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Introduction 1

1. Introduction

Although industrial bioprocesses have been optimized for several decades, conversion of
carbon source and productivity in fermentation is still considerably below a value that
can be expected from theoretical calculations (Takors et al. 2007). Metabolic engineering
thus aims to develop producer strains, in which entire cellular networks are optimized
and fermentation and downstream processes are considered at early stages (Park et al.
2008). Metabolic engineering was developed in the previous decade to improve industrial
strains using modern genetic tools, which are far more rational than random mutagenesis
or screening approaches (Stephanopoulos 2002). In their textbook, Stephanopoulos et al.
(1998) emphasize the significance of intracellular reaction rates (metabolic fluxes) and
their control under in vivo conditions as the most significant contribution of metabolic
engineering. The control of flux in cellular systems is the subject of the so-called Metabolic
Control Analysis (MCA) developed from the landmark papers of Kacser and Burns (1973)
and Heinrich and Rapoport (1974). Successful examples of the application of MCA are
the glutamate synthetic pathway (Shimizu et al. 2002), the lysine biosynthetic network
(Simpson et al. 1998) and the penicillin biosynthetic pathway (Nielsen 1997). However,
rather a few experimental applications are reported, compared to the extensively covered
theoretical framework of MCA.

Reasons for this are certainly the multiple challenging tasks when capturing experimental
data of biological systems. There are several layers of biological information such as genes
(described by the so-called Genome), the proteins and enzymes (Proteome), the small
molecules and metabolites (Metabolome) and the conversion rates of metabolites and
other building blocks (Fluxome). Measurements across these layers are usually combined
in order to reveal interrelationships between them. However, effects of genetic modifi-
cations are hardly predictable, as metabolic fluxes are regulated in a complex manner,
either by enzyme synthesis or by feedback from other parts of metabolism (allosteric reg-
ulation). Finally, the uncertainty associated with measurements in a biological system is
perhaps the most striking difference between metabolic engineering and other engineering
disciplines.
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2. Thesis Motivation and Objective

Enzymes in a living cell have to meet demands at several levels. At the lowest level the
function of an enzyme is to catalyze a reaction and at the level of a metabolic network
its function may be to control the flux through a part of the pathway (Hofmeyr and
Cornish-Bowden 2000). In order to understand the regulation of a biochemical pathway
it is necessary to characterize functions and kinetics of its enzymes. Reaction kinetics
are often studied with the purified enzyme in test tubes. Therefore, the reaction rate is
determined for varying substrate and product concentrations. However, Teusink et al.
(2000) have shown, that such in vitro studies do not sufficiently describe the function of
enzymes in vivo. Complex regulatory mechanisms determine reaction rates in the cellular
milieu and kinetic parameters differ from those determined in test tubes. Consequently,
intracellular enzyme-catalyzed reactions in a biological system need to be studied in vivo,
either under stationary or dynamic conditions.

Stimulus response experiments are widely applied to study the dynamic behavior of
metabolic pathways (Theobald et al. 1997, Chassagnole et al. 2002, Visser et al. 2004a,
Magnus et al. 2006). Commonly a pulse of carbon source is added to a continuous cul-
ture and intracellular metabolite concentrations are observed during several seconds up
to minutes. It may be assumed that enzyme levels do not change over this short period
and the responses can be attributed to the kinetic interactions at the metabolome level
alone (Visser et al. 2004a). Nevertheless, stimulus response experiments can be laborious,
time consuming and a single perturbation experiment may not generate enough infor-
mation about the whole system. A further problem is that noise in the data is often
indistinguishable from the highly non-linear dynamics.

In contrast to dynamic perturbations, steady state perturbations yield information about
the metabolic system in multiple steady states (Nasution et al. 2008). Therefore, changes
of metabolic fluxes are related to differences in enzyme levels and intracellular metabolite
concentrations. Compared to stimulus response experiments, the experimental effort is
low, as just a few metabolic states have to be analyzed. Chemostat cultures are preferred
for steady state analysis, because external fluxes such as substrate uptake and growth rate
are fixed at a constant level and the cells physiology is well defined (Mashego et al. 2007).
However, continuous cultures are not essential for a metabolic steady state. Rather, it was
shown that physiology and metabolism are highly diverse in chemostat-evolved bacteria
(Ferenci 2008). Further, most industrial fermentation processes are operated in fed-batch
mode under non-stationary conditions, which cannot be realized in a chemostat. As a
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consequence, it was yet not possible to study metabolic pathways of a producer strain
under conditions of a fed-batch process by means of steady state perturbations. This
leads to the necessity to develop new cultivation strategies for perturbation experiments
in large-scale processes.

Lab-scale bioreactors operating in parallel to a large-scale process were already successfully
applied to monitor the metabolic state of cells in industrial bioprocesses (Massaoudi et al.
2003, Drysch et al. 2003). A parallel setup of bioreactors was developed and evaluated
in this work for the purpose of perturbation experiments. Therefore, cells were separated
from the production process and analyzed in a lab-scale bioreactor operating in parallel to
the process. During cultivation in the lab-scale bioreactor, physiology and the intracellular
state of the cells was observed by measurements of metabolite concentrations, fluxes and
enzyme levels.

Kacser and Burns (1979) state in an early work: We consider a metabolic system as a
whole and ask what operations on it yield information on the role of its parts? Similar
questions were associated with the proposed experimental approach:

• Which measurements are theoretically required in order to identify rate controlling
steps of a metabolic pathway using mathematical tools of MCA?

• Which measurements are practically feasible?

• Which assumptions and prerequisites are necessary in order to consider the physio-
logical conditions of the relevant bioprocess?

Nielsen (1994) gave distinction to the term physiological engineering, comprising sev-
eral different techniques: physiological studies, metabolic flux analysis, metabolic control
analysis, thermodynamic analysis and kinetic modeling. In this sense, the following ex-
perimental tasks were considered and evaluated by means of central carbon metabolism
of the model organism Escherichia coli under conditions of a fed-batch process:

• Physiological characterization of cells during the fed-batch process.

• Development of an experimental approach for steady state analysis in a lab-scale
bioreactor operating in parallel to the fed-batch process.

• Studies about sampling procedures and analytical methods to quantify intracellular
metabolites.

• Establishment of methods for metabolic flux analysis.
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3. Theoretical Background

3.1. Bioreactor processes

Commonly, processes in a bioreactor are described by several time dependent state vari-
ables, such as concentrations of compounds in the cultivation medium, temperature and
pH. Cellular metabolism and mass transport processes between cells and cultivation broth
influence the state variables. In this section, methods are introduced to characterize these
processes. A black box model is applied for biomass, which is only described by its
concentration in the bioreactor. Dynamics of the most prevalent state variables are spec-
ified by coupling mass balances around the bioreactor with formal kinetics of uptake and
production of substances in the cultivation broth.

3.1.1. Microbial growth

Growing heterotrophic microorganisms require organic carbon compounds, nitrogen, oxy-
gen, mineral salts and eventually vitamins. These compounds are provided in the cultiva-
tion medium, where the cells can exchange material with their environment. The fluxes in
and out of the cells are given relative to the biomass concentration, the so-called specific
rates. The specific growth rate is defined as the increase of biomass concentration cx

relative to the actual biomass concentration.

µ ≡ 1

cx

dcx
dt

(3.1)

Similarly, the specific uptake or production rate of a compound i is defined as the change
of its concentration in the medium ci divided by the biomass concentration.

qi ≡
1

cx

dci
dt

(3.2)

In case all required nutrients are sufficiently supplied, except of only one limiting com-
pound (e.g. the primary carbon source) the specific growth rate follows from Monod
kinetics (Monod 1949).

µ = µmax
cs

cs +Ks

(3.3)

The growth rate in Eq.(3.3) approximates a maximal rate µmax depending on the concen-
tration of the limiting substrate cs and a half saturation constant Ks. Yield coefficients
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are defined as overall fluxes relative to a reference compound and relate biomass formation
with substrate uptake. Using a double subscript, Yi,j describes the yield of compound i
with regard to j. The biomass yield with regard to substrate takes the form of unit mass
of biomass formed by unit mass of substrate consumed.

Yx,s =
µ

qs
=
dcx
dcs

(3.4)

With a constant biomass yield, substrate uptake merely follows from Eq.(3.4) and Eq.(3.3).
Product formation is described similarly, if it is associated with growth. Otherwise, more
detailed formal kinetic descriptions are employed.

3.1.2. Operation of bioreactors

Bioreactors are operated in three different modes: batch, continuous and fed-batch. In a
batch process all nutrients required during cultivation, except for oxygen and chemicals
for pH adjustment are initially added to the medium. In a continuos mode, nutrients
are added continuously to the bioreactor and culture broth is removed at the same rate
to maintain a constant culture volume. Beside these ideal modes, the fed-batch mode
is most frequently applied for industrial biotechnological processes. During a fed-batch
cultivation one or more nutrients are supplied to the bioreactor. For a fed-batch process
with an inflow V̇in and a reaction volume VR the dynamic mass balance equation for a
compound i in the medium of a bioreactor with homogenous concentrations (ideal stirred
tank) is

dci
dt

=
V̇in
VR
· (cini − ci) + cx · qi (3.5)

where cini is the concentration of compound i in the feed. Commonly, there is no biomass
in the feeding solution and the balance equation of biomass is

dcx
dt

= − V̇in
VR
· cx + cx · µ (3.6)

One major purpose of a fed-batch process is controlling the substrate concentration in the
cultivation medium. Substrate-limited conditions are achieved by an appropriate feeding.
In case of a constant residual substrate concentration in the bioreactor (dcs/dt = 0) the
required feeding rate for a desired qsets follows from Eq.(3.5).

V̇in =
VR · cx

(cins − cs)
· qsets (3.7)



6 Theoretical Background

If the biomass yield is constant it is possible to express Eq.(3.7) by a predefined growth
rate µset.

V̇in =
VR · cx

Yx,s · (cins − cs)
· µset (3.8)

Biomass concentration and reaction volume in Eq.(3.7) and Eq.(3.8) are not constant.
The time dependency follows from exponential growth and results in the exponential
feeding strategy in Eq.(3.9).

V̇in(t) =
V 0
R · c0x

Yx,s · (cins − cs)
· µset · e(µset·t) (3.9)

An open-loop feeding strategy according to Eq.(3.9) ensures self-controlling of the specific
rates as long as no other component becomes limiting or metabolic products inhibit growth
(Jenzsch et al. 2006).

3.1.3. Estimation of specific rates in batch cultivations

Specific rates in a batch cultivation follow from measurements of biomass and concentra-
tions of other compounds at different process times. Assuming a constant growth rate
µmax and integrating Eq.(3.1) allows to describe cellular growth depending on cultivation
time and the initial biomass concentration c0x.

cx(t) = c0x · e(µmax·t) (3.10)

The constant specific growth rate is estimated by logarithmic regression of measured
biomass concentrations at different process times to Eq.(3.10). Integration of Eq.(3.2) in
combination with Eq.(3.10) describes the time dependency of a compound i.

ci(t) = c0i +
qi · c0x
µ

(
1− e(µ·t)

)
(3.11)

Specific rates result from regression analysis of the measured time course of ci. If biomass
concentration is not significantly changing over the observed period, the time dependency
of substrate concentration is approximated by Eq.(3.12), using an averaged biomass con-
centration c̄x.

ci(t) = c0i + qi · c̄x · t (3.12)

During a fed-batch process, time courses of biomass, products and substrates follow from
Eq.(3.5) and Eq.(3.6). With the exception of an exponential feeding, dynamic modeling
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is required to estimate specific rates.

Irrespective of the bioreactors operation mode, oxygen and carbon dioxide are continu-
ously supplied and removed during a bioprocess. Oxygen uptake rate (OUR) and carbon
dioxide production rate (CPR) are assessed by exhaust gas measurements. If the concen-
tration of oxygen is constant in the medium, the oxygen transfer rate (OTR) follows from
mass balancing in the gas phase.

OTR =
V̇ in
gas · xinO2

− V̇ out
gas · xoutO2

VR · Vmol
(3.13)

V̇ in
gas and V̇ out

gas are the in- and outlet airflow, xinO2
and xoutO2

are the mole fractions of oxygen
at the in- and outlet. Vmol is molar volume of an ideal gas, which is 22.414 L mol-1.
The outlet airflow is estimated from the inlet airflow using mass conservation of inertial
compounds in the gas phase.

V̇ in
gas · xininertial = V̇ out

gas · xoutinertial (3.14)

The sum of mole fractions of inertial compounds, O2 and CO2 equals one.

xinertial + xCO2 + xO2 = 1 (3.15)

Combining Eq.(3.15) with Eq.(3.14) and rearranging relates the outlet airflow to the inlet
airflow.

V̇ in
gas ·K = V̇ out

gas (3.16)

where K =
1− xinCO2

− xinO2

1− xoutCO2
− xoutO2

Assuming that OTR=OUR and inserting Eq.(3.16) into Eq.(3.13) gives

OUR =
V̇ in
gas

VR · Vmol
(xinO2

−K · xoutO2
) (3.17)

CPR is estimated similarly.

CPR =
V̇ in
gas

VR · Vmol
(K · xoutCO2

− xinCO2
) (3.18)

Dividing CPR and OUR by the actual biomass concentration gives the specific rates qO2
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and qCO2 . The maximum qO2 of E. coli cells growing on a variety of carbon sources
in aerobic cultures was reported to be approximately 20 mmol gDW

-1 h-1 (Andersen and
Meyenburg 1980). For high biomass concentration OUR exceeds the maximal OTR, which
depends on the performance of the bioreactor. Oxygen limitation causes formation of by-
products, such as acetate, formate and ethanol, which exhibits a linear relationship with
growth rate (Varma and Palsson 1994).

3.1.4. Elemental balances

Material that is flowing in and out of the cells is conserved and therefore the rates defined
in Eq.(3.1) and Eq.(3.2) must satisfy several constraints. For example, carbon consumed
by the cell in form of substrate is recovered in biomass, carbon dioxide and by-products.
This relation is expressed by specific rates in form of a carbon balance.

µ+
m∑
i=1

hp,i · qp,i −
n∑
i=1

hs,i · qs,i = 0 (3.19)

The coefficients hp,i and hs,i represent the carbon content of m products and n substrates
given as molecarbon mole-1.

Balance equations have to be considered for other elements such as oxygen, hydrogen
and nitrogen. The elemental composition of biomass, substrates, products and other
compounds is collected in an elemental matrix E, with rows corresponding to elements
and columns to particular compounds. With the elemental matrix, balance equations are
a system of linear equations:

Er = 0 (3.20)

The vector r collects specific consumption and production rates, as well as µ. The degree
of freedom is F = m+n+1− i, where i is the number of considered elements. The vector
of specific rates r is partitioned into a vector of measured rates rm and calculated rates
rc and Eq.(3.20) is rearranged.

Emrm + Ecrc = 0 (3.21)

If Ec is square and has full rank the system is called observable, as there are enough
measured rates to determine the non-measured rates.

rc = −E−1
c Emrm (3.22)

If more measurements are available than the degrees of freedom F , the redundancy is
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used to increase the accuracy of the measurements and to check the consistency of the
data. A least square solution of the non-measured rates is estimated by

rc = −E#
c Emrm (3.23)

The matrix E#
c is the Penrose pseudo-inverse of Ec. Stephanopoulos et al. (1998) show

in detail how the best estimates r̂m follow from the redundancy of measured rates by

r̂m = (I− FRT
r P

−1Rr)rm (3.24)

where I is the identity matrix. The diagonal elements of the variance-covariance matrix
F are the errors of measurements, which are supposed to be normally distributed with a
mean value of zero. The variance-covariance matrix of the residuals is given as

P = RrFRT
r (3.25)

The reduced redundancy matrix Rr are the independent rows of the redundancy matrix
R given by

R = Em − Ec(ET
c Ec)

−1ET
c Em (3.26)

The best estimates r̂m are more reliable than the raw measurements and should be used
to calculate the non-measured rates according to Eq.(3.23).

3.2. Metabolic processes

Similar to bioreactor processes, metabolic processes are described by variables of bio-
chemical pathways which convert the feeding carbon source into biomass and products.
Metabolic processes interact with the bioreactor processes by specific exchange rates in-
troduced above.

3.2.1. Models of metabolic pathways

The genome annotation, along with biochemical information provides the information
needed to reconstruct complete metabolic networks of a mircro-organism (Edwards et al.
2001). Additionally, data bases like EcoCyc provide structured symbolic descriptions of
metabolic pathways, transport functions and gene regulation (Karp et al. 2002). Such
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information is the basis for dynamic mass balances written for each metabolite xi in the
network:

dxi
dt

=
∑
j

ni,jvj (3.27)

where vj corresponds to the jth metabolic flux, xi represents the concentration of the
metabolite, and the stoichiometric coefficient ni,j stands for the moles of metabolite i
formed or consumed in reaction j (Schilling et al. 2000). The stoichiometric coefficients
of i = 1, 2, ...,m components and j = 1, 2, ..., n reactions are collected in a (m × n)
stoichiometric matrix N. The reaction rates v, enzyme levels e, metabolite concentrations
x, extracellular compounds c and other parameters p are collected in vectors given as

x = (x1, x2, . . . , xm)T (3.28)

v = (v1, v2, . . . , vn)T (3.29)

e = (e1, e2, . . . , en)T (3.30)

c = (c1, c2, . . . , cl)
T (3.31)

p = (p1, p2, . . . , pk)
T (3.32)

The dynamic mass balances of all metabolites are expressed in matrix notation by Eq.(3.33)

dx
dt

= Nv(e,x, c,p) (3.33)

Eq.(3.33) is a complete description of the metabolic system. The stoichiometric matrix
accounts for structural properties of the system and the kinetic properties are considered
by the functional relationship of reaction rates with regulatory effectors, enzyme levels
and other parameters.

3.2.2. Structural analysis

Analysis of a biochemical system should at first consider the underlying structure and its
invariants. The invariants of a system are properties that depend neither on the state
of its environment nor on its internal state, but only on its structure (Reder 1988). The
structure of a metabolic network is either given graphically as a reaction scheme or by the
equivalent stoichiometric matrix. Structural analysis basically deals with matrix analysis
and the rank of the stoichiometric matrix is an important characteristic. If the rank of
N is m0 (where m0 is less than or equal to the number of rows m) there are (m −m0)
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dependent rows which can be expressed as linear combinations of the m0 independent
rows. This results in the following relationships of metabolites and metabolic fluxes.

Relationships between metabolites

Since each row of the stoichiometric matrix N corresponds to a metabolite there are m0

independent metabolites xind and (m−m0) dependent metabolites xdep. The relationship
between the independent and dependent metabolites is expressed as

N = LNR (3.34)

where the (m ×m0) matrix L is the link matrix and NR the reduced (m0 × n) stoichio-
metric matrix of independent metabolites (Reder 1988). The dynamic mass balances of
all metabolites in Eq.(3.33) can be expressed only by the independent metabolites xind.

dx
dt

= L
dxind

dt
(3.35)

Integration of Eq.(3.35) gives
x(t) = Lxind(t) + T (3.36)

Eq.(3.36) specifies the conservation relationships of metabolites (Reder 1988, Ehlde and
Zacchi 1997). The sums of conserved moieties are collected in vector T.

Relationships in the steady state

As a result of the high turnover of most metabolites a pseudo-steady state for the metabo-
lites xi is reasonable under most conditions, even after large perturbations in the envi-
ronment (Stephanopoulos et al. 1998). With this assumption the differential equations in
Eq.(3.33) reduces to a set of algebraic linear equations.

0 = Nv (3.37)

The relationship between steady state fluxes are defined by the kernel K of the reduced
stoichiometric matrix (Reder 1988).

0 = NRK (3.38)



12 Theoretical Background

The (n−m0) columns of K are linearly independent and span the nullspace of NR. Each
of the columns of K is a particular solution to Eq.(3.38). The n steady state fluxes
(collected in a vector J, indicating a steady state solution of v) are now expressed as a
linear combination of the (n−m0) independent fluxes in vector Jind:

J = KJind (3.39)

This equation is the basis for metabolic flux analysis, which provides a method to de-
termine intracellular fluxes by measurements of (independent) extracellular fluxes (Ehlde
and Zacchi 1997).

3.2.3. Metabolic flux analysis

Usually, there are more metabolites than reactions in a metabolic network and therefore
Eq.(3.37) is underdetermined. Only in a few cases some reaction rates can be exactly
determined by the analysis of K alone (Klamt et al. 2002). Estimation of intracellular
fluxes is covered by the broad field of metabolic flux analysis (MFA). MFA comprises
constrained-based approaches (Palsson 2000, Reed and Palsson 2003), isotopomer bal-
ancing (Wiechert and de Graaf 1996, Wiechert and de Graaf 1997) and stoichiometric
metabolite balancing (Stephanopoulos et al. 1998).

Stoichiometric metabolite balancing

Stoichiometric metabolite balancing is based on the measurements of extracellular fluxes
and also on assumptions that result in simplification of the network. According to
Eq.(3.39) at least n − m0 independent fluxes have to be measured in order to deter-
mine the remaining. In case that Jind is exactly the subset of measured fluxes the steady
state fluxes follow from Eq.(3.39). However, the nullspace is not unique and the measured
fluxes will not equal the independent fluxes in Eq.(3.39) a priori.

According to Stephanopoulos et al. (1998) the flux vector v in Eq.(3.37) is partitioned
into a vector of measured fluxes vm and calculated fluxes vc. If the stoichiometric matrix
is rearranged in the same way Eq.(3.37) reads:

0 = Nmvm + Ncvc (3.40)



Theoretical Background 13

In the following it is assumed for simplicity that N has full rank and therefore m = m0.
If exactly (n − m) fluxes were measured Nc is a square (m × m) matrix, which can be
inverted, so that:

vc = −N−1
c Nmvm (3.41)

Unfortunately, Nc is only a square matrix if it has full rank and even if N has full rank
as assumed above, the set of measurements might be chosen in such a way that the rank
of Nc is less than m. In this case some of the measured rates are redundant. Also, Nc is
non-square if the number of measured fluxes is greater than the degrees of freedom and
the system is overdetermined. Then, a solution is obtained by the use of the Penrose
pseudo-inverse N#

c (Stephanopoulos et al. 1998).

vc = −N#
c Nmvm (3.42)

The pseudo-inverse exists for any matrix and allows computation of a least squares solution
of Eq.(3.40), even if the system involves noncalculable rates (Klamt et al. 2002).

Constrained-based approaches

For metabolite balancing the measured fluxes are used to estimate the unknown fluxes
of an underdetermined metabolic system. In case of a genome-scale model the set of
linear equations Nv = 0 is highly underdetermined and a constrained-based approach
known as flux balance analysis (FBA) has been developed to estimate fluxes in such
complex networks (Edwards and Palsson 1998). FBA is based on the fundamental law of
mass conservation and the application of optimization principles to predict the optimal
distribution of metabolic resources within a network (Schilling et al. 2000).

In Eq.(3.38) the steady state solutions of the metabolite mass balances were confined
to the nullspace of the stoichiometric matrix N. Within FBA additional constraints are
imposed on the feasible steady state fluxes, such as lower and upper bounds of the fluxes,

αj ≤ vj ≤ βj (3.43)

which enforce the reversibility/ irreversibility and maximal capacities of transport re-
actions (Edwards and Palsson 2000). The intersection of the nullspace and the region
defined by the linear inequalities defines the feasible set of steady state fluxes, which can
be further restricted by thermodynamic, kinetic or biochemical constraints. A particu-
lar flux distribution within the feasible set is found by linear programming. The linear
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program maximizes a linear combination of fluxes, with the weights wj,

maxZ =
∑
j

wjvj = wv (3.44)

subject to the constraints in Eq.(3.37) and Eq.(3.43). Even if the most common objective
function is maximization of cellular growth, other objectives such as a maximal ATP
yield achieved better predictive accuracy during unlimited growth and also under nutrient
scarcity (Schuetz et al. 2007).

3.3. Kinetics of enzyme-catalyzed reactions

In contrast to the structural properties the kinetic properties of a biochemical system
depend on the environment as well as on its internal state, so they are not invariants of
the system (Reder 1988). Generally, the reaction kinetics depend on metabolite concen-
trations x, enzyme levels e, and parameters collected in a vector p. Exchange fluxes will
additionally depend on concentrations of compounds in the cultivation medium c.

v = f(e,x,p, c) (3.45)

The functional relation in Eq.(3.45) is usually highly non-linear and can be described by
two classes of kinetic functions: mechanistic Michaelis-Menten type kinetics or alterna-
tive approximate formats, such as linear-logarithmic or power-law models. According to
Heijnen (2005), approximative formats of in vivo kinetics should consider four properties:

• the rate is proportional to the enzyme level

• saturation kinetics at high metabolite concentrations

• small number of kinetic parameters

• an analytical steady state solution

Mechanistic functions mirror kinetics over the whole range of metabolite concentrations
while non-mechanistic kinetics should be considered as approximations around a limited
range. Such approximations are particularly suitable in living cells, with limits on physi-
ological metabolite concentrations.
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3.3.1. Mechanistic models

Enzyme-catalyzed reactions may appear as simple processes where a substrate S binds to
an enzyme E and is released in form of the product P . However, in detail the reaction
is more complex and composed of several elementary steps. The most simple case is an
enzymatic reaction where one substrate is irreversible converted into a product.

S + E ⇀↽ ES → E + P

With the assumptions, that the free enzyme and the enzyme complex are in a steady
state (dcES/dt = dcE/dt = 0) and the last step is rate limiting, the relation know as
Michaelis-Menten equation is derived.

v = vmax ·
cS

Km + cS
(3.46)

The maximum reaction rate vmax depends on the initial enzyme concentration c0E. The
Michaelis constantKm expresses the affinity of the substrate. Mechanistic rate expressions
become more complex in cases of reversible reactions, enzyme inhibition/activation and
also for multi-substrate reactions. Further, enzymes with multiple binding sites exhibit
sigmoidal kinetics, described by the Hill mechanism. Such cooperative and allosteric
effects are typical for key regulatory enzymes of metabolism. However, kinetics of enzyme-
catalyzed reactions are based on information obtained from in vitro kinetic studies on
purified enzyme in test tubes. They are often not applicable under the in vivo conditions,
which are present in the cellular milieu (Teusink et al. 2000, Heijnen 2005).

3.3.2. Thermokinetic models

A metabolic steady state may look similar to a thermodynamic equilibrium. However,
as material is flowing through the metabolic network, concepts of non-equilibrium ther-
modynamics are required. Rather than balancing forward and backward fluxes of each
elementary reaction as in thermodynamic equilibrium, the influxes and effluxes of the
steady state metabolite pools are balanced (Heuett et al. 2008). In a non-equilibrium sys-
tem the laws of thermodynamics give no information about the reaction rate. However,
Onsager (1931) derived phenomenological equations, which linearly relate the reaction
rate to the thermodynamic driving force in non-equilibrium systems. The thermody-
namic driving force of the jth reaction is its affinity Aj which is equal to minus the Gibbs
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free energy of reaction ∆rGj.

Aj = −∆rGj = −∆rG
0
j −RT ln

m∏
i=1

x
ni,j
i (3.47)

∆rG
0
j is the standard Gibbs energy of the jth reaction and ni,j are stoichiometric coeffi-

cients introduced above. As Onsager’s equations are only valid close to equilibrium, they
cannot be applied for cellular reactions operating far from equilibrium. It was shown,
that for reversible enzyme-catalyzed reactions the relation of affinity and reaction rate
is also linear far from equilibrium (Rottenberg 1973, van der Meer et al. 1980, Nielsen
1997). The linear relation of reaction rate and thermodynamic driving force is given as

vj = L#
j (Aj − A#

j ) (3.48)

The parameters A#
j and L#

j are related to kinetic parameters of the forward and backward
reaction rate. Nielsen (1997) derives the following kinetic description from Eq.(3.48)

vj = aj

m∑
i=1

kj,i lnxi + bj (3.49)

Basically, this expression results from Eq.(3.48) and Eq.(3.47) and the kinetic parameters
kj,i are recognized as stoichiometric coefficients of substrates and products. In case of
regulatory effectors Nielsen (1997) proposed to use empirical coefficients.

3.3.3. Linear-logarithmic (lin-log) models

Non mechanistic formats such as linear-logarithmic (lin-log) models showed the capacity
to adequately approximate mechanistic models (Visser and Heijnen 2003, Visser et al.
2004b). Lin-log models have their origin in the thermokinetic expression given in Eq.(3.49)
and their general form for the jth reaction rate is given as

vj = ej(aj + pj,1 lnx1 + pj,2 lnx2 + · · ·+ pj,m lnxm) (3.50)

The rate is proportional to the concentration of the enzyme e catalyzing the reaction j
and a linear combination of logarithms of the metabolite concentrations xi (if required
external compounds are included in the linear combination). Normalizing the reaction
rate, the enzyme level and metabolite concentrations in Eq.(3.50) to a reference state
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gives
vj
v0
j

=
e

e0
(1 + εvjx1

ln
x1

x0
1

+ εvjx2
ln
x2

x0
2

+ · · ·+ εvjxm ln
xm
x0
m

) (3.51)

In this form the model parameters are elasticity coefficients, which are scaled local sensi-
tivity coefficients.

εvjxi ≡
xi
vj

∂vj
∂xi

=
∂ ln vj
∂ lnxi

(3.52)

Alternatively, elasticity coefficients can be interpreted as kinetic orders gi of a power-law
model.

3.3.4. The power-law formalism

The power-law formalism is the core element of the Biochemical Systems Theory (BST)
developed by Savageau (1969a,b) and is derived from a first order Taylor series approx-
imation of the kinetic rate law. Similar to chemical reactions, the rate law consists of
a rate constant α and the particular components raised to a real-valued exponent (the
exponent of the enzyme level is normally 1).

vj = αjej

m∑
i=1

x
gj,i
i (3.53)

The kinetic orders gi,j are elasticity coefficients defined in Eq.(3.52), as recognized by
partial derivation of Eq.(3.53).

3.4. Metabolic Control Analysis (MCA)

MCA was developed from the landmark papers of Kacser and Burns (1973) and Heinrich
and Rapoport (1974) and is a well established framework, quantifying the control of flux
in a metabolic network. MCA explains how the steady state variables of a biochemical
pathway (fluxes and metabolite concentrations) are determined by systems parameters
without knowing the detailed kinetic rate laws. Therefore, only local properties of ki-
netic rate laws are required, which are described by elasticity coefficients introduced in
Eq.(3.52). These local parameters are related to the systems sensitivities, the flux control
coefficients:

CJi
ej

=
ej
Ji

dJi
dej

=
d ln Ji
d ln ei

(3.54)
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and the concentration control coefficients:

Cxi
ej

=
ej
xi

dxi
dej

=
d lnxi
d ln ei

(3.55)

Control coefficients are a measure of how a change of an enzyme level affects a particular
steady state flux or metabolite pool. Heinrich et al. (1977) gave a more general definition of
control control coefficients in terms of any parameter that acts exclusively on an enzyme.
There have been further objections both the name and concept of control coefficients,
which are discussed by Fell (1992).

