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1  INTRODUCTION 

 

1.1 Summary 

 
Urokinase-type plasminogen activator (uPA) and its inhibitor plasminogen activator 

inhibitor type 1 (PAI-1) play a key role in tumor-associated processes such as the 

degradation of extracellular matrix proteins, tissue remodeling, cell adhesion, 

migration, and invasion. High antigen levels of uPA and PAI-1 in tumor tissue of 

various solid malignant tumors, including breast cancer, are associated with poor 

patient prognosis. This work primarily examines whether analysis of uPA and PAI-1 

mRNA expression in breast cancer represents an alternative to the measurement of 

the respective antigen levels. Highly sensitive quantitative real-time PCR (QPCR) 

assays, based on the LightCycler technology, were established to quantify uPA and 

PAI-1 mRNA expression in different cell lines as well as in tumor tissue of breast 

cancer patients. The mRNA concentrations were normalized to the housekeeping 

genes G6PDH, ß-actin, or PBGD (thereby evaluating their applicability for QPCR 

assays). The respective uPA and PAI-1 antigen concentrations were determined by 

established ELISA formats. In the cell lines, uPA and PAI-1 mRNA and antigen 

values were highly correlated. In contrast, correlations between uPA/PAI-1 mRNA 

and protein in the breast cancer samples were found to be distinctly weaker or not 

significant. Thus, quantitative determination of mRNA expression for both factors 

does not mirror exactly antigen levels in breast cancer tissue. Except for nodal status 

being inversely correlated with uPA mRNA levels in our Dutch cohort, no significant 

interrelations were observed between uPA or PAI-1 mRNA expression and 

clinicopathological parameters when using G6PDH as housekeeping gene. On the 

protein level, elevated uPA and PAI-1 values were associated with a negative steroid 

hormone receptor status in the Dutch cohort. Summing up, the implementation of 

mRNA quantification of uPA and PAI-1 in breast tumors is unable to serve as a one-

to-one substitution for antigen determination by ELISA. Furthermore, mRNA was 

extracted from 28 formalin-fixed, paraffin-embedded tissue samples with existing 

corresponding fresh-frozen tissue extracts. uPA and PAI-1 mRNA levels were 

successfully quantified in these samples. Normalized to G6PDH, the values 

determined by both methods correlated significantly.  
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1.2 Background: Breast Cancer Epidemiology 

 
The mammary carcinoma is the most frequent malignant tumor of women in the 

western countries (about 28% of female malignancies, followed by lung and bowel 

cancer), and, according to the American cancer statistics of 2008, behind lung cancer 

the second most frequent cause of death from cancer in the USA 181. In Germany, 

breast cancer has the highest mortality, followed by bowel and lung cancer. Due to 

the present lack of a comparable nationwide registration of cancer incidence in 

Germany, incidence numbers have to be estimated based on regional register data. 

Calculations indicate that more than 57,000 women are diagnosed with breast cancer 

every year. The mean onset age is 63 years, 6 years earlier than all combined 

malignancies 201. In an analysis of cancer mortality data of 50 countries in 2002, 

Germany showed to have the ninth highest breast cancer death rate in females, 

Denmark and the Netherlands being the countries with the highest mortality 101. 

Approximately every tenth woman develops breast cancer in her lifetime. There are 

numerous factors increasing the risk of disease; examples are obesity, early 

menarche and late menopause, advanced age at first pregnancy, nullipara, 

postmenopausal hormone-replacement therapy, ionizing radiation, and genetic 

disposition (BRCA1/2-gene mutation). American cancer statistics of 2008 describe a 

decrease of breast cancer incidence by 3.5% per year from 2001 to 2004 after 

having increased since 1980. On the one hand, this is attributed to a saturation effect 

in screening mammography, on the other hand, the decreased use of hormone 

replacement therapy among postmenopausal women is held responsible for this 

tendency (Figure 1). According to an analysis of Munich Cancer Registry data, 

survival rates of patients with metastasized breast cancer have remained stagnant 

during the last two decades 296. Nevertheless, estimates based on German statistical 

resources for the first time reported a slight drop in breast cancer incidence since the 

middle of the 1990‘s, supposedly due to a recent decline in hormone therapy and 

enhanced adjuvant treatment 54,201. Most women diagnosed with breast cancer 

nowadays have more therapeutic options and a better chance of long-term survival 

than ever before. In Germany, an improved nationwide screening system is currently 

being established for all women between 50 and 69 years of age to further reduce 

the percentage of metastatic tumors. At present, the 5-year survival rate in Germany 

is about 81% 201. A definitive cure of breast cancer - which can only be spoken of 

between 20 to 40 years after diagnosis - is accomplished in about 50% of all cases.  
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Figure 1: Annual age-adjusted* cancer incidence rates among males and females for 

selected cancers by sex, United States, 1975 to 2004 (*Rates are age-adjusted to the 2000 

US standard population and adjusted for delays in reporting)
 181

.
 
Source: Surveillance, 

Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov). Delay-Adjusted 

Incidence database: ―SEER Incidence Delay-Adjusted Rates, 9 Registries, 1975–2004.‖ National 

Cancer Institute, DCCPS, Surveillance Research Program, Statistical Research and Applications 

Branch, released April 2007, based on the November 2006 SEER data submission. 
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1.3 Breast Cancer Classification and Prognostic Parameters  

 
Clearly, prognosis for patients varies strongly depending on several individual risk 

factors, for example tumor stage, invasiveness, and nodal involvement. The classical 

factors used to decide if or which kind of adjuvant therapy is to be administered are 

lymph node status, tumor size and grade (TNM classification), patient age, 

menopausal status, and steroid receptor status. Over the last decades, several 

additional markers have been found that might help estimate the proliferation rate 

and invasiveness of breast tumors, the most valuable markers being those directly 

involved in tumor development. Of these to date the serine protease urokinase 

plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor type 1 

(PAI-1) have been shown to be the most promising factors 151,299,348. In current breast 

cancer trials, hospitals are already measuring uPA and PAI-1 levels in primary breast 

cancer tissue by enzyme-linked immunosorbent assay (ELISA) 177. Both factors have 

been extensively validated in preclinical and clinical studies. In the NNBC-3 Europe 

trial, participating centers opt to either perform risk estimation by clinicopathological 

factors or by the uPA and PAI-1 concentration in tumor tissue biopsies 257. In fact, 

uPA and PAI-1 are the first tumor-biological markers to be validated at the highest 

level of evidence (LOE I) with respect to their clinical utility in breast cancer 

management 149. The resulting data is being added to the pool of factors used for 

therapy decisions.  

 

This section gives an overview of the tumor features that currently play a role for the 

establishment of individual breast cancer treatment, and presents an outlook on 

potential further improvement of these schemes by introduction of new tumor 

biomarkers. Provided that preliminary results are validated by a number of well-

designed clinical studies, some of these may soon be analyzed routinely for 

determination of the optimum therapeutic concept or may even be used as targets for 

newly developed drugs.  
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1.3.1 Histopathological Classification  

 
The histological origin of the breast cancer patient‘s primary tumor is one of the most 

decisive components of his individual prognosis. The doubling time of the tumor cells, 

the extension of the tumor - multi-centric or bilateral -, and the general liability of the 

tumor to metastasize depends on the histological phenotype. These characteristics of 

a tumor type are influenced by cell differentiation, frequency of mitosis and cell-core 

structure (see in ‗Tumor Grading Criteria‘ below). The mammary carcinomas derived 

from ductal or ductular epithelia are diagnosed most frequently with a percentage of 

85 to 90. The remaining tumors originate from lobular epithelia, except the very rare 

and especially aggressive inflammatory carcinoma - characterized by undifferentiated 

tumor cells and a lymphangiosis carcinomatosa of the skin -, and the mammary 

sarcoma (incidence less than 1%; Table 1). Mammary carcinomas are divided into 

non-invasive and invasive tumors. In the past, the non-invasive forms - comprising 

the ductal carcinoma in situ (DCIS) and the carcinoma lobulare in situ (CLIS) - which 

are considered to be early forms of invasive breast cancer were diagnosed only in 

about 5% of all documented cases. Through extended mammography screenings 

and the overall improvement of the sensitivity of the applied diagnostic methods it 

was possible to elevate this rate to approximately 20%. If the tumor has been 

resected successfully by breast-preserving surgery and the in situ nature has been 

confirmed histopathologically, subsequent radiation of the area and/or tamoxifen 

therapy (see below) is usually sufficient without axillary dissection 65,94. In case of a 

CLIS, radiation may not be necessary. No adjuvant therapy is required, unless the 

tumor is especially large or displays multifocal growth. While in situ carcinomas can 

only be identified by apparative diagnostic measures, the majority of breast cancers 

is still discovered by the patients themselves, implicating that the tumor stage is 

already advanced by the time of diagnosis. The invasive ductal carcinoma is the 

most frequent breast carcinoma; it also includes various special histological forms 

with own growth patterns, clinical features, and thus, prognosis. For patients with 

invasive tumors without infested axillary lymph nodes a good chance of cure does 

exist, although the applied adjuvant therapy schemes vary widely. The mode and 

aggressiveness of an adjuvant treatment depends on defined prognostic factors 

determined in the tumor tissue which will be described in the following, since one 

essential aim of cancer research is the improvement of methods that allow prediction 

of unfavorable courses of the disease.  



 9 
 

Table 1: WHO classification of breast tumor histopathologies 
365

. The table includes benign 

as well as malignant tumors. 

Invasive breast carcinomas 

 Invasive ductal carcinoma  

o Most are "not otherwise specified" 

o Remaining subtypes:  

 Mixed type carcinoma 

 Pleomorphic carcinoma 

 Carcinoma with osteoclastic 
giant cells 

 Carcinoma with 
choriocarcinomatous features 

 Carcinoma with melanotic 
features 

 Invasive lobular carcinoma 

 Tubular carcinoma 

 Invasive cribriform carcinoma 

 Medullary carcinoma 

 Mucinous carcinoma and other tumors with 

abundant mucin  

o Mucinous carcinoma 

o Cystadenocarcinoma and columnar cell 
mucinous carcinoma 

o Signet ring cell carcinoma 

 Neuroendocrine tumors  

o Solid neuroendocrine carcinoma  
(carcinoid of the breast) 

o Atypical carcinoid tumor 

o Small cell/oat cell carcinoma 

o Large cell neuroendocrine carcioma 

 Invasive papillary carcinoma 

 Invasive micropapillary carcinoma 

 Apocrine carcinoma 

 Metaplastic carcinomas  

o Pure epithelial metaplastic carcinomas  

 Squamous cell carcinoma 

 Adenocarcinoma with spindle 
cell metaplasia 

 Adenosquamous carcinoma 

 Mucoepidermoid carcinoma 

o Mixed epithelial/mesenchymal 
metaplastic carcinomas 

 Lipid-rich carcinoma 

 Secretory carcinoma 

 Oncocytic carcinoma 

 Adenoid cystic carcinoma 

 Acinic cell carcinoma 

 Glycogen-rich clear cell carcinoma 

 Sebaceous carcinoma 

 Inflammatory carcinoma 

 Bilateral breast carcinoma 
 

Mesenchymal tumors (including sarcoma) 

 Haemangioma 

 Angiomatosis 

 Haemangiopericytoma 

 Pseudoangiomatous stromal hyperplasia 

 Myofibroblastoma 

 Fibromatosis (aggressive) 

 Inflammatory myofibroblastic tumor 

 Lipoma  

o Angiolipoma 

 Granular cell tumor 

 Neurofibroma 

 Schwannoma 

 Angiosarcoma 

 Liposarcoma 

 Rhabdomyosarcoma 

 Osteosarcoma 

 Leiomyoma 

 Leiomysarcoma 
 

Precursor lesions 

 Lobular neoplasia  

o Lobular carcinoma in situ 

 Intraductal proliferative lesions  

o Usual ductal hyperplasia 

o Flat epithelial hyperplasia 

o Atypical ductal hyperplasia 

o Ductal carcinoma in situ 

 Microinvasive carcinoma 

 Intraductal papillary neoplasms  

o Central papilloma 

o Peripheral papilloma 

o Atypical papilloma 

o Intraductal papillary carcinoma 

o Intracystic papillary carcinoma 
 

Benign epithelial lesions 

 Adenosis, including variants  

o Sclerosing adenosis 

o Apocrine adenosis 

o Blunt duct adenosis 

o Microglandular adenosis 

o Adenomyoepithelial adenosis 

 Radial scar/complex sclerosing lesion 

 Adenomas  

o Tubular adenoma 

o Lactating adenoma 

o Apocrine adenoma 

o Pleomorphic adenoma 

o Ductal adenoma 
 

Myoepithelial lesions 

 Myoepitheliosis 

 Adenomyoepithelial adenosis 

 Adenomyoepithelioma 

 Malignant myoepithelioma 
 

Fibroepithelial tumors 

 Fibroadenoma 

 Phyllodes tumor  
o Benign 
o Borderline 
o Malignant 

 Periductal stromal sarcoma, low grade 

 Mammary hamartoma 
 

Tumors of the nipple 

 Nipple adenoma 

 Syringomatous adenoma 

 Paget's disease of the nipple 
 

Malignant lymphoma 
 
Metastatic tumors 
 
Tumors of the male breast 

 Gynecomastia 

 Carcinoma  
o In situ 
o Invasive 
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1.3.2 Tumor Size and Lymph Node Status 

 
Tumor size and axillary lymph node status are two classical parameters describing 

the primary extension and presumed prognosis of a malignant breast tumor. Since 

several decades, studies have described the associations between large primary 

tumors and a positive lymph node status on the one hand, and a large tumor and 

shorter disease-free and overall survival on the other 104. Until the 1980‘s, the lymph 

node status was actually the only parameter deciding about further treatment of a 

patient. However, the prognostic value of the tumor size is questionable. It is 

supposed that this parameter indicates a certain stage in tumor progression rather 

than predicting the liability of a tumor to cause a relapse. Tumor aggressiveness is 

reflected much more accurately in the tumor tissue‘s histological phenotype. The 

determination of the axillary lymph node status is still one of the most important 

diagnostic means of identifying breast cancer patients with higher risk of tumor 

recurrence. For this purpose, at least ten lymph nodes of the levels I and II must be 

excised during surgery 202. In the past, node-positive patients were classified as 

‗high-risk‘ and usually received and profited from adjuvant systemic treatment. The 

recent St. Gallen consensus recommendations more specifically define three risk 

groups - ‗low‘, ‗intermediate‘, and ‗high‘ - based on endocrine responsiveness, 

HER2/neu-status (see below) and menopausal status (Table 2) 124. Chemotherapy 

alone is applied in cases of endocrine receptor- and HER2-negativity. Combinations 

of chemotherapy and trastuzumab may be given patients with HER2-positive disease 

or in cases in which the use of endocrine therapy alone is uncertain. Concerning 

node-negative patients classification and therapeutic procedure remain heavily 

disputed, as there is a substantial percentage - approximately 30% - at risk of 

suffering a relapse. In fact, momentarily the risk group is not the main decision 

criterion for treatment selection. Today, following the National Institutes of Health 

(NIH) 91 and St. Gallen consensus guidelines, up to 90% of node-negative patients 

receive adjuvant chemotherapeutic treatment. Evidently, there is a considerable rate 

of overtreated patients who could have been spared from the unpleasant side-effects 

of chemotherapy. Additional prognostic factors are necessary to identify the group of 

patients with increased risk of relapse and thereby to help in finding the best possible 

treatment. For node-positive patients predictive factors, i.e. parameters that can 

predict the response to a particular adjuvant therapy, may be useful to find alternative 
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therapeutical approaches. Figure 2 shows an excerpt of the criteria for the 

classification of breast tumors into TNM stages. 

 

 

 

 

 

Figure 2: Breast cancer stages 
367

. Tumor size and localization determine its classification into 

tumor stages ranging from T1a to T4c. Not shown are in situ carcinomas, Paget‘s disease, T1mic 

(microinvasion; tumor size of 0.1 cm or less) - which precede T1a -, and T4d (inflammatory breast 

carcinoma). N1: metastasis to movable regional axillary lymph nodes on the same side as the 

affected breast; N2: metastasis to fixed regional axillary lymph nodes or metastasis to the internal 
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mammary lymph nodes, on the same side as the affected breast; N3: metastasis to 

supraclavicular lymph nodes or infraclavicular lymph nodes or metastasis to the internal 

mammary lymph nodes with metastasis to the axillary lymph nodes. M1 indicates the presence of 

breast cancer cells in locations other than the breast, including distant metastasis (e.g. bone, 

brain, lung). TX/0, NX/0 and MX/0 would indicate no assessment, or evidence, respectively, of 

the primary tumor, affected lymph nodes, and metastasis. Pathologic staging (pT/pN/pM) adds 

information gained by a pathologist‘s microscopical examination.   

 

1.3.3 Tumor Grading Criteria by Scarff, Bloom, and Richardson 

  

The Scarff-Bloom-Richardson (SBR) system is the most commonly used type of 

cancer grading system. Generally, three characteristic features of a breast tumor - 

degree of glandular formation (percentage of carcinoma composed of tubular 

structures), nuclear pleomorphism, and mitotic rate - are examined and evaluated by 

a pathologist and assigned to a total score ranging from three to nine points. The 

tumor grades 1, 2, and 3, distinguishing well differentiated from poorly differentiated 

tumors, are deduced from this score 23,295. In the past decades, the different criteria 

contributing to the tumor score of the components have gradually been specified, and 

new grading systems originating from SBR have evolved. Some studies suggest the 

mitotic index alone to be of sufficient prognostic value 55. In 1989, Le Doussal et al. 

213 described a modified SBR (MSBR) grading that is able to identify additional risk 

subgroups of invasive ductal breast carcinoma patients for metastasis-free survival 

(MFS), with an especially high predictive value for lymph node-negative patients. 

This modified form, that was applied in the present study, was created by eliminating 

the factor of ductoglandular formation which, in a separate MFS analysis, had shown 

to be the SBR system‘s component with the least predictive capacity. In invasive 

ductal carcinomas, the SBR grading has proven to be valuable as a marker of 

chemosensitivity for neoadjuvant treatment: SBR grade 3 tumors showed a 

significantly better response to chemotherapy than SBR grade 1 tumors 6. Nuclear 

grading by Black et al. 21 also excludes the tubular formation as a component of the 

grading system. In Europe, today the Elston-Ellis modification (Nottingham grading 

system) is preferred. By exactly defining the three original system components and 

assessing the field area dimension used for mitotic count, this modification attempts 

to further standardize tumor grading. In addition, this grading classification, along 
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with tumor size and lymph node status, forms the Nottingham prognostic index which 

may contribute to individual therapy decisions 92,93.  

 

1.3.4 Steroid Hormone Receptors 

 
It has been long since known that some breast tumors require steroid hormones for 

their continuous growth, others develop in the postmenopause after decrease of 

hormonal influence. The prognostic relevance of hormone receptors has been a field 

of research for more than 30 years 52,59,122,181. The presence of estrogen and 

progesterone receptors is favorable for the outcome in breast, ovarian, and 

endometrial cancer. For hormone-positive patients there exist diverse possibilities of 

endocrine treatment, such as the application of anti-hormones - including aromatase 

inhibitors (AI), selective estrogen receptor modulators (SERM) like tamoxifen 90, and 

estrogen receptor downregulators (ERD) - or the ablative endocrine therapy. Yet, 

estrogen and progesterone receptor presence does not necessarily ensure a positive 

response to endocrine therapy, the rate of resistant tumors ranging between 30 and 

40%. Just as little does a negative hormone receptor status in the tumor tissue rule 

out any response. For decision-making whether to apply endocrine therapy, three 

groups of endocrine responsiveness have been defined: (1) highly endocrine 

responsive, (2) incompletely endocrine responsive, (3) endocrine non-responsive. 

For example, patients‘ tumors adhering to the first category with low risk may be 

treated with endocrine therapy alone 124. The effectiveness of advances in 

chemotherapy may also depend on the estrogen receptor status 17. Resistance to 

endocrine therapy, although endocrine responsive, has been attributed to steroid 

receptor polymorphism 320, altered transcription of progesterone receptors 274, 

presence of amplified EGFs, and altered apoptosis, leading to a resistance to AIs 9. 

The identification of receptor variants has become a new area of interest in breast 

cancer research. Other hormone receptors that can be determined for identification 

of endocrine responsiveness are LH-RH and somatostatin receptors 100,332. These 

could potentially also be targeted by analogous agents.  
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1.3.5 New Prognostic and Predictive Factors   

 
Proliferation Parameters 

Today, advances in flow cytometry and thymidine labeling of biopsies enable the 

determination of proliferation parameters, such as the number of cells composing the 

S-phase fraction (SPF), presence of the nuclear antigen Ki-67, the ploidy of the 

tumor, and the thymidine labeling index (TLI). Low-risk breast cancer patients with 

low SPF were shown to have significantly longer disease-free survival (DFS) rates 

than patients with high SPF 53. The cell core-associated proliferation antigen Ki-67 is 

another parameter found in breast tumors that can be detected by immunostaining 

with the monoclonal antibody MIB-1 118,140. Different authors have described the 

predictive value of SPF and Ki-67 for the response to chemotherapy; tumors with 

high rates of either of the factors were described to display a better response 25,48,276. 

