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Abstract

Risk premia influence asset prices on both equity and credit markets. Most

research on risk premia has so far looked at either equity or credit markets

separately. However, these two markets are not separated: Both markets of-

fer claims on the same underlying (i.e. companies’ assets) and most investors

have access to both markets. Therefore, risk premia on equity markets can

be compared to risk premia on debt markets and vice versa. We use this

comparability idea to address certain questions concerning risk premia on

both equity and credit markets.

We start by analyzing credit spreads on credit markets. Practitioners fre-

quently price credit instruments using real-world quantities (PD, EL) and

adding a (credit) risk premium. We analyze these credit risk premia within

structural models of default based on calibrations from historical equity risk

premia. We first analyze a Merton framework and find that i) credit risk

premia constitute a significant part of model-implied spreads and ii) this

part increases with increasing credit quality. In addition, credit risk premia

are hardly affected by moving to more advanced structural models of de-

fault.

We use these observations to propose a new approach for estimating the eq-

uity premium using CDS spreads and structural models of default. Although

the equity premium is – both from a conceptual and empirical perspective

– a widely researched topic in finance, there is still no consensus in the

academic literature on its magnitude. Based on a Merton model, a simple

estimator for the market Sharpe ratio and the equity premium can be de-

rived. This estimator has several advantages: First, it offers a new line of

thought for estimating the equity premium which is not directly linked to

current methods. Second, it is only based on observable parameters. We

neither have to calibrate dividend or earnings growth, which is usually nec-

essary in dividend/earnings discount models, nor do we have to calibrate

asset values or default barriers, which is usually necessary in traditional ap-

plications of structural models. Third, our estimator is robust with respect

to model changes.
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We apply our estimator to more than 150,000 CDS spreads from the U.S.,

Europe, and Asia from 2003-2007. Our estimates yield equity premia of

6.50% for the U.S., 5.44% for Europe, and 6.21% for Asia based on 5-year

CDS spreads. Due to some conservative assumptions these estimates are

upper limits for the equity premium. Using 3-, 7-, and 10-year CDS spreads

yields similar results and offers an opportunity to estimate the term struc-

ture of risk premia.

Besides the magnitude of the equity premium, the time series behavior of

risk premia is another important issue in finance. We use the estimator

described above to calibrate the term structure of risk premia before and

during the 2007/2008 financial crisis. We find that the risk premium term

structure was flat before the crisis and downward sloping during the crisis.

The instantaneous risk premium increased significantly during the crisis,

whereas the long-run mean of the risk premium process was of the same

magnitude before and during the crisis.

These results convey the idea that (marginal) investors have become more

risk averse during the crisis. Investors were, however, well aware that risk

premia will revert to normal levels again. As a result, short-term risk premia

increased more than long-term risk premia. The slope of the risk premium

term structure (measured as 10-year Sharpe ratio minus 3-year Sharpe ra-

tio) was approximately zero before the 2007/2008 financial crisis and be-

came negative during the 2007/2008 financial crisis. Based on theoretical

arguments one would also expect this slope to be a factor in asset pricing,

although our short sample period does not allow for a direct validation.

Both applications – estimating equity premia and calibrating the risk pre-

mium term structure – benefit from the same underlying reason: Risk premia

can be more easily measured on credit than on equity markets. It is easier to

estimate the necessary input factors on credit markets than to estimate the

necessary input factors on equity markets. In addition, distinct maturities

are available. Therefore, we think that our approach is not limited to the

applications developed in this thesis but also offers a basis for analyzing

further research questions conerning risk premia on financial markets.
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1. Introduction

1.1. Motivation

Based on common sense and empirical observations, most agents are risk

averse, i.e., if they have the choice between a riskless and a risky invest-

ment offering the same expected return they prefer the riskless investment.1

Therefore risky assets – with risk that cannot be totally diversified – are

expected to offer an (expected) excess return above the return on risk-

less assets.2 Risk premia are a compensation for this non-diversifiable risk.

Throughout this thesis, we will use the term “risk premium” as the expected

excess return of a risky asset above the risk-free rate. The terms equity

(risk) premium and credit risk premium are used for risk premia on equity

and credit markets. The equity premium is certainly the single most cited

risk premium. It is defined as the difference between the (expected) return

on a market portfolio of equities (e.g. S&P 500, DAX) and the risk-free rate.

Risk premia are of central importance for several areas of modern finance.

First, risk premia play a major role in asset allocation decisions. They deter-

mine the average return an investor can expect to earn on a risky portfolio.

Risk premia – in addition to individual preferences – should therefore influ-

ence the allocation of funds to riskless and risky assets.3 E.g., if equities earn

an average return of 20% above the risk-free rate, investors should be more

inclined to invest in equities than if they only earn an average excess return

of 1%. Thus, risk premia should reflect the risk aversion of the marginal

1Cf. Sharpe (1965), Friend/Blume (1975), Pindick (1988), and Paun (2008).
2Cf. section 2.2.3 for a literature review of excess returns on equities and section 2.3.3

for a review of risk premia on credit instruments.
3Cf. Tobin (1958) and Markowitz (1952).
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Chapter 1. Introduction

investor: Risky assets have to earn a return where demand and supply of

risky assets are balanced.

Second, from a valuation perspective, risk premia determine the correct

discount rate for the respective cash flows. Given a certain set of uncertain

cash flows subject to systematic risk, a higher risk premium results in a

higher discount rate and therefore in a lower asset or company value.4 Un-

fortunately, these risk premia are not directly observable which poses some

challenges in practical applications. E.g., during the 2007/2008 financial

crisis, accountants were faced with a big problem when valuing companies:

When using historical risk premia they were not able to come up with model-

based DCF values close to the market values – even with very conservative

cash flow projections. They concluded that risk aversion and risk premia

must have increased during the turmoil – although a reliable estimate was

hard to determine.5

Third, the magnitude and behavior of risk premia is of large academic

interest because it helps to understand the way financial markets work and

market participants behave. In particular, the behavior of the equity pre-

mium has been subject to intensive debate.6 Research has shown that div-

idend/price ratios have some ability to predict future equity returns over

longer horizons, giving rise to academic research on return predictability,

time variation, and mean reversion in the equity premium.7 Of course, the

results of this fundamental research also have implications on the applica-

tions discussed above. The importance of risk premia is certainly not limited

to the examples mentioned so far. It is, however, not our target to describe

all areas where risk premia play an important role. Our concern is rather to

point out that risk premia are at the heart of finance and indispensible for

4This is based on the net present value rule, cf. Brealey et al. (2008) for an overview. The
most prominent concepts for the determination of discount rates are the Capital Asset
Pricing Model (cf. Sharpe (1964), Mossin (1966) and Lintner (1965)), the arbitrage
pricing theory (cf. Ross (1976)) and the Fama/French model (cf. Fama/French (1993,
1996)).

5These observations are based on informal discussions with accountants at major ac-
counting firms.

6Cf. section 2.2.3.2 and Cochrane (2005) for on overview.
7Cf. Fama/French (1988), Cochrane (2005), and Campbell/Viceira (1999) for an appli-

cation to asset allocation decisions.
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Chapter 1. Introduction

explaining asset prices and asset returns, and for managing financial assets.

Some people might argue that risk premia are not necessary for some

of the applications described above due to risk-neutral pricing rules.8 Why

should we care about risk premia when we are equipped with a rich the-

ory that expresses prices as risk-neutral expected payoffs discounted by the

risk-free rate? This risk-neutral valuation has become popular in many ar-

eas of modern finance, especially for the pricing of derivative claims. At first

glance, the Black/Scholes (1974) option pricing formula seems to be inde-

pendent from any risk premium. Bond and credit default swap prices can

also be determined using risk-neutral default probabilities.9 If markets are

complete and in the absence of arbitrage, all claims can be priced using a

unique risk-neutral probability measure.10 However, there are fundamental

reasons why risk premia are indeed important. First, the risk-neutral mea-

sure Q has to be calibrated. The prices of the assets used to calibrate Q

have to be found by other models.11 Risk-neutral pricing rules are therefore

an appropriate tool to price derivative claims such as options on stocks, but

it is usually hard to use it for pricing the underlyings of these derivative

claims. In addition, it is interesting to learn something about the factors

driving the value of assets and not simply to determine the value itself.

Risk premia affect asset values and this effect can only be analyzed by look-

ing at real-world quantities.

As mentioned earlier, the single most cited risk premium is certainly

the equity premium. Although it is of major importance for many pur-

poses, there is still no consensus on the correct magnitude of the equity

8Cf. Elton et al. (2001) for a similar discussion.
9Cf. Jarrow/Turnbull (1995) for a rigorous analysis.

10This is the essential result of Harrison/Pliska (1981) and Harrison/Kreps(1979). Tech-
nical conditions apply.

11Frequently, liquid instruments are used to calibrate Q (e.g. equities). Then other in-
struments – such as options – can be priced based on this calibration. Mathematically,
the risk-neutral probability measure can also be derived from the real-world proba-
bility measure via Girsanov’s Theorem. In this transformation, risk premia play a
role.
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Chapter 1. Introduction

premium. There are mainly four different approaches for measuring the eq-

uity premium (or any other risk premium):12 First, it can be estimated

from historical averages, thereby assuming that history is a good proxy for

the present and future situation. Second, implied equity risk premia can be

extracted from market prices by implicitly solving valuation equations un-

der the real-world measure. Third, theoretical approaches based on utility

functions and corresponding risk aversion parameters can be used. Fourth,

expert estimates can be used – although this is not very satisfactory from

an academic point of view.

Fortunately, markets are not totally separated from each other, so risk

premia on different markets can be compared. This has two reasons: First,

it can be reasonably assumed that investors on different markets are not

too different from each other. As an extreme example, it seems implausi-

ble that investors in Germany demand an equity premium of 50%, while

investors in France demand an equity premium of 0.1%. Second, within

globally integrated financial markets there is competition between markets

and investors. In the example above, French investors would simply invest

in Germany, which would raise asset prices in Germany and decrease as-

set prices in France until risk premia were comparable. Academic research

about equity premia in different countries – which on average resulted in

equity premia below the U.S. estimates – is one of the reasons why historical

equity premia in the U.S. are now seen as upward biased.13

A comparision of risk premia is possible not only between equity markets

in different countries, but also between different asset classes. This is the

basic idea of this thesis. We focus on the comparison of risk premia on

credit and equity markets. In general, bonds are less risky than equities.

As a result, the average risk premium on bonds should be lower than the

12Cf. section 2.2 for a detailed literature overview for all four approaches.
13Cf. Dimson et al. (2003, 2006) for historical equity premia of 17 countries. Of course,

a one-on-one comparison of equity premia is not possible since these may differ due
to different volatilities, correlations with the global market portfolio, and market
frictions such as taxes and transaction costs.
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Chapter 1. Introduction

equity risk premium. Although this is of course a very vague relation, it

already helps to reject some of the results from classical utility theory:

Mehra/Prescott (1985) determined an equity premium of less than 0.35%

using standard risk aversion parameters and standard utility theory. Bond

risk premia are above 0.35%, therefore equity premia of less than 0.35% do

not appear reasonable.14 Within this thesis, we will model the relationship

between credit risk premia and equity premia in more detail, i.e., we will

derive formulas such as

Equity Premium = f ( Credit Risk Premium, Other Parameters ) (1.1)

This formula can be used in (at least) two ways: First, to derive credit risk

premia from equity premia. Second, to derive equity premia from credit risk

premia. We will use the second approach for our empirical application and

derive the equity premium from credit default swap prices. In addition, we

will try to answer some fundamental issues about the behavior of the equity

premium and risk premia in general.

This choice of application is not arbitrary, but has a deeper reasoning: We

think that credit markets are better suited to measure current, implied risk

aversion than equity markets. Why is this the case? It is easier to estimate

the necessary input factors on credit markets than to estimate the neces-

sary input factors on equity markets. This is due to both a rich academic

and practitioner’s literature on the estimation of real-world cash flows on

credit instruments15 and a limited time horizon for which estimates have to

be made. To measure implied risk premia, expected cash flows have to be

equated to current market prices. To estimate cash flows for equities, earn-

ings estimates are necessary. For bonds or credit default swaps, estimates of

the default probability (PD) and recovery rate (RR) need to be available.

For credit instruments, generally accepted estimates for PD and RR exist,

these estimates are based on (partially) objective criteria and only need to

14Cf. Hull et al. (2005) for a good overview of the magnitude of bond risk premia. A
detailed literature overview can be found in section 2.3.3.

15Cf. section 2.3.2 for a literature review.
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be estimated for a limited time horizon, usually less than 10 years.16 In

contrast, earnings forecasts from analysts – which are most frequently used

as proxies for expected earnings17 – are subjective and have to be available

for an infinite time horizon to determine implicit discount rates.18

However, estimating implied risk premia from credit markets also has

some disadvantages. With illiquid bond markets, the determination of an

accurate market price used to be a major problem until about a decade ago.

This has changed with the rise of credit default swap (CDS) markets that

offer a purer measure of credit risk than bonds and are standardized with

respect to maturities, seniority, and other features. Although CDS markets

are OTC markets, they have become the benchmark for credit risk – espe-

cially since the introduction of CDS indices in the U.S., Europe, and Asia

in 2003/2004.19

The derivation of equity premia from credit risk premia via (1.1) induces

additional model risk. The function f has to be specified and it may depend

on the certain model setup and on other parameters. In this thesis, we will

use structural models of default to link risk premia on equity markets to

risk premia on credit markets.20 The academic literature has developed a

variety of structural models with different assumptions concerning the de-

fault mechanism and the underlying processes. It is a well-established fact

from academic research that these different models yield very different re-

sults when applied in practice (cf. section 2.3.1.3 for details). At this point,

one of the main contributions of this thesis will be to demonstrate that for

our specific application the difference between the main structural models

16An overview of methodologies for estimating PD and RR can be found in section 2.3.2.
17Cf. Claus/Thomas (2001) and Gebhardt et al. (2001) for example.
18A short overview of analyst forecasts can be found in section 2.2.2.
19Cf. Jakola (2006) for an overview of the growth and importance of the CDS market

and FitchRatings (2006) for a case study of bond vs. CDS liquidity.
20Structural models seem to be the first choice to link valuation from equity and credit

markets since they model both equity and debt as a function of the same underlying
process (asset value process). However, other – more ad-hoc – models may also be
applied, cf. section 2.4 for an overview.
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of default is quite small. While model risk is a major problem for standard

applications, it is not – or only to a much smaller extent – a problem for

our application.

Finally, besides offering an easier estimation of input factors, estimating

equity risk premia from credit risk premia allows for further applications.

There is a large advantage of CDS if risk premia are supposed to be esti-

mated for a certain time horizon. E.g., assume we are faced with a five-year

strategic asset allocation decision.21 In this case, we are interested in ex-

pected risk premia over the next five years. CDS offer distinct maturities

which can be used to determine five-year CDS-implied equity risk premia

via (1.1). In contrast, the duration of equities is difficult to determine accu-

rately and usually exceeds 20 years.22 Estimating implied equity risk premia

from CDS separately for each maturity allows constructing a term structure

of risk premia. Tools from the interest rate literature can then be applied

to estimate mean reversion, volatility, and long-run means.23

In summary, credit markets have two main advantages for estimating risk

premia: First, real-world expectations of market participants can be mea-

sured more accurately than on equity markets. Second, credit instruments

such as bonds and CDS have fixed maturities – which allows estimating risk

premia for distinct time horizons. If one is interested in the equity risk pre-

mium, the main challenge is the transformation of risk premia from credit

markets to equivalent risk premia on equity markets. This requires certain

model assumptions which have to be thoroughly analyzed.

21In contrast to strategic asset allocation decisions, tactical asset allocation decisions
also try to exploit differences in short-term risk premia on different markets. As we
assume that markets are in equilibrium, we focus on strategic asset allocation in this
setting.

22In a Gordon constant-growth model, the duration of equity is the reciprocal of the
dividend yield. A 5% dividend yield – which is rather high for ordinary stocks –
corresponds with a duration of 20 years in this model. Lower dividend yields result
in larger durations.

23These are mainly the tools from affine term-structure models (pricing formulas, Kalman
filter methodology), cf. Bolder (2001) for a good summary.
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1.2. An introductory example

As discussed in the last section, the main idea of this thesis is the compa-

rability of risk premia between equity and credit markets. We will formally

derive the functional relationship between equity and credit risk premia in

chapter 3 for several standard structural models of default. In this section,

we want to demonstrate the idea with a simple binomial tree model. The

focus of this introductory example is neither to derive a specific formula or

relationship nor to get any reasonable results concerning the magnitude of

these risk premia. Its aim is simply to demonstrate the mechanics and to

give an intuition why credit markets may be more useful for deriving risk

premia than equity markets are.

What do we need to estimate risk premia? Risk premia are the expected

excess returns on financial assets. Therefore, we need i) an estimate of ex-

pected future cash flows, ii) the current price of the asset, and iii) the

risk-free rate. i) and ii) allow for an estimation of expected returns and –

substracting the risk-free rate – expected exess returns. Mathematically, we

need the real and risk-neutral probability measures. The “difference” is the

risk premium.24

Let us start by looking at a situation as depicted in figure 1.1. We operate

in a single-period, binomial model with one single firm X for which both

bonds (zero bonds with face value $100) and equity are traded and we as-

sume a risk-free rate of 0%.25 The state “down” represents default of firm X,

the state “up” represents survival of firm X. Equity of company X is traded

at $40. In case of default, equity holders receive nothing, therefore the payoff

24The formal link between the real-world probability measure, the risk-neutral proba-
bility measure, and risk premia is established by Girsanov’s Theorem. In addition,
no-arbitrage, completeness, and technical conditions have to be met to guarantee ex-
istence and uniqueness. This introductory example tries to motivate the link and will
therefore contain a more informal discussion of risk premia.

25The example could easily be extended to a non-zero interest rate or to coupon-bearing
bonds. The assumptions were made for reasons of simplicity for the following calcu-
lations.
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Figure 1.1.: Introductory example: Bond and equity market setup. p/q de-
note real-world/risk-neutral probabilities. Subscript u and d de-
note states “up” and “down”. EP [E1]/EP [B1] denote expected
cash flows and EP [RE]/EP [RB] expected returns of equities and
bonds.

to equity holders in state “down” is $0. The payoff to bond holders in state

“up” is the face value of the bond – assumed to be $100 – since there is no

default in this state. The price of the bond is $90 which can be observed

from the bond market. All information depicted in figure 1.1 can be gained

by i) observing market prices on bond and equity markets and ii) assum-

ing a strict-priority rule in case of default. No forecasts, expert estimates or

judgements for either bond or equity markets are necessary up to this point.

In the next step, we add two additional pieces of information to our bi-

nomial tree model, which require some kind of estimation procedure: The

(real-world) default probability of the bond is assumed to be 1% and the

(real-world) recovery rate of the bond is assumed to be 50% of the nomi-

nal value, i.e. $50 (cf. figure 1.2). This information could be gathered from

ratings of either the main rating agencies or from corresponding academic

research.

With this information, we are now able to calibrate the risk-neutral prob-

abilities for state “up” and “down” by equating the expected risk-neutral

payoff to the current bond price.26 The resulting risk-neutral probabilities

26As mentioned above, we have assumed a zero risk-free rate.
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Figure 1.2.: Introductory example: Calibration of real-world probability
measure (P ) and risk-neutral probability measure (Q) via the
bond market. For details cf. figure 1.1.

are qu = 0.80 and qd = 0.20.27 The expected return of the bond is 10.56%.28

This is also the excess return of the bond as the risk-free rate is 0%.

The risk-neutral probabilities enable us to derive the payoff to the equity

holders in state “up” ($50), cf. figure 1.3.29 Together with the real-world

probabilities, we are able to determine the real-world expected payoff to

the equity holders ($49.50) and the expected yield for the equity holders

(23.75%).30 Since the risk-free rate is 0%, the excess return above the risk-

27These are derived via (1− qd) · $100 + qd · $50 != 90 and qu = 1− qd.
28The expected real-world payoff is (1−pd)·$100+pd·$50 = 99%·$100+1%·$50 = $99.50.

Therefore, the expected return is $99.50/$90 − 1 = 10.56%. Please note that this is
different from the yield of the bond, which is the promised return of the bond.

2980% · x+ 20% · 0 != 40 yields x = 50.
30The expected payoff is calculated as 99% · $50 + 1% · $0 = $49.50, the expected return
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Figure 1.3.: Introductory example: Derivation of equity risk premium via
bond market information. For details cf. figure 1.1.

free rate to equity holders is also 23.75%.

We are therefore able to determine excess expected equity returns via the

bond market with the following assumptions:

1. No-arbitrage: Equity and bond markets are integrated, in particular

there is no arbitrage.

2. Observable market prices: Market prices from credit and equity mar-

kets are observable.

3. Model setup: Binomial model and strict priority rule.

4. Calibration: Estimates for the default probability and recovery rate

are available.

No-arbitrage: This is a standard assumption in financial modeling.31 The

same procedure as described above could of course also be used to find

possible arbitrage opportunities.

Observable market prices: As discussed in the last section, reliability of

prices for credit instruments is a much lesser concern today than it used

as $49.50/$40 = 23.75%.
31Cf. Duffie (1996), Cochrane (2005), and LeRoy/Werner (2006) for an in-depth discus-

sion.
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to be a few years ago, especially with the introduction of CDS indices in

2003/2004.

Model setup: The procedure outlined above has to make assumptions

about the link between equity and debt cash flows. A binomial model com-

bined with a strict priority of payments is assumed. In more advanced

models, other assumptions will be necessary (e.g. first-passage-style default

mechanism vs. zero-bond-style default mechanism). A key concern of the

applications developed in this thesis will be the robustness with respect to

model changes.

Calibration: We have assumed availability of real-world default probabil-

ity and recovery rate estimates. This is a very crucial point. We could easily

determine risk premia on equities and bonds in our example if we had as-

sumed instead i) availability of estimates for the probabilities for the “up”

or “down” state from equity markets and ii) the payoff in the “up-state”

for equities. As discussed in the last section, estimating expected cash flows

from credit markets is much easier than estimating cash flows on equity

markets due to partially objective models and the limited time horizon for

which estimates have to be made.

This introductory example has demonstrated the basic mechanism and

assumptions for linking risk premia on credit markets to risk premia on

equity markets. We will now formulate the explicit research questions for

this thesis.

1.3. Research questions and contribution

This thesis aims to compare risk premia on equity and credit markets. Based

on theoretical arguments, we argue that credit markets have some advan-

tages in measuring risk premia and risk aversion of market participants.32

32Unfortunately, it is not possible to conduct an empirical test to compare the perfor-
mance of our equity premium estimates with other equity premium estimates. This
is due to our short sample period (2003-2008) – which is limited by the availability of
reliable credit default swap data. In general, any backtesting of aggregate expected
equity return estimates is problematical due to the large standard deviation of returns
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We explore the theoretical link between equity premia and credit risk pre-

mia, use this link to estimate the equity premium from CDS spreads and

answer an open issue from the asset pricing literature (time variation and

mean reversion of risk premia). In particular, this thesis addresses the fol-

lowing research questions:

1. How can the link between risk premia on equity and credit markets

be modeled within standard structural models of default? What are

the properties of this relationship?

a) Derivation and analysis within a standard Merton framework, in

particular i) derivation of formulas to link credit risk premia to

the equity premium, asset, and market Sharpe ratio, ii) analysis

of the relative importance of asset/market Sharpe ratio assump-

tions for credit risk premia, and iii) analysis of the properties of

the relationship (sensitivities, concavity/convexity, limit behav-

ior).

b) Derivation and analysis within more advanced structural models

of default, in particular i) robustness of formulas derived in the

Merton framework with respect to model changes and ii) anal-

ysis of influence of additional parameters and features of these

advanced structural models.33

2. How can this link be used to estimate the equity premium and market

Sharpe ratio from CDS spreads (CDS-implied equity premium, CDS-

implied market Sharpe ratio)?

a) Implementability: Derivation of an implementable formula based

on observable market parameters. Discussion of data availability

and implementation issues.

compared to the mean returns, cf. Poterba/Summers (1988).
33We will focus on the Duffie/Lando (2001) framework, which includes unobservable as-

set values and was the first structural model of default consistent with reduced-form
pricing. This allows us to integrate the two main types of credit risk models (struc-
tural, reduced-form). A special case of the Duffie/Lando model is the Leland/Toft
(1996) model (for zero asset value uncertainty). Due to our specific design, we will
also capture all Brownian motion type structural models of default with a fixed default
barrier, which is usually the case.
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b) Estimation of equity premia from CDS spreads and proxies for

real-world default probabilities for the U.S., Europe, and Asia be-

fore the 2007/2008 financial crisis (2003/2004 – 2007) and com-

parison with other equity premium estimates.

c) Analysis of the robustness of our estimator with respect to model

changes and noise in the estimation of input parameters.

3. Can the link between equity premia/Sharpe ratios and credit risk

premia be used to shed light on the existence of time variation and

mean reversion of risk premia?

a) Estimation of the term structure of market Sharpe ratios for the

U.S. and Europe before and during the 2007/2008 financial crisis

based on different CDS maturities.

b) Analysis of time variation in CDS-implied market Sharpe ratios.

This is done via an application of standard methodologies from

the interest rate literature (in particular Kalman filtering) to de-

termine the parameters of the instantaneous Sharpe ratio process

from the time series of market Sharpe ratio term structures.

These topics are relevant for both academia and practical applications:

The theoretical analysis of the link between equity and credit risk premia

offers a new perspective on some recent research in the credit risk area. In

particular, it offers a theoretical explanation for the large importance of risk

premia for credit spreads which has been previously indicated by empirial

studies.34 In addition, it can help to explain the low explanatory power of

fundamental variables for credit spread movements.

This thesis also adds to the equity premium literature. The equity pre-

mium is of major importance for many asset pricing and asset allocation

decisions. There is still no consensus on the magnitude of the equity pre-

mium – estimates from major finance journals range from as low as approx.

34Cf. Elton et al. (2001) and Amato/Remolona (2003).
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0.1% to more than 8%.35 The methodology developed and proposed in this

thesis offers a new line of thought for estimating the equity premium and is

independent from the other main approaches discussed in the current liter-

ature.

There are many open issues concerning both the behavior of aggregate

(expected) returns and the cross-section of returns. This thesis argues that

the credit markets may be helpful in explaining some of these issues. In

particular, our last research question analyzes the time variation in risk

premia. Equity market research finds some evidence for time variation in

equity risk premia – although return data of usually more than 50 years is

necessary to yield any significant results.36

1.4. Structure of analysis

Chapter 2 provides a survey about the existing literature on general asset

pricing, equity valuation and equity premia, credit valuation, and credit

risk premia and the link between risk premia on equity and credit markets.

Chapter 3 provides a theoretical analysis of the link between credit risk pre-

mia and equity premia within structural models of default. This theoretical

link is implemented in chapter 4. Data on CDS spreads from 2003-2007 is

used to estimate CDS-implied equity premia for the U.S., Europe, and Asia.

Chapter 5 applies the estimation methodology from chapter 4 to estimate

a term structure of risk premia. A time series of term structures before and

during the 2007/2008 financial crisis is used to estimate the parameters of

the instantaneous risk premium process (mean reversion, volatility, long-

run mean). Chapter 6 concludes and provides an outlook for possible future

areas of research.

35Cf. Mehra/Prescott (1985) for estimates of as low as 0.1% and Easton et al. (2002)
for estimates of more than 8% for the 1990s. A general overview of equity premium
estimates can be found in section 2.2.3.

36Cf. Campbell/Viceira (1999).
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2. Existing literature and review

of standard models

In section 2.1, we start with a brief review of the literature on general asset

pricing. Section 2.2 follows with a discussion of equity valuation including

different valuation models, cash flow estimation, and equity risk premia.

Section 2.3 gives an overview of the main concepts of credit pricing including

pricing models, expected loss estimation, and credit risk premia. Section 2.4

concludes this chapter with an overview of the existing literature concerning

the link between risk premia on equity and credit markets.

2.1. General asset pricing theory

We will briefly discuss general asset pricing theory in this section. However,

the focus of this section is more to present some of the main ideas that we

will use later in chapters 3-5 rather than to provide a detailed discussion

of all areas of modern asset pricing. An in-depth treatment of these topics

can be found in Duffie (1996), Kruschwitz (2002), Copeland et al. (2005),

Cochrane (2005), LeRoy/Werner (2006), and Brealey et al. (2008).

The value of an investment project generating a cash flow of CF1 in year

1 can be determined according to Brealey et al. (2008) with the present

value rule, i.e.,

V0 =
1

1 + k
CF1, (2.1)

where k is an appropriate discount factor. So far, this is not a theory but

an identity since the discount factor k is not specified and does not even
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have to be unique for investments generating the same cash flow CF1. The

crucial point in valuation theory is the determination of the discount rate

k, also called the cost of capital or the hurdle rate. At this point, several

questions are of interest. First, is this discount factor unique or does it de-

pend on the preferences of an individual investor who has to deal with a

certain investment problem? Second, what are the properties of k, i.e., in

which cases is it low and in which cases is it high?

Financial theory builds mainly on three assumptions to answer these ques-

tions: First, it is assumed that investors want to be rich, i.e., they prefer

more money to less. Second, investors are risk averse, i.e., they prefer a

riskless investment to a risky investment if expected returns are the same.

Third, there is a functioning capital market. The first assumption guaran-

tees that non-monetary properties of the cash flow CF1 do not have an effect

on its valuation, e.g., as long as the payoff is exactly the same, people do

not care whether the payoff CF1 comes from a tobacco company or from a

micro-finance institution. In addition, this first assumption usually ensures

that arbitrage opportunities are exploited and therefore markets can rea-

sonably be assumed to be arbitrage-free. The second assumption gives rise

to risk premia for systematic (non-diversifiable) risk. The third assumption

ensures that wealth can be transformed into different time patterns of con-

sumption and thereby decouples investment and consumption decisions.

