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Abstract

We study the hadronic production of strongly interacting SUSY particles in the

framework of the MSSM. In particular, we consider top-squark pair, gluino–

squark pair, and same sign squark-squark pair production processes. Aiming at

precise theoretical predictions, we calculate the cross section contributions of

electroweak origin up to the one-loop level. We find sizable effects both from

tree-level electroweak subprocesses and next-to-leading order electroweak cor-

rections, reaching the 20% level in kinematical distributions.

In a second part of this thesis, we investigate the phenomenology of R-parity vio-

lating B3 SUSY models with the lightest stau (τ̃1) being the LSP. We analyze

the possible τ̃1 decay modes, taking into account the dynamical generation of

non-zero R-parity violating couplings at lower scales. As an application of our

studies which is interesting for experiments at particle accelators, we discuss sin-

gle slepton production at the LHC and give numerical results for single smuon

production.

Zusammenfassung

Wir beschäftigen uns mit der hadronischen Paarerzeugung stark wechselwir-

kender SUSY-Teilchen im Rahmen des MSSM und betrachten insbesondere die

Produktion von Top-Squark Paaren, Gluino–Squark Paaren und gleichgelade-

nen Squark–Squark Paaren. Um möglichst präzise theoretische Vorhersagen zu

erreichen, berechnen wir die elektroschwachen Beiträge zu den Produktionswir-

kungsquerschnitten. Dabei ziehen wir sowohl elektroschwach-induzierte Prozes-

se auf Born-Niveau als auch elektroschwache Quantenkorrekturen nächstfüh-

render Ordnung in Betracht. Die größte Bedeutung erreichen diese Beiträge in

kinematischen Verteilungen, wo sie bis auf 20% anwachsen können.

In einem zweiten Teil der Arbeit untersuchen wir die Phänomenologie R-Pari-

tät-verletzender B3 supersymmetrischer Modelle, in denen das leichteste Stau

(τ̃1) das leichteste SUSY Teilchen ist. Wir analysieren die möglichen τ̃1-Zerfalls-

moden und berücksichtigen dabei auch weitere, dynamisch erzeugte R-parität-

verletzende Kopplungen. Als eine für Experimente an Teilchenbeschleunigern

interessante Anwendung unserer Studien diskutieren wir die Resonanzproduk-

tion von Sleptonen am LHC und werten die Ergebnisse für die Resonanzpro-

duktion von Smyonen numerisch aus.

i



ii



Contents

1. Introduction 1

2. Theoretical framework 5

2.1. The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Basic ideas and motivation . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Theoretical concepts of supersymmetry . . . . . . . . . . . . . . . . . 13

2.3. The minimal supersymmetric extension of the Standard Model (MSSM) . . 21

2.3.1. Field content of the MSSM . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2. R-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3. The MSSM Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4. The particle spectrum of the MSSM . . . . . . . . . . . . . . . . . . 29

3. Production of colored SUSY particles at hadron colliders 41

3.1. Experimental searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1. Light-flavor squarks and gluinos . . . . . . . . . . . . . . . . . . . . . 43

3.1.2. Top-squarks (stops) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3. Prospects for LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. Hadronic cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3. Classification of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1. Squark and gluino production at LO . . . . . . . . . . . . . . . . . . 50

3.3.2. Higher-order QCD corrections . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3. Electroweak contributions . . . . . . . . . . . . . . . . . . . . . . . . 54

4. How to obtain a finite result at O(α2
sα) 59

4.1. Handling ultraviolet singularities . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1. Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2. Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3. Renormalization for squark and gluino pair production at O(α2
sα) . 63

4.2. Handling infrared singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1. Real photon bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . 77

iii



Contents

4.2.2. Real gluon bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3. Real quark bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . 89

5. Stop–anti-stop production 91

5.1. LO cross sections and notations . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2. Electroweak contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1. Tree-level EW contributions . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2. Virtual corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.3. Real photon and real gluon corrections . . . . . . . . . . . . . . . . . 100

5.2.4. Real quark radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1. Input parameters and conventions . . . . . . . . . . . . . . . . . . . 107

5.3.2. Hadronic cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3. Differential distributions . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.4. Dependence on SUSY parameters . . . . . . . . . . . . . . . . . . . . 116

5.3.5. Production of t̃2t̃
∗
2 pairs . . . . . . . . . . . . . . . . . . . . . . . . . 121

6. Gluino–squark production 125

6.1. LO cross section and conventions . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2. Electroweak contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.1. Tree-level EW contributions . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.2. Virtual corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.3. Real photon corrections . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.4. Real quark radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.1. Hadronic cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.2. Differential distributions . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.3. Dependence on SUSY parameters . . . . . . . . . . . . . . . . . . . . 142

7. Diagonal squark–squark production 147

7.1. LO cross sections and notations . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2. Electroweak contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2.1. Tree-level EW contributions . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.2. Virtual corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.3. Real photon and real gluon corrections . . . . . . . . . . . . . . . . . 155

7.2.4. Real quark radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.1. Hadronic cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3.2. Differential distributions . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4. Outlook: non-diagonal and mixed-flavor squark–squark production . . . . . 165

iv



Contents

8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle 169

8.1. The low-energy spectrum of the B3 mSUGRA model with a τ̃1 LSP . . . . . 172

8.1.1. SUSY particle spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.1.2. Reference scenarios with a τ̃1 LSP . . . . . . . . . . . . . . . . . . . 174

8.1.3. Renormalization group equations . . . . . . . . . . . . . . . . . . . . 175

8.2. τ̃1 LSP decays in B3 mSUGRA models . . . . . . . . . . . . . . . . . . . . . 181

8.2.1. General LSP decay modes . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2.2. Dependence of τ̃1 decays on mSUGRA parameters . . . . . . . . . . 183

8.3. Resonant single slepton production at the LHC . . . . . . . . . . . . . . . . 188

8.3.1. Slepton production and slepton decays . . . . . . . . . . . . . . . . . 189

8.3.2. Single smuon production: An explicit numerical example . . . . . . . 193

9. Conclusions 203

A. Notations and definitions 207

A.1. Metric conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.2. Dirac and Pauli matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.3. Weyl spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.4. Dirac and Majorana spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.5. Grassmann numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B. Input parameters for numerical cross section computations 213

B.1. Standard Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B.2. MSSM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B.3. SPS benchmark points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C. Slepton production and decay in specific B3 mSUGRA models 219

C.1. Cross sections and branching ratios . . . . . . . . . . . . . . . . . . . . . . . 219

C.2. The B3 slepton decay ℓ̃−i → W−b̄dk . . . . . . . . . . . . . . . . . . . . . . . 221

Bibliography I

Acknowledgments XVI

v



vi



Chapter 1

Introduction

The Standard Model of elementary particle physics (SM) [1–4] has been proven to success-

fully describe all observed particles and their electroweak and strong interactions. Despite

the excellent agreement between the theoretical predictions and experimental data [5], there

remain unresolved issues such as the hierarchy problem, the non-unification of gauge cou-

plings or the unknown source of dark matter in the universe, which point to new physics

beyond the weak scale. It is thus widely believed that the SM is an effective theory, valid

only in the low-energy limit of a more fundamental theory describing physics at arbitrarily

high energies.

Numerous candidate theories of physics beyond the SM have been elaborated in the past.

In this thesis we delve into the possibility of extending the SM in a supersymmetric way.

Imposing a symmetry between fermionic and bosonic states, supersymmetry (SUSY) [6,7]

predicts new partner particles to every known particle that only differ in spin by half a

unit. If SUSY was an exact symmetry, SM particles and their SUSY partners would be

degenerate in mass. But no SUSY particle has been observed so far. In order to comply

with present data, the possibly new particles have to be massive in comparison to their SM

counterparts and supersymmetry has to be broken at low energies.

Supersymmetry, and in particular if it is realized around the weak scale, is very attractive

from the phenomenological point of view. Owing to the existence of new particles obeying

opposite spin statistics, it allows for a stabilization of the large hierarchy between the Planck

scale and the electroweak scale [8] and for a consistent unification of SM gauge couplings at

high energies [9]. In addition, if the lightest SUSY particle is stable, SUSY provides a dark

matter candidate and can account for the observed cold dark matter relic density [10,11].

The search for SUSY particles is one of the major topics in the experimental program of

particle physics. In the low-energy region, electroweak and B-physics precision observables

provide a powerful tool for testing the consistency of SM predictions with data. Since

new particles would enter the theoretical evaluations via virtual quantum effects, it is also

possible to discriminate between the SM and alternative theories. The comparison of mea-

surements with computational results of a given model allows to set indirect limits on the

1



1. Introduction

masses and couplings of the postulated particles, even if they are too heavy to be produced

directly. The minimal supersymmetric extension of the Standard Model (MSSM) [12–14]

has extensively been investigated in the past. The mass of the SM W boson, mW , and

the effective leptonic weak mixing angle, sin2 θeff., as measured at LEP, SLC, and at the

Tevatron are among the most relevant electroweak precision observables in this respect.

While strong bounds on the SUSY parameters have been derived, a certain preference for

relatively light SUSY particles has been found (see e. g. Refs. [15,16] or Ref. [17] for a re-

view). There are also low-energy observables, such as the anomalous magnetic moment of

the muon, (g − 2)µ/2, where SUSY yields a better fit to data than the SM [18].

However a decisive answer to the existence of SUSY can only be given by the direct

detection of SUSY particles produced at high-energy particle accelerators. With the im-

minent startup of the Large Hadron Collider (LHC) at CERN, it will soon be possible to

probe SUSY and its predictions at energies which were not accessible at colliders so far. If

SUSY is realized around the TeV scale, some of the SUSY particles have to be discovered

at the LHC.

A good understanding of the theory and reliable theoretical predictions are essential in-

gredients for a successful analysis of LHC data. To further investigate the phenomenology

of SUSY particle production processes at hadron colliders, the main intent of this thesis

is twofold. On the one hand we perform precise cross section calculations by taking into

account quantum effects. On the other hand we are interested in how to measure SUSY par-

ticles in accelerator experiments and examine distinctive SUSY signatures in detectors.

Among the potential SUSY discovery channels, certainly the direct production of colored

SUSY particles, squarks and gluinos, will play a key role. Since these can be produced via

the strong interaction, high production rates are expected at hadron colliders. First theo-

retical cross section predictions for squark and gluino production processes based on leading

order (LO) calculations were made already many years ago [19]. Later calculations of next-

to-leading order (NLO) in perturbative QCD [20,21] could reduce theoretical uncertainties

considerably and revealed corrections of typically 20%-30%. Considering higher-order cor-

rections to the cross sections, the corrections due to strongly interacting particles (QCD

corrections) cause the largest effects. Electroweak (EW) contributions, in comparison, are

typically suppressed from the weak coupling by at least one order of magnitude and are

often neglected. However the spectrum of weakly interacting particles in the MSSM is

broad and the interplay of EW corrections can be involved, in particular if not only QCD-

mediated but also EW-mediated production channels exist at tree-level. And including

electroweak effects in the parton evolution, a non-zero photon density is dynamically gen-

erated inside protons which opens up further photon-induced production mechanisms. The

above statement on the smallness of EW contributions thus needs not necessarily to be

true. Owing to the large amount of data that will be provided by the LHC experiments, it

seems indispensable to extend the theoretical calculations beyond one-loop in QCD in or-

2



der to compete with statistical uncertainties. Both higher-order QCD [22,23], and one-loop

EW corrections [24–27] to squark and gluino production processes are subjects of current

research. In this work, we study the production of top-squark pairs, gluino–squark pairs,

and same-sign squark–squark pairs and calculate the tree-level and one-loop cross section

contributions of electroweak origin up to O(α2
sα) in the strong and electroweak couplings.

Within the SM, given the SM particle content and gauge invariance of the theory, lepton

and baryon number are accidentally conserved. This however is not guaranteed a priori by a

supersymmetric extension of the SM. Assuming a supersymmetric SM with minimal particle

content, renormalizable lepton- and baryon-number violating operators are allowed [28,29].

If couplings of both types are present, rapid proton decay can take place [30,31]. Since this

clearly contradicts experimental observations [32], an additional symmetry is needed to

stabilize the proton. Most commonly, R-parity conservation is postulated [33], leading to

the MSSM. An alternative approach is provided by R-parity violating but baryon-number

conserving B3 supersymmetric models [34–37]. Only the final discovery of SUSY particles

will allow to draw conclusions if or how SUSY is realized in nature. It is thus crucial to

understand and distinguish between possible SUSY signatures of different SUSY models.

In a second part of this thesis, we focus on B3 models predicting the lightest stau τ̃1

as lightest supersymmetric particle and study characteristic signatures at the example of

slepton production at the LHC.

The outline of this report is as follows.

In Chapter 2 we introduce the conceptual framework of our studies. To begin with we

briefly review the Standard Model and discuss some of its open questions to motivate the

search for new physics. We then concentrate on supersymmetry, illustrate its basic ideas

and provide the necessary theoretical background to construct a SUSY Lagrangian. On

this basis, a phenomenologically viable and testable SUSY model can be built, the MSSM.

We discuss the concept of R-parity, and present in detail the field content and physical

particle spectrum of the MSSM.

The main focus of this thesis is on the calculation of EW contributions to the production

of colored SUSY particles at the LHC. In Chapter 3, we give an introductory overview of

the topic with the intention to provide a solid basis for the forthcoming process-specific

investigations. We start by reviewing the current status of experimental searches and

comment on the prospects for the LHC. Next, being a crucial ingredient in the theoretical

approach of how to calculate cross sections at hadron colliders, we introduce the parton

model and the idea of factorization. We then turn to squark and gluino production within

the MSSM and classify the possible final states. We discuss the dominant production

channels and list the contributions of QCD and EW origin up to the one-loop level.

The technical setup required for NLO calculations is explained in Chapter 4. Two types of

singularities arise in cross section computations beyond tree-level and have to be addressed.

3



1. Introduction

The momentum integrations can diverge for high internal loop momenta (UV singularities)

and if low-energetic or collinear massless particles are attached to the external particles

in loop and real radiation diagrams (IR singularities). Whereas UV singularities require a

redefinition of the free parameters of the theory (renormalization), IR singularities cancel in

sufficiently inclusive defined observables. In this chapter, we describe the general treatment

of both types of singularities. We introduce different regularization and renormalization

schemes and give methods at hand for the integration over IR singular phase-space regions.

In Chapters 5, 6, and 7 we then explicitly discuss the EW contributions up to O(α2
sα)

to stop–anti-stop (t̃at̃
∗
a), gluino–squark (g̃q̃a), and diagonal squark–squark (q̃aq̃a) pair pro-

duction processes at the LHC. The three chapters are organized in a parallel way. We first

give analytical results for the LO cross sections of O(α2
s). Second, we investigate the var-

ious EW contributions, including both tree-level EW-induced subprocesses of O(α2) and

O(αsα) and NLO EW corrections of O(α2
sα), and give details on the handling of UV and IR

singularities. In a third section, we perform numerical studies within specific (mSUGRA)

SUSY scenarios. In order to determine the impact of the EW-induced effects on the LO

results, we investigate integrated hadronic cross sections and differential distributions with

respect to kinematical variables.

Chapter 8 is devoted to the second, independent project on the phenomenology of R-

parity violating B3 SUSY models. If SUSY particles exist, they are typically much heavier

than their SM partners and at colliders will mostly decay rapidly. This leads to cascade

decay chains in the detector ending up with the lightest supersymmetric particle (LSP).

The nature of the LSP and its possible decay modes is an essential feature for all SUSY

signatures. As a consequence of R-parity violation, the LSP is not restricted from cosmo-

logical constraints to be electrically neutral [10] and regions in the SUSY parameter space

predicting charged LSPs are reopened. We consider B3 SUSY models with a τ̃1 LSP and

classify the possible τ̃1 decays and collider signatures. Assuming a single non-zero B3 cou-

pling λ′ at the GUT scale, we take into account that the renormalization group equations

of B3 couplings are coupled and that further B3 couplings can be dynamically generated at

lower scales. The results are then applied to the example of single slepton production at the

LHC and a numerical study of single smuon production is given, focussing on signatures

with like-sign dimuons and three and four muons in the final state.

Finally we summarize in Chapter 9. In the appendices, we provide a reference of defini-

tions and numerical inputs used throughout the work. In Appendix A, we briefly summarize

our conventions of spinorial calculus. More details on the definition of low-energy input

parameters for the numerical studies in Chapters 5–7 are given in Appendix B. Referring

to the B3 mSUGRA parameter sets A and B defined in Chapter 8, we list in Appendix C

explicit results for cross sections and branching ratios that are relevant in single slepton

production and decay processes.

4



Chapter 2

Theoretical framework

2.1 The Standard Model

The Standard Model of particle physics (SM) [1–4] is among the best tested theories in

physics [5]. It successfully describes all elementary particles which have been found in

experiments so far and their strong, weak, and electromagnetic interactions.

The SM is a renormalizable quantum-field theory, based on a non-Abelian gauge group of

the inner direct product SU(3)C ×SU(2)L×U(1)Y and an outer symmetry of the Poincaré

group of space-time transformations.

SU(3)C is the color gauge group of strong interactions based on the theory of QCD. The

unified electroweak group SU(2)L ×U(1)Y specifies the weak and electromagnetic interac-

tion. Within each group, the generators are hermitian matrices that obey the commutation

relations of a Lie algebra. Denoting the generators of the groups SU(3)C , SU(2)L, and

U(1)Y by T a (a = 1, . . . , 8), Ii (i = 1, . . . , 3), and Y , respectively, the algebraic properties

of the generators are given by

[T a, T b] = ifabcT c, [Ii, Ij ] = iǫijkIk, [Y, Y ] = 0, (2.1)

where the real, totally antisymmetric tensors ǫijk, fabc are the structure constants of the

gauge groups. The quantum numbers corresponding to T a define the color charge of a

particle, those of Ii the weak isospin and Y refers to the weak hypercharge. The latter are

defined such that the correct electric charge Q of a particle is recovered by the Gell-Mann–

Nishijima relation, Q = I3 + Y/2.

We classify the particles of the SM, which are described by relativistic quantum fields,

as matter, gauge, and Higgs boson fields. The constituents of matter are spin-1/2 particles

(fermions) which divide into quarks and leptons according to their transformation properties

under SU(3)C . While quarks are color-charged SU(3)C triplets, leptons are color-neutral

SU(3)C singlets and do not interact strongly. We know from experiments that there are six

types of leptons and six flavors of quarks which can be grouped into three generations of left-

handed and right-handed chiral quarks and leptons. The left-handed fermions transform

5



2. Theoretical framework

as weak isospin doublets, whereas the right-handed ones behave as singlets under SU(2)L

gauge transformations. The complete list of matter fields is1,

(

νe

e

)

L

,

(

νµ

µ

)

L

,

(

ντ

τ

)

L

, eR, µR , τR,

(

u

d

)

L

,

(

c

s

)

L

,

(

t

b

)

L

, uR, dR, cR, sR, tR, bR.

(2.2)

The gauge boson fields correspond to the generators of the gauge groups. They describe

the spin-one bosons that mediate the interactions among the SM particles. Gauge bosons

transform under the adjoint representation of the respective gauge group. As a consequence,

there exist eight gluons for the SU(3)C mediating the strong interaction, while in the

electroweak sector, there are three gauge bosons for SU(2)L, called W bosons, and one for

U(1)Y , the B boson.

The Higgs boson field is required to give masses to the gauge bosons and fermions. If the

SM was an exact gauge theory, all gauge bosons would be massless. However this contradicts

experimental observations: whereas in the strong sector the gluons do not carry masses,

there are massive gauge bosons in the electroweak sector. Explicit mass terms for both

bosons and fermions cannot be introduced into the theory without a manifest breakdown

of the invariance of the Lagrangian under local SU(2)L×U(1)Y transformations. A solution

to the problem is provided by the Higgs mechanism [40], where the masses are generated

in a gauge invariant way and where thus the renormalizability of the theory is not spoiled.

The idea is to break the SU(2)L ×U(1)Y symmetry spontaneously, by inserting additional

terms into the Lagrangian in such a way that the Lagrangian is kept invariant under

SU(2)L × U(1)Y gauge transformations while the ground state is not.

This is achieved by postulating an additional complex scalar field Φ = (φ+, φ0)T which

transforms as a SU(2)L doublet with hypercharge Y = +1. From the scalar potential,

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, the doublet field develops a non-vanishing vacuum expectation

value (VEV) for µ2 < 0, 〈0|Φ|0〉 =
√

−µ2/(2λ) ≡ v/
√

2. Expanding Φ around its VEV and

inserting it to the Lagrangian, one can see that three of the four degrees of freedom (d.o.f.)

of Φ are absorbed by the gauge bosons to form their longitudinal polarizations. As a result,

the latter acquire masses. The remaining d.o.f. corresponds to a new scalar particle, the

Higgs boson H. Defining the field Φ such that only the lower, electrical neutral component

gets a VEV, the SU(2)L×U(1)Y symmetry of the ground state is spontaneously broken but

1Right-handed neutrinos are usually not included in the SM (but can easily be accommodated) and
neutrinos are assumed to be massless. Nowadays there is experimental evidence for non-vanishing
neutrino masses from the observation of neutrino oscillations. For reviews on the phenomenology of
massive neutrinos and neutrino oscillations, see e. g. [38]. However, finite-mass effects are negligible
for the phenomenology at large colliders [39] and neutrino masses are neglected throughout this thesis.
Furthermore we assume that neutrinos appear only with their left-handed components, and consequently
only left-handed sneutrinos are considered in the SUSY sector.
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2.1. The Standard Model

a U(1)Q symmetry related to the electrical charge Q = I3 + Y/2 is preserved. The U(1)Q

gauge boson stays massless and can be identified with the photon Aµ. After electroweak

symmetry breaking, the SU(2)L and U(1)Y gauge bosons do not form mass eigenstates of

the theory any longer. The mass eigenstates are linear combinations of the gauge fields W i
µ

and Bµ and obtained by rotations,

(

Zµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)

(

W 3
µ

Bµ

)

, W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, (2.3)

where θW is the weak mixing angle, defined in terms of the SU(2)L and U(1)Y gauge

couplings g and g′, respectively, by cos θW = g/
√

g2 + g′2. The masses of the gauge bosons

are proportional to the Higgs VEV v. The charged W± bosons gain masses mW = vg/2

and the mass of the neutral Z boson is mZ = (v/2)
√

g2 + g′2. Expressed by the gauge

boson masses, the weak mixing angle reads cos θW = mW /mZ .

In analogy to the generation of masses in the gauge sector, the mechanism of sponta-

neous symmetry breaking also provides the possibility to implement fermion masses in the

Lagrangian in a gauge invariant way. Introducing SU(2)L × U(1)Y invariant Yukawa in-

teraction terms that couple the fermions to the Higgs boson (or its charged conjugate of

hypercharge Y = −1), the fermions gain masses due to the non-zero Higgs VEV. Again, the

mass eigenstates are obtained by a rotation of the weak eigenstates. Since we neglect neu-

trino masses, the mass and gauge eigenstates coincide in the leptonic sector. In the quark

sector, the rotation is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [41].

Only couplings to charged W bosons are affected by the CKM rotation, interactions medi-

ated by neutral currents do not depend on the quark mixing.

The Higgs boson is the only SM particle which has not been found in experiment so

far. Its mass (mH = 2λv2 = −2µ2) is not predicted within the SM and remains as a free

parameter of the theory. However there exist theoretical constraints on the Higgs boson

mass from the requirement of perturbativity of the SM and positivity and finiteness of the

Higgs boson self-coupling λ. A positive coupling λ is needed to ensure that the scalar Higgs

potential is bounded from below. Depending on a cutoff scale ΛC up to which the SM is

assumed to be valid, this “stability bound” gives an lower bound on the Higgs boson mass.

In order to avoid the Landau pole and to remain with a finite Higgs boson self-coupling,

upper bounds on the Higgs boson mass can be derived in turn. As a result, the Higgs boson

mass is allowed to be in the following ranges [42],

50 GeV <∼ mH <∼ 800 GeV for ΛC ∼ 103 TeV,

130 GeV <∼ mH <∼ 180 GeV for ΛC ≡ ΛGUT ∼ 1016 TeV,
(2.4)

yielding a rather strong constraint on the Higgs boson mass if the SM is required to be

valid up to the Grand Unification (GUT) scale ΛGUT. Experimentally, direct searches of

7



2. Theoretical framework

the LEP collaborations have set a lower limit on the Higgs mass from the non-observation

of the Higgs boson, mH > 114.4 GeV (at the 95% confidence level) [43]. For an extensive

review on both theoretical and experimental constraints on the Higgs boson mass we refer

the reader to e. g. [44] and references therein.

The SM as a gauge theory involves in general unphysical d.o.f. allowed by gauge in-

variance. The quantization of the theory requires a fixing of the gauge in order to avoid

equivalent field configurations. In the unitary gauge the gauge fixing is such that only

physical fields remain in the Lagrangian. This is an appropriate choice to understand the

Higgs mechanism (absorption of the would-be Goldstone bosons into the gauge bosons that

acquire masses), however it is a non-renormalizable gauge. Higher-order calculations are,

therefore, often performed in a gauge of the ’t Hooft type (Rξ gauges). The gauge fixing

then yields a cancellation of all bilinear terms in the Lagrangian that involve two different

fields. As a consequence, the gauge-boson propagators behave as ∝ 1/k2 for large internal

loop momenta k and the theory is renormalizable according to power counting [45]. In

the path-integral formalism the integral measure is changed by the Fadeev–Popov deter-

minant, which can be expressed in terms of scalar, anticommuting fields. These “Fadeev–

Popov ghost fields” compensate the unphysical d.o.f. introduced by the gauge fixing. In

the ’t Hooft–Feynman gauge (ξ = 1), the Goldstone bosons and ghosts have equal masses

to those of the corresponding physical gauge bosons.

We conclude that the SM is a consistent quantum-field theory. It is renormalizable and

free of anomalies [46]2. Therefore, it allows to calculate unique quantum corrections. With

a given finite set of input parameters, measurable quantities can be predicted order by

order in perturbation theory.

Open questions of the Standard Model

A comparison of the theoretical predictions with experimental data confirms the validity

of the SM in a convincing way: All observed particles and interactions can be described at

a very high accuracy [5], with small deviations which might be considered as normal [48].

Also quantum effects as predicted from the perturbative expansion of the SM are well

established.

Despite of its success, the SM suffers from a list of conceptual problems which point

towards some new physics beyond the SM. It is widely believed that the SM is an effective

theory, valid only in the low-energy limit of a more fundamental theory that describes

physics at arbitrarily high energies.

One of the strongest arguments against the SM as the ultimate theory is the fact that

2In principle, there are chiral or Adler-Bardeen-Jackiw anomalies [47] in the SM, which originate from
triangular fermionic loops involving axial-vector current couplings and which thus spoil its renormaliz-
ability. However, these anomalies cancel as the sum of the (hyper-)charges of all fermions within one
generation is zero.
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2.1. The Standard Model

it does not include gravitational interactions. The latter become important at energies

comparable to the Planck scale ΛPlanck ∼ 1018 GeV, and if the SM was valid up to ΛPlanck

it had to incorporate gravity in some way. In turn, if physics up to such high scales can

be described within the SM, the hierarchy problem has to be addressed. It refers to the

astonishing smallness of the electroweak scale compared to the Planck scale, mW /ΛPlanck ∼
10−16, which cannot be explained satisfactorily in the SM.

A related problem arises when taking into account radiative corrections to the Higgs

boson mass. From the electroweak symmetry breaking, we naturally expect the Higgs boson

mass to be of the order of the weak scale (cf. Eq. (2.4)). However fermions, massive gauge

bosons, and the Higgs boson itself give direct and indirect loop contributions to the Higgs

boson self-energy and the (bare) Higgs boson mass squared gets huge corrections, m2
H =

(m0
H)2+∆m2

H . The corrections ∆m2
H can be regularized by introducing an UV momentum

cutoff ΛUV (see Section 4.1 for details about regularization and renormalization), yielding

∆m2
H = Λ2

UV

∞
∑

n=0

cn logn

(

ΛUV

µR

)

, (2.5)

where µR is the renormalization scale. The coefficients cn are functions of the masses of the

particles running in the loops and of their couplings to the Higgs boson3. In contrast to the

logarithmically divergent self-energy contributions to fermions and gauge bosons, the Higgs

boson mass corrections depend quadratically on the cutoff scale ΛUV . This scale can be

identified as the scale up to which the SM is valid and where new physics enters. Naively,

one would expect from Eq. (2.5) a Higgs boson mass of the order of the cutoff scale ΛUV .

If ΛUV is very large, for instance of the order of the GUT or the Planck scale, one needs a

very fine arrangement between the bare Higgs boson mass m0
H and the corrections ∆mH

at each order in perturbation theory to obtain a physical Higgs boson mass mH around

the EW scale. A small Higgs boson mass thus seems to be unnatural. It is because of this

situation, that this problem is often referred to as fine-tuning or naturalness problem.

The behavior of the SM gauge couplings gives another hint to the limited validity of the

model. Being based on the direct product of SU(3)C × SU(2)L × U(1)Y , the three gauge

couplings are different and the electroweak and strong interactions are not truly unified

within the SM. Therefore, one might postulate the existence of a more fundamental theory

(a Grand Unified Theory, GUT) in which the SM gauge group is a subgroup of a simple

gauge group such as e. g. SU(5) [49] or SO(10) [50], with just one coupling constant. The

scale-dependent evolution of the SM gauge couplings is determined by the renormalization

group equations. In order to embed the SM into a GUT, it is necessary that the running

3The leading coefficient c0, neglecting all fermion masses except for the top-quark mass mt, reads
(16π2)c0 = 3/(2v2) × (m2

H + 2m2
W + m2

Z − 4m2
t )

2. Higher-order coefficients cn are suppressed by
factors of 1/(16π2) and can be evaluated from the requirement that the renormalized Higgs boson mass
does not depend on µR [44].
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2. Theoretical framework

of the gauge couplings is such that the couplings meet at a common point, the GUT

scale. However this is not the case with the given particle content of the SM. Assuming

new physics entering at some intermediate scale, the renormalization group equations are

altered and a unification of the gauge couplings can become possible at a high scale.

A further argument in favor of physics beyond the SM is given by cosmological observa-

tions. Measurements of the rotation velocities of galaxies and precision measurements of

the cosmic microwave background [11] revealed that our universe consists to a large extent

of “dark matter”, i. e. of non-baryonic, non-luminous and only weakly interacting matter.

The only particles provided in the SM which fulfill these requirements are the neutrinos.

However current upper limits on their masses [5] imply that they only make a small con-

tribution to the required density of dark matter. Moreover, since neutrinos move with

relativistic velocities (“hot dark matter”), they cannot explain structure formation on small

scales. And in its strict version, the SM does not even include non-zero neutrino masses.

Lastly, the large number of free parameters which have to be taken from experiments

can also be seen as a weakness of the SM. An underlying theory with a reduced number

of free parameters seems to be desirable. The problem of unpredicted parameters relates

to open questions about the origin of particle masses, about the hierarchical structure of

fermion masses, and about the origin of CP violation.

A large variety of models has been proposed to solve the described problems. In this

thesis, we focus on supersymmetric theories which are often considered the most attractive

extension of the SM. It is the aim of the next chapter to introduce the concept of super-

symmetry and to discuss how some of the previously mentioned open issues are addressed.

2.2 Supersymmetry

In this section we briefly review some fundamental concepts of supersymmetry, based on

Refs. [51,52]. We start in Section 2.2.1 with an introduction of the basic ideas and the

motivation for a phenomenologically viable supersymmetric model. More formal aspects

of the theory are discussed in Section 2.2.2; in particular we define a Lagrangian which is

invariant under supersymmetric transformations.

2.2.1 Basic ideas and motivation

The original intention for supersymmetry was to build a nontrivial extension of the SM.

The SM provides internal symmetries based on the SU(3)C × SU(2)L × U(1)Y gauge

group (see last section) and it is invariant under space-time symmetries described by the

Poincaré group, i. e. Lorentz boost and rotations and space-time translations in Minkowski

space. The group generators of the Poincaré and the internal symmetries commute with

each other. Accordingly, a particle state is defined by the eigenvalues of a maximal set of
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2.2. Supersymmetry

commuting space-time observables (mass, spin, momentum) and internal quantum numbers

(color, weak isospin, hypercharge, . . . ). Indeed it has been shown that any group combining

an internal symmetry group with the Poincaré group can only be a direct product with

commuting operators [53].

In four dimensions, the only way to circumvent this no-go theorem and to extend the

Poincaré group in a nontrivial way is to abandon the idea that the group generators of the

additional symmetry obey the commutator structure of an internal symmetry (cf. Eq. (2.1)),

and to postulate anticommutation relations instead [54]. The group generators of such a

supersymmetry (SUSY) thus have to be fermionic operators [6,7]. The resulting supersym-

metric Poincaré algebra for a SUSY generator Qα and its conjugate Qβ̇ is given by

{Qα, Qβ} = {Qα̇, Qβ̇} = 0,

{Qα, Qβ̇} = 2(σµ)αβ̇ Pµ,
(2.6a)

together with
[Qα, Pµ] = [Qα̇, Pµ] = 0,

[Qα, Mµν ] = −1

2
(σµν)

β
α Qβ ,

[Qα̇, Mµν ] = −1

2
(σµν)

β̇
α̇ Qβ̇ ,

(2.6b)

while Qα and Qα̇ commute with the generators of the gauge group SU(3)C × SU(2)L ×
U(1)Y .

The SUSY generators are two-component Weyl spinors with distinct indices α, β = 1, 2,

and α̇, β̇ = 1, 2 (see Appendix A.3 for the notations). The elements of the Pauli matrices

act as structure functions in terms of the quantities σµ and σµν , defined in Eq. (A.19)

and Eq. (A.20). Pµ and Mµν are the generators for space-time translations and Lorentz

transformations, respectively.

The second line of Eq. (2.6a) illustrates the entanglement of SUSY and space-time sym-

metry, a (global) SUSY transformation inducing a (constant) translation in Minkowski

space. This equation thus gives a hint on how to embed gravitational interactions into the

theory. Since general relativity is invariant under local Poincaré transformations, a local

SUSY can, in general, include general relativity and therefore gravity [55]. In this work

however, we restrict the discussion to global SUSY transformations, only.

In the application of supersymmetry to particle physics, the main effect of a SUSY

transformation is to relate bosonic and fermionic fields. Since a SUSY operator Qα is an

fermionic object, it changes the spin of a particle and transforms bosons into fermions and

vice-versa,

Qα|boson〉 = |fermion〉, Qα|fermion〉 = |boson〉. (2.7)
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2. Theoretical framework

Fields related by Eq. (2.7) form a supermultiplet. It is important to notice that a SUSY

transformation only affects the spin, whereas all internal quantum numbers of the particles

in the same supermultiplet remain unchanged. Within the SM, there are no such particles

which are identical except for their spin. The postulation of a supersymmetry Eq. (2.7) is

thus directly related to the assumption of new particles.

In principle, it is possible to consider a system of N supersymmetries generated by

N distinct SUSY operators QN
α . However the introduction of N > 1 operators leads

to conceptional problems: in a four-dimensional field theory, extended supersymmetries

cannot allow for chiral fermions and parity violation to the observed amount [56].

As one can easily derive from the first line of Eq. (2.6b), particles and their SUSY

partners would be mass degenerate if supersymmetry was an exact theory4. However, no

SUSY particle has been observed so far thus supersymmetry needs to be broken at low

energies if it is realized in nature.

In this work, we focus on phenomenologically viable SUSY models, i. e. on models that

are based on a minimal N = 1 SUSY algebra and that include the breaking of SUSY at

some lower scale. The SUSY generator Qα assigns exactly one bosonic state to a fermionic

one, both having the same gauge quantum numbers. As a consequence, the particle content

of the SM is basically doubled. However, since left- and right-handed SM fermions behave

differently under gauge transformations, two distinct bosonic states are introduced as SUSY

partners. Furthermore, as we will see later, a second Higgs boson doublet needs to be

defined. We will give more details on the physical fields of the minimal supersymmetric

extension of the SM (MSSM) in Section 2.3.

The energy scale at which SUSY is broken is not constrained by the theory and the

SUSY particles might get high masses. However a relatively low SUSY breaking scale

is very attractive from the phenomenological point of view, in particular if new particles

around the TeV scale are predicted.

As we discussed in the previous section, the lightness of the Higgs boson compared to

scales like ΛGUT or ΛPlanck seems unnatural within the SM and requires extreme finetuning

of parameters. Radiative corrections to the Higgs boson mass are quadratically divergent

and induce contributions of the order of a upper cutoff scale squared, which is typically

understood as the scale up to which the SM is valid. In supersymmetric theories, however,

the Higgs boson mass is prevented from acquiring large radiative corrections. Since fermion

and boson loops appear with opposite signs, the quadratic divergencies (∝ Λ2
UV ) cancel in

the sum of SM and SUSY contributions [8]. An exact cancellation is obtained in unbroken

supersymmetries only, where the particles within one supermultiplet have equal masses

(mF = mB) and where the fermionic and bosonic dimensionless couplings to the Higgs

boson, λF and λB, respectively, are related. If the mass degeneracy of SM and SUSY

4The mass degeneracy of a fermion f of mass m and its bosonic partner b follows from Eq. (2.6b) and the
on-shell relation for f , P 2|f〉 = m2|f〉, yielding P 2|b〉 = P 2Q|f〉 = QP 2|f〉 = Qm2|f〉 = m2|b〉.
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2.2. Supersymmetry

partners is lifted by SUSY breaking, logarithmic divergent terms (∝ (m2
F − m2

B) log ΛUV )

proportional to the mass difference m2
F − m2

B remain. In order to provide a solution to

the fine-tuning problem and to keep the Higgs boson mass in the range of the electroweak

symmetry breaking scale, we have to assume that the SUSY particle masses are not too

heavy (∼ O(1 TeV)) since otherwise the large logarithmic corrections would reintroduce

the problem in the theory5.

Another argument in favor of supersymmetry at an energy scale reachable by today

and future collider experiments, is the unification of the three gauge couplings which is not

possible within the SM. The new SUSY particle spectrum contributes to the renormalization

group evolution of the gauge coupling constants. Assuming the SUSY particles to enter

around the TeV scale, the running of the couplings is changed in such a way the couplings

meet at a high scale (ΛGUT) [9].

In addition, low-energy supersymmetric models with R-parity conservation provide a

suitable candidate for the dark matter in our universe (see Section 2.3.2).

2.2.2 Theoretical concepts of supersymmetry

In order to properly describe SUSY transformations and to build a Lagrangian which is

invariant under SUSY transformations, it is convenient to first introduce the concept of

superspace and superfields.

This section is meant to be rather independent on the physical application of super-

symmetry to the SM, and therefore the implementation of the minimal supersymmetric

extension of the SM is postponed to Section 2.3.

Superspace and superfields

The superspace extends the four-dimensional space-time by two Grassmann dimensions

θα, θα̇. Grassmann numbers are anticommuting fermionic objects, i. e. (see Appendix A.5)

{θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0. (2.8)

Every physical point in the superspace has the same number of bosonic and fermionic

degrees of freedom and is defined by a supercoordinate X = (xµ, θα, θα̇), where xµ is a

(bosonic) Minkowski coordinate.

Superfields are single objects containing the fermionic and bosonic fields of a supermul-

tiplet and thus allow for a convenient formulation of the Lagrangian. A superfield Φ is

5A further constraint on the SUSY breaking can be derived from the motivation that SUSY cures the
hierarchy problem: The quadratic divergencies enter proportional to the difference (|λF |2 − λB). Only
if the dimensionless couplings (|λF |2 = λB) are unaffected by the SUSY breaking, the dangerous Λ2

UV -
divergencies do cancel. One therefore considers soft SUSY breaking, where SUSY breaking terms with
positive mass dimension only are added by hand to the effective Lagrangian, thus leaving the original
Lagrangian, providing the gauge and Yukawa interactions, invariant under SUSY transformations.
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2. Theoretical framework

defined on the superspace, Φ = Φ(x, θ, θ). Owing to the anticommuting nature of Grass-

mann numbers, products of more than two Grassmann numbers vanish and a superfield

can be expanded as a finite power series in θ, θ. The most general form of a superfield in

terms of its component fields reads

Φ(x, θ, θ) = φ(x) + θψ(x) + θχ(x) + θθF (x) + θ θH(x)

+ θσµθAµ(x) + (θθ)θ λ(x) + (θ θ) θξ(x) + (θθ)(θ θ)D(x),
(2.9)

where φ, F, H, D are complex scalar fields, Aµ is a complex vector field, and ψ, χ, λ, ξ

are two-component Weyl spinor fields. Counting the d.o.f., there are 16 bosonic and 16

fermionic d.o.f. for a general superfield, which are too many for a SUSY with particles

with spin ≤ 1. Irreducible representations are obtained by imposing covariant (i. e. SUSY

invariant) constraints on a general superfield to remove the redundant component fields.

To find the covariant derivative, we make use of the fact that the (fermionic) Grassmann

numbers allow to define the SUSY algebra Eq. (2.6) in terms of commutators only,

[θQ, θQ] = [θ Q, θ Q] = 0,

[θQ, θ Q] = 2θσµθPµ,

[θQ, Pµ] = [θ Q, Pµ] = 0.

(2.10)

A general finite SUSY transformation can then be parameterized in analogy to a non-

Abelian gauge transformation based on a Lie algebra with anticommuting generators. We

thus define the group element of a global SUSY transformation as

S(yµ, ξα, ξα̇) = e−i(ξαQα+ξα̇Q
α̇
+yµP µ), (2.11)

where ξ, ξ are again Grassmann variables. This yields the following transformation rule for

a superfield Φ(x, θ, θ) if S(yµ, ξ, ξ) is applied6,

S(yµ, ξ, ξ)Φ(xµ, θ, θ) = Φ(xµ + yµ + iξσθ − iθσξ, ξ + θ, ξ + θ), (2.12)

where repeated spinor indices have been dropped (according to Eqs. (A.17) and (A.18)).

Taylor expanding the above result, we find that an infinitesimal SUSY transformation

δS(ξ, ξ) acts on a superfield as

δS(ξ, ξ)Φ(x, θ, θ) = −i
[

ξQ + ξ Q
]

Φ(x, θ, θ)

=

[

ξα ∂

∂θα
+ ξα̇

∂

∂θα̇

+ i(ξσµθ − θσµξ)
∂

∂xµ

]

Φ(x, θ, θ),
(2.13)

6following from the evaluation of two successive SUSY transformations with the help of the Baker-

Campbell-Hausdorff formula eAeB = eA+B+ 1

2
[A,B] for [A, [A, B]] = 0 and the commutator relations

Eq. (2.10).
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so that a linear representation of the SUSY generators is given by

Qα = i∂α − (σµθ)α ∂µ,

Qα̇ = −i∂α̇ + (θσµ)α̇ ∂µ,

Pµ = i∂µ,

(2.14a)

with the abbreviations ∂α = ∂/∂θα, ∂α̇ = ∂/∂θ
α̇

= −ǫα̇β̇ ∂/∂θβ̇ , ∂µ = ∂/∂xµ. In analogy

to the covariant derivative in gauge theories we can now define covariant derivatives Dα, Dα̇

with respect to the SUSY generators Qα, Qα̇. The SUSY covariant derivatives have to be

invariant under SUSY transformations δS , i. e. [ξQ + ξ Q, Dα] = 0, which is equivalent to

imposing the following anticommutator relations,

{Dα, Qβ} = {Dα, Qβ̇} = {Dα̇, Qβ} = {Dα̇, Qβ̇} = 0. (2.15)

One finds for the SUSY covariant derivatives Dα, Dα̇,

Dα = i∂α + (σµθ)α ∂µ,

Dα̇ = −i∂α̇ − (θσµ)α̇ ∂µ,
(2.16)

obeying the nontrivial commutator relation {Dα, Dβ̇} = −2(σµ)αβ̇ Pµ.

With the help of the SUSY covariant derivatives Eq. (2.16) it is now possible to find

irreducible representations of a general superfield Φ. One defines

Dα̇Φ = 0 ⇒ (left-handed) chiral superfield, (2.17a)

DαΦ = 0 ⇒ (right-handed) anti-chiral superfield, (2.17b)

Φ = Φ† ⇒ vector superfield. (2.17c)

It is interesting to notice that the product of two chiral fields is still a chiral field, whereas

the combination of a chiral field and its conjugate is a vector superfield.

Imposing the condition Eq. (2.17a) on the general superfield Φ, cf. Eq. (2.9), a left-handed

chiral superfield ΦL expands to its component fields as follows,

ΦL(x, θ, θ) = φ(x) +
√

2θ ψ(x) + θθ F (x)

+ iθσµθ ∂µφ(x) − i
1√
2

(θθ)
(

∂µψ(x)σµθ
)

− 1

4
(θθ)(θ θ) ∂µ∂µφ(x),

(2.18)

where the θ-component fields do not enter. ψ(x) is a two-component complex Weyl spinor

(4 d.o.f. in general), φ(x) is a complex scalar field (2 d.o.f.). They describe a left-handed

chiral fermion and its scalar SUSY partner within one supermultiplet. The equality of

fermionic and bosonic d.o.f. is guaranteed by the complex scalar field F (x) (2 d.o.f.). F is
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an auxiliary field which is needed to close the SUSY algebra off-shell. For on-shell fields,

the d.o.f. of the spinor field ψ reduce by two. Correspondingly, the auxiliary field F has

trivial equations of motion (F = F ∗ = 0) and can be eliminated by going on-shell. The

representation of a right-handed field ΦR is obtained in complete analogy by imposing

ΦR = ΦL = (ΦL)†. The behavior of the component fields under an infinitesimal SUSY

transformation δS(ξ, ξ), Eq. (2.13), is given by

δS(ξ, ξ) φ(x) =
√

2ξ ψ(x),

δS(ξ, ξ) ψα(x) =
√

2F (x) ξα −
√

2
(

σµξ
)

α
∂µφ(x),

δS(ξ, ξ) F (x) = ∂µ

(

i
√

2 ψ(x)σµξ
)

.

(2.19)

Eq. (2.19) shows explicitly that under a SUSY transformation a bosonic state is transformed

into a fermionic one and vice-versa, whereas the change induced in the auxiliary function

is a total derivative. Under a non-Abelian SUSY gauge transformation (with generators

T a and coupling g), a chiral superfield and its conjugate transform as

ΦL → e−i2gΛΦL, and ΦL → ΦLei2gΛ, (2.20)

where Λ(x, θ, θ) is a chiral superfield and Λ = ΛaT a.

A vector superfield V (x, θ, θ) can be constructed from Eq. (2.9) by imposing V = V †,

cf. Eq. (2.17c). In terms of real scalar fields C, M, N, D, two complex Weyl spinors χ, λ

and a real spin-one vector field Aµ, it is

V (x, θ, θ) = C(x) + iθχ(x) − iθχ(x) + θσµθ Aµ(x)

+
i

2
θθ

[

M(x) + iN(x)
]

− i

2
(θ θ)

[

M(x) − iN(x)
]

+ i(θθ)θ

[

λ(x) +
i

2
σµ∂µχ(x)

]

− i(θ θ)θ

[

λ(x) +
i

2
σµ∂µχ(x)

]

+
1

2
(θθ)(θ θ)

[

D(x) − 1

2
∂µ∂µC(x)

]

.

(2.21)

A general vector superfield has 8 bosonic and 8 fermionic d.o.f.. Unphysical components

can be removed by choosing an appropriate gauge. Under a non-Abelian SUSY gauge

transformation, the vector superfield transforms as

e2gV → e−i2gΛ e2gV ei2gΛ, (2.22)

where V = V aT a. In the Abelian case, Eq. (2.22) simplifies to

V → V + i(Λ − Λ). (2.23)
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2.2. Supersymmetry

Accordingly, one can choose the Wess-Zumino gauge [7] where C = M = N = 0 and

χ = 0. The remaining component fields of the vector superfield are the gauge field Aµ,

its fermionic superpartner λ (called gaugino), and also a bosonic auxiliary field D. In

complete analogy to the case of chiral superfields, the auxiliary field is needed in order for

SUSY to be consistent off-shell and can be eliminated on-shell using its equation of motion.

Furthermore, it transforms under SUSY transformations into a total derivative,

δS(ξ, ξ) D = ∂µ

(

−ξσµλ + λ σµξ
)

. (2.24)

One can also easily show that the vector field Aµ and the spinor λα are related by a SUSY

transformation,

δS(ξ, ξ) Aµ = i
(

ξσµλ − λ σµξ
)

− ∂µ
(

ξχ + ξ χ
)

,

δS(ξ, ξ) λα = −iDξα − 1

2
(σµσν) β

α ξβ (∂µAν − ∂νAµ).
(2.25)

The SUSY Lagrangian

The aim of this section is to construct a Lagrangian density L which is invariant under

SUSY and gauge transformations, referred to as SUSY Lagrangian in the following.

L is obtained from the requirement that the action
∫

d4xL(x) needs to be invariant

under SUSY transformations,

δS

∫

d4xL(x) = 0. (2.26)

To ensure the invariance of the action, it is sufficient to impose that L changes by a

total space-time derivative. As we know from the previous section, the F -terms of chiral

superfields and D-terms of vector superfields both transform into a total derivative under

a SUSY transformation and are thus appropriate objects to define the SUSY Lagrangian.

One schematically writes

L(x) ≡ LF + LD =

∫

d2θLf +

∫

d2θ d2θLd + h.c., (2.27)

where h.c. refers to the hermitian conjugated terms.

Let Lf be an analytic function of chiral superfields (remember that the product of two

chiral superfields is a chiral superfield, whereas a product of a superfield and its conjugate

yields a vector superfield). Owing to the behavior of Grassmann numbers under integration,

cf. Appendix A.5, LF only contains the F -component fields. In order to not spoil the

renormalizability of the theory, only terms up to mass dimension four are allowed in Lf .
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2. Theoretical framework

By convention, Lf is given in terms of the (gauge invariant) superpotential W,

W({Φi}) =
∑

i

aiΦi +
1

2

∑

ij

mij ΦiΦj +
1

3!

∑

ijk

λijk ΦiΦjΦk, (2.28)

where all Φi are left-chiral superfields, and the couplings mij , λijk are totally symmetric ma-

trices under the interchange of i, j, k. In component fields φi, ψi and Fi, the F -component

of the superpotential W reads

∫

d2θW({Φi}) =
∑

i

aiFi +
∑

ij

mij

(

φiFj −
1

2
ψiψj

)

+
∑

ijk

λijk

2

(

φiφjFk − φiψjψk

)

=
∑

j

∂W(φ)

∂φj
Fj −

1

2

∑

jk

∂2W(φ)

∂φj∂φk
ψjψk,

(2.29)

where in the last line the superpotential is understood to be a function of scalar fields φi,

W ≡ W(φ). Eq. (2.29) provides fermion mass terms and Yukawa-type interactions for the

scalars and fermions in the theory.

Kinetic terms for scalars and fermions (∝ ΦΦ) can only be given by the D-term contribu-

tions from vector superfields. The gauge invariance of the SUSY Lagrangian with respect

to a non-Abelian gauge group with generators T a, is guaranteed by defining

Ld = Φe2gV Φ, (2.30)

cf. Eq. (2.20) and Eq. (2.22), and by replacing the usual derivative ∂µ by the gauge covariant

derivative Dµ,

∂µ → Dµ = ∂µ + igAa
µT a, (2.31)

where Aµ is the vector component in the general vector superfield Eq. (2.21). The LD-part

of the Lagrangian then also generates interaction terms of the scalars and fermions with

the gauge boson fields and “SUSY-gauge interactions” involving gauginos. In component

fields, it reads

LD =
∑

i

∫

d2θ d2θ Φie
2gV Φi

=
∑

i

[

Dµφi D
µφ∗

i + iψiσ
µDµψi −

√
2g

(

ψiλφi + φ∗
i λψi

)

+ gφ∗
i Dφi + F ∗

i Fi

]

.
(2.32)

Both LD and the superpotential, however, do not provide kinetic terms for either gauge

bosons or gauginos. Also, gauge-boson–gaugino-couplings are allowed by gauge invariance
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2.2. Supersymmetry

and not described yet. We include these terms by inserting an additional contribution Lkin

in the Lagrangian,

Lkin =
1

16g2
Tr(WαWα), (2.33)

with Wα being field strength tensors,

Wα =
1

4
D D e−2gV Dα e2gV , (2.34)

in terms of the SUSY covariant derivatives Dα and Dα̇ given in Eq. (2.16). For Abelian

gauge groups, Eq. (2.34) reduces to

Wα =
g

2
D D Dα V. (2.35)

Since Wα is chiral (i. e. Dβ̇Wα = 0), also WαWα is chiral. It is easy to show that WαWα is

also gauge invariant. The θθ-components of Lkin then transform as a total derivative under

SUSY transformations and can be used for the F -term of the SUSY Lagrangian,

1

16g2

∫

d2θ
[

Tr(WαWα) + h.c.
]

= −1

4
F a

µνF
µνa + iλ

a
σµ(Dµλ)a +

1

2
DaDa, (2.36)

with the field-strength tensors

F a
µν = ∂µAa

ν − ∂νA
a
µ + fabcAb

µAc
ν , (2.37)

and fabc are the group structure constants.

To summarize, the final F -term reads

LF =

∫

d2θLf + h.c.

=

∫

d2θ
[

W + W
]

+
1

16g2

∫

d2θ
[

Tr(WαWα) + h.c.
]

,

(2.38)

and the complete SUSY Lagrangian is given by L(x) = LF + LD, with LF of Eq. (2.38)

and LD referring to Eq. (2.32).

By expanding the SUSY Lagrangian in component fields, one finds that, as anticipated

above, the auxiliary fields F (x) and D(x) do not obtain a kinetic energy term. Instead,

one can combine them into the scalar potential V (having L = T − V in mind), defined as

V =
∑

i

(

−F ∗
i Fi −

∂W(φ)

∂φi
Fi −

∂W(φ∗)
∂φ∗

i

F ∗
i

)

+
1

2

∑

a

DaDa, (2.39)
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2. Theoretical framework

where Fi is the F -component of the superfield Φi and Da is the D-component of the vector

superfield V = V aT a. Since the Euler-Lagrange equations for the auxiliary fields yield

∂L(x)

∂F (x)
=

∂L(x)

∂D(x)
= 0, (2.40)

it is possible to eliminate F and D from the Lagrangian. The scalar potential V is thus

V =
∑

i

F ∗
i Fi +

1

2

∑

a

(Da)2 =
∑

i

∂W(φ)

∂φi

∂W(φ∗)
∂φ∗

i

+
1

2

∑

l

g2
l

∑

a

(

∑

i

φ∗
i T

a
l φi

)2
, (2.41)

where gl and Tl with l = 1, 2, 3 are the gauge couplings and generators for U(1)Y , SU(2)L,

and SU(3)C , respectively. We see that V is a sum of squares and is hence non-negative for

every field configuration.

Supersymmetry breaking

A realistic phenomenological SUSY model has to include SUSY breaking and to provide

extra mass terms for the new SUSY partners. In analogy to the electroweak symmetry

breaking one can consider a spontaneous breaking of supersymmetry. This implies that the

Lagrangian remains invariant under SUSY transformations whereas the vacuum state does

not. As we have seen, the spectrum is bounded from below in a SUSY theory, i. e. the scalar

potential V is always positive or equal to zero. The case V = 0 corresponds to the SUSY

invariant case. A non-vanishing vacuum state can only be achieved if some field develops a

non-zero VEV, then the minimum of V will be a positive constant. The two possibilities are

〈0|F |0〉 6= 0 (F -term breaking [57]) and 〈0|Da|0〉 6= 0 (D-term breaking [58]). However both

mechanisms cause problems in the phenomenological realization of the model, requiring

either the postulation of an additional gauge singlet field or the breaking of charge or color

symmetry by non-zero VEVs.

One therefore adapts the approach of indirect or radiative SUSY breaking and adds

explicit symmetry breaking terms by hand, at any given SUSY breaking scale. In this

sense, SUSY is hidden at lower scales. The SUSY breaking couplings have to respect

SM gauge and Poincaré invariance and they should be soft to not alter the dimensionless

couplings, i. e. they are of positive mass dimension only (see also the footnote 5 on p. 13).

The possible soft-breaking terms are classified in [59] as mass terms for gauginos and

scalars, trilinear couplings for scalar fields, and, if the theory provides gauge singlets, also

linear (tadpole) contributions. Chiral fermions do not gain masses from the SUSY break-

ing. The masses for all known SM particles must arise via spontaneous breaking of the

electroweak symmetry in order not to spoil explicitly the gauge invariance with respect to

the electroweak symmetry.

Still, the origin of the explicit SUSY-breaking terms is spontaneous supersymmetry

20



2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

breaking, but the breaking is now shifted into a hidden sector. The SUSY breaking is

communicated to the visible sector of ordinary matter via an interaction shared by both

sectors. Fields in the hidden sector do not have direct renormalizable couplings to the

fields in the visible sector, hence possible interactions are loop-suppressed or induced by

non-renormalizable operators. As a consequence, the SUSY-breaking terms arise radia-

tively, rather than through tree-level couplings to SUSY-breaking VEVs. The particle

physics phenomenology depends mainly on the communicating mechanism for the SUSY

breaking and only little on the SUSY-breaking mechanism itself.

There are different suggestions how the SUSY breaking is mediated to the visible sector.

Among the most popular theories are supergravity models (SUGRA) [60,61] that assume

the SUSY breaking being communicated by gravitational-strength interactions, gauge me-

diated models (GMSB) [62,63], and models of anomaly mediation (AMSB) [64]. Within

the MSSM (see below), the most widely studied constrained model is minimal supergrav-

ity (mSUGRA) [61], assuming universality relations among the couplings in the effective

Lagrangian at the GUT scale and we itemize the corresponding soft-breaking terms in the

next section.7 For phenomenological reviews on mSUGRA, GMSB and AMSB models, we

refer the reader to e. g. [51,65,66].

2.3 The minimal supersymmetric extension of the Standard

Model (MSSM)

We now turn to the application of supersymmetry to particle physics. The most economic

realization of SUSY is given by the minimal supersymmetric extension of the Standard

Model (MSSM) [12–14], based on the following principles:

• the SM is extended by a minimal N = 1 supersymmetry,

• the MSSM Lagrangian is invariant under the SU(3)C ×SU(2)L×U(1)Y gauge group,

• at low energies, supersymmetry is softly broken,

• only R-parity conserving interactions are allowed.

The following discussion is based on the contents of the last chapter, where we learned how

to build a Lagrangian which is invariant under SUSY and gauge transformations. First,

we present the field content of the MSSM in Section 2.3.1. The concept of R-parity is

introduced in Section 2.3.2. It is then straight-forward to build the MSSM Lagrangian

including the soft SUSY-breaking terms, which is done in Section 2.3.3. We conclude the

section with a detailed list of the physical particle states of the MSSM in Section 2.3.4.

7Note that most of the presented work is independent on the assumption of a specific SUSY breaking sce-
nario. In particular, the calculation of EW contributions to colored SUSY particle production processes
holds within the MSSM in general. Only for the numerical evaluation of our results and in the rather
independent Chapter 8 we refer to mSUGRA and B3 mSUGRA models, respectively.
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2. Theoretical framework

2.3.1 Field content of the MSSM

In a minimal N = 1 SUSY model, the single SUSY generator Qα assigns exactly one bosonic

state to a fermionic one. Each single-particle state falls into an irreducible representation

of the SUSY algebra, a “supermultiplet”. The supermultiplets contain both a bosonic and

a fermionic state with equal number of d.o.f., these are called superpartners to each other.

Since the SUSY generator Qα commutes with the generators of the internal symmetries

SU(3)C ×SU(2)L ×U(1)Y , the particles within one supermultiplet have to be in the same

representation of the gauge group. As a consequence, all of the superpartners of the SM

particles have to be new particles not being part of the SM particle zoo.

The simplest irreducible representation of the SUSY algebra is a chiral supermultiplet,

containing a two-component Weyl fermion and a complex scalar field. All SM fermions

occur in chiral supermultiplets and thus get scalar partners, called sfermions (squarks,

sleptons). Since the left- and right-handed fermions are separate Weyl spinors with different

gauge transformation properties, each of them gets its own scalar SUSY partner. We denote

the latter by left-/right-handed sfermions f̃L/R, where the name and the subscript refer to

the helicity state of the corresponding SM fermion.

Second, a massless spin-one boson and a Weyl fermion can be incorporated into a vector

supermultiplet. The SM gauge bosons, which are all massless before electroweak symmetry

breaking, are absorbed into a vector supermultiplet and thus get fermionic partners, the

gauginos. The electrically neutral gauginos (eight gluinos, neutral wino, bino) are Majorana

fermions, the SUSY partners of charged gauge bosons (charged winos) are Dirac fermions

(see Appendices A.3 and A.4).

