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Abstract

In this thesis, we consider equation systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where fi(X1, . . . ,Xn) is, for all i ∈ {1, . . . , n}, an expression built up from real-valued
variables X1, . . . ,Xn, nonnegative real constants, and the operators multiplication, addition,
minimum and maximum. We call such an equation system positive and denote it in vector
form by X = f(X). The least solution is called µ, i.e., µ is the least fixed point of f .

Positive equation systems appear naturally in the analysis of stochastic models like
stochastic context-free grammars (with numerous applications to natural language process-
ing and computational biology), probabilistic programs with procedures, web-surfing models
with back buttons, branching processes, and termination games. The solution µ of a pos-
itive equation system X = f(X) is of central interest for these models. Efficient methods
to compute µ are the main subject of this thesis.

For positive equation systems without minimum or maximum operator, Newton’s method
for approximating a zero of a differentiable function can be applied to approximate µ. In
the first part of the thesis, we study in detail the convergence speed of Newton’s method
for such equation systems and show, in particular, that Newton’s method converges at least
linearly to µ. We also give concrete bounds on the convergence rate.

To compute the least fixed point of general positive equation systems with minimum
and maximum operators, Newton’s method cannot be directly used. In the second part, we
suggest two algorithms that combine Newton’s method with linear programming. We show
that these methods converge linearly to µ and give bounds on the convergence rate. We
also show that one of those methods can be used to compute near-optimal strategies for the
game associated with positive equation systems.





Acknowledgments

This thesis would not have been possible without the guidance, generosity and goodwill
of many people. I feel grateful and indebted to have received all their help.

This applies, first and foremost, to my supervisor Prof. Javier Esparza, who has always
had time for me. Countless fruitful discussions with him, his intelligent insights, and his
continuous invaluable support have made this thesis possible. His inspiring personality will
have a long-lasting influence on my future life.

Large parts of this thesis result from joint work with my colleague and friend Michael
Luttenberger, whose ingenuity and hard work were indispensable for the results on Newton’s
method. I would like to express my gratitude to Prof. Helmut Seidl, who suggested the
extensions to minimum and maximum operators, and to Thomas Gawlitza for a very friendly,
intense and fruitful collaboration. Special thanks go to Prof. Hans-Joachim Bungartz for
being a referee of this thesis and to Prof. Volker Diekert for his support in Stuttgart.

I want to thank the Universität Stuttgart, the Technische Universität München, and the
Deutsche Forschungsgemeinschaft (DFG), which all provided essential financial and organi-
zational support.

My colleagues made my time in Stuttgart and Munich a pleasure. The great atmosphere
in our group was, in particular, due to Michael Luttenberger, Stefan Schwoon, and De-
jvuth Suwimonteerabuth, who were always ready for both work and amusement. I thank
them and many other former and present colleagues for contributing to the perfect working
environment in Prof. Esparza’s group.

My parents were and are the source of encouragement, love and support throughout the
years. Thank you for everything.





Contents

Outline 1

0 Introduction 3

0.1 Systems of Positive Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Systems of Positive Min-Max Polynomials . . . . . . . . . . . . . . . . . . . . 11

1 Systems of Positive Polynomials 16

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Systems of Positive Polynomials . . . . . . . . . . . . . . . . . . . . . 17

1.1.3 Convergence Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.4 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Newton’s Method and an Overview of Our Results . . . . . . . . . . . . . . . 21

1.3 Fundamental Properties of Newton’s Method . . . . . . . . . . . . . . . . . . 22

1.3.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.3 Exponential Convergence Order in the Nonsingular Case . . . . . . . . 28

1.3.4 Reduction to the Quadratic Case . . . . . . . . . . . . . . . . . . . . . 30

1.4 Strongly Connected SPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Cone Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.2 Convergence Speed in Terms of Cone Vectors . . . . . . . . . . . . . . 34

1.4.3 Convergence Speed Independent from Cone Vectors . . . . . . . . . . 37

1.4.4 Upper Bounds on the Least Fixed Point Via Newton Approximants . 42

1.5 General SPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5.1 Convergence Speed of the Decomposed Newton Method (DNM) . . . 45

1.5.2 Convergence Speed of Newton’s Method . . . . . . . . . . . . . . . . . 48

1.6 Upper Bounds on the Convergence . . . . . . . . . . . . . . . . . . . . . . . . 49

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



ii Contents

2 Systems of Positive Min-Max-Polynomials 52

2.1 Preliminaries and a Fundamental Theorem . . . . . . . . . . . . . . . . . . . 52

2.1.1 Power Series and Some Convexity Properties of SPPs . . . . . . . . . 52

2.1.2 Min-Max-SPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 A Class of Applications: Extinction Games . . . . . . . . . . . . . . . . . . . 57

2.3 The τ -Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 The ν-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Generalizing Newton’s Method: An Epilogue 77

A Proofs of Chapter 1 82

A.1 Proof of Lemma 1.49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B Proofs of Chapter 2 86

B.1 Proof of Lemma 2.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.2 Proof for the Claims in Example 2.41 . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 89



Outline

In this thesis, we consider equation systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where fi(X1, . . . ,Xn) is, for all i ∈ {1, . . . , n}, an expression built up from the real-valued
variables X1, . . . ,Xn, nonnegative real constants, and the operators multiplication, addition,
minimum and maximum. We call such an equation system positive and denote it in vector
form by X = f(X). The least solution is called µ, i.e., µ is the least fixed point of f .

Positive equation systems appear naturally in the analysis of stochastic models like
stochastic context-free grammars (with numerous applications to natural language process-
ing and computational biology), probabilistic programs with procedures, web-surfing models
with back buttons, branching processes, and termination games. The solution µ of a positive
equation system X = f(X) is of central interest for these models. Efficient methods to com-
pute µ are the main subject of this thesis. Chapter 0 contains an extensive introduction
to the topic. All results are contained in Chapter 1 and Chapter 2.

In Chapter 1, the expressions fi are restricted to be polynomials with nonnegative
coefficients, i.e., the operators minimum and maximum are not allowed. For such equation
systems, Etessami and Yannakakis [EY09] suggested to use Newton’s method, the classical
approximation technique in numerical analysis. More precisely, their algorithm decomposes
the equation system in strongly connected components (where each variable depends directly
or indirectly on every other variable) and applies Newton’s method in each component. In
Chapter 1 we extend and improve Etessami and Yannakakis’ results. More concretely, we
show:

• If Newton’s method is started at the vector 0, it converges monotonically to µ, no
matter if the equation system is strongly connected or not.

• Newton’s method converges to µ at least linearly, i.e., the number of valid bits is at
least a linear function of the number of iterations performed. In addition, we show:

– For strongly connected systems X = f(X), there is a “threshold” kf such that
for all i ≥ 0, the (kf + i)-th Newton iterate, has at least i valid bits. By “at least
i valid bits” we mean that, in each component, the relative error of the Newton
iterate is at most 2−i. In addition, we give concrete upper bounds on kf .

– For systems that are not strongly connected, the convergence rate (i.e., the num-
ber of additional valid bits per iteration) is poorer. We provide bounds for the
convergence rate and show that they are essentially tight.



2 Outline

In Chapter 2, we consider general positive equation systems, i.e., we allow minimum and
maximum operators. Such equation systems arise in population models where two players
are allowed to influence certain individuals; one player (the terminator) strives to extinguish
the population, the other player (the savior) has the opposite objective. Newton’s method,
directly applied to such equation systems, does not always converge to µ. However, it can
be adapted to a method which converges linearly to µ. More concretely, we obtain the
following results:

• We propose two extensions of Newton’s method that both approximate µ for any
positive equation system. We show that both of them converge monotonically and
linearly to µ.

• One of the proposed algorithms computes, as a byproduct, for each iterate ν, a strategy
for the terminator that guarantees the terminator a winning probability of at least ν.
Since the iterates converge to µ, these strategies are near-optimal.

Chapter 2 builds on results of Chapter 1, but Chapter 2 can be understood without
studying Chapter 1 in detail. We provide conclusions of our work at the end of Chapter 1
and Chapter 2, respectively.

The main themes of this work are fixed-point equations, and variants of Newton’s method
to solve them. This thesis ends with a kind of “epilogue” in Chapter 3, which sketches a
generalization of positive fixed-point equations to fixed-point equations in semirings. Such
equation systems can be solved using a generalization of Newton’s method, and several
results of this thesis find an analogue in a much more general setting.



Chapter 0

Introduction

In this thesis, we consider equation systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where, for all i ∈ {1, . . . , n}, fi(X1, . . . ,Xn) is an expression built up from the real-valued
variables X1, . . . ,Xn, nonnegative real constants, and the operators multiplication, addition,
minimum and maximum. We call such an equation system positive and denote it in vector
form by X = f(X). The least solution is called µ, i.e., µ is the least fixed point of f .

Positive equation systems appear naturally in the analysis of stochastic models like
stochastic context-free grammars (with numerous applications to natural language process-
ing and computational biology), probabilistic programs with procedures, web-surfing models
with back buttons, branching processes, and termination games. The solution µ of a pos-
itive equation system X = f(X) is of central interest for these models. Efficient methods
to compute µ are the main subject of this thesis.

0.1 Systems of Positive Polynomials

In Chapter 1, the expressions fi are restricted to be polynomials with nonnegative coeffi-
cients, i.e., the operators minimum and maximum are not allowed. In this case, f is a vector
of polynomials, which we call a system of positive polynomials, or SPP for short. Figure 0.1
shows the graph of a 2-dimensional SPP equation X = f(X).

Equation systems X = f(X) of this form appear naturally in the analysis of context-free
grammars (with numerous applications to natural language processing [MS99, GJ02] and
computational biology [SBH+94, DEKM98, DE04, KH03]), probabilistic programs with pro-
cedures [EKM04, BKS05, EY09, EY05a, EKM05, EY05b, EY05c], and web-surfing models
with back buttons [FKK+00, FKK+01]. More generally, they play an important role in the
theory of branching processes [Har63, AN72], stochastic processes describing the evolution of
a population whose individuals can die and reproduce. The probability of extinction of the
population is the least solution of such a system, a result whose history goes back to [WG74].

Example 0.1. One instance of the mentioned stochastic models is the web-surfing model
with back buttons from [FKK+00, FKK+01]. Consider three webpages P1, P2, P3 which are
visited by a web surfer as follows.
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X1 = f1(X1,X2)

X2 = f2(X1,X2)

µ

0.2

0.4

0.5

0.6

0.8

1

X1

X2

Figure 0.1: Graphs of the equations X1 = f1(X1,X2) and X2 = f2(X1,X2) with
f1(X1,X2) = X1X2 + 1

4 and f2(X1,X2) = 1
6X2

1 + 1
9X1X2 + 2

9X2
2 + 3

8 . There are two
real solutions in R

2, the least one is labelled with µ.

• If the surfer is at P1, she follows a link to P2 with probability 0.4, or presses the back
button of the browser with probability 0.6.

• At P2, she surfs to P1 with probability 0.3, to P2 with probability 0.4, or presses the
back button with probability 0.3.

• At P3, she surfs to P1 with probability 0.3, or presses the back button with probabil-
ity 0.7.

As usual in web browsers, the history of the visited pages is recorded using a stack. When the
surfer clicks a link from page Pi to Pj, the old page Pi is put on the stack, and Pj becomes
the new current page. When the back button is clicked, the topmost stack symbol is popped
and replaces the current page.

In the analysis of such a web-surfing model [FKK+00, FKK+01], the so-called revocation
probabilities play an important role. The revocation probability of a page P is the probability
that, when currently visiting webpage P and having HnHn−1 . . . H1 as the history stack,
then during subsequent surfing from P the surfer eventually returns to webpage Hn with
Hn−1 . . . H1 as the remaining browser history. In our example, the revocation probabilities
solve the following equation system.




X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




To explain this equation system, consider X1, the revocation probability of P1. If P1 is the
current page, it can be revoked either by pressing the back button or by following the link
to P2 and subsequently revoking both P2 and P1. The probability of the first possibility is 0.6,
the probability of the second possibility is 0.4X2X1.
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In fact, one can show that the revocation probabilities are the least (nonnegative) solution
of the equation system. We will later show for this particular example that, although the
vector (1, 1, 1) is a solution, it is not the least one, which means that there is a positive
probability of never revoking a page.

The least solution is also the relevant solution in the other mentioned models, which
motivates our interest in this solution.

Since SPPs have positive coefficients, x ≤ y implies f(x) ≤ f(y) for x,y ∈ R
n
≥0, i.e.,

the functions f1, . . . , fn are monotone. This guarantees that any feasible SPP, i.e., any SPP
with at least one fixed point, has a least fixed point µ. This fact can be seen by applying
Kleene’s theorem (see for instance [Kui97]) which says that, by monotonicity of f , the
sequence 0,f(0),f(f(0)), . . . converges to the least fixed point µ. We call this sequence the
Kleene sequence and define the Kleene iterates κ(0) = 0 and κ(k+1) = f(κ(k)) for all k ≥ 0.

Example 0.2. Consider the SPP equation X = f(X) from Example 0.1 with

f =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7


 .

Then the first Kleene iterates are approximately:

κ(0) =




0
0
0


 , κ(1) =




0.6
0.3
0.7


 , κ(2) =




0.672
0.438
0.826


 , κ(3) =




0.718
0.533
0.867


 , κ(4) =




0.753
0.600
0.887




Galois theory [Ste00] implies that µ can be irrational and non-expressible by radicals.

Example 0.3. The least fixed point of
1

6
X6 +

1

2
X5 +

1

3
is not expressible by radicals.

Computational Complexity

We briefly present some results on the complexity of computing µ, or, more precisely, of
computing bounds on µ. Let SPP-DECISION be the following problem:

Given an SPP f and a vector v encoded in binary, decide whether µ ≤ v holds.

It is known that SPP-DECISION is in PSPACE:

In order to decide whether µ1 ≤ v holds for the first component of µ1 of the
least fixed point of a 2-dimensional SPP f , one can equivalently decide if the
following formula is true:

∃x1 ∈ R, x2 ∈ R : x1 = f1(x1, x2) ∧ x2 = f2(x1, x2) ∧ x1, x2 ≥ 0 ∧ x1 ≤ a

Such formulas can be decided in PSPACE, because the first-order theory of the
reals is decidable, and its existential fragment is even in PSPACE [Can88].

On the other hand, SPP-DECISION is at least as hard [EY09] as the following problem,
called SQUARE-ROOT-SUM:

Given k + 1 natural numbers n1, . . . , nk and b, decide whether
∑k

i=1

√
ni ≤ b

holds.
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The SQUARE-ROOT-PROBLEM is a natural subproblem of many questions in computa-
tional geometry. For instance, the length of the boundary of a polygon whose vertices lie
in Z

2 is a sum of square roots of integers. It has been a major open problem since the 70s
whether SQUARE-ROOT-SUM belongs to NP.

The following problem is also polynomial-time reducible [EY09] to SPP-DECISION. It is
called PosSLP (positive straight-line program):

Given an arithmetic circuit with integer inputs and gates {+,−, ·}, decide
whether it outputs a positive number.

PosSLP has been recently shown to play a central role in understanding the Blum-Shub-
Smale model of computation, where each single arithmetic operation over the reals can be
carried out exactly and in constant time [ABKPM09].

We conclude that, while SPP-DECISION is in PSPACE, it is unlikely to be in P.

Approximating the Least Fixed Point and Newton’s Method

While the mentioned results on SPP-DECISION provide important information on the com-
plexity of solving SPP equations, for the practical applications mentioned above the prob-
lem of determining if µ exceeds a given bound is less relevant than the complexity of,
given a number i ≥ 0, computing i valid bits of µ, i.e., computing a vector ν such that
|µj − νj | / |µj | ≤ 2−i for every 1 ≤ j ≤ n. In this thesis we study this problem in the Blum-
Shub-Smale model, where each single arithmetic operation over the reals can be carried out
exactly and in constant time.

To approximate µ, one can use the sequence of Kleene iterates κ(k) = fk(0), which
converges to µ by Kleene’s theorem. However, the convergence may be very slow.

Example 0.4. For the 1-dimensional SPP f(X) = 1
2X2 + 1

2 (with µ = 1), the k-th Kleene

iterate κ(k) satisfies κ(k) ≤ 1− 1
k+1 for every i ≥ 0, as shown in [EY09]. Hence, the number

of iterations needed to compute i bits of µ is exponential in i. We call that logarithmic
convergence, because the number of valid bits is a logarithmic function of the number of
iterations. Here are some of the Kleene iterates.

κ(0) = 0, κ(1) = 0.5, κ(2) = 0.625, κ(3) = 0.695, κ(4) = 0.742, κ(5) = 0.775
· · ·

κ(20) = 0.920, . . . , κ(200) = 0.990, . . . , κ(2000) = 0.9990, . . . , κ(20000) = 0.99990, . . .

Faster approximation techniques have been known for a long time. In particular, New-
ton’s method, suggested by Isaac Newton more than 300 years ago, is a standard efficient
technique for approximating a zero of a differentiable function [OR70]. Since a fixed point
of a function f(X) is a zero of F (X) = f(X)−X, the method can be applied to search for
fixed points of f(X).

We briefly recall the method for the case of one variable, see Figure 0.2 for an illustration.
Starting at some value ν(0) “close enough” to the zero of F (X), Newton’s method proceeds
iteratively: given ν(k), we compute a value ν(k+1) closer to the zero than ν(k). For that, we
compute the tangent to F (X) passing through the point (ν(k), F (ν(k))), and take ν(k+1) as
the zero of the tangent (i.e., the X-coordinate of the point at which the tangent cuts the
X-axis). Basic arithmetic leads to:
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0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

ν(0) ν(1) ν(2)

F (X)

Figure 0.2: Newton’s method to find a zero of a one-dimensional function F (X).

ν(k+1) = ν(k) − F (ν(k))

F ′(ν(k))
= ν(k) +

f(ν(k))− ν(k)

1− f ′(ν(k))

Newton’s method can be easily generalized to the multivariate case:

ν(k+1) = ν(k) + (I − f ′(ν(k)))−1(f(ν(k))− ν(k))

where f ′(X) is the Jacobian of f , i.e., the matrix of partial derivatives of f , and I is the
identity matrix. Computing the matrix inverse (I − f ′(ν(k)))−1 can be avoided by solving
the linear equation system

(
I − f ′(ν(k))

)
(x− ν(k)) = f(ν(k))− ν(k) (1)

which is equivalent to
x = f(ν(k)) + f ′(ν(k))(x− ν(k)) .

Notice that f(ν(k))+f ′(ν(k))(x−ν(k)) is the first-order Taylor approximation of f at ν(k),
i.e., in each step, Newton’s method computes a linearization f of f and solves a linear
system X = f(X) rather than the nonlinear system X = f(X).

Example 0.5. Consider the equation system X = f(X) from Examples 0.1 and 0.2 with

f(X) =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7


 .

The Jacobian matrix of partial derivatives is

f ′(X) =




0.4X2 0.4X1 0
0.3X2 0.3X1 + 0.4X3 0.4X2

0.3X3 0 0.3X1


 .

As starting point of Newton’s method we take ν(0) = 0. The next Newton iterate ν(1) can
be obtained by solving (1):




1− 0.4 · 0 −0.4 · 0 0
−0.3 · 0 1− 0.3 · 0− 0.4 · 0 −0.4 · 0
−0.3 · 0 0 1− 0.3 · 0


 ·




x1 − 0
x2 − 0
x3 − 0


 =




0.6− 0
0.3− 0
0.7− 0
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Its only solution is

ν(1) =




0.6
0.3
0.7


 .

The next Newton iterate ν(2) can, again, be obtained by solving (1):




1− 0.4 · 0.3 −0.4 · 0.6 0
−0.3 · 0.3 1− 0.3 · 0.6− 0.4 · 0.7 −0.4 · 0.3
−0.3 · 0.7 0 1− 0.3 · 0.6


 ·




x1 − 0.6
x2 − 0.3
x3 − 0.7




=




0.4 · 0.3 · 0.6 + 0.6− 0.6
0.3 · 0.6 · 0.3 + 0.4 · 0.7 · 0.3 + 0.3− 0.3

0.3 · 0.6 · 0.7 + 0.7− 0.7




Its only solution is

ν(2) =




0.771
0.628
0.898


 .

The next Newton iterates can be obtained similarly:

ν(3) =




0.877
0.812
0.948


 , ν(4) =




0.934
0.899
0.972


 , ν(5) =




0.962
0.942
0.984


 , . . .

Notice that the Newton sequence seems to be faster than the Kleene sequence (Example 0.2).

Example 0.6. Consider again the 1-dimensional SPP f(X) = 1
2X2 + 1

2 (with µ = 1) from

Example 0.4. Starting at ν(0) = 0, the first Newton iterates are:

ν(0) = 0, ν(1) = 1/2, ν(2) = 3/4, ν(3) = 7/8, ν(4) = 15/16, . . .

In fact, it is easy to show that we have ν(k) = 1− 1

2k
for all k ≥ 0. So the k-th iterate has

k valid bits; we say the Newton sequence has linear convergence. This is in sharp contrast
with the Kleene sequence (Example 0.4) which had only logarithmic convergence.

Example 0.7. If the SPP from Example 0.6 is slightly modified to f(X) = 2/3X2 + 1/3,
we get µ = 1/2. Again starting at ν(0) = 0, the first Newton iterates are:

ν(0) = 0, ν(1) = 1
3 ≈ 0.33, ν(2) = 7

15 ≈ 0.47, ν(3) = 127
255 ≈ 0.498,

ν(4) = 32767
65535 ≈ 0.499992, . . .

In fact, it is easy to show that we have ν(k) =
22k−1 − 1

22k − 1
for all k ≥ 0, and so the number of

valid bits of the k-th iterate is approximately 2k; we say the Newton sequence has exponential
convergence.1

Newton’s method has to be used with care because it does not always converge, and
may not even be well-defined. Figure 0.3 illustrates these problems for the equation −X4 +
3X2 + 2 = 0. If Newton’s method is started at +1, it keeps oscillating between +1 and −1.
If it is started at 0.1, it converges to the negative solution at ≈ −1.9, although the positive
solution is closer. If it is started at 0, it is not even well-defined, because the tangent does
not intersect the X-axis (or, more technically, the inverse of 0, i.e., the fraction 1/0, does
not exist).

1In most of the literature, this convergence speed is called quadratic convergence, because the error is
squared in each iteration. Our notion of convergence speed stresses that the precision is a function of the
number of iterations.
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Figure 0.3: Newton’s method for solving −X4 + 3X2 + 2 = 0 may oscillate.

Etessami and Yannakakis have initiated the study of fixed-point equations for SPPs
in [EY09], and shown that a particular version of Newton’s method always converges to µ,
namely a version which decomposes the SPP into strongly connected components (SCCs)2

and applies Newton’s method to them in a bottom-up fashion. Our first result generalizes
Etessami and Yannakakis’: the ordinary Newton method converges to µ for arbitrary SPPs,
provided that µ is nonzero in all components, which is easy to achieve by identifying and
removing the 0-components.

While these results show that Newton’s method can be an adequate algorithm for solving
SPP equations, they provide no information on the number of iterations needed to compute i
valid bits. To the best of our knowledge (and perhaps surprisingly), the rest of the literature
does not contain relevant information either: it has not considered SPPs explicitly, and the
existing results have very limited interest for SPPs, since they do not apply even for very
simple and relevant SPP cases (see Related work below).

We obtain upper bounds on the number of iterations that Newton’s method needs to
produce i valid bits, first for strongly connected and then for arbitrary SPP equations. A
single iteration requires O(n3) arithmetic operations in a system of n equations, because a
linear equation system can be solved by Gauss elimination which takes O(n3) operations.
This immediately gives an upper bound on the time complexity of Newton’s method in the
Blum-Shub-Smale model. We prove that for strongly connected SPP equations X = f(X)
there exists a threshold kf such that, for every i ≥ 0, the (kf + i)-th iteration of Newton’s
method has at least i valid bits of µ. So, loosely speaking, after kf iterations Newton’s
method is guaranteed to compute at least 1 new bit of the solution per iteration; we say
that Newton’s method converges at least linearly with rate 1. Moreover, we show that the
threshold kf can be chosen as

kf = ⌈4mn + 3nmax{0,− log µmin}⌉

where n is the number of polynomials of the SPP, m is such that all coefficients of the SPP
can be given as ratios of m-bit integers, and µmin is the minimal component of µ.

Notice that kf depends on µ, which is what Newton’s method should compute. For this
reason we also obtain bounds on kf depending only on m and n. We show that for arbitrary

2Loosely speaking, a subset of variables and their associated equations form an SCC if the value of any
variable in the subset influences the value of all variables in the subset, see § 1.1 for details.
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strongly connected SPP equations kf = 4mn2n is also a valid threshold. For SPP equations
coming from stochastic models, such as the ones listed at the beginning of this chapter, we
do far better. First, we show that if f(0) is greater than 0 in all components (a condition
that always holds for back-button processes [FKK+00, FKK+01]), then a valid threshold is
kf = 2m(n+1). As a corollary, our result shows that for back-button processes, i valid bits
can be computed in time O(mn4 + in3) in the Blum-Shub-Smale model. Second, we observe
that, since ν(k) ≤ ν(k+1) ≤ µ holds for every k ≥ 0, the Newton iteration itself provides
better and better lower bounds for µmin and thus for kf . We exhibit an SPP for which,
using this fact and our theorem, we can prove that no component of the solution reaches the
value 1. This cannot be proved by just computing more iterations, no matter how many.

For general SPP equations, not necessarily strongly connected, we show that Newton’s
method still converges linearly, albeit the convergence rate is poorer. We expose a family of
SPPs showing that this bound is essentially tight.

Related Work

There is a large body of literature on the convergence speed of Newton’s method for arbitrary
systems of differentiable functions. A comprehensive reference is Ortega and Rheinboldt’s
book [OR70] (see also Chapter 8 of Ortega’s course [Ort72] or Chapter 5 of [Kel95] for a brief
summary). Several theorems (for instance Theorem 8.1.10 of [Ort72]) prove that the number
of valid bits grows linearly, superlinearly, or even exponentially in the number of iterations,
but only under the hypothesis that F ′(x) is non-singular everywhere, in a neighborhood
of µ, or at least at the point µ itself. However, the matrix F ′(µ) can be singular for an
SPP, even for the 1-dimensional SPP f(X) = 1

2X2 + 1
2 .

The general case in which F ′(µ) may be singular for the solution µ the method converges
to has been thoroughly studied. In a seminal paper [Red78], Reddien shows that under
certain conditions, the main ones being that the kernel of F ′(µ) has dimension 1 and that
the initial point is close enough to the solution, Newton’s method gains 1 bit per iteration.
Decker and Kelly obtain results for kernels of arbitrary dimension, but they require a certain
linear map B(X) to be non-singular for all x 6= 0 [DK80]. Griewank observes in [GO81]
that the non-singularity of B(X) is in fact a strong condition which, in particular, can only
be satisfied by kernels of even dimension. He presents a weaker sufficient condition for linear
convergence requiring B(X) to be non-singular only at the initial point ν(0), i.e., it only
requires to make “the right guess” for ν(0). Unfortunately, none of these results can be
directly applied to arbitrary SPPs. The possible dimensions of the kernel of F ′(µ) for an
SPP are to the best of our knowledge unknown, and deciding this question seems as hard
as those related to the convergence rate.3

Kantorovich’s famous theorem (see e.g. Theorem 8.2.6 of [OR70] and [PP80] for an
improvement) guarantees global convergence and only requires F ′ to be non-singular at ν(0).
However, it also requires to find a Lipschitz constant for F ′ on a suitable region and some
other bounds on F ′. These latter conditions are far too restrictive for the applications
mentioned above. For instance, in the back-button model described in Example 0.1, a
webpage may not contain a link such that the product of the probabilities to click the the
link and to press the back button is 1/4 or more. This class of models is too contrived to
be of use.

Summarizing, while the convergence of Newton’s method for systems of differentiable
functions has been intensely studied, the case of SPPs does not seem to have been considered
yet. The results obtained for other classes have very limited applicability to SPPs: either

3More precisely, SPPs with kernels of arbitrary dimension exist, but the cases we know of can be trivially
reduced to SPPs with kernels of dimension 1.
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they do not apply at all, or only apply to contrived SPP subclasses. Moreover, these results
only provide information about the growth rate of the number of valid bits, but not about
the number itself. Our thresholds lead to explicit lower bounds for the number of valid
bits depending only on syntactical parameters: the number of equations and the size of the
coefficients.

0.2 Systems of Positive Min-Max Polynomials

In Chapter 2 we consider again positive equation systems:

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

In this chapter, the expressions fi are min-max polynomials, i.e., they may contain
∧ (minimum) and ∨ (maximum) operators. An example of a min-max polynomial is
3X1X2 + 5X2

1 ∧ 4X2. A vector f of such min-max polynomials is called a system of
positive min-max-polynomials, or min-max-SPP for short.

Min-max-SPPs naturally appear in the study of two-player stochastic games and com-
petitive Markov decision processes, in which, broadly speaking, the next move is decided
by one of the two players or by tossing a coin, depending on the game’s position (see e.g.
[NS03, FV97]). The min and max operators model the competition between the players.
The product operator, which leads to non-linear equations, allows to deal with recursive
stochastic games [EY05c, EY06], a class of games with an infinite number of positions, and
having as special case extinction games, games in which players influence with their actions
the development of a population whose members reproduce and die, and the players’ goals
are to extinguish the population or keep it alive.

Example 0.8. Imagine a patient who has the flu. The doctor has two options:

• she can either not treat him with any medication;

• or she treats him with a newly developed medicine called Muniflu.

If she does not treat him, the probability that the patient recovers without infecting anyone
else is 0.3, but with a probability of 0.7 he infects someone else. If she chooses to treat him
with Muniflu, the therapy takes effect with a probability of 0.9, but with a probability of 0.1
the patient must still be considered as untreated. Letting U (resp. T ) denote the probability
to cure an initially untreated (resp. treated) patient and all people he infects, this gives rise
to the equation

U = 0.3 + 0.7UU ∨ 0.9T + 0.1U ,

where the maximum operator is due to the fact that the doctor will choose the option that
promises a higher probability of extinguishing the flu. We could have more complicated
infection models with probabilities pi to infect i people. In this cases, the term 0.3 + 0.7UU
would be replaced by

∑d
i=0 piU

i for some number d ∈ N, where d must be finite because we
do not consider power series.