In the absence of uncertainty, Fisher (1930) was the first to develop a

separation theorem on this basis. He showed that if capital markets are fric-

tionless in the sense that borrowing and lending rates are the same, then

there is a unique value for any riskless cash flow. A unique borrowing and

lending rate ensures that agents can transform wealth and consumption in

time for a market-wide unique discount factor. In this case, the present value

can be calculated by setting k in (2.1) equal to this unique risk-free rate.

However, this unique present value rule is already violated if different rates

for (risk-free) borrowing and lending exist (cf. Hirshleifer (1958)).

If securities/investments are not riskless but their payoff depends on the
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state of the economy things become more complicated. The discount rate k

depends on the riskiness of the cash flows, giving rise to so-called stochastic

discount factors. In this case, there are two main theoretical approaches

which provide guidance for valuation.

First, utility-based approaches. These approaches assume that agents’ util-

ity increases with increasing consumption and that utility functions are

concave, i.e., “the last bite is never as satisfying as the first” (Cochrane

(2005), p. 5). In addition, agents are assumed to maximize the discounted

value of utility. In this setting it can be shown that the value of an invest-

ment equals the sum of the payoffs for each state of the economy multiplied

with the marginal rates of substitution for each state (cf. Leroy/Werner

(2006) and Cochrane (2005)), i.e.

V0 = EP

[
1

1 + k′
CF1

]
=

1

1 + k
EP [CF1] with

1

1 + k′
= β

u′(c1)

u′(c0)
, (2.2)

where β denotes a subjective discount factor, u denotes the utility func-

tion of the investor, and ct denotes the consumption in year t. However,

the discount factor 1
1+k

does not have to be unique, but may depend on

the individual preferences of agents. Generally, cash flows that positively

covary with consumption are subject to a higher average discount factor, cf.

Cochrane (2005). It can further be shown that in the absence of arbitrage

a positive valuation functional exists. If markets are complete, i.e., if every

claim is attainable and can be generated by a certain set of assets, then this

valuation functional is unique. In this case, the marginal rate of substitu-

tion is the same for each investor, cf. LeRoy/Werner (2006). Utility-based

approaches provide deep insights and explanatory power of the mechanics

of security markets. However, they rely on some restrictive assumptions, in

particular the dependence of utility on consumption.1

A second approach simply assumes that prices on security markets are given

and does not directly specify the underlying mechanics, cf. Duffie (1996) for

1E.g., some people might have a consumption target and decide to work longer until
they have earned enough to satisfy this target. In this case, the utility function would
also have to include the negative utility of longer working hours or a later retirement
age.
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example. As in the utility-based approaches, it can be shown that if markets

are arbitrage free, claims in the asset span have a unique price and discount

rate. If markets are complete, every claim has a unique price and discount

rate.

If markets are arbitrage-free and complete, valuation can also be per-

formed with a unique risk-neutral probability measure2 and risk-neutral

and real-world valuation lead to the same result, i.e.,

V0 =
1

1 + k
EP [CF1] =

1

1 + r
EQ [CF1] , (2.3)

where r denotes the risk-free rate.3 In this case, all cash flows are discounted

with the risk-free rate but expectation is taken under the risk-neutral prob-

ability measure. A general approach to risk-neutral valuation was provided

by Harrison/Kreps (1979) and Harrison/Pliska (1981).

Depending on the underlying assumptions, various models for the cross-

section of returns have been proposed. The most famous is the Capital Asset

Pricing Model (CAPM), which relies on the assumption of either normally

distributed returns or on agents that optimize their portfolios based on

mean/variance criteria, cf. Brealey et al. (2008) and LeRoy/Werner (2006).

The CAPM is a one-factor model; multi-factor models such as the arbi-

trage pricing theory (APT) and the Fama/French three-factor model have

also been proposed. However, it can be shown that a one-factor model is

sufficient to capture the cross-section of expected returns if i) markets are

arbitrage-free and complete and ii) agents have homogeneous expectations,

2If market are arbitrage-free, a risk-neutral probability measure exists. If markets are
arbitrage-free and complete, the risk-neutral probability measure is also unique. Tech-
nical conditions apply. Cf. Duffie (1996).

3The equivalence of real-world and risk-neutral valuation applies to the value of a con-
tingent claim. It should be noted that c.p. statements usually give different results
depending on whether they are performed in the real or risk-neutral world. E.g., if risk
aversion increases, the price of a call option will decrease if real-world expected pay-
offs are assumed to stay the same. However, it will remain unchanged if risk-neutral
expected payoffs are assumed to stay the same. Cf. also Berg et al. (2009) for a similar
discussion concerning the effect of volatility on option prices.
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cf. Duffie (1996) and LeRoy/Werner (2006). No further assumptions con-

cerning the distribution of returns4 and the form of utility functions is re-

quired. However, the special design of the CAPM (the single factor is the

return on the market portfolio) is only valid if the additional assumptions

mentioned above are made.

The formulas developed above can be generalized to the multi-period case,

i.e.,

V0 =
∑
t>0

EP

[
1

1 + kt
CFt

]
(2.4)

V0 =
∑
t>0

EQ

[
1

1 + rt
CFt

]
(2.5)

Throughout this thesis, we will abstract from any individual or aggregate

utility functions but simply assume that unique real-world and risk-neutral

probability measures exist. We will draw on formulas (2.4) and (2.5) to

develop prices for equity and credit instruments. In addition, we will usually

assume that we can work in a single-factor setting and – in the empirical

part – that this single factor is the market portfolio.

2.2. Equity valuation

The models in this section will be specific cases of the net present value

rule (2.4). The value of a company (or a share of a company) in t will

be denoted by Vt. The models in the next paragraphs will differ in the

specification of cash flows (dividends vs. residual income vs. earnings). The

estimation of cash flows will be discussed in section 2.2.2. Section 2.2.3

provides a literature review on risk premia on equity markets.

4Apart from the condition that the first two moments must exist.
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2.2.1. Valuation models

2.2.1.1. Dividend discount model

The dividend discount model (DDM) is probably the most simple valuation

approach. The dividends are the cash flows that an investor receives on an

equity investment. Consequently,

V0 =
∞∑
t=1

Dt

(1 + k)t
, (2.6)

where Dt denotes the (expected) dividend5 in year t and k denotes the

discount rate which is assumed to be constant for notational convenience at

this stage. Assuming constant growth rates for the dividends together with

a constant discount rate results in the Gordon dividend discount model

V0 =
D1

k − gd
, (2.7)

where gd is the (constant, ever-lasting) growth rate of dividends. These for-

mulas were first developed by Williams (1938). The latter formula is named

after Gordon (1962) and is therefore called the Gordon dividend growth

model.6

For practical applications, formula (2.6) requires too many estimates of

future dividends to be applicable. In contrast, (2.7) uses too few dividend

forecasts to yield reasonable results.7 Therefore, several variations of these

formulas have been developed to account for data availability and practica-

bility considerations. The valuation formula (2.6) is usually split into two

to three subperiods. In the first subperiod (3-5 years), explicit analyst es-

5For notational convenience we will denote expected dividends also with Dt instead of
EP [Dt] as long as the meaning is clear from the context. This also applies to other
quantities such as earnings or book values in the following sections.

6Here, gd denotes the discrete growth rate. In continuous time Vt =
∫∞
t=0

D0e
g̃dte−ktdt =

D0/(k − g̃d) with the continuous growth rate g̃d.
7E.g., consider the current 2007/2008 financial turmoil where some companies are not

expected to pay any dividend at all in the next fiscal year. In this case, (2.7) yields a
company value of zero and/or gd is undefined.
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timates for the expected dividends are available. In the second subperiod,

growth is assumed to converge to a long-run or economy-wide mean. In the

third stage, this long-run growth rate is assumed to persist forever so that

(2.7) can be applied. Some of the models omit the second stage and directly

use a constant growth rate after the first stage.

Brigham et al. (1985) is one of the first examples of a two-stage DDM.

In the first stage (3 years), analyst forecasts are used to estimate future

dividends. In the second stage, a constant growth model is applied and the

growth rate is estimated as the retention rate of earnings multiplied with

the book return on equity.8 Gordon/Gordon (1997) propose a two-stage

DDM and assume that the profitability (RoE) in the second stage equals

the cost of capital (k). Botosan/Plumlee (2002) use analyst forecasts for

the stock price at the beginning of the second stage as a proxy for the com-

pany value at the beginning of the second stage. Three-stage models have

been developed by Malkiel (1979) and Lee et al. (2007). Malkiel assumes a

convergence of the growth rate of dividends to the long-run growth rate of

the U.S. economy in the second stage. This growth rate is also the growth

rate for the third stage. Lee et al. (2007) assume that the growth rate of

earnings converges to the long-run growth rate of the economy. In addition,

the retention rate is assumed to converge to a steady-state retention rate.

DDMs can be applied to determine company values (if discount rates and

expected dividends are available) or to implicitly determine discount rates

and equity premia (if today’s market values and expected dividends are

available). The results of empirical studies using DDM to estimate equity

premia are discussed in section 2.2.3.

2.2.1.2. Residual income model

The residual income model (RIM) has been developed by Preinreich (1938)

and Edwards/Bell (1961). It is based on a simple reformulation of the div-

8E.g., growth rate of dividends is assumed to be equal to the growth rate of book equity.
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idend discount model in terms of book value of equity and earnings using

the clean surplus relation and the transversality condition. In the following,

we will briefly develop the RIM based on a very general idea of Ohlson

(1998, 2000) and Ohlens/Jüttner-Nauroth (2005). The main idea is to use

a telescoping series of any sequence (yt) which satisfies the transversality

condition yt/(1 + k)t → 0 as t→∞ so that

0 = y0−
(1 + k)y0

1 + k
+

y1

1 + k
− (1 + k)y1

(1 + k)2
+/− ... = y0 +

∞∑
t=1

yt − (1 + k)yt−1

(1 + k)t
.

Adding this telescoping series to the right-hand side of the dividend discount

model (2.6) yields

V0 = y0 +
∞∑
t=0

Dt + yt − (1 + k)yt−1

(1 + k)t
. (2.8)

Now, any sequence (yt) could be used as long as the transversality condition

is fulfilled. To derive the residual income model, set

yt = BVt,

where BVt denotes the expected book value of equity in t. This yields

V0 = BV0 +
∞∑
t=0

Dt +BVt − (1 + k)BVt−1

(1 + k)t
.

So far, the derivation has been purely mathematical. The economic ingre-

dient for the residual income model is the so-called clean surplus relation,

which links dividends (Dt), earnings (Et), and the book value of equity

(BVt) via

BVt −BVt−1 = Et −Dt. (2.9)

This clean surplus relation states that the difference in book values between

t and t− 1 is equal to the earnings in period t less the dividend that is paid

out to shareholders. It therefore requires that all changes that affect the

book value of equity should be included in earnings. The extent to which
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the clean surplus relation holds is dependent on the specific accounting rules

applied in determining book values and earnings. We will discuss the validity

of this assumption in section 2.2.2. Plugging (2.9) into equation (2.8) yields

V0 = BV0 +
∞∑
t=1

Et − kBVt−1

(1 + k)t
= BV0 +

∞∑
t=1

RIt
(1 + k)t

(2.10)

withRIt = Et − k ·BVt−1.

The term RIt is called the residual income (or abnormal earnings, value

added). It represents the earnings in t less the cost of capital on the book

value of equity. Some authors have argued that in an equilibrium residual

income should be approx. zero in the long-run as companies’ expected re-

turns should equal their cost of capital.9 However, residual income is an

accounting figure and therefore dependent on specific accounting rules. Due

to accounting conservatism it will be on average larger than zero, cf. Zhang

(2000) for a theoretical argumentation and Myers (1999) and Cheng (2005)

for empirical studies.

For an implementation, (2.10) can be expressed as a one-/two-/three-

stage model as discussed in section 2.2.1.1. Botosan (1997) uses a two-stage

RIM together with analyst forecasts for the share price at the beginning

of the second stage. Claus/Thomas (2001) apply the RIM to the aggregate

market, i.e., they use aggregate book values, earnings, and dividends. They

apply a two-stage model where growth in the second stage is assumed to be

equal to the expected rate of inflation. Gebhardt et al. (2001) implement a

three-stage RIM where RoE is assumed to revert to the historical median

industry RoE in the second stage. Easton et al. (2002) apply a model with

a simultaneous estimation of the long-run growth rate.

The key advantage of the residual income approach is its focus on earn-

ings and book values instead of dividends. Earnings and book values are

not as dependent on the retention rate as dividends. In addition, the ter-

9Cf. Gebhardt et al. (2001) and Claus/Thomas (2001) for a detailed discussion.
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minal value makes up a much smaller proportion in residal income models

compared to dividend discount models. Since terminal values are hard to

determine due to the uncertainty in the corresponding growth rate assump-

tions, the RIM methodology seems to be better suited to determine company

values. However, there are additional underlying assumptions (in particular

clean surplus) and the accuracy may be spurious due to methodological is-

sues related to accounting conservatism, cf. Zhang (2000).

As for the dividend discount model, residudal income models can either be

applied to determine company values or to implicitly solve for the required

discount rate and determine the implied equity premia. We will discuss the

results of empirical studies using RIM for the estimation of equity premia

in section 2.2.3.

2.2.1.3. Earnings discount model

A general earnings discount model was developed by Ohlson/Jüttner-Nauroth

(2005) and implemented by Gode/Mohanram (2003).10 It is based on the

same formula (2.8) as the residual income model. Instead of the series of

book values BVt, the series of capitalized (expected) earnings Et+1/k is used

for yt, which results in

V0 =
E1

k
+
∞∑
t=1

1/k · (Et+1 − (1 + k)Et + kDt)

(1 + k)t
=:

E1

k
+
∞∑
t=1

zt
(1 + k)t

.

Here, k · zt = Et+1 − Et − k(Et − Dt) has the interpretation of expected

(out)performance in t+1. It is the amount by which the expected earnings in

t+ 1 exceed last year’s earnings, including an adjustment for the retention

made in the last year. If the payout ratio is assumed to be 100% (i.e.,

Dt = Et), then k · zt simply equals the earnings growth (Et − Et−1), cf.

Ohlson/Jüttner-Nauroth (2005) for a detailed discussion. In the next step,

Ohlson/Jüttner-Nauroth (2005) make an assumption about the behavior of

10The Gode/Mohanram study was indeed published earlier than the model it is based on.
In addition, both papers were published in the same journal (Review of Accounting
Studies).
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zt, i.e.,

zt = (1 + γ)zz+1

for a constant 0 ≤ γ < k11 to derive the valuation formula (cf. Ohlson/Jüttner-

Nauroth (2005))

V0 =
E1

k
+

z1

k − γ
=
E1

k
· g2 − γ
k − γ

, (2.11)

where g2 is the growth in earnings from t = 1 to t = 2 exceeding the cost of

capital under the assumption of a 100% retention rate.12 Ohlson/Jütttner-

Nauroth (2005) also show that, under certain conditions, Et
Et−1
→ (1 + γ) as

t→∞ so that γ plays the role of long-term earnings growth.

Formula (2.11) can be simplified and related to the price-earnings growth

ratio (PEG) by setting γ = 0:

V0

E1

=
g2

k2
(2.12)

and, by setting g2 equal to the cost of capital k, to the price/earnings ratio

(PE):13

V0

E1

=
1

k
. (2.13)

Again, formulas (2.11)-(2.13) can be applied to determine company values

or discount rates and equity premia. Section 2.2.3 provides a review of the

literature that uses earnings discount models to estimate the equity pre-

mium.

11γ < k is mathematically necessary for convergence, γ ≥ 0 is assumed for economic
reasons, cf. Ohlson/Jüttner-Nauroth (2005).

12g2 is formally defined as g2 = E2−E1
E1

+ kD1
E1

. The first term is the expected growth rate
of earnings from t = 1 to t = 2, the second term adjusts these earnings for a 100%
retention rate.

13Please note again that g2 is the growth rate of earnings assuming a 100% retention
rate. Therefore, the natural benchmark for g2 is k.
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2.2.2. Estimation of cash flows

For the application of either the dividend discount model, the residual in-

come model, or the earnings discount model, estimates for future dividends

and earnings are necessary.14 These estimates can either be derived with

statistical procedures or expert estimates (e.g., by analysts) can be used.

The overwhelming part of the literature uses analyst forecasts to esti-

mate dividends and earnings. These forecasts are available either via Value

Line or I/B/E/S. Value Line provides its own forecasts, whereas I/B/E/S

collects forecasts from professional analysts all over the world.15 I/B/E/S

provides estimates on approx. 60,000 companies in 67 countries around the

world. Estimates are made on a monthly basis and cover several key finan-

cial measures such as sales, earnings, dividends, etc. Estimates are usually

available for the next 3-5 years.

The use of earnings estimates in academic studies poses several challenges.

First, its availability is limited to the next 3-5 years. Since the largest part

of a company value is usually determined by cash flows beyond the next

5 years, this poses a significant challenge and requires subjective estimates

for long-run growth by the authors. Second, the scope is limited. Smaller

companies are not covered and it can be observed that coverage expands

in bull markets and declines in bear markets. Third, academic studies have

consistently documented an upward bias in these estimates. However, the

magnitude seems to have declined over time, so that the magnitude of to-

day’s bias is far from clear. Several explanations for this upward bias are

provided: Analysts may issue optimistic forecasts to generate revenue with

the respective clients (Francis/Philbrick (1993), Dugar/Nathan (1995), Lim

(2001)), they may be irrational and overoptimistic (Abarbanell/Bernard

(1992), Elgers/Lo (1994)) or there is some kind of selection bias (McNi-

14In addition, the residual income model requires an estimation of book values. If the
clean surplus assumption holds, all future expected book values can be derived from
today’s book values and dividend and earnings forecasts.

15Cf. www.valueline.com and www.thomsonreuters.com/products services/ibes.
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chols/O’Brien (1997)). Gu/Wu (2003) have argued that analysts estimate

median dividends and earnings instead of means. Since expected earnings

are usually negatively skewed, medians are above means which may explain

the bias.16 Fourth, residual income models require clean surplus account-

ing. Clean surplus accounting is violated by US-GAAP and other account-

ing standards. The most prominent example are revaluation reserves which

increase/decrease equity capital without increasing/decreasing earnings. If

forecasts of earnings, dividends, and book values are not in line with clean

surplus, this poses additional problems for empirical applications, cf. Ohlson

(2000) for an overview of specific problems for residual income models.

Besides analyst forecasts, one could also draw on pure statistical esti-

mates for dividends and earnings. E.g., if profitability and growth are mean-

reverting, the corresponding parameters could be determined to estimate

future earnings, cf. Kengelbach et al. (2007) for a comprehensive empirical

study. In addition, different predictive power of cash flow and accrual com-

ponents for the explanation of future earnings has been documented in the

literature, cf. Sloan (1996) and Kaserer/Klinger (2008). These findings could

also be used to estimate future earnings. Unfortunately, empirical studies of

the performance of pure statistical estimates and comparisons with analyst

forecasts are rare, cf. Kothari (2001) for an overview. Most studies rely on

(subjective) analyst forecasts to estimate future expected earnings.

2.2.3. Risk premia on equity markets

Research on expected equity returns can be categorized broadly into i) re-

search on aggregate equity returns and ii) research on the cross-section of

returns. The standard model for the cross-section of returns is the Capital

Asset Pricing Model (CAPM) developed by Sharpe (1964), Mossin (1966),

and Lintner (1965). Although it partially relies on restrictive assumptions,

it clearly dominates practical applications.17 Other models have been pro-

16A good overview of several possible explanations for bias in analyst forecasts can also
be found in Brown (1993).

17Cf. Brealey et al. (2008).
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posed, in particular the consumption CAPM (Breeden (1979)) and multi-

factor models including the Arbitrage Pricing Theory (Ross (1976)), and

the Fama/French (1993, 1996) three-factor model. This thesis focuses on

aggregate equity returns; therefore, these cross-sectional models and their

performance are not a core part. We will, however, make use of the CAPM

in some cases in the empirical part (chapters 4 and 5). By doing so, we

follow the main consensus among financial academics (cf. Welch (2008)).18

In the following section (section 2.2.3.1), we will provide a more detailed

overview of the main results in the literature on the magnitude of the equity

premium. Then we will briefly review the literature on the behavior of the

equity premium (section 2.2.3.2).

2.2.3.1. Magnitude

In the literature, four methods are discussed to estimate future expected

equity returns. First, historical equity premia can be used as a proxy. Sec-

ond, implied equity premium estimates can be used. These estimates are

calculated by implicitly solving DCF-valuation formulas derived in section

2.2.1 for the discount rate. Third, approaches based on utility functions can

be applied. Fourth, one may simply rely on expert estimates.

Historical equity premia: There are various studies on historical equity

premia in the U.S. and other countries. The most comprehensive one was

probably conducted by Dimson et al. (2006). This study includes 17 coun-

tries and each of the 17 countries is covered for the period from 1900-2005

(106 years). In addition, a comparable methodology for all countries has

been applied. Historical equity premia from this study are depicted in table

2.1.19 The equity premium is depicted using either short-term government

bonds (“Bills”, left-hand side of the table) or long-term government bonds

18We also do want to point out that – based on the considerations from section 2.1 –
one-factor models are sufficient to explain the systematic part of the cross-section of
expected returns. Therefore, the main simplification of the CAPM is not the focus on
one single systematic factor but the specific choice of this factor (expected return of
the market portfolio).

19The table is taken directly from Dimson et al. (2006), table 3.
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(“Bonds”, right-hand side of the table) and either arithmetic or geometric

averages.20 For most applications, the arithmetic average is closer to the cor-

rect equity premium than the geometric average.21 Relative to short-term

government bonds, the average arithmetic mean of the equity premium of

all 17 countries in local currencies is 7.14%. Value-weighted and in US-$ the

arithmetic mean is 6.07%. The arithmetic mean ranges from 4.51% (Den-

mark) to 10.46% (Italy). Equity premia relative to long-term bond returns

are approx. 1% lower (6.08% on average) and range from 3.27% (Denmark)

to 9.98% (Japan). Geometric averages are approx. 2% lower ranging from

from 2.80% (Belgium) to 7.08% (Australia) relative to short-term bonds

and from 1.80% (Switzerland) to 6.22% (Australia) relative to long-term

bonds. Other studies of historical equity premia report similar results for

the overall level of equity premia, although the reported risk premia are

dependent on the specific time horizon, cf. e.g. Ibbotson (2008) for equity

premia from 1970-2007.22

Using historical equity premia for expected future equity premia has some

20Dimson et al. (2006) use bond returns – and not yields – to determine the equity
premium. Although this seems natural, the resulting effects should be kept in mind.
E.g. the equity premium for Germany is higher than the real rate of return on equities
(0.74% higher for the geometric average, 6.98% higher for the arithmetic average, cf.
Dimson et al. (2006)) because of the hyperinflation in the 20s in Germany and the
corresponding poor bond returns.

21The geometric average is always smaller or equal to the arithmetic average, the dif-
ference is 0.5σ2 for normal distributions and infinite observations. There are mainly
three reasons why the arithmetic average is better suited for most applications: First,
the arithmetic average is an unbiased estimator for the one-year equity premium,
whereas the geometric average is downward biased, cf. Blume (1974). Second, the
N-th power of the expected equity returns (1 + risk-free rate + equity premium)
using the arithmetic average is a better estimator for the N-period return than the
geometric average if N is a lot smaller than the number T of historical returns used
to estimate the equity premium, cf. Blume (1974). With 106 years of historical data
(i.e., T = 106) in the Dimson et al. (2006) study, T >> N will usually be the case for
practical applications. Third, Cooper (1996) shows that even the arithmetic average
leads to an upward biased estimator for the present value of cash flows (the upward
bias in the geometric average is even larger). However, he shows that in realistic cases
the correct discount rate is very close to the arithmetic average.

22The results for Germany in Dimson et al. (2006) differ significantly from the results in
Stehle (2004), although the study of Dimson et al. (2006) is partly based on data from
Stehle (2004). Dimson et al. use additional data from Ronge (2002) for the period
from 1900 to 1953 for the German market. Due to the hyperinflation in the 20s, equity
premia are larger for this subperiod.
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disadvantages. First, it is based on the assumption that past observations are

a good guide for future expectations. E.g., since 1900, transaction costs and

liquidity relative to bonds are likely to have decreased in most of the mar-

kets, which may justify lower equity premia. On the other hand, volatility

has generally increased over the last decades, which would result in higher

equity premia if Sharpe ratios are assumed to remain constant. Second, his-

torical equity premia may be subject to survivorship bias (cf. Brown et al.

(1995) and Li/Xu (2002) for a discussion). However, Dimson et al. (2006)

estimate that their countries covered at least 90% of the global market cap-

italization in the year 1900 and estimate the survivorship bias at less than

0.1% in their sample. Third, if equity premia are volatile, then an increase

in stock prices may be due to a decrease in implied equity premia. In this

case, historical data may yield spurious results. Fourth, standard errors of

estimates are quite large even over a 106-year horizon. Dimson et al. (2006)

report standard errors of approx. 2% on average and of 1.62% for the world

portfolio (relative to bills). Therefore, a 95% confidence interval for the

world equity premium would still cover a range of approx. +/- 3% around

the mean estimates.

Implied equity premium estimates: Table 2.2 gives an overview of studies

using either a dividend discount model (DDM), a residual income model

(RIM), or an earnings discount model (EDM) to estimate implied equity

premia for the U.S.

The resulting equity premia range from as low as 1% to slightly more than

7%. Implied equity premium estimates have largely contributed to the per-

ception that historical equity premia for the U.S. market – which are usually

close to or above 7% – are upward biased due to favorable conditions on the

U.S. market over the last 50-100 years. However, these estimates also have

their shortcomings. First, all approaches are heavily dependent on terminal

value assumptions.23 Even residual income models, which are supposed to

be least dependent on these assumptions (cf. Claus/Thomas (2001) for a

23Earnings/dividends/residual income at the beginning of the terminal value period and
the growth rate during the terminal value period.
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detailed discussion) yield values for the equity premium ranging from 1-6%.

In fact, these high sensitivities with respect to terminal value assumptions

are one of the major reasons why implied equity premium estimates are

not frequently used in practical applications.24 In addition, the estimates

rely on analyst forecasts for dividends and earnings. These forecasts are

subjective and have been shown to be upward biased, cf. section 2.2.2. It

should also be noted that conservative accounting generally causes a down-

ward bias of most implied equity premium estimates (cf. Zhang (2000) and

Myers (1999)) and that these estimates provide inconsistent values for the

term structure of risk premia.25

Approaches based on utility functions: Equity premia can – at least in the-

ory – also be derived from approaches based on utility functions. Mehra/Prescott

(1985, 2003) point out the fact that classical approaches combined with rea-

sonable parameters for risk aversion lead to equity premia that are below

1% (“Equity Premium Puzzle”). Thus, alternative approaches have been

developed, including habit formation, idiosyncratic risks, disastrous rare

events and market imperfections to partially resolve the puzzle.26 However,

utility-based approaches only play a minor role in practical applications, cf.

Brealey et al. (2008). They are therefore more useful as a theoretical and

qualitative tool rather than as a means to directly estimate risk premia for

equities or on any other market. We will therefore not go into detail about

these models.

Expert estimates: With inconclusive evidence from historical risk premia,

24Cf. Welch (2008) for an overview of financial economists views on different approaches
for determining cost of capital.

25Implied equity premium estimates usually determine the implied cost of capital for
each company separately and aggregate these estimates based on the current market
capitalization of the companies. Expected market capitalizations in the following years
will shift gradually towards companies with higher expected cost of capital – unless
this is not compensated by higher dividend payouts. Therefore, the expected equity
premium will gradually increase over the following years. However, all authors report
the – lowest – first year estimate. Unfortunately, we have not seen any author who
has pointed out this fact so far.

26Cf. Cochrane (2005) for an overview.
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Equity Premium

Author (Year) Country Period Experts arith. geom. rf

Welch (2000) U.S. 1997-1999 U.S. fin. prof. 7.1% 5.2% 1M Gov
Welch (2001) U.S. Aug. 2001 U.S. fin. prof. 5.5% 4.7% 1M Gov
Welch (2008) U.S. Dec. 2007 U.S. fin. prof. 5.7% 5.0% 1M Gov
Graham/Harvey (2008) U.S. 2000-2008 U.S. CFOs 2.4%-4.7% 10Y Gov
Fernandez (2009) U.S. n/a 100 textbooks 6.6% n/a
Audit Companies Ger. n/a Valuation experts 4-5% n/a n/a

Table 2.3.:
Expert estimates for the equity premium

This table depicts expert estimates for the equity premium from several sources. Period is the survey
period, rf denotes the risk-free rate used to determine the equity premium. U.S. fin. prof. denotes U.S.
finance professors, CFO denotes Chief Financial Officers. Y denotes years, M denotes months.

implied risk premia, and utility-based approaches, many practitioners draw

back on expert estimates. Table 2.3 depicts frequently used and cited ex-

pert estimates. It is not our main target to give an overview of all estimates

and surveys regarding the equity premium, cf. Welch (2000, 2008) and Gra-

ham/Harvey (2008) for an overview. However, we want to point out that

most estimates currently lie in the area of 3-6% for the arithmetic average.

The surveys by Welch (2000, 2001, 2008) among U.S. finance professors re-

vealed equity premia between 5.5% and 7.1% for the arithmetic average.

Geometric averages are approx. 1-2% lower. Graham/Harvey (2008) sum-

marize quarterly surveys among U.S. CFOs from 2000-2008. These estimates

range from 2.4% to 4.7%. However, they seem to be geometric rather than

arithmetic averages. Fernandez (2009) summarizes the equity premia used

in approx. 100 textbooks, the average is 6.6%. Finally, audit companies in

Germany usually use 4-5% equity premium for the German market.

2.2.3.2. Time series behavior

Besides the (average) magnitude of the equity premium, the time series be-

havior of expected excess returns has been subject to debate in the academic

literature. In the survey of Welch (2000), 20% of the market participants

offered monotonically increasing and 50% monotonically decreasing equity

premium term structures. This indicates that market participants seem to
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have the perception that expected returns are indeed not constant but vary

over time. Based on arguments from utility theory, expected Sharpe ratios

are dependent on risk aversion levels and the volatility of consumption, cf.