The SM Higgs boson is a spin-0 particle and hence resides in a chiral supermultiplet,

yielding a fermionic superpartner. More precisely, as mentioned already, a second super-

multiplet is needed in the Higgs sector: The generation of masses for charged leptons and

both up- and down-type quarks in a gauge invariant way would require both the Higgs boson

field and its conjugate. In a SUSY theory, the corresponding Yukawa couplings arise from

the superpotential. However, the superpotential is an analytic function of (left-handed) chi-

ral fields only and conjugated (right-handed) fields would spoil the gauge invariance. Thus

two Higgs boson doublets of opposite hypercharge are introduced to give masses to the SM

fermions. In addition, the second Higgs boson doublet is necessary to keep the MSSM free

of gauge anomalies. The cancellation of those is given if the trace running over the weak

hypercharges of all Weyl fermions in the theory vanishes, which is guaranteed in the SM

by each generation of quarks and leptons (see footnote 2 on p. 8). Postulating a single

fermionic superpartner to the Higgs boson of a given non-zero hypercharge, the anomaly

cancellation is spoiled. In contrast a second Higgs boson doublet of opposite hypercharge

provides a second fermionic partner to the Higgs boson and the total contribution to the

anomaly traces is zero again.

The field content of the MSSM is summarized in Tab. 2.1.
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2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

boson fermion
(

SU(3)C ,
superfield

field field SU(2)L, U(1)Y

) name

chiral Q q̃L = (ũL, d̃L)T qL = (uL, dL)T (3, 2, +1
3)

superfields U ũ∗
R u†

R (3̄, 1,−4
3) (s)quark

D d̃∗R d†R (3̄, 1, +2
3)

L ℓ̃L = (ν̃, ẽL)T ℓL = (ν, eL)T (1, 2,−1)

E ẽ∗R e†R (1̄, 1, +2)
(s)lepton

Hu hu = (h+
u , h0

u)T h̃u = (h̃+
u , h̃0

u)T (1, 2, +1)

Hd hd = (h0
d, h

−
d )T h̃d = (h̃0

d, h̃
−
d )T (1, 2,−1)

Higgs(ino)

vector Ga g g̃ (8,1,0) gluon(-ino)

superfields W i W±, W 0 W̃±, W̃ 0 (1, 3, 0) W(-ino)

B B B̃ (1, 1, 0) B(-ino)

Table 2.1.: Classification of the chiral and vector superfields within the MSSM. The superfields,
denoted by capital letters, have bosonic and fermionic component fields. The SUSY
partners of the SM particles carry a tilde, and the subscript L,R of the scalar SUSY
particles refers to the helicity state of the corresponding fermionic partner. The be-
havior under gauge transformations is the same for fields belonging to the same super-
multiplet (indicated in column 5). In the last column, the names of the SM (SUSY)
particles are given. To avoid clutter, family and color indices are suppressed in the no-
tation of the chiral superfields, i. e. the first generation representatives are used to label
the fields introduced for each generation. For the vector fields, the indices a = 1 . . . 8
and i = 1 . . . 3 denote the SU(3)C and SU(2)L quantum numbers, respectively.

2.3.2 R-parity

Interactions among scalars and fermions in a SUSY theory are given by the superpoten-

tial W, Eq. (2.28). As argued above, the superpotential needs to respect supersymmetry

and gauge invariance under SU(3)C × SU(2)L × U(1)Y transformations. With the given

minimal field content of Table 2.1, the most general renormalizable superpotential is [28,29]

W = WR + W6R , (2.42)

with the two parts, written in terms of the superfields introduced in Table 2.1,

WR = ǫab

[

(YU )ijQ
ax
i Hb

uU jx − (YE)ijL
a
i H

b
dEj − (YD)ijQ

ax
i Hb

dDjx + µHa
dHb

u

]

, (2.43a)

W6R = ǫab

[

1

2
λijkL

a
i L

b
jEk + λ′

ijkL
a
i Q

bx
j Dkx

]

+ ǫabκ
iLa

i H
b
u +

1

2
ǫxyzλ

′′
ijkU

x
i D

y
j D

z
k , (2.43b)
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where i, j, k denote the generations of matter fields, a, b are SU(2)L indices, and x, y, z

are SU(3) color indices. The signs are chosen for later convenience. Due to the absence

of a gauge singlet field in the MSSM, no linear term arises in Eq. (2.43), but only bi- and

trilinear couplings of chiral matter supermultiplets.

The first term, WR, contains the Yukawa interactions of Higgs boson, quark, and lepton

superfields which give masses to the up- and down-type quarks and charged leptons after

electroweak symmetry breaking. The Yukawa couplings are 3× 3 matrices in family space,

denoted by YU , YD, YE , respectively. To fully establish the two-doublet Higgs sector,

also a coupling µ mixing the two different Higgs boson fields is provided.

In the second part, W6R, the couplings λijk, λ′
ijk, and κi lead to lepton number L violating

processes, whereas λ′′
ijk induces baryon number B violation. Gauge invariance enforces that

λijk (λ′′
ijk) is antisymmetric under the interchange of the first (last) two indices. Following

the usual convention, corresponding factors of 1/2 are introduced in W6R to avoid double

counting in scattering amplitudes.

The combination of non-zero lepton and baryon number violating couplings (λ′λ′′) can

lead to rapid proton decay [30,31], e. g. via the process p → π0e+ mediated by an s-channel

down-type squark, which is clearly excluded by experimental observations [32]. Whereas

in the SM lepton and baryon number are conserved accidentally at tree-level, its minimal

supersymmetric extension requires an additional symmetry to stabilize the proton. There

are only three discrete symmetries which are consistent with an underlying anomaly-free

U(1) gauge theory and thus do not experience violation by quantum gravity effects [34,35]:

R-parity, proton-hexality, and baryon-triality.

The most widely assumed symmetry is R-parity [33] (or equivalently matter parity). To

each particle, a multiplicative discrete quantum number PR is assigned to,

PR = (−1) 3 (B−L)+2 s, (2.44)

where s denotes the particle’s spin. The definition Eq. (2.44) yields a positive quantum

number PR = +1 for all SM and Higgs particles, whereas all SUSY particles carry PR = −1.

The postulation of R-parity conservation implies that only those terms are allowed in the

superpotential Eq. (2.42) which give rise to interaction vertices of SM and SUSY particles

with a positive product of all PR eigenvalues. As a consequence, the part W6R is prohibited

from the superpotential.

Although the dimension-four terms in W6R are the most dangerous for proton decay, they

are not the only ones that must be suppressed in general. Higher-dimension terms may also

lead to proton decay. They are suppressed by inverse powers of a high mass scale at which

the new baryon and lepton-number violating processes occur. In a compactified string

theory this scale may be the compactification scale (of the order of the Planck scale) or

a lower scale associated with the breaking of a GUT left unbroken after compactification.

Even if one assumes the scale as high as the Planck scale, some of the dimension-five
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operators will generate proton decay at an unacceptably high rate. R-parity still allows

for the dangerous dimension-five operators such as QQQL [67]. A preferred solution is

thus to assume conservation of proton-hexality, P6 [34], which has the same effect on the

renormalizable interactions as R-parity, but forbids, in addition, the dangerous dimension-

five operators.

The third possibility is baryon-triality, B3 [34–37]. B3 is a discrete Z3-symmetry which

prohibits in Eq. (2.43b) only the U D D operators (i. e. λ′′ = 0) but also the dangerous

dimension-five operators. Since proton decay proceeds via both B and L violating cou-

plings, it can be avoided if one of the two sets of couplings vanishes. This is the approach

of the R-parity violating B3 models, where B is conserved but not the combination of B

and L as required by Eq. (2.44).

In the framework of the MSSM, one considers R-parity as the underlying symmetry. From

the phenomenological point of view, R-parity conservation has important implications.

First of all, the PR-odd SUSY particles can only be produced and annihilated in pairs. As

a consequence, the lightest SUSY particle (LSP) has to be stable. This being massive and

stable would be a good candidate particle to constitute the non-baryonic dark matter in

our universe. In general, every SUSY particle can be the LSP [68]. However for stable

LSPs, only scenarios where it is electrically neutral and only weakly interacting provide a

viable solution to the cosmological constraints. In the MSSM with conserved R-parity, one

therefore excludes regions from the SUSY parameter space leading to a charged LSP [10]

and mostly considers the lightest of the neutralinos (see next section) to be the LSP.

Considering the phenomenology at particle accelerators, one finds that any produced heavy

SUSY particle will decay into lighter SUSY particles, yielding a possibly long decay chain

ending up with the LSP. The signatures of SUSY particle production processes will thus

depend crucially on the nature of the LSP. If R-parity is conserved, the LSP cannot further

decay into SM particles. As it is neutral, the LSPs escape detection and a typical SUSY

signal involves a high amount of missing transverse energy and multiple jets from the

hadronic decays of the heavy SUSY particles.

In this thesis, we consider both SUSY models with and without R-parity conservation.

The calculation of the production of colored SUSY particles at the LHC is performed in

the framework of the MSSM, i. e. assuming R-parity conservation, and we refer to pair

production of colored SUSY particles, only. In the last chapter of this report, Chapter 8,

we further exploit the phenomenology of B3 SUSY models, focussing on scenarios where the

(unstable) LSP is charged. We thus postpone any further discussion of R-parity violating

couplings and the related phenomenology to Chapter 8.

2.3.3 The MSSM Lagrangian

We have now all ingredients to write down the R-parity conserving MSSM Lagrangian

LMSSM, based on the MSSM field content (given in Table 2.1), which is invariant under
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transformations of the SM non-Abelian gauge group and includes at most soft SUSY-

breaking terms. Following the discussion Section 2.2.2, we write

LMSSM = LSUSY + Lsoft, (2.45)

where LSUSY is a SUSY-invariant Lagrangian and Lsoft parameterizes the soft SUSY-

breaking8.

The supersymmetric part of the Lagrangian itself can be decomposed into three parts, two

F -type contributions (from the superpotential and the kinetic terms for the gauge bosons

and gauginos, Eq. (2.38)) and a D-term, cf. Eq. (2.30), with kinetic terms for scalars and

fermions.

The superpotential of the MSSM is given by the R-parity conserving part of Eq. (2.42),

WMSSM ≡ WR, yielding the contribution

LF,1 =

∫

d2θ
[

WMSSM + WMSSM

]

. (2.46)

The kinetic terms for the gauge bosons LF,2 are given in terms of field strength tensors

defined in analogy to Eqs. (2.34) and (2.35). For the three gauge groups SU(3)C , SU(2)L,

U(1)Y with gauge couplings gs, g, and g′, respectively, they are

(WG)a
α =

1

4
D D e−2gsGDα e2gsG,

(WW )i
α =

1

4
D D e−2gW Dα e2gW ,

(WB)α =
g′

4
D D Dα B′,

(2.47)

with

G = T aGa, W = IiW i, B′ = Y B, (2.48)

where T a, Ii, Y are the generators of the three gauge groups, respectively, and Ga, W i, B

are the superfields as introduced in Table 2.1. The corresponding part in the Lagrangian

reads

LF,2 =
1

16

∫

d2θ

{

1

g2
s

Tr[(WG)a
α(WG)α

a ] +
1

g2
Tr[(WW )i

α(WW )α
i ] +

1

g′2
(WB)α(WB)α

}

+ h.c..

(2.49)

8Furthermore, as in the SM, a consistent quantization of the MSSM Lagrangian requires gauge fixing and
the introduction of Fadeev-Popov ghosts to cancel the additional unphysical d.o.f.. The ghost fields
and gauge-fixing terms for the MSSM gauge bosons (gluons, photon, W ’s, Z) and Goldstone bosons are
chosen in complete analogy to the SM. Explicit expressions can be found in e. g. [69,70]. The calculations
presented in this work have been performed in the ’t Hooft–Feynman gauge.
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2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

Third, using the same notation, the D-term contribution is of the form

LD =

∫

d2θ d2θ

{

Le2(g′B+gW )L + Ee2(g′B+gW )E

+ Qe2(g′B+gW+gsG)Q + Ue2(g′B+gW+gsG)U + De2(g′B+gW+gsG)D

+ Hu e2(g′B+gW )Hu + Hd e2(g′B+gW )Hd

}

.

(2.50)

To complete the MSSM Lagrangian we need to specify the soft-breaking terms. With the

requirement of gauge invariance and R-parity conservation, the soft-breaking part of the

Lagrangian is9

Lsoft = − 1

2
(M1 B̃B̃ + M2 W̃W̃ + M3 g̃g̃) + h.c.

− q̃†L m2
Q̃

q̃L − ũ∗
R m2

Ũ
ũR − d̃∗R m2

D̃
d̃R − ℓ̃†L m2

L̃
ℓ̃L − ẽ∗R m2

Ẽ
ẽR

− m2
hu

h†
uhu − m2

hd
h†

dhd − (b huhd + h.c.)

−
(

aU q̃L hu ũ∗
R − aD q̃L hd d̃∗R − aE ℓ̃L hd ẽ∗R

)

+ h.c. .

(2.51)

As already anticipated above, the allowed soft-breaking terms are gaugino mass terms (first

line) squark and slepton mass terms (second line), Higgs boson mass and bilinear terms

(third line), and trilinear Higgs-sfermion-sfermion interaction terms (fourth line) [59]. Lin-

ear terms are absent in the MSSM, due to the non-existence of a gauge singlet. In the

notation above, in contrast to Eq. (2.42), SU(2)L indices are suppressed and e. g.q̃†Lq̃L =

ũ∗
LũL + d̃∗Ld̃L and hu q̃L = ǫabh

a
u q̃b

L. Furthermore, generation indices are understood implic-

itly: The soft-breaking mass parameters m are hermitian 3 × 3 matrices in family space,

which in general can be complex. The same is true for the couplings a which are usually

be expressed in terms of trilinear couplings A and Yukawa couplings Y

a{U,D,E} ≡ A{u,d,e}Y{U,D,E}. (2.52)

The gaugino mass parameters M1, M2, M3 and the bilinear Higgs boson coupling b are

complex numbers, the Higgs boson mass parameters mhu , mhd
have to be real.

In order to obtain the Feynman rules, one needs to expand the MSSM Lagrangian in

component fields. Complete expressions both for the on-shell Lagrangian (where the aux-

iliary fields are eliminated) and the off-shell Lagrangian can be found in the literature, see

e. g. [69,71]. For the Feynman rules we refer to [13,70,72,73].

9Allowing for R-parity violating interactions, additional soft-breaking terms have to be considered, see
Eq. (C.2).
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2. Theoretical framework

Free parameters and constrained SUSY models

While the kinetic and gauge parts of the MSSM Lagrangian only depend on SM parameters,

the superpotential in Eq. (2.46) and the soft-breaking part Eq. (2.51) introduces 105 new

parameters (couplings, masses, complex phases) into the theory. Most of them however are

rather strongly restricted by experimental (non-)observations of flavor-changing neutral-

currents (FCNC) or CP violation [5,74]. In general, the 3× 3 mass matrices in Lsoft induce

mixing in the sfermion sector among the generations. Under the assumption of minimal

flavor violation, the SM Higgs-Yukawa matrices (i. e. the CKM matrix) are the only possible

sources of CP violation and the mass matrices and trilinear couplings are diagonal in family

space so that FCNCs are absent at tree level,

m2
F̃

= diag(m2
F̃1

, m2
F̃2

, m2
F̃3

), for F̃ = {Q̃, Ũ , D̃, L̃, Ẽ},
Af = diag(Af1 , Af2 , Af3), for f = {u, d, e},

(2.53)

where the index i = 1, 2, 3 denotes the three generations. Moreover, we will consider the

MSSM with real parameters only, i. e. no new phases are introduced.

Further restrictions on the soft-breaking parameters arise in constrained SUSY models,

when specific assumptions are made on how the SUSY breaking is mediated from the

hidden to the visible sector. Here, we focus on mSUGRA models where the SUSY breaking

sector communicates with the visible sector only via gravitational interactions as specified

by supergravity. In the minimal version of these models (mSUGRA) the supergravity

interactions are flavor-blind and the soft-breaking parameters are universal. Besides the

unification of the three gauge couplings, a unification of the scalar and gaugino masses and

trilinear soft-breaking parameters is required at some high scale, the GUT scale (ΛGUT ∼
2×1016 GeV, fixed by the unification of the gauge couplings). In terms of a universal scalar

mass M0, a universal gaugino mass M1/2 and a universal trilinear scalar coupling A0 this

implies the following relations to hold at ΛGUT,

m2

Q̃
= m2

L̃
= m2

Ũ
= m2

D̃
= m2

Ẽ
= M2

0 13

m2
hu

= m2
hd

= M2
0

M1 = M2 = M3 = M1/2

aU = A0YU aD = A0YD, aE = A0YE .

(2.54)

These equations act as GUT-scale boundary conditions for the soft-breaking parameters.

By renormalization group techniques all masses and couplings can then be extrapolated to

low scales. Two further independent parameters enter in the Higgs sector, the mass pa-

rameter µ and bilinear coupling b. However, one has to require that electroweak symmetry

breaking takes place at some low energy scale. This results in two necessary minimization

conditions of the scalar Higgs potential which allow to equivalently choose the ratio of the
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2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

VEVs of the Higgs bosons tan β and the sign of µ as free parameters (see next section for

details and definitions). In summary, only five parameters are needed in mSUGRA models

to determine the low-energy spectrum:

M0, M1/2, A0, tanβ, sgn(µ). (2.55)

We stress that our general results for colored SUSY particle production processes do not

rely on a specific SUSY softbreaking mechanism. Only the numerical studies are per-

formed within the mSUGRA framework. For the actual calculation of the spectrum and

the evaluation of the renormalization group equations at lower scales we make use of pub-

lically available programs [75] (see also Appendix B). Furthermore in Chapter 8, where we

study the phenomenological consequences of non-zero R-parity violating couplings, we also

assume the SUSY breaking to be mediated via gravitational interactions.

2.3.4 The particle spectrum of the MSSM

Like in the SM, in the MSSM the SU(2)L×U(1)Y symmetry is spontaneously broken down

to the electromagnetic U(1)Q symmetry in order to yield masses for the gauge bosons and

SM fermions [76]. The Higgs mechanism in the MSSM proceeds in a similar way as in the

SM.

The two MSSM Higgs boson fields have eight real scalar d.o.f.. After electroweak sym-

metry breaking (EWSB), three of them can be identified as unphysical Goldstone bosons

which are subsequently absorbed by the gauge bosons to acquire masses. The remaining

five d.o.f. form the physical Higgs bosons. Furthermore, after EWSB, all particles with the

same quantum numbers of the unbroken SU(3)C × U(1)Q group (color, electric charge)

can mix. Therefore, we have mixing among the gauge eigenstates in the sfermion sector

and among the electrically neutral and charged higgsinos and gauginos, respectively. These

mass eigenstates are called neutralinos and charginos. It is the purpose of this section, to

introduce in more detail the physical fields of the MSSM at tree-level.

Higgs bosons and SM gauge bosons

The scalar potential for the Higgs boson scalar fields in the MSSM is

VHiggs =
(

|µ|2 + m2
hd

)

h†
dhd +

(

|µ|2 + m2
hu

)

h†
uhu + (b huhd + h.c.)

+
g′2 + g2

8
(h†

dhd − h†
uhu)2 +

g2

2
|huh†

d|2,
(2.56)

where the terms proportional to µ and the gauge couplings g, g′ arise from the F - and D-

field terms of the scalar potential and terms proportional to m2
hd

, m2
hu

, b are contributions

from the soft-breaking part of the MSSM Lagrangian, cf. Eq. (2.51).
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2. Theoretical framework

The neutral components of the Higgs boson fields are assigned to a non-vanishing, positive

VEV vd, vu. In terms of the real scalar fields φ0,±
d,u , ζ0

d,u of vanishing VEV, the Higgs boson

fields can be decomposed as follows,

hd =

(

h0
d

h−
d

)

=

(

vd + (φ0
d + iζ0

d)/
√

2

−φ−
d

)

,

hu =

(

h+
u

h0
u

)

=

(

φ+
u

vu + (φ0
u + iζ0

u)/
√

2

)

,

(2.57)

yielding non-zero, U(1)Q-invariant VEVs for the Higgs boson fields,

〈hd〉 =

(

vd

0

)

, 〈hu〉 =

(

0

vu

)

. (2.58)

In order to provide a solution to EWSB, the potential needs to be bounded from below

while the origin is a saddle point. This is the case if

(|µ|2 + m2
hd

) + (|µ|2 + m2
hu

) > 2b, (|µ|2 + m2
hd

) (|µ|2 + m2
hu

) < b2. (2.59)

These relations directly link EWSB and SUSY breaking, since m2
hu

6= m2
hd

is required. In

an unbroken SUSY however, the soft-breaking Higgs boson mass terms are absent and thus

equal zero. If the above conditions are fulfilled, the values of the two VEVs are obtained

from the scalar potential by minimization with respect to h0
d and h0

u,

(|µ|2 + m2
hd

) = b
vu

vd
− g2 + g′2

4

v2
d − v2

u

vd
,

(|µ|2 + m2
hu

) = b
vd

vu
− g2 + g′2

4

v2
u − v2

d

vd
.

(2.60)

It is interesting to notice that only the combination g2 + g′2 of the gauge couplings enters

the potential, whereas in the SM the arbitrary Higgs boson coupling λ enters. There are

only two independent parameters in the MSSM Higgs sector at Born level, the ratio of the

Higgs VEVs, referred to as tan β,

tan β = vu/vd, (2.61)

and the soft-breaking parameter b. By convention, one replaces b by the mass of the CP-odd

Higgs boson A0, (see below),

m2
A0 = m2

hd
+ m2

hu
+ 2|µ|2 = b (tan β + cotβ). (2.62)

The Higgs mixing parameter µ is a dependent quantity and constrained by Eq. (2.60).
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2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

To find the mass eigenstates of the theory, we insert Eq. (2.57) into the Lagrangian and

diagonalize the mass matrices by a unitary transformation.

First of all, the mixing of the gauge bosons eigenstates proceeds as in the SM. The

photon, Z boson, and W boson mass eigenstates are given by

(

Zµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)

(

W 3
µ

Bµ

)

, W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, (2.63)

in terms of the weak mixing angle θW , which is related to the gauge couplings via tan θW =

g′/g. The masses of the W and Z bosons are, in complete analogy to the SM, related to

the gauge couplings and the Higgs VEVs

m2
W =

g2

2
(v2

d + v2
u), m2

Z =
g2 + g′2

2
(v2

d + v2
u), (2.64)

while the photon Aµ remains massless. The electric charge, the gauge coupling of the

photon, can be expressed in terms of g and g′,

e = g sin θW = g′ cos θW . (2.65)

With Eqs. (2.64) and (2.65) and the definition of tan β, Eq. (2.61), the Higgs VEVs are

vd =

√
2mW sin θW

e
cos β, vu =

√
2mW sin θW

e
sin β. (2.66)

The terms bilinear in the scalar fields φ and ζ in the Higgs potential yield the Higgs

boson mass terms,

VHiggs, mass =
1

2
(φ0

d, φ0
u)M2

φ0

(

φ0
d

φ0
u

)

+
1

2
(ζ0

d , ζ0
u)M2

ζ0

(

ζ0
d

ζ0
u

)

+
1

2
(φ+

d , φ+
u )M2

φ±

(

φ−
d

φ−
u

)

,

(2.67)

where the squared mass matrix M2
φ0 for the neutral CP-even Higgs boson fields is

M2
φ0 =

(

|µ|2 + m2
hd

+ ḡ2 (3v2
d − v2

u)/4 −b − ḡ2 vdvu/2

−b − ḡ2 vdvu/2 |µ|2 + m2
hu

+ ḡ2 (3v2
u − v2

d)/4

)

, (2.68)

the squared mass matrix M2
ζ0 for the neutral CP-odd Higgs boson fields reads

M2
ζ0 =

(

|µ|2 + m2
hd

+ ḡ2 (v2
d − v2

u)/4 −b

−b |µ|2 + m2
hu

+ ḡ2 (v2
u − v2

d)/4

)

, (2.69)
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and M2
φ± denotes the squared mass matrix of the charged Higgs boson fields,

M2
φ± =

(

|µ|2 + m2
hd

+ (ḡ2v2
d + ¯̄gv2

u)/4 −b − g2 vdvu/2

−b − g2 vdvu/2 |µ|2 + m2
hu

+ (ḡ2v2
d + ¯̄gv2

u)/4

)

, (2.70)

where the abbreviations ḡ2 = g2 + g′2 and ¯̄g2 = g2 − g′2 have been used. The Higgs boson

mass eigenstates are obtained by rotation and can be classified as follows,

2 neutral, CP-even h0, H0 bosons:

(

H0

h0

)

= Uφ0(α)

(

φ0
d

φ0
u

)

,

2 neutral, CP-odd A0, G0 bosons:

(

G0

A0

)

= Uζ0(β)

(

ζ0
d

ζ0
u

)

,

4 charged H±, G± bosons:

(

G±

H±

)

= Uφ±(β)

(

φ±
d

φ±
u

)

,

(2.71)

with a generic unitary matrix U ,

U(α) =

(

cos α sinα

− sinα cos α

)

. (2.72)

The tree-level masses of the five physical Higgs boson fields h0, H0, A0, H± and of the three

Goldstone bosons G0, G± are given by the diagonalized (squared) mass matrices,

D2
φ0 = Uφ0 M2

φ0 U †
φ0 = diag(m2

H0 , m
2
h0),

D2
ζ0 = Uζ0 M2

ζ0 U †
ζ0 = diag(0, m2

A0),

D2
φ± = Uφ± M2

φ± U †
φ± = diag(0, m2

H±),

(2.73)

where m2
A0 has already been introduced in Eq. (2.62) and

m2
h0/H0 =

1

2
(m2

A0 + m2
Z) ∓ 1

2

√

(m2
A0 + m2

Z)2 − 4 m2
A0m

2
Z cos2 2β,

m2
H± = m2

A0 + m2
Z .

(2.74)

In these terms, the mixing angle α can be expressed as

tan 2α = tan 2β
m2

A0 + m2
Z

m2
A0 − m2

Z

, (2.75)

32



2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

and the scalar Higgs potential in the mass eigenstate basis is

VHiggs, mass =
1

2
(h0, H0)D2

φ0

(

h0

H0

)

+
1

2
(A0, G0)D2

ζ0

(

A0

G0

)

+
1

2
(H+, G+)D2

φ±

(

H−

G−

)

.

(2.76)

Let us note that Eq. (2.74) imposes an upper bound on the mass of the lightest Higgs boson

mass, mh0 ≤ mZ . This bound arises in the MSSM due to the above mentioned fact that

the Higgs boson self-couplings are given by the electroweak gauge couplings, whereas in the

SM the coupling is unconstrained and no comparable bound can be derived.

Even though mh0 ≤ mZ is in contradiction with experimental observations from LEP [43,

77] and Tevatron [78], the MSSM is not ruled out: The inclusion of higher-order corrections

raises the tree-level mass considerably (see e. g. [79] and references therein). One-loop and

dominant two-loop corrections shift the upper bound of the lightest Higgs boson mass to

mh0 <∼ 140 GeV [80]. Within this work, the computation of Higgs boson masses is done by

the program FeynHiggs [81] (or using a two-loop approximation [82] included now in [83]).

Standard Model fermions

As in the SM, fermions obtain masses by Yukawa interaction terms. The first three terms

of the superpotential WMSSM Eq. (2.43a) provide the necessary couplings,

Lyukawa = ǫab

[

(YE)ijℓ
a
Li h

b
d eRj + (YD)ij qa

Li h
b
d dRj − (YU )ij qa

Li h
b
uuRj

]

+ h.c., (2.77)

where i, j are generation indices and the color indices of the quark fields are suppressed.

The fermions yield masses if the Higgs fields get their VEVs,

Lfermions, mass = −(YE)ij eLi vd ēRj − (YD)ij dLi vd d̄Rj − (YU )ij uLi vu ūRj + h.c., (2.78)

which turns out explicitly when the two-component Weyl spinors are combined into four-

component Dirac spinors,

ei =

(

eLi

ēRi

)

, di =

(

dLi

d̄Ri

)

, ui =

(

uLi

ūRi

)

. (2.79)

Rewriting Eq. (2.78),

Lfermion, mass = −(YE)ij ei vd ēj − (YD)ij di vd d̄j − (YU )ij ui vu ūj , (2.80)

the fermion mass matrices are

me = YE × vd, md = YD × vd, mu = YU × vu, (2.81)
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with vd and vu given in Eq. (2.66). As mentioned earlier, we do not include right-handed

neutrinos and no neutrino masses are introduced.

So far, all parameters are given in the weak-current eigenstate basis. However, in general,

the Yukawa and mass matrices are not diagonal and we need to rotate the (charged) lepton

and quark fields from the weak into the mass eigenstate basis,

fmass
L,R = Vf L,R fweak

L,R , (2.82)

with fL,R denoting the left- and right-handed fermion fields, respectively and Vf L,R denot-

ing the corresponding rotation matrices. The mass matrices in the mass eigenstate basis

are then given by

VeL me V
†
eR = diag(me, mµ, mτ ),

VdL md V
†
dR = diag(md, ms, mb),

VuL mu V
†
uR = diag(mu, mc, mt),

(2.83)

defined at the weak scale mZ . The rotation matrices Vf L,R are not directly experimentally

accessible but only the CKM matrix VCKM,

VCKM = VuLV
†
dL. (2.84)

In general, the rotation matrices for the left-handed fields differ from the those for the right-

handed fields. In the following, however, for simplicity and definiteness, we assume real and

symmetric Yukawa coupling matrices, thus Vf L = Vf R. Furthermore, since we neglect

neutrino masses, YE is diagonal in the weak-current basis. Correspondingly, VeL,R = 13.

It is instructive to further constrain the quark Yukawa couplings by considering three

extreme cases of quark mixing.

• no mixing: In the discussion of squark and gluino production we neglect the quark

mixing completely and assume the CKM matrix to be unity. This implies

VuL,R = 13, VdL,R = 13, (2.85)

and diagonal Yukawa matrices

YU × vu = diag(mu, mc, mt),

YD × vd = diag(md, ms, mb).
(2.86)

• up-type mixing: In Chapter 8 we refer to up-type mixing, i. e. the quark mixing
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2.3. The minimal supersymmetric extension of the Standard Model (MSSM)

takes place completely in the up-quark sector, and

VuL,R = VCKM, VdL,R = 13. (2.87)

Therefore, in up-type mixing scenarios, the Yukawa matrices are at the weak scale

YU (mZ) × vu = V
†
CKM · diag(mu, mc, mt) · VCKM,

YD(mZ) × vd = diag(md, ms, mb).
(2.88)

• down-type mixing: We also consider down-type mixing scenarios in Chapter 8,

where the quark mixing takes place completely in the down-quark sector, i. e.

VuL,R = 13, VdL,R = V
†
CKM (2.89)

at the weak scale. The Yukawa matrices are then given by

YU (mZ) × vu = diag(mu, mc, mt),

YD(mZ) × vd = VCKM · diag(md, ms, mb) · V†
CKM.

(2.90)

Sfermions

The mass terms of the sfermions arise from all three types of contributions to the scalar

potential, F - and D-terms and soft-breaking terms. With the restrictions Eq. (2.53), mixing

in the sfermion sector takes place only among the particles within one generation and the

sfermion mass matrices can be cast into a 2×2 form. In summary, the sfermion mass terms

of the Lagrangian can be written as

Lsfermions, mass = −
(

f̃∗
Li, f̃∗

Ri

)

M2
f̃i

(

f̃Li

f̃Ri

)

− ν̃∗
i m2

ν̃i
ν̃i, (2.91)

where again i = 1, 2, 3 denotes the three generations and f̃ = ũ, d̃, ẽ. The mass matrix for

sfermion f̃i being the superpartner of the SM fermion fi with mass mfi , has the entries

M2
f̃i

=

(

m2
fi

+ ALL
i mfiB

LR
i

mfiB
LR
i m2

fi
+ CRR

i

)

, (2.92)

with, assuming real parameters,

ALL
i = m2

F̃Li
− (I3

fi
− efi sin2 θW )m2

Z cos 2β,

BLR
i = Afi − µκ,

CRR
i = m2

F̃Ri
+ efi sin2 θW m2

Z cos 2β.

(2.93)
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Here, m2
F̃Li

= m2
Q̃i

, m2
L̃i

are the left-handed soft-breaking parameters for squarks and slep-

tons of generation i, respectively, and m2
F̃Ri

= m2
Ũi

, m2
D̃i

, m2
Ẽi

are the corresponding right-

handed soft-breaking parameters. Afi are the trilinear couplings, Eq. (2.53). I3
fi

denotes

the eigenvalue of the third component of the weak isospin of sfermion f̃i and efi its elec-

trical charge. κ = cotβ for up-type squarks and charged sleptons, while for right-handed

squarks it is κ = tanβ. The sneutrino mass matrix m2
ν̃i

is one-dimensional (for a given

generation i) and has only the purely left-handed entry ALL of Eq. (2.92),

m2
ν̃i

= m2
L̃i

+
1

2
m2

Z cos 2β. (2.94)

The sfermion mass matrices can be diagonalized by a unitary 2 × 2 matrix Uf̃i
,

D2
f̃i

= Uf̃i
M2

f̃i
U †

f̃i
=

(

m2
f̃1i

0

0 m2
f̃2i

)

, Uf̃i
=

(

U f̃i
11 U f̃i

12

U f̃i
21 U f̃i

22

)

=

(

cos θf̃i
sin θf̃i

− sin θf̃i
cos θf̃i

)

,

(2.95)

with the (squared) mass eigenvalues m2
f̃1i

, m2
f̃2i

,

m2
f̃1i,2i

= m2
fi

+
1

2

[

(ALL
i + CRR

i ) ∓
√

(ALL
i − CRR

i )2 + 4m2
fi

(BLR
i )2

]

, (2.96)

of the mass eigenstates f̃1i,2i,

(

f̃1i

f̃2i

)

= Uf̃i

(

f̃Li

f̃Ri

)

. (2.97)

Per convention, the mixing matrix Uf̃i
is chosen such that f̃1i is the lighter of the two

sfermions. In the mass eigenstate basis, the sfermion mass terms of the Lagrangian

Eq. (2.91) are given by

Lsfermions, mass = −
(

f̃∗
1i, f̃∗

2i

)

D2
f̃i

(

f̃1i

f̃2i

)

− ν̃∗
i m2

ν̃i
ν̃i. (2.98)

Imposing Eq. (2.95) to hold defines the mixing angle θf̃i
in terms of the soft-breaking

parameters. As the off-diagonal elements of UM2U † have to vanish, one finds

BLR
i mfi cos 2θf̃i

− ALL
i − CRR

i

2
sin 2θf̃i

= 0 ⇒ tan 2θf̃i
=

2mfiB
LR
i

ALL
i − CRR

i

. (2.99)

It is often useful to reparameterize the mass matrix as a function of the mixing angle
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and the mass eigenstates,

M2
f̃i

=

(

cos2 θf̃i
m2

f̃1i
+ sin2 θf̃i

m2
f̃2i

sin θf̃i
cos θf̃i

(

m2
f̃1i

− m2
f̃2i

)

sin θf̃i
cos θf̃i

(

m2
f̃1i

− m2
f̃2i

)

sin2 θf̃i
m2

f̃1i
+ cos2 θf̃i

m2
f̃2i

)

. (2.100)

Together with Eq. (2.92), a second parameterization of the mixing angle can be derived,

sin 2θf̃i
=

2mfiB
LR
i

m2
f̃1i

− m2
f̃2i

=
2mfi(Afi − µκ)

m2
f̃1i

− m2
f̃2i

. (2.101)

If the mass eigenstates are known, Eq. (2.101) gives a direct relation among the mixing

angle and the trilinear coupling.

Focussing on the squark sector, it is important to note that due to the SU(2)L invariance,

the left-handed soft-breaking parameter m2
Q̃i

is identical in the mass matrices for up-type

and down-type squarks. The masses of up- and down-type squarks within one generation i

are thus related,

(

U d̃i
11

)2
m2

d̃1i
+

(

U d̃i
12

)2
m2

d̃2i
=

(

U ũi
11

)2
m2

ũ1i
+

(

U ũi
12

)2
m2

ũ2i
+ m2

di
− m2

ui
− m2

W cos 2β.

(2.102)

Counting the number of free parameters for one generation of squarks, we find five inde-

pendent parameters,

m2
Q̃i

, m2
Ũi

, m2
D̃i

, Aui , Adi , (2.103)

(plus the SM quark and gauge boson masses), since µ and tan β are usually considered

to belong to the higgsino and Higgs sectors. The soft-breaking parameters are directly

related to the mass eigenstates (see also Appendix B.2, Eqs. (B.8) and (B.9)) and can be

replaced accordingly. Also, Eq. (2.101) relates the trilinear couplings and mixing angles

(cf. Eq. (B.10)). Hence, a set of independent parameters equivalent to Eq. (2.103) is given

by10

m2
ũ1i

, m2
ũ2i

, m2
d̃1i

, θũi , Adi , or m2
ũ1i

, m2
ũ2i

, m2
d̃1i

, θũi , θd̃i
. (2.104)

We will come back to this point later (Section 4.1.2), when we have to fix sets of independent

input parameters for a consistent treatment of the squark sector at one-loop level.

To conclude, we recall that the mixing of the sfermion gauge eigenstates (L–R mixing)

is proportional to the mass of the SM partner fermion, Eq. (2.101). Neglecting the light

quark and lepton masses, the off-diagonal elements of Eq. (2.92) vanish for the sfermions

10only if U d̃i

12 6= 0, i. e. the dependent squark d̃i2 needs to have a non-zero left-handed component. If
d̃i2 = d̃iR, its mass replaces the mass of the heavier squark m ˜di1

in the given set of input parameters.
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of the first two generations. This results in trivial mixing matrices U and coinciding gauge

and mass eigenstates11.

Charginos and neutralinos

After EWSB, also the superpartners of the Higgs bosons and of the gauge bosons mix

with each other. The charged higgsinos (h̃+
u , h̃−

d ) and charged gauginos (winos, W̃±) mix

and form two mass eigenstates called charginos (χ̃±
1,2). The neutral higgsinos (h̃0

d, h̃
0
u) and

gauginos (B̃, W̃ 0) combine to form the four neutralinos (χ̃0
1−4).

The mass terms for charginos and neutralinos arise from the soft-breaking Lagrangian

(terms proportional to the gaugino masses M1, M2), from the supersymmetric D-term con-

tribution (Higgs-higgsino-gaugino couplings proportional to g, g′), and from the higgsino

mass terms in the superpotential (proportional to µ).

The chargino mass terms in the MSSM Lagrangian are, in the gauge-eigenstate basis,

Lchar., mass = −1

2
(Ψ+T , Ψ−T )

(

0 MT
χ̃±

Mχ̃± 0

)

(

Ψ+

Ψ−

)

+ h.c., (2.105)

with Ψ+ =

(

W̃+

h+
u

)

, Ψ− =

(

W̃−

h−
d

)

.

The mass matrix Mχ̃± has the following entries,

Mχ̃± =

(

M2 gvu

gvd µ

)

=

(

M2

√
2 sin β mW√

2 cos β mW µ

)

, (2.106)

where Eq. (2.66) has been applied in the second step. The mass eigenstates are related to

the gauge eigenstates by two unitary 2 × 2 matrices Uχ̃± and Vχ̃± ,

χ−
L = Uχ̃± Ψ−, χ+

L = Vχ̃± Ψ+, with χ±
L =

(

χ±
L1

χ±
L2

)

. (2.107)

One usually combines the left-handed Weyl spinors into four-component Dirac spinors,

χ̃+
i =

(

χ+
Li

χ −
Li

)

, χ̃−
i =

(

χ−
Li

χ +
Li

)

, i = 1, 2. (2.108)

Note that we impose a different mixing Eq. (2.107) for the positively and negatively charged

particles, respectively. The mixing matrices have to chosen such that they diagonalize the

11One might think of scenarios with extreme fine-tuning among the entries of the mass matrix such that
2mfi

BLR
i − (ALL

i − CRR
i ) ≈ 0. This results in a non-negligible mixing angle even for small fermion

masses, cf. Eq. (2.99), [84]. In the scenarios considered here, however, the mixing angle for light-flavor
sfermions can safely be neglected.
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mass matrix,

U∗
χ̃± Mχ̃± V †

χ̃± = Dχ̃± = diag(mχ̃±

1
, mχ̃±

2
), (2.109)

where Dχ̃± has only real, non-negative entries mχ̃±

1
, mχ̃±

2
. Assuming real parameters only,

the chargino masses are given by

m2
χ̃±

1,2
=

1

2
(M2

2 + µ2 + 2m2
W ) ∓ 1

2

√

(M2
2 + µ2 + 2m2

W )2 − 4(µM2 − m2
W sin 2β)2. (2.110)

The neutralino mass terms in the Lagrangian are the following,

Lneut., mass = −1
2

(

Ψ0
)T Mχ̃0 Ψ0 + h. c. with (Ψ0) =

(

B̃0, W̃ 0, h̃0
d, h̃0

u

)T
,

(2.111)

where the mass matrix reads

Mχ̃0 =










M1 0 −mZ sin θW cos β mZ sin θW sinβ

0 M2 mZ cos θW cos β −mZ cos θW sinβ

−mZ sin θW cos β mZ cos θW cos β 0 −µ

mZ sin θW sinβ −mZ cos θW sinβ −µ 0











.

(2.112)

In order to find the mass eigenstates and to diagonalize the mass matrix Mχ̃0 , a unitary

4 × 4 matrix Nχ̃0 is introduced with properties

N∗
χ̃0 Mχ̃0 N †

χ̃0 = Dχ̃0 = diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
), (2.113)

yielding the neutralino mass eigenstates

χ0
L = Nχ̃0 Ψ0, (χ0

L) = (χ0
L1, χ0

L2, χ0
L3, χ0

L4)
T . (2.114)

Neutralinos are Majorana fermions and we introduce the four Majorana spinors

χ̃0
i =

(

χ0
Li

χ0
Li

)

, i = 1, . . . , 4. (2.115)

Again, the mixing matrix Nχ̃0 can be chosen in a way that Dχ̃0 has only real, non-negative

entries obeying the ordering mχ̃0
1
≤ mχ̃0

2
≤ mχ̃0

3
≤ mχ̃0

4
.

In general, the neutralino masses are functions of M1, M2, µ, tan β, obtained by solving

quartic equations. In practice, this will be done numerically. The dimension of the param-

eter space can be reduced by one under the assumption that the gaugino masses unify at
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the GUT scale ΛGUT. This assumption is motivated by the (approximate) unification of

the gauge couplings if one starts from their experimentally determined values at the weak

scale mZ and runs them up by the renormalization group equations. The gaugino masses

run in the same way as the corresponding squared gauge couplings and one finds

M1(ΛGUT) = M2(ΛGUT) ⇒ M1(mZ) =
5

3
tan2 θW M2(mZ) ≈ 1

2
M2(mZ). (2.116)

Furthermore, in many mSUGRA scenarios, EWSB effects can be seen as a small pertur-

bation on the neutralino mass matrix. If mZ ≪ |µ±M1|, |µ±M2|, the lightest neutralino

is bino-like, χ̃0
1 ≈ B̃; the second lightest neutralino is wino-like, χ̃0

2 ≈ W̃ ; and the heavier

ones are higgsino-like χ̃0
3,4 ≈ (h̃0

u ± h̃0
d)/

√
2. The approximate masses are then12

mχ̃0
1

= M1, mχ̃0
2

= M2, mχ̃0
3,4

= |µ|. (2.117)

The lightest of the neutralino, χ̃0
1, is the lightest supersymmetric particle (LSP) in a wide

range of the mSUGRA parameter space. Being neutral, massive, weakly interacting and

stable (in the R-parity conserving MSSM) it is an attractive candidate particle to form the

dark matter in the universe.

Gluinos

Gluinos g̃x are the only color octet fermions (x = 1, . . . , 8) and cannot mix with other par-

ticles in the MSSM. The mass term is provided by the soft-breaking part of the Lagrangian,

Lgluino =
1

2
(M3 g̃xg̃x + M3 g̃

x
g̃

x
), (2.118)

and the gluino mass is entirely determined by the soft-breaking parameter M3 (which is in

general complex), mg̃ = |M3|. Being Majorana fermions, gluinos are usually described by

four-component Majorana spinors Ψg̃,

Ψg̃ =

(

g̃

g̃

)

, (2.119)

build from the left-handed Weyl spinors g̃ only.

The definition of the MSSM particle spectrum completes our introduction of the frame-

work of our calculations and we will now turn to the discussion of SUSY particle production

processes.

12The given mass ordering assumes M1 < M2 ≪ |µ|, otherwise the subscript labels have to be rearranged
accordingly.
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Chapter 3

Production of colored SUSY particles

at hadron colliders

Having introduced the theoretical concept of supersymmetry in the last chapter, we now

concentrate on the phenomenological implications of the MSSM. In particular, we are in-

terested in particle physics at colliders. No evidence for supersymmetric particles has been

found so far. However with the imminent startup of the LHC at CERN, the TeV scale be-

comes reachable and thus possibly new SUSY particles of TeV-scale masses should become

detectable.

If SUSY is realized, the colored SUSY particles, squarks and gluinos, will be produced at

hadron colliders via the strong interaction and high cross sections are expected. The most

sensitive direct searches for SUSY particles thus often include gluino and squark produc-

tion processes, based on promising “jets plus missing transverse energy (E/T )” signatures.

Studies for the LHC see the possibility of an early SUSY discovery with 1 fb−1 for inclusive

multijet plus E/T final states [85], provided that squark and gluino masses are not too heavy

(i. e. below 2 TeV). A good understanding of the theory and reliable theoretical predictions

for the production cross sections of the colored SUSY particles gluinos and squarks are

vital to the successful analysis of LHC data.

In the following, we will distinguish between squarks of the first two generations (“light-

flavor squarks”) and third generation squarks (sbottoms, stops). Whereas the light-flavor

squarks are often considered to be degenerated in mass, this assumption does not hold for

stops and sbottoms, for reasons related to the large third-generation Yukawa couplings.

First of all, the latter have to be taken into account in the evolution of the soft-breaking

parameters when running down from a high scale to lower scales. Considering the mSUGRA

model and assuming a universal scalar mass at the GUT scale, one thus finds at the weak

scale lower values for the masses of stops and sbottoms than for those of the squarks of the

first generations [86]. Second, the L–R mixing among the gauge eigenstates is proportional

to the Yukawa couplings and leads to a substantial splitting between the mass eigenstates of

the third-generation squarks, cf. Eqs. (2.92) and (2.99). As a result, the lighter of the top-
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squarks, t̃1, is a candidate for the lightest colored SUSY particle in many SUSY models [87].

In the following, we denote the light-flavor squarks by a common label q̃a = q̃L, q̃R, while

we refer to the sbottom and stop mass eigenstates with b̃a = b̃1, b̃2 and t̃a = t̃1, t̃2.

The purpose of this chapter is to give a general overview of the production of colored

SUSY particles at hadron colliders, including the results from experimental searches and

the basic steps in the theoretical approach. The framework of our studies is the MSSM

with R-parity conservation. In these models, (colored) SUSY particles can be produced

in pairs only. Hence, possible final states are gluino pairs, squark pairs, as well as mixed

gluino–squark pairs.

The outline of this chapter is as follows. We first review the status of experimental

direct searches for colored SUSY particles in Section 3.1. In Section 3.2, we discuss how

to calculate cross sections at hadron colliders and introduce the parton model and the idea

of factorization. The various production channels for colored SUSY particles are presented

in Section 3.3, where we also give a short review of the presently available higher-order

calculations. At higher orders in perturbation theory, singularities of IR and UV origin

arise. The technical treatment of IR singularities and the procedure of regularization and

renormalization necessary to obtain a UV-finite result is postponed to Chapter 4.

3.1 Experimental searches

Many experimental direct searches for colored SUSY particles have been performed (and are

ongoing) at particle accelerators. So far, no disagreement has been found between data and

SM expectations. But the comparison of theoretical predictions for SUSY processes and the

experimental results allows to restrict the SUSY parameter space and to set (lower) bounds

on the masses of the predicted particles [5]. Usually bounds are defined at 95% confidence

level (C.L.), including statistical and systematic uncertainties as well as uncertainties from

the theoretical cross sections into the analysis.

Considering the R-parity conserving MSSM, the SUSY particles are produced in pairs

and decay subsequently via possibly long decay chains into lighter SUSY particles, ending

up with the LSP which is assumed to be the lightest of the neutralinos χ̃0
1. The LSP is

stable and escapes detection, leading to significant missing transverse energy E/T in the

detectors. A characteristic signal for squark or gluino production is thus E/T and several

jets, the latter arising from the hadronic decays of the colored SUSY particles (for a given

mass configuration e. g. g̃ → q̃q, q̃ → χ̃0q). Alternative analyses are based on inclusive final

states including one or several muons or two like-sign muons, together with high-transverse

momentum jets and large E/T . The additional requirement of leptons, in particular of like-

sign leptons, reduces the SM background considerably whereas at the same time most of

the SUSY signal can be retained [88,89].13

13Also complementary approaches that avoid signatures involving E/T have been proposed, e. g. [90].
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Figure 3.1.: 95% C.L. exclusion regions in the mSUGRA framework, from direct searches by the
(a) DØ and (b) CDF collaborations. The solid red (dotted) lines are the limit of
the observed (expected) excluded region obtained from the QCD NLO cross section
prediction at central scales. The hatched areas indicate the region in the plane with
no mSUGRA solution.
(a) Squark and gluino mass plane for tan β = 3, A0 = 0 GeV, µ < 0 [91]. The
yellow band illustrates the effect of the PDF choice and estimates the factorization
and renormalization scale dependence.
(b) Squark and gluino mass plane for tan β = 5, A0 = 0 GeV, µ < 0 [92]. The
dashed-dotted line recalls the results from Run I at the Tevatron.

3.1.1 Light-flavor squarks and gluinos

Current limits for (light-flavor) squarks and gluinos at hadron colliders include searches

performed at Tevatron Run II by the CDF and DØ collaborations, reported e. g. in [91–93].

Fig. 3.1(a) [91] gives an overview of the exclusion bounds obtained from various collider

experiments, investigating the squark and gluino mass plane in the mSUGRA framework

for tan β = 3, A0 = 0 GeV, and µ < 0.

Depending on the relative masses of the squarks and gluinos, analyses based on different

signatures are performed. If squarks are heavier than gluinos, gluino pair production is

the dominant process. The produced gluinos decay typically via a three-body decay mode

into a quark–anti-quark pair and a neutralino (g̃ → qq̄χ̃0
1), leading to four (or more) jets

in the final state. In contrast if squarks are lighter, squark–anti-squark pair production is

the leading production mechanism, with the subsequent decay of the squarks into a quark

and the LSP (q̃ → qχ̃0
1). Final states with only two jets are dominating. Also the missing

energy is supposed to be larger than in the first case. Third, in scenarios where squarks

and gluinos have similar masses, an event topology with at least three jets is expected from
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the production of gluino–squark pairs. In this region, the most stringent bounds can be

obtained, see Fig. 3.1(a). In [91], 2.1 fb−1 of Tevatron data have been analyzed by the

DØ collaboration, leading to lower limits of mg̃ > 308 GeV and mq̃ > 379 GeV for the

gluino and (degenerated) squark mass in the considered scenario. Uncertainties from the

choice of the PDFs and of the factorization and renormalization scales are estimated and

taken into account. Similar results were obtained by the CDF collaboration in an analysis

of 2.0 fb−1 of data [92], see Fig. 3.1(b). For the considered mSUGRA scenarios (tan β = 5,

A0 = 0 GeV, µ < 0), all squark masses are excluded for mg̃ < 290 GeV, while for equal

squark and gluino masses the lower limit mg̃ = mq̃ > 392 GeV has been set.

Model independent bounds on squark and gluino masses are difficult to obtain and much

weaker so far. In [94], gluino mass limits could be derived from an analysis of event

shape data from ALEPH and OPAL. The analysis is based on the fact that new colored

SUSY particles would affect the running of αs and thus the distribution of the event-shape

variable thrust. Modifying the SM by adding ∆nf new flavors of mass m at a threshold

scale µth = m, they compare the thrust distribution with the data for each m and ∆nf .

The assumption of a gluino can be described by ∆nf = 3 (the leading nf dependence).

For this value, the limit mg̃ > 51 GeV has been obtained, with theoretical uncertainties

included.

3.1.2 Top-squarks (stops)

Experimentally, squarks of the third generation can be distinguished from the squarks of the

first and second generations for several reasons. First of all because of their masses, which

are in general not degenerated with the light-flavor squarks due to the large quark-Yukawa

couplings. Second, the large L–R mixing of the gauge eigenstates cannot be neglected

and has to be taken into account in the couplings that enter in the production and decay

channels. Third, if the decays are kinematically accessible, stops and sbottoms provide

distinct decay signatures involving top and bottom quarks so that b-tagging methods can

be used in analyses.

Owing to their potential small mass, the lighter of the top-squarks t̃1 are of special interest

for SUSY searches at particle accelerators. Furthermore, the only SUSY parameter entering

the production cross section at LO is the mass of the produced stop, mt̃1
. All other SUSY

parameters (as the gluino mass or the stop mixing angle) enter only at higher orders in

perturbation theory. As a result, the stop mass can directly be extracted from the cross

section measurement in case of discovery. This is different for the production of light-flavor

squarks and gluinos, see also the discussion of the various LO processes in Section 3.3.

Most results from top-squark searches depend strongly on the considered SUSY scenario,

where specific assumptions on the stop decay signatures can be made from the mass hierar-

chy among the SUSY particles. The fact that the SM partner of the stops, the top quark,
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Figure 3.2.: 95% C.L. exclusion regions in the mSUGRA framework, from direct searches for
top-squarks by the experiments as labeled. The solid (dotted) lines represent the
limit of the observed (expected) excluded region obtained from the QCD NLO cross
section prediction at central scales. The yellow band illustrates the effect of the PDF
choice and estimates the factorization and renormalization scale dependence.
(a) Neutralino and top-squark mass plane assuming BR(t̃1 → cχ̃0

1) = 100% [99],
(b) Sneutrino and top-squark mass plane assuming BR(t̃1 → bℓν̃) = 100% [100].

is heavy, leads to distinct phenomenological features for stop decays. All possible two- and

three-body decay modes of stops have been investigated e. g. in [95].

While for light-flavor squarks the decay into (nearly) massless quarks and the LSP is

always kinematically accessible, the decay channels t̃a → tχ̃0
1 require the mass relation

mt̃a
≥ mt + mχ̃0

1
and are closed otherwise. Also the decay t̃a → tg̃ is then forbidden as

the gluino is obviously heavier than the LSP. Moreover, if the stop is also lighter then

the lightest chargino together with a bottom quark, the decay modes t̃a → bχ̃±
1 are not

accessible. In this region of the SUSY parameter space, the flavor-changing loop-induced

decay t̃a → cχ̃0
1 is the dominating stop decay. Further possible modes include four-body

decay channels into a bottom quark, the LSP, and two massless fermions (t̃a → bff ′χ̃0
1)

and three-body decays into a bottom quark, the LSP, and a W boson (t̃a → bWχ̃0
1).

Top-squarks searches include analyses from LEP [96], see e. g. [97] for a short review.

Also in ep collision at HERA, experimental searches for stops have been performed [98].

Note however that in ep collisions the dominant process is the production of a single stop

as a resonance, which is only possible in R-parity violating SUSY models.

Nowadays, the most stringent bounds are provided by the DØ and CDF collaborations

based on the Tevatron Run II data [99–101], see also e. g. [102] for more general reviews.

Many experimental analyses focused on scenarios where the t̃1 is the next-to-lightest SUSY
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particle (the χ̃0
1 being the LSP) and where it is lighter than its SM partner. The considered

parameter space is further restricted by assuming mt̃1
> mc+mχ̃0

1
and mt̃1

< mW +mb+mχ̃0
1

so that the t̃1 → cχ̃0
1 is the dominating stop decay. Fig. 3.2(a) shows the according results

from a DØ analysis [99], that can be summarized as mt̃1
> 150 GeV for a neutralino mass

mχ̃0
1

= 65 GeV. In Fig. 3.2(b), we also present results from an alternative DØ analysis

based on the assumption BR(t̃1 → bℓν̃) = 100% [100], concentrating on final states with an

electron and a muon or with two electrons. The largest stop mass excluded is mt̃1
= 175 GeV

for a sneutrino mass mν̃ = 45 GeV.

If the light stops are considerably heavier, they are probably beyond the kinematical

reach of the Tevatron. However, they are well testable at the LHC [88,89]. In this region of

the SUSY parameter space, the decay channels into a top-quark and a neutralino is open

(t̃1 → tχ̃0). The neutralino can be either the LSP or a heavier neutralino which in turn

decays into a LSP. If kinematically allowed, the decay modes into higgsino-like neutralinos

are the dominant ones, leading to final states with at least one top-quark and large E/T ,

possibly with additional lepton pairs and hence provide promising signatures.

3.1.3 Prospects for LHC

Using Markov-chain Monte Carlo methods, the authors of [16] did a probabilistic analysis

of the presently available experimental and cosmological constraints to find the most pre-

ferred region of the mSUGRA parameter space. Lower bounds on the masses of possibly

new SUSY particles can be imposed from direct searches for SUSY particles [5] and also

indirectly from Higgs boson searches performed at LEP [43]. Further constraints on SUSY

parameters arise from EW precision observables and B-physics (see e. g. [15] and references

in [16]), where most observables agree with SM predictions. But there are also observa-

tional constraints which allow for an interpretation in favor of the existence of SUSY and

which allow to set upper limits on SUSY particle masses: the experimental measurements

of the density of cold dark matter [11] that cannot be explained by the SM alone, and

of the anomalous magnetic moment of the muon where a derivation of more than three

sigma from the best SM calculation has been found [18]. The results of the analysis, taking

all these constraints into account, are shown in Fig. 3.3. A comparison with SUSY parti-

cle discovery contours as published by the ATLAS and CMS collaborations [88,89] reveals

that the 95% C. L. area in the (M0, M1/2) plane lies largely within the region that can be

explored within 1 fb−1 of good-quality data at a center-of-mass energy of 14 TeV. Thus

indeed, the prospects are good that if SUSY exists and is realized around the TeV scale

we will detect first SUSY signals at the LHC. We hope that already in the early stage of

the LHC we will be able to determine “the fate of many speculations about the relevance

of low-energy SUSY to particle physics” [16].
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Figure 3.3.: Probabilistic analysis of the mSUGRA parameter space [16]. Shown are the best
fit point, the 68%, and the 95% confidence level area in the (M0,M1/2) plane for
tan β and A0 scanned over. For a specific scenario with tan β = 10 and A0 =
0 GeV, ATLAS and CMS 5σ discovery contours for 1 fb−1 of good-quality data at√

S = 14 TeV (for 2 fb−1 for the Higgs boson discovery in SUSY particle decays)
are overlaid. Dark shaded regions are excluded (charged τ̃ LSP, no EW symmetry
breaking, LEP searches).

3.2 Hadronic cross sections

Before we can introduce the various production channels and contributions for a theoretical

prediction of the cross sections, we have to discuss how to define cross sections at hadron

colliders. In general, we consider the perturbative approach to calculate cross sections for

scattering process among the elementary particles of a theory at a given accuracy. It is

based on the smallness of the gauge couplings which are used as ordering parameters. If the

couplings are large, however, perturbation theory breaks down. This has to be considered

when dealing with quarks and gluons, described by QCD. At low scales, the confinement of

QCD comes into play, the strong coupling of SU(3)C increases, and the interacting particles

get bound into hadrons. In hadronic collisions, the quarks and gluons are thus not directly

accessible and the description of the bound states cannot be performed perturbatively but

has to be extracted from experiment. A connection between the short-distance, parton-level

interactions and the observable hadronic collisions is delivered by the parton model [103]

(see also textbooks as e. g. [104]).

In the framework of the parton model, we consider a hadron to consist of point-like

constituents, called partons. It has been shown that the partons can be identified as

quarks and gluons. A proton is described by three valence quarks (two up-quarks and a

down-quark) which determine its quantum numbers, and an infinite sea of virtual gluons
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and light-flavor quark–anti-quark pairs. The basic assumption of the parton model is that

the interactions of hadrons are due to the interactions of the partons, with the hadron’s

momentum being distributed among the partons. The most simple approach is to apply the

infinite momentum frame, where the momentum of the hadron is considered to be very high

and where thus the masses of the hadron and partons can be neglected. Furthermore, one

assumes that the partons are moving parallel with the hadron. During the hard scattering

process, the partons do not interact among themselves and carry a specified fraction x,

0 < x < 1, of the hadron’s momentum. There is no overlap of the partons of different

hadrons before the hard scattering and only one parton is involved in the hard process.

In this prescription, we can consider the partons which are involved in the hard scattering

as free particles. The process of hadronization only happens after the interaction, on time

scales much larger than the interaction itself. As a result, we can evaluate partonic cross

sections perturbatively, based on the Feynman diagrammatic approach with partons used

as incoming particles.