A treated flu patient responds to Muniflu as follows. If he has Influenza A, the probability
that he recovers without infecting anybody is 0.35, but with a probability of 0.65 he infects
another (initially untreated) person. If he has Influenza B, the probability that he recovers



12 Chapter 0: Introduction

without infecting anybody is 0.5, but there is a probability of 0.2 to infect another person,
and even a probability of 0.3 to infect two other people. This gives rise to the equation

T = 0.35 + 0.65TU ∧ 0.5 + 0.2TU + 0.3TUU ,

where the minimum operator expresses the fact that the doctor makes her decision based on
a worst-case assumption on the influenza type.

As in the first part of the thesis, the relevant solution is µ, i.e., the least one. It can be
interpreted as the probability to extinguish the flu, assuming that, initially, there is exactly
one flu patient, and assuming that both the doctor (who decides whether she should use
Muniflu) and the flu (which “decides” the influenza type A or B) play optimally.

This scenario is an instance of an extinction game, which are games for two players,
called terminator and savior. The terminator, here the doctor, tries to extinguish the flu
patients (by curing them, of course!), the savior, here the flu, tries to prevent that. The
doctor may also wish to know her optimal strategy, i.e., she wants to know whether she
should use Muniflu or not in order to achieve success probabilities of (at least) µ.

Min-max-SPP equations generalize several other classes of equation systems. If product
of variables is disallowed, we obtain systems of min-max linear equations, which appear in
classical two-person stochastic games with a finite number of game positions. The problem
of solving these systems has been thoroughly studied [Con92, GS07a, GS07b]. If both min
and max are disallowed, we obtain monotone systems of polynomial equations, which are
central to the study of recursive Markov chains and probabilistic pushdown systems, and
are studied in the first part of this thesis. If only one of min or max is disallowed, we obtain
a class of systems corresponding to recursive Markov decision processes [EY05c, EY06]. All
these models have applications in the analysis of probabilistic programs with procedures
[WE07].

As for SPPs, Kleene’s theorem guarantees that if a min-max-SPP has a fixed point
then it also has a least one, denoted by µf or µ, which is also the relevant fixed point
for the applications mentioned above. As for SPPs, Kleene’s theorem also ensures that the
Kleene sequence (κ(k))k∈N with κ(0) = 0 and κ(k+1) = f(κ(k)) converges to µ. However,
as mentioned in § 0.1, this procedure can converge very slowly (“logarithmically”), even
without minimum or maximum operators. Thus, the goal is again to replace the function f

by an operator G : R
n → R

n such that the respective iterative process also converges to µ

but faster. In fact, we would like to use Newton’s method also for min-max-SPPs. However,
we cannot directly use the Newton operator from Definition 1.11 because for arbitrary min-
max-SPPs there is no guarantee that the next approximant still lies below the least solution,
and the sequence of approximants may even diverge.

Example 0.9. Consider the 1-dimensional min-SPP f with f(X) = g(X) ∧ h(X) where

g(X) = 0.7 ·X2 + 0.1 ·X + 0.4 and h(X) = 0.1 ·X2 + 0.1 ·X + 1.4 ,

see Figure 0.4. As f(X) = g(X) ∧ h(X), the graph of f(X) −X is the lower, non-dashed,
part of the graphs of g(X)−X and h(X)−X. The least fixed point of f is µ = 2. The figure
shows what happens if Newton’s method is applied to f(X) − X = 0. In this example we
have 0 = ν(0) < ν(1) < ν(2) > ν(3), so the Newton sequence does not converge to µ, at least
not monotonically. Therefore, Newton’s method cannot be directly used for min-max-SPPs.

For this reason, the tool from [WE07], called PReMo, uses round-robin iteration for
min-max-SPPs, a slight optimization of Kleene iteration. Unfortunately, this technique also
exhibits logarithmic convergence order in the worst case.

In the second part of the thesis we overcome the problem of Newton’s method. Instead
of approximating f at the current approximant ν(k) by a linear function, we approximate
it by a piecewise linear function, as illustrated in the following example.
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Figure 0.4: Newton’s method applied to f(X)−X = 0 with f(X) = g(X) ∧ h(X) does not
converge to µ.

Example 0.10. Consider again the 1-dimensional min-SPP f with f(X) = g(X) ∧ h(X)
from Example 0.9. In Example 0.9 we applied Newton’s method to ν(2) which yielded a
point ν(3) with ν(3) < ν(2). This problem is overcome in two steps:

(1) When Newton’s method linearizes the function f(X) at the point ν(2), it actually lin-
earizes g(X) at ν(2), because f(ν(2)) = g(ν(2)) ∧ h(ν(2)) = g(ν(2)). In our “repaired”
Newton’s method, we compute linearizations of both g(X) and h(X) at ν(2), say g(X)
and h(X). Then we let f(X) := g(X)∧h(X) and look for solutions of f(X)−X = 0,
see Figure 0.5.

(2) In the example, the piecewise linear equation f(X) − X = 0 has two solutions, one
approximately at 0.5, the other one approximately at 1.85, see Figure 0.5. In our
“repaired” Newton’s method, we take as next iterate ν(3) the least solution that is
greater than the current iterate ν(2).

The approach of Example 0.10 can be suitably generalized to multidimensional min-
SPPs. We can also treat maximum operators. In fact, we offer two methods that solve
multidimensional min-max-SPP equations, which differ in the treatment of maximum oper-
ators. This is illustrated in the next example.

Example 0.11. Consider the 1-dimensional max-SPP f with f(X) = g(X) ∨ h(X) where

g(X) = 0.5 ·X2 + 0.7 ·X + 0.04 and h(X) = 0.1 + 2.2 ·X2 ,

see Figure 0.6. As f(X) = g(X) ∨ h(X), the graph of f(X)−X is the upper, non-dashed,
part of the graphs of g(X) − X and h(X) − X. The least fixed point of f is µ = 0.2. To
approximate it, we start again at the point 0. We offer two methods to compute the next
approximant.
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Figure 0.5: The “repaired” Newton’s method: Both g(X) and h(X) are linearized at the
current iterate ν(2), leading to a piecewise linear function f(X). The next approximant ν(3)

is the least solution of f(X)−X that is greater than ν(2).
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Figure 0.6: There are two methods to approximate the least fixed point µ of the function
g(X) ∨ h(X). One leads to ν(1) as the first iterate, the other one to τ (1).
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(a) We treat the maximum operator in the same way as the minimum operator, cf. Ex-
ample 0.10. That is, we compute linearizations of both g(X) and h(X) at 0, say g(X)
and h(X). Then we let f(X) := g(X)∨h(X) and take as the next iterate τ (1) the least
solution of f(X)−X = 0 that is greater than the current iterate 0, see Figure 0.6.

(b) We use the “raw” form of Newton’s method. That is, we linearize f at 0. Since
f(0) = g(0) ∨ h(0) = h(0), the linearization of f equals the linearization h of h at 0.
We take as the next iterate ν(1) the least solution of h(X)−X = 0 that is greater than
the current iterate 0, see Figure 0.6.

The approach of Example 0.10 to treat minimum operators can be combined with either
of the approaches of Example 0.11 to treat maximum operators. This gives us two methods
that iteratively approximate the least fixed point of arbitrary min-max-SPPs of arbitrary
dimension. Since the algorithms are based on Newton’s method, we can use the results of
the first part of the thesis to show that both algorithms converge linearly to µ, i.e., the
number of valid bits is at least a linear function of the number of iterations.

The method based on the idea of Example 0.11 (a), is called τ -method. In each step,
it solves an equation system X = f(X) where each component of the vector f(X) is an
expression built up from linear (degree at most 1) polynomials and minimum and maximum
operators. Such an equation system can be solved using a method from [GS07b] which is
based on linear programming and strategy iteration.

The method based on the idea of Example 0.11 (b), is called ν-method. In each step,
it solves an equation system X = f(X) where each component of the vector f(X) is an
expression built up from linear (degree at most 1) polynomials and minimum operators, but
without maximum operators. The solution of such an equation system can be found by
solving one linear programming (LP) problem.

Both methods converge monotonically to µ, i.e., all approximants are lower bounds on µ,
and the approximants converge to µ. One step of the τ -method is more expensive than one
step of the ν-method, but converges faster to µ. This can, in fact, already be observed in
Example 0.11.

For min-max-SPPs derived from extinction games, the ν-method computes, as a byprod-
uct, good strategies for the terminator. More precisely, the ν-method computes, along with
each approximant ν(k), a strategy for the terminator that guarantees her/him termination
probabilities of at least the current approximant ν(k). In other words, not only obtains the
terminator lower bounds ν(k) on µ (the success probability if both players play optimally),
but also learns how to play in order to achieve at least ν(k). Since the ν(k) converge to µ, we
say the computed strategies are ε-optimal. Applied to Example 0.8, this means the doctor
will find out what to do in order to achieve a near-optimal curing probability, i.e., she will
find out whether she should treat the patients with Muniflu or not.



Chapter 1

Systems of Positive Polynomials

In this chapter we study systems of positive polynomials (SPPs) and Newton’s method to
compute the least fixed point of SPPs. § 1.1 defines SPPs and describes their applications to
stochastic systems. § 1.2 presents a short summary of our main theorems. § 1.3 proves some
fundamental properties of Newton’s method for SPP equations. § 1.4 and § 1.5 contain
our results on the convergence speed for strongly connected and general SPP equations,
respectively. § 1.6 shows that the bounds are essentially tight. § 1.7 contains conclusions.

1.1 Preliminaries

In this section we fix our notation, formalize the concepts mentioned in the introduction,
and describe some stochastic models whose analysis leads to SPPs.

1.1.1 Notation

As usual, R and N denote the set of real, respectively natural numbers. We assume 0 ∈ N.
R

n denotes the set of n-dimensional real valued column vectors and R
n
≥0 the subset of

vectors with nonnegative components. We use bold letters for vectors, e.g. x ∈ R
n, where

we assume that x has the components x1, . . . , xn. Similarly, the i-th component of a function
f : R

n → R
n is denoted by fi. We define 0 := (0, . . . , 0)⊤ and 1 := (1, . . . , 1)⊤ where the

superscript ⊤ indicates the transpose of a vector or a matrix. Let ‖·‖ denote some norm
on R

n. Sometimes we use explicitly the maximum norm ‖·‖∞ with ‖x‖∞ := max1≤i≤n |xi|.

The partial order ≤ on R
n is defined as usual by setting x ≤ y if xi ≤ yi for all 1 ≤ i ≤ n.

Similarly, x < y if x ≤ y and x 6= y. Finally, we write x ≺ y if xi < yi for all 1 ≤ i ≤ n,
i.e., if every component of x is smaller than the corresponding component of y.

We use X1, . . . ,Xn as variable identifiers and arrange them into the vector X. In the
following n always denotes the number of variables, i.e., the dimension of X. While x,y, . . .
denote arbitrary elements in R

n or R
n
≥0, we write X if we want to emphasize that a function

is given w.r.t. these variables. Hence, f(X) represents the function itself, whereas f(x)
denotes its value for some x ∈ R

n.

If S ⊆ {1, . . . , n} is a set of components and x a vector, then by xS we mean the vector
obtained by restricting x to the components in S.
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Let S ⊆ {1, . . . , n} and S = {1, . . . , n}\S. Given a function f(X) and a vector xS , then
f [S/xS ] is obtained by replacing, for each s ∈ S, each occurrence of Xs by xs and removing
the s-component. In other words, if f(X) = f(XS ,XS), then f [S/xS ](yS) = fS(xS ,yS).
For instance,

if f

(
X1

X2

)
=

(
X1X2 + 0.5
X2

2 + 0.2

)
, then f [{2}/0.5] : R→ R, X1 7→ 0.5X1 + 0.5 .

R
m×n denotes the set of matrices having m rows and n columns. The transpose of a

vector or matrix is indicated by the superscript ⊤. The identity matrix of R
n×n is denoted

by I.

The matrix star (or Neumann series) of A ∈ R
n×n is defined by A∗ =

∑
k∈N

Ak. It is
well-known [BP79] that A∗ exists if and only if the spectral radius of A is less than 1, i.e.,
max{|λ| | λ is an eigenvalue of A} < 1. If A∗ exists, then A∗ = (I −A)−1.

The partial derivative of a function f(X) : R
n → R with respect to the variable Xi is

denoted by ∂Xi
f . The Jacobian of a function f(X) with f : R

n → R
m is the matrix f ′(X)

defined by

f ′(X) =




∂X1
f1 . . . ∂Xn

f1

...
...

∂X1
fm . . . ∂Xn

fm


 .

1.1.2 Systems of Positive Polynomials

Definition 1.1. A function f(X) with f : R
n
≥0 → R

n
≥0 is a system of positive polynomials

(SPP) if every component fi(X) is a polynomial in the variables X1, . . . ,Xn with coefficients
in R≥0. We call an SPP f(X) feasible if y = f(y) for some y ∈ R

n
≥0. An SPP is called

linear (resp. quadratic) if all polynomials have degree at most 1 (resp. 2).

Notice that every SPP f is monotone on R
n
≥0, i.e., for 0 ≤ x ≤ y we have f(x) ≤ f(y).

We will need the following lemma, a version of Taylor’s theorem.

Lemma 1.2 (Taylor). Let f be an SPP and x,u ≥ 0. Then

f(x) + f ′(x)u ≤ f(x + u) ≤ f(x) + f ′(x + u)u .

Proof. It suffices to show this for a multivariate polynomial f(X) with nonnegative coeffi-
cients. Consider g(t) = f(x + tu). We then have

f(x + u) = g(1) = g(0) +

∫ 1

0

g′(s) ds = f(x) +

∫ 1

0

f ′(x + su)u ds.

The result follows as f ′(x) ≤ f ′(x + su) ≤ f ′(x + u) for s ∈ [0, 1].

Since every SPP is monotone and continuous, Kleene’s fixed-point theorem (see
e.g. [Kui97]) applies.

Theorem 1.3 (Kleene’s fixed-point theorem). Every feasible SPP f has a least fixed
point µf in R

n
≥0, i.e., µf = f(µf) and, in addition, y = f(y) implies µf ≤ y. Moreover,

the sequence (κ
(k)
f )k∈N with κ

(k)
f = fk(0) is monotonically increasing with respect to ≤ (i.e.,

κ
(k)
f ≤ κ

(k+1)
f )) and converges to µf .



18 Chapter 1: Systems of Positive Polynomials

In the following we call (κ
(k)
f )k∈N the Kleene sequence of f , and drop the subscript

whenever f is clear from the context. Similarly, we write µ instead of µf .

An SPP f is clean if µ ≻ 0. It is easy to see that, if κ
(n)
i = 0, we have κ

(k)
i = 0 for all

k ∈ N, which implies µi = 0 by Theorem 1.3. So we can “clean” an SPP f in time linear in

the size of f by determining the components i with κ
(n)
i = 0 and removing them.

Example 1.4. Consider the following SPP equation X = f(X).




X1

X2

X3

X4


 =




1
4X2 + 3

4X2
1

1
3X3 + 2

3X1
1
2X4 + 1

2

X2
4




The first Kleene iterates are

κ(0) =




0

0

0

0


 , κ(1) =




0

0
1
2

0


 , κ(2) =




0
1
6
1
2

0


 , κ(3) =




1
24
1
6
1
2

0


 , κ(4) =




11
256
7
36
1
2

0


 ,

so µ4 = 0 and µ1, µ2, µ3 > 0. Since, at this stage, we are only interested in whether the
components of µ are zero or not, we need not actually compute the exact values of κ(k).
Rather, the following abstraction suffices:

κ(0) =




0

0

0

0


 , κ(1) =




0

0

> 0

0


 , κ(2) =




0

> 0

> 0

0


 , κ(3) =




> 0

> 0

> 0

0


 , κ(4) =




> 0

> 0

> 0

0




So, the clean version f of f is obtained by removing component 4:




X1

X2

X3


 =




1
4X2 + 3

4X2
1

1
3X3 + 2

3X1
1
2




Notation 1.5. In the following, we always assume that an SPP f is clean and feasible.
That is, whenever we write “SPP”, we mean “clean and feasible SPP”, unless explicitly
stated otherwise.

We will also need the notion of dependence between variables.

Definition 1.6. Let f(X) be a polynomial. We say, f(X) contains a variable Xi if
∂Xi

f(X) is not the zero-polynomial.

Definition 1.7 (dependence, scSPP). Let f(X) be an SPP. A component i depends di-
rectly on a component k if fi(X) contains Xk. A component i depends on k if either i
depends directly on k or there is a component j such that i depends on j and j depends
on k. The components {1, . . . , n} can be partitioned into strongly components (SCCs) where
an SCC S is a maximal set of components such that each component in S depends on every
other component in S. An SCC is called trivial if it consists of a single component that does
not depend on itself. An SPP is strongly connected (short: an scSPP) if {1, . . . , n} is a
non-trivial SCC.
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Example 1.8. In the clean SPP f from Example 1.4 with

f(X) =




1
4X2 + 3

4X2
1

1
3X3 + 2

3X1
1
2


 ,

component 1 depends on components 1 and 2, component 2 depends on components 1 and 3,
and component 3 depends on no component. Hence, the SCCs are {1, 2} and {3}. The SCC
{3} is a trivial SCC.

1.1.3 Convergence Speed

We will analyze the convergence speed of Newton’s method. To this end we need the notion
of valid bits.

Definition 1.9. Let f be an SPP. A vector x has i valid bits of the least fixed point µ if

|µj − xj |
|µj |

≤ 2−i

for every 1 ≤ j ≤ n. Let (x(k))k∈N be a sequence with 0 ≤ x(k) ≤ µ. Then the convergence
order β : N→ N of the sequence (x(k))k∈N is defined as follows: β(k) is the greatest natural
number i such that x(k) has i valid bits (or ∞ if such a greatest number does not exist). We
will always mean the convergence order of the Newton sequence (ν(k))k∈N, unless explicitly
stated otherwise.

According to Definition 1.9, a vector x has i valid bits of µ, if the binary representations
of x and µ, rounded to i binary places in all components, coincide.

We say that a sequence has logarithmic, linear, exponential, etc. convergence order if the
function β(k) grows logarithmically, linearly, or exponentially in k, respectively. Example of
sequences with logarithmic, linear, and exponential convergence order are given in Examples
0.4, 0.6, and 0.7, respectively.

1.1.4 Stochastic Models

As mentioned in the introduction, several problems concerning stochastic models can be
reduced to problems about the least fixed point µ of an SPP f . In these cases, µ is a vector
of probabilities, and so µ ≤ 1.

Probabilistic Pushdown Automata

Our study of SPPs was initially motivated by the verification of probabilistic pushdown
automata. A probabilistic pushdown automaton (pPDA) is a tuple P = (Q,Γ, δ,Prob) where
Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q× Γ×Q× Γ∗ is a finite
transition relation (we write pX −֒→ qα instead of (p,X, q, α) ∈ δ), and Prob is a function
which to each transition pX −֒→ qα assigns its probability Prob(pX −֒→ qα) ∈ (0, 1] so that

for all p ∈ Q and X ∈ Γ we have
∑

pX −֒→qα Prob(pX −֒→ qα) = 1. We write pX
x−֒→ qα

instead of Prob(pX −֒→ qα) = x. A configuration of P is a pair qw, where q is a control state
and w ∈ Γ∗ is a stack content. A probabilistic pushdown automaton P naturally induces
a possibly infinite Markov chain with the configurations as states and transitions given by:
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pXβ
x−֒→ qαβ for every β ∈ Γ∗ iff pX

x−֒→ qα. We assume w.l.o.g. that if pX
x−֒→ qα is a

transition then |α| ≤ 2.

pPDAs and the equivalent model of recursive Markov chains have been very thoroughly
studied [EKM04, BKS05, EY09, EY05a, EKM05, EY05b, EY05c]. This work has shown
that the key to the analysis of pPDAs are the termination probabilities [pXq], where p
and q are states, and X is a stack letter, defined as follows (see e.g. [EKM04] for a more
formal definition): [pXq] is the probability that, starting at the configuration pX, the pPDA
eventually reaches the configuration qε (empty stack). It is not difficult to show that the
vector of these probabilities is the least solution of the SPP equation system containing the
equation

〈pXq〉 =
∑

pX
x−֒→rY Z

x ·
∑

t∈Q

〈rY t〉 · 〈tZq〉 +
∑

pX
x−֒→rY

x · 〈rY q〉 +
∑

pX
x−֒→qε

x

for each triple (p,X, q). Call this quadratic SPP the termination SPP of the pPDA (we
assume that termination SPPs are clean, and it is easy to see that they are always feasible).

Example 1.10. We model the spread of a disease using a simple probabilistic pushdown
automaton (Q,Γ, δ,Prob) with Q = {res , eff }, Γ = {X} and δ,Prob as follows.

res X
0.7−֒−→ res XX

res X
0.2−֒−→ res ε

res X
0.1−֒−→ eff X

eff X
0.3−֒−→ eff XX

eff X
0.6−֒−→ eff ε

eff X
0.1−֒−→ res X

So, all configurations have either the form res Xk or the form eff Xk for some k ≥ 0. The
control state eff in a configuration indicates that an effective medication against the disease
is available, whereas the control state res indicates that there is no or no effective medication,
because, e.g., the disease has developed a resistance against the medication. The number of
X-symbols in the configuration models the number of infected people. The rules above model
how the disease spreads, depending on the availability of effective medication, and how the
availability of effective medication may change. If there is initially one infected person
with no available medication, the termination probability [resXeff ] (resp. [resXres ]) is the
probability that the disease is finally eradicated, with effective medication available (resp.
unavailable). The number 1− [resXeff ]− [resXres ] can be understood as the probability of
a pandemic. The termination probabilities are the least solution of the following system of
equations:

〈resXres 〉 = 0.7 · (〈resXres 〉 · 〈resXres 〉+ 〈resXeff 〉 · 〈effXres 〉)
+ 0.2 + 0.1〈eff Xres 〉

〈resXeff 〉 = 0.7 · (〈resXres 〉 · 〈resXeff 〉+ 〈resXeff 〉 · 〈effXeff 〉) + 0.1 · 〈effXeff 〉
〈effXeff 〉 = 0.3 · (〈effXeff 〉 · 〈effXeff 〉+ 〈effXres 〉 · 〈resXeff 〉)

+ 0.6 + 0.1〈resXeff 〉
〈effXres 〉 = 0.3 · (〈effXeff 〉 · 〈effXres 〉+ 〈effXres 〉 · 〈resXres 〉) + 0.1 · 〈resXres 〉

The results of this chapter show that the termination probabilities can be efficiently approx-
imated using Newton’s method.

Strict pPDAs and Back-Button Processes

A pPDA is strict if for all pX ∈ Q × Γ and all q ∈ Q the transition relation contains a

pop-rule pX
x−֒→ qǫ for some x > 0. Essentially, strict pPDAs model programs in which every
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procedure has at least one terminating execution that does not call any other procedure.
The termination SPP of a strict pPDA satisfies f(0) ≻ 0.

In [FKK+00, FKK+01] a class of stochastic processes is introduced to model the behavior
of web-surfers who from the current webpage P can decide either to follow a link to another
page, say Q, with probability ℓPQ, or to press the “back button” with nonzero probability bP

(see Example 0.1 on page 3). These back-button processes correspond to a very special class
of strict pPDAs having one single control state (which in the following we omit), and rules

of the form P
bP−֒→ ε (press the back button from P ) or P

ℓP Q−֒−→ QP (follow the link from
P to Q, remembering P as destination of pressing the back button at Q). The termination
probabilities are given by an SPP equation system containing the equation

〈P 〉 = bP +
∑

P
ℓP Q−֒−→QP

ℓPQ〈Q〉〈P 〉 = bP + 〈P 〉
∑

P
ℓP Q−֒−→QP

ℓPQ〈Q〉

for every webpage P . In [FKK+00, FKK+01] those termination probabilities are called
revocation probabilities. The revocation probability of a page P is the probability that,
when currently visiting webpage P and having HnHn−1 . . . H1 as the stack of previously
visited pages in the browser history, then during subsequent surfing from P the web-surfer
eventually returns to webpage Hn with Hn−1Hn−2 . . . H1 as the remaining browser history.

1.2 Newton’s Method and an Overview of Our Results

In order to approximate the least fixed point µ of an SPP f we employ Newton’s method:

Definition 1.11. Let f be an SPP. The Newton operator Nf is defined as follows:

Nf (X) := X +
(
I − f ′(X)

)−1
(f(X)−X)

The sequence (ν
(k)
f )k∈N with ν

(k)
f = N k

f (0) is called Newton sequence. We drop the subscript

of Nf and ν
(k)
f when f is understood.

The main results of this chapter concern the application of Newton’s method to SPPs.
We summarize them in this section.

Theorem 1.12 states that the Newton sequence (ν(k))k∈N is well-defined (i.e., the

inverse matrices
(
I − f ′(ν(k))

)−1
exist for every k ∈ N), monotonically increasing and

bounded from above by µ (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µ), and converges to µ. This
theorem generalizes the result of Etessami and Yannakakis in [EY09] to arbitrary SPPs and
to the ordinary Newton’s method.

For more quantitative results on the convergence speed it is convenient to focus on
quadratic SPPs. Theorem 1.26 shows that any SPP can be syntactically transformed into
a quadratic SPP without changing the least fixed point and without accelerating Newton’s
method. This means, one can perform Newton’s method on the original (possibly non-
quadratic) SPP and convergence will be at least as fast as for the corresponding quadratic
SPP.

For quadratic SPPs, one iteration of Newton’s method involves O(n3) arithmetical op-
erations and O(n3) operations in the Blum-Shub-Smale model. Hence, any bound on the
number of iterations needed to compute a given number of valid bits immediately leads to
a bound on the number of operations. In § 1.4 we prove such bounds for strongly connected
quadratic SPPs. We give different thresholds for the number of iterations, and show that
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when any of these thresholds is reached, Newton’s method gains at least one valid bit for
each iteration. More precisely, Theorem 1.40 states the following. Let f be a quadratic
scSPP, let µmin and µmax be the minimal and maximal component of µ, respectively, and
let the coefficients of f be given as ratios of m-bit integers. Then β(kf + i) ≥ i holds for all
i ∈ N and for any of the following choices of kf :

(1) 4mn + ⌈3nmax{0,− log µmin}⌉;

(2) 4mn2n;

(3) 7mn if f satisfies f(0) ≻ 0;

(4) 2m(n + 1) if f satisfies both f(0) ≻ 0 and µmax ≤ 1.

We further show that Newton iteration can also be used to obtain a sequence of upper
approximations of µ. Those upper approximations converge to µ, asymptotically as fast
as the Newton sequence. More precisely, Theorem 1.43 states the following: Let f be
a quadratic scSPP, let cmin be the smallest nonzero coefficient of f , and let µmin be the

minimal component of µ. Further, for all Newton approximants ν(k) with ν(k) ≻ 0, let ν
(k)
min

be the smallest coefficient of ν(k). Then

ν(k) ≤ µ ≤ ν(k) +




∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin ·min{ν(k)
min , 1}

)n




where [s] denotes the vector x with xj = s for all 1 ≤ j ≤ n.

In § 1.5 we turn to general (not necessarily strongly connected) SPPs. We show in The-
orem 1.51 that Newton’s method converges linearly and give a bound on the convergence
rate, i.e., the number of iterations that is asymptotically needed to gain one valid bit. More
precisely, the theorem proves that for every quadratic SPP f , there is a threshold kf ∈ N

such that β(kf + i · n · 2n) ≥ i for all i ∈ N. That is, in the worst case n · 2n extra iterations
are needed in order to get one new valid bit. § 1.6 shows that the bound is essentially tight.

1.3 Fundamental Properties of Newton’s Method

1.3.1 Effectiveness

Etessami and Yannakakis [EY09] suggested to use Newton’s method for SPPs. More pre-
cisely, they showed that the sequence obtained by applying Newton’s method to the equation
system X = f(X) converges to µ as long as f is strongly connected. We extend their result
to arbitrary SPPs, thereby reusing and extending several proofs of [EY09].

In Definition 1.11 we defined the Newton operator Nf and the associated Newton se-
quence (ν(k))k∈N. In this section we prove the following fundamental theorem on the Newton
sequence.

Theorem 1.12. Let f be an SPP. Let the Newton operator Nf be defined as in Defini-
tion 1.11:

Nf (X) := X +
(
I − f ′(X)

)−1
(f(X)−X)

(1) Then the Newton sequence (ν(k))k∈N with ν(k) = N k
f (0) is well-defined (i.e., the ma-

trix inverses exist), monotonically increasing, bounded from above by µ (i.e. ν(k) ≤
f(ν(k)) ≤ ν(k+1) ≤ µ), and converges to µ.
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(2) We have (I − f ′(ν(k)))−1 = f ′(ν(k))∗ for all k ∈ N.
We also have (I − f ′(x))−1 = f ′(x)∗ for all x ≺ µ.

The proof of Theorem 1.12 consists of three steps. In the first proof step we study a
sequence generated by a somewhat weaker version of the Newton operator and obtain the
following:

Proposition 1.13. Let f be an SPP. Let the operator N̂f be defined as follows:

N̂f (X) := X +

∞∑

d=0

(
f ′(X)d(f(X)−X)

)
.

Then the sequence (ν(k))k∈N with ν(k) := N̂ k
f (0) is monotonically increasing, bounded from

above by µ (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µ) and converges to µ.

In a second proof step, we show another intermediary proposition, namely that the star of
the Jacobian matrix f ′ converges for all Newton approximants:

Proposition 1.14. The matrix series f ′(ν(k))∗ := I +f ′(ν(k))+f ′(ν(k))2 + · · · converges
in R≥0 for all Newton approximants ν(k), i.e., there are no ∞ entries.

In the final third step we show that Propositions 1.13 and 1.14 imply Theorem 1.12.

First Step

For the first proof step (i.e., the proof of Proposition 1.13) we will need the following gen-
eralization of Taylor’s theorem.

Lemma 1.15. Let f be an SPP, d ∈ N, and 0 ≤ u, and 0 ≤ x ≤ f(x). Then

fd(x + u) ≥ fd(x) + f ′(x)du .

