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1. Introduction

1.1. Supernova research – The beginnings

Spectacular celestial events have always managed to spell-bind human imagination, and
the appearance of a new star, or stella nova ranks among the most prominent of these.
However, it was only in the late 16th century that these phenomena became the object
of scientific study in any modern sense, and that their astrological interpretation as
omina, portending commotions in the terrestrial sphere, began to give way to a more
dispassionate view. Two supernovae in the constellation of Cassiopeia in 1572 and in the
constellation of Ophiuchis in 1604, documented by such eminent astronomers as Tycho
Brahe and Johannes Kepler, were important catalysts for the development of modern
astronomy during this era. The heavens were a domain of the supernatural no longer;
they were soon found to be subject to the same laws of nature that apply on earth, and
henceforth belonged to the realm of physics. Kepler’s treatise De stella nova on the
supernova of 1604 constitutes a milestone in this process, discussing such bold questions
as “an iam olim extiterit materia corpusque novi sideris”1 [31] that undermined the very
foundations of the established Aristotelian cosmology of the middle ages2.

Of course, Kepler’s work, openly described on the frontispiece as “ ândìxoi kaÈ pa-radìxoi plenus” 3, was still largely based on philosophical speculation, and the physical
origin of supernovae remained unclear for another 300 years. It was only in the 1930s
that Baade and Zwicky [3] first distinguished them from common novae, and “advance[d]
the view that a super-nova [sic] represents the transition of an ordinary star into a neu-
tron star” [4]. The discovery of a pulsar (i.e. a magnetized rotating neutron star) in the
Crab nebula [152, 172] which had already been identified as the remnant of the historical
supernova of 1054 [76, 119], provided a striking confirmation for their hypothesis.

1“Whether the matter and body of the new star had already existed before.”
2This is not meant to imply that medieval and early Renaissance cosmology was solidly Aristotelian

before the astronomical discoveries of the 16th century. Moreover, we do not attempt to evaluate the
extent (which has sometimes been exaggerated) of the philosophical repercussions of these findings
beyond the immediate realm of natural science.

3This phrase is highly ambiguous, probably deliberately so. It can be interpreted both as “full of
glorious and strange things” or “full of accepted and contradictory opinions”
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1. Introduction

1.2. The modern paradigm and the quest for the explosion
mechanism

Apart from the fact that a sub-class of supernovae (so-called “Ia’s”, which will not be
discussed in this thesis) are now believed to originate from the thermonuclear explosion
of accreting or merging white dwarfs, our current understanding of supernovae is still
based on the model outlined by Baade and Zwicky [4], albeit with many elaborations
after decades of intensive research: Except for those of type Ia, they originate from
the collapse of stars more massive than ≈ 8M⊙. After going through successive stages
of nuclear burning, such stars finally form cores composed of iron-group nuclei (“iron
cores”) that are supported by the degeneracy pressure of electrons. At the edge of the
core, silicon burning remains active and continually increases the mass of the core, until
it comes close to the Chandrasekhar limit of roughly 1.4M⊙.

At that point, photo-disintegration of heavy nuclei and electron capture reactions ini-
tiate the dynamical collapse4 of the core. During the collapse, matter becomes more and
more neutron-rich due to electron captures on heavy nuclei and (at higher densities) on
free protons. As these processes also reduce the electron fraction Ye (defined as the num-
ber of electrons per baryon), they result in a pressure reduction and further accelerate
the collapse. However, the neutrinos emitted during this process of “deleptonization”
escape from the collapsing core only at densities . 1012 g cm−3. At higher densities,
the mean free path of neutrinos becomes significantly smaller than the radius of the core
due to coherent scattering on heavy nuclei. At that stage, neutrinos no longer escape
the core, but are advected along with the fluid (a phenomenon known as “trapping”).
Thermodynamical and chemical equilibrium between electrons and neutrinos is then
quickly established. After trapping, the electron fraction changes only slightly, and the
collapse continues almost adiabatically beyond nuclear densities until it is stopped by
the stiffening of the equation of state due to repulsive interactions between nucleons.
The rebounding, or “bounce” of the inner core launches a pressure wave that steepens
into a shock wave at the edge of core.

Although the initial energy of this “prompt shock” is of the order of the observed ex-
plosion energies of core-collapse supernovae (≃ 1051 erg) it cannot trigger the explosion
directly. As it propagates outwards, its energy is spent for the dissociation of heavy nuclei
in the infalling matter into free nucleons, which consumes roughly 1.5×1052 erg/M⊙. The
shock is further weakened when it reaches layers with densities lower than . 1012 g cm−3,
and rapid deleptonization (which also associated with an energy loss) occurs in the region
behind the shock as it becomes transparent to neutrinos. Within a few milliseconds, the
outward motion of post-shock matter ceases. However, the shock front continues to be
pushed outwards as more and more infalling matter is piled (“accreted”) onto the newly-
formed “proto-neutron star”. Typically, the outward-moving “accretion shock” starts to
recede again a few tens of ms later after having reached a radius of ≈ 100 . . . 200km. Ac-
cording to the most promising model (the “delayed neutrino-driven mechanism” [191]), it

4It should be noted that for stars only slightly more massive than 8M⊙, the collapse may already occur
when the core is still composed of O, Ne and Mg [136, 137].
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1.3. Core collapse and general relativity

is revived by the deposition of energy in the so-called “gain-region” by neutrinos emitted
from the proto-neutron star after several hundreds of milliseconds, and then dynamically
propagates through the outer layers of the star, which are expelled in its wake. It should
be pointed out, of course, that this model is still not finally and generally established; a
few alternative suggestions are mentioned in Chapter 6.

However, in most of the modern sophisticated computer simulations in spherical sym-
metry the delayed-neutrino driven mechanism fails to trigger an explosion5, and hence
multi-dimensional effects are believed to be of vital importance for the explosion mech-
anism. Convection, both inside the proto-neutron star and in the gain region may aid
neutrino heating, either by increasing the neutrino luminosity, or by providing a means
of efficient heat transfer from the inner part of the gain region (where neutrino heating is
strongest) to the layers immediately behind the shock. The neutrino heating efficiency
is also enhanced by another recently discovered instability of the shock to non-radial
deformations, the “standing accretion-shock instability” (SASI) [11].

Nowadays, the evolution of core-collapse supernovae towards the explosion during
the phase after bounce (“post-bounce phase”) is studied with the help of sophisticated
numerical models that need to take all the relevant physical ingredients into account,
i.e. hydrodynamics, self-gravity, the equation of state of dense nuclear matter, nuclear
burning, neutrino matter-interactions, and neutrino transport (which is particularly chal-
lenging). The most sophisticated codes handle neutrino transport by using multi-group
methods (i.e. methods in which the neutrino spectrum is explicitly discretized instead
of assuming a thermal distribution) of different complexity; some of them even rely
on a discretization of the Boltzmann equation [21, 25, 106, 110, 121, 151, 201]. How-
ever, in all multi-dimensional simulations of the post-bounce phase, the hydrodynamics
has been treated in the Newtonian approximation, although some effects of relativis-
tic gravity can be included [116, 151]. During the past few years, the primary focus
has been on multi-dimensional hydrodynamical effects and the microphysics (nuclear
equation of state, neutrino physics), and their influence during the post-bounce phase.
Some spectacular progress has been made on this front: Successful explosions in which
hydrodynamical instabilities play a major role have been reported (among others) by
Buras et al. [20], Marek et al. [117], Burrows et al. [26], and Bruenn et al. [17], and other
questions connected to supernova explosion, e.g. about supernova nucleosynthesis, can
now be discussed on the basis of self-consistent models (see, e.g., [75, 149, 187]).

1.3. Core collapse and general relativity

However, relativistic gravity has been something of sideshow in this quest for the ex-
plosion mechanism during the recent years. This is rather surprising, as it was realized
[142, 182] very soon after the concept of neutron stars had been first proposed that such

5Progenitors with O-Ne-Mg cores [91] are the one notable exception. In the case of more massive
progenitors, it has been suggested that a phase transition to quark matter at relatively low densities
may help in launching a neutrino-driven explosion [158]; but whether the details of this suggestion
withstand future scrutiny is unclear.
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1. Introduction

extremely compact objects need to be described within a relativistic framework. Core-
collapse supernovae are thus a fascinating laboratory for the strong-field regime of general
relativity (GR). In particular, they have long been considered as promising sources for
gravitational waves, which are produced by the aspherical motion of matter, e.g. by con-
vection in the post-bounce phase, or by the collapse of rotating, aspherically deformed
iron cores. Although gravitational wave emission can be studied approximately in the
Newtonian limit, it is obvious that an exact treatment of general relativity in the core
collapse problem is most desirable for this particular aspect. However, general relativity
is also of large relevance for the post-bounce phase, according to simulations with neu-
trino transport in spherical symmetry : Relativistic simulations show the proto-neutron
star to be significantly more compact and hotter than in the Newtonian case, and this
in turn leads to larger neutrino luminosities, which can, of course, play a crucial role
in the delayed mechanism described in the previous section. The stronger gravitational
field also influences the propagation of the shock directly. General relativity is thus an
essential ingredient for the entire supernova problem (see, e.g., Bruenn et al. [17] for a
more thorough discussion in the case of spherical symmetry). Even if it turned out that
it were not crucial for the success of the delayed neutrino-driven mechanism, it could
still have a great impact on important details of the post-bounce evolution, such as the
time of the explosion (early/late), and on (potential) observables like the final mass of
the neutron star, the explosion energy, or the products of nucleosynthesis.

However, modern supernova codes featuring sophisticated neutrino transport methods
do not take the effects of general relativity into account in a rigorous manner (see Chap-
ter 6 for more details) for a simple reason: The numerical treatment of general relativistic
hydrodynamics is beset with tremendous difficulties, compared to the Newtonian case:
On the one hand, the equations of relativistic hydrodynamics are much more compli-
cated than their Newtonian counterparts, so that comparable numerical methods were
often developed years or decades later. On the other hand, the non-linear gravitational
field equations have proved notoriously difficult to evolve. While these obstacles can
be quite easily overcome in the special case of spherical symmetry, multi-dimensional
relativistic hydrodynamics codes for self-gravitating systems (like core-collapse super-
novae) have only become available during the last one-and-a-half decades. This was
achieved, unfortunately, at the expense of neglecting other integral aspects of the su-
pernova problem, such as neutrino transport, or the nuclear equation of state. Con-
sequently, multi-dimensional relativistic simulations of stellar core collapse cannot yet
address the post-bounce phase and the explosion mechanism with any accuracy, where
these issues are of vital importance. Instead, their use has been confined to the phases of
collapse and bounce, and their primary target was the gravitational wave emission from
rotational collapse, where first attempts at incorporating some essential microphysics
(e.g. deleptonization) in a very approximative manner have recently been made [34, 44–
46, 143, 144]. However, no general relativistic code for core collapse presently includes a
detailed treatment of neutrino transport that is even remotely comparable to the sophis-
ticated multi-group methods in the most advanced Newtonian codes. Similarly elaborate
methods for general relativistic neutrino transport have not been developed so far.

8



1.4. Aims of this thesis

1.4. Aims of this thesis

From the foregoing, it should be clear that both the “Newtonian approach” described in
Sec. 1.2 and the “relativistic approach” described in Sec. 1.3 have severe shortcomings.
Both approaches neglect or over-simplify important physical effects that are properly
captured by the other: It would clearly be desirable to combine the strengths of the
Newtonian approach – i.e. an accurate treatment of the microphysics and the neutrino
transport – and of the general relativistic approach. This is precisely what we set out
to do in this thesis. In order to achieve this aim we generalize the thoroughly tested
neutrino transport code VERTEX [21, 151] to the relativistic case, and integrate it into
the GR hydrodynamics code CoCoNuT [41, 43]. With the new combined VERTEX-
CoCoNuT code, we are able to conduct the first multi-dimensional simulations of core-
collapse supernova with sophisticated neutrino transport and an accurate treatment
of general relativistic hydrodynamics, and to provide some answers to questions that
neither the “Newtonian” nor the “relativistic” approach have hitherto been able to
address reliably: Does the inclusion of general relativity influence the development of
convection and the standing accretion shock instability? Does it have any bearing on
the explosion mechanism? What are the observable gravitational wave signatures from
the collapse phase and the post-bounce phase?

1.5. Organization of this thesis

In our thesis, we approach these questions in the following manner: In Chapter 2, we
introduce the governing equations of general relativistic radiation hydrodynamics, along
with some remarks on the numerical methods, and generalize the Newtonian ray-by-ray-
plus neutrino transport method of Buras et al. [21] to the relativistic case. Some impor-
tant improvements to the numerical methods hitherto used in VERTEX and CoCoNuT,
which greatly enhance the efficiency and accuracy of the combined VERTEX-CoCoNuT

code, are described in more detail in Chapter 3. We present tests of the new code in
spherical symmetry in Chapter 4, including a comparison with the relativistic neutrino
transport code AGILE-BOLTZTRAN and the Newtonian PROMETHEUS-VERTEX
code. Applications of our multi-dimensional relativistic radiation hydrodynamics code
are discussed in Chapters 5 and 6: In Chapter 5, we analyze the collapse of rotating iron-
cores, while Chapter 6 addresses the post-bounce phase, focusing on aspects relevant for
the delayed neutrino-driven explosion mechanism, such as neutrino emission, convection
and the standing-accretion shock instability. Finally, we attempt a brief summary of our
results in Chapter 7 and outline possible future extensions of our work.
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2. General Relativistic Radiation
Hydrodynamics

2.1. Overview

Our approach to radiation hydrodynamics relies on the the variable Eddington factor
technique as implemented in the VERTEX code by Rampp and Janka [151] for spher-
ically symmetric problems, and its generalization to the multi-dimensional case within
the ray-by-ray-plus approximation of Buras et al. [21]. In this chapter, we provide a
relativistic formulation of the methods of Rampp and Janka [151] and Buras et al. [21],
and elaborate on their implementation in VERTEX and in the GR hydrodynamics code
CoCoNuT [40, 41, 43]. On occasion, reference to the corresponding Newtonian case is
made to highlight important differences; however, for the complete set of equations the
reader should refer to Appendix C. We also discuss the quality of our approximation to
the full six-dimensional general relativistic neutrino transport problem.

Note that geometrized units are used throughout this chapter, i.e. both the speed of
light and the gravitational constant are set to unity: G = c = 1. Greek indices run from
0 to 3, Latin indices from 1to3.

2.2. Hydrodynamics

In general relativity, the hydrodynamic evolution of a perfect fluid is governed by two
conservation equations for the baryonic rest mass current Jµ and the stress-energy tensor
T µν ,

∇µJ
µ = 0, ∇νT

µν = 0, (2.1)

where ∇ν denotes the covariant derivative. For a perfect fluid, Jµ and T µν can be
expressed in terms of the baryon rest-mass density ρ in the local fluid frame, the four-
velocity uµ, the pressure, the specific enthalpy h = 1 + ǫ+ P/ρ (where ǫ is the specific
internal energy density, and P is the pressure), and the four-metric gµν ,

Jµ = ρuµ, T µν = ρhuµuν + Pgµν . (2.2)

For the metric, we adopt the Arnowitt-Deser-Misner (ADM) 3 + 1 formalism [102] of
general relativity to foliate the spacetime into spacelike hypersurfaces. In this approach,
the four-dimensional line element ds2 = gµν dxµ dxν is written as follows,

ds2 = −α2 + γij

(

dxi + βidt
) (

dxj + βjdt
)

, (2.3)
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2. General Relativistic Radiation Hydrodynamics

where α is the lapse function, βi is the shift vector, and γij is the induced three-metric
on each hypersurface. Using this decomposition of the four-metric, the equations of
hydrodynamics can be formulated in the frame of an Eulerian observer1 moving orthog-
onally to the spacelike hypersurfaces, i.e. with a four-velocity nµ = (α−1, α−1βi). As in
Banyuls et al. [5], we introduce the following conserved variables2,

D = ρW, Si = ρhW 2vi, τ = ρhW 2 − P −D, (2.4)

where vi = ui/(αu0) + βi/α is the three-velocity in the Eulerian frame, and W is the

corresponding Lorentz factor W = 1/
√

1 − vivi. The equations of GR hydrodynamics
in flux-conservative form then read,

∂
√
γρW

∂t
+
∂
√−gρW v̂i

∂xi
= 0, (2.5)

∂
√
γρhW 2vj

∂t
+
∂
√−g

(

ρWvj v̂
i + δi

jP
)

∂xi
=

1

2

√−gT µν ∂gµν

∂xj
+

(

∂
√
γSj

∂t

)

C

, (2.6)

∂
√
γτ

∂t
+
∂
√−g

(

τ v̂i + Pvi
)

∂xi
= α

√−g
(

T µ0∂ lnα

∂xµ
− T µνΓ0

µν

)

+

(

∂
√
γτ

∂t

)

C

.

(2.7)

Here, v̂i is defined as v̂i = vi−βi/α, and g and γ are the determinants of the four-metric
gµν and the three-metric γij, respectively. Different from the purely hydrodynamic case
discussed by [5], the RHSs of Eqs. (2.6) and (2.7) contain source terms for the exchange
of momentum and energy with neutrinos (denoted by a subscript “C”) in addition to
the gravitational and geometric source terms. These source terms will be specified in
Sec. 2.4.5.

Eqs. (2.5) to (2.7) must be supplemented by an additional equation expressing the con-
servation of electron number in the absence of weak interactions (which will be discussed
separately),

∂
√
γρWYe

∂t
+
∂
√−gρWYev̂

i

∂xi
=

(

∂
√
γρWYe

∂t

)

C

, (2.8)

where Ye is the electron fraction (number of electrons minus number of positrons per
baryon). The change of the electron number due to neutrino emission or absorption
is accounted for by the source term on the RHS, in a similar fashion as energy and
momentum exchange with neutrinos in Eqs. (2.6) and (2.7).

1Since the terminology in the existing literature on relativistic hydrodynamics and radiative transfer
is not uniform, we add some remarks on this issue here. The “frame” of an observer (or a class of
observers) is an orthonormal tetrad field whose time-like base vector coincides with the four-velocity
of the observer. We shall use the terms “Eulerian frame” (as in [5]) or “lab frame” (as in [124])
interchangeably to denote the frame of an Eulerian observer as described in the main body of the
text. It is important to note that such an Eulerian observer is not a fixed-coordinate observer unless
the shift vector vanishes.

2D, Si and τ can be obtained form Jµ and T µν using nµ and the projection operator ⊥µ
ν onto the

three-hypersurfaces: D = nµJµ, Si = ⊥i
µnνT µν , and τ = nµnνT µν − D.

12



2.3. Metric equations – The Conformal Flatness Condition

Since we are dealing with a multi-component fluid whose composition is not uniquely
determined by the thermodynamic state (ρ, T, Ye) unless nuclear statistical equilibrium
(NSE) applies, additional conservation equations for the mass fractions Xk of protons,
neutrons, α-particles and heavier nuclei are also needed,

∂
√
γρWXk

∂t
+
∂
√−gρWXkv̂

i

∂xi
= 0. (2.9)

Finally, the pressure and the composition (in the NSE regime) in Eqs. (2.6,2.7,2.9) have
to be provided by an equation of state (EoS).

We rely on the CoCoNuT code [41, 43] to solve the equations of relativistic hydro-
dynamics in spherical polar coordinates by means of a high-resolution shock-capturing
(HRSC) scheme, employing piecewise parabolic (PPM) reconstruction [35], an approx-
imate Riemann solver, and second-order Runge-Kutta timestepping. Our method of
choice for the Riemann solver is a new hybrid HLLC/HLLE scheme in CoCoNuT along
the lines of Quirk [150], combining the high resolution of the HLLC solver [123, 183] with
the robustness of the HLLE solver [50, 68] against odd-even decoupling near grid-aligned
shocks [89, 109, 150, 176]. Our most recent simulations also use a reformulated energy
equation instead of Eq. (2.7) to improve total energy conservation (see Sec. 3.1 for de-
tails), and a reformulated momentum equation instead of Eq. (2.6) (see Appendix B).
In order to treat the advection equations for the nuclear mass fractions, we have added
a simplified version of the consistent multi-fluid advection (CMA) method by Plewa and
Müller [147]. Moreover, the computational performance of the code has been improved
significantly by enhancing parallelism in the axisymmetric (2D) mode. In the Newtonian
case, we use the PROMETHEUS code [62, 63], which is based on essentially the same
methods, but differs from CoCoNuT in several respects (apart from its Newtonian char-
acter): an exact iterative Riemann solver is used instead of HLLC, second-order time
accuracy is achieved by a single-step midpoint method, and multi-dimensional problems
are handled by Strang splitting. As for the equation of state, we have used the EoS
of Lattimer and Swesty [100] for the high-density regime in all the simulations pre-
sented in this thesis. Low-density matter (with ρ < 6 × 107 g cm−3 . . . 1011 g cm−3,
depending on the exact model setup) is treated as an ideal gas composed of nucleons,
nuclei, leptons and radiation; in this regime various prescriptions are used to determine
the NSE composition (where applicable) or composition changes due to nuclear burning
[21, 114, 151].

2.3. Metric equations – The Conformal Flatness Condition

The CoCoNuT code solves Einstein’s field equation using the conformal flatness condi-
tion (CFC), which was introduced by Isenberg [77] and first used in a dynamical context
by Wilson et al. [193]. In the CFC approximation, the spatial three-metric is assumed

13



2. General Relativistic Radiation Hydrodynamics

to be conformally flat 3, i.e. it is obtained from the flat three-metric4 γ̂ij by a conformal
transformation γij = φ4γ̂ij, where φ is the conformal factor, thus reducing the number
of independent metric quantities to five. As a consequence, the four constraint equations
for the metric in the ADM formalism, combined with a slicing condition, determine the
metric completely. In our case, we use maximal slicing, i. e. we require the trace of the
extrinsic curvature Kij to vanish: K = Ki

i = 0. We then obtain a set of five non-linear
elliptic equations for α, φ, and βi,

∆̂Φ = −2πφ5

(

E +
KijK

ij

16π

)

, (2.10)

∆̂(αΦ) = 2παφ5

(

E + 2S +
7KijK

ij

16π

)

, (2.11)

∆̂βi = 16παφ4Si + 2φ10Kij∇̂j

( α

Φ6

)

− 1

3
∇̂i∇̂jβ

j , (2.12)

where ∆̂ and ∇̂ are the Laplace and covariant derivative operators for a flat three-space.
The total matter-energy density E = τ + D, the three-momentum density Si and the
trace S = γijS

ij of the spatial components Sij of the stress-energy tensor (as measured
by an Eulerian observer) appear in the non-linear source terms on the right-hand side,
and comprise contribution both from matter and (neutrino) radiation. For the matter
component we obtain,

E = ρhW 2 − P, (2.13)

S = ρhW 2v2 + 3P, (2.14)

Si = ρhW 2vi, (2.15)

while for neutrinos,

E = S = 4πW 2
(

J + 2vrH + v2
rK
)

, (2.16)

S1 = 4πφ−2W 2
[

H
(

1 + v2
r

)

+ vr (J +K)
]

, (2.17)

S2 = S3 = 0, (2.18)

in our approximation. Here, J , H, and K denote the zeroth, first and second moments of
the neutrino radiation intensity in the comoving frame (see section 2.4), and vr = φ2v1.

We solve the CFC equations (2.10), (2.11), and (2.12) using a fixed point iteration
scheme as described in Dimmelmeier et al. [43]; i.e. during each iteration step, the
non-linear source terms are updated, and the Laplace operators on the left-hand side
of the equations are inverted by means of a multipole expansion (cf. [131]). While
this method suffers from a somewhat low convergence rate compared to the spectral
nonlinear Poisson solver of Dimmelmeier et al. [43], the underlying algorithm is more

3We note in passing that this assumption can always be fulfilled by an appropriate gauge choice for a
spherically symmetric spacetime, and no approximations to the ADM equations are actually made
by using CFC in that case. See section 2.5 for more details.

4Thus, in spherical polar coordinates we have γ̂ij = diag
`

1, r2, r2 sin2 θ
´

.
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2.4. Neutrino transport in CFC spacetime

easily amenable to parallelization, which is a critical issue for multi-dimensional neutrino
transport simulations.

In our Newtonian simulations with PROMETHEUS, the treatment of self-gravity is
much simpler, since only the (linear) Poisson equation

∆̂Φ = 4πGρ (2.19)

needs to be solved. Correction terms to Φ may be added to account for certain general
relativistic effects at a reasonable level of accuracy [116, 128]. We will refer to this
strategy as “pseudo-Newtonian”, “pseudo-relativistic”, or “effective potential” approach.

2.4. Neutrino transport in CFC spacetime

2.4.1. Overview

Up to now, all self-consistent numerical simulations of neutrino transport in core collapse
supernovae are based on the assumptions i) that a semi-classical treatment of kinetic
theory is applicable, and ii) that neutrino oscillations need not to be taken into account
(see [30, 174, 199] for a discussion of the more general case). In our approach to the
transport problem, we retain those assumptions, although they may be invalid under
certain specific circumstances (cf. Sec. 2.5). Under this proviso, the evolution of the
invariant neutrino distribution function f (the number of neutrinos per phase-space
volume d3xd3p) is governed by the relativistic Boltzmann equation for massless or ultra-
relativistic particles, which reads

pµ ∂f

∂xµ
+

dpi

dλ

∂f

∂pi
= C (2.20)

in any coordinate basis. Here, f and the collision term C depend on the spacetime
coordinates xµ and the four-momentum vector pµ (obeying the mass-shell constraint
pµp

µ = 0) as measured in the associated holonomic base ∂µ; λ is the affine parameter.
In general, Eq. (2.20) describes a six-dimensional time-evolution problem, which can be

scaled down considerably by using the ray-by-ray-plus approximation [21] in the following
manner: First, the equations of neutrino transport are formulated for the spherically
symmetric case (sections 2.4.2 to 2.4.5), thus reducing the overall dimensionality from
six to three. By working with a finite number (i.e. two) of angular moments of the
Boltzmann equation, yet another dimension can be eliminated. The additional space
dimensions are then taken into account by solving these equations independently on
different radial “rays” with direction n (corresponding to the angular zones of the polar
grid), assuming rotational symmetry around n for the neutrino distribution function. In
addition, certain terms from the full transport equations are taken into account to avoid
unphysical behaviour in the optically thick regime (section 2.4.6).

2.4.2. Boltzmann equation in spherical symmetry

The precise form of Eq. (2.20) in a spherically symmetric spacetime has been discussed
in various places in the literature [32, 108, 120, 162]; it depends on the adopted gauge
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2. General Relativistic Radiation Hydrodynamics

and slicing conditions, and on the tetrad basis used in momentum space. In our case,
the spacetime metric is of the CFC type with β1 = φ4βr and β2 = β3 = 0,

ds2 = −α(t, r)2 + φ(t, r)4
[

(dr + βr(t, r) dt)2 + r2dθ2 + r2 sin2 θ dϕ2
]

. (2.21)

Furthermore, we carry out a transformation to the orthonormal frame comoving with
the fluid, in which the collision integral C can be expressed most conveniently; the
expressions for the collision integral provided in Appendix A of Rampp and Janka [151]
thus remain valid. With the velocity field chosen as

(

v1, v2, v3
)

=
(

φ−2vr(t, r), 0, 0
)

, (2.22)

a possible choice for the basis vectors of such a frame is given by,

e0 = α−1W ∂t +W
(

φ−2vr − α−1βr

)

∂r, (2.23)

e1 = α−1vrW ∂t +W
(

φ−2 − α−1βrvr

)

∂r, (2.24)

e2 = φ−2r−1 ∂θ, (2.25)

e3 = φ−2r−1 sin−1 θ ∂ϕ. (2.26)

In spherical symmetry, the distribution function f depends only on t, r, the comoving
frame energy ε = p · e0 (where p is the neutrino four-momentum) and the angle cosine
µ = p · e1/p · e0, and obeys the following PDE (see Appendix A for a brief sketch of the
derivation):

W

[

ξ

α

(

∂f

∂t
− βr

∂f

∂r

)

+
ν

φ2

∂f

∂r

]

−

εW 3

rαφ3

∂f

∂ε

{

v2
rφ

[

βrφ

(

2r
∂φ

∂r
− ψφ

)

+ r

(

−µ∂α
∂r

+ µ2φ2 ∂βr

∂r
− ∂φ2

∂t

)]

+

v3
r

[

rµφ

(

−µ∂α
∂r

+
∂βrφ

2

∂r
− ∂φ2

∂t

)

− ψ
α

φ

∂rφ2

∂r

]

+ βrφ
3

(

−ψ − rµ
∂vr

∂r

)

+

φ

[

rµ

(

µα
∂vr

∂r
+
∂α

∂r
+ φ2

(

−µ∂βr

∂r
+
∂vr

∂t

))

+ r
∂φ2

∂t
− rβr

∂φ2

∂r

]

+

vrα

[

φ

(

ψ + rµ
∂vr

∂r

)

+ 2rψ
∂φ

∂r
+ φ2

(

µ
∂vr

∂t
− ∂βr

∂r

)

+
∂φ2

∂t

]}

+

W 3
(

1 − µ2
)

rαφ3

∂f

∂µ

{

α

[

φ

(

ξ

W 2
− rν

∂vr

∂r

)

+ 2r
ξ

W 2

∂φ

∂r

]

+

φ

[

βφ2

(

rξ
∂vr

∂r
− ν

W 2

)

− r

W 2

(

ξ
∂α

∂r
− νφ2∂βr

∂r

)

− rξφ2∂vr

∂t

]}

= C [f ] , (2.27)

where ν = µ + vr, ξ = 1 + µvr and ψ = 1 − µ2. It should be noted that our result
is analytically equivalent to the one obtained by Mezzacappa and Matzner [120] for
the same gauge and slicing conditions. The transfer equation for the radiation intensity
I = h−3c−2ε3f can be obtained by exploiting the relation ε3∂f/∂ε = ∂

(

fε3
)

/∂ε−3ε2f ,
and is omitted here for the sake of brevity.
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2.4. Neutrino transport in CFC spacetime

2.4.3. Exact moment equations for CFC metric in spherical symmetry

Multiplying Eq. (2.27) by h−3c−2ε3 and taking the zeroth and first angular moment
yields the moment equations in a spherically symmetric CFC spacetime, resulting in

∂W
(

Ĵ + vrĤ
)

∂t
+

∂

∂r

[(

W
α

φ2
− βrvr

)

Ĥ +

(

Wvr
α

φ2
− βr

)

Ĵ

]

− (2.28)

∂

∂ε

{

WεĴ

[

1

r

(

βr −
αvr

φ2

)

+ 2

(

βr −
αvr

φ2

)

∂ lnφ

∂r
− 2

∂ lnφ

∂t

]

+

WεĤ

[

vr

(

∂βrφ
2

∂r
− 2

∂ lnφ

∂t

)

− α

φ2

∂ lnαW

∂r
+ αW 2

(

βr
∂vr

∂r
− ∂vr

∂t

)]