On the other hand, the non-perturbative hadron structure is described in terms of par-

ton distribution functions (PDFs) or parton densities, which have to be extracted from

experiments. These depend solely on the hadron’s constitution and are independent of the

nature of the hard process. The universal distribution functions can thus be used for the

calculation of any hadronic cross section.

Considering a collision of hadrons A and B to produce a generic final state F , the

hadronic cross section dσAB→F is then obtained by a convolution of the partonic cross

section dσ̂ab→F with the PDFs of the involved partons a, b and a summation over all possible

initial states (factorization, [105]),

dσAB→F (S) =
∑

a,b

∫ 1

0
dxa fa/A

(

xa, µF

)

∫ 1

0
dxb fb/B

(

xb, µF

)

dσ̂ab→F (xaxbS, µF ) , (3.1)

where the PDFs fa/A(xa, µF ) [fb/B(xb, µF )] give the probability of finding a parton a [b] in

the hadron A [B] carrying a fraction xa [xb] of the hadron’s momentum at a given scale

µF . At the LHC, both A and B are protons P .

Here, we introduced an arbitrary parameter µF , called factorization scale. It separates

the long-distance effects entering the non-perturbative hadronic structure and the short-

distance region of the hard-scattering process. The scale has to be in the order of a process-

typical scale, however its precise value is a-priori unknown. Whereas the PDFs depend on

µF already at lowest order, the explicit factorization scale dependence of the partonic cross

section only arises at NLO and beyond. As the scale is artificial, the factorization scale

dependence of the hadronic cross section is expected to decrease when going to higher

orders in perturbation theory.

Usually, the parton densities are extracted from measurements of hadronic structure func-

48



3.2. Hadronic cross sections

tions in deep inelastic scattering (DIS) and thus obtained at specific reference points, only.

For the theoretical computation of hadronic cross sections, we need the PDFs at any given

factorization scale however. Combining perturbative QCD and the parton model, the scale

dependence of the PDFs can be described by the integro-differential Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) evolution equations [106], including a finite number of

higher-order corrections.

For the hard-scattering process, the available center-of-mass (c. m. ) squared energy

ŝ = xaxbS is less than the overall hadronic c. m. energy S by a factor of τ = xaxb, since

the partons i only carry a fraction xi of their parent’s momenta. It is convenient to quantify

this by parameterizing the cross section as a product of a parton luminosity factor for the

relevant partons and the subprocess cross section for the partonic collision,

dσAB→F (S) =
∑

a,b

∫ 1

τ0

dτ
dLab

AB

dτ
dσ̂ab→F (τS) , (3.2)

where the differential parton luminosities dLab
AB/dτ are defined as follows,

dLab
AB

dτ
=

1

1 + δab

∫ 1

τ

dx

x

[

fa/A

(

x, µF

)

fb/B

(τ

x
, µF

)

+ fb/A

(τ

x
, µF

)

fa/B

(

x, µF

)

]

. (3.3)

With the prefactor 1/(1 + δab) we avoid double counting in case of identical partons. The

minimum energy squared at which the partonic process can occur, τ0S, provides an lower

cutoff on the x-range of the participating partons.

The parton distributions are an essential ingredient in the calculation of hadronic cross

sections. For a consistent treatment, the PDFs and the partonic results have to be defined in

the same factorization scheme (see Section 4.2.1) and to be determined with a comparable

accuracy. In the context of perturbative QCD, next-to-next-to-leading order corrections

are currently available. Just from a naive power counting, we can expect electroweak

effects of O(α) to be numerically important at the same level. The inclusion of O(α)

QED corrections into the evolution of the PDFs has two important physical consequences.

First of all, the quark and gluon PDFs get altered by additional photon radiation off the

partons. Even though this effect is small, it necessarily leads to isospin violation since up-

and down-quarks evolve differently when the non-flavorblind photonic effects are included.

Second, a non-zero photon density is dynamically generated inside hadrons. This allows

to include additional, photon-induced production channels in the calculation of hadronic

cross sections.

Currently, the MRST 2004 QED set [107] is the only set of PDFs on the market where

O(α) effects are properly taken into account. The photon density is parameterized as

one-photon emission off the valence quarks in the leading-logarithm approximation. As an
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Figure 3.4.: Parton distributions in the proton at Q2 = (500 GeV)2, obtained from the O(α2
s)

QCD and O(α) QED global fit, according to MRST2004QED [107]. The curves for
the sea quarks correspond to ū, d̄, s, c, and b quark densities.

example for the resulting PDF, we compare in Fig. 3.4 the various parton distributions in the

proton at a scale Q2 = (500 GeV)2, including O(α2
s) QCD and O(α) QED contributions.

Whereas the photon density is smaller by more then one order in magnitude for small

fractions x of the proton’s momentum, it ranges at the same level as the sea quark densities

for higher values x >∼ 0.1.

3.3 Classification of processes

In the MSSM, colored SUSY particles are produced in pairs at hadron colliders. In this

section, we classify the various production mechanisms and final states, starting with the

leading order (LO) processes. In the second paragraph, we discuss the next-to-leading order

(NLO) corrections of QCD origin. Also EW effects can alter the cross sections considerably

and we present the contributing channels in the third paragraph.

3.3.1 Squark and gluino production at LO

Owing to the large interest in squarks and gluinos, theoretical predictions of the LO pro-

duction cross sections were already published in the 1980’s [19]. At hadron colliders, pair

production of squarks and gluinos proceeds at lowest order QCD O(α2
s) via the following

partonic processes [19]. Example Feynman diagrams are given in Fig. 3.5.

• Gluino pairs are produced by gg and qq̄ initial states, see Fig. 3.5(a).

• Gluino–squark final states require gluon–quark initial states, the quark and the pro-

duced squark being of the same flavor. In the following, we restrict the discussion of
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gluino–squark production to left- and right-handed (anti-)squarks of the first two gen-

erations. The Feynman diagrams for g̃q̃a production are shown in Fig. 3.5(b). Note

that g̃t̃ final states cannot be produced at LO owing to the vanishing top-quark PDF.

Similarly, g̃b̃ production is suppressed by the bottom-quark PDF. Furthermore, third-

generation squarks are experimentally distinguishable from the light-flavor squarks

by their decay products (see previous section).

• Squark–squark production at LO QCD proceed only via qq initiated t-channel dia-

grams. Again we restrict the discussion to light-flavor squarks, which can be produced

in any combination of left- and right-handed squarks or anti-squarks (q̃aq̃b, q̃aq̃
′
b, q̃∗aq̃

∗
b ,

q̃∗aq̃
′∗
b , a, b = L, R). As an example, the Feynman diagram for diagonal q̃aq̃a produc-

tion is shown in Fig. 3.5(c). The diagram with crossed final states also contributes

and is not shown, explicitly.

• Squark–anti-squark pairs are produced via gg fusion and qq̄ annihilation, as shown

in Fig. 3.5(d) and (e) for diagonal q̃aq̃
∗
a production. The qq̄ initiated processes can

be either gluon-mediated s-channel diagrams with quarks of any flavor in the initial

state, cf. the last diagram of Fig. 3.5(d), or gluino-mediated t-channel diagrams,

cf. Fig. 3.5(e) (referring also to the diagram with crossed final states). Only the

diagram Fig. 3.5(e) also allows for the production of non-diagonal (q̃aq̃
∗
b ) and mixed-

flavor (q̃aq̃
′∗
b ) squark pairs.

• Stop–anti-stop (and sbottom–anti-sbottom) pair production has to be discussed sep-

arately from q̃q̃∗ production since, excluded by the PDF, it does not proceed via

qq̄ initiated t-channel diagrams. Moreover, the L–R mixing of the mass eigenstates

has to be taken into account. Due to the absence of the t-channel diagram, stops (and

sbottoms) can only be produced diagonally at LO QCD (i. e. t̃at̃
∗
a, a = 1, 2) since the

involved gt̃t̃∗ and ggt̃t̃∗ couplings conserve the chirality and mass eigenstate.

At lowest order QCD, mixed-flavor t̃b̃∗ and t̃∗b̃ pairs cannot be produced. The dominant

contributions to mixed t̃b̃∗ production are of O(α2), induced by the weak Wt̃b̃ vertex.

These processes have been studied in in [108] and in [109], where additionally real quark

radiation via the semi-weak Wgt̃b̃ vertex has been included. Also, the production of non-

diagonal stop–anti-stop pairs is loop suppressed at hadron colliders and occurs at O(α4
s) [21].

The only tree-level mechanism proceeds by Z-boson exchange in qq-annihilation channel,

yielding contributions at O(α2) [108]. In the following, we however restrict the discussion

to the production of diagonal stop–anti-stop pairs.

Which of the processes is the dominant one? The answer to this question depends of

course crucially on the masses of the produced particles. Furthermore, the interplay of the

various parton-level production channels is specific for a given hadronic c. m. energy and

is different for PP or PP̄ colliders. We refer to SUSY particle production at the LHC and
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Figure 3.5.: Parton-level Feynman diagrams at LO for the following processes: (a) g̃g̃ production,
(b) g̃q̃a production, (c) q̃aq̃a production, (d) q̃aq̃∗a, b̃ab̃∗a or t̃at̃∗a production, (e) addi-
tional t-channel diagram for q̃aq̃∗a production. Diagrams with cross final states are
not shown explicitly.

cite in Fig. 3.6 the relative weights of g̃g̃, g̃q̃, q̃q̃, and q̃q̃∗ final states in PP collisions at a

c. m. energy of
√

S = 14 TeV as presented in [20]. As a typical mass ratio of (degenerated)

light-flavor squark masses and the gluino mass, the values 0.8 and 1.6 have been chosen.

If squarks are lighter than gluinos, cf. Fig. 3.6(a), then g̃q̃ final states dominate in the

range of intermediate masses. In the high-mass range, mq̃, mg̃ > 1 TeV, predominantly q̃q̃

pairs are produced. These proceed from qq-induced initial states and profit from the high

valence-quark density in the large-x region. In contrast, if the gluino is lighter than squarks,

cf. Fig. 3.6(b), the g̃g̃ pairs contribute with more than 50% to the inclusive cross section.

q̃q̃ and q̃q̃∗ final states are suppressed considerably, while g̃q̃ production is important for

masses around the TeV scale.

A reliable prediction of the cross sections however needs to include contributions beyond

LO QCD, both of QCD and EW origin. They not only give important corrections to the

total cross section results, but also provide a higher stability of the cross section against a

variation of the factorization and renormalization scale.
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Figure 3.6.: The relative yields at LO of g̃g̃, g̃q̃, q̃q̃, and q̃q̃∗ final states in squark and gluino pair
production processes at the LHC [20]. The ratio of light-flavor squark masses and
the gluino mass is set to (a) mq̃/mg̃ = 0.8 and (b) mq̃/mg̃ = 1.6.
In Ref. [20], the PDF set GRV 94 [110] and central factorization and renormalization
scales (µ = mq̃ for squark pairs, µ = mg̃ for gluino pairs, and µ = (mg̃ + mq̃)/2 for
gluino–squark pairs in the final state) are chosen.

3.3.2 Higher-order QCD corrections

The NLO QCD corrections of O(α3
s) have been calculated in [20] for gluino and squark

pair production, with the restriction to final-state squarks of the first two generations, and

in [21] for the production of stop–anti-stop pairs. The results can be included in analyses

via the public program Prospino [111]. Depending on the considered SUSY scenario, the

NLO QCD typically alter the cross section for squark and gluino production at the LHC by

20–30%. Even higher corrections can be obtained in case of stop–anti-stop pair production.

Also, the cross sections are stabilized considerably against the uncertainty from the proper

choice of factorization and renormalization scale.

Only recently, first results beyond the one-loop level in QCD have become available. The

NLO QCD corrections get important contributions from the energy region near the partonic

production threshold (τH = 4m2/ŝ, m being the average mass of one produced particle).

In this region, the c. m. velocity of the produced particles is small and the corrections are

dominated by Coulomb corrections (the exchange of gluons) and soft gluon corrections

(initial and final state emission of low-energy gluons) [20].

In [22], the soft gluon corrections have been resummed at next-to-leading logarithmic

(NLL) accuracy, for squark–anti-squark and gluino pair production processes. Matching

consistently the NLL resummed and full NLO cross sections, the cross section predictions

are altered by 8% (for g̃g̃ production with mg̃ = 1 TeV, mq̃ = 833 TeV) and 2% (for

q̃q̃∗ production with mg̃ = 2 TeV, mq̃ = 1 TeV). In particular, the scale dependence was

shown to be reduced significantly in case of g̃g̃ production, where the soft gluon corrections
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Figure 3.7.: Tree-level EW Feynman diagrams for (a) t̃at̃∗a production, (b) q̃aq̃∗a production,
(c) q̃aq̃a production.

are especially important due to the dominance of the gg-induced channel.

Starting from the available NLO QCD results for squark–anti-squark production at

the LHC [20,111], the authors of [23] present approximate next-to-next-to-leading order

(NNLO) QCD predictions that include soft gluon resummation to next-to-next-to-leading

logarithmic (NNLL) accuracy as well as the complete two-loop Coulomb corrections. As a

result, the q̃q̃∗ production cross section is increased by 9% at (approx.) NNLO compared

to NLO QCD (mg̃ = 500 GeV, mq̃ = 400 GeV) and the uncertainty due to a variation of

(common) renormalization and factorization scales could be reduced to 3%.

3.3.3 Electroweak contributions

As we know from SM processes (see e. g. [112]), also electroweak corrections can give sizeable

effects to production cross sections of colored particles. The full EW contribution includes

both tree-level EW production processes and higher-order corrections of EW origin.

Tree-level EW production mechanisms

The above described tree-level production mechanisms of O(α2
s) are the dominant ones for

squark and gluino production at hadron colliders. But diagonal and non-diagonal squark

pairs can also be produced by qq̄ induced tree-level EW processes [113,114].

For stops and sbottoms, only s-channel diagrams with photon or Z boson exchange are

present at O(α2), shown in 3.7(a). These contributions are suppressed by the coupling and,

as we will see later, give negligible contributions only. However the production of squark–

anti-squark pairs of the first generations has a richer kinematic structure. Additional t-

channel diagrams mediated by a neutralino (or chargino, if an up-type–down-type squark

pair is produced) are present, cf. Fig. 3.7(b). As a consequence, also non-zero interferences

of O(αsα) between the qq̄-initiated QCD-mediated and EW-mediated diagrams arise. In

case of squark–squark production, only gaugino-mediated t-channel diagrams are allowed

from the fermion flow, shown in Fig. 3.7(c). For diagonal and same-flavor q̃aq̃a production

(and q̃Lq̃′L production where q and q′ denote SU(2)L partners of the same generation) also

diagrams with crossed final states are present, both of QCD- and EW origin. In this case,
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Figure 3.8.: Feynman diagrams for photon-induced (a) q̃aq̃∗a (and t̃at̃∗a) production and (b) g̃q̃a

production at tree-level.

the EW diagrams can interfere with the QCD-mediated diagrams and form an important

part of the full EW contribution.

As an independent production mechanism, photon-induced processes give further tree-

level contributions to the production of colored SUSY particles. At the hadronic level,

these processes vanish at leading order owing to the non-existence of a photon distribution

inside the proton. At NLO in QED, however, a non-zero photon density arises in the

proton as a direct consequence of including higher-order QED effects into the evolution of

PDFs, leading thus to non-zero photon-induced hadronic contributions (see the discussion

in Section 3.2).

Largest cross sections are obtained from photon-induced 2 → 2 processes, contributing

to (top-)squark pair production (via photon–gluon fusion, cf. Fig. 3.8(a)) and to gluino–

squark production (via photon–quark fusion, cf. Fig. 3.8(b)). Although these channels are

in general suppressed by the photon distribution, they can become sizable. In particular,

as we will see later, photon-induced stop–anti-stop production turns out to be important

and needs to be included in analyses.

Higher-order EW corrections

Finally, also higher-order EW corrections alter the predictions for squark and gluino produc-

tion process at hadron colliders. We concentrate on the NLO EW corrections of O(α2
sα).

From naive power counting, we expect contributions of comparable size to NNLO QCD

corrections.

The structure of NLO EW corrections can be rather complex.

First of all, contributions of O(α2
sα) arise from the interference of tree-level QCD ampli-

tudes and one-loop diagrams with EW insertions, see the example diagrams in Fig. 3.9 (a).

The supersymmetric final states do not allow to separate the SM-like corrections from the

superpartner contributions which are necessary for the cancellation of ultraviolet singular-

ities that arise in the loop diagrams. As the photino is not a mass eigenstate of the theory,

it is also not possible to split the EW corrections into a QED and a weak part, which is

often the case in SM processes (see e. g. [112]). In order to obtain a finite result, one has

to deal with the complete set of virtual EW corrections including photonic contributions.
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Figure 3.9.: Example Feynman diagrams for virtual NLO EW corrections to squark–anti-squark
production. At O(α2

sα), there are interference contributions from
(a) QCD-mediated Born diagrams and one-loop diagrams with EW insertions,
(b) EW-mediated s-channel Born diagrams and one-loop box diagrams with QCD
insertions,
(c) EW-mediated t-channel (and resp. u-channel) Born diagrams and full pure-QCD
one-loop amplitude.

Second, as discussed above, also tree-level EW diagrams are present for squark and top-

squark pair production. The interference terms of tree-level EW diagrams with pure-QCD

one-loop diagrams give additional contributions at O(α2
sα) and need to be included. In

case of stop–anti-stop production, the only non-zero interference terms arise from the EW

s-channel diagrams combined with QCD boxes (see Fig. 3.9 (b)). For light-flavor squarks

however, the additional gaugino-mediated t-channel diagrams give rise to interference con-

tributions with the full QCD one-loop amplitude, cf. Fig. 3.9 (c).

The virtual corrections comprise loop diagrams where the external particles exchange a

massless photon or gluon. These contributions cause infrared singularities in the limit of

vanishing momentum transfer. In order to cure the singularities, real photon and gluon

radiation processes have to be taken into account and constitute the third part of O(α2
sα)

corrections. Lastly, also real quark and real anti-quark bremsstrahlung contributes at

O(α2
sα) through the interference of EW-mediated and QCD- mediated diagrams.
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3.3. Classification of processes

O(α2
s) O(α3

s) O(α2) O(αsα) O(αsα) O(α2
sα)

g̃g̃ + + – – – +

g̃q̃ + + – – + +

q̃q̃ + + + + – +

q̃q̃∗ + + + + + +

t̃t̃∗ + + + – + +

×

Table 3.1.: Overview of contributions up to the one-loop level to squark and gluino pair production
processes. The processes divide into five classes, g̃g̃, g̃q̃, q̃q̃, q̃q̃∗, and t̃t̃∗ production.
The LO processes are of O(α2

s), NLO QCD corrections of O(α3
s), contributing to all

processes, as indicated by the + symbol in the table.
The EW contributions consist of tree-level O(α2) diagrams (q̃q̃, q̃q̃∗, t̃t̃∗ only) and
EW-QCD interference terms of O(αsα) (light-flavor q̃q̃, q̃q̃∗ only), photon-induced
processes of O(αsα) (g̃q̃, q̃q̃∗, t̃t̃∗ only), and NLO EW contributions of O(α2

sα) (to all
processes).
For each contribution of a specified order of perturbation theory, an example Feynman
graph is depicted in the last row.

The focus of this thesis is on the calculation of the EW contribution to gluino–squark [25],

stop–anti-stop [24], and squark–squark production [115], including the tree-level EW dia-

grams of O(α2(+αsα)), photon-induced processes of O(αsα), and NLO EW corrections of

O(α2
sα). Gluino–gluino and squark–anti-squark final states have been further investigated

in [26,27] and will not be discussed in more detail, here.

The calculation of NLO EW corrections is nontrivial, in particular the proper treatment

of ultraviolet and infrared singularities needs care. It is the purpose of the next chapter to

present all details that are required in order to obtain a finite cross section at O(α2
sα).

To conclude this section, we summarize the five dominant classes of production processes

for colored SUSY particles in Tab. 3.1 and indicate the QCD and EW contributions up to

the one-loop level. For each contribution of a specified order of perturbation theory, an

example Feynman graph is depicted in the last row.
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Chapter 4

How to obtain a finite result at O(α2
sα)

In a calculation of cross sections at higher orders in perturbation theory one typically

has to deal with several kinds of singularities. Ultraviolet (UV) singularities arise from

infinite momenta in the evaluation of self-energy and vertex diagrams and require a proper

regularization and renormalization of the theory. Moreover, infrared (IR) singularities are

caused by loop integrals and real radiation diagrams where massless particles are attached

to external on-shell particles. At O(α2
sα), both photons and gluons enter the diagrams and

a careful treatment of singularities is needed to obtain an IR-finite result.

In this chapter, we first refer to UV singularities and discuss the procedure of regular-

ization and renormalization in Section 4.1. Second, the treatment of IR singularities is

described in Section 4.2.

4.1 Handling ultraviolet singularities

In general, the Lagrangian of a given model involves free parameters which are not fixed by

the theory but have to be determined experimentally. At tree level, these parameters can

be chosen in such a way that they directly correspond to physical observables like masses

or couplings. If higher-order contributions are taken into account, however, this direct cor-

respondence is destroyed and modified relations have to be established. The scheme which

defines the parameters via their relations to measurable quantities is called a renormaliza-

tion scheme. Moreover, the higher-order corrections involve loop diagrams which diverge

for arbitrarily high energies. The parameters of the original Lagrangian, the bare parame-

ters, thus differ from the corresponding physical quantities by UV-divergent contributions.

For a consistent mathematical treatment, the divergences have to be regularized to render

the integrals finite. As a result, the bare parameters do not have any physical meaning and

have to be replaced by renormalized quantities. By choosing a suitable renormalization

scheme, the renormalized parameters absorb our ignorance of physics entering beyond the

UV cutoff scale and allow to make theoretical predictions for observable quantities in terms

of the parameters determined by experiments, independent on the regularization procedure.
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4. How to obtain a finite result at O(α2
sα)

Only in renormalizable theories, all UV divergences can be removed by an appropriate re-

definition of the fields and parameters in the Lagrangian, and finite results are obtained

in each order of perturbation theory. It was proven by ’t Hooft [45] that the SM as a

non-Abelian gauge theory with spontaneous symmetry breaking is renormalizable. The

renormalizability of supersymmetric extension of the SM, the MSSM, was shown in [116].

We first discuss briefly the general ideas of regularization and renormalization methods

in Sections 4.1.2 and 4.1.2, respectively. We then focus on the processes considered in

this report, where we need to renormalize the quark and squark sector and also the strong

sector. The renormalization of these sectors is worked out in detail in Section 4.1.3.

4.1.1 Regularization

Higher-order loop diagrams give rise to UV singularities from the integration over internal

loop momenta in the region where the integration momenta become infinite. The diver-

gences can be extracted by introducing a regulator Λ, such that the integrals are finite but

dependent on Λ. As anticipated above, the problem of the treatment of divergent integrals

thus results in the problem how to obtain theoretical predictions that do not depend on

the unphysical regularization parameter Λ and renormalization (see below) is required.

The choice of a mathematically consistent regularization is not unique and different pro-

cedures have been worked out. The most intuitive method is provided by the Pauli-Villars

regularization [117]: One simply introduces an upper cutoff parameter on the momentum

integration to prevent the integral from reaching the UV-divergent limit. As a drawback,

results obtained in the Pauli-Villars prescription are in general not gauge-invariant.

Alternative approaches are based on a dimensional analysis. In four dimensions, the inte-

grals are UV divergent. However, if the number of dimensions is reduced by an infinitesimal

value ǫ to a new dimension D = 4 − ǫ, the integrals converge. The UV singularities then

appear as poles in ǫ. In order to keep integrals and couplings dimensionless and indepen-

dent of the dimensions D of space-time, the integrals have to be multiplied with the factor

(2πµ)4−D, where the additional parameter µ has the dimension of a mass.

The described procedure is called dimensional regularization [118,119], and is commonly

used for SM calculations. As a consequence of the extension to D dimensions, also the

Dirac matrices γµ need to be defined as D-dimensional objects (satisfying the usual anti-

commutation relations and hermiticity conditions, see Eq. (A.6)). The generalization of γ5

to D dimensions is more involved and different treatments are possible [119–121]. We adopt

the approach of [121] and consider anticommuting relations of γ5 and γµ in D dimensions

together with the non-zero trace Tr(γ5γµγνγργσ) = 4iǫµνρσ (see App. A.2).

Using the space-time as an regulator, dimensional regularization preserves Lorentz and

gauge invariance and is appropriate for higher-order calculations. However, considering a

supersymmetric theory in D dimensions leads to a mismatch between the (D − 2) number
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4.1. Handling ultraviolet singularities

of d.o.f. for gauge bosons and the 2 gauginos d.o.f.. This O(ǫ) mismatch results in finite,

non-zero contributions and thus SUSY is explicitly broken at higher orders.

An elegant way to avoid the symmetry violation is provided by the dimensional reduction

scheme [122]. The idea is to only continue the number of space-time dimensions to D, while

keeping the number of components of the fields fixed. Early problems of the scheme [123]

could be solved [124]. For a mathematical consistent formulation, the four-dimensional

space is realized as quasi-four-dimensional space, where gauge fields and in particular Dirac

matrices remain four-dimensional objects but Fierz identities do not hold.

4.1.2 Renormalization

The regularization procedure of higher-order contributions introduces unphysical param-

eters into the theory. Different to the situation in tree-level considerations, the bare pa-

rameters of the original Lagrangian do not have a physical meaning anymore and may be

replaced. Renormalization of the theory allows to cure the dependence on the regularization

parameter and to replace the UV-divergent bare parameters by finite renormalized quan-

tities and divergent renormalization constants (counterterms) such that the parameters of

the theory can be related again to physical observables.

Within the common approach of multiplicative renormalization, we write for a generic

bare parameter g0 of the Lagrangian

g0 −→ Zgg =
(

1 + δZ(1)
g + δZ(2)

g + . . .
)

g

≡ g + δg(1) + δg(2) + . . . ,
(4.1)

where g is the UV-finite renormalized parameter. All singularities are absorbed into the

the renormalization constant Zg. In Eq. (4.1), a perturbative expansion of Zg in the regu-

larization parameter up to order i makes the counterterms δg(i) explicit. In the following,

we are only interested in one-loop corrections and second order terms will be neglected.

i. e. g0 −→ g + δg, where the superscript i = 1 is suppressed.

Renormalization of the parameters is sufficient to obtain finite S-matrix elements, but it

leaves Green functions divergent. This is due to the fact that radiative corrections change

the normalization of the fields by an infinite amount. In order to get finite propagators

and vertex functions, also the fields need to be renormalized. We proceed analogously and

replace the bare fields ψ0 in the Lagrangian by normalized fields ψ and field renormalization

constants Zψ. Again, the renormalization constant can be written as an perturbative

expansion, Zψ = 1 + δZ
(1)
ψ + δZ

(2)
ψ + . . . , yielding at one loop the replacement rule

ψ0 −→
√

Zψψ =

(

1 +
1

2
δZψ

)

ψ. (4.2)
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4. How to obtain a finite result at O(α2
sα)

In general, radiative corrections provide non-diagonal corrections to mass matrices and the

bare fields are no longer mass eigenstates. In this case, one has to introduce matrix valued

field renormalization constants in order to re-diagonalize the mass matrices. These allow

to define the renormalized fields in such a way that they are the correct physical mass

eigenstates in all orders of perturbation theory.

With the above definitions of the renormalized parameters and fields, one can split the

bare Lagrangian L0 as follows,

L0(g0, ψ0) = L(g, ψ) + δL(g, δg, ψ, δZψψ), (4.3)

where the Lagrangian L has the same form has L0 but depends on renormalized parameters

and fields instead of unrenormalized ones. All counterterms are contained in δL. They give

rise to additional Feynman diagrams which have to be added to the loop graphs. In the

sum of both, loop corrections and counterterms, all UV-divergent parts cancel and finite

quantities are obtained.

Renormalization schemes

The choice of the renormalization constants is arbitrary to a great extent, only their diver-

gent parts have to match the divergent parts of the relevant loop integrals. The finite parts

are fixed by renormalization conditions which establish a relation between the independent

parameters of the theory and physical observables. Different renormalization schemes can

be based on distinct sets of physical input variables and can lead to differences among the

finite parts of the renormalization constants. In an exact calculation to all orders in per-

turbation theory, the final result does not depend on the renormalization scheme. But at

finite orders, differences among results obtained in distinct schemes remain. These can be

understood as an estimate of the theoretical uncertainty induced by missing higher-order

corrections. In the following, we will distinguish between three schemes.

• MS scheme:

In the minimal subtraction (MS) scheme [45] only the UV-divergent parts are ab-

sorbed into the counterterms of the Lagrangian, but no finite contributions. The eval-

uation of loop diagrams is based on dimensional regularization and the UV-divergent

parts are thus proportional to ∝ 1/ǫ. A convenient generalization of the MS scheme

is provided by the modified minimal subtraction (MS) scheme [125,126] where not

only the pure ǫ-poles are absorbed, but also finite remnants of the regularization

procedure. At one-loop order, the divergent terms are proportional to ∆,

∆ =
2

ǫ
− γE + ln 4π, (4.4)

where γE is the Euler-Mascheroni constant. The scale at which the counterterms
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4.1. Handling ultraviolet singularities

are absorbed is the renormalization scale µR. Absorbing also constants into the

counterterms according to Eq. (4.4), the renormalization scale in the MS scheme is

related to the scale parameter µ introduced by the regularization procedure via

ln(µ2
R) = −γE + ln 4π + lnµ2. (4.5)

Results obtained in the MS prescription depend on the choice of the renormalization

scale. Again, this scale dependence reflects the theoretical uncertainty of a fixed order

calculation and has to cancel if contributions from all orders are taken into account.

• DR scheme:

This scheme follows the same approach as the MS scheme except for the fact that the

divergent integrals are regularized by dimensional reduction. The renormalization

scale is defined according to Eq. (4.5). At the one-loop level, the counterterms within

both schemes are identical. Only at higher orders different finite contributions from

the two regularization schemes induce a disagreement.

• OS scheme:

In the on-shell (OS) scheme [127] one imposes direct relations between the renormal-

ized parameters in the Lagrangian and physical observables at all orders in pertur-

bation theory. The renormalized mass parameter of a particle is required to equal

its physical mass, i.e. it corresponds to the real part of the pole of its propagator.

In case of mass matrices, these conditions have to be fulfilled by the corresponding

eigenvalues. The resulting expressions can be simplified by requiring simultaneously

on-shell conditions for the field renormalization matrices. These state that the renor-

malized fields are properly normalized, i. e. that the renormalized propagators have

unity residues and that the renormalized one-particle irreducible (1PI) two-point func-

tions (the inverse of the renormalized propagators) are diagonal for on-shell external

particles. As a consequence, the renormalization conditions for the mass parameters

involve only diagonal self energies.

Also couplings can be renormalized “on-shell”, by defining the coupling counterterm

to absorb all loop-induced corrections. By construction, if all quantities arising in

a calculation are determined to be on-shell, the final result does not depend on the

mass scale introduced by regularization.

The complete OS renormalization conditions have been worked out for the SM in [127,

128] and were generalized to the MSSM in [69].

4.1.3 Renormalization for squark and gluino pair production at O(α2
sα)

The strategy of our calculations is as follows. As described above, we replace the bare pa-

rameters in the Lagrangian with renormalized quantities and renormalization constants. A
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4. How to obtain a finite result at O(α2
sα)

perturbative expansion of the renormalization constants allows to split the bare Lagrangian

L0 in an original-like part L and a counterterm part δL. The latter gives rise to additional

interactions and Feynman diagrams (counterterm diagrams), in terms of the renormaliza-

tion constants. The counterterm diagrams have to match the singular parts of the virtual

corrections. Obviously, one needs counterterm and loop diagrams in the same order of

perturbation theory in order to obtain a finite result. Due to the involved structure of the

O(α2
sα) corrections involving both EW-mediated and QCD-mediated Born-level diagrams,

care has to be taken to evaluate the renormalization constants at the right order when the

renormalization conditions are applied.

In case of t̃t̃∗ and g̃q̃ production, UV singularities only arise from loop diagrams with

weak insertions to QCD-mediated tree-level graphs. Correspondingly, only the quark and

the squark sector of the MSSM need to be renormalized and the renormalization constants

have to be evaluated at O(α). This is different for q̃q̃ production, where pure-QCD one-loop

diagrams cause UV singularities. In this case, also the strong sector has to be renormalized

and we need renormalization constants of O(αs). We will come back to this in more

detail in the respective chapters. At this point, we want to give a general description

of the renormalization procedure in those sectors of the MSSM that are relevant for our

calculations. We introduce renormalization constants for masses and fields and impose

on-shell conditions to fix the counterterms. This scheme is appropriate for cross section

calculations as the OS renormalization of external particles guarantees that the pole masses

recover the correct kinematical thresholds. In the strong sector, as usual, the QCD coupling

constant is defined in the MS scheme. The Feynman rules for the arising counterterm

diagrams are collected in Tables 4.1 and 4.2.

Renormalization of the quark sector

The bilinear part of the (Fourier transformed) Lagrangian for SM quarks is

Lquarks = ψq (6p − mq)ψq, (4.6)

where ψq denotes the four-component Dirac spinor of a quark q = u, d, c, s, b, t. The renor-

malized quark masses and fields are obtained by the following replacements,

mq −→ mq + δmq,

PLψq −→
(

1 +
1

2
δZq

L

)

PLψq,

PRψq −→
(

1 +
1

2
δZq

R

)

PRψq,

(4.7)

where PL/R are the projection operators PL/R = (1∓ γ5)/2. Here, we neglect CKM effects

and thus quarks of different generations do not mix. δZq
L and δZq

R are the renormaliza-
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4.1. Handling ultraviolet singularities

tion constants of the left- and right-handed quark field, respectively. δmq is the mass

counterterm.

Inserting Eq. (4.7) into Eq. (4.6) yields the counterterm Lagrangian,

δL = ψq 6p
[

δZq
L PL + δZq

R PR

]

ψq −
[mq

2
(δZq

L + δZq
R) + δmq

]

ψqψq. (4.8)

In order to impose the renormalization conditions, we need the renormalized self-energy

Σ̂q(p) entering the renormalized 1PI two-point function iΓ̂q(p) = i(6 p − mq) + iΣ̂q(p). In

general, it is equal to the unrenormalized self-energy Σq(p) plus the corresponding coun-

terterms δΣq(p), which are the derivatives of the counterterm Lagrangian δL with respect

to the fields ψq and ψq,

Σ̂q(p) = Σq(p) +
∂

∂ψq

∂

∂ψq
δL ≡ Σq(p) + δΣq(p), (4.9)

With the decomposition of the self-energy into scalar coefficients,

Σq(p) =6p PL Σq
L(p2)+ 6pPR Σq

R(p2) + mq Σq
S(p2), (4.10)

we find for the scalar coefficients of the analogously decomposed renormalized self-energy,

Σ̂q
a(p

2) = Σq
a(p

2) + δZq
a, (a = L, R)

Σ̂q
S(p2) = Σq

S(p2) − 1

2

(

δZq
L + δZq

R

)

− δmq

mq
.

(4.11)

The on-shell conditions require that the renormalized fermion masses are the poles of the

real parts of the propagators and that the renormalized propagators have unity residues.

This results in14

Re Σ̂q(6p = mq) = 0 and lim
p2→m2

q

6p + mq

p2 − m2
q

Re Σ̂q(p) Ψq(p) = 0, (4.12)

where Ψq(p) is the spinor of the external quark field. In terms of the above introduced

coefficients of the self-energies, the renormalization constants are then given by

δmq =
mq

2
Re

[

Σq
L(m2

q) + Σq
R(m2

q) + 2Σq
S(m2

q)
]

,

δZq
a = −Re Σq

a(m
2
q) − m2

q Re

[

∂

∂p2
Σq

L(p2) +
∂

∂p2
Σq

R(p2) + 2
∂

∂p2
Σq

S(p2)

]∣

∣

∣

∣

p2=m2
q

.
(4.13)

14to be precise, the renormalization conditions have to formulated in terms of the operator fRe(X) which

selects the real part in each loop integral Li of expression X =
P

ciLi, i. e. fRe
P

ciLi =
P

ci Re(Li).
We suppress the tilde on the Re operator in the following.
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4. How to obtain a finite result at O(α2
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Note that in our actual calculations, only the field renormalization constants of light-flavor

quarks enter. There are no external top-quark lines and for the light-flavor quarks, we

generally neglect the masses. (However the quark masses have to be kept as regulators in

the quark field renormalization constants.)

Renormalization of the squark sector

The kinetic and mass terms of the squark Lagrangian are, for a given squark q̃,

Lsquarks =
(

q̃∗L, q̃∗R
)

(p2 −M2
q̃)

(

q̃L

q̃R

)

. (4.14)

To simplify the notation, we suppress generation indices here. At the one-loop level, the

squark sector is renormalized by introducing counterterms for the squark mass matrix Mq̃,

M2
q̃ −→ M2

q̃ + δM2
q̃ , (4.15)

where the elements of the matrix δM2
q̃ are the counterterms of the elements of M2

q̃ in the

prescription of Eq. (2.95) or equivalently of Eq. (2.100) (see Eq. (4.19) below). In order to

get finite Green functions, the fields are renormalized according to

(

q̃L

q̃R

)

−→ U †
q̃

(

1 +
1

2
δZq̃

)

(

q̃1

q̃2

)

, δZq̃ =

(

δZ q̃
11 δZ q̃

12

δZ q̃
21 δZ q̃

22

)

, (4.16)

where we included a rotation of the L–R eigenstates for a convenient definition of the

counterterms in the mass eigenstate basis. The counterterm Lagrangian then reads

δL =
(

q̃∗1, q̃∗2
) p2

2

(

δZ†
q̃ + δZq̃

)

(

q̃1

q̃2

)

−
(

q̃∗1, q̃∗2
)

[

1

2
δZ†

q̃ D2
q̃ +

1

2
D2

q̃ δZq̃ + Uq̃ δM2
q̃ U †

q̃

] (

q̃1

q̃2

)

,

(4.17)

in terms of the diagonalized mass matrix D2
q̃ = Uq̃M2

q̃U
†
q̃ . From Eq. (4.17), we directly read

off the matrix-valued renormalized self-energy Σ̂q̃
ab(p

2),

Σ̂q̃
ab(p

2) = Σq̃
ab(p

2) +
p2

2

(

δZ†
q̃ + δZq̃

)

ab
− 1

2

(

δZ†
q̃ D2

q̃ + D2
q̃ δZq̃

)

ab
−

(

Uq̃ δM2
q̃ U †

q̃

)

ab
.

(4.18)

The appropriate set of on-shell renormalization conditions depends on which set of input

parameters is chosen. As discussed in Section 2.3.4, the squark sector is described by five

independent parameters (per generation), thus five renormalization conditions are needed.

All other parameters and their counterterms are dependent quantities and can be derived
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4.1. Handling ultraviolet singularities

from the expressions of the independent counterterms. Since we include field renormal-

ization Eq. (4.16), also the corresponding on-shell conditions for the field renormalization

constants have to be imposed.

The perhaps most intuitive choice is to start from the masses and mixing angles as input

parameters, m2
ũ1

, m2
ũ2

, m2
d̃1

, θũ, θd̃ (cf. Eq. (2.104), generation indices suppressed) [129].

The corresponding counterterms are parameterized in the counterterm matrix δM2
q̃ , which

follows from Eq. (2.100) by differentiation,

(δM2
q̃)11 = cos2 θq̃ δm2

q̃1
+ sin2 θq̃ δm2

q̃2
− 2 sin θq̃ cos θq̃ (m2

q̃1
− m2

q̃2
) δθq̃,

(δM2
q̃)12 = sin θq̃ cos θq̃ (δm2

q̃1
− δm2

q̃2
) + cos(2θq̃) (m2

q̃1
− m2

q̃2
) δθq̃,

(δM2
q̃)21 = (δM2

q̃)12,

(δM2
q̃)22 = sin2 θq̃ δm2

q̃1
+ cos2 θq̃ δm2

q̃2
+ 2 sin θq̃ cos θq̃ (m2

q̃1
− m2

q̃2
) δθq̃.

(4.19)

This corresponds to the following relations between the counterterms and the entries of the

rotated counterterm matrix Uq̃ δM2
q̃ U †

q̃ ,

δm2
q̃a

=
(

Uq̃ δM2
q̃ U †

q̃

)

aa
, a = 1, 2. (4.20a)

δθq̃ =

(

Uq̃ δM2
q̃ U †

q̃

)

12

m2
q̃1
− m2

q̃2

. (4.20b)

The three independent mass counterterms are fixed by the on-shell requirement of vanishing

real parts of the diagonal entries of the renormalized self-energies Eq. (4.18), i. e.

Re Σ̂q̃
aa(m

2
q̃a

) = 0, a = 1, 2. (4.21)

Together with Eq. (4.20a), this leads to

δm2
ũ1

= Re Σũ
11(m

2
ũ1

), δm2
ũ2

= Re Σũ
22(m

2
ũ2

), δm2
d̃1

= ReΣd̃
11(m

2
d̃1

). (4.22)

The diagonal elements of the field renormalization matrix δZq̃ directly follow from the

condition that the residues of the renormalized squark propagators are unity, (a = 1, 2),

Re
∂

∂p2
Σ̂q̃

aa(p
2)

∣

∣

∣

p2=m
q̃2
a

= 0 ⇒ δZ q̃
aa = −Re

∂

∂p2
Σq̃

aa(p
2)

∣

∣

∣

p2=m
q̃2
a

. (4.23)

The mixing angles are defined on-shell if they do not receive loop corrections. This imposes

that the sum of the non-diagonal elements of the renormalized self-energies evaluated at

both mass eigenvalues vanishes,

Re Σ̂q̃
12(m

2
q̃1

) + Re Σ̂q̃
12(m

2
q̃2

) = 0. (4.24)
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Inserting Eqs. (4.18) and (4.20b) into the condition Eq. (4.24), the counterterms for the

mixing angles follow,

δθq̃ =
ReΣq̃

12(m
2
q̃1

) + Re Σq̃
12(m

2
q̃2

)

2(m2
q̃1
− m2

q̃2
)

, (4.25)

where the convenient choice δZ q̃
12 = δZ q̃

21 has been applied.

To fix the remaining non-diagonal entries of the field renormalization matrix δZq̃, we

furthermore require to have zero mixing on each squark mass-shell, i. e. ReΣ̂q̃
12(m

2
q̃2

) = 0.

With the definition Eq. (4.18) and the above conditions this finally results in

δZ q̃
12 = δZ q̃

21 = −
ReΣq̃

12(m
2
q̃1

) − ReΣq̃
12(m

2
q̃2

)

m2
q̃1
− m2

q̃2

. (4.26)

Owing to the introduction of an explicit counterterm for the mixing angle, one relies on a

specific parameterization of the squark mixing matrix Uq̃, Eq. (2.95), entering in Eq. (4.19).

It is straightforward to derive more general formulas which also allow for different definitions

of the squark masses and mixing angles. We introduce the counterterm δY 2
q̃ ,

δY 2
q̃ ≡

(

Uq̃ δM2
q̃ U †

q̃

)

12
, (4.27)

which is in the explicit parameterization of Eq. (2.95), cf. Eq. (4.20b),

δY 2
q̃ = (m2

q̃1
− m2

q̃2
) δθq̃. (4.28)

The renormalization condition for δY 2
q̃ replaces then that of δθq̃ in Eq. (4.25),

δY 2
q̃ =

1

2

(

Re Σq̃
12(m

2
q̃1

) + ReΣq̃
12(m

2
q̃2

)
)

. (4.29)

All independent quantities are now defined. By differentiation of Eq. (2.102), we find the

counterterm for the dependent mass m2
d̃2

. Written in a way independent on the explicit

parameterization of the squark mixing matrix, it is

δm2
d̃2

=
1

(

U d̃
12

)2

[

−
(

U d̃
11

)2
δm2

d̃1
−

(

U ũ
11

)2
δm2

ũ1
−

(

U ũ
12

)2
δm2

ũ2
+ 2U d̃

12U
d̃
22 δY 2

d̃
− 2U ũ

12U
ũ
22 δY 2

ũ

+ 2md δmd − 2mu δmu − cos 2β δm2
W + 4m2

W

tan β δ tan β

(1 + tan2 β)2

]

.

(4.30)

In the second line of Eq. (4.30) counterterms from other sectors enter. The quark mass

counterterms are defined OS according to Eq. (4.13). δm2
W is the W mass counterterm,
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which in the OS scheme is given by the transverse part of the W boson self-energy,

δm2
W = ReΣT

W (m2
W ). (4.31)

The counterterm δ tan β is introduced according to tan β → tan β+δ tan β. Following [130,

131], a vanishing A0 −Z mixing for an on-shell A0 boson can be used as a renormalization

condition for tan β (DCPR scheme),

Re Σ̂A0Z(m2
A0) = Re ΣA0Z(m2

A0) − mZ sin 2β
δ tan β

tan β
= 0 (4.32)

in terms of the renormalized self-energy Σ̂A0Z (derived from the vertex function ΓA0Z
µ (k,−k)

= kµΣA0Z(k2), where k is the incoming A0 momentum). Here, we apply a DR renormal-

ization condition instead [69,132],

δ tanβ =
1

2mZ cos2 β
Re ΣA0Z(m2

A0)
∣

∣

∣

UV div.
, (4.33)

where the subscript UV div. indicates that only the UV-divergent part of the A0 − Z self-

energy has to be taken. As pointed out in [133], this definition is process independent and

gauge invariant at the one-loop level.

So far, we treated up- and down-type squarks in the same way. However for third gen-

eration squarks, this scheme can lead to numerical instabilities [79]. There are important

differences between the top and the bottom sector. First, we have implicitly chosen the

SM quark masses as input parameters for the definition of the squark mass counterterms.

Whereas the mass of the top-quark can experimentally be measured, the precise determina-

tion of the on-shell bottom quark mass is difficult due to non-perturbative effects. Potential

problems with the bottom pole mass can be avoided by adopting a renormalization scheme

with a running bottom-quark mass. In the context of the MSSM it is appropriate to renor-

malize the bottom quark mass in the DR scheme and to include the SUSY contributions

into the running. The bottom mass counterterm is then given by Eq. (4.13) but now

the self-energies are regularized within dimensional reduction and only the UV-divergent

contributions have to be kept.

Furthermore, the tan β-dependence in the top- and bottom-squark mass matrices is dif-

ferent. In the above described scheme, the trilinear couplings Af are dependent quantities

and their counterterm δAf is obtained by differentiating Eq. (2.101) and inserting the above

defined counterterms for the (s)quark masses and mixing angles15. In the bottom sector,

15To fully determine the counterterm δAb at O(α), also the counterterm δµ of the gaugino sector is needed.
It can be defined via the neutralino self-energies and is given in e. g. [134].
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the tan β-dependence of the counterterm is

δAb =
1

mb
[−δmb (Ab − µ tan β) + . . . ], (4.34)

which can cause large corrections to Ab in parameter regions where µ tan β ≫ Ab. It seems

thus appropriate to use Ab as an input parameter directly.

To summarize, we replace the input set {(mb)
OS, (m2

b̃1
)OS, (θb̃)

OS} and choose a modified

renormalization scheme for the bottom-sbottom sector according to [79] based on the inputs

{(mb)
DR, (m2

b̃1
)OS, (Ab)

DR}. In this scheme, the counterterm for the mixing angle δθb is

a dependent quantity. The explicit formulas for δAb and δθb are given in [79,135].

In the discussion of squarks of the first two generations, q̃ = ũ, d̃, c̃, s̃, we neglect light

quark masses. Thus, the mixing angle does not enter and the above formulas simplify

considerably. In particular, the two renormalization schemes yield the same result.

Neglecting the mixing also at the one-loop level, the mass matrix, the field renormal-

ization matrix, and the squark self-energies are diagonal. We introduce field and mass

renormalization as follows,

q̃L/R −→
(

1 +
1

2
δZ q̃

LL/RR

)

q̃L/R,

m2
q̃L/R

−→ m2
q̃L/R

+ δm2
q̃L/R

.
(4.35)

In these terms, the renormalized self-energy reads

Σ̂q̃
L/R(p2) = Σq̃

L/R(p2) +
(

p2 − m2
q̃L/R

)

δZ q̃
LL/RR − δm2

q̃L/R
, (4.36)

yielding for the three independent mass counterterms

δm2
ũR

= ReΣũ
R(m2

ũR
), δm2

ũL
= ReΣũ

L(m2
ũL

), δm2
d̃R

= Re Σd̃
R(m2

d̃R
). (4.37)

The mass of the left-handed down-squark is constrained by the SU(2)L invariance and its

counterterm follows from Eq. (4.30),

δm2
d̃L

= δm2
ũL

− cos 2β δm2
W + 4m2

W

tan β δ tan β

(1 + tan2 β)2
, (4.38)

with δmu = δmd = 0. The field renormalization constants are determined by Eq. (4.23),

δZ q̃
LL/RR = −Re

∂

∂p2
Σq̃

L/R(p2)
∣

∣

∣

p2=m
q̃2
L/R

. (4.39)

The definition of the counterterm Lagrangian yields new Feynman diagrams that have to

be taken into account in the calculation of loop amplitudes. Having introduced the renor-
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malization constants in the quark and in the squark sector, we can define the counterterms

for self-energies, vertex, and quartic interactions necessary for t̃at̃
∗
a and g̃q̃ production, as

listed in Table 4.1. Note that counterterms involving the non-diagonal elements of the stop

field renormalization constant are not given explicitly as they do not enter the calculation

since only chirality-conserving vertices appear in the diagrams for t̃at̃
∗
a production at LO

(see also Section 5.2.2).

Renormalization of the gluino

If required, we also renormalize the gluino and impose OS conditions. The renormalization

proceeds similar as in the quark sector, however gluinos are Majorana fermions. The

relevant part of the Fourier transformed Lagrange density is

Lgluino = Ψg̃ (6p − mg̃)Ψg̃, with Ψg̃ =

(

g̃

g̃

)

, (4.40)

where Ψg̃ is a Majorana spinor build from the left-handed Weyl spinors g̃ only. The

renormalization constants for the gluino mass mg̃ and the gluino field are introduced by

the replacement

mg̃ −→ mg̃ + δmg̃,

g̃ −→
(

1 +
1

2
δZg̃

)

g̃.
(4.41)

Due to the Majorana nature of gluinos, there is no difference between left- and right-handed

renormalization constants. The counterterm Lagrangian results for real entries δZg̃ in

δL = Ψg̃ 6p δZg̃ Ψg̃ −
(

mg̃ δZg̃ + δmg̃

)

Ψg̃Ψg̃. (4.42)

The scalar coefficients of the gluino self-energy are defined as follows,

Σg̃(p2) =6pΣg̃
L(p2) + mg̃Σ

g̃
S(p2), (4.43)

such that we find for the coefficients of the renormalized gluino self-energy from Eq. (4.42),

Σ̂g̃
L(p2) = Σg̃

L + δZg̃, Σ̂g̃
S(p2) = Σg̃

S − δZg̃ −
δmg̃

mg̃
. (4.44)

The counterterms are given by the on-shell conditions that the renormalized mass is equal to

the physical mass and that the renormalized propagators have unity residue, cf. Eq. (4.12),
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q̃a q̃a
= i

[

(p2 − m2
q̃a

) δZ q̃
aa − δm2

q̃a

]

g

q

q̄

= −igsT
c
(

δZ q̃
L γµPL + δZ q̃

R γµPR

)

g

q̃a

q̃∗a

= −igsT
c δZ q̃

aa (k + k′)µ

g

g q̃a

q̃∗a

= ig2
s

(

T c1T c2 + T c2T c1
)

δZ q̃
aa gµν

q

g̃

q̃a

= ∓igs
1√
2
T c

(

δZ q̃
aa + δZq

a

)

PL/R, a = L, R

q̄

g̃

q̃∗a

= ±igs
1√
2
T c

(

δZ q̃
aa + δZq

a

)

PR/L, a = L, R

Table 4.1.: List of counterterms relevant for t̃at̃∗a and g̃q̃ production at O(α2
sα); all renormalization

constants have to be evaluated at O(α). In the upper four diagrams, the label q̃a refers
both to light-flavor squarks (a = L,R) and stops (a = 1, 2). Color indices for quarks
and squarks are suppressed, while c and ci are gluonic color indices and T c, T ci denote
the SU(3)C color matrices. In the diagrams involving Majorana particles, the fermion
flow is fixed according to the arrow depicted on the quark line [73].
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yielding

δmg̃ = mg̃

(

Σg̃
L + Σg̃

S

)

,

δZg̃ = −ReΣg̃
L − 2mg̃Re

[

∂

∂p2
Σg̃

L(p2) +
∂

∂p2
Σg̃

S(p2)

]∣

∣

∣

∣

p2=m2
g̃

.
(4.45)

Renormalization of strong couplings

Finally, we also need to renormalize the strong coupling gs and the strong q̃g̃q Yukawa

coupling ĝs. Supersymmetry requires both couplings to be identical. We introduce the

renormalization constants by the replacement of the bare couplings as follows,

gs −→ (1 + δZgs) gs,

ĝs −→ (1 + δZĝs) ĝs,
(4.46)

Care has to be taken to define the strong coupling in the loop computations in accordance

with the coupling used in the extraction of the PDFs. Therefore, we define gs in the MS

scheme, in terms of the gluonic self-energy and the triple gluon vertex,

δZgs = −αs

4π
∆

β0

2
, (4.47)

where β0 is the one-loop coefficient of the running coupling αs(µ) = g2
s(µ)/4π. In high-

energy collisions the typical scales at which to evaluate the coupling are comparable or

above the weak scale. At such high scales, the contribution βH
0 of heavy particles as the

gluino, squarks and the top quark has to be considered in the definition of the running

coupling. Including the light-quark and gluonic contributions βL
0 as well as those from

gluinos, squarks, and top quarks, the β0-coefficient is

β0 ≡ βL
0 + βH

0 =

(

11

3
N − 2

3
nf

)

+

(

−2

3
N − 1

3
(nf + 1) − 2

3

)

= 3, (4.48)

with N = 3 and nf = 5 light quark flavors. However the PDFs are obtained using a running

MS coupling determined by light particles only (i. e. β0 ≡ βL
0 ). At a high scale µ > mt,

the two couplings are related by explicit decoupling of the gluino, squark, and top-quark

contributions. We compensate this shift by a redefinition of the counterterm of the strong

coupling in the zero momentum subtraction scheme [136,137]

δZgs = −αs

4π

[

3

2
∆ + ln

(

m2
g̃

µ2

)

+
∑

q̃a

1

12
ln

(

m2
q̃a

µ2

)

+
1

3
ln

(

m2
t

µ2

) ]

, (4.49)
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g̃ g̃
= i [(6p − mg̃) δZg̃ − δmg̃]

q

g̃

q̃a

= ∓igs
1√
2
T c

(

δZ q̃
aa + δZq

a + δZg + 2δZĝs

)

PL/R, a = L, R

q̄

g̃

q̃∗a

= ±igs
1√
2
T c

(

δZ q̃
aa + δZq

a + δZg + 2δZĝs

)

PR/L, a = L, R

q

χ̃0
n

q̃a

= −ie 1√
2
κ0

L/R(q)
(

δZ q̃
aa + δZq

a

)

PL/R, a = L, R

q̄

χ̃0
n

q̃∗a

= −ie 1√
2

[

κ0
L/R(q)

]∗
(

δZ q̃
aa + δZq

a

)

PR/L, a = L, R

q′

χ̃±
n

q̃L

= −ie1
2 κ±

L (q′)
(

δZ q̃
aa + δZq′

a

)

PL,

q̄′

χ̃±
n

q̃∗L

= −ie1
2

[

κ±
L (q′)

]∗
(

δZ q̃
aa + δZq′

a

)

PR,

Table 4.2.: List of counterterms relevant for q̃q̃ production at O(α2
sα). The renormalization con-

stants have to be evaluated at O(α) or O(α) as specified below in Figures 7.2, 7.3,
and 7.4. The notation refers to Fig. 4.1, with q′ denoting the SU(2)L partner of q,
and n labels the neutralino (n = 1 . . . 4) and chargino (n = 1, 2) mass eigenstates.
The χ̃0qq̃ couplings are κ0

L(q) = N∗
n1(eq − I3

q )/ cos θW + N∗
n2I

3
q / sin θW and κ0

R(q) =
−Nn1eq, where N ≡ Nχ̃0 is the neutralino mixing matrix defined in Eq. (2.113);
the χ̃±q′q̃ couplings are κ±

L (q′ = ui) = U∗
n1/ sin θW and κ±

L (q′ = di) = V ∗
n1/ sin θW , in

terms of the chargino mixing matrices U ≡ Uχ̃± , V ≡ Vχ̃± , defined in Eq. (2.109), [72].
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where the divergences associated with the heavy-particle loops are subtracted at zero mo-

mentum. Here, the sum runs over all twelve squark mass eigenstates q̃a.

Furthermore, since we define the strong coupling in the MS scheme, a mismatch between

gs and the Yukawa coupling ĝs is introduced at the one-loop level owing to the treatment of

UV divergences by means of dimensional regularization. In order to restore supersymmetry

in physical amplitudes, one has to shift the renormalization constant for δZĝs by a finite

amount to be different from δZgs . At the one-loop level, it is [136]

δZĝs = δZgs +
αs

3π
. (4.50)

As a result, supersymmetry is preserved and the definition of the strong coupling corre-

sponds to the usual SM measurements.

For a complete renormalization of the strong sector, also the gluon field renormalization

constant needs to be introduced and fixed by renormalization conditions. However, in the

processes considered here (q̃q̃ production at O(α2
sα)), the gluon enters only at one-loop and

needs not to be renormalized at this order of perturbation theory.

The resulting counterterms that are relevant for q̃q̃ production are given in Table 4.2.

4.2 Handling infrared singularities

As shown by Kinoshita [138], IR singularities result from two configurations: Soft singu-

larities appear if two external on-shell particles exchange a massless particle, and collinear

singularities arise if an external massless particle splits into two internal massless particles.

Also both conditions can be fulfilled in a single diagram, then the singularities overlap.

The IR singularities are of logarithmic nature. If the involved particles have a small, but

non-vanishing mass, the singularities appear as logarithms ∝
{

ln(m2/µ2), ln2(m2/µ2)
}

of

the mass parameter m and a high scale µ.16

The IR singularities of virtual corrections are intrinsically connected to those of real

corrections. Real radiation cross sections become singular from the phase-space integration

if a massless particle is emitted off an external particle either in the soft limit (vanishing

momentum) or in the collinear region (small angle between the radiated and the massless

emitting particle).

However if sufficiently inclusive observables are considered (i. e. their actual values do

not depend on the precise number of collinear or soft particles in the final state), the can-

cellation of IR singularities is guaranteed by factorization theorems [104]. The Kinoshita–

Lee–Nauenberg (KLN) theorem [138,140] states that all soft singularities and also the

singularities due to collinear final state particles cancel in the sum of virtual and real cor-

16A list of all IR-singular three-point functions and their analytic expressions in the soft and/or collinear
limit has been worked out in [139].
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rections, even though defined on different phase spaces. Remaining collinear singularities

related to initial state partons are process independent and can, therefore, be absorbed by

universal collinear ’counterterms’ generated by redefining the parton distribution functions

of the incoming hadrons. As a result, the physical higher-order cross section is IR finite

and free of the fictious mass regulator, as required from experiment.

Considering squark and gluino production at O(α2
sα), one has to deal with the following

IR singularities in real radiation processes.17

• Soft photon singularities arise in diagrams where the external particles exchange

a photon, as e. g. in the first two loop diagrams in Fig. 3.9 (a). We regularize the

amplitude by a non-zero photon mass λ. This is allowed because the renormalizability

of QED is not violated by an explicit mass term for the gauge boson. The singularities

cancel against their counterparts from real photon bremsstrahlung contributions.

Soft photon singularities appear in all production channels for g̃g̃, g̃q̃, q̃q̃, q̃q̃∗, and

t̃t̃∗ production.

• Production channels with light-flavor quarks in the initial state suffer from singular-

ities due to collinearly radiated photons. An example diagram is given by the first

loop diagram in Fig. 3.9 (a). The singularities occur for massless quarks only, if

they radiate off a photon under a small angle, and can be regularized by a non-zero

quark mass mq. In the loop diagrams, collinear and soft singularities overlap and

both single and double logarithmic contributions of the quark mass arise. The double

logarithms cancel in the sum of virtual and real photon corrections. The remaining

single logarithms are process independent and can be absorbed into the PDFs by an

appropriate redefinition with respect to collinear photon radiation at O(α).

Singularities related to collinear photons have to be considered for the full set of g̃g̃,

g̃q̃, q̃q̃, q̃q̃∗, and t̃t̃∗ production processes, connected to the quarks and anti-quarks in

the initial states.

• If EW tree-level diagrams are present, also loop diagrams with virtual gluons con-

tribute at O(α2
sα), cf. e. g. the first box diagram in Fig. 3.9 (a) and Fig. 3.9 (b),

respectively, and induce IR singularities. We can regularize the soft gluon singulari-

ties analogously to the photonic ones by giving a mass to the gluon, since the gluons

behave Abelian-like in the respective diagrams. The non-Abelian ggg vertex does

not enter at this order of perturbation theory. To cancel the soft gluon singularities,

we need to include soft gluon bremsstrahlung at the right order, as resulting from

interference contributions of QCD- and EW-mediated diagrams.