Cochrane (2005). This also offers a theoretical motivation for time-varying

expected returns.

Unfortunately, risk premium processes are inherently hard to measure.

The discussion in the last subsection has shown that estimating the average

magnitude of the equity premium is already subject to significant noise.

Consequently, an estimation of the parameters of the equity premium pro-

cess is difficult. To give an intuition for the problems concerned with esti-

mating time variation in equity premia, assume that equity premia EPt are

mean-reverting and excess returns rt are modeled as the sum of the equity

premium and a normally distributed error term, i.e.,

EPt = EPt−1 + κ(µ̄− EPt−1) + σεεt, 0 < κ < 1 (2.14)

rt+1 = EPt + σuut+1

= EPt−1 + κ(µ̄− EPt−1) + σεεt + σuut+1 (2.15)

with ρ(ut, εt) = ρ. (2.16)

If we are only able to look at realized returns (i.e., (2.15)), we are faced with

several problems: First, it is hard to disentangle noise in realized returns

(σu) and volatility in expected returns (σε). Second, our ability to measure

mean reversion is limited by the amount of noise both in realized returns

(σu) and in expected returns (σε). Third, the correlation between u and ε is

crucial. If ρ is small enough, then returns may be negatively autocorrelated,

while expected returns are positively autocorrelated, cf. appendix B.1 for a

derivation of exact formulas.

In a study of historical returns of 17 countries from 1900-2006 Dimson et

al. (2006) find an average positive autocorrelation of 0.07 for realized aggre-

gate real returns, although the autocorrelation is only positive in 2 of the

17 markets at the 95% significance level – which is only slightly more than
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one would expect by pure chance. Poterba/Summers (1988) find positive

autocorrelation in returns over short horizons and negative correlation over

longer horizons when looking at the U.S. and 17 other countries. Although

these results are not statistically significant, Poterba/Summers (1988) point

out that substantial movements in expected returns are necessary to eco-

nomically account for these results. This discrepancy between statistical

and economical evidence is a consequence of the large standard deviation

of equity returns relative to their unconditional mean.

The return predictability literature27 has tried to explain future excess re-

turns by certain parameters such as dividend/price ratios or earnings/price

ratios. Assume that the equity premium EPt can be predicted by a param-

eter xt (e.g., dividend/price ratios or earnings/price ratios), i.e.,28

EPt = a+ bxt (2.17)

and that excess returns rt are the sum of the equity premium and a normally

distributed error term

rt+1 = EPt + σut+1 = a+ bxt + σut+1. (2.18)

Again, if we are only able to look at realized returns (i.e., (2.18)), our ability

to get a precise estimate for b is limited by the amount of noise σ ·u. In prac-

tice, the high volatility of equity returns makes it hard to get any significant

statistical results on the basis of realized returns even over very large sample

periods (50-100 years), cf. Cochrane (2005) and Poterba/Summers (1988).

However, besides being a pure econometrical exercise, there is a stronger

economic motivation behind this kind of return predictability. For example,

dividend/price ratios (d/p ratios) have to predict either dividend growth or

future returns.29 As Cochrane (2005) points out, this is not a theory but an

identity. If prices move up, then, based on a simple DCF argumentation,

27Cf. Cochrance (2005) for an overview.
28One could easily add an error term to this equation; we omit it to get a better intuition.
29Or price/dividend-ratios must be allowed to grow explosively (bubble).
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either dividends have to increase or the discount factor has to decrease. This

identity can help to outwit pure econometric analysis. Roughly speaking,

authors have found that the evidence of d/p ratios to predict future excess

returns is stronger than for d/p ratios to predict future dividend growth

(cf. Fama/French (1988), Cochrane (1992)). D/p ratios are time-varying

and mean-reverting. Therefore, the same should be true for expected (ex-

cess) returns.30

Other authors have used term spreads, T-bill rates, earnings, and macro

variables to predict excess returns (Fama/French (1989), Lamount (1998),

Lettau/Ludvigson (2001)). However, all of these studies are only able to find

indirect indications for time-varying expected returns and the econometric

validity of the results is disputed. Comprehensive overview articles that re-

ject the return predictability hypothesis based on statistical insignificance

results are Goyal/Welch (2008) and Boudoukh et al. (2008). It should be

noted, that these studies do not find any predictability of d/p ratios for

dividend growth either. We know, however, that either i) d/p ratios predict

dividend growth or ii) d/p ratios predict expected returns must be valid.

These articles do not find enough statistical evidence to support i) on its

own, however, they also do not reject ii). Ang/Bekaert (2008) also reject re-

turn predictability based on earnings/price ratios. Moreover, they even find

that earnings yields significantly predict future earnings growth. Overview

articles arguing in favor of return predictability are Campbell et al. (2008)

and Cochrane (2008).

Using a specification based on d/p ratios similar to (2.14)-(2.18), Camp-

bell/Viceira (1999) estimate the parameters of the equity premium process.

They estimate a mean reversion parameter of 0.20, a volatility σε of 3.1%

and a long-run mean equity premium of 4.2%. In addition, they estimate a

negative correlation between the error term ε and u of -0.70. Their results

are, however, only significant when looking at a time series of more than 100

30This change in expected returns is also not due to changes in the risk-free rate, cf.
Cochrane (2005).
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years. Using shorter time horizons no longer yields significant coefficients.

This is not surprising given the discussion above.

2.2.3.3. Synopsis: Risk premia on equity markets

Taken together, the literature on the magnitude of equity premia suggests

that:

• Reasonable expected equity premia for the U.S. are between 2% and

7%.

• However, there is neither an agreement on the best methodology for

estimating expected equity premia nor on any narrower range for the

magnitude of the equity premium.

• An estimation of equity premia from historical returns has the major

disadvantage that it does not include current information. This disad-

vantage is especially important if we keep in mind the major changes

that financial markets have seen over the last 100 years and the fact

that equity premia are likely to be time-varying.

• Implied equity premium estimates are largely dependent on termi-

nal value assumptions. In addition, despite the fact that a variety of

approaches exist, these approaches are all exposed to the same short-

comings31 and therefore do not provide independent results.

The review of the literature on time variation in risk premia (equity pre-

mium and market Sharpe ratio) has revealed the following:

• There is some evidence, both empirical as well as based on theoretical

models, that risk premia are not constant but are time-varying and

mean-reverting.

• This evidence suggests that risk premia are lower after bull markets

and higher after bear markets, i.e., marginal investors require a higher

31Bias in analyst forecasts, long-run growth assumptions, and problems associated with
conservative accounting.
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compensation for systematic risk in bad states of the economy than

in good states of the economy.

• Time-varying risk premia are hard to measure from realized returns

due to econometric problems (especially high standard deviations of

returns relative to mean returns) and no consensus on the degree of

time variation exists.

2.3. Credit pricing

2.3.1. Pricing models

In this section we will briefly discuss the main pricing models for bonds and

credit default swaps (CDS) that have been explored in the literature. The

price of a defaultable bond in t with maturity T , coupon c, and a recovery

rate of RR will be denoted by Bd(t, T, c, RR). The spread of a CDS is

denoted by s and is defined as the regular payment by the protection buyer

for which the fixed and the floating leg have the same value, i.e., for which

the initial value of the CDS is zero. For notational convenience we will

assume a constant risk-free rate r, a face value of 1 for all bonds, a constant

recovery rate RR, and continuous coupon payments.

2.3.1.1. Yield-based pricing

Yield-based pricing is the equivalent to the DCF models for equity valua-

tion.32 In these models, the value of a bond or CDS is determined as the

real-world expected cash flow discounted with an appropriate risk-adjusted

discount rate. It is very important to differentiate between the promised

yield and the expected yield in this case, cf. Brealey et al. (2008). The

promised yield is the return on a bond if all payments are made, i.e. if no

32Unfortunately, most books on credit pricing do not include yield-based pricing models.
A basic discussion can be found in Brealey et al. (2008). This section is based on sim-
ilar considerations for risk-neutral reduced-form pricing models, cf. Duffie/Singleton
(2003) and Schönbucher (2003) for example. A decomposition of the promised yield
into its components which is similar to the one described in this section can be found
in Elton et al. (2001).
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default occurs. Therefore, by definition, the value of a bond is the discounted

value of the promised cash flows discounted by the promised yield Yp:

Bd(0, T, c, RR) =

∫ T

0

ce−Yptdt︸ ︷︷ ︸
coupon

+ e−YpT︸ ︷︷ ︸
principal

=
c

Yp
(1− e−YpT ) + e−YpT

If a coupon bond is traded at par (Bd = 1), the coupon of the bond is equal

to the promised yield of the bond (c = Yp). The promised yield is also the

maximum return that can be achieved if all promised payments are made

and the bond is held to maturity. If we refer to the yield of a bond, we will

usually refer to this promised yield if not stated otherwise.

In case of default, some payments will not be made and therefore the ex-

pected yield is lower. The expected yield (Ye) can be calculated by setting

the current value of a bond equal to the expected discounted cash flows.

In order to determine the expected cash flows, we will have to specify the

default probability for each t ∈ [0, T ]. For ease of notation, we will as-

sume that default can be modeled with a homogeneous Poisson process (cf.

Schönbucher (2003)). In this case, default arrives with a constant (real-

world) default intensity λP and the cumulative default probability between

t and T (PDP (0, t)) can be calculated as

PDP (0, t) = 1− e−λP t.

The default intensity is the instantaneous loss in survival probability. We

are now able to derive the price of a bond as

Bd(0, T, c, RR) =

∫ T

0

ce−λ
P te−Yet︸ ︷︷ ︸

coupon

+RRλP e−λ
P te−Yet︸ ︷︷ ︸

recovery

dt+ e−λ
PT e−YeT︸ ︷︷ ︸
principal

=
c+ λPRR

Ye + λP

[
1− e−(Ye+λP )T

]
+ e−(λP+Ye)T . (2.19)

Therefore, the bond is traded at par (Bd = 1) if

c = Ye + λP − λPRR = Ye + λPLGD (2.20)
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where LGD denotes the loss given default (LGD = 1 − RR). Therefore,

yields on corporate bonds are the sum of the expected return (Ye) and the

real-world expected loss (λPLGD). The real-world expected loss is the part

of the yield which is lost due to default, the rest of the yield is a true excess

return which compensates for the additional systematic risk of bonds. Based

on models for i) the real-world expected loss and ii) the expected return on

corporate bonds, we would now be able to price corporate bonds using

formula (2.19). The spread of a corporate bond is the yield less the risk-free

rate (r), i.e.,

s = c− r = (Ye − r) + λPLGD. (2.21)

The bond spread is therefore the sum of the expected excess return and the

expected loss.

Based on arbitrage arguments, bond spreads are equal to CDS spreads in

this simple setting (cf. Schönbucher (2003)). CDS spreads can therefore

also be decomposed into an expected loss part and a risk premium part.

However, CDS are initially worth zero, so the risk premium part cannot be

directly interpreted as an excess return on the CDS.

We could easily extend formula (2.19) to inhomogeneous Poisson pro-

cesses or Cox processes. In this case, the equivalence between the coupon

and the sum of expected yield and expected loss only holds as an approx-

imation. This approximation is, however, a very good approximation for

reasonable calibrations, cf. Schönbucher (2003) and Duffie/Singleton (2003)

for a discussion and a more thorough treatment of Poisson and Cox pro-

cesses.

Taken together, the yield on a bond is the maximum return on a bond if

it is held to maturity. This yield can be decomposed into the expected loss

and the expected return. The bond spread – defined as the yield less the

risk-free rate – can be decomposed into the sum of the expected loss and

the expected excess return.
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2.3.1.2. Reduced-form credit pricing

Reduced-form models rely on an exogenous specification of the default time.

In a strict sense, the yield-based pricing model described in the last sub-

section is also a reduced-form model. Most textbooks, however, usually re-

fer to reduced-form pricing models in a risk-neutral setup. Reduced-form

models have been developed by Litterman/Iben (1991), Hull/White (1995),

Madan/Unal (1995), Jarrow/Turnbull (1995), and Duffie/Singleton (1997,

1999). In this section, we briefly discuss the main features which are im-

portant for this thesis. In a risk-neutral pricing framework, the value of a

defaultable zero-coupon bond with zero recovery Bd(0, T, coupon = 0, RR =

0) can be determined as

Bd(0, T, 0, 0) = EQ[ e−rt1{τ>T} ] = e−rt(1− PDQ(0, T )),

where τ denotes the default time and PDQ(0, T ) denotes the cumulative

risk-neutral default probability of the bond. The risk-neutral default prob-

ability can be determined via any suitable model. In a reduced-form ap-

proach, this default probability is assumed to be exogenously specified. If we

further operate in a continuous-time setting, the instantaneous default prob-

ability is called “default intensity” and denoted with λQ in the risk-neutral

world. The default probability in reduced-form models can be calculated as

PDQ(0, T ) = 1− EQ[e−
∫ T
0 λQs ds] (2.22)

=

constantλ 1− e−λQT .

A mathematical rigorous treatment including the conditions for the exis-

tence and uniqueness of the corresponding risk-neutral probability measure

can be found in Jarrow/Turnbull (1995) and Duffie/Singleton (1997, 1999).

We could now go on by specifying a certain process for the default in-

tensity and use standard theory to evaluate (2.22). Such a procedure can

be found in Duffie/Singeton (2003).33 For the following argumentation, we

33The expression (2.22) is very similar to standard interest rate theory, so that results
from the interest rate theory can be applied to pricing defaultable bonds. If the default
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will assume for simplicity reasons that the default intensity is constant and

that coupons are paid continuously. In this case, the price of a defaultable

coupon-bearing bond with constant recovery rate RR is

Bd(0, T, c, RR) =

∫ T

0

[
ce−λ

Qt +RRλQe−λ
Qt
]
e−rtdt+ e−λ

QT e−rT

=
c+ λQRR

r + λQ

[
1− e−(r+λQ)T

]
+ e−(r+λQ)T . (2.23)

Therefore, the bond is traded at par if

c = r + λQ − λQRR = r + λQLGD, (2.24)

This coupon of par bonds is also called the yield. Consequently, the yield

of the bond is the sum of the (instantaneous) risk-free interest rate and the

(instantaneous) risk-neutral expected loss (λQ · LGD). The bond spread is

defined as the yield of the bond less the risk-free rate, i.e., the risk-neutral

expected loss.

If we value a CDS based on the same assumptions, we have to evaluate

the premium leg

PV (Premium leg) =

∫ T

0

se−λ
Qte−rtdt

and the default leg

PV (Default leg) =

∫ T

0

LGDλQe−λ
Qte−rt.

The spread of a CDS is the value for s for which both legs have the same

value, i.e.,

s = λQ · LGD. (2.25)

The spread of a CDS is therefore equal to the bond spread, which is also

intensity belongs to the class of affine processes, tractable solutions can be found. The
Vasicek model and the CIR model are popular choices in this case, cf. Schönbucher
(2003) and Duffie/Singleton (2003).
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the risk-neutral expected loss. The same result could have been achieved by

arbitrage arguments, since in our setting a portfolio of a bond and a CDS

is riskless and should therefore earn a return equal to the risk-free rate.

In practice, things turn out to be more complicated. There are several

candidates for the risk-free rate, the risk-free rate and the default intensity

are not constant, and payments are not made continuously. The resulting

formulas are usually easy to derive but might look uncomfortably complex.

All in all, these assumptions have only a minor effect for our purposes. Our

main results from this section are still approximately valid:

• Credit spreads are equal to the the risk-neutral expected loss.

• Credit spreads are equal to the sum of the real-world expected loss

and the expected excess return (“risk premium”).

In addition, recovery rates may not be constant but also subject to system-

atic risk, and other factors like taxes and liquidity may influence spreads

and prices. For CDS pricing, counterparty risk and the value of the delivery

option are additional issues. These topics are discussed in more detail in

subsection 2.3.3.

2.3.1.3. Structural models of default

Structural models model equity and debt as contingent claims on the com-

pany’s assets. They can be applied to the pricing of both equity and debt.

Structural models have, however, been applied to a much larger extent to

the pricing of corporate debt. We therefore present the main literature on

structural models of default in this section.

The most frequently cited structural model of default is the one developed

by Black/Scholes (1973) and Merton (1974) (“Merton framework”). In this

framework, the company’s debt is assumed to consist of a single zero bond

with face value N and maturity T . The company’s assets are assumed to

follow a geometric Brownian motion. At maturity, equity holders will pay
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back the debt if the asset value is above N and declare bankruptcy if the

asset value has fallen below N . Therefore, the value of debt is equal to the

value of a risk-free bond plus a short European put option on the company’s

assets, where the strike equals the nominal of the zero bond and the matu-

rity equals the maturity of the zero bond. Formulas derived for European

put options in Black/Scholes (1973) can be applied to determine the value

of corporate debt.

The Merton framework has been extended by numerous authors to incor-

porate more realistic default mechanisms and different asset value processes.

The Black/Cox (1976) model was the first first-passage time model. In this

model, default is modeled as the first time that the asset value process

crosses a certain default barrier. This allows for a default before the maturity

of debt. Using a geometric Brownian motion and a constant default barrier,

a closed-form solution exists. Geske (1977) introduced a model which cap-

tures interest-paying debt. Longstaff/Schwartz (1995) extended the model

to allow for stochastic interest rates. They modeled interest rates with a Va-

sicek process and derived semi-closed-form solutions for defaultable bonds.

Colin-Dufresne/Goldstein (2001) develop a model which allows for mean-

reverting leverage ratios and explicitly analyze credit spreads in this context.

The models mentioned above treat the default barrier as exogenous. In

contrast, Leland (1994) and Leland/Toft (1996) have developed a model

with an endogenous default barrier. Equity owners will endogenously choose

an optimal leverage and liquidation strategy to maximize the value of eq-

uity. Leland (1994) and Leland/Toft (1996) included taxes and bankruptcy

costs in their model; therefore the theorem of Modigliani/Miller (1958)

(irrelevancy of capital structure) no longer holds. In these settings, high

bankruptcy costs make equity preferable to debt. The tax advantage of debt

works in the opposite direction. Based on certain assumptions concerning

the asset value process, tax advantage and bankruptcy costs, an optimal

leverage and default barrier can be chosen. Strategic default models further

develop this idea to allow for a strategic default, i.e., firms may default
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strategically and renegotiate debt contracts to extract concessions from

bondholders. These models are based on the empirical observations that

bankruptcy procedures include considerable opportunistic behavior and de-

viations from absolute priority (Franks/Torous (1989, 1994), Weiss (1990)).

Strategic default models include the models of Anderson/Sundaresan (1996),

Anderson/Sundaresan/Typhon (1996), and Mella-Barral/Perraudin (1997).

A main shortcoming of all models discussed above are the low short-term

default probabilities implied by these models. Since default is modeled as a

diffusion of a stochastic process, default is totally predictable and short-term

(instantaneous) default probabilities converge to zero. Zhou (1997) intro-

duced a model which allows for jumps in the asset value process, therefore

resulting in more realistic short-term default probabilities. Duffie/Lando

(2001) introduced the first structural model which yields a default inten-

sity, bridging the gap between reduced-form models and structural models

of default. In the Duffie/Lando model, asset values are assumed to be un-

observable and investors only receive noisy information about the true asset

value. They calculate explicit formulas for the distribution function of the

asset value and for the default intensity. Other models with incomplete in-

formation were proposed by Gisecke (2004) and Coculescu et al. (2008). A

commercial model (Credit Grades) has been implemented by Lardy et al.

(2002). The models of Gisecke (2004) and Lardy et al. (2002) incorporate an

uncertain default barrier, while the asset value is observable. Unfortunately,

as long as the asset value is above its running minimum, the instantaneous

default probability is also zero in this framework and a default intensity

does not exist.

There are various studies which analyze the pricing performance of struc-

tural models of default. Jones et al. (1984) document that a simple Mer-

ton model generates spreads which are far below empirical observations for

bond spreads of investment grade firms. However, one of the main prob-

lems when applying structural models of default is the calibration of input

parameters. Subsequent work has shown that various structural models are
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indeed able to generate spreads which are in line with bond market ob-

servations, although the variations are quite large, cf. Eom et al. (2004)

and Schaefer/Strebulaev (2008). There is also a growing literature on the

pricing performance of structural models for CDS spreads. Predescu (2005)

studies a Merton and Black/Cox setting, Hull et al. (2004a) analyze a Mer-

ton model, Chen et al. (2006) also include the Longstaff/Schwartz model.

Other authors use simple regression analysis to link parameters that have an

influence on credit spreads in structural models of default to CDS spread

observations, cf. Cossin/Hricko (2001), Houweling/Vorst (2005), and Er-

icsson et al. (2006). Huang/Zhou (2008) determine the input parameters

implicitly using time series of credit spreads for different maturities and a

GMM estimation procedure. Most studies find that there are reasonable pa-

rameter combinations which could explain the credit spread, but it is very

hard to determine the corresponding input parameters exogenously. Arora

et al. (2005) test the ability of structural and reduced-form models to dis-

criminate between defaulters and non-defaulters and find that these model

classes yield similar accuracy ratios. They also analyze the pricing perfor-

mance of an EDF-based structural model for pricing CDS and find that it

even outperforms the Hull/White reduced-form model in most cases.

2.3.2. Estimation of expected loss

The expected loss34 is the product of the probability of default (PD) and the

recovery rate (RR).35 The expected loss is crucial for several applications:

First, it has been shown that prices react to new information on either

default probabilities or recovery rates,36 so any pricing model which ignores

this piece of information is likely to be inferior to models that include PD

and RR estimates. Second, PD and RR are needed to determine real-world

quantities for a portfolio of bonds, loans, or CDS, e.g., the value-at-risk

34Within this subsection, all quantities are real-world quantities if not stated otherwise.
35The default probability can be either a cumulative quantity, a per-annum quantity, or

an instantaneous quantity. Consequently, the expected loss can also be either cumu-
lative, per annum or instantaneous.

36Cf. Hull et al. (2004b).
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or expected loan loss provisions. Third, there is a growing literature which

judges the performance of structural models on both actual and risk-neutral

quantities, cf. Huang/Huang (2003), Chen et al. (2009). Fourth – and this

is the main application within this thesis – the expected loss is necessary

to determine risk premia from credit spreads and bond yields based on

formulas (2.20) and (2.21).

2.3.2.1. Probability of default

Market participants mainly use three different sources for estimating de-

fault probabilities: Agencies’ ratings, implementations of structural models

of default and discriminant/hazard rate models.

Agencies’ ratings: The three dominant rating agencies are Moody’s, Fitch,

and Standard & Poors (S&P). Agencies provide ratings for different issuer

types (e.g. public sector, corporates, securitizations/SPVs), purposes (e.g.,

liquidity, credit risk) and seniorities (e.g., senior, subordinated). We will

focus on the senior unsecured corporate rating in this section since our

focus is on risk premia for corporate debt and senior unsecured is the dom-

inant seniority for traded bonds and CDS. Senior unsecured ratings are

denoted with Aaa, Aa, A, Baa, Ba, ..., C (Moody’s) and AAA, AA, A,

BBB, BB, ..., C (S&P, Fitch).37 Subcategories (notches) have been estab-

lished, which are denoted with 1, 2, 3 (Moody’s) and +/- (S&P, Fitch)

respectively, e.g., Aa1/Aa2/Aa3 and Aa+/Aa/Aa-. Ratings can be mapped

to historical cumulative default probabilities for different maturities, i.e.,

(Rating, Maturity)→ PD, {Aaa,Aa,A,Baa, ..., C}×{1, 2, ..., T} → [0, 1].

These mappings are provided by the rating agencies and are publicly avail-

able.38 A mapping of Moody’s rating grades to historical default probabil-

ities – which we will use in our empirical section – is depicted in appendix

A.1.1.39 There are two main aspects that have to be considered when deal-

37These are rating categories of non-defaulted issuers. The default rating category is
usually denoted with D.

38Cf. Moody’s (2008a), FitchRatings (2008), S&P (2008).
39The raw historical default probabilities provided by the rating agencies are usually

smoothed either via a log/log-regression or via transition matrices and a Markov
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ing with agencies’ ratings: First, agencies’ ratings are through-the-cycle rat-

ings, i.e., agencies do not aim to assign ratings in such a way that default

probabilities for a certain rating category are constant across time. Rather

ratings are relative assessments of credit quality, cf. Löffler/Posch (2007), p.

73 ff. for an in-depth discussion. Therefore, a mapping of rating grades to

implied/current default probabilities requires further information, e.g., the

current point in the business cycle. However, agencies’ ratings and the cor-

responding historical default probabilities may act as a good proxy for the

average default probability over a whole economic cycle. Second, there is no

coherent approach of the three main rating agencies whether their ratings

are assessments of default probabilities or assessments of the expected loss.40

Implementation of structural models of default: Second, PD estimates can

be gained from implementations of structural models of default. This is usu-

ally done pragmatically by practitioners. The most prominent implementa-

tion of a structural model of default is the KMV model (Moody’s KMV

(2007)). KMV calculates expected default frequencies (EDFs), which are

point-in-time estimates for the default probability and available for matu-

rities from 1 to 10 years. They are based on a calibration of a distance-to-

default (DtD) measure41 to default probabilities. For the application in this

thesis, it is important to note that the calibration is done via a large histor-

ical database which is used to map KMVs distance-to-default measure to

assumption, cf. Bluhm et al. (2003) and appendix A.1.1 for details.
40Moody’s current official document on its rating methodology states that “Moody’s

bond ratings are predictions of relative creditworthiness, which can be defined as a
relative expected loss rate.” (Moody’s (2002)) while they state in the same docu-
ment that “There is an expectation that ratings will, on average, relate to subsequent
default frequency, although they typically are not defined as precise default rate esti-
mates.” Moody’s (2008b) seems to indicate that ratings are assigned on an expected
loss basis. Fitch states that “... issuers are typically assigned Issuer Default Ratings
that are relative measures of default probability”. (www.fitchratings.com, Rating Def-
initions, 13 Feb 2009). S&P indicates that issuer ratings are more PD-based than
EL-based (cf. S&P (2009).

41The distance-to-default measures the number of standard deviations that the asset
value of a company is away from the default barrier. The default barrier in the KMV
model is defined as the short-term debt plus 50% of the long-term debt, cf. Moody’s
KMV (2007).
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default probabilities. Therefore, no direct assumptions concerning the asset

value process – especially the drift of the process – are necessary.

Discriminant analysis and hazard rate models: Third, models based on re-

gression, discriminant analysis, and hazard rate models are used to estimate

default probabilities. These models provide point-in-time estimates42 for the

default probability and use certain covariates to predict default probabili-

ties. The first academic model was developed by Altman (1968), who used

accounting variables43 to predict one-year ahead default probabilities. It was

later enhanced by Zmijewski (1984), who also discusses certain estimation

biases which may arise in standard applications. Shumway (2001) developed

the first academic multi-period hazard rate model and uses accounting vari-

ables as well as market-based measures (market capitalization, excess re-

turns, idiosyncratic standard deviation).44 Duffie et al. (2007) (continuous

time) and Löffler/Maurer (2008) (discrete) are examples of hazard rate mod-

els which predict multi-year default probabilities including both accounting

variables and market variables. Recently, FitchRatings (cf. FitchRatings

(2007)) has also launched an equity-implied rating (Fitch-EIR) which is

based on a hazard rate specification and also uses macro-variables to pre-

dict default.

The performance of rating models is usually measured via the accuracy

ratio or area under curve (discrimination), the binomial test (calibration)

and the Brier score (both discrimination and calibration), cf. Löffler/Posch

42Hazard rate models aim directly at estimating default probabilities, not only relative
rankings of obligors. Therefore they usually provide point-in-time estimates for the
default probabilities. However, these models may still fail to capture the impact of
the economic cycle as long as covariates that may capture this economic cycle – such
as equity returns, leverage and macro variables – are not included.

43Altman used the covariates working capital/total assets, retained earnings/total assets,
EBIT/total assets, market value of equity/book value of total debt, and sales to
total assets and determined default probabilities based on discriminant analysis. The
resulting score is also called Z-score.

44These models have been used by regulators and practitioners to predict default proba-
bilities before Shumway, cf. Shumway (2001). However, Shumway was the first to put
this procedure on a sound statistical basis.
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(2007) for details. Practitioners’ models (KMV EDF, Fitch EIR) and mod-

ern hazard rate models which include market-based covariates usually have

a better performance than agencies’ ratings and pure accounting-based mea-

sures such as Altman’s Z-score. The advantage of using market-based co-

variates is especially pronounced for short-term horizons and diminishes for

longer horizons, cf. Löffler/Maurer (2008). For an overview of the perfor-

mance of different approaches cf. Kealhofer (2000), Shumway (2001), Löffler

(2004), Moody’s KMV (2007), FitchRatings (2007), and Löffler/Maurer

(2008).

2.3.2.2. Recovery rate

All rating agencies collect historical data on recovery rates. These differ by

seniority (e.g., senior vs. subordinated) and type of loan (e.g., bank loan

vs. bond). Moody’s historical recovery rates are publicly available. The av-

erage senior unsecured recovery rate has been 35% (value-weighted) and

37% (issuer-weighted) from 1982-2007, cf. Moody’s (2008). Altman/Kishore

(1996) report an average senior unsecured recovery rate of 48% and a me-

dian of 41% for a sample from 1978-1995. Duffee (1999) and Driessen (2005)

use a recovery rate of 44%.

Besides mean and median values, variations in recovery rates and ex-

planatory factors for these variations are of major interest for empirical

applications. All three major rating agencies have started to introduce re-

covery ratings which offer obligor-specific estimates for the recovery rate.