In particular, by setting u := f(x)− x we get

fd+1(x)− fd(x) ≥ f ′(x)d(f(x)− x) .

Proof. By induction on d. For d = 0 the statement is trivial. Let d ≥ 0. Then, by Taylor’s
theorem (Lemma 1.2), we have:

fd+1(x + u) = f(fd(x + u))

≥ f(fd(x) + f ′(x)du) (induction hypothesis)

≥ fd+1(x) + f ′(fd(x))f ′(x)du (Lemma 1.2)

≥ fd+1(x) + f ′(x)d+1u (fd(x) ≥ x)

Lemma 1.15 can be used to prove the following.

Lemma 1.16. Let f be an SPP. Let 0 ≤ x ≤ µ and x ≤ f(x). Then

x +
∞∑

d=0

(
f ′(x)d(f(x)− x)

)
≤ µ .
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Proof. Observe that

lim
d→∞

fd(x) = µ (1.1)

because 0 ≤ x ≤ µ implies fd(0) ≤ fd(0) ≤ µ and as (fd(0))d∈N converges to µ by
Theorem 1.3, so does (fd(x))d∈N. We have:

x +

∞∑

d=0

(
f ′(x)d(f(x)− x)

)
≤ x +

∞∑

d=0

(
fd+1(x)− fd(x)

)
(Lemma 1.15)

= lim
d→∞

fd(x)

= µ (by (1.1))

Now we can prove Proposition 1.13.

Proof of Proposition 1.13. First we prove the following inequality by induction on k:

ν(k) ≤ f(ν(k)) (1.2)

The induction base (k = 0) is easy. For the step, let k ≥ 0. Then

ν(k+1) = ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

)

= f(ν(k)) +

∞∑

d=1

(
f ′(ν(k))d(f(ν(k))− ν(k))

)

= f(ν(k)) + f ′(ν(k))

∞∑

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

)

≤ f

(
ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

))
(Lemma 1.2)

= f(ν(k+1)) .

Using (1.2), the inequality ν(k) ≤ µ follows from Lemma 1.16 by a straightforward
induction proof. This implies f(ν(k)) ≤ f(µ) = µ. Further we have

f(ν(k)) = ν(k) + (f(ν(k))− ν(k))

≤ ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

)
= ν(k+1) .

(1.3)

So it remains to show that (ν(k))k∈N converges to µ. As we have already shown ν(k) ≤ µ it
suffices to prove κ(k) ≤ ν(k) because (κ(k))k∈N converges to µ by Theorem 1.3. We proceed
by induction on k. The induction base (k = 0) is easy. For the step, let k ≥ 0. Then

κ(k+1) = f(κ(k))

≤ f(ν(k)) (induction hypothesis)

≤ ν(k+1) (by (1.3)) .

This completes the first step towards the proof of Theorem 1.12.
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Second Step

For the second proof step (i.e., the proof of Proposition 1.14) it is convenient to move
to the extended reals R[0,∞], i.e., we extend R≥0 by an element ∞ such that addition
satisfies a + ∞ = ∞ + a = ∞ for all a ∈ R≥0 and multiplication satisfies 0 · ∞ =
∞ · 0 = 0 and a · ∞ = ∞ · a = ∞ for all a ∈ R≥0. In R[0,∞], one can rewrite

N̂ (ν(k)) = ν(k) +
∑∞

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

)
as ν(k) + f ′(ν(k))∗(f(ν(k))− ν(k)). No-

tice that Proposition 1.14 does not follow trivially from Proposition 1.13, because∞ entries
of f ′(ν(k))∗ could be cancelled out by matching 0 entries of f(ν(k))− ν(k).

For the proof of Proposition 1.14 we need several lemmata. In the following, if M is a
matrix, we often write M i

jk resp. M∗
jk when we mean (M i)jk resp. (M∗)jk.

The following lemma assures that a starred matrix has an ∞ entry if and only if it has
an ∞ entry on the diagonal.

Lemma 1.17. Let A = (aij) ∈ R
n×n
≥0 . Let A∗ have an ∞ entry. Then A∗ also has an ∞

entry on the diagonal, i.e., A∗
ii =∞ for some 1 ≤ i ≤ n.

Proof. By induction on n. The base case n = 1 is clear. For n > 1 assume w.l.o.g. that
A∗

1n =∞. We have

A∗
1n = A∗

11

n∑

j=2

a1j(A[2..n,2..n])
∗
jn , (1.4)

where by A[2..n,2..n] we mean the square matrix obtained from A by erasing the first row
and the first column. To see why (1.4) holds, think of A∗

1n as the sum of weights of paths
from 1 to n in the complete graph over the vertices {1, . . . , n}. The weight of a path P is
the product of the weight of P ’s edges, and ai1i2 is the weight of the edge from i1 to i2.
Each path P from 1 to n can be divided into two sub-paths P1, P2 as follows. The second
sub-path P2 is the suffix of P leading from 1 to n and not returning to 1. The first sub-path
P1, possibly empty, is chosen such that P = P1P2. Now, the sum of weights of all possible
P1 equals A∗

11, and the sum of weights of all possible P2 equals
∑n

j=2 a1j(A[2..n,2..n])
∗
jn. So

(1.4) holds.

As A∗
1n =∞, it follows that either A∗

11 or some (A[2..n,2..n])
∗
jn equals∞. In the first case,

we are done. In the second case, by induction, there is an i such that (A[2..n,2..n])
∗
ii =∞. But

then also A∗
ii = ∞, because every entry of (A[2..n,2..n])

∗ is less or equal the corresponding
entry of A∗.

The following lemma treats the case that f is strongly connected (cf. [EY09]).

Lemma 1.18. Let f be non-trivially strongly connected. Let 0 ≤ x ≺ µ. Then f ′(x)∗

does not have ∞ as an entry.

Proof. By Theorem 1.3 the Kleene sequence (κ(i))i∈N converges to µ. Furthermore, κ(i) ≺ µ

holds for all i, because, as every component depends non-trivially on itself, any increase in
any component results in an increase of the same component in a later Kleene approximant.
So, we can choose a Kleene approximant y = κ(i) such that x ≤ y ≺ µ. Notice that
y ≤ f(y). By monotonicity of f ′ it suffices to show that f ′(y)∗ does not have ∞ as an
entry. By Lemma 1.15 (taking x := y and u := µ− y) we have

f ′(y)d(µ− y) ≤ µ− fd(y) .

As d→∞, the right hand side converges to 0, because, by Kleene’s theorem, fd(y) converges
to µ. So the left hand side also converges to 0. Since µ−y ≻ 0, every entry of f ′(y)d must



26 Chapter 1: Systems of Positive Polynomials

converge to 0. Then, by standard facts about matrices (see e.g. Thm. 5.6.12 of [HJ85]), the
spectral radius of f ′(y) is less than 1, i.e., |λ| < 1 for all eigenvalues λ of f ′(y). This, in
turn, implies that the series f ′(y)∗ = I + f ′(y) + f ′(y)2 + · · · converges in R≥0, see [LT85],
page 531. In other words, f ′(y)∗ and hence f ′(x)∗ do not have ∞ as an entry.

The following lemma states that Newton’s method can only terminate in a component s
after certain other components ℓ have reached µℓ.

Lemma 1.19. Let 1 ≤ s, ℓ ≤ n. Let the term f ′(X)∗ss contain the variable Xℓ. Let

0 ≤ x ≤ f(x) ≤ µ and xs < µs and xℓ < µℓ. Then N̂ (x)s < µs.

Proof. This proof follows closely a proof of [EY09]. Let d ≥ 0 such that f ′(X)d
ss contains Xℓ.

Let m′ ≥ 0 such that fm′

(x) ≻ 0 and fm′

(x)ℓ > xℓ. Such an m′ exists because with Kleene’s
theorem the sequence (fk(x))k∈N converges to µ. Notice that our choice of m′ guarantees

f ′(fm′

(x))d
ss > f ′(x)d

ss.

Now choose m ≥ m′ such that fm+1(x)s > fm(x)s. Such an m exists because the
sequence (fk(x)s)k∈N never reaches µs. This is because s depends on itself (since f ′(X)∗ss

is not constant zero), and so every increase of the s-component results in an increase of the
s-component in some later iteration of the Kleene sequence.

We have:

fd+m+1(x)− fd+m(x) ≥ f ′(fm(x))d(fm+1(x)− fm(x)) (Lemma 1.15)

≥∗ f ′(x)d(fm+1(x)− fm(x))

≥ f ′(x)df ′(x)m(f(x)− x) (Lemma 1.15)

= f ′(x)d+m(f(x)− x)

The inequality marked with ∗ (in the second line of the above inequality chain) is strict
in the s-component, due to the choice of d and m above. So, with b = d + m we have:

(f b+1(x)− f b(x))s > (f ′(x)b(f(x)− x))s (1.5)

Again by Lemma 1.15, inequality (1.5) holds for all b ∈ N, but with ≥ instead of >.
Therefore:

µs =
(
x +

∞∑

i=0

(f i+1(x)− f i(x))
)
s

(Kleene)

>
(
x + f ′(x)∗(f(x)− x)

)
s

(inequality (1.5))

=
(
N̂ (x)

)
s

Now we are ready to prove Proposition 1.14.

Proof of Proposition 1.14. Using Lemma 1.17 it is enough to show that f ′(ν(k))∗ss 6=∞ for
all s. If the s-component constitutes a trivial SCC then f ′(ν(k))∗ss = 0 6= ∞. So we
can assume in the following that the s-component belongs to a non-trivial SCC, say S.
Let XL be the set of variables that the term f ′(X)∗ss contains. For any t ∈ S we have
f ′(X)∗ss ≥ f ′(X)∗stf

′(X)∗ttf
′(X)∗ts. Neither f ′(X)∗st nor f ′(X)∗ts is constant zero, because

S is non-trivial. Therefore, f ′(X)∗ss contains all variables that f ′(X)∗tt contains, and vice
versa, for all t ∈ S. So, XL is, for all t ∈ S, exactly the set of variables that f ′(X)∗tt
contains.
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We distinguish two cases.

Case 1: There is a component ℓ ∈ L such that the sequence (ν
(k)
ℓ )k∈N does not terminate,

i.e., ν
(k)
ℓ < µℓ holds for all k. Then, by Lemma 1.19, the sequence (ν

(k)
s )k∈N cannot reach µs

either. In fact, we have ν
(k)
S ≺ µS . Let M denote the set of those components that the S-

components depend on, but do not depend on S. In other words, M contains the components
that are “lower” in the DAG of SCCs than S. Define g(XS) := fS(X)[M/µM ]. Then

g(XS) is strongly connected with µg = µS . As ν
(k)
S ≺ µg, Lemma 1.18 is applicable, so

g′(ν
(k)
S )∗ does not have∞ as an entry. With f ′(ν(k))∗SS ≤ g′(ν

(k)
S )∗, we get f ′(ν(k))∗ss <∞,

as desired.

Case 2: For all components ℓ ∈ L the sequence (ν
(k)
ℓ )k∈N terminates. Let i ∈ N the

least number such that ν
(i)
ℓ = µℓ holds for all ℓ ∈ L. By Lemma 1.19 we have ν

(i)
s < µs.

But as, according to Proposition 1.13, (ν
(k)
s )k∈N converges to µs, there must exist a

j ≥ i such that 0 <
(
f ′(ν(j))∗(f(ν(j))− ν(j))

)
s

< ∞. So there is a component u with

0 < f ′(ν(j))∗su(f(ν(j)) − ν(j))u < ∞. This implies 0 < f ′(ν(j))∗su < ∞, therefore also
f ′(ν(j))∗ss <∞. By monotonicity of f ′, we have f ′(ν(k))∗ss ≤ f ′(ν(j))∗ss <∞ for all k ≤ j.

On the other hand, since f ′(X)∗ss contains only L-variables and ν
(k)
L = µL holds for all

k ≥ j, we also have f ′(ν(k))∗ss = f ′(ν(j))∗ss <∞ for all k ≥ j.

This completes the second intermediary step towards the proof of Theorem 1.12.

Third and Final Step

Now we can use Proposition 1.13 and Proposition 1.14 to complete the proof of Theorem 1.12.

Proof of Theorem 1.12. By Proposition 1.14 the matrix f ′(ν(k))∗ has no ∞ entries. Then
we clearly have f ′(ν(k))∗(I − f ′(ν(k))) = I, so (I − f ′(ν(k)))−1 = f ′(ν(k))∗, which is the
first claim of part (2) of the theorem. Hence, we also have

N̂ (ν(k)) = ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

)

= ν(k) + f ′(ν(k))∗(f(ν(k))− ν(k))

= ν(k) + (I − f ′(ν(k)))−1(f(ν(k))− ν(k))

= N (ν(k)) ,

so we can replace N̂ by N . Therefore, part (1) of the theorem is implied by Proposition 1.13.
It remains to show (I −f ′(x))−1 = f ′(x)∗ for all x ≺ µ. It suffices to show that f ′(x)∗ has
no ∞ entries. By part (1) the sequence (ν(k))k∈N converges to µ. So there is a k′ such that
x ≤ ν(k′). By Proposition 1.14, f ′(ν(k′))∗ has no ∞ entries, so, by monotonicity, f ′(x)∗

has no ∞ entries either.
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1.3.2 Monotonicity

We will use the following monotonicity property of the Newton operator for our convergence
analysis.

Lemma 1.20 (Monotonicity of the Newton operator). Let f be an SPP. Let 0 ≤ x ≤ y ≤
f(y) ≤ µ and let Nf (y) exist. Then

Nf (x) ≤ Nf (y) .

Proof. For x ≤ y we have f ′(x) ≤ f ′(y) as every entry of f ′(X) is a monotone polynomial.
Hence, f ′(x)∗ ≤ f ′(y)∗. With this at hand we get:

Nf (y) = y + f ′(y)∗(f(y)− y) (Theorem 1.12)

≥ y + f ′(x)∗(f(y)− y) (f ′(y)∗ ≥ f ′(x)∗)

≥ y + f ′(x)∗(f(x) + f ′(x)(y − x)− y) (Lemma 1.2)

= y + f ′(x)∗((f(x)− x)− (I − f ′(x))(y − x))

= y + f ′(x)∗(f(x)− x)− (y − x) (f ′(x)∗ =

(I − f ′(x))−1)

= Nf (x) (Theorem 1.12)

1.3.3 Exponential Convergence Order in the Nonsingular Case

If the matrix I − f ′(µ) is nonsingular, Newton’s method has exponential convergence order
in the sense of Definition 1.9.1 This is, in fact, a well known general property of Newton’s
method, see e.g. [OR70]. For completeness, we show that Newton’s method for “nonsingular”
SPPs has exponential convergence order, see Theorem 1.24 below.

Lemma 1.21. Let f be an SPP. Let 0 ≤ x ≤ µ such that f ′(x)∗ exists. Then there is a
bilinear function B : R

n
≥0 × R

n
≥0 → R

n
≥0 with

µ−N (x) ≤ f ′(x)∗B(µ− x,µ− x) .

Proof. Write d := µ− x. By Taylor’s theorem (cf. Lemma 1.2) we obtain

f(x + d) ≤ f(x) + f ′(x)d + B(d,d) (1.6)

for the bilinear map B(X) := f ′′(µ)(X,X), where f ′′(µ) denotes the rank-3 tensor of the
second partial derivatives evaluated at µ [OR70]. We have:

µ−N (x) = d− f ′(x)∗(f(x)− x)

= d− f ′(x)∗(d + f(x)− (x + d))

= d− f ′(x)∗(d + f(x)− f(x + d)) (x + d = µ = f(µ))

≤ d− f ′(x)∗
(
d− f ′(x)d−B(d,d)

)
(by (1.6))

= d− f ′(x)∗
(
(I − f ′(x))d−B(d,d)

)

= d− d + f ′(x)∗B(d,d) (f ′(x)∗ = (I − f ′(x))−1)

= f ′(x)∗B(d,d)

1In numerical analysis, the terms “quadratic convergence” or “Q-quadratic convergence” are commonly
used, see e.g. [OR70]. It means that the error e′ of the new approximant is bounded by c · e2 where e is
the error of the old approximant and c > 0 is some constant. “Quadratic convergence” implies exponential
convergence order in the sense of Definition 1.9. We avoid the notion of “quadratic convergence” in the
following.
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Define for the following lemmata ∆(k) := µ−ν(k), i.e., ∆(k) is the error after k Newton

iterations. The following lemma bounds
∥∥∥∆(k+1)

∥∥∥ (see § 1.1.1 for notation) in terms of
∥∥∥∆(k)

∥∥∥
2

if I − f ′(µ) is nonsingular.

Lemma 1.22. Let f be an SPP such that I−f ′(µ) is nonsingular. Then there is a constant
c > 0 such that ∥∥∥∆(k+1)

∥∥∥ ≤ c ·
∥∥∥∆(k)

∥∥∥
2

for all k ∈ N.

Proof. As I − f ′(µ) is nonsingular, we have, by Theorem 1.12, (I − f ′(x))−1 = f ′(x)∗ for
all 0 ≤ x ≤ µ. By continuity, there is a c1 > 0 such that

∥∥f ′(x)∗
∥∥ ≤ c1 for all 0 ≤ x ≤ µ.

Similarly, there is a c2 > 0 such that ‖B(x,x)‖ ≤ c2 ‖x‖2 for all 0 ≤ x ≤ µ, because B is

bilinear. So it follows from Lemma 1.21 that
∥∥∥∆(k+1)

∥∥∥ ≤ c1c2

∥∥∥∆(k)
∥∥∥

2

.

Lemma 1.22 can be used to show that the error ∆(i) decays double-exponentially in the
nonsingular case:

Lemma 1.23. Let f be an SPP such that I−f ′(µ) is nonsingular. Then there is a constant

k̃f ∈ N such that for all i ∈ N

∥∥∥∆(k̃f +i)
∥∥∥ ≤ 2−2i

for all i ∈ N.

Proof. We can assume w.l.o.g. that c ≥ 1 for the c from Lemma 1.22. As the ∆(k) converge

to 0, we can choose k̃f ∈ N large enough such that d := − log
∥∥∥∆(k̃f )

∥∥∥ − log c ≥ 1. As

c, d ≥ 1, it suffices to show the following inequality:

∥∥∥∆(k̃f +i)
∥∥∥ ≤ 2−d·2i

c
.

We proceed by induction on i. For i = 0, the inequality above follows from the definition
of d. Let i ≥ 0. Then

∥∥∥∆(k̃f +i+1)
∥∥∥ ≤ c ·

∥∥∥∆(k̃f +i)
∥∥∥

2

(Lemma 1.22)

≤ c · 2
−d·2i·2

c2
(induction hypothesis)

=
2−d·2i+1

c
.

Now it follows easily that Newton’s method has an exponential convergence order in the
nonsingular case. More precisely:

Theorem 1.24. Let f be an SPP such that I − f ′(µ) is nonsingular. Then there is a
constant kf ∈ N such that

β(kf + i) ≥ 2i for all i ∈ N.
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Proof. Choose m ∈ N large enough such that 2m+i+log(µj) ≥ 2i holds for all components j.
Thus

∆
(k̃f +m+i)
j /µj ≤ 2−2m+i

/µj (Lemma 1.23 with ‖·‖∞-norm)

= 2−(2m+i+log(µj))

≤ 2−2i

(choice of m) .

So, with kf := k̃f + m, the approximant ν(kf +i) has at least 2i valid bits of µ.

This type of analysis has severe shortcomings. In particular, Theorem 1.24 excludes the
case where I − f ′(µ) is singular. We will include this case in our convergence analysis in
§ 1.4 and § 1.5. Furthermore, and maybe even more severely, Theorem 1.24 does not give
any bound on kf . We solve this problem for strongly connected SPPs in § 1.4.

1.3.4 Reduction to the Quadratic Case

In this section we reduce SPPs to quadratic SPPs, i.e., to SPPs in which every polynomial
fi(X) has degree at most 2, and show that the convergence on the quadratic SPP is no
faster than on the original SPP. In the following sections we will obtain convergence speed
guarantees of Newton’s method on quadratic SPPs. Hence, one can perform Newton’s
method on the original SPP and, using the results of this section, convergence is at least as
fast as on the corresponding quadratic SPP.

The idea to reduce the degree of our SPP f is to introduce auxiliary variables that express
quadratic subterms. This can be done repeatedly until all polynomials in the system have
reached degree at most 2. The construction is very similar to the one that transforms a
context-free grammar into another grammar in Chomsky normal form.

Example 1.25. Consider the following equation system X = f(X) where f(X) is a non-
quadratic SPP:

X1 =
1

2
X3

2 +
1

2

X2 =
1

3
X2

1X2 +
2

3

This equation system can be transformed into the following equation system X̃ = f̃(X̃)

where f̃(X̃) is a quadratic SPP:

X1 =
1

2
X2Y1 +

1

2

X2 =
1

3
X1Y2 +

2

3

Y1 = X2
2

Y2 = X1X2

Those two equation systems have the same solutions, i.e., for each solution of the one equa-
tion system there is a corresponding solution of the other equation system that coincides in
the X1- and the X2-component.

The following theorem shows that this transformation does not accelerate the convergence
of Newton’s method.
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Theorem 1.26. Let f(X) be an SPP such that fs(X) = g(X) + h(X)XiXj for some
1 ≤ i, j, s ≤ n, where g(X) and h(X) are polynomials with nonnegative coefficients. Let

f̃(X, Y ) be the SPP given by

f̃ℓ(X, Y ) = fℓ(X) for every ℓ ∈ {1, . . . , s− 1}
f̃s(X, Y ) = g(X) + h(X)Y

f̃ℓ(X, Y ) = fℓ(X) for every ℓ ∈ {s + 1, . . . , n}
f̃n+1(X, Y ) = XiXj .

Then the function b : R
n → R

n+1 given by b(X) = (X1, . . . ,Xn,XiXj)
⊤ is a bi-

jection between the set of fixed points of f(X) and f̃(X, Y ). Moreover, ν̃
(k) ≤

(ν
(k)
1 , . . . , ν

(k)
n , ν

(k)
i ν

(k)
j )⊤ for all k ∈ N, where ν̃

(k) and ν(k) are the Newton approximants

of f̃ and f , respectively.

Proof. We first show the claim regarding b: if x is a fixed point of f , then b(x) = (x, xixj)
⊤

is a fixed point of f̃ . Conversely, if (x, y)⊤ is a fixed point of f̃ , then we have y = xixj

implying that x is a fixed point of f . Therefore, the least fixed point µ of f determines µf̃ ,
and vice versa.

Now we show that the Newton sequence of f converges at least as fast as the Newton
sequence of f̃ . In the following we write Y for the (n + 1)-dimensional vector of variables
(X1, . . . ,Xn, Y )⊤ and, as usual, X for (X1, . . . ,Xn)⊤. For an (n + 1)-dimensional vector
x, we let x[1,n] denote its restriction to the n first components, i.e., x[1,n] := (x1, . . . , xn)⊤.

Note that Y [1,n] = X. Let es denote the unit vector (0, . . . , 0, 1, 0, . . . , 0)⊤, where the “1”
is on the s-th place. We have

f̃(Y ) =

(
f(X) + esh(X)(Y −XiXj)

XiXj

)

and

f̃
′
(Y ) =

(
f ′(X) + es∂Xh(X)(Y −XiXj) esh(X)

∂XXiXj 0

)
.

We need the following lemma.

Lemma 1.27. Let z ∈ R
n
≥0, δ =

(
I − f ′(z)

)−1
(f(z)− z) and

δ̃ =

(
I − f̃

′
(

z

zizj

))−1(
f̃

(
z

zizj

)
−
(

z

zizj

))
.

Then δ = δ̃[1,n].

Proof of the lemma.

f̃
′
(

z

zizj

)
=

(
f ′(z) + esh(z)∂X(Y −XiXj)|Y =(z,zizj)⊤ esh(z)

∂XXiXj |Y =(z,zizj)⊤ 0

)

=

(
f ′(z)− esh(z)∂X(XiXj)|X=z esh(z)

∂XXiXj |X=z 0

)

We have (
I − f̃

′
(

z

zizj

))
δ̃ = f̃

(
z

zizj

)
−
(

z

zizj

)
,
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or equivalently:

(
I − f ′(z) + esh(z)∂X(XiXj)|X=z −esh(z)

−∂XXiXj |X=z 1

)
·
(

δ̃[1,n]

δ̃n+1

)
=

(
f(z)− z

0

)
.

Multiplying the last row by esh(z) and adding to the first n rows yields:

(
I − f ′(z)

)
δ̃[1,n] = f(z)− z

So we have δ̃[1,n] =
(
I − f ′(z)

)−1
(f(z)− z) = δ, which proves the lemma.

Now we proceed by induction on k to show ν̃
(k)
[1,n] ≤ ν(k), where ν̃

(k) is the Newton

sequence for f̃ . By definition of the Newton sequence this is true for k = 0. For the step,

let k ≥ 0 and define u := (ν̃
(k)
[1,n], ν̃

(k)
i · ν̃(k)

j )⊤. Then we have:

ν̃
(k+1)
[1,n] = N

f̃
(ν̃(k))[1,n]

≤ N
f̃
(u)[1,n] (see below)

= ν̃
(k)
[1,n] +

(
(I − f̃

′
(u))−1(f̃(u)− u)

)
[1,n]

= ν̃
(k)
[1,n] + (I − f ′(ν̃

(k)
[1,n]))

−1(f(ν̃
(k)
[1,n])− ν̃

(k)
[1,n]) (Lemma 1.27)

= Nf (ν̃
(k)
[1,n])

≤ Nf (ν(k)) (induction)

= ν(k+1)

For the inequality N
f̃
(ν̃(k))[1,n] ≤ N

f̃
(u)[1,n] we have used the monotonicity of N

f̃

(Lemma 1.20) combined with Theorem 1.12, which states ν̃
(k) ≤ f̃(ν̃(k)), hence in par-

ticular ν̃
(k)
n+1 ≤ ν̃

(k)
i ν̃

(k)
j . This concludes the proof of Theorem 1.26.

1.4 Strongly Connected SPPs

In this section we study the convergence speed of Newton’s method on strongly connected
SPPs, short scSPPs, see Definition 1.7.

1.4.1 Cone Vectors

Our convergence speed analysis makes crucial use of the existence of cone vectors.

Definition 1.28. Let f be an SPP. A vector d ∈ R
n
≥0 is a cone vector if d ≻ 0 and

f ′(µ)d ≤ d.

The following example illustrates the concept of cone vectors.

Example 1.29. Consider again the 2-dimensional SPP f = (f1, f2)
⊤ from Figure 0.1

(page 4). Figure 1.1 below shows the graphs of the equations

X1 = f1(X1,X2) and X2 = f2(X1,X2)
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X1 = f1(X1,X2)

X2 = f2(X1,X2)

µ

0.2

0.4

0.5

0.6

0.8

1

X1

X2

d

Figure 1.1: The graph of a 2-dimensional SPP equation along with a cone vector d.

along with a cone vector d = (5, 3)⊤. More precisely, the thick line in Figure 1.1 is the set
of points {µ + rd | r ∈ R}, i.e., the straight line through µ in the direction of d. It is easy
to check that d = (5, 3)⊤ is indeed a cone vector: Since

f1(X1,X2) = X1X2 +
1

4
and f2(X1,X2) =

1

6
X2

1 +
1

9
X1X2 +

2

9
X2

2 +
3

8

and µ = (1/2, 1/2)⊤, we have

f ′(µ) · d =

(
1/2 1/2
2/9 5/18

)
·
(

5
3

)
=

(
4

35/18

)
≤
(

5
3

)
= d .

Graphically, the straight line {µ + rd | r ∈ R} connects the “prefixed points” (i.e., the
points x with f(x) ≥ x) with the “postfixed points” (i.e., the points x with f(x) ≤ x). This
can be seen as follows. By Taylor’s theorem we have

f(µ + rd) = f(µ)︸ ︷︷ ︸
µ

+r f ′(µ) · d︸ ︷︷ ︸
≤d

+O(r2) ,

i.e., for small negative r we have f(µ + rd) ≥ µ + rd, and for small positive r we have
f(µ + rd) ≤ µ + rd. In Figure 1.1, the “prefixed points” are at the lower left of µ, and the
“postfixed points” are at the upper right of µ.

We will show that any scSPP has a cone vector, see Proposition 1.32 below. As a first
step, we show the following lemma.

Lemma 1.30. Any scSPP f has a vector d > 0 with f ′(µ)d ≤ d.

Proof. Consider the Kleene sequence (κ(k))k∈N. We have 0 ≤ κ(k) ≺ µ for all k ∈ N. By
Theorem 1.12.2., the matrices (I − f ′(κ(k)))−1 = f ′(κ(k))∗ exist for all k. Let ‖·‖ be any
norm. Define the vectors

d(k) :=
f ′(κ(k))∗1∥∥f ′(κ(k))∗1

∥∥ .
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Notice that for all k ∈ N we have (I − f ′(κ(k)))d(k) = 1

‖f ′(κ(k))∗1‖ ≥ 0. Furthermore we

have d(k) ∈ C, where C := {x ≥ 0 | ‖x‖ = 1} is compact. So the sequence (d(k))k∈N has a
convergent subsequence, whose limit, say d, is also in C. In particular d > 0. As (κ(k))k∈N

converges to µ and (I − f ′(κ(k)))d(k) ≥ 0, it follows by continuity (I − f ′(µ))d ≥ 0.

Lemma 1.31. Let f be an scSPP and let d > 0 with f ′(µ)d ≤ d. Then d is a cone vector,
i.e., d ≻ 0.

Proof. Since f is an SPP, every component of f ′(µ) is nonnegative. So,

0 ≤ f ′(µ)nd ≤ f ′(µ)n−1d ≤ . . . ≤ f ′(µ)d ≤ d.

Let w.l.o.g. d1 > 0. As f is strongly connected, there is for all j with 1 ≤ j ≤ n an rj ≤ n
such that (f ′(µ)rj )j1 > 0. Hence, (f ′(µ)rj d)j > 0 for all j. With above inequality chain, it
follows that dj ≥ (f ′(µ)rj d)j > 0. So, d ≻ 0.