17For a detailed description of generic IR singularities in virtual and real photonic corrections and explicit
discussions on their cancellation we refer to textbooks, e. g. [141], see also [69]. Here, we will restrict
ourselves to a general classification of the IR singularities that we actually have to deal with and the
calculation of the real corrections.
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Soft gluon singularities are present for q̃q̃ production and in the qq̄-annihilation chan-

nels in q̃q̃∗ and t̃t̃∗ production.

• Only for q̃q̃ and q̃q̃∗ production, where the full QCD one-loop amplitude enters, also

singularities due to collinearly radiated gluons off initial state quarks contribute. As

an example see the first loop diagram in Fig. 3.9 (c). To absorb also the universal

gluonic collinear singularities, the redefinition of the PDFs has to be done accordingly

including O(αs) effects.

• For completeness, we mention that at O(α2
sα), squarks and gluinos can also be pro-

duced in association with a real quark or anti-quark. For q̃q̃∗ and q̃q̃ production the

real (anti-)quark radiation proceeds from qg (q̄g) initial states. These processes ex-

hibit singularities if the gluon splits collinearly into a quark–anti-quark pair. Again,

this requires an appropriate redefinition of the (anti-)quark PDF at O(αs).

Singularities due to collinearly radiated quarks only occur in the qg-fusion channel

for q̃q̃∗ and q̃q̃ production. Due to color and charge conservation, they are absent for

t̃t̃∗ production as well as for g̃q̃ production.

The calculation of the real corrections is nontrivial owing to the IR singularities that

arise in the integration of phase space of the emitted particle. In case of real gluons,

the calculation is even more involved since the color structure of the diagrams has to be

taken into account properly. We first describe the treatment of real photon corrections in

Section 4.2.1. Details for real gluon radiation and the treatment of the color correlation

are given in Section 4.2.2. We briefly comment on real quark radiation in Section 4.2.3.

4.2.1 Real photon bremsstrahlung

To cancel the photonic IR singularities from the virtual corrections, we need to include

real photon bremsstrahlung at the right order. In our case, these are O(α2
sα) contributions

from lowest-order 2 → 3 processes. We consider the generic partonic process

a(pa) b(pb) → c(pc) d(pd) γ(k), (4.51)

where a and b are here massless partons (a, b = q, q̄, g) and c and d are massive SUSY

particles (c, d = g̃, q̃, q̃∗). The masses and momenta of the partons and SUSY particles

are denoted with mi, pi (i = a, b, c, d), respectively, and the photon carries momentum k.

The photon can be emitted by any of the involved (anti-)quarks and (anti-)squarks. As

a notation and convenient bookkeeping device for later, we introduce the labels dσ̂m, n
X for

a cross section of the partonic process X at a given order O(αm
s αn) in the strong and

electroweak coupling constants. Matrix elements are denoted analogously.18

18In the following we refer to cross sections at O(α2
sα) only, however the discussion of real photon

bremsstrahlung is rather general and the presented methods can be applied to tree-level processes
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At the partonic level, the cross section reads

∫

dσ̂2, 1
ab→cdγ =

1

2ŝ

∫

dPS3

∑
∣

∣M1, 1/2
ab→cdγ

∣

∣

2
, (4.52)

with dPS3 =

∫

d3pc

(2π)3
1

2Ec

∫

d3pd

(2π)3
1

2Ed

∫

d3k

(2π)3
1

2Eγ
(2π)4 δ(4)(pa + pb − pc − pd − k),

in terms of the c. m. energy squared ŝ, the three-particle phase-space element dPS3, and the

(spin- and polarization-summed and squared) amplitude M1, 1/2
ab→cdγ . For photon emission

off the i-th particle, the amplitude is obtained from that of the 2 → 2 process ab → cd

without photon radiation by inserting an additional particle propagator with momentum q

(and an additional interaction vertex) and we write schematically

M1, 1/2
ab→cdγ ∝ 1

q2 − m2
i

, (4.53)

where the momentum transfer is q = pi−k for initial state photon radiation and q = pi +k

for final state radiation. As the external particles are on-shell, the propagator simplifies to

1

q2 − m2
i

=
1

±2pik
=

1

±2EiEγ

(

1 −
√

1 − m2
i

E2
i

cos θiγ

) , (4.54)

with θiγ being the angle between the emitter i and the photon.

From Eq. (4.54) we see that the integration over the photon phase space Eq. (4.52) can

become problematic in two regions: In the soft region, where the photon is produced with

vanishing energy Eγ ≈ 0 and, if the emitter is massless (mi = 0), in the collinear region,

where the angle between the photon and the emitting particle is small and cos θiγ ≈ 1. In

the singular regions, we therefore insert a non-zero photon mass λ (i. e. q2 = ±2pik+λ2) and

keep non-zero quark masses mq as regulators. Note that for the SUSY processes considered

here, Eq. (4.51), collinear singularities only appear from initial state radiation, since the

final (SUSY) particles are massive.

Several methods have been worked out to perform the phase-space integration Eq. (4.52)

in the soft and collinear regions.

The idea of the phase-space slicing approach [128,142] is to separate the singular from

the finite regions in the phase-space integration. By introducing a cutoff parameter ∆E, we

divide the photon bremsstrahlung contribution into a soft part, where the photon energy is

below the cutoff Eγ ≤ ∆E, and in a hard part, where the photon is emitted with Eγ > ∆E.

Whereas the soft photon part is IR singular, the hard photon contributions are well defined

and IR finite and can safely be integrated numerically.

of other orders in perturbation theory in complete analogy.
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It has been shown that the soft photon part factorizes into the underlying 2 → 2 lowest

order process and a soft correction factor which contains the singularities. In the approxi-

mation of small photon energies it can be calculated analytically. For the cross section for

real photon emission we write generically

∫

dσ̂2, 1
ab→cdγ =

∫

Eγ≤∆E
dσ̂2, 1

ab→cdγ +

∫

Eγ>∆E
dσ̂2, 1

ab→cdγ

=

∫

dσ̂2, 1
ab→cdγ(∆E)

∣

∣

∣

soft
+

∫

dσ̂2, 1
ab→cdγ(∆E)

∣

∣

∣

hard
.

(4.55)

The dependence on the cutoff parameter cancels after summing soft and hard contributions.

The precise value of the cutoff is therefore arbitrary, however it should be small compared to

typical energy scales Q of the process since the results from the soft photon approximation

are correct up to O(∆E/Q) only.

In bremsstrahlung contributions from quark-induced channels, also collinear singularities

have to be taken in to account properly. Therefore a second cutoff ∆θ is introduced, on

the angle θiγ between the emitter i and the photon. As a result the hard photon part is

split into a (hard) collinear and a (hard) non-collinear contribution,

dσ̂2, 1
ab→cdγ(∆E)

∣

∣

∣

hard
= dσ̂2, 1

ab→cdγ(∆E, ∆θ)
∣

∣

∣

coll.
+ dσ̂2, 1

ab→cdγ(∆E, ∆θ)
∣

∣

∣

non−coll.
. (4.56)

Similar to the soft photon case, the cross section in the collinear region is related to the

lowest order result and can be approximated analytically. Again, the angle cutoff is a priori

arbitrary and cancels in the sum of collinear and non-collinear contributions. But for

reliable approximations it it necessary to choose a cutoff which justifies the assumption

that the direction of flight of the emitting particle is unaffected by the photon radiation

(collinear limit).

The analytical expressions for the cross sections in the soft and collinear region will be

discussed in the next subsection.

The biggest advantage of the phase-space slicing approach is clearly its intuitivity. How-

ever the proper choice of the cutoffs needs some care. If the cutoffs are chosen too large, the

analytical approximations are not valid anymore. If chosen too small, the numerical inte-

gration becomes unstable in the regions “too close” to the singularities and large integration

errors are obtained.

An alternative approach is provided by the dipole subtraction method which avoids

singular numerical integrations, as originally presented for massless QCD in [143] and later

extended to massive particles in QED and QCD in [144–146]. Here, a simple auxiliary

function is subtracted from and added to the singular integrand. The auxiliary function

has to be constructed under two conditions. First of all it is supposed to cancel all IR

singularities contained in the real photon contributions. As a result, the integration of the
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subtracted amplitude can be performed numerically over the full phase space. On the other

hand, it has to be so simple that it can be integrated analytically when it is added again.

Schematically, the real correction cross section can be expressed as follows

dσ̂2, 1
ab→cdγ =

1

2ŝ

∫

dPS3

(

∑

∣

∣

∣M1, 1/2
ab→cdγ

∣

∣

∣

2
−

∣

∣

∣M1, 1/2
aux.

∣

∣

∣

2
)

+
1

2ŝ

∫

dPS3

∣

∣

∣M1, 1/2
aux.

∣

∣

∣

2
, (4.57)

where Maux. is the appropriately chosen auxiliary function. In the sum of real and virtual

corrections, the IR singularities from the virtual corrections cancel their counterparts from

the integrated auxiliary function and the result is IR finite.

As shown in [145], results derived by application of the dipole subtraction methods

typically have integration errors reduced by an order of magnitude compared to results

obtained from phase-space slicing (if the same statistics is used). By construction, no cutoff

parameters need to be introduced. However the actual implementation of the formalism is

less intuitive than for phase-space slicing and becomes complicated for massive particles, if

cuts are applied, and in particular if non-inclusive quantities are considered.

In the following, we will refer to the phase-space slicing method only.

Soft photon bremsstrahlung

In the soft region, the energy of the emitted photon is small by definition. Hence the real

radiation matrix element can be approximated under the assumption that the momenta of

the other final state particles are unaffected by the emission. As a consequence, the ampli-

tude for the 2 → 3 processes factorizes from the original 2 → 2 amplitude (with unchanged

momenta). For a photon emission off particle i with fractional electrical charge eqi it is, in

the limit k → 0 (eikonal approximation),

M1, 1/2
ab→cdγ,i

∣

∣

∣

soft
= −e eqi

ǫpi

±kpi
M1, 0

ab→cd, (4.58)

ǫ being the polarization vector of the photon. The sign in the nominator depends on the

charge flow, the plus sign refers to initial state radiation, the minus sign to final state radi-

ation. In Eq. (4.58), all terms proportional to the photon momentum k in the denominator

have been neglected. The soft singularity is fully contained in the nominator ∝ kpi. One

can easily show (see e. g. [128]), that Eq. (4.58) holds generally for external fermion, boson

and scalar lines (with the respective charge factors). Diagrams with photons radiated off

internal lines or quartic vertices do not induce IR singularities and can be neglected in the

soft approximation. Thus, the full soft photon matrix element results from summation over

all external charged particles i,

M1, 1/2
ab→cdγ

∣

∣

∣

soft
=

∑

i

M1, 1/2
ab→cdγ,i

∣

∣

∣

soft
= −eM1, 0

ab→cd

∑

i

eqi

ǫpi

±kpi
. (4.59)
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The term Jµ(k) =
∑

i eqi pµ
i /(±kpi) is the eikonal current for the emission of the soft

photon with momentum k.

Under the approximation that the remaining momenta are unchanged by the photon

emission, also the three-particle phase space factorizes from the original two-particle phase

space. This yields for the differential cross section

dσ̂2, 1
ab→cdγ(∆E)

∣

∣

∣

soft
= −dσ̂2, 0

ab→cd × α

2π2

∫

|~k|≤∆E

d3|~k|
2Eγ

∑

i,j

±eqieqj pipj

(kpi)(kpj)
,

≡ −dσ̂2, 0
ab→cd × α

π

∑

i,j

±eqieqj Iij

(4.60)

where now the sign refers to the relative sign of emitter i and j. Note that we use here

a photon mass λ as regulator, i. e. Eγ =

√

|~k|2 + λ2. General analytic expressions for the

process independent phase-space integrals Iij are given in [128,147],

Iij =
rpipj

(rpi)2 − p2
j

{

1

2
log

(rpi)
2

p2
j

log
4(∆E)2

λ2

+

[

1

4
log2 u0 − |~u|

u0 + |~u| + Li2

(

1 − u0 + |~u|
v

)

+ Li2

(

1 − u0 − |~u|
v

)]u=rpi

u=pj

}

,

(4.61)

where Li2 (z) =
∫ 0
z dt/t ln(1 − t) is the dilogarithm and r and v are defined through

r2p2
i − 2rpipj + p2

j = 0,
rEi − Ej

Ej
> 0; v =

(rpi)
2 − p2

j

2(rEi − Ej)
. (4.62)

More explicit formulas can be worked out in the limit of small quark masses and for

the specific process under consideration, depending on the type and charge of the external

particles. For t̃t̃∗, g̃q̃, and q̃q̃ production the formulas are given in the respective chapters.

Collinear photon bremsstrahlung

For the processes considered here, collinear singularities only arise from initial state radia-

tion off a quark or anti-quark. Keeping the incoming parton momentum fixed, the momen-

tum entering the hard scattering process depends on the momentum fraction carried away

by the emitted particle. In cross section calculations, we cannot treat the fermion–photon

pair inclusively. I. e. not only the summed momenta of the fermion and the photon, but

both their values are important for cross sections and, in particular, for distributions.

The situation is different for collinear-safe observables [148]. As a typical example, let us

consider collinear photon radiation off final electrons. In an experiment, both the collinear
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PA

PB

pb

p̃a

k = (1 − z)p̃a

pa = zp̃a

ŝ

pc

pd

p̃a = x̃aPA = xa/z PA

pa = xaPA

pb = xbPB

s̃ = (p̃a + pb)
2 = τ̃S = τ̂ /z S

ŝ = (pa + pb)
2 = τ̂S

Figure 4.1.: Generic Feynman diagram for initial state photon radiation. Particle a with momen-
tum p̃a emits a photon with momentum k = (1 − z)p̃a. The squared energy of the
hard scattering process is ŝ = (pa + pb)

2 = (zp̃a + pb)
2 = (pc + pd)

2. The colliding
hadrons carry momentum PA and PB , respectively, yielding the hadronic squared
energy S = (PA + PB)2, the gray blobs refer to the PDFs.

electron and photon would hit the same cell in the calorimeter and only their summed energy

could be measured. In this case one would treat the electron and the photon inclusively

as one quasi-particle. For the calculation of collinear-safe observables, the precise energy

fraction z = Ei/(Ei +Eγ) of the electron after collinear photon emission is not relevant and

can be integrated out analytically. If collinear singularities arise from final state radiation

only, and if the photon is considered sufficiently inclusively, all IR singularities cancel in

the sum of virtual and real corrections as guaranteed by the KLN theorem.

The extraction of the collinear singularities from the bremsstrahlung cross section has

been done in e. g. in [149,150]. We only refer to initial state radiation and use the notation

as introduced in Fig. 4.1. The collinear region is defined by an upper cutoff on the angle θiγ

between the emitter and the photon or, equivalently, requiring cos θiγ > 1 − δθ. In this

region, the phase-space element for the total process p̃a + pb → pc + pd + k (expressed in

terms of the involved momenta) factorizes into the two particle phase-space element for the

hard process pa + pb → pc + pd and a collinear part referring to the photon phase space.

Also, the squared matrix element factorizes into the leading order matrix element and a

collinear factor. As a result, the cross section in the collinear region for photon radiation

off all initial state charged particles i of energy Ei =
√

ŝ/2 can be expressed as

dσ̂2, 1
ab→cdγ(∆E, δθ)

∣

∣

∣

∣

coll.

=
α

π

∑

i

e2
qi

∫ 1−∆E/Ei

z0

dz κcoll.(z, ŝ) dσ̂2, 0
ab→cd(ŝ), (4.63)

where the collinear factor κcoll. depends on the IR regulator mq and reads

κcoll.(z, ŝ) =
1

2
Pq←q(z)

[

ln

(

ŝ

zm2
q

δθ

2

)

− 1

]

+
1

2
(1 − z), (4.64)
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and Pq←q(z) being the LO splitting function of a photon from a quark or anti-quark [106],

Pq←q(z) =
1 + z2

1 − z
. (4.65)

Note that the leading order cross section depends on the energy ŝ = (pa + pb)
2 of the

hard scattering process, while the relevant energy for the collinear factor is the full energy

ŝ/z = (p̃a + pb)
2. The lower integration limit of the z-integration is restricted from the

production threshold, z0 = (mc + md)
2/ŝ. The upper limit has to be chosen such that an

overlap with the soft region is avoided and is thus reduced from z = 1 to z = 1 − ∆E/Ei,

where ∆E is the upper cutoff on the energy a photon may have to be considered as soft.

Factorization of initial state singularities

The quark mass logarithm in the collinear factor of Eq. (4.64) is not canceled in the sum

of virtual and real corrections. It can be understood as contribution from collinear photon

emission at very low momentum transfers. In this region, perturbation theory is not appli-

cable anymore. Instead, these collinearly emitted photons have to be seen as a long-distance

effect, as processes which occur before the emitting parton enters the hard-scattering pro-

cess and which are thus already included in the extraction of the PDFs. In the calculation

of hadronic cross sections at NLO, care has to be taken to not overcount these effects. IR-

finite results are obtained by absorbing the collinear mass logarithms from the real radiation

contribution into redefined PDFs.

The redefinition of the PDF for parton i (i = q, q̄) in hadron A including photon radiation

at O(α) is performed at the factorization scale µF as follows [149,151],

fi/A(x, µF ) → fi/A(x, µF )
(

1 +
α

π
e2
qi

κPDF
soft

)

+
α

π
e2
qi

∫ 1−δs

x

dz

z
fi/A

(x

z
, µF

)

κPDF
coll. (z),

(4.66)

with the soft photon cutoff parameter δs = 2∆E/
√

ŝ and

κPDF
soft = −1 + ln δs + ln2 δs − ln

(

µ2
F

m2
q

) [

3

4
+ ln δs

]

+
λsc

4

[

9 +
2π2

3
+ 3 ln δs − 2 ln2 δs

]

,

κPDF
coll. (z) =

1

2
Pqq(z)

[

ln

(

m2
q (1 − z)2

µ2
F

)

+ 1

]

− λsc

2

[

Pqq(z) ln
1 − z

z
− 3

2

1

1 − z
+ 2z + 3

]

.

(4.67)

The lower integration limit z0 = x guarantees that the parton momentum fraction in the

PDF (x/z) is smaller than unity.

There is some freedom in the redefinition of the PDFs. In addition to the IR-singular
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terms, also finite terms can be absorbed. For a consistent treatment, a factorization scheme

has to be defined and to be used both in the extraction of the PDFs from experiment and

in the theoretical calculation. In Eq. (4.66), the results for different choices of factorization

schemes are parameterized by the parameter λsc. In the MS scheme, only the singular

terms are subtracted and it is λsc = 0. In contrast it is λsc = 1 in the DIS scheme, where

the PDFs are defined to absorb the quantum corrections to the structure function F2 in

all orders of perturbation theory. Obviously, the absorption of collinear singularities due

to photons into the quark PDFs requires the consistent inclusion of O(α) effects both in

the theoretical evolution and in the extraction of the distributions from experiment. At

present, there is only one set of PDFs available where the O(α) are taken properly into

account: MRST 2004 QED [107], using the DIS factorization scheme (i. e. λsc = 1 ).

The actual effect of using the redefined PDFs is that for the total hadronic cross section at

O(α2
sα), new contributions arise from the interference of the O(α) terms in Eq. (4.66) with

the O(α2
s) LO cross sections, sometimes referred to as collinear counterterms. Summing

over all initial state emitters i among the partons a, b (where j denotes the respective second

parton), it is at O(α2
sα)

dσcoll.CT
AB→cdγ(∆E) =

α

π

∑

i

e2
qi

∫

dτ

∫

dxi

∫

dxj κPDF
soft dσ̂2, 0

ab→cd(ŝ) δ(τ − xixj)

× 1

1 + δij

[

fi/A(xi, µF )fj/B(xj , µF ) + fj/A(xj , µF )fi/B(xi, µF )
]

+
α

π

∑

i

e2
qi

∫

dτ̃

∫

dx̃i

∫

dxj

∫

dz κPDF
coll. (z) dσ̂2, 0

ab→cd(ŝ) δ(τ̃ − x̃ixj)

× 1

1 + δij

[

fi/A(x̃i, µF )fj/B(xj , µF ) + fj/A(xj , µF )fi/B(x̃i, µF )
]

,

(4.68)

in terms of the inclusive variables x̃i = xi
z and τ̃ = τ

z and the hard energy squared ŝ =

(p1 + p2)
2 = x1x2S (see Fig. 4.1 for the notation). We perform a transformation of x̃i, τ̃ to

the hard variables xi, τ and use the δ-functions to cancel the xj integrations. This leads to

dσcoll.CT
AB→cdγ(∆E) =

α

π

∑

i

e2
qi

∫

dτ
dLij

AB

dτ
κPDF

soft dσ̂2, 0
ab→cd(ŝ) (4.69)

+
α

π

∑

i

e2
qi

∫

dτ

∫

dxi

xi

∫ 1−∆E/Ei

xi

dz

z
κPDF

coll. (z) dσ̂2, 0
ab→cd(ŝ)

× 1

1 + δij

[

fi/A

(xi

z
, µF

)

fj/B

( τ

xi
, µF

)

+ fj/A

( τ

xi
, µF

)

fi/B

(xi

z
, µF

)

]

,

expressed in terms of the parton luminosity dL/dτ defined in Eq. (3.3).
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In the sum of all contributions, the mass singularities from the collinear factor κcoll.(z)

in Eq. (4.63) cancel those from κPDF
coll. (z) in Eq. (4.69). The first summand of Eq. (4.69),

proportional to κPDF
soft , cancels singularities that remain in the sum of virtual and soft photon

corrections. The resulting cross section is finite with respect to photon singularities, i. e. it

is independent of the IR regulators λ, mq and, in a wide range, of the cutoff parameters

∆E, δθ introduced by the phase-space slicing19.

4.2.2 Real gluon bremsstrahlung

Processes that also provide EW tree-level production channels give rise to gluonic IR sin-

gularities in the virtual corrections at O(α2
sα). The soft and collinear singularities cancel

if the corresponding real gluon bremsstrahlung contributions are taken into account.

The treatment of singularities proceeds in close analogy to that of photonic singular-

ities described above, as the emitted gluons behave Abelian-like in the occurring dia-

grams. At the considered order of perturbation theory, gluons are only emitted off external

(anti-)quarks and (anti-)squarks and the non-Abelian gluon self-interaction vertex does not

appear. This implies that we can regularize the gluonic IR singularities by giving a mass to

the gluon. Furthermore we keep non-zero quark masses where necessary. The calculation

of the real gluon bremsstrahlung has also been done in the phase-space slicing approach.

To simplify matters we use the same mass regulator λ and cutoff parameters ∆E, δθ in the

notation as for the photonic singularities, even though in the actual calculation they are to

be considered as independent parameters.

However two difficulties arise since the gluon couples via the strong interaction and

carries color charge in contrast to the photon. First, by counting orders, we find that

gluon emission can only contribute at the appropriate order O(α2
sα) in the interference of

an EW-mediated diagram with gluon emission and a QCD-mediated diagram with a real

gluon attached. Separately taken, the diagrams would give contributions of O(αsα
2) and

O(α3
s), respectively. Secondly, the emission of a gluon changes the color structure of an

diagram. This has to be taken into account in the soft approximation where it leads to

color correlations in the eikonal current. As a result, the soft and collinear parts of the

differential cross sections do factorize analogously to the photonic case into soft/collinear

factors and contributions from diagrams without real emission. But the latter are O(αsα)

interference contributions and in the soft gluon part a rearrangement of the color structure

has to be performed.

Soft gluon bremsstrahlung

The approximation of real gluon bremsstrahlung in the soft region has been done in [143]

and we closely follow the prescription introduced there. In analogy to Eq. (4.59), we can

19As an example, see the numerical studies on the cutoff dependence of the results in Figs. 5.10 and 7.8.
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write a 2 → 3 matrix element in the soft limit as factorized from the corresponding 2 → 2

matrix element without gluon emission,

∣

∣Mab→cdg

〉

∣

∣

∣

soft
= −gs ǫµ(k)Jµ(k)

∣

∣Mab→cd

〉

. (4.70)

Here, gs is the strong coupling and ǫµ denotes the gluon polarization vector. The eikonal

current Jµ(k) for the emission of a soft gluon of momentum k is

Jµ(k) =
∑

i

Ti
pµ

i

kpi
, (4.71)

where now the sum over i runs over all colored external particles. For the emission of a

gluon with color index c off particle i with color index β, the matrix-valued color charge

operator Ti is

Ti → (Ti)
c
αβ =

{

tcαβ if i = ingoing quark or outgoing anti-(s)quark

−tcβα if i = ingoing anti-quark or outgoing (s)quark
. (4.72)

The operator Ti is defined on the color space. The matrix elements in Eq. (4.70) have to

be identified as abstract vectors in this space for a proper definition. For more details we

refer to [143], here we keep the sloppy notation of Eq. (4.70). The color charge algebra is

Ti · Tj = Tj · Ti if i 6= j; T2
i = Ci, (4.73)

where Ci is the Casimir operator, i. e. Ci = CF = 4/3 for emitting (anti-)(s)quarks.

The differential cross section for soft gluon radiation at O(α2
sα) can then be expressed

in an similar way to the one for soft photon radiation in Eq. (4.60),

dσ̂2, 1
ab→cdg(∆E)

∣

∣

∣

soft
=

− 1

2ŝ
dPS2

αs

2π2

∫

|~k|≤∆E

d3|~k|
2Eg

∑

2Re
{〈

M0, 1
ab→cd

∣

∣

∣
[Jµ(k)]† Jµ(k)

∣

∣

∣
M1, 0

ab→cd

〉}

, (4.74)

with

[Jµ(k)]† Jµ(k) =
∑

i

T2
i

p2
i

(kpi)2
+ 2

∑

i<j

Ti · Tj
pipj

(kpi)(kpj)
, (4.75)

and the two-particle phase-space element dPS2

dPS2 =

∫

d3pc

(2π)3
1

2Ec

∫

d3pd

(2π)3
1

2Ed
(2π)4 δ(4)(pa + pb − pc − pd). (4.76)
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The summation over final state colors and helicities and average of initial state colors is

included on the right hand side of Eq. (4.74) as indicated by the symbol
∑

. Note that the

cross section results from an interference contribution of an EW-mediated Born amplitude

M0, 1
ab→cd and a QCD-mediated Born amplitude M1, 0

ab→cd.

The explicit result of Eq. (4.74) depends of course on the process under consideration.

In our calculations, soft gluon radiation enters in diagrams with two (anti-)quarks in the

initial state and two (anti-)squarks in the final state. All four particles can emit a gluon,

i. e. the sums in Eq. (4.75) run over i, j = 1, . . . , 4. To further evaluate Eq. (4.74), we use

the definition of the color charge operators, Eq. (4.73),

T2
i

∣

∣Mab→cd

〉

=
4

3

∣

∣Mab→cd

〉

, Ti

4
∑

j=1

Tj

∣

∣Mab→cd

〉

= 0, (4.77)

where the second equation follows from color charge conservation. Eq. (4.77) allows to

express the six symmetric charge operators Ti ·Tj (i 6= j) in terms of only two independent

operators, e. g. T1 · T2 and T1 · T3 (see Appendix A of [143] for explicit formulas). The

squared matrix element of Eq. (4.74) thus splits into three summands only. For our case of

four (s)quarks or anti-(s)quarks interacting, one finds

〈

M0, 1
ab→cd

∣

∣

∣
[Jµ(k)]† Jµ(k)

∣

∣

∣
M1, 0

ab→cd

〉

=

4

3

〈

M0, 1
ab→cd

∣

∣

∣
M1, 0

ab→cd

〉

(

4
∑

i=1

Pii − 2P23 − 2P14

)

+ 2
〈

M0, 1
ab→cd

∣

∣

∣
T1 · T2

∣

∣

∣
M1, 0

ab→cd

〉

(P12 + P34 − P23 − P14)

+ 2
〈

M0, 1
ab→cd

∣

∣

∣T1 · T3

∣

∣

∣M1, 0
ab→cd

〉

(P13 + P24 − P23 − P14) ,

(4.78)

with Pij = (pipj)/[(kpi)(kpj)]. The first term on the r.h.s. of Eq. (4.78) is proportional

to the color-unchanged interference contribution of the EW-mediated and QCD-mediated

diagrams. With explicit color indices for the external particles denoted by αi, i = 1, . . . , 4,

we write

〈

M0, 1
ab→cd

∣

∣

∣M1, 0
ab→cd

〉

=
(

M0,1 [α1,α2,α3,α4]
ab→cd

)∗
M1,0 [α1,α2,α3,α4]

ab→cd . (4.79)

The second and third terms on the r.h.s. of Eq. (4.78) are connected to color-modified

interference contributions, defined as

〈

M0, 1
ab→cd

∣

∣

∣
T1 · T2

∣

∣

∣
M1, 0

ab→cd

〉

=
(

M0, 1 [β1,β2,α3,α4]
ab→cd

)∗
T c

β1α1
T c

β2α2
M1,0 [α1,α2,α3,α4]

ab→cd , (4.80)
〈

M0, 1
ab→cd

∣

∣

∣
T1 · T3

∣

∣

∣
M1, 0

ab→cd

〉

=
(

M0, 1 [β1,α2,β3,α4]
ab→cd

)∗
T c

β1α1
T c

β3α3
M1,0 [α1,α2,α3,α4]

ab→cd , (4.81)
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where the particle-specific color matrices T c
αiβi

= (Ti)
c
αβ refer to Eq. (4.72).

In Eq. (4.78), only the factors Pij depend on the integration momentum k. Inserting

Eq. (4.78) into Eq. (4.74), the differential cross section for soft gluon radiation thus factor-

izes from the color modified tree-level cross sections. The integrated factors Pij are nothing

else then the universal phase-space factors Iij defined in Eq. (4.61),

Iij =
1

4π

∫

|~k|≤∆E

d3|~k|
2Eg

2pipj

(kpi)(kpj)
=

1

2π

∫

|~k|≤∆E

d3|~k|
2Eg

Pij . (4.82)

We express the differential cross section as follows,

dσ̂2, 1
ab→cdg(∆E)

∣

∣

∣

soft
= −αs

π

{

4

3

( 4
∑

i=1

Iii − 2I23 − 2I14

)

× dσ̂1, 1
ab→cd(ŝ)

+ 2
(

I12 + I34 − I23 − I14

)

×
[

dσ̃1, 1
ab→cd(ŝ)

]

12

+ 2
(

I13 + I24 − I23 − I14

)

×
[

dσ̃1, 1
ab→cd(ŝ)

]

13

}

,

(4.83)

in terms of the interference contribution from the tree-level EW and tree-level QCD am-

plitudes,

dσ̂1, 1
ab→cd(ŝ) =

1

2ŝ
dPS2

∑

2Re
{〈

M0, 1
ab→cd

∣

∣

∣
M1, 0

ab→cd

〉}

, (4.84)

and the color modified EW–QCD interference contributions,

[

dσ̃1, 1
ab→cd(ŝ)

]

ij
=

1

2ŝ
dPS2

∑

2Re
{〈

M0, 1
ab→cd

∣

∣

∣
Ti · Tj

∣

∣

∣
M1, 0

ab→cd

〉}

. (4.85)

Collinear gluon bremsstrahlung

In case of squark pair production, also singularities due to collinearly emitted gluons have

to be considered. The collinear singularities are related to initial state radiation only and

no color-modified contributions arise. Therefore, they can be treated in complete analogy

to the photonic case with a replacement of the electric charges by color charges and the

corresponding replacement of the gauge couplings.

In the collinear cone, defined by cos θig > 1 − δθ, the real gluon bremsstrahlung cross

section is approximated by (see Eq. (4.63)),

dσ̂2, 1
ab→cdg(∆E, δθ)

∣

∣

∣

∣

coll.

=
αs

π

∑

i

CF

∫ 1−∆E/Ei

z0

dz κcoll.(z, ŝ) dσ̂1, 1
ab→cd(ŝ), (4.86)

in terms of the EW–QCD interference contribution dσ̂1, 1
ab→cd defined in Eq. (4.84) and the
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collinear factor κcoll. as given in Eq. (4.64). The sum over i in Eq. (4.86) runs over the

color charged particles a, b in the initial state.

The remaining quark mass singularity is absorbed by a redefinition of the (anti-)quark

PDF at O(αs),

fi/A(x, µF ) → fi/A(x, µF )
(

1 +
αs

π
CF κPDF

soft

)

+
αs

π
CF

∫ 1−δs

x

dz

z
fi/A

(x

z
, µF

)

κPDF
coll. (z),

(4.87)

with the same factors κPDF
soft and κPDF

coll. (z) as in the photonic case, introduced in Eq. (4.67).

Note however that the PDFs at NLO QCD are defined in the MS scheme and the scheme

dependent parameter λsc has to be chosen accordingly (λsc = 0) in Eq. (4.67).

The additional O(α2
sα) contributions to the hadronic cross section due to the factorization

of initial state gluon singularities are then, cf. Eq. (4.69),

dσcoll.CT
AB→cdg(∆E) =

αs

π
CF

∑

i

∫

dτ
dLij

AB

dτ
κPDF

soft dσ̂1,1
ab→cd(ŝ)

+
αs

π
CF

∑

i

∫

dτ

∫

dxi

xi

∫ 1−∆E/Ei

xi

dz

z
κPDF

coll. (z) dσ̂1, 1
ab→cd(ŝ)

× 1

1 + δij

[

fi/A

(xi

z
, µF

)

fj/B

( τ

xi
, µF

)

+ fj/A

( τ

xi
, µF

)

fi/B

(xi

z
, µF

)

]

.

(4.88)

4.2.3 Real quark bremsstrahlung

At the same order of perturbation theory, tree-level real quark and real anti-quark brems-

strahlung processes can contribute to squark and gluino production. These are novel pro-

duction mechanisms at O(α2
sα), arising from the interference of EW-mediated and QCD-

mediated diagrams. In case of squark–anti-squark and squark–squark production, the real

quark bremsstrahlung proceeds from (anti-)quark–gluon initial states. In case of gluino–

squark production, there are (anti-)quark–(anti-)quark initial states that allow for real

quark radiation.

These subprocesses always yield IR-finite results in the limit of a softly radiated quark

or anti-quark, since the radiated particle is of fermionic nature. However for squark pair

production processes, collinear singularities arise if the gluon in the initial state splits

collinearly into a quark–anti-quark pair in both the EW- and QCD-mediated diagrams of

a given interference contribution.

The general procedure is similar to the treatment of collinear singularities due to gluon

radiation. Integrated over the region of collinear splitting, the cross section for real quark

bremsstrahlung factorizes into a collinear factor and the lowest-order cross section [152].
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Expressed in an analogous way to Eq. (4.86), it is

dσ̂2, 1
ig→cdj(δθ)

∣

∣

∣

∣

coll.

=
αs

π
TF

∫ 1

z0

dz κqg
coll.(z, ŝ) dσ̂1, 1

ab→cd(ŝ), (4.89)

with TF = 1/2. Depending on the charges of the produced SUSY particles, the particle

labels i, j refer to

q̃aq̃
∗
a : i = j = u, d, c, s, ū, d̄, c̄, s̄ ,

q̃aq̃a : i = q, j = q̄,

q̃∗aq̃
∗
a : i = q̄, j = q.

(4.90)

The interference contribution dσ̂1, 1
ab→cd is defined according to Eq. (4.84) and obtained

from the EW-mediated and QCD-mediated tree-level amplitudes; and the collinear fac-

tor κqg
coll.(z, ŝ) is,

κqg
coll.(z, ŝ) =

1

2
Pq←g(z)

[

ln

(

ŝ(1 − z)2

zm2
q

δθ

2

)]

+ z(1 − z), (4.91)

in terms of the gluon-quark LO splitting function [106],

Pq←g(z) = z2 + (1 − z)2. (4.92)

The universal quark mass singularity can again be absorbed by a redefinition of the

(anti-)quark PDF at O(αs),

fi/A(x, µF ) → fi/A(x, µF ) +
αs

π
TF

∫ 1

x

dz

z
fg/A

(x

z
, µF

) 1

2
Pq←g(z) ln

(

m2
q

µF

)

. (4.93)

Thus, as a result of collinear gluon-quark splitting taking place in the proton, the quark

PDF gets contributions from the gluon PDF at higher orders in QCD. The redefinition of

the PDF induces as usual an additional O(α2
sα) contribution to the total hadronic cross

section,

dσcoll.CT
AB→cdj =

αs

π
TF

∑

i=a,b

∫

dτ

∫

dx

x

∫ 1

x

dz

z

1

2
Pq←g(z) ln

(

m2
q

µF

)

dσ̂1, 1
ab→cd(ŝ)

× 1

1 + δab

[

fg/A

(x

z
, µF

)

fi/B

(τ

x
, µF

)

+ fi/A

(τ

x
, µF

)

fg/B

(x

z
, µF

)

]

.

(4.94)
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Chapter 5

Stop–anti-stop production

In this chapter, we study the electroweak contribution to the hadronic production of diag-

onal stop–anti-stop pairs within the MSSM,

PP → t̃at̃
∗
a, a = 1, 2. (5.1)

As discussed in Chapter 3, the lighter of the top-squark (stop) mass eigenstates is a candi-

date for the lightest colored SUSY particle in many SUSY models and thus relatively large

production cross sections are expected in particular at hadron colliders. At lowest order in

QCD, only diagonal stop–anti-stop pairs can be produced. The corresponding cross section

depends on the mass of the produced particles, while no other SUSY parameter enters. As

a consequence, experimental bounds on the cross section can easily be translated into lower

bounds on the masses. Altogether, this yields pair production of stops being among the

most promising SUSY discovery channels at the LHC.

The LO and NLO QCD results for stop–anti-stop production at hadron colliders are well

known since many years [19–21]. At NLO QCD, the cross section changes considerably and

it becomes dependent on further SUSY parameters such as the stop mixing angle and gluino

and sfermion masses. Here, we discuss the hitherto missing part of the EW contribution

to the cross section [24,153]. We follow the classification given in Section 3.3 and study

both tree-level EW contributions and NLO EW corrections of O(α2
sα). At this order in

perturbation theory, one has to deal with singularities of UV and IR origin. The necessary

calculational techniques have been introduced in Chapter 4 and we refer to Sections 4.1

and 4.2 for more details.

The outline of this chapter is as follows. In Section 5.1, we recall the analytical expressions

for the partonic LO cross sections and set the basic notation. The EW contribution is

presented in Section 5.2, where we also include a discussion of the treatment of soft and

collinear singularities that arise from virtual and real corrections. Section 5.3 is dedicated to

numerical studies. We focus on t̃1t̃
∗
1 production at the LHC and present results for hadronic

cross sections and for distributions with respect to kinematical variables. Moreover, the
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g

g

t̃a

t̃∗a
g

g

t̃a

t̃∗ag

g

g

t̃a

t̃∗a
t̃a

q̄

q

t̃a

t̃∗ag

(a) (b)

Figure 5.1.: LO Feynman diagrams for stop–anti-stop pair production at the Born level via
(a) gg fusion and (b) qq annihilation. For the gg fusion, the u-channel diagram
(with crossed final states) is not shown explicitly.

dependence of the EW contributions on SUSY parameters is further investigated and we

briefly refer to t̃2t̃
∗
2 production towards the end of the chapter.

5.1 LO cross sections and notations

At hadron colliders, the dominant production mechanism for diagonal stop–anti-stop pro-

duction proceeds at O(α2
s) via two classes of partonic subprocesses,

g(p1) g(p2) → t̃a(p3) t̃∗a(p4) and q(p1) q̄(p2) → t̃a(p3) t̃∗a(p4), (5.2)

where qq denotes representatively the contributing quark flavors. The corresponding Feyn-

man diagrams are shown in Fig. 5.1 (see also Fig. 3.5(d), q̃a ≡ t̃a, for the general classifi-

cation among the colored SUSY particle production processes).

We recall that after the electroweak symmetry breaking the soft-breaking terms in the

MSSM Lagrangian induce a mixing among the particles of identical color and electric

charge. In the squark sector, left- and right-handed gauge eigenstate mix to form the mass

eigenstates. This mixing is proportional to the mass of the SM partner quark, cf.Eqs. (2.96)

and (2.101), and thus non-negligible for squarks of the third generation. We denote the two

stop mass eigenstates by t̃a with a = 1, 2 in the following. The masses are labeled as mt̃a
.

It is convenient to parameterize the cross sections in terms of the following kinematical

variables,

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p1 − p4)
2,

t̂t̃a = t̂ − m2
t̃a

, ût̃a
= û − m2

t̃a
,

(5.3)

with the sum rule ŝ + t̂t̃a + ût̃a
= 0. Furthermore we apply the previously introduced

notation dσ̂m, n
X [Mm, n

X ] in order to refer to the cross section [matrix element] of the partonic

process X at a given order O(αm
s αn) in the strong and electroweak coupling constants.

The differential partonic cross sections are obtained from the spin- and color-averaged
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squared matrix elements,

dσ̂2, 0

gg→t̃a t̃∗a
(ŝ) =

1

2ŝ

∑

∣

∣

∣
M1, 0

gg→t̃a t̃∗a
(ŝ, t̂, û)

∣

∣

∣

2
dPS2 ,

dσ̂2, 0

qq̄→t̃a t̃∗a
(ŝ) =

1

2ŝ

∑

∣

∣

∣
M1, 0

qq̄→t̃a t̃∗a
(ŝ, t̂, û)

∣

∣

∣

2
dPS2 ,

(5.4)

in terms of the two-particle phase-space measure dPS2 = dt̂/(8πŝ) defined in Eq. (4.76)

(evaluated in the c. m. frame) and the lowest-order matrix elements as explicitly given

by [20],

∑

∣

∣

∣
M1, 0

gg→t̃a t̃∗a

∣

∣

∣

2
=

1

4
· 1

64
· 32π2α2

s

[

C0

(

1 − 2
t̂t̃a ût̃a

ŝ2

)

− CK

]

×
[

1 − 2
ŝm2

t̃a

t̂t̃a ût̃a

(

1 −
ŝm2

t̃a

t̂t̃a ût̃a

)]

,

∑

∣

∣

∣
M1, 0

qq̄→t̃a t̃∗a

∣

∣

∣

2
=

1

4
· 1

9
· 64π2α2

s NCF

t̂t̃a ût̃a
− m2

t̃a
ŝ

ŝ2
.

(5.5)

The SU(3)C color factors are (N = 3)

C0 = N(N2 − 1) = 24, CK =
N2 − 1

N
=

8

3
, CF =

N2 − 1

2N
=

4

3
. (5.6)

At the hadronic level, the full differential cross section is obtained by convoluting the

partonic cross sections with the respective parton luminosities, cf. Eqs. (3.2) and (3.3),

dσ2, 0

PP→t̃a t̃∗a
(S) =

∫ 1

τ0

dτ
dLgg

PP

dτ
dσ̂2, 0

gg→t̃a t̃∗a
(τS) +

∑

q

∫ 1

τ0

dτ
dLqq̄

PP

dτ
dσ̂2, 0

qq̄→t̃a t̃∗a
(τS) , (5.7)

where the integration over τ is bounded from below by the production threshold of the

process, τ0 = 4m2
t̃a

/S. The sum over q runs over the five light quark flavors.

5.2 Electroweak contributions

The EW contributions to hadronic stop–anti-stop pair production up to the one-loop level

divide into tree-level contributions and NLO EW corrections. The tree-level contributions,

described below in Section 5.2.1, arise from the pure-EW tree-level subprocesses of O(α2)

and the photon-induced production channels of O(αsα). In contrast, the NLO EW cor-

rections are of O(α2
sα) and comprise virtual corrections (see Section 5.2.2), real photon

and real gluon bremsstrahlung contributions (Section 5.2.3), as well as real quark radiation

diagrams (Section 5.2.4).

The complete EW contribution to the hadronic cross section is obtained from the corre-

93



5. Stop–anti-stop production

sponding partonic cross section by convolution and summation as follows,

dσEW
PP→t̃a t̃∗a

(S) =

∫ 1

τ0

dτ

{

dLPP
γg

dτ
dσ̂1, 1

γg→t̃a t̃∗a
(ŝ) +

∑

q=u,d,c,s

dLPP
qq̄

dτ
dσ̂0, 2

qq̄→t̃a t̃∗a
(ŝ)

+
dLPP

gg

dτ

[

dσ̂2, 1

gg→t̃a t̃∗a
(ŝ) + dσ̂2, 1

gg→t̃a t̃∗aγ
(ŝ)

]

+
∑

q=u,d,c,s

dLPP
qq̄

dτ

[

dσ̂2, 1

qq̄→t̃a t̃∗a
(ŝ) + dσ̂2, 1

qq̄→t̃a t̃∗aγ
(ŝ) + dσ̂2, 1

qq̄→t̃a t̃∗ag
(ŝ)

]

+
∑

q=u,d,c,s

[

dLPP
gq

dτ
dσ̂2, 1

gq→t̃a t̃∗aq
(ŝ) +

dLPP
gq̄

dτ
dσ̂2, 1

gq̄→t̃a t̃∗aq̄
(ŝ)

]}

,

(5.8)

where again the parton luminosities refer to Eq. (3.3). We will discuss all the partonic cross

sections in the following.

Here, the sum over q runs only over the four light quark flavors. As there is no intrinsic

bottom content in the proton, the bottom-quark density is generated dynamically from

gluon splitting only. Its inclusion in Eq. (5.8) would thus result in a higher-order effect and

its contributions to the tree-level EW diagrams and the NLO EW results can be neglected.

The Feynman diagrams and corresponding amplitudes are generated and calculated us-

ing FeynArts [154] and FormCalc with LoopTools [83], based on Passarino-Veltman (PV)

reduction techniques for the tensor loop integrals [147], which were further developed for

4-point integrals in [155]. Higgs boson masses are computed with FeynHiggs [81].

IR and collinear singularities are treated by means of mass regularization as described

in Section 4.2. I. e. we regularize the photonic and gluonic IR singularities with a small

mass parameter λ and keep the light quark masses in the collinearly singular integrals as

regulators.

5.2.1 Tree-level EW contributions

Pure-EW tree-level contributions of O(α2)

The qq-induced partonic subprocess

q(p1) q̄(p2) → t̃a(p3) t̃∗a(p4), (5.9)

also allows for stop–anti-stop pair production from EW tree-level diagrams mediated by γ

and Z boson exchange. The differential cross section is given by

dσ̂0, 2

qq→t̃a t̃∗a
(ŝ) =

dt̂

16πŝ2

∑

∣

∣

∣M0, 1

qq→t̃a t̃∗a
(ŝ)

∣

∣

∣

2
, (5.10)
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Figure 5.2.: Feynman diagrams for tree-level EW contributions to t̃at̃∗a production, comprising
(a) the pure-EW tree-level channel and (b) the photon-induced subprocess.

where M0, 1

qq→t̃a t̃∗a
is the amplitude according to the diagrams depicted in Fig. 5.2(a) (see also

Fig. 3.7(a)). Due to the absence of top-quarks in the proton, there are only two s-channel

diagrams present that yield a contribution of O(α2). Color conservation then implies that

the QCD-mediated and EW-mediated tree-level diagrams cannot interfere. Hence there is

no O(αsα) contribution to the qq-annihilation channel.

Photon-induced stop–anti-stop production

We also consider the photon-induced mechanisms of the stop–anti-stop production,

γ(p1) g(p2) → t̃a(p3) t̃∗a(p4), (5.11)

arising from the Feynman diagrams illustrated in Fig. 5.2(b) (see also Fig. 3.8(a)). The

differential cross section for this subprocess is

dσ̂1,1

γg→t̃a t̃∗a
(ŝ) =

dt̂

16πŝ2

∑

∣

∣

∣
M1/2, 1/2

γg→t̃a t̃∗a
(ŝ)

∣

∣

∣

2
,

∑

∣

∣

∣
M1/2, 1/2

γg→t̃a t̃∗a

∣

∣

∣

2
=

1

4
· 1

8
· 128π2ααse

2
t NCF

[

1 − 2
ŝm2

t̃a

t̂t̃a ût̃a

(

1 −
ŝm2

t̃a

t̂t̃a ût̃a

)]

,

(5.12)

expressed in terms of the reduced Mandelstam variables defined in Eq. (5.3). Photon-

induced processes with quarks in the initial state represent contributions of higher orders

(γq → t̃at̃
∗
aq, γq̄ → t̃at̃

∗
aq̄) and we do not include them in our discussion here.

5.2.2 Virtual corrections

The O(α2
sα) virtual corrections to the gg-fusion channel can be expressed in terms of

M1, 0, the tree-level QCD-mediated amplitude, and M1, 1, the one-loop amplitude with

EW insertions in the tree-level gg diagrams,

dσ̂2, 1

gg→t̃a t̃∗a
(ŝ) =

dt̂

16πŝ2

∑

2 Re
{(

M1, 0

gg→t̃a t̃∗a

)∗
M1, 1

gg→t̃a t̃∗a

}

. (5.13)
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5. Stop–anti-stop production

The resulting counterterm, self-energy, box, and vertex diagrams are shown in Figs. 5.3

and 5.4, respectively. We refer to t̃1t̃
∗
1 production only, however the diagrams for t̃2t̃

∗
2 pro-

duction can be obtained in complete analogy. The diagrams containing a quartic squark

vertex (e. g. the diagrams in the last row of Fig. 5.3) deserve some special attention. In

order to yield contributions at O(α2
sα), only the weak part of the four-squark vertex has

to be taken into account.

The qq-annihilation channel allows both tree-level QCD and tree-level EW graphs. As

a consequence, the O(α2
sα) virtual corrections also comprise interference contributions of

tree-level EW and QCD-mediated box diagrams. In total, they can be written as

dσ̂2, 1

qq→t̃a t̃∗a
(ŝ) =

dt̂

16πŝ2

∑

2 Re
{(

M1, 0

qq→t̃a t̃∗a

)∗
M1, 1

qq→t̃a t̃∗a
+

(

M0, 1

qq→t̃a t̃∗a

)∗
M2, 0

qq→t̃a t̃∗a

}

,

(5.14)

where again M1, 0 and M1, 1 denote the tree-level QCD amplitude and the corresponding

one-loop amplitude with weak insertions (see diagrams in Fig. 5.5); whereas M0, 1 is the

amplitude from the tree-level EW diagrams shown in Fig. 5.2(a) and M2, 0 refers to the

pure-QCD one-loop amplitude arising from Fig. 5.6.

In order to obtain an UV-finite result, it is necessary to regularize the diagrams and to

renormalize the theory. We proceed as described in Section 4.1, treating UV divergences

by dimensional reduction and fixing the renormalization constants in the on-shell scheme.

At O(α2
sα), UV singularities only arise from one-loop amplitudes with weak insertions

(M1, 1) and we have to renormalize the light-flavor quark fields and of the top-squark

sector. The appropriate counterterm diagrams, Figs. 5.3(a) and 5.5(a), can be constructed

from the Feynman rules given in Table 4.1, where the renormalization constants have to

be evaluated at O(α).

There is no renormalization of the gluon field and the strong coupling constant at O(α)

and the strong sector needs not to be renormalized. In the qq̄-annihilation channels, also

one-loop QCD amplitudes (M2, 0, Fig. 5.6) in combination with tree-level EW diagrams

come into play and give contributions at the desired order of perturbation theory. But due

to the specific color structure and the absence of t/u-channel tree-level EW diagrams, only

UV-finite box diagrams arise.

It is interesting to note that only the diagonal entries of the stop field renormalization

constant have to be evaluated as there are no non-diagonal self-energy corrections to the

diagrams. In all LO diagrams the stops are produced via couplings to gluons and both the

gt̃t̃ and the ggt̃t̃ vertices are diagonal in the chiral basis as well as in the mass eigenstate

basis. As a result, the counterterm for the stop mixing angle, cf. Eq. (4.25) does not enter

the calculation.

Let us briefly comment on the diagrams in the last row of Fig. 5.4, which are loop

corrections to the gluon-gluon-Higgs (ggh0 and ggH0) vertex. The (heavy-)quark loops
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Figure 5.3.: Feynman diagrams for virtual NLO EW corrections to the process gg → t̃1t̃
∗
1:

(a) counterterm diagrams, (b) self-energy corrections, (c) box diagrams.
The u-channel diagrams with crossed final states are not shown explicitely. In case
of γ exchange, q̃a denotes the lighter stop, q̃a ≡ t̃1. For Z/W , χ̃0

n/χ̃±
n , and S0/S±

exchange, it is q̃a ≡ t̃a/b̃a and q ≡ t/b.
As in the following, we refer to t̃1t̃

∗
1 production only. The diagrams for t̃2t̃

∗
2 production

are obtained in complete analogy. The index i runs over all six quark and lepton
flavors, and a over the mass eigenstates 1, 2. We use a common label V to denote the
gauge bosons, γ, Z and W . The label S0 refers to the neutral Higgs (and Goldstone)
bosons h0,H0, A0, G0, and the label S± to the charged Higgs (and Goldstone) bosons
H±, G±. For neutralinos and charginos, we use a common label n to number the
four and two eigenstates, respectively.
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Figure 5.4.: Feynman diagrams for the NLO EW vertex corrections to the process gg → t̃1t̃
∗
1.

The u-channel diagrams with crossed final states are not shown explicitely. The
notation refers to Fig. 5.3.
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Figure 5.5.: Feynman diagrams for virtual NLO EW corrections to the process qq̄ → t̃1t̃
∗
1:

(a) counterterm diagrams, (b+c) vertex corrections, (d) box diagrams. The u-channel
diagrams with crossed final states are not shown explicitely. Notation as in Fig. 5.3.
In the initial state vertex corrections (b), q′ denotes the SU(2)L partner of q in case
of W and χ̃±

n exchange, for V = γ, Z and χ̃0
n it is q′ ≡ q.
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Figure 5.6.: Feynman diagrams for the QCD-mediated box contributions to the process qq̄ → t̃1t̃
∗
1.

These diagrams interfere with the tree-level EW graphs shown in Fig. 5.2(a) yielding
O(α2

sα) contributions.
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5. Stop–anti-stop production

yield a UV-finite contribution and the sum of the diagrams containing squark loops is UV

finite as well. Renormalization of the ggh0 and ggH0 vertices is thus not required. However

these diagrams become resonant if the propagating Higgs boson is heavier than the two

final-state stops in sum and the width of the Higgs boson is needed in the propagator

to regularize the integral. Indeed there are phenomenologically viable scenarios where

mH0 ≥ 2mt̃1
and we will come back to this issue in Section 5.3.4.

Concerning the IR structure of the diagrams we find that in the gg-fusion channel, IR

singularities only originate from final-state soft photon radiation. This is different in the qq-

annihilation subprocess, where also photon emission off the initial state quarks enters and

additional mass singularities occur. Furthermore, the IR singular structure is extended

by the contributions related to the gluons which appear in the 4-point UV finite loop

integrals. Owing to the photon-like appearance of the gluon in the box diagrams, the

gluonic IR singularities can be handled in analogy to the photonic IR singularities.

5.2.3 Real photon and real gluon corrections

To compensate the IR singularities in the virtual EW corrections, contributions with real

photon and real gluon radiation are required. In case of some diagrams, the integration

over the photon (gluon) phase space is IR singular in the soft photon (gluon) region or

in the collinear limit. The soft singularities recover the structure of the IR singularities

arising from virtual photons or gluons and cancel in the sum of real and virtual corrections.

Collinear singularities from initial-state radiation remain and have to be absorbed into the

PDFs via factorization. We treat the bremsstrahlung processes as described in Section 4.2,

using the phase-space slicing method.

gg fusion with real photon radiation

The IR singularities arising from virtual photons in the gg-fusion channel cancel those in

the photonic bremsstrahlung process

g(p1) g(p2) → t̃a(p3) t̃∗a(p4) γ(k), (5.15)

according to the diagrams shown in Fig. 5.7(a). The integration over the photon phase

space is IR singular in the soft-photon region (Eγ → 0).

Following the phase-space slicing approach, we isolate the soft singularities by imposing a

lower cutoff ∆E on the photon energy. This hard-photon region is thus free of singularities

and can be integrated numerically. In the soft region, Eγ < ∆E, the integration can be

approximated analytically and the squared matrix element factorizes into the lowest-order

squared matrix elements and universal factors containing the singularities.

In the eikonal approximation, the cross section for real photon radiation in the soft limit

is given in Eq. (4.60). For our specific process, we only have final state radiation and the
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Figure 5.7.: Feynman diagrams for real photon radiation to t̃1t̃
∗
1 production via (a) gg fusion

and (b) qq annihilation. In (a), diagrams with crossed initial state are not shown
explicitly. The first four diagrams in (a) and the first diagram in (b) give IR-finite
contributions, the remaining diagrams cause IR singularities in the soft-photon re-
gion. The last two diagrams in (b) also cause collinear singularities.

result reduces to

dσ̂2, 1

gg→t̃a t̃∗aγ
(ŝ)

∣

∣

∣

soft
= −α

π
e2
t (2 I33 − 2I34) × dσ̂2, 0

gg→t̃a t̃∗a
(ŝ)

≡ −α

π
e2
t δfin

soft dσ̂2, 0

gg→t̃a t̃∗a
(ŝ) , (5.16)

in terms of the universal phase-space factors Iij , cf. Eq. (4.61). The complete soft factor

for final state radiation for t̃at̃
∗
a production, δfin

soft, simplifies in the limit of vanishing quark

masses to the following expression,

δfin
soft =

[

ln δ2
s − ln

λ2

ŝ

] [

1 −
ŝ − 2m2

t̃a

ŝβ
ln

(

1 + β

1 − β

) ]

− 1

β
ln

(

1 + β

1 − β

)

+
ŝ − 2m2

t̃a

ŝβ

[

2 Li2

(

2β

1 + β

)

+
1

2
ln2

(

1 + β

1 − β

)]

.

(5.17)

Here, et is the fractional electric charge of the top-squark, δs = 2∆E/
√

ŝ, and we introduced

the parameter β =
√

1 − (4m2
t̃a

)/ŝ.
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qq annihilation with real photon radiation

In the qq-annihilation channel, we consider the photon bremsstrahlung process,

q(p1) q̄(p2) → t̃a(p3) t̃∗a(p4) γ(k), (5.18)

corresponding to the diagrams shown in Fig. 5.7(b). This process is IR singular both in

the soft-photon region and in the collinear limit (p1 ·k → 0, p2 ·k → 0). To extract the sin-

gularities, a second cutoff ∆θ is introduced on the angle between the photon and radiating

fermion, dividing the photon phase space into soft and collinear parts which contain singu-

larities and a non-collinear, hard part which is free of singularities and can be integrated

numerically.

In the soft region, the cross section for the qq-annihilation channel is approximated by

dσ̂2, 1

qq̄→t̃a t̃∗aγ
(ŝ)

∣

∣

∣

soft
= −α

π

(

e2
q δin

soft + e2
t δfin

soft + 2eqet δint
soft

)

dσ̂2, 0

qq̄→t̃a t̃∗a
(ŝ) , (5.19)

where the soft factors δin,fin,int
soft refer to the initial state radiation, final state radiation or

interference of initial and final state radiation, respectively. The electric charges of the

initial-state quark and the final-state top-squark are denoted by eq and et.

The factor δfin
soft is given in Eq. (5.17). Defined by the universal phase-space factors Iij ,

the remaining two are, in terms of the reduced Mandelstam invariants t̂t̃a and ût̃a
,

δin
soft = 2 I11 − 2 I12

=

[

ln δ2
s − ln

λ2

ŝ

]

[

1 + ln
m2

q

ŝ

]

+
1

2
ln2

m2
q

ŝ
+ ln

m2
q

ŝ
+

π2

3
, (5.20)

δint
soft = 2 I13 − 2 I23

=

[

ln δ2
s − ln

λ2

ŝ

]

ln

(

ût̃a

t̂t̃a

)

+ Li2

(

1 +
ŝ

2t̂t̃a
(1 − β)

)

+ Li2

(

1 +
ŝ

2t̂t̃a
(1 + β)

)

− Li2

(

1 +
ŝ

2ût̃a

(1 − β)

)

− Li2

(

1 +
ŝ

2ût̃a

(1 + β)

)

.

Similarly, the collinear part of the cross section is proportional to the Born cross section

with reduced momentum for one of the partons, cf. Eq. (4.63),

dσ̂2, 1

qq̄→t̃a t̃∗aγ
(ŝ)

∣

∣

∣

coll.
=

2α

π
e2
q

∫ 1−δs

z0

dz κcoll.(z, ŝ) dσ̂2, 0

qq̄→t̃a t̃∗a
(zŝ), (5.21)

with the lower integration limit z0 = 4m2
t̃a

/ŝ and κcoll.(z, ŝ) as given in Eq. (4.64).

