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Abstract

This thesis is concerned with the modelling of recovery rates, their behaviour,
and the valuation of recovery risk in credit-risk models. In particular, the
characteristics and determinants of facility-level as well as aggregated recov-
ery rates are examined on a unique Pan-European dataset. The empirical
insights obtained from these investigations combined with stylized facts like
the negative correlation between recovery rates and default rates are em-
phasized to derive a consistent model for the valuation of single-name credit
derivatives under stochastic recovery. Based on the class of intensity-based
credit risk models, the model yields analytically tractable pricing formulas
and in particular allows for the pricing of single-name credit derivatives with
payoffs that are directly linked to the recovery rate at default, like recovery
locks. Furthermore, stochastic recovery rates are also considered in the con-
text of portfolio credit-risk modelling. Using nested Archimedean copulas the
joint modelling of recovery rates and default rates in a portfolio of credit-
risky assets is extended to a non-Gaussian dependence structure. Within this
framework an efficient algorithm for sampling the loss process of the portfolio
and pricing tranches of CDOs is presented. Finally, the well-known concept
of base correlations is adapted to stochastic recoveries in a non-Gaussian
setting. This modelling approach yields significantly flatter base correlation
curves compared to the current market standard and therefore simplifies the
pricing of non-standardized CDO tranches.
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Zusammenfassung

Diese Arbeit befasst sich mit der Modellierung von Erlösquoten und ihrem
Verhalten sowie der Bewertung von Erlösquotenrisiken in Kreditrisikomodel-
len. Basierend auf einer einzigartigen paneuropäischen Datenbank werden
zunächst die Eigenschaften und bestimmenden Faktoren von Erlösquoten
sowohl auf einem Einzelkredit- als auch auf einem aggregierten Level unter-
sucht. Unter Verwendung der so gewonnenen empirischen Erkenntnisse, in
Verbindung mit charakteristischen Eigenschaften wie der negativen Korre-
lation von Ausfallraten und Erlösquoten, wird ein konsistentes Modell zur
Bewertung von Kreditderivaten unter Berücksichtigung stochastischer Erlös-
quoten entwickelt. Aufbauend auf der Klasse der intensitäts-basierten Kredi-
trisikomodelle liefert das betrachtete Modell analytisch gut handhabbare Be-
wertungsformeln und erlaubt es insbesondere Kreditderivate zu bewerten, de-
ren Auszahlungsprofil direkt von der Erlösquote bei Ausfall abhängt. Darüber
hinaus werden stochastische Erlösquoten auch im Kontext von Portfolio-
kreditrisikomodellen betrachtet. Mittels hierarchischer archimedischer Ko-
pulas wird die gemeinsame Modellierung von Ausfallraten und Erlösquoten
in einem Portfolio ausfallbehafteter Anlagen auf nicht-Gaußsche Abhängig-
keitsstrukturen erweitert. Im Rahmen dieses Modells wird ein effizienter
Monte Carlo Algorithmus zur Bestimmung des Portfolioverlustprozesses und
zur Bewertung der Tranchen eines CDO vorgestellt. Abschließend wird das
marktübliche Konzept der Basis-Korrelation auf den Fall stochastischer Erlös-
quoten in einem nicht-Gaußschen Modellrahmen erweitert, wodurch, vergli-
chen mit dem bisherigen Marktstandard, signifikant flachere Basis-Korrela-
tions-Kurven erzielt werden und somit die Bewertung von nicht-standard-
isierten CDO Tranchen erleichtert wird.
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Chapter 1

Introduction

1.1 Motivation

Over the last decades a lot of progress has been made in the field of credit-
risk modelling. While there has been a great variety of literature concerning
the description, modelling, and prediction of default probabilities (going back
to the seminal works of Beaver (1966), Altman (1968), and Merton (1974)),
there have been only few studies concerning the description of recovery rates,
their behaviour, and their determinants. Accordingly most credit-risk pricing
models, both for single-name and portfolio credit derivatives, rather concen-
trate on default-event risk or default-loss risk and neglect recovery risks.
Caused by the rapid growth in the credit-derivatives market at the begin-
ning of this century (see Figure 1.1) and the appearance of contingent claims
on recoveries, e.g. fixed-recovery CDS, recovery locks, or recovery swaps, the
sound modelling of recovery rates gained in importance lately, both for pric-
ing purposes and portfolio risk management as well as for economic capital
requirements.

Particularly, the worldwide financial crisis starting in 2007 gave rise to a
new discussion on recovery rates in the academic literature as well as among
practitioners. While during the years of continuous economic growth and
very low default rates from 2003 until mid 2007, the amount recovered after
a potential default event was rather of theoretical interest, things changed
when economic and credit conditions deteriorated due to the upcoming US
sub-prime crisis. The increasing number of companies in financial distress,
the large variation in realized recovery rates, and the high complexity of many
credit derivatives led to a need for a better understanding of all variables
involved in the loss process of a defaultable security. Table 1.1 shows the
2008 CDS credit event auction results from Creditex Group Inc.

TM
and Markit

1
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Figure 1.1: CDS notional amount outstanding in billions of US dollar.

Group Limited
TM

(www.creditfixings.com). As can be easily seen recovery
rates are not constant and therefore the assumption of a constant recovery
rate of 40% typically used in standard CDS and CDO models might be
questionable.

Company Date Recovery
(Senior unsecured)

Quebecor 19/02/2008 41.25%
Tembec 02/10/2008 83.00%

Fannie Mae 06/10/2008 91.51%
Freddie Mac 06/10/2008 94.00%

Lehman Brothers 10/10/2008 8.63%
Washington Mutual 23/10/2008 57.00%

Landsbanki 04/11/2008 1.25%
Glitnir 05/11/2008 3.00%

Kaupthing Bank 06/11/2008 6.63%

Table 1.1: 2008 CDS credit event auction results.

Moreover, it can be observed that recovery rates are lower in a distressed
economy than in a healthy economy and default rates and recovery rates are
negatively correlated (see Figure 1.2).
These facts as well as increasing regulatory requirements put a stronger em-
phasis on the development of models including a realistic recovery-rate spec-
ification. E.g. within the internal ratings-based (IRB) approach of the new
Basel Accord banks are allowed to use internal estimates of default probabil-
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Figure 1.2: S&P speculative-grade default rates and discounted workout re-
covery rates.

ities as well as of recovery in the event of default (= 1− loss given default) to
calculate their credit-risk capital. In contrast to the probability of default,
which is calculated on the obligor level, the recovery rate has to be calcu-
lated on the facility level. It is usually defined as the amount recovered as a
percentage of the exposure at default.
Although there has been a growing number of studies dealing with the deter-
minants of recovery rates, especially from US rating agencies, the behaviour
and prediction of recovery rates is by far not yet fully understood. One of
the first and probably most famous articles that examined bond recovery
rates is the work by Altman and Kishore (1996), who examined the prices
of bonds at the time of default of more than 700 defaulting bonds from 1978
to 1995. As many of these studies try to explain the recovery rates of indi-
vidual defaulted bonds, they mostly concentrate on facility-level factors like
the impact of seniority, collateralisation, or industry affiliation.
In the meantime studies on the determinants of historical recovery rates
(see e.g. Altman and Kishore (1996), Schuermann (2004), or Davydenko and
Franks (2008)) have been conducted, succeeding those on the determinants
of default probabilities (see e.g. Beaver (1966), Ohlson (1980), or Duffie et al.
(2007)). Moreover, after a long history of scoring models for defaults (see
e.g. Altman (1968), Ohlson (1980), or Berg (2007)), recovery-prediction mod-
els (see e.g. Friedman et al. (2005) or Gupton and Stein (2005)) have been
developed recently. Nevertheless, pricing models both for single-name and
portfolio credit derivatives with an explicit stochastic modelling of recovery
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rates are still scarce. In the past, most models have treated the recovery rate
as a constant or independent of the default process.

1.2 Objectives and structure

The main objectives of this thesis are the following: After introducing math-
ematical preliminaries and some basic facts about recovery rates and risks
(Part I) the behaviour and determinants of recovery rates are examined (Part
II) and new valuation approaches for credit derivatives using this informa-
tion are developed (Part III). Based on well established concepts for pricing
single-name as well as portfolio credit derivatives, the stochastic behaviour of
recovery rates and their correlation with other market factors are modelled to
achieve more reasonable frameworks for pricing as well as risk management
purposes. While the theoretical development of the models is a crucial part
of this thesis, the models are applied to real market data whenever possible
and implementation issues like parameter estimation and calibration are dis-
cussed in detail.
The remainder of this thesis is organized as follows: Chapter 2 provides the
basic mathematical concepts which are needed for the determination and val-
uation of recovery risks. The chapter is also intended to familiarise the reader
with the mathematical notation used throughout this thesis. In Chapter 3
recovery rates and risks are defined and it is shown how they can be measured
and modelled. In addition to that, this chapter contains a short review on ex-
isting recovery-rate models for pricing as well as risk management. Chapters
4 and 5 contain the empirical parts of this thesis. Chapter 4 gives a detailed
overview on factors that might influence recoveries including their consider-
ation in the relevant literature and introduces further explanatory variables
which have not been considered yet. For the first time (to the author’s best
knowledge) determinants and behaviour of loan recovery rates on a facility
level are described using such a large Pan-European dataset. In Chapter 5
the evolution over time of aggregated recovery rates in dependence of macroe-
conomic factors is investigated. Furthermore, Markov-switching concepts are
applied to the analysis of aggregated recovery rates and an additional factor
that tries to explain the credit environment is incorporated into the analysis.
These results are used to construct a framework for the joint modelling of
default and recovery risk in Chapter 6. The model accounts for the typ-
ical characteristics known from empirical studies, e.g. negative correlation
between recovery-rate process and default intensity, as well as between de-
fault intensity and state of the economy, and a positive dependence of recov-
ery rates on the economic environment. Within this framework analytically
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tractable pricing formulas for credit derivatives are derived. The main build-
ing blocks for the pricing formulas are presented in Theorems 6.4 and 6.5.
Corollaries 6.6 - 6.10 contain the valuation formulas for various defaultable
contingent claims like coupon bonds or credit default swaps. The stochastic
model for the recovery process allows, in contrast to many other credit-risk
models, for the pricing of single-name credit derivatives with payoffs that are
directly linked to the recovery rate at default, e.g. recovery locks (Corollary
6.11). Chapter 7 is devoted to the joint modelling of default and recovery
risk in a portfolio of credit risky assets. One distinctive feature of this port-
folio model is that it especially accounts for the correlation of defaults on
the one hand and correlation of default rates and recovery rates on the other
hand (as observed e.g. in Figure 1.2). Nested Archimedean copulas are used
to model different dependence structures, namely dependence among default
triggers as well as between default triggers and loss triggers. Furthermore,
a very flexible continuous recovery-rate distribution with bounded support
on [0, 1] is chosen, which allows for an efficient sampling of the loss process.
This is especially important, as in most cases the loss process distribution
will not be given in closed form. This approach extends the class of copula
models for the valuation of CDO tranches to stochastic recovery rates in a
non-Gaussian setting. Thereby, some of the ”inconsistencies” observed in the
credit market since mid 2007 can be resolved. The algorithm for the pricing
of CDO tranches via Monte Carlo simulation is presented in Algorithm 7.2.
Within this framework, an extensive model calibration case study, sensitivity
analyses, and an application on delta hedging are presented. Furthermore,
in Section 7.4 the concept of base correlations is extended to a non-Gaussian
setting with stochastic recovery rates. Finally, Chapter 8 concludes.
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Part I

Fundamentals
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Chapter 2

Mathematical preliminaries

In this chapter, the basic mathematical concepts needed for the determina-
tion and valuation of recovery risks in Chapters 4 – 7 are introduced. While
it is assumed that the basic concepts of probability theory, stochastic pro-
cesses, and stochastic calculus are known to the reader, some of the main
mathematical tools that will be applied later are repeated here. The first
section of this chapter repeats the basic principles of discrete-time Markov-
switching models. Section 2.2 gives a brief overview of the basic ideas of
point processes and intensities and their application to financial modelling.
The Cauchy problem and the Feynman-Kac representation needed for the
evaluation of conditional expectations in the risk-neutral pricing framework
is described in Section 2.3. The Kalman filtering method is presented in Sec-
tion 2.4. Section 2.5 outlines the general ideas of using copulas for modelling
multivariate dependence structures.
While original articles and further literature sources are cited where appro-
priate, the mathematical notation and presentation of the necessary pre-
liminaries from mathematical finance are mainly based on Bingham and
Kiesel (2004), Zagst (2002), Schönbucher (2003), and Schmid (2004). For
the basics of intensity-based credit-risk models Schönbucher (2003), Bielecki
and Rutkowski (2004), Schmid (2004), or Chapter 22 of Brigo and Mercurio
(2001) are good references. Schmid (2004) also deals with the Kalman filter-
ing method. Textbooks covering copula theory in general are Joe (1997) and
Nelsen (1998).

2.1 Markov-switching models

In this section, the basic properties of discrete-time Markov-switching models
are reviewed. A more general overview on the class of Markov-switching mod-

9
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els and its applications to finance can e.g. be found in Frühwirth-Schnatter
(2006), Cappé et al. (2007), or Mamon and Elliott (2007). A Markov-
switching model (MSM) or hidden Markov model (HMM) is given by two
stochastic processes. The first stochastic process, (Xk)k∈N0 , is a Markov
chain with several states. The sequence of states is often not observable
(”hidden”). By contrast, the second stochastic process, (Yk)k∈N0 , is observ-
able. The probability distribution of Yk, k ∈ N0, depends on the particular
state of the Markov chain. Here, the state space Ω of the Markov chain
(Xk)k∈N0 is assumed to be finite, i.e. Ω = {1, . . . , J}, J ∈ N. In the follow-
ing, the transition matrix of the Markov chain is denoted by Π = (πjl)j,l=1,...,J

with πjl = P(Xk = l|Xk−1 = j) and the initial distribution by δ with
δj = δ(xj) = P(X0 = xj), j = 1, . . . , J . The stochastic process (Yk)k∈N0

is assumed to be R-valued with realizations y0, . . . , yn. The probability den-
sity of Yk, k ∈ N0, conditioned on the particular state of the Markov Chain
is denoted by p, where pk(x) = p(x, yk; Θ) = P(Yk = yk|Xk = x) and Θ
denoting the parameter set of the distribution. To determine the unobserv-
able state sequence from the observed realizations of the second stochastic
process, knowledge of the transition matrix, the initial distribution, and the
parameters of the distribution is required. Unfortunately, this information
is often not available. So the unknown parameters must be estimated at
first. For that purpose the Baum-Welch algorithm (see Baum et al. (1970))
can be used. This algorithm is an expectation-maximization algorithm (EM-
algorithm), i.e. it maximizes the conditional expectation of the (logarith-
mised) joint density given the observations. In principle, an EM-algorithm
consists of two steps in every iteration, the E-step and the M-step. In the E-
step the expectation functional is evaluated and in the M-step this functional
is maximized.

Algorithm 2.1. Baum-Welch Algorithm

1. Initialization:
Choose a maximum number of iterations I and a tolerance level εtol.
For i = 1, . . . , I let

Θi = ((δ
(i)
j )j=1,...,J , (π

(i)
jl )j,l=1,...,J , (µ

(i)
j )j=1,...,J , (σ

(i)
j )j=1,...,J)

denote the parameter vector after the ith iteration and denote all ex-
pressions depending on Θi by a superscript (i).
Set i = 0 and choose initial parameters

Θ0 = ((δ
(0)
j )j=1,...,J , (π

(0)
jl )j,l=1,...,J , (µ

(0)
j )j=1,...,J , (σ

(0)
j )j=1,...,J).
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2. E-Step:

(a) Forward recursion:
For j = 1, . . . , J set

α
(i)
0,j = P(i)(Y0 = y0, X0 = j) = p

(i)
0 (j)δ

(i)
j .

For k = 1, . . . , n evaluate

α
(i)
k,j = P(i)(Y0 = y0, . . . , Yk = yk, Xk = j) =

J∑
l=1

α
(i)
k−1,lp

(i)
k (j)π

(i)
lj

for all j = 1, . . . , J .

(b) Backward recursion:
For j = 1, . . . , J set

β
(i)
n,j = 1.

For k = n− 1, . . . , 0 evaluate

β
(i)
k,j = P(i)(Yk+1 = yk+1, . . . , Yn = yn|Xk = j) =

J∑
l=1

p
(i)
k+1(l)β

(i)
k+1,lπ

(i)
jl

for all j = 1, . . . , J .
For k < n set

Ψk|n(j; Θi) = P(i)(Xk = j|Y0 = y0, . . . , Yn = yn) =
α

(i)
k,jβ

(i)
k,j∑J

l=1 α
(i)
k,lβ

(i)
k,l

,

Ψk−1:k|n(j, l; Θi) = P(i)(Xk−1 = j,Xk = l|Y0 = y0, . . . , Yn = yn)

=
α

(i)
k−1,jπ

(i)
jl p

(i)
k (l)β

(i)
k,l∑J

m=1 α
(i)
k,mβ

(i)
k,m

.

3. M-step:
Choose Θ = ((δj)j=1,...,J , (πjl)j,l=1,...,J , (µj)j=1,...,J , (σj)j=1,...,J), such that
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Q(Θ; Θi) =
J∑
j=1

Ψ0|n(j; Θi) log δj

−1

2

n∑
k=0

J∑
j=1

Ψk|n(j; Θi)

[
log 2πσ2

j +
(yk − µj)2

σ2
j

]

+
n∑
k=1

J∑
j=1

J∑
l=1

Ψk−1:k|n(j, l; Θi) log πjl

is maximal. The solution of this optimization problem can be evalu-
ated by using the Lagrange multiplicator method under the constraints∑J

j=1 δj = 1 and
∑J

l=1 πjl = 1. The solution is given by

δj = Ψ0|n(j),

µj =

∑n
k=0 Ψk|n(j)yk∑n
k=0 Ψk|n(j)

,

σj =

√∑n
k=0 Ψk|n(j)(yk − µj)2∑n

k=0 Ψk|n(j)
,

πjl =

∑n
k=1 Ψk−1:k|n(j, l)∑n

k=1

∑J
l=1 Ψk−1:k|n(j, l)

,

for j, l = 1, . . . , J .

4. Termination:
If |Q(Θ; Θi)−Q(Θi; Θi−1)| < εtol or i+ 1 = I, then stop and return Θ,
else set Θi+1 = Θ and i = i+ 1 and go back to 2.

If the transition matrix, the initial distribution, and the parameters of the
distribution of a Markov-switching model are given, it is possible to estimate
the ”most-likely” state sequence according to Viterbi’s algorithm (see Viterbi
(1967)).

Algorithm 2.2. Viterbi Algorithm

1. Initialization:
For i = 1, . . . , J set

m0(i) = log P(X0 = i, Y0 = y0) = log(δip0(i)).
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2. Forward recursion:
For k = 0, . . . , n− 1 evaluate

mk+1(j) = max
{x0,...,xk}∈Ωk1

log P(X0 = x0, . . . , Xk = xk, Xk+1 = j,

Y0 = y0, . . . , Yk+1 = yk+1)

= max
i∈{1,...,J}

[mk(i) + log(πij)] + log(pk+1(j)),

bk+1(j) = arg maxmk+1(j)

for all j = 1, . . . , J .

3. Backward recursion:
Let x̂n be the state j for which mn(j) is maximal.
For k = n− 1, . . . , 0 set

x̂k = bk+1(x̂k+1).

2.2 Intensity-based models

Since the valuation of defaultable contingent claims in Part III of this the-
sis will be based on the concepts of point processes and intensities, a brief
overview of the basic ideas and theorems is given in this section. In appli-
cations to financial market problems, intensity-based models are sometimes
also referred to as reduced-form models and have become very popular, in
particular in the context of credit-risk modelling. Historically, the limited
success of structural-form models, which describe a defaultable security as a
contingent claim on the firm’s (unobservable) asset-value process, in explain-
ing credit spreads have led to the invention of intensity-based credit-risk
models. These models are often the preferred methodology for pricing and
hedging purposes. Intensity-based models don’t consider an explicit relation
between default and asset value, but rather model default as a stopping time
of some given hazard-rate process. Therefore, default is specified exogenously
in this model class. This leads to a more realistic behaviour of short-term
credit spreads and avoids the usage of an unobservable asset-value process
at the cost of less interpretability. The family of reduced-form models goes
back to Jarrow and Turnbull (1992) and Jarrow and Turnbull (1995). Since
then many articles following this approach have been published, e.g. Madan
and Unal (1998), Lando (1998), Schönbucher (1998), Duffie and Singleton
(1999), and Duffie and Singleton (2003) just to name a few.
For a mathematical formulation of intensity-based models, let (Ω,G,P) de-
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note a given probability space. A counting process, i.e. a non-decreasing,
integer-valued process which starts in 0, can be defined as follows.

Definition 2.3. Let (τn)n∈N be an increasing sequence of random variables
in [0,∞] such that τn(ω) < ∞ yields τn(ω) < τn+1(ω) for all ω ∈ Ω and
n ∈ N. The process (N(t))t≥0 defined by

N(t) =
∑
n∈N

11{τn≤t}

is called point or counting process. In the following the process (N(t))t≥0

often will be abbreviated by N(t).

The process N(t) can be considered as a stochastic process, counting the
number of events associated with the sequence τn. Throughout this thesis,
it will be assumed that τi 6= τj for i 6= j (i.e. τn < τn+1 for all n ∈ N) and
that the point process is non-explosive, i.e. limn→∞ τn = ∞. In credit-risk
modelling the default time τ of an obligor is often associated with the first
jump of N(t), i.e. τ = inf {t > 0 : N(t) > 0}.
In the following it will be assumed that (Ω,G,P) is equipped with three
filtrations G, F, and FN . Let F = {Ft}t≥0 denote the filtration generated
by all occurring stochastic processes other than the counting process N(t).
For the sake of simplicity F0 is assumed to be trivial. As F is assumed to
be generated by a background process it is sometimes called the background
filtration (see e.g. Schönbucher (2003)). Furthermore, let FN := {FNt }t≥0 be
the filtration generated by the counting process N(t) and G = {Gt}t≥0 be the

enlarged filtration G = FN∨F, i.e. the smallest filtration generated by FN and
F. All filtrations are assumed to satisfy the usual conditions of completeness
and right-continuity. It should be emphasized that τ is not necessarily a
stopping time with respect to the filtration F, but of course with respect to
the filtration G. It is also assumed that for any t ∈ (0, T ∗] the σ-fields FT ∗
and FNt are conditionally independent given Ft, where T ∗ denotes a fixed
time horizon. This is equivalent to the assumption that F has the so-called
martingale invariance property with respect to G, i.e. any F-martingale is
also a G-martingale (see p.167 of Bielecki and Rutkowski (2004)). In some
cases it is more suitable to use another condition, which is equivalent to the
martingale invariance property (see p.242 of Bielecki and Rutkowski (2004)):
For any t ∈ (0, T ∗] and any P-integrable FT ∗-measurable random variable X
it holds that EP [X| Gt] = EP [X| Ft]. The following definition introduces the
concept of the intensity of a point process.
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Definition 2.4. Let N(t) be a point process as in Definition 2.3, adapted to
the filtration {FNt }t≥0 and let λ(t) be a non-negative Ft-progressively mea-
surable process1 such that for all t ≥ 0 it holds that∫ t

0

λ(s)ds <∞ P− a.s.

If for all non-negative Ft-predictable2 processes C(t) the equality

EP

[∫ ∞
0

C(s)dN(s)

]
= EP

[∫ ∞
0

C(s)λ(s)ds

]
holds, the point process N(t) is said to admit the (P,Ft)-intensity λ(t).

The following two theorems are concerned with fundamental properties, ex-
istence, and uniqueness of intensities (see e.g. p.28ff in Brémaud (1981) or
p.60 in Schmid (2004)).

Theorem 2.5. If N(t) admits the (P,Ft)-intensity λ(t), then N(t) is non-
explosive and M = (M(t))t≥0 with

M(t) = N(t)−
∫ t

0

λ(s)ds (2.1)

is a Gt-local martingale. Conversely, let N(t) be a non-explosive point pro-
cess adapted to FNt , and suppose that for some non-negative Ft-progressively
measurable process λ(t) and for all n ≥ 1,

N(t ∧ τn)−
∫ t∧τn

0

λ(s)ds

is a (P,Gt)-martingale. Then, λ(t) is the (P,Ft)-intensity of N(t).

Proof. See p.27f in Brémaud (1981).

1Let {Ft}t≥0 be a filtration on (Ω,F ,P) and X(t) an E-valued process endowed with a
σ-algebra E . The process X(t) is Ft-progressively measurable if for all t ≥ 0 the mapping
(t, ω) → X(t, ω) from [0, t] × Ω → E is B([0, t] ⊗ Ft) − E-measurable (see e.g. p.281 of
Brémaud (1981) or p.59 of Schmid (2004)).

2Let {Ft}t≥0 be a filtration on (Ω,F ,P) and define P(Ft) to be the σ-algebra over
(0,∞) × Ω generated by rectangles of the form (s, t] × A with 0 ≤ s ≤ t and A ∈ Fs.
P(Ft) is referred to as the Ft-predictable σ-algebra over (0,∞)×Ω. A real-valued process
X(t) where X(0) is F0-measurable and the mapping (t, ω)→ X(t, ω) is P(Ft)-measurable
is called Ft-predictable (see e.g. p.8 of Brémaud (1981) or p.59 of Schmid (2004)).
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Theorem 2.6. Let N(t) be a point process with a (P,Ft)-intensity λ(t). Then
one can find a (P,Ft)-intensity λ̃(t) which is Ft-predictable. Now, let λ̃(t)
and λ̄(t) be two (P,Ft)-intensities of N(t) which are Ft-predictable. Then,
λ̃(t) = λ̄(t) P(dω)dN(t, ω)-almost everywhere.

Proof. See p.31f in Brémaud (1981).

Consider the aforementioned special case of only one random time τ and let
H(t) denote the indicator function H(t) = 11{τ≤t} associated e.g. with the
occurrence of a credit event. Let λ(t) denote the (P,Ft)-intensity of H(t).
Then, recalling Theorem 2.5,

M(t) := H(t)−
∫ t

0

λ(s)11{τ≥s}ds

is a martingale and therefore it is straightforward to see that for small ∆t > 0

EP[H(t+ ∆t)−H(t)|Gt] =0 · P (τ ≤ t|Gt) + 1 · P (t < τ ≤ t+ ∆t|Gt)
+ 0 · P (τ > t+ ∆t|Gt)

= P (t < τ ≤ t+ ∆t|Gt) (2.2)

as well as

EP[H(t+ ∆t)−H(t)|Gt] =EP

[∫ t+∆t

t

λ(s)11{τ≥s}ds

∣∣∣∣Gt] . (2.3)

Furthermore, it can be shown (see e.g. p.61 in Schmid (2004)) that

lim
∆t→0

EP [H(t+ ∆t)−H(t)|Gt]
∆t

= λ(t)11{τ≥t}, P-a.s.

This yields

λ(t)11{τ≥t} = lim
∆t→0

P (t < τ ≤ t+ ∆t|Gt)
∆t

,

i.e. the intensity λ(t) can be interpreted as the (instantaneous) arrival rate
of a default event associated with τ , given all information at time t. Hence,
it can be concluded that the probability of default over the next infinitesimal
time interval of length ∆t is approximately given by λ(t)∆t. Furthermore,
combining Equations (2.2) and (2.3) the conditional default probability over
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the interval (t, T ] is given by

p̄ (t, T |Gt) = P (t < τ ≤ T |Gt) = EP

[∫ T

t

λ(s)11{τ≥s}ds
∣∣∣Gt] .

Under some integrability conditions it can be shown further that (see e.g.
Duffie (1998b))

p̄ (t, T |Gt) = 1− EP

[
e−

∫ T
t λ(s)ds

∣∣∣Gt] .
Using the martingale-invariance property, it follows that

p̄ (t, T |Gt) = 1− EP

[
e−

∫ T
t λ(s)ds

∣∣∣Ft] = p̄ (t, T |Ft) .

The conditional survival probability p (t, T |Gt) = P (N(T ) = 0|Gt) is given by

p (t, T |Gt) = p (t, T |Ft) = EP

[
e−

∫ T
t λ(s)ds

∣∣∣Ft] 11{τ≥t}.

The survival and default probability p (t, T |Ft) and p̄ (t, T |Ft) respectively,
will be abbreviated by p(t, T ) and p̄(t, T ) in what follows.
The literature on intensity-based models can be divided in three categories:
models with constant intensities, models with time-varying deterministic in-
tensities, and models with stochastic intensities. If the intensity λ is constant,
N(t) is usually assumed to follow a Poisson process, i.e. (τi+1 − τi) ∼ Exp(λ).
If the intensity λ(t) is a (non-constant) deterministic function, the process is
usually a time-inhomogeneous Poisson process. The incorporation of stochas-
tic intensities yields a doubly stochastic Poisson process, also called Cox pro-
cess, which can be defined as follows (see also p.121 of Schönbucher (2003)):

Definition 2.7. A point process N(t) with intensity process λ(t) is a Cox
process if, conditional on the background filtration {Ft}t≥0, N(t) is a time-
inhomogeneous Poisson process with intensity λ(t).

Note that this definition ensures that the Cox process can not be measurable
with respect to {Ft}t≥0. Thus, knowledge of the intensity process does not
reveal any information about the realisation of N(t). In what follows, some
well known examples for intensity specifications in credit-risk models will be
given.

Example 2.8.

1. Constant intensity:
If λ(t) = λ > 0 the survival and default probability are given by
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p(t, T ) = e−λ(T−t)11{τ≥t} and p̄(t, T ) = 1 − e−λ(T−t), respectively. In
this model the time to default is exponentially distributed with expected
time to default equal to λ−1.

2. Deterministic intensity:
If λ(t) is a time-varying deterministic function, one obtains p(t, T ) =

e−
∫ T
t λ(s)ds11{τ≥t} and p̄(t, T ) = 1− e−

∫ T
t λ(s)ds.

3. Vasicek model (Vasicek (1977)):
The intensity λ(t) is assumed to follow an Ornstein-Uhlenbeck process,
i.e.

dλ(t) = (θ − aλ(t)) dt+ σdW (t), λ(0) > 0,

with constant parameters θ ≥ 0, a, σ > 0, and a one-dimensional
Wiener process W . In this case, λ(t) is normally distributed with mean

EP [λ(t)|F0] = e−atλ(0) +
θ

a

(
1− e−at

)
and variance

VarP [λ(t)|F0] =
σ2

2a

(
1− e−2at

)
.

The survival probability is given by

p (t, T ) = EP

[
e−

∫ T
t λ(s)ds

∣∣∣Ft] 11{τ≥t} = eA(t,T )−B(t,T )λ(t)11{τ≥t},

with

B(t, T ) =
1

a

(
1− e−a(T−t)) ,

A(t, T ) =

(
θ

a
− σ2

2a2

)
(B(t, T )− T + t)− σ2

4a
B2(t, T ).

The disadvantage of Vasicek’s model is that the normal distribution of
λ(t) implies P(λ(t) < 0) > 0 and hence positivity of the intensity is not
guaranteed. This drawback is often accepted in applications due to the
tractability advantages of the model (see also the discussion in Section
6.1).

4. Cox-Ingersoll-Ross model (Cox et al. (1985)):
A process that guarantees (under certain parameter restrictions) posi-



2.3. CAUCHY PROBLEM AND FEYNMAN-KAC 19

tivity of the intensity is the square-root diffusion process given by

dλ(t) = (θ − aλ(t)) dt+ σ
√
λ(t)dW (t), λ(0) > 0,

with constant parameters θ ≥ 0, a, σ > 0, where 2θ > σ2 is assumed,
and a one-dimensional Wiener process W . In this case, λ(t) follows a
non-central chi-squared distribution with mean

EP [λ(t)|F0] = e−atλ(0) +
θ

a

(
1− e−at

)
and variance

VarP [λ(t)|F0] = λ(0)
σ2

a

(
e−at − e−2at

)
+ θ

σ2

2a2

(
1− e−at

)2
.

The survival probability is again an exponentially affine function in
λ(t). For more details see e.g. p.76f of Schmid (2004).

Further examples of intensity-based models and their application to credit-
risk modelling can e.g. be found in Schönbucher (2003), Schmid (2004), or
Chapter 22 of Brigo and Mercurio (2001). Examples of intensity specifi-
cations including jump processes can e.g. be found in Gaspar and Schmidt
(2007) or Cariboni and Schoutens (2009).

2.3 Cauchy problem and Feynman-Kac rep-

resentation

The aim of this section is to recall the Cauchy problem and its Feynman-Kac
representation. Besides the version of the Feynman-Kac theorem which is
often cited in the literature, another version is derived which is tailored to
the needs of the model from Chapter 6.
For the first version of the theorem, let X(t) be an n-dimensional Itô process
on a complete filtered probability space (Ω,F ,F,P) defined by

X(t) = X(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s) (2.4)

with F = F(W ) = {Ft}t≥0, W (t) = (W1(t), ...,Wm(t))T denoting an m-
dimensional Wiener process, X(0) a F0-measurable random variable, and µ
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and σ two progressively measurable stochastic processes with∫ t

0

|µi(s)|ds <∞ and

∫ t

0

σ2
ij(s)ds <∞ (2.5)

P-a.s. for all t ≥ 0, i = 1, ..., n, and j = 1, ...,m. As usual, Equation (2.4) is
symbolically abbreviated by

dX(t) = µ(t)dt+ σ(t)dW (t) = µ(t)dt+
m∑
j=1

σj(t)dWj(t).

If there exists an n-dimensional stochastic process X = X(t) = (X0,x0(t))t≥0

of the form (2.4) with µ(t) = µ(X(t), t) and σ(t) = σ(X(t), t) satisfying
Equation (2.5), this process X(t) is called the strong solution of the stochastic
differential equation (SDE)

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), X(0) = x0. (2.6)

The existence and uniqueness of such a strong solution is discussed in the
following theorem (see e.g. p.36 of Zagst (2002)).

Theorem 2.9. Let µ and σ in Equation (2.6) be continuous functions such
that for all t ≥ 0, x, y ∈ R, and for some constant K > 0 the following
conditions hold:

1. Lipschitz condition:

||µ(x, t)− µ(y, t)||+ ||σ(x, t)− σ(y, t)|| ≤ K||x− y||

2. Growth condition:

||µ(x, t)||2 + ||σ(x, t)||2 ≤ K2
(
1 + ||x||2

)
Then there exists a unique, continuous strong solution X(t) of the stochastic
differential equation from Equation (2.6) and a constant C, depending only
on K and T > 0, such that

EP
[
||X(t)||2

]
≤ C

(
1 + ||x||2

)
eCt

for all t ∈ [0, T ]. Moreover,

EP

[
sup

0≤t≤T
||X(t)||2

]
<∞.
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Proof. A detailed proof can e.g. be found on p.127-133 in Korn and Korn
(1999).

The following theorems and corollaries deal with the Markov property of Itô
processes.

Theorem 2.10. Under the assumptions of Theorem 2.9, let µ(x, t) and
σ(x, t) be constant in t. Further, let f : Rn → R be a bounded measur-
able function. Then, for the solution X of the SDE from Equation (2.6) and
t, h ≥ 0 it holds that

E0,x
P [f(X(t+ h))|Ft] = Et,X0,x(t)

P [f(X(t+ h))] = E0,X0,x(t)
P [f(X(h))] , (2.7)

where E0,x
P [X(t)] := EP [X0,x(t)].

Proof. See e.g. Section 7.1 of Øksendal (1998).

While the second equation in (2.7) is only valid if µ(x, t) and σ(x, t) are
constant in t, the first equation can be shown in a more general setting.

Corollary 2.11. Under the assumptions of Theorem 2.9, let f : Rn → R be
a bounded measurable function. For t, h ≥ 0 it holds that

E0,x
P [f(X(t+ h))|Ft] = Et,X0,x(t)

P [f(X(t+ h))] ,

where X denotes the solution of the SDE from Equation (2.6).

Proof. For the solution of the (n+ 1)-dimensional differential equation

dX̄(s) =

(
µ
(
(X̄1(s), ..., X̄n(s))T , X̄n+1(s)

)
1

)
ds

+

(
σ
(
(X̄1(s), ..., X̄n(s))T , X̄n+1(s)

)
0

)
dW (s)

with initial condition X̄(0) = (x, 0)T it holds that (X̄1(s), ..., X̄n(s))T = X(s)
for all s ≥ 0. Defining f̄ : Rn+1 → R, f̄(x̄) := f

(
(x̄1, ..., x̄n)T

)
, Theorem 2.10

yields

E0,x
P [f(X(t+ h))|Ft] = E

0,(x,0)
P

[
f̄(X̄(t+ h))|Ft

]
= Et,(X0,x(t),t)

P
[
f̄(X̄(t+ h))

]
= Et,X0,x(t)

P [f(X(t+ h))] .
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For the following corollary, f is no longer required to be bounded.

Corollary 2.12. Let f : Rn → R be a continuous function. Under the
assumptions of Theorem 2.9, the following holds for the solution of the SDE
from Equation (2.6) and t, h ≥ 0:
If for all x ∈ Rn both Et,x

P [|f(X(t+ h))|] < ∞ and E0,x
P [|f(X(t+ h))|] < ∞

hold, then

E0,x
P [f(X(t+ h))|Ft] = Et,X0,x(t)

P [f(X(t+ h))] .

Proof. Define fn : Rn → R, fn(x) := f(x)11{|f(x)|≤n}. The functions fn are
bounded. Hence, from Lebesgue’s theorem for conditional expectations and
Corollary 2.11 it follows that

E0,x
P [f(X(t+ h))|Ft] = lim

n→∞
E0,x

P [fn(X(t+ h))|Ft]

= lim
n→∞

Et,X0,x(t)
P [fn(X(t+ h))]

= Et,X0,x(t)
P [f(X(t+ h))] .

Corollary 2.13. Let T ≥ t ≥ 0, g : Rn → R affine linear, and f : Rn → R
continuous. Under the assumptions of Theorem 2.9, the following holds for
the solution of the SDE from Equation (2.6):

If E0,x
P

[
|e−

∫ T
t g(X(l))dlf(X(T ))|

]
< ∞ and Et,x

P

[
|e−

∫ T
t g(X(l))dlf(X(T ))|

]
< ∞

for all x ∈ Rn, then

E0,x
P

[
e−

∫ T
t g(X(l))dlf(X(T ))|Ft

]
= E

t,X0,x(t)
P

[
e−

∫ T
t g(X(l))dlf(X(T ))

]
.

Proof. Let T ≥ t ≥ 0 be arbitrary but fixed. For the solution of the (n+ 1)-
dimensional SDE

dX̄(s) =

(
µ
(
(X̄1(s), ..., X̄n(s))T , s

)
−g(X̄1(s), ..., X̄n(s))11{s≥t}

)
ds

+

(
σ
(
(X̄1(s), ..., X̄n(s))T , s

)
0

)
dW (s)

with initial condition X̄(0) = (x, 0)′ it obviously holds that (X̄1(s), ..., X̄n(s))T =
X(s) and

X̄n+1(s) = −
∫ s

t

g(X(l))dl11{s≥t} for all s ≥ 0.
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This (n + 1)-dimensional SDE fulfils the conditions of Theorem 2.9. Hence,
one obtains from Corollary 2.12 that

E0,x
P

[
e−

∫ T
t g(X(l))dlf(X(T ))|Ft

]
= E0,(x,0)

P

[
eX̄n+1(T )f

(
(X̄1(T ), ..., X̄n(T ))T

)
|Ft
]

= Et,(X0,x(t),0)
P

[
eX̄n+1(T )f

(
(X̄1(T ), ..., X̄n(T ))T

)]
= Et,X0,x(t)

P

[
e−

∫ T
t g(X(l))dlf(X(T ))

]
.

Next, the Cauchy problem, a partial differential equation with a certain
boundary condition, is defined.

Definition 2.14. Under the assumptions of Theorem 2.9, let D : Rn → R,
k : Rn × [0, T ] → [0,∞) be continuous functions and T > 0 arbitrary but
fixed. The problem to find a function v : Rn×[0, T ]→ R which is continuously
differentiable in t, twice continuously differentiable in x, and solves the partial
differential equation

Dv(x, t) := vt(x, t) +
n∑
i=1

µi(x, t)vxi(x, t)

+
1

2

n∑
i=1

n∑
j=1

aij(x, t)vxixj(x, t) = k(x, t)v(x, t)

v(x, T ) = D(x)

for all (x, t) ∈ Rn × [0, T ], where aij(x, t) :=
∑m

k=1 σik(x, t)σjk(x, t) and X is
the unique strong solution of the stochastic differential equation from Theo-
rem 2.9 with initial condition X(t) = x, is called the Cauchy problem. The
operator D is called the characteristic operator for X.