3.4.1. Estimation of elasticity coefficients

Elasticity coefficients are estimated from mechanistic models by partial derivation of the
rate laws (Chassagnole et al. 2002). In case of power-law and lin-log models elasticity co-
efficients are model parameters (Alvarez-Vasquez et al. 2005, Magnus et al. 2006). Kinetic
rate laws and their parameters are commonly identified by means of dynamic modeling,
describing time courses of intracellular metabolite concentrations. Nikerel et al. (2006)
have shown, that elasticity coefficients can be potentially unidentifiable from dynamic
data only and steady state experiments are required.

Estimation of elasticities from steady state data can be considered as an inverse prob-
lem, determining rate laws from what they produce: fluxes and metabolite pools (Giersch
1994). The first experimental method is described by Kacser and Burns (1979) who
propose arbitrary changes anywhere in the in vivo system to obtain small deviations in
concentrations and fluxes from which elasticity coefficients can be estimated. Their ap-
proach was later termed the double modulation method (Fell 1992). Since then, several
extensions of the double modulation method were developed, that apply modulations,
effecting specifically one enzyme (Hofmeyr et al. 1993, Giersch 1994). Matrix formulation
allows applying these methods to metabolic systems of any structure and size (Acerenza
and Cornish-Bowden 1997). Giersch and Cornish-Bowden (1996) define precisely which
sets of reactions have to be modulated in order to calculate a particular elasticity. Co-
response analysis accounts for fractional changes of steady state variables avoiding knowl-
edge about the percentage modulation of a parameter, but still requires specific effectors
of an enzyme (Hofmeyr and Cornish-Bowden 1996). A draw-back of these methods is the
perturbation of a single enzyme, because in practice there will be always more than one
enzyme changed. Further, the linearization around a reference state causes difficulties
if experimental data is evaluated. On the one hand, changes in the metabolic pathway
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must be small so that the linearization is valid. On the other hand, feasible experimen-
tal approaches require large changes. The recently developed lin-log approach avoids this
problem since it provides a procedure for estimation of elasticities from large perturbation
experiments (Wu et al. 2004). The lin-log approach and the double modulation method
are further detailed in section 5.2.

As a convenient alternative, Nielsen (1997) derived elasticty coefficients of thermokinetic
models from Eq.(3.48)

εvjxi = − ni,jRT

Aj − A#
j

(3.56)

For reversible reactions near equilibrium the parameter A#
j is zero and the elasticity

coefficient follows directly from the affinity, that is minus the Gibbs free energy.

3.4.2. Estimation of control coefficients

Control coefficients are estimated either directly by manipulation of enzyme activity or
indirectly by their relationships with elasticity coefficients. Kacser and Burns (1973) de-
scribe these relationships of control and elasticity coefficients with the connectivity and
summation theorems. The theorems were derived using a rather intuitive approach and do
not include branched pathways or conserved moieties. A general applicability of MCA the-
orems was possible using the structural relations derived from the pathways stoichiometry
explained above (Reder 1988, Small and Fell 1989, Ehlde and Zacchi 1997). The differ-
ent theorems of MCA are reviewed by Visser and Heijnen (2002). They distinguish the
structural approach of Reder (1988), the systematic approach of Ehlde and Zacchi (1997)
and a third approach proposed by Giersch (1988a,b). Additionally, the authors present a
novel engineering approach, which is based on the linearization of the steady state mass
balance equation of independent metabolites:

dxind

dt
= NRv(xind,xdep(xind,T), e) (3.57)

Eq.(3.57) is similar to Eq.(3.33), with the difference that the reduced stoichiometric ma-
trix introduced in Eq.(3.34) is applied. The reaction rates depend on independent and
dependent metabolites, as well as on enzyme levels (external compounds and parame-
ters are excluded for clarity). The dependent variables however depend on independent
variables and the conserved sum in vector T, which was introduced in Eq.(3.36). The
basic problem of MCA theorems is the nested relationship of dependent and indepen-
dent metabolites, their conserved sum and the kinetic rate laws. Therefore, linearization
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requires differentiation of implicit functions with vector variables. Visser and Heijnen
(2002) derive the following linearization of Eq.(3.57):

0 = NR · J0 ·
(
e
e0

+ Ex0 · L0 ·
(
xind

xind0

− i
))

(3.58)

The vector J0 contains steady state fluxes in the references state. Similarly metabolite
concentrations in the reference state are indexed by 0. The vector i is the unit vector
and elasticity coefficients are collected in matrix E (with rows referring to reactions and
columns to metabolites).

Dependencies of conserved moieties are considered by a link matrix for the normalized
variables L0, which is different from the link matrix L in Eq.(3.34).(

x
x0

− i
)

= L0 ·
(
xind

xind0

− i
)

(3.59)

The link matrix for normalized variables follows from:

L0 = (X0)
−1 ·N · (NR)# ·Xind

0 (3.60)

The concentration control coefficients are derived from Eq.(3.58) with standard matrix
algebra.

Cx = −L0 · (NR · J0 · E · L0)
−1 ·NR · L0 (3.61)

The flux control coefficients follow from substitution of the steady state metabolite levels
in the linearized rate equation (a more detailed description is given by Visser and Heijnen
(2002)).

CJ0 = (Ex0 ·Cx + i) (3.62)

Linearization of Eq.(3.57) is also the basis for the (Log)linear approach of Hatzimanikatis
and Bailey (1996). They derive similar equations as given in Eq.(3.61) and Eq.(3.62) and
derive relative weights of conserved moieties, which are related to Eq.(3.60).

3.5. Thermodynamic analysis

Beside kinetic and stoichiometric analysis thermodynamic principles are increasingly ap-
plied in systems biology approaches. Kümmel et al. (2006) couple informations about
directions of metabolic fluxes and ranges of metabolite concentrations via the second
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law of thermodynamics in order to estimate feasible ranges of Gibbs energy of reaction.
Similarly, Henry et al. (2007) apply thermodynamic constraints in addition to the mass
balance constraints for metabolic flux analysis.

According to the second law of thermodynamics reactions only occur in direction of neg-
ative Gibbs energy of reaction ∆rG, which is calculated for a reaction j from the Gibbs
energy of formation of the participating components.

∆rGj =
∑
i

ni,j∆fGi (3.63)

The stoichiometric coefficients ni,j were defined in Eq.(3.27). The Gibbs energy of forma-
tion is calculated from the standard Gibbs energy of formation ∆fG

0 and the thermody-
namic activity, which is often replaced by the molar concentration.

∆fGi = ∆fG
0
i +RT ln(ci) (3.64)

The standard Gibbs energy of formation of biochemical reactions in the cellular milieu
is estimated by the group contribution method (Mavrovouniotis 1991) and values are
available for most of the compounds of the genome scale model E. coli K-12 (iJR904
GSM/GPR) of Reed et al. (2003).

Network embedded thermodynamic (NET) analysis as proposed by Kümmel et al. (2006)
applies the following optimization procedure to estimate the feasible range of Gibbs free
energy of a particular reaction k:

min /max ∆rGk

subject to ∆rGj < 0 ∀vj > 0

∆rGj > 0 ∀vj < 0 (3.65)

cmini ≤ ci ≤ cmaxi

With this procedure, the feasible range of Gibbs free energy is not only considered in view
of the kth reaction, rather the thermodynamic interdependencies of all reactions in the
network are included. Therefore, NET analysis significantly limits ranges of Gibbs free
energy and additionally concentration ranges of non-measured metabolites.
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3.6. Central metabolism of Escherichia coli

Escherichia coli is a gram negative bacterium classified as part of the Enterobacteriaceae
family. It was discovered in 1885 by German pediatrician and bacteriologist Theodor Es-
cherich. E. coli is one of the best studied prokaryotic model organisms, and an important
species in biotechnology. The cells grow on synthetic media with an optimal temperature
of 37◦C and a pH between 6.5 and 7.3. Metabolism of E. coli is facultative anaerobe,
this means energy is generated by respiration or mixed acid fermentation. Commonly,
metabolic processes are grouped into catabolism and anabolism. The fueling reactions of
catabolism break down a substrate into precursors which are needed for biosynthesis. Ad-
ditionally the process yields energy and redox cofactors. Anabolism is responsible for the
biosynthesis of the building blocks of the cells including protein, amino acids, DNA and
RNA nucleotides, lipids, different monomers, polyamines etc. (Wang and Hatzimanikatis
2006a). Even if biosynthetic pathways are complex all of them originate from a set of 12
precursors supplied by the central metabolic pathways (Ingraham et al. 1983). Anabolic
and catabolic processes are connected by energy carrying metabolites like the adenylates
ATP, ADP and AMP, as well as redox cofactors NADH and NADPH (Stephanopoulos
et al. 1998). Central metabolism can be grouped into glycolysis and gluconeogenesis,
pentose phosphate pathway, tricarboxylic acid cycle, pyruvate metabolism and oxidative
phosphorylation. The network of central metabolism shown in Figure (3.1) was con-
structed from the EcoCyc Database (Karp et al. 2002) and the genome-scale model E.
coli iJR904 GSM/GPR (Reed et al. 2003).

Glycolysis and Gluconeogenesis

The glycoltic pathway in E. coli converts glucose into pyruvate. Glucose enters the cell via
the phosphotransferase system (pts), where a high energy phosphate group is translocated
from phosphoenolpyruvate (PEP) to the incoming glucose. The phosphorylated glucose-
6-phosphate (G6P) is interconverted by phosphoglucose isomerase (pgi) into fructose-6-
phosphate (F6P). Normally pgi is present in excess and therefore G6P and F6P are at
equilibrium constituting a single metabolite pool (Stephanopoulos et al. 1998).

In the Embden-Meyerhof-Parnas pathway F6P is further phosphorylated by phospho-
fructokinase (pfk) to fructose-1,6-bisphosphate (FBP) under the consumption of free en-
ergy in form of ATP. FBP is metabolized to dihydroxy-acetone phosphate (DHAP) and
glyceraldehyde-3-phosphate (GAP) by FBP-aldolase (fba). The triosephosphates GAP
and DHAP are interconvertible by triosephosphate isomerase (tpi). GAP dehydrogenase
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Figure 3.1.: Central metabolism of Escherichia coli. Reactions are further detailed in Table
(A.9).
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(gapd) catalyzes oxidation of GAP to 1,3-diphosphoglycerate (13DPG) producing NADH.
The first step of glycolysis gaining free energy in form of ATP is the reaction of 13DPG
to 3-phosphoglycerate (3PG) catalyzed by phosphoglycerate kinase (pgk). 3PG is in-
terconverted by phosphoglycerate mutase (pgm) to 2-phosphoglycerate (2PG). Enolase
(eno) catalyzes dehydration of 2PG into PEP. The high energy phosphate group of PEP
is transfered to ADP in the last step of glycolysis, pyruvat kinase (pyk) forming ATP and
pyruvate.

Gluconeogenesis is basically a glycolytic flux in reverse direction, which is necessary for
growth on other carbon sources like pyruvate. Compared to glycolysis only two different
enzymes are involved. The reaction of pyruvate to PEP is catalyzed by PEP synthase
(pps) under consumption of ATP. An important role in regulation of gluconeogenic flux
plays fructose-bisphosphatase (fbp), which converts FBP into F6P.

Pentose Phosphate Pathway (PPP)

In the pentose phosphate pathway (PPP) G6P is oxidized to 6-phosphogluconate (6PG)
by glucose-6-phosphate dehydrogenase (g6pdh). The enzyme 6-phosphogluconate dehy-
dogenase (gnd) coverts 6PG to ribulose-5-phosphate (Ru5P) and CO2. Each reaction
produces 1 mol of NADPH per mole of G6P entering the pathway. In the non-oxidative
branch of the pathway Ru5P is converted into ribose-5-phosphate (R5P) or xylose-5-
phosphate (X5P) by ribulose-5-phosphate isomerase (rpi) and epimerase (rpe). R5P and
X5P can react to GAP and sedoheptulose-7-phosphate (S7P) by a transketolase (tkt1).
Transaldolase (tala) converts S7P and GAP into erythrose-4-phosphate (E4P) and F6P.
A second transketolase (tkt2) catalyzes the reaction of E4P and X5P to GAP and F6P.
The metabolites GAP and F6P are also part of glycolysis and therefore the overall stoi-
chiometry of PPP depends on the extend of which carbon is recycled back into glycolysis.

Tricarboxylic Acid Cycle

Depending on the energetic and redox state of the cell, pyruvate formed in glycolysis
is further converted in several pathways. The tricarboxylic acid cycle (TCA) comprises
reaction steps for the complete oxidation of pyruvate. The first step is an oxidative
decarboxylation catalyzed by the enzyme complex pyruvate dehydrogenase (pdh) which is
forming acetyl-Coenzyme A (AcCoA). AcCoA enters the TCA cycle in a reaction catalyzed
by citrate synthase (cs) and reacts with oxaloacetate (OAA) to form citrate (CIT). In
the subsequent reactions two of the six carbon atoms of citrate are oxidized to CO2
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and oxaloacetate, which is recycled at the end of the pathway. Citrate is isomerized
to isocitrate (ICIT) by the enzyme aconitase (acont). The intermediate metabolite of
this reaction cis-aconitate has no other function in metabolism and is disregarded in the
consideration of the TCA cycle (Stephanopoulos et al. 1998). ICIT is converted to α-
ketoglutarate (AKG) by isocitratedehydrogenase (icdh). In a similar step as the reaction
of pyruvate to AcCoA, the enzyme complex AKG-dehydrogenase (akgdh) converts AKG
to succinyl-CoA (SucCoA), which is hydrolyzed to succinic acid by SucCoA synthetase
(sucoas). The dehydrogenation of succinate (SUC) to fumarate (FUM) by succinate
dehydrogenase (sucd) requires FAD as reducing cofactor. FUM is metabolized to malate
(MAL) by fumarase (fum). Malate dehydrogenase (mdh) recycles MAL to the initially
used OAA producing NADH.

The TCA cycle yields three biosynthetic precursors, AKG, SucCoA and OAA. Addition-
ally, oxidation of C-H- and C-C-bonds of citrate yields free energy which is conserved by
generation of ATP in the reaction catalyzed by sucoas. Further, energy is conserved in
the reduced cofactors NADH (formed by icdh, akgdh and mdh) and FADH2 (formed by
sucd). This energy is recovered by the last stage of catabolism, oxidative phosphorylation.

Oxidative Phosphorylation

The aerobic respiratory chain of E. coli consists of a set of membrane-bound dehydro-
genases that feed electrons into the quinone pool in the cytoplasmic membrane and two
ubiquinol oxidases that oxidize ubiquinol and reduce molecular oxygen to water (Calhoun
et al. 1993). NADH ubiquinone oxidoreductase (nadh6) and cytochrome terminal oxi-
dase (cytbd) work together to transfer electrons from NADH to oxygen, using the energy
from those electrons to pump protons across the cytoplasmic membrane and generate
the proton-motive force. This proton motive force is essential for ATP synthesis (atps)
and proton-driven symportes (Karp et al. 2002). As one of very few microbes, E. coli
contains two transhydrogenase isoforms with unknown physiological function that could
potentially transfer electrons directly from NADH to NADP and vice versa (Sauer et
al. 2004). A membrane bound, proton-translocating transhydrogenase (thd) is shown in
Figure (3.1).

Pyruvate Metabolism

Oxidation of pyruvate by the reactions of TCA cycle occurs only under aerobic conditions,
when NADH and FADH2 are reoxidized by the respiratory chain. Under oxygen-limited
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conditions pyruvate is oxidized to metabolic by-products of mixed acid fermentation. A
key reaction of anaerobic glucose fermentation is the pyruvate formate-lyase (pfl). Similar
as pdh which bridges TCA and glycolysis, AcCoA is formed by pyruvate and CoA, but
instead of CO2 and NADH this reaction produces one molecule of formate. In contrast
to pdh and pfl which are essential for E. coli the pyruvate oxidase (pox) which converts
pyruvate directly to acetate is of uncertain physiological function (Abdel-Hamid et al.
2001). In subsequent reactions AcCoA is converted into acetate or ethanol. Acetat is pro-
duced from AcCoA by phosphate acetyltransferase (pta) and acetate kinase (ack) yielding
energy in form of ATP. Ethanol production from AcCoA by acetaldehyde dehydrogenase
and alcohol dehydrogenase yields two mole of NAD per mole of formed ethanol.

3.7. Metabolomics

Strategies for analyzing metabolites exist since the early days of biochemistry, but cap-
turing metabolomic changes in the cellular milieu are only beginning to be appreciated
(Vaidyanathan 2005). Developments in microbial metabolomics were currently reviewed
by Mashego et al. (2007) as well as Oldiges et al. (2007). Takors et al. (2007) demon-
strate the importance of metabolome data in the context of systems biology as it is applied
in modern biotechnology. There are two possibilities to measure intracellular metabolite
concentrations: metabolites can be extracted from the whole culture broth or the cells are
separated from the extracellular medium before the extraction procedure. The following
unit operations are common to all protocols for microbial metabolome analysis:

• sampling from the bioreactor

• inactivation of metabolism

• quantitative extraction of metabolites

• selective and sensitive detection of metabolites

3.7.1. Sampling and inactivation of metabolism

Due to high turn over rates of many intracellular metabolite pools, rapid sampling tech-
niques with simultaneous inactivation of metabolic activity were developed: a sampling
tube device (Weuster-Botz 1997); an automated sampling devive for pulse experiments
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(Schaefer et al. 1999); the stopped-flow sampling device (Buziol et al. 2002); a mini plug-
flow reactor, the BioScope (Visser et al. 2002); a single tube heat exchanger (Schaub et al.
2006) and a low pressure in situ sampling device (Hiller et al. 2007a). A detailed overview
of rapid sampling devices for metabolic engineering applications is given by Schädel and
Franco-Lara (2009).

Simultaneously to sampling a quenching step should halt metabolism as rapidly as pos-
sible, this means intracellular enzymes are inactivated so that the metabolite pools are
"frozen" (Winder et al. 2008). Rapid inactivation of metabolic activity is commonly
achieved by quenching the sample into aqueous 60% (v/v) methanol at -50◦C (Jensen et
al. 1999, Buchholz et al. 2001, Al Zaid Siddiquee et al. 2004, Wittmann et al. 2004, Hoque
et al. 2005, Magnus et al. 2006). After a centrifugation step the supernatant is discarded
and cells are prepared for metabolite extraction. Several authors noticed leakage of intra-
cellular metabolites into the quenching fluid during sampling (Wittmann et al. 2004, Faijes
et al. 2007, Mashego et al. 2007, Bolten et al. 2007). Bolten et al. (2007) investigated
leakage of amino acids and several intermediate metabolites for a variety of organisms.
They conclude that a cold shock phenomenon during the phase of rapid cooling is respon-
sible for a major loss of metabolites into the quenching fluid and methanol quenching is
not a suitable method. Recently, Villas-Bôas and Bruheim (2007) proposed a glycerol-
saline quenching fluid and showed, that most metabolites are detected at significantly
higher levels when compared to methanol/water. Mashego et al. (2007) concluded that
in case metabolite leakage occurs, leaked metabolites should be quantifiable. Compared
to the amount of sample, the quenching fluid is in excess to assure mixing temperatures
below -20◦C, therefore already low concentrated intracellular metabolites leaking into the
quenching fluid get further diluted. Depending on the biomass concentration in the sample
and the percentage of lost metabolites, concentrations in the quenching fluid are expected
to be below 1 µM and highly sensitive analytical methods are required to quantify leaked
metabolites. Nasution et al. (2006) proposed to use ATP as indicator metabolite for cell
leakage. Bolten et al. (2007) and Faijes et al. (2007) proposed to check metabolome data
by means of the adenylates energy charge.

Alternative methods include simultaneous quenching and extraction of the whole culture
broth. Within the differential method proposed by Taymaz-Nikerel et al. (2009) the cells
are not separated from the quenched sample, but directly extracted with boiling ethanol.
Schaub et al. (2006) integrated sampling, quenching and extraction in one unit operation
using a heat exchanger. However, these approaches require correction for metabolites in
the cultivation medium.
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3.7.2. Extraction

After sampling and inactivation of metabolism, the intracellular metabolites have to be
extracted from the cells. The aim here is not only to release the metabolites from the
cell interior but also to permanently deactivate enzymes. During extraction, the target
metabolites should not undergo any physical or chemical modification, and degradation
should be minimized (Winder et al. 2008). Freeze-thaw cycles, boiling or extreme pH are
commonly applied in extraction protocols. Six different extraction methods for metabolite
measurements in E. coli were compared by Maharjan and Ferenci (2003). They conclude
that the extraction methodology has a significant influence on the results of metablome
analysis and propose cold methanol extraction for global metabolome analysis. However,
with cold extraction an efficient deactivation of enzymes is not always assured. Hiller
et al. (2007b) compared three extraction methods for E. coli : Perchloric acid, boiling
ethanol and hot water. They could show that extraction with buffered hot water (30 mM
triethanolamine, pH = 7.5, 95◦C) is a reliable method.

3.7.3. Analytical platforms

Several analytical techniques were applied for the quantification of metabolites in cell ex-
tracts, e.g. enzymatic assays, gas chromatography-mass spectrometry (GC-MS), nuclear
magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS). LC-
MS, GC-MS and most recently capillary electrophoresis-mass spectrometry (CE-MS) are
highly sensitive techniques for simultaneous quantification of various metabolites in a
small amount of sample. Mass spectrometry has become important in biosience with the
development of soft ionization techniques, such as electrospray ionization (ESI) (Mashego
et al. 2007). The LC-ESI-MS technique was successfully used to estimate metabolites in
central metabolism (Buchholz et al. 2001, Luo et al. 2007). However, there are problems
with high salt content in the samples or the eluent, which can interfere with the electro
spray source by suppressing ionization. Luo et al. (2007) use an eluent with the volatile
ion pair reagent tributylamine (TBA) to avoid problems with ionization. In case of a high
salt content in the sample, isotope dilution mass spectrometry (IDMS) was proposed to
account for ion suppression by an U-13C labeled internal standard (Wu et al. 2005).
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3.8. Proteomics

Proteomics covers methods to examine the levels of proteins in a cellular system and their
changes in response to different genotypes or environmental conditions. The exploration
of the E. coli proteome can be divided into three phases (Han and Lee 2006):

• the gel-based approaches like two-dimensional gel electrophoresis (2-DE) for the
separation of proteins

• non-gel approaches for the identification of proteins resolved by 2-DE

• predictive approaches using bioinformatic tools

Global proteome analysis has brought a new way of how the physiology of cells is stud-
ied and two discoveries greatly contribute to understanding of biological systems. First,
the physiological behavior of cells can be diagnosed by changes in proteine expression.
Second, there is evidence that biological systems can be described by a small number of
"physiological modules" (VanBogelen 2003). In this sense, the term stimulon was intro-
duced by Gottesman and Neidhardt (1983) to decribe a set of proteins whose expression
changes in a stimulus-response experiment.

Several proteom studies revealed that such changes of expression levels in response to
changing conditions are hardly predictable. Hua et al. (2004) show that differences of
proteome profiles in glucose-limited and nitrogen-limited E. coli cells are mainly caused
by the reduced growth rate, rather than by the kind of limiting substrate. Smith and
Neidhardt (1983) found more drastic changes in metabolome pools than in protein levels
when changing from aerobic to anaerobic growth conditions of E. coli.

Proteomics becomes increasingly important in biotechnological applications as several
proteomic signatures can be used to monitor cellular states (Han and Lee 2006). During
a fed-batch process, substrate-limitation is the major purpose for changes in the proteom
of E. coli, where the expression of enzymes of TCA cycle and energy metabolism was
found to be highly up-regulated (Yoon et al. 2003, Raman et al. 2005, Wang et al. 2005).

Studying kinetics of protein synthesis in response to the changes in environmental con-
ditions is a further challenging step for proteome analysis. Enzyme induction is a slow
process compared to metabolism, but there is only little information about how fast a
whole stimulon reacts to changed conditions. It is known that RNA polymerase works
with 30 nucleotides per second and a RNA chain with 5000 nucleotides is synthesized in
approximately 3 minutes (Alberts et al. 1995). The rate of protein synthesis depends on
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the growth rate and the amount of ribosomes in the cell (Farewell und Neidhardt 1998).
A possibility to study the in vivo protein synthesis is the dual channel method (Bern-
hardt et al. 1999). In Bacillus subtilis, synthesis of the acetoine dehydrogenase complex
as response to exhaustion of glucose is induced after 10 minutes and reaches a balance
between synthesis and accumulation after 30 minutes (Bernhardt et al. 2003).
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4. Material and Methods

4.1. Micro-organism

All cultivations described in this work were performed with Escherichia coli K12 DSM 498
(DSMZ, German Resource Center for Biological Material). The dried culture obtained
from the DSMZ was rehydrated and cultivated in 100 mL complex media (Table 4.1) in
a 1000 mL shake flask (37◦C, 250 rpm) until a optical density of 4 was reached. The cell
suspension was mixed with sterile glycerol to give a final concentration of 20% (v/v). The
glycerol stock was aliquoted and stored at -20◦C.

Table 4.1.: Complex medium for E. coli stocks.

Compound Concentration
Peptone 5 g L-1

NaCl 5 g L-1

Yeast extract 10 g L-1

Glucose 6 g L-1

4.2. Cultivation media

All cultivations were performed with a defined medium given in Table (4.2). The medium
was adjusted with 2 molar NaOH to pH 7.

Table 4.2.: Composition of the mineral salt media.

Compound Concentration
NH4Cl 0.2 g L-1

(NH4)SO4 2 g L-1

KH2PO4 3.25 g L-1

K2HPO4 2.5 g L-1

NaH2PO4·H2O 1.5 g L-1

MgSO4 solution (500 g L-1 MgSO4· 7 H2O) 2 mL L-1

trace-element solution 2 mL L-1
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Table 4.3.: Composition of the trace-element solution.

Compound Concentration
CaCl2·2 H2O 5 g L-1

ZnSO4·7 H2O 0.25 g L-1

CuCl2·2 H2O 0.125 g L-1

MnSO4·H2O 1.25 g L-1

CoCl2·6 H2O 0.875 g L-1

H3BO3 0.0625 g L-1

AlCl3·6 H2O 1.25 g L-1

Na2MoO4·2 H2O 0.25 g L-1

Fe2SO4·7 H2O 9.15 g L-1

The mineral medium was sterilized in an autoclave for 20 min at 120◦C. Trace-element
solution and MgSO4 solution were added after sterilization via a sterile filter.

4.3. Cultivation

4.3.1. Pre-cultures

Pre-cultures were grown overnight in 1000 mL shake-flasks filled with 100 mL minimal
medium (37◦C, 250 rpm). All shake-flasks were inoculated by addition of 500 µL culture
from a glycerol stock. Subsequently, 1.2 mL from a sterile glucose solution with 500 g L-1

glucose was added to achieve a concentration of 6 g L-1 in the cultivation medium.

4.3.2. Fed-batch cultivation

A 42 L stirred tank bioreactor (Techfors, Infors AG, Switzerland) with 22 L minimal
medium was utilized for fed-batch cultivation with an open-loop control of biomass for-
mation according to Jenzsch et al. (2006). Dissolved O2 (DO) was maintained above 40%
by controlling aeration and stirrer speed. The pH was adjusted with 25% (v/v) NH4OH
to a constant value of 7.0.

As shown in Figure (4.1), the fed-batch process was subdivided into an initial lag-phase
and two exponential feeding phases.
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Figure 4.1.: Schematic description of the three phases in the fed-batch process.

After inoculation with 500 mL pre-culture 20 mL of a sterile glucose solution (100 g L-1)
was added to the bioreactor, so that glucose concentration in the cultivation medium was
approximately 0.1 g L-1. The exponential glucose feeding profile given in Eq.(3.9) was
applied when the increasing DO signal indicated depletion of glucose. Sterile glucose so-
lution was fed to the bioreactor by a peristaltic pump, which was controlled by a sequence
implemented in the process control software (Iris, Infors AG, Bottmingen, Switzerland).
For the first feeding phase 2 L of a 100 g L-1 glucose solution was prepared and the specific
growth rate was µset =0.5 h-1. After 6.5 h biomass concentration reached approximately
3 gDW L-1 and 8 L of a 300 g L-1 glucose solution was prepared for feeding phase two,
where the growth rate was reduced to 0.1 h-1. The parameters of the two feeding phases
are summarized in Table (4.4).
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Table 4.4.: Parameters of the exponential feeding profile according to Eq.(3.9).

Parameter Feeding phase 1 Feeding phase 2
c0x 0.1 gDW L-1 3 gDW L-1

Yx,s 0.45 gDW g-1 0.45 gDW g-1

V0 22 L 23 L
c0s 100 g L-1 300 g L-1

cs 0 g L-1 0 g L-1

µset 0.5 h-1 0.1 h-1

A dynamic model of the process according to Eq.(3.5) was implemented in a MATLAB/
Simulink model. Formal monod kinetics of cellular growth (µmax = 0.7 h-1; Ks = 0.001 g
L-1) and substrate uptake (Yx,s = 0.45 gDW g-1) were combined with the mass balances of
substrate, biomass and reaction volume.

4.4. Rapid Media Transition (RMT)

Steady state experiments were performed in a lab-scale bioreactor in parallel to the fed-
batch process during feeding phase 2. The reaction of cells from the fed-batch process
was observed when they where rapidly exposed to a new carbon source. This approach
of Rapid Media Transition (RMT) is shown in Figure (4.2).

Figure 4.2.: Experimental set up applied for rapid media transition. Biomass from the production
process is repeatedly transferred to a lab-scale stirred-tank bioreactor. Cells are separated by a
centrifuge.
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Culture broth from the fed-batch process was withdrawn by the ground valve of the
bioreactor before each RMT experiment. Cells were separated by centrifugation (4000 g,
37◦C, 5 min). The supernatant was discarded and cells were resuspended in 200 mL
minimal media (37◦C). The total volume of resuspended cells was determined prior to
inoculation of the perturbation reactor, which was a 1.5 L stirred-tank bioreactor (Labfors,
Infors AG, Bottmingen, Switzerland) prepared with 750 mL minimal medium. Oxygen
and CO2 were monitored in the off-gas (Easy Line, ABB Automation, Zurich Switzerland).
The pH was controlled at a constant value of 7.0 using 5% NH4OH and 1 molar H2SO4 .
Dissolved oxygen was monitored with a DO sensor (Mettler Toledo, Giessen, Germany).
The cells were cultivated for 16-18 minutes in batch an fed-batch operation mode with
different substrates.

4.4.1. RMT experiments in batch mode

Glucose, pyruvate, succinate and acetate were utilized in four RMT experiments in batch
operation mode. From the fed-batch process 1.5 L culture broth was withdrawn before
each perturbation experiment. The cells were cultivated for 16 minutes after addition
of carbon source. Samples of extracellular metabolites and biomass were taken 5 times
during the short-term cultivation (0, 4, 8, 12 and 16 min). Sampling of intracellular
metabolites was performed after 6, 10 and 14 min. Table (4.5) summarizes cultivation
conditions of the four RMT experiments.

