of the autoinducer itself [48]. It is shown that the communication works be-
cause of the biochemical switch between two stable steady state solutions, one with low
levels of autoinducer and one with high levels of autoinducer. This switch is hysteretic,
so that the signaling molecule production switches on and off at different concentrations
of the extracellular autoinducer concentration.

The first deterministic population-based model, describing bacterial population growth
and Quorum Sensing, was stated in Ward et al [51]. There are several models that assume
large homogeneously mixed populations [2, 16, 51], mainly in investigation of biofilm
growth. They always consist of a system of ordinary differential equations. Another way
to model the dynamics of large homogeneous populations is given in terms of reaction
diffusion equations [1, 7]. The population-based models reveals bistable behavior that
depends on the population density. Hence, again the models predict the typical hysteretic
behavior that is characteristic for the Quorum Sensing system. It turns out that the
population switches from a principally down-regulated to an up-regulated population
and that there exist bifurcations between the respective steady state solutions.
Improved biological experiments gave the possibility to obtain information about the
state and location of single cells within a population. To cope with this new information,
spatial structured models for the cell-cell communication were developed [34], described
by partial differential equations.

Since the biological measurements on the meantime deal with smallest entities like single
cells or even single molecules, the mathematical modeling is forced to acknowledge dis-
creteness and stochasticity. Therefore stochastic models for the Quorum Sensing system
have been developed [15, 28], concerning intra- and extracellular noise. For instance,
in [28] a stochastic model for a single cell is stated, where a system of first-order par-
tial differential equations describes the probability density function for the cell to be in
down- or up-regulated state. Goryachev et al. [15] presented a population model where
the intracellular model is incorporated into an agent-based stochastic model.
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1. Introduction

1.3. Overview

In this PhD thesis we derive and study models for the communication system of cells. To
this end, we focus on different levels of the Quorum Sensing system, starting with a bio-
chemical intracellular pathway, next considering a stochastic model for small population
sizes and finally describing a deterministic model suitable for large populations.

In Chapter 2 we consider the biochemical information integration pathway in the marine
bacterium Vibrio harveyi. Vibrio harveyi employs different parallel, seemingly redun-
dant, Quorum Sensing systems which govern the same cellular response. The aim is to
understand how cells integrate different information channels into one decision process.
We first determine a model for one Quorum Sensing system and show that this model
meets the experimental data quite nicely. Furthermore it turns out that the straight
combination of two systems does not yield an adequate description of the data for the
complete system. In contrast to the experimental findings, where the different autoin-
ducer behave in a synergistic manner, the combined model behaves in a non-synergistic
manner. Both the experimental and the theoretical results indicate that an additional
mechanism is essential in this pathway.

The goal of the third chapter is to develop and analyze a stochastic model for bacterial
populations of small and medium size. The question arises if the communication is still
effective or if the intracellular noise destroys the possibility of the cells in the population
to understand each other. An example for this setting are micro-colonies on roots of
plants.
In the case of small population sizes we may assume that the number of cells within the
population is small, whereas the number of signaling molecules is large in comparison.
Based on the Lux-system of Quorum Sensing in Vibrio fischeri we develop a stochastic
model where the population is associated with a probability density function that de-
pends on the number of activated cells within the population and the number of signaling
molecules at a given time. This approach yields a velocity jump process. To determine
the asymptotic behavior of the population, we utilize the idea that the processes gov-
erning the population dynamics respectively the production of signaling molecules live
on different time scales. However, the analysis allows to derive a closed equation for the
marginal distribution of the signaling molecule density only.
During the analysis of the marginal distribution it turns out that even small populations
act in a synchronized way. The bistability found in deterministic models now translates
into bimodality of the AHL density. When analyzing the long term behavior of small
populations, we get an idea of the implications of stochastic effects and we see that
for large populations the long time behavior of the system returns to the behavior of
corresponding deterministic models. Furthermore, the results suggest that stochasticity
in the system may be used as a sophisticated mechanism to filter stochasticity in the
signal.

In the fourth chapter we study a dynamical population model that is based on single cell
models, where the cells are spatially structured. In order to understand the mechanism
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1. Introduction

of Quorum Sensing in a better way, experiments on single cell level are performed, where
information of the state and location of single cells can be obtained. Classical spatially
structured population models usually describe cell densities and do not consider the state
of single cells.
In Müller et. al. [34] another approach was chosen, where the single cells are modeled as
extended objects in the three dimensional space with a spatially homogeneous interior,
and the cells communicate with the exterior by a spatially extended surface. The pro-
duction of signaling molecules within each cell is formulated as an ordinary differential
equation, while dispersion and absorption of the signaling molecules in the exterior are
described by a linear partial differential equation. Renormalization of the parameters
and shrinking the cell radius to zero, the authors found an approximation theorem for
the stationary case, which leads to a homogeneous equation for the signaling molecules.
We take up the findings of [34] and present a solution to the following problem: how
to handle individual-based models of cell communication in non-equilibrium situations?
Therefore, we first investigate the case of a single cell thoroughly, present an approxima-
tive model and an approximation theorem that shows that for long times the solutions
of original and approximative model are close to each other. Eventually, we consider the
interaction of several cells. The resulting approximative model assumes the form of a
delay equation, where the delay represents the time needed for a molecule to bridge the
space between two cells by diffusive processes.

6



2. Information Integration by Vibrio harveyi

In this chapter we investigate a new aspect of the internal information processing of
the Quorum sensing system in Vibrio harveyi. The question is how do cells integrate
different information channels into one decision process. Boolean algebra shows that
combinations of inverter and AND gate are able to realize any logical function. It is
thus intriguing to study both aspects in biochemical pathways. As in literature the
inverter is well studied [36], we focus in the present work on the AND gate, which is
less frequently investigated. To be more precise: how does Vibrio harveyi build the
biochemical equivalent of an AND gate?

Experiments showed that in Vibrio harveyi multiple signals are integrated in the au-
toinducer signalling pathway in a synergistic manner. I.e. each signal, even at high
concentration, evokes only a limited effect, whereas only the concurrent presence of
all signals results in the full response, which is substantially stronger than the sum of
each [33, 45]. This behavior can be interpreted as an AND gate.

However, we do not claim that a cell can be understood as a Boolean network - this
simplification is useful in some settings, but the biochemistry is much more sophisticated
and built on continuous variables. In comparison with a Boolean logic, a continuous
approach allows to process more information with very few elementary circuits. Also in
this study we will see that signals are not processed in a qualitative but in a quantitative
way. To understand the mechanism and full functionality of the biochemical circuit it is
essential to account for this fact.

The picture developed in literature up to now focussed on phosphotransfer as the central
way to integrate the information of the corresponding signals. The analysis of a rather
general model formulating this picture reveals that the experimentally observed data
cannot be explained in this way.

2.1. Biological Pathway

The marine bacterium Vibrio harveyi, a model organism for autoinducer analysis, em-
ploys three autoinducers, HAI-1, a N-acyl-homoserine lactone, AI-2, a furanosyl-borate-
diesther and CAI-1, a (S)-3-hydroxytridecan-4-one. These autoinducers bind to specific,
membrane bound receptors, LuxN, LuxP/Q and CqsS, which convey the information
via LuxU, LuxO, and five small RNAs to the transcription regulator LuxR [47, 52].
Note that the AI-2 receptor is composed of two proteins, LuxQ and LuxP. For simplic-
ity we will term it just LuxQ. The relative effect of the signal input on LuxR differs
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2. Information Integration by Vibrio harveyi

and varies dependent on the environmental conditions (HAI-1>AI-2>CAI-1 in liquid
medium) [17]. The interesting fact is that the information of all three autoinducers is
integrated in LuxU.

Figure 2.1.: Phosphorylation/dephosphorylation cascade in Vibrio harveyi.

The picture of the pathway developed so far is as follows: between the receptors and
LuxO, the information is transduced by a phosphorylation/dephosphorylation cascade
(Figure 2.1). The receptors act as two-component sensor kinases, but additionally carry
phosphatase properties. In the absence of its cognate autoinducer, kinase activity of
each receptor strongly dominates. After autophosporylation of a histidine residue (H),
the phosphate is transferred to an aspartate (D) in the sensor kinase. Binding of cognate
autoinducers decreases the kinase/phosphatase activity relation of the sensor kinases, at
least for LuxN and LuxQ by decreasing the kinase activity. This results in a lower degree
of phosphorylation for LuxU and LuxO. The strength of the decrease depends on the
sensor kinase [46, 45].

The function of the three parallel, seemingly redundant autoinducer systems for Vibrio
harveyi is not well understood. Several hypothesis have been suggested, e.g. use for
coincidence detection [33] or as a gauge for the genetic relatedness in the vicinity of the
receptor cell [52].

Beside the general aspect of understanding biological information processing, this spe-
cific structure of autoinducer information integration is of interest as it has been found
similarly in related pathogens, e.g. Vibrio cholerae [18, 32]. Crucial for an interpreta-
tion is the qualitative and quantitative analysis of information processing by the sensor
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2. Information Integration by Vibrio harveyi

kinases and the integration by LuxU. Therefore, experimental studies for the HAI-1 and
AI-2 signalling pathway down to LuxU have been conducted [45, 46]. Generally, the
signal integration is assumed to be able to act as a kind of AND gate [33, 45], although
it apparently does not adequately describe the response on gene expression level for all
regulated genes [52].

The introduced picture assumes that the sensor kinases independently process the dif-
ferent input channels (autoinducers), and translate the autoinducer density in a normed
signal - a certain phosphorylation rate towards LuxU. Consequently, LuxU collects the
different signals and integrates them in a rather additive way. From a theoretical point
of view, it is intriguing that a system with only a low degree of interaction between the
channels should be able to build a function that is as nonlinear as an AND gate.

One main aspect of this chapter is to clarify the validity of this picture. This will be
done by developing a mathematical model, based on the biological pathway as depicted
in Figure 2.1. The amount of phosphorylated LuxU is responsible for the information
integration respectively for the decision process. We thus concentrate on the description
of the density of phosphorylated LuxU in dependence on the densities of the autoinducers
HAI-1 and AI-2. The model investigates the single branches of the processing and, in a
second step, a combination of both branches. The predictions of the model are compared
with experimental data. Finally, we will show that contradictions between the model
prediction and experimental data require the assumption of an additional biological
process, for which we make a proposal.

2.2. Model for one sensor kinase

We start off with the investigation of the system that processes HAI-1 in absence of
the system that processes AI-2 and vice versa. The biochemical structure of these two
systems is quite similar. Thus, we develop a general model where we use SensK to
indicate either the sensor kinase LuxQ or the sensor kinase LuxN. The autoincucers
HAI-1, respectively AI-2, are denoted by AI. The reactions are sketched in Figure 2.2
and the names used are explained in Table 2.1.

Basically, there are three processes

(1) the sensor kinase exchanges phosphor with ATP/ADP,

(2) it exchanges phosphor with LuxU/LuxUP, and

(3) the autoinducer may associate/dissociate with the sensor kinase.

To understand the reaction scheme completely, it is necessary to remark that different
amino acid residues within the sensor kinase are responsible for the phosphotransfer
between the sensor kinase and ATP/ADP resp. LuxU/LuxUP. A histidine residue is
responsible for the phosphor exchange with ATP/ADP, while an aspartate residue moves
phosphor from LuxUP and to LuxU. I.e., within the sensor kinases, phosphor is moved
between H and D.

9



2. Information Integration by Vibrio harveyi
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Figure 2.2.: Reaction scheme of one sensor kinase only.

Name Meaning Model

SensK Sensor kinase (LuxQ or LuxN) section 2.2
SensKPH Sensor kinase with phosphorylated histidine section 2.2
SensKPD Sensor kinase with phosphorylated aspartate section 2.2
SensKAi Sensor kinase with autoinducer section 2.2
SensKAiPH Sensor kinase with autoinducer and section 2.2

phosphorylated histidine
SensKAiPD Sensor kinase with autoinducer and section 2.2

phosphorylated aspartate
Ai Autoinducer (either AI-2 or HAI-1) section 2.2
LuxU LuxU all models
LuxU∗ LuxU in second (hypothetical) conformation section 2.4
LuxUP Phosphorylated LuxU all models
LuxU∗P Phosphorylated LuxU in second conformation section 2.4
ATP ATP all models
ADP ADP all models

Table 2.1.: Names of all state variables in the models.
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2. Information Integration by Vibrio harveyi

2.2.1. Reactions

The chemical reactions for one sensor kinase read

SensK +ATP 
 SensKPH +ADP rate “→ ”k1, rate “← ”k−1,

SensKAi+ATP 
 SensKAiPH +ADP rate “→ ”kai1, rate “← ”kai−1,

SensKPH 
 SensKPD rate “→ ”k2, rate “← ”k−2,

SensKAiPH 
 SensKAiPD rate “→ ”k2, rate “← ”k−2,

SensKPD + LuxU 
 SensK + LuxUP rate “→ ”k3, rate “← ”k−3,

SensKAiPD + LuxU 
 SensKAi+ LuxUP rate “→ ”kai3, rate “← ”kai−3

SensK +Ai
 SensKAi rate “→ ”kai4, rate “← ”kai−4,

SensKPH +Ai
 SensKAiPH rate “→ ”kai4, rate “← ”kai−4,

SensKPD +Ai
 SensKAiPD rate “→ ”kai4, rate “← ”kai−4.

It is possible to use data about phosphorylation of LuxU, dephosphorylation of LuxUP
and the initial rates of phosphorylation in dependence on the amount of autoinducer to
determine most of the rates, see Appendix A.2. The complete identifiability of all rates
is not given, some rate constants can be only determined in combinations.

2.2.2. Time scales for one sensor kinase

To better understand the underlying mechanism, and to reduce the rather complex
reaction scheme above, we use singular perturbation theory and develop a small working
model. This small model will be important when we re-consider this model in the context
of interacting sensor kinases.

We describe the assumption and the process used to extract the toy model verbally
at this point. The first assumption is that binding and dissociation of autoinducers
are fast since we do not see hints in the data that the autoinducers bind slowly [46].
Furthermore, Figure 2.3 (e) and (f) show that the phosphorylation rate still declines
in the amount of autoinducer, even if we consider densities of autoinducer that are ten
fold and more in comparison with the sensor kinase. If the autoinducers bind fast but
dissociate slow, the sensor kinases should be almost completely bound to autoinducer at
much less autoinducer concentrations, and the phosphorylation degree of LuxU would
not change any more. Thus, the sensor kinases bind and dissociate quite fast. This is
the first time scale we will work with.

Our parameter estimation done in Appendix A.2 reveals that the phosphotransfer within
the sensor kinases between D and H is slower than the binding of the autoinducers, but
much faster than the phosphotransfer between sensor kinases and LuxU respectively
sensor kinases and ATP/ADP. This is the second time scale we use.
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Figure 2.3.: Simulation and experimental data [45, 46] for the kinase and phosphatase
activities of LuxN and LuxQ, represented by the turnover of LuxUP. Closed
circles always indicate the experimental data, lines resp. open circles the
results of simulation. For information about the experimental procedures
see Appendix A.1.
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2. Information Integration by Vibrio harveyi

The third assumption we use is that the autoinducers only affect the phosphotransfer
from ATP to the sensor kinases, i.e. the kinase activity of the sensor kinases. This
assumption is supported by the data presented in [45, 46]. These data show that the
dephosphorylation of LuxUP, i.e. the phosphatase activity, is not affected by the autoin-
ducers.

The last assumption is clearly met by the experiments as well as in the cell: the amount
of sensor kinases is low in comparison with the amount of LuxU and ATP.

We show that these time scale arguments and a reasoning similar to that used to derive
the Michaelis-Menten kinetics yield a considerable reduction of the model.

Starting point are two time scales, corresponding to the first and second assumption,

SensK +ATP 
 SensKPH +ADP rate “→ ”k1, rate “← ”k−1,

SensKAi+ATP 
 SensKAiPH +ADP rate “→ ”kai1, rate “← ”kai−1,

SensKPH 
 SensKPD rate “→ ”
k2

ε2
, rate “← ”

k−2

ε2
,

SensKAiPH 
 SensKAiPD rate “→ ”
k2

ε2
, rate “← ”

k−2

ε2
,

SensKPD + LuxU 
 SensK + LuxUP rate “→ ”k3, rate “← ”k−3,

SensKAiPD + LuxU 
 SensKAi+ LuxUP rate “→ ”kai3, rate “← ”kai−3

SensK +Ai
 SensKAi rate “→ ”
kai4
ε1

, rate “← ”
kai−4

ε1
,

SensKPH +Ai
 SensKAiPH rate “→ ”
kai4
ε1

, rate “← ”
kai−4

ε1
,

SensKPD +Ai
 SensKAiPD rate “→ ”
kai4
ε1

, rate “← ”
kai−4

ε1
,

where ε1 � ε2 � 1. Thus, the last three reactions can be assumed to be in quasi-steady-
state. For SensK and SensKAi we then obtain

SensK Ai kai4 = kai−4 SensKAi.

Defining SensK0 = SensK + SensKAi, where SensK0 ≡ const, we obtain

SensK = τ SensK0, SensKAi = (1− τ) SensK0, (2.1)

with τ := âi
(âi+Ai)

, and âi := kai−4

kai4
. The parameter âi denotes the amount of autoinducer

for half-activation.

Similarly, with

SensKPH0 = SensKPH + SensKAiPH,

SensKPD0 = SensKPD + SensKAiPD,

13



2. Information Integration by Vibrio harveyi

where SensKPH0 and SensKPD0 are assumed to be constant and τ defined as before,
we obtain

SensKPH = τ SensKPH0, SensKAiPH = (1− τ) SensKPH0,

SensKPD = τ SensKPD0, SensKAiPD = (1− τ) SensKPD0.

Now we introduce the second time scale, and thus also the amount of SensKPD0 and
SensKPH0 are in quasi-equilibrium. Let

SensKP0 = SensKPH0 + SensKPD0

denote the constant total amount of phosphorylated sensor kinase. Then we obtain

SensKPH = τ ρ SensKP0, SensKAiPH = (1− τ) ρSensKP0, (2.2)

SensKPD = τ (1− ρ)SensKP0, SensKAiPD = (1− τ) (1− ρ)SensKP0, (2.3)

where the parameter ρ := k−2

(k2+k−2) ∈ (0, 1) indicates the ratio of the kinase density with
phosphotransfer at H resp. D.

At this point, we rewrite the equations governing the slow dynamics of ATP/ADP and
LuxU/LuxUP,

d

dt
ATP = −k1SensK ATP + k−1SensKPH ADP − kai1SensKAi ATP

+kai−1SensKAiPH ADP,

d

dt
LuxUP = −k−3SensK LuxUP + k3SensKPD LuxU − kai−3SensKAi LuxUP

+kai3SensKAiPD LuxU,

ADP = ATP0 −ATP,
LuxU = LuxU0 − LuxUP,

where LuxU0 denotes the amount of LuxU and LuxUP, and ATP0 denotes the total
amount of ATP and ADP.

The last assumption is that only the rate k1 is affected by the autoinducer, i.e. k1 � kai1,
but k−1 = kai−1, and k±3 = kai±3. Furthermore, we are able to rewrite the amounts
of the different states of the sensor kinase in terms of SensK0 and SensKP0 only.
Substituting (2.1), (2.2) and (2.3), we obtain

d

dt
ATP = −(k1τ + kai1(1− τ))SensK0 ATP + k−1ρSensKP0 (ATP0 −ATP ), (2.4)

d

dt
LuxUP = −k−3SensK0 LuxUP + k3(1− ρ)SensKP0 (LuxU0 − LuxUP ). (2.5)

These two equations, (2.4), (2.5), are sufficient to describe the time course of the six
substances LuxU, LuxUP, ATP, ADP, SensK0 and SensKP0, as we have four con-
servation laws, i.e. LuxU0, ATP0, S0 = SensK0 + SensKP0, and P0 are constant.

14



2. Information Integration by Vibrio harveyi

To be complete, we give the equation for SensKP0. As the amount of phosphor in the
system is constant, we know

LuxUP + SensKP0 +ATP = P0. (2.6)

Thus,

d

dt
SensKP0 =(k1τ + kai1(1− τ))SensK0 ATP − k−1ρSensKP0 (ATP0 −ATP )

+ k−3SensK0 LuxUP − k3(1− ρ)SensKP0 (LuxU0 − LuxUP ). (2.7)

Due to the time scale arguments up to now it turns out that the complete system can
be replaced by one sensor kinase accepting phosphor from and transferring to ATP and
LuxU, where only one rate is affected by the presence of the autoinducer.

In the last step, we use the fact that the amount of sensor kinase is much less than that
of LuxU and ATP, i.e.

SensK0 = ε s, SensKP0 = ε sp, S0 = ε s0,= ε(s+ sp) (2.8)

where S0 denotes the constant total amount of the respective sensor kinase. The proce-
dure resembles the approach to derive the Michaelis-Menten kinetics, where the enzyme
has a low density. The rescaled equations for our system now read

d

dt
ATP = ε [−(k1τ + kai1(1− τ)) s ATP + k−1ρ sp (ATP0 −ATP )] ,

ε
d

dt
sp = ε

[
(k1τ + kai1(1− τ)) s ATP − k−1ρ sp (ATP0 −ATP ),

+k−3s LuxUP − k3(1− ρ)sp (LuxU0 − LuxUP )
]

d

dt
LuxUP = ε [−k−3s LuxUP + k3(1− ρ)sp (LuxU0 − LuxUP )] .

If we now use the slow time scale σ = εt, we obtain

d

dσ
ATP = −(k1τ + kai1(1− τ)) s ATP + k−1ρ sp (ATP0 −ATP ), (2.9)

ε
d

dσ
sp = (k1τ + kai1(1− τ)) s ATP − k−1ρ sp (ATP0 −ATP ), (2.10)

+k−3s LuxUP − k3(1− ρ)sp (LuxU0 − LuxUP )

d

dσ
LuxUP = −k−3s LuxUP + k3(1− ρ)sp (LuxU0 − LuxUP ), (2.11)

and in the singular limit (2.10) can be rewritten as

[(k1τ + kai1(1− τ)) ATP + k−3 LuxUP ]s = [k3(1− ρ) LuxU + k−1ρ ADP ]sp.

With s+ sp = s0 we know

sp =
[(k1τ + kai1(1− τ)) ATP + k−3 LuxUP ]s0

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP

s =
k3(1− ρ) LuxU + k−1ρ ADP ]s0

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP
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2. Information Integration by Vibrio harveyi

If we plug these terms in equation (2.11) it results

d

dσ
LuxUP =

= − k−3LuxUP [k3(1− ρ) LuxU + k−1ρ ADP ]s0

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP

+
k3(1− ρ) LuxU [(k1τ + kai1(1− τ)) ATP + k−3 LuxUP ]s0

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP

= − k−3k−1ρ s0 ADPLuxUP

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP

+
k3(1− ρ) (k1τ + kai1(1− τ)) s0 LuxUATP

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP
.

In the singular limit, ε→ 0, the conservation law for phosphor (2.6) yields

P0 = LuxUP +ATP,

which is constant. Thus, the system reduces to two reactions,

LuxU +ATP → LuxUP +ADP at rate K+

LuxUP +ADP → LuxU +ATP at rate K−

where the rates K± are not constants, but given by

K+ =
k3(1− ρ) (k1τ + kai1(1− τ)) s0

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP
(2.12)

K− =
k−3k−1ρ s0

k3(1− ρ) LuxU + k−1ρ ADP + [k1τ + kai1(1− τ)] ATP + k−3 LuxUP
. (2.13)

From this result it is clear that only parameter combinations can be estimated, and not
each single rate constant.

2.3. Combination of the two pathways without further
interaction

The next step is to combine the two pathways in a straight manner. The first model for
the effect of combined sensor kinases is a straight summation of the chemical reactions
for one kinase.

Notation 2.1 To differ the parameters of the two systems we precede each parameter
with n or q, corresponding to the LuxN , resp. LuxQ pathway, e.g. nk1, qk1.
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2. Information Integration by Vibrio harveyi

Hence, the chemical reactions for the combined model read

LuxN +ATP 
 LuxNPH +ADP rate “→ ”nk1, rate “← ”nk−1,

LuxNAi+ATP 
 LuxNAiPH +ADP rate “→ ”nkai1, rate “← ”nkai−1,

LuxNPH 
 LuxNPD rate “→ ”nk2, rate “← ”nk−2,

LuxNAiPH 
 LuxNAiPD rate “→ ”nk2, rate “← ”nk−2,

LuxNPD + LuxU 
 LuxN + LuxUP rate “→ ”nk3, rate “← ”nk−3,

LuxNAiPD + LuxU 
 LuxNAi+ LuxUP rate “→ ”nkai3, rate “← ”nkai−3

LuxN +Ai
 LuxNAi rate “→ ”nkai4, rate “← ”nkai−4,

LuxNPH +Ai
 LuxNAiPH rate “→ ”nkai4, rate “← ”nkai−4,

LuxNPD +Ai
 LuxNAiPD rate “→ ”nkai4, rate “← ”nkai−4.

