
Technische Universität München

Lehrstuhl für Datenverarbeitung

Univ.-Prof. Dr.-Ing. K. Diepold

High Speed Cryptography for
Network and Disk Encryption

Applications

Mohamed Abo El-Fotouh

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Information-
stechnik der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing.habil. G. Rigoll

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. K. Diepold
2. Univ.-Prof. Dr.rer.nat. C. Eckert

Die Dissertation wurde am 16.06.2009 bei der Technischen Universität Mün-
chen eingerichtet und durch die Fakultät für Elektrotechnik und Information-
stechnik am 22.10.2009 angenommen.

Preface

The research presented in this thesis has been carried out at the Institute
for Data Processing (LDV) at Technische Universität München (TUM). This
was during my stay as a DAAD (Deutscher Akademischer Austausch Dienst)
scholarship holder. Throughout this period, I had the opportunity to meet and
collaborate with several persons who have contributed to its accomplishment.

First of all, I am deeply thankful to Prof.Dr.-Ing. Klaus Diepold for his great
care, valuable advices, helpful guidance, and providing the di�erent facilities to
carry out this work. He was always a frequent source of support and guidance
in all aspects and at all times. I am deeply thankful to Prof. Dr. Claudia
Eckert for the interest she showed to co-advise my work. I deeply appreciate
DAAD who have granted me the scholarship. Furthermore I am deeply thankful
to my colleagues at LDV that have provided the environment for sharing their
experiences about the problems involved.

Finally I want to thank my family and my friends. The encouragement and
support from them is a powerful source of inspiration and energy. A special
thought is devoted to my parents for never-ending support.

Munich, Germany MohamedAbo El-Fotouh
June 2009.

Abstract

In this thesis, new ideas in cryptography, cryptanalysis and designing high speed
secure applications are presented. The Advanced Encryption Standard (AES)
is used to demonstrate these ideas. In the �eld of cryptography, new encryption
models are proposed. In the �eld of cryptanalysis, a secure key schedule for AES
is presented together with new generalized attacks. These generalized attacks
are applied on AES. The proposed encryption models are used to design and
develop new network encryption schemes and new modes of operation dedicated
to disk encryption applications.

Three new encryption models are proposed. All the proposed models share a
main idea, which is splitting the encryption key into a primary and a secondary
key. The secondary key together with the primary key are used to determine
how the plaintext will be encrypted. The main functionality of the secondary
key is to change the way the block cipher behaves, in other words by encrypting
two identical plaintexts with the same primary key but two di�erent secondary
keys, the result is two di�erent ciphertexts. The guidelines to use these models
securely are also presented and the possibility to combine these models with
each other is discussed.

In order to increase the security of the proposed encryption models, a gen-
eralized secure key schedule for block ciphers is proposed. This key schedule
uses a secure cipher in the counter mode, and eliminates related-key attacks. It
also increases the complexity of the exhaustive key search attack. Additionally,
new ideas in cryptanalysis are proposed, which can improve some chosen plain-
text, chosen ciphertext, chosen plaintext-adaptive chosen ciphertext and chosen
ciphertext-adaptive chosen plaintext attacks. Using these new ideas, attacks on
5- and 6-round AES are mounted; to the best of the author's knowledge, these
attacks use the least amount of chosen plaintext in the literature to attack 5-
and 6-round AES.

To demonstrate the usage of the proposed encryption models in realistic sce-
narios, new network encryption schemes and disk encryption modes of operation
are developed. These network encryption schemes allow a higher throughput
than the current solutions. Furthermore, these schemes require much lower
memory, which increases the number of concurrent clients a server can serve.
For disk encryption applications, several new encryption modes of operation
are developed and some of the current modes of operation are improved. These
new modes of operation o�er a higher throughput in accessing disks than current
solutions.

iii

iv

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 1

1.2.1 Network Applications . 1
1.2.2 Disk Encryption Applications 2

1.3 Original Contributions . 3
1.4 Thesis Organization . 3

2 The Advanced Encryption Standard (AES) 5
2.1 Basic De�nitions . 5
2.2 Encryption Algorithms . 5

2.2.1 Asymmetric Ciphers . 5
2.2.2 Symmetric Ciphers . 6

2.3 The Advanced Encryption Standard Process 7
2.4 AES Algorithm . 8

2.4.1 AES Encryption . 9
2.4.2 AES Decryption . 11
2.4.3 AES Key Schedule . 13

2.5 Modes of Operations . 13

3 Cryptanalysis of AES 15
3.1 Attacks on the Cipher . 15

3.1.1 Exhaustive Key Search Attack 15
3.1.2 Di�erential and Linear Cryptanalysis 17
3.1.3 Impossible Di�erentials 17
3.1.4 Boomerang Attack . 18
3.1.5 Collision Attack . 18
3.1.6 Square Attack . 18
3.1.7 Partial Sums . 21

3.2 Proposed Attacks . 21
3.2.1 Pushdown Attack . 21
3.2.2 Pushup Attack . 24
3.2.3 Sandwich Attack . 25

3.3 Pushdown Attacks on AES . 25
3.3.1 Pushdown-Square-5 . 25
3.3.2 Pushdown-Square-6 . 26
3.3.3 Pushdown-Square-5* . 26
3.3.4 Pushdown-PartialSums-7* 27

v

3.4 Attacks on Key Schedule . 27
3.4.1 Related-key Impossible Di�erential Attack 27
3.4.2 Related Key Rectangle Attack 27

3.5 Proposed Enhanced AES Key Schedule 29
3.5.1 Rijndael Key Schedule Classi�cation 29
3.5.2 Proposed Key Schedule for AES 30
3.5.3 Proposed Generalized Key Schedule 31

3.6 Side Channel Attacks . 31
3.7 Summary . 31

4 Proposed Encryption Models 33
4.1 State of the Art Encryption Models 33

4.1.1 Classical Encryption Model 33
4.1.2 Tweakable Block Ciphers 33

4.2 General Scheme of the Proposed Models 34
4.3 Terminologies and De�nitions . 35

4.3.1 Terminologies . 35
4.3.2 De�nitions . 36

4.4 Dynamic Substitution Model (DSM) 37
4.4.1 DS-AES . 37

4.5 Static Substitution Model (SSM) 37
4.5.1 AESS1, AESS2 and AES2S 38
4.5.2 Advantages of DSM and SSM 38

4.6 Dynamic Injection Model (DIM) 39
4.6.1 Transformation Functions 40
4.6.2 DI-AES . 40

4.7 Static Injection Model (SIM) . 42
4.7.1 AESI1, AESI2 and AES2I 42
4.7.2 Advantages of DIM and SIM 42

4.8 Dynamic Permutation Model (DPM) 44
4.8.1 Dynamic Permutation AES 45

4.9 Security of the Proposed Encryption Models 46
4.9.1 The Guidelines for Single Round Modi�cation 46
4.9.2 The Guidelines for Double Round Modi�cation 47
4.9.3 Facts About AES . 47
4.9.4 Security of AESS1 and AESI1 48
4.9.5 Security of AESS2 and AESI2 48
4.9.6 Security of AES2S and AES2I 48

4.10 Hybrid Models . 49
4.10.1 Dynamic Permutation Static Substitution AES (DPSS-

AES) . 49
4.10.2 Applications and Recommendations 50

4.11 Summary . 50

5 Network Encryption Schemes 53
5.1 Introduction . 53
5.2 Assumptions and Requirements 54

5.2.1 Assumptions . 54
5.2.2 The Requirements of the Schemes 54
5.2.3 Secondary Keys Generation 55

vi

5.3 Cipher Block Chaining (CBC) Schemes 55
5.3.1 CBC-Pre . 55
5.3.2 CBC-On . 56
5.3.3 CBC-S . 56

5.4 Counter Mode (CTR) Schemes 57
5.4.1 Counter Block Format . 57
5.4.2 CTR-Pre . 58
5.4.3 CTR-On . 59
5.4.4 CTR-S . 59

5.5 Galois/Counter Mode (GCM) Schemes 61
5.5.1 GCM Software Implementations 61
5.5.2 GCM(x)-Pre . 61
5.5.3 GCM(x)-On . 62
5.5.4 GSCM(x) . 63

5.6 Memory Analysis . 65
5.7 Server Con�guration and Simulation Parameters 65

5.7.1 Server Con�guration . 65
5.7.2 Parameters . 67

5.8 Stability Analysis . 67
5.8.1 The Stability Analysis Simulation 67
5.8.2 The Results of the Stability Analysis 68

5.9 Performance Analysis . 78
5.9.1 The Performance Analysis Simulation 78
5.9.2 The Results of the Performance Analysis 78

5.10 Network Analysis . 81
5.10.1 The Network Analysis Simulation 81
5.10.2 The Results of the Network Analysis 83

5.11 Security Analysis of the Schemes 85
5.11.1 Security of CBC and CTR 85
5.11.2 Security of AES . 85
5.11.3 The Security of Even-Mansour Construction 86
5.11.4 Security of the Schemes 86

5.12 Summary . 87

6 Disk Encryption 89
6.1 Introduction . 89

6.1.1 Disk Encryption Constraints 89
6.1.2 General Scheme . 89
6.1.3 Tweak . 90
6.1.4 Tweak Calculation . 90
6.1.5 Attack Models . 90

6.2 Current Modes of Operations . 91
6.2.1 Terminologies . 91
6.2.2 Cipher Block Chaining (CBC) 92
6.2.3 LRW . 92
6.2.4 XTS . 93

6.3 Masked Code Book (MCB) . 94
6.3.1 Design Goals . 94
6.3.2 Keys of MCB . 95
6.3.3 The Mask . 95

vii

6.3.4 Design . 95
6.3.5 Security of MCB . 96
6.3.6 Security Against Ciphertext Collisions 97
6.3.7 Advantages of MCB . 98

6.4 Substitution Cipher Chaining Mode (SCC) 98
6.4.1 Design Goals . 98
6.4.2 Keys . 99
6.4.3 Design . 99
6.4.4 Advantages of SCC . 100
6.4.5 Security of SCC . 100

6.5 ELEPHANT . 100
6.5.1 The Di�users . 101
6.5.2 Proposed Modi�cation . 102
6.5.3 Bit Dependency Tests . 103
6.5.4 Safety Factor . 104

6.6 Extended Substitution Cipher Chaining Mode (ESCC) 104
6.6.1 Design Goals . 104
6.6.2 Keys . 104
6.6.3 Design . 105
6.6.4 Discussion of ESCC . 106
6.6.5 Advantages of ESCC . 107

6.7 Performance Analysis . 107
6.7.1 Benchmark Application 108
6.7.2 CPU Utilization . 108
6.7.3 Benchmarking Results . 108

6.8 Cryptanalysis of SCC . 110
6.8.1 Cryptanalysis of SCC-128 110
6.8.2 Cryptanalysis of SCC-256 114
6.8.3 Attacking ELEPHANT+ and ELEPHANT× 117

6.9 Summary . 117

7 Conclusions and Outlook 119

A MBOX Values 123

B Performance Simulation Results 129

C Network Simulation Results 135

D Disk Encryption Performance Results 141

Bibliography 147

List of Figures 158

List of Tables 160

viii

Chapter 1

Introduction

1.1 Problem Statement

Symmetric encryption is the backbone of cryptography, and it is the most funda-
mental cryptographic task. It is used in a large variety of applications, like disk
encryption, securing communications, encrypting e-mail messages, and many
other applications [28]. Cryptographic overheads associated with symmetric
encryption can be a burden for many applications. These overheads are mainly
performance overheads and/or memory requirements. In some applications,
trading memory resources for performance is totally acceptable; an example of
these applications is disk encryption. The performance of disk encryption appli-
cations is very critical, as a noticeable slow down in the computer performance
will face users' resistance to its deployment [60]. In other applications, this
trade o� might constrain the system scalability; e.g. for a network server: the
number of concurrent clients is directly proportional to the amount of available
memory on the server. To be able to achieve high throughput together with low
memory consumption, new encryption models need to be developed.

1.2 Motivation

The work in this thesis is motivated with two main applications, where sym-
metric encryption overheads play an important role for their operation. These
applications are network and disk encryption. In the following text, the moti-
vation behind each application will be discussed separately.

1.2.1 Network Applications

The number of internet users is continuously increasing world wide. Recent
statistics reported that the current number of internet users is more than 1.6
billion. This number has increased more than 350% in the last eight years and
is still increasing daily [152]. Consequently, internet and network applications
need to serve an increasing number of concurrent clients. The enhanced quality
and performance expected from modern applications require more bandwidth
capacity to meet the clients' needs. Today, modern networks have to ful�ll the

1

2 CHAPTER 1. INTRODUCTION

demand of higher transmission rates and at the same time they have to provide
data security and especially data con�dentiality [84].

Key agility is particularly important in applications where only several blocks
of data are encrypted between two consecutive key changes. IPSec [91, 92, 93]
and ATM [41, 153, 69, 10], with small packet sizes, and consecutive packets
encrypted using di�erent keys, are two widespread protocols in which the key
setup latencies may play a very important role [63].

Ciphers that require round keys pre-computation have a lower key agility
due to the pre-computation time, and they also require extra RAM to hold
the pre-computed round keys. This RAM requirement does not exist in the
implementations of ciphers, which compute their round keys during the encryp-
tion/decryption operation (on-the-�y) [150].

There are two widely used schemes for generating the cipher's round keys
in network applications. The �rst scheme uses round keys pre-computation
and the second uses on-the-�y round keys computation. The analyses carried
out in this thesis point out some shortcomings in both schemes, as the scheme
that uses on-the-�y round keys computation performs more operations. On
the other hand the scheme that uses round keys pre-computation uses more
memory, which may limit the number of concurrent clients and is subjected to
more cache misses and page faults causing degradation in system performance.
Thus, new secure encryption schemes that possess both high encryption speed
and low memory requirements are needed.

1.2.2 Disk Encryption Applications

In today's computing environment, the con�dentiality of stored information
faces a lot of threats, especially on end-user devices (e.g. personal computers,
PDAs, USB sticks or external hard drives). A common threat against these
devices is device loss or theft, which can lead to identity theft and other frauds.
An adversary with physical access to a device may view or copy the information
stored on that device. Another concern is insider attacks, such as an employee
attempting to access sensitive information stored on another employee's de-
vice [128].

Usually the data stored on the PC is often signi�cantly more valuable to a
corporation than the PC itself [60]. To prevent the disclosure of sensitive data,
the data needs to be secured. Disk encryption applications are usually used to
protect the data on the disk by encrypting it, where all the data is encrypted
with a single/multiple key(s) and encryption/decryption are done on-the-�y.

Disk encryption applications usually encrypt/decrypt a whole sector at a
time. There exist dedicated block ciphers to encrypt whole sectors at a time
like Bear and Lion [5]. These ciphers are considered to be slow, as they process
the data through multiple passes. Another method is to let a block cipher like
the Advanced Encryption Standard (AES) [121] (with 16 bytes as a block size)
process the data using a particular mode of operation. There exist two main
classes of disk encryption modes of operation, namely narrow-block and wide-
block modes. The narrow-block modes operate on relatively small portions of
data (typically 16 bytes when AES is used), while the wide-block modes encrypt
or decrypt a whole sector (typically 512 bytes) at a time [134].

The current encryption modes of operation are either expensive in terms
of performance, or are subjected to some attacks. Thus, new secure and fast

1.3. ORIGINAL CONTRIBUTIONS 3

modes of operation are needed.

1.3 Original Contributions

In this thesis, novel encryption models are proposed. These models share a main
idea, which is providing a block cipher with a secondary key. The secondary
key together with the primary key (main encryption key) are used to determine
how the plaintext will be encrypted. The main functionality of the secondary
key is to change the way the block cipher behaves. In other words by encrypting
two identical plaintexts with the same primary key and two di�erent secondary
keys, the result will be two di�erent ciphertexts. It can be thought that the
primary key together with the secondary key form the encryption key. These
encryption models are used to design ciphers that accept multiple keys. The
proposed ciphers are designed to be e�ciently deployed in network encryption
schemes that possess high speed together with low memory requirements, and
to develop fast encryption modes of operation for disk encryption.

The proposed encryption models mainly change the cipher's expanded key
by permutation, substitution or addition. These models possess a dynamic
nature, i.e. they can use extra inputs to determine how the secondary key will
a�ect the cipher's expanded key. Although these models are general and can be
applied to any block cipher, this thesis focuses on their implementation using
AES [121, 37, 38].

Using the proposed encryption models, new variants of AES are proposed.
These variants allow AES to accept secondary key(s). With the help of these
variants, new e�cient network encryption schemes are proposed. These encryp-
tion schemes are characterized by their high throughput, stability, low setup
time, low memory requirements and scalability. The new proposed variants of
AES are used to design new modes of operation for disk encryption applica-
tions. These modes of operation are characterized by their high throughput
and security, when compared to the state of the art modes.

New ideas in cryptanalysis are proposed, which can increase the e�ciency
of some chosen plaintext/ciphertext attacks. Based on these ideas, the Push-
down attacks on AES are developed and the Substitution Cipher Chaining mode
(SCC) [49] is broken.

An enhanced key schedule for AES is proposed. This proposed key schedule
protects the current AES implementation from many attacks like related-key
and some cache timing attacks. It is worth mentioning that the proposed key
schedule increases the time complexity of many attacks, even the exhaustive
key search attack. A generalized secure key schedule for block ciphers is also
presented.

1.4 Thesis Organization

This thesis addresses di�erent topics in computer security, like encryption mod-
els, network encryption schemes and disk encryption. Each topic has its own
research �eld where intensive studies have been conducted. The literature re-
view of each topic will be presented in the chapter that discusses that topic.
The thesis is structured as follows:

4 CHAPTER 1. INTRODUCTION

Chapter 2 presents the literature review on encryption, modes of operation
and AES.

Chapter 3 presents the literature review on the known attacks on AES, to-
gether with the new proposed attacks. A new key schedule for AES is proposed,
which protects AES from related-key attacks, together with other attacks. In
addition, new ideas in the chosen plaintext/ciphertext attacks are proposed,
these ideas can increase the strength of some attacks; using these ideas new
attacks on AES are developed.

Chapter 4 presents the proposed encryption models. There are three main
models: Dynamic Substitution Model (DSM), Dynamic Injection Model (DIM)
and Dynamic Permutation Model (DPM). The guidelines on how to use these
models securely are also presented. In addition to these main models, the pos-
sibility of constructing hybrid models is discussed (i.e. using di�erent combi-
nations of these models). Di�erent variants of AES based on these models are
proposed.

Chapter 5 presents the current network encryption schemes that use Cipher
Block Chaining mode of operation (CBC) [117] and Counter mode of operation
(CTR) [113] to perform encryption. The authenticated encryption schemes that
use Galois/Counter Mode (GCM) [116] to perform authenticated encryption are
also studied. After studying the existing schemes, new schemes are proposed;
these schemes enjoy high-throughput, stability and scalability. To be able to
realize the behavior of all the schemes, a network simulation tool is developed
to realize how these schemes perform in real world situations. A stress test
is developed, which investigates the performance of these schemes, when the
server is overloaded. Finally, the security analyses of the current and proposed
schemes are presented.

Chapter 6 presents the state of the art disk encryption modes of operation,
together with the proposed modes of operation. The evaluation of these modes
of operation in terms of performance and security is presented.

Chapter 7 summarizes the thesis, reviews the main contributions, and states
the future work.

Parts of this thesis have been published in [47, 44, 42, 46, 45, 49, 43, 48, 51,
56, 53, 50, 52, 54, 55, 57].

Chapter 2

The Advanced Encryption
Standard (AES)

2.1 Basic De�nitions

Plaintext: intelligible text or signals that have meaning.

Ciphertext: plaintext that has been encrypted.

Confusion: a term introduced by Shannon [147] to describe a function whose
output is a complex function of its inputs (usually composed of a data
block and a round key).

Di�usion: a term introduced by Shannon [147] to describe a linear function
whose output is a permutation (or wire-crossing) of its inputs and which
distributes input bits so as to remove any local clustering.

Encryption: the transformation of plaintext into ciphertext for the purpose of
security or privacy.

Decryption: the transformation of ciphertext into plaintext.

Encryption algorithm: an algorithm that performs encryption, it is used in-
terchangeably with the word "cipher".

Key: a sequence of bits which is used for the transformations between cipher-
text and plaintext.

2.2 Encryption Algorithms

Encryption algorithms can be classi�ed into two main categories: asymmetric
and symmetric algorithms, depending on the technique and approach employed.

2.2.1 Asymmetric Ciphers

Also known as Public key ciphers is a group of ciphers that possess two keys,
one is used for encryption and the other is used for decryption. In public key

5

6 CHAPTER 2. THE ADVANCED ENCRYPTION STANDARD (AES)

ciphers, a user has a pair of cryptographic keys, a public key and a private key.
The private key is kept secret, while the public key may be widely distributed.
Messages encrypted with the recipient's public key can only be decrypted with
his corresponding private key. The keys are related mathematically, but the
private key cannot be practically derived from the public key. Well known
asymmetric ciphers are RSA [139], Di�e-Hellman [40], ElGamal [64], DSA [2],
and Elliptic curve ciphers [97, 118].

Asymmetric encryption is relatively slow and therefore unsuitable for encryp-
tion of large messages. However, a major advantage of asymmetric key systems
is that one of the two components of the key pair can be made public (hence the
phrase "public key"). This has two important bene�ts: �rst, anyone can send
private information to a recipient 'A' by encrypting the information using A's
public key but only A will be able to recover the information by decrypting the
ciphertext using the related private key (which A must keep secret). Second, if
some known information can be correctly recovered by decrypting it with A's
public key, it must have been encrypted with A's private key and therefore by
A. This means that asymmetric algorithms provide proof of origin.

Figure 2.1 shows the asymmetric key encryption and decryption processes,
where anyone can encrypt the data using the public key, but only the holder of
the private key can decrypt that data. Security depends on the secrecy of the
private key.

Figure 2.1: Asymmetric encryption and decryption processes.

2.2.2 Symmetric Ciphers

Also known as Secret-key ciphers, these ciphers use the same key for encryption
and decryption. They usually operate at relatively high speed and are suitable
for bulk encryption of messages. Symmetric key algorithms can be divided into
stream ciphers and block ciphers. Stream ciphers usually encrypt the bits of the
message one at a time, whereas block ciphers take a number of bits and encrypt

2.3. THE ADVANCED ENCRYPTION STANDARD PROCESS 7

them as a single unit. The Advanced Encryption Standard algorithm approved
by NIST in December 2001 uses 128-bit blocks [120].

Some examples of popular block ciphers include AES (Rijndael) [38], Blow-
�sh [144], Tirple DES [33], IDEA [100], RC5 [138], CAST [3] and Skipjack [15].
Some examples of popular stream ciphers are RC4 [119], PANAMA [35] and
Rabbit [24].

Figure 2.2 shows the symmetric key encryption and decryption processes,
where only the persons sharing the secret key can encrypt and decrypt the
message. Security depends on the secrecy of the secret key.

Figure 2.2: Symmetric encryption and decryption processes.

2.3 The Advanced Encryption Standard Process

Advanced Encryption Standard (AES), the block cipher approved as a stan-
dard by National Institute of Standards and Technology of the United States
(NIST) [131], was chosen using a process markedly more open and transparent
than its predecessor, the Data Encryption Standard (DES) [59]. A new stan-
dard was needed primarily because DES has a relatively small 56-bit key which
was becoming vulnerable to brute force attacks. In addition DES was designed
primarily for hardware and is relatively slow when implemented in software.
While Triple-DES [33] avoids the problem of a small key size, it is very slow in
software, it is unsuitable for limited-resource platforms, and may be a�ected by
potential security issues connected with the small block size of 64-bit.

NIST has been working with industry and the cryptographic community to
develop an Advanced Encryption Standard (AES) to replace the Data Encryp-
tion Standard (DES). The overall goal was to develop a Federal Information
Processing Standard (FIPS) that speci�es an encryption algorithm capable of
protecting sensitive government information. The algorithm is expected to be
used by the U.S. Government and, on a voluntary basis, by the private sec-
tor [126].

8 CHAPTER 2. THE ADVANCED ENCRYPTION STANDARD (AES)

On January 2, 1997, NIST announced the initiation of AES development
e�ort and made a formal call for algorithms on September 12, 1997. The call
stipulated that AES would specify an unclassi�ed, publicly disclosed encryption
algorithm(s), available royalty-free, worldwide. In addition, the algorithm(s)
must implement symmetric key cryptography as a block cipher and support
block sizes of 128-bit and key sizes of 128-, 192-, and 256-bit.

On August 20, 1998, NIST announced a group of �fteen AES candidate
algorithms at the First AES Candidate Conference (AES1). These algorithms
are CAST-256 [4], CRYPTON [104], DEAL [106, 89], DFC [137, 96], E2 [111],
FROG [157], HPC [146], LOKI97 [27], MAGENTA [14, 81], SAFER+ [109],
MARS [28], RC6 [99], Rijndael [37, 38], Serpent [6], and Two�sh [145]. These
algorithms had been submitted by members of the cryptographic community
from around the world. At that conference and in a simultaneously published
Federal Register notice, NIST solicited public comments on the candidates.

A Second AES Candidate Conference (AES2) was held in March 1999 to
discuss the results of the analysis conducted by the global cryptographic com-
munity on the candidate algorithms. The public comment period on the initial
review of the algorithms closed on April 15, 1999. Using the analyses and com-
ments received, NIST selected �ve algorithms from the �fteen. AES �nalist
candidate algorithms were MARS, RC6, Rijndael, Serpent, and Two�sh, and
NIST developed a Round 1 Report [124] describing the selection of the �nalists.

These �nalist algorithms received further analysis during a second, more
in-depth review period prior to the selection of the �nal algorithm(s) for AES.
Until May 15, 2000, NIST solicited public comments on the remaining algo-
rithms. Comments and analysis were actively sought by NIST on any aspect of
the candidate algorithms, including, - but not limited to, - the following topics:
cryptanalysis, intellectual property, crosscutting analyses of all AES �nalists,
overall recommendations and implementation issues. An informal AES discus-
sion forum was also provided by NIST for interested parties to discuss AES
�nalists and relevant AES issues.

Near the end of Round 2, NIST sponsored the Third AES Candidate Con-
ference (AES3) - an open, public forum for discussion of the analyses of AES
�nalists. AES3 was held April 13-14, 2000 in New York. Submitters of AES
�nalists were invited to attend and engage in discussions regarding comments
on their algorithms. The �nal agenda for AES3 includes links to the accepted
papers, their presentations, the submitter statements, and the submitter pre-
sentations. All papers proposed for AES3 were considered as o�cial Round 2
public comments [125].

After the close of the Round 2 public analysis period on May 15, 2000,
NIST studied all available information in order to make a selection for AES. On
October 2, 2000, NIST announced that it has selected Rijndael to propose for
AES. AES is published by NIST as FIPS PUB 197 in November 2001 [120]. In
the next section, Rijndael (AES) is discussed in details.

2.4 AES Algorithm

In this thesis the names AES and Rijndael will be used interchangeably. The
description in this section is mainly from [37, 38]. It is worth mentioning that
the design of Rijndael was strongly in�uenced by the design of the block cipher

2.4. AES ALGORITHM 9

Square [36].

2.4.1 AES Encryption

AES accepts 128-bit long plaintext. The plaintext is arranged as an array of
bytes. This array is called the state; the bytes of the state are treated as elements
of the �nite �eld GF(28). Figure 2.3 represents the state S as a matrix. AES has
N rounds, where N equals to 10 for AES-128, 12 for AES-192, and 14 for AES-
256. Table 2.1 presents a high-level description of AES encryption, where State
represents the input/output state and ExpandedKey represents AES' expanded
key.

Figure 2.3: AES state arranged as a matrix.

Table 2.1: AES Encryption.

Encrypt-AES(State,ExpandedKey)

AK(State,ExpandedKey)

for i=1 to N-1

SB(State)

SR(State)

MC(State)

AK(State,ExpandedKey + 4 × i)

end for

SB(State)

SR(State)

AK(State,ExpandedKey + 4 × N)

return State

An AES round is composed of the following four operations:

SubBytes (SB): is a non-linear byte substitution, operating on each of the
State bytes independently. This operation provides the non-linearity in
the cipher. The S-box used is derived from the multiplicative inverse over
GF(28), known to have excellent di�erential and linear properties [132].
To avoid attacks based on simple algebraic properties, the S-box is con-
structed by combining the inverse function with an invertible a�ne trans-
formation. The S-box is also chosen to avoid any �xed points, and also
any opposite �xed points.

10 CHAPTER 2. THE ADVANCED ENCRYPTION STANDARD (AES)

The inverse of SubBytes uses the inverse table. This is obtained by the
inverse of the a�ne mapping followed by taking the multiplicative inverse
in GF(28).

Figure 2.4 demonstrates the SubBytes transformation, where each byte
in the state is replaced with its entry in a �xed 8-bit S-BOX (S); bij =
S(aij).

Figure 2.4: The SubBytes transformation.

ShiftRows (SR): in ShiftRows, the rows of the State are cyclically shifted
over di�erent o�sets. Row 0 is not shifted, row 1 is shifted over 1 byte,
row 2 is shifted over 2 bytes and row 3 is shifted over 3 bytes.

Figure 2.5 demonstrates the Shiftrows transformation, where bytes in each
row of the state are shifted cyclically to the left.

Figure 2.5: The ShiftRows transformation.

MixColumns (MC): in MixColumns, the columns of the State are considered
as polynomials over GF(28) and multiplied modulo x4 + 1 with a �xed
polynomial c(x), given by:

c(x) = 3x3 + x2 + x+ 2 (2.1)

This polynomial is coprime to x4 + 1 and therefore invertible. The inverse
of MixColumns is similar to MixColumns. Every column is transformed
by multiplying it with a speci�c multiplication polynomial d(x), de�ned
by:

d(x) = 11x3 + 13x2 + 9x+ 14 (2.2)

Figure 2.6 demonstrates the MixColumns transformation, where each col-
umn of the state is multiplied with a �xed polynomial c(x).

2.4. AES ALGORITHM 11

Figure 2.6: The MixColumns transformation.

AddRoundKey (AK): in AddRoundKey, a round key is applied to the State
by a simple bitwise XOR. The Round Key is derived from the Encryption
Key by means of the key schedule.

Figure 2.7 demonstrates the AddRoundKey operation, where each byte
of the state is combined with a byte of the round key using the XOR
operation (⊕).

Figure 2.7: The AddRoundKey operation.

The MixColumns operation is omitted in the last round and an initial key
addition is performed before the �rst round for whitening.

2.4.2 AES Decryption

There are two di�erent algorithms for AES decryption routine, the inverse cipher
and the equivalent inverse cipher.

12 CHAPTER 2. THE ADVANCED ENCRYPTION STANDARD (AES)

The Inverse Cipher

To inverse a round, the order of the transformations in the round is reversed,
and consequently the non-linear step will end up being the last step of the
inverse round and the rows are shifted after the application of (the inverse of)
MixColumns. Table 2.2 presents a high-level description of AES decryption,
where SB−1, SR−1 and MC−1 are the inverse of SB, SR and MC respectively.

Table 2.2: AES Decryption.

Decrypt-AES(State,ExpandedKey)

AK(State,ExpandedKey + 4 × N)

SR−1(State)

SB−1(State)

for i=N-1 to 1

AK(State,ExpandedKey + 4 × i)

MC−1(State)

SR−1(State)

SB−1(State)

end for

AK(State,ExpandedKey)

return State

The Equivalent Inverse Cipher

Using some algebraic properties, the sequence of transformations of AES' inverse
can be equal to that of AES itself, with the transformations replaced by their
inverses and a change in the key schedule. This is illustrated in table 2.3, where
IExpandedKey is a modi�ed AES' expanded key.

Table 2.3: The Equivalent Inverse Cipher.

Encrypt-AES(State,IExpandedKey)

AK(State,IExpandedKey + 4 × N)

for i=1 to N-1

SB−1(State)

SR−1(State)

MC−1(State)

AK(State,IExpandedKey + 4 × i)

end for

SB−1(State)

SR−1(State)

AK(State,IExpandedKey)

return State

Note that the key expansion for the Equivalent Inverse Cipher is de�ned as
follows:

1. Apply the Key Expansion.

2. Apply MC−1 to all round keys except the �rst and the last one.

2.5. MODES OF OPERATIONS 13

2.4.3 AES Key Schedule

The round keys are derived from the Encryption Key by means of the key
schedule. This consists of two components: the key expansion and the round
key selection. The basic principle is the following:

1. The total number of round key bits is equal to the 128-bit multiplied by
the number of rounds plus 1 (e.g., for a block length of 128-bit and 10
rounds, 1408 round key bits are needed).

2. The Encryption Key is expanded into an Expanded Key.

3. Round keys are taken from this Expanded Key in the following way: the
�rst Round Key consists of the �rst 16 bytes, the second one of the fol-
lowing 16 bytes, and so on.

For a detailed explanation of the key schedule, refer to [38].

2.5 Modes of Operations

A block cipher operates on blocks of �xed length, often 128-bit. Because mes-
sages may be of any length, several modes of operation have been invented which
allow block ciphers to provide con�dentiality for messages of arbitrary length.

The earliest modes described in the literature provide only con�dentiality
or message integrity, but do not perform both simultaneously. Examples of
these modes are Cipher Block Chaining (CBC), Cipher Feedback (CFB) and
Output Feedback (OFB) [117]. Other modes have been designed to o�er both
con�dentiality and message integrity in one pass, such as IAPM [77], CCM [158],
EAX [9], GCM [116], and OCB [142] modes.

Tweakable modes of operation have been developed after the introduction of
tweakable block cipher [105].

14 CHAPTER 2. THE ADVANCED ENCRYPTION STANDARD (AES)

Chapter 3

Cryptanalysis of AES

3.1 Attacks on the Cipher

Table 3.1 summarizes the complexities of some known attacks on AES, where
CP refers to Chosen Plaintext, ACPC refers to Adaptive Chosen Plaintext and
Ciphertext. The time complexity is measured in encryption units. In the fol-
lowing text, a brief discussion on these attacks is presented.