However, these estimates are usually only provided for sub-investment grade

entities, cf. Altman (2006) for an overview of recovery ratings. All studies

find a significant dependence of the recovery rate on the seniority. E.g.,

Moody’s (2008) reports average recovery rates as low as 17% for subordi-

nated bonds and as high as 66% for senior secured bank loans. Similar,

but slightly lower variations are reported in Altman/Kishore (1996). The

industry sector seems to explain some variations in recovery rates, cf. Alt-

52



Chapter 2. Existing literature and review of standard models

man/Kishore (1996) and Moody’s (2004), although most sectors have seen

historical recovery rates between 30% and 50%. Recovery rate variations

are significantly smaller than PD variations, cf. Moody’s (2007a). Moody’s

(2007b) report only minor variations in recovery rates across industry sec-

tors. The initial rating and the time between origination date and default

date do not have any significant effect on the recovery rate (Altman/Kishore

(2008)). The rating one year prior to default does seem to have some ef-

fect – with better ratings corresponding to higher recovery rates – but the

effect diminishes if the rating three or more years prior to default is con-

sidered (Moody’s (2007a)). Most studies report an impact of the economic

cycle on average recovery rates – low recovery rates go hand in hand with

economic downturns and with high default frequencies (Moody’s (2007a),

Altman et al. (2005), Hu/Perraudin (2002), and Frye (2000a,b)). In con-

trast, Carey/Gordy (2003) do not find a positive correlation between re-

covery rates and defaults. Chava et al. (2006) set up a model where the

expected recovery rate can be explained by the coupon rate, the 3-month

Treasury yield, the issue size, and the seniority. Other parameters do not

add any significant improvement to the overall fit in their model. Moody’s

(2004) performs similar studies on a broader set of parameters. They find a

significant effect for only a few firm-specific, industry-specific, and macroe-

conomic factors.

Markit, a provider of credit default swap data, also asks market partici-

pants to provide a (risk-neutral) recovery estimate together with each single

CDS spread. These estimations are very close to 40%. Huang/Zhou (2009)

report an average recovery rate of 40.30% based on Markit data. The esti-

mates range from an average of 40.92% for Aa-rated obligors to 38.23% for

B-rated obligors. Discussions with market participants also indicated that

a value of 40% for the risk-neutral recovery rate is frequently used by prac-

titioners for pricing purposes.

Taken together, reasonable estimates for the average senior unsecured re-

covery rate are between 35-45%. Recovery rates vary largely by seniority. In
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addition, recovery rates vary by industry and with the economic cycle. How-

ever, this variation is partly disputed and by far not as large as variations

in the corresponding default probabilities. Other parameters only seem to

have a minor effect on recovery rates.

2.3.3. Risk premia on credit markets

2.3.3.1. Bonds

Research on risk premia on corporate bonds has soared over the last decade,

cf. Elton et al. (2001), Collin-Dufresne et al. (2001), Longstaff et al. (2005),

Liu et al. (2007) and Bühler/Trapp (2008). Specifically, most researchers

try to explain the spread on corporate bonds by certain parameters that

have been proposed in various pricing models. Most studies define the bond

spread as the difference between the yield on a corporate bond and the

yield on government bonds. These government bonds act as a benchmark

for a risk-free investment. There is still no consensus on the detailed de-

composition of bond spreads into their components. Qualitatively, however,

most researchers agree that the spread should be decomposed into four cate-

gories: The expected loss, a premium for bearing systematic risk, a liquidity

premium, and a tax effect:45

Bond spread = EL + RPSystematic risk + RPLiquidity + Tax effect. (2.26)

Studies do, however, vary in their assessment of the relative importance

of these effects. Economically, the spread should equal the (real-world) ex-

pected loss if credit risk is totally diversifiable, all securities are totally liq-

uid, and in the absence of taxes. If defaults (or recovery rates) are dependent

on the business cyle – i.e., higher default rates coincide with poor equity re-

turns – then a premium for systematic risk is justified. Liquidity premia are

hard to capture in standard neoclassical models but are common knowledge

among asset managers and can easily be included in reduced-form models,

45The sum of expected loss and the risk premium for systematic risk is usually called the
credit risk premium. We will give an exact definition of the term credit risk premium
for our applications in chapter 3.
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cf. Duffie/Singleton (2003). Since bond spreads are usually subject to tax-

ation, the respective tax rates or relative tax rates compared to risk-free

instruments do of course matter when pricing corporate bonds.

Elton et al. (2001) explicitly determine the expected loss and the tax

effect on corporate bonds. They derive the expected loss based on agen-

cies’ ratings and the corresponding historical loss rates. In their model, the

tax effect arises due to the different tax treatment of corporate bonds and

Treasury bonds in the U.S. After deducting the expected loss and the tax

component, they analyze the remaining component and find that it strongly

covaries with equity returns and is therefore likely to constitute a premium

for systematic risk.46

Collin-Dufresne et al. (2001) analyze credit spread changes and find that

only a part of these changes can be explained by factors that are usually

assumed to play a role in standard structural models of default. However,

they find that a common, unidentified systematic component drives credit

spread changes. They conclude that bond spread changes are driven by local

supply/demand shocks.

Liu et al. (2007) find, based on a reduced-form setup, that taxes account

for 60%, 50%, and 37% of the corporate-Treasury yield spread for Aa, A,

and Baa ratings. This proportion is higher for shorter maturities and lower

for longer maturities.

Driessen (2005) analyzes the components of corporate bond spreads in a

reduced-form setup and finds that for a Baa-rated, 10-year maturity bond,

the tax effect explains approx. 30% of the total spread and liquidity accounts

for 10-15% of the spread. These ratios increase for shorter maturities. He

also finds that systematic risk is priced in bonds.

Bühler/Trapp (2008) find that the liquidity premium amounts to on average

35% of the total spread. The liquidity component is higher for higher rated

bonds (AA: 48%, A: 44%, BBB: 34%, B: 15%). In addition, the liquidity

46However, a main shortcoming of this study is the use of constant, historical loss rates
based on agencies’ ratings. Since these are through-the-cycle ratings, it is not clear if
the correlation with equity returns is partly also attributable to time-varying expected
loss.
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component is time-varying.47

A good overview of studies on bond risk premia and their magnitude can

also be found in Hull et al. (2005). Hull et al. (2005) conclude that a rea-

sonable estimate for a liquidity premium on corporate bonds is between 10

and 25 bp.

Finally, Longstaff et al. (2005) document that bond spreads heavily depend

on the definition of the risk-free rate. They analyze Treasuries, the stan-

dard risk-free benchmark in academic studies, RefCorp bonds, which are

guaranteed by the Treasury48 and Swap rates, which are usually used as

risk-free rates by practitioners. The difference between Treasuries and Ref-

Corp bonds is approx. 20 bp on average, the difference between Treasuries

and swap rates is approx. 60 bp.

Taken together, the literature suggests that i) systematic risk is priced in

corporate bonds, ii) liquidity makes up a significant part of the bond spread,

and iii) the bond spread and the part of the spread which is attributable to

taxes is heavily dependent on the definition of the risk-free rate (risk-free

rate problem).

2.3.3.2. Credit default swaps

CDS spreads are seen as a purer measure of credit risk in the academic

literature, cf. Longstaff et al. (2005), Ericsson et al. (2006), Bühler/Trapp

(2008), and Huang/Zhou (2009). CDS provide a direct spread measure, they

therefore avoid the problem of defining an appropriate risk-free rate. In ad-

dition, in contrast to bonds, CDS are unfunded exposures and are not in

47It should be noted that Bühler/Trapp (2008) force their model to split the total spread
into a credit risk component, a liquidity component, and a correlation component,
i.e. these three parts always add up to 100%. The credit risk component captures
both expected loss and a premium for systematic risk. Any potential tax effects will
be included either in the credit risk or liquidity component.

48RefCorp bonds are bonds issued by the Resulution Funding Corporation, which is a
government agency. They have the same credit risk as Treasury bonds since they are
guaranteed by the Treasury. In addition, they receive the same tax treatment as U.S.
Treasury bonds. However, they are less liquid, cf. also Longstaff (2004) and Hull et
al. (2005).
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fixed supply. Therefore, they are much less prone to liquidity distortions.

For intuition, assume that an investor requires a riskless return of 5% for

liquid government bonds, a liquidity premium of 50 bp for corporate bonds,

and a credit risk premium (EL + systematic risk) of 100 bp. A portfolio of a

corporate bond (long) and a CDS (as protection buyer) is (credit) risk-free

but is not as liquid as a government bond. The CDS spread is therefore

more likely to be 100 bp than 150 bp.

Based on these and similar arguments, Longstaff et al. (2005) argue that

CDS are pure measures of credit risk. Bühler/Trapp (2008) formalized this

idea in a reduced-form model and estimated the part of the spread which

is due to a liquidity premium to be only 4% on average compared to 35%

for bonds for a sample of Euro area CDS. Ericsson et al. (2006) analyze

CDS residuals after adjusting the CDS spread for model-implied pure credit

spreads and find that – in contrast to bond residuals – no relationship be-

tween these CDS residuals and liquidity proxies exists. They conclude that

CDS spreads do not seem to be as prone to non-default factors as bond

spreads.

Tang/Yan (2007) analyze liquidity costs and liquidity risk in a market mi-

crostructure setting based on adverse selection, search frictions, and inven-

tory costs. They find that CDS sellers capture a liquidity risk premium in

the CDS market; therefore, the fair CDS spread is likely to be closer to the

bid than to the ask spread. The estimates for their total sample are 10% (liq-

uidity costs) and 20% (liquidity costs + liquidity risk). However, the period

considered by Tang/Yan (June 1997 to March 2006) covers an early period

of the CDS market and their sample also includes very infrequently traded

counterparties. Tang/Yan also point out the fact that CDS liquidity has

strongly increased over their sample period and that actively traded names

give rise to a much smaller liquidity premium. Therefore, these findings may

well be consistent with the magnitudes reported in Bühler/Trapp (2008).

CDS market liquidity has strongly increased over the last years, especially

since the introduction of index trading in 2003/2004, cf. Jakola (2006) and

FitchRatings (2006).

Besides less liquidity distortions, the CDS market also seems to be quite ef-
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ficient in incorporating new information: Hull et al. (2004b) find that credit

rating announcements are anticipatd in the CDS market, Norden/Weber

(2004) find that the CDS market leads the stock market in case of reviews

for downgrades. In addition, the market volume of CDS has become larger

than the volume of corporate bonds.49

While using CDS spreads instead of bond spreads has advantages con-

cerning tax and liquidity effects, there are also some disadvantages. First,

CDS are subject to counterparty risk. Ceteri paribus, this should decrease

CDS spreads. Longstaff et al. (2005) argue that this counterparty risk is

likely to be very small. However, since the bankruptcy of Lehman Brothers

the perception of counterparty risk may well have changed in the market.

Unfortunately, there are no comprehensive post-Lehman studies of the effect

of counterparty risk available yet. Second, CDS contracts involve a delivery

option for the protection buyer. Ceteri paribus, this effect should decrease

the recovery rate on CDS and therefore increase CDS spreads. However,

the main impact of this delivery option is likely to come from restructur-

ing events. The ISDA has developed certain restructuring clauses for CDS

contracts which are mainly aimed at minimizing this delivery option. An

overview of the potential effects can be found in Mithal (2002) and J.P.

Morgan (2004).

2.3.3.3. Synopsis: Risk premia on credit markets

Taken together, the literature on credit risk premia suggests that:

• Systematic risk is priced in both bonds and CDS.

• Bond spreads are heavily influenced by the choice of the risk-free rate

(risk-free rate problem). This is of special importance in the U.S.,

49The amount outstanding of worldwide corporate bonds as of December 2008 (floating
and fixed rate) was approximately 2,200 bn US-$, the nominal value of single-name
CDS contracts was 33,000 bn US-$ with a gross market value of 1,900 bn US-$ (as of
June 2008), cf. BIS (2009). Although this CDS volume also includes sovereigns and
financial institutions, a large part is likely to be corporate CDS.
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where government bonds have a tax advantage compared to corporate

bonds. CDS spreads are not subject to the risk-free rate problem.50

• Bond spreads incorporate a significant liquidity premium. CDS spreads

may incorporate a liquidity premium due to market microstructure ef-

fects. However, this premium is likely to be small (≈ 5%) for frequently

traded CDS counterparts, e.g., constituents of one of the main CDS

indices in the U.S., Europe, and Asia.

• Theory suggests that CDS spreads are affected by counterparty risk

and a delivery option. However, the delivery option is likely to have

only a minor effect on CDS spreads due to limitations with respect

to potentially deliverable bonds. Most studies also assume that coun-

terparty risk has only a minor effect on CDS spreads. However, the

effect of counterparty risk may have to be scrutinized in more detail

after the Lehman default.

Throughout this thesis, we will follow the standard argumentation in the

literature and assume that CDS spreads are a pure measure of credit risk

and that counterparty risk and delivery options can be neglected, i.e.,

CDS spread = EL + RPSystematic risk (2.27)

We also do not incorporate a tax premium. In this sense, the premium for

systematic risk is a pre-tax risk premium. Of course, if risk premia on debt

and equity markets are compared, the different tax treatment may result in

different pre-tax risk premia. We will discuss this issue briefly in chapters

3-5.

50In simple models with continuous spread payments and constant default intensity, the
valuation of a CDS is also not dependent on the risk-free rate, cf. (2.25). If spreads
are not payed continuously and default intensities are not constant, a very small
impact of the risk-free rate on the CDS spread arises, cf. Duffie/Singleton (2003) and
Schönbucher (2003).
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2.4. The link between equity and credit risk

premia

Qualitative link: The idea that risk premia on credit markets and equity

markets are interrelated is not new. Keim/Stambaugh (1986) find that the

spread between yields on low-grade corporate bonds and the yield on Trea-

sury bills predicts future stock market excess returns. They interpret this

as a time-varying expected return, i.e., a higher spread between corporate

bonds and Treasuries indicates higher risk aversion and therefore higher fu-

ture expected returns. Fama/French (1989) find that “predictable variation

in stock return is [...] tracked by variables commonly used to measure default

and term premiums in bond returns”. They measure the default premium

as the difference in yields between a market portfolio of corporate bonds

and Aaa-rated bonds. In these cases, credit spreads are used as an indica-

tor for risk aversion. This establishes a qualitative link without making any

predictions about the quantitative link. In addition, these approximations

are rough since credit spreads of course reflect not only risk aversion but

also expected loss, and – to a certain extent – liquidity and tax premia (cf.

section 2.3.3). Other papers using similar approximations include Jagan-

nathan/Wang (1996) and Chen et al. (1986).

Beta-based link: Cornell/Greene (1991) and Fama/French (1993) go one

step further and calculate CAPM betas of bonds. Cornell/Greene (1991)

derive betas of 0.25 for high-grade bond funds compared to 0.52 for low-

grade bond funds.51 Fama/French (1993) derive betas of approx. 0.20 for

investment grade bonds and 0.30 for sub-investment grade bonds. These

values could be used to determine equity premia if bond spreads and the

expected loss are known. However, this is a very inaccurate procedure due to

estimation problems for beta, liquidity, and tax distortions in bond spreads

and the assumptions that the CAPM can be directly applied to bonds.

51Funds are defined as low-grade bond funds in Cornell/Greene (1991) if at least two
thirds of the portfolio is invested in bonds rated Baa or lower. The remaining funds
are defined as high-grade funds.
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Link via structural models of default: The first papers that exploited sim-

ple relationships in the Merton framework to estimate Sharpe ratios im-

plied from bond spreads and estimates for the real-world default probabil-

ity include Bohn (2000), Kealhofer (2003b), and Berg/Willershausen (2005).

However, Duffie/Singleton (2003) point out the fact that these formulas are

formally justified only in a Merton framework.

Huang/Huang (2003) calibrate various structural models of default to his-

torical default probabilities and historical equity premia including a model

with jumps, stochastic leverage, and mean-reverting asset risk premia. They

find that only a small portion of bond spreads can be explained by credit

risk. Especially for investment grade bonds, they are only able to explain

20-30% of the spread with credit risk. This is in line with the findings pre-

sented in section 2.3.3 about liquidity and tax effects on corporate bonds.

Chen et al. (2009) use structural models of default with countercyclical de-

fault boundaries and time-varying asset premia based on the framework

developed by Campbell/Cochrane (1999) to fit historical yield spreads to

historical default probabilities and historical Sharpe ratio.

Cooper/Davydenko (2003) use a simple Merton model to extract estimates

for the expected loss from bond spreads and equity premium estimates.

They also briefly discuss and apply their procedure to estimate equity pre-

mia from bond spreads and historical loss rates and find an average equity

premium of 4.8% with a range from 3.1% for Aa-rated companies to 8.5%

for B-rated companies. However, their procedure requires estimates for the

default barrier – which they assume to be equal to the face value of debt –

and of the (average) equity volatility until maturity.

All in all, these approaches have gained limited acceptance so far for sev-

eral reasons. First, all of the models above analyze bond spreads which

are subject to liquidity and tax distortions as discussed in the last subsec-

tion.52 Second, most of these models use aggregate or average data per rating

52An exception is Berg/Willershausen (2005), who also analyze CDS spreads. They do,
however, analyze only a very small sample (one day, approx. 20 German companies
in the DAX).
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grade, ignoring convexity or concavity effects, cf. David (2007). Third, many

of these models rely on estimates of parameters which are usually hard to

determine, e.g. default barriers, asset volatilities, etc. Fourth, the derived

relationships usually only hold for specific models, so model robustness is a

crucial point.53

Note on risk premia in reduced-form models: Within structural models,

risk premia arise due to different drifts of the asset value process in the real

and risk-neutral world. In contrast, in reduced-form models, risk premia are

either captured by a drift adjustment of the intensity process or by differ-

ent t = 0 real-world and risk-neutral default intensities (jump-to-default

premium), cf. Jarrow et al. (2005). Several studies analyze risk premia in a

reduced-form setup, i.e., Duffee (1999), Berndt et al. (2005) and Driessen

(2005) and the results are usually not directly comparable to bond and

CDS premia of the form (2.26) and (2.27). However, we do want to point

out that reduced-form and structural models can be linked. The first struc-

tural model that yields a default intensity was developed by Duffie/Lando

(2001). Both the drift adjustment in the default intensity process and the

jump-to-default premium are driven by the Sharpe ratio of the underly-

ing asset value process. However, the jump-to-default premium is also in-

fluenced by the degree of asset value uncertainty. Coculescu et al. (2008)

provide a generalization of the Duffie/Lando model with a continuous ob-

servation process and refer to this risk premium as “imperfect information”

risk premium. Economically, the idea can best be explained by the delayed

observation idea: If observations of asset values are noisy, investors also have

to rely on older observations. E.g., as a simple case one might assume that

an investor knows the asset value one year ago with certainty but does not

have any information on today’s asset value. In this case, the investor is

also exposed to systematic changes in asset values in the past and not only

to systematic future asset value changes. However, the underlying driver is

53Although Huang/Huang (2003) analyze several structural models of default, they also
do not include a model which is consistent with reduced-form pricing such as the
model developed by Duffie/Lando (2001).
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the same in both cases, i.e., the systematic risk of the company’s cash flows

and the Sharpe ratio of the company’s assets.

Synopsis: Taken together, it will be of major importance for our empiri-

cal application to i) develop a model which relies on observable parameters

as far as possible, ii) test the robustness of our model, especially also with

respect to advanced models such as the Duffie/Lando framework which are

compatible with reduced-form pricing, iii) use company-level data instead

of aggregate/mean data, and iv) use CDS spreads instead of bond spreads.

In addition, most academic research described above uses structural mod-

els and estimates for Sharpe ratios/equity premia to estimate credit spreads.

However, there is a very large sensitivity of these calculations with respect

to the Sharpe ratio/equity premium assumption (cf. Chen et al. (2009)).

We will argue in chapter 3 that these models are much better suited to go

the opposite direction, i.e., to derive Sharpe ratios and equity premia from

credit spreads. Used this way around, the disadvantage of a high sensitivity

with respect to the Sharpe ratio/equity premium turns out to be an advan-

tage: The formulas are quite stable if used the other way around.
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3. From actual to risk-neutral

default probabilities

This chapter establishes the theoretical link between actual and risk-neutral

default probabilities within structural models of default.1 The difference be-

tween actual and risk-neutral default probabilities is called the credit risk

premium. We will analyze the functional form and the drivers of credit

risk premia in a simple Merton framework and in more advanced structural

models of default.

Section 3.1 starts with a motivation. It gives some intuition why this dif-

ference is a key to understanding credit markets and why it is so important

for pricing bonds and credit default swaps. We will argue that credit mar-

kets are different e.g. from option markets because market participants in

the credit markets actually do use real-world quantities for pricing purposes.

We will also give intuition for the main results in this chapter: First, risk

premia constitute a significant part of the credit spread and second, risk

premia implied by a simple Merton model are also a good proxy in more

advanced structural models. Section 3.3 formalizes these ideas for the Mer-

ton framework, section 3.4 analyzes the Duffie/Lando (2001) model and –

as special cases – the Black/Cox (1976) and Leland/Toft (1996) model.

3.1. Motivation and intuition

Let us look at an investor who wants to price the “first” bond/CDS/loan of a

company X. With “first”, we mean that there are no other credit instruments

1For this chapter cf. also Berg (2009a).
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that an investor can use for pricing purposes. Of course, if spreads for a 3-

year and a 4-year bond of company X are known, these are reasonable

bounds for a 3.5-year maturity bond of company X. Or, if spreads of bonds

are known, spreads of credit default swaps can be determined based on

simple arbitrage arguments and vice verca.2 In simple terms: If we know

that one of the credit instruments has a spread of 50 bp (300 bp), then all

similar credit instruments will also have a spread of approx. 50 bp (300 bp).

But how do we know, if the “fair” spread of any of these instruments should

be 50 bp or 300 bp? There are mainly three categories of pricing models

that an investor can use:

1. Determine risk-neutral default intensities and use the respective reduced-

form models to determine the correct spread and price (cf. section

2.3.1.2).

2. Choose a (structural) model of default, calibrate all parameters and

determine spread and price (cf. section 2.3.1.3).

3. Determine the real-world default probability and real-world expected

loss and transform this real-world expected loss to a spread / risk-

neutral default probability by adding a risk premium (cf. section

2.3.1.1).

The first approach requires an estimate of the risk-neutral default intensity.

This risk-neutral default intensity can possibly be derived from any debt

security of company X. This approach is therefore a good approach to price

the “second” debt instrument of company X, but it is not suited to find a

spread for the “first” or for all debt instruments. In practice, a calibration

of the risk-neutral default intensity without using any debt instruments of

company X itself (or a similar company) is not straigthforward.

The second approach is also not suited for practical applications due to

the problems of calibrating the input parameters of the structural model,

2In practice, even the derivation of CDS spreads from bond spreads is not straightfor-
ward due to liquidity premia, counterparty risk and market microstructure issues, cf.
Hull et al. (2005) and Longstaff et al. (2005).
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especially the default barrier and the correct type of structural model (e.g.

first-passage- vs. zero-bond-style). Estimation errors and model errors are

usually too large to derive any meaningful price. Academic studies therefore

come to conflicting evidence concerning the pricing performance of struc-

tural models (cf. section 2.3.1.3).

The third approach is the only one which is practically applicable. Ac-

cepted estimates for real-world default probabilities are widely available,

e.g. from agencies’ ratings, models such as KMV EDFs or Fitch EIRs and

bank’s internal models. Indeed, ratings are a predominant factor in the mar-

ket for bonds and CDS and most communication in the market is done via

PDs and recovery rates (RR).3 Availability of recovery rate estimates is also

increasing, e.g., all major rating agencies have introduced recovery rate rat-

ings, commercial tools such as CreditEdge+ provide recovery rate estimates

and academic research has also soared over the last years, cf. Altman (2006)

for an overview.

This third – hybrid – approach requires two steps: First, an estimation

of the real-world default probability and real-world expected loss. Second,

a methodology for adding a risk premium. This chapter deals with the sec-

ond step. We derive two main results which are briefly explained based on

intuitive arguments in the next paragraphs.

The first result is related to the relative importance of the risk premium:

The risk premium is a significant part of the model-implied credit spread.4

For all investment grade obligors it is larger than the real-world expected

loss for reasonable parameter combinations. E.g., for a Baa-rated obligor the

one-year expected loss is not more than 20 bp.5 The risk premium for equi-

3E.g., the market is clustered into investment grade and sub-investment grade using
agencies’ ratings, reports on the credit market frequently make statements on the
(expected) development of foreclosures/defaults and migration probabilities. In con-
trast, we have never seen a report about exercise probabilities e.g. in the S&P 500
option market.

4Without liquidity and tax premia.
5Based on Moody’s (2007), cf. appendix A.1.1.
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ties is usually supposed to be in the area of 5%, i.e. 500 bp. If a Baa-rated

bond is only 1/20 as “risky” as equities then the risk premium will exceed

the expected loss. Intuition tells us that this is the case. E.g., in a CAPM

setting, a beta of only 0.05 is necessary to induce such a risk premium.6 We

will more formally discuss this issue in section 3.3.

The second result concerns the difference between the Merton framework

and other structural models of default: The risk premium, i.e., the difference

between actual and risk-neutral default probability, will stay (almost) the

same independent of the model choice and independent of parameters such

as the asset volatility or the asset value uncertainty. The only parameter

that does influence the risk premium is of course the Sharpe ratio of the

asset value process.7 This may seem amazing at first, but there is also a

good intuition for it: All “features” that have been added to the Merton

framework usually have an effect on both actual and risk-neutral default

probabilities in the same direction. To mention just a few examples:

• If we move from a zero-bond style model to a first-passage time model,

both actual and risk-neutral default probability will increase.

• If we increase the default barrier, both actual and risk-neutral default

probabilities will increase.

• If we introduce asset value uncertainty, both actual and risk-neutral

default probabilities will increase.

• If we increase the asset volatility, both actual and risk-neutral default

probabilities will increase.

Again, this result is more formally analyzed in section 3.4.

6Cornell/Green (1991) find betas between 0.25 and 0.50 for bonds, Fama/French (1993)
find betas between 0.19 and 0.30, cf. section 2.4.

7One might criticise this approach for rejecting structural models of default due to
calibration problems, but at the same time using structural models to transform real-
world quantities into risk-neutral quantities. In fact, we do not state that structural
models are per se wrong, rather it takes a lot of effort to calibrate them correctly so
that more convenient ways have been found to predict real-world PDs.
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3.2. Definition of absolute and relative credit

risk premia

The derivation of a credit spread from an expected loss corresponds to

the derivation of risk-neutral quantities from real-world quantities. If re-

covery rates are assumed to be constant, the remaining task is to derive

risk-neutral default probabilities from actual default probabilities. The dif-

ference between risk-neutral and actual default proabibilities will be denoted

as “credit risk premium”. Similar to Amato/Remolona (2005) and Hull et

al. (2005) we will define the absolute credit risk premium (AbsCRP ) as the

difference and the relative credit risk premium (RelCRP ) as the quotient

of risk-neutral and actual PDs:8

Definition 3.2.1 (Absolute and relative credit risk premium)

• The absolute credit risk premium (AbsCRP ) is defined as the differ-

ence between the cumulative risk neutral (PDQ) and the cumulative

actual default probability (PDP ), i.e.

AbsCRP := PDQ − PDP

• The relative credit risk premium (RelCRP ) is defined as the absolute

credit risk premium divided by the actual default probability, i.e.

RelCRP :=
PDQ − PDP

PDP
=
PDQ

PDP
− 1

Please note that all quantities are cumulative quantities. Economically, a

constant absolute credit risk premium means that investors require the same

excess return independent of the credit quality. A constant relative credit

risk premium would imply that investors require the same excess return per

unit of default probability independent of the credit quality.

8Amato/Remolona (2005) use the term “risk premium” for the absolute credit risk
premium, “price of default risk” for the relative credit risk premium and “risk ad-
justment” for the relative credit risk premium minus 1.
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We will analyze the absolute and relative credit risk premium within

structural models of default. Unlike classical applications of structural mod-

els, we are therefore not interested in the actual and risk neutral default

probabilities itself but are simply interested in the difference (or quotient)

of actual and risk-neutral default probabilities. As we will see, this makes

most of the calibration process usually needed redundant.

3.3. Merton framework

3.3.1. Model setup

In the Merton framework, asset values are assumed to follow a geometric

Brownian motion. Debt is modeled via a single zero bond with maturity

T. A default can therefore only occur at maturity. More formally, we will

assume

Asset value process : dVt = µVtdt+ σVtdWt (real world)

dVt = rVtdt+ σVtdWt (risk− neutral world)

Default mechanism : PDP = P [VT < N ] (real world)

PDQ = Q[VT < N ] (risk− neutral world)

where Vt is the asset value process, µ and r are the actual and risk-neutral

drift, σ denotes the asset volatility, Wt is a Brownian motion and N is the

face value of the zero bond.

3.3.2. Credit risk premia in the Merton framework

In the Merton framework, the real-world default probability (PDP (T )) be-

tween t = 0 and t = T can be calculated as:9

PDP (T ) = P [ VT < N ] = P [ V0 · e (µ− 1
2
σ2)·T+σ·BT < N ]

= P

[
σ ·BT < ln

(
N

V0

)
− (µ− 1

2
σ2) · T

]
9See Duffie/Singleton (2003) or Berg/Kaserer (2008) for details.
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= Φ

[
lnN

V0
− (µ− 1

2
σ2) · T

σ ·
√
T

]
(3.1)

The risk-neutral default probability can be calculated accordingly as

PDQ(T ) = Q[ VT < N ] = Φ

[
lnN

V0
− (r − 1

2
σ2) · T

σ ·
√
T

]
. (3.2)

Combining (3.1) and (3.2) yields:

PDQ(PDP ) = Φ

[
Φ−1(PDP (T )) +

µ− r
σ
·
√
T

]
. (3.3)

The relationship between the risk-neutral and the actual default probabil-

ity is therefore independent of the asset value Vt, the nominal value of the

zero bond N and the asset volatility. Only the actual default probability,

the asset Sharpe ratio (SRV := µ−r
σ

) and the maturity enter the formula.

A graphical illustration of the relationship between risk-neutral and actual

default probabilities, the Sharpe ratio, and maturity is given in Figure 3.1.