The following proposition follows immediately by combining Lemmata 1.30 and 1.31.

Proposition 1.32. Any scSPP has a cone vector.

We remark that using Perron-Frobenius theory [BP79] there is a simpler proof for Propo-
sition 1.32: By Theorem 1.12 f ′(x)∗ exists for all x ≺ f . So, by fundamental matrix facts
[BP79], the spectral radius of f ′(x) is less than 1 for all x ≺ µ. As the eigenvalues of a matrix
depend continuously on the matrix, the spectral radius of f ′(µ), say ρ, is at most 1. Since
f is strongly connected, f ′(µ) is irreducible, and so Perron-Frobenius theory guarantees the
existence of an eigenvector d ≻ 0 of f ′(µ) with eigenvalue ρ. So we have f ′(µ)d = ρd ≤ d,
i.e., the eigenvector d is a cone vector.

1.4.2 Convergence Speed in Terms of Cone Vectors

Now we show that cone vectors play a fundamental role for the convergence speed of New-
ton’s method. The following lemma gives a lower bound of the Newton approximant ν(1) in
terms of a cone vector.

Lemma 1.33. Let f be a (not necessarily clean) SPP such that f ′(0)∗ exists. Let d be a
cone vector of f . Let 0 ≥ µ− λd for some λ ≥ 0. Then

N (0) ≥ µ− 1

2
λd .

Proof. We write f(X) as a sum

f(X) = c +

D∑

k=1

Lk(X, . . . ,X)X
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where D is the degree of f , and every Lk is a (k−1)-linear map from (Rn)k−1 to R
n×n. Notice

that f ′(X) =
∑D

k=1 k · Lk(X, . . . ,X). We write L for L1, and h(X) for f(X)− LX − c.

λ

2
d =

λ

2
(L∗d− L∗Ld) (L∗ = I + L∗L)

≥ λ

2
(L∗f ′(µ)d− L∗Ld) (f ′(µ)d ≤ d)

=
λ

2
L∗h′(µ)d (f ′(x) = h′(x) + L)

= L∗ 1

2
h′(µ)λd

≥ L∗ 1

2
h′(µ)µ (λd ≥ µ)

= L∗ 1

2

D∑

k=2

k · Lk(µ, . . . ,µ)µ

≥ L∗
D∑

k=2

Lk(µ, . . . ,µ)µ

= L∗h(µ)

= L∗(f(µ)− Lµ− c) (f(x) = h(x) + Lx + c)

= L∗µ− L∗Lµ− L∗c (f(µ) = µ)

= µ− L∗c (L∗ = I + L∗L)

= µ−N (0) (N (0) = f ′(0)∗f(0) = L∗c)

We extend Lemma 1.33 to arbitrary vectors x as follows.

Lemma 1.34. Let f be a (not necessarily clean) SPP. Let 0 ≤ x ≤ µ and x ≤ f(x) such
that f ′(x)∗ exists. Let d be a cone vector of f . Let x ≥ µ− λd for some λ ≥ 0. Then

N (x) ≥ µ− 1

2
λd .

Proof. Define g(X) := f(X + x) − x. We first show that g is an SPP (not necessarily
clean). The only coefficients of g that could be negative are those of degree 0. But we have
g(0) = f(x)− x ≥ 0, and so these coefficients are also nonnegative.

It follows immediately from the definition that µ − x ≥ 0 is the least fixed point of g.
Moreover, g satisfies g′(µ − x)d ≤ d, and so d is also a cone vector of g. Finally, we have
0 ≥ µ− x− λd = µg − λd. So, Lemma 1.33 can be applied as follows.

Nf (x) = x + f ′(x)∗(f(x)− x)

= x + g′(0)∗(g(0)− 0)

= x +Ng(0)

≥ x + µg − 1

2
λd (Lemma 1.33)

= µ− 1

2
λd

By induction we can extend this lemma to the whole Newton sequence:

Lemma 1.35. Let d be a cone vector of an SPP f and let λmax = maxj{µj

dj
}. Then

ν(k) ≥ µ− 2−kλmaxd .
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X1 = f1(X)

X2 = f2(X)
µ = r(0)

0

−0.4

−0.2

0.2 0.4 0.6

0.2

X1

X2

r(λmax )

Figure 1.2: Illustration of Lemma 1.35: The points (shape: +) on the ray r along a cone
vector are lower bounds on the Newton approximants (shape: ×).

Before proving the lemma we illustrate it by a picture. The dashed line in Figure 1.2 is
the ray r(t) = µ− td along a cone vector d. Notice that r(0) equals µ and r(λmax ) is the
greatest point on the ray that is ≤ 0. The figure also shows the Newton iterates ν(k) for
0 ≤ k ≤ 2 (shape: ×) and the corresponding points r(2−kλmax ) (shape: +) located on the
ray r. Observe that ν(k) ≥ r(2−kλmax ), as claimed by Lemma 1.35.

Proof of Lemma 1.35. By induction on k. For the induction base (k = 0) we have for all
components i:

(µ− λmaxd)i =

(
µ−max

j

{
µj

dj

}
d

)

i

≤ µi −
µi

di
di = 0 ,

so ν(0) = 0 ≥ µ− λmaxd.

For the induction step, let k ≥ 0. By induction hypothesis we have ν(k) ≥ µ−2−kλmaxd.
So we can apply Lemma 1.34 to get

ν(k+1) = N (ν(k)) ≥ µ− 1

2
2−kλmaxd = µ− 2−(k+1)λmaxd .

The following proposition guarantees a convergence order of the Newton sequence in
terms of a cone vector.

Proposition 1.36. Let d be a cone vector of an SPP f and let λmax = maxj

{
µj

dj

}
and

λmin = minj

{
µj

dj

}
. Let kf ,d =

⌈
log λmax

λmin

⌉
. Then β(kf ,d + i) ≥ i for all i ∈ N.

Proof. For all 1 ≤ j ≤ n the following holds.
(
µ− ν(kf,d+i)

)
j
≤ 2−(kf,d+i)λmaxdj (Lemma 1.35)

≤ λmin

λmax

2−iλmaxdj (def. of kf ,d)

= λmindj · 2−i

≤ µj · 2−i (def. of λmin)
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Hence, ν(kf,d+i) has i valid bits of µ.

1.4.3 Convergence Speed Independent from Cone Vectors

The convergence order provided by Proposition 1.36 depends on a cone vector d. While
Proposition 1.32 guarantees the existence of a cone vector for scSPPs, it does not give any
information on the magnitude of its components. So we do not have any bound yet on the
“threshold” kf ,d from Proposition 1.36. The following theorem solves this problem.

Theorem 1.37. Let f be a quadratic scSPP. Let cmin be the smallest nonzero coefficient
of f and let µmin and µmax be the minimal and maximal component of µ, respectively. Let

kf =

⌈
log

µmax

µmin · (cmin ·min{µmin , 1})n

⌉
.

Then
β(kf + i) ≥ i for all i ∈ N.

Before we prove Theorem 1.37 we give an example.

Example 1.38. As an example of application of Theorem 1.37 consider the scSPP equation
of the back button process of Example 0.1.




X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




We wish to know if there is a component s ∈ {1, 2, 3} with µs = 1. Notice that f(1) = 1,
so µ ≤ 1. Performing 14 Newton steps (e.g. with Maple) yields an approximation ν(14) to µ

with 


0.98
0.97
0.992


 ≤ ν(14) ≤




0.99
0.98
0.993


 .

We have cmin = 0.3. In addition, since Newton’s method converges to µ from below, we
know µmin ≥ 0.97. Moreover, µmax ≤ 1, as 1 = f(1) and so µ ≤ 1. Hence kf ≤⌈
log

1

0.97 · (0.3 · 0.97)3

⌉
= 6. Theorem 1.37 then implies that ν(14) has 8 valid bits of µ.

As µ ≤ 1, the absolute errors are bounded by the relative errors, and since 2−8 ≤ 0.004 we
know:

µ ≤ ν(14) +




2−8

2−8

2−8


 ≤




0.994
0.984
0.997


 ≺




1
1
1




So Theorem 1.37 yields a proof that µs < 1 for all three components s.

Notice also that the Newton sequence converges much faster than the Kleene sequence

(κ(k))k∈N. We have κ(14) ≺
(
0.89, 0.83, 0.96

)⊤
, so κ(14) has no more than 4 valid bits in

any component, whereas ν(14) has, in fact, more than 30 valid bits in each component.

For the proof of Theorem 1.37 we need the following lemma.

Lemma 1.39. Let d be a cone vector of a quadratic scSPP f . Let cmin be the smallest
nonzero coefficient of f and µmin the minimal component of µ. Let dmin and dmax be the
smallest and the largest component of d, respectively. Then

dmin

dmax

≥ (cmin ·min{µmin , 1})n
.
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Proof. Let w.l.o.g. d1 = dmax and dn = dmin . We claim the existence of indices s, t with
1 ≤ s, t ≤ n such that f ′

st(µ) 6= 0 and

dmin

dmax

≥
(

ds

dt

)n

. (1.7)

To prove that such s, t exist, we use the fact that f is strongly connected, i.e., that there is
a sequence 1 = r1, r2, . . . , rq = n with q ≤ n such that f ′

rj+1rj
(X) is not constant zero. As

µ ≻ 0, we have f ′
rj+1rj

(µ) 6= 0. Furthermore

d1

dn
=

dr1

dr2

· · · drq−1

drq

, and so

log
d1

dn
= log

dr1

dr2

+ · · ·+ log
drq−1

drq

.

So there must exist a j such that

log
d1

dn
≤ (q − 1) log

drj

drj+1

≤ n log
drj

drj+1

, and so

dn

d1
≥
(

drj+1

drj

)n

.

Hence one can choose s = rj+1 and t = rj .

As d is a cone vector we have f ′(µ)d ≤ d and thus f ′
st(µ)dt ≤ ds. Hence

f ′
st(µ) ≤ ds

dt
. (1.8)

On the other hand, since f is quadratic, f ′ is a linear mapping such that

f ′
st(µ) = 2(b1 · µ1 + · · ·+ bn · µn) + ℓ

where b1, . . . , bn and ℓ are coefficients of quadratic, respectively linear, monomials of f . As
f ′

st(µ) 6= 0, at least one of these coefficients must be nonzero and so greater than or equal
to cmin . It follows f ′

st(µ) ≥ cmin ·min{µmin , 1}. So we have

(cmin ·min{µmin , 1})n ≤
(
f ′

st(µ)
)n

≤
(

ds

dt

)n

(by (1.8))

≤ dmin

dmax

(by (1.7)) .

Now we can prove Theorem 1.37.

Proof of Theorem 1.37. By Proposition 1.32, f has a cone vector d. Let dmax = maxj{dj}
and dmin = minj{dj} and λmax = maxj

{
µj

dj

}
and λmin = minj

{
µj

dj

}
. We have:

λmax

λmin

≤ µmax · dmax

µmin · dmin

(as λmax ≤
dmax

µmin

and λmin ≥
dmin

µmax

)

≤ µmax

µmin · (cmin ·min{µmin , 1})n (Lemma 1.39) .

So the statement follows with Proposition 1.36.
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The following consequence of Theorem 1.37 removes some of the parameters on which
the kf from Theorem 1.37 depends.

Theorem 1.40. Let f be a quadratic scSPP, let µmin and µmax be the minimal and max-
imal component of µ, respectively, and let the coefficients of f be given as ratios of m-bit
integers. Then

β(kf + i) ≥ i for all i ∈ N

holds for any of the following choices of kf .

(1) ⌈4mn + 3nmax{0,− log µmin}⌉;

(2) 4mn2n;

(3) 7mn whenever f(0) ≻ 0;

(4) 2mn + m whenever both f(0) ≻ 0 and µmax ≤ 1.

Items (3) and (4) of Theorem 1.40 apply in particular to termination SPPs of strict
pPDAs (§ 1.1.4), i.e., they satisfy f(0) ≻ 0 and µmax ≤ 1.

To prove Theorem 1.40 we need some relations between the parameters of f . We collect
them in the following lemma.

Lemma 1.41. Let f be a quadratic scSPP. With the terminology of Theorem 1.37 and
Theorem 1.40 the following relations hold.

(1) cmin ≥ 2−m.

(2) If f(0) ≻ 0 then µmin ≥ cmin .

(3) If cmin > 1 then µmin > 1.

(4) If cmin ≤ 1 then µmin ≥ c2n−1
min .

(5) If f is strictly quadratic, i.e. nonlinear, then the following inequalities hold: cmin ≤ 1
and µmax · c3n−2

min ·min{µ2n−2
min , 1} ≤ 1.

Proof. We show the relations in turn.

(1) The smallest nonzero coefficient representable as a ratio of m-bit numbers is 1
2m .

(2) As f(0) ≻ 0, in all components i there is a nonzero coefficient ci such that fi(0) = ci.
We have µ ≥ f(0), so µi ≥ fi(0) = ci ≥ cmin > 0 holds for all i. Hence µmin > 0.

(3) Let cmin > 1. Recall the Kleene sequence (κ(k))k∈N with κ(k) = fk(0). We first show

by induction on k that for all k ∈ N and all components i either κ
(k)
i = 0 holds or

κ
(k)
i > 1. For the induction base we have κ(0) = 0. Let k ≥ 0. Then κ

(k+1)
i = fi(κ

(k))
is a sum of products of numbers which are either coefficients of f (and hence by

assumption greater than 1) or κ
(k)
j for some j. By induction, κ

(k)
j is either 0 or greater

than 1. So, κ
(k+1)
i must be 0 or greater than 1.

By Theorem 1.3, the Kleene sequence converges to µ. As f is clean, we have µ ≻ 0,
and so there is a k ∈ N such that κ(k) ≻ 1. The statement follows with µ ≥ κ(k).
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(4) Let cmin ≤ 1. We prove the following stronger claim by induction on k: For every k

with 0 ≤ k ≤ n there is a set Sk ⊆ {1, . . . , n}, |Sk| = k, such that µs ≥ c2k−1
min holds

for all s ∈ Sk. The induction base (k = 0) is trivial. Let k ≥ 0. Consider the SPP

f̂(X{1,...,n}\Sk
) that is obtained from f(X) by removing the Sk-components from f

and replacing every Sk-variable in the polynomials by the corresponding component
of µ. Clearly, µf̂ = µ{1,...,n}\Sk

. By induction, the smallest nonzero coefficient ĉmin

of f̂ satisfies ĉmin ≥ cmin(c2k−1
min )2 = c2k+1−1

min . Pick a component i with f̂i(0) > 0.

Then µf̂ i ≥ f̂i(0) ≥ ĉmin ≥ c2k+1−1
min . So set Sk+1 := Sk ∪ {i}.

(5) Let w.l.o.g. µmax = µ1. The proof is based on the idea that X1 indirectly de-
pends quadratically on itself. More precisely, as f is strongly connected and strictly
quadratic, component 1 depends (indirectly) on some component, say ir, such that
fir

contains a degree-2-monomial. The variables in that monomial, in turn, depend
on X1. This gives an inequality of the form µ1 ≥ C · µ1

2, implying µ1 · C ≤ 1.

We give the details in the following. As f is strongly connected and strictly
quadratic there exists a sequence of variables Xi1 , . . . ,Xir

and a sequence of monomials
mi1 , . . . ,mir

(1 ≤ r ≤ n) with the following properties:

– Xi1 = X1,
– miu

is a monomial appearing in fiu
(1 ≤ u ≤ r),

– miu
= ciu

·Xiu+1
(1 ≤ u ≤ r),

– mir
= cir

·Xj1 ·Xk1
for some variables Xj1 ,Xk1

.

Notice that

µmax = µ1 ≥ ci1 · . . . · cir
· µj1 · µk1

≥ min(cn
min , 1) · µj1 · µk1

.
(1.9)

Again using that f is strongly connected, there exists a sequence of variables
Xj1 , . . . ,Xjs

and a sequence of monomials mj1 , . . . ,mjs−1
(1 ≤ s ≤ n) with the fol-

lowing properties:

– Xjs
= X1,

– mju
is a monomial appearing in fju

(1 ≤ u ≤ s− 1),
– mju

= cju
·Xju+1

or mju
= cju

·Xju+1
·Xj′

u+1

for some variable Xj′

u+1
(1 ≤ u ≤ s− 1).

Notice that

µj1 ≥ cj1 · . . . · cjs−1
·min(µs−1

min , 1) · µ1

≥ min(cn−1
min , 1) ·min(µn−1

min , 1) · µ1 .
(1.10)

Similarly, there exists a sequence of variables Xk1
, . . . ,Xkt

(1 ≤ t ≤ n) with Xkt
= X1

showing
µk1
≥ min(cn−1

min , 1) ·min(µn−1
min , 1) · µ1 . (1.11)

Combining (1.9) with (1.10) and (1.11) yields

µmax ≥ min(c3n−2
min , 1) ·min(µ2n−2

min , 1) · µ2
max ,

or
µmax ·min(c3n−2

min , 1) ·min(µ2n−2
min , 1) ≤ 1 . (1.12)

Now it suffices to show cmin ≤ 1. Assume for a contradiction cmin > 1. Then,
by part (3), µmin > 1. Plugging this into (1.12) yields µmax ≤ 1. This implies
µmax < µmin , contradicting the definition of µmax and µmin .
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Now we are ready to prove Theorem 1.40.

Proof of Theorem 1.40.

(1) First we check the case where f is linear, i.e., all polynomials fi have degree at most
1. In this case, Newton’s method reaches µ after one iteration, so the statement holds.
Consequently, we can assume in the following that f is strictly quadratic, meaning
that f is quadratic and there is a polynomial in f of degree 2.

By Theorem 1.37 it suffices to show

log
µmax

µmin · cn
min ·min{µn

min , 1} ≤ 4mn + 3nmax{0,− log µmin} .

We have

log
µmax

µmin · cn
min ·min{µn

min , 1}

≤ log
1

c4n−2
min ·min{µ3n−1

min , 1} (Lemma 1.41.5)

≤ 4n · log
1

cmin

− log(min{µ3n−1
min , 1}) (Lemma 1.41.5: cmin ≤ 1)

≤ 4mn− log(min{µ3n−1
min , 1}) (Lemma 1.41.1) .

If µmin ≥ 1 we have − log(min{µ3n−1
min , 1}) ≤ 0, so we are done in this case. If µmin ≤ 1

we have − log(min{µ3n−1
min , 1}) = −(3n− 1) log µmin ≤ 3n · (− log µmin).

(2) By part (1) of this theorem, it suffices to show that 4mn + 3nmax{0,− log µmin} ≤
4mn2n. This inequality obviously holds if µmin ≥ 1. So let µmin ≤ 1. Then, by
Lemma 1.41.3, cmin ≤ 1. Hence, by Lemma 1.41 parts (4) and (1), µmin ≥ c2n−1

min ≥
2−m(2n−1). So we have an upper bound on − log µmin with − log µmin ≤ m(2n − 1)
and get:

4mn + 3nmax{0,− log µmin} ≤ 4mn + 3nm(2n − 1)

≤ 4mn + 4nm(2n − 1) = 4mn2n

(3) Let f(0) ≻ 0. By part (1) of this theorem it suffices to show that 4mn +
3nmax{0,− log µmin} ≤ 7mn holds. By Lemma 1.41 parts (2) and (1), we have
µmin ≥ cmin ≥ 2−m, so − log µmin ≤ m. Hence, 4mn + 3nmax{0,− log µmin} ≤
4mn + 3nm = 7mn.

(4) Let f(0) ≻ 0 and µmax ≤ 1. By Theorem 1.37 it suffices to show that

log
µmax

µmin · cn
min ·min{µn

min , 1} ≤ 2mn + m. We have:

log
µmax

µmin · cn
min ·min{µn

min , 1}
≤ −n log cmin − (n + 1) log µmin (as µmin ≤ µmax ≤ 1)

≤ −(2n + 1) log cmin (Lemma 1.41.2)

≤ 2mn + m (Lemma 1.41.1)
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1.4.4 Upper Bounds on the Least Fixed Point Via Newton Approx-
imants

By Theorem 1.12 each Newton approximant ν(k) is a lower bound on µ. Theorem 1.37
and Theorem 1.40 give us upper bounds on the error ∆(k) := µ− ν(k). Those bounds can
directly transformed into upper bounds on µ, as µ = ν(k) + ∆(k), cf. Example 1.38.

Theorem 1.37 and Theorem 1.40 allow to compute bounds on ∆(k) even before the
Newton iteration has been started. However, knowing in advance how many iterations are
needed to reach a certain precision may be more than actually needed. We may be interested
in computing µ up to some given error bound and stop the Newton iteration as soon as this
error bound can be guaranteed. The following two theorems can be used to this end.

Theorem 1.42. Let f be a quadratic scSPP. Let 0 ≤ x ≤ µ and x ≤ f(x) such that f ′(x)∗

exists. Let cmin be the smallest nonzero coefficient of f and µmin the minimal component
of µ. Then

‖N (x)− x‖∞
‖µ−N (x)‖∞

≥ (cmin ·min{µmin , 1})n
.

We prove Theorem 1.42 at the end of the section. It can be applied to the Newton
approximants:

Theorem 1.43. Let f be a quadratic scSPP. Let cmin be the smallest nonzero coefficient
of f and µmin the minimal component of µ. For all Newton approximants ν(k) with ν(k) ≻ 0,

let ν
(k)
min be the smallest coefficient of ν(k). Then

ν(k) ≤ µ ≤ ν(k) +




∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin ·min{ν(k)
min , 1}

)n




where [s] denotes the vector x with xj = s for all 1 ≤ j ≤ n.

Proof of Theorem 1.43. Theorem 1.42 applies, due to Theorem 1.12, to the Newton approx-
imants with x = ν(k−1). So we get

∥∥∥µ− ν(k)
∥∥∥
∞
≤

∥∥ν(k) − ν(k−1)
∥∥
∞

(cmin ·min{µmin , 1})n

≤
∥∥ν(k) − ν(k−1)

∥∥
∞(

cmin ·min{ν(k)
min , 1}

)n (as ν(k) ≤ µ) .

Hence the statement follows from ν(k) ≤ µ.

Example 1.44. Consider the equation system from Example 1.10:

〈resXres 〉 = 0.7 · (〈resXres 〉 · 〈resXres 〉+ 〈resXeff 〉 · 〈effXres 〉)
+ 0.2 + 0.1〈eff Xres 〉

〈resXeff 〉 = 0.7 · (〈resXres 〉 · 〈resXeff 〉+ 〈resXeff 〉 · 〈effXeff 〉) + 0.1 · 〈effXeff 〉
〈effXeff 〉 = 0.3 · (〈effXeff 〉 · 〈effXeff 〉+ 〈effXres 〉 · 〈resXeff 〉)

+ 0.6 + 0.1〈resXeff 〉
〈effXres 〉 = 0.3 · (〈effXeff 〉 · 〈effXres 〉+ 〈effXres 〉 · 〈resXres 〉) + 0.1 · 〈resXres 〉
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It is strongly connected, because 〈resXres 〉 depends on 〈effXres 〉, which depends on
〈effXeff 〉, which depends on 〈resXeff 〉, which depends on 〈resXres 〉. Performing 18 New-
ton iterations yields

ν(18) ≈




0.268
0.478
0.892
0.041




and
∥∥ν(18) − ν(17)

∥∥ ≤ 10−17. Hence, Theorem 1.43 implies that we have computed the ter-

mination probabilities within an error of
10−17

(0.1 · 0.04)4
≤ 10−7. Interpreting the termination

probabilities, the risk of a pandemic is about 1− 0.268− 0.478 ≈ 0.26.

Example 1.45. Consider again the equation X = f(X) from Examples 0.1 and 1.38:




X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




Again we wish to verify that there is no component s ∈ {1, 2, 3} with µs = 1. Performing 10
Newton steps yields an approximation ν(10) to µ with




0.9828
0.9738
0.9926


 ≺ ν(10) ≺




0.9829
0.9739
0.9927


 .

Further, it holds
∥∥ν(10) − ν(9)

∥∥
∞
≤ 2 · 10−6. So we have

∥∥ν(10) − ν(9)
∥∥
∞(

cmin ·min{ν(10)
min , 1}

)3 ≤
2 · 10−6

(0.3 · 0.97)
3 ≤ 0.00009

and hence by Theorem 1.43

ν(10) ≤ µ ≤ ν(10) + [0.00009] ≤




0.983
0.974
0.993


 .

In particular we know that µs < 1 for all three components s.

Example 1.46. Consider again the SPP f from Example 1.45. Setting

u(k) := ν(k) +



∥∥ν(k) − ν(k−1)

∥∥
∞(

0.3 · ν(k)
min

)3


 ,

Theorem 1.43 guarantees
ν(k) ≤ µ ≤ u(k) .

Let us measure the tightness of the bounds ν(k) and u(k) on µ in the first component. Let

plower (k) := − log2(µ1 − ν
(k)
1 ) and

pupper (k) := − log2(u
(k)
1 − µ1) .

Roughly speaking, ν
(k)
1 and u

(k)
1 have plower (k) and pupper (k) valid bits of µ1, respectively.

Figure 1.3 shows plower (k) and pupper (k) for k ∈ {1, . . . , 11}.
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It can be seen that the slope of plower (k) is approximately 1 for k = 2, . . . , 6. This
corresponds to the linear convergence of Newton’s method according to Theorem 1.37. Since
I − f ′(µ) is non-singular2, Newton’s method actually has, asymptotically, an exponential
convergence order, cf. Theorem 1.24. This behavior can be observed in Figure 1.3 for k ≥ 7.
For pupper , we roughly have (using ν(k) ≈ µ):

pupper (k) ≈ plower (k − 1) + log
(
0.3 · ν(k)

min

)3

≈ plower (k − 1)− 5 .

−10
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40
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60

plower (k)

pupper (k)

k

Figure 1.3: Number of valid bits of the lower (shape: ×) and upper (shape: +) bounds
on µ1, see Example 1.46.

The proof of Theorem 1.42 uses similar techniques as the proof of Theorem 1.37, in
particular Lemma 1.39.

Proof of Theorem 1.42. By Proposition 1.32, f has a cone vector d. Let dmin and dmax be
the smallest and the largest component of d, respectively. Let λmax := maxj{µj−xj

dj
}, and

let w.l.o.g. λmax = µ1−x1

d1
. We have x ≥ µ− λmaxd, so we can apply Lemma 1.34 to obtain

N (x) ≥ µ− 1
2λmaxd. Thus

‖N (x)− x‖∞ ≥ (N (x)− x)1 ≥ µ1 −
1

2
λmaxd1 − x1 =

1

2
λmaxd1 ≥

1

2
λmaxdmin .

On the other hand, with Lemma 1.16 we have 0 ≤ µ − N (x) ≤ 1
2λmaxd and so

‖µ−N (x)‖∞ ≤ 1
2λmaxdmax . Combining those inequalities we obtain

‖N (x)− x‖∞
‖µ−N (x)‖∞

≥ dmin

dmax

.

Now the statement follows from Lemma 1.39.
2In fact, the matrix I − f ′(µ) is “almost” singular, with a determinant of about 0.006.
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1.5 General SPPs

In § 1.4 we considered strongly connected SPPs, see Definition 1.7. However, it is not always
guaranteed that the SPP f is strongly connected. In this section we analyze the convergence
speed of two variants of Newton’s method that both compute approximations of µ, where
f is an SPP that is not necessarily strongly connected (“general SPPs”).

The first one was suggested by Etessami and Yannakakis [EY09] and is called Decomposed
Newton Method (DNM). It works by running Newton’s method separately on each SCC, see
§ 1.5.1. The second one is the regular Newton’s method from § 1.3. We will analyze its
convergence speed in § 1.5.2.

The reason why we first analyze DNM is that our convergence speed results about New-
ton’s method for general SPPs (Theorem 1.51) build on our results about DNM (Theo-
rem 1.48). Moreover, from an efficiency point of view it actually may be advantageous to
run Newton’s method separately on each SCC. For those reasons DNM deserves a separate
treatment.

1.5.1 Convergence Speed of the Decomposed Newton Method
(DNM)

DNM, originally suggested in [EY09], works as follows. It starts by using Newton’s method
for each bottom SCC, say S, of the SPP f . Then the corresponding variables XS are substi-
tuted for the obtained approximation for µS , and the corresponding equations XS = fS(X)
are removed. The same procedure is then applied to the new bottom SCCs, until all SCCs
have been processed.

Etessami and Yannakakis did not provide a particular criterion for the number of Newton
iterations to be applied in each SCC. Consequently, they did not analyze the convergence
speed of DNM. We will treat those issues in this section, thereby taking advantage of our
previous analysis of scSPPs.

We fix a quadratic SPP f for this section. We assume that we have already computed
the DAG (directed acyclic graph) of SCCs. This can be done in linear time in the size
of f . To each SCC S we can associate its depth t: it is the longest path in the DAG of
SCCs from S to a top SCC. Notice that 0 ≤ t ≤ n − 1. We write SCC(t) for the set of
SCCs of depth t. We define the height h(f) as the largest depth of an SCC and the width
w(f) := maxt |SCC(t)| as the largest number of SCCs of the same depth. Notice that f has
at most (h(f) + 1) · w(f) SCCs. Further we define the component sets [t] :=

⋃
S∈SCC(t) S

and [>t] :=
⋃

t′>t[t
′] and similarly [<t].

Algorithm 1.1 shows our version of DNM. We suggest to run Newton’s method in each
SCC S for a number of steps that depends (exponentially) on the depth of S and (linearly)
on a parameter i that controls the precision.

The number of Newton iterations in one call of DNM can be bounded as follows.

Proposition 1.47. The procedure DNM(f , i) of Algorithm 1.1 runs at most
i · w(f) · 2h(f)+1 ≤ i · n · 2n iterations of Newton’s method.
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Algorithm 1.1 Decomposed Newton Method (DNM)

procedure DNM (f , i) /* The parameter i controls the precision. */
assumes: f is an SPP
returns: an approximation ρ(i) of µf

for t from h(f) downto 0
forall S ∈ SCC(t) /* for all SCCs S of depth t */

ρ
(i)
S ← N i·2t

fS
(0) /* perform i · 2t Newton iterations */

f [<t] ← f [<t][S/ρ
(i)
S ] /* apply ρ

(i)
S in the upper SCCs */

return ρ(i)

Proof. The number of iterations is
∑h(f)

t=0 |SCC(t)| · i · 2t. This can be estimated as follows.

h(f)∑

t=0

|SCC(t)| · i · 2t ≤ w(f) · i ·
h(f)∑

t=0

2t

≤ w(f) · i · 2h(f)+1

≤ i · n · 2n (as w(f) ≤ n and h(f) < n)

The following theorem states that DNM has linear convergence order.