3.1.1 Exhaustive Key Search Attack

Exhaustive key search is the basic technique of trying all key values one by one
until the correct key is found. To identify the correct key it is su�cient to
know a small amount of plaintexts and their corresponding ciphertexts. If the
plaintext has some known form of redundancy, such as an ASCII coded text,
a small amount of ciphertext is su�cient. Exhaustive key search is an attack
that does not exploit the internal structure of a cipher. Later, the attacks that
exploit structural properties of the block cipher will be discussed. These types
of attack are denoted by the term cryptanalysis. A cryptanalytic attack breaks
a cipher academically if its expected workload is below that of exhaustive key
search. Such an attack is called a shortcut attack. The existence of a shortcut
attack for a given cipher does not necessarily mean that the cipher has no longer
any security to o�er, because most shortcut attacks described in cryptographic
literature cannot be implemented in a practical setting [133].

For many modern ciphers, no shortcut attacks are known. Still, the resis-
tance of iterative block ciphers with respect to a speci�c cryptanalytic method
can be evaluated by performing it on reduced-round versions of the block ci-
pher. Attacks on reduced-round versions allow getting an idea of the security
margin of a cipher. If for a cipher with R rounds there exists a shortcut attack
against a reduced-round version with R-r rounds, the cipher has an absolute
security margin of r rounds or a relative security margin of r/R. Note that the
discovery of an attack on a reduced-round version with R/2 rounds does not
mean that the cipher is half-broken. Indeed, the complexity of most academic
attacks increases exponentially with the number of rounds.

15

16 CHAPTER 3. CRYPTANALYSIS OF AES

Table 3.1: The complexity of some attacks on AES.

Key Source Number of Data Time Attack
Size Complexity Complexity Type
all Ref. [37] 4 29 CP 29 Square
all Ref. [37] 5 211 CP 240 Square
all Ref. [37] 6 232 CP 272 Square
all Ref. [37] 6 232 CP 272 Square
all Ref. [61] 6 6 x 232 CP 244 Partial Sums
all Ref. [61] 7 2128-2119CP 2120 Partial Sums
all Ref. [159] 6 2114.5 CP 250 Imp.Di�
all Ref. [159] 6 275.5 CP 2104 Imp.Di�
all Ref. [159] 7 2115.5 CP 2119 Imp.Di�
all Ref. [65] 7 232CP ≈2128 Collision
all This Thesis 5 29 CP 240 Pushdown-Square
all This Thesis 6 211 CP 272 Pushdown-Square
128 Ref. [19] 5 229.5 CP 231 Imp.Di�
128 Ref. [31] 6 286 CP 2125 Imp.Di�
128 Ref. [31] 6 291.5 CP 2122 Imp.Di�
128 Ref. [61] 7 2115.5 CP 2120 Partial Sums
128 Ref. [21] 5 239 ACPC 239 Boomerang
128 Ref. [21] 6 271 ACPC 271 Boomerang
192 Ref. [136] 7 292 CP 2186 Imp.Di�
192 Ref. [31] 7 292 CP 2162 Imp.Di�
192 Ref. [61] 8 2128-2119CP 2188 Partial Sums
192 Ref. [61] 7 19 x 232 CP 2155 Partial Sums
192 Ref. [107] 7 232 CP 2184 Square
256 Ref. [136] 7 292.5 CP 2247.5 Imp.Di�
256 Ref. [31] 8 2116.5 CP 2162 Imp.Di�
256 Ref. [61] 8 2128-2119CP 2204 Partial Sums
256 Ref. [61] 7 21 x 232 CP 2172 Partial Sums
256 Ref. [107] 7 232 CP 2200 Square

3.1. ATTACKS ON THE CIPHER 17

3.1.2 Di�erential and Linear Cryptanalysis

Linear cryptanalysis [110] attacks are possible if there are predictable input-
output correlations over all but a few (typically 2 or 3) rounds signi�cantly
larger than 2n/2, where n is the block length in bits. An input-output correlation
is composed of linear trails, where its correlation is the sum of the correlation
coe�cients of all linear trails that have the speci�ed initial and �nal selection
patterns. The correlation coe�cients of the linear trails are signed and their
sign depends on the value of the round keys. To be resistant against linear
cryptanalysis, it is a necessary condition that there are no linear trails with a
correlation coe�cient higher than 2n/2 [37].

Di�erential cryptanalysis attacks [20] are possible if there are predictable
di�erence propagations over all but a few (typically 2 or 3) rounds that have
a prop ratio (the relative amount of all input pairs that for the given input
di�erence gives rise to the output di�erence) signi�cantly larger than 21−n if
n is the block length. Di�erence propagation is composed of di�erential trails,
where its prop ratio is the sum of the prop ratios of all di�erential trails that
have the speci�ed initial and �nal di�erence patterns. To be resistant against
di�erential cryptanalysis, it is therefore a necessary condition that there are no
di�erential trails with a predicted prop ratio higher than 21−n [37].

Di�erential and linear cryptanalyses are the two most powerful general pur-
pose cryptographic attacks known to date. AES is based on the substitution-
permutation network (SPN) structure, several research have dealt with prov-
able security against di�erential and linear cryptanalyses for block ciphers
based on the substitution-permutation network (SPN) structure (including
AES) [32, 79, 85, 87, 86, 135, 143]. The current standard approach to demon-
strate provable security against di�erential and linear cryptanalysis is to prove
that the maximum expected di�erential probability (MEDP) and the maxi-
mum expected linear probability (MELP) are su�ciently small over T core
rounds [132]. This is because the corresponding estimate of the data complexity
of the attack (the number of plaintext-ciphertext pairs required) is proportional
to the inverse of the MEDP for di�erential cryptanalysis and that of MELP for
linear cryptanalysis.

There is a well-known duality between di�erential and linear cryptanalyses
that often allows results for one attack to be translated into corresponding
results for the other [13]. In [88], the exact MEDP of two AES rounds was
determined to be 53/234 ≈ 1.656×2−29 and that of MELP is 109, 953, 193/254 ≈
1.638×2−28. A particularly useful relationship exists for AES and related SPNs:
if µ is an upper bound on the two-round MEDP (or MELP), then µ4 is an upper
bound on the MEDP (MELP) for T ≥ 4 [143]. This immediately yields to new
upper bounds on AES MEDP and MELP for four or more rounds, namely
(53/234)4 ≈ 1.881× 2−114 and (109, 953, 193/254)4 ≈ 1.802× 2−110 respectively.

3.1.3 Impossible Di�erentials

Impossible di�erential cryptanalysis [15] is a form of di�erential cryptanalysis for
block ciphers. While ordinary di�erential cryptanalysis tracks di�erences that
propagate through the cipher with greater than expected probability, impos-
sible di�erential cryptanalysis exploits di�erences that are impossible (having
probability 0) at some intermediate state of the cipher. AES has the follow-

18 CHAPTER 3. CRYPTANALYSIS OF AES

ing impossible di�erential property: given plaintext pair which are equal at all
bytes but one, the ciphertexts after 4-round cannot be equal in any of the fol-
lowing prohibited combinations of bytes: (1,6,11,16), (2,7,12,13), (3,8,9,14), nor
(4,5,10,15).

This property follows from the property of MixColumns transformation: if
two inputs of this transformation di�er by one byte then the corresponding
outputs di�er by all the four bytes.

This property was used to attack 5-round AES-128 [19]. Later in [31],
the same 4-round impossible di�erentials are used to attack 6-round AES-128.
In [136], using the same impossible di�erentials, attacks on 7-round AES-192
and AES-256 are presented. In [159], the attack has been extended to 7-round
AES-128 and 8-round AES-256.

3.1.4 Boomerang Attack

Boomerang attack [156] is a chosen plaintext-adaptive chosen ciphertext attack.
It is an extension of di�erential cryptanalysis and works on quartets of data
(P,P'), (Q,Q'). The attack works when encryption function E() can be split
into E = E1.E0, where E0 is weak in encryption direction and E1 is weak in
decryption direction. The boomerang attack was developed in 1999 after AES
competition was already running. This attack sometimes allows breaking more
rounds than the conventional di�erential or linear attacks, especially for the
ciphers with few but carefully designed rounds. Boomerang Attack can break
5- and 6-round of AES-128.

3.1.5 Collision Attack

In [65], a collision attack was induced against AES. The existence of collisions
between some partial byte oriented functions induced by AES provides a dis-
tinguisher between 4 inner rounds of AES and a random permutation, which in
turn enables to mount attacks on 7-round AES for any key-length. The attack
exploits (using the birthday paradox) a new kind of cryptanalytic bottleneck,
namely the fact that a partial function induced by the cipher is entirely deter-
mined by a remarkably small number of unknown constants. Therefore, unlike
most statistical attacks, it requires a rather limited number of plaintexts (about
232). But on the other hand, this attack requires a lot of computations.

3.1.6 Square Attack

The Square attack is a dedicated attack that exploits the byte-oriented structure
of Square cipher and was published in the paper presenting the Square cipher
itself [36]. This attack is also valid for Rijndael (AES) [38], as Rijndael inherits
many properties from Square. The attack is a chosen plaintext attack and is
independent of the speci�c choices of SB, the multiplication polynomial of MC
and the key schedule. It is faster than an exhaustive key search for Rijndael
versions of up to 6 rounds. In the following text, the square attack on 4-, 5- and
6-round AES will be presented.

3.1. ATTACKS ON THE CIPHER 19

Λ-Set

Let a Λ-set be a set of 256 AES states that are all di�erent in some of the state
bytes (the active) and all equal in the other state bytes (the passive), recall that
the state of Rijndael is a 4 × 4 byte matrix. In other words for two distinct
states A and B in a Λ-set:
Ai,j 6= Bi,j if the byte at position (i,j) is active, and
Ai,j = Bi,j else, i.e. the byte at position (i,j) is passive
A Λ-set with exactly k active bytes is a "Λk-set".

Square-4

Square-4 is the basic attack that attacks 4-round of Rijndael. The adversary
chooses one Λ1-set P0 of plaintexts (where by Pi is the set of 256 states which
are the output of the ith round). From the round properties of Rijndael: P1 is
a Λ4-set, P2 is a Λ16-set, and P3 is unlikely to be a Λ-set. As explained in [38]
all the bytes of P3 are balanced, i.e. the following property holds:

For all (i, j) ∈ {0, 1, 2, 3}2 :
⊕

A∈P3

Ai,j = 0. (3.1)

Hence, all bytes at the input of the 4th round are balanced. This balance is
in general destroyed by the subsequent application of SB. It is assumed that
the 4th round is a �nal round, i.e., it does not include a MC operation. Every
output byte of the 4th round depends on only one input byte of the 4th round.
Let a be the output of the 4th round, b its input, S the S-box and k the round
key of the 4th round. This means that:

ai,j = S(bi′,j′)⊕ ki,j (3.2)

By assuming a value for ki,j , the value of bi′,j′ for all elements of the Λ-set can be
calculated from the ciphertexts. If the values of this byte are not balanced over
Λ, the assumed value for the key byte was wrong. This is expected to eliminate
all but approximately 1 key value. This can be repeated for the other bytes of
k. Since by checking a single Λ1-set only 2−8 of the wrong key assumptions are
left as possible candidates, the Encryption Key can be found with overwhelming
probability with only 2 Λ-sets. The cost of this attack is 29 chosen plaintext
and requires about 29 cipher executions.

Square-5

If an additional round is added at the end, the value of bi′,j′ is calculated from
the output of the 5th round instead of the 4th round. This can be done by
additionally assuming a value for a set of 4 bytes of the 5th round key. As in the
case of the 4-round attack, wrong key assumptions are eliminated by verifying
that bi′,j′ is not balanced. In this 5-round attack 2

40 key values must be checked,
and this must be repeated 4 times. Since by checking a single Λ-set only 2−8 of
the wrong key assumptions are left as possible candidates, the Encryption Key
can be found with overwhelming probability with only 5 Λ-sets. The cost of
this attack is 5×28 chosen plaintext and requires about 240 cipher executions.

20 CHAPTER 3. CRYPTANALYSIS OF AES

Square-6

The basic idea is to choose a set of plaintexts that results in a Λ1-set at the
output of the 1st round. This requires the assumption of values of four bytes of
the round key that is applied before the �rst round. If the intermediate state
after MC of the 1st round has only a single active byte, this is also the case for
the input of the 2nd round. A set of 232 plaintexts are to be considered, such
that one column of bytes at the input of MC of the �rst round range over all
possible values and all other bytes are constant. Now, an assumption is made
for the value of the 4 bytes of the relevant bytes of the �rst round key. From the
set of 232 available plaintexts, a set of 256 plaintexts can be selected that results
in a Λ1-set at the input of round 2. Now Square-5 attack can be performed. For
the given key assumption, the attack can be repeated for several plaintext sets.
If the byte values of the last round key are not consistent, the initial assumption
must have been wrong. A correct assumption for the 4 bytes of the �rst round
key will result in the swift and consistent recuperation of the last round key.
The cost of this attack is 232 chosen plaintext and about 272 cipher executions.

Square attack for L-representation

The implementation of AES has a great degree of freedom to change the order
of its elementary operations, without changing the behavior of the cipher. The
L-representation is de�ned in [107], where Lr is de�ned as:

Lr = MC
−1(SB−1(Kr)) (3.3)

Note that by knowing Lr is equivalent to knowing Kr, where Kr is the rth

round key. In table 3.2, the original round of AES and its equivalent using the
L-representation are presented.

Table 3.2: AES original and equivalent round functions.

Round function Equivalent function

SB(State) SB(State)

SR(State) AK(State,Lr)

MC(State) SR(State)

AK(State,Kr) MC(State)

return State return State

The square attack in [38] assumes that the last round is a �nal round (i.e.
there is no MC operation). By using the L-representation as in [107], the square
attack can be restated to work on full rounds. For four round AES, the attack
works as following: the adversary chooses one Λ1-set P0 of plaintexts (where by
Pi is the set of 256 states which are the output of the ith round). As explained
in [38] all the bytes of P3 are balanced, i.e. the balance property holds (3.1). P4

is the set of 256 ciphertexts the adversary learns. Let L4 be the L-representation
of K4 (3.3). The adversary can calculate the set Q4 in between P3 and P4 by
applying MC−1 and SR−1 on the elements of P4, where for any Xi ∈ P4 the
corresponding element is Zi ∈Q4. The fourth round is inverted step by step, by
inverting the MC operation , inverting the SR operation, add (a possible choice
for) the key L4

i,j and invert the SR operation. If the guess a ∈ {0, 1}8 for L4
i,j

3.2. PROPOSED ATTACKS 21

is correct, the set of bytes SB−1(Zi,j ⊕ a) is balanced, it is estimated that this
guess will eliminate all the wrong guesses but one. So, an expected number of
about 216 candidates of L4 can be constructed.

Each candidate corresponds with a unique choice of the key of the last round.
Another set of Λ1-set can be tried to eliminate the wrong candidates, or just use
exhaustive key search over all the key candidates using the same 256 known pairs
of plaintext and ciphertext as before. With overwhelming probability, either
approaches uniquely determined the last round key. The memory requirement
of this attack is low and needs either 29 chosen plaintext and 29 cipher executions
or 28 chosen plaintext and 216 cipher executions.

3.1.7 Partial Sums

Partial Sums attack [61] is an extension to the Square attack. It is much faster
than the Square attack to attack 6-round AES. It can also attack 7-round AES-
128 and 8-round AES-192 or AES-256. But the latter attacks require nearly the
entire Rijndael codebook (2128-2119 chosen plaintexts); they are therefore not
very practical even for an adversary with su�cient computing power. In the
following text, the attack on 6-round AES is presented.

PartialSums-6

The attack of Sect. 3.1.6 on 6-round of AES can be improved. Instead of guessing
four bytes of the �rst round key, all 232 plaintexts are used. For any value of
the �rst round key, these encryptions consist of 224 groups of 256 encryptions
that vary only in a single byte after MC of round 1. The �ve key bytes at the
end of the cipher have to be guessed, a partial decrypt to a single byte of the
state after the key addition of round 4 has to be done, this value over all the
232 encryptions have be summed, and the result is checked for a zero result.
Compared to the original version, only 40 bits are guessed instead of 72. On the
other hand, 224 more work for each guess are done. This attack requires 6× 232

chosen plaintexts and 244 cipher executions.

3.2 Proposed Attacks

In this section, new concepts in cryptanalysis are introduced; these concepts
can increase the strength of some attacks.

3.2.1 Pushdown Attack

The Pushdown attack hosts a chosen plaintext attack, where it prepares the
chosen plaintext for that attack. Figure 3.1 gives an overview on how it works,
where:

1. In Figure 3.1(a), an n round chosen plaintext attack is presented that
accepts the set {X} of chosen plaintexts to calculate the Key K.

2. Figure 3.1(b) presents the pre-processing step of the Pushdown attack,
where {X} is transformed to {Y}.

22 CHAPTER 3. CRYPTANALYSIS OF AES

3. Figure 3.1(c) presents the Pushdown attack, where after encrypting {Y}
with r rounds, the result is {X'} that should be equivalent to {X}, in
the sense that applying the n round chosen plaintext attack on {X'} will
recover K. Thus, the number of rounds attacked by the chosen plaintext
attack is increased to (n+r) rounds.

(a) n round attack (b) Pre-processing (c) Pushdown attack

Figure 3.1: Overview on the Pushdown attack.

In the following text, some pre-processing steps, which are needed to mount
the Pushdown attacks on AES, are presented.

Λ1-Set Pre-Processing

Proposition 3.1. Let Ω1 be de�ned by:

Ω1 = R−1(Λ1, 0) (3.4)

where R−1(X,K) applies an AES decryption round on the state X and Round
key K. Then Ω1-Set is a Λ4-Set.

Proof. The proof is straight forward. Following the di�erence propagation, ap-
plying AK will not change the di�erence and the result is still a Λ1-Set. After
applying MC−1 the di�erence will propagate to one column, thus the result is
a Λ4-Set. Applying SR−1 will not change the di�erence but will change the
positions of the active bytes. Finally, SB−1 will not change the di�erence, thus
the result is still a Λ4-Set.

Note, a key with all zeros is used as a kind of optimization and simpli�cation
of the analysis, in the sense that it has no e�ect on the input and can be removed
from the pre-processing process.

3.2. PROPOSED ATTACKS 23

Proposition 3.2. Let Π1 be de�ned by:

Π1 = R(Ω1 ⊕K ′,K) (3.5)

where R(X,K) applies an AES encryption round on the state X and Round key
K. K ′ is a state, where four bytes of K ′ is set to the guessed bytes of K (those
xored with the active bytes of Ω1) and the other bytes are set to zero. Then
Π1-Set is a Λ1-Set.

Proof. The proof is straight forward. If guessed bytes in K ′ of the 4 active bytes
are correct, the pre-whitening step is neutralized by the xor with K ′, and the
result is an Ω1-Set. Then SB, SR and MC will remove the e�ect of SB−1, SR−1

and MC−1 respectively, thus the result will be a Λ1-Set.

Figure 3.2 illustrates the di�erence propagation of a Λ1-Set after applying
an AES decryption round followed by the pre-whitening step and by an AES
encryption round (here S0,0 is assumed to be the active byte).

Figure 3.2: An example of applying the pre-processing step on a Λ1-Set, when
S0,0 is the active byte (with pre-whitening).

Proposition 3.3. Let ∆1 be de�ned by:

∆1 = R(Ω1, 0) (3.6)

where R(X,K) applies an AES encryption round on the state X and Round key
K. Then ∆1-Set is a Λ1-Set.

Proof. The proof is straight forward. SB, SR and MC will remove the e�ect of
SB−1, SR−1 and MC−1 respectively, thus the result will be a Λ1-Set. AK will
not change the di�erence, thus the result is still a Λ1-Set.

Figure 3.3 illustrates the di�erence propagation of a Λ1-Set after applying
an AES decryption round followed by an AES encryption round (here S0,0 is
assumed to be the active byte).

24 CHAPTER 3. CRYPTANALYSIS OF AES

Figure 3.3: An example of applying the pre-processing step on a Λ1-Set, when
S0,0 is the active byte (without pre-whitening).

Preparing an Active Column

Let a ∆4, denotes a set of 232 states, where exactly 4 bytes are active and the
positions of the active bytes after applying SR will map to one column.

Proposition 3.4. Let Γ4 be de�ned by:

Γ4 = R(R−1(∆4, 0),K) (3.7)

where R(X,K)/R−1(X,K) applies an AES encryption/decryption round on the
state X and Round key K. Then Γ4-Set is a ∆4-Set.

Proof. The proof is straight forward. SB, SR and MC will remove the e�ect of
SB−1, SR−1 and MC−1 respectively, thus the result will be a ∆4-Set. AK will
not change the di�erence, thus the result is still a ∆4-Set.

Figure 3.4 illustrates the di�erence propagation of a ∆4-Set after applying
an AES decryption round followed by an AES encryption round (here S0,0, S1,1,
S2,2 and S3,3 are assumed to be the active byte).

3.2.2 Pushup Attack

The Pushup attack hosts a chosen ciphertext attack, where it prepares the
chosen ciphertext for that attack. Figure 3.5 gives an overview on how it works,
where:

1. In Figure 3.5(a), an n round chosen ciphertext attack is presented that
accepts the set {X} of chosen ciphertexts to calculate the Key K.

2. Figure 3.5(b) presents the pre-processing step of the Pushup attack, where
{X} is transformed to {Y}.

3.3. PUSHDOWN ATTACKS ON AES 25

Figure 3.4: An example of applying the pre-processing step on a ∆4-Set, when
S0,0, S1,1, S2,2 and S3,3 are the active bytes.

3. Figure 3.5(c) presents the Pushup attack, where after decrypting {Y}
with r rounds, the result is {X'}, which should be equivalent to {X}, in
the sense that applying the n round chosen ciphertext attack on {X'} will
recover K. Thus, the number of rounds attacked by the chosen ciphertext
attack is increased to (n+r) rounds.

3.2.3 Sandwich Attack

Sandwich attacks hosts either a chosen plaintext-adaptive chosen ciphertext or
chosen ciphertext-adaptive chosen plaintext attack. The idea is to apply the
concepts of the Pushdown and Pushup attacks on that attack, where the cho-
sen plaintext/ciphertext is pre-processed to bypass some encryption/decryption
rounds.

3.3 Pushdown Attacks on AES

The pre-processing of the chosen plaintext in Sect. 3.2.1 is used to deploy the
Pushdown attacks on AES.

3.3.1 Pushdown-Square-5

Pushdown-Square-5 attack is based on Square-4 attack, where an Ω1 is inputted
to a 5-round AES, and after applying the �rst AES round, the input to the
second round is now a Λ1-set (refer to Proposition 3.2), from here Square-4
attack can be applied. Note that whenever a Λ1-set is needed to be calculated

26 CHAPTER 3. CRYPTANALYSIS OF AES

(a) n round attack (b) Pre-processing (c) Pushup attack

Figure 3.5: Overview on the Pushup attack.

the corresponding Ω1-set is calculated instead. The complexity of Pushdown-
Square-5 is (29 chosen plaintext and 240 cipher executions), as 32-bit of the key
are needed to be guessed. To the best of the author's knowledge, this attack
requires the least amount of chosen plaintext in the literature, to attack 5-round
AES.

3.3.2 Pushdown-Square-6

Pushdown-Square-6 attack is based on Square-5 attack, where an Ω1 is inputted
to a 6-round AES, and after applying the �rst AES round, the input to the
second round is now a Λ1-set (refer to Proposition 3.2), from here Square-5
attack can be applied. Note that whenever a Λ1-set is needed to be calculated
the corresponding Ω1-set is calculated instead. The complexity of Pushdown-
Square-6 is about (5 × 28 chosen plaintext and 272 cipher executions). To the
best of the author's knowledge, this attack requires the least amount of chosen
plaintext in the literature, to attack 6-round AES.

3.3.3 Pushdown-Square-5*

Pushdown-Square-5* attack is based on Square-4 attack, where an Ω1 is in-
putted to a 5-round AES (where the pre-whitening process is omitted), and
after applying the �rst AES round, the input to the second round is now a Λ1-
set (refer to Proposition 3.3), from here Square-4 attack can be applied. Note
that whenever a Λ1-set is needed to be calculated the corresponding Ω1-set is
calculated instead. The complexity of Pushdown-Square-5* is the same as that
of Square-4 (29 chosen plaintext and 29 cipher executions). This attack will be
used to break SCC-128 (refer to Sect. 6.8.1).

3.4. ATTACKS ON KEY SCHEDULE 27

3.3.4 Pushdown-PartialSums-7*

Pushdown-PartialSums-7* is based on PartialSums-6 attack, where a Γ4 is in-
putted to a 7-round AES (where the pre-whitening process is omitted), and
after applying the �rst AES round, the input to the second round is now a
∆4-set (refer to Proposition 3.4), and the PartialSums-6 attack can be applied
on the last 6 rounds. Note that whenever a ∆4-set is needed to be calculated
the corresponding Γ4-set is calculated instead. The complexity of Pushdown-
PartialSums-7* is almost the same as that of PartialSums-6 (6 × 232 chosen
plaintexts, and 244 cipher executions). This attack will be used to break SCC-
256 (refer to Sect. 6.8.2).

3.4 Attacks on Key Schedule

Table 3.3 and table 3.4 summarize the complexities of some Related-key attacks
on AES-192 and AES-256, where RK refers to Related-Key, CP refers to Chosen
Plaintext and the time complexity is measured in encryption units.

3.4.1 Related-key Impossible Di�erential Attack

Related-key attacks [12] allow an adversary to obtain plaintext-ciphertext pairs
by using related (but unknown) keys. The adversary �rst searches for possible
weaknesses of the encryption and key schedule algorithms then chooses appro-
priate relation between keys and makes two encryptions using the related-keys
expecting to derive the unknown key information. Di�erential cryptanalysis an-
alyzes the involvement of the di�erence between a pair of plaintexts in the fol-
lowing round outputs in an iterated cipher. Related-key di�erential attack [90]
combines the above two cryptanalytic techniques together, and it studies the
development of di�erences in two encryptions under two related-keys. Further-
more, impossible di�erential attacks [19] use di�erentials that hold with proba-
bility 0 (or non-existing di�erentials) to eliminate wrong key material and leave
the right key candidate. In this case, the combined attack is called related-key
impossible di�erential attack.

If the expanded keys are viewed as a sequence of 32-bit words, then the
key schedule of AES-192 applies a non-linear transformation once every six
words, whereas the key schedules of AES-128 and AES-256 apply non-linear
transformations once every four words. This property brings better and longer
related-key di�erentials of AES-192, so directly makes AES-192 more suscepti-
ble to related-key attacks than AES-128 and AES-256. In the last few years,
the security of AES-192 against related-key attacks has drawn much attention
from cryptology researchers [17, 18, 78, 83]. In [83], Jakimoski et al. pre-
sented related-key impossible di�erential attacks on 7- and 8-round AES-192.
Following the work of [83], Biham et al. [18] gave several new related-key impos-
sible di�erential attacks also on 7- and 8-round AES-192, which substantially
improved the data and time complexity of those in [83].

3.4.2 Related Key Rectangle Attack

Related Key Rectangle Attack [95, 78, 17] combines the rectangle [16] and
related-key attacks by applying the rectangle attack to the cipher with di�erent,

28 CHAPTER 3. CRYPTANALYSIS OF AES

Table 3.3: Some related-key attacks on AES-192.

Number of Source Number of Data Time Attack
Keys Complexity Complexity Type
256 Ref. [17] 9* 286 RK-CP 2125 RK Rectangle
64 Ref. [94] 9** 285 RK-CP 2182 RK Rectangle
4 Ref. [78] 8 286.5 RK-CP 286.5 RK Rectangle
2 Ref. [94] 8 294 RK-CP 2120 RK Rectangle
256 Ref. [94] 10 2125 RK-CP 2182 RK Rectangle
64 Ref. [94] 10 2124 RK-CP 2183 RK Rectangle
2 Ref. [83] 7 2111 RK-CP 2116 RK Imp. Di�
2 Ref. [83] 8 288 RK-CP 2183 RK Imp. Di�
32 Ref. [18] 7 256 RK-CP 294 RK Imp. Di�
32 Ref. [18] 8 2116 RK-CP 2134 RK Imp. Di�
32 Ref. [18] 8 292 RK-CP 2159 RK Imp. Di�
32 Ref. [18] 8 268.5 RK-CP 2184 RK Imp. Di�
2 Ref. [161] 7 252 RK-CP 280 RK Imp. Di�
2 Ref. [161] 8 264.5 RK-CP 2177 RK Imp. Di�
2 Ref. [161] 8 288 RK-CP 2153 RK Imp. Di�
2 Ref. [161] 8 2112 RK-CP 2136 RK Imp. Di�
2 Ref. [161] 7 237 RK-CP 2145 RK Di�

* Attack with some �aws, ** corrected �aws.

Table 3.4: Some related-key attacks on AES-256.

Number of Source Number of Data Time Attack
Keys Complexity Complexity Type
2 Ref. [160] 7 252 RK-CP 287 RK Imp. Di�
2 Ref. [160] 8 253 RK-CP 2215 RK Imp. Di�
2 Ref. [160] 8 264 RK-CP 2191 RK Imp. Di�
2 Ref. [160] 8 288 RK-CP 2167 RK Imp. Di�
2 Ref. [160] 8 2112 RK-CP 2143 RK Imp. Di�
256 Ref. [17] 10 2114.9 RK-CP 2171.8 RK Rectangle
4 Ref. [94] 9 299 RK-CP 2120 RK Rectangle
64 Ref. [94] 10 2113.9 RK-CP 2172.8 RK Rectangle

3.5. PROPOSED ENHANCED AES KEY SCHEDULE 29

but related unknown keys: [95, 78, 17] show how to apply the rectangle attack
with 2, 4 and more than 4 related-keys, and show that this kind of attack can be
applied to AES-192 and AES-256. The related-key rectangle attack is based on
two consecutive related-key di�erentials with relatively high probabilities which
are independent of each other [94].

3.5 Proposed Enhanced AES Key Schedule

Compared to the cipher itself, AES key schedule appears to be more of an ad-hoc
design. It has a much slower di�usion structure than the cipher, and contains
relatively few non-linear elements [61]. To be able to compute the rounds key
on-the-�y, Rijndael's key schedule has an interesting property that is if you
have a round key you can calculate all the other round keys and retrieve the
encryption key. Although this property increases the key agility of Rijndael, it
has been used in many theoretical and side channel attacks. For example in
the square attack [36], by recovering the round key of the last round, one can
recover all the other round keys including the encryption key. In [123, 122, 25]
cache timing attacks have been used to recover either the �rst or the last round
key, which were used to extract the encryption key. To simplify the analysis
and to enhance the security of the proposed models, a modi�ed key schedule of
AES is proposed. This key schedule eliminates related-key attacks along with
some other attacks on AES.

3.5.1 Rijndael Key Schedule Classi�cation

In [29], the authors introduced a classi�cation scheme for iterative block ciphers
based on their key schedules. This scheme creates two categories of ciphers
based on whether or not knowledge of a round key generated by the key schedule
reveals any information about other round keys or the encryption key. Those
that do, fall into Category 1 and those that do not, fall into Category 2. Each
of these categories is further subdivided into three types: A, B and C. Theses
categories are:

1A: Encryption Key is used without any modi�cation.

1B: Easily reversed operations applied on the Encryption Key.

1C: Round keys are calculated from earlier round keys.

2A: Encryption Key bits are partially used in the derivation process for the
round keys.

2B: All Encryption Key bits are used in the derivation process.

2C: Round keys are independent of each other and the sum of all round keys
equals the length of the Encryption Key.

In [30], the key schedules of AES candidates were classi�ed. Rijndael's key
schedule was classi�ed to be 1C, where the knowledge of a round key reveals
bits of other round keys or the encryption key after some simple arithmetic
operations or function inversions.

30 CHAPTER 3. CRYPTANALYSIS OF AES

3.5.2 Proposed Key Schedule for AES

The goal is to increase the security of AES' key schedule, by increasing its
classi�cation number, namely to 2B, where all encryption key bits are used in
the determination of all round keys, thus maximizing the entropy of the round
keys and by knowing one of the round keys no information about any other round
keys or the encryption key can be extracted. The idea is to use the current AES
implementation to increase the security of AES' key schedule, precisely AES in
counter mode [113] is used to generate AES' expanded key. The listing of the
proposal is in table 3.5, where Counter is a 128-bit block, Expand-Key expands
the encryption key using AES key schedule routine and Encrypt-AES performs
AES encryption function. If the equivalent inverse cipher construction [38] is
used for decryption, then the expanded decryption key can be generated by
applying InvMixColumns to all round keys except that for �rst and the last
rounds.

Table 3.5: The proposed AES' key schedule.

Enhanced-Expanded-Key(MasterKey)

ExpandedKey=Expand-Key(MasterKey)

Counter= 0

for i=0 to n-1

OUTi=Encrypt-AES(ExpandedKey,Counter)

Counter=Counter+1

end for

return OUT

It is straight forward to see that the security of the proposed key schedule
is inherited from that of AES. In other words, if there is a method to calculate
a round key/encryption key from another round key, this implies that AES is
broken. The proposed key schedule protects the current AES implementation
from many attacks like related-key attacks (refer to Sect. 3.4) and some cache
timing attacks [123, 122, 25]. It is worth mentioning that this method increases
the time complexity of many attacks, even the exhaustive key search attack, in
the sense that to try a key 11 to 15 AES encryption calls are needed.

The only drawback of the proposed solution is its performance, as for ex-
ample to generate the expanded keys of AES-128 the cipher should be called
11 times, and for AES-256 it should be called 15 times. So this method is not
suitable for the applications that use on-the-�y round keys computations, and
is more suitable to the applications that do not change the expanded key fre-
quently (e.g. the proposed encryption models in Chapter 4, where the primary
key has a long lifetime).

Intel has introduced a new set of instructions that will be available in all
Intel processors as of the 2010 generation [70]. These instructions will increase
the performance of AES, for example the expected speed of one block encryption
(16 bytes) using CBC mode and AES with 128-bit is about 65 cycles. While
for the parallel modes (ECB, CTR or CBC decryption), using AES instruc-
tions and loop reversing (loop unrolling) software implementation, the achieved
throughput is around 24 cycles/block (on a Quad-Core possessor). This means
the expected performance of the proposed key schedule on a Quad-Core proces-

3.6. SIDE CHANNEL ATTACKS 31

sor, is about 280 cycles for AES-128 and about 480 cycles for AES-256, which
is considered very fast.

