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Summary

The results presented in this thesis have in part already been published in Refs. [1, 2,

3, 4, 5] listed overleaf (page v). We consider physics beyond the Standard Model which

implies the existence a of long-lived electromagnetically charged massive particle species

(CHAMP) which we denote by X±. We discuss in detail the unique sensitivity the early

Universe exhibits on the mere presence and on the decay of such a particle. A CHAMP

can be realized in supersymmetric (SUSY) extensions of the Standard Model. We carry

out a detailed study of gravitino (G̃) dark matter scenarios in which the lighter scalar

tau (stau, τ̃1) is the lightest Standard Model superpartner so that τ̃1 = X. We also

provide a thorough investigation of the thermal freeze-out process of τ̃1.

The thesis is divided into three parts:

Part I: In this part we consider a generic but weak-scale CHAMP. In Chapter 1 we

set the stage for the coming investigations by shortly reviewing the framework of Big

Bang Nucleosynthesis (BBN), by working out the typical CHAMP freeze-out abundance,

and by reviewing the stringent constraints arising from such a decaying component

during/after BBN. We also take a critical look at the BBN constraints arising from

the hadronic decay modes of an arbitrary exotic. In particular, we develop on a refined

treatment of the Coulomb stopping mechanism of charged hadrons.

In Chapter 2 we discuss the physics which emerges when the light elements fused in

BBN are captured by X− at the time of primordial nucleosynthesis. Since the associated,

most striking effects were only discovered recently, we provide a detailed exposition of

the topic. In particular, we explicitly show how to obtain the rates for bound state

formation which carry a finite charge radius correction of the nucleus. In the remainder

of this chapter, which is based on [4], we focus on the catalytic production of 6Li and
9Be. There, we also discuss the issue of a potential late-time catalysis due to proton-

CHAMP bound states. Upon solution of the full set of Boltzmann equations we obtain

stringent constraints on the primordial presence of long-lived X− from overproduction

of 6Li. Moreover, setting an upper limit on the abundance of primordial 9Be allows us
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to constrain this scenario also from catalytic 9Be production.

Part II: The second part is devoted to scenarios in which G̃ is the lightest supersym-

metric particle (LSP) and τ̃1 is the next-to-lightest SUSY particle (NLSP). In Chapter 3

we focus on the gravitino LSP as a dark matter candidate. We recollect the results on

thermal gravitino production, consider explicitly the post-inflationary reheating process,

and obtain an update on the upper bound on the reheating temperature of the Universe

from thermal production.

In Chapter 4 we then focus on gravitino dark matter scenarios in which τ̃1 is the

NLSP. This chapter resembles many of the results of the research papers [1, 2, 3, 4]. We

constrain the gravitino-stau scenario by incorporating the BBN bounds from τ̃1-decays

previously obtained in the literature. In addition, the concrete realization of the long-

lived CHAMP scenario allows us to employ our results on the catalytic production of
9Be and 6Li. In the framework of the constrained minimal supersymmetric Standard

Model (CMSSM) a τ̃1 NLSP can be naturally accommodated. There, we show that the

novel catalytic effects severely constrain the reheating temperature of the Universe and

potentially imply very heavy superparticle mass spectra which will be hard to probe at

the upcoming Large Hadron Collider (LHC) experiments. We also consider explicitly

the possibility of a non-standard cosmological evolution and check for the viability of

thermal leptogenesis.

Part III: Chapter 5 constitutes the final part of this thesis and is based on [5]. There,

we take an in-depth look into the chemical decoupling process of the long-lived τ̃1 from

the primordial plasma. The quantity of interest is the thermal freeze-out abundance of

the stau. We identify its dependence on the crucial SUSY parameters and also show

that it sensitively depends on the details of the Higgs sector. Stau annihilation into final

state Higgses as well as resonant annihilation via the heavy CP even Higgs boson can

substantially deplete the decoupling yield. Remarkably, we find these features are already

realized in the CMSSM. In those regions of the parameter space even the most restrictive

bounds from the thermal catalysis of BBN reactions can potentially be respected. We

discuss the implications for the gravitino-stau scenario.
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I am deeply indebted to my family, foremost to my parents, for their unconditional

love and support and to Irina Bavykina for all her understanding, encouragement, and

patience over the last three years.

To the memory of Florian Kunz.

vii



viii



Contents

Summary iii

Acknowledgements vii

I BBN with a long-lived CHAMP 1

1 BBN and particle decays 3

1.1 Primordial nucleosynthesis after WMAP . . . . . . . . . . . . . . . . . . . 3

1.2 BBN as a probe for New Physics . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Typical CHAMP abundances . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Particle decays during BBN . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 A critical look at hadronic constraints for T . 100 keV . . . . . . . . . . . 14

1.5.1 Energy transfer in binary collisions . . . . . . . . . . . . . . . . . . 15

1.5.2 Hadron-electron scattering . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.3 Cutoff considerations for charged particles . . . . . . . . . . . . . . 19

1.5.4 Discussion on Coulomb stopping . . . . . . . . . . . . . . . . . . . 22

1.A Lorentz transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Bound states and catalysis of BBN 27

2.1 Basic bound state properties . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Wave functions of the relative motion . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Discrete spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Continuous spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x Contents

2.3 Formation of bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Photo-dissociation and recombination cross section . . . . . . . . . 39

2.4 Nuclear reactions with bound states and their catalysis . . . . . . . . . . . 41

2.4.1 Catalysis of 6Li production . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Catalysis of 9Be production . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Charge exchange reactions and late time catalysis . . . . . . . . . . . . . 49

2.5.1 Relaxation after charge exchange . . . . . . . . . . . . . . . . . . . 55

2.6 Constraints on the X− lifetime and abundance . . . . . . . . . . . . . . . 57

II The gravitino-stau scenario 61

3 Gravitinos as a probe for the earliest epochs 63

3.1 The gravitino-stau scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Supergravity and basic properties of the gravitino . . . . . . . . . . . . . . 64

3.3 Thermal gravitino production and reheating . . . . . . . . . . . . . . . . . 65

3.3.1 Reheating phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Constraints on TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 The stau as the NLSP 75

4.1 Generic constraints on the gravitino-stau scenario . . . . . . . . . . . . . . 75

4.2 The gravitino-stau scenario in the CMSSM . . . . . . . . . . . . . . . . . 82

4.2.1 Lower limit on m1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Upper bound on TR . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Exemplary parameter scans in the CMSSM . . . . . . . . . . . . . 87

4.2.4 Late-time entropy production . . . . . . . . . . . . . . . . . . . . . 93

4.2.5 Viability of thermal leptogenesis . . . . . . . . . . . . . . . . . . . 97

III The long-lived stau as a thermal relic 101

5 Thermal relic stau abundances 103



Contents xi

5.1 Stau mixing and mass eigenstates . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Calculation of the thermal relic stau abundance . . . . . . . . . . . . . . . 106

5.3 Dependence of stau annihilation on the stau mixing angle . . . . . . . . . 110

5.4 Effects of large stau-Higgs couplings . . . . . . . . . . . . . . . . . . . . . 115

5.5 Resonant stau annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 On the viability of a τ̃1-τ̃
∗
1 asymmetry . . . . . . . . . . . . . . . . . . . . 123

5.7 Exceptionally small abundances within the CMSSM . . . . . . . . . . . . 124

5.8 Prospects for collider phenomenology . . . . . . . . . . . . . . . . . . . . . 129

5.9 Implications for gravitino dark matter scenarios . . . . . . . . . . . . . . . 131

Conclusions 135

References 141



List of Figures

1.1 Electromagnetic and hadronic BBN constraints . . . . . . . . . . . . . . . 12

1.2 Stopping power of a charged hadron . . . . . . . . . . . . . . . . . . . . . 23

2.1 Radial wave functions for (4HeX−) . . . . . . . . . . . . . . . . . . . . . . 31

2.2 1S radial wave functions for (8BeX−) . . . . . . . . . . . . . . . . . . . . . 34

2.3 Continuum wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 CBBN evolution of 6Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 CBBN evolution of 9Be . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Proton potential for charge exchange . . . . . . . . . . . . . . . . . . . . . 50

2.7 (pX−) abundance after charge exchange . . . . . . . . . . . . . . . . . . . 54

2.8 Be observations in halo stars . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Contour plot of CBBN yields . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Gravitino yield from thermal production . . . . . . . . . . . . . . . . . . . 67

3.2 Reheating phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Upper bound on TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Generic constraints on the gravitino-stau scenario . . . . . . . . . . . . . . 77

4.2 Upper bound on 6Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 NLSP yield contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 CMSSM planes for tanβ = 10 . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 CMSSM planes for tanβ = 30 . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Late time entropy production . . . . . . . . . . . . . . . . . . . . . . . . . 95

xii



List of Figures xiii

4.7 Entropy production before and after NLSP decoupling . . . . . . . . . . . 98

4.8 Entropy production and the viability of leptogenesis . . . . . . . . . . . . 100

5.1 Schematic overview of the calculation of Yτ̃ . . . . . . . . . . . . . . . . . 109

5.2 Dependencies of masses and annihilation cross sections on θτ̃ . . . . . . . 112

5.3 General dependence of Yτ̃ on θτ̃ . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Enhanced annihilation into light Higgses . . . . . . . . . . . . . . . . . . . 118

5.5 Enhanced annihilation into heavy Higgses . . . . . . . . . . . . . . . . . . 119

5.6 Resonant stau annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Enhanced annihilation in the CMSSM for tanβ = 43 . . . . . . . . . . . . 125

5.8 Enhanced annihilation in the CMSSM for tanβ = 55 . . . . . . . . . . . . 126



List of Tables

2.1 Basic properties of bound states . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Spectrum and size of (4HeX−) . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Spectrum and size of (8BeX−) . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Photo-dissociation and recombination cross sections . . . . . . . . . . . . 40

2.5 Proton deconfinement and charge exchange . . . . . . . . . . . . . . . . . 51

2.6 Collection of CBBN rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Parameters of the gravitino collision term . . . . . . . . . . . . . . . . . . 66

5.1 Complete set of stau annihilation channels . . . . . . . . . . . . . . . . . . 107

5.2 Parameters of exemplary CMSSM parameter points . . . . . . . . . . . . 130

xiv



Part I

BBN with a long-lived CHAMP

1





Chapter 1

BBN and particle decays

We start this work with a brief introduction into the framework of Big Bang Nucleosyn-

thesis (BBN) reviewing abundance predictions of some of the primordial light elements

and discussing their current observational status (Sects. 1.1 and 1.2). In Sec. 1.3 we then

carry out a simplified treatment of the chemical decoupling of a long-lived CHAMP (X±).

This frames the thermal X-abundance region and in Sec. 1.3 we shall see that with it

are associated strong limits on the energy release from X decays during/after BBN.

In Sec. 1.5 we investigate in some detail the stopping mechanism of injected particles

short after the main stage of primordial nucleosynthesis. There, we will recover existing

results of the literature but also develop on a refined treatment of Coulomb stopping of

injected charged hadrons.

1.1 Primordial nucleosynthesis after WMAP

The cumulative evidence from observations of the Hubble expansion as well as of the

cosmic microwave background (CMB) radiation has put the hot Big Bang model on

firm footing. In addition, one of the pillars on which modern day cosmology rests on

is the framework of BBN. Relying solely on Standard Model physics and a Friedmann-

Robertson-Walker Universe, an overall agreement between the BBN predictions and

the observationally inferred primordial abundances of the light elements D, 3He, 4He,

and 7Li is found. This is truly striking given that those elements span nine orders

of magnitude in number and that light element observations are performed in vastly

different astrophysical sites. It is this concordance which provides direct evidence that

the Universe must once have had a temperature T & 1 MeV.

Standard BBN (SBBN) has only one free parameter, the baryon-to-photon ratio

3



4 Chapter 1. BBN and particle decays

ηb = nb/nγ . It measures the nucleon content of the primordial plasma and controls

the rates of the processes which eventually lead to the fusion of the light elements.

With the measurements of the Wilkinson Microwave Anisotropy Probe (WMAP) satel-

lite experiment [6, 7, 8] unprecedented precision data on the multipoles of the CMB

angular power spectrum became available. Based on a ΛCDM model, i.e., a flat Uni-

verse filled with baryons, cold dark matter, neutrinos, and a cosmological constant, this

has allowed one to pin the baryon density down to [9] Ωbh
2 = 0.02273 ± 0.00062 with

h = H0/(100 km Mpc−1s−1) parameterizing the Hubble constant H0. The value implies

a baryon-to-photon ratio1 of [9]

ηb(CMB) = (6.225 ± 0.170) × 10−10 (1.1)

so that we have knowledge of the baryon content of the Universe at the time of photon

decoupling to ∼ 3% accuracy (at 68% C.L.). Using (1.1) and/or other non-BBN de-

terminations of ηb as input for primordial nucleosynthesis makes BBN a parameter-free

theory. When we talk about the SBBN light element predictions in the following we

shall mean the outlined minimal framework of primordial nucleosynthesis with ηb fixed

by the CMB measurements.

1.2 BBN as a probe for New Physics

The comparison of SBBN predictions with the observationally inferred primordial light

element abundances makes the theory of primordial nucleosynthesis a powerful tool to

test and to constrain models of New Physics.

A true success of the standard cosmological model is the emerging concordance be-

tween the SBBN predicted deuterium abundance and the measurements of D/H (in

number) in hydrogen-rich clouds absorbing the light of background quasars at high red-

shifts. Those astrophysical sites are believed to be most appropriate to yield an estimate

on the primordial fraction D/H|p. Including the latest measurement [11] of this ratio,

the weighted mean of seven determinations reads [12]

D/H|p =
(
2.70+0.22

−0.20

)
× 10−5. (1.2)

Conversely, with an uncertainty which is comparable to that of weak and nuclear rates

used in BBN codes, the SBBN deuterium abundance can be predicted in the ηb-range

1This follows from the WMAP 5-year data set. For comparison, the 3-year result implied ηb(CMB) =

6.116+0.197
−0.249 [7]. The conversion from Ωbh2 to ηb requires knowledge of the average mass per baryon [10].
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of interest as [13]

D/H|p = 2.67(1 ± 0.03) × 10−5

(
6 × 10−10

ηb

)1.6

= (2.52 ± 0.11) × 10−5 . (1.3)

In the last expression we have used the CMB inferred baryon-to-photon ratio (1.1) and

added errors in quadrature. As can be seen, both values agree within their ∼ 1σ range.

Indeed, despite the difficult observations, deuterium is the baryometer of choice. Because

of its weak binding energy, D is only destroyed in astrophysical environments so that

its post-BBN evolution is monotonic. Moreover, the SBBN prediction shows a strong

sensitivity on the baryon-to-photon ratio, D/H|p ∝ η−1.6
b . Any physical process which

is triggered by extending the SBBN framework must not spoil the agreement between

prediction and observation.

Though the agreement in deuterium is impressive it may still only be a coincidence.

Let us consider 4He which is the most tightly bound element among the SBBN products.

The primordial 4He mass fraction is defined as2

Yp ≡ 4n4He/nH

1 + 4n4He/nH
≃ 0.25 (1.4)

and with ∼ 25% this makes 4He the second most abundant element after hydrogen. The

estimate in the last relation already follows from the observation that most neutrons

available are finally bound in 4He and that the neutron-to-proton ratio in number at

the onset of BBN is n/p ≃ 1/7. Observationally, 4He is inferred from helium and

hydrogen recombination lines measured by now in more than 80 extragalactic HII regions

of low-metallicity. Following [13], the estimate for primordial mass fraction reads Yp =

0.240±0.006 where the large adopted error reflects the fact that systematic uncertainties

may well dominate; cf. [13] and references therein. Though the value is somewhat low

there is currently no clear discrepancy with its SBBN prediction, the latest one reading

Yp = 0.2486 ± 0.0002 [14]. It should be noted, however, that 4He is a poor baryometer

varying only logarithmically with ηb. Contrariwise, being very sensitive to n/p and thus

to the Hubble rate, 4He acts as a powerful discriminator between models predicting

additional relativistic degrees of freedom at the onset of BBN.

Among the most generic ways how physics beyond the Standard Model can affect the

output of BBN are, e.g., a change in timing of the reactions caused by new contribu-

tions to the Hubble expansion rate, non-thermal nuclear reactions from late decays and

annihilation of heavy particles, and the thermal catalysis of nuclear reactions caused by

2The convention to call Yp the mass fraction is slightly misleading since mα = 3.97mp with mp (mα)

denoting the mass of the proton (alpha-particle). However, what is observed is Yp and it represents the
4He abundance in mass within 1% accuracy.



6 Chapter 1. BBN and particle decays

electromagnetic or strongly interacting relics. In this regard, the stable lithium isotopes

have attracted much attention because they turn out to be very sensitive on the latter

two effects.

Standard BBN has a long-standing lithium problem. Let us first discuss the heavier

and more stable isotope 7Li. At ηb(CMB) it is produced mainly in form of 7Be via
3He + 4He → 7Be + γ which then beta decays via electron capture into 7Li after BBN.

The cross section for the 7Be fusion also dominates the error on the SBBN prediction.

With a recent update of the reaction cross section [14] the authors tighten the SBBN

prediction to

7Li/H|p =
(
5.24+0.71

−0.67

)
× 10−10. (1.5)

Lithium is observed in absorption spectra in the atmospheres of metal-poor stars in the

galactic halo as well as in stars of galactic globular clusters. A link between the measured
7Li with a primordial origin was first promoted in [15]. What has become known as the

“Spite-plateau” was an observed constant lithium abundance of A(Li) = 2.05 ± 0.15

in halo dwarfs of low metallicity3 −2.4 ≤ [Fe/H] ≤ −1.1 and which corresponds to
7Li/H = (1.12+0.46

−0.33) × 10−10 using A(Li) ≡ log10 (Li/H) + 12. Ever since much work

has been done and other groups found similar values so that there seems to be a clear

discrepancy with the SBBN prediction (1.5) being a factor of a few too high. Indeed,

the indication of a correlation of 7Li with [Fe/H] [17, 18] tilts the plateau so when

extrapolating to smallest metallicities values as low as 7Li/H = 6.3×10−11 [19] have been

inferred. Moreover, such an increasing discrepancy is not alleviated by the most recent

observation that the 7Li abundance in extremely metal-poor stars with [Fe/H] < −3 is

on average 0.2 dex lower than in those (plateau) stars of higher metallicity [20].4 In this

work we will not touch the 7Li problem. Instead, we concentrate much of our attention

to the second stable lithium isotope 6Li.

The measurements of 6Li in the atmospheres of old stars of low metallicity are ex-

tremely difficult with only one firm detection in the 1990s [21, 22, 23, 24] whereas other

measurements of 6Li have changed into upper limits; cf. [19] and references therein.

More recently 6Li has been observed in 9 more halo dwarfs with −3 ≤ [Fe/H] < −1

showing a similar isotopic ratio of 6Li/7Li of ∼ 5% [18]. This is tantalizing because it

suggests the existence of a 6Li plateau mirroring the one for 7Li. At first glance, this

points to a primordial origin of 6Li at the level of 6Li/H|p ∼ few × 10−12. However, the

story is complicated by the fact that lithium is produced in galactic cosmic rays and

may as well have undergone stellar depletion. Whereas in standard stellar models 7Li

3[Fe/H] = log10 (Fe/H) − log10 (Fe/H)⊙ with the solar abundance log10 (Fe/H)⊙ ≃ −4.55 [16].
4dex denotes the decimal exponent. For example, from A(Li) = 2.0 to A(Li) = 1.8 is 0.2 dex.



1.3. Typical CHAMP abundances 7

depletion is negligible [25, 26], 6Li is more fragile and particularly destruction in proton

burning is more efficient. Indeed, non-standard models leading to lithium destruction,

e.g., from inward diffusion or from rotationally induced mixing have been considered,

trying to reconcile 7Li observations with its SBBN prediction; cf. [18] and references

therein. However, the absence of significant scatter in the stars of the Spite-plateau de-

mands a uniform depletion thus putting strong constraints on any of such mechanisms.

When considering upper bounds on the primordial 6Li abundance many papers adopt

values in the range

6Li/H|p ≤ 10−11 ÷ 10−10. (1.6)

Comparing this with the SBBN output 6Li/H|p ∼ 10−14 (see Sec. 2.4.1) this isotope

shows a gaping discrepancy between prediction and observation; we refer the reader

to Sec. 4.1 for a further discussion.

The lithium problem(s) has (have) particularly inspired non-standard BBN scenarios

seeking their solution. Most notably in this regard are the possibility of the late-decay

of a massive particle species [see Sec. 1.4] and the catalysis of nuclear reactions; see

Chap. 2. In this thesis we will exclusively consider physics beyond the Standard Model

with a weak-scale long-lived CHAMP which we call X±. We shall see that X-decays as

well the catalysis of nuclear reactions due to the presence of X− during BBN will pose

strong constraints on the CHAMP abundance/lifetime parameter space.

1.3 Typical CHAMP abundances

Let us assume that the temperature of the primordial plasma was T ≫ mX/20 with

mX & O (100 GeV) denoting the mass of X. Then, X has once been tracking an equi-

librium abundance. With dropping temperature,X cannot maintain thermal equilibrium

so that the species freezes-out.5 This happens approximately at the time when the rate

of X-annihilation drops below the Hubble expansion rate H(T ).

The key to the freeze-out abundance of X lies in considering the Boltzmann equation

for the total X number density nX = nX+ + nX− ,

dnX

dt
+ 3HnX = −〈σannv〉

[
n2

X − (neq
X )2

]
. (1.7)

The Hubble rate is given by

H(T ) =

√
π2geff(T )

90

T 2

MP
(1.8)

5For a low reheating temperature scenario where X may not achieve thermal equilibrium see [27].
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with geff radiation degrees of freedom and MP denoting the (reduced) Planck mass

MP ≃ 2.4 × 1018 GeV. The quantity 〈σannv〉 is found upon a thermal average of the

total annihilation cross section σann times the “relative velocity” v; for details on the

exact definition of σann, 〈σannv〉, and v we refer the reader to Sects. 5.2 and 1.5.1. The

equilibrium number density is denoted by neq
X .

For a relic species it is customary to scale out the dilution of the number density

due to the expansion of the Universe. We define the yield variable YX by dividing nX

by the entropy density s(T ) = 2π2 heff(T )T 3/45 where heff is an effective degrees of

freedom parameter [28]. In absence of X-destroying or -producing events and as long as

no entropy is released, YX ≡ nX/s remains constant. From (1.7) one then finds

dYX

dT
=

√
8π2g∗(T )

45
MP〈σannv〉

[
Y 2

X − (Y eq
X )2

]
(1.9)

where [28]

g
1/2
∗ =

heff√
geff

(
1 +

1

3

T

heff

dheff

dT

)
. (1.10)

The exact solution of (1.9) can be rather involved and for the case where X is the

lighter stau, X = τ̃1, this is presented in great detail in Part III of this thesis. Never-

theless, in order to get a feeling for the expected abundances of an electromagnetically

charged relic we can employ a simplified treatment of decoupling which is based on the

non-relativistic limit for X.6 In this limit, the equilibrium number density is given by

neq
X = gX

(
mXT

2π

)3/2

e−mX/T . (1.11)

and the thermally averaged cross section may be written as [29, 30]

〈σannv〉n.r. ≃
1

2
√
π

(mX

T

)3/2
∫ ∞

0
dv v2(σannv) e

−mXv2/4T (1.12)

To find the (approximate) decoupling temperature Tf we equate 〈σannv〉neq
X (Tf) =

H(Tf). With the notation xf = mX/Tf this yields the standard result

xf ≃ ln

(√
45x

1/2
f 〈σannv〉 gX mXMP

2π5/2 geff1/2

)
. (1.13)

Let us assume anX annihilation cross section expanded in powers of v, σannv ≃ a+bv2

so that with (1.12) 〈σannv〉 develops the form 〈σannv〉n.r. ≃ a + 6b T/mX . Choosing
6We disregard here effects on YX such as coannihilation, annihilation on the threshold, or resonant

annihilations [29]; see, however, Part III.
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a = α2/m2
X on dimensional grounds7 and considering s–wave annihilation, (b≪ a) we

find numerically xf ≃ 26 ÷ 24 for mX = 0.1 ÷ 1 TeV and gX = 2. This gives the

abundance at the time of chemical decoupling, YX(Tf) ≃ neq
X (Tf)/s(Tf). For T < Tf we

can neglect Y eq
X in (1.9) so that when accounting for residual X annihilation from Tf to

T0 one finds for the inverse of the freeze-out yield

1

YX(T0)
=

1

YX(Tf)
+

√
8π2

45
MP

∫ Tf

T0

dT
√
g∗(T )〈σannv〉 (1.14)

with T0 = 2.725 K [32] denoting the present day photon temperature. Whenever we

write YX in the following, YX(T0) is understood, i.e., the yield of the species X it would

have had today had it not decayed.

Taking into the account the temperature dependence of g∗ by interpolating the tab-

ulated values in [33] and integrating (1.14) yields the following estimate on the X abun-

dance

YX . 10−12
( mX

100 GeV

)
(1.15)

with an approximate linear scaling in mX . Note that an increase in 〈σannv〉 contributes

linearly to YX(T0)
−1, provided xf = const. Therefore, we have indicated that YX in (1.15)

is a value more towards the upper end, corresponding to a guaranteed annihilation cross

section of electromagnetic strength. A stronger coupling will allow X to stay longer in

equilibrium, thus receiving an additional Boltzmann suppression.

Conversely, we can constrain YX from below by assuming the maximum cross section

of mutual X± annihilation which is given by the unitarity limit [34], σu = πλ2 (s-wave);

λ denotes the de Broglie wavelength of the relative motion. Using λ = 1/(mredv) together

with the reduced mass mred = mX/2 one finds with (1.12)

〈σann,uv〉n.r. =
4
√
π

m2
X

√
mX

T
. (1.16)

Employing this cross section yields an estimate on the smallest possible freeze out abun-

dance for a weak scale electromagnetically charged relic. Using mX = 100 GeV gives

xf ≃ 40 and

YX & 10−18. (1.17)

Let us see how this lower limit on the decoupling yield compares with experimental

bounds on charged cosmological relics from (negative) searches of anomalous heavy iso-

topes of ordinary nuclei. For example, in [35] severe limits on the concentration of X+

7For example, the cross section for annihilation into two photons reads σγγv ≃ 2πα2/m2
X [31]. When

considering the total X± abundance this gives σann = σγγ/2 and hence 〈σannv〉 = πα2/m2
X +O (mX/T ).
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in form of heavy hydrogen as well as X− in low Z–nuclei have been obtained for a weak

scale relic in the mass range 100 GeV ≤ mX ≤ 10 TeV. It was found that present day

abundances in excess of

YX+,X− < 10−25 (1.18)

are firmly excluded.8 Note that individual limits on either X− or X+ exist for masses

ranging from a few GeV to multi-TeV and they can be stronger than (1.18) by more than

ten orders of magnitude; cf. [32]. Comparing (1.17) with (1.18) forces us to conclude

that, under our assumption of a standard cosmological evolution, X± cannot be stable.

Considering a charged thermal relic of finite lifetime with abundances in the range (1.17)

to (1.15) sets the stage for our further investigations.

In the next chapter we shall also quantify the X abundance normalized to baryon

number nb instead of entropy. We define

X ≡ nX

nb
=
YX

ηb

s(T0)

nγ(T0)
≃ 1.13 × 1010 YX , (1.19)

where nγ = 2 ζ(3)T 3/π2 is the photon number density with ζ(x) denoting the Riemann

Zeta function. We have chosen this notation in order to clearly distinguish the two

different normalizations and it will be clear from the context whether X denotes the

particle itself or its abundance. The previous estimates (1.15) and (1.17) then translate

into

10−8 . X . 10−2
( mX

100 GeV

)
. (1.20)

It is also instructive to compare the X abundance with that of 4He. This will be of

some importance in the discussion of catalytic BBN effects where bound states of 4He

with X− play a key role. Since to a very good approximation it follows from (1.4) that

4He ≡ n4He/nb = Yp/4 ≃ 0.06 (1.21)

we see from (1.20) that we can expect that the number density of X is typically smaller

than that of 4He unless X is rather heavy; here, 600 GeV but in concrete particle physics

models with X annihilating via a number of channels, a heavier X is required. Indeed,

when focusing on the particle content of the minimal supersymmetric Standard Model

(MSSM) (plus a gravitino LSP) with τ̃1 = X, the X-abundance is determined by the

standard chemical decoupling and X . 4He holds unless mX & O(4 TeV); see Sec. 4.1.
8We have obtained the constraint from the right end of the 14C-line in Fig. 7 of [35] and changed the

normalization of nX from baryon number to entropy. For a recent compilation of other such limits along

with a thorough investigation of the decoupling yield of a generic electromagnetically- or color-charged

particle species confer [36].
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1.4 Particle decays during BBN

Using primordial nucleosynthesis as a consistency check for the existence of long-lived

particles X has a long-standing history.9 When exotics decay during or after BBN elec-

tromagnetic and/or hadronic energy is injected into the plasma. Depending on timing,

energy deposition, and abundance of the decaying species, the light element output can

be affected significantly. The comparison with the observational bounds yields con-

straints on the parameter space of X. From early works, e.g., [37, 38], to elaborate

studies [39, 40, 41] this is still an active field of research of continuing refinement and

increasing sophistication; for a most recent work see, e.g, [42]. Since we will also make

use of BBN constraints on electromagnetic and hadronic energy release, we provide here

a cursory overview pointing out important features. For a more detailed exposition of

the topic we refer the reader to [39, 40, 41] and references therein.

Electromagnetic constraints The emerging constraints can be classified with respect

to the decay mode of the exotic particle. When X decays radiatively into primary

high-energy photon(s) and/or electrons (charged leptons) an electromagnetic cas-

cade is induced. The important processes are e± pair creation (γ+γbg → e−+e+),

photon–photon scattering (γ+γbg → γ+γ), Compton scattering (γ+ebg → γ+e),

inverse Compton scattering (e+γbg → e+γ), and pair creation on nuclei (γ+Nbg →
e+ + e− + N). The subscript ’bg’ denotes the particles which are in equilibrium

with the plasma. Since nγ/ne|bg ∼ 1010 the scattering on background photons

is very frequent. This leads to an efficient thermalization of the cascade so that

destruction of light elements does not happen frequently. However, once energetic

photons are degraded below Eγ . m2
e/22T [43] they loose their ability to pair

create e± on γbg. The soft photons of the associated ’break-out’ spectrum are then

capable to efficiently destroy those light elements whose binding energy Enuc
b lies

below the threshold of electron pair creation. For D (Enuc
b = 2.22 MeV [44]) this

happens at T . 10 keV whereas 4He (Enuc
b = 28.3 MeV [44]) is destroyed when

the photon temperature drops below T . 1 keV. This corresponds to respective

cosmic times of t & 104 s and t & 106 s when thermal nucleosynthesis reactions

have long frozen out.

Constraints on the electromagnetic energy release for mX = 1 TeV are shown in

the left Fig. 1.1 which is taken from [41]. The lines represent upper limits on the

quantity EvisYX , i.e., on the “visible energy” Evis released per decay times their

9In this section X stands for an arbitrary, not necessarily electromagnetically charged, long-lived

species.
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Figure 1.1: Constraints on the electromagnetic (left figure) and hadronic (right

figure) energy release from X-decays for mX = 1 TeV; the figures are taken from

[41]. The lines represent upper limits on the quantity EvisYX , i.e., on the “visible

energy” Evis released per decay times their abundance prior to decay, YX , and

are plotted as a function of τX ; see main text for discussion.

abundance prior to decay, YX , and are plotted as a function of τX . Two dominant

constraints are visible. For τX . 106 s the most restrictive constraint, labeled

D/H, arises from the destruction of deuterium below its observationally inferred

primordial level. For larger τX , however, 4He gets dissociated and D (along with
3He and T) is also created. Since the 4He-target is very abundant, D is indeed

overproduced for τX & 106 s. Moreover, the combination 3He/D is then always

produced yielding the most stringent constraint on electromagnetic energy release

for τX & 106 s.

Hadronic Constraints A second class of constraints on decaying X during/after BBN

comes from hadronic energy release into the plasma. For example, even if X

dominantly decays into photons, a non-vanishing hadronic branching ratio is ex-

pected from the conversion of a (virtual) photon into a quark-antiquark pair or

from charged meson production on background photons (if kinematically allowed).

The partons emitted in the decay are quickly hadronized and the highly energetic

fragmentation products such as protons (p), neutrons (n), as well as their antipar-

ticles are released. Also long-lived mesons, namely, charged pions (π±) and kaons

(K±, K0
L), with lifetimes O

(
10−8 s

)
have a chance to interact with background

nuclei before decaying. Once an energetic hadron scatters on a background nu-
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cleus, essentially p or 4He, a hadronic shower is induced. In particular, 4He may

be destroyed with secondaries further participating in interactions with the plasma

constituents.

The energetic charged hadrons N are downgraded in energy via electromagnetic in-

teractions, most importantly, by Coulomb scattering (N+e±bg → N+e±), Compton

scattering (N+γbg → N+γ), and Bethe-Heitler scattering (N+γbg → N+e++e−).

Injected neutrons loose their energy mainly by their magnetic-moment interaction

with e±bg. It is clear that emergent constraints on the hadronic energy release will

sensitively depend on the competition between the rate for hadronic scattering and

the rates for (electromagnetic) thermalization and/or decay (of unstable particles).

Moreover, even after hadrons are stopped they may still induce neutron-to-proton

interconversion processes [37].

In the right Fig. 1.1 which is taken from [41] the constraints on EvisYX due to

hadro-dissociation as well as n-p interconversion are shown for a particle with

mX = 1 TeV and hadronic branching ratio Bh = 1. The effects from photo-

dissociation are not included. Note that this is an unrealistic situation since the

hadron stopping process itself as well as meson decays induce electromagnetic show-

ers. For τX . 100 s, i.e., for T & 100 keV, the emitted hadrons essentially deposit

all their kinetic energy electromagnetically before interacting with the background

nuclei. However, interconversion processes which always lead to an increase of

n/p enhances the 4He output. The associated constraints from 4He overproduc-

tion for two different observationally adopted limits on the primordial mass frac-

tion are shown by the dotted lines labeled Yp. For larger lifetimes, τX & 100 s

(T . 100 keV), mesons typically decay before interacting hadronically. However,

the stopping power for protons and neutrons rapidly decreases with dropping tem-

perature so that 4He is destined for being destroyed. This yields the stringent D/H

constraint on hadronic energy release for τX & 100 s. Moreover, a small fraction

of the energetic spallation products T and 3He can scatter again on ambient 4He

producing 6Li [45] (and 7Li). This non-thermally induced fusion reaction gives the

hadronic constraint labeled 6Li/H in Fig. 1.1. Since 6Li is efficiently destroyed in

(thermal) proton burning for temperatures T & 10 keV the constraint becomes the

dominant one only for τX & 104 s [46].

So far, the discussion has been completely generic with our ignorance on the nature

of X parameterized by Evis. Constraining the particle’s parameter space requires the

specification of the couplings of X to Standard Model particles as well as its mass mX .

This allows for the determination of the decay modes of X along with the computation
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of the associated average electromagnetic and hadronic energy Evis released per decay.

Moreover, the freeze-out abundance YX can be calculated so that plots like in Fig. 1.1

can be employed to constrain the model. In part II of the thesis we incorporate the most

stringent of the constraints for the case of a decaying stau in the gravitino dark matter

scenario. There, we also provide more details as soon the problem of inclusion of such

constraints becomes acute.

1.5 A critical look at hadronic constraints for T . 100 keV

In the previous section we have noted that for T . 100 keV (τX & 100 s) the BBN

constraints on hadronic energy release sensitively depend on the competition between

the hadronic and electromagnetic scattering rate (and potentially the lifetime). If in-

jected nucleons as well as their secondaries—either produced in spallation reactions or

“up-scattered” in elastic scatterings—are predominantly thermalized by interactions on

background nucleons or nuclei, those constraints become stringent. Underestimating

the stopping power due to electromagnetic interactions would lead to overly restrictive

bounds on the hadronic energy release.

For example, in the last section we have seen that the non-thermal production of 6Li

due to the energetic spallation debris T and 3He of destroyed 4He yields the dominant

hadronic constraint for τX & 104 s. The reactions involved are T + 4He|bg → 6Li + n

and 3He + 4He|bg → 6Li + p [45]. For T . 30keV, i.e., for t & 103 s, inverse Compton

scattering on background photons cannot prevent low-energy hadronic interactions [37]

above the lithium formation threshold [O (10 MeV)]. The dominant electromagnetic

degradation mechanism is then Coulomb scattering. However, the rapidly diminishing

number of background electrons (positrons) with dropping temperature also renders the

energy loss by Coulomb scattering increasingly inefficient. Furthermore, in [40] it is

claimed that the non-thermal 6Li output is boosted by a factor of ten because of a

peculiarity in the Coulomb process: Once the velocity β of the energetic mass-three

nuclei drops below the thermal electron velocity 〈βe〉, the stopping power seems to be

strongly suppressed. This observation was first made in [37].

In light of these comments a critical look on the Coulomb stopping process is war-

ranted. We shall pay particular attention to the velocity dependence of the cross sections,

i.e., on β and 〈βe〉. In Sec. 1.5.1 (and partly also in Sec. 1.5.2) results from the literature

are reconciled. In Sec. 1.5.3 we focus on the stopping of charged hadrons and incorporate

the proper screening-prescription of the Coulomb interaction. In Sec. 1.5.4 we discuss

the obtained results.
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1.5.1 Energy transfer in binary collisions

A thorough investigation of the electromagnetic stopping of hadrons in the context of

primordial nucleosynthesis has first been presented in [37]. Indeed, the treatments in [47,

41] (see Fig. 1.1) employ the results of that work. Since the stopping power sensitively

depends on the velocities of the incident hadron and the target particles, we first reconcile

the general result on the energy transfer obtained in [37]. Though we encounter minor

disagreements they turn out to be without relevance.