Although IR singularities cancel in sufficiently inclusive observables, quark-mass loga-

rithms in the collinear singularities from initial-state radiation remain and have to be ab-
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sorbed into the PDFs. We redefine the (anti-)quark PDF at O(α) according to Eq. (4.66),

fi/A(x, µF ) → fi/A(x, µF )
(

1 +
α

π
e2
qi

κPDF
soft

)

+
α

π
e2
qi

∫ 1−δs

x

dz

z
fi/A

(x

z
, µF

)

κPDF
coll. (z),

(5.22)

yielding an additional contribution to the total hadronic cross section Eq. (5.8),

dσcoll.CT
PP→t̃a t̃∗aγ

(S) =
α

π

∑

q=u,d,c,s

e2
q

∫

dτ
dLqq̄

PP

dτ
× κPDF

soft dσ̂2, 0

qq̄→t̃a t̃∗a
(ŝ)

+
α

π

∑

q=u,d,c,s

e2
q

∫

dτ

∫

dx

x

∫ 1−δs

x

dz

z
κPDF

coll. (z) dσ̂2, 0

qq̄→t̃a t̃∗a
(ŝ)

×
[

fq/P

(x

z
, µF

)

fq̄/P

(τ

x
, µF

)

+ fq̄/P

(τ

x
, µF

)

fq/P

(x

z
, µF

)]

,

(5.23)

as specified in Eq. (4.69). The collinear factors κPDF
soft and κPDF

coll. (z), defined in Eq. (4.67),

have to be evaluated in the DIS factorization scheme (λsc = 1).

qq annihilation with real gluon radiation

Third, gluon radiation at the appropriate order O(α2
sα) has to be taken into account,

q(p1) q̄(p2) → t̃a(p3) t̃∗a(p4) g(k), (5.24)

to cancel the IR singularities of the qq-annihilation channel related to the virtual gluon.

The necessary contributions originate from the interference of QCD-based and EW-based

Born level diagrams, as shown in Fig. 5.8. Not all of the interference terms contribute. Due

to the color structure, only the interference between initial- and final-state gluon radiation

is non-zero. Correspondingly, the integration over the gluon phase-space in Eq. (5.24) is

singular in the soft-gluon region but collinear singularities do not arise.

The color correlation between the amplitudes induced by real gluon radiation has been

discussed in Section 4.2.2. The general result for a cross section in the soft limit is given

by Eq. (4.74) and for the particular case of four (s)quarks interacting in Eq. (4.83). For

the soft-gluon part of the qq-channel we write the result in a way similar to Eqs. (5.16)

and (5.19),

dσ̂2, 1

qq→t̃a t̃∗ag
(ŝ)

∣

∣

∣

soft
= − αs

π
δint
soft ×

∑

2 Re
{〈

M0, 1

qq→t̃a t̃∗a

∣

∣

∣T1 · T3

∣

∣

∣M1, 0

qq→t̃a t̃∗a

〉} dt̂

16πŝ2
,

(5.25)

where the color-modified interference contribution in terms of the color-charge operators

Ti is defined in Eq. (4.81). M0, 1

qq→t̃a t̃∗a
denotes the tree-level EW amplitude (γ and Z boson
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Figure 5.8.: Feynman diagrams for real gluon radiation to t̃1t̃
∗
1 production from (a) tree-level

QCD diagrams and (b) tree-level EW diagrams. Due to the color structure, only
QCD-EW interference terms between initial- and final-state gluon radiation are non-
vanishing and contribute at O(α2

sα). These contributions cause IR singularities in
the soft-gluon regions. In (a), the last diagram with crossed initial state is not shown
explicitly.

exchange) and M1, 0

qq→t̃a t̃∗a
refers to the tree-level QCD amplitude (g exchange). As antici-

pated above, the other two terms in Eq. (4.83) vanish owing to the specific color structure

of the process. Explicitly, the cross section can be written as follows,

dσ̂2, 1

qq→t̃a t̃∗ag
(ŝ)

∣

∣

∣

soft
= − αs

π
δint
soft NCF

[

8eqet

ŝ2
+

(

(U t̃
1a)

2 − 2et sin2 θW

)(

ǫ − 4eq sin2 θW

)

sin2 θW cos2 θW ŝ(ŝ − m2
Z)

]

× 16π2ααs

4 · 9
[

t̂t̃a ût̃a
− m2

t̃a
ŝ
] dt̂

16πŝ2
,

(5.26)

involving the top-squark mixing matrix U t̃ and ǫ = ±1 for up- and down-type initial-state

quarks, respectively.

5.2.4 Real quark radiation

To complete the list of EW contributions to stop–anti-stop pair production, also real quark

and real anti-quark radiation has to addressed,

g(p1) q(p2) → t̃a(p3) t̃∗a(p4) q(k) for q = u, d, c, s, ū, d̄, c̄, s̄. (5.27)

These tree-level processes give an (soft and collinear) IR-finite contribution of the order

O(α2
sα) through the interference between the QCD-based diagrams in Fig. 5.9(a) and the
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Figure 5.9.: Feynman diagrams for real quark radiation to t̃1t̃
∗
1 production from (a,d) tree-level

QCD diagrams and (b,c) tree-level EW diagrams. Only QCD-EW interference terms
between (a) and (b) and between (c) and (d) are non-vanishing and contribute at
O(α2

sα).

EW-based diagrams in Fig. 5.9(b) and between those in Fig. 5.9(c) and Fig. 5.9(d). In

terms of the respective amplitudes (in the usual notation), the cross section reads

dσ̂2, 1

gq→t̃a t̃∗aq
(ŝ) =

1

2ŝ

∑

2 Re
{(

M3/2, 0

gq→t̃a t̃∗aq

)∗
M1/2, 1

gq→t̃a t̃∗aq

}

dPS3. (5.28)

Due to the fact that the heavy-flavor top-squarks can only directly couple to the initial-

state gluons but not to the (light-flavor) quarks, the number of non-zero interference terms

is strongly reduced and we expect vanishing contributions from this subprocess only.

5.3 Numerical results

For the numerical discussion we focus on the production of light top-squark pairs t̃1t̃
∗
1 in

proton–proton collisions at LHC energies.

We present the results in terms of the following hadronic observables: the integrated cross

section, σ, the differential cross section with respect to the invariant mass of the top-squark

pair, (dσ/dMinv with M2
inv = (p3 + p4)

2), the differential cross sections with respect to the

transverse momentum, (dσ/dpT ), to the rapidity, (dσ/dy), and to the pseudo-rapidity,

(dσ/dη), of one of the final-state top-squarks. The energy and momentum (thus also y and

η) of the two stops are equal in the 2 → 2 processes and differ only in the 2 → 3 processes

if one of the stops radiates off a photon or gluon. As both stops radiate statistically with

equal probability, the distributions with respect to the stop or the anti-stop do not differ

meaningfully. Here, we give distributions with respect to the stop t̃1(p3).

One has to take care of the fact that each top-squark observed in the laboratory system

under a certain angle θ can originate from two different constellations at parton level: parton
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5. Stop–anti-stop production

a(b) out of hadron A(B) and vice-versa, corresponding to θ → (π − θ). Both parton-level

configurations have to be added correctly for hadronic distributions (for explicit formulas

see e. g. [156]). Note that the two boost factors β relating the two partonic c. m. systems

with the laboratory system differ by a relative sign, as do the rapidity and the pseudo-

rapidity of each particle. This fact is of particular importance in the collinear cones of the

cross section, Eqs. (4.63) and (4.69), where we have to keep track of which parton radiates

off the photon or gluon and enters the hard-scattering process with reduced momentum,

resulting in different Lorentz boosts between the c. m. and the laboratory frame.

Assuming that the forward-scattered parton a carries the momentum fraction x of hadron

A and the backward-scattered parton b the momentum fraction τ/x of hadron B, the boost

factor β is given by

β =
x − τ/x

x + τ/x
. (5.29)

The rapidity of one of the final state top-squarks in the laboratory system, y(≡ y3), is

related to the rapidity in the partonic c. m. frame, ycm = artanh(pcm
z /Ecm), via a Lorentz

transformation,

y = ycm − artanh(−β) = ycm +
1

2
ln

x2

τ
. (5.30)

The pseudo-rapidity η is related to ηcm = − ln(tan θcm/2) in the c.m. frame via

η = arsinh





1

2

√

m2
t̃a

p2
T

+ cosh2 ηcm

(

x√
τ
−

√
τ

x

)

+
1

2
sinh ηcm

(√
τ

x
+

x√
τ

)



 , (5.31)

which can be derived using the representation

p =
(√

m2
t̃a

+ p2
T cosh2 η, 0, pT , pT sinh η

)

(5.32)

for the top-squark momentum p ≡ p3. Since the final state particles are massive, rapidity

and pseudo-rapidity do not coincide; in the limit mt̃a
→ 0 one obtains η = y.

We introduce the following conventions for the discussion of the results. We will analyze

the different gauge invariant, IR (soft and collinear) finite subsets of the EW contributions

described in the previous section, referred to by their initial-state particles. The sum of the

virtual corrections and of the O(α2
sα) contributions to real photon and gluon radiation via

gg fusion (qq annihilation) will be labeled as “gg- (qq-) channel contributions”, respectively.

The photon-induced subprocesses of O(αsα) will be referred to as “γg-channel contribu-

tions”. We also discuss the contributions of the real quark emission processes (“gq-channel

contributions” of O(α2
sα)) and the tree-level EW contributions to the qq annihilation of
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O(α2). The sum of these channels will be labeled as “the EW contribution” according to

Eq. (5.8). The relative EW contribution is defined as

δ = (ONLO −OLO)/OLO ≡ ∆ONLO/OLO, (5.33)

where O is a generic observable and ONLO is the sum of the LO contribution according

to Eq. (5.7) and the EW contribution ∆ONLO.

The contents of this section are the following. First of all, we fix the input parameters for

the numerical evaluation in Subsection 5.3.1. We start the discussion of numerical results

with the presentation of integrated hadronic cross sections in Subsection 5.3.2. Next, in

Subsection 5.3.3, we investigate the EW contributions from the distinct channels in differ-

ential distributions with respect to kinematical variables. In order to obtain experimentally

more realistic results for the cross sections we also apply typical sets of kinematical cuts.

A study of the dependence on the various SUSY parameters is given in Subsection 5.3.4.

Finally, in Section 5.3.5, we also comment on the production of a pair of heavier stops t̃2t̃
∗
2.

5.3.1 Input parameters and conventions

The numerical results depend on the following input parameters.

The SM particle masses and gauge couplings are chosen as described in Appendix B.1.

In particular, the top-quark mass mt has been set to mt = 170.9 GeV. The current value of

the top-quark mass, mt = 173.1±1.3GeV [157], increases the top-squark mass mt̃1
by 0.6%,

which reduces the total cross section by ≈ 3%. The changes for the relative corrections are

completely negligible.

In the SUSY sector, we consider the SPS1a’ parameter point suggested by the SPA

convention [158] as a reference, unless stated otherwise. The low-energy DR soft-breaking

parameters are obtained with the help of a spectrum calculator (Softsusy 2.0.18 [75])

at the (SUSY) scale QSUSY = 1 TeV. To be consistent with the renormalization scheme

we are using, we take the on-shell squark masses and the on-shell stop mixing angle as

input parameters for our actual calculation (see Appendix B.2). In the SPS1a’ scenario,

the on-shell mass of the lighter stop is

mt̃1
= 359.5 GeV (SPS1a’), (5.34)

the other squark masses are given in Table B.1 on p. 218.

For the parton distributions, we use the set MRST 2004 QED [107], as already mentioned

previously. Factorization and renormalization scales are chosen equal at the central value

µF = µR = mt̃1
. A study of the remaining QED-based scale dependence is not possible

at the present stage since the QED and QCD evolution are not separated in the available

parton densities. The scale dependence cannot be checked in a consistent way owing to the
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Figure 5.10.: Dependence of hadronic cross section contributions in the qq channel on the cutoff
parameters ∆E (upper plots, δθ = 0.001 fixed) and δθ (lower plots, ∆E = 0.001

√
ŝ

fixed). Left panels: Shown are the partial contributions (virtual corrections plus soft
and collinear parts and the hard, non-collinear part) and the sum of all contributions
for stop–anti-stop pair production at the LHC within the SPS1a’ scenario. Right
panels: Zoom on the sum of all contributions, the error bars represent integration
uncertainties.

NLO QCD effects in the parton densities, which are not included in our calculation. For

this reason we do not present a study of the scale dependence here. An important next

step in improving the theoretical predictions would be to combine the NLO electroweak

and QCD corrections.

As explained, the treatment of the IR-singular bremsstrahlung is done using the phase-

space slicing method. We illustrate the method and its stability in terms of the more

involved case of qq corrections, where two cutoff parameters are needed. The photon/gluon

phase space is split into a soft part (Eγ/g < ∆E), a collinear part (Eγ/g > ∆E and

cos θ > 1−δθ, θ being the angle between the photon/gluon and the radiating fermion), and

a hard, non-collinear part (Eγ/g > ∆E and cos θ < 1 − δθ). The cutoff parameters for the

photon and for the gluon phase space are chosen to be equal. As shown in Fig. 5.10, the

sum of all contributions does not depend on the parameters when they are small enough.

This is in accordance with the discussion in Section 5.2.3 that for small enough cutoff
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5.3. Numerical results

LO EW contr. per channel EW contr.
(sub-)process O(α2

s) O(α2
sα) O(αsα) O(α2) δ

gg 2347 −11.5 −0.49%
qq 327 −10.9 1.18 −2.97%
γg 38.1
gq < 10−3

inclusive t̃1t̃
∗
1 2674 −22.3 38.1 1.18 0.64%

Table 5.1.: Numerical results for the integrated cross sections for light stop–anti-stop pair pro-
duction at the LHC within the SPS1a’ scenario [158]. Shown are the leading order
results, the EW contributions from the distinct channels, and the relative corrections
δ, as defined in the text. All cross sections are given in femtobarn [fb].

parameters the soft and collinear contributions can be treated approximately according

to Eq. (5.16), (5.19), (5.21), and (5.26), respectively. In the following numerical analysis,

we use ∆E = 0.001
√

ŝ and δθ = 0.001.

5.3.2 Hadronic cross sections

In Table 5.1 we show results for the integrated hadronic cross section for t̃1t̃
∗
1 production at

the LHC within the SPS1a’ scenario. The LO cross sections and the absolute and relative

EW contributions as introduced above are presented for the gg fusion, the qq annihilation,

the γg fusion, and the real quark radiation gq channel separately. The γg and gq channel

contribute at NLO only.

At the LHC, stop–anti-stop pairs are mainly produced via gg fusion which is enhanced by

the high gluon density. The qq channels contribute to the integrated hadronic cross section

at LO with less than 15%. Including EW contributions, we find that the corrections from

the gg and the qq channels are of similar size. This is related to the fact that the qq

channels get additional interference contributions from QCD- and EW-mediated diagrams

which are not present at the Born level. However, both the O(α2
sα) corrections to the gg and

qq channels are negative and range at the percentage level only, whereas the γg contribution

is positive and of even larger size. In total, the EW contribution to the integrated hadronic

cross section is below 1%.

For the qq channel, also the results of the tree-level electroweak contribution is given

In Table 5.1. As expected from the couplings and the structure of the pure s-channel

diagrams, it is smaller by roughly one order of magnitude compared to the NLO EW cor-

rections. Let us mention again that we neglect for this channel the contributions of bottom

quarks in the initial state, motivated by the suppressed size of the loop-generated b-quark

density. Initial-state b quarks would give rise to additional tree-level EW contributions

of O(α2), generated by s-channel Higgs boson exchange and t-channel chargino exchange
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5. Stop–anti-stop production

diagrams. The latter yield possibly large results as the bχ̃±t̃ coupling is enhanced by the

top-quark mass. However for a consistent treatment, also the EW–QCD interference terms

of O(αsα) of these diagrams and the QCD Born amplitudes have to be considered and

they turn out to be of comparable size but of opposite sign. As a result, the bb̄-induced

O(αsα + α2) contributions are smaller by about a factor of 20 compared to qq̄-induced

O(α2
sα) corrections and can safely be neglected. In the following discussion of differential

distributions we do not include any of the pure-EW tree-level channels.

Furthermore, the real quark radiation processes give only vanishing contributions which

are limited in precision by the numerical integration error and we neglect these subprocesses

below.

5.3.3 Differential distributions

The interplay of the dominant three production channels is illustrated in Fig. 5.11 where

the absolute EW contributions per channel are shown as distributions with respect to Minv,

pT , y, or η. Owing to the alternating signs, compensations occur where in particular the

γg channel plays an important role.

In order to illustrate the numerical impact of the EW contributions on the LO cross

section, we show in Fig. 5.12 the relative EW contributions δ for the gg and the qq channel,

respectively, as distributions with respect to the invariant mass Minv and the transverse

momentum pT of the stop t̃1(p3). The EW corrections in the pT distribution reach typically

−10% in the gg channel, and −20% in the qq channel, for large values of pT . In the

invariant mass distributions, they are somewhat smaller, but still sizeable, at the 10% level

for large Minv.

The increase of the EW corrections in the high-pT and high-Minv region is influenced by

the virtual corrections that comprise contributions from the massive gauge bosons. At high

energies, W and Z bosons behave essentially as massless particles. They lead to similar

collinear effects as photons, described by large double logarithmic contributions of W and

Z boson masses. Contrarily to the photonic case, these double logarithms are not canceled

in the sum of virtual and real gauge boson corrections since weak boson radiation leads to

a different hadronic final state and is thus not included in our calculations. It is a well-

known fact that EW virtual corrections to many hadron collider processes become large and

negative at high energies and suggestions have been made to include the separately-finite

but same-order contributions from gauge boson emission in the full EW result [159]. Even

though additional gauge bosons in the final state induce different signatures, they should

be included if (partially) inclusive final states are considered, in order to agree better with

realistic experimental measurements. In [159] several example processes have been studied

and it was found that the cross sections for weak boson emission are substantial in the high-

energy region and that the EW virtual and real gauge boson corrections partially cancel.

On the other hand, in our case and similar SUSY particle production processes, the double
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Figure 5.11.: Comparison of EW contributions from the dominant partonic channels to t̃1t̃
∗
1 pro-

duction, for the distributions of the invariant mass of the stop pair, the transverse
momentum pT (t̃∗1), the rapidity y(t̃∗1), and the pseudo-rapidity η(t̃∗1) (from upper
left to lower right). y and η are given in the laboratory frame.

logarithmic contributions from gauge boson exchange in the virtual diagrams cannot be the

only source of the increase of EW corrections. If important, also corrections of higher order

were expected to become sizable and should be resummed (see e. g. [160]) for a reliable cross

section prediction. However, in [161], the two-loop corrections to sfermion pair production

at linear colliders were estimated by the dominating contributions from box diagrams with

weak boson exchange and only moderate effects of a few percent were found in the high-

energy region. In summary, it would be interesting to further investigate the impact of weak

boson exchange in the virtual corrections to stop–anti-stop production and to consider the

corresponding real radiation processes in order to study possibly cancellations.

As a second feature of the relative corrections shown in Fig. 5.12, we observe small

peaks in the gg invariant mass distribution. Their position can be determined best in the

overlaid panel which gives a detailed view of the region of interest. The peaks precisely

correspond to two-particle thresholds related to b̃1b̃
∗
1, b̃2b̃

∗
2, and t̃2t̃

∗
2 pairs in gg box diagrams

(Fig. 5.3(c)) and Higgs boson-mediated vertex diagrams (last three diagrams in Fig. 5.4)

[in the considered scenario, the masses of the involved squarks are mb̃1
= 495.3 GeV, mb̃2

=
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Figure 5.12.: Relative EW corrections to t̃1t̃
∗
1 production at the LHC within the SPS1a’ scenario.

The upper plots refer to the O(α2
sα) corrections to the gg-fusion channel, the lower

plots those of the qq channels. Shown are the invariant mass distribution of the t̃1t̃
∗
1

pair (left panels) and the distributions with respect to the transverse momentum
of the t̃∗1 (right panels). In the upper left plot, the small panel gives a detailed view
of the relative EW corrections in the region where squark threshold effects occur.

538.1 GeV, mt̃2
= 581.9 GeV]. Thresholds from the squarks of the first two generations are

CKM suppressed. The threshold effects appear also in the pT distribution, around 300 GeV,

but they are smeared out and much less pronounced.

Finally, Fig. 5.13 shows the EW contribution of the dominant channels, including the

photon-induced subprocesses, relative to the full LO cross section. We find a similar be-

havior as for the NLO EW corrections in the single channels. It is obvious that, although

small for the total cross section, the higher-order EW contributions cannot be neglected for

differential distributions where, in the high-pT and high-Minv range, they are of the same

order of magnitude as the NLO QCD corrections.

For realistic experimental analyses, cuts on the kinematically allowed phase space of the

stops have to be applied. They can be realized by a lower cut on the transverse momenta of

the final-state particles to focus on high-pT jets. Moreover, detectability of the final-state

particles requires a minimal angle between the particles and the beam axis. Therefore, we

set a cut on the pseudo-rapidity of the stops restricting the scattering angle θ to a central
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Figure 5.13.: Same as Fig. 5.12, but shown is the full EW contribution from all partonic subpro-
cesses to t̃1t̃

∗
1 production at the LHC within the SPS1a’ scenario.

channel unconstrained pT < 150GeV pT < 250GeV
(SPS1a’) EW contr. & |η| < 2.5 & |η| < 2.5

gg 2234 1262 (−46%) 661 (−72%)

qq 316 278 (−12%) 226 (−28%)

γg 38.1 21.0 (−45%) 12.2 (−68%)

Table 5.2.: Integrated hadronic cross section at O(α2
sα) within the SPS1a’ scenario for the dif-

ferent production channels. Comparison of the full (unconstrained) results and cross
sections where cuts on the pseudo-rapidities η and on the transverse momenta pT of
the outgoing top-squarks are applied (in femtobarn). The relative changes compared
to the full results are given in brackets.

region. We apply two exemplary sets of cuts,

cuts 1: pT ≥ 150 GeV and |η| ≤ 2.5 (i. e. 9.4◦ ≤ θ ≤ 170.6◦),

cuts 2: pT ≥ 250 GeV and |η| ≤ 2.5 .

The differential cross sections and the influence of cuts are the content of Figs. 5.14

and 5.15. Displayed are the hadronic cross sections at NLO EW for the three dominant

subprocesses (gg fusion, qq annihilation, γg induced), differential with respect to pT , Minv

and to y, η, respectively. We show both the full (unconstrained) distributions and the

distributions with cuts applied. The reduction of the integrated cross section owing to the

application of cuts is summarized in Table 5.2.

The application of cuts reduces the gg- and γg-channel contributions strongly, cutting

off the peak of the pT distributions. The reduction is less pronounced in the qq channels

where the pT distribution is harder. The pT -cuts also shift the threshold of the invariant

mass distributions towards higher values affecting again mainly the gg and γg channels in
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Figure 5.14.: Comparison of NLO EW differential hadronic cross sections (solid lines) and the
distributions where kinematical cuts on the final top-squarks are applied for all
three production channels, gg fusion (upper red plots), qq channels (middle blue
plots), and γg fusion (lower green plots). Cuts 1 (dashed lines): pT ≥ 150 GeV,
|η| ≤ 2.5, cuts 2 (dotted lines): pT ≥ 250 GeV, |η| ≤ 2.5. Distributions with
respect to the invariant mass of the stop pair (left) and the transverse momentum
pT (t̃1) (right) are shown for t̃1t̃

∗
1 production at the LHC within the SPS1a’ scenario.
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Figure 5.15.: Same as Fig. 5.14, but with respect to the rapidity y(t̃∗1) (left) and the pseudo-
rapidity η(t̃∗1) (right).
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height and shape. The situation for the rapidity distribution is similar. In the qq channel,

the harder pT distribution goes along with a narrower η distribution, as shown in the right

panels of Fig. 5.15. Most of the stops produced via qq annihilation can be found in the

central region. In contrast, stops from gg or γg fusion are often produced in the strong

forward (or backward) direction, and the application of cuts on the pseudo-rapidity thus

reduces the number of gg or γg based events significantly.

5.3.4 Dependence on SUSY parameters

How sensitive are the EW contributions to SUSY parameters as the soft-breaking param-

eters or the mass of the final state particle? This question shall be briefly answered in

this section, where we investigate the dependence of the EW contributions on the SUSY

parameters.

Different SUSY scenarios

To start with, we compare in Table 5.3 the integrated hadronic cross sections and the con-

tributions from the three dominant partonic channels for t̃1t̃
∗
1 production at the LHC within

different SUSY scenarios. We consider four different mSUGRA-type Snowmass Points and

Slopes (SPS) benchmark scenarios, specified by the universal mSUGRA parameters at the

GUT scale as given in Eqs. (B.12)–(B.15). The on-shell stop mass mt̃1
is

mt̃1
=

{

992.4 GeV (SPS2), 649.7 GeV (SPS3),

545.0 GeV (SPS4), 224.9 GeV (SPS5)
}

,
(5.35)

in the four scenarios, respectively (see Appendix B.2 for more details on the input param-

eters).

The integrated hadronic cross sections depend strongly on the mass of the final-state

particle, mt̃1
. At LO, the stop mass is the only SUSY parameter that enters, cf. Eq. (5.5)

and the results from different SUSY scenarios can directly be compared. For the example

scenarios SPS2 and SPS4, we find that the LO cross section reduces by almost a factor

of 50 if the stop mass is doubled.

The EW contributions, however, vary nontrivially among the different scenarios as other

SUSY parameters enter via the particles and couplings in the loop-diagrams.

In scenarios where the top-squark t̃1 is of intermediate or high mass (as SPS1a’, SPS2,

and SPS3) the NLO contributions are below 1%. The corrections to the qq and the gg

channels are negative. In contrast, the γg contribution is always positive and of the same

size as the other corrections or even larger.

116



5.3. Numerical results

(sub-) LO EW contr. per channel EW contr.
scenario

process O(α2
s) O(α2

sα) O(αsα) O(α2) δ

SPS2 gg 4.31 −5.35 × 10−2 −1.24%
qq 1.54 −12.4 × 10−2 0.65 × 10−2 −7.64%
γg 18.6 × 10−2

incl. t̃1t̃
∗
1 5.86 −17.8 × 10−2 18.6 × 10−2 0.65 × 10−2 0.26%

SPS3 gg 77.2 −1.71 −2.21%
qq 18.5 −1.51 0.07 −7.75%
γg 2.13

incl. t̃1t̃
∗
1 95.8 −3.22 2.13 0.07 −1.07%

SPS4 gg 226 −10.2 −4.49%
qq 46.1 −4.82 0.20 −10.0%
γg 5.28

incl. t̃1t̃
∗
1 273 −15.0 5.28 0.20 −3.49%

SPS5 gg 25043 288 1.15%
qq 2340 −15.0 6.66 −0.36%
γg 284

incl. t̃1t̃
∗
1 27383 273 284 6.66 2.06%

Table 5.3.: Numerical results for the integrated cross sections for light stop–anti-stop pair pro-
duction at the LHC within different SPS scenarios [162]. Shown are the leading order
results, the EW contributions from the distinct channels, and the relative corrections
δ, as defined in the text. The results for the SPS1a’ scenario are given in Table 5.1.
All cross sections are given in femtobarn [fb].

The SPS4 scenario is characterized by a large tan β (tan β(mZ) = 50). The large value

of tan β has an important impact in the Higgs sector, where the couplings to down-type

(s)fermions are enhanced. Also, the L–R mixing of the stop eigenstates is affected. Com-

pared to the other considered scenarios, the stop mixing angle is rather large in the SPS4

scenario (θt̃ = 35◦), and the lighter of the stops has an important left-handed compo-

nent. Both effects combine to enhance the O(α2
sα) corrections from the gg and qq channels

(−15%) over the γg contribution (5%).

The situation is different again in scenarios where the top-squark is very light, i.e. lighter

than half of mH0 , the mass of the heavier neutral Higgs boson H0, where a large fraction of

the squarks appears through production and decay of H0 particles. This is the case in the

SPS5 scenario [mH0 = 698.7GeV and Γ(H0) = 8.8 GeV, obtained with FeynHiggs [81]].

As the H0 boson can go on-shell in the respective diagrams (last row of Fig. 5.4), we insert
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5. Stop–anti-stop production

the width ΓH0 in the Higgs boson propagator to regularize the diagrams,

1

p2 − m2
H0

−→ 1

p2 − m2
H0 + imH0ΓH0

(5.36)

By doing so, the order in perturbation theory with respect to the electroweak coupling α of

the diagrams is reduced by one-half. Thus also the squared resonant Higgs boson diagrams

give contributions at O(α2
sα) and we include them in the sum of the EW corrections. In

numbers, the interference contribution of the QCD Born diagram and the full gg-induced

virtual corrections amounts to 26.8 fb (in the SPS5 scenario), whereas the squared Higgs

boson diagrams dominate and contribute with 96.2 fb. The large size of those can be

understood by the fact that large threshold contributions arise from the t̃1’s running in the

loops if the Higgs boson is produced on-shell. As a result, the EW contributions in the gg

channel are positive and add up together with the γg fusion contribution of similar size to

yield positive EW corrections of 2.1% relative to the inclusive LO result.

Dependence on soft-breaking and SUSY parameters

In order to study the dependence of the EW contributions on the various SUSY parameters

in more detail, we consider the ratio of the EW contribution in each of the three domi-

nant channels to the combined gg + qq Born cross section, δtot = {σ2,1
gg , σ2,1

qq , σ1,1
γg }/(σ2,0

gg +

σ2,0
qq ). We focus on those parameters that determine the top-squark mass, cf. Eqs. (2.93)

and (2.96), and vary each quantity out of the set mQ̃3
, mŨ3

, tan β, At, or µ around its SPS1a’

value while keeping all other parameters fixed to those of the default SPS1a’ scenario20.

Again, as we did for the SPS5 scenario, we include the squared Higgs boson-mediated di-

agrams in the gg channel contributions in scenarios where mH0 > 2mt̃1
. The results are

displayed in the left panels of Figs. 5.16 – 5.20. Simultaneously, we show the mass of the

light stop t̃1 as a function of the varied parameter in the respective right panels (black solid

lines). The parameter configuration of the SPS1a’ scenario is marked by a vertical gray

dotted line in all the figures.

We find the following general behaviors. The γg contributions stem from tree-level

diagrams and the only relevant parameter is thus the top-squark mass mt̃1
. In all scenarios,

the γg fusion channel is as important as the O(α2
sα) EW corrections to the qq and gg

processes. The qq corrections, being practically always negative, involve many different

SUSY particles in the loops, although the relative corrections show only small variations.

The gg contributions are more sensitive to the considered SUSY parameters. The plots

20The following plots are taken from [24], where a slightly different convention for the SUSY input pa-
rameters has been used. In particular, the soft-breaking parameters correspond to on-shell quantities
which directly determine the on-shell stop mass. At the central SPS1a’ value, the resulting stop mass is
mt̃1

= 322 GeV. Furthermore, the factorization and renormalization scale have been set to µR,F = 2mt̃1
.

The general features of the presented results are basically unaffected by these conventions.
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Figure 5.16.: Left: EW contributions from the dominant partonic channels to t̃1t̃
∗
1 production

relative to the combined (gg+qq) LO cross section as a function of the soft-breaking
parameter mQ̃3

, where mQ̃3
is varied around the SPS1a’ value (gray dotted line).

Right: Mass of t̃1, half of the mass of H0, sums of the masses of the top-quark and
χ̃0

1, χ̃0
2, and χ̃0

3, respectively, and sum of the masses of the b-quark and χ̃±
2 as a

function of mQ̃3
. All other parameters are chosen according to the SPS1a’ scenario.
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Figure 5.17.: Same as Fig. 5.16, but for variation of the soft-breaking parameter mŨ3
.

show striking peaks (some of them are also visible in qq annihilation), which correspond

to threshold effects and can be explained by the SUSY particle masses displayed at the

right panels of Figs. 5.16 – 5.20. They occur in the Higgs boson-exchange diagrams when

mt̃1
= mH0/2 (red long-dashed lines in the figures), and in the top-squark wave function

renormalization when mt̃1
equals the sum of masses of a neutralino and the top-quark

(green dash-dotted lines) or of a chargino and the bottom-quark (blue dashed lines). The

chargino-induced peaks are less pronounced than those from neutralinos and not visible in

Fig. 5.17 and Fig. 5.20.

Outside of such singular parameter configurations, over a wide range of SUSY param-

eters, the combined EW contributions to stop–anti-stop pair production are only weakly

parameter dependent.
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Figure 5.18.: Same as Fig. 5.16, but for variation of tan β.
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Figure 5.19.: Same as Fig. 5.16, but for variation of trilinear coupling parameter At.
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Figure 5.20.: Same as Fig. 5.16, but for variation of the Higgs parameter µ.
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5.3. Numerical results

(sub-) LO EW contr. per channel EW contr.
scenario

process O(α2
s) O(α2

sα) O(αsα) O(α2) δ

SPS1a’ gg 153 −24.9 −16.3%
qq 33.1 −6.65 0.32 −19.1%
γg 3.78

gq < 10−3

incl. t̃2t̃
∗
2 186 −31.6 3.78 0.32 −14.8%

Table 5.4.: Numerical results for the integrated cross sections for heavy stop–anti-stop pair pro-
duction at the LHC within the SPS1a’ scenario. Notation as in Tables 5.1 and 5.3.
All cross sections are given in femtobarn [fb].

5.3.5 Production of t̃2t̃
∗
2 pairs

To conclude our studies on stop–anti-stop production, let us briefly comment on the case

of t̃2t̃
∗
2 pairs. The t̃2 is considerably heavier than the first mass eigenstate t̃1 and we expect

only small integrated cross sections at hadron colliders. The process is thus less interesting

for experimental searches. However, as the t̃2 is more left-handed than the t̃1 in many

SUSY scenarios, the relative EW contributions to the cross section can become sizable.

We present results for the integrated hadronic cross section for t̃2t̃
∗
2 production at the

LHC within the SPS1a’ scenario in Table 5.4. As usual, we give the LO cross sections and

the absolute and relative EW contributions from the various partonic subprocesses. In the

SPS1a’ scenario, the on-shell mass of the heavier stop is mt̃2
= 581.9 GeV, cf. Table B.1.

For the LO cross section we find results of similar size as those for t̃1t̃
∗
1 production within

the SPS4 scenario, where the mass of the lighter stop is comparable. As already argued

above, the stop mixing does not enter at LO and the only SUSY parameter that determines

the cross section is the mass of the final state particle. Including EW effects, however, we

find important differences between the results for t̃1t̃
∗
1 and t̃2t̃

∗
2 production. In the latter

case, the NLO EW corrections of O(α2
sα) from the gg-induced and qq-induced channels

give the dominant contribution while the chirality-independent photon-induced subprocess

is suppressed from the high stop mass. The pure-EW tree-level channel is slightly enhanced

for the mostly left-handed t̃2t̃
∗
2 production due to the mixing angle that enters in the Zt̃at̃

∗
a

coupling. Compared to the O(α2
sα) contributions, however, this channel is smaller by

two orders of magnitude. In total, the EW contributions to t̃2t̃
∗
2 production alter the LO

prediction by almost −15%.

The interplay of the various EW contributions is further investigated in Fig. 5.21, where

the absolute EW contributions per channel are shown as distributions with respect to Minv,

pT , y, or η. The absolute size of the full EW contribution is dominated by the gg channel

which profits from the high gluon luminosity. Different to t̃1t̃
∗
1 (cf. Fig. 5.11), no threshold
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Figure 5.21.: Comparison of EW contributions from the dominant partonic channels to t̃2t̃
∗
2 pro-

duction at the LHC within the SPS1a’ scenario, for the distributions of the invariant
mass of the stop pair, the transverse momentum pT (t̃∗2), the rapidity y(t̃∗2), and the
pseudo-rapidity η(t̃∗2) (from upper left to lower right). y and η are given in the
laboratory frame.

effects arise in the Minv distribution, as the t̃2 is the heaviest among all squarks.

Finally, we present the EW contributions relative to the LO results from gg- and qq-

induced t̃2t̃
∗
2 production in Fig. 5.22 and also give the full EW contribution relative to the

inclusive LO cross section in Fig. 5.23. In correspondence with the results of Table 5.4, the

relative corrections in the gg and qq channels are comparable. In the high-pT and high-

Minv region they grow up to −20% in the gg channel and even −30% for the qq-induced

subprocess. The γg subprocess is less important and the inclusive EW contribution, shown

in Fig. 5.23, amounts to −20% and −25% in the given kinematical ranges of the Minv and

pT distributions, respectively.

To summarize, the integrated cross sections for t̃2t̃
∗
2 production are suppressed by the

heavy mass of the final-state particles and the EW contributions are small in absolute

size. However as the latter depend on the stop mixing angle, they are enhanced for mostly

left-handed mass eigenstates and alter the LO prediction considerably in particular in the

high-energy ranges.
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Figure 5.22.: Relative EW corrections to t̃2t̃
∗
2 production at the LHC within the SPS1a’ scenario.

The upper plots refer to the O(α2
sα) corrections to the gg fusion channel, the lower

plots those of the qq channels. Shown are the invariant mass distribution of the t̃2t̃
∗
2

pair (left panels) and the distributions with respect to the transverse momentum
of the t̃∗2 (right panels).
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Figure 5.23.: Same as Fig. 5.22, but shown is the full EW contribution from all partonic subpro-
cesses to t̃2t̃

∗
2 production at the LHC within the SPS1a’ scenario.
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Chapter 6

Gluino–squark production

In this chapter, we consider the associated production of squarks and gluinos at hadron

colliders and study the EW contributions within the MSSM framework. We restrict the

discussion to (anti-)squarks of the first two generations,

PP → g̃q̃a,

PP → g̃q̃∗a,
q = u, d, c, s; a = L, R. (6.1)

We recall that this is motivated by the fact that both g̃t̃ and g̃b̃ production are suppressed

by the heavy-quark parton density inside hadrons. Furthermore, as light-flavor squarks

are almost degenerate in mass and typically decay into a light quark and a LSP, they

are hard to distinguish in experiments. Stops and sbottoms, in contrast, lead to distinct

final-state signatures and will experimentally be distinguishable from squarks of the first

two generations. Experimental analyses are thus mostly based on inclusive gluino–squark

production, as indicated in Eq. (6.1).

In many SUSY models, gluinos and squarks have intermediate masses around O(500 −
1000 GeV) and are heavier than the lighter stop t̃1 and other sfermions and gauginos.

However owing to the color charge and the high multiplicity of light-flavor squarks and

gluinos, the inclusive g̃q̃ cross section is expected to be comparable to or even larger than

those of t̃1t̃
∗
1 production (see last chapter) and sfermion or gaugino pair production pro-

cesses. Among the various squark and gluino production processes, it is the dominant one

if squarks and gluinos are of comparable masses (see Chapter 3). The cascade decays of

the final state particles result in multijet and E/T signatures and simple cuts will allow a

good discrimination between signal and SM backgrounds [163]. In summary, gluino–squark

production constitutes one of the most promising channels in the hunt for SUSY.

This chapter is organized in analogy to the previous discussion on stop–anti-stop pro-

duction. In Section 6.1, we recapitulate the well-known LO cross section for gluino–squark

production at the partonic and the hadronic level [19]. We refer to [20,21] for the results at

NLO QCD. Here, we focus on the EW contributions, first published in [25]. In Section 6.1

the various subprocesses are presented and based on the techniques introduced in Chapter 4
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Figure 6.1.: LO Feynman diagrams for gluino–squark production at the Born level.

we give details about the treatment of UV and IR singularities. Numerical results for the

hadronic cross sections and distributions with respect to gluino–squark production at the

LHC are discussed in Section 6.3.

6.1 LO cross section and conventions

At hadron colliders, the LO contribution to the production of a gluino in association with

an (anti-)squark q̃
(∗)
a is QCD based and related to the following partonic processes:

g(p1) q(p2) → g̃(p3) q̃a(p4), g(p1) q̄(p2) → g̃(p3) q̃∗a(p4), (6.2)

where the initial-state quark and the final-state squark are of the same flavor q. Due to

CP symmetry the unpolarized cross sections of these two processes are equal; so in the

following we will refer to the first partonic process only. The corresponding Feynman

diagrams are shown in Fig. 6.1 (see also Fig. 3.5(b) for the general classification among the

colored SUSY particle production processes).

Since the quarks of the first two generations are treated as massless, in the case of

the squarks of the first two generations weak eigenstates are also mass eigenstates and

we will distinguish squarks with same flavor by means of their chiralities, q̃a = q̃L, q̃R.

Furthermore, the masses of the squarks of the second generation coincide with those in the

first generation. We denote the mass of squark q̃a by mq̃a , and the gluino mass by mg̃.

Cross sections and matrix elements are given in the usual notation, i. e. superscripts m, n

specify the order in perturbation theory O(αm
s αn) and the subscript refers to the respec-

tive partonic process. We parameterize the results in terms of the (reduced) Mandelstam

variables defined in analogy to Eq. (5.3) by

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p1 − p4)
2,

t̂g̃/q̃a
= t̂ − m2

g̃/q̃a
, ûg̃/q̃a

= û − m2
g̃/q̃a

.
(6.3)

The differential partonic cross section for the process gq → g̃q̃a reads

dσ̂2, 0
gq→g̃q̃a

(ŝ) =
dt̂

16πŝ2

∑

∣

∣

∣M1, 0
gq→g̃q̃a

(ŝ, t̂, û)
∣

∣

∣

2
, (6.4)
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in terms of the squared spin- and color-averaged lowest-order matrix element [20],

∑

∣

∣

∣M1, 0
gq→g̃q̃a

∣

∣

∣

2
=

1

4
· 1

24
· 16π2α2

s

[

C0

(

1 − 2
ŝ ûq̃a

t̂2g̃

)

− CK

]

×
[

− t̂g̃
ŝ

+
2(m2

g̃ − m2
q̃a

)t̂g̃

ŝûq̃a

(

1 +
m2

g̃

t̂g̃
+

m2
q̃a

ûq̃a

)]

,

(6.5)

with the color factors defined in Eq. (5.6), (C0 = 24, CK = 8/3).

As usual, the hadronic cross section is then given by a convolution of the partonic cross

section with the respective parton luminosities, cf. Eq. (3.3),

dσ2, 0
PP→g̃q̃a

(S) =

∫ 1

τ0

dτ
dLgq

PP

dτ
dσ̂2, 0

gq→g̃q̃a
(τS), (6.6)

with the production threshold τ0 = (mg̃ + mq̃a)
2/S.

6.2 Electroweak contributions

In contrast to squark–(anti-)squark production processes, which allow for qq̄ initial states

at LO, gluino–squark final states cannot be produced at O(α2). But again, we include

photon-induced gluino–squark production at the tree level being part of the EW contribu-

tions, described below in Section 6.2.1. At NLO EW, gluino–squark production comprises

virtual corrections (see Section 6.2.2) and real photon radiation at O(α2
sα) (Section 6.2.3).

Further O(α2
sα) contributions arise from interference of EW- and QCD-mediated real-quark

radiation diagrams, which will be discussed in Section 6.2.4.

The complete EW contribution to the hadronic cross section is defined by

dσEW
PP→g̃q̃a

(S) =

∫ 1

τ0

dτ

{

dLPP
γq

dτ
dσ̂1, 1

γq→g̃q̃a
(ŝ) +

dLPP
gq

dτ

[

dσ̂2, 1
gq→g̃q̃a

(ŝ) + dσ̂2, 1
gq→g̃q̃aγ(ŝ)

]

+
∑

qi=u,d,c,s

dLPP
qqi

dτ
dσ̂2, 1

qqi→g̃q̃aqi
(ŝ) +

∑

qi=u,d,c,s; qi 6=q

dLPP
qq̄i

dτ
dσ̂2, 1

qq̄i→g̃q̃aq̄i
(ŝ)

+
∑

qi=u,d,c,s

dLPP
qiq̄i

dτ
dσ̂2, 1

qiq̄i→g̃q̃aq̄(ŝ)

}

,

(6.7)

in terms of the respective partonic cross sections (see below) and parton luminosities,

cf. Eq. (3.3).
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Figure 6.2.: Feynman diagrams for the tree-level EW contribution to g̃q̃a production from the
photon-induced subprocess.

6.2.1 Tree-level EW contributions

Photon-induced gluino–squark production

We consider the photon-induced subprocesses as an independent production channel to

gluino–squark production. Formally of different orders, the photon–quark induced diagrams

shown in Fig. 6.2.1 (see also Fig. 3.8(b)) contribute at tree level to the same final state and

can be important, as we have seen in the case of stop–anti-stop production in Chapter 5.

The partonic differential cross section reads

dσ̂1, 1
γq→g̃q̃a

(ŝ) =
dt̂

16πŝ2

∑

∣

∣

∣M1/2, 1/2
γq→g̃q̃a

(ŝ, t̂, û)
∣

∣

∣

2
, (6.8)

∑

∣

∣

∣M1/2, 1/2
γq→g̃q̃a

∣

∣

∣

2
=

1

4
· 1

3
· 32π2αsα e2

q NCK

[

− t̂g̃
ŝ

+
2(m2

g̃ − m2
q̃a

)t̂g̃

ŝûq̃a

(

1 +
m2

g̃

t̂g̃
+

m2
q̃a

ûq̃a

)]

,

expressed in terms of the reduced Mandelstam variables, Eq. (6.3).

Due to color conservation, photon–gluon induced partonic processes are only possible in

combination with an additionally radiated quark and thus represent contributions of higher

order. Since they are suppressed by the photon PDF compared to the bremsstrahlung

processes Eq. (6.10) and Eq. (6.14), we do not include them in our discussion here.

6.2.2 Virtual corrections

The first class of NLO contributions of EW origin are the virtual corrections,

dσ̂2, 1
gq→g̃q̃a

(ŝ) =
dt̂

16πŝ2

∑

2 Re
{(

M1, 0
gq→g̃q̃a

)∗
M1, 1

gq→g̃q̃a

}

, (6.9)

where M1, 1 is the one-loop amplitude with EW insertions in the (QCD-based) tree-level

gq diagrams, leading to the self-energy, vertex, box, and counterterm diagrams shown in

Figs. 6.3 and 6.4.

In order to obtain a UV-finite result, both the quark and the squark sector require

renormalization and we proceed as described in Section 4.1, imposing on-shell conditions

according to [79,128,129]. Here, in the limit of no L–R mixing, the independent parameters
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ũL

u

V q̃a

g

u

g̃

ũL
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ũL/a

q̃b

q̃b V

g

u

g̃

ũL
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Figure 6.3.: Feynman diagrams for virtual NLO EW corrections to the process gu → g̃ũL:
(a) counterterm and (b) vertex corrections. In case of γ exchange, q denotes an u
quark, and q̃a ≡ ũL. For Z/W boson, χ̃0

n/ χ̃±
n , and S0/S± exchange, it is q ≡ u/d

and q̃a ≡ ũa/d̃a.
As in the following, we refer to gu → g̃ũL production only. The diagrams for
(s)quarks of different flavor, charge, and chirality can be obtained in complete anal-
ogy. The notation of the particles refers to Fig. 5.3.
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ũL

q̃a q̃aq

V

g

u

g̃

ũL
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Figure 6.4.: Feynman diagrams for NLO EW (a) box diagrams and (b) self-energy corrections
for the process gu → g̃ũL. The notation is the same as in Fig. 6.3.

for a given squark isospin doublet are the masses of the two up-type squarks ũL,R and the

mass of the right-handed down-type squark d̃R (see Eq. (2.104)). As for the stop–anti-stop

production, we do not need to renormalize the strong sector. Gluino–squark production

at LO can only proceed via QCD diagrams and the NLO corrections (and thus the UV

singularities) are of pure EW origin.

Parts of the diagrams are IR singular due to the exchange of soft photons. If the initial-

state quarks split into a quark and a photon, singularities also arise in the collinear region.

As described before, we regularize the soft singularities by a small photon mass and keep

finite quark masses in the collinearly divergent integrals.

6.2.3 Real photon corrections

To compensate the IR singularities in the virtual corrections, we have to include the tree-

level photon bremsstrahlung process, cf. the diagrams in Fig. 6.5,

g(p1) q(p2) → g̃(p3) q̃a(p4) γ(k). (6.10)
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ũL

γ

u

ũL
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Figure 6.5.: Feynman diagrams for real photon radiation to g̃ũL production. The first six dia-
grams are IR divergent, the last three are IR finite.

The integral over the photon phase space is divergent in the soft region (Eγ → 0) and

in the collinear region (k ·p2 → 0). We use the two-cutoff phase-space slicing method

(cf. Section 4.2.1), and exclude the singular regions from the numerical integration by

imposing a cut ∆E ≡ δs

√
ŝ/2 on the photon energy and a cut δθ on the cosine of the

angle between the photon and the quark. In the singular regions the integrands can be

approximated analytically as follows.

The differential cross section integrated over the soft region can be parameterized as

dσ̂2, 1
gq→g̃q̃aγ(ŝ)

∣

∣

∣

soft
= −α

π

(

e2
q δin

soft + e2
q δfin

soft + e2
q δint

soft

)

dσ̂2, 0
gq→g̃q̃a

(ŝ) . (6.11)

The factors δin,fin,int
soft refer respectively to initial state radiation, final state radiation, or

interference of initial and final state radiation. Note that there is only one charged particle

in the initial and in the final state (both with fractional electric charge eq). The soft factors

are then directly given by the universal phase-space factors Iij , cf. Eq. (4.61),

δin
soft = I22 =

1

2

[

ln δ2
s − ln

λ2

ŝ

]

+
1

2
ln

m2
q

ŝ
,

δfin
soft = I44 =

1

2

[

ln δ2
s − ln

λ2

ŝ

]

− 1

2β
ln

(

1 + β

1 − β

)

,

δint
soft = 2 I24 =

[

ln δ2
s − ln

λ2

ŝ

]

ln

( −t̂q̃a

mq mq̃a

)

− 1

4
ln2

m2
q̃a

ŝ
− Li2

(

1 − ŝ

m2
q

)

+
1

4
ln2 1 − β

1 + β

+ Li2

(

1 +
ŝ + m2

q̃a
− m2

g̃

2t̂q̃a

(1 + β)

)

+ Li2

(

1 +
ŝ + m2

q̃a
− m2

g̃

2t̂q̃a

(1 − β)

)

,

(6.12a)
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in terms of the squark velocity β =
√

1 − m2
q̃a

/(Eq̃a)
2.

In the collinear region the differential cross section reads

dσ̂2, 1
gq→g̃q̃aγ(ŝ)

∣

∣

∣

coll.
=

α

π
e2
q

∫ 1−δs

z0

dz κcoll.(z, ŝ) dσ̂2, 0
gq→g̃q̃a

(zŝ), (6.13)

with the lower integration limit z0 = (mg̃ + mq̃a)
2/ŝ and κcoll.(z, ŝ) as given in Eq. (4.64).

After adding virtual and real corrections, the mass singularity related to Eq. (6.13) does

not cancel and has to be absorbed into the quark PDF choosing a factorization scheme, see

Eq. (4.66). Using the redefined PDF, we obtain an additional O(α2
sα) contribution to the

total hadronic cross section according to Eq. (4.69).

6.2.4 Real quark radiation

For each production process of a gluino in association with a squark q̃a of a given chirality a

and flavor q, there are eleven quark–quark or quark–anti-quark induced subprocesses with

an additional real quark or anti-quark in the final state:

q(p1) qi(p2) → g̃(p3) q̃a(p4) qi(k) for qi = u, d, c, s;

q(p1) q̄i(p2) → g̃(p3) q̃a(p4) q̄i(k) for qi = u, d, c, s; qi 6= q;

qi(p1) q̄i(p2) → g̃(p3) q̃a(p4) q̄(k) for qi = u, d, c, s.

(6.14)

These tree-level processes give an (soft and collinear) IR-save contribution of order O(α2
sα)

through the interference between the EW diagrams in Fig. 6.6(a) and the QCD diagrams

in Fig. 6.6(b) and between those in Fig. 6.7(a) and Fig. 6.7(b), where the example of

g̃ũL production has been considered.

In specific SUSY scenarios, internal gauginos or squarks can be on-shell. The poles

are regularized introducing the particle width in the corresponding propagator. If both

EW- and QCD-mediated diagrams provide intermediate on-shell squarks, the non-vanishing

interference contribution corresponds to the production of a squark pair at order O(αsα)

with the subsequent decay of one of the two squarks,

q qi → q̃a q̃i, q̃i → g̃ qi ;

q q̄i → q̃a q̃∗i , q̃∗i → g̃ q̄i ;

qi q̄i → q̃a q̃∗a, q̃∗a → g̃ q̄ .

(6.15)

To avoid double counting, these resonating squark contributions have to be subtracted [20].

The pole term has thereby been isolated in the narrow-width approximation (see e. g. [164]

for a detailed introduction to the method).
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Figure 6.6.: Feynman diagrams for real quark radiation to g̃ũL production via uqi → g̃ũLqi, with
qi = u, d, c, s, d̄, c̄, s̄. Only interference terms from (a) EW-mediated and (b) QCD-
mediated diagrams contribute at O(α2

sα). In panel (a), the diagrams of the second
row contribute only for qi = u, d and the diagrams of the third row only for qi = d̄.
In panel (b), the diagrams of the second row contribute only for qi = u.
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ũL

ū
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ũL

ū
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Figure 6.7.: Feynman diagrams for real quark radiation to g̃ũL production via qiq̄i → g̃ũLū,
with qi = u, d, c, s. Only interference terms from (a) EW-mediated and (b) QCD-
mediated diagrams contribute at O(α2

sα). In panel (a), the diagrams of the second
row contribute only for qi = u, d. In panel (b), the diagrams of the second row
contribute only for qi = u.

6.3 Numerical results

We present results both for the production of left- and right-handed, up- and down-type

squarks separately and for the inclusive gluino–squark production at the LHC. We mainly

stick to the conventions introduced in Section 5.3 and discuss the integrated hadronic cross

section, σ, and the differential cross sections with respect to the invariant mass of the

gluino–squark pair, dσ/dMinv, and with respect to the transverse momentum, (dσ/dpT (g̃),

dσ/dpT (q̃a)) and to the pseudo rapidity, (dσ/dη(g̃), dσ/dη(q̃a)), of one of the final-state par-

ticles, respectively. η(g̃), η(q̃a) are defined in the laboratory frame according to Eq. (5.31).

In particular, we refer to the three different gauge invariant, IR (soft and collinear) finite

subsets of the EW contributions described in the previous section as follows. The sum
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of the virtual corrections and of the O(α2
sα) contributions to real photon radiation will

be labeled as “gq channel contributions”. The photon-induced gluino–squark production

processes as “γq channel contributions” and the real quark emission subprocesses will be

referred to as “qq channel contributions”. Again, we label the sum of the three channels as

“the EW contribution”, and the relative EW contribution is defined as in Eq. (5.33).

The input parameters are defined as described in Section 5.3.1 and Appendix B. We

again consider the SPS1a’ scenario [158] as a reference, unless stated otherwise. In this

scenario, the on-shell masses of the light-flavor squarks and the gluino are

mũL = 560.7 GeV, mũR = 543.3 GeV, (SPS1a’)

md̃L
= 566.4 GeV, md̃R

= 539.4 GeV, mg̃ = 609.0 GeV,
(6.16)

see also Table B.1. We use the set MRST 2004 QED [107] for the parton distributions.

For factorization and renormalization, a common scale has been chosen for all processes,

µF = µR = (mg̃ + mũL)/2. As explained, the treatment of the IR-singular bremsstrahlung

is done using the phase-space slicing method. In the following numerical analysis, the two

cutoff parameters are set to ∆E = 0.001
√

ŝ and δθ = 0.001. Internal checks were performed

to ensure that for these values the soft- and collinear approximations are valid and that

the full result is independent on the cutoff parameters.

6.3.1 Hadronic cross sections

We show in Table 6.1 the results for the integrated hadronic cross sections for gluino–

squark production at the LHC. The LO cross sections and the absolute and relative EW

contributions are presented for the gq channel, the photon-induced γq subprocess, and the

real-quark qq channel separately.

We consider left- and right-handed, up- and down-type squark production separately.

Since light quark masses are negligible, squarks of the first two generations are mass de-

generate and cannot be distinguished experimentally. The cross sections for e. g. g̃ũL, g̃c̃L

(and by CP symmetry also for g̃ũ∗
L, g̃c̃∗L) production differ only through the parton lumi-

nosity and we present in the following always their sum, although denoted by the dominant

contribution, e. g. g̃ũL. The last line in Table 6.1 contains the inclusive (’g̃q̃’) results.

Being of QCD origin, the LO cross section of the partonic process gq → g̃q̃a is inde-

pendent of the chirality and of the flavor of the produced squark q̃a. Since all considered

squark masses are of the same order, the LO hadronic cross sections for up-type squark

production are about twice as large as the cross sections for down-type squark production.

In contrast, the EW contributions depend strongly on the chirality of the squarks and, to

a less extent, on the squark flavors. The MSSM is a chiral theory and for the production of

right-handed squarks some of the one-loop and qq channel diagrams are suppressed by the

couplings. The EW contribution to all left-handed squarks, i. e. to g̃ũL and g̃d̃L production,
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6. Gluino–squark production

sub- LO EW contr. per channel EW contr.
name process

process O(α2
s) O(α2

sα) O(αsα) δ

g̃ũL g̃ũL + g̃ũ∗
L + g̃c̃L + g̃c̃∗L gq 6485 −156 −2.41%

γq 4.21
qq 4.88

incl. 6485 −151 4.21 −2.27%

g̃ũR g̃ũR + g̃ũ∗
R + g̃c̃R + g̃c̃∗R gq 6907 7.53 0.11%

γq 4.57
qq 0.87

incl. 6907 8.40 4.57 0.19%

g̃d̃L g̃d̃L + g̃d̃∗L + g̃s̃L + g̃s̃∗L gq 3524 −100 −2.85%
γq 0.68
qq 3.55

incl. 3524 −96.8 0.68 −2.73%

g̃d̃R g̃d̃R + g̃d̃∗R + g̃s̃R + g̃s̃∗R gq 3911 1.05 0.03%
γq 0.77
qq 0.31

incl. 3911 1.36 0.77 0.05%

inclusive g̃q̃ 20827 −238 10.2 −1.09%

Table 6.1.: Numerical results for the integrated cross sections for gluino–squark production at the
LHC within the SPS1a’ scenario [158]. Shown are the leading order results, the EW
contributions from the distinct channels, and the relative corrections δ, as defined in
the text. All cross sections are given in femtobarn [fb].

is dominated by the (negative) gq channel contributions, and alters the LO cross section

by about −2%. For right-handed squarks, i. e. for g̃ũR and g̃d̃R production, the qq and

γq channels contribute at almost the same order of magnitude as the (positive) gq channel

and the full EW contribution ranges at the 0.1% level.

Summing up all processes for the inclusive g̃q̃ production, the gq channel corrections

to right-handed squarks are negligible compared to those to left-handed squarks and the

size of the relative contribution is roughly halved. The qq and γq channels give both

positive contributions at the sub-percent level. The full EW contribution to gluino–squark

production amounts −1% within the SPS1a’ scenario.

The corresponding NLO QCD corrections have been estimated using Prospino [111].

They are positive and their percentage impact is independent of the flavor and the chirality

of the produced squark. Using the PDF set MRST 2004 QED, the relative NLO QCD

corrections at the scale µF , µR = 1
2(mq̃ + mg̃) amount to 28% of the LO contribution, with

a remaining scale uncertainty of the total cross section at NLO QCD of the order of 10%.
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Figure 6.8.: Comparison of gq, γq, and qq channel contributions to g̃ũL production. The total
EW contribution is also given. Shown are the invariant mass distributions (left), and
the transverse momentum and pseudo rapidity distributions (right panels).

6.3.2 Differential distributions

The interplay of the various EW contributions is illustrated in Figs. 6.8 and 6.9 for g̃ũL

and g̃ũR production, respectively, where the absolute contributions from the three partonic

channels are given as distributions with respect to the invariant mass Minv = (p3 + p4)
2 of

the squark and the gluino, as well as the transverse momentum pT and the pseudo rapidity

η of the squark. The plots for the production of a left- and right-handed down-type squark

in association with a gluino are given in Figs. 6.10 and 6.11, respectively. They reveal a

very similar behavior, as expected from the discussion above.

In Figs. 6.8 and 6.10, one clearly sees that for left-handed squark production the virtual

and real photon corrections to the gq channel dominate the EW contributions over the whole

phase space. For right-handed squark production, Figs. 6.9 and Fig. 6.11, the situation is

more involved; in particular in the central region (|η| < 1) the γq channel contribution is

the leading one while the other two are comparable.

Next, we consider the complete EW contribution relative to the LO result, δ. In Fig. 6.12,

the distributions with respect to Minv, and to pT and η of both the squark and the gluino

are given, for all four g̃ũL, g̃d̃L, g̃ũR, g̃d̃R production processes. Again, the shape of the

relative corrections is similar for up- and down-type squarks of the same chirality, and also

the size is comparable. For right-handed squark production, the distributions are almost

flat and relative EW contributions are negligible.
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Figure 6.9.: Same as Fig. 6.8 for g̃ũR production.
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Figure 6.10.: Same as Fig. 6.8 for g̃d̃L production.
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Figure 6.11.: Same as Fig. 6.8 for g̃d̃R production.