Table 4.5.: Conditions of four rapid media transition experiments in batch mode.

RMT Experiment 1 2 3 4
Substrate Glucose Pyruvate Succinate Acetate
c0s 100 g L-1 100 g L-1 60 g L-1 100 g L-1

aeration air 8 L min-1 air 8 L min-1 air 8 L min-1 air 8 L min-1

VR 1.015 L 1.040 L 1.020 L 1.020 L

4.4.2. RMT experiments in fed-batch mode

In four RMT experiments substrate was supplied with a constant feeding rate, which
was changed in three intervals of 6 minutes. The feeding profile and moments of sam-
pling are shown in Figure (4.3). Feeding was started one minute after inoculation of the
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Figure 4.3.: Feeding profile during rapid media transition experiments in fed-batch mode. Mo-
ments of sampling are indicated by the arrows (white: biomass and extracellular metabolites;
black: intracellular metabolites).

perturbation reactor. Each time the feeding rate was reduced, the amount of supplied
substrate was determined by an analytical balance and samples of extracellular metabo-
lites and biomass were withdrawn (white arrows in Figure 4.3). Sampling of intracellular
metabolites was performed after 6, 12 and 18 min (black arrows in Figure 4.3). The three
intervals with constant feeding are labeled A, B and C in the following. In four RMT
experiments cells were cultivated with glucose under aerobic and anaerobic conditions,
and with pyruvate and succinate as carbon source. The conditions of the four RMT
experiments are summarized in Table (4.6).

Table 4.6.: Conditions of four rapid media transition experiments in fed-batch mode.

RMT Experiment 1 2 3 4
Substrate Glucose Pyruvate Succinate Glucose
c0s 100 g L-1 100 g L-1 60 g L-1 100 g L-1

aeration air 10 L min-1 air 10 L min-1 air 10 L min-1 N2 2 L min-1

VR 1.005 L 1.01 L 1.01 L 1.015 L
Feeding rate A 2.3 mL min-1 2.3 mL min-1 1.9 mL min-1 2.3 mL min-1

Feeding rate B 1.5 mL min-1 1.3 mL min-1 1.3 mL min-1 1.5 mL min-1

Feeding rate C 0.8 mL min-1 0.8 mL min-1 0.6 mL min-1 0.8 mL min-1
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4.5. Preparation of U-13C labeled cell extracts

For preparation of U-13C labeled cell extracts E. coli was cultivated on U-13C labeled
glucose (Eurisotop, Saint-Aubin Cedex, France). As U-13C glucose is quite expensive it
is preferable to harvest the whole culture broth in order to achieve a maximum yield of
labeled cell extract. Therefore, cultivation was performed in an automated milliliter setup
to reduce experimental effort during cell harvest. Pre-cultures were grown overnight in
200 mL shake-flasks filled with 20 mL minimal medium (37◦C, 250 rpm). All shake-flasks
were inoculated by addition of 100 µL culture from a glycerol stock and 240 µL from a
sterile U-13C glucose solution with a concentration of 500 g L-1. Cells of the pre-culture
were separated by centrifugation (4000 g, 4◦C, 5 min) and resuspended in 90 mL minimal
medium, containing 4 mL anti foam reagent (Clerol FBA 265, Cognis, Germany) and
32 g L-1 U-13C labeled glucose. The resuspended cells were aliquoted in 8 sterile single-
use stirred-tank bioreactors. Individual DO and pH were monitored online by measuring
the fluorescence decay time of two chemical sensors immobilized at the bottom of each
single-use bioreactor. The pH was controlled by the process control software (fedbatch-
XP, DASGIP, Jülich, Germany) with addition of 5% NH4OH at a constant value of 7.0.
CO2 in the air supply was was completely removed by passing the air through a bottle
containing 1 L of 4 molar KOH solution.

All bioreactors were harvested when DO signal increased in the first bioreactor, indicat-
ing depletion of glucose. Culture broth of one bioreactor (app. 11 mL) was manually
transfered into a test tube with 20 mL hot buffered water (95◦C, 30 mM TEA, pH= 7.5),
in order to simultaneously stop metabolism and extract metabolites from the cells. The
quenched samples were incubated 5 min at 95◦C in a thermostat and mixed manually
meanwhile. Subsequently, the test tubes were cooled down on ice and then centrifuged
for 10 min at 4500 g and 4◦C. The supernatant was transferred into a new test tube and
cooled to -80◦C. The frozen supernatant was lyophilised for 48 h. The dried supernatant
was re-suspended in 16 mL 50% (v/v) methanol/water. The U-13C labeled cell extract
was mixed 1:1 with standard solution of unlabeled metabolites in different concentrations
(0, 5, 30, 50, 100, 200, 300, 500 µM). The mixture was analyzed by LC-MS and the ratio
of unlabeled and U-13C labeled metabolites was determined by the peak areas of masses
M + 0 and M +N (where M is the molecular mass of the metabolite or its fragment and
N the number of carbon atoms of the metabolite or its fragment).
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4.6. Analytical methods

4.6.1. Sampling of biomass and extracellular metabolites

Extracellular metabolites and biomass were measured five-fold. Therefore, 10 mL of
culture broth was withdrawn and rapidly chilled on pre-cooled glass envelopes, filled with
glass beads (4◦C). The sample was subdivided into 5 pre-weighted sample containers.
Cells were separated (10,000 g, 10 min, 4◦C) and the supernatant was stored at -20◦C
until analysis. The cell pellet was washed and dried at 80◦C to measure cell dry weight
(DW). Optical density (OD) was determined at 660 nm. The correlation factor between
OD660 and DW was 0.6 gDW L-1.

4.6.2. HPLC analysis of culture supernatant

Separation of substrates and by-products in the culture supernatant was achieved on an
Aminex HPX-87H 300 mm × 7.8 mm I.D. cation-exchange column (Bio-Rad, Germany).
The mobile phase was 5 mM H2SO4 and flow rate was 0.7 mL min-1 (Smartline 5000
HPLC pump, Knauer, Germany) running 30 minutes. The injection volume was 20 µL.
Column temperature was set to 50◦C. Glucose, acetate, formate, succinate, pyruvate, and
fumarate were detected using a RI-detector detector (Smartline 2300, Knauer). AKG was
detected with an UV-VIS detector at 210 nm (LC295, Perkin Elmer)

4.6.3. Sampling of intracellular metabolites

Rapid sampling was performed with the sampling device described by Hiller et al. (2007).
Before sampling, sample containers were filled with 25 mL quenching fluid, pressure was re-
duced to 200 mbar and the container was cooled down to -50◦C. The quenching fluids used
in this work were either 60% (v/v) methanol/water (MW) or 60% (v/v) methanol/glycerol
(MG), both buffered with 30 mM triethanolamine (TEA) at pH = 7. After sampling,
three different protocols for sample preparation and extraction were applied. The cells
were either separated from the quenching fluid (sampling protocols SP1 and SP2) or the
quenched sample was extracted directly (sampling protocol SP3).
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Sampling protocol 1 (SP1): Extraction with standard addition

The protocol is shown in Figure (4.4). The quenched cell suspension (MW or MG) was

Figure 4.4.: Sampling protocol 1 (SP1).

transferred into a test tube and centrifuged for 6 min at 6,000 g and -19◦C to separate cells.
The supernatant was sterile filtered and stored at -20◦C, in order to measure metabolites,
which leaked into the quenching fluid. The cell pellet was resuspended in 60% (v/v)
methanol/water (-20◦C). OD660 and cell volume of the cell suspension was determined
before metabolite extraction. 2 mL of cell suspension and 200 µL standard solution were
added to 4 mL de-ionised water (30 mM TEA, pH = 7.5) in pre-heated test tubes and
shaken for 5 min at 95◦C on a thermomixer (Comfort, Eppendorf, Hamburg, Germany).
The test tubes were cooled down on ice and then centrifuged for 10 min at 4500 g and
4◦C. 5 mL of the supernatant was transferred into a new test tube and cooled to -80◦C.
The frozen supernatant was lyophilized and stored at -20◦C until analysis. For analysis
the sample was re-suspended with 500 µL 50% (v/v) methanol/water.

Influences of the extraction procedure on the stability of metabolites and effects of the
sample matrix were considered by standard addition. Eight extracts of one sample were
produced, each with a standard mixture of metabolites in different concentrations (0 µM,
100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM, 700 µM). Concentrations of metabo-
lites were calculated via linear regression of the calibration curve (MATLAB R2006b, The
MathWorks Inc). The size of the 95% confidence interval is calculated according to the
method of standard addition in DIN 32633 (German Institute for Standardization). Since
standard addition is an extrapolation method, confidence intervals are higher compared
to an external calibration.



40 Material and Methods

Sampling protocol 2 (SP2): Extraction without standard addition

Sampling protocol 2 (SP2) is shown in Figure (4.5). The quenched cell suspension (MG)

Figure 4.5.: Sampling protocol 2 (SP2).

was transferred into a test tube and centrifuged for 6 min at 6,000 g and -19◦C to separate
cells. In case a washing step was applied cells were resuspended in 25 mL quenching fluid (-
20◦C, MG) and centrifuged again. The cell pellet was resuspended in 500 µL of 60% (v/v)
methanol/water (-20◦C). OD660 of the cell suspension was determined before metabolite
extraction. Intracellular metabolites were measured in three cell extracts of one sample.
For extraction 200 µL of cell suspension was added to 200 µL aqueous buffer (30 mM
TEA, pH = 7.5) in pre-heated test tubes and shaken for 3 min at 95◦C on a thermomixer
(Comfort, Eppendorf, Hamburg, Germany). The test tubes were cooled down on ice
and then centrifuged for 10 min at 10,000 g and -19◦C. 300 µL of the supernatant was
transferred into a new test tube and stored at -80◦C until analysis. External calibration
curves were obtained from extraction of a sample with standard addition. Therefore,
100 µL cell suspension was mixed with 100 µL standard solution of metabolites in six
different concentrations (0 µM, 10 µM, 25 µM, 50 µM, 100 µM, 150 µM) and subsequently
processed as described above.

Sampling protocol 3 (SP3): Extraction of the whole culture broth

Sampling protocol 3 (SP3) is shown in Figure (4.6). The quenched cell suspension (MW)
was transferred into a test tube and OD660 of the sample was determined. 2 mL of the
quenched sample were added to 4 mL water (30 mM TEA, pH= 7) in pre-heated test
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Figure 4.6.: Sampling protocol 3 (SP3).

tubes and shaken for 5 min at 95◦C on a thermomixer (Comfort, Eppendorf, Hamburg,
Germany). Optionally, isotope dilution mass spectrometry (IDMS) was applied, by addi-
tion of 400 µL of U-13C-labeled cell extract before extraction. The test tubes were cooled
down on ice and then centrifuged for 10 min at 4500 g and 4◦C. 5 mL of the supernatant
was transferred into a new test tube and cooled to -80◦C. 1 mL of the remaining su-
pernatant was stored at -20◦C until analysis. The frozen supernatant was lyophilzed and
stored at -20◦C until analysis. For analysis the sample was re-suspended with 500 µL 50%
(v/v) methanol/water. Metabolites were quantified directly in the cell extract and also in
the concentrated sample. Metabolites were quantified by IDMS or external calibration.

4.6.4. LC-MS analysis of cell extracts

Quantification of metabolites in the cell extracts was performed by an LC-MS method
adopted from Luo et al. (2007). A Synergi Hydro-RP (C18) 150 mm × 2.1 mm I.D., 4
µm 80 Å particles column (Phenomenex, Aschaffenburg, Germany) with eluent A (10 mM
tributylamine aqueous solution adjusted to pH 4.95 with 15 mM acetic acid) and eluent
B (methanol) was applied for chromatography. A degassed binary gradient at 0.2 mL
min-1 was achieved with a P 1100 HPLC pump (Thermo Finnigan, Dreieich, Germany).
The injection volume was 20 µL. Sample temperature was 4◦C and column temperature
was set to 35◦C. HPLC flow was transferred directly to the mass spectrometer via the
electro-spray ionisation (ESI) interface. ESI-MS analysis was performed using an LCQ
advantage iontrap mass spectrometer (Thermo Finnigan, Dreieich, Germany). N2 was
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used as sheath gas and helium served as damping gas. Data acquisition and analysis were
conducted using the Xcalibur software (Thermo Finnigan, Dreieich, Germany). Optimal
ESI parameters were determined either with the LCQtune software (Thermo Finnigan,
Dreieich, Germany) or with the optimization software GAME.opt (Link and Weuster-
Botz 2006) as shown in Table (A.6). Selected ion monitoring was applied for detection of
negative ions.

4.7. Computational methods

4.7.1. Estimation of extracellular fluxes

In case of RMT experiments in batch mode, external fluxes were estimated from the time
courses of biomass, substrates and by-products during the perturbation experiments. As-
suming exponential growth, the specific growth rate is estimated from logarithmic regres-
sion of the DW measurements to Eq.(3.10). Slope and Y-axis intercept of the regression
analysis give an estimate for specific growth rate µ and initial biomass concentration c0x .
The specific substrate uptake rate follows from Eq.(3.12) and the biomass concentration
measured after 8 minutes. Deviations between estimates from the exact Eq.(3.11) and
the approximation are negligible for the observed time interval of 16 minutes. Specific
production rates of by-products were estimated in the same way.

External fluxes of the fed-batch process and the fed-batch RMT experiments require
estimation of time derivatives in order to solve Eq.(3.5) for the specific rates. In the case
that no substrate is present in the cultivation medium, the time derivative is zero and
substrate uptake is determined analytically from mass balances.

During all experiments OUR and CPR were determined from exhaust gas measurements
and mass balancing in the gas phase according to Eq.(3.17) and Eq.(3.18).

4.7.2. Elemental balances

Elemental balances of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N) are used
to increase the accuracy of the measured rates through a least squares calculation and
to identify gross measurement errors. Therefore, specific OUR and CPR, as well as the
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specific production and consumption rates of biomass, substrates, by-products, ammonia
and water are collected in vector rm.

rm = (qO2 , qCO2 , qgluc, qpyr, qsuc, qac, qfor, qetoh, µ, qnh3 , qh2o)
T (4.1)

The elemental composition of biomass was assumed to be CH1.93O0.55N0.26 (Stephanopou-
los et al. 1998). With an elementary matrix E (given in Table (A.7)) the four elemental
balances result in a system of linear equations given in Eq.(3.20). Except of NH3 and
H2O all specific rates were experimentally determined and the system of linear equations
was overdetermined. The redundancy of measurements was used to increase accuracy of
the measurements by least squares calculation of best estimates r̂m.

4.7.3. Stoichiometric metabolite balancing (MFA)

Stoichiometric metabolic flux analysis (MFA) was performed by metabolite balancing
using best estimates of extracellular fluxes. A simplified stoichiometric model of central
carbon metabolism of E. coli was adopted from Holms (2001) and Wiback et al. (2004).
The model with 27 intracellular metabolites and 36 reactions is listed in Table (A.9).
The growth flux was considered as a drain of 12 metabolites given in Table (A.12). The
reactions are separated into 9 measured transport reactions (pts and exchange fluxes) and
27 intracellular reactions. The stoichiometric matrix of non-measured fluxes Nc is square
and has full rank. The vector vm of measured reaction rates is given in mmol gDW

-1 h-1.

vm = (qCO2 , qgluc, qac, qsuc, qfor, qpyr, qfum, qakg, qetoh)
T (4.2)

Cellular growth is considered as a non-measured flux and the predictions of MFA were
compared with the measured growth rate. Redox cofactors NADH and NADPH are
lumped into one compound NAD(P)H. OUR is not included in the model, because energy
metabolism is only considered by generation of 2 moles ATP from one mole NAD(P)H
(similar stoichiometry as in the genome scale model E. coli K-12 iJR904), without any
assumption about the P/O ratio. A further simplification is that the second transketolase
reaction (tkt2) is not considered.
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4.7.4. Flux Balance Analysis (FBA)

Compared to stoichiometric metabolite balancing Flux Balance Analysis (FBA) allows
a more detailed analysis of cellular metabolism. The COBRA Toolbox for MATLAB
(Becker et al. 2007) and the genome scale model E. coli K-12 (iJR904 GSM/GPR) of
Reed et al. (2003) were employed for FBA. The objective function was cellular growth and
substrate uptake was constrained to measured values (in mmol gDW

-1h-1). Predictions of
cellular growth and respiratory rates (rFBA) were compared with the experiments. The
reactions of central metabolism are compared to the simplified MFA model in Table (A.9).
Biosynthetic demand according to iJR904 GSM/GPR is listed in Table (A.11).

4.7.5. Network-embedded thermodynamic (NET) analysis

The anNET tool for MATLAB (Zamboni et al. 2008) and the genome scale model E.
coli iJR904 GSM/GPR (Reed et al. 2003) were employed for NET analysis. Measured
metabolites were limited to 10% of the experimentally determined concentration. Minimal
and maximal concentration limits of non-measured metabolites were set to 1 µM and 10
mM respectively. The energy charge was restricted to a range of 0.5-1 and the ratios
NADH/NAD as well as NADPH/NADP were both limited to 0.001-0.2. Intracellular
conditions were considered with a pH of 7.6 and an ionic strength of 0.15 M (Kümmel et
al. 2007). Thermodynamic data was provided with the aNET software.
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5. Results and Discussion

This section is subdivided into four principal parts. The first part describes findings
associated with the measurement of intracellular metabolites. Subsequently, theoretical
considerations clarify the requirements from steady state experiments. The new experi-
mental strategy of rapid media transition is evaluated in the third section. Finally, the
results of the metabolic control analysis of central carbon metabolism of E. coli in a
fed-batch process are presented in the last part.

5.1. Measurements of intracellular metabolites

A critical evaluation of sampling protocols for metabolome analysis is necessary, because
they are not standardized and errors may occur during each unit operation resulting
in under- or overestimation of the true concentration in vivo. Whilst statistical errors
are considered by methods like standard addition or isotope dilution mass spectrometry
(IDMS), the influence of systematic errors is hardly quantified.

In the following, the focus is on leakage of ATP, ADP and AMP during quenching of E.
coli cultures. Concentrations of adenylates are determined in vivo, in the quenching fluid
and in the culture supernatant in order to quantify cellular leakage. Effects of buffers used
with cold methanol quenching are investigated and the commonly applied methanol/water
solution is compared with a methanol/glycerol mixture.

5.1.1. Screening of quenching fluids

Leakage of ATP was investigated in three kinds of quenching fluids:

• 60% (v/v) methanol/water

• 60% (v/v) methanol/water buffered with TEA or HEPES in two concentrations (10
mM and 70 mM)

• 60% (v/v) methanol/glycerol

Samples from an E. coli batch culture were quenched into the different quenching fluids.
After centrifugation and sterile filtration of the quenching fluid supernatant, ATP was
determined enzymaticaly (ATP determination kit, sensitive assay, Biaffin GmbH & Co



46 Results and Discussion

KG, Germany). In order to reduce effects of methanol on the enzymatic activity each
sample was diluted 1:10 with de-ionized water. It is assumed that each sample contains
the same amount of culture broth and the level of intracellular ATP was constant during
time of sampling. The first assumption was verified by checking the total sample volume,
that was 25 mL quenching fluid and 7.5 mL culture broth. The assumption of a constant
intracellular ATP level is applicable, since all samples were taken in a short time interval
during exponential growth. Figure (5.1) shows the concentration of ATP in the quenching
fluid supernatant related to the amount of biomass in the sample. Error bars indicate the
standard deviation of three enzymatic tests of the same sample.

Figure 5.1.: Concentration of ATP in the supernatant of different quenching fluids after sampling,
centrifugation and sterile filtration. (A) 60% (v/v) methanol/ water, (B) 60% (v/v) methanol/
water 10 mM TEA, (C) 60% (v/v) methanol/ water 10 mM HEPES, (D) 60% (v/v) methanol/
water 70 mM TEA, (E) 60% (v/v) methanol/ water 70 mM HEPES, (F) 60% (v/v) methanol/
glycerol.

ATP was present in the supernatant of all quenching fluids, whereas no ATP was detected
in the culture supernatant (data not shown). Therefore, ATP in the quenching fluid is
a result of leakage during sampling. Equal concentrations of ATP were present in the
methanol solution (A) and the quenching fluids buffered with 10 mM of TEA (B) and
HEPES (C). Lower concentrations of ATP are determined in the quenching fluids buffered
with 70 mM TEA and HEPES (D and E). Taymaz-Nickerel et al. (2009) also noticed no
significant reduction of cellular leakage if the quenching fluid was buffered (in their studies
with 70 mM HEPES and 10 mM tricine). A considerable reduction of ATP leakage is
observed in case of the methanol/glycerol buffer (F). As glycerol is known as protecting
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agent also used for cryostocks it might have a stabilizing effect during quenching.

5.1.2. Leakage of adenylates in a glycerol based quenching fluid

Cellular leakage using a methanol/glycerol quenching fluid was quantified and compared
to a methanol/water solution. The adenylates ATP, ADP and AMP were measured in
the cell extract, the supernatant of the quenching fluid and of the culture broth during
a fed-batch cultivation of E. coli using LC-MS. Sampling for metabolome analysis was
performed two times during feeding phase 2 (20.75 h and 23.75 h, see Figure 4.1). Each
time three types of samples were withdrawn:

1. 7.5 mL culture broth quenched into 25 mL of quenching fluid G: 60% (v/v) methanol/
water with 30 mM TEA

2. 7.5 mL culture broth quenched into 25 mL of quenching fluid H: 60% (v/v) methanol/
glycerol with 30 mM TEA

3. 15 mL culture broth (without quenching) for analysis of extracellular metabolites
and biomass.

Samples at each process time are taken within less than one minute. Due to the controlled
conditions in the bioreactor a metabolic steady state can be assumed and the biological
variation between samples G and H can be neglected. Samples with quenching fluid G
and quenching fluid H were prepared for analysis in parallel. For this reason differences
between sample G and H resulting from sample processing can be excluded. OD660 and
the size of cells was measured in triplicate for each sample. Figure (5.2) shows the specific
cell volume, following from these measurements. Error bars result from error propagation
of measured OD660 and size of cells.
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Figure 5.2.: Specific cell volume determined in the two direct samples (1, 2) and in the quenched
samples using quenching fluid G and quenching fluid H (1 G, 2 G, 1 H and 2 H).

The specific cell volume is consistent for samples taken directly from the culture broth
and the quenched samples using quenching fluids G (about 1.3 µL mgDW

-1). The size of
the cells determined in the glycerol based quenching fluid H is higher in both cases. This
might be a result of glycerol interacting with the cell wall. In the following, intracellular
concentrations are computed with a specific cell volume of 1.3 µL mgDW

-1.

Intracellular concentrations of adenylates

In Figure (5.3) intracellular concentrations of adenylates are shown for sample 1 and 2.
Results obtained with quenching fluid G (1G and 2G) are opposed to those of quenching
fluid H (1H and 2H). Error bars indicate the 95% confidence interval obtained from the
linear regression analysis of standard addition to one sample.
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Figure 5.3.: Intracellular concentrations of adenylates. Samples were taken two times (1 and 2).
Two different quenching fluids were used: 60% (v/v) methanol/ water with 30 mM TEA (G) and
60% (v/v) methanol/ glycerol with 30 mM TEA (H). Error bars indicate the 95% confidence
interval obtained from the linear regression analysis of standard addition.
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In all cases intracellular concentrations were higher if quenching fluid H was applied.
Differences are most apparent for ATP and still significant for ADP, whereas almost
equal concentrations of AMP are detected in the four samples. A metabolic steady state
between the two sampling times can be assumed from a theoretical point of view (pseudo-
steady-state hypothesis, Vallino and Stephanopoulos 1993). This assumption is clearly
reflected in the constant concentrations of adenylates obtained with each method. Hence,
the described sampling procedure proved to be robust against statistical errors. This is
also reflected by the coefficient of correlation (R2) of the linear regression obtained from
standard addition, which was higher than 0.95 in all cases. However, the tremendous
impact of systematic errors resulting from cellular leakage becomes obvious when the
concentrations of ATP are compared for both quenching fluids.

Quantification of cellular leakage

Concentrations of ATP, ADP and AMP were also measured in the cultivation medium
and the supernatant of the quenching fluid, in order to quantify the percentage of leaked
metabolites. All concentrations in the supernatant of quenching fluid G were higher
compared to quenching fluid H. In accordance with the results of measurements in the
cell extracts, differences were most significant in case of ATP. Approximately 2 µM ATP
was detected in both samples of the culture supernatant, coming very likely from cell lysis
during cultivation. ADP and AMP were not detected in the culture supernatant.

Concentrations in the quenching fluid supernatant were first corrected for the amount
in the culture supernatant and then related to the intracellular volume in the quenched
sample (gray filled bars in Figure (5.4)). Together with intracellular concentrations deter-
mined from cell extracts the real intracellular pools were estimated, which are shown in
Figure (5.4). Considering that the balances in Figure (5.4) involve several measurements,
which are all subject to errors, the total values are in good agreement. The error bars are
estimated from propagation of errors of concentrations in cell extracts, quenching fluid
and medium. The error is highest in case of AMP in sample 1 G (approximately 75%) and
smallest for ATP in sample 1 H (8%). Despite experimental error, it is remarkable that
the percentage of leaked adenylates is almost constant for each metabolite using quench-
ing fluid H. In general, leakage seems to be more specific than supposed so far (Bolten et
al. 2007). In all cases, leakage is more apparent for ATP than for ADP and AMP. This
might be an explanation why intracellular adenylates obtained by methanol quenching in
other studies result in values of the energy charge (EC) which are not within physiological
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Figure 5.4.: Concentrations of adenylates in cell extract (blank and black bars) and in the
supernatant of quenching fluid G and H (grey bars) are shown related to the intracellular volume.
The percentage of leaked adenylates is additionally given.
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meaningful ranges (e.g., Buchholz et al. 2001). The adenylates energy charge is defined
as

EC =
(cATP + 0.5 · cADP )

(cATP + cADP + cAMP )
(5.1)

There would be no influence on the EC in case of unspecific leakage (e.g., 70 % loss of
ATP, ADP and AMP). Using the corrected values of adenylates found in this study the
EC is between 0.72 (quenching fluid H) and 0.59 (quenching fluid G).

5.1.3. Measurements with different sampling protocols

Currently there is no standardized method to quantify intracellular metabolite concen-
trations. Rather there are divers methods of sampling and extraction, each with its own
advantages and draw-backs. The results above and other studies have demonstrated, that
the applied sampling protocol has tremendous impact on the metabolome data. As a con-
sequence, several sampling protocols were tested and applied in this work. Pure methanol
quenching was less effective for E. coli, although the method prevents leakage in case of
yeast (Canelas et al. 2008). Further, cold metabolite extraction with freeze-thaw cycles
was applied in addition to hot extraction. With this method unstable metabolites like
DHAP were detected in significant amounts. However, enzymes were not effectively de-
activated with this approach. To keep track of the protocols, the results presented here
were exclusively obtained with three protocols SP1, SP2 and SP3 as introduced above.
General findings associated with the protocols are given in the following.

The method of standard addition (SP1)

Results obtained with protocol SP1 using standard addition are exemplified by means of
the samples 1G, 2G, 1H and 2H of the previous section. Figure (5.5) shows the calibra-
tion curves for ATP and malate. The concentration of standard in the analyzed sample
is plotted against the LS-MS signal. In case of ATP the calibration curves are linear and
the regression analysis results in a high coefficient of correlation. The unknown concen-
tration in the sample is estimated by the negative x-axis intercept of the regression line.
This extrapolation is very sensitive to noise in the measurements. An order of magni-
tude estimate for the relative error of standard addition is 100%, given in the remarks
of DIN 32633 (German Institute for Standardization). In case of malate the calibration
curve is non-linear and the concentration in the sample is much lower than the applied
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Figure 5.5.: Calibration with standard addition of ATP (A) and Malate (B). The LC-MS signal
(peak area) is plotted against the concentration of standard in the samples.

standards. It is not possible to estimate the unknown concentration with sufficient accu-
racy in such cases. For other metabolites like PEP and pyruvate there was much noise,
which additionally complicated evaluation of the standard addition (data not shown). In
case of adenylates there was little noise and the applied standards were in appropriate
concentration ranges. For this reason it was possible to estimate concentrations with the
small 95% confidence intervals as shown in Figure (5.3). Hence, standard addition proved
to be an adequate method for a targeted analysis, aiming for quantification of only a few
metabolites. For global metabolome analysis the method is less appropriate.

External Calibration (SP2)

As a consequence of the high experimental error associated with the method of standard
addition, a simplified protocol for extraction and analysis should reduce experimental
error. Within sampling protocol SP2 lyophilization was omitted, smaller volumes were
processed and an external calibration was applied. The reduced experimental effort min-
imized possible sources of error. Statistical errors were considered by three independent
cell extracts of one sample. In order to account for thermal degradation and matrix ef-
fects the standard solution was mixed with culture broth and was processed according to
sampling protocol SP2. The calibration curves obtained with this approach are shown in
Figure (A.1) and (A.2). For most metabolites the LC-MS signal linearly correlates with
the standard concentration in the lower ranges. However, with increasing concentration
most calibration curves become non-linear. Nevertheless, with a few exceptions there is
little noise in the calibration curves. Additionally, the results of measured intracellular
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concentrations proved that SP2 is robust against statistical errors, as the standard devi-
ation of three extracts of one sample was below 10% for most metabolites (data shown in
section 5.3). In summary, measurements with SP2 have small statistical errors and there-
fore allow comparative studies of metabolite profiles. However, there are high systematic
errors caused by non-linear calibration curves, cellular leakage and thermal degradation,
which detract from conclusions about absolute metabolite concentrations.

The differential method and isotope dilution mass spectrometry (SP3)

The differential method proposed by Taymaz-Nickerel et al. (2009) requires measurements
of metabolites in total culture broth and the cultivation supernatant. Accordingly, with
sampling protocol SP3 the quenched sample is directly extracted without separating cells
and thus avoids cellular leakage. In all cases metabolite concentrations were significantly
higher compared to the other sampling protocols. The preferences of avoiding cellular
leakage clearly exceeded the drawback of external metabolites interfering with the mea-
surements. Metabolites were quantified with external calibration and also with IDMS.

IDMS considers thermal degradation of metabolites during extraction, matrix effects and
ion supression during LC-MS analysis. A U-13C labeled cell extract was prepared from
E.coli cultivated in a mL system. LC-MS analysis showed that U-13C enrichment was
close to 1, as almost no signal of unlabeled metabolites was detected in cell extracts and
the signal of U-13C labeled metabolites was intense for all metabolites. The cell extract
was calibrated as described by Wu et al. (2005) with an unlabeled standard solution. The
calibration curves are shown in Figure (A.3). The concentration of unlabeled standard
in the sample is plotted against the ratio of the signal of unlabeled and U-13C labeled
metabolites. The slope of each internal standard based calibration line equals the recipro-
cal of U-13C labeled metabolite in labeled cell extract. Compared to external calibration
the IDMS calibration curves are linear even for high concentrations of standards. Just in
case of AcCoA the calibration curve is flattening and only the low concentration range
was applied for calibration.
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5.2. Theoretical aspects of steady state analysis

A steady state is typical for a metabolic pathway due to the concept of homoeostasis,
where metabolite pools are kept at constant levels even though material is flowing through
the system. MCA relates steady state properties of metabolic pathways to properties of its
parts, the enzymatic reactions. The required operations and measurements for metabolic
steady state analysis are discussed in the following.