LuxQ+ATP 
 LuxQPH +ADP rate “→ ”qk1, rate “← ”qk−1,

LuxQAi+ATP 
 LuxQAiPH +ADP rate “→ ”qkai1, rate “← ”qkai−1,

LuxQPH 
 LuxQPD rate “→ ”qk2, rate “← ”qk−2,

LuxQAiPH 
 LuxQAiPD rate “→ ”qk2, rate “← ”qk−2,

LuxQPD + LuxU 
 LuxQ+ LuxUP rate “→ ”qk3, rate “← ”qk−3,

LuxQAiPD + LuxU 
 LuxQAi+ LuxUP rate “→ ”qkai3, rate “← ”qkai−3

LuxQ+Ai
 LuxQAi rate “→ ”qkai4, rate “← ”qkai−4,

LuxQPH +Ai
 LuxQAiPH rate “→ ”qkai4, rate “← ”qkai−4,

LuxQPD +Ai
 LuxQAiPD rate “→ ”qkai4, rate “← ”qkai−4.

The first check is for sure the measurement of LuxUP development in presence of LuxN
and LuxQ without any autoinducer. The result (dotted line in Figure 2.4, left panel)
seems acceptable, although not perfect. For sure, tuning the parameters could improve
this picture.

However, if we also add autoinducer, the picture changes completely: in Figure 2.6
the total kinase activity, presented as the phosphorylation rate of LuxU (in percent of
that for LuxN as the only present kinase) obtained by an experiment with AI-2 and an
experiment with AI-2 and HAI-1 is shown.

We find almost no phosphorylated LuxU in the experiment. While this is in agreement
with the synergism reported in vivo for the bioluminescence induction by Mok [33], the
model still predicts a considerable amount of LuxUP. This is not only a quantitative
disagreement of model and data, but a qualitative difference. With the parameters
chosen above, the model is not able to realize an AND gate, while the data indicate that
the biochemical system shows the behavior of an AND gate, indeed.
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Figure 2.4.: Kinase activity of LuxN and LuxQ (without autoinducer). The experimental
data, which are identical in both panels, are represented by solid dots (LuxN
+ LuxQ) and crosses (LuxN + LuxQ-). Simulation results are given as solid
curve (LuxN + LuxQ-) and dotted curve (LuxN + LuxQ). Left panel: no
further interaction, right panel: LuxU*-model.

The first thought may be that the model structure is appropriate, but that the fit is bad.
We already discussed that only parameter combinations can be identified, but not each
single parameter. With an approximative model we will answer the question if there are
other parameter combinations that allow to explain the data.

2.3.1. Approximate model with two sensor kinases

Let us consider this problem. Under weak assumptions, met by the experimental system,
we are especially able to show that the combination of two sensor kinases (with or without
autoinducer) cannot decrease the amount of LuxUP below the lowest value that can be
obtained with one single sensor kinase (with the given amount of autoinducer).

We have seen that the system with one sensor kinase can be approximated by

LuxU +ATP → LuxUP +ADP at rate K+

LuxUP +ADP → LuxU +ATP at rate K−

If we have two sensor kinases, we find

LuxU +ATP → LuxUP +ADP at rate nK+ + qK+

LuxUP +ADP → LuxU +ATP at rate nK− + qK−

where the rates nK±, qK± assume the form (2.12) and (2.13).

Hence, in equilibrium, we obtain

LuxU ATP (nK+ + qK+) = LuxUP ADP (nK− + qK−).
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We furthermore know, as in the model with one sensor kinase, LuxU+LuxUP = LuxU0,
ADP+ATP = ATP0 and LuxUP+ATP = P0. From these conservation laws, we find

LuxU = LuxU0 − LuxUP
ATP = P0 − LuxUP
ADP = ATP0 −ATP = ATP0 − P0 + LuxUp

and thus

(LuxU0 − LuxUP ) (P0 − LuxUP ) (nK+ + qK+) =

= LuxUP (ATP0 − P0 + LuxUp) (nK− + qK−)

This yields

0 = LuxUP 2[nK+ + qK+ − (nK− + qK−)]− LuxUP [(P0 + LuxU0)(qK+ + nK+)

+ATP0(nK− + qK−)] + [LuxU0P0(nK+ + qK+)]. (2.14)

Note that the rates nK± and qK± both depend on LuxUP. Let us consider the structure
of these rates. The rates have a similar shape for both sensor kinases. For nK+ we
obtain

nK+ =
nk3(1− ρ) (nk1τ + nkai1(1− τ)) s0

nk3(1− ρ)LuxU + nk−1ρADP + [nk1τ + nkai1(1− τ)]ATP + nk−3LuxUP

=
nk3(1− ρ) (nk1τ + nkai1(1− τ)) s0

nA+ nBLuxUP
=

nC+

nA+ nBLuxUP
,

where

nC+ = nk3(1− ρ) (nk1τ + nkai1(1− τ)) s0 > 0,

nA = nk3(1− ρ) LuxU0 + nk−1ρ (ATP0 − P0) + [(nk1τ + nkai1(1− τ)] P0,

nB = nk−3 + nk−1ρ− nk3(1− ρ)− [nk1τ + nkai1(1− τ)].

We find nA > 0 as we have ATP0−P0 = 0 in the experiments. It is of crucial importance
to know the sign of nB (and also of qB). Inspecting the estimations, we find that
nB � 0. As nk−1 ≈ 105 is magnitudes larger than all other rates, and ρ ≈ 10−2,
this inequality does not depend on the special parameter estimation, but is given for all
parameter sets that reproduce the data in a reasonable way. We are allowed to take this
inequality for granted. Thus we obtain nK+ > 0 and because of the similar shape we
also know qK+ > 0.

Similarly, we are interested in the coefficient of the quadratic term of (2.14). If we
consider nK+ − nK−, we find

nK+ − nK− =
nk3(1− ρ) (nk1τ + nkai1(1− τ)) s0

nA+ nBLuxUP
− nk−3nk−1ρ s0

nA+ nBLuxUP

=
nC+ − nC−

nA+ nBLuxUP
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where
nC− = nk−3nk−1ρ s0 > 0

Again, we are interested in the sign of nC+−nC− (and qC+−qC−). As nk−3 dominates
nk3, k−1 dominates k1 as well as kai1, we find nC+ − nC− � 0 though ρ ≈ 10−2.
This inequality is again a structural inequality and does not depend on the special fit.
Hence

nK+ − nK− < 0, qK+ − qK− < 0.

Notation 2.2 All in all we find the equation

nP (LuxUP ) + qP (LuxUP ) = 0

where

P (x) =
C− − C+

A+Bx
x2 +

(
C+(LuxU0 + P0)

A+Bx
+
C−ATP0

A+Bx

)
x − LuxU0 P0

C+

A+Bx
.

We obtain nP (x) and qP (x) by attaching n resp. q at the constants A, B, C± that are
positive, according to Notation 2.1.

Let us identify roots of the equations nP (x) = 0, qP (x) = 0 and nP (x) + qP (x) = 0.

Lemma 2.3
There is at least one root of nP (x) = 0, qP (x) = 0 and nP (x) + qP (x) = 0 in the
interval (0, LuxU0).

Proof. First, we find P (0) < 0 and

P (LuxU0) =
C− − C+

A+BLuxU0
LuxU2

0 − LuxU0P0
C+

A+B LuxU0

+

(
(LuxU0 + P0)

C+

A+B LuxU0
+ATP0

C−
A+B LuxU0

)
LuxU0 =

=
C−

A+BLuxU0
LuxU2

0 +ATP0
C−

A+B LuxU0
LuxU0 > 0 �

Now let us determine the number of roots in the interval (0, LuxU0).

Lemma 2.4
There is a unique root of nP (x) = 0, qP (x) = 0 and nP (x) + qP (x) = 0 in the interval
(0, LuxU0).

Proof. The equation nP (x) = 0 can be multiplied by nA+ nB x, and we are left with
a quadratic polynomial

0 = (nC− − nC+)x2 +
(
nC+(LuxU0 + P0) + nC−ATP0

)
x− LuxU0 P0 nC+.

We calculated nC+ − nC− � 0 and thus the quadratic term is multiplied by a positive
constant and this polynomial tends to infinity for x → ±∞. As nP (0) < 0, there is,
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apart of the root in (0, LuxU0), a further, negative root. Hence, the root in (0, LuxU0)
is unique. Similarly, the root of qP (x) = 0 is unique.

Now let us investigate nP (x) + qP (x) = 0. All terms

(C− − C+)x2

A+Bx
, (LuxU0 + P0)

C+ x

A+Bx
, ATP0

C− x

A+Bx
, −LuxU0P0

C+

A+Bx
.

are monotonously increasing in (0, LuxU0). Thus, there is only one single root in
(0, LuxU0). �

Moreover we investigate the root of nP (x) + qP (x) = 0.

Lemma 2.5
The root of nP (x) + qP (x) = 0 is between the roots of nP (x) = 0 and qP (x) = 0.

Proof. Let xn be the root of nP (x) = 0, xq the root of qP (x) = 0, and x̂ the root of
nP (x) + qP (x) = 0. From Lemma 2.4 we know that xn, xq, x̂ ∈ (0, LuxU0). If xn = xq
then we find immediately x̂ = xn = xq.

Now let us assume xq < xn. From nP (xn) = 0 and the monotonicity of nP (x) we find
nP (xq) < 0. Consequently nP (xq) + qP (xq) < 0, since qP (xq) = 0. Similarly we find,
qP (xn) > 0 and also qP (xn) + nP (xn) > 0. Therefore,

nP (xq) + qP (xq) < 0 < qP (xn) + nP (xn).

For xn < xq we can use parallel arguments and obtain

qP (xn) + nP (xn) < 0 < nP (xp) + qP (xq)

Hence, we find x̂ ∈ (xq, xn). �

Intuitively, this result can be understood as follows. One may view the situation as two
basins or reservoirs of phosphor (ATP and LuxUP), connected by two pipes with pumps,
LuxN and LuxQ. If the pipe LuxN achieves a certain equilibrium, and LuxQ another,
the combined pipes will archive an equilibrium between the two: if the stronger pump
LuxN tries to force LuxUP at a higher equilibrium than the weaker pump LuxQ will
start to reverse the phosphor flow and pumps phosphor back into the ATP reservoir.
The autoinducers change the efficiency of the pumps LuxN and LuxQ, and, in this way,
modify the equilibrium concentration of LuxUP.

These theoretical findings give a first hint that our picture is not complete. A further,
strong hint is an experiment using LuxN and a mutant of LuxQ, where the phosphor
binding aspartate residue of LuxQ has been exchanged. In the following we denote the
mutant of LuxQ by LuxQ-. I.e., LuxQ- is not able to exchange phosphor with LuxU.
One thus expects that the experimental system with respect to LuxUP behaves like
the system with LuxN only. Nevertheless, the data look quite similar to that of the
combination between LuxQ and LuxN, and not at all like the data for LuxN alone. The
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data are given in Figure 2.4 (right panel,crosses), the prediction of the model developed
so far is shown in Figure 2.4 (left panel, solid curve). This result is an experimental proof
that an additional interaction between LuxN and LuxQ is going on. The observations
are in line with the fact that an AND gate is a highly nonlinear function.

An OR gate may be considered as a linear superposition of signals, followed by a down-
stream threshold element, whereas the AND gate involves some kind of multiplication. A
multiplication necessarily implies a close interaction of both channels. The point of view
present in the literature about Vibrio harveyi up to now, and mapped into a mathemati-
cal model in the previous sections, is seemingly not sufficient to implement dependencies
of the two input channels strong enough to represent the biochemical system.

2.4. Additional component: conformational change of LuxU

Our analysis revealed that necessarily an additional assumption is required to understand
the experimental findings. One could think especially of the following possibilities:

1. Direct interaction of LuxQ and LuxN. If LuxQ and LuxN interact directly, the
rates of phosphotransfer can be arbitrarily altered for one sensor kinase in the
presence of the other sensor kinase. This additional degree of freedom in the
choice of parameters is sufficient to explain the data. However, the experimental
setup separates the sensor kinases spatially. There is no reasonable chance for
LuxN to get in the spatial vicinity of LuxQ and vice versa. This fact rules out this
explanation.

2. Changed LuxU conformation. The only known protein that is in contact with both
LuxN and LuxQ and that – at the same time – plays a central role in the signaling
cascade of Vibrio harveyi is LuxU. Especially the experiments with the phosphatase
negative mutant LuxQ- strongly indicate that the information of the presence of
both sensor kinases is somehow spread over the complete system. As LuxU plays
a central role, it is natural to assume that LuxU itself codes this information.
One can conjecture that the sensor kinases have two functions on LuxU. One is
responsible for the phosphotransfer, while the second leads to a conformational
change of LuxU.

We thus assume that LuxU may be present in two different forms, see Figure 2.5. On the
one hand LuxU is present as native LuxU and on the other side as modified form of LuxU,
that we call LuxU*. We further assume that both forms of LuxU can be phosphorylated,
i.e. we find LuxUP and LuxU*P. The experiments, however, cannot distinguish between
LuxU and LuxU* respectively LuxUP and LuxU*P. These assumptions are, of course,
highly speculative. However, as we will see, this simple assumption is sufficient to explain
all shortcomings of the previous model. Furthermore, there are biochemical indications
that LuxU may have second active histidine residue with unknown functionality [12, 49].
This observation is in line with the present hypothesis. In order to meet the present data,
we assume that only the LuxQ(AI-2) (i.e. LuxQ with or without bound AI-2) complex has
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2. Information Integration by Vibrio harveyi

LuxU*

LuxUp LuxU*p

LuxO
L

ux
N L

uxN

LuxQ

LuxU

Figure 2.5.: Idea of mechanism developed in this work. While LuxN basically
(de)phosphorylate LuxU, LuxQ influences mainly the equilibrium between
LuxU and LuxU*.

the ability to transform LuxU to LuxU*. Furthermore, we assume that LuxU* switches
back to LuxU spontaneously. Last, the rates of phosphotransfer between LuxQ(AI-
2) and LuxU resp. LuxU* do not differ, while the rates of phosphotransfer from the
LuxN(HAI-1) (i.e. LuxN with or without bound HAI-1) complex to LuxU are much
higher than from LuxN(HAI-1) to LuxU*. Whereas, the reverse direction is much more
efficient between LuxU*P and LuxN(HAI-1) than between LuxUP and LuxN(HAI-1).
We will see that this rather simple version of the extended model is sufficient to meet
the data.

I.e., without LuxQ(AI-2) there is no LuxU*, and LuxQ(AI-2) does not discriminate
between LuxU and LuxU*. This allows us to keep the satisfying results for the single
pathays. The trajectories shown in Figure 2.3 do not differ for both models. We only
find an effect for the combined pathways. LuxQ(AI-2) creates LuxU*, and LuxN(HAI-1)
performs less efficient as a kinase on a mixture of LuxU and LuxU*. In this situation
we find parameters that very nicely reproduce the dynamics for the combination of
LuxQ and LuxN, and also for the combination of LuxQ- and LuxN (Figure 2.4 (b)).
Furthermore, the presented model is able to reproduce the results in the presence of
LuxQ, LuxN and autoinducers (Figure 2.6).

Of course, even if we accept this hypothesis, we expect the reality to be more complex:
LuxN(HAI-1) as well as LuxQ(AI-2) are able to transfer phosphor between ATP/ADP
and LuxU/LuxUP. Most likely, LuxN(HAI-1) as well as LuxQ(AI-2) will be also able to
transform LuxU to LuxU* and vice versa. However, while LuxN(HAI-1) dominates the
phosphotransfer, LuxQ(AI-2) dominates the transition between LuxU(P) and LuxU*(P).
The two kinases basically modify different parts of the pathway.

23



2. Information Integration by Vibrio harveyi

Summarized, the autoinducer signalling in V. harveyi (and probably in related species)
allows a sophisticated signal integration, reminding of an AND gate, which probably en-
ables the bacteria to process information of different quality in a highly adaptive manner.
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Figure 2.6.: Effect of different combinations of LuxN, LuxQ, and autoinducers. Dark
grey are experimental data, white the model predictions without LuxU*
(model I), light grey the model predictions with LuxU* (model II). The
amount of LuxUP in the experiment without any autoinducer is taken as
reference value, i.e. 100%.
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2. Information Integration by Vibrio harveyi

For the sake of completeness we list the equations for the complete model with two
different states of LuxU:

LuxN +ATP 
 LuxNPH +ADP rate“→ ”nk1, rate“← ”nk−1,

LuxNAi+ATP 
 LuxNAiPH +ADP rate“→ ”nkai1, rate“← ”nkai−1,

LuxNPH 
 LuxNPD rate“→ ”nk2, rate“← ”nk−2,

LuxNAiPH 
 LuxNAiPD rate“→ ”nk2, rate“← ”nk−2,

LuxNPD + LuxU 
 LuxN + LuxUP rate“→ ”nk3, rate“← ”nk−3,

LuxNAiPD + LuxU 
 LuxNAi+ LuxUP rate“→ ”nkai3, rate“← ”nkai−3

LuxNPD + LuxU∗ 
 LuxN + LuxU∗P rate“→ ”nks3, rate“← ”nks−3,

LuxNAiPD + LuxU∗ 
 LuxNAi+ LuxU∗P rate“→ ”nksai3, rate“← ”nksai−3

LuxN +Ai
 LuxNAi rate“→ ”nkai4, rate“← ”nkai−4,

LuxNPH +Ai
 LuxNAiPH rate“→ ”nkai4, rate“← ”nkai−4,

LuxNPD +Ai
 LuxNAiPD rate“→ ”nkai4, rate“← ”nkai−4.

LuxQ+ATP 
 LuxQPH +ADP rate“→ ”qk1, rate“← ”qk−1,

LuxQAi+ATP 
 LuxQAiPH +ADP rate“→ ”qkai1, rate“← ”qkai−1,

LuxQPH 
 LuxQPD rate“→ ”qk2, rate“← ”qk−2,

LuxQAiPH 
 LuxQAiPD rate“→ ”qk2, rate“← ”qk−2,

LuxQPD + LuxU 
 LuxQ+ LuxUP rate“→ ”qk3, rate“← ”qk−3,

LuxQAiPD + LuxU 
 LuxQAi+ LuxUP rate“→ ”qkai3, rate“← ”qkai−3

LuxQPD + LuxU∗ 
 LuxQ+ LuxU∗P rate“→ ”qk3, rate“← ”qks−3,

LuxQAiPD + LuxU∗ 
 LuxQAi+ LuxU∗P rate“→ ”qkai3, rate“← ”qksai−3

LuxQ+Ai
 LuxQAi rate“→ ”qkai4, rate“← ”qkai−4,

LuxQPH +Ai
 LuxQAiPH rate“→ ”qkai4, rate“← ”qkai−4,

LuxQPD +Ai
 LuxQAiPD rate“→ ”qkai4, rate“← ”qkai−4.

LuxU + LuxQ→ LuxU∗ + LuxQ rate k5,

LuxU + LuxQPD → LuxU∗ + LuxQPD rate k5,

LuxU + LuxQPH → LuxU∗ + LuxQPH rate k5,

LuxU + LuxQAi→ LuxU∗ + LuxQAi rate kai5,

LuxU + LuxQAiDpai→ LuxU∗ + LuxQAiPD rate kai5,

LuxU + LuxQAiHp→ LuxU∗ + LuxQAiPH rate kai5,

LuxU∗ → LuxU rate k6.
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3. Communication in Small Bacterial
Population

In this chapter we investigate the mechanism of Quorum Sensing at the population level.
Our aim in this chapter is to develop and analyze a model for the dynamics of small
bacterial populations that communicate with each other via the Quorum sensing system,
for example micro-colonies on roots of plants in the rhizosphere. The dynamics of the
population is driven by the behavior of the cells within the population. Since we are
interested in small cell numbers we take into account the effect of intracellular noise. A
cell is allowed to switch back and forth between low and high level of signaling molecule
production. For large population sizes, the dynamics of the cells can be assumed to be
averaged. In the case of small population sizes the state of each cell can influence the
dynamics of the population strongly. Thus the question arises, whether the communi-
cation in small populations is still effective or if the impact of noise is extensive so that
the bacteria cannot understand each other.

For this reason we establish a stochastic model for the population dynamics. Since the
underlying mechanism of Quorum sensing is quite similar in most bacteria taxa, we apply
the Lux system of Vibrio fischeri as the underlying communication system (described in
Section 1.1). We associate the population with a probability density function p(n, x, t)
where the number of activated cells within the population, n ∈ {0, .., N}, is a discrete
random variable, while the corresponding AHL molecule concentration x ∈ R+ can
be treated as a continuous variable. It will be shown that the time evolution of the
probability density function is determined by a transport equation.

We analyze the asymptotic behavior of this transport equation. In order to achieve
this description, we study the diffusion approximation for a slightly extended transport
equation, utilizing the idea that the population dynamics and the signaling live on
different time scales. The analysis allows to derive a closed equation for the signaling
molecule density only, being of parabolic type.

In addition, we analyze the long time behavior of the AHL distribution for small popu-
lations in order to get an idea of the implication of stochasticity, and moreover the long
time behavior for large populations will be investigated.
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3. Communication in Small Bacterial Population

3.1. Stochastic Model

The goal of this section is to derive a probabilistic description of the dynamics of a
bacterial population. One can see in Figure 3.1 that the dynamics of the population is
driven on the one hand by the behavior of the cells, namely AHL production at high
or low level, and on the other hand by the AHL molecule concentration. Because of
the small population size we assume to encounter a high stochasticity concerning the
behavior of the cells, whereas the dynamics of the AHL concentration is assumed to be
deterministic.

Figure 3.1.: Sketch of the dynamics of a population.

In the first part of this section, we give a probabilistic description of the dynamics of
one single cell. The molecular mechanism of Quorum sensing involves several steps, as
seen in Figure 1.2. For our model we focus on the stochastic process that governs the
binding and dissociation of the AHL/LuxR complex [35].

We regard the cell as a system consisting of a constant number of independently acting
LuxR receptor molecules. Then the dynamics of the cell is driven by the dynamics
of the LuxR receptor molecules. As a first step, we derive a discrete valued random
walk model in one dimension where the state of the cell is defined by the number of
LuxR/AHL complexes. Based on this model, we determine a simplified model for one
cell where the state of the cell is characterized as ”activated” or ”resting”. Activated
cells are cells with a supercritical number of LuxR/AHL complexes, while the number
of these complexes is subcritical for resting cells. It turns out that this simplified model
approximates the random walk model quite well in the long run.

Our aim of the second part is to describe the behavior of a population consisting of a
given number of cells. In addition to the dynamics of the cells we take into account the
change of AHL concentration, since cells within the population produce AHL molecules
depending on their state. Recently, the investigation of stochastic dynamics of regulatory
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3. Communication in Small Bacterial Population

pathways attracted an increased attention [21, 25, 26, 43, 50].

We propose a velocity jump model [20] where the continuous variable corresponds to
the AHL molecule concentration, whereas the discrete variable describes the different
states of the population, determined by the number of activated cells. The model can
be written in terms of a transport equation, where the velocity depends on the AHL
concentration.

In the final part we prove the existence and uniqueness of solutions for the transport
equation.

3.1.1. Dynamics of One Cell

This section is dedicated to the derivation of a model describing the dynamics of one
single cell. In a first model we characterize the cell by the number of AHL/LuxR
complexes. Furthermore, we simplify the model by assuming that the cell is described
as binary random variable that tells us if the cell is activated or resting otherwise.
The models are stated under the assumption of independence of the receptor molecules.
However, we show that for large cell numbers the mean number of activated cells is
essentially equal in both models.

For simplicity the AHL concentration is assumed to be constant during this subsection.

Dynamics of the LuxR Receptor

A main aspect in developing the mathematical model is the fact that the LuxR receptors
are independently acting entities that form complexes with AHL molecules, which may
dissociate again. The corresponding reaction kinetics is given by

AHL + LuxR
κ−→←−
γ1

AHL/LuxR . (3.1)

Here κ ≥ 0 is the association rate of LuxR receptors and AHL molecules, and γ1 ≥ 0 is
the dissociation rate of the AHL/LuxR complex. We are interested in the states of the
LuxR receptors within the cell, i.e. we ask whether one receptor is bound to AHL and
thus activated or if it is free.

Definition 3.1 In the following we identify LuxRb as the LuxR/AHL complex respec-
tively bounded LuxR receptor and LuxRf as the free LuxR receptor. Furthermore,
x ∈ R+ denotes the density of AHL molecules.

