
Technische Universität München
Zentrum Mathematik

Algorithms for the Computation of

Invariant Rings

Tobias Michael Kamke





Technische Universität München
Zentrum Mathematik

Algorithms for the Computation of

Invariant Rings

Tobias Michael Kamke
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Für meine Eltern.





Abstract

In this thesis, we present algorithms for the computation of invariant rings. In the first
part, we consider the case where a finite group G acts on an affine algebra A via K-
algebra automorphisms. We give an algorithm which works for arbitrary affine algebras
A, including the case where A is not reduced.
In the second part, we consider a linear algebraic group G acting regularly on an irreducible
affine variety and examine the relationship of the quotient field of the invariant ring and
the invariant field. This leads to an algorithm for the computation of invariant rings of
certain group actions. In particular, this algorithm works for unipotent groups.
In the third part, we study invariants of linear algebraic groups acting regularly on quasi-
affine varieties. We present algorithms for the cases where the group is finite or unipotent.
We also briefly discuss the case where the group is reductive. Finally, an outline is given
of how the problem of computing invariants of arbitrary linear algebraic groups acting
regularly on factorial varieties can be reduced to the problem of computing invariants of
one-dimensional tori.

Zusammenfassung

Die Arbeit untersucht Algorithmen zur Berechnung von Invariantenringen. Im ersten Teil
geht es um die Berechnung von Invarianten endlicher Gruppen, die auf affinen Algebren
mittels K-Algebra-Automorphismen operieren. Der hier entwickelte Algorithmus funk-
tioniert für beliebige affine Algebren A, also auch für nicht reduzierte affine Algebren.
Der zweite Teil behandelt reguläre Operationen von linearen algebraischen Gruppen auf
irreduziblen affinen Varietäten. Es wird zunächst der Zusammenhang zwischen dem Quo-
tientenkörper des Invariantenrings und dem Invariantenkörper untersucht. Daraus ergibt
sich ein Algorithmus zur Berechnung von Invariantenringen gewisser Gruppenoperationen.
Insbesondere ist dieser Algorithmus für unipotente Gruppen anwendbar.
Im dritten Teil werden reguläre Operationen von linearen algebraischen Gruppen auf quasi-
affinen Varietäten untersucht. Es werden Algorithmen zur Berechnung von Invarianten
endlicher und unipotenter Gruppen entwickelt, außerdem wird auch kurz der Fall reduk-
tiver Gruppen diskutiert. Schließlich wird noch ein Verfahren skizziert, welches das Prob-
lem der Berechnung von Invarianten beliebiger linearer algebraischer Gruppenoperationen
auf faktoriellen Varietäten zurückführt auf das Problem der Berechnung von Invarianten
eindimensionaler Tori.
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Introduction

Invariant theory. Invariant theory is a mathematical discipline with a long tradition.
It was about 150 years ago that mathematicians started to work in this field. In its very
beginnings, it consisted more or less of a loose collection of normal form principles de-
scribing various attempts to classify algebraic objects. Today, it is an important branch
of mathematics which links to a variety of other fields such as algebraic geometry, repre-
sentation theory and commutative algebra. Important theorems of algebra, like Hilbert’s
Basis Theorem and the Syzygy Theorem, have its roots in invariant theory.

Problem setting. Before we can give a short overview of invariant theory, we have to
specify the problem setting. The classical situation of invariant theory is the following.∗

Let K be an algebraically closed field and let G be a linear algebraic group acting regularly
on an affine variety X ⊂ Kn. This induces an action of G on the coordinate ring K[X].
A regular function f ∈ K[X] is called invariant if it is a fixed point under this action.
The invariant ring, denoted by K[X]G, is defined as the set of all invariants. It has the
structure of a K-algebra.

Historical notes. In the 19th century, great effort has been put into the development
of tools for the computation of the invariant ring in order to get a comprehensive under-
standing of its structure. At that time, Gordan was known as the expert in this field.
His work concentrated on the cases where G is a classical group. For example, several
important results about the special linear group SLn(K) are due to him.
It was Hilbert who contributed to this field with radically new ideas. In contrast to most
of his predecessors, he used non-constructive methods which were not concerned with con-
crete computations of the invariant ring. It therefore comes as no surprise that initially,
he encountered resistance from the old school invariant theorists. Gordan’s first reaction
to his work was “Das ist nicht Mathematik. Das ist Theologie.”†.
In his well-known papers ([Hil90] and [Hil93]), Hilbert proved that the invariant ring is
finitely generated as a K-algebra for an important class of groups, the so-called linearly
reductive groups. He raised the question whether this finiteness property can be general-
ized to arbitrary groups in his famous 14th problem. The latter was open for around 60
years until Nagata succeeded in finding a counter-example, i. e. a regular action of a group
G on an affine variety X such that the invariant ring K[X]G is not finitely generated (cf.
[Nag59]). Moreover, Nagata could generalize Hilbert’s finite generation result to the class
of reductive groups (cf. [Nag64]).
With the appearance of Gröbner bases in the 1960s, a new mathematical branch, compu-
tational algebra, entered the field which in turn initiated a revival of the computational
∗For a precise treatment of the terms and definitions, see the next chapter.
†“This is theology and not mathematics.”

1



aspect of invariant theory. Eventually, it was the book [Stu93] of Sturmfels which caused
a broad interest of the mathematical community in this area. Over the last two decades,
computational invariant theory has made significant progress. Naturally, it has been one
of the important goals to find an algorithm for computing generators of the invariant ring
K[X]G. It comes as no surprise that this has turned out to be extremely difficult in this
generality. Therefore, several important special cases have been investigated first.

Achievements in computational invariant theory. In the following, we list the
most important achievements in this area in chronological order. In the book of Sturmfels,
algorithms can be found for the computation of invariant rings of finite groups. Unfortu-
nately, these methods do not work for arbitrary ground fields K since they depend on a
construction which only can be done if the characteristic of the ground field K does not
divide the order of the group G.
In [vdE93], van den Essen published a method for the computation of K[X]Ga where X
is an irreducible affine variety and Ga = (K,+) is the additive group. Note that since Ga
is not reductive, it may happen that K[X]Ga is not finitely generated. In this case, van
den Essen’s method yields an infinite sequence of generators of the invariant ring.
Later, especially Kemper and Derksen achieved outstanding results in computational in-
variant theory. They deeply examined the algorithmic aspects of the computation of
generators of the invariant ring K[X]G for various classes of groups.
In [Kem96], Kemper developed an algorithm for the case that G is a finite group. Unlike
the work of Sturmfels and others, his method works for arbitrary characteristic of the
ground field. In particular, this includes the case, where the characteristic divides the or-
der of the group. Today, there exist high performace implementations of his ideas within
the computer algebra system Magma.
In [Der99], Derksen found an algorithm for the computation of K[X]G in case that X is
a vector space and G is a linearly reductive group acting linearly on X. Furthermore,
his ideas provide the possibility to compute K[X]G for arbitrary regular actions of lin-
early reductive groups on arbitrary affine varieties. Derksen’s methods are implemented
in Magma, too.
In [Kem03], Kemper could generalize Derksen’s work, he succeeded in an algorithm for
computing invariants of reductive groups acting linearly on affine space.
Finally, in [DK08], Derksen and Kemper gave a further generalization of their methods
to arbitrary actions of reductive groups on arbitrary affine varieties. Moreover, they en-
tered fresh territory and examined non-reductive cases, too. They could generalize van
den Essen’s algorithm to arbitrary characteristic. Having this as a tool, they could finally
construct a method for the computation of K[X]G if G is a connected unipotent group
and X is an irreducible affine variety. Similarly to Essen’s construction, their algorithms
terminate if and only if the invariant ring is finitely generated. Otherwise, they return an
infinite sequence of generators.

An interesting variant of the problem of computing invariant rings is the computation of
invariant fields. If X is an irreducible variety, then the invariant field, denoted by K(X)G,
is defined as the set of all rational functions which are invariant under the induced group
action of G on K(X). It has the structure of a field.
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In [MQB99], Müller-Quade and Beth provided an algorithm for the computation of gener-
ators of the invariant field for arbitrary linear algebraic groups acting linearly on a vector
space X. Later, Kemper generalized their algorithm to arbitrary actions of linear algebraic
groups on arbitrary irreducible (algebraic) varieties X (cf. [Kem07]).

Main results

Despite this impressive progress, there are still a lot of open problems in computational
invariant theory today. I want to mention two of them which are related to this thesis.
First and foremost, there does not exist an algorithm yet for the computation of invariant
rings for the general case that an arbitrary linear algebraic group acts on an arbitrary
affine variety. Although there is some progress in this direction (see [DK08] and Chapter
4 of this thesis), this problem is still unsolved.
For a solution of this problem it is helpful to examine computational methods for regular
group actions on quasi-affine varieties. Up to now – to the best of my knowledge – there has
not been any computational treatment of this generalized situation. In this thesis, various
algorithms concerning this quasi-affine case will be developed. This includes algorithms
for the computation of invariant rings of finite and unipotent groups. Furthermore –
corresponding to the original motivation for considering the quasi-affine situation – a
sketch of a method is given for reducing the problem of computing invariants of arbitrary
linear algebraic groups acting on factorial varieties to the problem of computing invariants
of one-dimensional tori acting on quasi-affine varieties.
Another open problem is motivated by the paper [Nag64] of Nagata. As mentioned earlier,
he proved that the invariant ring of a reductive group acting on an affine variety is always
finitely generated. In fact, he proved the more general result that the invariant ring of
a reductive group acting algebraically on an arbitrary affine algebra is always finitely
generated. In particular, this includes non-reduced affine algebras which do not occur as
coordinate rings of affine varieties. Therefore, the non-reduced case is not covered by the
existing algorithms of Derksen and Kemper. In this thesis, an algorithm for the case of
finite group actions will be developed which works for non-reduced algebras, too.
Finally, it is always a matter of interest to optimize the already known algorithms of
computational invariant theory. In this spirit, an alternative algorithm for computing
invariants of unipotent groups acting on irreducible affine varieties will be constructed.
This algorithm has been implemented in the computer algebra system Magma. This
thesis includes both the source code as well as a basic runtime examination.

Structure of the thesis

The (basic) requisites on algebraic geometry, on invariant theory and on computational
algebra are treated in the first chapter. It contains a precise treatment of the terms and
definitions which have been used in this preface in a somewhat sloppy way. Moreover, for
the lack of adequate references, this chapter includes the proofs of some minor elementary
results. Most of the material presented here should be well-known for invariant theorists

3



with a computational background.

An investigation of computational aspects of reductive groups acting on non-reduced
affine algebras is done in the second chapter. As mentioned above, this leads to an al-
gorithm for computing invariants of finite groups. Furthermore, this chapter includes a
discussion about the computational difficulties which arise for infinite group actions on
non-reduced affine algebras.

The third chapter starts with an examination of the relation of the quotient field of the
invariant ring and the invariant field of linear algebraic groups acting on irreducible affine
varieties. This leads to an algorithm for computing invariants of certain group actions.
In particular, this algorithm works for unipotent group actions giving an alternative to a
method of Derksen and Kemper for this case. This chapter also includes a basic runtime
examination of an implementation of this algorithm.

A generalization of computational invariant theory to a wider class of varieties, the
quasi-affines, is the content of chapter four. In the course of this chapter, various algo-
rithms are developed for this case. The chapter closes with a discussion about how an
investigation of quasi-affine varieties might be helpful for the construction of an algorithm
for computing invariant rings of arbitrary linear algebraic groups acting on factorial vari-
eties.

Finally, a listing of the source code of an implementation of the algorithms which have
been developed in chapter three can be found in the appendix.
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1 Preliminaries

In this chapter, we give a short introduction to algebraic geometry, invariant theory and
computational algebra. It covers some basic material which will be necessary for the
understanding of the thesis. The selection of the material is mainly driven by what will
be used in the following chapters, by no means should the content of the sections be
considered as a comprehensive introduction to the three theories. We assume that the
reader is familiar with the fundamental concepts of commutative algebra, we do not give
a survey of the relevant aspects here. An (advanced) introduction to commutative algebra
can be found in the book [Eis95].
We have not included the proofs of standard results in this chapter. They can be found
in the books which are mentioned at the beginning of the respective sections.
All rings in this thesis are assumed to be commutative with 1.

1.1 Algebraic geometry

This section covers some facts about algebraic geometry. We try to use this theory with as
little machinery as possible, thus the material presented here is rather basic and somewhat
simplified in the sense that it is not carried out in the usual generality of abstract alge-
braic geometry. Note that in this section all proofs have been omitted. For an advanced
introduction to algebraic geometry (including all the proofs of the basic facts presented
here), see [Har77].

Throughout this section, let K be a fixed algebraically closed field and let n ∈ N be a
natural number. Moreover, let x1, . . . , xn be indeterminates over K.
The n-dimensional affine space is defined as the set Kn = {(ξ1, . . . , ξn); ξ1, . . . , ξn ∈
K}. Every polynomial f ∈ K[x1, . . . , xn] defines a function on Kn in the natural way, i. e.

Kn −→ K, (ξ1, . . . , ξn) 7−→ f(ξ1, . . . , ξn).

A function Kn −→ K which can be written in this way for a suitable polynomial f is
called a polynomial function.

Definition 1.1. Let I EK[x1, . . . , xn] be an ideal. Then

Var(I) := {(ξ1, . . . , ξn) ∈ Kn; f(ξ1, . . . , ξn) = 0 for all f ∈ I}

is called the affine variety defined by I.

5



1 Preliminaries

Remarks. (i) Let f1, . . . , fm ∈ K[x1, . . . , xn]. The ideal generated by f1, . . . , fm in
K[x1, . . . , xn] will be denoted by (f1, . . . , fm)K[x1,...,xn] or simply (f1, . . . , fm) if no
misunderstanding can arise. The affine variety defined by (f1, . . . , fm) will be written
as Var(f1, . . . , fm).

(ii) With the notation of the preceding definition, let X = Var(I) be the affine variety
defined by I. If it is not desired to refer specifically to the defining ideal I, the set
X is just called an affine variety. To make the field K explicit in this case, i. e. to
explicitly mention that X is contained in Kn for some n ∈ N, it is common to say
that X is an affine variety over K.

(iii) When there is no danger of confusion, we sometimes omit the word ‘affine’ and
simply speak of a variety.

Throughout this section, all varieties are over K.

Lemma 1.2. The union of finitely many affine varieties and the intersection of affine
varieties is an affine variety, again. Moreover, the empty set ∅ ⊂ Kn and the whole affine
space Kn are affine varieties.

By this lemma, the n-dimensional affine space can be given the structure of a topological
space.

Definition 1.3. The Zariski topology on Kn is the topology where the closed sets are
given by the set of all affine varieties contained in Kn. More explicitely, a subset X ⊂ Kn

is called Zariski-closed if there exists an ideal I EK[x1, . . . , xn] such that X = Var(I).
Let X ⊂ Kn be an affine variety. The Zariski topology on Kn induces the subspace
topology on X which is also called Zariski topology. In particular, every affine variety has
the structure of a topological space.

Definition 1.4. Let X ⊂ Kn. Then the vanishing ideal of X is defined as

Id(X) := {f ∈ K[x1, . . . , xn]; f(ξ1, . . . , ξn) = 0 for all (ξ1, . . . , ξn) ∈ X}EK[x1, . . . , xn].

Theorem 1.5 (Hilbert’s Nullstellensatz). There is an inclusion-reversing one-to-one
correspondence between affine varieties contained in Kn and radical ideals of K[x1, . . . , xn]
given by

{affine varieties ⊂ Kn} −→ {radical ideals of K[x1, . . . , xn]}
X 7−→ Id(X)

6



1.1 Algebraic geometry

and

{radical ideals of K[x1, . . . , xn]} −→ {affine varieties ⊂ Kn}
I 7−→ Var(I)

Definition 1.6. Let X ⊂ Kn be an affine variety. A function f : X −→ K is called
regular on X if for every p ∈ X there exists an open neighbourhood V ⊂ X of p and
polynomials N,D ∈ K[x1, . . . , xn] such that 0 /∈ D(V ) and f(v) = N(v)/D(v) for all
v ∈ V . The set of regular functions on X has the structure of a K-algebra (resp. is the
zero ring if X = ∅) and is denoted by K[X]. It is called the ring of regular functions
of X.

Remark 1.7. Let X ⊂ Kn be an affine variety. Then K[x1, . . . , xn]/ Id(X) is isomorphic
to the ring of regular functions K[X] via the following map

K[x1, . . . , xn]/ Id(X) −→ K[X], f + Id(X) 7−→ ((ξ1, . . . , ξn) 7→ f(ξ1, . . . , ξn)) .

The ring K[x1, . . . , xn]/ Id(X) is called the coordinate ring of X. Because of the above
isomorphism, the coordinate ring and the ring of regular functions are usually identified.♦

For ease of notation, we sometimes use the following relative forms of the definitions of
Var and Id. Let X be an affine variety and let LEK[X] be an ideal. Then, similarly to
the above, this corresponds to a Zariski-closed subset of X in the following way

VarX(L) := {(ξ1, . . . , ξn) ∈ X; f(ξ1, . . . , ξn) = 0 for all f ∈ L} ⊂ X.

Conversely, let Y ⊂ X be a subset of X. Then the vanishing ideal of Y in K[X] is defined
as

IdX(Y ) := {f ∈ K[X]; f(ξ1, . . . , ξn) = 0 for all (ξ1, . . . , ξn) ∈ Y }EK[X].

Definition and Proposition 1.8. An affine variety X is called irreducible if it is irre-
ducible as a topological space. The empty set is not considered to be irreducible. An affine
variety X ⊂ Kn is irreducible if and only if Id(X) EK[x1, . . . , xn] is a prime ideal, which
in turn is equivalent to K[X] being a domain.
Let X be an arbitrary non-empty affine variety. A maximal irreducible affine variety con-
tained in X is called an irreducible component of X. The set of irreducible components
of X is finite. If X1, . . . , Xs are the irreducible components of X, then X =

⋃s
i=1Xi. This

union is called the decomposition of X into irreducible components.

Definition 1.9. Let X ⊂ Kn be an affine variety. The dimension of X, denoted by

7



1 Preliminaries

dim(X), is defined to be the Krull dimension of K[X].

Definition 1.10. A morphism between two affine varieties X and X ′ ⊂ Kn′ is a map

φ = (φ1, . . . , φn′) : X −→ X ′

such that all components φ1, . . . , φn′ : X −→ K of φ are regular functions on X. Equiva-
lently, φ is a morphism if and only if φ1, . . . , φn′ : X −→ K are polynomial functions.
The morphism φ is called an isomorphism if there exists a morphism ψ : X ′ −→ X such
that φ ◦ ψ = idX′ and ψ ◦ φ = idX . In this case, the affine varieties X and X ′ are said to
be isomorphic.

Proposition 1.11. Let X and X ′ be non-empty affine varieties and φ : X −→ X ′ be a
morphism. Then

φ∗ : K[X ′] −→ K[X], f 7−→ f ◦ φ

is a homomorphism of K-algebras. Conversely, if α : K[X ′] −→ K[X] is a homomorphism
of K-algebras, then there is a unique morphism φ : X −→ X ′ such that α = φ∗.
In fact, there is a bijection

{set of morphisms X −→ X ′}
∼=−→ {set of homomorphisms of K-algebras K[X ′] −→ K[X]}

which is given by the ∗-operator.

Proposition 1.12. Let X ⊂ Kn and X ′ ⊂ Kn′ be non-empty affine varieties. Then the
product

X ×X ′ := {(p, p′) ∈ Kn+n′ ; p ∈ X, p′ ∈ X ′}

of X and X ′ is again an affine variety. The coordinate ring K[X ×X ′] is isomorphic to
K[X]⊗K K[X ′] and this isomorphism is given by

K[X]⊗K K[X ′] −→ K[X ×X ′],
s∑
i=1

fi ⊗ f ′i 7−→

(
(p, p′) 7→

s∑
i=1

fi(p)f ′i(p
′)

)
.

Definition 1.13. Let X be an irreducible affine variety. The field of rational functions
of X, denoted by K(X), is defined as K(X) := Quot(K[X]), the quotient field of K[X].
The elements of K(X) are called rational functions. They can be interpreted as functions
which are defined on a non-empty open subset of X. More explicitely, if f/g ∈ K(X) with
f ∈ K[X], g ∈ K[X]\{0} is a rational function, then it defines a function on X \VarX(g)
in the usual way, i. e. X \VarX(g) −→ K, p 7−→ f(p)/g(p).
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1.2 Invariant theory

1.2 Invariant theory

This section covers some basic facts about invariant theory which will be required in the
following chapters. For a more detailed introduction to this theory, see the book [DK02].
Besides the coverage of the important definitions and theorems of invariant theory, this
book has a strong emphasize on computational aspects which is very useful as a back-
ground for this thesis. For alternatives with a more geometric flavour, see for example
[MFK94] or [Kra84].
Throughout this section, let K be a fixed algebraically closed field. Again, all varieties are
over K.

Before we can start with invariant theory, we have to make a brief digression to the
theory of algebraic groups.

Definition 1.14. A linear algebraic group G (over K) is a group that is an affine
variety (over K) such that the multiplication map m : G×G −→ G and the inversion map
i : G −→ G are morphisms of affine varieties.

Definition and Proposition 1.15. A linear algebraic group G is connected if it is
irreducible as an affine variety. If G is not connected, then the irreducible components of
G are disjoint. The component containing the identity element 1G is a normal subgroup of
G of finite index. It is called the identity component of G and denoted by G0. Moreover,
the decomposition of G into irreducible components is given by the cosets of G0 in G (for
details, see [Hum75], Chapter 7, Section 3).

Let G be the general linear group GLn(K). It can be seen with linear algebra methods
that every element σ ∈ G can be written as σ = σsσu where σs, σu ∈ G such that σs
is diagonalizable (as a homomorphism Kn −→ Kn of K-vector spaces) and the only
eigenvalue of σu is 1. Moreover, σs and σu are unique with respect to this properties.
They are called the semisimple resp. the unipotent part of σ.
This decomposition of elements generalizes to arbitrary linear algebraic groups G: Every
element σ ∈ G can be written uniquely as a product of a semisimple part σs and a
unipotent part σu. The element σ is called semisimple if σ = σs. Similarly, σ is called
unipotent if σ = σu. For more details, see Chapter 15 of [Hum75].

Definition 1.16. A linear algebraic group G is called unipotent if all its elements are
unipotent. It can be shown that every linear algebraic group G possesses a largest connected
normal unipotent subgroup which is called the unipotent radical of G (cf. [Hum75],
Chapter 19, Section 5). A linear algebraic group G is called reductive if its unipotent
radical is trivial.

9



1 Preliminaries

Examples of reductive groups include all the classical groups, for example GLn(K),
SLn(K), Sp2n(K), just to name a few. Important examples for unipotent groups are the
additive group Ga := (K,+) and Un(K), the group of upper triangular matrices with all
diagonal entries 1.

Proposition 1.17. Let G be a linear algebraic group and N E G be a closed normal
subgroup of G. Then the factor group G/N can be given the structure of a linear algebraic
group (for details, see [Hum75], Chapter 12).

Remark. In case that N is the unipotent radical of some linear algebraic group G, the
factor group G/N is reductive. In some sense this means that unipotent resp. reductive
groups are the building blocks of every linear algebraic group (cf. [Hum75], Chapter 19,
Section 5). ♦

Definition 1.18. Let G be a group and X be a set. We say that G acts on X if there is
a map µ : G×X −→ X such that

(i) µ(1G, p) = p for all p ∈ X

(ii) µ(σ, µ(τ, p)) = µ(στ, p) for all σ, τ ∈ G and p ∈ X.

When there is no danger of confusion, we write σ(p) instead of µ(σ, p).

Let now G be a linear algebraic group and X be an affine variety. Furthermore, let
G act on X via µ : G × X −→ X. We say that G acts regularly on X if the map
µ : G × X −→ X is a morphism of affine varieties. In this case, we call X an affine
G-variety.
If the G-variety X is the whole affine space X = Kn for some n ∈ N0 and the action of G
on X is linear, i. e. σ(−) : X −→ X is linear for all σ ∈ G, then X is called a G-module.

LetG be a linear algebraic group acting regularly on an affine varietyX via µ : G×X −→
X. Since by definition, the morphism µ : G × X −→ X is given by polynomial data, it
follows that for every σ ∈ G the map µ(σ,−) : X −→ X is a morphism, too. Hence the
action of G on X induces an action of G on K[X] via

σ(f) := f ◦ µ(σ−1,−) for all σ ∈ G, f ∈ K[X].

It is an easy verification that σ(−) : K[X] −→ K[X] is an automorphism of K-algebras
for every σ ∈ G. Accordingly, K[X] is also called a G-algebra in this case. In a more
general form, this notion is contained in the following definition.

10



1.2 Invariant theory

Definition 1.19. Let A be a K-algebra and let G act on A via K-algebra automorphisms.
Then A is called a G-algebra.
Let X,X ′ be sets and let G act on both X and X ′. A map α : X −→ X ′ is said to be
G-equivariant if it commutes with the action of G, i. e. if

α(σ(p)) = σ(α(p)) for all σ ∈ G, p ∈ X.

If α : A −→ A′ is a G-equivariant homomorphism between two G-algebras A and A′, we
also say that α is a G-homomorphism. A subset B ⊂ A of the G-algebra A is called
G-stable if it is stable under the action of G, i. e. if

σ(b) ∈ B for all σ ∈ G, b ∈ B.

Finally, for a subset C ⊂ A of the G-algebra A, the G-closure of C in A is defined as
the smallest (with respect to inclusion) G-stable K-vector space C̃ such that C ⊂ C̃ ⊂ A.

Definition 1.20. Let the linear algebraic group G act regularly on the affine variety X.
The set

K[X]G := {f ∈ K[X]; σ(f) = f for all σ ∈ G} ⊂ K[X]

is called the invariant ring (with respect to the action of G on X). It has the structure
of a K-algebra. Let X be irreducible. The set

K(X)G =
{
f

g
; f ∈ K[X], g ∈ K[X] \ {0} such that

σ(f)
σ(g)

=
f

g
for all σ ∈ G

}
⊂ K(X)

is called the invariant field (with respect to the action of G on X). It has the structure
of a field.

For what follows, we need the concept of a graded algebra.

Definition 1.21. A graded K-algebra is a K-algebra S together with a decomposition
S =

⊕∞
d=0 Sd as a direct sum of K-vector spaces S0, S1, . . . such that

(i) S0 = K

(ii) SiSj ⊂ Si+j for all i, j ∈ N0.

An element s ∈ S \{0} is said to be homogeneous of degree d if s ∈ Sd. If the degree d
of s is not relevant, we simply say that s is homogeneous. In case that S is a polynomial
algebra, we implicitly assume that S is graded by the usual degree function for polynomials.

We can now define a special case of reductivity which is important for invariant theory.

11
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Definition 1.22. A linear algebraic group G is called linearly reductive if for every G-
module V and every non-zero invariant vector v ∈ V G := {v ∈ V ; σ(v) = v for all σ ∈ G},
there exists a non-zero invariant∗ f ∈ (V ∗)G \ {0} such that f(v) 6= 0.

Remark. There is also another notion of reductivity. A linear algebraic group G is called
geometrically reductive if for every G-module V and every non-zero invariant vector
v ∈ V G \ {0}, there exists a non-zero homogeneous invariant f ∈ K[X]G \ {0} such that
f(v) 6= 0. Nagata and Miyata have shown in [NM64] that geometrically reductive groups
are reductive. The proof of the converse – which has been conjectured by Mumford – is
due to Haboush (cf. [Hab75]).
Note that by the equivalence of reductive and geometrically reductive, every linearly re-
ductive group is reductive. Moreover, Nagata and Miyata have shown in [NM64] that if
the characteristic of K is zero, then linearly reductive and reductive mean the same. ♦

A central problem of invariant theory is the examination of the structure of the invariant
ring. Of course, it depends both on the group G and on the affine algebra K[X]. An
important result in this context is the following.

Theorem 1.23 (Hilbert ([Hil90], [Hil93]), Nagata ([Nag59]), Popov ([Pop79])).
Let the reductive group G act regularly on the affine variety X. Then K[X]G is finitely
generated (as a K-algebra). In fact, a linear algebraic group G is reductive if and only if
K[X]G is finitely generated for all G-varieties X.

Apart from the finite generation property, there are many other interesting structural
questions about the invariant ring.

Definition 1.24. Let S be a graded K-algebra. The sequence s1, . . . , sn is called a system
of homogeneous parameters of S if

(i) s1, . . . , sn ∈ S are homogeneous

(ii) s1, . . . , sn are algebraically independent over K

(iii) S is integral over K[s1, . . . , sn].

Note that by the Noether Normalization Lemma (cf. [Eis95], Chapter 13, Theorem 13.3),
systems of homogeneous parameters exist for every finitely generated graded K-algebra S.

∗Note that K[V ]G is a graded algebra. We write (V ∗)G for the set of G-invariant linear combinations of
the coordinate functions on V , i. e. (V ∗)G := K[V ]G1 .

12
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Definition 1.25. Let G be a linear algebraic group and let X be a G-module. Note that
the natural grading on K[X] induces a grading on the invariant ring K[X]G. A system
of homogeneous parameters of K[X]G is called a system of primary invariants for the
action of G on X. In this context, secondary invariants are defined to be generators
of the invariant ring regarded as a module over the K-algebra which is generated by the
primary invariants, i. e. generators of the K[s1, . . . , sn]-module K[X]G.

Definition 1.26. A graded algebra S is called Cohen-Macaulay if there exists a sys-
tem of homogeneous parameters s1, . . . , sn ∈ S such that S is free as a module over
K[s1, . . . , sn].

Hochster and Roberts have proved the following important theorem about the Cohen-
Macaulayness of invariant rings of linearly reductive groups.

Theorem 1.27 (Hochster and Roberts [HR74]). Let G be a linearly reductive group
and let X be a G-module. Then K[X]G is Cohen-Macaulay.

The next lemma gives an explicit description of the induced action of G on K[X]. We
include a proof since in the following this construction will be used several times.

Lemma 1.28. Let the linear algebraic group G act regularly on the affine variety X. Then
there exists a homomorphism of algebras

µ̃ : K[X] −→ K[G]⊗K K[X]

which describes the action of G on K[X] in the following way. If µ̃(f) =
∑s

i=1 gi⊗ai with
g1, . . . , gs ∈ K[G] and a1, . . . , as ∈ K[X], then σ(f) is given by σ(f) =

∑s
i=1 gi(σ) · ai for

all σ ∈ G.

Proof. Consider the morphism µ : G × X −→ X and the induced homomorphism of
algebras

µ∗ : K[X] −→ K[G]⊗K K[X], f 7−→ f ◦ µ.

Moreover, let i : G −→ G be the inversion in G and i∗ : K[G] −→ K[G] be the corre-
sponding homomorphism of algebras. Set

µ̃ := (i∗ ⊗K idK[X]) ◦ µ∗ : K[X] −→ K[G]⊗K K[X].

By construction, µ̃ is a homomorphism of algebras and it describes the action of G on
K[X] in the sense as described in the statement of this lemma.

One may ask if conversely every action of G on K[X] which can be described by a ho-
momorphism µ̃ : K[X] −→ K[G]⊗KK[X] (in the sense of the previous lemma) originates

13
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from a regular action of G on the affine variety X. A positive answer to this question is
given in the next proposition. For the lack of a reference, we give a proof.

Proposition 1.29. Let A be a reduced, affine K-algebra and G a linear algebraic group.
Let µ̃ : A −→ K[G]⊗K A be a homomorphism of K-algebras such that

σ(a) := µ̃(a)(σ) for all a ∈ A, σ ∈ G

defines an action of G on A. Then there exists an affine G-variety X such that K[X] and
A are G-isomorphic.

Proof. Let x1, . . . , xn be indeterminates over K. We may assume that A = K[x1, . . . , xn]/I
where IEK[x1, . . . , xn] is a radical ideal. With this notation, A can be identified with the
coordinate ring of the affine variety X := Var(I) ⊂ Kn. Let i : G −→ G be the inversion
in G and i∗ : K[G] −→ K[G], g 7−→ g ◦ i be the corresponding homomorphism of algebras.
Consider the homomorphism µ∗ := (i∗ ⊗K idA) ◦ µ̃ : A −→ K[G]⊗K A. It corresponds to
the morphism µ : G×X −→ X which is given by

µ : G×X −→ X, (σ, p) 7−→ (µ∗(x1 + I)(σ, p), . . . , µ∗(xn + I)(σ, p)) (1.1)

(cf. the previous section or [Har77], Chapter I, Proposition 3.5 & Exercise 3.15). We will
show that

σ(p) := µ(σ, p) for all σ ∈ G, p ∈ X

defines an action of G on X and that the induced action on the coordinate ring A = K[X]
is exactly the action which is given on A already.
Since µ̃ defines an action of G on A, it follows that

µ(1G, p) = (µ∗(x1 + I)(1G, p), . . . , µ∗(xn + I)(1G, p))
= (µ∗(x1 + I)(1G)(p), . . . , µ∗(xn + I)(1G)(p))
= ((x1 + I)(p), . . . , (xn + I)(p)) = p

for all p ∈ X. Thus 1G induces the identity morphism on X, as desired.
Now let σ, τ ∈ G and p ∈ X be arbitrary. For µ to be an action, it remains to show that
µ(σ, µ(τ, p)) = µ(στ, p). Let i ∈ {1, . . . , n} and let g1, . . . , gs ∈ K[G], a1 + I, . . . , as + I ∈
K[X] such that µ̃(xi + I) =

∑s
j=1 gj ⊗ (aj + I). Then

µ̃(xi + I)(στ, p) = ((στ)(xi + I)) (p) = σ(τ(xi + I))(p)
= σ(µ̃(xi + I)(τ,−))(p) = µ̃(µ̃(xi + I)(τ,−))(σ, p)

= µ̃

 s∑
j=1

gj(τ) · (aj + I)

 (σ, p)
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=

 s∑
j=1

gj(τ) · aj (µ̃(x1 + I), . . . , µ̃(xn + I))

 (σ, p)

=

 s∑
j=1

gj(τ) · aj (µ̃(x1 + I)(σ, p), . . . , µ̃(xn + I)(σ, p))


= µ̃(xi + I) (τ, (µ̃(x1 + I)(σ, p), . . . , µ̃(xn + I)(σ, p))) .

Since this calculation can be done for all i ∈ {1, . . . , n}, it follows

µ(σ, µ(τ, p)) = µ
(
σ,
(
µ̃(x1 + I)(τ−1, p), . . . , µ̃(xn + I)(τ−1, p)

))
=
(
µ̃(xi + I)

(
σ−1,

(
µ̃(x1 + I)(τ−1, p), . . . , µ̃(xn + I)(τ−1, p)

)))
i=1,...,n

=
(
µ̃(xi + I)(τ−1σ−1, p)

)
i=1,...,n

= µ(στ, p),

which we wanted to prove. But this means that µ defines an action of G on X, indeed.
Finally, observe that by construction, the induced action of G on K[X] coincides with the
action which is already given on A = K[X].

The group actions on K-algebras which we have considered so far, i. e. those that are
induced from group actions on affine varieties, all have an important finiteness property.
The following definition makes this more precise.

Definition 1.30. Let G be a linear algebraic group and let A be a G-algebra. The action
of G on A is said to be locally finite if for every a ∈ A there exists a finite dimensional
K-vector space V ⊂ A such that

(i) a ∈ V and

(ii) V is stable under the action of G.

As indicated above, the actions on coordinate rings which are induced from regular
actions on affine varieties are locally finite. This will be shown in the following. In fact,
we will show this property for a wider class of group actions which include the “variety
cases”.

Proposition 1.31. Let G be a linear algebraic group acting on a K-algebra A via a ho-
momorphism of algebras µ̃ : A −→ K[G]⊗K A. Then we have the following properties.

(a) The action of G on A is locally finite.

(b) Let B ⊂ A be a G-stable subalgebra of A. Then µ̃(B) ⊂ K[G]⊗K B.
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Proof. We first prove (a). Let a ∈ A. By definition of locally finite, we have to show
that there is a finite dimensional G-stable vector space V ⊂ A containing a. Let µ̃(a) =∑s

i=1 gi⊗ ai for some g1, . . . , gs ∈ K[G] and a1, . . . , as ∈ A. Without loss of generality, we
may assume that g1, . . . , gs are linearly independent over K. We claim that

V :=
s∑
i=1

K · ai ⊂ A

is a G-stable vector space containing a. Clearly a ∈ V , since a = 1G(a) =
∑s

i=1 gi(1G)·ai ∈
V . It remains to show that V is stable under the action of G. Let τ ∈ G. Since µ̃ defines
an action of G on A, it follows that

µ̃(a)(τσ) = τ(µ̃(a)(σ)) =
s∑
i=1

gi(σ)τ(ai) ∈ V for all σ ∈ G. (1.2)

By assumption, g1, . . . , gs are linearly independent over K, hence – by an easy induction
argument – there exist σ1, . . . , σs ∈ G such that the matrix (gi(σj))i,j=1,...,s ∈ Ks×s is
regular. By equation (1.2), it follows

(τ(a1), . . . , τ(as)) · (gi(σj))i,j=1,...,s ∈ V
s

and this implies

(τ(a1), . . . , τ(as)) = (τ(a1), . . . , τ(as)) · (gi(σj))i,j=1,...,s · (gi(σj))
−1
i,j=1,...,s ∈ V

s. (1.3)

Since τ was chosen arbitrarily, this shows that V is G-stable, as desired.

For the proof of (b), let a ∈ B and – as above – let µ̃(a) =
∑s

i=1 gi ⊗ ai for some
g1, . . . , gs ∈ K[G] and a1, . . . , as ∈ A. Again, we may assume that g1, . . . , gs are linearly
independent over K. By the proof of (a), it follows that V :=

∑s
i=1K ·ai ⊂ A is a G-stable

vector space containing a. Moreover, setting τ = 1G in equation (1.3) above shows that∑s
i=1K · ai is in fact the smallest G-stable vector space containing a in the sense that for

every G-stable vector space V ′ ⊂ A with a ∈ V ′, it follows V ⊂ V ′. Since B is G-stable,
this implies V ⊂ B. In particular, a1, . . . , as ∈ B and therefore µ̃(a) ∈ K[G]⊗K B which
we wanted to prove.

Remark 1.32. It can be shown that – with the notation of the previous proposition –
every G-stable finite dimensional vector space V ⊂ A is in fact a G-module. ♦

Corollary 1.33. Let the linear algebraic group G act regularly on the affine variety X.
Then the induced action of G on K[X] is locally finite.

We close this section with the definition of separating invariants.

16



1.3 Computational algebra

Definition 1.34. Let the linear algebraic group G act regularly on the affine variety X.
We say that p, p′ ∈ X can be separated by invariants if there exists f ∈ K[X]G such that
f(p) 6= f(p′). A subset S ⊂ K[X]G is said to be separating if for all points p, p′ ∈ X
which can be separated by invariants there exists g ∈ S such that g(p) 6= g(p′).

1.3 Computational algebra

This section gives a very rough introduction to computational algebra. A detailed treat-
ment of this theory can be found in [BW93]. For a more practical approach, see the book
[CLO07].

As before, let K be a field, let n ∈ N and let x1, . . . , xn be indeterminates over K. For
the theory of this section to be transformable to algorithms on a computer, it is necessary
that the occuring data, i. e. the coefficients of the involved polynomials, are contained in a
computable field. In simple terms, a field is called computable if it can be represented on
a computer and the operations addition, subtraction, multiplication and division can be
computed effectively. Examples for computable fields include the field of rational numbers
Q and the Galois fields Fp = (Z/pZ,+, ·) for p ∈ Z a prime number. We will also see
that finitely generated field extensions of computable fields, such as Q(x1, . . . , xn), are
computable again.
We do not require K itself to be a computable field, we only require the coefficients of the
occuring polynomials to be contained in a computable field. For example, it is common
to consider ideals in a polynomial ring over the algebraic closure Q of Q. Even though
Q is not a computable field, such ideals can be handled with algorithms of computational
algebra if the coefficients of the generators are contained in Q.
Note that this computability condition will not be mentioned explicitly at the various
places in this thesis.

Definition 1.35. A monomial in x1, . . . , xn is a product of powers of x1, . . . , xn. More
explicitly, a monomial is a polynomial f ∈ K[x1, . . . , xn] of the form f = xα1

1 ·. . .·xαn
n where

α1, . . . , αn ∈ N0. Let α = (α1, . . . , αn) ∈ Nn
0 be the tuple of exponents of f . Abbreviatory,

we often write xα for xα1
1 · . . . · xαn

n .