For left-handed squarks, the EW contribution in the Minv distribution amounts −2%

near threshold and increases up to −4% in the considered Minv range (Minv < 2600 GeV).

Larger corrections arise in the pT distribution, where the EW contributions reach the

−10% level for pT > 1500 GeV. The distributions with respect to pT (g̃) and pT (q̃) differ

slightly because of the different contributions they receive from real-photon and real-quark

radiation processes. In particular the qq channels affect the pT of the squark more, reducing

(in absolute size) the EW contribution in the high-pT range.

With respect to η, the EW contribution is largest in the central region (−3% for left-

handed squarks). Differences between η(g̃) and η(q̃) are related to the real emission pro-

cesses, and also to the different masses of the two final particles which affect the definition

of η already at the lowest order.

In order to study the behavior of the EW contribution close to the threshold we consider

the distribution of the “cumulative invariant mass”, defined as

σ(M cut
inv ) =

∫ Mcut
inv

mg̃+mq̃a

dσ

dMinv
dMinv. (6.17)

In Fig. 6.13 the cumulative invariant mass including the EW contribution and the relative

yield of the EW contribution is depicted for the case of g̃ũL (left panel) and g̃ũR (right

panel) production. For left-handed squarks, the relative EW contribution increases in

absolute size as M cut
inv increases. This is a clear signal that the relative yield of the EW

corrections increases in high-Minv region, a general feature that can also be seen in Fig. 6.12.
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Figure 6.12.: Relative EW contribution to gluino–squark production at the LHC within the
SPS1a’ scenario. The left plots refer to g̃ũL and g̃ũR production, the right plots to
g̃d̃L and g̃d̃R production. Shown are the invariant mass distribution (top panels),
the distributions with respect to the transverse momentum (middle panels) of the
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spect to the pseudo rapidity (bottom panels) of the gluino (dashed) and the squark
(solid).
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Figure 6.13.: NLO cumulative invariant mass and relative EW contribution to the same ob-
servable, cf. Eq. (6.17), for left- and right-handed up-type squark production in
association with a gluino.

Interestingly, the situation is reversed for right-handed squarks. In absolute numbers,

the relative EW contribution to the cumulative invariant mass decreases for increasing

M cut
inv : In the high-invariant mass range the virtual corrections to the gq channel receive

negative contributions from Sudakov-like double and single logarithms resulting from gauge

boson corrections and the positive, non-logarithmically enhanced part of the amplitude is

suppressed.

In experimental analyses, usually cuts on the kinematically allowed phase space of the

final state particles are applied. These include lower cuts pcut
T on the transverse momenta, to

focus on high-pT jets, and cuts on the pseudo rapidity ηcut to restrict the scattering angles

to the central region in the detector. In contrast to Section 5.3, where two explicit sets of

cuts have been investigated, we now illustrate the hadronic cross sections as a function of

these cuts,

σ(pcut
T ) =

∫ ∞

pcut
T

dσ

dpT
dpT , σ(ηcut) =

∫ ηcut

−ηcut

dσ

dη
dη, (6.18)

as shown in Fig. 6.14, together with the corresponding relative corrections. Since the

difference of LO and NLO results are small, only the NLO hadronic cross sections are
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Figure 6.14.: Hadronic cross sections and relative corrections as a function of pcut
T (left panels)

and ηcut (right panels), cf. Eq. (6.18), for up-type squark production in association
with a gluino. The cuts refer to pT and η of the produced squark.

plotted. We refer to cuts on pT and η of the (up-type) squark. As argued above, results

are similar for down-type squarks and for cuts on pT (g̃) or η(g̃). As we can see from the

left panel of Fig. 6.14, a cut on pT enlarges the relative EW contribution. The total cross

section is about halved for pcut
T = 300 GeV. A cut on η, see right panel of Fig. 6.14, affects

the EW contribution only weakly. The cross section, however, falls rapidly for ηcut < 3.

Finally, we consider inclusive gluino–squark production and show in Fig. 6.15 the differ-

ential hadronic cross sections at NLO EW (i. e. LO plus EW contribution), together with

the relative corrections δ, with respect to Minv and to pT (q̃). The relative EW contri-

bution grows in the high-Minv and high-pT range, but owing to the small corrections for

right-handed squarks, it remains at the percent level only.

6.3.3 Dependence on SUSY parameters

We complete our report by investigating the stability of the EW contributions against a

variation of the SUSY parameters. Similarly as we proceeded for the stops in the last

chapter, we first compare the results within different SPS scenarios and then study the

behavior of the EW contributions as a function of the final-state particle masses.
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Figure 6.15.: Hadronic cross sections including the EW contribution (upper panels) and relative
EW contribution (lower panels) for inclusive g̃q̃ production. Left panel: differential
distribution with respect to the invariant mass of the squark and the gluino. Right
panel: differential distribution with respect to the transverse momentum of the
produced squark.

Different SUSY scenarios

We discuss gluino–squark production at the LHC within the SPS2, SPS3, SPS4, and SPS5

scenario. The input parameters for these exemplary mSUGRA scenarios are defined in

Appendix B.2. In particular, the gluino and average light-flavor squark masses are the

following (see also Table B.1),

mg̃ = 785 GeV, mq̃ ∼ 1.5 TeV (SPS2),

mg̃ = 940 GeV, mq̃ ∼ 850 GeV (SPS3),

mg̃ = 735 GeV, mq̃ ∼ 750 GeV (SPS4),

mg̃ = 725 GeV, mq̃ ∼ 650 GeV (SPS5).

(6.19)

Note that in the SPS2 and SPS4 scenarios, the squarks are heavier than gluinos and can

go on-shell in some of the real quark radiation diagrams. Correspondingly, as described in

Section 6.2.4, we subtract the resonance contributions from the qq channels within these

two scenarios in order to avoid double counting in an inclusive analysis of squark and gluino

final states.
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6. Gluino–squark production

The integrated hadronic cross sections and contributions from the partonic subprocesses

for gluino-squark production are displayed in Table 6.2. As we have seen above, differences

between up- and down-type squarks in the final state are PDF effects mainly, resulting

in different integrated hadronic cross sections but comparable relative EW contributions.

We thus only distinguish between left-handed and right-handed squarks and give inclusive

results for g̃q̃L and g̃q̃R production.

Compared to stop–anti-stop production, we find a milder variation of the results among

the various scenarios. This can be explained by the fact that the sum of the masses

of the final state particles ranges in a similar order of magnitude in all the considered

scenarios. Still, going from the SPS2 to SPS4 scenario, the squark masses are halved

and the LO cross section raises by a factor of ten. Concerning the EW contributions, the

results confirm our observations from the SPS1a’ scenario: The NLO EW corrections to the

gq channel are relatively large and negative for g̃q̃L production, while they are negligibly

and positive in case of g̃q̃R production. The photon-induced subprocesses depend to a

less extent on the helicity of the produced squark and range in the same order as the

gq-channel corrections for g̃q̃R production. The qq-induced real quark bremsstrahlung

processes give small contributions only, both in scenarios where squarks can and cannot

become resonant. In total, the EW contributions amount to typically −3% and 0.2% for

g̃q̃L and g̃q̃R production, respectively.

Dependence on squark and gluino masses

At LO, the only SUSY parameters that enter the production cross section are the masses

of the final state particles. These parameters are thus crucial for the total size of the

cross section and it is instructive to investigate in more detail the dependence of the cross

section and the EW contribution on the squark and gluino masses. To this aim, we set

the independent squark masses of the first and second generation to a common value m(q̃),

which is varied for the ’squark mass variation’ and fixed (to 500 GeV) for the ’gluino mass

variation’. The fourth, dependent squark mass is computed at each SUSY point according

to Eq. (B.7). All other SUSY parameters are kept at their SPS1a’ values21. We give

the results in Fig. 6.16 for the variation of the common squark mass m(q̃) (left) and the

variation of the gluino mass (right). In the upper panels, the total cross sections including

the EW contribution, and in the lower panels, the relative EW contribution are shown.

Up-type squark production contributes twice as large as down-type squark production to

the inclusive result. Again, this is due to the respective parton densities. The relative

EW contribution to right-handed squark production can be neglected (< 0.5%) for the

considered parameter points. For left-handed squarks the corrections vary around −2%

21The following two plots are taken from [25], where the factorization and renormalization scale have been
set to µR,F = 1 TeV. All other input parameters agree with the conventions made in this thesis. The
general behavior of the results presented here is expected to be unaffected by the choice of scales.
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sub- LO EW contr. per channel EW contr.
scenario name

process O(α2
s) O(α2

sα) O(αsα) δ

SPS2 g̃q̃L gq 200.2 −867 × 10−2 −4.33%
γq 10.2 × 10−2

qq 5.89 × 10−2

incl. 200.2 −861 × 10−2 10.2 × 10−2 −4.25%

g̃q̃R gq 203.0 5.52 × 10−2 0.03%
γq 10.3 × 10−2

qq 2.66 × 10−2

incl. 203.0 8.19 × 10−2 10.3 × 10−2 0.09%

SPS3 g̃q̃L gq 835.0 −29.3 −3.51%
γq 0.69
qq 0.93

incl. 835.0 −28.4 0.69 −3.31%

g̃q̃R gq 920.6 0.68 0.07%
γq 0.77
qq 0.13

incl. 920.6 0.81 0.77 0.17%

SPS4 g̃q̃L gq 2584 −82.3 −3.18%
γq 1.49
qq 2.56

incl. 2584 −79.7 1.49 −3.03%

g̃q̃R gq 2758 1.66 0.06%
γq 1.60
qq 0.38

incl. 2758 2.03 1.60 0.13%

SPS5 g̃q̃L gq 3729 −109 −2.93%
γq 2.20
qq 3.64

incl. 3729 −106 2.20 −2.78%

g̃q̃R gq 4048 3.13 0.08%
γq 2.42
qq 0.50

incl. 4048 3.63 2.42 0.15%

Table 6.2.: Numerical results for the integrated cross sections for gluino–squark production at
the LHC within different SPS scenarios. Shown are the leading order results, the
EW contributions from the distinct channels, and the relative corrections δ. All cross
sections are given in femtobarn [fb].
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Figure 6.16.: Hadronic cross sections as a function of a common squark mass (left panel) and of
the gluino mass (right panel). Masses of squarks of the first and second generation
are set equal to m(q̃). All other parameters are fixed to their SPS1a’ values. Shown
are the hadronic cross sections at EW NLO and the relative EW contribution for
g̃ũR, g̃ũL, g̃d̃R, g̃d̃L production and inclusive g̃q̃ production.

for light masses (m(g̃) < 600 GeV) and grow up to −4% for squark and gluino masses

at the TeV range. One observes a change in the slope of the relative corrections at the

point m(g̃) = m(q̃) since the cross section depends also on the difference of the masses. If

squarks are heavier than gluinos, the resonance contributions from the qq channels have

been subtracted again and the final contributions from these channels are tiny.

As a consequence, the relative EW contribution to inclusive gluino–squark production

depends only weekly on the final state masses and is rather small (≈ −1%).
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Chapter 7

Diagonal squark–squark production

We conclude our studies on the hadronic production of colored SUSY particles by consid-

ering same-sign squark–squark final states. In general, these include all combinations of

left- and right-handed squarks (or anti-squarks) of any flavor. Here, we restrict ourselves

to the production of diagonal squark–squark pairs,

PP → q̃aq̃a,

PP → q̃∗aq̃
∗
a,

q = u, d, c, s; a = L, R. (7.1)

The production of squark–squark pairs of the third generation is suppressed by the vanishing

top-quark and small bottom-quark density inside protons and shall not be considered here.

In the context of all squark and gluino production processes, q̃aq̃a production is of partic-

ular interest at the proton-proton collider LHC. The partonic process proceeds at LO from

qq-induced diagrams only. q̃q̃∗ and g̃g̃ production require qq̄ or gg initial states instead,

see Section 3.3. Since the final-state SUSY particles are very massive, an important con-

tribution to the hadronic cross sections arises from the high-x region where valence-quark

densities dominate over sea-quark and gluon densities. As a result, q̃q̃ production has gen-

erally a higher tree-level yield than q̃q̃∗ production and can be comparable to g̃g̃ production

depending on the precise squark–gluino mass configuration (see also Fig. 3.6).

Concerning the EW contributions to q̃aq̃a production, the application of our previously

obtained results is nontrivial. In contrast to t̃at̃
∗
a and g̃q̃a final states, q̃aq̃a pairs can be

produced from both QCD- and EW-mediated t- and u-channel diagrams that give non-zero

interferences already at tree-level. As a consequence, many types of O(α2
sα) interferences

occur at NLO EW between amplitudes of O(αsα) and O(αs) as well as between the pure-

QCD one-loop amplitudes of O(α2
s) and the tree-level EW amplitudes of O(α). This leads

to a complicated structure of both photonic and gluonic IR singularities. Moreover a UV-

finite result is obtained only if also the strong sector is renormalized.

We annotate that this project is work in progress [115]. The purpose of this chapter is

thus mainly to give an overview of the characteristic features of q̃aq̃a production and to settle

the technical details related to UV and IR singularities. A complete numerical analysis still
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7. Diagonal squark–squark production

remains to be done and is postponed to [115]. In particular, a detailed investigation of the

EW contributions for inclusive squark–squark production, also including non-diagonal and

mixed-flavor squark–squark pairs, is beyond the scope of this report.

The outline of this chapter is as follows. As in the previous analyses, we first recall

the LO cross section (Section 7.1) and then discuss the EW contributions (Section 7.2),

divided into tree-level and NLO EW contributions. We consider the various virtual and

real corrections and explain the treatment of UV and IR singularities. In Section 7.3 we

present a first, preliminary numerical investigation of q̃aq̃a production at the LHC for the

example of ũaũa final states.

7.1 LO cross sections and notations

The LO contribution to the production of diagonal squark–squark pairs at hadron colliders

proceeds from QCD-mediated tree-level diagrams via the following partonic processes:

q(p1) q(p2) → q̃a(p3) q̃a(p4), q̄(p1) q̄(p2) → q̃∗a(p3) q̃∗a(p4), (7.2)

where the initial-state quarks and the final-state squarks are of the same flavor q. The

unpolarized cross sections of these two processes are related by charge conjugation and in

the following we will refer to the first partonic process only. The corresponding Feynman

diagrams are shown in Fig. 7.1(a) (see also Fig. 3.5(c) for the general classification among

the colored SUSY particle production processes).

Again, we distinguish the light-flavor squarks by means of their chiralities, q̃a = q̃L, q̃R

and neglect the L–R mixing. The mass of a squark q̃a is denoted by mq̃a . Different to

t̃at̃
∗
a and g̃q̃a production, the masses of the final-state particles are not the only SUSY

parameters that enter the LO result for q̃aq̃a production. At LO, squark–squark pairs are

produced via gluino-exchange diagrams, which introduce a dependence of the cross section

on the gluino mass, mg̃. For the parameterization of matrix elements and cross sections,

we use again (reduced) Mandelstam variables, cf. Eq. (6.3),

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p1 − p4)
2,

t̂q̃a/g̃ = t̂ − m2
q̃a/g̃, ûq̃a/g̃ = û − m2

q̃a/g̃.
(7.3)

The differential partonic cross section for the process qq → q̃aq̃a, in the usual notation

with superscripts m, n specifying the order in perturbation theory O(αm
s αn), can then be

written as

dσ̂2, 0
qq→q̃aq̃a

(ŝ) =
dt̂

16πŝ2

∑

∣

∣

∣M1, 0
qq→q̃aq̃a

(ŝ, t̂, û)
∣

∣

∣

2
, (7.4)
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ũa
g̃

(a)

u

u

ũa
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Figure 7.1.: Feynman diagrams for diagonal squark–squark production (a) at LO via QCD-
mediated amplitudes and (b) from EW-mediated t- and u-channel diagrams.

in terms of the squared spin- and color-averaged lowest-order matrix element [20],

∑

∣

∣

∣
M1, 0

qq→q̃aq̃a

∣

∣

∣

2
=

1

2
· 1

4
· 1

9
· 16π2α2

s CF

×
[

N
(

t̂q̃a ûq̃a − m2
q̃a

ŝ + m2
g̃ ŝ

)

(

1

t̂g̃
+

1

ûg̃

)

− 4
m2

g̃ ŝ

tg̃ ug̃

]

.
(7.5)

Since we have two identical particles in the final state, an additional factor of 1/2 has

been inserted in Eq. (7.5) in order to avoid double counting in the amplitudes. The color

factors are defined in Eq. (5.6), (N = 3, CF = 4/3). The hadronic cross section results

immediately after convolution with the respective parton luminosity, cf. Eq. (3.3),

dσ2, 0
PP→q̃aq̃a

(S) =

∫ 1

τ0

dτ
dLqq

PP

dτ
dσ̂2, 0

qq→q̃aq̃a
(τS). (7.6)

Here, the production threshold is given by τ0 = 4m2
q̃a

/S.

7.2 Electroweak contributions

We divide the EW contributions to q̃aq̃a production into three classes, which will be de-

scribed below. First, see Section 7.2.1, tree-level EW contributions of O(α2) and O(αsα)

arise from EW-mediated diagrams and their interference with the LO QCD-mediated dia-

grams. Note that q̃aq̃a final states cannot be produced at lowest order from photon-induced

channels, different to t̃at̃
∗
a and g̃q̃a production. The second class of EW contributions are

the NLO EW corrections of O(α2
sα). The sum of virtual corrections, described in Sec-

tion 7.2.2, and real photon and real gluon bremsstrahlung processes (Section 7.2.3) is UV

and IR finite after proper renormalization and a careful treatment of soft and collinear

singularities. Third, real-quark radiation contributes at the same order of perturbation

theory and has to be considered (see Section 7.2.4).
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7. Diagonal squark–squark production

The total EW contribution to the hadronic cross section is then given by

dσEW
PP→q̃aq̃a

(S) =

∫ 1

τ0

dτ

{

dLPP
qq

dτ

[

dσ̂0, 2
qq→q̃q̃a

(ŝ) + dσ̂1, 1
qq→q̃q̃a

(ŝ)

]

+
dLPP

qq

dτ

[

dσ̂2, 1
qq→q̃aq̃a

(ŝ) + dσ̂2, 1
qq→q̃aq̃aγ(ŝ) + dσ̂2, 1

qq→q̃aq̃ag(ŝ)

]

+
dLPP

gq

dτ
dσ̂2, 1

gq→q̃aq̃aq̄(ŝ)

}

, (7.7)

in terms of the respective partonic cross sections explained below and parton luminosities,

cf. Eq. (3.3). It is a peculiarity of same-sign squark–squark production that there is no

summation over light quark flavors in Eq. (7.7). Charge conservation enforces the initial-

state quarks and the final-state squarks to have the same flavor configuration (i. e. all

up-type, all down-type, or both pairs of mixed-flavor particles). Neglecting CKM quark

mixing, the quarks and squarks have also to belong to the same generation.

7.2.1 Tree-level EW contributions

The qq-induced squark–squark production process,

q(p1) q(p2) → q̃a(p3) q̃a(p4), (7.8)

can also proceed from EW-mediated tree-level diagrams [113]. The structure of the di-

agrams is restricted by charge and R-parity conservation. Only diagrams with t- and

u-channel neutralino exchange are allowed, as depicted in Fig. 7.1(b). We denote the re-

spective amplitude by M0, 1
qq→q̃aq̃a

.

We obtain the differential cross section for q̃aq̃a production at O(α2) as follows,

dσ̂0, 2
qq→q̃aq̃a

(ŝ) =
dt̂

16πŝ2

∑

∣

∣

∣
M0, 1

qq→q̃aq̃a
(ŝ, t̂, û)

∣

∣

∣

2
. (7.9)

Furthermore, the EW-mediated and the dominant QCD-mediated tree-level amplitudes

give a non-zero interference contribution of O(αsα),

dσ̂1, 1
qq→q̃aq̃a

(ŝ) =
dt̂

16πŝ2

∑

2Re
{(

M0, 1
qq→q̃aq̃a

)∗
M1, 0

qq→q̃aq̃a

}

, (7.10)

which we include into the sum of EW contributions, Eq. (7.7).

7.2.2 Virtual corrections

As a consequence of the existence of both tree-level QCD and tree-level EW amplitudes, the

O(α2
sα) virtual corrections to q̃aq̃a production involve EW as well as QCD loop diagrams.
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ũa

ũa
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ũa

u
γ, Zg̃

ũa
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Figure 7.2.: Feynman diagrams for the virtual NLO EW corrections to uu → ũaũa that arise
from tree-level QCD diagrams with EW one-loop insertions: (a) counterterm, (b)
vertex correction and (c) box diagrams. These diagrams interfere with tree-level
QCD diagrams to give contributions of O(α2

sα). The counterterm diagrams have to
be computed according to the Feynman rules in Table 4.2, where the renormalization
constants have to be evaluated at O(α). Diagrams with respect to vertex corrections
at the lower ug̃ũa vertex are not shown explicitly in (b).
The notation of the particles refers to Fig. 5.3. In case of V ≡ γ exchange, q denotes
an u quark, and q̃a ≡ ũa. For Z/W boson and χ̃0

n/ χ̃±
n exchange, it is q ≡ u/d and

q̃a ≡ ũa/d̃a. The squark index b runs over the two chirality eigenstates L,R.
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ũa

ũa
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Figure 7.3.: Feynman diagrams for the virtual NLO EW corrections to uu → ũaũa that arise
from tree-level EW diagrams with QCD one-loop insertions: (a) counterterm, (b)
vertex correction, and (c) box diagrams. These diagrams interfere with tree-level
QCD diagrams to give contributions of O(α2

sα). The counterterm diagrams have to
be computed according to the Feynman rules in Table 4.2, where the renormalization
constants have to be evaluated at O(αs). Diagrams with respect to vertex corrections
at the lower uχ̃0

nũa vertex are not shown explicitly in (b).

More precisely, the virtual contributions to the partonic cross section at O(α2
sα) are given

by the following interference terms,

dσ̂2, 1
qq→q̃aq̃a

(ŝ) =
dt̂

16πŝ2

∑

2 Re
{(

M1, 0
qq→q̃aq̃a

)∗
M1, 1 (γ)

qq→q̃aq̃a
+

(

M1, 0
qq→q̃aq̃a

)∗
M1, 1 (g)

qq→q̃aq̃a

}

+
dt̂

16πŝ2

∑

2 Re
{(

M0, 1
qq→q̃aq̃a

)∗
M2, 0

qq→q̃aq̃a

}

,

(7.11)

where again M1, 0 and M0, 1 denote the tree-level QCD and EW amplitudes, respectively.

The one-loop amplitude M1, 1 (γ) arises from tree-level QCD diagrams with EW insertions

(shown in Fig. 7.2), while M1, 1 (g) refers to the tree-level EW diagrams with QCD insertions

(see Fig. 7.3). Both one-loop amplitudes interfered with M1, 0 give non-zero contributions

at the right order O(α2
sα). At the same level of perturbation theory, the interference contri-

bution of the tree-level EW amplitude M0, 1 and the pure-QCD one-loop amplitude M2, 0

arising from the diagrams shown in Fig. 7.4 has to be considered. In the diagrams con-

taining a four-squark vertex, we take into account either the strong or the weak interaction

component in order to match the classification of amplitudes and to avoid double counting.

The full set of virtual corrections is UV finite after renormalization of the theory and

we have to include the proper set of counterterms. In general, we proceed as described in
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Section 4.1, treating UV divergences by dimensional reduction and imposing on-shell con-

ditions to fix the renormalization constants. The counterterm diagrams for q̃aq̃a production

can be constructed from the Feynman rules listed in Table 4.2. However, care has to be

taken to evaluate the counterterms and renormalization constants at the right order.

In the first set of virtual corrections, shown in Fig. 7.2, UV singularities only arise from

gluino-mediated amplitudes with weak insertions (M1, 1 (γ)). We have to renormalize the

quark and squark sector and to include diagrams with counterterms of O(α) for the qg̃q̃a

vertex, see Fig. 7.2(a). At this order of perturbation theory, we do not need to renormalize

the gluino or the strong coupling.

In the second subset of virtual corrections, Fig. 7.3, we have to deal with UV singularities

arising from neutralino-mediated amplitudes with strong insertions (M1, 1 (g)). In order

to obtain a UV-finite result, we include diagrams containing counterterms for the qχ̃0q̃a

vertex, Fig. 7.3(a). The renormalization constants have to be evaluated at O(αs) and no

renormalization of the neutralino is required. Since the gluino does not enter this subset

of one-loop amplitudes, it is thus sufficient to renormalize the quark and squark sector.

The third set of virtual corrections, depicted in Fig. 7.4, refers to pure-QCD one-loop

amplitudes, i. e. gluino-mediated diagrams with strong insertions (M2, 0). In this case,

renormalization of the quark and squark sector as well as of the gluino and the strong

qg̃q̃ Yukawa coupling ĝs is required. The renormalization constants in the appropriate

counterterm diagrams, Fig. 7.4(a), have to be evaluated at O(αs). Note that in order to

match the definition of the strong coupling constant used in the extraction of the PDFs,

we define the strong coupling gs in the MS scheme and subtract the contributions from

heavy particles in the running of αs, cf. Eq. (4.49). Accordingly, we regularize the loop

integrals of this set of virtual corrections using dimensional regularization. This prescription

induces a finite difference between gs and ĝs at the one-loop level and thus violates the

supersymmetric relation between the two couplings. Requiring the physical amplitudes to

preserve this SUSY relation, we implement an unsymmetric renormalization scheme for gs

and ĝs and add a finite shift in the definition of the renormalization constant for ĝs which

restores SUSY, cf. Eq. (4.50) [136].

The virtual corrections also provide photonic and gluonic IR singularities, which we treat

by means of mass regularization as described in Section 4.2.

In M1, 1 (γ), IR singularities arise if two external particles exchange a low-energetic mass-

less photon and if one of the massless initial-state quarks splits collinearly into a quark

and a photon. In order to obtain an IR-finite result, real photon radiation at O(α2
sα) has

to be added. In contrast in M1, 1 (g), massless gluons running in the loops give rise to IR

singularities in the soft and collinear limit. Similarly, the diagrams contributing to M2, 0

suffer from gluonic IR singularities. Hence we have to include real gluon bremsstrahlung

at O(α2
sα) in order to cancel the IR singularities. Owing to the photon-like appearance of

the gluon in the respective diagrams, it is again possible to regularize these IR singularities
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ũa

ũa
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Figure 7.4.: Feynman diagrams for the virtual NLO EW corrections to uu → ũaũa that arise
from tree-level QCD diagrams with QCD one-loop insertions: (a) counterterm, (b)
vertex correction, (c) box, and (d) self-energy diagrams. These diagrams interfere
with tree-level EW diagrams to give contributions of O(α2

sα). The counterterm
diagrams have to be computed according to the Feynman rules in Table 4.2, where
the renormalization constants have to be evaluated at O(αs). Here, all diagrams
with cross final states and diagrams with respect to vertex corrections at the lower
ug̃ũa vertex in (b) are not shown explicitly. Labels b and i are helicity and generation
indices, respectively.
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ũa

ũa
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Figure 7.5.: Feynman diagrams for real photon radiation to ũaũa production. All diagrams are
IR singular in the soft photon region, the diagrams in the first row also contain
initial-state collinear singularities.

by a fictious gluon mass. The computation of real photon and gluon radiation processes is

described in the next section.

7.2.3 Real photon and real gluon corrections

Real photon radiation

The IR singularities arising from photon exchange in the virtual corrections cancel those

in the photonic bremsstrahlung process

q(p1) q(p2) → q̃a(p3) q̃a(p4) γ(k), (7.12)

according to the diagrams shown in Fig. 7.5. The integral over the photon phase space is

divergent in the soft region (Eγ → 0) and in the collinear region (k·p1 → 0, k·p2 → 0). We

again apply the two-cutoff phase-space slicing method described in Section 4.2.1 and impose

a cut ∆E ≡ δs

√
ŝ/2 on the photon energy and a cut δθ on the cosine of the angle between

the photon and the quark to exclude the singular regions from the numerical integration.

In the singular regions the integrands can be approximated analytically.

In the soft region, the differential cross section factorizes from the LO QCD cross section,

dσ̂2, 1
qq→q̃aq̃aγ(ŝ)

∣

∣

∣

soft
= −α

π

(

e2
q δin

soft + e2
q δfin

soft + 2e2
q δint

soft

)

dσ̂2, 0
qq→q̃aq̃a

(ŝ) , (7.13)

where the soft factors δin
soft, δfin

soft, δintf
soft refer as usual to initial state, final state, and inter-

ference of initial and final state radiation, respectively, and are defined by the universal

phase-space factors Iij , Eq. (4.61). For the process under consideration, the soft factors

155



7. Diagonal squark–squark production

are given by

δin
soft = 2 I11 + 2 I12 =

[

ln δ2
s − ln

λ2

ŝ

]

[

1 − ln
m2

q

ŝ

]

− 1

2
ln2

m2
q

ŝ
+ ln

m2
q

ŝ
− π2

3
,

δfin
soft = 2 I33 + 2 I34 =

[

ln δ2
s − ln

λ2

ŝ

] [

1 +
ŝ − 2m2

q̃a

ŝβ
ln

(

1 + β

1 − β

) ]

− 1

β
ln

(

1 + β

1 − β

)

−
ŝ − 2m2

q̃a

ŝβ

[

2 Li2

(

2β

1 + β

)

+
1

2
ln2

(

1 + β

1 − β

)]

, (7.14)

δint
soft = 2 I13 + 2 I23 =

[

ln δ2
s − ln

λ2

ŝ

]

ln

(

m2
q m2

q̃a

t̂q̃a t̂q̃a

)

− 1

2
ln2

m2
q

ŝ
− 2Li2

(

1 − ŝ

m2
q

)

+
1

2
ln2

(

1 + β

1 − β

)

+ Li2

(

1 +
ŝ

2t̂q̃a

(1 − β)

)

+ Li2

(

1 +
ŝ

2t̂q̃a

(1 + β)

)

+ Li2

(

1 +
ŝ

2ûq̃a

(1 − β)

)

+ Li2

(

1 +
ŝ

2ûq̃a

(1 + β)

)

.

The squark velocity β is given by β =
√

1 − 4m2
q̃a

/ŝ. The contributions to the soft factors

are analogous to those of stop–anti-stop production, cf. Eqs. (5.17) and (5.20). They differ

in relative signs since q̃aq̃a production involves particles only and no anti-(s)quarks do arise.

In the collinear region the differential cross section reads,

dσ̂2, 1
qq→q̃aq̃aγ(ŝ)

∣

∣

∣

coll.
=

2α

π
e2
q

∫ 1−δs

z0

dz κcoll.(z, ŝ) dσ̂2, 0
qq→q̃aq̃a

(zŝ), (7.15)

with the lower integration limit z0 = 4m2
q̃a

/ŝ and the collinear factor κcoll.(z, ŝ) as defined

in Eq. (4.64). Finally we again have to absorb the universal quark mass singularity into the

quark PDF. In order to do so we redefine the quark PDF according to Eq. (4.66) choosing

the DIS factorization scheme (we use the PDF set MRST 2004 QED in the numerical

applications). The resulting additional O(α2
sα) contribution to the total hadronic cross

section Eq. (7.7) is given by

dσcoll.CT
PP→q̃aq̃aγ(S) =

2α

π
e2
q

∫

dτ
dLqq

PP

dτ
κPDF

soft dσ̂2, 0
qq̄→q̃aq̃a

(ŝ) (7.16)

+
2α

π
e2
q

∫

dτ

∫

dx

x

∫ 1−δs

x

dz

z
κPDF

coll. (z) dσ̂2, 0
qq̄→q̃aq̃a

(ŝ) × fq/P

(x

z
, µF

)

fq/P

(τ

x
, µF

)

,

as specified in Eq. (4.69). The collinear factors κPDF
soft and κPDF

coll. (z), defined in Eq. (4.67),

have to be evaluated in the DIS factorization scheme accordingly (λsc = 1).
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Figure 7.6.: Feynman diagrams for real gluon radiation to ũaũa production from (a) tree-level
QCD diagrams and (b) tree-level EW diagrams. Only QCD-EW interference terms
contribute at O(α2

sα).

Real gluon radiation

Second, we have to include gluon bremsstrahlung at O(α2
sα),

q(p1) q(p2) → q̃a(p3) q̃a(p4) g(k), (7.17)

to cancel the gluonic IR singularities in the virtual corrections. Contributions of the right

order in perturbation theory originate from the interference of QCD-based and EW-based

Born level diagrams, as shown in Fig. 7.6(a) and (b), respectively. IR singularities arise

in the phase-space integration in the regions where the gluon becomes soft (Eγ → 0) or

collinear to one of the initial-state quarks (k ·p1 → 0, k ·p2 → 0).

As discussed in Section 4.2.2, the differential cross section integrated over the soft gluon

region factorizes from lowest-order matrix elements of O(αsα), but owing to the color
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7. Diagonal squark–squark production

charge of the emitted gluon a rearrangement of the color structure becomes necessary. For

the process Eq. (7.17), the result can be expressed as follows, cf. Eq. (4.83),

dσ̂2, 1
qq→q̃aq̃ag(ŝ)

∣

∣

∣

soft
= −αs

π

{

4

3

(

2 I11 + 2 I33 − 4I23

)

× dσ̂1, 1
qq→q̃aq̃a

(ŝ)

+ 2
(

I12 + I34 − 2I23

)

×
[

dσ̃1, 1
qq→q̃aq̃a

(ŝ)
]

12

+ 2
(

2 I13 − 2 I23

)

×
[

dσ̃1, 1
qq→q̃aq̃a

(ŝ)
]

13

}

.

(7.18)

Here, the O(αsα) cross sections refer to the interference contribution from the tree-level

EW and QCD amplitudes, cf. Eq. (7.10), and to the color-modified EW–QCD interference

contributions, cf. Eqs. (4.80) and (4.81),

[

dσ̃1, 1
qq→q̃aq̃a

(ŝ)
]

ij
=

1

2ŝ
dPS2

∑

2Re
{〈

M0, 1
qq→q̃aq̃a

∣

∣

∣
Ti · Tj

∣

∣

∣
M1, 0

ab→q̃aq̃a

〉}

, (7.19)

in terms of the color-charge operators Ti, defined Eq. (4.73).

Also in the collinear region, the differential cross section factorizes into a universal

collinear factor κcoll., defined in Eq. (4.64), and the EW–QCD interference contribution.

In complete analogy to the case of photon radiation, Eq. (7.15), we write the result as

dσ̂2, 1
qq→q̃aq̃g(ŝ)

∣

∣

∣

∣

coll.

=
2αs

π
CF

∫ 1−δs

z0

dz κcoll.(z, ŝ) dσ̂1, 1
qq→q̃aq̃a

(ŝ). (7.20)

To fully get rid of the initial-state collinear singularities we have to absorb them into the

quark PDFs by a second redefinition as specified in Eq. (4.87). This yields a further O(α2
sα)

contribution to the hadronic cross section, as given in Eq. (4.88),

dσcoll.CT
PP→q̃aq̃ag(S) =

2αs

π
CF

∫

dτ
dLqq

PP

dτ
κPDF

soft dσ̂1, 1
qq→q̃aq̃a

(ŝ) (7.21)

+
2αs

π
CF

∫

dτ

∫

dx

x

∫ 1−δs

x

dz

z
κPDF

coll. (z) dσ̂1, 1
qq→q̃aq̃a

(ŝ) × fq/P

(x

z
, µF

)

fq/P

(τ

x
, µF

)

.

Note that the redefinition of PDFs at higher orders in QCD, respectively their global fitting

in the extraction from experiments, is usually performed in the MS factorization scheme.

Accordingly, the collinear factors κPDF
soft and κPDF

coll. (z), cf. Eq. (4.67), have to be evaluated

in the MS scheme (i. e. with λsc = 0).

7.2.4 Real quark radiation

The complete list of real radiation processes at O(α2
sα) also includes processes with an

additional quark or anti-quark in the final state. They arise from quark-gluon initial states
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ū

g̃

g̃

u

g

ũa
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ũa

g̃ u

g

ũa
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ũa

ū
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ū

χ̃0
n

u

u

g

ũa
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Figure 7.7.: Feynman diagrams for real quark radiation to ũaũa production from (a) tree-level
QCD diagrams and (b) tree-level EW diagrams. Only the QCD–EW interference
terms contribute at O(α2

sα).

in the interference of QCD-mediated and EW-mediated tree-level diagrams. Charge con-

servation enforces that a q̃aq̃a pair can be produced in association with an real anti-quark

only (while q̃∗aq̃
∗
a production allows for real quark radiation). Furthermore, since the strong

qg̃q̃a couplings are diagonal in flavor, the radiated quark has to have the same flavor as the

produced squarks. Thus the only subprocess to be considered is

q(p1) g(p2) → q̃a(p3) q̃a(p4) q̄(k). (7.22)

The resulting cross section contribution to the cross section can be written as

dσ̂2, 1
gq→q̃aq̃aq̄(ŝ) =

1

2ŝ

∑

2 Re
{(

M3/2, 0
gq→q̃aq̃aq̄

)∗
M1/2, 1

gq→q̃aq̃aq̄

}

dPS3, (7.23)
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7. Diagonal squark–squark production

in terms of the amplitude M3/2, 0 related to the QCD-mediated diagrams depicted in

Fig. 7.7(a), and the amplitude M1/2, 1 describing the EW-mediated diagrams of Fig. 7.7(b).

No summation over different quark species has to be included. Different to t̃at̃
∗
a and g̃q̃a

production, there is only one real quark radiation channel contributing to the production

of a pair of same-sign squarks q̃a of a given helicity and flavor.

The phase-space integration in Eq. (7.23) is finite in the region of vanishing quark energies

Eq̄ → 0. However quark mass singularities arise when the initial-state gluon and the final-

state (anti-)quark are collinear in both the QCD- and EW-mediated diagrams (k · p2 → 0).

The extraction of collinear singularities can be performed in a similar way as we did before,

applying a cut δθ on the cosine of the angle between the gluon and the quark to split off the

singular region from the numerical phase-space integration. Integrated over the collinear

region, the cross section reads, cf. Eq. (4.89),

dσ̂2, 1
qg→q̃aq̃aq̄(δθ)

∣

∣

∣

∣

coll.

=
αs

π
TF

∫ 1

z0

dz κqg
coll.(z, ŝ) dσ̂1, 1

qq→q̃aq̃a
(ŝ), (7.24)

where the quark–gluon collinear factor κqg
coll.(z, ŝ) is defined in Eq. (4.91) and TF = 1/2. The

collinear singularities are again absorbed into the quark PDF by an appropriate redefinition

at O(αs), specified in Eq. (4.93). This results in an additional O(α2
sα) contribution to the

hadronic cross section as follows,

dσcoll.CT
PP→q̃aq̃aq̄ =

αs

π
TF

∫

dτ

∫

dx

x

∫ 1

x

dz

z

1

2
Pq←g(z) ln

(

m2
q

µF

)

dσ̂1, 1
qq→q̃aq̃a

(ŝ)

×
[

fg/P

(x

z
, µF

)

fq/P

(τ

x
, µF

)

+ fq/P

(τ

x
, µF

)

fg/P

(x

z
, µF

)

]

,

(7.25)

where Pq←g(z) = z2 + (1 − z)2 is the gluon-quark splitting function.

In specific SUSY scenarios, internal neutralinos and gluinos in the diagrams shown in

Fig. 7.7 can be on-shell and the widths of the particles have to be inserted in the corre-

sponding propagators in order to regularize the poles. Physical resonances do not occur.

This is different to the case of real quark radiation in gluino–squark production processes,

where internal squarks can go on-shell in both the EW- and the QCD-mediated diagrams

(see Section 6.2.4).

7.3 Numerical results

We evaluate our results numerically for the important case of ũaũa production. Among the

various squark–squark production processes, we expect largest hadronic cross sections at

the LHC for first-generation up-type squarks ũa since these are produced from uu initial

states at tree-level and thus enhanced by purely valence-quark PDFs. Again, we present
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7.3. Numerical results

the integrated hadronic cross section, σ, the differential cross section with respect to the

invariant mass of the squark–squark pair, dσ/dMinv, and with respect to the average trans-

verse momentum, dσ/dpT , and lab-frame pseudo rapidity, dσ/dη, of the (indistinguishable)

squarks, respectively. In analogy to the previous numerical discussions, we label the various

EW contributions according to the initial-state particles of the respective subprocesses. All

presented results are preliminary yet.

The input parameters are defined as described in Section 5.3.1 and Appendix B. For the

SUSY parameters, we consider the SPS1a’ scenario [158] as a reference. In this scenario,

the on-shell masses of the first-generation up-type squarks are

mũL = 560.7 GeV, mũR = 543.3 GeV, (SPS1a’). (7.26)

Again, we use the set MRST 2004 QED [107] for the parton distributions with identified

factorization and renormalization scales µF = µR = 560 GeV (≈ mũL , chosen for later

convenience if inclusive squark–squark final states are considered).

For the calculation of the IR singular bremsstrahlung contributions, three independent

sets of energy and angle cutoff parameters have to be considered. The phase space of the

real photon in process Eq. (7.12) and the phase space of the real gluon in process Eq. (7.17)

are divided into a soft, a hard collinear, and a hard non-collinear region, respectively. The

phase space of the real (anti-)quark in process Eq. (7.22) is cut into a collinear and a

non-collinear part. In Fig. 7.8 we briefly investigate the stability of the phase-space slicing

method. Shown are the partial hadronic cross section contributions (virtual corrections plus

soft and collinear parts and the hard, non-collinear part) and the sum of all contributions

as a function of the angle cutoff δθ (and ∆E = 0.001
√

ŝ fixed). We refer to the photonic

corrections of O(α2
sα) (upper plots, cf. Fig. 7.2) and gluonic corrections of O(α2

sα) (lower

plots, cf. Figs. 7.3 and 7.4), only. In both cases, the summed result does not depend on the

parameters when they are chosen small enough, and the method is applicable. However the

choice of appropriate cutoff parameters in case of gluonic corrections has to be done with

care. In the small cutoff region, close to the singular regions in phase space, the separate

contributions are huge and cancel down to the percentage level. Thus one looses roughly

two digits in precision and the relative errors of the summed result are large in comparison

to the case of photonic corrections. The situation is similar in case of variation of the energy

cutoff parameter and not shown explicitly, here. The numerical integration over singular

regions is avoided by the alternative dipole subtraction method (see Section 4.2.1), resulting

in an improvement in the integration errors of typically one order of magnitude [145]. For

a future precision analysis on squark–squark production, we strongly suggest to implement

the dipole subtraction method and to perform careful cross checks on the reliability of the

results obtained from both methods.

In the following numerical analysis, the energy cut off parameters are set to ∆E =

0.001
√

ŝ and the cuts on the (cosine of) the angle are set to δθ = 0.0001.
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Figure 7.8.: Dependence of hadronic cross section contributions on the cutoff parameter δθ (∆E =
0.001

√
ŝ fixed), for the photonic corrections of O(α2

sα) (upper plots, cf. Fig. 7.2),
and for the gluonic corrections of O(α2

sα) (lower plots, cf. Figs. 7.3 and 7.4), to
ũLũL production at the LHC within the SPS1a’ scenario. Left panels: Shown are
the partial contributions (virtual corrections plus soft and collinear parts and the
hard, non-collinear part) and the sum of all contributions. Right panels: Sum of all
contributions. The error bars represent integration uncertainties.

7.3.1 Hadronic cross sections

The results for the integrated hadronic cross sections for ũLũL and ũRũR production at the

LHC are displayed in Table 7.1. The LO cross sections and the various absolute and relative

EW contributions are presented. For the quark–quark induced (uu) channel, we give the

relative impact of the IR-finite sum of O(α2
sα) NLO EW corrections and the O(αsα + α2)

tree-level EW channels, separately. The gluon-quark induced (gu) real quark radiation

process contributes at NLO only.

In case of left-handed squark–squark production, the uu-induced NLO EW corrections

are relatively large and alter the LO cross section by about −6%. Moreover, the tree-level

pure-EW and EW–QCD processes give important contributions (20%). The real quark

radiation is suppressed by one order of magnitude in comparison. As expected from our

previous investigations on t̃at̃
∗
a and g̃q̃a production, the impact of the EW contributions for
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7.3. Numerical results

sub- LO EW contr. per channel EW contr.
process

process O(α2
s) O(α2

sα) O(αsα) O(α2) δ

ũLũL uu 479 −27.5 −5.75%
78.5 13.5 19.9%

gu −2.32

incl. 479 −29.8 78.5 13.5 13.0%

ũRũR uu 528 −3.55 −0.67%
26.3 1.72 5.30%

gu −0.77

incl. 528 −4.32 26.3 1.72 4.63%

inclusive ũaũa 1006 −34.2 105 15.2 8.52%

Table 7.1.: Numerical results for the integrated cross sections for ũLũL and ũRũR production at
the LHC within the SPS1a’ scenario [158]. Shown are the leading order results, the
EW contributions from the distinct channels, and the corrections relative to the LO
result, δ. All cross sections are given in femtobarn [fb].

right-handed ũRũR production is less pronounced. The O(α2
sα) corrections range below

the percent level. Summing up tree-level and one-loop EW contributions, the LO cross

section for inclusive ũLũL and ũRũR production increases by 8.5%.

We recall that only ũaũa final states are considered. Cross section for the charge con-

jugated process of ũ∗
aũ

∗
a production and for second-generation c̃ac̃a, c̃∗ac̃

∗
a final states differ

only in the PDF factor and can easily be included. At the LHC however, these are strongly

suppressed by the sea-quark parton densities (the LO production channels proceed from

ūū, cc, and c̄c̄ initial states, respectively) and negligible hadronic contributions are ex-

pected. This is different to squark–anti-squark production [26], where the dependence of

the EW contributions on the flavor and generation of the produced squarks is much more

involved.

7.3.2 Differential distributions

We further investigate the interplay of the EW contributions in Fig. 7.9. We only consider

ũLũL production, since the EW corrections are suppressed for right-handed squarks. Shown

are the absolute EW contributions as distributions with respect to Minv, pT , y, or η. We

refer to the tree-level EW subprocesses of O(αsα + α2), the O(α2
sα) corrections divided

into the two gauge-invariant subsets of photonic and gluonic corrections, as well as the

gu-induced EW contributions due to real quark radiation. Owing to the alternating signs,
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Figure 7.9.: Comparison of absolute EW contributions from the various channels to ũLũ∗
L produc-

tion, as distributions of the invariant mass of the squark–squark pair, the transverse
momentum pT , the rapidity y, and the pseudo-rapidity η of one of the squarks (from
upper left to lower right). y and η are given in the laboratory frame.

compensations occur in particular between the photonic and gluonic NLO EW corrections.

The sum of EW contributions is dominated by the tree-level EW processes over largest

regions in phase-space.

Focussing on the O(α2
sα) EW corrections to the uu channel, we consider in Fig. 7.10 the

hadronic contributions of the two gauge-invariant subsets of photonic and gluonic correc-

tions relative to the LO Born cross section. The numerical impact of the EW contributions

on the invariant mass distribution is moderate, ranging at the percent level. In the pT dis-

tributions, both the photonic and gluonic EW corrections grow for large values of pT and

reach the −10% and −20% level, respectively.

Finally we present the differential hadronic cross section at NLO EW, including all EW

contributions up to O(α2
sα) (i. e. including the tree-level EW subprocesses), as a function of

the invariant mass and pT in Fig. 7.11. In the respective lower panels, the EW contributions

relative to the LO result are given. Close to the threshold, in particular the tree-level EW

processes alter the LO prediction considerably (≈ 20%). In the high-Minv and high-pT

regions, the EW contributions turn negative and are dominated by the O(α2
sα) corrections.
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Figure 7.10.: Relative O(α2
sα) EW corrections to ũLũL production at the LHC within the SPS1a’

scenario. The upper plots refer to the IR-finite subset of photonic corrections to the
uu channel, the lower plots to that of gluonic corrections. Shown are the invariant
mass distribution of the ũLũL pair (left panels) and the distributions with respect
to the transverse momentum pT (ũL) (right panels).

7.4 Outlook: non-diagonal and mixed-flavor squark–squark

production

Squark–squark final states also allow for non-diagonal and mixed-flavor squark pairs. Ex-

perimentally, the inclusive squark–squark production is most relevant since light-flavor

squarks are hard to distinguish in detectors (even though squarks of different helicities

could be distinguishable by their decay chains in principle). Having worked out the techni-

cal details concerning the cancellation of UV and IR singularities for q̃aq̃a production, the

application of our methods to non-diagonal and/or mixed-flavor squark–squark production

is straight-forward. It is thus planned to extend our studies to inclusive final-state analy-

ses [115]. However the EW contributions depend sensitively on the chirality and the flavor

of the produced particles. Different to the calculation of flavor-blind QCD corrections, we

have to perform separate computations for different species of squarks.

At parton level, the squark–squark production processes can be divided into three classes

(and the same applies to the charge conjugated processes). First, diagonal and non-diagonal
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Figure 7.11.: Hadronic cross sections including the full EW contribution (upper panels) and rela-
tive EW contribution (lower panels) for ũLũL production. Shown are the invariant
mass distribution of the ũLũL pair (left panels) and the distributions with respect
to the transverse momentum pT (ũL) (right panels).

squark-squark production has to be addressed, with both squarks having the same flavor q,

q = u, d, c, s,
qq → q̃aq̃b, a, b = L, R.

(7.27a)

A second class of processes describes squark–squark pairs of different flavor q, q′ but with

the squarks belonging to the same generation,

(q, q′) = (u, d), (c, s),
qq′ → q̃aq̃

′
b, a, b = L, R.

(7.27b)

Third, the two squarks can be of different flavor and different generation

(q, q′) = (u, c), (u, s), (d, c), (d, s),
qq′ → q̃aq̃

′
b, a, b = L, R.

(7.27c)

We summarize the three classes and respective parton-level Feynman diagrams in Fig. 7.12.

All production processes can proceed from both QCD-mediated and EW-mediated tree-level

amplitudes, yielding cross section contributions of O(α2
s) and O(α2), respectively. However
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subprocess strong contribution electroweak contribution

qq → q̃aq̃b

same flavor
g̃ g̃

q̃a

q̃a

+ χ̃0 χ̃0

q̃a

q̃a

qq′ → q̃aq̃
′
b

different flavor,

same generation

g̃ + χ̃0 χ̃±

q̃′L

q̃L

qq′ → q̃aq̃
′
b

different flavor,

different

generation

g̃ + χ̃0

Figure 7.12.: Parton-level Feynman diagrams at LO for same-sign squark–squark production
in hadronic collisions. All classes of production processes allow for both QCD-
mediated and EW-mediated tree-level amplitudes. Depending on the flavor (q, q′)
and chirality (a, b = L,R) structure of the final-state particles, the subset of con-
tributing diagrams is different. In the first row, diagrams with crossed final states
are only possible for diagonal q̃aq̃a pairs (a = L,R). In the second row, the diagram
with crossed final states is present for left-handed q̃Lq̃′L pairs only.

the subset of non-zero diagrams and interference contributions is different for the processes

Eqs. 7.27a–7.27c and depends on the flavor and chirality of the produced particles. The

O(αsα) interference of tree-level EW and tree-level QCD diagrams is only non-zero in case

of diagonal q̃aq̃a and same-generation q̃Lq̃′L final states. This structure of EW- and QCD-

mediated diagrams carries over to EW NLO corrections at O(α2
sα) and requires a separate

treatment of the various process classes.
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Chapter 8

SUSY with R-parity violation and

a τ̃1 as lightest SUSY particle

In the MSSM, an additional symmetry, R-parity, is postulated to exclude lepton and baryon

number violating operators from the superpotential that lead to rapid proton decay. In

this chapter we investigate an alternative protective symmetry, baryon-triality B3 [34–37],

which prohibits only the baryon number violating operators. We focus on B3 mSUGRA

models where the lightest stau τ̃1 is the LSP. Since B3 models allow for lepton number and

R-parity violation, the LSP can decay and is not constrained to be electrically neutral from

cosmological observations.

We assume one non-zero B3 coupling λ′
ijk at the GUT scale ΛGUT, which can generate

further B3 couplings at the weak scale. In Section 8.1 we study the renormalization group

equations and give numerical examples. The new couplings lead to additional τ̃1 decays,

providing distinct collider signatures. We classify the τ̃1 decays and describe their depen-

dence on the mSUGRA parameters in Section 8.2. Third, we exploit our results for single

slepton production at the LHC in Section 8.3. As an explicit numerical example, we in-

vestigate single smuon production, focussing on like-sign dimuons in the final state. Also

considered are final states with three or four muons.

The results presented in this chapter are published in [165].

B3 mSUGRA models

B3 mSUGRA models are based on the minimal particle content of a supersymmetric ex-

tension of the Standard Model (SSM). The most general renormalizable superpotential of

the SSM is given in Eq. (2.42). It divides into Yukawa terms and a Higgs mixing term con-

tained in WR, Eq. (2.43a), and L- and B-violating terms parameterized in W6R, Eq. (2.43b).

The assumption of R-parity conservation excludes W6R from the theory and is a defining

property of the MSSM. In contrast, in models with conserved baryon-triality B3 [34–37],

only the baryon number violating U D D operator in W6R is prohibited (and also dangerous

dimension-five operators).
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

The most general B3 SSM has more than 200 parameters. The number of parameters

can be lowered by specific assumptions on the SUSY breaking mechanism. Within the

MSSM, the most widely studied constrained model is minimal supergravity (mSUGRA),

see Section 2.3.3. The 124 free parameters of the MSSM are reduced to only five, M0, M1/2,

A0, tan β, sgn(µ), which are fixed at the GUT scale ΛGUT, cf. Eq. (2.55). Correspondingly,

in the B3 mSUGRA model [166,167], there are six free parameters at the GUT scale,

M0, M1/2, A0, tan β, sgn(µ), and a single λ′
ijk 6= 0, (8.1)

where the λ′
ijk coupling allows for the L-violating LiQjDk operator in W6R, Eq. (2.43b).

The B3 SSM has some distinguishing features compared to the MSSM [31,168], which

can have a strong impact on (hadron) collider phenomenology [169,170]:

• Lepton number and lepton flavor violating processes take place.

• The renormalization group equations (RGEs) get additional contributions [166,171,

172], resulting in modified low-energy SUSY couplings and SUSY particle spectra.

• Neutrino masses can be generated as experimentally observed [173]22.

• The LSP is not stable and can decay via the B3 couplings.

• Supersymmetric particles can be produced singly, possibly on resonance.

Since the LSP is not stable, we are not restricted to the lightest neutralino χ̃0
1 as the

LSP [10]. A first investigation of the parameter space has shown that there are extensive

regions with a neutralino, a stau or a sneutrino LSP [166,167]. We shall focus here on

a τ̃1 LSP. τ̃1 LSP scenarios have been studied in the literature [166,167,174–176]. As we

discuss in the next section, we go beyond this work in several aspects.

We concentrate on models with only one non-vanishing λ′
ijk being present at ΛGUT,

similar to the dominant top Yukawa in the SM. Allowing for more than one coupling leads

to stricter bounds [31,168,177–180]. The bounds for a single λ′
ijk lie between O(1) and

O(10−4) depending on the flavor indices and SUSY particle masses. A summary of present

bounds on the RPV couplings is given e. g. in [31,177]. The most stringent bound applies to

λ′
111 due to the non-observation of neutrinoless double beta decay. In general, the bounds

can be up to four orders of magnitude stronger at ΛGUT if one includes the generation of

neutrino masses [166,179]. We therefore assume below that λ′
ijk

<∼ O(10−2) and require it

to be consistent with the observed neutrino masses.

22The bilinear term κiLiHu in the superpotential Eq. (2.43b) induces mixing between the neutrinos and
neutralinos and thus one massive neutrino is obtained at tree level. A second neutrino mass as required
from experiments is supplied by higher-order contributions to the neutrino mass matrix by B3-coupling
induced quark-squark and lepton-slepton loops. See e. g. [36,37] for more details.
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New phenomenology

If SUSY particles are produced at colliders, they typically induce long cascade decay chains

to the LSP in the detector. The nature of the LSP and its possible decay modes are thus

essential in all supersymmetric signatures. The τ̃1 LSP might decay via the dominant

LiQjDk operator; for example via a 4-body decay in the presence of a non-vanishing λ′
211,

23

τ̃−
1

λ′
211−→ τ−µ−ud̄ . (8.2)

In this context, an important feature of B3 mSUGRA models is that additional B3 couplings

are generated via the RGE running of non-vanishing B3 couplings (see below). These new

couplings can lead to 2-body decays of the τ̃1 LSP. For example, λ′
211 will generate λ233

which allows for the decay

τ̃−
1

λ233−→ µ−ντ . (8.3)

Even though λ233 ≪ λ′
211, this might be the dominant decay mode. The decay (8.2) is

suppressed by phase space and heavy propagators. In Section 8.2, we will analyze in detail

the conditions for a dominance of the 2-body decay over the 4-body decay. We provide

for the first time an extensive study of B3 τ̃1 LSP decays and extend and specify thus the

results of [176], where a first estimate has been performed. Since typically all heavy SUSY

particles decay to the LSP, the various LSP signatures are important for studies both on

pair and on singly produced SUSY particles.

As an interesting application of our results, we then consider in Section 8.3 resonant single

slepton production at the LHC. This process is possible in B3 scenarios with a non-zero

λ′
ijk coupling via qq̄ annihilation at parton level,

ūjdk

λ′
ijk−→ ℓ̃−Li and d̄jdk

λ′
ijk−→ ν̃i. (8.4)

Note that single slepton production allows to study two B3 couplings at a time, depending

on the scenario. The slepton is always produced via a λ′, whereas the decay of the τ̃1 LSP

in the decay chain of the slepton might proceed via a generated λ, cf. Eq. (8.3).

Single slepton production within a χ̃0
1 LSP scenario leads to like-sign dileptons in the

final state and has thus a very promising signature for experimental studies, see Refs. [181,

182]. As we will see, also in τ̃1 LSP scenarios one obtains like-sign dilepton events and,

additionally, events with three or four leptons in the final state. We provide a classification

of all possible signatures for resonant single slepton production in B3 mSUGRA models

with a τ̃1 LSP. As an numerical example, we calculate event rates for like-sign dimuon

events as well as for three- and four-muon events, at the LHC. We also discuss backgrounds

and cuts for like-sign dimuon events.

23In this chapter, we denote charged sleptons and anti-sleptons by ℓ̃− and ℓ̃+ for clarification.
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

Resonant slepton production at hadron colliders via the LiQjDk operator was first in-

vestigated in [183], using tree-level production cross sections. Three-lepton final states

and like-sign dilepton events were investigated in [181,182]. Ref. [184] considered scenarios

with a gravitino LSP. Experimental studies by the DØ collaboration at the Tevatron were

performed in Refs. [185] assuming a χ̃0
1 LSP and a non-vanishing λ′

211. The NLO QCD

corrections to the cross section were computed in [186–188]. The SUSY-QCD corrections

were included by [187]. The latter can modify the NLO QCD prediction by up to 35%.

8.1 The low-energy spectrum of the B3 mSUGRA model

with a τ̃1 LSP

At the GUT scale, the B3 mSUGRA model is defined by six input parameters, cf. Eq. (8.1).

We now discuss the low-energy spectrum. SUSY particle masses and couplings are obtained

by running the respective RGEs down to the weak scale.

We explicitely take into account the mixing of different quark flavors, described by the

CKM matrix (see the discussion in Section 2.3.4). We restrict ourselves to the extreme (but

nontrivial) cases of quark mixing taking place completely in the up- or down-quark sector,

respectively. In scenarios with “up-type mixing” the quark Yukawa matrices are given by

Eq. (2.88), in scenarios with “down-type mixing” we consider Eq. (2.90).

As a first consequence of the nontrivial quark rotation matrices, the RGEs of the B3 cou-

plings are not independent but highly coupled. Therefore, a single non-zero λ′
ijk at the

GUT scale generates a set of other non-zero B3 couplings at lower scales. The size of the

dynamically generated B3 couplings depends sensitively on the composition of the quark

Yukawa matrices. Assuming a diagonal charged-lepton Yukawa matrix YE , only those

couplings can be generated which violate the same lepton number as λ′
ijk, i. e. λ′

imn and

λill. No additional source of lepton number violation is introduced. Phenomenologically

particularly relevant is the generation of λi33, which we discuss in detail in Section 8.1.3.

Second, the λ′
ijk coupling also has to be rotated from the weak into the quark mass

basis for a comparison with experimental data. In case of up-type mixing, the LiQjDk

interactions of the superpotential in the quark mass basis are, in terms of the SU(2)L-

component superfields Li = (Ni, Ei)
T , (see e. g. [180]),

λ′
ijk

[

NiD
m
j − Ei(V

+
CKM)jlU

m
l

]

D
m
k . (8.5)

In the case of down-mixing they are

λ′
ijk

[

Ni(VCKM)jlD
m
l − EiU

m
j

]

(V†
CKM)nk D

m
n . (8.6)

However for slepton production cross sections, we do not take into account these CKM
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8.1. The low-energy spectrum of the B3 mSUGRA model with a τ̃1 LSP

effects. If needed, the corresponding rescaling of the λ′ coupling can be done easily. Fur-

thermore the sub-dominant interactions, which include non-diagonal matrix elements of

VCKM, do not allow for large production cross sections since λ′ enters only quadratically.