5.2.1. Comparing the lin-log approach and the double

modulation method

Giersch and Cornish-Bowden (1996) distinguish between a metabolite concentration xi in
context of a local rate law and the same metabolite concentration as a system variable
(Si), but they also point out the synonymy. The steady state flux J through an enzyme-
catalyzed reaction embedded in a complex system must obey the kinetic rate law in
Eq.(3.45), evaluated for the steady state concentrations S. This relation is given by

J = v(e,x,p)
∣∣
x=S (5.2)

For this reason, a synonymous treatment of steady state flux J and the local rate v (as
well as for xi and Si ) is feasible in the following consideration. Differences between two
metabolic states, resulting from changes in the in vivo system are explained by the total
derivative of Eq.(5.2)

dv =
∂v

∂e
de+

n∑
i=1

∂v

∂xi
dxi +

o∑
`=1

∂v

∂p`
dp` (5.3)

Assuming constant kinetic parameters (dp` = 0) and rearranging Eq.(5.3) results in:

dv

v
=
∂v
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e

v

de

e
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dxi
xi

(5.4)

Including the definition of elasticity coefficients in Eq.(3.52), the changes in fluxes are
related to changes in metabolite concentrations by:

d ln v = εved ln e+ εvx1
d lnx1 + εvx2

d lnx2 + · · ·+ εvxnd lnxn (5.5)
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Under the assumption that the reaction rate is linearly dependent on the enzyme level,
the elasticity with respect to the enzyme level equals one (εve = 1). Rearranging Eq.(5.5)
and approximating infinitesimal changes by measurable differences results in

∆ ln v −∆ ln e = εvx1
∆ lnx1 + εvx2

∆ lnx2 + · · ·+ εvxn∆ lnxn (5.6)

In order to solve Eq.(5.6) for the n unknown elasticity coefficients, k = n independent
changes of fluxes and metabolite concentrations have to be measured:

∆ ln v1 −∆ ln e1 = εvx1
∆ lnx1

1 + εvx2
∆ lnx1

2 + · · ·+ εvxn∆ lnx1
n

∆ ln v2 −∆ ln e2 = εvx1
∆ lnx2

1 + εvx2
∆ lnx2

2 + · · ·+ εvxn∆ lnx2
n

. . .

∆ ln vk −∆ ln ek = εvx1
∆ lnxk1 + εvx2

∆ lnxk2 + · · ·+ εvxn∆ lnxkn (5.7)

The system of linear equations is written in matrix notation:

[∆ln v ]− [∆ln e ] = [∆ln x ][εvx] (5.8)

The changes of metabolite concentrations are collected in a k × n matrix [∆ln x] , the k
changes of fluxes in vector [∆ln v], the k changes in enzyme levels in vector [∆ln e] and
the n unknown elasticity coefficients in vector [εvx].

In case of a constant enzyme level and n = 2 unknown elasticities, Eq.(5.8) corresponds
to the double modulation method (Kacser and Burns 1979). For the case that k > n,
a least squares solution of the system of linear equations is estimated by multiple linear
regression as it is already proposed within the lin-log approach of Wu et al. (2004). Due
to the similarities of the double modulation method and the multiple linear regression to
Eq.(5.8), these terms are used equally in the following.

The measurable differences in Eq.(5.8) are estimated with regard to one reference state (
∆ lnxi = lnxi − lnxi,0 = lnxi/xi,0) and from Eq.(5.8) it follows

[
ln
ve0

ev0

]
=

[
ln

x
x0

]
[εvx] (5.9)
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Eq.(5.9) implies a power-law format with constant elasticities (kinetic orders), whereas
in a data set covering large concentration ranges elasticities depend on the particular
reference state. The lin-log approach of Wu et al. (2004) considers the problem of variable
elasticities. For this purpose, the lin-log rate law in Eq.(3.51) is rearranged(

v

v0

e0
e

)
− 1 = [εvx] ln

(
x
x0

)
(5.10)

A data set of different metabolic states, comprising enzyme levels, fluxes, and metabolite
concentrations leads to a system of linear equations similar to Eq.(5.9)[

ve0

ev0

]
− i =

[
ln

x
x0

]
[εvx] (5.11)

with the unit vector i and the k × n matrix [ln x/x0], derived from m metabolic states
from which one is chosen as reference ( k = m − 1). Within the lin-log approach the
metabolic state with highest coefficient of correlation (R2) of the linear regression is
chosen as reference. Only the left-hand side of Eq.(5.9) and Eq.(5.11) is different (the
dependent variables of the regression analysis), whereas the unknown parameters and the
independent variables on the right-hand side are the same for the lin-log approach and
the double modulation method.

5.2.2. Case study: Kinetic rate law of phosphoglucose isomerase

(PGI)

This example considers an enzymatic reaction catalyzed by phosphoglucose isomerase
(PGI) using a reversible Michaelis-Menten rate law and parameters described by Teusink
et al. (2000).

vPGI = vmax ·

xG6P

KG6P

(
1−

Γ

Keq

)

1 +
xG6P

KG6P

+
xF6P

KF6P

(5.12)

With vmax = 1.26 U mg protein-1, Keq = 0.314, KG6P =1.4 mM, KF6P = 0.3 mM and
the mass action ratio Γ = xF6P/xG6P . Two metabolites, glucose-6-phosphate (G6P) and
fructose-6-phosphate (F6P), influence the rate law in Eq.(5.12). Elasticities are derived
by partial derivation.
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εPGIG6P =
xG6P

vPGI

∂vPGI
∂xG6P

= 1 +
xF6P

xG6PKeq

(
1−

Γ

Keq

)− xG6P

KG6P

(
1 +

xG6P

KG6P

+
xF6P
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) (5.13)

εPGIF6P =
xF6P

vPGI

∂vPGI
∂xF6P

= −
xF6P

xG6PKeq

(
1−

Γ

Keq

)− xF6P

KF6P

(
1 +

xG6P

KG6P

+
xF6P

KF6P

) (5.14)

In order to obtain a data set concentrations of G6P and F6P are sampled from a small and
a large concentration range as listed in Table (5.1). One data set comprises 10 randomly

Table 5.1.: Concentration ranges of G6P and F6P which are used to simulate data sets for the
PGI case study.

Small concentration range xG6P (mM) 1.45 - 1.55
xF6P (mM) 1.45 - 1.55

Large concentration range xG6P (mM) 1 - 3
xF6P (mM) 1 - 3

sampled metabolite concentrations (xG6P , xF6P ) and the PGI rate according to Eq.(5.12).
White noise is simulated by adding normal distributed random numbers (standard devia-
tion ∆xi=relative error ·xi and mean zero) to concentrations and fluxes. The elasticities
εPGIG6P and εPGIF6P are estimated from the data set by multiple linear regression to Eq.(5.9)
and Eq.(5.11) (MATLAB R2006b, Statistics Toolbox, The MathWorks Inc.). According
to the lin-log approach the metabolic state with highest R2 is chosen as reference state.
For a performance evaluation of both approaches, elasticities are estimated 500 times from
different data sets. In Figure (5.6) the results are opposed to the exact values (according
to Eq.(5.13) and Eq.(5.14)) at the reference state of a particular data set.
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Figure 5.6.: Parity plots of elasticity coefficients computed from Eq.(5.13)/ Eq.(5.14) and esti-
mated values from data sets comprising 10 metabolic states sampled from the small concentration
range in Table (5.1). From each data set the metabolic state with highest R2 is chosen as reference
state. (lin-log) lin-log approach, (DM) double modulation method.

The parity plots in Figure (5.6) demonstrate the ability of the lin-log approach to account
for changing metabolite levels and both elasticities are estimated with high accuracy. In
case of the double modulation method the estimates deviate to a greater extend from the
exact values. The 500 data sets, which are used to estimate elasticities in Figure (5.6),
are sampled from the small concentration range in Table (5.1). In presence of already 5%
relative error both methods fail to estimate elasticties with sufficient accuracy (results
not shown). If the data is sampled from a larger concentration range the regression to
Eq.(5.9) and Eq.(5.11) is less sensitive to experimental error. Figure (5.7) depicts the
results in the case data is sampled from the large concentration range in Table (5.1).
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Figure 5.7.: Parity plots of elasticity coefficients computed from Eq.(5.13)/ Eq.(5.14) and esti-
mated values from data sets comprising 10 metabolic states sampled from the large concentration
range in Table (5.1). From each data set the metabolic state with highest R2 is chosen as reference
state. (lin-log) lin-log approach, (DM) double modulation method.

Elasticities in Figure (5.7) are distributed over a large interval and the results clarify that
the lin-log approach even accounts for these large changes. As the double modulation
method implies a power-law format elasticities are assumed to be constant over the whole
concentration range. Therefore, estimated elasticities are restricted to a small area and do
not correlate with the exact values. Although the correlation is much higher for the lin-log
approach, the estimates deviate more from the exact values in case of larger elasticities.
As this bias might be caused by the reference state, a new criterion for the selection of an
optimal reference state is tested: the metabolic state with a minimal euclidian distance to
the mean value of metabolite levels in the data set. In Figure (5.8) the results are shown
for this criterion and data from the large concentration range.
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Figure 5.8.: Parity plot of elasticity coefficients computed from Eq.(5.13)/ Eq.(5.14) and esti-
mated values from data sets comprising 10 metabolic states sampled from the large concentration
range in Table (5.1). From each data set the metabolic state with central metabolite level is
chosen as reference state. (lin-log) lin-log approach, (DM) double modulation method.

The effect of the new criterion is obvious when Figure (5.8) is compared to Figure (5.7).
In all cases, the correlation between estimated and exact elasticity coefficients improves.
Although the double modulation method benefits from the choice of reference the lin-log
approach is obviously superior. The results of this case study demonstrate the miscon-
ception of assuming constant elasticities in a power-law format. Elasticities depend on
the metabolite level. This must be considered in particular if large perturbation data is
evaluated.

5.2.3. Case study: Reconstituted pathway of Giersch (1995)

Giersch (1995) applies the multiple modulation method to experimental data of an in
vitro reconstituted pathway. The basic pathway is shown in Figure (5.9). Experimen-
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tal conditions include additional components (not shown), such that concentrations of
3-phosphoglycerate (3PG) and pyruvate (PYR) can be considered as constant, while con-
centrations of 2,3-bisphosphoglycerate (BPG) and ADP can be changed independently.
The flux through phosphoglycerate mutase (PGM), enolase (ENO) and pyruvate kinase
(PK) is in a steady state as well as concentrations of 2-phosphoglycerate (2PG) and phos-
phoenolpyruvate (PEP). For an exact description the reader is referred to Giersch (1994)
or Wu et al. (2004).

Figure 5.9.: The reconstituted pathway of Giersch (1995). BPG is a positive effector of PGM,
indicated by the dashed arrow.

Wu et al. (2004) present the data set in Table (A.8), that was originally obtained by
Giersch (1995). The data comprises enzyme and metabolite concentrations, as well as the
steady state fluxes of the pathway in Figure (5.9). Elasticities are estimated by multiple
linear regression of the data set to Eq.(5.9) and Eq.(5.11). It is assumed, that the three
reactions are influenced by all metabolites (maximum connectivity). The metabolic states
with highest R2 are: metabolic state 2 for the lin-log approach and metabolic state 1 for
the double modulation method. The metabolic state with metabolite levels near the
center of the data set is metabolic state 11. Wu et al. (2004) demonstrate the quality of
the estimated elasticities by means of parity plots, opposing measured steady state values
(flux, 2PG and PEP concentrations) to values calculated from the lin-log model. For the
lin-log formulation, the analytical solution of the steady state mass balances is described
by Visser and Heijnen (2003). The analytical steady state solution of the power-law
model is calculated according to Savageau (1969b). Figure (5.10) shows the parity plots
of measured and calculated steady state values using both models. The elasticities with
highest R2 are used as model parameters.
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Figure 5.10.: Parity plots of measured and calculated steady state fluxes (in µmol L-1 h-1), as
well as 2PG and PEP steady state concentrations (in µmol L-1) . The values are calculated
by the analytical solution of mass balances using lin-log (filled circles) and power-law kinetics
(diamonds). Elasticities at the reference state with highest R2 are used as model parameters
(lin-log: metabolic state 2; power-law: metabolic state 1).
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Fluxes and metabolite concentrations calculated from both models are close to the mea-
sured values. Beside a slightly higher correlation in case of the lin-log model there are
no noticeable differences. In order to further compare both approaches, elasticities are
estimated for all metabolic states in Table (A.8). Figure (5.11) shows the distribution of
the 19 elasticities by means of box plots. Elasticities for the metabolic state with highest
R2 and for the central metabolite level are additionally indicated in Figure (5.11).
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Figure 5.11.: Elasticities obtained from the data set in Table (A.8) using the lin-log approach
(lin-log) and the double modulation method (DM). The distribution of the 19 estimates are
shown by means of box plots (the boxes contain the middle of 50% of the data, the median is
indicated, whiskers above and below the box indicate the 10th and 90th percentiles). Individual
elasticities are shown for the reference state with highest R2 (squares) and for the state with
central metabolite levels (filled triangles). Figures in columns refer to elasticities with respect to
the indicated reaction and figures in rows to the particular metabolite.
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All elasticities that follow from the lin-log approach are distributed over a larger interval
than those estimated with the double modulation method. Irrespective of the reference
state the double modulation method estimates values near the median (including elastic-
ities of metabolic state 1 and 11). In case of the lin-log approach it is worth to examine
elasticities at the optimal reference state. Elasticities of PGM are inside the boxes in case
of both reference criteria. Elasticities of ENO are out of the 10th and 90th percentiles if
the R2 criterion is applied, whereas elasticities at the central metabolite level are located
within the boxes. In contrast, the elasticities of PK with respect to BPG, 2PG, and
PEP are out of the 10th and 90th percentiles for the central metabolite level. However,
compared to PGM and ENO, elasticities of PK are distributed over a smaller range and
therefore the choice of reference should be less important. Especially in case of ENO the
elasticities change over large intervals and estimates using the R2 criterion are located at
the rim. As demonstrated in Figure (5.7) such values might be biased. Elasticities at the
central metabolite level are located near the median, improving the estimates.

5.2.4. Conclusions from theoretical considerations

After the in silico studies about steady state analysis the question remains, how experi-
mental data of steady states can be obtained in an in vivo system. Since the double mod-
ulation method was introduced by Kacser and Burns (1979) many extensions and modifi-
cations were developed, most of them accounting for the networks structure and applying
specific changes in one enzyme activity. However, the reconstituted pathway of Giersch
(1995) already showed their experimental limitations: inducing small and specific changes
is practically not feasible in most cases (especially not in an in vivo system). The original
approach of Kacser and Burns (1979) considers the possibility of inducing metabolic states
via external conditions such as substrate availability acting non-specific on the metabolic
pathway. Especially for pathways, that are highly regulated on a metabolic level, e.g.
the central carbon metabolism, it will be possible to induce different metabolic states via
the fermentation media composition (e.g. addition of precursors and/or mixed carbon
sources). The non-specific changes will result in large changes of metabolite levels and
metabolic fluxes which can be analysed with the presented aproaches by linear regression.
Even both methods account for multiple changes in enzyme levels it is difficult to quantify
these changes, due to limitations of current methods like 2D gel-electrophoresis.
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5.3. Steady state experiments with E. coli during a

fed-batch cultivation

A prerequisite for steady state analysis of an industrial bioprocess is that the relevant
phase of the process admits the assumption of a quasi steady state for the pathway
of interest. This is the case for every phase with constant specific rates of fluxes that
are connected to the pathway. The bioprocess is considered as the reference state and
multiple metabolic perturbations are required for steady state analysis. The experimental
approach of rapid media transition (RMT) was developed in order to expose cells from the
bioprocess to divers environmental disturbances. The method tends to provide constant
enzyme levels, due to the different time scales of enzyme synthesis and metabolic turn-
over. Several demands were made on the RMT experiments:

• a fast attainment of a metabolic steady state

• the steady state is significantly perturbed from the reference state

• the enzyme levels are constant

The approach was evaluated by means of E. coli ’s central metabolism under conditions
of a fed-batch cultivation, which is detailed in the following.

5.3.1. Fed-Batch cultivation of E. coli

A fed-batch cultivation of E. coli K12 was chosen as reference state for steady state
perturbation experiments. An open-loop control of biomass formation assured high re-
producibility of the process. In Figure (5.12 A) biomass concentrations measured during
several cultivations is opposed to theoretical growth, following from a dynamic model.
Additionally, OUR and CPR, as well as the DO signal during a fed-batch cultivation are
depicted in Figure (5.12 B, C).
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Figure 5.12.: Measured state variables during the E. coli fed-batch process. (A) Cellular growth
predicted by the dynamic model (solid line) and measured optical densities (symbols refer to
four different cultivations). (B) Oxygen uptake rate (OUR) and carbon dioxide production rate
(CPR). (C) Dissolved oxyen (DO).
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The theoretical biomass formation predicted by the dynamic model agrees well with mea-
sured biomass concentrations in four independent cultivations. Due to the open-loop
control, specific substrate uptake and growth rate were fixed to constant values. Further,
the process was robust against variations in parameters like the initial biomass concen-
tration.

When the feeding rate was reduced after feeding phase 1, OUR and CPR immediately
decreased and both reached 3 mmol gDW

-1 h-1. Respiratory rates were almost constant
during feeding phase 2 and increased only slightly. Peaks in OUR and CPR signals after
20 h result from a stepwise increase of the aeration rate. DO was controlled above 40 %
by increasing stirrer speed and aeration.

The culture was glucose limited all the time and glucose as well as acetate were not
detected in samples of the culture supernatant. With dcs/dt = 0, µset = 0.1 h-1 and
Yx,s = 0.45 g g-1, specific glucose uptake rate during feeding phase 2 is estimated as
1.23 mmol gDW

-1 h-1. OUR and CPR are approximately 3.2 mmol gDW
-1 h-1 and a relative

error of 10% is assumed. Table (5.2) opposes these extracellular fluxes during the fed-
batch process with best estimates resulting from elemental balances and FBA predictions.

Table 5.2.: Specific rates during the fed-batch process, given in mmol gDW
-1 h-1. The specific

growth rate is given in h-1. Measured rates (rm), best estimates (r̂m) and FBA predictions
(rFBA) are compared. The sum of weighted squares of residuals h is given in the last row.

Compound rm r̂m rFBA

Glucose 1.23 ± 0.12 1.21 1.21(a)

O2 3.2 ± 0.32 3.18 3.91
CO2 3.2 ± 0.32 3.26 3.75
Biomass 0.10 ± 0.02 0.10 0.08
NH3 - 0.99 0.86
h 0.135
(a)FBA constraint
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The measured rates are close to the best estimates, which conform to elemental balances
of carbon, hydrogen, nitrogen and oxygen. Therefore, the extracellular rates in Table (5.2)
contain no gross measurement errors and sufficiently describe reactions on the bioreactor
level during feeding phase 2. Non-measured fluxes such as uptake of ammonia follow
from Eq.(3.23). The predicted rates of FBA are given in the last column of Table (5.2).
These rates depend only on information about glucose uptake, which was constrained to
a maximal value of 1.21 mmol gDW

-1 h-1. Even if the predicted growth rate is smaller
and as a consequence CPR and OUR are higher than measured values, the differences are
not greater than 20%. Uptake of ammonia is close to the value that was estimated by
elemental balances.

Beside extracellular fluxes, FBA predicts values of all intercellular fluxes in the genome-
scale model. In addition, stoichiometric MFA was used to estimate fluxes of central carbon
metabolism. The results of both approaches are compared in Figure (5.13).
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Figure 5.13.: Metabolic fluxes in central carbon metabolism during feeding phase 2 of the fed-
batch process. Fluxes in mmol gDW

-1 h-1 were determined by stoichiometric metabolite balancing
(upper boxes, normal letters) and by FBA (lower boxes, italic letters).

Both, FBA and MFA estimate similar values for glycolytic fluxes, TCA flux and also the
anapleurotic ppc flux. Using MFA, the flux into PPP is approximately 13% of glucose
uptake, opposed to only 3% using FBA. Different results about contribution of PPP to
glucose metabolism are reported in literature.

Chassagnole et al. (2002) found that 70% of glucose is metabolized through PPP in an E.
coli chemostat culture using MFA. Fischer and Sauer (2003a) estimated a ratio of 14-20%
in E. coli batch cultures based on 1-13C and U-13C glucose experiments. A split ratio of
55% glycolysis and 44% PPP was estimated with dynamic and stationary U-13C glucose
experiments (Schaub et al. 2008). In addition to uncertainties about the oxidative part
of PPP, FBA predicts negative fluxes in the non-oxidative part of the PPP. More reliable
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information about PPP fluxes and NADPH metabolism is only feasible with 13C labeling
experiments, as shown by Sauer et al. (2004).

The flux into TCA is estimated as 86-100% of glucose uptake and FBA predicts a zero flux
through the glyoxylate shunt (not shown in Figure (5.13)), which was not considered for
stoichiometric MFA. Similarly, Schaub et al. (2008) estimated a TCA flux of 72-73% and
did not consider glyoxylate shunt in their analysis. However, Fischer and Sauer (2003b)
demonstrate the activity of a novel bi-functional PEP-glyoxylate cycle that operates in
parallel to TCA cycle, which does involve enzymes of glyoxylate shunt. TCA fluxes in
this study differ drastically from the distribution in Figure (5.13) and thereby point out
the shortcoming of FBA and MFA: both approaches are strongly based on assumptions
and not on data (Sauer 2006).

Even if oxidative phosphorylation is considered by a composite reaction in the MFA model,
FBA predictions for ATP synthesis (atps) and NADH oxidoreductase (nadh6) agree well
with MFA estimates for NAD(P)H oxidation (notice that only 1 mole ATP is produced
by atps).

5.3.2. Rapid media transition in batch operation mode

The four RMT experiments in batch mode were performed with different carbon sources:
glucose (gl), succinate (suc), acetate (ac) and pyruvate (pyr). Cells were harvested re-
peatedly from the fed-batch process during feeding phase 2 (gl: 20 h, pyr: 22 h; suc:
24 h; ac: 26 h) and transferred to a lab-scale stirred-tank reactor with fresh medium.
Subsequently, the reaction of the cells to the different carbon sources was observed by
measurements of extracellular fluxes and intracellular metabolite concentrations. OUR
and CPR during the RMT experiments are shown in Figure (5.14).
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Figure 5.14.: Specific O2 uptake rate (OUR; black lines) and the specific CO2 production rate
(CPR; grey lines) during RMT experiments with different substrates: (A) glucose, (B) pyruvate,
(C) succinate and (D) acetate.

Within a few minutes OUR and CPR reached a constant value which was maintained
during the analyses. Oscillations in case of CPR were caused by the pH depending
equilibrium of carbonic acid in the medium. The characteristics in Figure (5.14) indicate
pseudo stationary fluxes and steady state values for OUR and CPR are estimated from
the mean during the last 8 minutes. The measurements of cell dry weight are depicted in
Figure (5.15).
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Figure 5.15.: Biomass concentration during RMT experiments with different substrates: (A)
glucose, (B) pyruvate, (C) succinate and (D) acetate. Grey circles indicate measurements not
used for logarithmic regression (black lines).

Biomass increased more than 1 g L-1 during the 16 minutes cultivation with glucose and
pyruvate. During the first 4 minutes there was no growth on glucose and the first DW
measurement is not used for regression analysis. With succinate and acetate there was
almost no cellular growth and the small growth rates are hardly assessable. The results
agree with the order of growth rate reported for E. coli in minimal medium (Chao et al.
1993). The corresponding concentrations of carbon sources are shown in Figure (5.16).
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Figure 5.16.: Substrate concentrations during RMT experiments: (A) glucose, (B) pyruvate, (C)
succinate and (D) acetate. Grey circles indicate measurements not used for regression analysis.

All carbon sources were immediately utilized by the cells and all substrate concentrations
are continuously decreasing. The specific uptake rate of substrates was estimated by linear
regression to Eq.(3.12) as indicated in Figure (5.16). The by-products acetate and formate
were excreted during analyses with glucose and pyruvate. In the culture supernatant of the
experiment with succinate the metabolites fumarate and α-ketoglutarate were detected.
A constant increase of by-products was observed in all cases and specific production rates
were estimated by linear regression. Table (5.3) summarizes the estimates of extracellular
fluxes during the four perturbation experiments. The relative error of OUR and CPR was
estimated as 10%. The errors of the remaining rates follow from the regression analysis.
Best estimates, FBA predictions and the sum of weighted squares of residuals h are also
given in Table (5.3).

As there are only small differences between original rates and the best estimates the
measurements contain no gross errors. Additionally, the small values of the residuals h
confirm the quality of the data. By-product formation was not predicted by FBA, as
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Table 5.3.: Specific rates during the four RMT experiments on glucose, pyruvate, succinate and
acetate, given in mmol gDW

-1 h-1. The specific growth rate growth rate is given in h-1. Measured
rates (rm), best estimates (r̂m) and FBA predictions (rFBA) are compared. The sum of weighted
squares of residuals h is given in the last row.

Glucose Pyruvate
rm r̂m rFBA rm r̂m rFBA

Substrate 4.99 ± 0.69 5.45 5.45(a) 10.32 ± 1.80 9.89 9.89(a)

O2 11.50 ± 1.15 11.38 10.67 10.53 ± 1.05 10.48 9.20
CO2 11.20 ± 1.12 11.13 10.97 15.17 ± 1.52 15.35 14.40
Acetate 0.73 ± 0.10 0.74 0.74(a) 1.96 ± 0.16 1.97 1.97(a)

Formate 1.27 ± 0.27 1.25 1.25(a) 0.52 ± 0.05 0.53 0.53(a)

Biomass 0.50 ± 0.04 0.49 0.46 0.25 ± 0.05 0.26 0.26
h 0.538 0.077
(a)FBA constraint

Succinate Acetate
rm r̂m rFBA rm r̂m rFBA

Substrate 4.26 ± 0.34 4.09 4.09(a) 4.34 ± 0.23 4.50 4.50(a)

O2 8.85 ± 0.88 9.05 7.11 9.87 ± 0.99 9.00 9.00
CO2 10.63 ± 1.06 10.80 9.07 9.34 ± 0.93 9.00 9.00
Fumarate 0.17 ± 0.02 0.17 0.17(a) - - -
AKG 0.20 ± 0.02 0.20 0.20(a) - - -
Biomass 0.07 ± 0.05 0.10 0.14 0.03 ± 0.04 0.00 0.00
h 0.918 2.081
(a)FBA constraint

it is not optimal with regard to maximized cellular growth. Therefore, exchange fluxes
of by-products were constrained to minimum values as given in Table (5.3). With these
constraints predictions of cellular growth as well as respiratory rates are close to measured
values.

Initially, FBA predicted significant growth on acetate (µ = 0.2 h-1) and much lower CPR
(6 mmol gDW

-1 h-1) than observed in the experiment. The glyoxylate bypass is essential
for growth on acetate since it prevents the loss of the carbon as carbon dioxide in the TCA
cycle. Hence, activity of the glyoxylate bypass is predicted by FBA for the short-term
cultivation with acetate. However, it is reported that the glyoxylate cycle is not active in
glucose-limited chemostat cultures of E. coli (Yang et al. 2003, Hua et al. 2003). Deletion
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of isocitrate lyase from the genome-scale model resulted in the values given in Table (5.3)
and acetate carbon is completely metabolized to CO2 without biomass formation. Hence,
the rapid media transition experiment on acetate in combination with FBA gives evidence
about a non-active glyoxylate bypass in the fed-batch process. In contrast, MFA allows
no conclusions about the activity of the glyoxylate bypass.

Generally, the results demonstrate that E. coli utilizes the applied carbon sources imme-
diately and extracellular fluxes are constant a few minutes after the cells are exposed to
the new carbon source. Wu et al. (2006) made similar observations after a glucose pulse
to an aerobic glucose-limited S. cerevisae chemostat culture, as a quasi steady state had
been established after 150-300 seconds.

The immediate uptake of a substrate implies that the particular uptake systems and
the required catabolic enzymes are available. Uptake of pyruvate and acetate will be an
unspecific diffusion mechanism, whereas the dicarboxylic acid succinate requires an active
transporter. It is reported that there is only the DctA dicarboxylic acid transporter in E.
coli which is responsible for the uptake of succinate (Lo 1977). The DctA dicarboxylic
acid transporter and other enzymes such as acetyl-CoA synthetase (acs) required for
acetate utilization are subject to catabolite repression. Hence, the immediate utilization
of succinate and acetate gives evidence that catabolite repression is absent in the fed-batch
process. Similar results are reported in cases where the primary carbon source is in limited
supply. Catabolite repression by glucose is absent at very low glucose concentrations in
the culture media (Lendenmann and Egli 1995) and catabolic enzymes as well as acs are
upregulated in a glucose limited fed-batch process (Raman et al. 2005).

The corrected rates in Table (5.3) conform to the elemental balances and were used
for MFA and FBA. Figure (5.17) and (5.18) depict intracellular fluxes during the four
perturbation experiments, given in mmol gDW

-1 h-1.
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Figure 5.17.: Metabolic fluxes in central carbon metabolism during perturbation experiments
with different substrates: (A) glucose, (B) pyruvate. Fluxes in mmol gDW

-1 h-1 were determined
by stoichiometric metabolite balancing (upper boxes, normal letters) and by FBA (lower boxes,
italic letters).
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Figure 5.18.: Metabolic fluxes in central carbon metabolism during perturbation experiments
with different substrates: (C) succinate and (D) acetate. Fluxes in mmol gDW

-1 h-1 were deter-
mined by stoichiometric metabolite balancing (upper boxes, normal letters) and by FBA (lower
boxes, italic letters).
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Compared to the fed-batch process, glucose uptake increased more than 450% in the
RMT experiment with an excess of glucose. As a consequence most fluxes increase to
a similar extend. However, ratios of glucose metabolized by PPP and channeled into
TCA cycle differ from the fed-batch process. TCA flux in the fed-batch process is 75-
100 molar-% of the glucose uptake, whereas TCA flux is only 50-60 % in the batch RMT
experiment. FBA predicts, that almost 50 % of glucose is metabolized by PPP. Generally,
the PPP ratio is the most striking difference of FBA and MFA. The reason for this is
that PPP flux in the MFA model is mainly required for precursor supply, whereas the
FBA model accounts for NADPH metabolism. Despite such discrepancies, the overall
flux distribution of both approaches is consistent. Gluconeogenic flux with pyruvate and
succinate involves the irreversible steps pps and ppck respectively. MFA does not separate
between pyk and pps (accordingly ppc and ppck) and therefore predicts a negative flux
through pyk and ppc. Nevertheless, the MFA estimates agree with values of pps and ppck
predicted by FBA. These reactions are supposed to control gluconeogenic growth of E.
coli, as overexpression of these enzyme increased growth rate on pyruvate and succinate
(Chao et al. 1993). During cultivation with acetate, icdh produces an excess of NADPH
and FBA predicts reoxidation of NADPH by a transhydrogenase, which is not considered
in the MFA model.