Obviously, every polynomial f ∈ K[x1, . . . , xn] can be written as a K-linear combination
of monomials. More precisely, there exist coefficients cα ∈ K for α ∈ Nn

0 such that
f =

∑
α cαx

α. Note that by the definition of a polynomial, only finitely many coefficients
cα for α ∈ Nn

0 are non-zero. Thus, whenever we write a polynomial in the form
∑

α cαx
α,

we implicitly assume that almost all coefficients cα are zero.

Definition 1.36. A relation ≤ on the set of monomials {xα; α ∈ Nn
0} is called a mono-

mial order if the following conditions are satisfied:

(i) ≤ is a total order on {xα; α ∈ Nn
0}

17
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(ii) If xα ≤ xβ then xα+γ ≤ xβ+γ for all α, β, γ ∈ Nn
0

(iii) 1 ≤ xα for all α ∈ Nn
0

Example 1.37. An important example for a monomial order is the lexicographic order
specified by xn ≤ . . . ≤ x1. It is defined as follows: xα ≤ xβ if and only if the left-most
non-zero entry of β − α ∈ Zn is positive. The name “lexicographic” may become clearer if
this order is defined recursively as: xα ≤ xβ if and only if

• α1 < β1 or

• α1 = β1 and xα2
2 · . . . · xαn

n ≤ x
β2
2 · . . . · x

βn
n . C

Definition 1.38. Let ≤ be a monomial order on x1, . . . , xn and let f =
∑

α cαx
α be a

non-zero polynomial. The leading monomial of f with respect to ≤ is defined as

LM≤(f) := max {xα; cα 6= 0}.

For the zero polynomial we define LM≤(0) := 0. If the monomial order ≤ is clear from
the context, we sometimes omit the ≤-symbol and simply write LM(f).

The central notion of computational algebra is that of a Gröbner basis of an ideal
I E K[x1, . . . , xn]. It was first introduced by Buchberger in [Buc65]. Roughly speak-
ing, it is a special generating set for I which allows various problems concerning I to be
solved algorithmically. For example, algorithms for a membership test for I, for a pri-
mary decomposition of I, and for the computation of unique normal forms of elements in
K[x1, . . . , xn]/I can be realized with Gröbner basis techniques.

Definition 1.39. Let ≤ be a monomial order on x1, . . . , xn and let I EK[x1, . . . , xn] be
an ideal. A set {h1, . . . , hs} with h1, . . . , hs ∈ K[x1, . . . , xn] is called a Gröbner basis of
I (with respect to ≤) if

(i) I = (h1, . . . , hs)K[x1,...,xn]

(ii) (LM(h1), . . . ,LM(hs))K[x1,...,xn] = (LM(f); f ∈ I)K[x1,...,xn].

Theorem 1.40. Let ≤ be a monomial order on x1, . . . , xn and let IEK[x1, . . . , xn] be an
ideal. Then there exists a Gröbner basis of I. Moreover, it can be computed effectively.

Remark. The standard algorithm for computing Gröbner bases is Buchberger’s Algo-
rithm (cf. [Buc65]). ♦
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In general, there exist many different Gröbner bases of a given ideal I with respect to
a given monomial order. It will turn out that a unique Gröbner basis can be singled out
quite easily.

Definition 1.41. Let ≤ be a monomial order on x1, . . . , xn and let I EK[x1, . . . , xn] be
an ideal. A Gröbner basis {h1, . . . , hs} of I is reduced if

(i) 0 /∈ {h1, . . . , hs}

(ii) The coefficient of the leading monomial in hi is equal to 1 for i = 1, . . . , s

(iii) No monomial of hi is divisible by any monomial in {LM(hj) : j = 1, . . . , i − 1, i +
1, . . . , s} for i = 1, . . . , s.

Theorem 1.42. Let ≤ be a monomial order on x1, . . . , xn and let IEK[x1, . . . , xn] be an
ideal. Then there exists a reduced Gröbner basis of I. Moreover, it is unique and can be
computed effectively.

As mentioned above, Gröbner bases can be used to define unique normal forms of
elements of K[x1, . . . , xn]/I.

Proposition and Definition 1.43. Let ≤ be a monomial order on x1, . . . , xn, let G be
a Gröbner basis of an ideal I EK[x1, . . . , xn] and let f ∈ K[x1, . . . , xn] be a polynomial.
Then there exists a unique polynomial r ∈ K[x1, . . . , xn] such that

(i) f − r ∈ I

(ii) No monomial of r is divisible by any monomial in {LM(f); f ∈ G}.

The polynomial r is called the normal form of f with respect to G. It is denoted by
NFG(f).

Remarks 1.44. As before, let G be a Gröbner basis of I EK[x1, . . . , xn]. The following
properties of the normal form operator NFG will be needed in the next chapters.

(a) For all f ∈ K[x1, . . . , xn] we have NFG(f) = 0⇐⇒ f ∈ I.

(b) For all f, f ′ ∈ K[x1, . . . , xn] we have f + I = f ′ + I ⇐⇒ NFG(f) = NFG(f ′).

(c) NFG : K[x1, . . . , xn] −→ K[x1, . . . , xn] is a K-linear map.

(d) Let G be a reduced Gröbner basis of I. Moreover, let R ⊂ K be a subring of the field
K and assume that the coefficients of the elements of G are contained in R. Then
NFG(R[x1, . . . , xn]) ⊂ R[x1, . . . , xn]. ♦
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With the availability of the normal form operator, it can be seen that finitely gener-
ated field extensions over a computable field K are computable, again. For, let L =
Quot(K[x1, . . . , xn]/I) be a finitely generated field extension over K. An element of this
field – more precisley, representations of its numerator and its denominator – can be
described by a pair of polynomials in K[x1, . . . , xn]. Then, addition, subtraction, multipli-
cation, and division of elements can be realized in the obvious way. Moreover, the normal
form operator NF provides a test for equality in Quot(K[x1, . . . , xn]/I).

Another important application of Gröbner bases is the computation of elimination ideals.

Definition 1.45. Let I EK[x1, . . . , xn]. The ith elimination ideal Ii of I is defined as

Ii := I ∩K[xi+1, . . . , xn] EK[xi+1, . . . , xn].

Theorem 1.46. Let I EK[x1, . . . , xn]. The ith elimination ideal Ii of I can be computed
effectively. More precisely, let ≤ be a monomial order on x1, . . . , xn where any monomial
involving one of x1, . . . , xi is greater than all monomials in xi+1, . . . , xn. Let G be a
Gröbner basis of I. Then a Gröbner basis of Ii (with respect to the restriction of the
monomial order ≤ to xi+1, . . . , xn) is given by G ∩K[xi+1, . . . , xn].

Remark 1.47. A monomial order with the properties of the previous theorem is called
an elimination order for x1, . . . , xi. ♦

The last application of Gröbner bases which we want to present here is the computation
of syzygies.

Definition 1.48. Let m1, . . . ,ms ∈ K[x1, . . . , xn]. A tuple of polynomials (f1, . . . , fs) ∈
K[x1, . . . , xn]s is called a syzygy of m1, . . . ,ms if f1m1 + . . .+ fsms = 0. The set

SyzK[x1,...,xn](m1, . . . ,ms) := {(f1, . . . , fs) ∈ K[x1, . . . , xn]s : f1m1 + . . .+ fsms = 0}

of all syzygies of m1, . . . ,ms is a submodule of K[x1, . . . , xn]s. It is called the module of
syzygies of m1, . . . ,ms. Note that since K[x1, . . . , xn] is a noetherian ring, the module
SyzK[x1,...,xn](m1, . . . ,ms) is finitely generated over K[x1, . . . , xn].

Theorem 1.49. Let m1, . . . ,ms ∈ K[x1, . . . , xn]. Then generators of the K[x1, . . . , xn]-
module SyzK[x1,...,xn](m1, . . . ,ms) can be computed effectively.

The notion of a syzygy can be generalized to the case of free K[x1, . . . , xn]-modules in
the following way.
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Definition 1.50. Let t ∈ N and let m1, . . . ,ms be elements of the free K[x1, . . . , xn]-
module K[x1, . . . , xn]t. A tuple of polynomials (f1, . . . , fs) ∈ K[x1, . . . , xn]s is called a
syzygy of m1, . . . ,ms if f1m1 + . . .+ fsms = 0. The set

SyzK[x1,...,xn](m1, . . . ,ms) := {(f1, . . . , fs) ∈ K[x1, . . . , xn]s : f1m1 + . . .+ fsms = 0}

of all syzygies of m1, . . . ,ms is a submodule of K[x1, . . . , xn]s. It is called the module of
syzygies of m1, . . . ,ms. Again, the module SyzK[x1,...,xn](m1, . . . ,ms) is finitely generated
over K[x1, . . . , xn].

Similarly as in the polynomial case, it would be nice to have an algorithm for the
computation of syzygies in the module case, too, i. e. the case where the value of t (from
the previous definition) is greater than 1. This case can be handled with Gröbner bases
for modules over a polynomial ring, which is a generalization of the theory of Gröbner
bases for ideals. We do not go into the details of this theory here. An introduction to
modules over polynomial rings from a computational point of view is given for example
in [CLO05], Chapter 5. Detailed instructions about the computation of syzygies can be
found there, too. We can therefore state the following theorem.

Theorem 1.51. Let t ∈ N and let m1, . . . ,ms ∈ K[x1, . . . , xn]t. Then generators of the
K[x1, . . . , xn]-module SyzK[x1,...,xn](m1, . . . ,ms) can be computed effectively.
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2 Computing invariants of reductive groups
acting on non-reduced affine algebras

The examination of G-modules and their invariant rings has always been a central aspect
of invariant theory. A G-module corresponds to an action of a group on a polynomial ring
where the action can be described by a linear substitution of variables. As we have seen,
the notion of a G-module can be generalized to that of a G-variety, i. e. to the situation
where a linear algebraic group G acts regularly on an affine variety X. Similarly as for
G-modules, this algebraically corresponds to an action of G on the coordinate ring K[X]
of X. The action of G on K[X] can then be described by a homomorphism of algebras
µ̃ : K[X] −→ K[G]⊗KK[X] in the sense that σ(f) = µ̃(f)(σ) for all f ∈ K[X] and σ ∈ G.
Nagata has shown that if a reductive group G acts on an affine algebra A via a homomor-
phism of algebras µ̃ : A −→ K[G]⊗K A, then the invariant ring

AG := {f ∈ A; σ(f) = f for all σ ∈ G}

is finitely generated as a K-algebra (cf. [Nag64]). In particular, this shows that K[X]G is
finitely generated for every G-variety X if G is a reductive group. But in fact, his result
includes even more, namely the cases where A is a non-reduced affine algebra. Unlike
to A being reduced – which always geometrically corresponds to an affine G-variety – a
non-reduced affine G-algebra does not have a geometric counterpart in classical algebraic
geometry. Nonetheless, it is interesting for its own sake to examine the non-reduced case
more closely.
Derksen and Kemper have developed various algorithms for the computation of K[X]G

if X is an affine variety and G is a reductive group (cf. [Der99], [Kem03], [DK02] and
[DK08]). The correctness of their algorithms heavily relies on the fact that the underlying
algebra, i. e. the algebra K[X], is reduced. Therefore, the invariant ring AG cannot be
calculated with the existing algorithms if A is a non-reduced affine algebra.
In this chapter, we give an algorithm for the computation of the invariant ring AG if G is
a finite group. Moreover, we point out some computational difficulties which arise if G is
an infinite reductive group.

2.1 Finite groups

As a motivation, we start with an example.

Example 2.1. Let K = F2 be the finite field with two elements and let x1, x2 be indetermi-
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2 Computing invariants of reductive groups acting on non-reduced affine algebras

nates over K. Moreover, let the cyclic group∗ G = 〈σ〉 of order 2 act on the non-reduced
affine algebra

A := K[x1, x2]/I where I := (x2
1) EK[x1, x2]

by the following rules

σ(x1 + I) := x1 + I, σ(x2 + I) := x1 + x2 + I.

What is the invariant ring AG in this case? Note that the algebra A is the image of the
polynomial ring K[x1, x2] under the homomorphism

α : K[x1, x2] −→ A, x1 7−→ x1 + I, x2 7−→ x2 + I.

The polynomial ring can be given the structure of a G-algebra by

σ(x1) := x1, σ(x2) := x1 + x2.

Then obviously the homomorphism α commutes with the action of G. It is not hard
to see that the invariant ring K[x1, x2]G is given by K[x1, x2]G = K[x1, x1x2 + x2

2]. In
particular, both x1 + I and x1x2 +x2

2 + I are invariant elements of A. But does there exist
another invariant which is not contained in K[x1 +I, x1x2 +x2

2 +I]? The answer is yes, the
element x1x2 +I for example happens to be a“new” invariant. (Note that x1x2 ∈ K[x1, x2]
is certainly not invariant.) But it is still not clear at this point whether x1 +I, x1x2 +x2

2 +I
and x1x2 + I is already a generating system of AG or not. Do there exist further “hidden”
invariants? Later in this section, we will be able to solve this problem algorithmically. C

Throughout this section, let K be an arbitrary field and let x1, . . . , xn be indeterminates
over K. Let A be an affine algebra over K and let G act on A via K-algebra automor-
phisms. Needless to say, the formulation of the algorithm for the computation of AG

requires a specification of how the algebra A, the group G and the action of G on A are
given.

Convention 2.2.
Let G = {σ1, . . . , σm} be a finite group, let A be a (possibly non-reduced) affine algebra
and let G act on A via automorphisms of K-algebras. We assume that these data are
given as follows:

(1) Generators of the ideal I EK[x1, . . . , xn] such that A = K[x1, . . . , xn]/I.

(2) For i = 1, . . . , n and j = 1, . . . ,m:
A polynomial gij ∈ K[x1, . . . , xn] such that

σj(xi + I) = gij + I.

∗We write 〈σ〉 for the group generated by σ.
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2.1 Finite groups

Before we can formulate the algorithm for the computation of AG, we have to discuss
an auxiliary algorithmic construction which will be used therein. As we will see, it will
be necessary to compute a polynomial ring P with a linear G-action such that A is a
G-homomorphic image of P . This can be done as follows. First, compute a G-module V
which contains the generators x1 + I, . . . , xn + I of A. The vector space V can be chosen
for example as the K-linear span of the union of the orbits of x1 + I, . . . , xn + I. Then
clearly P := S(V ), the symmetric algebra of V , together with the induced action of G on
P and the obvious homomorphism P −→ A has the required properties.
Although this seems to be pretty obvious, we include a concrete algorithmic formulation
of this method.

Algorithm 2.3. (Computing a polynomial ring P with a G-action such that A
is a G-homomorphic image of P )

Input: A finite group G, an affine algebra A and an action of G on A according to
Convention 2.2.

Output: A polynomial ring P = K[y1, . . . , yn′ ] (with y1, . . . , yn′ new indeterminates), an
action of G on P and an epimorphism α : P −→ A which commutes with the action of G.
More precisely, the output is given by homogeneous polynomials g′ij ∈ P (i = 1, . . . , n′, j =
1, . . . ,m) of degree one and polynomials a1, . . . , an′ ∈ K[x1, . . . , xn] which stand for the
following: The polynomials g′ij describe the action of G on P , i. e.

σj(yi) = g′ij for all i = 1, . . . , n′ and j = 1, . . . ,m.

Moreover, the epimorphism α is given by α : P −→ A, yi 7−→ ai + I for i = 1, . . . , n′.

(1) Compute a K-basis a1 + I, . . . , an′ + I of the vector space generated by the elements
in the set

{σj(xi + I); i = 1, . . . , n, j = 1, . . . ,m}.

(For details about how basic linear algebra can be done within the residue class ring
K[x1, . . . , xn]/I, see Remark 2.4(b))

(2) Let y1, . . . , yn′ be indeterminates over K and set P := K[y1, . . . , yn′ ].

(3) For i = 1, . . . , n′:
For j = 1, . . . ,m:

Compute βij1, . . . , βijn′ ∈ K such that

σj(ai + I) =
n′∑
k=1

βijk(ak + I).

Set g′ij :=
∑n′

k=1 βijkyk.
(For details about how basic linear algebra can be done within the residue class ring
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2 Computing invariants of reductive groups acting on non-reduced affine algebras

K[x1, . . . , xn]/I, see Remark 2.4(b))

(4) Return P , (g′ij)i=1,...,n′, j=1,...,m and (ai)i=1,...,n′ .

Remark 2.4. (a) For better clarity, we have written σj(xi + I) resp. σj(ai + I) in the
expression of step (1) resp. step (3). By Convention 2.2, this obviously should be
replaced by gij + I resp. ai(g1j , . . . , gnj) + I for concrete computations.

(b) Let I EK[x1, . . . , xn] be an ideal and let G be a Gröbner basis of I with respect to
an arbitrary monomial order on x1, . . . , xn. By the K-linearity of the NFG-operator,
it follows that the elements (b + I; b ∈ B) are linear independent over K if and
only if the polynomials (NFG(b); b ∈ B) are linearly independent over K. This is
the key for doing linear algebra in K[x1, . . . , xn]/I. The various operations in this
residue class ring such as choosing a linear independent subset or testing linear inde-
pendence of a set of elements can thus be reduced to doing the very same operations
in the polynomial ring K[x1, . . . , xn]. Computations in this latter polynomial ring
are usually done by comparing coefficients and then solving the resulting systems of
linear equations. ♦

Proof of Correctness. The correctness should be clear from the outline preceding this al-
gorithm.

Remark. If A is a reduced algebra, the construction of Algorithm 2.3 can be interpreted
geometrically as a G-equivariant embedding of the G-variety corresponding to A into a
G-module (see also [DK08], Algorithm 1.2). ♦

We can now state the algorithm for the computation of AG.

Algorithm 2.5. (Computing invariants of finite groups actions)

Input: A finite group G, an affine algebra A and an action of G on A according to
Convention 2.2.

Output: Polynomials f1, . . . , fs ∈ K[x1, . . . , xn] such that AG = K[f1 + I, . . . , fs + I].

(1) Use Algorithm 2.3 to define a polynomial ring P with a linear G-action such that
A is a G-homomorphic image of P . More precisely, obtain the polynomial ring
P = K[y1, . . . , yn′ ] (with y1, . . . , yn′ new indeterminates), homogeneous polynomials
g′ij ∈ P of degree one and elements a1, . . . , an′ ∈ K[x1, . . . , xn]. By the specification
of Algorithm 2.3, these data mean the following. The polynomial ring P has the
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2.1 Finite groups

structure of a G-algebra via

σj(yi) := g′ij for all i = 1, . . . , n′ and j = 1, . . . ,m.

Moreover, A is the image of P under the G-equivariant epimorphism defined by
α : P −→ A, yi −→ ai + I for i = 1, . . . , n′.

(2) Compute a homogeneous system of parameters c1, . . . , cn′ of the invariant ring PG.
Set R := K[c1, . . . , cn′ ].
(For details about the computation of this and the next step, see Remark 2.6(b))

(3) Compute d1, . . . , dt ∈ P such that P =
⊕t

i=1Rdi.

(4) Compute generators l1, . . . , lr ∈ P of kerα.
(For details, see Remark 2.6(c))

(5) Denote the standard basis vectors of the free P -module Pm by e1 := (1, 0, . . . , 0), . . . ,
em := (0, . . . , 0, 1). Compute generators of the module of syzygies

M := SyzP

( (σ1 − id)(d1)
...

(σm − id)(d1)

 , . . .

 (σ1 − id)(dt)
...

(σm − id)(dt)

 ,

l1e1, . . . , l1em, l2e1, . . . , l2em, . . . , lre1, . . . , lrem

)
⊂ P t+m·r.

(For details, see Theorem 1.51)

(6) Let M ′ ⊂ P t be the projection of M on the first t components. Compute generators
m1, . . . ,ms′ of the R-module M ′ ∩Rt.
(For details, see Remark 2.6(d))

(7) Set

f1 + I := α(c1), . . . , fn′ + I := α(cn′),

fn′+1 + I := α

(
t∑
i=1

(m1)i · di

)
, . . . , fs + I := α

(
t∑
i=1

(ms′)i · di

)

and return f1, . . . , fs.

Remarks 2.6. (a) For better clarity, we have written (σj − id)(di) in the expression of
step (5). By Convention 2.2 and step (1) of the algorithm, this obviously should be
replaced by di(g′1j , . . . , g

′
n′j)− di for concrete computations.

(b) In short, the algorithmic realization of steps (2) and (3) can be done as follows. Step
(2) can be performed with an algorithm for the computation of a system of primary
invariants for the action of G on P (see below). An implementation of step (3) can
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2 Computing invariants of reductive groups acting on non-reduced affine algebras

be obtained by an algorithm for computing secondary invariants (with respect to the
system of primary invariants c1, . . . , cn′) for the trivial action of the trivial group on
P (see below).
First examinations of the computational aspects of finding a system of primary
invariants go back to Hilbert (cf. [Hil93]). An explicit algorithm can be found in the
book of Sturmfels (see [Stu93], Algorithm 2.5.8). Later, Kemper has developed a
highly optimized method for the computation of primary invariants. Details can be
found in [Kem96], [KS99] and [Kem99].
For the implementation of step (3) as suggested above to make sense, we first have
to check whether c1, . . . , cn′ ∈ P – which by construction is a system of primary
invariants for the action of G on P – is a system of primary invariants for the
trivial action of the trivial group on P , too. For this, it is enough to show that
P is integral over K[c1, . . . , cn′ ]. By step (2), we know that PG is integral over
K[c1, . . . , cn′ ]. Moreover, the ring P is integral over PG, since every p ∈ P satisfies
a monic polynomial with coefficients in PG. This polynomial can be given explicitly
by

Fp :=
∏
σ∈G

σ(T − p) ∈ PG[T ]

where T is an indeterminate over P and G acts trivially on T . It follows by [AM69],
Chapter 5, Corollary 5.4 that P is integral over K[c1, . . . , cn′ ], as desired. (In par-
ticular, it is perfectly valid to assume that the homogeneous system of parameters
for PG in step (2) is of length n′.)
Secondly, observe that the trivial group is certainly linearly reductive. Therefore, by
the theorem of Hochster and Roberts (cf. Theorem 1.27), the invariant ring P {1} = P
of the trivial group is Cohen-Macaulay. This means that elements d1, . . . , dt as re-
quested in step (3) of Algorithm 2.5 exist.
Concrete algorithms for the computation of secondary invariants in the Cohen-
Macaulay case can be found for example in [Kem94] and [KS99].

(c) Generators of ker(α) in step (4) can be obtained with an algorithm for the compu-
tation of the ideal of relations of the elements a1 + I, . . . , an′ + I. A possibility for
computing this is as follows. Let Z1, . . . , Zn′ be indeterminates over K[x1, . . . , xn]
and form the ideal

D0 := (Z1 − a1, . . . , Zn′ − an′) + (I) EK[x1, . . . , xn, Z1, . . . , Zn′ ].

Then the ideal of relations of a1 + I, . . . , an′ + I is given by the elimination ideal
D0∩K[Z1, . . . , Zn′ ]EK[Z1, . . . , Zn′ ]. We do not prove this identity here, since similar
(and to some extent more general) considerations with detailed proofs are carried
out in Remark 4.23 and [CLO07], Chapter 7, Section 4.
Details about the computation of elimination ideals can be found in Section 1.3.

(d) An algorithm for the computation of the intersection M ′ ∩ Rt can be found in
[Kem96]. ♦
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2.1 Finite groups

Proof of Correctness. We have to show that

AG = K[f1 + I, . . . , fs + I]. (2.1)

It is clear by the G-equivariance of α that α(c1), . . . , α(cn′) ∈ AG. Hence for the right
hand side of (2.1) to be contained in the left hand side, it remains to prove that

σj

(
α

(
t∑
i=1

(mk)i · di

))
= α

(
t∑
i=1

(mk)i · di

)
for all j = 1, . . . ,m, k = 1, . . . , s′

Let k ∈ {1, . . . , s′}. Since mk ∈M ′, there are polynomials q11, . . . , q1m, . . . , qr1, . . . , qrm ∈
P such that

t∑
i=1

(mk)i ·

 (σ1 − id)(di)
...

(σm − id)(di)

+
m∑
i=1

q1i · l1ei + . . .+
m∑
i=1

qri · lrei = 0,

where – as in step (5) – we write ei for the ith standard basis vector of the free module
Pm. It follows that

∑t
i=1(mk)i · (σj − id)(di) ∈ kerα for all j ∈ {1, . . . ,m}. But this

implies that

σj

(
α

(
t∑
i=1

(mk)i · di

))
− α

(
t∑
i=1

(mk)i · di

)
= α

(
σj

(
t∑
i=1

(mk)i · di

)
−

t∑
i=1

(mk)i · di

)

= α

(
t∑
i=1

(mk)i · (σj − id)(di)

)
= 0 for all j ∈ {1, . . . ,m}

and hence α
(∑t

i=1(mk)i · di
)
∈ AG. Since this is true for all k = 1, . . . , s′, it follows that

K[f1 + I, . . . , fs + I] ⊂ AG, as desired.
For the reverse conclusion, let f + I ∈ AG. By the surjectivity of α, there exists F ∈ P
such that α(F ) = f . We may write F in the form

F =
t∑
i=1

ridi

for some r1, . . . , rt ∈ R. In the following we show that F is contained in the R-module

s′∑
k=1

R ·

(
t∑
i=1

(mk)i · di

)
, (2.2)

which then obviously implies that f = α(F ) ∈ K[f1 + I, . . . , fs + I].
Since α(F ) is invariant under G and α commutes with the action of G, it follows that

α

(
σj

(
t∑
i=1

ridi

)
−

t∑
i=1

ridi

)
= 0 for all j = 1, . . . ,m
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2 Computing invariants of reductive groups acting on non-reduced affine algebras

and thus
t∑
i=1

ri · (σj − id)(di) ∈ kerα for all j = 1, . . . ,m.

Writing this in one equation for all j = 1, . . . ,m yields

t∑
i=1

ri ·

 (σ1 − id)(di)
...

(σm − id)(di)

 ∈ m∑
i=1

P · l1ei + . . .+
m∑
i=1

P · lrei

and hence there exist q11, . . . , q1m, . . . , qr1, . . . , qrm ∈ P such that

t∑
i=1

ri ·

 (σ1 − id)(di)
...

(σm − id)(di)

+
m∑
i=1

q1i · l1ei + . . .+
m∑
i=1

qri · lrei = 0.

But this means that (r1, . . . , rt, q11, . . . , qrm) ∈ M and therefore certainly (r1, . . . , rt) ∈
M ′ ∩ Rt. By definition of m1, . . . ,ms′ , there exist elements b1, . . . , bs′ ∈ R such that
(r1, . . . , rt) =

∑s′

k=1 bkmk. It follows that

F =
t∑
i=1

ridi =
t∑
i=1

(
s′∑
k=1

bkmk

)
i

· di =
s′∑
k=1

bk

(
t∑
i=1

(mk)i · di

)
and thus F is contained in the module (2.2), which finishes the proof.

Remark. Note that by the preceding proof, the algorithm not just gives generators of
AG as a K-algebra. In fact – with the notation of the proof – we have shown that

AG =
s′∑
i=1

K[f1 + I, . . . , fn′ + I] · (fn′+i + I).

We close this section with an application of Algorithm 2.5 to a concrete example.

Example 2.7. In the following, we present a step-by-step application of Algorithm 2.5 to
the situation of Example 2.1.
For step (1), observe that the vector space generated by x1 + I, x2 + I is stable under the
action of G. Hence we can set P := K[y1, y2] where the G-action is given by

σ(y1) := y1, σ(y2) := y1 + y2.

Moreover, A is a homomorphic image of P under the G-equivariant homomorphism α :
P −→ A, yi 7−→ xi + I for i = 1, 2. As we have seen in Example 2.1, a homogeneous
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system of parameters for PG is given by

c1 := y1, c2 := y1y2 + y2
2

It can be checked without difficulties that for step (3), we can set t := 2 and

d1 := 1, d2 := y2.

Obviously ker(α) is equal to I and therefore we set r := 1 and l1 := y2
1. Corresponding to

step (5) of the algorithm, we have to compute the modules of syzygies

M := SyzP

((
0
0

)
,

(
0
y1

)
,

(
y2

1

0

)
,

(
0
y2

1

))
⊂ P 4.

(where we have set σ1 := 1G and σ2 := σ). It is immediate that the module of syzygies
of the elements of the first row, i. e. of 0, 0, y2

1, 0, is given by P × P × {0} × P ⊂ P 4. The
syzygies of the second row can be seen as {(p1, p2, p3, p4) ∈ P 4 : p4 · y1 = p2}. It follows
that M is generated (as a P -module) by (0, y1, 0, 1) and (1, 0, 0, 0).
By step (6), it remains to intersect the P -module generated by (0, y1) and (1, 0) with
K[y1, y1y2 +y2

2]2 = (PG)2. Let p1, p2 ∈ P . It is clear that if p1 · (0, y1)+p2 · (1, 0) ∈ (PG)2,
then p2 ∈ PG. Moreover, since p1 · y1 ∈ PG is invariant, it follows by the invariance of y1

that p1 is invariant, too, i. e. p1 ∈ PG. But this means that (P · (0, y1) +P · (1, 0))∩ (PG)2

is generated as a PG-module by (0, y1) and (1, 0). Therefore, we set m1 := (0, y1) and
m2 := (1, 0). It follows that AG is generated by

α(y1) = x1 + I, α(y1y2 + y2
2) = x1x2 + x2

2 + I, α(y1y2) = x1x2 + I, α(1) = 1. C

As mentioned above, there exist several algorithms for the computation of invariant rings
of finite groups acting linearly on polynomial rings. For these, various optimizations have
been suggested by Kemper and Steel in [KS99]. Since the“non-reduced”methods presented
in this section use similar constructions as the algorithms for the polynomial cases, one
might think that these optimizations could be applied to Algorithm 2.5, too. It can be
checked that in principle some of the optimizations are applicable, indeed. Nevertheless,
it seems that – unless to the polynomial case – this brings new computational difficulties
and complexity and hence does not improve the performance of the non-reduced case.

2.2 Some remarks about infinite groups

Throughout this section, let K be an algebraically closed field and let x1, . . . , xn be in-
determinates over K. Moreover, let A := K[x1, . . . , xn]/I with I E K[x1, . . . , xn] be a
(possibly non-reduced) affine algebra and let the reductive group G act on A via a homo-
morphism of algebras µ̃ : A −→ K[G]⊗K A.

If G is a linearly reductive group, then the invariant ring AG can be computed with
Derksen’s algorithm (cf. [Der99]) by carrying out the following well-known construction
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2 Computing invariants of reductive groups acting on non-reduced affine algebras

(cf. Algorithm 2.3). Let V ⊂ A be a G-module containing x1 + I, . . . , xn + I. Note that
such a V always exists since G acts locally finite on A by Proposition 1.31(a). Let S(V )
denote the symmetric algebra. It is a G-algebra in a natural way and obviously there
exists a G-equivariant, surjective homomorphism α : S(V ) −→ A. Since S(V ) is a poly-
nomial algebra, the invariant ring S(V )G can be computed with Derksen’s algorithm. But
then the invariant ring of A is given by AG = α(S(V )G). This latter conclusion – which
is only true if G is a linearly reductive group – is a standard result about G-equivariant
epimorphisms. For details, see [DK02], Chapter 2, Section 2.2.

In case that G is reductive, the restriction of the homomorphism α to S(V )G does not
map surjectively onto AG anymore. But at least we know by [MFK94], Appendix, Lemma
A.1.2 that α(S(V )G) and AG only differ by pth roots, i. e. for all a ∈ AG there exists n ∈ N
such that ap

n ∈ α(S(V )G).

Example 2.8. In Example 2.1, we have constructed a G-equivariant homomorphism α
mapping from a polynomial ring P to a non-reduced affine algebra A. As we have seen,
the restriction of this homomorphism to the invariant ring of P does not map surjectively
onto the invariant ring AG since for example x1x2 + I /∈ α(PG) but x1x2 + I ∈ AG.
According to the result about pth roots, we have (x1x2 + I)2 = 0 ∈ AG. C

If A is a reduced algebra, Kemper and Derksen have found a method to bridge the
gap between α(S(V )G) and AG algorithmically. They have developed an algorithm for
computing (finitely many) generators of the B-module p

√
B := {a ∈ A; ap ∈ B} of pth

roots, where B is an arbitrary finitely generated subalgebra of A. Roughly speaking, the
invariant ring AG can then be calculated by applying this algorithm successively until
there are no pth roots left (cf. [DK08], Algorithms 1.4 & 1.7).
In the non-reduced case, this does not work anymore. In fact, the module of pth-roots of
a subalgebra B of A may not be finitely generated. Neither is it true that a pth root of
an invariant is again an invariant. This is illustrated in the following example.

Example 2.9. Let K = F2 be the algebraic closure of the field with two elements, let x1, x2

be indeterminates over K and let the multiplicative group G = K× := K \ {0} act on the
algebra A := K[x1, x2]/(x2

1) via multiplication, i. e.

λ(x1 + I) := λx1 + I, λ(x2 + I) := λx2 + I for all λ ∈ G.

Note that the vector space V generated by x1 + I and x2 + I is G-stable and generates A
(as a K-algebra). Following the above construction, the symmetric algebra S(V ) is given
by S(V ) = K[x1, x2], the action of G on S(V ) is given by

λ(x1) := λx1, λ(x2) := λx2 for all λ ∈ G.
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and moreover, the homomorphism α is defined by

K[x1, x2] −→ A, xi 7−→ xi + I for i = 1, 2.

An easy argument shows that S(V )G = K (cf. Example 3.1). Hence it follows that
α(S(V )G) = K, too. One can check that the module of square roots of K in A is given by

K + (x1 + I)K[x1+I,x2+I] = K[x1 + I, x1x2 + I, x1x
2
2 + I, x1x

3
2 + I, . . .]

It is not finitely generated as a module over K. In fact, there does not even exist a finite
generating set as an algebra over K. Moreover, there are obviously non-invariant elements
in this algebra. C

It thus seems to be the wrong way to compute AG by some sort of closure operation of
α(S(V )G). In any case, it is still open how to compute the invariant ring of a reductive
group acting on a non-reduced affine algebra.
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3 Computing invariants of unipotent groups
acting on affine varieties

In [vdE93], van den Essen has found an algorithm for the computation of the invariant ring
of the additive group Ga acting regularly on an irreducible affine variety X. His algorithm
works in the case that the underlying field K has characteristic zero. It relies heavily on
a well-known correspondence of regular Ga-actions and so-called locally nilpotent deriva-
tions which does not hold any more in positive characteristic.
Until recently, there was no method known for the computation of additive group in-
variants in characteristic p. It was in 2008 that Derksen and Kemper succeeded in a
generalization of van den Essen’s work to this case (cf. [DK08]). Furthermore, based on
this result, they developed an algorithm for the computation of invariant rings of arbitrary
connected unipotent groups acting on irreducible affine varieties which works in arbitrary
characteristic. Essentially, the idea was the following. Every connected unipotent group
possesses a finite composition series whose factors are isomorphic (as algebraic groups) to
the additive group Ga. This can be used to inductively compute invariants of unipotent
group actions by repeatedly applying the “base algorithm” for the computation of the in-
variant ring of the additive group. It is necessary for the applicability of their method
to have a composition series of the unipotent group. Moreover, the isomorphisms of the
factor groups and the additive group must be given explicitly.
In this chapter, we give an algorithm for the computation of the invariant ring of a unipo-
tent group G acting on an irreducible affine variety X which works in arbitrary charac-
teristic. Apart from the group G, the variety X and the action of G on X, no additional
input data or structural knowledge about the group – as for example a composition series
etc. – is required. Moreover, it turns out that this algorithm not only works for unipotent
groups but also for certain other situations.
Note that by a theorem of Nagata (cf. [Nag59]), it may happen that the invariant ring
K[X]G is not finitely generated (as a K-algebra). In this case the algorithm∗ for the com-
putation of generators cannot terminate. In fact, it terminates if and only if the invariant
ring K[X]G is finitely generated.

Before we start with the algorithmic details, we examine the relation of the field of
fractions of the invariant ring Quot(K[X]G) and the invariant field K(X)G. Recall that
the invariant field K(X)G is given by the set of rational functions which are invariant

∗Some people do not like to use the term algorithm if termination after a finite number of steps is not
guaranteed. Nonetheless, we will call the resulting recipe for the computation of the invariant ring an
algorithm and we will do so for all following algorithms regardless of whether they terminate or not.
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3 Computing invariants of unipotent groups acting on affine varieties

under G, the so-called rational invariants, that is

K(X)G =
{
n

d
; n ∈ K[X], d ∈ K[X] \ {0} such that

σ(n)
σ(d)

=
n

d
for all σ ∈ G

}
.

This examination turns out to be very fruitful for the algorithms. Apart from that it
provides some insights which are interesting for their own sake.

Unless otherwise stated, let K be an algebraically closed field, let X be an irreducible
affine variety over K and let G be a linear algebraic group over K acting regularly on X.
Note that G does not have to be unipotent for now.

3.1 Some remarks about the relation of the field of fractions of
the invariant ring and the invariant field

It is obvious that the field of fractions of the invariant ring, i. e. Quot(K[X]G), is contained
in the invariant field K(X)G. In general, this inclusion is strict, as the following example
shows.

Example 3.1. Let G = K× := K \ {0} act on X = K2 via multiplication, i. e. λ(ξ1, ξ2) :=
(λξ1, λξ2). The orbits of this action are the origin and all lines through the origin with the
origin removed. From this it follows that the origin is contained in the closure of every
orbit and hence K[X]G = K.
Let x1, x2 denote the coordinate functions on K2. Then obviously x1/x2 is a rational
invariant and therefore K = Quot(K[X]G) 6= K(X)G.
Generalizing this example to higher dimensions shows that there does not even exist a
bound for the difference of the transcendental degrees of Quot(K[X]G) and K(X)G. C

In the sequel, we will examine various situations where we can actually show that the
equality Quot(K[X]G) = K(X)G holds. Apart from that we will give several examples
where this equality fails along with geometric interpretations why this is the case.
As we will see, the equality of the field of fractions of the invariant ring and the invariant
field can be proved for certain types of algebraic groups G, for varieties X with special
properties and for some types of actions of G on X.

Before we can start with this programme, we have to digress briefly to some basic
considerations about colon ideals. Recall the definition of a colon ideal. If I, I ′ E R are
ideals of some ring R, then the set

I : I ′ := {r ∈ R; r · I ′ ⊂ I}

is an ideal of R. It is called the colon ideal of I by I ′.
Let n/d = ñ/d̃ ∈ K(X) be two representations of the same rational function. We claim
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3.1 The field of fractions of the invariant ring vs. the invariant field

that
(d)K[X] : (n)K[X] = (d̃)K[X] : (ñ)K[X].

If n/d = ñ/d̃ = 0, then obviously (d)K[X] : (n)K[X] = (d̃)K[X] : (ñ)K[X] = K[X]. In
case that n/d 6= 0, we show that the left hand side of the above equation is contained in
the right hand side. By symmetry, this implies equality. So let d′ ∈ (d)K[X] : (n)K[X].
By definition of the colon ideal, there exist n′ ∈ K[X] such that d′ · n = n′ · d. The
equality n/d = ñ/d̃ implies that ñ · d = n · d̃. Multiplying these two equations yields
d′ ·n · ñ ·d = n′ ·d ·n · d̃. Both n and d being non-zero and K[X] being a domain, it follows
that d′ · ñ = n′ · d̃. But this means d′ ∈ (d̃)K[X] : (ñ)K[X], as desired.

For a rational invariant n/d ∈ K(X)G we can thus define

a(n/d) := (d)K[X] : (n)K[X] = {d′ ∈ K[X]; d′ · n ∈ (d)K[X]}.

It will turn out in the following proposition that this ideal is closely related to the question
whether n/d can be written as a quotient of regular invariants or not.

Proposition 3.2. Let the linear algebraic group G act regularly on the irreducible affine
variety X and let n/d ∈ K(X)G be a rational invariant. Then

(a) a(n/d) is a G-stable ideal.

(b) n/d ∈ Quot(K[X]G)⇐⇒ a(n/d) ∩K[X]G 6= {0}.

Proof. (a) Since σ ∈ G defines an automorphism of K[X], we have

σ(a(n/d)) = {σ(d′); d′ ∈ K[X] and d′ · n ∈ (d)}
= {σ(d′); d′ ∈ K[X] and σ(d′) · σ(n) ∈ (σ(d))}
= a(σ(n)/σ(d)
= a(n/d).