−

εK̂

[

βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(

α

rφ2

)

+W 3

(

α

φ2

∂vr

∂r
+ vr

∂vr

∂t

)]}

−

WĴ

[

1

r

(

βr −
αvr

φ2

)

+ 2

(

βr −
αvr

φ2

)

∂ lnφ

∂r
− 2

∂ lnφ

∂t

]

−

WĤ

[

vr

(

∂βrφ
2

∂r
− 2

∂ lnφ

∂t

)

− α

φ2

∂ lnαW

∂r
+ αW 2

(

βr
∂vr

∂r
− ∂vr

∂t

)]

+

K̂

[

βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(

α

rφ2

)

+W 3

(

α

φ2

∂vr

∂r
+ vr

∂vr

∂t

)]

= αĈ(0),

for the energy equation; and the momentum equation reads,

∂W
(

Ĥ + vrK̂
)

∂t
+

∂

∂r

[(

W
α

φ2
− βrvr

)

K̂ +

(

Wvr
α

φ2
− βr

)

Ĥ

]

− (2.29)

∂

∂ε

{

WεĤ

[

1

r

(

βr −
αvr

φ2

)

+ 2

(

βr −
αvr

φ2

)

∂ lnφ

∂r
− 2

∂ lnφ

∂t

]

+

WεK̂

[

vr

(

∂βrφ
2

∂r
− 2

∂ lnφ

∂t

)

− α

φ2

∂ lnαW

∂r
+ αW 2

(

βr
∂vr

∂r
− ∂vr

∂t

)]

−

εL̂

[

βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(

α

rφ2

)

+W 3

(

α

φ2

∂vr

∂r
+ vr

∂vr

∂t

)]}

+

(

Ĵ − K̂
)

[

vr

(

βr

r
− ∂βr

∂r

)

+
∂

∂r

(

Wα

φ2

)

− Wα

rφ2
+W 3

(

∂vr

∂t
− βr

∂vr

∂r

)]

+

(

Ĥ − L̂
)

[

W 3α

φ2

∂vr

∂r
+
βW

r
− ∂βW

∂r
−Wvrr

∂

∂r

(

α

rφ2

)

+
∂W

∂t

]

−

WĤ

[

1

r

(

βr −
αvr

φ2

)

+ 2

(

βr −
αvr

φ2

)

∂ lnφ

∂r
− 2

∂ lnφ

∂t

]

−

WK̂

[

vr

(

∂βrφ
2

∂r
− 2

∂ lnφ

∂t

)

− α

φ2

∂ lnαW

∂r
+ αW 2

(

βr
∂vr

∂r
− ∂vr

∂t

)]

+

L̂

[

βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(

α

rφ2

)

+W 3

(

α

φ2

∂vr

∂r
+ vr

∂vr

∂t

)]

= αĈ(1).
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2. General Relativistic Radiation Hydrodynamics

Here, the angular moments J , H, K and L of the specific intensity are given by,

{J,H,K,L} =
1

2

1
∫

−1

dµµ0,1,2,3I, (2.30)

while C(0) and C(1) are the corresponding zeroth and first moment of the collision inte-
gral. Note that Eqs. (2.28) and (2.29) are written in terms of the densitized moments
Ĵ , Ĥ, K̂ and L̂ (where X̂ =

√
γX) which contain the square root of the determinant of

the three-metric as an additional factor, in order to better reflect the underlying law of
energy conservation. The virtue of such a formulation is more apparent in the equations
governing the evolution of the neutrino number density and flux,

∂W
(

Ĵ + vrĤ
)

∂t
+

∂

∂r

[(

W
α

φ2
− βrvr

)

Ĥ +

(

Wvr
α

φ2
− βr

)

Ĵ+

]

− (2.31)

∂

∂ε

{

WεĴ
[

1

r

(

βr −
αvr

φ2

)

+ 2

(

βr −
αvr

φ2

)

∂ lnφ

∂r
− 2

∂ lnφ

∂t

]

+

WεĤ
[

vr

(

∂βrφ
2

∂r
− 2

∂ lnφ

∂t

)

− α

φ2

∂ lnαW

∂r
+ αW 2

(

βr
∂vr

∂r
− ∂vr

∂t

)]

−

εK̂
[

βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(

α

rφ2

)

+W 3

(

α

φ2

∂vr

∂r
+ vr

∂vr

∂t

)]}

= αĈ(0)

∂W
(

Ĥ + vrK̂
)

∂t
+

∂

∂r

[(

W
α

φ2
− βrvr

)

K̂ +

(

Wvr
α

φ2
− βr

)

Ĥ+

]

− (2.32)

∂

∂ε

{

WεĤ
[

1

r

(

βr −
αvr

φ2

)

+ 2

(

βr −
αvr

φ2

)

∂ lnφ

∂r
− 2

∂ lnφ

∂t

]

+

WεK̂
[

vr

(

∂βrφ
2

∂r
− 2

∂ lnφ

∂t

)

− α

φ2

∂ lnαW

∂r
+ αW 2

(

βr
∂vr

∂r
− ∂vr

∂t

)]

−

εL̂
[

βrW

r
− ∂βrW

∂r
+Wvrr

∂

∂r

(

α

rφ2

)

+W 3

(

α

φ2

∂vr

∂r
+ vr

∂vr

∂t

)]}

+

(

Ĵ − K̂
)

[

vr

(

βr

r
− ∂βr

∂r

)

+
∂

∂r

(

Wα

φ2

)

− Wα

rφ2
+W 3

(

∂vr

∂t
− βr

∂vr

∂r

)]

+

(

Ĥ − L̂
)

[

W 3α

φ2

∂vr

∂r
+
βW

r
− ∂βW

∂r
−Wvrr

∂

∂r

(

α

rφ2

)

+
∂W

∂t

]

= αĈ(1),

where {J ,H,K,L, C} = {ε−1J, ε−1H, ε−1K, ε−1L, ε−1C}. Apart from the collision in-
tegral, no source terms appear in the neutrino number Eq. (2.31); thus, a finite-volume
discretization exactly conserves the total neutrino number measured in the laboratory
(coordinate) frame

∫

d3x
√
γNeul =

4π

c

∫

d3xdε
√
γW (J + vrH) , (2.33)
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2.4. Neutrino transport in CFC spacetime

in the absence of neutrino-matter interactions. As a consequence, numerical conservation
of lepton number can be achieved with an appropriate conservative treatment of the flux
terms in the neutrino moment equations and the source term for the electron fraction.

With a few minor exceptions, the numerical solution of the neutrino moment equations
in our code proceeds exactly as described by Rampp and Janka [151]. Eqs. (2.28)
and (2.29) are written in a conservative finite-difference form using second-order space
discretization on a staggered mesh and backward differencing in time; only the neutrino
advection terms

∂

∂r

[(

W
α

φ2
vr − βr

)

Ĵ

]

,
∂

∂r

[(

W
α

φ2
vr − βr

)

Ĥ

]

, a (2.34)

are discretized with upwind differences in space and central differences in time. Unlike
Rampp and Janka [151], we use a special second-order finite difference representation
for the terms governing advection in energy space to guarantee that both energy and
lepton number are conserved (see Sec. 3.2). The higher moments K and L are computed
from the variable Eddington factors fK and fL obtained from the solution of a model
Boltzmann equation (cf. Sec. 2.4.4) as K = fKJ and L = fLJ where necessary. Finally,
the moment equations are supplemented by two additional equations for the operator-
split update of the specific internal energy and the electron fraction due to neutrino-
matter interactions,

(

∂ǫ

∂t

)

ν

= −4πα

ρW

∞
∫

0

dε
∑

C(0)
ν , (2.35)

(

∂Ye

∂t

)

ν

= −4παmB

ρW

∞
∫

0

dε
(

C(0)
νe

− C(0)
ν̄e

)

, (2.36)

where the factor αW−1 takes care of the conversion from proper time to coordinate time.
The resulting non-linear system of equations for J , H, ǫ and Ye is then solved by Newton-
Raphson iteration. As in [151], we treat µ and τ neutrinos and their antiparticles as a
single species, and solve the corresponding moment equations separately from the (fully
coupled) moment equations for the transport of electron neutrinos and antineutrinos.

2.4.4. Model Boltzmann equation

In the variable Eddington factor technique, the closure relations required for Eqs. (2.28)
and (2.29) are extracted from the formal solution of a model Boltzmann equation, with
the moments of the neutrino distribution function occurring in the collision integral
taken from the solution of the moment equation in an iterative procedure [24, 124, 151].
Since the model Boltzmann equation is only used to compute normalized moments of
the radiation intensity, it is sufficient to consider a strongly simplified equation version
of Eq. (2.27). We therefore neglect terms containing the shift vector or derivatives of the
metric functions α and φ in Eq. (2.27), as well as higher-order terms O(v2

r ) in the radial
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2. General Relativistic Radiation Hydrodynamics

velocity. Furthermore, we set ν = µ and ξ = 1 in the terms for advection in energy
space. However, the radial advection term is kept exactly as in the full equation. The
model transfer equation for the radiation intensity thus obtained reads,

∂I
∂t

+

(

αvr

φ2
− βr

)

∂f

∂r
+
αµ

φ2

∂f

∂r
+ I

[

(

3 − µ2
) αvr

rφ2
+
(

1 + µ2
)

αφ2 ∂vr

∂r
+ 2αµ

∂vr

∂t

]

−

∂I
∂ε

{

ε

[

(

1 − µ2
) αvr

rφ2
+ µ2 α

φ2

∂vr

∂r
+ αµ

∂vr

∂t

]}

+
α
(

1 − µ2
)

rφ2

∂I
∂µ

+

∂

∂µ

{

(

1 − µ2
)

[

µ

(

αvr

rφ2
− α

φ2

∂vr

∂r

)

− µα
∂vr

∂t

]

I
}

= C [I] . (2.37)

Here, C [I] denotes the collision term in the transfer equation, which is related to the
collision term C in the Boltzmann equation (2.27) by C [I] = ε3h−3c−2

C[f ]. Aside from
the appearance of prefactors containing the metric functions α and φ and of the radial
shift βr in the advection term, Eq. (2.37) is identical to the flat-space transfer equation
in the O(v/c)-approximation. Therefore, the same solution method as in Rampp and
Janka [151] can be employed, i.e. the radial advection term and the energy derivatives
in Eq. (2.37) are treated by a conservative interpolation procedure and a time-explicit
upwind scheme respectively, while the tangent-ray method [124, 205] is used for the
remaining terms.

2.4.5. Source terms

Once the solution of the moment equations is known, the source terms QYe QE, and QM

for electron number, energy, and momentum in the local fluid frame can be computed
from the zeroth and first angular moments C(0) and C(1) of the collision integral,

QYe =

(

dρYe

dλ

)

C

= −4πmB

∞
∫

0

dε
(

C(0)
νe

− C(0)
ν̄e

)

, (2.38)

QE =

(

dρε

dλ

)

C

= −4π

∞
∫

0

dε
∑

C(0)
ν , (2.39)

QM = −4π

∞
∫

0

dε
∑

C(1)
ν . (2.40)

To obtain the correct transformation to the Eulerian frame (in which the equations of
hydrodynamics are solved), we note that the covariant source terms s and qµ which
account for neutrino interactions in the continuity equation for the electron number
density and in the equations of hydrodynamics,

∇µ (ρYeu
µ) = s, ∇νT

µν = qµ, (2.41)

can be expressed as a coordinate-independent scalar and vector in terms of QYe , QE ,
and QM :

s = QYe , qµ = QEe0 +QMe1. (2.42)
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After carrying out a Lorentz transformation 5 back to the Eulerian frame and recasting
the resulting equations into conservative form, we obtain the following source terms for
the conserved Eulerian quantities that appear in Eqs. (2.6), (2.7) and (2.8):

(

∂
√
γS1

∂t

)

C

=
√
γW (vrQE +QM ) . (2.43)

(

∂
√
γτ

∂t

)

C

=
√
γW (QE + vrQM ) . (2.44)

(

∂
√
γρWYe

∂t

)

C

=
√
γWQYe (2.45)

Note that we have multiplied the source terms by the metric
√
γ, because it is the

densitized variables
√
γSi,

√
γτ and

√
γDYe that are actually evolved in Eqs. (2.6), (2.7)

and (2.8). This is possible because the metric factor
√
γ is obviously not changed by

neutrino interactions.

2.4.6. Ray-by-ray-plus approach for axisymmetric problems

As noted by Rampp and Janka [151], a treatment of neutrino transport in spherical
symmetry (as described in Secs. 2.4.3 to 2.4.5) can be extended to the multi-dimensional
case by assuming that all the involved physical quantities depend only parametrically on
the coordinates θ and φ (using spherical polar coordinates), while neglecting any lateral
derivatives in the full three-dimensional moment equations. However Buras et al. [21]
pointed out that the lateral advection of neutrinos in the optically thick regime and the
non-radial components of the neutrino pressure gradient need to be taken into account
to avoid unphysical convective activity in the proto-neutron star. In general relativity
the additional advection terms in the moment equations are,

(

∂
√
γW (J + vrH)

∂t

)

adv

+
∂α

√
γWv̂2 (J + vrH)

∂θ
= 0 (2.46)

(

∂
√
γW (H + vrK)

∂t

)

adv

+
∂α

√
γWv̂2 (H + vrK)

∂θ
= 0, (2.47)

which are solved in an operator-split step before the radial transport sweep. We also
include terms for the compressional heating of the neutrino due to lateral motions,
which are added to the moment equations (2.28) and (2.29) when performing the radial
transport sweep,

(

∂
√
γ (J + vrH)

∂t

)

comp

= −∂α
√
γWv̂2

∂θ

J −K

2
− ∂

∂ε

(

ε
∂α

√
γWv̂2

∂θ

J −K

2

)

,(2.48)

(

∂
√
γ (H + vrK)

∂t

)

comp

= −∂α
√
γWv̂2

∂θ

K − L

2
− ∂

∂ε

(

ε
∂α

√
γWv̂2

∂θ

H − L

2

)

.(2.49)

5Since we consider a purely radial velocity field at this stage, the Lorentz transformation of a four-vector
from the comoving frame to the Eulerian frame simply reads: (q0, q1, q2, q3) → W (q0 + vrq

1, q1 +
vrq

0, q2, q3)
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2. General Relativistic Radiation Hydrodynamics

It should be noted that gravitational redshift associated with lateral motion is still
neglected here; however, this is a tiny effect in typical supernova environments due to
the relatively small asphericity of the gravitational field.

The lateral component of the neutrino pressure gradient appears as a source term for
the component S2 of the fluid momentum density,

(

∂
√
γS2

∂t

)

lat

= −√−g∂Pν

∂θ
, (2.50)

where we assume that the neutrino pressure is given by Pν = 4/3πJ in the optically thick
regime. Since the acceleration four-vector due to the neutrino pressure gradient must
be orthogonal to the four-velocity of the fluid, the source term in the energy equation
(work exerted on the fluid) is given by,

(

∂
√
γτ

∂t

)

lat

= −√−gv2 ∂P

∂θ
. (2.51)

Finally, contrary to the Newtonian case, the covariant source vector qµ has to be
transformed to the Eulerian frame by a Lorentz boost which includes the non-radial
velocity components. QE and QM now enter differently into the source term for S1, and
additional source terms for S2 and S3 appear,

(

∂
√
γS1

∂t

)

C

=
√
γ

[

Wv1QE +QM

(

1 + v1vr
W − 1

vivi

)]

, (2.52)

(

∂
√
γS2

∂t

)

C

=
√
γ

[

Wv2QE +QMv2v
rW − 1

vivi

]

, (2.53)

(

∂
√
γS3

∂t

)

C

=
√
γ

[

Wv3QE +QMv3vr
W − 1

vivi

]

. (2.54)

While the new terms in QM are of order O(v2) and can usually be neglected, all the terms
in QE are of order O(v) and need to be included to ensure the correct evolution of the
specific internal energy ǫ. This is particularly crucial for rapidly rotating configurations,
where the rotational velocity vφ can reach a significant fraction of c.

2.5. Quality of our approximation

Our relativistic ray-by-ray-plus method entails several approximations, which fall into
three categories, viz., approximations in the treatment i) of the microphysics (EoS, neu-
trino interactions, etc.), ii) of neutrino transport, and iii) of the gravitational field equa-
tions. Concerning the microphysics, we rely on the same up-to-date description as the
non-relativistic PROMETHEUS-VERTEX code, which includes a number of additional
neutrino reactions compared to the “standard” set of neutrino opacities used by Bruenn
[12] (see [19, 22, 67, 78, 99, 115] for the extensions to the standard opacities). Neu-
trino oscillations are presently neglected despite the fact that the classical MSW effect
and collective neutrino-antineutrino flavour oscillations may possibly have an important
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2.5. Quality of our approximation

bearing at least on the observable neutrino properties. However, considering that our
understanding of the latter phenomenon is by no means complete, and that the classi-
cal MSW effect is only relevant far outside the supernova core, it is doubtful whether
the physics of neutrino oscillations is dynamically relevant for the supernova problem
at all. Moreover, no self-consistent dynamical simulations including these effects have
been carried out so far; recent studies have contented themselves with post-processing
progenitor or simulation data [48, 111]. Thus, our treatment of neutrino physics, while
certainly not complete, is state-of-the-art for dynamical supernova simulations, and the
same is true for the three high-density equations of state (Lattimer&Swesty [100], Shen
[167], Wolff&Hillebrandt [74]) available in our code.

Handling the neutrino transport with the “ray-by-ray-plus” scheme of Buras et al. [21]
introduces approximations on two different levels: First, the variable Eddington factor
technique is not strictly equivalent to full Boltzmann transport even in spherical symme-
try, since only a simplified “model” Boltzmann equation is solved to provide the closure
for the moment equations. This shortcoming is mitigated by the fact that comparisons
with analytic solutions [151] and with Boltzmann solvers based on the SN -method [107]
show that the approximate solution is entirely adequate in many cases. Second, the “ray-
by-ray-plus” approach ignores the lateral propagation (but not the lateral advection) of
neutrinos. However, the analysis of [21] at least suggests that this approximation does
not affect the heating in the gain layer dramatically, and therefore captures the overall
dynamics during the proto-neutron star accretion phase and also during the subsequent
wind phase quite adequately. Unfortunately, no detailed comparison of the “ray-by-ray-
plus” method with true multi-angle transport or alternative approaches, like multi-group
flux-limited diffusion (MGFLD), which would allow us to better assess the quality of our
method, is available as yet. So far, the different approaches to multi-dimensional trans-
port hitherto pursued by supernova modellers all have their individual strengths and
weaknesses: the only true multi-angle [110, 145] simulations for example, have been car-
ried out at the expense of neglecting inelastic scattering reactions, and MGFLD has been
shown to smear out lateral variations of the radiation field quite considerably [145], while
the “ray-by-ray-plus” method probably tends to overestimate such variations. Still, sim-
ulations with ray-by-ray transport show effects that are qualitatively similar to those
seen by Ott et al. [145] with multi-angle transport. At any rate, ray-by-ray transport
can also be classified as a state-of-the-art method in the field, notwithstanding the fact
that is certainly limited too scenarios where the anisotropies in the matter distribution
(at least out to the neutrinosphere) do not become exceedingly large. Compared to other
radiative transfer methods used in multi-dimensional relativistic simulations up to now
– like the deleptonization scheme of Liebendörfer [103], which was first used in GR by
Ott et al. [144], or the grey two-moment formalism (using the Eddington approximation)
by Farris et al. [54] – it is a much more ambitious and accurate approach to neutrino
transport in core collapse supernovae.

Given the limitations of the “ray-by-ray-plus” method, the use of the CFC approxima-
tion to the gravitational field equations is quite natural: CFC breaks down for strongly
deformed, rapidly rotating matter configurations, where the “ray-by-ray-plus”method is
not applicable anyway – there is little to be gained by a more accurate treatment of
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2. General Relativistic Radiation Hydrodynamics

general relativity in that regime. It is noteworthy, however, that the the CFC approx-
imation has been found to be very accurate for a wide range of (sometimes extreme)
astrophysical scenarios, such as rapidly rotating neutron stars [36], rigidly rotating disks
[92], and rotational core collapse [33, 44, 143, 144, 169]. In the core collapse scenario,
CFC still appears to be adequate [66] for the extremely rapidly rotating models of Shi-
bata and Sekiguchi [170]; even toroidally deformed neutron stars obviously pose little
problem to CFC. These facts indicate that in typical supernova simulations, where the
neutron star rotates moderately at most, CFC will not be the weakest link in the chain
of approximations, and that, at least for our purpose, GR effects are treated correctly
in our code. All in all, VERTEX-CoCoNuT can thus be regarded as a truly relativistic
radiation hydrodynamics code for core collapse supernovae, featuring a sophisticated
neutrino transport scheme and an up-to-date treatment of the microphysics.
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3. Improved Numerical Methods

In the last chapter, we already commented on the numerical methods used in the
VERTEX-CoCoNuT code. Most of these methods are abundantly documented in
the literature or in the papers on VERTEX [21, 151] and CoCoNuT [41, 43], and
we therefore refrain from describing them in detail. However, our implementation of
the equations of hydrodynamics and neutrino transport in VERTEX-CoCoNuT differs
from the CoCoNuT and VERTEX codes in some important points, namely in the treat-
ment of the relativistic energy equation (2.7), and in the treatment of the Doppler and
gravitational redshift terms in the neutrino moment equations (2.28) and (2.29). Since
the new implementation in VERTEX-CoCoNuT significantly improves either the nu-
merical accuracy and (in the case of the “Doppler” terms) the computational efficiency
of the code, we discuss these details at some length in this chapter. Furthermore, our
reformulation of the energy equation and the new scheme for the “Doppler” terms can
be applied in a more general context, and may be found useful in other hydrodynamics
and neutrino transport codes, relativistic and Newtonian alike.

3.1. Energy Conservation in Newtonian and Relativistic
Hydrodynamics

3.1.1. Importance of energy conservation in the supernova problem

Conservative discretization schemes for the Euler equations of gas dynamics are one
of the cornerstones in modern computational astrophysics, both because they have ap-
pealing mathematical properties [101], and because they conserve important integral
quantities (total rest mass, total energy, etc.) to machine precision. Unfortunately,
the standard formulation of the Euler equations for self-gravitating fluids is not strictly
conservative despite the fact that there exists an integral conservation law for the total
kinetic, internal, and potential energy for any localized1 matter distribution.

In the supernova problem, the non-conservative formulation of gravitational source
terms in the Euler equations raises some critical questions: Can a secular drift of the
total energy on the order of 1051 erg over a few 100 ms (which is a typical value for many
simulations [26, 106, 133]) have a qualitative influence on the propagation of the shock
and the development of the explosion, as the explosion energy is typically of the same
order? Is there an appreciable effect in the first few seconds of the neutron star cooling

1This restriction is crucial, and has tangible implications: It is not possible, for example, to formulate
a conservation law for the energy in a general cosmological context [175].
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phase? The former question may probably be answered in the negative, because the
accumulated error in the gravitational energy liberated during the collapse of the iron
core and the contraction of the proto-neutron star makes itself felt primarily as a small
excess or deficit (on the percent level or below) in the internal energy of the compact
central object (which contains most of the mass on the grid), and not as a large relative
error in the region around the shock. This also suggests that the energy conservation
error due to the use of effective potentials (for which total energy conservation does
not hold [116]) should not affect the post-bounce phase seriously. There is also some
empirical evidence for this line of reasoning, since energy conservation in the shells
above the neutron star has been discussed quantitatively and found to be adequate for
an explosion model of an 8.8M⊙ star [82]. On the other hand, a secular drift of the
total energy can qualitatively affect neutron star cooling in the post-explosion phase:
Once spurious generation of energy due to numerical inaccuracies outweighs the slowly
decreasing neutrino losses, the proto-neutron star does not cool any longer (such an
effect was actually observed in one of our pseudo-Newtonian simulations).

In order to alleviate the problems associated with the non-conservative character of
gravitational source terms in the energy equation, we have developed an alternative
scheme for treating the energy equation that significantly decreases the secular drift of
the total energy. The new scheme can easily be integrated into any Eulerian finite-volume
method, and is applicable (with only small variations) both in Newtonian and relativis-
tic hydrodynamics. In the Newtonian case, it also works with effective gravitational
potentials that do not obey the Poisson equation, and is very useful even then despite
the fact that total energy is not conserved analytically, since the purely numerical drift
is often much larger than the conservation error stemming from the pseudo-relativistic
potential.

3.1.2. Energy equation in Newtonian hydrodynamics

Description of the algorithm

Usually the energy equation for a self-gravitating fluid is written as,

∂e

∂t
+
∂ (e+ P ) vi

∂xi
= −ρvi ∂Φ

∂xi
. (3.1)

Here, e = ρv2/2+ρǫ is the total energy density, P is the pressure, vi is the fluid velocity,
ρ is the (baryonic) mass density, and ǫ is the specific internal energy. Although Eq. (3.1)
is not written in the form of a pure conservation equation, there is a conservation law
for the volume integral of the total (i.e. kinetic, internal, and potential) energy (see,
e.g., [171]): In order to obtain this integral conservation law, we absorb the source term
−ρvi∂Φ/∂xi into the flux term on the LHS,

∂e

∂t
+
∂ (e+ P + ρΦ) vi

∂xi
= Φ

∂ρvi

∂xi
, (3.2)
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and use the continuity equation ∂ρ/∂t+ ∇ · (ρv) = 0 to eliminate the divergence of the
mass flux in the new source term,

∂e

∂t
+
∂ (e+ P + ρΦ) vi

∂xi
= −Φ

∂ρ

∂t
. (3.3)

Integrating Eq. (3.3) over the entire spatial domain then yields,
∫

∂e

∂t
dV = −

∫

Φ
∂ρ

∂t
dV = 4π

∫

Φ
∂∆Φ

∂t
dV = −4π

∫

∇Φ
∂∇Φ

∂t
dV = (3.4)

= −2π
∂

∂t

∫

∇Φ · ∇Φ dV = 2π
∂

∂t

∫

Φ∆Φ dV = −1

2

∂

∂t

∫

ρΦ dV.

Here, we have used Green’s first identity, the Poisson equation ∆Φ = 4πGρ, and the
fact that the surface integral,

∫

Φ∇Φ dA, (3.5)

vanishes if the domain of integration is extended to infinity. Eq. (3.4) implies that the
total energy is conserved,

∫ (

e+
1

2
ρΦ

)

dV = const. (3.6)

However, the discretized representation of the total energy,

Etot =
∑

i,j,k

(

ei,j,k +
1

2
ρi,j,kΦi,j,k

)

∆Vi,j,k, (3.7)

will not be automatically conserved, if the numerical implementation of the gravitational
source term is based on Eq. (3.1), because the discretized source term cannot be manip-
ulated in the same fashion as in the steps from Eq. (3.1) to (3.3). One way to eliminate
any secular drift of the total energy resulting from this, and to avoid the unwanted
consequences described in Sec. 3.1.1, would be to use a strictly conservative form of the
energy equation [138],

∂

∂t

[

e+ ρΦ +
1

8πG

(

∂Φ

∂xi

)2
]

+
∂

∂xi

[

(e+ P + ρΦ) vi +
1

4πG
Φ
∂2Φ

∂t ∂xi

]

= 0 (3.8)

Unfortunately, this form of the energy equation has several drawbacks: the “gravitational
self-energy” contribution 1/(8πG)

(

∂Φ/∂xi
)2

to the total energy density can exceed the
kinetic, internal, and binding energy of the matter by a large factor, resulting in consid-
erable round-off errors in these quantities. Furthermore, the flux term contains a mixed
spatial and temporal derivative, which may introduce numerical inaccuracies. It is also
impossible to formulate an analogue of Eq. (3.8) for the effective relativistic potentials
commonly used in PROMETHEUS-VERTEX [116, 128] because these do not obey the
Poisson equation.

However, there is a simple and efficient solution to the problem of numerical energy
conservation that avoids these shortcomings and requires only a minimal modification
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of the “standard” scheme based on Eq. (3.1). The starting point is the reformulation of
the energy equation in Eq. (3.2),

∂e

∂t
+
∂ (e+ P + ρΦ) vi

∂xi
= Φ

∂ρvi

∂xi
.

Using the continuity equation, the divergence of ρvi can be replaced by the time deriva-
tive of the density, which is in turn partially absorbed in the time derivative of ρΦ,

∂ (e+ ρΦ)

∂t
+
∂ (e+ P + ρΦ) vi

∂xi
= ρ

∂Φ

∂t
. (3.9)

The remaining source term now contains the time derivative of the gravitational po-
tential. Eq. (3.9) can be conveniently solved with an operator-split scheme in three
steps.

Step 1: First, the equations of hydrodynamics are solved with the additional potential
energy terms ρΦ, where Φ itself is kept constant,

∂ (e+ ρΦ)

∂t
+
∂ (e+ P + ρΦ) vi

∂xi
= 0,Φ = const. (3.10)

Since ρΦ may be considerably larger than the internal energy density e, using e + ρΦ
as conserved quantity instead of e may lead to large round-off errors in e and produce
unwanted numerical noise (in particular spurious entropy loss or production). To cir-
cumvent this problem, the time derivative ∂ρΦ/∂t can be re-expressed in terms of the
mass flux (as Φ = const.), i.e. ∂ρΦ/∂t = Φ∂ρ/∂t = −Φ∇ · (ρv),

∂e

∂t
+
∂ (e+ P + ρΦ) vi

∂xi
− ∂ρvi

∂xi
Φ = 0,Φ = const. (3.11)

The value e(n+1/3) of the energy density after the first fractional step can be obtained
by integrating Eq. (3.11) over the cell volume V . It is instructive to compare the final
formula for the update of e with “standard” implementations of the gravitational source
term. Working with forward differences in time 2, we now have

e(n+1/3) = e(n) − ∆t

V

[

∫

∂V
(e+ P )v · dA +

∑

k

∫

Ak

(Φc − Φk) ρv · dAk

]

, (3.12)

(where Ak denotes the k-th cell interface, while Φc and Φk are the cell-centre and -
interface values of Φ) instead of,

e(n+1/3) = e(n) − 1

V

∫

∂V
(e+ P )v · dA−∇Φ · ρv (3.13)

Since
∫

(Φk − Φc) dAk/V is the component of ∇Φ pointing into the direction of dAk,
the update prescription (3.12) can be viewed as an alternative version of (3.13), in which

2First-order forward differences are only adopted for illustration at this point. The implementation in
higher-order time integration schemes is straightforward.
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the cell-averaged mass flux ρv has been replaced by an average of the mass flux at cell
interfaces. Thus, gravitational energy is only released or stored when mass is actually
exchanged between different cells. This is the key ingredient for eliminating a secular
drift of the total energy.

When the gravitational field is stationary, no further fractional steps are required,
and the value of e after one full time-step is just e(n+1) = e(n+1/3). If the gravitational
potential varies with time, two additional steps are necessary once Φ has been updated
from its old value Φ(n) to Φ(n+1) at the end of the time-step.