In the rest of this thesis, it is assumed that the Enhanced AES Key Schedule
is used instead of the original AES key schedule.

3.5.3 Proposed Generalized Key Schedule

The proposal can be generalized to be used by any block cipher key schedule.
The listing of the proposal is in table 3.5, where BlockCipher-Expand-Key is the
key schedule of a secure block cipher, Encrypt-BlockCipher is the encryption
function of the secure block cipher, n is the number of rounds of the cipher and
Counter is a block of the cipher's block size.

Table 3.6: The proposed generalized key schedule.

Generalized-Enhanced-Expanded-Key(MasterKey)

ExpandedKey=BlockCipher-Expand-Key(MasterKey)

Counter= 0

for i=0 to n-1

OUTi=Encrypt-BlockCipher(ExpandedKey,Counter)

Counter=Counter+1

end for

return OUT

3.6 Side Channel Attacks

Side Channel attacks do not attack the cipher itself, but rather how it is imple-
mented. AES has been a subject to intensive mathematical cryptanalysis. But
to the best of the author's knowledge, AES has not been broken using analytical
attacks. Unfortunately, there are a couple of successful side channel attacks on
AES, like the attacks published in [123, 122, 25] to name a few. The discussion
of side channel security is beyond the scope of this thesis.

3.7 Summary

In this chapter, a new idea is presented that can increase the strength of some
chosen plaintext attacks. The idea is to modify the chosen plaintext, in such
a way that after applying r encryption rounds, the original/equivalent chosen
plaintext is produced. This idea can increase the strength of an (n) round attack
to an (n + r) round attack, as the �rst r rounds are bypassed. Based on this idea
the Pushdown attack is deployed which results in 5- and 6-round attacks on AES.
To the best of the author's knowledge, these attacks require the least amount
of chosen plaintext in the literature. It is also discussed: how the idea of pre-
processing can be implemented on chosen ciphertext, chosen plaintext-adaptive
chosen ciphertext and chosen ciphertext-adaptive chosen plaintext attacks.

A new key schedule is proposed to enhance the security of AES, by using
AES in counter mode to generate the round keys. It is straightforward to see
that the security of the proposed key schedule is inherited from that of AES.

32 CHAPTER 3. CRYPTANALYSIS OF AES

In other words, if there is a method to calculate a round/encryption key from
another round key, then AES is broken. The proposed key schedule protects
the current AES implementation from many attacks like related-key and some
cache timing attacks. It is worth mentioning that this method increases the
time complexity of many attacks, even the exhaustive key search attack (in the
sense that to try a key 11 to 15 encryption steps are needed). A generalized
secure block ciphers' key schedule is also proposed.

Chapter 4

Proposed Encryption Models

4.1 State of the Art Encryption Models

4.1.1 Classical Encryption Model

Figure 4.1 sketches the classical encryption model, where only the encryption
key controls how the plaintext will be encrypted.

Figure 4.1: Classical Encryption Model.

4.1.2 Tweakable Block Ciphers

Tweakable Block Ciphers are a new cryptographic primitive, presented
in [105]. Such a cipher has not only the usual inputs (message and key) but
also a third input, the "tweak". The tweak serves much the same purpose
that an initialization vector does for CBC mode or that a nonce does for OCB
mode [142]. The tweak, along with the key, selects the permutation computed
by the cipher. Changing tweaks should be su�ciently lightweight (compared
with the expensive key setup operation). In [105], two constructions 4.1 and
4.2 were proposed, where E′K(T,M) is the tweakable block cipher encryption
function, which encrypts M using K as the encryption key and T as the tweak,
h is a hash function and EK(P) encrypts P using K as its encryption key.

33

34 CHAPTER 4. PROPOSED ENCRYPTION MODELS

The �rst construction (4.1) is considered slow, as it uses two encryption
calls. The second construction (4.2) is more e�cient, when h is a fast hash func-
tion. Fast hash functions like generalized division [148], UMAC/UHASH [23],
hash127 [11] and a DFC-style decorrelation module [67], can be used.

E′K(T, P) = EK(T ⊕ EK(P)) (4.1)

E′K(T, P) = EK(P ⊕ h(T))⊕ h(T) (4.2)

After the introduction of tweakable block ciphers, many new tweakable
modes of operation have been developed. Most of these modes are dedicated to
disk encryption applications. Examples of these modes are LRW [82], XTS [141],
EME [74], EME* [71], XCB [114], TET [72], CMC [75], ABL4 [115].

Figure 4.2 sketches the tweakable encryption model, where the encryption
key together with the tweak control how the plaintext should be encrypted.

Figure 4.2: Tweakable Encryption Model.

4.2 General Scheme of the Proposed Models

All the proposed models share a main idea, which is splitting the encryption
key into a primary and a secondary key. The secondary key together with the
primary key, are used to determine how the plaintext will be encrypted. The
main functionality of the secondary key is to change the way the block cipher
behaves, in other words by encrypting two identical plaintexts with the same
primary key and two di�erent secondary keys, the results will be two di�erent
ciphertexts.

Figure 4.3 sketches the general scheme of the proposed encryption models,
where the encryption key is divided into two keys; the primary key which is used
to generate the expanded key of the cipher, and the secondary key which is used
to modify the expanded key of the cipher. As the secondary key modi�es the
expanded key of the cipher; it must be kept secret as it is part of the encryption
key and the adversary must not have control over its value.

In tweakable block ciphers, the tweak manipulates the input and the output
of the cipher (where the block cipher is treated as a black box). The proposed
models treat a block cipher as a white box, where the secondary key manipulates

4.3. TERMINOLOGIES AND DEFINITIONS 35

Figure 4.3: General scheme of the proposed encryption models.

the cipher's expanded key. Three main models are proposed: Dynamic Substitu-
tion Model (DSM), Dynamic Injection Model (DIM) and Dynamic Permutation
Model (DPM). In addition to these main models, the possibility to construct
hybrid models using di�erent combinations of these models is discussed.

Note that: the secondary key manipulates the cipher's expanded key (the
cipher's inner state), thus the security of the models relies on the security of the
secondary key together with that of the primary key. It can be thought that
the secondary key together with the primary key construct the encryption key.

4.3 Terminologies and De�nitions

4.3.1 Terminologies

These terminologies are used to describe the proposed encryption models:

P: is the input plaintext.

E: is a block cipher.

EK: is the expanded encryption key of E.

m: in DSM is the number of words in EK that will be replaced, and in DIM is
the number of the transformation functions.

SK: is the secondary key; it is structured as an array of words in DSM, and it is
structured as an array that holds the keys for the transformation functions
in DIM.

F: is an array that holds m keyed transformation functions used in the encryp-
tion process of DIM.

I: is an array of indices that determines which words of EK will be replaced in
DSM. In DIM, I determines where the F functions should be injected and
the values of I must be unique and sorted in an ascending order.

36 CHAPTER 4. PROPOSED ENCRYPTION MODELS

C: is the output ciphertext.

C=EEK(P): encrypts P with the block cipher E, using EK as the expanded
encryption key and returns the result.

Fi(X,K): applies the i
th transformation function on X using K as its key and

returns the result.

Ri(X,EK): applies the i
th round of E on X using the proper round key from

EK and returns the result, where the proper round key is the part of the
expanded key that is consumed by the ith round function.

round(X,K): applies an AES encryption round on X, using K as the round
key and returns the result.

�nal(X,K): applies the �nal AES encryption round onX, usingK as the round
key and returns the result.

Substitute(EK,K,i): replaces the ith 128-bit of EK with K (Note that: the
�rst round of AES is round zero and it is the pre-whitening process).

len(X): returns the size of X in bits.

4.3.2 De�nitions

Amodi�ed cipher that uses the proposed models is called a two-key block cipher,
where (4.3) presents encrypting the plaintext P using the block cipher E, where
PK is the primary key and SK is the secondary key to produce the ciphertext
C. The decryption process is represented by (4.4).

C = E(PK,SK)(P) (4.3)

P = E−1(PK,SK)(C) (4.4)

Variability is the ability of a two-key block cipher to vary its output depend-
ing on its secondary key, more formally:

Variability: For two-key block ciphers if C1=E(PK,SK1)(P) and C2=E(PK,SK2)(P)
then C1 6= C2 as long as SK1 6= SK2.

Strong variability is the ability of a two-key block cipher to protect its secondary
key, in the sense that by knowing a set of plaintext/ciphertext pairs, it is hard
to recover the secondary key, more formally:

Strong Variability: By encrypting the same plaintext with di�erent instances
of a two-key block cipher using the same primary key and di�erent secondary
keys, it is hard to recover the secondary key (totally or partially).

Di�erentiability is the ability to have strong variability, even if the primary
key is shared, more formally:

Di�erentiability: If the primary key is shared among (m) parties and each
party has its unique secondary key. A two-key block cipher E(PK,SK) o�ers
di�erentiability, if by knowing the secondary key of a party, the secondary keys
of the other parties cannot be easily recovered.

4.4. DYNAMIC SUBSTITUTION MODEL (DSM) 37

4.4 Dynamic Substitution Model (DSM)

DSM is a model that can provide a block cipher with a variable length secondary
key. The secondary key is used to replace some words of the cipher's expanded
key. Two extra inputs are introduced by DSM to the classical encryption model.
The �rst input (SK) is the secondary key that will substitute some words in
the expanded key of the cipher, the second input (I) holds the indices which
specify which words in the expanded key will be substituted. Note that the
substituted words can be of any size. The listing of Encrypt-DSM, which is
used for encryption in DSM, is in table 4.1.

Table 4.1: Encrypt-DSM function.

Encrypt-DSM(P,E,EK,SK[m],I[m])

for i=0 to m-1

EK[I[i]]=SK[i]

end for

C=EEK(P)

return C

Encrypt-DSM executes as follows:

• The words of the secondary key SK replace certain words in EK (deter-
mined by the index array I).

• The updated EK is used as the new expanded key for the encryption
function, which encrypts the input plaintext (P) to produce the ciphertext
(C).

4.4.1 DS-AES

In order to demonstrate DSM, the Dynamic Substitution AES (DS-AES) is
proposed. The listing of DS-AES encryption function is found in table 4.2,
where:

• EK is the expanded AES encryption key, and it is an array of 32-bit words.

• C=Encrypt-AES(P,EK) encrypts P with AES using EK as the ex-
panded encryption key and returns the ciphertext in C.

4.5 Static Substitution Model (SSM)

SSM provides a �xed length secondary key. It is a special case of DSM, where
the secondary key length and the index array I are determined in the design
time. SSM can build more e�cient implementations than DSM. SSM is used to
construct three variants of AES. These variants are AESS1, AESS2 and AES2S.

38 CHAPTER 4. PROPOSED ENCRYPTION MODELS

Table 4.2: DS-AES encryption function.

Encrypt-DS-AES(P,EK,SK[m],I[m])

for i=0 to m-1

EK[I[i]]=SK[i]

end for

C=Encrypt-AES(P,EK)

return C

4.5.1 AESS1, AESS2 and AES2S

Table 4.3 presents the encryption functions of AESS1 and AESS2, where SK
is the secondary key, FR and SR are round numbers. AESS1 accepts 128-
bit secondary key. FR (the round number) is determined depending on the
expanded key length.

AESS2 accepts 256-bit secondary key and depending on the expanded key
length FR and SR (the round numbers, where SR > FR) are determined.

Table 4.3: AESS1 and AESS2 encryption functions.

Encrypt-AESS1(P,EK,SK) Encrypt-AESS2(P,EK,SK)

if(len(EK)==1408) if(len(EK)==1408)

FR=5 FR=3

SR=7

else else

FR=7 FR=4

SR=10

end if end if

for i=0 to 3 for i=0 to 3

EK[4 × FR + i]=SK[i] EK[4 × FR + i]=SK[i]

EK[4 × SR + i]=SK[4+i]

end for end for

C=Encrypt-AES(P,EK) C=Encrypt-AES(P,EK)

return C return C

AES2S is a variant of AES that accepts 256-bit secondary key. The listing
of AES2S is found in table 4.4. In AES2S, two round keys are replaced:

1. The round key of the pre-whitening round is replaced with the �rst 128-bit
of SK.

2. The round key of the xth round is replaced with the last 128-bit of SK.

4.5.2 Advantages of DSM and SSM

The advantages of DSM and SSM are:

4.6. DYNAMIC INJECTION MODEL (DIM) 39

Table 4.4: AES2S encryption function.

Encrypt-AES2S(P,EK,SK)
if(len(EK)=1408)

x=7
else

x=10
end if
Substitute(EK , SK , 0)
Substitute(EK , SK+4 , x)
C=Encrypt-AES(P , EK)
return C

Generality: DSM and SSM can be applied to any block cipher, with expanded
key.

High throughput: DSM and SSM have almost no overhead and the block
cipher will execute with high speed.

Low memory consumption: Only the secondary key is needed to be stored
per instantiation, when the primary key is shared among n instances (e.g.
the proposed network encryption schemes in Chapter 5).

4.6 Dynamic Injection Model (DIM)

DIM is a model that can provide a block cipher with a variable length secondary
key. The secondary key is consumed by some keyed transformation functions
that are injected into the cipher. A transformation function can vary in strength
from a simple xor function to a complete cipher. The transformation functions
modify the input and/or the output of some of the cipher's round functions
(using parts of the secondary key as their key). Three extra inputs are added
by DIM to the classical encryption model. The �rst input (F) is an array that
holds the transformation functions, the second input (SK) holds the secondary
key that will be consumed by the transformation functions, the third input (I)
holds the indices, which determine where the transformation functions should
be injected.

The listing of Encrypt-DIM, which is used for encryption in DIM is in ta-
ble 4.5.

Encrypt-DIM executes as follows:

1. Before applying the �rst round of the cipher, the plaintext P is copied to
the text X and Encrypt-DIM checks if the �rst transformation function
should update the text X and if this is the case X is modi�ed using the
�rst transformation function and its corresponding part of the secondary
key.

2. Encrypt-DIM applies a round function of E (using the proper round key
from the expanded encryption key EK) and updates X, where the proper

40 CHAPTER 4. PROPOSED ENCRYPTION MODELS

Table 4.5: Encrypt-DIM function.

Encrypt-DIM(P,E,EK,F[m],SK[m],I[m])

X=P

t=0

If (I[0]==0) then

X= F0(X,SK0)

t++
End if

For i=1 to n

X= Ri(X,EK)

If(I[t]==i) then

X= Ft(X,SKt)

t++
End if

End for

return X

round key is the part of the expanded key that is consumed by this round
function.

3. Encrypt-DIM checks if the next transformation function should update
the text X and if this is the case X is updated.

4. The last two steps are repeated another n-1 times (where n is the number
of rounds of the cipher E).

5. Encrypt-DIM returns X as the ciphertext.

4.6.1 Transformation Functions

The strength of transformation functions can vary from a simple xor function
to a complete cipher. But care should be considered, as these functions are
supposed to add strength to the cipher or in the modest case not to weaken the
cipher. Functions that reverse the e�ect of the cipher's round functions (or even
part of them) must be avoided.

The total number of bits consumed by these functions is the secondary key
length. Each transformation function can modify the entire input or only part
of it. Modifying the same input more than once is also possible, as more than
one function can be injected in the same position; in this case they are treated
as one function. But care should be taken that these functions do not cancel
any part of the original cipher's round functions nor form a group (e.g. injecting
two xor functions with K1 and K2 as their key, is equivalent to injecting only
one xor function with K3, where K3 = K1 ⊕ K2).

4.6.2 DI-AES

In order to demonstrate DIM model, the Dynamic Injection AES (DI-AES) is
presented. The listing of DI-AES encryption function is found in table 4.6,

4.6. DYNAMIC INJECTION MODEL (DIM) 41

where n is the number of rounds: typically 10, 12 and 14 for the primary key of
size 128-bit, 192-bit and 256-bit respectively and xor(X,Y) : xors X with the
�rst 128-bit of Y and returns the result.

Table 4.6: DI-AES encryption function.

Encrypt-DI-AES(X,EK,F[m],SK[m],I[m])

t=0

If (I[0]==0) then

X= F0(X,SK0)

t++
End if

X= xor(X,EK)

For i=1 to n - 1

If(I[t]==i) then

X= Ft(X,SKt)

t++
End if

X= round(X,EK + 4 × i)

End for

If(I[t]==n-1) then

X= Ft(X,SKt)

t++
End if

X= final(X,EK + 4 × (n-1))

If(I[t]==n) then

X= Ft(X,SKt)

End if

return X

After presenting DI-AES, here are some examples of its use:

1. If a secondary key of length 128-bit is needed, the direct way is to inject
one function that accepts 128-bit key (e.g. an AES round function or
an xor function) in the middle of the cipher (i.e. I[0]= n/2). Another
solution is to inject two functions in two di�erent positions, each function
consumes 64-bit.

2. To construct AESX (DESX [140] like cipher), the secondary key should
be 256-bit and two xor functions should be injected, one at the beginning
and the other at the end (i.e. I[0]=0 and I[1]=n).

3. If for a certain application a 140-bit secondary key is needed, one way is
to inject the DI-AES with one AES round (e.g. I[0]=n/2) and inject an
xor function (that modi�es only 12-bit) in another place (e.g. I[1]= n/3).

42 CHAPTER 4. PROPOSED ENCRYPTION MODELS

4.7 Static Injection Model (SIM)

SIM provides a �xed length secondary key. It is a special case of DIM, where
the keyed transformation functions and their positions are determined in the
design time. SIM can build more e�cient implementations than DIM. SIM is
used to construct three variants of AES. These variants are AESI1, AESI2 and
AES2I.

4.7.1 AESI1, AESI2 and AES2I

AESI1 accepts 128-/256-bit primary key and 128-bit secondary key. In AESI1,
AES is injected with an extra AES round. The choice was to inject AES after
the 5th/7th round.

AESI2 accepts 128-/256-bit primary key and 256-bit secondary key. In
AESI2, AES is injected with two xor functions. The choice was to inject AES
after the 3rd/4th and 7th/10th rounds.

AES2I accepts 128-/256-bit primary key and 256-bit secondary key. In
AES2I, AES is injected with two xor functions. The choice was to inject AES
before the pre-whitening process and after the last round.

Table 4.7 and table 4.8 present the encryption functions of AESI1 and AESI2,
where SK is the secondary key. Table 4.9 presents the encryption functions of
AES2I, where SK1 and SK2 are 128-bit keys that construct the secondary key.

Table 4.7: AESI1 and AESI2 encryption functions (128-bit version).

Encrypt-AESI1(X,EK,SK) Encrypt-AESI2(X,EK,SK)
xor(X,EK) xor(X,EK)
for i=1 to 5 for i=1 to 3

round(X,EK+4 × i) round(X,EK+4 × i)
end for end for
round(X,SK) xor(X,SK)
for i=6 to 9 for i=4 to 7

round(X,EK+4 × i) round(X,EK+4 × i)
end for end for
�nal(X,EK+10 × 4) xor(X,SK+4)
return X for i=8 to 9

round(X,EK+4 × i)
end for
�nal(X,EK+10 × 4)
return X

4.7.2 Advantages of DIM and SIM

Generality: DIM and SIM can be applied to any iterative block cipher.

4.7. STATIC INJECTION MODEL (SIM) 43

Table 4.8: AESI1 and AESI2 encryption functions (256-bit version).

Encrypt-AESI1(X,EK,SK) Encrypt-AESI2(X,EK,SK)
xor(X,EK) xor(X,EK)
for i=1 to 7 for i=1 to 4

round(X,EK+4 × i) round(X,EK+4 × i)
end for end for
round(X,SK) xor(X,SK)
for i=8 to 13 for i=5 to 10

round(X,EK+4 × i) round(X,EK+4 × i)
end for end for
�nal(X,EK+14 × 4) xor(X,SK+4)
return X for i=11 to 13

round(X,EK+4 × i)
end for
�nal(X,EK+14 × 4)
return X

Table 4.9: AES2I encryption function.

Encrypt-AES2I(X,EK,SK1,SK2)
xor(X,SK1)
X=Encrypt-AES(X,EK)
xor(X,SK2)
return X

44 CHAPTER 4. PROPOSED ENCRYPTION MODELS

High throughput: DIM and SIM can build ciphers' variants with high speed,
when a high speed function like an xor functions is used as the transfor-
mation function.

Low memory consumption: Only the secondary key is needed to be stored
per instantiation, when the primary key is shared among n instances (e.g.
the proposed network encryption schemes in Chapter 5).

Security: DIM can build more secure variants of the cipher (e.g. by increasing
the number of rounds of that cipher).

4.8 Dynamic Permutation Model (DPM)

DPM is a model that can provide a block cipher with a secondary key. The
secondary key is used to permute some words of the cipher's expanded key. An
extra input is introduced by DPM to the classical encryption model. This input
is the secondary key (SK) that will permute some words in the expanded key
of the cipher. Figure 4.4 presents an overview of DPM. It works as follows:

1. Initialization: where the primary key is expanded using the setup al-
gorithm (usually the encryption key setup routine of the used cipher) to
produce the expanded key.

2. Encryption:

• The expanded key together with the secondary key are given to a per-
mutation function, this function uses the secondary key to permute
the expanded key, the result is the new expanded key.

• The encryption function uses the new expanded key (from the previ-
ous step) to encrypt the plaintext.

Figure 4.4: Overview of Dynamic Permutation Model.

In the following text, an implementation example on how to build a new AES
variant based on DPM is presented.

4.8. DYNAMIC PERMUTATION MODEL (DPM) 45

4.8.1 Dynamic Permutation AES

Dynamic Permutation AES (DP-AES) is a variant of AES-256 (with a secondary
key of size 24-bit, it is presented here as an example of implementing DPM).
With the fact that AES-256 has 60 words (each with 32-bit) as its expanded
key, the generation of all these permutations will be costly. A fast solution is
to use a table lookup with permutations. The table size must use acceptable
memory resources. The choice was to use a 256 x 24-bit table. So the table
entry needs 8-bit and returns a permutation of 8. It uses 24-bit secondary key.
The listing of Encrypt-DP-AES, which is used for encryption in the proposed
variant, is in table 4.10, where:

Table 4.10: DP-AES encryption function.

Encrypt-DP-AES(P, Exkey, SK)

C=xor(P,ExKey)

for i=1 to 4

C=round(C,ExKey + i × 4)

end for

for i=0 to 2

C=round1(C,ExKey + (i+5) × 4,SK[i])

C=round2(C,ExKey + (i+5) × 4,SK[i])

end for

for i=11 to 13

C=round(C,ExKey + i × 4)

end for

C=final(C,ExKey + 14 × 4)

return In

• It takes the plaintext (P), the expanded encryption key (ExKey) and the
secondary key (SK) as inputs.

• The �rst 4 rounds of AES are applied to the plaintext.

• Round1 and round2 functions (which are modi�ed AES rounds) are exe-
cuted three consecutive times, each time with SK[i] as their input.

• Finally it executes three normal AES rounds, the �nal AES round and
returns the ciphertext (C).

• The permutation is done for each two rounds together, using the functions
round1 and round2.

• The functions round1 and round2 use SK[i] as a lookup entry inMBOX,
which returns a permutation of size eight, they use this permutation to
permute their expanded key.

• MBOX has the following properties:

1. The probability for each word to be moved to any of the available
eight locations is exactly the same 2−3.

46 CHAPTER 4. PROPOSED ENCRYPTION MODELS

2. Maximum 2 words in each row do not change their positions.

3. At least one word from the left half goes to the right half.

4. The rows in the table are unique.

The values of MBOX are presented in Appendix A.

• Example:

� Let SK[0]= 10.

� Let MBOX[10]={7, 5, 3, 6, 2, 4, 0, 1}.

� Then the indices of ExKey that round1 will access are: {27, 25, 23,
26} and those of round2 are: {22, 24, 20, 21}.

� Notes:

∗ For normal AES rounds, round1 and round2 should have ac-
cessed the following indices {20, 21, 22, 23} and {24, 25, 26, 27}
respectively.

∗ The indices of round1 and round2 can be calculated, by adding
the values of the MBOX[SK[i]] to the �rst index of the �rst nor-
mal AES round, where SK[i] is an 8-bit part of the secondary
key.

4.9 Security of the Proposed Encryption Models

In the following text, the guidelines to construct secure two-key block ciphers
using the proposed models are presented.

4.9.1 The Guidelines for Single Round Modi�cation

This construction can be used to provide variability and strong variability. The
guidelines to modify the round key of a single round, where m=1 and I[0]=x,
are:

1. The secondary key MUST be unique, random and not predictable by the
adversary, using a secure cipher like AES in counter mode [113] to generate
secondary keys, can achieve this at a low cost.

2. The secondary key MUST NOT be controlled by the adversary, by con-
trolling the values of the secondary key, the adversary can introduce a
di�erence in the middle of the cipher, which can lead to new attacks (e.g.
the attacks in [51, 50]).

3. µ ≤ x ≤ n− µ, where µ = max(l, d), l is the number of rounds the cipher
is resistant to linear cryptanalysis [110] and d is the number of rounds the
cipher is resistant to di�erential cryptanalysis [20]. This constraint is to
avoid a successful attack using linear/di�erential cryptanalysis, where a
linear/di�erential propagation is avoided.

4. Full confusion and full di�usion are expected in both encryption and de-
cryption directions. This is to provide strong variability.

4.9. SECURITY OF THE PROPOSED ENCRYPTION MODELS 47

5. x < n − ν, where ν is the number of rounds the cipher is resistant to
chosen plaintext attacks. If the adversary can encrypt the same plaintext
with the same primary key and di�erent secondary keys, she can introduce
a di�erence in the intermediate encrypted text, this di�erence can be used
in a chosen plaintext attack (if the adversary can choose/�nd secondary
keys to share a certain pattern and mount a chosen plaintext attack).

6. x > θ, where θ is the number of rounds the cipher is resistant to chosen
ciphertext attacks. If the adversary can decrypt the same ciphertext with
the same primary key and di�erent secondary keys, she can introduce a
di�erence in the intermediate decrypted text, this di�erence can be used
in a chosen ciphertext attack (if the adversary can choose/�nd secondary
keys to share a certain pattern and mount a chosen ciphertext attack).

7. The secondary key should modify the entire block. Modifying a partial
block increases the probability of certain attacks, like Square attack [36],
where the adversary should �nd intermediate texts that vary in certain
positions and are constant in the other positions.

4.9.2 The Guidelines for Double Round Modi�cation

This construction can be used to provide di�erentiability together with strong
variability. The guidelines to modify two round keys, where m=2, I[0]=x and
I[1]=y, are:

1. The two secondary keys MUST be unique, random and not predictable by
the adversary, using a secure cipher like AES in counter mode [113] to
generate secondary keys, can achieve this at a low cost.

2. The secondary keys MUST NOT be controlled by the adversary, by con-
trolling the values of the secondary keys, the adversary can introduce a
di�erence in the middle of the cipher, which can lead to new attacks (e.g.
the attacks in [51, 50]).

3. Full confusion and full di�usion are expected after modifying the round
key of the �rst round. As the secondary keys are unique and random,
any di�erence in the �rst secondary key will be destroyed before using the
second secondary key, the same goes for the decryption direction.

4. The secondary keys should modify all the bits of the block. Modifying
a partial block increases the probability of certain attacks, like Square
attack [36], where the adversary should �nd intermediate texts that vary
in certain positions and are constant in the other positions.

Note that, if more than 2 round keys are needed to be modi�ed, the above
guidelines apply to the �rst and last rounds, where I[0]=x and I[m-1]=y.

Note in order for DPM to o�er di�erentiability, the secondary key should be
long enough to be resistant to brute force attacks.

4.9.3 Facts About AES

1. µ (de�ned in the above guidelines)=4 [143].

48 CHAPTER 4. PROPOSED ENCRYPTION MODELS

2. AES needs only 4 rounds to achieve full confusion and full di�usion prop-
erties [112].

4.9.4 Security of AESS1 and AESI1

For an adversary who does not know either the primary key or the secondary
key, she tries to attack an AES with a random round key. AESS1 and AESI1
follow the guidelines in Sect. 4.9.1. After the modi�cation, 5 to 7 rounds of
AES are performed, these rounds assure that not only full confusion and di�u-
sion after the modi�cation are achieved, but also that any di�erential or linear
propagation is completely destroyed. By using unique and random secondary
keys the probability of �nding secondary keys that share a certain pattern is
considered very low, which limits the adversary's ability to mount a chosen
plaintext attack. The same is valid for the decryption direction, as after the
modi�cation, 5 to 8 rounds of AES are performed, these rounds assure that not
only full confusion and di�usion after the modi�cation are achieved, but also
that any di�erential or linear propagation is completely destroyed. By using
unique and random secondary keys the probability of �nding secondary keys
that share a certain pattern is considered very low, which limits the adversary's
ability to mount a chosen ciphertext attack. Thus, the adversary cannot mount
linear, di�erential, chosen plaintext or chosen ciphertext attacks.

4.9.5 Security of AESS2 and AESI2

For an adversary who does not know either the primary key or the secondary
key, she tries to attack a full round AES. AESS2 and AESI2 follow the guidelines
in Sect. 4.9.2. After the �rst modi�cation, 7 to 10 encryption rounds of AES are
performed, these rounds assure that not only full confusion and di�usion after
the modi�cation are achieved, but also that any di�erential or linear propagation
is completely destroyed in the encryption direction (as both the secondary keys
are unique and random). After the second modi�cation, 7 to 10 decryption
rounds of AES are performed, these rounds assure that not only full confusion
and di�usion after the modi�cation are achieved, but also that any di�erential
or linear propagation is completely destroyed in the decryption direction as
both the secondary keys are unique and random. To the best of the author's
knowledge, there is no feasible chosen plaintext attack that exists on 7 or 10
round AES, and by using random secondary keys the probability of �nding
secondary keys that share a certain pattern is considered very low. The same
applies to chosen ciphertext attacks where there is no feasible ciphertext attack
that exists on 7 or 10 round AES. Thus, the adversary cannot mount linear,
di�erential, chosen plaintext or chosen ciphertext attacks.

4.9.6 Security of AES2S and AES2I

For an adversary who does not know either the primary key or the secondary key,
she tries to attack a full round AES. AES2S and AES2I follow the guidelines in
Sect. 4.9.2. After the �rst modi�cation, 10 to 14 encryption rounds of AES are
performed, these rounds assure that not only full confusion and di�usion after
the modi�cation are achieved, but also that any di�erential or linear propagation
is completely destroyed in the encryption direction (as both the secondary keys

4.10. HYBRID MODELS 49

are unique and random). After the second modi�cation, 7 to 14 decryption
rounds of AES are performed, these rounds assure that not only full confusion
and di�usion after the modi�cation are achieved, but also that any di�erential
or linear propagation is completely destroyed in the decryption direction as
both the secondary keys are unique and random. To the best of the author's
knowledge, there is no feasible chosen plaintext attack that exists on 10 or 14
round AES, and by using random secondary keys the probability of �nding
secondary keys that share a certain pattern is considered very low. The same
applies to chosen ciphertext attacks where there is no feasible ciphertext attack
that exists on 7, 10 or 14 round AES. Thus, the adversary cannot mount linear,
di�erential, chosen plaintext or chosen ciphertext attacks.

Security of DP-AES

DP-AES o�ers variability and strong variability and follows most the guide-
lines in Sect. 4.9.1, but because AES-256 does not have many rounds, DP-
AES cannot follow all the guidelines, thus the possibility of successful chosen
plaintext/ciphertext attacks exists (with very low probability and under some
extreme circumstances). Another issue is that the secondary key size is too
small (24-bit), so it is not recommended using it to achieve di�erentiability. To
conclude, it is not recommended using DP-AES as it is. In the next section,
DP-AES will be used to construct a more secure variant of AES.

4.10 Hybrid Models

The proposed models can be used together to form new models. As an example,
DPM and SSM are used to construct Dynamic Permutation Static Substitution
AES (DPSS-AES).

4.10.1 Dynamic Permutation Static Substitution AES
(DPSS-AES)

DPSS-AES uses both DPM and SSM. It accepts 280-bit secondary key. The
listing of Encrypt-DPSS-AES, which is used for encryption in the proposed
variant, can be found in table 4.11, where GetBits(SK,i,j) return from the ith

untill the jth bits of SK. DPSS-AES works as follows:

• The 280-bit secondary key is divided into three parts; each part is respon-
sible for a certain task:

k1: is of size 24-bit and is used as the secondary key for Encrypt-DP-AES
function (see table 4.10).

k2 and k3: are of size 128-bit and are used to replace some words in
AES' expanded key (k2 and k3 must be random and unique).

• k2 replaces the round key of the 4th round.

• k2 replaces the round key of the 10th round.

• The plaintext (P), updated expanded key (EK) and k1 are passed to
Encrypt-DP-AES function and the result is the ciphertext (C).

50 CHAPTER 4. PROPOSED ENCRYPTION MODELS

Table 4.11: Encrypt-DPSS-AES function.

Encrypt-DPSS-AES(P,EK,SK)

k1=GetBits(SK,0,23)

k2=GetBits(SK,24,151)

k3=GetBits(SK,152,279)

Substitute(EK , k2 , 4)

Substitute(EK , k3 , 10)

C=Encrypt-DP-AES(P,EK,k1)

return C

Security of DPSS-AES

For an adversary who does not know either the primary key or the secondary
key, she tries to attack a full round AES. DPSS-AES follows the guidelines
in Sect. 4.9.2. After the �rst substitution, 10 encryption rounds of AES are
performed, these rounds assure that not only full confusion and di�usion after
the substitution are achieved, but also that any di�erential or linear propagation
is completely destroyed in the encryption direction (as k2 and k3 are unique
and random). After the second substitution, 10 decryption rounds of AES are
performed, these rounds assure that not only full confusion and di�usion after
the substitution are achieved, but also that any di�erential or linear propagation
is completely destroyed in the decryption direction as both the secondary keys
are unique and random). To the best of the author's knowledge, there is no
feasible chosen plaintext attack that exists on 10 round AES, and by using
random secondary keys the probability of �nding secondary keys that share a
certain pattern is considered very low. The same applies to chosen ciphertext
attacks where there is no feasible ciphertext attack that exists on 10 round
AES. Thus, the adversary cannot mount linear, di�erential, chosen plaintext or
chosen ciphertext attacks.