(b) Assume first that n/d ∈ Quot(K[X]G). Then there are n′, d′ ∈ K[X]G with d′ 6= 0
such that n/d = n′/d′. But this means n · d′ = n′ · d and hence d′ ∈ a(n/d)∩K[X]G.
Conversely, let d′ ∈ a(n/d) ∩ K[X]G with d′ 6= 0. By definition of the colon ideal,
there exists n′ ∈ K[X] such that d′ · n = d · n′. This means that n/d = n′/d′. Since
n/d is a rational invariant and d′ ∈ K[X]G, it follows that n′ is invariant, too. But
this says that n/d ∈ Quot(K[X]G).

Remark 3.3. One can think of a(n/d) \ {0} as the set of all possible denominators of
representations of the rational function n/d as a quotient of regular functions. With this
in mind, the validity of Proposition 3.2 is obvious. ♦
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3 Computing invariants of unipotent groups acting on affine varieties

For finite groups we have the following well-known result.

Proposition 3.4. Let the finite group G act regularly on the irreducible affine variety X.
Then Quot(K[X]G) = K(X)G.

Proof. Let n/d ∈ K(X)G be a rational invariant. Then 0 6=
∏
σ∈G σ(d) ∈ a(n/d)∩K[X]G.

So by Proposition 3.2, it follows that n/d ∈ Quot(K[X]G).

Remark 3.5. Note that for the proof of this proposition we do not need the geometric
setting of a finite group G acting regularly on an irreducible affine variety X. In fact, if we
replace K[X] by an arbitrary integral domain R and G by a finite group of automorphisms
of R, then we still have Quot(RG) = Quot(R)G. ♦

For infinite groups we have seen that in general, the field of fractions of the invariant
ring differs from the invariant field. However, in case that G is a unipotent group, we have
equality, as will be shown in the following proposition.

Proposition 3.6. Let the linear algebraic group G act regularly on the irreducible affine
variety X. If the identity component G0 of G is unipotent, then Quot(K[X]G) = K(X)G.

Proof. Assume first that G is a connected, unipotent group and let n/d ∈ K(X)G be a
rational invariant. By Corollary 1.33, the group G acts locally finite on K[X]. Since the
ideal a(n/d) is G-stable (cf. Proposition 3.2), we can find a non-zero finite dimensional G-
stable vector space V ⊂ a(n/d). As G is unipotent, it follows that V G 6= 0 (see [Hum75],
Chapter 17, Theorem 17.5) and hence a(n/d)G 6= 0. Now Proposition 3.2 implies that
n/d ∈ Quot(K[X]G).
For the case where G is not connected, recall that the identity component G0 is a normal
subgroup of finite index in G (cf. Definition and Proposition 1.15). Therefore, by Remark
3.5, it follows

Quot(K[X]G) = Quot((K[X]G
0
)G/G

0
) = Quot(K[X]G

0
)G/G

0

= (K(X)G
0
)G/G

0
= K(X)G,

which proves the proposition.

Definition 3.7. Let G be a linear algebraic group. A rational character of G is a
homomorphism χ : G −→ K× of algebraic groups. Let G act regularly on the affine
variety X and let χ be a rational character of G. An element f ∈ K[X] is said to be a
semi-invariant of weight χ if

σ(f) = χ(σ)f for all σ ∈ G.
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3.1 The field of fractions of the invariant ring vs. the invariant field

Example 3.8. Let G = K× act on X = K2 as in Example 3.1. Then both x1 and x2

are semi-invariants of weight G −→ K×, λ 7−→ λ. In particular, the rational invariant
x1/x2 is a quotient of semi-invariants. It can be shown that every rational invariant of this
action can be written as a quotient of semi-invariants (necessarily of the same weight).
For details, see Proposition 3.11 below. C

If n, d ∈ K[X] are semi-invariants of the same weight, then clearly n/d is a rational
invariant. As in the preceding example, one might hope that conversely every rational
invariant can be written as a quotient of semi-invariants. This would clarify the relation
of the quotient field of the invariant ring and the invariant field. But this is not true in
general, as the example below shows. To be more precise, we will give an example of an
action of the linear algebraic group SL2(K) where the quotient field of the invariant ring
is not equal to the invariant field. Since SL2(K) is a perfect group, it does not have any
rational characters. Hence it follows that there are rational invariants which cannot be
written as quotients of semi-invariants.
In some sense this example is geometrically analogous to Example 3.1 – again, the orbits
of the action are the origin and linear subspaces with the origin removed.

Example 3.9. Let K be an algebraically closed field, let x1, x2, x3, x4 be indeterminates
over K, let X := Var(I) ⊂ K4 with I := (x1x4 − x2x3) E K[x1, x2, x3, x4] and let G :=
SL2 := SL2(K) act on X by(

α β
γ δ

)
(ξ1, ξ2, ξ3, ξ4) := (αξ1 + βξ3, αξ2 + βξ4, γξ1 + δξ3, γξ2 + δξ4)

for all
(
α β
γ δ

)
∈ SL2, (ξ1, ξ2, ξ3, ξ4) ∈ X.

One can think of X as the set of all 2 × 2-matrices
(
ξ1 ξ2

ξ3 ξ4

)
with determinant 0. It is

then clear that the action of SL2 on X comes from the multiplication with SL2 from the

left. For M =
(
ξ1 ξ2

ξ3 ξ4

)
∈ X we define the kernel of M in the usual way as

ker(M) :=
{(

υ1

υ2

)
∈ K2;

(
ξ1 ξ2

ξ3 ξ4

)(
υ1

υ2

)
= 0
}
.

We claim that M,M ′ ∈ X are contained in the same SL2-orbit if and only if ker(M) =
ker(M ′). It is obvious that all elements of an SL2-orbit have the same kernel. For the
converse, let M,M ′ ∈ X with ker(M) = ker(M ′). If ker(M) = K2, that is M = 0, then

M ′ = 0, too. Otherwise, let
(
ω1

ω2

)
/∈ ker(M). Then there is a linear transformation σ of
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3 Computing invariants of unipotent groups acting on affine varieties

K2 such that

σ

(
M

(
ω1

ω2

))
= M ′

(
ω1

ω2

)
.

Moreover, since K2 is two-dimensional we can choose σ to be an element of SL2 which
proves the claim.
It follows that the orbits of SL2 on X are given by the origin(

0 0
0 0

)
and for each

(
υ1

υ2

)
6= 0 the linear subspace with the origin removed

{(
ξ1 ξ2

ξ3 ξ4

)
;
(
ξ1 ξ2

ξ3 ξ4

)(
υ1

υ2

)
= 0
}
\ {0}.

Since the origin is in the closure of every orbit, it follows that K[X]SL2 = K. But on
the other hand Rosenlicht’s Theorem (cf. [Ros56]) says that there is a dense G-stable
open subset U of X such that all orbits contained in U can be separated by rational
invariants. Since no orbit is dense in X, it follows that non-constant rational invariants
must exist. It can be checked easily that for example (x3 + I)/(x4 + I) ∈ K(X)SL2 . So
Quot(K[X]SL2) 6= K(X)SL2 . C

Nonetheless, for special types of varieties – for so-called factorial varieties – it is true
that every rational invariant can be written as a quotient of semi-invariants. An irreducible
affine variety X is called factorial if the coordinate ring K[X] is a unique factorization
domain. For the case that X is a finite dimensional vector space this result seems to
be folklore. For the proof of the more general case where K[X] is a factorial but not
necessarily a polynomial ring, special care has to be taken of the units of K[X].
In [Ros57], Rosenlicht proved the following useful result about the structure of K[X]×,
the group of units of K[X].

Proposition 3.10. Let X be an irreducible affine variety over K. Then K[X]×/K× is a
free abelian group of finite rank.

Equipped with this, we can prove

Proposition 3.11. Let the linear algebraic group G act regularly on the factorial affine
variety X. Then every rational invariant can be written as a quotient of semi-invariants
of the same weight. In particular, if G does not have any rational characters, then
Quot(K[X]G) = K(X)G.

Remarks 3.12. (a) For every perfect linear algebraic group G acting on a factorial
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3.1 The field of fractions of the invariant ring vs. the invariant field

variety X it follows that Quot(K[X]G) = K(X)G, since a perfect group obviously
does not have any rational characters. Examples for perfect groups include the
classical groups SLn(K) and Sp2n(K).

(b) From the proof of the proposition it will follow that if a connected group G acts
regularly on an irreducible affine variety X, then K[X]× consists of semi-invariants.
In particular, if G has no rational characters then K[X]× ⊂ K[X]G.
In general, this is false if G is not connected. Let x1, x2 be indeterminates over K
and let the cyclic group with two elements, G = 〈σ〉, act on X = Var(x1x2−1) ⊂ K2

by
σ(ξ1, ξ2) := (ξ2, ξ1) for all (ξ1, ξ2) ∈ X.

Since K[X] is a localization of a polynomial ring, it follows that K[X] is a unique
factorization domain. Observe that x1 +(x1x2−1)K[x1,x2] is mapped to x2 +(x1x2−
1)K[x1,x2] under σ. Therefore, the unit x1 + (x1x2−1)K[x1,x2] is not a semi-invariant.

(c) Although the proof of the proposition takes a slightly different approach, it can be
shown that if n/d ∈ K(X)G is a rational invariant of a connected group G acting
on a factorial variety X with n and d coprime, then both n and d are necessarily
semi-invariants of the same weight.
On the first sight this seems to be a convenient way to find an expression of a rational
invariant n/d as a quotient of semi-invariants by simply cancelling out common
factors of n and d. Nonetheless, it may be very hard to actually find common factors
of n and d algorithmically. For more details about algorithmic aspects, see the next
section. ♦

For the simplification of the proof of Proposition 3.11 we need the following auxiliary
lemma.

Lemma 3.13. Let the linear algebraic group G act regularly on the affine variety X. Let
χ : G −→ K× be a homomorphism of groups and let f ∈ K[X] \ {0} be an element such
that

σ(f) = χ(σ)f for all σ ∈ G.

Then χ is a rational character. In particular, it follows that f is a semi-invariant.

Proof. We have to prove that χ is a morphism of algebraic groups. In short, this follows
from the fact that G acts regularly on X. To be more explicit, recall that the induced
action of G on K[X] can be described by a homomorphism of algebras µ̃ : K[X] −→
K[G]⊗KK[X] (cf. Lemma 1.28). Let µ̃(f) =

∑s
i=1 gi⊗ai with gi ∈ K[G], ai ∈ K[X]. We

may assume that a1, . . . , as ∈ K[X] are linearly independent over K. Apparently, there
exists i0 ∈ {1, . . . , s} with gi0(1G) 6= 0. It then can be verified that χ = gi0/gi0(1G), so χ
is a rational character, indeed.
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3 Computing invariants of unipotent groups acting on affine varieties

Proof (of Proposition 3.11). We start with the proof of the proposition for the special case
that G is a connected linear algebraic group. First, we show that every unit of K[X] is
a semi-invariant. The action of G on K[X] induces an action of G on K[X]×/K×. Since
by Rosenlicht’s Proposition 3.10, the latter group is isomorphic to Zr for some r ∈ N0,
this action in turn corresponds to a homomorphism of groups φ : G −→ GLr(Z). We
claim that φ is trivial. Let p ∈ Z be a prime number. Then the composition of φ and the
componentwise reduction modulo p yields a homomorphism G −→ GLr(Fp) which must
be trivial by the connectedness of G. Since p was chosen arbitrarily, this implies that φ
itself must be trivial.
Let ε ∈ K[X]× be a unit. By the above, it makes sense to define the map χε : G −→
K×, σ 7−→ σ(ε)/ε. Let σ, τ ∈ G be arbitrary. Then

χε(στ) =
(στ)(ε)

ε
=
σ(τ(ε))

ε
· τ(ε)
τ(ε)

=
σ(χε(τ)ε)
χε(τ)ε

· τ(ε)
ε

= χε(σ) · χε(τ),

and so χε is a homomorphism of groups. By Lemma 3.13, the homomorphism χε is a
rational character and therefore every unit in K[X] is a semi-invariant, indeed.
Let now n/d ∈ K(X)G \ {0} be a rational invariant. We show that a(n/d) contains a
semi-invariant. By Remark 3.3, it then follows that n/d can be written as n′/d′ where
the denominator d′ is a semi-invariant. As n/d = n′/d′ is a rational invariant, this implies
that the numerator n′ is a semi-invariant, too.
Since K[X] is a unique factorization domain, it is immediate that

a(n/d) =
(

d

gcd(n, d)

)
,

where we write gcd(n, d) for the greatest common divisor of n and d. In particular, a(n/d)
is a principal ideal. Let h := d/ gcd(n, d). Then a(n/d) = (h) is G-stable by Proposition
3.2 and hence it follows that for all σ ∈ G there exists εσ ∈ K[X]× such that σ(h) = εσ ·h.
We claim that the map η : G −→ K[X]×, σ 7−→ εσ is a homomorphism of groups. Let χε
be the character belonging to the unit ε (see a few lines above). Then

η(στ) =
(στ)(h)

h
=
σ(τ(h))

h
=
σ(η(τ) · h)

h

=
σ(η(τ)) · σ(h)

h
=
χη(τ)(σ) · η(τ) · σ(h)

h
= χη(τ)(σ) · η(τ) · η(σ).

(3.1)

Applying Rosenlicht’s Proposition 3.10 to the composition of η with the natural epimor-
phism K[X]× −→ K[X]×/K× yields a homomorphism G −→ Zr. Similarly to the argu-
ment above, this homomorphism must by trivial by the connectedness of G, which shows
that η maps into K×. But this implies χη(τ) = 1 and it follows from (3.1) that η is a
homomorphism of groups. By Lemma 3.13, the map η : G −→ K× is a homomorphism of
algebraic groups, i. e. η is a rational character.
We have shown that h is a semi-invariant of weight η which is contained in a(n/d). There-
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3.1 The field of fractions of the invariant ring vs. the invariant field

fore, the proposition is proved for the special case that G is a connected algebraic group.

Let now G be an arbitrary linear algebraic group and – as above – let n/d ∈ K(X)G\{0}
be a rational invariant. Let N := G0 be the identity component of G. Then obviously n/d
is invariant under N , too, and by what we have proved before, we may assume that n and
d are semi-invariants for the action of the group N on K[X], say of weight χ : N −→ K×.
Let T ⊂ G be a set of representatives for the residue classes of G mod N . We claim that∏

τ∈T
τ(n)

is a semi-invariant for the action of G on K[X]. Let σ ∈ G. By construction, every element
of G can be written uniquely as a product of an element of T and an element of N . More
explicitly, if σ ∈ G, then

σ = σTσN for σT ∈ T, σN ∈ N.

The notation −T resp. −N will be used in the following computations. Before going into
the details, observe that {(στ)T ; τ ∈ T} = T for all σ ∈ G which can be seen by an easy
argument. Keeping this in mind, one calculates

σ

(∏
τ∈T

τ(n)

)
=
∏
τ∈T

((στ)T (στ)N )(n) =
∏
τ∈T

χ((στ)N ) · (στ)T (n)

= λ ·
∏
τ∈T

(στ)T (n) = λ ·
∏
τ∈T

τ(n)

for some λ ∈ K. An easy verification together with Lemma 3.13 shows that the map

χ ′ : G −→ K×, σ 7−→ σ

(∏
τ∈T

τ(n)

)
/
∏
τ∈T

τ(n)

is a rational character. It follows that
∏
τ∈T τ(n) is a semi-invariant for the action of G

on K[X], as claimed.
We may assume that 1G ∈ T . Since

n/d =
∏
τ∈T τ(n)

d ·
∏
τ∈T,τ 6=1G

τ(n)
∈ K(X)G

is a rational invariant, it follows that the denominator d·
∏
τ∈T,τ 6=1G

τ(n) is a semi-invariant,
too, necessarily of the same weight χ ′ : G −→ K× as the numerator. Hence n/d can be
written as a quotient of semi-invariants, as we wanted to show.

Corollary 3.14. Let the linear algebraic group G act regularly on the factorial affine
variety X. If the identity component of G does not have any rational characters, then
Quot(K[X]G) = K(X)G.
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Proof. By the previous proposition, the assertion is true for connected groups. Then –
similarly as in the proof of Proposition 3.6 – an application of Remark 3.5 yields the
desired result for possibly non-connected groups.

It is tempting to hope that the previous proposition might even be true if X is only
assumed to be a normal variety, i. e. if K[X] is a normal ring. But this is not the case for
general normal varieties, as the following example shows.

Example 3.15. We show that the variety X of Example 3.9 is a normal variety. In short,
X is a so-called determinantal variety and varieties of this type are always normal (see
[HE71]). Determinantal varieties can be quite complicated, however, for the simple case
here, it is easy to give a proof of normality explicitly.
Let V = K4 and consider the action of G = K× on V given by

λ(υ1, υ2, υ3, υ4) := (λυ1, λυ2, λ
−1υ3, λ

−1υ4) for all (υ1, υ2, υ3, υ4) ∈ V, λ ∈ G.

The coordinate ring of V is a polynomial ring and hence a normal domain. It is a well-
known fact that the invariant ring of a group acting on a normal domain is again normal
(see for example [DK02], Chapter 2, Proposition 2.3.11). Hence the normality of X follows
if we can show that K[V ]G = K[X]. Let y1, y2, y3, y4 denote the coordinate functions on
V . Then the invariant ring K[V ]G is given by

K[V ]G = K[y1y3, y1y4, y2y3, y2y4].

Let T1, . . . , T4 be indeterminates over K and consider the homomorphism of rings

φ : K[T1, T2, T3, T4] 7−→ K[V ]G, T1 7−→ y1y3, T2 7−→ y1y4, T3 7−→ y2y3, T4 7−→ y2y4.

Obviously, T1T4 − T2T3 lies in the kernel of ψ. Since (T1T4 − T2T3) E K[T1, T2, T3, T4]
is a prime ideal of height one and the dimension of K[V ]G is equal to 3, it follows that
K[X] ∼= K[T1, T2, T3, T4]/(T1T4 − T2T3) ∼= K[V ]G. C

In Example 3.1 and Example 3.9 we have seen that the quotient field of the invariant
ring can be properly contained in the invariant field. As mentioned earlier, the geometries
of the respective actions are similar in the sense that in both cases the origin is contained in
the closure of every orbit. In fact, the origin may be thought of as a “pivotal point” posing
an obstacle for the equality of Quot(K[X]G) and K(X)G. For, if we had Quot(K[X]G) =
K(X)G, then by Rosenlicht’s Theorem (cf. [Ros56]), it would follow that the orbits of the
points contained in some dense open subset of X could be separated by invariants. In both
examples the special property of the origin forces the invariant ring to be trivial. But on
the other hand, there does not exist a dense orbit in neither of the two cases, which is
obviously a contradiction.
Roughly speaking, for the equality Quot(K[X]G) = K(X)G to be true, it is necessary that
the invariant ring has strong separating properties.
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If we impose the additional restriction on the action of G on X that all orbits of G are
closed in X, then there are at least no topological reasons why orbits cannot be separated
by invariants. In fact, if G is a reductive group, then this additional property implies that
the field of fractions of the invariant ring is equal to the invariant field.

Proposition 3.16. Let the reductive group G act regularly on the irreducible affine variety
X and assume that all orbits of G in X are closed. Then Quot(K[X]G) = K(X)G.

Proof. Let n/d ∈ K(X)G be a rational invariant. The set Y := VarX(a(n/d)) is a proper
closed subset of X which is G-stable by Proposition 3.2. Let p ∈ X \ Y be arbitrary. By
assumption, the orbit Z := G ·p is closed in X, hence there exists an invariant f ∈ K[X]G

which vanishes on Y and is not zero on Z (see [New78], Chapter 3, Lemma 3.3). By
Hilbert’s Nullstellensatz (cf. Theorem 1.5), it follows that f s ∈ a(n/d) for some s ∈ N.
But this implies that a(n/d) ∩K[X]G 6= {0}, and so we are done by Proposition 3.2.

3.2 Algorithms

As mentioned at the beginning of this chapter, van den Essen and later Derksen and Kem-
per have constructed algorithms for the computation of the invariant ring of the additive
group acting on an irreducible affine variety. Since the additive group is not reductive,
it may happen that the invariant ring is not finitely generated (cf. [Nag59], [Pop79]).
Algorithmically, they handled this problem as follows. If the invariant ring is finitely
generated, then their algorithms terminate. Otherwise, they return an infinite sequence
f1, f2, . . . ∈ K[X]G of invariants which generate the invariant ring in the usual sense: If
f ∈ K[X]G is an invariant, then there exists s ∈ N such that f ∈ K[f1, . . . , fs].
The approaches for the computation of the invariant ring of van den Essen as well as
Derksen and Kemper can roughly be described as follows. First, an non-zero invariant
f ∈ K[X]G \ {0} is chosen with the property that K[X]Gf is finitely generated and genera-
tors of K[X]Gf can be calculated. Then the intersection K[X]Gf ∩K[X] is computed. Note
that the invariant ring K[X]G is equal to this intersection.
The method we present here for the computation of invariant rings of certain group actions
– including unipotent ones – uses a similar approach.

First we give the definition of the so-called colon operation which will be needed for the
algorithm.

Definition 3.17. Let S be an algebra over K, R ⊂ S be a subalgebra and let a ER be an
ideal of R. We define

(R : a)S := {s ∈ S; s · a ⊂ R}
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3 Computing invariants of unipotent groups acting on affine varieties

and

(R : a∞)S :=
∞⋃
i=1

(R : ai)S = {s ∈ S; ∃i ∈ N : s · ai ⊂ R}.

Note that we have used the notion of the ith power of an ideal which is defined recursively
as a0 := (1) ER and for i ∈ N as ai := (r1r2 : r1 ∈ a, r2 ∈ ai−1) ER.
(For a more general definition of the concept of the colon operation, see [DK08])

Remarks 3.18. (a) Using the notation of the definition, if the ideal a is generated by
one element, say a = (f)R, then we also write (R : f)S resp. (R : f∞)S instead of
(R : a)S resp. (R : a∞)S .

(b) Let S be an affine domain, R ⊂ S be a finitely generated subalgebra and a E R. If
a 6= (0), then (R : a)S has the structure of a finitely generated R-module. For, let
f ∈ a \ {0}. By definition, we have f · (R : a) ⊂ R. So we may identify (R : a)S with
a submodule of R. In particular, it follows that (R : a)S is finitely generated as an
R-module. The union (R : a∞)S =

⋃∞
i=1(R : ai)S is a subalgebra of S. In general,

this subalgebra is not finitely generated (cf. [DK08], Section 2).

(c) Let S be an affine domain, say S := K[x1, . . . , xn]/I with x1, . . . , xn indeterminates
over K and I E K[x1, . . . , xn] a prime ideal. Furthermore, let R ⊂ S be a finitely
generated K-algebra and a ER. Derksen and Kemper have developed an algorithm
for the computation of (R : a)S . Their algorithm returns finitely many generators
of (R : a)S as an R-module. In case that (R : a)S = R, it returns the empty set.
Furthermore, they showed that (R : a∞)S = R if and only if (R : a)S = R. This
leads to an algorithm for the computation of (R : a∞)S :

First, output generators of (R : a)S , then – if (R : a)S 6= R – replace R by
the algebra generated by R and the generators of (R : a)S and start again.

In fact, this algorithm terminates if and only if (R : a∞)S is finitely generated as
a K-algebra. Otherwise, the output will be an infinite sequence of generators. For
details, see [DK08], Algorithms 2.6 & 2.7. ♦

As before, let x1, . . . , xn and t1, . . . , tm be indeterminates over K. For the algorithms,
let the input data be given as in the following convention.

Convention 3.19.
Let G be a linear algebraic group, X be an irreducible affine variety and let G act regularly
on X. We assume that these data are given as follows:

(1) Generators of the radical ideal J EK[t1, . . . , tm] defining the linear algebraic group
G as an affine variety in Km.

(2) Generators p1, . . . , pr of the prime ideal I EK[x1, . . . , xn] such that X = Var(I) ⊂
Kn.
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(3) Polynomials N1, . . . , Nn ∈ K[t1, . . . , tm, x1, . . . , xn] such that

µ(σ, p) = (N1(σ, p), . . . , Nn(σ, p)) for all σ ∈ G, p ∈ X,

where µ : G×X −→ X is the morphism corresponding to the action of G on X.

As mentioned before, the following algorithm does not only work for the important case
of unipotent groups. Actually, it works in every case where the equality of the field of
fractions of the invariant ring and the invariant field holds. In the previous section this
special property has been proved for various cases, see Propositions 3.4, 3.6, 3.11 & 3.16.
Note that – following the approach of van den Essen, Derksen and Kemper – the algo-
rithm does not compute the invariant ring itself but a certain localization thereof. With
generators of this localization in hand it is not a hard task to compute a (possibly infinite)
sequence of generators of K[X]G, as we will see in Remark 3.21(b).

Algorithm 3.20. (Computing invariants of certain group actions)

Input: A linear algebraic group G, an irreducible affine variety X and an action µ of G
on X according to Convention 3.19 such that Quot(K[X]G) = K(X)G.

Output: Polynomials f, f1, . . . , fs ∈ K[x1, . . . , xn] with f /∈ I such that

K[X]Gf+I = K[f1 + I, . . . , fs + I, f + I, 1/(f + I)].

(1) Let Z1, . . . , Zn be indeterminates over Quot(K[x1, . . . , xn]/I)[t1, . . . , tm] and let α
be the composition of the natural homomorphisms

α : K[t1, . . . , tm, x1, . . . , xn] −→ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm]
−→ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm, Z1, . . . , Zn].

Set

D0 :=
(
J, Z1 − α(N1), . . . , Zn − α(Nn)

)
E Quot(K[x1, . . . , xn]/I)[t1, . . . , tm, Z1, . . . , Zn].

(See Remark 3.21(c) for an explanation of this notation)

(2) Compute the elimination ideal

D := D0 ∩Quot(K[x1, . . . , xn]/I)[Z1, . . . , Zn].

(For details, see Remark 3.21(d))

(3) Let G be the reduced Gröbner basis of D with respect to an arbitrary monomial
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3 Computing invariants of unipotent groups acting on affine varieties

order on Z1, . . . , Zn and let
n1 + I

d1 + I
, . . . ,

ns + I

ds + I

with n1, . . . , ns, d1, . . . , ds ∈ K[x1, . . . , xn] be the non-zero coefficients of the elements
of G.

(4) For i = 1, . . . , s:
Set

Li := ((di)K[x1,...,xn] + I) : (ni)K[x1,...,xn] EK[x1, . . . , xn]

and choose hi ∈ Li with hi + I ∈ (Li/I)G \ {0}.
(See Remark 3.21(d) and the discussion after the following proof of correctness for
methods of how this can be done)

(5) Set f :=
∏s
i=1 hi.

(6) For i = 1, . . . , s:
Compute fi ∈ K[x1, . . . , xn] such that

(f + I) · (ni + I) = (fi + I) · (di + I). (3.2)

(For details, see Remark 3.21(f))

(7) Return f, f1, . . . , fs.

Remarks 3.21. (a) Note that an algorithm with a similar functionality as Algorithm
3.20 has been developed by Kemper and Derksen. For details, see [DK08].

(b) For the actual computation of generators of K[X]G observe that the invariant ring
is given by

K[X]G = K[X]Gf+I ∩K[X] = K[f1 + I, . . . , fs + I, f + I, 1/(f + I)] ∩K[X].

This intersection in turn is equal to (K[f1 + I, . . . , fs + I, f + I] : (f + I)∞)K[X].
As mentioned above, this colon algebra can be computed by [DK08], Algorithm 2.7.
Note that this computation terminates if and only if the invariant ring is finitely
generated. Otherwise, it returns an infinite sequence of generators of K[X]G.

(c) In step (1) we have loosely written J in the list of generators of the ideal D0.
It should be clear what is meant here. It stands for the set J regarded as a
subset of Quot(K[x1, . . . , xn]/I)[t1, . . . , tm, Z1, . . . , Zn] via the natural embedding
K[t1, . . . , tm] −→ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm, Z1, . . . , Zn].

(d) Algorithms for the computation of elimination and colon ideals can be found in
Section 1.3 and [BW93], Chapter 6, Section 2. For computations in polynomial
rings over fields of rational functions, see Section 1.3.
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(e) It can be seen without difficulties that for i = 1, . . . , s the ideal Li of step (4)
is the preimage of the ideal a((ni + I)/(di + I)) = (di + I)K[X] : (ni + I)K[X]

under the natural epimorphism K[x1, . . . , xn] −→ K[x1, . . . , xn]/I. As we will see
in the following proof, the rational function (ni + I)/di + I) is an invariant. By the
assumption Quot(K[X]G) = K(X)G, it follows that the ideal a((ni + I)/(di + I))
contains a non-zero invariant. Therefore, step (4) of the algorithm makes sense and
the hi with the required properties exist.

(f) Step (6) of the algorithm can be computed for example with the Extended Buch-
berger Algorithm (cf. [BW93], Chapter 5, Section 5.6). To be more precise, the latter
algorithm can be used to compute coordinates of the ideal membership

f · ni ∈ (di, p1, . . . , pr)K[x1,...,xn]

where – according to Convention 3.19 – the polynomials p1, . . . , pr are generators
of the ideal I. Then fi is given by the coordinate correspoding to di. Note that
f ∈

⋂s
i=1 Li by steps (4) and (5). Therefore, polynomials fi with the required

properties exist.

(g) In the first two steps of the algorithm, the Derksen ideal, as Kemper calls it in
[Kem07], is computed. For computational purposes this ideal – or variants thereof
– seems to occur quite frequently (see for example [Der99], [MQB99], [Kem07]). In
[MQB99], Müller-Quade and Beth showed that it can be used to compute invariant
fields of algebraic groups acting linearly on vector spaces. Later Kemper generalized
their work to arbitrary algebraic groups acting rationally on algebraic varieties.
The following proof is self-contained in the sense that it does not assume any knowl-
edge about the theory which has been developed in [MQB99] and [Kem07]. ♦

Proof of Correctness. We have to prove that

K[X]Gf+I = K[f1 + I, . . . , fs + I, f + I, 1/(f + I)]. (3.3)

For the right hand side to be contained in the left hand side, it is enough to show that
f + I, f1 + I, . . . , fs + I are invariants. For f + I this is clear by definition. The invariance
of f1 + I, . . . , fs + I requires a bit more work.
Observe that the action of G on Quot(K[x1, . . . , xn]/I) can be extended to an action on
Quot(K[x1, . . . , xn]/I)[Z1, . . . , Zn] where G acts on Z1, . . . , Zn trivially. We claim that the
ideal D is G-stable under this action. To see this, we prove that

D = D′ :=
⋂
σ∈G

(Z1 − σ(x1 + I), . . . , Zn − σ(xn + I)). (3.4)

As a preliminary consideration, we show that σ−1(xi + I) = α(Ni)(σ) for all i = 1, . . . , n
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and all σ ∈ G. Let i ∈ {1, . . . , n}. Then

σ−1(xi + I)(p) = (xi + I)(σ(p)) = (xi + I)(N1(σ, p), . . . , Nn(σ, p))
= Ni(σ, p)

for all σ ∈ G and all p ∈ X. It follows that

σ−1(xi + I) = α(Ni)(σ) for all σ ∈ G.

For the proof of equality (3.4), let h ∈ D. By definition of D, there exist t ∈ N,
b1, . . . , bt, c1, . . . , cn ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm, Z1, . . . , Zn] and j1, . . . , jt ∈ J
such that

h =
t∑
i=1

bi · ji +
n∑
i=1

ci · (Zi − α(Ni)).

Note that h does not contain any t1, . . . , tm-variables. We may thus replace t1, . . . , tm on
the right hand side of the above equation by arbitrary values. Let σ = (ζ1, . . . , ζm) ∈ G.
Substituting t1 = ζ1, . . . , tm = ζm, it then follows that

h =
n∑
i=1

c̃i · (Zi − α(Ni)(σ))

for some c̃1, . . . c̃n ∈ Quot(K[x1, . . . , xn]/I)[Z1, . . . , Zn] which implies that

h ∈ (Z1 − α(N1)(σ), . . . , Zn − α(Nn)(σ)) = (Z1 − σ−1(x1 + I), . . . , Zn − σ−1(xn + I)).

Since σ ∈ G was chosen arbitrarily, it follows that h ∈ D′, as desired.
For the reverse inclusion, let h ∈ D′. Then

h − h(α(N1), . . . , α(Nn))
= h(Z1 − α(N1) + α(N1), . . . , Zn − α(Nn) + α(Nn))− h(α(N1), . . . , α(Nn))

= h(α(N1), . . . , α(Nn)) +

(
n∑
i=1

di · (Zi − α(Ni))

)
− h(α(N1), . . . , α(Nn))

for some d1, . . . , dn ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm, Z1, . . . , Zn]. But this means that

h− h(α(N1), . . . , α(Nn)) ∈ (Z1 − α(N1), . . . , Zn − α(Nn)) ⊂ D0. (3.5)

On the other hand, since h is contained in D′, it follows that

h(α(N1)(σ), . . . , α(Nn)(σ)) = h(σ−1(x1 + I), . . . , σ−1(xn + I)) = 0 (3.6)

for all σ ∈ G. The polynomial h(α(N1), . . . , α(Nn)) can be written as

h(α(N1), . . . , α(Nn)) =
t∑
i=1

gj · aj
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for some t ∈ N, a1, . . . , at ∈ Quot(K[x1, . . . , xn]/I) and g1, . . . , gt ∈ K[t1, . . . , tm]. We may
assume that a1, . . . , at are linearly independent over K. By equation (3.6), we have

0 =
t∑
i=1

gi(σ) · ai

and by the linear independence of a1, . . . , at, this means that g1(σ) = . . . = gt(σ) =
0. Since this is true for all σ ∈ G, it follows that gi ∈ J . This in turn implies that
h(α(N1), . . . , α(Nn)) ∈ D0. Combining this with (3.5) shows that h ∈ D, as desired.

We can now show that f1 + I, . . . , fs + I are invariant under the action of G. The G-
stability of D together with the uniqueness of the reduced Gröbner basis implies that G
is G-stable, too. By definition, the leading monomials of a reduced Gröbner basis are
pairwise distinct, hence it follows that G consists of G-invariant polynomials. Since G acts
trivially on Z1, . . . , Zn, this in turn implies that

n1 + I

d1 + I
, . . . ,

ns + I

ds + I
∈ Quot(K[x1, . . . , xn]/I)G.

Let i ∈ {1, . . . , s}. Equation (3.2) yields

fi + I

f + I
=
ni + I

di + I
(3.7)

and since both (ni+I)/(di+I) ∈ Quot(K[x1, . . . , xn]/I)G and f +I ∈ (K[x1, . . . , xn]/I)G

are invariants, it follows that fi + I is invariant, too. To sum up, we have shown that the
right hand side of equation (3.3) is contained in the left hand side.
For the reverse inclusion, let g + I ∈ K[X]G. We will show that if we regard g + I =
g(x1 + I, . . . , xn + I) as an element of Quot(K[x1, . . . , xn]/I)[Z1, . . . , Zn], then

g(Z1, . . . , Zn)− g(x1 + I, . . . , xn + I) ∈ D. (3.8)

Assume for a moment that this is true. Then g(Z1, . . . , Zn)−g(x1 + I, . . . , xn+ I) reduces
to zero with respect to an arbitrary Gröbner basis of D. In particular, this holds for
G which is computed in step (3). Because of the Quot(K[x1, . . . , xn]/I)-linearity of the
normal form operator NFG (cf. Remark 1.44), it follows

NFG(g(Z1, . . . , Zn)− g(x1 + I, . . . , xn + I))
= NFG(g(Z1, . . . , Zn))−NFG(g(x1 + I, . . . , xn + I))
= NFG(g(Z1, . . . , Zn))− g(x1 + I, . . . , xn + I) = 0

and hence
NFG(g(Z1, . . . , Zn)) = g(x1 + I, . . . , xn + I). (3.9)

By equation (3.7), we have G ⊂ (K[f1 + I, . . . , fs + I, f + I]f+I)[Z1, . . . , Zn]. Together
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with Remark 1.44 this implies

g(x1 + I, . . . , xn + I) = NFG(g(Z1, . . . , Zn))
∈ (K[f1 + I, . . . , fs + I, f + I]f+I)[Z1, . . . , Zn],

which finally proves (3.3).
It remains to show the validity of (3.8). Let σ ∈ G. By the invariance of g + I, we have

g(Z1, . . . , Zn)− g(x1 + I, . . . , xn + I)
= g(Z1 − σ(x1 + I) + σ(x1 + I), . . . , Zn − σ(xn + I) + σ(xn + I))

− g(x1 + I, . . . , xn + I)

= g(σ(x1 + I), . . . , σ(xn + I))− g(x1 + I, . . . , xn + I) +
n∑
i=1

ci · (Zi − σ(xi + I))

= σ(g(x1 + I, . . . , xn + I))− g(x1 + I, . . . , xn + I) +
n∑
i=1

ci · (Zi − σ(xi + I))

=
n∑
i=1

ci · (Zi − σ(xi + I)),

for some c1, . . . , cn ∈ Quot(K[x1, . . . , xn]/I)[Z1, . . . , Zn]. Since σ was chosen arbitrarily, it
follows from equation (3.4) that g(Z1, . . . , Zn)− g(x1 + I, . . . , xn + I) ∈ D, as desired.

As promised above, we give some details about how step (4) of the previous algorithm
can be computed. So let the linear algebraic group G act regularly on X and assume that
L E K[X] is a G-stable ideal with LG 6= {0}. Our aim is to find a non-zero invariant
f ∈ LG \ {0}. A possible way of doing this could be as follows.
Let (fi)i∈N be a sequence such that K[X]G = K[fi; i ∈ N]. Since we have assumed
LG 6= {0}, there is an index i0 such that L∩K[f1, . . . , fi0 ] 6= {0}. Hence f ∈ LG\{0} can be
found algorithmically by simply computing L∩K[f1], L∩K[f1, f2], . . . until the intersection
contains a non-zero element. Some hints about the computation of this intersection are
given in Remark 4.35(b) below.
But how can such a sequence (fi)i∈N be constructed? If

K[X] =
⊕
d∈N0

K[X]d

is a graded ring and the action of G on K[X] preserves this grading, then the invariant ring
K[X]G is graded, too, and a successive computation of the K-bases of K[X]G0 ,K[X]G1 , . . .
yields a sequence with the desired properties. Note that the bases of K[X]Gd can be
obtained for example by simply writing down the invariance conditions for the elements
of K[X]d as a system of linear equations and solving this.
For arbitrary K[X], we can replace the grading of K[X] by an ascending chain of finite
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dimensional subspaces

K := K[X]0 ⊂ K[X]1 ⊂ K[X]2 ⊂ . . .

with the property that K[X] =
⋃
d∈N0

K[X]d. Similarly to the graded case, bases of
K[X]G0 ,K[X]G1 , . . . (as K-vector spaces) can then be computed, thereby constructing the
desired sequence (fi)i∈N.

Another, slightly different approach is realized in the following algorithm. In fact, it
does not compute a chain of subspaces of K[X], but an ascending chain of subspaces of the
ideal L which then provides – similarly to the above – a way of systematically searching
for invariants.

Algorithm 3.22. (Computing step (4) of Algorithm 3.20)

Input: A linear algebraic group G, an irreducible affine variety X, an action µ of G on
X according to Convention 3.19 and polynomials q1, . . . , qt ∈ K[x1, . . . , xn] such that the
ideal L := (q1 + I, . . . , qt + I) EK[x1, . . . , xn]/I contains a non-zero invariant.

Output: A polynomial f ∈ K[x1, . . . , xn] such that f + I ∈ LG \ {0}.

(1) Compute a Gröbner basisM of the ideal JEK[t1, . . . , tm] with respect to an arbitrary
monomial order ≤ on t1, . . . , tm.

(2) Compute a Gröbner basisN of the ideal IEK[x1, . . . , xn] with respect to an arbitrary
monomial order ≤′ on x1, . . . , xn.

(3) Set B := {q1, . . . , qt}.

(4) Choose a maximal linearly independent subset B′ of {b + I; b ∈ B}, say B′ =
{b′1+I, . . . , b′t′+I} where t′ ∈ N and b′1, . . . , b

′
t′ ∈ K[x1, . . . , xn]. SetB := {b′1, . . . , b′t′}.

(For details about how basic linear algebra can be done within the residue class ring
K[x1, . . . , xn]/I, see Remark 2.4(b))

(5) Check if there is a non-zero solution† (αb; b ∈ B) ∈ K |B| of the linear equation∑
b∈B

αb NFM∪N (b(N1, . . . , Nn)− b(x1, . . . , xn)) = 0.

(For details, see Remark 3.23)
If this is the case, set

f :=
∑
b∈B

αbb

and return f .