Our starting point is the rate of energy loss due to binary scatterings (A1) of Ref. [37]

dE

dt
=
∑

j

gj

(2π)3

∫
dΩ d3pj fj(pj) [1 ∓ fjf (pjf )] ∆Ej

dσj

dΩ
vmøl , (1.22)

where ∆Ej denotes the energy transfer between the incident hadron and a (background)

particle species j with three-momentum pj and gj internal degrees of freedom. The

transfer is weighted by the center-of-mass (CM) cross section dσj/dΩ and averaged over

inital and final state distribution functions fj and fjf , respectively. A subtle point is

the appearance of the Møller velocity [28]

vmøl ≡
F

EEj
= [(β − βj)

2 − (β × βj)]
1/2 (1.23)

which is the relativistic generalization of the conventional relative velocity vrel = |β−βj |.
The respective velocities of the hadron and the target are given by β = p/E and βj =

pj/Ej and F = [(p · pj)
2 −m2

jM
2]1/2 denotes the Flux-factor. Only in the CM frame or

in the rest frame of one of the incoming particles vmøl coincides with vrel. We stress that

p = (E,p)T and pj = (Ej ,pj)
T denote the respective four-momenta of the energetic

nucleus and of the ambient target particle in the rest frame of the thermal bath. In that

frame, and when j is in thermal equilibrium, the distribution functions fj take on their

familiar form: fj(f) = [exp (Ej(f)/T ) ± 1]−1. The upper signs in (1.22) and in the last

expression refer to fermions, the lower to bosons. Finally, Ejf is the energy of the target

after scattering and mj (M) is the mass of the target (indicent nucleus).

The energy transfer ∆Ej = Ejf − Ej can be obtained by a series of Lorentz trans-

formations: Since the scattering is elastic, in the CM frame we have Ecm
j = Ecm

jf . Thus,

we can obtain Ejf by a Lorentz transformation Λ = Λ3Λ2Λ1 of pj into the CM frame

followed by an inverse transformation of pcm
jf back. Λ is broken up as follows:10 We

choose β to lie along the z-axis and to have an angle α with βj ∈ yz-plane

p = (E, 0, 0, βE)T and pj = (Ej , 0, βjEj sinα, βjEj cosα)T (1.24)

10The explicit forms of Λ1, Λ2, and Λ3 are given in the Appendix 1.A at the end of this chapter.
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so that α = π corresponds to a “head-on-head” collision. Boosting into the rest frame of

the incident nucleus gives

p′j = Λ1pj =




γβEj(1 − ββj cosα)

0

βjEj sinα

γβEj(βj cosα− β)




= (E′
j ,p

′
j)

T (1.25)

where γβ = (1 − β2)−1/2. Under Lorentz transformations the Møller velocity changes

as [28]

v′møl = vmøl

1 − β′ · β′

j

1 − β · βj
(1.26)

which can be used to obtain the velocity of the ambient target in the rest frame of the

incident particle. Confirming the expression given in [37] it reads

β2 ≡ |β′
j | =

vmøl

1 − ββj cosα
. (1.27)

By the same token, the expression for the angle ψ between β′
j and the z-axis reads

cosψ = β′
j · e′z/β2 = −β − βj cosα

vmøl
(1.28)

which differs by a sign from [37]. Instead of explicitly carrying out the rotation p′′j = Λ2p
′
j

which makes β′′
j parallel to the z′-axis (vmøl is lengthy) we use our knowledge on the

form of p′′j : p
′′
j = (E′

j , 0, 0, β2E
′
j)

T since E′
j = E′′

j . Boosting into the CM frame using Λ3

one finds

pcm
j = Λ3p

′′
j =




γcmE
′
j(1 − β2βcm)

0

0

γcmE
′
j(β2 − βcm)



, pcm =




γcmM

0

0

−γcmβcmM




(1.29)

where βcm is obtained from (pcm
j )z = −(pcm)z; γcm = (1 − β2

cm)−1/2. We find

βcm =
E′

jβ2

M + E′
j

=
β2Ejγβ(1 − ββj cosα)

M + γβEj(1 − ββj cosα)
(1.30)

In the CM frame, the scattered target three-momentum pcm
jf has a scattering angle θ with

pcm
j and both momenta span a plane with azimuthal angle φ. Thus, pcm

jf = (Ecm
j ,pcm

jf )T

is given by

pcm
jf =




γcmE
′
j(1 − β2βcm)

γcmE
′
j(β2 − βcm) sin θ cosφ

γcmE
′
j(β2 − βcm) sin θ sinφ

γcmE
′
j(β2 − βcm) cos θ




(1.31)
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and with pjf = Λ−1pcm
jf = Λ−1

1 Λ−1
2 Λ−1

3 pcm
jf we can transform back into the rest frame of

the thermal bath. This yields for the energy of the scattered background particle

Ejf = Ejγ
2
βγcm(1 − ββj cosα)

× {γcm[(1 − βcmβ2)(1 + ββcm cosψ)

− (βcm − β2)(β cosψ + βcm) cos θ]

+ β(βcm − β2) sin θ sinφ sinψ} (1.32)

from which ∆Ej = Ejf − Ej is obtained. We encounter some sign-differences and a

different angular dependence on φ in the last line with (A2) of [37]. This may be due to

a different definition of the coordinate system and turns out to yield the same results.

Since the target medium is unpolarized, dσj/dΩ is independent of φ and the integration

over the azimuthal angles in (1.22) can be performed upon which the last line of (1.32)

drops out. Neglecting the Fermi blocking/Bose enhancement factors in (1.22) we find

(adopting the notation of [37]),

dE

dt
=
∑

j

gj

2π

∫ 1

0
dβj m

4
jβ

2
j

(
1 − β2

j

)−3
fj(βj , T ) Ij(βj , β, T ) , (1.33)

Ij(βj , β, T ) =

∫
dθ dα sin θ sinα∆j

dσj

dΩ
, (1.34)

∆j = vmøl

{
γ2

βγ
2
cm(1 − ββj cosα)

×
[
(1 − βcmβ2)(1 + ββcm cosψ)

− (βcm − β2)(β cosψ + βcm

)
cos θ] − 1

}
. (1.35)

1.5.2 Hadron-electron scattering

Let us now focus on “Coulomb scattering” between an incident hadron and background

electrons (positrons) and compute dσj/dΩ for j = e±. Note that also neutral hadrons

scatter on e± via their magnetic moment interaction.

For spin-1/2 hadrons such as nucleons or T and 3He nuclei the hadron-photon vertex

can be written as [48] Γµ = 2M(Ge − Gm)Pµ/P
2 + Gmγµ with P = pcm + pcm

f and

pcm
f denoting the (outgoing) four-momentum of the nucleus. The respective electric and

magnetic form factors Ge and Gm depend on the (squared) four-momentum transfer

q2 = (pcm
f − pcm)2 and are normalized such that Ge(0) = Z is the charge in units of e

and that Gm(0) = µ is the magnetic moment in units of e/2M of the hadron.11 The

11The Sachs form factors Ge and Gm are convenient because no interference terms ∝ GeGm appear

in the cross section (1.36); they are related to the Dirac and Pauli form factors F1 and F2 via Ge =
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(unpolarized) differential cross section for electron-hadron scattering is readily obtained.

In accordance with [48] (typo in [37]) it reads using the Mandelstam variables s, t, and u

dσ1/2

dt
=

πα2

[s− (M +me)2][s− (M −me)2]

1

t2(1 − t/(4M2))

×
{
G2

e[(s− u)2 + (4M2 − t)t]

− t

4M2
G2

m[(s− u)2 − (4M2 − t)(4m2
e + t)]

}
. (1.36)

Owing to a different vertex structure for spin-0 hadrons such as pions or 4He, Γµ =

FPµ, where F is the electromagnetic form factor (F (0) = Z), one readily obtains [48]

dσ0

dt
=

πα2F 2[(s− u)2 + (4M2 − t)t]

[s− (M +me)2][s− (M −me)2]t2
. (1.37)

We can expand (1.36) and (1.37) in terms of x = γβEj/M (typo in [37]). The

expansion is most likely to fail for scattering of (light) ultra-relativistic nuclei at high

temperatures of the thermal bath. To see the validity of the expansion consider the

typical energy of an electron 〈Ee〉 = 〈Ej〉 by using Maxwell-Boltzmann statistics:

〈Ee〉 = 3T +me
K1(me/T )

K2(me/T )
(1.38)

Here, K1/2 is the modified Bessel function of the first/second kind. For example, with

T = 0.1 MeV, a kinetic energy Tkin ≡ (γ− 1)M = 100 GeV (1 GeV) of the nucleus, and

M = mp one finds 〈x〉 ≃ 0.08 (0.002). Thus for the cases of interest the expansion in x

is fine. Since the cross-sections are independent of the azimuthal angle12

dσ

dΩ
=
p2
∗

π

dσ

dt
with p∗ = |pcm| ≃Mβ2(1 − ββe cosα)x (1.39)

where βe = βj . Neglecting me it follows

s−M2 ≃ 2M2x(1 − ββe cosα)

s− u ≃ 4M2x(1 − ββe cosα)

t ≃ −2M2β2
2x

2(1 − cos θ)(1 − ββe cosα)2

so that we find for the CM cross section for charged spin-1/2 and spin-0 nuclei

dσch

dΩ
≃ α2Z2

M2x2

1 − β2
2(1 − cos θ)/2

β2
2(1 − ββe cosα)2(1 − cos θ)2

. (1.40)

F1 + F2q
2/4M2 and Gm = F1 + F2 [49]. With the definitions for F1 and F2 and for Ee ≫ me, in the

laboratory frame, the Rosenbluth formula [50] follows from (1.36).
12An overall sign has been dropped since it can be fixed by the integration borders.
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Note that we have made the approximation F,Ge ≃ Z assuming small |q2|. Let us see if

this is justified. The maximum energy transfer is realized in a back-to-back collision in

the CM frame for which q2 = tmin = −4p2
∗. Considering the case that β ≫ βj , i.e., the

case when the electron is a stationary target, it follows from (1.39) that p∗ ≃ γββme.

For example, for a proton with E = 100 GeV this gives Q2 ≡ −q2 ≃ 0.01 GeV2 for which

Ge(Q
2) is practically unchanged from unity [51]. Moreover, note that setting F,Ge = Z

usually leads to an overestimation of the cross section with F and Ge decreasing for

increasing |q2| [51, 52]. Consequently, the stopping power is overestimated leading to

more conservative BBN constraints. For neutral hadrons we find13

dσnc

dΩ
≃ α2G2

m

2M2

1 + β2
2(1 − cos θ)/2

1 − cos θ
. (1.41)

We disagree in (1.40) and (1.41) with [37] by a factor of β2
2 in the denominator. The

disagreement arises as follows: Eq. (A5a) of [37] is actually Eq. (139.5) of [48]. In order

to arrive at the latter equation p2
∗ ≃ (Ecm

j )2 has been used (p2
e ≃ ε2e in the notation of

[48]). However, it is more accurate to use p2
∗ = (γcmβcmM)2 = β2

2(Ecm
e )2 +O

(
x2
)
; recall

that β2 is the velocity of the electron as seen from the rest frame of the nucleus. We

note in passing that up to corrections O
(
x2
)

one has γcm ≃ 1, βcm ≃ xβ2(1−ββe cosα),

Ecm ≃M , and Ecm
e ≃Mx(1 − ββe cosα).

We can use the above expansion in x to simplify ∆ in (1.35) for the limiting cases of

ultra-relativistic and non-relativistic hadrons traversing the background plasma. Consid-

ering β ≃ 1, i.e., an ultra-relativistic incident particle, and therefore γβ ≫ 1, β2 cosψ ≃
−1, and vmøl ≃ (1 − ββe cosα) we get to leading order O

(
x0
)

∆rel
e ≃ γ2

β(1 − βe cosα)2(1 − cos θ) . (1.42)

Conversely, for β ≪ 1 and therefore γ2
β ≃ 1 + β2, β2 ≃ (βe − β cosα)/(1 − ββe cosα),

and vmøl ≃ βe − β cosα we find

∆nrel
e ≃ (β2 − ββe cosα)(βe − β cosα)(1 − cos θ) . (1.43)

Both expressions agree with the ones obtained in [37] with differing signs in (1.35) being

compensated.

1.5.3 Cutoff considerations for charged particles

After having obtained the cross section for Coulomb and magnetic moment scattering for

hadrons on electrons we make the following observation for charged particles: Though

13For example, Gm(0) = −1.91 [32] for the neutron, being entirely anomalous.
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the energy transfer in a collision is smallest in the forward direction θ → 0 [as can be

seen by the factor (1 − cos θ) in Eqs. (1.42) and (1.43)], the divergence (1 − cos θ)−2 in

the cross section for charged hadrons (1.40)—arising from the long-range nature of the

Coulomb interaction—is too strong to be canceled. In this sense, the energy loss due

to scatterings in the forward direction gives the most efficient contribution. Cutting off

the angular integration in (1.34) at θmin leads to the well known logarithmic dependence

on θmin. Of course, θmin has to be motivated.

In a plasma, i.e., in a gas of charged particles, correlation effects lead to the screening

of the long-range Coulomb interaction. In Ref. [41] the authors determine the cutoff by

comparing the energy transfer to the electron with the plasma frequency

ω2
pl =

4παne

me
(1.44)

where ne denotes the total electronic density

ne = ne− + ne+ ≃





2 × (m2
eT/π

2)K2(m/T ) for T & me/26

7/8 ηBnγ for T . me/26

(1.45)

In the first line we have neglected the electron chemical potential and in the second

line we have imposed charge neutrality of the Universe. The upper relation in (1.45) is

derived by using Maxwell-Boltzmann statistics. For T ≫ me, i.e., for ultra-relativistic

electrons/positrons, this implies an error by a factor of 3ζ(3)/4 ≃ 0.9. Note also that

electrons freeze out in the temperature region of interest, me/26 ≃ 20 keV.

The plasma frequency does, however, not provide the correct scale [53]. The screening

of the electric field is a longitudinal phenomenon whereas the notion of the plasma fre-

quency as an effective photon mass is associated with transverse plasma excitations.

Electrons as well as the (ionized) light elements contribute to the screening with a

scale [54]

k2
S = k2

D + k2
I =

4παne

T
+

4πα

T

∑

j

Z2
j nj , (1.46)

where kD denotes the Debye scale with Debye length λD = k−1
D ; nj denotes the number

density of nuclei with charge number Zj . Note that kD and ωpl can be very different

with ωpl/kD =
√
T/me. However, in the temperature region of main interest ωpl and

kD are within a factor of a few. Moreover, since the screening scale will enter only

logarithmically we neglect the contribution of the ions (in particular protons) in the

following and set kS ≃ kD.
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We shall distinguish two cases: For β & 〈βe〉 the electrons can be viewed as a sta-

tionary target. Thus, we follow the screening prescription obtained in [53] and replace

(1.36) via

dσ

dt
=
f(s, t, u,M)

q4
→ dσ

dt

∣∣∣∣
sc

=
f(s, t, u,M)

q2(q2 + k2
D)

for β & 〈βe〉 (1.47)

(for elastic scattering in the CM frame t = −q2) whereas for β . 〈βe〉 electrons have time

to rearrange so that the scattering resembles one on a Yukawa-like charge distribution

with screening length λD. Then the correct prescription reads

dσ

dt
=
f(s, t, u,M)

q4
→ dσ

dt

∣∣∣∣
sc

=
f(s, t, u,M)

(q2 + k2
D)2

for β . 〈βe〉. (1.48)

Given the above considerations we replace the scattering cross section (1.40) for

charged particles employing the screening prescriptions (1.47) and (1.48) for the respec-

tive cases β & 〈βe〉 and β . 〈βe〉. We find

dσch

dΩ

∣∣∣∣
β&〈βe〉

≃ α2Z2

x2M2

1 − β2
2(1 − cos θ)/2

β2
2(1 − ββe cosα)2(1 − cos θ)2 + (1 − cos θ)κ2

, (1.49)

dσch

dΩ

∣∣∣∣
β.〈βe〉

≃ α2Z2β2
2

x2M2

1 − β2
2(1 − cos θ)/2

[
β2

2(1 − ββe cosα)(1 − cos θ) + κ2/(1 − ββe cosα)
]2 (1.50)

with

κ2 = k2
D/(2M

2x2) = k2
D/(2γ

2
βE

2
j ). (1.51)

In the region where κ2 acts as a regulator, i.e., for θ → 0, we make the immediate

observation that

∆rel/nrel
e

dσch

dΩ

∣∣∣∣
β&〈βe〉

∼ 1

κ2
,

∆rel/nrel
e

dσch

dΩ

∣∣∣∣
β.〈βe〉

∼ 1 − cos θ

κ4
.

For scattering in the forward direction the screening prescriptions will yield a numerical

difference only for (1 − cos θ) . κ2. For our cases of interest κ2 is usually a very small

quantity, e.g., − log κ2 ∼ O (10 ÷ 15) for T = 30 keV or O (3 ÷ 8) for T = 300 keV.

Thereby, only in a very small integration regime over θ both cross sections will be

significantly different—though the integrand is largest in this area.

In order to decide which cross section is applicable for a given value of the hadron

velocity β, it has to be compared with the average electron/positron velocity

〈βe〉 =
2T (me + T )

m2
eK2(me/T )

e−me/T (1.52)
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which is obtained by using Maxwell-Boltzmann statistics; for T ≪ me the formula

reduces to the standard result 〈βe〉n.r. =
√

8T/πme. Note that β is related to the kinetic

energy of the incident hadron via β = [1 −M2/(Tkin + M)2]1/2. Thus, for example, a

proton with Tkin = 1 GeV (50 MeV) has β = 0.88 (0.31) so that β drops below 〈βe〉 for

T = 400 keV (20 keV).

1.5.4 Discussion on Coulomb stopping

In this section we discuss in some detail the results on the energy loss for charged

particles due to Coulomb interactions with the background electrons (positrons). We

will also compare with a treatment found in the literature.

To see the net effect of the different screening prescriptions on the stopping power we

perform a full numerical integration of (1.34) and (1.33) using the Vegas algorithm [55].

For the integration over the electron (positron) velocity knowledge of the distribution

function fe is required. Though electrons are frozen out for T . me/26 ≃ 20 keV they

remain tightly coupled to the photon bath via Thomson scattering. This ensures that

electrons maintain kinetic equilibrium so that we can make the approximation

fe(Ee, T ) ≃





[exp(Ee/T ) + 1]−1 for T & me/26

nef
eq
e /neq

e−
for T . me/26

(1.53)

where T denotes the photon temperature. For T . me/26 we use f eq
e = exp (−Ee/T ) ≃

exp[−p2
e/(2meT ) −me/T ], i.e., we resort to Maxwell-Boltzmann statistics in the non-

relativistic limit.14 From the definition ne = ge

∫
d3pe/(2π)3fe we reproduce the second

line of (1.45) by using neq
e−

in the form of (1.11) with ge = 2; for the case T & me/26 we

use ge = 4.

In Fig. 1.2 we show the stopping power dE/dt for an injected proton computed by

numerical integration from (1.33) using the different screening prescriptions. Solid lines

correspond to (1.49) and dotted lines (hardly visible) are associated with (1.50). In the

left panel we show −dE/dt in units of MeV/s as a function of the proton velocity β

at temperatures T = 100 keV and 10 keV as labeled. In addition, the points β = 〈βe〉
indicate which screening prescription should be used. In the right panel we show −dE/dt

14It is shown in [56] that fe = R−3T
−3/2
e N0 exp (−p2

e/2me) satisfies the Boltzmann equation in the

non-relativistic limit with an elastic collision term due to Thomson scattering; N0 ∝ nγR3 = const

by comparison with (1.45). Defining the temperature of a non-relativistic particle species j with ar-

bitrary distribution f as (3/2)Tjnj ≡ gj

∫
d3pj/(2π)3p2

j/(2mj)f(pj) [56] it is found that the electron

temperature Te tracks T well until recombination, T ≃ 0.3 eV. There, (T − Te)/T = O
(
10−7

)
[57].
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Figure 1.2: We show the stopping power dE/dt for an injected proton computed by

numerical integration from (1.33) using the different screening prescriptions. Solid lines

correspond to (1.49) and dotted lines (hardly visible) are associated with (1.50). Left :

Shown is −dE/dt as a function of the proton velocity β at temperatures T = 100 keV

and 10 keV as labeled. In addition, the points β = 〈βe〉 indicate which screening

prescription should be used. Right : −dE/dt as a function of T for a relativistic proton

(Tkin = 1 GeV, β = 0.9) and a non-relativistic proton (Tkin = 50 MeV, β = 0.3) is

plotted. In addition, the dashed line shows the energy loss due to the density effect in

the non-relativistic case.

as a function of T for a relativistic proton (Tkin = 1 GeV, β = 0.9) and a non-relativistic

proton (Tkin = 50 MeV, β = 0.3).

From Fig. 1.2 we can make a number of observations. An immediate one is that the

stopping power is essentially insensitive to the employed screening prescription. Con-

cretely, we find that both prescriptions yield a difference in dE/dt by no more than

20% for the considered temperature range. From the right panel we see that once the

velocity β of the incident particle drops below the average electron velocity, the stopping

power starts to decrease rapidly. This confirms the observation made in [37] and it is

also intuitive since it becomes increasingly difficult to transfer momentum to the—on

average—faster electrons. Indeed, for β < βe the charged hadron can even gain energy

in a collision which is indicated by a sign-flip of Ie [Eq. (1.34)] in the collinear region

where α→ 0 (’head-on-back collision’). From the left panel we realize that the stopping

power rapidly decreases with dropping temperature. This is because for T . me the

number density of electrons and positrons is Boltzmann suppressed. For T . 20 keV

the decrease is weaker because the remaining electrons fail to track their exponentially

decreasing equilibrium abundance. More precisely, dE/dt scales like T 3 for such low
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temperatures because ne ∼ a−3 and a ∼ T−1 during radiation domination.

So far, we have only considered (screened) binary collisions of a fast charged parti-

cle traversing a QED plasma. Such a treatment gives an accurate description for those

scattering events of the particle with largest energy transfers, i.e., with smallest im-

pact parameters b. Considering b & λD, the nucleus scatters simultaneously on many

electrons. (Note that in our case the Debye length is much larger than the typical

inter-particle distance, λD ≫ n
−1/3
e .) A sweeping external charge, i.e., a perturbation

ρext = Zeδ(r − βt), induces a macroscopic electric field E in the medium which acts

back on the particle. The resulting energy loss per unit path length can be found by

computing the work done on the particle. It equals the force exerted onto the charged

hadron in direction opposite to its motion

dE

dx

∣∣∣∣
kDb>1

=
1

β

dE

dt

∣∣∣∣
kDb>1

= Ze eβ · E(r = βt), (1.54)

where eβ is a unit vector in β direction. The electric field can be found by consid-

ering the macroscopic Maxwell equations with dielectric permittivity ε. In the non-

relativistic limit and using15 ε(ω) ≃ 1 − ω2
pl/ω

2 for a Maxwellian plasma, the stopping

power reads [59]

− dE

dt

∣∣∣∣
kDb>1

=
Z2α

β
ω2

pl ln

(
1.123kDβ

ωpl

)
(1.55)

As can be seen by the dashed line in the left Fig. 1.2 the contribution due to the

’density effect’ is subleading. Note that the formula was derived under the premise

that the velocity of the massive particle is large compared to the thermal speed of the

electrons. Indeed, the argument of the logarithm in (1.55) is greater than unity only for

β & 0.6〈βe〉n.r. so that the line is cut-off for T & 60 keV. We remark that a full relativistic

treatment of the energy loss of a massive particle due to the dielectric response of the

medium for arbitrary velocities is complex but will not affect significantly the above

made conclusions; we refer the reader to Landau’s treatment in [58].16

We can compare the full numerical integration of (1.33) with the treatment of Coulomb

stopping presented in [41]. The authors employ the results of [37] which also we have

taken as a starting point. Full numerical integration of (1.33) is not feasible when scan-

ning the (τX , YX) parameter space so that analytical approximations based on (1.42) and

15Here, ω and k (k = |k|) are the frequency and wave vector of the Fourier transformed fields and the

expression is the limiting case for ω/(k〈βe〉) ≫ 1; see [58].
16The case of a hot QED plasma with me ≪ eT has been treated within the framework of thermal

field theory in [60].



1.A. Lorentz transformations 25

(1.43) have been used in [41]. Since we have observed that the employed screening pre-

scription affects dE/dt only marginally for T . 100 keV and that kD and ωpl—entering

the stopping power logarithmically—are not too different, it is not surprising that we

find overall agreement with [41] on the energy degradation rate within a factor of a few.

We remark that obtaining constraints on the hadronic energy release of decaying X

involves a fair amount of modelling and computation. After calculation of the hadronic

branching ratio in the decay of X, each step involves uncertainties and approximations:

Employing a hadronization algorithm, computing the initial energy spectra of secon-

daries, following the energy degradation and cascade formation due to electromagnetic

and hadronic processes, and finally obtaining the yields of non-thermally produced light

elements. We have seen that already the seemlingly elementary process of Coulomb stop-

ping can become involved—especially when it is necessary to apply it to a large range

of incident particle energies and plasma temperatures. In the light of these comments

we close this chapter by noting that we have not found a radically different picture than

that of previous considerations which would strongly influence on the strength of the

hadronic constraints presented in Fig. 1.1.

1.A Lorentz transformations

The explicit matrices for the Lorentz transformations performed in 1.5.1 are given below.

The matrix Λ2 describes an (active) rotation in counter-clockwise direction around the

x′-axis when looking towards the origin. The inverse transformations Λ−1
1 , Λ−1

2 , and Λ−1
3

are obtained by the replacement β → −β, ψ → −ψ, and βcm → −βcm in Λ1, Λ2, and

Λ3, respectively.

Λ1 =




γβ 0 0 −γββ

0 1 0 0

0 0 1 0

−γββ 0 0 γβ




Λ2 =




1 0 0 0

0 1 0 0

0 0 cosψ − sinψ

0 0 sinψ cosψ




(1.56)

Λ3 =




γcm 0 0 −γcmβcm

0 1 0 0

0 0 1 0

−γcmβcm 0 0 γcm




(1.57)
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Chapter 2

Bound states and catalysis of

BBN

In this Chapter we now discuss (some of) the rich physics which emerges when the light

elements are captured by X− during/after the time of primordial nucleosynthesis. We

start in Sec. 2.1 by reviewing the basic properties of such bound states. Section 2.2 is

devoted to the calculation of the wave functions associated with the CHAMP-nucleus

system. This allows us in Sec. 2.3 to obtain recombination cross sections carrying a

finite nuclear charge radius correction. The detailed exposition in Sects. 2.2 and 2.3 is

of some value since (apart from exceptions) those rates are not publicly available in the

literature.

In Sec. 2.4 we then consider the catalysis of BBN reactions. After a general review

we employ the results from the literature on the catalyzed production of 6Li and 9Be

and show explicitly how to incorporate them into a Boltzmann network calculation. In

Sec. 2.5 we discuss the potential impact of neutral proton-CHAMP bound states on the

synthesized elements. We close this chapter with Sec. 2.6 in which we first infer an

upper limit on primordial 9Be and then present the results of our CBBN calculation

which heavily constrains the X−-abundance/lifetime parameter space.

2.1 Basic bound state properties

The presence of negatively charged massive particles X− during/after primordial nucleo-

synthesis leads to the formation of bound states (NX−) with the ionized nuclei N of

the light elements. In this section we shall describe the basic properties of such bound

states.

27
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In order to obtain a first estimate on the physical properties one can immediately

apply the standard formulæ for the quantum mechanical motion in a Coulomb field. The

characteristic size of the (NX−) system is given by the Bohr radius of the system,

ab =
1

mredZα
∼ 29 fm

AZ
, (2.1)

where A and Z are the atomic mass and charge number of the nucleus, respectively. In

the second relation we have used that the reduced mass

mred =
mNmX

mN +mX
(2.2)

is given to good accuracy by the mass of nucleus, mred ≃ mN (mX ≫ mN), and that

roughly mN ∼ Amp where mp = 938 MeV [32] is the proton mass. The binding energies

of a point-like nucleus orbiting X− are given by the well-known formula

Ecoul
b,n = −Z

2α2mred

2n2
∼ (−25 keV)

AZ2

n2
, (2.3)

where n denotes the principal quantum number.

For the case of a proton bound state a
(pX−)
b ≃ 29 fm so that the system is a factor

of mp/me ∼ 1800 smaller than a hydrogen atom. Nevertheless, the p–X− distance is

still large when compared to the rms charge radius of the proton, 〈r2c 〉
1/2
p ≃ 0.88 fm [61].

The situation changes for heavier nuclei. For example, considering (6LiX−), one finds

that a
(6LiX−)
b ≃ 1.6 fm whereas the measured 6Li rms charge radius reads 〈r2c 〉

1/2
6Li

≃
2.54 fm [61]. Thus, we expect corrections to the näıve Bohr-like binding energies (2.3)

once the finite size of the nucleus is taken into account.

In order to obtain more realistic values for the ground state energy, we need to

make an assumption on the charge distribution of the nucleus. A compilation thereof is

presented in [62]. We employ the Gaussian ρ = eZ(ξ/π)3/2e−ξr2
with radial coordinate

r from which the potential

φ(r) = − eZ

4πr
erf
(√

ξr
)

(2.4)

is obtained upon solution of Poisson’s equation1 ∇2φ = ρ. Requiring 〈r2〉ρ = 〈r2c 〉N
relates the parameter ξ to the rms charge radius; 〈r2〉ρ = 3/2ξ. The error function is

defined by erf (x) = 2π−1/2
∫ x
0 e

−t2dt.

The above choice of the charge distribution is particularly convenient because the

electric potential (2.4) is given in analytical form (2.4). This makes an application of the

1We use Heaviside-Lorentz units with e =
√

4πα.
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Table 2.1: Basic quantities for some selected light elements and their bound states

with X− for mX → ∞. If necessary, nuclear masses mN are derived† from [44]. Rms

charge radii 〈r2c 〉
1/2
N are taken from [61], ab denotes the Bohr radius (2.1), Ecoul

b,0 is

the näıve Coulomb ground state energy (2.3), and Evar
b provides realistic values of the

binding energy from the variational principle (2.6).

bound state mN [MeV] 〈r2c 〉
1/2
N [fm] ab [fm] Ecoul

b,0 [keV] Evar
b [keV]

(pX−) 938 0.88 28.8 -25 -25

(DX−) 1876 2.14 14.4 -50 -49

(4HeX−) 3727 1.67 3.6 -397 -347

(6LiX−) 5601 2.54 1.6 -1342 -797

(9BeX−) 8393 2.52 0.8 -3575 -1469

† Nuclear masses are obtained from atomic masses by subtracting Zme and correcting for the

total binding energy of all electrons where we follow the prescription given in [44].

Rayleigh-Ritz variational method straightforward. Using the (unnormalized) trial wave

function

ψ(r; a, b) = e−ar/ab(1 + br/ab) (2.5)

with variational parameters a and b an upper bound on the true ground state energy Eb

can be obtained by minimizing the right hand side of

Eb ≤
∫
d3rψ∗Hψ∫
d3rψ∗ψ

. (2.6)

For the Hamiltonian H of the (NX−) system we use H = −(2mN)−1∇2 + eφ, i.e., we

take mX → ∞.

The results of minimization of (2.6) for selected light elements along with some other

basic quantities are summarized in Table 2.1. Note that the Bohr radii of bound states

with elements heavier than 4He lie within the nuclear radii. Thereby, the true binding

energy for those systems is significantly reduced in magnitude as can be seen by com-

paring Ecoul
b,0 with Evar

b . We remark that the binding energy is an important quantity

since it directly influences on the bound state fraction of the light nuclei.

2.2 Wave functions of the relative motion

For the calculation of photo-dissociation and recombination cross sections which include

the finite charge radius correction, we are in need of the actual wave functions of the
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N–X− system. In the following we shall therefore obtain the wave functions for the

(NX−) bound states as well as for the N–X− continuum. It will also allow us to see

how well our variationally obtained upper bounds Evar
b fit the actual value of the true

ground-state energy Eb.

The Schrödinger equation for the radial part R(r) = u(r)/r of the wave function

ψ(r, θ, φ) = Yl,m(θ, φ)R(r) of the relative motion is given by

d2u

dr2
+

[
2mred(E − V ) − l(l + 1)

r2

]
u = 0 . (2.7)

As usual, Yl,m(θ, φ) denotes the spherical harmonic with orbital and magnetic quantum

numbers l and m. For the potential V we make the following choices

V =





−Zα/r point

e φ(r) gauss

−Zα/(2R0) (3 − r2/R2
0) h.sph (r ≤ R0)

(2.8)

where “point” stands for the Coulomb potential of a point-like nucleus, “gauss” for a

Gaussian charge distribution with φ defined in (2.4), and “h.sph” for a potential of a

homogeneously charged sphere of squared radius R2
0 = 5〈r2c 〉N/3 [62]. For r > R0, Vh.sph

is to be continued by Vpoint.

2.2.1 Discrete spectrum

We solve (2.7) for E < 0 and the various choices of V [Eq. (2.8)] numerically. For fixed

n = nr + l+1 we exploit the fact that the radial function R(r) and thus u(r) vanishes nr

times; nr is the radial quantum number. The solution of (2.7) is fixed by imposing the

standard boundary conditions u(δ) = δl+1 and u′(δ) = (l + 1)δl with δ ≪ 〈r2c 〉
1/2
N and

normalizing to unity,
∫
|u|2dr = 1.

At the top of Fig. 2.1 we show the numerical solutions of the normalized radial wave

function Rnl = R10 for the (4HeX−) ground state (1S in the usual spectral notation)

for the different choices (2.8) of the potential. An attenuation of the wave functions

with finite charge radius relative to the Coulomb case can be seen at small r. At large

radii, the wave functions are Coulomb-like.2 It can further be seen that Rgauss ≃ Rh.sph

for all r, i.e., the radial wave function for (4HeX−) is rather insensitive to the concrete

choice of the charge distribution. In the middle and at the bottom of Fig. 2.1 we plot

r2R2, i.e., the probability density of the 4He–X− distance, for n ≤ 3 and Gaussian

charge distribution. Except for small radii, the curves essentially resemble distributions

2Of course, the Coulomb solution is simply given by Rpoint = a
−3/2
b exp (−r/ab)
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Figure 2.1: Top figure: Radial wave functions R of the (4HeX−) ground state for the

choices (2.8) of the potential as labeled. Lower figures: probability densities r2R2 of

the 4He–X− distance for eigenstates with n ≤ 3 and Gaussian charge distribution. All

curves are obtained for mX → ∞.

obtained with Coulomb wave functions. This is particularly true for the higher l states

as the wave functions are pushed outwards due to the centrifugal term in (2.7).
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Table 2.2: Complete spectrum for (4HeX−) for n ≤ 3. Binding energies are given for

and mX → ∞ and mX = 100 GeV (bracketed values) for the potentials as labeled and

given in (2.8). Additionally, the expectation values 〈r〉 and rms radius 〈r2〉1/2 for the

“gauss” case are provided.

(4HeX−) 〈r2c 〉
1/2
4He

= 1.67 fm

mX → ∞ (100 GeV), ab = 3.63 (3.76) fm

State Epoint
b [keV] Egauss

b [keV] 〈r〉 [ab] 〈r2〉1/2 [ab]

1S −397 (−383) −348 (−338) 1.7 2.0

2S −99 (−96) −93 (−90) 6.4 6.9

2P −99 (−96) −99 (−96) 5.0 5.5

3S −44 (−43) −42 (−41) 14.1 15.0

3P −44 (−43) −44 (−43) 12.5 13.4

3D −44 (−43) −44 (−43) 10.5 11.2

In Table 2.2 the spectrum for the cases “point” and “gauss” [Eq. (2.8)] is given for

the states plotted in Fig. 2.1. In addition, also the expectation value 〈r〉 as well as

the rms radius 〈r2〉1/2 are given for the “gauss” case in units of ab = 3.63 fm. We

solve the Schrödinger equation (2.7) for mX → ∞, i.e., for mred = mN, as well as for

mX = 100 GeV (bracketed values) in order to study the influence of a finite X− mass

on the binding energies. The table shows that for mX = 100 GeV this leads to a shift of

10 keV for the ground state energy but the correction quickly becomes marginal for the

n > 1 states. The same is true when comparing the spectra for the different potentials.

Whereas the correction to the ground state energy is substantial, 49 (45) keV, the higher

states for the (4HeX−) system essentially coincide. It is, however, interesting to note

that the Coulomb degeneracy is broken. We refrain from showing the energies for the

case “h.sph” since they are the same as for the “gauss” case (except for n = 1 where a

1 keV shift is found.) One can also see that the variational determination of the ground

state energy in section 2.1 gave an accurate result.

For bound states of X− with heavier nuclei than 4He, i.e., for more compact systems,

we expect a pronounced behaviour of the observed effects above. Analogously to the

case (4HeX−) we can analyze (8BeX−). This is an interesting system because free 8Be

is unstable by 92 keV and decays into two alpha particles: 8Be → 4He + 4He. Indeed,

the stable (8BeX−) system is part of a CBBN reaction chain which can open the path

to primordial production of 9Be [63]; see Sec. 2.4. Since the lifetime of 8Be is ∼ 10−16 s

no experimental data on the charge radius of the isotope is available. In this section
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Table 2.3: As in Table 2.2 but for (8BeX−). In addition binding energies for the

“h.sph” case are shown; see (2.8).