Step 2: In order to ensure that Eq. (3.10) is fulfilled, the energy density e(n+2/3) after
the second fractional step must be calculated according to,

e(n+2/3) = e(n+1/3) + ρ(n+1)
(

Φ(n) − Φ(n+1)
)

. (3.14)

Step 3: Finally, the source term ρ∂Φ/∂t has to be accounted for in a third step,

∂ (e+ ρΦ)

∂t
= ρ

∂Φ

∂t
. (3.15)

If centred differences in time are used to obtain second-order accuracy, the energy density
at the end of the time-step reads,

e(n+1) = e(n+2/3) +
1

2

(

ρ(n) + ρ(n+1)
)(

Φ(n+1) − Φ(n)
)

. (3.16)

Steps 2 and 3 can easily be combined into a compact formula for the update of e after
each recalculation of the gravitational potential:

e(n+1) = e(n+1/3) +
1

2

(

ρ(n) − ρ(n+1)
)(

Φ(n+1) − Φ(n)
)

. (3.17)

Condition for the exact conservation of energy

Under certain conditions, the scheme described in Sec. 3.1.2 conserves the total energy
exactly. To demonstrate this for the special case of a spherical polar grid, we consider
the total energy balance after each sub-step of the algorithm: Steps 1 and 2 conserve
the (discretized) total volume integral of e + ρΦ, provided that the flux (e + P + ρΦ)v
vanishes at the boundaries of the computational domain,

∑

i,j,k

(

e
(n+2/3)
(i,j,k) + ρ

(n+1)
(i,j,k)Φ

(n+1)
(i,j,k)

)

∆Vi,j,k =
∑

i,j,k

(

e
(n)
(i,j,k) + ρ

(n)
(i,j,k)Φ

(n)
(i,j,k)

)

∆Vi,j,k. (3.18)

If e is then updated according to Eq. (3.16), we obtain, by combination with Eq. (3.18),

∑

i,j,k

(

e
(n+1)
(i,j,k) + ρ

(n+1)
(i,j,k)Φ

(n+1)
(i,j,k)

)

∆Vi,j,k = (3.19)

∑

i,j,k

[

e
(n)
(i,j,k) +

1

2

(

ρ
(n)
(i,j,k)Φ

(n)
(i,j,k) − ρ

(n+1)
(i,j,k)Φ

(n)
(i,j,k) + ρ

(n+1)
(i,j,k)Φ

(n+1)
(i,j,k) + ρ

(n)
(i,j,k)Φ

(n+1)
(i,j,k)

)

]

∆Vi,j,k.
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Hence, the total energy after the (n + 1)-th time-step is according to the definition in
Eq. (3.7),

E
(n+1)
tot = E

(n)
tot +

∑

i,j,k

ρ
(n)
(i,j,k)Φ

(n+1)
(i,j,k)∆Vi,j,k −

∑

i,j,k

ρ
(n+1)
(i,j,k)Φ

(n)
(i,j,k)∆Vi,j,k, (3.20)

The sums on the RHS quantify the violation of total energy conservation during one
time-step. If they were replaced by integrals, we could manipulate them using Green’s
first identity and the Poisson equation ∇ · ∇Φ = 4πGρ to obtain an exact cancellation:

∫

ρ(n)Φ(n+1) dV −
∫

ρ(n+1)Φ(n) dV = (3.21)

4πG

∫

(

∇Φ(n)
)

·
(

∇Φ(n+1)
)

dV − 4πG

∫

(

∇Φ(n+1)
)

·
(

∇Φ(n)
)

dV = 0.

Using a special finite-difference representation of the Poisson equation, we can manip-
ulate the sums in Eq. 3.20 in very much the same way as by applying Green’s first
identity. Let us assume that the source density 4πρ is expressed as the divergence of the
gravitational acceleration g in the following natural manner,

4πρ∆V(i,j,k) = g(i+1/2,j,k)∆A(i+1/2,j,k) − g(i−1/2,j,k)∆A(i−1/2,j,k),

+ g(i,j+1/2,k)∆A(i,j+1/2,k) − g(i,j−1/2,k)∆A(i,j−1/2,k),

+ g(i,j,k+1/2)∆A(i,j,k+1/2) − g(i,j,k−1/2)∆A(i,j,k−1/2). (3.22)

Here, ∆A(i+1/2,j,k) denotes the area of the interface between the cells (i, j, k) and (i +
1, j, k), and g(i+1/2,j,k) denotes the perpendicular component of g thereon; ∆A(i,j+1/2,k),
etc. are defined analogously. Let us further suppose that g(i+1/2,j,k) is obtained by
multiplying the difference Φ(i+1,j,k) − Φ(i,j,k) by a time-independent factor ci,j,k, as in
the following natural finite-difference representation of g,

g(i+1/2,j,k) = ci,j,k
(

Φ(i+1,j,k) − Φ(i,j,k)

)

=
1

ri − ri+1

(

Φ(i+1,j,k) − Φ(i,j,k)

)

(3.23)

g(i,j+1/2,k) = di,j,k

(

Φ(i,j+1,k) − Φ(i,j,k)

)

=
1

ri (θj − θj+1)

(

Φ(i,j+1,k) − Φ(i,j,k)

)

(3.24)

g(i,k+1/2) = ei,j,k
(

Φ(i,j,k+1) − Φ(i,j,k)

)

=
1

ri sin θj (ϕk − ϕk+1)

(

Φ(i,j,k+1) − Φ(i,j,k)

)

(3.25)
At the outer boundary, we may set g(m+1/2,j,k) = Φ(m,j,k)rm/r

2
m+1/2 to obtain the correct

monopole moment of the gravitational field.
The first sum term in the energy balance equation (3.20) can now be written as

∑

i,j,k

ρ
(n)
(i,j,k)Φ

(n+1)
(i,j,k)∆Vi,j,k =

∑

i,j,k

[(

g
(n)
(i+1/2,j,k)∆A(i+1/2,j,k) − g

(n)
(i−1/2,j,k)∆A(i−1/2,j,k)

)

Φ
(n+1)
(i,j,k)

+
(

g
(n)
(i,j+1/2,k)∆A(i,j+1/2,k) − g

(n)
(i,j−1/2,k)∆A(i,j−1/2,k)

)

Φ
(n+1)
(i,j,k)

+
(

g
(n)
(i,j,k+1/2)∆A(i,j,k+1/2) − g

(n)
(i,j,k−1/2)∆A(i,j,k−1/2)

)

Φ
(n+1)
(i,j,k)

]

∆Vi,j,k.

(3.26)
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Via summation by parts3, we arrive at an expression that is completely symmetric with
respect to the time indices n and n+ 1:

∑

i,j,k

ρ
(n)
(i,j,k)Φ

(n+1)
(i,j,k)∆Vi,j,k =

∑

i=1,M−1

∑

j=1,N−1

∑

k=1,O

g
(n)
(i,j+1/2,k)∆A(i,j+1/2,k)g

(n+1)
(i,j+1/2,k)

+
∑

i=1,M

∑

j=1,N−1

∑

k=1,O

g
(n)
(i,j+1/2,k)∆A(i,j+1/2,k)g

(n+1)
(i,j+1/2,k)

+
∑

i=1,M

∑

j=1,N

∑

k=1,O−1

g
(n)
(i,j,k+1)∆A(i,j+1/2,k)g

(n+1)
(i,j+1/2,k)

+
∑

j=1,N

∑

k=1,O

g
(n)
(m+1/2,j,k)∆A(m+1/2,j,k)g

(n+1)
(m+1/2,j,k). (3.27)

In effect, we have obtained a finite-difference analogue of Green’s first identity with non-
vanishing surface contributions. The second sum in (3.20) can be rearranged in precisely
the same way and thus cancels the first sum exactly. Hence, the total internal, kinetic
and gravitational energy is conserved exactly,

E
(n+1)
tot = E

(n)
tot . (3.28)

3.1.3. Energy equation in general relativity

In general relativity, the situation is somewhat different from the Newtonian case: At
first sight, the fact that no sources appear in the local conservation law ∇νT

µν = 0 for
the stress-energy tensor T µν might suggest that the energy and momentum equations
can be formulated in a strictly flux-conservative form (i.e. without sources). However,
an integral conservation law can only be formulated (via Gauss’ theorem) for divergence-
free vector fields on a differentiable and orientable manifold [175, 186]; such fields can in
general be constructed from the energy momentum tensor only if there exists a Killing
vector field4. On the other hand, a conservation law can be formulated for the sum of
T µν and the Landau-Lifshitz pseudo-tensor tµν of the gravitational field [98, 175],

∂ (−g) (T µν + tµν)

∂xν
= 0, (3.29)

Unfortunately, the practical use of Eq. (3.29) is limited because t is a complicated
(and non-unique) function of the metric and its derivatives. Furthermore, it is im-
possible to interpret tµ0 as the local energy-momentum vector density of the gravi-
tational field due to its non-uniqueness and non-tensorial character; only the integral

3Note that in spherical polar coordinates some “surface contributions” vanish since A(1/2,j,k) =
A(i,1/2,k) = A(1/2,N−1/2,k) = 0, Φ(i,j,0) = Φ(i,j,O), and Φ(i,j,O+1) = Φ(i,j,1).

4Special cases comprise: i) the flat Minkowski spacetime with ten Killing fields (implying the conserva-
tion of energy, momentum and angular momentum), ii) stationary spacetimes with a time-like Killing
field (implying energy conservation), and iii) axisymmetric spacetimes with a space-like Killing field
that creates an SO(2) isometry group (implying the conservation of one angular momentum compo-
nent).
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EADM =
∫ (

T µ0 + tµ0
)

dV (known as ADM energy) over the entire spatial domain in an
asymptotically flat spacetime has a well-defined physical meaning. In general, Eq. (3.29)
will only be useful for special gauge choices and symmetry assumptions, where the re-
sulting source-free energy equation is not overly complicated (see e.g. [104, 154]). The
total volume integral EADM (which can also be expressed in different ways) is, of course,
an important diagnostic quantity for assessing the quality of energy conservation in a
numerical code.

Because of these obstacles we construct an improved scheme for the energy equation in
a similar way as in the Newtonian case and do not attempt to eliminate source terms from
the energy equation altogether. We start from the formulation used by Dimmelmeier
et al. [46],

∂
√
γτ

∂t
+
∂
√−g

(

τ v̂i + Pvi
)

∂xi
=

√−g
[

T 00

(

Kijβ
iβj − βi ∂α

∂xi

)

+ T 0i

(

2Kijβ
j − ∂α

∂xi

)

+ T ijKij

]

.

(3.30)
For convenience, we add the continuity equation, and subsume most of the source terms
on the RHS under the variable Q to arrive at an equation very similar to Eq. (3.1),

∂
√
γ (τ +D)

∂t
+
∂
√−g

(

τ v̂i +Dv̂i + Pvi
)

∂xi
= −√−g

[

(τ +D) v̂i + Pvi
] ∂α

∂xi
+Q. (3.31)

The first source term on the RHS corresponds closely to the Newtonian source term
ρvi∂Φ/∂xi. It is the product of the total energy flux (rest mass flux in Newtonian grav-
ity) and the flat-space gradient of the lapse function (corresponding to the Newtonian
potential). This source term can be eliminated by multiplying Eq. (3.31) by α,

α
∂
√
γ (τ +D)

∂t
+ α

∂
√−g

(

τ v̂i +Dv̂i + Pvi
)

∂xi
= −α√−g

[

(τ +D) v̂i + Pvi
] ∂α

∂xi
+ αQ,

(3.32)
and by pushing the lapse function into the space and time derivatives,

∂
√
γα (τ +D)

∂t
+
∂
√−gα

(

τ v̂i +Dv̂i + Pvi
)

∂xi
=

√
γ (τ +D)

∂α

∂t
+ αQ. (3.33)

Again, the new source term (τ +D) ∂α/∂t corresponds closely to ρ∂Φ/∂t in the New-
tonian case. Since it is numerically advantageous to separate the baryonic mass contri-
butions to the total energy (due to the reduction of round-off errors), we subtract the
continuity equation, and finally arrive at the following alternative energy equation:

∂

∂t
[
√
γα (τ +D) −√

γD]+
∂

∂xi

[√−g
(

ατv̂i + αDv̂i −Dv̂i + αPvi
)]

=
√
γ (τ +D)

∂α

∂t
+αQ.

(3.34)
The numerical solution within a finite-volume scheme can again be split into three

sub-steps, the first of which consists in solving the energy equation (including only αQ
as source term) while keeping the lapse function α fixed,

∂

∂t
[
√
γατ +

√
γ (α− 1)D] +

∂

∂xi

[√−g
(

ατv̂i + αDv̂i −Dv̂i + αPvi
)]

= αQ. (3.35)
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Figure 3.1.: Total energy (panels a and b) and central density (panels c and d) for core
collapse runs with CoCoNuT and PROMETHEUS, both in Newtonian gravity. The
CoCoNuT run (panels a and c) has been carried out using the deleptonization scheme
of Liebendörfer [103], and the progenitor model s20.0 of Woosley et al. [196]; the energy
lost in the form of neutrinos is added to the total energy budget. The adiabatic collapse
(except for nuclear burning) of the 15M⊙ model s15s7b2 of Woosley and Weaver [195]
simulated with PROMETHEUS is shown in panels b and d. Results obtained with the
“standard” and improved scheme for the energy equation are drawn as solid and dashed
lines, respectively.

In order to avoid working with
√
γατ +

√
γ (α− 1)D as conserved quantity, we note

that the change in
√
γ (α− 1)D inside a cell volume V during the time-step ∆t can be

expressed in terms of the integral of the flux Dv̂i over the cell boundary A = ∂V . The
finite-volume version of the energy equation for this cell can therefore be written as,

∫

V
α
√
γτ (n+1/3) dV =

∫

V
α
√
γτ (n) dV + ∆t

[

−
∫

∂V

√
γα2

(

τ v̂i + Pvi
)

dA (3.36)

−
∫

∂V

√
γα (α− 1)Dv̂i dA+ (α− 1)

∫

∂V
α
√
γDv̂i dA+

∫

V
αQ

]

.

The surface integrals in the second line of Eq. (3.36) can be combined into a single term
containing the difference between the lapse function αc at the cell centre and the lapse
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Figure 3.2.: Entropy versus enclosed mass for the adiabatic collapse of model s15s7b2 at
a time of 1.2 ms before bounce (crosses) compared to the entropy profile of the initial
model. The entropy changes at m ≈ 1.3M⊙ are caused by silicon burning, and by the
transition to the high-density EoS regime.

function αk at the k-th cell interface,

∫

V

√
γτ (n+1/3) dV =

∫

V

√
γτ (n) dV + ∆t

∫

V
QdV + ∆t

∫

V
αQ (3.37)

−∆t

α

[

∫

∂V

√
γα2

(

τ v̂i + Pvi
)

dA+
∑

k

∫

Ak

√
γαk (αc − αk) dA

]

.

This formulation requires only a minimal modification of the scheme for the unmodified
energy equation (3.30).

In a second step, the lapse function is updated, while the conserved quantity
√
γ [τ + (α− 1)D]

is kept constant,

∂

∂t

[

ατ̂ + (α− 1) D̂
]

= 0. (3.38)

Note that it is convenient to work with the densitized quantities τ̂ =
√
γτ and D̂ =

√
γD

here because
√
γ may be updated at the same time as α. The discretized version of

Eq. (3.38),

α(n+1)τ̂ (n+2/3) +
(

α(n+1) − 1
)

D̂(n+1) = α(n)τ̂ (n+1/3) +
(

α(n) − 1
)

D̂(n+1), (3.39)
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Figure 3.3.: Violation of total energy conservation for the collapse simulation of a 4/3-
polytrope with the TVD test code. Initially the total energy of the polytrope is −1.08×
1051 erg.

has the solution,

√
γτ (n+2/3) =

√
γτ (n+1/3) +

(

τ (n+1/3) +D(n+1)
)

(

α(n)

α(n+1)
− 1

)

. (3.40)

In a third operator-split step, the source term containing
√
γ (τ +D) ∂α/∂t in Eq. (3.34)

is taken care of,
∂

∂t
[
√
γατ +

√
γ (α− 1)D] =

√
γ (τ +D)

∂α

∂t
. (3.41)

As in the Newtonian case, the second and third step can be merged, and if centred
differences in time are used, τ has to be updated according to,

τ̂ (n+1) = τ̂ (n+1/3) +
τ̂ (n+1/3) + τ̂ (n) +D(n+1) +D(n)

2

α(n) − α(n−1)

α(n)
. (3.42)

3.1.4. Numerical tests

To illustrate the virtues of the new scheme for the energy equation, we have conducted
several numerical tests in spherical symmetry with different codes. Newtonian core
collapse simulations have been carried out with PROMETHEUS, the Newtonian version
of CoCoNuT and a self-written second-order accurate hydrodynamics code employing
TVD reconstruction and the Kurganov-Tadmor central scheme [95].

The PROMETHEUS run follows the adiabatic collapse of the progenitor model s15s7b2
of Woosley and Weaver [195] to a central density of 1013 g cm−3 with a quasi-Lagrangian
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Figure 3.4.: Violation of ADM energy conservation for a general relativistic core collapse
run with CoCoNuT with the “standard” scheme (black) and the improved scheme
(green) for the relativistic energy equation. The run has been carried out using the
parameterized Ye(ρ) trajectory of Liebendörfer [103], and the progenitor model s20.0 of
Woosley et al. [196]. Neutrino energy losses are neglected.

grid. After that point, the grid is fixed, and the new scheme is switched on. The right
upper panel of Fig. 3.1 shows that the new implementation still produces a residual
violation of energy conservation of about 1050 erg around bounce. However, the total
energy changes by less than 6 × 1048 erg after tpb = 10 ms, which is a considerable
improvement compared to the old implementation, where the accumulated error reaches
several 1050 erg within 40 ms after bounce. The reduction of the numerical error is of
little relevance dynamically: the proto-neutron settles down at a slightly higher cen-
tral density, which is consistent with the smaller total energy obtained with the new
scheme. In order to demonstrate that by evolving e instead of e + ρΦ round-off errors
in the internal energy and the specific entropy can be kept small as we claimed, we
also show entropy profiles of the model at the beginning of the simulation and shortly
before bounce in Fig.3.2. Apart from small changes in the outer region of the core (at
m ≈ 1.3M⊙), which are, however, due to nuclear burning, the entropy is conserved to
very good accuracy.

Total energy is conserved to even greater accuracy in a completely Eulerian simulation
of the collapse of model s20.0 of Woosley et al. [196] using the Newtonian version of
CoCoNuT and the deleptonization scheme of Liebendörfer [103]. If neutrino energy
losses are correctly taken into account (which is trivial in the non-relativistic case), our
new scheme conserves the total energy to an accuracy of 2 × 1049 erg at bounce, but
reduces the secular drift after tpb = 10 ms to less than 2×1048 erg. In the same simulation
with the “standard” implementation of gravity, energy conservation is violated by 6 ×
1050 erg, i.e. the new scheme reduces the error by an order of magnitude. However, the
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effect on the dynamical evolution is small, as in the simulation with PROMETHEUS,
with a minimal increase in the final central density of the proto-neutron star due to the
new implementation.

Although a change of the total energy by around 3% as in the CoCoNuT simulation is
probably more than satisfactory for core collapse simulations, this level of accuracy still
does not exhaust the full potential of our new scheme, which can in principle conserve
the total energy exactly as explained in Sec. 3.1.2. In order to verify this, we have
simulated the collapse of a 4/3-polytrope with our self-written TVD test code using the
hybrid equation of state of Janka et al. [83]. The gravitational potential and acceleration
are calculated according to Eq. (3.22) and (3.23), hence the condition for exact energy
conservation is satisfied. Fig. 3.3 shows that the total energy changes by less than
1039 erg (!), which corresponds to a relative error of less than 10−12 in terms of the
initial energy (Etot,i = −1.08 × 1051 erg) and less than 10−14 in terms of the internal
energy at the end of the simulation. Thus our improved scheme can indeed preserve
the total energy almost to machine precision provided that the gravitational potential
is determined appropriately.

In addition to these tests in Newtonian gravity, we have also simulated the collapse of
model s20.0 in general relativity using CoCoNuT. We employ the Liebendörfer scheme
for deleptonization with one minor modification: While reducing Ye according to a
Ye(ρ)-parameterization, we neglect energy losses due to neutrino emission, because this
simplifies the total energy budget considerably. Ideally, we would expect the ADM
energy EADM, which can be written as,

EADM = −2π

∫
(

Φ5ρhW 2 − P +
KijK

ij

16π

)

dV, (3.43)

in a CFC spacetime, to be conserved in such a situation. Fig. 3.4 shows that EADM is
not perfectly conserved either with the “standard” scheme or with the new scheme. In
both cases, conservation is violated by |∆EADM| ≈ 6 × 1050 erg around bounce, which
is not surprising considering the complicated non-linear nature of the field equation and
the appearance of gravitational self-energy terms in the sources and in the ADM energy.
However, |∆EADM| settles down to a value of less than 1050 erg within 1 ms after bounce
in the simulation using our new scheme, and the secular drift is only 1049 erg for the next
100 ms afterwards. The old scheme, on the other hand, leads to a violation of around
9× 1050 erg and a small but clearly visible drift of EADM during the post-bounce phase.

The relativistic test thus confirms our findings in Newtonian gravity: Our refor-
mulation considerably improves numerical energy conservation in simulations of self-
gravitating systems. The secular drift during the quasi-stationary PNS evolution not
completely eliminated in all cases, but can be easily reduced by an order of magni-
tude, which demonstrates the usefulness of our new scheme particularly for long-time
simulations covering many dynamical time-scales.
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3.2. Simultaneous Conservation of Energy and Lepton Number

While the monochromatic moment equation (2.28,2.29) and (2.31,2.32) for neutrino en-
ergy and number transport are analytically equivalent, a flux-conservative discretization
of either pair of equations does not necessarily guarantee neutrino number (or, in the
presence of neutrino-matter interactions, lepton number) and energy conservation simul-
taneously. The reason for this problem, which is inherent to spectral neutrino transport
in the comoving frame, can be understood by comparing the analytic and discretized
forms of the Doppler and gravitational redshift terms (denoted by a subscript “D”) in
the moment equations. In the neutrino energy equation these terms can be written as

(

∂J

∂t

)

D

=
∂εwJ

∂ε
− wJ, (3.44)

where the advection “velocity” in energy space w is a function of the velocities, metric
functions, and the Eddington factors fH = H/J , fK = K/J , and fL = L/J . To obtain
the corresponding term in the equation for the monochromatic neutrino number density
J = J/ε, we divide by ε and apply the product rule,

(

∂J
∂t

)

D

=
∂wJ

∂ε
+
wJ

ε
− wJ

ε
=
∂wJ

∂ε
=
∂εwJ
∂ε

.

The Doppler term in the neutrino number equation is thus a pure flux derivative term and
cancels out if the equation is integrated over ε to obtain the evolution equation for the
total neutrino number density. On the other hand, if the energy equation is discretized
with backward differences in time and a flux-conservative form for the energy advection
term,

(

Jn+1
i ∆εi − Jn

i ∆εi
∆t

)

D

= εi+1/2wi+1/2J
n+1
i+1/2 − εi−1/2wi−1/2J

n+1
i−1/2 −wiJ

n+1
i ∆εi, (3.45)

the discretized Doppler term for J reads,

(J n+1
i ∆εi −J n

i ∆εi
∆t

)

D

=
εi+1/2

εi
wi+1/2J

n+1
i+1/2 −

εi−1/2

εi
wi−1/2J

n+1
i−1/2 − wiJ

n+1
i

∆εi
εi

= wi+1/2εi+1/2J n+1
i+1/2 − wi−1/2εi−1/2J n+1

i−1/2 − wiJ
n+1
i

∆εi
εi

+
εi+1/2 − εi

εi
wi+1/2J

n+1
i+1/2 +

εi − εi−1/2

εi
wi−1/2J

n+1
i−1/2.

(3.46)

Thus, the source term in the neutrino number equation does not vanish in the discretized
form of the equations, unless the last three terms in Eq. (3.46) cancel. Different methods
have been proposed to recover the property of neutrino number conservation [12, 106].
In the original version of VERTEX [151] the problem is overcome by solving both the
monochromatic moment equations for the neutrino energy density and flux (J,H), and
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the number density and flux (J ,H) for electron neutrinos and antineutrinos simultane-
ously, but there are significant drawbacks to this approach: first, the mean energy J/J
within a given energy zone [εi−1/2, εi+1/2] is not constrained to the cell-centre value εi
and may even move beyond the cell boundaries if J is treated as an independent quan-
tity. Moreover, the solution of the equations by the Newton-Raphson method involves
the inversion of square matrix blocks of size 4×Nε +2 instead of 2×Nε +2 for neutrino
energy transport alone, which makes the Newton-Raphson iteration almost eight times
more expensive.

Fortunately, the Doppler terms in the moment equations for neutrino energy transport
can be discretized in such a way as to guarantee neutrino energy and number conservation
simultaneously. For example, in a rather simple approach the interface values Jn+1

i+1/2
could be computed iteratively from Ji and Ji−1/2 using the condition

εi+1/2 − εi

εi
wi+1/2J

n+1
i+1/2 = wiJi

∆εi
εi

−
εi − εi−1/2

εi
wi−1/2J

n+1
i−1/2, (3.47)

so that the last three terms in Eq. (3.46) would indeed cancel. However, since this
scheme allows large violations of the monotonicity condition Ji < Ji+1/2 < Ji+1, the
resulting algorithm would be rather unstable. To construct a stable scheme, we need
to impose a weaker condition on the interface fluxes F = εwJ , i.e. we only require the
source term in the frequency-integrated neutrino number equation to vanish:

(J n+1
tot − J n

tot

∆t

)

D

=
∑

i

(

εi+1/2

εi
wi+1/2J

n+1
i+1/2 −

εi−1/2

εi
wi−1/2J

n+1
i−1/2 − wiJ

n+1
i

∆εi
εi

)

= 0.

(3.48)
In order to find interface fluxes Fi+1/2 = εi+1/2wi+1/2J

n+1
i+1/2 that fulfil this condition, we

first rearrange the sum in Eq. (3.48) in the following manner:

(J n+1
tot − J n

tot

∆t

)

D

= . . .−
Fi−3/2

εi−1
− wiJ

n+1
i−1

∆εi−1

εi−1
+
Fi−1/2

εi−1
(3.49)

−
Fi−1/2

εi
− wiJ

n+1
i

∆εi
εi

+
Fi+1/2

εi

−
Fi+1/2

εi+1
− wiJ

n+1
i+1

∆εi+1

εi−1
+
Fi+3/2

εi+1
− . . .

= . . .+

(

1

εi−2
− 1

εi−1

)

Fi−3/2 − wiJ
n+1
i−1

∆εi−1

εi−1

+

(

1

εi−1
− 1

εi

)

Fi−1/2 − wiJ
n+1
i

∆εi
εi

(3.50)

+

(

1

εi
− 1

εi+1

)

Fi+1/2 − wiJ
n+1
i

∆εi+1

εi+1
+ . . . .

Next we split the fluxes into “left” and “right” components which are assigned to the
adjacent energy zones,

Fi+1/2 = FL
i + FR

i+1, (3.51)
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and again rewrite the frequency-integrated Doppler term in the discretized neutrino
number equation:

(J n+1
tot − J n

tot

∆t

)

D

= . . .+

[(

1

εi−2
− 1

εi−1
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+
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∆εi+1
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+

(

1
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− 1

εi+2

)

FL
i+1

]

+ . . .

If FR and FL are chosen such that each of the square brackets in Eq. (3.52) vanishes, no
source term in the frequency-integrated neutrino number equation appears, and hence
the total lepton number is also conserved5.

The condition we obtain for the “left” and “right” fluxes,

(

1

εi−1
− 1

εi

)

FR
i +

(

1

εi
− 1

εi+1

)

FL
i = wiJ

n+1
i

∆εi
εi
, (3.53)

only fixes the (weighted) sum of FR and FL, so we are still free to specify the ratio
FR/FL to obtain steeper flux profiles in the high-energy tail of the spectrum, where Ji

decreases rapidly with the zone index i. To this end, we parameterize FR and FL by a
weighting factor ξi,

FL
i =

wi∆εi

1 − εiε
−1
i+1

Jn+1
i ξi, (3.54)

FR
i =

wi∆εi

εiε
−1
i−1 − 1

Jn+1
i (1 − ξi) . (3.55)

Here, ξ is defined as a function of the zeroth angular moment j = Jh3c2/ε3 of the
neutrino distribution function at zone interfaces (obtained as weighted geometric mean
of j in the adjacent zones), and a steepness parameter α,

ξi =
jαi+1/2

jαi−1/2 + jαi+1/2

. (3.56)

Only the lowest energy zone constitutes an exception, since the condition that F (ε = 0)
should vanish requires ξ1 = 1. For the steepness parameter, we typically set α = 1/2 or
α = 1; both choices result in a second-order accurate scheme 6.

5Strictly speaking, this statement holds only as long as the non-linear moment equations are solved
exactly. In practice, the time-critical Newton-Raphson iteration is terminated once a specified ac-
curacy in the solution is reached, and a sufficiently low tolerance level must be chosen to guarantee
long-time conservation of lepton number.

6Second-order accuracy can be proved by means of a Taylor series expansion, but this involves lengthy
calculations that are omitted here.
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The rationale for this seemingly complicated procedure for determining the weighting
factor can be illustrated as follows: First, we specialize to the case of a logarithmic grid
as used in VERTEX 7, so that Eqs. (3.54) and (3.55) simplify to,

FL
i = wiεi+1/2J

n+1
i ξi (3.57)

FR
i = wiεi−1/2J

n+1
i (1 − ξi) . (3.58)

In regions where Ji varies mildly with i, ξ is close to 1/2, and hence the total interface
flux is approximately given by the arithmetic mean of the flux in the adjacent cells,

Fi+1/2 = FL
i + FR

i+1 ≈
wiJ

n+1
i + wi+1J

n+1
i+1

2
. (3.59)

On the other hand, in the high-energy tail of the spectrum Ji drops rapidly with in-
creasing i, i.e. Ji+1 ≪ Ji. Assuming that the spectrum can be approximated by a
Fermi-Dirac distribution (with a small chemical potential in the sense that µ ≪ εi), Ji

is given in terms of the inverse temperature β and a normalization factor k as,

Ji ≈ ke−βεiε3i , (3.60)

and the weighting factor is approximately,

ξ ≈ e−β∆εi ≪ 1. (3.61)

In this case the flux components read,

FL
i = wiεi+1/2ke

−β(εi+α∆εi)ε3i , (3.62)

FR
i = wiεi−1/2ke

−βεiε3i . (3.63)

Bearing in mind that ε3 varies far more slowly than e−βε in the steep tail of the spectrum,
we obtain

FL
i ≈ wiεi+1/2kJi+1/2,

∣

∣FR
i

∣

∣ ≈
∣

∣wiεi−1/2kJi

∣

∣≪
∣

∣FL
i−1

∣

∣ , Fi+1/2 ≈ FL
i (3.64)

for α = 1/2, while for α = 1 we have,

FL
i ≈ wiεi+1/2kJi+1, FR

i ≈ wiεi−1/2kJi Fi+1/2 ≈ (wi + wi+1) εi+1/2kJi+1. (3.65)

Thus, in the case of α = 1/2, the effective interface value of J appearing in the fluxes
is given by the weighted geometric mean of J in the adjacent zones; for α = 1 it is twice
the minimum value in either zone, which corresponds more closely (but not exactly)
to the weighted harmonic mean. Since α = 1 generally reduces the absolute values of
the fluxes, the resulting scheme is somewhat more robust than for α = 1/2, i.e. the
Newton-Raphson iteration fails to convergence less frequently.