†We write |B| for the number of elements of B and K|B| for a tuple of elements of K of length |B|.

53



3 Computing invariants of unipotent groups acting on affine varieties

(6) Set
B := B ∪

⋃
b∈B
{x1b, . . . , xnb}.

and go back to step (4).

Remark 3.23. Note that in the linear equation of step (5) both b(N1, . . . , Nn) and
b(x1, . . . , xn) for b ∈ B are regarded as elements of K[t1, . . . , tm, x1, . . . , xn]. From Buch-
berger’s First Criterion (see [BW93], Chapter 5, Lemma 5.66) it follows that the setM∪N
is a Gröbner basis of (I, J) EK[t1, . . . , tm, x1, . . . , xn] with respect to the block order on
the monomials in t1, . . . , tm, x1, . . . , xn defined by ≤ (first block) and ≤′ (second block)
(for the definition of block order, see e. g. [BW93], Chapter 4). Because of this it is clear
what is meant by NFM∪N . ♦

Proof of Correctness. We claim that f + I ∈ K[x1, . . . , xn]/I is invariant under G if and
only if

NFM∪N (f(N1, . . . , Nn)− f(x1, . . . , xn)) = 0. (3.10)

Assume first that f + I is invariant. Then

f(N1(σ, p), . . . , Nn(σ, p))− f(p) = f(σ(p))− f(p)

= σ−1(f + I)(p)− (f + I)(p)
= 0 for all σ ∈ G, p ∈ X.

Since the vanishing ideal of G × X is given by (I, J)K[t1,...,tm,x1,...,xn] (see for example
[Eis95], Chapter 13, Exercise 13.13), this shows that f(N1, . . . , Nn) − f(x1, . . . , xn) ∈
(I, J)K[t1,...,tm,x1,...,xn]. Therefore, f(N1, . . . , Nn)− f(x1, . . . , xn) reduces to 0 with respect
to M∪N , the latter being a Gröbner basis of (I, J)K[t1,...,tm,x1,...,xn] (cf. Remark 3.23).
For the reverse conclusion, let f ∈ K[x1, . . . , xn] such that

NFM∪N (f(N1, . . . , Nn)− f(x1, . . . , xn)) = 0.

We have to show that f+I ∈ K[X] is an invariant. Clearly, f(N1, . . . , Nn)−f(x1, . . . , xn)
is contained in the ideal (I, J)K[t1,...,tm,x1,...,xn]. This implies that

σ(f + I)(p)− (f + I)(p) = f(σ−1(p))− f(p)

= f(N1(σ−1, p), . . . , Nn(σ−1, p))− f(p)
= 0 for all σ ∈ G, p ∈ X.

But this means that f + I = σ(f + I). Since this is true for all σ ∈ G, it follows that
f + I ∈ K[X]G, as claimed.

The heart of the algorithm is the loop comprising steps (4)-(6). Let Bj denote the set
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B in the jth iteration of step (5). It can be shown with an easy induction that

〈b+ I; b ∈ Bj〉K = Lj :=

{
t∑
i=1

aiqi + I; ai ∈ K[x1, . . . , xn] with deg ai ≤ j − 1

}
,

where 〈b + I; b ∈ Bj〉K stands for the K-linear span of the elements b + I, b ∈ Bj . By
(3.10) and the linear independence of (b+ I; b ∈ Bj), it follows that

LGj 6= {0} ⇐⇒ ∃ (αb ∈ K; b ∈ Bj) 6= 0 such that∑
b∈Bj

αb NFM∪N (b(N1, . . . , Nn)− b(x1, . . . , xn)) = 0.

Therefore, if LGj 6= {0}, then non-trivial coordinates (αb ∈ K; b ∈ Bj) satisfying the
linear equation of step (5) exist. In this case, the algorithm returns f :=

∑
b∈Bj

αbb with
f + I ∈ LGj \ {0} ⊂ LG \ {0}, as desired.
Finally, by definition of Lj , it follows that L =

⋃
j∈N Lj and since LG 6= {0}, there is an

index j with LGj 6= {0}. Hence the algorithm terminates after a finite number of steps.

For the special and most important case that G is a unipotent group this algorithm
can be simplified as follows. Note that in step (3) of the following algorithm we need to
compute the G-closure of a vector space. An explicit method of how this can be done is
given below.

Algorithm 3.24. (Computing step (4) of Algorithm 3.20 if G is unipotent)

Input: A unipotent linear algebraic group G, an irreducible affine variety X, an action µ
of G on X according to Convention 3.19 and polynomials q1, . . . , qt ∈ K[x1, . . . , xn] such
that L := (q1 + I, . . . , qt + I) EK[x1, . . . , xn]/I is a non-zero G-stable ideal.

Output: A polynomial f ∈ K[x1, . . . , xn] such that f + I ∈ LG \ {0}.

(1) Compute a Gröbner basisM of the ideal JEK[t1, . . . , tm] with respect to an arbitrary
monomial order ≤ on t1, . . . , tm.

(2) Compute a Gröbner basisN of the ideal IEK[x1, . . . , xn] with respect to an arbitrary
monomial order ≤′ on x1, . . . , xn.

(3) We may assume that q1 + I 6= 0. Use Algorithm 3.25 below to compute a basis
h1 + I, . . . , hs + I of a G-module V ⊂ L which contains q1 + I.

(4) Set B := {h1, . . . , hs}.
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(5) Compute a non-zero solution (αb; b ∈ B) ∈ K |B| of the linear equation∑
b∈B

αb NFM∪N (b(N1, . . . , Nn)− b(x1, . . . , xn)) = 0,

set
f :=

∑
b∈B

αbb.

and return f .

Proof of Correctness. By the correctness of Algorithm 3.25, the vector space V = 〈b +
I; b ∈ B〉K is G-stable and contains q1 + I. Moreover, it is minimal with this property in
the sense that V is contained in any G-stable vector space containing q1 + I (see Remark
3.26). Since L is a G-stable ideal, this implies that V ⊂ L. From the unipotency of G it
follows that V G 6= {0} (cf. [Hum75], Theorem 17.5). Equivalently, this means that there
exist coordinates (αb; b ∈ B) 6= 0 not all zero such that

∑
b∈B αb(b + I) is an invariant.

By equation (3.10) of the preceding proof, this in turn is equivalent to the existence of
α1, . . . , α|B| ∈ K not all zero such that∑

b∈B
αb NFM∪N (b(N1, . . . , Nn)− b(x1, . . . , xn)) = 0.

This shows the correctness of the algorithm, since scalars αb, b ∈ B with exactly this
property are computed in step (5).

Before we demonstrate an application of Algorithm 3.20 to a concrete example, we give
a method for computing the G-closure of a vector space contained in the G-algebra K[X]
(which is needed for step (3) of the previous algorithm). Although a very similar method
can be found in [DK08], we include an explicit algorithm in this section for the benefit of
being self-contained. Moreover, the situation examined here is slightly different from that
of Derksen and Kemper.

Algorithm 3.25. (Computing the G-closure)

Input: A linear algebraic group G, an affine variety X, an action µ of G on X according
to Convention 3.19 and polynomials q1, . . . , qt ∈ K[x1, . . . , xn].

Output: A finite subset B ⊂ K[x1, . . . , xn] of polynomials such that (b + I; b ∈ B) is a
basis of a G-module V ⊂ K[x1, . . . , xn]/I with q1 + I, . . . , qt + I ∈ V .

(1) Compute a Gröbner basisM of the ideal JEK[t1, . . . , tm] with respect to an arbitrary
monomial order ≤ on t1, . . . , tm.

(2) Compute a Gröbner basisN of the ideal IEK[x1, . . . , xn] with respect to an arbitrary
monomial order ≤′ on x1, . . . , xn.
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(3) Set Hi := NFM∪N (qi(N1, . . . , Nn)) for i = 1, . . . , t.

(4) Let C ⊂ K[x1, . . . , xn] be the set of all coefficients occurring in the Hi considered as
polynomials in t1, . . . , tm.

(5) Return a maximal K-linearly independent subset B of C.

Remark. This algorithm makes the proof of Proposition 1.31(a) constructive. ♦

Proof of Correctness. Let i ∈ {1, . . . , t}. Since a polynomial in K[t1, . . . , tm, x1, . . . , xn]
regarded as a function on G×X does not change when it is replaced by its normal form
with respect to M∪N , it follows that

Hi(σ, p) = qi(N1(σ, p), . . . , Nn(σ, p))

= qi(σ(p)) = σ−1(qi + I)(p) for all σ ∈ G, p ∈ X.
(3.11)

The polynomial Hi can be written as Hi =
∑s

j=1 gj · aj where g1, . . . , gs are pairwise
distinct monomials in t1, . . . , tm and a1, . . . , as ∈ K[x1, . . . , xn]. We claim that

Ṽ := 〈a1 + I, . . . , as + I〉K ⊂ K[x1, . . . , xn]/I

is a G-module containing qi+I. Let τ ∈ G. We have to show that τ(ai+I) ∈ Ṽ , again (cf.
Remark 1.32). By construction, the monomials g1, . . . , gs are pairwise distinct monomials
which are in normal form with respect to M. This implies that g1 + J, . . . , gs + J are
linearly independent as regular functions on G (see [BW93], Chapter 6, Proposition 6.52).
Hence there exist σ1, . . . , σs ∈ G such that (gj(σk))j,k=1,...,s ∈ Ks×s is regular. By equation
(3.11), it follows that

(τ(a1 + I), . . . , τ(as + I)) · (gj(σk))j,k=1,...,s = ((τσ−1
1 )(qi + I), . . . , (τσ−1

s )(qi + I))

=

 s∑
j=1

gj(σ1τ
−1) · aj + I, . . . ,

s∑
j=1

gj(σsτ−1) · aj + I

 ∈ Ṽ s

and thus

(τ(a1 + I), . . . , τ(as + I))

= (τ(a1 + I), . . . , τ(as + I)) · (gj(σk))j,k=1,...,s · (gj(σk))−1
j,k=1,...,s ∈ Ṽ

s.

But this means that τ(a1 + I), . . . , τ(as + I) ∈ Ṽ , as desired.
Moreover, since qi + I =

∑s
j=1 gj(1G) · (aj + I), it follows that qi + I ∈ Ṽ and so Ṽ is a

G-module containing qi + I, indeed.
Note also that Ṽ is the smallest G-module containing qi+I in the sense that Ṽ is contained
in every G-module Ṽ ′ with qi + I ∈ Ṽ ′. This follows by setting τ = 1G in the equations a
few lines above.
Applying these arguments to i = 1, . . . , t shows that (b + I; b ∈ B) is a basis of a G-
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module V ⊂ K[X] containing q1 + I, . . . , qt + I, as claimed (for the linear independence
of (b+ I; b ∈ B), see Remark 2.4(b)).

Remark 3.26. By the previous proof, the G-module V which is computed by Algorithm
3.25 is minimal in the sense that V is contained in every other G-module V ′ with q1 +
I, . . . , qt + I ∈ V ′. ♦

We close this section with an example of the application of Algorithm 3.20.

Example 3.27. Let K = Q be the algebraic closure of Q. The unipotent group

G :=


1 α β

0 1 γ
0 0 1

 ; α, β, γ ∈ K


of upper triangular matrices with 1’s on the diagonal acts on the vector space X := K3

via left multiplication, i. e.1 α β
0 1 γ
0 0 1

ξ1

ξ2

ξ3

 :=

ξ1 + αξ2 + βξ3

ξ2 + γξ3

ξ3


for all

1 α β
0 1 γ
0 0 1

 ∈ G,
ξ1

ξ2

ξ3

 ∈ X.
Even though it might be obvious that the invariant ring is generated by the third coordinate
function of X, we want to demonstrate step-by-step how Algorithm 3.20 can be used for
the computation of K[X]G.
Before we can start, we have to specify the input data according to Convention 3.19. The
unipotent group G can be realized as G = Var(J) ⊂ K3 with J := (0) EK[t1, t2, t3]. Note
that t1, t2 and t3 correspond to the entries α, β and γ above.
Similarly, let X = Var(I) ⊂ K3 with I := (0) EK[x1, x2, x3]. The action of G on X can
then be described by µ = (N1, N2, N3) with

N1 = x1 + t1x2 + t2x3, N2 = x2 + t3x3, N3 = x3.

By step (1) of the algorithm, the ideal D0 is defined as

D0 :=
(
Z1 − (x1 + t1x2 + t2x3), Z2 − (x2 + t3x3), Z3 − x3

)
E Quot(K[x1, x2, x3])[t1, t2, t3, Z1, Z2, Z3].

Note that we do not distinguish notationally between elements of the polynomial ring
K[x1, x2, x3] and the isomorphic ring K[x1, x2, x3]/I. By Buchberger’s First Criterion
(see [BW93], Chapter 5, Lemma 5.66), this generating set of D0 is a Gröbner basis of
D0 with respect to the lexicographic order Z3 ≤ Z2 ≤ Z1 ≤ t3 ≤ t2 ≤ t1. It follows by
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Theorem 1.46 that a reduced Gröbner basis G of the elimination ideal D of step (2) (with
respect to the induced lexicographic order Z3 ≤ Z2 ≤ Z1) is given by

G = {Z3 − x3}.

Obviously, 1 and x3 are the only coefficients of the single polynomial in G. Applying step
(4) to these data yields h1 := 1 and h2 := 1. This leads to f := 1 and f1 := 1, f2 := x3.
But this means that K[X]G = K[x3], as predicted. C

3.2.1 Some remarks about the running time of Algorithm 3.20

We have used a preliminary implementation of Algorithm 3.20 to compute a series of in-
variant rings of unipotent groups. This implementation has been done in the computer
algebra system Magma (cf. [BCP97]), some code can be found in the appendix. Note
that – as the term “preliminary” suggests – the implementation is not yet comprehensive
enough for everyday use. For instance, there is only a minimal amount of error processing.
Apart from that there is possibly also much room for optimizations. In any case, the
implementation provides an insight into the capabilities of the algorithm – i. e. whether
it is able to produce new and interesting results in reasonable time or if it is merely of
theoretical interest.

Most likely, the invariant rings computed in the following are already known and have
been examined by others – nonetheless, as indicated above, we have calculated these in-
variants to get a feeling for the practicability of Algorithm 3.20.
Consider the following situation. Let n ∈ N and let K be an algebraically closed field.
Furthermore, let the unipotent group G ⊂ Kn×n of upper triangular matrices with 1’s
on the diagonal act on the vector space X = Kn×n of n × n-matrices via left multipli-
cation. How does Algorithm 3.20 applied to this situation perform for different values of n?

Table 3.1 summarizes the computing time for the cases where n ∈ {1, . . . , 7} and K is
one of Q, F2, F3 or F5 (as usual, the bar denotes the algebraic closure of the respective
fields). All computations have been done with Magma V.2.14-17 running under Solaris
10 6/06 on a Sun Fire 880 with 8 UltraSparc-III+ processors (1.2 GHz) and 32 GB RAM.
A dash in the table means that the algorithm has been aborted by the user after 24 hours
of running time.

It comes as no surprise that the most time consuming steps of Algorithm 3.20 are the
computation of the elimination ideal D in step (2), the computation of the product f in
step (5) and the computation of f1, . . . , fs in step (6). For n ≤ 5, the computation of D
seems to be the dominating part, for n ∈ {6, 7}, the computation of f1, . . . , fs has turned
out to be the most time consuming operation. However, this might be an implementation
artefact.
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n K = Q K = F2 K = F3 K = F5

1 0.00 sec 0.01 sec 0.01 sec 0.00 sec

2 0.00 sec 0.01 sec 0.00 sec 0.01 sec

3 0.02 sec 0.13 sec 0.5 sec 0.32 sec

4 0.54 sec 0.13 sec 0.13 sec 0.13 sec

5 20.5 sec 5.91 sec 10.62 sec 10.99 sec

6 235 min 83 min 178 min 214 min

7 – – – –

Table 3.1: Running times of Algorithm 3.20.
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4 Computing invariants of group actions on
quasi-affine varieties

In the previous chapters, we have studied invariants of algebraic groups acting on affine
algebras. In the case that the affine algebra is reduced, this geometrically corresponds to
algebraic groups acting on affine varieties, as we have seen in Proposition 1.29. In fact,
most of the progress which has been made in computational invariant theory so far took
place in this setting. In the present chapter we will investigate the more general situation
where a linear algebraic group G acts on a quasi-affine variety U . Similarly to the affine
case, this leads to a situation where G acts on an algebra via automorphisms. Again, we
are interested in those elements of this algebra which are invariant under the action of G.
One might think at first sight that the examination of such “quasi-affine invariants” is
rather special. But this situation evolves naturally: Nagata proved in [Nag65] that the
invariant ring of an algebraic group acting on a normal affine variety geometrically cor-
responds to a quasi-affine variety U in the sense that the invariant ring is isomorphic
to the ring of regular functions of U . Therefore, quasi-affine varieties occur – at least
implicitly – in some of the algorithms found in invariant theory today. For example, Derk-
sen and Kemper suggested in [DK08] to compute invariant rings of arbitrary algebraic
groups G acting on a factorial affine variety X by first computing the invariant ring of
the unipotent radical N of G and then calculating (K[X]N )G/N = K[X]G. As mentioned
above, the “intermediate invariant ring” K[X]N corresponds to a quasi-affine variety U ,
and (K[X]N )G/N is the invariant ring of the (reductive) group G/N acting on the algebra
belonging to the quasi-affine variety U .
But the quasi-affine case is interesting not only as an auxiliary construction for the algo-
rithmic solution of the affine case. It is a natural generalization and interesting for the
sake of its own. A variety of publications has been made by Magid and Fauntleroy (e. g.
[FM76], [FM78] and [Mag79]) in which they investigated invariants of group actions on
quasi-affine varieties.
In this chapter, we develop algorithms to compute invariants of several important classes
of algebraic groups acting on quasi-affine varieties. Algorithmically, this tends to be rather
complicated since quite often non-finitely generated algebras occur. To deal with those,
we use the framework which has been introduced by Derksen and Kemper in [DK08].
The theory of quasi-affine varieties is very similar to the affine case. Nonetheless, we start
with a short survey on the concepts which are needed for the algorithms. In the literature,
the facts given below are often formulated and proved for general algebraic varieties or
schemes. The proofs given here are very concrete, which turns out to be helpful for the
construction and the understanding of the algorithms.

Throughout this chapter, let K denote an algebraically closed field. As in the previous
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chapters, x1, . . . , xn and t1, . . . , tm shall denote indeterminates over K. Unless otherwise
stated, let X be an affine variety and G be a linear algebraic group. All varieties and
algebraic groups are over K.

4.1 Quasi-affine varieties

Definition 4.1. A Zariski-open subset U of an affine variety X is called a quasi-affine
variety. The Zariski topology on X induces the subspace tolopogy on U , which we also
refer to as the Zariski topology on U .
A non-empty quasi-affine variety U is called irreducible if it is irreducible as a topological
space. The empty set is not considered to be irreducible.
Let U ⊂ X ⊂ Kn be embedded in the affine space Kn. A function f : U −→ K is called
regular on U if for every u ∈ U there exists an open neighbourhood V ⊂ U of u and
polynomials N,D ∈ K[x1, . . . , xn] such that 0 /∈ D(V ) and f(v) = N(v)/D(v) for all
v ∈ V . The set of regular functions on U has the structure of a K-algebra (resp. is the
zero ring if U = ∅) and is denoted by K[U ].
A morphism between two quasi-affine varieties U ′ and U is a map

φ = (φ1, . . . , φn) : U ′ −→ U

such that all components φ1, . . . , φn : U ′ −→ K of φ are regular functions on U ′. The
morphism φ is called an isomorphism if there is a morphism ψ : U −→ U ′ such that
φ ◦ ψ = idU and ψ ◦ φ = idU ′. In this case, the quasi-affine varieties U and U ′ are said to
be isomorphic.

Remarks 4.2. (a) Every affine variety can be regarded as a quasi-affine variety. In this
case, all the concepts as defined above coincide with those known from the affine
case. Of course, there are quasi-affine varieties which are not affine. Nagata showed
in [Nag65] that – in contrast to affine coordinate rings – the ring of regular functions
of a quasi-affine variety need not be finitely generated. We will deal with a quasi-
affine variety whose ring of regular functions is not finitely generated in Example
4.40 below.

(b) It can be shown that every regular function f : U −→ K on the quasi-affine variety
U is continuous if we regard K as an affine variety together with its Zariski topology
(cf. [Har77], Chapter I, Section 3).

(c) Similarly, it can be shown that every morphism φ : U −→ U ′ between quasi-affine
varieties U and U ′ is continuous (cf. [Har77], Chapter I, Section 3).

(d) Let X be an irreducible affine variety and let U ⊂ X be a non-empty open subset,
i. e. U is quasi-affine. It can be shown that K[U ] is a subset of Quot(K[X]). More
precisely,

K[U ] =
⋂
u∈U

K[X]mu ,
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where muEK[X] is the maximal ideal corresponding to the point u ∈ U and K[X]mu

stands for the localization of K[X] at mu (cf. [Har77], Chapter I, Section 3). ♦

In [DK08], Derksen and Kemper gave a method to compute the ring of regular functions
of an irreducible quasi-affine variety U ⊂ X where X is an irreducible affine variety. To be
more explicit, assume that X := Var(I) ⊂ Kn is given by a prime ideal I EK[x1, . . . , xn]
and let LEK[x1, . . . , xn] be an ideal such that U := X \Var(L). Then they showed that

K[U ] = (K[x1, . . . , xn]/I : ((L+ I)/I)∞)Quot(K[x1,...,xn]/I). (4.1)

For the definition of the colon notation used in this equation, see Definition 3.17. The
expression (4.1) can be handled algorithmically, e. g. if K[U ] is known to be finitely gener-
ated, then K[U ] can be computed in finitely many steps (for details, see [DK08]). Even if
K[U ] is not finitely generated, it may be possible to do certain operations with the above
expression. Later, for example, we will give an algorithm to compute certain invariants of
K[U ] which works for arbitrary irreducible quasi-affine varieties.
The quasi-affine variety U may be irreducible even if X is reducible, that is if I E
K[x1, . . . , xn] is a radical ideal which is not prime. For this case, the above formula
can be easily generalized: Note first that the Zariski closure U of U in X is irreducible.
So we have

Lemma 4.3. Let U be an irreducible quasi-affine variety. Then there is an irreducible
affine variety Y ⊃ U such that U is an open subset of Y .

In fact, the closure U can be given explicitly by U = Var(I : L) (see [CLO07], Chapter
4, § 4, Theorem 7). By the irreducibility of U , it follows that the ideal Ĩ :=

√
I : L, the

radical of I : L, is a prime ideal. Hence we have

K[U ] = (K[x1, . . . , xn]/Ĩ : ((L+ Ĩ)/Ĩ)∞)Quot(K[x1,...,xn]/Ĩ).

Note that because of this, we may always assume that an irreducible quasi-affine variety
is given as an open subset of an irreducible affine variety.

Next, we will give the definition of normality in the quasi-affine case. Later we will see
that the invariant rings of groups acting on normal quasi-affine varieties have particularly
nice properties.

Definition 4.4. An irreducible affine variety X is called normal if K[X] is normal, i. e.
integrally closed in its quotient field Quot(K[X]). An irreducible quasi-affine variety U is
normal if every point of U has an open neighbourhood which is isomorphic to a normal
affine variety.

Note that there is also another equivalent definition of normality which can sometimes
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be found in the literature, see Proposition 4.6.
The definition of normality in the quasi-affine case is – because of its local nature – not
really handy for algorithmic purposes. But as in the affine case, normality corresponds
to the normality of the ring of regular functions. Before we can prove this, we need the
concept of the local ring at a point.

Definition and Proposition 4.5. Let U be a quasi-affine variety and let u ∈ U . The
local ring at u is defined to be the set of equivalence classes

OU,u := {(O, f); u ∈ O ⊂ U open and f ∈ K[O]}/ ∼,

where (O, f) ∼ (O′, f ′) if and only if f|O∩O′ = f ′|O∩O′. As the name suggests, this
set has the structure of a ring: addition and multiplication are defined pointwise, i. e.
(O, f) + (O′, f ′) := (O∩O′, f + f ′) and (O, f) · (O′, f ′) := (O∩O′, f · f ′). Moreover, this
ring is local.
Let mu EK[U ] be the maximal ideal corresponding to u. Then OU,u is isomorphic to the
localized ring K[U ]mu. Furthermore, if V ⊂ U is an open subset of U , then OV,u ∼= OU,u
for all u ∈ V .

Proof. For the verification of the details, we refer the reader to [Har77], Chapter I.

Proposition 4.6. Let U be an irreducible quasi-affine variety. The following statements
are equivalent.

(i) U is normal.

(ii) The local ring OU,u is a normal ring for all u ∈ U .

(iii) The ring of regular functions K[U ] is a normal ring.

Proof. By Lemma 4.3, we may assume that U is an open subset of an irreducible affine
variety X.
For the proof of (i) =⇒ (ii), let U be normal. We have to show that OU,u is normal for
all u ∈ U . Let u ∈ U . By definition of normality, u has a normal affine neighbourhood V .
Let nu EK[V ] be the maximal ideal corresponding to the point u ∈ V . By the Definition
and Proposition above, OU,u ∼= OV,u ∼= K[V ]nu which implies that OU,u is normal, since
localization and normalization commute (see [Eis95], Chapter 4, Proposition 4.13). As
u ∈ U was chosen arbitrarily, this shows that (i) implies (ii).
For the proof of the reverse conclusion (ii) =⇒ (i), take u ∈ U . We have to show that
there is an affine neighbourhood V of u which is normal as an affine variety. Since U can
be covered by open irreducible affine sets ([Har77], Chapter I, Proposition 4.3), we can
find an open irreducible affine set V ⊂ U containing u. It remains to show that K[V ]
is normal. By Remark 4.2(d), we have K[V ] =

⋂
v∈V K[V ]nv , where nv E K[V ] is the

maximal ideal corresponding to the point v ∈ V . The isomorphism OU,v ∼= OV,v ∼= K[V ]nv

implies that all rings in this intersection are normal and hence – since they all have the
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same quotient field – K[V ] is normal, too. It follows that (i) and (ii) are equivalent.
For the proof of implication (ii) =⇒ (iii), let u ∈ U . Regarding u as a point of the
affine variety X, we have OU,u ∼= OX,u ∼= K[X]ou , where ou EK[X] is the maximal ideal
corresponding to u. It follows by assumption that K[X]ou is normal. Note that this holds
for all u ∈ U . By Remark 4.2(d), we have K[U ] =

⋂
u∈U K[X]ou , and thus K[U ] is normal,

too.
For the reverse implication (iii) =⇒ (ii), observe that since K[U ] is normal, all of its
localizations are again normal. In particular, this is the case for K[U ]mu , where as usual
mu E K[U ] stands for the ideal corresponding to a point u ∈ U . By the Definition and
Proposition 4.5 above, K[U ]mu

∼= OU,u, and so the local rings OU,u with u ∈ U arbitrary
are all normal rings. This shows that (ii) and (iii) are equivalent, and the proposition is
proved.

Since normality is a local property, it follows immediately that an open subset of a
normal affine variety is normal, too. But note that a normal quasi-affine variety may be
contained in a non-normal affine variety. Let K be the algebraic closure of Q. Consider
the algebraic curve X ⊂ K2 given by x2

2 = x2
1 + x3

1. Since regularity and normality is
the same for plane curves (see [Eis95], Chapter 11) and (0, 0) is a singular point of X, it
follows that X is not normal. But evidently, X \ (0, 0) is quasi-affine and normal.

Nevertheless, it is always possible to find a normal affine variety in which a normal
quasi-affine variety can be embedded.

Proposition 4.7. Let U be a normal quasi-affine variety embedded as an open subset in a
possibly non-normal irreducible affine variety X. Then there exists a normal affine variety
X̂ and an open subset Û ⊂ X̂ such that Û is isomorphic to U .

Proof (Sketch). In the next section we prove a more general version of this proposition.
Hence we only sketch the proof here.
By definition of a regular function, it follows that K[X] ⊂ K[U ]. Since K[X] is affine,
its integral closure S is again affine (see [Eis95], Chapter 13, Corollary 13.13). Therefore,
there is a normal affine variety X̂ with K[X̂] ∼= S. The normality of K[U ], which follows
from Proposition 4.6, implies that S ⊂ K[U ]. Let L̃ := IdK[X](X \ U) E K[X]. It then
can be shown that U is isomorphic to the open subset Û := X̂ \VarX̂((L̃)K[X̂]) ⊂ X̂. For
details, see Proposition 4.20.

The proof of the previous proposition can easily be turned into an algorithm.

Algorithm 4.8. (Normal affine embedding of a normal quasi-affine variety)

Input: A prime ideal I E K[x1, . . . , xn] and an ideal L E K[x1, . . . , xn] such that the
normal quasi-affine variety U ⊂ Kn is given by U = Var(I) \Var(L).

Output: A prime ideal Î E K[x̂1, . . . , x̂n̂] (with x̂1, . . . , x̂n̂ new indeterminates) and an
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4 Computing invariants of group actions on quasi-affine varieties

ideal L̂ E K[x̂1, . . . , x̂n̂] such that X̂ := Var(Î) ⊂ K n̂ is a normal affine variety and
Û := Var(Î) \Var(L̂) ⊂ X̂ is isomorphic to U .

(1) Compute the normalization K[x̂1, . . . , x̂n̂]/Î of K[x1, . . . , xn]/I together with an em-
bedding α : K[x1, . . . , xn]/I −→ K[x̂1, . . . , x̂n̂]/Î.

(2) Let L̂ be the preimage of (α((L+ I)/I))K[x̂1,...,x̂n̂]/Î under the natural epimorphism

K[x̂1, . . . , x̂n̂] −→ K[x̂1, . . . , x̂n̂]/Î.

(3) Return Î and L̂.

Remarks. (a) Step (1) of this algorithm can be computed by an algorithm of de Jong,
which was given in [dJ98].

(b) By definition of normalization, we have

K[x̂1, . . . , x̂n̂]/Î ⊂ Quot (α(K[x1, . . . , xn]/I)) .

In particular, there exist a1, . . . , an̂, b1, . . . , bn̂ ∈ K[x1, . . . , xn] with b1+I, . . . , bn̂+I 6=
0 such that

x̂1 + Î =
α(a1 + I)
α(b1 + I)

, . . . , x̂n̂ + Î =
α(an̂ + I)
α(bn̂ + I)

.

Then – as we will see in Proposition 4.20 – the map

U −→ Û , u 7−→ (a1(u)/b1(u), . . . , an̂(u)/bn̂(u))

for all u of a dense open subset of U defines an isomorphism of the quasi-affine
varieties U and Û .

Example 4.9. Let K be the algebraic closure of Q and let X := Var(x2
2 − x2

1 − x3
1) ⊂ K2.

As we have seen above, the normal quasi-affine variety U := X \ {(0, 0)} is an open subset
of the non-normal affine variety X. Applying the construction of the algorithm shows that
U can be embedded into the normal affine variety X̂ := Var(x̂2

2 − x̂1 − 1) ⊂ K2 via the
isomorphism

U −→ X̂ \Var(x̂1, x̂1x̂2), (ξ1, ξ2) 7−→ (ξ1, ξ2/ξ1). C

4.2 Invariant theory for quasi-affine varieties

We are now prepared to study invariants of group actions on quasi-affine varieties. For-
mally, the theory of algebraic group actions on quasi-affine varieties looks quite similar to
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the theory in the affine case. But things get harder since the description of a morphism
between quasi-affine varieties, so in particular the description of the action of a group on a
quasi-affine variety, can no longer by given by polynomials. In fact, we have to work with
rational functions.

Similarly as in the affine case we define a quasi-affine G-variety.

Definition 4.10. Let G be a linear algebraic group and let U be a quasi-affine variety.
We say that G acts regularly on U if there exists a morphism µ : G×U −→ U such that

σ(u) := µ(σ, u) for all σ ∈ G, u ∈ U

defines an action of G on U . In this case, we call U a quasi-affine G-variety.

The Cartesian product G×U with U ⊂ X open has again the structure of a quasi-affine
variety since G×U = G×X \ (G× (X \U)). Therefore it is clear what is meant by µ to
be a morphism.

Examples 4.11. (a) Let X be an affine variety with a regular G-action. Then every
G-stable open subset of X is a quasi-affine G-variety.

(b) Let K = Q be the algebraic closure of Q and consider the affine line X := Q.
Moreover, let the cyclic group with two elements, G = 〈σ〉, act on the open subset
U := X \ {0} by

σ(u) := 1/u for all u ∈ U.

It is not hard to see that this indeed defines a regular action of G on the quasi-affine
variety U . This means that U is a quasi-affine G-variety. For details, see Example
4.24. C

As in the affine case, the action of G on U induces an action of G on the ring of regular
functions K[U ].

Lemma 4.12. Let µ : G×U −→ U be a regular action of the linear algebraic group G on
the quasi-affine variety U . Then for every σ ∈ G

µ(σ,−) : U −→ U, u 7−→ µ(σ, u)

defines an automorphism of U .

Proof. Let σ ∈ G be a fixed element of G. It is enough to show that µ(σ,−) defines a
morphism U −→ U . The one-point set {σ} ⊂ G has the structure of an affine variety.
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Moreover, the inclusion map ι : {σ} 7−→ G is a morphism. It follows that the product
map ι × idU : {σ} × U −→ G × U is a morphism, too. This proves the lemma, since
µ(σ,−) = µ ◦ (ι× idU ) and the composition of morphisms is again a morphism.

Because of the previous proposition, we see that

σ(f) := f ◦ µ(σ−1,−) for all σ ∈ G, f ∈ K[U ]

defines an action of G on K[U ]. We aim to compute the invariant ring

K[U ]G = {f ∈ K[U ] : σ(f) = f for all σ ∈ G}.

Obviously, K[U ]G cannot be finitely generated in general, since even K[U ] may not be
finitely generated. But in fact it may happen that, although K[U ] is not finitely generated,
the invariant ring K[U ]G is finitely generated. An example which illustrates this is given
below (cf. Example 4.40).

Since we want to handle group actions on quasi-affine varieties algorithmically, we have
to choose a “data format”, how to describe the morphism µ. By the definition of a mor-
phism, this in turn amounts to the description of a regular function on a quasi-affine
variety.
In the affine case, this is not a big problem: a regular function can be described by a single
polynomial. For the concrete situation of a linear algebraic group acting on an affine vari-
ety this means that if G and X are given by G := Var(J) with JEK[t1, . . . , tm] radical and
X := Var(I) with I EK[x1, . . . , xn] radical, then the components µ1, . . . , µn of the mor-
phism µ : G×X −→ X can be written as polynomials in the variables t1, . . . , tm, x1, . . . , xn.
In general, for the quasi-affine variety U := X \Var(L), where LEK[x1, . . . , xn] is an ar-
bitrary ideal, a regular function f : U −→ K can no longer be described by a polynomial.
By the definition of regularity, it is possible to write f locally as a quotient of polynomials.
So we need several pieces of information to describe f globally.

Example 4.13. Consider the quasi-affine variety U = Var(x1 · x2) \ {(0, 0)} ⊂ K2. The
map f : U −→ K which equals 0 on the x1-axis and 1 on the x2-axis is clearly regular at
every point of U , hence f ∈ K[U ]. But obviously, there is no single quotient of polynomial
functions a/b with a, b ∈ K[x1, x2] which describes this map uniquely. C

If U is assumed to be irreducible, it is enough to know the regular function f on an
non-empty open subset of U . This is because f is continuous (cf. Remark 4.2(b)) and
every non-empty open subset of U is automatically dense in U . Hence for irreducible
quasi-affine varieties, a regular function f can indeed be represented by a single quotient
of polynomials.
We are interested in a description of the morphism µ = (µ1, . . . , µn) : G × U −→ U ,
that is we want to specify µ1, . . . , µn which are by definition regular functions on G ×
U . Unfortunately, the quasi-affine variety G × U is irreducible only in the case that G
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is assumed to be connected. Nonetheless, because of the special form of G × U , it is
still possible to describe regular functions on that variety by only one single quotient of
polynomials. This will be shown in the next proposition. Before we can actually start,
though, we need a preparatory lemma.

Lemma 4.14. Let Y ⊂ Km be a non-empty affine variety and let U ⊂ Kn be a non-empty
quasi-affine variety. Then the map

α : K[Y ]⊗K K[U ] −→ K[Y × U ], α

(
s∑
i=1

gi ⊗ fi

)
: (p, u) 7−→

s∑
i=1

gi(p)fi(u)

is a well-defined isomorphism of K-algebras.

Proof. It is easy to see that

α : K[Y ]⊗K K[U ] −→ Func(Y × U,K), α

(
s∑
i=1

gi ⊗ fi

)
: (p, u) 7−→

s∑
i=1

gi(p)fi(u),

where Func(Y × U,K) denotes the K-algebra of functions from Y × U to K, is a well-
defined homomorphism of K-algebras. We have to check first that α maps into K[Y ×U ].
So let

∑s
i=1 gi ⊗ fi ∈ K[Y ] ⊗K K[U ]. Let t1, . . . , tm resp. x1, . . . , xn be the coordinate

functions on Km resp. Kn. Both g1, . . . , gs ∈ K[Y ] and f1, . . . , fs ∈ K[U ] can be written
locally as polynomial functions in t1, . . . , tm resp. as quotients of polynomial functions in
x1, . . . , xn. Hence it follows by the definition of α that α (

∑s
i=1 gi ⊗ fi) can be written

locally as a quotient of polynomial functions in t1, . . . , tm, x1, . . . , xn, too, showing that
α(
∑s

i=1 gi ⊗ fi) is a regular function on Y × U . Note that we have used the fact that
the product V1 × V2 of two open subsets V1 ⊂ Y , V2 ⊂ U is again open in Y × U . Since∑s

i=1 gi⊗fi ∈ K[Y ]⊗KK[U ] was chosen arbitrarily, it follows that α maps into K[Y ×U ],
as desired.
Let (gν ; ν ∈ C) be a K-basis of K[Y ], where C denotes a suitable index set. Obviously,
every element of K[Y ]⊗K K[U ] can be written as∑

ν∈C
gν ⊗ fν

where almost all of the fν , ν ∈ C are zero. In the sequel, whenever we write sums over
the index set C, we implicitly assume this finiteness condition.
Suppose that α

(∑
ν∈C gν ⊗ fν

)
= 0. Let u ∈ U . Then the regular function

Y −→ K, p 7−→
∑
ν∈C

gν(p)fν(u)

is zero on Y and the linear independence of (gν ; ν ∈ C) implies that fν(u) = 0 for all
ν ∈ C. It follows that fν = 0 for all ν ∈ C and hence

∑
ν∈C gν ⊗ fν = 0. This shows that

α is injective.
For the proof of surjectivity, let h ∈ K[Y × U ] be an arbitrary regular function. It is re-
quired to prove that there exists

∑
ν∈C gν⊗fν ∈ K[Y ]⊗KK[U ] such that α

(∑
ν∈C gν ⊗ fν

)
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= h. Note that if U is affine, then the assertion of the proposition is well-known. In par-
ticular, α is surjective in this case.
If U is quasi-affine, let U =

⋃
j∈E Uj be an affine open covering of U , where E denotes

a suitable index set. Observe that – by the local nature of the definition of regularity –
h|Y×Uj

is regular on Y × Uj for all j ∈ E. Let j ∈ E. By the affineness of Y and Uj , it
follows by the remark a few lines above that there exist fν,j ∈ K[Uj ], ν ∈ C such that

h|Y×Uj
(p, u) =

∑
ν∈C

gν(p)fν,j(u) for all (p, u) ∈ Y × Uj .

The linear independence of (gν ; ν ∈ C) implies that

(fν,j)|Uk∩Uj
= (fν,k)|Uj∩Uk

for all ν ∈ C, j, k ∈ E

and by the local nature of the definition of a regular function, it follows that there exist
global regular functions fν ∈ K[U ] for all ν ∈ C such that

(fν)|Uj
= fν,j for all j ∈ E.

In particular, this means that h(p, u) =
∑

ν∈C gν(p)fν(u) for all (p, u) ∈ Y ×U and hence
α
(∑

ν∈C gν ⊗ fν
)

= h, as desired.

Proposition 4.15. Let U ⊂ Kn be an irreducible quasi-affine variety and G ⊂ Km be
a linear algebraic group. The coordinate functions on Kn shall be denoted by x1, . . . , xn,
those on Km by t1, . . . , tm. Let µ = (µ1, . . . , µn) : G×U −→ U be a morphism. Then there
exist a dense open subset V ⊂ G × U , polynomials N1, . . . , Nn ∈ K[t1, . . . , tm, x1, . . . , xn]
and D1, . . . , Dn ∈ K[x1, . . . , xn] ⊂ K[t1, . . . , tm, x1, . . . , xn] such that 0 /∈ D1(V ), . . . , Dn(V )
and

µ(v) = (N1(v)/D1(v), . . . , Nn(v)/Dn(v)) for all v ∈ V.