Under certain regularity conditions it can be shown that there exists a
unique solution of the Cauchy problem (see e.g. p.366 of Karatzas and Shreve
(1991)).

Theorem 2.15. Let v be a solution of the Cauchy problem from Definition
2.14. Furthermore, assume that for all x ∈ Rn

|D(x)| ≤ L
(
1 + ‖x‖2λ

)
or D(x) ≥ 0
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and

max
0≤t≤T

|v(t, x)| ≤M
(
1 + ‖x‖2ν

)
with appropriate constants L,M > 0 and λ, ν ≥ 1. Then, v can be repre-
sented by

v(x, t) = EP

[
e−

∫ T
t k(X(s),s)dsD (X(T )) |Ft

]
= Et,x

P

[
e−

∫ T
t k(X(s),s)dsD (X(T ))

]
.

(2.8)

In particular, such a solution is unique.

Proof. See e.g. p.366f of Karatzas and Shreve (1991).

The representation (2.8) is called the Feynman-Kac representation of the
Cauchy problem. In a more general setting, which is in particular not re-
stricted to the case of k(x, t) ≥ 0, the uniqueness of a solution of the Cauchy
problem can be shown.

Theorem 2.16. Under the assumptions of Theorem 2.9, let the operator D
be given by

Dv(x, t) := vt(x, t) +
n∑
i=1

µi(x, t)vxi(x, t) +
1

2

n∑
i=1

n∑
j=1

aij(x, t)vxi,xj(x, t)

with aij(x, t) :=
∑m

k=1 σik(x, t)σjk(x, t) and v : Rn × [0, T ] → R a function
which is continuously differentiable in t and twice continuously differentiable
in x. For k : Rn × [0, T ]→ R and D : Rn → R consider the Cauchy problem

Dv(x, t) = k(x, t)v(x, t)

v(x, T ) = D(x)

for all (x, t) ∈ Rn × [0, T ]. If there is a constant K > 0 such that

|aij(x, t)| ≤ K, |µi(x, t)| ≤ K (1 + ‖x‖2) , −k(x, t) ≤ K
(
1 + ‖x‖2

2

)
and the matrices (aij(x, t))1≤i,j≤n are positive semidefinite, then there exists
at most one solution v of the Cauchy problem which fulfils

|v(x, t)| ≤ K1e
K2‖x‖22

with positive constants K1 and K2.
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Proof. See e.g. Corollary 4.2 in Friedman (1975).

In the following, another version of the Feynman-Kac theorem will be derived,
which allows the function k to take values in R. Unfortunately, this is not
possible in general. Nevertheless, in the special setting of the model from
Chapter 6, an analogous theorem can be proven. As this theorem is very
important for the valuation of credit derivatives in Chapter 6, a detailed
derivation is given in what follows. The following discussion will be restricted
to a special class of stochastic differential equations.

Theorem 2.17. Let J : [0,∞) → Rn be a continuous function, H ∈ Rn×n,
and V ∈ Rn×m. Then, the unique strong solution of the linear stochastic
differential equation

dX(t) = (HX(t) + J(t))dt+ V dW (t) (2.9)

with initial condition X(0) = x is given by

X(t) = eHtx+

∫ t

0

eH(t−l)J(l)dl +

∫ t

0

eH(t−l)V dW (l). (2.10)

In particular, X(t) is normally distributed for all t > 0.

Proof. See e.g. p.354 of Karatzas and Shreve (1991).

In the next step, some properties of linear stochastic differential equations
will be derived, which will be used to prove the second version of the Feynman-
Kac theorem.

Theorem 2.18. Let 0 ≤ s ≤ T , X(t) a solution of the linear SDE from
Equation (2.9) with initial condition X(s) = x and ‖ · ‖ an arbitrary norm
on Rn. Then, for q ≥ 1 it holds that

EP

[(
sup
s≤t≤T

e‖X(t)‖
)q]

<∞.

Proof. For the proof, q > 1 will be assumed w.l.o.g. (the square integrability
of sups≤t≤T e

‖X(t)‖ also yields the integrability). Let K1, K2, and K3 denote
adequate positive constants. Then,3

3For x ∈ Rn, ‖x‖1 denotes the l1-norm of x given by ‖x‖1 =
∑n
j=1 |xj |.
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EP

[(
sup
s≤t≤T

e‖X(t)‖
)q]

≤ EP

[
sup
s≤t≤T

((
sup
s≤t≤T

e‖e
H(t−s)x+

∫ t
s e

H(t−l)J(l)dl‖
)

· e(sups≤t≤T ‖eHt‖)‖
∫ t
s e

H(−l)V dW (l)‖
)q]

≤ EP

[
sup
s≤t≤T

(
K1e

K2‖
∫ t
s e

H(−l)V dW (l)‖
)q]

≤ EP

[
sup
s≤t≤T

(
K1e

‖
∫ t
s K3eH(−l)V dW (l)‖1

)q]
≤
(

q

q − 1

)q
EP

[(
K1e

‖
∫ T
s K3eH(−l)V dW (l)‖1

)q]
In the second to last inequality the equivalence of norms on Rn was used.
For the last inequality Doob’s inequality (see e.g. Theorem 1.3.8 in Karatzas

and Shreve (1991)) was used. This is possible because K1e
‖
∫ t
s K3eH(−l)V dW (l)‖1

is a convex function of the stochastic integral and hence a (non-negative,
continuous) submartingal (see e.g. Proposition 1.3.6 in Karatzas and Shreve
(1991)). It only remains to be proven that for all t ∈ [s, T ] it holds that

EP

[(
K1e

‖
∫ t
s K3eH(−l)V dW (l)‖1

)q]
<∞.

To show this, it is sufficient to prove that for a normally distributed random
variable Y ∼ Nn(0,Σ) it holds that EP

[
eq‖Y ‖1

]
<∞. As Y can be represented

by Y = AZ with Z ∼ Nn(0, In), A ∈ Rn×n, and ATA = Σ it follows that4

EP
[
eq‖Y ‖1

]
≤ EP

[
eq‖A‖1‖Z‖1

]
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

eK4‖z‖1φn(z)dz1 · · · dzn

with K4 := q‖A‖1 and φn denoting the density of Z. As the integrand is
a product of symmetric functions, the last term can be approximated from

4For A ∈ Rm×n, the matrix norm ‖A‖ induced by an arbitrary vector norm ‖x‖,
x ∈ Rn, is given by ‖A‖ := maxx 6=0

‖Ax‖
‖x‖ . In the special case of the l1-norm, it holds that

‖A‖1 = maxj=1,...,n

∑m
i=1 |aij |.
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above by

2n
∫ ∞

0

· · ·
∫ ∞

0

eK4
∑n
i=1 ziφn(z)dz1 · · · dzn

≤ 2n
∫ ∞
−∞
· · ·
∫ ∞
−∞

eK4
∑n
i=1 ziφn(z)dz1 · · · dzn.

The last integral is the moment-generating function of the normally dis-
tributed random variable Z evaluated at K4(1, 1, ..., 1)T and therefore ex-
ists.

Corollary 2.19. Let X(t) be the solution of the linear SDE from Equation
(2.9), f, g : Rn → R with f(x) := ef1(x)f2(x) = eA

T x+b
(
F Tx+ d

)
, g(x) :=

GTx+ c, A,F,G ∈ Rn, b, c, d ∈ R, q ≥ 1, and 0 ≤ s ≤ t ≤ T . Then, it holds
for all x ∈ Rn that

Es,x
P

[(
e−

∫ T
t g(X(l))dlf(X(T ))

)q]
<∞.

Proof. Let ξ denote the solution of the SDE dξ(l) = (dX(l), g(X(l))dl) with
initial condition ξ(s) = (x, 0). Then,5

Es,x
P

[(
e−

∫ T
t g(X(l))dlf(X(T ))

)q]
≤ Es,x

P

[(
e|
∫ T
t g(X(l))dl|e|f1(X(T ))| sup

s≤l≤T
e|f2(X(l))|

)q]
≤ Es,x

P

[(
e|
∫ T
s g(X(l))dl|+|∫ ts g(X(l))dl|+|f1(X(T ))| sup

s≤l≤T
e|f2(X(l))|

)q]
= Es,(x,0)

P

[(
e|ξn+1(T )|+|ξn+1(t)|+|f1((ξ1(T ),...,ξn(T ))T )| sup

s≤l≤T
e|f2((ξ1(l),...,ξn(l))T )|

)q]
≤ Es,(x,0)

P

[(
e‖ξ(T )‖∞+‖ξ(t)‖∞+‖A‖1‖ξ(T )‖∞+|b| sup

s≤l≤T
e‖F‖1‖ξ(l)‖∞+|d|

)q]
≤ eq(|b|+|d|)Es,(x,0)

P

[(
sup
s≤l≤T

e‖ξ(l)‖∞
)(2+‖A‖1+‖F‖1)q

]
<∞.

The finiteness of the last expectation follows from Theorem 2.18.

Using the aforementioned theorems and corollaries, a version of the Feynman-
Kac theorem will be proven, which is suitable for the modelling framework
in Chapter 6.

5For x ∈ Rn, ‖x‖∞ denotes the l∞-norm of x given by ‖x‖∞ = maxj=1,...,n |xj |.
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Theorem 2.20. Let T ≥ 0, X(t) the solution of the linear SDE from Equa-
tion (2.9), and V V T positive definite. Further, let f, g : Rn → R with
f(x) := ef1(x)f2(x) = eA

T x+b
(
F Tx+ d

)
, g(x) := GTx + c, A,F,G ∈ Rn,

b, c, d ∈ R, B : Rn × [0, T ]→ R with

B(x̃, t) := Et,x̃
P

[
e−

∫ T
t g(X(l))dlf(X(T ))

]
,

and the operator D be defined by

DB(x̃, t) := Bt(x̃, t) +
n∑
i=1

µi(x̃, t)Bx̃i(x̃, t) +
1

2

n∑
i=1

n∑
j=1

aij(x̃, t)Bx̃i,x̃j

with µ(x̃, t) := Hx̃+ J(t) and aij(x̃, t) :=
∑m

k=1 VikVjk =
(
V V T

)
ij

. Then,

B(X0,x(t), t) = E0,x
P

[
e−

∫ T
t g(X(l))dlf(X(T ))|Ft

]
(2.11)

and B(x̃, t) is the only solution of the Cauchy problem

DB(x̃, t) = g(x̃)B(x̃, t) (2.12)

B(x̃, T ) = f(x̃)

for all (x̃, t) ∈ Rn × [0, T ], fulfilling the growth condition

|B(x̃, t)| ≤ K1e
K2‖x̃‖22

with positive constants K1 and K2.

Proof. Equation (2.11) follows directly from Corollaries 2.13 and 2.19. In
particular, (M(t))0≤t≤T defined by

M(t) := e−
∫ t
0 g(X(l))dlB(X0,x(t), t) = E0,x

P

[
e−

∫ T
0 g(X(l))dlf(X(T ))|Ft

]
is a martingale.
If B(x̃, t) is twice continuously differentiable in x̃ and continuously differen-
tiable in t, Itô’s formula can be applied to the (n+1)-dimensional Itô process
ξ defined by dξ(t) = (dX(t), g(X(t))dt) with initial condition ξ(0) = (x, 0).
As M(t) = e−ξn+1(t)B((ξ1, ..., ξn)(t), t), it follows that
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dM(t) = e−
∫ t
0 g(X

0,x(l))dl

(
Bt(X

0,x(t), t) +
n∑
i=1

Bxi(X
0,x(t), t)(HX0,x(t) + J(t))i

−g(X0,x(t))B(X0,x(t), t) +
1

2

n∑
i=1

n∑
j=1

Bxixj(X
0,x(t), t)(V V T )ij

)
dt

+
n∑
i=1

(
Bxi(X

0,x(t), t)
m∑
j=1

VijdWj

)
.

Since M is a martingale, its drift is zero P-a.s. (see e.g. Theorem 2.42 in
Zagst (2002)). Using the fact that V V T is positive definite and that the drift
of M is continuous, one obtains Equation (2.12).
It remains to be shown that B(x̃, t) is twice continuously differentiable in x̃
and continuously differentiable in t. Let ξ denote the solution of the SDE
dξ(s) = (dX(s), g(X(s))ds) with initial condition ξ(t) = ξ0 := (x̃, 0). Apply-
ing Theorem 2.17 on ξ yields for all s ≥ t

ξt,ξ0(s) = eHξs
(
eHξ(−t)ξ0 +

∫ s

t

eHξ(−l)Jξ(l)dl +

∫ s

t

eHξ(−l)VξdW (l)

)
with

Hξ =

(
H 0
GT 0

)
∈ R(n+1)×(n+1),

Vξ = (V, 0)T ∈ R(n+1)×m, and Jξ(l) = (J(l), c)T ∈ R(n+1). Let h(t, T ) denote
the last line of eHξ(T−t). Then,

ξt,ξ0n+1(T ) = h(t, T )ξ0 +

(
eHξ(T )

(∫ T

t

eHξ(−l)Jξ(l)dl +

∫ T

t

eHξ(−l)VξdW (l)

))
n+1

= h(t, T )ξ0 + ξt,0n+1(T ).
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The differentiability in x̃ can be directly seen from

B(x̃, t) =EP

[
e−ξ

t,ξ0
n+1(T )f(ξt,ξ01 (T ), ..., ξt,ξ0n (T ))

]
=EP

[
e−ξ

t,ξ0
n+1(T )ef1(ξ

t,ξ0
1 (T ),...,ξ

t,ξ0
n (T ))f2(ξt,ξ01 (T ), ..., ξt,ξ0n (T ))

]
=e−h(t,T )(x̃T ,0)T e(AT ,0)e

Hξ(T−t)(x̃T ,0)T

·
{

EP

[
e−ξ

t,0
n+1(T )ef1(ξt,01 (T ),...,ξt,0n (T ))

]
(F T , 0)eHξ(T−t)(x̃T , 0)T

+EP

[
e−ξ

t,0
n+1(T )f(ξt,01 (T ), ..., ξt,0n (T ))

]}
.

Furthermore, Theorem 2.17 yields that ξt,ξ0(T ) is normally distributed with
mean vector and covariance matrix given by (see e.g. p.355 of Karatzas and
Shreve (1991))

m(t, T ) := EP
[
ξt,ξ0(T )

]
= eH(T−t)ξ0 +

∫ T

t

eHξ(T−l)Jξ(l)dl

and

V (t, T ) := EP

[(
ξt,ξ0(T )−m(t, T )

) (
ξt,ξ0(T )−m(t, T )

)T]
= EP

[∫ T

t

eHξ(T−l)VξdW (l)

∫ T

t

eHξ(T−l)VξdW (l)T
]

=

∫ T

t

eHξ(T−l)VξV
T
ξ e

HT
ξ (T−l)dl.

Since eHt is continuously differentiable in t and J is continuous, it follows
that m(t, T ) and V (t, T ) are continuously differentiable in t. The vector

Y := (Y1, Y2) =

(
AT −1
F T 0

)
ξt,ξ0(T ) +

(
b
d

)
is two-dimensional normally distributed with mean vector(

AT −1
F T 0

)
m(t, T ) +

(
b
d

)
and covariance matrix(

AT −1
F T 0

)
V (t, T )

(
AT −1
F T 0

)T
.
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This yields6

B(x̃, t) =e(AT ,−1)m(t,T )+b+ 1
2

(AT ,−1)V (t,T )(AT ,−1)T

·
(
(F T , 0)m(t, T ) + d+ (F T , 0)V (t, T )(AT ,−1)T

)
This shows the differentiability in t. Furthermore, it holds that

|B(x̃, t)| ≤ e‖(A
T ,−1)eH(T−t)‖2‖ξ0‖2+|a(t,T )| (‖(F T , 0)eH(T−t)‖2‖ξ0‖2 + |b(t, T )|

)
with a(t, T ) and b(t, T ) denoting continuous functions in t. Hence, there exist
constants

K2 := sup
0≤t≤T

(
‖(AT ,−1)eH(T−t)‖2 + ‖(F T , 0)eH(T−t)‖2

)
and

K1 := esup0≤t≤T (|a(t,T )|+|b(t,T )|)

such that with ‖ξ0‖2 = ‖x̃‖2 ≤ 1 + ‖x̃‖2
2 it holds that

|B(x̃, t)| ≤ K1e
K2‖x̃‖22 .

The uniqueness of B follow from Theorem 2.16.

This result will be used in the valuation of credit derivatives in Chapter 6,
where conditional expectations of the form (2.11) appear as the main building
blocks of the pricing formulas.

2.4 Kalman filter

This section is concerned with the discrete-time Kalman filter and maximum
likelihood estimation for state-space models based on the work of Kalman
(1960). A more extensive and detailed discussion of Kalman filtering tech-
niques can e.g. be found in Harvey (1989), Chapter 12 of Brockwell and Davis
(1991) or Koopman et al. (1999). The latter presents efficient algorithms for
prediction, filtering, and smoothing in state-space models. Applications of

6For a two-dimensional random variable Y = (Y1, Y2)T ∼ N2 (µ,Σ) with µ = (µ1, µ2)
and Σ = (σij)i,j=1,2 it holds that

EP
[
Y2e

Y1
]

= eµ1+
1
2σ11 (µ2 + σ12) .
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Kalman filtering to problems in finance can e.g. be found in Schmid (2004)
or Kolbe and Zagst (2008).
In general, Kalman filtering can be used whenever the state of a stochastic
process given by a linear stochastic differential equation can only be observed
from a series of noisy measurements. The Kalman filter provides a numeri-
cally efficient way to estimate the state of the process based on the current
information. Using these estimates, unknown model parameters can be esti-
mated via maximum likelihood.
The standard Kalman filter is based on a linear Gaussian state-space model
consisting of a transition equation and a measurement equation. The transi-
tion equation describes the dynamics of an unobservable state vector, while
the measurement equation relates an observable variable to the state vector.

Definition 2.21. A discrete-time linear Gaussian state-space model is de-
fined by two stochastic processes (α(t))t=1,...,T and (Y (t))t=1,...,T , where α(t)
fulfils the transition equation

α(t) = c(t) +Wα(t− 1) +Hε(t), t = 1, ..., T (2.13)

and Y (t) the measurement equation

Y (t) = d(t) + Zα(t) +Gε(t), t = 1, ..., T. (2.14)

Here, α(t) denotes the unobservable m × 1 state vector at time t, Y (t) the
N × 1 observation vector at time t, c(t) and d(t) are unknown fixed effects
at time t with dimension m × 1 and N × 1 respectively, ε(t) is the r × 1
disturbance vector, where usually r = m + N , and W,Z,G, and H are the
deterministic system matrices with dimensions m×m, N×m, N×r, and m×
r. Furthermore, the disturbance vectors (ε(t))t=1,...,T are i.i.d. multivariate-
normal random vectors with expectation 0 and the r-dimensional identity
matrix Ir as covariance, i.e.

εt ∼ Nr(0, Ir).

The initial state vector is drawn from a normal distribution with expectation
a0 and covariance P0, i.e.

α(0) ∼ Nm(a0, P0).

Note that if the initial conditions are not explicitly defined, one can assume
that the initial state vector is fully diffuse, i.e. a0 = 0 and P0 = κIm and
hence α(0) ∼ Nm(0, κIm), where κ is some large scalar, e.g. κ = 106 (see
p.111 of Koopman et al. (1999)). The following algorithm shows how to
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obtain an estimate a(t) for the state α(t) based on the current information
up to time t. This algorithm is also the basis of the maximum likelihood
estimation of the parameters in the state-space model.

Algorithm 2.22. Kalman filter

1. Initialization:
Set t = 0 and choose initial parameters a0, P0.

2. Prediction:
Set t = t+ 1.
Evaluate the prediction equations

a(t|t− 1) = Wa(t− 1) + c(t)

P (t|t− 1) = WP (t− 1)W T +HHT .

3. Update:
Evaluate the update equations

a(t) = a(t|t− 1) + P (t|t− 1)ZTF (t)(y(t)− Za(t|t− 1)− d(t))

P (t) = P (t|t− 1)− P (t|t− 1)ZTF (t)−1ZP (t|t− 1)

with F (t) := ZP (t|t− 1)ZT +GGT .

4. Termination:
If t = T stop, else go back to 2.

The following theorem states the distributional properties of the quantities
in the Kalman filter.

Theorem 2.23. For t = 1, ..., T it holds that(
α(t)
Y (t)

) ∣∣∣∣y1, ..., yt−1 ∼

Nm+N

((
a(t|t− 1)

Za(t|t− 1) + d(t)

)
,

(
P (t|t− 1) P (t|t− 1)ZT

ZP (t|t− 1) F (t)

))
and

α(t)|y1, ..., yt ∼ Nm(a(t), P (t)).

In particular, a(t) is the minimum mean square estimate of the unobservable
state α(t), given the observed data y1, ..., yt.

Proof. A proof can e.g. be found on p.109f of Harvey (1989).
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Knowing the distributional properties from Theorem 2.23 the likelihood func-
tion of the state-space model can be derived as follows. Let y1, y2, ..., yT
denote the observations and Θ the model parameter vector. Then, the log-
likelihood is, up to some constants, given by (for more details see e.g. Chapter
3.4 in Harvey (1989))

log l(y1, ..., yT ; Θ) =
T∑
t=1

log p(yt|y1, ..., yt−1; Θ)

∝ −
T∑
t=1

(log |F (t)|+ v(t)TF (t)−1v(t))

with v(t) denoting the innovations yt− (d(t) +Za(t|t− 1)) from the Kalman
filter. Hence, maximum likelihood estimates of the parameter vector Θ can
be obtained by maximising the expression

f(Θ|y1, ..., yT ) = −
T∑
t=1

(log |F (t)|+ v(t)TF (t)−1v(t)).

Unfortunately, in many situations the functional relations in Equations (2.13)
and (2.14) are non-linear, i.e.

α(t) = g(c(t), α(t− 1)) +Hε(t), t = 1, ..., T,

Y (t) = h(d(t), α(t)) +Gε(t), t = 1, ..., T

with g and h denoting some (sufficiently smooth) non-linear functions. In
this case an extended Kalman filter which linearises the non-linear functions
g and h in a Taylor-series expansion around the current estimates a(t) and
a(t|t− 1) can be applied. Although the extended Kalman filter is in contrast
to the standard Kalman filter not an optimal estimator in general, it often
shows a good performance in practical applications. Further discussion on the
extended Kalman filter can e.g. be found in Section 3.7.2 of Harvey (1989).

2.5 Copulas

This section describes the basic principles of copula theory in general and
especially for exchangeable and nested Archimedean copulas. A detailed
introduction on copulas is e.g. given by Joe (1997) or Nelsen (1998).
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2.5.1 General Properties

The distribution of any I-dimensional random vector X = (X1, . . . , XI) can
be described by its distribution function

F (x1, . . . , xI) := P(X1 ≤ x1, . . . , XI ≤ xI).

If the one-dimensional marginals of X are known, i.e.

Fi(xi) := P(Xi ≤ xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞), xi ∈ R, i = 1, . . . , I,

they have to be coupled to determine the I-dimensional distribution function
F . This is achieved by means of the copula of (X1, . . . , XI) which is defined
as follows.

Definition 2.24. An I-dimensional copula C is a distribution function C :
[0, 1]I 7→ [0, 1] on the I-dimensional unit cube with uniformly distributed
marginals.

In other words, knowing the marginals and the copula is equivalent to know-
ing the multi-dimensional distribution. Any copula C fulfils the following
three properties:

1. C(u1, . . . , uI) is increasing in each component ui, i = 1, . . . , I.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i = 1, . . . , I and ui ∈ [0, 1].

3. For all a1, . . . , aI , b1, . . . , bI ∈ [0, 1] with ai ≤ bi it holds that

2∑
i1=1

. . .

2∑
iI=1

(−1)i1+...+iIC(u1i1 , . . . , uIiI ) ≥ 0

with ui1 = ai and ui2 = bi for all i = 1, . . . , I.

Furthermore, for each k ∈ {2, . . . , I − 1} the k-dimensional marginal of the
I-dimensional copula is a copula itself.

Example 2.25. Two simple examples of copulas are the independence copula
Π and the copula of complete comonotonicity M defined by

Π(u1, . . . , uI) :=
I∏
i=1

ui,

M(u1, . . . , uI) := min{u1, . . . , uI}.
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Note that random variables with continuous distribution functions are inde-
pendent if and only if their dependence structure is induced by an indepen-
dence copula Π. In contrast, for a random vector (U1, . . . , UI) with joint
distribution function M the components are perfectly positively dependent,
i.e. for each i = 2, . . . , I the random variable Ui is almost surely a strictly
increasing function of U1.

The most important theorem in copula theory is the popular Theorem of
Sklar (see Sklar (1959)) which shows that copulas can be used in conjunction
with univariate marginals to construct multivariate distribution functions.

Theorem 2.26. Let F be an I-dimensional distribution function with marginals
F1, . . . , FI . Then there exists an I-dimensional copula C : [0, 1]I 7→ [0, 1] such
that for all (x1, . . . , xI) ∈ RI it holds that

F (x1, . . . , xI) = C
(
F1(x1), . . . , FI(xI)

)
. (2.15)

If the marginals F1, . . . , FI are continuous, then C is unique. Otherwise, C
is uniquely determined on Ran(F1)× . . .×Ran(FI), where Ran(Fi) denotes
the range of Fi, i = 1, . . . , I.
Conversely, if C is an I-dimensional copula and F1, . . . , FI are univariate
distribution functions, then the function F defined via Equation (2.15) is an
I-dimensional distribution function.

Proof. A complete proof can be found e.g. in Nelsen (1998).

Sklar’s Theorem allows to construct multivariate distribution functions in
two steps. In a first step one may choose the univariate marginals and in
a second step a copula. This construction principle will be used in Chap-
ter 7 by first fitting the parameters of the marginals to portfolio CDS and
subsequently the copula parameters to CDO tranches. This separation of
marginals and dependence structure is the main reason for the popularity of
copulas in statistical and financial applications.
A very important class of copulas are elliptical copulas (see e.g. Embrechts
et al. (2003)), i.e. the copulas of elliptical distributions, and especially Gaus-
sian copulas.

Example 2.27. Let (X1, . . . , XI) be a normally distributed random vector
with joint distribution function

ΦI(x1, . . . , xI ;µ,Σ)

:=

∫ x1

−∞
. . .

∫ xI

−∞

1

(2 π)
I
2 det

(
Σ
) exp

(
− 1

2
(s− µ)T Σ−1 (s− µ)

)
dsI . . . ds1
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with Σ denoting a positive-definite I × I-dimensional matrix, µ ∈ RI , and
s := (s1, . . . , sI)

T . Let σ2
1, . . . , σ

2
I > 0 denote the diagonal entries of Σ. Then,

Xi ∼ N (µi, σ
2
i ), i = 1, . . . , I, and the copula C of (X1, . . . , XI) is called a

Gaussian copula given by

C(u1, . . . , uI) = ΦI

(
Φ−1

1 (u1;µ1, σ1), . . . ,Φ−1
1 (uI ;µI , σI);µ,Σ

)
. (2.16)

Note that the copula of an I-dimensional multivariate distribution F with
strictly increasing continuous marginals F1, . . . , FI is always given in a sim-
ilar way like in Equation (2.16), but in many cases this expression can be
computed explicitly. In the Gaussian case however, this is not possible due to
the fact that no closed-form antiderivatives of normal densities are known.

While the dependence structure of a copula in two or three dimensions can
be visualized by a scatter plot (see e.g. Figure 2.1), this is no longer pos-
sible for higher dimensions. Therefore, it is sometimes more convenient to
express the dependence structure of a copula in probabilistic terms. Popular
examples of such dependence measures are e.g. Spearman’s Rho, Kendall’s
Tau, and Blomqvist’s Beta (see e.g. Schmid and Schmidt (2006) or Schmid
and Schmidt (2007)). In the following, the upper-tail dependence is defined,
which will be used later in Chapter 7.

Definition 2.28. For a random vector X = (X1, X2) with marginals F1 and
F2 the coefficient of upper-tail dependence is defined as

λU := lim
q→1

P(X2 > F←2 (q)|X1 > F←1 (q)),

provided the limit exists. Here, F←(x) = inf{z : F (z) ≥ x} denotes the
quantile function of F .

Hence, the coefficient of upper-tail dependence gives the probability that X2

is large given X1 is large. For a random vector U = (U1, U2) whose joint
distribution function is the copula C it holds that

λU = lim
u→1

P(U2 > u |U1 > u)

= lim
u→1

P(U1 > u,U2 > u)

P(U1 > u)

= lim
u→1

P(U1 ≤ u, U2 ≤ u) + P(U1 > u) + P(U2 > u)− 1

P(U1 > u)

= lim
u→1

C(u, u)− 2u+ 1

1− u
. (2.17)
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The analogous concept of lower-tail dependence is defined by the probability
that U2 is small given U1 is small. Positive upper- or lower-tail dependence
is desirable whenever extreme scenarios shall be modelled. The bivariate
normal distribution is a popular example for a distribution whose tail de-
pendences are both zero. Therefore, models which are based on normality
assumptions are often criticised as they don’t support extreme events. A
family of copulas with lower and/or upper tail-dependence is introduced in
the next subsection.

2.5.2 Archimedean Copulas

In this section, the basic concepts of exchangeable and nested Archimedean
copulas are repeated, which will be used in Chapter 7 to create dependence
between defaults of different firms as well as between default rates and recov-
ery rates. One of the main properties of Archimedean copulas is that they
are fully specified by some generator function. Furthermore, Archimedean
copulas are flexible to capture various dependence structures, e.g. the afore-
mentioned tail dependence. Applications of Archimedean copulas in financial
modelling can e.g. be found in Schönbucher (2003) or Cherubini et al. (2004).
In the last years, nested Archimedean copulas, which extend the concept of
exchangeable Archimedean copulas by allowing for some asymmetries, have
become quite popular in financial market applications (see e.g. Savu and
Trede (2006) or Hofert and Scherer (2009)). Exchangeable Archimedean
copulas are defined as follows.

Definition 2.29. An I-dimensional exchangeable (i.e. distributionally in-
variant under permutations) Archimedean copula is given by

C(u) = C(u1, . . . , uI ;ϕ0) = ϕ
[−1]
0 [ϕ0(u1) + . . .+ ϕ0(uI)] , u ∈ [0, 1]I ,

(2.18)
where the generator ϕ0 : [0, 1] 7→ [0,∞] is a continuous and strictly decreasing
function, which satisfies ϕ0(1) = 0 and

ϕ
[−1]
0 (t) =

{
ϕ−1

0 (t), 0 ≤ t ≤ ϕ0(0)
0, ϕ0(0) < t <∞

denoting the pseudo-inverse of ϕ0.

The function ϕ0 is called copula generator. However, for a given generator
ϕ0 the function C from Equation (2.18) is not always a copula. A necessary

and sufficient condition on the inverse of the generator ϕ
[−1]
0 such that C is

a copula uses the following definition.
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Definition 2.30. A function ϕ
[−1]
0 : [0,∞) → R is called completely mono-

tonic, if it is continuous on [0,∞), has derivatives of all orders on (0,∞),
and

(−1)k
dk

dtk
ϕ

[−1]
0 (t) ≥ 0, k ∈ N, t > 0.

Using this definition, Kimberling (1974) proved one of the main theorems for
Archimedean copulas.

Theorem 2.31. Let ϕ0 be an Archimedean generator. Then Equation (2.18)

defines a copula for all I ≥ 2 if and only if ϕ
[−1]
0 is completely monotonic.

Proof. See Kimberling (1974).

Hence, C from Equation (2.18) defines a proper copula if and only if the

inverse of the generator ϕ
[−1]
0 is a completely monotonic function. In this

case, the pseudo-inverse is equal to the inverse function, i.e. ϕ
[−1]
0 = ϕ−1

0 (see
e.g. p.122 of Nelsen (1998)).
Completely monotonic functions are known from probability theory as Laplace
transforms of non-negative random variables. This relationship is given in
Bernstein’s theorem as follows.

Theorem 2.32. A function ϕ−1
0 : [0,∞)→ R is completely monotonic with

ϕ−1
0 (0) = 1 if and only if there exists a non-negative random variable V ≥ 0

such that ϕ−1
0 (t) = E[exp(−tV )], i.e. ϕ−1

0 is the Laplace transform of V .

Proof. See p.439 of Feller (1971).

Hence, the class of completely monotonic functions ϕ−1
0 on [0,∞) with

ϕ−1
0 (0) = 1 coincides with the class of Laplace-Stieltjes transforms of distribu-

tion functions G on [0,∞), i.e. ϕ−1
0 (t) =

∫∞
0
e−tvdG(v) for t ≥ 0. This can be

used to construct random vectors according to a multivariate Archimedean
copula as given in the following theorem (see e.g. p.223 of McNeil et al.
(2005)).

Theorem 2.33. Let G be a distribution function on [0,∞) satisfying G(0) =
0 with Laplace-Stieltjes transform ϕ−1

0 . Further, let V denote a random vari-
able with V ∼ G and U1, . . . , UI a sequence of random variables conditionally
independent given V , where the distribution function of Ui conditioned on V
is given by FUi|V=v(u) = e−vϕ0(u) for u ∈ [0, 1]. Then, the joint distribution of
the random vector U = (U1, . . . , UI) is an Archimedean copula with generator
ϕ0, i.e.

P(U1 ≤ u1, . . . , UI ≤ uI) = ϕ−1
0 [ϕ0(u1) + . . .+ ϕ0(uI)] .
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Proof.

P(U1 ≤ u1, . . . , UI ≤ uI) =

∫ ∞
0

P(U1 ≤ u1, . . . , UI ≤ uI |V = v)dG(v)

=

∫ ∞
0

I∏
i=1

FUi|V=v(ui)dG(v)

=

∫ ∞
0

e−v(ϕ0(u1)+...+ϕ0(uI))dG(v)

= ϕ−1
0 [ϕ0(u1) + . . .+ ϕ0(uI)] .

Using this representation, Marshall and Olkin (1988) presented an efficient
algorithm for sampling from multi-dimensional exchangeable Archimedean
copulas under the assumption that G is known.

Algorithm 2.34. Marshall and Olkin

1. Sample from a random variable V ∼ G.

2. Sample from i.i.d. random variables Xi ∼ Unif [0, 1], i ∈ {1, . . . , I}.

3. Return the random vector (U1, . . . , UI) with Ui = ϕ−1
0 (− log(Xi)/V ).

An example of a one-parametric family of Archimedean copulas is given in
what follows (see also McNeil (2008)).

Example 2.35. The Gumbel copula is given by its generator ϕ0(t) = (− log(t))θ

with θ ∈ [1,∞). The random variable V from Algorithm 2.34 follows a posi-
tive stable distribution, i.e. V ∼ St(1/θ, 1, γ, 0) with γ = (cos(π/(2θ)))θ and
characteristic function given by

EP
[
eitV
]

=

{
exp

(
−γ1/θ|t|1/θ

(
1− i sign(t) tan( π

2θ
)
))
, θ 6= 1

exp
(
−γ|t|

(
1 + i sign(t) 2

π
ln |t|

))
, θ = 1

.

The coefficient of upper tail dependence is given by λU = 2− 21/θ. Figure 2.1
shows 1000 realizations of a bivariate Gumbel copula with θ = 1.5.

A more flexible multivariate Archimedean copula can be constructed by the
nesting of generators. These copulas allow for different degrees of positive
dependence in different margins.
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Figure 2.1: Scatterplot of 1000 samples of a bivariate Gumbel copula with
θ = 1.5.

Definition 2.36. An I-dimensional partially nested Archimedean copula is
given by

C(u) = C (C (u11, . . . , u1d1 ;ϕ1) , . . . , C (uH1, . . . , uHdH ;ϕH) ;ϕ0)

= ϕ
[−1]
0

[
ϕ0

(
ϕ

[−1]
1 [ϕ1(u11) + . . .+ ϕ1(u1d1)]

)
+ . . .

+ϕ0

(
ϕ

[−1]
H [ϕH(uH1) + . . .+ ϕH(uHdH )]

)]
= ϕ

[−1]
0

[
H∑
h=1

ϕ0

(
ϕ

[−1]
h

[
dh∑
k=1

ϕh (uhk)

])]

with uhk ∈ [0, 1], h ∈ {1, . . . , H}, k ∈ {1, . . . , dh}, and
∑H

h=1 dh = I.

Here, dh denotes the dimension of the h-th subgroup. This is a copula if
all ϕ0 ◦ ϕ[−1]

h have completely monotonic derivatives (see McNeil (2008)). In
the special case that the generators belong to the same one-parameter fam-
ily of Archimedean copulas, i.e. ϕh = ϕ0(·; θh), it is often sufficient to claim
that θ0 ≤ θh, h ∈ {1, . . . , H}, with θh denoting the parameter corresponding
to ϕh, h ∈ {0, . . . , H}, (see Hofert (2008)). This assumption will be used
throughout the remainder of this chapter and in the application of nested
Archimedean copulas for CDO pricing in Chapter 7.
Based on Algorithm 2.34, McNeil (2008) suggested an algorithm for sam-
pling from partially nested Archimedean copulas. This algorithm applies Al-
gorithm 2.34 iteratively by sampling from distribution functions associated
with Laplace-Stieltjes transforms which are the inverses of the generators
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denoted by ϕ0(·; θh). Here, G again denotes the distribution function with

Laplace-Stieltjes transform ϕ
[−1]
0 (·; θ0).

Algorithm 2.37. McNeil

1. Sample from a random variable V ∼ G.

2. For h ∈ {1, . . . , H} sample from a random vector

(Xh1, . . . , Xhdh) ∼ C (uh1, . . . , uhdh ;ϕ0(·; θh))

according to Algorithm 2.34.

3. Return the random vector (U11, . . . , UHdH ) with

Uhk = ϕ
[−1]
0 (− log(Xhk)/V ) , h ∈ {1, . . . , H}, k ∈ {1, . . . , dh} .

Example 2.35 can be easily extended to the case of nested Archimedean
copulas.

Example 2.38. Let C denote a four-dimensional nested Gumbel copula with
two subgroups given by

C(u) = ϕ−1
0

[
ϕ0

(
ϕ−1

1 [ϕ1(u11) + ϕ1(u12)]
)

+ ϕ0

(
ϕ−1

2 [ϕ2(u21) + ϕ2(u22)]
)]
,

where ϕi(t) = (− log(t))θi. For (U1, . . . , U4) ∼ C with θ = (1.2, 2.2, 1.5),
Figure 2.2 contains a two-dimensional scatterplot with 1000 realizations of
(Ui, Uj), i, j ∈ {1, 2, 3, 4} and i 6= j, in each off-diagonal subplot. The diago-
nal subplots show the histograms of the univariate marginals.
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Figure 2.2: Two-dimensional scatterplots of 1000 samples of a four-
dimensional Gumbel copula with θ = (1.2, 2.2, 1.5).
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Chapter 3

Recovery rates in credit-risk
modelling

This chapter is devoted to the measurement and modelling of recovery rates
and risks in defaultable assets. In the first part of this chapter a definition
of recovery rates and risks and examples of their occurrence in pricing and
risk management will be given. The second part of this chapter is concerned
with the different types of measuring recovery rates. Finally, a literature
review on various modelling approaches for different credit-risk applications
is presented.