The occurrence of diploid tumors has been associated with a better prognosis and 

less involvement of axillary lymph nodes in comparison to aneuploid tumors 157. The 

thymidine labeling index is acknowledged as an independent prognostic factor for 

local and distant metastasis in breast cancer, and also seems valuable as a predictor 

of response to polychemotherapy 5. Cyclins, as cyclin D and E that regulate cell cycle 

progression 333, and the nuclear enzyme topoisomerase II α 198 are further 

proliferation factors being analyzed with respect to breast cancer prognosis and 

tumor responsiveness. 

 

Growth Factors 

Growth factors have been shown to be involved in cell proliferation and angiogenesis 

processes. Contrary to steroid receptors, overexpression of the EGF receptor 

(EGFR) is an indicator of poor prognosis in breast cancer 250,290. EGFR, also known 

as erbB-1/HER-1, is a member of the erbB family and, simultaneously, of the type I 

receptor tyrosine kinase family. As a novel therapeutic approach, growth factors and 

receptors are being tested as targets for antibodies and tyrosine kinase inhibitors 

which are believed to have an acceptable toxicity profile and less side-effects as 

compared to conventional cytotoxic agents 251. Other growth factors of prognostic 

relevance are the transforming growth factor-ß (TGF-ß) - described both as tumor 

suppressor and promoter 244,307 -, vascular endothelial growth factors (VEGF) - 

associated with a poor prognosis and capable of predicting endocrine 

responsiveness of advanced breast cancer 232 -, insuline-like growth factors (IGF), 
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and associated receptors. IGF-1, by interaction with IGF binding proteins (IGFBP) 

and estrogens, is known to increase the risk of developing breast cancer, especially 

for premenopausal women 200,220. Its functions are mediated by the IGF-1 receptor 

which has shown to be elevated in breast cancer and related to a longer disease-free 

and overall survival (OS) 26,258.  

 

Oncogenes 

The oncogene c-erbB-2 (HER-2/neu), originally isolated from rat neuroblastomas, 

encodes a surface glycoprotein named ‗p185 neu‘, structurally resembles the EGF 

receptor, and has been shown to be present also in human breast cancer. High 

expression has been associated to a poor prognosis and is found in about 20 to 30% 

of all mammary carcinomas 219,252. Since 2005, these patients are a target group for 

treatment with the monoclonal anti-HER-2/neu antibody trastuzumab. Recent 

publications have revealed this antibody - particularly in combination or in series with 

adjuvant chemotherapy - to provide a benefit to most patients, also to those with 

metastasic disease 265,286,334,370. Besides HER-2/neu, several other proto-oncogenes 

are being analyzed in respect of their prognostic and predictive significance. 

Mutations of the tumor suppressor gene p53 occuring in breast cancer mostly have 

been found to lead to a poorer disease-free and overall survival 264, similar to the 

proto-oncogene c-myc 75. The expression of the Bcl-2 gene, a suppressor of 

apoptosis, has been positively correlated to patient survival 195. But seemingly, none 

of these factors can as yet compete with HER-2/neu and its protein product in its 

functions as a marker as well as a therapeutic target. 

 

Proteolytic Factors/Members of the Plasminogen Activation System 

Since 1989, extensive evidence has proven the estrogen-induced lysosomal aspartyl 

protease cathepsin D to be linked to an unfavorable outcome for breast cancer 

patients 110,329,344,349. Additional proteases spotted as prognostic markers in breast 

cancer are the cysteine proteases cathepsins B and L, also correlated to a poor 

prognosis 109,346, and the serine protease uPA, uPAR, and PAI-1 which will be 

thoroughly described in the following chapter. A characteristic of cathepsin L is its 

prognostic relevance in lymph node-positive patients which have received adjuvant 

therapy, while the prognostic potential of the other proteases is diminished in 

adjuvantly treated patients. This indicates that through cathepsin L a group of 



 16 
 

patients may be identified that does not respond to standard adjuvant therapy 

regimens 144,172. Combinations of different proteolytic factors for enhancement of 

their prognostic information have been discussed, for instance uPA/PAI-1 146,177, 

PAI-1/cathepsin L 347, or PAI-1/cathepsin D 144,208, and will surely be subject to future 

investigations.  

 

Proteomics 

Proteomic analysis is based on the idea that different clinical states, also cancer, are 

represented by distinct protein patterns or signatures, potentially consisting of 

completely differing proteins, truncated peptide fragments, or post-translationally 

modified proteins. The most widely studied methods involve identification of 

proteomic profiles as peaks on mass spectrometric analysis with precise charge-to-

mass ratios. Despite a large number of breast cancer studies over the last 10 years, 

analyzing serum, secreted fluids, and cancerous tissue, the research is too 

preliminary as to be able to deduce areas of clinical application 151. Up to now, 

prognostic breast cancer studies are few and lack comparability 1,171. 

 

Gene Expression Profiles 

Recently, studies with Affymetrix genechip arrays have shown a strong sensitivity in 

distinguishing between different risk groups of breast cancer patients on the basis of 

gene signatures 362. For example, significantly differing gene profiles were found in 

tamoxifen-responsive compared to tamoxifen-resistant tumors 179. Analogous to 

determination of selected proteolytic factors, gene expression profiling, amongst 

others, aims at identifying low-risk node-negative patients to help avoid unnecessary 

adjuvant systemic treatment. Oncotype Dx and MammaPrint are tests that may help 

discriminate if chemotherapy is to be applied in addition to endocrine therapy. Still, in 

the 2007 St. Gallen consensus meeting, these tools have not yet been considered 

sufficiently reliable for defining risk categories. Prospective clinical trials are on-going 

24,325. 

 

Other Prognostic Markers 

CA 15-3 and CA 27.29 blood tests allow the detection of circulating MUC-1 antigen 

and have shown to display prognostic value in breast cancer 234. Levels of 

carcinoembryonic antigen (CEA) are less commonly elevated; increase of this tumor 
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marker may provide supplementary information in case of negative CA 15-3 and CA 

27.29 135. The applicability of these tumor markers for therapy decisions in early-

stage cancer remains to be further evaluated 240. Bone-marrow micrometastases, 

defined as an elevated number of (potentially malignant) epithelial cells in the bone 

marrow in tumor patients 32, and the number of circulating tumor cells (CTCs), 

meaning cells detected in the blood that possess antigenic or genetic characteristics 

of a specific tumor type 61, have also been discussed as potential tumor markers for 

breast cancer. A further example of a potential new breast cancer marker is the 

estrogen-related pS2 protein, occurrence of which is related to a favorable 

prognostic effect and predicts an improved response to endocrine therapy 13,105. 

Eventually, heat-shock proteins (HSP), molecular chaperones, have been reported 

to function as protectors of malignant transformed cells against apoptosis or 

adjuvant therapy 51.  

 

Concluding Remarks on Clinical Utility 

In the American Society of Clinical Oncology 2007 Update of Recommendations for 

the Use of Tumor Markers in Breast Cancer, the following categories were 

recommended for application in clinical practice: CA 15-3, CA 27.29, and CEA (only 

as components for therapeutic decisions in metastasized breast cancer), estrogen 

receptor, progesterone receptor, human epidermal growth factor receptor 2, uPA, 

PAI-1, and certain multiparameter gene expression assays. No sufficient evidence for 

introduction into routine use were stated for DNA flow cytometry-based parameters, 

p53, cathepsin D, cyclin E, proteomics, certain multiparameter assays, detection of 

bone marrow micrometastases, and CTCs 151. 
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Table 2: Treatment allocation by therapeutic target and risk categories 
124

. Treatment options in each cell are listed in the order of preference. b: 

Endocrine therapy is effective for prevention of DCIS and therefore might be considered even for very low risk invasive breast cancer. C: chemotherapy; 

E: endocrine therapy (selected according to menopausal status); Tr: trastuzumab (note 1: trastuzumab should not be viewed as a standard treatment in 

women with a primary tumor <1 cm of size and with no axillary node involvement. This is particularly true in patients with highly and perhaps also 

incompletely endocrine responsive disease; note 2: trastuzumab should be given concurrently and after chemotherapy or following completion of all 

chemotherapy according to clinical trial evidence available at present, though a majority of the Panel agreed that trastuzumab without prior or concurrent 

chemotherapy may become appropriate for some patients in the future). 
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1.4 The Plasminogen Activation System 

 
 

 

Figure 3: Interactions of components of the plasminogen activation system (uPA, uPAR, 

PAI-1, PAI-2, plasmin(ogen)), integrins, vitronectin, and LRP, and influences on tumor cell 

invasion and metastasis 
301

. 

 

Invasive tumor growth and metastasis are the result of complex interactions between 

pericellular proteolytic enzymatic systems, adhesive proteins, integrins, growth 

factors, and steroid hormones. Typical features of malignant tumor cells are an 

altered gene expression, abnormal signal transduction pathways, loss of cell cycle 

control, neovascularization, degradation of extracellular structures, and cell 

dedifferentiation. A tumor‘s aggressiveness depends on the ability of the malignant 

cells to control the biological processes within and surrounding a neoplasia. An 

imbalance in different proteolytic enzyme systems can cause changes in the 

structure of the extracellular matrix (ECM) that facilitate tumor cell spread and 

invasion into the vascular system. Proteases involved in such extracellular 

remodeling processes, which are modulated by their specific receptors and inhibitors, 

are metalloproteinases, cysteine proteinases, aspartyl proteases, and serine 
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proteases. These factors have been shown not only to be elevated in various 

carcinomas, expression levels of certain proteases can also be of prognostic 

relevance for cancer patients. Pericellular proteolytic systems are influenced by 

various growth factors, among them epidermal growth factor (EGF), transforming 

growth factors α and ß (TGF-α/-ß), basic fibroblast growth factor, and platelet-derived 

growth factor 188. Thrombin for example, an important serine protease of the blood 

coagulation system, has been shown to stimulate cell proliferation and chemotaxis 

360, and, through generation of fibrin conglomerates around tumor cells, contributes to 

tumorigenesis, along with fibrin itself 82,89,246. A major role in invasive processes is 

further ascribed to the serine protease uPA and other members of the plasminogen 

activation system 8,66,68,85,139,145,148,149,233,279,298,299,300, although several of these factors 

inhibit fibrin formation. Procoagulant and fibrinolytic systems are equally present in 

tumors, and composition as well as interaction determine potential further tumor 

progression.  

 

Although a role in various malignancies has long since been assumed, researchers 

examining members of the plasminogen activation system, first described by Astrup 

and Permin in 1947 10, mostly concentrated on hematological aspects, i.e. 

intravascular degradation of fibrin deposits by plasmin and regulation of hemostasis. 

In the 1980‘s and 90‘s, through a better understanding of the numerous functions of 

the involved proteins and the examination of transgenic mouse models, it became 

evident that the system also played a major role in extravascular cell regulation and 

tissue formation.  

 

Plasmin is a serine protease evolving from the inactive zymogen plasminogen 

through catalysis by the serine proteases uPA (urokinase-type plasminogen 

activator) and tPA (tissue-type plasminogen activator). Pro-uPA is activated by the 

cysteine proteases cathepsin B and L, or by plasmin through a positive feedback 

mechanism 299,301. uPA and uPA:PAI-1 or uPA:PAI-2 complexes bind to the 

membrane-anchored uPA receptor (uPAR; CD87). Through inhibition of plasmin, α2-

antiplasmin plays an essential role in fibrinolysis and also participates in the 

degradation of various other proteins. Besides α2-antiplasmin, there are several 

further inhibitors of plasminogen activation, for example PAI-1, -2, and protease 

nexin 1 (PN-1), belonging to the serpin (serine proteinase inhibitor) family 56. Maspin 



 21 
 

is a newly discovered serpin that inhibits cell surface-associated uPA and fibrinogen-

bound tPA 19. 

 

In murinal models, surprisingly, the deficiency of plasminogen, uPAR, uPA, tPA, and 

PAI-1, respectively, is compatible with development and reproduction 34,35,42,43,44,284. 

Combined uPA/tPA-deficiency, however, leads to severe thrombosis with a 

considerable impact on life expectancy and fertility 37,44.  

 

This section gives a description of single components of the plasminogen activation 

system, focusing on uPA and PAI-1. The first paragraph of each of these chapters 

displays a selection of biochemical features. In the following paragraphs, their 

biological roles, various interactions, and their particular significance for the 

pathogenesis of diseases, including carcinogenic effects, are shown. In the final 

three chapters of this section, the importance of the plasminogen activation system in 

cancer is summarized, scientific and clinical approaches to further explore and find 

application areas in cancer therapy are depicted. The description of uPA/PAI-1 

quantification methods leads to the main topic of this doctoral thesis. 

 

1.4.1 Plasmin 

 
The serine endopeptidase plasmin (Mr ~ 90 kDa) consists of two disulfide bond-

linked polypeptide chains. The C-terminal B chain encompasses a typical serine 

protease domain responsible for its catalytic activity. Peptide bonds that are localized 

on the C-terminal side of lysine (Lys) and arginine (Arg) residues are hydrolyzed 

under plasmin catalysis. The zymogen plasminogen consists of only one chain and 

its catalytic activity lies about 104- to 106-fold lower than that of plasmin. Plasminogen 

(Plg), secreted by the liver as a single chain glycoprotein, is localized intra- and 

extravascularly. Activation of plasminogen takes place by cleavage of the single 

peptide bond Arg561-Val562. Angiostatin, which is known as an inhibitor of 

angiogenesis, is a fragment of plasmin. By autoproteolysis of plasmin in endothelial 

cells, angiostatin can be generated and is able to display antimigratory effects 8.  

 

Plasmin has a very broad spectrum of substrates. In the blood, plasmin, also referred 

to as fibrinolysin, dissolves fibrin clots and degrades various other proteins including 
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fibrinogen and the coagulation factors V and VII. Extravascular plasmin is able to 

degrade fibrin and other ECM proteins, activates latent TGF-ß, and leads to 

detachment of the basic fibroblast growth factor from its ECM-binding sites 238,282. 

Additionally, plasmin catalyzes the activation of matrix metalloproteinases (MMP), a 

family of zinc-dependent enzymes which also degrade various components of the 

ECM proteolytically 154,216. The primary inhibitor of plasmin is the serpin α2-

antiplasmin.  

 

Plasminogen-deficiency in mice leads to severe thrombosis and thrombotic lesions in 

several organs and a high mortality, but does not impair general development or 

fertility. Surprisingly, levels of uPA measured in urine were not reduced in Plg-

deficient mice 34,284. This suggests plasminogen not to be essential for uPA activation 

and supports the idea of functions of uPA independent of plasminogen activation. By 

simultaneously inducing fibrinogen-deficiency it was possible to prevent the mice 

from the thrombogenic effects caused by the lack of plasmin 36. From these results it 

was deduced that the physiological role of plasminogen may more or less be 

restricted to fibrinolysis processes. Coherent to functions of the plasminogen 

activation system in inflammatory cell recruitment, Ploplis et al. 267 showed an 

impaired response to inflammation in Plg-/- mice. The induction of Lewis lung 

carcinoma in Plg-/- mice was characterized by a slight decrease in tumor growth and 

longer survival time in comparison to the Plg+/+ control group 38. Moreover, the 

development of metastasis in induced mammary tumors was promoted by 

plasminogen, pointing out a crucial role in tumor biology 39. 

 

1.4.2 The uPA Receptor (uPAR) 

 
uPAR (Mr ~ 55-65 kDa) is a cysteine-rich glycoprotein which is synthesized as a 

single polypeptide chain of 313 amino acid residues, preceded by a 21-residue signal 

peptide. Post-translationally, the last 30 C-terminal residues are cleaved and a 

glycophosphatidylinositol (GPI) tail is attached to Gly283. Mature uPAR consists of 

three homologous, independently folded domains which are members of the Ly-

6/uPAR/α-neurotoxin protein domain family. Domain 3 (D3) is the C-terminal domain 

that anchors the molecule to the cell membrane through the GPI tail. The three 

domains form a central cavity that recognizes the growth factor domain of uPA. uPA 
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and the somatomedin B (SMB) domain of vitronectin can simultaneously bind to the 

N-terminal domain 1 (D1) 363. All three domains are required for high affinity binding. 

While uPA occupies the central cavity, other ligands, for example vitronectin, bind at 

the D1 domain and the D1-D2 linker region on the outer side of the receptor 167,218 

(Figure 4). uPAR can be cleaved by uPA and other proteases resulting in truncated 

forms, for example without domain 1, unable to bind uPA or vitronectin. Depending 

on the localization of the cleavage site, the truncated forms are able to exert varying 

functions. Until now, several molecular forms, glycosylation variants, and splice 

variants of uPAR have been identified that are widely expressed in vitro and in vivo. 

Soluble forms (suPAR) have been detected in body fluids, for instance human 

plasma, urine, and ovarian cystic fluids 241,269,359. Conformational changes, as 

induced by uPA, have been shown to cause the appearance of novel binding sites for 

vitronectin 311, thrombospondin 160, uPAR-associated protein 14, and the 

disappearance of binding sites for the α2-macroglobulin receptor 160. 

 

 

 

 

 
 

Figure 4: Recognition of both the uPA N-terminal fragment (ATF) and the vitronectin SMB 

domain by uPAR 
167

. Stereoview of the crystal strucure of a suPAR-ATF-SMB complex.  
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The uPA receptor is essential for the cell-surface associated plasminogen activation, 

thereby promoting uPA-catalyzed degradation of ECM which can lead to a spread of 

cancer cells into vascular or lymphatic systems. Additionally, it is believed to 

influence cell adhesion, proliferation, differentiation, and migration by non-proteolytic 

mechanisms. These mechanisms imply the interaction with vitronectin and the 

regulation of the activity state of integrins 22,269. The localization of uPAR has shown 

to be dependent on its binding to uPA. While unoccupied uPAR is quite mobile, it is 

concentrated at cell contact sites upon interaction with uPA 245. The uPA:uPAR 

complex at the cell surface triggers signaling cascades 357 and focusses uPA to the 

leading edge of migrating cells, thereby facilitating local proteolysis and directional 

invasion 96. This effect has also been shown to promote wound healing by re-

epithelialization of keratinocytes 283. Partitioning into membrane lipid rafts causes 

modulation of the functions of GPI-linked uPAR 63,316. Truncated soluble variants 

have been shown to be potent chemoattractants for monocyte-like cells, thus 

imitating the chemotaxis-promoting effects modulated by the uPA:uPAR complex 277. 

In vitro, the G protein-coupled receptor FPRL1/LXA4R that interacts with an active 

soluble cleaved form of the uPA receptor (D2D388-274) has been found - as uPAR - to 

be necessary for the chemotactic activity of uPA 278. As mentioned above, uPAR also 

binds to integrins and to vitronectin, this ligation being stimulated by pro-uPA, uPA, 

the amino-terminal fragment of uPA (ATF; see below), and the uPA:PAI-1 complex, 

but inhibited by PAI-1 alone 46,76,183,281,363. Despite no apparent direct contact 

between ATF of uPA and SMB of vitronectin upon simultaneous binding to uPAR, the 

suPAR-vitronectin binding affinity is reduced considerably in absence of uPA 167,313 

(Figure 4). uPA-stimulated uPAR-vitronectin binding indicates uPAR‘s function as an 

adhesion receptor. Agonistic and antagonistic interactions between integrins and 

uPAR in vitro with effects on adhesion processes suggest a role of uPAR and 

uPA:uPAR complexes, respectively, also in the regulation of cell adhesion 8,269. As 

uPAR lacks a transmembrane domain, the signaling cascade is believed to comprise 

additional transmembrane adapters helping to connect to diverse binding partners, 

such as intra- and extracellular tyrosine kinases 99,277; integrin receptor families have 

been discussed in this respect 364. Further interactors of uPAR include EGF and its 

receptor, the mannose-6-phosphate receptor, and the family of low-density 

lipoprotein receptors (LDLR). Upon inhibition of uPAR-bound uPA by PAI-1 or PAI-2, 

the complex is endocytosed after binding to members of the LDLR family. While the 
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plasminogen activator and its inhibitor are degraded in lysosomes, uPAR recirculates 

to the cell surface 22,58,254. uPA-uPAR interaction in tumor and endothelial cells, 

through interaction with integrins and vitronectin, activates the mitogen-activated 

protein kinases (MAPK) extracellular regulated kinases (ERK) 1 and 2 345. 

Downregulation of uPAR has been reported to lead to cancer cell dormancy and 

reduction of the MAPK extracellular signal regulated kinase kinase (MEK) pathway 

activation 3. 

 

Disruption of the uPAR gene alone does not affect fertility, development or 

hemostasis in mice. Although activated peritoneal macrophages from uPAR-deficient 

mice did not promote plasminogen activation in vitro, no considerable inhibitory effect 

on uPA activation was seen 35,78. Dual deficiency of uPAR and tPA caused sinusoidal 

fibrin deposits in the liver, proving uPAR‘s physiological relevance in fibrinolysis, 

complementary to tPA. Still, the consequences for the development of the animals 

were not nearly as grave as those for mice with combined uPA/tPA-deficiency. uPA 

supposedly can independently compensate for some of the lacking fibrinolytic 

capacity of uPAR and tPA 37.  

 

uPAR was first described as a membrane receptor for urokinase on human 

monocytes and cells of the promyelocyte leukemia cell line U937 by Vassalli et al. 