7More precisely, the zone interfaces and centres are chosen as follows: εi+1/2 = ∆ε0λ
i (for i ∈

{1, . . . , N}), ε−1/2 = 0, and εi = 1
2

`

εi−1/2 + εi+1/2

´

. Here, N is the number of energy zones,
∆ε0 is the width of the first zone, and λ > 1 is an adjustable parameter.
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Figure 3.5.: Spectral energy flux of electron neutrino (solid), electron anti-neutrinos
(dashed) and µ/τ (dash-dotted) neutrinos from the simulation of a cooling neutron star
with PROMETHEUS-VERTEX. All quantities are measured at r = 400 km in the
comoving frame. The left panel shows spectra from 1 s after bounce, obtained with the
Doppler treatment of Rampp and Janka [151]. The spectra in the right panel (from
tpb = 1.5 s were obtained with our new conservative Doppler scheme using “harmonic”
(α = 1/2) interpolation. Aside from some secular changes of the electron neutrino
spectrum, the main difference if the elimination of the dip in the ν̄e- and νµ/ντ spectra
at the neutrino energy E ≈ 80 MeV.

“Harmonic” interpolation with α = 1 has another welcome side effect in addition to
the improved robustness of the scheme: The method of geometric interpolation (also in
the original scheme of Rampp and Janka [151]) suffers from a mild “kink” instability,
that may produce an unphysical dip in the neutrino spectra. In a long-time simulation
of the neutron star cooling phase with PROMETHEUS-VERTEX, in which our new
scheme was switched on about 1 s after bounce, we found that “harmonic” interpolation
eliminates such a dip, as shown in Fig. 3.5. Because of the favourable stability properties
and the smoother neutrino spectra, we preferably work with α = 1, but α = 1/2 is also
a viable choice. The simulations conducted so far also indicate that the new scheme
conserves lepton number about as accurately as the original treatment of Rampp and
Janka [151]8; even for time-steps as large as ∆ = 3× 10−5 ms the relative change of the
total lepton number per time step is no larger than a few 10−8.

8Note that the extraordinary accuracy of 10−11 per time-step for lepton number conservation mentioned
by Rampp and Janka [151] is typically only achieved during the initial phase of the collapse. In
practice, the violation of lepton number conservation per time-step during the later phases of the
evolution is higher also with the scheme of Rampp and Janka [151].
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4.1. Simple test problems – Radiating spheres

Stationary solutions for the propagation of radiation from a central source into vacuum
furnish one of the simplest kinds of test problems in radiation hydrodynamics. Although
not overly challenging per se, they provide a useful consistency check for the numerical
implementation of the relativistic neutrino moment equations. The principle underlying
these tests may be illustrated by considering the neutrino energy equation Eq. (2.28) in
flat space, assuming stationarity and specializing to the laboratory frame (where vr ≡ 0),

1

r2
∂
(

r2Heul

)

∂r
= C(0). (4.1)

Outside the central source (which may be chosen as a homogeneous isothermal sphere
of radius R with vanishing scattering opacity and frequency-independent absorption
opacity as a very simple case), the collision integral vanishes, and hence the lab frame
luminosity remains constant,

Leul = 16π2Heulr
2 = const. (4.2)

Likewise, since no energy-exchanging reactions occur, and since all the Doppler terms
in the moment equations vanish, the mean energy of the radiation is independent of the
radius r in the vacuum region,

〈ε〉eul = H/H = const. (4.3)

The luminosity and mean energy as measured by moving observers can be constructed
from the transformation properties of the radiation moments J , H, and K (see, e.g.,
Mihalas and Weibel Mihalas [124]). Since J = H = K for r ≫ R, we have

LW 2
(

1 + v2
r + 2vr

)

= L
1 + vr

1 − vr
= const., 〈ε〉W (1 + vr) = const., (4.4)

for the luminosity L = 16π2/cH and the mean energy 〈ε〉 in the frame of a moving
observer. We have compared the numerical solution obtained with VERTEX-CoCoNuT

to this analytical solution for the case of a radiating sphere with R = 4 km and an
observer velocity field with a peak value of v = −0.2c at r = 150 km,

vr =







0, r < 135 km

−0.2c r−135 km
15 km , 135 km ≤ r < 150 km

−0.2c
(

150 km
r

)2
, 150km ≤ r

(4.5)
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Figure 4.1.: Radial velocity, luminosity and mean energy (both in the moving ob-
server frame) for test problem 1. Crosses indicate the results obtained with VERTEX-
CoCoNuT, the analytic solutions are drawn as solid lines.

This setup (“test problem 1”) mimics the velocity profile typically encountered in the
accretion phase of core collapse supernovae with a strong shock discontinuity at radii
of order ≈ 100 km. Fig. 4.1 shows that the numerical solution is in excellent agree-
ment with Eq. (4.4), with a maximum deviation of less than 2%. Considering that the
finite-difference representation of the moment equations has not been specifically tuned
to reproduce the analytic result, and that the energy grid is rather coarse (∆ε/ε ≈ 0.28),
the accuracy achieved by VERTEX-CoCoNuT seems more than adequate, and indi-
cates that the velocity-dependent terms in the moment equations have been correctly
implemented.

The implementation of the gravitational redshift terms can be tested in a similar
fashion: We now consider the propagation of radiation from an isothermal sphere in
a curved spacetime, assuming that the metric is diagonal and isotropic, i.e. ds2 =
−α2dt2 + φ4

(

dr2 + r2dθ2 + sin2 θdφ2
)

. The frequency-integrated neutrino energy and
number equations (obtained from Eqs. (2.28) and (2.29) after setting βr ≡ vr ≡ 0 and
W ≡ 1) can then be solved directly in the vacuum region,

αφ4Hr2 = const., α2φ4Hr2 = const., α 〈ε〉 = const. (4.6)

To test our numerical scheme, we have chosen a lapse function α(r) from a pseudo-
relativistic core collapse simulation with VERTEX-PROMETHEUS (with a minimum
value of α(0) ≈ 0.72), thus mimicking a potential well of similar strength as in real
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4.2. Core collapse in spherical symmetry

applications. For convenience, the conformal factor φ is set to φ =
√
α−1 as in the

weak-field limit. Again, the luminosity and mean energy are in very good agreement
with the analytic results for this test case (“test problem 2”), as shown in Fig. 4.2. The
redshift-corrected luminosity1 L = α

(

16παφ4Hr2
)

, which should be constant outside
the radiating sphere for our specific choice for α and φ, is in fact constant to within
0.02%.

Test problem 1 and 2 can be easily combined to serve as more stringent check for the
implementation of the moment equations (as more and more non-vanishing terms enter),
if we consider non-Eulerian observers in a curved spacetime. The redshift-corrected
luminosity and mean energy as measured by an observer moving with a velocity vr then
obey the following simple equations,

αφ4 1 + vr

1 − vr
L = const., Wα (1 + vr) 〈ε〉 = const.. (4.7)

With the same choice for vr, α, and φ as in test problem 1 and 2, VERTEX-CoCoNuT

once more reproduces the analytic solution to very good accuracy (see Fig. 4.3).

4.2. Core collapse in spherical symmetry

While the performance of VERTEX-CoCoNuT for the simple test problems presented
in the last section is reassuring, only a comparison with existing one-dimensional gen-
eral relativistic neutrino transport codes can serve as a true shakedown test for fu-
ture applications in “uncharted territory” (i.e. multi-dimensional GR neutrino trans-
port). Fortunately, such codes are available [104–106, 201]; and a detailed comparison
of the relativistic AGILE-BOLTZTRAN (AGILE for short) and the pseudo-relativistic
PROMETHEUS-VERTEX code has already been carried out by Liebendörfer et al. [107]
and Marek et al. [116]. Since Liebendörfer et al. [107] provides a useful framework for
assessing the quality of a newly developed code, we have repeated their run G15 with
VERTEX-CoCoNuT, and have compared our results to those obtained with AGILE.
As the neutrino transport module in VERTEX-CoCoNuT is largely identical to that
in PROMETHEUS-VERTEX (apart from the underlying moment equations), there is
an additional payoff from this testing strategy: in a number of cases, the origin of the
differences between the three codes can be pinpointed more accurately with a third
code available. In total, our analysis encompasses four different simulations2 of model
G15 with AGILE, CoCoNuT, and PROMETHEUS (with two different choices for the
gravitational potential).

1The uncorrected relativistic luminosity in a CFC spacetime, i.e. the energy passing through a sphere
around the origin of radius r per unit coordinate time is just 16παφ4Hr2. If the spacetime is static,
gravitational redshift corrections can be taken into account analytically by including another factor
α.

2The data from the AGILE and PROMETHEUS-VERTEX (case R) runs have been taken from the
online material provided in the electronic version of [107]. The PROMETHEUS-VERTEX (case A)
run has been carried out using the latest version of that code.
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rian observer) for test problem 2. Crosses indicate the results obtained with VERTEX-
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4.2. Core collapse in spherical symmetry

Following Liebendörfer et al. [107] as closely as possible, we launch our simulation
from the 15M⊙ progenitor s15s7b2 of Woosley and Weaver [195], and use the same set of
neutrino interactions rates3. Our treatment of the EoS differs slightly from both AGILE
and PROMETHEUS-VERTEX for this test run: While using the EoS of Lattimer and
Swesty [100] above a threshold density of 6 × 107 g cm−3, nuclear burning is switched
off below 3 × 107 g cm−3 (as in AGILE), and the composition of the progenitor is
advected with the fluid (different from AGILE, which considers only one nucleus, 28Si,
in that regime). Between those transition densities, the composition is taken from a
17-species NSE table4. An Eulerian grid was used both for the hydrodynamics and the
neutrino transport (400 and 234 zones, respectively), and the same energy resolution as
in PROMETHEUS-VERTEX (17 zones) was chosen.

Although the microphysical input is almost identical in all three codes, it is crucial
to bear in mind that they differ considerably from each other in their approach to neu-
trino radiation hydrodynamics before proceeding with a comparison of their results:
AGILE solves the relativistic Boltzmann equations directly by means of a discrete-angle
(SN ) method, and relies on an artificial viscosity scheme with an adaptive (moving)
grid for the hydrodynamics. PROMETHEUS-VERTEX employs a variable Edding-
ton factor technique for the neutrino transport and the PPM method for solving the
equations of hydrodynamics; it uses a number of approximations to incorporate general
relativistic effects, while remaining essentially a Newtonian code. The key element of
its GR treatment is a modification of the Newtonian gravitational potential that leads
to the same hydrostatic stellar structure equation (TOV equation) as in general relativ-
ity (PROMETHEUS-VERTEX “case R”) or to a sightly modified TOV equation that
improves the agreement with the relativistic case5 (“case A”). VERTEX-CoCoNuT,
while based on the same approach as PROMETHEUS-VERTEX, accounts for general
relativistic effects exactly in spherical symmetry (apart from the computation of the
Eddington factors). However, the PPM scheme in CoCoNuT is somewhat less accurate
than that in PROMETHEUS due to the use of an approximate Riemann solver (only
HLLE for this run). Moreover, the two relativistic codes CoCoNuT and AGILE differ
in their choice of gauge and slicing conditions: ambiguities arising from this fact must
be handled carefully.

While the conversion from the isotropic radial coordinate riso used in CoCoNuT to
the areal (circumferential) radius r used by Liebendörfer et al. [107] is straightforward
(r = φ2riso), the identification of time slices for the comparison of radial profiles of
density, luminosity, etc. is non-trivial. In principle, a complete reconstruction of the
entire spacetime would be necessary to allow for a rigorous comparison of the code
output. Since the data provided in Liebendörfer et al. [107] is insufficient for such a
reconstruction, we are forced to identify time slices by the elapsed coordinate time t (i.e.
proper time for a non-moving observer at infinity). This is actually less critical than it

3The details of the implementation differ, however: In particular, both VERTEX codes simplify the
physics in the µ/τ -neutrino sector by not treating neutrinos and anti-neutrinos separately.

4This procedure has been adopted to ensure that material in grids cells passing from the high-density
to the low-density regime has a physically reasonable composition

5For a heuristic motivation of the modifications in Case A, see Marek et al. [117].
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Figure 4.4.: Comparison of the entropy per baryon s (left panel), the electron frac-
tion Ye, and the lepton fraction Ylep during collapse in AGILE-BOLTZTRAN (black),
VERTEX-CoCoNuT (green), and VERTEX-PROMETHEUS (red and blue for the ef-
fective potentials R and A) 3 ms after bounce. A somewhat lower central electron and
lepton fraction compared to AGILE is seen for the VERTEX codes. After trapping, the
central entropy is conserved to good accuracy in VERTEX-CoCoNuT.

might appear if we synchronize the different codes at bounce and use the post-bounce
time tpb as time coordinate, because the system soon settles down to a quasi-stationary
state for which the slicing conditions in AGILE and CoCoNuT are identical to very
good approximation. However, even during collapse, the time slices in CoCoNuT and
AGILE remain in sync quite well despite the different form of the metric equations; the
elapsed coordinate time at bounce differs only by 5 ms. This would suggest that the
spacetime slicings in both codes are rather similar, and that they remain synchronized
also after the bounce. Backed by these findings, we can undertake a detailed comparison
of the simulations in CoCoNuT and AGILE (and, of course, also in PROMETHEUS)
during the collapse, bounce, and post-bounce phase.

Relativistic effects are of minor importance until the late stages of collapse when the
density reaches several 1013 g cm−3; only then do the infall velocity v and the com-
pactness parameter M/R of the iron core reach values of the order of 0.1 (in relativistic
units). Consequently, the three codes are in excellent agreement during most of the
collapse phase. Slight differences in the evolution of the central electron and lepton
fraction around trapping (i.e. at a density of a few 1012 g cm−3) can be discerned in
Fig. 4.4. Since the VERTEX-based codes consistently produce somewhat lower values, it
is likely that this difference stems from small differences in the treatment of the neutrino
interaction rates. It should be noted that the new VERTEX-CoCoNuT code conserves
the central lepton fraction and entropy to very good accuracy, thus passing another
important test.

48



4.2. Core collapse in spherical symmetry

0 0.5 1 1.5m [M
O·
]

0

1

2

3

4

5

6

7

s 
[k

b/n
uc

le
on

]

0 0.5 1 1.5m [M
O·
]

0.2

0.3

0.4

0.5

Y
e

0 0.5 1 1.5
m [M

O·
]

-0.15

-0.1

-0.05

0

v r/c

0 20 40 60 80 100 120
r [km]

10
10

10
11

10
12

10
13

10
14

ρ 
[g

 c
m

-3
]

Figure 4.5.: Profiles of the specific entropy s (upper left), the electron fraction Ye (upper
right), the radial velocity vr (bottom left), and the density ρ (bottom right) for model
G15, obtained with different neutrino transport codes: AGILE-BOLTZTRAN (black),
VERTEX-CoCoNuT (green), and VERTEX-PROMETHEUS (case A) (blue). For the
sake of clarity, case R is not shown; the profiles are very similar to case A.

The good agreement between the different codes persists until shock formation (defined
as the instant when the specific entropy inside the sonic point first reaches 3kb/nucleon),
which occurs at an enclosed mass of 0.53M⊙ in AGILE, CoCoNuT and PROMETHEUS
(case A), and at a slightly smaller mass of 0.49M⊙ in PROMETHEUS (case R). Inter-
estingly, important special relativistic effects can be seen shortly after bounce (Fig. 4.5):
Within 3 ms the shock has propagated to the mass shell m ≈ 1.0M⊙. The velocity profile
for the best effective potential (case A) of Marek et al. [116] still matches the profiles
from AGILE and CoCoNuT perfectly, but the entropy profile left behind by the shock
differs appreciably. As long as the shock travels through an optically thick medium
(to neutrinos), the post-shock entropy is higher by up to 0.5kB in the relativistic case
(AGILE, CoCoNuT), indicating that the shock is initially stronger. The post-shock
velocity and the velocity jump across the shock indeed remain larger in CoCoNuT

than in PROMETHEUS out until m ≈ 0.9M⊙ – velocity profiles from AGILE during
the relevant phase are not available from Liebendörfer et al. [107], unfortunately.

On the other hand, the compression (i.e. the ratio of the post- and pre-shock densities
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Figure 4.6.: Ledoux criterion 20 ms after bounce for the relativistic VERTEX-CoCoNuT

run (solid) and for the pseudo-relativistic VERTEX-PROMETHEUS (case A) run
(dashed). For convenience, CL is scaled to the local baryonic mass density ρ. The
region between r = 45 km and r = 60 km is convectively unstable in the CoCoNuT

run, while no extended unstable region is present in the PROMETHEUS run.

ρs and ρp) is higher in strong relativistic shocks than in the Newtonian case6 [84].
Combined with the initially higher entropy production in the shock, this leads to stronger
neutrino emission as soon as the shock moves into semi-transparent layers at lower
densities, which accounts for the lower electron fraction around m = 0.9M⊙, and also
explains why the second hump in the entropy profile between 0.9M⊙ and 1.0M⊙ is less
pronounced in AGILE and CoCoNuT7. The effects of relativistic shock propagation
are also visible in the density stratification between the proto-neutron star and the
shock, which is more shallow in the region outside r ≈ 25 km (m ≈ 0.7). Such small
differences may seem unimportant in the case of a spherically symmetric problems – in

6In Newtonian hydrodynamics, the maximal compression for a given adiabatic index γ is ρs/ρp =
(γ + 1) / (γ − 1).

7Contrary to the statement in Liebendörfer et al. [107], the lower electron fraction cannot be explained
by the fact that the deleptonization during shock breakout occurs at an earlier instant in AGILE
than in PROMETHEUS, since the lower electron fraction around m = 0.9M⊙ persists for quite some
time.
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Figure 4.7.: Neutrino luminosities for model G15 obtained with AGILE-BOLTZTRAN
(black), VERTEX-CoCoNuT (green), and VERTEX-PROMETHEUS (red and blue
for the effective potentials R and A) as measured by an observer at r = 500 km in the
comoving frame. Electron neutrino luminosities are shown in the upper panels, electron
anti-neutrino and µ/τ neutrino luminosities in the left and right lower panel.

particular when they are washed out after a few tens of ms – but they can be crucial
in multi-dimensional simulations, where they can affect the growth of hydrodynamic
instabilities. Our 1D simulations already give a strong indication that this is indeed
the case: Convective instability is expected if the Schwarzschild-Ledoux criterion CL cp.
[163], which is given in terms of the density ρ, the pressure P , and the specific internal
energy density ǫ by

CL =
∂ρ (1 + ǫ)

∂r
− 1

c2s

∂P

∂r
, (4.8)

in the relativistic case [180], or

CL =
∂ρ

∂r
− 1

c2s

∂P

∂r
, (4.9)

in Newtonian hydrodynamics, is positive8. Fig. 4.6 reveals a convectively unstable layer
at r ≈ 50 km with a thickness of more than 10 km at a time of 20 ms after bounce in

8Note that the Schwarzschild-Ledoux criterion reduces to the simple Schwarzschild criterion CS =
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Figure 4.8.: Neutrino rms energies for model G15 obtained with AGILE-BOLTZTRAN
(black), VERTEX-CoCoNuT (green), and VERTEX-PROMETHEUS (red and blue
for the effective potentials R and A), sampled at r = 500 km in the comoving frame.
Electron neutrino, electron anti-neutrino, and µ/τ neutrino luminosities are shown as
solid, dashed, and dotted lines, respectively.

the CoCoNuT run, which is not present in the VERTEX run. Since the underlying
effect should always produce a more shallow density stratification in the region of the
Ye-trough, prompt post-shock convection can thus be expected to develop more easily in
truly relativistic simulations, regardless of the progenitor structure and the microphysical
input (see Chapter 6 for further discussion).

The stronger deleptonization in the region around m = 0.9M⊙ also leads to a visibly
different evolution of the electron neutrino luminosities during the neutronization burst
(first panel of Fig. 4.7). Although the peak luminosity Lburst ≈ 3.8 × 1053 erg s−1 in
PROMETHEUS (case A and R) agrees well with the one in AGILE, the radiated energy
between tpb = 1 ms and tpb = 8 ms is smaller by a around 10%. Conversely, the total

ds/dr for a chemically homogeneous fluid. The alternative form CL = ds/dr (∂ρ/∂s)P,Ylep
+

dYlep/dr (∂ρ/∂Ylep)s,P [21] can not be applied in the relativistic case. However, the relativistic
Ledoux criterion can be expressed in terms of the spatial derivative of s and Ylep in the following
manner, CL = ds/dr (∂(ρ + ρǫ)/∂s)P,Ylep

+ dYlep/dr (∂(ρ + ρǫ)/∂Ylep)s,P .
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Figure 4.9.: Time evolution of the shock position for model G15 in AGILE-BOLTZTRAN
(black), VERTEX-CoCoNuT (green), and VERTEX-PROMETHEUS with the effec-
tive potentials A and R (blue, red).

energy radiated in νe-s in CoCoNuT during the burst is in perfect agreement with
AGILE despite the higher peak value of Lburst ≈ 4.3× 1053 erg s−1. The different shape
of the burst in AGILE and CoCoNuT is probably due to the choice of the radial grid,
or the different accuracy of the discretization scheme (first order vs. second order in
space), which both influence the numerical diffusivity of the transport scheme and thus
lead to a different degree of smearing during the propagation of the neutrino burst to
the observer radius r = 500 km (cp. [106] for an analysis of the broadening of the burst).
The treatment of the model Boltzmann equation in VERTEX-CoCoNuT may also be
an important factor, either because of the approximations in the tangent ray-scheme
(which may affect the transition from the optically thick to the optically thin regime)
or because of the superior angular resolution of the tangent-ray scheme at large radii
compared to the SN -method used in AGILE, but these factors probably play a minor
role.

The post-bounce evolution of the luminosity of all neutrino flavours (see also Fig. 4.7)
is again very similar in CoCoNuT and AGILE. During the first 150 ms after bounce the
luminosities in CoCoNuT tend to be slightly higher than in AGILE. The agreement is
about as good as for PROMETHEUS (case A) and significantly better than for case R,
where the strength of the gravitational potential and hence the accretion luminosity is
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Figure 4.10.: Radial profiles of the velocity v (dashed lines), the density ρ (solid lines,
upper left), the electron fraction Ye (solid lines), the specific entropy s (dashed lines,
bottom left), the neutrino luminosity (upper right), and the neutrino rms energy (bottom
right) in AGILE-BOLTZTRAN (black), VERTEX-CoCoNuT (green), and VERTEX-
PROMETHEUS with the effective potential A (blue) at a post-bounce time of 100 ms.
Neutrino luminosities and energies are sampled at a circumferential radius of r = 500 km,
and are given in the comoving frame; solid lines are used for electron neutrinos, dashed
lines for electron anti-neutrinos, and dash-dotted lines for µ/τ neutrinos.

considerably overestimated. While PROMETHEUS (case A) is always very close to both
CoCoNuT and AGILE, it is interesting to note that only the two last-named codes show
a very abrupt transition from the fast rise in the νµ/ντ luminosity until tpb = 20 ms to the
subsequent plateau phase. The small differences between CoCoNuT and AGILE are
well within the range expected for different codes (cp. the Newtonian run N13 in [107])
or even for one code at different resolutions (cp. [113]). As in PROMETHEUS, there is a
noticeable drop in the luminosities of all flavours (νe and ν̄e in particular) between tpb =
150 ms and tpb = 200 ms – i.e. at a time, when the shock reaches the oxygen-rich silicon
shell – which is far less pronounced in AGILE due to the different treatment of the nuclear
composition in the low-density regime and the possible superiority of the Riemann solver
methods in PROMETHEUS and CoCoNuT in following the composition discontinuity
at the Si-SiO-interface.

There is also good agreement between the three codes concerning the spectral prop-
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Figure 4.11.: Radial profiles of the velocity v (dashed lines), the density ρ (solid lines,
upper left), the electron fraction Ye (solid lines), the specific entropy s (dashed lines,
bottom left), the neutrino luminosity (upper right), and the neutrino rms energy (bottom
right) in AGILE-BOLTZTRAN (black), VERTEX-CoCoNuT (green), and VERTEX-
PROMETHEUS with the effective potential A (blue) at a post-bounce time of 150 ms.
Neutrino luminosities and energies are sampled at a circumferential radius of r = 500 km,
and are given in the comoving frame; solid lines are used for electron neutrinos, dashed
lines for electron anti-neutrinos, and dash-dotted lines for µ/τ neutrinos.

erties of the emitted neutrinos (Fig. 4.8). The root mean square (rms) energies of
electron neutrino and anti-neutrinos as measured by an observer at r = 500 km (in the
comoving frame) in CoCoNuT differ from those obtained with AGILE by 1 MeV at
most. For electron neutrinos and anti-neutrinos the agreement is significantly better
than in PROMETHEUS (case R and A), where the rms energies are either over- or
underestimated. On the other hand, the µ and τ neutrinos are somewhat more energetic
in CoCoNuT than in AGILE throughout the entire post-bounce evolution, whereas
PROMETHEUS (case A) is very close to AGILE. Given the fact that the agreement in
the electron neutrino sector is worse than for µ and τ neutrinos for case A, and that
the luminosity of µ and τ neutrinos during the first 40 ms after bounce rises much more
slowly than in AGILE, it is likely that the excellent matching of νµ/ντ rms energies
between case A and AGILE is due to a cancellation of the error introduced by the ap-
proximate treatment of general relativity (leading to lower rms energies) and differences
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in the implementation of νµ/ντ interactions rates (leading to higher rms energies). We
are therefore inclined to believe that the higher rms energy of µ and τ neutrinos in
CoCoNuT is not indicative of a bug in our relativistic transport code.

Similar luminosities and spectral properties already suggest similar neutrino loss rates
in the cooling zone and similar heating rates in the gain region, therefore the dynamical
evolution of the proto-neutron star and the accretion shock in CoCoNuT and AGILE
should not be very different either. Fig. 4.9 shows that this is indeed the case: Until
tpb = 150 ms the accretion shock in CoCoNuT is very close to the one in AGILE; the
radial deviation corresponds to only one or two grid zones. Interestingly, there is a brief
transient period of shock stagnation at tpb ≈ 7 ms (lasting a few ms) both in AGILE
and CoCoNuT, which is absent, or at least much less pronounced in PROMETHEUS
(cases A and R). It is conceivable that this feature is connected to the different relativistic
and Newtonian form of the jump conditions, and to the slightly higher energy loss
in electron neutrinos during the burst in the GR simulations. In all simulations, the
maximum shock radius of rmax ≈ 150 km is reached at tpb = 60 ms . . . 80 ms. Afterwards
the shock position in CoCoNuT lies somewhere in between the two PROMETHEUS
runs until tpb ≈ 150 ms, and is a little closer to AGILE than either of them. The
CoCoNuT and PROMETHEUS runs then show a transient phase of shock expansion
when the infalling Si-SiO interface reaches the accretion front; this feature is absent in
AGILE (as explained before) because of the different nuclear composition of low-density
material. At later times (tpb > 220 ms), the shock in CoCoNuT again recedes to the
same radius as the shock in AGILE. The overall shock trajectory in PROMETHEUS
(case A) is very similar to the one in CoCoNuT (but not for case R), which indicates
that the effects of general relativity can still be adequately captured by an effective
gravitational potential in one-dimensional simulations.

The very close overall agreement between CoCoNuT, AGILE and PROMETHEUS
(case A) and the even better agreement between CoCoNuT and AGILE is also evident
in Figs. 4.10 and 4.11, which show radial profiles of selected physical quantities at 100 ms
and 150 ms after bounce. There are only minute differences in the velocity profiles
produced by the three codes; the shock front seems to be resolved a little more sharply
in CoCoNuT, but this is probably incidental, since the sharpness of the jump changes
slightly as the shock slowly moves from zone to zone. The density profile behind the
shock is still slightly more shallow in AGILE and CoCoNuT than in PROMETHEUS
(case A) outside r ≈ 70 km, but the effects of genuinely relativistic shock propagation
in the early post-bounce phase have been largely washed out. This can also be seen
in the entropy profiles, which are very similar during this phase, except for the fact
that PROMETHEUS (case A) seems to give slightly lower entropies in the gain region.
Interestingly, we now find the deleptonization behind the shock to be somewhat more
effective in PROMETHEUS (case A), contrary to the situation near shock breakout.
The luminosity and neutrino rms energy profiles show some visible, but not worrisome
differences between the three codes; e.g. the jump at the shock is generally a little larger
in CoCoNuT than in AGILE, which is to be expected however, since there are small
differences in the pre- and post-shock velocities. Considering that the three codes use
different radial grids (and in the case of AGILE also a different grid in energy space),
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such small discrepancies seem unavoidable and are probably not to be ascribed to coding
errors in any them.

Having thus analysed and compared theG15 runs with three different supernova codes,
we may draw several important conclusions. First, VERTEX-CoCoNuT emerges as a
reliable 1D neutrino transport code that gives results very similar to the relativistic
AGILE-BOLTZTRAN code despite the disparity of methods used in both codes, and
allows simulations of the post-bounce phase over several hundreds of ms. Second, there
is also excellent agreement between the codes PROMETHEUS-VERTEX (case A) and
VERTEX-CoCoNuT, which use identical neutrino physics and the same basic neu-
trino transport algorithm. This implies that the good performance of PROMETHEUS-
VERTEX (case A) in comparison with genuinely relativistic codes is not the result of
a fortunate cancellation of inaccuracies in the description of general relativistic effects.
For simulations in spherical symmetry, the use of an effective relativistic potential in an
otherwise Newtonian code may thus be completely adequate. Finally, there is evidence
for the importance of general relativistic effects in multi-dimensional simulations, which
require a more accurate GR treatment than hitherto available in neutrino transport
simulations. Our findings indicate that post-shock convection may be facilitated in full
GR as the result of a significantly different density stratification behind the accretion
front at early times. There is a clear need to proceed to multi-dimensional simulations
in VERTEX-CoCoNuT to address the consequences of this.