(8BeX−) 〈r2c 〉
1/2
8Be

= 3.39 fm

mX → ∞ (100 GeV), ab = 0.91 (0.97) fm

State Ecoul
b [keV] Eh.sph

b [keV] Egauss
b [keV] 〈r〉 [ab] 〈r2〉1/2 [ab]

1S −3176 (−2956) −1118 (−1092) −1168 (−1138) 3.8 4.2

2S −794 (−739) −458 (−437) −475 (−453) 9.8 10.6

2P −794 (−739) −652 (−620) −650 (−618) 6.4 6.9

3S −353 (−328) −243 (−230) −249 (−236) 19.0 20.2

3P −353 (−328) −306 (−290) −307 (−290) 14.5 15.5

3D −353 (−328) −348 (−325) −346 (−323) 10.9 11.6

we follow [64] and adopt the value 〈r2c 〉
1/2
8Be

= 3.39 fm which is based on a microscopic
4He + 4He model calculation [65]. Again, in Fig. 2.2 we plot the 1S radial solutions of

the Schrödinger equation (2.7) for the various potentials (2.8). The difference between

Rpoint and Rgauss (Rh.sph) is now substantial. Moreover, also a slight difference between

Rgauss and Rh.sph is observable for smaller radii. We therefore expect a dependence of

the ground state energy on the adopted charge distribution.

In Table 2.3 we provide the complete spectrum for (8BeX−) with n ≤ 3. Expectation

values 〈r〉 as well as the rms radius 〈r2〉1/2 are also computed for the “gauss” case in

units of ab = 0.91 fm; m8Be = 7.455 GeV. Again, we compare the energy eigenvalues

for mX → ∞ with the ones for mX = 100 GeV (bracketed values). As can be seen, all

states now receive substantial corrections to the Coulomb values. Moreover, we observe

a 50 keV (46 keV) shift in the 1S energy when changing the charge distribution from

Gaussian to square well (in r).

Finally, we have checked all variationally determined ground state binding energies

presented in Table 2.1 of the last section by explicit computation of the wave function.

We find that all Evar
b given in Table 2.1 are within 1 keV of the numerically obtained

result. Noteworthy may be the 1 keV shift for (4HeX−). Of course, not only the

assumed distribution of charge influences on Eb but also the error on the measured or

theoretically predicted charge radius is a source of uncertainty. This is of pronounced

importance for the heavier nuclei because the bound state system is more compact. For

our purposes, however, it is not essential to pursue this issue further; see Sec. 2.4.2

for another comment in the context of catalyzed 9Be production. In the following, we

employ the binding energies determined from the Gaussian charge distribution.
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RgaussRh:sphRpoint1S (8BeX�)
r [fm℄R[fm�3=2 ℄ 1086420

2.521.510.50
Figure 2.2: 1S radial wave functions for (8BeX−) from solving (2.7) with potentials

(2.8) as labeled and mX → ∞.

2.2.2 Continuous spectrum

We are also in need of solutions of the Schrödinger equation (2.7) for E > 0 if we want to

obtain charge-radius corrected bound-state formation cross sections. The normalization

of a numerically obtained solution is more involved since the wave functions of the

N–X−-continuum are not bounded spatially. However, a finite charge radius leads to

a modification of the Coulomb form of the potential only in the vicinity of the origin.

Therefore, we can take the following approach: For r ≫ 〈r2c 〉
1/2
N the solution of (2.7) has

to be a linear combination of the regular and irregular Coulomb wave functions Fkl and

Gkl, respectively. They can be expressed as

Fkl =
1

2
(Yl + Y ∗

l ) , (2.9a)

Gkl =
1

2i
(Y ∗

l − Yl) , (2.9b)

with [66, 67]

Yl = +i
|Γ(l + 1 − iη)|
Γ(l + 1 + iη)

eiπl/2eηπ/2Wiη, l+1/2(2ikr) , (2.10a)

Y ∗
l = −i |Γ(l + 1 + iη)|

Γ(l + 1 − iη)
e−iπl/2eηπ/2W−iη, l+1/2(−2ikr) . (2.10b)

Here, η = −1/(kab) denotes the Sommerfeld parameter for an attractive Coulomb

field where k is the wave vector of the relative N–X− motion with |k| = k = (2mredE)1/2;

Γ(z) is the Gamma function [68] and Wa, b(z) stands for Whittaker’s function [69].

With W±a,b(±z) = e∓z/2(±z)±a
[
1 + O

(
z−1
)]

[69] one finds that the asymptotic
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Figure 2.3: Continuum wave functions for 4He–X− (top) and 6Li–X− (bottom) with

k = 10 MeV and mX → ∞.

behavior of the wave functions (2.9) is given by

lim
kr→∞

Fkl = + sin
[
kr − η ln (2kr) − πl/2 + δl

]
, (2.11a)

lim
kr→∞

Gkl = − cos
[
kr − η ln (2kr) − πl/2 + δl

]
, (2.11b)

where the Coulomb phase is defined by δl = arg Γ(l + 1 + iη).

Now, for r ≫ 〈r2c 〉
1/2
N the radial solution of the Schrödinger equation to a modi-

fied Coulomb potential can be written as3 Rout
kl = (2/r) [alFkl − blGkl]. Retaining the

3This definition corresponds to normalization on the “k/2π scale”,
∫∞

0
Rk′lRklr

2dr = 2πδ(k′ − k).

Note, however, that Gkl is not regular at the origin. One has to introduce a cutoff factor if Rkl shall be

an entire function; see [70].
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asymptotic normalization

lim
kr→∞

Rout
kl =

2

r
sin
[
kr − η ln (2kr) − πl/2 + δl + σl

]
, (2.12)

it follows from comparison with (2.11) that the additional phase shift σl(k) is given by

σl = tan (bl/al).

In the vicinity of the origin, i.e., for r . 〈r2c 〉
1/2
N , the numerically obtained wave func-

tion Rint
kl correctly describes the solution to Schrödinger’s equation. It can be normalized

by requiring a continuous transition at r = rfit to the outer solution

Rint
kl (rfit) = Rout

kl (rfit) , (2.13a)

d

dr
Rint

kl

∣∣∣∣
rfit

=
d

dr
Rout

kl

∣∣∣∣
rfit

. (2.13b)

Following the outlined approach, we solve (2.7) for the relative motion of various

N–X− systems. As examples, we choose 4He–X− and 6Li–X−. At the times of BBN

the relative velocity of the 4He/6Li–X− system is Boltzmann distributed so that 〈k〉 ∼√
mredT . Thus, a representative value is k = 10 MeV which corresponds to T ≃

20 (30) keV for 4He (6Li) with mX → ∞. We join the inner solution with the outer one

at rfit = 10 fm. This determines the phase shift σl. We have checked that σl is insensitive

to the chosen value of rfit, provided r > 〈r2c 〉
1/2
N , and that σl → 0 when switching to a

point-like nucleus. Using a Gaussian charge distribution, we find for the S-wave (l = 0)

of the 4He(6Li)–X− system σ0 = −0.21 (−0.87) whereas for the P-wave (l = 1) the phase

shift is already significantly reduced, σ1 = −3.3 × 10−3 (−0.13).

In Fig. 2.3 the corresponding wave functions for 4He–X− (top) and 6Li–X− (bottom)

are shown. As can be seen, the wave functions Rk0 for the case “gauss” receive a signifi-

cant correction in comparison to the Coulomb case “point” which was already indicated

by the size of the phase shifts σ0. Of course, the curves labeled “point” coincide with

the regular Coulomb functions (2/r)Fkl [Eq. (2.9a)]. Whereas for the 4He–X− system

Rk1 ≃ (2/r)Fk1, a deviation from the regular Coulomb P-wave is visible in the 6Li–X−

case.

When considering continuum wave functions for k → 0 the numerical evaluation of

(2.10) is problematic. This case, however, is the most important one in the computation

of the photo-dissociation cross section of (NX−) [Sec. 2.3.1]. Therefore, we need to

consider the Coulomb wave functions in a different form [71],

Fkl = A (i/kab, l)
1/2

√
πkab

2
y1 (−iη, l; r/ab) , (2.14a)

Gkl = A (i/kab, l)
−1/2

√
πkab

2
y3 (−iη, l; r/ab) , (2.14b)
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where A (i/kab, l) =
∏l

s=1

[
1 + (skab)

2
]

and y1,3 are related to the Whittaker functions;

A(x, 0) = 1. Defined in this way, (2.14) satisfy the asymptotic behavior (2.11). An

expansion in powers of κ−2, i.e. in energy, for y1 reads [71] (see also [72])

y1(κ, l; ρ) =
∞∑

q=0

κ−2q
3q∑

p=2q

aq,p(l)(2ρ)
(p+1)/2J2l+1+p

(√
8ρ
)
, (2.15a)

whereas y3 cannot be represented by a convergent expansion in powers of energy. How-

ever, an asymptotic expansion has been obtained in [71],

y3(κ, l; ρ) = A(κ, l)

Q∑

q=0

κ−2q
3q∑

p=2q

aq,p(l)(2ρ)
(p+1)/2Y2l+1+p

(√
8ρ
)

+ O
(
κ−2Q−2

)
.

(2.15b)

Here, J2l+1+p and Y2l+1+p are the respective Bessel functions of the first and the second

kind of order 2l+1+p [68] and the coefficients aq,p(l) satisfy recurrence relations (a0,0 =

1); for details see [71]. With the expansion

A (i/kab, l) = 1 +
l(l + 1)(2l + 1)

6
k2a2

b + O
(
k4a4

b

)
(2.16)

one obtains from (2.15)

Fkl =
√
πrk

{
J2l+1

(√
8r/ab

)
+

(kab)
2

12

[
l(l + 1)(2l + 1)J2l+1

(√
8r/ab

)

−3(l + 1)

(
2r

ab

)
J2l+3

(√
8r/ab

)
+

(
2r

ab

)3/2

J2l+4

(√
8r/ab

)
+ O

(
k4a4

b

)
]}

(2.17a)

Gkl =
√
πrk

{
Y2l+1

(√
8r/ab

)
+

(kab)
2

12

[
l(l + 1)(2l + 1)Y2l+1

(√
8r/ab

)

−3(l + 1)

(
2r

ab

)
Y2l+3

(√
8r/ab

)
+

(
2r

ab

)3/2

Y2l+4

(√
8r/ab

)
+ O

(
k4a4

b

)
]}

(2.17b)

In the following section we employ those approximations in the computation of the

photo-dissociation cross section.

2.3 Formation of bound states

The crucial quantity in the discussion of the catalysis of BBN reactions is the bound

state fraction n(NX−)/nN of the light elements N. To this end we have to compute the
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cross sections σrec for radiative recombination, N +X− → (NX−) + γ, as well as σph for

the dissociation, (NX−) + γbg → N +X− due to background photons γbg.

The rate (per nucleus N) for N–X− recombination is given by Γrec = 〈σrecv〉nX− .

Here, σrec has to be averaged over the distribution of relative velocities v between N and

X− which is Maxwellian for a sub-MeV plasma,

fv = 4πv2
(mred

2πT

)3/2
exp

(−mredv
2

2T

)
. (2.18)

Hence,

〈σrecv〉 =

√
8

πmred
T−3/2

∫ ∞

0
dEk σrecEke

−Ek/T , (2.19)

where Ek = mredv
2/2 has been used.

The rate of photo-dissociation Γph of (NX−) pairs depends on the number of photons

whose energy Eγ exceed that of the ionization potential |Eb| of the bound state,

nγ(Eγ > |Eb|) =
1

π2

∫ ∞

|Eb|
dEγ

E2
γ

eEγ/T − 1
, (2.20)

and is given by Γph = σph nγ(Eγ > |Eb|).

The principle of detailed balance [34] relates the cross sections via p2σrec = 2E2
γσph

where |p| = mredv denotes the momentum of the relative motion of the N–X−system

and the factor of two is a statistical factor accounting for the two polarization degrees

of freedom of the photon. From the definition of the rates Γph and Γrec together with

(2.19) and (2.20) it follows that4

Γrec

Γph
=

(
2π

mredT

)3/2

e|Eb|/TnX− . (2.21)

As long as Γph(T ), Γrec(T ) & H(T ), i.e., as long as recombination and break-up reac-

tions happen frequently, the concentrations of N, X−, and (NX−) have time to achieve

equilibrium values such that the reaction densities for recombination and dissociation

are equal, Γph n(NX−) = Γrec nN. This yields the Saha equation for the bound state

fraction,5

n(NX−)

nN
=

Γrec

Γph
. (2.22)

4It is used that Eγ = Ek + |Eb| and that [exp (Eγ/T ) − 1]−1 ≃ exp (−Eγ/T ) which holds well in the

temperature regions of main interest.
5When used in this form one may need to impose that the number of bound states cannot be larger

than the total number recombination partners available.
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2.3.1 Photo-dissociation and recombination cross section

Since the early Universe is in a high-entropy state, bound states can only form efficiently

once T . |Eb|/40 [73]. At the relevant times, i.e., when Γph . H, only those photons in

the high energy tail of the spectrum with Eγ ≥ |Eb| are capable of destroying (NX−);

〈Eγ〉 ≃ 3T . In addition, the binding energy is significantly smaller than the associated

light element mass so that a non-relativistic treatment of the photoelectric effect is

perfectly justified.

For the computation of the photo-dissociation cross section we can employ Fermi’s

golden rule. The probability per unit time for a nucleus bound to X− to undergo a

transition into the continuum is given by

dwph = 2π|Vfi|2δ(−|Eb| + Eγ − Ek)dρ . (2.23)

After the transition the nucleus has kinetic energy Ek and momentum p.6 The density

of final states is dρ = d3p/(2π)3 and the matrix element for absorption of a photon with

momentum k and energy E2
γ = k2 reads

Vfi =
Ze√
2Eγ

eµj
µ
fi(−k) (2.24)

where jµ
fi(k) =

∫
d3x e−ik·rjµ

fi(x) is the Fourier transform of the transition current

jµ
fi(x) = ψfγ

µψi and eµ denotes the photon polarization vector; see, e.g., [48]. The

cross section is found by dividing (2.23) by the incident photon flux density. Averag-

ing over photon polarizations [in the gauge (eµ) = (0, e)], and integrating over Ek, the

differential cross section for photo-dissociation is given by

dσph

dΩp
=
Z2αmred|p|

4πEγ
|ek × jfi|2 , (2.25)

where ek is a unit vector in k-direction and jfi is the spatial part of jµ
fi(−k).

We shall consider ionization from 1S as well as from 2S states. The initial state wave

function is ψi = (4π)−1/2R1S/2S. The final state has to comprise a plane wave in p

direction together with an ingoing spherical wave [74]. In the partial wave expansion,

ψf =
1

2|p|

∞∑

l=0

il(2l + 1) e−i(δl+σl)R|p|lPl(ep · er) (2.26)

with unit vectors ex in x-direction; Pl are the Legendre polynomials [68]. Note the ap-

pearance of the additional phase shift σl coming from the finite charge radius correction.
6Of course, strictly speaking, it is the energy and momentum of the relative motion. From the above

explanations, however, it is clear that the X− recoil is negligible.



40 Chapter 2. Bound states and catalysis of BBN

Table 2.4: Listed below are the cross sections σph for the threshold (Eγ = |Eb|)
bound-free transition from 1S and 2S states. From the definition (2.30) the averaged

cross sections 〈σrecv〉 for recombination into 1S for (pX−) and into 1S+2S for (4HeX−)

and (6LiX−) are obtained in the third column. Bracketed quantities refer to the “point”

case. In addition, a critical temperature of bound state formation Trec defined by

Γph(Trec) = H(Trec) is given in the last column.

bound state σ1S
ph

[mb]

σ2S
ph

[mb]

NA〈σrecv〉T 1/2
9

[cm3s−1mol−1]

Trec

[keV]

(pX−) 1870 4380 3980 (1S) 0.6

(4HeX−) 118 294 (278) 7260 (9230) 8.3

(6LiX−) 34 (52) 103 (123) 6640 (25370) 19.0

Since the wavelength of the ionizing radiation (λ = 1/|Eb| on the threshold) is much

larger than the (NX−) dimensions, we can use the electric dipole approximation. The

associated selection rule implies l = 1 for the continuum so that

ψf =
3ie−i(δ1+σ1)

2|p| (ep · er)R|p|1 , (2.27)

and thus (in the dipole approximation)

jfi = − 3i√
16πmred|p|

∫
d3r (ep · er)R|p|1∇R1S/2S . (2.28)

Performing all angular integrations in (2.25) yields for the total photo-dissociation

cross section

σph =
2πZ2α

3mredEγ

[
1√
|p|

∫ ∞

0
dr r2R|p|1

∂

∂r
R1S/2S

]2

. (2.29)

For R|p|1 and R1S/2S we employ our numerically obtained solutions of the previous

section which takes into account the finite charge radius of the nucleus. Note that

on the ionization threshold σph is independent of |p|. For a pure Coulomb field the

momentum dependence cancels analytically when using the leading term in (2.17a). By

the same token, numerically, [. . . ] in (2.29) becomes insensitive to |p|. Thus, we find a

constant cross section for Eγ → |Eb|. In this limit, using detailed balance, the averaged

recombination cross section reads

〈σrecv〉 =
4√
2π

(
Eb

mred

)2√mred

T
σph . (2.30)
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from which Γph is readily obtained by using (2.21)

Γph = 〈σrecv〉
(
mredT

2π

)3/2

e−|Eb|/T . (2.31)

In Table 2.4 we present the results on the threshold photo-dissociation cross sections

σph for transistions from 1S and 2S states for the elements p, 4He, and 6Li and for

mX → ∞. The bracketed values are for a pure Coulomb potential whereas the other

results are obtained by using a Gaussian charge distribution. The respective values do

not differ very much. This is because the decrease of |Eb|(= Eγ) in the denominator

of (2.29) when switching from the “point” to the “gauss” case is counterbalanced by an

increase in the radial integral so that the net effect is small. However, the reduction

of the total (1S+2S) recombination cross section 〈σrecv〉 from the hydrogen-like case is

drastic. This is due to the additional factor of E2
b in (2.30). In the last column we

show the temperature for which Γph(Trec) = H(Trec), i.e., the temperature when the

formation of bound-states can proceed efficiently—provided that Γrec & H and that the

bound state is not destructed by another process.

Finally, we remark that for other (heavier) nuclei than the ones presented in Table 2.4

the discussion of recombination can become more involved. If the light element N pos-

sesses an excited state N∗ with a level splitting smaller than the X− binding energy,

then recombination may also proceed into (N∗X−) opening up the possibility of reso-

nant recombination. This was pointed out in [75] where the formation of (7BeX−) was

considered.

2.4 Nuclear reactions with bound states and their catalysis

After the freeze-out of weak interactions with the cease of n and p interconversion pro-

cesses, light element fusion in SBBN proceeds via inelastic two-body nuclear reactions7

B + C → D + E I

B + C → F + γ II

with B, . . . , F denoting the nuclei of the light elements and the arrow indicating the

forward process, i.e., the exoergic direction with positive Q value. The reverse processes

are typically suppressed by exp (−Q/T ) such as in (2.21) (which is an atomic process.)

Only elements with atomic mass number A ≤ 7 are produced in relevant quantities.
7This does not include “production” processes like that of 7Li via electron capture by 7Be or of 3He

by beta decay of T, both of which, however, only happen at a much later time.
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In presence of bound states of the light elements with X− during BBN the following

additional types of inelastic reactions emerge as particularly prominent,

(BX−) + C → D + E +X− I∗

(BX−) + C → (FX−) + γ II∗

(BX−) + C → F +X− III

(BX−) + C → B + (CX−) IV .

A first observation is that, in presence of bound states, the energy gain of a nuclear

reaction is altered. In the entrance channel, the total available internal energy is reduced

due to the binding of B with X−. Thus, for example, QI∗ = QI − |E(BX−)
b | whereas

additional energy becomes available in the exit channel of II∗ so that QII∗ = QII −
|E(BX−)

b | + |E(FX−)
b |. Since Q values of nuclear reactions are mainly in the MeV to

multi-MeV range, usually three-body break-up reactions I∗ rather than (DX−)+E exit

channels are realized. The shift in energetics can also allow for resonances which are not

possible in SBBN. For example, type II∗ can be realized in resonant capture reactions

whose intermediate excited state (FX−)∗ decays into the (FX−) ground state by γ

emission. If, instead, the nucleus is in an excited state (F ∗X−), then also the F + X−

continuum acts as a concurrent channel—provided that it is kinematically accessible.

The latter is an example of a reaction of type III which is of particular interest since it

has no SBBN counterpart. Atomic reactions IV are called charge exchange reactions.

They are also important to consider because they can significantly affect the relative

concentrations of nuclei bound to X−. They will be discussed in Sec. 2.5.

Reactions of the form (BX−)+(CX−) → . . . are only of secondary importance. Their

efficiency depends on the average relative velocity between (BX−) and (CX−) which

scales as m
−1/2
X . Thus, for weak scale relics, the suppression of the average velocity of

X−-containing bound states relative to the velocity of light nuclei is from one to two

orders of magnitude.

Another observation is that the screening of the charge of B when in bound state

with X− will lead to a modification of the SBBN cross sections with charged“projectiles”

C. It is customary to write the cross sections of charged-particle induced reactions in

the form

σ(Ek) = S(Ek)E
−1
k e−2πη (2.34)

and which defines the astrophysical S-factor. The definition scales out the “geometrical”

cross section πλ2 ∝ E−1
k as well as the Coulomb penetration factor exp (−2πη). Note that

during BBN (T . 0.1 MeV) the thermal energy 〈Ek〉 ∼ T of the reactants is significantly
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smaller than the height of the Coulomb barrier Ec ≃ O (MeV); λ = (mredv)
−1 is the

de Broglie wavelength of the relative motion and η = ZBZCα/v > 0 denotes the earlier

encountered Sommerfeld parameter [below (2.10)]. Using (2.34) the definition of the

thermally averaged cross section (2.19) becomes

〈σrecv〉 =

√
8

πmred
T−3/2

∫ ∞

0
dEk S(Ek) exp

[
−Ek

T
−
(
EG

Ek

)1/2
]
, (2.35)

where EG = 2mred(παZBZC)2 is called the Gamow energy. In absence of resonances

the S-factor is only a slowly varying function of Ek so that the integral is dominated by

the exponential which peaks at E0 = E
1/3
G (T/2)2/3 and which marks the energy range

of most effective nucleosynthesis (Gamow window).

One may then attempt to account for the bound state in the entrance channel by

replacing ZB by ZB − 1 and correcting for the changed kinematics and energetics. In-

deed, such a program has first been carried out in a BBN network calculation in [73].

When studying the effect on the charged particle induced reactions, the authors find no

significant changes in the light element yields at the CMB inferred baryon asymmetry.

Whereas the compactness of the bound states with the heavier of the light elements gives

some justification to this procedure we will see in Sec. 2.5 that, e.g., the large size of the

(pX−) system plays a crucial role in obtaining a consistent picture of BBN.

2.4.1 Catalysis of 6Li production

The potential influence of bound states on the BBN paradigm was already discussed

almost twenty years ago in [76, 77, 78]. However, only recently it has been realized [79]

that the presence of X− at T . 10 keV can lead to a tremendous enhancement of the
6Li output.

In SBBN the freeze-out of 6Li from nucleosynthesis is dominated by its production

via radiative capture and its destruction via proton burning,

4He + D → 6Li + γ Q = 1.47 MeV , (2.36a)

6Li + p → 3He + 4He Q = 4.02 MeV , (2.36b)

respectively. The cross section for the production reaction (2.36a) is very small with

S ∼ 10−8 MeV b [80] at the lowest energies. For example, the S-factor for 3He +
4He → 7Be + γ which is the main source for 7Li at ηb(CMB) reads S(0) = 5.8 ×
10−4 MeV b [81]. The small SBBN output of 6Li is attributed to the inefficiency of
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Figure 2.4: Choosing X−
dec = 4 × 10−4 and τX = 105 s the yields of D, 4He, and

6Li normalized to the proton number density np are shown. For T & 10 keV the light

elements follow their SBBN evolution (the output thereof is produced using the BBN

code [83].) At lower temperatures bound states (4HeX−) can form and catalyzed 6Li

production proceeds via (2.37). The dashed lines show the (4HeX−) and 6Li abun-

dance when the Saha approximation (2.22) is used. The resulting overestimation of 6Li

production illustrates that a full numerical solution of (2.39) is necessary. The CBBN

variation of D and 4He is negligible.

the production process (2.36a).8 In this regard, also note that the destruction reaction

(2.36b) has a large S-factor, S(0) = 2.97 MeV b [80].

Let us briefly outline the evolution of the 6Li abundance in SBBN. Once the tempera-

ture of the primordial plasma drops below T . 0.1 MeV the deuterium bottleneck opens

so that 6Li production can proceed via (2.36a). A sharp drop in D below T . 80 keV is

accompanied by an associated decline in 6Li; see left part of Fig. 2.4. Net production of
6Li via (2.36a) soon freezes out but proton burning (2.36b) continues until ∼ 10 keV.

In the previous section we have seen that once the temperature drops below 8 keV the

photo-dissociation rate of (4HeX−) freezes out. Thus, provided that τX is large enough,

the concentration of (4HeX−) can become substantial and fusion of 6Li is then possible

8This is usually traced back to a weak quadrupole transition (E2) in (2.36a). Theoretical calculations

seem to suggest, however, that at the BBN relevant temperatures (T ≃ 70 keV) the dipole transition

(E1) is as important [82]. Nevertheless, the dipole moment of the 4He–D cluster is almost vanishing due

to a similar charge-to-mass ratio which yields a very small cross section; cf. [79].
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via the alternative path [79]

(4HeX−) + D → 6Li +X− Q ≃ 1.13 MeV (2.37)

and which is a reaction of type III. Whereas the size of the radiative capture cross

section (2.36a) is governed by the selection rules of the electromagnetic transition, (2.37)

suggests a cross section which is determined by the short distance behavior of the 4He–D

cluster. Indeed, the original work [79] estimates SCBBN/SSBBN ∼ 108 which points to a

cross section for (2.37) which is in the ballpark of photonless SBBN reaction rates and

implies the catalysis of 6Li production.

Meanwhile, a dedicated quantum three-body calculation of the 4He+D+X− system

has become available [84] which confirms the catalytic picture. The authors find S(EG) =

0.038 MeVb at the Gamow peak position EG = 36.4 keV. The thermally averaged cross

section reads [84]

NA〈σcat,6Liv〉 = 2.37 × 108 (1 − 0.34T9)T
−2/3
9 exp

(
−5.33T

−1/3
9

)
(2.38)

and is given in the customary units of cm3s−1mol−1; T9 denotes the temperature in units

of 109 K and NA is the Avogadro constant [85].

Since (4HeX−) only forms for T . 10 keV, i.e., at a time when the 4He and D

abundances are essentially frozen out, we can incorporate the effect of catalytic 6Li

production in the following way. At some low temperature T < 20 keV we couple the

SBBN output into the network of Boltzmann equations

−HT d

dT
(4HeX−) = 〈σrec,4Hev〉nb

4HeX− − Γph,4He (4HeX−)

− 〈σcat,6Liv〉nb D (4HeX−) − ΓX (4HeX−) , (2.39a)

−HT d

dT
X− = −〈σrec,4Hev〉nb

4HeX− + Γph,4He (4HeX−)

+ 〈σcat,6Liv〉nb D (4HeX−) − ΓX (4HeX−) , (2.39b)

−HT d

dT
4He = −〈σrec,4Hev〉nb

4HeX− + Γph,4He (4HeX−)

+ ΓX (4HeX−) , (2.39c)

−HT d

dT
6Li = 〈σcat,6Liv〉nb D (4HeX−) − 〈σdes,6Liv〉nb p 6Li , (2.39d)

−HT d

dT
D = −〈σcat,6Liv〉nb D (4HeX−) . (2.39e)

Light elements as well as bound state abundance are normalized to the baryon num-

ber, N ≡ nN/nb, (4HeX−) = n(4HeX−)/nb, and X− ≡ nX−/nb—better overview shall

compensate for the slight abuse of notation.
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The central input parameter for the catalytic production of 6Li (and 9Be, see below)

is the abundance of X− at the time of its recombination with 4He. Above 10 keV, we can

track the resulting (4HeX−) abundance by using the Saha-equation (2.22) since photo-

dissociation and recombination proceeds rapidly. Only at T . 10 keV, (4HeX−) starts

to build up efficiently so that we couple it into the full set of Boltzmann equations (2.39).

We parameterize X− by its abundance prior to decay by introducing X−
dec, where the

superscript “dec” stands for decoupling, and by the X− lifetime τX = Γ−1
X , so that

the (total) X− abundance at any moment during BBN is given by X−(t) = X−
dec ×

exp(−t/τX). The SBBN cross section 〈σdes,6Liv〉 for residual 6Li destruction (2.36b) can

be found in [86]. We solve (2.39) using as initial conditions the SBBN output values of

the computer code [83]: Yp ≡ 4n4He/nb = 0.248, D/H = 2.6×10−5, 6Li/H = 1.14×10−14,

and np/nb = 0.75; furthermore, geff = 3.36 and heff = 3.91.

In Fig. 2.4 we show the evolution of the D, 4He, and 6Li number densities normalized

to np for the exemplary choice X−
dec = 4×10−4 and τX = 105 s. Rapid photo-dissociation

delays bound-state formation of (4HeX−) until T ∼ 10 keV. Once (4HeX−) forms,

catalyzed 6Li production proceeds efficiently via (2.37) which leads to the steep rise of
6Li at T ∼ 10 keV. As can be seen, the D and 4He reservoirs are essentially unaffected

by this. In addition, the dashed lines show the (4HeX−) and 6Li abundances when—

instead of solving (2.39a)—the Saha approximation (2.22) for the bound state fraction

is used. This results in an overestimation of the 6Li output. The reason is that 4He–X−

recombination itself is efficient only for a short period after photo-dissociation freezes

out. Thus, in order to obtain a reasonable estimate on 6Li|CBBN, a numerical solution

of the Boltzmann equations (2.39) is necessary.

2.4.2 Catalysis of 9Be production

Another dramatic catalytic enhancement is seen in the production of 9Be. The yield

of 9Be in SBBN is tiny: Whereas the short lifetime of 8Be [see Sec. 2.2.1] renders the

neutron capture reaction 8Be + n → 9Be + γ inefficient, 9Be production via fusion on

Li isotopes yields no more than 9Be/H < 10−18 at ηb(CMB) [87]. The catalytic path to
9Be is shown by the following sequence [63]

X− → (4HeX−) → (8BeX−) → 9Be (2.40)

which goes through the “double bottleneck” of (4HeX−) and (8BeX−). Bound states

(8BeX−) are formed by the radiative fusion

4He + (4HeX−) → (8BeX−) + γ , (2.41a)
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and the catalysis of 9Be production is triggered by the photonless recoil reaction

(8BeX−) + n→ 9Be +X− . (2.41b)

The respective cross sections for (2.41a) and (2.41b) have been obtained in [63] and read

NA〈σcat,8Bev〉 = 105 T
−3/2
9 [ 0.95 exp (−1.02/T9) + 0.66 exp (−1.32/T9) ], (2.42a)

NA〈σcat,9Bev〉 ≃ 2 × 109, (2.42b)

in units of cm3s−1mol−1. A comment is in order here. Recently, the catalytic path (2.40)

has been questioned in [64]. On theoretical grounds it is argued that the charge radius

of 8Be, 〈r2c 〉
1/2
8Be

= 2.5 fm, adopted in [63] is too small; see Sec. 2.2.1. Since the neu-

tron capture reaction (2.41b) proceeds resonantly via the excited state (9Be1/2+X−) →
9Be3/2− +X−, the larger charge radius 〈r2c 〉

1/2
8Be

= 3.39 fm as proposed in [64] decreases

|E(8BeX−)
b | and shifts the resonance O (100 keV) below threshold. A final answer on the

efficiency of (2.41b) can only be obtained by a full quantum 4He+4He+n+X− four-body

calculation and is announced in [64] as work in progress.

Given the unique sensitivity to physics beyond the Standard Model a primordial

origin of 9Be offers, we choose to incorporate (2.40) into our reaction network. The

following Boltzmann equations describe the production of 9Be,

−HT d

dT
(8BeX−) = 〈σcat,8Bev〉nb

4He (4HeX−) − ΓX (8BeX−) , (2.43a)

−HT d

dT
9Be = 〈σcat,9Bev〉nb n (8BeX−) , (2.43b)

−HT d

dT
n =

1

2
〈σfus,3Hev〉nb D D + 〈σfus,4Hev〉nb D T − 〈σdes,3Hev〉nb n 3He

− 〈σcat,9Bev〉nb n (8BeX−) − Γn n . (2.43c)

Again, as in (2.39), the abundances are normalized to nb and written in an obvious

notation; n ≡ nn/nb. For T < 15 keV, the SBBN neutron abundance can already be

tracked well by including the processes D + D → n + 3He, T + D → n + 3He, and
3He+n → p+T into the reaction network [88]. The respective cross sections 〈σfus,3Hev〉,
〈σfus,4Hev〉, and 〈σdes,3Hev〉 are taken from [86]. Note that at the time of catalyzed 6Li

fusion the D reservoir is essentially unaffected by those residual SBBN reactions so that

we can neglect the back-reaction on (2.39e). The yields of T and 3He are taken from the

output from an updated version of the Kawano code [89]. For the neutron lifetime we

use τn = Γ−1
n = 885.7 s [32].
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Figure 2.5: Evolution of catalyzed 6Li and 9Be production shown together with the

formation of the“bottle-neck”abundances of (4HeX−) and (8BeX−) forX−
dec = 5×10−4

and τX = 5× 103 s. The dashed line gives the neutron abundance while the dotted line

shows the abundance of free X−.

In addition, we supplement the right hand sides of (2.39a), (2.39b), and (2.39c) with

∆
(1)
(4HeX−)

= −〈σcat,8Bev〉nb
4He (4HeX−), (2.44a)

∆
(1)
X− = 〈σcat,9Bev〉nb n (8BeX−), (2.44b)

∆
(1)
4He

= ∆
(1)
(4HeX−)

, (2.44c)

respectively. In our code we can neglect the formation of (8BeX−) that proceeds via

molecular bound states (4HeX−
2 ) [63]. This process becomes important only for a com-

bination of large YX− and large τX , i.e., a parameter region which is already excluded

by 6Li overproduction. Also note that at the time when (8BeX−) form, their photo-

dissociation is not important because of the high binding energy |E(8BeX−)
b | ≃ 1170 keV;

see Table 2.3. It is important to note that we assume the SBBN value for the deuterium

abundance. The early decays of X− may result in an injection of nucleons into the sys-

tem. This typically drives the deuterium abundance upward, resulting in an enhanced

number of neutrons at later times and therefore in an increased output of 9Be, with the

general scaling 9Be ∼ const× (D/DSBBN)2. We choose to disregard this effect, noting its

model-dependent character. We are allowed to do so since its inclusion can only make
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the 9Be-derived bound on the X− abundance stronger.

Figure 2.5 shows the evolution of catalyzed 6Li and 9Be production from the solution

of the corresponding set of Boltzmann equations below T = 10 keV. The curves in

Fig. 2.5 are based on the values X−
dec = 5 × 10−4 and τX = 5 × 103 s. When the

“bottle-neck” abundances of (4HeX−) and (8BeX−) form, the catalytic paths (2.37) and

(2.40) to 6Li and 9Be open up, resulting in the asymptotic values 9Be/H ≃ 10−13 and
6Li/H ≃ 3×10−11. The dashed line shows the neutron abundance and the dotted line the

free X− abundance, which is dominated by its exponential decay. We remark in passing

that residual recombinations of 4He with X− lead to the crossing of the (4HeX−) and

X−
free lines at late time.

2.5 Charge exchange reactions and late time catalysis

In this Section we discuss the role of bound states of X− with protons. The (pX−)

system may have a large impact on the BBN predictions because (i) the proton as a

recombination partner is the most abundant element and (ii) it is a neutral system. As

can be seen from Table 2.4, the recombination of (pX−) bound states becomes efficient

only after the temperature drops below 1 keV which corresponds to a cosmic time of

t & 106 s. Thus, the question arises [76, 73, 90] whether a revival of fusion reactions, i.e.,

a late-time catalysis, can be triggered by the (potential) high reactivity of “neutron-like”

bound states (pX−).

As we will see in Sec. 2.6 the presence of even a modest number density of X− during

the recombination with helium can lead to a production of 6Li and 9Be at levels which

are in stark conflict with their observationally inferred primordial values. In [90] it was

claimed that large fractions of the previously synthesized 6Li at T ≃ 8 keV can indeed

be reprocessed by (pX−) via9

(pX−) + 6Li → 4He + 3He +X− (2.45)

Thus, it was advocated that allowed “islands” reconcilable with observations may well

exist in the X− abundance/lifetime parameter space for τX− & 106 s.

In the following we shall argue that this is not the case. One reason is that any

arising (pX−) abundance is immediately intercepted by the very efficient charge exchange

reaction [76]

(pX−) + 4He → (4HeX−) + p. (2.46)

9At the time of publication of [90] the catalysis of 9Be production [63] had not yet been realized.
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Figure 2.6: Potential energy of the proton in the field of X− at r = 0 and an incoming

nucleus at r = −Rc. The potential energy is plotted along the line connecting X−

with 4He (solid line) or 6Li (dashed line), respectively. As the distance between the

incoming nucleus and X− decreases, the potential well becomes more narrow, and

the proton ground state energy level is pushed upward. The critical deconfinement

distance R
4He,6Li
c is defined as the distance at which the energy of the bound state

found variationally becomes larger than the height of the barrier Vmax to the right

of X−.