3.1 Recovery rates and risks

In contrast to the probability of default, which is calculated on the obligor
level, the recovery rate, or loss given default (LGD) respectively, has to be
calculated on the facility level. It is usually defined as the amount recovered
from a defaulted facility expressed as a percentage of the exposure at default
(EAD). Recovery risk measures not only the risk that recovery payments
upon default are higher or lower than expected but also changes in mark-
to-market values of defaultable assets due to changes in expected market
recovery. For a creditor the recovery rate is as important as the proba-
bility of default. Nevertheless, for many years practitioners, regulators, as
well as academics have concentrated on modelling and predicting default
probabilities and ignored the stochastic nature of recovery rates. Due to the
rapid growth in the credit derivatives market at the beginning of this century
and the appearance of contingent claims on recoveries since 2003, e.g. fixed-
recovery CDS or recovery locks (see e.g. Berd (2005) or Liu et al. (2005)),
the sound modelling of recovery rates gained in importance lately, both for

45
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pricing purposes and portfolio-risk management as well as for economic cap-
ital requirements. E.g. within the internal ratings-based (IRB) approach of
the new Basel Accord (see Basel Committee on Banking Supervision (2004))
banks are allowed to use internal estimates of default probabilities as well as
of recovery in the event of default to calculate credit-risk capital. There are
two different versions within the IRB approach available for banking institu-
tions: the foundation approach on the one hand and the advanced approach
on the other hand. In the foundation approach a bank is only allowed to
estimate the probability of default internally, whereas the loss given default
is a constant, e.g. 75% for subordinated debt and 45% for senior unsecured
debt. The advanced approach allows the bank to determine all parameters,
i.e. probability of default, loss given default and exposure at default, inter-
nally subject to supervisory review. As the advanced approach is, due to its
flexibility, the more interesting method for banks with large enough portfo-
lios, the methods referring to the IRB approach in the following all bear on
this approach.
Not only supervisory institutions, but also rating agencies turned their at-
tention to recovery rates lately. Besides the classical credit ratings, which
date back to the middle of the 19th century and measure the credit worthi-
ness of a corporation or a country, major rating agencies started to publish
so-called recovery ratings in 2003. Based on cash-flow stress tests as well as
debt and equity valuation, recovery ratings measure the expected recovery
at emergence from the bankruptcy process. E.g. Fitch Ratings assigns six
different recovery ratings with recovery expectation bands 0−10%, 11−30%,
31− 50%, 51− 70%, 71− 90%, and 91− 100%.
Besides such risk management approaches, several credit derivatives have
emerged in the last years that enable investors to trade recovery risk sepa-
rately from pure default-event risk. While in a standard credit-default swap
(CDS) there is uncertainty about the height of the payment made in case
of a default event to cover the resulting loss, a fixed-recovery CDS elimi-
nates this uncertainty. In case of a default event, the fixed-recovery CDS
is cash settled with the contract’s fixed recovery rate. In addition to stan-
dard and fixed-recovery CDS, recovery locks, sometimes also called recovery
swaps, which are forward contracts on the recovery rate in case of a de-
fault event, started trading in 2003. Within such a recovery lock, there are
no upfront or running payments. The only payment stream that occurs is
the exchange of realized and contractual recovery rate in case a default has
happened. If no default event occurs during the lifetime of the contract,
it expires unused. The relation between the different products can be ex-
pressed as follows: a long position in a recovery lock can be separated in
a long position in a fixed-recovery CDS and a short position in a standard
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CDS (see also Section 6.2). While recovery locks have been traded only very
rarely in their first years, they became more interesting with the increasing
number of companies in financial distress since mid 2007. Meanwhile, re-
covery locks are traded on the debt of more than 70 companies with a total
volume of about 10 billion US dollar. The International Swaps and Deriva-
tives Association (ISDA) published a template for such products (available
at www.isda.org/publications/docs/Recovery-Lock-Template.doc) in
2006. Nevertheless, recovery locks are only traded over the counter and
bid-ask spreads are relatively high. A good example for the functionality
and usefulness of recovery locks is the bankruptcy of Lehman Brothers Hold-
ings Inc. According to www.creditfixings.com the auction on bankrupt
Lehman Brothers’ standard CDS held on October 10th 2008 set a value of
8.625 cents per dollar for the investment bank’s debt. Only three days before
the bankruptcy on September 15th 2008, recovery locks ensuring a 20 percent
recovery rate on Lehman Brothers debt were still traded. Therefore, a pro-
tection seller in a Lehman Brothers CDS who entered such a recovery lock (at
no cost at initiation) had two different payment streams in his portfolio after
the default of Lehman Brothers. On the one hand he received 8.625 cents
per dollar from the CDS contract (in exchange for the default compensation)
and on the other hand he received the fixed 20 cents per dollar in exchange
for 8.625 cents per dollar from the recovery lock. Hence, such an investor
would have gained 20 − 8.625 = 11.375 cents per dollar from this recovery
lock contract.

3.2 Measuring recovery rates

Before recovery rates can be incorporated into the credit-risk modelling pro-
cess, one has to clarify how they are measured. There are different ways
to accomplish this. The methods described in this section are mainly based
on the suggestions of the IRB approach. To define a measure for the recov-
ery rate or loss given default respectively, first of all a coherent definition
of default has to be found. A formal definition is given in §§452ff of Basel
Committee on Banking Supervision (2004). Schuermann (2004) summarizes
the default definitions and gives four indicators for a default: a loan is placed
on non-accrual, a charge-off has already occurred, the obligor is more than
90 days past due, or the obligor has filed bankruptcy.
As mentioned above the loss given default is, in contrast to the probability
of default, which is calculated on the obligor level, calculated on the facility
level. It is usually defined as the loss expressed as a percentage of the expo-
sure at default. This definition can be improved by differentiating between
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defaulted and non-defaulted facilities. For the first it is the ex-post ratio of
loss to EAD at the time of default and for the latter the ex-ante estimate
of the loss given default as a random variable (see e.g. Basel Committee
on Banking Supervision (2005b)). Sometimes the term loss given default is
used only for the ex-ante estimates and 1 minus the observed losses are called
recovery rates. In general there are four different methods for the estima-
tion of loss given default (see, e.g., Basel Committee on Banking Supervision
(2005b)):

1. Workout or ultimate LGD based on discounted cash flows after default:
here, the most important things to concern are the correct timing of
the cash flows and the discount rate which is applied. It is by far not
clear which discount rate is the correct one. In addition to that, one
has to take care to incorporate the right amount of direct and indirect
costs which arise during the workout procedure.

2. Market LGD based on prices of traded defaulted bonds and loans
shortly after the default has occurred (typically 30 days): as the prices
of traded bonds and loans are based on par = 100, the recovery rate
can be derived from the actual prices. Advantages of this method are
that the values are obtainable instantaneously after default and that
market LGD expresses the market sentiment. Unfortunately, market
LGD is not available for all loans, as many of them, especially those
to small and medium-sized enterprises (SMEs), are not traded on the
market.

3. Implied market LGD derived from risky but not yet defaulted bond
prices by means of a theoretical asset pricing model: here, LGD is
estimated via credit spreads of non-defaulted, risky bonds.

4. Implied historical LGD based on the experience of total losses and PD
estimates (only allowed for retail portfolios).

As the estimates of LGD must be based on historical recovery rates (see §470
of Basel Committee on Banking Supervision (2004)), it is sometimes ques-
tioned if the implied methods should be excluded from this list because they
are based on information of non-defaulted debt.
As mentioned above the correct discount rate for workout LGD can be a very
important issue, especially when the workout time is long, as it is often the
case for loans to large corporates. The theoretical correct discount rate would
be the risk-appropriate discount rate, but, as facilities considered for workout
LGD are often not traded on the market, the problem is to infer this risk-
appropriate rate. The discount rate used for the workout LGD should reflect
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the costs of holding the defaulted assets during the workout period including
an appropriate risk premium (see Basel Committee on Banking Supervision
(2005a)). There are broadly two different ways in which the discount rates
for modelling recovery rates, or loss given default respectively, can be cho-
sen. Either the discount rate is in some way connected to the borrower
interest rate at default or current comparable market rates are considered
(see Davis (2004)). While the first measures how well the institution collects
on the defaulted facility, the latter also takes the opportunity costs of funds
into account. There are different discount rates that have been proposed in
empirical as well as theoretical literature (see Basel Committee on Banking
Supervision (2005b) or Maclachlan (2005)): Carty et al. (1998) for example
use the contractual rate fixed at the date of origination, while Asarnow and
Edwards (1995) include a penalty term to the contractual rate. Friedman
and Sandow (2003b) use the coupon rate as a discount rate. Other possible
discount rates that are proposed in Basel Committee on Banking Supervision
(2005b) are the risk-free rate plus a spread at the default date for the average
recovery, the zero-coupon yields plus a spread at the default date, the aver-
age risk-free rate plus a spread during the last business cycle at the date of
transaction, the average rate of an asset of similar risk over the last business
cycle at the date of transaction, and the spot rate plus spread existing at the
date of transaction. Finally, in FSA (2003) the usage of a suitable rate for
an asset of similar rate at the date of default is recommended.

3.3 Modelling recovery rates

While the previous section dealt with measuring recovery rates, this section
is concerned with modelling aspects of recovery rates in different types of
credit-risk models.

3.3.1 Econometric recovery rate prediction models

There are two main industry models for the prediction of recovery rates based
on econometric models, namely Moody’s LossCalcTM v2 (see Gupton and
Stein (2005)) and S&P’s LossStats R© (see Friedman and Sandow (2003b)).
Both models work on a set of explanatory variables and predict recovery
rates, or loss given defaults respectively, for a given time horizon.

3.3.1.1 Moody’s LossCalcTM

Moody’s LossCalcTM v2 predicts recovery rates for defaults which occur im-
mediately or for defaults that may occur in one year. As required by the Basel
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Committee the methodology includes time-varying factors and a history that
is longer than seven years (see §468 and §472 of Basel Committee on Banking
Supervision (2004)). LossCalcTM uses different explanatory factors from five
different groups (collateral, instrument, firm, industry, and macroeconomy
and geography). In detail the explanatory variables are:

• Collateral: The proportion of coverage of the exposure by cash, ”all
assets”, property, plant and equipment, and ”unknown” as well as yes
or no for support from subsidiaries and unsecured.

• Debt type (loan, bond, and preferred stock) and seniority class (senior,
junior, secured, unsecured, subordinate, etc.).

• Firm-specific distance-to-default (for publicly traded firms only): The
distance to default is defined by (see e.g. Crosbie and Bohn (2003))

Distance-to-default =
Market Value of Assets−Default Point

Market Value of Assets× Asset Volatility
,

where the default point is defined as the market value of assets where
the firm will default. Usually the default point is assumed to be short-
term debt plus half the long-term debt.

• Relative seniority: Seniority standing within the firm’s overall capital
structure.

• Firm leverage: How much asset value is available to cover the liabilities.
Not used for secured debt or financial industries.

• The industry’s historical recovery rates.

• The aggregated distance-to-default across all firms in that industry and
region.

• Trailing 12-month all corporate default rate (for a definition see e.g.
p.20 of Hamilton et al. (2001)) published monthly by Moody’s Investors
Service.

In LossCalcTM recovery is defined as the observed debt price approximately
one month after default. The observed market values seem to be approxi-
mately beta distributed. Before modelling a multivariate model some of the
explanatory variables are transformed or adjusted. This step is called ”mini-
modelling” in the original technical document. The main modelling process
can be divided into three steps:
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1. Transform the raw recovery observations zi to an approximately nor-
mally distributed dependent variable yi, i.e.

yi = Φ−1 (FBeta (zi, a, b)) ,

where a and b are the parameters of the beta distribution, Φ the cu-
mulative distribution function of a standard normal distribution and
FBeta the cumulative distribution function of the beta distribution.

2. Run a multivariate linear regression on the normalized recovery rates,
i.e.

y = β1x1 + . . .+ βKxK + ε,

where the xk, k = 1, . . . , K are the (transformed) explanatory variables
and ε ∼ N (0, σ2).

3. Retransform the normalized recovery predictions

ŷi = β̂1x1,i + . . .+ β̂KxK,i

via
ẑi = F−1

Beta (Φ (ŷi) , a, b)

with xk,i denoting the i-th observation of the k-th explanatory variable

and β̂k, k = 1, . . . , K, the estimated coefficients from step 2.

3.3.1.2 S&P’s LossStats R©

Standard & Poor’s LossStats R© is mainly based on a general machine learning
approach which is explained in detail in Friedman and Sandow (2003a). This
approach is not only suitable for LGD modelling, but also for the modelling
of probabilities of default (see e.g. Friedman and Huang (2003)). This very
general concept is based on different aspects from statistics, optimization,
and utility theory. Therefore, only the main features are sketched here. A
more detailed overview of this approach can be found e.g. in Friedman and
Sandow (2003a).
In contrast to LossCalcTM, where market prices shortly after default are
used as a proxy for recoveries, discounted recovery rates at the time the
obligor emerges from bankruptcy (workout or ultimate recoveries) are used in
LossStats R©. These ultimate recoveries are allowed to take values in [0, zmax],
where zmax = 1.2 is suggested in the original technical document. The ex-
planatory variables used for estimating the conditional probability distribu-
tion of the recovery rates are the following:
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• Collateral quality classified into 16 categories ranging from ”all assets”
to ”unsecured”.

• Debt below class, defined as the percentage of debt on the balance sheet
that is inferior to the class of debt instrument considered.

• Debt above class, defined as the percentage of debt on the balance sheet
that is superior to the class of debt instrument considered.

• Aggregate default rate expressed by the percentage of S&P-rated US-
bonds that defaulted within a time horizon of 12 months prior to the
default date.

In addition to that, industry default rate, regional default rate, and quarterly
GDP growth rate are used as explanatory variables for bonds.
The modelling approach can be summarized as follows: Let x be the vector of
the observed explanatory variables and z describe the ultimate recovery rate.
Further, a continuous probability density function on [0, zmax] is assumed for
the recovery rates conditioned on x with positive point masses in 0 and 1,
i.e.

p(z|x) = p[0,zmax](z|x) + p0(x)δ(z) + p1(x)δ(z − 1)

with δ(z) = 11{z=0}, p[0,zmax](z|x) denoting the recovery rate density on [0, zmax]
given the explanatory variable x, and p0(x) and p1(x) the point masses in
0 and 1 respectively, conditioned on the explanatory variable x. Following
Friedman and Sandow (2003a) the optimal probability measure is found by
maximizing the out-of-sample expected utility of an investor who chooses his
strategy so as to maximize his expected utility under the model he beliefs
in. This leads to a procedure which chooses the measure from an efficient
frontier of pareto optimal measures defined in terms of consistency with a
prior distribution p0(z|x) and consistency with the data. The latter is ex-
pressed as the difference between the theoretical and the sample expecta-
tions of a set of features, where each feature fj is a mapping from the pair
(z, x) to R. Here, a logarithmic utility function and a prior of the form
p0(z|x) = p0

[0,zmax](z|x) + p0
0(x)δ(z) + p0

1(x)δ(z− 1) are used. This leads to an
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optimization problem of the form:

Minimize
∑
x

p̃(x)

{∫ zmax

0

p[0,zmax](z|x) log
p[0,zmax](z|x)

p0
[0,zmax](z|x)

dz

+
∑
k=0,1

pk(x) log
pk(x)

p0
k(x)

}
s.t. NcTΣ−1c ≤ α

with c = Ep[f ]− Ep̃[f ]

Ep[f ] =
∑
x

p̃(x)

∫
[0,zmax]

p(z|x)f(z, x)dz

and Ep̃ [f ] =
∑
x

p̃(x)

∫
[0,zmax]

p̃(z|x)f(z, x)dz.

Here, f(z, x) = (f1(z, x), . . . , fJ(z, x))T is the feature vector, p̃ the empirical
distribution function, N the number of observations, and Σ the empirical
covariance matrix of the features. The corresponding dual problem is given
by:

Find β∗ = arg max
β

h(β)

with h(β) =
1

N

N∑
k=1

log p(β)(zk|xk)−
√
α

N
βTΣβ

with p(β)(z|x) =
1

Υx(β)
eβ

T f(z,x)

and Υx(β) =

∫ zmax

0

p0
[0,zmax](z|x)eβ

T f(z,x)dz +
∑
k=0,1

p0
k(x)eβ

T f(k,x),

where (xk, zk) are the observed pairs of explanatory variables and recovery
rates. The optimal probability measure is then given by

p(z|x) = p(β∗)(z|x)p0(z|x).

As the explicit choice of the prior does not seem to have a great impact on
the results, the authors chose

p0(z|x) =
1

2 + zmax
[1 + δ(z) + δ(z − 1)]
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as a prior. The features used in the technical document are given by fj(z, x) =
znxmi for z ∈ [0, zmax] and fj(z, x) = xmi for z ∈ {0, 1} with xi denoting the
i-th component of x, n = 1, 2, 3, and m = 0, 1.

3.3.2 Risk management using stochastic recoveries

In the late Nineties some industry models were developed to measure the
potential loss within a given confidence level on a fixed time horizon. These
value-at-risk models include CreditMetricsTM (see Gupton et al. (1997)),
CreditRisk+TM (see Credit Suisse Financial Products (1997)) as well as
CreditPortfolioViewTM (see Wilson (1998)). One thing that all these credit
value-at-risk models have in common is that they assume independence be-
tween probabilities of default and recovery rates. In CreditMetricsTM the
recovery rate is a beta distributed random variable, in CreditRisk+TM it
is treated as a constant parameter that has to be identified for each credit
exposure, and in CreditPortfolioViewTM the recovery rate is modelled as a
random variable independent of the default process.
In recent years, research in modelling recovery rates for risk management
purposes, especially management of tail risks like the calculation of eco-
nomic capital, has focused on models that reflect the possible relationship
between probabilities of default and recovery rates. Therefore, recovery rate
and probability of default are both modelled depending on a single system-
atic risk factor X (e.g. representing the state of the economy). This approach
is mainly based on the assumption that the same economic conditions that
cause defaults to rise might cause recoveries to go down. One feature that
all these models have in common is that the asset-value process of firm j is
assumed to be of the form Aj =

√
ρX +

√
1− ρX̃j with a systematic risk

factor X ∼ N (0, 1) and an idiosyncratic risk factor X̃j ∼ N (0, 1) and that
default occurs if Aj falls below a given threshold. The parameter ρ is some-
times referred to as the asset correlation between two firms. The higher ρ the
higher is the influence of fluctuations of the business cycle on the asset value.
For the modelling of recovery rates different distributional assumptions have
been suggested.
Frye (2000b) models the recovery rate as a normally distributed (and hence
unbounded) random variable via

zj = µ+ σ
√
qX + σ

√
1− qXj,

with an idiosyncratic (recovery-) risk factor Xj ∼ N (0, 1).
In Frye (2000a) as well as in Miu and Ozdemir (2006) the recovery rate is
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modelled as a beta distributed random variable given by

zj = F−1
Beta (Φ(Yj), a, b) ,

where Yj =
√
qX +

√
1− qXj, Φ the cdf of a standard normal distribution,

and F−1
Beta the inverse cdf of the beta distribution with parameters a and b.

Following the approach of Schönbucher (2003), the recovery rate in Duell-
mann and Trapp (2004) is modelled as a logit transformation of a normally
distributed random variable and hence lies between 0 and 1, i.e.

zj =
eYj

1 + eYj
,

where Yj = µ+σ
√
qX +σ

√
1− qXj. A quite similar model is to be found in

Rösch and Scheule (2005), where an extension to a multifactor model with
more than one idiosyncratic factor is allowed.
There are also two approaches in this area that do not model recovery rates
directly but rather the value of the collateral. In Frye (2000a) the recovery
rate is given by

zj = min(1, Collj)

with Collj = µ(1 + σCj) and Cj =
√
qX +

√
1− qXj, whereas in Pykhtin

(2003) the collateral is modelled by a lognormally distributed random vari-
able Collj = exp (µ+ σCj) with Cj =

√
βX +

√
γXj +

√
1− β − γνj and

νj ∼ N (0, 1) i.i.d.
Another interesting approach with an explicit relationship between the prob-
ability of default and the recovery rate is introduced in Bruche and González-
Aguado (2008). This paper proposes a model in which the two variables
depend on an unobservable credit cycle, modelled by a two-state Markov
chain. Conditional on the credit cycle, probability of default and recovery
rate are independent, where the marginal distribution of the recovery rates
is a beta distribution. The parameters of the beta distribution are allowed
to vary across seniority and industry. The only information used to model
the (unobservable) Markov chain is default and recovery data.

3.3.3 Recovery rates in pricing models

Also pricing models for both single-name and portfolio credit derivatives
relied on deterministic recovery assumptions for a long time. Only in re-
cent years, some models have been developed to incorporate a stochastic
behaviour of recovery rates in pricing credit derivatives. Before these models
are discussed, the different modelling concepts that are available are repeated.
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3.3.3.1 Modelling concepts

There are basically three different concepts of expressing and modelling re-
covery rates in credit-risk pricing models.

1. Recovery of face value, i.e. the recovery payment in case of a default
event is a fraction of the face value of the defaulted asset (applied e.g.
in Duffie (1998a)).

2. Recovery of treasury, i.e. in case of a default event there is compensation
in terms of a fraction of an equivalent non-defaultable asset, where
equivalent means the same maturity, face value, and payoff structure
if no default happens (applied e.g. in Jarrow and Turnbull (1995) and
Madan and Unal (1998)).

3. Recovery of market value, i.e. the recovery payment in case of a default
event is assumed to be a fraction of the market value of the defaulted
instrument instantaneously before default (applied e.g. in Duffie and
Singleton (1999)). This approach is, in terms of pricing relationships,
equivalent to the multiple defaults model as described in Section 6.1.3
of Schönbucher (2003).

All these concepts have in common that they don’t model the realized re-
covery in a bankruptcy process, but rather the value of the settlement. The
different concepts can all be transformed into each other and are hence equiv-
alent in a mathematical sense. Nevertheless, in different situations one model
might be preferred over the other due to tractability reasons or a higher de-
gree of interpretability. The general pricing problems for defaultable contin-
gent claims within the different concepts can e.g. be found in Section 6.1 of
Schönbucher (2003).
Comparing the three approaches, the recovery of treasury concept is the
weakest. It leads to unrealistic spread curve shapes and the exclusion of re-
coveries above 100% requires some severe restrictions. The recovery of mar-
ket value assumption leads to analytically tractable pricing formulas, e.g. for
bonds. Unfortunately, it does not allow for a separation of default and recov-
ery risk, i.e. only the product of intensity and recovery is observable. This
is problematic whenever credit derivatives with payoffs solely depending on
intensity or recovery are considered. Also for risk management and hedging
purposes, the distributions of both recovery and intensity are required. By
contrast the recovery of face value approach allows for a separation of default
and recovery risk. Although this is at the cost of slightly more complicated
pricing formulas, the recovery of face value assumption is applied in most
credit-derivatives pricing models.
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3.3.3.2 Single-name pricing models

During the last thirty years different approaches to modelling recovery rates
in single-name credit-pricing models have been developed by academics as
well as by practitioners. This subsection describes the usage of recovery rates
in the most important classes of these models. A more detailed description
of the different models is to be found in Altman et al. (2004).
In the first generation of structural-form models based on the seminal work of
Merton (see Merton (1974)), where defaults can only be observed at maturity,
the recovery at default is, as well as the probability of default, a function of
the firm’s asset volatility and the firm’s leverage expressed by the firm’s debt.
Hence, the recovery rate is a model-endogenous variable.
The second generation of structural-form models overcomes the drawback
that default can only occur at maturity at the cost of a recovery rate that
is exogenously specified and independent of the firm’s asset value as well as
of the probability of default (see e.g. Longstaff and Schwartz (1995)). Here,
a default occurs when the asset value falls below a given threshold level
and the recovery rate in case of default is assumed to be a fixed ratio of
the outstanding debt value. Exceptions are models based on discontinuous
processes (see e.g. Zhou (2001)).
One of the main drawbacks of the structural-form models is that default
depends on the unobservable asset-value process. A class of models which can
be implemented without estimating the parameters of the asset-value process
are the reduced-form models described in Section 2.2 (see e.g. Jarrow and
Turnbull (1995), Madan and Unal (1998), or Duffie and Singleton (1999)). In
general, these models assume an exogenous recovery rate independent from
the probability of default. This recovery rate can either be deterministic or
stochastic and different recovery rates for different issuers or seniority are
possible. Exceptions with correlated default and recovery rates are described
in more detail in the following.
Over the last years different approaches have been made to incorporate the
stochastic behaviour of recovery rates and their correlation with the default
process in intensity-based pricing models.
One of the first attempts to a joint modelling of recovery and default risk
was proposed by Bakshi et al. (2001), who assume that the recovery rate is
related to the underlying hazard rate. More precisely, the authors assume
that the recovery rate z(t) is related to the underlying hazard rate λ(t) via

z(t) = az + bze
−λ(t)

with az ≥ 0, bz ≥ 0, and 0 ≤ az + bz ≤ 1. The hazard-rate process itself



58 CHAPTER 3. RECOVERY RATES IN CREDIT-RISK MODELLING

is assumed to be linear in the short-term interest rate which is driven by a
CIR-process, i.e.

λ(t) = Λ0 + Λ1r(t),

dr(t) = (θr − arr(t))dt+ σr
√
r(t)dWr(t), r(0) = r0,

with Λ0 > 0 and r0 > 0. The main drawback of this modelling approach is
that there is only one factor, the short rate, that explains the whole variation.
In the appendix of Bakshi et al. (2006) an illustrative multi-factor defaultable
bond valuation model is presented. However, this model leads to complex
valuation formulas and is hence difficult to implement. In this model, the
same relation among recovery rates and intensity is valid as in Bakshi et al.
(2001), but the intensity is given by a three-factor model. The model can
formally be described by the following set of stochastic differential equations:

dr(t) = (θrw(t)− arr(t))dt+ σrdWr(t), r(0) = r0,

dw(t) = (θw − aww(t))dt+ σwdWw(t), w(0) = w0,

du(t) = (θu − auu(t))dt+ σudWu(t), u(0) = u0,

λ(t) = Λ0 + Λ1r(t) + Λ2w(t) + Λ3u(t),

z(t) = az + bze
−λ(t),

with r0, w0, u0 ∈ R.
In Christensen (2005) a three-factor model for the joint evolution of interest
rates, intensity, and recovery is introduced, where both intensity and recovery
rate are affine functions of a common risk factor (short-term interest rate)
and an idiosyncratic risk factor, i.e.

dr(t) = (θr − arr(t))dt+ σrdWr(t), r(0) = r0,

λ(t) = Λ0 + Λr(arr(t)− θr) + Λ1 (aλXλ(t)− θλ) ,
z(t) = z0 + zr(arr(t)− θr) + z1 (azXz(t)− θz) ,

dXλ(t) = (θλ − aλXλ(t))dt+ σλdWλ(t), Xλ(0) = Xλ,0,

dXz(t) = (θz − azXz(t))dt+ σzdWz(t), Xz(0) = Xz,0.

In a simulation-based study with arbitrarily chosen parameters the default
intensity and recovery risk components are, under certain conditions (recov-
ery of face value assumption, limited noise in the bond yields), estimated
simultaneously from bond yields. Still, there is a fundamental identification
problem inherent in the corporate bond yields as soon as measurement noise
is added to the true yields.
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An extension to this model is developed in Christensen (2007). In this four-
factor affine model, the short-term interest rate is an affine function of two
interest-rate factors given by

r(t) = δ0 + δ1X1(t) + δ2X2(t),

dX1(t) = (θ1 − a1X1(t))dt+
√
X1(t)dW1(t), X1(0) = X1,0,

dX2(t) = (θ12 − a12X1(t)− a2X2(t))dt+
√

1 + β12X1(t)dW2(t),

X2(0) = X2,0.

The default-intensity risk factor is assumed to be a CIR-process and the
recovery-rate risk factor is assumed to be Gaussian. Both intensity and
recovery rate are driven by the two interest-rate risk factors and their corre-
sponding idiosyncratic risk factor, i.e. the default intensity is given by

λ(t) = Λ0 + Λ1(a1X1(t)− θ1) + Λ2X2(t) +Xλ(t),

dXλ(t) = (θλ − aλXλ(t))dt+ σλ
√
Xλ(t)dWλ(t), Xλ(0) = Xλ,0.

The recovery-rate process is given by

z(t) = z0 + z1(a1X1(t)− θ1) + z2X2(t) +Xz(t),

dXz(t) = (θz − azXz(t))dt+ σzdWz(t), Xz(0) = Xz,0.

The author’s aim is the separation of default and recovery risk in an affine
reduced-form setting. A numerical example is exercised with CDS quotes of
Ford Motor Co.
Karoui (2007) proposes a discrete-time framework for modelling defaultable
instruments under stochastic recovery as the pricing formulas are easier to
handle than in a corresponding continuous-time setting. Gaspar and Slinko
(2006) present a model based on the dynamics of a market index which deter-
mines the default intensity as well as the distribution of the loss quota. To be
more precise, the loss quota is assumed to be a beta distributed random vari-
able with one constant parameter and the other driven by the market index.
This leads to intractable formulas and requires a simulation-based approach.
A completely different approach is used in Das and Hanouna (2007). Here,
a reduced-form calibration method for the joint derivation of market-implied
forward hazard rates and forward recovery rates is presented, but without a
dynamic representation of default and recovery risk components.
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3.3.3.3 Multi-name pricing models

While most CDO pricing models assume a constant recovery rate of 40%,
only very few CDO models with a stochastic recovery specification exist.
The first one was introduced by Andersen and Sidenius (2004). In this article
an extension to the Gaussian copula model (see e.g. Li (2000)) is presented.
Thereby, a stochastic recovery related to the systematic factor driving the de-
fault events is assumed, explicitly allowing for an inverse correlation between
recovery rates and default rates. To be more precise, the recovery rate of an
obligor in case of a default is given by an application of the normal cumula-
tive distribution function on a normally distributed random variable. This
random variable is correlated with the default triggering variable through a
common systematic factor, i.e.

Ai(t) =
√
ρX(t) +

√
1− ρX̃i(t)

zi(t) = Φ(µ(t) + b(t)X(t) +Xi(t))

with X(t), X̃i(t), and Xi(t) i.i.d. N (0, 1), i = 1, . . . , N denoting firm i,
Φ denoting the normal cdf, and t the point in time. Firm i defaults with
recovery rate zi(t) if Ai(t) ≤ ci(t). In a numerical investigation the authors
noted that the base correlation skew effect of random recovery is quite minor
and hence the random recovery approach was not further investigated.
Due to the credit market crisis, recently some articles on using stochastic
recovery rates in CDO pricing have been published. Krekel (2008) uses a
discrete stochastic recovery rate in a Gaussian base correlation setting to
overcome the problem that super senior tranches in a standard Gaussian base
correlation model have zero fair spread. In this model the discrete recovery
rates are defined as constants on buckets of the default triggering factors,
i.e. the recovery rate is a step function of the default triggering variable and
hence

Ai(t) =
√
ρX(t) +

√
1− ρX̃i(t)

zi(t) = zi(t, Ai(t))

with X(t) and X̃i(t) i.i.d. N (0, 1), i = 1, . . . , N denoting firm i, and t the
point in time. Again, firm i defaults with recovery zi(t, Ai(t)) if Ai(t) ≤ ci(t).
The function zi(t, x) is defined by

zi(t, x) =

{
zi,j if ci,j(t) < x ≤ ci,j−1(t) j = 1, . . . , J
0 else

,
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where ci,0(t) = ci(t) and ci,J(t) = −∞. E.g., in the empirical part of the
article a recovery-rate distribution with only four possible realizations (60%,
40%, 20%, and 0%) is used. Amraoui and Hitier (2008) extend the ap-
proach of Krekel (2008) by modelling the recovery rate as some deterministic
function of the systematic risk factor of the default triggering variable. Ech-
Chatbi (2008) uses a multiple default approach (similar to Section 6.1.3 in
Schönbucher (2003)), where the recovery is lowered by a random factor each
time a default event occurs. Hence, the recovery-rate process is some geomet-
ric compound Poisson process, where the current recovery rate is multiplied
by a random variable, e.g. beta or log-gamma distributed, each time a default
event occurs. One thing that all these models have in common is that they
rely on the assumption of a Gaussian dependence structure, which might
not be appropriate, especially in distressed market situations. This Gaussian
assumption will be relaxed in the modelling approach presented in Chapter
7.
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Part II

Empirical analysis of recovery
rates

63





Chapter 4

Loan recovery determinants

Although there has been a growing number of studies dealing with the deter-
minants of recovery rates, especially from US rating agencies, the behaviour
and prediction of recovery rates is by far not yet fully understood. Most of
the studies on recovery rates are based on data from the US bond market
rather than on loan recoveries. One of the first and probably most famous ar-
ticles that examined bond recovery rates is the work by Altman and Kishore
(1996), who examined the prices of bonds at the time of default of more than
700 defaulting bonds from 1978 to 1995. There are also some studies that
concentrate on recoveries from bank loans. Again most of them with focus
on the US (see e.g. Asarnow and Edwards (1995) or Gupton et al. (2000)).
Studies from outside the US are e.g. from Latin America (see Hurt and Felso-
valyi (1998) and La Porta et al. (2003)) or Australia (see Eales and Bosworth
(1998)). In recent years some studies on bank loan recovery rates on the Eu-
ropean market came up (see Grippa et al. (2005), Grunert and Weber (2005),
Dermine and Neto de Carvalho (2006), Davydenko and Franks (2008), and
Bastos (2009)), most of them relying on data from only one source or from
one to three countries. Table 4.1 gives an overview of some studies on loan
recoveries supplemented by some of the most important studies on bond re-
coveries. Note that the average recovery rates reported in Table 4.1 might be
misleading as the standard deviations for the recovery rates are quite high
(up to 40%).
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In this chapter, a detailed overview on factors that might influence recoveries
and their consideration in the literature is given. Further explanatory vari-
ables which have not been considered yet in the literature (e.g. the different
asset classes as proposed in § 215ff of the Basel Committee on Banking Super-
vision (2004) or the utilization rate) are introduced. A large Pan-European
database is employed to describe the determinants and behaviour of loan re-
covery rates on a facility level. One of the great advantages of the application
of this broad database is that it uses a consistent definition of default and
recovery rate over different jurisdictions and hence allows for an empirical
comparison over different countries, industry sectors, and asset classes.

4.1 The data

The LGD database used in this chapter consists of 42632 individual resolved
defaulted loans and 34350 entities (24491 acting as a borrower, 9722 as a
guarantor, and 137 as both). As the considered default events took place
between April 1983 and February 2007, the data pool spans more than one
full economic cycle as postulated in § 472 of Basel Committee on Banking
Supervision (2004). The data pool contains information on defaulted loans
from 37 European and 45 Non-European countries and from 10 different
asset classes (SME (34018 facilities), Large Corporates (6222), Banks (381),
Shipping Finance (207), Aircraft Finance (577), Real Estate Finance (724),
Project Finance (249), Commodities Finance (162), Public Services (3), and
Private Banking (89)). The economic recovery rate reported is the present
value of all post-default cash flows as a percentage of the default amount,
where the cash flows are discounted by the Euro Libor risk-free rate as at
the loan default date.
All facilities with default amount 0 (1921 observations) have been removed
from the database since only real physical losses are of interest. Furthermore,
all facilities where the total sum of all reported cash flows (including charge-
offs and waivers which are not present in the calculation of economic recovery
rates) divided by the outstanding amount at default is greater than 110%
(another 1494 observations) or smaller than 90% (6930 observations) of the
outstanding amount at default have been excluded. This is accomplished to
exclude all facilities that are not yet fully resolved or exhibit cash flows that
are not reasonable. As some of the facilities in the database have abnormally
high or low recoveries, outliers with a recovery rate lower than −0.5 (another
372 observations) or higher than 1.5 (50 observations) have been removed to
mitigate the impact such observations may have. Additionally, a subsample
of the dataset which only contains facilities with recoveries in [0, 1] is under
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examination. Some basic statistics of the recovery rates are to be found in
Table 4.2.

RR in [−0.5, 1.5] RR in [0, 1]
Simple Weighted Simple Weighted

Mean 0.556 0.712 0.607 0.693
St.dev. 0.443 0.323 0.401 0.308
Median 0.756 0.858 0.803 0.822
25%-Quantile 0.000 0.487 0.142 0.481
75%-Quantile 0.982 0.975 0.976 0.961
Number 31865 25232

Table 4.2: Basic statistics of recovery rates.

Here, ”weighted” means weighted with the size of the issue as at the date of
default (this type of weighting was amongst others used by Duellmann and
Trapp (2004), Varma (2005), Dermine and Neto de Carvalho (2006), and
Bruche and González-Aguado (2008)). Simple means all facilities are equally
weighted.
Figure 4.1 shows the distribution of the recovery rates. As one can clearly
see the distribution of the recovery rates is bimodal (U-shaped for the case
of recovery rates in [0, 1]). This holds true for the recovery-rate distribu-
tions of almost all subcategories, e.g. recovery-rate distributions for different
industries, facility types, asset classes, or geographical jurisdictions. This
supports the findings of many other studies on loan recovery rates that also
observe a bimodal or U-shaped distribution (see e.g. Asarnow and Edwards
(1995), Hurt and Felsovalyi (1998), Araten et al. (2004), Schuermann (2004)
or Dermine and Neto de Carvalho (2006)), whereas some studies especially
for bond recovery rates report a unimodal and more or less skewed distri-
bution (see e.g. Carty and Lieberman (1996), Carty et al. (1998), Hu and
Perraudin (2002), or La Porta et al. (2003)).
All following results refer to recovery rates in [0, 1]. As the results for recov-
eries in [−0.5, 1.5] are very similar, they are omitted here.
As mentioned above, the discount rate used in the calculation of workout
recoveries is quite important, especially if the time to resolution is long. A
question one might ask is how big the influence of the discount rate on recov-
ery rates actually is and how much the recovery rates change if the risk-free
rate is substituted by a risk-adjusted rate. Maclachlan (2005) found that the
mean discount rate for defaulted SME bank loans is on average similar to
the contract rate at the time of default. Hence, the recovery rates discounted
with the risk-free rate (Euro Libor risk-free rate) are compared with recovery
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Figure 4.1: Recoveries in [−0.5, 1.5] (left) and in [0, 1] (right).

rates that were computed using the contract’s base rate as at the date of de-
fault plus the contractual spread (available for 7008 facilities). Furthermore,
two extreme cases are tested on the whole dataset: a fixed discount rate of
1% and a fixed discount rate of 15% (this is the discount rate used in Araten
et al. (2004)).
The overall distribution of the recovery rates discounted with the risk-free
discount rate (Euro Libor risk-free rate) and the risk-adjusted rate (con-
tract’s base rate plus the contractual spread) are quite similar. For the first
the average recovery rate is 57.3% with a standard deviation of 40.7%, for
the latter 54.7% (39.3%). The average difference in recovery rates is 2.6%
with a standard deviation of 3.5%. This difference seems to be negligible, but
if the facilities are grouped according to their time to resolution the differ-
ences can become quite high. Figure 4.2 shows the distributions of recovery
rates with risk-free and risk-adjusted discount rates for facilities which were
resolved within the first two months after default or for which the workout
period was longer than 5 years. While the distributions for the facilities re-
solved in the first two months after default are almost equal, the recovery
distributions for the longer workout period are completely different. The re-
covery rates (for the long workout period) with risk-adjusted discount rate
(44.2% on average with a standard deviation of 45.0%) are a lot smaller than
those discounted with the risk-free rate (54.6% on average with a standard
deviation of 28.6%).

The average difference in recovery rates discounted with 1% and 15% is
8.8%. While the difference is rather small in most cases and not significant
for short workout periods (e.g. for workout periods smaller than 2 months
the average recovery rates are 25.4% and 25.1%), for those facilities with a
long workout period the recovery rates differ substantially (see Figure 4.3).
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Figure 4.2: Recovery rates with risk-free and risk-adjusted discount rates.

As expected, the recovery rates (for the long workout period) with discount
rate 15% (43.1% on average with a standard deviation of 27.8%) are a lot
smaller than those discounted with 1% (65.5% on average with a standard
deviation of 32.8%).

Concerning the influence factors for recovery rates, the chosen discount rate
is rather unimportant. The explanatory variables (see Section 4.2) show the
same behaviour regardless what discount rate is chosen. Only the default
amount becomes less important for very high discount rates. This is due
to the fact that the default amount discriminates the set of facilities with
very high recoveries from those with low recoveries (see Subsection 4.2.1).
As a high discount rate leads to a shift of all recovery rates towards the low
end, this separation effect is no longer possible. Therefore, the recovery rates
discounted with the Euro Libor risk-free rate as at the date of default will
be used in the next sections.