4.10.2 Applications and Recommendations

The proposed models appeal for applications that require tweakable block ci-
phers, like disk encryption applications. Any variant of a block cipher con-
structed using these models, should be analyzed in the used scenario/application.

4.11 Summary

In this chapter, three new encryption models are proposed. These models al-
low any iterative block cipher to accept a secondary key; this was achieved by
modifying the cipher's expanded key by substitution, permutation or addition.
The guidelines to construct secure block ciphers using the proposed models are
presented. The possibility to construct hybrid models by using these basic three
models as building blocks is discussed. Based on the proposed models, several
variants of AES that accept an extra secondary key are designed. These vari-
ants will be used in the next chapters to construct secure encryption schemes

4.11. SUMMARY 51

for network applications and new modes of operation for disk encryption.

52 CHAPTER 4. PROPOSED ENCRYPTION MODELS

Chapter 5

Network Encryption Schemes

5.1 Introduction

The number of internet users is increasing continually world wide. Recent statis-
tics reported that the current number of internet users is about 1.6 billion. This
number has increased more than 350% in the last eight years and is still increas-
ing daily [152]. Consequently, internet and network applications need to serve an
increasing number of concurrent clients. At the same time, the enhanced quality
and performance of internet and modern applications require more bandwidth
capacity to ful�ll the clients' needs. Today, modern networks do not only have
to ful�ll the demand of higher transmission rates but also have to provide and
to guarantee data security and especially data con�dentiality [84].

Key agility is particularly important in applications where only several blocks
of data are encrypted between two consecutive key changes. IPSec [91, 92,
93] and ATM [41, 153, 69], with small packet sizes, and consecutive packets
encrypted using di�erent keys, are two widespread protocols in which the key
setup latencies may play a very important role [63].

The two widely used schemes for generating the cipher's round keys in
network applications are studied, where the Cipher Block Chaining mode
(CBC) [117] and the Counter mode (CTR) [113] are used to perform encryp-
tion and decryption. The �rst scheme uses round keys pre-computation and the
second uses on-the-�y round keys computation. Theoretical and experimen-
tal analyses are performed on both schemes. The analyses pointed out some
shortcomings in both schemes, as the scheme that uses on-the-�y round keys
generation performs more computations, on the other hand the scheme that uses
round keys pre-computation uses more memory, which may limit the number of
concurrent clients and is subjected to more cache misses and page faults causing
instability in system performance.

To overcome the shortcomings of the current schemes, new schemes are pro-
posed. The schemes are based on the Static Substitution Model (SSM) (refer
to Sect. 4.5). AESS2 and AES2S (refer to Sect. 4.5.1) are used to construct en-
cryption schemes for network applications. In the proposed schemes, each client
possesses two keys. The �rst key is shared within a group of clients (a clus-
ter) and it is expanded in memory (cluster key). The second key is the client's
unique session key. Encryption and decryption are done using AESS2/AES2S,

53

54 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

where the cluster key is used to generate the expanded AES key and the client's
session key is used as the secondary key. The proposed schemes enjoy high
throughput together with low memory consumption.

The analysis is extended to the Galois/Counter Mode (GCM) [116], which
has aroused to be one of the best methods for high speed authenticated encryp-
tion [116]. GCM is a block cipher mode of operation that uses universal hashing
over a binary Galois �eld to provide authenticated encryption. GCM is built
on the counter mode (CTR) [113] and it has been standardized by NIST [129].
There is a number of di�erent software algorithms that implements universal
hashing over a binary Galois �eld (GHASH), these implementations vary from
their speed and memory requirements.

The di�erent software implementations of GCM are studied. The analysis
pointed out some shortcomings in each implementation, as the implementation
that uses on-the-�y GHASH computation is considered slow. On the other hand
the implementations that use pre-computed tables use more memory, which may
limit the number of concurrent clients. GSCM is proposed to overcome these
shortcomings.

5.2 Assumptions and Requirements

5.2.1 Assumptions

1. The server serves N concurrent secure sessions.

2. AES is used for encryption and decryption.

3. The encryption/decryption is done with the tested mode of operation.

4. Each client has two encryption keys, one for each tra�c �ow (the same
method used in IPSec [91, 92, 93], when the Internet Key Exchange
(IKE) [76] is used to establish fresh keys).

5. For decryption, the Equivalent Inverse Cipher of AES [37] is used, which
has the same sequence of transformations as AES, thus o�ers a more
e�cient structure than the normal Inverse Cipher [127] and is used in
many optimized software and hardware systems [66, 101, 102, 154] (Note
that CTR and GCM schemes uses the same encryption algorithm in both
encryption and decryption operations).

5.2.2 The Requirements of the Schemes

A high speed encryption scheme for networks needs to have:

1-High throughput: The faster the scheme the better.

2-Low memory: The less memory requirements the better.

3-Low CPU usage: The lower CPU usage the better.

4-Maximum number of clients: The more served clients the better.

5-Stability: The scheme should be stable, when the number of concurrent
clients increases.

5.3. CIPHER BLOCK CHAINING (CBC) SCHEMES 55

In order to examine the satisfaction of these requirements in current and pro-
posed schemes, several simulation programs are developed. The design and the
result of these simulations are discussed later in this chapter.

5.2.3 Secondary Keys Generation

In the proposed schemes, there are two classes of keys: the cluster keys and
the clients' keys. It is proposed to use three keys for each cluster: Cluster
Encryption Key CEK, Cluster Decryption Key CDK and Cluster User Key
CUK. These three keys are unique for each cluster and are generated using
a cryptographically secure random number generator. CEK and CDK are
used to generate the cluster encryption and decryption expanded keys using
the proposed enhanced AES key schedule (refer to Sect. 3.5). CUK is used to
generate the clients' unique keys using the counter mode (CTR) [113]. In this
way, each client has a unique pair of secondary keys.

5.3 Cipher Block Chaining (CBC) Schemes

In the following text, the standard widely used CBC schemes (CBC-Pre and
CBC-On) and the proposed scheme CBC-S are presented.

5.3.1 CBC-Pre

CBC-Pre is a speed dedicated scheme, where the expanded key for encryption
and decryption for each session are computed at the beginning of that session,
stored in memory and then fetched from memory whenever an encryption or
decryption operation for that session is needed. It executes as follows:

• Setup Routine, is executed for every client number i (Ci), once it is
connected:

� Two unique cryptographic random keys (K1
i and K2

i) of size 128-bit
or 256-bit are generated.

� Two random initialization vectors (IV1
i and IV2

i) of size 128-bit are
generated.

� K1
i , K

2
i , IV

1
i and IV2

i are sent to the client.

� K1
i is expanded, using AES encryption key setup algorithm to pro-

duce the client's expanded encryption key (Ei).

� K2
i is expanded, using AES decryption key setup algorithm to pro-

duce the client's expanded decryption key (Di).

� Ei, Di, IV
1
i and IV2

i are stored in server's memory.

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� Ei and IV1
i are fetched from the server's memory.

� IV1
i is used to encrypt PT using CBC mode to produce CT, where

Ei serves as the expanded encryption key.

56 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

� CT and IV1
i are sent to the client (note that IV

1
i is send to the client

to ensure that the client can perform decryption, even when some
packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� Di is fetched from the server's memory.

� IV2
i and CT are received from the client.

� IV2
i is used to decrypt CT using CBC mode to produce PT, where

Di serves as the expanded decryption key.

5.3.2 CBC-On

CBC-On is a memory dedicated scheme, where the round keys for encryption
and decryption are computed on-the-�y whenever an encryption or decryption
operation is needed. It executes as follows:

• Setup Routine, is executed for every client number i (Ci), once it is
connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-/256-
bit are generated.

� Two random initialization vectors (IV1
i and IV2

i) of size 128-bit are
generated.

� k1
i , k

2
i , IV

1
i and IV2

i are sent to the client.

� k1
i , k

2
i , IV

1
i and IV2

i are stored in the server's memory.

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� k1
i and IV1

i are fetched from the server's memory.

� IV1
i is used to encrypt PT using CBC mode to produce CT, using k1

i

as the encryption key, where the round keys are generated on-the-�y.

� CT and IV1
i are sent to the client (note that IV

1
i is send to the client

to ensure that the client can perform decryption, even when some
packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� k2
i is fetched from the server's memory.

� IV2
i and CT are received from the client.

� IV2
i is used to decrypt CT using CBC mode to produce PT, using k2

i

as the encryption key, where the round keys are generated on-the-�y.

5.3.3 CBC-S

AESS2 (refer to Sect. 4.5.1) is used to build a scheme for network encryption
applications, where:

• (Kc1 and Kc2) are the cluster keys (for encryption and decryption respec-
tively) and are shared by n clients (where n is the size of a cluster).

5.4. COUNTER MODE (CTR) SCHEMES 57

• Each client i (Ci) has its own two unique 128-bit keys (k1
i) and (k2

i).

CBC-S tries to eliminate the key setup latency, it executes as follows:

• Cluster Setup Routine, is used to setup a cluster of n-clients.

� Three cryptographic secure random keys (Kc1, Kc2 and Ku) with
length 128-/256-bit are generated.

� Kc1 and Kc2 are expanded, using the proposed enhanced AES key
schedule (refer to Sect. 3.5) to produce the cluster's shared encryp-
tion/decryption expanded keys Ec and Dc.

� Ec and Dc are stored in the server's memory.

• Client Setup Routine, is executed for every client number i (Ci), once
it is connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-bit
are generated, using Ku in the counter mode.

� Two random initialization vectors (IV1
i and IV2

i) of size 128-bit are
generated.

� Kc1, Kc2, k
1
i , k

2
i , IV

1
i and IV2

i are sent to the client and stored in the
server's memory. The client calculates Ec and Dc using Kc1 and Kc2.

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� Ec, k
1
i , k

2
1 and IV1

i are fetched from the server's memory.

� IV1
i is used to encrypt PT with CBC mode to produce CT using

AESS2, where Ec serves as the expanded key, k1
i and k2

i construct
the secondary key.

� CT and IV1
i are sent to the client (note that IV1

i is sent to the client
to ensure that the client can perform decryption, even when some
packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� Dc, k
1
i , k

2
1 are fetched from the server's memory.

� IV2
i and CT are received from the client.

� IV2
i is used to decrypt CT with CBC mode to produce PT using

AESS2, where Dc serves as the expanded key, k1
i and k2

i construct
the secondary key.

5.4 Counter Mode (CTR) Schemes

5.4.1 Counter Block Format

Following the guidelines in [80], the counter block used in counter mode, has
the following format:

1. The �rst 32-bit are a nonce, which are random and unique for each client.

58 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

2. The next 64-bit are the initialization vector (IV), which are random and
incremented with each packet.

3. The last 32-bit are initialized for each packet by one, and incremented for
each 128-bit block within the packet.

In the following text, the standard widely used CTR schemes (CTR-Pre and
CTR-On) and the proposed scheme CTR-S are presented.

5.4.2 CTR-Pre

CTR-Pre is a speed dedicated scheme, where the expanded key for encryption
and decryption for each session are computed at the beginning of that session,
stored in memory and then fetched from memory whenever an encryption or
decryption operation for that session is needed. It executes as follows:

• Setup Routine, is executed for every client number i (Ci), once it is
connected:

� Two unique cryptographic random keys (K1
i and K2

i) of size 128-bit
or 256-bit are generated.

� Two random initialization vectors (IV1
i and IV2

i) of size 64-bit are
generated.

� Two unique nonces (n1
i and n2

i) of size 32-bit are generated.

� K1
i , K

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are sent to the client.

� K1
i is expanded, using AES encryption key setup algorithm to pro-

duce the client's expanded encryption key (Ei).

� K2
i is expanded, using AES decryption key setup algorithm to pro-

duce the client's expanded decryption key (Di).

� Ei, Di, IV
1
i , IV

2
i , n

1
i and n2

i are stored in server's memory.

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� Ei, IV
1
i and n1

i are fetched from the server's memory.

� IV1
i is incremented by one.

� IV1
i and n

1
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to encrypt PT using CTR mode to produce CT, where
Ei serves as the expanded encryption key.

� CT and IV1
i are sent to the client (note that IV1

i is sent to the client
to ensure that the client can generate the key stream needed for
decryption, even when some packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� Di and n
2
i are fetched from the server's memory.

� IV2
i and CT are received from the client.

� IV2
i and n

2
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to decrypt CT using CTR mode to produce PT, where
Di serves as the expanded encryption key (note that the encryption
function of the cipher is used in the decryption process of CTRmode).

5.4. COUNTER MODE (CTR) SCHEMES 59

5.4.3 CTR-On

CTR-On is a memory dedicated scheme, where the round keys for encryption
and decryption are computed on-the-�y whenever an encryption or decryption
operation is needed. It executes as follows:

• Setup Routine, is executed for every client number i (Ci), once it is
connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-/256-
bit are generated.

� Two random initialization vectors (IV1
i and IV2

i) of size 64-bit are
generated.

� Two unique nonces (n1
i and n2

i) of size 32-bit are generated.

� k1
i , k

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are sent to the client and stored in the
server's memory.

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� k1
i , IV

1
i and n1

i are fetched from the server's memory.

� IV1
i is incremented by one.

� IV1
i and n

1
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to encrypt PT using CTR mode to produce CT, using k1
i

as the encryption key, where the round keys are generated on-the-�y.

� CT and IV1
i are sent to the client (note that IV1

i is sent to the client
to ensure that the client can generate the key stream needed for
decryption, even when some packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� k2
i and n2

i are fetched from the server's memory.

� IV2
i and CT are received from the client.

� IV2
i and n

2
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to decrypt CT using CTR mode to produce PT, using k2
i

as the encryption key, where the round keys are generated on-the-�y.

5.4.4 CTR-S

AES2S (refer to Sect. 4.5.1) is used to build a scheme for network encryption
applications, where:

• (Kc1 and Kc2) are the cluster keys (for encryption and decryption respec-
tively) and are shared by n clients (where n is the size of a cluster).

• Each client i (Ci) has its own two unique 128-bit keys (k1
i) and (k2

i).

CTR-S tries to eliminate the key setup latency. It executes as follows:

• Cluster Setup Routine, is used to setup a cluster of n-clients.

60 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

� Three cryptographic secure random keys (Kc1, Kc2 and Ku) with
length 128-/256-bit are generated.

� Kc1 and Kc2 are expanded, using the proposed enhanced AES key
schedule (refer to Sect. 3.5) to produce the cluster's shared encryp-
tion/decryption expanded keys (Ec) and (Dc).

� Ec and Dc are stored in the server's memory.

• Client Setup Routine, is executed for every client number i (Ci), once
it is connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-bit
are generated, using Ku in the counter mode.

� Two random initialization vectors (IV1
i and IV2

i) of size 64-bit are
generated.

� Two unique nonces (n1
i and n2

i) of size 32-bit are generated.

� Kc1, Kc2, k
1
i , k

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are sent to the client. The
client calculates Ec and Dc using Kc1 and Kc2.

� k1
i , k

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are stored in the server's memory.

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� Ec, k
1
i , k

2
i , IV

1
i and n1

i are fetched from the server's memory.

� IV1
i is incremented by one.

� IV1
i and n

1
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to encrypt PT with CTR mode to produce CT using
AES2S, where Ec serves as the expanded key, k1

i and k2
i construct

the secondary key.

� CT and IV1
i are sent to the client (note that IV

1
i is send to the client

to ensure that the client can generate the key stream needed for
decryption, even when some packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� Dc, k
1
i , k

2
i and n2

i are fetched from the server's memory.

� IV2
i and CT are received from the client.

� IV2
i and n

2
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to decrypt CT with CTR mode to produce PT using
AES2S, where Dc serves as the expanded key, k1

i and k2
i construct

the secondary key (note that the encryption function of the cipher is
used in the decryption process of CTR mode).

5.5. GALOIS/COUNTER MODE (GCM) SCHEMES 61

5.5 Galois/Counter Mode (GCM) Schemes

Galois/Counter Mode (GCM) [116] is a block cipher mode of operation that uses
universal hashing over a binary Galois �eld to provide authenticated encryption.
GCM is built on the counter mode (CTR) [113] and it has been standardized by
NIST [129]. There is a number of di�erent software algorithms that implements
universal hashing over a binary Galois �eld (GHASH), these implementations
vary from their speed and memory requirements.

5.5.1 GCM Software Implementations

GCM mode combines the well-known counter mode (CTR) [113] of encryption
with the Galois mode of authentication. The key feature is that the Galois
�eld multiplication used for authentication can be easily computed in parallel
thus permitting higher throughput than the authentication algorithms that use
chaining modes, like CBC [117].

GCM implementations with the di�erent GHASH implementation strategies
are tested. These implementations use on-the-�y strategy or pre-computed ta-
bles to compute GHASH. These pre-computed tables are of size: 256 bytes or
4Kb with Shoup's method [148], 8Kb in Gladman's implementation [66] and
64Kb with the straightforward method.

In the following text, the standard widely used GCM schemes (GCM(x)-Pre
and GCM(x)-On) and the proposed scheme GSCM are presented.

5.5.2 GCM(x)-Pre

GCM(x)-Pre represents a group of �ve schemes, each scheme uses a di�erent
value of x. These values are 0, 256, 4096 (4k), 8192 (8k) and 65536 (64k)
and they represent the bytes required for GHASH computation for each tra�c
�ow per client. The pre-computed tables are computed at the beginning of the
session, stored in memory and then fetched from memory whenever a GHASH
computation is needed. It executes as follows:

• Setup Routine, is executed for every client number i (Ci), once it is
connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-/256-
bit are generated.

� Two random initialization vectors (IV1
i and IV2

i) of size 64-bit are
generated.

� Two unique nonces (n1
i and n2

i) of size 32-bit are generated.

� k1
i , k

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are sent to the client.

� k1
i and k2

i are expanded using AES encryption key setup algorithm
to produce Ei and Di.

� T 1
i and T 2

i (tables of size x bytes used to compute the GHASH func-
tion in encryption and decryption directions respectively) are com-
puted, using k1

i and k2
i .

� Ei, Di, IV
1
i , IV

2
i , n

1
i , n

2
i , T

1
i and T 2

i are stored in the server's memory.

62 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� Ei, IV
1
i , n

1
i and T 1

i are fetched from the server's memory.

� IV1
i is incremented by one.

� IV1
i and n

1
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to encrypt PT using GCM mode to produce CT, where
Ei serves as the expanded encryption key and T 1

i is used to calculate
the authentication tag t.

� CT, IV1
i and t are sent to the client (note that IV1

i is sent to the
client to ensure that the client can generate the key stream needed
for decryption, even when some packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� Di, n
2
i and T 2

i are fetched from the server's memory.

� IV2
i , CT and t are received from the client.

� The authentication tag t' is calculated using T 2
i and if t equals to

t' the next step is executed, otherwise an authentication error is
returned.

� IV2
i and n

2
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to decrypt CT using GCM mode to produce PT, where
Di serves as the expanded encryption key (note that the encryption
function of the cipher is used in the decryption process of CTRmode).

5.5.3 GCM(x)-On

GCM(x)-On represents a group of �ve schemes, each scheme uses a di�erent
value of x. These values are 0, 256, 4096 (4k), 8192 (8k) and 65536 (64k)
and they represent the bytes required for GHASH computation for each tra�c
�ow per client. The pre-computed tables are computed at the beginning of the
session, stored in memory and then fetched whenever a GHASH computation is
needed. It executes as follows:

• Setup Routine, is executed for every client number i (Ci), once it is
connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-/256-
bit are generated.

� Two random initialization vectors (IV1
i and IV2

i) of size 64-bit are
generated.

� Two unique nonces (n1
i and n2

i) of size 32-bit are generated.

� k1
i , k

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are sent to the client.

� T 1
i and T 2

i (tables of size x bytes used to compute the GHASH func-
tion in encryption and decryption directions respectively) are com-
puted, using k1

i and k2
i .

� k1
i , k

2
i , IV

1
i , IV

2
i , n

1
i , n

2
i , T

1
i and T 2

i are stored in server's memory.

5.5. GALOIS/COUNTER MODE (GCM) SCHEMES 63

• Encryption Execution Routine, to encrypt a plaintext (PT) for Ci:

� k1
i , IV

1
i , n

1
i and T 1

i are fetched from the server's memory.

� IV1
i is incremented by one.

� IV1
i and n

1
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to encrypt PT using GCM mode to produce CT, where
k1

i serves as the encryption key (the round keys are calculated on-
the-�y) and T 1

i is used to calculate the authentication tag t.

� CT, IV1
i and t are sent to the client (note that IV1

i is sent to the
client to ensure that the client can generate the key stream needed
for decryption, even when some packets are lost or reordered [80]).

• Decryption Execution Routine, to decrypt a ciphertext (CT) for Ci:

� k2
i , n

2
i and T 2

i are fetched from the server's memory.

� IV2
i , CT and t are received from the client.

� The authentication tag t' is calculated using T 2
i and if t equals to

t' the next step is executed, otherwise an authentication error is
returned.

� IV2
i and n

2
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to decrypt CT using GCM mode to produce PT, where
k2

i serves as the encryption key (the round keys are calculated on-
the-�y), note that the encryption function of the cipher is used in the
decryption process of CTR mode.

5.5.4 GSCM(x)

GSCM(x) represents a group of �ve schemes, each scheme uses a di�erent value
of x. These values are 0, 256, 4096 (4k), 8192 (8k) and 65536 (64k) and they
represent the bytes required for GHASH computation for each tra�c �ow per
client. AES2S (refer to Sect. 4.5.1) is used to build a scheme for network en-
cryption applications, where:

• (Kc1 and Kc2) are the cluster keys and are shared by n clients (where n is
the maximum number of clients in a cluster).

• Each client i (Ci) has its own two unique 128-bit keys (k1
i) and (k2

i).

GSCM(x) tries to eliminate the setup latencies. It executes as follows:

• Cluster setup routine: is used to prepare the system and is executed
for each cluster of n clients.

� Three cryptographic secure random keys (Kc1, Kc2 and Ku) with
length 128-/256-bit are generated.

� Kc1 and Kc2 are expanded using the proposed enhanced AES key
schedule (refer to Sect. 3.5) to produce the cluster's shared encryp-
tion/decryption expanded keys (Ec) and (Dc).

64 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

� Tc1 and Tc2 (tables of size x bytes used to compute the GHASH
function in encryption and decryption directions respectively) are
computed, using Kc1 and Kc2.

� Ec, Dc, Tc1 and Tc2 are stored in the server's memory.

• Client setup routine: is executed for every client number i (Ci), once
it is connected:

� Two unique cryptographic random keys (k1
i and k2

i) of size 128-bit
are generated, using Ku in the counter mode.

� Two random initialization vectors (IV1
i and IV2

i) of size 64-bit are
generated.

� Two unique nonces (n1
i and n2

i) of size 32-bit are generated.

� Kc1, Kc2, k
1
i , k

2
i , Kc1, Kc2, IV

1
i , IV

2
i , n

1
i and n

2
i are sent to the client.

The client calculates Ec, Dc, Tc1 and Tc2 using Kc1 and Kc2.

� k1
i , k

2
i , IV

1
i , IV

2
i , n

1
i and n2

i are stored in the server's memory.

• Encryption execution routine, to encrypt a plaintext (PT) for Ci:

� Ec,k
1
i , k

2
i , IV

1
i , n

1
i and Tc1 are fetched from the server's memory.

� IV1
i is incremented by one.

� IV1
i and n

1
i are used to construct the initial counter block (ICBi) for

GCM mode (as explained in Sect. 5.4.1).

� ICBi is used to encrypt PT with GCM mode to produce CT using
AES2S, where Ec serves as the expanded key, k1

i and k2
i construct

the secondary key. Tc1 is used to calculate the authentication tag t.

� CT, IV1
i and t are sent to the client (note that IV1

i is sent to the
client to ensure that the client can generate the key stream needed
for decryption, even when some packets are lost or reordered [80]).

• Decryption execution routine, to decrypt a ciphertext (CT) for Ci:

� Dc,k
1
i , k

2
i , n

2
i and Tc2 are fetched from the server's memory.

� IV2
i , CT and t are received from the client.

� The authentication tag t' is calculated using Tc2 and if t equals to
t' the next step is executed, otherwise an authentication error is
returned.

� IV2
i and n

2
i are used to construct the initial counter block (ICBi) for

CTR mode (as explained in Sect. 5.4.1).

� ICBi is used to decrypt CT with GCM mode to produce PT using
AES2S, where Dc serves as the expanded key, k1

i and k2
i construct

the secondary key (note that the encryption function of the cipher is
used in the decryption process of CTR mode).

5.6. MEMORY ANALYSIS 65

5.6 Memory Analysis

The less memory the scheme needs, the more available memory to other appli-
cations and the larger the number of concurrent clients the server can serve.
Memory access has a great role in the overall scheme performance. If a server
has insu�cient physical memory space to cache all of the data it needs, it per-
forms page replacements. Although virtual memory makes the server able to
complete the process, this process is very slow compared to the cost of data
computation [103].

Table 5.1 represents the memory requirements in bytes for CBC and CTR
schemes per client to hold the key material and other data required to perform
encryption and decryption (e.g. initialization vectors, nonces, counter, etc..).
Note that the memory requirements for CBC and CTR modes are the same
for each scheme. From these results, it is clear that the proposed schemes
CBC-S and CTR-S possess the lowest memory requirements and thus can serve
the maximum number of concurrent clients. When 128-bit keys are used, the
proposed schemes can serve more than 12 times the number of clients sereved
by CBC-Pre/CTR-Pre and more than 3 times the number of clients sereved
by CBC-On/CTR-On, moreover when 256-bit keys are used these factors are
increased to 16 and 5 respectively.

Table 5.1: Memory requirements for CBC and CTR schemes per client (in
bytes).

128-bit key 256-bit key
CTR-Pre/CBC-Pre 784 1040
CTR-On/CBC-On 208 336
CTR-S/CBC-S 64 64

Table 5.2 represents the memory requirements in bytes for GCM schemes per
client to hold the key material and other data required to perform encryption
and decryption (e.g. initialization vectors, nonces, counter, etc..). From these
results, it is clear that GSCM(x) schemes possess the lowest memory require-
ments and thus can serve the maximum number of concurrent clients. GSCM(x)
schemes can serve at least twice the number of clients than the current schemes
and in some cases this factor increases to about 1029.

5.7 Server Con�guration and Simulation Param-
eters

5.7.1 Server Con�guration

NoCrypto and the other tested schemes are implemented using C++ language
and several simulations are performed to examine their practical behavior.
Table 5.3 shows the server con�guration used in the simulations. Note that
NoCrypto does not perform any encryption or decryption operations, it is pre-
sented here to show the cryptographic overhead and in the proposed schemes
all the clients share the same cluster.

66 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

Table 5.2: Memory requirements for GCM schemes per client (in bytes).

128-bit key 256-bit key
GCM(64k)-Pre 131624 131752
GCM(64k)-On 131336 131400
GCM(8k)-Pre 16936 17064
GCM(8k)-On 16648 16712
GCM(4k)-Pre 8744 8872
GCM(4k)-On 8456 8520
GCM(256)-Pre 1064 1192
GCM(256)-On 776 840
GCM(0)-Pre 552 680
GCM(0)-On 264 328
GSCM(x) 128 128

Table 5.3: Server con�guration.

Processor Intel Xeon Quad-Core 2.33 GHz (64-bit)
RAM 4096 MB
Processor Cache 12 MB
Paging �le 4096 MB
OS Microsoft Windows Server 2008
Compiler Visual C++ 2008
Code optimization Maximum speed

5.8. STABILITY ANALYSIS 67

5.7.2 Parameters

For the simulation instances, the following parameters are used:

• α is the tested packet size; it is either 40 or 1500 bytes. This is because
the distribution of Internet packet sizes seems mostly bimodal at 40 and
1500 bytes [68, 149].

• UNIT is the current number of clients.

• STEP is a number used to calculate the current number of clients in a
given simulation instance.

• Zi is the current number of clients served by the server, the set Z = { Zi

} is constructed, where Zi = (i × STEP).

• K is the key size in bits (either 128 or 256).

5.8 Stability Analysis

In order to gain more insight into the practical behavior of the schemes, a
simulation program is designed to explore how the schemes behave when the
number of clients increases.

5.8.1 The Stability Analysis Simulation

A multi-client/server TCP socket application is developed to demonstrate the
behavior of the schemes. The server and the clients are connected via a LAN
(100 Mbps). The simulation works as follows:

1. The server allocates 90% of its available RAM as a shared data pool. This
pool holds the encrypted and decrypted data for all the clients and is used
to illustrate the e�ect of reading and writing to the RAM.

2. The server allocates the memory needed by the tested scheme to serve Zi

clients, where for each client the server allocates M bytes, where M is the
number of bytes required by each client using the tested scheme (refer to
table 5.1 and table 5.2).

3. The server waits until 50 computers are connected, then sends the start
command to all the computers (each computer simulates Zi/50 clients).
Note that each computer is served using a di�erent thread, to illustrate
the e�ect of multi-threading.

4. As the computer receives the start command, it sends a packet of size α
to the server.

5. The packet is decrypted for client Ci and encrypted to client Cx, where i
and x are positive random numbers less than Zi.

6. The server sends the encrypted packet (from the previous step), to the
computer that serves client Cx.

68 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

7. When the packet is processed by the server and received by the computer,
the computer starts to send a packet for the next client it simulates.

8. The average time (in milliseconds) for processing a packet is reported.

9. Note that, it is assumed that the incoming and outgoing packets are of
the same size for simplicity.

The simulation is performed, where STEP=100,000 with the following termina-
tion conditions:

1. When the average packet processing time for a packet exceeds that of
NoCrypto with a factor of 2 (using the same parameters).

2. The server cannot allocate memory for Zi clients.

3. The server begins to lose its connections.

5.8.2 The Results of the Stability Analysis

Figure 5.1 and Figure 5.2 show the simulation results of CBC schemes. From
these results it is clear that the encryption schemes reach instability after a
certain threshold; this instability is due to cache misses and page faults.

In table 5.4, the maximum number of clients is reported in the simulation,
together with the maximum number of stable clients. These numbers are the
average of the recored values for α=40 and α=1500. If K equals 128-bit, the
simulation reported that CBC-S can serve about 635% and 160% stable clients
more than CBC-Pre and CBC-On respectively; when K equals 256-bit these
percentages are increased to 690% and 265%.

Table 5.4: Maximum reported number of clients and stable number of clients
for CBC schemes.

Maximum Reported Maximum Reported
Number of Clients Stable Number of Clients

Key Size 128-bit 256-bit 128-bit 256-bit
CBC-Pre 700000 600000 550000 500000
CBC-On 2400000 1550000 2200000 1300000
CBC-S 3750000 3750000 3500000 3450000

Figure 5.3 and Figure 5.4 show the simulation results of CTR schemes. From
these results it is clear that the encryption schemes reach instability after a
certain threshold; this instability is due to cache misses and page faults.

In table 5.5, the maximum number of clients is reported in the simulation,
together with the maximum number of stable clients. These numbers are the
average of the recored values for α=40 and α=1500. If K equals 128-bit, the
simulation reported that CTC-S can serve about 645% and 170% stable clients
as CTR-Pre and CTR-On respectively; when K equals 256-bit these percentages
increase to 690% and 255%.

In table 5.6, the maximum number of clients is reported in the simulation,
together with the maximum number of stable clients reported for all GCM

5.8. STABILITY ANALYSIS 69

(a) Simulation parameters (α=40 and STEP=100,000).

(b) Simulation parameters (α=1500 and STEP=100,000).

Figure 5.1: Stability analysis simulation: average time (in ms) needed to process
a packet, using CBC schemes (K=128).

70 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) Simulation parameters (α=40 and STEP=100,000).

(b) Simulation parameters (α=1500 and STEP=100,000).

Figure 5.2: Stability analysis simulation: average time (in ms) needed to process
a packet, using CBC schemes (K=256).

5.8. STABILITY ANALYSIS 71

(a) Simulation parameters (α=40 and STEP=10,000).

(b) Simulation parameters (α=1500 and STEP=10,000).

Figure 5.3: Stability analysis simulation: average time (in ms) needed to process
a packet, using CTR schemes (K=128).

72 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) Simulation parameters (α=40 and STEP=10,000).

(b) Simulation parameters (α=1500 and STEP=10,000).

Figure 5.4: Stability analysis simulation: average time (in ms) needed to process
a packet, using CTR schemes (K=256).

5.8. STABILITY ANALYSIS 73

Table 5.5: Maximum reported number of clients and stable number of clients
for CTR schemes.

Maximum Reported Maximum Reported
Number of Clients Stable Number of Clients

Key Size 128-bit 256-bit 128-bit 256-bit
CTR-Pre 750000 600000 550000 500000
CTR-On 2450000 1550000 2100000 1350000
CTR-S 3950000 3850000 3550000 3450000

schemes. These numbers are the average of the recored values for α=40 and
α=1500.

It is worth mentioning that the maximum number of stable clients with
α=1500 is greater than that with α=40 for all the schemes.

Figure 5.5 and Figure 5.6 show the simulation results for GCM(0) schemes.
From these results it is clear that the encryption schemes reach instability after
a certain threshold; this instability is due to cache misses and page faults. If
K equals 128-bit, the simulation reported that GSCM(0) can serve about 265%
and 105% stable clients as GCM(0)-Pre and GCM(0)-On respectively; when K
equals 256-bit these percentages increase to 320% and 130%.

Figure 5.7 and Figure 5.8 show the simulation results for GCM(256) schemes.
From these results it is clear that the encryption schemes reach instability after
a certain threshold; this instability is due to cache misses and page faults. If K
equals 128-bit, the simulation reported that GSCM(256) can serve about 530%
and 410% stable clients as GCM(256)-Pre and GCM(256)-On respectively; when
K equals 256-bit these percentages increase to 600% and 450%.

Table 5.6: Maximum reported number of clients and stable number of clients
for GCM schemes.