This reaction may have a very large rate as its cross section is determined by the actual

size of the (pX−) bound state that is of the order of ab ≃ 30 fm (〈r2〉1/2 = 50 fm).

The charge exchange (2.46) can best be understood by employing a semi-classical

picture. Calling R the separation between 4He and X− (or, more generally, the sepa-

ration between X− and the incoming nucleus of charge Z), the one-dimensional slice of

the proton potential energy in the field of X− and 4He is given by,

V (r) = −α
r

+
αZ

|r − R| , (2.47)

and is plotted in Fig. 2.6. The limit of R → ∞ corresponds to an unperturbed binding

of the proton to X− with a binding energy of Eb = −25 keV. For Z > 1 and finite R,

the curve has a maximum at positive values of r referred to as Vmax. As the 4He nucleus

comes closer, R decreases. At some point, the binding energy of the proton becomes
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Table 2.5: Deconfining distances Rc and charge exchange reaction cross sections on

the (pX−) target for incoming nuclei with different charges Z.

Z = 1 Z = 2 Z = 3 Z = 4

Rc [fm] 40 95 135 160

σ = πR2
c [b] 51 280 580 850

positive so that the tunneling of the proton to r → +∞ starts to become viable. For

even smaller values of R, one can find the distance Rc at which the probability for the

deconfinement of the proton approaches unity due to the fly-by of the 4He nucleus. In

order to estimate Rc, we employ the variational calculation of the proton energy in the

potential (2.47) by using the (unnormalized) trial wave function for the ground state,

ψ(µ, ν) = exp[−(µ− ν)R/(2aab)] (1 + νR/bab)
2, (2.48)

where µ and ν are elliptic coordinates and a and b the minimization parameters. The

coordinates are defined as µ = (r1 + r2)/R and ν = (r1 − r2)/R, where r1 and r2 are

the proton–nucleus and proton–X− distances, respectively. We calculate the energy of

the ground state Evar
b as a function of the distance R. This yields the critical separation

Rc, i.e., the distance at which Evar
b (Rc) = Vmax, and which describes the situation when

even a metastable bound state simply cannot exist.

The cross section for the charge exchange reaction may then be approximated by

the geometric one with the impact parameter ρ = Rc, σ = πR2
c . The deconfining

distances Rc together with the estimated cross sections for charge exchange are presented

in Table 2.5. The associated thermally averaged cross sections are given by 〈σexv〉 =

σex〈v〉 = σex

√
8T/(πmred) and are listed in the Table 2.6 found at the end of this

Chapter. As can be seen from Table 2.5, a 4He–X− distance of ∼ 95 fm is sufficient to

release the proton from the bound state. Consequently, the estimate points to a very

large cross section of almost 300 bn for the charge exchange reaction (2.46).

For the charge exchange on 4He [Eq. (2.46)] an exact solution of the three-body Schrö-

dinger equation has recently become available [64]. The authors confirm the efficiency

of the charge exchange and find

NA〈σex,4Hev〉 = 1.0 × 1010 cm3s−1mol−1. (2.49)

This compares well with the estimate ∼ 4 × 109 cm3s−1mol−1 obtained from the semi-
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classical picture when evaluated at the fiducial temperature of 1 keV.10 Note that the

charge exchange will mainly proceed into the n = 3 level—preferentially with highest l

(largest number of states); cf. Table 2.2. Capture into highly excited orbits is indeed

observed in charge exchange reactions of muons on hydrogen which gives justification to

the employed semi-classical approach. Reference [90] finds for the charge exchange on
4He a rate (per particle pair) of ∼ 2× 107 cm3s−1mol−1 which is an underestimation by

two to three orders of magnitude.

We incorporate the charge exchange reaction on 4He in the network of Boltzmann

equations by solving

−HT d

dT
(pX−) = 〈σrec,pv〉nb pX− − Γph,p (pX−)

− 〈σex,4Hev〉nb
4He (pX−) − ΓX (pX−) (2.50)

for the (pX−) abundance. The back-reaction on free protons is negligible so that we

refrain here from writing an equation for p. However, we need to supplement the right

hand sides of (2.39a), (2.39b), and (2.39c) by

∆
(2)
(4HeX−)

= 〈σex,4Hev〉nb
4He (pX−), (2.51a)

∆
(2)
X− = −〈σrec,pv〉nb pX− + Γph,p (pX−), (2.51b)

∆
(2)
4He

= −∆
(2)
(4HeX−)

, (2.51c)

respectively. Using the recent result (2.49) for the charge exchange cross section, we

find that in the limit of infinite lifetimes, τX− → ∞, the abundance of (pX−) reaches

its peak at around T = 0.7 keV. Its maximum abundance at these temperatures can be

well approximated as

nmax
(pX−)

np
≃ 1.7 × 10−7

(
X−

10−2

)
, (2.52)

where the assumption X− . 4He has been made [see Sec. 1.3] ensuring the linear scaling

in (2.52).11 That such a small (pX−) fraction only has a marginal impact on 6Li can be

seen by comparing the destruction rate for (2.45) [64]

NA〈σcat,des,6Liv〉 = 1.6 × 108 cm3s−1mol−1 (2.53)

10The different scaling T−1/2 of the averaged cross sections obtained in the semi-classical approach

stems from the fact that their energy dependence has not been resolved; cf. [64].
11Using instead of (2.49) the cross section 〈σex,4Hev〉 inferred from Table 2.5 yields the coeffi-

cient 4 × 10−7 in Eq. (2.52); see [4].
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to the Hubble rate at the relevant temperature of T = 0.7 keV. Using X− = 0.01 we

find

〈σcat,des,6Liv〉nmax
(pX−)

H

∣∣∣∣∣
T=0.7 keV

≃ 10−3 (2.54)

which tells us that the whole issue of (pX−) mediated destruction of 6Li (and accordingly

of 9Be) is irrelevant so that the abundances of 6Li and 9Be fused at T ≃ 8 keV remain

unaffected at T ≃ 1 keV.12

We can further employ the results summarized in Table 2.5. A successive chain

of charge exchange reactions with (pX−) can lead to molecular states that are finally

destroyed in nuclear reactions with protons. In particular, (6LiX−
3 ) has a chance for a

nuclear interaction with protons or helium unsuppressed by a residual Coulomb barrier

since it is a very compact object. We can solve for those molecular bound states by

extending our network of Boltzmann equations for T smaller than a few keV with

−HT d

dT
(6LiX−) = 〈σex,6Liv〉nb (pX−) 6Li − ΓX (6LiX−)

− 〈σex,(6LiX−)v〉nb (pX−) (6LiX−), (2.55a)

−HT d

dT
(6LiX−

2 ) = 〈σex,(6LiX−)v〉nb (pX−) (6LiX−) − 2 ΓX (6LiX−
2 )

− 〈σex,(6LiX−
2 )v〉nb (pX−) (6LiX−

2 ), (2.55b)

−HT d

dT
(6LiX−

3 ) = 〈σex,(6LiX−
2 )v〉nb (pX−) (6LiX−

2 ) − 3 ΓX (6LiX−
3 ) (2.55c)

and supplement the right hand sides of Eq. (2.50) with

∆
(1)
(pX−)

= −〈σex,6Liv〉nb (pX−) 6Li,−〈σex,(6LiX−)v〉nb (pX−) (6LiX−)

− 〈σex,(6LiX−
2 )v〉nb (pX−) (6LiX−

2 ), (2.56a)

∆
(1)
6Li

= −〈σex,6Liv〉nb (pX−) 6Li + ΓX

[
(6LiX−) + 2(6LiX−

2 ) + 3(6LiX−
3 )
]

(2.56b)

A similar chain exists for 9Be where the sequence of the charge exchange reactions can

proceed until (9BeX−
4 ). It is important to note that the efficiency of this chain reaction

depends very sensitively on the concentration of the (pX−) bound states and on the

mass of the X− particle. The latter enters through the average relative velocity of two

heavy objects, e.g., (pX−) and (6LiX−), which in turn scales as m
−1/2
X− . Therefore, in

the limit of an infinitely heavy X−, the chain will be cut off right at the first step,

terminating at (6LiX−). Also note that in (2.56b) we have made the assumption that

12The same conclusion—prior to the publication of [64]—has already been reached in [4] by assigning

the maximal possible rate for the destruction process (2.45) which is given by the unitarity bound.
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Figure 2.7: Evolution of primordial abundances as a function of time (or temperature

T9) from the inputX− = 0.01, mX− = 100 GeV, and τX− → ∞. The (pX−) abundance

reaches its maximum of ∼ 1.7 × 10−7 at T ≃ 0.7 keV. Around the same temperatures,

the abundance of unbounded CHAMPs, X−
free, starts to decline more rapidly since it is

removed by the recombination with p followed by the charge exchange reaction on 4He.

6Li is not destroyed by the decay of X−. Clearly some of the recoiling 6Li nuclei will be

destroyed when released from the bound state. For the case of (7BeX−) this has been

investigated in [75] where it was found that no significant depletion of 7Be takes place.

On those grounds and noting that only a small fraction of 6Li is locked in bound states

with X− it is safe for us to disregard this effect.

We run the full set of Boltzmann equations to determine the residual concentrations

of (pX−) and of the molecular bound states of 6Li with X−. The results are plotted in

Fig. 2.7. As one can see, an initial concentration of per nucleon of X− = 10−2 results in

a (pX−) abundance that never exceeds the maximum (2.52), leading to a progressively

diminishing number of molecular states.

We remark that for the computation of Fig. 2.7 we have not included (6LiX−) forma-

tion via radiative recombination 6Li+X− → (6LiX−)+γ. This process is not important

for the present discussion because it does not affect (2.52); (pX−) is dominantly removed

by charge exchange on 4He. We have checked this by including the recombination pro-

cess into our reaction network; cf. Table 2.4. Whereas (6LiX−) would form around
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the same time as (4HeX−) it is important to note that (6LiX−) is also destroyed via

(6LiX−) + p → 4He + 3He +X− hindering its formation; the corresponding cross section

is given in [64] and in Table 2.6 with the name 〈σcat,des2,6Liv〉. Even with X−
dec = 0.01

we find that the final (6LiX−) output is one order of magnitude below unbounded 6Li

and (2.52) remains unchanged. By the same token, we find that the destruction process

only has a minor impact on the total 6Li abundance (below 10%). For smaller values of

X−
dec the effect is accordingly weaker.

To conclude this section, neither lithium nor beryllium synthesized in CBBN processes

at 8 keV would be affected in any significant way by the subsequent generation of (pX−)

bound states. Thus—as we will show later—the part of the parameter space with a

typical freeze-out X− abundance and a long X− lifetime will be confidently ruled out.

2.5.1 Relaxation after charge exchange

Above we have stated that the charge exchange on 4He will mainly proceed into excited

states of (4HeX−). Though we have already shown that (pX−) bound states do not reach

an abundance level where late-time catalysis plays a role it is nevertheless amusing to

see whether (pX−) receives further depletion by the energetic photons released from

relaxation of 4He from its excited states n = 3 into the (4HeX−) ground state. Upon

transition into the ground state Ein
γ ∼ 300 keV will be injected into the plasma in form

of photons. This happens predominantly at Tex ≃ 0.7 keV and the photons loose their

ability to break up (pX−) once they are degraded below Eout
γ ≃ 25 keV.

The rate for photon-photon scattering with γbg—scaling with E3
γ [91]—is rapidly

becoming inefficient for Eγ = O (100 keV) at the relevant temperature so that we can

neglect this photon-multiplying process. Thus, the photons loose their energy mainly

by Compton scattering on background electrons. In the low-energy limit of Thomson

scattering the mean lifetime of a photon before scattering is

τγ =
1

ne−σT

∣∣∣∣
Tex

∼ 10 s with σT =
8πα2

3m2
e

, (2.57)

where we have used ne− = 7/8 ηbnγ ; see (1.45).

Since the energy loss of γ particles in Compton scattering is very small, we can write

a differential equation for the systematic energy transfer to the electrons

dEγ

dt
= 〈σ∆Eγ〉ne− . (2.58)

Note that we have neglected a term HEγ which would account for the expansion of the

Universe. We can do so since τγ ≪ H(Tex)
−1 ≃ 5 × 106 s. The average energy loss per
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scattering is given by

〈σ∆Eγ〉 =

∫
∆Eγ

dσ

dΩ
dΩ . (2.59)

At Tex the rest frame of the electrons essentially coincides with the frame of the thermal

bath. Then dσ/dΩ is given by the Klein-Nishina formula [92]

dσ

dΩ
=

α2

2m2
e

(
E′

γ

Eγ

)2(
Eγ

E′
γ

+
E′

γ

Eγ
− sin2 θ

)
(2.60)

with

E′
γ

Eγ
=

1

1 + (Eγ/me)(1 − cos θ)
. (2.61)

From (2.59) together with ∆Eγ = E′
γ − Eγ and Eγ ≪ me it then follows that

〈σ∆Eγ〉 ≃ −σT

E2
γ

me
. (2.62)

Since the mean lifetime of the photon against Compton scattering is much shorter

compared to the Hubble time we can integrate (2.59) from Ein
γ to Eout

γ by neglecting

any associated drop in temperature of the plasma. This defines a typical escape time

τesc, i.e. a thermalization time-scale upon which the photon looses its ability to ionize

(pX−). We find

τesc =
8me

7σTηbnγ(Tex)

[
1

Eout
γ

− 1

Ein
γ

]
≃ 160 s. (2.63)

This has to be compared with the mean lifetime of an energetic photon against

ionization of (pX−),

τph =
1

n(pX−)σph

∣∣∣∣∣
Tex

∼ 107 s (2.64)

and which is of the order of the Hubble time; In the last step we have used n(pX−) =

nmax
(pX−) as given in (2.52) with X− = 0.01. The photo-dissociation cross section has been

obtained in Sec. 2.3.1; see Table 2.4. This tells us that the thermalization of the injected

photon happens very rapidly so that those photons released in the relaxation process

after charge exchange are not capable of depleting (pX−) any further.13

13The numerical values of the various times-scales sensitively depend on the exact value of fiducial

temperature Tex chosen. However, the argument is not affected by that.
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2.6 Constraints on the X− lifetime and abundance

In order to constrain the (τX ,YX−) parameter space from the catalytic path (2.40)

to 9Be [63], we need to set an upper limit on its primordial abundance from existing

observations. It is generally accepted that the galactic evolution of the abundances of Be,

along with Li and B, are dominated by cosmic-ray nucleosynthesis. While Be is burned

rapidly in stellar centers, it is produced in cosmic rays by the spallation reactions of

fast protons and α particles hitting ambient CNO nuclei [93, 94]. As a consequence, the

abundances of Be and O are linked, leading to a secondary scaling, Be ∝ O2 [95]. On the

other hand, inverse spallation reactions of CNO nuclei, both produced and accelerated

in supernovae, will give a Be yield that is essentially independent of the metallicity of

the interstellar medium. Such primary processes, leading to Be ∝ O, are expected to

play a major role during the early galactic epochs [96].

The produced Be is subsequently supplemented in the outer layers of stars. Thus,

old stars which are far from the galactic center (and thereby less affected by the galactic

chemical evolution) bear the potential to encode any pre-galactic origin of Be. Indeed,

Be has been observed in a number of Population II halo stars at very low metallici-

ties [Fe/H] . −2.5. Particularly noteworthy is the detection in the star G 64–12 at

[Fe/H] ≃ −3.3 [97]. The star’s high Be value of log10(Be/H) ≃ −13.05 might sug-

gest a possible flattening in the Be trend during the early evolutionary phases of our

galaxy [97]. Whether this really points to a primordial plateau or whether this indicates

a Be dispersion at lowest metallicities [98] is not clear at present.

Figure 2.8a shows the original Be detection in the star G 64–1214 (filled dot) along

with a subset of data points taken from Fig. 3a of Ref. [97]. The data of Fig. 2.8b

are taken from Fig. 6b of the recent work [99] which also uses [O/H] as a metallicity

tracer. The latter paper discusses the implications of a new temperature scale on the

abundances of Li, Be, and B. In principle, different assumed physical parameters which

characterize the stellar atmosphere may result in large systematic shifts of the inferred

abundances. In this regard, it is important to note that Be is not overly sensitive to

the assumed surface temperature of the halo dwarfs [99]. In the following we thus shall

take a pragmatic approach: In both Fig. 2.8a and Fig. 2.8b, we obtain the least squares

weighted mean (dashed lines) for a representative sample of stars at lowest metallicities.

From the variance of the fit, we can extract a nominal 3σ upper limit (solid lines) on

14For consistency with the rest of the data points, the 1D LTE value has been plotted in Fig. 3a of

the original reference [97].
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Figure 2.8: Observations of Be in Pop II halo stars. In the left panel (a), the data is

taken from Fig. 3a of Ref. [97] and is plotted as a function of [Fe/H]. The right panel (b)

shows the data from Fig. 6b of Ref. [99] where [O/H] provides the metallicity indicator.

The filled dots depict the data points associated with the star G 64–12. The solid lines

give the inferred nominal upper limits on 9Be from the weighted mean (dashed lines)

of a sample of stars at lowest metallicity. Also shown in Fig. 2.8b is a fit of a primary

scaling of Be; see main text.

primordial 9Be. From Fig. 2.8b, we find

log10 Be/H|high = −12.68 ⇒ 9Be/H ≤ 2.1 × 10−13 . (2.65)

Conversely, Fig. 2.8a yields 9Be/H . 10−13 while fitting only the last two data points

with [O/H] < −1.3 in Fig. 2.8b would give 9Be/H . 1.3 × 10−13. In our context,

those values are less conservative so that we use (2.65) in the following. In Fig. 2.8b

we have additionally fitted for a primordial component, 9Be/H|p, in combination with a

primary scaling, 9Be/H = κ (O/H)
/
(O/H)⊙. It seems, however, that a purely primary

mechanism with κ ≃ 2.9 × 10−12 fits the data best since 9Be/H|p comes out negligibly

small.15 Finally, we are aware that neither of the fitted mean values in Fig. 2.8 is very

good in terms of χ2. However, a firm conjecture of a Be plateau is not the purpose of

this work, and indeed (2.65) does provide a sufficiently conservative limit to work with.

We can now confront the constraint (2.65) as well (1.6) with the CBBN yield of 9Be

and 6Li obtained by solving the associated Boltzmann equations presented in Sec. 2.4

for a wide variety of (τX ,X−
dec) combinations. In Fig. 2.9 we obtain exclusion boundaries

from catalyzed 9Be and 6Li production in the (τX ,X−
dec) parameter space. For conve-

15For a proper comparison between different assumed surface temperature scales and corresponding

fits of primary versus secondary scaling, see Ref. [99].
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Figure 2.9: Contour plot of CBBN abundance yields of 6Li and 9Be in the (τX ,X
−
dec)

plane. The solid line shows the limit (2.65). The region above this line is excluded by
9Be overproduction. The lower (upper) boundary of the band corresponds to 6Li/H =

10−11 (10−10). The y-axis on the right-hand side indicates the X− number density

ndec
X− normalized to the entropy density, Y dec

X− . The cross shows the parameter point

considered in Fig. 2.5.

nience of the reader, the X− number density ndec
X− normalized to the entropy density,

Y dec
X− , is given on the y-axis on the right-hand side. Above the solid line, 9Be is in excess

with respect to (2.65) and thus excluded. The shown band reflects the uncertainties in

the observational determination of 6Li. On the lower border, 6Li/H = 10−11 is fulfilled

while 6Li/H = 10−10 holds on the upper border of the band. The cross indicates the

exemplary parameter point considered in Fig. 2.5. At large lifetimes, the linear scal-

ing of 6Li with X− can easily be seen from the boundaries of the band. Note that we

find 9Be/6Li in the interval between 10−3 and 10−2, whenever CBBN is efficient, which

confirms the observation already made in Ref. [63].
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Table 2.6: Here we collect the key CBBN cross sections, i.e., the reaction rates per

particle pair, NA〈σv〉, used in the numerical solutions of the Boltzmann equations.

They are given in units of cm3s−1mol−1 and T9 = T/109 K. The photo-dissociation

cross sections 〈σphv〉 are related to the rates Γph via Γph = nγ〈σphv〉.

process name rate [cm3s−1mol−1]

Recombination and photo-dissociation:

p+X− → (pX−) + γ 〈σrec,pv〉 3980 T
−1/2
9

(pX−) + γbg → p+X− 〈σph,pv〉 1.18 × 109 T−2
9 exp (−0.29/T9)

4He +X− → (4HeX−) + γ 〈σrec,4Hev〉† 7900 T
−1/2
9

(4HeX−) + γbg → 4He +X− 〈σph,4Hev〉† 1.85 × 1010 T−2
9 exp (−4.03/T9)

6Li +X− → (6LiX−) + γ 〈σrec,6Liv〉 6640 T
−1/2
9

(6LiX−) + γbg → 6Li +X− 〈σph,6Liv〉 2.87 × 1010 T−2
9 exp (−9.25/T9)

Charge exchange:

(pX−) + 4He → (4HeX−) + p 〈σex,4Hev〉 1.0 × 1010 [64]

3.9 × 1010 T
1/2
9

(pX−) + 6Li → (6LiX−) + p 〈σex,6Liv〉 6.45 × 1010 T
1/2
9

(pX−) + (6LiX−) → (6LiX−
2 ) + p 〈σex,(6LiX−)v〉 3.37 × 109 T

1/2
9 (1 TeV/mX−)1/2

(pX−) + (6LiX−
2 ) → (6LiX−

3 ) + p 〈σex,(6LiX−
2 )v〉 5.25 × 108 T

1/2
9 (1 TeV/mX−)1/2

6Li destruction (from [64]):

(pX−) + 6Li → 4He + 3He +X− 〈σcat,des,6Liv〉 1.6 × 108

(6LiX−) + p → 4He + 3He +X− 〈σcat,des2,6Liv〉 2.6 × 1010 T
−2/3
9 exp (−6.74T

−1/3
9 )

6Li and 9Be catalysis (from [84] and [63]):

(4HeX−) + D → 6Li +X− 〈σcat,6Liv〉 2.37 × 108 (1 − 0.34T9)T
−2/3
9

× exp (−5.33T
−1/3
9 )

4He + (4HeX−) → (8BeX−) + γ 〈σcat,8Bev〉 105 T
−3/2
9 [ 0.95 exp (−1.02/T9)

+0.66 exp (−1.32/T9) ]

(8BeX−) + n→ 9Be +X− 〈σcat,9Bev〉 2 × 109

† For consistency, the rates employed for (4HeX−) match the ones from [4]. From our numerical

evaluation [Table 2.4] the respective coefficients for 〈σrec,4Hev〉 and 〈σph,4Hev〉 read 7260 and 1.70×1010.



Part II

The gravitino-stau scenario

61





Chapter 3

Gravitinos as a probe for the

earliest epochs

3.1 The gravitino-stau scenario

In the first part of this thesis we have discussed the implications of a generic electro-

magnetically charged massive particle species X± if it is present in the early Universe

during/after the era of BBN (t & 1 s). If X is a weak scale thermal relic, it freezes out

from the primordial plasma at cosmic times t . 10−7 s so that the question of the origin

of its longevity arises.

Long-lived charged particles can naturally emerge in supersymmetric (SUSY) ex-

tensions of the Standard Model. In scenarios in which the gravitino G̃ is the lightest

supersymmetric particle (LSP), a long-lived X± may be realized if the lighter stau τ̃1 is

the next-to-lightest SUSY particle (NLSP). Assuming conserved R-parity in this work

the stau NLSP will be typically long-lived because it can only decay into the G̃ LSP with

Planck-scale suppressed couplings. Conserved R-parity also implies that the gravitino is

stable which makes it a promising dark matter candidate.1

In this part of the thesis we consider gravitino dark matter scenarios in which the

τ̃1 is the NLSP. In the present chapter we briefly introduce the gravitino and discuss

immanent cosmological implications which are independent of the nature of the NLSP.

In the next chapter we then work out the phenomenology of the gravitino-stau scenario.

1The gravitino can also be dark matter if R-parity is broken as long as it is ensured that the G̃-lifetime

is of the order of the age of the Universe; see, e.g., [100, 101, 102, 103] and references therein.
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3.2 Supergravity and basic properties of the gravitino

In ordinary gauge theories the generators of the of the Poincaré algebra commute with the

generators of the internal (local) symmetry such as, e.g., color SU(3)c in the Standard

Model. Indeed, it was shown [104] that any such extension of the Poincaré algebra

in a four-dimensional quantum field theory (with non-zero scattering amplitudes) is

necessarily trivial in the sense that both algebras decouple.

Supersymmetry, however, is an extension of the space-time symmetry which relates

fermionic and bosonic degrees of freedom. The associated particles form a supermultiplet.

The spinorial supersymmetry generator Q obeys anti -commutation relations and the

(simplest) supersymmetry algebra reads2

{Qα, Qβ} = 2γµ
αβPµ, (3.1a)

{Qα, Qβ} = {Qα, Qβ} = 0, (3.1b)

[Pµ, Qα] = [Pµ, Qβ ] = 0, [Pµ, Pν ] = 0. (3.1c)

Note that (3.1a) relates Q with the Poincaré algebra; Pµ generates translations. There-

fore, local supersymmetry implies local Poincaré symmetry, i.e., invariance under general

coordinate transformations. This is exactly what we expect from a theory of gravity so

that local supersymmetry is also referred to as supergravity. The gauge field of super-

gravity is the gravitino. It is a spin-3/2 Majorana particle and can be written as a

vector-spinor ψµ.

Particles within the same supermultiplet are degenerate in mass because [P 2, Qα] = 0.

Since we do not yet have experimental evidence for supersymmetry, we know that it has

to be a broken symmetry if realized in nature. Local supersymmetry offers the appealing

possibility to be broken spontaneously with a super-Higgs mechanism operating. The

Goldstone fermion of supersymmetry breaking is absorbed by G̃ which thereby acquires

its longitudinal, helicity ±1/2 degrees of freedom. After supersymmetry breaking the

gravitino has mass m
G̃
. Depending on the underlying breaking mechanism, m

G̃
can

range from the eV scale up to scales beyond the TeV region [106].

The phenomenology of the massive gravitino is then governed by the following La-

grangian

L = −1

2
εµνρσψµγ5γν∂ρψσ − 1

4
m

G̃
ψµ[γµ, γν ]ψν + Lint. (3.2)

The first two terms describe a free massive spin-3/2 field [107] from which it can be

shown that the free gravitino field satisfies the Dirac equation (i/∂−m
G̃
)ψµ = 0 for each

2We follow the conventions used in [105]; [ · , · ] and {· , ·} denote the commutator and anti-commutator,

respectively.
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component µ and is subject to the constraints γµψµ = 0 and ∂µψµ = 0. The interaction

Lagrangian reads3

Lint = − i√
2MP

[
(Dµφ

∗i)ψνγ
µγνχi

L − (Dµφ
i)χi

Lγ
νγµψν

]

− i

8MP
ψµ[γρ, γσ]γµλ(α)aF (α)a

ρσ + O
(
M−2

P

)
. (3.3)

Focusing on a minimal particle content in the observable sector, the fields φ, χL, and λ

denote the gauge eigenstates of the scalars, chiral fermions, and gauginos of the MSSM;

F
(α)a
ρσ is the field strength tensor of the gauge group (α) = (SU(3)c,SU(2)L,U(1)Y) with

index a of the associated adjoint representation and Dµ denotes the gauge-covariant

derivative. All matter fields are written in terms of left-handed four-spinors χL since

they stem from left-chiral supermultiplets in the general supergravity Lagrangian [109].

For example, a right handed tau lepton τ−R is written in terms of its charge conjugate

(τ−R )c which is a left-handed spinor. Analogously the superpartner of τ−R is written in

(3.3) as (τ̃R)∗. Details aside, most important is the fact that the interactions of the

gravitino to the MSSM fields are fixed by the (super)symmetry and are suppressed by

inverse powers of MP which makes G̃ an extremely weekly interacting particle.4

Being the gauge field of supergravity, the gravitino sits at the heart of any locally

supersymmetric theory. Despite its extremely weak interaction gravitinos can be effi-

ciently produced in the early Universe. In the next section we discuss the case of thermal

gravitino production—a guaranteed source of potential relic gravitinos.

3.3 Thermal gravitino production and reheating

The observed flatness, isotropy, and homogeneity of the Universe suggest that its earliest

moments were governed by inflation [111, 112]. The inflationary expansion is followed by

a phase in which the Universe is reheated. The reheating process repopulates the Uni-

verse and provides the initial conditions for the subsequent radiation-dominated epoch.

The reheating temperature TR can be viewed as the initial temperature of this early

radiation-dominated epoch of our Universe.

The value of TR is an important prediction of inflation models. While we do not have

evidence for temperatures of the Universe higher than O(1 MeV) (i.e., the temperature

required by primordial nucleosynthesis), inflation models can point to TR well above

3For an explicit “derivation” of Lint from the general supergravity Lagrangian see [108].
4Couplings of a very light gravitino can be enhanced due to its longitudinal (goldstino) modes [110]—a

remnant of the super-Higgs mechanism.
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Table 3.1: The gauge couplings gi and the constants ci, ki, yi, and β
(1)
i associated

with the gauge groups U(1)Y, SU(2)L, and SU(3)c.

gauge group i gi ci ki (yi/10−12) β
(1)
i

U(1)Y 1 g′ 11 1.266 0.653 11

SU(2)L 2 g 27 1.312 1.604 1

SU(3)c 3 gs 72 1.271 4.276 -3

1010 GeV [112, 113]. While any initial population of gravitinos must be diluted away by

the exponential expansion during inflation [114], gravitinos are regenerated in scattering

processes of particles that are in thermal equilibrium with the hot primordial plasma.

The efficiency of this thermal production of gravitinos during the radiation-dominated

epoch is sensitive to TR [115, 116, 117, 118, 108, 119, 120].

Gravitinos withm
G̃

& 1 GeV have decoupling temperatures of T G̃
f & 1014 GeV, as will

be shown below. We consider thermal gravitino production in the radiation-dominated

epoch starting at TR < T G̃
f assuming that inflation has diluted away any initial gravitino

population.5 For TR < T G̃
f , gravitinos are not in thermal equilibrium with the post-

inflationary plasma. Accordingly, the evolution of the gravitino number density n
G̃

with

cosmic time t is described by the following Boltzmann equation [108, 119]

dn
G̃

dt
+ 3Hn

G̃
= C

G̃
(3.4)

C
G̃

=

3∑

i=1

3ζ(3)T 6

16π3M2
P

(
1 +

M2
i

3m2
G̃

)
ci g

2
i ln

(
ki

gi

)
(3.5)

The collision term C
G̃

involves the gaugino mass parameters Mi, the gauge couplings gi,

and the constants ci and ki associated with the gauge groups U(1)Y, SU(2)L, and SU(3)c

as given in Table 3.1. In expression (3.5) the temperature T provides the scale for the

evaluation of Mi and gi. The given collision term is valid for temperatures sufficiently

below the gravitino decoupling temperature, where gravitino disappearance processes

can be neglected. A primordial plasma with the particle content of the MSSM in the

high-temperature limit is used in the derivation of (3.5).

The collision term (3.5) results from a consistent gauge-invariant finite-temperature

5In this work, we neglect gravitino production in inflaton-decays, cf., e.g., [121, 122, 123] and references

therein. Though this non-thermal source can give a sizable contribution it is model-dependent and

typically small when considering high reheating temperatures with the associated gravitino yield scaling

as T−1
R [123].
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Figure 3.1: The thermally produced gravitino yield (3.6) as a function of TR for

mG̃ = 10 MeV, 100 MeV, 1 GeV, 10 GeV, 100 GeV, and 1 TeV (from left to right) and

M1,2,3(MGUT) = m1/2 = 500 GeV. The dashed horizontal line indicates the equilibrium

yield of a relativistic spin 1/2 Majorana fermion.

calculation [108, 119] following the approach used in Ref. [118]. Thus, in contrast to

the previous estimates in [115, 116], the expression for C
G̃

is independent of arbitrary

cutoffs. Note that the field-theoretical methods of [124, 125] applied in its derivation

require weak couplings, gi ≪ 1, and thus high temperatures T ≫ 106 GeV.6 Thus, in the

following we focus on cosmological scenarios with TR & 106 GeV which is also the most

attractive temperature range, e.g., for baryogenesis scenarios based on leptogenesis.

Assuming conservation of entropy per comoving volume, the Boltzmann equation (3.4)

can be solved to good approximation analytically [118, 126]. At a temperature Tlow ≪
TR, the resulting gravitino yield from thermal production reads

Y TP
G̃

(Tlow) ≡
nTP

G̃
(Tlow)

s(Tlow)
≃

C
G̃
(TR)

s(TR)H(TR)

=
3∑

i=1

yi g
2
i (TR)

(
1 +

M2
i (TR)

3m2
G̃

)
ln

(
ki

gi(TR)

)(
TR

1010 GeV

)
, (3.6)

where the constants yi are given in Table 3.1. These constants are obtained with an

effective number of relativistic degrees of freedom of geff(TR) = heff(TR) = 228.75 which
6For an alternative approach see [120].
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follows from the fact that the entire MSSM particle content is in thermal equilibrium

and relativistic. We evaluate gi(TR) and Mi(TR) using the one-loop evolution described

by the renormalization group equation in the MSSM [106]:

gi(T ) =

[
g−2
i (MZ) − β

(1)
i

8π2
ln

(
T

MZ

)]−1/2

, (3.7)

Mi(T ) =

(
gi(T )

gi(MGUT)

)2

Mi(MGUT) (3.8)

with the respective gauge coupling at the Z-boson mass, gi(MZ), and the β
(1)
i coefficients

listed in Table 3.1. For convenience we choose to parameterize the gaugino masses in

terms of their values at the scale of gauge coupling unification MGUT ≃ 2 × 1016 GeV.

We remark in passing that when considering only the SUSY-QCD contribution in (3.6) it

is sometimes also convenient to express the gravitino abundance in terms of the physical

gluino mass [118]. As has been shown in [127] it is then important to employ a two-loop

running of the gluino mass since using (3.8) for the renormalization group evolution from

the electroweak scale to TR would underestimate the gravitino abundance by a factor of

two. In this work, however, we use the running gluino mass M3 at MGUT as input where

the effect is smaller (and working in the other direction.)

For a standard cosmological history without release of entropy, the gravitino yield

from thermal production at the present temperature T0 is given by Y TP
G̃

(T0) = Y TP
G̃

(Tlow).

The resulting density parameter of thermally produced gravitinos reads

ΩTP
G̃
h2 = m

G̃
Y TP

G̃
(T0) s(T0)h

2/ρc (3.9)

with ρc/[s(T0)h
2] = 3.6 × 10−9 GeV [32].

In Fig. 3.1 the result (3.6) for the thermally produced gravitino yield Y TP
G̃

(Tlow)

is shown as a function of TR for various values of m
G̃

(solid lines). The curves are

obtained with m1/2 = 500 GeV for the case of universal gaugino masses at MGUT:

M1,2,3(MGUT) = m1/2. The dashed (blue) horizontal line indicates the equilibrium yield

Y eq

G̃
≡
neq

G̃

s
≈ 1.8 × 10−3 (3.10)

which is given by the equilibrium number density of a relativistic spin-1/2 Majorana

fermion, neq

G̃
= 3ζ(3)T 3/(2π2). For T > T G̃

f , geff(T ) = heff(T ) = 230.75 since the spin-

1/2 components of the gravitino are in thermal equilibrium. In the region where the

yield (3.6) approaches the equilibrium value (3.10), gravitino disappearance processes

should be taken into account. This would then lead to a smooth approach of the non-

equilibrium yield to the equilibrium abundance. Without the back-reactions taken into
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account, the kink position indicates a lower bound for T G̃
f . Towards smaller m

G̃
, T G̃

f

decreases due to the increasing strength of the gravitino couplings. For example, for

m
G̃

= 1 GeV (10 MeV), we find T G̃
f & 1014 GeV (1010 GeV).

3.3.1 Reheating phase

In the analytical expression (3.6) we refer to TR as the initial temperature of the

radiation-dominated epoch. So far we have not considered the phase in which the co-

herent oscillations of a field φ dominates the energy budget of the Universe and where

one usually relates TR to the decay width Γφ of φ. In the simplest models of inflation

the decaying field φ which reheats the Universe also drives the exponential expansion of

the Universe. In the following we shall simply refer to φ as the inflaton field.

We can account for the (perturbative) reheating phase, by considering (3.4) together

with the Boltzmann equations for the energy densities of radiation and the inflaton field,

dρrad

dt
+ 4Hρrad = Γφρφ , (3.11a)

dρφ

dt
+ 3Hρφ = −Γφρφ , (3.11b)

respectively. To relate Γφ with TR we first note that the second term on the left hand side

of (3.11b) indicates that φ (when averaged over several oscillations) scales like matter,

ρφ ∝ a−3; a denotes the scale factor. Thus, in terms of the initial inflaton energy density

ρφ,I, the Hubble rate is given by

H(a) =

√
ρφ,I

3M2
P

(aI

a

)3
(3.12)

as long as ρφ dominates. Assuming an instantaneous conversion of ρφ into radiation

when Γφ = ξH(TR) with ξ usually chosen to be a number between 1 and 3 then allows

one to define a reheating temperature in terms of the decay width of the inflaton field,

T ξ
R ≡ ξ−1/2

(
90

geff(TR)π2

)1/4√
ΓφMP. (3.13)

In Fig. 3.2 we show the results of a numerical integration of (3.4) and (3.11) plotted

against the scale factor with Γφ chosen such as to yield TR = 109 GeV for ξ = 1.8.7

In the lower figure we plot comoving quantities normalized to a3
Iρφ,I. At a/aI ≃ 108

7For the actual integration we rewrite the Boltzmann equations (3.4) and (3.11) in terms of dimen-

sionless quantities following [128].
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Figure 3.2: The results of a numerical integration of (3.4) and (3.11) is shown; Γφ

is chosen such as to yield TR = 109 GeV for ξ = 1.8. In the lower figure comoving

quantities as labeled and normalized to a3ρφ,I are plotted. The middle figure shows

the evolution of the temperature T of the thermal bath and in the top part of the

figure the resulting gravitino abundance Y TP
G̃

is obtained for mG̃ = 100 GeV and for

M1,2,3 = m1/2 at MGUT with m1/2 = 500 GeV. This gives a final gravitino abundance

of Y TP
G̃

(Tlow) = 2.9 × 10−12; see main text for a discussion.