3.3.3. Implications

3.3.3.1. The relative importance of risk premia

The relative importance of (model-implied) risk premia for credit spreads

is often underestimated. An overview of the literature on credit risk premia

can be found in Hull et al. (2005) and Amato (2005). To demonstrate the

relative importance of risk premia, we first transform cumulative PDs taken
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Figure 3.1.: Illustration of the relationship between actual and risk-neutral
default probabilities in the Merton framework. PDdef : ac-
tual cumulative default probability, PDQ: risk-neutral cumu-
lative default probability, SRV : Sharpe ratio of the assets, T:
maturity.

from Moody’s (2007) to per annum real-world PDs and ELs via10

PDP
pa = 1− (1− PDP

cum)1/T , ELPpa = PDP
pa · LGD,

where subscripts “pa” and “cum” denote per annum and cumlative quanti-

ties, T denotes the maturity, superindex “P” denotes a real-world quantity

and LGD is the loss given default, assumed to be constant and therefore

equal in the real and risk-neutral world. We then calculate model-implied

10This transformation assumes constant conditional default probabilities. Our key re-
sults are not significantly influenced by this assumption. This assumption was taken
for simplicity reasons to make the formulas easily readable. Alternatively, a constant
hazard rate model could be applied, i.e. λP = 1/T · ln(1 − PDP

cum). where λP de-
notes the real-world hazard rate. Again, the differences for the following analysis are
minimal.
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spreads s via11

PDQ
cum = f(PDP

cum) via (3.3), PDQ
pa = 1−(1−PDcum)1/T , s = PDQ

pa·LGD,

i.e. in the first step, we transform the actual cumulative default probability

to a risk-neutral cumulative default probability via (3.3), in the second

step we annualize this cumulative risk-neutral PD, and in the third step

we transform it into a risk-neutral EL / credit spread by multiplying the

risk-neutral PD with the loss given default.

In order to calculate the risk-neutral default probabilities via (3.3) the

asset Sharpe ratio has to be specified. Historical market Sharpe ratios

for equity markets have been approximately 40%. Using an asset/market-

correlation of 0.5 this can be transformed into an asset Sharpe ratio of 20%

which we use as a base case. In addition we set LGD = 60% based on

Moody’s (2007). The resulting parameters are depicted in table 3.1 for the

main CDS maturities of 3, 5, 7 and 10 years. In addition, the table shows the

part of the spread which is due to a risk premium, defined as 1−EL/spread.

For investment grade obligors, the risk premium accounts for approx. 2/3 of

the spread, for sub-investment grade obligors for approx. 1/2 of the spread.

The part of the spread due to the risk premium increases with increasing

maturity.

The asset Sharpe ratio itself is hard to determine accurately. First, histor-

ical Sharpe ratios on equity markets might not be equal to current market-

implied Sharpe ratios. Second, correlations between assets and the market

portfolio are not easy to determine – at least not on a single-obligor basis.

Third, credit instruments are usually subject to higher tax rates in most

countries. This would also affect before-tax Sharpe ratios.

11For underlying assumptions see footnote 10. In addition we assume that default can
only happen at the end of each period so that the default-leg=payment-leg condition
becomes LGD ·

∑
(1−PDQ

pa)t−1 ·PDQ
pa · (1 + r)−t = s ·

∑
(1−PDQ

pa)t−1(1 + r)−t so
that s = PDQ

pa · LGD.
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T = 3 T = 5
PDcum EL p.a. s Risk Prem PDcum EL p.a. s Risk Prem

(%) (bp) (bp) (% of s) (%) (bp) (bp) (% of s)

Aa 0.05% 1 3 69% 0.17% 2 8 74%
A 0.23% 5 13 64% 0.60% 7 24 69%

Baa 1.00% 20 48 58% 2.17% 26 71 63%
Ba 4.41% 90 180 50% 7.86% 97 215 55%
B 19.42% 417 680 39% 28.41% 388 678 43%

T = 7 T = 10
PDcum EL p.a. s Risk Prem PDcum EL p.a. s Risk Prem

(%) (bp) (bp) (% of s) (%) (bp) (bp) (% of s)

Aa 0.26% 2 10 78% 0.34% 2 11 82%
A 0.90% 8 29 73% 1.17% 7 31 78%

Baa 3.11% 27 81 67% 4.06% 25 85 71%
Ba 10.72% 96 229 58% 14.05% 90 234 61%
B 37.01% 383 696 45% 48.62% 386 727 47%

Table 3.1.:
Relative importance of credit risk premia in the Merton framework for an

asset Sharpe ratio of 20%.
This table depicts the part of the credit spread which is due to a risk premium based on a
Merton framework for maturities of T = 3, 5, 7 amd 10 years and different rating grades.
PDcum denotes cumulative real-world default probability, EL p.a. denotes annualized
real-world expected loss in basis points, s denotes the credit spread and Risk Prem
denotes the percentage of the spread which is due to a risk premium (:=1−EL/s). LGD
was assumed to be 60%.
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Asset Sharpe ratio PDcum EL p.a. s Risk Prem
(%) (%) (bp) (bp) (% of s)

10% 2.17% 26 44 40%
20% 2.17% 26 71 63%
30% 2.17% 26 111 76%
40% 2.17% 26 165 84%
50% 2.17% 26 239 89%

Table 3.2.:
Sensitivity of credit spread with respect to asset Sharpe ratio

assumption (Baa, 5-years).
Percentage of credit spread due to a risk premium based on a Merton frame-
work for a maturity of T = 5 and a Baa-rating for different asset Sharpe ratio
assumptions. Column labels as in table 3.1.

We calculate the resulting spread for different assumptions for the asset

Sharpe ratio for the Baa, 5-year maturity case (table 3.2). The spread is

highly dependent on the assumption about the asset Sharpe ratio, indeed

the spread can be almost 10 times the expected loss for an asset Sharpe ratio

of 50%. This high sensitivity of the (model-implied) spread with respect to

the Sharpe ratio assumption has several implications. First, if changes in

the asset Sharpe ratio are hard to explain, then spread movements will

also be hard to explain. Second, standard proxies for the real-world default

probability will not be as important in explaining spread changes as some

researchers might assume. This theoretical analysis confirms findings e.g. of

Elton et al. (2001). Third, credit spreads provide a good way of extracting

risk aversion. If two thirds of the spread are due to a risk premium, then

even with a noisy estimate for the real-world expected loss, risk premia can

be extracted with a reasonable accuracy. We will exploit this finding in our

empirical applications in chapter 4 and 5.

3.3.3.2. Functional form of credit risk premia

Based on (3.3) we now want to formulate the main characteristics of credit

risk premia in the Merton framework. For ease of notation we will omit the

variable T and use the notations PDQ := PDQ(T ) and PDP := PDP (T ).
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Proposition 3.3.1 The following statements about the risk neutral default

probability, the absolute and the relative credit risk premium hold true as

long as the asset Sharpe ratio SR and the maturity T are larger than zero:

1. The risk-neutral default probability as a function of the actual de-

fault probability is increasing and concave with PDQ(PDP ) ≥ PDP ,

PDQ(0) = 0 and PDQ(1) = 1

2. The absolute credit risk premium AbsCRP as a function of the actual

default probability is increasing and concave for

PDP < Φ[−0.5 · SR
√
T ] with AbsCRP (0) = 0

3. The relative credit risk premium RelCRP as a function of the ac-

tual default probability is decreasing and convex for PDP < 50% with

lim
PDP→0

RelCRP =∞ and RelCRP (1) = 0

The proof can be found in appendix B.2.12 Proposition 3.3.1 is illustrated

in figure 3.2.

(1.) and (2.) state that risk-neutral default probabilities are larger than

actual default probabilities. This simply means, that – if agents are risk

averse – they will demand a higher return on risky bonds than on riskless

assets. The difference is zero for PDP = 0 and it is higher for larger actual

default probabilities. This is in accordance with the general idea that in-

vestors require a higher return for higher risk and that risk increases with

increasing default probability. The upper limit is not relevant for practical

purposes.13

(3.) states that the ratio of risk-neutral to actual default probabilities will

increase with increasing credit quality, e.g. the ratio will be higher for Aa-

rated obligors than for Ba-rated obligors. In addition, the increase will be

12Please note that the restrictions concerning PDP are sufficient but not necessary, see
appendix B.2 for details.

13Please note, that the upper limit Φ[−0.5 ·SRV ·
√
T ] decreases with increasing Sharpe

ratio and increasing maturity. Even for a maturity of 10 years and a Sharpe ratio
of 40% this upper bound is approx. 26% which is somewhere between a Ba and B
rating (cf. appendix A.1.1). For higher default probabilities the difference decreases,
but this is purely a mathematical exercise. For very high default probabilities the
recovery rate risk is more important than the default risk. Therefore, the difference
between risk neutral and actual expected loss may still rise further.
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Figure 3.2.: Illustration of the relationship between actual cumulative de-
fault probability and the risk-neutral cumulative default prob-
ability, the absolute and the relative credit risk premium in the
Merton framework. P = PDP and Q = PDQ denote the cumu-
lative actual and cumulative risk-neutral default probability.

steeper than linear and the ratio will converge to infinity if the actual default

probability approaches zero. Some authors (e.g. Amato (2005)) directly use

the relative credit risk premium as a measure of risk aversion. Based on the

Merton model, the relative credit risk premium is, however, not only depen-

dent on the risk aversion (i.e. Sharpe ratio), but also (heavily) dependent

on the credit quality. This is in line with the results from Hull et al. (2005).
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3.4. Other structural models of default

The results from the previous section are formally only justified in a Merton

framework. We will analyze other models in this section. In particular, we

will analyze the relationship between actual and risk-neutral default proba-

bilities in the Duffie/Lando (2001) framework (“D/L framework”). The D/L

framework introduces asset value uncertainty, therefore resulting in more re-

alistic short-term default probabilities and credit spreads. It was the first

structural model which yields a default intensity and is therefore consistent

with reduced-form credit pricing. In addition, the D/L model captures other

frequently used models as special cases. Setting the asset value uncertainty

to zero yields the Leland/Toft (1996) model. Due to our special calibration

approach, we (implicitly) cover all strategic default models with a geometric

Brownian motion as asset value process and with a constant default barrier.

3.4.1. Model setup

The main feature in the D/L framework is the introduction of uncertainty

about the current asset value. Default probabilities can be calculated as a

weighted average of the respective first-passage time default probabilities,

where the weight is given by the probability distribution of the asset value:

PDP
DL(t, T ) =

∫ ∞
L

PDP
FP (t, T, x)︸ ︷︷ ︸

PD(first passage time) if Vt = x

gP (x|V̂t, v0, t)︸ ︷︷ ︸
Prob., that Vt = x

dx (3.4)

PDQ
DL(t, T ) =

∫ ∞
L

PDQ
FP (t, T, x)gQ(x|V̂t, v0, t)dx. (3.5)

Here, PDP
DL(t, T ) and PQ

DL(t, T ) denote the cumulative actual and risk-

neutral default probability between t and T , V̂t denotes the noisy observation

of the asset value in t and v0 denotes the non-noisy asset value in t = 0.

PDP
FP (t, T, x), PDQ

FP (t, T, x) is the default probability in a Black/Cox first-

passage time framework, i.e. the actual/risk neutral probability that an asset

value process starting in t at Vt = x will fall below the default barrier up to
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time T :

PDP
FP (t, T ) = Φ

(
b−mP (T − t)
σ
√
T − t

)
− e

2mP b
σ2 Φ

(
b+mP (T − t)
σ
√
T − t

)
(3.6)

PDQ
FP (t, T ) = Φ

(
b−mQ(T − t)
σ
√
T − t

)
− e

2mQb
σ2 Φ

(
b+mQ(T − t)
σ
√
T − t

)
(3.7)

with b = ln( L
Vt

), mP = µ− 1
2
σ2, mQ = r − 1

2
σ2 and σ = σV . gQ(x|Vt, v0, t),

gP (x|Vt, v0, t) are the density functions of the asset value Vt under the ac-

tual and risk-neutral probability measure. In their model setup, D/L derive

an explicit closed-form solution for these probability density functions (cf.

Duffie/Lando (2001)). Among other parameters, it is dependent on the de-

gree of asset value uncertainty (α) and the time that has passed since the

last non-noisy observation (t). This density function is different in the real

and risk-neutral world. Intuitively, the investor processes two pieces of infor-

mation: First, the noisy observation of the asset value, which is assumed to

be unbiased. Second, the fact that the company has not defaulted in [0, t].

The second piece of information gives rise to a risk premium, i.e. actual and

risk-neutral densities differ.

3.4.2. Implementation

There is no closed-form solution for the relationship between actual and risk-

neutral default probabilities in the D/L framework. We therefore proceed

numerically in the following way:

1. Choose Parameters: Choose a specific rating grade (RAT ), maturity

(T ), asset volatility (σ), risk-neutral asset value drift (m)14, asset

Sharpe ratio (SR), asset value uncertainty (α), time passed since last

non-noisy observation of the asset value (t), and difference between

asset value in t = 0 and the noisy information in t (R := ln(V̂t/v0)).

Without loss of generality we set the default barrier (L) to 100.

2. Determine the risk-neutral PD in the Duffie/Lando framework

14The risk-neutral drift may deviate from the risk-free rate due to payouts (e.g. dividends,
share buybacks).
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a) Based on (3.4), determine the asset value V̂t that yields the cu-

mulative actual default probability PDP
RAT for the respective

rating grade. Cumulative default probabilities per rating grade

(PDP
RAT ) are taken from Moody’s (2007) and are depicted in ap-

pendix A.1.1.15 Based on the specifications in step 1, V̂t is the

only free parameter on the right-hand side of (3.4).

b) Determine PDQ
D/L based on (3.5).

3. Determine the risk-neutral PD in the Merton framework via (3.3).

4. Determine the error defined as the quotient between Duffie/Lando

risk-neutral PD and Merton risk-neutral PD, i.e.

Err :=
PDQ

D/L

PDQ
Merton

. (3.8)

Repeat steps 1 to 4 for all reasonable parameter combinations. Reasonable

parameter combinations choosen for this study were:

• Rating grades: Aa, A, Baa, Ba, B (incl. respective cumulative actual

default probabilities based on appendix A.1.1)

• T = 1, 3, 5, 7, 10 (standard CDS maturities)

• σ: 3%, 5%, 7.5%, 10%, 15%, 20%, 30%

• m: -2.5%, 0%, 2.5%, 5%

• SR: 10%, 20%, 30%, 40%

• α: 0%, 10%, 30%

• t: 1, 3 years16

• R: R=0 and R=+/- 2 standard deviations of the asset value process.

15Please note that default probabilities from other sources, e.g. Fitch or S&P could also
be used. Rating grades simply act as a natural way of identifying distinct default
probabilities.

16The case t = 0 is already captured by the case α = 0%.
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This yields a total of 50,400 combinations (2,016 for each combination of rat-

ing grade and maturity). For each combination actual and risk-neutral de-

fault probabilities were determined with the 3-step approach given above.17

3.4.3. Implications

3.4.3.1. Illustrative example

To demonstrate the methodology, we start with a short numerical example

by setting

RAT = Baa, T = 5, SR = 20%,

m = 0%, σ = 15%, L = 100, α = 10%, t = 1, R = 0.

Based on historical default probabilities, the 5-year Baa cumulative default

probability is approx. 2.17% (see appendix A.1.1). The asset value which

yields 2.17% real-world default probability for this specific parameter com-

bination is 203.02 (determined via (3.4)). Based on (3.5), the risk-neutral

default probability for this parameter combination (including Vt = 203.02) is

5.70%. In the Merton framework, a real-world default probability of 2.17%,

an asset Sharpe ratio of 20%, and a maturity of 5 years yield a risk-neutral

default probability of 5.80% using formula (3.3). The resulting difference

between the Merton framework and the D/L framework is therefore rather

small (5.80% vs. 5.70%) for this demonstrative example.

3.4.3.2. The default timing effect

We first analyze a Baa-rated obligor, 5-year maturity with a Sharpe ratio

of 20%. For corporates, the Baa rating grade is the single largest rating cat-

egory (by number of issuers and volume). 5-years is the standard maturity

in CDS markets and an asset Sharpe ratio of 20% is in line with historical

data for the equity markets, cf. the discussion in section 3.3. Restricting the

analysis to this case allows to study some effects in more detail. Still, the

results are generally valid for other rating categories, maturities and Sharpe

17The numerical evaluations of the integrals (3.4) and (3.5) were performed using adap-
tive quadrature based on the quadgk function in MATLAB.
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ratios, too. General results will be presented in subsection 3.4.3.4.

The results of all Baa/5-year/SR=20% combinations are shown in figure

3.3 in column “Total”. Please note that all of these combinations have the

Figure 3.3.: Risk-neutral default probabilities in the D/L framework for the
Baa/5-year/20% Sharpe ratio case for different parameter com-
binations. Total contains all parameter combinations for this
case as described in subsection 3.4.2. σ ≥ 10% restricts the as-
set volatility to values larger or equal to 10% (“non-financials”),
m = 0% restricts the risk-neutral asset value drift relative to
the default barrier to 0% (“constant leverage”).

same real-world PD (2.17%, since both rating and maturity are fixed) and

the same Merton-implied risk-neutral PD (5.80%, risk-neutral PDs in the

Merton framework are only dependent on the real-world PD, maturity and

the asset Sharpe ratio). The risk-neutral PDs in the D/L framework range

from 3.29% to 7.18%.

If we look closer at the parameter combinations which lead to the lowest

risk-neutral PDs we find that they are characterized by low asset volatili-

ties and a large drift. Once the analysis is restricted to asset volatilities of
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larger than 10% or constant leverage (m = 0%), the resulting PDs are off

by not more than 15% from the Merton PD (figure 3.3, column 2 and 3).

Asset volatilities smaller than 10% can rarely be observed for non-financials.

E.g. in the KMV database, less than 10% of the non-financials have asset

volatilities smaller than 10%. Constant leverage is also a frequently stated

assumption.

Of course, a further restriction on the asset volatility and drift might

be economically justified in certain cases, but it does not help to gain in-

sight into the economics that are driving these results. The economics be-

hind these results are as follows: Combinations of high drift and low asset

volatility lead to situations where a company either defaults “very early” or

“never at all”. Economically, if default occurs soon then the investor is only

exposed to systematic risk for a short period. E.g., assume as an extreme

case that there is an obligor which either defaults in 1 month with probabil-

ity 2.17% based on the state of the economy in 1 month or never defaults at

all. Clearly, the 5-year cumulative default probability is 2.17%. The investor

is, however, only exposed to systematic risk over the first month, afterwards

the investment is risk-free. Therefore, the risk premium would be smaller

than for an obligor which might also default in 3-, 4- or 5-years from today.

To analyze this default timing argument closer, we define the expected

conditional default time as

DT := EP [τ |τ < T ], (3.9)

where τ is the time of default. DT describes the expected time of default

under the condition that default occurs until T . For the Merton framework

DT is always equal to T since default can only happen at maturity. Based

on the observation in the Merton framework (difference between actual and

risk-neutral PD increases with increasing maturity) and the indications from

above it is natural to assume that DT plays a role in the difference between

actual and risk-neutral PDs in the D/L framework as well. Figure 3.4 plots
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the risk-neutral PDs from the Baa/5-years/SR=20% example as a function

of the expected conditional default time. Indeed, a clear relationship can

Figure 3.4.: Risk-neutral default probabilities in the D/L framework for the
Baa/5-year/20% Sharpe ratio case for different parameter com-
binations as a function of the conditional default time as defined
in (3.9).

be seen: The lower DT , the lower the risk-neutral PD. Based on empirical

observations from Moody’s (2007), if a Baa-rated obligor defaults in the

next 5 years the default will happen on average after 3.01 years (cf. appendix

A.1.2) as indicated by the dotted line in figure 3.4. Restricting the range of

reasonable expected default times again results in risk-neutral PDs close to

the Merton framework.
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3.4.3.3. The asset value uncertainty effect

We now expand our analysis to different maturities for a Baa-rated obligor

but still use an asset Sharpe ratio of 20%. All the effects mentioned in the

last subsection are still valid and will be discussed in a broader analysis in

section 3.4.3.4. Here we want to focus on the effect of asset value uncertainty.

It is well known from Duffie/Lando (2001) that asset value uncertainty in-

creases short-term default probabilities. In this section, we will demonstrate

that it also increases the difference between actual and risk-neutral default

probabilities.

Figure 3.5 shows the effect of asset value uncertainty on credit risk premia

for an asset volatility of 15% and a risk-neutral drift of 0%.18 Instead of plot-

ting risk-neutral PDs, it shows the quotient between the risk-neutral PD in

the D/L framework and the risk-neutral PD in the Merton framework. This

allows us to plot all maturities on the same scale. Please also note that real-

world PDs for one maturity are the same for all asset value uncertainties

but that the asset value V̂t differs. Figure 3.5 indicates two main findings:

First, a higher asset value uncertainty leads to a higher credit risk premium.

A higher asset value uncertainty effectively means that an investor has to

rely more heavily on the t = 0 asset value and the information contained in

the survival up to t. This exposes the investor to additional systematic risk.

An investor is not only exposed to systematic risk for the maturity T , but

effectively for a timeframe of t + T , cf. Schönbucher (2003), p. 280 for an

intuitive description of this “delayed observation” idea. Second, the effect

is more pronounced for shorter maturities. The relative difference between

t + T and T simply increases with a shorter maturity T . Although not de-

picted in figure 3.5, the effect is also larger for higher rating grades.

This asset value uncertainty effect is surely an interesting effect when

thinking about the high CDS spreads during the 2007/2008 financial crisis.

However, this effect is rather small for reasonable asset value uncertainties19

18The main findings do not change for other parameter combinations which are available
on request.

19The maximum asset value uncertainty in figure 3.5 is 30%. Based on a normal distri-
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Figure 3.5.: Ratio of risk-neutral PD in the D/L framework and risk-neutral
PD in the Merton framework for different asset value uncer-
tainties and maturities. Models are calibrated to the same real-
world default probability. The y-axis plots the quotient of D/L
risk-neutral PD and Merton risk-neutral PD. Parameter choices
are: RAT = Baa, SR = 20%, m = 0%, σ = 15%, t = 1, R = 0.

and maturities of 3 years or longer.

3.4.3.4. Extended results

So far, the results have been restricted to a rating of Baa and a Sharpe

ratio of 20%. Table 3.3 depicts the extended results for other ratings and

a Sharpe ratio of 20%, table 3.4 for a Sharpe ratio of 30%.20 As in figure

3.5, error terms are shown in the tables, i.e., the quotient between the risk-

bution and without any other information this basically means that a 95% confidence
interval for the asset value is approx. +/- 60% – which seems to be a quite wide range.

20Results for Sharpe ratios of 10% and 40% available upon request.
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neutral PDs in the D/L framework and in the Merton framework once both

frameworks have been calibrated to the same real-world PD.

For a Sharpe ratio of 20% (table 3.3), the quotient between the risk-

neutral D/L PDs and the risk-neutral Merton PDs can range from as far as

0.33 (Aa, 10-years) to 2.12 (Aa, 1-year). Once mild conditions on either the

asset volatility (σ ≥ 10%), the risk-neutral drift relative to the default bar-

rier (m = 0%) or the default timing (within +/- 20% of empirical averages

based on Moody’s (2007), cf. A.1.2) are imposed, the differences are a lot

smaller. E.g., for the 5-year maturity, the quotient is always between 0.83

and 1.30 for a reasonable default timing. Relative differences are smaller

for longer maturities and lower ratings. As expected, higher Sharpe ratios

slightly increase the difference between the Merton framework and the D/L

framework. Risk-neutral default probabilities can be interpreted as a sum of

real-world PDs and a risk premium. A higher Sharpe ratio leads to a higher

risk premium (while PDs stay the same by definition), therefore increasing

the difference between different model approaches.

All in all, one should take care with using the simple Merton transfor-

mation (3.3) from actual to risk-neutral default probabilities for very short

maturities. For longer maturities, the Merton transformation is still a good

approximation for the relationship between actual and risk-neutral PDs.
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Total σ ≥ 10% m = 0% DT reasonable
Maturity Rating Min Max Min Max Min Max Min Max

1 Aa 0.94 2.12 0.98 1.84 0.99 2.07 1.20 1.96
A 0.93 1.94 0.98 1.71 0.99 1.88 1.19 1.78
Baa 0.92 1.75 0.98 1.57 0.98 1.68 1.14 1.68
Ba 0.91 1.55 0.97 1.41 0.98 1.45 0.91 1.50
B 0.90 1.31 0.97 1.21 0.98 1.19 0.94 1.31
All 0.90 2.12 0.97 1.84 0.98 2.07 0.91 1.96

3 Aa 0.69 1.54 0.94 1.39 0.97 1.49 0.87 1.50
A 0.68 1.45 0.94 1.33 0.97 1.40 0.85 1.42
Baa 0.69 1.36 0.93 1.26 0.97 1.30 0.87 1.33
B 0.71 1.26 0.91 1.18 0.96 1.18 0.89 1.24
B 0.76 1.14 0.91 1.07 0.96 1.03 0.93 1.11
All 0.68 1.54 0.91 1.39 0.96 1.49 0.85 1.50

5 Aa 0.52 1.36 0.90 1.25 0.96 1.30 0.85 1.30
A 0.54 1.30 0.88 1.21 0.96 1.24 0.83 1.24
Baa 0.57 1.24 0.87 1.16 0.95 1.17 0.86 1.17
Ba 0.62 1.17 0.86 1.11 0.95 1.08 0.89 1.11
B 0.72 1.09 0.86 1.03 0.94 0.99 0.92 1.05
All 0.52 1.36 0.86 1.25 0.94 1.30 0.83 1.30

7 Aa 0.42 1.28 0.85 1.19 0.95 1.22 0.77 1.22
A 0.45 1.23 0.83 1.15 0.95 1.16 0.82 1.16
Baa 0.50 1.18 0.81 1.11 0.94 1.11 0.87 1.11
Ba 0.57 1.12 0.81 1.07 0.94 1.03 0.87 1.03
B 0.71 1.06 0.84 1.01 0.94 0.97 0.94 1.02
All 0.42 1.28 0.81 1.19 0.94 1.22 0.77 1.22

10 Aa 0.33 1.22 0.76 1.14 0.94 1.14 0.75 1.01
A 0.37 1.18 0.74 1.11 0.93 1.10 0.73 0.97
Baa 0.43 1.14 0.73 1.08 0.93 1.05 0.81 1.05
Ba 0.53 1.09 0.75 1.04 0.92 0.99 0.87 0.99
B 0.72 1.03 0.83 1.00 0.93 0.96 0.95 1.01
All 0.33 1.22 0.73 1.14 0.92 1.14 0.73 1.05

Table 3.3.:
Credit risk premia in the Duffie/Lando framework: Extended results, asset

Sharpe ratio = 20%
Minimum and maximum quotient of risk-neutral PDs in the D/L framework and risk-
neutral PDs in the Merton framework (for various parameter combinations) once actual
PDs have been calibrated to the same level. Asset Sharpe ratio is 20%. For actual PDs
cf. appendix A.1.1, for parameter combinations cf. subsection 3.4.2. Total contains all
parameter combinations as described in subsection 3.4.2. σ ≥ 10% restricts the asset
volatility to values larger or equal to 10% (“non-financials”), m = 0% restricts the risk-
neutral asset value drift relative to the default barrier to 0% (“constant leverage”), DT
reasonable restricts the average default time to values +/-20% compared to values based
on Moody’s (2007), cf. appendix A.1.2.
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Total σ ≥ 10% m = 0% DT reasonable
Maturity Rating Min Max Min Max Min Max Min Max

1 Aa 0.91 2.95 0.97 2.41 0.98 2.84 1.45 2.62
A 0.90 2.58 0.97 2.15 0.98 2.46 1.28 2.46
Baa 0.88 2.22 0.96 1.89 0.97 2.08 0.88 2.08
Ba 0.86 1.84 0.96 1.61 0.97 1.67 0.86 1.76
B 0.85 1.44 0.95 1.29 0.97 1.25 0.91 1.44
All 0.85 2.95 0.95 2.41 0.97 2.84 0.86 2.62

3 Aa 0.57 1.83 0.91 1.59 0.96 1.74 0.79 1.77
A 0.56 1.68 0.90 1.48 0.95 1.58 0.82 1.63
Baa 0.57 1.53 0.88 1.37 0.95 1.41 0.84 1.48
Ba 0.60 1.37 0.87 1.24 0.94 1.21 0.86 1.32
B 0.68 1.18 0.86 1.08 0.93 1.02 0.90 1.18
All 0.56 1.83 0.86 1.59 0.93 1.74 0.79 1.77

5 Aa 0.38 1.52 0.83 1.36 0.94 1.42 0.76 1.48
A 0.40 1.43 0.82 1.29 0.93 1.32 0.81 1.34
Baa 0.44 1.33 0.80 1.21 0.92 1.20 0.85 1.25
Ba 0.51 1.22 0.79 1.13 0.92 1.07 0.85 1.16
B 0.64 1.11 0.81 1.02 0.92 0.97 0.91 1.07
All 0.38 1.52 0.79 1.36 0.92 1.42 0.76 1.48

7 Aa 0.29 1.39 0.75 1.26 0.92 1.28 0.74 1.28
A 0.32 1.32 0.73 1.20 0.91 1.19 0.81 1.19
Baa 0.37 1.24 0.72 1.14 0.90 1.10 0.79 1.10
Ba 0.46 1.16 0.72 1.07 0.90 1.01 0.85 1.10
B 0.64 1.07 0.79 1.00 0.91 0.95 0.92 1.04
All 0.29 1.39 0.72 1.26 0.90 1.28 0.74 1.28

10 Aa 0.21 1.29 0.64 1.18 0.90 1.16 0.64 0.99
A 0.25 1.23 0.62 1.13 0.89 1.09 0.73 1.09
Baa 0.31 1.17 0.62 1.08 0.88 1.02 0.78 1.02
Ba 0.42 1.10 0.66 1.03 0.88 0.95 0.83 1.00
B 0.66 1.03 0.78 0.98 0.90 0.94 0.95 1.02
All 0.21 1.29 0.62 1.18 0.88 1.16 0.64 1.09

Table 3.4.:
Credit risk premia in the Duffie/Lando framework: Extended results, asset

Sharpe ratio = 30%
Minimum and maximum quotient of risk-neutral PDs in the D/L framework and risk-
neutral PDs in the Merton framework (for various parameter combinations) once actual
PDs have been calibrated to the same level. Asset Sharpe ratio is 30%. For a detailed
description see table 3.3.
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4. Estimating equity premia from

CDS spreads

4.1. Motivation

This chapter draws upon the theoretical results from chapter 3. We have

documented two main results in chapter 3 which are useful for this chapter:

First, model-implied credit spreads are very sensitive with respect to the

asset Sharpe ratio. Second, the relation between the risk-neutral and actual

default probability from the Merton framework is still approximately valid

in more advanced structural models of default. These two observations sug-

gest that it is promising to estimate Sharpe ratios and equity premia from

credit spreads. The first observation is an indication that this procedure

might yield quite robust results with respect to noise in the input param-

eters when applied in practice. The second observation indicates that the

results will also be robust with respect to model changes.