Theorem 1.48. Let f be a quadratic SPP. Let ρ(i) denote the result of calling DNM(f , i)
(see Algorithm 1.1). Let βρ denote the convergence order of (ρ(i))i∈N. Then there is a
kf ∈ N such that βρ(kf + i) ≥ i for all i ∈ N.

Theorem 1.48 can be interpreted as follows: Increasing i by one yields asymptotically at
least one additional bit in each component and, by Proposition 1.47, costs at most n · 2n

additional Newton iterations. Notice that for simplicity we do not take into account here
that the cost of performing a Newton step on a single SCC is not uniform, but rather depends
on the size of the SCC (e.g. cubically if Gaussian elimination is used for solving the linear
systems).

For the proof of Theorem 1.48, let ∆(i) denote the error when running DNM with
parameter i, i.e., ∆(i) := µ − ρ(i). Observe that the error ∆(i) can be understood as the
sum of two errors:

∆(i) := µ− ρ(i) = (µ− µ̃
(i)) + (µ̃(i) − ρ(i)) ,

where µ̃
(i)
[t] := µ

(
f [t][[>t]/ρ

(i)
[>t]]

)
, i.e., µ̃

(i)
[t] is the least fixed point of f [t] after the approxi-

mations from the lower SCCs have been applied. So, ∆
(i)
[t] consists of the propagation error

(µ[t]−µ̃
(i)
[t] ) (resulting from the error at lower SCCs) and the approximation error (µ̃

(i)
[t] −ρ

(i)
[t] )

(resulting from the newly added error of Newton’s method on level t).

The following lemma gives a bound on the propagation error.

Lemma 1.49 (Propagation error). There is a constant Cf > 0 such that

∥∥∥µ[t] − µ̃[t]

∥∥∥ ≤ Cf ·
√∥∥∥µ[>t] − ρ[>t]

∥∥∥

holds for all ρ[>t] with 0 ≤ ρ[>t] ≤ µ[>t], where µ̃[t] = µ
(
f [t][[>t]/ρ[>t]]

)
.
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Roughly speaking, Lemma 1.49 states that if ρ
(i)
[>t] has k valid bits of µ[>t], then µ̃

(i)
[t]

has at least about k/2 valid bits of µ[t]. In other words, (at most) one half of the valid bits
are lost on each level of the DAG due to the propagation error. The proof of Lemma 1.49 is
technically involved and, unfortunately, not constructive in that we know nothing about Cf

except for its existence. The proof can be found in Appendix A.1.

The following lemma gives a bound on the error
∥∥∥∆(i)

[t]

∥∥∥ on level t, taking both the

propagation error and the approximation error into account.

Lemma 1.50. There is a Cf > 0 such that
∥∥∥∆(i)

[t]

∥∥∥ ≤ 2Cf−i·2t

for all i ∈ N.

Proof. Let f̃
(i)

[t] := f [t][[>t]/ρ
(i)
[>t]]. Observe that the coefficients of f̃

(i)

[t] and thus its least

fixed point µ̃
(i)
[t] are monotonically increasing with i, because ρ

(i)
[>t] is monotonically increasing

as well. Consider an arbitrary depth t and choose real numbers cmin > 0 and µmin > 0
and an integer i0 such that, for all i ≥ i0, cmin and µmin are lower bounds on the smallest

nonzero coefficient of f̃
(i)

[t] and the smallest coefficient of µ̃
(i)
[t] , respectively. Let µmax be

the largest component of µ[t]. Let k̃ :=
⌈
n · log µmax

cmin ·µmin ·min{µmin ,1}

⌉
. Then it follows from

Theorem 1.37 that performing k̃ + j Newton iterations (j ≥ 0) on depth t yields j valid bits

of µ̃
(i)
[t] for any i ≥ i0. In particular, k̃ + i · 2t Newton iterations give i · 2t valid bits of µ̃

(i)
[t]

for any i ≥ i0. So there exists a constant c1 > 0 such that, for all i ≥ i0,
∥∥∥µ̃(i)

[t] − ρ
(i)
[t]

∥∥∥ ≤ 2c1−i·2t

, (1.13)

because DNM (see Algorithm 1.1) performs i · 2t iterations to compute ρ
(i)
S where S is an

SCC of depth t. Choose c1 large enough such that Equation (1.13) holds for all i ≥ 0 and
all depths t.

Now we can prove the theorem by induction on t. In the base case (t = h(f)) there is
no propagation error, so the claim of the lemma follows from (1.13). Let t < h(f). Then

∥∥∥∆(i)
[t]

∥∥∥ =
∥∥∥µ[t] − µ̃

(i)
[t] + µ̃

(i)
[t] − ρ

(i)
[t]

∥∥∥

≤
∥∥∥µ[t] − µ̃

(i)
[t]

∥∥∥+
∥∥∥µ̃(i)

[t] − ρ
(i)
[t]

∥∥∥

≤
∥∥∥µ[t] − µ̃

(i)
[t]

∥∥∥+ 2c1−i·2t

(by (1.13))

≤ c2 ·
√∥∥∥∆(i)

[>t]

∥∥∥+ 2c1−i·2t

(Lemma 1.49)

≤ c2 ·
√

2c3−i·2t+1 + 2c1−i·2t

(induction hypothesis)

≤ 2c4−i·2t

for some constants c2, c3, c4 > 0.

Now Theorem 1.48 follows easily.

Proof of Theorem 1.48. From Lemma 1.50 we deduce that for each component j ∈ [t] there
is a cj such that

(µj − ρ
(i)
j )/µj ≤ 2cj−i·2t ≤ 2cj−i .

Let kf ≥ cj for all 1 ≤ j ≤ n. Then

(µj − ρ
(i+kf )
j )/µj ≤ 2cj−(i+kf ) ≤ 2−i .
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It is an open problem to give bounds for kf in Theorem 1.48. The results of this thesis do
not immediately lead to such a bound because the proof of existence of the Cf in Lemma 1.49
is not constructive.

1.5.2 Convergence Speed of Newton’s Method

We use the Theorem 1.48 to prove the following theorem for the regular (i.e. not decomposed)
Newton sequence (ν(i))i∈N.

Theorem 1.51. Let f be a quadratic SPP. There is a threshold kf ∈ N such that

β(kf + i · n · 2n) ≥ β(kf + i · (h(f) + 1) · 2h(f)) ≥ i for all i ∈ N.

In the rest of the section we prove this theorem by a sequence of lemmata. The following
lemma states that a Newton step is not faster on an SCC, if the values of the lower SCCs
are fixed.

Lemma 1.52. Let f be an SPP. Let 0 ≤ x ≤ f(x) ≤ µ such that f ′(x)∗ exists. Let S
be an SCC of f and let L denote the set of components that are not in S, but on which a
variable in S depends. Then (Nf (x))S ≥ NfS [L/xL](xS).

Proof.

(Nf (x))S =
(
f ′(x)∗(f(x)− x)

)
S

= f ′(x)∗SS(f(x)− x)S + f ′(x)∗SL(f(x)− x)L

≥ f ′(x)∗SS(f(x)− x)S

=
(
(fS [L/xL])′(xS)

)∗
(fS [L/xL](xS)− xS)

= NfS [L/xL](xS)

Recall Lemma 1.20 which states that the Newton operator N is monotone. This fact and
Lemma 1.52 can be combined to the following lemma stating that i · (h(f) + 1) iterations
of the regular Newton’s method “dominate” a decomposed Newton method that performs i
Newton steps in each SCC.

Lemma 1.53. Let ν̃
(i) denote the result of a decomposed Newton method which performs

i iterations of Newton’s method in each SCC. Let ν(i) denote the result of i iterations of the

regular Newton’s method. Then ν(i·(h(f)+1)) ≥ ν̃
(i).

Proof. Let h = h(f). Let [t] and [>t] again denote the set of components of depth t and > t,
respectively. We show by induction on the depth t:

ν
(i·(h+1−t))
[t] ≥ ν̃

(i)
[t]

The induction base (t = h) is clear, because for bottom SCCs the two methods are identical.
Let now t < h. Then we have:

ν
(i·(h+1−t))
[t] = N i

f (ν(i·(h−t)))[t]

≥ N i

f [t][[>t]/ν
(i·(h−t))

[>t]
]
(ν

(i·(h−t))
[t] ) (Lemma 1.52)

≥ N i

f [t][[>t]/ν̃
(i)

[>t]
]
(ν

(i·(h−t))
[t] ) (induction hypothesis)

≥ N i

f [t][[>t]/ν̃
(i)

[>t]
]
(0[t]) (Lemma 1.20)

= ν̃
(i)
[t] (definition of ν̃

(i))

Now, the lemma itself follows by using Lemma 1.20 once more.
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As a side note, observe that above proof of Lemma 1.53 implicitly benefits from the fact
that SCCs of the same depth are independent. So, SCCs with the same depth are handled
in parallel by the regular Newton’s method. Therefore, w(f), the width of f , is irrelevant
here (cf. Proposition 1.47).

Now we can prove Theorem 1.51.

Proof of Theorem 1.51. Let k2 be the kf of Theorem 1.48, and let
k1 = k2 · (h(f) + 1) · 2h(f). Then we have

ν(k1+i·(h(f)+1)·2h(f)) = ν((k2+i)·(h(f)+1)·2h(f))

≥ ν̃
((k2+i)·2h(f)) (Lemma 1.53)

≥ ρ(k2+i) ,

where the last step follows from the fact that DNM(f , k2 + i) runs at most (k2 + i) · 2h(f)

iterations in every SCC. By Theorem 1.48, ρ(k2+i) and hence ν(k1+i·(h(f)+1)·2h(f)) have i
valid bits of µ. Therefore, Theorem 1.51 holds with kf = k1.

1.6 Upper Bounds on the Convergence

In this section we show that the lower bounds on the convergence order of Newton’s method
that we obtained in the previous section are essentially tight, meaning that an exponential
(in n) number of iterations may be needed per bit.

More precisely, we expose a family
(
f (n)

)
n≥1

of SPPs with n variables, such that more

than k · 2n−1 iterations are needed for k valid bits. Consider the following system.

X = f (n)(X) =




1
2 + 1

2X2
1

1
4X2

1 + 1
2X1X2 + 1

4X2
2

...
1
4X2

n−1 + 1
2Xn−1Xn + 1

4X2
n


 (1.14)

The only solution of (1.14) is µf (n) = (1, . . . , 1)⊤. Notice that each component of f (n) is
an SCC. We prove the following theorem.

Theorem 1.54. The convergence order of Newton’s method applied to the SPP f (n)

from (1.14) (with n ≥ 2) satisfies

β(k · 2n−1) < k for all k ∈ {1, 2, . . .}.

In particular, β(2n−1) = 0.

Proof. We write f := f (n) for simplicity. Let

∆(i) := µ− ν(i) = (1, . . . , 1)⊤ − ν(i) .

Notice that (ν
(i)
1 )i∈N = (0, 1

2 , 3
4 , 7

8 , . . .) which is the same sequence as obtained by applying

Newton’s method to the 1-dimensional system X1 = 1
2 + 1

2X2
1 . So we have ∆

(i)
1 = 2−i, i.e.,

after i iterations we have exactly i valid bits in the first component.
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We know from Theorem 1.12 that for all j with 1 ≤ j ≤ n−1 we have ν
(i)
j+1 ≤ fj+1(ν

(i)) =
1
4 (ν

(i)
j )2+ 1

2ν
(i)
j ν

(i)
j+1+ 1

4 (ν
(i)
j+1)

2 and ν
(i)
j+1 ≤ 1. It follows that ν

(i)
j+1 is at most the least solution

of Xj+1 = 1
4 (ν

(i)
j )2 + 1

2ν
(i)
j Xj+1 + 1

4 (Xj+1)
2, and so ∆

(i)
j+1 ≥ 2

√
∆

(i)
j −∆

(i)
j >

√
∆

(i)
j .

By induction it follows that ∆
(i)
j+1 > (∆

(i)
1 )2

−j

. In particular,

∆(k·2n−1)
n >

(
∆

(k·2n−1)
1

)2−(n−1)

= 2−k·2n−1·2−(n−1)

= 2−k.

Hence, after k · 2n−1 iterations we have less than k valid bits.

Notice that the proof exploits that an error in the first component gets “amplified”
along the DAG of SCCs. One can also show along those lines that computing µ is an
ill-conditioned problem: Consider the SPP g(n,ε) obtained from f (n) by replacing the first
component by 1 − ε where 0 ≤ ε < 1. If ε = 0 then (µg(n,ε))n = 1, whereas if ε = 1

22n−1

then (µg(n,ε))n < 1
2 . In other words, to get 1 bit of precision of µg one needs exponentially

(in n) many bits in g. Note that this observation is independent from any particular method
to compute or approximate the least fixed point.

1.7 Conclusions

We have studied the convergence order and convergence rate of Newton’s method for fixed-
point equations of systems of positive polynomials (SPP equations). These equations appear
naturally in the analysis of several stochastic computational models that have been intensely
studied in recent years, and they also play a central role in the theory of stochastic branching
processes.

The restriction to positive coefficients leads to strong results. For arbitrary polynomial
equations Newton’s method may not converge or converge only locally, i.e., when started
at a point sufficiently close to the solution. We have extended a result by Etessami and
Yannakakis [EY09], and shown that for SPP equations the method always converges starting
at 0. Moreover, we have proved that the method has at least linear convergence order, and
have determined the asymptotic convergence rate. To the best of our knowledge, this is the
first time that a lower bound on the convergence order is proved for a significant class of
equations with a trivial membership test.3 Finally, we have also obtained upper bounds on
the threshold for strongly connected SPPs, i.e., the number of iterations necessary to reach
the “steady state” in which valid bits are computed at the asymptotic rate. These results
lead to practical tests for checking whether the least fixed point of an SPP exceeds a given
bound.

There are still at least three important open problems.

• We would like to have bounds on the threshold kf not only for strongly connected
SPPs, but also for general SPPs.

• The behavior of Newton’s method when arithmetic operations only have a fixed ac-
curacy should be further investigated. We wish to develop tests allowing to decide
whether the result of applying Newton’s method with a certain fixed accuracy is reli-
able or not.

3Notice the contrast with the classical result stating that if (I − f ′(µ)) is non-singular, then Newton’s
method has exponential convergence order; here the membership test is highly non-trivial, and, for what we
know, as hard as computing µ itself.
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• Say that Newton’s method is polynomial for a class of SPP equations if there is a
polynomial p(x, y, z) such that for every k ≥ 0 and for every system in the class with n
equations and coefficients of size m, the p(n,m, k)-th Newton approximant ν(p(n,m,k))

has k valid bits. We have proved in Theorem 1.40 that Newton’s method is polynomial
for SPPs f satisfying f(0) ≻ 0; for this class one can take p(n,m, k) = 7mn + k. We
have also exhibited in § 1.6 a class for which computing the first bit of the least solution
takes 2n iterations. The members of this class, however, are non-strongly-connected,
and this is the fact we have exploited to construct them. So the following question
remains open: Is Newton’s method polynomial for strongly connected SPPs?



Chapter 2

Systems of Positive
Min-Max-Polynomials

In this chapter we study systems of positive min-max-polynomials (min-max-SPPs) and two
variants of Newton’s method to compute the least fixed point of min-max-SPPs. In § 2.1
we introduce basic concepts and state some important facts about min-max-SPPs. A class
of games which can be analyzed using our techniques is presented in § 2.2. The main
contribution of this chapter, the two approximation methods, is presented and analyzed in
§ 2.3 and § 2.4. In § 2.5 we study the relation between our two approaches and compare
them to previous work. We conclude in § 2.6.

2.1 Preliminaries and a Fundamental Theorem

In § 2.1.1 we prove some more properties of SPPs (without min- or max-operators) that
were not necessary for the first part of this thesis, but are crucial for our results on min-
max-SPPs. Roughly speaking, those SPP properties are extensions of Lemma 1.2 in that
they follow from the “convexity” of SPPs.

In § 2.1.2 we formally introduce the concepts of min-max-SPPs and strategies for them.
We also show some basic properties of strategies. In particular, Theorem 2.10 is a funda-
mental theorem on max-SPPs. The proof of this theorem is the main reason for our deeper
investigation of SPPs in § 2.1.1.

2.1.1 Power Series and Some Convexity Properties of SPPs

Let f be a function with f : R
n
≥0 → R

n
≥0. As in Chapter 1, we call a vector x a fixed point

(resp. prefixed point resp. postfixed point) if f(x) = x (resp. f(x) ≥ x resp. f(x) ≤ x).
Again, functions f that have a fixed point are called feasible, and the least fixed point of f

is denoted by µf or µ.

We generalize SPPs to positive power series in the obvious way: A function f : R
n
≥0 →

R
n
≥0 is said to be a positive power series if each component is a power series with coefficients

from R≥0. We need power series in the following lemmata leading to the fundamental
Theorem 2.10. Notice that “Taylor’s theorem” (Lemma 1.2 on page 17) applies also to
positive power series (provided that the power series converges at the involved points).
Loosely speaking, this lemma expresses that SPPs are “convex”. The following lemmata are
consequences of this “convexity”-Lemma 1.2.
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Lemma 2.1. Let f : R
n
≥0 → R

n
≥0 be an SPP, S ⊆ {1, . . . , n} and k := |S|. Assume that

µ(f [S/b]) exists for some b ∈ R
k
≥0. Then f∗ : [0, b]→ R

n−k
≥0 defined by f∗(x) := µ(f [S/x])

is a positive power series.

Proof. W.l.o.g. we can assume that b ≻ 0 and S = {1, . . . , k}. Let T := {k + 1, . . . , n}.
Let R

n−k
≥0 [XS ] denote the set of polynomials over the variables X1, . . . ,Xk with coeffi-

cients from R
n−k
≥0 . For every i ∈ N, (f [S/XS ])i(0) can be considered as a polynomial

from R
n−k
≥0 [XS ]. Moreover, by Kleene’s theorem we have limi→∞(f [S/x])i(0) = f∗(x) for

x ∈ [0, b]. For α ∈ N
k, let c

(i)
α ∈ R

n−k
≥0 denote the coefficient of Xα

S = Xα1
1 · · · · ·Xαk

k in the

polynomial (f [S/XS ])i(0). We show:

(1) (c
(i)
α )i∈N is increasing for every α ∈ N

k; and

(2) (c
(i)
α )i∈N is bounded for every α ∈ N

k.

In order to show the first statement, we consider the set R
n−k
≥0 [XS ] of polynomials as partially

ordered by setting

∑

α∈Nk

uα ·Xα
S ⊑

∑

α∈Nk

vα ·Xα
S if uα ≤ vα for all α ∈ N

k .

In those terms we need to show that (f [S/XS ])i(0) ⊑ (f [S/XS ])i+1(0) for all i ∈ N. Notice
that the map from R

n−k
≥0 [XS ] to R

n−k
≥0 [XS ] defined by p 7→ f [S/XS ](p) is monotone, i.e.,

p ⊑ q implies f [S/XS ](p) ⊑ f [S/XS ](q). Now we get the first statement by induction on
i, i.e., 0 ⊑ f [S/XS ](0) and

(f [S/XS ])i+1(0)

= f [S/XS ]((f [S/XS ])i(0))

⊑ f [S/XS ]((f [S/XS ])i+1(0)) (monotonicity, induction hypothesis)

= (f [S/XS ])i+2(0) .

For the second statement, we have f∗(b) ≥ (f [S/b])i(0) ≥ c
(i)
α · bα, so (c

(i)
α )i∈N must be

bounded because b ≻ 0.

As the statements (1) and (2) are now established, it follows that (c
(i)
α )i∈N converges for

all α ∈ N
k. Let cα := limi→∞ c

(i)
α ∈ R

n−k
≥0 . Consider the power series

∑
α∈Nk cα · xα. By

(absolute) convergence on [0, b], we have

f∗(x) = lim
i→∞

(f [S/x])i(0) = lim
i→∞

∑

α∈Nk

c(i)
α · xα =

∑

α∈Nk

lim
i→∞

c(i)
α · xα =

∑

α∈Nk

cα · xα

for x ∈ [0, b]. Thus, f∗ is a positive power series that converges on [0, b].

We use this lemma for the proof of the following lemma that has been proved implicitly
in [EY05c]. However, since we are not restricted to the case of 1-exit recursive simple
stochastic games as in [EY05c], we need a more general statement for our setting.

Lemma 2.2. Let f : R
n
≥0 → R

n
≥0 be a feasible SPP and {i}∪̇T = {1, . . . , n}. Let x ∈ R

n
≥0

with xi < fi(x) and xT ≤ µ(f [i/xi]). Assume that there exists a postfixed point y ≥ x of f .
Then x ≤ µ.
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Proof. Assume w.l.o.g. that i = 1. Let g : R≥0 → R≥0 be defined by

g(z) = f1(z,µ(f [1/z])). (2.1)

Note that by assumption and monotonicity of f1

x1 < f1(x) = f1(x1,xT ) ≤ f1(x1,µ(f [1/x1])) = g(x1). (2.2)

Furthermore, since g is the composition of two positive power series (Lemma 2.1), g is also
a positive power series. Let x∗ := µ. Since µ(f [1/x∗

1]) = x∗
T we get

g(x∗
1) = f1(x

∗
1,µ(f [1/x∗

1])) = f1(x
∗
1,x

∗
T ) = f1(x

∗) = x∗
1 . (2.3)

Case 1: g′(x1) ≤ 1. We first show that x∗
1 > x1. Suppose for a contradiction x∗

1 ≤ x1. We
get

x1 < g(x1) (by (2.2))

≤ g(x∗
1) + g′(x1)(x1 − x∗

1) (Lemma 1.2)

≤ g(x∗
1)− x∗

1 + x1 (g′(x1) ≤ 1)

= x1 (by (2.3))

which is a contradiction. Thus, x∗
1 > x1. By monotonicity of µ(f [1/·]) we get x∗

T =
µ(f [1/x∗

1]) ≥ µ(f [1/x1]) ≥ xT . Summarizing we have x∗ = (x∗
1,x

∗
T ) ≥ (x1,xT ) = x,

so we are done in this case.

Case 2: g′(x1) > 1. We show that this case does not occur. We get:

g(y1) ≥ g(x1) + g′(x1)(y1 − x1) (Lemma 1.2)

≥ g(x1) + y1 − x1 (g′(x1) ≥ 1)

> y1 (by (2.2))

Since yT is a postfixed point of f [1/y1], it holds µ(f [1/y1]) ≤ yT . Thus, by monotonic-
ity of f1, we get y1 < g(y1) = f1(y1,µ(f [1/y1])) ≤ f1(y1,yT ) = f1(y), contradicting
the assumption that y is a postfixed point of f .

Lemma 2.2 can be generalized by induction as follows.

Lemma 2.3. Let f be a feasible SPP, S∪̇T = {1, . . . , n}. Let x ∈ R
n
≥0 with xS ≺ fS(x)

and xT ≤ µ(f [S/xS ]). Assume that there exists a postfixed point y ≥ x of f . Then x ≤ µ.

Proof. Let w.l.o.g. S = {n − k + 1, . . . , n}. We proceed by induction on k. The base case
(k = 0) is trivial.

Let f̂ := f [n/xn], x̂ := x{1,...,n−1}, ŷ := y{1,...,n−1} and Ŝ := {n− k + 1, . . . , n− 1}.
Then x̂Ŝ = xŜ ≺ f Ŝ(x) = f̂ Ŝ(x̂) and x̂T = xT ≤ µ(f [S/xS ]) = µ(f̂ [Ŝ/x̂Ŝ ]). Moreover, ŷ

is a postfixed point of f̂ , as f̂(ŷ) = f{1,...,n−1}(ŷ, xn) ≤ f{1,...,n−1}(y) ≤ ŷ. By induction

hypothesis it follows x̂ ≤ µf̂ . By definition, this amounts to x{1,...,n−1} ≤ µ(f [n/xn]).
Moreover, xn < fn(x) and y ≥ x is a postfixed point of f . So we get x ≤ µ by Lemma 2.2.
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2.1.2 Min-Max-SPPs

The operators ∧ and ∨ are defined by x∧y := min{x, y} and x∨y := max{x, y} for x, y ∈ R.
These operators are also extended component-wise to R

n and point-wise to R
n-valued func-

tions. Given polynomials f1, . . . , fk we call f1 ∧ · · · ∧ fk a min-polynomial and f1 ∨ · · · ∨ fk

a max-polynomial. Min- and max-polynomials are also called min-max-polynomials. We
call f = (f1, . . . , fn)⊤ a system of min-max-polynomials if every component fi is a min-
max-polynomial. A system of min-max-polynomials is called linear (resp. quadratic) if all
occurring polynomials are linear (resp. quadratic), i.e., they are of degree at most 1 (resp.
degree at most 2). By introducing auxiliary variables every system of min-max-polynomials
can be transformed into a quadratic one in a time linear in the size of the system (as in § 1.3.4
in the first part of the thesis). A system of min-max-polynomials where all coefficients are
from R

n
≥0 is called system of positive min-max-polynomials, or min-max-SPP for short. The

terms min-SPP and max-SPP are defined analogously.

Example 2.4. Consider the quadratic 2-dimensional min-max-SPP f with

f(X) =

(
f1(X1,X2)

f2(X1,X2)

)
=

(
1
2X2

2 + 1
2 ∧ 3

X1 ∨ 2

)
.

The graphs of the corresponding SPP equations X = f(X) and the least fixed point
µ = (3, 3)⊤ are shown in Figure 2.1.

X1 = f1(X1,X2)

X2 = f2(X1,X2)

µ

0 1 2

2

3 4

4

X1

X2

Figure 2.1: Graphs of the equations X1 = f1(X1,X2) and X2 = f2(X1,X2) in Example 2.4.
The least fixed point µ = (3, 3)⊤ is also shown.

Min-max-SPPs, like SPPs, can be considered as monotone continuous mappings from
R

n
≥0 to R

n
≥0, so Kleene’s fixed point theorem is again applicable (cf. Theorem 1.3):

Theorem 2.5 (Kleene’s fixed point theorem for min-max-SPPs). Every feasible min-max-

SPP f has a least fixed point µ in R
n
≥0. Moreover, the Kleene sequence (κ

(k)
f )k∈N with

κ
(k)
f = fk(0) is monotonically increasing and converges to µ.
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Example 2.6. The Kleene sequence for the min-max-SPP from Example 2.4 is:

κ(0) =

(
0
0

)
, κ(1) =

(
1/2
2

)
, κ(2) =

(
5/2
2

)
,

κ(3) =

(
5/2
5/2

)
, κ(4) =

(
3

5/2

)
, κ(i) =

(
3
3

)
for i ≥ 5

In this particular example, the Kleene sequence does not only converge to µ, but even
reaches µ after finitely many iterations. This is by no means always so, as we have seen in
Chapter 1 even for SPPs without minimum or maximum operator.

Strategies. Let f denote a system of min-max-polynomials. A ∨-strategy σ for f picks
for each max-polynomial a polynomial occurring in it. Formally, a ∨-strategy maps each
component i of f (1 ≤ i ≤ n) to a min-polynomial such that

σ(i) =

{
fi if fi is a (min-)polynomial

fi,j (where 1 ≤ j ≤ ki) if fi is a max-polynomial fi = fi,1 ∨ · · · ∨ fi,ki

The ∧-strategies π are defined accordingly. We also write fσ
i for σ(i) and fπ

i for π(i). We
denote the set of ∨-strategies for f by Σf and the set of ∧-strategies for f by Πf . For
s ∈ Σf ∪ Πf , we write fs for (fs

1 , . . . , fs
n)⊤. We define Π∗

f := {π ∈ Πf | fπ is feasible}
where we drop the subscript when it is understood.

Example 2.7. Consider the min-max-SPP f from Example 2.4. Then the map π with
π(1) = 3 and π(2) = X1 ∨ 2 is a ∧-strategy. The max-SPP fπ is given by

fπ(X) =

(
3

X1 ∨ 2

)
.

We collect some elementary facts concerning strategies:

Lemma 2.8. Let f be a feasible min-max-SPP. Then

(1) µfσ ≤ µf for every σ ∈ Σ;

(2) µfπ ≥ µf for every π ∈ Π∗;

(3) µfπ = µf for some π ∈ Π∗.

Proof. Observe that, for σ ∈ Σ, µf is a postfixed point of fσ. Thus, Knaster-Tarski’s
theorem implies the first statement. Similarly, the fact that, for π ∈ Π∗, µfπ is a postfixed
point of f implies the second statement. For the third statement observe that there exists
some π ∈ Π such that µf is a fixed point of fπ. Thus π ∈ Π∗ and µfπ ≤ µf . Since
µfπ ≥ µf by statement (2), we obtain µf = µfπ.

In [EY05c] the authors consider a class of stochastic games (so-called 1-exit recursive
simple stochastic games), for which they prove that a positional optimal strategy exists for
the player who wants to maximize the outcome (Theorem 2 of [EY05c]). The outcome of
such a game is the least fixed point of some min-max-SPP f . In our terminology, Theorem 2
of [EY05c] states that there exists a ∨-strategy σ such that µfσ = µf if f is derived from
such a recursive stochastic game. The following example shows that this does not hold for
arbitrary min-max-SPPs.
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X1 = fσ1
1 (X1,X2)

X2 = fσ1
2 (X1,X2)

µfσ1

0 1 2

2

3 4

4

X1

X2

X1 = fσ2
1 (X1,X2)

X2 = fσ2
2 (X1,X2)

µfσ2

0 1 2

2

3 4

4

X1

X2

Figure 2.2: Two different ∨-strategies are applied to f . The left and the right side show
plots of X = fσ1(X) and X = fσ2(X), respectively.