4.2 Univariate analysis

Before the multivariate dependences in the data are analysed some univariate
analyses are carried out. Here, also explanatory variables which are only
available for a small subsample of the population and will therefore no longer
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Figure 4.3: Recovery rates with discount rates 1% and 15%.

be under consideration when it comes to multivariate analyses (see Section
4.3) are taken into consideration. The univariate analyses described below
contain linear regressions, correlation tests, and tests for the difference in
means like t-Test, Kruskal-Wallis-Test or Wilcoxon-Test (see, e.g., Lehmann
(1975) or Draper and Smith (1998)). As simple linear regression models
are based on the assumption of normality and recovery rates are far from
being normal (see Figure 4.1), the recovery rates are transformed before a
regression analysis is applied. This is accomplished similar to Gupton and
Stein (2005) via

Transformed Recovery Rate = Φ−1 (FBeta(Recovery Rate, a, b)) ,

where FBeta(x, a, b) is the distribution function of the beta distribution with
parameters a = 0.292 and b = 0.189 and Φ the cdf of the standard normal
distribution. The parameters a and b have been estimated from the recov-
ery rates from Figure 4.1. Consequently, the transformed recovery rates are
approximately normal. The choice of this transformation seems to be rea-
sonable as the observed distribution of facility-level recovery rates is often
bimodal or U-shaped in the interval [0, 1] (see, e.g., Asarnow and Edwards
(1995) or Schuermann (2004)) and the beta distribution is a very flexible,
non-symmetric distribution on a bounded interval. The explanatory factors
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investigated are divided into five different classes: default process, facility,
entity, collateralisation, and macroeconomic factors. Here, facility-level fac-
tors are all factors directly linked to one single loan, whereas entity-level
factors are factors that describe the characteristics of the borrower of one or
more loans. The independent variable to be described is in all subsections
the facility-level economic recovery rate introduced in Section 4.1.

4.2.1 Default process

First of all, explanatory variables regarding the default process are consid-
ered, i.e. factors describing the time from initiation of the contract to default
or from default to resolution as well as factors describing the reason that
caused the default event and the exposure at default.

Workout period. The average time to resolution is 1.86 years with a standard
deviation of 2.13 years. If a defaulted loan is resolved within the first two
years after default, the time to resolution is positively correlated with the
recovery rate. Otherwise, if the workout process takes longer than two years,
the recovery rate decreases with an increasing time to resolution (see Figure
4.4). One possible explanation for the rather low recovery rates for very short
workout periods, is the fact that the percentage of charge-offs is much higher
for facilities with a workout period shorter than half a year (78.7%) than for
those with longer workout periods (56.8%).
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Figure 4.4: Recovery rates by time to resolution.

Other studies on workout recoveries report that the average time to resolu-
tion ranges from 1.25 years (see Carty et al. (1998)) to 4.5 years (see Grippa
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et al. (2005)) with high standard deviations. While Grippa et al. (2005)
note an inverse relation between recovery and time to resolution, Carey and
Gordy (2004) find little evidence that it affects firm-level recovery.

Workout costs. Almost 85% of the facilities in the database report zero work-
out costs resulting in average workout costs of 0.67% of the default amount.
If only those facilities with positive workout costs are considered, the average
workout costs are 4.34% with a standard deviation of 10.1%. The distribu-
tion of the workout costs is in both cases heavily right-skewed. One thing
that is worth mentioning is the fact that secured loans have on average higher
workout costs than unsecured loans, which might be explained by the costs
resulting from the liquidation of collateral positions. Grippa et al. (2005)
report average workout costs of 1.2% of the default amount. In a study from
the leasing industry de Laurentis and Riani (2005) find average workout costs
of up to 7.6% of the exposure at default.

Time to default. Furthermore, the time to default (available for 2598 obser-
vations) seems to have a positive effect on the recovery rate, i.e. the longer
the time between origination and default the higher the recovery rate will
be on average. Facilities that default within the first year after origination
have on average a recovery rate of 44.2%, while facilities which survive at
least one year recover 75.9% on average. The results from the literature for
the time between origination and default are ambiguous. While Altman and
Kishore (1996) can’t find a relation between time to default and amount re-
covered, Emery et al. (2004) show a significant positive effect and support
the aforementioned findings.

Reason for default. The reason for default is another important factor for the
determination of workout recovery rates. Seven different types of default are
observed: ”90 days past due”, ”unlikely to pay”, ”bankruptcy”, ”charge-off
or specific provision”, ”sold at material credit loss”, ”distressed restructur-
ing”, and ”non-accrual” (see also the definition of default in § 452f of Basel
Committee on Banking Supervision (2004)). All these different default types
are highly significant with the highest recovery rates observed for ”unlikely to
pay” and the lowest recoveries for ”90 days past due” and ”sold at material
credit loss”. The type of default as a potential predictor for recoveries has
only been discussed in very few studies so far. While Hamilton and Carty
(1999) state that recoveries vary not significantly by bankruptcy type, Carty
et al. (1998) find that prepackaged Chapter 11s have higher recoveries than
regular Chapter 11s.
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Default amount (EAD). Another interesting fact is that the default amount
has a significant positive effect on the recovery rate (see Figure 4.5). This
confirms the findings of Eales and Bosworth (1998). Many other empirical
research articles find a negative impact (see e.g. Hurt and Felsovalyi (1998))
or no significant impact at all (see e.g. Asarnow and Edwards (1995), Grunert
and Weber (2005), and Davydenko and Franks (2008)) of the EAD on the
observed recovery rate.
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Figure 4.5: Recovery rates by default amount (EAD).

One possible reason for the aformentioned findings is the frequent occurrence
of zero recovery for facilities with a smaller EAD. More than 85% (92%) of all
facilities with zero recovery and 75% (83%) of all facilities with positve recov-
ery smaller than 5% have a default amount smaller than 50000e (100000e).
In contrast, recoveries greater than 95% and fully recovered facilities are al-
most evenly distributed over the whole range of EADs. As can be seen from
Figure 4.6, by removing loans with a small EAD the percentage of facilities
with zero recovery decreases. The differences in average recovery rates for
different default amount cut-offs are significant. If only facilities with an
EAD greater than 100000e are considered, the overall degree of explanation
decreases. Some of the explanatory variables found to be significant in this
section are less important or even no longer significant for facilities with high
EADs, e.g. the size of the issue, the facility asset class, or the rank of secu-
rity. Hence, it can be stated that these factors help to separate low recoveries
from high recoveries, but have only a small impact on the actual value of the
recovery.
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Figure 4.6: Recovery rates by minimum EAD.

4.2.2 Facility level

In the next step, the relation between recovery rates and factors that char-
acterise the defaulted instrument is analysed.

Facility type. Another factor of interest is the facility type. A significant
impact on the 5%-level can be found for the facility types ”bridge loan”,
”revolver”, ”overdraft”, ”demand loan”, ”uncommitted line”, and ”other
derivative or security claim”. All other facility types are summarised in the
category ”other/unkown”. The highest recovery rates are observed for ”un-
committed line” (92.0%), the lowest for ”demand loan” (35.2%). According
to Siddiqi and Zhang (2004) some of the facility type dummies in his study
seem to be significant for determining recovery rates.

Facility asset class. For the facility asset classes, significant differences be-
tween the following categories can be found: ”SME”, ”large corporates”,
”banks” and ”specialized lending”. A summary of the basic statistics of the
recovery rates for the different facility asset classes is to be found in Table
4.3.

Size of the issue. Similar to the default amount, which is defined as the lender
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SME Large Corporates Banks Specialized Lending

Mean 0.588 0.722 0.729 0.737
St.dev. 0.409 0.326 0.350 0.314
Median 0.768 0.892 0.905 0.910
Number 21655 2489 207 807

Table 4.3: Basic recovery statistics for different facility asset classes.

outstanding amount at default, the lender outstanding amount at origination
and 1 year prior to default have a clear positive effect on the recovery rate.
This confirms the findings of Acharya et al. (2003). Many other empirical
research articles find a negative impact (see e.g. Grippa et al. (2005) and
Dermine and Neto de Carvalho (2006)) or no significant impact at all (see
e.g. Altman and Kishore (1996) and Schuermann (2004)) of the size of the
issue on the recovery rates.

Creditworthiness. Regarding the creditworthiness, recovery rates show a
strong negative correlation (correlation coefficient = -24.0%) with the con-
tractual spread (available for 9720 facilities), i.e. facilities with a lower cred-
itworthiness (measured by a higher contractual spread) have lower recoveries
on average and vice versa. This finding is similar to the results in Grunert
and Weber (2005), who state that the creditworthiness has a positive impact
on the recovery rate for bank loans. One factor that is only of interest for
publicly traded debt is the original rating of the issue. According to Altman
and Kishore (1996) it has no significant impact on the recovery rate once se-
niority is taken into consideration. More important than the original rating
is the rating at time of default. Gupton et al. (2000) and Hamilton et al.
(2001) find that rating at default acts as a predictor for recoveries.

Utilization rate. A quite interesting result was achieved when looking at the
utilization rate which is defined as the percentage of the available commit-
ment amount on a loan that is drawn. The height of the utilization rate has
a statistical significant effect on the amount recovered if one distinguishes
between utilization rates smaller than 100% and greater than 100%. For
utilization rates smaller than 100% this effect is positive, i.e. the more of the
commitment amount is drawn at the default date the higher is the recovery
rate on average. By contrast utilization rates and recovery rates are nega-
tively correlated if the utilization rate is greater than 100%. Nevertheless,
this effect is rather small and for more than 85% of the data the utilization
rate equals 100%.
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Syndication. Facilities which are part of a syndication show recovery rates
(on average 73.3%) that are a little bit higher than those of facilities which
are not part of a syndication (71.5%), but this difference is not significant.

4.2.3 Entity level

In this subsection, the relation between (facility-level) recovery rates and
explanatory variables connected with the borrowing entity as a whole is ex-
plained.

Entity asset class. For the entity asset classes (”corporate”, ”corporate spe-
cialized lending”, ”corporate mixture”, and ”banks”) ”banks” showed the
highest average recovery rate (74.7%) and ”corporate mixture” the lowest
(49.7%). To the author’s best knowledge no other studies concerning the
impact of the entity asset class on facility-level recovery rates exist yet.

Size of borrower. The size of the borrower measured by the entity sales has a
significant positive effect on the recovery rate, similar to the results obtained
for the size of the issue (correlation coefficient 27.1%). As for the size of
the issue, one can find studies that observe a negative relationship between
the size of the borrowing company and the recovery rate (see e.g. Asarnow
and Edwards (1995), Eales and Bosworth (1998), Hurt and Felsovalyi (1998),
or Grunert and Weber (2005)), studies that find a positive relationship (see
e.g. Acharya et al. (2003)) and studies that don’t find any relationship at all
(see e.g. Carty and Lieberman (1996), Roche et al. (1998), Thorburn (2000),
Carey and Gordy (2004), or Davydenko and Franks (2008)).

Geography. In addition to that, the influence of the geographical jurisdiction
on recovery rates was tested. It can be stated that there is a significant dif-
ference in the recovery rates for different regions. This is in line with Hu and
Perraudin (2002) and Grippa et al. (2005), who show a significant influence
of geographical dummies on recovery rates. By contrast, Araten et al. (2004)
and Grunert and Weber (2005) find wide spread recovery rates over different
geographic domiciles but no statistical significance. One interesting fact is
that on average facilities from France recover more than those from Germany
and both recover more than facilities from Great Britain. This contrasts the
results that Davydenko and Franks (2008) found in their study on different
bankruptcy codes in France (average recovery rate of 54%), Germany (61%),
and the UK (74%). Table 4.4 gives an overview on recovery rates in the
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regions in the database from Section 4.1 (Africa, Asia, Austria & Germany,
Benelux, France, Great Britain & Ireland, North America, Northern Europe,
South America, and Southern Europe).

AFRICA ASIA AT&GE BENEL FR

Mean 0.451 0.608 0.613 0.637 0.831
St.dev. 0.351 0.365 0.404 0.390 0.300
Median 0.389 0.797 0.807 0.831 0.964
Number 521 132 8747 189 548

GB&IE NAMER NEURO SAMER SEURO

Mean 0.569 0.724 0.757 0.679 0.808
St.dev. 0.411 0.335 0.350 0.349 0.313
Median 0.726 0.910 0.962 0.913 0.974
Number 12102 308 103 79 72

Table 4.4: Basic recovery statistics for different regions.

Industry. Another factor that is often mentioned in literature is the indus-
try of the borrower. Gupton et al. (2000) and Grunert and Weber (2005)
find no evidence that different industries have different recoveries. Araten
et al. (2004) state that recovery rates in dependence of industry dummies
are widespread but not statistically significant, whereas Roche et al. (1998),
Hu and Perraudin (2002), Acharya et al. (2003), Varma (2005), and Dermine
and Neto de Carvalho (2006) find a significant and robust effect of industry
on recovery rates. Altman and Kishore (1996) report great differences in av-
erage recovery rates for different industry sectors with a maximum of 70.5%
for public utility and a minimum of 26.5% for lodging, hospitals, and nursing
facilities. These results are confirmed by the works of Izvorski (1997) and
Carey and Gordy (2004). Different levels of aggregation have been tested on
the dataset introduced in Section 4.1 but no significant influence of industry
dummies could be found, although there are quite high differences in the av-
erage recovery rates for different industries (between 51.9% for ”education”
and 83.1% for ”public administration and defence”).

Number of loans. The number of loans per borrower has a significant pos-
itive impact on the recoveries, i.e. single loans (56.0%) have on average a
lower recovery rate than multiple-loan defaulters (64.3%). When the facil-
ities are divided according to whether they are secured or not, one can see
that for unsecured facilities single-loans have again a significant lower recov-
ery rate (41.0% on average) than facilities of multiple-loan borrowers (51.0%
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on average), which is in contrast to the results of Gupton et al. (2000). The
authors of this study report an average recovery rate of 63.4% for single-loan
defaulters for unsecured loans, while for multiple-loan defaulters only 36.8%
are recovered for unsececured loans on average. For secured facilities no sig-
nificant difference in recovery rates can be found between single-loan (65.2%)
and multiple-loan defaulters (65.5%).

Operating firm indicator / Public-private indicator. The operating firm in-
dicator (available for 5114 facilities) shows that on average recovery rates of
facilities belonging to non-operating companies (80.8%) are higher than for
loans of operating companies (72.2%). The difference in mean is significant
on a 5%-level, but the impact of the operating firm indicator on recovery
rates in a univariate linear model is rather small. The results obtained for
the public-private indicator (7250 observations) also show only little explana-
tory power. Private (public) firms exhibit an average recovery rate of 70.5%
(67.4%) with a standard deviation of 33.5% (36.4%). To the author’s best
knowledge no other studies concerning the impact of these indicators on
facility-level recovery rates exist yet.

4.2.4 Collateralisation

This subsection deals with the impact of collaterals on the recovery rate of
defaulted loans.

Collateral. Probably one of the most important factors influencing loan re-
covery rates is the presence, quality (liquidity), and quota of collateral. Most
studies on loan recoveries report a significant difference between secured and
unsecured loans (see e.g. Acharya et al. (2003), Emery et al. (2004), or Der-
mine and Neto de Carvalho (2006)). Carty et al. (1998) report an average
recovery rate of 87% for secured loans (with a standard deviation of 23%)
and an average of 79% for unsecured loans (27%). Gupton et al. (2000) find
an average recovery rate of 69.5% for secured loans (22.5%) and an average
of 52.1% for unsecured loans (28.6%). Araten et al. (2004) report an average
recovery rate of 59.1% for secured and 49.5% for unsecured facilities. In the
work of Grippa et al. (2005) fully collateralised loans have an average recov-
ery rate of 70%, whereas non-collateralised loans recover only 32%. In the
database presented in Section 4.1 it can be found that secured loans (average
recovery rate of 65.3% with a standard deviation of 37.0%) lead to a higher
mean recovery rate with a lower standard deviation than unsecured loans
(mean recovery rate of 45.5% with a standard deviation of 44.2%).
For the quota of collateral, defined as the ratio of collateral value to default
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amount, capped to the interval [0, 1], a strong positive correlation to the
amount recovered can be detected. This is also consistent to other stud-
ies which report a positive impact of the quota of collateral on the amount
recovered (see e.g. Carty et al. (1998), Gupton et al. (2000), Araten et al.
(2004), Emery et al. (2004), or Grunert and Weber (2005)).
Furthermore, the types of collateral were divided into six different classes
(”cash” (loans with collateral ”cash” recover 77.7% on average), ”accounts
receivable” (73.3%), ”fixed assets” (63.8%), ”real estate” (77.1%), ”commodi-
ties” (67.6%), and ”others” (71.6%)), which are all significant at a 5%-level.
The relatively high average recovery rate of facilities collateralised with real
estate can be explained by the high quota of collateral those facilities exhibit
on average (more than 90%) in comparison to the other collateral classes
(around 60%). Regarding the type of collateral, Carty et al. (1998) propose
the difference in quality of collateral as a driver for recovery rates. They
observed a recovery rate of 89.8% for loans collateralised with accounts re-
ceivable/cash/inventory but only 73.6% for loans collateralised with stocks of
subsidiaries. Keisman et al. (2004) state that instruments with higher qual-
ity collateral achieve on average higher recovery rates with a lower standard
deviation.
In addition to that, facilities with more than one piece of collateral (75.2%)
recover on average more than those with only one piece of collateral (73.3%),
but the difference is neglible.
Nevertheless, there have to be other sources of recovery, as the average re-
covery rate is in general much higher than the average quota of collateral. In
the investigated database, the average recovery rate is 60.7% while the aver-
age quota of collateral is only 35.6%. Grunert and Weber (2005) report an
average recovery rate of 72.5% and an average quota of collateral of 30.6%.
The rank of security represented by the five different categories ”secured by
first and non-shared lien on assets” (average recovery rate of 68.4%), ”se-
cured by first and pari-passu lien on assets” (74.9%), ”secured by second
lien on assets” (76.6%), ”secured by other means” (51.8%), and ”unsecured”
(45.5%) are also statistically significant, whereas ”secured by other means”
and ”unsecured” show clearly the lowest recovery rates with the highest stan-
dard deviations.

Seniority. The seniority classes (”senior”, ”pari-passu”, ”subordinated”, ”eq-
uity”, and ”not known”) play only a minor role in determining the recovery
in the considered data set as almost 85% of the data are either ”senior” or
”pari-passu”7 and only 11 observations are ”equity”. By contrast, for bond

7”Senior” is assumed to mean everyone else is subordinated/junior to this obligation. If
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recoveries the seniority or the place in the capital structure is one of the
most important influence factors. Altman and Kishore (1996) for example
found average recovery rates for senior secured debt of 57.9% (with a stan-
dard deviation of 23.0%), for senior unsecured debt of 47.6% (26.7%), for
senior subordinated debt of 34.4% (25.1%), and for subordinated debt of
31.3% (25.1%). This result is confirmed by many other studies, e.g. Acharya
et al. (2003) or Schuermann (2004). In a study on Swedish small business
bankruptcies, Thorburn (2000) finds that senior claims recover 69% on aver-
age while junior claims receive only 2%.
In contrast to these absolute seniority dummies, the relative seniority, debt
cushion, or debt subordinated percentage, defined as the percentage of debt
that is subordinated to the obligation in question, seems to have a signif-
icant positive impact on the recovery rates in the investigated database.
Other studies, e.g. van de Castle et al. (2000), Keisman et al. (2004), Emery
et al. (2004), or Grippa et al. (2005), also find that the higher the debt cush-
ion the higher the average recovery rate and the lower the standard deviation.

Guarantees. The presence and quality of guarantees was also tested as a
possible explanatory variable. Facilities with a guarantee (average recovery
of 63.0% with standard deviation 38.2%) have on average higher recovery
rates than those facilities without (59.6% with standard deviation 40.9%).
Similar results were found by Grippa et al. (2005) with different magnitudes
depending on the quality of guarantees. Dermine and Neto de Carvalho
(2006) report a negative but not significant effect of personal guarantees on
the amount recovered.

4.2.5 Macroeconomic factors

Finally, the impact of the macroeconomic environment on the (facility-level)
recovery rates was tested as well. Different kinds of macroeconomic explana-
tory variables like GDP, TED spread, the S&P 500 total return index, the
Dow Jones Euro Stoxx 50, the growth rate in industrial production, the
volatility index from CBOE as well as the VSTOXX and the VDAX, the
5-year treasury constant maturity rate, the 3-month Euribor, the Consumer
and Producer Price Index, as well as S&P’s annual global corporate default
rate (see e.g. Vazza et al. (2006)) as a proxy for the credit environment have
been examined. For the macroeconomic variables monthly, quarterly, as well

the obligation is senior but it isn’t known if this is the only senior lender than ”pari-passu”
is used.
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as yearly absolute values and changes at default and one year prior to default
were tested. The impact of all of those factors on the recovery rates at the
facility level is rather small. They become more important when aggregated
recovery rates are considered (see Chapter 5).
The macroeconomic environment is a factor that has been often and con-
troversially discussed in empirical research, mostly for aggregated recovery
rates. Frye (2000b) states that recovery rates are about one-third lower in
recessions, Roche et al. (1998) find a positive correlation between recoveries
and stock prices measured by the Dow Jones Industrial Average, and Emery
et al. (2004) note a positive effect of the growth rate in industrial production
on recoveries. Covitz and Han (2004) claim that recovery rates increase as
economic conditions improve from low levels but decrease as economic condi-
tions become robust. Araten et al. (2004) only find a significant correlation
between recovery rates and the economic cycle for unsecured credits. Altman
et al. (2001), Grunert and Weber (2005), and Dermine and Neto de Carvalho
(2006) can’t find a significant relationship at all. Hu and Perraudin (2002)
find a negative correlation (-19%) between the quarterly default rates and
the quartely recovery rates and Frye (2003) rejects the hypothesis that recov-
ery is independent of high default years. Keisman et al. (2004) propose the
aggregate default rate to be one of the five main factors influencing recovery
rates in their modeling framework and Altman et al. (2001) find a significant
negative correlation between aggregated default rates and bond recoveries.
In contrast to this, Carey and Gordy (2004) state that the correlation be-
tween simple default rates and recoveries is close to zero.

4.2.6 Overview

Table 4.5 gives a short summary of the empirical findings in literature on the
impact of the factors described above on recovery rates and compares them
to the results obtained from the database introduced in Section 4.1.8 For
some of the variables no information was found in literature. For the aggre-
gate default rates and the economic cycle different indicators were tested at
different times in the default process. Some of them had a positive influence
on recovery rates, some of them a had negative impact, and some were not
significant at all.

8Here, ”+” means positive influence, ”o” no statistical significant influence, ”-” negative
influence and ”�” statistical significant influence (with no statement about sign possible)
on recovery rates. No statement about sign possible especially applies to factors with
different categories where some of the possible outcomes have a positive impact and some
a negative impact.
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Influence factor + o - � This study

Seniority × o
Debt cushion or rel. seniority 9 × +
Presence of collateral × +
Liquidity of collateral × +
Quota of collateral × +
Presence of guarantee × +
Industry of borrower × × o
Size of issue × × × +
Size of borrower × × × +
Number of loans per borrower × +
Facility type × × �
Default type × × �
Time between origination and default × +
Time between default and resolution × × �
Geographical dummies × × �
Rating / creditworthiness × × +
Aggregate default rate × × o/-
Macroeconomics × × +/o/-
Rank of security +
Facility asset class �
Guarantee type o
Syndication indicator �
Operating company indicator �
Public-private indicator �
Utilization rate �

Table 4.5: Influence factors and their impact on recovery rates.
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Levels of recoveries. In addition to these analyses, the reliability of influ-
ence factors on different levels of recovery rates was tested. Therefore, the
database was divided into different classes, e.g. the 25% lowest observed re-
covery rates, the 25% highest observed recovery rates or the 50% highest
observed recovery rates, and the procedures described above were repeated
on the subsamples. It turned out that some factors which are good at pre-
dicting whether a defaulted facility leads to a high or a low recovery rate,
are not very predictive when only facilities with low or high recovery rates
are considered. For the facilities with low recovery rates (the bottom 25%
of the data with recoveries ranging from 0% to 14.2%) a much higher degree
of explanation can be found than for high recoveries. The most important
influence factors for low levels of recovery are presence, quality, and quota of
collateral. As the top 25% of recoveries only range from 97.6% to 100% the
top 50% of the data with recoveries from 80.3% to 100% was investigated
as well. In the sample containing these high recoveries collateralisation only
plays a minor role. The most important factor is the default type. In ad-
dition to that, many of the industry dummies are significant. Nevertheless,
the degree of explanation is rather small. Another interesting result obtained
from the high recovery dataset is that in contrast to the previous findings
now the size of the issue is negatively correlated with the recovery rate (at a
rather low level).
Grunert and Weber (2005) also show that there are different influence fac-
tors for different levels of recoveries, but in their case study high recovery
rates are mostly influenced by the exposure at default (high EAD leads to a
high recovery rate) and low recovery rates by the risk premium and by the
economic cycle.

4.3 Multivariate analysis

In addition to the univariate analyses from Section 4.2, various combinations
of explanatory variables were tested for a predictive multivariate regression
model. Again, the independent variable in this multivariate regression is
the (facility-level) economic recovery rate introduced in Section 4.1. The set
of explanatory variables used in this section contains all explanatory vari-
ables described in Section 4.2. Furthermore, the set of explanatory variables
was divided into two subsets, one containing all variables which are avail-
able for all defaulted facilities and the other including all those facilities for
which spread observations are available. Analogously to Section 4.2, the

9Here, ”Debt Cushion or Rel. Seniority” is defined as the percentage of debt that is
subordinated to the obligation in question.
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transformed recovery rates are used for the multivariate linear model. Using
Mallow’s Cp-statistic10 (see e.g. Draper and Smith (1998)) as variable selec-
tion criteria in a backward-forward selection procedure leads to the results in
Tables 4.6 and 4.711. In these (in terms of Mallow’s Cp-statistic) ”best” mul-
tivariate models, which have adjusted R2 of 18.8% (with spread information)
and 21.7% (without spread information), all the variables are significant on
a 5%−level. In many other studies the multivariate R2 is of similar height,
e.g. 15%-21% in Grunert and Weber (2005) or 30.2% in Grippa et al. (2005).
In the multivariate model with spread information much less factors are sig-
nificant than in the model without spread information, while both models
have a similar degree of explanation. Besides the spread, which has a nega-
tive impact on the recovery rates, the most important factors in the model
with spread information refer to the degree and quality of collateralisation
and the type of default. The higher the quantity of collateral and rank of
security, the higher is the recovery rate. The default amount (EAD) is also
poitively correlated with the recovery rate. Considering the type of default,
”unlikely to pay” has the highest positive impact on (facility-level) recovery
rates. In the model without spreads the facility asset class, the facility type,
and the industry group as well as the size of the issue are significant besides
the factors describing collateralisation and the type of default.

4.4 Recovery rate of collaterals

As seen in Subsection 4.2.4, the most important explanatory variable for
the recovery rate of secured loans is the quality and quantity of collateral.
Therefore, a closer look is taken at the recovery rates of collaterals and their
relationship to overall recovery rates in this section. Hence, in contrast to
Sections 4.2 and 4.3, where the independent variable under consideration was
the workout recovery rate of the defaulted facilities, now the payment streams
occurring from the liquidation of collateral positions for each defaulted fa-
cility are investigated. For this, all loans for which no collateral value in-
formation is available (neither book nor market value) in the database are
removed, leaving a sample of 2973 different pieces of collateral distributed
among 3202 facilities (one piece of collateral can be used as a security for
more than one loan and one loan can be secured by more than one piece of
collateral). Again, all facilities with default amount 0 are removed from the

10Mallow’s Cp-statistic is defined by Cp = RSSp

σ̃2 −n+2p, where RSSp is the residual sum
of squares for the model with p regressors, σ̃2 is the residual mean square after regression
on the complete set of regressors, and n is the sample size.

11*** indicates significance at a 1%-level, ** at a 5%-level, and * at a 10%-level.
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Coefficient (t-statistic)

Intercept -1.630 (-18.365) ***
Quota of collateral 0.267 (4.102) ***
Collateral acc. receivable -0.226 (-3.119) ***
Collateral real estate 0.174 (3.025) ***
Guarantee indicator 0.137 (3.553) ***
Syndicated indicator 0.335 (4.402) ***
Sec. by first lien (non shared) 0.583 (13.081) ***
Sec. by first lien (pari-passu) 0.437 (5.512) ***
Sec. by other means 0.381 (7.773) ***
Default - 90 days past due 0.263 (3.471) ***
Default - Unlikely to pay 0.606 (14.753) ***
Default - Bankruptcy 0.096 (3.125) ***
Default - Distr. restructuring 0.368 (4.721) ***
Log default amount 0.061 (8.622) ***
Spread in bps -1e-04 (-8.059) ***

Table 4.6: Multivariate regression model for transformed recovery rates with
spread information.

sample (another 19 observations).
In the following, two major questions concerning the liquidation of collat-
eral after default are addressed. First, how much recovery is gained from
collateral positions. Second, how much of the collateral value is liquidated
during the workout process. The first question is answered by looking at the
recovery rate gained from collateral, i.e. the ratio of the present value of all
net cash flows either from liquidation of collateral or realized book value of
collateral to the default amount (”recovery from collateral”), and the ratio
of recovery rate from collateral to overall recovery rate (”ratio of recovery
from collateral to overall recovery”). The ratio of collateral that is liquidated
or collateral with book value that is realized to the collateral value prior to
default (”proportion of liquidated collateral”) is used as a measure for the
proportion of provided collateral used during the workout process. To avoid
the impact of abnormally high or low ratios they have been capped to the
interval [−0.5, 1.5]. The ratio of recovery rate from collateral to overall recov-
ery rate is only computed when both quantities have the same sign. Facilities
where the recovery rate from collateral is negative due to liquidation expenses
and the overall recovery rate is positive or vice versa (103 observations) are
excluded from the analysis as such negative ratios are hard to interpret. Ta-
ble 4.8 gives the summary statistics of the three ratios and compares them
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Coefficient (t-statistic)

Intercept -1.854 (-14.578) ***
Collateral indicator -0.062 (-2.067) **
Collateral acc. receivable -0.074 (-2.336) **
Collateral fixed assets -0.243 (-6.934) ***
Collateral real estate 0.172 (6.779) ***
Collateral commodities -0.742 (-3.818) ***
Facil. class - SME 0.624 (5.346) ***
Facil. class - Large corp. 1.058 (8.919) ***
Facil. class - Banks 0.736 (5.302) ***
Facil. class - Spec. lending 0.694 (5.592) ***
Guarantee indicator 0.253 (15.574) ***
Syndicated indicator 0.139 (2.594) ***
Private firm 0.327 (18.081) ***
Facil. type - Demand loan -0.631 (-20.799) ***
Facil. type - Uncommitted line 0.532 (2.202) **
Facil. type - Lease -0.551 (-3.885) ***
Facil. type - Other deriv. 0.521 (17.610) ***
Senior 0.092 (2.603) ***
Pari-passu 0.426 (12.035) ***
Sec. by first/non-shared lien 0.466 (17.364) ***
Sec. by first/pari-passu lien 0.214 (5.267) ***
Sec. by second lien 0.750 (11.837) ***
Default - 90 days past due 0.253 (10.428) ***
Default - Unlikely to pay 0.341 (12.176) ***
Default - Bankruptcy 0.149 (6.737) ***
Default - Charge-off 0.102 (4.158) ***
Default - Non accrual 0.225 (6.078) ***
Ind. - Aggriculture 0.156 (2.793) ***
Ind. - Public adm. & Defence 0.344 (2.378) **
Log borrower default amount 0.018 (6.059) ***
Quota of collateral 0.187 (4.982) ***

Table 4.7: Multivariate regression model for transformed recovery rates with-
out spread information.
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to the overall recovery rates of the facilities in this sample (”overall recovery
rate”).

Recovery Ratio of recovery Proportion of Overall
from from collateral liquidated recovery

collateral to overall recovery collateral rate

Mean 0.651 0.861 0.619 0.756
St.dev. 0.394 0.349 0.186 0.333
Median 0.698 0.997 0.579 0.904
Number 3183 3080 3183 3183

Table 4.8: Summary statistics for collateral recovery.

The distribution of recovery rates gained from collateral is U-shaped with a
high amount of recoveries higher than 90% (more than 35% of the observa-
tions) or lower than 5% (8% of the observations). The remainder is almost
uniformly distributed in the interval [5%, 90%]. Not surpisingly the recovery
rates gained from collateral are highly correlated with the overall recovery
rates and the quota of collateral, i.e. the ratio of collateral value to default
amount. The ratio of recovery rates from collateral to overall recovery rates
is in most cases rather high, with a ratio of more than 90% in 60% of the
observations and more than 100% in 42% of the observations. The remainder
is almost evenly distributed. It has a positive correlation with the number
of collaterals as well as with the quota of collateral and decreases on aver-
age when the number of loans that are secured with this piece of collateral
increases. All in all one can say that for secured facilities the recovery pay-
ments from collateral liquidation or realisation of book value constitute the
majority of all recovery payments for the secured facilities in this sample and
depend on the number and quota of collateral.
The proportion of liquidated collateral is in most cases either very small
(smaller than 5% in 14% of the observations) or very high (greater than 95%
in 27% of the observations). This ratio has a negative correlation with the
value and quota of the collateral as well as with the number of loans that are
secured with this collateral. A possible explanation for this might be the fact
that in the case of high collateral values and overcollateralisation most of the
collateral is not needed to pay the creditors. In the other case, when there
are many defaulted facilities that share one piece of collateral, the share of
each facility is rather small. To sum it up, in most cases the collateral is
either liquidated (almost) completely or (nearly) not at all.
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Chapter 5

Explaining aggregated recovery
rates

The determinants of aggregated recovery rates have only been examined by
very few studies. Altman et al. (2001) for example, who investigate annual
weighted average recovery rates of defaulted US corporate bonds, only find
secondary effects of macroeconomic variables on recovery rates. Covitz and
Han (2004) find a weak positive correlation between GDP and annual ag-
gregated recovery rates of US bonds. Nevertheless, there has also been a
growing amount of empirical research articles showing that aggregated re-
covery rates vary over time and are lower in a distressed economy than in a
healthy economy (see e.g. Frye (2000b) or Schuermann (2004)). Emery et al.
(2004) find a positive effect of the industrial production growth on recovery
rates and Roche et al. (1998) note that there is a positive correlation between
recovery rates of syndicated bank loans and stock prices.
In this chapter, the above mentioned relationships, that have been proposed
in different studies, are investigated on a unique dataset. Such an exam-
ination is accomplished, to the author’s best knowledge, for the first time
on such a broad European dataset. Furthermore, different Markov-switching
concepts are applied to the analysis of aggregated recovery rates. An ad-
ditional factor that tries to explain the credit environment is incorporated
into the analysis as well. Finally, the empirical results give an indication of
how the knowledge gained from the analyses can be used in the modelling of
recovery rates, e.g. for pricing purposes (see Chapter 6).
Recent studies with similar scope but different focus on other aspects of
credit-risk modelling are e.g. Bystroem (2008), Alexander and Kaeck (2008),
and Hofert et al. (2008). The former two investigate the relation between
CDS spreads on the one hand and stock prices, stock return volatilities, and
interest rate movements on the other hand. The latter describes compound
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and base correlations of CDO tranches in terms of linear regressions. The
concept of Markov-switching models for the description of recovery rates is
e.g. used in Bruche and González-Aguado (2008) and Chourdakis (2008).

5.1 The data

The data set used in this chapter consists of monthly average recovery rates
derived from the database described in Section 4.1 and various macroeco-
nomic indicators acting as explanatory variables. Again, outliers with recov-
ery rates smaller than 0 or greater than 1 were removed from the database just
as those facilities with default amount equal to 0. A time horizon between
January 1998 and January 2007 is considered in what follows. Monthly aver-
age recovery rates were computed for the defaulted facilities within this time
horizon. Here, the results achieved with the unweighted arithmetic mean are
presented. A weighted average with the default amount as weighting factor,
which was used e.g. in Duellmann and Trapp (2004), Varma (2005), Dermine
and Neto de Carvalho (2006), and Bruche and González-Aguado (2008) was
also tested but these results were not very promising. Figure 5.1 shows the
monthly recovery rates in the considered time horizon.
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Figure 5.1: Monthly average recovery rates.

In the following, six different explanatory variables will be regarded. The
first two factors describe the macroeconomic environment, the third and
fourth describe interest rate movements, and the last two serve as proxies
for the stock market behaviour. The growth rate in industrial production
(GIP) includes the industrial production of 13 Euro countries.12 GGDP

12At the end of 2007 the 13 Euro countries were Belgium, Germany, Ireland, Spain,
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denotes the growth rate of the gross domestic product (GDP). The GDP
which is calculated from the GDP of 13 Euro countries is the seasonally
adjusted GDP (i.e. after removing seasonal effects) at market price.13 As the
GDP is not observable on a monthly basis, monthly data was generated from
quarterly data by interpolation. In addition to that, the GDP with a delay
of 3 months due to publication issues was tested but as the results were very
similar to the case without delay, the following results will be restricted to
GDP without delay. The Euro Interbank Offered Rate (EURIBOR) serves
as a proxy for the risk-free interest rates in the Euro zone. Furthermore,
the 5-year Euro area Government Benchmark Bond yield (GY) calculated
as the weighted mean of government bond yields with maturities between
4.5 and 5.5 years is used. GIP, GDP, EURIBOR, and GY are available at
the website of the European central bank (http://sdw.ecb.europa.eu/).
As a proxy for equity markets the return of the Dow Jones Euro STOXX 50
(DJES) is employed. Finally, the VSTOXX volatility index based on the Dow
Jones Euro STOXX 50 serves as a proxy for equity volatility. It is calculated
from the implicit volatilities of Dow Jones Euro STOXX 50 options. As the
VSTOXX data only date back to 1999, it is replaced by the VDAX-NEW
index (VDAX) whenever time series that date before 1999 are used. The
equity index DJES as well as VSTOXX and VDAX were downloaded from
Reuters. The evolution of the explanatory variables in the considered time
period is shown in Figure 5.2.

In the following, an exponential relationship between the recovery rates and
the macroeconomic factors is assumed. This assumption prevents recovery
rates from becoming negative. Although recovery rates are not bounded be-
low 1 in this case (recovery rates greater than 1 do also appear in some cases in
reality, see e.g. p.13 of Schuermann (2004)), this is a common approach used
e.g. in Altman et al. (2001). Therefore, the recovery rates are transformed
with the ln-function. The connection between the logarithmised recovery
rates and the macroeconomic factors is assumed to be linear. Other possible
transformations include e.g. logistic transformation (see, e.g., Schönbucher
(2003) or Duellmann and Trapp (2004)) or beta transformations (see e.g.
Gupton and Stein (2005)), which lead to distributions bounded on [0, 1] at
the cost of loosing analytical tractability in the modelling framework.

France, Italy, Luxembourg, the Netherlands, Austria, Portugal, Finland, Greece, and
Slovenia.

13For further information on seasonally adjustment see e.g. http://www.ecb.int/
stats/money/aggregates/season/html/index.en.html
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Figure 5.2: Explanatory variables.
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5.2 Linear regression analysis

In this section, the linear regression model

ln(z(t)) = β0 + β1GIP (t) + β2GGDP (t) + β3DJES(t) + β4V DAX(t)

+β5EURIBOR(t) + β6GY (t) + ε(t), (5.1)

with z(t) denoting the recovery rate and ε(t) ∼ N (0, σ2) i.i.d. is estimated.
The coefficients and t-statistics are given in Table 5.1.14

Variable Coefficient
(t-statistic)

Intercept -1.004 ***
(-14.641)

GIP 0.942
(0.848)

GGDP 0.941
(0.199)

DJES 0.111
(0.580)

VDAX 0.704 ***
(6.168)

EURIBOR -0.075
(-0.030)

GY 8.718 ***
(3.075)

R2
a in % 46.23

Table 5.1: Coefficients (t-statistics) and significance codes of the linear re-
gression (5.1) for response ln(z(t)).

The coefficient of determination (R2) of this model is 49.22%, the adjusted
R-squared (R2

a) equals 46.23% which is in line with other studies on recovery
rates. Partial t-tests show that the variables VDAX and GY are significant
on a 1%-level. All other variables are not significant on a 10%-level and hence
have only a small impact on the response variable.
Note that the sign and the significance code of the coefficients in such a
multivariate model like in (5.1) may differ from the sign and significance code
of the coefficient in a univariate model (see also Table A.1 in Appendix A).
Especially the results for EURIBOR and GY (correlation coefficient: 86.38%)

14*** indicates significance at a 1%-level, ** at a 5%-level, and * at a 10%-level.
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as well as for EURIBOR and GGDP (correlation coefficient: 51.39%) might
be misleading as they are highly correlated. E.g. in a univariate model both
EURIBOR and GY have a significant positive impact on the logarithmised
recovery rates. In addition to that in a univariate setting the variable GGDP
is positively correlated with the logarithmised recovery rates. To avoid the
impact of a possible multi-collinearity a variable selection procedure for each
multivariate model is conducted in the following.
Using Mallow’s Cp-statistic as variable selection criterion in a backward-
forward selection procedure leads to the results presented in Table 5.2. In
this (in terms of Mallow’s Cp-statistic) ”best” model with an adjusted R2

of 47.70% the variables VDAX and GY are significant on a 1%−level. The
higher the variables VDAX and GY are, the higher are the recovery rates.