In particular, the data N1, . . . , Nn, D1, . . . , Dn describe the morphism µ uniquely.

Proof. Let G =
⋃s
i=1Gi be the decomposition of G into irreducible components. As the

product of irreducible varieties is again irreducible (cf. [Har77], Ex. 3.16), the decomposi-
tion of G× U into irreducible components is given by

G× U =
s⋃
i=1

Gi × U.

Let f be a regular function on G × U . Setting Y := G in the preceding lemma, it
follows that we may identify f with an element of K[G] ⊗K K[U ]. Moreover, by the
explicit isomorphism given there, we can find polynomials N ∈ K[t1, . . . , tm, x1, . . . , xn]
and D ∈ K[x1, . . . , xn] such that the open set V := (G × U) \ Var(D) is non-empty
and f = N/D as functions on that open set. Obviously, we have V ∩ (Gi × U) 6= ∅ for
i = 1, . . . , s, which implies that V is dense in G × U . Note that this construction only
works if U is an irreducible quasi-affine variety. As we have seen, it is not possible in
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general to write the regular function f as a quotient of two polynomials N and D on a
dense open subset of G× U if U is a reducible quasi-affine variety.
The components of the morphism µ = (µ1, . . . , µn) are regular functions. Hence, by
the preceding discussion, there exist N1, . . . , Nn ∈ K[t1, . . . , tm, x1, . . . , xn], D1, . . . , Dn ∈
K[x1, . . . , xn] ⊂ K[t1, . . . , tm, x1, . . . , xn] and open sets V1, . . . , Vn ⊂ G × U such that for
i = 1, . . . , n the function Ni/Di is defined on Vi and µi(v) = Ni(v)/Di(v) for all v ∈ Vi.
The open sets Vi are non-empty and dense, hence V :=

⋂n
i=1 Vi is non-empty and dense,

too. Moreover, 0 /∈ D1(V ), . . . , Dn(V ) and µ(v) = (N1(v)/D1(v), . . . , Nn(v)/Dn(v)) for all
v ∈ V . Finally, since V is dense, the data N1, . . . , Nn, D1, . . . , Dn describe the morphism
µ uniquely.

Because of the previous proposition, we make the following convention for the description
of a linear algebraic group G, a quasi-affine variety U and an action of G on U .

Convention 4.16.
Let G be a linear algebraic group, U be an irreducible quasi-affine variety and let G act
regularly on U . We assume that these data are given as follows:

(1) Generators of the radical ideal J EK[t1, . . . , tm] defining the linear algebraic group
G as an affine variety in Km.

(2) Generators p1, . . . , pr of the prime ideal I EK[x1, . . . , xn] and generators q1, . . . , qt
of the ideal LEK[x1, . . . , xn] such that U = Var(I) \Var(L) ⊂ Kn.

(3) Polynomials N1, . . . , Nn ∈ K[t1, . . . , tm, x1, . . . , xn] and D1, . . . , Dn ∈ K[x1, . . . , xn]
⊂ K[t1, . . . , tm, x1, . . . , xn] such that there is a dense open subset V ⊂ G × U with
0 /∈ D1(V ), . . . , Dn(V ) and

µ(v) = (N1(v)/D1(v), . . . , Nn(v)/Dn(v)) for all v ∈ V,

where µ : G× U −→ U is the morphism corresponding to the action of G on U .

Now that we have gained some clarity about the description of the action of G on U ,
we want to close this section with an examination of the extensibility of this action to the
affine variety X in which U is embedded as an open subset.
First note that in general G does not act on X, as can be seen in the following example.

Example 4.17. Recall Example 4.11(b) where the generator σ of the cyclic group with
two elements acts on Q \ {0} by multiplicative inversion. Clearly, this action cannot be
extended to X = U , since otherwise the polynomial function µ(σ,−) : X −→ X would
have a pole at the origin which is impossible. C

We will see in the following proposition that U may always be embedded G-equivariantly
into an affine G-variety. This will turn out to be quite useful for algorithmic purposes.
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But first, we need a preparatory lemma about the action of G on K[U ]. As in the affine
case, the action of G on K[U ] can be described by a homomorphism K[U ] −→ K[G]⊗K
K[U ].

Lemma 4.18. Let the linear algebraic group G act regularly on the quasi-affine variety
U . Then there exists a homomorphism of algebras

µ̃ : K[U ] −→ K[G]⊗K K[U ]

which describes the action of G on K[U ] in the following way. If µ̃(f) =
∑s

i=1 gi⊗ai with
g1, . . . , gs ∈ K[G] and a1, . . . , as ∈ K[U ], then σ(f) is given by σ(f) =

∑s
i=1 gi(σ) · ai for

all σ ∈ G. In particular, G acts locally finite on K[U ].

Proof. The construction of µ̃ is identical to the case where G acts on an affine variety (cf.
Lemma 1.28).

Remark 4.19. Note that – as a variant of the above – there always exists a homomor-
phism of algebras

µ∗ : K[U ] −→ K[G]⊗K K[U ]

with the slightly different property that if µ∗(f) =
∑s

i=1 gi ⊗ ai, then σ−1(f) is given by
σ−1(f) =

∑s
i=1 gi(σ) · ai for all σ ∈ G. ♦

Proposition 4.20. Let the linear algebraic group G act regularly on the irreducible quasi-
affine variety U . Then there is an irreducible affine G-variety X̂ and a G-equivariant
embedding of U as an open subset in X̂. Moreover, if U is normal, X̂ can be chosen to be
normal, too.

Proof. We assume that the linear algebraic group G, the quasi-affine variety U and the
action of G on U are given as in Convention 4.16. By Lemma 4.18, G acts locally finite
on K[U ]. In particular, we can find G-modules V1, . . . , Vn ⊂ K[U ] such that xi + I ∈ Vi
for i = 1, . . . , n. Let S be the subalgebra of K[U ] generated by the elements of V1, . . . , Vn,
that is

S := K

[
v; v ∈

n⋃
i=1

Vi

]
⊂ K[U ].

As V1, . . . , Vn are finitely generated vector spaces, it follows that S is finitely generated as
a K-algebra.
By a theorem of Noether, the normalization of S is again affine (see [Eis95], Chapter 13,
Corollary 13.13). We may thus replace S by its normalization in case U is normal and
we want X̂ to be normal, too. Observe that in this case, we still have S ⊂ K[U ] by the
normality of K[U ].
Note that the algebra S is stable under G, which is obvious from the construction in case
we did not normalize, and follows easily in the“normalization case”since the normalization
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of a G-stable algebra is again G-stable.
By Proposition 1.31(b), the action of G on S can be described by a homomorphism of
algebras µ̃|S : S −→ K[G]⊗K S. As S is an affine algebra, we may represent S as follows.
There exists an isomorphism

γ : K[x̂1, . . . , x̂n̂]/Î −→ S

where x̂1, . . . , x̂n̂ are indeterminates over K and Î E K[x̂1, . . . , x̂n̂] is a prime ideal. Ap-
parently, the action of G on S given by µ̃|S can be carried over via γ to an action of G
on K[x̂1, . . . , x̂n̂]/Î, then given by µ̂ : K[x̂1, . . . , x̂n̂]/Î −→ K[G] ⊗K K[x̂1, . . . , x̂n̂]/Î,
say. More precisely, if i ∈ {1, . . . , n̂} and µ̃|S(γ(x̂i + Î)) =

∑s
j=1 gj ⊗ aj for some

g1, . . . , gs ∈ K[G] and a1, . . . , as ∈ S, then

µ̂(x̂i + Î) =
s∑
j=1

gj ⊗ γ−1(aj). (4.2)

By Proposition 1.29, there is an action of G on the affine variety X̂ := Var(Î) ⊂ K n̂,
whose induced action on the coordinate ring K[X̂] = K[x̂1, . . . , x̂n̂]/Î is exactly the action
we have already given on K[x̂1, . . . , x̂n̂]/Î by µ̂.
In what follows, we will show that U is G-isomorphic to the quasi-affine variety Û :=
X̂ \VarX̂(γ−1(((L+ I)/I)S)) via the following two morphisms

φ : U −→ Û , u 7−→ (γ(x̂1 + Î)(u), . . . , γ(x̂n̂ + Î)(u)) and

ψ : Û −→ U, û 7−→ (γ−1(x1 + I)(û), . . . , γ−1(xn + I)(û)).

Note that γ(x̂1 + Î), . . . , γ(x̂n̂+ Î) ∈ K[U ] are regular functions and thus defined for every
point of U . Our aim is to show that the image of φ resp. ψ is contained in Û resp. U and
that ψ ◦ φ = idU and φ ◦ ψ = idÛ .
It is clear that φ maps into X̂ since Î is the ideal of relations of γ(x̂1 + Î), . . . , γ(x̂n̂ + Î).
Let u ∈ U . By definition of U , there is f +I ∈ (L+I)/I with (f +I)(u) 6= 0. The element
γ−1(f + I) is contained in γ−1(((L+ I)/I)S) and

(γ−1(f + I))(φ(u)) = γ−1(f + I)(γ(x̂1 + Î)(u), . . . , γ(x̂n̂ + Î)(u))

= γ−1(f + I)(γ(x̂1 + Î), . . . , γ(x̂n̂ + Î))(u)

= γ(γ−1(f + I)(x̂1 + Î , . . . , x̂n̂ + Î))(u)
= (f + I)(u) 6= 0,

which implies that φ(U) ⊂ Û . Since γ(x̂1 + Î), . . . , γ(x̂n̂ + Î) are regular functions on U ,
the map φ : U −→ Û is a morphism, indeed.
We do the same for ψ. The image of ψ is clearly contained in X. Let û ∈ Û . By definition
of Û , there exists f̂ + Î ∈ γ−1(((L + I)/I)S) with (f̂ + Î)(û) 6= 0. We may assume that
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f̂ + Î ∈ γ−1((L+ I)/I). But then γ(f̂ + Î) ∈ (L+ I)/I and

γ(f̂ + Î)(ψ(û)) = γ(f̂ + Î)(γ−1(x1 + I)(û), . . . , γ−1(xn + I)(û))

= γ(f̂ + Î)(γ−1(x1 + I), . . . , γ−1(xn + I))(û)

= γ−1(γ(f̂ + Î)(x1 + I, . . . , xn + I))(û)

= (f̂ + Î)(û) 6= 0,

which implies that ψ(Û) ⊂ U . Finally, the components of ψ are regular on Û and hence
ψ : Û −→ U is a morphism, too.
Let u = (u1, . . . , un) ∈ U and û = (û1, . . . , ûn̂) ∈ Û . Then

ψ(φ(u)) = ψ
(
γ(x̂1 + Î)(u), . . . , γ(x̂n̂ + Î)(u)

)
=
(
γ−1(xi + I)

(
γ(x̂1 + Î)(u), . . . , γ(x̂n̂ + Î)(u)

))
i=1,...,n

=
(
γ−1(xi + I)

(
γ(x̂1 + Î), . . . , γ(x̂n̂ + Î)

)
(u)
)
i=1,...,n

=
(
γ
(
γ−1(xi + I)

(
x̂1 + Î , . . . , x̂n̂ + Î

))
(u)
)
i=1,...,n

= (u1, . . . , un)

and similarly

φ(ψ(û)) = φ
(
γ−1(x1 + I)(û), . . . , γ−1(xn + I)(û)

)
=
(
γ(x̂i + Î)

(
γ−1(x1 + I)(û), . . . , γ−1(xn + I)(û)

))
i=1,...,n̂

=
(
γ−1

(
γ(x̂i + Î) (x1 + I, . . . , xn + I)

)
(û)
)
i=1,...,n̂

= (û1, . . . , ûn̂).

It follows that the quasi-affine varieties U and Û are isomorphic.
It remains to show that φ commutes with the action of G. Let σ ∈ G and u ∈ U . Applying
σ first and evaluating φ afterwards yields

φ(σ(u)) = (γ(x̂1 + Î)(σ(u)), . . . , γ(x̂n̂ + Î)(σ(u)))

= (σ−1(γ(x̂1 + Î))(u), . . . , σ−1(γ(x̂n̂ + Î))(u)).
(4.3)

Let i ∈ {1, . . . , n̂} and take g1, . . . , gs ∈ K[G], a1, . . . , as ∈ S such that µ̂(x̂i + Î) =∑s
j=1 gj ⊗ γ−1(aj) (cf. equation (4.2)). Similar considerations as in the previous calcula-

74



4.2 Invariant theory for quasi-affine varieties

tions yield

µ̂(x̂i + Î)(σ−1, φ(u)) =
s∑
j=1

gj(σ−1) · γ−1(aj)(φ(u))

=
s∑
j=1

gj(σ−1) · aj(u) = σ−1(γ(x̂i + Î))(u).

Recall definition (1.1) of the action of G on X̂. Letting σ act on φ(u) and applying the
result of the preceding equation for all i ∈ {1, . . . , n̂} gives

σ(φ(u)) =
(
µ̂(x̂1 + Î)(σ−1, φ(u)), . . . , µ̂(x̂n̂ + Î)(σ−1, φ(u))

)
= (σ−1(γ(x̂1 + Î))(u), . . . , σ−1(γ(x̂n̂ + Î))(u)).

Comparing this with equation (4.3) shows that φ(σ(u)) = σ(φ(u)). Since this is true for
arbitrary u ∈ U and σ ∈ G, the result follows.

Remarks 4.21. (a) With the notation of the proof, the isomorphism U −→ Û induces
an isomorphism of algebras K[Û ] −→ K[U ] which is given by x̂i + Î 7−→ φi for
i = 1, . . . , n̂. Note that by construction, this isomorphism commutes with the action
of G. For future reference, observe that – identifying K[X̂] and K[Û ] with their
images in K[U ] – we have the inclusions

K[X] ⊂ K[X̂] ⊂ K[U ] = K[Û ].

(b) Note that the proof of the previous proposition remains correct if the concrete def-
inition of S is replaced by setting S to be any G-stable affine algebra such that
K[X] ⊂ S ⊂ K[U ]. In particular, if K[U ] is finitely generated (as a K-algebra) then
it is perfectly valid to set S := K[U ]. In this case, X̂ and Û have isomorphic rings
of regular functions. ♦

The proof of the previous proposition can be turned into an algorithm. Although the
basic idea of the construction is simple, the algorithm becomes quite lengthy when it is
worked out in all its details.

Algorithm 4.22. (Embedding a quasi-affine G-variety into an affine G-variety)

Input: A linear algebraic group G, an irreducible quasi-affine variety U and a regular
action µ of G on U according to Convention 4.16.

Output: An irreducible affine variety X̂, an action µ̂ of G on X̂, a G-stable open subset
Û ⊂ X̂ and a G-morphism φ : U −→ X̂ which induces a G-isomorphism of U and Û .
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More precisely, the output is given by a prime ideal Î E K[x̂1, . . . , x̂n̂] (with x̂1, . . . , x̂n̂
new indeterminates), an ideal L̂ EK[x̂1, . . . , x̂n̂], polynomials N̂1, . . . , N̂n̂ ∈ K[t1, . . . , tm,
x̂1, . . . , x̂n̂] and rational functions φ1, . . . , φn̂ ∈ K[U ] ⊂ Quot(K[x1, . . . , xn]/I) which stand
for the following: The group G acts on X̂ := Var(Î) ⊂ K n̂ via µ̂ : G× X̂ −→ X̂, where µ̂
is defined by

µ̂(v) = (N̂1(v), . . . , N̂n̂(v))

for all v ∈ G × X̂, the open subset Û := X̂ \ Var(L̂) is G-stable under this action and
φ : U −→ Û is a G-isomorphism given by (φ1, . . . , φn̂) in the sense that

φ(u) = (φ1(u), . . . , φn̂(u))

for all u ∈ U .

(1) Compute a Gröbner basis G of the ideal (J)Quot(K[x1,...,xn]/I)[t1,...,tm] with respect to
an arbitrary monomial order on t1, . . . , tm.

(2) Let α be the natural homomorphism

α : K[t1, . . . , tm, x1, . . . , xn] −→ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm].

Set
H1 := NFG(α(N1)/α(D1)), . . . ,Hn := NFG(α(Nn)/α(Dn)).

(3) Let C ⊂ Quot(K[x1, . . . , xn]/I) be the set of coefficients occuring in the polynomials
H1, . . . ,Hn.

(4) Choose a maximal K-linearly independent subset of C, say {φ1, . . . , φn̂}.

(5) Let n1, . . . , nn̂, d1, . . . , dn̂ ∈ K[x1, . . . , xn] such that

φ1 =
n1 + I

d1 + I
, . . . , φn̂ =

nn̂ + I

dn̂ + I

(6) For i = 1, . . . , n̂:

(i) Find Ri ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm] such that

ni(α(N1)/α(D1), . . . , α(Nn)/α(Dn))−Ri · di(α(N1)/α(D1), . . . , α(Nn)/α(Dn))
∈ (J)Quot(K[x1,...,xn]/I)[t1,...,tm].

(4.4)

(see Remark 4.23(c) for details about how this can be computed)
(ii) Replace Ri by NFG(Ri).
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(iii) Find αi1, . . . , αin̂ ∈ K[t1, . . . , tm] such that

Ri =
n̂∑
j=1

αijφj .

(a hint on how this can be calculated is given in the following proof of correct-
ness)

(7) Compute the ideal of relations of φ1, . . . , φn̂ over K, say Î EK[x̂1, . . . , x̂n̂].
(For details, see Remark 4.23(d))

(8) Compute polynomials q̂1, . . . , q̂t ∈ K[x̂1, . . . , x̂n̂] such that

qi + I = q̂i(φ1, . . . , φn̂).

(For details, see Remark 4.23(e))

(9) Set N̂1 :=
∑n̂

j=1 α1j x̂j , . . . , N̂n̂ :=
∑n̂

j=1 αn̂j x̂j and

L̂ := (q̂1, . . . , q̂t) EK[x̂1, . . . , x̂n̂].

(10) Return Î , L̂, (N̂1, . . . , N̂n̂), (φ1, . . . , φn̂).

Remarks 4.23. (a) As seen in Remark 4.21(a), the isomorphism U −→ Û induces
an isomorphism of algebras K[Û ] −→ K[U ] which is given by x̂i + Î 7−→ φi for
i = 1, . . . , n̂. Note that by construction, this isomorphism commutes with the action
of G.

(b) According to Proposition 4.20, a normal quasi-affine G-variety can be embedded G-
equivariantly as an open subset in a normal affine G-variety. In this algorithm, we
have not included a special treatment of this normal case. However, it is not hard
to modify Algorithm 4.22 such that it can handle this case, too (cf. Algorithm 4.7).

(c) As indicated for a similar situation in the last section, step (6)(i) of the algorithm
can be computed for example with the Extended Buchberger Algorithm (cf. [BW93],
Chapter 5, Section 5.6). To be more precise, it can be used to compute coordinates
of the ideal membership

ni(α(N1)/α(D1), . . . , α(Nn)/α(Dn))
∈ (di(α(N1)/α(D1), . . . , α(Nn)/α(Dn)), J)Quot(K[x1,...,xn]/I)[t1,...,tm] .

It is then clear that Ri is given by the coordinate corresponding to the generator
di(α(N1)/α(D1), . . . , α(Nn)/α(Dn)).

(d) In step (7) it is required to compute the ideal of relations of the rational functions
φ1, . . . , φn̂. The standard method for the computation of relation ideals cannot
be applied here, since the elements φ1, . . . , φn̂ are rational and not – as usual –
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polynomial functions. One possibility for the computation of Î is the following. Let
x̂1, . . . , x̂n̂ be additional indeterminates over K. Set d :=

∏n̂
j=1 dj and define

D :=
(
(n1 − x̂1 · d1, . . . , nn̂ − x̂n̂ · dn̂)K[x1,...,xn,x̂1,...,x̂n̂] + (I)K[x1,...,xn,x̂1,...,x̂n̂]

)
: (d)∞

EK[x1, . . . , xn, x̂1, . . . , x̂n̂].

Then the desired ideal of relations is given by

Î := D ∩K[x̂1, . . . , x̂n̂] EK[x̂1, . . . , x̂n̂]. (4.5)

In the following, we prove that every F ∈ Î is a relation of φ1, . . . , φn̂. We omit the
proof of the converse here, since it is very similar to what will be done in (e) below.
Let F ∈ Î. We have to show that F (φ1, . . . , φn̂) = 0. By definition of D, there exist
M ∈ N, a1, . . . , an̂ ∈ K[x1, . . . , xn, x̂1, . . . , x̂n̂] and b ∈ (I)K[x1,...,xn,x̂1,...,x̂n̂] such that

F · dM =
n̂∑
j=1

aj · (nj − x̂j · dj) + b.

Applying the natural homomorphism

δ : K[x1, . . . , xn, x̂1, . . . , x̂n̂] −→ (K[x1, . . . , xn]/I)[x̂1, . . . , x̂n̂]

to this equation and setting x̂1 := φ1, . . . , x̂n̂ := φn̂ yields

F (φ1, . . . , φn̂) · (d+ I)M =
n̂∑
j=1

δ(aj) · ((nj + I)− φj · (dj + I)) + 0 = 0.

Since (d+ I)M 6= 0, it follows that F (φ1, . . . , φn̂) = 0, as desired.

(e) At first sight, the computation of q̂1, . . . , q̂t of step (8) seems to be a simple construc-
tive algebra membership test (cf. [BW93], Chapter 6, Section 6.2). But similarly as
in (d) above, the problem here is that the generators of the algebra, i. e. φ1, . . . , φn̂,
are rational and not – as usual – polynomial functions. Therefore, we have to modify
the standard algebra membership test.
With the same notation as in (d), let H be a Gröbner basis of D with respect to an
elimination order on the variables x1, . . . , xn, x̂1, . . . , x̂n where any monomial involv-
ing one of x1, . . . , xn is greater than all monomials in x̂1, . . . , x̂n̂. Let i ∈ {1, . . . , t}.
We claim that a representation of qi + I in the generators φ1, . . . , φn̂ can be found
by simply reducing qi with respect to H.
So let q̂i ∈ K[x̂1, . . . , x̂n] be a representation of qi + I, that is qi + I = q̂i(φ1, . . . , φn̂).
It will become clear in the following proof of correctness that such a polynomial q̂i al-
ways exists. We may assume without loss of generality that q̂i is in normal form with
respect to H. For, otherwise we can replace q̂i by NFH(q̂i). Note that NFH(q̂i) is a
polynomial only in x̂1, . . . , x̂n̂, again since we have assumed the monomial order to
be an elimination order for x1, . . . , xn. Furthermore by (d) above, this replacement
preserves the property qi + I = q̂i(φ1, . . . , φn̂). We now show that NFH(qi) = q̂i.

78



4.2 Invariant theory for quasi-affine varieties

The following calculation takes place in (K[x1, . . . , xn]/I)d+I [x̂1, . . . , x̂n̂]. We have

qi + I = q̂i(φ1, . . . , φn̂) = q̂i(x̂1 + φ1 − x̂1, . . . , x̂n̂ + φn̂ − x̂n̂)

= q̂i(x̂1, . . . , x̂n̂) +
n̂∑
j=1

aj · (φj − x̂j)

for certain a1, . . . , an̂ ∈ (K[x1, . . . , xn]/I)d+I [x̂1, . . . , x̂n̂]. Multipliying this equation
by a common denominator dM + I for M ∈ N large enough yields

dM · qi + I = (dM + I) · q̂i(x̂1, . . . , x̂n̂) +
n̂∑
j=1

ãj · ((nj + I)− x̂j · (dj + I))

for certain ã1, . . . , ãn̂ ∈ (K[x1, . . . , xn]/I)[x̂1, . . . , x̂n̂]. Let a′1, . . . a
′
n̂ ∈ K[x1, . . . , xn,

x̂1, . . . , x̂n̂] be arbitrary preimages of ã1, . . . , ãn̂ under the natural homomorphism δ
from (d). Since

∑n̂
j=1 a

′
j · (nj − x̂j · dj) is clearly contained in D, it follows that

dM · qi − dM · q̂i(x̂1, . . . , x̂n̂) ∈ D

and by the definition of D, this implies

qi − q̂i(x̂1, . . . , x̂n̂) ∈ D.

Since, by assumption, q̂i(x̂1, . . . , x̂n̂) is in normal form with respect to H, it follows
that NFH(qi) = q̂i(x̂1, . . . , x̂n̂).

To sum up, this means that the polynomials q̂, . . . , q̂t can be found algorithmically
by first computing a Gröbner basis H of the colon ideal D for an adequate monomial
order (which has already been calculated for the implementation of step (7)) and
then reducing q1, . . . , qt with respect to H. ♦

Proof of Correctness. In steps (1)-(4), a G-module V ⊂ K[U ] with x1 + I, . . . , xn + I ∈ V
is computed. We first show that φ1, . . . , φn̂ is a K-basis of such a V . The proof for this is
very similar to parts of the proof of Proposition 1.31(a) and Algorithm 3.25. Nonetheless,
we repeat it here for the sake of completeness. Let i ∈ {1, . . . , n}. Then

σ−1(xi + I)(u) = (xi + I)(σ(u)) = (xi + I)(N1(σ, u)/D1(u), . . . , Nn(σ, u)/Dn(u))
= Ni(σ, u)/Di(u)

for all σ ∈ G and all u in a dense open subset of U . It follows that

σ−1(xi + I) =
α(Ni)(σ)
α(Di)

for all σ ∈ G. (4.6)
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Since a reduction of α(Ni)/α(Di) modulo G does not change the validity of the previous
equation, this implies

σ−1(xi + I) = Hi(σ) for all σ ∈ G. (4.7)

The polynomial Hi can be written as Hi =
∑s

j=1 aj · gj where g1, . . . , gs are pairwise
distinct monomials in t1, . . . , tm and a1, . . . , as ∈ Quot(K[x1, . . . , xn]/I). We claim that

Ṽ := 〈a1, . . . , as〉K ⊂ Quot(K[x1, . . . , xn]/I)

is a G-module containing xi + I. Let τ ∈ G. We have to show that τ(ai) ∈ Ṽ , again.
Since Hi is in normal form with respect to G, it follows that g1 + J, . . . , gs + J are linearly
independent as regular functions on G (see [BW93], Chapter 6, Proposition 6.52). Hence
there exist σ1, . . . , σs ∈ G such that (gj(σk))j,k=1,...,s ∈ Ks×s is regular. By equation (4.7),
it follows that

(τ(a1), . . . , τ(as)) · (gj(σk))j,k=1,...,s = ((τσ−1
1 )(xi + I), . . . , (τσ−1

s )(xi + I))

=

 s∑
j=1

aj · gj(σ1τ
−1), . . . ,

s∑
j=1

aj · gj(σsτ−1)

 ∈ Ṽ s

and thus

(τ(a1), . . . , τ(as)) = (τ(a1), . . . , τ(as)) · (gj(σk))j,k=1,...,s · (gj(σk))−1
j,k=1,...,s ∈ Ṽ

s.

But this means that τ(a1), . . . , τ(as) ∈ Ṽ , as desired.
Moreover, as xi + I =

∑s
j=1 aj · gj(1G), it follows that xi + I ∈ Ṽ and so Ṽ is a G-module

containing xi + I, indeed.
Note also that Ṽ is the smallest G-module containing xi+I in the sense that Ṽ is contained
in every G-module Ṽ ′ with xi + I ∈ Ṽ ′. This follows by setting τ = 1G in the equations a
few lines above. In particular, we have Ṽ ⊂ K[U ].
Applying these arguments to i = 1, . . . , n shows that φ1, . . . , φn̂ is a basis of a G-module
V ⊂ K[U ] containing x1 + I, . . . , xn + I, as claimed.

In steps (5) & (6), an explicit description of the induced action of G on V is computed.
Let i ∈ {1, . . . , n}. We will first show that in (4.4) a polynomial Ri with the desired
properties exists. Since G acts regularly on U , there exists µ∗ : K[U ] −→ K[G]⊗K K[U ]
such that µ∗(φi)(σ) = σ−1(φi) for all σ ∈ G (see Remark 4.19). Let g1 +(J), . . . , gs+(J) ∈
K[G], a1, . . . , as ∈ K[U ] ⊂ Quot(K[x1, . . . , xn]/I) such that

µ∗(φi) =
s∑
j=1

(gj + (J))⊗ aj .

We claim that Ri :=
∑s

j=1 gj · aj ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm] satisfies equation
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(4.4) of step (6)(i). By (4.6), it follows

σ−1(ni + I) = ni

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ) and

σ−1(di + I) = di

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ)

for all σ ∈ G. Since φi = (ni + I)/(di + I) and Ri(σ) = σ−1(φi) by construction, this
implies that

ni

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ)−Ri(σ) · di

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ) = 0 for all σ ∈ G

and hence

ni

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
−Ri · di

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
∈ (J)Quot(K[x1,...,xn]/I)[t1,...,tm].

This proves that a polynomial Ri satisfying (4.4) exists. We now show that conversely,
every Ri satisfying equation (4.4) has the property that

σ−1(φi) = Ri(σ) for all σ ∈ G. (4.8)

This is not hard to see since by (4.4),

ni

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ)−Ri(σ) · di

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ) = 0

for all σ ∈ G. But this means that

Ri(σ) = ni

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ)/di

(
α(N1)
α(D1)

, . . . ,
α(Nn)
α(Dn)

)
(σ) = σ−1(φi)

for all σ ∈ G, which we wanted to show.
Note that replacing Ri by its normal form NFG(Ri) in step (6)(ii) does not change the
validity of (4.8).

A remark is in order about the existence of a solution αi1, . . . , αin̂ of the equation in step
(6)(iii). As Ri is in normal form with respect to G, it can be shown similarly to the meth-
ods above that the coefficients of Ri as a polynomial in Quot(K[x1, . . . , xn]/I)[t1, . . . , tm]
span a G-module Vi containing φi. Furthermore, it is not hard to see that Vi is mini-
mal in the sense that it is contained in every G-module containing φi. This implies that
Vi ⊂ 〈φ1, . . . , φn̂〉K , and hence every coefficient of Ri can be expressed as a K-linear combi-
nation of φ1, . . . , φn̂. Substituting these coefficients by the respective linear combinations
of φ1, . . . , φn̂ and rearranging the terms of Ri with respect to φ1, . . . , φn̂ then yields the
desired polynomials αi1, . . . , αin̂ ∈ K[t1, . . . , tm].
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4 Computing invariants of group actions on quasi-affine varieties

It follows by equation (4.8) that

σ−1(φi) =
n̂∑
j=1

αij(σ) · φj for all σ ∈ G.

Recall that N̂1 :=
∑n̂

j=1 α1j x̂j , . . . , N̂n̂ :=
∑n̂

j=1 αn̂j x̂j . Let G act on X̂ := Var(Î) ⊂ K n̂

by
µ̂ : G× X̂ −→ X̂, (σ, p) 7−→ (N̂1(σ, p), . . . , N̂n̂(σ, p)).

Obviously, we have K[X̂] ∼= K[φ1, . . . , φn̂]. More explicitly, this isomorphism is given by

γ : K[x̂1, . . . , x̂n̂]/Î −→ K[φ1, . . . , φn̂], x̂i 7−→ φi.

Note that by construction, this isomorphism commutes with the action of G. The proof
of Proposition 4.20 now shows that the quasi-affine variety U is G-isomorphic to Û :=
X̂ \VarX̂(γ−1(((L+ I)/I)S)) via φ = (φ1, . . . , φn̂) : U −→ Û .
Finally, observe that the isomorphism γ exactly maps q̂i + Î to qi + I for i = 1, . . . , t.
Hence Û is given by X̂ \Var(L̂), as claimed.

As an example, we demonstrate the application of the algorithm to the quasi-affine
G-variety of Example 4.11(b).

Example 4.24. All computations in this example have been done with the computer alge-
bra system Magma (cf. [BCP97]). Needless to say, before we can start with a concrete
application of the algorithm to Example 4.11(b), we have to specify the input data ade-
quately.
Recall that K = Q. Let m = n = 1. The finite group G can be realized as an algebraic
group via the ideal J := (t21 − 1) EK[t1] where we assume that 1 ∈ Q corresponds to the
neutral element 1G of G. Set I := (0) EK[x1] and L := (x1) EK[x1]. Then U = Q \ {0}
is obviously given by Var(I) \Var(L).
Moreover, the action of G on U – as defined in Example 4.11(b) – can be described by
the quotient N1/D1 where N1 := (1 + t1) · x2

1 + 1− t1 ∈ K[t1, x1] and D1 := 2x1 ∈ K[x1].
Hence according to Convention 4.16, the situation of Example 4.11(b) is given by JEK[t1],
I, LEK[x1] and N1 ∈ K[x1, t1], D1 ∈ K[x1].
We can now apply the steps of Algorithm 4.22. Since J is a principal ideal, it follows that
a Gröbner basis G of (J)K(x1)[t1] is given by the single generator t21 − 1. Note that we do
not have to specify a monomial order on the powers of t1 since there is only one possibility
for doing this. We have

α(N1)
α(D1)

=
(1 + t1) · x2

1 + 1− t1
2x1

=
x2

1 − 1
2x1

· t1 +
x2

1 + 1
2x1

and as the right hand side of this equation is already in reduced form with respect to G,
we can set φ1 := 1/2 · (x2

1 − 1)/x1 and φ2 := 1/2 · (x2
1 + 1)/x1.
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It can be verified easily that

σ(φ1) = −φ1 and σ(φ2) = φ2.

By equation (4.8), it follows that we can set R1 := φ1 ·t1 and R2 := φ2. Of course, the very
same result about R1 and R2 can be achieved by executing step (6) of the algorithm. To
be more explicit, applying the Extended Buchberger Algorithm to the ideal membership
problem

1
2
·

((
(1 + t1) · x2

1 + 1− t1
2x1

)2

− 1

)
∈
(

(1 + t1) · x2
1 + 1− t1

2x1
, t21 − 1

)
K(x1)[t1]

yields (as described in Remark 4.23(c))

R1 =
−x6

1 + 3x4
1 − 3x2

1 + 1
16x3

1

· t31 +
−x6

1 + x4
1 + x2

1 − 1
16x3

1

· t21

+
x6

1 + 5x4
1 − 5x2

1 − 1
16x3

1

· t1 +
x6

1 − x4
1 − x2

1 + 1
16x3

1

The normal form of R1 with respect to G is 1/2 · (x2
1 − 1)/x1 · t1. By step (6)(iii), this

means R1 := φ1 · t1, as expected. An analogous computation for φ2 shows that R2 = φ2.
Finally, a simple application of the methods as outlined in Remarks 4.23(d) & (e) gives

Î := (x̂2
1 − x̂2

2 + 1) EK[x̂1, x̂2]

and q̂1 = x̂1 + x̂2 ∈ K[x̂1, x̂2]. Thus L̂ is given by

L̂ := (x̂1 + x̂2) EK[x̂1, x̂2].

To sum this up, we have found an affine variety X̂ := Var(Î) ⊂ K2 together with a
regular G-action

µ : G× X̂ −→ X̂, (σ, (ξ̂1, ξ̂2)) 7−→ (−ξ̂1, ξ̂2).

Note that Var(L̂)∩ X̂ = ∅ which implies that Û = X̂. By construction, U is G-isomorphic
to Û = X̂ and this isomorphism is given by

U −→ Û , ξ 7−→
(
ξ2 − 1

2ξ
,
ξ2 + 1

2ξ

)
. C

4.3 Algorithms for computing invariants of group actions on
quasi-affine varieties

With the same notation as in the previous section, let G be a linear algebraic group and U
be an irreducible quasi-affine G-variety. Our aim is to compute the invariant ring K[U ]G.
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4 Computing invariants of group actions on quasi-affine varieties

If the ring of regular functions K[U ] is finitely generated, this can be reduced to the affine
case, where several algorithms are known. The actual problem is that in most of the cases,
it is not known whether K[U ] is finitely generated or not. Up to now – to the best of
my knowledge – there is no method to decide this algorithmically. For the computation
of K[U ]G, it is therefore necessary to give an algorithm which does not involve any steps
which depend on questions about finite generation of K[U ].

It is clear that the invariant ring K[U ]G is not always finitely generated. However, we
can deal with non-finitely generated invariant rings similarly as in the affine case. As be-
fore, our algorithms terminate with a finite generating set of K[U ]G if and only if K[U ]G is
finitely generated. Otherwise they return an infinite sequence f1, f2, f3, . . . ∈ K[U ] which
generate K[U ]G in the usual sense.

We start with the examination of an important class of quasi-affine varieties and show
that their rings of regular functions are always finitely generated. In particular, this
means that for quasi-affine varieties of this type, invariant rings can be calculated with
the computational methods known from the affine case. Next, we try to compute invariant
rings (for arbitrary quasi-affine varieties) with a quite naive approach. It turns out that this
leads to an algorithm for the computation of invariant rings for finite groups and in some
cases also for reductive groups. We then develop an algorithm for computing invariants
of unipotent groups acting on quasi-affine varieties. For the special case that G acts on a
normal quasi-affine variety, a variant of this algorithm will be given. Interestingly enough,
the theory which comes out of this construction enables us to generalize a result of Nagata
and Winkelmann. Finally, we conclude this section with an outline of how computational
methods for the quasi-affine case can be used for the computation of invariants of arbitrary
linear algebraic groups acting on factorial varieties.

4.3.1 An algorithm for computing invariants of groups acting on open subsets
of factorial varieties

In this subsection, we do not develop new algorithms for the computation of invariant
rings in the quasi-affine case, but show that for a certain class of quasi-affine varieties the
ring of regular functions is always finitely generated. For these quasi-affine varieties we
thus can calculate invariant rings with the existing algorithms for affine varieties, as we
will see below.

Recall that an irreducible affine variety X is called factorial if the coordinate ring K[X]
is a unique factorization domain. An important example for the occurrence of factorial
varieties is the common case that X is a finite-dimensional K-vector space.

Theorem 4.25. Let U be an open subset of a factorial variety X. Then K[U ] is a finitely
generated K-algebra.

Proof. We may assume that U 6= X. Let M be the finite set of all prime ideals of K[X]
which are minimal over L̃ := IdK[X](X \ U). Then L̃ =

⋂
p∈M p is the (unique) minimal
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decomposition of L̃ into distinct primes (see [Eis95], Chapter 3). Let p1, . . . , ps be those
primes of M which are of height one and set L′ :=

⋂s
i=1 pi. (In case that there are no

primes of height one in M , set L′ := K[X].) We claim that

(K[X] : L̃∞)Quot(K[X]) = (K[X] : L′∞)Quot(K[X]). (4.9)

By (4.1), this means that the rings of regular functions of the quasi-affine varieties U and
U ′ := X \VarX(L′) are isomorphic.
Since L̃ ⊂ L′, it is clear that the right hand side of (4.9) is contained in the left hand
side. For the reverse inclusion, let a/b ∈ (K[X] : L̃∞)Quot(K[X]). By definition, there is
an m ∈ N0 such that (a/b) · (L̃)m ⊂ K[X]. We have to show that there exists m′ ∈ N0

such that (a/b) · (L′)m′ ⊂ K[X]. The coordinate ring K[X] is factorial, hence normal (see
[Eis95], Chapter 4, Proposition 4.10) and thus K[X] is the intersection of its localizations
at primes of height one (see [Eis95], Chapter 11, Corollary 11.4), i. e.

K[X] =
⋂

pEK[X] prime
height(p)=1

K[X]p.

So it is enough to show that there exists m′ ∈ N0 such that (a/b) · (L′)m′ ⊂ K[X]p for all
prime ideals p of K[X] of height one.
We first prove that a/b ∈ K[X]p for all height one prime ideals p with p /∈ {p1, . . . , ps}.
So let p be a prime ideal of K[X] of height one which is not contained in {p1, . . . , ps}.
Then there exists l ∈ L̃ \ p and it follows that (a/b) · lm ∈ K[X]. But this means that
a/b = ((a/b) · lm)/lm ∈ K[X]p.
Let now p ∈ {p1, . . . , ps}. Since K[X] is normal, it follows that K[X]p is a discrete
valuation ring (see [Eis95], Chapter 11, Theorem 11.2). In particular, the maximal ideal
pp EK[X]p is a principal ideal, pp = (rp)K[X]p with rp ∈ K[X], say.
We can write a/b as a/b = rlp · q′ with l ∈ Z and q′ ∈ K[X]×p . In case that l ≥ 0, it follows
that a/b ∈ K[X]p. In case that l < 0 we have

(a/b) · (L′)−l ⊂ (a/b) · (L′p)−l ⊂ (a/b) · p−lp = (a/b) · r−lp ·K[X]p
= rlp · r−lp ·K[X]p = K[X]p.