57



4. Code Tests in Spherical Symmetry

58



5. Applications I: Collapse of Rotating Iron
Cores

As the tests of VERTEX-CoCoNuT in spherical symmetry have demonstrated the re-
liability of the new code, we can now proceed to multi-dimensional simulations. In this
chapter, we focus on multi-dimensional effects during the collapse phase, which have been
a major topic in astrophysical relativity since the 1960s, when it was recognized that the
rotational (and hence aspherical) collapse and bounce of iron cores would be a promis-
ing source of gravitational waves [188, 190]. For a long time, this subject could only be
approached by analytical approximations (e.g. [139, 155–157, 164, 181]). Although the
first relativistic code for spherical collapse (without neutrino transport and extremely
simplified microphysics) was already developed in the late 1960s by May and White [118],
it took another 30 years before the first general relativistic simulations of rotational core
collapse could be carried out [41, 42] using the CFC approximation [77, 193] for the
spacetime, because the evolution of the Einstein field equations proved notoriously diffi-
cult. As an intermediate step, gravitational wave emission from rotational collapse was
studied numerically in the Newtonian approximation [57, 127, 200, 206], and although
many of the findings of these works had to be revised as relativistic simulations became
available, they provided a useful framework for the classification of gravitational wave
signals from the bounce: Zwerger and Müller [206] distinguished three different signal
types: type I originates from the bounce of a core at supranuclear densities due to the
stiffening of the equation of state (“regular bounce”), and exhibits a single dominant
peak with negative amplitude, followed by “ring-down” oscillations. Type II originates
from multiple bounces at subnuclear densities due to centrifugal braking (a scenario
already suggested by Shapiro and Lightman [166]), and exhibits multiple negative am-
plitude peaks of similar magnitude. “Rapid regular bounces” at supranuclear densities
give rise to type III signals, which are characterized by a positive amplitude peak and
a strong suppression of the ring-down signal. These different signal types were also
observed in relativistic simulations [42, 169], but centrifugally supported bounces were
found to occur much more rarely than in Zwerger and Müller [206].

With the exception of Mönchmeyer et al. [127], rotational core collapse was studied
using extremely simple equations of state, i.e. a polytropic EoS1, or, at best, the “hy-
brid” equation of state of Janka et al. [83], and neutrino emission during the collapse
was disregarded altogether. As a trade-off for the exact treatment of general relativ-

1For a polytropic equation of state, the pressure is given in terms of the density by a simple power law
P ∝ ρΓ, where Γ is the polytropic exponent
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Neutrino A Ωc,i

Model Progenitor interactions [108 cm] [rad s−1]

G15a1o1 s15s7b2 simplified 50.0 0.45
G15a1o5 s15s7b2 simplified 50.0 1.01
G15a1o7 s15s7b2 simplified 50.0 1.43
G15a1o9 s15s7b2 simplified 50.0 1.91
G15a1o13 s15s7b2 simplified 50.0 2.71
G15a2o5 s15s7b2 simplified 1.0 2.40
G15a2o9 s15s7b2 simplified 1.0 4.56

s15a1o1 s15.0 full 50.0 0.45
s15a1o5 s15.0 full 50.0 1.01
s15a1o7 s15.0 full 50.0 1.43
s15a1o9 s15.0 full 50.0 1.91
s15a1o13 s15.0 full 50.0 2.71
s15a2o5 s15.0 full 1.0 2.40
s15a2o9 s15.0 full 1.0 4.56

Table 5.1.: Summary of rotating core collapse models. The table indicates the progenitor
model, the set of neutrino interaction rates (simplified, or the full VERTEX set), the
length scale A for differential rotation, and the initial angular velocity Ωc,i at the centre.
For convenience, the model nomenclature follows Dimmelmeier et al. [46] closely; the tag
aXoY used for encoding the parameter A of differential rotation and the initial angular
velocity is taken over directly from their paper.

ity that had finally been achieved, the elaborate treatment of the equation of state the
neutrino transport had been sacrificed. The situation changed somewhat in 2007, when
Dimmelmeier et al. [44] and Ott et al. [143] presented the first relativistic core collapse
simulations with a modern nuclear equation of state and a parameterized“deleptonization
scheme” for neutrino emission suggested by Liebendörfer [103]. These authors found [44–
46, 143, 144], that, as a consequence of deleptonization, the gravitational wave signal
is exclusively of type I according to the classification of Mönchmeyer et al. [127] and
Zwerger and Müller [206], and is associated with a single bounce. Type II signals, aris-
ing from multiple bounces of the core at sub-nuclear densities due to centrifugal forces,
or type III signals from the bounce of a rapidly collapsing and rather small inner core
were not seen at all. It has also been claimed that the GW spectra exhibit a robust
spectral peak in the frequency region of 700 . . . 750Hz for a wide range of progenitor
models and rotation rates, which could greatly facilitate the detection of GW signals
from core-collapse events by means of frequency narrow-banding. Only for extremely
rapidly rotating models that undergo a single centrifugal bounce at sub-nuclear densities
(but still produce type I signals) this degeneracy is broken, and the signal frequencies
are shifted downwards. There also seems to be a very strong and uniform correlation
between the gravitational wave amplitude and the rotational state of the core at bounce
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[46], a result which may prove a great asset for the analysis of future observations.

However, while this constitutes an important step towards unifying general relativis-
tic hydrodynamics and sophisticated methods for neutrino transport, the Liebendörfer
scheme [103] employed by these authors is by no means comparable to the elaborate
multi-group methods now routinely used in Newtonian supernova simulations, and even
depends on input from these. It assumes, based on the observations of Müller and
Hillebrandt [129] and Liebendörfer [103] in spherically symmetric simulations with so-
phisticated neutrino transport, that the deleptonization of the core can be described
in terms of a more or less universal parameterization of the electron fraction Ye as a
function of the density ρ. As we shall argue later, it is by no means clear whether this
approximation is still valid for strongly rotating progenitor cores. Thus, it is doubt-
ful whether the recent findings concerning gravitational wave emission from rotational
collapse are to be taken as final conclusions, or whether a more accurate treatment of
neutrino transport would change the picture.

With the new VERTEX-CoCoNuT code, we are, for the first time, in a position to
model the general relativistic collapse of strongly rotating iron cores with an up-to-date
neutrino transport scheme and thereby to check the results of [44–46, 143, 144]. In this
chapter, we address not only the gravitational wave signals emanating from rotational
collapse, but also attempt a critical evaluation of the approximate neutrino treatment
of Liebendörfer [103] in the context of strong rotation.

5.1. Investigated models

In order to study the effects of rotation on the collapse of iron cores, we have carried
out 14 axisymmetric simulations with VERTEX-CoCoNuT. Since multi-dimensional
models of rotating progenitor stars are as yet unavailable (with the exception of white
dwarfs undergoing accretion-induced collapse [203]), we start our simulations from the
spherically symmetric progenitor models s15s7b2 of Woosley and Weaver [195] and s15.0
of Woosley et al. [196], on which we impose a specified rotation profile. Although there
are already “1+1/2”-dimensional stellar evolution calculations that include rotation [70,
71], this method has the advantage of allowing for an arbitrary, exploratory variation
of the initial rotation rate. It must be stressed that none of the initial models thus
constructed is in rotational equilibrium (which is also true for the models in [70, 71]),
and that the influence of rotation during the progenitor evolution is neglected.

The rotation profile of the initial models is specified by the central angular velocity
Ωc,i and the length scale A of differential rotation according to the following rotation
law2,

Ωi = Ωc,i
A2

A2 + r2 sin2 θ
. (5.1)

This rotation law gives a nearly flat rotation profile for r sin θ . A, a quadratic fall-off
with the distance r sin θ to the rotation axis for r sin θ ≫ A, and is in accordance with

2Note that the Newtonian formulation is adequate for the progenitor model. For the relativistic version,
see, e.g., Komatsu et al. [93], and cp. [53].
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the Rayleigh stability criterion for rotating fluids [178].

Both progenitor models have been simulated with seven different rotation profiles, with
the central angular velocity ranging from 0.45 rad s−1 to 4.56 rad s−1, and assuming
either almost uniform rotation (the a1 series with A = 5.0 × 109 cm) or considerable
differential rotation (the a2 series with A = 1.0 × 108 cm). All the initial models are
summarized in Table 5.1. It should be noted that the G15 series based on the progenitor
s15s7b2 has been simulated using the same reduced set of neutrino opacities as for model
G15 in Chapter 4 to allow for a direct comparison, while the full set of neutrino opacities
has been used for the s15 series. Since the emission of electron anti-neutrinos and µ/τ -
neutrinos only becomes important in the post-bounce phase, we exclusively consider
electron neutrinos in the rotational core collapse runs. The EoS of Lattimer and Swesty
[100] has been used in all cases. We also note that the seven rotation profiles are a subset
of those considered by Dimmelmeier et al. [46] for the progenitor s15.0, which greatly
facilitates a comparison with that particular study. All models have been simulated on
a spherical polar grid with 400 × 64 (radial × angular) zones covering 180◦.

5.2. Collapse dynamics and shock formation

The gravitational wave signal from the bounce is intimately connected to the dynamics
of the collapse, which determines the waveform type, the amplitude, and the dominant
frequency by setting the properties (specifically, the mass and the rotational state) of
the homologously collapsing inner core. Dimmelmeier et al. [44, 45, 46] showed that the
dynamics of core collapse with deleptonization can be understood in terms of the theory
of collapsing polytropes [65, 197, 198], and could provide a convincing explanation for
the generic gravitational wave signals they found in their simulations. In order to assess
the validity of their findings, we therefore briefly review their arguments, and thereby
also provide a framework for the analysis of our own results.

Dimmelmeier et al. [44] attempted to interpret the effects of deleptonization in terms
of a reduction of the “effective” adiabatic index γeff [44, 185] of the fluid,

γeff = γEoS +
4

3

1

Ye

δYe

δ ln ρ
+

1

P

δPν

δρ
+ ∆γGR. (5.2)

Here, δ/δρ denotes the absolute derivative with respect to the density along the tra-
jectory of a given mass element, and Pν is the neutrino pressure in the optically thick
regime. The effects of the stronger gravitational field in general relativity are approxi-
mately taken into account by including a correction term ∆γGR ≈ −0.015. Taking an
average γEoS of 1.32 in the dynamically relevant regime of densities (1012 . . . 1014 g cm−3),
Dimmelmeier et al. [44] obtained an effective adiabatic index of γeff ≈ 1.29. They were
thus able to explain the absence of multiple centrifugal bounces (which they found to
occur only for γeff & 1.31) as a consequence of deleptonization.

In order to facilitate a more intuitive physical understanding of the suppression of
multiple bounces, it is instructive to reformulate the explanation of Dimmelmeier et al.
[44] slightly by considering the mass of the inner core as the crucial quantity for the
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5.2. Collapse dynamics and shock formation

Figure 5.1.: Snapshots of the electron fraction Ye (left half of panels) and the specific
entropy s for model G15a2o9. The top panels show the situation 0.3 ms before bounce
on different radial scales, the bottom left panel shows the moment of bounce, and the
bottom left panel depicts the situation 5.5 ms after bounce. Note that we define the
bounce as the moment when the post-shock entropy first exceeds 3kb/nucleon in the
equatorial plane.
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Figure 5.2.: Snapshots of the electron fraction Ye (left half of panels) and the specific
entropy s for model G15a1o1 (left panel) at tpb = 14 ms and for model s15a1o1 (right)
panel at tpb = 5 ms. While a larger number of convective plumes develops in the post-
shock region of model G15a1o1, model s15a1o1 shows only two large lobes and a broad
downflow in the equatorial plane.
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Figure 5.3.: Left panel: Mass Mic of the homologously collapsing inner core as a function
of the central density ρc during the collapse of models s15a1o1 (solid line) and s15a2o9
(dashed line). Right panel: Mass Mic,b of the inner core at bounce as a function of the
initial central angular velocity Ωc,i for the s15 series. Results obtained with neutrino
transport are marked as black crosses, while the results obtained in Ref. [46] with the
deleptonization scheme of [103] are shown as red crosses.
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Figure 5.4.: Left panel: Mass Mic,b of the inner core at bounce as a function of the
central angular velocity Ωc,i of the initial model for different progenitors (s11.2: grey,
s15.0: red, s20.0: green, s40.0: blue) from Woosley et al. [196], and for two different
equations of state (Lattimer&Swesty: light shades, Shen EoS [167]: dark shades). In
addition to the data taken from Dimmelmeier et al. [46], (filled circles) the results for
the s15 series as simulated with VERTEX-CoCoNuT are also shown as black crosses.
Right panel: Same as left panel, but with the rescaled angular velocity Ωc,15 instead of
Ωc,i.

dynamics of the collapse. Since the outer shells of a rotating progenitor possess higher
specific angular momentum (a natural consequence of the Rayleigh criterion), it is ob-
vious that for a centrifugal bounce to occur, the inner core must be sufficiently massive,
i.e. it must still include shells with large angular momentum when the core reaches
the bounce density. Empirically, one finds [46] that the inner core mass must exceed
≈ 0.8M⊙ for a centrifugal bounce to occur. Since rotation slows down the collapse and
thus increases the mass of the inner core, such values can be reached in principle: Using
the parameterized deleptonization prescription of Liebendörfer [103], one finds empiri-
cally [46] that the critical value for the initial angular velocity at the centre is rather
high (& 6 rad s−1). Moreover, since the collapse does not proceed adiabatically below
the trapping density, a significant amount of the gravitational energy released during
the collapse is lost completely in the form of neutrinos, and the energy stored as ro-
tational and internal energy is not sufficiently large to allow for a strong re-expansion
of the core even if the collapse is halted at subnuclear densities. Thus, only a single
centrifugal bounce followed by some ring-down oscillations occurs (instead of multiple
bounces) even in the case of extremely strong rotation. On the other hand, the core
mass typically remains higher than 0.45M⊙, which precludes the rapid collapse required
for type III signals. The mass of the inner core is thus the key factor in determining the
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bounce behaviour and the gravitational waveform type, and serves as a useful diagnostic
quantity for assessing the accuracy of the deleptonization scheme of Liebendörfer [103].

Before analysing our models, it is expedient to discuss why a simple deleptonization
scheme might not be applicable to rotational collapse. The fact that Ye is given by a
“universal”3 progenitor-independent function of the density during the collapse phase,
implies that the derivative dYe/d ln ρ must be a function of the density only,

dYe

d ln ρ
=

dYe

d ln ρ
(ρ). (5.3)

The derivative dYe/d ln ρ can be written as the ratio of the net electron capture rate
dYe/dt and the compression rate d ln ρ/dt,

dYe

d ln ρ
=

dYe

dt

(

d ln ρ

dt

)−1

. (5.4)

However, the compression rate d ln ρ/dt does not depend on the density alone for ho-
mologous collapse, but also on the position of a mass element in the core; at a given
density it is highest in the outer regions of the homologous inner part (as will be illus-
trated later). The higher compression rate must be compensated by a proportionally
higher electron capture rate if condition (5.3) should hold. This is easily conceivable, if
we consider, e.g., the rate of electron capture on free protons4, which scales as (see e.g.
[165]),

dYe

dt
∝ −Ypµ

5
e. (5.5)

In the limit of high degeneracy, the electron chemical potential depends only on ρYe,
while the proton number fraction Yp also depends strongly on the specific entropy s.
Since s is slightly higher in the outer regions of the core, this could in principle account
for the higher electron capture rates posited by our argument. In any case, the proposed
“universality” of the function Ye(ρ) must be the result of a delicate balance between the
variation of the compression rate and the electron capture rate in different regions of the
core (and also in different progenitors).

Based on these considerations, it is easy to see why the “universal” relation between
Ye and ρ in the core might be broken in the case of rotational collapse: The stabilizing
effect of centrifugal forces, which can even halt the collapse at sub-nuclear densities,
can be expected to decrease the compression rate d ln ρ/dt significantly5, thus spoiling
the balance between d ln ρ/dt and the electron capture rate, which only depends on the
thermodynamic state variables (e.g. entropy and electron fraction) at a given density
and is not influenced by rotation. If this were the case, rotating cores could undergo

3The function Ye(ρ) does of course depend on the choice of neutrino interaction rates. It can only be
“universal” in the sense that it does not depend on the progenitor model, the rotational state and is
valid for the entire collapsing core.

4A similar line of reasoning can be applied in the case of heavy nuclei.
5This would affect the entire inner core, and not just its outer regions where most of the angular

momentum is located: Since the material in the inner core remains in sonic contact, centrifugal
forces in its outer regions slow down the collapse of its central region as well.
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significantly stronger deleptonization than non-rotating ones, and, since this implies a
reduction of the mass of the homologous core, the dynamics of the collapse could be
strongly affected. However, it cannot be determined a priori whether stronger delep-
tonization is important dynamically, and it is therefore advisable to discuss the dynamics
of the collapse separately before investigating deleptonization in rotating cores per se.

We begin our analysis of the collapse and bounce phase with Fig. 5.1, which shows
snapshots of the electron fraction and the matter entropy at three different times around
bounce for model G15a2o9, i.e. for a model with the highest initial rotation rate consid-
ered in this chapter. The upper panels depict the situation 0.3 ms before bounce. At this
time, the entropy behind the nascent shock (on the polar axis) first reaches 3kb/baryon
– the usual criterion for the moment of shock formation in spherical symmetry (cp.
Sec. 4.2). Around the equator, however, the shock has not formed yet as a consequence
of the aspherical infall: Matter in the polar region lacks centrifugal support because
of its lower specific angular momentum and therefore falls faster than matter near the
equatorial plane. This can clearly be seen in the upper left panel, where the aspherically
deformed isocontours of the entropy allow the identification of matter originating from
the same mass shell in the progenitor. It takes another 0.3 ms for the shock to form
in the equatorial plane (lower left panel); for our rotating models we define this as the
“moment of bounce”. Initially, the shock exhibits a strong prolate deformation, which
subsists for the first few ms after bounce (lower right panel). 5.5 ms after bounce a
high entropy bubble has developed in each of the polar regions, while the shock front
begins to bulge outwards near the equator due to the high specific angular momentum
of the newly accreted matter. Such a behaviour has already been observed in early
simulations of rotational core collapse in Newtonian gravity [127, 129]. Interestingly,
the shock expansion in the equatorial plane produces a localized region of convective
instability, which is, however, quite dissimilar to the region of prompt post-shock con-
vection seen in non-rotating models (which will be discussed in Chapter 6), inasmuch as
only a single Rayleigh-Taylor mushroom develops. Although rotation locally acts as a
stabilizing influence against convection [178], it can obviously trigger convection in the
post-shock region indirectly through the propagation of the shock. Since we see indica-
tions of a large-scale convective overturn in most of our models (e.g. also in s15a2o9),
early post-shock convection may be more prevalent than claimed by Dimmelmeier et al.
[46], who observed it only for slow rotation6. Nonetheless, it may be more adequate to
speak of partially stabilized post-shock convection for the more rapidly rotating models
because of the peculiar morphology of the convective flow. There is of course a con-
tinuous transition to the more familiar type of convection that is dominated by high
angular wavenumbers, as evinced by Fig. 5.2, which shows the electron fraction and en-
tropy for the slowly rotating models G15a1o1 and s15a1o1 during the early post-bounce
phase. Model s15a1o1 exhibits large-scale convective overturn with two downflows along
the polar axes, while post-shock convection in model G15a1o1 is very similar to the

6Unfortunately, a direct comparison with Dimmelmeier et al. [46] is not possible, because they did not
discuss post-shock convection in detail, and only singled out models where it contributes significantly
to the gravitational wave signal.
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non-rotating models that will be discussed in the next chapter.
Because of the aspherical formation of the shock, the definition of the mass of the

inner core at bounce is ambiguous and can potentially mar the comparison with the
parameterized models of [44–46, 143, 144]. We therefore cling to the definition used by
Dimmelmeier et al. [46] (which was not explicitly stated in their paper, unfortunately),
and use their data for a comparison7. For each angular direction, we define the location
rs(θ) of the sonic point as the smallest radial coordinate for which the radial velocity
equals the local sound speed,

|vr(rs(θ), θ)| = cs(rs(θ), θ). (5.6)

Once the shock has formed, rs(θ) gives the angle-dependent shock position8. In addition,
we introduce the radius r3(θ) where the entropy reaches 3kb/baryon, and define the
(baryonic) mass of the inner core as,

Mic = 2π

∫ π

0

∫ min(rs(θ),r3(θ))

0

√
γρW dθ dr. (5.7)

In other words, Mic is the total baryonic mass inside the sonic surface (or inside the
shock afterwards) with a specific entropy of less than 3kb/baryon. The mass Mic,b of the
inner core at bounce is then obtained from Mic(t) using the aforementioned definition of
the bounce as the instant when the post-shock entropy in the equatorial plane reaches
3kb/baryon.

Dimmelmeier et al. [46] found a roughly quadratic dependence of Mic,b on the ini-
tial central angular velocity Ωc,i of the core, and our sophisticated neutrino transport
simulations tend to confirm this claim. The right panel of Fig. 5.3 shows the mass of
the inner core at bounce as a function of the Ωc,i for the s15 series as obtained with
VERTEX-CoCoNuT, compared to results obtained with Liebendörfer’s deleptoniza-
tion prescription. The differences are relatively small: The results of Dimmelmeier et al.
[46] deviate by less than 0.015M⊙ (or 4%) from ours. This give further credence to the
argument against gravitational wave signals of type III from rapid regular bounces: It
appears that stronger deleptonization due to the slowing-down of the collapse by cen-
trifugal forces does not occur, or at least not at such a level that the mass of the inner
core is changed significantly compared to the the Liebendörfer scheme. It should also be
pointed out that the increase of Mic,b is not an artifact of the somewhat arbitrary defi-
nition of the time of bounce. The left panel of Fig. 5.3 illustrates that Mic is higher for
a rapidly rotating model (s15a2o9) than for a slowly rotating one (s15a1o1) throughout
the entire collapse phase (cp. also Fig.6 in [44]).

However, the simulations carried out with VERTEX-CoCoNuT so far still leave
some unanswered questions concerning the validity of the results obtained with the
Liebendörfer scheme: So far, a direct comparison with ray-by-ray-transport could only
be carried out for one two progenitors (s15.0 and s15s7b2) of the same mass, one equation

7We are indebted to H. Dimmelmeier for providing the relevant information
8Of course, the angle-dependent shock radius rsh(θ) can be different from rs(θ) in general, but during

the early post-bounce phase both quantities are identical.
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of state, and for an initial angular velocity lower than ≈ 1/3 of the highest values
considered by Dimmelmeier et al. [46]. Sophisticated neutrino transport simulations of
extremely rapidly rotating models are possible in principle, but are currently limited to
the stage of shock formation near the polar axes. Tests conducted so far have shown
that some of the pre-shock material at densities . 1012 g cm−3 is exposed to neutrino
heating (specifically by absorption of electron neutrinos) for a sufficiently long time to
reach values of Ye considerably higher than 0.5, and even exceeding the boundaries
of the EoS table of Lattimer&Swesty. While this is an indication that models with
Ωc,i > 5 rad s−1 may yet show unexpected behaviour very different from simulations
with the Liebendörfer scheme, a quantitative analysis is precluded by the limitations of
the EoS at this stage.

Fortunately, the alleged progenitor dependence of Mic,b [46] can already be discussed
— at least to some degree — without conducting further simulations of rotational core
collapse. Dimmelmeier et al. [46] found that Mic,b varies considerably between different
progenitor models, and that the progenitor dependence is considerably amplified for high
initial rotation rates, as shown in the left panel of Fig. 5.4 (cp. also Fig. 4 in [46], which is
virtually identical). These are actually two different aspects, and ought to be addressed
separately. Concerning the variation of the inner core mass in the non-rotational limit,
there is evidence that the Liebendörfer scheme overestimates the dependence on the
progenitor model. In order to demonstrate this, we have conducted spherically symmetric
core-collapse simulations with CoCoNuT, using either the VERTEX transport module,
or the Liebendörfer deleptonization scheme with the same parameterization of Ye(ρ) as
in Dimmelmeier et al. [46]. In both cases, the simulations have been conducted on a
grid with 400 radial zones. Resolution effects, which could possibly skew our comparison
with Dimmelmeier et al. [46] (who used only 250 radial zones) are thus eliminated. The
results (see Table 5.2) show a spread ofMic,b of ≈ 0.045M⊙ or ≈ 10% for the Liebendörfer
scheme, whereas Mic,b is virtually independent of the progenitor in the full transport
simulations with VERTEX-CoCoNuT. As an aside, we note that the values obtained
from our spherical simulations with the Liebendörfer scheme are almost identical to the
inner core masses of the most slowly rotating models of Dimmelmeier et al. [46]. Hence,
their results should not be gravely affected by resolution effects, and their values for
Mic,b are probably converged to within ≈ 0.01M⊙ or better.

The convergence of different progenitors to an identical inner core mass in the spher-
ically symmetric VERTEX-CoCoNuT runs suggests a feedback mechanism that the
Liebendörfer prescription does not properly account for. The increase of the inner core
mass with the progenitor mass that is observed with the Liebendörfer scheme may not
seem surprising at first: more massive progenitors tend to have higher central entropies,
and the concomitant finite-temperature effects on the pressure could produce slightly
more massive cores. However, the Liebendörfer scheme does not take into account that
higher entropies also imply higher electron capture rates (i.e. stronger deleptoniza-
tion), which would have the opposite effect on the inner core mass. Furthermore, the
Liebendörfer prescription cannot reproduce another feedback effect either: The relative
contribution of electron captures on free protons to the total number of capture events
is larger for higher entropies at a given density. Since electron captures on protons
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VERTEX- Liebendörfer
Progenitor CoCoNuT scheme

s11.2 0.46 0.435
s15.0 0.46 0.46
s20.0 0.46 0.45
s40.0 0.46 0.48

Table 5.2.: Mass Mic,b of the inner core at bounce in spherically symmetric simulations
with VERTEX-CoCoNuT and with the Liebendörfer scheme for different progenitors.

tend to decrease the entropy, while electron capture reactions on nuclei contribute to its
increase, initial entropy differences between different progenitor cores may actually be
reduced during collapse. The overestimation of the progenitor dependence of Mic,b may
thus indicate some genuine weaknesses of the Liebendörfer scheme.

On the other hand, the amplification of the progenitor dependence in the case of
rotational collapse found by Dimmelmeier et al. [46] need not be ascribed to shortcomings
of the Liebendörfer scheme. Instead, it can be adequately understood as an artifact of the
parameterization of the initial rotational state of the progenitor core: The central angular
velocity constantly increases during collapse because of angular momentum conservation,
and its initial value during a simulation is therefore not an appropriate parameter for a
comparison between initial models of different compactness – only the specific angular
momentum of the infalling matter in the stellar core is conserved, and could be used
as parameter for such a comparison directly. Alternatively, one could compare the
central angular velocity for a specified central density instead of the specific angular
momentum. This can be done rather easily, if we bear in mind that the inner core
contracts homologously: Conservation of mass dictates that the density scales with R−3,
where R is the radius of the core, while the specific angular momentum l = Ωr2 scales
with R2. The central angular velocity thus increases with the central density according
to,

Ωc ∝ ρ2/3
c , (5.8)

at least during the early phase of collapse. We may therefore conveniently rescale the
angular velocity of any pre-collapse model to the central density of a specified reference
model, e.g. s15.0, in order to obtain a more useful measure for the initial rotational
state,

Ωc,15 = Ωc,i

(

ρc,s15.0

ρc

)2/3

. (5.9)

The right panel of Fig. 5.4 shows that the mass of the inner core does not vary signif-
icantly more strongly with the progenitor model than in the case of spherical collapse
if the rotational state of the initial model is specified by the rescaled angular velocity
Ωc,15. At the very least, the large variation of up to 0.6M⊙ for the highest values of
Ωc,i is drastically reduced. Nonetheless, future simulations with full neutrino transport
should re-address the progenitor dependence of Mic,b in the case of rotational collapse to
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Figure 5.5.: Evolution of the central electron fraction Ye (left panel) and the derivative
dYe/d ln ρ (right panel) as a function of the central density ρc for the seven models of
the s15 series.

determine whether the convergence of different progenitors to the same inner core mass
might be even as perfect as for spherical collapse.

5.3. Rotational collapse and deleptonization

As discussed in the previous section, Liebendörfer’s deleptonization prescription obvi-
ously captures the dynamics of rotational core collapse rather adequately. We shall
now show that the underlying assumption of a universal relation between Ye and ρ is
indeed fulfilled remarkably well for the rotation rates considered in our study. Fig. 5.5
illustrates this for the central electron fraction: For the seven models of the s15 series
with different initial rotation rates, the central Ye is spread only over a narrow band of
∆Ye . 0.01, which is comparable to the spread between different progenitors in spheri-
cally symmetric simulations [46]. Apparently, the balance between the electron capture
rate and the matter compression rate is not affected by rotation to such a degree that
deleptonization is significantly stronger for rapidly rotating models as we speculated in
the previous section.

Of course, the effects of centrifugal braking are potentially much larger in the outer
regions of the core than at the centre, as the specific angular momentum increases
outwards. However, the deleptonization of the shells around the edge of the inner core
proceeds in such a manner that the parameterization of Ye as a function of ρ is still
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Figure 5.6.: Compression rate d ln ρ/dt (top left), electron capture rate dYe/dt (top
right), electron fraction Ye (bottom right), and the derivative dYe/d ln ρ along the tra-
jectories of different fluid elements in the strongly rotating model s15a2o9. The fluid
elements are initially located at r = 412 km (black lines, corresponding to a mass coor-
dinate of m = 0.46M⊙) and r = 500 km (red lines, m = 0.63M⊙, either in the equatorial
plane (dashed lines) or 10◦ away from the polar axis (solid lines). The trajectories are
shown right until bounce.

quite accurate. As an example, we consider four fluid elements from that region in the
simulation of the strongly rotating model s15a2o9 (Fig. 5.6). Although the infall of the
fluid elements in the equatorial plane is slowed down – the mass element initially located
at 500 km has not even reached 1012 g cm−3 at bounce – the electron fraction for a given
density does not differ grossly (by less than 0.02) from the fluid elements starting near
the polar axis. Remarkably, even the compression rate as a function of density seems to
be independent of latitude up to densities of a few 1012 g cm−3, and the same applies
to the electron capture rate. There is, however, a considerable difference in the electron
capture rate between fluid elements starting at different radial positions: During the
critical phase just before neutrino trapping (at ρ ≈ 1012 g cm−3), it is about twice as
large for the mass shell m = 0.63M⊙ as for m = 0.46M⊙.

It thus appears that the radial variation of the electron capture rate is as much a
limiting factor for the proposed universality of the Ye-ρ-relation during collapse as the
dynamical effects of rotation. This conclusion is borne out by Fig. 5.7, which shows
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Figure 5.7.: Compression rate d ln ρ/dt (top left), electron capture rate dYe/dt (top
right), electron fraction Ye (bottom right), and the derivative dYe/d ln ρ along the tra-
jectories of fluid elements in the slowly rotating model s15a1o1. The initial radial po-
sition r(0) of the fluid elements ranges from 58 km to the 530 km, i.e. to a mass shall
(m = 0.69M⊙) located well outside the inner core at bounce.

the electron fraction, the compression rate, and the electron capture rate for a number
of different mass shells in model s15a1o1, which rotates rather slowly and therefore
remains close to spherical symmetry. Clearly, the compression rate at a given density is
highest for the outermost mass shells, but the more rapid compression is compensated
(albeit imperfectly) by higher electron capture rates, so that the different mass shells
follow similar deleptonization curves in the ρ-Ye-plane until bounce. This confirms our
tentative explanation concerning the validity of the Liebendörfer scheme in Sec. 5.2. It
rests on the (imperfect) cancellation of the radial variation of the electron capture rate
and of the compression rate.