Variable Coefficient
(t-statistic)

Intercept -0.991 ***
(-17.209)

VDAX 0.676 ***
(6.417)

GY 8.806 ***
(6.242)

R2
a in % 47.70

Table 5.2: Coefficients (t-statistics) and significance codes in ”best” model
of the linear regression (5.1) for response ln(z(t)).

As can be seen from Figure 5.1 there seems to be a break in the data at some
time in the year 2002. Such a break might lead to changes in the behaviour
of the regression coefficients and a lower degree of explanation. Figure 5.3
contains the evolution of the coefficients of the (multivariate) linear regression
(5.1) rolled over the last three years. The dashed lines correspond to the
coefficients from Table 5.1.
To verify this observation and test the stability of the regression parameters
a Chow breakpoint test (see Chow (1960)) is applied to the model from Table
5.2. As a potential breakpoint all observation dates except for the first and
last four observation dates are used. The hypothesis that the coefficients of
the regression models before and after the breakpoint are equal is rejected
on a 5%-level for all possible breakpoints between January 2000 and April
2002 with the test statistic reaching its maximum in April 2002. According
to these results, two different ways in the examination of the determinants
of aggregated recovery rates will be conducted in what follows: a Markov-
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Figure 5.3: Evolution of regression parameters
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switching model which allows the regression coefficients to switch according
to different regimes and a more detailed regression analysis on a sub-sample
of the data that contains no structural breaks.

5.3 Markov-switching analysis

In this section, the procedures described in Section 2.1 will be applied to the
aggregated (logarithmised) recovery rates, i.e. the observable process is given
by Y (t) = ln(z(t)). Furthermore, it is assumed that p is the density of the
normal distribution, i.e.

p(x, y; Φ) =
1√

2πσ2
x

exp

{
−(y − µx)2

2σ2
x

}
,

where µx, σx denote the state-dependent distribution parameters with x ∈
{1, . . . , J}.
Before the Markov-switching analysis is conducted, the number of states
J has to be determined. For this, the parameters of the HMM for J ∈
{2, 3, 4} (J > 4 is not realistic as the number of parameters becomes to high)
are estimated and the decision which model fits best is made according to
Akaike’s information criterion (see Akaike (1974)). I.e. we calculate

AIC = 2n(J)− 2l(J,Θ∗),

where n(J) denotes the number of parameters, Θ∗ the set of estimated pa-
rameters, and l(J,Θ∗) the maximal log-likelihood of the model with J states.
The lowest AIC-value is obtained for a model with J = 2 states. Hence, the
following analyses concentrate on a HMM with two different states, S1 and
S2, applied to the logarithmised recovery rates. The parameter estimates
obtained from the Baum-Welch algorithm (see Algorithm 2.1 in Section 2.1)
can be found in Table 5.3.

State S1 State S2
δj 2.1E-06 0.999
πj1 0.960 0.040
πj2 0.041 0.959
µj -0.355 -0.579
σj 0.061 0.128

Table 5.3: Parameter estimates of HMM with two states.

The parameters for µj and σj in Table 5.3 correspond to an expected value
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for the recovery rates in state S1 of 0.702 with standard deviation 0.043 and
an expected value of 0.565 with standard deviation 0.073 in state S2. In
the first state the expectation is higher and the standard deviation is lower
than in the second state. Applying Viterbi’s algorithm (see Algorithm 2.2 in
Section 2.1) leads to the state sequence shown in Figure 5.4.
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Figure 5.4: States of the Markov chain.

It can be seen that the Markov Chain stays mostly in state S1 at the begin-
ning of the considered time period. After about 60 months (end of 2002) the
Markov Chain changes to state S2 and remains in this state. This change is
in line with the results from the breakpoint tests in Section 5.2.
Since the Markov-switching analysis has shown that the distribution of the
recovery rates depends on the state of the Markov chain, the impact of each
explanatory variable in Equation (5.1) is also state-dependent. Therefore,
the impact of the different states on the regression coefficients is analysed in
what follows, i.e. the estimated sequence of states is introduced as a further
explanatory variable. The new linear model is then given by

ln(z(t)) = β0 + β1GIP (t) + β2GGDP (t) + β3DJES(t)

+β4V DAX(t) + β5EURIBOR(t) + β6GY (t) + σ1ε(t)

+S(t) [β7 + β8GIP (t) + β9GGDP (t)

+β10DJES(t) + β11V DAX(t)

+ β12EURIBOR(t) + β13GY (t) + σ2ε(t)] , (5.2)

with ε(t) ∼ N (0, 1) i.i.d., and σ1, σ2 > 0. Let β̂0, . . . , β̂13, σ̂1, σ̂2 be the least-
squares estimates of β0, . . . , β13, σ1, σ2. Assuming S(t) ∈ {0, 1}, Equation
(5.2) can be reformulated in two linear models, one for each state. Let
ln(zS1(t)) and ln(zS2(t)) denote the logarithmised recovery rates in state S1
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and S2 respectively. This leads to

ln(zS1(t)) = β̂S1
0 + β̂S1

1 GIP (t) + β̂S1
2 GGDP (t) + β̂S1

3 DJES(t)

+β̂S1
4 V DAX(t) + β̂S1

5 EURIBOR(t) + β̂S1
6 GY (t)

+σ̂S1ε(t), (5.3)

ln(zS2(t)) = β̂S2
0 + β̂S2

1 GIP (t) + β̂S2
2 GGDP (t) + β̂S2

3 DJES(t)

+β̂S2
4 V DAX(t) + β̂S2

5 EURIBOR(t) + β̂S2
6 GY (t)

+σ̂S2ε(t), (5.4)

where ε(t) ∼ N (0, 1) i.i.d., β̂S1
0 = β̂0, β̂S2

0 = β̂0 + β̂7, β̂S1
i = β̂i, β̂

S2
i = β̂i+ β̂i+7

for i = 1, . . . , 6, σ̂S1 = σ̂1, and σ̂S2 = σ̂1 + σ̂2.
The coefficients of the models are given in Table 5.4 (the corresponding uni-
variate results can be found in Appendix A).

Coefficient (t-stat) in State
Variable S1 S2
Intercept -0.508 *** -0.867 ***

(-5.927) (-6.507)
GIP 0.408 1.608

(0.432) (0.973)
GGDP -0.325 3.458

(-0.093) (0.411)
DJES 0.015 0.369

(0.121) (0.729)
VDAX 0.238 ** 0.4840 *

(2.530) (1.765)
EURIBOR -2.176 -3.213

(-1.244) (-0.592)
GY 3.627 * 6.585

(1.790) (1.057)

R2
a in % 58.05

Table 5.4: Coefficients (t-statistics) and significance codes of Equations (5.3)
- (5.4) with responses ln(zS(t)).

As one can easily see, the differences between β̂S1
i and β̂S2

i are quite high.
While in state S1 GY, VDAX, and EURIBOR are the most significant ex-
planatory variables, the variables VDAX, GIP, and GY have the greatest
impact in state S2. Using an F-test, the hypothesis that the models from
Tables 5.1 and 5.4 are equal can be rejected on a 1%-level. In comparison to
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the regression from Equation (5.1) (R2
a = 0.4623), the model from Equation

(5.2) (R2
a = 0.5805) has a much higher degree of explanation.

Again, Mallow’s Cp-statistic is applied in a backward-forward selection pro-
cedure to get the ”best” model given in Table 5.5 consisting of the variables
VDAX, EURIBOR, and GY. The higher the variables VDAX and GY are,
the higher are the recovery rates in each state. For the EURIBOR the reverse
is true.

Coefficient (t-stat) in State
Variable S1 S2
Intercept -0.510 *** -0.826 ***

(-6.537) (-7.377)
VDAX 0.234 *** 0.448 *

(2.773) (1.687)
EURIBOR -2.392 -1.712

(-1.496) (-0.365)
GY 3.811 * 5.653

(1.995) (0.349)

R2
a in % 59.56

Table 5.5: Coefficients (t-statistics) and significance codes in ”best” model
of Equations (5.3) - (5.4) with responses ln(zS(t)).

Until now, it can be stated that recovery rates can change between two states
according to a Markov-switching model with state S2 having a lower mean
and higher standard deviation. Furthermore, the sensitivity of the recovery
rates to the explanatory variables varies between the states in this case.
Another open question is what drives changes in the regimes. This question
is addressed by using a logistic regression model given by

P(S(t) = S2) =
1

1 + e−βT x(t)
(5.5)

with

x(t) = (1, GIP (t), GGDP (t), DJES(t), V DAX(t), EURIBOR(t), GY (t)) ,

β = (β0, . . . , β6), and S(t) denoting the state at time t. In this multivari-
ate logistic regression model only the two variables VDAX and GY are sig-
nificant. The coefficients and z-statistics of this reduced logistic regression
model, which corresponds to the (according to Mallow’s Cp-statistic) optimal
model, are given in Table 5.6. As one can easily see, the higher the variables
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VDAX and GY, the lower is the probability of being in state S2.

Variable Coefficient
(z-statistic)

Intercept 14.249 ***
(5.537)

VDAX -18.661 ***
(-3.952)

GY -239.036 ***
(-4.929)

R2
a in % 52.40

Table 5.6: Coefficients (z-statistics) and significance codes of the logistic
regression from Equation (5.5).

For logistic regression models it is often more convenient to measure the
quality of the model not in terms of R2

a but in terms of other performance
measures like accuracy ratio or percentage of right predictions (see e.g. En-
gelmann et al. (2003) or Höcht and Zagst (2007) for applications of logistic
regression models and different performance measures in the field of credit
risk modelling). Both the accuracy ratio (85.49%) and the percentage of right
predictions (87.14%) indicate a very good degree of explanation. Figure 5.5
contains the estimated probabilities from Equation (5.5) with explanatory
variables VDAX and GY and the inferred sequence of states from Viterbi’s
algorithm.
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Figure 5.5: State probabilities from Equation (5.5) and states of the Markov
chain from Viterbi’s algorithm.

The estimated coefficients, significance codes, and performance measures are
almost the same when replacing x(t) by x(t − 1) in Equation (5.5), i.e. this
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model is not only good in explaining regime changes, it provides also a suit-
able state prediction for the next time step.

5.4 More detailed linear regression analysis

According to the results from Sections 5.2 and 5.3, it can be concluded that
there is no structural change in the recovery rates data before January 2000
and especially after mid 2002. Therefore, different states and different be-
haviour of explanatory variables can be neglected in these time periods. As
the time period from January 1998 until January 2000 is rather short, the
following analyses will mainly concentrate on the recovery rates starting in
mid 2002. By taking a closer look at the data sample before January 2000, it
can be found that the GGDP has a significant positive impact on the recov-
ery rates while the EURIBOR a significant negative impact. The adjusted
coefficient of determination is only about 20% in this case.
The recovery rates starting in mid 2002 are analysed in what follows. In
addition to the analysis subject to Equation (5.1), the recovery rates are
divided according to the securisation of the underlying credit instruments,
i.e. recovery rates from secured and unsecured facilities are differentiated. A
further classification of secured facilities, e.g. according to rank of securities,
is not done because the resulting data samples in the different subclasses
would be too small. The corresponding linear regression is given by

ln(zi(t)) = β0 + β1GIP (t) + β2GGDP (t) + β3DJES(t)

+β4V STOXX(t) + β5EURIBOR(t) + β6GY (t) + ε(t) (5.6)

with i ∈ {T, U, S} and ε(t) ∼ N (0, σ2) i.i.d. Here zT denotes the total recov-
ery rates, zU the recovery rates of unsecured facilities, and zS the recovery
rates of secured facilities.
In Table 5.7, the estimated coefficients and t-statistics for the three response
variables are given (the corresponding univariate results can be found in
Appendix A).

For the total recovery rates the coefficient of determination R2 is 48.35%,
the adjusted coefficient of determination R2

a is 42.27%. The null hypothesis,
that all coefficients are zero, can be rejected at a 1%-level. The p-values of
the partial t-tests show that the explanatory variables VSTOXX and GY are
significant.
In the case of the recovery rates of unsecured facilities R2 is 64.21% and R2

a

is 60.00%. The null hypothesis, that all coefficients are zero, can be rejected
at a 1%-level. The p-values of the partial t-tests show that the explanatory
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Variable Coefficient Coefficient Coefficient
(t-statistic) (t-statistic) (t-statistic)

Response ln(zT (t)) ln(zS(t)) ln(zU(t))
Intercept -1.091 *** -0.429 *** -2.104 ***

(-8.482) (-2.716) (-9.367)
GIP 1.486 1.9381 1.368

(0.942) (1.211) (0.496)
GGDP -5.837 3.402 -32.218 **

(-0.682) (0.324) (-2.155)
DJES 0.256 -0.275 1.098 *

(0.760) (-0.666) (1.866)
VSTOXX 0.578 *** -0.153 1.024 ***

(3.410) (-0.735) (3.458)
EURIBOR 1.377 -1.358 32.463 ***

(0.260) (-0.209) (3.506)
GY 12.464 ** 1.771 13.754

(2.429) (0.282) (1.535)

R2
a in % 42.27 -6.00 60.00

Table 5.7: Coefficients (t-statistics) and significance codes of Equation (5.6)
with responses ln(zi(t)).
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variables VSTOXX and EURIBOR are significant at a 1%-level, the variable
GGDP at a 5%-level, and the variable DJES at a 10%-level.
For the response ln(zS), i.e. for the recovery rates of secured facilities, R2 is
only 5.15% and R2

a is even negative. This means that the variance of recovery
rates steming from secured facilities can’t be explained by the macroeconomic
factors. The null hypothesis, that all coefficients are zero, can not be rejected
at a 5%-level and partial t-tests show that none of the variables is significant
at a 10%-level.
In the next step, the ”best” model according to Mallow’s Cp-statistic for
the three response variables is determined. The achieved coefficients and
t-statistics are given in Table 5.8.

Variable Coefficient Coefficient Coefficient
(t-statistic) (t-statistic) (t-statistic)

Response ln(zT (t)) ln(zS(t)) ln(zU(t))
Intercept -1.095 *** -0.405 *** -2.098 ***

(-10.470) (-20.432) (-9.422)
GGDP - - -32.047 **

(-2.160)
DJES - - 1.066 *

(1.836)
VSTOXX 0.541 *** - 1.011 ***

(3.788) (3.452)
EURIBOR - - 32.561 ***

(3.543)
GY 12.438 *** - 13.632

(3.820) (1.533)

R2
a in % 44.50 0.00 60.58

Table 5.8: Coefficients (t-statistics) and significance codes of ”best” model
from Equation (5.6) with responses ln(zi(t)).

The results show that the variables GY and VSTOXX form the ”best” model
for the total recovery rates as in Section 5.2. Both variables have a positive
impact on the recovery rates. The adjusted coefficient of determination R2

a

is 44.50% and hence about 2%-points higher in comparison to the full model
from Table 5.7 and 3%-points lower than in the model with the data from
Section 5.2. The p-values of the partial t-tests show that both variables, GY
and VSTOXX, are significant at a 1%-level.
The ”best” model for recovery rates of unsecured facilities includes GGDP,
VSTOXX, EURIBOR, DJES, and GY as explanatory variables. With these
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variables an adjusted R-squared R2
a of 60.58% is achieved. The p-values of

the partial t-test show that four of the five variables are significant. The
variables EURIBOR and VSTOXX are significant at a 1%-level, the variable
GGDP is significant at a 5%-level, and the variable DJES is significant at a
10%-level.
For the recovery rates of secured facilities none of the explanatory variables
is chosen in the ”best” model.
To sum it up, the preceding regression analysis shows that securisation ef-
fects the relation between recovery rates and macroeconomic factors. The
best adjustment can be achieved for recovery rates of unsecured facilities.
60% of the total variance of recovery rates of unsecured facilities can be ex-
plained by macroeconomic factors. In contrast, less than 50% of the total
variance of total recovery rates can be explained by macroeconomic factors.
As expected, the worst adjustment is obtained for recovery rates of secured
facilities. The recovery rates of secured facilities depend more on the rank
and type of the security, especially the value of the underlying collateral, than
on macroeconomic indicators. Hence, the following analyses will concentrate
on total recovery rates and recovery rates from unsecured facilities.
Regarding the explanatory variables that form the ”best” model for the dif-
ferent response variables, it can be seen that the variables VSTOXX and
GY belong to the best model for the response ln(zT ) and ln(zU) respectively.
The variables GGDP, DJES, and EURIBOR are part of the ”best” model for
the response ln(zU). This means that these variables have a lot of influence
on the recovery rates of unsecured facilities but only little influence on total
recovery rates and on recovery rates of secured facilities.
In the next step, the preceding analysis shall be further enlarged by including
a measure for the credit environment. Therefore, a measure for the uncer-
tainty in the prices of defaultable securities is used. This is accomplished
by using the so-called uncertainty index u from the extended Schmid/Zagst
model as proposed in Antes et al. (2008) (a short review on this model is
given in Appendix B). The higher the uncertainty of the obligor, the higher
is the factor u. The unobservable process u used in the following analysis,
has been filtered from corporate-composite yields Euro area for rating class
A.
A linear regression with both the uncertainty index and the macroeconomic
factors as explanatory variables is conducted in what follows. The regression
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is now given by

ln(zi(t)) = β0 + β1GIP (t) + β2GDP (t) + β3DJES(t)

+β4V STOXX(t) + β5EURIBOR(t) + β6GY (t)

+β7u(t) + ε(t), (5.7)

where i ∈ {T, U} and ε(t) ∼ N (0, σ2) i.i.d. Again, zT denotes total recovery
rates, zU recovery rates of unsecured facilities, and u(t) the uncertainty index.
In Table 5.9 the estimated coefficients and t-statistics are given for the two
response variables ln(zT (t)) and ln(zU(t)).

Variable Coefficient Coefficient
(t-statistic) (t-statistic)

Response ln(zT (t)) ln(zU(t))
Intercept -1.021 *** -1.959 ***

(-6.142) (-6.763)
GIP 1.514 1.427

(0.954) (0.516)
GGDP -6.398 -33.376 **

(-0.740) (-2.214)
DJES 0.085 0.744

(0.200) (1.007)
VSTOXX 0.242 0.330

(0.457) (0.358)
EURIBOR -0.016 29.588 ***

(-0.003) (2.967)
GY 11.911 ** 12.615

(2.280) (1.385)
u 15.610 32.204

(0.671) (0.794)

R2
a in % 41.64 59.71

Table 5.9: Coefficients (t-statistics) and significance codes of Equation (5.7)
with responses ln(zi(t)).

In the case of total recovery rates, the adjusted coefficient of determination
R2
a is 41.64%. The null hypothesis that all coefficients are zero can be re-

jected at a 1%-level. The p-values of the partial t-tests show that only the
explanatory variable GY is significant at a 5%-level.
Regarding recovery rates of unsecured facilities an adjusted R-squared R2

a of
59.71% can be achieved. About 60% of the total variation of the recovery
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rates of unsecured facilities can be explained by the macroeconomic factors
and the variable u. The null hypothesis that all coefficients are zero can
be rejected at a 1% level. The p-values of the partial t-tests show that the
explanatory variable GGDP is significant at a 5%-level, while the variable
EURIBOR is even significant at a 1%-level.
For both response variables the achieved results are similar to the results of
the regression model without the uncertainty index as additional explanatory
variable.
Finally, the explanatory variables are chosen such that Mallow’s Cp-statistic
of the corresponding linear model is optimal. The uncertainty index is con-
tained in both ”best” models. The corresponding regression coefficients and
t-statistics in the reduced models are given in Table 5.10.

Variable Coefficient Coefficient
(t-statistic) (t-statistic)

Response ln(zT (t)) ln(zU(t))
Intercept -1.015 *** -1.636 ***

(-9.310) (-21.570)
GGDP - -39.666 ***

(-2.830)
EURIBOR - 36.872 ***

(5.470)
GY 10.405 *** -

(2.963)
u 26.075 *** 46.075 ***

(3.766) (3.758)

R2
a in % 44.37 60.41

Table 5.10: Coefficients (t-statistics) and significance codes of ”best” model
of Equation (5.7) with responses ln(zi(t)).

In the case of total recovery rates the variables GY and u form the best
model. With these explanatory variables an adjusted coefficient of determi-
nation R2

a of almost 45% is achieved, where both variables are significant on
a 1% level. For recovery rates of unsecured facilities the adjusted coefficient
of determination is even higher. Using the explanatory variables u, GGDP,
and EURIBOR, which are all significant at a 1%-level, an adjusted coeffi-
cient of determination R2

a of 60% can be achieved. In both ”best” models
the variable VSTOXX is replaced by the variable u. This can be interpreted
as follows: both the uncertainty/volatility in credit markets and the un-
certainty/volatility in equity markets are suitable explanatory variables for
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recovery rates. If both variables are available, it is more reasonable to use
the credit market uncertainty.
To sum it up, it can be concluded that a suitable model for recovery rates
should distinguish between secured and unsecured facilities. For recovery
rates of secured facilities a closer look at the type and value of collateral
might be more important than any macroeconomic indicator. In contrast
to this, recovery rates of unsecured facilities can be modelled by macroeco-
nomic variables, e.g. the short rate, an economic indicator, and a factor that
describes the uncertainty in credit markets as shown in Table 5.10. These
results motivate the pricing approach introduced in the following chapter.
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Part III

Pricing credit derivatives under
stochastic recovery
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Chapter 6

A hybrid model for pricing
single-name credit derivatives
under stochastic recovery

The aim of this chapter is to present a joint modelling of default and re-
covery risk accounting for negative correlation between default rates and
recovery rates as well as the dependence of recovery rates on the economic
environment. Within this framework analytically tractable pricing formulas
are derived for different credit derivatives including recovery products.
The modelling approach presented here is based on the framework of the
extended Schmid-Zagst defaultable term-structure model (see Antes et al.
(2008)), which is an extension of the three-factor Schmid-Zagst model (see
Schmid and Zagst (2000)). This hybrid model models directly the short-rate
credit spread in dependence of some unobservable, firm-specific uncertainty
index. Under the assumption of fractional recovery of market value, i.e. the
recovery payment in case of a default event is assumed to be a fraction of
the market value instantaneously before default, closed-form solutions for
defaultable bond prices are available without specifying a recovery-rate pro-
cess (see e.g. Antes et al. (2008)). Within the same framework the pricing
of credit derivatives under constant recovery is developed in Schmid et al.
(2009). Unlike Antes et al. (2008), Schmid and Zagst (2000), and Schmid
et al. (2009) the model presented in this chapter rather models the default
intensity instead of the short-rate credit spread and uses a recovery of face
value instead of a recovery of market value assumption. Under this recovery
of face value assumption the recovery payment in case of a default event at
time t is a fraction z(t), called the recovery rate, of the face value.

113
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6.1 Modelling framework

In the following a fixed terminal time horizon T ∗ is assumed. Uncertainty in
the financial market is modelled on a complete probability space (Ω,G,P).
All random variables and stochastic processes introduced below are defined
on this probability space. It is assumed throughout that (Ω,G,P) is equipped
with three filtrations H, F, and G, i.e. three increasing and right-continuous
families of sub-σ-fields of G. The default time τ of an obligor is an arbi-
trary random time on (Ω,G,P) . For the sake of convenience it is assumed
that P (τ = 0) = 0 and P (τ > t) > 0 for every t ∈ (0, T ∗] . For a given
default time τ, consider the associated default indicator or hazard function
H(t) = 11{τ≤t} and the survival indicator function L(t) = 1−H(t), t ∈ (0, T ∗] .
Let H = (Ht)0≤t≤T ∗ be the filtration generated by the process H. Note that

while FN from Section 2.2 is the filtration generated by a counting process
N , H is the filtration generated by the first jump of the counting process. In
addition, let the filtration F = (Ft)0≤t≤T ∗ be defined as the filtration gener-

ated by the multi-dimensional standard Brownian motion W (t)T containing
all one-dimensional Brownian motions appearing in the modelled processes.
Additionally, let G = (Gt)0≤t≤T ∗ denote the enlarged filtration G = H ∨ F,
i.e. for every t set Gt = Ht∨Ft. All filtrations are assumed to satisfy the usual
conditions of completeness and right-continuity. This subfiltration structure
is very common in intensity-based models (see e.g. Antes et al. (2008) or
Bielecki and Rutkowski (2004)). Furthermore, it is assumed throughout that
for any t ∈ (0, T ∗] the σ−fields FT ∗ and Ht are conditionally independent
given Ft. This is equivalent to the assumption that F has the so-called mar-
tingale invariance property with respect to G, i.e. any F−martingale is also
a G−martingale (see p.167 of Bielecki and Rutkowski (2004)).

6.1.1 Short-rate model

The short-rate model is specified by a two factor Hull-White model, with
stochastic processes r and w describing the non-defaultable short rate and a
market factor. The dynamics of the non-defaultable short rate are given by
the stochastic differential equation

dr (t) = [θr (t) + brww(t)− arr (t)] dt+ σrdWr (t) , r(0) = r0, 0 ≤ t ≤ T ∗,
(6.1)

where r0, ar, brw, σr > 0 are positive constants and θr(t) is a non-negative
valued deterministic function.
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The dynamics of the market factor are given by the following SDE:

dw (t) = [θw − aww (t)] dt+ σwdWw (t) , w(0) = w0, 0 ≤ t ≤ T ∗, (6.2)

where aw, σw > 0 are positive constants, θw is a non-negative constant, and
w0 ∈ R.

6.1.2 Recovery and intensity model

The recovery rate z(t), or equivalently z̃(t) := z(t)− az with az ≥ 0, is given
by

z̃(t) = bze
−czu(t)+dzw(t) (6.3)

with bz ≥ 0, az + bz < 1, and u denoting an (unobservable) idiosyncratic risk
factor given by the SDE

du (t) = [θu − auu (t)] dt+ σudWu (t) , u(0) = u0, 0 ≤ t ≤ T ∗, (6.4)

where au, σu > 0 are positive constants, θu is a non-negative constant, and
u0 ∈ R. Hence, the dynamics of the recovery-rate process are given by

dz̃(t) = dz(t), z̃(0) = z̃0,

= −z̃(t)
{[
cz (θu − auu(t))− dz (θw − aww(t))

−1

2

(
c2
zσ

2
u + d2

zσ
2
w

)]
dt

+ czσudWu(t)− dzσwdWw(t)
}

with z̃0 ≥ 0.
The dynamics of the default intensity are given by the SDE

dλ (t) = [θλ + bλuu (t)− bλww(t)− aλλ (t)] dt+σλdWλ (t) , λ(0) = λ0, (6.5)

where λ0, aλ, bλu, bλw, σλ > 0 are positive constants, θλ is a non-negative
constant, and 0 ≤ t ≤ T ∗.
In the following, the Wiener processes Wr, Ww, Wu, and Wλ are assumed to
be uncorrelated.
As mentioned above it is general consent that default risk and recovery risk
are correlated and that recovery rates depend on the state of the economy.
The first observation is accounted for in the modelling framework presented
above by the impact of u on z and λ and the latter by the positive depen-
dence of z on w. This modelling approach is also in line with the empirical
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insights presented in Chapter 5, where it was shown that the recovery rates
of unsecured facilities can be described best by a macroeconomic index, a
short-term interest rate, and an index describing the uncertainty in credit
markets. Since the market factor w also drives the short rate r in the pre-
sented modelling framework, the recovery rate z is assumed to depend only
on w and u. This also avoids potential identification problems. While the
index describing the uncertainty in credit markets used in Chapter 5 was fil-
tered from bond prices, in this chapter the factor u will be estimated directly
from historical aggregated recovery rates and afterwards be used to model
the dependence between default rates and recovery rates. Alternatively, the
filtered time series of the uncertainty index as in Chapter 5 could be used
as an input for the model. Then, an additional source of randomness had to
be introduced to Equation (6.3), e.g. by adding a white noise term. The de-
pendence structure in the modelling framework is illustrated in Figure 6.1.15

−0.2
−0.1

0
0.1

0.2

−0.05

−0.025

0

0.025

0.05
0.4

0.5

0.6

0.7

0.8

0.9

1

uw

z

−0.2
−0.1

0
0.1

0.2

−0.05

−0.025

0

0.025

0.05
0.0559

0.056

0.0561

0.0562

0.0563

0.0564

0.0565

uw

λ

Figure 6.1: Recovery rate z and default intensity λ as functions of w and u.

Note that in this modelling framework the recovery-rate process can take val-
ues greater than 1. Recoveries of more than 100% can indeed be observed in
certain situations (see e.g. p.13 of Schuermann (2004)). Also, short rates as
well as default intensities can become negative in this framework. Here, we
follow Brigo and Mercurio (2001) (see p.74), Duffie and Singleton (2003) (see
p.108), and Schönbucher (2003) (see p.166) stating that the computational
advantages are worth the approximation error and that small probabilities
of negative short rates or default intensities are accepted in practical ap-
plications. Using the parameter set from Table 6.1, the (real-world as well
as risk-neutral) one-year probability that the default intensity λ is negative

15For this illustration the parameter set from Table 6.1 in Section 6.3 estimated from
market data was used.
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is 0.033 and the (real-world as well as risk-neutral) one-year probabilities
that the short rate r is negative and that the recovery rate z is greater 1
are both below 10−10. One way to overcome the problem of possibly nega-
tive short rates and default intensities while preserving the aforementioned
dependences would be to assume Cox-Ingersoll-Ross processes (CIR) with
correlated Brownian motions for r, w, u, and λ instead of the dynamics as-
sumed in Equations (6.1), (6.2), (6.4), and (6.5). However, this would lead
to a significant loss of computational tractability of the pricing formulas pre-
sented in Section 6.2 (see also p.140 of Brigo and Mercurio (2001) or p.255
of Schmid (2004)). In such models with correlated CIR processes tree- (see
e.g. Hull and White (1994)) or simulation-based (see e.g. Brigo and Alfonsi
(2005)) methods are required.

6.1.3 Change of measure

So far, the modelling has taken place under the real-world measure P. For
pricing purposes we need a characterization of all processes of Subsections
6.1.1 and 6.1.2 under an equivalent martingale measure Q, i.e. all discounted
security price processes have to be Q−martingales with respect to a suitable
numéraire. As numéraire the money-market account B (t) = e

∫ t
0 r(l)dl is cho-

sen, where r (t) is the non-defaultable short rate from Equation (6.1).
It is well known that each martingale measure Q is given by the Radon-
Nikodym-derivative

L(t) =
dQ
dP

∣∣∣∣Ft = exp

(
−
∫ t

0

γ(s)TdW (s)− 1

2

∫ t

0

‖γ(s)‖2 ds

)
,

where γ(s)T = (γr(s), γw(s), γu(s), γλ(s)) is an adapted, measurable four-
dimensional process satisfying∫ T ∗

0

γi(s)
2ds <∞ P-a.s. for i ∈ {r, w, u, λ} .

Following Chen (1996) and Schmid (2004), the change of measure is assumed
to have a parametric form given by

γi(t) = ηiσii(t)

with t ∈ [0, T ∗] and ηi ∈ R, i ∈ {r, w, u, λ}, such that Novikov’s condition

EP

[
exp

(
1

2

∫ T ∗

0

‖γ(s)‖2 ds

)]
<∞
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holds. This assumption is made in order to preserve the structure of the
SDEs (6.1), (6.2), (6.4), and (6.5) under Q. From Girsanov’s theorem (see
e.g. p.159 of Bingham and Kiesel (2004)) it is known that

Ŵ (t)T =
(
Ŵr(t), Ŵw(t), Ŵu(t), Ŵλ(t)

)
with

Ŵi(t) = Wi(t) +

∫ t

0

γi(s)ds, i ∈ {r, w, u, λ} , 0 ≤ t ≤ T ∗

is a four-dimensional Brownian motion on (Ω,F ,F,Q). Under Q, the dy-
namics of r, w, u, and λ are given by

dr (t) = [θr (t) + brww(t)− ârr (t)] dt+ σrdŴr (t) , r(0) = r0,

dw (t) = [θw − âww (t)] dt+ σwdŴw (t) , w(0) = w0,

du (t) = [θu − âuu (t)] dt+ σudŴu (t) , u(0) = u0,

dλ (t) = [θλ + bλuu (t)− bλww(t)− âλλ (t)] dt+ σλdŴλ (t) , λ(0) = λ0,

with âi = ai + ηiσ
2
i , i ∈ {r, w, u, λ}, and 0 ≤ t ≤ T ∗.

6.1.4 Valuation of defaultable claims

Before the valuation of defaultable claims is addressed, an important result
for the pricing of non-defaultable zero-coupon bonds is recalled in this subsec-
tion. This result will be used later for the calibration of the non-defaultable
short-rate process r(t) from Equation (6.1).

Theorem 6.1. The time t price of a non-defaultable zero-coupon bond with
maturity T is given by

P nd(t, T ) = EQ

[
e−

∫ T
t r(l)dl

∣∣∣Ft] = eA
nd(t,T )−Bnd(t,T )r(t)−End(t,T )w(t)

with
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Bnd(t, T ) =
1

âr

(
1− e−âr(T−t)

)
,

End(t, T ) =
brw
âr

(
1− e−âw(T−t)

âw
+
e−âw(T−t) − e−âr(T−t)

âw − âr

)
,

And(t, T ) =

∫ T

t

[
1

2
σ2
rB

nd(s, T )2 +
1

2
σ2
wE

nd(s, T )2

−θr(s)Bnd(s, T )− θwEnd (s, T )

]
ds.

Proof. This theorem corresponds to a special case of the two-factor Hull-
White model (see Hull and White (1994)).

A defaultable contingent claim is defined as a triplet DCC = (X,Z, τ) with
X denoting the promised payoff at maturity T if no default has taken place
up to T , Z = (Z(t))t∈[0,T ] the process describing the recovery payoff at the
time of default, and τ the default time. If Z is a G-predictable process and X
is GT -measurable, the value process V (t) of the defaultable contingent claim
is given by (see e.g. p.180 of Bielecki and Rutkowski (2004))

V (t) = EQ

[∫ T

t

e−
∫ s
t r(l)dlZ(s)dH(s) + e−

∫ T
t r(l)dlX11{τ>T}

∣∣∣∣Gt] .
Under certain assumptions, the value of such a defaultable contingent claim
can be expressed by the conditional expectation of the claim’s payoffs dis-
counted with a default-risk-adjusted short rate (see e.g. Duffie et al. (1996)
or Bielecki and Rutkowski (2004)).

Theorem 6.2. Assume that the martingale invariance property assumption
is fulfilled, Z is an F-predictable process and X is an FT -measurable random
variable. Then, for every t ∈ [0, T ∗], it holds that

V (t) = 11{τ>t}EQ

[∫ T

t

e−
∫ s
t (r(l)+λ(l))dlλ(s)Z(s)ds+ e−

∫ T
t (r(l)+λ(l))dlX

∣∣∣∣Ft] .
Proof. Section 8.3 of Bielecki and Rutkowski (2004).

While the recovery of market value assumption is suitable for bond-pricing
purposes as it leads to analytically tractable formulas, it contains the problem
that intensity and recovery risk are not separable. Hence, the recovery of face
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value assumption will be used in the following. This assumption is generally
preferred when contingent claims on recoveries are considered (see e.g. Bakshi
et al. (2006)).

Corollary 6.3. In a model with recovery of face value assumption, i.e.
Z(t) := z(t)X with z(t) denoting the recovery-rate process, the price of a
defaultable contingent claim under the assumption of no default up to time t
is given by

V (t) = EQ

[∫ T

t

e−
∫ s
t (r(l)+λ(l))dlλ(s)z(s)Xds+ e−

∫ T
t (r(l)+λ(l))dlX

∣∣∣∣Ft] .

6.2 Pricing recovery dependent credit deriva-

tives

In this section, pricing equations for credit derivatives under the dynamics
assumed in Equations (6.1) - (6.5) are derived.

6.2.1 Building blocks

The main building blocks of the pricing formulas are conditional expectations
of the form

EQ

[
e−

∫ T
t (r(l)+λ(l))dlz (T )

∣∣∣Ft] (6.6)

and
EQ

[
e−

∫ T
t (r(l)+λ(l))dlλ (T ) z (T )

∣∣∣Ft] . (6.7)

The following theorems show how to calculate the expected values in Equa-
tions (6.6) and (6.7) under the assumptions from Equations (6.1) - (6.5).

Theorem 6.4.

g(r, λ, u, w, t, T ) : = EQ

[
e−

∫ T
t (r(l)+λ(l))dle−czu(T )+dzw(T )

∣∣∣Ft]
= eA(t,T )−B(t,T )r(t)−C(t,T )λ(t)−D(t,T )u(t)−E(t,T )w(t)

with
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B(t, T ) =
1

âr

(
1− e−âr(T−t)

)
,

C(t, T ) =
1

âλ

(
1− e−âλ(T−t)) ,

D(t, T ) =
bλu
âλ

(
1− e−âu(T−t)

âu
+
e−âu(T−t) − e−âλ(T−t)

âu − âλ

)
+ cze

−âu(T−t),

E(t, T ) = −bλw
âλ

(
1− e−âw(T−t)

âw
+
e−âw(T−t) − e−âλ(T−t)

âw − âλ

)
+brw

(
1− e−âw(T−t)

âwâr
+
e−âw(T−t) − e−âr(T−t)

âw − âr
1

âr

)
−dze−âw(T−t),

and

A (t, T ) =

∫ T

t

[
1

2
σ2
rB

2 (s, T ) +
1

2
σ2
λC

2 (s, T ) +
1

2
σ2
uD

2 (s, T )

+
1

2
σ2
wE

2 (s, T )− θr (s)B (s, T )− θλC (s, T )

−θuD (s, T )− θwE (s, T )

]
ds.

Proof. According to the theorem of Feynman-Kac (see Theorem 2.20 in Sec-
tion 2.3), g is the solution of the PDE

0 =
1

2

(
σ2
rgrr + σ2

λgλλ + σ2
uguu + σ2

wgww
)

+ (θr(t) + brww − ârr) gr + (θw − âww) gw + (θu − âuu) gu

+ (θλ + bλuu− bλww − âλλ) gλ − (r + λ)g + gt

under the condition g(r, λ, u, w, T, T ) = e−czu(T )+dzw(T ). If

g(r, λ, u, w, t, T ) = eA(t,T )−B(t,T )r(t)−C(t,T )λ(t)−D(t,T )u(t)−E(t,T )w(t),

then
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0 =
1

2

(
σ2
rB

2 + σ2
λC

2 + σ2
uD

2 + σ2
wE

2
)
g

− (θr(t) + brww − ârr)Bg − (θw − âww)Eg − (θu − âuu)Dg

− (θλ + bλuu− bλww − âλλ)Cg − (r + λ)g

+ (At −Btr − Ctλ−Dtu− Etw) g.

This is equivalent to

0 =
1

2

(
σ2
rB

2 + σ2
λC

2 + σ2
uD

2 + σ2
wE

2
)

+r(ârB − 1−Bt) + λ(âλC − 1− Ct) + u(âuD − bλuC −Dt)

+w(−brwB + âwE + bλwC − Et)
+At − θr(t)B − θλC − θuD − θwE.

Therefore, the following system of linear equations has to be solved:

Bt = ârB − 1, Ct = âλC − 1, Dt = âuD − bλuC,
Et = âwE − brwB + bλwC,

At = θr(t)B + θλC + θuD + θwE

−1

2

(
σ2
rB

2 + σ2
λC

2 + σ2
uD

2 + σ2
wE

2
)
,

with boundary conditions

A(T, T ) = 0, B(T, T ) = 0, C(T, T ) = 0,
D(T, T ) = cz, E(T, T ) = −dz.

Using the transformation s = T−t leads to the proposed solutions for A(t, T ),
B(t, T ), C(t, T ), D(t, T ), and E(t, T ).

Theorem 6.5.

g̃(r, λ, u, w, t, T ) := EQ

[
e−

∫ T
t (r(l)+λ(l))dlλ(T )e−czu(T )+dzw(T )

∣∣∣Ft]
= g(r, λ, u, w, t, T ) (G(t, T ) + I(t, T )λ(t) + J(t, T )u(t) +K(t, T )w(t))

= eA(t,T )−B(t,T )r(t)−C(t,T )λ(t)−D(t,T )u(t)−E(t,T )w(t)

· (G(t, T ) + I(t, T )λ(t) + J(t, T )u(t) +K(t, T )w(t))

with A(t, T ), B(t, T ), C(t, T ), D(t, T ), and E(t, T ) from Theorem 6.4,
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I(t, T ) = e−âλ(T−t),

J(t, T ) =
bλu

âu − âλ
(
e−âλ(T−t) − e−âu(T−t)) ,

K(t, T ) =
bλw

âλ − âw
(
e−âλ(T−t) − e−âw(T−t)) ,

and

G (t, T ) =

∫ T

t

[
θλI (s, T ) + θuJ (s, T ) + θwK (s, T )− σ2

λC (s, T ) I (s, T )

−σ2
uD (s, T ) J (s, T )− σ2

wE (s, T )K (s, T )

]
ds.