Since p was chosen arbitrarily among {p1, . . . , ps}, it follows that there exists m′ ∈ N0 such
that (a/b) · (L′)m′ ⊂ K[X]p for all prime ideals p of K[X] of height one. Hence equation
(4.9) is proved.

If L′ = K[X], then K[U ′] = K[X] is obviously finitely generated. Otherwise, note that
by construction, the ideal L′ E K[X] is the intersection of the height one prime ideals
p1, . . . , ps. Since every height one prime ideal of a unique factorization domain is principal
(see [Eis95], Chapter 10, Corollary 10.6), there exist prime elements p1, . . . , ps ∈ K[X]
such that pi = (pi)K[X] for i = 1, . . . , s. By construction, the prime elements p1, . . . , ps
are pairwise coprime and it follows that L′ = (

∏s
i=1 pi)K[X]. Hence the ring of regular

functions of U ′ is given by the localization K[U ′] = K[X]Qs
i=1 pi

. In particular, K[U ′] is
finitely generated. Combining this with (4.9) proves the theorem.
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Remark 4.26. From the previous proof, the following useful fact about normal varieties
can be extracted: Let X be a normal affine variety and let L̃EK[X] be a non-zero ideal.
Then every function which is regular on X \VarX(L̃) can be extended to a function which
is regular on the complement of the codimension one components of VarX(L̃).
By symmetry, it follows that if L̄EK[X] is another non-zero ideal such that the set of all
primes of height one which are minimal over L̄ is equal to the set of all primes of height
one which are minimal over L̃, then

(K[X] : L̃∞)Quot(K[X]) = (K[X] : L̄∞)Quot(K[X]).

In other words, the rings of regular functions of the quasi-affine varieties X \VarX(L̃) and
X \VarX(L̄) are isomorphic. ♦

As mentioned in the outline above, the previous theorem enables us to compute the
invariant ring of certain classes of groups acting on open subsets of factorial varieties.

Theorem 4.27. Let U be an open subset of the factorial variety X and let the linear
algebraic group G act regularly on U . Then there is an algorithm for the computation of
K[U ]G for the case that

(a) G is a finite group.

(b) G is a reductive group.

(c) G is a unipotent group.

The rough idea for proving this theorem is as follows. Since K[U ] is an affine algebra,
there exists an affine variety X̂ such that the coordinate ring K[X̂] is isomorphic to K[U ].
Moreover, the action of G on K[U ] can be described by µ̃ : K[U ] −→ K[G] ⊗K K[U ]
(see Proposition 4.20) and hence the isomorphism of K[U ] and K[X̂] induces an action
K[X̂] −→ K[G]⊗K K[X̂] of G on K[X̂]. By Proposition 1.29, this in turn comes from a
regular action of G on the affine variety X̂. We can therefore apply the algorithms which
are known for affine varieties.
The unsatisfactory part of this argumentation is the fact that it is purely algebraic –
in general, it is not clear, how the geometry of the affine G-variety X̂ is related to the
geometry of the quasi-affine G-variety U . In the following, we therefore present a geometric
version of this construction which clarifies the relation of X̂ and U better. For this, we
need the following result about quasi-affine G-varieties with a finitely generated ring of
regular functions.

Proposition 4.28. Let U be an irreducible quasi-affine variety such that the ring of reg-
ular functions K[U ] is finitely generated (as a K-algebra). Moreover, let the linear alge-
braic group G act regularly on U . Then there is an irreducible affine G-variety X̂ and a
G-equivariant embedding of U as an open subset in X̂ such that every regular function on
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U can be extended to a regular function on X̂. In fact, every invariant regular function
on U can be extended to an invariant regular function on X̂.

Remark. Note that the algebras K[Û ] and K[X̂] of the proposition are G-isomorphic, as
intended. ♦

Proof. By Proposition 4.20, the quasi-affine variety U can be embedded G-equivariantly
as an open subset in an irreducible affine G-variety X̂. Moreover, by Remark 4.21(b), X̂
can be chosen in such a way that K[X̂] = K[U ]. In other words this means that every
function which is regular on U can be extended to a regular function on X̂. Finally, since
G acts on K[U ] in the very same way as on K[X̂] = K[U ], it follows that every invariant
of K[U ] is an invariant of K[X̂].

Proof (of Theorem 4.27). By Theorem 4.25, the ring of regular functions K[U ] is finitely
generated. Moreover, by Proposition 4.28, there exists an affine G-variety X̂ such that
K[X̂] is G-isomorphic to K[U ]. We will see below that the construction of X̂ can be done
algorithmically.
This proves the theorem since algorithms are known for the calculation of the invariant
ring K[X̂]G if G is contained in one of the classes listed under (a), (b) and (c). For details,
see [Kem96], [Der99], [DK02], [Kem03] and Chapter 3 above.

To complete the previous proof, we give an algorithm which makes the proof of Propo-
sition 4.28 constructive. By construction, this algorithm can be applied to all quasi-affine
varieties U where K[U ] is finitely generated. So in particular, it is applicable to the case
considered above where U is an open subset of a factorial variety.

Algorithm 4.29. (Embedding a quasi-affine G-variety G-equivariantly in an
affine G-variety such that the respective rings of regular functions are G-
isomorphic)

Input: A linear algebraic group G, an irreducible quasi-affine variety U such that K[U ]
is finitely generated, and a regular action µ of G on U according to Convention 4.16.

Output: An irreducible affine variety X̂, an action µ̂ of G on X̂ and a G-equivariant
embedding φ : U −→ X̂ of U as an open subset in X̂ such that φ induces a G-isomorphism
K[X̂] −→ K[U ].
More precisely, the output is given by a prime ideal ÎEK[x̂1, . . . , x̂n̂] (with x̂1, . . . , x̂n̂ new
indeterminates), polynomials N̂1, . . . , N̂n̂ ∈ K[t1, . . . , tm, x̂1, . . . , x̂n̂] and rational functions
φ1, . . . , φn̂ ∈ K[U ] ⊂ Quot(K[x1, . . . , xn]/I) which stand for the following: The group G
acts on X̂ := Var(Î) ⊂ K n̂ via µ̂ : G× X̂ −→ X̂, where µ̂ is defined by

µ̂(v) = (N̂1(v), . . . , N̂n̂(v))

87



4 Computing invariants of group actions on quasi-affine varieties

for all v ∈ G × X̂. Moreover, the morphism φ : U −→ X̂ is given by (φ1, . . . , φn̂) in the
sense that φ(u) = (φ1(u), . . . , φn̂(u)) for all u ∈ U .

(1) Compute generators

a1 + I

b1 + I
, . . . ,

as + I

bs + I
∈ Quot(K[x1, . . . , xn]/I)

of the algebra (K[x1, . . . , xn]/I : ((L+ I)/I)∞)Quot(K[x1,...,xn]/I).
(For details, see [DK08], Algorithms 2.6 and 2.7)

(2) Compute a Gröbner basis G of the ideal (J)Quot(K[x1,...,xn]/I)[t1,...,tm] with respect to
an arbitrary monomial order on t1, . . . , tm.

(3) Let α be the natural homomorphism

α : K[t1, . . . , tm, x1, . . . , xn] −→ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm].

(4) For i = 1, . . . , s:

(i) Find Hi ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm] such that

ai(α(N1)/α(D1), . . . , α(Nn)/α(Dn))−Hi · bi(α(N1)/α(D1), . . . , α(Nn)/α(Dn))
∈ (J)Quot(K[x1,...,xn]/I)[t1,...,tm]

(4.10)

(For details, see Remarks 4.23(c))
(ii) Replace Hi by NFG(Hi).

(5) Let C ⊂ Quot(K[x1, . . . , xn]/I) be the set of coefficients occuring in the polynomials
H1, . . . ,Hs.

(6) Choose a maximal K-linearly independent subset of C, say {φ1, . . . , φn̂}.

(7) Let n1, . . . , nn̂, d1, . . . , dn̂ ∈ K[x1, . . . , xn] such that

φ1 =
n1 + I

d1 + I
, . . . , φn̂ =

nn̂ + I

dn̂ + I

(8) For i = 1, . . . , n̂:

(i) Find Ri ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm] such that

ni(α(N1)/α(D1), . . . , α(Nn)/α(Dn))−Ri · di(α(N1)/α(D1), . . . , α(Nn)/α(Dn))
∈ (J)Quot(K[x1,...,xn]/I)[t1,...,tm]

(4.11)

(For details, see Remarks 4.23(c))
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(ii) Replace Ri by NFG(Ri).
(iii) Find αi1, . . . , αin̂ ∈ K[t1, . . . , tm] such that

Ri =
n̂∑
j=1

αijφj .

(9) Compute the ideal of relations of φ1, . . . , φn̂ over K, say Î EK[x̂1, . . . , x̂n̂].
(For details, see Remarks 4.23(d))

(10) Set N̂1 :=
∑n̂

j=1 α1j x̂j , . . . , N̂n̂ :=
∑n̂

j=1 αn̂j x̂j .

(11) Return Î , (N̂1, . . . , N̂n̂), (φ1, . . . , φn̂).

Remarks. (1) The homomorphism K[X̂] −→ K[U ] which is induced by φ can be given
explicitly as

β : K[X̂] −→ K[U ], x̂i + Î 7−→ φi.

By the specification of the algorithm, β is a G-isomorphism.

(2) This algorithm can be streamlined to a shorter version. Nonetheless, we have tried
to reuse as much code from Algorithm 4.22 as possible – on the one hand to make it
easier for the reader being already familiar with Algorithm 4.22, on the other hand
to be able to reuse parts of the proof of correctness of Algorithm 4.22.

Proof of Correctness (Sketch). As mentioned in the remark above, this algorithm uses the
same ideas and constructions as Algorithm 4.22. We therefore only sketch the following
proof.
By (4.1), the ring of regular functions on U is given by

K[U ] = (K[x1, . . . , xn]/I : ((L+ I)/I)∞)Quot(K[x1,...,xn]/I).

Hence the elements (a1 + I)/(b1 + I), . . . , (as + I)/(bs + I) of step (1) are just generators
of K[U ] (which is finitely generated by assumption).
In steps (2)-(6), a basis φ1, . . . , φn̂ of a G-module V ⊂ K[U ] is computed such that

a1 + I

b1 + I
, . . . ,

as + I

bs + I
∈ V.

Note first that a polynomial Hi ∈ Quot(K[x1, . . . , xn]/I)[t1, . . . , tm] satisfies (4.10) if and
only if

Hi(σ) = σ−1

(
ai + I

bi + I

)
for all σ ∈ G. (4.12)

A proof for this can be carried over almost word by word from the discussion around (4.8)
of the proof of Algorithm 4.22. (Simply replace ai by ni, bi by di and Ri by Hi.) Moreover,
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it is clear by the very same proof that a polynomial Hi with property (4.12) always exists.
The coefficients of Hi (in reduced form) span a G-module which contains (ai+ I)/(bi+ I).
This has been proven for similar cases in Proposition 1.31(a) and Algorithm 4.22 and
will not be repeated here. Therefore, a linear independent subset of the coefficients of
H1, . . . ,Hs – that is φ1, . . . , φn̂ – is a basis of a G-module V ⊂ K[U ] with (a1 + I)/(b1 +
I), . . . , (as + I)/(bs + I) ∈ V , as claimed. Note that in particular, K[U ] is generated by
φ1, . . . , φn̂.
By the specification of the algorithm, we have to construct an affine variety X̂ ⊂ K n̂

together with a regular action of G on X̂ such that U can be embedded G-equivariantly as
an open subset in X̂ and moreover, every function which is regular on U can be extended
to a regular function on X̂. The embedding of U in an irreducible affine variety X̂ is
done in steps (7)-(11). These steps are almost identical to the steps (6)-(10) of Algorithm
4.22 and the respective parts of the proof given for Algorithm 4.22 apply here, too. By
construction, we have K[X̂] ∼= K[φ1, . . . , φn̂] = K[U ]. Hence every regular function on U
extends to a regular function on X̂, indeed.

Before we have a closer look at finite group actions on quasi-affine varieties, we give an
example for the application of the methods which have been developed in this section.

Example 4.30. Let K = Q be the algebraic closure of Q and let X = K2 be the two-
dimensional affine space over K. Apparently, X is a factorial variety. Moreover, let U
be the open subset X \Var(x1(x1 − 1), x1x2) where as usual x1, x2 denote the coordinate
functions on K2. The cyclic group with two elements, G = 〈σ〉, acts on U via

σ(ξ1, ξ2) := (1/ξ1, ξ2) for all (ξ1, ξ2) ∈ U.

Our aim is to compute generators of the invariant ring K[U ]G. As indicated above, we do
this by first invoking Algorithm 4.29, thereby realizing K[U ] as the coordinate ring of an
affine G-variety. After that we can apply one of Kemper’s algorithms for the computation
of invariant rings of finite groups to this well-understood affine situation.
The interesting part of this action is the fact that U is a quasi-affine variety which is not
isomorphic to an affine variety. Hence the existing algorithms in invariant theory cannot
be applied here. Moreover, the action of G on U does not extend to an action of G on X.
A remark is in order about the non-affineness of U . It can be seen without difficulties (for
example with Algorithms 2.6 & 2.7 of [DK08]) that K[U ] is given by

K[U ] = K

[
x1, x2,

1
x1

]
.

Consider the ideal (x1 − 1, x2) EK[U ]. Obviously, it is proper. But VarU (x1 − 1, x2) = ∅
and therefore U cannot be isomorphic to an affine variety (see [Har77], Chapter I, Theorem
3.2).
In addition to the non-affineness of U , we have claimed above that the action of G on U
does not extend to a regular action of G on X. To see this, consider the automorphism
µ(σ,−) : U −→ U . Then |µ(σ,−)| (where |·| denotes the usual norm in the complex
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numbers) is not bounded on O ∩K2 where O is any open neighbourhood of (0, 0) in the
usual topology of Q2. Therefore µ(σ,−) cannot be regular at (0, 0). In particular, the
action of G on U cannot be the restriction of a regular action of G on X.
Before we can start with an application of Algorithm 4.29 to this example, we have to
specify the input data appropriately. In accordance to Convention 4.16, it can be given by
n := 2,m := 1, J := (t21−1)EK[t1], I := (0)EK[x1, x2], L := (x1(x1−1), x1x2)EK[x1, x2]
and µ := (N1/D1, N2/D2) where N1 := (1 + t1) · x2

1 + 1 − t1 ∈ K[t1, x1, x2], D1 := 2x1 ∈
K[x1, x2], N2 := x2 ∈ K[t1, x1, x2] and D2 := 1 ∈ K[x1, x2].
As we have remarked above, the ring of regular functions on U is given by K[U ] =
(K[x1, x2] : (x1(x1 − 1), x1x2)∞)K(x1,x2) = K[x1, x2, 1/x1]. We therefore define s := 3 and

a1 := x1, b1 := 1, a2 := x2, b2 := 1, a3 := 1, b3 := x1.

Next, a Gröbner basis of (J)K(x1,x2)[t1] with respect to the unique monomial ordering on
the powers of t1 is given by G = {t21 − 1}. Since b1 = b2 = 1, we can set

H1 := 1/2 · ((1 + t1) · x2
1 + 1− t1)/x1 =

x2
1 − 1
2x1

· t1 +
x2

1 + 1
2x1

and

H2 := x2.

Moreover by (4.12), H3 can be set to

H3 :=
−x2

1 + 1
2x1

· t1 +
x2

1 + 1
2x1

.

(Recall that this is because H3(1) = 1/x1 and H3(−1) = x1.) Note that H1, H2 and H3

are in normal form with respect to G. Hence we define

φ1 :=
x2

1 − 1
2x1

, φ2 :=
x2

1 + 1
2x1

, φ3 := x2.

Since σ(φ1) = −φ1, σ(φ2) = φ2 and σ(φ3) = φ3, we can set

R1 := φ1 · t1, R2 := φ2, R3 := φ3.

Finally, a simple application of the methods as outlined in Remark 4.23(d) gives

Î := (x̂2
1 − x̂2

2 + 1) EK[x̂1, x̂2, x̂3].

To sum this up, Algorithm 4.29 has returned an affine variety X̂ := Var(Î) ⊂ K3

together with a regular G-action

µ : G× X̂ −→ X̂, (σ, (ξ̂1, ξ̂2, ξ̂3)) 7−→ (−ξ̂1, ξ̂2, ξ̂3).

Moreover, the quasi-affine variety U can be embedded G-equivariantly in X̂ via (φ1, φ2, φ3)
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and K[X̂] is G-isomorphic to K[U ] via

β : K[X̂] −→ K[U ], x̂i 7−→ φi for i = 1, 2, 3.

But nowK[X̂]G can be seen to be equal toK[x̂2
1+Î , x̂2+Î , x̂3+Î]/Î. (For more complicated

situations where the invariant ring cannot be “seen”, there are a lot of computational
methods for calculating K[X̂]G, see for example [Stu93], [Kem96], [Der99], [Kem03] and
[DK02].) Translating this back to K[U ] via the isomorphism β finally yields

K[U ]G = K

[
(x2

1 − 1)2

4x2
1

,
x2

1 + 1
2x1

, x2

]
. C

4.3.2 An algorithm for computing invariants of finite groups acting on
quasi-affine varieties

Let X be an irreducible affine variety, let U ⊂ X be a non-empty open subset and let the
linear algebraic group G act regularly on U . For the moment, G does not have to be a
finite group. By Proposition 4.20, we may assume for the subsequent discussion that the
action of G on U extends to a regular action of G on X.
Let L′ E K[X] be any ideal such that U = X \ VarX(L′). By (4.1), the ring of regular
functions on U is given by

K[U ] = (K[X] : (L′)∞)Quot(K[X]).

If – up to taking radicals – the ideal L′ is generated by invariants, then the invariant ring
K[U ]G can be written as a colon expression quite easily. More precisely∗,√

(L′ G)K[X] =
√
L′ =⇒(

(K[X] : (L′)∞)Quot(K[X])

)G = (K[X]G : (L′ G)∞)Quot(K[X]G).
(4.13)

We first show that the left hand side of this last equation is contained in the right hand
side. Let a/b ∈

(
(K[X] : (L′)∞)Quot(K[X])

)G. By definition, there exists m ∈ N such that
a/b · (L′)m ⊂ K[X]. But then obviously a/b · (L′ G)m ⊂ K[X]G and moreover, it follows
that a/b is contained in Quot(K[X]G).
For the reverse inclusion, let a/b ∈ (K[X]G : (L′ G)∞)Quot(K[X]G). By definition, there
exists m ∈ N such that (a/b) · (L′ G)m ⊂ K[X]G. It follows that a/b · ((L′ G)K[X])m ⊂
K[X]. Moreover, since

√
(L′ G)K[X] =

√
L′, there exists m′ ∈ N such that (L′)m

′ ⊂
(L′ G)K[X]. This implies that a/b · (L′)m·m

′ ⊂ K[X] and hence a/b is contained in(
(K[X] : (L′)∞)Quot(K[X])

)G.

It is very tempting to guess that the equation in (4.13) can even be deduced if only

∗We write L′ G for L′ ∩K[X]G.
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L′ G 6= {0}. This would be nice, since for example for G unipotent this is always the case.
But this is not true as the following example shows.

Example 4.31. Let K := Q be the algebraic closure of Q, let X := K2 and let U :=
X \ {(0, 1)}. With the above notation, we can set L′ := (x1, x2 − 1) E K[x1, x2] where
x1, x2 denote the coordinate functions on K2. A regular action of the additive group
Ga = (K,+) on X is given by

λ(ξ1, ξ2) := (ξ1, ξ2 + λξ1).

Since the point (0, 1) is a fixed point, this induces an action of Ga on the quasi-affine
variety U . The invariant ring K[X]G is given by K[X]G = K[x1] which can be seen for
example from the orbit structure of the G-action on X: the orbits are just the x1-translates
of the x2-axis together with all the points on the x2-axis.
Since X is normal and (0, 1) has codimension 2 in X, it follows that K[U ] = K[X] (see
[Eis95], Chapter 11, Corollary 11.4) and hence K[U ]G = K[X]G.
In contrary to the guess preceding this example, we have the inequality

K[U ]G = K[x1]

6= (K[x1] : ((x1, x2 − 1)K[x1,x2] ∩K[x1])∞)Quot(K[x1]) = (K[X]G : (L′ G)∞)Quot(K[X]G),

which is not very hard to see, since for example 1/x1 is certainly not regular on U but is
contained in (K[x1] : ((x1, x2 − 1)K[x1,x2] ∩K[x1])∞)Quot(K[x1]). C

In the following, we will show that (4.13) can be used to compute invariant rings of
finite groups. For this, we need the following well-known result about separation of orbits.

Theorem 4.32. Let X be an affine variety and assume that the finite group G acts reg-
ularly on X. Then all orbits of G can be separated by invariants, i. e. if p, p′ ∈ X and
f(p) = f(p′) for all f ∈ K[X]G, then there exists σ ∈ G such that p = σ(p′).

Proof. Let p, p′ ∈ X with G(p) := {σ(p); σ ∈ G} 6= G(p′) := {σ(p′); σ ∈ G}. We will
show that there exists f ∈ K[X]G with f(p) 6= f(p′). Choose for each q ∈ G(p′) a regular
function fq ∈ K[X] such that

fq(G(p) ∪G(p′) \ {q}) = {0} and fq(q) 6= 0.

Note that such a function exists since the finite set G(p) ∪ G(p′) \ {q} is closed in the
Zariski topology. Set

f :=
∏
σ∈G

σ

 ∑
q∈G(p′)

fq

 .

Each factor of the expression above vanishes on G(p) and does not vanish on any point of
G(p′), hence this is also true for f . Moreover, f is invariant under G.
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Proposition 4.33. Let X be an irreducible affine variety, U ⊂ X be a non-empty open
subset and assume that the finite group G acts regularly on the quasi-affine variety U .
Then there exists an affine algebra S with S ⊂ K[U ]G and an ideal a E S of S such that
the invariant ring K[U ]G is given by

K[U ]G = (S : a∞)Quot(S).

In particular, this shows that the invariant ring of a finite group acting on an irreducible
quasi-affine variety is isomorphic to the ring of regular functions of a quasi-affine variety.

Proof. By Proposition 4.20, there is an irreducible affine G-variety X̂ such that U is G-
isomorphic to an open G-stable subset Û of X̂. Let L′ E K[X̂] be any ideal such that
Û = X̂ \VarX̂(L′). We first prove that

K[Û ]G = (K[X̂]G : (L′ G)∞)Quot(K[X̂]G). (4.14)

Note that by (4.13), for this it is enough to show that√
(L′ G)K[X̂] =

√
L′.

Clearly the left hand side of this latter equation is contained in the right hand side. For
the reverse inclusion, let m be a maximal ideal of K[X̂] with m ⊃ (L′ G)K[X̂]. The ring

K[X̂] is integral over K[X̂]G, since every f ∈ K[X̂] satisfies a monic polynomial with
coefficients in K[X̂]G. This polynomial can be given explicitly by

Ff :=
∏
σ∈G

σ(T − f) ∈ K[X̂]G[T ]

where T is an indeterminate over K[X̂] and G acts trivially on T . Hence by the Lying Over
Theorem (see [Eis95], Chapter 4, Proposition 4.15), there exists a prime ideal m′ EK[X̂]
with m′ ⊃ L′ and m′ ∩ K[X̂]G = m ∩ K[X̂]G. We may assume that m′ is a maximal
ideal of K[X̂]. Both m and m′ correspond to a point on the affine variety X̂. Since
mG = (m′)G, these two points cannot be separated by invariants. Hence, by the previous
theorem, there exists σ ∈ G with m = σ(m′). Note that by the G-stability of Û , the ideal√
L′ = IdK[X̂](X̂ \ Û) is G-stable. It follows that m = σ(m′) ⊃ σ(

√
L′) =

√
L′.

As the maximal ideal m was chosen arbitrarily among the maximal ideals containing
(L′ G)K[X̂], equation (4.14) is proved.

By Remark 4.21(a), the G-equivariant embedding U −→ Û induces a G-isomorphism of
K[Û ] and K[U ], say β : K[Û ] −→ K[U ]. Set S := β(K[X̂]G) and a := β(L′ G). Then
S ⊂ K[U ]G (cf. Remark 4.21(a)) and it follows by equation (4.14) that

K[U ]G = (S : a∞)Quot(S),

as desired.
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Remark. From the proof of the previous proposition, the following generalization of The-
orem 4.32 can be deduced: If G is a finite group acting regularly on an irreducible quasi-
affine variety, then all orbits can be separated by invariants. ♦

Combining ideas of this proof with Algorithm 4.22, we can give an algorithm for the
computation of the invariant ring of a finite group acting on a quasi-affine variety.

Algorithm 4.34. (Computing invariants of finite group actions)

Input: A finite group G, an irreducible quasi-affine variety U and an action µ of G on U
according to Convention 4.16.

Output: An affine algebra S ⊂ K[U ]G and an ideal a E S such that the invariant ring
K[U ]G is given by K[U ]G = (S : a∞)Quot(S).

(1) Use Algorithm 4.22 to compute a G-equivariant embedding of U as an open sub-
set Û of an irreducible affine G-variety X̂. More precisely, compute ideals Î , L̂ E
K[x̂1, . . . , x̂n̂] such that X̂ resp. Û is given by X̂ := Var(Î) ⊂ K n̂ and Û :=
X̂ \ Var(L̂). Moreover, compute a morphism µ̂ : G × X̂ −→ X̂ which describes the
action of G on X̂, and rational functions φ1, . . . , φn̂ ∈ K[U ] ⊂ Quot(K[x1, . . . , xn]/I)
such that φ := (φ1, . . . , φn̂) : U −→ Û defines a G-isomorphism of U and Û .

(2) Compute generators h1 + Î , . . . , hs + Î of the algebra K[X̂]G (see Remark 4.35(a)).
Let S ⊂ K[U ]G be the affine algebra generated by h1(φ1, . . . , φn̂), . . . , hs(φ1, . . . , φn̂).

(3) Compute generators q̃1 + Î , . . . , q̃t′ + Î of the ideal (L̂+ Î)/Î ∩K[X̂]G (see Remark
4.35(b)). Let a E S be the ideal generated by q̃1(φ1, . . . , φn̂), . . . , q̃t′(φ1, . . . , φn̂).

(4) Return S and a.

Proof of Correctness. The correctness of the algorithm follows directly from the proof of
Proposition 4.33.

Remarks 4.35. (a) Several algorithms are known for the computation of the invariant
ring K[X̂]G in step (2). Details can be found for example in [Stu93], [Kem96], [Der99]
and [DK02].

(b) Although it seems to be a well-known fact how to compute the intersection of an
ideal with a subring in step (3), we include details about this for lack of an adequate
reference. We introduce a new notation, since the following is applicable not only
for the case of invariant rings as needed here, but also in a more general context.
So let a = (p1, . . . , pr), b = (q1, . . . , qt) E K[x1, . . . , xn] be arbitrary ideals and let
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f1, . . . , fm ∈ K[x1, . . . , xn]. We are interested in generators of the ideal

c := ((b + a)/a) ∩K[f1 + a, . . . , fm + a] EK[f1 + a, . . . , fm + a].

For this, take additional indeterminates over K, say Z1, . . . , Zm, and consider the
ideal

d := (Z1 − f1, . . . , Zm − fm, p1, . . . , pr, q1, . . . , qt) EK[x1, . . . , xn, Z1, . . . , Zm].

Let F1, . . . , Fs ∈ K[Z1, . . . , Zm] be generators of the elimination ideal d ∩K[Z1, . . . ,
Zm] (for the computation of elimination ideals, see Section 1.3). Then generators of
c are given by

F1(f1 + a, . . . , fm + a), . . . , Fs(f1 + a, . . . , fm + a).

To see this, assume first that g + a ∈ ((b + a)/a) ∩K[f1 + a, . . . , fm + a] EK[f1 +
a, . . . , fm + a]. Then g + a can be written as g + a = G(f1, . . . , fm) + a, where G is
a polynomial in m indeterminates over K. We have

G(Z1, . . . , Zm) + d = G((Z1 − f1) + f1, . . . , (Zm − fm) + fm) + d

= G(f1, . . . , fm) + d = g + d = d,

and hence G(Z1, . . . , Zm) ∈ d ∩K[Z1, . . . , Zm].
For the reverse conclusion, let i ∈ {1, . . . , s}. Then by definition of Fi, it follows that

Fi ∈
m∑
j=1

(Zj − fj)K[x1, . . . , xn, Z1, . . . , Zm] +
r∑
j=1

pjK[x1, . . . , xn, Z1, . . . , Zm]

+
t∑

j=1

qjK[x1, . . . , xn, Z1, . . . , Zm].

Specializing xj to xj + a for i = 1, . . . , n and Zj to fj + a for j = 1, . . . ,m gives

Fi(f1 + a, . . . , fm + a) ∈
t∑

j=1

(qj + a)K[x1 + a, . . . , xn + a] = (b + a)/a.

Since this is true for every i = 1, . . . , s, the result follows.

(c) In case that it is desired to actually calculate generators of K[U ]G, it is advisable not
to compute the colon algebra (S : a∞)Quot(S), but generators of the colon algebra

(K[X̂]G : (((L̂+ Î)/Î) ∩K[X̂]G)∞)Quot(K[X̂]G) (4.15)

and afterwards applying the homomorphism which sends x̂i+ Î to φi for i = 1, . . . , n̂.
This is because the algorithm for the computation of colon algebras as given in
[DK08] works for subalgebras which are generated by polynomial functions and both
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S and a might involve rational functions.
To make this rough idea more concrete, steps (2)-(4) could be replaced by

(1) Compute generators h1 + Î , . . . , hs + Î of the algebra K[X̂]G.

(2) Let Z1, . . . , Zs be indeterminates over K[x̂1, . . . , x̂n̂]. Compute generators F1,
. . . , Ft′ of the elimination ideal

((Z1 − h1, . . . ,Zs − hs)K[x̂1,...,x̂n̂,Z1,...,Zs] + (Î + L̂)K[x̂1,...,x̂n̂,Z1,...,Zs])

∩K[Z1, . . . , Zs].
(4.16)

and choose an element D ∈ {F1, . . . , Ft′} such that D(h1, . . . , hs) /∈ Î.

(3) Let Zs+1 be an additional indeterminate over K[x̂1, . . . , x̂n̂, Z1, . . . , Zs]. Com-
pute generators of the elimination ideal

Ǐ :=
(
((Z1−h1, . . . , Zs − hs, Zs+1 ·D(h1, . . . , hs)− 1)K[x̂1,...,x̂n̂,Z1,...,Zs+1]

+ (Î)K[x̂1,...,x̂n̂,Z1,...,Zs+1]) : D(h1, . . . , hs)∞
)
∩K[Z1, . . . , Zs+1].

(4) Set A := {Z1, . . . , Zs} and B := ∅.

(5) While A 6= ∅ do

(6) For all A ∈ A:
Output

A(h1(φ1, . . . , φn̂), . . . , hs(φ1, . . . , φn̂), 1/D(h1(φ1, . . . , φn̂), . . . , hs(φ1, . . . , φn̂)).

(7) B := B ∪ A

(8) Let A be the output of Algorithm 2.6 of [DK08] for the computation of

(K[B + Ǐ; B ∈ B] : (F1 + Ǐ , . . . , Ft′ + Ǐ))K[Z1,...,Zs+1]/Ǐ

(9) End While Loop.

We do not prove the correctness of this variant of Algorithm 4.34. Instead, we give
a rough outline of what happens in these steps.
According to Remark (b), generators of the ideal ((L̂ + Î)/Î) ∩ K[X̂]G are given
by F1(h1 + Î , . . . , hs + Î), . . . , Ft′(h1 + Î , . . . , hs + Î). Together with the identity√

(((L̂+ Î)/Î)G)K[x̂1,...,x̂n̂]/Î =
√

(L̂+ Î)/Î 6= 0, this implies that in step (2) an
element D with the required properties always exists. By (4.15), we first have to
calculate

(K[X̂]G : (F1(h1 + Î , . . . , hs + Î), . . . , Ft′(h1 + Î , . . . , hs + Î))∞)Quot(K[X̂]G)
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Note that

(K[X̂]G : (F1(h1 + Î , . . . , hs + Î), . . . , Ft′(h1 + Î , . . . , hs + Î))∞)Quot(K[X̂]G)

= (K[X̂]G : (F1(h1 + Î , . . . , hs + Î), . . . , Ft′(h1 + Î , . . . , hs + Î))∞)K[X̂]G
D(h1+Î,...,hs+Î)

and hence it remains to represent K[X̂]G
D(h1+Î,...,hs+Î)

as a quotient of a polynomial
ring by an ideal (as needed for an application of Algorithm 2.6 of [DK08]). This is
done in step (3), yielding the isomorphism

K[Z1, . . . , Zs+1]/Ǐ −→ K[X̂]G
D(h1+Î,...,hs+Î)

which sends Zi + Ǐ to hi + Î for i = 1, . . . , s and Zs+1 + Ǐ to 1/D(h1 + Î , . . . , hs + Î)
(see also Remark 4.23(d)). Under this isomorphism, the above colon expression
translates to

(K[Z1 + Ǐ , . . . , Zs + Ǐ] : (F1 + Ǐ , . . . , Ft′ + Ǐ)∞)K[Z1,...,Zs+1]/Ǐ .

The actual computation of this colon expression takes place in the loop compris-
ing steps (5)-(9). This computation follows the methods of Derksen and Kemper
(cf. [DK08], Algorithm 2.7 and Remark 3.18(c)). Note that at the time of the out-
put in step (6), we have to apply both the isomorphisms

K[Z1, . . . , Zs+1]/Ǐ −→ K[X̂]G
D(h1+Î,...,hs+Î)

and K[Û ] −→ K[U ]

to get generators of K[U ]G = (S : a∞)Quot(S).
By construction, this algorithm terminates if and only if K[U ]G is finitely generated
as a K-algebra. ♦

Example 4.36. In Example 4.30, we have already computed the invariant ring of a finite
group acting on a quasi-affine variety. In the following we will demonstrate an application
of Algorithm 4.34 to this very same situation. As before, all computations have been done
with the computer algebra system Magma.
By step (1) of the algorithm, we first have to invoke Algorithm 4.22 to embed U as an open
subset Û of an affine G-variety X̂. Since we have already calculated an almost identical
example for the application of Algorithm 4.22, we just state the result here. It returns
Î := (x̂2

1−x̂2
2+1)EK[x̂1, x̂2, x̂3] and L̂ := ((x̂1+x̂2)·(x̂1+x̂2−1), (x̂1+x̂2)·x̂3)EK[x̂1, x̂2, x̂3]

which means that the varieties X̂ resp. Û are given by X̂ := Var(Î) ⊂ K3 and Û :=
X̂ \Var(L̂). Moreover, it returns an action of G on X̂ which is given by

G× X̂ −→ X̂, (σ, (ξ̂1, ξ̂2, ξ̂3)) 7−→ (−ξ̂1, ξ̂2, ξ̂3)

and rational functions φ1 := 1/2 · (x2
1−1)/x1, φ2 := 1/2 · (x2

1 +1)/x1, φ3 := x2 which define
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a G-isomorphism
U −→ Û , u 7−→ (φ1(u), φ2(u), φ3(u)).

Next, for the computation of step (2), we have to find generators of K[X̂]G. In the simple
case of this example, it can be seen that K[X̂]G is generated by x̂2

1 + Î , x̂2 + Î , x̂3 + Î.
To simplify the verification that the invariant ring computed here is equal to the (same)
invariant ring computed in Example 4.30, we do not express the invariant ring as a colon
expression (S : a∞)Quot(S) as suggested in Algorithm 4.34 but compute a concrete gener-
ating set. Therefore, we first have to calculate

(K[X̂G] : (((L̂+ Î)/Î)G)∞)Quot(K[X̂]G)

and then apply the homomorphism x̂i+ Î 7−→ φi for i = 1, 2, 3. For the computation of the
colon expression we can of course use Algorithm 2.7 of [DK08]. In the following, though,
we take a more direct approach.

It is not hard to verify that X̂ is a normal affine variety (see e. g. Algorithm 4.8). But
this means that K[X̂]G is normal, too. An easy computation with Magma shows that
(L̂+ Î)/Î = (x̂1 + Î , x̂2−1+ Î , x̂3 + Î). In particular, it follows that the height of (L̂+ Î)/Î
is equal to 2. Since K[X̂] is integral over K[X̂]G and K[X̂] is normal, this implies that
the height of ((L̂+ Î)/Î) ∩K[X̂]G is 2, too (cf. [Eis95], Chapter 13, Theorem 13.9).
By the normality of K[X̂]G, this means that

K[Û ]G = (K[X̂G] : (((L̂+ Î)/Î)G)∞)Quot(K[X̂]G) = K[X̂]G

(cf. [Eis95], Chapter 11, Corollary 11.4). Finally, applying the homomorphism x̂i + Î 7−→
φi for i = 1, 2, 3 yields

K[U ]G = K

[
(x2

1 − 1)2

4x2
1

,
x2

1 + 1
2x1

, x2

]
. C

Can Algorithm 4.34 be generalized to infinite groups? The key point in the proof of
Proposition 4.33 was the applicability of implication (4.13). (Note that (4.13) is true for
arbitrary linear algebraic groups.) The precondition of (4.13) can be interpreted geomet-
rically. With the same notation as used in the discussion of (4.13), let G be a reductive
group. The invariant ring K[X]G is finitely generated and the inclusion K[X]G −→ K[X]
induces a morphism π : X −→ X//G, the so-called categorical quotient, where X//G stands
for the affine variety corresponding to the affine algebra K[X]G (for details about this no-
tion see [DK02]).

In that context, the condition
√

(L′ G)K[X] =
√
L′ then means that the quasi-affine variety

U is the preimage of an open subset of X//G under π. For finite groups every G-stable
open subset U of X has this property, which is the content of Theorem 4.32 and Proposi-
tion 4.33.
For infinite (reductive) groups this is not true any more as the following example shows.
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4 Computing invariants of group actions on quasi-affine varieties

Example 4.37. Let X be the two-dimensional affine space K2 and let G := K× act on X
by

λ(ξ1, ξ2) := (λξ1, λξ2) for all λ ∈ G, (ξ1, ξ2) ∈ X.

Consider the open subset U := K2 \ {(0, 0)} of X. It is G-stable and therefore a quasi-
affine G-variety. If x1, x2 denote the coordinate functions on X, then – with the notation
of the preceding discussion – the ideal L′ is given by (x1, x2) EK[x1, x2]. But obviously

we have
√

(L′ G)K[X] =
√

(0) 6=
√
L′. C

Nonetheless, for G reductive, it can be checked algorithmically whether the equality√
(L′ G)K[X] =

√
L′ holds or not. Therefore, the invariant ring K[U ]G can be computed

with ideas as in Algorithm 4.34 at least in some special cases. Unfortunately, we do not
have a nice a priori criterion for infinite groups when this method is applicable.

4.3.3 An algorithm for computing invariants of unipotent groups acting on
quasi-affine varieties

The computation of “quasi-affine invariants” of finite group actions turned out to be quite
straightforward. As we have seen with Example 4.37, in general this approach does not
work for infinite groups. In this section, we examine computational methods for the case
that a unipotent group G acts regularly on an irreducible quasi-affine variety U .
For the calculation of the invariant ring K[U ]G one could try to mimic the approach which
has been chosen for the computation of “affine invariants” of unipotent groups (cf. Chapter
3). More precisely, this would mean to find h1, . . . , hp, h ∈ K[U ]G with h 6= 0 such that

K[U ]Gh = K[h1, . . . , hp, 1/h].

Then K[U ]G would be given by (K[h1, . . . , hp, h] : h∞)K[U ]. In contrast to the affine case,
the algebra K[U ] may not be finitely generated, though, and to the best of my knowledge,
there is no algorithm to compute a colon algebra within a non-finitely generated algebra.
In the following, we will choose another slightly different approach for the computation
of K[U ]G which accomplishes to fill this gap. As above, we first calculate h1, . . . , hp, h ∈
K[U ]G such that K[U ]Gh = K[h1, . . . , hp, 1/h]. We embed h1, . . . , hp, h into an auxiliary
affine algebra S and perform the calculation of a certain colon algebra within S (which
is possible with the existing algorithms, since S is finitely generated). We will eventually
show that this yields an algebra which is isomorphic to K[U ]G. Moreover, the isomor-
phism can be given explicitly and therefore – putting all these pieces together – this leads
to an algorithm for computing generators of K[U ]G. Note that because of the additional
“technical layer” consisting of the algebra S, the resulting algorithm for the computation
of invariants of unipotent group actions has become quite lengthy.
Some ideas of this construction were motivated by the paper [Nag65] of Nagata and the
paper [Win03] of Winkelmann, where – among other things – the relation between certain
invariant rings and rings of regular functions of normal quasi-affine varieties have been
examined. Especially the arguments of Winkelmann were pretty geometric. In contrast,
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the methods used in the following are far more algebraic and work for arbitrary irreducible
quasi-affine varieties, not just for normal ones.