The conclusion that can be drawn from these observations is rather encouraging:
Apparently, the application of a deleptonization scheme to rotational core collapse can
be justified, at least for the rotation rates covered by our models. The influence of
centrifugal forces seems to be insufficient to alter the dynamics of the infall to such an
extent that deleptonization proceeds differently than during non-rotational collapse. At
the present stage, it is not yet possible to determine whether this behaviour is merely
incidental (because the rotation rates considered so far are too low to be of importance),
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Figure 5.8.: Gravitational wave amplitude AE2
20 for model s15a2o9 as obtained with

VERTEX-CoCoNuT (sold), and with the Liebendörfer scheme (data from [1]).

or the result of some feedback mechanism. There are arguments for either of these
explanations: deleptonization is essentially finished at densities no higher than a few
1012 g cm−3, and it is obvious that rotation is dynamically less relevant during this
early collapse phase than at bounce, where the core is much more compact. On the
other hand, a feedback mechanism can also be conceived: Slower compression due to
centrifugal braking would result in stronger deleptonization, and hence in a reduction of
the effective adiabatic index γeff , which would in turn accelerate the collapse, increase
the compression rate d ln ρ/dt, and reduce |dYe/d ln ρ| again.

5.4. Gravitational wave emission

We now finally turn to the discussion of gravitational wave signals from rotational
core collapse. As the conformal-flatness condition constitutes a waveless approxima-
tion to general relativity, we determine the gravitational wave signal using the Einstein
quadrupole formula9 [40, 42, 43, 168] in its time-integrated version [9, 56]. In axisym-
metry, it yields the quadrupole wave amplitude AE2

20 as,

AE2
20 =

32π3/2

√
15

d

dt

∫

r3 sin θρ
[

vr(3 cos2 θ − 1) − 3vθ sin θ cos θ
]

dθ dr, (5.10)

9Although the quadrupole formula is derived in the slow-motion and weak-field limit, it yields results
that are accurate to within 10% to 20% in astrophysical situations similar to stellar core collapse
[135, 168].
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from which the dimensionless gravitational wave strain h measured by an observer lo-
cated at an angle θ with respect to the symmetry axis can be determined as,

h =
1

8

√

15

π
sin2 θ

AE2
20

R
, (5.11)

where R is the distance to the source. In the following, we shall assume the most
optimistic case of an observer positioned in the equatorial plane, i.e. sin2 θ = 1. Using
the time-integrated quadrupole formula, we have computed gravitational wave signals
for the 14 models of the G15 and s15 series. These are shown, along with Fourier spectra,
in Figs. 5.9 and 5.10, respectively.

As we find reasonably good agreement with Dimmelmeier et al. [46] concerning the
mass of the inner core as a crucial quantity for the dynamics of the collapse, it can
be expected that our gravitational wave signals are similar to theirs, and this is indeed
the case. Specifically, we obtain waveform that are clearly of type I (except for model
s15a1o1, which will be discussed below). Furthermore, our gravitational wave spectra
also exhibit a peak with a rather stable location at a frequency of f ≈ 725 Hz. The peak
frequency is very similar to the one found by Dimmelmeier et al. [46], but significantly
lower than in Müller et al. [132] and Scheidegger et al. [161] in the context of pseudo-
Newtonian simulations of rotational collapse. This is a further indication that some
dynamical properties (e.g. the eigenfrequencies) of proto-neutron stars are not correctly
captured by effective pseudo-relativistic potentials. Although a direct comparison of our
wave signals with Dimmelmeier et al. [46] is problematic, because of the different grid
resolution, we point out that the waveforms agree quite well qualitatively. The first (and
largest) negative peak of the type I waveform typically has a very similar amplitude, as
demonstrated in Fig. 5.8 in the case of model s15a2o9. However, the ring-down signal
can be quite different (see below).

Nevertheless, there are some peculiar features not hitherto seen in the relativistic
simulations of [44–46, 143, 144]. First, the wave signals of the almost uniformly rotating
models G15a1oX and s15a1oX all start with a (sometimes considerable) negative offset.
This is the result of a strong contribution from expanding outer shells of the progenitor
which are not in rotational equilibrium due to the choice of the rotation profile. Since
these outer regions with densities ρ . 106 g cm−3 were omitted in earlier simulations,
this offset has hitherto gone unnoticed. The very fact that the artificial imposition of
rotation onto a progenitor leaves visible traces in the gravitational wave signal prompts
us to sound a note of caution concerning this practise.

As noted before, model s15a1o1 deserves a few special remarks (Fig. 5.10). The first
negative peak of the gravitational wave amplitude is not very pronounced, and the
waveform might thus be classified as type III. However, this classification is doubtful
for several reasons: Dynamically, the mass of the inner core at bounce (0.45M⊙) is too
high for a type III signal to be produced. Moreover, the low-frequency background from
shells outside the inner core that readjust themselves to establish rotational equilibrium
(as explained in the last paragraph) would have to be subtracted to allow for a clear-cut
determination of the signal type. The waveform for model s15a1o1 should more likely
be interpreted as a “disguised” type I signal superimposed on a hump-like background
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signal as seen for model s15a1o5. In addition, the two-lobed structure of the incipient
post-shock convection (right panel of Fig. 5.2) gives rise to a strong wave signal soon
after bounce, and thus further contributes to the rather unusual shape of the waveform.

We also find a general tendency for the first peak of the ring-down phase to be much
less pronounced than in [44–46, 143, 144] (cp. Fig. 5.8). Pending the outcome of a
further detailed comparison of simulations with parameterized deleptonization and full
spectral neutrino transport, with an identical grid setup and the same hydrodynamics
solver, the origin of this feature remains ambiguous.

5.5. Summary

Considering the different aspects discussed in the previous sections (collapse dynam-
ics, deleptonization, wave signals), our conclusions concerning the validity of the latest
simulations of rotational collapse in general relativity are very encouraging. Obviously,
the Liebendörfer scheme [103] is adequate for modelling the deleptonization of the core
until bounce even in the case of relatively rapid rotation with similar accuracy as in
spherical symmetry. Consequently, gross features of previous simulations, i.e. gravita-
tional waveforms from the core bounce are uniformly of type I, and peak in a narrow
frequency band in the region around ≈ 725 Hz, as claimed by Dimmelmeier et al. [44] (cf.
[45, 46, 143, 144]), are confirmed by our results. From the point of view of gravitational
wave astronomy, this implies that both the potential for enhancing the detection prob-
ability by narrow-banding future detectors and the signal inversion problem introduced
by the frequency degeneracy remain, as discussed by Dimmelmeier et al. [44].
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Figure 5.9.: Gravitational wave amplitude AE2
20 (left) and spectra (right, obtained with

the Welch window function) for the model series G15aXoY. The spectral peak at f ≈
725 Hz is indicated by a dotted line.
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Figure 5.10.: Gravitational wave amplitude AE2
20 (left) and spectra (right, obtained with

the Welch window function) for the model series s15aXoY. The spectral peak at f ≈
725 Hz is indicated by a dotted line.
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6. Applications II: Multidimensional
Simulations of the Post-Bounce Phase

Having discussed the effects of rotation during the collapse phase, we now turn our at-
tention to the post-bounce phase. Because of the failure of one-dimensional supernova
models, multi-dimensional effects (like convection) during this phase have long been
suggested as crucial ingredients for the explosion mechanism. The existence of a convec-
tively unstable region inside the proto-neutron star was already recognized by Epstein
[52]. For a while, it was hoped that “proto-neutron convection” in this region below the
neutrinosphere might sufficiently boost the neutrino luminosities and thereby increase
the energy deposition in the gain region to revive the stalled shock. Unfortunately, the
assumptions of one-dimensional explosion models with parameterized convection [192]
were not borne out by multi-dimensional simulations [20, 37, 86, 122]: Proto-neutron
star convection does indeed occur, but according to the current Newtonian or pseudo-
relativistic models the enhancement of the neutrino luminosities is rather modest. How-
ever, as Bethe [7] already pointed out, there is another region of convective instability in
the so-called “hot-bubble” region between the shock and the proto-neutron star. Hot-
bubble convection was found to increase the neutrino heating efficiency considerably in
several simulations conducted in the 1990s [23, 72, 73, 80, 81], all of which obtained
robust explosions. Today, the importance of hot-bubble convection remains undisputed,
although the most up-to-date multi-dimensional supernova simulations with spectral
neutrino transport [17, 20, 21, 26, 114] differ in many respects from these earlier stud-
ies. Most importantly, another hydrodynamic instability, known as “standing accretion
shock instability” (SASI) [11], was identified during the last years. The SASI is a generic
instability of the accretion shock to non-radial deformations, and can be understood in
terms of an “advective-acoustic” feedback cycle [60, 64]: vorticity perturbations created
at the shock are advected towards the proto-neutron star surface, where they are decel-
erated and create sound waves that couple back to the shock and create larger vorticity
perturbations there1. The resulting non-radial oscillations of the shock front are domi-
nated by low-order modes (i.e. the l = 1 dipole and the l = 2 quadrupole mode), and
enhance neutrino energy deposition, since the material in the wake of the expanding
shock remains in the heating region for a longer time before being advected towards
the neutron star surface. In most recently published explosion models [17, 20, 26, 114],
this plays a crucial role, although neutrino heating and the SASI are not universally

1Alternatively, the feedback might also be mediated by acoustic waves only, as suggested by Blondin
and Mezzacappa [10].
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6. Applications II: Multidimensional Simulations of the Post-Bounce Phase

recognized as the primary agent for the explosion. Energy deposition by acoustic waves
emitted by core g-mode oscillations of the proto-neutron star [26] or magnetic fields
[27] have been advocated as alternatives to the SASI-aided neutrino-driven mechanism;
however, serious doubts have been cast on the viability the “acoustic mechanism” [189],
and it is doubtful whether rotation rates and magnetic field strengths required for mag-
netohydrodynamic explosions are reached in the generic case. At any rate, the interplay
of neutrino heating and cooling and multi-dimensional (magneto-)hydrodynamic effects
has emerged as the central issue for supernova modelling during the recent years.

On the other hand, general relativity has received relatively little attention in the
quest for the explosion mechanism during the recent years, although general relativis-
tic supernova simulations in spherical symmetry with grey or multi-group flux-limited
diffusion have been conducted since the 1980s [6, 15], and have been supplemented by
simulations with Boltzmann neutrino transport [105, 106, 201]. This is rather surpris-
ing, as comparisons with the Newtonian case (see, e.g., Bruenn et al. [15]) in spherical
symmetry revealed a sizable influence of general relativity on the mass of the inner core
at shock formation, the initial shock strength, the long-term evolution of the shock po-
sition, the compactness of the proto-neutron star, and the neutrino luminosities and
energies. However, generalizing the existing formulations of relativistic neutrino radi-
ation hydrodynamics in spherical symmetry to the multi-dimensional case is indeed a
formidable task, since some of the simplifying gauge choices (Lagrangian coordinates,
Misner-Sharpe form of the metric [125]) are no longer available. To some extent, these
complications can be avoided by resorting to a recipe that is both simple and astonish-
ingly successful: Instead of treating general relativistic effects rigorously by working in
a curved spacetime, one can mimic important relativistic effects (e.g. the greater com-
pactness of the proto-neutron star) by introducing an effective gravitational potential
[116, 128, 151] constructed from a solution of the Tolman-Oppenheimer-Volkov equation
of stellar structure, while retaining the framework of Newtonian hydrodynamics. Despite
its merits, this approach has some drawbacks: It cannot be derived in a systematic way
like the post-Newtonian approximation, does not capture special relativistic effects, and
predicts incorrect eigenfrequencies of neutron stars [128]. It is also impossible to formu-
late conservation laws for the total energy and momentum in this approach. Whether the
existing “pseudo-Newtonian” multi-dimensional simulations [20, 21, 114, 117] capture
the effects of general relativity with sufficient accuracy thus remains an open question.
With VERTEX-CoCoNuT, which combines the elaborate treatment of neutrino trans-
port with an accurate description of relativistic effects, we can now provide a few answers
concerning this issue.

6.1. Aims and model setup

The first two-dimensional supernova simulations of the post-bounce phase with VERTEX-
CoCoNuT need to address a number of different issues: First, the mere ability of the
new code to evolve a core collapse model to post-bounce times of several hundreds of
ms is not to be taken for granted since the hydrodynamics module CoCoNuT was only
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6.1. Aims and model setup

used in the past to study core collapse up to the time of bounce and a few tens of ms be-
yond. Provided that CoCoNuT proves up to the task, the analysis of multi-dimensional
effects in the supernova problem (convection, standing-accretion shock instability) can
be extended to the general relativistic case with a view to detecting quantitative or
qualitative differences to existing Newtonian simulations. These two steps cannot be
completely disentangled, however, since different results may either be caused by differ-
ent physics (i.e. GR effects) or by differences in the codes. In our case this problematic
ambiguity is somewhat mitigated by the fact that VERTEX-CoCoNuT shares most
of its key components (neutrino transport scheme, interaction rates, equation of state)
with the PROMETHEUS-VERTEX code; and we will therefore rely heavily on the work
done in the framework of Newtonian hydrodynamics (with a pseudo-potential treatment
of GR) with that particular code [18, 20, 21, 113, 114].

Ideally, an analysis of relativistic effects would be based on a comparison of relativistic
and (pseudo-)Newtonian simulations with an identical model setup. Since fully-fledged
multi-dimensional runs with VERTEX are computationally expensive, a repetition of the
recently published simulations by Marek and Janka [114] within a reasonable time-frame
is unfortunately out of reach at this stage. We have therefore confined ourselves to two
less costly simulations (G15-2D and R15LS-2D), whose setup is still similar to model
M15LS-2D of [114]. Both of these were launched from the same spherically symmetric
progenitor model s15s7b2 [195] as the 1D runs of model G15 discussed in Sec. 4.2.
Simulation G15-2D was carried out with the same set of neutrino interaction rates, the
same EoS, and the same radial grid (400 zones) as model G15 in Chapter 4, a reduced
energy resolution (12 zones), and a rather modest angular resolution of 64 zones (for
180◦). As in model G15, nuclear burning in the low-density regime was switched off.
Model R15LS-2D was simulated with the “improved” set of neutrino interaction rates
in VERTEX [20, 21, 114] and the simplified burning description of Rampp and Janka
[151] (known as “flashing”). Moreover, the hybrid HLLC/HLLE scheme, which has been
switched on in run G15-2D only at tpb ≈ 120 ms, has been used throughout. Apart from
the different grid (600×64) and the treatment of general relativity, this model is identical
to model M15LS-2D of Marek and Janka [114]. Although R15LS-2D is arguably a more
sophisticated and reliable model than G15-2D, our analysis focuses on the latter, because
it has been run to more than 300 ms after bounce, while the simulation of R15LS-2D
presently covers only a few ms after bounce.

We emphasize that we consider only non-rotating models in this chapter: Accord-
ing to recent stellar evolution studies, magnetic braking is probably very effective in
slowing down pre-collapse iron cores to such low rotation rates [71] that the dynamical
effect of centrifugal forces is negligible for the collapse and the subsequent explosion.
Non-rotating models are thus probably representative for the majority of core-collapse
supernovae. This does not imply, however, that the case of rapid rotation discussed in
Chapter 5 is not of relevance: Rapid rotation is an essential ingredient in some astro-
physical scenarios connected to core collapse, such as accretion-induced collapse [38, 39],
or in the collapsar scenario for long gamma-ray bursts [27, 112]. Furthermore, even if the
recent models for magnetic torques are correct, rapidly rotating progenitor cores might
still be formed at low galactic metallicities due to reduced mass loss rates [194], or as
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Figure 6.1.: Electron fraction Ye, specific entropy s, radial velocity vr and lateral velocity
vθ (from left to right) at a time of 17 ms after bounce for model G15-2D. Incipient
convective motions are clearly visible in all four quantities. Velocities are given in units
of 108 cm s−1.

the result of accretion [28, 204] or even merger events [61] in binaries.

6.2. Development of convection

All recent multi-dimensional simulations [17, 18, 20, 21, 37, 113, 114, 177] with spectral
neutrino transport give a rather homogeneous picture of convection during the post-
bounce phase: convection occurs both inside the proto-neutron star (below/around the
neutrinosphere) and in the gain region (hot-bubble/HB convection). It is identified as
buoyancy-driven (Ledoux) convection also in the former case. Doubly diffusive instabil-
ities [13, 14, 16] do no seem to play a role. In addition, prompt post-shock convection
may occur [17, 117, 177]. There is some variation between the models concerning the
size, location, and first appearance of the different convective regions, probably due to
differences in the neutrino transport, the equation of state, and the treatment of grav-
ity (Newtonian/pseudo-relativistic). Our results with VERTEX-CoCoNuT, which are
described in some detail in this section, fit well into this context, albeit that they show
some quantitative differences.

6.2.1. Prompt post-bounce and proto-neutron star convection

Both our simulations show the development of Ledoux convection shortly after bounce
(see Fig. 6.1 for model G15-2D and Fig. 6.2 for model R15LS-2D). Convection starts a
little earlier for model R15LS-2D, where plumes in the entropy and Ye distribution are
clearly visible at tpb = 7ms, while model G15-2D needs another 10 ms to reach a similar
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6.2. Development of convection

Figure 6.2.: Electron fraction Ye, specific entropy s, radial velocity vr and lateral velocity
vθ (from left to right) at a time of 7 ms after bounce for model R15LS-2D. Incipient
convective motions are clearly visible in all four quantities. Velocities are given in units
of 108 cm s−1.

stage. The convectively unstable region also lies deeper inside the neutron star in the
R15LS-2D run; it is located at a radius of r ≈ 25 km, as opposed to r ≈ 45 km in the
G15-2D run. Fig. 6.3, which shows the value of the Ledoux criterion CL at a time when
the shock has reached an enclosed mass of 1.02M⊙, demonstrates that both the time lag
and the different location of the unstable layer result from a slightly different density
stratification in both runs. In the case of R15LS-2D, CL is positive for an enclosed
mass in the range of 0.61M⊙ . . . 0.77M⊙, while G15-2D is convectively unstable exterior
to m = 0.75M⊙. Since the grid resolution is adequate in both runs (with more than
15 zones per decade in density), this difference is not likely to be a numerical artifact,
but probably stems from the use of the “improved” neutrino opacities in simulation
R15LS-2D, which alter the mass of the homologous inner core during collapse, and
hence also the dynamics during the early post-bounce phase. The different location
of the unstable region also offers a natural explanation for the time lag: As the local
gravitational acceleration in the unstable layer in model G15-2D is considerably smaller
than in the in the mass shells between 0.61M⊙ and 0.77M⊙ in model R15LS-2D, the
Brunt-Väisälä frequency is smaller by a factor of two, which implies that the growth of
convection is slowed by about the same factor. Otherwise the morphology of convection
is quite similar in both simulations, with an angular size of the convective cells between
20◦ and 30◦ and a radial extension of approximately 10 km as in Buras et al. [21] and
Keil [85].

A comparison to previous studies of prompt convection sheds some light on the role
of GR effects during the early post-bounce phase: Although prompt convection devel-
ops in model M15LS-2D of Marek and Janka [114] (cf. [117]), the unstable region
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Figure 6.3.: Ledoux criterion CL as a function of the enclosed mass m for model G15-
2D (solid line) and R15LS-2D (dashed line) at the time when the shock has reached
m = 1.02M⊙. For convenience, CL is scaled to the local baryonic mass density ρ.

is significantly broader (m = 0.61M⊙ . . . 0.77M⊙) in R15LS-2D than in M15LS-2D
(m = 0.6M⊙ . . . 0.71M⊙). Judging from Fig. 1 in Marek et al. [117], prompt post-shock
convection also starts a few ms later (at least later than tpb = 10 ms) in M15LS-2D
than in model R15LS-2D, where radial velocities of the order of 2 × 108 cm s−1 are
already observed at tpb = 7 ms in the convective layer. The absence of a convectively
unstable region in the pseudo-relativistic runs of the 1D model G15 (with different neu-
trino physics than R15LS-2D) has already been noted in Sec. 4.2. The proper inclusion
of general relativity – as opposed to an effective potential approach – thus seems to
favour the development of prompt convection. Where there is already an unstable re-
gion in the pseudo-Newtonian case (as for model M15LS-2D), the convective layer is
apparently broadened, and convection grows more vigorously. As the proto-neutron star
structure already changes tremendously by moving from Newtonian gravity to a pseudo-
relativistic potential [116], this also suggests the disagreement concerning the onset of
PNS convection in different studies need not be ascribed to different numerics, insuffi-
cient resolution, different seed perturbations [37], or the time of mapping from 1D to 2D
[177]. This conclusion is also borne out by the fact that a modification of the neutrino
opacities obviously affects the conditions for the development of prompt post-shock and
PNS convection noticeably. A general analysis of these phenomena must take into ac-
count all the relevant factors, i.e. the equation of state, the treatment of gravity, and
the neutrino physics.

The specific structure of the PNS convection layer in simulation G15-2D also has in-
teresting consequences for the emission of neutrinos during the early post-bounce phase.
As the convective layer reaches out quite far during the first tens of milliseconds after
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Figure 6.4.: Comparison of neutrino luminosities for models G15-2D (solid) and G15
(dashed). Electron neutrino luminosities are shown in the left and right upper panels,
electron anti-neutrino and µ/τ luminosities in the left and right lower panels, respec-
tively. In the 2D case, the νµ- and ντ -luminosities are enhanced by 20% to 40% through-
out the entire evolution of the model. The ν̄e-luminosity is slightly reduced from about
25 ms onward, but is again comparable to the 1D case for tpb & 200 ms. For electron
neutrinos the luminosities are similar in the 1D and 2D case throughout.

bounce, it comes very close to the neutrinospheres for all flavours (located at r ≈ 70 km
during this phase), and, more importantly coincides very well with the region where
electron anti-neutrinos and µ/τ neutrinos thermally decouple from the fluid. This is in
stark contrast to the situation recently described by other authors [20, 21, 37], where
PNS convection occurred at a high transport optical depth τ (see [21] for the precise
definition), with τ ≥ 10 for all flavours in the case of Buras et al. [21]: At the early
stage depicted in Fig. 6.1, the convective plumes reach out to an optical depth as low as
τ ≈ 2, which suggests that they may modify the neutrino emission considerably. Apart
from the µ/τ neutrinos, for which we observe an enhancement of 20% to 40%, there is
little effect on the luminosities (see Fig. 6.4). On the other hand, the mean energies of
the emitted neutrinos of all flavours are systematically higher during the first ≈ 30 ms
– with the exception of the µ/τ -neutrinos from the peak phase of the breakout burst
(tpb ≈ 5 ms . . . 10 ms). The differences before tpb ≈ 10 ms are probably due to the lower
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Figure 6.5.: Mean energies of emitted neutrinos, measured at r = 400 km in the lab
frame, for the simulations G15-2D (black) and G15 (green). Solid lines are used for
electron neutrino, dashed lines for electron anti-neutrinos, and dash-dotted lines for µ/τ
neutrinos.

energy resolution in G15-2D (12 zones, as opposed to 17 in G15), since no significant
growth of convection has taken place yet2. The slight transient increase of the mean
energy may possibly be due to the convective motions near the neutrinosphere: Over
the rising plumes, the neutrinosphere temperature is somewhat higher than above the
sinking ones, while the angle-dependent neutrinosphere radius is more or less identical
in both cases. This implies locally stronger emission of neutrinos with a slightly harder
spectrum above the rising plumes. While the overall effect on the luminosities seems to
cancel out except for νµ and ντ , the higher contribution of hot emitting region seems to
result in a slight overall increase of the mean energies because the weighted contribu-
tion from the hot regions to the total luminosity is higher. However, since we observe
the phenomenon at a time when neutrino emission cannot be appropriately modelled as
(modified) black body emission from the neutrinosphere, our reasoning can only consti-
tute a very tentative analysis of the observed phenomenon.

At later times (tpb > 30 ms, the PNS convection affects the neutrino luminosities in
simulation G15-2D in exactly the same way as described by Buras et al. [20]. Convective
transport of lepton number produces a broader and slightly more shallow Ye-trough than
in the 1D case, as shown in Fig. 6.6 at a time of 50 ms after bounce. The higher electron

2It should also be borne in mind that the higher energies in the 1D run are observed while the luminosi-
ties of µ/τ -neutrinos rapidly rises from a few percent to 50% of its peak value. As the luminosities
are still low, a relatively small alteration of the spectral emission properties due to a different energy
resolution may have a rather large effect on the mean energy.
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Figure 6.6.: Comparison of the angle-averaged profile of Ye for model G15-2D (black line)
and the Ye-profile for model G15 (green line) at tpb = 50 ms. Values of Ye for different
latitudes in the 2D run are also given (black points). The broadening of the trough in
Ye and the scatter due to convection are clearly visible.

and lepton fraction at the bottom of the trough due to the convective transport of elec-
trons from deeper layers to regions closer to the neutrinosphere implies a higher electron
neutrino chemical potential and hence a suppression of the electron anti-neutrino abun-
dance in this region. Consequently, we observe a reduction of the ν̄e-luminosities during
the first 200 ms. Convection also causes a slight inflation of the PNS, which results in an
increase of the neutrinosphere radius and a decrease of the neutrinosphere temperature
for all flavours. The overall effect of these changes of the PNS structure, together with
the convective energy deposition below the neutrinosphere, is an enhancement of the
neutrino luminosities, which, in our case, is strongest for µ/τ -neutrinos, weak at best
for electron neutrinos, and cannot compensate the opposing effect of a different lepton
number stratification for electron anti-neutrinos.

While PNS convection obviously affects the emission of neutrinos in very much the
same way as in previous Newtonian or pseudo-relativistic simulations, its hydrodynami-
cal morphology develops in a very interesting way in model G15-2D. The convective cells,
initially of a size of 20◦ and 30◦, soon merge to form larger structures, as can be seen from
Fig. 6.7: Within 5 ms seven rising convective plumes have merged into only four which
are still clearly discernible. No such smoothing seems to occur in the recent simulations
of Buras et al. [20] or Dessart et al. [37], where the convective flow is still dominated
by small-scale structure at late post-bounce times, and it was also absent in previous
studies with a simplified neutrino treatment [81, 130]. For the high Reynolds numbers
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Figure 6.7.: Contour plot of Ye for model G15-2D at times of tpb = 17 ms (left) and
tpb 22 ms (right). Within 5 ms seven convective plumes in the region of r ≈ 40 ms have
merged into four.

in the PNS environment, one would expect that the convective motions on scales of 20◦

to 30◦ should feed a turbulent cascade, and that small-scale structures should develop
in the flow as it evolves. A very likely explanation for this apparent incongruity seen
for model G15-2D is the relatively large effective diffusivity of the approximate HLLE
Riemann solver used during this phase of the simulation. The numerical analysis in Ap-
pendix D provides a rule of thumb to estimate how the flow is affected by the use of the
HLLE solver, based on the sound-crossing time of a specific flow feature: For a structure
extending ≈ 30◦ in the angular direction, and with a sound speed of 2 . . . 4× 109 cm s−1

in the convective region of the proto-neutron star, the sound-crossing time is of the or-
der of a few tenth of a ms; and since the structure is covered by about 10 zones, the
estimated damping timescale should be around 10 sound-crossing times. Such a struc-
ture should therefore not survive significantly longer than ≈ 10 ms, which is what we
indeed observe. The argument for ascribing the absence of short wavelength features
to the HLLE solver is reinforced by the fact that large wavenumbers again dominate
PNS convection in the later post-bounce phase once the hybrid HLLC/HLLE solver is
switched on (at tpb = 120 ms), as shown by Fig. 6.8. Moreover, model R15LS-2D, for
which the hybrid scheme has been used throughout, shows a flow pattern much more
similar to previous simulations. The dominance of large-scale convective structures in
model G15-2D may be relevant for the growth of the standing accretion shock instability
(SASI), which is discussed in Sec. 6.3, and could therefore have considerable influence
on the overall dynamics of the model. However, even if the specific morphology of con-
vection in this model were a mere consequence of the employed Riemann solver, some
important conclusions could be drawn from this: First, the resolution required in simu-
lations of convection in core-collapse supernovae can depend strongly on the numerical
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Figure 6.8.: Radial velocity vr (left panel) and lateral velocity vθ (right right panel) at
a time of 300 ms after bounce for model G15-2D, in units of 108 cm s−1. At this time,
the convective cells (clearly visible in the left panel) in the region between r ≈ 10 km
and r ≈ 30 km inside the proto-neutron star have a typical angular size of about 20◦,
i.e. they extend just over a few angular grid zones.

method for treating the equations of hydrodynamics (which is, admittedly, something of
a commonplace). Second, one might speculate that model G15-2D is still representative
of a situation where convective modes with short wavelengths are suppressed by some
physical mechanism, e.g. magnetic tension in the magneto-convective regime identified
by Obergaulinger et al. [140].

6.2.2. Hot-bubble convection

The further development of convection in model G15-2D also exhibits some interesting
peculiarities. In recent studies [20, 21, 37, 114], a convective region in the gain layer
behind the shock develops a few tens of ms after bounce as neutrino heating produces a
negative entropy gradient, and this region is cleanly separated from the convective zone
inside the PNS, at least at early times. Although this “hot bubble” (HB) convection is
also observed in model G15-2D, there is no clearly identifiable quiescent zone between
the regions of HB and PNS convection, as demonstrated by Fig. 6.9, where we show the
cube root 3

√

|v| of the radial and lateral velocity components (in units of cm s−1) in the
equatorial plane as a function of time. Lateral velocities in excess of 7 × 107 cm s−1
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Figure 6.9.: Cube root of the absolute value of the radial velocity component (left panel)
and of the lateral velocity component (right panel) in units of cm s−1 in the equatorial
plane for model G15-2D during the simulation as a function of the radial coordinate r and
the time tpb after bounce. Values higher than 3

√

|v| ≈ 400 can be taken as indicative of
convective activity. Convection persists almost throughout the entire post-shock region
down to r ≈ 10 km for the first ≈ 150 ms after bounce, when a convectively quiescent
layer around r ≈ 30 km . . . 40 km develops.
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Figure 6.10.: Kinetic energy Ekin,lat associated with lateral velocities of material in the
gain layer as a function of the post-bounce time tpb. Ekin,lat is computed in the Newto-
nian approximation according to Eq. (6.1).