3.4. Constraints on TR 71

the inflaton energy density decays exponentially and the Universe enters the radiation

dominated epoch which can be seen by the turn-over of the dashed curve depicting the

radiation density: there, ρrad starts to scale as a−4. This is also indicated by the evolution

of the temperature plotted in the middle part of the figure. In the radiation dominated

Universe T scales with a−1. Also note that TR is not the maximum temperature of the

Universe. When the inflaton field decays entropy is produced (dotted line in lower part)

and the temperature scales as T ∝ a−3/8. The production of entropy is also the reason

why Y TP
G̃

in the top part of the figure—despite the large initial temperature—reaches

its maximum value only in the radiation dominated regime when a3s is finally constant.

Here, M1,2,3 = m1/2 at MGUT with m1/2 = 500 GeV and m
G̃

= 100 GeV has been

chosen which gives a final gravitino abundance of Y TP
G̃

(Tlow) = 2.9 × 10−12.

With our result for the collision term (3.5), we find that the gravitino yield obtained

numerically is in good agreement with the analytical expression (3.6) for ξ = 1.8. For

an alternative TR definition with different ξ the associated numerically obtained gravi-

tino yield is described by the analytical expression obtained after substituting TR with√
ξ/1.8T ξ

R in (3.6).

A fitting formula on the gravitino yield which also includes the effect of reheating

and which was based on [118] has been derived earlier in [47]. However, the production

of the helicity-1/2 component of the gravitino was neglected so that the actual yield for

m
G̃

= 100 GeV was underestimated by about an order of magnitude. Accordingly, the TR

bounds given in [47, 41, 129] are underestimated in the regionm
G̃
< 1 TeV. Meanwhile—

after publication of [1] on which this section is based on—an updated treatment [130]

has become available in which the authors now include the helicity-1/2 components as

well as the electroweak contributions [108, 119] of the thermal gravitino production.

For a most recent discussion on gravitino production during perturbative reheating see

also [131].

3.4 Constraints on TR

Since for the gravitino LSP the resulting density ΩTP
G̃

should not exceed the dark matter

density Ωdm, TR is bounded from above [116]. Such a bound has to be compared with

predictions of the reheating temperature TR from inflation models. Moreover, TR is im-

portant for our understanding of the cosmic baryon asymmetry. For example, successful

standard thermal leptogenesis [133] can typically require TR & 109 GeV [134, 135].

We update the TR limits using the full gauge-invariant result for the relic density

of thermally produced gravitinos, ΩTP
G̃

, to leading order in the Standard Model gauge
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Figure 3.3: Upper limits on the reheating temperature TR. On the upper (lower) gray

band, ΩTP
G̃

for M1,2,3 = m1/2 = 500 GeV (2 TeV) at MGUT agrees with Ω3σ
dm. The

corresponding TR limits from the requirement ΩTP
G̃
h2 ≤ 0.126 shown by the dashed

lines for M1/10 = M2/2 = M3 = m1/2 at MGUT and by the dotted lines for the SU(3)c

contribution [118, 132] with M3 = m1/2 at MGUT. All lines are obtained with (3.6).

couplings [108, 119].8 In particular, this allows us to illustrate the dependence of the

bounds on the gaugino-mass relation at the scale of grand unification MGUT.

The reheating temperature TR is limited from above in the case of a stable gravitino

LSP since ΩTP
G̃

cannot exceed the dark matter density Ωdm. In the following we use [7, 32]

the WMAP 3-year result

Ω3σ
dmh

2 = 0.105+0.021
−0.030 (3.14)

In Fig. 3.3 we show the resulting upper limits on TR using ξ = 1.8 as a function of m
G̃
.

On the gray band, the thermally produced gravitino density (3.9) is within the nominal

3σ range (3.14). The upper (lower) gray band is obtained for M1,2,3 = m1/2 at MGUT

with m1/2 = 500 GeV (2 TeV). From the requirement ΩTP
G̃
h2 ≤ 0.126 the dashed lines

show the constraints for the exemplary non-universal scenario [136] M1/10 = M2/2 =

8The computation of the electroweak contributions to thermal gravitino production was subject of

the diploma thesis [108] of the author in which similar limits on TR were already presented—however,

without insight on the exact sensitivity of ΩTP
G̃

on the reheating process; in this section ξ = 1.8.
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M3 = m1/2 at MGUT. Using the same requirement the dotted lines show the SU(3)c

contribution [118, 132] for M3 = m1/2 at MGUT. As can be seen by comparing the

dashed and dotted lines, the electroweak contributions can be particularly important

for the case of non-universal gaugino masses at MGUT. On the other hand, for gaugino

masses which unify at MGUT, the dotted lines provide already a very good estimate. In

this regard, note that Fig. 3.3 is updated from the one presented in [1] since the SU(3)c

contribution to ΩTP
G̃

, originally obtained in [118], has meanwhile been corrected by the

authors [132]. For completeness, we also remark that, after publication of [1], the upper

limits on TR shown in Figs. 5 and 6 of Ref. [137] have also been corrected. Previously,

these figures underestimated the maximal value of TR by a factor of four in the region

in which ΩTP
G̃

governs the limits.

The TR limits shown in Fig. 3.3 are conservative bounds that do only depend on

m
G̃

and the Mi values at MGUT. Taking into account contributions to Ω
G̃

from NLSP

decays will make those limits stronger. In the next chapter, we will account for this

non-thermal gravitino source in a systematic way.
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Chapter 4

The stau as the NLSP

In this chapter we now specialize on gravitino dark matter scenarios in which the lighter

stau τ̃1 is the NLSP. Indeed, the appearance of τ̃1 as the lightest Standard Model su-

perpartner is a commonplace occurrence even in models with restrictive assumptions

on the SUSY breaking sector such as the CMSSM. The associated parameter region is

usually not considered because of severe upper limits on the abundance of massive stable

charged particles (see Sec. 1.3). However, in gravitino LSP scenarios τ̃1 is unstable and

thereby a viable option.

In this chapter, we first review the result on a frequently used range of thermal freeze-

out abundances of τ̃1. Employing such an estimate allows us to constrain the gravitino-

stau scenario from BBN limits on the electromagnetic and hadronic energy release in the

decay of τ̃1 in a rather model-independent fashion. Moreover, we employ the results of

Chapter 2 on the catalyzed light element production of 6Li and 9Be. We shall see that the

associated constraints pose the henceforth strongest limits on this scenario. Specializing

to the case of the CMSSM allows us to explore concrete realizations of the gravitino-

LSP stau-NLSP setting. In particular, we shall find that the reheating temperature TR

is heavily constrained by the novel CBBN bounds. We also explore the possibility of a

non-standard cosmological history to see whether one can alleviate or even circumvent

the strong restrictions on the parameter space.

4.1 Generic constraints on the gravitino-stau scenario

In order to set constraints on the outlined scenario we require knowledge on the stau

abundance in the early Universe. In Sec. 1.3 we have found that for a standard cos-

mological history the decoupling temperature of a weak scale charged particle satisfies

75
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Tf < mτ̃1/20. Thus, with a post-inflationary reheating temperature TR above the decou-

pling temperature, the τ̃1 NLSP freezes out of the primordial plasma as a cold thermal

relic so that its yield after decoupling Y dec
τ̃1

is governed by its mass and its annihilation

rate. Thereby, Y dec
τ̃1

becomes sensitive to the mass spectrum and the couplings of the

SUSY model and representative values

Y dec
τ̃1

≃ (0.4 ÷ 1.5) × 10−13
( mτ̃1

100 GeV

)
(4.1)

have been used to confront the gravitino-stau scenario with cosmological constraints [31,

138, 139, 2, 140]; mτ̃1 denotes the mass of the lighter stau. Equation (4.1) compares well

with our upper bound (1.15) derived from a purely dimensional analysis. The yield (4.1)

with a coefficient 0.7 × 10−13 is in good agreement with the curve in Fig. 1 of Ref. [31]

that has been derived for the case of a purely ‘right-handed’ τ̃ ≃ τ̃R NLSP with a mass

that is significantly below the masses of the lighter selectron and the lighter smuon,

mτ̃ ≪ mẽ1,µ̃1
, and with a bino-like lightest neutralino, χ̃0

1 ≃ B̃, that has a mass of m
B̃

=

1.1mτ̃ . In the case of an approximate slepton mass degeneracy, mτ̃ . mẽ1,µ̃1
. 1.1mτ̃ ,

the upper value in (4.1) becomes saturated due to slepton coannihilation processes [31].

We shall see in Sec. 4.2.3 that approaching the χ̃0
1–τ̃ coannihilation region, mχ̃0

1
≈ mτ̃1 ,

even larger enhancement factors occur. On the other hand, a sizable left–right mixing

of the stau NLSP is associated with an increase of its MSSM couplings and thus with

a reduction of Y dec
τ̃1

. This will be discussed in Part III where a systematic investigation

of the stau abundance and its sensitivity on the SUSY parameters will be given. In this

section, we shall focus on the more generic Y dec
τ̃1

values described by (4.1).

In Fig. 4.1 we collect the cosmological constraints on the gravitino-stau scenario by

plotting m
G̃

versus mτ̃1 . Let us go through the respective limits one by one:

Non-thermal gravitino production Each τ̃1 NLSP eventually decays into one G̃ LSP

leading to a non-thermally produced (NTP) gravitino density [31, 141]:

ΩNTP
G̃

h2 = m
G̃
Y dec

τ̃1
s(T0)h

2/ρc. (4.2)

This contributes to the relic gravitino density Ω
G̃

which should not exceed the

observationally inferred dark matter density Ωdm. In Fig. 4.1 we choose as repre-

sentative value

Y dec
τ̃1

= 0.7 × 10−13
( mτ̃1

100 GeV

)
. (4.3)

In the light shaded region in the upper right corner ΩNTP
G̃

h2 agrees with Ω3σ
dmh

2

of Eq. (3.14). The shading is limited from above by a solid line which borders

the above disfavored region in which ΩNTP
G̃

> Ωdm. Any additional contribution
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Figure 4.1: Constraints of the gravitino LSP stau NLSP scenario for Y dec
τ̃1

given

by (4.3). In the light (gray) shaded region ΩNTP
G̃

∈ Ω3σ
dm holds with the region above

being disfavored by ΩG̃ > Ω3σ
dm. The thin gray straight lines show the contours on

which f Ωdm is provided by ΩNTP
G̃

. The dotted gray lines show contours of ττ̃1
as

labeled. Catalyzed BBN production of 9Be disfavors the the region below the thick

solid line. In the dark shaded (blue) region 6Li/H ∈ 10−11 ÷ 10−10 holds. Below, 6Li

is overproduced due to the bound state effects. Hadronic energy release in stau decays

disfavors the regions inside the dashed lines for different values of the adopted primordial

D abundance (4.5). By the same token, the regions inside dash-dotted (green) curves

are disfavored from the effect of electromagnetic energy release on D. Moreover, the

region below the thin solid (pink) line is disfavored from overproduction of 3He/D.

to Ωdm, such as a thermally produced gravitino density ΩTP
G̃

(Sec. 3.3), makes

this constraint more restrictive. This is indicated by the thin gray lines labeled

with f = 0.1, 0.01, 10−3, and 10−4, on which (4.2) obtained with (4.3) satisfies

f ΩNTP
G̃

= 0.126, respectively. The timing of the τ̃1 NLSP decay into the gravitino

LSP is governed by the two-body decay mode τ̃1 → G̃τ and reads

ττ̃1 ≃ Γ−1(τ̃1 → G̃l) =
48πm2

G̃
M2

P

m5
τ̃1

(
1 −

m2
G̃

m2
τ̃1

)−4

. (4.4)

in the limit mτ → 0. Contour-lines thereof are shown in Fig. 4.1 by the dotted
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gray lines. Starting from the upper left edge, they correspond to lifetimes of 10−3 s

and then—as labeled—to 0.1 s, 10 s, 103 s, 105s, and 107 s.

CBBN constraints We can now incorporate the results of Chapter 2 on the catalyzed

fusion of 6Li and 9Be triggered by the bound state formation of (4Heτ̃−1 ). We use

the CBBN constraints obtained in Fig. 2.9 with Y dec
X− = Y dec

τ̃1
/2, i.e., we assume

that there exists no asymmetry between positively and negatively charged staus

[cf. Sec. 5.6]. For Y dec
τ̃1

we use the estimate (4.3). The shaded region in Fig. 2.9 has

corresponded to a 6Li output of 6Li/H = 10−11 ÷ 10−10 and which is now likewise

associated with the dark (blue) shaded band in Fig. 4.1. On the upper border of

the band a lithium abundance of 6Li/H = 10−11 is attained whereas on the lower

border 6Li/H = 10−10 holds. The region below the band is confidently ruled out

by overproduction of 6Li.1 Moreover, we also show the CBBN constraint from

primordial 9Be production which excludes a very similar region.

Hadronic energy release In Sec. 1.4 we have provided an overview over the physics

of late decaying particles during/after BBN. In our concrete scenario we can now

implement the stringent constraint on hadronic energy release from the observa-

tionally inferred primordial deuterium abundance.2 The limits are based on the

severe and conservative upper bounds on the product EvisYNLSP [here, YNLSP = Yτ̃ ]

obtained in Fig. 39 of [41] for (see references cited in [41]):

(D/H)mean =
(
2.78+0.44

−0.38

)
× 10−5 ⇒ severe constraint, (4.5a)

(D/H)high =
(
3.98+0.59

−0.67

)
× 10−5 ⇒ conservative constraint. (4.5b)

Recall from our discussion in Sec. 1.2 that (4.5b) is a rather high value on D/H|p.
Without trying to give extra credence to (4.5b), following [41], we simply take it

as a limiting value for D/H. The average injected hadronic energy Evis has been

obtained in [139] from computation of the 4-body decay of the stau NLSP into the

gravitino, the tau, and a quark-antiquark pair for a purely right-handed τ̃1 ≃ τ̃R

NLSP. The effect of hadronic energy injection on primordial D disfavors the regions

inside the dashed lines shown in Fig. 4.1; see also Fig 16 in [139].
1Using the initial estimate [79] on the CBBN 6Li output, the associated constraint has first been

shown in the (mG̃, mτ̃1
)-plane in [142]. Likewise, in this representation, the constraints from hadronic

τ̃1-decays have first been obtained in [141]. However, both works [141, 142] are based on outdated

light element yields so that we use our treatment of Chapter 2 for 6Li and the update in [139] for the

hadronic τ̃1-decays.
2Additional constraints on hadronic energy release are imposed by the primordial abundances of 4He,

3He/D, 7Li, and 6Li/7Li [143, 45, 40, 41, 144, 145]. However, in the region allowed by the 9Be and 6Li

constraints from bound-state effects, i.e., ττ̃1
. few × 103 s, the considered D constraint on hadronic

energy release is the dominant one as can be seen, e.g., in Figs. 38–41 of [41] and in Figs. 6–8 of [144].
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Electromagnetic energy release The constraints resulting from the dissociation of

light elements due to interaction with the electromagnetic cascades formed in stau

decays are obtained for a “visible” electromagnetic energy of Evis = 0.3Eτ of the

tau energy

Eτ =
m2

τ̃1
−m2

G̃
+m2

τ

2mτ̃1

(4.6)

released in τ̃ → G̃τ . The Dsev
em and 3He/D constraints result from the EvisYNLSP

limits given in Fig. 42 of Ref. [41] and the Dcons
em constraint from the EvisYNLSP limit

given in Fig. 6 of Ref. [39] . It is the region to the right or inside of the dot-dashed

(green) curves and the region to the right of the and thin solid (pink) line that are

disfavored by the primordial abundances of D and 3He/D, respectively.

As can be seen in Fig. 4.1, the constraints from the catalytic production of 6Li and
9Be are (essentially) the most restrictive ones. Their coinciding position is due the fact

that the catalytic production of 6Li and 9Be both depend on (4Heτ̃−1 ) (same timing) and

that their output scales linearly in Yτ̃ . Indeed, the associated constraints run parallel and

in vicinity of the ττ̃1 = 103 s contour which corresponds to the time at which (4Heτ̃−1 )

formation starts to become efficient. For the adopted stau abundance (4.3) this implies

that lifetimes in the vicinity of ττ̃1 . 6 × 103 s are disfavored.

The electromagnetic Dem and 3He/D constraints are always less restrictive than the

CBBN constraints from 9Be and 6Li. Only the hadronic constraint Dhad competes with

the CBBN constraints for mτ̃1 & 1 TeV, i.e., in the lifetime region ττ̃1 ≃ 103 s in

which Yτ̃ is largest. Though for lifetimes shorter than about 100 s neutron-to-proton

interconversion processes affect 4He, the associated constraint is about two orders of

magnitude weaker (as can be seen in left panel of Fig. 1.1). We also remark that the

elevated content of D due to hadronic and electromagnetic energy injection leads to an

enhancement of CBBN-produced 6Li and 9Be. For example, if non-thermal processes

boost the deuterium abundance to the level of (4.5b), it would lead to an enhancement

of the 6Li output by a factor of ∼ 2, while the corresponding enhancement factor in the

case of 9Be is about 4. We have not included this effect since it can make our obtained

limits only stronger.

Here we would like to emphasize that the 9Be and 6Li constraints are the ones that

are the least sensitive to the precise value of Y dec
τ̃1

in the region Y dec
τ̃−
1

& 10−14. This results

from the fact that the limits are very steep in that region, as can be seen in Fig. 2.9.

Indeed, a yield that is twice as large as (4.1) will affect the position of the 9Be and 6Li

constraints only very mildly. In contrast, such an enhanced yield—as encountered, e.g.,
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in the case of slepton coannihilations—leads to significant changes of the dark matter

constraint and the BBN constraints associated with hadronic/electromagnetic energy

injection, as can be seen explicitly in Fig. 16 of Ref. [139].

It should also be noted that an elevated slepton yield can lead to an additional non-

thermal output of 6Li for ττ̃1 & few×102 s. As discussed before, this is because energetic

spallation debris of destroyed 4He nuclei from slepton decays can hit ambient 4He and

thereby fuse 6Li [40, 41, 144]. This mechanism depends sensitively on the hadronic

branching ratio Bh of the 4-body slepton decay into the gravitino, the associated lepton,

and a quark-antiquark pair for which typically Bh . 3 × 10−3 for mτ̃1 . 2 TeV (see

Fig. 5 of Ref. [139]). Indeed, as discussed in Ref. [146], for those branching ratios, the

effect of CBBN on 6Li is the dominant one in the region which is not already excluded

by the D constraint. Thus, for mτ̃1 . 1.5 TeV, our obtained limits on 6Li overproduction

are only marginally affected by the hadronic energy release of τ̃1-decays. However, for

larger slepton masses, i.e., for scenarios of large Y dec
τ̃−
1

in conjunction with Bh > 10−3,

the hadronic production of 6Li becomes efficient so that only a simultaneous treatment

of both effects can decide on the accurate 6Li BBN output.3 Note that this can make

our presented limits on 6Li only stronger. Thus, we are on the conservative side when

neglecting such additional contributions. We note in passing that with a highly fine-

tuned mτ̃1-mG̃
degeneracy leading to Evis → 0, any bound on energy release can be

evaded. However, the CBBN bounds remain.

Let us also comment on the reliability of the novel CBBN constraints from 6Li and
9Be overproduction and address the implications of the associated restrictions on the

(m
G̃
,mτ̃1) parameter space:

Reliability of CBBN constraints As already emphasized in Sec. 1.1, observations of
6Li are extremely difficult. Whereas in the cold interstellar medium the lines of 6Li

and 7Li are well resolved, measurements of the isotopic ratio 6Li/7Li in the outer

layer of stars is complicated because the absorption lines of 6Li are not resolved

spectroscopically with respect to the lines of 7Li due to thermal blending [18].

Indeed, the claim of a “6Li-plateau” is being challenged in the recent papers [147,

148]. The presence of 6Li is inferred from an enhancement of the “red wing” of

the 7Li absorption line. It is argued that such a line asymmetry could also be

mimicked by Doppler-shifts due to atmospheric convective motions. Accordingly,

some of the observations may eventually turn out to provide only upper limits.

3Using the catalysis of BBN reactions in order to seek for a simultaneous solution of both, the 6Li

and 7Li problem [cf. Sec. 1.1] has, e.g., been made in [145, 90, 75]; for a most recent discussion which

also includes the lithium output due to X decays see [42].
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Moreover, 6Li is more fragile than 7Li and would burn more efficiently at lower

temperatures. Therefore, if there is a (yet unconfirmed) stellar mechanism (see,

e.g., [149]) that resolves the lithium problem, i.e., that depletes 7Li by a factor of

two or three, 6Li would have been depleted by a larger factor.

Given those issues, we have adopted here a generous range on the observationally

inferred upper limit on primordial 6Li with 6Li/H = 10−10 being a very high value.

In this regard it is also important to note that the catalytic effect on 6Li is very

strong so that—for the purpose of setting constraints—we are not overly sensitive

to the precise value of the upper bound. This can be seen by the fact that the dark

shaded (blue) band in Fig. 4.1 is rather thin while spanning one order of magnitude

in fused 6Li. In this respect, Sec. 2.5 becomes important in which we show that

the destruction of large fractions of the previously synthesized 6Li by (p τ̃−1 ) is not

feasible. This rules out the possibility that allowed islands in the parameter region

with large Yτ̃1/large ττ̃1—which was advocated to remain viable in Ref. [90]—exist.

Unlike 6Li, 9Be is firmly detected in a significant number of stars at low metallicity,

and its observational status is not in doubt. (For the latest data on the 9Be

abundance in metal-poor stars, see, e.g., [97, 150, 151, 98].) Also note that stellar

depletion would affect 9Be less than either 7Li or 6Li since both 7Li and 6Li are more

fragile than 9Be. Moreover, the nuclear physics rates that enter in the calculation

of 9Be catalysis are dominated by resonances. Given the wealth of experimental

information on the 9Be resonances [152, 153], this may eventually allow for very

reliable calculations of the catalytic rates. Though it has recently been argued

that the resonance in the final step (2.41b) in the fusion of 9Be is shifted below

threshold [cf. Sec. 2.4.2] it is a neutron induced reaction so that such a shift will

affect the efficiency of the reaction but may not be fatal. Moreover, also note that

we have adopted a very conservative upper limit on primordial 9Be in (2.65) which

can already be seen by mere optical inspection of Fig. 2.8b. Taking as a grain of

salt that the final efficiency of the 9Be reaction is not fully established but noting

the powerful physics potential a primordial origin of 9Be offers we have chosen to

incorporate this constraint. Moreover, given the fact that both, 6Li and 9Be, show

the same sensitivity on the gravitino-stau parameter space any conclusions drawn

from 6Li are only corroborated and not altered by 9Be. We eagerly await further

investigation of the critical catalyzed nuclear rates which shall give a final answer

on the CBBN output of 9Be.

Implications of CBBN constraints From Fig. 4.1 it is immediately clear that the

new CBBN constraints imply a lower limit on mτ̃1 given m
G̃
. Clearly, a minimum
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value of the lightest Standard Model superpartner directly affects the testability

of such SUSY scenarios at future colliders.

For the gravitino dark matter scenario in which Ωdm is exclusively provided by

ΩNTP
G̃

, i.e., which are situated in the light gray shaded band, formerly (marginal)

allowed islands with 200 GeV . m
G̃

. 400 GeV and mτ̃1 . 1.5 TeV are now

confidently ruled out. Moreover, considering other values than f = 1 the gravitino

mass m
G̃

is constrained to values well below 10% of the slepton NLSP mass mτ̃1 for

mτ̃1 . O(1 TeV). Thereby the kinematical determination of m
G̃

proposed in [154]

remains cosmologically disfavored at the next generation of particle accelerators.

Of course, the CBBN constraints only emerge if ττ̃1 is large enough to allow for

(4He τ̃−1 ) bound state formation. Thereby, scenarios with a gravitino mass of

m
G̃

. 200 MeV and mτ̃1 & 80 GeV—the latter of which is supported by the

non-observation of long-lived charged sleptons at the Large Electron Positron Col-

lider (LEP) [32]—are unconstrained from CBBN. Accordingly, for gauge-mediated

SUSY breaking which typically predicts small values of m
G̃
, the CBBN constraint

can be irrelevant. However, in gravity-mediated SUSY breaking the gravitino

mass sets the scale for the soft breaking parameters so that m
G̃

& 10 GeV are

the most natural values. Then, the CBBN constraints impose a lower limit of

mτ̃1 > 400 GeV.

To extract further implications from the gravitino-stau scenario we resort in the

next section to concrete supersymmetric realizations by full specification of the SUSY

parameters. Thereby we obtain further insight on the superparticle mass spectrum.

Moreover, this allows us obtain a stringent upper bound on the reheating temperature

of the Universe.

4.2 The gravitino-stau scenario in the CMSSM

We now consider gravitino dark matter scenarios in the framework of the CMSSM where

one assumes universal soft SUSY breaking parameters at MGUT. The CMSSM yields

phenomenologically acceptable spectra with only four parameters and a sign: the gaugino

mass parameter m1/2, the scalar mass parameter m0, the trilinear coupling A0, the

mixing angle tanβ in the Higgs sector, and the sign of the higgsino mass parameter µ.

In the CMSSM with the gravitino LSP, the next-to-lightest SUSY particle is either the

lightest neutralino χ̃0
1 or the lighter stau τ̃1.

4 The BBN constraints on electromagnetic

4A stop t̃1 NLSP is not feasible in the CMSSM [155].
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and hadronic energy injection disfavor the χ̃0
1 NLSP for m

G̃
& 100 MeV [141, 156,

137]. For the slepton NLSP case, the BBN constraints associated with hadronic/electro-

magnetic energy injection have also been estimated and found to be much weaker but

still significant in much of the parameter space [141, 156, 137, 139]. In the following,

however, we shall see that the novel CBBN constraints drastically change this picture.5

Let us give an overview of what is presented in the remainder of this chapter. In

Sec. 4.2.1 we consider the CBBN restrictions on the τ̃1 lifetime. Employing the results

on mτ̃1 from a renormalization group analysis this allows us to relate the stau mass with

the high-scale parameter m1/2. The obtained lower limit on the latter parameter can

be translated into an upper bound on the reheating temperature. This will be done

in Sec. 4.2.2. Both limits will be based on the estimate (4.3) of the stau decoupling

yield. We contrast the obtained semi-analytical limits on m1/2 and TR with exemplary

CMSSM parameter scans in Sec. 4.2.3. For those examples we will also explicitly consider

in Sec. 4.2.4 the possibility of a non-standard cosmological history. In this context, we

also check on the viability of thermal leptogenesis in Sec. 4.2.5.

4.2.1 Lower limit on m1/2

In the previous section we have realized that the new bounds emerging from the thermal

catalysis of nuclear reactions yield the most dominant restrictions on the gravitino-stau

parameter space. We have also noted that the discussion of those bounds is facilitated by

the fact that both, the constraint on 6Li as well as the one on 9Be production, essentially

disfavor the same region in the (m
G̃
,mτ̃1) parameter space. In the following we focus on

6Li and adopt as an upper limit on its primordial abundance

6Li/H|p . 6 × 10−11. (4.7)

We thereby resort in this work to a more conservative point of view than in our main

discussions of the published works [1, 2, 3] which were based on 6Li/H|p . 2×10−11 [39].

In this way, we give account to the concerns cast in the previous section (without,

however, going to the very extreme using 10−10.)

The limit (4.7) is shown by the dash-dotted (red) line in Fig. 4.2 as a function of

the yield of negatively charged staus Y dec
τ̃− and ττ̃1 . As in Fig. 2.9 the curve is obtained

by numerical integration of the Boltzmann equations presented in Chapter 2. In addi-

tion, the solid lines show contours of constant 6Li output for other values than (4.7) as

5Seeking a solution to the lithium problems, bound state effects within the framework of the CMSSM

have first been considered in [145]. We set a different focus: We constrain the CMSSM parameter space

from which we mainly derive an upper bound on TR.
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Figure 4.2: The solid lines are contours of constant 6Li/H as labeled and produced in

CBBN. They are obtained by solving the full Boltzmann equations presented in Chap-

ter 2. In addition, the dot-dashed (red) line shows the adopted limiting primordial

abundance (4.7) with the region above being disfavored from 6Li overproduction. The

dashed lines show the 6Li output of the Boltzmann network when the Saha approxima-

tion (2.22) for the (4He τ̃−1 ) bound state fraction is used.

labeled. Moreover, the dashed gray lines show the 6Li contours when the Saha approxi-

mation (2.22) is used for the bound-state abundance. The associated overestimation of
6Li once more demonstrates the importance of a full numerical solution of the Boltz-

mann equations. We remark that Fig. 4.2 contains an improvement with respect to

the corresponding figure in [2] in the sense that proton-burning (2.36b) of 6Li has now

been included and which leads to some reduction of the final 6Li output. Moreover, we

now use a (4He τ̃−1 ) recombination cross section which includes the finite charge radius

correction and accounts for recombination into 1S and 2S states; see Chapter 2.

Using the estimate (4.3) with Y dec
τ̃− = Y dec

τ̃ /2 we find from Fig. 4.2 that the amount

of 6Li produced in CBBN can be in agreement with (4.7) only for stau lifetimes of

ττ̃1 . 6 × 103 s. (4.8)

As can be seen from the supergravity prediction (4.4) of ττ̃1 , the requirement (4.8) implies

a lower limit on the splitting between mτ̃ and m
G̃

provided mτ̃1 . O(1 TeV). Because of

this hierarchy, the factor (1−m2
G̃
/m2

τ̃1
)−4 can be neglected in Eq. (4.4) in the following.

Let us now turn to the CMSSM. We employ the computer program SPheno 2.2.3 [157]
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to obtain the low-energy supersymmetric particle spectrum from the high-scale input at

MGUT. In the region in which τ̃1 is the NLSP, we find

m2
τ̃1

≤ 0.21m2
1/2 (4.9)

by scanning over the following parameter range:

m1/2 = 0.1 ÷ 6 TeV,

tanβ = 2 ÷ 60,

sgnµ = ±1,

−4m0 < A0 < 4m0,

and with m0 as large as viable for a τ̃1 NLSP.6

For small left-right mixing, τ̃1 ≃ τ̃R, (4.9) can be understood qualitatively from the

estimate for the mass of the right-handed stau mτ̃R near the electroweak scale [158]

m2
τ̃R

≃ 0.15m2
1/2 +m2

0 − sin2 θWm2
Z cos 2β . (4.10)

since m2
0 ≪ m2

1/2 in a large part of the τ̃1 NLSP region. In fact, (4.9) tends to be

saturated for larger m0, i.e., in the stau-neutralino-coannihilation region where the mass

of the lightest neutralino mχ̃0
1
≃ mτ̃1 . This can be understood since the neutralino is

bino-like in this region and typically m2
χ̃0

1
≃ 0.19m2

1/2.
7 In the remaining part of the stau

NLSP region, smaller values of mτ̃1 satisfying, e.g., m2
τ̃1

= 0.15m2
1/2 can easily be found.

To be on the conservative side, we set the stau NLSP mass mτ̃1 to its maximum value

at which (4.9) is saturated: m2
τ̃1

= 0.21m2
1/2. Using (4.4) this allows us to extract a

lower limit on the universal gaugino mass parameter from the constraint (4.8)

m1/2 ≥ 0.87 TeV
( m

G̃

10 GeV

)2/5
. (4.11)

Since for a τ̃1 NLSP typically m2
0 ≪ m2

1/2, it is the gaugino mass parameter m1/2

which sets the scale for the low energy superparticle spectrum. Thus, depending on m
G̃
,

the bound (4.11) implies rather high values of the superparticle masses. This is particu-

larly true for the masses of the squarks and the gluino since their renormalization group

running from MGUT to Q ≃ O(1 TeV) is dominated by M3(Q) ≃ m1/2αs(Q)/αs(MGUT).

Therefore, for m
G̃

& 10 GeV, the cosmologically favored region is associated with a mass

range that will be very difficult to probe at the Large Hadron Collider.
6We choose mt = 172.5 GeV for the top quark mass. In addition, we use the Standard Model

parameters mb(mb)MS = 4.2 GeV, αMS
s (mZ) = 0.1172, and α−1MS

em (mZ) = 127.932.
7This estimate is relatively independent of tan β and valid in the m1/2 region in which also the LEP

bound on the Higgs mass [32], mh > 114.4 GeV, is respected.
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We stress that the scan over the entire natural CMSSM parameter space has enabled

us to set a bound on m1/2 which depends on the gravitino mass but is independent of the

CMSSM parameters.8 We, however, also remark that we have used the estimate (4.3)

without accounting for the dependence of Y dec
τ̃1

on the SUSY parameters (other than

mτ̃1). It will be thus important to reflect the bound (4.11) on exemplary scenarios where

Y dec
τ̃1

is computed in each point of the parameter space. This will be done in Sec. 4.2.3.

Moreover, in Part III we will carry out a detailed study of the dependence of the stau

decoupling yield on the SUSY parameters. There, we will indeed find that it is possible

to evade (4.11) in exceptional cases.

Finally, we also note that in the derivation of (4.11) we have only made use of the

catalytic BBN effects. In Sec. 4.1 we have seen that only the D constraint on hadronic en-

ergy release can compete with the CBBN constraints. Accordingly, the D constraint can

only tighten the bounds on m1/2 (and TR in the following). Thus, taking a conservative

point of view, we are allowed to neglect this complication.

4.2.2 Upper bound on TR

The amount of gravitinos produced in thermal scattering is sensitive to the reheating

temperature TR and to the masses of the gauginos and hence to m1/2 [119]. The associ-

ated gravitino density can be approximated by9

ΩTP
G̃
h2 ≃ 0.32

(10 GeV

m
G̃

)( m1/2

1 TeV

)2( TR

108 GeV

)
. (4.12)

This follows from (3.6). Here we use that the running gaugino masses Mi associated

with the gauge groups SU(3)c, SU(2)L, and U(1)Y satisfy M3 : M2 : M1 ≃ 3 : 1.6 : 1

at a representative scale of 108 GeV at which we also evaluate the respective gauge

couplings. Furthermore, we only need to take into account the production of the spin-

1/2 components of the gravitino since (4.11) implies M2
i /3m

2
G̃
≫ 1 for m

G̃
& 1 GeV.

For a given m1/2, the reheating temperature TR is limited from above because ΩTP
G̃
h2

cannot exceed the dark matter density (3.14). Using the derived lower bound (4.11)

allows us to extract the upper limit:

TR . 5 × 107 GeV
( m

G̃

10 GeV

)1/5
. (4.13)

This constraint is a slowly varying function of m
G̃
: (m

G̃
/10 GeV)1/5 = 0.6 ÷ 2.5 for

8Similar limits have also been discussed in models in which the ratio mG̃/m1/2 is bounded from

below [159].
9For a discussion on the definition of TR see the discussion in Sec. 3.3.1; here, ξ = 1.8.
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m
G̃

= 1 GeV ÷ 1 TeV. Therefore, (4.13) poses a strong bound on TR for the natural

gravitino LSP mass range in gravity-mediated supersymmetry breaking scenarios.10

Note that the constraint (4.13) relies on thermal gravitino production only. In ad-

dition, gravitinos are produced in stau NLSP decays with the respective density (4.2).

While the precise value of Y dec
τ̃1

depends on the concrete choice of the CMSSM parame-

ters, the upper limit (4.13) can only become more stringent by taking ΩNTP
G̃

into account

(provided that (4.3) is not substantially depleted.)

4.2.3 Exemplary parameter scans in the CMSSM

Taking into account gravitinos from thermal production and from late decays of the

lightest Standard Model superpartner we can confront our numerical findings with the

above derived semi-analytical limits on m1/2 and TR for various values of m
G̃
. Con-

sidering concrete CMSSM scenarios allows us to compute the thermal and non-thermal

gravitino production in each point of the parameter space without relying on typical

values of the decoupling yield YNLSP of the NLSP such as (4.1).

Earlier studies of TR constraints within the CMSSM used the result of [118] to explore

the viability of TR & 109 GeV [156, 137]. Our study presents also scans for TR as low

as 107 GeV based on (3.6) which includes electroweak contributions to thermal gravitino

production [108].11

In Fig. 4.3 the solid (black) and dotted (blue) lines show respectively contours of

YNLSP(T0) and mNLSP in the (m1/2,m0) plane for A0 = 0, µ > 0, tanβ = 10 (left

panel) and tanβ = 30 (right panel). Above (below) the dashed line, mχ̃0
1
< mτ̃

(mτ̃ < mχ̃0
1
). The medium gray and the light gray regions at small m1/2 are excluded

respectively by the mass bounds mχ̃±
1
> 94 GeV and mh0 > 114.4 GeV from chargino

and Higgs searches at LEP [32]. The leftmost dotted (blue) line indicates the LEP bound

mτ̃ > 81.9 GeV [32]. For tanβ = 30, tachyonic sfermions occur in the low-energy spec-

trum at points in the white corner labeled as “tachyonic.” For those scans we employ

the computer program SuSpect 2.34 [161] to calculate the low-energy spectrum of the

superparticles and the Higgs bosons.12 Assuming a standard cosmological history, the

yield YNLSP(T0) is obtained from the ΩNLSPh
2 values provided by the computer program

micrOMEGAs 1.3.7 [162, 163].