355, and is also expressed by neutrophils, T lymphocytes 253,266, fibroblasts, 

keratinocytes, and a variety of cancer cells. Overexpression of uPAR in tumor cells 

has shown to lead to increased tumor invasion and growth 67,87,369. Application of 

synthetic peptide antagonists of the uPA-uPAR interaction impaired the 

dissemination of tumor cells in vitro and in vivo 230,268,294. The uPA receptor has been 

found to be upregulated in HIV-1 infections 113,312,328 and in a variety of malignancies 

like lung 260, gastric 158, colorectal 337, pancreas 41, kidney 162, breast 

18,87,98,131,189,199,227, and ovarian cancer 315,359, mostly together with its ligand. 

Membrane-bound and soluble, full-length, cleaved, and spliced variants have been 

examined, and some were significantly related to a poor outcome. The significance of 

the different uPAR variants remains to be further explored.  
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1.4.3 uPA and tPA 

 
uPA (Mr ~ 55 kDa) consists of two disulfide bond-linked polypeptide chains. The N-

terminal A chain contains a growth factor domain, a kringle domain and an 

interdomain linker region. The C-terminal B chain harbors the serine protease 

domain. By proteolytic cleavage of a single peptide bond, Lys158-Ile159 in human 

uPA, the single-chain zymogen form pro-uPA is converted into uPA which has an at 

least 250-fold higher activity. This process can be catalyzed by plasmin or other 

proteases, such as kallikreins, nerve growth factor-γ, cathepsins B and L, or Factor 

XIIa 8,125,193,279,356. By proteolytic cleavage within the linker region of the A chain, 

high-molecular-weight uPA (HMW-uPA) can be split up into a so-called amino-

terminal fragment (ATF), consisting of the growth factor and the kringle domain, and 

low-molecular-weight uPA (LMW-uPA) forms, consisting of a part of the linker and 

the serine protease domain. LMW-uPA, though proteolytically active, can not bind 

uPAR. uPA binds to the uPA receptor through its growth factor domain. Pro-uPA and 

active uPA have the same high affinity to uPAR 339. Lacking the catalytic domain, 

ATF can bind to uPAR, but cannot cleave plasminogen to generate plasmin (Figure 

5). 

 

 

Figure 5: Urokinase fragments generated upon proteolytic processing of urokinase on the 

cell surface 
335

. G: growth factor-like domain; K: kringle domain; P: protease domain.
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tPA (Mr ~ 70 kDa) is also composed of two chains and activated originating from a 

one-chain form by cleavage of a single polypeptide bond, i.e. Arg 275-Ile276 in 

human tPA. The single-chain form‘s activity lies 10- to 50- fold beneath that of the 

two-chain form. The N-terminal A chain consists of a fibronectin type II domain, a 

growth factor domain, and two kringle domains with the C-terminal B chain holding 

the serine protease domain. Both are connected by a disulfide bond. tPA‘s and its 

proform‘s activity are accelerated by fibrin 8.  

 

tPA‘s activity is mainly restricted to plasmin conversion in fibrinolytic processes within 

blood vessels, continuously being secreted by the endothelium. By concomitant 

binding of tPA and plasminogen to fibrin, tPA-directed plasminogen activation is 

accelerated 44,57. 

 

In addition to its thrombolytic functions, uPA elicits matrix-degrading processes, 

influences mitosis, tumor growth, and tumor tissue remodeling. These functions imply 

fibroblast proliferation and ECM protein synthesis. Findings of positive correlations of 

uPA levels and microvessel density support its assumed role as a stimulator of 

angiogenesis and angioinvasion 161. Some of these tumor promoting functions are 

independent of plasmin generation. The uPA:uPAR complex is able to activate 

cellular responses independent of any pericellular proteolytic activity. Chemotaxis, for 

example, is stimulated by non-proteolytic uPA through activation of Src-type tyrosine 

kinase p56/p59hck, protein kinase C, and extracellular signal-regulated kinase (ERK) 

71,249,277. Additionally, there are studies showing that the attachment of uPA to uPAR 

accelerates plasmin‘s activation of certain matrix metalloproteinases (MMP-

2/gelatinase A and MMP-9/gelatinase B) which in turn degrade various ECM 

proteins, for example collagen types 1 and 4, denatured collagens, fibronectin and 

laminin 235. But uPA has also shown to be able to activate MMP-9 directly 372, among 

other members of the MMP family. There are studies indicating that the presence of 

the uPA receptor is indispensible for the function of uPA as a growth factor, 

contributing strongly to cell proliferation enhancement, independent of its enzymatic 

activity 272,366. Still, some studies observed growth functions without binding to uPAR 

184, in others mitogenic effects were seen only in presence of fully intact uPA 155. 

Concerning uPA‘s chemotactic effects, interaction with uPAR seems essential, uPAR 

in fact has chemotaxis-promoting functions independent of its ligand 137,277. Cell 
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migration triggered by uPA includes movement of tumor cells as well as leukocytes in 

inflammation processes 74,136,137. uPA further influences cell migration by direct 

cleavage of ECM proteins like fibronectin and activation of TGF-ß. In addition, uPA 

catalyzes the conversion of the inactive proforms of the hepatocyte growth 

factor/scatter factor (HGF/SF) and of the macrophage-stimulating protein (MSP) into 

their active forms. HGF/SF and MSP structurally resemble plasmin, but lack protease 

activity 20,277.  

 

Similar to plasminogen-/- mice models, uPA-/- mice developed hepatic fibrin 

sediments and ischemic rectal ulcerations. Surprisingly, considering tPA‘s 

emphasized role in fibrinolysis, tPA-deficiency did not lead to thrombotic deposits in 

multiple organs, except for rare fibrin clots in the liver. Nevertheless, combined 

uPA/tPA-deficiency caused a severe impairment of wound repair mechanisms as 

well as reduced body weight, fertility, and life expectancy 44. It may be concluded that 

uPA and tPA have complementary functions in vascular and extravascular fibrinolytic 

processes. uPA is involved in wound healing processes and is capable of fibrin 

clearance independent of tPA and its binding to uPAR. However, the healing in mice 

with combined uPA/tPA-deficiency was less impaired than compared to mice with 

Plg-deficiency, suggesting the existence of a third Plg activator that contributes to 

wound healing, potentially plasma kallikrein 226. A study examining the relevance of 

uPA protease activity in inflammation showed a significant decrease of pulmonary 

inflammatory response to Cryptococcus neoformans in uPA-/- transgenic mice when 

compared to uPA+/+ mice 138. Murinal tumor models have underlined uPA‘s role in 

tumor invasion 4,289,308.  

 

uPA is secreted by numerous normal - among them monocytes-macrophages 354, 

capillary endothelial cells 263, and implanting trophoblastic cells 210,291,340 - and 

malignant cells 66. It was originally isolated from human urine and named ‗urokinase‘ 

by Sobel et al. in 1952 321. Therapeutically, uPA and tPA are used as thrombolytic 

agents. In breast cancer as in other cancers, high uPA expression levels have been 

related to significantly poorer prognoses than low levels, while elevated levels of tPA 

have been associated with a favorable prognosis in cancer 86,190,288. 

 

 

http://en.wikipedia.org/wiki/Thrombolysis
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1.4.4 PAI-1 and PAI-2 

 
PAI-1 (Mr ~ 50 kDa) is a single-chain glycoprotein that consists of 379 amino acids. It 

is present in three forms with differing conformation: an active (Figure 6), a latent, 

and a non-functional substrate form. While in latent PAI-1 the reactive center loop 

(RCL) near the C-terminal end is withdrawn by insertion into ß-sheet A, the reactive 

center is exposed on the surface in the active form. During inhibition, the surface-

exposed reactive center loop (RCL) of PAI-1 is cleaved between R346 and M347 

(P1-P1‘ bond) by the target protease, an acylenzyme intermediate complex is 

formed, and the N-terminal part of the RCL is inserted into ß-sheet A as additional 

strand 4A (s4A), translocating the protease across the plane of ß-sheet A. In the 

disorderd and, thus, its enzymatic activity is inhibited 305. PAI-1 reacts only once with 

its target protease. PAI-1 is synthesized as an active molecule which is rapidly 

inactivated in free solution, but this conversion can be delayed by binding to 

vitronectin. Reactivation of the latent form can be achieved by exposure to chaotropic 

agents or phospholipids 45,119,336,356. Sites for binding of vitronectin are the α-helices 

E/F and the ß-strand 1A 212,256,352.  

 

 

Figure 6: Model of the three-dimensional structure of active PAI-1 
8
.
 
In the center, the large 

ß-sheet A (s2A with ß-strand 1A (s1A)) is visible. Besides ß-strand 1A, α-helix F (hF) and α-helix 

E (hE) are regions implicated in the binding to vitronectin. 

subsequent complex, the structure of the active site of the serine protease is 
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PAI-2 exists in two forms: one is located intracellularly (Mr ~ 47 kDa), the other is a 

glycolsylated secreted form (Mr ~ 60 kDa); both contain 415 amino acids and are 

encoded by a single mRNA 15,116. In solution, unlike PAI-1, secreted PAI-2 does not 

lose its activity spontaneously 336. PAI-1 and PAI-2 only have 24% of their amino acid 

sequence in common and belong to different serpin classes. However, their structure 

- containing three ß-sheets, 8-9 α-helices and the RCL - is quite similar. A structural 

feature unique to PAI-2 is a sequence of 33 amino acids between α-helices C and D 

known as the C-D loop (Ala65-Glu96) 204.  

 

PAI-1 is synthesized by numerous healthy as well as tumorous cells, and its 

expression is influenced by different cytokines, hormones, growth factors, and 

endotoxins. The better part of intravascular PAI-1 is stored in α-granules of platelets 

203. It forms an inactive complex with tPA in the vasculary system, thereby preventing 

early fibrinolysis by tPA 81. Furthermore, PAI-1 inhibits uPA: by forming a stable 

complex with active uPA, it exerts a negative feedback control with consequent 

inhibition of plasmin formation. Binding of PAI-1 to uPAR-bound uPA results in 

inactive PAI-1:uPA:uPAR complexes that are internalized by endocytosis receptors 

of the LDLR family, such as LRP and the very-low-density lipoprotein receptor 

(VLDLR), while sustaining mitogenic signaling events. Thus, PAI-1 can regulate 

uPA/uPAR levels on the cell surface and their signaling activity. A high-affinity site for 

the VLDLR within the PAI-1 moiety has been discovered which is not present in PAI-

2 - thereby not affecting cell proliferation - and may explain the differences between 

their functional implications in cancer 62, as described below. PAI-1 can also, for 

instance via direct interaction with LRP, stimulate cell migration independently of 

uPA, tPA, and vitronectin 72. Through its various interactions PAI-1 plays a role in 

signal transduction and has been shown to facilitate tumor invasion in compliance 

with uPA and uPAR. Similar to uPAR, PAI-1 interacts with integrins and, as 

mentioned above, with the adhesive ECM glycoprotein vitronectin, the primary PAI-1 

binding protein. PAI-1 and uPAR compete for the same vitronectin binding site, and, 

thus, PAI-1 causes detachment of cells by disruption of uPAR-vitronectin and 

integrin-vitronectin interactions 223. PAI-1, moreover, binds to and disrupts 

uPA:uPAR:integrin complexes; several other cells of the ECM are detached from 

fibronectin and collagen type 1 64. Further binding partners of PAI-1 are fibrin and 

heparin. By binding heparin or vitronectin, PAI-1‘s substrate specificity is altered and 
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permits inhibition of an additional serine protease: thrombin. These often 

contradicting functions may explain the simultaneous stimulatory and inhibitory 

effects on tumor invasion modulated by PAI-1. PAI-1 and associated proteins are 

also active in embryological processes, such as the regulation of trophoblast invasion 

210,229,255.  

 

PAI-2 also inhibits uPA and tPA, but the reaction takes place at a lower pace than the 

inhibition by PAI-1. While PAI-1 inhibits all active forms of uPA and tPA, PAI-2 only 

recognizes and inhibits the two-chain forms of the proteases. It is not known to bind 

to further intra- or extracellular sites apart from uPA and tPA 229. 

 

Generation of PAI-1-deficient mice by homologous recombination in embryonic stem 

cells revealed that the animals were fertile and showed no abnormalities in their 

development to adulthood 42, despite the various regulative functions ascribed to PAI-

1 in embryology. Disruption of PAI-1 did not impair hemostasis considerably, but 

caused just a mild hyperfibrinolytic state. This may be explained by the compensation 

of PAI-1‘s inhibitory functions through other factors such as PAI-2, α2-antiplasmin, α2-

macroglobulin, C1-esterase inhibitor, or α1-antitrypsin 43.  

 

PAI-1 was first purified from endothelial cells in 1984 353. The highest concentrations 

in the human body are found in the liver and the spleen 336. Concerning tumor biology 

the role of PAI-1 has to be further explored. In analogy to uPA, PAI-1 is assumed to 

promote angiogenesis and cancer invasiveness. In a murinal trial with transplantation 

of malignant keratinocytes, Bajou et al. 11 found a decrease of invasiveness and 

tumor vascularization in absence of PAI-1. In another study, deletion of PAI-1 in mice 

prevented subretinal choroidal angiogenesis induced by laser photocoagulation 211. 

Liu et al. 217 stated that PAI-1 in vitro promoted the invasion of human lung cancer 

cells in presence of uPA and uPAR. Other studies observed inhibitory effects of PAI-

1 on tumor progression 33,178,322. For instance, PAI-1 inhibited uPA/uPAR-modulated 

invasiveness of human A549 and Calu-1 lung carcinoma cells 33. Intravenous 

injection of PAI-1 into SCID mice with xenografts of human prostate carcinoma cells 

led to a considerable size reduction of the xenografts 178. In spite of these deviating 

results, for breast cancer diagnostics PAI-1 is today regarded as one of the most 

valuable prognostic factors 86.  
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PAI-2 was first purified from the placenta, where it is secreted by the trophoblastic 

epithelium 186, and is additionally synthesized by macrophages, and by monocyte 

and other cell lines 116,368. In the course of the evaluation of the tumorbiological role 

of PAI-2, induction of malignant tumor growth with addition of PAI-2 in rodents was 

followed by significantly less tumor progression and occurrence of metastatic lesions 

than in the comparison groups 97,243. In correspondence to these results, PAI-2 levels 

have been inversely correlated to lymph node involvement as well as to the 

metastasis-promoting factors uPA, uPAR, and PAI-1 169. Furthermore, high PAI-2 

levels have been related to a positive outcome for breast cancer patients 

28,29,88,108,350, whereas low levels were associated with metastasis of various 

carcinomas, including breast cancer 86,111,204. 

 

1.4.5 The Plasminogen Activation System and Cancer 

 
Since several decades, the plasminogen activation system is being put in the context 

of tumor growth and metastasis 66. The components of the system have been found 

in stromal fibroblast cells, endothelial cells, and tumor cells, indicating their 

importance in stroma remodeling and desmoplasia, angiogenesis, and tumor 

invasion. In large part, the understanding of the system‘s functions in cell migration 

and ECM formation was gained from cell culture studies, and the system‘s 

components were thought to be indispensable for regulation of tissue organization, 

including under physiological conditions. But murinal studies with plasminogen, uPA-, 

tPA-, PAI-1-, and uPAR-deficiencies surprisingly found no significant delay in 

development. The exact locations and quantities of the components have extensively 

been analyzed by immunohistochemistry and in situ hybridization. In different tumors, 

a great diversity of expression patterns was found, depending on tumor type and 

tumor stage or grade. Members of the uPA system can potentially be produced by a 

large number of various cell types 27,50,77, and it has been hypothesized that different 

tumor cells collaborate in producing members of the system 67. Basically, the 

processes modulated by the plasminogen activation system are also existent in non-

cancer cells. But these cells are also capable of contributing to cancer development 

by reorganization of tissue in proximity to tumor cells 350. For example, in a breast 

cancer study analyzing the expression of uPA, uPAR, and PAI-1 in tumor cells and 

fibroblasts, their presence in fibroblasts seemed to be more decisive for tumor 
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invasion than their localization in the tumor cells themselves 83. There are indications 

that the promoting effects of the uPA system on tumor growth are due to an 

imbalance of its components 7,11,12,217,317.  

 

uPA was first associated with breast cancer development by Duffy et al. 84, the 

predictive value of PAI-1 was described for the first time by Jänicke et al. 174. In 

different studies, analysis of uPA and PAI-1 expression revealed these factors to be 

independent prognostic markers in numerous malignancies apart from mammary 

cancer, such as cervical 194, ovarian 205,206, endometrial, bladder 86, renal cell 162, 

prostate 239, pulmonary 259,260, gastric 158,247, esophageal 248, and colorectal 114,292 

cancer. High antigen concentrations in the primary tumor correlated significantly with 

tumor progression and, in total, with a poor prognosis. These effects were also 

shown in patients with oral squamous cell carcinomas 168. By examination of the 

development of human keratinocyte cell lines of differing malignancy in PAI-1-

deficient mice its stage-dependent significance was described. Only early tumor 

stages profited from PAI-1-deletion, while aggressive tumors kept growing 231. 

Elevated uPA and PAI-1 contents were also found in metastatic lesions of different 

tumors 297,314. High uPAR levels in malignant breast tumors have been associated 

with a poor prognosis, but mostly with a less strong prognostic impact than uPA and 

PAI-1 87,98,131,189,199,227. Its value as a prognostic marker therefore remains uncertain. 

tPA and PAI-2 showed to be associated with a favorable prognosis for breast cancer 

patients 28,29,88,108,190,288,350. The multifunctional roles of the individual components of 

the plasminogen activation system reflect the great complexity of their influence on 

tumor growth and vary depending on the respective tumor type.  

 

1.4.6 Clinical Application of uPA System Research in Breast Cancer 

Diagnostics and Treatment 

 
Since the 1980‘s, numerous research groups have focused on the importance of the 

uPA system in breast cancer, providing evidence of the prognostic relevance of uPA 

and/or PAI-1 in lymph node-negative as well as in node-positive patients 

29,30,48,84,95,107,111,130,131,133,134,141,142,143,174,175,177,190,192,208,215,222,242,262,288,298,331,347,371, 

PAI-1 frequently displaying a higher prognostic significance than uPA. In an analysis 

of the prognostic strength of uPA, PAI-1, and the steroid receptor status at different 
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times of follow-up, Schmitt et al. 300 found a time-variation of their prognostic power 

and differences between the two factors. While there was a continuous decrease of 

prognostic impact of the uPA status over the first three years, the prognostic value of 

PAI-1 improved over time. Harbeck et al. 146 were able to demonstrate that the 

greatest clinical relevance of uPA and PAI-1 for breast cancer patients is reached 

when evaluated in combination, i.e. divided into two groups: both low (defined as 

negative) or either or both high (defined as positive). In a German prospective 

randomized adjuvant chemotherapy trial to examine the predictive value of uPA and 

its inhibitor, high-risk axillary node-negative breast cancer patients were identified by 

the uPA and PAI-1 levels, and split up into a group with application of adjuvant 

therapy and an observation group. As a preliminary result there was a significantly 

lower rate of recurrences in the chemotherapy group 177. The response to hormone 

therapy, however, seems to be weak in patients with high uPA and PAI-1 values 

86,139. In metastasized tumors with high uPA/PAI-1 in the primary tumor tissue, 

palliative endocrine therapy turned out to be less effective 148. These results may 

indicate that high uPA/PAI-1 expression levels are present in especially aggressive 

tumors that are urgently to be treated by adjuvant systemic therapy. On the other 

hand, uPA/PAI-1 measurements can help identify low-risk patients to avoid 

unnecessary adjuvant treatment 177. Thus, in the future, the uPA system may 

become a decisive component of individualized breast cancer management.  

 

Taking the diverse importance of the plasminogen activation system in cancer 

development into consideration, its components may, furthermore, serve as potential 

targets for anti-invasive and anti-metastatic therapy 180,319. For instance, peptide 

sequences have been found, forming the basis for the development of a selective 

uPA inhibitor that barely inhibits tPA and thereby fibrinolysis 187. The binding process 

of uPA to uPAR may be a potential target 7,280,285,327, as well as the PAI-1-vitronectin 

binding site 304. Moreover, the ability of PAI-1 to inhibit binding of uPAR and integrins 

to vitronectin 8 may be used for therapeutic purposes. Antisense oligonucleotide 

therapy represents an alternative approach that inhibits biosynthesis of the 

plasminogen activation system components 299. Another option is the application of 

angiostatin as an inhibitor of angiogenesis 150,293. 
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1.4.7 Quantification Methods for uPA and PAI-1 

 
Available methods for measuring uPA system components in cancer patients‘ tumors 

are receptor/ligand assays, enzymometric assays, immunohistochemical methods, 

ELISA, Western blot analysis, and PCR. The ELISA is the most commonly applied 

technique, with tumor samples being provided as cytosol fractions or detergent 

extracts. Today, several standardized ELISA methods, such as the Femtelle assay 

(American Diagnostica, Stamford, USA), are commercially available. 

Immunohistochemical staining of uPA-/PAI-1-positive cells has yielded likewise 

results 50,102, but not with the same high predictive capacity as ELISA assays 151. 