Rewriting the reaction kinetics we obtain the following transition rates describing the
change of state for one receptor

LuxRf → LuxRb : κx,
LuxRb → LuxRf : γ1.

(3.2)

Hence 1/κx, respectively 1/γ1 is the mean time between the state transition.
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3. Communication in Small Bacterial Population

Model for One Cell Based on the Number of LuxRb

To derive a probabilistic description of the dynamics of one cell, based on the number of
LuxRb, we use a random walk model with constant transition rates where we consider
the number M ∈ N of LuxR receptors within a cell to be constant. The transitions are
limited to binding and dissociation.

Let {mt, t ≥ 0} be a stochastic process where mt ∈ {0, ...,M} is the number of LuxRb

within the cell at time t. We define

p(m, t) := P (state m at time t) = P (mt = m)

as the probability to find the cell in the state m ∈ {0, ...,M} at time t ∈ R+. To deter-
mine the probabilistic transition laws we define the infinitesimal transition probability
per unit time as [14]

lim
∆t→0

1

∆t
p(m∗, t+ ∆t|m, t) = P (m∗|m, t) for m∗ 6= m.

If the cell is in state m at a time t, it can either jump to state m+ 1 or to m− 1. Since
the receptors are independently acting entities, the transition m → m + 1 implies that
one of the M − m free LuxR receptors binds to x with rate κx. To change the state
from m → m − 1 implies that one of the m bounded LuxR receptors dissociates with
rate γ1.

0
// ...oo // m− 1oo

(M−(m−1))κx// m
mγ1
oo

(M−m)κx// m+ 1
(m+1)γ1

oo // ...oo //
Moo

Thus the transition probabilities from state m to state m∗ are

P (m+ 1|m, t) = κx(M −m) m = 0, ...,M
P (m− 1|m, t) = γ1m m = 0, ...M.

We have P (m∗|m, t) = 0 ∀ m∗ ∈ [0,M ] \ {m − 1,m,m + 1}. The states m = 0
and m = M , where only transition in one direction is possible, (0 → 1 respectively
M →M − 1), are also covered by this definition.

Kolmogorov’s forward equation describes the time evolution of the probability density
function p(m, t) for all m ∈ {0, ...,M} at given x as

d

dt
p(m, t) = lim

∆t→0

1

∆t
[p(m, t+ ∆t)− p(m, t)]

= lim
∆t→0

1

∆t

[
m+1∑
i=m−1

p(m, t+ ∆t|i, t)p(i, t)−
m+1∑
i=m−1

p(i, t+ ∆t|m, t)p(m, t)

]

= lim
∆t→0

1

∆t
[p(m, t+ ∆t|m− 1, t)p(m− 1, t)

+p(m, t+ ∆t|m+ 1, t)p(m+ 1, t)−
−(p(m− 1, t+ ∆t|m, t) + p(m+ 1, t+ ∆t|m, t))p(m, t)] .
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3. Communication in Small Bacterial Population

Substitution of the transition probabilities brings the master equation to the form

d
dtp(m, t) = p(m, t)(−γ1m− κx(M −m)) + p(m+ 1, t)γ1(m+ 1)

+p(m− 1, t)κx(M − (m− 1)).
(3.3)

Since the random walk has the finite state space {0, ...,M}, it is necessary to define
boundary conditions. The probability to be in state −1 or in state M + 1 is zero, so we
formally agree on

p(−1, t) = p(M + 1, t) = 0.

Let us investigate the stationary solution ps(m) of (3.3)

0 = ps(m)(−γ1m− κx(M −m)) + ps(m+ 1)γ1(m+ 1) + ps(m− 1)κx(M − (m− 1)).

Proposition 3.2
The stationary solution ps(m) of (3.3) follows a binomial distribution Binom(M, p),
where p = κx

κx+γ1
.

Proof. The stationary solution can be rewritten as

0 = J(m+ 1)− J(m) (3.4)

with
J(m) = P (m− 1|m, t)ps(m)− P (m|m− 1, t)ps(m− 1).

J(m) can be interpreted as the probabilistic flux from state m to state m − 1. It has
to be recognized that m only assumes the values {0, ...,M}. Therefore the transition
probability P (−1|0) is equal to zero and with ps(−1) = 0 we find

J(0) = P (−1|0)ps(0)− P (0| − 1)ps(−1) = 0. (3.5)

From (3.4) we find J(m + 1) = J(m) and together with (3.5) we obtain the detailed
balance condition J(m) ≡ 0, which implies that there is no net flow of probability in the
stationary state and thus

ps(m) =
κx(M − (m− 1))

γ1m
ps(m− 1),

so that

ps(m) = ps(0)
m∏
l=1

κx(M − (l − 1))

γ1x
= ps(0)

(
κx

γ1

)m(M
m

)
.

It remains to show that

ps(0) =

(
γ1

κx+ γ1

)M
.

As this constant is uniquely defined by

M∑
m=0

ps(m) = 1,

being indeed true for our choice of ps(0), the result follows. �
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Simplified Model for One Cell

Now we derive a simplified model for one cell, where the state of the cell is characterized
as ”activated” or ”resting”.

Definition 3.3 Given a certain threshold m0 ∈ {0, ...,M}. A cell is in the activated
state if the number of LuxRb within the cell exceeds the threshold m0. If the number of
LuxRb is below this threshold, the cell is in the resting or inactivated state.

The intracellular noise allows the cell to switch back and forth between the two states,
defined in Definition 3.3. The model we develop here, describes the transition between
these states and does not count the exact number of LuxRb within the cell. As before
we assume that x ∈ R+ is constant.

We introduce the time dependent, binary random variable C(t) describing the state of
one cell at time t. As before, the receptors are independently acting entities, and thus the
dynamics of the cell is driven by the dynamics of the receptors. We define the transition
probabilities for the cell to change from the activated state to the inactivated state and
vice versa, depending on x, as follows

(resting state) 0
ν(x)−→←−
µ(x)

1 (activated state).

ν(x) is the activation probability per unit time and µ(x) is the deactivation probability.
Notice that this process is a special case of the stochastic process determined in the pre-
vious paragraph. The stochastic process of the simplified model, is therefore determined
by the infinitesimal transition probabilities per unit time

P (0|1, t) = µ(x),

P (1|0, t) = ν(x).

Considering p(c, t) as the probability density to find the cell in state c ∈ {0, 1} at a time
t ≥ 0 we get the time evolution

d
dtp(0, t) = −p(0, t)ν(x) + p(1, t)µ(x),
d
dtp(1, t) = p(0, t)ν(x)− p(1, t)µ(x).

(3.6)

Again, we emphasize that this is a simplification of the receptor based model. However,
as we aim to describe a population of cells, the conclusions we will draw do not depend
on the detailed intra cellular dynamics. These observations after all allows us to use this
more simple setting for one cell.

Analysis of the stationary solution ps of (3.6),

0 = −ps(0)ν(x) + ps(1)µ(x)

0 = ps(0)ν(x)− ps(1)µ(x),

results in the following, similar to Proposition 3.2.
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Proposition 3.4
The stationary solution ps(m) of (3.6) follows a binomial distribution Binom(1, q), where

q = ν(x)
µ(x)+ν(x) .

Transition Probabilities µ(x) and ν(x)

To approximate the activation and deactivation rates of one cell for the simplified model
we determine the mean waiting time between the jumps from activated to resting state,
respectively vice versa, in the full model.

Consider a cell in state m of the full model. We derive a formula for the expected waiting
time, Tm, that passes between the transition from m LuxRb to m+ 1 LuxRb within one
cell. Note, that there may be an excursion to the states {0, ..,m− 1} before the jump to
state m+ 1 takes place. We need to take this fact into account. Similarly we define T̃m
as the expected waiting time of a cell that is in state m before it jumps to state m−1.

To determine Tm we assume a cell with m LuxRb. Because of the dynamics of the cell
there are only two possibilities for the next transition

m− 1
mγ1←− m

(M−m)κx−→ m+ 1;

one more LuxRb is formed or one LuxRb dissociates. The transition probability that a
jump occurs, in whatever direction, is determined by

P (m∗|m, t) = P (m+ 1|m, t) + P (m− 1|m, t) = mγ1 + (M −m)κx

with m∗ = m − 1,m + 1. Thus the waiting time within state m before the next jumps
occurs, is given by

1

P (m∗|m, t)
=

1

mγ1 + (M −m)κx
.

The probability to jump from m to m + 1 is determined by (M−m)κx
mγ1+(M−m)κx while the

probability for the jump from m to m− 1 is mγ1
mγ1+(M−m)κx .

Investigating the expected waiting time Tm that elapses between the transition from m
to m + 1, we consider two possible ways. The first possibility is that the cell stays in
the current state m and then jumps to m + 1 immediately. The second possibility is
that the cell first jumps back to m − 1. If the cell is in state m − 1 there are again
two possibilities. To take into account that the cell can jump back to any of the states
{0, ...,m − 1} before it jumps to state m + 1 we define the formula for the expected
waiting time recursively.

Therefore the expected waiting time Tm is composed of the waiting time before a jump
occurs and additionally, if the cell jumps back to m − 1, the expected waiting time for
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the jump from m− 1 to m and m to m+ 1. We obtain

Tm =
1

mγ1 + (M −m)κx
+

(M −m)κx 0

mγ1 + (M −m)κx
+

mγ1

mγ1 + (M −m)κx
(Tm−1 + Tm)

=
1

mγ1 + (M −m)κx
(1 +mγ1(Tm−1 + Tm)). (3.7)

We can rewrite this equation as

Tm

(
1− γ1m

γ1m+ (M −m)κx

)
=

1

(mγ1 + (M −m)κx)
+

mγ1

γ1m+ (M −m)κx
Tm−1,

so that we finally get

Tm = Am +BmTm−1, Am :=
1

(M −m)κx
, Bm :=

mγ1

(M −m)κx
. (3.8)

We know the waiting time T0 to jump from state 0 to state 1, since there is only one
possibility

T0 =
1

P (1|0, t)
=

1

Mκx
.

Iteration of (3.8) thus results in

Tm = Am +

m−1∑
k=1

Ak m∏
j=k+1

Bj

+ T0

m∏
k=1

Bk =

m∑
k=0

Ak m∏
j=k+1

Bj

 .

Similar arguments can be used to determine T̃m, which describes the expected waiting
time between the jump from m to m− 1

T̃m :=
1

γ1m+ (M −m)κx
(1 + (M −m)κx(T̃m+1 + T̃m)).

And inserting iteratively results in

T̃m =
M∑
k=m

Ck k−1∏
j=m

Dj

 ,

where

Cm :=
1

mγ1
, Dm :=

(M −m)κx

mγ1
.

To approximate the transition rate ν(x), we assume that the cell has just changed state
from activated to resting. That means the state of the cell at that time is m0 − 1.
We need to investigate the mean time Tm0−1 of staying in the resting state, before the
cell jumps back to the activated state. With the same argumentation we obtain the
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deactivation rate ν(x) which is determined by the mean time T̃m0 . Hence the transition
rates should be defined as

ν(x) :=
1

Tm0−1
, µ(x) :=

1

T̃m0

. (3.9)

where

Tm0−1 =

m0−1∑
k=0

[
1

γ1m0

( γ1

κx

)m0−k
(
M

k

)(
M

m0

)−1
]
,

T̃m0 =
M∑

k=m0

[
1

γ1m0

(
κx

γ1

)k−m0
(
M

k

)(
M

m0

)−1
]
.

Notice that for x ∈ R+ the activation rate ν(x) is a monotonously increasing and the
deactivation rate µ(x) is a monotonously decreasing function. Both transition rates are
furthermore strictly positive functions.

Let us define two modes of measurement, where we obtain sample values of the random
variable describing the state of a cell, also denoted as random characteristics [22]. The
random variable for the state of a cell in the first mode is given by the number of LuxRb.
In the second mode the random variable is the state of the cell based on activation and
resting. The aim is to justify our above choice of the transition rates. We show that
for large cell numbers the mean number of activated cells is essentially equal in both
models.

Based on the stochastic process {mt, t ≥ 0}, where mt ∈ {0, ...,M} describes the number
of LuxRb within one cell, we define the random variable

χ{mt≥m0} =

{
1 if mt ≥ m0,
0 otherwise

The first measurement mode for the full sample of N cells is constructed as

XN
1,t :=

1

N

N∑
i=0

χ{mi
t≥m0}

where mi
t are i.i.d. describing the number of LuxRb in the i-th cell.

The second mode of measurement for the simplified model is determined by the stochastic
process {Ct, t ≥ 0}, where Ct describes whether the cell is activated or resting. Hence
we define

XN
2,t :=

1

N

N∑
i=0

Cit .

The family (Cit)t≥0 as well as the family (χ{mi
t≥m0})t≥0 are i.i.d and as a consequence of

the law of large numbers we obtain

XN
1,t → µ1 for N →∞

XN
2,t → µ2 for N →∞
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with finite expectation values µ1 = E(χ{mt≥m0}) and µ2 = E(Ct). By investigation of
the expectation values E(χ{mt≥m0}) and E(Ct) we obtain

E(Ct) = 0 · P (Ct = 0) + 1 · P (Ct = 1) =
ν(x)

µ(x) + ν(x)
=

T̃m0

T̃m0 + Tm0−1

=

∑M
k=m0

[(
κx
γ1

)k (
M
k

)]
∑M

k=m0

[(
κx
γ1

)k (
M
k

)]
+
∑m0−1

k=0

[( γ1
κx

)−k (M
k

)] =

∑M
k=m0

[(
κx
γ1

)k (
M
k

)]
∑M

k=0

[(
κx
γ1

)k (
M
k

)]
=

(
γ1

κx+ γ1

)M M∑
k=m0

[(
κx

γ1

)k (M
k

)]
,

furthermore,

E(χ{mt≥m0}) = 0 · P (mt < m0) + 1 · P (mt ≥ m0) =

M∑
i=m0

P (mt = i)

=
M∑

i=m0

(
M

i

)
pi(1− p)M−i =

(
γ1

κx+ γ1

)M M∑
i=m0

[(
M

i

)(
κx

γ1

)i]
,

where p = κx
κx+γ1

.

Thus we find E(Ct) = E(χ{mt≥m0}) so that both models have essentially the same mean
number of activated cells for large enough cell numbers, respectively samples.

3.1.2. Mathematical Model for the Complete System

Based on the simplified model for one cell we establish a model for the whole population
in this section. For the description of the dynamics of the population we have to take into
account that the cells within the population produce AHL molecules at different levels
and therefore x is not constant. So let us propose a velocity jump model [39] where the
continuous variable corresponds to the AHL concentration whereas the discrete variable
describes different states of the population, which determine the number of activated
cells.

For the mathematical setting we adopt a constant population of N ∈ N, N < ∞,
cells. The state of the population is characterized by the number of activated cells.
We define n ∈ I := {0, ..., N} ⊂ N, |I| = N + 1, as the state space of the population.
Conditioned on the AHL concentration, the cells are independently acting entities and
follow the dynamics derived in the previous section. In contrast to the afore discussed
model, we have to introduce x ∈ R as a second, continuous variable, to characterize the
complete state of the system. This second variable bears some similarities with a spatial
structure.

35



3. Communication in Small Bacterial Population

Additionally we define the velocity vn(x) : I × R+ → R which describes the change of
the AHL concentration over time. The velocity depends upon the number of activated
cells within the population and is defined for all n ∈ I as follows

vn(x) :=
d

dt
x(t)

∣∣∣
n

= αN + βn− γx. (3.10)

Here α > 0 denotes the small constitutive production of AHL of the resting cells, β > α
is the increased AHL production of activated cells and γ > 0 is the degradation rate of
the AHL molecules.

For arbitrary n ∈ I the stationary solution of (3.10) is xs ≡ xs(n) = αN+βn
γ . We see

that xs(n) increases with n. Thus we find

xmin := xs(0) =
αN

γ
and xmax := xs(N) =

(α+ β)N

γ
. (3.11)

As α, γ,N > 0 clearly we have xmin > 0. Moreover we find that x is bounded on an
invariant interval Ω := (xmin, xmax) since vn(x) is a monotone function in x and for all
n ∈ I

vn(xmin) = βn ≥ 0 and vn(xmax) = β(n−N) ≤ 0.

The monotonicity of the velocity also implies

‖vn(·)‖∞ := max
x∈Ω
|vn(·)| = max{|βn|, |β(n−N)|} <∞ ∀ n ∈ I.

Define pn(x, t) as the probability to find n ∈ I activated cells within the population at
signaling molecule concentration x ∈ Ω at time t ≥ 0. To obtain the time evolution of
pn(x, t) for given n ∈ I, we decompose

∂tpn(x, t) =
(
∂tpn(x, t)

)
drift

+
(
∂tpn(x, t)

)
sp

where
(
∂tp
)
drift

denotes the change of the AHL density over time and
(
∂tp
)
sp

constitutes
the change of the number of activated cells within the population over time. These two
terms can be investigated separately, since there is no direct dependence in the change
of the two random variables. Note that x(t) is continuous in time and a jump in n does
not imply an instantaneous change in x. Also the transition rates µ(x) and ν(x) are
continuous in x and therefore a change in x does not imply a immediate state change.

First of all, we model the state change of the population,
(
∂tp
)
sp

, where we assume
the production of x to be constant once more, so that the population only senses a
constant AHL molecule density x̃. The cells are independently acting entities and thus
the dynamics of the population is driven by the dynamics of the N cells. A scheme of
the transition graph is given below.

0
// ...oo // n− 1oo

(N−(n−1))ν(x̃)// n
nµ(x̃)
oo

(N−n)ν(x̃)// n+ 1
(n+1)µ(x̃)

oo // ...oo //
Noo
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Define the transition probabilities per unit time as done in Section 3.1.1.

P (n+ 1|n, x̃, t) = (N − n)ν(x̃) n = 0, ..., N − 1,
P (n− 1|n, x̃, t) = nµ(x̃) n = 1, ..., N

Hence we derive the time evolution for the population to be in state n at time t with
constant signaling molecule concentration x̃, analogous to the receptor based model in
Section 3.1.1 as(

∂tpn(x̃, t)
)
sp

= −(nµ+ (N − n)ν)pn(x̃, t) + (N − (n− 1))νpn−1(x̃, t)+

+(n+ 1)µpn+1(x̃, t).

Next we encounter
(
∂tp
)
drift

. Consider an interval ω := [ω1, ω2] in the x-space Ω. As
we are interested in the change of x over time, we assume that there is a given constant
number n∗ of activated cells within the population. The flux J(x, t) of the system, which
measures the amount x that will flow through a small area during a small time interval,
is given by

J(x, t) = −vn∗(x)pn∗(x, t).

Hence the rate of change of x inside the interval ω is given by the relation

∂t

∫
ω
pn∗(x, t)dx = J(ω1, t)− J(ω2, t) =

∫
ω
∂xJ dx.

In the limit, where ω becomes small we get

∂tpn∗(x, t)− ∂xJ(x, t) = 0,

where we assume p to be C1 both on x and t, so that(
∂tpn∗(x, t)

)
drift

= −∂x(vn∗(x)pn∗(x, t)).

We obtain the time evolution of the density function pn(x, t) of the complete model by
adding up

(
∂tp
)
drift

and
(
∂tp
)
sp

. This results in a transport equation, that describes
the velocity jump process governing the population dynamics, for all n ∈ I,

∂tpn(x, t) + ∂x(vn(x)pn(x, t)) = −(nµ(x) + (N − n)ν(x))pn(x, t)

+ (N − (n− 1))ν(x)p(n− 1, x, t) + (n+ 1)µ(x)p(n+ 1, x, t). (3.12)

Eventually, we show that there exists a unique solution of the transport equation (3.12)
describing the population dynamics. In this sense our model is well-posed.

Definition 3.5 We define

p(x, t) :=


p0(x, t)
p1(x, t)

...
pN (x, t)

 , v(x) :=


v0(x)
v1(x)

...
vN (x)

 , n :=


0
1
...
N
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with p(x, t) : I × Ω× [0,∞)→ RN+1 and v(x) : I × Ω→ RN+1.
Additionally we define a elementwise product, for φ, ψ ∈ RM+1

ψ � φ :=


ψ0φ0

ψ1φ1
...

ψMφM

 ∈ RM+1. (3.13)

With these definitions the transport equation (3.12) can be written as

∂tp(x, t) + ∂x(v(x)� p(x, t)) = Lx[p(x, t)]. (3.14)

Additionally we determine the boundary conditions as we assume that the flux on ∂Ω is
equal to zero. Thus we get

v(x)� p(x, t) = 0 ∀ x ∈ ∂Ω.

The transition operator Lx : L2(Ω) → L2(Ω) is determined pointwise by the transition
matrix Lx ∈ R(N+1)×(N+1)

Lx[p(x, t)] = Lxp(x, t).

The transition matrix is the infinitesimal generator of the random walk on I and is
defined as

Lx :=



l0(x) l+0 (x) 0 · · · 0
l−1 (x) l1(x) l+1 (x) 0

0 l−2 (x) l2(x) l+2 (x) 0

...
. . .

. . .
. . .

. . .
. . .

...

0 l−N−2(x) lN−2(x) l+N−2(x) 0

0 l−N−1(x) lN−1(x) l+N−1(x)

0 · · · 0 l−N (x) lN (x)


. (3.15)

where

li(x) := −
(
P (n+ 1|n, x, t) + P (n− 1|n, x, t)

)
, i = 0, ..., N,

l−i (x) := P (n|n− 1, x, t), i = 1, ..., N,
l+i (x) := P (n|n+ 1, x, t), i = 0, ..., N − 1.

(3.16)

The transition rates li depend on the number of activated cells within the population
and on the AHL concentration. Moreover 1/li is a measure of the expected waiting time
between the state jumps.

Since the number of cells within the population is constant (conservation law), we have,
for all i = 0...N ,

li(x) = −(l+i−1(x) + l−i+1(x))
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3. Communication in Small Bacterial Population

where l+−1(x) = l−M+1(x) = 0 so that

eTLx = 0

with e = (1, ..., 1)T ∈ RN+1. For the transition operator we find

N∑
n=0

Lxpn(x, t) = 0.

Therefore the operator has a zero left-eigenvalue. In Appendix B.1.2 we show that this
left-eigenvalue is simple and we can find a unique right-eigenvector (Perron theory)

Y(x) :=


y0

y1
...
yN

 where yi :=

(
N

i

)
µ(x)N−iν(x)i

(µ(x) + ν(x))N
, i = 0, ..., N. (3.17)

As the transition matrix Lx governs the continuous time Markov process, we find that
Y(x) is the stationary probability distribution of the Markov process as

Y(x)T Lx = 0 and Y(x)T e = 1.

For more information about the transition matrix see Appendix B.1.1, where we inves-
tigated the structure of the transition matrix and calculated especially its eigenvalues
and eigenvectors as we need this information later during the diffusion limit.

Existence of the Solution

Eventually, we prove the existence of the solution of the transport equation (3.14), which
can be rewritten in the form

∂tp(x, t) = Ap(x, t) + Lxp(x, t) (3.18)

where the operator A is defined by

Aφ(x) := −∂x(v(x)� φ(x))

with domain D(A) = {φ ∈ L2(Ω)N+1 : φn(·) ∈ H1(Ω) ∀ n ∈ I}.
Notice that L2(Ω)N+1 is a Hilbert space with the scalar procuct

〈φ, ψ〉L2(Ω)N+1 =
∑
i∈I
〈φi(·), ψi(·)〉L2(Ω).

Theorem 3.6 (Existence and uniqueness of the transport equation)
For each φ(x) ∈ D(A) there exists a unique solution of the initial value problem

∂tp(x, t) = Ap(x, t) + Lxp(x, t) for x ∈ Ω,
0 = v(x)� p(x, t) for x ∈ ∂Ω,

p(x, 0) = φ(x).
(3.19)
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To prove Theorem 3.6 we need the following auxiliary result.

Lemma 3.7
Let φ ∈ L2(Ω), and ϕt : Ω→ Ω a family of C1 functions with

lim
t→0
‖ϕt(x)− x‖C0(Ω) = 0

and ϕ′t(x) ≥ µ > 0 for all x ∈ Ω, t ≤ t0 (for some positive t0). Then

lim
t→0
‖φ ◦ ϕt − φ‖L2(Ω) = 0.

Proof. Choose ε > 0. As C1(Ω) is dense in L2(Ω), we find ψ ∈ C1(Ω) s.t.

‖φ− ψ‖L2(Ω) ≤ min{ε/3,√µε/3}.

Furthermore, as ψ ∈ C1(Ω), we find t1 = t1(ε) > 0 such that t1 ≤ t0 and

∀t ∈ [0, t1) : ‖ψ ◦ ϕt − ψ‖L2(Ω) ≤ ε/3.