Generally, as discussed in section 2.4, there are four major things that we

have to consider: First, our model should be based on observable parame-

ters. Second, it should be robust with respect to model changes. Third, we

should use individual company data instead of aggregates due to convexity

effects. Fourth, we should use CDS spreads instead of bond spreads due to

the risk-free rate problem and liquidity distortions.

In section 4.2 we will develop a model which relies on observable parame-
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ters and show that is is robust with respect to model changes.1 These results

are mainly based on the findings from chapter 3 although the results from

chapter 3 cannot always be transformed one-to-one to the application in this

chapter. In section 4.3 we will describe the data and discuss implementa-

tion issues. We will use CDS spreads from the U.S., Europe, and Asia on an

individual company level. Section 4.4 discusses the results for the U.S. and

5-year CDS spreads, section 4.2.2 shows the results for further maturities

and other markets. Robustness tests are shown in section 4.6.

4.2. Model setup

Subsection 4.2.1 starts with the classical Merton model. We derive a simple

Merton estimator for the market Sharpe ratio and the equity premium. This

estimator is only based on observable parameters, i.e., the risk-neutral and

actual default probability, the maturity, and equity correlations. Subsection

4.2.2 and appendix C.1 expand this framework to first-passage-time models,

models with endogenous default barrier, and a model with unobservable

asset values based on Duffie/Lando (2001).

4.2.1. Estimating equity premia in the Merton framework

Our model is based on the relationship between actual and risk-neutral

default probabilities in the Merton framework which we derived in section

3.3.2 (cf. formula (3.3)):2

PDQ(t, T ) = Φ

[
Φ−1(PDP (t, T )) +

µ− r
σ
·
√
T − t

]
, (4.1)

Here, PDQ and PDP denote cumulative risk-neutral and actual default

probabilities, µ and σ are the real-world drift and the volatility of the asset

value process, r denotes the risk-free rate, T − t denotes the maturity of the

bond, and Φ denotes the cumulative standard normal distribution function.

1For this chapter cf. also Berg/Kaserer (2008).
2In section 3.3.2 we always worked with t = 0. In this section we will explicitly express

the formulas as functions of t and T to allow for variations in both time and maturity.

90



Chapter 4. Estimating equity premia from CDS spreads

Formula (4.1) can be easily transformed to calculate the Sharpe ratio of the

company’s assets (SRV ):

SRV :=
µ− r
σ

=
Φ−1(PDQ(t, T ))− Φ−1(PDP (t, T ))√

T − t
. (4.2)

Therefore we define our estimator for the asset Sharpe ratio in the Merton

framework as

γ̂SRV,Merton :=
Φ−1(PDQ(t, T ))− Φ−1(PDP (t, T ))√

T − t
. (4.3)

It should be noted, that formula (4.2) is still correct if a non-stochastic, con-

stant payout ratio δ is introduced. Relationship (4.2) is a central formula

in this chapter. It has two main advantages that make it convenient for our

purpose: First, it directly yields the Sharpe ratio of the assets, i.e., neither

µV and σV nor Vt, N , or r have to be estimated separately. In contrast to

other applications of structural models, we do not have to calibrate any

parameter of the asset value process. The company Sharpe ratio can simply

be estimated based on actual and risk-neutral default probabilities and the

maturity. Second, it is robust with respect to model changes. This will be

discussed in the next subsection and in the appendix.

If we try to estimate the market Sharpe ratio, we are faced with an

additional problem: The Sharpe ratio of the assets µV −r
σV

will usually differ

from the market Sharpe ratio, since the assets Vt will not necessarily be on

the efficient frontier. The Sharpe ratio of the assets does not only capture

the risk preference of investors, but also depends on the correlation of the

assets with the market portfolio. The market Sharpe ratio can be calculated

via a straight forward application of the continuous time CAPM:3

µV = r +
µM − r
σM

· ρV,M · σV ⇔ µM − r
σM

=
µV − r
σV

· 1

ρV,M
, (4.4)

where ρV,M denotes the correlation coefficient between the asset returns and

3We assume ρV,M 6= 0.
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the market returns.

Therefore we will need an estimate of the correlation between the asset

value and the market portfolio. This correlation ρV,M can be approximated

by the correlation between the corresponding equity return and the market

return (denotet by ρE,M), i.e. by

ρV,M ≈ ρE,M . (4.5)

The error of this approximation is negligible, since – within the Merton

framework – the equity value of a company equals a deep-in-the-money call

option on the assets. The option is deep-in-the-money, since annual default

probabilities are less than 0.4% for investment grade companies and less

than 10% for all obligors rated B and above. For deep-in-the-money options,

gamma is approx. zero, i.e., we have an almost affine linear relationship

between asset and equity value, cf. Hull (2005) for example. For reasonable

parameter choices, the approximation error is less than 3% (for rating grades

above B) and 1% (for investment grade ratings) respectively (cf. Appendix

C.3 for details). Hence, the following approximation holds:

µM − r
σM

≈ Φ−1(PDQ(t, T ))− Φ−1(PDP (t, T ))√
T − t

· 1

ρE,M
.

Therefore, we define the Merton estimator of the market Sharpe ratio as:

γ̂SRM,Merton :=
Φ−1(PDQ(t, T ))− Φ−1(PDP (t, T ))√

T − t
1

ρE,M
. (4.6)

Including the (expected) volatility of the market portfolio σM yields an

estimator for the equity premium:

γ̂EP,Merton :=
Φ−1(PDQ(t, T ))− Φ−1(PDP (t, T ))√

T − t
σM
ρE,M

. (4.7)
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4.2.2. Estimating equity premia in other frameworks

Of course, our estimator γ̂EP,Merton for the equity premium is formally only

justified in a Merton framework. Moving to more elaborated structural mod-

els of default usually has a significant impact on actual and risk-neutral

default probabilities. E.g., in a first-passage-time framework with zero drift

in the real world, actual default probabilities are twice as high as actual de-

fault probabilities in the Merton framework for the same parameterization

(“reflection principle”).

Fortunately, our estimator does not only include the actual default prob-

ability but the difference between (the inverse of the cumulative normal

distribution function of) the risk-neutral and (the inverse of the cumulative

normal distribution function of) the actual default probability. This differ-

ence can be shown to be very robust with respect to model changes.

We have already given some intuition for this in section 3.1 and for-

mally shown this robustness in section 3.4 for the derivation of risk-neutral

PDs from actual PDs for the Duffie/Lando (2001) model. The results from

section 3.4 are, however, not one-to-one transferable for the application in

this section. In section 3.4, we used a relationship of the form PDQ =

f(PDP , SRV ) whereas in this section we apply a relationship of the form

SRV = f(PDP , PDQ). This may of course also affect the model robustness.

The robustness with respect to model changes for the purpose of this sec-

tion (i.e., formula (4.2)) is analyzed in more detail in appendix C.1 based

on a first-passage-time framework, endogenous default frameworks and the

Duffie/Lando (2001) framework with unobservable asset values. The differ-

ence between the asset/market and the equity/market correlation in these

frameworks – which might affect the approximation (4.5) – is analyzed in

appendix C.3. The findings mainly confirm the robustness results from sec-

tion 3.4 for this application.
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4.3. Data and implementation

In each week our sample consists of the intersection of a) on-the-run compa-

nies in the CDX.NA.IG index4, b) the credit default swap (CDS) database

of CMA (credit markets association), and c) the KMV EDF database. The

Dow Jones CDX.NA.IG-index is the main CDS index in North America.

It covers the 125 most liquid North American investment grade CDS.5 We

used 5-year CDS spreads to derive risk-neutral default probabilities because

the 5-year maturity is the most liquid one. EDFs (expected default proba-

bilities) from Moody’s KMV data base were used as a proxy for the actual

default probabilities and correlations with the S&P500-index as a proxy

for the correlations with the market portfolio. For all parameters, we used

weekly data from the period from April 2003 until June 2007.6

Credit Default Swaps are OTC credit derivatives that have become widely

popular over the last years with growth rates of over 100% (nominal value) in

2005 and 2006 and total outstanding market volume of approx. $26 trillion

at the end of 2006 (ISDA (2006)). Their main mechanism is quite simple:

The protection buyer periodically pays a predefined premium to the pro-

tection seller (usually quarterly). In case of a credit event, the protection

seller has to cover the losses incurred on a predefined reference obligation,

i.e., he has to pay an amount equal to the difference between the nominal

and the current market value of the predefined reference obligation to the

protection buyer. As usual, put into practice, things turn out to be more

complicated: The credit event has to be precisely defined, a basket of ref-

erence obligations has to be specified7 and the term “market value” at the

4Our data sample starts in 04/2003 whereas the first CDX.NA.IG index starts in
10/2003. For the dates before 10/2003 we used the constituents of the CDX.NA.IG 1
index. The results do not materially differ if we start our sample period in 10/2003.

5Although the CDX.NA.IG index is a North American index we will frequently refer to
“U.S.” since the vast majority of constituents is based in the U.S. Only two non-U.S.-
based companies are in our sample (Bombardier and Alcan (both from Canada)).

6EDFs from KMV are only available on a monthly basis. We assumed EDFs to be
constant within each month.

7Defining only a single reference obligation is not possible for practical reasons, which
usually leads to a “cheapest-to-deliver” option for the protection buyer, who can
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time of default has to be clearly specified. As in most academic research

(e.g. Berndt et.al (2005)), we will assume that the extent of these specifica-

tion does not have a significant value and therefore CDS can be prized as

if these implicit options were not part of the game.

The 5-year CDS spreads (bid/ask/mid) used in our analysis were taken

from Datastream. These data is compiled and provided by Credit Market

Analysis (CMA) who collects CDS data from a range of market contribu-

tors from both buy- and sell-side institutions. Only dates with at least one

trade or firm bid for the respective CDS are used to avoid potential errors

from pure market maker data. We used CDS mid spreads for our analy-

sis. Bid/ask-spreads served for consistency checks and sensitivity analysis.

Since data quality is always an issue in over-the-counter markets, we also

used Bloomberg data sources as a quality check. The differences were min-

imal, probably also due to the fact that we have choosen the 125 most

liquid counterparts in the market which should enhance data quality as

well. The risk-neutral default probability PDQ was derived by the approxi-

mation PDQ = 1− exp
(
− s
LGD
· T
)

out of the CDS spread s with maturity

T and the risk-neutral loss given default LGD (cf. Duffie/Singleton (2003)

and the similar discrete time calculations in section 3.3.3). A recovery rate

(1− LGD) of 45% was used and robustness tests were conducted.

As discussed in section 2.3.2.1, there are three main sources for real-world

default probabilities that market participants use: Agencies’ ratings, rat-

ings based on a Merton-type distance-to-default measure and hazard rate

model. We use expected default frequencies (EDFs) from Moody’s KMV

data base as our primary proxy for the actual default probabilities. Robust-

ness tests based on agencies’ ratings and hazard rate models are provided in

the robustness section. EDFs are default probabilities, which are based on a

Merton-style structural framework, cf. Moody’s KMV (2007). The calibra-

tion is, however, done more pragmatically based on a large set of historical

normally choose which reference obligation to sell to the protection seller in case of a
default.
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data and on discriminant analysis. EDFs are widely used in the banking

industry and also constitute a part of some of the internal rating systems

of large banks. They have also been used in academic studies such as in

Berndt et al. (2005). We used 1-year EDFs (and the respective equivalent

rating grades from Aaa to B3) and derived multi-year EDFs by Moody’s

cumulative default probabilities per rating grade.8 The cumulative default

probabilities were determined via a logarithmic approach based on raw data

from Moody’s (2007). The resulting table of cumulative default probabilities

can be found in Appendix A.1.1. The main advantage of EDFs compared

to other ratings for our purpose is its link to market data: The current as-

set volatility and equity value are direct input parameters, therefore EDFs

constitute a “point-in-time” estimation of the current default probability.

In contrast to EDFs, the ratings of the large rating agencies are defined as

“through-the-cycle”-ratings, which – in effect – results in different default

probabilities for a specific rating grade dependent on the current overall

economic outlook, cf. section 2.3.2.1.

We used 3-year weekly9 correlations between the reference entities share

price returns and the S&P-500 index. The share prices were taken from

Datastream. We used median industry correlations since industry wide esti-

mations of correlations have lower standard errors than a company by com-

pany estimation. This procedure also allowed to include companies without

a 3-year equity price history. The industry sector classification was based

on the sub-indices of the CDX.NA.IG index.

Expected volatilities for the market portfolio were approximated by im-

plied volatilities from the VIX term structure. Data was collected directly

8Cf. Appendix A.1.1 for details. Elton et al. (2001) use a similar approach based on
transition matrices. We have opted for a direct cumulative estimation because of
indications that rating migrations are non-Markovian and cannot be explained by
constant transition probabilities (Farnsworth/Li (2007)). The differences are, how-
ever, minimial.

9The calibration of correlations has a minor effect on the overall result, using 2-year or
1-year correlations did not alter results significantly.
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Variable N Mean Median Std. dev. 25th Perc 75th Perc

CDS mid 24,785 54.53 39.80 58.41 25.50 61.00
CDS offer 24,785 56.76 42.00 59.31 27.20 63.50
CDS bid 24,785 52.37 37.70 57.69 23.70 59.00

∆(bid, offer) 24,785 4.40 4.00 3.02 3.00 5.00
EDF1 24,785 0.17% 0.07% 0.50% 0.04% 0.15%
EDF5 24,785 1.90% 1.26% 2.58% 0.85% 2.14%

ρ 24,785 0.52 0.53 0.08 0.46 0.59
Implied vol 24,785 17.14% 16.31% 2.36% 15.43% 18.80%

Table 4.1.:
Descriptive statistics

Descriptive statistics for input parameters. The sample consists of the intersection
of the KMV database, the CDX.NA.IG on-the-run companies and the CMA CDS
database (via datastream) from April 2003 to June 2007. EDF1/EDF5 denote 1-
and 5-year cumulative default probabilities based on KMV EDFs. ρ denotes the
correlation between equity returns and S&P 500 returns. Implied vol denotes the
implied market volatility taken from the VIX term structure published by the
CBOE based on mid option prices for maturities from 18-23 months.

from the CBOE webpage10. We used implied volatilities based on mid op-

tions prices for maturities from 18-23 months which was the longest maturity

bucket that was consistently available.

Our final data set consists of 24,785 date/company-combinations for which

5-year CDS spreads and EDFs were available. Table 4.1 gives an overview

of the main input parameters.11

10Chicago Board Option Exchange, www.cboe.com/publish/vixtermstructure/
vixtermstructure.xls.

11Based on 222 weeks in our sample period and 125 on-the-run constituents in the
CDX.NA.IG index the theoretical maximum is 27,750 date/company-combinations.
Therefore, we have data available for approx. 90% of the theoretical maximum. This is
probably also due to the fact that we used constituents of the most liquid CDS index
and our sample period starts approximately at the same time when index trading –
and therefore also liquidity – took off in the CDS markets.
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4.4. Results for 5-year CDS in the U.S.

Based on the data described in section 4.3 and the Merton estimator for

the equity premium (4.7), the company Sharpe ratio (4.3) and the market

Sharpe ratio (4.6) derived in section 4.2, we estimate the implicit equity

premium and company and market Sharpe ratios for each of the 24,785

observations. Table 4.2 provides the results on a yearly basis in column (3)

to (8).

Our estimation yields an average equity premium of 6.50% for the U.S.

market. The average company Sharpe ratio is 19.33% and the average mar-

ket Sharpe ratio is 38.77%. The median values are even lower with 5.95% for

the equity premium and 18.17% and 35.30% for the company and market

Sharpe ratio. We would already like to mention here that all these values are

upper limits for the equity premium. This is due to some implicit conserva-

tive assumptions, especially concerning the part of the CDS spread which is

due to credit risk (we assume 100%) and the recovery rate (our assumption

of 45% seems to be an upper limit); cf. section 4.6 for details.

Looking at each year of our sample period separately shows a quite ho-

mogenous result: The implicit equity premium estimates range from 5.16%

in 2003 to 7.18% in 2005. The year 2005 also exhibits the largest one-year

increase in the equity premium up 23% from 5.84% in 2004. CDS premia

were still as high in 2005 as in 2004 – especially due to an increase in spreads

in the second quarter around the downgrades of Ford and General Motors

– while EDFs were decreasing (2.37% vs. 1.54%) due to bullish equity mar-

kets and lower volatilities . Correlations were decreasing from 0.55 to 0.50

while implied volatilities decreased from 18.28% to 16.04% resulting in an

almost unchanged term σM
ρE,M

. It seems plausible to assume that these down-

grades have led to an increase in risk aversion among market participants.

We would like to point out that the implied equity premia also increased in

the second quarter of 2007 at the beginning of the subprime crisis. Due to

low CDS spreads in the first quarter of 2007, average estimates for the first
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Chapter 4. Estimating equity premia from CDS spreads

half of 2007 are, however, almost the same than in 2006 (7.08% vs. 7.17%).

We would also like to emphasize the fact that our results stem from very

different conditions on the credit markets. Looking at CDS spreads, they

averaged 75.10 bp in the year 2003. This was accompanied by large EDFs

(3.72%), large correlations (0.57) and a high implied volatility (20.93%). In

the first half of 2007, spreads were less than half the spreads of 2003 (37.10

bp), EDFs were less than a fourth of their 2003 levels (0.82% vs. 3.71%),

correlations were down to 0.50 and implied volatility was also significantly

lower than in 2003 (15.39% vs. 20.93%). The fact that equity premium es-

timates were very similar throughout this time period indicates, that our

estimates are not simply a result of a specific set of parameters but exhibit

a certain robustness to changing market conditions. If at all, there seems

to be a small tendency for equity premia to rise when credit markets are

bullish (e.g. default rates and spreads decrease), although this is not or only

partially true for the 2006 and 2007 period (from 2005 to 2006 Sharpe ratios

increased but the implied equity premium decreased due to lower estimates

for the implied volatility).

To get a first indication why these results are so robust we can decompose

the spread into a part which is due to expected loss and into a risk premium.

In 2007, for example, the average cumulative actual default probability was

82 bp, i.e., the cumulative expected loss was 45 bp (using LGD=55%) and

the per annum expected loss was approx. 9 bp. If we compare this expected

loss to the average spread of 37 bp, we see that approx. 75% (28bp/37bp)

of the spread is due to a risk premium. Doubling the risk premium while

keeping the expected loss constant would require a 75% increase in the CDS

spread. Doubling the risk premium by keeping the CDS spread constant

is only possible with negative – and therefore unreasonable – EDFs. This

intuitively indicates why our results are so robust. Small uncertainty or noise

in the spread or the actual default probability simply does not significantly

effect the results. We will discuss several robustness tests in more detail in

section 4.6.
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Chapter 4. Estimating equity premia from CDS spreads

4.5. Results for further maturities and from

other markets

We have expanded our analysis to maturities of 3, 7, and 10 years and to

European and Asian reference entities, too. Maturities of 3, 5, 7, and 10 year

are the standard maturities for which CDS indices are provided by “markit”.

Using other maturities than 5 year serves several purposes: First, they

offer a robustness check of our results from the previous section. On av-

erage, risk premia estimates based on 3, 7, and 10 year maturities should

not largely deviate from the results of the respective 5-year maturities. Sec-

ond, these results could be used to identify a term structure of risk premia.

We are not aware of any empirical analysis so far which has captured risk

premia term structures. Therefore, comparison to other studies is of course

limited but our results could offer a starting point for the discussion.

An application of the methodology to Europe and Asia also offers several

perspectives. First, the results itself are of course interesting for an esti-

mation of equity premia on these markets. Second, the results offer a good

possibility to validate the robustness of the U.S.-results. If equity markets

are globally integrated, investors should demand a similar risk premium

across different countries/regions. We would therefore expect equity pre-

mium estimates in a similar magnitude as based on U.S. data. Third, U.S.,

Europe, and Asia offer a certain diversity concerning the loss experience

and credit quality over our sample period. While the U.S. market was still

in the aftermath of the Enron and Worldcom defaults at the beginning of

our sample period and suffered the downgrades of Ford and GM in 2005,

Europe did not suffer any comparable big-scale losses and had, on average,

a better credit quality than the U.S. market. The Asian market did not

suffer any unexpected large losses, too, but had on average a significantly

lower credit quality than the U.S. market. These markets therefore offer a

good opportunity to check if our estimator is robust with respect to these

different credit market conditions.
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Chapter 4. Estimating equity premia from CDS spreads

Again, our data sample consists of the intersection of the KMV database,

the main CDS index for the respective markets and the CMA CDS database.

We used the iTraxx Europe index for Europe and the iTraxx Asia ex Japan

index for the Asian market.12 Only on-the-run companies were considered.

The iTraxx Europe IG index consists of 125 investment grade constituents

and is rolled over every 6 months. Index trading started later than in the

U.S. (June 2004 vs. October 2003). The iTraxx Asia index started with 30

constituents in July 2004, it was later enlargerd to 50 constituents (effecive

date 9/20/2005).13 Due to the later start of index trading compared with

the U.S. and data availability our sample period starts at the beginning

of 2004, so our sample includes the time period from January 2004 until

June 2007. Again, we used the first series of the respective index to de-

fine on-the-run companies before the effective date of the first series. CDS

spreads were based on the CMA database. For comparability, we included

only weeks where spreads for all maturities (3, 5, 7 and 10 years) were avail-

able. Actual default probabilities were determined via EDFs from KMV. We

used the same methodology as for the U.S. to transfer 1-year EDFs to cu-

mulative default probabilities.14 The DJStoxx 600 (Europe) and the S&P

Asia 50 (Asia) were used for an estimation of correlations. Median correla-

tions per industry sector were again used for reasons of robustness. Implicit

volatilities were calculated based on the VSTOXX Volatility sub-index 24

months.15 For the Asian market, implicit volatility indices are not available,

12There is also an iTraxx index covering Japan. We have choosen the iTraxx Asia ex
Japan index to cover countries which seem to offer the best independent view com-
pared with the U.S. and Europe. The biggest countries in the iTraxx Asia ex Japan are
Korea, Hong Kong, Singapore, Malaysia, China, and Taiwan. Together these coun-
tries offer a good perspective on a region where experience with corporate finance,
derivative products and governance structures seem to be significantly different from
the U.S. and Europe.

13After our sample period, effective 9/20/2007, it was again enlargerd to 70 constituents.
14Migration probababilities and cumulative loss rates are very similar for the U.S. and

Europe, cf. Moody’s (2008). Historical default data for the Asian market is rare. We
are though not aware of any arguments why migration behavior should be different
in Asia and think that this approach gives estimates which are as close as possible to
what market participants would assume.

15Implied volatiities for longer maturities are not available due to the lack of liquid option
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Chapter 4. Estimating equity premia from CDS spreads

therefore we used rolling 1-year historical volatilities of the S&P 50 Asia

index.

Table 4.3 provides the results for the 3-, 5-, 7- and 10-year maturities

for the U.S., Europe, and Asia from 2004-2007. Please note that the 5-year

results for the U.S. differ slightly from the previous section since only weeks

where spreads for all maturities were available have been included in this

data sample.

For the U.S., results based on 3-, 7-, and 10-year maturities are simi-

lar – but slightly smaller – than for the 5-year maturities. For the 2004-

2007 period the equity premium estimation based on 5-year maturities is

7.00% while the estimates for the 3-, 7- and 10-year maturities were 6.43%,

6.62% and 6.26% respectively. The market Sharpe ratio estimates range

from 39.32% (T=10) to 43.85% (T=5). All maturities show quite similar

results for each year with equity premium estimates ranging from 4.80%

(T=10, 2004) to 7.33% (T=5, 2005). All maturities exhibit an increase in

the implied equity premium from 2004 to 2005 while the effect for other

years is quite small. These results confirm our analysis for the equity pre-

mium from the last section.

For Europe, implied equity premium estimates are lower than for the U.S.

They range from 5.03% (T=3) to 5.44% (T=5). Estimates for the 7-year

maturity (5.24%) and the 10-year maturity (5.06%) yield similar results.

Lower equity premia for Europe compared to the U.S. are consistent with

both historical experience as well as evidence from other implied equity

premium estimates.16 Market Sharpe ratios for Europe are also lower than

for the U.S., ranging from 26.33% (T=3) to 28.39% (T=10) compared to a

range of 39.32% to 43.85% for the U.S. This is also consistent with the the-

markets for longer maturities. Implied volatilities do though have the characteristic
that they are less volatile for longer maturities. If at all, our results would therefore
be even smoother if volatilities for longer maturities were available.

16For example, Claus/Thomas (2001) estimates an equity premium of 3.40% for the U.S.
while estimates for the UK, France and Germany are 2.81%, 2.60% and 2.02%.
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Chapter 4. Estimating equity premia from CDS spreads

oretical argument that – from a global perspective – the U.S. market should

be closer to the global market portfolio and therefore closer to the capital

market line. The difference between estimates for the U.S. and Europe is

especially pronounced in 2004 where implied equity premia estimates for

Europa are as low as 1.87% (T=3). Excluding 2004 from the analysis does,

however, still result in lower estimates for Europe compared to the U.S.

Average equity premia estimates for Asia are between the estimates from

the U.S. and Europe. The lowest average estimates comes from the 10-year

maturity (5.60%) and the highest from the 3-year maturity (6.50%) with

estimates for the 5- and 7-year maturities in between (6.21% and 5.84%).

The market Sharpe ratio estimates range from 35.54% to 41.40%. Again, all

yearly estimates are quite similar with the lowest estimate of 4.98% (T=10,

2005) and the highest estimate of 7.63% (T=3, 2006). Interestingly, the in-

crease in risk premia from 2004 to 2005 which occured both for the U.S.

and for Europe was much less pronounced for Asia. Market Sharpe ratios

in Asia were increasing from 2004 to 2005 – but significantly less than in

the U.S. and Europe – while equity premia estimates were even decreasing

due to decreasing volatilities.

All in all, the results based on 3-, 7- and 10-year maturities as well as the

estimates for Europe and Asia confirm the results of the previous section

and even lead to smaller equity premium estimates. Again, the resulting

implicit equity premia are lower than based on historical estimates.

4.6. Robustness

4.6.1. Sensitivity with respect to noise in input

parameters

In subsection 4.2.2 and appendix C.1 we have shown that the results are

quite robust with respect to model changes. Besides misspecifying the model,

a wrong measurement of the input parameters poses another possible source
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Chapter 4. Estimating equity premia from CDS spreads

of inaccuracy. First, parameters might have been estimated with noise. Our

estimator (4.7) is convex in PDP and ρE,M and concave in the CDS spread

s. Therefore, noise in the measurement of the CDS spread causes our esti-

mator to be downward biased, noise in PDP and ρE,M to be upward biased.

The net effect is likely to be small and lead to an upward bias. Second, we

may have systematically under-/overestimated any of the input parameters.

We therefore tested the sensitivity of our results with respect to all input

parameters. The results for the U.S. are shown in Table 4.4.17 We would

especially like to point out two facts: First, parameter changes of 10% rel-

ative to its original value result in an equity premium of approx. 10%/0.6

percentage points higher/lower for all parameters in our model. Second, the

sensitivity is decreasing with increasing maturity. I.e., if input parameters

have the same noise for all maturities then estimates based on 10-year ma-

turities will be more accurate than estimates based on 3-year maturities. Of

course, these sensitivities must be analyzed in combination with the accu-

racy of the respective input parameters. I.e., a high sensitivity is worse if

the respective input parameter cannot be accurately determined, it is less

harmful if the respective input parameter can be determined with very little

noise. We will perform various robustness tests in the following subsections.

4.6.2. Robustness: CDS spread

General remarks and bid/ask spreads: We have used several measures

to ensure that our CDS data is not significantly biased in any direction.

First, our data source (CMA) is not based on a single market participant

but based on data from several buy and sell side contributors. Second, we

have compared our spreads to data from Bloomberg with no significant dif-

ferences. Third, we have used constituents of the most liquid indices, which

should enhance liquidity and data quality for the respective constituents.

In addition our data sample should be easily comparable and reproducable

and is not biased towards more recent dates.

17Our robustness tests concentrate on the U.S. since the U.S. market provides the widest
choice of studies and historical data for robustness tests. Sensitivities are similar for
Europe and Asia and are available on request.

106



Chapter 4. Estimating equity premia from CDS spreads

T=3 T=5 T=7 T=10
2004-2007 2003-2007 2004-2007 2004-2007

EP new ∆ (rel.) EP new ∆ (rel.) EP new ∆ (rel.) EP new ∆ (rel.)