8.1.1 SUSY particle spectra

The low-energy SUSY particle masses depend strongly on the universal mSUGRA parame-

ters, Eq. (2.55), and only weakly on λ′ <∼ O(10−2) [167]. Therefore, the general discussions

of the MSSM particle spectrum of Section 2.3.4 also apply for the B3 SSM. For later ref-

erence, we cite here known approximate expressions for the relevant SUSY particle masses

in terms of the mSUGRA parameters [189] that also do hold.

Owing to the small electron and muon mass, the L–R mixing for sleptons of the first and

second generation can safely be neglected. The gauge and mass eigenstates thus coincide

and the masses are approximately given by

m2
ℓ̃R

= M2
0 + 0.15M2

1/2 − sin2 θW m2
Z cos 2β,

m2
ℓ̃L

= M2
0 + 0.52M2

1/2 − (0.5 − sin2 θW )m2
Z cos 2β,

m2
ν̃ = M2

0 + 0.52M2
1/2 + 0.5m2

Z cos 2β,

(8.7)

where mℓ̃R,L
denotes the mass of a right-/left-handed selectron or smuon, respectively, and

mν̃ denotes the mass of a left-handed electron or muon sneutrino.

For sfermions of the third generation, the L–R mixing has to be taken into account. The

stau mass eigenstates τ̃1,2 are obtained by diagonalizing the stau mass matrix, cf. Eqs. (2.92)

and (2.95), yielding for the masses mτ̃1,2 ,

m2
τ̃1,2

= m2
τ +

1

2

[

(ALL + CRR) ∓
√

(ALL − CRR)2 + 4m2
τ (B

LR)2
]

, (8.8)

with ALL = m2
L̃3

− (
1

2
− sin2 θW )m2

Z cos 2β ,

BLR = Aτ − µ tan β ,

CRR = m2
Ẽ3

− sin2 θW m2
Z cos 2β.

(8.9)

The left- and right-handed third generation soft-breaking parameters mL̃3
and mẼ3

depend

on the mSUGRA parameters (approximately) as follows,

m2
Ẽ3

= M2
0 + 0.15M2

1/2 −
2

3
Xτ ,

m2
L̃3

= M2
0 + 0.52M2

1/2 −
1

3
Xτ ,

Xτ ≡ 10−4(1 + tan2 β)
(

M2
0 + 0.15M2

1/2 + 0.33A2
0

)

,

(8.10)
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

where Xτ parameterizes the influence of the tau Yukawa coupling. Note, that Xτ can

have a strong impact on the stau masses due to its tan2 β dependence, even though Xτ is

suppressed by a factor 10−4. We will investigate this effect on the τ̃1 decay branching ratios

in the next section. In Eq. (8.9), Aτ is the trilinear coupling of the left- and right-handed

stau to the Higgs boson. In mSUGRA models, it is Aτ = A0 at the GUT scale.

The neutralino masses simplify in many mSUGRA models, assuming that the lightest

neutralino is bino-like and the second lightest is wino-like (see Section 2.3.4 and Eq. (2.117)).

The masses can be approximated in terms of the universal gaugino mass M1/2,

mχ̃0
1
≃ M1 = 0.41M1/2, mχ̃0

2
≃ M2 = 0.84M1/2, (8.11)

where Eq. (2.116) has been applied.

8.1.2 Reference scenarios with a τ̃1 LSP

For the purpose of numerical studies and as future reference points, two specific sets of

B3 mSUGRA scenarios with a τ̃1 LSP have been defined in [165],

Set A: M0 = 0GeV, M1/2 = 500GeV, A0 = 600GeV, tan β = 13, sgn(µ) = +1,

a single λ′
ijk 6= 0|GUT, (8.12a)

Set B: M0 = 0GeV, M1/2 = 700GeV, A0 = 1150GeV, tan β = 26, sgn(µ) = +1,

a single λ′
ijk 6= 0|GUT. (8.12b)

The scenarios are carefully chosen in accordance with bounds from B-physics, EW precision

observables (the anomalous magnetic moment of the muon), Higgs boson searches at LEP,

and neutrino physics (see [165] and references therein).

In Table 8.1, we show the supersymmetric mass spectra of the parameter sets A and

B (8.12). We have neglected the mass dependence on the different non-zero B3 couplings

which is valid if λ′
ijk

<∼ O(10−2) [167]. The main B3 effect on the spectrum is that we

allow for a τ̃1 LSP. Note that one naturally obtains a τ̃1 LSP spectrum for M1/2 ≫ M0.

The large M1/2 raises the lightest neutralino mass Eq. (8.11) faster than the right-handed

slepton masses (8.7). It also drives the gluino and indirectly via the RGEs the squark

masses up. We thus see in Table 8.1 squark and gluino masses >∼ 1 TeV, while the slepton

masses are below 500 GeV. Another general feature of a τ̃1 LSP scenario is that the second

lightest neutralino and the lightest chargino are also heavier than the sleptons. Therefore

the only conventional supersymmetric decays of the left-handed sleptons are via the lightest

neutralino. Depending on the dominant B3 coupling and its size, the left-handed sleptons

can also decay into two jets.
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8.1. The low-energy spectrum of the B3 mSUGRA model with a τ̃1 LSP

masses [GeV] masses [GeV]

Set A Set B Set A Set B

τ̃1 179 146 χ̃0
1 203 290

ẽR 193 266 χ̃0
2 380 544

τ̃2 340 453 χ̃0
3 571 754

ẽL 340 471 χ̃0
4 587 765

ν̃τ 326 437 χ̃±
1 383 549

ν̃e 329 461 χ̃±
2 583 761

t̃1 841 1160 h0 113 115

b̃1 970 1300 H0 643 795

ũR 1010 1370 A0 642 795

t̃2 1010 1340 H+ 648 799

b̃2 995 1340

ũL 1040 1410 g̃ 1150 1560

Table 8.1.: SUSY particle masses for the B3 mSUGRA sets A and B as defined in Eq. (8.12),
evaluated for a renormalization scale QSUSY, Eq. (8.20), using Softsusy 2.0.10 [75].
The variation due to different λ′

ijk 6= 0|GUT and quark mixing is below the percent
level. The masses in the second generation coincide with those in the first generation.

Nearly all SUSY particles in Set B (M1/2 = 700 GeV) are heavier than in Set A (M1/2 =

500 GeV). The most important difference for the phenomenology at colliders arises from the

different values of tan β (tanβ = 13 in Set A, tan β = 26 in Set B). According to Eq. (8.10),

the soft breaking parameters of the stau decrease for increasing tan β and thus both stau

mass eigenstates are reduced for large values of tan β. Furthermore, the mass of the lighter

stau is reduced due to the larger L–R mixing proportional to BLR, Eq. (8.9). This effect

can be seen in Table 8.1, where the mass of the τ̃1 LSP is 179 GeV in Set A but only

146 GeV in Set B. The τ̃1 mass and tan β strongly influence the possible 2- and 4-body

τ̃1 LSP branching ratios. We will investigate this topic in detail in Section 8.2.

8.1.3 Renormalization group equations

One of the most important consequences of including B3 effects in SUSY models is that

the LSP is no longer stable. This is of special interest for phenomological studies if the

LSP couples directly to the dominant B3 operator. This leads to large LSP decay widths

and to distinctive final-state signatures.

In the scenarios considered here, cf.Eq. (8.1), the dominant coupling is a λ′
ijk; for i 6= 3

it does not couple to the τ̃1 LSP. However, as the RGEs of the B3 couplings are coupled via

non-diagonal entries of Yukawa matrices, a λ′
ijk generates dynamically other B3 couplings.

Among those, we want to focus on the λi33 which do couple directly to the τ̃1 LSP.
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

The aim of the next two sections is to study the RGEs of the dominant λ′
ijk and to

quantitatively determine the generated λi33. We then use these results to predict the low-

energy spectrum of B3 mSUGRA scenarios. We will also derive approximate formulas that

allow for a numerical implementation of the running of the couplings.

The full renormalization group equations for the B3 couplings λ′
ijk and λi33 are [166,171,

172],

16π2 d

dt
λ′

ijk = λ′
ijl γ

Dk
Dl

+ λ′
ilk γ

Qj

Ql
+ λ′

ljk γLi
Ll

−
(

YD

)

jk
γLi

H1
, (8.13)

16π2 d

dt
λi33 = λi3l γ

E3
El

+ λil3 γL3
Ll

+ λl33 γLi
Ll

−
(

YE

)

33
γLi

H1
+

(

YE

)

i3
γL3

H1
, (8.14)

with t = lnµR; µR being the renormalization scale. The anomalous dimensions γ are listed

in [166] at one-loop level and in [172] at two-loop level. The RGEs simplify considerably

under the assumption of the single B3 coupling dominance hypothesis [183,190]. Products

of two or more B3 couplings including quadratic contributions of the dominant coupling

can be neglected for λ′ <∼ O(10−2). In this limit, the one-loop anomalous dimensions read

γQi

Qj
=

(

YDY+
D

)

ij
+

(

YUY+
U

)

ij
− δi

j

( 1

30
g2
1 +

3

2
g2
2 +

8

3
g2
3

)

,

γDi
Dj

=2
(

Y+
DYD

)

ji
− δi

j

( 2

15
g2
1 +

8

3
g2
3

)

,

γLi
Lj

=
(

YEY+
E

)

ij
− δi

j

( 3

10
g2
1 +

3

2
g2
2

)

,

γEi
Ej

=2
(

Y+
EYE

)

ji
− δi

j

(6

5
g2
1

)

,

γLi
H1

= − 3λ′
iaq

(

YD

)

aq
− λibq

(

YE

)

bq
,

(8.15)

where g1, g2, g3 are the three gauge couplings24.

From Eqs. (8.14) and (8.15), we see that the terms related to γLi
H1

allow for the dynamical

generation of λi33 by a non-zero λ′
iaq coupling [and vice-versa for Eq. (8.13)]. All other terms

in Eq. (8.14) only alter the running of λi33 once it is generated.

The RGEs can be further simplified. At one-loop level, all B3 couplings but the dominant

λ′
ijk and the generated λi33 can be neglected in the RGEs since they must be generated first

by λ′ and thus contribute at two-loop level only. Also, since we work in a diagonal charged

lepton Yukawa basis, the last term in Eq. (8.14), proportional to
(

YE

)

i3
does not contribute

to the running of λi33. It is only non-zero if i = 3, but owing to the ij-antisymmetry of λijk

24This is the usual notation of gauge couplings in mSUGRA models. In order to study the unification of
the running couplings, it is helpful to have a proper normalization of the gauge couplings. In particular,
the normalization of the U(1)Y generator, which can be arbitrarily normalized within the SM, is fixed
by the GUT relation to the generators of the non-Abelian groups. Assuming SU(5) unification, we
define g1 =

p

5/3g′, g2 = g, g3 = gs, and αi = g2
i /(4π).
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)

jk

(
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)

33

Figure 8.1.: Superfield diagram for the dynamical generation of λi33 by λ′
ijk at one-loop order.

no coupling is generated in this case (λ333 = 0). Next, in scenarios of intermediate tan β

(tan β = O(10)), a general ordering of the parameters in the anomalous dimensions is [165]

g2
3 >

(

YU

)2

33
> g2

2 > g2
1 >

(

YD

)2

33
>

(

YE

)2

33
, (8.16)

and all other entries of the Y matrices are smaller by at least one order of magnitude. The

contributions to the RGEs are thus largest for diagonal anomalous dimensions. As a result,

the RGEs for a non-zero λ′
ijk at the GUT scale and a generated λi33 reduce to

16π2 d

dt
λ′

ijk = λ′
ijk

[

− 7

15
g2
1 − 3g2

2 − 16

3
g2
3

+
(

YD

)2

33

(

2δk3 + δj3 + 3 δj3 δk3

)

+
(

YU

)2

33
δj3 +

(

YE

)2

33
δi3

]

,

(8.17a)

16π2 d

dt
λi33 = λi33

[

− 9

5
g2
1 − 3g2

2 + 4
(

YE

)2

33

]

+ 3λ′
ijk

(

YE

)

33

(

YD

)

jk
. (8.17b)

A similar analytical approximation for the generation of λ is derived in [176]. But the effect

of the gauge couplings is neglected there. See also Ref. [191].

The last term in Eq. (8.17b) induces the dynamical generation of λi33. Diagrammatically,

this process can be understood as shown in Fig. 8.1. We see that at one-loop the lepton-

doublet superfield Li mixes with the Higgs doublet superfield Hd via the B3 coupling λ′
ijk

and the down quark Yukawa coupling
(

YD

)

jk
. Hd then couples via the tau Yukawa coupling

(

YE

)

33
purely leptonically. The resulting effective interaction is of the λi33-type.

It is important to notice that the generation is related to
(

YD

)

jk
. Whether a given λ′

ijk

can generate λi33 or not depends on whether
(

YD

)

jk
6= 0. For j 6= k it thus depends

crucially on the origin of the CKM mixing: is it dominantly down-type or up-type mixing.

In case of down-type mixing, all entries of the YD matrix are non-zero and all λ′
ijk can

therefore generate a λi33. In contrast, if the quark mixing takes place in the up-sector,

only the diagonal entries of YD are non-zero and j = k is required. The flavor and size of

the generated coupling depends on tan β and on the precise j, k configuration. A strong

ordering is expected that goes along with the ordering of the entries of the YD matrix.
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

In order to study the running of the B3 couplings, the RGEs for the Yukawa matrix

elements
(

YD

)

jk
,
(

YU

)

33
, and

(

YE

)

33
and the gauge couplings are also needed. The full

RGEs for the Yukawa couplings are given in [166,171]. Applying the single coupling dom-

inance hypothesis, neglecting quadratic terms in λ′
ijk, and considering only the dominant

terms Eq. (8.16), they read

16π2 d

dt

(

YU

)

33
=

(

YU

)

33

[

− 13

15
g2
1 − 3g2

2 − 16

3
g2
3 + 6

(

YU

)2

33
+

(

YD

)2

33

]

, (8.18a)

16π2 d

dt

(

YE

)

33
=

(

YE

)

33

[

− 9

5
g2
1 − 3g2

2 + 4
(

YE

)2

33
+ 3

(

YD

)2

33

]

, (8.18b)

16π2 d

dt

(

YD

)

jk
=

(

YD

)

jk

[

− 7

15
g2
1 − 3g2

2 − 16

3
g2
3

+
(

YD

)2

33

(

3 + δj3 + 2δk3

)

+
(

YU

)2

33
δj3 +

(

YE

)2

33

]

.
(8.18c)

The one-loop order RGEs for the three gauge couplings within the MSSM are given by

16π2 d

dt
gi = bi g

3
i , (8.19)

with bi = {33/5, 1, −3} for i = 1, 2, 3. Thus in total, a set of nine coupled differential

equations, Eqs. (8.17a) - (8.19), has to be solved25.

Numerical results

For the numerical implementation of the RGEs we start from the framework provided by

Softsusy 2.0.10 [75]. First, Softsusy evaluates all necessary parameters at the SUSY

scale QSUSY,

QSUSY =
√

mt̃1
(QSUSY)mt̃2

(QSUSY) . (8.20)

In a second step, we apply the (R-parity conserving) RGEs Eqs. (8.18) and (8.19) to run the

Yukawa couplings and gauge couplings up to the GUT scale. Here we add the B3 couplings

λ′
ijk 6= 0|GUT and λi33 = 0|GUT and evolve these couplings down to the scale Q using

the above given B3 RGEs (8.17a) and (8.17b). We have implemented the RGEs using a

standard Runge Kutta formalism [192].

In Fig. 8.2, we show the running of different λ′
2jk couplings (with λ′

ijk = 0.01|GUT), for

the two cases of down- and up-mixing. In the lower panels, the scale dependence of the

generated λ323 = −λ233 coupling is studied. Here, we refer to the parameters of Set A.

We see that the dominant λ′
ijk coupling grows by about a factor of 3, running from the

GUT scale to the weak scale. This effect is mainly due to the gauge couplings, see Ref. [191],

25In case of j = k = 3 only 8 equations need to be solved. But this implies that the slepton has to be
produced by parton quarks of the third generation which is strongly suppressed due to their negligible
parton density.
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Figure 8.2.: Running of B3 couplings assuming a single non-zero λ′ = 0.01 coupling at the GUT
scale (upper panel) leading to a non-zero λ233 coupling (lower panel) at lower scales
within the B3 mSUGRA scenario Set A for (a) down-type and (b) up-type mixing.

where the Yukawa couplings were omitted. Including the Yukawa couplings reduces this

effect, maximally for j = k = 3.

The generated λ233 coupling is at least two orders of magnitude smaller than the original

λ′ coupling. Furthermore its size depends sensitively on the flavor structure (ijk) of the

generating λ′ coupling. This reflects the dependence on the Yukawa matrix
(

YD

)

jk
. In

case of down-type mixing, the ordering of the corresponding entries is

(

YD

)

33
>

(

YD

)

23,32
>

(

YD

)

22
>

(

YD

)

12,21
>

(

YD

)

13,31
>

(

YD

)

11
, (8.21)

reflecting precisely the ordering of the generated couplings in Fig. 8.2(a). Small differences

between the couplings generated by λ′
i23 (λ′

i13) or λ′
i32 (λ′

i31) are related to the different

running of the respective λ′ and
(

YD

)

jk
coupling, depending in turn on whether j or k

equals 3. In the case of up-type mixing, Fig. 8.2(b), not all λ′ couplings can generate a

λ. Since the down Yukawa coupling is diagonal, j = k is required. Other couplings can

generate λi33 at higher loop levels only and are not included in our approximations.
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

Set λ′
ijk λi33 (down-type mixing) λi33 (up-type mixing)

A Eq. (8.17a) Softsusy Eq. (8.17b) Softsusy Eq. (8.17b) Softsusy

λ′
211 2.82 × 10−2 2.85 × 10−2 −3.96 × 10−7 −3.89 × 10−7 −2.17 × 10−7 −2.13 × 10−7

λ′
231 2.58 × 10−2 2.61 × 10−2 −4.65 × 10−7 −4.80 × 10−7 0 +2.06 × 10−12

λ′
223 2.81 × 10−2 2.83 × 10−2 −5.55 × 10−6 −5.73 × 10−6 0 −8.45 × 10−9

λ′
233 2.55 × 10−2 2.58 × 10−2 −1.41 × 10−4 −1.42 × 10−4 −1.42 × 10−4 −1.43 × 10−4

λ′
311 2.81 × 10−2 2.84 × 10−2 0 0 0 0

Table 8.2.: Comparison of our approximations Eq. (8.17a) and Eq. (8.17b), and Softsusy results,
for λ′

ijk and the generated coupling λi33 at the SUSY scale QSUSY. We choose different
couplings λ′

ijk = 0.01 at the GUT scale as given in the first column of the table. The
running of λ′

ijk is the same for down- and up-type quark mixing. The generation of
λi33 depends on the quark mixing assumptions and the values at the SUSY scale are
given separately. The remaining mSUGRA parameters are these of Set A.

Even though the specific scenario Set A has been studied, the results can easily be gen-

eralized: The running of the dominant coupling λ′ is mainly driven by gauge interactions,

Eq. (8.17a), and thus depends only weakly on the precise SUSY parameters. The depen-

dence of the generated coupling λ on SUSY parameters is more involved but we expect

tan β to have the largest impact. In general, the generated λ coupling scales with tan2 β,

λi33 ∝ tan2 β , (8.22)

if tan2 β ≫ 1. This is due to the fact that the down-quark Yukawa couplings
(

YD

)

jk
[and

the tau Yukawa coupling
(

YE

)

33
] are proportional to 1/ cos β =

√

1 + tan2 β, cf.Eqs. (2.81)

and (2.66). Therefore the magnitude of the generated λ coupling for other scenarios can

be estimated by rescaling λ of Fig. 8.2 according to Eq. (8.22).

Comparison with the program Softsusy

How reliable are our approximations of the RGEs? In order to answer this question we

compare our results for λ′
ijk and the generated coupling λi33 at the SUSY scale, Eq. (8.20),

with an unpublished version of Softsusy26. This version of Softsusy contains the complete

one-loop RGEs for λ′
ijk (8.13) and λi33 (8.14), without our approximations.

In Table 8.2, we compare our results and the results of Softsusy for the case of down-

type mixing and up-type mixing assuming different couplings λ′
ijk = 0.01 at the GUT scale.

All other parameters are chosen according to Set A specified in Eq. (8.12). At the SUSY

scale, the differences between the results for the case of down-type mixing, are less than

2% for all λ′
ijk couplings and less than 4% for the λi33, respectively. In case of up-type

26Softsusy 3.0 which includes R-parity violation and has been released meanwhile [193].

180



8.2. τ̃1 LSP decays in B3 mSUGRA models

mixing, we find the same for the couplings λ′
ijk with j = k. However for j 6= k and up-type

mixing, we observe a discrepancy between our results and Softsusy for the coupling λ233

generated by λ′
223 6= 0|GUT and λ′

231 6= 0|GUT, respectively. This behavior can easily be

understood. The off-diagonal Yukawa matrix elements (YD)jk are equal to zero at the

weak scale for up-type mixing. Running from the weak scale to the GUT scale generates

Yukawa couplings (YD)jk, j 6= k, at the one-loop level [166,171]. The generation of λ233

via Eq. (8.17b) occurs therefore formally at two-loop level and has been neglected in our

approximation. In Softsusy this two-loop effect is taken into account and small couplings

are generated also for j 6= k and up-type mixing. Compared to the case of down-type

mixing, the λ233 couplings are suppressed by five (with λ′
231 = 0.01|GUT) and three (with

λ′
223 = 0.01|GUT) orders of magnitude. Note that the generation of (YD)jk is not the only

two-loop effect that enters the full RGEs [166,171,172].

Therefore, our approximation for the generation of λi33 by a non-zero λ′
ijk at the GUT

scale (8.17b) breaks down in the case of up-type mixing and j 6= k. But concerning τ̃1 LSP

decays, the corresponding 2-body decay branching ratio for λi33 is negligible compared

to the 4-body decay branching ratio via λ′
ijk and our approximations are applicable for

such phenomenological studies. For example, the 2-body decay branching ratio for up-type

mixing and λ′
231 = 0.01|GUT or λ′

223 = 0.01|GUT is less than 10−4 in Set A.

We conclude that our approximations are valid for the signal and decay rates that we

study in this work. We also note that we have provided an independent check of the yet-

to-be published version of Softsusy. Using a different set of mSUGRA parameters leads

to a similar level of agreement.

8.2 τ̃1 LSP decays in B3 mSUGRA models

As we have seen, a non-vanishing coupling λ′
ijk at the GUT scale generates an additional

coupling λi33 at the weak scale which is (roughly) at least two orders of magnitude smaller

than λ′
ijk. In this section, we first compare the possible decay modes of the LSP via these

two couplings for B3 mSUGRA scenarios with different LSP candidates. Second, we further

investigate the dependence of the τ̃1 decay modes on the mSUGRA parameters.

8.2.1 General LSP decay modes

First, let us discuss B3 scenarios with a χ̃0
1 LSP. The leading order decay modes of the

χ̃0
1 LSP via the dominant λ′

ijk and the generated λi33 couplings are all three body decays,

χ̃0
1

λ′
ijk−−→

{

ℓ+
i ūj dk

ℓ−i uj d̄k

, χ̃0
1

λ′
ijk−−→

{

ν̄i d̄j dk

νi dj d̄k

, (8.23)
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and

χ̃0
1

λi33−−→
{

ℓ+
i ν̄τ τ−

ℓ−i ντ τ+
, χ̃0

1
λi33−−→

{

ν̄i τ
+ τ−

νi τ
− τ+

. (8.24)

The corresponding amplitudes depend linearly on the respective B3 couplings, yielding par-

tial widths that depend quadratically on λ′
ijk and λi33, respectively. Therefore, the χ̃0

1 decay

via the generated coupling λi33 is heavily suppressed and a χ̃0
1 LSP decays predominantly

via λ′
ijk into SM particles.

The situation changes for B3 mSUGRA scenarios with a τ̃1 LSP. First we consider sce-

narios where the τ̃1 does not couple directly to the LiQjDk operator, i.e. i = 1, 2. In this

case, the τ̃1 must first couple to a virtual gaugino. The gaugino then couples to a virtual

sfermion which then decays via λ′
ijk, resulting in a 4-body decay of the τ̃1 LSP. The possible

decay modes via a virtual neutralino are

τ̃−
1

λ′
ijk−−→























τ− ℓ+
i ūj dk

τ− ℓ−i uj d̄k

τ− ν̄i d̄j dk

τ− νi dj d̄k

. (8.25)

4-body decays via a virtual chargino are also possible but suppressed due to the higher

chargino mass in comparison to the lightest neutralino mass, m(χ̃±
1 ) > m(χ̃0

1). Furthermore,

the (mainly right-handed) τ̃1 LSP couples stronger to the (bino-like) lightest neutralino than

to the (wino-like) lightest chargino. On the other hand, the τ̃1 can directly decay via λi33

into only two SM particles

τ̃−
1

λi33−−→











τ− ν̄i

τ− νi

ℓ−i ντ

. (8.26)

We show in Fig. 8.3 (Fig. 8.4), example diagrams for the 4-body (2-body) decay of a τ̃1 LSP

via λ′
2jk (λ233). Although the 2-body decay suffers from the small coupling, the 4-body

decay is phase space suppressed as well as by heavy propagators. Which decay mode

dominates does strongly depend on the parameters at the GUT scale. We will discuss in

detail this topic in the next section.

As a third type of B3 mSUGRA scenarios we want to mention τ̃1 LSP scenarios with a

dominant λ′
3jk coupling. Here, the dominant B3 operator couples directly to the τ̃1 LSP

and allows for a 2-body decay of the τ̃1 into two jets,

τ̃−
1

λ′
3jk−−−→ ūjdk . (8.27)
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τ̃
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n

ũ∗
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χ̃0
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Figure 8.3.: Feynman diagrams for the 4-body decay τ̃−
1 → τ−µ−uj d̄k of the τ̃1 LSP via λ′

2jk.

The τ̃1 LSP decays via a virtual neutralino χ̃0
n (n = 1, 2, 3, 4) into a tau τ−, a muon

µ−, an up-type quark uj and a down-type anti-quark d̄k.

τ̃
−

1

µ−

ντ

τ̃
−

1

τ−

νµ

τ̃
−

1

τ−

ν̄µ

Figure 8.4.: Feynman diagrams leading to the 2-body decays of a τ̃1 LSP via a generated coupling
λ233. The τ̃1 decays either into a muon µ− and a neutrino or into a τ− and a neutrino.

λ′
3jk can not generate λ333 via the RGEs, because λijk has to be anti-symmetric in the

indices i, j. λ3nn with n 6= 3 will be generated by the muon (n = 2) or electron (n = 1)

Higgs Yukawa coupling, cf.Eq. (8.17b). But since these Yukawa couplings are so small, the

decay via λ3nn is too small to be seen.

For j = 3, the up-type quark in Eq. (8.27) is a top quark and hence the decay Eq. (8.27)

is kinematically forbidden for mτ̃1 < mt. Instead, the τ̃1 LSP decays in a 3-body decay

mode via a virtual top quark or a virtual tau sneutrino into a W boson and two jets, where

at least one jet is a b jet,

τ̃−
1

λ′
33k−−−→ W− b̄ dk . (8.28)

We present the squared matrix element and the partial width of this process in Ap-

pendix C.2, which to our knowledge has not been given in the literature so far.

8.2.2 Dependence of τ̃1 decays on mSUGRA parameters

In this section, we investigate the GUT scale conditions that lead to 2-body decays of the

τ̃1 LSP. We assume a non-vanishing λ′
2jk coupling at the GUT scale. This can easily be

generalized to λ′
1jk. We point out that the branching ratios of the τ̃1 LSP do not depend on

the magnitude of λ′
ijk, since they cancel in the ratio. The following discussion is therefore

also applicable to scenarios where the couplings are too small to produce a significant

number of single slepton events at the LHC but where the τ̃1 LSP is produced in cascade

decays of pair produced SUSY particles.
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Figure 8.5.: 2-body decay branching ratio as a function of tan β for different dominating λ′
2jk cou-

plings at the GUT scale. The mSUGRA parameters are M0 = 0 GeV, M1/2 =
500 GeV, A0 = 600 GeV, sgn(µ) = +1. The quark mixing is in the (a) down sec-
tor, (b) up sector (couplings λ′

2jk for which the 2-body decay branching ratio nearly
vanishes are not shown).

For the numerical implementation, we use Softsusy 2.0.10 [75] to calculate the mass

spectrum at the SUSY scale, QSUSY, Eq. (8.20). In addition, we use our own program

to calculate λ′
ijk and λi33 at the SUSY scale as described above. We than pipe the mass

spectrum and the couplings through Isawig 1.200, which is linked to Isajet 7.75 [194].

Isajet calculates the 2-body partial width of the SUSY particles and produces an output

for Herwig [195]. We use a special version of Herwig 6.51027 which also calculates the

4-body decays of the τ̃1 LSP . As an output, we consider the total 2-body decay branching

ratio of the τ̃1 LSP, BR2. It is defined as

BR2 =
1

1 + Γ4/Γ2
, (8.29)

where Γ2 and Γ4 denote the sums of the partial widths for the 2- and 4-body decays,

respectively.

We first show in Fig. 8.5 the tan β dependence of the 2-body decay branching ratio. We

give values for different non-vanishing couplings λ′
2jk at the GUT scale and we consider

both quark mixing in the down and in the up sector.

Nearly all τ̃1 LSPs will decay via a 2-body decay for large values of tan β, i. e. tan β >∼ 30,

27The version of Herwig used in this paper was written by Peter Richardson and is available upon request.
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8.2. τ̃1 LSP decays in B3 mSUGRA models

and down-type mixing. In case of up-type mixing this is also true for λ′
211, λ′

222 and λ′
233.

This behavior can be easily explained with the help of Eq. (8.29). The partial widths

Γ2, Γ4 can be approximated by [166]

Γ2 ∝ λ2
233 mτ̃1 , (8.30)

Γ4 ∝ λ′2
2jk

m7
τ̃1

m2
χ̃m4

f̃

. (8.31)

mχ̃ denotes the mass of the relevant gaugino and mf̃ denotes the mass of the virtual

sfermion which couples directly to L2QjDk, Fig. 8.3. As we argued above, the generated

coupling λ233 scales roughly with tan2β, cf.Eq. (8.22). Therefore, Γ2 scales with tan4β.

At the same time, λ′
211 is hardly affected by tanβ. This is the main effect that enhances

BR2 for large tanβ. Furthermore, increasing tan β increases the contribution from the tau

Yukawa couplings to the various RGEs. This is encoded in the function Xτ , Eq. (8.10)

which is proportional to (1 + tan2 β). As can be seen in Eq. (8.10), increasing tanβ and

Xτ reduces the mass of the right- and left-handed stau and therefore, with Eq. (8.8), the

mass of the τ̃1 LSP, mτ̃1 . Furthermore, the off-diagonal matrix elements BLR of the stau

mass matrix also increase with tan β. This leads to a stronger mixing between the right-

and left-handed stau and lowers the mass of the τ̃1, cf. Eq. (8.8). Note that Γ4/Γ2 is

proportional to m6
τ̃1

. According to Eq. (8.29), the 2-body decay branching ratio therefore

strongly increases for decreasing mτ̃1 .

We observe in Fig. 8.5(a) also a large hierarchy between the different couplings λ′
2jk. For

example, a dominant λ′
233 coupling leads to BR2 ≈ 100% for any value of tan β, whereas

for λ′
211 this is only the case for tan β >∼ 25. This hierarchy reflects the hierarchy of the

down quark Yukawa matrix elements, Eq. (8.21), which enter as the dominant term in the

RGE of λ233, Eq. (8.17b).

For up-type quark mixing, Fig. 8.5(b), and j 6= k the down-quark Yukawa matrix ele-

ments and therefore BR2 are nearly vanishing.

We investigate the dependence of BR2 on A0 in Fig. 8.6(a), for a dominant coupling λ′
211

and down-type mixing. We see a minimum at A0 ≈ 250 GeV. Here, BR2 is reduced by

up to 70% compared to A0 = ±1 TeV. The minimum and the position of the minimum is

dominated by the following two effects.

The right-handed stau couples to a left-handed stau (tau sneutrino) and a neutral Higgs

boson (charged Higgs boson) via a trilinear scalar interaction (aE)33, cf. Eq. (2.51). The

coupling (aE)33 has dimension one and in mSUGRA models it is equal to A0 × (YE)33
at the GUT scale. The RGE of the right-handed scalar tau mass, mτ̃R , depends in the

following way on (aE)233 [166]:

dmτ̃2
R

dt
= +4(aE)233 + . . . . (8.32)
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Figure 8.6.: 2-body decay branching ratio as a function of (a) A0 (with M1/2 = 500 GeV) and
(b) M1/2 (with A0 = 600 GeV) for non vanishing λ′

211 at the GUT scale and different
tan β. We assume quark mixing in the down sector and consider M0 = 0 GeV,
sgn(µ) = +1. The lowest curve (solid red) corresponds to tan β = 7.

This term decreases mτ̃R when we go from the GUT scale to the SUSY scale QSUSY due

to the plus sign. The (negative) contribution of this term to m2
τ̃R

is proportional to the

integral of (aE)233 from tmin = ln(ΛGUT) to tmax = ln(mZ). For the mSUGRA parameters

given in Fig. 8.6(a), M0 = 0 GeV, M1/2 = 500 GeV, sgn(µ) = +1, the integral of (aE)233 is

minimal at A0 ≈ 180 GeV and, therefore, mτ̃R is maximal. For mτ̃1 = mτ̃R this also leads

to a maximum of Γ4/Γ2 ∼ m6
τ̃1

and hence to a minimum of BR2.

But the lightest stau is an admixture of the right- and left-handed stau. The off-diagonal

mass matrix elements BLR also depend on the value of (aE)33 at QSUSY, parameterized

through Aτ = (aE)33/(YE)33. For A0 = 180 GeV we find Aτ ≈ −110 GeV. A negative value

of Aτ enhances the effect of L–R mixing which decreases mτ̃1 . Therefore, the maximum of

mτ̃1 as a function of A0 is shifted to A0 ≈ 250 GeV compared to mτ̃R . Note however that

the Aτ dependence of stau L–R mixing is sub-dominant around the minimum because of

µ tan β ≫ Aτ .

Next, we study the dependence of BR2 on the universal gaugino mass M1/2. We show

this behavior in Fig. 8.6(b), again for a dominant λ′
211 and down-type mixing. The 2-body

decay branching ratios approach a constant value for increasing M1/2. Both, the squared

mass of the gauginos, Eq. (8.11), and the squared masses of the sfermions, Eq. (8.7), depend
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Figure 8.7.: 2-body decay branching ratio as a function of M0 for non vanishing λ′
211 at the GUT

scale and different tan β. We assume quark mixing in the down sector. The other
mSUGRA parameters are M1/2 = 1400 GeV, A0 = 600 GeV, sgn(µ) = +1.

linearly on M2
1/2. Therefore,

lim
M1/2→∞

Γ4/Γ2 ∝
m6

τ̃1

m2
χ̃m4

f̃

= constant . (8.33)

The dependence of BR2 on M1/2 for M1/2 <∼ 1 TeV is more involved, because the ra-

tio Γ4/Γ2 depends also on the other mSUGRA parameters, mainly through the running

sfermion masses, cf. Eq. (8.7). For example, we observe in Fig. 8.6(b) that the slope of BR2

for M1/2 <∼ 1 TeV strongly depends on tan β. For tanβ = 10, the slope is small and posi-

tive whereas for tan β >∼ 13 the slope is negative. The magnitude of the slope also increases

when we consider larger values of tan β. This behavior is again related to the tau Yukawa

coupling (YE)33 and its effects on the τ̃1 mass described by the function Xτ , Eq. (8.10).

For large values of M1/2, the influence of Xτ on the τ̃1 mass nearly vanishes. But as we

go to smaller values of M1/2 the (negative) contributions due to (YE)33 become more and

more important. For example, for tan β = 22 and M1/2 = 1 TeV (M1/2 = 400 GeV) the

Xτ term reduces the mass of the right-handed stau by 3% (10%) compared to vanishing

(YE)33. This reduction of mτ̃1 will also reduce Γ4/Γ2 resulting in an increase of BR2. This

effect is more pronounced for large tan β because Xτ is proportional to (1 + tan2 β). If we

neglect the effect of (YE)33, the BR2 curves in Fig. 8.6(b) all get a small positive slope.

Finally, we show in Fig. 8.7 the dependence of BR2 on the universal soft-breaking scalar

mass M0. Here, we have chosen a rather large value of M1/2, M1/2 = 1400 GeV, because
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Figure 8.8.: Example Feynman graphs for single slepton production in τ̃1 LSP scenarios where
the slepton decay proceeds (a) via the generated λ233 coupling (2-body decay mode)
and (b) via the dominant λ′

2jk coupling (4-body decay mode).

otherwise a τ̃1 LSP would exist only in a small interval of M0. The lines in the Figure

terminate at values of M0 above which the τ̃1 is no longer the LSP.

The behavior of BR2 can easily be understood. Increasing M0 increases the mass of

the sfermions, Eq. (8.7), but not the mass of the gauginos. Therefore, the nominator of

Γ4/Γ2 ∝ m6
τ̃1

/(m2
χ̃m4

f̃
) is a polynomial of order O(M6

0 ), whereas the denominator is only

a polynomial of order O(M4
0 ). Therefore, the 2-body decay branching ratios fall off for

increasing M0 as shown in Fig. 8.7.

8.3 Resonant single slepton production at the LHC

We now apply the previous discussion to resonant single slepton production in B3 mSUGRA

scenarios with a τ̃1 LSP. Charged sleptons ℓ̃Li and sneutrinos ν̃i can be produced singly

on resonance at the LHC via qk q̄j annihilation processes. The production cross section is

proportional to |λ′
ijk|2 and therefore large slepton production rates are expected in scenarios

with a dominant λ′
ijk coupling. The RGE generation of λi33 is important for the subsequent

slepton decay in τ̃1 LSP scenarios. As discussed in the previous section, a non-vanishing

λi33 introduces new 2-body decay channels for the τ̃1 LSP. The interplay of these 2-body

decays and the 4-body decays via λ′
ijk determines the final-state signatures. In Fig. 8.8,

example Feynman graphs for single slepton production and the subsequent decay in τ̃1 LSP

scenarios are shown.

This section is divided into a phenomenological investigation of slepton production in

general, Section 8.3.1, and an explicit numerical example (single smuon production), in-

cluding a detailed analysis of final-state signatures and a discussion of the background.
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8.3.1 Slepton production and slepton decays

It is the aim of this section to first give a general overview of the possible final states for

these reactions, see Section 8.3.1, and second to discuss the special cases λ′
2jk 6= 0|GUT and

λ′
3jk 6= 0|GUT in more detail (Sects. 8.3.1 and 8.3.1).

General signatures

In the last section, the ratio of 2- to 4-body τ̃1 LSP decay rates and its dependence on

various SUSY parameters has been studied. Now, we focus on single slepton production in

τ̃1 LSP scenarios and are interested in the general decay patterns, independent of the precise

SUSY parameters. We first give an overview over all possible final states and signatures

which could be used as the starting point for an experimental analysis.

A (left-handed) charged slepton or sneutrino can be produced directly via λ′
ijk and has

several decay modes:

ūj dk → ℓ̃−Li →











ūjdk

ℓ−i χ̃0
m

νi χ̃
−
n

, (8.34)

d̄j dk → ν̃i →











d̄j dk

νi χ̃
0
m

ℓ−i χ̃+
n

. (8.35)

Both can decay via the B3 coupling, which is the inverse production process. It is however

suppressed by |λ′
ijk|2. If λ′

ijk ≤ O(10−2), it contributes typically at the percent level. The

dominant decay channels are 2-body decays into a lepton-gaugino pair. Further 3- and

more-body decays are expected to be negligible, due to phase space suppression.

In case of j = 3, the hadronic production of a charged slepton cannot proceed via two

quarks as given in Eq. (8.34), due to the vanishing top-quark parton density inside a proton.

Instead, the slepton can for example be produced via a gd̄k initiated Compton process in

association with a single top quark. Furthermore, the decay into td̄k may be kinematically

forbidden. In this case, the slepton decays into a Wbd̄k final state (cf. Appendix C.2).

Sneutrino production for j = 3 is possible, Eq. (8.35), but due to the low bottom-quark

density small cross sections are expected. We do not consider j = 3 any further here and

refer the reader to [175,196] for a detailed investigation of this topic.

For the following discussion, we assume that the produced slepton predominantly decays

into a lepton and the lightest neutralino. This assumption is motivated by the fact that

we consider τ̃1 LSP scenarios. In these scenarios, sleptons are light compared to gauginos

and decays into heavier neutralinos or charginos will be kinematically excluded or strongly

suppressed. See also the computed branching ratios in explicit SUSY models in [167].
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The produced χ̃0
1 is not the lightest SUSY particle and will decay further into the τ̃1 LSP,

χ̃0
1 → τ∓ τ̃±

1 . (8.36)

Since the neutralino is a Majorana fermion, both charge conjugated decays are possible.

In most τ̃1 LSP scenarios this is the only possible decay mode of the neutralino. However,

in some scenarios, the right-handed sleptons µ̃R and ẽR are lighter than the χ̃0
1 and the

additional channels χ̃0
1 → ℓ̃±Rℓ∓ are open (for ℓ = µ, e). The ℓ̃R subsequently decays into

the τ̃1 LSP, a τ , and a lepton via a virtual neutralino

χ̃0
1 → ℓ∓ ℓ̃±R, ℓ̃±R →

{

ℓ± τ∓ τ̃±
1

ℓ± τ± τ̃∓
1

. (8.37)

These decay chains have smaller BRs than the decays in Eq. (8.36). However, they lead to

an additional lepton pair in the final state and could be, therefore, of special interest for

experimental analyses.

Scenarios with λ′
2jk 6= 0|GUT, λ233 ≪ λ′

2jk

Let us now study more detailed the final-state signatures in a scenario with λ′
2jk 6= 0|GUT

and a generated λ233 coupling which is small but non-zero at lower scales. In these scenarios,

resonant single µ̃L and resonant single ν̃µ production at hadron colliders is possible,

ūj dk → µ̃−
L → ūj dk/µ− χ̃0

1,

d̄j dk → ν̃µ → d̄j dk/νµ χ̃0
1.

(8.38)

As explained above, a small fraction of the sleptons decay via the inverse production pro-

cess. They predominantly decay into a lepton and the lightest neutralino, χ̃0
1. The decays

involving heavier neutralinos or charginos are typically not accessible.

The difference between µ̃L and ν̃µ production concerns the flavor of the initial quarks

(which is related to different parton density functions and is thus important for the hadronic

cross sections), and the nature of the lepton resulting from the slepton decay. In both pro-

cesses a neutralino is produced in the predominant decay, which in turn decays into the

τ̃1 LSP, Eqs. (8.36) and (8.37). Finally, the τ̃1 decays either via the dominant λ′
2jk coupling

(4-body decay) or via the generated λ233 coupling (2-body decay). For the 4-body decays,

only the decays via virtual neutralinos have to be considered. Decay modes via virtual

charginos are suppressed due to the larger mass and their weaker couplings to the predom-

inantly right-handed τ̃1 LSP. The complete cascade decay chains are listed in Tab. 8.3.

A classification of all possible final-state signatures is given in Tab. 8.4, for µ̃L and for

ν̃µ production. For completeness, we include here the direct B3 decays via λ′
2jk, which
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8.3. Resonant single slepton production at the LHC

ūj dk
λ′

−→ µ̃−
L −→ ūj dk/µ−χ̃0

1

or

d̄j dk
λ′

−→ ν̃µ −→ d̄j dk/νµχ̃0
1

χ̃0
1 → τ+ τ̃−

1 χ̃0
1 → τ− τ̃+

1
[

χ̃0
1 → τ+ τ̃−

1 ℓ+ℓ−
] [

χ̃0
1 → τ− τ̃+

1 ℓ−ℓ+
]

λ′
2jk τ̃−

1 → τ−µ− uj d̄k τ̃+
1 → τ+µ+ ūj dk

τ̃−
1 → τ−µ+ūjdk τ̃+

1 → τ+µ− uj d̄k

τ̃−
1 → τ−νµ dj d̄k τ̃+

1 → τ+ν̄µ d̄j dk

τ̃−
1 → τ−ν̄µ d̄j dk τ̃+

1 → τ+νµ dj d̄k

λ233 τ̃−
1 → τ−νµ τ̃+

1 → τ+ν̄µ

τ̃−
1 → τ−ν̄µ τ̃+

1 → τ+νµ

τ̃−
1 → µ−ντ τ̃+

1 → µ+ν̄τ

Table 8.3.: Slepton decay chains with all possible final states for single µ̃−
L and single ν̃µ production

via λ′
2jk, respectively. The charge conjugated processes are not shown explicitly.

Slepton decays into heavier neutralinos or charginos are neglected. The χ̃0
1 decays

predominantly into a τ̃1 LSP and a τ . In some scenarios, decays as in Eq. (8.37)
are possible, they are cited in brackets. Owing to the Majorana type nature of the
neutralino two charge conjugated decays of the neutralino are possible (second and
third column). In the first column the B3 coupling involved in the subsequent 4- or
2-body τ̃1 decays are given.

usually contribute at the percent level for couplings at the order of O(10−2). Neutrinos

do not give a signal in a detector and are denoted as missing transverse energy E/T . Final

state quarks are treated as indistinguishable jets j.

The 4-body decays via λ′
2jk and the 2-body decays via the inverse production process lead

to two jets in the final state. In contrast, the 2-body decays via λ233 are purely leptonic.

Many cascade decay chains provide missing transverse energy. Furthermore, since we are

considering τ̃1 LSP scenarios, there is always at least one τ among the final state particles.

The experimentally most promising signatures are probably those involving a large number

of muons, e. g. like-sign dimuons and three or four final-state muons. If the χ̃0
1 decays

only into τ̃1τ , there are two signatures including like-sign dimuons for µ̃L production. For

ν̃µ production, muons can be produced singly only. But if the decays Eq. (8.37) are open,

both slepton production processes allow for dimuon and trimuon production. In case of

µ̃L production, even four final state muons are possible. Additionally, depending on how

easily taus will be identified, an analysis could be based on like-sign µτ -pairs.

The final-state signatures depend sensitively on which particle is the LSP. Compared to

slepton production in the χ̃0
1 LSP scenarios [181–183,185], there are three main differences

here. First, for a τ̃1 LSP we have always one or two taus in the final state, which in χ̃0
1 LSP

scenarios is only possible for smuon production if heavier neutralinos are involved in the
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µ̃−
L production ν̃µ production

λ′
2jk τ+ τ− µ− µ± jj τ+ τ− µ± E/T jj

τ+ τ− µ− E/T jj τ+ τ− E/T jj
[ τ+ τ− µ− µ− µ± µ+ jj ] [ τ+ τ− µ− µ± µ+ E/T jj ]
[ τ+ τ− µ− µ− µ+ E/T jj ] [ τ+ τ− µ− µ+ E/T jj ]
[ τ+ τ− µ− µ± e+e− jj ] [ τ+ τ− µ± e+ e− E/T jj ]
[ τ+ τ− µ− e+ e− E/T jj ] [ τ+ τ− e+ e− E/T jj ]

λ233 τ± µ− µ∓ E/T τ± µ∓ E/T

τ+ τ− µ− E/T τ+ τ− E/T

[ τ± µ− µ− µ∓ µ+ E/T ] [ τ± µ− µ∓ µ+ E/T ]
[ τ+ τ− µ− µ−µ+ E/T ] [ τ+ τ− µ− µ+ E/T ]
[ τ± µ− µ∓ e+ e− E/T ] [ τ± µ∓ e+ e− E/T ]
[ τ+ τ− µ− e+ e− E/T ] [ τ+ τ− e+ e− E/T ]

inv. prod. jj jj

Table 8.4.: Summary of all possible final states for single slepton production via λ′
2jk. Decays

involving the dominant λ′
2jk coupling and involving the generated λ233 coupling are

listed separately, cf. Tab. 8.3. If kinematically allowed, the χ̃0
1 may also decay into a

light-flavor lepton-slepton pair which gives rise to an additional µ+µ− or e+e− pair
in the final state. The corresponding signatures are given in brackets. The decay via
the inverse production process is also listed.

decay chain. These heavy neutralinos then decay into the lightest neutralino and possibly

taus. Second, the generation of a λ coupling can be neglected in χ̃0
1 LSP scenarios. As

argued above, λ only allows for additional 3-body decays which are thus not phase-space

enhanced compared to the 3-body decays via the dominant λ′ coupling. As a consequence,

purely leptonic final-state signatures are absent in χ̃0
1 LSP scenarios. Third, due to the

modified spectra in χ̃0
1 LSP scenarios, also ν̃µ production can provide like-sign dimuon

events. In this case, ν̃µ can often decay into a µ and a chargino. Like-sign dimuons arise

either if the chargino directly decays via λ′ into a µ and two quarks, or if the chargino first

decays into the χ̃0
1 LSP and then the χ̃0

1 LSP decays via λ′ into a µ and two quarks.

This discussion can easily be translated to scenarios with λ′
1jk 6= 0 by replacing the

muons by electrons (and vice-versa). Since there is typically no difference in mass between

sleptons of the first and second generation, respectively, the kinematics are the same. Note

however that the bounds on the B3 couplings are stronger for λ′
1jk than for λ′

2jk for example

due to the non-observation of neutrinoless double beta decay.

Scenarios with λ′
3jk 6= 0|GUT

Some additional remarks are in order for a dominant λ′
3jk B3 coupling. These couplings

allow for resonant single ν̃τ production and, owing to the L–R mixing in the stau-sector,

also both resonant τ̃1 and τ̃2 production (j 6= 3).
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8.3. Resonant single slepton production at the LHC

For τ̃1 production, we refer to the discussion of LSP decay modes in Section 8.2.1. Here

the LSP couples directly to the B3 operator and the inverse production process dominates

the decay rate,

ūj dk → τ̃−
1 → ūj dk . (8.39)

Again, this process is kinematically not accessible for j = 3 and mτ̃1 < mt. Instead, the

stau decays into Wbd̄k, cf. Eq. (8.28). Note that j = 3 requires associated production,

e. g. g dk → τ̃ t, due to the absence of top quarks inside the proton [175,196].

For τ̃2 and ν̃τ production, there are the following 2-body decay modes:

ūj dk → τ̃−
2 →











ūj dk

τ− χ̃0
1

τ̃−
1 h0/Z0

, d̄j dk → ν̃τ →











d̄j dk

ντ χ̃0
1

τ̃−
1 W

. (8.40)

The inverse production process contributes and leads to a jj final state. The decay into

a lepton and a neutralino often dominates for small tan β (tan β <∼ 10). The neutralino

decays further into the τ̃1 LSP which directly decays into two quarks:

χ̃0
1 → τ± τ̃∓

1 , τ̃−
1 → ūj dk , (8.41)

where we have included the two charge conjugated decays of the neutralino. The final

states of these decay modes are τ−τ±jj, and there is the possibility of like-sign tau events.

If the χ̃0
1 decay (8.37) is kinematically allowed, we can have an additional pair of electrons

or muons in the final state.

The singly produced slepton can also decay into the τ̃1 LSP and a SM Z0, h0, or W boson,

respectively (final states: h0/Z0/W jj). This decay mode is special for singly produced

sleptons of the third generation because they are L-R mixed eigenstates. It can be the

dominant decay mode of the τ̃2 and ν̃τ , depending on the parameters.

The branching ratios for all B3 conserving τ̃2 and ν̃τ 2-body decay modes are given in

Tab. C.3 in Appendix C.2, for the SUSY parameter sets A and B.

8.3.2 Single smuon production: An explicit numerical example

In this section, we present explicit calculations of promising signal rates for resonant slepton

production at the LHC in the B3 mSUGRA model with a τ̃1 LSP, focussing on parame-

ter sets A and B, cf. Eq. (8.12). First, we consider (exclusive) like-sign dimuon events,

i. e. events with exactly two muons of the same charge in the final state. An analysis of

SM and SUSY backgrounds for the like-sign dimuon signature is also given. Second, we

present event rates for single smuon production leading to three or four muons in the final

states, which are kinematically accessible within sets A and B.
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

Like-sign dimuon events

Following Refs. [181], we first concentrate on events with exclusive like-sign dimuons. Here

events with more than two muons are rejected. In this sense, in τ̃1 LSP scenarios, only single

smuon production leads to exclusive like-sign dimuon pairs, cf. Tab. 8.4. It has been shown

in [181] that this selection criterion enhances the signal to background ratio considerably:

Using a set of cuts, the SM background rate at the LHC, ΓB

∣

∣

SM
, can be reduced to

ΓB

∣

∣

SM
= 4.9 ± 1.6 events/10 fb−1. (8.42)

At the same time the cut efficiency, i. e. the number of signal events which pass the cuts, lies

roughly between 20% and 30%. Note that Refs. [181] assume a χ̃0
1 LSP. As we will argue

below, similar cuts are also applicable in τ̃1 LSP scenarios. For the numbers presented in

this section, however, no cuts are applied and full cross sections and event rates are given.

The total cross section for like-sign dimuon events is obtained from the resonant µ̃+
L or

µ̃−
L production cross section multiplied by the respective branching ratios leading to like-

sign dimuon final states. Both decays via the dominant λ′
2jk coupling and a generated

λ233 coupling contribute. For a negatively charged smuon they are:

ūj dk
λ′

−→ µ̃−
L → µ−χ̃0

1

→֒ τ+ τ̃−
1

λ′

→֒ τ−µ− uj d̄k ,

λ→֒ ντ µ− ,

→֒ τ− τ̃+
1

λ′

→֒ τ+µ− uj d̄k ,

(8.43)

plus the analogous decay chains where the neutralino decays first into an ẽ±R-e∓ pair,

cf. Eq. (8.37). The couplings depicted on the arrows indicate the employed B3 coupling.

The decay chain for a positively charged smuon follows from charge conjugation. However,

one should keep in mind that the production cross sections for µ̃+
L and µ̃−

L differ at PP

colliders, since charge conjugated quarks (and corresponding parton densities) are involved.

The cross sections for the exclusive like-sign dimuon final states are presented in Tab. 8.5

for Set A and in Tab. 8.6 for Set B. The smuon production cross sections, σprod.(µ̃
∓
L )

(see also Tabs. C.1 and C.2), include NLO QCD and SUSY-QCD corrections [187], see

Appendix C.1. For the numerical analysis, we only consider couplings λ′
2jk that involve

partons of the first generation leading to large production cross sections at the LHC.

As already discussed, the τ̃1 LSP can either decay via λ′ (4-body decay) or via λ (2-body

decay). A list of the respective branching ratios is given in Appendix C.1, Tab. C.4, for
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8.3. Resonant single slepton production at the LHC

Set A up-type mixing down-type mixing

λ′
2jk = 0.002|GUT σprod.(µ̃

∓
L ) σprod. × BRλ′ σprod. × BRλ σprod. × BRλ′ σprod. × BRλ

µ− µ− 61.6 11.1 0.71 9.81 2.09
λ′

211 µ+ µ+ 108 19.4 1.25 17.2 3.66

µ− µ− 42.0 7.84 − 4.51 3.88
λ′

221 µ+ µ+ 16.2 3.03 − 1.74 1.50

µ− µ− 18.6 3.46 − 1.99 1.71
λ′

212 µ+ µ+ 86.0 16.1 − 9.23 7.94

µ− µ− 8.80 1.67 − 1.32 0.40
λ′

213 µ+ µ+ 49.8 9.43 − 7.43 2.24

Table 8.5.: Cross sections for exclusive like-sign dimuon (µ−µ− or µ+µ+) final states at the LHC
within Set A. In the left column, we present the single-smuon production cross sections,
σprod.(µ̃

∓
L ), see also Tabs. C.1 and C.2. In the right column, we have folded in the

relevant decay branching ratios, in order to obtain like-sign dimuons. All cross sections
are given in fb. Where they exist, we have assumed always a cascade of 2-body decays.
We consider in turn quark mixing in the up- and down-sector, when determining the
dominant τ̃1 decay mode. The τ̃1 LSP can either decay via λ′ (4-body decay) or via
λ (2-body decay), cf.Tab. 8.3, which leads to different like-sign dimuon cross sections,
σprod. × BRλ′ and σprod. × BRλ, respectively. The λ′

2jk couplings are in accordance
with neutrino mass bounds [166,197]. In case of up-type mixing, larger values of λ′

2jk

for the four considered couplings are allowed by the neutrino mass bounds. The cross
sections scale with |λ′|2 and the corresponding rescaling can easily be performed.

sets A and B and for several λ′
2jk couplings. Here we show the resulting cross section times

branching ratio, σprod. × BRλ′ and σprod. × BRλ, for like-sign dimuon events involving τ̃1

decays via λ′ and λ, respectively, as described in Eq. (8.43).

The total number of exclusive like-sign dimuon events is given by the integrated luminos-

ity multiplied by the total cross section. In Set A with up-type (down-type) quark mixing,

we obtain per 10 fb−1,

N(µ−µ− + µ+µ+)/10 fb−1 =
[

σprod.(µ̃
−
L ) + σprod.(µ̃

+
L )

]

×
[

BRλ′ + BRλ

]

× 10

≈



























325 (330)

110 (115)

195 (210)

110 (115)

/10 fb−1 for



























λ′
211

λ′
221

λ′
212

λ′
213

= 0.002|GUT.
(8.44)

Note that for up-type mixing, some larger couplings may be considered. From the neu-

trino mass bounds, also λ′
211, 221, 212, 213 = 0.01|GUT (and even larger) are allowed. The

cross sections are proportional to |λ′|2 and thus a five times larger coupling implies cross
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

Set B up-type mixing down-type mixing

λ′
2jk = 0.01|GUT σprod.(µ̃

∓
L ) σprod. × BRλ′ σprod. × BRλ σprod. × BRλ′ σprod. × BRλ

µ− µ− 476 1.04 101 0.21 102
λ′

211 µ+ µ+ 885 1.93 188 0.39 189

µ− µ− 309 62.8 − − 66.2
λ′

221 µ+ µ+ 105 21.4 − − 22.5

µ− µ− 123 25.1 − − 26.3
λ′

212 µ+ µ+ 681 139 − − 146

µ− µ− 54.6 11.2 − 0.02 11.7
λ′

213 µ+ µ+ 370 75.6 − 0.16 79.4

Table 8.6.: Same as Tab. 8.5 but for single slepton production within Set B. The neutrino mass
bounds are less restrictive in the case of Set B and λ′

2jk = 0.01|GUT are considered for
both up- and down-type quark mixing. All cross sections are given in fb.

sections and event numbers multiplied by a factor of 25 compared to those of Tab. 8.5.

For Set B, λ′
2jk = 0.01|GUT is allowed for both up- and down-type mixing. The numbers

of like-sign dimuon events are for up-type (down-type) quark mixing,

N(µ−µ− + µ+µ+)/10 fb−1 ≈



























2920 (2920)

840 (890)

1640 (1720)

870 (910)

/10 fb−1 for



























λ′
211

λ′
221

λ′
212

λ′
213

= 0.01|GUT. (8.45)

As can be seen in Eqs. (8.44) and (8.45), for each non-zero λ′ coupling the total event

numbers for up- and down-mixing are of the same order. But as Tabs. 8.5 and 8.6 show,

the parts contributing to the event rate can be quite different. In case of up-type mixing

and j 6= k, the 4-body decays via λ′ dominate and the contributions of the 2-body decay

are negligible [since the size of the necessary λ coupling is proportional to
(

YD

)

jk
]. In

contrast, for down-type mixing all four considered couplings can generate a relatively large

λ233, cf. Fig. 8.2(a), and the 2-body decay modes contribute considerably. In Set B, where

tan β is large and where thus the fraction of 2-body decays is especially high (see discussion

of Fig. 8.5(a)), reliable event numbers are only obtained if the generation of λ233 is included

in the theoretical framework. Moreover, a measurement of the ratio of 2-body to 4-body

τ̃1 decays can reveal information about where the quark mixing takes place.

For j = k, the generation of a λ coupling is also possible in case of up-type mixing. In

Set A, the generated λ233 is not large enough to allow for large 2-body decay rates. However

in Set B, due to the large tan β value, the 2-body decays dominate over the 4-body decays.

Thus, the different τ̃1 decay modes contain also information about tan β.
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8.3. Resonant single slepton production at the LHC

We present in Tabs. 8.5 and 8.6 also the total hadronic cross sections for single smuon

production, σprod.(µ̃
∓
L ). Within one parameter set, the cross sections vary strongly for

different λ′
2jk. This is of course related to corresponding required parton density functions.