10Similar, but less restrictive limits have been obtained in [140] by relaxing the CMSSM-specific

splitting (4.9).
11Meanwhile, after publication of [1], related works appeared [42, 160]; cf. also Sec. 3.4.
12In this section, we have used the following values: mt = 172.5 GeV, mb(mb)MS = 4.23 GeV,

αMS
s (mZ) = 0.1172, and α−1MS

em (mZ) = 127.90896.
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The contours shown in Fig. 4.3 are independent of m
G̃

and TR. Therefore, they can

be used to interpret the results shown in the figures below. Note the sensitivity of both

Yτ̃ (T0) and mτ̃ on tanβ. By going from tanβ = 10 to tanβ = 30, Yτ̃ (T0) decreases by

about a factor of two at points that are not in the vicinity of the dashed line, i.e., that

are outside of the τ̃–χ̃0
1 coannihilation region. While mτ̃ becomes somewhat smaller by

increasing tanβ to 30, the tanβ dependence of mχ̃0
1

is negligible.

Let us now explore the parameter space in which the relic gravitino density matches

the observed dark matter density Ω3σ
dm (3.14),

0.075 ≤ ΩTP
G̃
h2 + ΩNTP

G̃
h2 ≤ 0.126 . (4.14)

Now, TR and m
G̃

appear in addition to the traditional CMSSM parameters. We focus

on m
G̃

& 1 GeV since the soft SUSY breaking parameters of the CMSSM are usually

assumed to result from gravity-mediated SUSY breaking. However, we do not restrict

our study to fixed relations between m
G̃

and the soft SUSY breaking parameters such

as the ones suggested, for example, by the Polonyi model.

In Fig. 4.4 the light, medium, and dark shaded (green) bands show the (m1/2,m0)

regions that satisfy the upper limit (4.14) for TR = 107, 108, and 109 GeV, respectively,

where tanβ = 10, A0 = 0, µ > 0. The four panels are obtained for the choices (a) m
G̃

=

10 GeV, (b) m
G̃

= 100 GeV, (c) m
G̃

= 0.2m0, and (d) m
G̃

= m0. In the dark-gray

region, the gravitino is not the LSP. The regions excluded by the chargino and Higgs

mass bounds and the line indicating mχ̃0
1

= mτ̃ are identical to the ones shown in the

upper panel of Fig. 4.3. The dotted lines show contours of the NLSP lifetime (4.4). For

the χ̃0
1 NLSP, we calculate τχ̃0

1
from the expressions given in Sec. IIC of Ref. [141].

The τNLSP contours in Fig. 4.4 illustrate that the NLSP decays during/after BBN.

Successful BBN predictions therefore imply cosmological constraints on m
G̃
, mNLSP,

and YNLSP [141, 156, 137, 139]. Indeed, as stressed before, it has been found that the

considered χ̃0
1 NLSP region is completely disfavored for m

G̃
& 100 MeV by constraints

from late electromagnetic and hadronic energy injection [141, 156, 137, 145]. In the

τ̃1 NLSP region, the constraints from electromagnetic and hadronic energy release are

important but far less severe than in the χ̃0
1 NLSP case.

Including the constraints from the bound-state effects this picture changes. As we

have already seen in the previous section, in most of the τ̃ NLSP parameter space, the

bounds from the catalysis of 6Li and 9Be can be much more severe than the ones from

late energy injection. We incorporate the (ττ̃1 , Yτ̃−
1

)-dependent CBBN constraint on 6Li

from Fig. 4.2 which is shown in Fig. 4.4 by the long dash-dotted (red) line. The τ̃1-NLSP

parameter space to the left of this line is excluded.
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Figure 4.3: Contours of YNLSP(T0) (solid black lines) and mNLSP (dotted blue lines)

in the (m1/2,m0) plane for A0 = 0, µ > 0, tanβ = 10 (upper panel) and tanβ = 30

(lower panel). Above (below) the dashed line, mχ̃0

1
< mτ̃ (mτ̃ < mχ̃0

1
). The medium

gray and the light gray regions at small m1/2 show the mass bounds mχ̃±

1

> 94 GeV

and mh0 > 114.4 GeV from chargino and Higgs searches at LEP [32].
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Figure 4.4: The (m1/2,m0) planes for tanβ = 10, A0 = 0, µ > 0, and the choices

(a) mG̃ = 10 GeV, (b) mG̃ = 100 GeV, (c) mG̃ = 0.2m0, and (d) mG̃ = m0. In each

panel, the light, medium, and dark shaded (green) bands indicate the regions in which

ΩG̃h
2 ∈ Ω3σ

dmh
2 for TR = 107, 108, and 109 GeV, respectively. The medium gray and

the light gray regions at small m1/2 are excluded respectively by chargino and Higgs

searches at LEP. In the dark gray region, the gravitino is not the LSP. The dotted

lines show contours of the NLSP lifetime. Below the dashed line, mτ̃ < mχ̃0

1
. With

the τ̃ NLSP, the region to the left of the long-dash-dotted (red) line is cosmologically

disfavored by bound-state effects on the primordial 6Li abundance [79]. The effects of

late hadronic energy injection on the primordial D abundance [139] disfavor the τ̃ NLSP

region between the short-dash-dotted (blue) lines in panel (b) and the one above the

corresponding lines in panels (c) and (d). In addition, in (d) the electromagnetic 3He/D

constraint and the gluino mass contour mg̃ = 2.5 TeV are shown as labeled.
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We thereby update our figures presented in the published work [1]. In those figures,

the 6Li output was taken from the work [79] which provided the initial estimate on the

efficiency of the catalyzed production. Meanwhile, the dedicated quantum-three-body

calculation [84] became available which lead to a reduction of the S-factor of (2.37)

by roughly one order in magnitude. As discussed in Chapter 2, we have incorporated

this state-of-the-art result together with other improvements in our Boltzmann network

equation.

In the lifetime region ττ̃1 . few × 103 s which is unconstrained by CBBN only the

constraint from deuterium on the hadronic energy release becomes important. Following

the approach explained in Sec. 4.1, we incorporate the constraint on hadronic energy

release for D. In Fig. 4.4 these are shown by the short-dash-dotted (blue) lines. The

D constraint disfavors the region between the corresponding lines in panel (b) and the

region above the corresponding lines in panels (c) and (d). In panel (a) the D constraint

does not appear. In addition, for orientation, in panel (d) we also include the elec-

tromagnetic 3He/D constraint as a thin (pink) line and show the gluino mass contour

mg̃ = 2.5 TeV which is a near to vertical thick (violet) line.

Indeed, one finds in each panel of Fig. 4.4 that the highest TR value allowed by the

considered BBN constraints is about 107 GeV. The bands obtained for TR & 108 GeV are

located completely within the region disfavored by the 6Li bound. In previous gravitino

dark matter studies within the CMSSM that did not take into account bound-state effects

on the primordial 6Li abundance, much higher temperatures of up to about 109 GeV

were believed to be allowed [156, 137, 119].

The constraint TR . 107 GeV remains if we consider larger values of tanβ. This

is demonstrated in Fig. 4.5 for tanβ = 30, A0 = 0, µ > 0, and (a) m
G̃

= 10 GeV

and (b) m
G̃

= m0. The shadings (colors) and line styles are identical to the ones in

Fig. 4.4.

Let us comment on the dependence of the considered BBN constraints on the assumed

primordial abundances of D and 6Li. As can be seen in Figs. 4.4 and 4.5, the constraint

from late hadronic energy release is quite sensitive on the assumed primordial D abun-

dance. In contrast, even if we relax the restrictive 6Li bound on YNLSP/2 by two orders

of magnitude, we still find TR . 107 GeV. For example, the 6Li constraint relaxed in this

way would appear in Fig. 4.4 (b) as an almost vertical line slightly abovem1/2 = 2.5 TeV.

Limit on m1/2 The limit (4.11) emerges since mτ̃1 scales with m1/2 [see Fig. 4.3] and

since ττ̃1 is fixed once m
G̃

and mτ̃1 are specified. The choice m
G̃

= 10 GeV in

Fig. 4.4 (a) and Fig. 4.5 (a) allows for an immediate comparison of the exemplary
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Figure 4.5: CMSSM planes as in Fig. 4.4, but for tanβ = 30, A0 = 0, µ > 0. In (a)

mG̃ = 10 GeV and in (b) mG̃ = m0 has been chosen.

CMSSM scenarios with (4.11). Only in the vicinity of the dashed line, i.e., in

the τ̃1–χ̃
0
1 coannihilation region, the position of the 6Li constraint approaches its

conservative lower limit on m1/2. This is because τ̃1 becomes heavier for larger m0

which shortens ττ̃1 for fixed m
G̃
. Contrariwise, the splitting between the actual

position of the 6Li constraint and (4.11) is larger for smaller m0. This is slightly

more pronounced in Fig. 4.5 (a) than in Fig. 4.4 (a) and results from the fact

that the increase in tanβ leads to a decrease in mτ̃1 so that ττ̃1 becomes larger for

fixed m
G̃
.

That the lower limit (4.11) can imply high values of the superparticle masses is

illustrated by the vertical (violet) lines in Figs. 4.4 (d) and 4.5 (a) which show the

gluino mass contour mg̃ = 2.5 TeV. In this regard, also note that the mass of the

lighter stop is mt̃1
≃ 0.7mg̃ in those τ̃1 NLSP regions with mh > 114.4 GeV. Since

there the gaugino mass parameter sets the scale for the low energy superparticle

spectrum, depending on m
G̃
, the bound (4.11) implies high values of the super-

particle masses which can be associated with a mass range that will be difficult to

probe at the LHC.

Limit on TR The limit (4.13) relies on thermal gravitino production only, ΩTP
G̃

∼ TR.

Thus the upper limit on TR becomes more stringent by taking ΩNTP
G̃

into account.

In Figs. 4.4 (d) and 4.5 (b) we have fixed m
G̃

= m0. Thereby, the non-thermal

production (4.2) becomes more important for larger values of m0. In addition,
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Y dec
τ̃ takes on its maximum at a given m1/2 in the τ̃–χ̃0

1 coannihilation region.

This leads to the bending of the bands (4.14) towards lower m1/2. This indicates

that (4.13) indeed seems to provide a good estimate.

While the constraint TR . 107 GeV is found for each of the considered m
G̃

rela-

tions, one cannot use the 6Li bound to set bounds on mτ̃1 without insights into

m
G̃
. The 6Li (and similarly the 9Be) bound disappears for ττ̃ . 103 s [79] which is

possible even for mτ̃1 = O(100 GeV) provided m
G̃

is sufficiently small; see (4.4).

However, the constraints on TR become more severe towards small m
G̃

as is shown

in Fig. 3.3. Thus, the constraint TR . 107 GeV cannot be evaded by lowering

m
G̃

provided TR < T G̃
f . An upper limit on TR of 107 GeV can be problematic for

inflation models and baryogenesis scenarios. This finding can thus be important

for our understanding of the thermal history of the Universe.

4.2.4 Late-time entropy production

The constraints shown above are applicable for a standard thermal history during the

radiation-dominated epoch. Such a standard cosmological evolution may, e.g., be ac-

complished by considering only a minimal framework such as the MSSM.13

On the other hand, focusing on a gravitino LSP we also explicitly consider the gravity

sector. For example, it is well known that supergravity and string theories generically

suffer from the appearance of scalar fields which can give rise to “cosmological moduli

problems” [166, 167, 168]. Typically, the interaction of such an exotic (eventually)

massive field φ to the MSSM sector is suppressed by a high-energy scale such as MGUT

or MP. The problem arises because φ easily drops out (or never has reached) thermal

equilibrium.

For a massive particle species which is in equilibrium, the energy density ρφ becomes

exponentially suppressed once the temperature drops below its mass. However, if φ is

frozen-out, ρφ/ρrad starts to scale as T−1 so that, eventually, the energy density in φ

dominates over the one in radiation. Thus, if φ lives sufficiently long, it is possible that

a substantial amount of entropy is released in its out-of-equilibrium decay.14 Since an

entropy release tends to erase any pre-existing quantity which itself has originated from

13Even inflation seems to be feasible within the MSSM with the inflaton being a gauge invariant

combination of squark and slepton fields [164]. Strictly speaking, however, neutrinos do not obtain

masses within this framework which are needed to explain the observed neutrino oscillations [165].
14Other entropy production events after inflation are, e.g., Q-ball decays; cf. [169] and references

therein. Gravitino dark matter scenarios with late-time entropy production have been considered previ-

ously for gauge-mediated SUSY breaking where TR > T G̃
f [170, 171, 172, 173, 174].
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a non-equilibrium process—such as ηb—this can be problematic. Moreover, additional

unwanted relics can be produced in the decay of φ leading, e.g., to too much dark matter.

However, as we shall see in the following, entropy production can also have a positive

effect [175].

The change d(a3s) ≡ dS = dQ/T in entropy per comoving volume is found from the

“heat added” in the decay, dQ = a3Γφρφdt [176]. The associated evolution of the entropy

per comoving volume is thus described by

dS

dt
=

Γφρφa
3

T
=

(
2π2

45
geff

)1/3

Γφρφa
4S−1/3. (4.15)

We have already indicated by the chosen notation that the situation is somewhat similar

to that at the end of inflation. Thus, we can solve (4.15) by simultaneously considering

the Boltzmann equation for ρφ in the form (3.11b) together with the Friedmann equation

which governs the evolution of the scale factor a of the Universe; Γφ denotes the decay

width of φ.

From the discussion of Sec. 3.3.1 we know that the temperature after the decay can

be expressed in terms of Γφ,

Tafter ≡
[

10

geff(Tafter)π2

]1/4√
ΓφMP , (4.16)

which satisfies Γφ = 3H(Tafter). Note that primordial nucleosynthesis imposes a lower

limit on this temperature. It mainly emerges from the fact that a re-thermalization of all

the three neutrino species after the reheating process does not happen instantaneously.

Insufficient thermalization affects the Hubble rate, thereby the n/p freeze-out value, and

thus the 4He output in BBN [see Sec. 1.3]. The bounds derived in [177, 178, 179, 180]

are in the range

Tafter & 0.7−4 MeV . (4.17)

In the upper panel of Fig. 4.6 we show the evolution of S, a3ρφ, and a3ρrad for

two exemplary scenarios respecting (4.17). The scale factor a is normalized by15 aI ≡
a(10 GeV) = 1 GeV−1 and the temperature dependence of heff is taken into account as

determined in [28]. For ρφ(10 GeV) = 0.1 ρrad(10 GeV) and Tafter = 6 MeV, S increases

by a factor of ∆ = 100 as shown by the corresponding solid line. For ρφ(10 GeV) =

8 ρrad(10 GeV) and Tafter = 4.9 MeV, S increases by a factor of ∆ = 104 as shown by

the corresponding dotted (blue) line.

15Giving a the dimension of a length makes the radial coordinate in the Friedmann-Robertson-Walker

metric dimensionless.
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Figure 4.6: Top: Evolution of S, a3ρφ, and a3ρrad as a function of T for the

normalization aI ≡ a(10 GeV) = 1 GeV−1. The solid lines are obtained for

ρφ(10 GeV) = 0.1 ρrad(10 GeV) and Tafter = 6 MeV, the dotted (blue) lines for

ρφ(10 GeV) = 8 ρrad(10 GeV) and Tafter = 4.9 MeV. Bottom: Evolution of the temper-

ature for the scenario which is depicted by the solid lines in the left panel.
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The lower panel of Fig. 4.6 shows the associated evolution of the photon temperature

for the case ∆ = 100. As long as the comoving entropy is conserved, T ∝ h
−1/3
eff a−1. This

causes T to decrease slightly less slowly than a−1 during the quark-hadron transition at

T ∼ 200 MeV which we have assumed to be adiabatic [181]. As already encountered

in Sec. 3.3.1, the temperature scales with a−3/8 during entropy production, i.e., during

reheating, the temperature does not increase but rather drops less slowly [176]. Below

Tafter the Universe again expands as a radiation-dominated one.

In the following, we restrict our study of entropy production at late times, Tbefore ≃
Tlow ≪ TR, so that the thermal production of gravitinos is not affected. We assume

that the production of gravitinos and NLSPs in the entropy producing event, such as

the direct production in decays of φ, is negligible.16 Moreover, in this section, we focus

on scenarios in which the decoupling of the NLSP is not or at most marginally affected

by entropy production, i.e., either TR ≫ Tafter ≫ TNLSP
f or ρrad ≫ ρφ for T & TNLSP

f .

Note that the latter condition excludes the event shown in Fig. 4.6 with ∆ = 104; see,

however, Sec. 4.2.5. Thus, the thermally produced gravitino yield and—in the case of

entropy production after NLSP decoupling—also the non-thermally produced gravitino

yield are diluted:

Y
G̃
(Tafter) =

S(Tlow)

S(Tafter)
Y

G̃
(Tlow) . (4.18)

In the case of late-time entropy production before the decoupling of the NLSP, we

parameterize this by writing

Y TP
G̃

(T0) =
1

δ
Y TP

G̃
(Tlow) . (4.19)

In this case, YNLSP(T0) and thereby ΩNTP
G̃

and the BBN constraints remain unaffected.

Conversely, in the case of late-time entropy production after the decoupling of the

NLSP (and before BBN) both, Y TP
G̃

(T0) and YNLSP(T0), are reduced:

Y TP
G̃

(T0) =
1

∆
Y TP

G̃
(Tlow),

YNLSP(T0) =
1

∆
YNLSP(Tlow). (4.20)

Accordingly, ΩTP
G̃

and ΩNTP
G̃

become smaller and the BBN constraints can be relaxed.

In Fig. 4.7 we show how late-time entropy production before (left) and after (right)

16Note however, if kinematically allowed, a φ field will also typically decay into SUSY particles [182,

183, 122]. Thus, the constraints discussed below shall therefore be considered as conservative/optimistic

bounds.
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NLSP decoupling affects the 6Li constraint and the region in which 0.075 ≤ Ω
G̃
h2 ≤ 0.126

for TR = 109 GeV. The (m1/2,m0) planes are considered for tanβ = 10, A0 = 0, µ > 0,

m
G̃

= 100 GeV (upper panels) and m
G̃

= m0 (lower panels). The dark shaded (dark

green) region is obtained without late time entropy production, δ = ∆ = 1. The medium

and light shaded (medium and light green) bands are obtained with a dilution of ΩTP
G̃

(ΩTP
G̃

+ΩNTP
G̃

) by δ = 10 (∆ = 10) and δ = 100 (∆ = 100), respectively. The dot-dashed

(red) line illustrates that the 6Li bound is independent of δ, as shown in the panels on the

left-hand side, and becomes weaker (i.e., moves to the left) with increasing ∆, as shown

in the panels on the right-hand side. Other curves and regions are identical to the ones in

the corresponding panels of Fig. 4.4. Note that we do not show the D constraint on late

hadronic energy injection since it is not sensitive to δ and vanishes already for ∆ = 10;

an exception is the severe D constraint which still appears for ∆ = 10 in panel (a). BBN

constraints on χ̃0
1 NLSP scenarios with entropy production after NLSP decoupling will

be studied elsewhere.

Comparing panels (b) and (d) of Fig. 4.4 with panels (a) and (c) in Fig. 4.7, we find

that a dilution factor of δ = 10 (100) relaxes the TR bound by a factor of 10 (100). Since

the BBN constraints are unaffected by δ, the cosmologically disfavored range of NLSP

masses cannot be relaxed. With the dilution after NLSP decoupling, the relaxation of

the TR constraints is more pronounced. Here also the cosmologically disfavored range

of NLSP masses can be relaxed [175]. However, as can be seen in panels (b) and (d) of

Fig. 4.7, the 6Li bound is persistent. With a dilution factor of ∆ = 100, large regions

of the (m1/2,m0) plane remain cosmologically disfavored. For even larger factors of ∆,

however, the 6Li bound can be evaded as will be shown explicitly below.

Figure 4.7 shows that inflation models predicting, for example, TR = 109 GeV become

allowed in the CMSSM with gravitino dark matter for δ = ∆ ≈ 100. Here it is not

necessary to have late-time entropy production in the somewhat narrow window between

NLSP decoupling and BBN. This is different for the viability of thermal leptogenesis in

the considered scenarios where T G̃
f > TR.

4.2.5 Viability of thermal leptogenesis

The constraint TR . 107 GeV obtained in the considered CMSSM scenarios for a stan-

dard cosmological history strongly disfavors thermal leptogenesis. However, if entropy

is released after NLSP decoupling, a dilution factor of ∆ & 103 can render thermal

leptogenesis viable for TR & 1012 GeV.

Thermal leptogenesis—in its simplest form, with hierarchical heavy right-handed Ma-
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Figure 4.7: The effect of late-time entropy production before (left) and after (right)

NLSP decoupling on regions in which 0.075 ≤ ΩG̃h
2 ≤ 0.126 for TR = 109 GeV. The

(m1/2,m0) plane is shown for tanβ = 10, A0 = 0, µ > 0, mG̃ = 100 GeV (upper panels)

and mG̃ = m0 (lower panels). The dark shaded (dark green) region is obtained without

late-time entropy production δ = ∆ = 1. The medium and light shaded (medium and

light green) bands are obtained with a dilution of ΩTP
G̃

(ΩTP
G̃

+ΩNTP
G̃

) by δ = 10 (∆ = 10)

and δ = 100 (∆ = 100), respectively. The τ̃ NLSP region to the right of the dot-dashed

(red) line is cosmologically disfavored by the primordial 6Li abundance. Other curves

and regions are identical to the ones in the corresponding panels of Fig. 4.4. The severe

D constraint for ∆ = 10 appears only in panel (d).
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jorana neutrinos —usually requires TR & 109 GeV [134, 135, 184, 185].17 However, late-

time entropy production dilutes the baryon asymmetry which is generated well before

NLSP decoupling,

ηb(Tafter) =
1

∆
ηb(Tbefore) . (4.21)

Therefore, the baryon asymmetry before entropy production must be larger by a factor

of ∆ in order to compensate for the dilution. For ∆ ∼ 103, this can be achieved in the

case of hierarchical neutrinos for MR1 ∼ TR & 1012 GeV, as can be seen in Fig. 7 (a) of

Ref. [186] and in Fig. 2 of Ref. [187]. Here, MR1 is the mass of the lightest among the

heavy right-handed Majorana neutrinos.

That it is indeed possible to produce such a large amount of entropy in the narrow

time window between NLSP decoupling an BBN, we show in Fig. 4.6 a scenario in which

a dilution factor of even ∆ = 104 is generated in the out-of-equilibrium decay of a heavy

particle φ [dotted (blue) lines]. However, because of ρφ(10 GeV) = 8 ρrad(10 GeV), the

Hubble rate is already enhanced already during the decoupling phase of the NLSP. This

leads to an increase of TNLSP
f and YNLSP(TNLSP

f ). In the results shown below, we indeed

account for this by using a modified version of the micrOMEGAs code. Thereby, the YNLSP

contours shown in Fig. 4.3 do not apply in this section. After entropy production, the

net effect is still a significant reduction of YNLSP(T0)—provided that φ does not decay

into SUSY particles.

In Fig. 4.8 we consider now two concrete scenarios with ρφ(10 GeV) = 8 ρrad(10 GeV)

as initial condition and with ∆ = 103 and 2 × 103 corresponding to the respective

reheating temperatures Tafter = 48 MeV and 24 MeV. We choose the (m1/2,m0)-plane

with tanβ = 10, A0 = 0, µ > 0, and m
G̃

= m0. Here the shaded (green) bands indicate

the region in which 0.075 ≤ Ω
G̃
h2 ≤ 0.126 for TR = 2×1012 GeV and ∆ = 103 (dark) and

2×103 (medium). In addition, the corresponding evolution of the 6Li bound is shown by

the dot-dashed (red) lines. The regions in the τ̃1-NLSP region above the curves remain

cosmologically disfavored. The gray regions are identical to the ones in Fig. 4.5.

We find that the 6Li bound can indeed be evaded for ∆ = 2 × 103. Gravitino dark

matter scenarios with successful thermal leptogenesis in the τ̃1 NLSP region are located

on the light-shaded (light green) band. As can be seen in Fig. 4.8, the τ̃1 NLSP region

with m1/2 . 700 GeV where mτ̃1 . 250 GeV (cf. Fig. 4.3), is no longer disfavored by

the 6Li bound provided ∆ & 103. Such scenarios are particularly promising since the

long-lived τ̃1 NLSP could provide striking signatures of gravitino dark matter at future

colliders [154, 188, 189, 190, 191].
17Right-handed (heavy) neutrinos (and their superpartners) are not part of the (C)MSSM. Again, this

section contains an updated discussion of the published work [1]; see Sec. 4.2.3.
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Figure 4.8: The effect of entropy production after NLSP decoupling for TR = 2 ×
1012 GeV and ∆ ≥ 103 in the (m1/2,m0) plane for tanβ = 10, A0 = 0, µ > 0, and

mG̃ = m0. The shaded (green) bands show the region in which 0.075 ≤ ΩG̃h
2 ≤ 0.126

for ∆ = 103 (dark) and 2 × 103 (medium). The dot-dashed (red) lines illustrate the

corresponding evolution of the 6Li bound with the regions below being cosmologically

allowed.

Finally, let us remark that the exact value of the actual amount of entropy required

is model dependent. Though we have accounted for the fact that the presence of the

energy density ρφ during NLSP decoupling can affect Y dec
NLSP, we have neglected a possible

branching ratio of the φ decays into τ̃1 and/or gravitinos. Moreover, such a scenario is—

of course—fine-tuned since entropy has to be released in a very narrow time window.

However, with our improved treatment of the CBBN yield of 6Li it becomes slightly easier

(when compared to [1]) to circumvent the stringent 6Li bound.18 This is indicated by

the fact that we were able to allow for an increased NLSP decoupling yield by choosing

ρφ(10 GeV) = 8 ρrad(10 GeV) which lead to the generous choice of Tafter > 20 MeV.

Since we have not provided explicitly a model for φ we understand the results presented

in this section as a proof-of-concept study that a non-standard cosmological evolution

can evade even the most stringent of all BBN constraints while still allowing for successful

leptogenesis.

18The value is now in the region provided by the more recent Ref. [84] in which also our employed

CBBN rate for 6Li production was obtained. The authors, however, only use the Saha approximation

for the (4Heτ̃−
1 ) bound state abundance; see Sec. 2.3.
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Chapter 5

Thermal relic stau abundances

In Part I of this thesis we worked out the effects which a long-lived electrically charged

massive particle species X± has on the predictions of primordial nucleosynthesis. In

Part II we then considered concrete realizations of X± in gravitino dark matter scenarios

in which τ̃1 is the lightest Standard Model superpartner. There, a central parameter in

the investigation is the abundance of τ̃1 during/after BBN. For a standard thermal

history it is determined by ττ̃1 and by its thermal freeze-out value which we shall call

Yτ̃ ≡ Y dec
τ̃1

in the following; recall that Y dec
τ̃1

= (ndec
τ̃1

+ ndec
τ̃∗
1

)/s is the total stau number

density normalized to the entropy density prior to its decay .

In particular, we saw that Yτ̃ (i) governs the non-thermally produced relic den-

sity (4.2) of gravitino dark matter that originates from τ̃1 decays, (ii) controls the

hadronic and electromagnetic BBN constraints by quantifying the total energy density

mτ̃1sYτ̃ which is eventually be released in the decay and (iii) parameterizes the abun-

dance Yτ̃/2 of recombination partners with the light elements leading to the catalysis of

BBN.

Importantly, the points (i)-(iii) have in common that they give rise to upper limits

on Yτ̃ : (i) For example, for m
G̃

= 50 GeV and a thermally produced gravitino density

ΩTP
G̃

= 0.99 Ωdm (0.9 Ωdm), one finds from (4.14) Yτ̃ < 10−13 (10−12); see also Fig. 13

of [139]. (ii) The BBN constraints on hadronic and electromagnetic energy release can

be as restrictive as Yτ̃ < 10−14 (10−15); cf. Fig. 12 of [139] and Figs. 14 and 15 of [130].

(iii) Catalyzed production of 9Be (and 6Li) imposes restrictive upper limits of Yτ̃ .

2 × 10−15 (2 × 10−15 – 2 × 10−16) for ττ̃1 & 105 s; see Fig. 2.9.

In Chapter 4 we have either made use of representative values (4.1) of Yτ̃ or performed

exemplary CMSSM parameter scans which gave us Yτ̃ , e.g., for fixed values of tanβ and

Aτ . In this chapter we now calculate Yτ̃ by taking into account the complete set of

103
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stau annihilation channels in the MSSM with real parameters for SUSY spectra for

which sparticle coannihilation is negligible. Using our own code for the computation

of the resulting thermal relic stau abundance Yτ̃ , we examine explicitly (i) the effect of

left–right mixing of the lighter stau, (ii) the effect of large stau–Higgs couplings, and

(iii) stau annihilation at the resonance of the heavy CP-even Higgs boson H0. We

consider both the “phenomenological MSSM” (pMSSM) (see, e.g., [161]) in which the

soft SUSY breaking parameters can be set at the weak scale, and the CMSSM.

Within the framework of the pMSSM, we show examples in which Yτ̃ can be well

below 10−15. Even within the CMSSM, we encounter regions with exceptionally small

values of Yτ̃ . 2 × 10−15. We stress that the results in the following are independent

on the nature of the LSP. However, we discuss the implications of these findings for the

gravitino-stau scenario.1 We also address the viability of a τ̃1–τ̃
∗
1 asymmetry. The key

quantities for the significant Yτ̃ reduction could be probed at both the LHC and the

ILC.

The work presented in this chapter is based on the publication [5]. A calculation of

the thermal relic abundance of long-lived staus has also been part of a detailed study [36]

which focuses on gauge interactions and on the effect of Sommerfeld enhancement. In

contrast, the most striking findings of our study—in which Sommerfeld enhancement is

not taken into account—are related to the Higgs sector of the MSSM.

We also remark that our work has some overlap with [192] which appeared as [5] was

being finalized. Whereas [192] focuses on the potential suppression in Yτ̃ due to enhanced

annihilation into the lighter Higgs final state, our work provides an investigation of stau

decoupling based on a complete set of annihilation channels. Thereby, we also study

enhanced stau annihilation into heavier Higgs final states and consider annihilation at

the heavy Higgs resonance.

The outline of this chapter is as follows. In the next section we review basic proper-

ties of the staus to introduce our notations and conventions for the stau mixing angle.

Section 5.2 explains the way in which we calculate Yτ̃ and provides the complete list

of stau annihilation channels. In Sec. 5.3 we analyze the dependence of the most rel-

evant stau annihilation channels on the stau mixing angle. Effects of large stau–Higgs

couplings and stau annihilation at the H0 resonance are studied in Sects. 5.4 and 5.5,

respectively. The viability of a τ̃1–τ̃
∗
1 asymmetry is addressed in Sec. 5.6. In Sec. 5.7 we

present exemplary parameter scans within the CMSSM that exhibit exceptionally small

Yτ̃ values. Potential collider phenomenology of the parameter regions associated with

those exceptional relic abundances and potential implications for gravitino dark matter

1For simplicity, we call the parameter region in which mχ̃0

1

< mτ̃1
the χ̃0

1-NLSP region in the following.
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scenarios are discussed in Sects. 5.8 and 5.9, respectively.

5.1 Stau mixing and mass eigenstates

In this section we review some basic properties of the stau to set the notation. In

absence of inter-generational mixing, the stau mass-squared matrix in the basis of the

gauge eigenstates (τ̃L, τ̃R) reads

M2
τ̃ =

(
m2

τ +m2
LL mτX

∗
τ

mτXτ m2
τ +m2

RR

)
= (Rτ̃ )

†

(
m2

τ̃1
0

0 m2
τ̃2

)
Rτ̃ (5.1)

with

m2
LL = m2

τ̃L
+

(
−1

2
+ sin2 θW

)
M2

Z cos 2β (5.2)

m2
RR = m2

τ̃R
− sin2 θWM2

Z cos 2β (5.3)

Xτ = Aτ − µ∗ tanβ . (5.4)

Here, mτ̃L and mτ̃R are the soft SUSY breaking masses, Aτ is the trilinear coupling, µ

is the Higgs-higgsino mass parameter, and tanβ = v2/v1 denotes the ratio of the two

Higgs vacuum expectation values. In this work we restrict ourselves to the MSSM with

real parameters. Then X∗
τ = Xτ so that the mass eigenstates τ̃1 and τ̃2 are related to τ̃L

and τ̃R by means of an orthogonal transformation

(
τ̃1

τ̃2

)
= Rτ̃

(
τ̃L

τ̃R

)
with Rτ̃ =

(
cos θτ̃ sin θτ̃

− sin θτ̃ cos θτ̃

)
(5.5)

with θτ̃ denoting the stau mixing angle. Imposing the mass ordering mτ̃1 < mτ̃2 and

choosing 0 ≤ θτ̃ < π, the mixing angle can be inferred from the elements of M2
τ̃ ,

tan 2θτ̃ =
2mτXτ

m2
LL −m2

RR

=
2mτXτ

δ
, sin 2θτ̃ =

2mτXτ

m2
τ̃1
−m2

τ̃2

, (5.6)

where the sign of the second relation determines the quadrant of θτ̃ . In the first relation,

we have introduced δ ≡ m2
LL −m2

RR. In particular, θτ̃ = π/2 corresponds to a purely

right-handed stau, τ̃1 = τ̃R, whereas maximal mixing occurs for θτ̃ = π/4 and 3π/4. The

physical stau masses are then given by

m2
τ̃1,2

= m2
τ +m2

RR +
1

2

[
δ ∓

√
δ2 + 4m2

τX
2
τ

]
(5.7)

from which we see that an increase of |Xτ | leads to a reduction of mτ̃1 .
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5.2 Calculation of the thermal relic stau abundance

We have undertaken the effort to set up our own full-fledged relic abundance calculation.

Let us in the following give a description of our approach to compute the stau yield Yτ̃ .

Throughout this work we assume a standard cosmological history with a temperature T

of the primordial plasma above the stau decoupling temperature Tf so that the lighter

stau τ̃1 was once in thermal equilibrium. Then, the total stau yield Yτ̃ ≡ Yτ̃1+Yτ̃∗
1

is found

by solving the Boltzmann equation (1.9) with YX = Yτ̃ Using the Maxwell–Boltzmann

approximation, the stau equilibrium yield Y eq
τ̃ is given by

Y eq
τ̃ =

m2
τ̃1
T

π2s
K2

(mτ̃1

T

)
(5.8)

and the thermally averaged annihilation cross section by [28]

〈σv〉(T ) =
1

2m4
τ̃1
T [K2(mτ̃1/T )]2

∫ ∞

4m2
τ̃1

ds
√
sK1

(√
s

T

)
P 2

effσ(s) , (5.9)

where Ki is the modified Bessel function of order i and Peff =
√
s− 4m2

τ̃1

/
2.

Note that 〈σv〉 contains all the information from the particle physics side. It is

obtained by computing the total stau-annihilation cross section,

σ ≡ 1

2
σtot with σtot = στ̃1 τ̃1→ττ +

∑

X

στ̃1 τ̃∗
1→X , (5.10)

where the sum for the annihilation of τ̃1 τ̃
∗
1 pairs2 has to be taken over all final states X.

The factor 1/2 is convention but gives (1.9) its familiar form. The complete list of annihi-

lation processes in the MSSM with real parameters—save for coannihilation processes—is

given in Table 5.1.3 In addition, this table shows all possible particle exchanges, where

s, t, and u are the Mandelstam variables which denote the respective channel. A number

of annihilation processes proceeds also via a four-point vertex. Those are marked in the

column named “contact.” Already by mere optical inspection, we immediately see that

the Higgs sector plays potentially an important role in the determination of the stau

yield Yτ̃ .

For all channels in Table 5.1, we generate Fortran code for the squared matrix el-

ements |Mi|2 by using the computer algebra packages FeynArts 5.4 [194, 195] and

2Counting wise we distinguish between τ̃1 τ̃∗
1 → X and the conjugate process τ̃∗

1 τ̃1 → X. In absence

of CP violation in the SUSY sector, their cross sections agree so that we can solve a single Boltzmann

equation (1.9) for obtaining Yτ̃ .
3For a purely right-handed stau τ̃1 = τ̃R, the stau annihilation channels and associated cross sections

have already been presented in Ref. [193] in the context of χ̃0
1-τ̃1 coannihilation.
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Table 5.1: The complete set of stau annihilation channels in the MSSM with real

parameters for scenarios in which sparticle coannihilations are negligible. The mass

eigenstates of the Higgs fields are denoted by h0, H0, A0, and H± and the ones of the

neutralinos, the charginos, and the tau sneutrino by χ̃0
1,..,4, χ̃

±
1,2, and ν̃τ , respectively.

Because of the absence of a τ̃1τ̃1A
0 coupling (cf. Sec. 5.4), s-channel exchange of the

CP-odd Higgs boson A0 and also τ̃1τ̃
∗
1 → γA0 do not appear.