(taken as indicative of convective motion in [20, 21]) are observed in the entire region
between the outer layers of the PNS and the shock. It is not completely clear whether
this should be properly interpreted as convection or, alternatively, as g-mode activity:
As soon as the deviation from spherical symmetry above the proto-neutron star are quite
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large, the Ledoux criterion (which does yields positive values in the relevant region) is no
longer completely adequate to determine the extent of the convectively unstable layers.
Only after tpb = 150 ms does a relatively quiet layer develop between r ≈ 30 km and
r ≈ 40 km. However, bearing in mind the specifics of prompt post-shock convection
in model G15-2D, this behaviour seems quite reasonable. As the region of prompt
convection (which later wanders further inward and continuously evolves into the familiar
convective layer inside the PNS) is initially located relatively far outside, contact between
the zones of HB and PNS convection can easily be maintained by overshooting. This
appears all the more likely as the cooling layer separating the two zones is marginally
stable at best according to the Ledoux criterion. The convective flows in the HB region
exhibit a similar morphology to that inside the PNS, with the conspicuous absence of
small-structures during the first 100 ms after bounce. It is only at later times that the
characteristic flow pattern as seen in earlier simulations using PROMETHEUS-VERTEX
emerges, with several rising high-entropy bubbles separated by narrow downflows of
cold material, as illustrated by the snapshots of the specific entropy in Fig. 6.11. It
cannot be excluded that this is again due to the initial use the HLLE solver, but it
is also conceivable that the structure of hot-bubble convection is due to “advective
stabilization”: Foglizzo et al. [59] showed that convective modes with a growth time
larger than the advection time through the gain region are effectively suppressed, leading
to a dominance of intermediate wavenumbers, and that the most unstable (linear) mode
has a horizontal wavelength comparable to twice the vertical size of the gain region
(≈ 60 km at tpb = 50 ms). The flow structures in the first panel of Fig. 6.11 are not
inconsistent with this. Notwithstanding the peculiarities of the flow during the initial
phase of convective activity in the HB region, the typical radial and lateral velocities
are of the same order as those reported in the literature (up to ≈ 50000 km s−1, see
Fig. 6.9). Moreover, the kinetic energy associated with lateral velocities of matter in the
gain region volume Vgain as calculated in the Newtonian approximation,

Ekin,lat =

∫

Vgain

1

2
Dv2

θdV, (6.1)

does not grow beyond a few 1049 erg (see Fig. 6.10), which is of the same order as the
values reported by Buras et al. [20]. In that sense, HB convection in model G15-2D is
not significantly stronger than in existing Newtonian simulations.

All in all, the convective activity observed in our relativistic model is qualitatively
similar to that observed in pseudo-Newtonian simulations. Quantitative differences are
partially due to genuinely relativistic effects (different shock propagation) on the density
stratification behind the shock, and these effects have been firmly established in the 1D
case. Some other features seen in our simulation, such as the early dominance of large-
scale flow structure in the region of PNS convection, still lacks a definitive explanation
– the Riemann solver is the likely culprit – and should probably be regarded with some
caution.

91



6. Applications II: Multidimensional Simulations of the Post-Bounce Phase

Figure 6.11.: Entropy per baryon (in units of kB/baryon) at times of tpb =
50 ms, 100 ms, 150 ms, 230 ms (from left to right). The shock front is visible as the
colour discontinuity to the blue/black outer region of the infalling material. Its deforma-
tion due to large-scale convective motions and the standing-accretion shock instability
is already quite pronounced at tpb = 50 ms.

6.3. Shock propagation and the standing accretion shock
instability (SASI)

Having focused on convective instabilities, we now turn to a discussion of the conse-
quences of multi-dimensional effects on the propagation of the shock. Compared to the
one-dimensional case, various additional factors now influence the shock propagation,
viz. convective activity (both by improving the energy transfer from the region immedi-
ately outside the gain radius to the outer layers, and by modifying the emitted neutrino
fluxes and energies), and the so-called standing-accretion shock instability (SASI [11]),
which has already been described at the beginning of this chapter. In the more gen-
eral case, which is not addressed by our post-bounce simulations, rotation and magnetic
fields may also play a role.

6.3.1. Early growth of SASI activity

As discussed in Sec. 6.2, convection sets in rather early in model G15-2D, and shows
some other peculiarities; but its effects in the neutron star on the emission of neutrinos
from the PNS are qualitatively and quantitatively similar to those reported in earlier
Newtonian and pseudo-relativistic studies, and neither is HB convection unexpectedly
vigorous. The SASI therefore remains the one likely candidate that could make a crucial
difference for the post-bounce evolution of model G15-2D. We do indeed find that the
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Figure 6.12.: Maximal, minimal (black solid lines), and average shock radius (black
dashed line) for model G15-2D, compared to the shock radius of the 1D model G15
(green). We define the average shock radius as the radius of a sphere with volume Vsh

(the total volume enclosed by the shock front). The laterally averaged gain radius is
indicated by a thin dashed line.

SASI grows extremely rapidly in our simulation: Fig. 6.11 shows that the accretion
shock is already strongly deformed 50 ms after bounce; its aspect ratio is close to 3 : 2 at
that time. The strong SASI activity continues throughout the entire simulation and is
accompanied by an expansion of the shock to rather large radii, culminating at slightly
more than 400 km at tpb ≈ 230 ms. Compared to the one-dimensional model G15,
where the shock reaches out no further than r ≈ 150 km, the shock propagation is
significantly different from tpb = 30 ms onward (Fig. 6.12). Although there is a period
of shock retraction comparable to the 1D model from 100 ms to 140 ms after bounce, the
average shock radius r̄sh stays at around 200 km even during that phase. Once the Si-
SiO-interface reaches the shock, r̄sh transiently grows to 300 km, and remains more than
twice as high as in model G15 until the end of the 1D simulation. Such large average
shock radii are not reached by the comparable pseudo-relativistic model of Marek and
Janka [114] until 500 ms after bounce or more.

On the other hand, the dominance of low-l SASI modes in model G15-2D, which is
clearly visible in Fig. 6.11, is a characteristic property which is shared by all Newto-
nian simulations, and which has a firm theoretical footing [10, 11, 59, 60, 64, 96, 202].
Whether the dipolar (l = 1) mode, the quadrupolar (l = 2) or octupolar (l = 3) grows
fastest, and which of these actually reaches the non-linear stage, seems to depend on the
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Figure 6.13.: Left panel: Normalized coefficients cl/c0 for the decomposition of the shock
position in model G15-2D into Legendre polynomials. Only the lowest non-radial modes,
i.e. the dipole (l = 1, black) and quadrupole (l=2, red) modes are shown. Right panel:
The heating and advection time-scales τheat (black) and τadv (red) for model G15-2D. In
order to eliminate high-frequency noise, running averages over 10 ms are shown.

neutrino heating conditions and the shock position. A first hint is given by the decom-
position of the angle-dependent shock position rsh(θ) into spherical harmonics Ylm (or
Legendre polynomials Pl in axisymmetry, i.e. for m = 0),

rsh(θ) =

∞
∑

l=1

clPl(cos θ). (6.2)

The coefficients for the dipole and quadrapole mode (normalized to the angle-averaged
shock position c0) are shown in Fig. 6.13. It is evident that the transition to the non-
linear stage (|cl/c0| & 0.1c0) occurs within 40 ms after bounce for both modes. The
dipole mode actually enters the non-linear regime somewhat earlier than the quadrupole
mode, and may be responsible for instigating the latter mode in the first place via non-
linear mode coupling; the absence of a clearly discernible higher-frequency component in
the quadrapole mode compared to the dipole points to this hypothesis. In principle, the
coefficient c2 could also be “contaminated” by the dipole mode, if the angular dependence
of the eigenfunction of the latter were not given by P1(cos θ) alone, which would make c2
a bad indicator for the activity of the quadrupole mode; but the fact that c1 and c2 are
not strictly correlated excludes this. Moreover, the shape of the shock front indicates
the presence of a “real” quadrupole mode: it regularly displays either a bulge between
two cusps in the equatorial region (cp. Fig.6.11) or a single cusp near the equator, with
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Figure 6.14.: Mass fraction Xα of α-particles (left panel) and the adiabatic index Γ (right
panel) at tpb = 230 ms and tpb = 300 ms. The shock front is marked as white line. Note
that yellow is used also for Γ > 1.5 in the right panel.

both patterns alternating quite regularly in a quasi-periodic manner3.

6.3.2. Marginally failed SASI-driven explosion?

It is well known that SASI activity is conducive to shock expansion, both because it
directly increases the time during which the accreted material is exposed to neutrino
heating, and because it can trigger secondary convection [20, 160]. The propagation
of the shock to more than 400 km in the polar direction in model G15-2D is therefore
understandable, but in spite of this, the model fails to explode before the end of our
simulation, and instead experiences a dramatic retraction of the shock almost to 200 km
from tpb = 270 ms to tpb = 290 ms. Naturally, the question arises whether model
G15-2D has come close to an explosion during the phase of extraordinarily strong SASI
activity from tpb = 150 ms to tpb = 290ms that had already pushed the shock to very
large radii. This can be discussed quantitatively using the advection time-scale τadv for
the advection of matter from the shock to the gain radius (i.e. the “average” infall time
behind the shock during which neutrino heating is effective), and the heating time-scale
τheat, which is a measure for the time required to make the material in the gain region
gravitationally unbound by neutrino energy deposition. τadv/τheat > 1 can be taken as a
rough criterion [20, 79, 114, 160, 179] indicating favourable conditions for an expolsion,
which can readily be applied to our model. We closely follow the definitions of Marek

3Irrespective of its precise shape, the eigenfunction of the dipole mode should have only one node in
the equatorial plane and an anti-node on each polar half-axis.
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and Janka [114] for τadv and τheat. The advection time-scale is defined as,

τadv =

rsh
∫

rgain

dr

|〈vr〉(r)|
, (6.3)

where rgain and rsh are the angle-averaged gain and shock radii, and vr(r) is the mass-
weighted angular average of the radial velocity,

〈vr〉 =

∫

Dφ6vr dΩ
∫

Dφ6 dΩ
=

∫

ρWφ6vr dΩ
∫

ρWφ6 dΩ
. (6.4)

The heating time-scale is defined as the ratio of the binding energy Ebind of the material
in the gain region, and the total neutrino heating rate Qheat,

τheat =
Ebind

Qheat
, (6.5)

Qheat =

rsh
∫

rgain

QEφ
6dV. (6.6)

Some care must be exercised when defining the binding energy Ebind: In principle, it
would be desirable to take merely the kinetic, internal and gravitational binding energy
into account and to neglect contributions from the nuclear binding energy, but this
cannot be done rigorously in general relativity. We therefore assume that the Newtonian
limit4 applies in the gain region (which is true to good accuracy), and then obtain the
following expression for the binding energy,

Ebind =

rsh
∫

rgain

[

τ −
∑

i

DXiBi +D
(

1 − φ2)c2
)

]

φ6dV. (6.7)

Here, Bi is the nuclear binding energy5 per baryon for species i, while τ and D are
the conserved hydrodynamic quantities introduced at the beginning of Sec. 2.2. In the
Newtonian limit, this expression correctly reduces to,

Ebind ≈
rsh
∫

rgain

[

ρ

(

v2

2
+ ǫ

)

+ ρΦ

]

dV. (6.8)

Both time-scales are shown in the right panel of Fig. 6.13. The time-scale ratio τadv/τheat

does indeed come close to 1 at post-bounce times of 150 ms, 200 ms and 260 ms, where
it peaks at τadv/τheat ≈ 0.8. At a time of 300 ms after bounce it even exceeds unity

4This implies: D → ρ, τ → ρǫ + 1
2
ρv2, φ4 → 1 − 2Φ

c2
.

5The normalization of B (e.g. such that B = 0 for 56Fe ) has to be consistent with the definition of τ ,
but otherwise the choice is arbitrary in GR.
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for a brief interval of 5ms. However, τadv/τheat is a highly oscillatory function of time
for model G15-2D, and the relatively high peak values are only reached shortly before
and during the phase of maximal SASI-induced shock expansion, and then rapidly drop
below the long-term average value of ≈ 0.5 again. All in all, the time-scale ratio provides
some indications that G15-2D might already have come close to an explosion during the
first 300 ms, but the evidence is ambiguous: The long-term average of τadv/τheat during
the simulations is not significantly higher than for the similar model M15LS-2D of Marek
and Janka [114].

Recombination of free nucleons into α-particles behind the shock has also been advo-
cated as a “point of no return” for the shock, and thus as an effective criterion for the
onset of the explosion. Bethe [8] argued that the energy of 7 MeV per baryon released by
recombination should be sufficient to unbind the newly accreted material, and estimated
that this would occur as soon as the shock reaches about 300 km. Parameterized one-
and two-dimensional simulations of the accretion and explosion phase by Fernández and
Thompson [55] also suggested that recombination plays a crucial role for the developing
explosion. We actually find large abundance of α-particles in our simulation at a radii
larger than rα ≈ 200 km, as can be seen in the left panel Fig. 6.14, which shows the mass
fraction Xα of α-particles for the time of maximum shock expansion (tpb = 230 ms) and
towards the end our simulation (at tpb = 300 ms). At least at tpb = 230 ms a value of
Xα > 0.5 is reached behind the entire shock front, but this does not seem to be connected
with a significant boost to the post-shock velocities. This is to be expected, however,
since recombination actually occurs only in the expanding convective bubbles behind the
shock (e.g. the large bubbles around the north polar axis in the first panel of Fig. 6.14)
that develop during the large-scale SASI oscillations, and the energy release in this re-
gions competes with significant α−dissociation losses in regions where the oscillating
shock front is receding. Therefore, the mere fact that a model reaches the critical radius
for α-recombination cannot be taken as a guarantee for an explosion. The competition
between the recombination to and the dissociation of α-particles can also be interpreted
in a slightly different manner, by considering the adiabatic index Γ, which is shown in
the right panel of Fig. 6.14. Areas where recombination or dissociation occurs exhibit the
well-known drop of Γ significantly below 4/3. This drop of Γ affects post-shock material
undergoing expansion or compression differently: Expanding material in the rising high-
entropy bubbles will experience a less rapid fall-off of pressure with decreasing density,
and hence undergo accelerated expansion (pushing the shock further out). Conversely,
the compression of material in the receding plumes will also be accelerated, leading to a
more rapid recession of the shock front. Based on these considerations, we do not view
the fact that recombination occurs in some of the convective plumes as indicative of a
developing explosion in our model.

To finish our discussion about the possible classification of model G15-2D as a marginally
failed explosion, we note that a very small amount of material in the gain region is tran-
siently unbound, in the sense that its total (i.e. internal, kinetic, and potential) energy
becomes positive. However, the energy of the “nominally” unbound matter reaches only
1.3× 1048 erg. In combination with the shock propagation, the ratio of the advection to
the heating time-scale, we take this as weak circumstantial evidence that G15-2D may
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have missed an explosion only by a narrow margin.

6.3.3. Possible reasons for early SASI activity

As described in the preceding sections, the early SASI activity in model G15-2D has
very interesting consequences, but it would be highly desirable to track down the reason
for such a conspicuous difference to Newtonian and pseudo-Newtonian simulations in
order to judge the validity and robustness of the results. Unfortunately, an analytic
framework for understanding the SASI in general relativity in the context of core-collapse
supernovae6 is still lacking. Presently, any explanation must therefore be considered as
speculative.

Considering possible reasons for the early growth of the SASI, we must first point
out that numerical effects cannot be completely excluded at this stage, since the high-
resolution model R15LS-2D, which is simulated with the improved HLLE/HLLC hybrid
scheme from the very beginning has not yet been evolved to the point where the SASI
grows significantly in model G15-2D. In the absence of a high-resolution reference model,
it is indeed conceivable that numerical effects play a role. The influence of the grid
resolution for the linear growth phase has already been discussed to some extent by
Sato et al. [159], who concluded (based on planar toy-models) that the radial resolution
near the shock is particularly crucial for obtaining the correct growth rates. However,
the radial resolution of model G15-2D (400 zones) is comparable or even better than in
many Newtonian simulations (e.g. those in [17, 26]); and the same applies to the angular
resolution (64 zones), which is to be compared to 32 zones typically used in Bruenn et al.
[17]. On the other hand, the grid resolution will not only influence the linear growth
phase, but also the non-linear interaction between turbulence and the SASI. Fernández
and Thompson [55] demonstrated that, if convection develops in the hot-bubble region
(and is not suppressed by advective stabilization [59]), it becomes the forcing agent
behind shock oscillations and determines the saturation amplitude of the l = 1, 2 modes
of the SASI. In the non-linear regime the SASI oscillations are obviously driven directly
by the alternating expansion and compression of convective bubbles behind the shock
as suggested by Buras et al. [20]. Based on general physical arguments, it is reasonable
to assume that convective modes with low wavenumbers are most efficient at driving
the low-l SASI modes; and the fact that the HLLE scheme used for the first 100 ms of
the post-bounce evolution of model G15-2D favours the development of such large-scale
flow features (see Sec. 6.2.1) suggests that numerics might play a role in the growth
of the SASI. However, as we pointed out before, the dominance of modes with low
and intermediate wavenumbers in the hot-bubble region could also be the result of the
advective stabilization discussed by Foglizzo et al. [59].

General relativity could also affect the linear phase of the SASI: Depending on whether
the mechanism underlying the SASI is an advective-acoustic [60, 64, 141, 160] or a purely
acoustic [10] feedback cycle (which may depend on the mode number and the conditions
in the core collapse environment [96]), relativistic effects could influence several key

6However, a linear stability analysis has been carried out for accretion shocks around black holes by
Nagakura and Yamada [134].
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ingredients for the SASI, namely the interaction of acoustic perturbations with the (rel-
ativistic) shock, the propagation of acoustic waves (because the sound speed is different
in the Newtonian approximation and in GR7), and the generation of acoustic feedback
from vorticity perturbations near the PNS surface (for the same reason). Probably nei-
ther of these effects is very large; nonetheless a sizable effect on the growth rates of
SASI modes in general relativity cannot be excluded. A relativistic generalization of the
existing analytic or semi-numerical studies of the SASI is clearly called for to resolve
this issue.

Based on these arguments, we conclude that the early growth of SASI in model G15-
2D should neither be taken as final statement, nor be discounted as a numerical artifact
prematurely pending the outcome of thorough resolution studies.

6.4. Gravitational wave emission

Before finishing our discussion of model G15-2D, we turn to some possible observational
signatures of the multi-dimensional hydrodynamic instabilities described in the preceding
sections. Broadly speaking, these signatures fall into three classes, namely, features
that can be detected by classical astronomical observations of the explosion and the
supernova remnant, the neutrino signal, and the gravitational wave signal from non-
radial mass motion. Since the connection to classical observations can only by made
via long-time simulations of the successful explosion (see [87–90] for the most ambitious
studies and further references), only the neutrino and gravitational wave signals can
be analysed on the basis of our available simulation data. To some extent the neutrino
signal has already been discussed in Sec. 6.2.1, and we shall forgo a more detailed analysis
of the anisotropy and the SASI-induced modulation of neutrino emission discussed by
Ott et al. [145] and [117], because we find these effects to be comparable to or even
weaker than in Newtonian simulations. However, as we shall demonstrate in this section,
the gravitational wave signal is significantly stronger than those reported in the most
advanced studies of gravitational wave emission during the post-bounce phase [117, 132],
and therefore merits particular attention.

As in Chapter 5, we use the time-integrated quadrupole formula (5.10) to compute
the gravitational wave signal,

AE2
20 =

32π3/2

√
15

d

dt

∫

r3 sin θρ
[

vr(3 cos2 θ − 1) − 3vθ sin θ cos θ
]

dθ dr. (6.9)

The dimensionless gravitational wave strain h measured by an observer located at a
distance R and at an angle θ with respect to the symmetry axis can be determined from
AE2

20 as,

h =
1

8

√

15

π
sin2 θ

AE2
20

R
. (6.10)

7In the Newtonian limit, cs is given by c2
s =

“

∂P
∂ρ

”

, while the relativistic sound speed is[97] cs =
“

∂P
∂(ρ+ρǫ)

”

= 1
h

“

∂P
∂ρ

”

, where h is the specific relativistic enthalpy and ǫ is the specific internal energy.
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Figure 6.15.: Gravitational wave signal for model G15-2D Panel a) shows the matter
signal (black) and the neutrino signal (red); the corresponding Fourier spectra are given
in panel b). The total neutrino luminosity Lν (panel c) and the neutrino anisotropy
parameter αν (panel d) are also shown. Note that we began the automatic evaluation of
the quadrupole formula in CoCoNuT was only switched on 32 ms after bounce, when
the first prominent SASI oscillations developed.

In addition, we also consider the gravitational wave signal form anisotropic neutrino
emission using the Epstein formula [51, 130], according to which the gravitational wave
strain hν is given by,

hν =
2G

c4R

t
∫

0

Lν(t
′)αν(t′) dt′, (6.11)

in the most optimistic case of an observer positioned in the equatorial plane of the
system. Here Lν is the total neutrino luminosity, and the anisotropy parameter αν can
be obtained as,

αν =
1

Lν

∫

π sin θ (2| cos θ| − 1)
dLν

dΩ
dΩ, (6.12)

in axisymmetry [94]. The inversion of Eq. (6.10) then yields the quadrupole amplitude
AE2

20 .
The quadrupole wave amplitudes computed for model G15-2D are shown in Fig.6.15

(panel a), along with the associated Fourier spectra of the matter and neutrino sig-
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nals (panel b), the total neutrino luminosity (panel c), and the anisotropy parameter
(panel d). Compared to the pseudo-Newtonian PROMETHEUS-VERTEX simulations
analysed by Müller et al. [132] and Marek et al. [117], we find a number of quantita-
tive differences. During the first 180 ms after bounce, the quadrupole amplitude of the
matter signal is rather high, easily reaching 100 cm and more during the oscillations.
Afterwards the signal strength drops appreciably, and the root-mean square average of
the amplitude (over 5 ms) typically remains between 10 cm and 20 cm. Obviously, the
decrease of the accretion rate that occurs as the Si-SiO-interface reaches the shock re-
sults in weaker, less violent convection, which in turn produces a weaker gravitational
wave signal. This conclusion is also supported by the fact that the turbulent energy
shows a marked decrease precisely at the same time (see. Fig. 6.10). However, it is
astonishing that the onset of the phase of reduced gravitational wave emission coincides
closely with one of the most violent periods of SASI activity, when then shock first
reaches 400 km along the polar axis. In that respect, our results for model G15-2D are
completely inverse to those of Müller et al. [132] and Marek et al. [117], who found that
strong gravitational wave emission was positively correlated with strong SASI activity,
and tended to increase with time.

The neutrino signal, on the other hand, is not particularly strong; it decreases more or
less monotonically to negative amplitudes with time and reaches a peak absolute value
of around 15 cm. Considering the variation in the neutrino signals obtained in previous
studies [117, 132], this is not very spectacular and well within the expected range. The
small signal is a result of the rather isotropic neutrino emission, characterized by an
anisotropy parameter whose absolute value rarely exceeds 0.01.

Concerning the gravitational wave spectra (panel b in Fig. 6.15), we also note some
particularities of model G15-2D. While the neutrino signal exhibits a similar fall-off
behaviour with increasing frequency as in Marek et al. [117], the matter signal is charac-
terized by a peak at ≈ 900 Hz, which is not very pronounced, however. This is a slightly
higher value than that reported by Marek et al. [117] for the same equation of state. We
also see much stronger low-frequency contributions between 10 Hz and several 100 Hz
than Marek et al. [117], particularly in the region around 200 Hz where the absolute
peak of the spectrum is located. Such an enhancement of the low-frequency part is a
natural consequence of the strong convective and SASI activity seen in our simulation.

6.5. Summary

The multi-dimensional simulation G15-2D presented in this chapter constitutes the first,
largely successful attempt to model the complex, multi-dimensional supernova prob-
lem through the collapse and post-bounce phase with an up-to-date neutrino trans-
port scheme and a sufficiently accurate treatment of general relativity. We have not
only been able to stably evolve a two-dimensional model to more than 300 ms with
VERTEX-CoCoNuT, but have qualitatively confirmed the findings of existing New-
tonian and pseudo-Newtonian simulations, i.e. the development of prompt post-shock,
proto-neutron star, and hot-bubble convection, and the growth of the SASI. We have also
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been able to extract observational signals, i.e. neutrino and gravitational wave signals
from our simulation.

Quantitatively, our model shows a number of peculiarities, such as the dominance
of convective modes of low wavenumber during the early post-bounce phase, and the
extremely rapid growth of the ℓ = 1 mode of the SASI, which may yet turn out to
be numerical artifacts. Interestingly our analysis also suggests that model G15-2D has
come rather close to an explosion, but the rather optimistic development of the model
depends critically on the extremely vigorous SASI activity, and must therefore be viewed
with caution. A short high-resolution simulation with an improved Riemann solver has
already shed light on some open questions, but the reason of the early growth of the
SASI remains unclear at this stage, and may be physical. Further numerical studies
using our new code are thus clearly called for.
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7. Conclusions

In this thesis, we have presented the first multi-dimensional models of core-collapse
supernovae that combine a detailed, up-to-date treatment of neutrino transport, the
equation of state, and — in particular — general relativistic gravity. Building on the
well-tested neutrino transport code VERTEX [21, 151] and the GR hydrodynamics code
CoCoNuT [40, 41], we developed and implemented a relativistic generalization of the
ray-by-ray-plus method of Buras et al. [21] for energy-dependent neutrino transport.
The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number
of improved numerical techniques that have not been used in the code components
VERTEX and CoCoNuT before.

In order to validate the VERTEX-CoCoNuT code, we conducted several test sim-
ulations in spherical symmetry, most notably a comparison with the one-dimensional
relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUS-
VERTEX code. CoCoNuT is in excellent agreement with the fully relativistic AGILE
code, and has proved a reliable numerical tool up to more than 200 ms after bounce.
We also found that, unlike PROMETHEUS, which includes some GR effects in a very
approximate fashion , CoCoNuT captures the relativistic shock propagation during the
early post-bounce phase accurately. Thus, the importance of a rigorous implementation
of general relativistic effects already manifested itself in the one-dimensional test runs.

Encouraged by the results of our one-dimensional code tests, we turned to multi-
dimensional problems, and used VERTEX-CoCoNuT to investigate the collapse and
bounce of rotating iron cores, and compared our results to previous studies of the subject
[44–46, 143, 144], in which the deleptonization of the core had been treated with a sim-
ple, parameterized approximation, the “Liebendörfer scheme” [103]. Our sophisticated
neutrino transport simulations confirm the results obtained with this simple model for
deleptonization during collapse qualitatively: The mass of the inner core, which is a
key quantity for the dynamics of the collapse, shows a similar dependence on the initial
rotation rate of the progenitor core; and the error incurred by using the Liebendörfer
prescription is about as large as in spherical symmetry, where it can reach up to 6%. We
also presented the first gravitational waveforms from rotational core collapse obtained
with an up-to-date neutrino transport scheme: As suggested by relativistic simulations
with the Liebendörfer scheme [44–46, 143, 144], the bounce signal from rotational core
collapse is indeed generic, with a robust spectral peak at ≈ 725 Hz, at least for the
rotation rates considered in this thesis. Thus, these findings no longer rest on an ap-
proximate deleptonization scheme that had never been tested in the case of rotational
collapse.
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7. Conclusions

Furthermore, VERTEX-CoCoNuT has been used to simulate the post-bounce evo-
lution of the progenitor model s15s7b2 of Woosley and Weaver [195] in axisymmetry
for more than 300 ms. Qualitatively, we confirmed the findings of all recent multi-
dimensional Newtonian supernova simulations with spectral neutrino transport. How-
ever, our simulation “G15-2D” exhibits several peculiar features, the most spectacular
of which is the extremely rapid growth of post-shock convection and of the standing-
accretion shock instability. The violent SASI activity facilitates strong shock expansion,
and our analysis suggests that the model fails to explode within the first 300 ms only
by a narrow margin. Of course, some of these interesting results still require further
confirmation in order to exclude numerical or resolution effects completely. At any rate,
the first extended simulation of the post-bounce phase in general relativity paves the
way for a future generation of relativistic supernova models: As the numerical methods
required for the stable and accurate long-term evolution of the accreting proto-neutron
star and its environment are now established, these new models will be used to address
open issues like the surprisingly fast growth of the SASI. If it can be confirmed that
relativistic effects precipitate the growth of the SASI, as observed in model G15-2D, a
correct treatment of general relativistic hydrodynamics might be crucial for modelling
the supernova explosion correctly. We emphasize, however, that we presently lack un-
ambiguous evidence to support this interesting hypothesis. We also provided a first
analysis of gravitational wave emission during the post-bounce phase, along with a brief
discussion of qualitative differences to recent Newtonian studies [117, 132]: The violent
convective activity and the large-amplitude bipolar shock oscillations produce a rather
strong wave signal, particularly during the first 150 ms of the post-bounce phase. Taking
all these findings into account with due reserve, it seems that general relativistic effects
during the post-bounce phase may be appreciable.

All in all, VERTEX-CoCoNuT has emerged as a versatile and reliable tool for simula-
tions of core-collapse supernovae, and there are clear perspectives for future applications
of the new code. The work presented in this thesis needs to be extended to answer a num-
ber of open questions: The unexpected fast growth of the SASI will have to be confirmed
by high-resolution simulations, one of which is already underway (model R15LS-2D). Ro-
tational collapse, which was discussed in Chapter 5, should also be studied for rotation
rates higher than those discussed in this thesis. Ideally, future relativistic simulations
should address all the issues that have already been touched in Newtonian studies such
as the progenitor dependence and the influence of the nuclear equation of state (EoS)
in the neutron star. Here, VERTEX-CoCoNuT can be most useful in establishing the
connection between supernova physics (e.g. details of the explosion mechanism, nuclear
EoS) and gravitational wave astronomy, since it allows for a more accurate determination
of gravitational wave signals than Newtonian codes. For some other future applications,
the relativistic capabilities of CoCoNuT will also be a particular asset, e.g. for black
hole formation [58], and – because of the increasing compactness of the central object –
for the cooling phase of the contracting proto-neutron star [86, 148]. Such a broad spec-
trum of computationally demanding applications will of course require a highly efficient
code, and significant efforts will have to be invested in the optimization of CoCoNuT,
with a particular focus on increasing the parallel performance of the metric solver.

104



A. Derivation of the Boltzmann Equation
in General Relativity

The formulation of kinetic theory within the framework of general relativity has been
discussed at length in the literature [29, 49, 108, 173], but most of the work on this
subject relies rather heavily on sophisticated concepts from differential geometry. In
order to furnish the reader with the basic ingredients for understanding the derivation
of the Boltzmann equation (2.27) in a CFC spacetime, we provide a brief sketch of the
path from the Hamiltonian formulation of relativistic mechanics to the formulation of the
Boltzmann equation for a specific spacetime and tetrad frame. We use only elementary
concepts from Hamilton mechanics and general relativity to make this brief sketch as
easily accessible as possible.