Apart from this, advantages of the ELISA method compared to 

immunohistochemistry (IHC) for measurement of plasminogen system components 

imply the use of standardized methods, parallel analysis on a large number of 

specimens, and a higher sensitivity allowing assessment of smaller amounts of 

tissue. Disadvantages of ELISA include quantification errors due to cross-reactions 

between the respective antibodies, a lack of sensitivity or specificity for different 

forms of uPA and its complexes with inhibitors depending on the ELISA-kit used, 

influences of differing reaction conditions on the antigen/antibody interaction, and the 

restricted application only to cryostat, not to paraffin sections 102,147,303,304,342,343.  

 

More and more malignant breast tumors are diagnosed at earlier stages of the 

disease, making it necessary to acquire tissue from increasingly small-sized primary 

tumors. In this situation, the extraction of RNA for quantitation by PCR may be a 

solution or even the detection in plasma or serum; the latter approach would avoid 

sampling bias due to tissue heterogeneity. The system‘s components have already 

been measured in the blood of healthy donors and breast cancer patients by ELISA 

129,358. More specific new ELISAs were established for detection of soluble uPA:PAI-1 

and uPA:uPAR complexes in blood plasma and showed these to be present much 

more frequently in the cancer groups 79,261. But more research on this item will be 

necessary as the complexes to some extent were also detectable in healthy women. 

Furthermore, Grebenchtchikov et al. found no significant correlations between the 

expression of uPA, PAI-1, and uPA:PAI-1 complexes in plasma and tumor tissue, 

and plasma levels were not significantly elevated in malignant breast cancer 127. 

There has been an increase in studies using semiquantitative PCR assays for 

detection of uPA system members 169,227,318, and recently, quantitative real-time PCR 
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assays have been introduced 40,47,48,98,215,274,331,338,351. But up to now, systematic 

studies with high patient numbers in order to compare uPA/PAI-1 mRNA expression 

values with antigen expression values determined by ELISA are rarely found. 

 

A major problem in the application of biomarkers is the frequent lack of sufficient 

validation data before clinical use. Varying results of different study groups on the 

same subject can theoretically be due to differing detection methods. For uPA and 

PAI-1, e.g., the comparison of different extraction methods for their determination by 

ELISA led to varying conclusions. Mostly high correlations were found, but some 

described the best prognostic significances in samples extracted by Triton X 176, 

others yielded better results from non-detergent extraction 131. The Receptor and 

Biomarker Group (RBG) of the European Organisation for Research and Treatment 

of Cancer (EORTC) plays an important role in the determination of standards for the 

assessment of new biomarkers and supervises External Quality Assessment (EQA) 

schemes 304,342,343. The evaluated standards have been applied to uPA and PAI-1 in 

the breast cancer trial by Jänicke et al. 177 and the pooled analysis by Look et al. 222, 

validating uPA and PAI-1 as significant breast cancer biomarkers in lymph node-

negative as well as in lymph node-positive patients. 
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1.5 Objectives 

 
The subject of this work is the establishment of quantitative real-time LightCycler 

PCR assays for the detection of the proteolytic factors uPA and PAI-1 in mRNA 

isolated from malignant breast tumor tissue. The aim is the evaluation of the 

detection of uPA/PAI-1 mRNA by QPCR as a potential alternative to the antigen 

determination by ELISA. This work further evaluates the applicability of preserved 

tissue extracts for determination of uPA and PAI-1. The featured detection method is 

designed for utilization in very small amounts of tissue specimens for potential future 

application in early stage cancer diagnosis. The setup of the study includes the 

following procedures: 

 

 Establishment of the quantitative RT-PCR assays. 

 Detection of uPA and PAI-1 by the established assays in breast and ovarian    

cancer cell lines, in a melanoma and a keratinocyte cell line. 

 Application of the quantification method in two breast cancer collectives and 

statistical evaluation utilizing the available patient and histomorphological data. 

 Separate analysis of the QPCR results obtained from our Munich breast cancer 

cohort: here the samples were available in duplicate - one part of the mRNA was 

isolated from fresh-frozen (pulverized) tumor tissue, the other from tissue 

preserved in paraffin and formalin (FFPE). 

 Evaluation of the quantified housekeeping genes: in addition to G6PDH - which 

was available for all samples - ß-actin was quantified in Nijmegen, PBGD in 

Munich. 

 

In each of the examined cohorts, the quantitative RT-PCR results for uPA and PAI-1 

are compared to the available matching antigen concentrations measured by ELISA. 

In case of availability of the respective data, the housekeeping genes G6PDH and ß-

actin, and G6PDH and PBGD, respectively, are statistically related to each other. 
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2 MATERIALS AND METHODS 

 

2.1 The LightCycler Method 

 
The decision to use the LightCycler Real-Time PCR (Roche Diagnostics, Penzberg, 

Germany; Software Version 3.5) for this study was made because of its advantages 

concerning speed, high sensitivity, and the possibility of using extremely small 

amounts of tumor tissue. In a normal amplification run, the measurement of a sample 

only takes about 20 milliseconds. 

 

The LightCycler Apparatus 

 

Figure 7: Sectional view of a LightCycler 
373

. The center of the construction harbors the rotor-

like sample carousel which is easily removable for the loading of the samples. Two stepper 

motors work together to achieve optimal positioning of the capillaries into the focus of the 

fluorimeter. By the arrangement of the glass capillaries, most of the emitted light is focused on 

the tip of the capillary. A complete turn of the rotor takes about 5 seconds. For heating and 

cooling of the samples, ambient air is drawn into the machine by a small fan and heated up by a 

heating coil. A ramp rate of about 20°C per second can be reached. Air has a very low thermal 

capacity, and the samples are located in small glass capillaries with a very high surface-to-

volume ratio. Heating and cooling in the LightCycler system occurs about ten times faster than in 

a normal thermal cycler. An amplification cycle requires only 30 to 60 seconds. The amplification 

products are quantified by fluorescence measurement using a single microvolume fluorimeter. 

For fluorescence excitation, the LightCycler system is equipped with a blue LED light source 

which emits light with a wavelength of 470 nm. The fluorimeter provides three channels which 

detect emitted light with wavelengths of 530 nm, 640 nm, and 710 nm.  
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Hybridization Probes 

In this work, the ‗LightCycler FastStart DNA Master Hybridization Probes‘ Kit (Roche 

Diagnostics) was used. In addition to forward and reverse primers, template-specific 

hybridization probes have to be produced as detection format. These hybridization 

probes are two oligonucleotides that hybridize to adjacent internal sequences of the 

amplicon. The donor oligonucleotide has a fluorescein label at its 3‘ end. The second 

oligonucleotide, the acceptor, has the fluorophore LightCycler Red 640 at its 5‘ end. 

The two probes come in close proximity when they hybridize to the template DNA, 

resulting in the so-called fluorescence resonance energy transfer (FRET) between 

the two fluorophores. During FRET, the donor fluorophore is excited by the light 

source of the LightCycler instrument, and part of the excitation energy is transferred 

to the acceptor fluorophore. The fluorescence emitted by the acceptor fluorophore is 

then measured by the LightCycler instrument (Figure 8). 

 
 
 
 

 

Figure 8: Annealing process of the hybridization probes 
373

. A: The acceptor probe on the 

right side is labed with LightCycler Red at the 5‘ end. Hybridization does not take place during the 

denaturation phase of PCR, and the distance between the dyes is too large to allow energy 

transfer to occur. B: During the annealing phase, the probes hybridize to the amplified DNA 

fragment in a close head-to-tail arrangement. When fluorescein is excited by the light from the 

LED, it emits green fluorescent light, transferring the energy to the acceptor probe which then 

emits red fluorescent light. The red fluorescence is measured at the end of each annealing step 

when the fluorescence intensity is highest. C: After annealing, the temperature is raised and the 

hybridization probes are displaced during elongation. At the end of this step, the PCR product is 

double-stranded and the displaced probes are again too far apart to allow FRET to occur. 
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Quantitative RT-PCR Procedure and Calculation of Results by Standard 

Calibration  

In each LightCycler PCR run, 2 μl (about 5 ng) of template cDNA and 2 μl of the ‗Hot 

Start‘ reaction mix per capillary were added, the final volume was 20 μl. The total 

capacity of the LightCycler carousel is 32 capillaries. The amplification program starts 

with pre-denaturation at 95°C for 10 minutes, followed by 45 cycles of amplification, 

temperatures differing slightly according to the respective amplicon lengths: in the 

runs measuring the houskeeping genes, denaturation took place for 10 seconds at 

95°C, annealing for 15 seconds at 55°C, and elongation for 15 seconds at 72°C. For 

amplification of uPA, 10 seconds of heating at 95°C were followed by 10 seconds at 

62°C and 5 seconds at 72°C. For PAI-1, 10 seconds at 95°C, 10 seconds at 63°C, 

and 5 seconds at 72°C were programmed. Finally, the amplification products were 

cooled down to 40°C for 30 seconds. In order to be able to calculate the absolute 

copy numbers of the amplicons, eight plasmid-coated standard capillaries - 

containing 10, 20, 50, 100, 1,000, 5,000, 10,000, and 100,000 copies of the amplicon 

to be detected - were produced. For this purpose, the linearized plasmids pUC18-

uPA and pMelBacA-PAI-1, which harbored the complete cDNA sequence of uPA and 

PAI-1, respectively, had been calibrated by HPLC and coated to the capillaries 

(Roboscreen, Leipzig, Germany) 196. In the course of further uPA/PAI-1 detection in 

different collectives, multiparameter standard capillaries coated with uPA and PAI-1 

DNA were used. Log-phase analysis was applied to calculate the amount of template 

cDNA measured in every cycle. By the second derivative maximum method the so-

called crossing point (CP) - the measuring point of the fluorescence curve - was 

determined for each sample. This method works as follows: an algorithm of the 

LightCycler software identifies the first turning point of the fluorescence curve‘s 

second derivative which is defined as the crossing point. A calibration curve is 

constructed by plotting the logarithm of the copy number (x-axis) against the cycle 

number (y-axis). The regression graph runs through the standards‘ crossing points, 

numbers of the samples are determined from this straight line (Figure 9, Figure 10). 

By contrast, conventional PCR uses end-point analysis which measures only at the 

end of amplification for calculation of the result. Its accuracy depends on the initial 

template concentration and PCR efficiency.  
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Figure 9: Example of a fluorescence curve diagram (PAI-1 standards). The 8 shown curves 

represent 100,000, 10,000, 5,000, 1,000, 100, 50, 20, and 10 copies of the amplicon; emission of 

fluorescence during an earlier cycle indicating a higher copy number. 

 

 

  

 

Figure 10: PAI-1 log-regression calibration graph. This is an example of a log-regression 

graph through the crossing points of PAI-1 standards which is used to calculate the molecule 

numbers of the samples. All calibration curves showed correlation coefficients of r < -0.99, 

indicating a precise log-linear relationship. 
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Housekeeping Genes 

The measured values were normalized to the housekeeping genes G6PDH (glucose-

6-phosphate-dehydrogenase) and PBGD (porphobilinogen deaminase) 197, at first by 

using the respective housekeeping gene sets of Roche Diagnostics. In these assays, 

the sample numbers were calculated using five standards with 500, 5,000, 50,000, 

500,000, and 5,000,000 copies of the respective housekeeping gene. The kit 

detecting G6PDH produces amplicons with a length of 123 base pairs. G6PDH has 

already been established as a housekeeping gene in a breast cancer study by 

Farthmann et al. 98. Later, for detection of PBGD, eight plasmid-coated standard 

capillaries with defined copy numbers were produced in analogy to uPA and PAI-1. 

The PBGD amplicon comprised 150 base pairs. For the Nijmegen collective, our 

collaborating laboratory in the Netherlands additionally measured ß-actin as 

housekeeping gene (amplicon length: 294 base pairs). The standard capillaries for ß-

actin which were used for generation of the calibration curves contained between 100 

and 10,000,000 molecules. The evaluation and statistical analyses of the data were 

carried through using the relative mRNA expression ratios: zmol target gene/amol 

housekeeping gene - in case of ß-actin: zmol target gene/fmol housekeeping gene. 

 

Assay Quality Control 

To ensure stability and comparability of the calculated values, the standard crossing 

points of all runs within each assay were observed. With arrival of each new standard 

capillary delivery, one set of old and new standards were compared in a single 

LightCycler run. Intra- and inter-assay precision of the sample results were 

proportionally determined by the variation coefficient (VC). Dilution series of the 

cDNA being measured were conducted at frequent intervals on condition that the 

copy numbers were high enough (Table 5). Correlation coefficients of the calibration 

curves of uPA, PAI-1, and housekeeping gene standards were recorded in every 

single LightCycler run. The specificity of the method was examined by the regular 

use of negative controls (without uPA or PAI-1 expression). 
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2.2 Cell Lines 

 
Cell Line Selection and Treatment 

The following cultured cells were used in the present work: (1) The mammary 

carcinoma cell lines MDA-MB-231 (adenocarcinoma cell line) and MDA-MB-231 BAG 

(subline of MDA-MB-231, stably transfected with the bacterial lacZ gene) were 

obtained from the Institute of Experimental Oncology and Therapy Research, 

Technical University of Munich, Munich, Germany. The adenocarcinoma cell line 

MCF-7, and aMCF-7, an adriamycine-resistant subline of MCF-7, were provided by 

the Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany. (2) The 

MDA-MB-435 cell line was also supplied by the Institute of Experimental Oncology 

and Therapy Research of the Technical University of Munich. Formerly believed to 

represent a breast cancer cell line, MDA-MB-435 was officially redefined as 

derivative of the M14 melanoma cell line in 2007 115,273. (3) The ovarian 

cystadenocarcinoma cell lines OV-MZ-6 and OV-MZ-10 were obtained from the 

Städtische Kliniken Frankfurt a.M.-Höchst, Frankfurt a.M.-Höchst, Germany. (4) The 

non-malignant human keratinocyte cell line HaCaT was provided by the Department 

of Dermatology of the Dresden University of Technology, Dresden, Germany.  

 

The cells were first cultured at 37°C in a humidified atmosphere of 5% CO2 and 95% 

air in DMEM (Invitrogen, Karlsruhe, Germany), supplemented with 10% fetal calf 

serum (Invitrogen), 1% penicilline-streptomycine (Biochrom, Berlin, Germany), 1% 

arginine-asparagine (Sigma, Deisenhofen, Germany), and 1% HEPES buffer 

(Invitrogen). The cells were harvested from monolayer dishes after two days 98. 

 

Antigen Determination

For uPA and PAI-1 antigen determination by ELISA, the culture supernatant was 

collected, cleared by centrifugation, and stored at -20 °C until use. uPA and PAI-1 

antigen levels in the supernatants were expressed as ng analyte per 106 cells after 

48 hours of cultivation.

 

For uPA, the ‗IMUBIND uPA ELISA Kit‘, Product No. 894, was used, for the PAI-1-

ELISA, the ‗IMUBIND Tissue PAI-1 ELISA Kit‘, Product No. 821 (American 

Diagnostica, Stamford, USA). With these ELISA kits uPA and PAI-1 can be 

determined both from cell culture supernatants and from tissue extracts. The 



 44 
 

‗IMUBIND ELISA Kits‘ use murine monoclonal antibodies against human uPA and 

PAI-1, respectively. The samples incubate in precoated microtest wells, and a 

second biotinylated antibody recognizes the bound uPA or PAI-1 molecules. The 

addition of streptavidin-conjugated horseradish peroxidase (HRP) completes the 

formation of the antibody-enzyme detection complex. Then perborate/3,3‘,3,5‘ - 

tetramethylbenzidine (TMB) substrate is added which, through reaction with HRP, 

creates a blue-colored solution. Sensitivity is increased by addition of a sulfuric acid 

stop solution, yielding a yellow color. The respective antigen levels are quantified by 

measurement of solution absorbances at 450 nm and comparison of the values with 

those of a standard curve. 

 

RNA Isolation and cDNA Synthesis 

In total, three independent mRNA preparations of these cell lines were produced. For 

RNA isolation, ‗Trizol Reagent‘ (Invitrogen) was used according to the manufacturer‘s 

instructions. mRNA concentrations were determined spectrophotometrically. The 

quality of the RNA was evaluated by the 260/280 nm quotient. Approximately 1 µg of 

each RNA sample was then reversely transcribed into complementary DNA using 

random hexamer primers with the ‗AMV cDNA First Strand Synthesis Kit‘ (Roche 

Diagnostics). The steps consisted in 10 minutes of RNA denaturation at 65°C, 10 

minutes of annealing of the random primer at 25°C, after that, one hour of cDNA 

synthesis at 42°C, and 5 minutes of enzyme denaturation at 99°C. Then the PCR 

product was cooled down rapidly to 4°C. The cDNA was diluted in water 1:20, and 

stored at -20°C.  

 

RT-PCR 

Finally, uPA und PAI-1 contents were quantified in the LightCycler instrument. 

Additional measurements of the target genes in negative control samples were done. 

As housekeeping gene G6PDH was measured. The gene contents of each cDNA 

were obtained from double measurements in several LightCycler runs, the number of 

runs depending on the extent of result divergence. Assays were repeated in case of 

an intra- and inter-assay variability of > 20% and > 40%, respectively. 
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2.3 Patient Cohorts 

2.3.1 Dutch Collective (Nijmegen) 

 
Tissue specimens from a population-based cohort of 105 primary breast cancer 

patients, having undergone breast cancer surgery between 1989 and 1996 in 

participating hospitals of the Comprehensive Cancer Center East in the Netherlands, 

were included in the study. The local ethical committees officially permitted the 

immediately snap-frozen in liquid nitrogen (Department of Chemical Endocrinology, 

University Medical Center Nijmegen, the Netherlands). The clinical data were 

collected retrospectively. The histological grade of the tumors was determined 

according to the criteria established by Scarff, Bloom, and Richardson 23,295. Tumor 

stages were classified according to the TNM classification system.  

 

Patient Selection 

Patients who had received neo-adjuvant treatment or had had a previous diagnosis 

of cancer or a carcinoma in situ, as well as patients with recurrent disease within one 

month after surgery, or with distant metastases at the time of diagnosis were 

excluded from the study. The patients‘ age at diagnosis ranged from 30 to 88 years, 

with a median of 58 years. The patients had undergone modified radical mastectomy 

(n = 84) or breast-preserving lumpectomy (n = 21), combined with axillary lymph 

node dissection. Postoperative locoregional radiotherapy of the breast was carried 

out in 68 cases (64.8%), after incomplete resection or breast-preserving treatment, 

with one patient‘s information missing. Axillary or supraclavicular regions were 

irradiated depending on the degree of nodal involvement. Lymph node metastases 

were detected in 54 patients (51.4%), 44 patients (41.9%) were lymph node-

negative. Information on lymph node involvement could not be retrieved in 7 cases. 

Adjuvant systemic treatment was administered according to respective consensus 

recommendations at the time.  

 

Of the 57 patients with whose data a survival analysis was conducted 29 patients  

received no further treatment - mostly patients without axillary lymph-node 

involvement -, 17 patients were treated with endocrine therapy after tumor resection, 

utilization of the samples. After surgical resection of the primary tumor, representative 

tumor tissue specimens were selected macroscopically by a pathologist and 
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7 were given chemotherapy alone, and 4 patients received both chemotherapy and 

endocrine therapy. Premenopausal patients received chemotherapy, an additional 

endocrine tamoxifen therapy was administered in estrogen and/or progesterone 

receptor-positive patients. Postmenopausal node-positive patients with estrogen 

and/or progesterone receptor-positive tumors received adjuvant endocrine tamoxifen 

therapy for two years. If the primary tumor of node-positive patients was hormone 

receptor-negative, no adjuvant therapy was administered. In the absence of 

complaints or suspicion of relapse, patients were routinely checked once every three 

months during the first two years, once every six months for five years, and thereafter 

once a year. Follow-up information was available with a median follow-up time of 68 

months and a maximum follow-up period of 122 months. During that time, 24 patients 

(42.1%) had a recurrence and 18 patients (31.6%) died. 

 

Antigen Determination 

Cytosol fractions were prepared from 105 pulverized deep-frozen primary breast 

cancer tissue specimens obtained from participating hospitals of the Comprehensive 

Cancer Center East, Nijmegen, the Netherlands. uPA and PAI-1 antigen contents 

were determined in the high-speed supernatant (cytosol fraction) by published in-

house ELISA formats 16,128,342: the tumor tissues were also pulverized in the frozen 

state, but then - in contrast to the German samples - homogenized in a buffer lacking 

the non-ionic detergent Triton X-100 (so-called EORTC buffer, but without 

monothioglycerol or glycerol). Protein contents of the breast cancer cytosol fractions 

were measured as modified by Lowry 224, using BSA as standard.  

 

RNA Isolation and cDNA Synthesis 

For RNA isolation from about 20 mg of tissue powder, the ‗RNeasy Mini Kit‘ (Qiagen, 

Hilden, Germany) with on-column DNase-I treatment was used. RNA concentrations 

were measured spectrophotometrically at 260 nm using ‗Genequant‘ (Amersham, 

Eindhoven, the Netherlands). The purified total RNA (1 µg) was denatured for 10 

minutes at 70°C and immediately cooled on ice. Reverse transcription was performed 

with the ‗Reverse Transcription System‘ (Promega Benelux BV, Leiden, the 

Netherlands) following the instructions of the manufacturer‘s protocol. After the 

annealing phase (10 min at 20°C) - during which the random hexamer binds to the 

RNA -, cDNA synthesis proceeded for 60 minutes at 42°C, and, thereafter, 5 minutes 
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of enzyme denaturation at 95°C took place. The cDNA samples were diluted three-

fold 324.  