Example 2.9. Consider the min-max-SPP f from Example 2.4. Let the ∨-strategies
σ1, σ2 ∈ Σ be defined by σ1(2) = X1 and σ2(2) = 2. Figure 2.2 shows the graphs of
X = fσ1(X) and X = fσ2(X). We have µfσ1 = (1, 1)⊤, µfσ2 = (5

2 , 2)⊤, but µ = (3, 3)⊤.
Note that no ∨-strategy σ exists such that µfσ = µ.

But for feasible max-SPPs the following fundamental result, Theorem 2.10, is retained.
It generalizes Theorem 2 of [EY05c]. Although the statement of Theorem 2.10 looks very
natural, we need the machinery developed in § 2.1.1 for the proof.

Theorem 2.10. Let f be a feasible max-SPP. Then µfσ = µf for some σ ∈ Σ.

Proof. The proof is inspired by a proof of [EY05c]. Suppose for a contradiction that µfσ < µ

for every ∨-strategy σ ∈ Σ. Let σ be any strategy and x := µfσ. We have x = fσ(x) ≤
f(x). Since by assumption x < µ, there exists some i ∈ {1, . . . , n} such that xi < fi(x).
Let S = {i} and T := {1, . . . , n} \ S. Choose a strategy σ′ such that fσ′

i (x) = fi(x) > xi

and σ′(j) = σ(j) for every j ∈ {1, . . . , n} \ {i}. We will apply Lemma 2.3. Observe

that by construction fσ′

[i/y] = fσ[i/y] for y ∈ R≥0 and thus in particular µfσ′

[i/xS ] =

µfσ[i/xS ] = xT . We get µ ≥ fσ′

(µ) by Lemma 2.8.1, i.e., µ ≥ x is a postfixed point

of fσ′

. Thus, Lemma 2.3 implies µfσ′ ≥ x = µfσ. Since x is not a fixed point of fσ′

we have µfσ′

> x = µfσ. Thus, we have shown that, for every strategy σ, there exists

a strategy σ′ such that µfσ′

> µfσ. This contradicts the fact that there are only finitely
many different strategies.

2.2 A Class of Applications: Extinction Games

In order to illustrate the interest of min-max-SPPs we consider extinction games, which are
special stochastic games. Consider a world of n different species s1, . . . , sn. Each species
si is controlled by one of two adversarial players. For each si there is a non-empty set Ai

of actions. An action a ∈ Ai replaces a single individual of species si by other individuals
specified by the action a. The actions can be probabilistic. E.g., an action could transform
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an adult rabbit to zero individuals with probability 0.2, to an adult rabbit with probability
0.3 and to an adult and a baby rabbit with probability 0.5. Another action could transform
an adult rabbit to a fat rabbit. The terminator (savior) wants to maximize (minimize)
the probability that some initial population is extinguished. During the game each player
continuously chooses an individual of a species si controlled by her/him and applies an
action from Ai to it. Note that actions on different species are never in conflict and the
execution order is irrelevant. What is the probability that the population is extinguished if
the players follow optimal strategies?

To answer those questions we set up a min-max-SPP f with one min-max-polynomial for
each species, thereby following [Har63, EY05c]. The variables Xi represent the probability
that a population with only a single individual of species si is extinguished. In the rabbit
example we have Xadult = 0.2 + 0.3Xadult + 0.5XadultXbaby ∨Xfat, assuming that the adult
rabbits are controlled by the terminator. The probability that an initial population with pi

individuals of species si is extinguished is given by
∏n

i=1(µi)
pi . The stochastic termination

games of [EY05c, EY06, WE07] can be considered as extinction games.

In Example 0.8 (page 11) we already gave an example of an extinction game. In that
example, a doctor has two different treatment options. This leads to a max-polynomial,
because the doctor will choose her action to maximize the probability of extinguishing the
flu. Since the doctor wishes to base her decision on a worst-case assumption on the type of
the flu, the flu was modeled as another “player” which chooses the flu type. This leads to a
min-polynomial, because the flu player will pick the flu type that minimizes the probability
of extinguishing the disease.

The notions of individuals and species can be interpreted quite broadly. This is illustrated
by the following example where each species corresponds to a certain problem, and the
numbers of individuals of each species model the severity of the corresponding problem.

Example 2.11 (The primaries game). In the primaries of the 2008 elections of the US
president, the candidates of the Democratic Party are Hillary Clinton and Barack Obama.
Hillary Clinton has to decide her strategy. Her team estimates that undecided voters have
not yet decided to vote for her for three possible reasons: they consider her (a) cold and
calculating, (b) too much part of Washington’s establishment, or (c) they listen to Obama’s
campaign. So the team decides to model those problems as species in an extinction game.
The larger the population of a species, the more influenced is an undecided voter by the
problem. The goal of Clinton’s team is to maximize the extinction probabilities.

Clinton’s possible actions for problem (a) are showing emotions or concentrating on her
program. If she shows emotions, her team estimates that the individual of problem (a) is
removed with probability 0.3, but with probability 0.7 the action backfires and produces yet
another individual of (a). This and the effect of concentrating on her program can be read off
from Equation (2.4) below. For problem (b), Clinton can choose between concentrating on
her voting record or her statement “I’ll be ready from day 1”. Her team estimates the effect
as given in Equation (2.5). Problem (c) is controlled by Obama, who has the choice between
his “change” message, or attacking Clinton for her position on Iraq, see Equation (2.6).

Xa = 0.3 + 0.7X2
a ∨ 0.1 + 0.9Xc (2.4)

Xb = 0.1 + 0.9Xc ∨ 0.4Xb + 0.3Xc + 0.3 (2.5)

Xc = 0.5Xb + 0.3X2
b + 0.2 ∧ 0.5Xa + 0.4XaXb + 0.1Xb (2.6)

What should Clinton and Obama do? What are the extinction probabilities, assuming perfect
strategies? In the next sections we show how to efficiently solve these problems.
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2.3 The τ -Method

Let f denote a feasible min-max-SPP. In this section we present our first method for com-
puting µ approximatively. We call it τ -method. This method computes, for each ap-
proximant τ (k), the next approximant τ (k+1) as the least fixed point of a piecewise linear
approximation L

(
f , τ (k)

)
∨ τ (k) (see below) of f at τ (k). This approximation is a system

of linear min-max-polynomials where all coefficients of monomials of degree 1 are nonnega-
tive. We call such a system a monotone linear min-max-system (min-max-SML for short).
Note that a min-max-SML f is not necessarily a min-max-SPP, since negative coefficients
of monomials of degree 0 are allowed, e.g., the min-max-SML f(X1) = X1 − 1 is not a
min-max-SPP.

[GS07b] considers equation systems of the form X = f(X) where f is a min-max-SML.1

We identify a min-max-SML f with its interpretation as a function from R
n

to R
n

(R denotes
the complete lattice R ∪ {−∞,∞}). Since f is monotone on R

n
, it has a least fixed point

µ ∈ R
n

which can be computed using the strategy improvement algorithm from [GS07b].

We are going to use an analogue of Lemma 2.8 for min-max-SMLs. For completeness,
we state and prove it here:

Lemma 2.12. Let f be a min-max-SML. Then

(1) µfσ ≤ µf for every σ ∈ Σ;

(2) µfπ ≥ µf for every π ∈ Π;

(3) µfπ = µf for some π ∈ Π.

Proof. Observe that, for σ ∈ Σ, µf is a postfixed point of fσ. Thus, Knaster-Tarski’s
theorem implies the first statement. Similarly, the fact that, for π ∈ Π, µfπ is a postfixed
point of f implies the second statement. For the third statement observe that there exists
a π ∈ Π such that µf is a fixed point of fπ. Thus µfπ ≤ µf . Since µfπ ≥ µf by
statement (2), we obtain µf = µfπ.

Given a min-max-SPP f we now define the min-max-SML L (f ,y), a piecewise linear
approximation of f at y. In a first step, consider a multivariate polynomial f : R

n → R.
Given some approximant y ∈ R

n
≥0, a linear approximation L (f,y) : R

n → R of f at y is
given by the first-order Taylor approximation at y, i.e.,

L (f,y) (x) := f(y) + f ′(y)(x− y), x ∈ R
n.

This is precisely the linear approximation which is used for Newton’s method. Now consider
a max-polynomial f = f1 ∨ · · · ∨ fk. We define the approximation L (f,y) : R

n → R of f
at y by

L (f,y) := L (f1,y) ∨ · · · ∨ L (fk,y) .

Notice that in this case, L (f,y) is in general not a linear function but a linear max-
polynomial. Similarly, for a min-polynomial f = f1 ∧ · · · ∧ fk, we define

L (f,y) := L (f1,y) ∧ · · · ∧ L (fk,y) .

In this case L (f,y) is a linear min-polynomial. Finally, for a min-max-SPP f , we define
the approximation L (f ,y) : R

n → R
n of f at y by

L (f ,y) := (L (f1,y) , . . . ,L (fn,y))⊤

which is a min-max-SML.
1Such equation systems are called system of rational equations in [GS07b].
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Example 2.13. Consider the 1-dimensional min-max-SPP f with f(X) = g(X) ∧ h(X)
and

g(X) = 0.8X2 + 0.4X + 0.1 and h(X) = 0.6X2 + 0.4 .

We have
L (g, 0) (X) = 0.4X + 0.1 and L (h, 0) (X) = 0.4 .

It follows
L (f, 0) (X) = 0.4X + 0.1 ∧ 0.4 .

Figure 2.3 shows graphs of these functions.

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

f(X)

g(X)

h(X)

L (f, 0) (X)

Figure 2.3: In this example we have f(X) = g(X) ∧ h(X). Consequently, we have
L (f, 0) (X) = L (g, 0) (X) ∧ L (h, 0) (X).

Example 2.14. Consider the min-max-SPP f from Example 2.4 with

f(X) =

(
f1(X1,X2)

f2(X1,X2)

)
=

(
1
2X2

2 + 1
2 ∧ 3

X1 ∨ 2

)
.

The approximation L
(
f , (1/2, 1/2)⊤

)
is given by

L

(
f ,

(
1/2
1/2

))
(X) =

(
1
2X2 + 3

8 ∧ 3
X1 ∨ 2

)
.

Now we can define the Newton operator Nf : R
n
≥0 → R

n
≥0 for min-max-SPPs as follows:

Nf (x) := µ(L (f ,x) ∨ x), x ∈ R
n
≥0.

Observe that L (f ,x) ∨ x is a min-max-SML (that is, after introducing auxiliary variables
in order to eliminate components which contain both ∨- and ∧-operators, cf. § 1.3.4). To
compute the least fixed point of a min-max-SML, one can use the strategy improvement
algorithm from [GS07b].

Example 2.15. Let f be the min-max-SPP from Example 2.14. We wish to apply the
Newton operator Nf to the point v = (1/2, 1/2)⊤. For that we need to find the least
solution of X = f(X) with

f(X) = (L (f ,v) ∨ v) (X) =

(
1
2X2 + 3

8 ∧ 3

X1 ∨ 2

)
∨
(

1
2
1
2

)
=

((
1
2X2 + 3

8 ∧ 3
)
∨ 1

2

X1 ∨ 2

)
. (2.7)
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Strictly speaking, f is not a min-max-SML, because the first component contains both a min-
imum and a maximum operator. This could be fixed by introducing an auxiliary variable Y :




X1

X2

Y


 =




Y ∨ 1
2

X1 ∨ 2
1
2X2 + 3

8 ∧ 3




For illustration purposes we stick to the 2-dimensional “min-max-SML” f from (2.7). Fig-
ure 2.4 shows the graphs of the equation system X = f(X) and the least fixed point
µf = (11/8, 2)⊤, which is, by definition, equal to Nf (v). Notice that all pieces of the graphs

X1 = f1(X1,X2)

X2 = f2(X1,X2)

µf

0 1

1

2

2

3

3

4

4

X1

X2

Figure 2.4: Graphs of the equation system X = f(X) where f is a min-max-SML.

are straight lines, cf. the non-linearized system from Figure 2.1 (page 55). The least fixed
point of a min-max-SML can be algorithmically computed with the method from [GS07b].

We collect basic properties of Nf in the following lemma:

Lemma 2.16. Let f be a feasible min-max-SPP and x,y ∈ R
n
≥0. Then:

(1) x ≤ Nf (x) and f(x) ≤ Nf (x);

(2) x = Nf (x) whenever x = f(x);

(3) (Monotonicity of Nf ) Nf (x) ≤ Nf (y) whenever x ≤ y;

(4) Nf (x) ≤ f(Nf (x)) whenever x ≤ f(x);

(5) Nf (x) ≥ Nfσ (x) for every ∨-strategy σ ∈ Σ;

(6) Nf (x) ≤ Nfπ (x) for every ∧-strategy π ∈ Π;

(7) Nf (x) = Nfπ (x) for some ∧-strategy π ∈ Π.

Proof. We show the seven statements in turn.



62 Chapter 2: Systems of Positive Min-Max-Polynomials

(1) Let x∗ := Nf (x). The first inequality holds, as x ≤ µ(L (f ,x) ∨ x) = x∗. For
the second inequality, observe that we have x∗ ≥ x and f ′

i,j(x) ≥ 0 and thus
f ′

i,j(x)(x∗ − x) ≥ 0. Hence we have

x∗
i = xi ∨

m

j∈{1,...,k}

(fi,j(x) + f ′
i,j(x)(x∗ − x)) ≥ xi ∨

m

j∈{1,...,k}

fi,j(x) = xi ∨ fi(x)

for
e ∈ {∧,

∨}.
(2) Let x = f(x) and i ∈ {1, . . . , n}. Assume that fi =

e
j∈{1,...,k}fi,j where

e ∈ {∨,
∧}.

Then

xi = fi(x)

= xi ∨
m

j∈{1,...,k}

fi,j(x)

= xi ∨
m

j∈{1,...,k}

fi,j(x) + f ′
i,j(x)(x− x)

= xi ∨ L (fi,x) (x) .

Hence x is a fixed point of L (f ,x)∨x and we have x ≥ µ(L (f ,x)∨x) = Nf (x) ≥ x

using statement (1).

(3) Let x ≤ y and y∗ := Nf (y) and i ∈ {1, . . . , n}. Assume that fi =
e

j∈{1,...,k}fi,j

where
e ∈ {∨,

∧}. We have:

y∗
i

= yi ∨ L (fi,y) (y∗)

= yi ∨
m

j∈{1,...,k}

(fi,j(y) + f ′
i,j(y)(y∗ − y))

≥ yi ∨
m

j∈{1,...,k}

(fi,j(x) + f ′
i,j(x)(y − x) + f ′

i,j(y)(y∗ − y)) (Lemma 1.2)

≥ yi ∨
m

j∈{1,...,k}

(fi,j(x) + f ′
i,j(x)(y − x) + f ′

i,j(x)(y∗ − y)) (y∗ − y ≥ 0)

= yi ∨
m

j∈{1,...,k}

(fi,j(x) + f ′
i,j(x)(y∗ − x)) (f ′

i,j(x) linear)

≥ xi ∨
m

j∈{1,...,k}

(fi,j(x) + f ′
i,j(x)(y∗ − x))

= xi ∨ L (fi,x) (y∗)

So y∗ is a postfixed point of L (f ,x) ∨ x which implies, using Knaster-Tarski’s fixed
point theorem, that Nf (x) = µ(L (f ,x) ∨ x) ≤ y∗ = Nf (y).

(4) Let x∗ := Nf (x). Assume that fi =
e

j∈{1,...,k}fi,j where
e ∈ {∨,

∧}. Then:

fi(x
∗)

≥ fi(x) ∨ fi(x
∗) (stmt. (1), fi monotone)

≥ xi ∨ fi(x
∗) (x ≤ f(x))

≥ xi ∨
m

j∈{1,...,k}

(fi,j(x) + f ′
i,j(x)(x∗ − x)) (stmt. (1), Lemma 1.2)

= xi ∨ L (fi,x) (x∗) (definition of L (fi,x))

= x∗
i (x∗ fixed point of L (f ,x))

As i ∈ {1, . . . , n} is arbitrary, we have f(x∗) ≥ x∗.
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(5) Let σ ∈ Σ and x∗ := Nf (x). We have to show that x∗
i = xi ∨ L (fi,x) (x∗) ≥

xi ∨ L (fσ
i ,x) (x∗) for i = 1, . . . , n, i.e., x∗ is a postfixed point of L (fσ,x) ∨ x. Then

Knaster-Tarski’s fixed point theorem implies that x∗ ≥ µ(L (fσ,x) ∨ x) = Nfσ (x).
Let i ∈ {1, . . . , n}. Assume that fi =

∨
j=1,...,k fi,j and that fσ

i = fi,j0 . Then

x∗
i = xi ∨ L (fi,x) (x∗) = xi ∨

∨

j=1,...,k

L (fi,j ,x) (x∗)

≥ xi ∨ L (fi,j0 ,x) (x∗) = xi ∨ L (fσ
i ,x) (x∗).

Assume now that fi =
∧

j=1,...,k fi,j . Then fσ
i = fi, so there is nothing to show.

(6) Is shown analogously.

(7) Let g := L (f ,x) ∨ x. Then Nf (x) = µg. By Lemma 2.12.3 there is a ∧-strategy

π′ ∈ Πg with µgπ′

= µg. Observe that there exists a ∧-strategy π ∈ Πf which

corresponds to the ∧-strategy π′ ∈ Πg, i.e., L (fπ,x) ∨ x = gπ′

. Hence we have

Nfπ (x) = µ(L (fπ,x) ∨ x) = µgπ′

= Nf (x).

In particular, Lemma 2.16 implies that the least fixed point of Nf is equal to the least
fixed point of f . For our τ -method we use this operator for computing a sequence of
approximants to the least fixed point:

Definition 2.17 (τ -sequence). We call the sequence (τ
(k)
f )k∈N of approximants defined by

τ
(k)
f := N k

f (0) the τ -sequence for f . We drop the subscript if f is understood.

The τ -sequence converges to µ at least as fast as the Kleene sequence:

Proposition 2.18. Let f be a feasible min-max-SPP. The τ -sequence (τ (k)) for f is mono-
tonically increasing, bounded from above by µ, and converges to µ. Moreover, κ(k) ≤ τ (k)

holds for all k ∈ N.

Proof. By Lemma 2.16.1 we have x ≤ Nf (x) for every x, so (τ
(k)
f ) is monotonically increas-

ing. We show by induction on k that κ(k) ≤ τ (k) ≤ µ. The base case k = 0 is trivial. For
the step we get by Lemma 2.16:

κ(k+1) = f(κ(k)) ≤ f(τ (k)) ≤ Nf (τ (k)) = τ (k+1) ≤ Nf (µ) = µ

Thus we get µ = limk→∞ κ(k) ≤ limk→∞ τ
(k)
f ≤ µ by Theorem 2.5.

We aim at some more quantitative results on the convergence speed of the τ -sequence.
In fact, we will show that some of our results on Newton’s method for SPPs from the first
part of this thesis can be extended to min-max-SPPs.

Let f be a quadratic SPP (without ∧ or ∨). Then the τ -sequence for f coincides with
the Newton sequence and thus converges linearly2:

2In Chapter 1 we required that the SPPs under consideration be clean. This restriction was necessary
because the Newton sequence was defined using matrix inverses (cf. Definition 1.11 on page 21) which in
general only exist if the SPP is clean. In this section we avoid this problem by defining τ(k+1) as the
least fixed point of L

(
f, τ(k)

)
∨ τ(k). As mentioned in § 1.1.2, an SPP f can easily be transformed

into an equivalent clean SPP g by detecting and removing the components i with µi = 0. Then the

approximants τ
(k)
f

and ν
(k)
g are equal, except for extra components in τ

(k)
f

which are 0. So, components i

with µi = 0 do not cause any harm.
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Proposition 2.19 (see Theorem 1.51). Let f be a feasible quadratic SPP. The τ -sequence
(τ (k)) for f has linear convergence order. More precisely, let β be the convergence order of
the τ -sequence. Then there is a kf ∈ N such that β(kf + i · n · 2n) ≥ i for all i ∈ N.

Our goal for the rest of this section is to show that essentially the same holds for min-
max-SPPs.

In a first step towards that goal, we consider max-SPPs.

Lemma 2.20. Let f be a feasible max-SPP. Let M := {σ ∈ Σ | µfσ = µ}. The set M is

non-empty and τ
(k)
f ≥ τ

(k)
fσ for all σ ∈M and k ∈ N.

Proof. Theorem 2.10 implies that there exists a ∨-strategy σ ∈ Σ such that µfσ = µ. Thus
M is non-empty. Let σ ∈M . By induction on k Lemma 2.16 implies

τ
(k)
f = N k

f (0) ≥ N k
fσ (0) = τ

(k)
fσ for every k ∈ N.

A direct consequence of Lemma 2.20 is that the τ -sequence (τ
(k)
f ) has exponential con-

vergence order whenever there is a σ ∈ M such that (τ
(k)
fσ ) has exponential convergence

order. This is the case if I − (fσ)′(µ) is nonsingular, see Theorem 1.24. The following
proposition holds even if nonsingularity cannot be guaranteed:

Proposition 2.21. Let f be a feasible quadratic max-SPP. The τ -sequence (τ (k)) for f has
linear convergence order. More precisely, let β be the convergence order of the τ -sequence.
Then there is a kf ∈ N such that β(kf + i · n · 2n) ≥ i for all i ∈ N.

Proof. By Lemma 2.20 we have τ
(k)
f ≥ τ

(k)
fσ for all k ∈ N. By Proposition 2.19, τ

(kfσ +i·n·2n)
fσ

has i valid bits. So we can choose kf := kfσ .

The following lemma extends our considerations to min-max-SPPs f . It relates the

sequence (τ
(k)
f ) to the sequences (τ

(k)
fπ ) where µfπ = µ.

Lemma 2.22. Let f be a feasible min-max-SPP and m denote the number of strategies
π ∈ Π with µ = µfπ. There is a constant k ∈ N such that for all k ∈ N there exists some

strategy π ∈ Π with µ = µfπ and τ
(k+m·k)
f ≥ τ

(k)
fπ .

Proof. Using Lemma 2.16.7, we conclude that, for every k, there exists a ∧-strategy π(k)

for f such that N
fπ(k) (τ

(k)
f ) = Nf (τ

(k)
f ) = τ

(k+1)
f . We first show that there exists some

k ∈ N such that
µfπ(k)

= µ for every k ≥ k . (2.8)

Since, by Lemma 2.12.2, µfπ(k) ≥ µ for every k, suppose for a contradiction that µfπ(k)

> µ

for infinitely many k. As µ ≤ fπ(k)

(µ), we have µ < fπ(k)

(µ) for infinitely many k. Since

all fπ(k)

(finitely many) are continuous and τ
(k)
f converges to µ, we conclude

µ 6≥ fπ(k)

(τ
(k)
f ) ≤ N

fπ(k) (τ
(k)
f ) = Nf (τ

(k)
f ) = τ

(k+1)
f for infinitely many k ,

contradicting τ
(k)
f ≤ µ for all k. So, (2.8) is shown.

Let k ∈ N. Consider the ∧-strategies π(k), . . . , π(k+m·k). By (2.8), µfπ = µ holds for
every ∧-strategy π within this sequence. By the pigeonhole principle there is a strategy π ∈ Π

that occurs at least k times in π(k), . . . , π(k+m·k). By monotonicity, τ
(k+m·k)
f ≥ τ

(k)
fπ .
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Now we can prove the main result of this section which states that the τ -sequence for
min-max-SPPs has at least linear convergence order.

Theorem 2.23. Let f be a feasible quadratic min-max-SPP and let m denote the number
of strategies π ∈ Π with µ = µfπ. The τ -sequence (τ (k)) for f has linear convergence
order. More precisely, let β be the convergence order of the τ -sequence. Then there is a
kf ∈ N such that β(kf + i ·m · n · 2n) ≥ i for all i ∈ N.

Proof. By Lemma 2.22 there exists some k ∈ N such that for all k ∈ N there exists some

strategy π ∈ Π with µ = µfπ and τ
(k+m·k)
f ≥ τ

(k)
fπ . Let

kmax := max {kfπ | π ∈ Π, µfπ = µ}

where kfπ is from Proposition 2.21. Let kf := k+m·kmax . Let i ∈ N and k := kmax +i·n·2n.
Then:

τ
(kf +i·m·n·2n)
f = τ

(k+m·kmax+i·m·n·2n)
f = τ

(k+m·k)
f ≥ τ

(k)
fπ ≥ τ

(kfπ +i·n·2n)
fπ

By Proposition 2.21, τ
(kfπ +i·n·2n)
fπ has i valid bits. Hence τ

(kf +i·m·n·2n)
f has i valid bits as

well.

The upper bound on the convergence rate provided by Theorem 2.23 is by the factor m
worse than the upper bound obtained for SPPs and max-SPPs, cf. Proposition 2.19 and
Proposition 2.21. As m is the number of strategies π ∈ Π with µfπ = µ, this number is
trivially bounded by |Π| but should usually be much smaller.

In order to determine the approximant τ (k+1) = Nf (τ (k)) from τ (k) we have to compute
the least fixed point of the min-max-SML L

(
f , τ (k)

)
∨ τ (k). This can be done using the

strategy improvement algorithm from [GS07b]. The algorithm iterates over ∨-strategies. For
each strategy it solves a linear program or, alternatively, iterates over ∧-strategies. For more
details see [GS07b]. The number of ∨-strategies used by this algorithm is trivially bounded
by the number of ∨-strategies for L

(
f , τ (k)

)
∨ τ (k), which is exponential in the number

of ∨-expressions occurring in L
(
f , τ (k)

)
∨ τ (k). So far, no example is known for which

the algorithm needs more than linearly many strategy improvement steps, i.e., iterates over
more than linearly many strategies. However, a very recent result [Fri09] indicates that,
in fact, exponentially many iterations may be needed. This is shown in [Fri09] for the
strategy improvement algorithm on parity games. Whether this carries over to min-max-
SMLs remains to be seen.

2.4 The ν-Method

In this section we derive an alternative method to approximate µf for min-max-SPPs f .
This method, called ν-method, has both advantages and disadvantages compared to the
τ -method presented in the previous section.

Advantage: One step of the ν-method is cheaper to compute. The τ -method uses
strategy iteration over ∨-strategies to compute Nf (y). This could be expensive, as
there may be exponentially many ∨-strategies. The ν-method, which we present in
this section, is an alternative generalization of Newton’s method. In each step it picks
the currently most promising ∨-strategy directly, without strategy iteration. It turns
out that the computation of a single step reduces to solving one instance of a linear
programming (LP) problem.
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Disadvantage: The ν-method needs more steps. Letting ν(k) and τ (k) denote the it-
erates of the τ -method and the ν-method, respectively, we will show ν(k) ≤ τ (k) ≤ µ

holds for all k ∈ N, where the inequalities may be strict. This means that whereas a
single step of the ν-method is cheaper to compute, more steps may be needed to reach
an approximation of µ of a certain precision.

Advantage: The ν-method computes good strategies for extinction games. We
will see at the end of the section that the iterates of the ν-method carry information
on good strategies for extinction games. More precisely, with each iterate ν(k) comes
a strategy for the terminator that guarantees her/him a termination probability of at
least ν(k), regardless of how the savior plays.

For the ν-method, consider again a fixed feasible min-max-SPP f whose least fixed point
we want to approximate. Assume that y is some approximation of µ. Instead of applying
Nf to y, as in the τ -method, we now choose a strategy σ ∈ Σ such that f(y) = fσ(y), and
compute Nfσ (y), where Nfσ was defined in § 2.3 as Nfσ (y) := µ(L (fσ,y) ∨ y). In the
following we write Nσ instead of Nfσ if f is understood.

Assume for a moment that f is a max-SPP and that there is a unique σ ∈ Σ such
that f(y) = fσ(y). The approximant Nσ(y) is the result of applying one iteration of
Newton’s method, because L (fσ,y) is not only a linearization of fσ, but the first-order
Taylor approximation of f at y. More precisely, L (fσ,y) (x) = f(y) + f ′(y) · (x− y), and
Nσ(y) is obtained by solving x = L (fσ,y) (x). In this sense, the ν-method is a more direct
generalization of Newton’s method than the τ -method.
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g(X)−X

h(X)−X

Figure 2.5: The τ -method and the ν-method produce different iterates.

Example 2.24. Consider again the 1-dimensional max-SPP f from Example 0.11 with
f(X) = g(X) ∨ h(X) where

g(X) = 0.5X2 + 0.7X + 0.04 and h(X) = 0.1 + 2.2X2 ,
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see Figure 2.5. Let

g(X) = g(0) + g′(0) ·X = 0.04 + 0.7X and h(X) = h(0) + h′(0) ·X = 0.1 .

The τ -method computes Nf (0) = τ (1) as the least fixed point of f where f(X) = g(X)∨h(X),
i.e., τ (1) is the solution of g(X) − X ∨ h(X) − X = 0, see Figure 2.5. The ν-method
proceeds as follows. First it picks the strategy σ with f(0) = fσ(0), i.e., it picks σ = h.
Then it computes Nσ(0) = ν(1) as the least fixed point of

L (fσ, 0) = L (h, 0) = h ,

i.e., ν(1) is the solution of h(X) − X = 0, see also Figure 2.5. Notice that h is the first-
order Taylor approximation of f at 0, so the ν-method is very close to the “classical” Newton
method from Chapter 1. But recall from Example 0.9 that the classical Newton method does
not work when there are minimum operators. Figure 2.5 shows ν(1) < τ (1) which illustrates
the disadvantage of the ν-method mentioned at the beginning of the section.

Formally, we define the ν-method by a sequence of approximants, the ν-sequence.

Definition 2.25 (ν-sequence). A sequence (ν
(k)
f )k∈N is called ν-sequence of a min-max-

SPP f if ν
(0)
f = 0 and for each k there is a strategy σ(k) ∈ Σ with f(ν

(k)
f ) = fσ(k)

(ν
(k)
f )

and ν
(k+1)
f = Nσ(k)(ν

(k)
f ). We drop the subscript if f is understood.

Notice the nondeterminism here if there is more than one ∨-strategy that attains f(ν(k)).
The following proposition is analogous to Proposition 2.18 (also cf. Theorem 1.12) and states
some basic properties of ν-sequences.

Proposition 2.26. Let f be a feasible min-max-SPP. The sequence (ν(k)) is monotonically
increasing, bounded from above by µ, and converges to µ. More precisely, we have κ(k) ≤
ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µ for all k ∈ N.