Base Model 6.43% 6.50% 6.62% 6.26%

s +10% 7.12% 10.62% 7.16% 10.13% 7.20% 8.79% 6.80% 8.70%
s -10% 5.69% -11.59% 5.78% -11.02% 5.99% -9.54% 5.67% -9.42%

RR + 10% 7.05% 9.51% 7.09% 9.07% 7.14% 7.86% 6.74% 7.78%
RR -10% 5.88% -8.67% 5.96% -8.24% 6.15% -7.13% 5.82% -7.05%

EDF +10% 5.82% -9.53% 5.93% -8.82% 6.13% -7.33% 5.81% -7.18%
EDF -10% 7.10% 10.42% 7.12% 9.61% 7.15% 7.97% 6.74% 7.74%

Corr +10% 5.85% -9.09% 5.91% -9.09% 6.02% -9.09% 5.69% -9.09%
Corr -10% 7.15% 11.11% 7.22% 11.11% 7.36% 11.11% 6.95% 11.11%

Vola +10% 7.08% 10.00% 7.15% 10.00% 7.28% 10.00% 6.88% 10.00%
Vola -10% 5.79% -10.00% 5.85% -10.00% 5.96% -10.00% 5.63% -10.00%

Table 4.4.:
Sensitivities of equity premium estimates for the U.S. market

Sensitivities of equity premium estimates for U.S. market. Base model denotes the model with parameter
choice as in section 4.4 and 4.5. T = 3, T = 5, T = 7 and T = 10 denote estimations based on different
CDS maturities. EP new denotes equity premium estimate after change in input parameter as described
in the first column. ∆ (rel.) denotes the change of the equity premium estimate relative to the base model.
s denotes the CDS spread for the respective maturity, RR denotes the recovery rate, EDF denotes the
Expected default frequency based on KMV EDFs, Corr denotes the Asset/Market-Correlation and Vola
denotes the implied market volatility.

Besides specific shortcomings of OTC markets, bid/ask spreads pose a

natural noise in our data. We have used mean CDS spreads in our analysis.

The average bid/ask-spread is only 4 bp in our sample which is probably

also due to the fact that – in each week – we have only used the 125 most

liquid CDS in the market. Using bid or ask quotes changes our average eq-

uity premium by less than 5%/0.3 percentage points.

Portion of CDS spread attributable to credit risk: There is no con-

sensus on the part of the CDS spread which is due to credit risk in the

academic literature. In general, however, CDS are seen to be a rather pure

measure of credit risk, at least in comparison with bond spreads and reason-

able estimates for non-credit-risk components are signficantly below 10% of

the CDS spread, cf. section 2.3.3. We do not aim to quantitatively account

for a possible part of the spread which is not due to credit risk. We do only

want to stress that all these effects will lead to a decrease in the implicit
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equity premium since they result in a lower portion of the CDS spread at-

tributable to credit risk. Therefore the derived equity premium of 6.50%

should be regareded as an upper limit for the equity premium.

4.6.3. Robustness: Recovery rate

Our recovery rate assumption of 45% may lead to biased results due to sev-

eral reasons.

First, our estimator is convex in the recovery rate. If recoveries are not

constant but vary e.g. across industries then our estimator is downward bi-

ased. However, the convexity is not strong and recovery rate variations are

not likely to be very pronounced, cf. section 2.3.2.2. Therefore, this down-

ward bias should be rather small.

Second, the real-world recovery rate may be higher than 45% on average.

Based on the literature presented in section 2.3.2.2 this seems unlikely. In-

deed, we choose a 45% recovery rate because this seemed to be an upper

limit for the average real-world recovery rate. Chava et al. (2006) set up

a model where the expected recovery rate can be explained by the coupon

rate, the 3-month Treasury yield, the issue size, and the seniority. Other

covariates analyzed by Chava et al. do not improve out-of-sample perfor-

mance. Using their regression results for the expected actual recovery rate

indicates again, that our recovery rate of 45% is an upper limit for the

expected recovery rate.18 In addition, our sample consists of CDS with ma-

turities up to 10 years from 2003-2007 which effectively means that recovery

rates from 2003-2017 – e.g. a 15-year-horizon – are relevant for our averages.

On the aggregate level, this should also help to mitigate some of the effects

18Based on Chava et al. (2006), the expected recovery rate for senior unsecured bonds
can be estimated as 0.5183 + 0.0182 · couponrate− 0.0319 · 3−month− Treasury −
yield−0.0332 · log(issuesize), where coupon rate and Treasury yield are measured in
percentage and the issue size is measured in $’000. Even a very conservative calibration
for our purpose of (couponrate = 6, 3−month− Treasury = 1, issuesize = $10m)
results in an expected recovery rate of approx. 45% (i.e. 46%). Certainly, average
coupon rates have been lower than 6%, the average 3-month Treasury yield has been
higher than 1% and the average issue size for our sample has been higher than 10m,
therefore the abovementioned calibration is conservative for our purpose.
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induced by time-varying recovery rates.

Third, a countercyclical time-varying recovery rate results in risk-neutral

recovery rates which are lower than actual recovery rates. Again, our recov-

ery rate of 45% is an upper limit for the recovery rate.

All in all, a recovery rate of 45% used in our calculations seems to be an

upper limit. Lower recovery rates would result in even lower Sharpe ratio

estimates. Therefore our estimations poses an upper limit for the market

Sharpe ratio.

4.6.4. Robustness: Actual default probabilities

First, it is very important to note that our main target is to determine

the PD estimates that are used by market participants. E.g., if there was

a better estimate for the real-world default probability than that used by

market participants, it could be used to exploit arbitrage opportunities but

it could not be used to gauge market participants risk aversion. Market

participants rely almost entirely on three types of PD estimates: agencies’

ratings, distance-to-default-based measures such as KMV EDFs and haz-

ard rate models. So far we have used EDFs as our primary source for the

actual default probability. Here, we will perform robustness tests based on

agencies’ ratings and a hazard rate model.

First, we have used agencies’ ratings with the corresponding cumulative

default probabilities as a robustness check. Unfortunately, these ratings are

through-the-cycle estimates of the default probability. Using agencies’ rat-

ings therefore requires the assumption that we cover a whole economic cy-

cle.19 This assumption is probably most realistic for 5-year CDS – where we

have covered the longest period from 2003-2007 including the high-expected

default year 2003 – and for the longest maturity in our sample (10-year).

We have averaged the ratings of Moody’s, S&P and Fitch in our calculation

19More exactly, it requires the assumption, that investors average expectations over our
sample period correctly mirror an economic cycle.
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and determined multi-period default probabilities based on appendix A.1.1.

Only observations where at least one of the agencies’ ratings was available

could be included which slightly decreased our data sample. Results are

reported in Table 4.5. For the 5-year CDS sample from 2003-2007 we esti-

mate very similar default probabilities (1.77% vs. 1.65%) and equity premia

(6.70% vs. 6.66%). The estimated equity premium based on 10-year CDS

spread are even lower (5.08% (Agencies) vs. 6.35% (EDF)) but this may

be due to a good credit environment from 2004–2007 – an effect which is

certainly even more pronounced for shorter maturities.

Hazard rate models provide another robustness check for both 1-year

and mulit-year default probabilities. There is a large literature on hazard

rate models for the U.S. market, e.g. Shumway (2001) and Chava/Jarrow

(2004). Unfortunately, most of these models only estimate one-year ahead

default probabilities and can therefore only be used as a robustness check

for one-year default probabilities. Löffler/Maurer (2008) estimate a discrete

duration model for conditional default probabilities up to 5 years ahead.

They use accounting covariates (e.g. EBIT, total assets) as well as market

variables (e.g. return, volatility) similar to Shumway (2001) for default pre-

diction. Details about their model can be found in appendix A.2. For the

estimates based on Löffler/Maurer (2008), we excluded financial services

companies – which are excluded in their methodology – and all companies

where Compustat data was not available. The results are reported in Table

4.5. The estimates for the cumulative default probability are slightly higher

resulting in slightly lower equity premia estimates, but both are very simi-

lar to the EDF model. Five (three) year cumulative default probabilities are

1.89% (0.72%) for the Löffler/Maurer model compared to 1.79% (0.59%) for

the EDF model. The resulting equity premia are 6.74% (5-year) and 6.11%

(3-year) compared to 6.96% (5-year) and 6.61% (3-year) for the EDF model.

Of course, accuracies for estimating equity premia in our model should

always be interpreted compared to alternative techniques for estimating eq-

uity premia. An inaccuracy of 10% in the average default probability results
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in an increase/decrease of our equity premium estimate by approx. 10%/0.6

percentage points. This sensitivity is comparable to the sensitivity of the

long-run growth rate in dividend discount models.20 In contrast to long-

run growth rates we do though have (at least) partially objective criteria

for default prediction. The sensitivity is also lower for higher rated oblig-

ors – where realized default rates are usually very noisy – and higher for

lower rated obligors – where defaults can be observed more frequently and

default probabilities are thereofore more stable. In addition – in contrast

to dividend/earnings forecasts – default predictions are not systematically

biased.

4.6.5. Robustness: Asset correlations

We have used median industry equity correlations as a proxy for asset cor-

relations. Theoretical evidence for our framework suggests, that equity cor-

relations are very good proxies for asset correlations (cf. appendix C.3) but

we have also performed robustness checks based on other measures of asset

correlations.

Correlations enter our formula in the denominator (cf. (4.6)). If the esti-

mation of the correlations is unbiased but exhibits noise, our estimator will

therefore be upward biased. If, for example, the “true” correlation would be

0.50 but due to noise we estimate (with equal probability) either 0.4 or 0.6,

then the estimator is unbiased but the inverse of the correlation is upward

biased (2.08 vs. 2.00). Therefore our estimations are upper limits for the

true equity premium.

As a robustness check, we used Basel-II-correlations instead of asset corre-

lations. Asset correlations in the Basel-II-framework have been determined

as a result of intensive debate between regulators, academics and practi-

20Based on a Gordon model the equity premium estimate in a dividend discount model
is EP = g + d − rf where EP is the equity premium estimate, g the growth rate of
dividends, d the dividend yield and rf the risk-free rate. If d ≈ rf then the sensitivity
with respect to g is approx. 1.
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T=3 T=5 T=7 T=10
2004-2007 2003-2007 2004-2007 2004-2007

Parameter EDF New EDF New EDF New EDF New
Model Model Model Model Model Model Model Model

Agencies’ Ratings
N 16,032 16,032 23,100 23,100 16,032 16,032 16,032 16,032

PD 0.58% 0.78% 1.77% 1.65% 2.25% 2.89% 3.74% 4.78%
EP 6.52% 4.29% 6.70% 6.66% 6.71% 5.26% 6.35% 5.08%

Discrete Duration Model
N 10,078 10,078 14,700 14,700

PD 0.59% 0.72% 1.79% 1.89%
EP 6.61% 6.11% 6.96% 6.74%

Table 4.5.:
Equity premium estimates based on different proxies for the real-world

default probability
This table shows equity premium estimates where agencies’ ratings and default proba-
bilities based on a discrete duration model have been used as proxies for the real-world
default probability. Agencies’ ratings are based on average ratings of Moody’s, S&P and
Fitch with corresponding cumulative default probabilities based on appendix A.1.1. The
discrete duration model is based on Löffler/Maurer (2008) and excludes all financial ser-
vices companies and all companies where the respective balance sheet and P&L data
was not available on Compustat. EDF Model denotes the model with EDFs as proxies
for the real-world default probability. New Model denotes the model with either PDs
based on agencies’ ratings or based on Löffler/Maurer (2008). N denotes the number of
observations, PD the average cumulative default probability and EP the equity premium
estimation. Equity premia estimations for the EDF model deviate from the previous
sections due to a different sample size.

tioner, cf. BIS (2005), and are therefore a combined results of many studies

on asset correlations. For large corporates, asset correlations in the Basel-

II-framework are a function of the one-year actual default probability. It

is important to notice that Basel-II uses asset/asset-correlations whereas

we are interested in asset/market-correlations. In a single-factor framework

like Basel-II, asset/market-correlations can be inferred from asset/asset-

correlations by simply taking the square root of the asset/asset-correlations.

Average Basel-II-inferred correlations are 0.48, slightly smaller than the

average median industry correlation of 0.52. Basel-II-correlations are though
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less dispersed. For investment grade ratings, Basel-II asset/asset-correlations

are always between 0.20 and 0.24 (for large corporates) which is equivalent

to asset/market-correlations between 0.45 and 0.49. A lower dispersion leads

to smaller averages since the asset/market-correlation enters our formula in

the denominator, see (4.6). The resulting equity premium estimate is 6.73%

(instead of 6.50%). All in all, the results are very similar to the results based

on equity correlations.
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5. The term structure of risk

premia

5.1. Motivation

Practitioners and academics usually claim that risk premia must have in-

creased significantly during the 2007/2008 financial crisis to justify the re-

turns and valuations seen in the market. This raises a set of questions:

How can this “gut feeling” by market participants be scrutinized in a solid

methodological framework? And: Is the change in risk premia expected to

be a permanent shift or do market participants expect risk premia to re-

vert back to normal levels once the crisis is over? If risk premia are indeed

volatile and mean reverting a risk premium term structure emerges. E.g.,

during times when (marginal) investors demand above average risk premia

– such as gut feeling suggests for the 2007/2008 financial crisis – short du-

ration assets would be expected to have a larger risk premium than longer

duration assets.

This chapter analyzes the risk premium term structure before and during

the 2007/2008 financial crisis and estimates the corresponding parameters

of the instantaneous risk premium process (long-run mean, mean reversion

speed, volatility).1 Throughout this chapter the risk premium is measured

as the market Sharpe ratio, i.e., the excess return of the market portfolio per

unit of standard deviation. Of course, a measure such as the equity premium

could also be used. The equity premium does, however, have the drawback

1For this chapter cf. also Berg (2009b).
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that it combines risk aversion (“Sharpe ratio”) and the quantity of risk

(“volatility”). The target of this chapter is not to state that the quantity of

risk has increased during the 2007/2008 financial crisis. Instead, the focus

is on the excess return per unit of risk measured via the market Sharpe ratio.

A review of the literature on time-varying risk premia was given in sec-

tion 2.2.3.2. In this chapter, we take a new approach and use the estimator

for the market Sharpe ratio derived in section 4.2 to identify time-varying

risk premia. This approach offers two distinctive advantages: First, implicit

risk premia can be used instead of realized returns. Second, in contrast to

equities, credit instruments are available for a variety of distinct maturities.

In particular, for credit default swaps (CDS), standard maturities (usually

3, 5, 7, 10 years) have been established. Therefore, Sharpe ratios can be ex-

tracted from the credit markets for each maturity separately. This in turn

yields a term structure of Sharpe ratios. Based on a time series of Sharpe

ratio term structures the parameters of the instantaneous Sharpe ratio pro-

cess can be estimated with a very high accuracy.2 Indeed, the methodology

proposed in this chapter results in reliable estimations for the parameters

of the Sharpe ratio process with sample periods as small as 12 months.

Section 5.2 presents the theoretical framework. Section 5.3 describes our

data sources. Section 5.4 provides the empirical results for the estimation of

the term structure of Sharpe ratios and the parameters of the instantaneous

Sharpe ratio process. Robustness tests are shown in section 5.5.

2It is well known from the interest rate literature that adding cross sections (i.e. differ-
ent maturities) greatly enhances the estimation accuracy for the underlying process.
Especially in situations where short-term interest rates are far above or below the
long-run mean, adding information from further maturities decreases the resulting
standard errors for the estimation of the long-run mean and mean reversion speed by
a factor of up to 100.
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5.2. Model setup

This section first links asset valuation to debt valuation (subsection 5.2.1)

and then introduces a process for the instantaneous Sharpe ratio (subsection

5.2.2) in order to derive an estimator for the Sharpe ratio term structure

(subsection 5.2.3, based on the results of section 4.2) and for the parameters

of the Sharpe ratio process (subsection 5.2.4, based on a Kalman Filter

approach).

5.2.1. Asset value process and default mechanism

The model setup in this chapter is mainly based on the framework presented

in chapter 4.2. to estimate Sharpe ratios from CDS spreads. However, we

will introduce time variation in Sharpe ratios in this section. Generally, the

following two input factors have to be specified:

• The dynamics of the asset value process (including the dynamics of

the asset Sharpe ratio).

• The default mechanism which – in addition to the asset value process

– determines the default time.

Asset value process: The real-world asset value process Vt is modeled

as a diffusion with a risk-free rate r, a payout ratio δ, a mean-reverting

market Sharpe ratio θVt and an asset volatility σV .

Asset value process : dVt = (θVt · σV + r − δ − σ2
V /2)Vtdt+ σV VtdW

V
t

(5.1)

CAPM condition : θVt = ρθt, with ρ = Corr(rM , rV ) (5.2)

Sharpe ratio process : θt = µθ(θt)dt+ σθ(θt)dW
θ
t . (5.3)

Equation (5.2) assumes that the continuous time CAPM holds, i.e., that the

company Sharpe ratio (θV ) is the product of the asset/market-correlation

(ρ) and the market Sharpe ratio (θ). Here, rM and rV denote the return on

the market portfolio and the asset return. The last equation formulates the
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process for the instantaneous Sharpe ratio. This process will be specified in

more detail in section 5.2.2.

The formulas above can be easily reformulated in terms of the equity

premium πt instead of the market Sharpe ratio θt. The Sharpe ratio was

choosen because it is a purer measure of risk aversion (whereas the equity

premium measures both risk aversion as well as the quantity of risk).

Default mechanism: As in section 4.2, a simple Merton model is as-

sumed, i.e., default can only happen at the end of maturity if the asset value

is lower than the default barrier. Therefore, actual (PDP ) and risk-neutral

(PDQ) default probability can be calculated as

PDP = P [V P
T < L] (5.4)

PDQ = Q[V Q
T < L] (5.5)

The choice of such a specific default mechanism may seem to be a rather

hard restriction. Fortunately, our results are robust with respect to the use

of other models. This issue will be discussed in more detail in subsection

5.2.3.

5.2.2. A process for the instantaneous Sharpe ratio

The instantaneous Sharpe ratio θt is modeled as a mean-reverting Ornstein-

Uhlenbeck process (OUP), i.e.,

Process : dθt = κ(θ̄ − θt)dt+ σdW θ
t (5.6)

Solution : θ(s) = θ(t)e−κ(s−t) + θ̄
(
1− e−κ(s−t))+

∫ s

t

σe−κ(s−ν)dW θ
ν

(5.7)

Average : Θ(t, τ) :=
1

τ
EP

[∫ t+τ

t

θ(s)ds

]
= θ̄ +

1

τ
(θt − θ̄)

1− e−κτ

κ
.(5.8)

Please note that the average Sharpe ratio Θ(t, τ) is defined as a real-world

arithmetic average rather than a risk-neutral average of the respective dis-
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count rates.3 The reason behind that definition will become clearer in the

next subsections.

The choice of a specific process for the instantaneous Sharpe ratio process

is by no means trivial. Several other candidates (e.g. CIR-process) would

certainly also qualify. The OUP was choosen for several reasons: First, it is

able to capture mean reversion and volatility. Second, its parameters can be

easily interpreted (θ̄ : long-run mean, κ: mean reversion speed, σ: volatil-

ity). Third, it is analytically tractable. Fourth, it has also been used by

other authors for a similar purpose (e.g. Huang/Huang (2003) and Camp-

bell/Viceira (1999)).

There are several possible underlying reasons why Sharpe ratios may

be time-varying. One reason may be a time-varying risk aversion of the

marginal investor. But even under the assumption of constant relative risk

aversion, time-varying expected returns may emerge if the volatility of con-

sumption is time-varying. We do not aim to explain the drivers of time-

varying expected returns here, rather we take the indications of several

academic studies (see Fama/French (1988) and Cochrance (1992) for an

overview) as a motivation to analyze whether expected time-varying Sharpe

ratios can be validated based on current asset prices.

5.2.3. Estimating Sharpe ratios from CDS spreads

This subsection derives a formula to estimate both the Sharpe ratio of the

underlying firm’s asset value process and the market Sharpe ratio directly

from CDS spreads and estimates for the real-world default probability. We

have shown in section 4.2, formula (4.2) and (4.4) that the following formula

for the market Sharpe ratio SRM can be derived in a Merton framework

3I.e. EP
[∫ t+τ
t

θ(s)ds
]

instead of the usual “spot-rate” definition lnEQ
[
e−

∫ t+τ
t

θ(s)ds
]
.
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with constant Sharpe ratios:4

SRM =
Φ−1(PDQ(t, τ))− Φ−1(PDP (t, τ))√

τ

1

ρV,M
, (5.9)

where PDQ and PDP denote the cumulative risk-neutral and actual default

probability, T denotes the maturity and and ρV,M denotes the asset/market

correlation.

Although this estimator is derived in a simple Merton framework, we have

shown in section 4.2.2 and appendix C.1 that the estimator is still robust

in first-passage-time frameworks, frameworks with endogenous default bar-

rier and frameworks with unobservable asset values (Duffie/Lando (2001)

model). Huang/Huang (2003) also show that – given a certain actual de-

fault probability – the risk-neutral default probability is almost the same

for the main structural models of default in the literature. They analyze

the Longstaff/Schwartz (1995) model with stochastic interest rates, the Le-

land/Toft (1996) model with endogeneous default, strategic default mod-

els of Anderson/Sundaresan/Tychon (1996) and Mella-Barral/Perraudin

(1997), and a model with mean-reverting leverage ratios. Their analysis

also includes a model with time-varying asset risk premium.

Appendix C.2 explicitly discusses the case of time variation in Sharpe

ratios and shows that the Sharpe ratio estimator above is approximately

true for a model with time-varying Sharpe ratios if the constant Sharpe

ratio SRM is substituted by its real-world arithmetic average Θ(t, τ) as

defined in (5.8):

Θ(t, τ) ≈ Φ−1(PDQ(t, τ)− Φ−1(PDP (t, τ))√
τ

1

ρV,M
(5.10)

The cumulative risk-neutral default probability PDQ can be dervied from

CDS spreads s for a maturity T via the relationship (cf. Duffie/Singleton

4The Sharpe ratio of the underlying firm’s asset value process can be estimated by
omitting the ρV,M -term.
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(2003))

PDQ = 1− e−s/LGD·T , (5.11)

where LGD denotes the loss given default. The respective calibration issues

are discussed in the empirical part.

5.2.4. Estimating the parameters of the instantaneous

Sharpe ratio process

Unfortunately, the Sharpe ratio process θt cannot be observed directly. In-

stead, only the average expected Sharpe ratios Θ(ti, τj) can be measured

via (5.10) and this measurement may be subject to noise. Therefore, the

Kalman filter methodology is needed in order to estimate the parameters

of the Sharpe ratio process. The application of this methodology is similar

– but not equal – to the literature on interest rate processes.5 In our case,

the transition and measurement equations can be derived based on equation

(5.7) and (5.8), i.e.,

θti = Fθti−1
+ C + εti (5.12)

Θ(ti, τ) = Hθti + A+ νti (5.13)

with

F = e−κ∆t

C =
(
1− e−κ∆t

)
· θ̄

εti ∼ N

(
0,
σ2

2κ

(
1− e2κ∆t

))
(H)j =

1

τj

1− e−κ∆t

κ

(A)j =

(
1− 1

τj

1− e−κ∆t

κ

)
· θ̄

νti ∼ N
(
0, R2 · I

)
,

5Cf. Bolder (2001) for a good overview of the Kalman filter approach and interest rate
modeling.
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where I denotes the identity matrix and τ denotes a vector of all available

maturities. R is unknown and estimated within the Kalman filter method-

ology. The corresponding log-likelihood function is given by

l(κ, θ̄, σ, R) = −nNln(2π)

2
− 1

2

N∑
i=1

ln (det(vari)) + errtivar
−1
i erri

erri = Θ(ti)− E
[
Θ(ti)|Fti−1

]
, vari = V ar

[
Θ(ti)|Fti−1

]
. (5.14)

Here, Θ(ti) denotes a row vector where each row represents one maturity.

The conditional expectations and variances are determined based on (5.13).

The parameter estimation proceeds in two steps:

• First, the Sharpe ratios Θ(ti, τj) are estimated based on (5.10) for all

available maturities τj and for all available dates ti.

• Second, the parameters of the Sharpe ratio process are estimated

based on (5.12)-(5.14).

5.3. Data and implementation

The sample consists of weekly observations of 3-, 5-, 7-, and 10-year CDS

spreads from on-the-run companies of the main CDS indices in the U.S. and

Europe from April 2004 until September 2008. The CDX.NA.IG index was

used for the U.S. and the iTraxx Europe index for Europe. Both indices

consist of 125 members and are rolled over every six months (end of March

and end of September). The first series of the iTraxx was launched on Mar,

20th, 2004, the first series of the CDX.NA.IG was launched on Nov, 20th,

2003. In order to obtain the same sample period for both Europe and the

U.S. our sample starts for both regions in April 2004.

For each observation, the average market Sharpe ratio was estimated

based on (5.10). The following input parameters were needed: a) CDS

spreads and b) loss given default (to estimate the risk-neutral default prob-
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ability based on (5.11)), c) real-world cumulative default probabilities, and

d) correlation between asset returns and market returns.

The CDS spreads for 3-, 5-, 7-, and 10-year maturity were taken from

CMA (Credit Markets Association) via Datastream. Mid spreads were used

for the analysis. Together with each CDS spread CMA provides a veracity

score which indicates if the spread is based on an actual trade, a firm bid or

other sources (e.g. indicative bid, bond spread derived). A date/company-

combination was only included in our sample if either trades or firm bids

have been reported for all maturities (3,-5-,7-, 10-year) in that respective

week. The loss given default was set to 60% based on Moody’s (2007) and

robustness tests were performed.

The actual cumulative default probability was determined based on ex-

pected default frequencies (EDFs) from Moody’s KMV. Moody’s KMV pro-

vides EDFs from 1- to 10-year maturities based on the distance-to-default

measure. To calibrate the distance-to-default to default probabilities, KMV

uses its proprietary database of historical default events. Therefore, there is

no problem of any circular arguments, since the level of default probabilities

does not rely on any Sharpe ratio or drift assumptions taken by Moody’s

KMV. Robustness tests based on a hybrid hazard-rate model have been

conducted.

Correlations between asset returns and the market return were proxied

by the median industry correlation between the corresponing equity returns

and the market return (2-year weekly correlations between the performance

index of the respective stocks and the major index in each region).6 The

data was taken from Datastream. Using equity instead of asset correlations

is justified as equity is a deep-in-the-money call on the company’s assets.

Therefore, delta is approximately one and gamma approximately zero and

correlations are (almost) the same. Median industry correlations were used

6The S&P 500 was used as the index for the U.S. and the Stoxx600 as the index for
Europe.
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for robustness reasons.

Finally, the sample period was split into two sub-periods: “Before Crisis”

(April 2004-June 2007) and “During Crisis” (July 2007-September 2008).

Of course there is no single starting date of the 2007/2008 financial crisis,

therefore our division of the sample period is – to a certain extent – ar-

bitrary.7 Already in Feb. 2007, HSBC announced losses of $ 10bn related

to subprime mortgages. In April 2007, New Century Financial, one of the

biggest mortgage lenders in the U.S., declared bankruptcy. The crisis accel-

erated in June and July 2007 when Bear Stearns had to inject $ 3.2 bn to

bail out two of its hedge fonds and when Moody’s and Standard & Poor’s

downgraded more than 250 subprime RMBS. The Dow Jones index peaked

as late as in October 2007. However, our main conclusions do also hold when

choosing Q2 2007 or Q4 2007 as a starting point for the 2007/2008 financial

crisis. It is not the target to show that certain risk premia changes happened

exactly at the beginning of the crisis. Rather it should be demonstrated that

the implied risk premia have gradually changed throughout the turmoil.

All in all, the study uses 20,215 observations for each maturity for the U.S.

(14,416 before the crisis, 5,799 observations during the crisis) and 20,809

observations for each maturity for Europe (15,091 before, 5,718 during the

crisis). The descriptive statistics for the input parameters are shown in table

5.1.

7The following information on the history of the financial crisis was
taken from CNNMoney.com/Special report: Subprime crisis: A timeline
(http://money.cnn.com/2008/09/15/news/economy/subprime timeline/index.htm).
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Table 5.1.:
Descriptive statistics for input parameters

The sample consists of the intersection of the KMV database, the CDX.NA.IG on-the-run
companies (U.S.)/iTraxx on-the-run companies (Europe) and the CMA CDS database
(via Datastream) from April 2004 to September 2008. CDS3/CDS5/CDS7/CDS10
denote 3-/5-/7-/10-year CDS spreads in bp. EDF3/EDF5/EDF/7/EDF10 denote 3-
/5-/7-/10-year cumulative expected default frequencies from Moodys KMV. ρ denotes
the equity/market correlation. Median industry correlations have been used based on
2-year weekly returns. The corresponding market returns are based on the return index
of the S&P 500 (U.S.) and Stoxx600 (Europe). σM denotes the implied market volatility
based on maturities from 18-23 months from the VIX term structure (mid prices) of the
CBOE and the VStoxx sub-index. Averages are calculated as unweighted averages over
all observations.

Before Crisis (04/2004 – 06/2007) During Crisis (07/2006 – 09/2008)

Param. N Mean Median Stddev N Mean Median Stddev

Panel A: U.S.