Maximum Reported Maximum Reported
Number of Clients Stable Number of Clients

Key Size 128-bit 256-bit 128-bit 256-bit
GCM(0)-Pre 850000 700000 700000 550000
GCM(0)-On 1900000 1500000 1750000 1350000
GCM(256)-Pre 450000 450000 350000 300000
GCM(256)-On 600000 500000 450000 400000
GCM(4k)-Pre 200000 200000 50000 50000
GCM(4k)-On 200000 200000 50000 50000
GCM(8k)-Pre 200000 200000 50000 50000
GCM(8k)-On 200000 200000 50000 50000
GCM(64k)-Pre NEM NEM NEM NEM
GCM(64k)-On NEM NEM NEM NEM
GSCM(x) 2000000 1950000 1850000 1800000

NEM = Not Enough Memory

For both 128-bit keys and 256-bit keys, the simulation reported that
GSCM(4k) can serve about 3700% and 3600% stable clients as GCM(4k)-Pre

74 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) Simulation parameters (α=40 and STEP=10,000).

(b) Simulation parameters (α=1500 and STEP=10,000).

Figure 5.5: Stability analysis simulation: average time (in ms) needed to process
a packet, using GCM(0) Schemes (K=128).

5.8. STABILITY ANALYSIS 75

(a) Simulation parameters (α=40 and STEP=10,000).

(b) Simulation parameters (α=1500 and STEP=10,000).

Figure 5.6: Stability analysis simulation: average time (in ms) needed to process
a packet, using GCM(0) Schemes (K=256).

76 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) Simulation parameters (α=40 and STEP=10,000).

(b) Simulation parameters (α=1500 and STEP=10,000).

Figure 5.7: Stability analysis simulation: average time (in ms) needed to process
a packet, using GCM(256) Schemes (K=128).

5.8. STABILITY ANALYSIS 77

(a) Simulation parameters (α=40 and STEP=10,000).

(b) Simulation parameters (α=1500 and STEP=10,000).

Figure 5.8: Stability analysis simulation: average time (in ms) needed to process
a packet, using GCM(256) Schemes (K=256).

78 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

and GCM(4k)-On respectively. For both 128-bit keys and 256-bit keys, the
simulation reported that GSCM(8k) can serve about 3700% and 3600% stable
clients as GCM(8k)-Pre and GCM(8k)-On respectively.

In case of GCM(64k)-Pre and GCM(64k)-On the simulation program failed
to allocate the required memory, due to the high memory requirements for these
schemes.

5.9 Performance Analysis

5.9.1 The Performance Analysis Simulation

A multi-threaded application is developed to demonstrate the performance of
the schemes. The simulation works as follows:

1. The server allocates 90% of its available RAM as a shared data pool. This
pool holds the encrypted and decrypted data for all the clients and is used
to illustrate the e�ect of reading and writing to the RAM.

2. The server allocates the memory needed by the tested scheme to serve
UNIT clients, where for each client, the server allocates M bytes, where
M is the number of bytes required by each client using the tested scheme
(refer to table 5.1 and table 5.2).

3. The server starts 50 threads to illustrate the e�ect of multi-threading.

4. Each thread simulates UNIT/50 clients.

5. For each client 10 random packets are decrypted for client Ci and en-
crypted to client Cx, where i and x are positive random numbers less than
UNIT.

6. The average time (in milliseconds) for processing a packet is reported.

The simulation is performed, where UNIT=100,000 for CBC and CTR schemes
and UNIT=10,000 for GCM schemes.

5.9.2 The Results of the Performance Analysis

The results of the performance simulation for CBC schemes are shown in Fig-
ure 5.9. These results demonstrate that CBC-S is faster than CBC-Pre and
CBC-On. For small packets (α = 40), CBC-S is about 165 to 175% faster than
CBC-Pre and 65 to 67% faster than CBC-On (depending on the key size). More-
over, these results also demonstrate that for large packets, CBC-S is faster than
CBC-Pre by about 5% (when K=256-bit), possess the same speed as CBC-Pre
(when K=128-bit) and faster than CBC-On by about 55 to 60%.

The results of the performance simulation for CTR schemes are shown in
Figure 5.10. These results demonstrate that CTR-S is faster than CTR-Pre and
CTR-On when α = 40, where it is about 95 to 135% faster than CBC-Pre and
30 to 40% faster than CTR-On (depending on the key size). Moreover, these
results also demonstrate that for large packets, CTR-S is faster than CTR-Pre
by about 2 to 10% and faster than CTR-On by about 20 to 45%.

5.9. PERFORMANCE ANALYSIS 79

(a) Simulation parameters (α=40 and UNIT=100,000).

(b) Simulation parameters (α=1500 and UNIT=100,000).

Figure 5.9: Performance analysis simulation: average time (in ms) needed to
process a packet, using CBC schemes.

80 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) Simulation parameters (α=40 and UNIT=100,000).

(b) Simulation parameters (α=1500 and UNIT=100,000).

Figure 5.10: Performance analysis simulation: average time (in ms) needed to
process a packet, using CTR schemes.

5.10. NETWORK ANALYSIS 81

Table 5.7 and table 5.8 present the Speed up percentages of GSCM(x)
schemes over GCM(x)-Pre and GCM(x)-On schemes. The speed up percent-
age is calculated by (5.1). For more details on the simulation results refer to
Appendix B.

SpeedUp = (
GSCM Speed

GCM Speed
− 1)× 100 (5.1)

Table 5.7: Speed up percentages of GSCM(x) schemes over GCM(x)-Pre and
GCM(x)-On schemes (α = 40).

x GCM(x)-Pre GCM(x)-Pre GCM(x)-On GCM(x)-On
128-bit 256-bit 128-bit 256-bit

0 23 8 18 8
256 20 21 27 22
4k 30 13 45 25
8k 44 44 53 44
64k 270 215 280 215

Table 5.8: Speed up percentages of GSCM(x) schemes over GCM(x)-Pre and
GCM(x)-On schemes (α = 1500).

x GCM(x)-Pre GCM(x)-Pre GCM(x)-On GCM(x)-On
128-bit 256-bit 128-bit 256-bit

0 -3 -2 2 8
256 0 0 9 13
4k 2 0 15 20
8k 3 0 13 18
64k 55 60 70 85

Figure 5.11, presents the simulation results for the fastest GCM schemes.
GSCM(64k) is considered the fastest GSCM(x), GCM(4k)-Pre is the fastest
GCM(x)-Pre and GCM(4k)-On is the fastest GCM(x)-On. GSCM(64k) is faster
than GCM(4k)-Pre and GCM(4k)-On when α = 40, where it is about 19 to 40%
faster than GCM(4k)-Pre and 49% to 58% faster than GCM(4k)-On. Moreover,
GSCM(64k) is faster than GCM(4k)-Pre by about 7 to 8% and it is faster than
GCM(4k)-On by about 20% to 30% (when α=1500).

5.10 Network Analysis

5.10.1 The Network Analysis Simulation

A multi-client/server TCP socket application is developed to demonstrate the
behavior of the schemes. The server and the clients are connected via a LAN
(100 Mbps). The scenarios work as follows:

82 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) (α=40 and STEP=10,000).

(b) (α=1500 and STEP=10,000).

Figure 5.11: Performance analysis simulation: average time (in ms) needed to
process a packet by the fastest GCM schemes.

5.10. NETWORK ANALYSIS 83

1. The server allocates 50% of its available RAM as a shared data pool. This
pool holds the encrypted and decrypted data for all the clients and is used
to illustrate the e�ect of reading and writing to the RAM.

2. The server allocates the memory needed by the tested scheme to serve
UNIT clients, where for each client, the server allocates M bytes, where
M is the number of bytes required by each client using the tested scheme
(refer to table 5.1 and table 5.2).

3. The server waits until 50 computers are connected, then sends the
start command to all the computers (each computer simulates UNIT/50
clients). Note that each computer is served using a di�erent thread, to
illustrate the e�ect of multi-threading.

4. As the computer receives the start command, it sends a packet of size α
to the server.

5. The packet is decrypted for client Ci and encrypted to client Cx, where i
and x are positive random numbers less than UNIT.

6. The server sends the encrypted packet (from the previous step), to the
computer that serves client Cx.

7. When the packet is processed by the server and received by the computer,
the computer starts to send another 9 packets (one at a time), after that
it starts to send packets for the next client it simulates.

8. The average time (in milliseconds) for processing a packet is reported.

5.10.2 The Results of the Network Analysis

Note that UNIT is chosen to be 100,000 to get a fair analysis, because if UNIT
increases some schemes may be instable and the average time to process a packet
will be high. The amount occupied by data pool is also decreased to 50% of the
server's memory, for GCM schemes UNIT is reduced to 10,000. The Overhead
percentage is calculated by (5.2).

Overhead = (
Scheme Speed

NoCrypto Speed
− 1)× 100 (5.2)

Figure 5.12 presents the simulation results for CBC and CTR schemes, where
the legend represents the post�x of the schemes (if needed). For CBC schemes
the encryption overhead ranges from 5% to 15% for small packets and for large
packets the encryption overhead is considered negligible. For CTR schemes
the encryption overhead ranges from 3% to 7% for small packets and for large
packets the encryption overhead is considered negligible. It is worth mentioning
that CBC-S and CTR-S are considered the fastest schemes.

Table 5.9 presents the cryptographic overhead percentages associated with
GSCM(x), GCM(x)-Pre and GCM(x)-On schemes when α = 40. For more
details on the simulation results refer to Appendix C.

Figure 5.13, presents the simulation results for the fastest GCM schemes.
GSCM(64k) is considered the fastest scheme of GSCM(x), GCM(4k)-Pre is the
fastest GCM(x)-Pre and GCM(4k)-On is the fastest GCM(x)-On. GSCM(64k)

84 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

(a) Simulation parameters (α=40 and UNIT=100,000).

(b) Simulation parameters (α=1500 and UNIT=100,000).

Figure 5.12: Network simulation: average time (in ms) needed to process a
packet, using CBC and CTR schemes.

Table 5.9: Overhead percentages of GSCM(x), GCM(x)-Pre and GCM(x)-On
schemes (α = 40).

x GCM(x)-Pre GCM(x)-Pre GCM(x)-On GCM(x)-On GSCM(x) GSCM(x)
128-bit 256-bit 128-bit 256-bit 128-bit 256-bit

0 20 22 14 14 16 20
256 12 15 13 15 12 14
4k 13 14 9 15 10 10
8k 11 15 16 16 6 9
64k 45 58 48 50 4 8

5.11. SECURITY ANALYSIS OF THE SCHEMES 85

is faster than GCM(4k)-Pre and GCM(4k)-On when α = 40, where it is about
7% faster than GCM(4k)-Pre, and about 8% faster than GCM(4k)-On. It is
worth mentioning that for large packets all the schemes have almost the same
speed.

Figure 5.13: Network simulation: average time (in ms) needed to process a
packet (α = 40) by the fastest GCM schemes.

5.11 Security Analysis of the Schemes

5.11.1 Security of CBC and CTR

Birthday attacks on CBC and CTR modes remain possible even when the un-
derlying block cipher is ideal [7], and CBC/CTR encryption becomes insecure
once 264 (in case of AES) blocks have been encrypted, in the sense that at this
point partial information about the message begins to leak, due to birthday
attacks [8]. Therefore, the server MUST generate a fresh key (random and un-
used key) before 264 blocks are encrypted with the same key for each client.
It is recommended to encrypt a maximum of 232 blocks for each client (which
is su�cient to encrypt the largest possible IPv6 jumbogram [26]), and then to
generate a fresh key for that client to avoid birthday attacks.

5.11.2 Security of AES

It is assumed that, the best known attack against AES is to try every possible
128-/256-bits key (i.e. to perform an exhaustive key search), this requires about
2127/2255 trails.

86 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

5.11.3 The Security of Even-Mansour Construction

Even-Mansour Construction is de�ned by (5.3), where F is a publicly known
permutation, P is the plaintext, K1 and K2 are the keys of the constriction
and C is the ciphertext. P, C, K1 and K2 are all n-bit strings.

C = F (P ⊕K1)⊕K2 (5.3)

The security of Even-Mansour construction [58] (when AES is used) is:

1. About 2255, using exhaustive search over the key space, which is considered
large enough by today's standards.

2. Daemen demonstrated in [34] that a known plaintext attack will take on
average 2127 calculations, which has the same complexity as attacking AES
with 128-bits key and is considered secure by today's technology.

3. Daemen also demonstrated in [34] that a chosen plaintext attack will take
on average 264 calculations using 264 stored blocks. By limiting the num-
ber of encrypted blocks per client, this attack can be avoided (refer to
Section 5.11.1 , as each client encrypts a maximum of 232 blocks using the
same secondary key. For some applications where more data is needed to
be encrypted, the client can join a new cluster "using a fresh secondary
key" or new fresh secondary key can be generated for that client).

4. Biryukov-Wagner demonstrated in [22] that a "sliding with a twist" attack
allows an adversary to recover the key using

√
2 × 264 known plaintexts

and
√

2× 264 computations. By limiting the number of blocks encrypted
per client using the same secondary key, this attack can be avoided (refer
to Section 5.11.1).

5.11.4 Security of the Schemes

The security of CTR-Pre, CTR-On, GCM(x)-Pre and GCM(x)-On schemes are
inherited from the security of CTR mode and that of AES, and the security of
CBC-Pre and CBC-On is inherited from the security of CBC mode and that
of AES, as the adversary can either attack the mode of operation or the cipher
itself. The server should generate a fresh key (for each client) before 264 blocks
are encrypted with the same key, to avoid birthday attacks on CBC and CTR.
It is recommended to encrypt a maximum of 232 blocks for each client (which is
su�cient to encrypt the largest possible IPv6 jumbogram [26]), then to generate
a fresh key for that client.

The security of CTR-S/GSCM(x) schemes is inherited from that of CTR
mode and that of AES2S and the security of CBC-S scheme is inherited from
that of CBC mode and that of AESS2. There are two kinds of adversaries on
the proposed schemes, when attacking AES2S/AESS2 (key search attack):

1. An outside adversaryA (not a client served by the server) who watches the
ciphertext. For an external adversary (who does not possess the primary
key), she needs to attack AES with two random round keys.

2. An insiderB (most probably a current user or a recently revoked user from
the cluster) who would like to attack another client in the same cluster.
This adversary knows the primary key:

5.12. SUMMARY 87

(a) For CTR-S/GSCM(x) schemes:

• The adversary decrypts the known ciphertext with the known
primary key until the 7th or 10th round (depending on the pri-
mary key size) to produce the intermediate state γ.

• By knowing the input to AES2S, the adversary can reduce
AES2S to an Even-Mansour construction [58], where K1 and K2
are the keys and the reduced AES (7 or 10 rounds) is considered
as the pseudorandom permutation.

(b) For CBC-S scheme:

• The adversary decrypts the known ciphertext with the known
primary key until the 7th or 10th round (depending on the pri-
mary key size) to produce the intermediate state γ.

• The adversary encrypts the known plaintext with the known pri-
mary key until the 3rd/4th round (without the AddRoundKey
operation) to produce the intermediate state φ.

• Now, the adversary has managed to reduce AESS2 to an Even-
Mansour construction [58], where secondary key is the key of the
construction and the reduced AES (4/6 rounds) is considered as
the pseudorandom permutation.

Note that it was evident that AES has a random pro�le after only 3
rounds [151].

The most powerful adversary is B, where an insider adversary attack a client in
the same cluster. The complexity to mount Daemen's known plaintext attack is
the same complexity to attack AES with 128-bits key, which is considered secure
with today's technology. On the other hand, to limit the probability of the other
attacks, the number of encrypted blocks per client (using the same secondary
key) MUST NOT reach the 264 boundary. Therefore the server MUST generate
a fresh key (for each client) before 264 blocks are encrypted with the same key.
It is recommended that the server encrypts 232 blocks maximum for each client.
For some applications where more data is needed to be encrypted, the client can
join a new cluster or new fresh secondary key can be generated for that client.

The security CTR-S and GSCM(x) are upper bounded with the security
of AES2S (refer to Sect. 4.9.6) and lower bounded with the security of Even-
Mansour (refer to Sect. 5.11.3), and the security CBC-S is upper bounded with
the security of AESS2 (refer to Sect. 4.9.5) and lower bounded with the security
of Even-Mansour (refer to Sect. 5.11.3).

5.12 Summary

In this chapter, three novel encryption schemes for network applications are
proposed. The main idea of the schemes is that each client possesses two keys.
The �rst key is the cluster key, which is shared among the clients in the same
cluster. The second key is the client's session key, which is unique for each client
and is used to distinguish the clients. The experimental analysis demonstrates
that the proposed schemes are superior to the state of the art schemes. Finally,
the security analyses of the proposed schemes are presented.

88 CHAPTER 5. NETWORK ENCRYPTION SCHEMES

Chapter 6

Disk Encryption

6.1 Introduction

Disk encryption applications usually encrypt/decrypt a whole sector at a time.
There exist dedicated block ciphers that encrypt a sector at a time like Bear
and Lion [5]. These ciphers are considered to be slow, as they process the
data through multiple passes. Another method is to let a block cipher like
the Advanced Encryption Standard (AES) [121] (with 16 bytes block size) to
process the data using a mode of operation. The modes of operation can be
divided into two main classes: the narrow-block and wide-block modes. The
narrow-block modes operate on relatively small portions of data (typically 16
bytes when AES is used), while the wide-block modes encrypt or decrypt a
whole sector (typically 512 bytes) at a time [134].

6.1.1 Disk Encryption Constraints

The main constraints facing disk encryption applications are:

Data size: the ciphertext length should be the same as the plaintext length.
The current standard (512-bytes) will be used for the plaintext.

Performance: the used mode of operation should be fast enough, as to be
transparent to the users (If using the mode of operation results in a sig-
ni�cant and noticeable slowdown of the computer there will be great user
resistance to its deployment [60]).

6.1.2 General Scheme

Figure 6.1 presents the general scheme for encrypting a sector, where a mode of
operation takes four inputs to compute the ciphertext (4096-bit). These inputs
are:

1. The plaintext of size 4096-bit.

2. Encryption key of size 128- or 256-bit.

3. Tweak Key of size 128- or 256-bit.

4. Sector ID of size 64-bit.

89

90 CHAPTER 6. DISK ENCRYPTION

Figure 6.1: General scheme for encrypting a sector.

6.1.3 Tweak

Usually a block cipher accepts the plaintext and the encryption key to produce
the ciphertext. Modes of operations have introduced other inputs. Some of
these modes use initialization vectors like in CBC, CFB and OFB modes [117];
counters like in CTR [113] or nonces like in OCB mode [142]. The idea of using
a tweak was suggested in HPC [146]. In [105], the formal de�nition of tweakable
block ciphers has been introduced.

6.1.4 Tweak Calculation

There are di�erent methods to calculate the tweak from the sector ID like ES-
SIV [62] and the encrypted sector ID [60]. The encrypted sector ID approach
will be used, where the sector ID (after being padded with zeros) is encrypted
by the tweak key to produce the tweak.

6.1.5 Attack Models

In the analysis, two attack models are used: an active attack model and a less
restrictive attack model. The adversary succeeds to break a mode of operation,
if she can recover the used encryption keys or remove their e�ect.

Active Attack Model

It is assumed that the adversary has access to the encrypted hard disk, can read
and modify the ciphertext stored on the hard disk, can ask the disk encryption
application to encrypt some sectors for her, and force the hard disk encryption
application to re-encrypt a sector for her. This can be done if the adversary
can modify the plaintext of the sector in memory and ask the disk encryption
application to save it.

6.2. CURRENT MODES OF OPERATIONS 91

A Less Restrictive Attack Model

This attack models is similar to the active attack model, with the exception that
the adversary cannot force the hard disk encryption application to re-encrypt a
sector for her.

6.2 Current Modes of Operations

6.2.1 Terminologies

The following terminologies are used to describe the modes of operation in this
chapter:

IN: the input plaintext of size 4096-bit.

EKey: the encryption key of size 128 or 256-bit.

TKey: the tweak key of size 128 or 256-bit.

MKey: the mask key of size 128 or 256-bit.

SID: the sector ID encoded as an unsigned integer.

GetTweak(TKey,SID): encrypts (using AES) SID after padding with zeros
with TKey and returns the result.

T: the tweak.

ExKey: the expanded AES key.

Expand-Key(EKey): expands the EKey with AES key setup routine and
returns the result.

Xi: the i
th block of text X, where a block is 128-bit.⊕

: bitwise xor operation.⊗
: multiplication operation in �nite �eld.

OUT=Encrypt-AES(ExKey,IN): encrypts IN, using AES with ExKey as
the expanded key, and returns OUT.

Substitute(T,ExKey,i): replaces the ith round key in ExKey with T (Note
that: the �rst round of AES is round zero and it is the pre-whitening
process).

len(X): returns the length of the string X in bits.

<<: is a left rotation operation, where the rotation value is written on its right
size.

92 CHAPTER 6. DISK ENCRYPTION

6.2.2 Cipher Block Chaining (CBC)

CBC was the most used encryption mode of operation for hard disk encryption
applications [62], where usually each sector is encrypted with a di�erent initial-
ization vector (IV). The listing of CBC is in table 6.1. For the �rst block the
plaintext is xored with the tweak (which serves as the initialization vector IV)
before it is encrypted, and for the other blocks: the plaintext is xored with the
last ciphertext block before it is encrypted. This recursive structure does not
allow parallelization (in encryption direction).

Table 6.1: CBC listing for disk encryption.

Encrypt-CBC(IN,EKey,TKey,SID)

T=GetTweak(TKey,SID)

ExKey=Expand-Key(EKey)

IN0= IN0

⊕
T

OUT0=Encrypt-AES(ExKey,IN0)

for i=1 to 31

INi= INi

⊕
OUTi−1

OUTi=Encrypt-AES(ExKey,INi)

end for

return OUT

For CBC, an adversary with read/write access to the encrypted disk can copy
a ciphertext sector from one position to another, and an application reading the
sector of the new location will still get the same plaintext sector (except perhaps
the �rst 128-bit) [134]. In CBC, the adversary can �ip arbitrary bits in one block
at the cost of randomizing the previous block [60].

Due to these weaknesses, it is not recommended using CBC in disk encryp-
tion applications.

6.2.3 LRW

LRW is a tweakable mode of operation that can be parallelized. The listing of
LRW is in table 6.2. It xors the text before and after encryption with the sector
key (Note that the sector key value is multiplied "in the �nite �eld of AES"
with a counter).

Table 6.2: LRW listing for disk encryption.

Encrypt-LRW(IN,EKey,TKey,SID)

ExKey=Expand-Key(EKey)

T=TKey

for i=0 to 31

T = T
⊗

SID

INi = INi

⊕
T

OUTi=Encrypt-AES(ExKey,INi)

OUTi= OUTi

⊕
T

SID=SID +1

end for

return OUT

The IEEE Security in Storage Work Group (SISWG) [1] used LRW in its

6.2. CURRENT MODES OF OPERATIONS 93

early draft as a standard for narrow-block encryption mode (where AES is the
underlying cipher). Then it was replaced by XTS [141] due to the following secu-
rity issue. An adversary can derive LRW sector key TKey from the ciphertext
if the plaintext contains TKey||0n or 0n||TKey. Here || is the concatenation
operation and 0n is a block with n zeros. This may be an issue for software
that encrypts the partition of an operating system under which this encryp-
tion software is running (at the same time). The operating system could write
TKey to encrypted swap/hibernation �le. If TKey is known, LRW does not
o�er indistinguishability under chosen plaintext attack anymore, and the block
permutation attacks of ECB mode are possible [73]. Due to this weakness, it is
not recommended using LRW in disk encryption applications.

6.2.4 XTS

XTS is a tweakable mode of operation that can be parallelized. The listing of
XTS is in table 6.3. It xors the plaintext before and after encryption with the
tweak value (Note that the tweak value is multiplied in the �nite �eld GF(2128)
in each loop with the ith power of α "a primitive element of GF(2128)").

Table 6.3: XTS listing for disk encryption.

Encrypt-XTS(IN,EKey,TKey,SID)

T=GetTweak(TKey,SID)

ExKey=Expand-Key(EKey)

for i=0 to 31

X = T
⊗

αi

INi = INi

⊕
X

OUTi=Encrypt-AES(ExKey,INi)

OUTi= OUTi

⊕
X

end for

return OUT

XTS is now the current standard of SISWG for the narrow-block modes of
operation. XTS is an instantiation of XEX [141] mode of operation and this
mode of operation has a problem when a lot of data is encrypted with the same
key, because a collision will appear [134].

There is a serious concern, due to the restrictions on the number of encryp-
tion operations. The P1619 standard provides good security bounds as long
as: "the same key is not used to encrypt much more than a terabyte of data".
This is not the capacity of the storage device, but the number of encryption
operations. In many applications this limit is reached in just hours, requiring
partitioning the data into thousands of small bands (using di�erent keys). This
solution is very expensive and slows down the system [98].

It was also shown in [130] that the terabyte limit is easily reached using
"Temporal e�ects". For instance, on a disk with 4 KB blocks where each block
is a data unit, an adversary who observes approximately 4000 writes to a given
block will have obtained access to 220 cipher blocks with the same tweak and
key. Similarly, an adversary who steals a 500 GB encrypted disk may get access
to about 1 TB of ciphertext if she was also able to recover the previous contents
of each sector.

94 CHAPTER 6. DISK ENCRYPTION

When the number of blocks encrypted by XTS approach 264 (the birthday
boundary), there is a non-negligible probability that for some i,j there is a
collision of the form shown in (6.1).

Pi ⊕ Ti = Pj ⊕ Tj (6.1)

This implies that:

Ci ⊕ Ti = E(Pi ⊕ Ti,K) = E(Pj ⊕ Tj ,K) = Cj ⊕ Tj (6.2)

Summing the above two equations implies:

Pi ⊕ Ci = Pj ⊕ Cj (6.3)

This can be used to distinguish XTS from a collection of truly random permu-
tations. The adversary computes for all i the sum Si = Pi ⊕Ci and counts the
number of pairs (i,j) for which Si = Sj . The argument above implies that for
any i,j , the probability that Si = Sj in ciphertext produced by XTS is roughly
2−n + 2−n = 2−n+1, where the �rst term is due to collision (between i and j)
and the second term is due to equality Si = Sj without collision.

In case of a collision between block i and block j, the adversary can use her
ability to create legally encrypted data for position i and her ability to modify
ciphertext in position j, to modify the ciphertext at block j so it will decrypt
to an arbitrary adversary-controlled value. The adversary encrypts a new value
P ′i = Pi ⊕ ∆, for some ∆ 6= 0, and observes the ciphertext C ′i, the adversary
now replaces the ciphertext block Cj by:

C ′j = Cj ⊕ (Ci ⊕ C ′i) (6.4)

This new ciphertext will be decrypted as P ′j = Pj ⊕ ∆, in other words the
adversary succeeded in �ipping speci�c bits in the plaintext corresponding to
location j.

There is also a weak key issue if the tweak value ever starts at zero. In
this case, there is no masking and the security reduces to that of ECB mode.
However, the probability of this occurrence is 2−128, which is reasonable for
practical encryption applications [108].

Due to these weaknesses, it is not recommended using XTS in disk encryption
applications.

6.3 Masked Code Book (MCB)

6.3.1 Design Goals

The design goals of MCB mode are:

Security: The constraints for disk encryption imply that the best achievable
security is essentially what can be obtained by using ECB mode with a
di�erent key per block [134], which is the aim.

Performance: MCB should have a comparable performance to the state of the
art modes of operation.

6.3. MASKED CODE BOOK (MCB) 95

Parallelization: In today's world of multiple core processors and clock-rate
limitations, it is increasingly important that a designer is able to increase
performance by instantiating multiple instances of an encryption primi-
tive instead of increasing the clock rate of an existing encryption primitive.
MCB should operate in parallel, allowing scalability in today's environ-
ment.

6.3.2 Keys of MCB

The encryption key of MCB is divided into three parts (each of them of size
128- or 256-bit):

1. EKey: this key is used for encryption.

2. TKey: this key is used to encrypt the sector ID to produce the tweak.

3. MKey: this key is used to generate the mask (M).

6.3.3 The Mask

The mask (M) is constructed once at the initialization of MCB. It is an ar-
ray of sixty four 128-bit blocks. It is constructed using AES in the counter
mode (CTR) [113], where the counter is initialized with zero and MKey is the
encryption key for the counter mode.

6.3.4 Design

The constraints for disk encryption imply that the best achievable security is
essentially what can be obtained by using ECB mode with a di�erent key per
block [134]. This is achieved by MCB mode as each block is encrypted using
di�erent masks. The listing of MCB mode is in table 6.4 and it works as follows:

1. The tweak T is calculated by encrypting the sector ID with the tweak key.

2. The expanded key ExKey is calculated.

3. A unique mask (M1) is constructed by xoring the tweak with the �rst 32
blocks of the mask M.

4. The plaintext is xored with M1.

5. The result of the previous step is encrypted using the ECB mode.

6. A unique mask (M2) is constructed by xoring the tweak with the last 32
blocks of the mask M.

7. The ciphertext (result from the ECB mode) is xored with M2, and the
result is returned as ciphertext.

In table 6.5, MCB is rewritten using the proposed AES variant AES2I (refer
to Sect. 4.7.1).

96 CHAPTER 6. DISK ENCRYPTION

Table 6.4: MCB listing for disk encryption.

Encrypt-MCB(IN,EKey,TKey,SID)

T=GetTweak(TKey,SID)

ExKey=Expand-Key(EKey)

for i=0 to 31

M1i = T
⊕

M[i]

INi = INi

⊕
M1i

OUTi = Encrypt-AES(ExKey,INi)

M2i = T
⊕

M[32+i]

OUTi = OUTi

⊕
M2i

end for

return OUT

Table 6.5: MCB listing for disk encryption (using AES2I).

Encrypt-MCB(IN,EKey,TKey,SID)

T=GetTweak(TKey,SID)

ExKey=Expand-Key(EKey)

for i=0 to 31

M1i = T
⊕

M[i]

M2i = T
⊕

M[32+i]

OUTi = Encrypt-AES2I(ExKey,INi,M1i,M2i)

end for

return OUT

6.3.5 Security of MCB

The goal of MCB is to encrypt each block on the hard drive in a di�erent
way, which is the best achievable security for disk encryption applications (with
current constraints) [134]. This was achieved by the followings:

1. Using the pre-whitening masking step, assures that encrypting the same
plaintext blocks (within the same sector) will result in completely di�erent
ciphertext blocks (as each block in M1 is unique).

2. Using the post-whitening masking step, assures that decrypting the same
ciphertext blocks (within the same sector) will result in completely di�er-
ent plaintext blocks (as each block in M2 is unique).

MCB mode operates like ECB mode, but:

• By introducing the tweak, the adversary cannot perform the mix-and-
match attack [134] among blocks of di�erent sectors, as each sector has a
unique tweak. Thus, encrypting the same block in di�erent sectors will
produce two di�erent ciphertexts and decrypting the same ciphertext in
di�erent sectors will produce di�erent plaintexts.

• By introducing the mask M the adversary cannot perform the "mix and
match" attack among the blocks within the same sector. As each block
has its unique mask.

• The above two properties eliminate the main weakness of ECB.

6.3. MASKED CODE BOOK (MCB) 97

MCB is secure as long as its three keys are not known to the adversary. Below
it is discussed, how the adversary can bene�t from knowing one or two of these
three keys:

Case EKey is known: MCB is reduced to an Even-Mansour construction [58],
where M1 and M2 are the keys and AES is considered as the pseudoran-
dom permutation. But as M1 and M2 are unique for each sector, a
practical attack on Even-Mansour construction is not feasible.

Case MKey is known: The adversary can compute the mask M. The adver-
sary can xor the �rst 32 blocks of M to the plaintext and the last 32
blocks of M to the ciphertext to remove their original e�ects. Now the
adversary can perform the "mix and match" attacks to the blocks within
the same sector.

Case TKey is known: The adversary can compute the tweak T. The adver-
sary can xor T to the plaintext and the ciphertext to remove its original
e�ects. Now the adversary can perform the "mix and match" attacks to
whole sectors.

Case EKey and MKey are known: MCB is reduced to an Even-Mansour
construction, where T is the key and AES is considered as the pseudo-
random permutation. But as T is not known (which is unique for each
sector), a practical attack on Even-Mansour construction is not feasible.

Case EKey and TKey are known: MCB is reduced to an Even-Mansour
construction, where M is the key and AES is considered as the pseudo-
random permutation. After encrypting 264 sectors (273 bits), the attacks
on Even-Mansour construction are applicable.

Case MKey and TKey are known: MCB is reduced to ECB and the "mix
and match" attacks are applicable.

For the security of Even-Mansour construction refer to Sect. 5.11.3. As the
mask is unique for each block, those attacks are considered not practical.

6.3.6 Security Against Ciphertext Collisions

A collision happens, when Cx
i = Cy

j where Cw
k denotes the ciphertext block with

index k in the sector number w.
Recall that a block encrypted by MCB is de�ned as:

Cx
i = E(P x

i ⊕M1x
i ,K)⊕M2x

i (6.5)

Proposition 6.1. The pre-whitening mask of a block in MCB is not equal to
the post-whitening mask of that block, in other words: M1x

i 6= M2x
i .

Proof.

M1x
i = M1i ⊕ T x (6.6)

M2x
i = M2i ⊕ T x (6.7)

(6.8)

98 CHAPTER 6. DISK ENCRYPTION

Summing the above two equations:

M1x
i ⊕M2x

i = M1i ⊕M2i (6.9)

Since the right hand side can never be zero (M1i and M2i are generated using
the counter mode, with the same key, and since AES is a deterministic cipher,
thus M1i can never have the same value as M2i), therefore the left hand side
can never be zero (i.e. M1x

i 6= M2x
i).

Corollary 6.3.1. In case of a collision in ciphertext, this implies that the plain-
texts are not equal.

Proof. If the collision is in the same sector, this means that the used masks are
di�erent thus the plaintexts are di�erent.
If the collision is in di�erent sectors, this implies that the used tweaks are
di�erent thus the plaintexts are di�erent.

Corollary 6.3.2. There is no tweak that can reduce the security of a sector to
that of ECB mode.

Proof. From the above proposition M1x 6= M2x, so if M1x = 0 then M2x 6= 0
and vice versa.

6.3.7 Advantages of MCB

Security: As each sector is encrypted in a di�erent way, the best achievable
security for disk encryption applications (with current constraints) [134]
is met.

Performance: MCB possesses high performance as it uses only simple and fast
operations.

Parallelization: MCB can be easily parallelized, as each block is independent
on the other blocks.

MCB meets all its design goals.