τ̃
(∗)
1 τ̃

(∗)
1 → final state s-channel t(u)-channel contact

ττ (ττ) — χ̃0
1,..,4 —

τ̃1τ̃
∗
1 → final state X† s-channel t(u)-channel contact

µµ, ee h0, H0, γ, Z — —

ττ h0, H0, γ, Z χ̃0
1,..,4 —

νeνe, νµνµ Z — —

ντντ Z χ̃±
1,2 —

qkqk h0, H0, γ, Z — —

γγ, γZ — τ̃1 X

ZZ h0, H0 τ̃1,2 X

W+W− h0, H0, γ, Z ν̃τ X

γh0, γH0 — τ̃1 —

Zh0, ZH0 Z τ̃1,2 —

ZA0 h0, H0 τ̃2 —

W∓H± h0, H0 ν̃τ —

h0h0, h0H0,

H0H0
h0, H0 τ̃1,2 X

A0A0 h0, H0 τ̃2 X

h0A0, H0A0 Z τ̃2 —

H+H− h0, H0, γ, Z ν̃τ X

† k = u, d, c, s, t, b
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FormCalc 5.3 [196, 197]. For a chosen point in the SUSY parameter space, we then

compute the radiatively corrected superparticle spectrum by running the spectrum gen-

erator SuSpect 2.40 [161]. Its output allows us to set all SUSY parameters so that we

can compute the total cross section σtot(s) given by (5.10) and subsequently the ther-

mally averaged cross section (5.9). Numerically, the computation of (5.9) is the most

demanding part in the relic abundance calculation. In particular, we take special care

about the following cases:

• H0-resonance: Resonant stau annihilation via H0 exchange is one of the central

points in this part. In the generation of the matrix elements, we have therefore

included the total H0-width ΓH0 in the respective s-channel propagators.

• Propagator poles: A diverging t(u)-channel propagator can be encountered when a

production threshold is met. We overcome this problem by including a “sparticle-

width”of 0.01mτ̃1 in the respective propagators in the vicinity of dangerous thresh-

olds. A particularly interesting example with a diverging t(u)-channel propagator

is given by the process τ̃1 τ̃
∗
1 → γH0 if

√
s = mH0 is fulfilled since then the H0-

exchange in the s-channels of other processes is resonant simultaneously.

• Bessel functions: The Bessel functions in (5.8) and (5.9) exhibit an exponential

behavior for large arguments x≫ 1 [68]

Kn(x) ≃
√

π

2x
e−x

(
1 +

4n2 − 1

8x
+ . . .

)
. (5.11)

For small temperatures T , the arguments of K1 and K2 in (5.9) become large

simultaneously. Therefore, in order to ensure numerical stability, we expand the

Bessel functions in (5.9) for mτ̃1/T > 35 as in (5.11) and cancel the exponents

analytically.

We find the starting point for the numerical integration of (1.9) by solving [163]

dY eq
τ̃

dT

∣∣∣∣
Tf1

=

√
8π2g∗(T )

45
MP〈σv〉(Y eq

τ̃ )2λ(λ+ 2) (5.12)

where g∗(T ) is given by (1.10). Tf1 marks the point at which the stau starts to de-

couple chemically from the background plasma, Yτ̃ (Tf1) − Y eq
τ̃ (Tf1) ≃ λY eq

τ̃ (Tf1) with

λ = 0.1 [163] chosen in our code. Since we use a globally adaptive Gaussian integration

routine to calculate (5.9), the computation of 〈σv〉(T ) is time-demanding. Therefore,

we evaluate (5.9) on a grid of different temperatures and use cubic spline interpolation

to obtain values in between. We then solve the Boltzmann equation (1.9) by numerical
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Figure 5.1: Schematic overview of our approach to calculate Yτ̃ : (i) We generate ma-

trix elements from which we obtain the differential cross section dσ/d cosϑ; shown here

is an example of the ττ channel. (ii) Integration yields the invariant cross section σ.

The effect of “thermal weighting” of σ is shown in (iii) by plotting (5.9) before inte-

gration for the single ττ channel (as a function of Peff .) Summing up all annihilation

channels and integration of (5.9) yields 〈σv〉 in (iv) at a grid of temperatures (crosses).

(v) Taking into account the temperature dependence of g∗ and heff and—upon cubic

spline interpolation of 〈σv〉 in (iv)—we arrive at Yτ̃ in (vi) from integration of (1.9) .
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integration from Tf1 to zero. There, we fully take into the account the temperature

dependence of g∗ and heff by interpolating the respective tabulated values provided as

part of the relic density code DarkSUSY 4.00 [33]. The freeze out temperature can then

be defined by Tf ≡ (Tf1 + Tf2)/2 where Tf2 is given by Y eq
τ̃ (Tf2) = Yτ̃ (Tf2)/10 [163]. For

T < Tf2, residual annihilations will further reduce Yτ̃ so that we refer to the decoupling

yield Y dec
τ̃ as the quantity at the endpoint of integration. As already pointed out in the

introduction, for simplicity, we call this yield Yτ̃ . Moreover, we will quantify T in terms

of x ≡ mτ̃1/T and in particular Tf in terms of xf ≡ mτ̃1/Tf . We have also schematically

depicted the approach to Yτ̃ in Fig. 5.1 for an exemplary scenario (which gives rise to

resonant stau annihilation. See the figure caption for details.)

Note that we have additionally modified the FeynArts MSSM model file for the

generation of the matrix elements in two ways: The first version, which we use throughout

Sects. 5.3–5.5, allows us to set all qkqk–Higgs and all trilinear Higgs couplings by using

the computer tool FeynHiggs 2.6.3 [198]; see also Sects. 5.4 and 5.5. The second

version allows for a direct comparison with the existing computer code micrOMEGAs

2.0.6 [162, 163, 199]. We have transcribed their routine [200] for the computation of

the running quark masses to Fortran, adopted all qkqk–Higgs couplings, and modified

all Higgs-self couplings of our matrix elements to match with their implemented version

of the MSSM [201]. Using this second version, we find perfect agreement between our

codes.4

5.3 Dependence of stau annihilation on the stau mixing

angle

In order to isolate the distinct features of the different annihilation processes we need

to have full control over the superparticle mass spectrum. Therefore, in the following,

we will not rely on any constrained model (such as the CMSSM) where the soft-SUSY

breaking parameters are subject to stringent boundary conditions at some high scale

(such as MGUT). In those models, the mass spectrum is found only after renormaliza-

tion group (RG) evolution from the high scale down to the electroweak scale. Instead,

we choose to work in the framework of the “phenomenological MSSM” (pMSSM), see,

e.g., [161]. There, all soft-SUSY breaking parameters can be set at the scale of elec-

4For our computation we use the Standard Model parameters mt = 172.5 GeV, mb(mb)MS =

4.25 GeV, αMS
s (MZ) = 0.1172, α−1MS

em (MZ) = 127.932, and MZ = 91.187 GeV. Since micrOMEGAs

has hard-coded sin θW = 0.481 from which it computes MW using the on-shell relation with MZ, we

follow their convention to allow for a better comparison of our results with micrOMEGAs.
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troweak symmetry breaking—a low scale—which we fix to ∼ 2mτ̃1 . In particular, one

can also trade the Higgs mass-squared parameters m2
Hu

and m2
Hd

against µ and the pseu-

doscalar Higgs boson mass mA0 .5 Choosing µ as an input parameter is very convenient

for two reasons: First, together with the specification of the gaugino masses M1,2 we

have control over the gaugino/higgsino mixture of the neutralinos χ̃0
i . Second, µ enters

directly into the stau-Higgs couplings, whose importance will become clear in the next

section. Furthermore, in the following, we choose to set all soft-SUSY breaking scalar

masses (apart from mτ̃Land mτ̃R) to a common value MS = 1 TeV. Thereby, we essen-

tially decouple all sfermions which are not of interest for us. This ensures also that we

never enter accidentally any coannihilation regime. Finally, for simplicity, we set also

all trilinear parameters to a common value A. Given µ, Aτ = A, and tanβ, and thereby

Xτ , we can then fix mτ̃1 and θτ̃ to arbitrary values by adjusting m2
RR and δ in Eqs. (5.6)

and (5.7).

In the following, we will focus on two distinct regions of the SUSY parameter space.

In the beginning, we will choose mA0 to be very large mA0 = 1 TeV ≫ MZ. This cor-

responds to the decoupling limit of the MSSM where the following (tree-level) relations

hold [202]

m2
h0 ≃M2

Z cos2 2β, m2
H0 ≃ m2

A0 +M2
Z sin2 2β, (5.13)

m2
H± = m2

A0 +M2
W, cos2 (β − α) ≃ M4

Z sin2 4β

4m4
A0

. (5.14)

Therefore, mA0 ≃ mH0 ≃ mH± up to corrections O
(
M2

Z/mA0

)
so that any of the stau

annihilation channels into heavy Higgs bosons is kinematically blocked. Furthermore,

cos (β − α) = 0 up to corrections O
(
M2

Z/m
2
A0

)
implies that the H0V V coupling (V =

Z,W ) becomes very small so that we loose the H0-exchanges in the stau annihilation

channels with a V V final state. At the same time, the light Higgs boson takes on its

Standard Model value for the h0V V coupling. Complementary to that we will consider

also regions of the SUSY parameter space with smaller mA0 , e.g., in the next section,

where we will put a stronger focus on the Higgs sector and its connection to Yτ̃ .

In Fig. 5.2a we show the θτ̃ -dependence of the masses of the heavier stau, mτ̃2 ,

(curved solid line) and the tau-sneutrino, mν̃τ
, (dashed line) for fixed mτ̃1 = 130 GeV

and the input parameters tanβ = 10, mA0 = µ = −A = 1 TeV, and 6M1 = M2,3 =

1 TeV. Because of SU(2) gauge invariance, mτ̃L sets also the soft-breaking mass for

the tau-sneutrino hence approximately m2
ν̃τ

∼ m2
τ̃R

+ δ so that ν̃τ becomes lighter than

τ̃1 for θτ̃ . 18◦ (δ is negative in that region). In addition, we plot the masses of the

5Though the advocated procedure may require fine-tuning in the electroweak symmetry breaking

conditions, it conveniently provides us with running parameters at the scale of stau annihilation.



112 Chapter 5. Thermal relic stau abundances

(a)

mh0me�1me��me�01me�2

�e�
m i[GeV℄

90Æ80Æ70Æ60Æ50Æ40Æ30Æ20Æ10Æ

1000

100
500
200

(b)
ZZZ��WW��h0h0�e� = 40Æ #:

�e�
� iv r[pb℄

90Æ80Æ70Æ60Æ50Æ40Æ30Æ20Æ10Æ

302520151050
Figure 5.2: (a) The dependence of mτ̃2

(curved solid line) and mν̃τ
(dashed line) on

the stau mixing angle θτ̃ for the input parameters mτ̃1
= 130 GeV (horizontal solid

line), tanβ = 10, mA0 = MS = M3 = −A = 1 TeV, and 6M1 = M2 = µ = 1 TeV (i.e.,

χ̃0
1 ≃ B̃) for which mχ̃0

1
= 169 GeV (dash-dotted line) and mh0 = 116 GeV (dotted

line). (b) Dominant stau annihilation cross sections times the relative velocity vr of the

incoming staus as a function of θτ̃ for Peff = 10 GeV and the same input parameters

as in (a). The curves show the channels with the following final states: h0h0, γγ, ττ ,

WW , ττ , ZZ, γZ (at θτ̃ = 40◦, from top to bottom). In addition, we plot σττvr

for the case of a wino-like neutralino, χ̃0
1 ≃ W̃ , with mχ̃0

1
= 175 GeV as obtained with

M1 = 6M2 = 1 TeV (thin gray line). No lines are shown for θτ̃ < 18◦ where mν̃τ
< mτ̃1

.

lightest neutralino, mχ̃0
1

= 169 GeV (dash-dotted line), the lighter stau, mτ̃1 = 130 GeV

(horizontal solid line), and the lightest Higgs, mh0 = 116 GeV (dotted line). We note in

passing that mτ̃1 may deviate slightly from its anticipated input value due to radiative

corrections. We then correct for this by an adjustment of m2
τ̃R

so that we indeed ensure

mτ̃1 to be constant.

In Fig. 5.2b we plot the dominant stau annihilation cross sections times the rela-

tive (non-relativistic) velocity in the center-of-mass frame of the incoming staus, vr =

2Peff/mτ̃1 , for the same parameters as in Fig. 5.2a. Owing to an (approximate) Maxwell-

Boltzmann distribution of the stau velocity, 〈Peff〉|Tf
∼
√
mτ̃1Tf , we choose Peff = 10 GeV

as a representative value.6 The curves show the annihilation channels with the following

final states: h0h0, γγ, ττ , WW , ττ , ZZ, γZ (at θτ̃ = 40◦, from top to bottom). All

6This value is actually at the somewhat lower end, given mτ̃1
& 100 GeV and Tf ≃ mτ̃1

/25. However,

σvr depends only weakly on Peff , and the thermally averaged 〈σiv〉 will be shown in the upcoming figures.
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channels except γγ show a strong dependence on θτ̃ . The h0h0 (ττ) channel peaks at

θτ̃ = π/4—a feature which we will discuss in detail in Sec. 5.4. For the ττ channel,

the overall size of the cross section is governed by mχ̃0
1

since this channel proceeds only

via t(u)-channel exchanges of neutralinos. Our chosen input values lead to a bino-like

neutralino, χ̃0
1 ≃ B̃, and σττ drops for an increasingly ‘left-handed’ stau. (For com-

parison, the thin gray line shows σττvr for the case of a wino-like lightest neutralino,

χ̃0
1 = W̃ , of similar mass, mχ̃0

1
= 175 GeV, as obtained by changing the gaugino mass

input parameters to M1 = 6M2 = 1 TeV.) The annihilation into a WW pair becomes

important for an increasing τ̃L component in τ̃1, i.e., towards smaller θτ̃ , since the t(u)-

channel exchange with the tau-sneutrino opens up; the τ̃1ν̃τW (τ̃1τ̃1WW ) coupling is

proportional to cos θτ̃ (cos2 θτ̃ ). The modulation of the γZ channel can be understood

by considering the structure of the τ̃1τ̃1Z coupling ∝ (1 − 4 sin2 θW + cos 2θτ̃ ). Note

that the first two terms practically cancel out. For stau annihilation into a ZZ pair

there is an additional contribution from τ̃2-exchange with the respective τ̃1τ̃2Z coupling

∝ sin 2θτ̃ . Having discussed the dominant τ̃1 annihilation channels in a simple manner,

we also warn the reader that interferences between the different Feynman diagrams of a

given channel may well lead to a counter-intuitive behavior. In this regard, see Ref. [36]

for a thorough discussion of τ̃1τ̃
∗
1 annihilation into vector bosons. For the limiting case of

a purely ‘right-handed’ stau, τ̃1 ≃ τ̃R (θτ̃ → π/2), we recover the relative importance of

the annihilation cross sections into γγ, γZ, ZZ, and ττ with bino t(u)-channel exchange

found in Ref. [31].

Figure 5.3 shows the θτ̃ -dependence of Yτ̃ (upper panel) and of the relative importance

of the dominant thermally averaged cross sections, 〈σiv〉/〈σtotv〉, at x = 25 (lower panel)

for the same input parameters as in Fig. 5.2. The lines in the lower panel are associated

with the same dominant annihilation channels as in Fig. 5.2b. In addition, the relative

importance of the sum of the displayed cross sections, 〈σdispv〉/〈σtotv〉, (thin line, as

labeled) is shown to demonstrate that the displayed channels constitute indeed (up to at

most about 10%) the dominant part of 〈σtotv〉 for the chosen set of input parameters. In

the upper panel, the total stau decoupling yield obtained with our own relic abundance

calculation is shown by the thick line and the one computed with micrOMEGAs, Y mΩ
τ̃ , by

the thin gray line. For θτ̃ . 25◦, both curves start to deviate from each other since one

enters the ν̃τ–τ̃1 coannihilation region in which the stau decoupling yield increases. This

coannihilation effect leads also to the rise of the thin gray line that shows 〈σtotv〉Y mΩ
τ̃

in arbitrary units (a.u.) in the lower panel. Note that the same line illustrates Yτ̃ ∝
1/〈σtotv〉 for θτ̃ > 25◦, where the result of our relic abundance calculation agrees with

Y mΩ
τ̃ . Interestingly, for the given input parameters, Yτ̃ is not overly affected by the

variation in θτ̃ in this region, which reflects the fact that 〈σtotv〉 and thereby 〈σv〉 vary
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Figure 5.3: Dependence of the stau yield Yτ̃ (upper panel) and of the relative impor-

tance of the dominant thermally averaged cross sections, 〈σiv〉/〈σtotv〉, at x = 25 (lower

panel) on the stau-mixing angle θτ̃ for the same input parameters as in Fig. 5.2. In the

upper panel, the thick line shows the stau yield Yτ̃ obtained with our relic abundance

calculation and the thin gray line the one obtained with micrOMEGAs to which we refer

as Y mΩ
τ̃ . In the lower panel, the line styles are associated with the same dominant

annihilation channels as in Fig. 5.2b. In addition, we show (as labeled) the relative im-

portance of the sum of the displayed cross sections, 〈σdispv〉/〈σtotv〉, and 〈σtotv〉Y mΩ
τ̃

in arbitrary units (a.u.). No lines are shown for θτ̃ < 18◦ where mν̃τ
< mτ̃1

.
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by less than a factor of about 1.5 at the relevant time of decoupling. In the next sections,

we will demonstrate that this picture changes significantly for certain other choices of

the input parameters.

5.4 Effects of large stau-Higgs couplings

Owing to the scalar nature of the stau, there exists a remarkable difference between the

standard neutralino decoupling and the scenario in which the long-lived stau freezes out

from the primordial plasma. For the neutralino LSP, the µ parameter enters into the

annihilation cross sections only indirectly by influencing the gaugino/higgsino mixture

of χ̃0
1. This stands in strong contrast to the case in which a scalar particle is the lightest

Standard Model superpartner: the sfermions couple directly to dimensionful parameters

of the theory, namely, the trilinear couplings A and the Higgs-higgsino mass parameter

µ. The corresponding operators in the MSSM Lagrangian always contain a Higgs field.

In particular, the stau–Higgs couplings are given by

LMSSM ∋ g

MW

∑

α,β=L,R

τ̃∗αC̃[τ̃∗α, τ̃β ,H]τ̃βH (5.15)

with H = h0, H0, A0. We have pulled out the factor g/MW so that the ‘reduced’

couplings C̃[τ̃∗α, τ̃β ,H] among the gauge eigenstates τ̃L and τ̃R are given by [203]

C̃[τ̃∗, τ̃ , h0] =




(
−1

2
+ s2W

)
M2

Zsα+β +m2
τ

sα

cβ

mτ

2

(
Aτ

sα

cβ
+ µ

cα
cβ

)

mτ

2

(
Aτ

sα

cβ
+ µ

cα
cβ

)
−s2WM2

Zsα+β +m2
τ

sα

cβ


 , (5.16)

C̃[τ̃∗, τ̃ , A0] =


 0 +i

mτ

2
(Aτ tanβ + µ)

−imτ

2
(Aτ tanβ + µ) 0


 , (5.17)

where C̃[τ̃∗, τ̃ , H0] can be obtained from (5.16) upon the replacement α → α − π/2.

Whenever convenient, we use the shorthand notation s2W = sin2 θW , cγ = cos γ, and

sγ = sin γ. The parameters Aτ and µ only appear off-diagonal and they are multiplied

with the associated fermion mass, the tau mass mτ .

Using C = Rτ̃ C̃R
†
τ̃ , one obtains the couplings of the mass eigenstates τ̃1 and τ̃2. In

this regard, it is important to note that the coupling of the CP-odd Higgs boson to

the lighter stau vanishes, C[τ̃∗1 , τ̃1, A
0] = 0. Therefore, we have not listed the process

τ̃1τ̃
∗
1 → γA0 in Table 5.1. By the same token, there is also no s-channel exchange of A0

in any of the annihilation channels. Note that this statement remains valid even after
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the inclusion of radiative corrections: There is no induced mixing between h0(H0) and

A0 in absence of CP-violating effects in the SUSY sector.

Let us now turn to the probably most interesting couplings in the context of τ̃1τ̃
∗
1

annihilation, namely, the ones of the lighter stau to h0 and H0. The ‘reduced’ τ̃1τ̃1h
0

coupling reads

C[τ̃∗1 , τ̃1, h
0] =

(
−1

2
c2θτ̃

+ s2W c2θτ̃

)
M2

Zsα+β +m2
τ

sα

cβ
+
mτ

2

(
Aτ

sα

cβ
+ µ

cα
cβ

)
s2θτ̃

.

(5.18)

This is a complicated expression. However, if we choose mA0 to be large, mA0 ≫ MZ,

we can simplify (5.18) by using cos (β − α) = 0 [cf. (5.14)],

CDL[τ̃∗1 , τ̃1, h
0] ≃

(
1

2
c2θτ̃

− s2W c2θτ̃

)
M2

Zc2β −m2
τ − mτ

2
Xτs2θτ̃

. (5.19)

Thereby, we make an interesting observation: In the decoupling limit (DL), the τ̃1τ̃1h
0

coupling becomes proportional to the left–right entry mτXτ of the stau mass-squared

matrix (5.1) and to s2θτ̃
. Therefore, it comes as no surprise that the τ̃1τ̃

∗
1 annihilation

cross section into h0h0 peaks at θτ̃ = π/4—the point of maximal τ̃L-τ̃R mixing—as can be

seen, e.g., in Fig. 5.2b. Analogously, one finds that the τ̃1τ̃1H
0 coupling is proportional

to (Aτ tanβ + µ) s2θτ̃
in the decoupling limit. Complementary, the τ̃1τ̃2h

0/H0 couplings

exhibit in this limit the same combination of A, µ, and tanβ as their τ̃1τ̃1 counterparts

but those terms are now multiplied by c2θτ̃
instead of s2θτ̃

.

After the above discussion, it is clear that there exists the possibility to enhance the

total stau annihilation cross section σtot—and thereby to decrease Yτ̃ ∝ 1/〈σtotv〉—by

choosing a proper combination of large A, µ, and tanβ. In the remainder of this section,

we will explore this possibility for two exemplary pMSSM scenarios.

Before proceeding let us make some technical comments. Large values of the previ-

ously mentioned parameters may well lead to large radiative corrections.7 In order to

arrive at a proper loop-improved tree-level result, we re-evaluate the entire Higgs sec-

tor using FeynHiggs. In particular, we have modified our generated matrix elements

in a way that allows us to set all trilinear Higgs couplings to their loop-corrected val-

ues.8 Note that this goes well beyond a simple α → αeff prescription. Only then, we

mostly find better agreement of our cross sections for stau annihilation into two Higgses

with the ones computed by micrOMEGAs. The latter program uses CalcHEP [200] for

7In this context, note that we introduce a large mt–mt̃1,2
splitting when choosing MS = 1 TeV.

8The author grateful to T. Plehn and M. Rauch for providing us, for cross-checking, with their

implementation of a Fortran routine which calculates the Higgs self-couplings using the effective potential

approach [204].
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the generation of the matrix elements. There, the trilinear Higgs self-couplings have

been expressed in terms of mh0 , mH0 , and mA0 which effectively reabsorbs a bulk of the

radiative corrections [201]. We therefore think that we do slightly better whenever we

encounter some disagreement between the mentioned cross sections. Though the overall

effect on Yτ̃ is typically small, it can be at the level of 20% (see below). Finally, it is

well known that a large A parameter may lead to charge/color breaking minima (CCB)

in the scalar MSSM potential; see, e.g., Ref. [205]. SuSpect performs some basic checks

which we take into account to make sure that we do not violate the constraints associ-

ated with CCB. We remark that our pMSSM scenarios are chosen such as to allow us to

extract the important features of primordial stau annihilation in the most transparent

way—without emphasis on naturalness considerations.

In Fig. 5.4 we demonstrate the effect associated with a large τ̃1τ̃1h
0 coupling by

presenting the θτ̃ -dependence of Yτ̃ (upper panel) and of the relative importance of the

dominant thermally averaged cross sections, 〈σiv〉/〈σtotv〉, at x = 30 (lower panel) for

the pMSSM scenario associated with mτ̃1 = 130 GeV, tanβ = 50, mA0 = MS = M3 =

−A = 1 TeV, and 6M1 = M2 = µ = 1 TeV. In this scenario, mh0 stays in the range

117 − 119 GeV and the lightest neutralino is bino-like with a mass of mχ̃0
1

= 169 GeV.

Stau annihilation into heavy Higgses remains kinematically forbidden. The curves in

the lower panel are associated with stau annihilation into h0h0, WW , ττ , ZZ, γγ, and

γZ (at θτ̃ = 80◦, from top to bottom). As is evident, the annihilation into h0h0 is

enhanced already well before θτ̃ = π/4. At the peak position, σh0h0vr ≃ 8.8 × 103 pb

for Peff = 10 GeV (no thermal average), which is still three orders of magnitude below

the unitarity bound for inelastic s-wave annihilation, σuvr = 8π/(mτ̃1Peff) [206, 36].

Also the cross sections for stau annihilation into WW and ZZ are strongly enhanced

towards θτ̃ = π/4 since the s-channel contribution of τ̃1τ̃1 → h0∗ → V V becomes very

important. At their respective peak positions, σWW vr ≃ 250 pb and σZZvr ≃ 130 pb

for Peff = 10 GeV. (Because of the dominance of the h0h0 channel, the corresponding

maxima do not show up in Fig. 5.4 where 〈σiv〉/〈σtotv〉 is shown.) By the same token,

the cross sections of all (kinematically allowed) channels with a fermion-antifermion final

state (e.g. ττ)—which are subdominant in the scenario considered in Fig. 5.4—experience

an enhancement for θτ̃ → π/4. In total, there is an enhancement of 〈σtotv〉 that delays

the thermal freeze out of the staus significantly, i.e., xf ≃ 33 for θτ̃ ≃ π/4. As can be

seen in the upper panel of Fig. 5.4, the decoupling yield is thereby reduced dramatically

down to a minimum value of Yτ̃ = 7.4×10−16 for maximal left–right mixing of the staus.

In the previous pMSSM examples, annihilation into final states containing heavy

Higgs bosons is kinematically forbidden. We can allow for those channels by reducing the

input valuemA0 . Indeed, scenarios in which all Higgs bosons are very light in conjunction
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Figure 5.4: Analogous to Fig. 5.3 but for the pMSSM scenario associated with mτ̃1
=

130 GeV, tanβ = 50, and mA0 = µ = MS = 6M1 = M2,3 = −A = 1 TeV and for

x = 30. The stau decoupling yield takes on its minimum value of Yτ̃ = 7.4 × 10−16 at

θτ̃ = 45◦. The displayed stau annihilation channels are associated with the following

final states: h0h0, WW , ττ , ZZ, γγ, and γZ (at θτ̃ = 80◦, from top to bottom). No

lines are shown for θτ̃ < 4◦ where mν̃τ
< mτ̃1

.
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Figure 5.5: Analogous to Fig. 5.4 but for the pMSSM scenario associated with mτ̃1
=

150 GeV, tanβ = 50, mA0 = 130 GeV, MS = M3 = −A = 1 TeV, 3M1 = M2 =

µ = 1 TeV and for x = 30. The stau decoupling yield reaches its minimum value of

Yτ̃ = 4.1 × 10−16 at θτ̃ = π/4. The displayed stau annihilation channels are associated

with the following final states: h0H0, h0h0, H0H0, bb, WW , ZZ, ττ , and γγ (at

θτ̃ = 75◦, from top to bottom). For an optimized presentation of those channels, the

line indicating the relative importance of the sum of the displayed cross sections is

scaled down by a factor of 1/2: 〈σdispv〉/2〈σtotv〉. No lines are shown for θτ̃ < 4◦ where

mν̃τ
< mτ̃1

.
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with large tanβ have been studied in the literature, see, e.g., [207, 208] and references

therein. We thus consider now the following pMSSM scenario: mA0 = 130 GeV, mτ̃1 =

150 GeV, tanβ = 50, MS = M3 = −A = 1 TeV, and 3M1 = M2 = µ = 1 TeV. In

Fig. 5.5, the associated θτ̃ -dependence of Yτ̃ and of 〈σiv〉/〈σtotv〉 at x = 30 for the now

dominant channels is shown in a similar way as in Fig. 5.4; only the relative importance of

the sum of the displayed cross sections is scaled down by a factor of 1/2, 〈σdispv〉/2〈σtotv〉,
to allow for an optimized presentation of the single dominant channels. Throughout the

considered θτ̃ range, the masses of both CP-even Higgs bosons are relatively light and

remain rather constant: mh0 = (118 ± 1.5) GeV and mH0 = (128.5 ± 1) GeV. Here

the dominant annihilation channels are associated with the following final states: h0H0,

h0h0, H0H0, bb, WW , ZZ, ττ , and γγ (at θτ̃ = 75◦, from top to bottom). As can

be seen, stau annihilation into h0H0 is now more dominant than the one into h0h0

and also the H0H0 channel becomes important, where each of those channels is indeed

associated with an (absolute) annihilation cross section 〈σiv〉 that peaks at θτ̃ = π/4.

Also the annihilation into bb is significant—a process which we will discuss in detail in

the following section. In this respect, one should stress that all processes with s-channel

H0 exchange are here less suppressed by m2
H0 in the respective propagator than in

the previously considered scenarios. Note that the asymmetry of 〈σiv〉/〈σtotv〉 of those

dominant channels (h0H0, h0h0, H0H0, bb) with respect to a reflection at θτ̃ = π/4

is dominantly caused by the θτ̃ -dependent modulation of the WW channel. As in the

pMSSM scenario considered in Fig. 5.4, there is again an significant enhancement of

〈σtotv〉 that delays the stau freeze out such that xf ≃ 33 at θτ̃ ≃ π/4. Thereby, the

efficient annihilation into final state Higgses is accompanied by a significant drop in Yτ̃

down to Yτ̃ = 4.1×10−16 at θτ̃ = π/4 as can be seen in Fig. 5.5. At this minimum, there

is a 20% disagreement between Yτ̃ from our calculation of stau decoupling (solid line)

and the micrOMEGAs result Y mΩ
τ̃ (thin gray line) which is a consequence of the different

treatments of the Higgs sector described above.

Let us finally remark that the Higgs couplings to fermions and vector bosons as

well as the Higgs self-couplings develop a strong dependence on mA0 once we leave the

decoupling regime (mA0 . 200 GeV); for a comprehensive review see, e.g., Ref. [209].9

Changes in mA0 can therefore be accompanied by shifts in the relative importance of

the corresponding annihilation cross sections. This underlines the fact that the details

in the Higgs sector may very well be crucial for the determination of the relic abundance

of a long-lived τ̃1.

9The Higgs sector is also particularly sensitive to the mixing in the stop sector. In the considered

pMSSM scenarios, |Xt| ≡ |At − µ cot β| ∼ MS which corresponds to the “typical-mixing scenario” [210].
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5.5 Resonant stau annihilation

By inspection of Table 5.1 it becomes clear that primordial stau annihilation can also

proceed resonantly via s-channel exchange of the heavy CP-even Higgs boson H0 for

mH0 ≃ 2mτ̃1 . While the LEP bound on the stau mass mτ̃1 & 82 GeV [32] forbids

h0 to become on-shell (mmax
h0 ∼ 140 GeV, e.g., [209]), the s-channel exchange of A0 is

absent10 because of C[τ̃1, τ̃
∗
1 , A

0] = 0 (see Sec. 5.4). Again, our choice to work in the

framework of the pMSSM proves to be very helpful. Since the H0 resonance occurs for

2mτ̃1 ≃ mH0 , one runs quickly into the decoupling limit in which mH0 is governed by

the input parameter mA0 according to the simple relation (5.13). This allows us to scan

through the resonance easily.

Let us explore resonant stau annihilation by considering the exemplary pMSSM sce-

nario associated with mτ̃1 = 200 GeV, θτ̃ = 83◦ (i.e., a mostly ‘right-handed’ τ̃1),

tanβ = 40, and −A = µ = 4M1 = M2,3 = MS = 1 TeV, for which we vary mA0

(and thereby mH0) to scan through the resonance. Figure 5.6 shows the resulting mH0-

dependence of Yτ̃ (upper panel) and of 〈σiv〉/〈σtotv〉 at x = 25 for the dominant anni-

hilation channels (lower panel). Those channels are now associated with the following

final states: bb, ττ , ττ , γγ, h0h0, WW , γZ, ZZ, and tt (at mH0 = 350 GeV, from top

to bottom). In Table 5.1 all resonant channels can be identified. Close to the resonance

condition 2mτ̃1 ≃ mH0 , the most important processes are stau annihilation into bb and

ττ . This is because the couplings of those final state fermions to H0 are tanβ enhanced:

for tanβ ≫ 1, the ffH0 coupling ∼ mfsβ−α tanβ with f = b, τ [203]. The (broad)

peak associated with the resonance11 already builds up for mH0 > 2mτ̃1 = 400 GeV. At

zero relative velocity, this would be a region in which the H0 resonance cannot occur.

However, since τ̃1 is in kinetic equilibrium at the time of freeze out, resonant annihi-

lation takes place already for 2mτ̃1 < mH0 [29]. For mH0 < 2mτ̃1 = 400 GeV, the

processes containing s-channel H0 exchange proceed with a slightly faster rate (if kine-

matically allowed). The impact of the H0 resonance on the thermal τ̃1 freeze out and

the resulting Yτ̃ is substantial. Since the total width of H0 is ΓH0 = (6 − 10) GeV for

mH0 = (300− 500) GeV in the considered pMSSM scenario, the reduction of Yτ̃ extends

over a relatively large mH0 range. In this regard, note that ΓH0 could be substantially

larger had we not essentially decoupled all sfermions—except τ̃1, τ̃2, and ν̃τ—by choosing

MS = 1 TeV. For mH0 ≃ 404 GeV, i.e., at the dip of the resonance, we find xf ≃ 33

and a minimum stau decoupling yield of Yτ̃ = 9.7 × 10−16 (dark line). Thus, despite

10Even in absence of SUSY-induced CP violation, resonant annihilation via A0-exchange may still

proceed through τ̃1-τ̃2 coannihilation. However, this scenario requires considerable fine-tuning in the

stau mass-squared matrix since τ̃1 and τ̃2 have to be nearly degenerate.
11Notice that we plot 〈σiv〉/〈σtotv〉 so that the actual shape of the resonance looks somewhat different.
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Figure 5.6: Dependence of Yτ̃ (upper panel) and of 〈σiv〉/〈σtotv〉 at x = 25 (lower

panel) on mH0 for the pMSSM scenario associated with mτ̃1
= 200 GeV, θτ̃ = 83◦,

tanβ = 40, and −A = µ = 4M1 = M2,3 = MS = 1 TeV. In the upper panel, the

dark line shows the stau yield Yτ̃ obtained with our relic abundance calculation and the

thin gray line the one obtained with micrOMEGAs. The stau decoupling yield takes on

its minimum value of Yτ̃ = 9.7 × 10−16 at mH0 = 404 GeV. In the lower panel, the

displayed dominant stau annihilation channels are associated with the following final

states: bb, ττ , ττ , γγ, h0h0, WW , γZ, ZZ, and tt (at mH0 = 350 GeV, from top to

bottom).
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the (still) moderate value of tanβ = 40, a significant reduction of Yτ̃ is encountered.

Indeed, Yτ̃ can be even further suppressed for a larger value of tanβ. Let us remark

that an accurate determination of Yτ̃ in the resonance region requires to take special

care of the bbH0 vertex. This coupling is well known to receive substantial radiative

corrections for sizable values of tanβ. Therefore, we rely again on the computer tool

FeynHiggs to compute all quark–antiquark–Higgs couplings and the total width ΓH0 .

Also the micrOMEGAs code takes special care of the bbH0 vertex. We therefore think

that the difference between the yields shown in the upper panel of Fig. 5.6 reflects the

theoretical uncertainty involved in the determination of ΓH0 as well as the bbH0 vertex.

5.6 On the viability of a τ̃1-τ̃
∗

1 asymmetry

Given the strong bounds on the abundance of negatively charged τ̃1 from bound-state

effects during BBN, i.e., from CBBN of 6Li and 9Be, it is natural to ask whether it

is possible to have an excess of positively charged τ̃∗1 ’s over negatively charged τ̃1’s.

The generation of a particle-antiparticle asymmetry requires a departure from thermal

equilibrium. Therefore, one might think that a τ̃1-τ̃
∗
1 asymmetry can be produced at the

time of the stau freeze out if the (slepton number violating) process τ̃1τ̃1 → ττ occurs

at a different rate than its conjugate counterpart. Such a situation might indeed occur

if we allow for (CP-violating) complex values of the parameters Aτ , µ, and M1,2 in the

SUSY sector. However, the staus are still tightly coupled to Standard Model particles

so that they remain in kinetic equilibrium with the primordial plasma. Therefore, any

excess of τ̃∗1 over τ̃1 arising will be washed out quickly by the inelastic scattering process

τ̃∗1 τ ↔ τ̃1τ .
12 Indeed, it is well-known [29] that processes of the latter type occur at

much larger rates than the rates for the mutual annihilation of the decoupling particle

species. The same argument given in [29] can be adopted to our case. At the time of

freeze out, the reaction rates of interest can be estimated as

τ̃1τ̃1 → ττ : nτ̃1nτ̃1στ̃1τ̃1→ττ ∼ T 3m3
τ̃1
e−2mτ̃1

/Tστ̃1τ̃1→ττ , (5.20)

τ̃∗1 τ → τ̃1τ : nτ̃∗
1
nτστ̃∗

1 τ→τ̃1τ ∼ T 9/2m
3/2
τ̃1
e−mτ̃1

/Tστ̃∗
1 τ→τ̃1τ , (5.21)

since τ̃
(∗)
1 is approximately Boltzmann distributed. For simplicity, we have treated the

tau lepton τ as a (still) relativistic species. By taking the ratio of (5.21) with respect

12Additional equilibrating processes are, e.g., τ̃∗
1 W− ↔ τ̃1W

+ or τ̃∗
1 H− ↔ τ̃1H

+, which are however

Boltzmann-suppressed. Also note that a lepton asymmetry of the order of the baryon asymmetry is

expected because of charge neutrality of the Universe; cf. [211] and references therein.
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to (5.20),

(T/mτ̃1)
3/2 emτ̃1

/T ∼ 109 for mτ̃1/T ≃ 25 , (5.22)

we find that the equilibrating process is by far more dominant. Here, we have used that

στ̃1τ̃1→ττ and στ̃∗
1 τ→τ̃1τ are not too different. In fact, both processes proceed at tree level

exclusively via χ̃0
i exchange so that one cannot decouple (5.21) from (5.20) by a simple

adjustment of the neutralino mass spectrum.