Proof. According to the theorem of Feynman-Kac (see Theorem 2.20 in Sec-
tion 2.3), g̃ is the solution of the PDE

0 =
1

2

(
σ2
r g̃rr + σ2

λg̃λλ + σ2
ug̃uu + σ2

wg̃ww
)

+ (θr(t) + brww − ârr) g̃r + (θw − âww) g̃w + (θu − âuu) g̃u

+ (θλ + bλuu− bλww − âλλ) g̃λ − (r + λ)g̃ + g̃t

under the condition g̃(r, λ, u, w, T, T ) = λ(T )e−czu(T )+dzw(T ). If

g̃(r, λ, u, w, t, T ) = eA(t,T )−B(t,T )r(t)−C(t,T )λ(t)−D(t,T )u(t)−E(t,T )w(t)

· (G(t, T ) +H(t, T )r(t) + I(t, T )λ(t)

+J(t, T )u(t) +K(t, T )w(t))

then
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0 =
1

2

(
σ2
rB

2 + σ2
λC

2 + σ2
uD

2 + σ2
wE

2
)

· (G+Hr + Iλ+ Ju+Kw)

+
(
−σ2

rBH − σ2
λCI − σ2

uDJ − σ2
wEK

)
+ (θr(t) + brww − ârr) (−B (G+Hr + Iλ+ Ju+Kw) +H)

+ (θw − âww) (−E (G+Hr + Iλ+ Ju+Kw) +K)

+ (θu − âuu) (−D (G+Hr + Iλ+ Ju+Kw) + J)

+ (θλ + bλuu− bλww − âλλ)

· (−C (G+Hr + Iλ+ Ju+Kw) + I)

−(r + λ) (G+Hr + Iλ+ Ju+Kw)

+ (G+Hr + Iλ+ Ju+Kw)

· (At −Btr − Ctλ−Dtu− Etw)

+Gt +Htr + Itλ+ Jtu+Ktw.

Using the proof of Theorem 6.4, this reduces to

0 = −σ2
rBH − σ2

λCI − σ2
uDJ − σ2

wEK

+Hθr(t) +Kθw + Jθu + Iθλ +Gt

+r (−ârH +Ht) + w (brwH − âwK − bλwI +Kt)

+u (−âuJ + bλuI + Jt) + λ (−âλI + It) .

Therefore, the following system of linear equations has to be solved:

Ht = ârH, It = âλI, Jt = âuJ − bλuI,
Kt = âwK − brwH + bλwI,

Gt = σ2
rBH + σ2

λCI + σ2
uDJ + σ2

wEK

−Hθr(t)−Kθw − Jθu − Iθλ,

with boundary conditions

G(T, T ) = 0, H(T, T ) = 0, I(T, T ) = 1,
J(T, T ) = 0, K(T, T ) = 0.

Using the transformation s = T − t leads to H(t, T ) ≡ 0 and the proposed
solutions for G(t, T ), I(t, T ), J(t, T ), and K(t, T ).

As an immediate consequence of Theorems 6.4 and 6.5 the following corol-
laries can be stated by using Corollary 6.3.
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Corollary 6.6. The time t price of a defaultable zero-coupon bond with ma-
turity T and unit notional under the assumption of zero recovery and no
default up to time t is given by

P d,zero(t, T ) = EQ

[
e−

∫ T
t (r(l)+λ(l))dl

∣∣∣Ft]
= eA(t,T )−B(t,T )r(t)−C(t,T )λ(t)−D(t,T )u(t)−E(t,T )w(t)

with A(t, T ), B(t, T ), C(t, T ), D(t, T ), and E(t, T ) from Theorem 6.4 and
cz = dz = 0.

Corollary 6.7. The time t price of a defaultable zero-coupon bond with ma-
turity T and unit notional under the assumption of no default up to time t
is given by

P d(t, T ) = EQ

[
e−

∫ T
t (r(l)+λ(l))dl

∣∣∣Ft]
+

∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ(s)z(s)

∣∣∣Ft] ds
= P d,zero(t, T ) + bz

∫ T

t

g̃(r, λ, u, w, t, s)ds

+az

∫ T

t

g̃zero(r, λ, u, w, t, s)ds

with g̃(r, λ, u, w, t, s) from Theorem 6.5 and g̃zero(r, λ, u, w, t, s) denoting
g̃(r, λ, u, w, t, s) under the assumption cz = dz = 0.

Corollary 6.8. A default digital put option on a defaultable zero-coupon bond
with maturity T pays one unit of currency in the case of a default before or
at maturity and nothing else. Assuming no default up to time t and that the
payoff takes place at default, the time t price of the default digital put is given
by

V ddp(t) = EQ

[∫ T

t

e−
∫ s
t (r(l)+λ(l))dlλ(s)ds

∣∣∣Ft]
=

∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ(s)

∣∣∣Ft] ds
=

∫ T

t

g̃zero(r, λ, u, w, t, s)ds,

with g̃zero(r, λ, u, w, t, s) denoting g̃(r, λ, u, w, t, s) from Theorem 6.5 under
the assumption cz = dz = 0.
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In the following section pricing formulas for credit derivatives based on Equa-
tions (6.6) and (6.7) are established.

6.2.2 Credit default swaps

A credit default swap (CDS) is a swap under which one party (the bene-
ficiary) pays the other party (the guarantor) regular fees, called the credit
default swap spread or the credit default swap rate. This is in exchange for
the guarantor’s promise to make a fixed or variable payment in the event
of default to cover the loss resulting from default. As common for swap
products, two payment streams have to be considered, the default and the
premium leg. According to the recovery of face value assumption, it is as-
sumed that in case of a default event the payment on the default leg is one
minus the recovery rate times the notional. For ease of notation a unit no-
tional is assumed in the following.
The pricing of a credit default swap consists of two problems. At origina-
tion (t = t0) there is no exchange of cash flows and the credit default swap
spread SCDS(t0, T ) has to be determined such that the market value of the
credit default swap is zero. After origination (t ∈ (t0, T ]), the market value of
the credit default swap will change due to changes in the underlying variable.
Therefore, given the credit default swap spread SCDS(t0, T ), the current mar-
ket value of the credit default swap has to be computed.
It is assumed throughout that the CDS counterparties (beneficiary and guar-
antor) are default-free. Furthermore, it is assumed that the underlying ref-
erence credit asset has no coupon payments up to the maturity T ∗ and
that there has been no credit event until time t0. The scheduled pay-
ment dates of the credit swap spread are denoted by T = {t1, . . . , tm} with
t0 ≤ t1 ≤ . . . ≤ tm = T . The value of the default leg at origination must
be the same as paying SCDS(t0, T ) at some predefined times ti, i = 1, ...,m,
with t0 ≤ t1 ≤ · · · ≤ tm = T until a default happens. Finally, for ease of
notation we assume that in case of a default event the beneficiary receives
the compensation at the next premium date rather than right upon default.
Under these assumptions the CDS premium is given as follows:

Corollary 6.9. The swap premium of a credit default swap is (under the
above mentioned assumptions) given by

SCDS(t0, T ) =
V ddp(t0)− P d(t0, T ) + P d,zero(t0, T )∑m

i=1 ∆tiP d,zero(t0, ti)
, (6.8)

with ∆ti = ti − ti−1.
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Proof. Under the above mentioned assumptions the time t value of the de-
fault leg of a CDS is given by (see e.g. Duffie and Singleton (2003))

V CDS
def (t, T ) = EQ

[∫ T

t

e−
∫ s
t (r(l)+λ(l))dlλ (s) (1− z (s)) ds

∣∣∣∣Ft]
= V ddp(t)− P d(t, T ) + P d,zero(t, T ). (6.9)

The time t value of the premium leg is given by

V CDS
prem (t, T ) = EQ

[
m∑
i=1

SCDS(t0, T )∆tie
−
∫ ti
t (r(l)+λ(l))dl

∣∣∣∣∣Ft
]

(6.10)

= SCDS(t0, T )
m∑
i=1

∆tiEQ

[
e−

∫ ti
t (r(l)+λ(l))dl

∣∣∣Ft]
= SCDS(t0, T )

m∑
i=1

∆tiP
d,zero(t, ti),

where SCDS(t0, T ) is the swap premium of the credit default swap and ∆ti =
ti − ti−1, i = 1, . . . ,m. To give the contract a value of zero at origination,
the relation

V CDS
def (t0, T ) = V CDS

prem (t0, T )

must hold and hence the swap premium is given by Equation (6.8).

Figure 6.2 shows the impact of different values of λ and z (all other param-
eters fixed) on CDS spreads in the modelling framework from Section 6.1.16

While the value of the contract at origination is zero, it changes during the
lifetime of the contract. The value of the CDS is then given by the difference
between the value of the default leg V CDS

def (t, T ) and the value of the premium
leg V CDS

prem (t, T ).

6.2.3 Fixed-recovery CDS

A fixed-recovery CDS or default digital swap is a credit default swap with
a contractually fixed recovery payment in case of default. Hence, the swap
premium for the fixed-recovery CDS can be calculated similarly to the swap
premium of a standard CDS and is given in the following corollary.

16For this illustration the parameter set from Table 6.1 in Section 6.3 estimated from
market data was used.
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Figure 6.2: CDS spread in dependence of recovery z and intensity λ.

Corollary 6.10. The swap premium of a fixed-recovery credit default swap
with a contractually fixed recovery rate zFix is given by

SFRCDS (t0, T, zFix) =
(1− zFix)V ddp(t0)∑m
i=1 ∆tiP d,zero(t0, ti)

. (6.11)

Proof. The time t value of the default leg of a fixed-recovery CDS is given
by

V FRCDS
def (t, T ) = (1− zFix)

∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ (s)

∣∣∣Ft] ds
= (1− zFix)V ddp(t).

The time t value of the premium leg of such a fixed-recovery CDS is given
by

V FRCDS
prem (t, T ) = SFRCDS(t0, T, zFix)

m∑
i=1

∆tiEQ

[
e−

∫ ti
t (r(l)+λ(l))dl

∣∣∣Ft]
= SFRCDS(t0, T, zFix)

m∑
i=1

∆tiP
d,zero(t, ti),

where SFRCDS(t0, T, zFix) is the swap premium of the fixed-recovery credit
default swap with contractually fixed recovery rate zFix. By equating the
values of default and premium leg at t = t0 the assertion follows immediately.
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Similar to Figure 6.2, Figure 6.3 shows the impact of different values of λ
and z (all other parameters fixed) on the fixed-recovery CDS spread in the
modelling framework of Section 6.1.17 By construction the fixed-recovery
CDS spread is independent of the dynamics of the recovery-rate process and
is therefore a measure of pure default-event risk.
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Figure 6.3: Fixed-recovery CDS spread in dependence of recovery z and
intensity λ.

As for standard CDS, the value of a fixed-recovery CDS is given by the
difference between the value of the default leg V FRCDS

def (t, T ) and the value
of the premium leg V FRCDS

prem (t, T ).

6.2.4 Recovery lock

While standard CDS give protection against default-loss risk and fixed-recovery
CDS against default-event risk, recovery locks give protection
against pure recovery risk. Recovery locks, sometimes also called recovery
swaps or recovery forwards, allow to purchase or sell the underlying credit
instrument at a predetermined price ZLock(t0, T ) if a credit event occurs. A
recovery lock has no upfront or running payments. The only payment stream
is the exchange of realized and predetermined recovery in case of a default
event. Its payoff can be represented either as a single recovery lock trade or
through a recovery swap representation that separates the trade in two legs,

17For this illustration the parameter set from Table 6.1 in Section 6.3 estimated from
market data was used.
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a short protection in a standard CDS and a long protection in fixed-recovery
CDS (see e.g. Berd (2005) or Liu et al. (2005)). The price of such a recovery
lock is given in the following corollary.

Corollary 6.11. The price of a recovery lock is given by

ZLock(t0, T ) = 1− (1− zFix)
SCDS(t0, T )

SFRCDS (t0, T, zFix)

with SCDS(t0, T ) denoting the swap premium of a (standard) CDS from Equa-
tion (6.8) and SFRCDS (t0, T, zFix) the premium of a fixed-recovery CDS with
contractually fixed recovery rate zFix from Equation (6.11).

Proof. Assume the payoff of a long position in a recovery lock shall be repli-
cated by buying ϕFRCDS fixed-recovery CDS and selling ϕCDS standard CDS.
To circumvent arbitrage opportunities the net cash flows of the two repre-
sentations have to equal zero in all scenarios. As the recovery lock has no
running payments, the running payments of the combined position given by

ϕCDSSCDS(t0, T )− ϕFRCDSSFRCDS(t0, T, zFix)

have to equal zero. This leads to a ratio of fixed-recovery CDS to standard
CDS of

ϕFRCDS

ϕCDS
=

SCDS(t0, T )

SFRCDS (t0, T, zFix)
.

In case of a default event the payment of the recovery lock equals

ZLock(t0, T )− z(t)

with z(t) denoting the (actual) recovery rate in case of a default event at
time t, while the payoff of the combined position is given by

ϕCDS(1− z(t))− ϕFRCDS(1− zFix)

= ϕCDS(1− z(t))− ϕCDS SCDS(t0, T )

SFRCDS (t0, T, zFix)
(1− zFix).

To avoid arbitrage opportunities both payoffs have to be equal. Setting
ϕCDS = 1 leads to the proposed recovery price.

Figure 6.4 shows the impact of different values of λ and z (all other pa-
rameters fixed) on the recovery lock price in the modelling framework from
Section 6.1.18

18Again, the parameter set from Table 6.1 in Section 6.3 estimated from market data
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Figure 6.4: Recovery lock price in dependence of recovery z and intensity λ.

The following corollary shows how to determine the value of a recovery lock
during its lifetime.

Corollary 6.12. The value of a recovery lock during its lifetime is given by

V RL(t, T ) = V RL
def (t, T )

= ZLock(t0, T )V ddp(t)− P d(t, T ) + P d,zero(t, T ).

Proof. To obtain the value of a recovery lock during its lifetime, the values
of the two different legs have to be computed. Owing to its construction the
value of the premium leg always equals zero. Hence, the value of the recovery
lock is equal to the value of the default leg and consequently given by

was used.
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V RL(t, T ) = V RL
def (t, T )

= V CDS
def (t, T )− SCDS(t0, T )

SFRCDS (t0, T, zFix)
V FRCDS
def (t, T ) (6.12)

=

(
1− SCDS(t0, T )

SFRCDS (t0, T, zFix)
(1− zFix)

)
·
∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ (s)

∣∣∣Ft] ds
−
∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ (s) z (s)

∣∣∣Ft] ds
= ZLock(t0, T ) ·

∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ (s)

∣∣∣Ft] ds
−
∫ T

t

EQ

[
e−

∫ s
t (r(l)+λ(l))dlλ (s) z (s)

∣∣∣Ft] ds (6.13)

= ZLock(t0, T )V ddp(t)− P d(t, T ) + P d,zero(t, T ).

The equivalence of (6.12) and (6.13) corresponds to the two different repre-
sentations of a recovery lock as a short protection in a standard CDS and a
long protection in fixed recovery CDS or as a single recovery lock trade.

6.3 Parameter estimation, model calibration,

and empirical results

6.3.1 Parameter estimation

In this section, it is shown how to determine the parameter values for the
model introduced in Section 6.1 from market data by using Kalman filter
techniques (see Section 2.4). As the number of parameters is quite high, the
estimation procedure is divided into three steps.

6.3.1.1 Estimation of the risk-free interest rate

First, the parameters of the short rate r and the market factor w are es-
timated. Estimating the parameters for w is done by means of maximum
likelihood from the market factor, represented e.g. by GDP growth rates.
Then, the Kalman filter is applied to time series of non-defaultable zero
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rates for different maturities to obtain the parameters of the short rate r.
Let tk, k = 1, . . . , n, denote the observation dates of the zero rates and
∆tk+1 := tk+1 − tk for k = 1, . . . , n − 1. As the frequency of market data
(e.g. weekly zero rates) is in most cases much higher than the frequency of
the macroeconomic data (e.g. quarterly GDP growth rates), we obtain w(tk),
k = 1, . . . , n by a cubic spline interpolation of the macroeconomic data.

Parameter estimation for the market factor (e.g. GDP growth
rates).
The parameters of the market factor w(t) from Equation (6.2) are estimated
from an observed time series like GDP growth rates via a maximum likelihood
estimation. It is well known that Equation (6.2) has the solution

w(t) = e−awtw(0) +
θw
aw

(
1− e−awt

)
+

∫ t

0

e−aw(t−s)σwdWw(s).

Hence, one obtains for k = 1, . . . , n− 1

w(tk+1) = e−aw∆tk+1w(tk) +
θw
aw

(
1− e−aw∆tk+1

)
+

∫ tk+1

tk

e−aw(tk+1−s)σwdWw(s)

and
w(tk+1)|w(tk) ∼ N (p1, p

2
2)

with parameters

p1 = e−aw∆tk+1w(tk) +
θw
aw

(
1− e−aw∆tk+1

)
and

p2
2 =

σ2
w

2aw

(
1− e−2aw∆tk+1

)
.

The maximum likelihood estimates of the parameter vector
Θw := (θw, aw, σw) can now be obtained by maximising the likelihood func-
tion

L(θw, aw, σw) =
n−1∏
k=1

ϕw(tk+1)|w(tk),

where ϕw(tk+1)|w(tk) denotes the density of a normal distribution with param-
eters p1 and p2

2 as defined above.
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Parameter estimation for the short-rate process.
First, the time-dependent function θr(t) is fitted to the initial term structure
(see e.g. p.73 of Brigo and Mercurio (2001)). Second, the parameter vector
Θr := (ar, σr, brw, ηr, ηw) of the short-rate model is estimated with a Kalman
filter for state space models with measurement and transition equation as
given below.
From Theorem 6.1 we know that in the setting of Section 6.1 the time t price
of a zero-coupon bond with maturity T is given by

P nd(t, T ) = EQ

[
e−

∫ T
t r(l)dl

∣∣∣Ft] = eA
nd(t,T )−Bnd(t,T )r(t)−End(t,T )w(t),

with And(t, T ), Bnd(t, T ), and End(t, T ) as in Theorem 6.1.
The measurement equation can now be derived from

R(t, T ) = − 1

T − t
lnP nd(t, T ) = a(t, T ) + b(t, T )r(t)

with

a(t, T ) = −A
nd(t, T )

T − t
+
End(t, T )

T − t
w(t)

and

b(t, T ) =
Bnd(t, T )

T − t
.

Let R(tk, tk + Ti), i = 1, . . . ,mr, denote the observed zero rates at time tk.
Hence, the measurement equation is given by R(tk, tk + T1)

...
R(tk, tk + Tmr)

 =

 a(tk, tk + T1)
...

a(tk, tk + Tmr)

+

 b(0, T1)
...

b(0, Tmr)

 · r(tk) + εr(tk),

where the measurement error εr(tk) is assumed to follow an mr-dimensional
normal distribution with expectation vector 0 and covariance matrix h2

r ·Imr ,
i.e. εr(tk) ∼ Nmr(0, h2

r · Imr).
The transition equation is obtained by using the fact that the SDE of the
short-rate process from Equation (6.1) has the following solution:

r(t) = e−artr(0) +

∫ t

0

e−ar(t−s) (θr(s) + brww(s)) ds+

∫ t

0

e−ar(t−s)σrdWr(s).
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Approximately, it holds that

r(tk+1) = e−ar∆tk+1r(tk) +

∫ ∆tk+1

0

e−ars (θr(tk) + brww(tk)) ds+ νr(tk+1)

= e−ar∆tk+1r(tk) +
1

ar

(
1− e−ar∆tk+1

)
(θr(tk) + brww(tk))

+νr(tk+1)

with

νr(tk+1) :=

∫ tk+1

tk

e−ar(tk+1−s)σrdWr(s) ∼ N
(

0,
σ2
r

2ar

(
1− e−2ar∆tk+1

))
and ∆tk+1 = tk+1 − tk.

6.3.1.2 Estimation of the recovery-rate process

As the markets for digital default swaps and recovery swaps are not very
liquid and a reliable joint estimation of default and recovery risk components
from CDS quotes is, because of identifiability problems, only possible under
some restrictive assumptions, the estimation of default and recovery risk is
seperated. Therefore, in a second step the obtained estimates from the first
step are used to estimate the parameters for the recovery-rate process z and
the risk factor u from historical time series of average recovery rates by means
of the Kalman filter. As the minimum possible recovery rate is given by az
and the case of zero recovery should be included, az is set equal to zero, i.e.
z(t) = z̃(t). Hence, the parameter vector Θz = (bz, cz, dz, θu, au, σu) has to
be estimated. Defining ξ(t) := log(z(t)) and bξ := log(bz) the measurement
equation can be written as

ξ(tk) = bξ − czu(tk) + dzw(tk) + εu(tk)

with εu(tk) ∼ N (0, h2
z). The transition equation can be obtained similarly to

Subsection 6.3.1.1 and is given by

u(tk+1) = e−au∆tk+1u(tk) +
θu
au

(
1− e−au∆tk+1

)
+ νu(tk+1)

with νu(tk+1) ∼ N
(

0, σ
2
u

2au

(
1− e−2au∆tk+1

))
.
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6.3.1.3 Estimation of the default intensity

In the third step, the parameters of the default intensity λ are estimated
from market quotes of CDS spreads by using the estimates from the first two
steps.
The approach of using empirical time series and parameters in a risk-neutral
valuation framework is commonly used e.g. in the prepayment modelling for
the valuation of mortgage-backed securities (see e.g. Kolbe and Zagst (2008)).
This is similar to the setting presented here, where there is little if anything
in liquid markets which can be used for a suitable calibration of the recovery-
rate process.
Using the obtained parameter estimates from Subsections 6.3.1.1 and 6.3.1.2
as well as the market quotes of CDS, the parameter vector
Θλ = (θλ, aλ, σλ, bλw, bλu, ηλ, ηu) is estimated. The transition equation can
be obtained similarly to Subsection 6.3.1.1 and is given by

λ(tk+1) = e−aλ∆tk+1λ(tk)

+
θλ + bλuu(tk)− bλww(tk)

aλ

(
1− e−aλ∆tk+1

)
+ νλ(tk+1)

with νλ(tk+1) ∼ N
(

0,
σ2
λ

2aλ

(
1− e−2aλ∆tk+1

))
.

As the CDS swap premium SCDS(t, Ti), i = 1, . . . ,ms, is a non-linear function
in λ(t), an extended Kalman filter has to be applied. Therefore, the model
implied swap premium is linearised by means of a first-order Taylor series
expansion around the best prediction λ̂t|t−1 in the prediction step of the
Kalman filter, i.e.

SCDS(t, Ti, λ(t))
·

=

SCDS(t, Ti, λ̂t|t−1) +
∂

∂λ(t)
SCDS(t, Ti, λ(t))|λ(t)=λ̂t|t−1

·
(
λ(t)− λ̂t|t−1

)
.

By defining

aCDS(t, Ti) = SCDS(t, Ti, λ̂t|t−1)− ∂

∂λ(t)
SCDS(t, Ti, λ(t))|λ(t)=λ̂t|t−1

· λ̂t|t−1

and

bCDS(t, Ti) =
∂

∂λ(t)
SCDS(t, Ti, λ(t))|λ(t)=λ̂t|t−1

the measurement equation of the extended Kalman filter can be written as
follows:
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 SCDS(tk, tk + T1, λ(tk))
...

SCDS(tk, tk + Tms , λ(tk))

 =

 aCDS(tk, tk + T1)
...

aCDS(tk, tk + Tms)

+

 bCDS(tk, tk + T1)
...

bCDS(tk, tk + Tms)

 · λ(tk) + ελ(tk)

with ελ(tk) ∼ Nms(0, h2
λ · Ims).

6.3.2 An application to market data

Next, the estimation procedure is applied to a sample of market data be-
tween September 2004 and March 2007. The market data used in this study
are European GDP growth rates, German sovereign yields as a proxy for
risk-free interest rates, and iTraxx Europe CDS spreads. In addition to that,
aggregated recovery rates of European small and medium-sized enterprises
(SMEs) and large corporates are used.
Weekly German sovereign yields with maturities from 3 months to 10 years
and quarterly GDP growth rates from Euro countries are used to estimate
the parameters of the processes r and w. As the frequency of zero rates is
higher than the frequency of the GDP growth rates, a cubic spline interpo-
lation is applied to the quarterly GDP data to obtain a time series of the
same length as the zero rates. Furthermore, average recovery rates of Eu-
ropean SMEs and large corporates are used to estimate the parameters of
the recovery-rate process as described in Subsection 6.3.1.2. Finally, iTraxx
Europe CDS spreads with a maturity of 5 years (as these are the most liquid
ones) are used to estimate the parameters of the default intensity according
to Subsection 6.3.1.3. The parameter estimates of the short-rate, recovery,
and intensity model are given in Table 6.1. As the process u is unobservable
in this example, cz is set equal to one. The estimated standard errors of the
parameter estimates are obtained by a moving block bootstrapping proce-
dure (see e.g. Lahiri (2003)). A block length of 26 weeks was chosen and then
the blocks were randomly concatenated to obtain series with approximatively
the same length as the respective original sample series. The standard er-
ror estimates given in Table 6.1 are the empirical standard deviations of the
respective estimators in a total of 50 bootstrap replications.
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Parameter Estimate Std. Error

Short-rate process

ar 0.0636 (0.0029)
âr 0.0635 (0.0027)
σr 0.0053 (7.3e-05)
brw 0.1397 (0.0273)

Market-factor process

θw 0.0093 (0.0033)
aw 0.6146 (0.0802)
âw 0.6140 (0.0801)
σw 0.0017 (0.0026)

Recovery-rate process

bz 0.6281 (0.0901)
dz 5.1494 (5.6202)
θu 0.0135 (0.0258)
au 0.1318 (0.2025)
âu 0.1472 (0.2137)
σu 0.0554 (0.0099)

Intensity process

θλ 0.0076 (0.0008)
aλ 0.8601 (0.1825)
âλ 0.8596 (0.1824)
σλ 0.0127 (0.0030)
bλu 0.0001 (0.0001)
bλw 0.1997 (0.0812)

Table 6.1: Estimates of short-rate, recovery, and intensity model.
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6.3.3 Model validation

Before the performance of the model is evaluated, it is checked whether the
model assumptions from Subsections 6.1.1 and 6.1.2 are fulfilled. Using the
filtered time series and estimated parameter values,

∆Wi(tk) = Wi(tk)−Wi(tk−1) for i ∈ {r, w, u, λ} and k = 2, . . . , n

are computed. These are supposed to be realisations of independent nor-
mally distributed random variables. Hence, each (∆Wi(tk))k=2,...,n is tested
for autocorrelation and normal distribution.
To test for autocorrelation, a Ljung-Box test (see e.g. Box and Ljung (1978))
is performed. The null hypothesis of no autocorrelation up to lag 22 ≈
2
√
n− 1 is not rejected on a 5%-level for ∆Wr and ∆Wλ and rejected for

∆Ww and ∆Wu.
The null hypothesis that ∆Wi for i ∈ {r, w, u, λ} are not realisations of nor-
mally distributed random variables is tested according to the test proposed
by Bera and Jarque (1980). The test indicates that ∆Ww and ∆Wr are nor-
mally distributed. If the (in terms of absolute values) highest 5% of ∆Wu and
∆Wλ are removed, the normal distribution assumption can not be rejected
anymore. Therefore, one can conclude that the assumption of a normal dis-
tribution is justified for ∆Ww and ∆Wr and adequate at least at the center
of the distribution for ∆Wu and ∆Wλ (see also the QQ-plots and histograms
in Figures 6.5 and 6.6).
Furthermore, in Section 6.1 the Wiener processes were assumed to be uncor-
related. To verify this assumption the empirical correlations of the processes
(∆Wi(tk))k=2,...,n for i ∈ {r, w, u, λ} are computed and a t-test for no corre-
lation is performed. The test indicates that the processes ∆Ww and ∆Wr,
∆Ww and ∆Wλ, as well as ∆Wr and ∆Wu are uncorrelated, but also the
other correlations are on a rather low level. Table 6.2 contains the empirical
correlations of the processes ∆Ww, ∆Wr, ∆Wu, and ∆Wλ and the corre-
sponding test statistics of a t-test with null hypothesis of no correlation.
The test statistic T given by

T =
ρ
√
n− 2√

1− ρ2
,

where ρ denotes the correlation, follows under the null hypothesis Student’s
t-distribution with n − 2 degrees of freedom. Hence, the null hypothesis is
rejected on a 5%-level if |T | > 1.9782.
Finally, it is also tested if the assumption of log-normally distributed recovery
rates (Equation (6.3) with az = 0) is justified. Although the Jarque-Bera test
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Figure 6.5: QQ-Plots and histograms of ∆Wi.
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Figure 6.6: QQ-Plots and histograms of ∆Wi with outliers removed.
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∆Ww ∆Wr ∆Wu ∆Wλ

∆Ww
1 0.0319 0.2038 -0.0487

(0.3642) (2.3740) (-0.5566)

∆Wr
0.0319 1 -0.0444 -0.2406

(0.3642) (-0.5069) (-2.8259)

∆Wu
0.2038 -0.0444 1 -0.2271

(2.3740) (-0.5069) (-2.6586)

∆Wλ
-0.0487 -0.2406 -0.2271 1

(-0.5566) (-2.8259) (-2.6585)

Table 6.2: Empirical correlations and test statistics.

rejects the hypothesis of normal distribution for the logarithm of the recovery
rates, the QQ-plot in Figure 6.7 indicates that the distributional assumption
fits quite well in most parts of the distribution and that larger deviations
appear only in the upper tail.
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Figure 6.7: QQ-Plot for logarithm of aggregated recovery rates.

6.3.4 Model performance

After having validated the model assumptions, the model performance is
investigated. For this, model and market prices/spreads as well as model
and market price/spread movements are compared. The first is done by
calculating the mean absolute and relative pricing error for each maturity,
the latter by regressing the model price/spread movements on the market
price/spread movements similar to Titman and Torous (1989).
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The average absolute and relative deviations of the model prices of zero-
coupon bonds and CDS spreads from the corresponding market prices are
given in Table 6.3.

Risk-free ZCB CDS

Mean absolute error 0.01052 3.68e-05
Mean relative error 0.01374 0.01031

Table 6.3: Average pricing errors for risk-free zero-coupon bonds and CDS
spreads.

Additionally, Figures 6.8 and 6.9 show a comparison of market and model
zero rates and CDS spreads for a maturity of 5 years.
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Figure 6.8: Market and model zero rates with 5 year maturity.
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Figure 6.9: Market and model spread for 5-year iTraxx CDS spreads.

For further examination of the model performance, it is tested how well
changes in market quotes can be explained by changes in model rates/spreads.
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For this, let

∆Rk(T ) := R(tk, tk + T )−R(tk−1, tk−1 + T )

with R(t, T ) = − 1
T−t lnP nd(t, T ) and

∆SCDSk (T ) := SCDS(tk, tk + T )− SCDS(tk−1, tk−1 + T )

denote the changes in the zero rate and CDS spread with time to maturity
T between tk−1 and tk. The following regressions are performed:

∆Rmarket
k (T ) = aR,T + bR,T∆Rmodel

k (T ) + εR,T

with εR,T ∼ N
(
0, h2

R,T

)
and

∆SCDS,marketk (T ) = aSCDS ,T + bSCDS ,T∆SCDS,modelk (T ) + εSCDS ,T

with εSCDS ,T ∼ N
(

0, h2
SCDS ,T

)
.

For a good model one would expect a·,T to be around 0, b·,T around 1, and
the coefficient of determination R2 close to 1. For the interest-rate model,
the hypothesis aR,T = 0 is only rejected for very short maturities, and the
hypothesis aR,T = 0 and bR,T = 1 is rejected for very short and very long
maturities. The R2 for maturities between 1 year and 10 years lies between
0.76 and 0.98 with an average R2 of 0.91. Replacing the zero rate changes
by absolute zero rates, even higher degrees of explanation for all maturities
(between 0.87 and 0.99) can be achieved. For the CDS spreads the hypothesis
aSCDS ,T = 0 can not be rejected on a 5%-level. The hypothesis aSCDS ,T = 0
and bSCDS ,T = 1 is rejected but the value for bSCDS ,T is only slightly higher
than 1 and the R2 is over 0.98.
Finally, the empirical correlations of the historical and filtered time series
of the processes w, r, u, and λ are computed (see Table 6.4). The signs of
the correlations correspond to what would be expected according to many
empirical studies, see e.g. Altman et al. (2004) or Schuermann (2004) who
both report a negative correlation between recovery rates and default rates
or Driessen (2005) who states that default-free interest rates and default
intensities are negatively correlated.

6.4 Further applications

The modelling approach introduced in this chapter is not only restricted to
the valuation of the above presented credit derivatives, but can also be used
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w r z λ

w 1 0.7374 0.6384 -0.6708
r 0.7374 1 0.4989 -0.4143
z 0.6384 0.4989 1 -0.0962
λ -0.6708 -0.4143 -0.0962 1

Table 6.4: Empirical correlations of historical (w, z) and filtered (r, λ) pro-
cesses.

in further applications. As most of them rely on Monte Carlo techniques and
are often individually customized, only the main ideas are sketched here.
In Chapters 4 and 5, it was pointed out that the value and type of a collateral
position plays a major role in determining the amount recovered from a
defaulted secured facility. Yet, the modelling approach presented in Section
6.1 aims at the valuation of unsecured debt positions and credit derivatives
written on these positions, which is the case for most credit-risk pricing
models. Exceptions with a stochastic collateral modelling in a structural-
form model include the approaches presented in Cossin and Hricko (2003)
and Jokivuolle and Peura (2003). To include the impact a collateral position
might have in the framework presented above, the recovery specification from
Equation (6.3) is only applied on that part of the debt which is not covered
by the value of the collateral. Then, the recovery payment from a defaulted
contingent claim with underlying collateral is given by

ZColl(t) = min(C(t), F ) + max (F − C(t), 0) z(t),

where C(t) denotes the value of the collateral at time t. Hence, the recovery-
rate process in presence of collateral can be described by

zColl(t) =
min(C(t), F ) + max (F − C(t), 0) z(t)

F

= 1− 1− z(t)

F
max (F − C(t), 0) , (6.14)

where the last factor in Equation (6.14) is the payoff of a put option on the
collateral with strike equal to the face value F . In the most simple case of a
constant or deterministic collateral value with C(t) < F , the pricing formulas
developed in Section 6.2 remain the same, when the parameters az and bz
are replaced by

aCollz =
C(t)

F
+

(
1− C(t)

F

)
az



146 CHAPTER 6. HYBRID MODEL

and

bCollz =

(
1− C(t)

F

)
bz

respectively. In a model with stochastic collateral, C(t) has to be specified
in dependence of the type of collateral, for example by a geometric Brown-
ian motion or any other positive stochastic process. Pricing within such an
approach will in most cases rely on Monte Carlo or tree methods. The pa-
rameters of the collateral-value process can be estimated using information
from the specific piece of collateral or a respective index, e.g. the S&P/Case-
Shiller Home Price Index for real estate or the Dow Jones - AIG Commodity
Index for commodity. Figure 6.10 shows an example of how the distribution
of the recovery rates after 1 year changes if different types of collateral are
taken into consideration. The upper plot contains a histogram of 10000 sim-
ulated recovery rates according to Equation (6.3) with parameter values as in
Table 6.1. The other two plots show histograms of the recovery rates based
on Equation (6.14), where C(t) is in both cases assumed to be lognormally
distributed. For the plot in the middle of Figure 6.10, the parameters of C(t)
have been fitted to a time series of the Dow Jones - AIG Commodity Index
between 1991 and 2008 and an initial quota of collateral, i.e. C(0)/F , of 60%
was assumed, while for the bottom plot the parameters have been estimated
using a time series of the seasonally adjusted Composite 10 S&P/Case-Shiller
Home Price Index between 1987 and 2008 and the initial quota of collateral
was set equal to 90%. The quotas of collateral in this example have been cho-
sen according to the results from Subsection 4.2.4. It can be easily seen that
changing the assumptions about the collateral-value process influences the
location of the recovery-rate distribution as well as its shape. Another inter-
esting question from the field of risk management, which might be addressed
in a such model with stochastic recovery and collateral, is the determination
of collateral haircut, i.e. the amount of collateral required at initiation for a
given face value to receive a desired degree of credit risk.
The presented framework can also be used to price more exotic credit deriva-
tives like constant maturity CDS or credit default swaptions. Unlike in a
standard CDS, the premium in a constant maturity CDS (CMCDS) is reset
periodically, i.e. the spread is floating and not fixed. This makes the value of
the CMCDS less sensitive to changes in the credit-spread level. The spread of
a CMCDS is contingent on the spread of a reference entity with a constant
maturity, e.g. the current 5-year CDS of a reference entity or the current
5-year CDS index. In many cases the premium of a CMCDS is expressed
as a percentage of the reference spread, sometimes called gearing factor or
participation rate. While the value of the default leg of a CMCDS is equiva-
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Figure 6.10: Histograms of simulated recovery rates after 1 year without
collateral (top), with commodity as collateral (middle), and with real estate
as collateral (bottom).
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lent to the case of a standard CDS as in Equation (6.9), for the value of the
premium leg Equation (6.10) changes to

V CMCDS
prem (t, T ) = EQ

[
m∑
i=1

gSCDS,ref (ti, T + ti)∆tie
−
∫ ti
t (r(l)+λ(l))dl

∣∣∣∣∣Ft
]

with g denoting the gearing factor and SCDS,ref (ti, T + ti) the time ti CDS
spread of the reference entity with time to maturity T , e.g. the current 5-year
CDS spread at time ti. More on CMCDS pricing can e.g. be found in Brigo
(2006) or Jönsson and Schoutens (2009).
A credit default swaption is a contract which gives the holder the opportunity
to enter a CDS with a fixed premium K at time t0 which is usually equal
to the initiation date of the CDS. Let T = {t1, . . . , tm} denote the payment
schedule of the CDS with t0 < t1 < . . . < tm = T , then the time t (t ≤ t0)
value of a payer default swaption is given by

EQ

[
e−

∫ t0
t r(l)dl max

(
V CDS(t0, T,K), 0

)∣∣∣Ft]
with V CDS(t0, T,K) denoting the time t0 value of a CDS with maturity T
and premium K given by

V CDS(t0, T,K) = 1{τ>t0}

[
V CDS
def (t0, T )−K

m∑
i=1

∆tiP
d,zero(t0, ti)

]
.

Here, V CDS
def (t0, T ) is the value of the default leg from Equation (6.9) and

P d,zero(t0, ti) the time t0 price of a defaultable zero-coupon bond with ma-
turity ti under the assumption of zero recovery from Corollary 6.6. Good
references for pricing credit default swaptions numerically are e.g. Brigo and
Alfonsi (2005) and Jönsson and Schoutens (2008).