 

RT-PCR 

The applied quantitative RT-PCR assay followed the procedure as described above. 

As housekeeping genes G6PDH and ß-actin mRNA expressions were measured in 

all 105 samples. QPCR runs of cDNA probes were performed at least twice, the 

frequency depending on the extent of inter-run result deviation. 

 

2.3.2 German Collective (Dresden and Munich) 

 
Patient Selection 

The German cohort comprised 74 breast cancer patients who were treated in the 

University Medical Center Dresden or in the Klinikum rechts der Isar in Munich 

between 1993 and 2003. The study adhered to the respective national regulations on 

ethical issues and was approved by local ethical committees. At the time of surgery 

the patients‘ age ranged from 33 to 84 years, with a median age of 58 years. The 

patients had either undergone modified radical mastectomy (n = 21) or breast 

preserving lumpectomy (n = 30; surgical method of 23 patients unknown), combined 

with axillary lymph node dissection. In the majority of patients of whom informations 

on postoperative treatment were available, a postoperative locoregional radiotherapy 

of the breast was administered (79.5%); axillary or supraclavicular regions were 

irradiated depending on the degree of nodal involvement. In 29 cases (39.2%), tumor 

cells were detected in the lymph nodes; 39 patients (52.7%) were lymph node-

negative; the lymph node status of 6 patients (8.1%) was unknown. 

 

Antigen Determination 

Protein concentrations were measured by ELISA. Detergent extracts (not cytosol 

fractions as in case of the Dutch samples) were prepared from 74 primary breast 

cancer tissue specimens: deep-frozen tumor tissue specimens were first pulverized 

and then suspended in TRIS buffer containing the non-ionic detergent Triton X-100; 

after separation of cell debris by ultra-centrifugation uPA and PAI-1 antigen 

concentrations were assessed in the supernatant by commercially available ELISA 

kits (‗IMUBIND uPA ELISA Kit‘ # 894 and ‗IMUBIND PAI-1 ELISA Kit‘ # 821; 

American Diagnostica, Stamford, USA) 199,237,304. The ELISA procedure 
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corresponded to that described for the cell lines (see above). Protein contents of the 

detergent-released fractions were measured using the ‗BCA Protein Kit‘ (Pierce, 

Rockford, USA), using BSA as standard. Data were available for all tumor samples, 

and results were expressed in ng analyte per mg of total protein. 

 

RNA Isolation and cDNA Synthesis 

mRNA of the samples from Munich was isolated from frozen tissue 

(microdismembrator pellet; amount: one scalpel tip) and the corresponding paraffin-

embedded, formalin-fixed tissue (3*10 μm sections) of the breast carcinomas. The 

examined paraffin sections were obtained from paraffin blocks originally used for 

determination of HER2/neu. For each block HE-stained sections are available.  

 

Prior to the RNA extraction procedure, the paraffin sections were solubilized in xylol 

and thereby deparaffinized. mRNA of the corresponding tissue specimens was 

isolated with the ‗High Pure RNA Paraffin Kit‘ of Roche Diagnostics according to the 

manufacturer‘s protocol. mRNA concentrations were determined 

spectrophotometrically. The quality of the mRNA was evaluated by the 260/280 nm 

quotient. Approximately 1 µg of each RNA sample was again reverse transcribed into 

complementary DNA using random primers with the ‗AMV cDNA First Strand 

Synthesis Kit‘ (Roche Diagnostics). In some cases, mRNA concentrations were not 

high enough for the photometer to determine the sample volume containing 1 µg of 

RNA. Here, in divergence to the standard procedure, the maximum volume of the 

respective mRNA was put into the reverse transcription reaction (8.2 µl RNA + 11.8 

µl reverse transcription master mix = 20 µl total volume).  

 

Extraction of the mRNA from Dresden was conducted using the ‗RNeasy Mini Kit‘ 

(Qiagen, Hilden, Germany). Reverse transcription of the mRNA was performed using 

the ‗cDNA-Cycle Kit‘ (Invitrogen, Karlsruhe, Germany). 

 

The reverse transcription steps in the cohort from Munich corresponded to those 

administered to the mRNA extracted from cell lines (see above). The PCR product 

was immediately cooled down to 4°C and diluted 1:2 (Dresden samples: four-fold), 

resulting in a total volume of 40 µl. Then the cDNA samples were stored at -20°C.  
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RT-PCR 

Eventually, uPA and PAI-1 mRNA contents were quantified by LightCycler PCR. For 

the tumor collective from Munich, the housekeeping gene PBGD was measured in 

addition to G6PDH. Only samples with a G6PDH expression of at least 500 

molecules (corresponding to the lowest G6PDH standard) were considered valid, the 

remaining samples were excluded from further analysis. If only one of the two 

corresponding tumor samples had a G6PDH expression above 500, this sample was 

deleted as well. Thus, of the 38 matched pairs of mRNA originally extracted, 28 

corresponding tumor samples remained for evaluation. The specificity of template 

detection was affirmed in the LightCycler by uPA/PAI-1 measurements in negative 

controls. Similar to the collectives from Nijmegen and Dresden runs were repeated at 

least once, additional measurements were conducted in case of an inter-assay 

variability of > 40%.  
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2.4 Statistical Analysis 

 

The results measured by QPCR and other data of the breast cancer patients 

composed of continuous variables were tested for normal distribution by the 

Kolmogorov-Smirnov test; uPA and PAI-1 mRNA and antigen expressions did not 

follow a Gaussian distribution. In view of lacking normally distributed data, 

associations between uPA and PAI-1 expression values and clinical and 

histomorphological parameters were determined using nonparametric tests (Mann-

Whitney U or Kruskal-Wallis tests). The levels of significance in correlations between 

continuous variables were calculated with the Spearman rank correlation (rs). For 

survival analysis, the disease-free survival time was defined as the time from surgery 

until diagnosis of recurrent disease or death (combined DFS). The association of the 

mRNA expression levels of uPA/PAI-1 as well as of other clinical and 

histomorphological factors with combined DFS was analyzed using the Cox 

univariate and multivariate proportional hazard regression models 60. Survival curves 

were generated by univariate Kaplan-Meier estimation using the log rank regression 

model 185. P-values ≤ 0.05 were considered statistically significant. Calculations were 

performed using the SPSS statistical package, release 13.0 (SPSS Inc., Chicago, 

USA). 
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3 RESULTS 

 

3.1 Establishment of the Quantification Method 

 

3.1.1 Primer Design 

 
Amplicon lengths of the QPCR assays were chosen as small as possible to be 

suitable for the analysis of samples from fresh tissue and cryo-preserved tissue, as 

well as from formalin-fixed, paraffin-embedded (FFPE) tissue. Preferably, the 

amplicons should encompass between 100 and 150 base pairs, considering that the 

hybridization probes necessary for detection anneal within the amplicon. According to 

these instructions and based on the cDNA sequences of uPA (NM_002658) and PAI-

1 (NM_000602), Tib MolBiol (Berlin, Germany) proposed and delivered primers and 

hybridization probes.  

 

First, different primer combinations were to be tested. For this process, uPA and PAI-

1 plasmids were isolated from the bacteria pUC18-uPA and pMelBacA-PAI-1, 

respectively, and then linearized. Subsequently, a conventional qualitative PCR was 

done using the different primer pairs, and the amplification products were plotted 

onto an electrophoresis gel. In parallel to this step, the optimal plasmid 

concentrations for the following PCR runs were tested. For all primer combinations 

intense bands became visible. In order to minimize the risk of amplification of 

genomic DNA, it was decided that at least one primer in each assay should overlap 

an exon boundary, i.e. bind to two exons. The forward primer for uPA annealed 

within exon 10, the reverse primer overlapped the boundary between exon 10 and 

11. These exons are separated by an intron of 989 base pairs in the genomic DNA. 

The forward primer of PAI-1 overlapped the exons 5 and 6, the reverse primer 

overlapped the exons 6 and 7, the intervening regions comprising 1592 and 120 

base pairs, respectively. The amplicon length of the definite uPA assay consisted of 

103 base pairs, the PAI-1 amplicon was 132 base pairs long (Figure 11, Table 3). 
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a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Exon Intron                    

 1  2  3  4  5  6  7  8  9  10  11 

bp 87 306 90 417 27 146 105 603 179 193 90 156 221 221 149 665 141 346 146 989 1109 

Encoding region 

Amplicon 

uPA LC uPA ex10F 

5 ‘ - G G A G T G T C A G C A G C C C C A C T A C T A C G G C T C T G A A G T C A C C A C C A A A A T G C T G T G T G C T G C T G A C C C A C A G T G G A A A A C A G A T T C C T G C C A G G G A G A C T C A G G G G G A C  

   C C T C A C A G T C G T C G G G G T G A T G A T G C C G A G A C T T C A G T G G T G G T T T T A C G A C A C A C G A C G A C T G G G T G T C A C C T T T T G T C T A A G G A C G G T C C C T C T G A G T C C C C C T G - 5 ‘  

 
k 

uPA FL 

uPA x10,11A 

Exon 10 Exon 11 
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b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: uPA and PAI-1 genes, and amplicon localizations in the QPCR assays. The uPA amplicon (a) encompasses 103, the PAI-1 amplicon (b) 

132 base pairs. The detection of the correct amplicons was confirmed by sequencing (Figure 14). The localization and orientation of the primers is 

indicated by arrows; exon/exon boundaries by vertical bars. 

 Exon Intron                

 1  2  3  4  5  6  7  8  9 

bp 123 1147 274 1765 236 1223 193 1605 201 1592 99 120 87 1208 85 320 37 

PAI-1 x5,6F 

5 ‘ - C C T C C T G G T T C T G C C C A A G T T C T C C C T G G A G A C T G A A G T C G A C C T C A G G A A G C C C C T A G A G A A C C T G G G A A T G A C C G A C A T G T T C A G A C A G T T T C A G G C T G A C T T C A C G A G T C T T T C A G A C C A A G A G C C T C T C C  

   G G A G G A C C A A G A C G G G T T C A A G A G G G A C C T C T G A C T T C A G C T G G A G T C C T T C G G G G A T C T C T T G G A C C C T T A C T G G C T G T A C A A G T C T G T C A A A G T C C G A C T G A A G T G C T C A G A A A G T C T G G T T C T C G G A G A G G - 5 ‘  

Amplicon 

PAI-1 LCR PAI-1 FLU PAI-1 x6,7R 

Exon 7 Exon 6 Exon 5 

Encoding region 
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Table 3: Sequences of primers and hybridization probes for uPA and PAI-1 applied in the 

LightCycler QPCR assay. 

 
Oligonucleotide sequence (5’→ 3’) Fragment 

size (bp) 

uPA   Forward Primer (uPA ex10F) 
Reverse Primer (uPA x10,11A) 
Hyb Probe 1 (uPA FL) 
Hyb Probe 2 (uPA LC) 

AGT GTC AGC AGC CCC ACT 
CCC CCT GAG TCT CCC TGG 
AAG TCA CCA CCA AAA TGC TGT GTG CT 
CTG ACC CAC AGT GGA AAA CAG ATT C 

103 

PAI-1 Forward Primer (PAI-1 x5,6F) 
Reverse Primer (PAI-1 x6,7R) 
Hyb Probe 1 (PAI-1 FLU) 
Hyb Probe 2 (PAI-1 LCR) 

CTC CTG GTT CTG CCC AAG TT 
GAG AGG CTC TTG GTC TGA AAG 
TCG GTC ATT CCC AGG TTC TCT AGG 
GCT TCC TGA GGT CGA CTT CAG TCT CC 

132 

 

 

In addition to the visualization of single bands for each amplicon by gel-

electrophoresis (1.5% agarose gel; Figure 13), the QPCR products were extracted 

and sent to the Eurofins Medigenomix GmbH (Martinsried, Germany) for sequencing 

to ensure detection of the correct amplicons (Figure 14). Primers and hybridization 

probes were used in concentrations of 0.5 µM and 0.2 µM, respectively. 

 

3.1.2 Optimization of RT-PCR Conditions 

 
As prerequisite for the application of the chosen hybridization probes and primers in 

the Lightcycler the optimal magnesium concentration in the master mix had to be 

determined. For each assay a magnesium titration series with varying amounts of 

MgCl2 was performed which was evaluated according to the respective amplification 

level and the fluorescence curves generated by the LightCycler software. MgCl2-

concentrations ranging from 1 to 7 mM were tested. uPA plasmid was added in a 

concentration of about 5 pg/μl, the concentration of the PAI-1 plasmid was 

approximately 2 pg/μl. Samples yielding the highest copy numbers of the respective 

amplicons were preferred, the optimum amplification curve conformations, displaying 

steep gradients, were chosen. Consecutively, the amplification products were 

brought onto an electrophoresis gel to verify amplification of the correct amplicons. 

Eventually, MgCl2-concentrations of 5 mM for uPA and of 3.5 mM for PAI-1 were 

chosen, since these concentrations yielded the best amplification results. 
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3.2 Assay Quality Control 

 
The log-linear calibration curves produced in each run by the QPCR method all had 

correlation coefficients of below r = -0.99 as indicators of precise amplicon detection, 

including areas of low target gene expression (Figure 10). Crossing point deviations 

of the standard samples did not exceed two cycles within each sample collective. 

Plots of measured versus theoretical transcript numbers of uPA and PAI-1 for the 

capillaries coated with 10 to 100,000 standard template copies in both assays, 

generated from 36 and 33 independent QPCR runs (Dutch and German cohorts), 

respectively, are shown in Figure 12. The correlations of mRNA values were highly 

significant with rs = 0.99 (p < 0.001) in both QPCR assays.  

 

As mentioned earlier, for evaluation of intra-assay precision the cell line samples 

were measured in duplicate within each run. The inter-assay variability was 

determined from at least two measurements. The three preparations of cell line 

mRNA measured by QPCR resulted in comparable sample contents, mostly with 

variation coefficients of distinctly below 40% (Table 4).  

 

The mRNA contents of the breast cancer samples were obtained from repeated 

LightCycler measurements, the number of runs depending on inter- and intra-assay 

divergence. The inter-assay variation coefficients ranged from 0 to 43% (uPA) and 

from 0 to 23% (PAI-1), with means of 11% and 8%, respectively.  

 

Most assay procedures demand dilution of the samples for detectability of the 

analyte‘s contents within a specific concentration range. Dilution series revealed a 

good stability of the measured values (Table 5).  

 

After electrophoresis in agarose gel, the QPCR products were visualized by 

ethidium-bromide staining as single bands of the expected amplicon lengths (Figure 

13). Amplification of the correct amplicons was verified by sequencing (Figure 14). In 

non-template negative controls no fluorescence was observed. 

 

 



 56 

 

Figure 12: uPA and PAI-1 mRNA standard measurements by LightCycler QPCR. The results 

were obtained from 36 (uPA) and 33 (PAI-1) LightCycler PCR runs, respectively. 

 

 

 

 

Table 4: uPA mRNA quantification by LightCycler QPCR in cell lines. The mean mRNA 

transcript levels, originating from three independent preparations, were normalized to G6PDH. 

The standard deviation (SD) and the coefficient of variation (VC) show to which extent the uPA 

amounts varied in the three runs. 
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Table 5: LightCycler QPCR dilution series. The cell lines OV-MZ-10 and MDA-MB-231 serve 

as examples. The mRNA transcript levels were normalized to G6PDH.  

  uPA  PAI-1 
     

  OV-MZ-10  OV-MZ-10  MDA-MB-231 
          

Dilution 
 

Measured 
value 

Theoretical 
calculation   

Measured 
value 

Theoretical 
calculation   

Measured 
value 

Theoretical 
calculation  

          
          

Undiluted  90455 90455  111500 111500  60660 60660 

1:2  41585 45228  47480 55750  33560 30330 

1:4  20155 22614  24860 27875  16870 15165 

1:8  9242 11307  13250 13938  8408 7583 

1:16  4441 5653  7108 6969  4244 3791 

1:32  2209 2827  3889 3484  2272 1896 

1:64  1233 1413  1815 1742  1628 948 

 

 

 

 

 

 
 

Figure 13: Examples of uPA and PAI-1 QPCR products visualized by a 1.5% agarose gel-

electrophoresis. QPCR products of the cell line analysis and the breast cancer collectives with 

sufficiently high concentrations of the target genes were applied to gel electrophoresis, purified, 

and then subjected to sequencing (Figure 14). 
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a) 

 
 
 
b)  

 
 
 
 

Figure 14: Sequencing results. LightCycler QPCR products from the quantification of uPA and PAI-1 in cell lines and breast cancer samples were 

extracted and sent to the Eurofins Medigenomix GmbH (Martinsried, Germany) for sequencing to ensure detection of the correct amplicons. a) uPA 

amplicon sequence; b) PAI-1 amplicon sequence. 
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3.3 Application of the Quantification Method 

 

After establishment of the assay systems, the first step was to test uPA and PAI-1 

expressions in cell lines, and to see if protein expressions - measured by specific 

ELISA from cell supernatants - correlated to the respective mRNA concentrations. 

Secondly, the assays were applied to two breast tumor collectives, one from The 

Netherlands (Nijmegen), and one from Germany (Dresden and Munich). These were 

statistically analyzed, particularly comparing antigen and mRNA expression of uPA 

and PAI-1 measured by ELISA and QPCR, respectively. Another analysis was done 

with respect to clinical and histomorphological parameters and to the prognosis of the 

patients in the Dutch cohort. The tumor samples from Munich, provided by the 

Gynecological Department of the Klinikum rechts der Isar, were available in 

duplicate. One of each tumor specimen was stored as pulverized cryopowder, the 

other was embedded in paraffin and fixed in formalin. The uPA and PAI-1 expression 

patterns in these different tissue preservations were compared. In addition, the 

applicability of different housekeeping genes was tested. 

 

3.3.1 Cell Line Analysis 

The analysis of the eight cell lines showed an about five times higher expression of 

PAI-1 than of uPA, when measured by ELISA. By LightCycler QPCR quantification, 

uPA expression was more than 3 times higher than PAI-1 expression (Table 6). 

mRNA concentrations ranged from 0.09 to 1409.77 zmol uPA/amol G6PDH (median 

89.34) and from 0.16 to 837.44 zmol PAI-1/amol G6PDH (median 28.26). uPA 

antigen expression in the cell lines ranged from 0.01 to 582.76 ng/106 cells per 48 

hours (median 4.38), PAI-1 antigen expression was measured in concentrations 

between 0.06 and 1883.80 ng/106 cells per 48 hours (median 27.62). 

 

 

 

 

 

 



 60 

Table 6: uPA and PAI-1 in cell lines - median antigen and mRNA expressions (with inter-

quartile ranges (IR)). The mRNA transcript levels were quantified by LightCycler PCR and 

normalized to G6PDH (zmol uPA or PAI-1/amol G6PDH). Antigen levels of uPA and PAI-1 were 

measured using the IMUBIND uPA # 894 and the IMUBIND PAI-1 # 821 ELISA kits.  

 uPA median (IR) PAI-1 median (IR) 

ELISA [ng/106 cells per 48h] 4.38  (50.25) 27.62 (817.83) 

QPCR [normalized to G6PDH]  89.34 (133.04) 28.26 (271.14) 

 

 

 

Correlations between uPA and PAI-1 ELISA and QPCR 

Antigen expression levels measured by ELISA were in accordance with mRNA levels 

measured by QPCR. Table 7 shows the data divided in high, medium, and low 

expression levels. Significant correlations were found of rs = 0.95 (p < 0.001) 

between uPA ELISA and QPCR, and also of rs = 0.95 (p < 0.001) between PAI-1 

ELISA and QPCR (Table 8). Figure 15 shows bi-logarithmic regression graphs 

demonstrating the relationship between the results of the two methods. There were 

also distinctly significant correlations between uPA and PAI-1 measured by both 

methods, with the strongest correlation coefficient of rs = 0.98 (p < 0.001) between 

uPA and PAI-1 ELISA results and the same correlation between uPA QPCR and 

PAI-1 ELISA results (Table 8). 
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Table 7: uPA and PAI-1 mRNA expression and antigen levels in the cell lines. The mRNA 

transcript levels were quantified by LightCycler QPCR and normalized to G6PDH. Antigen levels 

of uPA and PAI-1 were determined in cell culture supernatants by use of the IMUBIND uPA # 894 

and the IMUBIND PAI-1 # 821 ELISA kits. 

  uPA    PAI-1 

  mRNA Antigen    mRNA Antigen 

  [zmol uPA/ [ng/106cells    [zmol uPA/ [ng/106cells 

  
amol 

G6PDH] 
per 48 h]    

amol 
G6PDH] 

per 48 h] 

High  
expression:         

OV-MZ-10   1409.77 582.76  OV-MZ-10   837.44 1883.80 

     MDA-MB-231   320.76 894.85 

     MDA-MB-231 BAG   137.11 610.42 

Medium 
expression:         

MDA-MB-231 BAG   134.82 30.11  OV-MZ-6   35.74 21.70 

MDA-MB-231   129.90 57.06  HaCaT   20.77 33.53 

HaCaT   93.81 4.52  aMCF-7   13.60 20.29 

OV-MZ-6   84.87 4.24      
 

        

Low  
expression: 

aMCF-7   1.75 0.01  MDA-MB-435   0.41 0.06 

MCF-7   0.16 0.26  MCF-7   0.16 1.12 

MDA-MB-435   0.09 0.01      

 

 

Table 8: Spearman correlations between uPA and PAI-1 ELISA and QPCR. Significant p-

values are underlined. 

 
uPA/G6PDH 

 
uPA protein 

 
PAI-1/G6PDH 

 

uPA protein 
 

 
rS = 0.952 
p < 0.001 

 

 

 

PAI-1/G6PDH 
 
 

 
rS = 0.929 
p = 0.001 

 

rS = 0.905 
p = 0.002 

PAI-1 protein 
 

 
rS = 0.976 
p < 0.001 

 

rS = 0.976 
p < 0.001 

rS = 0.952 
p < 0.001 
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Figure 15: uPA and PAI-1 in cell lines: bi-logarithmic regression graphs demonstrating 

correlations between antigen and mRNA values. The mRNA transcript levels were quantified 

by LightCycler PCR and normalized to G6PDH (zmol uPA or PAI-1/amol G6PDH). Antigen levels 

of uPA and PAI-1 were measured using the IMUBIND uPA # 894 and the IMUBIND PAI-1 # 821 

ELISA kits.  