5.7 Exceptionally small abundances within the CMSSM

We have shown above that the total stau annihilation cross section can be significantly

enhanced. The thermal freeze out of τ̃1’s is thereby delayed such that their abundance

prior to decay, Yτ̃ , is suppressed. In the following we focus on the CMSSM to see whether

the effects discussed in Sects. 5.4 and 5.5 do appear also in models in which the pattern

of soft-SUSY breaking parameters fulfills certain boundary conditions at a high scale.

Note that we compute Yτ̃ with micrOMEGAs in this section since coannihilation processes

are not included in our relic density code. In addition, we employ SPheno 2.2.3 [157]

for the computation of the mass spectrum and the low energy constraints associated with

B(b → sγ) and the anomalous magnetic moment of the muon aµ. Let us now proceed

by discussing two exemplary CMSSM parameter scans.

Figure 5.7 shows contours of constant Yτ̃ in the (m1/2,m0) plane for tanβ = 43,

A0 = 0, and a negative sign of the µ parameter. The contour lines represent the values

Yτ̃ = 10−14, 4×10−14, 10−13, and 4×10−13, where darker shadings imply smaller values

of Yτ̃ . The dashed lines are contours of mτ̃1 = 100, 300 and 600 GeV (from left to

right). The light-shaded region at m1/2 . 450 GeV is excluded by the mass bound

mh0 ≥ 114.4 GeV from Higgs searches at LEP [32]. The white area indicates the region

in which either correct electroweak symmetry breaking is not established (in the very

upper left corner) or in which mχ̃0
1
< mτ̃1 . Since µ < 0, the plane is actually in tension

because of (negative) SUSY contributions aSUSY
µ to the anomalous magnetic moment of

the muon, aµ ≡ (g − 2)µ/2.

Figure 5.8 presents a scan over the (m1/2,m0) plane for tanβ = 55, A0 = 2m0, and

µ > 0 with contours of Yτ̃ = 4 × 10−15, 10−14, 4 × 10−14, 10−13, and 4 × 10−13 (darker

shadings indicate smaller Yτ̃ values) and mτ̃1 = 100, 300, and 600 GeV (dashed lines,

from left to right). The large light-shaded region in the lower left corner is excluded by

the robust bound mτ̃1 ≥ 82 GeV [32] from collider searches of charged sleptons (or by

the appearance of a tachyonic spectrum). The LEP Higgs bound mh0 ≤ 114.4 GeV [32]



5.7. Exceptionally small abundances within the CMSSM 125tan � = 43; A0 = 0; � < 0
m 0[GeV℄

m1=2 [GeV℄
�A

300 1000 3000

20001000500200100502010
10�14 4� 10�14 10�134� 10�13

Figure 5.7: Contours of Yτ̃ (as labeled) in the (m1/2,m0) plane for tanβ = 43,

A0 = 0, and µ < 0, where darker shadings imply smaller Yτ̃ values. The dashed lines

are contours of mτ̃1
= 100, 300, and 600 GeV (from left to right). The light-shaded

region at m1/2 . 450 GeV is excluded by the LEP bound mh0 ≤ 114.4 GeV [32].

In the white area either mχ̃0

1
< mτ̃1

or correct electroweak symmetry breaking is not

established (in the very upper left corner), where the thin contours indicate the Higgs

funnel in the χ̃0
1 NLSP region. Table 5.2 provides detailed information for the SUSY

model represented by the point “A” that is indicated by the star.

is situated within this region in close vicinity to its boundary for m0 . 400 GeV and

is indicated by the solid line for m0 & 400 GeV. In the region to the left of the dotted

line, B(b→ sγ) ≥ 4.84 × 10−4 [212], which is in tension with the bounds from inclusive

b → sγ decays.

Let us now discuss some generic features of the stau yield within the CMSSM on the

basis of Figs. 5.7 and 5.8. We note beforehand that our more general statements on the

τ̃1 NLSP region in the CMSSM are corroborated by a parameter scan over the following
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Figure 5.8: Contours of Yτ̃ (as labeled) in the (m1/2,m0) plane for tanβ = 55,

A0 = 2m0, and µ > 0, where darker shadings imply smaller Yτ̃ values. The dashed

lines are contours of mτ̃1
= 100, 300, and 600 GeV (from left to right). The large light-

shaded region in the lower left corner is excluded by bounds from direct Higgs and SUSY

searches (or by the appearance of a tachyonic spectrum). In the region to the left of the

vertical solid and dotted lines, mh0 ≤ 114.4 GeV [32] and B(b→ sγ) ≥ 4.84×10−4 [212],

respectively. In the white area, mχ̃0

1
< mτ̃1

. Table 5.2 provides detailed information for

the SUSY models represented by the stars “B” and “C” (as labeled).

range13

m1/2 = (0.1 − 6) TeV, tanβ = 2 − 60,

− 4m0 < A0 < 4m0, sgnµ = ±1. (5.23)

In both figures an almost horizontal, narrow band of low Yτ̃ appears in which 2mτ̃1 ≃
mH0 holds so that stau annihilation proceeds via resonant production of the heavy CP-

even Higgs boson H0. We have marked points the centers of the respective regions with

“A” and “B” for which we provide detailed information in Table 5.2. Given a present

uncertainty of ∼ 3 GeV in the determination of mh0 [213], we note that the LEP Higgs
13Here, we disregard CMSSM parameter points in which SPheno flags an error in the spectrum calcu-

lation.
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bound has to be treated with some care. For example, a (vertical) mh0 = 112 GeV

contour would be situated at m1/2 ≃ 400 GeV in the resonance region of Fig. 5.8.

Accordingly, one could consider the entire resonance region shown to be compatible

with direct Higgs searches. However, due to the large value of tanβ = 55, the bound on

b → sγ is very strong so that a large part of the resonance region remains excluded by

this constraint. In this regard, it is interesting to see (Fig. 5.7) that 2mτ̃1 ≃ mH0 also

appears in the τ̃1 NLSP region for lower values of tanβ. In the center of both resonance

regions, the yield becomes as low as Yτ̃ = 4.2 × 10−15 (point A) and Yτ̃ = 2.5 × 10−15

(point B). Despite the heavier mass of the lighter stau (see Table 5.2), the suppression

of Yτ̃ is still more pronounced in Fig. 5.8 than in Fig. 5.7. This is because the bottom

Yukawa coupling becomes larger with increasing tanβ, as discussed already in Sec. 5.5.

In fact, annihilation into bb final states is in both cases by far the dominant process

with relative importance of 76% (point A) and 87% (point B). The extension of both

resonance regions is due to the total width of H0 of respectively ΓH0 ≃ 9.6 GeV (point

A) and ΓH0 ≃ 22 GeV (point B); note the logarithmic scales in Figs 5.7 and 5.8. We

note in passing that the appearance of the H0 resonance does not imply the absence of

the neutralino funnel region which is indicated by the (unshaded) contour lines in the

white area of Fig. 5.7

Of course, the question arises whether the appearance of the resonance region is

encountered more generically within the framework of the CMSSM. In principle, it is

not easy to provide a simple quantitative connection between mτ̃1 and mH0 for arbitrary

values of the CMSSM parameters. However, without emphasis on an overall applicability,

a qualitative picture can be drawn. Let us start with the mass of the CP-odd Higgs boson

mA0 which can be written as [214, 215]

m2
A0 ∼ 1/ sin2 β (m2

0 + 0.52m2
1/2 + µ2 − . . . ). (5.24)

Here, the ellipsis stand for contributions from the bottom and tau Yukawa couplings.

For tanβ & 20, m2
A0 ∼ m2

0 + 2.5m2
1/2 − . . . , and the corrections from the bottom and

tau Yukawa couplings become important so that mA0 is driven towards lower values;14

note that sin2 β ≃ 1 for tanβ & 20. Indeed, this property can be used to constrain tanβ

from above by confronting mA0 with the lower bound from LEP, mA0 > 93.4 GeV [32].

On the other hand, for large m1/2, one also enters the decoupling limit of the MSSM so

that mA0 and mH0 will be nearly degenerate in mass; cf. (5.13). This can be also seen

from the exemplary points presented in Table 5.2. Therefore, also mH0 will be driven

14The latter relation ignores contributions from A-terms which can be important but complicate the

envisaged illustrative picture; for the derivation, we have used mt(mt) = 163 GeV in Eq. (2.25a) of

Ref. [215].
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towards lower values for growing tanβ. Now, left-right mixing of the lighter stau for not

too large values of tanβ is small within the CMSSM, τ̃1 ≃ τ̃R, so that approximately

m2
τ̃1

∼ m2
0 + 0.15m2

1/2 [215]. Therefore, 2mτ̃1 < mH0 is the relation that holds usually

in the region in which τ̃1 is the lightest Standard Model superpartner. However, for

large tanβ, the contributions from the bottom Yukawa coupling in (5.24) can become

strong enough (growing with m0 [215]) to overcome any additional decrease of mτ̃1

due to left-right mixing so that the resonance condition 2mτ̃1 ≃ mH0 can indeed be met.

Nevertheless, from scanning over the CMSSM parameter range (5.23) it seems to us that

the resonance condition 2mτ̃1 ≃ mH0 is not easily realized in the part of the τ̃1 NLSP

region in which τ̃1-χ̃
0
1 coannihilations are negligible. Conversely, it is clear that relaxing

the universality conditions for the soft-SUSY breaking masses atMGUT will make it easier

to find parameter regions in which the resonance condition 2mτ̃1 ≃ mH0 is satisfied. Of

particular interest in this respect is the model with non-universal Higgs masses (NUHM)

with mH1 6= mH2 6= m0 at MGUT. There, one can adjust the input parameters in order

to realize resonant stau annihilation. Indeed, this model is qualitatively the same as the

class of pMSSM scenarios considered in the previous sections, where mH1 and mH2 are

traded (at the low-scale) against mA0 and µ by using the electroweak symmetry breaking

conditions.

Low Yτ̃ values are also realized in the narrow vertical region around m1/2 ∼ 1.1 TeV

in Fig. 5.8. At the representative point “C”of that region, Yτ̃ = 2.2×10−15 and the main

stau annihilation channels are the ones into h0h0 (90%) and WW (6%); see Table 5.2.

For larger values of m1/2, Yτ̃ exhibits its well known behavior and grows with mτ̃1 . To

the left of the Yτ̃ = 4 × 10−15 contour, the yield increases quickly since the annihilation

into h0h0 becomes kinematically forbidden. Indeed, regions of low Yτ̃ which are due to

the aforementioned annihilation channels are a commonplace appearance in the CMSSM

parameter space. They are found slightly above the lowest feasible values of m1/2, i.e.,

close to the boundary of the region which is excluded by direct Higgs and SUSY searches

and where mτ̃1 > mh0 still holds. This is because τ̃1 is light in that region since the SUSY

particle spectrum scales with m1/2 (typically, m0 ≪ m1/2 for τ̃1 NLSP). Moreover, we

find that the LEP Higgs bound drops hardly below m1/2 ≃ 450 GeV for tanβ & 40

and m0 . 100 GeV.15 Due to a strong correlation between the gaugino mass parameter

m1/2 and the size of the µ parameter, µ2 ∼ (1 − 3)m2
1/2 [216], the value of µ in the

experimentally allowed region is large. Recall from Sec. 5.4 that the τ̃1τ̃1h
0 coupling

is ∼ sin 2θτ̃Xτ (mA0 ≫ MZ) so that |Xτ | = |Aτ − µ tanβ| will become sizeable by

increasing tanβ. This leads then to efficient stau annihilation into h0h0 final states.

15The position of the LEP Higgs bound (which appears as a near to vertical line for low m0) is very

sensitive to the value of mt. Lowering mt shifts the bound towards larger values of m1/2.
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Indeed, in those CMSSM regions, also | sin 2θτ̃ | is maximized so that Yτ̃ already starts to

drop below the estimate (4.1) for tanβ & 40. Note, however, that the left-right mixing

of τ̃1 within the CMSSM is somewhat constrained. Neglecting τ -Yukawa contributions,

the RG-evolution induced splitting reads m2
τ̃L

− m2
τ̃R

∼ 0.37m2
1/2 [215] and indeed τ̃1

remains mainly right-handed: By scanning over the parameter space, we typically find

65◦ . θτ̃ . 115◦ and thus | sin 2θτ̃ | . 0.75 in the τ̃1 NLSP region in which mτ̃1 > mh0

and mh0 > 114.4 GeV holds.

5.8 Prospects for collider phenomenology

If a SUSY model with a long-lived τ̃1 of mτ̃1 < 0.7 TeV is realized in nature, the τ̃1

discovery potential will be promising at the LHC with a luminosity of 100 fb−1 [141]. For

mτ̃1 < 0.25 TeV (0.5 TeV), τ̃1’s can also be examined in precision studies at the ILC with

a c.m. range up to
√
s = 0.5 TeV (1 TeV). Once long-lived τ̃1’s are produced, one should

be able to distinguish them from muons by considering the associated highly ionizing

tracks and with time-of-flight measurements. One should then also be able to infer mτ̃1

from measurements of the τ̃1 velocity and its momentum [217] and complementary from

(threshold) studies of the process e+e− → τ̃1τ̃
∗
1 at the ILC.

Both mechanisms leading to exceptionally small Yτ̃ values come with testable pre-

dictions: certain ranges of the stau-mixing angle θτ̃ together with large values of tanβ,

|µ|, and/or |Aτ | and, in the case of resonant stau annihilation, also mH0 ≃ 2mτ̃1 . In

particular, the large stau-Higgs couplings lead to an enhanced production of light Higgs

bosons in association with staus via e+e− → τ̃1τ̃
∗
1h

0 and γγ → τ̃1τ̃
∗
1h

0. The associated

cross sections can then be relatively large at the ILC with a sufficiently high c.m. en-

ergy [218]. In addition, the above reactions with H0 instead of h0 in the final state

can have also relatively large cross sections if H0 and τ̃1 are sufficiently light. These

reactions will then allow for an experimental determination of the stau-Higgs couplings

and clarify whether its values are compatible with an extremely small value of Yτ̃ [218].

Moreover, a measurement of mH0 pointing to mH0 ≃ 2mτ̃1 could be an experimental

hint for resonant stau annihilation in the early Universe.

Indeed, the scenarios considered could allow for a determination of both mh0 and

mH0 already at the LHC. Because of the large values of tanβ, the dominant production

mechanism for h0/H0 will be the associated production of the neutral Higgs bosons with

bottom quark pairs, pp → bb̄h0/H0; see, e.g., [219, 220, 221] and references therein. In

fact, associated bb̄h0/H0 production with h0/H0 → µ+µ− is considered as one of the

most promising processes for measurements of mH0 at the LHC despite the relatively
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Table 5.2: Exemplary CMSSM points A, B, and C shown in Figs. 5.7 and 5.8. In

addition to the quantities explained in the main text, values of the gluino mass mg̃ and

of the mass of the lighter stop mt̃1
are given together with the relative importance of

the dominant stau annihilation channels, xf = mτ̃1
/Tf , and the decoupling yield Yτ̃ .

For each point, we list gravitino dark matter scenarios with mG̃ = 100 (50) GeV and

associated values of the stau lifetime ττ̃1
, the non-thermally produced gravitino density

ΩNTP
G̃

h2, and the maximum reheating temperature Tmax
R .

Point A B C

m1/2 [GeV] 456 600 1138

m0 [GeV] 124 748 30

tanβ 43 55 55

mτ̃1 [GeV] 130 197 127

mτ̃2 [GeV] 352 673 739

θτ̃ 114 80 75

mh0 [GeV] 114.6 115 117.9

mH0,A0 [GeV] 265 390 799

ΓH0 [GeV] 9.6 22 41

µ [GeV] -565 666 1262

Aτ [GeV] -63 473 -164

mg̃ [GeV] 1052 1375 2446

mt̃1
[GeV] 740 1091 1757

bb [%] 76 87 < 1

h0h0 [%] 10 < 1 90

ττ [%] 9 11 < 1

WW [%] 2 < 1 6

xf 30 30 32

Yτ̃ [10−15] 4.2 2.5 2.2

m
G̃

[GeV] 100 100 100

(50) (50) (50)

ττ̃1 [s] 5.7 × 109 6.5 × 107 8.5 × 109

(7.5 × 107) (6.4 × 106) (8.7 × 107)

ΩNTP
G̃

h2[10−4] 1.2 0.7 0.64

(0.58) (0.35) (0.32)

Tmax
R [GeV] 1.9 × 109 1.1 × 109 3.1 × 108

(9.5 × 108) (5.5 × 108) (1.5 × 108)
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small h0/H0 → µ+µ− branching ratio [222]. In SUSY scenarios with a sufficiently

light long-lived τ̃1 NLSP, these processes will be complemented by associated bb̄h0/H0

production with h0/H0 → τ̃1τ̃
∗
1 , where measurements of the invariant mass of the τ̃1τ̃

∗
1

pair could potentially provide a unique way to infer mh0 and mH0 at the LHC. In fact,

h0/H0 → τ̃1τ̃
∗
1 will occur most prominently exactly in the regions associated with the

exceptional Yτ̃ values due to the enhanced stau–Higgs couplings. Having outlined these

proposals, we leave a dedicated study for future work.

Table 5.2 illustrates that the kinematical reach of both the LHC and the ILC could

be sufficiently large to allow for the studies mentioned above. In none of the given points

does mτ̃1 exceed 200 GeV so that τ̃1τ̃
∗
1 pair production would already be possible at the

ILC with
√
s ≤ 0.5 TeV. There, one could also produce τ̃1τ̃

∗
1h

0 final states in scenarios

A and C. Even the condition mH0 ≃ 2mτ̃1 could be probed in both scenarios A and B

that allow for resonant stau annihilation.

5.9 Implications for gravitino dark matter scenarios

We have seen in this thesis that Yτ̃ is subject to stringent cosmological constraints.

Indeed, to decide on the cosmological viability of a SUSY model, one has to confront the

associated Yτ̃ values with those constraints. For gravitino LSP scenarios with unbroken

R-parity, we have obtained restrictive cosmological constraints in Part II. In particular,

in Sects. 4.1, 4.2.1, and 4.2.2 we have derived constraints and implications thereof under

the assumption that Yτ̃ can be described by (4.3). However, while (4.3) is quite reliable

for τ̃1 ≃ τ̃R [31, 138, 1, 36], we have shown in the previous sections that Yτ̃ (for a given

mτ̃1) can be about two orders of magnitude smaller than (4.3).

Generally speaking, in this chapter we have shown that islands exist in which Yτ̃ can

be significantly below (4.3) even within the CMSSM and for a standard cosmological

history. Thus, in gravitino dark matter scenarios with such exceptionally small Yτ̃ values,

our understanding of the cosmological constraints and the associated implications could

change significantly. To demonstrate this point, let us indicate for which Yτ̃ values the

existing cosmological constraints are respected:

• For Yτ̃ < 10−14, the upper limit on Yτ̃ imposed by the non-thermal production of

gravitinos in τ̃1 decays, ΩNTP
G̃

≤ f Ωdm—given explicitly in (22) of Ref. [139]—is

respected for m
G̃

. 500 GeV even if only a small fraction f = 0.01 of dark matter

is assumed to originate from τ̃1 decays; cf. Fig. 13 of Ref. [139]. This applies equally

to other scenarios with an extremely weakly interacting LSP—such as the axino

LSP [223, 188, 224]—originating from τ̃1 decays.
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• For Yτ̃ . 10−13, the BBN constraints associated with effects of hadronic energy

release on the primordial D abundance can be respected for τ̃1 ≃ τ̃R and mτ̃1 up

to 10 TeV independent of the τ̃1 lifetime; cf. Fig. 11 of Ref. [139]. For a sizable

admixture of τ̃L in τ̃1, this Yτ̃ constraint can become more restrictive in particular

with the enhanced stau–Higgs couplings allowing for exceptionally small Yτ̃ values.

Nevertheless, these exceptional values are typically associated with mτ̃1 < 300 GeV

where the Yτ̃ limit is significantly more relaxed: Yτ̃ . 10−11 for τ̃1 ≃ τ̃R. A

tightening to Yτ̃ . 10−13 (10−15) will then require an increase of (hadronic) Evis

by a factor of 102 (104). On the other hand, sufficiently degeneratem
G̃

andmτ̃1 will

always be associated with small values of Evis and thereby with relaxed Yτ̃ limits

from energy release, even in the case of strongly enhanced stau–Higgs couplings.

• For Yτ̃ . 10−14 (10−15), the BBN constraints associated with effects of electromag-

netic energy release on the primordial D (3He) abundance can be respected inde-

pendent of the τ̃1 lifetime; cf. upper panels of Fig. 12 (100 GeV ≤ mτ̃1 ≤ 10 TeV)

of Ref. [139] and Figs. 14 (mτ̃1 = 100 GeV) and 15 (mτ̃1 = 300 GeV) of Ref. [130].

• For Yτ̃ . 2 × 10−15 (2 × 10−16 ÷ 2 × 10−15), the BBN constraints associated with

bound state effects allowing for CBBN of 6Li and 9Be can be respected even for

ττ̃1 & 105 s; see Fig. 2.9. Recall, that these values correspond to upper limits on

the primordial fractions of 9Be/H and 6Li/H of 2.1 × 10−13 and to the generous

range 10−11 ÷ 10−10, respectively.

Thus, the SUSY models which come with thermal relic stau abundances of Yτ̃ . 2×10−15

can respect each of those cosmological constraints independently of the stau lifetime if

a primordial 6Li/H abundance of about 10−10 is viable. In particular, the limit (4.8) of

ττ̃1 . 6× 103 s and its implications discussed in Chapter 4 are then no longer valid even

for a standard cosmological history with primordial temperatures of T > Tf . Thereby,

the regions with Yτ̃ . 2×10−15 are associated with particularly attractive gravitino dark

matter scenarios:

• The gravitino mass can be within the range 0.1 . m
G̃
< mτ̃1 for which its kinemat-

ical determination could be viable [154, 190, 191]. Together with measurements

of mτ̃1 and ττ̃1 , a kinematically determined m
G̃

would allow one to measure the

Planck scale MP at colliders [154, 190, 191]. Indeed, an agreement of the MP value

determined in collider experiments with the one inferred from Newton’s constant

GN would support the existence of supergravity in nature [154].

• For m
G̃

sufficiently close to mτ̃1 , the spin-3/2 character of the gravitino becomes
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relevant so that it could be probed in principle by analyzing the decays τ̃1 →
G̃τγ [154].

• With Yτ̃ . 2 × 10−15, ΩNTP
G̃

is negligible so that basically all of Ωdm can be

provided by gravitinos from other sources such as thermal production. Indeed, if

also gravitino production in decays of scalar fields such as the inflaton [121, 123]

is negligible, reheating temperatures of TR & 109 GeV could become viable for

m
G̃
∼ 100 GeV and not too heavy gaugino masses; see, in particular, Sec. 3.4. This

would mean that thermally produced gravitinos could provide the right amount of

dark matter and that thermal leptogenesis (with TR & 109 GeV as a benchmark

value [134, 135]) would be a viable explanation of the cosmic baryon asymmetry,

i.e., there would be no gravitino problem.

• With a kinematically determined m
G̃
, one would be able to probe the reheating

temperature TR at colliders and thereby the viability of thermal leptogenesis [119].

• For ττ̃1 & 104 s, the small Yτ̃ values could still allow for the primordial catalysis of
6Li and 9Be in agreement with existing astrophysical observations; see Sec. 2.6.

Table 5.2 illustrates that gravitino dark matter scenarios of the type discussed above

can even be accommodated within the CMSSM. For gravitino masses of 50 GeV and

100 GeV, we list the associated values of ττ̃1 , of ΩNTP
G̃

h2, and of the maximum reheating

temperature Tmax
R under the assumption that other gravitino sources can be neglected.

The stau lifetime ττ̃1 is given in (4.4) and the Tmax
R values imposed by ΩTP

G̃
h2 ≤ 0.126 can

be inferred from (4.12). At each CMSSM point and for both m
G̃

values, τ̃1 is very long

lived, ττ̃1 > 106 s, and gravitino production from τ̃1 decays is negligible, ΩNTP
G̃

h2 . 10−4.

In all cases, the gravitino mass m
G̃

= 100 GeV is sufficiently close to mτ̃1 so that

the spin-3/2 character of the gravitino can in principle be probed [154]. A reheating

temperature of TR & 109 GeV is viable only for the points A and B withm1/2 significantly

below 1 TeV, i.e., at the points at which resonant stau annihilation leads to the reduction

of Yτ̃ . Because of ττ̃1 > 106 s, the Yτ̃ limit from CBBN of 9Be is at Y max
Be ≃ 2 × 10−15

for each point as can be inferred from Fig. 2.9. This bound disfavors point A while the

points B and C are associated with Yτ̃ values very close to this limit and thereby with
9Be/H (6Li/H) values of about 2.1 × 10−13 (10−10).
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Conclusions

In this thesis we have worked out the cosmological implications of a long-lived electro-

magnetically charged massive particle species X± also called CHAMP. Our working hy-

pothesis has been that X possesses a weak-scale mass mX & O (100 GeV) and typically

a lifetime τX & 1 s. We have assumed that the temperature T of the early Universe was

high enough so that X has achieved chemical equilibrium with the primordial plasma.

Then, following a standard cosmological evolution, X experienced a thermal freeze-out

once T . mX/25. This makes X to what is called a thermal relic (prior to its decay).

BBN with a long-lived CHAMP

We have started our investigation with a brief introduction into the framework of stan-

dard Big Bang Nucleosynthesis (SBBN) where we also have given account to some of

the latest measurements from which primordial light element abundances are inferred.

In a simplified discussion of X-decoupling we have argued that its expected cosmological

abundance prior to decay reads 10−18 . YX . 10−12(mX/100GeV). We have recalled

that the long-lived CHAMP scenario is strongly constrained by BBN limits on electro-

magnetic and hadronic energy release in the X-decay. For a reliability check on hadronic

BBN constraints we have worked out the Coulomb stopping power of charged hadrons

in the plasma. In particular, we have developed on a refined approach taking into ac-

count peculiarities in the plasma-screening of the Coulomb interaction and paying close

attention to the velocity dependencies of the cross sections. We find reasonably good

agreement with the treatment used in Ref. [41] from which we have incorporated the

associated constraints.

Subsequently, the effects of X− on BBN due to its binding onto the light nuclei N

have been considered. Given that the X−-catalysis of thermal nucleosynthesis reactions

had only been discovered recently [79], we have laid out in detail the central points

of CBBN. Using the variational approach, we have obtained ground state energies for

135
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bound states (NX−) by taking into account the finite nuclear charge radius of N. This

leads to a reduction (in magnitude) from the näıve point-like Coulomb values, e.g., for

(4HeX−) by 13% and for (9BeX−) by 60% which has also been confirmed upon numerical

solution of the Schrödinger equation. For the examples of (4HeX−) and (8BeX−) also

the complete spectrum for n ≤ 3 has been computed. We have further obtained the wave

functions for the N–X−continuum. This has allowed us to calculate the cross sections

for (NX−) photo-dissociation, 〈σphv〉, and radiative recombination, 〈σrecv〉, including the

finite charge radius correction and taking into account recombinations into 1S as well as

2S states. Those rates (per particle pair) are important since they control the fractional

bound state abundance and thus the timing and efficiency of CBBN. For example, for

(4HeX−) and (6LiX−) we find a reduction of 〈σrecv〉 from the hydrogen-like case by 17%

and by 74%, respectively.

From observations of beryllium in Population II halo stars at very low metallicities,

we have extracted a nominal upper limit on primordial beryllium of 9Be/H ≤ 2.1×10−13.

This limit allows one to set constraints on models in which the primordial A = 8 divide

is bridged by catalytic effects. Considering the primordial catalysis of 9Be [63], we have

derived τX -dependent upper limits on the X−-yield prior to decay, Y dec
X− . For a typical

relic abundance Y dec
X− & 3 × 10−14 (10−14), we find that this 9Be limit translates into

an upper limit on the X− lifetime of τX . 6 × 103 s (104 s). Furthermore, we have also

worked out the catalytic production of 6Li which, depending on the adopted upper limit

on primordial 6Li, gives rise to similar bounds.

We have clarified that the presence of (pX−) bound states cannot relax the Y dec
X−

limits at long lifetimes τX in any substantial way. Indeed, we have shown explicitly by

solving the associated full set of Boltzmann equations that late-time effects of (pX−)

bound states can affect the lithium and beryllium abundances synthesized at T ≃ 8 keV

by not more than a few percent. Any substantial formation of (pX−) at T ≃ 0.7 keV

is immediately intercepted by the very efficient charge exchange reaction of (pX−) with
4He. This comes as no surprise given the large size of the (pX−) system ∼ 30 fm and

the fact that the proton deconfinement probability approaches unity already for a 4He–

X− distance of ∼ 95 fm. In particular, we find that the fractional density of protons

in bound states does not exceed the level of ∼ 10−6 for YX− . Y4He. By the same

argument, the 9Be yield also remains unaffected by late-time catalysis. Thus, we find

that the possibility of allowed islands in the parameter region with typical Y dec
X− and large

τX—which was advocated in Ref. [90]—does not exist.
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The gravitino-stau scenario

In the second part of this thesis we have considered cosmological constraints and their

implications for models in which the gravitino is the LSP and the stau is the NLSP. We

have first focused on G̃ as a dark matter candidate. Using the full gauge-invariant result

for the thermally produced gravitino abundance ΩTP
G̃

to leading order in the Standard

Model gauge couplings [108, 119], we have studied bounds on the reheating temperature

TR from the constraint Ω
G̃
≤ Ωdm. In particular, taking into account the dependence of

ΩTP
G̃

on the masses of the gauginos has allowed us to explore the dependence of the TR

bounds on the gaugino-mass relation at the scale of grand unification MGUT. We have

explicitly studied the effect of G̃ regeneration during a post-inflationary perturbative

reheating phase. Thereby, we have made contact between the notion of TR as the initial

temperature of the radiation-dominated epoch in the analytical expression (3.6) for the

G̃ abundance and the definition of TR in terms of the decay width Γφ of the inflaton.

Applying the τX -dependent upper limits on Y dec
X− derived from the primordial catal-

ysis of 9Be and 6Li in Part I, we have analyzed the emerging constraints in the gravitino-

stau scenario, i.e., for τ̃−1 = X−. For typical values (4.3) of the stau NLSP yield after

decoupling, the 9Be and 6Li constraints have been found in close vicinity to each other

so that they lead to the same implications. For example, for m
G̃

= 10 GeV, the CBBN

constraints impose the lower limit mτ̃1 > 400 GeV with rising tendency for growing

m
G̃
. For τ̃1 being the lightest Standard Model superpartner such a limit directly af-

fects the testability of those SUSY scenarios at future colliders. Furthermore, for a

primordial limit of 6Li/H . 6 × 10−11 the calculated 6Li abundance drops below this

observational bound only for ττ̃1 . 6 × 103 s (likewise for 9Be). Taken at face value,

we find that this constraint translates into a lower limit on the gaugino mass parameter

m1/2 ≥ 0.87 TeV (m
G̃
/10 GeV)2/5 in the entire natural region of the CMSSM parameter

space. This limit implies a restrictive upper bound TR . 5× 107 GeV (m
G̃
/10 GeV)1/5.

Using exemplary (m1/2,m0) CMSSM planes where we explicitly compute Y dec
τ̃1

in

every point, we have further explored gravitino dark matter scenarios and the associ-

ated TR bounds for m
G̃

≥ 10 GeV and for temperatures as low as 107 GeV. Taking

into account the 6Li CBBN constraint as well as the constraints on electromagnetic and

hadronic energy injection from τ̃1-decays, we have illustrated that in the considered re-

gions of the CMSSM parameter space TR . 107 GeV indeed is the highest cosmologically

viable temperature of the radiation-dominated epoch in case of a standard thermal his-

tory of the Universe. Moreover, in the τ̃1 NLSP region the lower bound on m1/2 typically

implies a very heavy superparticle mass spectrum where, e.g., mg̃ < 2.5 TeV can be well

excluded and which makes such scenarios hard to probe at the LHC. The bound on TR
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imposes a serious constraint for inflation models. Moreover, thermal leptogenesis seems

to be strongly disfavored in the considered regions of the CMSSM parameter space.

With late-time entropy release, the obtained limit TR . 107 GeV can be relaxed.

For example, the dilution of the thermally produced gravitino yield by a factor of 10

relaxes the TR bound by about one order of magnitude in regions where ΩTP
G̃

dominates

Ω
G̃
. In the case of entropy production after NLSP decoupling, the yield of the NLSP

prior to its decay, YNLSP, is reduced so that the BBN constraints can be weakened.

Although the 6Li bound is persistent, we find that it disappears provided YNLSP is

diluted by a factor of ∆ & 103. We have discussed the viability of thermal leptogenesis

in a cosmological scenario with entropy production after NLSP decoupling. We find

that successful thermal leptogenesis can be revived in generic regions of the CMSSM

parameters space for MR1 ∼ TR & 1012 GeV and ∆ & 103, where MR1 is the mass of the

lightest among the heavy right-handed Majorana neutrinos. There, the collider-friendly

τ̃ NLSP region with mτ̃ . 250 GeV reopens as a cosmologically allowed region in the

CMSSM with the gravitino LSP.

Thermal relic stau abundances

In the final part of this thesis we have carried out a thorough study of primordial stau

annihilation and the associated thermal freeze-out. Taking into account the complete

set of stau annihilation channels within the MSSM with real parameters for cases with

negligible sparticle coannihilation, the resulting thermal relic τ̃1 yield Y dec
τ̃1

has been

examined systematically. While we have often (implicitly) focused on the τ̃1 ≃ τ̃R case

in Part II by employing (4.3), we have investigated cases in Part III in which τ̃1 contains

a significant admixture of τ̃L including the maximal mixing case as well as τ̃1 ≃ τ̃L.

We find that the variation of the stau mixing angle θτ̃ affects the relative importance

of the different annihilation channels significantly but not necessarily the resulting Y dec
τ̃1

value for relatively small values of tanβ. By increasing tanβ, however, we encounter

a dramatic change of this picture for large absolute values of the Higgs-higgsino mass

parameter µ and/or of the trilinear coupling Aτ , which are the dimensionful SUSY pa-

rameters that govern simultaneously stau left-right mixing and the stau–Higgs couplings:

Stau annihilation into h0h0, h0H0, and H0H0 can become very efficient (if kinemati-

cally allowed) so that Y dec
τ̃1

can decrease to values well below 10−15. The scalar nature

of τ̃1 allows those parameters to enter directly into the annihilation cross sections. This

mechanism has no analogue in calculations of the thermal relic density of the lightest

neutralino χ̃0
1.
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The stau–Higgs couplings are crucial also for the second Y dec
τ̃1

reduction mechanism

identified in this work: Even for moderate values of tanβ, we find that staus can anni-

hilate very efficiently into a bb̄ pair via s-channel exchange of the heavy CP-even Higgs

boson H0 provided the MSSM spectrum exhibits the resonance condition 2mτ̃1 ≃ mH0 .

We have shown explicitly that the associated Y dec
τ̃1

values can be below 10−15 as well.

This mechanism is similar to the one that leads to the reduction of the χ̃0
1 density in the

Higgs funnel region in which neutralino annihilation proceeds at the resonance of the

CP-odd Higgs boson A0.

We have worked with an effective low energy version of the MSSM to investigate

the θτ̃ -dependence of Y dec
τ̃1

and the two Y dec
τ̃1

-reduction mechanisms in a controlled way.

In addition, we have shown that the considered effects can be accommodated also with

restrictive assumptions on the soft-SUSY breaking sector at a high scale. Within the

CMSSM, we encounter both mechanisms each of which leading to Y dec
τ̃1

≃ 2 × 10−15 in

two distinct regions of a single (m1/2, m0) plane.

We have discussed possibilities to probe the viability of the presented Y dec
τ̃1

-reduction

mechanisms at colliders. While a mH0 measurement pointing to mH0 ≃ 2mτ̃1 would

support resonant primordial stau annihilation, studies of Higgs boson production in

association with staus, e+e− (γγ) → τ̃1τ̃
∗
1h

0, τ̃1τ̃
∗
1H

0 could allow for an experimental

determination of the relevant stau–Higgs couplings, for example, at the ILC. Moreover,

we have outlined that associated bb̄h0/H0 production with h0/H0 → τ̃1τ̃
∗
1 has the

potential to allow for a determination of both mh0 and mH0 at the LHC if a SUSY

scenario with large tanβ and large stau–Higgs couplings is realized.

With the obtained small Y dec
τ̃1

values, even the restrictive constraints associated with

CBBN could be respected so that attractive gravitino dark matter scenarios could be

revived to be cosmologically viable even for a standard cosmological history. Within this

class of models, collider evidence for supergravity, for the gravitino being the LSP, and

for high values of the reheating temperatures of up to 109 GeV is conceivable, which could

thereby accommodate simultaneously the explanation of the cosmic baryon asymmetry

provided by thermal leptogenesis and the hypothesis of thermally produced gravitinos

being the dark matter in our Universe.
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