6.4 Substitution Cipher Chaining Mode (SCC)

6.4.1 Design Goals

The design goals of SCC mode are:

Security: SCC is designed to modify Windows Vista's Disk Encryption algo-
rithm (ELEPHANT), refer to Sect. 6.5, and it is not designed to be used
as a stand alone disk encryption mode of operation.

Performance: SCC should have a comparable performance to the state of the
art modes of operation.

Parallelization: SCC should o�er some kind of parallelization.

Error propagation: SCC should o�er error propagation.

6.4. SUBSTITUTION CIPHER CHAINING MODE (SCC) 99

6.4.2 Keys

The secret key in SCC is divided into three di�erent keys (each of them can be
either 128- or 256-bit):

1. EKey: This key generates the expanded key, used in encrypting the
blocks.

2. TKey: This key encrypts the sector ID to produce the tweak.

3. MKey: This key generates the maskM, whereM is an array of sixty four
128-bit blocks. M is constructed once at the initialization of SCC mode,
it is constructed using AES in the counter mode (CTR) [113], where the
counter is initialized with zero and MKey is the encryption key for the
counter mode.

6.4.3 Design

SCC mode is built using SSM model [47] to inherit from its high performance
and uses CBC like operations to gain the error propagation property. The listing
of SCC is in table 6.6 and it works as follows:

Table 6.6: SCC listing for disk encryption.

Encrypt-SCC(IN,EKey,Keylen,TKey,SID)

T=GetTweak(TKey,SID)

ExKey=Expand-Key(EKey)

KL=len(EKey)

if(KL==128)

x=4 y=5 z=6

else

x=5 y=7 z=10

end if

Substitute(T,ExKey,y)

Substitute(α0,ExKey,x)

Substitute(β0,ExKey,z)

OUT0=Encrypt-AES(IN0,ExKey)

for i=1 to 31

Substitute(αi,ExKey,x)

Substitute(βi,ExKey,z)

τ=OUTi−1 ⊕ T

Substitute(τ,ExKey,y)
OUTi=Encrypt-AES(INi,ExKey)

end for

return OUT

where αi = M2×i and βi = M(2×i)+1

• The tweak T is calculated by encrypting the sector ID with the tweak key
TKey.

• The expanded key ExKey is calculated.

• The values of x, y and z are determined by the encryption key size.

100 CHAPTER 6. DISK ENCRYPTION

• For the �rst block, the secret tweak T replaces the round key of the yth

round, the secret 128-bit α0 replaces the round key of the xth round, and
the secret 128-bit β0 replaces the round key of the zth round. Finally, the
�rst block is encrypted by the new expanded key.

• A loop that runs 31 times (where i takes the values from 1 to 31), the
secret 128-bit αi replaces the round key of the xth round, the secret 128-
bit βi replaces the round key of the zth round, and τ replaces the round
key of the yth round (where τ is calculated by xoring ciphertext of the
previous block with T and it acts as the active tweak). Finally, the ith

block is encrypted by the new expanded key.

6.4.4 Advantages of SCC

Performance: SCC possesses high performance as it uses only simple and fast
operations.

Parallelization: SCC can be parallelized, actually it favors dual core proces-
sors. It can be parallelized as following (using two processor cores):

• The second processor will compute till the yth round for all the plain-
text blocks (except the �rst block), to produce intermediate cipher-
text blocks.

• The �rst processor will compute the �rst ciphertext block from the
�rst plaintext block.

• The �rst processor will compute the other ciphertext blocks from
intermediate ciphertext blocks processed by the second processor.

In this way the ciphertext will be produced after 16.5 encryptions.

Error propagation: As each sector depends on its previous sector, error prop-
agation is met.

SCC meets all its design goals.

6.4.5 Security of SCC

As mentioned in Sect. 6.4.1, SCC is designed to modify Windows Vista's Disk
Encryption algorithm "ELEPHANT" (refer to Sect. 6.5), and it is not designed
to be used as a stand alone disk encryption mode of operation.

The reason that SCC should not be used as a stand alone disk encryption
mode of operation is that the adversary can manipulate the active tweak τ , thus
it does not meet the guidelines in Sect. 4.9 and is not considered secure. In fact,
to demonstrate the lack of security of SCC, it is broken in Sect. 6.8 using new
proposed attacks. For this reason, it is not recommended to use SCC for disk
encryption applications.

6.5 ELEPHANT

Windows Vista Enterprise and Ultimate editions use Bitlocker Drive Encryp-
tion as its disk encryption algorithm, and at its heart is AES-CBC + Elephant

6.5. ELEPHANT 101

di�user encryption algorithm (ELEPHANT). Bitlocker uses existing technolo-
gies like AES in CBC mode and TPM [155], together with two new di�users.
Figure 6.2 presents an overview of ELEPHANT [60]. There are four steps to
encrypt a sector:

1. The plaintext is xored with a sector key Ks (6.10).

2. The result of the previous step runs through di�user A.

3. The result of the previous step runs through di�user B.

4. The result of the previous step is encrypted with AES in CBC mode using
IVs (6.11), as the initialization vector.

Ks = E(Ksec, e(s)) ‖ E(Ksec, e
′(s)) (6.10)

IVs = E(KAES , e(s)) (6.11)

Where E() is AES encryption function, Ksec is a key used to generate Ks, KAES

is the key used to generate the sector IVs and used in AES-CBC process, e()
is an encoding function that maps each sector number s into a unique 16-byte
value. The �rst 8 bytes of the result are the byte o�set of the sector on the
volume. This integer is encoded in least-signi�cant-byte �rst encoding. The
last 8 bytes of the result are always zero and e′(s) is the same as e(s) except
that the last byte of the result has the value 128.
Note that the plaintext and key are parameterized. In this thesis, the following
parameters are used:

1. Plaintext of size 4096-bit (the current standard sector size).

2. Both 128-bit and 256-bit key variants of AES are examined, which means
both Ksec and KAES are either 128-bit or 256-bit.

6.5.1 The Di�users

Di�user A and di�user B are very similar. The following notations are used to
de�ne the di�users:

1. di is the i
th 32-bit word in the sector, if i falls outside the range then di

=di mod n, where n is the number of the 32-bit in the sector.

2. AC and BC are the number of cycles of di�user A and B, they are de�ned
to be 5 and 3 respectively.

3. RA = [9, 0, 13, 0] and RB = [0, 10, 0, 25] hold the rotation constants of
di�user A and B respectively.

4. ⊕ is the bitwise xor operation.

5. << is the integer 32-bit left rotation operation, where the rotation value
is written on its right size.

6. - is integer subtraction modulo 232.

Table 6.7 presents the description of di�user A and di�user B.

102 CHAPTER 6. DISK ENCRYPTION

Figure 6.2: Overview of AES-CBC with Elephant Di�user.

Table 6.7: Di�user A and di�user B.

Di�user A: Di�user B:
for j=1 to AC for j=1 to BC
for i=n-1,...,2,1,0 for i= n-1,...,2,1,0
t=(di−5 << RAi mod 4) t=(di+5 << RBi mod 4)
t=t⊕di−2 t=t⊕di+2

di=di-t di=di-t

6.5.2 Proposed Modi�cation

It is proposed to replace CBC layer in ELEPHANT with an SCC layer. The
names of these variants are ELEPHANT+ (when AC=5 and BC=3) and
ELEPHANT∗ (when AC=BC=3). The advantages of this modi�cation over
the original design are:

• The SCC can be parallelized on a dual core machine, which can increase
the performance.

• SCC has better error propagation than CBC in decryption direction, as
more bits of plaintext will be a�ected by a single bit change.

• These proposed variants are faster than ELEPHANT.

• These proposed variants possess a higher Safety Factor than ELEPHANT
(refer to Sect. 6.5.4).

6.5. ELEPHANT 103

6.5.3 Bit Dependency Tests

The bit dependency tests are developed to measure the minimum values required
for AC and BC to achieve full di�usion.

• BD-Encryption(): is passed, when each bit in the ciphertext depends
on every bit in the plaintext.

• BD-Decryption(): is passed, when each bit in the plaintext depends on
every bit in the ciphertext.

The Bit-dependency functions are measured as following:

1. A dependency matrix D is constructed of size B × B (where B is the
number of bits in the plaintext/ciphertext, here B = 4096).

2. The diagonal is initialized by 1 and all other bits are set to zero, as initially
each bit depends only on itself.

3. Depending on the applied operation the matrix D is updated, BD-
Encryption applies the operation in the encryption direction and BD-
Decryption applies them in the decryption direction.

4. If an output bit is dependent on an input bit(s), the column of the output
bit is ORed with that (those) of the input bit(s). For example:

(a) Xor operation: each output bit is dependent on the corresponding
input bit.

(b) Addition and subtraction modulo 232 operations are approximated
to xor operation for simplicity and generality.

(c) AES operation using CBC: each bit in the input 128-bit is dependent
on the other 127-bit.

(d) AES operation using SCC: each bit in the previous block (with the
exception of the �rst block) a�ects all the bits of the encrypted block
(as full confusion and full di�usion properties are met).

(e) 32-bit rotation: the columns change their order depending on the
rotation amount and direction.

5. All the operations of the tested ciphers are applied and the matrix D is
updated.

6. At the end the sum of all ones in the matrix is calculated and is divided
by B × B.

7. If the returned value in the previous step is 1, this means that each bit
of the output bits depends on all the bits of the input and the function is
passed, it fails otherwise.

The results of applying BD-Encryption and BD-Decryption functions are
found in table 6.8, where the minimum values of AC and BC required by each
algorithm to pass these tests are reported (under columns AC′ and BC′), to-
gether with the used values. These results show that ELEPHANT needs at least
AC=2 and BC=1 to pass BD-Encryption and BD-Decryption functions, while
ELEPHANT∗ and ELEPHANT+ need only BC=2 to pass them and SCC layer
does the rest of the di�usion.

104 CHAPTER 6. DISK ENCRYPTION

Table 6.8: BD-Encryption and BD-Decryption results.

AC′ BC′ AC BC SF
ELEPHANT 2 1 5 3 2.7
ELEPHANT+ 0 2 5 3 4
ELEPHANT∗ 0 2 3 3 3

6.5.4 Safety Factor

The Safety Factor (SF) is de�ned in (6.12), which is the ratio between the total
number of used di�users' cycles over the minimum required. SF represents how
safe is the current number of di�users' cycles, under any circumstances this ratio
should not be less than one. The values of SF are reported in table 6.8. These
values show that ELEPHANT+ and ELEPHANT∗ possess a higher SF than
ELEPHANT.

SF = (AC +BC)÷ (AC ′ +BC ′) (6.12)

6.6 Extended Substitution Cipher Chaining Mode
(ESCC)

6.6.1 Design Goals

The design goals of ESCC mode are:

Security: The constraints for disk encryption imply that the best achievable
security is essentially what can be obtained by using ECB mode with a
di�erent key per block [134], which is the aim.

Performance: ESCC should have a comparable performance to the state of
the art modes of operation.

Error propagation: ESCC should propagate error to further blocks (this may
be useful in some applications).

6.6.2 Keys

The secret key in ESCC is divided into three di�erent keys (each of them can
be either 128- or 256-bit):

1. EKey: This key generates the expanded key, used in encrypting the
blocks.

2. TKey: This key encrypts the sector ID to produce the tweak.

3. MKey: This key generates the maskM, whereM is an array of sixty four
128-bit blocks. M is constructed once at the initialization of ESCC mode,
it is constructed using AES in the counter mode (CTR) [113], where the
counter is initialized with zero and MKey is the encryption key for the
counter mode.

6.6. EXTENDED SUBSTITUTION CIPHER CHAINING MODE (ESCC)105

6.6.3 Design

ESCC mode is built using SSM model [47] to inherit from its security and
high performance, and uses CBC like operations to gain the error propagation
property. The listing of ESCC is in table 6.9 and it works as follows:

Table 6.9: ESCC listing for disk encryption.

Encrypt-ESCC(IN,EKey,Keylen,TKey,SID)

T=GetTweak(TKey,SID)

ExKey=Expand-Key(EKey)

KL=len(EKey)

if(KL==128)

x=4 y=5 z=6

else

x=5 y=7 z=10

end if

Substitute(T,ExKey,y)

Substitute(M0 ⊕ T,ExKey,x)
Substitute(M1 ⊕ T,ExKey,z)
Encrypt-AES(ExKey,IN0,OUT0)

for i=1 to 31

Substitute(M2×i ⊕ (OUTi−1 << 32),ExKey,x)
Substitute(M2×(i+1) ⊕ (OUTi−1 << 64),ExKey,z)
TT=OUTi−1 ⊕ T

Substitute(TT,ExKey,y)

Encrypt-AES(ExKey,INi,OUTi)

end for

return OUT

• The tweak T is calculated by encrypting the sector ID with the tweak
key TKey, due to this step the value of the tweak is neither known nor
controlled by the adversary.

• The expanded key ExKey is calculated.

• The values of x, y and z are determined by the encryption key size.

• For the �rst block:

� The secret tweak T replaces the round key of the yth round.

� The secret 128-bit M0 ⊕ T replaces the round key of the xth round.

� The secret 128-bit M1 ⊕ T replaces the round key of the zth round.

� The �rst block is encrypted by the new expanded key.

• A loop that runs 31 times (where i takes the values from 1 to 31):

� The secret 128-bit M2×i xored with the ciphertext of the previous
block after being rotated 32-bit to the left replaces the round key of
the xth round.

106 CHAPTER 6. DISK ENCRYPTION

� The secret 128-bitM(2×i)+1 xored with the ciphertext of the previous
block after being rotated 64-bit to the left replaces the round key of
the zth round.

� A variableTT is calculated by xoring ciphertext of the previous block
with T.

� TT acts as the active tweak and replaces the round key of the yth

round in the expanded key.

� The ith block is encrypted by the new expanded key.

6.6.4 Discussion of ESCC

The goal of ESCC is to encrypt each block on the hard drive in a di�erent way.
This was achieved by using SSM model, where:

• The active tweak TT is placed in the middle of the expanded key to
o�er full di�usion and full confusion properties in both encryption and
decryption directions (i.e. any di�erence between two active tweaks, will
be associated with full confusion and full di�usion in both encryption and
decryption directions, eliminating the bit-�ipping attack of CBC mode).
Note that AES requires only four rounds to obtain full bit confusion (or
mixing) and di�usion (each input bit a�ecting each output bit) proper-
ties [112].

• Note that the active tweak TT is the result of xoring:

1. The tweak T (which is unique, secret and not controlled by the ad-
versary).

2. The ciphertext of the previous block (which is known and controlled
by the adversary).

3. From the above two notes, the adversary does not know the value of
TT, but can �ip its bits. But by changing any bits of a ciphertext
block, that yields to a di�erence in 3 di�erent columns, which will
destroy any attempt to mount chosen plaintext/ciphertext attacks as
in Sect. 6.8, so any change inTT will be associated with full confusion
and full di�usion in both encryption and decryption directions.

• Replacing the round key of the xth and zth rounds o�ers full di�usion and
full confusion in encryption and decryption directions among the blocks
of the same sector. Note that all the values of M are unique and key
dependent.

Notes:

1. By introducing the tweak, the adversary cannot perform the mix-and-
match attack [134] among blocks of di�erent sectors, as each sector has
a unique secret tweak. The tweak replaces the round key of the middle
round of AES to assure that any di�erence between two tweaks will be
associated with full confusion and full di�usion in both encryption and
decryption directions. Thus, encrypting the same block in di�erent sectors
will produce two di�erent ciphertexts and decrypting the same ciphertext
in di�erent sectors will produce di�erent plaintexts.

6.7. PERFORMANCE ANALYSIS 107

2. By introducing the mask M (that replaces certain words in the expanded
key) the adversary cannot perform the mix-and-match attack among the
blocks within the same sector. As each sector has two distinct 128-bit in
the expanded key. This requirement is achieved in both encryption and
decryption directions. As equal plaintext blocks (within the same sector),
will have the same state until the xth encryption round then the state will
change. Furthermore, equal ciphertext blocks (within the same sector),
will have the same state until the zth decryption round then the state will
change.

6.6.5 Advantages of ESCC

Security: Each sector is encrypted in a di�erent way, so replacing ciphertext
between di�erent sectors will not help the adversary, as they are encrypted
with di�erent expanded keys and each block within the sector is encrypted
in a di�erent way, due to the use of M (so the adversary will not bene�t
from changing the positions of the blocks).

Performance: ESCC possesses high performance as it uses only simple and
fast operations.

Error propagation: As each sector depends on its previous sector, error prop-
agation is met.

ESCC meets all its design goals.

6.7 Performance Analysis

To compare the performance of the proposed and standard modes of operation, a
benchmark application is developed in C++. This application uses the following
parameters:

Key: is either 128- or 256-bit. It represents the size of the encryption key used
by AES.

Step: is either 512 bytes or 1 Megabyte. It represents the incremental di�erence
between the measurement points.

Loops: is either 10 or 1000. It represents the number of measurements calcu-
lated for each point.

Test: the benchmark application measures the performance of four di�erent
tests:

Encrypt: measures the throughput if the mode of operation performs
encryption in memory.

Decrypt: measures the throughput if the mode of operation performs
decryption in memory.

Encrypt + Write: measures the throughput if the mode of operation
performs encryption in memory and writes the result on the hard
drive.

108 CHAPTER 6. DISK ENCRYPTION

Read + Decrypt: measures the throughput if the mode of operation
reads the data from the hard drive, then performs decryption in
memory.

6.7.1 Benchmark Application

A benchmark application is developed; this application measures the perfor-
mance at di�erent measuring points. Each measuring point represents the size
of data that will be processed. The values of these measuring points range
from STEP to 200 × STEP. For each measuring point the data was processed
Loops times and the mean was calculated. Then the mean of all measuring
points was calculated to get the average processing speed for a particular mode
of operation. In the benchmark, the performance of the Electronic Codebook
(ECB) mode [117] is measured to be a reference for maximum throughput.

The con�guration of the used computer in the benchmark is in table 6.10.
The performance of the optimized C++ versions of the modes of operation are
studied. For AES the optimized Gladman's implementation [66] is used, and for
the di�users (of ELEPHANT and its variants) loop unrolling mechanism [39] is
used.

Table 6.10: Simulation Machine Con�guration.

Processor Intel Xeon Quad-Core 2.33 GHz (64-bit)
RAM 4096 MB
Processor Cache 12 MB
Paging �le 4096 MB
OS Microsoft Windows Server 2008
Compiler Visual C++ 2008
Code optimization Maximum speed

6.7.2 CPU Utilization

The CPU utilization is monitored, for the four Tests and the two di�erent
Steps. For encrypting or decrypting data in memory the CPU is fully utilized
when processing large data (Step=1 MB) and about 80% utilized when pro-
cessing small data (Step=512 byte). It is remarkable that, when the data is
encrypted in memory and then written to the hard drive that the CPU utiliza-
tion decreases to about 30% for large data and 70% for small data. Reading
and decrypting data on the other hand utilizes the CPU by about 70% for small
data and about 100% for large data.

6.7.3 Benchmarking Results

The results of the benchmark for large data (Step=1 MB and Key=256) are
shown in Figure 6.3. From these results, it is shown that SCC is almost as
fast as CBC and ESCC is about 10% slower than CBC. MCB possesses high
throughput, as it is about 45% faster than LRW and 25% faster than XTS.

6.7. PERFORMANCE ANALYSIS 109

ELEPHANT+ is as fast as ELEPAHNT, while ELEPHANT∗ is faster than
ELEPHANT by about 5%.

Figure 6.3: The average throughput of di�erent modes of operation (Key=128,
Step=512 byte, Loops=1000).

The results of the benchmark for small data (Step=512 and Key=256) are
shown in Figure 6.4. From these results, it is shown that SCC is almost as fast as
CBC and ESCC is about 8% slower than CBC. MCB possesses high throughput,
as it is about 38% faster than LRW and 20% faster than XTS. ELEPHANT+

is as fast as ELEPAHNT, while ELEPHANT∗ is faster than ELEPHANT by
about 5%.

Figure 6.4: The average throughput of di�erent modes of operation (Key=256,
Step=512 byte, Loops=1000).

The results of the benchmark for large data (Step=1 MB and Key=128)

110 CHAPTER 6. DISK ENCRYPTION

are shown in Figure 6.5. From these results, it is shown that SCC is almost as
fast as CBC and ESCC is about 12% slower than CBC. MCB possesses high
throughput, as it is about 48% faster than LRW and 27% faster than XTS.
ELEPHANT+ is as fast as ELEPAHNT, while ELEPHANT∗ is faster than
ELEPHANT by about 5%.

Figure 6.5: The average throughput of di�erent modes of operation (Key=128,
Step=1 MB, Loops=10).

The results of the benchmark for large data (Step=1 MB and Key=256)
are shown in Figure 6.6. From these results, it is shown that SCC is almost as
fast as CBC and ESCC is about 10% slower than CBC. MCB possesses high
throughput, as it is about 40% faster than LRW and 23% faster than XTS.
ELEPHANT+ is as fast as ELEPAHNT, while ELEPHANT∗ is faster than
ELEPHANT by about 5%.

6.8 Cryptanalysis of SCC

Let Bx
i be the ith block in the sector number x. The active tweak of the block

Bx
i+1 is de�ned by:

τx
i+1 = T x

i ⊕Bx
i (6.13)

By controlling the values of Bx
i , the values of τ

x
i+1 can be controlled. Using the

ability to modify τx
i+1, many attacks can be mounted.

6.8.1 Cryptanalysis of SCC-128

SCC-128 has the following set of unknown keys/masks: Π = {κi, αj , βj , τ
k : 0 ≤

i ≤ 10, i 6= x, y, z and 0 ≤ j ≤ 31}, where κi is the round key of the ith round
and τk is the tweak of sector k.

The encryption key is recovered using three di�erent attacks: Attack1,
Attack1′ and Attack1′′, where Attack1 and Attack1′ use the active attack
model in Sect. 6.1.5, while Attack1′′ uses the less restrictive attack model in
Sect. 6.1.5.

6.8. CRYPTANALYSIS OF SCC 111

Figure 6.6: The average throughput of di�erent modes of operation (Key=256,
Step=1 MB, Loops=10).

Attack1

This attack is used to recover AES' round keys ({κi : 0 ≤ i ≤ 10, i 6= x, y, z}).
Using the ability to modify τx

i+1, the square attack on the last 5 rounds of AES in
SCC-128 can be mounted. The following procedure is used to generate Λ1-sets:

1. Generate a set A of 256 plaintexts, so as A is a Λ1-set.

2. For each plaintext Ai ∈ A

(a) Set Bx
i = Ai.

(b) Read the sector x and ask the disk encryption application to re-
encrypt it.

(c) Store Cx
i+1, where C

x
i+1 is the ciphertext of Bx

i+1.

This will create a Λ1-set as the input to the 6th round, which implies that the
Square-5 attack can be applied on the rest 5 rounds to recover the round key
of the last round, from which the rest of the round keys can be calculated. The
cost of this attack is 5 × 28 chosen plaintext and requires about 240 cipher
executions (sector encryption operation) and this will reduce the unknown set
to: Π = {αj , βj , τ

k : 0 ≤ j ≤ 31}, where τk is the tweak of sector k.

Attack1′

This attack is used to recover AES' round keys ({κi : 0 ≤ i ≤ 10, i 6= x, y, z}).
Using the ability to modify τx

i+1 the Pushdown-Square-5* attack (Sect. 3.3.3) can
be mounted on the last 5 rounds of AES in SCC-128. The following procedure
is used to generate a Λ1-set:

1. Generate a set A of 256 plaintexts, so as A is an Ω1-set.

2. For each plaintext Ai ∈ A

112 CHAPTER 6. DISK ENCRYPTION

(a) Set Bx
i = Ai.

(b) Read the sector x and ask the disk encryption application to re-
encrypt it.

(c) Store Cx
i+1, where C

x
i+1 is the ciphertext of Bx

i+1.

This will create an Ω1-set as the input to the 6th, which implies that the
Pushdown-Square-5* attack (refer to Sect. 3.3.3) can be applied on the last
5 rounds, and obtaining the round key of the last round, from which the rest of
the round keys can be calculated. The cost of this attack is 29 chosen plaintext
and requires about 29 cipher executions (sector encryption operation) and this
will reduce the unknown set to: Π = {αj , βj , τ

k : 0 ≤ j ≤ 31}, where τk is the
tweak of sector k.

This attack is faster than Attack1.

Attack1′′

This attack is used to recover AES' round keys ({κi : 0 ≤ i ≤ 10, i 6= x, y, z}).
Using the ability to modify τx

i+1, the square attack on the �rst 6 rounds of AES
can be mounted. The following procedure is used to generate Λ1-sets:

1. Generate a set A of 256 plaintexts, so as A is a Λ1-set.

2. For each plaintext Ai ∈ A

(a) Set Bx
i = Ai.

(b) Read the plaintext of sector x.

(c) Store Px
i+1, where P

x
i+1 is the plaintext of Bx

i+1.

This will create a Λ1-set as the input to the 6th decryption round, which implies
that the Square-5 attack can be applied on the �rst 5 decryption rounds and
recovering the round key of the �rst round, from which the rest of the round
keys can be calculated. The cost of this attack is 5 × 28 chosen plaintext and
requires about 240 cipher executions (sector encryption operation) and this will
reduce the unknown set to: Π = {αj , βj , τ

k : 0 ≤ j ≤ 31}, where τk is the tweak
of sector k.

Note that the square property, on which the square attack is built, is inde-
pendent of the speci�c choices of SB, MC and the key schedule [38], thus the
property holds in the decryption direction.

Attack2

This attack is used to recover β mask ({βi : 0 ≤ i ≤ 31}).
Generate a set A of 256 plaintexts, so as A is a Λ1-set. Apply two decryption
AES round functions using the recovered κ2 and κ1, then xor the result with
κ0. Name the resulting set D. Note that encrypting the set D will result in a
Λ1-set as the input for the third round.

The attack works as follows, for each block Bx
i in a sector x:

1. Use D as its input and encrypt that block.

2. Decrypt the ciphertext till the 7th round with the recovered round keys,
name this set E.

6.8. CRYPTANALYSIS OF SCC 113

3. Apply Square attack with L-representation (refer to Sect. 3.1.6), where
the set A is the plaintext and the set E is the ciphertext.

4. The recovered round key is βi.

The cost of this attack is 29 chosen plaintext and requires about 29 cipher
executions, where τk is the tweak of sector k.

Attack3

This attack is used to recover τx.
Generate a set A of 256 plaintexts, so as A is a Λ1-set. Apply one decryption
AES round function using the recovered κ1, then xor the result with κ0. Name
the resulting set C. Note that encrypting the set C will result in a Λ1-set as the
input for the second round.

The attack works as follows, for any block Bx
i in a sector x:

1. Use C as its input and encrypt that block.

2. Decrypt the ciphertext till the 8th round with the known round keys, name
this set D.

3. Apply Square attack with L-representation (refer to Sect. 3.1.6), where
the set A is the plaintext and the set D is the ciphertext.

4. The recovered round key is τx.

The cost of this attack is 29 chosen plaintext and requires about 29 cipher
executions. This will reduce the unknown set to: Π = {αj , τ

k : 0 ≤ j ≤ 31},
where τk is the tweak of sector k and k 6= x.

Attack4

This attack is used to recover α mask ({αi : 0 ≤ i ≤ 31}).
For the sector x, the set of unknowns is: Π = {αj : 0 ≤ j ≤ 31}, which can be
recovered directly, by the following procedure:

• For each block Bx
i :

1. Encrypt the plaintext Xi using the �rst three rounds and the known
round keys to get Yi.

2. Apply SB, SR and MC on Yi to produce Wi.

3. Encrypt Xi using SCC to get Ai.

4. Decrypt Ai using six rounds and the recovers round keys, sector ID
and masks to get Di.

5. αi = Di ⊕Wi

Now all the unknowns of the sector x are recovered, this attack requires only 1
known sector plaintext and ciphertext and about 1 cipher execution, this will
reduce the unknown set to: Π = {τk}, where τk is the tweak of sector k and
k 6= x.

114 CHAPTER 6. DISK ENCRYPTION

Attack5

To recover the encrypted sector ID for a sector, the following procedure is used:

1. Encrypt a known plaintext Xi to get Ai.

2. Encrypt Xi using four rounds, the known round keys and αi to get Yi.

3. Apply SB, SR and MC on Yi to produce Wi.

4. Decrypt Ai using �ve rounds with the known round keys and βi to get Di.

5. Calculate TTx
i = Di ⊕Wi.

6. Calculate τx = TT x
i ⊕Bx

i−1 : Bx
−1 = 0.

This attack requires 1 known plaintext/ciphertext block and about 1 cipher
execution.

Now, all the unknowns used by SCC-128 are recovered.

6.8.2 Cryptanalysis of SCC-256

AttackA

This attack is used to recover AES' round keys ({κi : 0 ≤ i ≤ 14, i 6= x, y, z}).
Using the ability to modify τx

i+1 Pushdown-Partial-Sum-7* attack (Sect. 3.3.4)
can be mounted on the �rst 7 rounds of AES in SCC-256.
The following procedure is used to generate a Γ4-set:

1. Generate a set A of 232 plaintexts, so as A is a Γ4-set.

2. For each plaintext Ai ∈ A

(a) Set Bx
i = Ai.

(b) Read the plaintext of sector x.

(c) Store Px
i+1, where P

x
i+1 is the plaintext of Bx

i+1.

This will create a Γ4-set as the input to the 8th decryption round, which implies
that the Pushdown-Partial-Sum-7* attack (Sect. 3.3.4) can be applied on the
last 7 decryption rounds, and obtaining the round key of the �rst round, from
which the rest of the round keys can be calculated. The cost of this attack is 6 ×
232 chosen plaintext and requires about 244 cipher executions (sector encryption
operation). This will reduce the unknown set to: Π = {αj , βj , τ

k : 0 ≤ j ≤ 31},
where τk is the tweak of sector k.

Note that the square property on which the square attack is built on, is
independent of the speci�c choices of SB, the multiplication polynomial of MC
and the key schedule [38], thus the property holds in the decryption direction.

AttackB

This attack is used to recover 31 elements of α mask ({αi : 1 ≤ i ≤ 31}).
Generate a set A of 256 plaintexts, so as A is a Λ1-set. Apply one decryption
AES round function using the recovered κ8. Name the resulting set D.

The attack works as follows, for each block Bx
i in a sector x, where 1 ≤ i ≤ 31:

6.8. CRYPTANALYSIS OF SCC 115

1. For each plaintext Di ∈ D

(a) Set Bx
i = Di.

(b) Read the plaintext of sector x.

(c) Set Ei= Px
i+1, where P

x
i+1 is the plaintext of Bx

i+1.

(d) Encrypt Ei using the �rst four encryption rounds with the recovered
round keys, name the result Fi.

2. Apply Square attack with L-representation (refer to Sect. 3.1.6), where
the set A is the plaintext and the set F is the ciphertext.

3. The recovered round key is αi.

The cost of this attack is about 210 chosen plaintext and requires about 210

cipher executions (as Bx
i : 1 ≤ i ≤ 31 and i mod 2 =0 blocks can be executed

in parallel, the same is valid for Bx
i : 1 ≤ i ≤ 31 and i mod 2 =1). This will

reduce the unknown set to: Π = {α0, βj , τ
k : 0 ≤ j ≤ 31}, where τk is the tweak

of sector k.

AttackC

This attack is used to recover 31 elements of β mask ({βi : 1 ≤ i ≤ 31}).
The attack works as follows, for each block Bx

i in a sector x, where 1 ≤ i ≤ 31:

1. Generate a set A of 256 plaintexts, so as A is a Λ1-set.

2. For each plaintext Ai ∈ A

(a) Set Bx
i = Ai.

(b) Read the sector x and ask the disk encryption application to re-
encrypt it.

(c) Set Cx
i to the ciphertext of Bx

i+1.

3. Apply the �rst three decryption rounds on the set C with the recovered
round keys, name this set D.

4. Apply Square attack with L-representation (refer to Sect. 3.1.6), where
the set A is the plaintext and the set D is the ciphertext.

5. The recovered round key is βi.

The cost of this attack is about 210 chosen plaintext and requires about 210

cipher executions (as Bx
i : 1 ≤ i ≤ 31 and i mod 2 =0 blocks can be executed

in parallel, the same is valid for Bx
i : 1 ≤ i ≤ 31 and i mod 2 =1). This will

reduce the unknown set to: Π = {α0, β0, τ
k}, where τk is the tweak of sector k.

AttackD

To recover the encrypted sector ID for sector x, the following procedure is used
(where i 6= 0):

1. Encrypt a known plaintext Xi to get Ai.

116 CHAPTER 6. DISK ENCRYPTION

2. Encrypt Xi using six rounds with the recovered round keys and αi to get
Yi.

3. Apply SB, SR and MC on Yi to produce Wi.

4. Decrypt Ai using seven rounds with the recovered round keys and βi to
get Ei.

5. Calculate TTx
i = Ei ⊕Wi

6. Calculate τx = TT x
i ⊕Bx

i−1

This attack requires 1 known plaintext/ciphertext block and about 1 cipher
execution. This will reduce the unknown set for sector x to: Π = {α0, β0}.

AttackE

This attack is used to recover β0 mask, the attack works as follows, for block
Bx

0 :

1. Generate a set A of 256 plaintexts, so that A is an Ω1-set.

2. Decrypt the set A using the last 4 decryption rounds with the recovered
round keys, name the result set C.

3. Apply SB, SR and MC on C to produce D.

4. Encrypt the set A and name the result set Y.

5. Decrypt set Y using the �rst four decryption rounds with the recovered
round keys, name the result set W.

6. Apply the Pushdown-square-5* attack (Sect. 3.3.3) by replacing the square
attack with the square attack with L-representation (refer to Sect. 3.1.6),
where the set D is the plaintext and the set W is the ciphertext.

7. The recovered round key is β0.

The cost of this attack is 29 chosen plaintext and requires about 29 cipher
executions. This will reduce the unknown set for sector x to: Π = {α0}.

AttackF

This attack is used to recover α0 mask.

1. Encrypt a known plaintext X0 to get A0.

2. Encrypt X0 using four rounds with the recovered round keys to get Y0.

3. Apply SB, SR and MC on Y0 to produce W0.

4. Decrypt Ai using nine rounds with the recovered round keys and β0 to get
C0.

5. α0 = C0 ⊕W0

This attack requires 1 known plaintext/ciphertext block and about 1 cipher
execution. This will reduce the unknown set to: Π = {τk}, where τk is the
tweak of sector k.