 

3.3.2 Breast Cancer Samples 

To analyze uPA and PAI-1 mRNA and protein expression in breast cancer cytosols 

or detergent-released fractions, two different patient cohorts were used, the Dutch 

cohort with 105 primary tissue samples and the German primary tumor tissue cohort 

encompassing 74 samples. Whereas in both cases mRNA isolation was achieved 

employing comparable technical approaches, different methods of uPA and PAI-1 

protein extraction and antigen determination were used (as described in the 

‗Materials and Methods‘). Therefore, the expression levels of the antigen 

measurements by the Dutch and German laboratories cannot be compared one-to-

one (Table 9). 
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Table 9: uPA and PAI-1 determined in breast cancer collectives – QPCR and ELISA results. 

The mRNA transcript levels were quantified by LightCycler PCR and normalized to G6PDH (ratio: 

zmol/amol) or ß-actin (ratio: zmol/fmol). Antigen levels of uPA and PAI-1 were measured using 

either published in-house ELISA formats (cytosol fraction - Dutch samples) or IMUBIND uPA and 

PAI-1 ELISA kits (detergent extracts - German samples). 

 

 
 

Dutch collective  
(Nijmegen) 

 

 
German collective  

(Dresden and Munich) 

 
Patient 

no. 
 

 
QPCR  

[G6PDH] 

 
QPCR  

[ß-actin] 

 
ELISA 

 [ng/mg 
protein] 

 
Patient 

no. 

 
QPCR 

[G6PDH] 

 
ELISA 

 [ng/mg 
protein] 

 
uPA 
median  (IR) 
 

 
105 

 
57.16 

(81.55) 

 
52.53 

(64.19) 

 
0.28 

(0.38) 

 
74 

 
166.50 

(161.54) 

 
3.49  

(4.18) 

 
PAI-1 
median (IR) 
 

 
104 

 
136.40 

(182.43) 

 
138.00 

(156.67) 

 
1.36 

(1.84) 

 
71 

 
189.50 

(219.97) 

 
18.80 

(20.62) 

 

 

 

3.3.2.1 Dutch Collective 

 
The collective comprised a total number of 105 patients. The housekeeping genes 

G6PDH and ß-actin were measured by LightCycler PCR along with uPA and its 

inhibitor. G6PDH was primarily applied for interpretation of the results. However, for 

the sake of completeness, the ß-actin values and ratios are listed in each table as 

well. The uPA and PAI-1 mRNA concentrations, normalized to G6PDH, ranged from 

27.13 to 108.68 zmol uPA/amol G6PDH (median 57.16) and from 72.84 to 255.28 

zmol PAI-1/amol G6PDH (median 136.40), respectively. uPA and PAI-1 antigen 

levels in the cytosol extracts ranged from 0.18 to 0.56 ng uPA/mg total protein 

(median 0.28) and from 0.81 to 2.64 ng PAI-1/mg total protein (median 1.36), 

respectively (Table 9). 
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Correlations between uPA and PAI-1 ELISA and QPCR Results 

In the Dutch cohort (i.e. cytosolic extraction method), there were significant 

correlations between uPA ELISA results and uPA measured by QPCR of rs = 0.35 (p 

< 0.001). Correlations between PAI-1 ELISA results and PAI-1 mRNA quantification 

by the LightCycler were also significant with correlation coefficients of rs = 0.20 (p = 

0.045), as shown in Figure 16 and Table 10. 

 

 

 

Figure 16: Dutch samples: Correlation of uPA (n = 105) and PAI-1 (n = 104) mRNA with 

antigen levels determined by ELISA from cytosolic extracts normalized to G6PDH. mRNA 

transcript levels were quantified by LightCycler QPCR. uPA and PAI-1 antigen contents were 

determined in the high-speed supernatant by published in-house ELISA formats. 

 

 

Other Significant Correlations 

Apart from the results above, significant correlations between uPA and PAI antigen 

(rs = 0.44; p < 0.001), and uPA and PAI-1 mRNA (rs = 0.61; p < 0.001), respectively, 

became apparent. These correlations are stronger than correlations between uPA 

antigen and mRNA, as well as between PAI-1 antigen and mRNA. Additionally, 

significant correlations are visible between uPA QPCR and PAI-1 ELISA results of rs 

= 0.20 (p = 0.041; Table 10). 
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Table 10: Dutch samples: correlations beween all measured variables. Significant p-values 

are underlined. 

 
uPA protein 

 
uPA/G6PDH 

 
uPA/ß-actin 

 
PAI-1 protein 

 
PAI-1/G6PDH 

 

uPA/G6PDH 
(n = 105) 

 
rS = 0.346 
p < 0.001 

 

 

 

 

 

uPA/ß-actin 
(n = 105) 

 
rS = 0.405 
p < 0.001 

 

rS = 0.562 
p < 0.001 

PAI-1 protein 
(n = 104) 

 
rS = 0.435 
p < 0.001 

 

rS = 0.200 
p = 0.041 

rS = 0.470 
p < 0.001 

PAI-1/G6PDH 
(n = 104) 

 

 
rS = 0.028 
p = 0.777 

 

rS = 0.611 
p < 0.001 

rS = 0.186 
p = 0.058 

rS = 0.197 
p = 0.045 

    PAI-1/ß-actin 
(n = 104) 

 

 
rS = 0.032 
p = 0.749 

 

rS = 0.196 
p = 0.046 

rS = 0.519 
p < 0.001 

rS = 0.414 
p < 0.001 

rS = 0.625 
p < 0.001 

 

 

 

Relationship between uPA/PAI-1 Expression and Clinical and 

Histomorphological Parameters 

Before analyzing the measurement results with respect to different clinical and 

histomorphological factors of the patient collective, the normality of all continuously 

scaled data was tested applying Kolmogorov-Smirnov analysis. Here, no normal 

distribution was found for any of the variables. Subsequently, all available clinical and 

histomorphological data, including menopausal status, lymph node (LN) status, tumor 

size (pT), tumor grade (Scarff-Bloom-Richardson), estrogen receptor (ER) status, 

progesterone receptor (PR) status, the application of adjuvant therapy after surgery, 

and the age of the patients (categorized as ≤ 60 years versus > 60 years), were 

tested regarding uPA and PAI-1 expression levels (antigen and mRNA content), 

applying the nonparametric Mann-Whitney-U and Kruskal-Wallis tests. 
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The level of uPA and PAI-1 mRNA expression did not differ significantly between 

tumors in relation to clinical and histomorphological parameters, except for the lymph 

node status which was inversely correlated with uPA mRNA expression (p = 0.020). 

Regarding PAI-1 protein expression, significantly higher PAI-1 antigen levels were 

found in ER-negative (p = 0.009) as well as in PgR-negative tumors (p = 0.001). 

Significantly elevated uPA antigen levels were only found in ER-negative patients (p 

= 0.015). The uPA protein level was also elevated in PgR-negative tumors, but the 

difference only approached statistical significance (p = 0.062). There was no 

significant association of uPA/PAI-1 antigen levels, neither with menopausal status, 

LN status, tumor size, tumor grade, nor with the age of the breast cancer patients 

(Table 11, Table 12).  
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Table 11: Dutch breast cancer samples: uPA mRNA and antigen expression levels related 

to clinical or histomorphological parameters (n = 105). The mRNA transcript levels were 

quantified by LightCycler PCR and normalized to G6PDH (or ß-actin). uPA antigen levels were 

quantified by in-house ELISA formats from cytosolic extracts. Significant p-values are underlined.  

 

 

 

 

Variable 

 

Patient 
no. (%) 

 
uPA QPCR 

 

 
uPA ELISA

f 

G6PDH
d 

ß-actin
e 

 

 
Median (IR

c
) 

 

 
P-value 

 
Median (IR

c
) 

 
P-value 

 
Median (IR

c
) 

 
P-value 

 
Menopausal 
status

a 

pre/peri 
post 
 
Lymph node 
status

a
  

negative 
positive 
 
Tumor size (pT)

b 

1 
2 
3/4 
 
Grade (Bloom-
Richardson)

a 

1/2 
3 
 
Estrogen 
receptor status

a 

negative 
positive 
 
Progesterone 
receptor status

a 

negative 
positive 
 
Age category 

≤ 60 years  
> 60 years 
 

 
105 

 
28 (26.7) 
77 (73.3) 
 
98 

 
44 (44.9) 
54 (55.1) 
 
104 

22 (21.2) 
67 (64.4) 
15 (14.4)  
 
62 
 

35 (56.5) 
27 (43.5) 
 
103 

 
38 (36.9) 
65 (63.1) 
 
104 

 
42 (40.4) 
62 (59.6) 
 
105 

56 (53.3) 
49 (46.7) 
 

 
 
 
56.1 (70.4) 
58.5 (86.0) 
 
 
 
74.0 (69.1) 
41.3 (72.9) 
 
 
65.5 (73.3) 
57.2 (87.3) 
32.6 (78.9) 
 
 
 
56.8 (65.2) 
52.0 (116.8) 
 
 
 
58.7 (135.2) 
56.8 (68.3) 
 
 
 
53.9 (124.2) 
58.0 (66.2) 
 
 
59.0 (82.0) 
56.9 (78.5) 

 
0.879 
 
 
 
 
0.020 
 
 
 
 
0.228 
 
 
 
 
0.782 
 
 
 
 
0.811 
 
 
 
 
0.776 
 
 
 
 
0.625 

 
 
 

41.8 (52.1) 
54.0 (66.5) 
 
 
 
55.1 (86.8) 
48.3 (55.7) 
 
 
51.8 (67.2) 
52.8 (61.8) 
31.4 (66.6) 
 
 
 
55.4 (61.1) 
55.3 (65.8) 
 
 
 
75.5 (79.2) 
44.7 (55.0) 
 
 
 
74.0 (78.2) 
47.7 (53.6) 
 
 
48.9 (62.6) 
54.9 (65.1) 

 
0.290 
 
 
 
 
0.105 
 
 
 
 
0.155 
 
 
 
 
0.926 
 
 
 
 
0.038 
 
 
 
 
0.170 
 
 
 
 
0.625 

 
 
 
0.31 (0.34) 
0.27 (0.40) 
 
 
 
0.26 (0.31) 
0.33 (0.46) 
 
 
0.24 (0.22) 
0.36 (0.46) 
0.29 (0.45) 
 
 
 
0.26 (0.27) 
0.37 (0.41) 
 
 
 
0.42 (0.53) 
0.24 (0.30) 
 
 
 
0.39 (0.53) 
0.25 (0.30) 
 
 
0.25 (0.38) 
0.39 (0.37) 

 
0.736 
 
 
 
 
0.192 
 
 
 
 
0.138 
 
 
 
 
0.306 
 
 
 
 
0.015 
 
 
 
 
0.062 
 
 
 
 
0.167 

 
a 
b 
c 
d 
e 
f 

 
Mann-Whitney-U Test 
Kruskal-Wallis Test  
Inter-quartile range (IR) 
zmol target gene/amol G6PDH 
zmol target gene/fmol ß-actin 
ng antigen/mg total protein 
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Table 12: Dutch breast cancer samples: PAI-1 mRNA and antigen expression levels related 

to clinical or histomorphological parameters (n = 104). The mRNA transcript levels were 

quantified by LightCycler PCR and normalized to G6PDH (or ß-actin). PAI-1 antigen levels were 

quantified by in-house ELISA formats from cytosolic extracts. Significant p-values are underlined. 

 

 

 

 

Variable 

 

Patient 
no. (%) 

 
PAI-1 QPCR 

 

 
PAI-1 ELISA

f 

G6PDH
d 

ß-actin
e 

 

 
Median (IR

c
) 

 

 
P-value 

 
Median (IR

c
) 

 
P-value 

 
Median (IR

c
) 

 
P-value 

 
Menopausal 
status

a 

pre/peri 
post 
 
Lymph node 
status

a
  

negative 
positive 
 
Tumor size (pT)

b 

1 
2 
3/4 
 
Grade (Bloom-
Richardson)

a 

1/2 
3 
 
Estrogen 
receptor status

a 

negative 
positive 
 
Progesterone 
receptor status

a 

negative 
positive 
 
Age category 

≤ 60 years  
> 60 years 
 

 
104 

 
28 (26.9) 
76 (73.1) 
 
97 

 
44 (45.4) 
53 (54.6) 
 
103 

22 (21.3) 
66 (64.1) 
15 (14.6)  
 
61 

 
34 (55.7) 
27 (44.3) 
 
102 

 
37 (36.3) 
65 (63.7) 
 
103 

 
41 (39.8) 
62 (60.2) 
 
104 

56 (53.8) 
48 (46.2) 

 
 
 

148.9 (154.7) 
136.4 (192.1) 
 
 
 
198.2 (199.5) 
125.4 (185.1) 
 
 
172.7 (175.2) 
136.4 (182.9) 
107.4 (224.8) 
 
 
 
132.4 (143.0) 
111.1 (227.3) 
 
 
 
130.9 (229.5) 
138.8 (147.2) 
 
 
 
134.0 (213.9) 
135.3 (161.5) 
 
 
188.5 (150.7) 
110.5 (193.8) 

 
0.837 
 
 
 
 
0.056 
 
 
 
 
0.607 
 
 
 
 
0.642 
 
 
 
 
0.502 
 
 
 
 
0.757 
 
 
 
 
0.091 

 
 
 
157.4 (173.1) 
134.7 (149.2) 
 
 
 
153.1 (192.7) 
113.6 (150.4) 
 
 
172.6 (260.0) 
172.9 (157.1) 
113.6 (121.3) 
 
 
 
126.2 (151.0) 
140.1 (172.0) 
 
 
 
140.1 (206.0) 
120.3 (145.3) 
 
 
 
140.1 (219.0) 
112.3 (146.7) 
 
 
143.0 (144.0) 
116.8 (180.5) 

 
0.781 
 
 
 
 
0.190 
 
 
 
 
0.370 
 
 
 
 
0.760 
 
 
 
 
0.816 
 
 
 
 
0.618 
 
 
 
 
0.372 

 
 
 
1.03 (1.26) 
1.49 (1.93) 
 
 
 
1.77 (1.66) 
1.23 (1.97) 
 
 
1.20 (1.90) 
1.61 (1.76) 
0.85 (1.65) 
 
 
 
1.98 (1.99) 
1.40 (2.32) 
 
 
 
1.96 (2.66) 
1.21 (1.45) 
 
 
 
2.27 (2.76) 
1.18 (1.32) 
 
 
1.37 (1.93) 
1.34 (1.82) 

 
0.126 
 
 
 
 
0.540 
 
 
 
 
0.249 
 
 
 
 
0.380 
 
 
 
 
0.009 
 
 
 
 
0.001 
 
 
 
 
0.700 

 
a 
b 
c 
d 
e 
f 

 
Mann-Whitney-U Test 
Kruskal-Wallis Test  
Inter-quartile range (IR) 
zmol target gene/amol G6PDH 
zmol target gene/fmol ß-actin 
ng antigen/mg total protein 
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Survival Analysis 

In this survival analysis (Table 13), the combined disease-free survival (DFS), an 

event being defined as either recurrent disease or death, was used. Differing patient 

numbers were available, depending on the quantification method or on the respective 

housekeeping gene applied in the QPCR assay. The data, including ELISA results, 

were only complete for a number of 57 patients of the Dutch cohort. In this group of 

breast cancer patients, it was found in univariate (p = 0.015) as well as in multivariate 

(p = 0.010) Cox regression analysis that - as expected - a positive lymph node status 

is significantly associated with an unfavorable outcome for the patients. Apart from 

the lymph node status only PAI-1 mRNA expression (normalized to G6PDH) showed 

to be significantly linked to relapse occurrence; low PAI-1 expression predicted a 

longer recurrence-free survival in both univariate (p = 0.014) and multivariate (p = 

0.029) Cox regression analysis. Univariate Cox analysis indicated adjuvantly treated 

patients to have a poorer prognosis, the borderline significance (p = 0.052) could not 

be confirmed by multivariate analysis. 

 

In a recent study 164, we evaluated expression of KLK7 mRNA, encoding the serine 

protease human tissue kallikrein-related peptidase 7 in tumor specimens of 155 

breast cancer patients. High KLK7 mRNA expression was found to be significantly 

associated with a better outcome for the patients, according to both univariate and 

multivariate Cox survival analysis. The same patient cohort was also used to quantify 

the expression of uPA and PAI-1 mRNA, respectively. Unfortunately, only for a part 

of this cohort uPA and PAI-1 antigen values were available. In these 155 samples, in 

contrast, neither uPA nor PAI-1 mRNA values were associated with patient prognosis 

(data not shown). 
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Table 13: Univariate and multivariate Cox regression analyses – ELISA and QPCR results 

(n = 57). The mRNA transcript levels were quantified by LightCycler PCR and normalized to 

G6PDH. Significant p-values are underlined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Variable Patient 
no. 

EF
c
 (%) 

Univariate analysis Multivariate analysis
f 

HR
d
 (95% CI

e
) P-value HR

d
 (95% CI

e
) P-value 

uPA    
- ELISA 
-
 QPCR

a 

 
PAI-1  

- ELISA 
-
 QPCR

a 

 
Menopausal 
status  
pre/peri 
post 
 
Lymph node 
status 
negative 
positive 
 
Tumor size (pT) 
1 
2 
3/4 
 
Grade (Bloom-
Richardson) 
1/2 
3 
 
Estrogen 
receptor status 
negative 
positive 
 
Progesterone 
receptor status 
negative 
positive 
 
Adjuvant 
treatment 
no 
yes

b 

 
Age 

 
57 
57 
 
 
57 
57 
 
 
 
16 
41 
 
 
 
23 
34 
 
 
12 
41 
4 
 
 
 
33 
25 
 
 
 
23 
34 
 
 
 
25 
32 
 
 
 
29 
28 
 
57 

 
24 (42.1) 
24 (42.1) 
 
 
24 (42.1) 
24 (42.1) 
 
 
 
7 (43.8) 
17 (41.5) 
 
 
 
6 (26.1) 
18 (52.9) 
 
 
5 (41.7) 
17 (41.6) 
2 (50.0) 
 
 
 
14 (43.8) 
10 (40.0) 
 
 
 
7 (30.4) 
17 (50.0) 
 
 
 
9 (36.0) 
15 (46.9) 
 
 
 
9 (31.0) 
15 (53.6) 
 
24 (42.1) 

 
1.17 (0.66-2.07) 
1.00  (1.00-1.01) 
 
 
1.03 (0.93-1.14) 
>1.00 (1.00-1.00) 
 
1.03 (0.43-2.50) 
 
 
 
 
3.24 (1.25-8.39) 
 
 
 
 
1.26 (0.60-2.65) 
 
 
 
 
1.13 (0.50-2.56) 
 
 
 
 
1.56 (0.65-3.77) 
 
 
 
 
1.23 (0.53-2.82) 
 
 
 
 
2.30 (0.99-5.33) 
 
 
 
 
1.00 (0.97-1.03) 

 
0.582 
0.362 
 
 
0.574 
0.014 
 
0.942 
 
 
 
 
0.015 
 
 
 
 
0.538 
 
 
 
 
0.772 
 
 
 
 
0.322 
 
 
 
 
0.632 
 
 
 
 
0.052 
 
 
 
 
0.964 

 
1.14 (0.30-4.27) 
1.00 (0.99-1.01) 
 
 
0.99 (0.83-1.17) 
1.00 (1.00-1.01) 
 
0.85 (0.83-1.17) 
 
 
 
 
9.84 (1.72-56.16) 
 
 
 
 
1.43 (0.61-3.38) 
 
 
 
 
1.21 (0.44-3.35) 
 
 
 
 
3.61 (0.89-14.73) 
 
 
 
 
1.11 (0.36-3.40) 
 
 
 
 
0.44 (0.09-2.17) 
 
 
 
 
0.99 (0.93-1.05) 

 
0.685 
0.685 
 
 
0.865 
0.029 
 
0.851 
 
 
 
 
0.010 
 
 
 
 
0.411 
 
 
 
 
0.710 
 
 
 
 
0.073 
 
 
 
 
0.860 
 
 
 
 
0.310 
 
 
 
 
0.729 

 
a  
b  
c  
d 
e 
f 

 
 

 
zmol target gene/amol G6PDH 
Endocrine therapy (n = 17), chemotherapy (n = 7), both (n = 4) 
Event frequency (EF) 
Hazard ratio (HR) estimated from Cox proportional hazard regression model 
Confidence interval (CI) of the estimated HR       
Multivariate analysis includes uPA and PAI-1 measured by ELISA and QPCR/G6PDH (continuous), 
menopausal status, lymph node status, tumor size, grade, estrogen and progesterone receptor status, 
adjuvant treatment, and age (continuous)                                                                 
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3.3.2.2 German Collectives 

  

The uPA and PAI-1 mRNA concentrations of the German cohort ranged from 23.28 

to 695.04 zmol uPA/amol G6PDH (median 166.50) and from 9.83 to 1633.80 zmol 

PAI-1/amol G6PDH (median 189.50). Antigen levels in the detergent extracts ranged 

from 0.37 to 12.73 ng uPA/mg total protein (median 3.49) and from 4.45 to 147.00 ng 

PAI-1/mg total protein (median 18.80). 