The largest cross section is obtained for λ′
211 6= 0, i. e. for the processes ū d → µ̃−

L and

u d̄ → µ̃+
L . Smaller cross sections are obtained for λ′

212 6= 0 (involving an up quark and a

strange quark) and the smallest cross section for λ′
221 6= 0 (charm quark and down quark)

and λ′
213 6= 0 (up quark together with bottom quark).

Since the LHC is a proton-proton collider, there is an asymmetry between the µ̃+
L and µ̃−

L

production cross sections. If experimentally a distinction between µ+µ+ and µ−µ− event

rates is found, the ratio can be used to constrain the indices of the non-zero λ′
2jk coupling.

For example, a non-vanishing coupling λ′
211 leads to a ratio of N(µ+µ+) : N(µ−µ−) ∼ 2 : 1

in sets A and B, whereas for non-vanishing λ′
221 the ratio is 1 : 2.5 in Set A and 1 : 3 in Set

B. The highest event rates are obtained for processes that involve the valence quarks u and

d. The charge conjugated processes, involving ū or d̄, are suppressed in comparison. Thus,

a larger fraction of µ+µ+ events goes along with j = 1 (where the production process is

u d̄k → µ̃+
L ) and a larger fraction of µ−µ− events is related to k = 1 and j 6= 1 (production

process ūj d → µ̃−
L ).

Discussion of background and cuts for like-sign dimuon final states

In this section, we discuss the background for like-sign dimuon events from the SM and

from SUSY particle pair production via gauge interactions. We follow Refs. [181] closely.

There, single smuon production via λ′
211 was investigated assuming a χ̃0

1 LSP. A detailed

signal over background analysis was performed based on like-sign dimuon events. We argue

that a similar or even the same set of cuts might be used to suppress the background in

our case and we compare background and signal rates to determine the discovery potential

of our analysis.

The main SM background sources are tt̄ production, bb̄ production, single top production,

and gauge boson pair production, i. e. WW , WZ and ZZ production. In Refs. [181], the

dominant signature from single smuon production including like-sign dimuon events is

µ̃−
L → µ−χ̃0

1 → µ−(µ−ud̄). (8.46)

The two muons of the signal (8.46) are isolated because they stem from different decays of

SUSY particles. In addition, the muons carry large momenta since they originate from the

decay of (heavy) SUSY particles. The following cuts were proposed to improve the signal

over SM background ratio at the LHC:

• A cut on the muon rapidity |η| < 2.0, thus requiring all the leptons in the central

region of the detector,
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

• a cut on the transverse momentum on each muon: pT |µ ≥ 40 GeV,

• an isolation cut on each of the muons,

• a cut on the transverse mass of each of the muons, 60 GeV < MT < 85 GeV,

• a veto on the presence of a muon with the opposite charge as the like-sign dimuons,

• a cut on the missing transverse energy, E/T ≤ 20 GeV .

These cuts reduce the SM background to 4.9 ± 1.6 events per 10 fb−1 at the LHC ,

cf. Eq. (8.42). Among the above cuts, the isolation and pT cut lead to the strongest

suppression of the SM background.

We now investigate the case of a τ̃1 LSP. If the 4-body decays of the τ̃1 LSP, Eq. (8.25),

dominate, the leading signature of resonant single smuon production including like-sign

dimuon events can be written as

µ̃−
L → µ−χ̃0

1 → µ−τ∓τ̃± → µ−τ∓(τ±µ−ud̄). (8.47)

As above, the muons originate from the decay of heavy particles (τ̃1 and µ̃L), are in general

well isolated, and carry large momenta. Thus, for both signals Eq. (8.46) and Eq. (8.47),

the same cuts should allow to discriminate between the signal and the SM background.

Furthermore, the additional pair of taus in Eq. (8.47) allows to require one or two (isolated!)

taus. This might additionally improve the signal to background ratio.

If the τ̃1 LSP predominantly decays via 2-body decay modes, Eq. (8.26), the situation is

a bit different. The like-sign dimuon signature is now

µ̃−
L → µ−χ̃0

1 → µ−τ+τ̃− → µ−τ+(µ−ντ ). (8.48)

We again have two isolated muons with large momenta and the same isolation and pT |µ
cuts as before should be useful to suppress the SM background. But the neutrino of the

τ̃1 decay leads to high missing transverse energy E/T in the signal and an upper bound on

E/T is not appropriate anymore. Alternatively we propose a cut that requires a minimum

missing energy, e. g. E/T ≥ 60 GeV. This would also reduce the SM background where the

main source of E/T are low-energetic neutrinos from W boson decays. Furthermore, we can

again require an additional tau in the final state. Finally, one can exploit the fact that the

2-body decays lead to a pure leptonic final state and a jet veto can be applied.

In Refs. [181], the SUSY background on like-sign dimuon events is suppressed by vetoing

all events with more than two jets of pT |jet > 50 GeV. This cut will also work if the 4-body

decay mode of the τ̃1 LSP dominates. The 2-body decay modes lead to purely leptonic

final states and even no high-pT jet may be required.
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8.3. Resonant single slepton production at the LHC

We conclude that for τ̃1 LSP scenarios, the background for like-sign dimuon events can

be suppressed similarly as it has been proposed for χ̃0
1 LSP scenarios in [181].

We thus compare our signal, as given in Eq. (8.44) and Eq. (8.45) for sets A and B

respectively, to the background, assuming that cuts as discussed above reduce the SM

background to less than 5 events per 10 fb−1, cf.Eq. (8.42). For the signal efficiency, we

assume 20%, i. e. 20% of signal events pass the cuts. We neglect systematic errors, at this

stage of the analysis.

For Set A a more than 5σ excess over the SM background can be obtained for an inte-

grated luminosity of 10 fb−1 for all couplings given in Eq. (8.44). For Set B, a cut efficiency

of 20% for the signal corresponds to an excess between 100 σ and 300 σ for the number of

like-sign muon events over the SM background! Therefore, within Set B, couplings can be

tested at the LHC down to λ′
2jk|GUT ∼ O(10−3). But a detailed Monte-Carlo based signal

over background analysis remains to be done.

Final states with three and four muons

To round off our studies, we also consider final states with more than two muons. For

example, for parameter sets A and B, the χ̃0
1 cannot only decay into a τ̃1-τ pair but also into

a µ̃R-µ or ẽR-e pair. These are kinematically accessible and have non-negligible branching

ratios (Set A: 7.0%, Set B: 2.2%; see Tab. C.3). As we have shown in Tab. 8.4, these decays

lead to three or even four muons of mixed signs in the final state. Each of the muons stems

from the decay of a different SUSY particle. Especially the four-muon final state cannot be

found at a high rate in χ̃0
1 LSP scenarios and its observation could be a hint for a τ̃1 LSP.

Therefore, we analyze the three- and four-muon final states in this section. All necessary

branching ratios and production cross sections are given in Appendix C.1.

The four–muon events may be classified into µ−µ−µ−µ+, µ−µ−µ+µ+, and µ−µ+µ+µ+

signatures and we introduce the notations σ(− − −+), σ(− − ++), and σ(+ + +−), for

the respective cross sections. The four-muon final states require a long decay chain and

many different decays contribute at various stages. For smuon production, summing up all

contributions, the cross sections can be written in the following compact form

σµ̃(−−−+) =σprod.(µ̃
−
L ) × BR(µ̃−

L → χ̃0
1 µ−) × BR(χ̃0

1 → µ̃+
R µ−) × Pτ̃1(1µ) ,

σµ̃(+ + +−) = σµ̃(−−−+) × σprod.(µ̃
+
L )/σprod.(µ̃

−
L ) ,

σµ̃(−− ++) =σµ̃(−−−+) + σµ̃(+ + +−),

(8.49)

where Pτ̃1(1µ) = BR(τ̃−
1 → µ− . . . ) + BR(τ̃+

1 → µ− . . . ) denotes the probability of a

negatively charged final state muon in a τ̃1 decay. The difference between σµ̃(− − −+)

and σµ̃(+ + +−) stems from the different partons and parton densities involved in the

production cross sections.
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8. SUSY with R-parity violation and a τ̃1 as lightest SUSY particle

Smuon production can also lead to exactly three final state charged muons, µ−µ−µ+

or µ+µ+µ−. The corresponding cross sections now involve the probability Pτ̃1(0µ) for a

τ̃1 decay without a final state muon,

σµ̃(−− +) =σprod.(µ̃
−
L ) × BR(µ̃−

L → χ̃0
1 µ−) × BR(χ̃0

1 → µ̃+
R µ−) × 2Pτ̃1(0µ) ,

σµ̃(+ + −) =σµ̃(−− +) × σprod.(µ̃
+
L )/σprod.(µ̃

−
L ) .

(8.50)

There are 16 different decay chains of the µ̃−
L leading to a µ−µ−µ+ final state. The factor

of two in Eq. (8.50) is a consequence of summing over all these decay chains.

The same final-state signatures (exactly three muons) can be obtained via ν̃µ production.

The decay chain is similar to that of a produced smuon. The missing muon from the slepton

decay is here replaced by demanding a muon in the final τ̃1 decay,

σν̃(−− +) =
[

σprod.(ν̃µ) + σprod.(ν̃
∗
µ)

]

× BR(ν̃µ → χ̃0
1 νµ) × BR(χ̃0

1 → µ̃+
R µ−) × Pτ̃1(1µ) ,

σν̃(+ + −) = σν̃(−− +) .

(8.51)

The total cross sections for (exactly) three final state muons are then given by

σ(∓∓±) = σµ̃(∓∓±) + σν̃(∓∓±). (8.52)

Table 8.7 gives an overview over the numerical results. The same λ′ couplings as in the

previous Tabs. 8.5 and 8.6, respectively, are considered. The generation of λ233 has been

taken into account for the τ̃1 decays and the cross sections give total numbers, including

both 4- and 2-body τ̃1 decays.

We find that the sum of three– and four-muon events is in the same order of magnitude as

the results for purely like-sign dimuons. For Set A, where BR(χ̃0
1 → µ̃R µ) = 7%, the event

numbers are even larger. In Set B, with BR(χ̃0
1 → µ̃R µ) = 2%, the total contributions are

smaller by a factor of about three. Depending on the experimental goals, these channels

thus give important contributions and should be included in an analysis. On the other

hand, these events also suggest to use three or four final state muons as a signal for slepton

production since the background is expected to be very low.
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σ(−− +) σ(+ + −) σ(−− ++) σ(+ + +−) σ(−−−+)
∑

σ(−− . . . )
∑

σ(+ + . . . )

Set A

λ′
211 = 0.002|GUT 9.38 (9.39) 12.9 (13.0) 5.32 (5.26) 3.39 (3.35) 1.93 (1.91) 16.6 (16.6) 21.7 (21.6)

λ′
221 = 0.002|GUT 5.77 (5.77) 3.84 (3.74) 1.89 (1.77) 0.53 (0.49) 1.36 (1.27) 9.02 (8.81) 6.26 (6.00)

λ′
212 = 0.002|GUT 4.02 (3.93) 9.05 (9.24) 3.39 (3.17) 2.79 (2.61) 0.60 (0.56) 8.01 (7.66) 15.2 (15.0)

λ′
213 = 0.002|GUT 2.04 (2.02) 5.14 (5.19) 1.85 (1.80) 1.57 (1.53) 0.28 (0.27) 4.17 (4.09) 8.56 (8.52)

Set B

λ′
211 = 0.01|GUT 20.8 (20.8) 29.1 (29.1) 13.4 (13.4) 8.73 (8.73) 4.69 (4.69) 38.9 (38.9) 51.3 (51.3)

λ′
221 = 0.01|GUT 11.9 (12.0) 7.77 (7.59) 4.08 (3.88) 1.04 (0.98) 3.05 (2.89) 19.1 (18.7) 12.9 (12.4)

λ′
212 = 0.01|GUT 8.14 (7.98) 19.5 (19.9) 7.93 (7.53) 6.72 (6.39) 1.21 (1.15) 17.3 (16.7) 34.2 (33.8)

λ′
213 = 0.01|GUT 3.94 (3.85) 10.4 (10.6) 4.20 (4.00) 3.66 (3.48) 0.54 (0.51) 8.68 (8.36) 18.3 (18.1)

Table 8.7.: Cross sections for signals with three or four final state muons within parameter Set
A for λ′

2jk = 0.002 at ΛGUT and for Set B for λ′
2jk = 0.01 at ΛGUT assuming down-

type (up-type) quark mixing. Given are the cross sections as defined in Eqs. (8.49)-
(8.52) and the sums for two negatively or positively charged muons,

∑

σ(−− . . . ) or
∑

σ(+ + . . . ), respectively. All cross sections are given in femtobarn [fb].
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Chapter 9

Conclusions

With the LHC almost ready to start operation, we will soon enter a new era in particle

physics. It will be possible to test the Standard Model and the large variety of its extension

candidates at energy ranges which were not accessible at particle accelerators before. If

supersymmetry is playing a vital role as the extension the Standard Model, there is a good

chance that we detect first SUSY signals at the LHC. A precise knowledge of SUSY particle

production cross sections and detailed investigations of decay signatures are indispensable

for a conclusive discrimination between Standard Model and supersymmetric physics. The

work presented here covers topics from both fields of research.

We have studied the hadronic production of pairs of colored SUSY particles, squarks and

gluinos, in the framework of the MSSM. If SUSY is realized, colored SUSY particles have

large production cross sections at hadron colliders since they are produced via the strong

interaction. Pair production of squarks and gluinos is therefore among the most promising

SUSY discovery channels at the LHC.

We considered top-squark pair (t̃at̃
∗
a), gluino–squark pair (g̃q̃a), and same-sign squark-

squark pair (q̃aq̃a) production processes and calculated the EW cross section contributions

up to O(α2
sα). At this order of perturbation theory, numerous interferences between QCD-

mediated and EW-mediated diagrams come into play. Virtual corrections arise from the

interference contributions of tree-level QCD amplitudes and mixed EW–QCD one-loop dia-

grams, as well as from the interference of tree-level EW and pure-QCD one-loop amplitudes.

Bremsstrahlung corrections comprise real photon, real gluon and real quark radiation pro-

cesses. We also included the tree-level EW and EW–QCD interference contributions of

O(α2) and O(αsα) and photon-induced subprocesses of O(αsα), if present.

Particular care was taken to obtain IR-finite results. Both photonic and gluonic singu-

larities had to be addressed. We regularized the IR singularities by means of infinitesimal

photon, gluon and quark masses, respectively. Real particle radiation processes have been

calculated using the phase-space slicing method, isolating the soft and collinear singular-

ities by imposing cuts on the photon and gluon energies and on the separation angles.

The universal quark mass logarithms from initial-state collinear singularities have been ab-
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sorbed into the quark parton distribution functions by appropriate redefinitions at O(α)

and O(αs), respectively. For a consistent treatment, a set of PDFs that includes both

NLO QED and NLO QCD effects (MRST 2004 QED) has been used in the calculation of

hadronic observables.

Pair production of lighter top-squarks, t̃1t̃
∗
1, is of particular interest since these are can-

didates for the lightest colored SUSY particle in many mSUGRA models and thus highest

hadronic cross sections are expected. The O(α2
sα) corrections from qq and gg initial states

reduce the LO predictions by typically a few percent. The γg fusion process was found

to yield contributions of comparable size but opposite sign. In the SPS1a’ scenario, the

summed EW contributions to the integrated hadronic cross section are below 1%. But they

reach the (negative) 10% − 20% level in differential distributions and are thus significant

in the high-pT and high-Minv regions. The situation is similar in other SUSY scenarios.

Outside singular parameter configurations associated with thresholds, the dependence of

the EW contributions on the MSSM parameters is rather smooth and moderate.

We also investigated the pair production of the heavier top-squarks, t̃2t̃
∗
2. The produc-

tion cross section is suppressed by the large mass of the final-state particles and the EW

contributions are small in absolute size. However the relative NLO EW corrections depend

strongly on the top-squark mixing angle and are enhanced for the typically more left-handed

t̃2 eigenstates. As a result, the EW contributions alter the integrated LO cross section by

about −15% (in the SPS1a’ scenario) and grow even larger in differential distributions.

The sensitivity of the EW contributions to the chirality of the produced particles becomes

strongest in case of light-flavor squarks in the final state, when the L–R mixing of the

squark gauge eigenstates can be neglected. We performed a detailed numerical analysis of

the EW contribution to each case of producing a left- or right-handed, up- or down-type

squark in association with a gluino. The EW contributions to g̃q̃L production become

sizable in distributions, in particular where the virtual O(α2
sα) and real photon corrections

dominate. In case of right-handed squarks in the final state, the impact of EW corrections

is negligible. We also investigated the dependence on the masses of the final-state squark

and gluino. Whereas these parameters are crucial for the absolute size of the cross section,

the relative EW contribution to inclusive gluino–squark production depends only weekly

on the masses and ranges at the percent level.

The calculation of EW contributions to the production of pairs of light-flavor squarks

is technically the most challenging one. In contrast to the production of third-generation

squarks or gluinos, these processes allow for both QCD- and EW-mediated processes that

give non-zero interferences already at tree-level. The resulting interference contributions at

O(α2
sα) require renormalization at both O(α) and O(αs) and suffer from soft and collinear

singularities related to real photon, gluon, and quark radiation processes. Moreover, owing

to the chirality and flavor dependence of EW contributions, various classes of diagonal,
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non-diagonal and mixed-flavor squark pairs have to be addressed separately. We presented

a first investigation of the EW contributions to diagonal same-sign q̃aq̃a production and

gave numerical results for ũaũa final states.

Previous studies on the production of colored SUSY particles were concentrated on

higher-order corrections of QCD origin. The work described in this thesis represents an

important step towards a complete one-loop description of all squark and gluino pair pro-

duction processes at the LHC. Studying the processes of t̃at̃
∗
a, g̃q̃a, and q̃aq̃a production,

we gained a wide experience in computing EW contributions up to the one-loop level.

The investigation of the yet-missing EW contributions to non-diagonal squark–squark and

squark–anti-squark production or to processes with bottom-squarks in the final state pro-

vides an interesting range of applications to further exploit our methods.

In Chapter 8, we presented the first detailed study on the phenomenology of R-parity vi-

olating B3 mSUGRA models with a τ̃1 LSP, including an analysis of the distinct τ̃1 LSP

decay signatures at colliders. Allowing for R-parity violation, the LSP is unstable and can

be charged in accordance with cosmological observations. The relatively heavy SUSY par-

ticles are expected to decay rapidly via long cascade decay chains to the LSP. The nature

of the LSP and its possible decay modes are thus crucial for the identification of SUSY

signatures at collider experiments.

We assume only one non-vanishing B3 coupling λ′
ijk at the GUT scale. Concerning the

possible τ̃1 LSP decay modes, we would expect either a 4-body or 2-body decay of the

τ̃1 LSP depending on whether the dominant B3 operator couples directly to the τ̃1 LSP

or not. However, because of the CKM mixing of different quark flavors, the RGEs of

B3 couplings are highly coupled and further B3 couplings are generated at the weak scale

that allow for additional τ̃1 LSP decays.

We have numerically investigated the generation of λi33 couplings via dominant λ′
ijk cou-

plings for i 6= 3 (i. e. the τ̃1 does not directly couple to the dominant B3 operator). The

generated couplings are typically smaller by at least two orders of magnitude but lead to

2-body LSP decays which have larger phase space and do not involve heavy propagators.

A careful analysis of the parameter dependence of the τ̃1 LSP decay modes revealed that

in large regions of the parameter space the 2-body decay dominates over the 4-body decay.

As an application of our studies, we discussed the resulting signatures of single slepton

production at the LHC and provided numerical results for single smuon production within

two representative τ̃1 LSP scenarios. From the experimental point of view, the final states

with like-sign dileptons or more than two charged leptons are of special interest. For the

given example sets of parameters, we found cross sections for exclusive like-sign dimuon

events of the order of 100 fb. Additional three- and four-muon events can occur with the

same rate. This is a novel slepton discovery mechanism and of particular interest also for

the experiments at the LHC.
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Appendix A

Notations and definitions

In this appendix, we briefly summarize the notations and conventions used in this thesis.

In particular, we give the definition for the metric tensor gµν in Section A.1. Dirac and

Pauli matrices are introduced in Section A.2. Details on spinor calculus and properties of

Weyl spinors are listed in Section A.3. Finally, we define Dirac and Majorana spinors in

Section A.4. All results and input parameters presented in this work are given in natural

units, i. e. ~ = c = 1.

A.1 Metric conventions

A general covariant (contravariant) four-vector is denoted by xµ (xµ), with

xµ = (x0, x1, x2, x3) = (x0,−~x),

xµ = (x0, x1, x2, x3) = (x0, +~x).
(A.1)

The indices can be lowered and raised with the help of the metric tensor gµν ,

xµ = gµνx
ν , xµ = gµνxν , (A.2)

Here, we use the “g00 = +1” convention, i. e.

gµν = gµν = diag(1,−1,−1,−1). (A.3)

Repeated indices can be suppressed and the scalar product of two four-vectors x, y is given

by xy ≡ xµyµ = xµyµ = x0y0−~x~y, yielding for a particle with four-momentum pµ = (E, ~p)

and mass m the on-shell relation

p2 = E2 − ~p2 = m2. (A.4)
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A. Notations and definitions

The co- and contravariant four-gradients ∂µ and ∂µ, respectively, are defined by

∂µ ≡ ∂

∂xµ
=

(

∂

∂t
, ~∇

)

, ∂µ ≡ ∂

∂xµ
=

(

∂

∂t
,−~∇

)

. (A.5)

A.2 Dirac and Pauli matrices

The Dirac matrices γµ are defined by the Clifford algebra in D dimensions28,

{γµ, γν} = 2gµν1D, (A.6)

where 1D is the D dimensional unit matrix and the indices µ, ν run from 0 to D − 1. γ0

is hermitian and γi are anti-hermitian. Under hermitian conjugation the gamma matrices

behave as γ†
µ = γ0γµγ0.

Contraction of indices in D dimensions yields for products of two or more Dirac matrices

γαγα = D 1D,

γαγµγα = (2 − D)γµ,

γαγµγνγ
α = 4gµν 1D − (4 − D)γµγν ,

γαγµγνγργ
α = −2γργνγµ + (4 − D)γµγνγρ.

(A.7)

The computation of traces (Tr) of Dirac matrices is done by making use of Eq. (A.6) and

the condition Tr(1D) = 4, yielding

Tr(γµγν) = 4gµν ,

Tr(γµγαγνγβ) = 4 (gµαgνβ − gµνgαβ + gµβgαν),
(A.8)

and traces of an odd number of Dirac matrices vanish.

In four dimensions, we define a matrix γ5 = γ5 = iγ0γ1γ2γ3, with properties

{γµ, γ5} = 0, γ2
5 = 14, γ†

5 = γ5. (A.9)

Traces involving the γ5 matrix are given in four dimensions by

Tr(γ5) = 0, Tr(γ5γµ) = 0,

Tr(γ5γµγνγργσ) = 4iǫµνρσ,
(A.10)

where ǫµνρσ is the totally antisymmetric Levi-Civita tensor with ǫ0123 = −ǫ0123 = +1. The

28In the approach of dimensional regularization, the Dirac matrices are defined as D-dimensional objects
with D < 4. Most parts of the calculations are however performed in dimensional reduction where the
Dirac matrices remain four-dimensional. In this case D = 4 has to be considered in the equations given
below.
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A.3. Weyl spinors

generalization of γ5 to D dimensions as required for dimensional regularization, is more

involved. However, a consistent treatment is possible, see [119–121] and the discussions

in [124]. Following [121], we treat γ5 in the “naive” scheme and consider the anticommuting

and trace relations Eqs. (A.9) and (A.10) to hold also in D dimensions.

An explicit representation of the Dirac matrices is given by the Weyl representation in

terms of the Pauli matrices σi,

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

−12 0

0 12

)

, (A.11)

with

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (A.12)

A.3 Weyl spinors

Weyl spinors ψα and their conjugates ψ
α̇

are two-component objects which transform under

a Lorentz transformation as

ψα → M β
α ψβ , ψ

α̇ →
(

(M−1)†
)α̇

β̇
ψ

β̇
, (A.13)

where M = M(Λ) is the 2-dimension matrix representation of a Lorentz transformation Λ.

The distinct spinor indices α, β = 1, 2 and α̇, β̇ = 1, 2 can be lowered and raised using the

antisymmetric ǫ tensor,

ψα = ǫαβψβ , ψα = ǫαβψβ,

ψα̇ = ǫα̇β̇ψ
β̇
, ψ

α̇
= ǫα̇β̇ψβ̇ ,

(A.14)

with the following definitions, yielding ǫαβǫβγ = δγ
α,

ǫαβ = ǫα̇β̇ =

(

0 −1

1 0

)

and ǫαβ = ǫα̇β̇ =

(

0 1

−1 0

)

. (A.15)

The spinors ψ and ψ are related by hermitian conjugation, i. e.

ψα̇ ≡ (ψα)† = (ψ†)α̇, and ψα = (ψ
α̇
)†. (A.16)

In the notation of the scalar product of two Weyl spinors ξ, χ repeated spinor indices can
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A. Notations and definitions

be suppressed. We use the convention of implicit α
α and α̇

α̇ indices, i. e.

ξχ = ξαχα = χαξα = χξ,

ξχ = ξα̇χα̇ = χα̇ξ
α̇

= χξ = (ξχ)† = (χξ)†,
(A.17)

while ξαχα = −ξαχα and ξα̇χα̇ = −ξ
α̇
χα̇.

Similarly, repeated spinor indices are omitted in Lorentz invariant vectors as

ξσµχ = ξα(σµ)αβ̇ χβ̇ , ξσµχ = ξα̇(σµ)α̇β χβ , (A.18)

in terms of the elements of the Pauli matrices, Eq. (A.12), and

(σµ)αβ̇ = (12, σ
i)αβ̇ and (σµ)α̇β = (12,−σi)α̇β . (A.19)

Antisymmetrized products of the Pauli matrices are given by

(σµν) β
α ≡ i

2
(σµσν − σνσµ) β

α and (σµν)α̇
β̇
≡ i

2
(σµσν − σνσµ)α̇

β̇
. (A.20)

A.4 Dirac and Majorana spinors

A four-component Dirac spinor field Ψ is made up of two mass-degenerate two-component

Weyl spinors ξα and χα as follows,

Ψ =

(

ξα

χα̇

)

, (A.21)

with two distinct spinor indices α = 1, 2 and α̇ = 1, 2. The Dirac-adjoint spinor Ψ is given

by

Ψ ≡ Ψ†γ0 = (χα ξα̇), (A.22)

and the charge conjugated field Ψc is obtained by application of the charge conjugation

matrix C onto the transposed spinor,

Ψc ≡ CΨ
T

=

(

χα

ξ
α̇

)

, (A.23)

where the charge conjugation matrix C satisfies C−1γµC = −(γµ)T .

In terms of γ5, we define chiral projection operators PL/R = 1
2(1 ∓ γ5) that allow to
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A.5. Grassmann numbers

project out the left- and right-handed state of a Dirac field, respectively,

ΨL ≡ PLΨ =

(

ξα

0

)

, and ΨR ≡ PRΨ =

(

0

χα̇

)

. (A.24)

In this sense, we call ξα a left-handed Weyl spinor and χα̇ a right-handed Weyl spinor.

If the two Weyl spinors are identical ξ = χ, it is

Ψ =

(

ξα

ξ
α̇

)

, Ψ = (ξα ξα̇), i. e. Ψ = Ψc. (A.25)

A spinor defined by Eq. (A.25) is named Majorana spinor.

An extensive dictionary of how to relate results obtained in terms of four-component

spinors and results from the two-component Weyl spinor formalism is given in [198]. Here,

we just cite the translation rules for two Dirac spinors Ψi =
(

ξi
χi

)

, i = 1, 2 (spinor indices

are suppressed)

ΨiPLΨj = χiξj , ΨiPRΨj = ξiχj ,

Ψiγ
µPLΨj = ξiσ

µξj , Ψiγ
µPRΨj = χiσ

µχj .
(A.26)

A.5 Grassmann numbers

Grassmann numbers θα are anticommuting fermionic objects,

{θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0. (A.27)

In particular, the square of a Grassmann number vanishes, θαθα = 0. The product of two

Grassmann numbers is defined with the help of the ǫ-tensor, Eq. (A.15),

θθ ≡ θαθα = θαǫαβθβ = ǫαβθβθα, (A.28)

yielding with Eq. (A.27),

θαθβ = −1

2
ǫαβ(θθ), θαθβ = +

1

2
ǫαβ(θθ),

and θ
α̇
θ

β̇
= +

1

2
ǫα̇β̇(θ θ), θα̇θβ̇ = −1

2
ǫα̇β̇(θ θ).

(A.29)

Every product of more than two Grassmann numbers is zero,

θαθβθγ = 0, since α, β, γ ∈ {1, 2}. (A.30)
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A. Notations and definitions

Integration over Grassmann variables is defined as follows,

∫

dθα = 0,

∫

dθα θβ = δαβ ,
∫

d2θ = 0,

∫

d2θ θα = 0,

∫

d2θ θαθβ = −1

2
ǫαβ ,

∫

d2θ (θθ) = 1,

(A.31)

where θ and θ are considered to be independent,

∫

dθ dθ = θθ = 1,

∫

d4θ (θθ)(θ θ) = 1. (A.32)

Spinorial derivatives are defined by

∂θβ

∂θα
≡ ∂αθβ = δ β

α ,
∂θβ̇

∂θα̇

≡ ∂
α̇
θβ̇ = δα̇

β̇
,

∂θβ̇

∂θα
=

∂θβ

∂θα̇

= 0, (A.33)

with the conventions

∂α = −ǫαβ∂β , ∂α = −ǫαβ∂β , ∂α̇ = −ǫα̇β̇∂
β̇
, ∂

α̇
= −ǫα̇β̇∂β̇ , (A.34)

to ensure that e. g. δ β
α = ∂αθβ = ∂βθα.
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Appendix B

Input parameters for numerical cross section

computations

We summarize the SM and MSSM input parameters as used for the numerical studies of

colored SUSY particle production processes at the LHC presented in Chapters 5–7.

B.1 Standard Model parameters

The Standard Model input parameters are chosen in correspondence with [157,158]. In

particular, we choose as input the fine structure constant α (α-scheme), with the value

α = 1/137.036, corresponding to the classical electron charge e =
√

4πα. The strong

coupling constant αs has been defined in the MS scheme using the two-loop renormalization

group equations with five light flavors and αs(mZ) = 0.119. The masses of the SM gauge

bosons are

mZ = 91.1876 GeV, mW = 80.42477 GeV, (B.1)

while we use for the third-generation fermions the on-shell values

mτ = 1.777 GeV, mt = 170.9 GeV, mb = 4.7 GeV, (B.2)

which corresponds to

mMS

b (mb) = 4.2 GeV, mDR

b (1 TeV) = 2.936 GeV . (B.3)

All other fermion masses are set to zero unless where they are used for regularization.

B.2 MSSM parameters

For the numerical evaluation of our cross section computations, we refer to mSUGRA

scenarios with conserved R-parity and real parameters. As discussed in Section 2.3.3, the
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B. Input parameters for numerical cross section computations

low-energy spectrum is determined by only five universal GUT-scale parameters (M0, M1/2,

A0, tan β, sgn(µ)), cf. Eq. (2.55), which act as boundary equations for the renormalization

group running of the soft-breaking parameters. In the numerical application, we use the

program Softsusy 2.0.18 [75] to evolve the GUT-scale parameters down to the (SUSY)

scale QSUSY. We choose as a common SUSY scale for all scenarios

QSUSY = 1 TeV, (B.4)

in reference to the SPA convention [158].

At QSUSY, the full SUSY particle spectrum can then be obtained from the running

(DR) soft-breaking parameters and SM inputs according the tree-level relations given in

Section 2.3.4. However in the renormalization scheme we are using, the input parameters

are the on-shell masses of the two up-type squark mass eigenstates and the lighter of the

down-type squark mass eigenstates within each generation i, as well as the on-shell stop

mixing angle, cf. Eq. (2.104),

(

m2
ũ1i

)OS
,

(

m2
ũ2i

)OS
,

(

m2
d̃1i

)OS
,

(

θt̃

)OS
,

(

Ab

)DR
. (B.5)

Hence, a translation of the squark masses and the mixing angle as obtained from Softsusy

into the OS scheme is needed. This can be achieved by exploiting the one-loop relation

between masses and angles renormalized in different schemes:

(

m2
q̃

)DR
+

(

δm2
q̃

)DR
=

(

m2
q̃

)OS
+

(

δm2
q̃

)OS
, (B.6a)

(θq̃)
DR + (δθq̃)

DR = (θq̃)
OS + (δθq̃)

OS, (B.6b)

where m2
q̃ is the squared mass of the squark q̃, δm2

q̃ is the corresponding one-loop counter-

term and θq̃ and δθq̃ are the mixing angle between the two gauge eigenstates q̃L,R and its

counterterm, respectively. The UV divergences cancel along Eq. (B.6) as the DR and OS

counterterms differ by UV-finite parts only.

Note that for a consistent translation between the schemes care has to be taken to start

from parameters which are pure DR quantities. For the squark masses this implies that

both the soft-breaking parameters and the SM particle masses which enter the squark mass

matrices are needed in the DR scheme.

Owing to the SU(2)L invariance, the masses of the remaining down-type squarks are

dependent parameters, cf. Eq. (2.102), and beyond tree-level they do not longer correspond

to the physical OS masses. This has to be taken into account in the case of g̃d̃L production,

where the left-handed down-squarks are external particles and considered to be on their

mass shell. At the one-loop level, the OS mass of the left-handed down-squark
(

m2
d̃L

)OS
is
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B.2. MSSM parameters

obtained from the dependent mass
(

m2
d̃L

)dep.
as follows,

(

m2
d̃L

)OS
=

(

m2
d̃L

)dep.
+ δm2

d̃L
− ReΣd̃L

(

m2
d̃L

)

, (B.7)

where δm2
d̃L

is the (dependent) mass counterterm defined in Eq. (4.38) and Σd̃L
is the

self-energy of the squark d̃L.

Sleptons, Higgs bosons, and gauginos do not enter in the LO diagrams and the difference

between DR and OS masses is a higher-order effect which can be neglected.

In summary, our MSSM input parameters in the squark sector are defined by Eqs. (B.5)

and (B.7), while all other SUSY particle masses are calculated from the low-energy DR

soft-breaking parameters obtained by Softsusy, via the tree-level relations given in Sec-

tion 2.3.429. The procedure of obtaining our low-energy input parameters is visualized in

Fig. B.1.

For completeness, we give here the tree-level relations between the soft-breaking parame-

ters and mass eigenstates of a given sfermion f̃i of generation i. Comparing the expressions

Eqs. (2.92) and (2.100) for the sfermion mass matrix M2
f̃i

, one finds in terms of a gen-

eral parameterization of the sfermion mixing matrix Ufi the following conditions for the

left-handed softbreaking parameters m2
F̃Li

= m2
Q̃i

, m2
L̃i

,

(

M2
f̃i

)

11
= m2

fi
+ ALL

i =
(

Ufi
11

)2
m2

f̃1i
+

(

Ufi
21

)2
m2

f̃2i
,

→ m2
F̃Li

=
(

Ufi
11

)2
m2

f̃1i
+

(

Ufi
21

)2
m2

f̃2i
− m2

fi
+ (I3

fi
− efi sin2 θW )m2

Z cos 2β,
(B.8)

for the right-handed soft-breaking parameters , m2
F̃Ri

= m2
Ũi

, m2
D̃i

, m2
Ẽi

,

(

M2
f̃i

)

22
= m2

fi
+ CRR

i =
(

Ufi
12

)2
m2

f̃1i
+

(

Ufi
22

)2
m2

f̃2i
,

→ m2
F̃Ri

=
(

Ufi
12

)2
m2

f̃1i
+

(

Ufi
22

)2
m2

f̃2i
− m2

fi
− efi sin2 θW m2

Z cos 2β,
(B.9)

and for the trilinear couplings Afi ,

(

M2
f̃i

)

12
= m2

fi
BLR

i = Ufi
12 Ufi

12 m2
f̃1i

+ Ufi
21 Ufi

22 m2
f̃2i

,

→ Afi =
1

mfi

(

Ufi
12 Ufi

12 m2
f̃1i

+ Ufi
21 Ufi

22 m2
f̃2i

)

+ µκ.
(B.10)

Here, efi and I3
fi

denote the electrical charge and the eigenvalue of the third component of

the weak isospin of sfermion f̃i, respectively. κ = cot β for up-type squarks and charged

sleptons, while for right-handed squarks it is κ = tanβ.

29Note that in the Higgs sector, we use the public program FeynHiggs [81] or a two-loop approximation [82]
included in [83] to compute the masses.
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B. Input parameters for numerical cross section computations

1. define mSUGRA parameters at GUT scale:

→ M0, M1/2, tan β, A0, sgn(µ)

↓

2. evolve soft-breaking parameters via RGEs down to QSUSY (using Softsusy)

→ DR soft-breaking and OS SM parameters

↓

3. translate squark masses and mixing angles into OS scheme (at QSUSY):

3.1 calculate one-loop counterterms for gauge bosons, quarks and squarks

3.2 translate SM parameters into DR,
extract DR squark masses from pure-DR squark mixing matrices

3.3 translate DR squark masses and stop mixing angle into OS scheme

→
(

m2
ũ1i

)OS
,

(

m2
ũ2i

)OS
,

(

m2
d̃1i

)OS
,

(

θt̃

)OS
.

3.4 recalculate OS soft-breaking parameters (m2
Q̃i

, m2
Ũi

, m2
D̃i

, At) from the

OS squark mixing matrix according to Eqs. (B.8) – (B.10)
(e. g. needed as further inputs for FormCalc)

↓

4. calculate physical mass for the dependent squark (at QSUSY)
according to Eq. (B.7)

Figure B.1.: Definition of low-energy input parameters as used for the numerical evaluations
of production cross sections for colored SUSY particles.
A common scale QSUSY = 1 TeV has been chosen in all calculations.

B.3 SPS benchmark points

The “Snowmass Points and Slopes” (SPS) are a set of benchmark points in the MSSM

parameter space which were suggested by [162] in order to unify the various conventions

used in theoretical computations and experiments and to set a basis for future studies of

SUSY phenomenology. Ten characteristic mSUGRA, GMSB, and AMSB scenarios have

been proposed. Here, we only consider the five mSUGRA-like scenarios, characterized by

the five universal GUT-scale parameters M0, M1/2, A0, tan β, sgn(µ). For convenience, we

give the low-energy values tan β(QSUSY) for QSUSY = 1 TeV below.

The SPS1a’ benchmark scenario has been introduced by the Supersymmetry Parameter

Analysis (SPA) convention and project [158],

M0 = 70 GeV, M1/2 = 250 GeV, A0 = −300 GeV,

tan β(QSUSY) = 10, sgn(µ) > 0.
(B.11)
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B.3. SPS benchmark points

Being a “typical” mSUGRA scenario, the SPS1a’ point is a very popular benchmark and

often referred to in the literature. It is close to the SPS1a scenario defined in [162] with

slight modification of the GUT-scale parameters M0 and A0 in order to be compatible with

all high-energy mass bounds, with low-energy precision data, and with the observed cold

dark matter density.

The SPS2 benchmark scenario is chosen to lie in the “focus point” region, where the

lightest neutralino has a sizable higgsino component and thus its annihilation cross section

is large enough to agree with WMAP constraints on the cold dark matter density.

M0 = 1450 GeV, M1/2 = 300 GeV, A0 = 0 GeV,

tan β(QSUSY) = 9.66, sgn(µ) > 0.
(B.12)

For our studies, the distinguishing feature of the SPS2 scenario is the high value of M0

which results in heavy masses for squarks and sleptons. In particular, the squarks are

heavier than the gluino.

The SPS3 benchmark scenario is defined close to the “coannihilation region”, where a low

relic abundance can be explained by the fact that the LSP and the next-to-lightest SUSY

particle are nearly degenerated in mass and coannihilate rapidly.

M0 = 90 GeV, M1/2 = 400 GeV, A0 = 0 GeV,

tan β(QSUSY) = 9.66, sgn(µ) > 0.
(B.13)

The most interesting aspect for collider phenomenology in general is the small slepton-

neutralino mass difference in the SPS3 scenario. In the context of production processes of

colored SUSY particles, however, this particular configuration is of small importance only.

The SPS4 benchmark scenario is characterized by a large value of tan β,

M0 = 400 GeV, M1/2 = 300 GeV, A0 = 0 GeV,

tan β(QSUSY) = 49.4, sgn(µ) > 0.
(B.14)

As a consequence, the couplings in the Higgs sector to down-type quarks and charged

leptons are enhanced and large production cross sections for the heavy Higgs bosons are

predicted. Interesting for our purposes, the large value of tan β induces an important L–R

mixing of the stop gauge eigenstates. Furthermore, the gluino turns out to be lighter than

the squarks of the first two generations.

The SPS5 benchmark scenario is defined by a large, negative value of the trilinear cou-

pling A0. Due to this, a relatively low value of tan β can be chosen and does not contradict
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B. Input parameters for numerical cross section computations

SUSY particle masses [GeV] and mixing angle [◦]
scenario

ũL ũR d̃L d̃R t̃1 t̃2 b̃1 b̃2 g̃ θt

SPS1a’ DR 523.3 506.0 529.0 501.7 328.2 555.3 468.0 504.7 – 34.8
OS 560.7 543.4 566.4 539.4 359.5 581.9 500.0 538.1 609.0 33.9

SPS2 DR 1539 1536 1541 1535 983.3 1300 1289 1523 – 6.9
OS 1559 1554 1561 1553 992.4 1331 1301 1540 784.9 7.6

SPS3 DR 819.7 790.3 823.3 781.8 621.4 813.9 755.5 783.7 – 30.9
OS 860.8 830.7 864.2 822.6 649.7 843.3 787.9 819.7 938.1 28.4

SPS4 DR 730.4 731.1 734.5 708.4 524.1 675.8 581.9 663.3 – 33.0
OS 766.1 748.6 770.1 744.1 545.0 686.7 583.1 658.2 735.9 35.2

SPS5 DR 637.9 616.8 642.2 611.0 186.3 623.7 524.8 610.7 – 31.1
OS 676.8 655.5 680.8 649.9 224.9 647.6 552.4 647.7 723.7 30.1

Table B.1.: DR and OS masses of squarks and gluinos within the different SPS mSUGRA scenar-
ios. The translation from the DR to the OS scheme has been performed at the scale
QSUSY = 1 TeV. For the left-handed down-squark and the lighter bottom-squark the
physical masses according to Eq. (B.7) are given in the respective second rows.

constraints from direct Higgs searches at LEP [199],

M0 = 150 GeV, M1/2 = 300 GeV, A0 = −1000 GeV,

tan β(QSUSY) = 4.82, sgn(µ) > 0.
(B.15)

The SPS5 scenario provides a very light top-squark t̃1 and thus high t̃1t̃
∗
1 production cross

sections are expected. Light-flavor squarks and gluinos have intermediate masses.

An interesting aspect in the philosophy behind the SPS conventions is that the low-

energy SUSY particle masses and MSSM parameters should be regarded as the actual

benchmarks [162,200]. As a consequence, results from different projects are independent of

the numerical program which has been used to evolve the GUT-scale parameters down to

lower scales and to calculate the spectrum. Thus specifying a benchmark scenario in terms

of the GUT-scale parameters is understood to be an abbreviation only of the low-energy

phenomenology. Here, we proceed as described above, using Softsusy for the evolution

of the soft-breaking parameters and subsequently translate the squark masses into the OS

scheme. As an overview, we collect the DR and OS masses of the squarks and the stop

mixing angle in the various scenarios in Table B.1. We also quote the OS mass of the gluino

for completeness.
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Appendix C

Slepton production and decay in specific

B3 mSUGRA models

C.1 Cross sections and branching ratios

In this Appendix we give the necessary cross sections and branching ratios to calculate

rates of all possible decay signatures for single slepton production at the LHC, within the

B3 mSUGRA sets A and B with a τ̃1 LSP defined in Eq. (8.12).

In Tables C.1 and C.2, all hadronic production cross sections of resonant single slep-

tons within parameter Set A and Set B, respectively, are given. We consider here λ′
ijk =

0.01|GUT, but the cross section scales with |λ′
ijk|2. The running of λ′

ijk is taken into ac-

count according to Eq. (8.17a), leading to the following values at the SUSY scale QSUSY,

cf. Eq. (8.20):

Set A: λ′
2jk = 0.0282, λ′

23k = 0.0258, λ′
2j3 = 0.0281, λ′

233 = 0.0255,

λ′
3jk = 0.0282, λ′

33k = 0.0257, λ′
3j3 = 0.0280, λ′

333 = 0.0254;
(C.1a)

Set B: λ′
2jk = 0.0274, λ′

23k = 0.0249, λ′
2j3 = 0.0269, λ′

233 = 0.0238,

λ′
3jk = 0.0271, λ′

33k = 0.0247, λ′
3j3 = 0.0266, λ′

333 = 0.0236,
(C.1b)

where j, k = 1, 2 and QSUSY = 893 GeV for Set A and QSUSY = 1209 GeV for Set B.

The production cross sections include NLO SUSY-QCD corrections [187]. The latter

depend on the trilinear soft-breaking squark-squark-slepton coupling, hDk . In B3 mSUGRA

models, additional R-parity violating soft-breaking terms compared to those in the MSSM

Eq. (2.51) are allowed [166],

Lsoft,6R =

−
[

(hU i)jk ũ∗
Ri ũ

∗
Rj d̃∗Rk + (hDk)ij ℓ̃Li q̃Lj d̃∗Rk + (hEk)ij ℓ̃Li ℓ̃Lj ẽ∗Rk − κ̃i ℓ̃Li hu

]

+ h.c.

−
[

ℓ̃†Li

(

m2
L̃ihd

)

hd + h†
d

(

m2
hdL̃i

)

ℓ̃Li

]

, (C.2)
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C. Slepton production and decay in specific B3 mSUGRA models

σprod. [fb] σprod. [fb]
Set A

ẽ+
L/µ̃+

L ẽ−L/µ̃−
L ν̃∗

e/µ ν̃e/µ τ̃+
2 τ̃−

2 τ̃+
1 τ̃−

1 ν̃∗
τ ν̃τ

λ′
i11 = 0.01|GUT 2700 1540 1860 1860 2620 1500 434 272 190 190

λ′
i22 = 0.01|GUT 268 268 410 410 2600 2600 64.5 64.5 421 421

λ′
i12 = 0.01|GUT 2150 464 1430 602 2090 451 360 103 1460 616

λ′
i21 = 0.01|GUT 405 1050 602 1430 393 1020 91.9 197 616 1460

λ′
i13 = 0.01|GUT 1240 220 788 292 1210 214 216 51.3 806 299

λ′
i23 = 0.01|GUT 119 119 191 191 116 116 30.0 30.0 196 196

λ′
i31 = 0.01|GUT − − 247 666 − − − − 253 681

λ′
i32 = 0.01|GUT − − 161 161 − − − − 166 166

λ′
i33 = 0.01|GUT − − 69.3 69.3 − − − − 71.1 71.1

Table C.1.: Complete list of hadronic cross sections for resonant single slepton/sneutrino produc-
tion via λ′

ijk = 0.01|GUT at the LHC (
√

S = 14 TeV) within the parameter Set A.
The cross sections include QCD and SUSY-QCD corrections at NLO [187]. For λ′

i3k,
sleptons cannot be produced because of the vanishing top-quark density in the proton.

where the couplings hU i , hDk , hEk are the analogues to the trilinear couplings aU , aD,

aE in Eq. (2.51), the bilinear coupling κ̃i corresponds to κi, and the terms in the last

row provide additional terms to the slepton-Higgs mass matrix. In complete analogy to

the R-parity conserving case, we apply mSUGRA unification assumptions to the trilinear

couplings and consider the universal boundary conditions at the GUT scale, cf.Eq. (2.54),

(hDk)ij = A0 λ′
ijk, (hU i)jk = A0 λ′′

ijk, (hEk)ij = A0 λijk. (C.3)

Numerically, it is (hDk)ij = −23.4 GeV (−21.2 GeV) for λ′
ijk = 0.01|GUT within Set A

(Set B) at the respective SUSY scale. We incorporated the running of hDk by using the

one-loop contributions from gauge interactions [166].

Second, for the calculation of the rate for a given signature of resonant single slepton

production, the branching ratios for the slepton decay and for the subsequent decay chains

down to the τ̃1 LSP are needed. For all dominant λ′
ijk couplings these branching ratios are

universal within parameter Set A and Set B, respectively, and are given in Tab. C.3 for the

numerical boundary condition λ′
ijk = 0.01|GUT.

Finally, we show in Table C.4 all branching ratios of τ̃1 LSP decays for different couplings

λ′
2jk at the GUT scale. Branching ratios within scenarios with λ′

1jk 6= 0 are analogous and

can be obtained from the tables by replacing µ by e in the final-state signatures.

In the case of a non-vanishing λ′
3jk, the τ̃1 LSP directly couples to the dominant L3QjD̄k

operator and decays predominantly via the inverse production process, see also the discus-

sion in Sect. 8.2.1. For the special case of λ′
33k 6= 0 and mτ̃1 < mt, however, the τ̃1 decays
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C.2. The B3 slepton decay ℓ̃−i → W−b̄dk

σprod. [fb] σprod. [fb]
Set B

ẽ+
L/µ̃+

L ẽ−L/µ̃−
L ν̃∗

e/µ ν̃e/µ τ̃+
2 τ̃−

2 τ̃+
1 τ̃−

1 ν̃∗
τ ν̃τ

λ′
i11 = 0.01|GUT 885 476 559 559 949 515 1168 750 657 657

λ′
i22 = 0.01|GUT 67.3 67.3 102 102 74.7 74.7 192 192 124 124

λ′
i12 = 0.01|GUT 681 123 414 155 735 136 976 301 490 187

λ′
i21 = 0.01|GUT 105 309 155 414 117 337 269 548 187 490

λ′
i13 = 0.01|GUT 370 54.6 214 70.2 401 60.6 572 146 255 85.4

λ′
i23 = 0.01|GUT 28.2 28.2 44.4 44.4 31.4 31.4 87.2 87.2 54.3 54.3

λ′
i31 = 0.01|GUT − − 60.4 184 − − − − 73.5 219

λ′
i32 = 0.01|GUT − − 38.2 38.2 − − − − 46.7 46.7

λ′
i33 = 0.01|GUT − − 14.8 14.8 − − − − 18.2 18.2

Table C.2.: Same as Tab. C.1 but for parameter Set B.

into a W boson and two jets, cf. Eq. (8.28). The corresponding matrix element and partial

width are calculated in Appendix C.2.

C.2 The B3 slepton decay ℓ̃
−
i → W

−
b̄dk

A non-vanishing LiQ3D̄k operator allows for the decay of a left-handed charged slepton ℓ̃Li

into a top quark t and a down-type quark dk of generation k,

ℓ̃−Li → t̄dk . (C.4)

However, this decay mode is kinematically only allowed if mℓ̃Li
> mt + mdk

. For mℓ̃Li
<

mt + mdk
, the slepton decays via a virtual top quark or a virtual sneutrino,

ℓ̃−Li → W−b̄dk. (C.5)

This 3-body decay has not been considered in the literature yet and is not implemented in

the R-parity violating version of Herwig, either. We complete the picture by calculating

the 3-body decay (C.5) in the following.

The relevant parts of the supersymmetric Lagrangian are [13,201]

LLiQ3D̄k
= −λ′

i3k

(

ν̃i d̄k PL b − U ℓ̃i
1a ℓ̃ai d̄k PL t

)

+ h.c.,

Lb t W = − g√
2

(

W+
µ t̄ γµ PL b + W−

µ b̄ γµ PL t
)

,

Lℓ̃i ν̃i W = − ig√
2

(

U ℓ̃i
1a W+

µ ν̃∗
i

←→
∂ µ ℓ̃ai + U ℓ̃i

1a W−
µ ℓ̃∗ai

←→
∂ µ ν̃i

)

,

(C.6)
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C. Slepton production and decay in specific B3 mSUGRA models

BRs [%]

λ′
2jk = 0.01|GUT λ′

3jk = 0.01|GUT

Set A Set B Set A Set B

µ̃−
L → χ̃0

1 µ− 91.1 91.3 100 100
µ̃−

L → ūj dk 8.9 8.7 − −
ν̃µ → χ̃0

1 νµ 91.7 91.5 100 100
ν̃µ → d̄j dk 8.3 8.4 − −
χ̃0

1 → τ̃±
1 τ∓ 36.0 45.7 36.0 45.7

χ̃0
1 → µ̃±

R µ∓ 7.0 2.2 7.0 2.2
χ̃0

1 → ẽ±R e∓ 7.0 2.1 7.0 2.1

µ̃−
R → τ̃+

1 µ− τ− 54.3 64.1 54.3 64.1
µ̃−

R → τ̃−
1 µ− τ+ 45.7 35.9 45.7 35.9

τ̃−
2 → χ̃0

1 τ− 58.4 14.7 55.5 14.5
τ̃−
2 → τ̃−

1 h0 22.5 41.8 21.4 41.2
τ̃−
2 → τ̃−

1 Z0 19.1 43.5 18.1 42.9
τ̃−
2 → ūj dk − − 5.0 1.3

ν̃τ → χ̃0
1 ντ 62.2 13.6 58.8 13.4

ν̃τ → τ̃−
1 W+ 37.8 86.4 35.8 85.2

ν̃τ → d̄j dk − − 5.4 1.4

Table C.3.: Table of branching ratios, BRs, that are relevant for single slepton production
and decays within the B3 mSUGRA scenarios Set A and Set B. Two different
non-zero B3 couplings are considered, λ′

2jk = 0.01|GUT for columns 2 and 3 and
λ′

3jk = 0.01|GUT for columns 4 and 5. The branching ratios for λ′
1jk 6= 0 can be

obtained from those for λ′
2jk 6= 0 by interchanging muon and electron flavor in the

first four decay channels. The branching ratios for ẽL (ν̃e, ẽR) in scenarios with
λ′

ijk 6= 0, i 6= 1 are equal to those of µ̃L (ν̃µ, µ̃R) with λ′
3jk 6= 0. The branching ratios

for τ̃1 LSP decays are listed separately in Tab. C.4.

where U ℓ̃i is the slepton mixing matrix, a denoting the mass eigenstate of the charged

slepton. The derivate operator in the last line is defined as A
←→
∂ µB ≡ A(∂µB) − (∂µA)B.

From Eq. (C.6), the squared matrix elements (summed over final state polarizations and

colors) can be derived,

∑

∣

∣

∣Mt

(

ℓ̃−ai → W−b̄dk

)

∣

∣

∣

2
=

3λ
′2
i3k

(

U ℓ̃i
1a

)2
g2

[

(W + b)2 − m2
t

]2
+ m2

t Γ2
t

×
{

(dk ·b)
[

m2
b − m2

W + 4(W ·b) +
4(W ·b)2

m2
W

]

+ 2(W ·dk)

[

m2
b + 2(W ·b) − m2

b

(W ·b)
m2

W

] }

,

(C.7)
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C
.2

.
T

h
e

B
3

slep
to

n
d
eca

y
ℓ̃
−i
→

W
−

b̄d
k

BR2 BR4

τ̃−
1

λ→ νµτ−

[= τ̃−
1

λ→ ντµ
−]

τ̃−
1

λ→ ν̄µτ− τ̃−
1

λ′

→ τ−µ−uj d̄k τ̃−
1

λ′

→ τ−µ+ūjdk τ̃−
1

λ′

→ τ−νµdj d̄k τ̃−
1

λ′

→ τ−ν̄µd̄jdk

Set A λ′
211 7.9% (2.7%) 0.2% (0.1%) 11.8% (13.3%) 25.3% (28.5%) 15.2% (17.1%) 31.6% (35.6%)

λ′
212 21.5% (−) 0.5% (−) 7.9% (14.2%) 17.1% (29.3%) 10.2% (18.1%) 21.3% (38.4%)

λ′
213 10.5% (−) 0.2% (−) 11.1% (14.1%) 23.8% (30.2%) 14.3% (18.1%) 29.6% (37.6%)

λ′
221 21.5% (−) 0.5% (−) 7.9% (14.2%) 17.1% (29.3%) 10.2% (18.1%) 21.3% (38.4%)

λ′
222 46.8% (46.8%) 1.1% (1.1%) 0.7% (0.8%) 1.6% (1.6%) 1.0% (1.0%) 2.0% (2.0%)

λ′
223 48.2% (−) 1.1% (−) 0.4% (14.2%) 0.8% (29.3%) 0.5% (18.2%) 1.0% (38.4%)

λ′
231 17.9% (−) 0.4% (−) − (−) − (−) 20.7% (32.1%) 43.0% (67.9%)

λ′
232 48.8% (−) 1.1% (−) − (−) − (−) 0.4% (32.5%) 0.8% (67.5%)

λ′
233 49.4% (49.4%) 1.1% (1.1%) − (−) − (−) − (−) − (−)

Set B λ′
211 49.0% (48.6%) 1.7% (1.7%) − (0.1%) 0.1% (0.4%) − (0.1%) 0.1% (0.5%)

λ′
212 49.1% (−) 1.7% (−) − (5.6%) − (41.1%) − (6.3%) − (46.9%)

λ′
213 49.0% (−) 1.7% (−) − (5.7%) 0.1% (41.0%) − (6.4%) 0.1% (46.9%)

λ′
221 49.1% (−) 1.7% (−) − (5.6%) − (41.0%) − (6.3%) − (47.0%)

λ′
222 49.1% (49.1%) 1.7% (1.7%) − (−) − (−) − (−) − (−)

λ′
223 49.1% (−) 1.7% (−) − (5.7%) − (41.0%) − (6.4%) − (47.0%)

λ′
231 49.1% (−) 1.7% (−) − (−) − (−) − (12.0%) 0.1% (88.0%)

λ′
232 49.1% (−) 1.7% (−) − (−) − (−) − (12.0%) − (88.0%)

λ′
233 49.1% (49.1%) 1.7% (1.7%) − (−) − (−) − (−) − (−)

Table C.4.: Branching ratios of the τ̃1 LSP in sets A and B for different non-zero λ′
2jk couplings at

the GUT scale. The branching ratios are calculated within the mSUGRA parameter
Set A for the SUSY breaking scale Qsusy = 893 GeV and in Set B for the SUSY
breaking scale Qsusy = 1209 GeV. We assume down-type (up-type) quark mixing.
Branching ratios for non-vanishing λ′

1jk are analogous, with µ replaced by e.223



C. Slepton production and decay in specific B3 mSUGRA models
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Figure C.1.: Partial width in GeV for the 3-body decay ẽL → W−b̄d as a function of the selectron
mass mẽL

. We take λ′
131 = 0.01 and U ẽ

11 = 1 and mν̃ = 400 GeV in Eq. (C.7).

∑

∣

∣

∣
Mν̃

(

ℓ̃−ai → W−b̄dk

)

∣

∣

∣

2
=

3λ
′2
i3k

(

U ℓ̃i
1a

)2
g2

[

(dk + b)2 − m2
ν̃i

]2

×
{

− 4(dk ·b)
[

m2
b + m2

dk
+ 2(dk ·b) −

[(W ·b) + (W ·dk)]
2

m2
W

] }

,

∑

2Re
{

(

Mt

)∗Mν̃

}

=
3λ

′2
i3k

(

U ℓ̃i
1a

)2
g2

[

(W + b)2 − m2
t

] [

(dk + b)2 − m2
ν̃i

]

×
{

4m2
dk

(

m2
b + (W ·b)

)

− 4m2
b (W ·d)

(

1 +
(W ·d) + (W ·b)

m2
W

)

− 4(dk ·b)
[

m2
b + (W ·d) + 2(dk ·b) − (W ·b)

(

1 + 2
(W ·d) + (W ·b)

m2
W

)]}

.

(C.8)

We denote the particle four-momenta by the particle letter, and mt, mb, and mW , are the

top, bottom and W mass, respectively. Γt is the total width of the top quark.

From the summed squared matrix elements we obtain easily the partial width for the

3-body decay (C.5), see e. g. [201]. We show in Fig. C.1 the partial width Γ(ẽL → W−b̄d) as

a function of the left-handed selectron mass mẽL . Here we consider λ′
131 = 0.01 and U ẽ

11 = 1

and mν̃ = 400 GeV, in Eq. (C.7). The amplitude Eq. (C.7) gives the dominant contribution,

the decay via a virtual sneutrino and the interference contribution are suppressed by the

typically heavy sneutrino mass.

In comparison to the 3-body decay (C.5), the possible 4-body decays via λ′
i3k are negli-

gible. For example for the parameter Set B with non-vanishing λ′
331, the branching ratio

of the 3-body τ̃1 LSP decay (C.5) is larger by five orders of magnitude than the branching

ratio of the 4-body τ̃1 LSP decays.
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