In general, fluxes in the RMT experiments change in magnitude and are drastically redis-
tributed compared to the fed-batch process. Due to the short-term cultivation it may be
assumed that the drastic changes of fluxes are caused by kinetic effects at the metabolome
level, rather than by changed enzyme levels. Samples for metabolome analysis were taken
after 6, 10, and 14 minutes of each perturbation experiment using sampling protocol
SP2. Additionally, a sample from the fed-batch process was withdrawn prior to each
experiment. Metabolite concentrations are related to the intracellular volume, which was
determined as 1.3 µL mgDW

-1 (Figure 5.2). Intracellular metabolite concentrations of
four samples from the fed-batch process (black bars) are shown together with the three
samples from each perturbation experiment in Figure (5.19) and (5.20).
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Figure 5.19.: Intracellular concentrations of metabolites from glycolysis and concentrations of
adenylates given in µM. Four samples from the fed-batch process (black bars) are compared with
the three samples (6, 10 and 14 minutes) from each rapid media transition experiment: glucose
(grey bars), pyruvate (grey striped bars), succinate (white bars) and acetate (white striped bars).
According to Eq.(5.1) the energy charge has no dimension.
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Figure 5.20.: Intracellular concentrations of metabolites from TCA cycle and redox cofactors
given in µM. Four samples from the fed-batch process (black bars) are compared with the three
samples (6, 10 and 14 minutes) from each rapid media transition experiment: glucose (grey bars),
pyruvate (grey striped bars), succinate (white bars) and acetate (white striped bars).
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The three measurements of each metabolic state in Figure (5.19) and (5.20) suggest a
metabolic steady state. Generally, it is possible to confine all metabolite pools to small
concentration ranges for one particular metabolic state. Considering the high-turn over
of metabolites in central metabolism the differences of measured concentrations within
one metabolic state are marginal. For example the several reactions producing and con-
suming AcCoA have to be in a quasi steady state, otherwise there would be more drastic
differences as seen in Figure (5.19).

The concentrations of G6P/ F6P as well as FBP are significantly increased during culti-
vation with excess of glucose, correlating with the increased glycolytic flux. Conversely,
the pool of 2PG and 3PG decreases during the RMT experiment with glucose. Con-
centrations of AcCoA are in the mM range and significantly higher compared to other
metabolites from glycolysis. The lowest AcCoA concentrations were measured during the
experiment with succinate. Concentrations of adenylates are almost not affected by the
RMT experiments. In average, concentration of ATP is approximately 3 mM and just
during cultivation with succinate a stepwise increase from 2 mM to 3 mM is observed.
Similarly, ADP and AMP are constant during all experiments at a level around 1.2 mM
and 0.4 mM respectively. As a consequence, the adenylates energy charge varies in a small
range between 0.76 and 0.80.

Concentrations of redox cofactors NAD and NADH in Figure (5.20) are also constant
within small bounds of 400-600 µM and 15-30 µM. The decrease of NAD during cultivation
with an excess of glucose correlates with an increased NADH pool, probably caused by
limitations of oxidative phosphorylation. However, a balanced NAD/NADH pool would
require higher increases of NADH in response to the observed decrease of NAD. NADP
and NADPH are also constrained to concentrations between 400-600 µM and 40-80 µM.
An excess of NADPH, generated by icdh is not observed during cultivation on acetate.

The increase of TCA flux during cultivation with succinate is reflected in a more than
10-fold increase of intracellular malate, succinate and fumarate, whereas the AKG pool
decreases with higher TCA flux. As fumarate, succinate and also AKG were present in
the cultivation medium, they have to be distinguished from intracellular concentrations.
Therefore, the cells were separated prior to extraction and additionally washed in quench-
ing fluid. Even the washing step is essential in this case, it introduces additional sources
of error.



84 Results and Discussion

Possible sources of error

The error bars in Figure (5.19) and (5.20) result from three independent extractions of
one sample and reflect the statistical variability of extraction and LC-MS analysis. In
most cases the relative error is below 10% and sampling protocol SP2 seems to be robust
against statistical errors. It is not sure wether differences between the three samples of one
metabolic state result from biological or analytical variations. However, small statistical
errors do not reflect systematic errors caused by cellular leakage, thermal degradation and
ion suppression in the ESI interface.

As mentioned above a critical point of metabolome analysis are metabolites, that are also
present in the extracellular medium. Even after cells were separated from the culture
supernatant, extracellular metabolites in the moist mass still divert measurements of
intracellular concentrations. Therefore a washing step is required if significant amounts
of metabolites are present in the extracellular medium. For measurements of intracellular
metabolites shown in Figure (5.19) and (5.20) cells were separated from the cultivation
supernatant and washed in cold quenching fluid (-20◦C). The same metabolites were
measured during an identical experiment without washing the cells before metabolite
extraction. The results are compared in Figure (5.21) with metabolite concentrations
already shown in Figure (5.19) and (5.20).
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Figure 5.21.: Intracellular concentrations of metabolites measured during the fed-batch process
and during RMT experiments with glucose (gl), pyruvate (pyr), succinate (suc) and acetate
(ac). Black bars are the concentrations shown in Figures (5.19) and (5.20). Grey bars are
concentrations in a reproduced experiment, without a washing step for metabolome analysis.
Concentrations are given in µM.

The results in Figure (5.21) demonstrate, that even if absolute values are significantly
different the relative metabolite profiles are consistent. Reproducibility was also given for
substrate uptake and exhaust gas measurements (data not shown).

Without a washing step, higher metabolite concentrations were measured in all cases. The
differences are mainly caused by two opposing effects: removal of extracellular metabolites
and cellular leakage during the washing step. In case of samples from the RMT experiment
with succinate as carbon source removal of extracellular succinate by the washing step
is the main reason for smaller concentrations. In contrast, different concentrations of
other metabolites result very likely from cellular leakage during the washing step. As
shown before, cellular leakage is less pronounced for metabolites like ATP and NAD.
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Consequently, concentrations of these metabolites are less affected by the washing step. In
case of G6P/F6P, FBP and also malate there is a drastic difference between concentrations
measured with both approaches, which is probably caused by cellular leakage. Leakage of
citrate was even more severe, as this metabolite was only detected if no washing step was
applied. Even if glycerol reduced leakage of some metabolites like ATP, other metabolites
still leak during quenching and washing steps. Canelas et al. (2008) found that smaller
metabolites tend to leak more than larger ones, since smaller metabolites are expected
to have higher diffusivities. These findings are in accordance with the results in Figure
(5.21), where concentrations of small organic acids like malate and citrate strongly depend
on the applied protocol.

5.3.3. Rapid media transition in fed-batch mode

RMT experiments in batch mode have shown, that E. coli immediately utilizes certain
substrates after the cells were separated from the glucose limited fed-batch process. Even
if a metabolic steady state was achieved quickly and maintained during the analysis,
the perturbations were quite large. For example the flux through the upper part of
TCA cycle increased almost by 700% compared to the fed-batch process. In batch mode
metabolism seemed perturbed to a maximum and consequently metabolic overflow and
by-product formation was observed. In case of cultivation with succinate, the extracellular
metabolites interfered with intracellular measurements.

Controlling substrate uptake is a promising possibility to adjust metabolic fluxes and ad-
ditionally reduces metabolic overflow. Therefore, substrate was supplied with a constant
rate to the lab-scale bioreactor. The feeding rate was adjusted, such that substrate uptake
was always below the maximum uptake capacities, which were estimated from previous
experiments in batch mode. A further advantage of the feeding strategy was the possibil-
ity of analyzing several steady states during one RMT experiment. After holding a feeding
rate several minutes samples were withdrawn and the feeding rate was reduced to achieve
accordingly lower fluxes. The fed-batch RMT approach was evaluated in four experiments
with glucose (aerobic), glucose (anaerobic), pyruvate and succinate. Experiments with
acetate feeding were not applicable, since acetate was not utilized until a certain concen-
tration in the medium was achieved (approximately 1 g L-1). OUR and CPR during the
experiments with glucose (aerobic), pyruvate and succinate are shown in Figure (5.22).
During anaerobic cultivation no CO2 was measured in the off-gas. Predictions of FBA
are indicated by straight lines in Figure (5.22).
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Figure 5.22.: Specific O2 uptake rate (OUR; black lines) and the specific CO2 production rate
(CPR; grey lines) during RMT experiments in fed-batch mode with different substrates: (A)
glucose, (B) pyruvate and (C) succinate. The FBA predictions for OUR and CPR are indicated
by straight lines.
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OUR immediately reached a constant value during each feeding interval, with exception
of the first interval with glucose. The measured values of OUR are similar to values
predicted by FBA. The characteristics of CPR are not as distinct as in case of OUR
and differ more from FBA predictions. Reasons for this are the high aeration rate (10
vvm) and the accordingly low CO2 signal in the exhaust gas (between 0.1 and 0.5 %).
Additionally, the equilibrium of carbonic acid in the medium overlaid with the exhaust
gas measurements. Nevertheless, mean values of OUR and CPR during the last minute
of each interval were subjected to elemental balances, assuming a relative error of 20%.

None of the substrates was detected in the culture supernatant using HPLC (level of
detection 0.1 g L-1). Therefore, the culture supernatant was additionally analyzed with
LC-MS (LOD 1 µM). No pyruvate was detected in the culture supernatant, particularly
not in samples from the experiment with pyruvate as feeding carbon source. Extracellular
succinate was detected in concentrations below 50 µM (0.01 g L-1) in all samples and was
not higher in case of the experiment with succinate feeding. As a consequence of the
immediate substrate utilization (cs = 0), it is possible to determine the specific substrate
uptake rate by Eq.(3.5). Due to the small volumetric feeding and growth rates, reac-
tion volume and biomass concentration are considered constant during the experiments.
Biomass concentration was averaged over the four samples and the feeding rate (V̇in) was
estimated by an analytical balance. Substrate concentration in the feed cins was re-checked
by HPLC analysis of a sample from the feeding solution.

Formation of by-products was only noticed in small amounts during the first feeding in-
terval with glucose and pyruvate. No by-products were detected in samples from the
experiment with succinate. During the anaerobic RMT experiment, glucose was com-
pletely converted into the by-products acetate, formate and ethanol. Specific rates were
estimated from differences of concentrations between each feeding interval. They are given
in Figure (5.23) on a C-mol basis.
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Figure 5.23.: Specific rates on C-mol basis during the three feeding intervals A,B and C in the
anaerobic RMT experiment with glucose.

Even if the rates in Figure (5.23) are estimated from samples taken within step time of
6 minutes, carbon balances are closed by 90%. The precise estimation of by-product for-
mation is a consequence of the high biomass concentration (26 g L-1) and the accordingly
high concentrations of by-products. Despite the high biomass concentration it was not
possible to determine specific growth rates from DW measurements in 6 minute intervals.

Table (5.4) and Table (5.5) summarize measured extracellular rates (rm) and their best
estimates (r̂m) following from elemental balances. Cellular growth was considered as an
unknown rate and was calculated from the the best estimates with Eq.(3.23). Additionally
values of OUR, CPR and cellular growth predicted by FBA are given (rFBA).
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Table 5.4.: Specific rates during the RMT experiments in fed-batch mode with three feeding
rates (A,B, and C) of glucose (aerobic) and pyruvate. Measured rates (rm), best estimates (r̂m)
and rates predicted by FBA (rFBA) are given in mmol gDW

-1 h-1. The specific growth rate is
given in h-1. The sum of weighted squares of residuals h is given in the last row.

Glucose (aerobic)
A B C

rm r̂m rFBA rm r̂m rFBA rm r̂m rFBA

Glucose 3.26 3.24 3.24(a) 2.17 2.16 2.16(a) 1.05 1.08 1.08(a)

O2 7.64 6.78 6.56 5.92 5.60 5.31 3.51 3.09 3.26
CO2 6.87 7.27 7.50 5.89 6.07 5.64 3.23 3.29 3.42
Ethanol 0.75 0.75 0.75(a) 0.13 0.13 0.13(a) 0.19 0.19 0.19(a)

Formate 0.57 0.57 0.57(a) 0.25 0.25 0.25(a) 0.28 0.28 0.28(a)

Biomass - 0.27 0.24 - 0.17 0.16 - 0.07 0.06
h 0.33 1.00 0.80

Pyruvate
A B C

rm r̂m rFBA rm r̂m rFBA rm r̂m rFBA

Pyruvate 6.47 6.48 6.48(a) 4.30 4.32 4.32(a) 2.09 2.03 2.03(a)

O2 6.63 5.38 7.11 5.03 4.49 5.68 2.69 2.50 3.49
CO2 7.50 8.52 10.32 6.64 7.08 8.06 3.26 3.64 4.58
Acetate 0.75 0.76 0.76(a) 0.00 0.00 0.00 0.00 0.00 0.00
Formate 0.58 0.58 0.58(a) 0.00 0.00 0.00 0.00 0.00 0.00
Biomass - 0.24 0.17 - 0.16 0.12 - 0.09 0.04
h 2.43 0.117 0.085
(a)FBA constraint

In all cases substrate uptake was almost exactly 60%, 40% and 20% of the uptake rate
determined in the batch experiments. The specific rates estimated for the aerobic exper-
iment with glucose match the best estimates as well as the FBA predictions. The small
values of weighted squares of residuals h confirm the absence of gross errors. Even if
the specific growth rate was not determined experimentally, the estimates from elemental
balances and FBA agree well. During cultivation with pyruvate, lower values of OUR
and higher values of CPR follow from elemental balances, whereas the FBA predictions
are both higher compared to measured values. Except of the first feeding interval with a
higher value of h the data of the pyruvate experiment is consistent.



Results and Discussion 91

Table 5.5.: Specific rates during the RMT experiments in fed-batch mode with three feeding
rates (A,B, and C) of succinate and glucose (anaerobic). Measured rates (rm), best estimates
(r̂m) and rates predicted by FBA (rFBA) are given in mmol gDW

-1 h-1. The specific growth rate
is given in h-1. The sum of weighted squares of residuals h is given in the last row.

Succinate
A B C

rm r̂m rFBA rm r̂m rFBA rm r̂m rFBA

Succinate 2.52 2.48 2.48(a) 1.72 1.72 1.72(a) 0.82 0.86 0.86(a)

O2 4.82 3.80 5.27 4.24 2.65 4.10 3.00 1.66 2.85
CO2 4.29 5.02 6.69 3.40 3.39 5.05 2.03 2.47 3.28
Biomass - 0.13 0.08 - 0.09 0.04 - 0.03 0.00
h 10.72 3.10 32

Glucose (anaerobic)
A B C

rm r̂m rFBA rm r̂m rFBA rm r̂m rFBA

Glucose 3.01 3.01 3.01(a) 1.94 1.94 - 0.96 0.96 -
O2 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 -
CO2 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 -
Formate 5.00 5.10 5.94 3.14 3.21 - 1.48 1.55 -
Acetate 2.40 2.41 2.95 1.72 1.72 - 1.00 1.00 -
Ethanol 2.76 2.62 2.95 1.76 1.66 - 0.96 0.86 -
Biomass - 0.06 0.01 - 0.04 - - 0.01 -
h 0.033 0.006 0.072
(a)FBA constraint

Measurements of OUR and CPR during cultivation with succinate are less conform to
elemental balances. This is mainly caused by the small respiratory rates, that could not
be determined with sufficient accuracy. In contrast, the specific rates during the anaerobic
cultivation with glucose match elemental balances to the same extend as FBA predictions.
In case of anaerobic feeding intervals B and C, the linear program used for FBA could
not find a solution, probably because of very small growth rates.

Intracellular fluxes were estimated by MFA and FBA in the same way as for the RMT
experiments in batch mode. The rates are given in mmol gDW

-1 h-1 for MFA (vMFA)
and FBA (vFBA) in Tables (A.14)-(A.17). In general, the relative flux distribution of
experiments with glucose, pyruvate and succinate was not different from the experiments
in batch mode and only absolute values decreased according to substrate uptake by 60%,
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40% and 20%.

During anaerobic cultivation with glucose, carbon is almost completely converted to pyru-
vate by a high glycolytic flux. Pyruvate is utilized by pathways of mixed acid fermentation,
producing acetate, formate and ethanol. Under anaerobic conditions FBA predicts a zero
flux through TCA cycle and PPP. Using MFA a small flux through PPP is estimated and
a negative flux through TCA cycle (converting OAA to citrate). A branched, noncyclic
operation of the TCA cycle under anaerobic conditions was observed by Fischer and Sauer
(2003a). As extracellular succinate was detected in small amounts (not affecting the car-
bon balance), a flux from OAA to succinate is reasonable. The absence of CO2 in the
exhaust gas suggests a zero flux through PPP, as CO2 is produced by G6P dehydrogenase
and phosphogluconate dehydrogenase. Fischer and Sauer (2003) found that PPP is active
under anaerobic conditions, but its contribution to glucose metabolism decreases to 5%. A
similar anaerobic perturbation experiment is reported for a glucose limited Saccharomyces
cerevisiae culture, which was shifted to anaerobic conditions with glucose excess (van den
Brink et al. 2008). The authors report that under anaerobic conditions 4% and 2% of the
glucose influx is channeled into PPP and TCA cycle. A further important conclusion of
their study is that enzyme capacities only marginally contribute to regulation of glycolytic
flux, whereas metabolite profiles strongly influence metabolic fluxes. Similar findings for
E. coli under anaerobic conditions are reported by Smith and Neidhardt (1983).

Samples for metabolome analysis were taken at the end of each feeding interval of the RMT
experiments. In order to circumvent problems with cellular leakage the whole culture
broth was extracted according to sampling protocol SP3. Concentrations of extracellular
metabolites should be low in fed-batch RMT experiments, as they were performed with
fresh medium and no metabolic overflow was expected. Figure (5.24) depicts concentra-
tions of metabolites, quantified by IDMS. One sample of the fed-batch process (black bar)
is shown together with one sample of each feeding interval of the particular perturbation
experiment.
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Figure 5.24.: Intracellular concentrations of metabolites from glycolysis and cofactors quantified
by IDMS. One sample from the fed-batch process (black bars) is compared with the samples of
each feeding interval (A, B and C) from the rapid media transition experiments in batch mode:
glucose (grey bars), pyruvate (grey striped bars), succinate (white bars) and anaerobic glucose
(white striped bars). Concentrations are given in µM.
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At first view, concentrations of G6P/F6P, FBP and especially 2PG/3PG are significantly
higher compared to concentrations measured in batch experiments. These metabolites
were supposed to leak during sampling with protocol SP2 and thus extraction of the whole
culture broth has strong influence on absolute values. Leakage of AcCoA was not noticed
with any protocol and therefore concentrations are similar to the batch experiments.

Regarding relative values, some metabolite profiles are similar as observed in the batch
experiment and others differ. For example, there is only a slight increase of the G6P/F6P
pool, from 1 mM in the fed-batch process to 1.4 mM during glucose feeding interval A,
whereas a more than 5-fold increase was observed in the batch experiment. In contrast to
G6P/F6P, the concentration of FBP increases drastically with the glycolytic flux under
aerobic and also anaerobic conditions. FBP was only detected in five samples, whereas
U-13C labeled FBP was detected in all samples. The internal standard assures, that a
low (unlabeled) FBP signal is not caused by degradation during sample processing or ion
suppression during analysis. A decrease of 2PG/3PG with increasing glycolytic flux was
already observed in batch experiments. Another profile noticed in the batch experiments
is the increased concentration of 2PG/3PG in combination with a decreased AcCoA pool
during cultivation with succinate.

Metabolite concentrations of glucose interval C are of particular interest, as this metabolic
state is expected to be almost similar to the fed-batch reference state. In all cases the
concentrations of the reference state and feeding interval C are not contradictory. For
example the G6P/F6P pool decreased to 1 mM during interval C, which is exactly the
value determined for the reference state.

The stepwise feeding profile is most pronounced for FBP and AcCoA, but is still noticeable
for the isobaric metabolites 2PG/3PG and G6P/F6P. On the contrary, concentrations of
cofactors and adenylates were not considerably perturbed during the RMT experiments.
ATP is in the same range of 3-4 mM, as determined in batch experiments with protocol
SP2. In the experiment with glucose, ATP increased from 3 mM in the reference state to 4
mM, but did not decrease to the reference level during feeding interval C. Concentrations
of ADP are slightly higher (1.6 - 3 mM) compared to batch experiments (1.2 - 1.6 mM).
AMP was not quantified with sampling protocol SP3, because neither the U-13C labeled
AMP signal nor the unlabeled signal was detected in the samples.

Concentrations of NAD are twice as high as determined with protocol SP2 in batch
experiments, whereas the same concentrations were estimated in case of NADP. The
reduced cofactors NADPH and NADH were not detected with sampling protocol SP3.
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The metabolites in Figure (5.25) were quantified with external calibration. They were not
detected in samples with U-13C-labeled standard, probably due to the high salt content
in the labeled cell extract, which caused degradation during lyophilization and shifts of
retention times. One sample from the fed-batch process (black bar) is shown together
with one sample from each feeding interval of the particular perturbation experiment.
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Figure 5.25.: Intracellular concentrations of metabolites from TCA cycle, phosphoenolpyruvate
and pyruvate. One sample from the fed-batch process (black bars) is compared with the samples
of each feeding interval (A, B and C) from the rapid media transition experiments: glucose (grey
bars), pyruvate (grey striped bars), succinate (white bars) and anaerobic glucose (white striped
bars). Concentrations are given in µM.
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Generally, concentrations of organic acids in Figure (5.25) are higher when compared to
batch experiments, due to absence of cellular leakage. Malate, citrate and fumarate de-
crease in the same stepwise manner as substrate uptake. Also FAD, the reducing cofactor
of sucd, increases gradually. The profiles of AKG and succinate are less pronounced and
rather constant. Particularly during the experiment with succinate feeding, intracellular
succinate is not increased compared to experiments with glucose and pyruvate. In con-
trast, succinate is drastically increased during anaerobic cultivation with glucose. The
intracellular concentration of 20 mM is already corrected for extracellular succinate as
shown below. The distinct metabolite profiles of malate, fumarate and succinate during
anaerobic cultivation confirm a flux from OAA to succinate, as suspected above. Further,
the low citrate concentrations might indicate a zero flux through citrate synthase.

PEP and pyruvate were only detected in significant amounts with protocol SP3. It is
assumed that these metabolites, especially the small molecule pyruvate, are susceptible to
cellular leakage and therefore were not detected with protocol SP1 and SP2. Surprisingly,
intracellular pyruvate is not increased during cultivation with pyruvate and gradually
decreases with reduced pyruvate uptake. Pyruvate was not detected in the sample from
the fed-batch process. As no U-13C-labelled standard was applied it is not sure whether
this is a result of sample processing or a low intracellular pyruvate level. PEP is obviously
decreasing with an increased glycolytic flux. Schaub and Reuss (2008) observed the
same decrease of PEP (and also 2PG/3PG) with increasing glycolytic fluxes in E. coli.
They suspect a decrease in protein content to cause this decline of precursor metabolites.
However, intracellular metabolites should be considered as regulatory effectors of a supply
flux rather than sustainable precursor pools.

Possible sources of error

The RMT experiments in fed-batch mode were repeated and metabolites were quantified
with external calibration. Differences of IDMS and external calibration are demonstrated
in Figure (5.26). Grey bars are metabolites as shown in Figure (5.24) and black bars are
concentrations estimated with external calibration.
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Figure 5.26.: Intracellular concentrations of metabolites measured during the fed-batch process
and during RMT experiments with glucose (gl), pyruvate (pyr), succinate (suc) and anaerobic
glucose (anaerobic). Grey bars are concentrations estimated with IDMS, as shown in Figure
(5.24). Black bars are concentrations in a reproduced experiment, quantified with external
calibration. Concentrations are given in µM.

Even if two different methods were applied in independent experiments, the metabolite
levels in Figure (5.24) are almost identical. Upon close inspection, the advantages of
IDMS are obvious. For example, the subtle gradual profiles of AcCoA and G6P/F6P
are only resolved with IDMS. Further, variations of ATP and NAD become smaller due
to application of an internal standard. The reproducibility observed for intracellular
metabolites was also given for extracellular rates and metabolites (data not shown).

According to the differential method, the whole culture broth was extracted and metabo-
lites were additionally quantified in culture supernatant. Only malate, succinate, citrate
and 2PG/3PG were detected in the culture supernatant. PEP was detected only in the
supernatant of samples from the fed-batch process. The amount of metabolites in the
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medium is opposed to intracellular concentrations in Figure (5.27).

Figure 5.27.: Intracellular concentrations of metabolites measured during the fed-batch process
and during RMT experiments with glucose (gl), pyruvate (pyr), succinate (suc) and anaerobic
glucose (anaerobic). Black bars are intracellular concentrations, as shown in Figure (5.24). Grey
bars reflect the amount measured in the culture supernatant. Concentrations are given in µM.

More than 50% of the total amount of malate, citrate and succinate extracted from the
whole culture broth of the fed-batch process, originates from the extracellular medium. A
smaller amount was found in the supernatant of the RMT experiments, as they were per-
formed with fresh medium. Similarly, extracellular FAD is higher in the fed-batch process,
than in the RMT experiments. The high concentration of succinate is attributed to intra-
cellular succinate during anaerobic cultivation. In conclusion, extracellular metabolites
did not detract measurements of most intracellular levels using the differential method.
RMT experiments in fed-batch mode seem to be particularly suited if the whole culture
broth is extracted for metabolome analysis. The amount of extracellular metabolites
could be further reduced by a washing step after cells are separated from the production
process.
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5.4. Proteome analysis

Proteome analysis of samples from the fed-batch process and RMT experiments was
performed by Protagen AG (Dortmund, Germany). Materials and methods are further
described in appendix A.9. 2-DE gels of protein samples after 19 h fed-batch cultivation
(cx = 10 gDW L-1) were compared with gels of samples after 23 h (cx = 14.5 gDW L-1).
Figure (5.28) shows an overlay of false-color images of both gels, visualizing changes of
the proteome. Unchanged spots appear black, whereas changes appear orange or blue.

Figure 5.28.: Overlay of false-color images of gels from protein samples from the fed-batch process
(19 h and 24 h). Unchanged spots appear black, whereas changes appear orange or blue.

The exclusively black spots in Figure (5.28) indicate an unchanged proteome. Further,
quantitative evaluation confirmed that 99.5% of 1130 spots matched within a differential
expression range of 0.3-3 (Figure (A.4)).
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Figure (5.29) compares gels of the 19 h fed-batch sample and a sample from the batch
RMT experiment with succinate (taken after 16 min).

Figure 5.29.: Overlay of false-color images of gels from protein samples from the fed-batch process
(19 h) and the batch RMT experiment with succinate (16 min). Unchanged spots appear black,
whereas changes appear orange or blue.

Beside two differential spots (indicated by arrows) there are no significant changes between
both gels. Similarly, samples from other batch RMT experiments confirmed an unchanged
proteome. Figure (A.5) - (A.8) shown in the appendix compare a sample from the fed-
batch process (24 h) with samples from fed-batch RMT experiments. Protein samples
were taken directly after transfer to the lab-scale reactor and are compared with samples
from the fed-batch process before the transfer (Figure (A.5)). Similar to the samples
from the fed-batch process (Figure (5.28)), no changes in the proteome are noticeable in
response to the transfer. Generally, proteome samples indicated in every case the absence
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of proteins involved in stress protection.

Protein samples of cells after 18 min fed-batch RMT experiments with glucose, succinate
and pyruvate show a constant proteome (Figure (A.6) - (A.8)). Only one differential spot
is identified, the same as observed in samples from batch RMT experiments (indicated
with a box in the particular Figures). Protagen could not identify the according enzyme.

5.5. Kinetic analysis

Proteome analysis suggests constant enzyme levels and consequently the only possibility
to enhance or decrease a particular reaction rate is to vary metabolite concentrations that
influence the reaction rate. The relation of metabolic fluxes and metabolite concentrations
is evaluated graphically in this section and a quantitative evaluation is exemplified by
means of the lin-log approach.

5.5.1. Reaction rate and substrate concentration

In the most simple case enzyme-catalyzed reactions depend exclusively on the concentra-
tion of their substrate and follow saturation type kinetics. Hence, an increased substrate
concentration correlates with higher reaction rates. In this sense, a major issue with data
from batch RMT experiments is demonstrated by means of in vivo kinetics of mdh. The
increase of TCA flux during the batch RMT experiment with succinate was reflected in a
more than 10-fold increase of intracellular malate. Figure (5.30) shows steady state con-
centrations of malate (averages of values in Figure 5.20) plotted against flux through mdh
in the fed-batch reference state and the perturbed steady states. Error bars of metabolite
concentrations reflect variations of the three samples. Error bars of reaction rates follow
from differences between MFA and FBA predictions. The reference state in Figure (5.30)
and subsequent Figures is highlighted by a circle.
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Figure 5.30.: Correlation of steady state fluxes through malate dehydrogenase (mdh) with intra-
cellular malate during the fed-batch process (black dot) and the perturbation experiments with
glucose (black square), pyruvate (white square), succinate (black triangle) and acetate (white
triangle).

Figure (5.30) demonstrates that the 5 steady states lie at different regimes in the satura-
tion kinetics of mdh. The enzyme is not saturated in the fed-batch reference state and an
increase of mdh flux is achieved by increasing concentrations of malate. Similarly, the five-
fold increase of G6P/F6P during batch RMT experiments with glucose was not observed
in fed-batch RMT experiments with accordingly lower glycolytic fluxes. These results sug-
gest, that in particular enzymes near the carbon source entry shift from a non-saturated
regime in the reference state, towards a saturated state in the batch RMT experiment.
Such data is not applicable for MCA, which is based on a linearization around the refer-
ence state. If a reaction is non-saturated in the reference state the perturbed steady state
has to remain in the non-saturated regime. As shown in the following, perturbations of
fed-batch RMT experiments are more subtle and closer to the reference state.

Relations of metabolic fluxes and metabolite pools of the fed-batch RMT experiments
are visualized in the following. The flux into PPP via g6pdh is related to the G6P/F6P
pool in Figure (5.31). Error bars of metabolite concentrations are the same as depicted
in Figure (5.24) and (5.25). Error bars of reaction rates follow from differences between
MFA and FBA predictions.
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Figure 5.31.: Flux of glucose-6-phosphate dehydrogenase (g6pdh) is plotted against the G6P/F6P
concentration: fed-batch process (black dot), glucose (grey squares), pyruvate (black triangles),
succinate (grey triangles) and glucose anaerobic (black squares).