Now, with substituting z = ϕt(x),(∫ xmax

xmin

(φ ◦ ϕt(x)− ψ ◦ ϕt(x))2 dx

)1/2

=

(∫ ϕt(xmax)

ϕt(xmin)
(φ(z)− ψ(z))2 1

ϕ′t(ϕ
−1
t (z))

dz

)1/2

≤ 1
√
µ
‖φ− ψ‖L2(Ω) ≤ ε/3.

Thus, for 0 ≤ t < t1 = t1(ε) ≤ t0, we find

‖φ ◦ ϕt − φ‖L2(Ω) ≤ ‖φ ◦ ϕt − ψ ◦ ϕt‖L2(Ω) + ‖ψ ◦ ϕt − ψ‖L2(Ω) + ‖ψ − φ‖L2(Ω) ≤ ε.

Hence, for each ε > 0 we find t1(ε) > 0 s.t. for all 0 ≤ t < t1(ε) it is true that

‖φ ◦ ϕt − φ‖L2(Ω) ≤ ε.

Therefore, the limit t→ 0 exists and

lim
t→0
‖φ ◦ ϕt − φ‖L2(Ω) = 0. �

Proof. (Theorem 3.6) The proof is based on semigroup theory [3, 5, 24, 41]. We first
show that A is the infinitesimal generator of a C0 semigroup of bounded linear operators.
Indeed, let πn,tx0 denote the solution of the equation

d

dt
x(t)

∣∣
n

= vn(x(t))

for n ∈ I, with x(0) = x0, i.e.

x(t)|n = πn,tx0 =
1

γ
(αN + βn− e−γt(αN + βn− γx0)).
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Note, that Ω = (xmin, xmax) is an invariant region under this flow. We define

πt(x) := (π0,t, π1,t, ..., πN,t)
T : ΩN+1 → ΩN+1.

If φ : ΩN+1 → ΩN+1 is a differentiable function, then the initial value problem

∂tp(x, t) = −∂x(v(x)� p(x, t)), p(x, 0) = φ(x)

has a unique classical solution of the form

p(x, t) = φ(π−tx)∂x(π−tx) = φ(π−tx)eγt.

Otherwise we define the solution operator

Ptφ(x) := φ(π−tx)eγt, φ ∈ D(A).

Observe that {Pt}t≥0 is a semigroup of linear bounded operators on D(A). Indeed for
φ ∈ D(A) we have, for all n ∈ I,

P0φ(x) = φ(π0x) = φ(x)

Pt+sφ(x) = φ(πt+sx)eγ(t+s) = φ(πtπsx)eγseγt = Ptφ(πsx)eγs = PtPsφ(x)

Moreover, for n ∈ I,

‖Ptφn(x)‖L2(Ω) =

(∫
Ω
|Ptφn(x)|2dx

)1/2

=

(∫
Ω
φ2
n(πn,−tx)e2γtdx

)1/2

=

=

(∫
Ω
φ2
n(y)eγtdy

)1/2

= eγt/2‖φ(y)‖L2(Ω)

and consequently we obtain

‖Ptφ‖2L2(Ω)N+1 =
∑
i∈I
‖Ptφi(x)‖2L2(Ω) = eγt

∑
i∈I
‖φi(y)‖2L2(Ω) = eγt‖φ‖2L2(Ω)N+1 ,

‖Ptφ‖L2(Ω)N+1 = eγt/2‖φ‖L2(Ω)N+1 . (3.20)

Since H1(Ω)N+1 is dense in L2(Ω)N+1 we find ψs ∈ H1(Ω)N+1 and ψ ∈ L2(Ω)N+1 with
ψs → ψ so that

‖Ptψs − Ptψ‖L2(Ω)N+1 = ‖Pt(ψs − ψ)‖L2(Ω)N+1 ≤ e1/2γt‖ψs − ψ‖L2(Ω)N+1 → 0

We showed that Pt is a continuous extension of the solution operator from H1(Ω)N+1

to L2(Ω)N+1.
Finally, one has to show the strong continuity of Pt.

lim
t→0
‖Ptφ− φ‖L2(Ω)N+1 = lim

t→0
‖φ(π−tx)eγt − φ(x)‖L2(Ω)N+1

≤ lim
t→0
‖φ(π−tx)eγt − φ(π−tx)‖L2(Ω)N+1 + lim

t→0
‖φ(π−tx)− φ(x)‖L2(Ω)N+1
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As consequence of (3.20) we immediately find

lim
t→0
‖φ(π−tx)eγt − φ(π−tx)‖L2(Ω)N+1 = 0.

Still, it remains to show that lim
t→0
‖φ(π−tx)−φ(x)‖L2(Ω)N+1 = 0. Since πn,t(x) is a family

of C1-functions that satisfy the conditions of Lemma 3.7 we obtain for φ ∈ L2(Ω)

lim
t→0
‖φ(πn,t(x))− φ(x)‖L2(Ω) = 0

and for φ ∈ D(A)

lim
t→0
‖φ(πt(x))− φ(x)‖L2(Ω)N+1 ≤

∑
i∈I

lim
t→0
‖φi(πi,t(x))− φi(x)‖L2(Ω) = 0

Now it follows from the semigroup theory [3, 24, 41] that the operator A with domain
D(A) is the infinitesimal generator of the C0 semigroup {Pt}t≥0.

Lx is a bounded linear operator with domain

D(Lx) = C(Ω)N+1 ⊃ D(A).

From the perturbation theory of linear operators we can conclude that the operator
A+Lx with domain D(A+Lx) = D(A) is the infinitesimal generator of a C0 semigroup
{St}t≥0 of linear bounded operators on L2(Ω)N+1, see e.g. [24, Chapter 3, Theorem 1.1].

Once again semigroup theory, e.g. [41, Chapter 4, Theorem 1.3] then garantees that
the initial value problem has a unique solution, which is continuously differentiable on
[0,∞), for every initial value p0(x) ∈ D(A). �

3.2. Formal Diffusion Approximation

In this section we want to approximate the asymptotic behavior of the transport equa-
tion. Therefore we have to expand the transport equation by adopting a modified velocity
ṽ(x), where we introduce the deviation of the expectation of the underlying stochastic
process, to obtain the modified transport equation

∂tp(x, t) + ∂x(ṽ(x)� p(x, t)) = Lx[p(x, t)]. (3.21)

The idea we utilize is that the processes that govern the system live on different time
scales. We assume that the stochastic process is fast in comparison to the other processes
and thus already in equilibrium, so that the asymptotic behavior of the solution of (3.21)
can be approximated by

p(x, t) ≈ h(x, t)Y(x) (3.22)
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where Y(x) is the stationary probability distribution of the stochastic process and
h(x, t) : Ω × [0,∞) → R+ is a scalar function, describing the marginal distribution
of the AHL concentration.

We study two different scaling arguments, hyperbolic and parabolic scaling, to find inter-
esting relations and differences between the scalings. Via regular perturbation expansion,
as done in [20, 40], we derive a partial differential equation determining the marginal
distribution h(x, t). After all the parabolic scaling will turn out to be the most suitable
scaling for our purpose.

3.2.1. Expansion of the Transport Equation

To apply the diffusion approximation we expand the transport equation (3.14) by adopt-
ing a modified velocity. In the expanded transport equation we distinguish between the
mean AHL production of the system, determined by the mean number of activated cells
within the population, and the variability due to stochasticity.

In the formal approximation we concentrate on the interior of Ω and we denote the mean
number of activated cells of the underlying stochastic process, which depends on x, by
E(n|x) ∈ R+. Consequently the expectation E(n|x) is independent of n.
Thus, we define the modified velocity ṽ(x) of our expanded system as

ṽ(x) = (ṽ0, ṽ1, ...ṽN )T := ṽ1(x) + ṽ2(x) (3.23)

where ṽ1(x) := ṽ1(x)e, since e := (1, 1, ..., 1) ∈ RN+1, with

ṽ1(x) := αN − γx+ β1E(n|x),

determining the mean drift of the system, while

ṽ2(x) = (ṽ2,0(x), ṽ2,1(x), ..., ṽ2,N (x))T ,

with
ṽ2,n(x) := β2(n− E(n|x)),

expressing the variability due to the stochasticity within the system.
Note, that we introduced two different production rates β1 and β2. As we will see,
appropriate scaling requires a difference in magnitude of the parameters β1 and β2, so
we must extend our model. Let us agree on β1 ≥ β2, in order to emphasize the mean
AHL production rate versus the variability. One can see that for β1 = β2 = β we recover
the original velocity (3.10) derived in the previous section. In this sense, the original
model is embedded into this model.

To part it in a nutshell, the extended transport equation now reads

∂tp(x, t) + ∂x
(
(ṽ1(x) + ṽ2(x))� p(x, t)

)
= Lx[p(x, t)]. (3.24)

As before the n-th component pn(x, t) of p(x, t) denotes the density of the population
to be in state n ∈ I := {0, ..., N} at x ∈ Ω and t ≥ 0. The scaling is not given a priori,
but there is a degree of freedom. In order to find an appropriate scaling, we discuss in
the following three different cases.
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3.2.2. Hyperbolic Scaling

We conjecture that the stochastic process in (3.24) is very fast, i.e the transition between
different states of the population is very fast. Thus, we assume that the time scale of
the transition operator is of order O(ε2) and we substitute

µ(x)→ 1

ε2
µ̃(x) and ν(x)→ 1

ε2
ν̃(x).

Let L̃x be the transition operator which depends on the scaled transition rates ν̃(x) and
µ̃(x), then (3.24) can be written

∂tp(x, t) + ∂x(ṽ(x)� p(x, t)) =
1

ε2
L̃x[p(x, t)]. (3.25)

As we rescale this equation we obtain the singularly perturbed transport equation

ε2∂tp(x, t) + ε2∂x(ṽ(x)� p(x, t)) = L̃x[p(x, t)]. (3.26)

Hereafter we drop the tilde on the transition operator and the transition rates.

Since we are interested in the solution of (3.26) on the fast time scale we consider the
regular perturbation expansion

p(x, t) = p0(x, t) + εp1(x, t) + ε2p2(x, t) +O(ε3)

This ansatz gives the outer solution in the sense of singular perturbations. By equating
terms of equal order in ε we obtain the following equations:

ε0 : Lx[p0(x, t)] = 0,
ε1 : Lx[p1(x, t)] = 0,
ε2 : Lx[p2(x, t)] = ∂tp0(x, t) + ∂x (ṽ(x)� p0(x, t)) .

(3.27)

Concerning the first equation, ε0, we find that p0(x, t) is proportional to the zero-
eigenvector of the transition matrix Lx, hence

p0(x, t) = h1(x, t)Y(x) (3.28)

with some scalar function h1(x, t) : Ω× [0,∞)→ R+. The function h1(x, t) denotes the
marginal probability density of x, as we find

1 =

∫
Ω

N∑
n=0

h1(x, t)yn(x)dx =

∫
Ω
h1(x, t)

N∑
n=0

yn(x)dx =

∫
Ω
h1(x, t)dx. (3.29)

The transition matrix Lx is singular (see Appendix B.1) and thus the right-hand sides
must satisfy the solvability condition

N∑
n=0

(Lxf)n = 0 for all f : I × Ω→ RN+1
+ . (3.30)
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As the right-hand side of the equation of order ε1 is equal to zero the solvability condition
is fulfilled. It remains to solve the equation for order ε2 subject to (3.28). Again the
solvability condition has to be satisfied, so that

N∑
n=0

[∂tp0,n(x, t) + ∂x (ṽn(x)p0,n(x, t))] = 0.

Accordingly, we get the evolution equation for p0(x, t) as a result of the solvability
condition, which results in

N∑
n=0

(∂tp0,n(x, t) + ∂x(ṽn(x)p0,n(x, t))) =
N∑
n=0

(
∂th1(x, t)yn(x) + ∂x

(
ṽn(x)h1(x, t)yn(x)

))
= ∂t

(
h1(x, t)

N∑
n=0

yn(x)

)
+ ∂x

(
h1(x, t)

N∑
n=0

ṽn(x)yn(x)

)
(3.31)

We know that Y(x) is the normalized Perron-eigenvector (see Lemma B.4). Hence∑N
n=0 yn(x) = 1. Further we obtain

N∑
n=0

ṽn(x)yn(x) =
N∑
n=0

[
(αN − γx+ β1E(n|x) + β2(n− E(n|x)))yn(x)

]
= αN − γx+ β1E(n|x)− β2E(n|x) + β2

N∑
n=0

nyn(x)

= αN − γx+ β1E(n|x) = ṽ1(x)

as
∑N

n=0 nyn(x) = E(n|x). When we insert the above relation into (3.31), a transport
equation is produced describing the scalar function h1(x, t) as

∂th1(x, t) + ∂x(ṽ1(x)h1(x, t)) = 0.

Thus, with these scaling assumptions we obtain a drift model describing the pure trans-
port of the signaling molecule concentration. The drift velocity is determined by the
mean drift of the system, whereas the variability due to stochasticity within the system
is completely ignored. As we are interested in the influence of the stochasticity to our
model, this scaling seems to be a bit harsh.

3.2.3. Parabolic Scaling

To derive a parabolic partial differential equation as an approximation for the modified
transport equation (3.24) we now study the parabolic scaling. This is done for two
different settings of the transport equation, (1) a simplified version of the transport
equation with constant transition rates and (2) x−dependent transition rates as in the
original transport equation. Investigation of both settings can only be understood if the
details of the approximations are given. Our goal is to compare the results and explain
differences and similarities.

45



3. Communication in Small Bacterial Population

Parabolic Scaling for Constant Transition Rates

In this part we assume that the activation and deactivation rates, ν and µ, are constant
and do not depend on x. Although we know that this restriction does not achieve the
requirements of our model, this scaling will at least give us some useful information for
the x-dependent case.

As a consequence of this assumption the transition operator L is independent of x.
Furthermore, the Perron eigenvector of L, denoted by Y here, does not depend on x.
The simplified transport equation thus reads

∂tp(x, t) + ∂x(ṽ(x)� p(x, t)) = L[p(x, t)]. (3.32)

Same as in the previous section, we assume that the stochastic process is very fast and
thus the time scale is of order O(ε2). Therefore we define

µ→ 1

ε2
µ̂ and ν → 1

ε2
ν̂.

As further assumption we suppose the variation due to stochasticity to be fast, but not
as fast as the transition, whereas the mean drift itself is bounded. Thus we assume the
time scale of ṽ2(x) to be of order O(ε1) and the time scale for ṽ1(x) to be of order O(ε0)
so that we substitute

β2 →
1

ε
β̂2.

Let L̂ be the transition operator depending on the scaled transition rates ν̂ and µ̂ and
let ˆ̃v2(x) depend on β̂2. Introducing the scaling to the simplified transport equation, we
obtain

∂tp(x, t) + ∂x(ṽ1(x)p(x, t)) +
1

ε1
∂x(ṽ2(x)� p(x, t)) =

1

ε2
L[p(x, t)]

Here and hereafter we drop the hat on the scaled expressions.
The above equation is equivalent to the singularly perturbed transport equation

ε2∂tp(x, t) + ε2∂x(ṽ1(x)p(x, t)) + ε∂x(ṽ2(x)� p(x, t)) = Lp(x, t). (3.33)

As before we encounter the regular perturbation expansion

p(x, t) = p0(x, t) + εp1(x, t) + ε2p2(x, t) +O(ε3)

and by equating terms of equal order in ε we get:

ε0 : L[p0(x, t)] = 0,
ε1 : L[p1(x, t)] = ∂x (ṽ2,n(x)p0(x, t)) ,
ε2 : L[p2(x, t)] = ∂tp0(x, t) + ∂x (ṽ1(x)p0(x, t)) + ∂x (ṽ2(x)� p1(x, t)) .

(3.34)

From the first equation (order ε0) we obtain that p0(x, t) is proportional to the zero-
eigenvector of the transition operator L and so we get

p0(x, t) = h2(x, t)Y
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3. Communication in Small Bacterial Population

where h2(x, t) : Ω×[0,∞]→ R is a scalar function that describs the marginal distribution
of x, see (3.29).
Next we consider the order ε1: if this equation should allow a solution, the right hand
side has to fulfill the solvability condition (3.30). If we multiply the right-hand side with
the left-eigenvector, the resulting sum has to be equal to zero. Thus,

N∑
n=0

∂x (ṽ2,n(x)p0,n(x, t)) = ∂x

N∑
n=0

(ṽ2,n(x)h2(x, t)yn)

= ∂x

(
h2(x, t)β2

(
N∑
n=0

nyn − E(n|x)

N∑
n=0

yn

))
= 0

which is indeed true as
∑N

n=0 yn = 1 and
∑N

n=0 nyn = E(n|x).
Hence there is a solution of the equation for order (ε1). Since L is linear and bounded
the equation can be solved via a generalized or pseudo inverse (see Appendix B.1.3). We
denote the generalized inverse of L with L+. Then the solution can be written as

p1(x, t) = L+ [∂x (ṽ2(x)� p0(x, t))] = L+ [∂x (h(x, t)ṽ2(x)� (Y))] .

Since the generalized inverse is a linear operator and does not depend on x in this setting,
we can rewrite it in the form

p1(x, t) = ∂x
(
h2(x, t)β2(L+[n�Y]− E(n|x)L+[Y])

)
In Lemma B.11 we show that

L+
x [Y] = 0 and L+

x [n�Y] =
Nνµ

(µ+ ν)N+2
w1,

where w1 is the eigenvector of the transition matrix L corresponding to the eigenvalue
λ1 = −(µ+ ν). These evaluations results in

p1(x, t) =
β2Nνµ

(µ+ ν)N+2
∂xh(x, t) w1. (3.35)

Next we consider the term of order O(ε2). This equation is solvable if the solvability
condition

0 =
N∑
n=0

(∂tp0,n(x, t) + ∂x (ṽ1(x)p0,n(x, t)) + ∂x (ṽ2,n(x)p1,n(x, t)))

= ∂t

N∑
n=0

(h2(x, t)yn) + ∂x

N∑
n=0

(ṽ1(x)h2(x, t)yn) + ∂x

N∑
n=0

(ṽ2,n(x)p1,n(x, t))

is satisfied, which is true if h2(x, t) solves the following equation

∂th2(x, t) = −∂x(ṽ1(x)h2(x, t))− ∂x
N∑
n=0

(ṽ2,n(x)p1,n(x, t)). (3.36)
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Analyzing the sum in (3.36) we obtain

N∑
n=0

(ṽ2,n(x)p1,n(x, t)) = β2
2

Nνµ

(µ+ ν)N+2
∂xh2(x, t)

N∑
n=0

((n− E(n|x))w1) .

In Proposition B.3 we calculate
∑N

n=0 w1 = 0 and
∑N

n=0 nw1 = −(µ + ν)N−1 which
leads to

N∑
n=0

ṽ2,n(x)p1,n(x, t) = −D∂xh2(x, t)

where D := β2
2

Nνµ
(µ+ν)3

. Hence we can rewrite (3.36) and obtain a parabolic differential

equation for the scalar function as

∂th2(x, t) = −∂x(ṽ1(x)h2(x, t)) +D∂2
x h2(x, t). (3.37)

The diffusion tensor of the resulting limit equation is given by

D = β2
2

Nνµ

(µ+ ν)3
=

β2
2

µ+ ν
Var(n|x)

so that the diffusion term is determined by the variance of the underlying jump process,
whereas the drift term is governed by the mean drift of the model. In contrast to the
hyperbolic scaling, we find that the stochasticity affects the equation.

Parabolic scaling for x−dependent Transition Rates

We use the same scaling arguments as in the previous section, but now we study the
original expanded transport equation (3.24) where the transition rates and therefore the
transition operator depends on x. As before we scale

µ(x)→ 1

ε2
µ̂(x), ν(x)→ 1

ε2
ν̂(x) and β2 →

1

ε
β̂2.

Let L̂x be the transition operator depending on the scaled transition rates ν̂(x) and µ̂(x)
and let ˆ̃v2(n, x) depend on β̂2. Introducing the scaling to the transport equation (3.24)
we maintain

∂tp(x, t) + ∂x(ṽ1(x)p(x, t)) +
1

ε1
∂x(ṽ2(x)� p(x, t)) =

1

ε2
Lx[p(x, t)].

Here and hereafter we drop the hat on the scaled expressions.
The rescaled equation results in the singularly perturbed transport equation

ε2∂tp(x, t) + ε2∂x(ṽ1(x)p(x, t)) + ε∂x(ṽ2(x)� p(x, t)) = Lx[p(x, t)]. (3.38)
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3. Communication in Small Bacterial Population

Since we are interested in the solution of (3.38) on the diffusion time scale, we consider
the regular perturbation expansion

p(x, t) = p0(x, t) + εp1(x, t) + ε2p2(x, t) +O(ε3).

Equating terms of equal order in ε, we obtain the following system of equations

ε0 : Lx[p0(x, t)] = 0,
ε1 : Lx[p1(x, t)] = ∂x(ṽ2(x)� p0(x, t)),
ε2 : Lx[p2(x, t)] = ∂tp0(x, t) + ∂x(ṽ1(x)p0(x, t)) + ∂x(ṽ2(x)� p1(x, t)).

From the first equation we get, that p0(x, t) is proportional to the zero-eigenvector of
the transition operator matrix Lx,

p0(x, t) = h(x, t)Y(x)

where h(x, t) : Ω× [0,∞)→ R is the marginal distribution of the AHL molecule concen-
tration x, see (3.29).

Since the transition operator Lx is singular, the right-hand side of the second equation
(ε1) has to satisfy the solvability condition (3.30), that is

N∑
n=0

∂x(ṽ2,n(x)p0) = ∂x

N∑
n=0

(
β̃2(n− E(n|x)))h(x, t)yn(x)

)
=

= ∂x

(
h(x, t)β2

(
N∑
n=0

nyn(x)− E(n|x)
N∑
n=0

yn(x)

))
=

= ∂x (h(x, t)β2(E(n|x)− E(n|x))) = 0.

The solvability condition is satisfied. Thus equation (ε1) can be solved via the generalized
inverse of Lx, which is denoted by L+

x (see Appendix B.1). Then the solution can be
written in the form

p1(x, t) = L+
x [∂x(h(x, t)ṽ2(x)�Y(x))].

Please note that ∂x and L+
x do not commutate, as a new ingredient of the x−dependence.

In comparison to the case of constant rates, we obtain an additional term that is caused
by the interaction of the jump process and the AHL production.

As the generalized inverse L+
x is a linear functional we can rewrite

p1(x, t) = L+
x [h(x, t)ṽ2(x)� ∂xY(x)]

+ L+
x [ṽ2(x)�Y(x)∂xh(x, t)] + L+

x [h(x, t)Y(x)� ∂xṽ2(x)]. (3.39)

In our case it is not possible to calculate the generalized inverse L+
x explicitly. However,

due to the structure of the eigenvalues and eigenvectors, we could analyze the generalized
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inverse applied to this terms (Appendix B.1.3). Calculations that are needed here are
derived in Lemma B.11 and Lemma B.12. We just summarize the results here

L+
x [Y(x)] = 0, (3.40)

L+
x

[(
n�Y(x)

)]
=

Nν(x)µ(x)

(µ(x) + ν(x))N+2
w1, (3.41)

L+
x [∂xY(x)] = −b1(x)w1, (3.42)

L+
x

[(
n� ∂xY(x)

)]
= b2(x)wN

1 + b3(x)w2, (3.43)

with

b1(x) :=
N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ+ ν)N+2
,

b2(x) =
N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ+ ν)N+3
(Nν − (µ(x) + ν(x)(2N − 1))) ,

b3(x) :=
N(N − 1)ν(x)µ(x)(ν(x)∂xµ(x)− µ(x)∂xν(x))

2(µ+ ν)N+3
.

Notice, that wk denotes the eigenvector of the transition matrix Lx corresponding to
the eigenvalue λk = −k(µ(x) + ν(x)).

Let us consider equation (3.39). Investigation of its third term leads to

∂xṽ2(x) = −β̃2∂xE(n|x)e, e := (1, 1, ..., 1)T

which does not depend on n any more. Together with (3.40) we find

L+
x [h(x, t)∂xṽ2(x)�Y(x)] = h(x, t)∂xṽ2(x)L+

x [Y(x)] = 0. (3.44)

Concerning the first expression of (3.39), we obtain

L+
x [ṽ2(x)�Y(x)∂xh(x, t)] = ∂xh(x, t)L+

x [(β̃2(n− E(n|x) e))�Y(x)]

= ∂xh(x, t)
(
β̃2L+

x

[(
n�Y(x)

)]
− β̃2E(n|x)L+

x [Y(x)]
)

Subject to (3.41) and (3.40) this can be rewritten as

L+
x [ṽ2(x)�Y(x)∂xh(x, t)] = β̃2∂xh(x, t)

Nν(x)µ(x)

(µ(x) + ν(x))N+2
w1. (3.45)

The same calculations can be done for the first term of (3.39). With (3.42) and (3.43)
we get

L+
x [h(x, t)ṽ2(x)� ∂xY(x)] =

= h(x, t)β̃2L+
x

[(
n� ∂xY(x)

)]
− h(x, t)E(n|x)β̃2L+

x [∂xY(x)]

= h(x, t)β̃2 ((b2(x)w1 + b3(x)w2) + E(n|x)b1(x)w1) .