6.9. SUMMARY 117

AttackG

To recover the encrypted sector ID for a sector, the following procedure is used:

1. Encrypt a known plaintext Xi to get Ai.

2. Encrypt Xi using six rounds with the recovered round keys and αi to get
Yi.

3. Apply SB, SR and MC on Yi to produce Wi.

4. Decrypt Ai using seven rounds with the recovered round keys and βi to
get Ci.

5. Calculate TTx
i = Ci ⊕Wi

6. Calculate τx = TT x
i ⊕Bx

i−1 : Bx
−1 = 0

This attack requires 1 known plaintext/ciphertext block and about 1 cipher
execution.

Now, all the unknowns used by SCC-256 are recovered.

6.8.3 Attacking ELEPHANT+ and ELEPHANT×

The attacks presented in this section cannot be applied on ELEPHANT+ and
ELEPHANT×. The reason is that, if some bits of the ciphertext are changed,
the decryption operation will be associated with the avalanche e�ect [117], due
to the existence of the di�users. Thus these attacks cannot be applied.

6.9 Summary

In this chapter, three novel modes of operation for disk encryption applications
are proposed. The �rst mode is a secure narrow-block mode of operation that
operates in parallel: this mode of operation is faster than the current IEEE
standard and does not face its limitations. The second mode is used to modify
Windows Vista's encryption algorithm to enhance some of its di�usion prop-
erties and o�ers some parallelization to its original design. This mode is not
designed to be used as a stand alone mode of operation, as it manipulates the
cipher's inner state. To emphasize on this point, this mode of operation is crypt-
analyzed and is proven to be broken if used as a stand alone mode of operation.
The third mode is a secure narrow-block mode of operation that o�ers error
propagation.

118 CHAPTER 6. DISK ENCRYPTION

Chapter 7

Conclusions and Outlook

This thesis develops several cryptographic techniques that can enhance the cur-
rent approaches. These techniques are applied in real applications. In the
following, the major contributions of this thesis are recalled:

1. A new idea on chosen plaintext cryptanalysis is presented where some of
the cipher's encryption rounds at its beginning can be bypassed. To illus-
trate this idea, the Pushdown attacks are developed. These attacks can
increase the e�ectiveness of some chosen plaintext attacks. The Pushdown
attacks are applied on AES and are able to achieve a 6-round attack that
requires only 211 chosen plaintexts. This reduces the chosen plaintexts
needed by the Square attack by a factor of 221. This idea is also ex-
tended and applied on chosen ciphertext, chosen plaintext-adaptive chosen
ciphertext and chosen ciphertext-adaptive chosen plaintext attacks. Fur-
thermore, some of the proposed attacks are used to break the Substitution
Cipher Chaining mode (SCC) for disk encryption.

2. An enhanced key schedule for AES is proposed. This key schedule raises
the classi�cation of AES' key schedule from 1C to 2B. In addition, it pro-
tects the current AES implementation from many attacks like related-key
and some cache timing attacks. It is worth mentioning that this proposal
increases the time complexity of many attacks, even the exhaustive key
search. A generalized block ciphers' key schedule is also presented.

3. Three novel encryption models are proposed:

Dynamic Substitution Model (DSM) is a model that can provide a
block cipher with a variable length secondary key. The secondary key
is used to replace some words of the cipher's expanded key. Static
Substitution Model (SSM), a special case of DSM that uses �xed
length secondary key, is also developed.

Dynamic Injection Model (DIM) is a model that can provide a block
cipher with variable length secondary key. The secondary key is
consumed by some keyed transformation functions that are injected
into the cipher. Static Injection Model (SIM), a special case of
DIM that uses �xed length secondary key, is also developed.

119

120 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Dynamic Permutation Model (DPM) is a model that can provide a
block cipher with a �xed length secondary key. The secondary key is
used to permute some words of the cipher's expanded key.

These models can be e�ciently used as building blocks for new encryp-
tion modes of operation. They are characterized by their low memory
requirements and high speed. The guidelines to securely use these models
are presented together with the possibility of constructing hybrid models,
using these three models as their building blocks.

4. Using the proposed encryption models, new variants of AES are proposed.
These variants allow AES to accept secondary key(s). With the help of
these variants, new e�cient network encryption schemes are proposed.
These schemes are characterized by their high throughput, stability, low
setup time, low memory requirements, scalability and security. The three
proposed network encryption schemes are:

CBC-S/CTR-S are network encryption schemes based on CBC/CTR.
CBC-S/CTR-S require much less memory resources than the classical
CBC/CTR schemes. Thus, they increase the number of concurrent
clients that a server can serve. CBC-S/CTR-S can save up to 94% of
the memory required by the classical CBC/CTR schemes. The ex-
perimental results demonstrated that CBC-S/CTR-S are faster than
the classical CBC/CTR schemes.

GSCM is a set of network encryption schemes based on GCM. GSCM
schemes require much less memory resources than the classical GCM
schemes. They increase the number of concurrent clients a server
can serve. GSCM can save up to more than 99% of the memory
required by some classical GCM schemes. The experimental results
demonstrated that GSCM schemes are faster than the classical GCM
schemes.

5. The new proposed variants of AES are used to design new modes of oper-
ation dedicated to disk encryption applications. These modes of operation
are characterized by their high throughput and their resistance to some
known attacks, when compared to the state of the art modes of operation.
The three proposed modes of operation for disk encryption are:

Masked Code Book (MCB) is designed to serve as a narrow-block
mode of operation that can be parallelized. It is about 25% faster
than the current IEEE standard (XTS) and additionally resistant to
the attacks on XTS.

Substitution Cipher Chaining mode (SCC) is designed to modify
Windows Vista's Disk Encryption algorithm "ELEPHANT", and it
is not designed to be used as a stand alone disk encryption mode of
operation. SCC is used to design two variants of ELEPHANT, which
are faster and possess higher Safety Factors than ELEPHANT.

Extended Substitution Cipher Chaining mode (ESCC) is designed
to serve as a narrow-block mode of operation that o�ers error prop-
agation. It is about 8% slower than CBC but more resistant to
manipulation attacks.

121

In the course of the thesis, the author found several issues that can extend
the work in this thesis and present interesting directions for future research:

• Applying the proposed models to block ciphers other than AES.

• Applying the Pushup and Sandwich attacks to AES.

• Applying the Pushdown, Pushup and Sandwich attacks to block ciphers
other than AES.

• Constructing more hybrid encryption models, using the proposed models.

• Studying the e�ect of the proposed key scheduling on side channel attacks

• Developing more security applications based on the proposed models.

122 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Appendix A

MBOX Values

The values of MBOX used in DP-AES (refer to Sect. 4.8.1).

MBOX[256][8]={

{ 5, 4, 7, 2, 3, 0, 6, 1},

{ 6, 5, 0, 3, 4, 1, 7, 2},

{ 7, 6, 1, 4, 5, 2, 0, 3},

{ 0, 7, 2, 5, 6, 3, 1, 4},

{ 1, 0, 3, 6, 7, 4, 2, 5},

{ 2, 1, 4, 7, 0, 5, 3, 6},

{ 3, 2, 5, 0, 1, 6, 4, 7},

{ 4, 3, 6, 1, 2, 7, 5, 0},

{ 5, 3, 1, 4, 0, 2, 6, 7},

{ 6, 4, 2, 5, 1, 3, 7, 0},

{ 7, 5, 3, 6, 2, 4, 0, 1},

{ 0, 6, 4, 7, 3, 5, 1, 2},

{ 1, 7, 5, 0, 4, 6, 2, 3},

{ 2, 0, 6, 1, 5, 7, 3, 4},

{ 3, 1, 7, 2, 6, 0, 4, 5},

{ 4, 2, 0, 3, 7, 1, 5, 6},

{ 0, 5, 1, 7, 6, 4, 3, 2},

{ 1, 6, 2, 0, 7, 5, 4, 3},

{ 2, 7, 3, 1, 0, 6, 5, 4},

{ 3, 0, 4, 2, 1, 7, 6, 5},

{ 4, 1, 5, 3, 2, 0, 7, 6},

{ 5, 2, 6, 4, 3, 1, 0, 7},

{ 6, 3, 7, 5, 4, 2, 1, 0},

{ 7, 4, 0, 6, 5, 3, 2, 1},

{ 1, 5, 0, 2, 4, 3, 7, 6},

{ 2, 6, 1, 3, 5, 4, 0, 7},

{ 3, 7, 2, 4, 6, 5, 1, 0},

{ 4, 0, 3, 5, 7, 6, 2, 1},

{ 5, 1, 4, 6, 0, 7, 3, 2},

{ 6, 2, 5, 7, 1, 0, 4, 3},

{ 7, 3, 6, 0, 2, 1, 5, 4},

{ 0, 4, 7, 1, 3, 2, 6, 5},

{ 4, 0, 7, 5, 3, 1, 6, 2},

{ 5, 1, 0, 6, 4, 2, 7, 3},

{ 6, 2, 1, 7, 5, 3, 0, 4},

{ 7, 3, 2, 0, 6, 4, 1, 5},

123

124 APPENDIX A. MBOX VALUES

{ 0, 4, 3, 1, 7, 5, 2, 6},

{ 1, 5, 4, 2, 0, 6, 3, 7},

{ 2, 6, 5, 3, 1, 7, 4, 0},

{ 3, 7, 6, 4, 2, 0, 5, 1},

{ 0, 5, 7, 2, 6, 4, 3, 1},

{ 1, 6, 0, 3, 7, 5, 4, 2},

{ 2, 7, 1, 4, 0, 6, 5, 3},

{ 3, 0, 2, 5, 1, 7, 6, 4},

{ 4, 1, 3, 6, 2, 0, 7, 5},

{ 5, 2, 4, 7, 3, 1, 0, 6},

{ 6, 3, 5, 0, 4, 2, 1, 7},

{ 7, 4, 6, 1, 5, 3, 2, 0},

{ 3, 1, 7, 5, 2, 0, 4, 6},

{ 4, 2, 0, 6, 3, 1, 5, 7},

{ 5, 3, 1, 7, 4, 2, 6, 0},

{ 6, 4, 2, 0, 5, 3, 7, 1},

{ 7, 5, 3, 1, 6, 4, 0, 2},

{ 0, 6, 4, 2, 7, 5, 1, 3},

{ 1, 7, 5, 3, 0, 6, 2, 4},

{ 2, 0, 6, 4, 1, 7, 3, 5},

{ 6, 2, 0, 5, 4, 1, 3, 7},

{ 7, 3, 1, 6, 5, 2, 4, 0},

{ 0, 4, 2, 7, 6, 3, 5, 1},

{ 1, 5, 3, 0, 7, 4, 6, 2},

{ 2, 6, 4, 1, 0, 5, 7, 3},

{ 3, 7, 5, 2, 1, 6, 0, 4},

{ 4, 0, 6, 3, 2, 7, 1, 5},

{ 5, 1, 7, 4, 3, 0, 2, 6},

{ 0, 5, 4, 7, 3, 2, 1, 6},

{ 1, 6, 5, 0, 4, 3, 2, 7},

{ 2, 7, 6, 1, 5, 4, 3, 0},

{ 3, 0, 7, 2, 6, 5, 4, 1},

{ 4, 1, 0, 3, 7, 6, 5, 2},

{ 5, 2, 1, 4, 0, 7, 6, 3},

{ 6, 3, 2, 5, 1, 0, 7, 4},

{ 7, 4, 3, 6, 2, 1, 0, 5},

{ 2, 7, 6, 3, 0, 5, 1, 4},

{ 3, 0, 7, 4, 1, 6, 2, 5},

{ 4, 1, 0, 5, 2, 7, 3, 6},

{ 5, 2, 1, 6, 3, 0, 4, 7},

{ 6, 3, 2, 7, 4, 1, 5, 0},

{ 7, 4, 3, 0, 5, 2, 6, 1},

{ 0, 5, 4, 1, 6, 3, 7, 2},

{ 1, 6, 5, 2, 7, 4, 0, 3},

{ 0, 5, 3, 1, 4, 7, 2, 6},

{ 1, 6, 4, 2, 5, 0, 3, 7},

{ 2, 7, 5, 3, 6, 1, 4, 0},

{ 3, 0, 6, 4, 7, 2, 5, 1},

{ 4, 1, 7, 5, 0, 3, 6, 2},

{ 5, 2, 0, 6, 1, 4, 7, 3},

{ 6, 3, 1, 7, 2, 5, 0, 4},

{ 7, 4, 2, 0, 3, 6, 1, 5},

{ 5, 3, 0, 1, 4, 7, 2, 6},

{ 6, 4, 1, 2, 5, 0, 3, 7},

125

{ 7, 5, 2, 3, 6, 1, 4, 0},

{ 0, 6, 3, 4, 7, 2, 5, 1},

{ 1, 7, 4, 5, 0, 3, 6, 2},

{ 2, 0, 5, 6, 1, 4, 7, 3},

{ 3, 1, 6, 7, 2, 5, 0, 4},

{ 4, 2, 7, 0, 3, 6, 1, 5},

{ 4, 6, 5, 2, 3, 1, 0, 7},

{ 5, 7, 6, 3, 4, 2, 1, 0},

{ 6, 0, 7, 4, 5, 3, 2, 1},

{ 7, 1, 0, 5, 6, 4, 3, 2},

{ 0, 2, 1, 6, 7, 5, 4, 3},

{ 1, 3, 2, 7, 0, 6, 5, 4},

{ 2, 4, 3, 0, 1, 7, 6, 5},

{ 3, 5, 4, 1, 2, 0, 7, 6},

{ 2, 6, 4, 1, 5, 0, 3, 7},

{ 3, 7, 5, 2, 6, 1, 4, 0},

{ 4, 0, 6, 3, 7, 2, 5, 1},

{ 5, 1, 7, 4, 0, 3, 6, 2},

{ 6, 2, 0, 5, 1, 4, 7, 3},

{ 7, 3, 1, 6, 2, 5, 0, 4},

{ 0, 4, 2, 7, 3, 6, 1, 5},

{ 1, 5, 3, 0, 4, 7, 2, 6},

{ 5, 4, 1, 3, 7, 6, 2, 0},

{ 6, 5, 2, 4, 0, 7, 3, 1},

{ 7, 6, 3, 5, 1, 0, 4, 2},

{ 0, 7, 4, 6, 2, 1, 5, 3},

{ 1, 0, 5, 7, 3, 2, 6, 4},

{ 2, 1, 6, 0, 4, 3, 7, 5},

{ 3, 2, 7, 1, 5, 4, 0, 6},

{ 4, 3, 0, 2, 6, 5, 1, 7},

{ 3, 1, 7, 2, 5, 0, 6, 4},

{ 4, 2, 0, 3, 6, 1, 7, 5},

{ 5, 3, 1, 4, 7, 2, 0, 6},

{ 6, 4, 2, 5, 0, 3, 1, 7},

{ 7, 5, 3, 6, 1, 4, 2, 0},

{ 0, 6, 4, 7, 2, 5, 3, 1},

{ 1, 7, 5, 0, 3, 6, 4, 2},

{ 2, 0, 6, 1, 4, 7, 5, 3},

{ 3, 1, 7, 0, 4, 6, 5, 2},

{ 4, 2, 0, 1, 5, 7, 6, 3},

{ 5, 3, 1, 2, 6, 0, 7, 4},

{ 6, 4, 2, 3, 7, 1, 0, 5},

{ 7, 5, 3, 4, 0, 2, 1, 6},

{ 0, 6, 4, 5, 1, 3, 2, 7},

{ 1, 7, 5, 6, 2, 4, 3, 0},

{ 2, 0, 6, 7, 3, 5, 4, 1},

{ 4, 6, 2, 1, 5, 0, 3, 7},

{ 5, 7, 3, 2, 6, 1, 4, 0},

{ 6, 0, 4, 3, 7, 2, 5, 1},

{ 7, 1, 5, 4, 0, 3, 6, 2},

{ 0, 2, 6, 5, 1, 4, 7, 3},

{ 1, 3, 7, 6, 2, 5, 0, 4},

{ 2, 4, 0, 7, 3, 6, 1, 5},

{ 3, 5, 1, 0, 4, 7, 2, 6},

126 APPENDIX A. MBOX VALUES

{ 1, 6, 4, 7, 2, 0, 5, 3},

{ 2, 7, 5, 0, 3, 1, 6, 4},

{ 3, 0, 6, 1, 4, 2, 7, 5},

{ 4, 1, 7, 2, 5, 3, 0, 6},

{ 5, 2, 0, 3, 6, 4, 1, 7},

{ 6, 3, 1, 4, 7, 5, 2, 0},

{ 7, 4, 2, 5, 0, 6, 3, 1},

{ 0, 5, 3, 6, 1, 7, 4, 2},

{ 2, 6, 1, 0, 5, 7, 4, 3},

{ 3, 7, 2, 1, 6, 0, 5, 4},

{ 4, 0, 3, 2, 7, 1, 6, 5},

{ 5, 1, 4, 3, 0, 2, 7, 6},

{ 6, 2, 5, 4, 1, 3, 0, 7},

{ 7, 3, 6, 5, 2, 4, 1, 0},

{ 0, 4, 7, 6, 3, 5, 2, 1},

{ 1, 5, 0, 7, 4, 6, 3, 2},

{ 1, 4, 3, 0, 2, 7, 5, 6},

{ 2, 5, 4, 1, 3, 0, 6, 7},

{ 3, 6, 5, 2, 4, 1, 7, 0},

{ 4, 7, 6, 3, 5, 2, 0, 1},

{ 5, 0, 7, 4, 6, 3, 1, 2},

{ 6, 1, 0, 5, 7, 4, 2, 3},

{ 7, 2, 1, 6, 0, 5, 3, 4},

{ 0, 3, 2, 7, 1, 6, 4, 5},

{ 0, 4, 6, 5, 2, 1, 3, 7},

{ 1, 5, 7, 6, 3, 2, 4, 0},

{ 2, 6, 0, 7, 4, 3, 5, 1},

{ 3, 7, 1, 0, 5, 4, 6, 2},

{ 4, 0, 2, 1, 6, 5, 7, 3},

{ 5, 1, 3, 2, 7, 6, 0, 4},

{ 6, 2, 4, 3, 0, 7, 1, 5},

{ 7, 3, 5, 4, 1, 0, 2, 6},

{ 1, 6, 2, 5, 7, 3, 4, 0},

{ 2, 7, 3, 6, 0, 4, 5, 1},

{ 3, 0, 4, 7, 1, 5, 6, 2},

{ 4, 1, 5, 0, 2, 6, 7, 3},

{ 5, 2, 6, 1, 3, 7, 0, 4},

{ 6, 3, 7, 2, 4, 0, 1, 5},

{ 7, 4, 0, 3, 5, 1, 2, 6},

{ 0, 5, 1, 4, 6, 2, 3, 7},

{ 4, 7, 1, 5, 6, 3, 2, 0},

{ 5, 0, 2, 6, 7, 4, 3, 1},

{ 6, 1, 3, 7, 0, 5, 4, 2},

{ 7, 2, 4, 0, 1, 6, 5, 3},

{ 0, 3, 5, 1, 2, 7, 6, 4},

{ 1, 4, 6, 2, 3, 0, 7, 5},

{ 2, 5, 7, 3, 4, 1, 0, 6},

{ 3, 6, 0, 4, 5, 2, 1, 7},

{ 2, 1, 7, 3, 5, 4, 0, 6},

{ 3, 2, 0, 4, 6, 5, 1, 7},

{ 4, 3, 1, 5, 7, 6, 2, 0},

{ 5, 4, 2, 6, 0, 7, 3, 1},

{ 6, 5, 3, 7, 1, 0, 4, 2},

{ 7, 6, 4, 0, 2, 1, 5, 3},

127

{ 0, 7, 5, 1, 3, 2, 6, 4},

{ 1, 0, 6, 2, 4, 3, 7, 5},

{ 1, 5, 0, 2, 7, 3, 6, 4},

{ 2, 6, 1, 3, 0, 4, 7, 5},

{ 3, 7, 2, 4, 1, 5, 0, 6},

{ 4, 0, 3, 5, 2, 6, 1, 7},

{ 5, 1, 4, 6, 3, 7, 2, 0},

{ 6, 2, 5, 7, 4, 0, 3, 1},

{ 7, 3, 6, 0, 5, 1, 4, 2},

{ 0, 4, 7, 1, 6, 2, 5, 3},

{ 4, 7, 3, 0, 6, 5, 1, 2},

{ 5, 0, 4, 1, 7, 6, 2, 3},

{ 6, 1, 5, 2, 0, 7, 3, 4},

{ 7, 2, 6, 3, 1, 0, 4, 5},

{ 0, 3, 7, 4, 2, 1, 5, 6},

{ 1, 4, 0, 5, 3, 2, 6, 7},

{ 2, 5, 1, 6, 4, 3, 7, 0},

{ 3, 6, 2, 7, 5, 4, 0, 1},

{ 2, 6, 3, 1, 4, 0, 5, 7},

{ 3, 7, 4, 2, 5, 1, 6, 0},

{ 4, 0, 5, 3, 6, 2, 7, 1},

{ 5, 1, 6, 4, 7, 3, 0, 2},

{ 6, 2, 7, 5, 0, 4, 1, 3},

{ 7, 3, 0, 6, 1, 5, 2, 4},

{ 0, 4, 1, 7, 2, 6, 3, 5},

{ 1, 5, 2, 0, 3, 7, 4, 6},

{ 4, 1, 6, 2, 5, 7, 3, 0},

{ 5, 2, 7, 3, 6, 0, 4, 1},

{ 6, 3, 0, 4, 7, 1, 5, 2},

{ 7, 4, 1, 5, 0, 2, 6, 3},

{ 0, 5, 2, 6, 1, 3, 7, 4},

{ 1, 6, 3, 7, 2, 4, 0, 5},

{ 2, 7, 4, 0, 3, 5, 1, 6},

{ 3, 0, 5, 1, 4, 6, 2, 7},

{ 6, 3, 0, 4, 5, 7, 1, 2},

{ 7, 4, 1, 5, 6, 0, 2, 3},

{ 0, 5, 2, 6, 7, 1, 3, 4},

{ 1, 6, 3, 7, 0, 2, 4, 5},

{ 2, 7, 4, 0, 1, 3, 5, 6},

{ 3, 0, 5, 1, 2, 4, 6, 7},

{ 4, 1, 6, 2, 3, 5, 7, 0},

{ 5, 2, 7, 3, 4, 6, 0, 1},

{ 3, 2, 6, 4, 1, 7, 0, 5},

{ 4, 3, 7, 5, 2, 0, 1, 6},

{ 5, 4, 0, 6, 3, 1, 2, 7},

{ 6, 5, 1, 7, 4, 2, 3, 0},

{ 7, 6, 2, 0, 5, 3, 4, 1},

{ 0, 7, 3, 1, 6, 4, 5, 2},

{ 1, 0, 4, 2, 7, 5, 6, 3},

{ 2, 1, 5, 3, 0, 6, 7, 4},

{ 1, 2, 4, 0, 6, 3, 5, 7},

{ 2, 3, 5, 1, 7, 4, 6, 0},

{ 3, 4, 6, 2, 0, 5, 7, 1},

{ 4, 5, 7, 3, 1, 6, 0, 2},

128 APPENDIX A. MBOX VALUES

{ 5, 6, 0, 4, 2, 7, 1, 3},

{ 6, 7, 1, 5, 3, 0, 2, 4},

{ 7, 0, 2, 6, 4, 1, 3, 5},

{ 0, 1, 3, 7, 5, 2, 4, 6}

};

Appendix B

Performance Simulation
Results

The results of the performance simulation for GCM(0), GCM(256), GCM(4k),
GCM(8k) and GCM(64k) schemes are shown in Figure B.1, Figure B.2, Fig-
ure B.3, Figure B.4 and Figure B.5 respectively. These results demonstrate
that GSCM(x) is faster than GCM(x)-Pre and GCM(x)-On.

129

130 APPENDIX B. PERFORMANCE SIMULATION RESULTS

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure B.1: Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(0) Schemes.

131

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure B.2: Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(256) Schemes.

132 APPENDIX B. PERFORMANCE SIMULATION RESULTS

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure B.3: Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(4k) Schemes.

133

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure B.4: Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(8k) Schemes.

134 APPENDIX B. PERFORMANCE SIMULATION RESULTS

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure B.5: Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(64k) Schemes.

Appendix C

Network Simulation Results

Figure C.1, Figure C.2, Figure C.3, Figure C.4 and Figure C.5 present the
simulation results for GCM(0), GCM(256), GCM(4k), GCM(8k) and GCM(64k)
schemes, respectively. From these results, it is clear that GSCM(x) schemes are
faster than GCM(x)-Pre and GCM(x)-On schemes in encrypting small packets.
For large packets, the encryption overhead is considered negligible for all the
schemes.

135

136 APPENDIX C. NETWORK SIMULATION RESULTS

(a) Simulation parameters (α=40 and UNIT=100,000).

(b) Simulation parameters (α=1500 and UNIT=100,000).

Figure C.1: Network simulation: average time (in ms) needed to process a
packet, using GCM(0) Schemes.

137

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure C.2: Network simulation: average time (in ms) needed to process a
packet, using GCM(256) Schemes.

138 APPENDIX C. NETWORK SIMULATION RESULTS

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure C.3: Network simulation: average time (in ms) needed to process a
packet, using GCM(4k) Schemes.

139

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure C.4: Network simulation: average time (in ms) needed to process a
packet, using GCM(8k) Schemes.

140 APPENDIX C. NETWORK SIMULATION RESULTS

(a) Simulation parameters (α=40 and UNIT=10,000).

(b) Simulation parameters (α=1500 and UNIT=10,000).

Figure C.5: Network simulation: average time (in ms) needed to process a
packet, using GCM(64k) Schemes.

Appendix D

Disk Encryption Performance
Results

The complete reported results of the benchmarking application are listed in the
following tables. The columns Min, Max, Avg and SD, denote the minimum,
the maximum, the average and the standard deviation of the measurement
points, respectively.

Table D.1: Results of Disk Performance Simulation (Test=Encrypt, Key=128,
Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 28.58 287.69 246.12 50.37
CBC 19.32 266.48 227.69 46.06
SCC 19.25 264.37 226.62 47
ESCC 19.26 233.9 200.65 40.52
LRW 16.92 135.12 121.57 18.82
XTS 19.11 187.4 164.87 30.03
MCB 19.11 250.9 215 44.2
ELEPHANT 18.63 174.5 154.13 27.07
ELEPHANT+ 18.31 171.74 152.67 26.08
ELEPHANT* 18.69 184.72 162.18 31.72

141

142 APPENDIX D. DISK ENCRYPTION PERFORMANCE RESULTS

Table D.2: Results of Disk Performance Simulation (Test=Decrypt, Key=128,
Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 19.19 284.51 241.9 50.33
CBC 19.07 263.39 224.03 46.89
SCC 19.23 262.51 225.46 45.55
ESCC 19.17 231.65 199.91 39.88
LRW 16.88 136.41 122.46 18.89
XTS 19.03 185.67 163.43 29.91
MCB 18.23 249.56 215.36 42.89
ELEPHANT 18.38 172.62 151.67 29.18
ELEPHANT+ 18.26 170.26 150.04 26.77
ELEPHANT* 18.75 183.69 160.38 29.55

Table D.3: Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=128, Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 16.05 257.02 214.15 45.49
CBC 15.93 239.09 202.96 41.01
SCC 14.72 238.01 198.31 44.99
ESCC 15.96 212.34 181.22 35.6
LRW 14.2 128.31 113.79 18.73
XTS 15.82 173.54 150.76 27.9
MCB 16.06 229.41 193.33 39.7
ELEPHANT 15.2 161.4 141.26 25.35
ELEPHANT+ 14.97 159.51 138.84 25.47
ELEPHANT* 15.23 170.84 147.52 27.68

Table D.4: Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=128, Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 16.06 252.9 212.58 43.51
CBC 15.88 235.61 196.27 42.5
SCC 15.9 234.62 197.34 40.48
ESCC 18.58 209.84 178.02 34.3
LRW 14.15 127.77 112.77 19.84
XTS 15.48 171.81 147.92 27.22
MCB 15.78 225.36 190.83 39.08
ELEPHANT 14.27 158.33 136.94 25.91
ELEPHANT+ 14.8 157.74 135.88 26.29
ELEPHANT* 14.52 167.63 143.78 28.51

143

Table D.5: Results of Disk Performance Simulation (Test=Encrypt, Key=256,
Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 19.25 212.79 184.86 35.51
CBC 19.16 199.69 174.48 32.01
SCC 19.12 197.18 172.56 31.29
ESCC 19.06 179.91 158.85 27.64
LRW 15.7 116.29 105.36 15.4
XTS 17.8 151.48 135.2 22.01
MCB 19.11 189.83 167.75 28.44
ELEPHANT 17.08 141.12 126.49 20.21
ELEPHANT+ 16.77 139.8 124.95 20.73
ELEPHANT* 17.33 147.9 132.42 21.03

Table D.6: Results of Disk Performance Simulation (Test=Decrypt, Key=256,
Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 19.24 211.78 185.13 33.44
CBC 19.11 197.98 173.24 31.46
SCC 19.06 196.94 172.98 31.95
ESCC 18.94 178.61 157.09 27.95
LRW 15.73 116.39 105.25 15.59
XTS 17.68 150.65 134.53 22.28
MCB 19.17 189 166.67 30.33
ELEPHANT 16.79 140.64 124.86 22.5
ELEPHANT+ 16.7 138.88 124.34 20.32
ELEPHANT* 17.08 147.44 131.42 21.97

Table D.7: Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=256, Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 15.98 194.72 167.83 31.82
CBC 16.14 183.5 159.12 29.1
SCC 12.56 182.83 156.48 32.3
ESCC 15.38 167.58 144.85 27.46
LRW 13.26 111.04 98.74 15.84
XTS 14.81 142.32 125.34 21.01
MCB 15.75 177.17 153.25 28.41
ELEPHANT 14.08 132.61 117.55 19.87
ELEPHANT+ 13.84 131.43 116.33 19.88
ELEPHANT* 14.09 139.2 122.38 21.35

144 APPENDIX D. DISK ENCRYPTION PERFORMANCE RESULTS

Table D.8: Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=256, Step=512 byte, Loops=1000).

Min Max Avg SD
ECB 16.02 193.82 165.07 32.04
CBC 15.62 181.43 155.54 29.51
SCC 15.65 180.31 154.88 29.49
ESCC 15.36 165.24 142.74 26.79
LRW 13.23 110.31 98.64 15.7
XTS 14.27 141.14 123.03 21.6
MCB 15.52 175 151.08 28.93
ELEPHANT 13.74 130.75 114.65 19.96
ELEPHANT+ 11.58 129.46 114 21.21
ELEPHANT* 13.95 137.39 120.38 20.7

Table D.9: Results of Disk Performance Simulation (Test=Encrypt, Key=128,
Step=1 MB, Loops=10).

Min Max Avg SD
ECB 277.14 310.43 305.78 6.07
CBC 231.78 285.95 281.21 8.99
SCC 127.69 283.53 278.14 14.84
ESCC 212.5 247.52 243.92 5.79
LRW 126.87 140.56 138.74 2.29
XTS 176.5 196.65 194.44 3.25
MCB 233.52 267.88 263.95 5.82
ELEPHANT 161.3 182.28 179.89 3.14
ELEPHANT+ 114.53 179.94 176.72 6.55
ELEPHANT* 156.92 194.18 191.22 4.52

Table D.10: Results of Disk Performance Simulation (Test=Decrypt, Key=128,
Step=1 MB, Loops=10).

Min Max Avg SD
ECB 263.17 307.02 302.72 7.33
CBC 245.62 281.46 277.55 6.65
SCC 249.55 281.08 276.94 5.82
ESCC 219.12 246.32 242.89 4.92
LRW 129.86 140.56 139.15 2.13
XTS 172.84 195.27 192.62 4.25
MCB 236.59 266.48 262.89 5.26
ELEPHANT 160.45 181.08 178.64 2.92
ELEPHANT+ 64.4 178.19 175.34 8.81
ELEPHANT* 171.09 192.87 190.12 3.55

145

Table D.11: Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=128, Step=1 MB, Loops=10).

Min Max Avg SD
ECB 39.99 85.36 61.05 4.21
CBC 56.84 75.2 60.14 3.42
SCC 56.42 75.13 60.04 3.35
ESCC 54.85 71.19 58.1 2.87
LRW 46.57 60.17 49 1.9
XTS 52.5 67.62 54.68 2.51
MCB 56.19 75.68 59.17 3.09
ELEPHANT 50.29 66.98 53.42 2.39
ELEPHANT+ 50.51 67.6 53.22 2.46
ELEPHANT* 50.2 67.85 54.42 2.56

Table D.12: Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=128, Step=1 MB, Loops=10).

Min Max Avg SD
ECB 215.01 252.26 235.68 4.99
CBC 200.3 249.77 220.81 5.26
SCC 201.57 243.16 220.48 5.02
ESCC 181.31 216.36 197.77 4.27
LRW 112.86 132.3 123.57 2.29
XTS 151.33 175.9 164.56 3.14
MCB 192.5 239.05 213.02 5.48
ELEPHANT 132.58 162.39 153.8 2.97
ELEPHANT+ 137.64 164.28 152.04 2.95
ELEPHANT* 149.73 175.91 162.26 3.04

Table D.13: Results of Disk Performance Simulation (Test=Encrypt, Key=256,
Step=1 MB, Loops=10).

Min Max Avg SD
ECB 202.83 224.86 221.96 4.03
CBC 181.34 209.63 206.96 4.19
SCC 188.65 208.25 204.6 3.57
ESCC 167.8 188.75 186.2 3.38
LRW 109.19 119.86 118.74 1.92
XTS 142.23 157.74 155.68 3.07
MCB 181.87 200.27 197.72 3.33
ELEPHANT 129.82 146.41 144.55 2.78
ELEPHANT+ 133.3 145.29 143.23 2.46
ELEPHANT* 138.52 154.3 152.2 2.66

146 APPENDIX D. DISK ENCRYPTION PERFORMANCE RESULTS

Table D.14: Results of Disk Performance Simulation (Test=Decrypt, Key=256,
Step=1 MB, Loops=10).