Proof. By induction on k. The base case k = 0 is easy. Let k > 0. Then:

κ(k) = f(κ(k−1)) (definition of κ(k))

≤ f(ν(k−1)) (induction hyp.: κ(k) ≤ ν(k))

= fσ(k−1)

(ν(k−1)) (definition of σ(k−1))

≤ ν(k) (Lemma 2.16.1)

≤ fσ(k−1)

(ν(k))
(induction hyp.: ν(k−1) ≤ fσ(k−1)

(ν(k−1)),

so with Lemma 2.16.4: ν(k) ≤ fσ(k−1)

(ν(k)))

≤ f(ν(k)) (σ(k−1) is a ∨-strategy)

= fσ(k)

(ν(k)) (definition of σ(k))

≤ ν(k+1) (Lemma 2.16.1)

= N
fσ(k) (ν(k)) (definition of ν(k+1))

≤ Nf (ν(k)) (Lemma 2.16.5)

≤ Nf (µ)
(induction hyp.: ν(k) ≤ µ,
so with Lemma 2.16.3: Nf (ν(k)) ≤ Nf (µ))

= µ (Lemma 2.16.2)
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The goal of this section is again to strengthen Proposition 2.26 towards quantitative
convergence results for ν-sequences. To achieve this goal we again relate the convergence
of ν-sequences to the convergence of Newton’s method for SPPs. If f is an SPP, Propo-
sition 2.19 allows to reason about the Newton operator Nf when applied to approximants

x ≤ µ. To transfer this result to min-max-SPPs f we need an invariant like ν(k) ≤ µfσ(k)

for ν-sequences. To obtain such an invariant we need to further restrict the choice of σ(k).
Roughly speaking, the strategy in a component i is only changed when it is immediate that
component i has not yet reached its fixed point.

Definition 2.27 (lazy strategy update). Let x ≤ fσ(x) for a σ ∈ Σ. We say that σ′ ∈ Σ

is obtained from x and σ by a lazy strategy update if f(x) = fσ′

(x) and σ′(i) = σ(i) holds
for all components i with fi(x) = xi. We call a ν-sequence (ν(k))k∈N lazy if for all k, the
strategy σ(k) is obtained from ν(k) and σ(k−1) by a lazy strategy update.

Algorithm 2.1 summarizes the lazy ν-method which works by computing lazy ν-sequences.

Algorithm 2.1 lazy ν-method

procedure lazy-ν(f , k)
assumes: f is a min-max-SPP
returns: ν(k), σ(k) obtained by k iterations of the lazy ν-method

ν ← 0
σ ← any σ ∈ Σ such that f(0) = fσ(0)
for i from 1 to k do

ν ← Nfσ (ν)
σ ← lazy strategy update from ν and σ

od
return ν, σ

For our convergence speed analysis of Algorithm 2.1, the following invariant will be crucial:

Lemma 2.28. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ µfσ(k)π holds for all k ∈ N

and for all π ∈ Π∗ (i.e., for all π such that fπ is feasible).

The proof of Lemma 2.28 is non-trivial and, for the sake of readability, has been moved
to Appendix B.1. The following example shows that lazy strategy updates are essential to
Lemma 2.28 even for max-SPPs.

Example 2.29. Consider the max-SPP f with

f(X) =

(
f1(X1,X2)

f2(X1,X2)

)
=

(
1
2 ∨X1

X1X2 + 1
2

)
.

Let σ(0)(1) = 1
2 and σ(1)(1) = X1. Then there is a ν-sequence (ν(k)) with

ν(0) =

(
0
0

)
, ν(1) = Nσ(0)(ν(0)) =

(
1/2
1/2

)
, ν(2) = Nσ(1)(ν(1)) .

However, the conclusion of Lemma 2.28 does not hold, because

(
1/2
1/2

)
= ν(1) 6≤ µfσ(1)

=

(
0

1/2

)
.

Notice that σ(1) is not obtained by a lazy strategy update, as f1(ν
(1)) = ν

(1)
1 .
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Lemma 2.28 falls short of our subgoal to establish ν(k) ≤ µfσ(k)

, because Π \Π∗ might

be non-empty. In fact, the following example shows that ν(k) ≤ µfσ(k)π does not always

hold for all π ∈ Π, even when fσ(k)π is feasible. Luckily, Lemma 2.28 will suffice for our
convergence speed result.

Example 2.30. Consider again the min-max-SPP f from Example 2.4 with

f(X) =

(
f1(X1,X2)

f2(X1,X2)

)
=

(
1
2X2

2 + 1
2 ∧ 3

X1 ∨ 2

)
.

The unique ν-sequence of f is given by

ν(0) =

(
0
0

)
, σ(0)(2) = 2, ν(1) =

(
1/2
2

)
, σ(1)(2) = 2,

ν(2) =

(
5/2
2

)
, σ(2)(2) = X1, ν(i) =

(
3
3

)
, σ(i)(2) = X1 (i ≥ 3) .

We have (see also Figure 2.1 on page 55)

ν(3) = µfσ(3)π =

(
3
3

)
for π ∈ Π∗ with π(1) = 3, but

ν(3) 6≤ µfσ(3)π′

=

(
1
1

)
for π′ ∈ Π \Π∗ with π′(1) =

1

2
X2

2 +
1

2
.

Note that fσ(3)π′

is feasible and fπ′

is not.

The following lemma relates the ν-method for min-max-SPPs to Newton’s method for SPPs.

Lemma 2.31. Let f be a feasible min-max-SPP and (ν(k)) a lazy ν-sequence. Let m be
the number of strategy pairs (σ, π) ∈ Σ × Π with µ = µfσπ. Then m ≥ 1 and there is a
constant k ∈ N such that, for all k ∈ N, there exist strategies σ ∈ Σ, π ∈ Π with µ = µfσπ

and ν
(k+m·k)
f ≥ τ

(k)
fσπ .

Before proving Lemma 2.31 we show the following lemma, a consequence of Lemma 2.28.
Let us define, for all k ∈ N, a strategy π(k) ∈ Π such that ν(k+1) = Nσ(k)(ν(k)) =
Nσ(k)π(k)(ν(k)). Such a π(k) exists by Lemma 2.16.7.

Lemma 2.32. There is a k ∈ N such that µ = µfσ(k)π(k)

for all k ≥ k.

Proof. As the π(k) are ∧-strategies, we have f ≤ fπ(k)

. Hence µ ≤ µfπ(k)

if µfπ(k)

is
defined. We show that there is a k0 ≥ 0 such that

µ = µfπ(k)

for all k ≥ k0 . (2.9)

Assume for a contradiction that fπ(k)

is infeasible or µ < µfπ(k)

holds for infinitely many k.

Then µ < fπ(k)

(µ) for infinitely many k. By Proposition 2.26, the ν(k) converge to µ, so,

by continuity, we also have µ 6≥ fπ(k)

(ν(k)) for some (actually infinitely many) k. With

Lemma 2.16.1 we get µ 6≥ fπ(k)

(ν(k)) ≤ f(ν(k)) = fσ(k)

(ν(k)) ≤ Nσ(k)(ν(k)) = ν(k+1)

which contradicts Proposition 2.26 stating ν(k+1) ≤ µ. So, (2.9) holds in fact, which implies

π(k) ∈ Π∗, i.e., fπ(k)

is feasible for all k ≥ k0. Therefore, Lemma 2.28 implies that

ν(k) ≤ µfσ(k)π(k) ≤ µfπ(k)

= µ holds for all k ≥ k0. (2.10)
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Assume for a contradiction that µfσ(k)π(k)

< µ holds for infinitely many k. There are
only finitely many different strategy pairs (σ(k), π(k)), so there is an ε > 0 such that∥∥∥µ− µfσ(k)π(k)

∥∥∥ ≥ ε holds for infinitely many k. With (2.10),
∥∥µ− ν(k)

∥∥ ≥ ε holds

for infinitely many k, contradicting Proposition 2.26 which assures that the ν(k) converge
to µ.

Now we can show Lemma 2.31.

Proof of Lemma 2.31. Lemma 2.32 implies m ≥ 1. Take the k from Lemma 2.32 and con-

sider ν
(k+m·k)
f for any k ∈ N. It is obtained by applying m ·k iterations of the lazy ν-method

to ν(k). By the pigeonhole principle, there are strategies σ ∈ Σ, π ∈ Π such that Nfσπ has
been applied at least k times. Hence, we have:

µfσπ = µ (Lemma 2.32)

≥ ν
(k+m·k)
f (Proposition 2.26)

≥ (Nfσπ )
k
(ν

(k)
f )

(pigeonhole principle (see above),
Lemma 2.16.3: monotonicity of Nfσπ )

≥ (Nfσπ )
k
(0) (Lemma 2.16.3: monotonicity of Nfσπ )

= τ
(k)
fσπ (definition of τ

(k)
fσπ )

Again, in typical cases, i.e., if I − (fσπ)′(µ) is nonsingular for all σ ∈ Σ and π ∈ Π with
µfσπ = µ, the lazy ν-sequence has exponential convergence order. The following theorem
captures the worst-case, in which it still converges linearly.

Theorem 2.33. Let f be a feasible quadratic min-max-SPP and let m be the number
of strategy pairs (σ, π) ∈ Σ × Π with µ = µfσπ. The lazy ν-sequence (ν(k)) has linear
convergence order. More precisely, let β be the convergence order of the lazy ν-sequence.
Then there is a kf ∈ N such that β(kf + i ·m · n · 2n) ≥ i for all i ∈ N.

Proof. Set kmax = max{kfσπ | µ = µfσπ}, where the maximum ranges over the kfσπ from
Proposition 2.19. Let i ∈ N. We have:

ν
(k+m·(kmax+i·n·2n))
f ≥ τ

(kmax+i·n·2n)
fσπ (Lemma 2.31)

≥ τ
(kfσπ +i·n·2n)
fσπ (kmax ≥ kfσπ )

The last approximant has, by Proposition 2.19, i valid bits of µfσπ = µ. So we can choose
kf := k + m · kmax .

Algorithm 2.2 shows how to compute Nfσ (y) by solving a single linear programming
(LP) problem.

Example 2.34. We illustrate Algorithm 2.2 using the min-max-SPP f from Example 2.4
with

f(X) =

(
f1(X1,X2)

f2(X1,X2)

)
=

(
1
2X2

2 + 1
2 ∧ 3

X1 ∨ 2

)
.

As in Example 2.15 (page 60), let v := (1/2, 1/2)⊤. The strategy σ with σ(2) = 2 yields

fσ(v) = f(v) =

(
5/8
2

)
,
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Algorithm 2.2 Nf (y)

procedure Nf (y)
assumes: f is a min-SPP, y ∈ R

n
≥0

returns: µ(L (f ,y) ∨ y)
g ← linear min-SPP with g(X) = L (f ,y) (y + X)− y

u ← κ
(n)
g

g̃ ← (g̃1, . . . , g̃n)⊤ where g̃i =

{
0 if ui = 0
gi if ui > 0

d ← maximize x1 + · · ·+ xn subject to 0 ≤ x ≤ g̃(x)
return y + d

so, if v were an iterate of the ν-sequence, Algorithm 2.1 would call Algorithm 2.2
with Nfσ (v). Algorithm 2.2 first computes the linearization L (fσ,v):

L (fσ,v) (X) =

(
1
2X2 + 3

8 ∧ 3

2

)
.

Then the function g in Algorithm 2.2 is computed as follows:

g(X) = L (fσ,v) (v + X)− v =

(
1
2 · ( 1

2 + X2) + 3
8 − 1

2 ∧ 3− 1
2

2− 1
2

)
=

(
1
2X2 + 1

8 ∧ 5
2

3
2

)

Since κ
(2)
g ≥ κ

(1)
g = (1/8, 3/2)⊤, we have g̃ = g. As the next step, Algorithm 2.2 solves the

following linear programming problem:

maximize x1 + x2 subject to

{
x1 ≥ 0, x1 ≤ 1

2x2 + 1
8 , x1 ≤ 5

2

x2 ≥ 0, x2 ≤ 3
2

Its solution is d = (7/8, 3/2)⊤, so Algorithm 2.2 returns Nfσ (v) = v+d = (11/8, 2)⊤. Note
that, in this particular instance, the vector Nfσ (v) = (11/8, 2)⊤ equals the vector Nf (v) as
computed in Example 2.15 (page 60).

For the correctness of Algorithm 2.2, we show the following proposition which states that
Nfσ (y) can be determined by computing the least fixed point of a certain linear min-SPP.

Proposition 2.35. Let y ≤ fσ(y) ≤ µ. Then Nfσ (y) = y +µg for the linear min-SPP g

with g(X) = L (fσ,y) (y + X)− y.

Proof. We have for all vectors d:

g(d) := L (fσ,y) (y + d)− y (by definition of g)

=
∧

π∈Π

L (fσπ,y) (y + d)− y (by definition of L (, ))

=
∧

π∈Π

fσπ(y)− y + (fσπ)′(y) · d (by definition of L (, ))

Notice that g is a min-SPP, because fσπ(y) ≥ y by assumption. Let x(1) = Nfσ (y) =
µ(L (fσ,y) ∨ y). As y ≤ fσ(y), x(1) is the least point x ≥ y such that x = L (fσ,y) (x).

In other words, x(1) = y + d(0), where d(0) is the least nonnegative point d such that
y + d = L (fσ,y) (y + d), which is equivalent to d = g(d). So, x(1) = y + µg.
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After having computed the linear min-SPP g, Algorithm 2.2 determines the 0-
components of µg. This can be done by performing n Kleene steps, since (µg)i = 0 whenever

(κ
(n)
g )i = 0 (cf. § 1.1.2). Let g̃ be the linear min-SPP obtained from g by substituting the

constant 0 for all components gi with (µg)i = 0. The least fixed point of g̃ can be computed
by solving a single linear programming (LP) problem, as implied by the following lemma.

Lemma 2.36. Let g be a linear min-SPP such that gi = 0 whenever (µg)i = 0 for all
components i. Then µg is the greatest vector x with x ≤ g(x).

Proof. Let S denote the set of the components i with gi = 0. Define the SPP f := g[S/0].
Now we know by assumption that f is clean, i.e., µ ≻ 0, and it suffices to show that y := µ

is the greatest prefixed point of f . By Lemma 2.8 there exists a π ∈ Π with y = µfπ. In
particular we have y = fπ(y). Let z be any prefixed point of f . As f(z) ≤ fπ(z), it follows
z ≤ fπ(z). Since y ≻ 0, there is an ε > 0 such that x := y + ε(y − z) ≻ 0. We have:

x = y + ε(y − z) (definition of x)

= y + ε(fπ(y)− z) (y = fπ(y))

= y + ε(fπ(z) + (fπ)′ · (y − z)− z) (fπ is linear)

≥ y + ε(fπ)′ · (y − z) (z ≤ fπ(z))

= fπ(y) + (fπ)′ · ε(y − z) (y = fπ(y))

= fπ(y + ε(y − z)) (fπ is linear)

= fπ(x) (definition of x) ,

i.e., x is a postfixed point of fπ. By Knaster-Tarski’s theorem, y = µfπ is the least postfixed
point of fπ, hence y ≤ x. But this implies with the definition of x that z ≤ y. As the
prefixed point z of f was chosen arbitrarily, y is the greatest prefixed point of f .

The correctness of Algorithm 2.2 follows from Proposition 2.35 and Lemma 2.36.

The following theorem shows the second major advantage of the lazy ν-method, namely,
that the strategies σ(k) are meaningful in terms of games.

Theorem 2.37. Let Π = Π∗. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ µfσ(k)

holds for all k ∈ N.

Proof. Immediate from Lemma 2.28.

In terms of extinction games, the inequality ν(k) ≤ µfσ(k)

of Theorem 2.37 means that,
no matter how the savior plays, the terminator achieves an extinction probability of at
least ν(k) by using the strategy σ(k). As (ν(k)) converges to µ by Proposition 2.26, these
lower bounds on the terminator’s winning chances come arbitrarily close to the winning
probability in optimal play. We say, the ∨-strategies σ(k) are ε-optimal. Moreover, since
(ν(k)) converges to µ and there are only finitely many strategies, there is an i ∈ N such

that µfσ(i+j)

= µ holds for all j ≥ 0, i.e., ultimately, the σ(k) are optimal. It is not clear,
however, how to compute the i for which σ(i+j) is optimal for all j.

It is an open question whether the τ -method can be modified to yield ε-optimal strategies.
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Example 2.38 (Application to the primaries game). We solved the equation system of
Example 2.11 (page 58) approximatively by performing 5 iterations of the lazy ν-method.
Using Theorem 2.37 we found that Clinton can extinguish an individual of problem (a)
with a probability of at least Xa = 0.492 by concentrating on her program and her “ready
from day 1” message. (More than 70 Kleene iterations would be needed to infer that Xa

is at least 0.49.) As ν(5) seems to solve above equation system quite well in the sense that∥∥f(ν(5))− ν(5)
∥∥ is small, we recommend Obama to talk about Iraq. Since ν

(2)
X1

> 0.38 and

σ(2)(1) = 0.3 + 0.7X2
1 , Clinton’s team can use Theorem 2.37 after only 2 iterations to infer

that Xa ≥ 0.38 by showing emotions and using her “ready from day 1” message.

As commented above, we cannot guarantee Obama or Clinton that the recommended
strategies are optimal, and we do not know how many iterations of the ν-method are needed
to yield an optimal strategy for Clinton. In a pragmatic sense, it seems plausible that ν(k)

is close to µ when
∥∥f(ν(k))− ν(k)

∥∥ is small, but proofs of such claims would have to be
constructed case-by-case.

We illustrate the ν-method by two more examples of extinction games.

Example 2.39. Consider again the flu example from Example 0.8 (page 11) which gives
rise to the following equation system:

U = 0.3 + 0.7UU ∨ 0.9T + 0.1U

T = 0.35 + 0.65TU ∧ 0.5 + 0.2TU + 0.3TUU

Recall that µU (resp. µT ) are the probabilities that the doctor succeeds in extinguishing the
flu that may spread from a patient who is not treated (resp. is treated) with Muniflu.

The doctor uses the lazy ν-method to compute the extinction probabilities and obtains
the following sequences:

k 0 1 2 3 4 5

ν
(k)
U 0 0.300 0.409 0.524 0.538 0.538

ν
(k)
T 0 0.350 0.465 0.524 0.538 0.538

σ(k)(U) p1 p1 p2 p2 p2 p2

Here, p1, p2 stand for the polynomials 0.3 + 0.7UU and 0.9T + 0.1U , respectively, in other
words, p1 stands for the doctor’s action not to treat the patient, and p2 stands for treating
him with Muniflu. By virtue of Theorem 2.37, this lazy ν-sequence tells the doctor after two
iterations that Muniflu achieves a cure with a probability of at least 0.4. After four iterations,
she knows that Muniflu succeeds with a probability of at least 0.538. As σ(k)(U) = p2 holds
for (at least) k ∈ {2, 3, 4, 5}, she should treat the patient with Muniflu.

Example 2.40. Consider the following card game between two players, Black and Red.
Initially, a dealer places one card between the players, face up. We call it the current card.
If the current card is black (spades or clubs), then it is Black’s turn, otherwise it is Red’s
turn. The player in turn is dealt a new card, and chooses, without looking at it, between
“swap” and “play”. By “swap” the current card is replaced by the new one. By “play” the
new card is uncovered; if it is higher than the current card, the new card is placed on top of
the current card; else, both the new and the current card are removed from the game.

Black wins if the pile of cards between the players becomes empty. Red wins if the game
goes on forever.

The position of the game is given by the current pile of cards between the players. Since it
can become arbitrarily large, the game has a potentially infinite number of positions. Denote
by Bi (Ri) the probability that if the current card is black (red) with number i the card is
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eventually removed from the pile. Assuming 13 ranks (as in Poker), the probability that
Black wins by optimal play is given by the following equations for each 1 ≤ i ≤ 13:

Bi = X ∨ i

13
+ Yi ·Bi X =

13∑

j=1

1

26
Bj +

1

26
Rj

Ri = X ∧ i

13
+ Yi ·Ri Yi =

13∑

j=i+1

1

26
Bj +

1

26
Rj

We performed 5 iterations of the lazy ν-method to determine (using Theorem 2.37) that if
Black “swaps” at B1, B2, B3, B4 and “plays” at the other black cards, then Black wins the
game starting with a random card X with a probability of at least 0.86. As ν(5) seems to
solve above system quite well, we read off from ν(5) the recommendation for Red to “play”
at R1, R2, R3, R4 and otherwise “swap”. There is no guarantee that these strategies are
optimal.

2.5 Comparisons

We have seen that the ν-method computes ε-optimal strategies for the terminator in extinc-
tion games, whereas it is open whether the τ -method can be used for that as well.

We have also seen that one step of the ν-method is cheaper to compute than one step of
the τ -method, because the τ -method requires strategy iteration in each step, whereas each
step of the ν-method reduces to one linear programming problem.

On the other hand, by Lemma 2.16.5, we have Nf (x) ≥ Nfσ , and so it follows that
τ (k) ≥ ν(k) holds for all k ∈ N. This means that, counting the number of approximation
steps, the τ -method is at least as “fast” as the ν-method. In the following (slightly contrived)
example, the τ -method is, in fact, much “faster” than the ν-method.

Example 2.41. Let f be the following min-max-SPP f which is parameterized by an
arbitrary k ∈ N:

f(X) =

(
X2 ∧ 2

X2
1 + 0.25 ∨ X1 + 2−2(k+1)

)
.

Since the constant 2−2(k+1) is represented using O(k) bits, f is of a size linear in k. The
lazy ν-method needs at least k steps, in fact, we have ν(k) ≤ µ− (1.5, 3.75). The τ -method
needs exactly 2 steps. These claims are proved in Appendix B.2.

To give some intuition why the ν-method performs badly here, we condense the 2-
dimensional min-max-SPP f in a 1-dimensional version g with

g(X) =
(
g1(X) ∨ g2(X)

)
∧ 2

where
g1(X) = X2 + 0.25 and g2(X) = X + 2−2(k+1) .

Figure 2.6 shows the graph of g(X)−X for k = 2. Strictly speaking, g is not a min-max-SPP
because it contains both a minimum and a maximum operator, but the τ - and the ν-method
can be applied analogously in this example. The τ -method finds the least fixed point µ = 2
in only one step: The linearization of g at 0 is

L (g, 0) (X) =
(
0.25 ∨ X + 2−2(k+1)

)
∧ 2 ,

and the least fixed point of this linearization is 2, as can easily seen by computing the Kleene
sequence for L (g, 0) (X).
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Figure 2.6: In this example the ν-method performs badly.

The ν-method, on the other hand, needs more steps. Figure 2.6 shows the first few
iterates. Since g1(x) > g2(x) for small x, the ν-method must take σ(i) = g1(X) at the
beginning. In the figure (which shows the case k = 2) this applies to σ(0) and σ(1). So, the
ν-method does not linearize g2 at the beginning. In some sense, it “tries” to approximate
the least fixed point of g1 (which is 1/2) until it enters the region where g2(x) > g1(x) (in
the figure this region is the interval (3/8, 5/8)). Once this region is reached, the ν-method
takes σ = g2(X) and needs only one more step. The phase in which the ν-method produces
iterates that are less than 1/2 can be made arbitrarily long by moving down the graph of
g2(X)−X, i.e., by increasing k.

Comparison with PReMo

We now compare our approaches with the PReMo tool. PReMo [WE07] is a tool for ana-
lyzing probabilistic models with recursion. In particular, it can analyze a class of stochastic
2-player games, the so-called 1-exit recursive simple stochastic games [EY05c]. PReMo
computes the outcome of such games under optimal play by translating the game into a
min-max-SPP f and computing its least fixed-point µ. PReMo employs 4 different tech-
niques to approximate µ for min-max-SPPs f : It uses Newton’s method only for SPPs
without min or max. In this case both of our methods coincide with Newton’s method. For
min-max-SPPs, PReMo uses Kleene iteration, round-robin iteration (called Gauss-Seidel
in [WE07]), and an “optimistic” variant of Kleene which is not guaranteed to converge. In
the following we compare our algorithms only with Kleene iteration, as our algorithms are
guaranteed to converge and one round-robin step is not faster than n Kleene steps.

Our methods improve on Kleene iteration in the sense that we have both κ(k) ≤ τ (k)

and κ(k) ≤ ν(k) for all k ∈ N, and our methods converge linearly, whereas Kleene iteration
does not converge linearly in general. For example, consider the SPP f(X) = 1

2X2 + 1
2 with

µf = 1. Kleene iteration needs exponentially many iterations for i bits (see Example 0.4),
whereas Newton’s method gives exactly 1 bit per iteration. For the slightly modified SPP
f̃(X) = f(X)∧ 1 which has the same fixed point, PReMo no longer uses Newton’s method,
as f̃ contains a minimum. Our algorithms still produce exactly 1 bit per iteration.

In the case of linear min-max systems our methods compute the precise solution and
not only an approximation. This applies, for example, to the max-linear system of [WE07]
describing the expected time of termination of a nondeterministic variant of Quicksort.
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Notice that Kleene iteration usually does not compute the precise solution, even for linear
SPPs without minimum or maximum.

We implemented our algorithms prototypically in Maple and ran them on the quadratic
nonlinear min-max-SPP describing the termination probabilities of a recursive simple
stochastic game. This game stems from the example suite of PReMo (rssg2.c) and we
used PReMo to produce the equations. Both of our algorithms reached the least fixed point
after 2 iterations. So we could compute the precise µ and optimal strategies for both players,
whereas PReMo computes only approximations of µ.

2.6 Conclusions

Computing the least fixed point of min-max-SPPs is a central problem in the analysis of
certain two-player stochastic games such as extinction games. We have presented the first
methods for approximatively computing the least fixed point of min-max-SPPs, which are
guaranteed to converge at least linearly. Both of them are generalizations of Newton’s
method. Whereas the τ -method converges faster in terms of the number of approximation
steps, one approximation step of the ν-method is cheaper. Furthermore, we have shown
that the ν-method computes ε-optimal strategies for the terminator in extinction games.

There are several open problems.

• One would like to know how many iterations of our methods are necessary to reach µ

within a certain precision. We have established the convergence order of our methods
(linear), but do not yet have bounds on the threshold kf . Alternatively, one may look
for sufficient criteria guaranteeing that the current approximant is close to µ.

• Our methods need to be evaluated in practice. In particular, the influence of imprecise
computation through floating point arithmetic should be studied.

• Can the τ -method, like the ν-method, be used to compute ε-optimal strategies?

• How can optimal strategies be computed? More precisely, we know that the strate-
gies computed by the lazy ν-method are eventually optimal. But it is open how to
determine how many iterations are needed.



Chapter 3

Generalizing Newton’s Method:
An Epilogue

In this thesis, we have studied fixed-point equations X = f(X) and algorithms, based on
Newton’s method, that compute the least solution µ. In the first part of the thesis, the
function f was a vector of polynomials with nonnegative real coefficients, and we applied f

mainly to vectors of nonnegative reals. In particular, µ was a vector of nonnegative reals.

In this chapter we sketch an abstraction from the nonnegative reals. We argue that the
notions of a polynomial vector f , its least fixed point µ, and even Newton’s method to com-
pute µ can all be generalized from the nonnegative reals to many more domains. Several
theorems of this thesis are instances of more general theorems. Since interprocedural pro-
gram analysis can be seen as the art of computing least fixed points of polynomial vectors,
this generalization of Newton’s method leads to new program analysis algorithms. The re-
sults mentioned in this chapter are described and proved in [EKL09] and have been published
in [EKL07b, EKL07a, EKL08], see also Michael Luttenberger’s recent PhD thesis [Lut09].

If the set of nonnegative reals is extended with +∞, it can be seen as a semiring with the
operations product and sum. This means, sum and product are associative and have neutral
elements 0 and 1, respectively. Moreover, sum is commutative, and product distributes over
sum. We call the semiring over the extended reals the real semiring. Like most naturally
occurring semirings, the real semiring is ω-continuous, which means that the sum operator
can be extended to an infinite summation operator that satisfies some natural properties,
see [Kui97]. We look only at ω-continuous semirings in this chapter.

The real semiring is special in that it is commutative, which means that the product
operation is commutative. Many semirings (but not the real semiring) are idempotent,
which means that the sum operation is idempotent.

Here are some examples for semirings apart from the real semiring:

(1) The real interval [0, 1] constitutes an idempotent and commutative semiring, where
the sum operation is maximum, and the product operation is multiplication.

(2) The set 2Σ∗

contains the languages over an alphabet Σ. It constitutes a semiring,
where the sum operation is language union, and the product operation is language
concatenation. This semiring is idempotent but not commutative.
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(3) For some fixed s ∈ N, the set 2N
s

contains the sets of vectors whose s components are
natural numbers. It constitutes a semiring, where the sum operation is set union, and
the product operation is given as follows:

U · V = {(u1 + v1, . . . , us + vs) | (u1, . . . , us) ∈ U, (v1, . . . , vs) ∈ V }
This semiring is idempotent and commutative.

(4) For some fixed domain set D, the set 2D×D contains the binary relations over D. It
constitutes a semiring, where the the sum operation is set union, and the product
operation is the join of relations, i.e.

R · S = {(a, c) | ∃b with (a, b) ∈ R, (b, c) ∈ S} .
This semiring is idempotent but not commutative.

In the following, let S be any semiring. The concept of polynomials can be extended to S
in a straightforward way: A polynomial f is any expression over variables and constants,

using sum and product as operators. For instance, if we have X =

(
X1

X2

)
as variables, then

f(X) = a ·X1 ·X2 + b ·X1 is a polynomial, where a, b ∈ S. Note that any polynomial can
be written as a sum of products, because semirings are distributive.

A vector x ∈ Sn is a fixed point of a polynomial vector f if f(x) = x. Those notions are
defined as expected. One can define an order ≤ on S by setting a ≤ a + b for all a, b ∈ S.
Extending this order component-wise on vectors allows to speak about the least fixed point µ

of a polynomial vector f : it is the least solution (with respect to ≤) of X = f(X). Kleene’s
fixed-point theorem guarantees the existence of µ:

Theorem 3.1 (Kleene’s fixed-point theorem). Every polynomial vector f has a least fixed
point µ in Sn, i.e., µ = f(µ) and, in addition, y = f(y) implies µ ≤ y. Moreover, the
sequence (κ(k))k∈N with κ(k) = fk(0) is monotonically increasing with respect to ≤ (i.e.,
κ(k) ≤ κ(k+1))) and converges to µ.