(3.46)
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Composing (3.45), (3.46) and (3.44) we end up with

p1(x, t) = β̃2∂xh(x, t)
Nν(x)µ(x)

(µ(x) + ν(x))N+2
w1

+ h(x, t)β̃2 ((b2(x)w1 + b3(x)w2) + E(n|x)b1(x)w1) (3.47)

Eventually we consider the condition corresponding to the (ε2) equation. The following
solvability condition has to be satisfied

0 =
N∑
n=0

(∂tp0,n(x, t) + ∂x(ṽ1(x)p0,n(x, t)) + ∂x(ṽ2,n(x)p1,n(x, t))) =

= ∂th(x, t)
N∑
n=0

yn(x) + ∂x

(
h(x, t)ṽ1(x)

N∑
n=0

yn(x)

)
+ ∂x

(
N∑
n=0

(ṽ2,n(x)p1,n(x, t))

)
.

From this solvability condition we obtain the evolution equation for h(x, t)

∂th(x, t) = −∂x (h(x, t)ṽ1(x))− ∂x

(
N∑
n=0

(ṽ2,n(x)p1,n(x, t))

)
. (3.48)

We analyze the expression
∑N

n=0(ṽ2,n(x)p1,n(x, t)) which corresponds to the investigation

of the terms
∑N

n=0(np1,n(x, t)) and
∑N

n=0 p1,n(x, t) as follows

N∑
n=0

(ṽ2,n(x)p1,n(x, t)) = β2

(
N∑
n=0

np1,n(x, t)− E(n|x)
N∑
n=0

p1,n(x, t)

)
.

The sum
∑N

n=0 p1,n(x, t) bores down to

N∑
n=0

p1,n(x, t) = β2∂xh(x, t)
Nν(x)µ(x)

(µ(x) + ν(x))N+2

N∑
n=0

w1

+h(x, t)β2

((
b2(x)

N∑
n=0

w1 + b3(x)

N∑
n=0

w2

)
+ E(n|x)b1(x)

N∑
n=0

w1

)
.

In Proposition B.3 we calculate

N∑
n=0

w0 = (µ+ ν)N ,

N∑
n=0

w1 =

N∑
n=0

w2 =

N∑
n=0

nw2,n = 0 and

N∑
n=0

nw1,n = −(µ+ ν)N−1.

Hence, we obtain
N∑
n=0

p1,n(x, t) = 0.

51



3. Communication in Small Bacterial Population

A similar procedure for
∑N

n=0 np1,n(x, t) leads to

N∑
n=0

np1,n(x, t) = β2∂xh(x, t)
Nν(x)µ(x)

(µ(x) + ν(x))N+2

N∑
n=0

nw1,n

+ h(x, t)β2

(
(b2(x)

N∑
n=0

nw1,n + b3(x)

N∑
n=0

nw2,n + E(n|x)b1(x)

N∑
n=0

nw1,n

)

= −β2∂xh(x, t)
Nν(x)µ(x)

(µ(x) + ν(x))3
− h(x, t)β2

N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ(x) + ν(x))4

· (Nν(x)− (µ(x) + ν(x)(2N − 1)) +Nν(x)) .

Thus, we rewrite

N∑
n=0

np1,n(x, t) = −∂xh(x, t)
β2Nν(x)µ(x)

(µ(x) + ν(x))3

+h(x, t)
β2N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ(x) + ν(x))4
(ν(x)− µ(x)).

All in all we obtain

∂x

(
N∑
n=0

(ṽ2,n(x)p1,n(x, t))

)
= ∂x

(
β2

N∑
n=0

np1 − β2E(n|x)
N∑
n=0

p1

)
= ∂x (−a(x)∂xh(x, t) + g(x)h(x, t))

where

g(x) :=
β2

2N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ(x) + ν(x))4
(ν(x)− µ(x)),

a(x) :=
β2

2Nν(x)µ(x)

(µ(x) + ν(x))3
.

(3.49)

In view of (3.48), we finally end up with a partial differential equation

∂th(x, t) = −∂x (h(x, t)(ṽ1(x)− g(x))) + ∂x (a(x)∂xh(x, t)) (3.50)

where g(x), a(x) defined in (3.49).

As a(x) =
β2
2

µ(x)+ν(x)Var(n|x), the diffusion is caused by the variance of the stationary
distribution of the jump process, whereas the drift term is determined by the mean drift
of the system plus some additional factor g(x). This factor is caused by an interaction
term of both the AHL production and the jump process. We will see below that this
term does not play a role for population of large or moderate population sizes, only for
small populations this interaction may have an effect.

52



3. Communication in Small Bacterial Population

3.3. The Parabolic Limit Equation

In this final section we are going to investigate the asymptotic behavior of the limit
equation (3.50) of the parabolic scaling. We return to the original model with β1 = β2 =
β. For x ∈ Ω = (xmin, xmax) ⊂ R, with xmin and xmax defined as in (3.11), and t ≥ 0
we consider

∂th(x, t) = −∂x (g̃(x)h(x, t)) + ∂x (a(x)∂xh(x, t)) (3.51)

where g̃(x) := (ṽ1(x)− g(x)) and a(x), g(x) defined in the previous section.

This second order parabolic equation describes the time evolution of the AHL distribu-
tion. We introduce below boundary conditions that lead to mass conservation.

We rather focus on AHL per volume than on the total AHL mass per cell. In case of a
given cell number N and a given volume V , there is no difference. However, if we consider
experiments that take place in different volumina, the density is more appropriate to use
than the total mass of AHL, since the cells senses the density and not the mass.

We are interested in the long term behavior for small populations, in order to obtain an
idea of the implication of stochasticity, as well as for large populations, to recognize how
the system returns to a deterministic behavior. It turns out that the probability density
converges to stationary states at large time. If we moreover regard large population
sizes, we consider two limits: the limit t→∞ as well as the limit V →∞. Surprisingly,
the outcome depends on the order of the two limits.

As we ask for conservation of probability mass in our model, let us define appropriate
boundary conditions. We know that x is defined within a bounded interval. To consider
conservation of probability mass, we require, that the flux of the model, which is defined
as

j(x, t) := g̃(x)h(x, t)− a(x)∂xh(x, t),

is equal to zero at the boundary of Ω, so that j(xmin, t) = j(xmax, t) = 0. Therefore the
boundary conditions read

g̃(x)h(x, t)− a(x)∂xh(x, t) = 0 for x ∈ ∂Ω. (3.52)

Properties of the functions a(x), g(x) and g̃(x) are summarized in the following.

Lemma 3.8
The functions a(x), g(x) and g̃(x) := ṽ1(x)− g(x) have the following properties.

1. a(x), g(x), g̃(x) ∈ C∞(Ω)

2. ‖a‖∞ <∞ and ‖g̃‖∞ <∞

3. a(x) is strictly positive with 0 < a ≤ a(x) ≤ ā <∞

Proof. We find ν(x), µ(x) ∈ C∞(Ω), defined in (3.9), with ‖µ‖∞ < ∞, ‖ν‖∞ < ∞. It
follows

a(x), g(x) ∈ C∞(Ω) and ‖a‖∞ <∞, ‖g‖∞ <∞.
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Since ṽ1(x) = αN − γx+ β1E(n|x) is a C∞-function and within the bounded interval Ω
‖ṽ1‖∞ <∞ we also have

g̃(x) ∈ C∞(Ω) and ‖g̃‖∞ <∞.

Furthermore, as µ(x) and ν(x) are strictly positive functions with µ(x), ν(x) > 0 for
x ∈ Ω and β2, N > 0 we obtain that a(x) is a strictly positive function as claimed. �

Finally, notice that the initial value problem

∂th(x, t) = −∂x (h(x, t)ĝ(x)) + ∂x (a(x)∂xh(x, t)) x ∈ Ω,
0 = ĝ(x)h(x, t)− a(x)∂xh(x, t) x ∈ ∂Ω,

h(x, 0) = h0(x)
(3.53)

has a unique solution for each h0(x) ∈ H3(Ω) that satisfies the compatibility conditions

of order 1, i.e the derivatives ∂kh
∂tk

∣∣∣
t=0

, k = {0, 1}, must satisfy the boundary conditions

for x ∈ ∂Ω. The statement can be found in [29, Chapter 5, Theorem 5.3].

3.3.1. Scaling of the Limit Equation

Up to now our model bears no information about space, since we only measured the
number of AHL molecules and the number of cells in the population. To assign the space
where the population lives or how much space the population occupies, we introduce the
volume V ∈ R and rewrite AHL mass as AHL concentration

z :=
x

V
, z ∈ Ω/V := Ωz,

i.e. we measure the number of AHL molecules per volume. Furthermore we introduce
the density ρ, that is the number of cells N per volume V , as

ρ :=
N

V
, ρ ∈ R+,

thus we can rewrite Ωz = (zmin, zmax) =
(
αρ
γ ,

(α+β)ρ
γ

)
. Moreover let us define

ĥ(z, t) := h(V z, t), µ̂(z) = µ(V z) and ν̂(z) = ν(V z). (3.54)

Then (3.51) can be written in the form

∂tĥ(z, t) = − 1

V
∂z(ĥ(z, t)(ṽ1(V z)− g(V z))) +

1

V 2
∂z(a(V z)∂zĥ(z, t)). (3.55)

Investigating the right hand side we obtain, due to E(n|V z) = Nν̂(z)
µ̂(z)+ν̂(z) ,

1

V
(ṽ1(V z)− g(V z)) =

=
1

V

[
αN − γV z + βE(n|V z)−

β2N
V (ν̂(z)∂zµ̂(z)− µ̂(z)∂z ν̂(z))(ν̂(z)− µ̂(z))

(µ̂(z) + ν̂(z))4

]
= αρ− γz + βρ

ν̂(z)

(µ̂(z) + ν̂(z))
− 1

V

β2ρ(ν̂(z)∂zµ̂(z)− µ̂(z)∂z ν̂(z))(ν̂(z)− µ̂(z))

(µ̂(z) + ν̂(z))4
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and

1

V 2
a(V z) =

β2ρ

V

ν̂(z)µ̂(z)

(µ̂(z) + ν̂(z))3
.

So finally our scaled equation can be written as

∂tĥ(z, t) = −∂z(ĝ(z)ĥ(z)) + ∂z(â(z)∂zĥ(z, t)) (3.56)

where we have

ĝ(z) := αρ− γz + βρ
ν̂(z)

(µ̂(z) + ν̂(z))
+

1

V

β2ρ(ν̂(z)∂zµ̂(z)− µ̂(z)∂z ν̂(z))(µ̂(z)− ν̂(z))

(µ̂(z) + ν̂(z))4
,

â(z) :=
1

V

β2ρν̂(z)µ̂(z)

(µ̂(z) + ν̂(z))3
. (3.57)

Scaled Limit Equation for Large Population

Since we are interested in the asymptotic behavior of the scaled limit equation for a
large population we derive formally the limit V → ∞. If we assume ρ to be a given
parameter, V →∞ implies N →∞.

Therefore, we examine â(z) and ĝ(z) for the formal limit case which yields

lim
V→∞

â(z) = 0,

lim
V→∞

ĝ(z) = αρ+ βρ
ν̂(z)

µ̂(z) + ν̂(z)
− γz := G(z).

In the formal limit V →∞, the scaled equation (3.56) reduces to

∂tĥ(z, t) = −∂z(G(z)ĥ(z, t)). (3.58)

The common approach to analyze (3.58) is the method of characteristics [54] where
the PDE is investigated by using the solution of ordinary differential equations along
characteristic curves.

Our partial differential equation in standard form is given by

∂tĥ(z, t) +G(z)∂xĥ(z, t) = ĥ(z, t)∂zG(z)

with the initial condition
ĥ(z, t) = ĥ0(z).

To apply the method of characteristics, we parameterize the initial curve C as follows,

z = z(τ), t = 0, ĥ(z, t) = ĥ0(τ).
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3. Communication in Small Bacterial Population

The family of characteristic curves determined by the points of C may be parameterized
as z = z(s, τ), t = t(s, τ), ĥ(z, t) = ĥ(z(s, τ), t(s, τ)), with s = 0 corresponding to the
initial curve C. By derivation of ĥ along these curves we obtain

∂

∂s
ĥ(z(s, τ), t(s, τ)) =

∂ĥ

∂z

∂z

∂s
+
∂ĥ

∂t

∂t

∂s

and the characteristic equations

∂z

∂s
= G(z(s, τ)) and

∂t

∂s
= 1.

Thus, for s = t the characteristic equation for z(t) reads

∂z(t)

∂t
= αρ− γz(t) + βρ

ν̃(z(t))

µ̃(z(t)) + ν̃(z(t))
. (3.59)

In the following we show that the fraction ν̃(z)
µ̃(z)+ν̃(z) is sigmoidal, i.e. have a non-negative

first derivative and exactly one inflection point.

Proposition 3.9
Consider

S(z) :=
ν̃(z)

µ̃(z) + ν̃(z)
=

∑M
k=m0

[(
M
k

) (
κz
γ1

)k]
∑M

k=0

[(
M
k

) (
κz
γ1

)k] .
For M ≥ m0 ≥ 2, the function S(z) is sigmoidal for z ∈ R+.

Proof. First of all, let y = κz
γ1

and

s(y) := 1−
∑m0−1

k=0

(
M
k

)
yk

(1 + y)M
,

then S(z) = s
(
κz
γ1

)
. It is sufficient to prove that s(y) is a sigmoidal function. Investiga-

tion of the first derivative yields

s′(y) =
1

(1 + y)2M

(
M(1 + y)M−1

m0−1∑
k=0

(
M

k

)
yk − (1 + y)M

m0−1∑
k=0

k

(
M

k

)
yk−1

)

=
(1 + y)M−1

(1 + y)2M

(
m0−1∑
k=0

M

(
M

k

)
yk −

m0−1∑
k=0

k(1 + y)

(
M

k

)
yk−1

)

=
(1 + y)M−1

(1 + y)2M

(
m0−1∑
k=0

(
M

k

)
yk(M − k) +

m0−2∑
k=0

(
M

k + 1

)
yk(k + 1)

)
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3. Communication in Small Bacterial Population

Since
(
M
k

)
(M − k) =

(
M
k+1

)
(k + 1) we obtain

s′(y) =

(
M

m0

)
m0

ym0−1

(1 + y)M+1
> 0, ∀ y ∈ R+.

The second derivative of s(y) takes the form

s′′(y) =

(
M

m0

)
m0

(1 + y)M
[
(m0 − 1)ym0−2(1 + y)− ym0−1(M + 1)

]
(1 + y)2M+2

=

(
M

m0

)
m0

ym0−2

(1 + y)M+2

(
y(m0 − 2−M) + (m0 − 1)

)
.

Hence, we obtain, the second derivative of s(y) has only one root in R+ at y∗ = (m0−1)
(M+2−m0) ,

so that s(y), respectively S(z) is a sigmoidal function. �

As consequence of the sigmoidal function we find that the characteristic equation (3.59)
exhibits bistable behavior and hysteresis as seen in the deterministic case, e.g. [10].
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Figure 3.2.: Bifurcation diagram of the characteristic equation for z(t) as a function of
the parameter ρ (bold line). The solid (dotted) line represents the stable
(unstable) steady states.

The stationary states of the characteristic equation (3.59) as a function of the parameter
ρ was plotted in Figure 3.2. For parameter values see Appendix B.2. We see that
the stationary states exhibit bistable behavior. For small values of ρ the steady state
value of the AHL concentration is small whereas the steady state value is large for high
values of ρ. For intermediate values of ρ we find the bistable region with three steady
state solutions, where the small and large values are stable steady solutions while the
intermediate solution is unstable. Moreover, in case that the parameter ρ is changed on
a slow time scale, we find hysteresis.
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3. Communication in Small Bacterial Population

Hence, we find that the stationary solution possesses two locally stable branches [10].
For the lower branch we call the population subcritical, where almost all cells of the
population are in the resting state, whereas in the higher branch, the population is
supercritical, i.e. almost all cells in the population are activated.

Biological the bistability means that for small cell densities the population is subcritical
and for large cell densities it is supercritical. Moreover, it turns out that the switch
between subcritical and supercritical is hysteretic, so that the population changes from
subcritical to supercritical at a different cell density level than vice versa. This behavior
can be interpreted as a mechanism of the Quorum Sensing system to filter noise. All in
all, in the formal limit V →∞ our model corresponds to deterministic models [10, 51].

3.3.2. Stationary Solution and Asymptotic Behavior

In this subsection we analyze the stationary solution ĥs(z) of the scaled limit equation
(3.56) where we then obtain

∂tĥ(z, t) = 0 = ∂z(−ĝ(z)ĥ(z, t) + â(z)∂zĥ(z, t)).

Integrating with respect to z yields

−ĝ(z)ĥs(z) + â(z)∂zĥs(z) = C

where C is constant. This is, the flux is constant. As the flux is zero at the boundary
of the interval, we obtain C = 0. In order to derive the stationary solution ĥs(z) of the
limit equation (3.56) we solve the linear differential equation of first order

∂zĥs(z) =
ĝ(z)

â(z)
ĥs(z). (3.60)

This differential equation can be solved explicitly via

ĥs(z) = ceI(z) where I(z) :=

∫ z

zmin

ĝ(ζ)

â(ζ)
dζ. (3.61)

As ĥs(z) denotes the stationary solution of the marginal distribution of the AHL molecule
concentration, we require

∫
ΩV

ĥs(z)dz = 1 so that the constant c is determined by

c :=

(∫
ΩV

eI(ζ)dζ

)−1

.

Simulation of the stationary solution (3.61) for different values of the density ρ reveals
that the stationary marginal distribution exhibits bimodality for a certain density range,
see Figure 3.3. For small densities the stationary solution exhibits one mode which is
localized at the minimal AHL concentration. Thus, the population is subcritical. On the
other hand, for large densities the unique mode of the stationary marginal distribution
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Figure 3.3.: Stationary solution (3.61) versus z for different values of the cell density ρ.

is located at the maximal concentration, i.e. the population is supercritical. For inter-
mediate values of ρ one can find that the stationary solution is bimodal. This means
that the population can either be sub- or supercritical with a certain probability, but
regardless of the state of the population, the population acts in a synchronized way.
Moreover, the simulation reveals that the AHL concentration dynamics does not exhibit
hysteresis as the deterministic model.

By numerical simulations we show that the limit equation of the expanded model ap-
proximates the marginal distribution for the AHL concentration of the original model
quite well: we simulated the marginal distribution for the AHL concentration of the
original model

ẋ(t) = αN + βn(t)− γx for x ∈ Ω, t ≥ 0

three times for long time and different values of the cell density ρ, and plotted the
end-concentration in Figure 3.4 (crosses). The parameters used for the simulation are
in accordance to the Quorum Sensing system in Pseudomonas putida [11]. The exact
parameter values can be found in Appendix B.2. For comparison we added a contour
plot of the stationary solution of the scaled limit equation (3.61) as a function of the
parameter ρ (solid line). One can see that the simulation of both models fit quite well.
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Figure 3.4.: Marginal distribution of the AHL concentration of the original model (3.10)
versus ρ (crosses) and contour plot of the stationary solution of the scaled
limit equation (3.61) as a function of ρ (solid lines, levels at 0.01, 0.1, 1).

Asymptotic Analysis

To derive further information about the asymptotic behavior of the stationary solution
(3.61)

ĥs(z) = ceI(z) where I(z) :=

∫ z

zmin

ĝ(ζ)

â(ζ)
dζ

subject to the volume, we investigate the ratio

ĝ(z)

â(z)
= V

(
αρ− γz + βρ ν̂(z)

(µ̂(z)+ν̂(z))

)
(µ̂(z) + ν̂(z))3

β2ρν̂(z)µ̂(z)

+
(ν̂(z)∂zµ̂(z)− µ̂(z)∂z ν̂(z))(ν̃(x)− µ̃(x))

(µ̂(z) + ν̂(z))ν̂(z)µ̂(z)
=: V f1(z) + f2(z).

Thus I(z) can be rewritten as

I(z) = V I1(z) + I2(z), where I1(z) :=

∫ z

zmin

f1(ζ)dζ, I2(z) :=

∫ z

zmin

f2(ζ)dζ,

and for the stationary solution (3.61) we obtain

ĥs(z) = c
(
eI1(z)

)V (
eI2(z)

)
. (3.62)

Increasing the volume V , we see that the first exponential function
(
eI1(z)

)V
dominates(

eI2(z)
)
. This means the interaction term only plays a role for small volumes, i.e. small
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cell numbers, whereas for medium and large cell numbers the system is driven by the
drift term only.

In Figure 3.5 we plotted the stationary solution of the limit equation for ρ = 0.31
(bimodal region) with different volumes V . As already mentioned, we find that for small
values of V , i.e. small cell numbers, the interaction term of AHL production and jump
process has a big influence, and the modes of the bimodal distribution are not in high
gear (dash line). Increasing the volume V (dotted and solid line) we see that one mode
get more and more pronounced tending to a delta peak whereas the second mode looses
hight.
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Figure 3.5.: Stationary solution of the scaled limit equation for different volume with
density ρ = 0.32.

This behavior can be understood analytically by the following auxiliary result.

Proposition 3.10
Let ϕ1, ϕ2 ∈ C∞(Ω) be nonnegative functions with Ω ⊂ R bounded. Further assume ϕ1

has a unique global maximum at z0 ∈ Ω. Then we find

ψn(z) :=
ϕn1 (z)ϕ2(z)∫

Ω ϕ
n
1 (ζ)ϕ2(ζ)dζ

is a Dirac sequence
lim
n→∞

ψn(z) = δz0(z).

Proof. Since ϕ1, ϕ2 are nonnegative functions we find

ψn(z) ≥ 0 and

∫
Ω
ψn(z)dz = 1 for all n.

It remains to show that

lim
n→∞

∫
Ω\J

ψn = 0,
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where J := (z0 − ε, z0 + ε) with z0 := arg max
z∈Ω

ϕ1(z).

We define Z0 := ϕ1(z0). Without loss of generality we find δ > 0 so that ϕ1(z) ≤ Z0− δ
for all z ∈ Ω\J and rewrite

∫
Ω\J

ψn =

∫
Ω\J ϕ

n
1 (ζ)ϕ2(ζ)dζ∫

Ω ϕ
n
1 (ζ)ϕ2(ζ)dζ

=

∫
Ω\J

(
ϕ1(ζ)
Z0−δ/2

)n
ϕ2(ζ)dζ∫

Ω

(
ϕ1(ζ)
Z0−δ/2

)n
ϕ2(ζ)dζ

≤

∫
Ω\J

(
Z0−δ
Z0−δ/2

)n
ϕ2(ζ)dζ∫

Ω

(
ϕ1(ζ)
Z0−δ/2

)n
ϕ2(ζ)dζ

Since Z0−δ
Z0−δ/2 < 1 it follows∫

Ω\J

(
Z0 − δ
Z0 − δ/2

)n
ϕ2(ζ)dζ

n−→
∞

0.

To get the desired result, we further show that
∫

Ω

(
ϕ1(ζ)
Z0−δ/2

)n
ϕ2(ζ)dζ is bounded away

from zero for n→∞. Therefore we define J1 ⊆ J with |J1| > 0, so that

ϕ1(z) > Z0 − δ/2 for all z ∈ J1

and consequently
ϕ1(z)

Z0 − δ/2
≥ 1 for allz ∈ J1.

For the integral term we now receive∫
Ω

(
ϕ1(ζ)

Z0 − δ/2

)n
ϕ2(ζ)dζ ≥

∫
J1

(
ϕ1(ζ)

Z0 − δ/2

)n
ϕ2(ζ)dζ > 0

and therefore

lim
n→∞

∫
Ω\J

ψn = 0.

Hence we have shown that ψn(z) is a Dirac sequence with lim
n→∞

ψn(z) = δZ0(z). �

We want to apply Proposition 3.10 to the stationary solution ĥs(z) with ϕ1 := eI1(z), and
ϕ2 := eI2(z). Therefore, we need to assure that eI1(z), resp. I1(z) has a unique maximum
depending on the cell density ρ. There are parameter regions where I1(z) exhibits only
one stationary state for all non-negative ρ. However, as depicted in Figure 3.2, for typical
parameters - especially for those we are interested (appropriate for Pseudomonas putida)
- there are two saddle-node bifurcations, leading to hysteresis. In this situation we can
prove the following result.