The relation of PPP flux and G6P/F6P suggests a linear dependency of g6pdh and its
substrate G6P. The concentration of G6P/F6P decreases to 0.6 mM during anaerobic
fed-batch experiments and is in a similar range during experiments with gluconeogenic
flux. Therefore, it is hypothesized that G6P/F6P has no regulatory effect on glycolytic
flux. Rather the flux into PPP, which is different under anaerobic and aerobic conditions,
is effected by the G6P/F6P level.

Different findings are reported for S. cerevisiae by Vaseghi et al. (1999). The authors
conclude from in vivo dynamics, that the PPP flux is independent from the G6P con-
centration and primarily regulated by MgATP and the NADP/NADPH ratio. In their
study MgATP is directly related to ATP measurements. The results shown above do not
support inhibition of g6pdh by ATP, as ATP is increased during RMT experiments with
glucose (batch and fed-batch) and an accordingly higher PPP flux.

The glycolytic flux (exemplified by fba and pgm) is related to the FBP and 2PG/3PG
concentrations in Figure (5.32).
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Figure 5.32.: Fluxes of fructose bisphosphate aldolase (fba) and phosphoglycerate mutase (pgm)
are plotted against the FBP and 2PG/3PG concentrations: fed-batch process (black dot), glucose
(grey squares) and glucose anaerobic (black squares).

The flux through fba lineraly depends on the concentration of its substrate FBP and
2PG/3PG linearly decreases with flux through pgm. The same correlations were observed
in E. coli chemostat cultures (Schaub and Reuss 2008) and in case of the dynamic response
of glucose-limited S. cerevisiae to a glucose pulse (Wu et al. 2005). In Figure (5.33) AcCoA
is related to the flux channeled into TCA cycle via citrate synthase.
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Figure 5.33.: Flux of citrate synthase (cs) is plotted against the AcCoA concentration: fed-batch
process (black dot), glucose (grey squares), pyruvate (black triangles), succinate (grey triangles)
and glucose anaerobic (black squares).

The flux through citrate synthase obviously depends not solely on the AcCoA concen-
tration, rather the product citrate or other regulatory effectors such as AKG or NADH
will additionally influence the reaction rate. The relation of other TCA fluxes with their
substrates is shown in Figure (5.34).

The flux through icdh correlates linearly with the citrate/isocitrate level. In case of mdh
and fum the correlation is less pronounced but still noticeable. The reaction rate of sucd
is less affected by succinate, rather than by the cofactor FAD which increases linearly with
sucd flux. In combination with the results from batch experiments it might be concluded
that a significant increase of TCA flux is achieved by only a moderate increase of TCA
metabolites.

Similarly, Wu et al. (2005) report that TCA metabolites are much less perturbed by a
glucose pulse to a S. cerevisiae chemostat culture. The hypothesis, that TCA enzymes
are not saturated is supported by proteome and transcriptome studies of Raman et al.
(2005). They report, that under glucose-limited conditions enzymes of the TCA cycle
are upregulated for satisfying the cellular energy needs. However, if every reaction in the
metabolic network would solely depend on the particular substrate, there would be rather
low flexibility to control fluxes. For this reason regulatory mechanisms such as feedback
inhibition and allosteric activation are required.
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Figure 5.34.: Fluxes of isocitrate dehydrogenase (icdh), malate dehydrogenase (mdh), fumarate
reductase (fum) and succinate dehydrogenase (sucd) are plotted against the concentration of
their particular substrate (co-substrate in case of sucd). Fed-batch process (black dot), glucose
(grey squares), pyruvate (black triangles) and succinate (grey triangles).
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5.5.2. Active regulation

Two reactions, catalyzed by pfk and pyk are considered as key regulatory steps of gly-
colysis. Figure (5.35) shows the flux through pfk and pyk related to the concentration of
their regulatory effectors PEP and FBP during experiments with glycolytic flux.

Figure 5.35.: Fluxes of phosphofructokinase (pfk) and pyruvate kinase (pyk) are plotted against
the concentration of their regulatory effectors PEP and FBP in experiments with glycolytic flux.
Fed-batch process (black dot), glucose (grey squares) and glucose anaerobic (black squares).

In accordance with in vitro studies (Kotlarz and Buc 1982), the in vivo kinetics show
inhibition of pfk with increasing PEP concentration. Consequently, the lowest PEP con-
centration was measured during glucose interval A (aerobic and anaerobic). The decline
of PEP with increasing glycolytic flux was also noticed in vivo for S. cerevisiae (Wu et
al. 2005, van den Brink et al. 2008). Several authors observed allosteric activation of pyk
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by FBP (Johannes and Hess 1973, Malcovati and Valentini 1982). The linear correlation
of FBP and flux through pyk supports this regulatory effect under in vivo conditions.

5.5.3. The lin-log approach

Elasticity coefficients are a quantitative measure to express kinetic properties shown in
Figures (5.31)-(5.35). Basically, the elasticity coefficients within MCA express the ratio of
metabolite de-/increase and reaction rate de-/increase. As shown above elasticity coeffi-
cients are straightforward estimated from steady state data using the double modulation
method or the lin-log approach. The lin-log approach is exemplified by means of icdh
fluxes (vicdh) and citrate/isocitrate levels (xCIT), which were evaluated with Eq.(5.15).

vicdh

vicdh,0
= 1 + εicdh

CIT · ln
(
xCIT

xCIT,0

)
(5.15)

The only unknown in Eq.(5.15) is the elasticity of citrate/isocitrate towards icdh, which
was estimated with the lin-log approach as εicdh

CIT = 1.38. In Figure (5.36) the lin-log model
is opposed to the measurements.

Figure 5.36.: Measured CIT/ICIT concentrations and icdh reaction rates are opposed to the
lin-log model in Eq.(5.15).

The relationship of fluxes and metabolite concentrations is well reflected by the hyperbolic
lin-log model. However, rather the value of the elasticity coefficient than the descriptive
properties of the applied model is important in the sense of MCA. As shown in section



110 Results and Discussion

5.2.3 an accurate description of experimental data does not necessarily imply a correct
estimate of the elasticity coefficient. A detailed in-silico study and identifiability analysis
of elasticity coefficients is given by Nikerel et al. (2006 and 2009).

If more than one metabolite effects the reaction rate, more elasticities are included in
the lin-log model. Figure (5.37) exemplifies the aforementioned inhibition of pfk by PEP
(εpfkPEP = −0.89), considering additional influences of the substrate FBP (εpfkFBP = 0.48).

Figure 5.37.: Measured PEP and FBP concentrations are plotted against the flux through pfk
(dots). The surface depicts a lin-log model with two parameters εpfkFBP = 0.48 and εpfkPEP = −0.89.
Error of predictors are indicated by perpendicular lines between data points and surface.

Figure (5.37) visualizes the lin-log model and deviations of its predictions with experi-
mental data. Activation of pfk by the product FBP was observed in pfk from rat skeletal
muscle (Tornheim 1985) and a strong activating effect of fructose-2,6-bisphosphate on pfk
is reported by Avigad (1981). Inhibition of pfk by ATP and activation by AMP are not
considered in the lin-log model as the concentrations of adenylates were constant in all
experiments. However, they are predominant effectors in other studies (Teusink et al.
2000, Chassagnole et al. 2002, van den Brink et al. 2008).
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5.5.4. Redox and energy cofactors

Catabolic and anabolic reactions are coupled by redox and energy cofactors. The catabolic
reactions provide phosphorylation and reducing power which satisfy anabolic demands
for biosynthesis and maintenance. Hofmeyr and Cornish-Bowden (2000) investigated the
regulation of such an economic system, consisting of one block of catabolic supply and a
second block of anabolic demand. The authors could show that when flux is controlled
by one block, the other block determines to which degree the concentration of the linking
metabolite is homeostatically maintained.

The homeostatic maintenance of ATP might cause that regulatory effects of reactions
towards ATP are not revealed by steady state experiments. For example, two contrary
regulatory mechanisms are conceivable. One possibility is, that an increase of ATP might
be compensated by a decrease of ATP producing reactions, due to feedback inhibition.
Conversely, feedback inhibition is not required if the demand block has high elasticity
towards ATP. In this case, an increase of ATP is compensated by an increase of ATP
consuming reactions.

Hofmeyr and Cornish-Bowden (2000) could show, that feedback inhibition of biosynthetic
pathways is required to maintain homeostatic concentrations away from thermodynamic
equilibrium. There is no thermodynamic equilibrium in case of anabolic demand and
catabolic supply. Therefore, feedback inhibition of ATP on central metabolic pathways is
not necessarily required to maintain a constant ATP level.

Actually, glucose uptake by bacterial pts is not effected by energy cofactors, such as hex-
okinase in yeast which is inhibited by ATP. Furthermore, there are contradictory findings
wether pfk is inhibited by ATP. Zheng and Kemp (1992) found that ATP inhibition of
pfk is minimal at pH 7. The increased concentration of ATP during the aerobic glucose
experiment (observed similarly in the fed-batch experiment) indicates absence of ATP in-
hibition. Detailed information about regulatory effects of ATP and other cofactors is not
revealed by RMT experiments. Rather, the results suggest that energy and redox cofac-
tors are tightly controlled at constants levels. Further discussion about the implications
of metabolic homeostasis regarding the ability to control flux by variations of metabolite
levels is given by Kacser and Acerenza (1993) or by Thomas and Fell (1996).
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5.6. Thermodynamic analysis

The second law of thermodynamics constrains metabolite concentrations and defines fea-
sible ranges of Gibbs energy of reaction, considering directions of reactions and operation
of the network. Metabolome data and information about directions of metabolic fluxes of
the fed-batch process and the RMT experiments were subjected to NET analysis using
the anNET software (Zamboni et al. 2008). Figure (5.38) shows feasible ranges of Gibbs
energies of reactions in the fed-batch process.

Figure 5.38.: Feasible ranges of Gibbs energies of reactions in the fed-batch process estimated
by NET analysis.

The results show, that except of pfk and pyk most reactions of glycolysis are limited
to a range of Gibbs energy close to zero and operate near thermodynamic equilibrium.
Reactions that operate far from equilibrium have a displacement from zero, that is at least
10 kJ mol-1 (Zamboni et al. 2008). In particular decarboxylations catalyzed by akgdh,
pdh, icdh and ppc are far from equilibrium. Also the reaction channeling glucose into
PPP and TCA (g6pdh and cs) have large Gibbs energies of reaction. Kümmel et al.
(2006) report similar results for an E. coli data set, with the exception that fba is far
from equilibrium. The reason for this disagreement is the high FBP concentration (1.11
mM) of the employed data set of Schaub et al. (2006). Here, the FBP pool was below 0.1
mM, constraining ∆rGfba close to zero.
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In case of PPP only g6pdh could be identified as far from equilibrium. As metabolites of
PPP were not quantified the Gibbs energies of reactions catalyzed by rpi, rpe, tkt and tala
are rather uncertain. However, near equilibrium conditions were assumed by Chassagnole
et al. (2002) for these reactions. Additionally, Kümmel et al. (2006) found that rpi and
rpe are close to equilibrium in E. coli.

Initially, the consistency of several data sets were not approved by NET analysis. Data sets
from the RMT experiments with glucose (aerobic and anaerobic) were not feasible with
the measured metabolite concentrations and the assumed directions of metabolic fluxes.
The anNET software identified the reaction of enolase as not feasible with the provided
data of 2PG/3PG and PEP. This caused a revision of PEP and 2PG/3PG measurements.
The pool size of 2PG/3PG was estimated using IDMS and therefore considered as reliable.
All data sets were feasible when removing constraints of measured PEP concentrations.
The reason for unfeasible PEP concentrations is clarified in Figure (5.39), which opposes
constraints on PEP concentrations and measured values.

Figure 5.39.: Arrows indicate maximal PEP concentrations (in case of a glycolytic flux) and
minimal PEP concentrations (in case of a gluconeogenic flux) estimated by NET analysis. They
are opposed to measured PEP concentrations (values in mM).

NET analysis revealed, that the glycolytic flux from 2PG towards PEP catalyzed by
enolase constrains PEP to a maximum value. In case of the RMT experiments with
glucose this maximum is below the measured pool size and caused the discrepancies. In
case of experiments with gluconeogenic substrates succinate and pyruvate the reverse flux
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through enolase constrains PEP to minimal concentrations, which agree with measured
values. Figure (5.39) illustrates, that even if absolute values are contradictory, the relative
profiles of constraints and measured PEP levels suggest correlation of thermodynamic
constraints and steady state metabolite profiles.

NET analysis further predicted feasible concentration ranges of non-measured metabolites
and isobaric metabolites G6P/F6P, 2PG/3PG and citrate/isocitrate, which are shown in
Figure (5.40).
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Figure 5.40.: Concentration ranges of non-measured metabolites and isobaric metabolites
G6P/F6P, 2PG/3PG and CIT/ICIT predicted by NET analysis (values in mM).
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The pooled concentration of isobaric molecules G6P/F6P were resolved by NET analy-
sis. A glycolytic flux requires negative Gibbs energy for the reaction catalyzed by pgi.
This thermodynamic constraint restricts F6P concentrations to approximately 1/4 of G6P
concentrations. This result agrees with data from enzymatic assays, which distinguished
G6P and F6P and yielded low F6P concentrations (data not shown). The thermodynamic
constraint relaxes if pgi flux occurs in the reverse direction. In this case a minimum F6P
concentration is required. Similar thermodynamic constraints confine 2PG and 3PG to
small concentration ranges. Isocitrate constitutes only a fractional amount of the cit-
rate/isocitrate pool and is limited to concentrations below 0.1 µM. During anaerobic
cultivation TCA flux was not restricted to a particular direction, hence there is no con-
straint on the isocitrate pool size. This relief from thermodynamic constraints might
be an explanation for increased concentrations of other organic acids during anaerobic
cultivation. Maximum OAA concentrations are also very low and obviously related to
measured malate concentrations. Depending on the direction of glycolytic flux, GAP and
13DPG are also restricted to small concentration ranges. As expected, the reduced redox
cofactors NADPH and NADH are limited to concentrations in the low µM range. The
maximum concentration of these metabolites are close to values measured in the batch
RMT experiments (40-80 µM NADPH and 10-30 µM NADH).

Obviously, the stepwise profile of measured metabolites propagates into thermodynamic
constraints of non-measured metabolites. This observation rises the question whether a
metabolite profile originates from thermodynamic constraints or if it is kinetically reg-
ulated. Hofmeyr (1995) shows that metabolic control parameters are composed of a
thermodynamic term and a kinetic term. Further relationships of thermodynamics and
metabolic control analysis are discussed by Heuett et al. (2008). Nielsen (1997) shows,
that in particular, substrates and products of reactions operating near equilibrium have
high elasticity coefficients. Reactions far from equilibrium are less often regulated by their
substrate, rather they are actively regulated by activation/inactivation and also enzyme
synthesis. With this assumption, Kümmel et al. (2008) were able to spot regulatory sites
by NET analysis of metabolome data of E. coli.
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5.7. Metabolic Control Analysis

Studies of kinetics and thermodynamics as shown above are conceptually different from the
control structure of a metabolic system. Observations during RMT experiments demon-
strated robustness and simultaneous flexibility of E. coli ’s central metabolism to distur-
bances in the environment. Hofmeyr and Cornish-Bowden (1991) proposed that such a
well-regulated system would have control sites that could act on the flux without great
perturbation in metabolite concentrations. In this sense, potential control sites and global
properties of E. coli ’s central metabolism were evaluated by means of MCA.

5.7.1. Metabolic network and stoichiometry

It is important to be conscious that MCA is a linearization around a reference state, the
fed-batch process in this case. As all variables are normalized to the reference state it is
not possible to consider reactions with a zero flux in the reference state. The stoichiomet-
ric model employed for MCA consisted of the reactions 1-30 in Table (A.9). Reactions
with zero flux in the fed-batch process are: the irreversible steps of gluconeogenesis (fbp
and pps), the anapleurotic reaction ppck and all reactions of mixed acid fermentation.
Oxidative phosphorylation was considered by composite reactions of electron transfer from
NADH to cytochrome oxidase and ATP synthesis (nadhox). Similarly a reaction fadh2ox
is considered for regeneration of FADH2. ATP produced by oxidative and substrate-level
phosphorylation is consumed by several processes. They are represented by a reaction
ATPase, which was applied by several authors (Thomas and Fell 1998, Teusink et al.
2000, Wang et al. 2004). Biomass formation consisted of the same biosynthetic fluxes
applied in the MFA model (Table (A.12)). Reactions of the MCA model are summarized
in Table (A.10).

Beside the metabolic network the bioreactor processes have to be included in the analysis.
Several authors developed methods to incorporate bioreactor processes into MCA (Wang
and Hatzimanikatis 2006a,b) and converse approaches separating control of physical and
biological components (Small 1994, Snoep et al. 1994). Without further discussion of these
approaches the problem will be addressed by a proper definition of system boundaries as
shown in Figure (5.41).
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Figure 5.41.: System boundaries of (A) the intracellular model, (B) the fed-batch model.

Commonly, system boundaries separate compounds that are internal to a system from
external variables. System boundaries in Figure (5.41 A) separate metabolic processes
from bioreactor processes and a constant influx through pts serves as input. Bioreactor
processes are incorporated by inclusion of extracellular glucose and a constant glucose
influx Vin. It is important to notice that only if glucose has no regulatory effect on
intracellular fluxes, it is possible to consider extra- and intracellular compounds as internal
variables of the system (spatial separation by the cell envelope has no further influence on
normalized fluxes and concentrations). Cellular growth serves as output of both systems.
Biomass is not considered as an external variable, as it is supposed to have no effect on
internal variables and fluxes. In the followning, models according to Figure (5.41 A) and
(5.41 B) will be termed the intracellular model and the fed-batch model.

The metabolic network without bioreactor processes, consisted of 30 reactions and 34
metabolites. In order to deduce the reduced stoichiometric matrix NR, the m = 34

metabolites considered in the metabolic network are separated into md dependend and mi

independent metabolites. The complete (34×30) stoichiometric matrixN had rank 29 and
therefore md = 5 metabolites are dependent. The dependent metabolites are recovered
by inspection of conserved moieties, that are ATP/ADP, NAD/NADH, NADP/NADPH,
FAD/FADH2 and SucCoA/AcCoA/CoA. Consequently, ADP, NADH, NADPH, FADH2

and CoA were defined as dependent metabolites. The reduced stoichiometric matrix was
derived from the remaining 29 independent metabolites and is related to the complete
network by the link matrix as described by Eq.(3.34).

In case of the bioreactor model, N is augmented by one flux (glucose feed) and one
metabolite (external glucose). The structural properties are not altered and there are still
5 dependent metabolites in the network.
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5.7.2. Elasticity coefficients

According to Eq.(3.62) control coefficients are derived from elasticity coefficients, which
describe kinetic properties of the entire network. To this end, matrix E is required,
which comprises elasticity coefficients of 30 reactions (rows of E) towards 34 metabolites
(columns of E). Elasticity coefficients of reactions far from thermodynamic equilibrium
were estimated with the lin-log approach in Eq.(5.11). In case of reactions near equilib-
rium, elasticity coefficients were derived with the approach proposed by Nielsen (1997)
(see Eq.(3.56)).

A Monte Carlo simulation was applied to account for uncertainties in metabolite con-
centrations, fluxes and distances from thermodynamic equilibrium. Wang et al. (2004)
introduced the framework of MCA under uncertainty, a monte carlo sampling procedure
to generate either random elasticities or partially incorporate knowledge about kinetic
mechanisms. Similarly, metabolite concentrations, fluxes and Gibbs energies of reactions
were randomly sampled from intervals, following from experimental data and NET anal-
ysis. Reactions close to equilibrium are listed in Table (5.6) together with the range of
Gibbs free energy estimated by NET analysis. As ∆rG approximates zero, elasticity co-
efficients according to Eq.(3.56) have abnormally high values and the maximum limit of
Gibbs free energy is -1. A near-equilibrium assumption was made for sucoas, rpe, rpi,tkt
and tala, by setting the minimum of ∆rG to a default value of -10 kJ mol-1.
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Table 5.6.: Ranges of Gibbs energy of reactions in the MCA model, which are considered close
to equilibrium (given in kJ mol-1). Default values are -10 and -1 kJ mol-1, in case no information
from NET analysis is available.

Reaction ∆rGmin ∆rGmax

pgi -14,28 -1,00
fba -6,26 -1,00
tpi -6,26 -1,00
gapd -3,31 -1,00
pgk -3,31 -1,00
pgm -1,93 -1,00
eno -1,82 -1,00
acont -9,12 -1,00
sucoas -10,00 -1,00
fum -7,67 -6,67
mdh -4,61 -1,00
rpe -10,00 -1,00
rpi -10,00 -1,00
tkt1 -10,00 -1,00
tala -10,00 -1,00

The relationship between elasticity coefficients and ∆rG according to Eq.(3.56) is illus-
trated in Figure (5.42).

The majority of elasticity coefficients is within a range of 0.25 and 1, due to the non-linear
dependency on Gibbs energy of reaction. Eq.(3.56) implies that elasticities of substrates
and products are correlated and only differ in algebraic sign. There are other approaches
that involve near equilibrium assumptions within MCA. Wang et al. (2004) separated
reactions in a model of glycolysis in S. cerevisae into forward and backward reactions
and point out, that for reversible reactions elasticities with respect to substrate and prod-
ucts are correlated. Groen et al. (1986) derived similar equations to calculate elasticity
coefficients from mass-action ratios and equilibrium coefficients. Other approaches that
account for near-equilibrium assumption involve time hierarchy analysis to calculate con-
trol coefficients from elasticities of slow reactions (Kholodenko et al. 1998) or to solve
problems with identification of elasticities in dynamic lin-log models (Nikerel et al. 2009).

Elasticity coefficients of 15 reactions far from equilibrium were assigned with the lin-log
approach, which was integrated into the Monte Carlo procedure. Upper and lower bound-
aries for concentrations of all metabolites in the network were defined for the reference



Results and Discussion 121

Figure 5.42.: Relationship between ∆rG and the elasticity coefficient of a substrate towards a
reaction near thermodynamic equilibrium.

state and the 12 metabolic states from fed-batch RMT experiments. The limits where
either 10% of measured concentrations or the feasible ranges estimated by NET analysis
in case of non-measured metabolites. Concentrations of metabolites with regulatory ef-
fect on a particular reaction rate were randomly sampled from these intervals. Similarly,
metabolic fluxes were sampled from intervalls defined by results of MFA and FBA. 5000
data sets of metabolic fluxes and metabolite concentrations were evaluated with the lin-
log approach. The results are discussed in the following, together with information about
potential regulatory effectors, found in literature.

Glucose uptake by pts

Several authors report that the PEP/PYR ratio is a regulatory factor of glucose uptake by
pts (Liao et al. 1996, Kremling et al. 2008). Clark and Holms (1976) report inhibition of
pts by hexose phosphate such as G6P. Also Kaback (1969) identified two inhibitory sites of
pts in E. coli membrane isolations, one specific for G6P the other for G1P. Consequently
PEP, pyruvate and G6P were considered as regulatory effectors of pts in the MCA network.
Figure (5.43) shows elasticities of pts obtained from 5000 data sets as described above.

Generally, the box plots illustrate the distribution of estimated elasticities. Boxes contain
50% of the data and the line inside indicates the median. Error bars correspond to
the 25th and 75th percentiles and dots to the 5th and 95th percentiles. Similar to a
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Figure 5.43.: Distribution of 5000 elasticity coefficients of pts towards PEP, G6P and PYR.
Boxes contain 50% of the data and the line inside indicates the median. Error bars correspond
to the 25th and 75th percentiles and dots to the 5th and 95th percentiles.

method proposed by Joshi et al. (2006), the distribution reflects confidence intervals of the
estimates. The narrower the distribution, the better the estimates. Elasticity coefficients
of pts towards PEP are exclusively negative and 50% of the values are between -2 and
-3. A weaker inhibition of G6P is reflected in significantly higher elasticities. Elasticities
of pyruvate are positive in most cases. Inhibition of G6P is in accordance with the
findings of Clark and Holmes (1976) and was also applied within a dynamic model of
central metabolism of E. coli (Chassagnole et al. 2002). However, the results of PEP and
pyruvate are contradictory to the rate expression proposed by Liao et al. (1996). Their
results imply a positive elasticity of PEP towards pts and a negative value of pyruvate,
as a high PEP/PYR ratio increases vmax and reduces affinity of glucose in their kinetic
expression for pts. More recent findings of Kremling et al. (2008) support the elasticities
of PEP and pyruvate in Figure (5.43). The authors show, that high glycolytic fluxes
are realized by lowering the PEP concentration. Their detailed model of the pts output
(phosphorylation of pts enzmyes) suggests, that pyruvate increases with increasing glucose
uptake while PEP decreases. This model results in negative elasticity coefficients of PEP
and positive values for pyruvate.

As shown in Figure (5.41) the linking metabolite of bioreactor processes and metabolic
processes is external glucose. In case of the fed-batch model, the elasticity of pts towards
extracellular glucose was randomly sampled between 0.5 and 1.
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Glycolysis

The activity of pfk is sensitive to various metabolites. The effects of several activating
compounds (ADP, AMP and FBP) and inhibitors (PEP, ATP) were described (Kotlarz
and Buc 1982, Zheng and Kemp 1992). Zheng and Kemp (1992) observed only weak
inhibition of pfk by ATP at pH 7 and cooperativity with the substrate F6P. The substrate
F6P, the product FBP and the inhibitor PEP were considered to have an effect on pfk
reaction rate as shown in Figure (5.44).

Figure 5.44.: Distribution of 5000 elasticity coefficients of pfk towards F6P, PEP and FBP.

The distribution of elasticity of pfk towards F6P reflects, that F6P has only marginal
influence on the reaction rate. In contrast, the results suggest strong inhibition of pfk by
PEP and activation by FBP. Positive elasticities of pfk towards the product FBP, agree
with observations of Tornheim (1985) and Avigad (1981).
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Two reactions, pyk and ppc divert PEP from the lower part of glycolysis. They both have
the same activator FBP. Wohl and Markus (1972) report that activation of ppc by FBP
is even stronger in presence of AcCoA. Regulatory effects of ATP and AMP on pyk and
ppc were not considered. Elasticities for both reactions are shown in in Figure (5.45).

Figure 5.45.: Distribution of 5000 elasticity coefficients of pyk and ppc towards substrates,
products and regulatory effectors.

Activating compounds have exclusively positive elasticity coefficients, such as FBP on pyk
or AcCoA on ppc. Activation of ppc by FBP as proposed by Wohl and Markus (1972) is
not observed here, rather the result suggests a negative effect of PEP.

No regulatory effectors of pdh are reported so far. As Chassagnole et al. (2002) assumed
Hill kinetics for pdh, pyruvate is considered as the only effector. Distributions of elastic-
ities are shown in Figure (5.46).
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Figure 5.46.: Distribution of 5000 elasticity coefficients of pdh towards pyruvate.

Chassagnole et al. (2002) estimated a Hill coefficient of 3.68 for pdh. As elasticity coeffi-
cients are limited between 0 and the Hill coefficient the estimates for pdh are reasonable.

TCA cycle

Citrate synthase catalyses the introduction of AcCoA into the TCA cycle and may be
an important site of control. Robinson et al. (1983) report sigmoidal dependence of
cs on AcCoA and OAA concentrations and inhibition by NADH and AKG. Elasticity
coefficients of cs towards the substrates AcCoA and OAA are shown in Figure (5.47). No
regulatory effects of NADH and AKG were identified from the available data set. Further,
the distribution of elasticities of icdh towards the substrate isocitrate is depicted.
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Figure 5.47.: Distribution of 5000 elasticity coefficients of cs and icdh towards their substrates.

As expected, both reactions have positive elasticities towards their substrates. Even if
OAA was not experimentally determined, the constraints resulting from NET analysis
allow good estimates of elasticities towards this metabolite. The second substrate of icdh
is NADP, which was constant in all samples and was not considered to have regulatory
effects on icdh. A potential inhibition of cs by NADH was introduced by sampling random
elasticities between -1 and -0.1. This subsequent assignment is formally not correct, as
elasticities of cs towards OAA and AcCoA were estimated without consideration of NADH.

The enzyme complex akgdh is supposed to be a key regulatory step of TCA and regulation
has been considered in the biochemical literature very rarely. Inhibition by SucCoA, ATP,
NADH and activation by AMP is reported (Strumilo 2005). A recent study suggests that
OAA inhibits akdh and allows coordinated activity within TCA cycle (Frank et al. 2007).
The data did not reveal any information about akgdh kinetics and elasticities of akgdh
towards the substrate AKG were randomly sampled between 0.5 and 1.5. Inhibition by
OAA was considered with a random elasticity between -1 and -0.1.
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Succinate dehydrogenase is expressed during aerobic respiration rather than the related
enzyme fumarate reductase (Yankovskaya et al. 2003). Sucd is a membrane bound en-
zyme complex with covalently bound FAD. Figure (5.48) shows elasticities of sdh towards
succinate and FAD.

Figure 5.48.: Distribution of 5000 elasticity coefficients of sucd towards succinate and FAD.

Beside a small negative effect of succinate the activation of sucd by FAD is distinctive.
Sucheta et al. (1992) show, that sucd behaves as a diode that essentially allows electron
flow in one direction only. This behavior is addressed to the oxidation state of a redox
group on the enzyme, what might be an explanation of the high elasticity towards FAD
as observed here.

Pentose Phosphate Pathway

The elasticity of G6P towards g6pdh was estimated from experimental data. The results
are shown in Figure (5.49). Beside G6P other regulatory effectors will certainly control
PPP flux. Chassagnole et al. (2002) consider regulation of the oxidative part of PPP by
NADPH inhibition of g6pdh and gnd. Moritz et al. (2000) found also NADPH inhibition
of g6pdh and gnd in Corynebacterium glutamicum. Even if gnd is inhibited by additional
metabolites (ATP, FBP, GAP, E4P, Ru5P) the authors conclude that both enzymes and
thus PPP flux is mainly regulated by the ratio of NADPH and NADP concentrations.
Inhibition of NADPH was considered by randomly sampling elasticities between -1 and
-0.1 for g6pdh and gnd towards NADPH.
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Figure 5.49.: Distribution of 5000 elasticity coefficients of g6pdh towards G6P/F6P.

Energy metabolism (nadhox, fadh2ox and ATPase)

Oxidative phosphorylation was considered by composite ATP producing and NADH/
FADH2 consuming reactions nadhox and fadh2ox. Detailed information about kinetics of
electron transfer from NADH to cytochrom oxidase and ATPase reaction is not available.
Here it is assumed that these processes are irreversible and follow linear kinetics. The
elasticites of such first order kinetics towards the substrate are always equal to 1. First
order kinetics for the ATPase reaction were applied by Teusink et al. (2000) and by
Wang et al. (2004). Thomas and Fell (1998) investigated the effect of different elasticities
coefficients for ATPase towards ATP and included inhibition by ADP. Here, no inhibition
of ATPase by ADP is assumed and only ATP effects the rate of ATP hydrolysis with
εATPaseATP = 1.