Min Max Avg SD
ECB 199.01 223.68 221.08 4.26
CBC 188.89 209.11 206.72 3.79
SCC 180.44 207.54 204.26 4.84
ESCC 167.98 187.41 184.83 3.53
LRW 110.06 119.94 118.85 1.74
XTS 141.62 156.8 154.95 2.81
MCB 180.68 199.32 196.95 3.64
ELEPHANT 131.27 146.01 144.26 2.41
ELEPHANT+ 128.79 144.33 142.38 2.44
ELEPHANT* 135.09 153.59 151.38 2.86

Table D.15: Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=256, Step=1 MB, Loops=10).

Min Max Avg SD
ECB 52.88 73.68 56.75 3
CBC 40.19 68.14 55.53 2.83
SCC 53 67.96 55.44 2.3
ESCC 50.87 67.53 54.03 2.47
LRW 44.66 56.22 46.21 1.6
XTS 48.06 62.49 50.96 2.06
MCB 52.07 67.52 54.92 2.55
ELEPHANT 47.63 60.51 49.69 1.94
ELEPHANT+ 47.53 60.55 49.54 1.9
ELEPHANT* 48.45 62.99 50.66 2.07

Table D.16: Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=256, Step=1 MB, Loops=10).

Min Max Avg SD
ECB 167.43 193.09 182.51 3.56
CBC 160.29 191 172.97 3.29
SCC 157.5 189.05 171.46 3.25
ESCC 146.9 171.6 158.05 3.03
LRW 99.21 112.28 106.81 1.8
XTS 123.4 146.02 135.06 2.73
MCB 151.2 184.15 167.15 3.64
ELEPHANT 117.96 135.22 127.59 2.16
ELEPHANT+ 115.01 134.65 126.41 2.2
ELEPHANT* 124.67 142.7 133.51 2.26

Bibliography

[1] The IEEE Security in Storage Work Group. http://siswg.org/, 2008.

[2] FIPS PUB 186. Digital Signature Standard (DSS), 1994.

[3] C. Adams. Constructing Symmetric Ciphers Using the CAST Design
Procedure. Design, Codes and Cryptography, 12(3), 1997.

[4] C. Adams and J. Gilchrist. The CAST-256 Encryption Algorithm. RFC
2612, 1999.

[5] R. Anderson and E. Biham. Two Practical and Provable Secure Block
Ciphers: BEAR and LION. In Proceedings of Fast Software Encryption,
1996.

[6] R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the
Advanced Encryption Standard. In Proceeding of the AES conference,
1998.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In Proceedings of the Annual Sym-
posium on Foundations of Computer Science, 1997.

[8] M. Bellare, T. Krovetz, and P. Rogaway. Luby-Racko� Backwards: In-
creasing Security By Making Block Ciphers Non-Invertible. In Proceedings
of Advances in Cryptology � EUROCRYPT, 1998.

[9] M. Bellare, P. Rogaway, and D. Wagner. The EAX Mode of Operation.
In Proceedings of Fast Software Encryption, 2004.

[10] L. Berger. RSVP over ATM Implementation Requirements. RFC 2380,
1998.

[11] D. Bernstein. Floating-Point Arithmetic and Message Authentication.
http://cr.yp.to/papers.html, 1999.

[12] E. Biham. New Types of Cryptanalytic Attacks Using Related Keys. In
Proceedings of Advances in Cryptology � EUROCYRPT, 1994.

[13] E. Biham. On Matsui's Linear Cryptanalysis. In Proceedings of Advances
in Cryptology � EUROCYRPT, 1995.

[14] E. Biham, A. Biryukov, N. Ferguson, L. Knudsen, B. Schneier, and
A. Shamir. Cryptanalysis of MAGENTA. www.ii.uib.no/~larsr/

papers/magenta.pdf, 1999.

147

148 BIBLIOGRAPHY

[15] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Di�erentials. Journal of Cryptology,
18(4), 2005.

[16] E. Biham, O. Dunkelman, and N. Keller. The Rectangle Attack - Rect-
angling the Serpent. In Proceedings of Advances in Cryptology � EURO-
CYRPT, 2001.

[17] E. Biham, O. Dunkelman, and N. Keller. Related-key Boomerang and
Rectangle Attacks. In Proceedings of Advances in Cryptology � EURO-
CYRPT, 2005.

[18] E. Biham, O. Dunkelman, and N. Keller. Related-Key Impossible Di�er-
ential Attacks on AES-192. In Proceedings of RSA Conference, 2006.

[19] E. Biham and N. Keller. Cryptanalysis of Reduced Variants of Rijndael.
In Proceedings of the AES Conference, 2000.

[20] E. Biham and A. Shamir. Di�erential Cryptanalysis of DES-Like Cryp-
tosystems. In Proceedings of Advances in Cryptology � CRYPTO, 1991.

[21] A. Biryukov. Boomerang attack on 5- and 6-round AES. In Proceedings
of the AES Conference, 2005.

[22] A. Biryukov and D. Wagner. Advanced Slide Attacks. In Proceedings of
Advances in Cryptology � EUROCYRPT, 2000.

[23] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and Secure Message Authentication. In Proceedings of Advances in
Cryptology � CRYPTO, 1999.

[24] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scav-
enius. Rabbit: A New High-Performance Stream Cipher. In Proceedings
of Fast Software Encryption, 2003.

[25] J. Bonneau and I. Mironov. Cache-Collision Timing Attacks Against AES.
In Proceedings of Cryptographic Hardware and Embedded Systems, 2006.

[26] D. Borman, S. Deering, and R. Hinden. IPv6 Jumbograms. RFC 2675,
1999.

[27] L. Brown and J. Pieprzyk. Introducing the New LOKI97 Block Cipher.
In Proceeding of the AES Candidate Conference, 1998.

[28] C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. Matyas, L. O'Connor, M. Peyravian, D. Sa�ord, and N. Zu-
nic. MARS � A Candidate Cipher for AES. In Proceeding of the AES
conference, 1998.

[29] G. Carter, E. Dawson, and L. Nielsen. Key Schedules of Iterative Block
Ciphers. In Proceedings of the Australasian Conference on Information
Security and Privacy, 1998.

[30] G. Carter, E. Dawson, and L. Nielsen. Key Schedule Classi�cation of the
AES Candidates. In Proceedings of the AES Conference, 1999.

BIBLIOGRAPHY 149

[31] J. Cheon, M. Kim, K. Kim, J. Lee, and S. Kang. Improved Impossible
Di�erential Cryptanalysis of Rijndael and Crypton. In Proceedings of the
International Conference Seoul on Information Security and Cryptology,
2002.

[32] K. Chun, S. Kim, S. Lee, S. Hak Sung, and S. Yoon. Di�erential and
Linear Cryptanalysis for 2-Round SPNs. Information Processing Letters,
87(5), 2003.

[33] D. Coppersmith, D. Johnson, and S. Matyas. A Proposed Mode for Triple-
DES Encryption. IBM Journal of Research and Development, 40(2), 1996.

[34] J. Daemen. Limitations of the Even-Mansour Construction. In Proceedings
of Advances in Cryptology � ASIACRYPT, 1991.

[35] J. Daemen and C. Clapp. Fast Hashing and Stream Encryption with
PANAMA. In Proceedings of Fast Software Encryption, 1998.

[36] J. Daemen, L. Knudsen, and V. Rijmen. The Block Cipher Square. In
Proceedings of Fast Software Encryption, 1997.

[37] J. Daemen and V. Rijmen. AES Proposal: Rijndael.
http://citeseer.ist.psu.edu/daemen98aes.html, 1998.

[38] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New
York, Inc., 2002.

[39] J. Davidson and S. Jinturkar. An Aggressive Approach to Loop Unrolling.
Technical report, Department of Computer Science. University of Virginia.
Charlottesville, 1995.

[40] W. Di�e and M. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory, 22(6), 1976.

[41] J. Dunn and C. Martin. Terminology for ATM Benchmarking. RFC 2761,
2000.

[42] M. El-Fotouh and K. Diepold. AES Cryptographic Modes of Operation for
High-Speed Networks. In Proceedings of the International Conference on
High Performance Computing, Networking and Communication Systems,
2007.

[43] M. El-Fotouh and K. Diepold. Distributed Computing: Windows and
Linux. Dr.Dobb's Journal, 2007.

[44] M. El-Fotouh and K. Diepold. Statistical Testing for Disk Encryption
Modes of Operations. Cryptology ePrint Archive, Report 2007/362, 2007.

[45] M. El-Fotouh and K. Diepold. A Fast Encryption Scheme for Networks
Applications. In Proceedings of SECRYPT, 2008.

[46] M. El-Fotouh and K. Diepold. A New Narrow Block Mode of Operations
for Disk Encryption. In Proceedings of the International Conference on
Information Assurance and Security, 2008.

150 BIBLIOGRAPHY

[47] M. El-Fotouh and K. Diepold. Dynamic Substitution Model. In Pro-
ceedings of the International Conference on Information Assurance and
Security, 2008.

[48] M. El-Fotouh and K. Diepold. Galois Substitution Counter Mode
(GSCM). In Proceedings of the International Workshop on Security and
Privacy in Enterprise Computing in conjunction with the IEEE Interna-
tional EDOC Conference, 2008.

[49] M. El-Fotouh and K. Diepold. The Substitution Cipher Chaining Mode.
In Proceedings of SECRYPT, 2008.

[50] M. El-Fotouh and K. Diepold. Breaking the Substitution Cipher Chain-
ing Mode (SCC-256). In Proceedings of the International Conference on
Cryptography, Coding and Information Security, 2009.

[51] M. El-Fotouh and K. Diepold. Cryptanalysis of Substitution Cipher
Chaining Mode (SCC). In Proceedings of IEEE International Conference
on Communications, 2009.

[52] M. El-Fotouh and K. Diepold. Dynamic Injection Model. In Proceedings
of International Conference on Cryptography, Coding and Information Se-
curity, 2009.

[53] M. El-Fotouh and K. Diepold. Dynamic Permutation Model. In Proceed-
ings of International Conference on Information Security and Privacy,
2009.

[54] M. El-Fotouh and K. Diepold. Extended Substitution Cipher Chaining
Mode (ESCC). Cryptology ePrint Archive, Report 2009/182, 2009.

[55] M. El-Fotouh and K. Diepold. The Analysis of Galois Substitution
Counter Mode (GSCM). Cryptology ePrint Archive, Report 2009/140,
2009.

[56] M. El-Fotouh and K. Diepold. The Pushdown Attack on AES. In Pro-
ceedings of SECUREWARE, 2009.

[57] M. El-Fotouh and K. Diepold. The Security of Dynamic and Static Substi-
tution Models. In Proceedings of International Conference on Information
Security and Privacy, 2009.

[58] S. Even and Y. Mansour. A Construction of a Cipher from a Single
Pseudorandom Permutation. Journal of Cryptology: the journal of the
International Association for Cryptologic Research, 10(3), 1997.

[59] Federal Information Processing Standards Publication 46. Data Encryp-
tion Standard, 1977.

[60] N. Ferguson. AES-CBC + Elephant di�user : A Disk Encryp-
tion Algorithm for Windows Vista. http://download.microsoft.

com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/

BitLockerCipher200608.pdf, 2006.

BIBLIOGRAPHY 151

[61] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and
D. Whiting. Improved Cryptanalysis of Rijndael. In Proceedings of Fast
Software Encryption, 2001.

[62] C. Fruhwirth. New Methods in Hard Disk Encryption. http://clemens.
endorphin.org/nmihde/nmihde-A4-ds.pdf, 2005.

[63] K. Gaj and P. Chodowiec. Hardware Performance of
the AES Finalists - Survey and Analysis of Results.
http://ece.gmu.edu/crypto/AES_survey.pdf, 2000.

[64] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In Proceedings of Advances in Cryptology �
CRYPTO, 1985.

[65] H. Gilbert and M. Minier. A Collision Attack on 7 Rounds of Rijndael.
In Proceedings of the AES Conference, 2000.

[66] B. Gladman. http://fp.gladman.plus.com/AES/index.htm, 2008.

[67] L. Granboulan, P. Nguyen, F. Noilhan, and S. Vaudenay. DFCv2. In
Proceedings of Selected Areas in Cryptography, 2001.

[68] C. Greg. The Nature of the Beast: Recent Tra�c Measurements from an
Internet Backbone. http://citeseer.ist.psu.edu/673025.html, 1998.

[69] D. Grossman and J. Heinanen. Multiprotocol Encapsulation over ATM
Adaptation Layer 5. RFC 2684, 1999.

[70] S. Gueron. Advanced Encryption Standard (AES) Instructions Set.
http://softwarecommunity.intel.com/articles/eng/3788.htm, 2008.

[71] S. Halevi. EME*: Extending EME to Handle Arbitrary-Length Messages
With Associated Data. http://citeseer.ist.psu.edu/halevi04eme.html,
2004.

[72] S. Halevi. Invertible Universal Hashing and the TET Encryption Mode.
Cryptology ePrint Archive, Report 2007/014, 2007.

[73] S. Halevi and H. Krawczyk. Security Under Key-Dependent Inputs. In
Proceedings of the ACM conference on Computer and communications
security, 2007.

[74] S. Halevi and P. Rogaway. A Parallelizable Enciphering Mode. Cryptology
ePrint Archive, Report 2003/147.

[75] S. Halevi and P. Rogaway. A Tweakable Enciphering Mode. Cryptology
ePrint Archive, Report 2003/148.

[76] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409.
Technical report, 1998.

[77] J. Hastad. The Security of the IAPM and IACBC Modes. Journal of
Cryptology, 20(2), 2007.

152 BIBLIOGRAPHY

[78] S. Hong, J. Kim, S. Lee, and B. Preneel. Related-Key Rectangle Attacks
on Reduced Versions of SHACAL-1 and AES-192. In Proceedings of Fast
Software Encryption, 2005.

[79] S. Hong, S. Lee, J. Lim, J. Sung, D. Cheon, and I. Cho. Provable Security
Against Di�erential and Linear Cryptanalysis for the SPN Structure. In
Proceedings of Fast Software Encryption, 2001.

[80] R. Housley. Using Advanced Encryption Standard (AES) Counter Mode
With IPsec Encapsulating Security Payload (ESP). RFC 3686, 2004.

[81] K. Huber. The MAGENTA Block Cipher Algorithm. In Proceedings of
the AES Conference, 1998.

[82] IEEE P1619. Draft Proposal for Tweakable Narrow-block Encryption.
http://www.siswg.org/docs/LRW-AES-10-19-2004.pdf, 2004.

[83] G. Jakimoski and Y. Desmedt. Related-Key Di�erential Cryptanalysis of
192-bit Key AES Variants. In Proceedings of Selected Areas in Cryptog-
raphy, 2004.

[84] O. Jung, S. Kuhn, C. Ruland, and K. Wollenweber. Enhanced Modes of
Operation for the Encryption in High-Speed Networks and Their Impact
on QoS. In Proceedings of the Australasian Conference on Information
Security and Privacy, 2001.

[85] L. Keliher. Re�ned Analysis of Bounds Related to Linear and Di�erential
Cryptanalysis for the AES. In Proceedings of the Advanced Encryption
Standard, 2005.

[86] L. Keliher, H. Meijer, and S. Tavares. Improving the Upper Bound on the
Maximum Average Linear Hull Probability for Rijndael. In Proceedings of
Selected Areas in Cryptography, 2001.

[87] L. Keliher, H. Meijer, and S. Tavares. New Method for Upper Bounding
the Maximum Average Linear Hull Probability for SPNs. In Proceedings
of Advances in Cryptology � EUROCYRPT, 2001.

[88] L. Keliher and J. Sui. Exact Maximum Expected Di�erential and Linear
Probability for Two-Round Advanced Encryption Standard. Information
Security, IET, 1(2), 2007.

[89] J. Kelsey and B. Schneier. Key-Schedule Cryptanalysis of DEAL. In
Proceedings of Selected Areas in Cryptography, 2000.

[90] J. Kelsey, B. Schneier, and D. Wagner. Related-key Cryptanalysis of 3-
WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Proceed-
ings of the International Conference on Information and Communication
Security, 1997.

[91] S. Kent and R. Atkinson. IP Authentication Header. RFC 2402, 1998.

[92] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP). RFC
2406, 1998.

BIBLIOGRAPHY 153

[93] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol.
RFC 2401, 1998.

[94] J. Kim, S. Hong, and B. Preneel. Related-Key Rectangle Attacks on Re-
duced AES-192 and AES-256. In Proceedings of Fast Software Encryption,
2007.

[95] J. Kim, G. Kim, S. Hong, S. Lee, and D. Hong. The Related-Key Rect-
angle Attack - Application to SHACAL-1. In Proceedings of Information
Security and Privacy, 2004.

[96] L. Knudsen and V. Rijmen. On the Decorrelated Fast Cipher (DFC) and
Its Theory. In Proceedings of Fast Software Encryption, 1999.

[97] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177), 1987.

[98] L. Hars. Public Comments on the XTS-AES Mode. http:

//csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/

XTS/XTS_comments-Hars.pdf, 2008.

[99] RSA Laboratories. The RC6 Block Cipher. In Proceeding of the AES
conference, 1998.

[100] X. Lai and J. Massey. A Proposal for a New Block Encryption Standard.
In Proceedings of Advances in Cryptology � EUROCYRPT, 1991.

[101] Y. Lai, L. Chang, L. Chen, C. Chou, and C. Chiu. A Novel Memoryless
AES Cipher Architecture for Networking Applications. In Proceedings of
the IEEE International Symposium on Circuits and Systems, 2004.

[102] H. Li and J. Li. A High Performance Sub-Pipelined Architecture for AES.
In Proceedings of the International Conference on Computer Design, 2005.

[103] T. Liang, Y. Liu, and C. Shieh. Adding Memory Resource Consideration
into Workload Distribution for Software DSM Systems. In Proceeding of
CLUSTER, 2003.

[104] C. Lim. CRYPTON: A New 128-bit Block Cipher. In Proceeding of the
AES conference, 1998.

[105] M. Liskov, R. Rivest, and D. Wagner. Tweakable Block Ciphers. In
Proceedings of Advances in Cryptology � CRYPTO, 2002.

[106] S. Lucks. On Security of the 128-Bit Block Cipher DEAL. In Proceedings
of Fast Software Encryption, 1999.

[107] S. Lucks. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit
Keys. In Proceeding of the AES conference, 2000.

[108] M. Ball. NIST's Consideration of XTS-AES as standardized by
IEEE Std 1619-2007. http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/comments/XTS/collected_XTS_comments.pdf, 2008.

154 BIBLIOGRAPHY

[109] J. Massey, G. Khachatrian, and M. Kuregian. Nomination of SAFER+ as
Candidate Algorithm for the Advanced Encryption Standard (AES). In
Proceeding of the AES conference, 1998.

[110] M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Proceedings
of Advances in Cryptology � EUROCYRPT, 1994.

[111] M. Matsui and T. Tokita. Cryptanalysis of a Reduced Version of the Block
Cipher E2. In Proceedings of Fast Software Encryption, 1999.

[112] L. May, M. Henricksen, W. Millan, G. Carter, and E. Dawson. Strength-
ening the Key Schedule of the AES. In Proceedings of the Australian
Conference on Information Security and Privacy, 2002.

[113] D. McGrew. Counter Mode Security: Analysis and Recommendations.
http://citeseer.ist.psu.edu/mcgrew02counter.html, 2002.

[114] D. McGrew and S. Fluhrer. The Extended Codebook (XCB) Mode of
Operation. Cryptology ePrint Archive, Report 2004/278, 2004.

[115] D. McGrew and J. Viega. Arbitrary block length mode.
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf, 2004.

[116] D. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM).
http://citeseer.ist.psu.edu/mcgrew04galoiscounter.html, 2004.

[117] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[118] V. Miller. Use of Elliptic Curves in Cryptography. In Proceedings of
Advances in Cryptology � CRYPTO, 1986.

[119] S. Mister and S. Tavares. Cryptanalysis of RC4-like Ciphers. In Proceed-
ings of Selected Areas in Cryptography, 1999.

[120] National Institute of Standards and Technology. Advanced Encryption
Standard, NIST FIPS PUB 197, 2001.

[121] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and
E. Roback. Report on the Development of the Advanced Encryption Stan-
dard (AES). Technical report, 2000.

[122] M. Neve and J. Seifert. Advances on Access-Driven Cache Attacks on
AES. In Proceedings of Selected Areas in Cryptography, 2006.

[123] M. Neve, J. Seifert, and Z. Wang. A Re�ned Look at Bernstein's AES Side-
Channel Analysis. In Proceedings of the ACM Symposium on Information,
computer and communications security, 2006.

[124] NIST. Status Report on the First Round of the Development of the
Advanced Encryption Standard. http://nvl.nist.gov/pub/nistpubs/
jres/104/5/j45nec.pdf, 1999.

[125] NIST. Public Comments on AES Candidate Algorithms - Round 2. http:
//csrc.nist.gov/archive/aes/round2/comments/R2comments.txt,
2000.

BIBLIOGRAPHY 155

[126] NIST. Advanced Encryption Standard (AES) Development E�ort. http:
//csrc.nist.gov/archive/aes/index.html, 2001.

[127] NIST. Announcing the ADVANCED ENCRYPTION STANDARD
(AES). Technical Report 197, Federal Information Processing Standards
Publication, 2001.

[128] NIST. Guide to Storage Encryption Technologies for End User
Devices. http://csrc.nist.gov/publications/nistpubs/800-111/

SP800-111.pdf, 2007.

[129] NIST. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-
38D, 2007.

[130] NIST. Public Comments on the XTS-AES Mode. http:

//csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/

XTS/collected_XTS_comments.pdf, 2008.

[131] NIST. National Institute of Standards and Technology. http://www.

nist.gov/, 2009.

[132] K. Nyberg and L. Knudsen. Provable Security Against a Di�erential At-
tack. Journal of Cryptology, 8(1), 1995.

[133] E. Oswald, J. Daemen, and V. Rijmen. AES - The State of the Art
of Rijndael's Security. http://www.iaik.tugraz.at/aboutus/people/

oswald/papers/aes_report.pdf, 2002.

[134] IEEE P1619. IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices. IEEE Std 1619-2007, 2008.

[135] S. Park, S. Sung, S. Chee, E. Yoon, and J. Lim. On the Security of
Rijndael-Like Structures Against Di�erential and Linear Cryptanalysis.
In Proceedings of Advances in Cryptology � ASIACRYPT, 2002.

[136] R. Phan. Impossible Di�erential Cryptanalysis of 7-Round Advanced En-
cryption Standard (AES). Information Processing Letters, 91(1), 2004.

[137] G. Poupard and S. Vaudenay. Decorrelated Fast Cipher: An AES Candi-
date Well Suited for Low Cost Smart Card Applications. In Proceedings of
the International Conference on Smart Card Research and Applications,
2000.

[138] R. Rivest. The RC5 Encryption Algorithm. http://people.csail.mit.
edu/rivest/Rivest-rc5.pdf, 1995.

[139] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2), 1978.

[140] P. Rogaway. The Security of DESX.
http://citeseer.ist.psu.edu/rogaway96security.html, 1996.

156 BIBLIOGRAPHY

[141] P. Rogaway. E�cient Instantiations of Tweakable Block ciphers and Re-
�nements to Modes OCB and PMAC. http://citeseer.ist.psu.edu/ rog-
away03e�cient.html, 2003.

[142] P. Rogaway, M. Bellare, and J. Black. OCB: A Block-Cipher Mode of
Operation for E�cient Authenticated Encryption. ACM Transactions on
Information and System Security, 6(3), 2003.

[143] F. Sano, K. Ohkuma, H. Shimizu, and S. Kawamura. On the Security
of Nested SPN Cipher against the Di�erential and Linear Cryptanalysis.
IEICE transactions on fundamentals of electronics, communications and
computer sciences, 86(1), 2003.

[144] B. Schneier. Description of a New Variable-Length Key, 64-bit Block
Cipher (Blow�sh). In Proceedings of Fast Software Encryption, 1994.

[145] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Fer-
guson. The Two�sh Encryption Algorithm: A 128-bit Block Cipher.
www.schneier.com/paper-two�sh-paper.pdf, 1999.

[146] R. Schroeppel and H. Orman. Introduction to the Hasty Pudding Cipher.
In Proceeding of the AES conference, 1998.

[147] C. Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28(4), 1949.

[148] V. Shoup. On Fast and Provably Secure Message Authentication Based on
Universal Hashing. In Proceedings of Advances in Cryptology � CRYPTO,
1996.

[149] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet Packet Size
Distributions: Some Observations. Technical Report ISI-TR-2007-643,
USC/Information Sciences Institute, 2007.

[150] N. Sklavos, N. A. Moldovyan, and O. Koufopavlou. High Speed Net-
working Security: Design and Implementation of Two New DDP-Based
Ciphers. Mobile Networks Applications, 10(2), 2005.

[151] J. Soto and L. Bassham. Randomness Testing of the Advanced Encryption
Standard Finalist Candidates. Technical report, 2000.

[152] Internet World Stats. World Internet Usage and Population Statistics.
http://www.internetworldstats.com/stats.htm, 2009.

[153] K. Tesink. De�nitions of Managed Objects for ATM Management. RFC
2515, 1999.

[154] S. Tillich and J. Grossschaedl. Instruction Set Extensions for E�cient AES
Implementation on 32-bit Processors. In Proceedings of Cryptographic
Hardware and Embedded Systems, 2006.

[155] Trusted Computing Group. TCG TPM Speci�cation Version 1.2.
http://www.trustedcomputinggroup.org, 2009.

BIBLIOGRAPHY 157

[156] D. Wagner. The Boomerang Attack. In Proceedings of Fast Software
Encryption, 1999.

[157] D. Wagner, N. Ferguson, and B. Schneier. Cryptanalysis of Frog. http:
//www.counterpane.com/frog.html, 1998.

[158] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC
(CCM). RFC3610, 2003.

[159] W. Zhang, W. Wu, and D. Feng. New Results on Impossible Di�erential
Cryptanalysis of Reduced AES. In Proceedings of the Information Security
and Cryptology, 2007.

[160] W. Zhang, W. Wu, and L. Zhang. Improved Related-Key Impossible Dif-
ferential Attacks on Reduced-Round AES-256. http://www.lois.cn/LOIS-
AES/data/AES-256.pdf, 2007.

[161] W. Zhang, W. Wu, L. Zhang, and D. Feng. Improved Related-Key Im-
possible Di�erential Attacks on Reduced-Round AES-192 . In Proceedings
of Selected Areas in Cryptography, 2007.

List of Figures

2.1 Asymmetric encryption and decryption processes. 6
2.2 Symmetric encryption and decryption processes. 7
2.3 AES state arranged as a matrix. 9
2.4 The SubBytes transformation. 10
2.5 The ShiftRows transformation. 10
2.6 The MixColumns transformation. 11
2.7 The AddRoundKey operation. 11

3.1 Overview on the Pushdown attack. 22
3.2 An example of applying the pre-processing step on a Λ1-Set, when

S0,0 is the active byte (with pre-whitening). 23
3.3 An example of applying the pre-processing step on a Λ1-Set, when

S0,0 is the active byte (without pre-whitening). 24
3.4 An example of applying the pre-processing step on a ∆4-Set,

when S0,0, S1,1, S2,2 and S3,3 are the active bytes. 25
3.5 Overview on the Pushup attack. 26

4.1 Classical Encryption Model. 33
4.2 Tweakable Encryption Model. 34
4.3 General scheme of the proposed encryption models. 35
4.4 Overview of Dynamic Permutation Model. 44

5.1 Stability analysis simulation: average time (in ms) needed to
process a packet, using CBC schemes (K=128). 69

5.2 Stability analysis simulation: average time (in ms) needed to
process a packet, using CBC schemes (K=256). 70

5.3 Stability analysis simulation: average time (in ms) needed to
process a packet, using CTR schemes (K=128). 71

5.4 Stability analysis simulation: average time (in ms) needed to
process a packet, using CTR schemes (K=256). 72

5.5 Stability analysis simulation: average time (in ms) needed to
process a packet, using GCM(0) Schemes (K=128). 74

5.6 Stability analysis simulation: average time (in ms) needed to
process a packet, using GCM(0) Schemes (K=256). 75

5.7 Stability analysis simulation: average time (in ms) needed to
process a packet, using GCM(256) Schemes (K=128). 76

5.8 Stability analysis simulation: average time (in ms) needed to
process a packet, using GCM(256) Schemes (K=256). 77

158

LIST OF FIGURES 159

5.9 Performance analysis simulation: average time (in ms) needed to
process a packet, using CBC schemes. 79

5.10 Performance analysis simulation: average time (in ms) needed to
process a packet, using CTR schemes. 80

5.11 Performance analysis simulation: average time (in ms) needed to
process a packet by the fastest GCM schemes. 82

5.12 Network simulation: average time (in ms) needed to process a
packet, using CBC and CTR schemes. 84

5.13 Network simulation: average time (in ms) needed to process a
packet (α = 40) by the fastest GCM schemes. 85

6.1 General scheme for encrypting a sector. 90
6.2 Overview of AES-CBC with Elephant Di�user. 102
6.3 The average throughput of di�erent modes of operation (Key=128,

Step=512 byte, Loops=1000). 109
6.4 The average throughput of di�erent modes of operation (Key=256,

Step=512 byte, Loops=1000). 109
6.5 The average throughput of di�erent modes of operation (Key=128,

Step=1 MB, Loops=10). 110
6.6 The average throughput of di�erent modes of operation (Key=256,

Step=1 MB, Loops=10). 111

B.1 Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(0) Schemes. 130

B.2 Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(256) Schemes. 131

B.3 Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(4k) Schemes. 132

B.4 Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(8k) Schemes. 133

B.5 Performance analysis simulation: average time (in ms) needed to
process a packet, using GCM(64k) Schemes. 134

C.1 Network simulation: average time (in ms) needed to process a
packet, using GCM(0) Schemes. 136

C.2 Network simulation: average time (in ms) needed to process a
packet, using GCM(256) Schemes. 137

C.3 Network simulation: average time (in ms) needed to process a
packet, using GCM(4k) Schemes. 138

C.4 Network simulation: average time (in ms) needed to process a
packet, using GCM(8k) Schemes. 139

C.5 Network simulation: average time (in ms) needed to process a
packet, using GCM(64k) Schemes. 140

List of Tables

2.1 AES Encryption. 9

2.2 AES Decryption. 12

2.3 The Equivalent Inverse Cipher. 12

3.1 The complexity of some attacks on AES. 16

3.2 AES original and equivalent round functions. 20

3.3 Some related-key attacks on AES-192. 28

3.4 Some related-key attacks on AES-256. 28

3.5 The proposed AES' key schedule. 30

3.6 The proposed generalized key schedule. 31

4.1 Encrypt-DSM function. 37

4.2 DS-AES encryption function. 38

4.3 AESS1 and AESS2 encryption functions. 38

4.4 AES2S encryption function. 39

4.5 Encrypt-DIM function. 40

4.6 DI-AES encryption function. 41

4.7 AESI1 and AESI2 encryption functions (128-bit version). 42

4.8 AESI1 and AESI2 encryption functions (256-bit version). 43

4.9 AES2I encryption function. 43

4.10 DP-AES encryption function. 45

4.11 Encrypt-DPSS-AES function. 50

5.1 Memory requirements for CBC and CTR schemes per client (in
bytes). 65

5.2 Memory requirements for GCM schemes per client (in bytes). . . 66

5.3 Server con�guration. 66

5.4 Maximum reported number of clients and stable number of clients
for CBC schemes. 68

5.5 Maximum reported number of clients and stable number of clients
for CTR schemes. 73

5.6 Maximum reported number of clients and stable number of clients
for GCM schemes. 73

5.7 Speed up percentages of GSCM(x) schemes over GCM(x)-Pre and
GCM(x)-On schemes (α = 40). 81

5.8 Speed up percentages of GSCM(x) schemes over GCM(x)-Pre and
GCM(x)-On schemes (α = 1500). 81

160

LIST OF TABLES 161

5.9 Overhead percentages of GSCM(x), GCM(x)-Pre and GCM(x)-On
schemes (α = 40). 84

6.1 CBC listing for disk encryption. 92
6.2 LRW listing for disk encryption. 92
6.3 XTS listing for disk encryption. 93
6.4 MCB listing for disk encryption. 96
6.5 MCB listing for disk encryption (using AES2I). 96
6.6 SCC listing for disk encryption. 99
6.7 Di�user A and di�user B. 102
6.8 BD-Encryption and BD-Decryption results. 104
6.9 ESCC listing for disk encryption. 105
6.10 Simulation Machine Con�guration. 108

D.1 Results of Disk Performance Simulation (Test=Encrypt, Key=128,
Step=512 byte, Loops=1000). 141

D.2 Results of Disk Performance Simulation (Test=Decrypt, Key=128,
Step=512 byte, Loops=1000). 142

D.3 Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=128, Step=512 byte, Loops=1000). 142

D.4 Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=128, Step=512 byte, Loops=1000). 142

D.5 Results of Disk Performance Simulation (Test=Encrypt, Key=256,
Step=512 byte, Loops=1000). 143

D.6 Results of Disk Performance Simulation (Test=Decrypt, Key=256,
Step=512 byte, Loops=1000). 143

D.7 Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=256, Step=512 byte, Loops=1000). 143

D.8 Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=256, Step=512 byte, Loops=1000). 144

D.9 Results of Disk Performance Simulation (Test=Encrypt, Key=128,
Step=1 MB, Loops=10). 144

D.10 Results of Disk Performance Simulation (Test=Decrypt, Key=128,
Step=1 MB, Loops=10). 144

D.11 Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=128, Step=1 MB, Loops=10). 145

D.12 Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=128, Step=1 MB, Loops=10). 145

D.13 Results of Disk Performance Simulation (Test=Encrypt, Key=256,
Step=1 MB, Loops=10). 145

D.14 Results of Disk Performance Simulation (Test=Decrypt, Key=256,
Step=1 MB, Loops=10). 146

D.15 Results of Disk Performance Simulation (Test=Encrypt+Write,
Key=256, Step=1 MB, Loops=10). 146

D.16 Results of Disk Performance Simulation (Test=Read+Decrypt,
Key=256, Step=1 MB, Loops=10). 146