Proposition 3.11
If there is a non-negative ρ̂, so that eI1(z) possess two local maxima, then there exists

a unique ρ∗ where the function eI1(z) exhibits two global maxima. For all ρ 6= ρ∗ the
function eI1(z) has exactly one global maximum.
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Proof. Since the exponential function is monotone, it is sufficient to investigate the
extrema of I1(z, ρ) which are determined by the roots of

f1(z, ρ) =

(
αρ− γz + βρ ν̂(z)

(µ̂(z)+ν̂(z))

)
(µ̂(z) + ν̂(z))3

β2ρν̂(z)µ̂(z)

where f1(z, ρ) is a continuous, monotone increasing function in ρ since γ, z > 0 and

∂

∂ρ
f1(z, ρ) =

∂

∂ρ


(
α− γz

ρ + β ν̂(z)
(µ̂(z)+ν̂(z))

)
(µ̂(z) + ν̂(z))3

β2ν̂(z)µ̂(z)

 =
γz

ρ2
> 0.

Moreover, µ̂(z), ν̂(z), β > 0 so that the roots of f1 are determined by

αρ− γz + βρ
ν̂(z)

µ̂(z) + ν̂(z)
= 0 (3.63)

which corresponds to the stationary states of the characteristic equation (3.59). Since
ν̂(z)

µ̂(z)+ν̂(z) is a sigmoidal function (Proposition 3.9) we know that f1(z, ρ) exhibits one to
three roots.

Equation (3.63) can be rewritten as

γz

ρ
= α+ β

ν̂(z)

µ̂(z) + ν̂(z)
. (3.64)

Since we know that I1(z, ρ) possesses two local maxima at a certain parameter value ρ̂,
there are three roots of f1(z, ρ̂) present in the system (Figure 3.6, (1)). Moreover, for

(1)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

Z

(γ z)/ρ

α + (β ν)/(μ + ν)

(2)
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
ρ

1

z

ρ
2

Figure 3.6.: (1) Three intersection of α+ β ν̂(z)
µ̂(z)+ν̂(z) and γz

ρ̂ for ρ̂ = 0.32 (2) Bifurcation

diagram of (3.63)

ρ > ρ̂ we find that there exists one unique saddle-node bifurcation at ρ2 and for ρ < ρ̂
we obtain one unique saddle-node bifurcation at ρ1 (Figure 3.6, (2)). As the proof for
this fact is simple and reproduced rather often (see e.g. [36, 48]), we do not reproduce
the arguments here.

We consider three different cases:
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ρ < ρ1, ρ > ρ2: Since f1(zmin) > 0 and f1(zmax) < 0 for all ρ and f1(z, ρ) exhibits only
one non-negative root we obtain that I1(z, ρ) has only one maxima, which is global.

ρ = {ρ1, ρ2}: In this case f1(z, ρ) possesses two non-negative roots, which we denote by
z−(ρ) and z+(ρ). Without loss of generality we define z−(ρ) < z+(ρ) so that

∂

∂z
I1(z, ρ)

∣∣
z=z−,z+

= 0.

z−(ρ1) is a simple root of f1(z, ρ1) and the saddle-node bifurcation happens at
z+(ρ1). Thus, f1(z, ρ1) < 0 for all z ∈ (z−(ρ1), z+(ρ1)) and

I1(z+(ρ1), ρ1)− I1(z−(ρ1), ρ1) =

∫ z+(ρ1)

z−(ρ1)
f1(z′, ρ1)dz′ < 0.

Similarly, for ρ = ρ2 we derive f1(z, ρ2) > 0 for z ∈ (z−(ρ2), z+(ρ2)) and thus

I1(z+(ρ2), ρ2)− I1(z−(ρ2), ρ2) =

∫ z+(ρ2)

z−(ρ2)
f1(z′, ρ2)dz′ > 0.

Therefore, we obtain one global maximum at z−(ρ1), resp. z+(ρ2).

ρ1 < ρ < ρ2: In this last case f1(z, ρ) possesses three non-negative roots and we define
z−(ρ) < z0(ρ) < z+(ρ) where

∂

∂z
I1(z, ρ)

∣∣
z=z−,z0,z+

= 0.

Moreover, we find

∂

∂ρ
(I1(z+(ρ), ρ)− I1(z−(ρ), ρ)) =

∂

∂ρ

∫ z+(ρ)

z−(ρ)
f1(z′, ρ)dz′

= f(z+(ρ), ρ)z′+(ρ)− f(z−(ρ), ρ)z′−(ρ) +

∫ z+(ρ)

z−(ρ)

∂

∂ρ
f1(z′, ρ)dz′ > 0.

As I1(z+(ρ1), ρ1) − I1(z−(ρ1), ρ1) < 0, I1(z+(ρ2), ρ2) − I1(z−(ρ2), ρ2) > 0, and
I1(z+(ρ), ρ) − I1(z−(ρ), ρ) strictly increasing in ρ, there exists exactly one value
ρ∗ ∈ (ρ1, ρ2) with

I1(z+(ρ∗), ρ∗) = I1(z−(ρ∗), ρ∗).

Otherwise, for ρ 6= ρ∗ the function I1(z, ρ) possesses only one global maxima. �

With Proposition 3.11 we can apply Proposition 3.10 to our stationary solution.

Corollary 3.12
For ρ 6= ρ∗, the stationary solution ĥs(z) = c

(
eI1(z)

)V (
eI2(z)

)
tends to a Dirac delta

function in the limit V →∞,
lim
V→∞

ĥs(z) = δz0(z)

where z0 := arg max
z∈Ω

eI1(z).
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In the limit V → ∞, the cell density ρ∗ determines a sharp threshold of the stationary
solution where the population switches between sub- and supercritical, so that the system
exhibits neither hysteresis nor bimodality.

Conclusion

We investigated the marginal distribution of the AHL concentration (3.51) concerning
two different limits, namely V →∞ and t→∞ and found out that the result depends
upon the order of the limits. When we first applied the limit V →∞ to the scaled limit
equation we return to the deterministic model where the stationary solution exhibits
bistability and hysteresis.
Moreover we found that for the stationary solution of the scaled limit equation the
bistability of the deterministic models was translated into bimodality but the stationary
solution is not determined by hysteresis. This behavior can be interpreted a ”tunnel”
effect, i.e. the population ”tunnels” from one stationary state to the other. Only if the
signal is changed fast enough, the picture changes (see Figure 3.7 ) and the hysteresis
is present again (the tunneling effect is too slow). In Figure 3.7 we simulated the scaled
limit equation for populations where the number of cells within the population increase,
resp. decrease in time. Thus, the cell density changes over time and we substitute
ρ → ρ(t) = ρ1 + ρ2t. The simulation reveals that if we change the cell density faster,
the threshold, where the system switches from one state to the other, varies, i.e. we get
hysteresis.

If the parameters are changed even faster, V →∞, we could prove that the solution tends
to a point mass centered at the (generically unique) maximum of the stationary solution,
which corresponds approximately to the locally stable stationary states of the ordinary
differential equation of the first case. Hence, as expected we found the stationary states
of the deterministic model. It was unexpected, though, that the bistability and hysteresis
was lost in this case. This is due to the fact that the time scale separation of the change
in the parameters and in the system is not given any more.

In biology the hysteresis is an important feature of the Quorum Sensing system. Usually,
hysteresis is understood as a protective mechanism to filter the stochasticity of the signal.
All in all, our analysis reveals that the stochasticity may destroy this hysteresis for small
populations. Our results can be interpreted as the possibility of the system to ”tunnel”
from one, deterministic locally stable state to another. In this case, one of the stationary
states generically wins. However, it takes the system rather a long time to ”tunnel” from
one state to the other. This aspect was found in the analysis of the stationary states. If
we consider a signal that changes very slowly, the system has enough time to ”tunnel”
into the stationary measure. I.e., there will be a distinct jump of the system at one
single given value of the signal - no matter if we decrease or increase the signal. This is
true only for very slow varying signals.
If we add on top of this slow signal a (high frequent) stochastic noise, this noise may
drive the system over the critical threshold. In the case of the deterministic hysteresis,
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Figure 3.7.: Simulation of the scaled limit equation (3.50). Left side: initial value ρ1 =
0.2, right side: ρ1 = 0.6 (level lines at 0.001, 0.01, 0.25)

an arbitrary full activation/deactivation is prevented by the fact that activation and
deactivation occur at different threshold values. In the present case activation and
deactivation takes place at the very same signal strength. However, another mechanism
prevents the system from erratic behavior: The system is very slow. The signal has to
be above the threshold a long time before the ”tunnel” effect allows the system to switch
between sub- and supercritical. Hence, the noise is averaged out.

This is, we describe here an alternative way to filter out stochasticity in a signal. This
mechanism is also based on the hysteresis in the deterministic formulation of the model,
but relies on the stochastic ”tunnel” effect. The advantage for a population may be,
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that there is one slightly distinct threshold that determines the switch of the behavior,
instead of two different thresholds (depending on the history of the systems). This may
allow a more accurate response on environmental conditions.
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Cells in a Diffusive Medium

In order to get a better understanding of the Quorum Sensing system, experiments on
single cell level are performed. Cells are tagged with reporter constructs that luminesce
in different colors, and signal different states of a cell. It is hard to use classical spatially
structured population models to interpret these data. These models usually describe cell
densities. The data, on the other hand, express the state of single cells.

We take up the modeling approach chosen in [34] where the cells are kept as single ex-
tended objects with a spatially homogeneous interior. The model consists of a system of
ordinary differential equations describing the density of the signaling molecules within
the cell, coupled by a parabolic diffusion equation, governing the dispersion and absorb-
tion of the signaling molecules in the exterior. The cell communicate with the exterior
by a spatially extended surface. This model is quite simple to develop. However, as we
have a system of nonlinear ordinary differential equations coupled with a linear partial
differential equation defined on a region with little holes (the cells), it is not too easy to
handle this model. Analytical solutions are not available in the case of several cells, and
numerical schemes require a fine discretization around the tiny holes, leading to a high
computational burden.

In the stationary case, the paper [34] chooses the approach that the cell radius is shrunk
to zero, leading to an homogeneous equation for the signaling substance. The interaction
of the cells however appear as delta peaks on the right hand side. In case of the homo-
geneous space, this partial differential equation can be solved explicitly, such that the
stationary points of the system can be computed as the solution of a finite dimensional
algebraic equation.

The aim of this chapter is to take up the findings of the work done in [34] and present
an approximative solution of the problem in the non stationary case. Therefore we
investigate the model for one cell and state an approximation theorem where we can show
that for long time behavior the solutions of original and approximative model are close
to each other. Moreover the model for several interacting cells can be approximated by
a delayed equation, where the delay represents the time needed for a signaling molecule
to diffuse between the cells [44].
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4. Approximating the Dynamics of Active Cells in a Diffusive Medium

4.1. Mathematical Model

We apply the modeling approach of [34] and consider N cells that communicate via
Quorum Sensing. In the outer space, the spatial dynamics of the signaling molecule
substances is well described by a diffusion equation. Within the cells, the spatial struc-
ture is less important, and an ordinary differential equation represents appropriately
the dynamics of the internal state of a cell [10]. The outer field and the internal state
communicate via the in- and outflow which is determined by the boundary conditions.

The cells are described as balls Ωi = {x ∈ R3 : ‖x − xi‖ ≤ R}, i = 1, ...N , with
radius R in R3, the total mass of the signaling substance within each cell is denoted
by ai = ai(t) ∈ R, and the exterior is denoted by Ω = R3 \

⋃N
i=1 Ωi. The model then

takes the form of an initial boundary value problem, where the exterior concentration u
is described by a diffusion equation, coupled with N ordinary differential equations for
ai, i = 1, . . . , N , namely

ut = D∆u, u(x, 0) = u0(x),

−D ∂

∂ν
u
∣∣
∂Ωi

= d1u
∣∣
∂Ωi
− d2ai(t),

a′i(t) = f(ai(t)) +

∫
∂Ωi

(d1u− d2ai(t)) do, ai(0) = ai0.

Here D > 0 is the diffusion coefficient, d1, d2 ≥ 0 are inflow and outflow constants, and
ν denotes the outer normal of Ω.

The internal production of the autoinducer ai(t) in each cell is modeled by the function
f , for instance of the form [10]

f(ai) = α+
βani

anthresh + ani
− γcai. (4.1)

Thus, depending on the choice of α, β, athresh, γc > 0, the problem a′i = f(ai) may have
up to three positive stationary states [10]. It is straight to use more complex ODE’s
where the state of a cell is described by a vector of different densities, e.g. corresponding
to different Quorum Sensing systems.

This model has the disadvantage to be computational costly for numerical schemes,
since cells appear as little holes in the three dimensional space, which forces a rather fine
discretization around the cells leading to a high numerical effort. If f(.) is monotone, the
theory of monotone dynamical systems allow to draw some conclusions about stationary
states and ω-limit sets [34], but the detailed time course during the intermediate phase
cannot be revealed by this method.

4.2. Approximative Model

According to [34] we use the fact that cells are often scattered at large distances in
comparison with their radius and investigate the limit R → 0, i.e. the cell is shrunken
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4. Approximating the Dynamics of Active Cells in a Diffusive Medium

to a point source. Therefore we have to scale the equation suitable, where the scaling
behavior of influx and efflux of a cell is of special interest.

The efflux of the mass ai is proportional to the surface of the cell, which is 4πR2. Thus,
it vanishes with order O(R2) and the proportionality constant of the efflux d2 has to be
rescaled by 1/R2. As we expect point sources to appear in the limit R → 0, close to
the center xi of a cell i the solution should behave like u ∼ 1/‖x− xi‖, i.e. the solution
exhibits a pole of order one. The influx is also proportional to the cell surface so that we
find u is proportional to R−14πR2 = 4πR, and we therefore rescale the proportionality
constant for the influx d1 by 1/R [34]. The rescaled system thus reads

ut = D∆u, u(x, 0) = u0(x), (4.2a)

−D ∂

∂ν
u
∣∣
∂Ωi

=
d1

R
u
∣∣
∂Ωi
− d2

R2
ai(t), (4.2b)

a′i(t) = f(ai(t)) +

∫
∂Ωi

(
d1u

R
− d2ai(t)

R2

)
do, ai(0) = ai,0. (4.2c)

However, in contrast to [34] we later shall also assume that the distance between cells
has to be scaled, as ‖xi − xj‖ = O(Rα) for some 0 < α < 1.

4.2.1. Case of One Cell

First, we analyze the case of one cell which is centered at the origin. Therefore, let
N = 1, x1 = 0, and write a = a1. Moreover, let a1,0 = a0 = 0 and u0 ≡ 0. The latter
can be seen as a compatibility condition between (4.2a,b) and (4.2c). We show that the
function a(t) in (4.2) can be approximated by the solution b(t) of the delayed ODE

b′(t) = f(b(t))− 4πd2b+ d1T̂R[b̂(·)](t), b(0) = 0, (4.3)

b̂(t) =
4πDd2

d1+D
b(t), T̂R[b̂(·)](t) = 4πR

∫ t

0

1

(4πDτ)3/2
e−R

2/4Dτ b̂(t− τ)dτ. (4.4)

In detail, we show the following theorem.

Theorem 4.1
Assume that a(t) ∈ C1 is the solution of (4.2), and b(t) the solution of (4.3). Then for
all t1 > 0 there exist R0 > 0 and C > 0 such that for all 0 < R < R0 we have

sup
0≤t≤t1

|a(t)− b(t)| ≤ CR‖a‖C1 . (4.5)

The main idea of the proof is to consider the following auxiliary problem: For given a(t)
we approximate solutions u of the initial boundary value problem (4.2a,b) by solutions
v of the initial value problem

vt = D∆v + b(t)δ0(x), x ∈ R3, v(x, 0) = 0, (4.6)
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with a Dirac–delta source, and with a suitable b(t). The optimal choice for b turns out
to be

b(t) =
4πDd2

d1+D
a(t) = â(t).

Next we compare solutions of (4.2) with solutions (v, b) of

vt = D∆v + b̂(t)δ0(x), v|t=0 = 0, (4.7a)

b′(t) = f(b(t)) +

∫
∂Ω

(
d1v

R
− d2b(t)

R2

)
do, b(0) = 0. (4.7b)

Since (4.7a) can be solved explicitly, the ordinary differential equation (4.7b) for b can
be written as

b′(t) = f(b(t))− 4πd2b(t) + d1T̂R[b̂(·)](t)

with T̂R defined in (4.4). Similarly, the ordinary differential equation (4.2c) can be
written as

a′(t) = f(a(t))− 4πd2a(t) + d1TR[a(·)](t),

where

TR[a(·)](t) =

∫
∂Ω

u(t)

R
do,

with u(t) the solution of (4.2a), (4.2b). The main step is to derive a priori estimates for
the difference between TR[a] and T̂R[â]. Gronwall’s inequality then yields the result.

As already explained we first want to compare solutions of (4.2a),(4.2b) with solutions
of (4.6). It will turn out that b(t) = â(t) is the optimal choice for our purposes, but for
now we keep b free.

Lemma 4.2
Let w(x, t) = u(x, t)− v(x, t). Then w(x, t) satisfies

wt = D∆w, x ∈ Ω, w(x, 0) = 0,

−D ∂

∂ν
w
∣∣
∂Ω

=
d1

R
w
∣∣
∂Ω

+ g(x, t)
∣∣
∂Ω
,

(4.8)

where

g(x, t) =
1

R4

∫ t

0
b(τ)φ

(
R2

4D(t− τ)

)
dτ − d2a(t)

R2

and
φ(x) = π−3/2x3/2e−x(d1 + 2Dx).

Proof. As u = w + v|Ω, we find

wt = D∆w, w(x, 0) = 0,

−D ∂

∂ν
w
∣∣
∂Ω

=
d1

R
u
∣∣
∂Ω
− d2

R2
a(t) +D

∂

∂ν
v
∣∣
∂Ω

=
d1

R
(w + v)

∣∣
∂Ω
− d2

R2
a(t) +D

∂

∂ν
v
∣∣
∂Ω
,

=
d1

R
w
∣∣
∂Ω

+ g(x, t)
∣∣
∂Ω
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with

g(x, t) =
d1

R
v
∣∣
∂Ω
− d2

R2
a(t) +D

∂

∂ν
v
∣∣
∂Ω
, x ∈ ∂Ω.

The equation (4.6) for v can be solved explicitly. Let

K(x, t) =
1

(4πDt)3/2
e−x

2/(4Dt),

then, since v(x, 0) = 0,

v(x, t) =
∫ t

0

∫
R3 K(x− y, t− τ)b(τ)δ0(y)dydτ =

∫ t
0 K(x, t− τ)b(τ)dτ

Next, v|∂Ω =
∫ t

0 K(R, t − τ)b(τ)dτ . The outer normal for x ∈ ∂Ω reads ν(x) = −x
‖x‖ so

that ∂
∂ν v(x)

∣∣
∂Ω

= νT∇v(x) = −
∫ t

0 Kx(R, t − τ)b(τ)dτ , where Kx denotes the partial
derivative of K with respect to x. Hence

g(x, t) =
1

R

∫ t

0
b(τ) [d1K(R, t− τ)−RDKx(R, t− τ)] dτ − d2a(t)

R2
.

The integral kernel reads

d1K(R, t)−DRKx(R, t) =
1

(4πDt)3/2
e−R

2/(4Dt)
[
d1 + 2D

R2

4Dt

]
=

1

R3(4πDt/R2)3/2
e−R

2/(4Dt)
[
d1 + 2D

R2

4Dt

]
=

1

R3
φ

(
R2

4Dt

)
. �

Lemma 4.3
For solutions w of Lemma 4.8 we obtain

‖w‖2L2(Ω) ≤
2R

d1

∫ t

0

∫
∂Ω
g2(x, τ)dodτ, (4.9)

‖w‖2L2([0,t],H1(Ω)) ≤
2R

d1D

(∫ t

0

∫
∂Ω
g2(x, τ)dodτ +D

∫ t

0

∫ τ

0

∫
∂Ω
g2(x, σ)dodσdτ

)
.

(4.10)

Proof. (see also [44]) We have the a priori estimate

D

∫
Ω
|∇w|2dx+

d

dt

1

2

∫
Ω
w2(x, t)dx = D

∫
Ω
|∇w|2dx+D

∫
Ω
w∆wdx

= D

[∫
Ω
|∇w|2dx−

∫
Ω
|∇w|2dx+

∫
∂Ω
w∂νwdo

]
= −

∫
∂Ω
w

[
d1

R
w + g(x, t)

]
do

≤ −d1

R

∫
∂Ω
w2do+

d1

R

∫
∂Ω
w2do+

R

d1

∫
∂Ω
g2(x, t)do =

R

d1

∫
∂Ω
g2(x, t)do
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using (4.8), Green’s first identity and the estimation

−wg = −
√
d1

R
w

√
R

d1
g ≤ d1

R
w2 +

R

d1
g2.

Thus,

d

dt

1

2

∫
Ω
w2(x, t)dx ≤ d

dt

1

2

∫
Ω
w2(x, t)dx+D

∫
Ω
|∇w|2dx ≤ R

d1

∫
∂Ω
g2(x, t)do. (4.11)

Integrating (4.11) over time we find (4.9), and integrating a second time with respect to
time yields (4.10). �

The next lemma explains the choice b(t) = â(t) = 4πDd2
d1+D a(t). It is a key step to prove

Theorem 4.1. Note that the constant can be chosen in such a way that it does neither
depend on R nor on t.

Lemma 4.4
Assume that a ∈ C1(R+) with a(0) = 0. For all t1 > 0 there exists a C > 0 such that if
b(t) = â(t) then, for t ≤ t1,∫ t

0

∫
∂Ω
g2(x, τ)dodτ ≤ Ct‖a′‖∞ (‖a‖∞ + ‖a′‖∞) (4.12)

Proof. Without suitable choice of b, e.g., for b ≡ 0 and a 6≡ 0, we obviously have∫ t
0

∫
∂Ω g

2(x, τ)dodτ ∼ R−2. However, since a(0) = 0 we have, by the mean value theorem,∫ t

0
g2(R, τ)dτ =

∫ t

0

[
1

R4

∫ τ

0
â(τ − σ)φ

(
R2

4Dσ

)
dσ − d2

R2
a(τ)

]2

dτ

=

∫ t

0

[
â(τ)

R4

∫ τ

0
φ

(
R2

4Dσ

)
dσ − d2

R2
a(τ) +

1

R4

∫ τ

0
[â(τ − σ)− â(τ)]φ

(
R2

4Dσ

)
dσ

]2

dτ

=

∫ t

0

[
a(τ)

(
4πDd2

R4(d1+D)

∫ τ

0
φ

(
R2

4Dσ

)
dσ − d2

R2

)
− 1

R4

∫ τ

0
â′(θ̃)σφ

(
R2

4Dσ

)
dσ

]2

dτ

≤2

∫ t

0

[
a(τ)

(
4πDd2

R4(d1+D)

∫ τ

0
φ

(
R2

4Dσ

)
dσ − d2

R2

)]2

dτ

+ 2

∫ t

0

[
1

R4

∫ τ

0
â′(θ̃)σφ

(
R2

4Dσ

)
dσ

]2

dτ = 2(I1 + I2),
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where τ − σ ≤ θ̃ ≤ τ in I2. Next, with ξ = R2

4Dσ ,

I1 =

∫ t

0

[
a(τ)

(
d2

R2
√
π(d1+D)

∫ ∞
R2/4Dτ

(d1 + 2Dξ)ξ−1/2e−ξdξ − d2

R2

)]2

dτ

=

∫ t

0

[
a(τ)

(
d2

R2
√
π(d1+D)

(
(d1+D)

{
Γ(1/2)−

∫ R2/4Dτ

0
ξ−1/2e−ξdξ

}

+
2DR√
4Dτ

e−R
2/4Dτ

)
− d2

R2

)]2

dτ

=

∫ t

0

[
a(τ)

d2

R2
√
π(d1+D)

(
2DR√
4Dτ

e−R
2/4Dτ − (d1+D)

∫ R2/4Dτ

0
ξ−1/2e−ξdξ

)]2

dτ

≤ C1R
−2

∫ t

0

a(τ)2

τ
dτ ≤ C1R

−2

∫ t

0
τa′(θ)

a(τ)

τ
dτ ≤ C1R

−2‖a‖C0‖a′‖C0t,

where we used integration by parts and Γ(1/2) =
√
π. Similarly,∫ τ

0
σφ

(
R2

4Dσ

)
dσ =

1

π3/2

(
R2

4D

)2 ∫ ∞
R2/4Dτ

ξ−3/2e−ξ(d1 + 2Dξ)dξ

=
R4

(4D)2π3/2

[
4d1

√
Dτ

R
e−R

2/4Dτ + (2D − 2d1)

∫ ∞
R2/4Dτ

ξ−1/2e−ξdξ

]

≤ R4

(4D)2π3/2

[
4d1

√
Dτ

R
e−R

2/4Dτ + (2D − 2d1)Γ(1/2)

]
,

hence

I2 =

∫ t

0

[
â′(θ̃)

R4

∫ τ

0
σφ

(
R2

4Dσ

)
dσ

]2

dτ

≤
(∫ t

0

16

R2
d2

1Dτe
−R2/2Dτ + (2D − 2d1)2πdτ

)
‖a′‖2∞ ≤ C2R

−2‖a′‖2∞t

Integrating over ∂Ω now yields the result. �

To compare solutions of the full problem (4.2) and the auxiliary problem (4.7) we need
to estimate the differences of the traces of u and v on ∂Ω. Therefore we introduce the
following operators.