Biomass formation

The elasticities of specific growth rate follow straightforward from biosynthetic fluxes in
the reference state, the fraction of carbon moles from all precursors ϕi (Table (A.12)) and
the elasticities of biosynthetic fluxes. The method is detailed by Wang and Hatzimanikatis
(2004a,b). According to one of their assumptions it is hypothesized that biosynthetic
fluxes depend only on the concentration of the particular precursor.

All assumptions about elasticity coefficients are summarized in Table (A.10). Each re-
action in the model is either classified as close to equilibrium or the metabolites with
regulatory effects on the reaction are listed.
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5.7.3. Flux control coefficients

Within one iteration of the Monte Carlo sampling loop elasticities of actively regulated
reactions and reactions near-equilibrium were sampled as described above and collected
in matrix E. Further, the reference state was randomly chosen from the data set of
the fed-batch process, in order to define matrices J0 and x0. Control coefficients were
estimated according to Eq.(3.61) and (3.62). The (Log)linear approach of Hatzimanikatis
and Bailey (1996) was additionally applied and yielded identical results.

Control structure of the intracellular model

Figure (5.50) shows mean values of 5000 flux control coefficients estimated with the Monte
Carlo approach for the intracellular model.
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Figure 5.50.: Flux control coefficients of intracellular reactions of the stoichiometric model in Ta-
ble (A.10). Extracellular glucose and glucose feeding is not considered. Each column corresponds
to the perturbed enzyme. The rows correspond to the responding steady state flux.

A striking feature of control coefficients in Figure (5.50) is the fact that most of them are
zero or at least smaller than one. Control coefficients express the percentage change of
the steady state flux in response to a unit percentage change of enzyme activity. Hence,
values between zero and one are reasonable, as it was shown that small control coefficients
are a prerequisite of a stable metabolic network (Mazat et al. 1996). Briefly, the authors
argument is, that high control coefficients would have deleterious effects on metabolism
in case of small variations in enzyme levels.

A further distinct characteristic in Figure (5.50) are the high control coefficients of ATPase
on all reactions in the network. Koebmann et al. (2002) enhanced hydrolization of ATP
by expression of a soluble ATPase in E. coli. This ATPase is uncoupled from other
reactions, in the same way as the ATP consuming reaction in the MCA model. The
studies of Koebmann et al. (2002) gave almost similar results as shown in Figure (5.50):
the demand for ATP controls the flux. The significance of this finding is, that the majority
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of flux control resides not inside but outside the pathway. For example, Groen et al. (1986)
found that control of gluconeogenesis in rat liver cells resides partially in steps outside
the pathway, such as a adenine-nucleotide translocating reaction.

The small control coefficients agree with the several unsuccessful attempts to increase
glycolytic flux by overexpression of enzymes, that were considered as rate-limiting steps.
For example, experimental studies have shown, that pts and hence glucose uptake has no
control on fluxes of central metabolism. Ruyter et al. (1991) studied effects of variation
of the membrane-bound pts enzyme IIGlc, which catalyzes glucose transport and phos-
phorylation. They estimated a low control coefficient of this enzyme on growth rate and
glucose metabolism, as it is the case in Figure (5.50).

Furthermore, the control coefficients suggest that enzymes of TCA have no flux control.
Such behavior was experimentally observed by Walsh and Koshland (1985). In their study
carbon flow of E. coli growing on glucose was not affected by a 90% decrease in the level
of citrate synthase.

Beside control by ATPase, flux control is distributed among reactions of glycolysis. The
actively regulated reactions pfk, pyk and pdh have negative control coefficients, whereas
reactions at equilibrium have positive values. In order to examine whether these values
are significant and not just uncertainties propagated through the Monte Carlo procedure,
the distribution of flux control coefficients was analyzed in more detail. Figure (5.51)
shows the distribution of 5000 control coefficients of pfk on every reactions in the network
by means of box plots.
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Figure 5.51.: Distribution of flux control coefficients of pfk. Boxes contain 50% of the data and
the line inside indicates the median. Error bars indicate 25th and 75th percentiles.

The boxplots indicate, that the control coefficients of pfk are significantly below zero and
for most reactions constrained to a small range between -0.3 and -0.1. Similarly, control
coefficients of reactions near equilibrium have exclusively positive control coefficients.
The control coefficients of pyk are also significantly below zero, whereas in case of pdh
the values are distributed between -0.1 and 0.1 and hence not significant.

An explanation of this control structure is certainly the feedback-loop of pyk activation by
FBP and allosteric inhibition of pfk by PEP, in combination with reactions near thermo-
dynamic equilibrium located in-between. It is reported that enzymes near the beginning
of a pathway subject to feedback inhibition would tend to have low flux control coeffi-
cients, whilst the flux control coefficients of the enzymes after the feedback metabolite
would tend to be high (Kacser and Burns 1973, Thomas and Fell 1996). Since pfk and pyk
are commonly considered the controlling steps in glycolysis several metabolic engineering
approaches included alteration of these enzymes. However, overexpression of pfk and pyk
did not yield significant changes of glycolytic flux (Schaaff et al. 1989). Sauer et al. (1999)
have shown, that a pyk-deficient E. coli exhibits exactly the same glucose consumption
and growth rate as the parental strain. Despite the overall physiological similarities, they
found significant changes at the branch point between glycolysis and TCA, which are not
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predicted by the control coeffcients in Figure (5.50). Such large perturbations caused by
complete inactivation of an enzyme are of course not covered by the MCA model.

Emmerling et al. (1999) studied the effect of overexpressing heterologous and native pfk
and pyk in E. coli. During exponential growth the alteration of these enzymes had nei-
ther an effect on growth rate nor on glucose consumption. Actually, overexpression of
heterologous pfk and pyk had a negative effect of glucose uptake in the stationary phase,
as suggested by the negative control coefficients in Figure (5.50).

Control structure of the fed-batch model

The control structure in Figure (5.50) represents the internal control structure, as ex-
tracellular components and bioreactor processes are not considered. In the same way as
above, 5000 flux control coefficients of the fed-batch model were estimated with the Monte
Carlo procedure. In analogy to Figure (5.50) flux control coefficients are shown in Figure
(5.52).
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Figure 5.52.: Flux control coefficients of intracellular reactions of the stoichiometric model in
Table (A.10) including extracellular glucose and glucose feeding. Each column corresponds to
the perturbed enzyme. The rows correspond to the responding steady state flux.

Without exception, control coefficients of intracellular reactions are indistinguishable from
zero and control coefficients of glucose feeding rate Vin are close to 1. Distributions of
control coefficients of glucose feeding rate on every reaction in the network are shown in
Figure (5.53).
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Figure 5.53.: Distribution of flux control coefficients of the feeding rate Vin. Boxes contain 50% of
the data and the line inside indicates the median. Error bars indicate 25th and 75th percentiles.

Even if some reactions like g6pdh and gnd vary in a quite large interval, most control
coefficients are confined to a range close to one. Such behavior is expected intuitively
if properties of the fed-batch process are considered. A unit percentage change of any
enzyme activity will not change the flux through any reaction, because the glucose influx
is constant. In contrast, a unit percentage change of glucose influx results in proportional
increase of every other flux, as glucose metabolism is far below the maximal capacities.
Although these results appear obvious, they are not based upon mass balances as in case
of stoichiometric MFA. Even if MCA is based upon linearization in the steady state, there
are no constrains such as Nv = 0, rather an increase of glucose influx increases glucose
concentration, which then causes a cascade of regulatory mechanisms.

Wang et al. (2004) include stability analysis into the stochastic MCA approach, as they
discard a set of elasticity coefficients if the steady state is not stable. Stability analysis
is based on the eigenvalues of the Jacobian matrix, which have negative real parts in
case of an asymptotically stable steady state. The MCA models applied above did not
provide evidence for stability. Stability was evaluated for the (Log)linear approach by the
equation provided by Wang et al. (2004). Even if a few samples of fluxes, metabolites
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and elasticities resulted in negative real parts of eigenvalues, most solutions had some
positive values and were therefore not stable. This behavior was confirmed by numerical
integration of the lin-log model, as not all concentrations returned to the steady state
after initial perturbations. There are several reasons for instabilities, such as missing
reactions in the stoichiometric network (structural properties) or additional allosteric
regulatory mechanisms, required to enforce stability of certain metabolites. Finally, the
concentration ranges of the various metabolites differ in orders of magnitude (from µM
to the mM range) and might cause instabilities.
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6. Conclusions and Future Perspectives

Conclusions

Rapid Media Transition (RMT) was developed and evaluated as an experimental approach
for steady state analysis of metabolic pathways. In contrast to commonly applied continu-
ous cultures, the approach allows steady state analysis of cells in parallel to non-stationary
fed-batch fermentation processes. Metabolic capabilities and control mechanisms of cen-
tral metabolism of Escherichia coli under conditions of a fed-batch process were identified
with the proposed approach.

Different carbon sources were immediately utilized after E. coli cells were separated from
a 30 L scale fed-batch process and transferred into a lab-scale stirred-tank bioreactor.
Several experimental results indicated a metabolic steady state during the 15-18 min-
utes RMT experiments. Respiratory rates were constant within a few minutes after the
perturbation and the concentrations of substrates were continuously decreasing. The con-
stant metabolite pools measured during perturbation experiments gave further evidence
of steady state conditions inside the cells. Large changes of fluxes occurred during the
perturbation experiments, which were attributed to altered metabolite concentrations.
Despite large changes of the metabolic state, concentrations of redox and energy cofac-
tors were not disturbed by RMT experiments. These findings are exemplified in Figure
(6.1). Results from a RMT experiment with succinate are compared to measurements
during the fed-batch process.

Figure 6.1.: Energy charge and intracellular malate concentrations during the fed-batch cultiva-
tion process (black bars) and a perturbation experiment with succinate (grey bars).
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The results in Figure (6.1) are representative for other metabolite profiles. In response
to environmental disturbances, some metabolites increased by an order of magnitude,
while others are almost not affected. The increase of intracellular malate during the
perturbation experiment correlates with increased TCA flux. Energy cofactors such as
ATP were unperturbed, reflected by a constant energy charge.

RMT experiments were performed in fed-batch operation mode, such that perturbations
are controlled and almost no substrate (and by-products) was detected in the cultivation
medium. This strategy provides several advantages, such as accurate estimation of specific
uptake rates by the amount of supplied substrate. Further, the approach is particularly
suited for measurements of intracellular metabolites with the differential method (Taymaz-
Nikerel et al. 2009). Concentrations of extracellular metabolites are low, as metabolome
analysis is performed with fresh medium and without formation of by-products during
analysis.

The presented approach clarifies that beside analytical and computational techniques,
cultivation strategies and well-engineered process control is required for systems biotech-
nology approaches. The wide-spread chemostat experiments might serve as a convenient
approach to achieve constant growth and exchange fluxes, but the physiology of cells is
divers and probably differs from most industrial bioprocesses. In contrast, RMT experi-
ments enable metabolic analysis of cells, equipped with the same enzymes, transporters
and cofactors as provided in an interesting phase of a fed-batch production process.

Experimental data of RMT experiments was subjected to kinetic analysis, thermody-
namic analysis and metabolic control analysis. All approaches gave further insights into
properties of central metabolic pathways. For example, an increasing FBP pool in com-
bination with decreasing PEP and 2PG/3PG levels is one of several characteristics asso-
ciated with increasing glycolytic fluxes. Similar profiles are reported for E. coli (Schaub
and Reuss 2008) and for the dynamic response of yeast to a glucose pulse (Wu et al.
2005). Kinetic analysis in combination with thermodynamic analysis raised the question,
whether such behavior is a consequence of kinetic or thermodynamic effects. Several
theoretical studies addressed the influence of kinetic and thermodynamic interactions in
metabolic networks (Thomas and Fell 1996, Hofmeyr and Cornish-Bowden 2000). Here,
NET analysis was successfully applied to distinguish reactions operating near and far from
thermodynamic equilibrium. It was shown that thermodynamic constraints on maximal
intracellular metabolite concentrations correlate with measured values.

Active response to the environment at the level of gene expressions is a widespread phe-
notype of E. coli and is supposed to be a common strategy that the cell can use when it
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faces environmental changes (Ishii et al. 2007). Another response at the level of metabolic
regulation was shown in this work. With RMT experiments it was possible to distinguish
regulatory mechanisms at the different levels of cellular function. Short-term distur-
bances did hardly affect enzyme levels as confirmed by proteom analysis, whereas large
flux changes were realized by relatively small changes of metabolite levels. The results
confirmed stability and robustness of central metabolism, but further they revealed its
remarkable flexibility. E. coli reacts almost instantly to changes in the environment and
effectively redirects metabolic fluxes. Metabolic Control Analysis of central metabolism
revealed the control structure of such a tightly controlled system. Kinetic and thermo-
dynamic information was included in a stochastic MCA approach. The results revealed
that control coefficients of reactions in central metabolism are small. Such a robust
control structure agrees with the stable physiological characteristics observed during the
experiments. The only reaction with significant flux control was identified as reaction
hydrolyzing ATP. In fact, it was shown by Koebmann et al. (2002), that glycolytic flux
in E. coli is controlled by the demand for ATP.

Perspectives

Beside fermentation strategies and data analysis, the obvious and intensively discussed
uncertainties associated with microbial metabolome analysis require attention in future
studies. It was shown that cellular leakage during cold methanol quenching of E. coli re-
sults in high systematic errors. Even though cold glycerol reduced cellular leakage, small
metabolites such as pyruvate were still susceptible to leakage. An effective and leakage-
free inactivation of metabolism, as well as quantitative extraction of metabolites have to
be assured, to get the in vivo metabolic snapshot into sharper focus. This is particularly
important in the light of metabolic homoeostasis, as only small perturbations of metabo-
lite concentrations are expected in response to genetic and environmental disturbances.
Further, 13C based flux analysis is required in order to obtain information about reactions
and pathways, which are hardly assessable by measurements of extracellular rates only.

RMT experiments with single-gene knockout mutants will probably gain further insight
about properties of metabolic pathways in the face of combined genetic and environmental
perturbations. Comparative studies with genetically modified strains could be performed
in parallel steady state experiments in milliter-scale stirred-tank bioreactors.

Straight-forward data analysis requires a graphical user interface which enables proper and
flexible data management for metabolic control analysis. The network structure should
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be presented graphically in combination with regulatory effectors and information about
thermodynamic equilibrium of a particular reaction. Integration of NET analysis into the
framework of MCA under uncertainty is a promising possibility to combine information
about thermodynamic and kinetic regulation in metabolic networks.

Finally, future studies will apply RMT experiments to problems such as decreasing pro-
ductivity during industrial production processes. Metabolic properties of a biosynthetic
pathway will be analyzed with the presented tools in order to identify limiting enzymes
in the producer strain or limiting resources in the cultivation medium.
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8. Abbreviations

TCA tricarboxylic acid cycle
PPP pentose phosphate pathway
IDMS isotope dilution mass spectrometry
MCA metabolic control analysis
FBA flux balance analysis
NET network embedded thermodynamic analysis
LC-MS liquid chromatography-mass spectrometry
GC-MS gas chromatography-mass spectrometry
2-DE two-dimensional gel electrophoresis
OUR oxygen uptake rate
CPR carbon dioxide production rate
OTR oxygen transfer rate
RMT rapid media transition
DW dry weight
OD optical density
MW methanol/water
MG methanol/glycerol

Metabolites
PEP phosphoenolpyruvate
G6P glucose-6-phosphate
F6P fructose-6-phosphate
FBP fructose-1,6-bisphosphate
DHAP dihydroxy-acetone phosphate
GAP glyceraldehyde-3-phosphate
13DPG 1,3-diphosphoglycerate
3PG 3-phosphoglycerate
2PG 2-phosphoglycerate
PYR pyruvate
6PG 6-phosphogluconate
Ru5P ribulose-5-phosphate
R5P ribose-5-phosphate
X5P xylose-5phosphate
S7P sedoheptulose-7-phosphate
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E4P erythrose-4-phosphate
AcCoA acetyl-coenzyme A
CoA coenzyme A
OAA oxaloacetate
CIT citrate
ICIT isocitrate
AKG α-ketoglutarate
SucCoA succinyl-coenzyme A
SUC succinic acid
FUM fumarate
MAL malate
ATP adenosine-5-triphosphate
ADP adenosine-5-diphosphate
AMP adenosine-5-monophosphate
NAD nicotinamide adenine dinucleotide
NADH nicotinamide adenine dinucleotide reduced
NADP nicotinamide adenine dinucleotide phosphate
NADPH nicotinamide adenine dinucleotide phosphate reduced

Reactions
pts phosphotransferase system
pgi phosphoglucose isomerase
pfk phosphofructokinase
fba fructose-1,6-bisphosphate aldolase
tpi triosephosphate isomerase
gapd glyceraldehyde-3-phosphate dehydrogenase
pgk phosphoglycerate kinase
pgm phosphoglycerate mutase
eno Enolase
pyk pyruvat kinase
pps PEP synthase
fbp fructose-biphosphatase
g6pdh glucose-6-phosphate dehydrogenase
gnd 6-phosphogluconate dehydogenase
rpi ribose-5-phosphate isomerase
rpe ribose-5-phosphate epimerase
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tkt transketolase
tala transaldolase
pdh pyruvate dehydrogenase
cs citrate synthase
acont aconitase
akgdh α-ketoglutarate dehydrogenase
icdh isocitratedehydrogenase
fum fumarase
mdh malate dehydrogenase
sucoas SucCoA synthetase
nadh6 NADH:ubuiqinone oxidoreductase
cytbd cytochrome bo terminal oxidase
atps ATP synthesis
thd transhydrogenase
pfl pyruvate formate-lyase
pox pyruvate oxidase
pta phosphate acetyltransferase
ack acetate kinase
adh alcohol dehydrogenase
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A. Appendix

A.1. Chemicals and equipment

Table A.1.: List of applied chemicals.

Acetic Acid (LC-MS) 49199 Sigma-Aldrich
Cobalt chloride hexahydrate 109986 Merck
Clerol FBA 265 Cognis
Dipotassium phosphate P749.2 Roth
Ferrum sulfate hexahydrate 103965 Merck
Ethanol 100983 Merck
Glucose-Monohydrat 108342 Merck
Glycerol 104091 Merck
Yeast extract 111926 Merck
Helium 6.0 Linde
Potassium dihydrogenphosphat 3907 Roth
Potassium hydroxid 814353 Merck
Copper chloride dihydrate 102790 Merck
Magnesium chloride 814733 Merck
Magnesium sulfate 105886 Merck
Manganese sulfate Monohydrate 105941 Merck
Methanol 106008 Merck
Methanol (HPLC grade) 7342.1 Roth
Sodium dihydrogenphosphate monohydrate 106370 Merck
Sodium acetate 116100 Merck
Sodium chloride P029 Roth
Sodium hydroxide 106482 Merck
Sodium molybdate dihydrate 105621 Merck
Peptone 102239 Merck
Tributylamine 90781 Sigma-Aldrich
Triethanolamine T1377 Sigma
U-13C labeled glucose Eurisotop
Zinc sulfate heptahydrate 108883 Merck
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Table A.2.: List of metabolite standards.

3PG P8877 Sigma-Aldrich
AcCoA A2056 Sigma-Aldrich
ADP A2754 Sigma-Aldrich
AMP A1752 Sigma-Aldrich
ATP A6559 Sigma-Aldrich
F6P F3627 Sigma-Aldrich
FAD F6625 Sigma-Aldrich
FBP F6803 Sigma-Aldrich
G6P G7879 Sigma-Aldrich
PEP P7252 Sigma-Aldrich
Pyr P2256 Sigma-Aldrich
SUC S 3674 Sigma-Aldrich
FUM F 1506 Sigma-Aldrich
MAL M 2422 Sigma-Aldrich
AKG 75890 Sigma-Aldrich
NAD 10127965001 Roche-Diagnostics
NADH 10107735001 Roche-Diagnostics
NADP 10128031001 Roche-Diagnostics
NADPH 10107824001 Roche-Diagnostics

Table A.3.: Equipment for general purposes.

Analytical balance AG 285 Mettler Toledo, Gießen
Analytical balance E1M213 Ohaus, Gießen
Analytical balance E121245 Ohaus, Gießen
Photometer Spectronic Genesys 20 Thermo Electron, Dreieich
Dry freezer Alpha 1-2 LD Martin Christ GmbH, Osterrode / Harz
Centrifuge Biofuge Stratos Kendro-Heraeus, Langenselbold
pH-probe BlueLine 14 pH Schott, Mainz
pH-probe CG 843 Schott, Mainz
Shaking incubator Multitron Infors, Einsbach
Centrifuge Rotixa 50 RS Hettich, Tuttlingen
Thermomixer Comfort Eppendorf, Hamburg
Centrifuge Mikro 20 Hettich, Tuttlingen
Cell size counter Multisizer II Beckman Coulter
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Table A.4.: Fermentation systems.

Bench-top fermenter Labfors Infors, Einsbach
vessel double jacketed glass
total volume - working volume 2 L - 1.2 L
stirrer 2 flat-bladed Rushton impellors
drive top, mechanical seal drive coupling
aeration mass flow valve, sparger
process control software Iris-NT Pro Version 4.11
pH-probe HA405-DPA-SC-S8 Mettler-Toledo, Giessen
DO-probe InPro 6000 Mettler-Toledo, Giessen
exhaust gas analyzer Easy Line ABB-Frankfurt

Techfors fermenter system Infors, Einsbach
vessel double jacketed stainless steel
total volume - Working volume 42 L - 30 L
stirrer 3 flat-bladed Rushton impellors
drive bottom, mechanical seal drive coupling
aeration mass flow valve, sparger
process control software Iris-NT Pro Version 4.11
pH-probe HA405-DPA-SC-S8 Mettler-Toledo, Giessen
DO-probe InPro 6000 Mettler-Toledo, Giessen
anti-foam probe Russel Infors, Einsbach
pressure probe sensor PR-25HT/8931A Keller, Winterthur, Schweiz
exhaust gas analyzer Easy Line ABB, Frankfurt
peristaltic feeding pump Ecoline VC Ismatech, Wertheim-Mondfeld

Table A.5.: LC-MS system.

software Xcalibur 1.2 Thermo Finnigan, Dreieich
autosampler AS 1000 Thermo Spectronic, Dreieich
quartenary HPLC-Pump P1100 Thermo Spectronic, Dreieich
degaser D 1100 Thermo Spectronic, Dreieich
diode array UV 1000 Thermo Spectronic, Dreieich
ESI masspectrometer LCQ-Advantage Thermo Spectronic, Dreieich
Synergi Hydro-RP (C18) 150mm×2.1mm I.D., 4 µm 80 Å Phenomenex, Aschaffenburg
nitrogen generator ESP 2 DWT, Essen
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A.2. ESI parameter

Table A.6.: ESI parameter.

ESI Parameter Segment 1 Segment 2 Segment 3
time 0-32 min 32-62 min 62-80 min

Capillary Temp (◦C) 330 290 350
AGC on on on

Sheath Gas Flow (-) 53 53 60
Aux Gas Flow (-) 31 31 20

Source Voltage (kV) 3 2,6 2,5
Capillary Voltage (V) -15 -5 -21
Tube Lens Offset (V) -4 -14,2 0

Multipole RF Amplifier (Vp-p) 400 400 400
Multipole 1 Offset (V) 7 7 3
Multipole 2 Offset (V) 9,5 9,5 6,5

InterMultipole Lens Voltage (V) 17,4 17,4 14

A.3. Elementary matrix

Table A.7.: Elementary matrix.

o2 co2 gluc pyr suc ac for etoh cx nh3 h2o
C 0 1 1 1 1 1 1 1 1 0 0
H 0 0 2 1.3 1.5 2 2 3 1.93 3 2
O 2 2 1 1 1 1 2 0.5 0.55 0 1
N 0 0 0 0 0 0 0 0 0.26 1 0
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A.4. External calibration

Figure A.1.: LC-MS calibration with standard solution of metabolites, mixed with culture broth
and processed according to sampling protocol SP2.
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Figure A.2.: LC-MS calibration with standard solution of metabolites, mixed with culture broth
and processed according to sampling protocol SP2.
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A.5. IDMS calibration

Figure A.3.: Calibration of U-13C labeled cell extracts. Ratio of peak areas of 12C and U-13C
metabolites is plotted against the concentration of 12C metabolite in the 1:1 mixture of labeled
cell extract and standard solution.
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A.6. Data set of Giersch (1995)

Table A.8.: Experimental data of the reconstituted pathway in Fig. (5.9) as presented by Wu et
al. (2004), originally obtained from Giersch (1995).

Experiment PGM ENO PK 2PG PEP BPG ADP Flux
(U L-1) (U L-1) (U L-1) (µM) (µM) (µM) (µM) (µM h-1)

1 31 5.6 46 170 50 13.2 107 157
2 25 12 30 60 103 13.2 61 87
3 25 12 30 57 91 13.2 83 114
4 25 12 30 55 83 13.2 107 128
5 25 12 30 54 76 13.2 130 136
6 25 12 30 40 60 8.5 107 111
7 25 12 30 46 70 10.8 107 118
8 25 12 30 55 81 13.2 107 122
9 25 12 30 59 89 15.6 107 130
10 25 12 30 63 95 18 107 133
11 36.8 6.5 34 161 81 13.2 107 108
12 45 6.5 34 178 82 13.2 107 108
13 53.2 6.5 34 204 81 13.2 107 108
14 45 5.3 34 206 75 13.2 107 106
15 45 6.5 34 195 87 13.2 107 108
16 45 7.7 34 180 92 13.2 107 112
17 45 6.5 30.9 192 91 13.2 107 96
18 45 6.5 34 192 84 13.2 107 106
19 45 6.5 37.1 196 79 13.2 107 116

A.7. Stoichiometric models

A.7.1. FBA and MFA models
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Table A.9.: Reactions of the MFA model and E. coli iJR904.
ID E. coli iJR904 MFA Modell

Glycolysis

1 pts glc-D[e] + pep[c] -> g6p[c] + pyr[c] glc-D[e] + pep[c] <=> g6p[c] + pyr[c]

2 pgi g6p[c] <=> f6p[c] g6p[c] <=> f6p[c]

3 pfk atp[c] + f6p[c] -> adp[c] + fdp[c] + h[c] { atp[c] + f6p[c] <=> fdp[c]
4 fbp fdp[c] + h2o[c] -> f6p[c] + pi[c]

5 fba fdp[c] <=> dhap[c] + g3p[c] { fdp[c] <=> 2 g3p[c]
6 tpi dhap[c] <=> g3p[c]

7 gapd g3p[c] + nad[c] + pi[c] <=> 13dpg[c] + h[c] + nadh[c]

{ g3p[c] <=> pg[c] + atp[c] + nad(p)h[c]8 pgk 13dpg[c] + adp[c] <=> 3pg[c] + atp[c]

9 pgm 3pg[c] <=> 2pg[c]

10 eno 2pg[c] <=> h2o[c] + pep[c] pg[c] <=> pep[c]

11 pyk adp[c] + h[c] + pep[c] -> atp[c] + pyr[c] { pep[c] <=> atp[c] + pyr[c]
12 pps atp[c] + h2o[c] + pyr[c] -> amp[c] + 2 h[c] + pep[c] + pi[c]

13 pdh coa[c] + nad[c] + pyr[c] -> accoa[c] + co2[c] + nadh[c] pyr[c] <=> accoa[c] + co2[c] + nad(p)h[c]

Anapleurotic Reactions

14 ppc co2[c] + h2o[c] + pep[c] -> h[c] + oaa[c] + pi[c] { co2[c] + pep[c] <=> oaa[c]
15 ppck oaa[c] + atp[c] -> co2[c] + adp[c] + pep[c]

TCA Cycle

16 cs accoa[c] + h2o[c] + oaa[c] -> cit[c] + coa[c] + h[c] accoa[c] + oaa[c] <=> cit[c]

17 acont cit[c] <=> icit[c] cit[c] <=> icit[c]

18 icdh icit[c] + nadp[c] <=> akg[c] + co2[c] + nadph[c] icit[c] <=> akg[c] + co2[c] + nad(p)h[c]

19 akgdh akg[c] + coa[c] + nad[c] -> co2[c] + nadh[c] + succoa[c] akg[c] <=> co2[c] + nad(p)h[c] + succoa[c]

20 sucoas adp[c] + pi[c] + succoa[c] <=> atp[c] + coa[c] + succ[c] succoa[c] <=> atp[c] + succ[c]

21 sucd fad[c] + succ[c] -> fadh2[c] + fum[c] succ[c] <=> 0.5 nad(p)h[c] + fum[c]

22 fum fum[c] + h2o[c] <=> mal-L[c] fum[c] <=> mal-L[c]

23 mdh mal-L[c] + nad[c] <=> h[c] + nadh[c] + oaa[c] mal-L[c] <=> nad(p)h[c] + oaa[c]

Pentose Phosphate Pathway

24 g6pdh g6p[c] + nadp[c] <=> 6pgl[c] + h[c] + nadph[c] { g6p[c] <=> co2[c] + 2 nad(p)h[c] + ru5p-D[c]
25 gnd 6pgc[c] + nadp[c] -> co2[c] + nadph[c] + ru5p-D[c]

26 rpi ru5p-D[c] <=> r5p[c] ru5p-D[c] <=> r5p[c]

27 rpe ru5p-D[c] <=> xu5p-D[c] ru5p-D[c] <=> xu5p-D[c]

28 tkt1 r5p[c] + xu5p-D[c] <=> g3p[c] + s7p[c] r5p[c] + xu5p-D[c] <=> g3p[c] + s7p[c]

29 tkt2 e4p[c] + xu5p-D[c] <=> f6p[c] + g3p[c] reaction not considered

30 tala g3p[c] + s7p[c] <=> e4p[c] + f6p[c] g3p[c] + s7p[c] <=> e4p[c] + f6p[c]

Oxidative Phosphorylation

31 thd 2 h[e] + nadh[c] + nadp[c] -> 2 h[c] + nad[c] + nadph[c] reaction not considered

32 cytbd 2 h[c] + 0.5 o2[c] + q8h2[c] -> h2o[c] + 2 h[e] + nad[c] + q8[c] rection not considered

33 nadh6 5 h[c] + nadh[c] + q8[c] -> 4 h[e] + nad[c] + q8h2[c] { nad(p)h[c] <=> 2 atp[c]
34 atps adp[c] + 4 h[e] + pi[c] <=> atp[c] + h2o[c] + 3 h[c]

Pyruvate Metabolism

35 pfl coa[c] + pyr[c] -> accoa[c] + for[c] pyr[c] -> accoa[c] + for[c]

36 adh accoa[c] + 2 h[c] + 2 nadh[c] <=> coa[c] + etoh[c] + 2 nad[c] accoa[c] + 2 nad(p)h[c] <=> etoh[c]

37 pta accoa[c] + pi[c] <=> actp[c] + coa[c] { accoa[c] <=> ac[c] + atp[c]
38 ack ac[c] + atp[c] <=> actp[c] + adp[c]

ATP drain

39 ATPase reaction not considered atp[c] ->

Exchange Fluxes

39 qac ac[c] <=> ac[e] ac[c] <=> ac[e]

40 qCO2 co2[c] <=> co2[e] co2[c] <=> co2[e]

41 qsuc succ[c] <=> succ[e] succ[c] <=> succ[e]

42 qfor for[c] <=> for[e] for[c] <=> for[e]

43 qpyr pyr[c] <=> pyr[e] pyr[c] <=> pyr[e]

44 qfum fum[c]<=> fum[e] fum[c]<=> fum[e]

45 qakg akg[c] <=> akg[e] akg[c] <=> akg[e]

46 qetoh etoh[c] <=> etoh[e] etoh[c] <=> etoh[e]
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A.7.2. MCA model

Table A.10.: Reactions considered for Metabolic Control Analysis.
ID Reaction Effectors

Glycolysis

1 pts glc-D[e] + pep[c] -> g6p[c] + pyr[c] pyr[c], pep[c], g6p[c], (glc-D[e])

2 pgi g6p[c] <=> f6p[c] equilibrium

3 pfk atp[c] + f6p[c] -> adp[c] + fdp[c] + h[c] fdp[c], pep[c], f6p[c]

4 fba fdp[c] <=> dhap[c] + g3p[c] equilibrium

5 tpi dhap[c] <=> g3p[c] equilibrium

6 gapd g3p[c] + nad[c] + pi[c] <=> 13dpg[c] + h[c] + nadh[c] equilibrium

7 pgk 13dpg[c] + adp[c] <=> 3pg[c] + atp[c] equilibrium

8 pgm 3pg[c] <=> 2pg[c] equilibrium

9 eno 2pg[c] <=> h2o[c] + pep[c] equilibrium

10 pyk adp[c] + h[c] + pep[c] -> atp[c] + pyr[c] pyr[c], pep[c], fdp[c]

11 pdh coa[c] + nad[c] + pyr[c] -> accoa[c] + co2[c] + nadh[c] pyr[c]

Anapleurotic Reactions

12 ppc co2[c] + h2o[c] + pep[c] -> h[c] + oaa[c] + pi[c] fdp[c], pep[c], accoa[c]

TCA Cycle

13 cs accoa[c] + h2o[c] + oaa[c] -> cit[c] + coa[c] + h[c] accoa[c], oaa[c], nadh[c]

14 acont cit[c] <=> icit[c] equilibrium

15 idh icit[c] + nadp[c] <=> akg[c] + co2[c] + nadph[c] icit[c]

16 akgdh akg[c] + coa[c] + nad[c] -> co2[c] + nadh[c] + succoa[c] akg[c], oaa[c]

17 sucoas adp[c] + pi[c] + succoa[c] <=> atp[c] + coa[c] + succ[c] equilibrium

18 sucd fad[c] + succ[c] -> fadh2[c] + fum[c] fad[c], succ[c]

19 fum fum[c] + h2o[c] <=> mal-L[c] equilibrium

20 mdh mal-L[c] + nad[c] <=> h[c] + nadh[c] + oaa[c] equilibrium

Pentose Phosphate Pathway

21 g6pdh g6p[c] + nadp[c] <=> 6pgl[c] + h[c] + nadph[c] g6p[c], nadph[c]

22 gnd 6pgc[c] + nadp[c] -> co2[c] + nadph[c] + ru5p-D[c] 6pgc[c], nadph[c]

23 rpi ru5p-D[c] <=> r5p[c] equilibrium

24 rpe ru5p-D[c] <=> xu5p-D[c] equilibrium

25 tkt1 r5p[c] + xu5p-D[c] <=> g3p[c] + s7p[c] equilibrium

26 tala g3p[c] + s7p[c] <=> e4p[c] + f6p[c] equilibrium

Energy Metabolism

27 fadh2ox adp[c] + fadh2[c] -> atp[c] + fad[c] fadh2[c]

28 nadhox 2 adp[c] + nadh[c] -> 2 atp[c] + nad[c] nadh[c]

29 ATPase atp[c] <=> adp[c] atp[c]

30 µ see Table A.12
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A.8. Biomass composition

Table A.11.: Biosynthetic demand of E. coli iJR904 given in mmol gDW
-1.