 

Correlations between uPA and PAI-1 ELISA and QPCR Results 

As depicted in Figure 17 and Table 14, in the German breast cancer samples 

(detergent extracts), a significant, but weak correlation (rs = 0.48; p < 0.001) between 

mRNA and antigen values was seen for uPA expression, but not in case of PAI-1 (rs 

= 0.06; p = 0.613). 

 

 

 

Figure 17: German samples: correlation of uPA (n = 74) and PAI-1 (n = 71) mRNA with 

antigen levels determined by ELISA from detergent extracts. mRNA transcript levels were 

quantified by LightCycler QPCR. uPA and PAI-1 antigen levels were determined in detergent 

extracts of breast cancer tissues by use of the ‗IMUBIND uPA ELISA Kit‘ # 894 (uPA), and the 

‗IMUBIND PAI-1 ELISA Kit‘ # 821 (PAI-1). 

 

 

 



 72 

Other Significant Correlations 

In the whole German cohort, the highest correlation was observed between uPA and 

PAI-1 protein (rs = 0.49; p < 0.001), followed by uPA protein and uPA mRNA, as 

described above, and uPA and PAI-1 mRNA (rs = 0.38; p = 0.001; Table 14). 

 

 

Table 14: German samples: correlations (Spearman) between all measured variables. 

Significant p-values are underlined. 

 
uPA/G6PDH 

 
uPA protein 

 
PAI-1/G6PDH 

 

uPA protein 
(n = 74 ) 

 
rS = 0.478 
p < 0.001 

 

 

 

PAI-1/G6PDH 
(n = 74) 

 

 
rS = 0.379 
p = 0.001 

 

rS = 0.010 
p = 0.935 

PAI-1 protein 
(n = 71) 

 
rS = 0.101 
p = 0.402 

 

rS = 0.494 
p < 0.001 

rS = 0.061 
p = 0.613 

 

 

 

 

Relationship between uPA/PAI-1 Expression and Clinical and 

Histomorphological parameters 

Regarding the German breast cancer samples (detergent extracts), no significant 

associations were found with clinical or histomorphological data, neither for uPA nor 

PAI-1 mRNA, or antigen expression (Table 15, Table 16). 
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Table 15: German breast cancer samples: uPA mRNA and antigen expression levels 

related to clinical or histomorphological parameters (n = 74). The mRNA transcript levels 

were quantified by LightCycler PCR and normalized to G6PDH. uPA antigen levels were 

quantified by the ‗IMUBIND uPA ELISA Kit‘ # 894 from detergent extracts. Significant p-values 

are underlined. 

 
 
 

 

Variable 

 

Patient no. 
(%) 

uPA QPCR
d 

uPA ELISA
e 

Median (IR
c
) P-value Median (IR

c
) P-value 

Menopausal 
status

a 

pre/peri 
post 
 
Lymph node 
status

a
  

negative 
positive 
 
Tumor size (pT)

b 

1 
2 
3/4 
 
Grade (Bloom-
Richardson)

a 

1/2 
3 
 
Estrogen 
receptor status

a 

negative 
positive 
 
Progesterone 
receptor status

a 

negative 
positive 
 
Age category 
≤ 60 years  
> 60 years 
 

 
74 
 
20 (27.0) 
54 (73.0) 
 
68 
 
39 (57.4) 
29 (42.6) 
 
73 
32 (43.8) 
32 (43.8) 
9 (12.4) 
 
73 
40 (54.8) 
33 (45.2) 
 
 
74 
 
19 (25.7) 
55 (74.3) 
 
73 
 
28 (38.4) 
45 (61.6) 
 
74 
43 (58.1) 
31 (41.9) 
 

 
 
135 (141) 
195 (184) 
 
 
 
166 (135) 
198 (220) 
 
 
156 (143) 
200 (160) 
91 (186) 
 
 
184 (162) 
163 (174) 
 
 
 
 
223 (188) 
165 (152) 
 
 
 
207 (250) 
165 (127) 
 
 
167 (166) 
163 (155) 

 
0.134 
 
 
 
 
0.581 
 
 
 
 
0.285 
 
 
 
 
0.208 
 
 
 
 
0.762 
 
 
 
 
0.860 
 
 
 
 
0.839 

 
 
 
3.2 (2.5) 
3.9 (4.8) 
 
 
 
3.0 (3.8) 
4.0 (5.8) 
 
 
3.0 (3.1) 
4.0 (4.9) 
1.4 (6.6) 
 
 
3.1 (4.8) 
4.0 (3.4) 
 
 
 
 
4.8 (4.4) 
3.2 (4.0) 
 
 
 
4.3 (5.8) 
3.2 (3.5) 
 
 
3.7 (4.9) 
2.8 (3.9) 

 
0.119 
 
 
 
 
0.356 
 
 
 
 
0.222 
 
 
 
 
0.520 
 
 
 
 
0.082 
 
 
 
 
0.307 
 
 
 
 
0.440 

a 
b 
c 
d 
e 

Mann-Whitney-U Test 
Kruskal-Wallis Test  
Inter-quartile range (IR) 
zmol uPA/amol G6PDH 
ng uPA/mg total protein 
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Table 16: German breast cancer samples: PAI-1 mRNA and antigen expression levels 

related to clinical or histomorphological parameters (n = 71). The mRNA transcript levels 

were quantified by LightCycler QPCR and normalized to G6PDH. PAI-1 antigen levels were 

quantified by the ‗IMUBIND PAI-1 ELISA Kit‘ # 821 from detergent extracts. Significant p-values 

are underlined. 

 
 
 
 
 

 

Variable 

 

Patient no. 
(%) 

PAI-1 QPCR
d 

PAI-1 ELISA
e 

Median (IR
c
) P-value Median (IR

c
) P-value 

Menopausal 
status

a 

pre/peri 
post 
 
Lymph node 
status

a
  

negative 
positive 
 
Tumor size (pT)

b 

1 
2 
3/4 
 
Grade (Bloom-
Richardson)

a 

1/2 
3 
 
Estrogen 
receptor status

a 

negative 
positive 
 
Progesterone 
receptor status

a 

negative 
positive 
 
Age category 
≤ 60 years  
> 60 years 
 

 
71 
 
19 (26.8) 
52 (73.2) 
 
65 
 
38 (58.5) 
27 (41.5) 
 
70 
30 (42.9) 
31 (44.3) 
9 (12.9) 
 
 
70 
39 (55.7) 
31 (44.3) 
 
 
71 
18 (25.4) 
53 (74.6) 
 
70 
 
26 (37.1) 
44 (62.9) 
 
71 
41 (57.7) 
30 (42.3) 

 
 
 
181.7 (169.2) 
211.8 (241.5) 
 
 
 
184.5 (195.6) 
206.4 (267.3) 
 
 
 213.9 (222.8) 
200.8 (285.3) 
189.4 (208.3) 
 
 
 
296.3 (204.9) 
189.4 (296.8) 
 
 
 
241.7 (224.0) 
189.6 (227.0) 
 
 
 
203.4 (236.5) 
191.1 (207.6) 
 
 
189.6 (240.1) 
209.0 (229.5) 

 
0.421 
 
 
 
 
0.432 
 
 
 
 
0.775 
 
 
 
 
 
0.683 
 
 
 
 
0.937 
 
 
 
 
0.884 
 
 
 
0.658 

 
 
 
16 (22) 
19 (21) 
 
 
 
19 (22) 
18 (21) 
 
 
15 (18) 
21 (22) 
14 (18) 
 
 
14 (22) 
21 (19) 
 
 
 
 
20 (22) 
17 (21) 
 
 
 
21 (22) 
15 (19) 
 
 
19 (21) 
16 (22) 

 
0.488 
 
 
 
 
0.701 
 
 
 
 
0.257 
 
 
 
 
 
0.137 
 
 
 
 
0.350 
 
 
 
 
0.181 
 
 
 
0.831 

a 
b 
c 
d 
e 

Mann-Whitney-U Test 
Kruskal-Wallis Test 
Inter-quartile range (IR) 
zmol PAI-1/amol G6PDH 
ng PAI-1/mg total protein 
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3.4 Cryopowder versus Paraffin Extracts (Samples from Munich) 

 

After exclusion of mRNA with low G6PDH expression (< 500 copies) the collective 

comprised a total number of 28 tumor samples - each from fresh as well as from 

paraffin-embedded, formalin-fixed tumor tissue. ELISA results were available of all of 

these tumor samples. 

 

The results and inter-quartile ranges of uPA and PAI-1 mRNA quantification by 

LightCycler PCR and of uPA and PAI-1 protein quantification by ELISA are shown 

below in Table 17. Antigen detection revealed an almost 10 times higher expression 

of PAI-1 than of uPA. The antigen levels ranged from 0.51 to 9.88 ng uPA/mg total 

protein (median 3.05) and from 5.35 to 147.00 ng PAI-1/mg total protein (median 

21.08). Normalized to G6PDH, the mRNA concentrations in the cryopowder samples 

ranged from 31.45 to 460.08 zmol uPA/amol G6PDH (median 122.11 zmol uPA/amol 

G6PDH) and from 9.83 to 1633.80 zmol PAI-1/amol G6PDH (median 132.58 zmol 

PAI-1/amol G6PDH). The mRNA concentrations in the paraffin-preserved samples 

ranged from 36.69 to 490.25 zmol uPA/amol G6PDH (median 226.13 zmol uPA/amol 

G6PDH) and from 20.91 to 1096.88 zmol PAI-1/amol G6PDH (median 85.06 zmol 

PAI-1/amol G6PDH).  

 

Non-parametric correlation analysis between LightCycler quantification of uPA and 

PAI-1 and their quantification by ELISA revealed no significances (Table 18). 

 

 

 

 

 

 

 

 

 

 

 



 76 

Table 17: Munich breast cancer samples (n = 28): uPA and PAI-1 median values measured 

by ELISA and QPCR.  

 uPA median (IR) PAI-1 median (IR) 

ELISA [ng antigen/total 

protein] 
3.05 (3.28) 21.08 (16.95) 

Housekeeping gene G6PDH PBGD G6PDH PBGD 

Cryopowder 122.11 

(147.24) 

2306.66 

(2644.97) 

132.58 

(173.54) 

1869.18 

(3119.80) 

Paraffin sections 226.63 

(131.65) 

4034.29 

(3021.80) 

85.06 

(84.30) 

812.38 

(1334.55) 

 

 

 

 

Table 18: Munich breast cancer samples (n = 28): Spearman correlations between QPCR 

and ELISA results. 

 
Quantitative LightCycler PCR 

Cryopowder samples,  

results normalized to … 

Paraffin- and formalin-preserved 

samples, results normalized to… 

G6PDH PBGD G6PDH PBGD 

uPA 

E
L

IS
A

 

uPA 0.29 (ns) 0.21 (ns) 0.27 (ns) 0.03 (ns) 

 PAI-1 

PAI-1 0.25 (ns) 0.26 (ns) 0.01 (ns) -0.18 (ns) 
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Correlations between uPA expression in pulverized and FFPE tissue were rs = 0.51 

(p = 0.006) when normalized to G6PDH (Figure 18, a)) and rs = 0.18 (ns) when 

normalized to PBGD. Correlation coefficients describing the connection between PAI-

1 expression in pulverized tissue and paraffin-embedded tissue were rs = 0.51 (p = 

0.005) when normalized to G6PDH (Figure 18, b)) and rs = 0.15 (ns) when 

normalized to PBGD.  

 
 
Figure 19 shows uPA and PAI-1 expression levels, directly comparing cryopowder 

and paraffinized tumor samples. When using G6PDH as housekeeping gene, the 

majority of samples originating from the same tumor had similar uPA/PAI-1 

expression levels.  

 

 

 

 

Figure 18: Scatterplots showing the relationship between uPA and PAI-1 contents 

(normalized to G6PDH) in cryopowder and paraffin-embedded tissue. The mRNA transcript 

levels were quantified by LightCycler PCR. a) uPA; b) PAI-1. 
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a) 

 

 

b) 

 

Figure 19: uPA (a) and PAI-1 (b) mRNA normalized to G6PDH, isolated from cryopowder 

and paraffin-embedded breast cancer samples, respectively. 
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3.5 Housekeeping Gene Analysis (Samples from Munich and 

Nijmegen) 

 

Dutch Collective: Correlations of the Housekeeping Genes G6PDH and ß-actin 

For housekeeping correlation analysis, data of 105 (uPA)/104 (PAI-1) patients for 

both G6PDH and ß-actin were available. Correlations between the absolute values of 

G6PDH and ß-actin were rs = 0.64 (p < 0.001; Figure 20). Analysis of the relative 

values resulted in correlations between uPA/G6PDH and uPA/ß-actin of rs = 0.56 (p 

< 0.001), and between PAI-1/G6PDH and PAI-1/ß-actin of rs = 0.63 (p < 0.001; 

Figure 21). 

 
 
 
 
 
 

 

Figure 20: Absolute values - G6PDH versus ß-actin (n = 105). The mRNA transcript levels 

were quantified by LightCycler PCR. 
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Figure 21: Relative values - G6PDH versus ß-actin (uPA: n = 105; PAI-1: n = 104). The 

mRNA transcript levels were quantified by LightCycler PCR. 

 

 

Munich Collective: Correlations of the Housekeeping Genes G6PDH and PBGD 

The relationships of the housekeeping gene quantities of mRNA isolated from 

cryopowder and FFPE tissue of corresponding tumors were about 9 to 1 for G6PDH, 

and 7 to 1 for PBGD. Normally, cryopowder yielded more mRNA than paraffinized 

tissue. In average, PBGD was expressed at a 20 times lower level than G6PDH 

(Table 19, Figure 22). The wide distribution of the absolute values is probably due to 

the varying concentrations of mRNA used for reverse transcription into cDNA. In case 

that the measurement of G6PDH resulted in a molecule number below 500 in either a 

paraffin or a cryopowder probe, a second cDNA was synthesized from the isolated 

mRNA. Sometimes the new cDNA displayed similarly low molecule numbers, 

indicating the mRNA to be of poor quality. If sufficient tumor tissue was still available, 

the mRNA isolation was repeated, and in several cases a higher yield was attained. 
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Table 19: Medians and interquartal ranges of the housekeeping genes’ absolute values in 

cryopowder and paraffin sections. The mRNA transcript levels were quantified by LightCycler 

PCR. 

 
Cryopowder 

median (IR) 

Paraffin sections 

median (IR) 

G6PDH 7512.33 (14393.28) 1847.95 (1937.20) 

PBGD 332.45 (787.35) 102.15 (94.63) 

 
 

 

Figure 22: Comparison of G6PDH and PBGD expression in cryopowder and paraffin-

embedded tissue. The mRNA transcript levels were quantified by LightCycler PCR.

 

The correlation between the absolute values of the two housekeeping genes was 

high, with a correlation coefficient of rs = 0.84 (p < 0.001). The regression graph is 

plotted bi-logarithmically for visualization of the whole range of values (Figure 23). 

When comparing the relative uPA values measured in the same tissue type with 

different housekeeping genes, there were significant correlations between G6PDH 

and PBGD of rs = 0.66 (p < 0.001) in cryopowder and of rs = 0.71 (p < 0.001) in FFPE 

tissue. PAI-1 normalized to both housekeeping genes showed highly significant 

correlations between G6PDH and PBGD of rs = 0.89 (p < 0.001) in cryopowder and 

of rs = 0.77 (p < 0.001) in paraffin-embedded tissue (not shown). When combining 
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the samples, the correlation between G6PDH and PBGD was rs = 0.70 (p < 0.001) 

for uPA and rs = 0.81 (p < 0.001) for PAI-1 (Figure 24). 

 

 

Figure 23: Scatterplot showing the relationship between absolute values of the two 

housekeeping genes (n = 56). The mRNA transcript levels were quantified by LightCycler PCR. 

 
 
 

 
 

Figure 24: Relationships between relative values of the housekeeping genes G6PDH and 

PBGD in the combined cryopowder and paraffin-embedded, formalin-fixed samples (n = 

56). The mRNA transcript levels were quantified by LightCycler PCR. a) uPA; b) PAI-1. 
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4 DISCUSSION 

 

4.1 ELISA versus QPCR 

4.1.1 uPA and PAI-1 Antigen Quantification 

 

The first analysis of enzymatic uPA activity in breast cancer cytosols with respect to 

prognosis was performed by Duffy et al. 84. Numerous studies followed showing the 

prognostic impact of members of the plasminogen activation system in different 

malignancies by application of either detergent-extracted tissues or cytosol fractions 

106,130,173,174,175,330,341. In our applied ELISA formats, the assays were designed to 

detect all latent and active, as well as complexed and receptor-bound forms of uPA 

(both single chain and HMW-uPA) and PAI-1.  

 

uPA contents in breast cancer tissue of higher than 2.97 ng/mg protein, PAI-1 

contents of greater than 14 ng/mg protein in detergent extracts 142,175, and of above 

1.15 ng uPA/mg protein in routinely prepared cytosols 106 are known to indicate high 

risk tumors and a shortened life expectancy. The prognostic value of PAI-1 was also 

shown to prevail in tumor extracts from routinely prepared cytosols 107,176. 

 

When comparing both methods in 247 cases of breast cancer patients, Jänicke et al. 

176 found the strongest prognostic impact of uPA when using Triton X-100-extracted 

tissues. Additionally, the uPA antigen yield was much higher in these tissues, which 

was not the case for PAI-1. The two methods were highly correlated. Rosenquist et 

al. 287 found the greatest efficiency of uPA extracted by a pH 4.2 buffer containing the 

non-ionic detergent Triton X-100; a non-detergent extraction method for cytosol 

extracts was less efficient. De Witte et al. 80, who also found significant correlations 

for uPA and PAI-1 between cytosolic and detergent extracts retrieved from 

centrifuged pellets, detected the highest prognostic impact of uPA and PAI-1 when 

using cytosolic extracts.  

 

In the breast cancer samples presented in this thesis, we found a higher yield of both 

uPA and PAI-1 when using detergent extracts (German samples), with the proviso 
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that there are, of course, differences regarding tissue selection and ELISA 

methodology between the two cohorts. Eventually, both detergent and cytosol 

extracts seem valuable for antigen quantification of members of the uPA system, 

always depending on the factor being detected. The differing results in search of the 

optimum extraction method demonstrate the need for standardization of uPA and 

PAI-1 detection methodologies to be able to include the factors as new markers in 

routine breast cancer diagnostics. A number of available uPA and PAI-1 kits have 

been compared to each other in technical papers, often resulting in substantial 

variation of antigen levels. When using the same type of ELISA kit, there were 

acceptable coefficients of variation between laboratories, but other influencing 

factors, such as differences in quality assessment and laboratory experience, remain. 

Therefore, strict requirements for newly introduced markers are mandatory, detection 

assays and procedures should be standardized. For this purpose, biomarker 

evaluation guidelines have been proposed 120,152,153,236,342,343. 

  

 

4.1.2 Correlations of mRNA Quantification and Antigen Detection by 

ELISA 

 
The analysis of uPA and PAI-1 expression in the eight cell lines - including four 

breast cancer cell lines, two ovary cancer cell lines, a keratinocyte, and a melanoma 

cell line - showed high correlations between uPA and PAI-1 in both antigen and 

mRNA quantification (which was confirmed in the breast cohorts). Furthermore, high 

correlations between ELISA and the QPCR method of above rs = 0.9 for both uPA 

and PAI-1, normalized to G6PDH, became apparent.  

 

Of the cell lines mentioned above, the two cell lines most common in murinal studies 

- the ER-negative breast cancer cell line MDA-MB-231 and the melanoma cell line 

MDA-MB-435 - tend to develop aggressively in mice, especially the latter which is 

able to produce lung and lymph metastases. Tumors obtained from ER-positive 

breast cancer cell lines - represented by MCF-7 -, on the contrary, are rarely 

invasive, and tumor growth requires estrogenic supplementation. The above cell lines 

are often used to analyze molecular details of breast cancer progression. MDA-MB-

231, for example, can be used to represent advanced, MCF-7 earlier stages of breast 
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cancer. OV-MZ-6 and -10 are tumorigenic and invasive ovarian cell lines known to 

express uPA and PAI-1 among other members of the plasminogen activation system. 