Note that the statement of this theorem is almost identical to the statements in The-
orem 1.3 (page 17) and Theorem 2.5 (page 55), with the exception that the requirement
that f be feasible is omitted. This is because it is implied by the ω-continuity of S, which
we assume throughout this chapter. For the real semiring (which is ω-continuous like all
mentioned semirings) this means that some components of µ may be ∞ (recall that ∞ is
an element of the real semiring).

The least fixed point µ plays a central role for the mentioned application to interproce-
dural program analysis. This is illustrated in the following example.

Example 3.2. Consider a simple program with a procedure X that either calls itself or
directly returns. Assume for a moment that it calls itself with probability a = 2/3 and
returns with probability b = 1/3. Such a program can be modeled using a probabilistic
pushdown automaton (see § 1.1.4 on page 19) with exactly one control state (which we
omit for brevity), one stack symbol X, and the following rules:

X
a−֒→ XX X

b−֒→ ε

In § 1.1.4 we stated that the termination probability, i.e., the probability that the program
eventually terminates, is given as the least solution µ of

X = f(X) = a ·X ·X + b . (3.1)

With a = 2/3 and b = 1/3 we have µ = 1/2.

Equation (3.1) can be used to compute much more information on the program.
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(1) Assume that we are interested in the probability of the most likely terminating execution
of the program. To determine this probability, we reinterpret (3.1) as an equation over
the semiring (1) in the above list. That is, we obtain the equation X = f(X) with
f(X) = aXX ∨ b. The probability of the most likely terminating execution is the least
fixed point µ of f . With a = 2/3 and b = 1/3 we have µ = 1/3 (i.e., the most likely
terminating execution is that X directly returns).

(2) Assume that the procedure X outputs the letter “a” whenever it calls itself and out-
puts “b” whenever it returns. In order to determine the language of possible output
strings of terminating executions, we reinterpret (3.1) as an equation over the semi-
ring (2) in the above list with Σ = {a, b}. That is, we obtain the language equation
X = f(X) with f(X) = {a} ·X ·X ∪ {b}. The least solution is the language of output
strings. It can be equivalently described as the language of the context-free grammar
with the rules X → aXX and X → b.

(3) Assume that we are only interested in how many letters “a” and “b” are output, not
in which order. More precisely, we wish to determine the following set:

M := {(i, j) | ∃ terminating execution that outputs i letters “a” and j letters “b”}

To determine M , we reinterpret (3.1) as an equation over the semiring (3) in the
above list with s = 2. That is, we obtain the equation X = f(X) with

f(X) = {(1, 0)} ·X ·X ∪ {(0, 1)} ,

where we write · for the product operator defined for the semiring (3). The set M is
the least fixed point of f .

As in Chapter 1 and 2, the Kleene sequence (κ(k)) can be used to approximate µ, but
the convergence may be slow.

Example 3.3. We wish to compute the set M from the previous example, part (3). As ex-
plained there, we need to compute the least fixed point µ of the polynomial (or 1-dimensional
polynomial vector) f with

f(X) = {(1, 0)} ·X ·X ∪ {(0, 1)} .

The Kleene sequence is given by:

κ(0) = ∅ κ(2) = {(0, 1), (1, 2)} κ(4) = {(0, 1), (1, 2), . . . , (7, 8)} · · ·
κ(1) = {(0, 1)} κ(3) = {(0, 1), (1, 2), (2, 3), (3, 4)} κ(5) = {(0, 1), (1, 2), . . . , (15, 16)} · · ·

So we have κ(k) = {(j − 1, j) | 1 ≤ j ≤ 2k−1} for all k ≥ 0. By Theorem 3.1 it follows

µ = lim
k→∞

κ(k) = {(j, j + 1) | j ∈ N} .

Note that µ is an infinite set, whereas each κ(k) is finite. So, in some sense, the Kleene
sequence converges “slowly”.

We sketch in the following how to generalize Newton’s method in order to obtain a
sequence that converges faster to µ than the Kleene sequence. Recall Theorem 1.12 from
Chapter 1 (page 22):

Theorem 1.12 (weaker version). Let f be an SPP. The Newton sequence (ν(k)) with

ν(0) = 0 and ν(k+1) = ν(k) + f ′(ν(k))∗ ·
(
f(ν(k))− ν(k)

)
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is monotonically increasing, bounded from above by µ (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µ),
and converges to µ.

We are going to generalize Theorem 1.12 to semirings. So far, Theorem 1.12 seems to
make little sense in terms of semirings:

(a) It is not clear what the derivative f ′ means in semirings.

(b) It is not clear what the matrix star f ′(ν(k))∗ means in semirings.

(c) It is not clear what f(X) −X means, because the sum operator need not have an
inverse in semirings.

All those obstacles can be overcome:

(a) For the derivative we take the algebraic definition, in other words, we apply the usual
sum and product rules to calculate the derivative. For instance, for the polynomial
f(X) = a ·X1 ·X2 + b ·X1 we have

δ

δX1
f(X) = a ·X2 + b and

δ

δX2
f(X) = a ·X1 .

Just like in the real case, the partial derivatives of a polynomial vector are collected in
the Jacobian matrix f ′(X). For non-commutative semirings, the definition of deriva-
tives is slightly more delicate [EKL07a].

(b) We have f ′(ν(k)) ∈ Sn×n. For any square matrix A ∈ Sn×n we can define

A∗ := I + A + A ·A + A ·A ·A + · · ·

The concepts of the identity matrix I, matrix addition, matrix multiplication, matrix-
vector multiplication, etc. can all be defined as expected. The assumption of ω-
continuity gives the infinite sum A∗ a well-defined meaning. Having already replaced

the matrix inverse
(
I − f ′(ν(k))

)−1
from the original formulation of Theorem 1.12

by the matrix star f ′(ν(k))∗, we have avoided the seemingly even harder problem of
computing matrix inverses in semirings.

(c) Note that Theorem 1.12 states ν(k) ≤ f(ν(k)). If this inequality also held in semirings,

we would have, by definition of the order ≤, for each k ∈ N a vector δ(k) such that

ν(k) + δ(k) = f(ν(k)) .

Consequently, we could replace f(ν(k))− ν(k) by δ(k). As it turns out, this approach
works.

Having overcome problems (a), (b) and (c) as outlined, the following theorem can be proved:

Theorem 3.4. Let f be a polynomial vector over any ω-continuous semiring. Define a
Newton sequence (ν(k)) by

ν(0) = 0 and ν(k+1) = ν(k) + f ′(ν(k))∗ · δ(k) ,

where δ(k) is any vector satisfying ν(k) + δ(k) = f(ν(k)). Then there is exactly one Newton
sequence, and the Newton sequence (ν(k)) is monotonically increasing, bounded from above
by µ (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µ), converges to µ, and does so at least as fast as the
Kleene sequence (i.e. κ(k) ≤ ν(k)).
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Notice that the statement of Theorem 3.4 is very similar to Proposition 2.18 (page 63)
and Proposition 2.26 (page 67).

Example 3.5. Consider again the polynomial f from Example 3.3 with

f(X) = {(1, 0)} ·X ·X ∪ {(0, 1)} .

We wish to compute the Newton sequence (ν(k)) for f . First we compute the derivative f ′:

f ′(X) = {(1, 0)} ·X ∪ {(1, 0)} ·X = {(1, 0)} ·X

Clearly, ν(0) = ∅. Further, we have f(ν(0)) = {(0, 1)}, so we have to take δ(0) = {(0, 1)} to
achieve ν(0) ∪ δ(0) = f(ν(0)). As {(0, 0)} is the neutral element of the product operator, we
obtain

ν(1) = ν(0) ∪ f ′(ν(0))∗ · δ(0)

= ∅ ∪ ({(1, 0)} · ∅)∗ · {(0, 1)}
= ∅∗ · {(0, 1)} =

(
{(0, 0)} ∪ ∅ ∪ ∅2 ∪ · · ·

)
· {(0, 1)}

= {(0, 1)} .

We have f(ν(1)) = {(1, 0)} · {(0, 1)} · {(0, 1)} ∪ {(0, 1)} = {(0, 1), (1, 2)}, so we can take
δ(1) = {(1, 2)} to achieve ν(1)∪ δ(1) = f(ν(1)). To compute ν(1), we first compute the matrix
star:

f ′(ν(1))∗ = ({(1, 0)} ∪ {(0, 1)})∗ = {(1, 1)}∗ = {(j, j) | j ≥ 0}
This yields:

ν(2) = ν(1) ∪ f ′(ν(1))∗ · δ(1)

= {(0, 1)} ∪ {(j, j) | j ≥ 0} · {(1, 2)}
= {(0, 1)} ∪ {(j + 1, j + 2) | j ≥ 0}
= {(j, j + 1) | j ≥ 0}

So, ν(2) equals the least fixed point µ, which we have computed in Example 3.3. We conclude
that in this example, the Newton sequence reaches µ in two iterations, whereas the Kleene
sequence never reaches µ (and only converges to µ).

In the previous example, the Kleene sequence never reaches µ, whereas the Newton
sequence reaches µ after finitely many steps. In fact, one can show the following theorem
for arbitrary commutative and idempotent semirings:

Theorem 3.6. Let f be a polynomial vector over a commutative and idempotent semiring.
Let n be the number of components of f . Then we have ν(n+1) = µ, i.e., the Newton
sequence reaches µ after n + 1 iterations.

In [EKL09] the Newton sequence is analyzed in much greater detail. The analysis includes
also non-commutative and non-idempotent semirings.

We conclude that computing the least fixed point of polynomial vectors is a very gen-
eral task for solving problems in various computer science areas, from stochastic models of
web-surfers, over extinction games, to interprocedural program analysis. Newton’s method
provides a generic and efficient algorithm to perform this task. In particular, it vastly
accelerates Kleene iteration, which is the traditional way of approximating fixed points.



Appendix A

Proofs of Chapter 1

A.1 Proof of Lemma 1.49

The proof of Lemma 1.49 is by a sequence of lemmata. The following two Lemmata A.1
and A.2 provide a lower bound on ‖f(x)− x‖ for an “almost-fixed-point” x.

Lemma A.1. Let f be a quadratic SPP without linear terms, i.e., f(X) = B(X,X) + c

where B is a bilinear map, and c is a constant vector. Let f(X) be non-constant in every
component. Let R ∪̇ S = {1, . . . , n} with S 6= ∅. Let every component depend on every
S-component and not on any R-component. Then there is a constant Cf > 0 such that

‖f(µ− δ)− (µ− δ)‖ ≥ Cf · ‖δ‖2

for all δ with 0 ≤ δ ≤ µ.

Proof. With the given component dependencies we can write f(X) as follows:

fR(X) =

(
fR(X)
fS(X)

)
=

(
BR(XS ,XS) + cR

BS(XS ,XS) + cS

)

A straightforward calculation shows

e(δ) := f(µ− δ)− (µ− δ) = (I − f ′(µ))δ + B(δ, δ) .

Furthermore, ∂XR
f is constant zero in all entries, so

eR(δ) = δR − ∂XS
fR(µ) · δS + BR(δS , δS) and

eS(δ) = δS − ∂XS
fS(µ) · δS + BS(δS , δS) .

Notice that for every real number r > 0 we have

min
0≤δ≤µ,‖δ‖≥r

‖e(δ)‖
‖δ‖

2

> 0 ,

because otherwise µ− δ < µ would be a fixed point of f . We have to show:

inf
0≤δ≤µ,‖δ‖>0

‖e(δ)‖
‖δ‖

2

> 0
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Assume, for a contradiction, that this infimum equals zero. Then there exists a sequence

(δ(i))i∈N with 0 ≤ δ(i) ≤ µ and
∥∥∥δ(i)

∥∥∥ > 0 such that

lim
i→∞

∥∥∥δ(i)
∥∥∥ = 0 and lim

i→∞

∥∥∥e(δ(i))
∥∥∥

∥∥∥δ(i)
∥∥∥

2 = 0 .

Define r(i) :=
∥∥∥δ(i)

∥∥∥ and d(i) := δ(i)

‖δ(i)‖ . Notice that d(i) ∈ {d ∈ R
n
≥0 | ‖d‖ = 1} =: D where

D is compact. So some subsequence of (d(i))i∈N, say w.l.o.g. the sequence (d(i))i∈N itself,
converges to some vector d∗. By our assumption we have

e(δ(i))/
∥∥∥δ(i)

∥∥∥
2

=

∥∥∥∥
1

r(i)
(I − f ′(µ))d(i) + B(d(i),d(i))

∥∥∥∥ −→ 0 . (A.1)

As B(d(i),d(i)) is bounded, 1
r(i) (I − f ′(µ))d(i) must be bounded, too. Since r(i) converges

to 0,
∥∥∥(I − f ′(µ))d(i)

∥∥∥ must converge to 0, so

(I − f ′(µ))d∗ = 0 .

In particular,
(
(I − f ′(µ))d∗

)
R

= d∗
R − ∂XS

fR(µ) · d∗
S = 0. So we have d∗

S > 0, because
d∗

S = 0 would imply d∗
R = 0 which would contradict d∗ > 0.

In the remainder of the proof we focus on fS . Define the scSPP g(XS) := fS(X).
Notice that µg = µS . We can apply Lemma 1.31 to g and d∗

S and obtain d∗
S ≻ 0. As

fS(X) is non-constant we get BS(d∗
S ,d∗

S) ≻ 0. By (A.1), 1
r(i) (I − g′(µg))d

(i)
S converges

to −BS(d∗
S ,d∗

S) ≺ 0. So there is a j ∈ N such that (I − g′(µg))d
(j)
S ≺ 0. Let δ̃ := rd(j)

for some small enough r > 0 such that 0 < δ̃
∗

S ≤ µg and

eS(δ̃) = (I − g′(µg))δ̃S + BS(δ̃S , δ̃S)

= r(I − g′(µg))d
(j)
S + r2BS(d

(j)
S ,d

(j)
S ) ≺ 0 .

So we have g(µg − δ̃S) ≺ µg − δ̃S . However, µg is the least point x with g(x) ≤ x. Thus
we get the desired contradiction.

Lemma A.2. Let f be a quadratic strongly connected SPP. Then there is a constant Cf > 0
such that

‖f(µ− δ)− (µ− δ)‖ ≥ Cf · ‖δ‖2

for all δ with 0 ≤ δ ≤ µ.

Proof. Write f(X) = B(X,X) + LX + c for a bilinear map B, a matrix L and a constant
vector c. By Theorem 1.12.2. the matrix L∗ = (I − L)−1 = (I − f ′(0))−1 exists. Define

the SPP f̃(X) := L∗B(X,X) + L∗c. A straightforward calculation shows that the sets of

fixed points of f and f̃ coincide and that

f(µ− δ)− (µ− δ) = (I − L)
(
f̃(µ− δ)− (µ− δ)

)
.

Further we have
∥∥∥(I − L)

(
f̃(µ− δ)− (µ− δ)

)∥∥∥
2
≥ σ1(I − L)

∥∥∥f̃(µ− δ)− (µ− δ)
∥∥∥

2

where σ1(I − L) denotes the smallest singular value of I − L. Note that σ1(I − L) > 0
because I − L is invertible. So it suffices to show that there is a Cf with

∥∥∥f̃(µ− δ)− (µ− δ)
∥∥∥ ≥ Cf · ‖δ‖2 .
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If f(X) is linear (i.e. B(X,X) ≡ 0), then f̃(X) is constant and we have∥∥∥f̃(µ− δ)− (µ− δ)
∥∥∥ = ‖δ‖, so we are done in that case. Hence we can assume that some

component of B(X,X) is not the zero polynomial. It remains to argue that f̃ satisfies the

preconditions of Lemma A.1. By definition, f̃ does not have linear terms. Define

S := {i | 1 ≤ i ≤ n, Xi is contained in a component of B(X,X)} .

Notice that S is non-empty. Let i0, i1, . . . , im, im+1 (m ≥ 0) be any sequence such that, in f ,
for all j with 0 ≤ j < m the component ij depends directly on ij+1 via a linear term and
im depends directly on im+1 via a quadratic term. Then i0 depends directly on im+1 via a

quadratic term in LmB(X,X) and hence also in f̃ . So all components are non-constant and
depend (directly or indirectly) on every S-component. Furthermore, no component depends
on a component that is not in S, because L∗B(X,X) contains only S-components. Thus,
Lemma A.1 can be applied, and the statement follows.

The following lemma gives a bound on the propagation error for the case that f has a
single top SCC.

Lemma A.3. Let f be a quadratic SPP. Let S ⊆ {1, . . . , n} be the single top SCC of f .
Let L := {1, . . . , n} \ S. Then there is a constant Cf ≥ 0 such that

‖µS − µ̃S‖ ≤ Cf ·
√
‖µL − xL‖

for all xL with 0 ≤ xL ≤ µL where µ̃S := µ (fS [XL/xL]).

Proof. We write fS(X) = fS(XS ,XL) in the following.

If S is a trivial SCC then µS = fS(0,µL) and µ̃S = fS(0,xL). In this case we have
with Taylor’s theorem (cf. Lemma 1.2)

‖µS − µ̃S‖ = ‖fS(0,µL)− fS(0,xL)‖
≤ ‖∂XfS(0,µL) · (µL − xL)‖
≤ ‖∂XfS(0,µL)‖ · ‖µL − xL‖
= ‖∂XfS(0,µL)‖ ·

√
‖µL − xL‖ ·

√
‖µL − xL‖

≤ ‖∂XfS(0,µL)‖ ·
√
‖µL‖ ·

√
‖µL − xL‖

and the statement follows by setting Cf := ‖∂XfS(0,µL)‖ ·
√
‖µL‖.

Hence, in the following we can assume that S is a non-trivial SCC. Set g(XS) :=
fS(XS ,µL). Notice that g is an scSPP with µg = µfS . By applying Lemma A.2 to g and
setting c := 1/

√
Cg (the Cg from Lemma A.2) we get

‖µS − µ̃S‖ ≤ c ·
√
‖g(µg − (µS − µ̃S))− (µg − (µS − µ̃S))‖

= c ·
√
‖fS(µ̃S ,µL)− µ̃S‖

= c ·
√
‖fS(µ̃S ,µL)− fS(µ̃S ,xL)‖

and with Taylor’s theorem (cf. Lemma 1.2):

≤ c ·
√
‖∂XL

fS(µ̃S ,µL)(µL − xL)‖
≤ c ·

√
‖∂XL

fS(µS ,µL)(µL − xL)‖
≤ c ·

√
‖∂XL

fS(µS ,µL)‖ ·
√
‖µL − xL‖

So the statement follows by setting Cf := c ·
√
‖∂XL

fS(µS ,µL)‖ .
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Now we can extend Lemma A.3 to Lemma 1.49, restated here.

Lemma 1.49. There is a constant Cf > 0 such that

∥∥∥µ[t] − µ̃[t]

∥∥∥ ≤ Cf ·
√∥∥∥µ[>t] − ρ[>t]

∥∥∥

holds for all ρ[>t] with 0 ≤ ρ[>t] ≤ µ[>t], where µ̃[t] = µ
(
f [t][[>t]/ρ[>t]]

)
.

Proof. Observe that µ[t], µ̃[t], µ[>t] and ρ[>t] do not depend on the components of depth < t.
So we can assume w.l.o.g. that t = 0. Let SCC(0) = {S1, . . . , Sk}.

For any Si from SCC(0), let f (i) be obtained from f by removing all top SCCs except

for Si. Lemma A.2 applied to f (i) guarantees a C(i) such that

∥∥µSi
− µ̃Si

∥∥ ≤ C(i) ·
√∥∥∥µ[>0] − ρ[>0]

∥∥∥

holds for all ρ[>0] with 0 ≤ ρ[>0] ≤ µ[>0]. Using the equivalence of norms let w.l.o.g. the

norm ‖·‖ be the maximum-norm ‖·‖∞. Let Cf := max1≤i≤k C(i). Then we have

∥∥∥µ[0] − µ̃[0]

∥∥∥ = max
1≤i≤k

∥∥µSi
− µ̃Si

∥∥ ≤ Cf ·
√∥∥∥µ[>0] − ρ[>0]

∥∥∥

for all ρ[>0] with 0 ≤ ρ[>0] ≤ µ[>0].
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Proofs of Chapter 2

B.1 Proof of Lemma 2.28

We need to show some technical lemmata before we can prove Lemma 2.28.

Lemma B.1. Let f be an SPP. Let S ⊆ {1, . . . , n}. Then µ
(
f [S/0]

)
≤ µ

(
fn[S/0]

)
.

Proof. W.l.o.g. we assume S = {1, . . . , l} and set T := {l + 1, . . . , n}. First we show by
induction on k that for all k ≥ 0 and all y ∈ R

n−l
≥0 we have

(f [S/0])k(y) ≤ fk
T (0,y) . (B.1)

The base case k = 0 is trivial. Let k ≥ 0. Then:

(f [S/0])k+1(y) = f [S/0]
(
(f [S/0])k(y)

)

≤ f [S/0]
(
fk

T (0,y)
)

(induction)

= fT

(
0,fk

T (0,y)
)

≤ fT

(
fk

S(0,y), fk
T (0,y)

)

= fk+1
T (0,y)

Since fk
T (0,y) = fk[S/0](y), Equation (B.1) implies µ

(
(f [S/0])k

)
≤ µ

(
fk[S/0]

)
. By

Kleene’s theorem we have µ(f [S/0]) = µ
(
(f [S/0])n

)
≤ µ

(
fn[S/0]

)
.

Lemma B.2. Let f be a feasible max-SPP and x ≤ fσ(x) and x ≤ µfσ for some x and a

strategy σ ∈ Σ. Let σ′ be obtained from x and σ by a lazy strategy update. Then x ≤ µfσ′

.

Proof. In order to prove this lemma, we would like to apply Lemma 2.3 to fσ′

. However, it
turns out that it is more convenient to apply it to f (n), where f (k) is, for all k ≥ 1, defined

as the function f (k) :=
(
fσ′)k

, the k-fold application of fσ′

. By Kleene’s theorem we have

µf (k) = µfσ′

and, by monotonicity of fσ′

, x ≤ fσ(x) ≤ fσ′

(x) ≤ f (k)(x).

Define for all k ∈ N the sets Sk, Tk such that Sk∪̇Tk = {1, . . . , n} and xSk
≺ f

(k)
Sk

(x) and

xTk
= f

(k)
Tk

(x). Let S := Sn and T := Tn. Notice that S = Sk and T = Tk for all k ≥ n.

In particular, xT = fσ′

T (f (n)(x)), which implies xT = fσ′

T (x). By the lazy strategy update
rule, σ and σ′ are identical on T .
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So we have xT = fσ′

T (f (n)(x)) = fσ
T (f (n)(x)) = fσ[S/f

(n)
S (x)](xT ) and, similarly,

xT = fσ[S/xS ](xT ). In other words, xT is a fixed point of both fσ[S/f
(n)
S (x)] and

fσ[S/xS ]. As xS ≺ f
(n)
S (x), we have:

xT is a fixed point of fσ[S/z] for all vectors z. (B.2)

This holds in particular for z = (µfσ)S . Since by assumption xT ≤ (µfσ)T =
µ
(
fσ[S/(µfσ)S ]

)
, it follows xT = µ

(
fσ[S/(µfσ)S ]

)
. Choose some y with (µfσ)S ≺ y.

Then xT ≤ µ
(
fσ[S/y]

)
. With (B.2) we have xT = µ

(
fσ[S/y]

)
. By Lemma 2.1 we know

that µ
(
fσ[S/z]

)
is a positive power series. But it takes the same value xT regardless if

evaluated at z = (µfσ)S or at z = y. So it must, in fact, be constant, and (B.2) can be
strengthened to

xT = µ
(
fσ[S/z]

)
holds for all vectors z. (B.3)

Now we have:

xT = µ
(
fσ[S/0]

)
(Equation (B.3))

= µ
(
fσ′

[S/0]
)

(σ, σ′ identical on T )

≤ µ
(
f (n)[S/0]

)
(Lemma B.1)

≤ µ
(
f (n)[S/xS ]

)

Recall that, by definition of S, we have xS ≺ f
(n)
S (x). As µ ≥ fσ′

(µ), we also have

µ ≥ f (n)(µ) by monotonicity of fσ′

. Hence, the preconditions of Lemma 2.3 are satisfied,

and we conclude x ≤ µf (n) = µfσ′

.

Lemma B.3. Let f be a min-max-SPP and let x ≤ fσ(x) for some x and a strategy
σ ∈ Σ. Let x ≤ µfσπ hold for a strategy π ∈ Π∗. Let σ′ be obtained from x and σ by a lazy

strategy update. Then x ≤ µfσ′π.

Proof. We have x ≤ fσ(x) ≤ fσπ(x) and x ≤ µfσπ. So Lemma B.2 can be applied to the

feasible max-SPP fπ and we conclude x ≤ µfσ′π.

Now we are ready to prove Lemma 2.28 which is restated here.

Lemma 2.28. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ µfσ(k)π holds for all
k ∈ N and for all π ∈ Π∗ (i.e., for all π such that fπ is feasible).

Proof. Let π ∈ Π∗. We proceed by induction on k. The base case k = 0 is trivial. Let k ≥ 0.
We have:

ν(k+1) = Nσ(k)(ν(k)) (definition of ν(k+1))

≤ Nσ(k)π(ν(k)) (Lemma 2.16.6)

≤ Nσ(k)π(µfσ(k)π) (induction, Lemma 2.16.3)

= µfσ(k)π (Lemma 2.16.2)

Furthermore we know ν(k) ≤ f(ν(k)) from Proposition 2.26 and f(ν(k)) = fσ(k)

(ν(k))

by definition of σ(k). So we have ν(k) ≤ fσ(k)

(ν(k)), and, by Lemma 2.16.4, ν(k+1) ≤
fσ(k)

(ν(k+1)). As σ(k+1) is obtained from ν(k+1) and σ(k) by a lazy strategy update,

Lemma B.3 allows to conclude ν(k+1) ≤ µfσ(k+1)π.
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B.2 Proof for the Claims in Example 2.41

Let k ∈ N \ {0}, and ε := 2−2(k+1). Let

g1(X1,X2) = X2
1 + 0.25, g2(X1,X2) = X1 + ε

and consider the min-max-SPP

f(X1,X2) =

(
X2 ∧ 2

g1(X1,X2) ∨ g2(X1,X2)

)
.

Its least fixed point is

µ =

(
2

4.25

)
.

We claim:

(1) The τ -method needs 2 iterations.

(2) The ν-method needs more than k iterations and ν(k) ≤ µ−
(

1.5
3.75

)
.

We prove the claims in turn.

(1) For the linearization at 0 we have

L (f ,0) (X) ≥
(

X2 ∧ 2
L (g2, 0) (X1)

)
=

(
X2 ∧ 2
X1 + ε

)
.

Thus, τ (1) = Nf (0) = µ(L (f ,0)) ≥ (2, 2 + ε)⊤. By Lemma 2.16.1 we have

τ (2) ≥ f(τ (1)) ≥ f

(
2

2 + ε

)
=

(
2

4.25

)
,

so we conclude that τ (2) =

(
2

4.25

)
= µ.

(2) There are two possible ∨-strategies σ1, σ2 ∈ Σ, namely σ1(2) = g1 and σ2(2) = g2. We
first show:

ν
(i)
fσ1 =

(
2−1 − 2−i−1

2−1 − 2−i−1

)
(B.4)

We proceed by induction on i ∈ N. For the base case we have

ν
(0)
fσ1 = 0 =

(
2−1 − 20−1

2−1 − 20−1

)
.

For the induction step, let i ≥ 0. We have:

L

(
fσ1 ,ν

(i)
fσ1

)
(x)

=

(
x2 ∧ 2

(2−1 − 2−i−1)2 + 2−2 + 2 · (2−1 − 2−i−1) · (x1 − (2−1 − 2−i−1))

)

=

(
x2 ∧ 2

2−2 − (2−1 − 2−i−1)2 + (1− 2−i) · x1

)

Then

ν
(i+1)
fσ1 = µ

(
L

(
fσ1 ,ν

(i)
fσ1

)
∨ ν

(i)
fσ1

)
= µ

(
L

(
fσ1 ,ν

(i)
fσ1

))
=

(
y
y

)
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where y satisfies
y = 2−2 − (2−1 − 2−i−1)2 + (1− 2−i) · y .

Hence,

y =
1

1− (1− 2−i)
·
(
2−2 −

(
2−1 − 2−i−1

)2)
= 2−1 − 2−i−2 .

This shows (B.4).

As a next subgoal, we show

g1(ν
(i)
fσ1 ) ≥ g2(ν

(i)
fσ1 ), i = 1, . . . , k. (B.5)

Let i ∈ {1, . . . , k}. We have 2−2(i+1) ≥ 2−2(k+1) = ε. Thus 2−1 − 2−i−1 + 2−2(i+1) ≥
2−1 − 2−i−1 + ε. Using (B.4) we get

g1(ν
(i)
fσ1 ) = (ν

(i)
fσ1 )21 +

1

4
= (2−1 − 2−i−1)2 +

1

4
= 2−1 − 2−i−1 + 2−2(i+1)

≥ 2−1 − 2−i−1 + ε = (ν
(i)
fσ1 )1 + ε = g2(ν

(i)
fσ1 ) ,

so (B.5) is proved.

Consider the sequences (σ(i)) and (ν
(i)
f ) of occurring strategies and approximants of a

lazy ν-sequence. Since g1(0) = 0.25 > 1
16 ≥ ε ≥ g2(0), we have σ(0) = σ1. From (B.5)

we get σ(i) = σ1 for i = 1, . . . , k and thus in particular

ν
(i)
f = ν

(i)
fσ1 =

(
2−1 − 2−i−1

2−1 − 2−i−1

)
, i = 1, . . . , k.

Hence, ν(k) =

(
2−1 − 2−k−1

2−1 − 2−k−1

)
≤
(

2−1

2−1

)
= µ−

(
1.5
3.75

)
.
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