Amount ID Name
0.488 ala-L[c] L-Alanine
0.281 arg-L[c] L-Arginine
0.229 asn-L[c] L-Asparagine
0.229 asp-L[c] L-Asparatat
0.087 cys-L[c] L-Cysteine
0.25 gln-L[c] L-Glutamine
0.25 glu-L[c] L-Glutamate
0.582 gly[c] Glycine
0.09 his-L[c] L-Histidine
0.276 ile-L[c] L-Isoleucine
0.428 leu-L[c] L-Leucine
0.326 lys-L[c] L-Lysine
0.146 met-L[c] L-Methionine
0.176 phe-L[c] L-Phenylalanine
0.21 pro-L[c] L-Proline
0.205 ser-L[c] L-Serine
0.241 thr-L[c] L-Threonine
0.054 trp-L[c] L-Tryptophan
0.131 tyr-L[c] L-Tyrosine
0.402 val-L[c] L-Valine
0.05 5mthf[c] 5-Methyltetrahydrofolate

0.000129 clpn-EC[c] Cardiolipin-Ecoli
0.154 glycogen[c] glycogen
0.0084 lps-EC[c] lipopolysaccharide-Ecoli

0.001935 pe-EC[c] Phosphatidylethanolamine-ecoli
0.0276 peptido-EC[c] Peptidoglycan-subunit-of-Escherichia-coli

0.000464 pg-EC[c] Phosphatidylglycerol-Ecoli
5.2e-005 ps-EC[c] phosphatidylserine-Ecoli
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Amount ID Name
0.035 ptrc[c] Putrescine
0.007 spmd[c] Spermidine
0.003 udpg[c] UDPglucose
0.136 utp[c] UTP

45.7318 atp[c] ATP
0.126 ctp[c] CTP
0.203 gtp[c] GTP
0.0247 datp[c] dATP
0.0254 dctp[c] dCTP
0.0254 dgtp[c] dGTP
0.0247 dttp[c] dTTP
0.001 amp[c] AMP

0.00215 nad[c] NAD
0.00005 nadh[c] NADH
0.00013 nadp[c] NADP
0.0004 nadph[c] NADPH
0.00001 fad[c] FAD
0.000003 succoa[c] succoa[c]
0.00005 accoa[c] accoa[c]
0.000006 coa[c] coa[c]
45.5608 h2o[c] h2o[c]

Table A.12.: Biomass synthetic precursors according to Wiback et al. (2004) and fraction of
carbon moles ϕi of precursor i.

Metabolite mmol gDW
-1 ϕi

G6P 0.2 0.14
F6P 0.1 0.14
R5P 0.9 0.12
E4P 0.4 0.09
GAP 0.1 0.07
3PG 1.5 0.07
PEP 0.5 0.07
PYR 2.8 0.07

AcCoA 3.7 0.05
OAA 1.8 0.09
AKG 1.1 0.12
Succ trace -
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A.9. Proteome analysis (2-DE gels)

Methods

Sampling
Approximately 10 mL culture broth was withdrawn and rapidly chilled on pre-cooled test
tubes. Cells were separated (4500 g, 10 min, 4◦C) and the cell pellet was washed in 10
mL PBS buffer. Cells were again separated (4500 g, 10 min, 4◦C), resuspended in 1 mL
PBS buffer and transfered into pre-weighted 2 mL test tubes. Again, cells were separated
(10,000 g, 10 min, 4◦C). The weight of the cell pellet was determined before it was frozen
in liquid nitrogen and stored at -80◦C.

Cell Lysis
The cell lysis of the samples was performed by ultrasonication in presence of protease
inhibitors and CHAPS in phosphate buffer. For the isoelectric focusing (IEF, first di-
mension separation) of the proteins urea and thiourea were added to the sample to a
final concentration of 7 M and 2 M, respectively. To denature the proteins 65 mM DTT
was added. The homogenate was centrifuged (30 min, 226,000 g, 25◦C). The resulting
supernatant was used for proteome comparison, while the pellet consisting of cell debris
and buffer insoluble proteins was not used for further analysis and stored at -70◦C.

Protein Samples
The sample was diluted in sample buffer containing 4% CHAPS, protease inhibitor, 65mM
DTT, 7M urea and 2M thiourea.

Protein Quantification
The protein amount of the sample prior to 2D gel electrophoresis was determined. Each
sample was measured as duplicate. The sample was then supplemented with carrier
ampholytes to give a final concentration of 2%.

Isoelectric Focusing
IEF was performed using 40 cm rod gels containing 9 M urea, 3.5% acrylamide, 0.3%
piperazine diacrylamide and a total of 4 % carrier ampholytes pH 2-11. The samples were
applied onto the IEF gels at the anodic side of the tube gels. The proteins were focused
under nonequilibrium pH gradient electrophoresis conditions (NEPHGE).

20 cm SDS-PAGE for 2D Gel Electrophoresis
The IEF gels were applied onto SDS gels of 0.75x250x300 mm3 containing 15% acrylamide
and 0.2% bis-acrylamide using the IEF gels as stacking gels. The proteins were separated
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according to their apparent molecular weight in a continuous buffer system (25 mM Tris,
192 mM glycine, and 0.1% SDS). The separated proteins were stained with silver to
achieve highest sensitivity.
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Figure A.5.: Overlay of false-color images of gels from protein samples from the fed-batch process
(24h) and directly after transfer to the lab-scale fermenter. Unchanged spots appear black,
whereas changes appear orange or blue.
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Figure A.6.: Overlay of false-color images of gels from protein samples from the fed-batch process
(24h) and the fed-batch RMT experiment with glucose after 18 min. Unchanged spots appear
black, whereas changes appear orange or blue.
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Figure A.7.: Overlay of false-color images of gels from protein samples from the fed-batch process
(24h) and the fed-batch RMT experiment with succinate after 18 min. Unchanged spots appear
black, whereas changes appear orange or blue.
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Figure A.8.: Overlay of false-color images of gels from protein samples from the fed-batch process
(24h) and the fed-batch RMT experiment with pyruvate after 18 min. Unchanged spots appear
black, whereas changes appear orange or blue.
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A.10. Fluxes in batch RMT experiments

Table A.13.: Metabolic fluxes estimated with flux balance analysis vFBA and stoichiometric
metabolite balancing vMFA (in mmol gDW

-1 h-1) in the fed-batch process (FB) and batch RMT
experiments.

Reaction Model FB GLC PYR SUC AC
Glycolysis

PTS vFBA 1.21 5.45 0.00 0.00 0.00
vMFA 1.21 5.45 0.00 0.00 0.00

pgi vFBA 1.16 2.98 -0.05 -0.34 0.00
vMFA 1.04 4.65 -0.42 -0.16 0.00

pfk vFBA 1.08 4.00 0.00 0.00 0.00
vMFA 1.07 4.78 -0.35 -0.14 0.00

fbp vFBA 0.00 0.00 0.31 0.25 0.00
vMFA - - - -

fba vFBA 1.08 4.00 -0.31 -0.25 0.00
vMFA 1.07 4.78 -0.35 -0.14 0.00

tpi vFBA 1.07 3.93 -0.36 -0.27 0.00
vMFA - - - -

gapd vFBA 2.15 8.64 -0.78 -0.49 0.00
vMFA 2.12 9.48 -0.74 -0.29 0.00

pgk vFBA 2.15 8.64 -0.78 -0.49 0.00
vMFA - - - -

pgm vFBA 1.98 7.66 -1.25 -0.72 0.00
vMFA - - - -

eno vFBA 1.98 7.66 -1.25 -0.72 0.00
vMFA 1.98 8.81 -1.09 -0.43 0.00

pyk vFBA 0.51 0.73 0.00 2.49 0.00
vMFA 0.45 1.85 -1.88 2.98 0.00

pps vFBA 0.00 0.00 2.17 0.00 0.00
vMFA - - - -

pdh vFBA 1.50 3.88 6.52 2.13 0.00
vMFA 1.39 4.81 6.83 2.72 0.00
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Reaction Model FB GLK PYR SUC AC
Anapleurotic reactions

ppc vFBA 0.19 1.07 0.69 0.00 0.00
vMFA 0.27 1.29 0.67 -3.45 0.00

ppck vFBA 0.00 0.00 0.00 3.33 0.00
vMFA - - - -

TCA Cycle
cs vFBA 1.25 2.77 4.25 1.71 4.50

vMFA 1.04 3.67 4.53 2.38 4.50
acont vFBA 1.25 2.77 4.25 1.71 4.50

vMFA 1.04 3.67 4.53 2.38 4.50
icdh vFBA 1.25 2.77 4.25 1.71 4.50

vMFA 1.04 3.67 4.53 2.38 4.50
akgdh vFBA 1.16 2.26 3.96 1.36 4.50

vMFA 0.94 3.18 4.27 2.08 4.50
sucoas vFBA 1.12 2.03 3.83 1.29 4.50

vMFA 0.94 3.18 4.27 2.08 4.50
sucd vFBA 1.19 2.43 3.97 5.45 4.50

vMFA 0.94 3.18 4.27 6.17 4.50
fum vFBA 1.24 2.74 4.23 5.42 35.42

vMFA 0.94 3.18 4.27 6.00 4.50
mdh vFBA 1.24 2.76 4.24 5.42 35.42

vMFA 0.94 3.18 4.27 6.00 4.50
Pentose Phosphate Pathway

g6pdh vFBA 0.04 2.39 0.00 0.32 0.00
vMFA 0.16 0.76 0.39 0.16 0.00

gnd vFBA 0.04 2.39 0.00 0.32 0.00
vMFA - - - -

rpi vFBA 0.10 1.30 0.23 0.21 0.00
vMFA 0.12 0.58 0.30 0.12 0.00

rpe vFBA -0.07 1.06 -0.24 0.10 0.00
vMFA 0.04 0.18 0.09 0.04 0.00

tkt1 vFBA -0.02 0.63 -0.07 0.08 0.00
vMFA 0.04 0.18 0.09 0.04 0.00

tkt2 vFBA -0.05 0.43 -0.18 0.02 0.00
vMFA - - - -

tala vFBA -0.02 0.62 -0.07 0.08 0.00
vMFA 0.04 0.18 0.09 0.04 0.00

Oxidative Phosphorylation
sucd4 vFBA 1.19 2.43 3.97 5.45 4.50
nadh6 vFBA 6.29 18.91 14.46 8.78 13.50
cytbd vFBA 7.51 21.34 18.52 14.29 0.00
thd vFBA 0.00 0.00 0.18 0.00 26.42
atps vFBA 10.01 28.42 23.35 16.23 7.60

NADP(H) oxidation vMFA 5.17 17.79 17.04 14.31 15.75
Biomass Flux

Biomass vMFA 0.09 0.44 0.23 0.09 0.00
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A.11. Fluxes in fed-batch RMT experiments

A.11.1. Glucose (aerobic)

Table A.14.: Metabolic fluxes estimated with flux balance analysis vFBA and stoichiometric
metabolite balancing vMFA (in mmol gDW

-1 h-1) in the fed-batch process (FB) and the aerobic
fed-batch RMT experiment with three feeding rates of glucose A, B and C.

Reaction Model FB A B C
Glycolysis

pts vFBA 1.21 3.24 2.16 1.08
vMFA 1.21 3.24 2.16 1.08

pgi vFBA 1.16 2.21 1.61 1.07
vMFA 1.04 2.81 1.89 0.97

pfk vFBA 1.08 2.57 1.75 1.00
vMFA 1.07 2.88 1.93 0.99

fbp vFBA 0.00 0.00 0.00 0.00
vMFA - - - -

fba vFBA 1.08 2.57 1.75 1.00
vMFA 1.07 2.88 1.93 0.99

tpi vFBA 1.07 2.53 1.72 0.99
vMFA - - - -

gapd vFBA 2.15 5.39 3.62 1.97
vMFA 2.12 5.72 3.84 1.97

pgk vFBA 2.15 5.39 3.62 1.97
vMFA - - - -

pgm vFBA 1.98 4.88 3.27 1.85
vMFA - - - -

eno vFBA 1.98 4.88 3.27 1.85
vMFA 1.98 5.36 3.61 1.88

pyk vFBA 0.51 0.87 0.58 0.58
vMFA 0.45 1.31 0.94 0.60

pps vFBA 0.00 0.00 0.00 0.00
vMFA - - - -

pdh vFBA 1.50 2.99 2.11 1.25
vMFA 1.39 3.31 2.43 1.23
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Reaction Model FB A B C
Anapleurotic reactions

ppc vFBA 0.19 0.56 0.38 0.14
vMFA 0.27 0.69 0.44 0.17

ppck vFBA 0.00 0.00 0.00 0.00
vMFA - - - -
TCA Cycle

cs vFBA 1.25 1.96 1.65 1.14
vMFA 1.04 2.25 1.99 1.10

acont vFBA 1.25 1.96 1.65 1.14
vMFA 1.04 2.25 1.99 1.10

icdh vFBA 1.25 1.96 1.65 1.14
vMFA 1.04 2.25 1.99 1.10

akgdh vFBA 1.16 1.70 1.47 1.07
vMFA 0.94 1.99 1.83 1.03

sucoas vFBA 1.12 1.58 1.39 1.05
vMFA 0.94 1.99 1.83 1.03

sucd vFBA 1.19 1.71 1.47 1.07
vMFA 0.94 1.99 1.83 1.03

fum vFBA 1.24 1.95 1.64 1.13
vMFA 0.94 1.99 1.83 1.03

mdh vFBA 1.24 1.96 1.65 1.14
vMFA 0.94 1.99 1.83 1.03

Pentose Phosphate Pathway
g6pdh vFBA 0.04 0.98 0.52 0.00

vMFA 0.16 0.40 0.26 0.10
gnd vFBA 0.04 0.98 0.52 0.00

vMFA - - - -
rpi vFBA 0.10 0.59 0.36 0.06

vMFA 0.12 0.31 0.20 0.08
rpe vFBA -0.07 0.38 0.16 -0.07

vMFA 0.04 0.10 0.06 0.02
tkt1 vFBA -0.02 0.24 0.12 -0.02

vMFA 0.04 0.10 0.06 0.02
tkt2 vFBA -0.05 0.14 0.04 -0.05

vMFA - - - -
tala vFBA -0.02 0.24 0.11 -0.02

vMFA 0.04 0.10 0.06 0.02
Oxidative Phosphorylation

sucd4 vFBA 1.19 1.71 1.47 1.07
nadh6 vFBA 6.29 11.25 9.08 5.42
cytbd vFBA 7.51 13.04 10.61 6.51
thd vFBA 0.00 0.00 0.00 0.00
atps vFBA 10.01 17.44 14.14 8.64

NADP(H) oxidation vMFA 5.17 10.40 9.82 5.41
Biomass Flux

Biomass vMFA 0.09 0.24 0.15 0.06
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A.11.2. Pyruvate

Table A.15.: Metabolic fluxes estimated with flux balance analysis vFBA and stoichiometric
metabolite balancing vMFA (in mmol gDW

-1 h-1) in the fed-batch process (FB) and the fed-batch
RMT experiment with three feeding rates of pyruvate A, B and C.

Reaction Model FB A B C
Glycolysis

pts vFBA 1.21 0.00 0.00 0.00
vMFA 1.21 0.00 0.00 0.00

pgi vFBA 1.16 -0.03 -0.02 -0.01
vMFA 1.04 -0.38 -0.25 -0.10

pfk vFBA 1.08 0.00 0.00 0.00
vMFA 1.07 -0.32 -0.21 -0.09

fbp vFBA 0.00 0.18 0.12 0.04
vMFA - - - -

fba vFBA 1.08 -0.18 -0.12 -0.04
vMFA 1.07 -0.32 -0.21 -0.09

tpi vFBA 1.07 -0.21 -0.14 -0.04
vMFA - - - -

gapd vFBA 2.15 -0.49 -0.33 -0.10
vMFA 2.12 -0.68 -0.44 -0.18

pgk vFBA 2.15 -0.49 -0.33 -0.10
vMFA - - - -

pgm vFBA 1.98 -0.77 -0.52 -0.16
vMFA - - - -

eno vFBA 1.98 -0.77 -0.52 -0.16
vMFA 1.98 -1.00 -0.65 -0.27

pyk vFBA 0.51 0.00 0.00 0.00
vMFA 0.45 -1.72 -1.12 -0.47

pps vFBA 0.00 1.41 0.95 0.30
vMFA - - - -

pdh vFBA 1.50 3.83 3.04 1.63
vMFA 1.39 3.40 2.81 1.40
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Reaction Model FB A B C
Anapleurotic reactions

ppc vFBA 0.19 0.49 0.33 0.10
vMFA 0.27 0.62 0.40 0.17

ppck vFBA 0.00 0.00 0.00 0.00
vMFA - - - -
TCA Cycle

cs vFBA 1.25 3.49 2.69 1.52
vMFA 1.04 2.80 2.30 1.19

acont vFBA 1.25 3.49 2.69 1.52
vMFA 1.04 2.80 2.30 1.19

icdh vFBA 1.25 3.49 2.69 1.52
vMFA 1.04 2.80 2.30 1.19

akgdh vFBA 1.16 3.30 2.57 1.48
vMFA 0.94 2.57 2.14 1.12

sucoas vFBA 1.12 3.22 2.51 1.47
vMFA 0.94 2.57 2.14 1.12

sucd vFBA 1.19 3.31 2.57 1.50
vMFA 0.94 2.57 2.14 1.12

fum vFBA 1.24 3.48 2.69 1.52
vMFA 0.94 2.57 2.14 1.12

mdh vFBA 1.24 3.49 2.69 1.52
vMFA 0.94 2.57 2.14 1.12

Pentose Phosphate Pathway
g6pdh vFBA 0.04 0.00 0.00 0.00

vMFA 0.16 0.36 0.24 0.10
gnd vFBA 0.04 0.00 0.00 0.00

vMFA - - - -
rpi vFBA 0.10 0.13 0.09 0.03

vMFA 0.12 0.28 0.18 0.08
rpe vFBA -0.07 -0.14 -0.09 -0.03

vMFA 0.04 0.09 0.06 0.02
tkt1 vFBA -0.02 -0.03 -0.02 -0.01

vMFA 0.04 0.09 0.06 0.02
tkt2 vFBA -0.05 -0.11 -0.07 -0.02

vMFA - - - -
tala vFBA -0.02 -0.04 -0.02 -0.01

vMFA 0.04 0.09 0.06 0.02
Oxidative Phosphorylation

sucd4 vFBA 1.19 3.31 2.57 1.50
nadh6 vFBA 6.29 11.05 8.92 5.52
cytbd vFBA 7.51 14.42 11.53 7.02
thd vFBA 0.00 0.00 0.00 0.00
atps vFBA 10.01 18.06 14.73 9.13

NADP(H) oxidation vMFA 5.17 8.06 7.48 4.15
Biomass Flux

Biomass vMFA 0.09 0.21 0.14 0.06
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A.11.3. Succinate

Table A.16.: Metabolic fluxes estimated with flux balance analysis vFBA and stoichiometric
metabolite balancing vMFA (in mmol gDW

-1 h-1) in the fed-batch process (FB) and the fed-batch
RMT experiment with three feeding rates of succinate A, B and C.

Reaction Model FB A B C
Glycolysis

pts vFBA 1.21 0.00 0.00 0.00
vMFA 1.21 0.00 0.00 0.00

pgi vFBA 1.16 -0.03 -0.01 0.00
vMFA 1.04 -0.21 -0.15 -0.04

pfk vFBA 1.08 0.00 0.00 0.00
vMFA 1.07 -0.17 -0.12 -0.03

fbp vFBA 0.00 0.09 0.05 0.00
vMFA - - - -

fba vFBA 1.08 -0.09 -0.05 0.00
vMFA 1.07 -0.17 -0.12 -0.03

tpi vFBA 1.07 -0.11 -0.05 0.00
vMFA - - - -

gapd vFBA 2.15 -0.23 -0.13 -0.01
vMFA 2.12 -0.37 -0.26 -0.07

pgk vFBA 2.15 -0.23 -0.13 -0.01
vMFA - - - -

pgm vFBA 1.98 -0.37 -0.20 -0.02
vMFA - - - -

eno vFBA 1.98 -0.37 -0.20 -0.02
vMFA 1.98 -0.54 -0.39 -0.11

pyk vFBA 0.51 1.81 1.35 0.83
vMFA 0.45 1.54 1.05 0.67

pps vFBA 0.00 0.00 0.00 0.00
vMFA - - - -

pdh vFBA 1.50 1.59 1.23 0.82
vMFA 1.39 1.22 0.82 0.61
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Reaction Model FB A B C
Anapleurotic reactions

ppc vFBA 0.19 0.00 0.00 0.00
vMFA 0.27 -2.14 -1.48 -0.79

ppck vFBA 0.00 2.25 1.59 0.85
vMFA - - - -
TCA Cycle

cs vFBA 1.25 1.35 1.10 0.81
vMFA 1.04 0.79 0.52 0.53

acont vFBA 1.25 1.35 1.10 0.81
vMFA 1.04 0.79 0.52 0.53

icdh vFBA 1.25 1.35 1.10 0.81
vMFA 1.04 0.79 0.52 0.53

akgdh vFBA 1.16 1.26 1.05 0.80
vMFA 0.94 0.67 0.43 0.50

sucoas vFBA 1.12 1.22 1.03 0.80
vMFA 0.94 0.67 0.43 0.50

sucd vFBA 1.19 3.77 2.78 1.66
vMFA 0.94 3.15 2.15 1.36

fum vFBA 1.24 3.82 2.81 1.67
vMFA 0.94 3.15 2.15 1.36

mdh vFBA 1.24 3.82 2.81 1.67
vMFA 0.94 3.15 2.15 1.36

Pentose Phosphate Pathway
g6pdh vFBA 0.04 0.02 0.00 0.00

vMFA 0.16 0.20 0.14 0.04
gnd vFBA 0.04 0.02 0.00 0.00

vMFA - - - -
rpi vFBA 0.10 0.07 0.03 0.00

vMFA 0.12 0.15 0.11 0.03
rpe vFBA -0.07 -0.05 -0.04 0.00

vMFA 0.04 0.05 0.03 0.01
tkt1 vFBA -0.02 -0.01 -0.01 0.00

vMFA 0.04 0.05 0.03 0.01
tkt2 vFBA -0.05 -0.04 -0.03 0.00

vMFA - - - -
tala vFBA -0.02 -0.01 -0.01 0.00

vMFA 0.04 0.05 0.03 0.01
Oxidative Phosphorylation

sucd4 vFBA 1.19 3.77 2.78 1.66
nadh6 vFBA 6.29 6.65 5.42 4.03
cytbd vFBA 7.51 10.43 8.20 5.69
thd vFBA 0.00 0.00 0.00 0.00
atps vFBA 10.01 12.14 9.75 7.07

NADP(H) oxidation vMFA 5.17 4.91 3.22 3.19
Biomass Flux

Biomass vMFA 0.09 0.12 0.08 0.02
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A.11.4. Glucose (anaerobic)

Table A.17.: Metabolic fluxes estimated with flux balance analysis vFBA and stoichiometric
metabolite balancing vMFA (in mmol gDW

-1 h-1) in the fed-batch process (FB) and the anaerobic
fed-batch RMT experiment with three feeding rates of glucose A, B and C.

Reaction Model FB A B C
Glycolysis

pts vFBA 1.21 3.01 1.94 0.96
vMFA 1.21 3.01 1.94 0.96

pgi vFBA 1.16 3.01 1.94 0.96
vMFA 1.04 2.89 1.87 0.94

pfk vFBA 1.08 3.00 1.93 0.96
vMFA 1.07 2.91 1.88 0.94

fbp vFBA 0.00 0.00 0.00 0.00
vMFA - - - -

fba vFBA 1.08 3.00 1.93 0.96
vMFA 1.07 2.91 1.88 0.94

tpi vFBA 1.07 3.00 1.93 0.96
vMFA - - - -

gapd vFBA 2.15 6.00 3.87 1.91
vMFA 2.12 5.80 3.75 1.88

pgk vFBA 2.15 6.00 3.87 1.91
vMFA - - - -

pgm vFBA 1.98 5.98 3.86 1.91
vMFA - - - -

eno vFBA 1.98 5.98 3.86 1.91
vMFA 1.98 5.70 3.69 1.87

pyk vFBA 0.51 2.95 1.90 0.94
vMFA 0.45 2.45 1.62 0.87

pps vFBA 0.00 0.00 0.00 0.00
vMFA - - - -

pdh vFBA 1.50 0.00 0.00 0.00
vMFA 1.39 0.16 0.24 0.24
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Reaction Model FB GLK PYR SUC AC
Anapleurotic reactions

ppc vFBA 0.19 0.02 0.01 0.01
vMFA 0.27 0.20 0.11 0.03

ppck vFBA 0.00 0.00 0.00 0.00
vMFA - - - -
TCA Cycle

cs vFBA 1.25 0.01 0.01 0.00
vMFA 1.04 0.00 -0.08 -0.11

acont vFBA 1.25 0.01 0.01 0.00
vMFA 1.04 0.00 -0.08 -0.11

icdh vFBA 1.25 0.01 0.01 0.00
vMFA 1.04 0.00 -0.08 -0.11

akgdh vFBA 1.16 0.00 0.00 0.00
vMFA 0.94 -0.08 -0.12 -0.12

sucoas vFBA 1.12 0.00 0.00 0.00
vMFA 0.94 -0.08 -0.12 -0.12

sucd vFBA 1.19 0.00 0.00 0.00
vMFA 0.94 -0.08 -0.12 -0.12

fum vFBA 1.24 0.01 0.00 0.00
vMFA 0.94 -0.08 -0.12 -0.12

mdh vFBA 1.24 0.01 0.00 0.00
vMFA 0.94 -0.08 -0.12 -0.12

Pentose Phosphate Pathway
g6pdh vFBA 0.04 0.00 0.00 0.00

vMFA 0.16 0.12 0.07 0.02
gnd vFBA 0.04 0.00 0.00 0.00

vMFA - - - -
rpi vFBA 0.10 0.01 0.00 0.00

vMFA 0.12 0.09 0.05 0.02
rpe vFBA -0.07 -0.01 0.00 0.00

vMFA 0.04 0.03 0.02 0.00
tkt1 vFBA -0.02 0.00 0.00 0.00

vMFA 0.04 0.03 0.02 0.00
tkt2 vFBA -0.05 -0.01 0.00 0.00

vMFA - - - -
tala vFBA -0.02 0.00 0.00 0.00

vMFA 0.04 0.03 0.02 0.00
Oxidative Phosphorylation

sucd4 vFBA 1.19 0.00 0.00 0.00
nadh6 vFBA 6.29 0.00 0.00 0.00
cytbd vFBA 7.51 0.00 0.00 0.00
thd vFBA 0.00 0.12 0.08 0.04
atps vFBA 10.01 -0.82 -0.53 -0.26

NADP(H) oxidation vMFA 5.17 -0.71 -0.42 -0.22
Biomass Flux

Biomass vMFA 0.09 0.07 0.04 0.01
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