Chapter 7

Pricing distressed CDOs with
stochastic recovery

Standard copula models for pricing collateralized debt obligations (CDOs)
assume a constant recovery rate of 40%. While this assumption might work
quite well in normal market situations, in distressed markets, as observed
since the 2nd half of 2007, this assumption is not justified anymore: First,
standard copula models, like the Gaussian copula model introduced by Li
(2000), often show a bad performance in times of high tranche spreads. Sec-
ond, in 2008 it was temporarily not possible to calibrate the standard Gaus-
sian base correlation model to the complete set of CDX and iTraxx tranche
quotes. And finally, non-standardized super senior tranches (60% − 100%)
have a fair spread of zero in standard market models while being traded on
the market with a positive spread of up to 25 bps during distressed market
situations.
Nevertheless, only very few CDO models with stochastic recovery exist. The
first one was introduced in Andersen and Sidenius (2004). In this article an
extension to the Gaussian copula model is presented by assuming a stochastic
recovery related to the systematic factor driving the default events, explicitly
allowing for an inverse correlation between recovery rates and default rates.
To be more precise, the recovery rate of an obligor in case of a default in
this model is given by an application of the normal cumulative distribution
function on a normally distributed random variable which is correlated with
the default triggering variable through a common systematic factor. In a nu-
merical examination the authors noted that the base correlation skew effect
of random recovery is quite minor and hence the random recovery approach
was not further investigated. Due to the credit market crisis, recently some
articles on using stochastic recovery rates in CDO pricing have been pub-
lished. Krekel (2008) uses a discrete stochastic recovery rate in a Gaussian

149
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base correlation setting to overcome the problem that super senior tranches
in a standard Gaussian base correlation model have zero fair spread. In this
model the discrete recovery rates are defined as constants on buckets of the
default triggering factors, i.e. the recovery rate is a step function of the de-
fault triggering variable. In the empirical part a recovery rate distribution
with only four possible realizations (60%, 40%, 20%, and 0%) is used. Am-
raoui and Hitier (2008) extend the approach of Krekel (2008) by modelling
the recovery rate as a deterministic function of the systematic risk factor of
the default triggering variable. Ech-Chatbi (2008) uses a multiple default ap-
proach (similar to Section 6.1.3 in Schönbucher (2003)), where the recovery
is lowered by a random factor each time a default event occurs. Hence, the
recovery rate process is some geometric compound Poisson process where the
current recovery rate is multiplied by a random variable, e.g. beta distributed
or log-gamma distributed, each time a default event occurs. One feature that
all these models have in common is that they rely on the assumption of a
Gaussian copula, which might not be appropriate, especially in distressed
market situations, as Gaussian copulas don’t support tail dependences.
The aim of this chapter is a joint modelling of default and recovery risk in
a portfolio of credit risky assets, especially accounting for the correlation of
defaults on the one hand and correlation of default rates and recovery rates
on the other hand. Nested Archimedean copulas as proposed in Hofert and
Scherer (2009) are used to model different dependence structures. However,
this concept is not applied to model different default dependences for firms
in the same sector and firms from different sectors as in Hofert and Scherer
(2009), but rather to model dependences between default triggers (inner de-
pendence) as well as between default triggers and loss triggers (outer depen-
dence). Furthermore, a very flexible continuous recovery-rate distribution
with bounded support on [0, 1] is chosen, which allows for an efficient sam-
pling of the loss process. This is especially important as in most cases the
loss process distribution will not be given in closed form.

7.1 Portfolio credit derivatives

7.1.1 Modelling framework

In the following a probability space (Ω,G,Q) is assumed, where Q denotes
some given pricing measure and F ⊂ G with F =

⋃
t≥0Ft, Ft ⊆ Ft+1 similar

to Chapter 6. Consider a portfolio of I credit risky assets with payment
streams depending both on the default status and on the recovery rate in
case of default.
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The default times τi, i = 1, . . . , I, are assumed to follow a default intensity
model with λi(t) denoting the Ft-measurable default intensity of firm i at
time t. The survival probabilities in this model are given by

pi(t) := Q(τi > t) = EQ

[
e
−

t∫
0

λi(s)ds

]
(7.1)

and the default probabilities are denoted by p̄i(t) = 1 − pi(t). According to
p.183 of Bielecki and Rutkowski (2004) or p.122 of Schönbucher (2003), τi
can be constructed in the canonical way as follows: Let UD

i denote a random
variable uniformly distributed on [0, 1] and independent of F , then

τi
d
= inf

{
t > 0 : e−

∫ t
0 λi(s)ds ≤ UD

i

}
. (7.2)

The recovery rates zi in case of a default event are given by 1−LGDi, where
the losses given default, LGDi, are assumed to be identically distributed
according to a distribution function F with support [0, 1]; if no default has
taken place, zi is set equal to 1. This choice is arbitrary as the recovery rate
is only of importance for defaulted assets. Hence, the recovery rate of firm i
is given by

zi =

{
1− LGDi if τi ≤ T

1 else
.

Assuming UL
i to be uniformly distributed on [0, 1] and independent of F ,

one can set LGDi = F←(UL
i ) and zi = h(UL

i ) with F← := inf {z : F (z) ≥ x}
denoting the quantile function of F and

h(x) =

{
1− F←(x) if τi ≤ T

1 else
.

Setting e.g. F←(x) ≡ 0.6 for x ∈ (0, 1) leads to the standard case of a constant
recovery of 40%. To introduce dependence between different firms on the one
hand and between recovery rates and default rates on the other hand, a cer-
tain dependence structure between the trigger variables UD

i , UL
i , i = 1, . . . , I,

is assumed. The joint distribution of the vector
(
UD

1 , . . . , U
D
I , U

L
1 , . . . , U

L
I

)
is

assumed to be given by some copula C, i.e.
(
UD

1 , . . . , U
D
I , U

L
1 , . . . , U

L
I

)
∼ C.

In the standard Gauss copula model with constant recovery as introduced in
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Li (2000) C would simply be a Gaussian copula with correlation matrix

Σ =



1 ρ
. . . 0

ρ 1
1

0
. . .

1


,

correlation coefficient ρ ≥ 0, and F←(x) ≡ 0.6 for x ∈ (0, 1).
To allow for different dependence hierarchies, C is chosen to belong to the
class of nested Archimedean copulas in what follows. The concept of pricing
CDO tranches using exchangeable Archimedean copulas was introduced in
Schönbucher and Schubert (2001). Hofert and Scherer (2009) extended the
approach by using nested Archimedean copulas to introduce different default
correlations for different industry sectors. This concept will be extended to
allow for additional dependence between default rates and recovery rates in
what follows.
The most important quantity for pricing portfolio-credit derivatives as well
as for risk management purposes is the portfolio-loss process L(t) which can
be easily derived once the default process, loss given default, and nominal
of each asset in the portfolio are known. Unfortunately, the distribution of
the loss process is generally not known in closed form. In some cases, e.g.
exchangeable Archimedean copulas with constant recovery (see Proposition
10.7 in Schönbucher (2003)), the portfolio-loss distribution can be approxi-
mated by a conditional independence approach. Nevertheless, as long as the
occurring processes can be sampled efficiently, it is possible to price portfolio-
credit derivatives via a Monte Carlo approach.

7.1.2 Portfolio CDS and CDO tranches

In the following, the payment streams and pricing formulas of portfolio CDS
and CDOs are presented. To accomplish this, consider a portfolio of I oblig-
ors, where each obligor contributes the same amount to the notional. For
ease of notation a notional of 1 is assumed in what follows. The time to
maturity is denoted by T . For the pricing of CDS and CDOs the payment
streams of two different legs, the premium and the default leg, have to be
considered. Premium payments are made at predefined dates given by the
payment schedule T = {0 < t1 < . . . < tn = T}. Note that a default event
can happen at any point in time in the interval [0, T ]. To simplify com-
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putations, all default payments between two premium payment dates are
deferred to the next scheduled payment date. Furthermore, to account for
accrued interest, defaults are assumed to happen in the middle of two sched-
uled payment dates, i.e. at (tk−1 + tk)/2 for a default event in [tk−1, tk) with
k = 1, . . . , n and t0 = 0. Both portfolio CDS and CDO tranches are credit
derivatives with the portfolio-loss process L(t) given by

L(t) =
1

I

I∑
i=1

11{τi≤t}LGDi, t ∈ [0, T ]

as underlying. The basic idea of a CDO is to pool the risky assets and
resell them in slices, the so-called CDO tranches. The loss affecting tranche
j ∈ {1, . . . , J} with lower and upper attachment points lj and uj, 0 = l1 <
u1 = l2 < . . . < uJ−1 = lJ < uJ ≤ 1, is given by

Lj(t) = min{max{0, L(t)− lj}, uj − lj}, t ∈ [0, T ].

With each default the nominal of the portfolio of obligors is reduced by 1/I,
i.e. the remaining nominal of the portfolio CDS is

N(t) = 1− 1

I

I∑
i=1

11{τi≤t}, t ∈ [0, T ].

For tranche j ∈ {1, . . . , J} the remaining nominal is given by

Nj(t) = uj − lj − Lj(t), t ∈ [0, T ].

With spCDST denoting the annualized portfolio-CDS spread, r(t) the non-
defaultable short rate, and ∆tk = (tk− tk−1), k = 1, . . . , n, the time between
two subsequent scheduled payment dates, the expected discounted premium
and default leg of a portfolio CDS are given by

EDPLT (spCDST )

= EQ

[
n∑
k=1

e−
∫ tk
0 r(l)dlspCDST ∆tk (N(tk) + (N(tk−1)−N(tk)) /2)

]
(7.3)

and

EDDLT = EQ

[
n∑
k=1

e−
∫ tk
0 r(l)dl (L(tk)− L(tk−1))

]
(7.4)
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respectively. For the j-th tranche of a CDO, the expected discounted pre-
mium and default leg are given by

EDPLT,j(s
CDO
T,j )

= EQ

[
n∑
k=1

e−
∫ tk
0 r(l)dlsCDOT,j ∆tk (Nj(tk) + (Nj(tk−1)−Nj(tk)) /2)

]
(7.5)

with sCDOT,j denoting the annualized spread of tranche j and

EDDLT,j = EQ

[
n∑
k=1

e−
∫ tk
0 r(l)dl (Lj(tk)− Lj(tk−1))

]
(7.6)

respectively. It is market standard to quote the equity tranche, i.e. the most
subordinated tranche, with an upfront payment (percentage of the nominal)
and a fixed running spread of 500 bps, i.e.

EDPLT,1(sCDOT,1 ) = sCDOT,1 (u1 − l1)

+ EQ

[
n∑
k=1

e−
∫ tk
0 r(l)dl0.05∆tk (N1(tk) + (N1(tk−1)−N1(tk)) /2)

]
,

where sCDOT,1 denotes the upfront payment.
The fair spreads of both portfolio CDS and CDO tranches can now be com-
puted by equating the expected discounted premium and default leg and
solving for the spread.

7.1.3 Homogeneous portfolio approximation

Assuming a homogeneous portfolio with deterministic intensities in the mod-
elling framework from Section 7.1.1 and using the properties of Archimedean
copulas, the following results can be stated (for the first result see also Section
10.8 of Schönbucher (2003)).

Theorem 7.1. Let C denote the Archimedean copula of the random vector(
UD

1 , . . . , U
D
I , U

L
1 , . . . , U

L
I

)
and λi(t) = λj(t), i, j ∈ {1, . . . , I}, t ∈ [0, T ], the

default intensities from Equation (7.1).

1. The default correlation between any two firms k and l is given by

ρ(t) = Cor(11{τk≤t}, 11{τl≤t})

=
Ck,l(p(t), p(t))− p2(t)

p(t)(1− p(t))
=
ϕ−1 [2ϕ(p(t))]− p2(t)

p(t)(1− p(t))
,
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where Ck,l is the (k, l)-th bivariate margin of C with ϕ denoting the
respective generator.19 For copulas with existing upper tail dependence
parameter λU (see Definition 2.28), the default correlation ρ(t) con-
verges to λU for t→ 0.

2. The expected portfolio loss up to time T is given by

EQ [L(T )] = p̄(T )(1− zconst)

with zconst denoting the expected recovery in case of default.

3. The portfolio-loss process distribution can be approximated by

Q(L(t) ≤ x)

≈
∫ ∫ ∫

11{p̄(t,V,V D)·EQ[LGD1|V,V L]≤x}dG(V )dGD(V D)dGL(V L)

with
p̄(t, V, V D) = 1− e−V Dϕh(e−V ϕ0(p(t)))

and V ∼ G, V D ∼ GD, and V L ∼ GL denoting the mixing variables
from Algorithm 2.37 and the call of Algorithm 2.34 in Algorithm 2.37
respectively.

Proof.

1. The default correlation of two obligors k and l is given by

ρ(t) = Cor(11{τk≤t}, 11{τl≤t})

=
Q (τk ≤ t, τl ≤ t)− p̄2(t)

p̄(t)(1− p̄(t))

=
Q
(
UD
k ≥ p(t), UD

l ≥ p(t)
)
− (1− p(t))2

p(t)(1− p(t))

=
Ck,l(p(t), p(t)) + 1− 2p(t)− (1− p(t))2

p(t)(1− p(t))

=
Ck,l(p(t), p(t))− p2(t)

p(t)(1− p(t))
Def.2.29

=
ϕ−1 [2ϕ(p(t))]− p2(t)

p(t)(1− p(t))
.

19For k and l from the same subgroup h it holds that ϕ = ϕh, while for k and l from
different subgroups it holds that ϕ = ϕ0.
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Further, using p(t)
t→0→ 1 yields (see Equation (2.17))

lim
t→0

ρ(t) = lim
t→0

Ck,l(p(t), p(t)) + 1− 2p(t)

p(t)(1− p(t))︸ ︷︷ ︸
→ λU

−1− p(t)
p(t)

= λU .

2. Using the fact that the expected recovery in case of a default event is a
constant equal for all obligors i, i.e. E [Ri|τi ≤ T ] = Rconst, one obtains

EQ [L(T )] = EQ

[
1

I

I∑
i=1

11{τi≤T}LGDi

]

=
1

I

I∑
i=1

Q (τi ≤ T ) EQ [1− zi|τi ≤ T ]︸ ︷︷ ︸
1−zconst

= p̄(T )(1− zconst)

with zconst denoting the expected recovery in case of default.

3. Applying the conditional independence approach as used e.g. in Theo-
rem 10.5 in Schönbucher (2003) results in

Q(L(t) ≤ x)

=

∫ ∫ ∫
Q
(
L(t) ≤ x|V, V D, V L

)
dG(V )dGD(V D)dGL(V L).

with L(t) = 1
I

∑I
i=1 11{τi≤t}LGDi, V ∼ G denoting the mixing variable

from step 1 in Algorithm 2.37 and V D ∼ GD and V L ∼ GL the mixing
variables from the call of Algorithm 2.34 in step 2 in Algorithm 2.37.
Conditioned on the mixing variables V , V D, and V L the triggering
variables UD

i , UL
i , i = 1, . . . , I, are independent and so are τi and

LGDi, i = 1, . . . , I. Using the law of large numbers, yields for I →∞

1

I

I∑
i=1

11{τi≤t}LGDi
Q→ p̄(t, V, V D)EQ

[
LGD1|V, V L

]
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with p̄(t, V, V D) denoting the conditional default probability. Hence,∫ ∫ ∫
Q
(
L(t) ≤ x|V, V D, V L

)
dG(V )dGD(V D)dGL(V L)

≈
∫ ∫ ∫

11{p̄(t,V,V D)·EQ[LGD1|V,V L]≤x}dG(V )dGD(V D)dGL(V L).

According to Algorithm 2.37,

Uhk = ϕ−1
0

(
− 1

V
log

(
ϕ−1
h

(
− 1

V D
log (Xk)

)))
with Xk ∼ Unif [0, 1]. Hence,

p(t, v, vD) = Q
[
τk > t|V = v, V D = vD

]
= Q

[
Uhk ≤ p(t)|V = v, V D = vD

]
= Q

[
ϕ−1

0

(
−1

v
log

(
ϕ−1
h

(
− 1

vD
log (Xk)

)))
≤ p(t)

]
= Q

[
Xk ≤ e−v

Dϕh(e−vϕ0(p(t)))
]

= e−v
Dϕh(e−vϕ0(p(t))).

Unfortunately, for most choices of the recovery-rate distribution, there will
be no closed-form approximation for the loss distribution. Nevertheless, if
efficient sampling strategies from the recovery-rate distribution are known,
Monte Carlo techniques can be applied to price derivatives of the loss process.
In the following it is assumed that C belongs to a parametric family of
(nested) Archimedean copulas with parameter vector θ = (θ0, θ1, . . . , θH),
H ≥ 0, and θl, l = 0, . . . , H, denoting the parameter corresponding to the
generator ϕl.

7.1.4 Recovery-rate distribution

As long as there are no liquidly traded credit derivatives on pure default-
event risk, e.g. digital default swaps, or on pure recovery risk, e.g. recovery
swaps, it is not possible to infer default intensities from credit derivatives
without making an assumption on recovery rates. Therefore, while choosing
the recovery-rate distribution, one has to ensure that the assumptions made
in the pricing of correlation-insensitive credit derivatives used for the deter-
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mination of default intensities are not violated in the model for correlation-
sensitive products. For this, the average recovery rate is assumed to equal the
constant recovery rate, zconst, used for bootstrapping the default intensities
from portfolio-CDS quotes, i.e.

EQ [zi|τi ≤ T ] = zconst. (7.7)

Using standard assumptions this means that the recovery distribution con-
ditioned on default has to have an expectation of e.g. 40%. Otherwise the
model is not consistent with the portfolio-CDS pricing.
The beta distribution, which is often used for recovery rates / loss given
defaults (see e.g. Section 6.1 of Schönbucher (2003), Schuermann (2004), or
Gupton and Stein (2005)), is numerically too expensive for Monte Carlo
pricing (for the cdf and inverse cdf the incomplete beta function has to be
evaluated numerically). Therefore, the Kumaraswamy distribution (see Ku-
maraswamy (1980)), which is a special case of McDonald’s generalized beta
distribution (see e.g. McDonald (1984) or Johnson et al. (1995)) and more
suitable for a Monte Carlo applications, is chosen as marginal distribution
for the loss given default. Its density is given by

fKum(x) = abxa−1 (1− xa)b−1 , (7.8)

where 0 ≤ x ≤ 1 and a, b > 0. The Kumaraswamy distribution has simi-
lar properties as the beta distribution: it is a continuous distribution with
bounded support showing a high degree of flexibility by supporting bimodal
as well as unimodal and skewed, J-shaped, U-shaped, and uniform densities
(see Figure 7.1).

In contrast to the beta distribution it has a closed-form cdf and inverse cdf
given by

FKum(x) = 1− (1− xa)b

and

F−1
Kum(x) =

(
1− (1− x)1/b

)1/a

. (7.9)

Other possible continuous distributions with bounded support for the loss
given default that show a similar degree of flexibility would be the two-
sided power distribution as proposed by Kotz and van Dorp (2004) or the
Vasicek distribution (see Vasicek (1991)). The two-sided power distribution
has similar properties as the Kumaraswamy distribution but a peak at its
mode (antimode), whereas the Vasicek distribution has the drawback that
for its cdf and inverse cdf the normal cdf and inverse cdf have to be evaluated
numerically.
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Figure 7.1: Kumaraswamy densities for different parameter constellations.

To ensure that condition (7.7) is fulfilled the parameters a and b have to be
chosen such that the expectation of the recovery rate conditioned on default
is equal to 40%, i.e. the expectation of the loss given default conditioned on
default is equal to 60%. Therefore, set (see McDonald (1984))

EQ [LGDi|τi ≤ T ] = bB

(
1 +

1

a
, b

)
= 0.6, (7.10)

where B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx denotes the incomplete beta function.

The remaining degree of freedom can be resolved e.g. by choosing the sec-
ond parameter such that the recovery distribution matches the empirically
observed standard deviation (e.g. 20% as in Altman and Kishore (1996)), i.e.

σLGD :=
√

Var [LGDi|τi ≤ T ] =

√
bB

(
1 +

2

a
, b

)
− b2B

(
1 +

1

a
, b

)2

= 0.2.

(7.11)
This leads to a Kumaraswamy distribution with parameters a = 2.65 and
b = 2.13 for the loss given default with density as given in Figure 7.2.

By choosing other parameter constellations that fulfil Equation (7.10), one
can vary the shape of the distribution. Another possibility would be to
calibrate the second parameter to the market quotes of CDO tranches.
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Figure 7.2: Density of Kumaraswamy distribution with parameters a = 2.65
and b = 2.13.

7.2 Model calibration and empirical results

In this section, a procedure to calibrate the model to market data is presented
and a numerical example of the model’s fitting capability using iTraxx Europe
data is given. First of all, portfolio CDS and CDO tranches are priced using
the results from Section 7.1.

7.2.1 Pricing and calibration algorithm

Assuming deterministic discount factors, Equations (7.3) and (7.4) only re-
quire the computation of the expected portfolio loss and the expected re-
maining nominal at time t, which are given by

EQ [L(t)] =
1− zconst

I

I∑
i=1

p̄i(t) and EQ [N(t)] =
1

I

I∑
i=1

pi(t)

with zconst denoting the constant recovery used for bootstrapping default
intensities. Therefore, the model spread of a portfolio CDS can be obtained
by equating Equations (7.3) and (7.4) and solving for spCDST , i.e.

spCDS,modelT =
EDDLT
EDPLT (1)

. (7.12)

Here, the linearity of the premium and the default leg in the loss process is
used. Unfortunately, premium and default leg for a CDO tranche are non-
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linear functions in the loss process. Therefore, a straightforward calculation
of the expected discounted premium and default leg is not possible. Nev-
ertheless, the following algorithm shows how to price CDO tranches in the
modelling framework from Section 7.1 via Monte Carlo simulation.

Algorithm 7.2. Pricing CDO tranches via Monte Carlo simulation.

1. Let T denote the maturity, T = {0 < t1 < . . . < tn = T} the payment
schedule, t0 the initiation of the contract, λi(t) the default intensity of
firm i, I the number of firms, zconst the constant recovery rate used for
bootstrapping default intensities from portfolio-CDS spreads, and r(t)
the non-defaultable short rate. Choose the number of simulation runs
M , the attachment and detachment point lj and uj of tranche j, and a
copula C with parameter vector θ.

2. Monte Carlo simulation:

(a) Sample λ
(m)
i (tk) and compute Λ

(m)
i (tk) = e−

∑k−1
l=0 λ

(m)
i (tl)(tl+1−tl) for

k = 0, . . . , n, i = 1, . . . , I, and m = 1, . . . ,M .

(b) Sample U = (Ui,m)i=1,...,2I,m=1,...,M ∈ [0, 1]2I×M , where each column
U·,m of U is a sample of the chosen copula C.

(c) Compute the default times τ
(m)
i for each firm i ∈ {1, . . . , I} and

Monte Carlo run m ∈ {1, . . . ,M} via Equation (7.2) using Λ
(m)
i (tk)

and Ui,m from steps 2(a) and (b).

(d) Compute the loss given default for each defaulted firm via

LGD
(m)
i |τ (m)

i ≤T = F−1
Kum

(
F̃U

I+i,·|τ(·)
i
≤T

(
U
I+i,m|τ (m)

i ≤T

))
(7.13)

with F̃U
I+i,·|τ(·)

i
≤T

denoting the empirical cdf of U
I+i,·|τ (·)

i ≤T
and F−1

Kum

the inverse cdf of the Kumaraswamy distribution from Equation
(7.9). Here, U

I+i,·|τ (·)
i ≤T

denotes the subsample of all UI+i,m for

which τ
(m)
i ≤ T .

(e) Define the recovery rate of firm i as

z
(m)
i =


1− LGD(m)

i |τ (m)
i ≤T if τ

(m)
i ≤ T

1 else

. (7.14)
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(f) Compute the loss process L(m)(tk) for tk ∈ T according to

L(m)(tk) =
1

I

I∑
i=1

11{τ (m)
i ≤tk}

(1− z(m)
i ).

(g) Compute for each tranche j ∈ {1, . . . , J} and each tk ∈ T the

loss affecting tranche j, L
(m)
j (tk), and the remaining nominal in

tranche j, N
(m)
j (tk), via

L
(m)
j (tk) = min{max{0, L(m)(tk)− lj}, uj − lj}

and
N

(m)
j (tk) = uj − lj − L(m)

j (tk).

3. Compute for each tranche j ∈ {1, . . . , J} and each Monte Carlo run
the discounted premium and default legs and estimate their expectations
EDPLT,j(1) and EDDLT,j from Equations (7.5) and (7.6) by their
sample means EDPLT,j(1) and EDDLT,j.
Determine the fair spread of tranche j ∈ {2, . . . , J} via

ŝCDO,modelT,j =
EDDLT,j

EDPLT,j(1)

and ŝCDO,modelT,1 via

ŝCDO,modelT,1 =
1

u1 − l1
[
EDPLT,1(1)

−EQ

[
n∑
k=1

e−
∫ tk
0 r(l)dl0.05∆tk (N1(tk) + (N1(tk−1)−N1(tk)) /2)

]]
.

With these pricing routines, the model can now be calibrated to market
quotes of portfolio-CDS spreads spCDS,marketT and CDO tranche spreads
sCDO,marketT,j , j = 1, . . . , J . Since default intensities are specified indepen-
dently from the dependence structure in the modelling framework from Sec-
tion 7.1, the default-intensity process can be fitted to portfolio-CDS quotes
in a first step and then the copula parameter vector θ can be fitted to the
dependence structure induced by market quotes of CDO tranches. The for-
mer can be done by adjusting the default-intensity parameters such that the
model spread in Equation (7.12) equals the market spread. For the latter the
difference in model and market CDO tranche spreads has to be minimized
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over the Copula parameter vector θ. Since the equity tranche is quoted in
terms of an upfront payment and not in terms of a running spread as the
other tranches, care has to be taken when comparing pricing errors of differ-
ent tranches. Accounting for this and the fact that the highest spread is paid
for the equity tranche, the model is calibrated by minimizing the deviation of
market and model spreads for tranches j = 2, . . . , J provided that the model
upfront payment matches the market upfront payment up to a certain accu-
racy ε reflecting bid-ask spreads, e.g. ε = 10−4 (see e.g. Hofert and Scherer
(2009)). Therefore, the following optimization problem has to be solved

min
θ

D2 :=
J∑
j=2

∣∣∣sCDO,modelT,j − sCDO,marketT,j

∣∣∣ (7.15)

s.t. D1 :=
∣∣∣sCDO,modelT,1 − sCDO,marketT,1

∣∣∣ ≤ ε,

where the minimization is taken over the involved copula parameter vector
θ.

7.2.2 Calibration results

The following numerical example shows that already in a very simple form
the model fits market data quite well and leads to significantly smaller pric-
ing errors compared to a standard Gaussian copula model. The following
simplifying assumptions are made:
As the main focus of this chapter is on the modelling of recovery rates,
the dependence between defaults, and the dependence between default rates
and recovery rates, a homogeneous portfolio with constant default intensities
λi(t) = λ is assumed. Of course this framework could be easily generalized
to the case of stochastic default intensities as in Chapter 6.
Furthermore, three different parametric copula families with parameter vec-
tor θ will be compared for modelling dependence between default and loss
triggers: Gaussian (Ga), Gumbel (Gu), and outer power Clayton (opC) cop-
ula. Each copula is tested in its exchangeable form with constant recov-
eries and in its nested form with stochastic recoveries. For the latter this
means in terms of Section 2.5.2, H = 2, d1 = d2 = 125 (iTraxx standard),
θ = (θ0, θ1, θ2), where the copula generators are given by ϕ0(·; θ0), ϕ0(·; θ1),
and ϕ0(·; θ2). Gumbel and outer power Clayton (with additional parameter
θc) have been chosen from the family of Archimedean copulas, since they
have shown consistently the best fitting results in the case of constant recov-
ery rates (see Hofert and Scherer (2009)). These two copulas are compared
to the Gaussian copula as a benchmark which is still some kind of market
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standard. Table 7.1 contains the parameter ranges, generator functions and
inverses, and lower and upper tail dependence parameters of the considered
copulas (see e.g. Hofert and Scherer (2009)).

Family θ ϕ0(t) ϕ−1
0 (t) λL λU

Gauss [−1, 1] - - 0 0

Gumbel [1,∞) (− log(t))θ exp
(
−t 1

θ

)
0 2− 2

1
θ

opC [1,∞) (t−θc − 1)θ (1 + t
1
θ )−

1
θc 2−

1
θθc 2− 2

1
θ

Table 7.1: Copula properties.

To keep the dimension of the optimization problem small, the inner copula
parameters, describing the dependence among default triggers and the de-
pendence among loss triggers, are assumed to be identical, i.e. θin := θ1 = θ2.
Different correlations for different industry sectors are also not under con-
sideration here. This could be easily done as an extension of the model by
adding another hierarchy level to the model. Furthermore, the additional
parameter of the outer power Clayton copula is set to θc = 0.1 (see Hofert
and Scherer (2009)). Hence, the calibration to the market quotes of CDO
tranches reduces to a two-dimensional optimization problem over the param-
eter vector θ = (θout, θin) with θout := θ0 denoting the outer copula parameter.
The investigated dataset consists of portfolio-CDS and CDO market quotes
of the 8th and 9th iTraxx Europe series between February and July 2008.
Portfolio-CDS spreads and spreads of the first five CDO tranches with detach-
ment and attachment points given by [0%, 3%], [3%, 6%], [6%, 9%], [9%, 12%],
and [12%, 22%] with a maturity of 5 years are used. According to the iTraxx
Europe convention a quarter-yearly payment schedule T is used, i.e. n = 4T
and T = 5. The portfolio consists of I = 125 companies.
Five different, randomly picked trading days were chosen to test the mod-
elling approach (22/02/2008, 31/03/2008, 02/05/2008, 27/06/2008, and
25/07/2008). In the following only the results for 02/05/2008 are discussed
in detail. As all other results are quite similar they are deferred to Appendix
C.1. The portfolio-CDS spread at this date was 63.74 bps, which leads to
a constant default intensity of λ = 0.0106. This corresponds to a five-year
default probability of p̄ = 5.17%.
First of all, the model is calibrated to the market spreads. Table 7.2 contains
the calibrated parameters θ = (θout, θin) and the default correlation ρ(5) ac-
cording to Theorem 7.1. In addition to that, the average correlation between
default rates and recovery rates ρ̂D,R(5) is reported. Of course, in case of
deterministic recovery rates ρ̂D,R(5) is not well-defined.
Table 7.3 contains the market and model upfront payment (in %) for tranche
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Model θin θout ρ(5) ρ̂D,R(5)

Ga det 0.34 12.93% -
Ga sto 0.28 0.24 8.40% -43.35%
Gu det 1.26 26.06% -
Gu sto 1.19 1.11 20.68% -29.03%
opC det 1.25 25.77% -
opC sto 1.16 1.16 18.49% -48.39%

Table 7.2: Calibrated parameters and correlations for 02/05/2008.

1, the market and model spreads (in bps) for tranches 2 - 5, and the pricing
errors D2 (see Equation (7.15)) and Drel

2 , where Drel
2 is D2 divided by the

sum of market spreads of tranches 2 - 5, i.e.

Drel
2 :=

∑J
j=2

∣∣∣sCDO,modelT,j − sCDO,marketT,j

∣∣∣∑J
j=2 s

CDO,market
T,j

.

Model 0− 3% 3− 6% 6− 9% 9− 12% 12− 22% D2 Drel
2

Ga det 29.59% 496.48 250.50 142.08 53.12 411.87 77.67%
Ga sto 29.68% 488.42 241.94 137.92 52.90 390.86 73.70%
Gu det 29.63% 278.80 150.14 104.52 65.00 68.15 12.85%
Gu sto 29.60% 256.67 138.64 97.59 61.27 37.18 7.01%
opC det 29.69% 285.15 152.87 107.70 64.86 80.26 15.13%
opC sto 29.66% 270.51 142.35 97.73 59.98 48.43 9.13%
Market 29.65% 259.09 122.55 101.83 46.84 - -

Table 7.3: Market and model spreads for 02/05/2008.

By introducing additional dependence between default rates and recovery
rates, the default correlation gets lower and the pricing error smaller across
all models. For the Gaussian model this gain in performance is the small-
est. Both the Gumbel and the outer power Clayton model can generate
higher default correlations than the Gaussian model while fitting the spread
of the first tranche. This leads to consistently lower pricing errors (across all
tranches). A possible explanation for this observation is the positive upper
tail dependence of both Gumbel and outer power Clayton copula compared
to the zero tail dependence of the Gaussian copula. Nevertheless, the outer
power Clayton model needs a much higher correlation of default rates and
recovery rates (with only a slightly lower default correlation) compared to
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the Gumbel model to generate similar fitting results. The absolute calibra-
tion error for tranches 2 - 5 in the Gumbel model is only 37.18 bps, which
corresponds to a relative error of 7.01%. This result seems to be quite good
especially as the sum of bid-ask spreads of tranches 2 -5 on this date is already
34.56 bps (6.16%). Since the Gumbel copula model shows consistently better
calibration results compared to the outer power Clayton copula model, the
following analyses will be restricted to a comparison of Gaussian and Gumbel
copula model, both with and without stochastic recoveries.

7.3 Parameter sensitivity and delta hedging

In the next step, the sensitivities of the five tranches’ spreads are investigated
in dependence of the copula parameter vector θ = (θout, θin), while all other
parameters are set to the calibrated values from Subsection 7.2.2. For the
Gumbel copula model it can be seen from Figure 7.3, that for tranches 1 and
2 the spread or upfront payment respectively decreases with increasing de-
pendence parameters, whereas for tranches 4 and 5 the opposite holds true,
i.e. holders of tranche 1 and 2 are short correlation, holders of tranche 4 and 5
are long correlation. In tranche 3 things are a bit different. While the spread
decreases with increasing outer dependence parameter θout, it first increases
with increasing inner dependence parameter θin until it reaches its maximum
and decreases afterwards. Across all tranches the inner dependence param-
eter which drives the default correlation as well as the correlation of loss
triggers has the higher impact on the tranche spreads. The outer depen-
dence parameter which drives the dependence of default rates and recovery
rates has its highest impact on the equity tranche. This effect can also be
observed in the Gaussian model, but with a lower impact compared to the
Gumbel case.

For the Gaussian copula model it can be seen from Figure 7.4, that for
tranches 1 and 2 the spread or upfront payment respectively again decreases
with increasing dependence parameters, i.e. investors in these tranches are
short correlation. In contrast, for tranches 3 - 5 the spread increases with
increasing θin until it reaches its maximum and decreases afterwards, i.e.
depending on the value of θin investors in the tranches are short correlation
or long correlation. Note that this behaviour was not observed for tranches
4 and 5 in the Gumbel copula model.

Figures 7.5 and 7.6 show the default correlation ρ(5) and the average corre-
lation between default rates and recovery rates ρ̂D,R(5) in the models with
Gumbel and Gauss copula. As expected the default correlation increases
with increasing inner dependence parameter θin, while the main driver of
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Figure 7.3: Upfront payment and tranche spreads for Gumbel model in de-
pendence of θ = (θout, θin) (02/05/2008).
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Figure 7.4: Upfront payment and tranche spreads for Gauss model in depen-
dence of θ = (θout, θin) (02/05/2008).
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ρ̂D,R(5) is the outer dependence parameter θout.
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Figure 7.5: ρ(5) (left) and ρ̂D,R(5) (right) for Gumbel model in dependence
of θ = (θout, θin) (02/05/2008).
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Figure 7.6: ρ(5) (left) and ρ̂D,R(5) (right) for Gauss model in dependence of
θ = (θout, θin) (02/05/2008).

Besides on the copula parameter vector θ = (θout, θin), the tranche spreads
also depend on the parameters of the recovery distribution a and b. So far
they have been chosen such that Equations (7.10) and (7.11) are fulfilled.
While one parameter has to be determined by Equation (7.10) to ensure
consistency with portfolio-CDS pricing, the other parameter can be chosen
arbitrarily. Figure 7.7 shows the tranche spreads for the Gauss and the
Gumbel copula model and the loss given default standard deviation σLGD
from Equation (7.11) for different values of a while all other parameters are
set according to the calibration at 02/05/2008.
With an increase of the parameter a the parameter b increases as well to
ensure the constant loss given default expectation. Furthermore, the dis-



170 CHAPTER 7. PRICING DISTRESSED CDOS

0 2 4 6 8 10
20

25

30

35

40

a

U
pf

ro
nt

 p
ay

m
en

t o
f t

ra
nc

he
 1

 in
 %

 

 

0 2 4 6 8 10
200

300

400

500

600

a
S

pr
ea

d 
of

 tr
an

ch
e 

2 
in

 b
ps

 

 

0 2 4 6 8 10
100

150

200

250

300

a

S
pr

ea
d 

of
 tr

an
ch

e 
3 

in
 b

ps

 

 

0 2 4 6 8 10
90

100

110

120

130

140

150

160

a

S
pr

ea
d 

of
 tr

an
ch

e 
4 

in
 b

ps

 

 

0 2 4 6 8 10
40

50

60

70

80

a

S
pr

ea
d 

of
 tr

an
ch

e 
5 

in
 b

ps

 

 

Gauss
Gumbel

Gauss
Gumbel

Gauss
Gumbel

Gauss
Gumbel

Gauss
Gumbel

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

a

σ LG
D

Figure 7.7: Upfront payment and tranche spreads for Gauss and Gumbel
model and σLGD in dependence of a (02/05/2008).



7.3. PARAMETER SENSITIVITY AND DELTA HEDGING 171

tribution changes from U-shaped to J-shaped to unimodal and finally to a
point mass in 0.6 which corresponds to the case of constant recovery (see also
Figure 7.1). As expected the spreads of the lower tranches increase with a
decreasing recovery-rate variability while the spreads of the higher tranches
decrease. For tranches 2 - 4 the behaviour of the Gaussian and the Gumbel
model is very similar, i.e. the tranche spreads are almost parallel. Only for
the first and the fifth tranche there are significant differences. For the Gum-
bel model the first tranche reacts more sensitive to changes in the shape of
the recovery-rate distribution. In contrast, the fifth tranche in the Gaussian
copula model is subject to larger changes if the parameter of the recovery
distribution varies.
In addition to the sensitivities of the tranche spreads to changes in the model
parameters, one thing that is especially of interest for investors in a tranche
is the impact of changes in the spread level of the portfolio CDS on the
spread levels of each tranche. Buying protection in the portfolio CDS such
that the position in a certain tranche of a CDO is insensitive to changes in
the level of the portfolio-CDS spread is called delta hedging. To be more
precise, the delta of a tranche with respect to the portfolio CDS is defined
as the ratio of the change in the spread of the respective tranche to that of
the portfolio CDS. Typically a shift of 1 bp is applied to the portfolio-CDS
spread. Assuming constant discount factors, this shift in the portfolio-CDS
spread leads to a change in the default intensity, which influences the values
of the different CDO tranches. Figure 7.8 shows the deltas for all tranches
in the Gauss and Gumbel model at 02/05/2008. The results for all other
considered dates are very similar and therefore omitted here.
It can be easily seen that the hedge ratios remain almost the same regard-
less of a deterministic or stochastic modelling of recovery rates, i.e. from
a practical point of view traders don’t have to adjust their hedges a lot
when switching from a model with deterministic recoveries to a model with
stochastic recoveries. Nevertheless, it can be observed that in comparison to
the Gaussian model, the Gumbel model features significantly higher deltas
for the first tranche and significantly lower deltas for all other tranches. On
average, the delta of the first tranche is 25% higher in the Gumbel model
than in the Gaussian model while the delta of tranche 2 is 20% lower. For
tranches 3 - 5 the Gumbel model exhibits deltas that are on average 35%
lower than in the Gaussian model.
Another approach often applied for hedging CDO tranches is to hedge the
first with the second tranche, which is also sometimes called mezzanine-equity
hedging. The corresponding hedge ratio between the two tranches is simply
defined as the ratio of the delta of tranche 1 to the delta of tranche 2, both
with respect to the portfolio-CDS spread. On average the hedge ratios in the



172 CHAPTER 7. PRICING DISTRESSED CDOS

0%−3% 3%−6% 6%−9% 9%−12% 12%−22%
0

5

10

15

20

25

30

D
el

ta

 

 
Ga det
Ga sto
Gu det
Gu sto

Figure 7.8: Delta w.r.t. portfolio CDS for different tranches in Gauss and
Gumbel model (02/05/2008).

Gumbel model are 60% higher than those in the Gaussian model. According
to the Gumbel model for both deterministic and stochastic recoveries the
notional of the second tranche has to be 3 - 4 times higher than the no-
tional of the first tranche. In the Gaussian model the notional of the second
tranche only has to be 1.5 - 2 times the notional of the equity tranche. All
the delta hedging results presented here are in line with the results of Masol
and Schoutens (2008) who compare hedge ratios of different one-factor Lévy
models to those of a Gaussian model.