Definition 4.5 Let u ∈ L2
loc(R+, H

1(Ω)) denote the solution of (4.2a),(4.2b) for given
a ∈ C1(R+) and define

TR : C1(R+)→ L2
loc(R+), TR[a(·)](t) =

1

R

∫
∂Ω
u(t, x)do.

74



4. Approximating the Dynamics of Active Cells in a Diffusive Medium

Similarly, let v be the solution of (4.6) for b ∈ C1(R+), and define

T̂R : C1(R+)→ L2
loc(R+), T̂R[b(·)](t) =

1

R

∫
∂Ω
v(x, t)do.

Remark 4.6 Integrating (4.12) from 0 to t1 and using (4.10) shows that the solution
of (4.2a),(4.2b) for given a ∈ C1(R+) is in L2((0, t1), H1(Ω)). Therefore, the operator
TR is well defined. The well-definedness of T̂R follows by direct calculation. Obviously,

T̂R[b(·)](t) =
1

R

∫
∂Ω

∫ t

0

1

(4πD(t− τ))3/2
e−x

2/(4D(t−τ))b(τ)dτdo

= 4πR

∫ t

0

1

(4πD(t− τ))3/2
e−R

2/(4D(t−τ))b(τ)dτ,

and for b ∈ C1 we have, estimating as above, ξ = R2

4D(t−τ) ,

T̂R[b(·)](t) =
R3π

D

∫ ∞
R2/4Dt

(πR2)−3/2ξ−1/2e−ξb

(
t− R2

(4Dξ)

)
dξ → 1

D
b(t) (4.13)

as R→ 0, uniformly in t ∈ [t0, t1] for any t0 > 0.

Finally, for â, b̂ ∈ C0 we have

‖T̂R[â(·)]− T̂R[b̂(·)]‖L∞(0,t1) ≤ C‖â− b̂‖L∞(0,t1). (4.14)

Setting ζ = â− b̂ this follows from

‖[T̂Râ](t)− [T̂Rb̂](t)‖L∞(0,t1) =
1

R
sup

t∈(0,t1)

∫
∂Ω

∫ t

0

1

(4πD(t− τ))3/2
e−x

2/(4D(t−τ))ζ(τ)dτdo

≤4π‖ζ‖L∞(0,t1)R sup
t∈(0,t1)

∫ t

0

1

(4πD(t− τ))3/2
e−R

2/(4D(t−τ))dτ

≤C‖ζ‖L∞(0,t1) sup
t∈(0,t1)

∫ ∞
R2/(4t)

ξ−1/2e−ξdξ ≤ C‖ζ‖L∞(0,t1)γ(1/2) = C‖ζ‖L∞(0,t1).

Lemma 4.7
Let a ∈ C1(R+). Then

‖TR[a(·)]− T̂R[â(·)]‖L1(0,t1) ≤ CR
∫ t1

0

(∫
∂Ω
g2(x, τ)do

)1/2

dτ ≤ CRt1‖a′‖1/2∞ ‖a‖
1/2
C1 .

Proof. We have

‖TR[a(.)](t)− T̂R[â(.)](t)‖L1(0,t1) =
1

R

∫ t1

0

∣∣∣∣∫
∂Ω
w(t, x)do

∣∣∣∣ dt

75
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Next, reasoning like in Lemma 4.3 we have

0 ≤ D
∫ t

0

∫
Ω
|∇w|2dxdτ +

1

2

∫
Ω
w2(x, t)dx

= −
∫ t

0

d1

R

∫
∂Ω
w2do−

∫
∂Ω

[R−1/2d
1/2
1 w][g(x, t)R1/2d

−1/2
1 ]dodτ

≤ − d1

2R

∫ t

0

∫
∂Ω
w2dodτ +

R

2d1

∫ t

0

∫
∂Ω
g2(x, t)dodτ

and hence ∫ t

0

∫
∂Ω
w2dodτ ≤ R2

d2
1

∫ t

0

∫
∂Ω
g2dodτ.

Thus

‖TR[a(.)](t)− T̂R[â(.)](t)‖L1(0,t1) =
1

R

∫ t1

0

∣∣∣∣∫
∂Ω
w(t, x)do

∣∣∣∣ dt
≤ 1

R

∫ t1

0

(∫
∂Ω

12do

)1/2(∫
∂Ω
w(t, x)2do

)1/2

dt ≤ C
∫ t1

0

(∫
∂Ω
w2(x, τ)do

)1/2

dτ

≤
√
t1C

(∫ t1

0

∫
∂Ω
w2(x, τ)do

)1/2

dτ ≤ CR
√
t1

(∫ t1

0

∫
∂Ω
g2(x, τ)dodτ

)1/2

and the result now follows from Lemma 4.4. �

With this auxiliary results we now prove Theorem 4.1 by comparison of the solutions of
(4.2) and (4.3).

Proof. (Theorem 4.1) We write the ordinary differential equations for a(t) resp. b(t)
as

a′(t) = f(a(t))− 4πd2a(t) + d1TR[a(.)](t), a(0) = 0,

b′(t) = f(b(t))− 4πd2b(t) + d1T̂R[b̂(.)](t), b(0) = 0,

where we know that

‖TR[a(.)](t)− T̂R[â(.)](t)‖L1(0,t1) ≤ CRt1‖a′‖1/2C0 ‖a‖
1/2
C1 ,

|T̂R[â(.)](t)− T̂R[b̂(.)](t)| ≤ C2‖â− b̂‖L∞(0,t1).

Let ζ = a− b and w.l.o.g assume that f is globally Lipschitz. Then,

|ζ(t)| =
∣∣∣∣ζ(0) +

∫ t

0
ζ ′dτ

∣∣∣∣
≤
∫ t

0
|f(a)− f(b)|+ 4πd2|a− b|+ d1|TRa− T̂Râ|+ d1|T̂Râ− T̂Rb̂|dτ

≤ C
∫ t

0
ηdτ + d1‖TRa− T̂Râ‖L1 + C

∫ t

0
ηdτ

≤ CRt‖a′‖1/2
C0 ‖a‖

1/2
C1 + 2C

∫ t

0
ηdτ
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where η(τ) = sup0≤σ≤τ ζ(σ). In particular, η(t) ≤ CRt‖a‖C1 + 2C
∫ t

0 η(τ), and Gron-
wall’s inequality yields the result. �

Moreover, T̂Rb̂(t) → 1
D b̂(t) as R → 0, uniformly in t ∈ [t0, t1] for any t0 > 0, see (4.13),

such that (4.3) can be approximated by

b′(t) = f(b(t))−Mb, b(0) = b0, M = 4πDd2/(d1+D). (4.15)

Thus, for a small cell its interaction with the medium can be explicitly calculated, up to
a small error. Here M > 0 means that the interaction of a single cell with the exterior
is always damping, i.e. there is a net outflow of signaling substance out of the cell.

4.2.2. Several Cells

The picture changes if there are several cells. Apart from the net outflow we discovered
in the single-cell-case, there is also a net inflow that establishes the information exchange
between the cells. The basic setting parallels that of the single cell scenario. For technical
reasons, however, also the distances between the cells are scaled by Rα, i.e. ‖xi − xj‖ =
O(Rα). The approximative model in this case reads

b′i = f(bi)− 4πd2bi +
1

R

∫
∂Ωi

∫ t

0

∑
j

1

(4πD(t− τ))3/2
e−|xi−xj |

2/4D(t−τ)b̂j(τ)dτ

 do.

(4.16)
Again, we are able to derive an error estimate.

Theorem 4.8
Assume that ai ∈ C1 for the solution a of (4.2c), and bi the solution of (4.16). Then for
all t1 > 0 there exist R0 > 0 and C > 0 such that for all 0 < R < R0 we have

sup
0≤t≤t1

|ai(t)− bi(t)| ≤ CR1 sup
j=1,..,N

‖aj‖C1(0,t1). (4.17)

The error estimate (4.17) is now proved with obvious modifications of the analysis in
section 4.2.1. The basic idea for N ≥ 2 cells is to introduce a delta source for each cell,
i.e., to consider

vt = D∆v +
N∑
i=1

b̂i(t)δxi(x), v|t=0 = 0 (4.18a)

b′i(t) = f(bi(t)) +

∫
∂Ωi

(
d1v

R
− d2bi(t)

R2

)
do, bi(0) = 0. (4.18b)
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The ordinary differential equations (4.18b) can then be rewritten as

b′i = f(bi)− 4πd2bi + T̂ iR[~b(·)](t), (4.19)

T̂ iR[~b(·)](t) =
1

R

∫
∂Ωi

v(t, x)do (4.20)

=
1

R

∫
∂Ωi

∫ t

0

∑
j

1

(4πD(t− τ))3/2
e−|x−xj |

2/4D(t−τ)b̂j(τ)dτ

 do.

The communication between different cells is represented by

1

R

∫
∂Ωi

∫ t

0

∑
j 6=i

1

(4πD(t− τ))3/2
e−|x−xj |

2/4D(t−τ)b̂(τ)dτdo

As the cell surface ∂Ωi scales with R2, this is a first order term. However, also our error
estimate shows that the error between the original model and the approximation scales
with R1. Thus, the communication is of the same order as the error and hence can be
neglected. An additional scaling of the cell distance is required to reduce the order of
the error resp. to increase the order of the communication terms.

For j 6= i we assume ‖xi − xj‖ := δij = δ̃ijR
α to obtain

R−(1−α) 1

R

∫
∂Ωi

∫ t

0

1

(4πD(t− τ))3/2
e−|x−xj |

2/4D(t−τ)b̂j(τ)dτdo

= Rα
∫ t

0
(4πDτ)−3/2e−(δij+O(R))2/4Dτ b̂j(t− τ)dτ

=
Rα

4Dπ3/2(δij +O(R))

∫ ∞
δij/4Dt

ξ−1/2e−ξ b̂j(t− (δij +O(R))2/4Dξ)dξ

→ 1

4Dπ3/2δ̃ij
Γ(1/2)b̂j(t) as R→ 0,

which yields the approximate system, i.e.,

b′i = fi(~b) := f(bi(t))−Mbi +R1−α
∑
j 6=i

4πd1d2

δ̃ij(d1 + 1)
bj(t). (4.21)

The form (4.16) let us nicely recognize the diffusible character of the communication:
the delay in the interaction term reflects the probability that a molecule produced at
time τ < t in cell j reaches cell i at time t. However, as the random walk in three
dimensions is not recurrent, the probability that a molecule of cell i hits cell j decreases
if R becomes smaller, especially if the molecule already had some time to diffuse away.
The scaling prevents the interaction term to become negligible, but only the molecules
that are created recently (instantaneously) have a chance to influence the neighboring
cells. This effect leads to the ordinary differential equation (4.21).
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A.1. Biological Experiments

We give a short description about the procedure of the experiments analysed by the
model. For more detailed information, see the experimental original papers [46, 45].

Preparation of LuxN, LuxP, LuxQ and LuxU. LuxN, LuxP, LuxQ, LuxQ and LuxU
were separately overexpressed in various E. coli strains, transformed with plasmids con-
taining the respective gene. Subsequently, LuxP and LuxU were purified in solutions.
The membrane bound LuxN and LuxQ were purified and prepared in inverted vesi-
cles, i.e. that the autoinducer binding sites were localized within the vesicles and the
phosphate binding sites outside.

Phosphorylation and dephosphorylation assay. Reactions were performed in phos-
phorylation buffer at 25◦C. Sensor kinases LuxQ and LuxN were tested in membrane
vesicles. For phosphorylation assays, i.e. measurement of kinase activity, LuxN and/or
LuxQ containing vesicles were mixed with purified LuxU and, if required, the respective
autoinducer. AI-2 was added bound to LuxP, if required. Generally, the concentration
of LuxU was more than 10 times higher than of LuxN/LuxQ. To incorporate LuxP
or LuxP/AI-2 into LuxQ membrane vesicles, vesicles were treated with three cycles of
freezing and thawing. The reaction was started by addition of amongst others radio-
labeled ATP. At various times the reaction was terminated followed by separation of
the proteins. This procedure allows to measure the amount of phosphorylated protein.
All enzymatic activities were calculated as average values of at least three independent
experiments. For dephosphorylation assays, i.e. to measure phosphatase activity, LuxU
was first phosphorylated using LuxN. The reaction mixture contained twice the amount
of LuxN and LuxU. After 10min of incubation, membrane vesicles were removed by cen-
trifugation, and ATP was removed by gel filtration. Dephosphorylation of LuxUP was
initiated by addition of amongst others membrane vesicles containing LuxQ and LuxN,
respectively, with or without the cognate autoinducers.

A.2. Parameter Estimation

The fitting procedure for LuxN and LuxQ has been performed as follows:
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Sensor kinase LuxN:

(1) The ratio k1/k−1 can be determined from the equilibrium of the autophosphory-
lation reaction which can be found in [46].

(2) The time series for the phosphorylation (Fig. 2.3 (c), (d)) allows to obtain an idea
about the rates k2 and k−2 (delay in the onset of the phosphorylation of LuxUP)
and the rate k3.

(3) The dephosphorylation experiment targets on rates k−3 and, up to a certain degree
also at rates k2 and k−2. These rates, however, only play a minor role in the
overall dynamics (especially w.r.t. equilibrium concentrations). Higher rates of the
phosphotransfer from or to LuxN can balance different values for k2 and k−2.

(4) The influence of the autoinducer on the kinase activity of LuxN has been investi-
gated in [46]. An experiment performed in that paper shows that the phosphatase
activity is not affected by autoinducer. Hence, only the phosphotransfer from ATP
or that to LuxUP is modified by the autoinducer. This cannot be decided. We
have chosen to modify the rate k1 only. In order to meet the baseline experiment
(no autoinducer) there, we changed the rates k1, k−1, kai1 and kai−1 with a factor
two resp. one half. This is acceptable, as the experiments here (especially Fig. 2.3)
and the experiments in [46] have a slightly different set-up. Then, changing kai−1

only, the asymptotic for a large amount of AI has been determined. At the end,
choosing kai4 and kai−4 in an appropriate way, the half-dose of autoinducer has
been adjusted.

Especially in this last step, we have a large degree of freedom. However, we assume
that the reactions of autoinducers are fast. Thus, the overall system “senses” a mean of
the system without autoinducer, and the system where all sensor kinase is bound to the
autoinducer. As the only rate that differs between the two kinases is k−1, effectively this
value is replaced by a value that is a functional of the autoinducer density. As long as
this functional is met appropriately, the identification problem does not play a role.

Sensor kinase LuxQ: The basic idea has been that most units of LuxQ are chemically
quite similar to LuxN. Thus, the rates should be similar. Starting with the values for
LuxN, the rates for LuxQ have been carefully adapted. Most rates are in the same range
but one: the autoinducer reduces the ability of LuxN to accept a phosphor group to 6%
of the original rate, while for LuxQ we still find 30%. This finding corresponds to the
fact that LuxQ is a less potent phosphor donator, and the modification of this rate may
not be crucial in the overall system.

The parameter set is by far not unique. The measured data (that consist basically
of the component LuxUP only) are not sufficient to allow for an identification of the
parameters. The parameter values in the model (1) for LuxN and LuxQ are chosen
according to the following table.
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Name LuxN LuxN / Fig. 2.3(e) LuxQ

k1 0.1/(minµM) 0.33/(minµM) 0.1/(minµM)
k−1 1.1e5/(minµM) 0.55e5/(minµM) 1.1e5/(minµM)
kai1 0.0006/(minµM) 0.00216/(minµM) 0.03/(minµM)
kai−1 1.1e5/(minµM) 0.308e5/(minµM) 1.1e5/(minµM)

k2 35/min → same 385/min
k−2 0.35/min → same 3.5/min

k3 0.03825/(minµM) → same 0.00144/(minµM)
k−3 0.15/(minµM) → same 0.1/(minµM)
kai3 0.03825/(minµM) → same 0.00144/(minµM)
kai−3 0.15/(minµM) → same 0.1/(minµM)

kai4 0.6/(minµM) → same 0.24/(minµM)
kai−4 1.0/(minµM) → same 0.5/(minµM)

Please note that we have chosen slightly different parameters to reproduce the data
measured for this paper on the one hand, and measured in [46] on the other hand. The
data from [46] are shown in Fig. 2.3 (e), and indicated separately in the table.
The fits for the three experiments targeting on the three processes (flow of phosphor
from LuxUP to ADP, the flow of phosphor from ATP to LuxU, and the influence of this
flow by autoinducers) are satisfying (see Fig. 2.3) and show that the model is able to
meet the data for one sensor kinase only quite well.

The values for the additional rate constants of the complete model read

Name value

nks3 0.0/(min µM)
nks−3 4/(min µM)
nksai3 0.0/(min µM)
nksai−3 15/(min µM)
qks3 0.00144/(min µM)
qks−3 0.1/(min µM)
qkai3 0.00144/(min µM)
qksai−3 0.1/(min µM)
k5 2.4/(min µM)
kai5 500/(min µM)
k6 10/min

The simulations done in this chapter are performed with ANSITO, a simulation tool
based on the programming language PythonTM.
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B.1. Transition Matrix

In this section we derive some information about the tridiagonal transition matrix Lx ∈
R(N+1)×(N+1) defined in 3.1.2:

Lx :=



l0(x) l+0 (x) 0 · · · 0
l−1 (x) l1(x) l+1 (x) 0

0 l−2 (x) l2(x) l+2 (x) 0

...
. . .

. . .
. . .

. . .
. . .

...

0 l−N−2(x) lN−2(x) l+N−2(x) 0

0 l−N−1(x) lN−1(x) l+N−1(x)

0 · · · 0 l−N (x) lN (x)


.

where

li(x) := −(iµ(x) + (N − i)ν(x)) i = 0, ..., N
l−i (x) := (N − (i− 1))ν(x) i = 1, ..., N
l+i (x) := (i+ 1)µ(x) i = 0, ..., N − 1.

We use this information during the diffusion approximation. At the moment we are
only interested in the structure of the matrix, i.e. eigenvalues and eigenvectors and
therefore we skip the x-dependency and analyze the matrix for a given constant AHL
concentration. Thus we define

LN := Lx ∈ R(N+1)×(N+1), resp. LN+1 := Lx ∈ R(N+2)×(N+2) (B.1)

In order to simplify the proofs to follow it is convenient to introduce the dimension in
the notation, since the proofs are done via induction. Also µ and ν are assumed to be
constant in this sections.
The first property of the transition operator matrix is, that the sum over the columns, for
each column, is equal to zero. Thus we know, that the matrix has a zero left eigenvalue,

eTLN = 0 where e = (1, ..., 1), dim(e) = N + 1 (B.2)

Hence the matrix LN is singular and therefore not invertible. Thus, we use a general-
ization of the inverse.
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In the first part this section we will determine the eigenvalues λ and the corresponding
eigenvectors w of the transition operator matrix LN . We can give a recursive description
of the eigenvectors. Further we will show that there is a normalized left Perron eigen-
vector Y, resp. Y(x). In the second part of this section we will do some calculations
concerning the generalized inverse.

B.1.1. Eigenvalues and Eigenvectors

First we investigate the eigenvalues of the transition matrix which we calculate explicit
as in the following proposition.

Lemma B.1 (Eigenvalues of the transition matrix)
The transition matrix LN ∈ R(N+1)×(N+1) has eigenvalues λk = −k(µ + ν) for k =
0, ..., N .

In order to derive this proof we need the a further proposition concerning the eigenvalues
of LN . As already mentioned we determine the eigenvalues recursive. Therefore, we first
state the recursive relation of eigenvectors and eigenvalues.

Lemma B.2 (Eigenvectors of the transition matrix)
Let λk := −k(µ + ν), k = 0, ..., N , eigenvalues of LN with corresponding eigenvectors
wN
k = (wNk,0, w

N
k,1, ..., w

N
k,N )T .

Then λk+1 = −(k + 1)(µ+ ν) are eigenvalues of LN+1 with eigenvectors wN+1
k+1 ∈ RN+2

where

wN+1
k+1,0 := wNk,0

wN+1
k+1,i := wNk,i − wNk,i−1 i = 1, ..., N

wN+1
k+1,N+1 := −wNk,N

Proof. Let λk := −k(µ+ ν) eigenvalue of LN to the eigenvector wN
k . Then we show:

LNwN
k = λkw

N
k ⇒ LN+1w

N+1
k+1 = (λk − (µ+ ν))wN+1

k+1

Starting with the assumption λkw
N
k = LNwN

k we find:

(I∗) λkw
N
k,0 = −NνwNk,0 + µwNk+1,1

(II∗) λkw
N
k+1,i = (N + 1− i)νwNk+1,i−1 − (iµ+ (N − i)ν)wNk+1,i

+(i+ 1)µwNk+1,i+1 for i = 1, ..., N − 1

(III∗) λkw
N
k+1,N = νwNk+1,N−1 −NµwNk+1,N

Based on this we show that (λk − (µ+ ν))wN+1
k+1 = LN+1w

N+1
k+1 :

(I) (λk − (µ+ ν))wN+1
k+1,0 = −(N + 1)νwN+1

k+1,0 + µwN+1
k+1,1

(II) (λk − (µ+ ν))wN+1
k+1,i = (N + 2− i)νwN+1

k+1,i−1 + (i+ 1)µwN+1
k+1,i+1

−(iµ+ (N + 1− i)ν)wN+1
k+1,i

for i = 1, ..., N − 1

(III) (λk − (µ+ ν))wN+1
k+1,N+1 = νwN+1

k+1,N − (N + 1)µwN+1
k+1,N+1
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We show the equalities (I)− (III) subject to (I∗)− (III∗), starting each with the right
hand side.
Ad (I):

−(N + 1)νwN+1
k+1,0 + µwN+1

k+1,1 = −NνwNk,0 + µwNk+1,1 − νwNk,0 − µwNk,0
= λkw

N
k,0 − (µ+ ν)wNk,0 = (λk − (µ+ ν))wN+1

k+1,0

Ad (II):

(N + 2− i)νwN+1
k+1,i−1 − (iµ+ (N + 1− i)ν)wN+1

k+1,i + (i+ 1)µwN+1
k+1,i+1 =

= (N + 2− i)ν(wNk,i−1 − wNk,i−2)− (iµ+ (N + 1− i)ν)(wNk,i − wNk,i−1)

+(i+ 1)µ(wNk,i+1 − wNk,i)
= (N + 1− i)νwNk,i−1 − (iµ+ (N − i)ν)wNk,i + (i+ 1)µwNk,i+1

−
[
((N + 2− i)νwNk,i − ((i− 1)µ+ (N + 1− i))ν)wNk,i−1 + iµwNk,i

]
+νwNk,i−1 − µwNk,i + µwNk,i−1 − νwNk,i

= λk(w
N
k,i − wNk,i−1)− (µ+ ν)(wNk,i − wNk,i−1) = (λk − (µ+ ν))wN+1

k+1,i

Ad (III):

νwN+1
k+1,N − (N + 1)µwN+1

k+1,N+1 = −(νwNk,N−1 −NµwNk,N ) + (µ+ ν)wNk,N

= −(λk − (µ+ ν))wNk,N = (λk − (µ+ ν))wN+1
k+1,N+1

Thus we have shown the validity of the equations (I) − (III) and hence proven that
λk+1 is a eigenvalue of LN+1 with eigenvector wN+1

k+1 . �

With this proposition we can go on and proof Lemma B.1 using induction over N .

Proof. (Lemma B.1)

N = 0: L0 = (0) has eigenvalue 0.

N = 1: L1 =

(
−ν µ
ν −µ

)
has eigenvalues 0,−(µ+ ν).

N − 1→ N : We know that −k(µ + ν) for k = 0, ..., N − 1 are eigenvalues of LN−1.
Moreover, 0 is an eigenvalue as consequence of the sum over each column. Ac-
cordingly, as LN is the generator of a Markov chain and thus preserves the total
probability mass the corresponding left eigenvector is explicitly given as (1, 1, ..., 1).
And from Lemma B.1 we get that LN also has the eigenvalues −(k+ 1)(µ+ ν) for
k = 0, ..., N − 1.