Let us consider the equation of motion for a relativistic particle,

d2qµ

dλ2
= −Γµ

νξ

(

dqν

dλ

)(

dqξ

dλ

)

, (A.1)

where qµ is the spacetime coordinate of the particle, λ is the affine parameter1 or the
proper time along the trajectory (depending on whether the particle is massless or not),
and Γλ

µν are the Christoffel symbols of the second kind. It is well known (see e.g.
[126, 175]) that the equation of motion follows from a Lagrangian,

L =
1

2
gµν

(

dqµ

dλ

)(

dqν

dλ

)

. (A.2)

Equivalently, the equation of motion can be derived from a Hamiltonian, by introducing
the canonical momentum pµ,

pµ =
∂L

∂q̇µ
= gµν

dqν

dλ
= q̇µ, (A.3)

and by choosing the Hamiltonian as the Legendre transform of L,

H = pµq̇
µ − L =

1

2
gµνp

µpν . (A.4)

1We remind the reader that the four-velocity uµ of massless particles is a null vector, i.e. uµuµ =
0. Therefore, their world lines cannot be parameterized by the proper time along the trajectory.
However, there exists a preferred class of parameterizations by an “affine parameter” λ for light-like
geodesics which leads to the same form of the geodesic equation as for massive particles.
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A. Derivation of the Boltzmann Equation in General Relativity

Note that the dot notation is used to indicate the derivative with respect to the affine
parameter λ. The equation of motion in phase space can then be written as,

q̇µ =
∂H

∂pµ
, ṗµ = −∂H

∂qµ
. (A.5)

A first version of the collisionless relativistic Boltzmann equation can now be formulated
by invoking Liouville’s theorem (which states that the phase space volume is conserved by
the Hamiltonian flows). As in the Newtonian case, this implies that the total derivative
of the 1-particle distribution function f is conserved along phase space trajectories,

df

dλ
=
∂f

∂λ
+

dqµ

dλ

∂f

∂qµ
+

dpµ

dλ

∂f

∂pµ
= 0. (A.6)

Since the metric gµν is independent of the momentum coordinates, this equation can
also be formulated in terms of the contravariant momentum vector pµ = gµνpµ, which
allows some further simplifications,

∂f

∂λ
+ pµ ∂f

∂qµ
− Γµ

νξp
νpξ ∂f

∂pµ
= 0. (A.7)

We emphasize that we have only obtained the Boltzmann equation for the distribution
function f in the 8-dimensional phase space (qµ, pν), which is defined as the number of
particles per phase space volume d4q d4p for a given affine parameter of the Hamiltonian
flow. Naturally, it is much more convenient to work with the distribution function f̂ in
the 6-dimensional phase space (qi, pi) in numerical radiation hydrodynamics. However,
we defer the derivation of the Boltzmann equation for f̂ to the end of this chapter,
because the 8-dimensional Boltzmann equation can be specialized to a specific frame
more easily without sacrificing the benefits of an explicitly covariant notation. We also
disregard the collision term for the moment, because it only needs to be considered after
specializing to the comoving frame, and then its treatment is straightforward.

So far, we have implicitly assumed that pµ is given in the holonomic coordinate basis2,
but switching to a non-holonomic frame is conceptually easy. Changing to another basis
in real space and to the associated dual base in momentum space conserves phase space
volume, and hence f transforms as a scalar. We therefore need only to take care of the
proper transformation of the partial derivatives according to the chain rule. In general,
the Boltzmann equation in the transformed coordinates (q̃, p̃) reads,

∂f

∂λ
+ pµ

(

∂q̃α

∂qµ

∂f

∂q̃α
+
∂p̃α

∂qµ

∂f

∂p̃α

)

− Γµ
νξp

νpξ

(

∂q̃α

∂pµ

∂f

∂q̃α
+
∂p̃α

∂pµ

∂f

∂p̃α

)

= 0. (A.8)

However, since we are only interested in a change of the local tetrad basis and keep the
space coordinates q fixed, the transformation is of a rather simple form,

q̃α(q, p) = qα, p̃α = C α
µ (q)pµ, (A.9)

2The holonomic coordinate basis of the tangent vector space is given by the four coordinate derivatives
∂/∂xµ. For further details on the interpretation of directional derivatives as vectors, the reader may
consult introductory texts on general relativity [69, 126, 175].
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i.e. it can be expressed as a linear transformation in momentum space. Using the inverse
C̃ of the transformation matrix C, we thus arrive at the following equation,

∂f

∂λ
+ C̃µ

αp̃
α ∂f

∂qµ
+ C̃µ

αp̃
α∂p̃

β

∂qµ

∂f

∂p̃β
− Γµ

νξC̃
ν
βC̃

ξ
γC

α
µ p̃β p̃γ ∂f

∂p̃α
= 0, (A.10)

or equivalently,

∂f

∂λ
+ C̃µ

αp̃
α ∂f

∂qµ
+

(

C̃µ
βC̃

γ
ξ

∂C α
γ

∂qµ
p̃βp̃ξ − Γµ

νξC̃
ν
βC̃

ξ
γC

α
µ p̃β p̃γ

)

∂f

∂p̃α
= 0. (A.11)

To obtain the collisionless Boltzmann equation in the comoving frame, the momentum
space transformation must be written as the product of a linear transformation from the
coordinate basis to the orthonormal Eulerian basis (see, e.g. Banyuls et al. [5]) and a
Lorentz boost with the negative three-velocity −v. Although this is conceptually easy,
the algebra is rather cumbersome and is omitted here. A semi-automatic Mathematica

worksheet for such calculations is available from the author upon request.
Eq. (A.11) is still formulated for the 8-dimensional distribution function, but can be

converted in to an equation for the 6-dimensional distribution function in a straightfor-
ward manner. In order to keep the derivation simple, we rewrite Eq. (A.11) in a more
abstract form,

∂f

∂λ
+Aµ ∂f

∂qµ
+Bµ ∂f

∂pµ
= 0, (A.12)

where we have introduced the coefficients Aµ and Bµ for the sake of a more compact
notation. Moreover, we use pµ instead of p̃µ to indicate the four-momentum in the
specified frame, because the tilde will be needed otherwise. Eq. (A.12) has the form of
an advection equation in phase space, and this has an interesting implication concerning
Bµ. Since the Hamiltonian flow conserves the invariant mass m = pµpµ of the particles,
Bµ must be orthogonal to pµ, otherwise particles would move away from the mass-
shell. We shall assume that Eq. (A.12) is already formulated in an orthonormal frame,
which implies that indices can be raised and lowered using the flat-space metric ηµν =
diag (−1, 1, 1, 1).

As a first step, we derive the governing equation for the 7-dimensional distribution
function f̃ , which we define as the number of particles per three-volume d3q and four-
momentum-volume d4p, measured by the observer associated with the frame in which
the Boltzmann equation is formulated. In terms of f , f̃ is given by

∞
∫

−∞

p0f dλ, (A.13)

Here, the integrand p0f can be interpreted as the “flux” through the space-like hypersur-
face associated with the specified frame. The governing equation for f̃ can be obtained
by multiplying Eq. (A.12) by p0 and integrating over the affine parameter,

∞
∫

−∞

p0∂f

∂λ
dλ+

∞
∫

−∞

p0Aµ ∂f

∂qµ
dλ+

∞
∫

−∞

p0Bµ ∂f

∂pµ
dλ = 0. (A.14)
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A. Derivation of the Boltzmann Equation in General Relativity

The first integral vanishes for any finite coordinate time: Since λ → ∞ implies t → ∞,
the distribution function must vanish for λ→ ∞. By switching the order of integration
and differentiation, we find an equation for f̃ ,

Aµ ∂f̃

∂qµ
+Bµ ∂f̃

∂pµ
−B0 f̃

p0
= 0. (A.15)

Note that Aµ, Bµ and the phase space coordinates qµ and pµ do not depend on λ.
We next express f̃ in terms of the six-dimensional distribution function f̂ , which gives

the number of particles per three-volume d3q and three-momentum-volume d3p, and
depends only on q and the three-momentum pi, but not on p0,

f̃(qµ, pν) = 2f̂(qµ, pi)δ(pαpα −m2)p0θ(p0). (A.16)

This guarantees that the total number of particles per three-momentum volume obtained
by integrating f̃ correctly reduces to f̂ ,

f̂ =

∞
∫

0

f̃ dp0 =

∞
∫

0

2f̂ δ(pαpα −m2)p0θ(p0) dp0 = f̂ . (A.17)

Using the relation between f̂ and f̃ , we obtain the equation governing the evolution of
f̂ ,

2δ(pαpα −m2)p0θ(p0)

(

Aµ ∂f̂

∂qµ
+Bi ∂f̂

∂pi

)

+ 2θ(p0)Bµf̂
∂δ(pαpα −m2)p0

∂pµ
= 0. (A.18)

2δ(pαpα −m2)p0θ(p0)

(

Aµ ∂f̂

∂qµ
+Bi ∂f̂

∂pi

)

+ 4θ(p0)p0Bµδ′(pαpα −m2)pµf̂ = 0 (A.19)

As noted before, Bµ must be orthogonal to the four-momentum vector: Bµpµ = 0.
Hence, the term outside the brackets vanishes, and the collisionless Boltzmann equation
for f̂ can finally be written down as,

Aµ ∂f̂

∂qµ
+Bi ∂f̂

∂pi
= 0, (A.20)

or, using the specific form of Aµ and Bµ,

C̃µ
αp

α ∂f̂

∂qµ
+

(

C̃µ
βC̃

γ
ξ

∂C i
γ

∂qµ
pβpξ − Γµ

νξC̃
ν
βC̃

ξ
γC

i
µ p

βpγ

)

∂f̂

∂pi
= 0. (A.21)

When working in spherical polar coordinates, pi can be re-expressed in terms of the
absolute value |~p| of the three-momentum ( which is identical to the particle energy in
the massless case), the cosine µ = ~p ·~er/|~p| of the angle enclosed by ~p and the radial unit
vector ~er, and the angle ψ enclosed by ~p and the unit vector in θ-direction. In the special
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case of spherical symmetry, f̂ will only depend on |~p| and µ. To express the Boltzmann
equation in terms of these momentum space coordinates p̂i = (|p|, µ, ψ) we need to plug
in the Jacbobian matrix ∂p̂j/∂pi,

C̃µ
αp

α ∂f̂

∂qµ
+

(

C̃µ
βC̃

γ
ξ

∂C i
γ

∂qµ
pβpξ − Γµ

νξC̃
ν
βC̃

ξ
γC

i
µ p

βpγ

)

∂p̂j

∂pi

∂f̂

∂p̂j
= 0. (A.22)

If all momenta are expressed in terms of p̂i, and if both the Christoffel symbols in a
spherically symmetric CFC spacetime and the transformation matrices C and C̃ are
written out explicitly, one finally arrives at Eq. (2.27) after a considerable amount of
algebra.
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B. Reformulation of the Relativistic
Momentum Equation

One of the guiding principles in formulating the equations of GR hydrodynamics (2.5,
2.6,2.7) as in Banyuls et al. [5] has been to choose a form of the equations that eliminates
geometric source terms on the right-hand side as far as possible, so that, by virtue
of a flux-conservative discretization, analytical conservation laws can also be fulfilled
numerically. Unfortunately, this approach has its limitations: Moving the square root
of the three-metric determinant

√
γ into the time derivative eliminates source terms in

the continuity equation (2.5) , but not in the momentum and energy equations (2.6) and
(2.7). It can easily be verified that the source term in the energy equation vanishes at
least in the limit of a flat spacetime (in arbitrary coordinates), but the situation is worse
for the momentum equation. Once we expand the stress-energy tensor as T µν = ρhuµuν

in the source term,

∂
√
γρhW 2vj

∂t
+
∂
√
g
(

ρWvj v̂
i + δi

jP
)

∂xi
=

√
g

2
(ρhuµuν + Pgµν)

∂gµν

∂xj
, (B.1)

it is evident that in general curvilinear coordinates the source term contains contributions
from the pressure even in the case of a stationary fluid with uµ ∝ (1, 0, 0, 0).

Thus, a naive “conservative” formulation introduces geometric source terms that con-
tain the pressure even in the limit of vanishing velocities! This is not a relativistic
effect, as can be illustrated by considering the Newtonian limit of the equation for the
momentum component S2 = ρv2 in spherical polar coordinates, which reads,

∂r2 sin θρv2
∂t

+
∂r2v2v

1 sin θ

∂r
+
∂r2v2v

2 sin θ

∂r
+
∂r2v2v

3 sin θ

∂r
+
∂r2P sin θ

∂θ
= Pr2 cos θ+ρr2 cos θ v2

3−ρ∇Φ.

(B.2)
The source term −Pr2 cos θ is clearly an artifact of the adopted coordinates: Unlike
the “conserved quantity” r2 sin θρv2 it does not vanish on the axis, and this may lead
to unwanted side effects in a numerical code as the effective “acceleration” resulting
from this term becomes infinite for θ → 0 and θ → π. More specifically, the spherical
symmetry of a fluid configuration with ρ = ρ(r), v1 = v1(r), P = P (r), Φ = Φ(r), v2 ≡ 0
and v3 ≡ 0 will inevitably be broken, unless the discretized (symbolized by “D”) flux
and source terms containing P cancel,

(

∂r2P sin θ

∂θ

)

D

−
(

Pr2 cos θ
)

D
= 0. (B.3)
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At the origin, a similar problem with a coordinate singularity occurs. Since such co-
ordinate artifacts should in general be avoided in any finite-difference representation,
this is a rather unsatisfactory situation. It is important to note that these source terms
are most harmful for quasi-static configurations (e.g. a slowly accreting proto-neutron
star), since velocity-dependent fictitious forces are unavoidable in highly dynamical flows
anyway.

Fortunately, there is a way to eliminate the offending source terms from the relativistic
Euler equations, which has been extensively used and tested in the Newtonian case in
the codes PROMETHEUS [62] and FLASH [63]. The crucial ingredient is the identity
(cp. §86 in [98])

∂g

∂xj
= gµν√g∂gµν

∂xj
, (B.4)

whereby the flux and source terms containing P in Eq. (2.6) can be rearranged into a
gradient:

∂
√
γρhW 2vj

∂t
+
∂
√
g
(

ρWvj v̂
i
)

∂xi
+
∂P

∂xj
=

√
g

2
ρhuµuνgµν ∂gµν

∂xj
. (B.5)

By pulling
√
γ out of the derivatives everywhere and applying standard high-resolution

shock-capturing methods to solve the resulting equation1, one could thus get rid of source
terms in P . However, this is achieved at the expense of introducing additional source
terms containing v, and is therefore not an optimal solution.

On the other hand, it is possible to discretize Eq. (B.5) directly provided that the
pressure and the velocities on the cell interfaces are known. Normally one would obtain
the flux contribution to the time derivative of the conserved variable Sj = ρhW 2vj in a
cell volume V by integrating the numerical fluxes F i

j over all cell interfaces Ai,

(

∂

∂t

∫

V

√
γρhW 2vj dV

)

flux

= −
∫

∂V

√
g
(

ρWvj v̂
i + Pδi

j

)

dAi = −
∫

∂V

√
gF i

jdAi, (B.6)

but if the flux components ρWvj v̂
i and Pδi

j are known independently, the pressure term
can be split off and combined with the source term to form a pure gradient,

(

∂

∂t

∫

V

√
γρhW 2vj dV

)

flux

= −
∫

∂V

√
g
(

ρWvj v̂
i
)

dAi −∇P
∫

V
dV

= −
∫

∂V

√
g
(

ρWvj v̂
i
)

dAi −∇P
∫

V
dV. (B.7)

Since the integration of the “advective” flux component F̃ i
j = ρhW 2vj over V is not

reformulated, no new source terms in v appear.
Splitting the pressure and advection terms in the flux F i

j obviously requires a Riemann
solver that yields an interface state consistent with the interface flux, and therefore
the method explained cannot be incorporated into any given GR hydrodynamics code,

1Such a formulation of the relativistic Euler equations was used in [40], but the improvement in some
collapse situations was (probably erroneously) ascribed to a higher “effective viscosity”.
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since many of the popular approximate Riemann solvers (Marquina [47], HLLE [68,
184], Kurganov-Tadmor [95]) do not fulfil this condition. However, with the new HLLC
scheme the implementation in CoCoNuT has been straightforward. It should be pointed
out that adaptive schemes as proposed by [150] to avoid odd-even decoupling can also
be easily constructed, despite the fact that they rely on the HLLE solver: It suffices
to compute the HLLE flux only for the “advective” component F̃ i

j near shocks, while
retaining the pressure gradient term obtained from the “companion” Riemann solver
(such as HLLC). Several tests performed with CoCoNuT have shown that this leads to
a robust and accurate numerical scheme that greatly reduces unphysical stirring of the
flow near the axis or the origin.
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C. Equations of Newtonian Radiation
Hydrodynamics

In Chapter 2, our main focus was on the equations of general relativistic radiation hy-
drodynamics, and only a few references were made to the corresponding Newtonian case.
Since we employed the (pseudo-)Newtonian code PROMETHEUS-VERTEX extensively
for our tests in Chapter 4, we give a very brief overview of the equations of radiation
hydrodynamics used in that code for reference purposes. In particular, we provide the
neutrino moment equations in the form actually implemented in the pseudo-relativistic
2D version of PROMETHEUS-VERTEX, thereby supplementing the works of Rampp
and Janka [151] and Buras et al. [21], where some algebraic manipulations of the mo-
ment equations were not worked out completely. In order to facilitate a comparison with
the relativistic case, we also refer to the corresponding equations in Chapter 2. All the
equations are given for the special case of axisymmetry, and spherical polar coordinates
are used throughout.

As in the relativistic case, the evolution of a perfect fluid in the Newtonian approxi-
mation is governed by the continuity equation (cp. Eq. (2.5)),

∂ρ

∂t
+

1

r2
∂

∂r

(

r2ρvr

)

+
1

r sin θ

∂

∂θ
(ρ sin θvθ) = 0, (C.1)

and the Euler equations for momentum conservation (corresponding to Eq. (2.6)),

∂ρvr

∂t
+

1

r2
∂

∂r

(

r2ρv2
r

)

+
1

r sin θ

∂

∂θ
(ρ sin θvθvr) − ρ

v2
θ + v2

ϕ

r
+
∂P

∂r
= −ρ∂Φ

∂r
+QM , (C.2)

∂ρvθ

∂t
+

1

r2
∂

∂r

(

r2ρvrvθ

)

+
1

r sin θ

∂

∂θ

(

ρ sin θv2
θ

)

+ ρ
vrvθ − v2

ϕ cot θ

r
+

1

r

∂P

∂θ
= −ρ

r

∂Φ

∂θ
+QP ,

(C.3)

∂ρr sin θvϕ

∂t
+

1

r2
∂

∂r

(

r2ρr sinθ vrvϕ

)

+
1

r sin θ

∂

∂θ

(

ρr sin2 θv2
θ

)

= 0, (C.4)

and energy conservation (corresponding to Eq. (2.7)),

∂e

∂t
+

1

r2
∂

∂r

[

r2 (e+ P ) vr

]

+
1

r sin θ

∂

∂θ
[(e+ P ) sin θvθ] = −ρ

(

vr
∂Φ

∂r
+
vθ

r

∂Φ

∂θ

)

+QE+vrQM+vθQP .

(C.5)
Here, ρ is the baryonic rest mass density, vi is the velocity component along the i-th
coordinate direction, P is the pressure, e is the total energy density e = ρ

(

ǫ+ v2/2
)

(ǫ
being the specific internal energy), and Φ is the gravitational potential.
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C. Equations of Newtonian Radiation Hydrodynamics

As Eqs. (2.6) and (2.7), the momentum and energy equation contain source terms due
to neutrino interactions. The momentum and energy source terms QM and QE are given
by Eqs. (2.39) and (2.40) also in the Newtonian case, but enter the equations of hydro-
dynamics in a slightly different way than in general relativity, cp. Eqs. (2.43,2.44,2.52,
2.53,2.54). The source terms QP accounting for the acceleration of the fluid in the op-
tically thick regime is given by the lateral component of the neutrino pressure gradient,

QM = −1

r

∂Pν

∂θ
, (C.6)

where Pν is the neutrino pressure.

The equations of hydrodynamics are supplemented by continuity equations for the
electron fraction Ye,

∂ρYe

∂t
+

1

r2
∂

∂r

(

r2ρYevr

)

+
1

r sin θ

∂

∂θ
(ρYe sin θvθ) = QYe , (C.7)

and the mass fractions Xi,

∂ρXi

∂t
+

1

r2
∂

∂r

(

r2ρXivr

)

+
1

r sin θ

∂

∂θ
(ρXi sin θvθ) = Qnuc

i . (C.8)

These correspond to Eqs. (2.8) and (2.9). The neutrino source term QYe is given by
Eq. (2.38) as in the relativistic case. Nuclear reactions are taken into account by intro-
ducing source terms Qnuc

i for the mass fractions Xi.

The gravitational potential Φ is determined by the Poisson equation,

∆̂Φ = 4πGρ, (C.9)

which replaces the much more complicated non-linear system of equations (2.10,2.11,2.12).
As described in Marek et al. [116], pseudo-relativistic corrections to the monopole com-
ponent of Φ may be added to mimic the effect of relativistic gravity. Along with such an
“effective relativistic potential”, one obtains a lapse function α for the underlying Misner-
Sharp metric [125] from which the potential is constructed. Using this lapse function,
time dilation and gravitational redshift can be approximately taken into account in the
neutrino transport.

Finally, the monochromatic neutrino moment equations corresponding to Eqs. (2.28)
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and (2.29) read,

∂J

∂t
+

1

r2
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(

r2vrJ
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1
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∂ (sin θvθJ)
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1

r2
∂
(

r2αH
)

∂r
+
∂α
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H (C.10)

− ∂

∂ε

[

εvr

r
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∂ (e−αvr)
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∂
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K = αC0,
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1
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(

r2vrH
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(

r2αK
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K (C.11)

− ∂

∂ε

[

εvr

r
(H − L) + εα

∂ (e−αvr)

∂r
L+ ε

∂α

∂r
K +

ε

2r sin θ

∂ (sin θvθ)

∂θ
L

]

+α
K − J

r
+ α

∂
(

α−1vr

)

∂r
H − 1

2r sin θ

∂ (sin θvθ)

∂θ
L = αC1.

Here, J , H, K, and L denote the zeroth to fourth moment of the neutrino distribution
function, C0 and C1 are zeroth and first moment of the collision integral, and ε is
the neutrino energy. The moment equations contain terms marked in boldface for the
lateral advection of neutrinos and the concomitant compressional heating. Note that
the advection terms corresponding to Eqs. (2.46) and (2.47),

(

∂J

∂t

)

adv

= − 1

r sin θ

∂ (sin θvθJ)

∂r
, (C.12)

(

∂H

∂t

)

adv

= − 1

r sin θ

∂ (sin θvθH)

∂r
, (C.13)

are treated in an operator-split fashion before the radial transport sweep, just as de-
scribed in Chapter 2.
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D. Diffusivity of Approximate Riemann
Solvers in the Subsonic Regime

In our discussion of convection in Chapter 6 we claimed that the HLLE solver may
spuriously damp convective modes with high wavenumbers. The diffusive character of
the HLLE solver has been mentioned repeatedly in the literature (e.g. [123, 146, 183]),
but we nevertheless provide the reader with a simple analysis of the issue in this chapter.
Two important points are addressed: first, we demonstrate how diffusive terms arise
naturally from the HLLE flux formula. Furthermore, we present quantitative estimates
for the effects of numerical diffusion on certain flow features depending on their typical
length scale.

Our analysis does not cover the full range of hydrodynamic regimes, and is intended
to be applicable only to the case of subsonic convection. We therefore confine ourselves
to the limit of a static fluid, i.e. to the “extremely subsonic” case. Although this not a
perfect approximation for proto-neutron star and hot-bubble convection, the numerical
diffusivity of the HLLE solver can be analysed most conveniently in this regime, and the
essential points can be brought out more clearly than in the general case. For the same
reason, we work in the Newtonian approximation and not in full GR. Furthermore, we
assume that the pressure P is constant throughout the fluid, which is reasonable, since
convective bubbles are more or less in pressure equilibrium with their environment.
Under these assumptions, the only discontinuities in the flow (and the only kind of
discontinuities for which we need to discuss the HLLE solver) are contact discontinuities
and tangential discontinuities, which share the same mathematical structure.

Let us now consider the HLLE flux formula for the one-dimensional Euler equations.
In terms of the state vectors UL,R = (ρL,R, vL,R, eL,R)T to the left and right of a cell
interface, the HLLE flux is given by [68, 184],

FHLLE =







FL, λ− > 0
λ+FL−λ−FR

λ+−λ−
+ λ+λ−

λ+−λ−
(UR −UL) , λ+ ≥ 0 ≥ λ−

FR, λ+ < 0

(D.1)

Here λ+ and λ− are the maximal and minimal signal speeds at the cell interface, and

FL,R =
(

ρv, ρv2 + P, (e+ P ) v
)T

. Under the assumptions made in the last paragraph,
the state and flux vectors read,

U =





ρ
0
e



 , F =





0
P
0



 , (D.2)
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Figure D.1.: Left panel: Snapshots of the evolution of a plane-wave density perturbation,
showing the density ρ as a function of the cell index. Right panel: Damping time-scale
τ as a function of wavelength λ in units of the sound-crossing time λ/cS for different
reconstruction schemes: PPM (solid line), MC (dashed line), Minmod (dotted line), and
first-order Godunov reconstruction (dashed-dotted line).

and the maximal and minimal signal speeds are given by the local sound speed cs
1,

λ+ = cs, λ− = −cs. (D.3)

We therefore obtain the following numerical flux FHLLE at the interface,

FHLLE =





−ρR−ρL
2 cs
P

− eR−eL
2 cs



 . (D.4)

The momentum flux is given by the pressure P , which is the analytically correct result.
However, the mass and total energy fluxes F ρ

HLLE and F e
HLLE do not vanish as they ought

to, and can be interpreted as diffusive fluxes,

F ρ
HLLE = −cs∆x

2

∂ρ

∂x
, F e

HLLE = −cs∆x
2

∂e

∂x
, (D.5)

with a diffusion coefficient cs∆x/2 that depends on the zone width ∆x.

Using the analytic result for the HLLE flux, we can explicitly calculate the numerical
damping time-scale for a wavelike perturbation of the density (“entropy wave”) for the

1For the sake of simplicity, we assume that the sound speed is identical on both sides of the interface.
As long as the density discontinuity is small, this is a valid approximation.
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special case of first-order reconstruction and a uniform grid. The initial conditions for
an entropy wave with wavelength λ and amplitude δρ can be written as,

ρn = ρ̄+ δρ e
2πin∆x

λ . (D.6)

Here, ρn is the density in zone n, ∆x is the zone width, and ρ̄ is the background density
on which the wavelike perturbation is superposed. We again assume that the velocity v
vanishes, and that the pressure is constant on the entire grid.

For these initial conditions, the HLLE mass flux F ρ
n+1/2 between cell n and n+1 reads,

F ρ
n+1/2 =

(

e
2πin∆x

λ − e
2πi(n+1)∆x

λ

) csδρ

2
, (D.7)

and the density in cell n therefore evolves according to,

∂ρn

∂t
=

F ρ
n−1/2 − F ρ

n+1/2

∆x
=
csδρ

2∆x
e

2πin∆x
λ

(

e
2πi∆x

λ + e−
2πi∆x

λ − 2
)

(D.8)

=
csδρ

∆x
e

2πin∆x
λ

(

cos
2π∆x

λ
− 1

)

= −2cs
∆x

(ρn − ρ̄) sin2 π∆x

λ
.

Eq. (D.8) can be integrated directly,

ρn(t) = ρ̄+ (ρn(0) − ρ̄) e−
2cst
∆x

sin2 π∆x
λ . (D.9)

In other words, the initial perturbation is damped exponentially, and the decay time-
scale being given by,

τ =
∆x

2λ sin2 π∆x
λ

λ

cs
. (D.10)

Eq. (D.10) shows that numerical damping is strongest for short wavelength perturba-
tions.

First-order schemes, of course, are rarely used in practise, and Eq. (D.10) therefore
cannot be immediately applied to estimate damping time-scales for features in convective
flows. However, it suggests that τ can be related to the sound-crossing time λ/cs for one
wavelength by a function f that depends only on the ratio ∆x/λ,

τ(λ) = f(∆x/λ)
λ

cs
. (D.11)

Here, f depends only on the reconstruction method, and can be determined by extracting
the eigenvalues of entropy waves from numerical simulations instead of solving Eq. (D.8).
We have carried out such simulations for different higher-order reconstruction methods
on a grid of 500 zones, using periodic boundary conditions and a Γ-law equation of
state (with Γ = 5/3). However, different from the case of first-order reconstruction,
the eigenfunctions of the non-linear time-evolution operator are not plane waves, and
the initial conditions corresponding to Eq. (D.6) are not known a priori ; but since high
wavenumber modes decay fastest, any plane wave with wavelength λ will evolve into the
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corresponding eigenfunction anyway. f can therefore be extracted from the asymptotic
decay rate of plane wave perturbations. To this end, we compute the logarithmic time
derivative ∂ ln δρ/∂t of the perturbation amplitude δρ(t) numerically. ∂ ln δρ/∂t reaches
a constant value after a while (indicating that higher eigenmodes have already decayed),
from which τ can be calculated as,

τ = − 1
∂ ln δρ

∂t

. (D.12)

In Fig. D.1 we show the damping time-scale τ extracted from our simulations along
with the analytical result for first-order reconstruction. Fig. D.1 can be used to estimate
the damping time-scale for convective flow features, using their length scale as a “typical”
wavelength. It should be borne in mind, of course, that one can only obtain a rough
estimate, since such flow features are obviously not one-dimensional entropy waves.

Finally, we note that the diffusivity of other approximate Riemann solvers can be
analysed in exactly the fashion as for the HLLE solver. For the modified Marquina
solver of Aloy et al. [2] (which is widely used in numerical relativistic hydrodynamics)
the numerical diffusivity in the subsonic regime is rather similar to HLLE. On the other
hand Marquina’s original flux formula [47], the Roe solver [153], and the HLLC solver
[123, 183] do not introduce numerical diffusivity in the extremely subsonic case.
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Scheck, Lorenz Hüdepohl, Martin Obergaulinger, Nicolay Hammer, Pablo Cerda-Duran,
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Benkert vom Höchstleistungsrechenzentrum Stuttgart soll nicht unerwähnt bleiben; sie
hat enorm viel Zeit in die Optimierung von VERTEX auf den dortigen Rechnern inve-
stiert.

Ein allgemeiner Dank für die Arbeitsausstattung, die anregende wissenschaftliche Um-
gebung und zahlreiche lohnende Dienstreisen geht an das Max-Planck-Institut für Astro-
physik, die Sonderforschungsbereiche “Neutrinos and Beyond” und “Gravitational Wave
Astronomy”, den Exzellenzcluster “Origin and Structure of the Universe” und den Deut-
schen Akademischen Austauschdienst.

Um Wissenschaft betreiben zu können bedarf es freilich auch der Unterstützung “von
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