7.4 An application to base correlations

Similar to the equity market, where it has become standard to quantify the
prices of equity options in terms of implied volatility, it has become standard
to quantify the spreads of CDO tranches in terms of implied correlation, es-
pecially in terms of base correlation as introduced by O’Kane and Livesey
(2004). In contrast to the concept of compound correlation, where for each
tranche the correlation is chosen such that market and model spread coincide,
the concept of base correlation decomposes each tranche into combinations
of base tranches, i.e. tranches without subordination covering some interval
[0, u]. Using the observation that being long a tranche [l, u] coincides with
a long position in [0, u] and a short position in [0, l], the base correlation of
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tranche j, j = 2, . . . , J , can be calculated in an recursive algorithm from
the previously computed base correlations and the market spread of tranche
j. The base correlation of the equity trance (j = 1) coincides with the
compound correlation of this tranche. Though being less intuitive, base cor-
relations are more frequently used in practice than compound correlations.
One reason for this is the fact that each base correlation only depends on
its detachment point. This facilitates the pricing of non-standard tranches
via interpolation. Since the Gaussian base correlation introduced in O’Kane
and Livesey (2004) has some drawbacks (correlation skew, sensitivity to in-
terpolation scheme), the concept of base correlation has been extended to
other models not relying on Gaussian distributions (see e.g. Hooda (2006) or
Garcia et al. (2007)).
To define a base correlation curve in the setting from Section 7.1, i.e. θin(uj),
j = 1, . . . , 5, the outer copula parameter θout is chosen to coincide with the
estimate from the global calibration in Section 7.2. Alternatively, θout could
also be set to the same fixed value for all days and time horizons, but since
θout ≤ θin has to be claimed this would imply a rather low level for θout
and hence a low level of correlation between default rates and recovery rates.
Then, one can proceed similar to the Gaussian base correlation case as in
O’Kane and Livesey (2004) and subsequently bootstrap the default correla-
tion parameter for each base tranche. In the case of deterministic recovery
rates, one can start directly with the bootstrapping.
Note that although θ is in the case of Archimedean copulas not the cor-
relation coefficient, the term base correlation is used here for the sake of
simplicity when describing a curve of dependence parameters driving the de-
fault correlation for different detachment points. Table 7.4 and Figure 7.9
show the base correlation curves in the Gaussian and Gumbel copula model
both with and without stochastic recoveries at 02/05/2008 (the results for
all other considered trading days can be found in Appendix C.2).

3% 6% 9% 12% 22%

Ga det 0.34 0.46 0.54 0.59 0.73
Ga sto 0.28 0.41 0.49 0.54 0.68
Gu det 1.26 1.27 1.29 1.30 1.40
Gu sto 1.19 1.19 1.19 1.20 1.23

Table 7.4: Base correlations θin(uj) for 02/05/2008.

While the difference in the base correlation curves for the Gaussian model is
an almost parallel downward shift, the Gumbel base correlation curve with
stochastic recovery rates is not only significantly lower but also significantly



174 CHAPTER 7. PRICING DISTRESSED CDOS

3% 6% 9% 12% 22%

0.2

0.4

0.6

0.8

0

1

u
j

D
ep

en
de

nc
e 

pa
ra

m
et

er
 o

f G
au

ss
ia

n 
m

od
el

 

 

1

1.2

1.4

1.6

1.8

2

D
ep

en
de

nc
e 

pa
ra

m
et

er
 o

f G
um

be
l m

od
el

Ga det
Ga sto
Gu det
Gu sto

Figure 7.9: Base correlations θin(uj) for different models with deterministic
and stochastic recoveries (02/05/2008).

flatter than the curve in the case of deterministic recoveries. As said above,
this property is especially useful for the pricing of non-standard tranches
using an inter- or extrapolation scheme of the base correlation curve.

7.5 Risk measurement and management case

study for a portfolio of credit-risky assets

In most cases, banking institutions are not only interested in the pricing of
standardized credit derivatives like in the examples with iTraxx data pre-
sented in Sections 6.3 and 7.2 - 7.4, but also in the valuation and risk man-
agement of their non-standardized portfolios of credit-risky assets. In this
section, an example is given of how this can be accomplished by combining
the models presented in Sections 6.1 and 7.1.
One of the crucial problems for such a portfolio model is the estimation of
the model parameters. If there are liquidly traded derivatives like standard
CDS, fixed-recovery CDS, recovery locks, or CDO tranches on the underlying
credits in the portfolio, the parameters of the default-intensity and recovery-
rate process as well as of the dependence structure can be easily calibrated.
Unfortunately, this is not the case for most credit portfolios. Due to this lack
of information other sources of data have to be used to estimate the model
parameters. To obtain the parameters of the default intensity, CDS quotes
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of the obligors in the portfolio or of a respective index can be used as well as
historical default rates, if they are available. The parameters of the recovery-
rate distribution can be estimated from a time series of aggregated recovery
rates. Using the dependence concepts presented in this chapter, the copula
parameters will typically be determined using standardized CDO tranches of
portfolios with similar characteristics. For this, an additional hierarchy level
for different industry sectors or geographical regions might be appropriate.
Using Monte Carlo techniques, the following algorithm computes risk mea-
sures of the loss-process as well as prices of credit derivatives similar to Algo-
rithm 7.2. It also includes recovery-rate modelling in presence of stochastic
collateral.

Algorithm 7.3. Simulation of the loss process.

1. Let T denote the time horizon, S = {0 < t1 < . . . < tm = T} the
time grid of the simulation, T ⊆ S the payment schedule, Ci(t) ≥ 0
the collateral-value process of obligor i, Ei the exposure of firm i20, and
I the number of firms. Choose the number of simulation runs M , the
attachment and detachment point lj and uj of tranche j, the significance
level α of the risk measures, and a copula C.

2. Monte Carlo simulation:

(a) Sample r(m)(tk), w(m)(tk), u
(m)
i (tk), and λ

(m)
i (tk) according to Equa-

tions (6.1), (6.2), (6.4), and (6.5) and compute P nd,(m)(0, tk) =

e−
∑k−1
l=0 r

(m)
i (tl)(tl+1−tl) as well as Λ

(m)
i (tk) = e−

∑k−1
l=0 λ

(m)
i (tl)(tl+1−tl) for

k = 0, . . . ,m, i = 1, . . . , I, and m = 1, . . . ,M .

(b) Sample the collateral-value process C
(m)
i (tk) for k = 0, . . . ,m, i =

1, . . . , I, and m = 1, . . . ,M analogously to Section 6.4.

(c) Sample U = (Ui,m)i=1,...,2I,m=1,...,M ∈ [0, 1]2I×M , where each column
U·,m of U is a sample of the chosen copula C.

(d) Compute the default times τ
(m)
i for each firm i ∈ {1, . . . , I} and

Monte Carlo run m ∈ {1, . . . ,M} via Equation (7.2) using Λ
(m)
i (tk)

and Ui,m from steps 2(a) and (c).

(e) Compute the loss given default for each defaulted firm according
to Equation (7.13).

(f) Define the recovery rate of firm i as zColl,(m)(t) according to Equa-

tion (6.14) with z
(m)
i given by Equation (7.14).

20In the following example, Ei will be assumed to be the same known constant for each
firm i. Otherwise, Ei had to be simulated in step 2 as well.



176 CHAPTER 7. PRICING DISTRESSED CDOS

(g) Compute the loss process L(m)(tk) for tk ∈ S according to

L(m)(tk) =
1

I

I∑
i=1

11{τ (m)
i ≤tk}

(1− zColl,(m)
i )Ei.

(h) Compute for each tranche j ∈ {1, . . . , J} and each tk ∈ T the

loss affecting tranche j, L
(m)
j (tk), and the remaining nominal in

tranche j, N
(m)
j (tk) according to step 2(g) from Algorithm 7.2.

3. Determine the fair spreads of portfolio CDS and CDO tranches by
equating the sample means of default and premium leg unless they are
given in the market. Using these spreads, calculate risk measures and
other characteristics of the loss distribution of the whole portfolio or of
single tranches by their respective empirical counterparts.

The following example shows an application of Algorithm 7.3 to a portfolio
of credit-risky assets.

Example 7.4. Consider a portfolio consisting of 100 obligors, where each
obligor contributes 1 million Euro to the notional. The portfolio is assumed
to be homogeneous in the sense that the default intensity of each obligor is
given by Equation (6.5) with parameters from Table 6.1 and the recovery-rate
density is for all obligors given by Equation (7.8) with parameters estimated
from the time series of aggregated recovery rates as used in Section 6.3.2. For
the dependence structure both Gaussian and Gumbel model with parameters
from Table 7.2 are employed. Since there is no possibility to estimate the
model under the real-world measure, it will be assumed throughout this ex-
ample that real-world and risk-neutral parameters are equal. Three different
situations are distinguished in each model: First, a constant recovery rate
is assumed. Second, the recovery rates are stochastic with univariate LGD
distribution given in Equation (7.13). Third, stochastic recovery rates are
assumed and stochastic collaterals are included. To be more precise, in this
case 33 obligors are assumed to have collaterals from the asset class commod-
ity (with 60% initial quota of collateral), another 33 obligors are assumed to
have collaterals from the asst class real estate (with 90% initial quota of col-
lateral), and the remaining obligors are assumed to have no collateral at all.
The collateral-value processes are simulated analogously to Section 6.4.
First of all, the fair portfolio-CDS spreads and CDO upfront payments and
spreads for the different model specifications are computed (see Table 7.5).
Table 7.6 contains the value at risk (VaR) and conditional value at risk
(CVaR) with significance levels α = 0.99 and α = 0.999 for the corresponding
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spCDST sCDOT,j

0-3% 3-6% 6-9% 9-12% 12-22%

Ga det 45.09 23.58% 336.34 142.70 66.67 16.98
Ga sto 45.05 24.60% 325.00 136.45 62.84 16.16

Ga sto, Coll 24.43 10.19% 119.54 30.58 8.56 0.94
Gu det 44.98 20.62% 196.97 108.38 74.40 45.00
Gu sto 45.01 21.64% 179.37 97.36 65.99 39.39

Gu sto, Coll 24.32 5.55% 89.94 49.17 32.90 17.55

Table 7.5: Upfront and spreads of portfolio CDS and CDO tranches.

loss distribution after 5 years (L(5)). Histograms of the loss distributions can
be found in Figure 7.10. Similar to the results of the previous sections, it can
be seen that the introduction of stochastic recovery rates has a higher impact
on spread levels as well as on risk measures in the Gumbel model than in
the Gaussian model. As losses higher than the expected recovery rate times
the notional of the portfolio can occur in the models with stochastic recovery
rates, there is more mass in the very high tails of the portfolio distribution
in these models. Due to the upper-tail dependence, the Gumbel copula model
shows much higher risk measures compared to the Gaussian model regardless
of the recovery specification. The introduction of collateral reduces the risk
of high losses and hence leads to smaller spreads and risk measures.

VaR CVaR
α = 0.99 α = 0.999 α = 0.99 α = 0.999

Ga det 15.43 23.70 19.01 25.92
Ga sto 15.10 24.97 19.59 28.77

Ga sto, Coll 8.37 13.89 10.74 15.74
Gu det 28.66 34.76 34.47 36.74
Gu sto 27.14 52.91 40.61 55.23

Gu sto, Coll 14.93 28.66 22.08 30.08

Table 7.6: VaR and CVaR of L(5) in millions of Euro.

In a second step, the upfront payments and spreads from Table 7.5 are taken
as given. Then, simulated profit & loss (P & L) distributions after 5 years
for an investor who acts as a protection seller in one of the CDO tranches
or the portfolio CDS respectively are investigated (see Figures C.1 - C.6 in
Appendix C.3). Again, the highest differences between Gaussian and Gumbel
copula models can be found in the tails, i.e. in the tail of the portfolio-CDS
P & L distribution as well as in the P & L distribution of the fifth tranche.
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Figure 7.10: Histograms (log scale) of loss distribution (in millions of Euro)
after 5 years for Gaussian (left column) and Gumbel (right column) model
with deterministic recovery rates (top row), stochastic recovery rates (middle
row), and stochastic recovery rates and collateral (bottom row).
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This is also confirmed by the empirical statistics of the P & L distribution in
Tables C.9 - C.14 in Appendix C.3. Note that losses which are higher than
the size of the respective tranche can occur in Figures C.2 - C.6 as payments
which are made during the considered time period are compounded to the final
time horizon.
Finally, Figures 7.11 and 7.12 show the (mean-variance) efficient frontiers
and the corresponding (mean-variance) optimal portfolios of CDO tranches.
While in the Gumbel model only combinations of the first and fourth tranche
are optimal, in the Gaussian model also the fifth tranche is allocated. One
possible explanation for this effect is the fact that in the Gaussian model the
correlations of the fifth tranche with the other tranches are significantly lower
compared to the Gumbel model (see Tables C.15 - C.20 in Appendix C.3).
It can be seen that in both models the introduction of stochastic recovery
rates leads to an improvement in the efficient frontier, i.e. a shift towards
the upper left corner in the mean-variance diagrams in Figure 7.11. This
might be explained by the (slightly) higher mean portfolio profits and (slightly)
lower portfolio profit standard deviations for most of the allocated tranches
in the models with stochastic recoveries compared to those with deterministic
recovery rates (see Tables C.10, C.13, and C.14)
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Figure 7.11: Efficient frontiers of mean-variance optimal tranche combina-
tions for Gaussian (left column) and Gumbel (right column) model with de-
terministic recovery rates (top row), stochastic recovery rates (middle row),
and stochastic recovery rates and collateral (bottom row).
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Figure 7.12: Mean-variance optimal tranche combinations for Gaussian (left
column) and Gumbel (right column) model with deterministic recovery rates
(top row), stochastic recovery rates (middle row), and stochastic recovery
rates and collateral (bottom row).



Chapter 8

Summary and conclusion

In this thesis, the behaviour and determinants of recovery rates in credit-risk
modelling have been examined and new valuation approaches for single-name
and portfolio credit derivatives under stochastic recovery have been devel-
oped.
In Chapter 4, workout recoveries of bank loans have been investigated on
a large Pan-European dataset with regard to their determinants and their
behaviour. First of all, it was shown that the discount rate chosen for the
calculation of workout recoveries can have a great impact on the recovery
value for facilities with a long workout period. For facilities with a moderate
workout time the influence of the chosen discount rate is rather small. Fur-
thermore, it was shown that the distribution of recovery rates on a facility
level is bimodal or U-shaped in the interval [0, 1]. Facility-level and entity-
level factors as well as factors that describe the collateralisation or the default
proceedings were tested on their impact on workout recoveries. Furthermore,
relations between macroeconomic variables and recovery rates were investi-
gated on an individual level. The presence and quality of collateral was found
to be the most important component in workout recovery rates on a facility
level. In addition to that, the creditworthiness measured by the spread at
default and the reason for default play a significant role in determining loan
recoveries. In contrast to other studies, a significant positive impact of the
size of issue and issuer on recoveries was observed. Industry dummies and
macroeconomic variables play only a minor role on the facility level in the
considered dataset. All in all, an adjusted degree of explanation of about
20% was obtained in a multivariate model, which lies in the range of other
studies.
The dependence of aggregated recovery rates on various explanatory vari-
ables like interest rates, equity market indicators, and macroeconomic vari-
ables was investigated in Chapter 5. In a Markov-switching setting it was
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shown that the distribution of the recovery rates and their dependence on
the explanatory variables may vary between different states. In addition to
that, recovery rates of secured facilities were distinguished from those of un-
secured facilities. For the first the explanatory variables have only a minor
impact, while for the latter an adjusted degree of explanation up to 60% can
be achieved. The small degree of explanation for the recovery rates of secured
facilities might be due to the fact that they are mainly driven by the quality
and quantity of the underlying collateral. In a further step, the factors de-
scribing the equity market were replaced by one single factor describing the
uncertainty in credit markets without decreasing the explanatory power. In
this final model the recovery rates of unsecured facilities could be explained
best by the EURIBOR as a proxy for short-term interest rates, the GDP
growth rate as an indicator for the macroeconomic environment, and an ad-
ditional factor describing the credit environment.
In Chapter 6 a joint modelling framework for recovery and default risk was
presented. The model accounts for typical characteristics known from em-
pirical studies like a negative correlation of default rates and recovery rates
or the positive impact of a healthy macroeconomic environment on recov-
ery rates. To be more precise, both default intensity and recovery rate are
assumed to depend on a common factor describing the credit environment.
Furthermore, the recovery rate as well as the short-term interest rate are
modelled as functions of a market factor. Despite its realistic features the
model is still simple enough to obtain closed-form (at least up to one numer-
ically tractable integral) pricing formulas for many (single-name) defaultable
assets, like coupon bonds or credit default swaps. The stochastic nature of
the recovery-rate process in this model allows for the pricing of credit deriva-
tives with payoffs directly linked to the recovery rate, e.g. recovery locks.
The model parameters are estimated using an (extended) Kalman filter ap-
proach. The estimation procedure combines estimation under the real-world
measure from historical time series (GDP growth rates and aggregated re-
covery rates) with calibration to time series of market quotes (zero rates and
CDS spreads). In a numerical example the model was applied to a set of
European data and tested for its fitting capability.
Chapter 7 is devoted to a joint modelling of default and recovery risk in
a portfolio of credit-risky assets. Within this modelling framework, special
emphasize was put on modelling the correlation of defaults on the one hand
and correlation of default rates and recovery rates on the other hand. Nested
Archimedean copulas were used to introduce different dependence structures
for default correlations and the correlation of default rates and recovery rates.
The Kumaraswamy distribution, a very flexible continuous distribution with
bounded support, was chosen for the recovery rates to allow for an efficient
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sampling of the loss process. This is especially important, as in most cases
the loss process distribution will not be given in closed form. Due to the
relaxation of the constant 40% recovery assumption and the negative corre-
lation of default rates and recovery rates, this modelling framework is espe-
cially suited for distressed market situations and the pricing of super senior
tranches. In a numerical example the calibration to CDO tranche spreads
of the European iTraxx portfolio was performed to demonstrate the fitting
capability of the model. Already in a very simplistic setting of the model, the
introduction of stochastic recovery rates consistently decreases pricing errors
compared to the case of deterministic recovery rates. The best calibration re-
sults were achieved when the dependences are modelled by a Gumbel copula.
Deltas with repsect to the portfolio-CDS spread were shown to be insensitive
to the underlying recovery specification. In an extension to the Gaussian
base correlation framework, significantly flatter base correlation curves could
be obtained by using a Gumbel copula and stochastic recovery rates, which
simplifies the pricing of non-standard tranches.
To summarize, the overall contribution of this thesis is threefold: First, the
behaviour and determinants of facility-level as well as aggregated recovery
rates are examined on a unique Pan-European dataset. The economic in-
sights gained from these investigations expand the rather small amount of
existing recovery-rate studies available for the European market and give
hints for a sound modelling of recovery rates in different situations. Second,
using these empirical insights a new valuation approach for single-name credit
derivatives under stochastic recovery is developed. This approach is based
on the classical intensity-based credit risk models, but due to the stochastic
modelling of recovery rates it enables to price credit derivatives with payoffs
directly linked to the recovery rate, e.g. recovery locks. Third, a tractable
framework for pricing distressed CDOs using nested Archimedean copulas
is introduced, which resolves some of the ”inconsistencies” observed in the
credit market since mid 2007.



184 CHAPTER 8. SUMMARY AND CONCLUSION



Appendix A

Univariate results from
Chapter 5

The coefficients and t-statistics for the univariate models

ln(z(t)) = β0 + βixi(t) (A.1)

with

xi(t) ∈ {GIP (t), GGDP (t), DJES(t), V DAX(t), EURIBOR(t), GY (t)}

are given in Table A.1. While Table A.2 contains the univariate Markov-
switching regression results, Table A.3 presents the univariate regression re-
sults corresponding to the multivariate regression from Table 5.7.

185



186 APPENDIX A. UNIVARIATE RESULTS FROM CHAPTER 5

Variable Coefficient (t-statistic)
β0 βi

GIP -0.471 *** 0.8226
(-31.869) (0.545)

GGDP -0.558 *** 8.812
(-10.039) (1.642) *

DJES -0.468 *** -0.373
(-32.230) (-1.513)

VDAX -0.679 *** 0.809 ***
(-20.347) (6.738)

EURIBOR -0.711 *** 7.578 ***
(-14.630) (5.15)

GY -0.888 *** 10.639 ***
(-13.691) (6.565)

Table A.1: Coefficients (t-statistics) and significance codes of the univariate
linear regression (A.1) for response ln(z(t)).

Coefficient (t-stat) in State
Variable S1 S2

β0 βi β0 βi
GIP -0.358 *** 0.690 -0.587 *** 1.222

(-42.130) (0.723) (-33.065) (0.732)
GGDP -0.332 *** -2.413 -0.593 *** 0.913

(-9.360) (-0.743) (-9.179) (0.138)
DJES -0.358 *** -0.062 -0.588 *** 0.229

(-42.522) (-0.537) (-30.276) (0.475)
VDAX -0.421 *** 0.205 ** -0.692 *** 0.528 **

(-16.443) (2.621) (-12.891) (2.117)
EURIBOR -0.308 *** -1.345 -0.640 *** 2.088

(-6.911) (-1.129) (-10.116) (0.917)
GY -0.365 *** 0.175 -0.741 *** 4.513 *

(-5.819) (0.123) (-7.465) (1.698)

Table A.2: Coefficients (t-statistics) and significance codes in a univariate
model corresponding to Equations (5.3) - (5.4) with responses ln(zS(t)).
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Appendix B

The four-factor hybrid
defaultable bond pricing model
of Antes et al. (2008)

In the four-factor model of Antes et al. (2008), which is an extension of the
hybrid defaultable bond price model introduced in Schmid and Zagst (2000),
the risk-free short rate r is given by a Hull-White model with the factor
w describing the macroeconomic environment. The short-rate spread s is
modelled in dependence of w and the so-called uncertainty index u, which
is an unobservable process describing an obligor’s uncertainty filtered from
market prices of defaultable bonds.
To be more precise, let (Ω,F ,Q) denote a complete probability space and
F(W ) = F = (Ft)0≤t≤T ∗ the natural filtration. Here, the vector W (t) =
(Wr(t),Ww(t),Ws(t),Wu(t))

T is a 4-dimensional standard Brownian motion
and T ∗ is the fixed terminal time horizon. Then, the four factors of the model
are given by the following system of stochastic differential equations:

dr(t) = (θr(t) + brww(t)− arr(t))dt+ σrdWr, r(0) = r0 (B.1)

dw(t) = (θw − aww(t))dt+ σwdWw, w(0) = w0 (B.2)

du(t) = (θu − auu(t))dt+ σudWu, u(0) = u0 (B.3)

ds(t) = (θs + u(t)− bsww(t)− ass(t))dt+ σsdWs, s(0) = s0 (B.4)

with ar, brw, σr, aw, σw, au, σu, bsw, as, and σs positive constants, θw, θu, and
θs non-negative constants, θr a continuous, deterministic function in t, and
0 ≤ t ≤ T ∗.
In this modelling framework the price of a non-defaultable zero-coupon bond
as well as of a defaultable zero-coupon bond can be calculated as an affine-
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exponential function in the processes r, w, u, and s (see Theorems 3 and 4
in Antes et al. (2008)). The corresponding coefficients are functions of the
parameters from Equations (B.1) - (B.4) and the contract’s maturity T . The
unknown parameters can be estimated from market data by using a Kalman
filter technique.
To generate a filtered time series of the process u in the setting of Section 5.4,
the model parameters are estimated in the following way: The parameters
of the factor w and the short rate r are estimated from German sovereign
yields with maturities from 3 months to 10 years and the Euro area GDP
growth rates. To estimate the parameters of the uncertainty index and the
short-rate spread corporate-composite yields Euro area of rating class A with
maturities between 3 months and 10 years are used, i.e. the risky zero rates
are not derived from a single company but from an index consisting of bonds
of different companies belonging to rating class A. Weekly data between April
2002 and January 2007 for both riskless and risky bonds have been down-
loaded from Bloomberg (Bloomberg-Ticker: F910, C670). The parameter
estimates and the filtered time series of the index u are given in Table B.1
and Figure B.1 respectively.

Interest-rate model Credit-spread model
Parameter Estimate Parameter Estimate

ar 0.7655 as 0.8358
σr 0.0095 σs 0.0010
brw 0.0334 bsw 0.0450
aw 1.9785 au 0.2206
σw 0.0056 σu 0.0108
θw 0.0199 θu 0.0004

θs 0.0026

Table B.1: Parameter estimates of the four-factor model of Antes et al.
(2008).
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Figure B.1: Filtered time-series of uncertainty index u in the model of Antes
et al. (2008).
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Appendix C

Detailed results from Chapter 7

C.1 Detailed calibration results

In this section, the calibration results for all five trading days (22/02/2008,
31/03/2008, 02/05/2008, 27/06/2008, and 25/07/2008) on which the model
was tested are presented. Table C.1 contains the calibration results for the
portfolio-CDS model, i.e. default intensity as well as 1-year and 5-year default
probabilities. Tables C.2 and C.3 show the absolute and relative calibration
errors and the parameters of the CDO calibration. Finally, Table C.4 contains
the default correlations and average correlations between default rates and
recovery rates for each of the five trading days.

Date spCDS,market λ p̄(1) p̄(5)

22/02/2008 124.56 0.0207 2.05% 9.85%
31/03/2008 122.29 0.0204 2.02% 9.68%
02/05/2008 63.74 0.0106 1.06% 5.17%
27/06/2008 106.52 0.0178 1.76% 8.49%
25/07/2008 91.64 0.0153 1.52% 7.35%

Table C.1: Portfolio-CDS calibration.
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Ga Gu opC
D2 Drel

2 D2 Drel
2 D2 Drel

2

22/02/2008
det 668.96 53.80% 133.51 10.74% 121.24 9.75%
sto 590.83 47.52% 70.92 5.70% 80.61 6.48%

31/03/2008
det 972.54 86.87% 277.01 24.74% 295.50 26.40%
sto 903.76 80.73% 189.66 16.94% 191.93 17.14%

02/05/2008
det 411.87 77.67% 68.15 12.85% 80.26 15.13%
sto 390.86 73.70% 37.18 7.01% 48.43 9.13%

27/06/2008
det 851.59 94.04% 277.37 30.63% 285.39 31.51%
sto 788.92 87.12% 197.14 21.77% 218.71 24.15%

25/07/2008
det 676.09 80.96% 157.05 18.81% 165.26 19.79%
sto 624.57 74.80% 86.46 10.35% 124.17 14.87%

Table C.2: Absolute and relative calibration errors.

Ga Gu opC
θout θin θout θin θout θin

22/02/2008
det 0.62 1.75 1.79
sto 0.52 0.54 1.09 1.68 1.49 1.50

31/03/2008
det 0.46 1.49 1.47
sto 0.38 0.38 1.17 1.38 1.30 1.30

02/05/2008
det 0.34 1.26 1.25
sto 0.24 0.28 1.11 1.19 1.16 1.16

27/06/2008
det 0.50 1.52 1.50
sto 0.41 0.42 1.16 1.40 1.33 1.34

25/07/2008
det 0.45 1.42 1.41
sto 0.36 0.37 1.17 1.31 1.27 1.28

Table C.3: Calibrated copula parameters.
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Ga Gu opC
ρ(5) ρ̂D,R(5) ρ(5) ρ̂D,R(5) ρ(5) ρ̂D,R(5)

22/02/2008
det 33.91% - 50.25% - 51.82% -
sto 27.65% -68.87% 47.49% -14.90% 40.25% -72.54%

31/03/2008
det 22.18% - 39.75% - 39.26% -
sto 17.00% -68.38% 33.80% -36.12% 29.43% -67.82%

02/05/2008
det 12.93% - 26.06% - 25.77% -
sto 8.46% -43.35% 20.68% -29.03% 18.49% -48.39%

27/06/2008
det 23.75% - 40.08% - 39.74% -
sto 18.39% -65.73% 35.18% -32.13% 31.81% -65.20%

25/07/2008
det 19.56% - 36.12% - 35.81% -
sto 14.75% -61.55% 29.49% -37.84% 27.94% -60.33%

Table C.4: Default correlation and average correlation between default rates
and recovery rates.

C.2 Detailed base correlation results

In Tables C.5 - C.8 the base correlation curves at 22/02/2008, 31/03/2008,
27/06/2008, and 25/07/2008 are presented. Similar to Section 7.4 the differ-
ence in the base correlation curves for the Gaussian model with deterministic
and stochastic recovery rates is an almost parallel downward shift. For the
Gumbel model the base correlations in the case with stochastic recovery
rates are significantly smaller and flatter than in the case with deterministic
recovery rates.

3% 6% 9% 12% 22%

Ga det 0.62 0.71 0.75 0.78 0.86
Ga sto 0.54 0.64 0.68 0.72 0.81
Gu det 1.75 1.80 1.82 1.84 2.06
Gu sto 1.68 1.72 1.72 1.73 1.88

Table C.5: Base correlation θin(uj) for 22/02/2008.
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3% 6% 9% 12% 22%

Ga det 0.46 0.59 0.66 0.71 0.84
Ga sto 0.38 0.52 0.59 0.65 0.80
Gu det 1.49 1.55 1.58 1.62 1.94
Gu sto 1.38 1.42 1.44 1.47 1.66

Table C.6: Base correlation θin(uj) for 31/03/2008.

3% 6% 9% 12% 22%

Ga det 0.50 0.62 0.69 0.74 0.87
Ga sto 0.42 0.55 0.63 0.69 0.83
Gu det 1.52 1.57 1.62 1.67 2.08
Gu sto 1.40 1.44 1.46 1.50 1.78

Table C.7: Base correlation θin(uj) for 27/06/2008.

3% 6% 9% 12% 22%

Ga det 0.45 0.56 0.63 0.68 0.81
Ga sto 0.37 0.49 0.56 0.62 0.77
Gu det 1.42 1.45 1.47 1.50 1.72
Gu sto 1.31 1.32 1.33 1.34 1.46

Table C.8: Base correlation θin(uj) for 25/07/2008.
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C.3 Detailed results for Example 7.4

Tables C.9 - C.14 contain some empirical statistics of the simulated profit &
loss (P & L) distributions after 5 years for an investor who acts as a protection
seller in one of the CDO tranches or the portfolio CDS respectively. Figures
C.1 - C.6 show the corresponding histograms. The empirical correlations of
the P & L distributions after 5 years for the different CDO tranches in the
six considered model specifications are given in Tables C.15 - C.20.

Ga det Ga sto Ga sto, Gu det Gu sto Gu sto,
Coll Coll

Mean 0.147 0.179 0.101 0.159 0.173 0.086
Median 1.569 1.509 0.836 1.485 1.421 0.774
St.dev. 3.699 3.610 1.993 5.060 5.364 2.933

Skewness -2.775 -2.990 -3.004 -5.079 -6.335 -6.284
Kurtosis 13.120 15.577 15.700 32.608 51.498 51.029

Min -32.660 -36.026 -19.740 -41.962 -61.839 -35.264
Max 4.147 5.034 2.246 4.195 10.215 4.936

V aR0.99 -15.083 -14.809 -7.996 -29.696 -28.144 -15.487
CV aR0.99 -19.353 -19.678 -10.892 -35.743 -41.675 -22.766

Table C.9: Empirical statistics of P & L distribution (in millions of Euro)
after 5 years of a protection seller in the portfolio CDS.

Ga det Ga sto Ga sto, Gu det Gu sto Gu sto,
Coll Coll

Mean 1.429 1.506 0.405 1.250 1.319 0.180
Median 2.328 2.400 1.033 1.784 1.832 0.267
St.dev. 2.568 2.599 1.546 1.971 1.963 1.087

Skewness -0.507 -0.498 -1.055 -0.757 -0.763 -1.484
Kurtosis 17.502 17.593 28.153 24.937 25.593 44.628

Min -2.983 -2.979 -3.517 -2.998 -2.995 -3.868
Max 6.127 6.600 2.690 5.769 5.382 2.226

V aR0.99 -2.942 -2.936 -2.995 -2.947 -2.943 -3.082
CV aR0.99 -2.953 -2.947 -3.042 -2.960 -2.957 -3.229

Table C.10: Empirical statistics of P & L distribution (in millions of Euro)
after 5 years of a protection seller in the first tranche.
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Ga det Ga sto Ga sto, Gu det Gu sto Gu sto,
Coll Coll

Mean 0.019 0.022 0.004 0.010 0.012 0.008
Median 0.552 0.535 0.201 0.329 0.300 0.152
St.dev. 1.215 1.188 0.714 0.954 0.901 0.644

Skewness -1.955 -2.012 -3.787 -2.834 -3.026 -4.539
Kurtosis 5.162 5.418 16.566 9.510 10.723 22.528

Min -4.704 -5.500 -5.167 -4.902 -5.129 -4.998
Max 1.501 2.321 0.702 1.046 1.970 1.157

V aR0.99 -3.360 -3.361 -3.270 -3.374 -3.355 -3.206
CV aR0.99 -3.603 -3.605 -3.560 -3.670 -3.643 -3.500

Table C.11: Empirical statistics of P & L distribution (in millions of Euro)
after 5 years of a protection seller in the second tranche.

Ga det Ga sto Ga sto, Gu det Gu sto Gu sto,
Coll Coll

Mean -0.004 0.007 -0.001 0.004 0.011 0.002
Median 0.239 0.230 0.052 0.183 0.165 0.083
St.dev. 0.845 0.805 0.383 0.745 0.690 0.500

Skewness -3.388 -3.578 -7.972 -4.047 -4.397 -6.255
Kurtosis 13.091 14.559 69.274 18.011 21.004 41.636

Min -4.881 -5.358 -5.660 -6.128 -5.422 -5.683
Max 1.034 1.581 0.378 1.725 1.437 0.760

V aR0.99 -3.443 -3.404 -2.690 -3.369 -3.285 -3.137
CV aR0.99 -3.768 -3.745 -3.333 -3.726 -3.651 -3.453

Table C.12: Empirical statistics of P & L distribution (in millions of Euro)
after 5 years of a protection seller in the third tranche.
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Ga det Ga sto Ga sto, Gu det Gu sto Gu sto,
Coll Coll

Mean -0.004 -0.001 -0.002 0.005 0.006 0.001
Median 0.113 0.106 0.015 0.126 0.112 0.056
St.dev. 0.590 0.570 0.217 0.618 0.583 0.415

Skewness -5.206 -5.509 -14.196 -5.020 -5.438 -7.650
Kurtosis 29.514 33.143 213.553 26.973 31.560 61.523

Min -5.536 -6.323 -4.531 -5.330 -5.801 -5.720
Max 0.704 0.583 0.255 1.310 1.067 0.536

V aR0.99 -3.289 -3.283 0.011 -3.256 -3.211 -3.056
CV aR0.99 -3.656 -3.684 -1.674 -3.610 -3.601 -3.358

Table C.13: Empirical statistics of P & L distribution (in millions of Euro)
after 5 years of a protection seller in the fourth tranche.

Ga det Ga sto Ga sto, Gu det Gu sto Gu sto,
Coll Coll

Mean -0.006 -0.004 0.001 0.015 0.005 0.009
Median 0.096 0.092 0.005 0.254 0.223 0.099
St.dev. 0.862 0.847 0.153 1.529 1.455 0.899

Skewness -10.106 -10.407 -36.009 -6.559 -6.917 -10.671
Kurtosis 114.288 119.034 1521.848 45.672 50.719 120.543

Min -15.175 -12.878 -8.158 -17.083 -17.576 -14.479
Max 0.310 0.301 0.598 4.300 1.896 0.495

V aR0.99 -4.023 -3.638 0.004 -10.273 -10.192 -3.216
CV aR0.99 -7.843 -7.783 -0.566 -11.096 -11.011 -8.484

Table C.14: Empirical statistics of P & L distribution (in millions of Euro)
after 5 years of a protection seller in the fifth tranche.
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Figure C.1: Histograms (log scale) of the P & L distribution (in millions of
Euro) after 5 years of a protection seller in the portfolio CDS for Gaussian
(left column) and Gumbel (right column) model with deterministic recov-
ery rates (top row), stochastic recovery rates (middle row), and stochastic
recovery rates and collateral (bottom row).



C.3. DETAILED RESULTS FOR EXAMPLE 7.4 201

−2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

P & L (5 years)

R
el

at
iv

e 
fr

eq
ue

nc
y

−2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

P & L (5 years)

R
el

at
iv

e 
fr

eq
ue

nc
y

−2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

P & L (5 years)

R
el

at
iv

e 
fr

eq
ue

nc
y

−2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

P & L (5 years)
R

el
at

iv
e 

fr
eq

ue
nc

y

−2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

P & L (5 years)

R
el

at
iv

e 
fr

eq
ue

nc
y

−2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

P & L (5 years)

R
el

at
iv

e 
fr

eq
ue

nc
y

Figure C.2: Histograms of the P & L distribution (in millions of Euro) after
5 years of a protection seller in the first tranche for Gaussian (left column)
and Gumbel (right column) model with deterministic recovery rates (top
row), stochastic recovery rates (middle row), and stochastic recovery rates
and collateral (bottom row).
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Figure C.3: Histograms of the P & L distribution (in millions of Euro) after 5
years of a protection seller in the second tranche for Gaussian (left column)
and Gumbel (right column) model with deterministic recovery rates (top
row), stochastic recovery rates (middle row), and stochastic recovery rates
and collateral (bottom row).
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Figure C.4: Histograms (log scale) of the P & L distribution (in millions of
Euro) after 5 years of a protection seller in the third tranche for Gaussian (left
column) and Gumbel (right column) model with deterministic recovery rates
(top row), stochastic recovery rates (middle row), and stochastic recovery
rates and collateral (bottom row).
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Figure C.5: Histograms (log scale) of the P & L distribution (in millions of
Euro) after 5 years of a protection seller in the fourth tranche for Gaussian
(left column) and Gumbel (right column) model with deterministic recov-
ery rates (top row), stochastic recovery rates (middle row), and stochastic
recovery rates and collateral (bottom row).
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Figure C.6: Histograms (log scale) of the P & L distribution (in millions of
Euro) after 5 years of a protection seller in the fifth tranche for Gaussian (left
column) and Gumbel (right column) model with deterministic recovery rates
(top row), stochastic recovery rates (middle row), and stochastic recovery
rates and collateral (bottom row).



206 APPENDIX C. DETAILED RESULTS FROM CHAPTER 7

0-3% 3-6% 6-9% 9-12% 12-22%
0-3% 1 0.728 0.482 0.332 0.196
3-6% 0.728 1 0.744 0.497 0.289
6-9% 0.482 0.744 1 0.759 0.427
9-12% 0.332 0.497 0.759 1 0.628
12-22% 0.196 0.289 0.427 0.628 1

Table C.15: Empirical correlations of P & L distributions after 5 years of
different tranches in the Gaussian model with deterministic recovery rates.

0-3% 3-6% 6-9% 9-12% 12-22%
0-3% 1 0.719 0.469 0.322 0.196
3-6% 0.719 1 0.738 0.493 0.295
6-9% 0.469 0.738 1 0.760 0.444
9-12% 0.322 0.493 0.760 1 0.652
12-22% 0.196 0.295 0.444 0.652 1

Table C.16: Empirical correlations of P & L distributions after 5 years of
different tranches in the Gaussian model with stochastic recovery rates.

0-3% 3-6% 6-9% 9-12% 12-22%
0-3% 1 0.605 0.307 0.170 0.082
3-6% 0.605 1 0.627 0.336 0.159
6-9% 0.307 0.627 1 0.667 0.301
9-12% 0.170 0.336 0.667 1 0.554
12-22% 0.082 0.159 0.301 0.554 1

Table C.17: Empirical correlations of P & L distributions after 5 years of
different tranches in the Gaussian model with stochastic recovery rates and
collateral.
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0-3% 3-6% 6-9% 9-12% 12-22%
0-3% 1 0.682 0.505 0.418 0.337
3-6% 0.682 1 0.809 0.647 0.511
6-9% 0.505 0.809 1 0.856 0.664
9-12% 0.418 0.647 0.856 1 0.818
12-22% 0.337 0.511 0.664 0.818 1

Table C.18: Empirical correlations of P & L distributions after 5 years of
different tranches in the Gumbel model with deterministic recovery rates.

0-3% 3-6% 6-9% 9-12% 12-22%
0-3% 1 0.665 0.480 0.396 0.328
3-6% 0.665 1 0.795 0.637 0.516
6-9% 0.480 0.795 1 0.859 0.685
9-12% 0.396 0.637 0.859 1 0.827
12-22% 0.328 0.516 0.685 0.827 1

Table C.19: Empirical correlations of P & L distributions after 5 years of
different tranches in the Gumbel model with stochastic recovery rates.

0-3% 3-6% 6-9% 9-12% 12-22%
0-3% 1 0.612 0.444 0.363 0.276
3-6% 0.612 1 0.810 0.651 0.487
6-9% 0.444 0.810 1 0.867 0.635
9-12% 0.363 0.651 0.867 1 0.781
12-22% 0.276 0.487 0.635 0.781 1

Table C.20: Empirical correlations of P & L distributions after 5 years of
different tranches in the Gumbel model with stochastic recovery rates and
collateral.
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