Hence summarized we get the eigenvalues of the transition matrix LN as:

λk = −k(µ+ ν) for k = 0, ..., N. �
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Information About the Eigenvectors We do some calculations concerning the eigen-
vectors which are summarized in the following. Also these formulas are used in Sec-
tion 3.2.

Proposition B.3 (Sums over eigenvectors of LN)

N∑
i=0

wN0,i = (µ+ ν)N
∑N

i=0w
N
1,i = 0

N∑
i=0

iwN1,i = −(µ+ ν)N−1

N∑
i=0

wN2,i = 0
∑N

i=0 iw
N
2,i = 0

Proof. To show the equations in the Proposition B.3, we do some straight forward
calculations. Concerning the eigenvector wN0 we obtain

N∑
i=0

wN0,i =
N∑
i=0

(
N

i

)
µN−iνi = (µ+ ν)N .

In order to derive the sums involving wN
1,i and iwN

1,i we use the recursive structure.

N∑
i=0

wN1,i = wN0,0 +

N−1∑
i=1

(wN−1
0,i − w

N−1
0,i−1)− wN−1

0,N−1 =

N−1∑
i=0

wN−1
0,i −

N∑
i=1

wN−1
0,i−1

=

N−1∑
i=0

wN−1
0,i −

N−1∑
i=0

wN−1
0,i = 0

N∑
i=0

iwN1,i =
N−1∑

1

i(wN−1
0,i − wN−1

0,i−1)−N(wN−1
0,N−1) =

N−1∑
i=1

iwN−1
0,i −

N−1∑
i=1

iwN−1
0,i−1 −Nw

N−1
0,N−1

=

N−1∑
i=0

iwN−1
0,i −

N−2∑
i=0

(i+ 1)wN−1
0,i −

N−1∑
i=N−1

iwN−1
0,i =

N−1∑
i=0

wN−1
0,i (i− (i+ 1))

= −
N−1∑
i=0

wN−1
0,i = −(µ+ ν)N−1

And last we analyze the sums over wN2,i and iwN2,i the same way:

N∑
i=0

wN2,i = wN1,0 +
N−1∑
i=1

(wN−1
1,i − wN−1

1,i−1)− wN−1
1,N−1 =

N−1∑
i=0

wN−1
1,i −

N−1∑
i=0

wN−1
1,i = 0

N∑
i=0

iwN2,i = 0 +
N−1∑

1

i(wN−1
1,i − w

N−1
1,i−1) +N(−wN−1

1,N−1)

=

N−1∑
i=0

iwN−1
1,i −

N−1∑
i=0

(i+ 1)wN−1
1,i = −

N−1∑
i=0

wN−1
1,i = 0 �
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B.1.2. Perron Eigenvector

Last we determine the eigenvector according to the zero left eigenvalue and show that
this is the Perron eigenvector.

Lemma B.4 (Perron eigenvector)
Let Y = (y0, y1, ..., yN ) where

yj :=

(
N

j

)(
µ

µ+ ν

)N−j ( ν

µ+ ν

)j
for j = 0, ..., N

and 0 < µ+ ν. Y is the Perron eigenvector, i.e. the right eigenvector for the eigenvalue
zero with non-negative entities and normed to ‖Y‖l1 = 1.

Proof. First we show, that LNY = 0. We do this by verifying the equality of each row:

(I) −Nνy0 + µy1 = 0
(II) (N − (j − 1))νyj−1 − (jµ+ (N − j)ν)yj + (j + 1)µyj+1 = 0 j = 1, ..., N − 1
(III) νyN−1 −NµyN = 0

Ad (I): −Nνy0 + µy1 = 1
(µ+ν)N

(
−NνµN + µNµN−1ν1

)
= 0

Ad (II): for j = 1, ..., N − 1

(N − (j − 1))νyk−1 − (jµ+ (N − j)ν)yk + (j + 1)µyk+1 =

=
1

(µ+ ν)N

(
(N − (j − 1))ν

(
N

j − 1

)
µN−(j−1)νj−1 − (jµ+ (N − j)ν)

(
N

j

)
µN−jνj

+ (j + 1)µ

(
N

j + 1

)
µN−(j+1)νj+1

)
=

1

(µ+ ν)N

((
N

j

)
µN−jνj(jµ− jµ− (N − j)ν + (N − j)ν)

)
= 0

Ad (III): νyN−1 −NµyN = 1
(µ+ν)N

(
νNµ1νN−1 −NµνN

)
= 0

Furthermore
∑N

n=0 yn = 1 so that Y is the corresponding normalized eigenvector to the
zero left eigenvalue. As 0 < µ+ ν and Lemma B.1 we know that λ0 = 0 is simple and

λ0 > λ1 > λ2 > ... > λN .

Therefore σ(LN ) = 0. Y is the so called Perron eigenvector to LN . �

The Perron eigenvector gives us the distribution of the state behavior of the population
at a certain concentration x at the stationary state. This distribution is a Binomial

distribution with parameters
(
N, ν

µ+ν

)
. Thus we can calculate the expectation value

and the variance of the distribution depending on the concentration x as follows:

E(n|x) =
Nν(x)

µ(x) + ν(x)
(B.3)

Var(n|x) =
Nµ(x)ν(x)

(µ(x) + ν(x))2
(B.4)
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To derive information about the partial derivative of the Perron eigenvector with respect
to x, we have to beware of the x dependency and therefore we will denote the Perron
eigenvector in the depending case by Y(x).

Partial Derivative of the Perron Eigenvector Anticipating our further needs, we cal-
culate the partial derivation of the x depending Perron eigenvalue Y(x) with respect to
x. For n = 0, ..., N we find:

∂xyn(x) =

(
N

n

)
∂x

((
µ

µ+ ν

)N−n( ν

µ+ ν

)n)

=

(
N

n

)(
µN−nνn ((N − n)ν − nµ) (−µ∂xν + ν∂xµ)

(µ+ ν)N (µ+ ν)µν

)

= yn(x)

(
ν∂xµ− µ∂xν

(µ+ ν)µν

)
(Nν − n(µ+ ν))

Thus we obtain

∂xY(x) = Y(x) (ν∂xµ− µ∂xν)

(
N

(µ+ ν)µ
− n

µν

)
(B.5)

where n = (0, 1, 2, ..., N)T as defined in Definition 3.5.

B.1.3. Generalized Inverse Operator

For the diffusion approximation of the velocity jump process we need to determine the
inverse operator L+

x of the transition operator Lx, which is equal to calculating the
inverse of the transition matrix Lx.

Definition B.5 We define a generalized inverse L+ of the matrix L by

L+

(
N∑
i=1

ciwi

)
=

N∑
i=1

ci
λi

wi.

In our case we cannot determine the generalized inverse explicitly. However, the theory
only requires the inverse of five distinct vectors,

L+
x [Y(x)] , L+

x

[(
n�Y(x)

)]
, L+

x

[(
n� n�Y(x)

)]
,

L+
x [∂xY(x)] and L+

x

[(
n� ∂xY(x)

)]
.

Recall that n = (0, 1, ..., N)T (Definition 3.5). As we see for the first expression, Y(x)
is the normalized Perron eigenvector corresponding to the eigenvalue λ0 = 0, so that
L+
x Y(x) = 0. Thus we can determine the above expressions without knowing the gener-

alized inverse, if we can express the five vectors given above in terms of the eigenvectors.
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We will do this now beginning with the investigation of the vectors
(
n � Y(x)

)
and(

n� n�Y(x)
)
.

Remind, yNn (x) ∈ RN+1 denotes the n-th component of the normalized Perron eigenvec-
tor YN (x) with dim(YN (x)) = N + 1 and n := (0, 1, 2, ..., N)T with dim(n) = N + 1.

Investigation of the Vectors
(
n� (YN )

)
and

(
n� n� (YN )

)
In this paragraph we again skip the x-dependency which means we investigate the terms
for fixed x and we show that both vectors can be determined in terms of eigenvalues of
the matrix Lx which is summarized in the following lemma.

Lemma B.6
The vectors

(
n� (YN )

)
and

(
n� n� (YN )

)
can be written in terms of eigenvectors as

(
n� (YN )

)
=

Nν(wN
0 − µwN

1 )

(µ+ ν)N+1(
n� n� (YN )

)
=

Nν
[
wN

0 (µ+Nν)−wN
1 (µ(µ+ ν(2N − 1))) + wN

2 (N − 1)νµ2
]

(µ+ ν)N+2

Like before wN
k denotes the eigenvector corresponding to the eigenvalue λk = −k(µ+ ν)

of the matrix LN ∈ RN+1×N+1.

Before we show Lemma B.6 we proof some propositions where we investigate the terms
separately.

Proposition B.7
The vector

(
n� (YN )

)
can be written as:

(
n� (YN )

)
=

Nν

µ+ ν

(
0

YN−1

)
Proof. For n = 1, ..., N :

n yNn = n

(
N

n

)
µN−nνn

(µ+ ν)N
=

Nν

(µ+ ν)

(
N − 1

n− 1

)
µN−nνn−1

(µ+ ν)N−1
=

Nν

(µ+ ν)
yN−1
n−1

As a special case we see that for n = 0 we get 0 yN0 = 0. �

Proposition B.8 (
0

YN−1

)
=

1

(µ+ ν)N
(
wN

0 − µwN
1

)
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Proof. From Lemma B.2 we know that wN
1 can be represented as

wN
1 =



wN−1
0,0

wN−1
0,1 − wN−1

0,0

wN−1
0,2 − wN−1

0,1
...

wN−1
0,N−1 − w

N−1
0,N−2

−wN−1
0,N−1


We show the desired results row by row, beginning with the first row where n = 0

1

(µ+ ν)N
(
wN0,0 − µwN1,0

)
=

1

(µ+ ν)N

((
N

0

)
µN − µ

(
N − 1

0

)
µN−1

)
=

1

(µ+ ν)N
(µN − µN ) = 0

Before we go on we recall some identities:(
N − 1

n

)
=
N − n
n

(
N − 1

n− 1

) (
N

n

)
=
N

n

(
N − 1

n− 1

)
So for the rows n = 1, ..., N − 1 we obtain:

1

(µ+ ν)N
(
wN0,n − µwN1,n

)
=

1

(µ+ ν)N

(
wN0,n − µ(wN−1

0,n − wN−1
0,n−1)

)
=

1

(µ+ ν)N

((
N

n

)
µN−nνn − µ

((
N − 1

n

)
µN−n−1νn −

(
N − 1

n− 1

)
µN−nνn−1

))
=

(µ+ ν)

(µ+ ν)N

(
N − 1

n− 1

)
µN−nνn−1 = yN−1

n−1

And for the last row (n = N) we find:

1

(µ+ ν)N
(
wN0,N − µwN1,N

)
=

1

(µ+ ν)N

((
N

N

)
νN + µ

(
N − 1

N − 1

)
νN−1

)
=

νN−1

(µ+ ν)N
(ν + µ) = νN−1 = yN−1

n−1 �

Proof. (Lemma B.6, first statement) Combining Proposition B.7 and B.8 we have
proofed the first statement of Lemma B.6 as

(
n� (YN )

)
=

Nν

µ+ ν

(
0

YN−1

)
=

Nν

(µ+ ν)N+1
(wN

0 − µwN
1 ). �
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We follow the same arguments and rewrite the vector
(
n � n � (YN )

)
in terms of

eigenvectors. Due to Proposition B.7 we find:(
n� n� (YN )

)
=

Nν

(µ+ ν)

(
n�

(
0

YN−1

))
The vector on the right hand side can be rewrite as(

n�
(

0
YN−1

))
=

(
(n− 1)�

(
0

YN−1

))
+

(
0

YN−1

)
.

We know the second vector, as YN−1 = 1
(µ+ν)N−1 wN−1

0 and thus the only thing that

remains to investigate is the first vector.

Proposition B.9

(
(n− 1)�

(
0

YN−1

))
= (N − 1)

ν

µ+ ν

 0
0

YN−2


Proof. In the first and second row we find 0 = 0. For the remaining rows, n = 2, ..., N ,
we obtain:

(n− 1)yN−1
n−1 =

(n− 1)

(µ+ ν)N−1

(
N − 1

n− 1

)
µN−nνn−1

=
(N − 1)

(µ+ ν)N−1

(
N − 2

n− 2

)
µN−nνn−2ν =

(N − 1)ν

µ+ ν
yN−2
n−2 �

Proposition B.10 0
0

YN−2

 =
1

(µ+ ν)N
(wN

0 − 2µwN
1 + µ2wN

2 )

Proof. We show this componentwise, starting with n = 0:

1

(µ+ ν)N
(wN0,0 − 2µwN1,0 + µ2wN2,0) =

1

(µ+ ν)N
(wN0,0 − 2µwN−1

0,0 + µ2wN−2
0,0 )

=
1

(µ+ ν)N
(µN − 2µN + µN ) = 0

In the case n = 1:

1

(µ+ ν)N
(wN0,1 − 2µwN1,1 + µ2wN2,1)

=
1

(µ+ ν)N
(wN0,1 − 2µ(wN−1

0,1 − wN−1
0,0 ) + µ2(wN−2

0,1 − 2wN−2
0,0 ))

=
1

(µ+ ν)N
(NµN−1ν − 2µ((N − 1)µN−2ν − µN−1) + µ2((N − 2)µN−3ν − µN−2))

=
1

(µ+ ν)N
(
NµN−1ν − 2(N − 1)µN−1ν + 2µN + (N − 2)µN−1 − 2µN

)
= 0
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For n = 2, ..., N − 1 we obtain:

1

(µ+ ν)N
(wN0,n − 2µwN1,n + µ2wN2,n)

=
1

(µ+ ν)N
(wN0,n − 2µ(wN−1

0,n − w
N−1
0,n−1) + µ2(wN−2

0,n − 2wN−2
0,n−1 + wN−2

0,n−2))

=
1

(µ+ ν)N

[(
N

n

)
µN−nνn − 2µ

((
N − 1

n

)
µN−n−1νn −

(
N − 1

n− 1

)
µN−nνn−1

)
+µ2

((
N − 2

n

)
µN−n−2νn − 2

(
N − 2

n− 1

)
µN−n−1νn−1 +

(
N − 2

n− 2

)
µN−nνn−2

)]
=

1

(µ+ ν)2
yN−2
n−2

(
1

n(n− 1)

(
N(N − 1)ν2 − 2(N − 1)(N − n)ν2

+ 2n(N − 1)νµ+ (N − n)(N − n− 1)ν2 − 2n(N − n)µν + n(n− 1)µ2
) )

= yN−2
n−2

1

(µ+ ν)2n(n− 1)
(ν2n(n− 1) + µν2n(n− 1) + µ2n(n− 1))

= yN−2
n−2

1

(µ+ ν)2
(ν2 + 2µν + µ2) = yN−2

n−2

(µ+ ν)2

(µ+ ν)2
= yN−2

n−2 .

And for n = N we find:

1

(µ+ ν)N
(vN0,N − 2µvN1,N + µ2vN2,N )

=
1

(µ+ ν)N
(
νN + 2µνN−1 + µ2νN−2

)
=

1

(µ+ ν)N
νN−2(ν + µ)2 = yN−2

n−2 �

Proof. (Lemma B.6, second statement) Combining Proposition B.9 and B.10 re-
sults in: (

n� n� (YN )
)

=
Nν

(µ+ ν)

(
n�

(
0

YN−1

))

=
Nν

(µ+ ν)

( 0
YN−1

)
+

(N − 1)ν

µ+ ν

 0
0

YN−2


=

Nν

(µ+ ν)N+1

[
(wN

0 − µwN
1 ) +

(N − 1)ν

(µ+ ν)
(wN

0 − 2µwN
1 + µ2wN

2 )

]
=

Nν

(µ+ ν)N+2

[
wN

0 (µ+Nν)−wN
1 (µ(µ+ ν(2N − 1))) + wN

2 (N − 1)νµ2
]

�

Hence we have shown that we can rewrite the vectors
(
n� (YN )

)
and

(
n� n� (YN )

)
in terms of the eigenvectors wN

0 ,w
N
1 ,w

N
2 of the transition matrix LN .
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B.1.4. Calculation of the Generalized Inverse

The aim of this section is to present two lemmas concerning the generalized inverse
applied to the Perron eigenvector, respectively

(
n�Y(x)

)
and

(
n�n�Y(x)

)
and in a

second lemma we will calculate the generalized inverse applied to the partial derivative of
the Perron eigenvector. Here dim Y(x) = N+1 and dim(wk) = N+1,∀ k{0, 1, ..., N}.

Lets start with the first prediction of this section.

Lemma B.11
The generalized inverse (Definition B.5) applied to Y,

(
n�Y(x)

)
and

(
n� n�Y(x)

)
yields:

L+
x [(Y)] = 0

L+
x

[(
n�Y(x)

)]
=

Nνµ

(µ+ ν)N+2
w1

L+
x

[(
n� n�Y(x)

)]
=

Nνµ

(µ+ ν)N+3

(
(µ+ ν(2N − 1))w1 −

1

2
(N − 1)νµw2

)
Proof. Y(x) is the normalized eigenvector to the eigenvalue 0. Therefore

L+
x [Y(x)] = 0.

Let us investigate L+
x

[(
n�Y(x)

)]
. From the first statement in Lemma B.6 we know(

n �Y(x)
)

=
Nν

(µ+ ν)N+1
(w0 − µw1). As the generalized inverse is a linear operator

we find:

L+
x

[(
n�Y(x)

)]
=

Nν

(µ+ ν)N+1

(
L+
x [w0]− µL+

x [w1]
)

Further we know that L+
x [w0] = 0 and L+

x [w1] = − 1
(µ+ν)w1 so finally we end up with

L+
x

[(
n�Y(x)

)]
=

Nνµ

(µ+ ν)N+2
w1.

Then we do the same proceeding for L+
x

[(
n�Y(x)

)]
where we use the second statement

of Lemma B.6 and obtain:

L+
x

[(
n� n�Y(x)

)]
=

Nν

(µ+ ν)N+2
L+
x [w0 (µ+Nν)

−w1 (µ(µ+ ν(2N − 1))) + w2(N − 1)νµ2
]

where L+
x [w2] = − 1

2(µ+ν)w2. Hence

L+
x [
(
n� n� (YN )

)
] =

Nν

(µ+ ν)N+2

(
L+
x [w0] (µ+Nν)

−L+
x [w1] (µ(µ+ ν(2N − 1))) + L+

x [w2](N − 1)νµ2
)

=
Nνµ

(µ+ ν)N+3

(
(µ+ ν(2N − 1))w1 −

1

2
(N − 1)νµw2

)
�
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Further we calculate the generalized inverse applied to the vectors containing the partial
derivative of the Perron eigenvector with respect to x.

Lemma B.12
The generalized inverse terms L+

x [∂xY(x)] and L+
x

[(
n� ∂xY(x)

)]
can be written as:

L+
x [∂x(Y(x))] = −b1(x)w1

L+
x [
(
n� ∂xY(x)

)
] = b2(x)wN

1 + b3(x)w2

with

b1(x) :=
N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ+ ν)N+2
,

b2(x) =
N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ+ ν)N+3
(Nν − (µ(x) + ν(x)(2N − 1))) ,

b3(x) :=
N(N − 1)ν(x)µ(x)(ν(x)∂xµ(x)− µ(x)∂xν(x))

2(µ+ ν)N+3
.

Proof. As already shown in equation (B.5) the partial derivation of the Perron eigen-
vector with respect to x can be written as

∂xY(x) = a1(x)Y(x)− a2(x)
(
n�Y(x)

)
where a1(x) and a2(x) are scalar functions defined by

a1(x) :=
N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ(x) + ν(x))µ(x)
,

a2(x) :=
ν(x)∂xµ(x)− µ(x)∂xν(x)

µ(x)ν(x)
.

So if we investigate the first expression, reminding that L+
x [Y(x)] = 0, and with the

first statement of Lemma B.6, we obtain

L+
x [∂xY(x)] = a1(x)L+

x [Y(x)]− a2(x)L+
x

[(
n�Y(x)

)]
= −N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ+ ν)N+2
w1 = −b1(x)w1

And the same can be done for the second expression:

L+
x

[(
n� ∂xY(x)

)]
=

= a1(x)L+
x

[(
n�Y(x)

)]
− a2(x)L+

x

[(
n� n�Y(x)

)]
= a1(x)

Nνµ

(µ+ ν)N+2
w1 − a2(x)

Nνµ

(µ+ ν)N+3

(
(µ+ ν(2N − 1))w1 −

1

2
(N − 1)νµw2

)
=

N(ν(x)∂xµ(x)− µ(x)∂xν(x))

(µ+ ν)N+3
(Nν − (µ+ ν(2N − 1))) w1

+
N(N − 1)νµ(ν(x)∂xµ(x)− µ(x)∂xν(x))

2(µ+ ν)N+3
w2 = b2(x)w1 + b3(x)w2 �
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B.2. Parameter and Simulation

The simulations throughout Chapter 3 are performed in Matlab [30]. Notice that we
use the original transport equation where β1 = β2 = β. The parameters are chosen cor-
responding to the Quorum Sensing system in Pseudomonas putida [11]. The parameter
values are described in the following table.

Name Parameter value Unit Description

α 2.3e-19 mol/(cell h) constitutive production rate
β 2.3e-18 mol/(cell h) increased production rate
γ 0.005545 1/h degradation rate of AHL molecules
zt 70 nmol/l AHL molecule threshold

From Subsection (3.1.1) we know that the transition probabilities µ(z) and ν(z) are
monotone decreasing, respectively increasing, strictly positive functions. For the numer-
ical simulations we assume the transition probabilities to be Hill functions, i.e.

ν(z) =
zs

zst + zs
, µ(z) = 1− zs

zst + zs
,

with Hill coefficient s = 3 in accordance to [11].

For the simulation of the stochastic process in Figure 3.4 we assumed

ż(t) = αN + βn(t)− γz,

where n(t) is governed by a Poisson process and the waiting time between jumps is
exponentially distributed. The initial values are given by t0 = 0, x0 = 1

2(zmax − zmin)
and n(0) =

⌊
N
2

⌋
where N = ρV .

For the graphical presentation of all simulations we rescaled the AHL concentration
z ∈ ΩV to z̃ ∈ [0, 1].

In Figure 3.7 we simulated the marginal distribution of the AHL concentration, deter-
mined by the partial differential equation (3.50), i.e.

∂th(z, t) = −∂x(g(z, ρ)h(z, t)) + ∂x(a(z)∂xh(z, t)) z ∈ ΩV

0 = g(z, ρ)h(z, t)− a(z)∂xh(z, t) z ∈ ∂ΩV

h(z, 0) = h0(z).

Since we additionally change the cell density over time we apply

ρ̇(t) = ρ2, ρ(t) = ρ1 + ρ2t.

As the boundary conditions are time dependent, Galerkin like methods are not suited.
Therefore we apply the method of lines (MOL) [27, Chapter 6.2]. MOL is a general
procedure for the solution of time dependent partial differential equations. The basic idea
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is to replace the spatial, boundary value, derivatives in the partial differential equation
with algebraic approximations and return a system of ordinary differential equations
that approximate the original partial differential equation.

Therefore we sample the function h(x, t) at grid points

xi = xmin + iζ, ζ =
xmax − xmin

M
, i = 0, ...,M ∈ N

where M are the number of sample points minus one. Let wi(t) denote the approximation
of h(xi, t). Using finite differences we obtain the ordinary differential equations, for
i = 1, ...,M − 1,

ẇi(t) = −gi+1wi+1 − gi−1wi−1

2ζ
+
ai+1(wi+1 − wi)− ai(wi − wi−1)

ζ2
(B.6)

with
gi := g(xi) and ai := a(xi).

The boundary points w0 and wN require a more subtile handling. Usual method is to
extend the number of points to virtual points w−1 and wN+1 located at x = xmin − ζ
and x = xmax + ζ. The boundary conditions are used to determine the value of the
solution at these additional points as

0 = g0w0 − a0
w1 − w−1

2h
⇒ w−1 = −2hg0w0

a0
+ w1

and

0 = gNwN − aN
wN+1 − wN−1

2h
⇒ wN+1 = wN−1 +

2hgNwN
aN

.

With this trick, the boundary points become inner points and can be handled like the
other inner points. The ordinary differential equations (B.6) are now solved by an
implicit Euler scheme combined with Newton iteration to solve for the iterative. This
scheme is suited to deal with the stiffness of the problem. Note that the equations are
linear and thus the equations for the iterative is a linear equation. The Newton method
collapses to a solver for a linear method and is implemented by the Gauss algorithm.
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