In our examination, highest antigen concentrations of both uPA and PAI-1 were seen 

in OV-MZ-10, MDA-MB-231, and MDA-MB-231 BAG, whereas the lowest levels were 

measured in MCF-7 and MDA-MB-435. Holst-Hansen et al. 163 also measured high 

uPA and PAI-1 concentrations by immuno-assays in the MDA-MB-231 BAG cell line, 

and distinctly low levels in MDA-MB-435 BAG and MCF-7 cell lines. In that study, 

MDA-MB-231 BAG cells - in contrast to the two other cell lines - showed a high 

activity in mediating plasmin formation and cell invasion; the uPA system was 

assumed to be actively involved in the invasive process. In a study focusing on the 

importance of PN-1 in breast cancer, additionally uPA and PAI-1 were measured by 

QPCR in MDA-MB-231 and MCF-7 cell lines, and were found to be distinctly 

increased in cultured MDA-MB-231 cells 40.  

 

Given the accordance of ELISA and QPCR results, it was hypothesized that high 

correlations may also be seen by comparing the two quantification methods in breast 

cancer samples. However, cell lines often lack representativeness as breast cancer 

in vivo displays a greater heterogeneity than breast cancer cell lines 209. Alterations 

of the pheno- or genotype may occur depending on culturing conditions. 

Furthermore, due to posttranscriptional regulation processes which have been 

previously described for components of the plasminogen activation system including 

uPA and PAI-1 156,159,225,309,310,361, mRNA levels do not entirely image the respective 

antigen quantification by ELISA. It is assumed that there are control mechanisms by 

short-lived proteins which are altered at a specific stage during tumor progression, 

thereby influencing stability or processing of nuclear transcripts 159. 

 

Two patient cohorts from the Netherlands and Germany consisting in 105 patients 

and 74 patients, respectively, were analyzed with respect to the inter-relation 

between ELISA and QPCR. Again, significant correlations were found between the 

two methods, but the Spearman correlation coefficients were low, ranging between 

0.34 and 0.48 (uPA), and between 0.19 and 0.41 (PAI-1), depending on the applied 

housekeeping gene. In the German cohort, PAI-1 protein and mRNA values did not 

correlate at all. Separate evaluation of the 28 breast cancer samples from Munich, in 
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fact, did not show any significant correlations between the ELISA and the QPCR 

results, neither when isolated from fresh-frozen nor from preserved tissues.  

 

Our results are in line with observations by Spyratos et al. 331 who found uPA, PAI-1 

(and PAI-2) protein and mRNA levels to be significantly correlated, but in part with 

only borderline significance. This was only examined in a very small cohort (n = 21). 

In another study, no significant correlations between protein and mRNA 

measurements were found in specimens of 54 breast cancer patients 47. Recently, 

however, the same research group found significant correlations between mRNA and 

antigen results for uPA and PAI-1 in tumor tissue of 70 breast cancer patients 48. Still, 

there are only few groups so far which have analyzed correlations between uPA and 

PAI-1 mRNA, and antigen levels, larger patient numbers would be desirable.  

 

In the study by Spyratos et al. 331, corresponding to our results, positive correlations 

between the uPA and PAI-1 mRNA values were observed as well. Several other 

groups found correlations between uPA and PAI-1 antigen levels 

29,30,69,107,111,131,168,175,222. These findings are not surprising when considering the 

various interactions of the members of the plasminogen activation system and the 

synergic effects ascribed to uPA and PAI-1 in tumor growth and metastasis. 
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4.2 uPA/PAI-1 Expression and Clinical and Histomorphological 

Parameters, and Survival Analysis 

 

Our findings in the Dutch cohort that uPA and PAI-1 antigen levels were significantly 

higher in ER-negative and in case of PAI-1 also in PgR-negative patients as 

compared to the receptor-positive patient samples are supported by a number of 

further studies 107,111,222. This association with the ER-status was also confirmed for 

uPA mRNA that was normalized to ß-actin.  

 

In the study by Castello et al. 47, a positive correlation between uPA and PAI-1 

antigen and mRNA values with tumor severity (tumor grade), as well as between uPA 

and PAI-1 antigen levels and the lymph node status, was found. Look et al. 222 found 

positive correlations between antigen levels of PAI-1 and the lymph node status, and 

uPA and PAI-1 antigen values also correlated significantly with the histologic grade. 

These results could not be supported by our findings which showed a negative 

association of uPA mRNA expression - normalized to G6PDH - and lymph node 

status (Dutch cohort). Publications on relationships between uPA, PAI-1, and 

histopathological factors, however, are often inconsistent. Alltogether, there were no 

relevant associations in this work between uPA/PAI-1 levels and clinicopathological 

variables, neither when quantifying mRNA nor antigen amounts. 

 

Up to now, there are only few published prognostic studies with relatively small 

patient numbers in which uPA and PAI-1 have been measured by application of 

QPCR assays 48,215,331,351. In the study of Spyratos et al. 331, high uPA and PAI-1 

mRNA expression was significantly associated with shorter disease-free survival in a 

population of 130 primary breast cancers, independent of hormone receptor or lymph 

node status. Leissner et al. 215, who included 87 patients, all node-positive/hormone 

receptor-positive, observed that high PAI-1 mRNA expression was significantly 

associated with a shorter metastasis-free survival (MFS), whereas uPA mRNA levels 

were not of prognostic relevance. In a subset of ErbB2-positive breast cancer 

patients Urban et al. 351 identified uPA by quantitative PCR among 60 other genes as 

the most significant marker associated with MFS.  
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In several studies, uPA antigen or mRNA contents in malignant breast tumors also 

showed prognostic relevance, but in most cases only PAI-1 correlated significantly 

with relapse-free or overall survival in multivariate Cox regression analysis, along 

with other strong established prognostic factors such as lymph node status 

48,107,133,142,262,288. Also in this work, a significant association was seen between PAI-1 

mRNA levels and recurrence-free survival in both univariate and multivariate Cox 

regression analyses, high levels indicating an unfavorable outcome (Dutch cohort). 

Apart from PAI-1, only the lymph node status of the patients had comparable 

predictive capacity.  

 

Antigen levels, in part, showed quite different results compared to mRNA levels when 

analyzing for coherences with histomorphological factors and prognostic information. 

Varying results may be in part ascribable to tumor heterogeneity: tumor tissue, apart 

from neoplastic cells and subclones, consists of numerous cells (e.g. stromal cells, 

macrophages), and there are influencing factors (cytokines, growth factors, 

hormones - partially by cAMP regulation) that could affect expression of certain 

genes. For future projects, it would therefore be reasonable to select tissue under 

microscopic control and analyze different areas of a tumor. And, as described above, 

transcriptional and posttranscriptional regulation processes causing degradation of 

nuclear or cytoplasmic precursor or mature mRNA with special occurrence in 

malignant tissues may constitute differences in expression of proteolytic factors, a 

deeper understanding of which would necessitate further investigations. Yet, both 

methods have meanwhile independently rendered valuable information on the 

relevance of the uPA system in breast cancer. 

 

Unfortunately, in most clinical studies described above, there are no corresponding 

ELISA results available in order to directly compare the prognostic strength of uPA 

and PAI-1 in protein versus mRNA determination. Such studies would be essential 

for paving the way for the introduction of the highly sensitive, reproducible, and fast 

QPCR assays for uPA and PAI-1, which depend on small amounts of tumor tissue, to 

clinical routine.  

 

 



 89 

4.3 Cryopowder versus Formalin-Fixed, Paraffin-Embedded Tissue 

 

In the past, there have been limitations to RT-PCR studies as they depended on the 

availability of fresh-frozen samples. Formalin-fixed paraffin-embedded archives 

worldwide would provide a rich source of histomorphological and clinical data for 

gene expression analyses, allowing extensive retrospective and prospective studies 

in addition to the tissues‘ present routine use for genetical and immunohistochemical 

analyses. But there have been reports of extensive RNA degradation in paraffin-

preserved tissues and varying mRNA detection depending on the applied fixative 112. 

Today, highly sensitive quantitative RT-PCR assays and improved RNA isolation 

techniques provide the opportunity to amplify very small RNA strands, despite its 

partially extensive fragmentation by this kind of preservation. There have been 

studies describing successful RT-PCRs of mRNA from FFPE tissue 2,121,170,214,326. 

Godfrey 121 even found paraffinized tissues - in contrast to frozen tissues - to be 

independent of pre-fixation time. Abrahamsen 2, however, described a strong 

decrease of mRNA levels (of from 85 to 99%) when matching the samples to frozen 

tissue, in particular when amplifying long sequences. When using small amplicons, 

however, the mRNA yield was much better (up to 100-fold), prolonged preservation 

did not affect the amount of amplified PCR product. But also the RNA yield in fresh-

frozen samples was higher when using smaller amplicons, showing long amplicons in 

general to be more susceptible to degradation. This indicates that it is necessary to 

minimize the amplicon length of target and housekeeping genes as far as possible, 

as pursued in the present work (amplicon lengths lying between 103 (uPA) and 150 

(PBGD) base pairs).  

 

Our comparison of expression levels of QPCR quantification from fresh as well as 

from paraffin-embedded, formalin-fixed tumor tissue revealed that much less target 

and housekeeping gene mRNA could be isolated from paraffin-embedded than from 

cryo-preserved tumor tissue which corresponds to previous studies. Nevertheless, 

when using G6PDH as housekeeping gene, there was a significant correlation of 

uPA and PAI-1 contents, respectively, between both tissues.  
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Further investigations concerning the choice of amplicon length, optimization of 

reference genes, and RNA extraction procedure might contribute to the 

establishment of a standardized mRNA retrieval technique for application in archival 

cancer studies. Our results confirm, in line with other QPCR studies, the applicability 

of formalin-fixed, paraffin-embedded tissue for mRNA extraction. Prior to routine 

clinical application, however, there is a need for further methodological studies 

encompassing larger patient cohorts.  
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4.4 Housekeeping Genes 

 

In order to be able to compare expression levels of genes in different tissue samples, 

it is necessary to normalize the data to so-called housekeeping genes when applying 

quantitative RT-PCR assays. Housekeeping genes are genes which are ideally 

expressed in all cells at a comparable expression level, they encode molecules that 

are necessary for basic maintenance and essential cellular functions. ß-actin 

encodes for components of the cytoskeleton. Porphobilinogen Deaminase (PBGD) is 

a key enzyme of the heme synthesis pathway. One transcript of the PBGD gene is 

solely expressed in erythroid tissues, the other transcript is present in all tissues and 

represents the housekeeping variant 126. Glucose-6-phophatedehydrogenase 

(G6PDH) catalyzes the dehydrogenation of D-glucose-6-phosphate to 6-

phosphogluconolacton and NADPH in the phosphogluconate metabolic pathway. 

Although ubiquitously expressed, it has been shown to display varying basal activity 

from one tissue to another. In a number of tissues - like proliferating and adipose 

cells, the liver, and the lung -, the cellular level of G6PDH is regulated by various 

external stimuli, such as hormones, growth factors, nutrients, and oxidant stress 191. 

In this study, G6PDH was applied in the first place, since it has already been proven 

an appropriate housekeeping gene in a previous breast cancer study 98. For the 

choice of an appropriate reference gene further prerequisites are mandatory: (1) 

there should be no known regulation of the housekeeping gene expression in the 

analyzed tissue; (2) specific primers and hybridization probes - binding to exon/intron 

boundaries - should be used to avoid amplification of pseudogenes/traces of DNA; 

(3) the expression levels of housekeeping gene and analyzed target gene should be 

similar. 

 

Until now, no optimum housekeeping gene has been identified. The numerous 

influencing factors - potentially including neoplastic growth - that may influence the 

expression of the housekeeping gene have to be taken into consideration as this may 

have substantial impact on the interpretation of the respective results.  

 

Only few studies so far have tried to investigate variations of housekeeping gene 

expression in different cancerous tissues 70,73,103,117,123,207. A Dutch QPCR study 

comparing 13 different housekeeping genes, including ß-actin and PBGD, stated that 
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there is no single housekeeping gene that shows invariable expression between 

different cell types. It is recommended to use mean expression of multiple 

housekeeping genes for normalization. Of the examined genes, HPRT (hypoxanthine 

ribosyltransferase) showed to be the best single reference gene as it most accurately 

reflected the mean expression of the other analyzed genes 73.  

 

In this work, the collectives with two housekeeping genes being available revealed 

high correlations between their expression levels, in particular between the absolute 

values, which underlines the reliability of the values measured by the LightCycler as 

well as the exchangeability of the respective two housekeeping genes. The relative 

values of uPA and PAI-1 in the samples from Munich revealed higher correlation 

coefficients when using G6PDH as housekeeping gene which may be ascribable to 

the distinctly lower expression level of PBGD (PBGD was expressed at an about 20 

times lower level) and thereby a higher variability of its results. ß-actin has the 

highest expression of the three examined housekeeping genes. G6PDH is known to 

have a medium, PBGD a low expression level, which we also observed in our 

samples. G6PDH and PBGD correlated stronger than G6PDH and ß-actin.  

 

For future QPCR investigations, the choice of a certain reference gene depends on 

further research results comparing the use of certain genes in the respective tissue 

and on target gene expression. In small tumor extracts with high target gene 

expression, it may be useful to apply a highly expressing housekeeping gene like ß-

actin. For instance, in our case, PBGD does not seem valuable when detecting uPA 

and PAI-1 mRNA that was extracted from paraffin-embedded breast tumor tissue.  
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4.5 Concluding Remarks 

 

High antigen contents of uPA and PAI-1 in malignant breast tumors have been 

shown to indicate an unfavorable prognosis for the patients, and, consequently, 

quantification of these factors gives valuable information on prognosis and, even 

more important, can help decide whether adjuvant treatment is to be administered. 

With reference to the National Institutes of Health (NIH) 91 and St. Gallen consensus 

guidelines 124, up to 90% of node-negative breast cancer patients are eligible to 

receive adjuvant chemotherapeutic treatment. By use of uPA and PAI-1 as additional 

prognostic factors for identification of high risk patients - aside from the established 

TNM criteria, tumor grading, and steroid hormone receptor status - a considerable 

number of patients could be spared from the exposure to toxic chemotherapy. In fact, 

elevated antigen levels of the serine protease uPA and its inhibitor PAI-1 in primary 

breast cancer tissue determined by ELISA have already entered clinical practice as 

indicators of poor breast cancer prognosis 149,257. However, in general, the ELISA 

method requires relatively large quantities of fresh-frozen tumor material, the 

procedure is time-consuming and elaborate, and requires an adequate capacity for 

the storage of tumor samples. As the tumor material, due to earlier diagnosis of 

cancer, becomes more and more limited and is obtained from cryostat sections, fine 

needle aspirates, or core biopsies 302, there is a need for alternative more sensitive 

and less material-consuming methods for quantitative determination of prognostic 

factors in tumor material. In the present study, quantitative real-time PCR assays for 

uPA and PAI-1 - applying the LightCycler technology - were established. 

 

Among the first to evaluate uPA and PAI-1 mRNA by QPCR were Castello et al. 47 

who - as most researchers applying quantitative RT-PCR - used SYBR Green I for 

template detection and ß-actin as housekeeping gene. In their work, the amplicon 

lengths were considerably larger than in our study (ranging from 341 to 481 base 

pairs). SYBR Green is a fluorescent dye which intercalates with double-stranded 

DNA molecules, melting-point analysis has to be performed in order to distinguish 

amplification products from primer dimers. In contrast, the FRET method, applying 

hybridization probes, is more precise and specific. Moreover, to our knowledge, our 

QPCR assays, with target genes ranging from 103 to 132 base pairs in length 

(normalization to G6PDH), represent the smallest QPCR assays for uPA and PAI-1 
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described so far.  

 

In order to recapitulate this work, the following conclusions can be made. 

 

 The assays that were designed in this work differ from other published assays 

in their abililty to detect very small fractions of the target genes. They display 

high sensitivity (especially due to the selection of amplicons that overlap exon 

boundaries and the additional binding of hybridization probes to the amplicon), 

and the technique is reliable and simple. 

 

 Correlations between uPA and PAI-1 antigen and mRNA determination were 

significant, albeit less strong in the breast cancer collectives than in the 

selected cell lines. Differences, also in the relationship with patient tumor 

characteristics, indicate limitations to the one-to-one transferability of the 

antigen expression of members of the plasminogen activation system to the 

respective quantification of mRNA copies. 

 

 In the Dutch cohort, PAI-1 mRNA was confirmed as a negative prognostic 

factor in both univariate and multivariate analysis. Apart from PAI-1 only the 

lymph node status was significantly linked to overall survival; but there was 

only a small number of patients in the available Dutch cohort with complete 

prognostic information (n = 57). 

 

 mRNA extraction and subsequent quantification from formalin-fixed, paraffin-

embedded tissue by QPCR was successful. By selection of an appropriate 

housekeeping gene corresponding to the expression height of a target gene 

and expansion of patient numbers, the applicability of similar assays could be 

further explored. This may give way to extensive retrospective studies using 

the multitude of archived tissue material held in pathological departments 

around the world. 

 

In summary, these findings indicate that it is not as yet possible to exchange antigen 

quantification by ELISA of uPA and PAI-1 with mRNA detection and measurement 
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via quantitative RT-PCR in clinical practice. The detailed mechanisms of mRNA 

processing prior to translation into protein products have to be further understood. 

But the method can provide valuable - including prognostic - information on the 

importance of uPA, PAI-1, and other parameters with tumor-promoting capacities. 

The sensitive and fast assays we have designed and applied by quantifying uPA and 

PAI-1 mRNA in a number of cell lines and two breast cancer cohorts have set an 

example for studies in which only very small amounts of tissue, potentially archived 

FFPE tissues, are available.  
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5 APPENDIX 

   Abbreviations 

 

AI aromatase inhibitor 

Ala alanine 

Arg arginine 

ATF amino-terminal fragment 

bp base pairs 

BRCA breast cancer gene 

BSA bovine serum albumin 

CA cancer antigen 

CD cluster of differentiation 

(c)DNA (complementary) deoxyribonucleic acid 

CEA carcinoembryonic antigen 

CI confidence interval 

CLIS carcinoma lobulare in situ 

CP crossing point 

CTC circulating tumor cell 

D domain 

DCIS ductal carcinoma in situ 

DFS disease-free survival 

DMEM Dulbecco's modified eagle medium 

ECM extra-cellular matrix 

EF event frequency 

EGF(R) epidermal growth factor (receptor) 

ELISA enzyme-linked immunosorbent assay 

ERD estrogen receptor downregulator 

ERK extracellular regulated kinase 

exon expressed region 

FFPE formalin-fixed, paraffin-embedded 

FPRL1/LXA4R FPR-like receptor-1/lipoxin A4 receptor 

FRET fluorescence resonance energy transfer 

Gly glycine 

GPI glycosylphosphatidylinositol 

(h-)G6PDH (human) glucose-6-phosphate-dehydrogenase 

HE hematoxylin-eosin 
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HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid 

HER-2 human epidermal growth factor receptor 2 

HGF hepatocyte growth factor 

HIV-1 human immunodeficiency virus 1 

HMW-uPA high molecular weight uPA 

HR hazard ratio 

HRP horseradish peroxidase 

HPLC high performance liquid chromatography 

HPRT hypoxanthine ribosyltransferase 

HSP heat-shock protein 

IGF(BP) insuline-like growth factor (binding protein) 

Ile isoleucine 

IHC immunohistochemistry 

intron intervening region 

IR interquartile range 

LDLR low density lipoprotein receptor 

LED light-emitting diode 

LH-RH luteinizing hormone-releasing hormone 

LMW-uPA low molecular weight uPA 

LRP LDLR-related protein 

Lys lysine 

MAPK mitogen-activated protein kinase 

MEK MAPK extracellular signal regulated kinase kinase 

MFS metastasis-free survival 

MMP matrix metalloproteinase 

(M)SBR (modified) Scarff-Bloom-Richardson 

MSP macrophage-stimulating protein 

(m)RNA (messenger) ribonucleic acid 

NADPH nicotinamide adenine dinucleotide phosphate 

NIH National Institutes of Health 

NNBC node negative breast cancer 

ns non-significant 

OS overall survival 

PAI plasminogen activator inhibitor 

PBGD porphobilinogen deaminase 

Plg plasminogen 

PN-1 protease nexin 1 
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(p)TNM (pathologic) tumor, node, metastasis 

QPCR quantitative PCR 

(RT)PCR (reverse transcriptase) polymerase chain reaction 

RCL reactive center loop 

rS Spearman rank correlation 

SCID severe combined immunodeficiency 

SD standard deviation 

Ser serine 

SERM selective estrogen receptor modulator 

serpin serine proteinase inhibitor 

SF scatter factor 

SMB somatomedin B 

SPF S-phase fraction 

(s)uPAR (soluble) urokinase-type plasminogen activator receptor 

TGF transforming growth factor 

TLI thymidine labeling index 

TMB tetramethylbenzidine 

tPA tissue-type plasminogen activator 

Tris  trishydroxymethylaminomethane  

uPA urokinase-type plasminogen activator 

Val valine 

VC coefficient of variation 

VEGF vascular endothelial growth factor 

VLDLR  very-low-density lipoprotein receptor 
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