We directly start with the algorithm for the computation of K[U ]G. Similarly as in pre-
vious cases, this algorithm terminates if and only if K[U ]G is finitely generated. Otherwise,
it returns an infinite sequence of generators of K[U ]G.

Algorithm 4.38. (Computing invariants of unipotent group actions)

Input: A unipotent linear algebraic group G, an irreducible quasi-affine variety U and an
action µ of G on U according to Convention 4.16.

Output: A (possibly) infinite sequence of generators of K[U ]G.

(1) Use Algorithm 4.22 to compute a G-equivariant embedding of U as an open sub-
set Û of an irreducible affine G-variety X̂. More precisely, compute ideals Î , L̂ E
K[x̂1, . . . , x̂n̂] such that X̂ resp. Û is given by X̂ := Var(Î) ⊂ K n̂ and Û :=
X̂ \ Var(L̂). Moreover, compute a morphism µ̂ : G × X̂ −→ X̂ which describes the
action of G on X̂, and rational functions φ1, . . . , φn̂ ∈ K[U ] ⊂ Quot(K[x1, . . . , xn]/I)
such that φ := (φ1, . . . , φn̂) : U −→ Û defines a G-isomorphism of U and Û .
Denote the generators of Î by p̂1, . . . , p̂r̂ ∈ K[x̂1, . . . , x̂n̂] and the generators of L̂ by
q̂1, . . . , q̂t̂. We may assume without loss of generality that q̂1, . . . , q̂t̂ /∈ Î.

(2) Use Algorithm 3.20 to compute f + Î , f1 + Î . . . fs + Î ∈ K[x̂1, . . . , x̂n̂]/Î such that

K[X̂]G
f+Î

= K[f1 + Î , . . . , fs + Î , f + Î , 1/(f + Î)].

(3) Let T1, . . . , Tt̂ be indeterminates over K[x̂1, . . . , x̂n̂]/Î and set

S := K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂]/P,

where P is the ideal of K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂] generated by the elements

p̂1, . . . , p̂r̂, q̂1 · T1 + q̂2 · T2 + . . .+ q̂t̂ · Tt̂ − 1.

(4) Let Z1, . . . , Zn̂,W1, . . . ,Wt̂ be indeterminates over Quot(S). Choose an arbitrary
monomial order on Z1, . . . , Zn̂,W1, . . . ,Wt̂ and let

h1 + P

h+ P
, . . . ,

hp + P

h+ P
∈ K(f1 + P, . . . , fs + P, f + P )

with h1, . . . , hp, h ∈ K[f1, . . . , fs, f ] be the non-zero coefficients of the reduced Gröb-
ner basis G of the ideal QEQuot(K[f1+P, . . . , fs+P, f+P ])[Z1, . . . , Zn̂,W1, . . . ,Wt̂],
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generated by the elements

f1(Z1, . . . , Zn̂)− f1 + P, . . . , fs(Z1, . . . , Zn̂)− fs + P, f(Z1, . . . , Zn̂)− f + P,

p̂1(Z1, . . . , Zn̂), . . . , p̂r̂(Z1, . . . , Zn̂),
q̂1(Z1, . . . , Zn̂) ·W1 + q̂2(Z1, . . . , Zn̂) ·W2 + . . .+ q̂t̂(Z1, . . . , Zn̂) ·Wt̂ − 1.

(For details about how to compute this step, see Remark 4.39(a))

(5) Let α be the natural homomorphism

α : K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂] −→ Quot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂].

Set H := {(q̂1 + Î) · T1 + (q̂2 + Î) · T2 + . . . + (q̂t̂ + Î) · Tt̂ − 1} and define the ideal
Q′ := (H)EQuot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂]. Note that – Q′ being a principal ideal
– the set H is a Gröbner basis of Q′ for every monomial order on T1, . . . , Tt̂.

(6) Set A := {h1, . . . , hp, h} and B := ∅.

(7) While A 6= ∅ do

(8) For all g ∈ A:
Compute the normal form NFH(α(g)). We will see in the following proof of correct-
ness that this yields an element of Quot(K[x̂1, . . . , x̂n̂]/Î), i. e. a rational function
in the variables x̂1 + Î , . . . , x̂n̂ + Î. Apply the homomorphism which is given by
x̂i + Î 7−→ φi for i = 1, . . . , n̂ and output the result.

(9) B := B ∪ A

(10) Let A be the output of Algorithm 2.6 of [DK08] for the computation of

(K[g + P ; g ∈ B] : (h+ P ))S .

(11) End While Loop.

Remarks 4.39. (a) A remark is in order about the calculation of G in step (4), since
none of the common computer algebra systems can handle ideals of polynomial rings
over subfields of fields of rational functions directly. Usually, it is possible to deal with
ideals in polynomial rings over fields of rational functions (cf. also the introductory
section to computational algebra in Chapter 1). So one possibility for implementing
step (4) is the representation of the subfield Quot(K[f1 + P, . . . , fs + P, f + P ])
of Quot(S) as a field of rational functions of its own. This can be achieved for
example via Quot(K[Y1, . . . , Ys+1]/a), where Y1, . . . , Ys+1 are new indeterminates
over K and a is the relation ideal of f1 + P, . . . , fs + P, f + P . Then obviously
Y1 + a 7−→ f1 + P, . . . , Ys + a 7−→ fs + P and Ys+1 + a 7−→ f + P defines an
isomorphism of Quot(K[Y1, . . . , Ys+1]/a) and Quot(K[f1 + P, . . . , fs + P, f + P ]).
For algorithmic details about the computation of ideals of relations, see [CLO07],
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Chapter 7, Section 4. Note that if this method is chosen, then of course the generators
of Q as given in step (4) have to be adapted with respect to this isomorphism.

(b) For the computation of the colon expression in step (10) of the algorithm, we have
to ensure that the affine algebra S is a domain. We have

S = K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂]/

(
p̂1, . . . , p̂r̂,

t̂∑
i=1

q̂i · Ti − 1

)

∼=
(
K[x̂1, . . . , x̂n̂]/Î

)
[T1, . . . , Tt̂]/

 t̂∑
i=1

(q̂i + Î) · Ti − 1

 ,

As
∑t̂

i=1(q̂i+ Î)·Ti−1 ∈ (K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂] is a non-zero linear polynomial
and therefore obviously prime, the claim follows. ♦

Proof of Correctness. The following proof of correctness for this algorithm is rather long,
hence we start with a short outline.
The structure of the algorithm is as follows. In step (1), an affine variety X̂ is computed
together with an open subset Û := X̂ \ Var(L̂) and an action µ̂ : G× X̂ −→ X̂ such that
Û is a quasi-affine G-variety and U and Û are G-isomorphic via φ = (φ1, . . . , φn̂). Then
in the following steps (2)-(11), the algorithm computes generators of K[Û ]G. Finally, if
this is done, the homomorphism which sends x̂i + Î to φi is applied to the generators of
K[Û ]G to obtain generators of K[U ]G (for details, see Remark 4.23(a)).
The heart of the algorithm is the computation of K[Û ]G. We will prove first that K[X̂] =
K[x̂1, . . . , x̂n̂]/Î can be embedded into the algebra S via ι : K[X̂] −→ S, g+ Î 7−→ g+ P .
Then we will show that this embedding extends to an embedding ι : K[Û ] −→ S. Using
this we will see that K[Û ]G

h+Î
= K[h1+Î , . . . , hp+Î , h+Î , 1/(h+Î)]. This will finally imply

that the invariant ring K[Û ]G is isomorphic to (K[h1 +P, . . . , hp +P, h+P ] : (h+P )∞)S
via ι.
Note that the computation of this colon algebra is performed in steps (7)-(11). Since in
general the colon algebra is not finitely generated, we compute generators of this algebra
gradually and apply ι−1 at the time of the output of these generators.

As outlined above, we start with an examination of the map

ι : K[X̂] −→ S, g + Î 7−→ g + P

and claim that this defines an embedding of K[X̂] into S. To prove this, it is enough to
show that

P ∩K[x̂1, . . . , x̂n̂] = Î . (4.17)

So let F ∈ P ∩ K[x̂1, . . . , x̂n̂]. By definition of P , there are polynomials a1, . . . , ar̂, b ∈
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K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂] such that

F =
r̂∑
i=1

ai · p̂i + b ·

 t̂∑
i=1

q̂i · Ti − 1

 (4.18)

Since F does not contain any of the T1, . . . , Tt̂ -variables we can specialize T1 in (4.18) to
the solution of the equation

∑t̂
i=1 q̂i ·Ti− 1 = 0 without changing F . To be more explicit,

we set T1 = −(q̂2 ·T2 + q̂3 ·T3 + . . .+ q̂t̂ ·Tt̂ + 1)/q1. Further specializing T2 = . . . = Tt̂ = 0
yields

F =
r̂∑
i=1

ãi · p̂i + b̃ · 0

where ã1, . . . , ãr̂, b̃ ∈ K[x̂1, . . . , x̂n̂]q̂1 . It follows that q̂k1 · F ∈ Î for some k ∈ N. Since
q1 /∈ Î and Î is a prime ideal (cf. step (1)), this implies that F ∈ Î. Therefore the map
ι : K[X̂] −→ S defines an embedding of K[X̂] into S, as claimed.

Next we show that this embedding extends to an embedding ι : K[Û ] −→ S. Let
N,D ∈ K[x̂1, . . . , x̂n̂] be polynomials such that D /∈ Î and

N + Î

D + Î
∈ K[Û ].

By equation (4.1), there exists k ∈ N such that

N + Î

D + Î
· ((L̂+ Î)/Î)k ⊂ K[X̂]

or – regarding K[X̂] as a subset of S –

N + P

D + P
· (q̂1 + P, . . . , q̂t̂ + P )kK[x̂1+P,...,x̂n̂+P ] ⊂ K[x̂1 + P, . . . , x̂n̂ + P ].

Observe that 1 + P = q̂1 · T1 + q̂2 · T2 + . . .+ q̂t̂ · Tt̂ + P which implies that

N + P

D + P
=
N + P

D + P
· (1 + P )k =

N + P

D + P
· (q̂1 · T1 + q̂2 · T2 + . . .+ q̂t̂ · Tt̂ + P )k.

But now – regarding (q̂1 · T1 + q̂2 · T2 + . . . + q̂t̂ · Tt̂)k as a polynomial in T1, . . . , Tt̂ – all
coefficients lie in L̂k. It follows that

N + P

D + P
∈ S

and thus the embedding ι can be extended to K[Û ], indeed.

Next we show that

K[Û ]Gh+P = K[h1 + P, . . . , hp + P, h+ P, 1/(h+ P )]. (4.19)
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Note that, to be more precise, we should write ι(K[Û ]G
h+Î

) on the left hand side of the

above equation. Nonetheless, the implicit identification of K[Û ] with its image under ι
should always be clear from the context.
By step (4) of the algorithm, h1 + P, . . . , hp + P, h+ P are elements of K[f1 + P, . . . , fs +
P, f + P ], which in turn is a subalgebra of K[Û ]G by step (2). Therefore, it follows that
K[h1 + P, . . . , hp + P, h+ P, 1/(h+ P )] ⊂ K[Û ]Gh+P .

For the reverse inclusion, let g + P ∈ K[Û ]G. By Proposition 3.6, g + P is contained in
the field of fractions of K[X̂]G, hence it can be written as

g + P =
N(f1, . . . , fs, f) + P

D(f1, . . . , fs, f) + P
.

We will prove in a minute that

g(Z1, . . . , Zn̂,W1, . . . ,Wt̂)− (g + P ) ∈ Q. (4.20)

Assume for a moment that the identity (4.20) is true. Then certainly

NFG(g(Z1, . . . , Zn̂,W1, . . . ,Wt̂)− (g + P )) = 0.

Since all coefficients of g(Z1, . . . , Zn̂,W1, . . . ,Wt̂) are contained in K and the elements of
G only have coefficients in K[h1 + P, . . . , hp + P, h + P, 1/(h + P )], it follows by Remark
1.44 that

NFG(g(Z1, . . . , Zn̂,W1, . . . ,Wt̂))
∈ K[h1 + P, . . . , hp + P, h+ P, 1/(h+ P )][Z1, . . . , Zn̂,W1, . . . ,Wt̂].

On the other hand, by the Quot(K[f1 + P, . . . , fs + P, f + P ])-linearity of NFG , we have

NFG(g(Z1, . . . Zn̂,W1, . . . ,Wt̂)− (g + P )) =
NFG(g(Z1, . . . , Zn̂,W1, . . . ,Wt̂))− (g + P ) = 0.

This implies that g + P ∈ K[h1 + P, . . . , hp + P, h+ P, 1/(h+ P )]. Hence equation (4.19)
follows from the validity of (4.20). For the latter to be true, it is enough to show that

(D(f1, . . . , fs, f) + P ) · g(Z1, . . . , Zn̂,W1, . . . ,Wt̂)− (N(f1, . . . , fs, f) + P ) ∈ Q.

In the following we write Z for Z1, . . . , Zn̂ and W for W1, . . . ,Wt̂. Moreover, the equiva-
lence class fi + P of fi modulo P will be written as fi . We then have

D(f1 − f1(Z) + f1(Z), . . . , fs − fs(Z) + fs(Z), f − f(Z) + f(Z)) · g(Z,W)

−N(f1 − f1(Z) + f1(Z), . . . , fs − fs(Z) + fs(Z), f − f(Z) + f(Z)) =(
D(f1(Z), . . . , fs(Z), f(Z)) +

s∑
i=1

(fi − fi(Z)) · ai + (f − f(Z)) · a

)
· g(Z,W)
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−N(f1(Z), . . . , fs(Z), f(Z)) +
s∑
i=1

(fi − fi(Z)) · bi + (f − f(Z)) · b =

(D(f1(Z), . . . , fs(Z), f(Z)) · g(Z,W)−N(f1(Z), . . . , fs(Z), f(Z))

+

(
s∑
i=1

(fi − fi(Z)) · ai + (f − f(Z)) · a

)
· g(Z,W)

+
s∑
i=1

(fi − fi(Z)) · bi + (f − f(Z)) · b,

with certain a1, . . . , as, a, b1, . . . , bs, b ∈ K[f1 +P, . . . , fs+P, f+P ][Z1, . . . , Zn̂]. Obviously,
the last parts of the sum, i. e. the summands in the last two lines, are contained in the
ideal Q. By definition of g, we have D(f1, . . . , fs, f) · g − N(f1, . . . , fs, f) + P = 0 and
therefore, it follows that

D(f1(Z), . . . , fs(Z), f(Z)) · g(Z,W)−N(f1(Z), . . . , fs(Z), f(Z))
∈
(
p̂1(Z), . . . , p̂r̂(Z), q̂1(Z) ·W1 + q̂2(Z) ·W2 + . . .+ q̂t̂(Z) ·Wt̂ − 1

)
⊂ Q.

This proves (4.20) and hence equation (4.19).

Next we show that

K[Û ]G = (K[h1 + P, . . . , hp + P, h+ P ] : (h+ P )∞)S . (4.21)

Note that as above, we identify K[Û ]G with its image under the embedding K[Û ]G −→ S.
Equation (4.19) implies that K[Û ]G ⊂ (K[h1 + P, . . . , hp + P, h + P ] : (h + P )∞)S . It
remains to show that the right hand of (4.21) side is contained in the left hand side. Let
g̃ ∈ K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂], Ñ be a polynomial over K in p+ 1 variables and let l ∈ N0

such that

g̃ + P =
Ñ(h1, . . . , hp, h) + P

(h+ P )l
∈ (K[h1 + P, . . . , hp + P, h+ P ] : (h+ P )∞)S .

Let d ∈ N0 be the total degree of g̃ regarded as a polynomial in T1, . . . , Tt̂. By construction,

hl · g̃ − Ñ(h1, . . . , hp, h) ∈ P,

and so in particular,
hl · q̂di · g̃ − q̂di · Ñ(h1, . . . , hp, h) ∈ P

for all i ∈ {1, . . . , t̂}. Consider the element (q̂i +P )d · (g̃+P ). Since q̂1 ·T1 + q̂2 ·T2 + . . .+
q̂t̂ · Tt̂ − 1 ∈ P , we may “eliminate” one variable out of T1, . . . , Tt̂. To be more precise, for
every i ∈ {1, . . . , t̂}, there exists a polynomial g̃i ∈ K[x̂1, . . . , x̂n̂, T1, . . . , Ti−1, Ti+1, . . . , Tt̂]
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such that
g̃i + P = (q̂i + P )d · (g̃ + P ).

We want to show that

g̃i + P ∈ K[x̂1 + P, . . . , x̂n̂ + P ] for all i ∈ {1, . . . , t̂}. (4.22)

Assume for a moment that this is true. Then equivalently,

(q̂i + P )d · Ñ(h1, . . . , hp, h) + P

(h+ P )l
∈ K[x̂1 + P, . . . , x̂n̂ + P ] for all i ∈ {1, . . . , t̂}.

Regarding this as an equation in Quot(K[X̂]) via the embedding Quot(K[X̂]) −→ Quot(S)
yields

(q̂i + Î)d · Ñ(h1, . . . , hp, h) + Î

(h+ Î)l
∈ K[x̂1, . . . , x̂n̂]/Î for all i ∈ {1, . . . , t̂}

and this in turn means by definition of L̂ that

Ñ(h1, . . . , hp, h) + Î

(h+ Î)l
∈ (K[x̂1, . . . , x̂n̂]/Î : ((L̂+ Î)/Î)t̂d)Quot(K[x̂1,...,x̂n̂]/Î) ⊂ K[Û ].

Finally, since the elements h1 + Î , . . . , hp+ Î , h+ Î are invariant, it follows that g̃ ∈ K[Û ]G

and equation (4.21) is proved.

We still have to prove the validity of equation (4.22). By construction of g̃i, it follows
for all i ∈ {1, . . . , t̂} that

hl · g̃i − q̂di · Ñ(h1, . . . , hp, h) ∈ P ∩K[x̂1, . . . , x̂n̂, T1, . . . , Ti−1, Ti+1, . . . , Tt̂].

Let i ∈ {1, . . . , t̂}. Then the ideal P ∩K[x̂1, . . . , x̂n̂, T1, . . . , Ti−1, Ti+1, . . . , Tt̂] is equal to
the ideal generated by Î in K[x̂1, . . . , x̂n̂, T1, . . . , Ti−1, Ti+1, . . . , Tt̂]. The proof for this is
very similar to the proof of (4.17) above, hence we do not repeat it here.
Regarding hl · g̃i − q̂di · Ñ(h1, . . . , hp, h) as a polynomial in T1, . . . , Ti−1, Ti+1, . . . , Tt̂, it
follows that all of its coefficients lie in Î. Since q̂di · Ñ(h1, . . . , hp, h) does not involve
any monomials in T1, . . . , Ti−1, Ti+1, . . . , Tt̂, the same holds for all the coefficients of the
T1, . . . , Ti−1, Ti+1, . . . , Tt̂ -monomials of positive total degree in g̃i. As Î ⊂ P , this shows
(4.22).

As indicated in the outline above, the colon algebra

(K[h1 + P, . . . , hp + P, h+ P ] : (h+ P )∞)S (4.23)

(and thus the invariant ring K[Û ]G) is computed in the while loop comprising steps (7)-
(11). This is done exactly as in the original algorithm of Derksen and Kemper (cf. [DK08],
Algorithm 2.7; see also Remark 3.18(c)) – except that there is an additional computation at
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the time of the output of the generators (step (8)). We hence only examine this additional
step.
By the work of Derksen and Kemper in [DK08], we know that generators of the colon
algebra (4.23) are given by {g + P ; g ∈ B} (note that if the colon algebra is not finitely
generated then the while loop does not terminate finitely and B will grow infinitely). By
construction, these generators are elements of S. Since we are interested in generators
of K[Û ]G, it remains to write them as elements of K[Û ] according to the embedding
ι : K[Û ] −→ S. In other words, the generators have to be represented as quotients of
polynomials in x̂1 +P, . . . , x̂n̂+P . This is done as follows. Let g+P ∈ (K[h1 +P, . . . , hp+
P, h + P ] : (h + P )∞)S . From the discussion above we know that g + P is contained in
the image of the embedding K[Û ] −→ S. Hence there exist N,D ∈ K[x̂1, . . . , x̂n̂] with
D /∈ P such that g+P = (N +P )/(D+P ). We claim that the representation of g+P as
(N + P )/(D + P ) can be found by computing the normal form NFH(α(g)) (as it is done
in step (8)). For the proof of this, recall the definition of α in step (5) and observe that
the homomorphism

K[x̂1, . . . , x̂n̂, T1, . . . , Tt̂]
α−→Quot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂]

−→ Quot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂]/Q
′

induces a homomorphism

α̃ : S −→ Quot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂]/Q
′.

The commutative diagram

S Quot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂]/Q
′

K[Û ] Quot(K[x̂1, . . . , x̂n̂]/Î)

//α̃

� � //

?�

OO

ι

?�

OO

shows that α̃|ι(K[U ]) : ι(K[U ]) −→ Quot(K[x̂1, . . . , x̂n̂]/Î)[T1, . . . , Tt̂]/Q
′ is injective. Note

that by the identity g+P = (N+P )/(D+P ), we have 0 = α̃((g+P )·(D+P )−(N+P )) =
α̃(g + P ) · α̃(D + P ) − α̃(N + P ) = 0. Therefore, it follows by the injectivity of α̃|ι(K[U ])

that

α̃(g + P ) = α̃(N + P )/α̃(D + P ) = (N + Î)/(D + Î) ∈ Quot(K[x̂1, . . . , x̂n̂]/Î).

This implies that the normal form of α(g) with respect to H is exactly (N + Î)/(D + Î),
and hence the calculation of NFH(α(g)) yields the desired representation, as claimed.

Finally, since we are interested in the invariant ringK[U ]G but have computed generators
of the isomorphic invariant ring K[Û ]G, we have to apply the homomorphism which sends
x̂i + Î to φi (for i ∈ {1, . . . n̂}) to obtain generators of K[U ]G (cf. Remark 4.23(a)).
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Whereas this algorithm together with its proof of correctness is rather long, an appli-
cation to concrete situations might be quite simple. In the following, we give an example,
which is interesting since it is based on a quasi-affine variety whose ring of regular func-
tions is known not to be finitely generated. Up to now, there was no systematic approach
to tackle such a problem algorithmically.

Example 4.40. Let K be the algebraic closure of Q. Furthermore, let

X := Var(x5x1 − x2x4 + x3, x6x
6
1 − x3

2 − x2
3) ⊂ K6

be an affine variety and let U be the quasi-affine variety given by

U := X \Var(x1, x2, x3).

In [Win03], Winkelmann constructed this quasi-affine variety U from a counterexample
to Hilbert’s 14th Problem (cf. [DF99]). It follows from his construction that the ring of
regular functions of U is not finitely generated.
We claim that the unipotent group Ga = (K,+) acts on U via

µ : Ga × U −→ U, (λ, (ξ1, . . . , ξ6)) 7−→ (ξ1, ξ2, ξ3, ξ4 − λξ2
1 , ξ5 − λξ1ξ2, ξ6).

Clearly µ : G×U −→ K6 is a morphism. We have to ensure that µ(Ga×U) ⊂ U . So take
λ ∈ K and (ξ1, . . . , ξ6) ∈ U and set (ξ′1, . . . , ξ

′
6) := µ(λ, (ξ1, . . . , ξ6)). Then one calculates

ξ′5ξ
′
1 − ξ′2ξ′4 + ξ′3 = ξ5ξ1 − λξ2

1ξ2 − ξ2ξ4 + λξ2ξ
2
1 + ξ3 = 0

and
ξ′6ξ
′6
1 − ξ′32 − ξ′23 = ξ6ξ

6
1 − ξ3

2 − ξ2
3 = 0.

Moreover, not all of ξ′1, ξ
′
2, ξ
′
3 are zero since this is true for ξ1, ξ2, ξ3 and it follows that

µ(λ, (ξ1, . . . , ξ6)) ∈ U.
Together with an easy check of the axioms for an action, this shows that µ defines a regular
action of Ga on U , as claimed. In the following, we demonstrate how Algorithm 4.38 may
be used to calculate the invariant ring K[U ]Ga . We do this step-by-step.
The morphism µ can be extended to G×X in the obvious way, that is

µ : Ga ×X −→ X, (λ, (ξ1, . . . , ξ6)) 7−→ (ξ1, ξ2, ξ3, ξ4 − λξ2
1 , ξ5 − λξ1ξ2, ξ6),

and as this extension actually defines an action of Ga on X, step (1) of the Algorithm
is superfluous. So, x̂1 := x1, . . . , x̂6 := x6, Î := (x̂5x̂1 − x̂2x̂4 + x̂3, x̂6x̂

6
1 − x̂3

2 − x̂2
3),

L̂ := (x̂1, x̂2, x̂3), X̂ := X, Û := U = Var(Î) \Var(L̂), µ̂ := µ and φ := id.
For simplicity, we use van den Essen’s Algorithm for calculating step (2). Choosing x̂2

1 + Î
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for the element to be localized, this yields

K[X̂]Ga

x̂2
1+Î

= K[x̂1 + Î , x̂2 + Î , x̂3 + Î , x̂5x̂1 − x̂4x̂2 + Î , x̂6 + Î , 1/(x̂2
1 + Î)].

So we can set

f1 := x̂1, f2 := x̂2, f3 := x̂3, f4 := x̂5x̂1 − x̂4x̂2, f5 := x̂6 and f := x̂2
1.

According to step (3), we define

S := K[x̂1, x̂2, x̂3, x̂4, x̂5, x̂6, T1, T2, T3]/P

with

P := (x̂5x̂1 − x̂2x̂4 + x̂3, x̂6x̂
6
1 − x̂3

2 − x̂2
3, x̂1 · T1 + x̂2 · T2 + x̂3 · T3 − 1).

Next, by step (4), we have to compute a reduced Gröbner basis of the ideal

Q := (Z1 − (x̂1 + P ), Z2 − (x̂2 + P ), Z3 − (x̂3 + P ), Z5Z1 − Z4Z2 − (x̂5x̂1 − x̂4x̂2 + P ),

Z6 − (x̂6 + P ), Z2
1 − (x̂2

1 + P ), Z5Z1 − Z2Z4 + Z3, Z6Z
6
1 − Z3

2 − Z2
3 ,

Z1 ·W1 + Z2 ·W2 + Z3 ·W3 − 1)
E Quot(K[f1 + P, . . . , f5 + P, f + P ])[Z1, Z2, Z3, Z4, Z5, Z6,W1,W2,W3]

with respect to an arbitrary monomial order on the monomials in Z1, Z2, Z3, Z4, Z5, Z6,
W1,W2,W3. For the lexicographical order W3 ≤ W2 ≤ W1 ≤ Z6 ≤ Z5 ≤ Z4 ≤ Z3 ≤ Z2 ≤
Z1, the computer algebra system Magma (cf. [BCP97]) yields

G = {Z1 − (x̂1 + P ), Z2 − (x̂2 + P ), Z3 + (x̂5x̂1 − x̂4x̂2 + P ), Z6 − (x̂6 + P )
Z4 − (x̂1 + P )/(x̂2 + P ) · Z5 + (x̂5x̂1 − x̂4x̂2 + P )/(x̂2 + P ),
W1 + (x̂2 + P )/(x̂1 + P ) ·W2 − (x̂5x̂1 − x̂4x̂2 + P )/(x̂1 + P ) ·W5 − 1/(x̂1 + P )}.

Hence we can set

h1 := x̂2
1x̂2, h2 := x̂1x̂

2
2, h3 := (x̂5x̂1 − x̂4x̂2)x̂1x̂2, h4 := x̂6x̂1x̂2, h5 := x̂2

1,

h6 := (x̂5x̂1 − x̂4x̂2)x̂1, h7 := x̂2
2, h8 := (x̂5x̂1 − x̂4x̂2)x̂2, h9 := x̂2 and h := x̂1x̂2.

It now remains to compute

(K[h1 + P, . . . , h9 + P, h+ P ] : (h+ P )∞)S

in the loop (7)-(11). A computation with Magma shows that this algebra is given by

K[x̂5x̂1 − x̂4x̂2 + P, x̂1 + P, x̂2 + P, x̂6 + P ].
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To sum it up, we have found finitely many generators of K[U ]G, that is

K[U ]G = K[x5x1 − x4x2 + I, x1 + I, x2 + I, x6 + I]. C

Some remarks about a variant of the algorithm for normal quasi-affine varieties

Algorithm 4.38 is rather complex, it requires computations of Gröbner bases several times.
As the runtime behaviour of a Gröbner basis computation may be highly influenced by
the number of variables of the underlying polynomial ring, it is worth to think about how
the number of variables in steps (3) & (4), that is – with the notation of Algorithm 4.38 –
n̂+ t̂, can be reduced. For the special case that U is a normal quasi-affine variety, it will
be shown in the following that actually t̂ = 2 can be achieved.
For this, U will be replaced by another quasi-affine variety U ′ with K[U ] ∼= K[U ′]. This
isomorphism induces an action of G on K[U ′] which – as we will see – will allow us to
assume t̂ = 2 by the special choice of U ′. Note that this does not imply that G acts
regularly on U ′. Indeed, there is just an algebraic correspondence between K[U ] and
K[U ′]. To be more general, unlike to the affine case, an action K[U ] −→ K[G]⊗KK[U ] of
a linear algebraic group G on the ring of regular functions K[U ] of a quasi-affine variety U
does not necessarily originate from a regular action of G on U (cf. also Proposition 1.29).

Example 4.41. Consider the quasi-affine variety U := K2 \ {(1, 1)}. As we have seen
for similar examples before, the ring of regular functions is given by K[U ] = K[x1, x2],
where as usual x1, x2 denote the coordinate functions on K2. Let the multiplicative group
G := K× act on K[U ] via

λ(x1) := λx1, λ(x2) := λx2 for all λ ∈ G.

Then there is no regular action of G on U which induces this action on K[U ]. C

Later, in fact, we will show that if G acts on K[U ] via K[U ] −→ K[G]⊗K K[U ], where
U is some quasi-affine variety, then there always exists a quasi-affine G-variety such that
its ring of regular functions and K[U ] are G-isomorphic.

The next lemma gives an explicit construction of the quasi-affine variety U ′ which was
mentioned a few lines above. Essentially, this lemma is drawn from a proof given by
Winkelmann in [Win03]. Nonetheless, we repeat it here for creating a reference, since this
result – apart from being useful for an adjustment of Algorithm 4.38 to normal varieties
– will also be needed for the proof of a theorem in the next section.

Lemma 4.42. Let U be a normal quasi-affine variety. Then there exists a normal affine
variety X̂, say X̂ = Var(Î) for some prime ideal Î E K[x̂1, . . . , x̂n̂] with x̂1, . . . , x̂n̂ new

111



4 Computing invariants of group actions on quasi-affine varieties

indeterminates over K, and regular functions q′1 + Î , q′2 + Î ∈ K[X̂] such that

K[U ] ∼= (K[X̂] : (q′1 + Î , q′2 + Î)∞)Quot(K[X̂]).

In other words, we can always find an open subset U ′ := X̂ \ VarX̂(q′1 + Î , q′2 + Î) of a
normal affine variety X̂ such that U ′ is the complement of a closed subset in X̂ given by
two regular functions and K[U ′] is isomorphic to K[U ].

Remark. In general, the quasi-affine varieties U and U ′ are not isomorphic. ♦

Proof. By Proposition 4.7, the normal quasi-affine variety U can be embedded as an open
subset Û in a normal affine variety X̂ ⊂ K n̂. Let x̂1, . . . , x̂n̂ be the coordinate functions
on K n̂ and set

Î := Id(X̂) EK[x̂1, . . . , x̂n̂] and L̃ := IdK[X̂](X̂ \ Û) EK[X̂].

By Proposition 4.7, U is isomorphic to Û . We thus have

K[U ] ∼= (K[X̂] : L̃∞)Quot(K[X̂]).

In case that L̃ = K[X̂], we can set q′1 := q′2 := 1. Then obviously

K[U ] ∼= (K[X̂] : (q′1 + Î , q′2 + Î)∞)Quot(K[X̂])

and the lemma is proved. Otherwise, let M be the finite set of all prime ideals of K[X̂]
which are minimal over L̃. Then L̃ =

⋂
p∈M p is the (unique) minimal decomposition of L̃

into distinct primes (see [Eis95], Chapter 3). Let p1, . . . , ps be those primes of M , which
are of height one in K[X̂] and set L′ :=

⋂s
i=1 pi. In case that there are no primes of height

one in M , set L′ := K[X]. By Proposition 4.7 and Remark 4.26, we then have

K[U ] ∼= (K[X̂] : L̃∞)Quot(K[X̂])

= (K[X̂] : L′∞)Quot(K[X̂]).
(4.24)

In case that L′ = K[X̂], we can set q′1 := q′2 := 1 and the lemma is proved. Otherwise,
let q′1 + Î ∈ L′ \ {0}. Let q1, . . . , qs′ be the distinct prime ideals of height one which are
minimal over (q′1 + Î)K[X̂] but do not contain L′. If there do not exist such prime ideals,

set q′2 := q′1. Otherwise, there exists q′2 + Î ∈ L′ such that q′2 + Î /∈ q1, . . . , qs′ . This can
be seen as follows. Choose a nonzero element

q′2,j + Î ∈

 s⋂
i=1

pi ∩
s′⋂

i=1,i 6=j
qi

 \ qj

for every j = 1, . . . , s′. Note that the right hand side of the above formula is not the empty
set since by construction p1, . . . , ps, q1, . . . , qs′ are distinct prime ideals of height one. Now
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it is not hard to see, that q′2 :=
∑s′

i=1 q
′
2,j has the desired properties.

By construction, the set of prime ideals of height one minimal over (q′1 + Î , q′2 + Î)K[X̂]
equals p1, . . . , ps. Hence it follows by Remark 4.26 again that

(K[X̂] : L′∞)Quot(K[X̂]) = (K[X̂] : (q′1 + Î , q′2 + Î)∞
K[X̂]

)Quot(K[X̂]).

Combining this with equation (4.24) proves the lemma.

As indicated above, the previous lemma allows a reduction of the number of variables
in steps (3) et seqq. of Algorithm 4.38. We will only sketch the details. Keeping in mind
that there are algorithms for the computation of the primary decomposition of an ideal,
for testing equality of ideals, as well as for the intersection of ideals (cf. [BW93], Chapter
6 & 8), it is clear that the proof of Lemma 4.42 can be made constructive in the sense
that the elements q′1 + Î , q′2 + Î can be found algorithmically. We can therefore adjust
Algorithm 4.38 in the following way. For step (1), we can use a version of Algorithm
4.22 which respects the normality of U , i. e. a version which embeds U in a normal affine
G-variety X̂ (cf. Remark 4.23(b)). Furthermore, we insert one additional step between
the steps (2) and (3) to replace L̂ by an ideal L′ which is generated by only two elements.
As mentioned above, the resulting G-isomorphism between K[Û ] and K[X̂ \Var(L′)] does
not imply that G acts regularly on X̂ \Var(L′). Nonetheless, one can check that the parts
of the proof of correctness of Algorithm 4.38 corresponding to steps (3) et seqq. do not
need a regular action of G on the quasi-affine variety X̂ \ Var(L′). The arguments used
there just require an action of G on K[X̂ \ Var(L′)] which can be described by a homo-
morphism K[X̂ \ Var(L′)] −→ K[G] ⊗K K[X̂ \ Var(L′)]. By construction, this condition
is satisfied for the action of G on K[X̂ \Var(L′)].

Note that although the value of t̂ is limited to 2 in this variant of Algorithm 4.22, we
get additional complexity by the new parts which we have inserted. From a theoretical
point of view, though, some facts of this section will turn out to be valuable tools for the
proof of Theorem 4.43 below.

Remark. The examination of the case of a normal quasi-affine variety was inspired by
the paper [Win03] of Winkelmann. ♦

A generalization of a theorem of Nagata and Winkelmann

As mentioned at the very beginning of this chapter, the invariant ring of an algebraic
group acting regularly on a normal affine variety is always isomorphic to the ring of regular
functions of some normal quasi-affine variety. In the following, we will generalize this result
to the case of an algebraic group acting regularly on a normal quasi-affine variety.
As we will see in the next section, this might by useful for algorithmic purposes. In fact, it
might help to compute the invariant ring of an arbitrary algebraic group acting regularly
on a factorial variety.

113



4 Computing invariants of group actions on quasi-affine varieties

Theorem 4.43. Let G be a linear algebraic group acting regularly on a normal quasi-
affine variety U . Then there exists a quasi-affine variety V such that K[U ]G ∼= K[V ].

Proof. By Lemma 4.42, there exists a normal affine variety X̂ = Var(Î) ⊂ K n̂ (for some
prime ideal Î EK[x̂1, . . . , x̂n̂]) and regular functions q′1 + Î , q′2 + Î ∈ K[X̂] such that the
ring of regular functions of U ′ := X̂ \ VarX̂(q′1 + Î , q′2 + Î) is isomorphic to the ring of
regular functions of U , i. e.

K[U ′] ∼= K[U ].

Set
P := (Î)K[x̂1,...,x̂n̂,T1,T2] + (q′1 · T1 + q′2 · T2 − 1) EK[x̂1, . . . , x̂n̂, T1, T2]

and
S := K[x̂1, . . . , x̂n̂, T1, T2]/P

where T1, T2 are indeterminates over K (cf. Algorithm 4.38). Note that the algebra S can
be interpreted as the coordinate ring of the affine variety

Y := X̂ ×K2 SL2(K) :=
{(

p,

(
α β
γ δ

))
∈ X̂ × SL2(K); φ(p) = ψ

(
α β
γ δ

)}
,

where the fibre product of X̂ and SL2(K) over K2 is taken with respect to the morphisms

φ : X̂ −→ K2, p 7−→
(
q′1(p)
−q′2(p)

)
and

ψ : SL2(K) −→ K2,

(
α β
γ δ

)
7−→

(
α
γ

)
.

We claim that there exists a regular action of the additive group Ga = (K,+) on Y such
that K[U ′] is isomorphic to SGa . The same has originally been proven by Winkelmann
(see [Win03], Proposition 1), we hence only sketch a proof of this claim here.
Let the additive group Ga act on SL2(K) via

λ

(
α β
γ δ

)
:=
(
α β + λα
γ δ + λγ

)
for all λ ∈ G,

(
α β
γ δ

)
∈ SL2(K).

Note that this action induces a regular action of Ga on Y given by

λ

(
p,

(
α β
γ δ

))
:=
(
p,

(
α β + λα
γ δ + λγ

))
for all λ ∈ G,

(
p,

(
α β
γ δ

))
∈ Y.

Now the map

Y −→ U ′,

(
p,

(
α β
γ δ

))
7−→ p

defines a surjective morphism which is constant on the orbits of Ga on Y . In fact, this
map defines a so-called geometric quotient for the action of Ga on Y . This implies that
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the corresponding homomorphism

ι : K[U ′] −→ S, x̂i + Î −→ x̂i + P for i = 1, . . . , n̂

defines an isomorphism of K[U ′] and SGa , i. e.

ι(K[U ′]) = SGa , (4.25)

as claimed.

By assumption, G acts regularly on U . This induces an action of G on K[U ] (via K-
algebra automorphisms), hence on K[U ′] and this in turn induces an action of G on SGa

via (4.25). It follows that

K[U ]G ∼= K[U ′]G ∼= (SGa)G = Quot(SGa)G ∩ SGa = Quot(SGa)G ∩ S. (4.26)

Let S̃ be the normalization of S. We claim that

(Quot(SGa))G ∩ S = Quot(SGa)G ∩ S̃. (4.27)

Assume for a moment that this is true. Then combining (4.26) and (4.27) yields

K[U ]G ∼= Quot(SGa)G ∩ S̃

and since S̃ is a normal ring, an application of Theorem 2 of [Win03] shows that the inter-
section Quot(SGa)G ∩ S̃ is isomorphic to the ring of regular functions of some quasi-affine
variety V , i. e. K[U ]G ∼= K[V ], which we wanted to prove.

It remains to prove equality (4.27). Clearly the left hand side is contained in the right
hand side. For the reverse conclusion, let (f + P )/(g + P ) ∈ Quot(SGa)G ∩ S̃. By
(4.25) above, we may assume that both f and g are contained in K[x̂1, . . . , x̂n̂]. Since
(f +P )/(g+P ) is integral over S, there exist c0, . . . , cs−1 ∈ K[x̂1, . . . , x̂n̂, T1, T2] such that(

f + P

g + P

)s
+ (cs−1 + P ) ·

(
f + P

g + P

)s−1

+ . . .+ (c1 + P ) · f + P

g + P
+ (c0 + P ) = 0.

Multiplying that equation by (g + P )s yields

fs + cs−1 · g · fs−1 + . . .+ c1 · gs−1 · f + c0 · gs ∈ P. (4.28)

Consider the homormophism

φ : K[x̂1, . . . , x̂n̂, T1, T2] −→ (K[x̂1, . . . , x̂n̂]/Î)q′1+Î

F (x̂1, . . . , x̂n̂, T1, T2) 7−→ F (x̂1 + Î , . . . , x̂n̂ + Î , 1/(q′1 + Î), 0).
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Obviously, P ⊂ kerφ and thus, applying φ to equation (4.28) yields

(f + Î)s + φ(cs−1) · (g + Î) · (f + Î)s−1 + . . .

+ φ(c1) · (g + Î)s−1(f + Î) + φ(c0) · (g + Î)s = 0.

But this implies that(
f + Î

g + Î

)s
+ φ(cs−1) ·

(
f + Î

g + Î

)s−1

+ . . .+ φ(c1) · f + Î

g + Î
+ φ(c0) = 0.

and it follows that (f + Î)/(g+ Î) is integral over (K[x̂1, . . . , x̂n̂]/Î)q′1+Î . By construction,

K[x̂1, . . . , x̂n̂]/Î is normal and since localization commutes with normalization (cf. [Eis95],
Chapter 4, Proposition 4.13), the algebra (K[x̂1, . . . , x̂n̂]/Î)q′1+Î is normal, too. Therefore,

(f + Î)/(g + Î) ∈ (K[x̂1, . . . , x̂n̂]/Î)q′1+Î . In particular, this means that

(f + Î)/(g + Î) · (q′1 + Î)k ∈ K[x̂1, . . . , x̂n̂]/Î

for some k ∈ N0. Similarly, it follows that

(f + Î)/(g + Î) · (q′2 + Î)k
′ ∈ K[x̂1, . . . , x̂n̂]/Î

for some k′ ∈ N0. But this implies that (f+Î)/(g+Î)·(q1+Î , q2+Î)k+k′ ⊂ K[x̂1, . . . , x̂n̂]/Î
and therefore (f + Î)/(g + Î) ∈ K[U ] (cf. equation (4.1)).
Putting this together yields (f + P )/(g + P ) ∈ ι(K[U ′]) ⊂ S, which finally proves equa-
tion (4.27).

4.3.4 Some remarks about reductive groups and a reduction argument for
the computation of invariants of arbitrary linear algebraic groups

In the preceding sections of this chapter, we have developed algorithms for the computa-
tion of the invariant ring of a linear algebraic group G acting regularly on an irreducible
quasi-affine variety for the case that G is a finite or a unipotent group. Unfortunately,
the ideas behind these algorithms cannot be generalized nicely to the reductive case. As
we have seen, Algorithm 4.34 works for reductive groups for some special cases. At least
it is possible to decide algorithmically whether it is applicable or not for a given input
data. The algorithm for unipotent groups (Algorithm 4.38) yields correct results for ev-
ery linear algebraic group where – with the notation of this algorithm – the identity
Quot(K[X̂]G) = K(X̂)G holds. Of course it is satisfied for every unipotent group. But
again, this identity and thus the applicability of Algorithm 4.38 fails for reductive groups
in general. To sum it up, the case that G is reductive still remains unsolved.

As mentioned at the very beginning of this chapter, the case of a reductive group is not
only interesting for the sake of its own. It could also be used to construct an algorithm
for computing the invariant ring of an arbitrary linear algebraic group G acting regularly
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on a normal affine variety X. The rough idea is as follows (cf. [DK08]). First compute the
invariant ring K[X]N of the unipotent radical N of G. Since N is a normal subgroup of G,
it follows that the reductive group G/N acts on K[X]N (via K-algebra homomorphisms).
Moreover, it can be shown that this action can be described by a homomorphism of
algebras K[X]N −→ K[G/N ]⊗K K[X]N in the usual sense. Although – as we know – the
invariant ring K[X]N is isomorphic to the ring of regular functions of some quasi-affine
variety, this algebraic situation does not necessarily correspond to the geometric situation
of the reductive group G/N acting regularly on this quasi-affine variety. Example 4.41
demonstrates this problem. Fortunately, we will prove in the following proposition that
there always exists a quasi-affineG/N -variety U such thatK[X]N andK[U ] are isomorphic
as G/N -algebras (cf. also Proposition 1.29). Therefore, as hinted above, an algorithm for
computing invariants of reductive groups acting on quasi-affine varieties would provide a
possibility for the computation of K[X]G, indeed.

Proposition 4.44. Let S be a K-algebra of the form S = (R : a∞)Quot(R) where R is an
affine domain over K and aER is a non-zero ideal. Let G be a linear algebraic group and
let µ̃ : S −→ K[G]⊗K S be a homomorphism of K-algebras such that

σ(s) := µ̃(s)(σ) for all s ∈ S, σ ∈ G

defines an action of G on S. Then there exists an irreducible quasi-affine G-variety U
such that K[U ] and S are G-isomorphic.

Proof. By Proposition 1.31(a), the action of G on S is locally finite. Hence there exists a
G-stable affine algebra R̃ with R ⊂ R̃ ⊂ S. Set ã := (G(a)) eR := (σ(a); σ ∈ G, a ∈ a) eR.
We claim that

S = (R̃ : ã∞)
Quot( eR)

.

Let r/r′ ∈ S = (R : a∞)Quot(R). Since G acts locally finite on S, it follows that there
exists a finite dimensional G-stable vector space V ⊂ S with r/r′ ∈ V . By definition of S
and the finite dimension of V , we can find k ∈ N0 such that

σ(r/r′) · ak ⊂ R for all σ ∈ G. (4.29)

Note that – as R̃ is an affine algebra – the ideal ã is finitely generated. So let M ⊂ G
and N ⊂ a be finite sets such that ã is generated by {σ(a); σ ∈ M, a ∈ N}. The
ideal ã |M|·|N |·k is generated by products of length |M| · |N | · k where the factors are
elements of {σ(a); σ ∈ M, a ∈ N}. By a standard combinatorial argument, every such
generator is divisible by σ(a)k for some σ ∈M, a ∈ N . This shows that for every element
b ∈ ã |M|·|N |·k, there are elements bσ,a ∈ R̃ for all σ ∈M, a ∈ N such that b can be written
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as b =
∑

σ∈M,a∈N σ(a)k · bσ,a. Together with equation (4.29) it follows that

r/r′ · b = r/r′ ·
∑

σ∈M,a∈N
σ(a)k · bσ,a =

∑
σ∈M,a∈N

σ(σ−1(r/r′) · ak) · bσ,a

⊂
∑

σ∈M,a∈N
σ(R) · R̃ ⊂ R̃.

But this means that r/r′ · ã |M|·|N |·k ⊂ R̃ and therefore r/r′ ∈ (R̃ : ã∞)
Quot( eR)

.

For the reverse inclusion, let r/r′ ∈ (R̃ : ã∞)
Quot( eR)

. By definition, there exists k ∈ N0

such that r/r′ · ã k ⊂ R̃. Let a1, . . . , as ∈ R be generators of the ideal ak. Then of course,
r/r′ · ai ∈ R̃ and since R̃ is contained in S there exists k′ ∈ N0 such that r/r′ · ai · ak

′ ⊂ R
for all i = 1, . . . , s. But this means r/r′ ·ak+k′ ⊂ R and it follows that r/r′ ∈ S, as claimed.

By construction, R̃ is stable under G and hence Proposition 1.31(b) implies that the
action of G on R̃ can be described by a homomorphism R̃ −→ K[G]⊗K R̃. It then follows
by Proposition 1.29 that there is an irreducible affine G-variety X such that K[X] and R̃
are G-isomorphic. By definition, the ideal ã is G-stable. Regarding ã as an ideal of K[X],
it follows that U := X \VarX( ã ) is G-stable, too.
Finally, note that by construction the algebras K[U ] and S are G-isomorphic, which proves
the proposition.

For the computation of invariants of arbitrary linear algebraic groups acting on normal
affine varieties as suggested in the outline above, we need an algorithm for the computation
of invariants of reductive groups acting on normal quasi-affine varieties. As indicated
before, we do not have an algorithm for the reductive case, yet. For the important special
case of an arbitrary linear algebraic group acting on a factorial variety, it is in fact enough to
solve the problem of finding an algorithm for computing invariants of the one-dimensional
torus T := K× acting regularly on a quasi-affine variety U . Finding an algorithm for such
a special case might be much simpler than the more general case of a reductive group.
For the remainder of this section, we want to give a sketch of how invariants of arbitrary
linear algebraic groups could be computed if we had an algorithm for the computation of
K[U ]T . Note that this is only a sketch – we do not prove all the details.
For what follows, let G be an arbitrary linear algebraic group acting regularly on a factorial
variety X.

Assumption 4.45. Let the one-dimensional torus T := K× act regularly on an irre-
ducible quasi-affine variety U . We assume that there exists an algorithm for the com-
putation of K[U ]T . More precisely, according to Theorem 4.43, we assume that there
exists an algorithm for the computation of K[U ]T which returns a finitely generated al-
gebra R ⊂ K[U ]T and a non-zero ideal a E R such that the invariant ring is given by
K[U ]T = (R : a∞)Quot(R).

The rough idea for the computation of K[X]G is as follows. First compute a normal
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series G = N0 DN1 D . . .DNs such that there is an algorithm for writing K[X]Ns as the
ring of regular functions of some quasi-affine variety and such that for j = 0, . . . , s− 1 the
quotient group Nj/Nj+1 is either finite or isomorphic to T . Then by Assumption 4.45 and
Algorithm 4.34, the invariant ring K[X]G can be computed successively via

K[X]Ns−1 = (K[X]Ns)Ns−1/Ns

K[X]Ns−2 = (K[X]Ns−1)Ns−2/Ns−1

...

K[X]G = K[X]N0 = (K[X]N1)N0/N1 .

In the following, we make this rough idea a bit more explicit. We first discuss briefly
how the computation of a normal series G = N0 DN1 D . . .DNs with the desired properties
can be realized algorithmically. We then give some hints about the computation of K[X]G

along this chain of subgroups.

For the following lemma, we need the definition of the finite generation locus ideal.

Proposition and Definition 4.46 (Derksen and Kemper ([DK08])). Let S be an
affine domain over K and let R ⊂ S be a subalgebra. The set g of elements f ∈ R such
that the localization Rf is finitely generated over K, i. e.

g := {f ∈ R; Rf is finitely generated as a K-algebra}

is a non-zero radical ideal of R. It is called the finite generation locus ideal of R.

Lemma 4.47. Let G be a connected linear algebraic group acting regularly on a factorial
affine variety X. Let g be the finite generation locus ideal of K[X]G. If (g)K[X] EK[X] is
of codimension one, then there exists a semi-invariant f ∈ K[X] which is not invariant.

Remark. The proof of this lemma is an adaption of an argument originally given by
Derksen and Kemper in [DK08]. ♦

Proof. Let (g)K[X] be of codimension one in K[X]. Then by definition, there exists a
codimension one prime ideal which is minimal over (g)K[X]. Moreover, since K[X] is
factorial, this prime ideal is generated by one element, say f ∈ K[X]. We will show in
the following that f is a semi-invariant which is not invariant. Clearly, the ideal (g)K[X]

is stable under G and since G is connected, all the prime ideals which are minimal over
(g)K[X] are G-stable, too. In particular, this is the case for (f)K[X]. It follows that f is a
semi-invariant.
Assume for a contradiction that f is invariant. The invariant ring is isomorphic to the
ring of regular functions of some quasi-affine variety. Hence there exists an affine domain
R ⊂ K[X]G and an ideal a E R such that K[X]G = (R : a∞)Quot(R). Note that for
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all a ∈ a we have K[X]G = (R : a∞)Quot(R) ⊂ Ra and thus K[X]Ga = Ra is finitely
generated. It follows that a ⊂ g ⊂ (f)K[X]. This implies that f−1a ⊂ K[X]G and
f−1 ∈ (R : a∞)Quot(R) = K[X]G ⊂ K[X]. But obviously f−1 /∈ K[X], a contradiction.

Remark 4.48. The proof of this lemma can be made constructive in the following sense.
Assume that for some connected linear algebraic group G the invariant ring K[X]G is
given in the form K[X]G = (R : f∞)K[X] where R ⊂ K[X]G is an affine domain and
f ∈ R \ {0}. For algebras of this type, Derksen and Kemper have developed an algorithm
for the computation of the finite generation locus ideal g (cf. [DK08], Algorithm 2.13).
Their algorithm produces a sequence of algebras R1 ⊂ R2 ⊂ . . . and a sequence of ideals
g1 ⊂ g2 ⊂ . . . with gi ERi for all i ≥ 1 such that

K[X]G =
⋃
i≥1

Ri and g =
⋃
i≥1

gi.

If (g)K[X] is of codimension one, then (gi)K[X] is of codimension one for all i ≥ 1. But
then, according to the proof of the lemma, there exists a semi-invariant f ∈ K[X] which is
not invariant such that (gi)K[X] ⊂ (f)K[X] for all i ≥ 1. A semi-invariant f /∈ K[X]G lying
over (gi)K[X] for a given i ≥ 0 can be found algorithmically by computing the primary
decomposition of (gi)K[X] and picking from that an ideal which is generated by a semi-
invariant (this works at least in the case where K[X] is a polynomial algebra). Otherwise,
if there does not exist such an f , it follows by the lemma that (g)K[X] has codimension
greater or equal to two.
With regard to what follows, note that in this case, Algorithm 2.22 of [DK08] can be applied
to obtain an affine domain R̃ and an ideal ã E R̃ such that K[X]G = (R̃ : ã∞)

Quot( eR)
. ♦

Computation of a normal series G = N0 D N1 D . . . D Ns. We can now give a
sketch algorithm for the computation of a normal series G = N0 D N1 D . . . D Ns such
that there is an algorithm for writing K[X]Ns as the ring of regular functions of some
quasi-affine variety and such that for j = 0, . . . , s−1 the quotient group Nj/Nj+1 is either
finite or isomorphic to T . Moreover, this sketch includes the computation of an affine
algebra R ⊂ K[X]Ns and a non-zero ideal a ER such that K[X]Ns = (R : a∞)Quot(R).
Note that the following construction uses an algorithm of Kemper. Details about this can
be found in [Kem07].

Sketch Algorithm.

(1) Set j := 0 and N0 := G.

(2) Repeat:

(3) If Nj is not connected, set Nj+1 := (Nj)0, j := j + 1 and go back to step (2).

(4) Use Theorem 2.2 of [Kem07] to compute generators of the invariant field K(X)Nj .
Write them as f1/g1, . . . , fs′/gs′ where fi, gi ∈ K[X] are coprime for i = 1, . . . , s′.
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(5) If there exists a semi-invariant of weight χ among f1, . . . , fs′ , g1, . . . , gs′ with χ 6= 1K ,
set Nj+1 := χ−1(1), j := j + 1, and go back to step (2).

(6) By step (5), it follows that Quot(K[X]Nj ) = K(X)Nj . Use Algorithm 3.20 to
compute an affine algebra R ⊂ K[X]Nj and an element f ∈ R \ {0} such that
K[X]Nj = (R : f∞)K[X] (cf. Remark 3.21(b)).

(7) According to Remark 4.48, try to writeK[X]Nj in the formK[X]Nj = (R̃ : ã∞)
Quot( eR)

for some affine algebra R̃ ⊂ K[X]Nj and some non-zero ideal ã E R̃ (cf. [DK08], Al-
gorithm 2.22). If this is not possible, there exists a non-trivial character χ 6= 1K . In
this case, set Nj+1 := χ−1(1), j := j + 1 and go back to step (2).

The idea behind this algorithm is the following. Let the processing of the algorithm enter
step (2) for some j ∈ N. If Nj is not connected, then Nj+1 is set to the identity component
of Nj in step (3). Note that in this case it is clear that Nj/Nj+1 is a finite group. After
that, the processing goes back to step (2).
The aim of steps (4)-(6) is to write K[X]Nj in the form K[X]Nj = (R : f∞)K[X] for some
affine algebra R ⊂ K[X]Nj and some element f ∈ R \ {0}. Algorithmically, this is no
problem as long as (cf. Algorithm 3.20 and Remark 3.21(b))

K(X)Nj = Quot(K[X]Nj ). (4.30)

The only reason why this equation may fail is the existence of a non-trivial character
χ (cf. Proposition 3.11). Consequently, in this case Nj+1 is set to the normal subgroup
Nj+1 = χ−1(1), which may be thought of as a subgroup of Nj with the character χ being
removed. Note that Nj/Nj+1

∼= χ(Nj) < T . After that, the processing goes back to step
(2).
Otherwise, if equation (4.30) is satisfied, the algorithm proceeds with step (7). The aim
of this step is to write K[X]Nj as the ring of regular functions of some quasi-affine variety.
By Remark 4.48, the only reason why this cannot be done with the existing algorithms,
is the existence of a non-trivial character χ. Similarly to the above, Nj+1 is then set to
χ−1(1) and the processing goes back to step (2).
Note that this algorithm terminates after a finite number of steps since every time when
there is a jump back from step (5) or step (7) to step (2), the dimension of the “active
group”Nj decreases strictly.

It remains to show that we have Nj/Nj+1
∼= T in case that a character χ is found in

step (5) or step (7). By step (3) of the algorithm, the group Nj is irreducible and therefore
χ(Nj) cannot be a finite group (cf. [Hum75], Section 7.3, Proposition). Since dim(T ) = 1
and χ(Nj) is a closed subgroup of T (cf. [Hum75], Section 7.4, Proposition B), it follows
that χ(Nj) = T . Hence Nj/Nj+1 is isomorphic to T and this isomorphism can be given
explicitly by Nj/Nj+1 −→ T, σNj+1 7−→ χ(σ). C

Computation of K[X]G along the normal series G = N0 D N1 D . . . D Ns. It
now remains to compute K[X]G from K[X]Ns along the chain of groups Nj/Nj+1. Let
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j ∈ {1, . . . , s − 1} and assume that by induction, we have found an affine algebra R̃ ⊂
K[X]Nj+1 and a non-zero ideal ã E R̃ such that K[X]Nj+1 = (R̃ : ã∞)

Quot( eR)
. In case that

Nj/Nj+1 is finite, we can apply Proposition 4.44 and Algorithm 4.34 to compute an affine
algebra R′ ⊂ K[X]Nj and a non-zero ideal a′ER′ such that K[X]Nj = (R′ : (a′)∞)Quot(R′).
Otherwise, Nj/Nj+1 is isomorphic to T , as we have seen. We do not go into the details here,
but since this isomorphism is given explicitly, it is possible to compute a homomorphism
K[X]Nj+1 −→ K[T ] ⊗K K[X]Nj+1 which describes the action of the torus Nj/Nj+1

∼= T
on K[X]Nj+1 . Therefore, Proposition 4.44 and Assumption 4.45 can be used to compute
an affine algebra R′ ⊂ K[X]Nj and a non-zero ideal a′ E R′ such that K[X]Nj = (R′ :
(a′)∞)Quot(R′).

By induction, this gives an algorithm for the computation of K[X]G. C
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We have mentioned at various places in this thesis that the computer algebra system
Magma (cf. [BCP97]) has been used for several computations. As discussed in Subsection
3.2.1, a preliminary implementation of Algorithm 3.20 has been done with this system,
too. In the following, we list the code which has been used for the runtime examination
of Algorithm 3.20 in Subsection 3.2.1.
Note that this code is not ready for everyday use, e. g. it contains only a minimal amount
of code to check for trivial cases and for errors in the input data. Beyond that, there is
possibly also plenty of room for optimizations.

/*
FUNCTION SubalgebraCharIdeal
Input: I: an ideal of a polynomial ring defining an affine algebra A

via A := Generic(I)/I.
genSubalgebra: a sequence of elements of Generic(I).

Let B be the subalgebra of A generated by the
residue classes defined by the elements of
genSubalgebra.

Output: E: an ideal which is used internally to test membership in B.

SubalgebraCharIdeal computes a ’characteristic’ ideal E of the
subalgebra B which can be used for testing membership in B.
This function is called by the membership test function
SubalgebraMembership. If several membership tests for B shall be done,
SubalgebraCharIdeal should be called explicitly. Then E should be passed
as a parameter to the function SubalgebraMembership so avoiding a
repeated computation of E.

*/

SubalgebraCharIdeal := function(I, genSubalgebra)

KX := Generic(I);
K := CoefficientRing(KX);

n := Rank(KX);

vprint User1, 2: "Computation of characteristic ideal started.";
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KXZ := PolynomialRing(K, n+#genSubalgebra, "lex");
emb := hom<KX -> KXZ | [KXZ.i: i in [1..n]]>;

E := ideal<KXZ | [emb(f): f in Basis(I)] cat [KXZ.(n+i)-emb(genSubalgebra[i])
: i in [1..#genSubalgebra]]>;

Groebner(E);

vprint User1, 2: "Computation of characteristic ideal completed.";

return E;

end function;

/*
FUNCTION SubalgebraMembership
Input: I: an ideal of a polynomial ring defining an affine algebra A

via A := Generic(I)/I.
f: an element of Generic(I).

Parameters:
genSubalgebra: a sequence of elements of Generic(I).

Let B be the subalgebra of A generated by the
residue classes defined by the elements of
genSubalgebra.

E: characteristic ideal of some subalgebra B
(cf. SubalgebraCharIdeal).

Output: true, if the element defined by f lies in B
false, otherwise.

SubalgebraMembership tests whether the element defined by f is
contained in the subalgebra B.
Either genSubalgebra or E must be defined. If E is not defined, it
will be calculated via an explicit call of SubalgebraCharIdeal.

*/

SubalgebraMembership := function(I, f: genSubalgebra:=0, E:=0)

vprintf User1, 3: "Computation of subalgebra membership started.";

if E cmpeq 0 then
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if genSubalgebra cmpeq 0 then
error "SubalgebraMembership: Either ’genSubalgebra’ or ’E’ must be defined";

end if;

E := SubalgebraCharIdeal(I, genSubalgebra);
end if;

KX := Generic(I);
n := Rank(KX);

KXZ := Generic(E);
emb := hom<KX -> KXZ | [KXZ.i: i in [1..n]]>;

phi := hom<KXZ -> KXZ | [0: i in [1..n]] cat
[KXZ.(n+i): i in [1..(Rank(KXZ)-n)]]>;

g := NormalForm(emb(f), E);

vprintf User1, 3: "Computation of subalgebra membership completed.";
return (g - phi(g)) eq 0;

end function;

/*
FUNCTION SubalgebraContainment
Input: I: an ideal of a polynomial ring defining an affine algebra A

via A := Generic(I)/I.
genSubalgebra1: a sequence of elements of Generic(I).

Let B1 be the subalgebra of A generated by the
residue classes defined by the elements of
genSubalgebra.

genSubalgebra2: a sequence of elements of Generic(I).
Let B2 be the subalgebra of A generated by the
residue classes defined by the elements of
genSubalgebra.

Output: true, if B1 is contained in B2
false, otherwise.

SubalgebraContainment tests whether the subalgebra B1 is contained
in the subalgebra B2.

*/

125



A Code

SubalgebraContainment := function(I, genSubalgebra1, genSubalgebra2)

E := SubalgebraCharIdeal(I, genSubalgebra2);
return &and[SubalgebraMembership(I, f: E:=E): f in genSubalgebra1];

end function;

/*
FUNCTION SubalgebraEquality
Input: I: an ideal of a polynomial ring defining an affine algebra A

via A := Generic(I)/I.
genSubalgebra1: a sequence of elements of Generic(I).

Let B1 be the subalgebra of A generated by the
residue classes defined by the elements of
genSubalgebra.

genSubalgebra2: a sequence of elements of Generic(I).
Let B2 be the subalgebra of A generated by the
residue classes defined by the elements of
genSubalgebra.

Output: true, if B1 is equal to B2
false, otherwise.

SubalgebraEquality tests whether the subalgebra B1 is equal to
the subalgebra B2.

*/

SubalgebraEquality := function(I, genSubalgebra1, genSubalgebra2)

return SubalgebraContainment(I, genSubalgebra1, genSubalgebra2) and
SubalgebraContainment(I, genSubalgebra2, genSubalgebra1);

end function;

/*
FUNCTION SubalgebraSimplifyGenerators
Input: I: an ideal of a polynomial ring defining an affine algebra A

via A := Generic(I)/I.
genSubalgebra: a sequence of elements of Generic(I).

Let B be the subalgebra of A generated by the
residue classes defined by the elements of
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genSubalgebra.

Parameters:
fastMode: a flag which controls the simplification process.

Output: a subsequence of genSubalgebra such that the residue classes
defined by the elements of this subsequence generate B.

SubalgebraSimplifyGenerators tries to simplify the set of generators of B.
If fastMode is set to true, it will just remove elements contained in
the field of coefficients of Generic(I). If fastMode is set to false,
it eliminates redundant elements of genSubalgebra, i. e. elements with
the property that the sequence genSubalgebra with these elements
removed still defines a generating set of B. This is done heuristically,
i. e. genSubalgebra may still contain redundant elements.

*/

SubalgebraSimplifyGenerators := function(I, genSubalgebra: fastMode := true)

vprint User1, 1: "Simplifaction of subalgebra generators started.";

KX := Generic(I);

/*
Remove elements contained in the field of coefficients of KX.
*/

genSubalgebra := [f: f in genSubalgebra | f notin CoefficientRing(KX)];

if fastMode then
vprint User1, 1: "Simplifaction of subalgebra generators completed.";
return genSubalgebra;

end if;

/*
Sort the elements of genSubalgebra in ascending order according to their
leading monomials.
*/

Sort(~genSubalgebra, func<f1, f2 |
(LeadingMonomial(f1) ge LeadingMonomial(f2)) select 1 else
((LeadingMonomial(f1) eq LeadingMonomial(f2)) select 0 else -1)>);
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newGenSubalgebra := [];
for i in [1..#genSubalgebra] do
if not(SubalgebraMembership(I, genSubalgebra[i]

: genSubalgebra:=newGenSubalgebra)) then
newGenSubalgebra := newGenSubalgebra cat [genSubalgebra[i]];

end if;
end for;

vprint User1, 1: "Simplifaction of subalgebra generators completed.";

return newGenSubalgebra;

end function;

/*
FUNCTION LUSubset
Input: listPoly: a list of polynomials.

Output: a sequence of polynomials defining a basis of the vector
space generated by the elements of listPoly.

*/

LUSubset := function(listPoly)

listPoly := [f: f in listPoly | f ne 0];
if #listPoly le 1 then
return listPoly;

end if;

K := CoefficientRing(Parent(listPoly[1]));

monsListPoly := SetToSequence(&join[{m: m in Monomials(f)}: f in listPoly]);

V := VectorSpace(K, #listPoly);
W := VectorSpace(K, #monsListPoly);

B := Basis(Image(hom<V -> W | [W![MonomialCoefficient(f, t)
: t in monsListPoly]: f in listPoly]>));

return [&+[b[i]*monsListPoly[i]: i in [1..#monsListPoly]]: b in B];

end function;
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/*
FUNCTION GXIdeal
Input: I: a prime ideal defining an affine variety X

(see Convention 3.19).
J: a radical ideal J defining a linear algebraic group G

(see Convention 3.19).
action: a list of polynomials defining a regular action of G on X

(see Convention 3.19).

Output: JI: an ideal which is used internally to test (among other
things) invariance of elements in K[X].

GXIdeal computes a the vanishing ideal of G x X. This function is
called by various functions for the computation of invariant rings
of unipotent groups (see below).
If several functions needing this ideal shall be computed, GXIdeal
should be called explicitly. Then E should be passed as a parameter
to these functions so avoiding a repeated computation of JI.

*/

GXIdeal := function(I, J, action)

KX := Generic(I);
n := Rank(KX);

KT := Generic(J);
m := Rank(KT);

if #action ne n then
error "Error in input data";
end if;

KTX := Parent(action[1]);
if Rank(KTX) ne (m+n) then
error "Error in input data";
end if;

K := CoefficientRing(KTX);

embX := hom<KX -> KTX | [KTX.(m+i): i in [1..n]]>;
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embT := hom<KT -> KTX | [KTX.i: i in [1..m]]>;

JI := ideal<KTX | [embT(g): g in Basis(J)] cat [embX(f): f in Basis(I)]>;
Groebner(JI);

return JI;

end function;

/*
FUNCTION GClosure (see Algorithm 3.25)
Input: I: a prime ideal defining an affine variety X

(see Convention 3.19).
J: a radical ideal J defining a linear algebraic group G

(see Convention 3.19).
action: a list of polynomials defining a regular action of G on X

(see Convention 3.19).
q: an element of Generic(I).

Parameters:
JI: vanishing ideal of G x X.

Output: a list b1, ... bs of polynomials such that b1 + I, ... bs + I
is a basis of a G-module containing q + I.

If JI is not defined it will be calculated by an explicit call of
GXIdeal.

*/

GClosure := function(I, J, action, q: JI := 0)

KX := Generic(I);
n := Rank(KX);

if n eq 0 then
return CoefficientRing(KX);

end if;

m := Rank(Generic(J));

if #action ne n then
error "Error in input data";
end if;
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if JI cmpeq 0 then
JI := GXIdeal(I, J, action);

end if;

KTX := Generic(JI);

phi := hom<KX -> KTX | [action[i]: i in [1..n]]>;

KX_T := PolynomialRing(KX, m);
psi := hom<KTX -> KX_T | [KX_T.i : i in [1..m]] cat

[KX_T!KX.i: i in [1..n]]>;

CoeffList := Coefficients(psi(NormalForm(phi(q), JI)));

return LUSubset(CoeffList);

end function;

/*
FUNCTION NonzeroInvariant (see Algorithm 3.24)
Input: I: a prime ideal defining an affine variety X

(see Convention 3.19).
J: a radical ideal J defining a linear algebraic group G

(see Convention 3.19).
action: a list of polynomials defining a regular action of G on X

(see Convention 3.19).
f: an element of Generic(I).

Parameters:
JI: vanishing ideal of G x X.

Output: a polynomial h such that h + I is a non-zero invariant and
h + I is contained in the G-closure of f + I.

*/

NonZeroInvariant := function(I, J, action, f: JI := 0)

KX := Generic(I);
n := Rank(KX);
m := Rank(Generic(J));
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if #action ne n then
error "Error in input data";
end if;

if JI cmpeq 0 then
JI := GXIdeal(I, J, action);

end if;

KTX := Generic(JI);
K := CoefficientRing(KTX);

embX := hom<KX -> KTX | [KTX.(m+i): i in [1..n]]>;
phi := hom<KX -> KTX | [action[i]: i in [1..n]]>;

// Check if f + I is already invariant

if NormalForm(phi(f)-embX(f), JI) eq 0 then
return f;

end if;

genV := GClosure(I, J, action, f: JI := JI);

redDiff := [NormalForm(phi(h)-embX(h), JI): h in genV];
monRedDiff := SetToSequence(&join[{mon: mon in Monomials(g)}

: g in redDiff]);

V := VectorSpace(K, #redDiff);
W := VectorSpace(K, #monRedDiff);

B:=Basis(Kernel(hom<V -> W | [W![MonomialCoefficient(g, mon)
: mon in monRedDiff]: g in redDiff]>));

return &+[B[1][i]*genV[i]: i in [1..#redDiff]];

end function;

/*
FUNCTION UnipotentLocalizedInvariantRing (see Algorithm 3.20)
Input: I: a prime ideal defining an affine variety X

(see Convention 3.19).
J: a radical ideal J defining a linear algebraic group G

(see Convention 3.19).
action: a list of polynomials defining a regular action of G on X
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(see Convention 3.19).

Output: curGen: a sequence of elements of Generic(I) and
f: an element of Generic(I)
such that the invariant ring localized at the element
f + I is generated (as a K-algebra) by 1/(f + I) and the
residue classes of the elements in curGen.

*/

UnipotentLocalizedInvariantRing := function(I, J, action)

vprint User1, 1: "Computation of localized invariant ring started.";

KX := Generic(I);
n := Rank(KX);

if n eq 0 then
return CoefficientRing(KX);

end if;

KT := Generic(J);
m := Rank(KT);

if #action ne n then
error "Error in input data";
end if;

KTX := Parent(action[1]);
if Rank(KTX) ne (m+n) then
error "Error in input data";
end if;

if IsZero(I) then
Kfx := FieldOfFractions(KX);

else
Kfx := FieldOfFractions(KX/I);

end if;

KfxTZ := PolynomialRing(Kfx, m+n);

JI := GXIdeal(I, J, action);

phi := hom<KT -> KfxTZ | [KfxTZ.i: i in [1..m]]>;
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alpha := hom<KTX -> KfxTZ | [KfxTZ.i: i in [1..m]] cat
[KfxTZ!Kfx.i: i in [1..n]]>;

D0 := ideal<KfxTZ | [phi(p): p in Basis(J)] cat
[KfxTZ.(m+i)-alpha(action[i]): i in [1..n]]>;

D := EliminationIdeal(D0, {KfxTZ.(m+i): i in [1..n]});

CoeffList := &cat[Coefficients(f): f in Basis(D)];
CoeffListNumDenom := [[KX!Numerator(f), KX!Denominator(f)]

: f in CoeffList];

if #CoeffListNumDenom eq 0 then
f := 1;

else
CoeffListDenomInv := [NonZeroInvariant(I, J, action, nd[2]: JI := JI)

: nd in CoeffListNumDenom];
f := LCM(CoeffListDenomInv);

end if;

curGen := [CoeffListDenomInv[i] eq CoeffListNumDenom[i][2] select
KX!(CoeffListNumDenom[i][1]*f/CoeffListNumDenom[i][2]) else
Coordinates(IdealWithFixedBasis([CoeffListNumDenom[i][2]] cat Basis(I)),
f * CoeffListNumDenom[i][1])[1]

: i in [1..#CoeffListNumDenom]];

vprint User1, 1: "Computation of localized invariant ring completed.";
return curGen, f;

end function;

/*
FUNCTION ColonAlgebra (see Remark 3.21(b) and Algorithm 2.7 of [DK08])
Input: I: a prime ideal defining an affine variety X

(see Convention 3.19).
curGen: a sequence of elements of Generic(I).

Let B be the subalgebra of A generated by the
residue classes defined by the elements of
curGen.

f: an element contained in Generic(I).

Output: a sequence of elements of Generic(I) such that their
residue classes generate the K-algebra which is generated
by the elements of (the B-module) (B : (f+I))_{K[X]}.
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*/

ColonAlgebra := function(I, curGen, f)

vprint User1, 1: "Computation of saturation started.";

KX := Generic(I);
n := Rank(KX);
K := CoefficientRing(KX);

KXT := PolynomialRing(K, n+#curGen);
emb := hom<KX -> KXT | [KXT.i: i in [1..n]]>;

B := Basis(EliminationIdeal(ideal<KXT | [emb(g): g in Basis(I)] cat
[emb(f)] cat [KXT.(n+i)-emb(curGen[i]): i in [1..#curGen]]>,
{KXT.(n+i): i in [1..#curGen]}));

phi := hom<KXT -> KX | [0: i in [1..n]] cat [curGen[i]: i in [1..#curGen]]>;

L := IdealWithFixedBasis([f] cat Basis(I));
newGen := curGen cat [Coordinates(L, phi(b))[1]: b in B];

E := SubalgebraCharIdeal(I, curGen);
newGen := [g: g in newGen | not(SubalgebraMembership(I, g: E := E))];

vprint User1, 1: "Computation of saturation completed.";

return curGen cat newGen, newGen eq [];

end function;

/*
FUNCTION UnipotentInvariantRing (see Algorithm 3.20 and Remark 3.21(b))
Input: I: a prime ideal defining an affine variety X

(see Convention 3.19).
J: a radical ideal J defining a linear algebraic group G

(see Convention 3.19).
action: a list of polynomials defining a regular action of G on X

(see Convention 3.19).

Output: a sequence of elements in Generic(I) such that their residue
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classes generate the invariant ring K[X]^G (as a K-algebra).

THIS FUNCTION MAY NOT TERMINATE.
*/

UnipotentInvariantRing := function(I, J, action)

curGen, f := UnipotentLocalizedInvariantRing(I, J, action);

saturated := false;
i := 0;

while not(saturated) do
i := i + 1;
vprint User1, 1: "Loop: ", i;

curGen, saturated := ColonAlgebra(I, curGen, f);
print curGen;

end while;

vprint User1, 1: "Needed ", i, " iterations.";

return SubalgebraSimplifyGenerators(I, curGen: fastMode := false);

end function;

// Code for the example series in Subsection 3.2.1

SetVerbose("User1", true);

for n in [1..7] do

ijtoIndex := function(i,j)
return (i-1)*n+j;

end function;

KX := PolynomialRing(Rationals(), n*n);
AssignNames(~KX, &cat[["x"*IntegerToString(i)*IntegerToString(j)

: j in [1..n]]: i in [1..n]]);
I := ideal<KX | 0>;
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KT := PolynomialRing(Rationals(), n*n);
AssignNames(~KT, &cat[["t"*IntegerToString(i)*IntegerToString(j)

: j in [1..n]]: i in [1..n]]);
J := ideal<KT | [KT.(ijtoIndex(i,i))-1: i in [1..n]] cat

&cat[[KT.(ijtoIndex(i,j)): j in [1..i-1]]: i in [1..n]]>;

KTX := PolynomialRing(Rationals(), Rank(KT) + Rank(KX));
AssignNames(~KTX, &cat[["t"*IntegerToString(i)*IntegerToString(j)

: j in [1..n]]: i in [1..n]]
cat
&cat[["x"*IntegerToString(i)*IntegerToString(j)

: j in [1..n]]: i in [1..n]]);

action := &cat[[&+[KTX.(ijtoIndex(i,k))*KTX.(n*n + (ijtoIndex(k,j)))
: k in [1..n]]: j in [1..n]]: i in [1..n]];

time UnipotentLocalizedInvariantRing(I, J, action);

end for;
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∗-operator, 8

affine space, 5
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algebraic group, see linear algebraic group
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identity component, 9
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power of an ideal, 46
primary invariants, 13
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product of quasi-affine varieties, 69

quasi-affine G-variety, 67
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rational character, 38
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reductive, 9
regular, 7, 62, 67
regular action, 67
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regular group action, 10
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Notation

∅ the empty set
N,N0 the set of natural numbers (excluding resp. including 0)
Z the set of integers
Q the field of rational numbers
Fp the Galois field with p elements, where p is some prime number

|M | the cardinality of the set M

kerα the kernel of the linear map α

R× the group of units of the ring R
Quot(R) the field of fractions of the ring R
(f1, . . . , fm)R the ideal of the ring R generated by f1, . . . , fm ∈ R
K[f1, . . . , fm] the algebra generated by f1, . . . , fm over the field K
〈σ1, . . . , σm〉 the group generated by σ1, . . . , σm

GLn(K) the general linear group over the field K of degree n, i. e. the set of
invertible n×n matrices with entries in K together with the usual matrix
multiplication

SLn(K) the special linear group over K of degree n, i. e. the subgroup of GLn(K)
consisting of matrices with determinant 1

〈σ〉, 24
〈b1, . . . , bs〉K , 55
≤, 17
p
√
−, 32√
−, 63

1G, 9
AG, 23
ai, 46
a(n/d), 37
dim, 8
(f1, . . . , fm), 6
Func, 69
g, 119
G0, 9
Ga, 2
G/N , 10

height, 85
Id, 6
IdX , 7
I : I ′, 36
Kn, 5
K[U ], 62
K[U ]G, 68
K(X), 8
K[X], 7
K[X]G, 11
K×, 32
K(X)G, 11
K[X]×, 40
LM, 18
LM≤, 18
µ, 10
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Notation

NFG , 19
OU,u, 64
Quot, 8
Quot(K[X]G), 35
(R : a)S , 45
(R : a∞)S , 46
σ(−), 10, 23
σ(−), 10
S(V ), 25
Syz, 20
Var, 5
VarX , 7
V G, 12
xα, 17
X//G, 99
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