CDS3 14,416 32.38 20.00 52.08 5,799 126.14 52.70 244.85
CDS5 14,416 53.74 37.70 62.69 5,799 133.84 70.00 204.20
CDS7 14,416 66.86 49.20 66.53 5,799 134.37 77.20 179.73

CDS10 14,416 79.74 60.70 69.61 5,799 136.95 85.40 161.53

EDF3 14,416 0.54% 0.30% 1.23% 5,799 1.11% 0.24% 4.67%
EDF5 14,416 1.21% 0.70% 1.98% 5,799 1.99% 0.60% 6.22%
EDF7 14,416 1.94% 1.18% 2.70% 5,799 2.87% 0.98% 7.48%

EDF10 14,416 3.01% 1.98% 3.75% 5,799 4.12% 1.59% 9.14%

ρ 14,416 0.51 0.52 0.08 5,799 0.52 0.52 0.06
σM 14,416 16.08% 15.92% 1.43% 5,799 23.37% 24.34% 2.36%

Panel B: Europe

CDS3 15,091 20.82 17.30 15.83 5,718 63.94 50.10 51.65
CDS5 15,091 34.28 29.20 23.80 5,718 82.29 64.95 60.85
CDS7 15,091 44.11 39.00 28.06 5,718 89.89 72.20 61.82

CDS10 15,091 54.36 49.30 31.92 5,718 96.33 79.50 61.73

EDF3 15,091 0.57% 0.36% 0.61% 5,718 0.38% 0.21% 0.51%
EDF5 15,091 1.35% 0.90% 1.32% 5,718 0.95% 0.55% 1.06%
EDF7 15,091 2.22% 1.53% 2.04% 5,718 1.60% 0.98% 1.64%

EDF10 15,091 3.50% 2.47% 3.09% 5,718 2.56% 1.59% 2.50%

ρ 15,091 0.57 0.58 0.11 5,718 0.59 0.55 0.10
σM 15,091 19.58% 18.92% 2.09% 5,718 24.36% 24.20% 1.68%
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5.4. Results

5.4.1. Risk premium term structure

The Sharpe ratio estimates based on 3-, 5-, 7-, and 10-year CDS spreads

are presented in figure 5.1 (U.S.) and 5.2 (Europe).8 Both the U.S. and

Europe show a very similar pattern of CDS-implied Sharpe ratios over the

whole sample period. In addition, for both the U.S. as well as Europe CDS-

implied Sharpe ratios before the 2007/2008 financial crisis are very similar

for all maturities. In fact, the implied Sharpe ratio estimates for different

maturities rarely deviate by more than five percentage points before the

2007/2008 financial crisis. The overall level of the Sharpe ratio estimates

is slightly higher for the U.S. (predominantly between 20-50% before the

crisis) than for Europe (predominantly between 10-40% before the crisis) as

also mentioned in Berg/Kaserer (2008). This is consistent with both histor-

ical experience as well as with standard portfolio theory.9

During the financial crisis, beginning in July 2007, the CDS-implied Sharpe

ratios show an interesting patters: For both the U.S. as well as for Europe

implied Sharpe ratios generally increase during the 2007/2008 financial cri-

sis. The increase is, however, much more pronounced for short-term ma-

turities (3-year, 5-year) than for longer maturities (7-year, 10-year). As a

result, the term structure of risk premia changes from a flat term structure

before the 2007/2008 financial crisis to an inverse term structure during the

2007/2008 financial crisis. This term structure of Sharpe ratios is depicted

in figure 5.3. In addition, the behavior of the risk premium term structure

(flat before the crisis and inverse during the crisis) is very persistent as

can be seen from figure 5.1 and 5.2. Indeed, the inverse nature of the risk

premium term structure was prevalent in any week without exception from

mid 2007 until the end of our sample period.

8Median Sharpe ratios for each date are depicted to decrease the influence of outliers.
Mean estimates are, however, very similar but sligtly higher.

9Under the assumption that the U.S. market has a higher correlation with the global
market portfolio than the European market, the European Sharpe ratios are smaller
than U.S. Sharpe ratios based on CAPM considerations.
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Figure 5.1.: CDS-implied Sharpe ratios for the U.S. (index: CDX.NA.IG)
based on 3-/5-/7- and 10-year CDS spreads and EDFs form
04/2004-09/2008. SR Xyr denotes CDS-implied Sharpe ratio
for X years.

The economic interpretation is straightforward: Assume that the risk

aversion of the marginal investors is mean-reverting. Then the instanta-

neous Sharpe ratio will also be mean-reverting. If the instantaneous Sharpe

ratio equals the long-run mean, a flat risk premium term structure will be

observed. In contrast, if the current instantaneous Sharpe ratio is high, the

expected Sharpe ratio will be a decreasing function of the maturity. There-

fore, an inverse risk premium term structure emerges.

5.4.2. Slope of the risk premium term structure

Our methodology also allows for an estimation of the slope of the risk pre-

mium term structure. Similar to the interest rate literature, this slope deter-
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Figure 5.2.: CDS-implied Sharpe ratios for Europe (index: iTraxx Europe)
based on 3-/5-/7- and 10-year CDS spreads and EDFs form
04/2004-09/2008. SR Xyr denotes CDS-implied Sharpe ratio
for X years.

mines the difference between long-run and short run risk premia. Figure 5.4

depicts this slope based on the Sharpe ratio estimates from subsection 5.4.1.

The resulting slope is close to zero before the 2007/2008 financial crisis,

drops significantly at the end of the second quarter of 2007 and stays clearly

negative until the end of our sample period (September 2008). Based on

theoretical arguments, the change in the slope of the risk premium term

structure should be a factor in asset pricing, too. Assume that we start

with a flat risk premium term structure. Since we operate in a stationary

setting, expected risk premia are then equal to today’s risk premia. If the

slope becomes negative (e.g. 3-yr Sharpe ratios are larger than 10-yr Sharpe

ratios) assets with a longer duration10 should perform better than assets

10Duration is defined as in the bond literature, i.e. how long on average an investor has
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Figure 5.3.: Term structure of risk premia before (04/2004-06/2007) and
during (07/2007-09/2008) the 2007/2008 financial crisis for
the U.S. (index: CDX.NA.IG) and Europe (index: iTraxx Eu-
rope). x-axis: maturity, y-axis: CDS-implied market Sharpe ra-
tio based on (5.10).

with a shorter duration (after controlling for other factors such as beta, size

and market/book). On the other hand, if the slope becomes positive then

short duration assets should perform better than long duration assets.11

Factors such as the market-to-book ratio partially capture the duration of

an asset. Therefore, the market-to-book ratio may indeed be justified as

an asset pricing factor by changes in the underlying term structure of risk

premia.12 We think that this may be an area for future research.

to wait before receiving cash payments. The duration of a stock in a Gordon growth
model is the reciprocal of the dividend yield. I.e. a stock with a 4% dividend yield
would have a 25 year duration, a stock with a 2% dividend yield a duration of 50
years.

11Please note that it is not important if the slope incrases or decreases, rather it is
important if it is higher/lower relative to its expected value.

12In this case one should, however, see both positive and negative returns on this factor
depending on the change in the risk premium term structure relative to the expected
values for that respective year.
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Figure 5.4.: Slope of the risk premium term structure measured as 10-year
CDS-implied Sharpe ratio minus 3-year CDS-implied Sharpe
ratio. Picture on left-hand side: U.S., picture on right-hand side:
Europe.

5.4.3. Instantaneous Sharpe ratio process

Based on the estimates of the Sharpe ratio term structure from subsection

5.4.1 the parameters for the instantaneous Sharpe ratio process have been

estimated as described in subsection 5.2.4. The resulting parameter esti-

mates for the long-run mean Sharpe ratio θ̄, the mean reversion speed κ

and the Sharpe ratio volatility σθ are shown for both the U.S. and Europe

in table 5.2. The Kalman methodology has been applied for the total sam-

ple period (April 2004-September 2008) as well as for the “Before Crisis”

(April 2004-June 2007) and “During Crisis” (July 2007-September 2008)

subperiods. In addition, the average of the (filtered) instantaneous Sharpe

ratio (�θt) is depicted in the second column.

Most importantly, table 5.2 reveals that the long-run mean estimate (θ̄)

based on the “During Crisis” subperiod is of a similar magnitude than for

the total sample period (41.5% vs. 43.8% for the U.S., 41.0% vs. 30.1% for

Europe). In addition, the long-run mean estimate for the “During Crisis”

subperiod is also of a similar magnitude than the average instantaneous
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Sharpe ratio (�θt) estimate in the “Before Crisis” subperiod.13

In contrast to the long-run mean estimates, the estimates for the instanta-

neous Sharpe ratio (θt) are an order of magnitude higher for the “During Cri-

sis” subperiod than for the “Before Crisis” subperiod (156.7% vs. 49.5% for

the U.S., 153.5% vs. 32.1% for Europe). In addition, during the 2007/2008

financial crisis, the mean reversion parameter is significantly larger than zero

with a similar mean reversion speed for the U.S. and Europe (0.59 and 0.63).

A special attention should be devoted to the standard errors. All standard

errors are rather small. These small standard errors seem to be especially

surprising for the “During Crisis” period – where parameter estimates are

only based on 64 weekly observation. There are two (interlinked) reasons:

First, this study uses cross-sectional information, e.g. maturities of 3-, 5-,

7- and 10-years. This cross-sectional information is very stable during the

2007/2008 financial crisis: The risk premium curve is inverse for every single

week from mid 2007 on and the slope of the risk premium term structure

is similar during the whole “During Crisis” subperiod. Second, it is a well

known fact from interest rate modeling that, if information for several ma-

turities is available, long-run means and mean reversion parameters can be

estimated with higher accuracy when instantaneous rates are far above or

below their long-run mean parameters. Indeed, if the parameters are esti-

mated only based on one of the maturities, standard errors are more than

10 times higher.14

In particular the fact that the long-run mean is of a similar magnitude

13Please note that the mean reversion parameter estimate (κ) for the “Before Crisis”
subperiod is not significantly above zero for both the U.S. and for Europe. Therefore,
the long-run mean estimate for this subperiod becomes meaningless. In addition, the
process becomes a martingale, i.e., expected conditional values for the instantaneous
Sharpe ratio equal today’s instantaneous Sharpe ratio.

14A potential bias in the estimates and standard errors could arise from the assumption
of uncorrelated error terms. The Kalman procedure was therefore repeated assuming
a homogeneous cross-sectional correlation of the error terms between 0 and 0.9. The
resulting estimates for the long-run mean and the mean reversion speed did not change
by more than 15% relative to the original estimates.
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before and during the crisis seems to be an intuitive, but interesting find-

ing. This finding probably does not come as a surprise to most researchers.

However, this methodology is – to our best knowledge – the first one that is

able to extract these risk premium term structures together with estimates

for the Sharpe ratio process out of current asset prices with a satisfying ac-

curacy. The main advantage of this approach is the feature, that it is able to

estimate a whole term structure of risk premia for each date in our sample.

Adding this cross-sectional information in addition to the pure time series

evolvement of the implied or realized risk premia renders the estimates much

more precise.

5.5. Robustness tests

5.5.1. General remarks on robustness

The question of robustness arises for almost every empirical study. In the

context of the 2007/2008 financial crisis it does, however, gain special im-

portance. Many economic parameters have seen extraordinary levels during

the 2007/2008 financial crisis and may possibly distort our results. This

may include the influence of certain subsamples, subperiods or a bias in the

measurement of any of the input parameters.

Looking at certain subsamples – especially exclusion of financials – or

certain subperiods during the 2007/2008 financial crisis does not change

the main result of a downward sloping risk premium term structure during

the 2007/2008 financial crisis. The sensitivity with respect to the input

parameters is analyzed in the next step. First, a simple target value search

is conducted. This target value search looks at each paramater separately

and determines the value of this parameter as to yield a flat risk premium

term structure during the crisis. Of course, this procedure is not able to

gauge erros in several input parameters at the same time. In addition, it is

not able to explain why any of the input parameters may have been biased
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Chapter 5. The term structure of risk premia

during the crisis. Therefore, in a second step, a different proxy for the most

crucial input parameter – the real-world default probability – is used. In

addition, this study controls for parameters which have seen extraordinary

levels during the 2007/2008 financial crisis via a regression approach. As a

final check, market microstructure effects on CDS liquidity are analyzed.

5.5.2. Target search procedure

The target search proceeds in two steps. First, any of the input param-

eters (e.g., the default probability) is choosen. Second, the value for this

parameter which would yield a flat risk premium term structure for the

“During Crisis” subperiod (i.e. which yields the same 3-year CDS-implied

Sharpe ratio than the 10-year CDS-implied Sharpe ratio) is implicitly de-

termined. This study takes a very conservative position: It is assumed, that

the parameter for the 10-year calculations remain unchanged while only the

input parameters for the 3-year calculations are changed. E.g., the 3-year

PD-estimates are increased until the same Sharpe ratio than with the orig-

inal 10-year PD-estimates is obtained. Of course, if 3-year PD-estimates

are downward biased one would expect the same for 10-year PD estimates.

Therefore, the results provide a lower level of the change that is necessary

to yield a flat term structure.

Table 5.3 depicts the value of our target search for the years 2007 and

2008. In the following, we focus on the values for the year 2008. The result-

ing values for the LGD are larger than 100% and therefore economically

impossible. A correlation of 91% (U.S.) also seems unrealistic, a correlation

of 102% (Europe) is economically impossible. A 60% (U.S.) / 61% (Europe)

lower CDS spread is more than 10 times the bid/ask spread and cannot

be explained by market microstructure issues alone. The 3-year PD has to

increase by at least 182% (U.S.) and 211% (Europe) in 2008 to yield a flat

term structure of risk premia. The resulting PDs are 4.26 % for the U.S. and

1.41% for Europe. Please note that our sample consists only of investment

grade obligors since the CDS indices used include only investment grade
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obligors. The maximum 3-year cumulative PD for investment grade oblig-

ors from 1970-2006 based on Moody’s (2007) was 1.22%.15 The maximum

1-year default probability the investment grade obligors in the U.S. from

1920-2007 was 1.557% (in 1938). It would need three years in a row as bad

as the worst year from 1920-2007 to yield cumulative PDs as high as 4.26

%. If it is assumed in addition that 10-year PDs would increase by the same

absolute amount than the 3-year PDs, the target 3-year PDs increase to

more than 5% for the U.S. and more than 1.7% for Europe. These values

seem to be unreasonable given historical experience.

However, the PD estimate is probably the single most crucial input pa-

rameter of our procedure. Therefore we will perform two other robustness

tests: First, an alternative measures for the PD estimate is applied, then

a robustness test based on a linear regression of CDS spreads on certain

parameters with very high/low levels during the 2007/2008 financial crisis

is performed.

5.5.3. Different PD estimates

PD estimates can be categorized in three approaches:16 Agencies’ ratings

(Moody’s, Fitch, S&P), estimates derived from structural models of de-

fault (such as KMV EDFs) and hazard rate models. Agencies’ ratings are

(partly) expert-based and are “through-the-cycle” ratings, therefore they

are not suited for this study. Hazard rate models similar to Shumway (2001)

are especially popular for internal rating models of major banks. Recently,

Fitch also launched its new equity-implied ratings (EIR). They use a haz-

ard rate approach but also include the distance-to-default-measure as one of

the covariates. In addition, financial ratios, market performance and macro

variables are used for default prediction.17

15Cf. Moody’s (2007), Exhibit 33. The study is a worldwide study but is dominated by
U.S. and European data. The average default rate for Europe is usually lower than
for the U.S., although Moody’s does not provide a disaggregation on this level.

16Cf. also section 2.3.2.1.
17For details see FitchRatings (2007).
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Table 5.3.:
Robustness: Target search procedure

This table shows the parameters that have to be used for the 3-year Sharpe
ratio estimate in order to yield the same Sharpe ratio than for the 10-year
Sharpe ratio estimate. The parameters for the 10-year Sharpe ratio estimate
are left unchanged. Column “Q1/Q2 2007” shows the results for the second half
of 2007, “Q1/Q2/Q3 2008” shows the results for the first three quarters of 2008.
PD denotes the average real-world default probability, LGD denotes the loss
given default, s the average CDS spread and ρ the average asset/market correla-
tion. BaseCase is the average of the respective parameters without adjustments,
%Change is the change in percentage relative to the base case and Target the
value of the respective parameter that is needed for a flat risk premium term
structure. For the sample decomposition please see table 5.1. Averages are calcu-
lated as unweighted averages over all observations.

Panel A: U.S. Panel B: Europe

Parameter Q1/Q2 2007 Q1-Q3 2008 Q1/Q2 2007 Q1-Q3 2008

PD Base Case 0.45% 1.53% 0.26% 0.46%
% Change 76% 182% 75% 211%
Target 0.84% 4.26% 0.46% 1.41%

LGD Base Case 60% 60% 60% 60%
% Change 60% 150% 62% 158%
Target 96% 150% 97% 155%

s Base Case 70.4 160.7 29.4 85.5
% Change -36% -60% -37% -61%
Target 43.4 64.4 18.2 33.2

ρ Base Case 51% 53% 56% 60%
% Change 32% 72% 36% 70%
Target 68% 91% 76% 102%
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The resulting term structure of risk premia using Fitch EIR as a proxy for

the real-world default probability is shown in figure 5.5 together with the

estimates based on Moody’s KMV for the same sample. Financials had to be

excluded as they are not covered by Fitch EIR. In addition, estimates for the

cumulative default probability are only available for up to 5 years maturity.

Therefore the term structure of risk premia was calculated as (5-year CDS-

implied Sharpe ratio) minus (3-year CDS-implied Sharpe ratio). Figure 5.5

shows a very similar pattern for estimates based on either Moody’s KMV

or Fitch EIR. Indeed, the correlation coefficient between the two slopes are

between 0.8 and 0.9. In both cases, the slope of the term structure is positive

directly before the finanical crisis (first half of 2007) and becomes negative

during the financial crisis. Our results are therefore not due to the specific

distance-to-default-based specification of Moody’s KMV but also holds if a

larger amount of covariates is included for default prediction.

Figure 5.5.: Slope of the risk premium term structure measured as 5-year
CDS-implied Sharpe ratio minus 3-year CDS-implied Sharpe
ratio. Picture on left-hand side: U.S., picture on right-hand side:
Europe. Solid line: Estimate based on Moody’s KMV EDFs as
a proxy for the real-world default probability, dotted line: Fitch
EIR as a proxy for the real-world default probability.
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5.5.4. Regression analysis

The following regression controls for the influence of several financial pa-

rameters that have seen extraordinary levels during the 2007/2008 financial

crisis. These parameters may effect any of our input parameters, especially

the estimate for the real-world default probability. We control for the effect

of the following parameters:

• Implied Volatility (IV ): Volatility may not be captured correctly in

the KMV EDF estimates since these are based on historical volatili-

ties. Implied volatility is measured based on short-term at-the-money

option prices from Bloomberg.

• Skewness (SKEW ): KMV uses a volatility-based measure in their

distance to default. A low skewness might therefore underestimate the

default probability.18 Skewness is measured as the 180-days historical

return skewness based on Datastream return data.19

• Information uncertainty (UNCERT ): Based on Duffie/Lando (2001),

higher information uncertainty leads to higher (short-term) default

probabilities. Information uncertainty may have been larger during

the 2007/2008 financial crisis, therefore leading to an underestimation

of the true PDs. Information uncertainty is measured as the coefficient

of variation of the 12-months ahead I/B/E/S earnings forecasts.20

Unfortunately, a direct adjustment of the PD estimates is not possible.

Instead an indirect approch is necessary. In the first step, the impact of

these parameters (together with the EDF) on CDS spreads is measured for

18Cf. Colin-Dufresne et al. (2001) for similar considerations. Colin-Dufresne (2001) use
changes in the slope of the smirk of implied volatilities to control for jump magnitudes.

19We also applied two other measures of skewness: option-implid skewness and skewness
implied from I/B/E/S forecast. The results did not significantly change.

20The coefficient of variation for I/B/E/S forecasts for the next fiscal year end and
the year after the next fiscal year end is interpolated in order to receive a constant
maturity 12-month ahead coefficient of variation.
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each maturity τ via a regression, i.e.21

ln(CDS spreadτ ) = β0 +β1ln(EDFτ ) + β2ln(IV )

+β3SKEW + β4ln(UNCERT ) + ε.

In a second step the CDS-spread for the “During Crisis” subperiod are ad-

justed based on the assumption, that IV , SKEW and UNCERT would

take average values of the “Before Crisis” subperiod. Based on these ad-

justed (lower) CDS spreads, the adjusted 3-, 5-, 7-, and 10-year Sharpe

ratio estimates were determined. It should be noted that this is a very con-

servative robustness test: Some of these parameters may (and are likely

to) be positively correlated with risk aversion. Subtracting the part of the

CDS spread which is due to the high level of these parameters during the

2007/2008 financial crisis then also leads to a substraction of a “risk pre-

mium part” and not only to a substraction of the “PD part”.

Indeed, the results from the regression are as expected: Especially IV

and UNCERT have an economically significant impact on CDS spreads,

cf. table 5.4. In addition, the influence is larger for shorter CDS maturities.

The effects are qualitatively the same for the U.S. and Europe although

they are more pronounced for the U.S. Adjusting the CDS spreads based

on these regression results yields lower Sharpe ratio estimates with a slightly

smaller downward sloping trend. However, the general statement of an in-

verse term structure of risk premia during the 2007/2008 financial crisis

does not change based on the adjusted CDS spreads (cf. figure 5.6).

5.5.5. Liquidity, market microstructure effects

In contrast to bonds, CDS are unfunded exposures without fixed supply and

without large upfront payments. Both theoretical considerations as well as

empirical studies indicate that liquidity has only a minor effect on CDS

spreads (Longstaff et al. (2005), Ericsson et al. (2006) and Bühler/Trapp

21Berndt et al. (2005) use a similar regression of CDS spreads on EDFs. They also show
that a log/log formulation performs better than a linear regression.
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Chapter 5. The term structure of risk premia

Figure 5.6.: Term structure of risk premia before (04/2004-06/2007) and
during (07/2007-09/2008) the 2007/2008 financial crisis for the
U.S. (index: CDX.NA.IG) and Europe (index: iTraxx Europe)
before and after adjustments as described in table 5.4. x-axis:
maturity, y-axis: CDS-implied market Sharpe ratio based on
(5.10).

(2008) and the discussion in section 2.3.3). However, in an OTC market like

the CDS market, market microstructure liquidity effects may drive valua-

tions either below or beyond the “fair” market values due to supply/demand

effects. These effects may be especially preeminant in turmoil periods such

as the 2007/2008 financial crisis.

This study uses two measures to capture the potential effect of market

microstructure liquidity effects: First, the bid/ask spread. Second, the ve-

racity score as provided by CMA. The veracity score is a trade indicator. A

veracity score of “1” denotes that a trade has taken place, a veracity score

of “2” denotes a firm quote, lower veracity scores indicate even lower liq-

uidity, e.g., indicative quotes or bond-derived CDS spreads. Figure 5.7 plots

these measures for all maturities for both the “Before crisis” and “During

crisis” subperiod. As expected, both liquidity measures indicate that the 5-

year maturity is the most liquid one (lowest bid/ask spread, lowest average

veracity score). If market microstructure effects dominate our results, we
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Chapter 5. The term structure of risk premia

would expect U-shaped CDS-implied risk premia which are lowest for the

most liquid – 5-year – maturity. In addition, there are even signs that trades

during turmoil periods tend to concentrate in the most liquid maturity, i.e.,

5-year CDS. Again, this result indicates that market microstructure effects

are not the cause for the downward sloping risk premium curve.

Figure 5.7.: Proxies for CDS liquidity for the U.S. (index: CDX.NA.IG)
and Europe (index: iTraxx Europe) based on 3-/5-/7- and 10-
year CDS spreads from 04/2004-09/2008. Solid lines: “Before
crisis”-period, Dotted lines: “During crisis”-period. Black lines:
Bid/Ask spread, red lines: Trade indicator based on CMA’s ve-
racity score.
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6. Conclusion

6.1. Summary and implications

In this thesis, we postulated the idea that risk premia on different markets

can – and should – be compared. Using structural models of default, we de-

rived formulas to link risk premia on credit markets to the asset and market

Sharpe ratio and to the equity premium.

Chapter 2 provided an overview of the current literature on equity val-

uation and credit pricing. In particular, models to measure risk premia on

both equity and credit markets were discussed and existing studies linking

these risk premia on debt and equity markets were summarized.

Chapter 3 provided the theoretical basis for chapters 4 and 5. We ana-

lyzed a Merton framework and demonstrated that risk premia constitute a

significant part of model-implied credit spreads (> 50% for reasonable pa-

rameter combinations). In addition, risk premia are hardly affected by mov-

ing from a Merton framework to other structural models of default such as

Black/Cox (1976), Leland/Toft (1994/1996), and Duffie/Lando (2001) once

these models are calibrated to a common real-world default probability. Al-

though actual and risk-neutral default probabilities are largely affected by

model changes, the difference between actual and risk-neutral default prob-

abilities is only marginally affected.

These results have several implications: First, simple rules derived in a Mer-

ton framework to transform real-world PDs and recovery rates into credit

spreads are also a very good approximation in more advanced structural
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models of default.1 Second, the high importance of risk premia for credit

pricing reveals a large hurdle for accurately pricing credit instruments, which

requires a good estimation of the current risk aversion/risk premium. In

practice, risk premia are very hard to determine accurately.

The large importance of risk premia combined with the robustness with re-

spect to model changes is, however, also good news: It allows measuring risk

premia from CDS spreads quite accurately. Since risk premia constitute the

largest part of CDS spreads, the theoretical framework suggests that such

an approach should be quite robust for estimating Sharpe ratios and equity

premia.

Chapter 4 applied this idea to estimating equity premia and market

Sharpe ratios from CDS spreads. We have developed implementable for-

mulas to measure the risk attitude of investors based on credit valuations

and transform it to an equity premium via structural models of default.

This estimator only uses actual and risk-neutral default probabilities, the

maturity, equity correlations, and – for the estimation of the equity pre-

mium – implied equity volatility. We neither have to calibrate a structural

model, nor do we have to estimate earnings or dividend growth. In addition,

this approach offers a totally new line of thought for estimating the equity

premium that is not directly linked to current methods.

Compared to traditional DCF models used for estimating the equity pre-

mium, CDS spreads in our model correspond to the market value of equity,

and actual default probabilities correspond to dividend/earnings forecasts

and long-run growth assumptions. While CDS spreads and the market value

of equity can both be determined with little noise, the crucial inputs are

earnings- and long-run growth forecasts in the dividend-/earnings-discount

models and the actual default probability in our model. There are two de-

cisive advantages of estimating default probabilities compared to earnings

forecasts and long-run growth rates: First, they only have to be estimated

1This may be an explanation for the good pricing performance of these models. Unfor-
tunately, these models have not been empirically compared to other structural models
in a larger-scale empirical study, cf. Arora et al. (2005) for a short study. We see this
as an area for future research.
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up to the maturity of the respective CDS. Second, there are (at least par-

tially) objective criteria for estimating default probabilities. For that reason,

different sources for the estimation of real-world default probabilities have

led to quite robust results.

An empirical analysis of 5-year CDS spreads from Q2/2003-Q2/2007 (U.S.)

and Q1/2004-Q2/2007 (Europe and Asia) respectively – i.e., before the

2007/2008 financial crisis – of the constituents of the main CDS indices

in U.S., Europa, and Asia yielded upper limits for the equity premium of

6.50% (U.S.), 5.44% (Europe), and 6.21% (Asia). Various robustness tests

have been performed.

In chapter 5, we analyzed the term structure of CDS-implied risk premia.

In addition, we estimated the parameters of the instantaneous risk premium

process based on a time series of risk premium term structures. We first de-

veloped the necessary methodologies and then applied our estimators to the

constituents of the main CDS indices in the U.S. and Europe both before

and during the 2007/2008 financial crisis.

We showed that the term structure of risk premia was flat before the

2007/2008 financial crisis and inverse during the crisis. These results are

probably not surprising given the sentiment of market participants during

the financial turmoil. However, the approach is to our best knowledge the

first approach which is suited to monitor such a behavior of risk premia for

different time horizons. Indeed, the standard errors of our estimates were

small enough to see a significant difference in risk premium term structures

before and during the 2007/2008 financial crisis.

Certainly, the 2007/2008 financial crisis is an unprecedented event in his-

tory. Therefore, quantitative research in such a period will always have its

limits. It is possible that quantitative measures alone are not able to capture

the dynamics of certain parameters. E.g., market participants may have a

gut feeling about future default probabilities that are neither captured by

agencies’ ratings nor by any quantitative procedure. We analyzed alterna-

tive sources for the main input parameters and tried to control for the

parameters that can most reasonably be linked to the abnormal situation
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during the crisis (implied volatility, skewness, information uncertainty). Of

course, in these turbulent times, room for misinterpretation remains. How-

ever, based on all evidence available, the main statements are quite robust.

It would take extraordinary adjustments for any of the input parameters to

come up with a risk premium term structure which is not inverse during the

2007/2008 financial crisis. Therefore, we are confident that the main results

correctly reflect the situation during the financial turmoil.

Taken together, this thesis advocates the use of credit spreads to estimate

risk premia. This link – which has long been established and applied quali-

tatively – seems to give interesting insights on a quantitative basis as well.

The current risk aversion of investors seems to be better measurable based

on credit markets than on equity markets. In addition, standard structural

models yield almost the same functional relationship for converting risk pre-

mia from debt to equity markets, so model risk is smaller than would be

suggested by traditional approaches of structural models of default.

6.2. Outlook

As discussed, we have proposed a new framework for estimating the equity

premium based on CDS spread observations. Although we have performed

several robustness checks, our approach will have to be challenged in several

ways by future research. These include both model robustness as well as the

empirical implementation.

Empirical implementation: Our approach suffers from three main limita-

tions which might be an interesting area for further research: First, because

of data limitations for the CDS market, we have been able to analyze only

a rather limited period of time and a restricted number of companies. It

will be interesting to see whether the approach remains robust as presumed

if a whole economic cycle as well as a larger cross-section of firms can be

integrated in the analysis. Second, the literature on the estimation of actual

default probabilities is still evolving, especially concerning multi-year de-
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fault prediction. Hence, it has to be seen whether our approach will remain

robust with respect to future calibrations. Third, our approach still suffers

from limitations, that it estimates an upper limit of the equity premium. By

using methods that can split up the CDS spread in a part due to credit risk

and in a part due to other factors (e.g., liquidity, taxes) the equity premium

estimates could be rendered more precise. Besides liquidity impacts – which

are likely to be small for CDS based on existing studies – we see the impact

of a different tax treatment on equity and credit markets as an interesting

area for further research which has so far been mostly ignored in this area

of research.

Models: The literature on structural models is still evolving and new mod-

els are proposed on a frequent basis. We see three main areas for further

research concerning the applications proposed in this literature. First, the

analysis of the effect of time-varying asset Sharpe ratios, default bound-

aries, and recovery values along the model proposed by Chen et al. (2009).

Second, a deeper analysis of the impact of information uncertainty. Third, a

robustness test concerning the distributional assumptions taken in standard

models.

Time-varying Sharpe ratios, default boundaries, and recovery rates: Chen

et al. (2009) have argued that time-varying, countercylical Sharpe ratios,

countercyclical default boundaries, and countercyclical loss given defaults

may increase the difference between actual and risk-neutral default prob-

abilities compared to the Merton framework. They observe that the price

of a defaultable bond zero bond Bd(0, T, 0, LGD) can be determined in a

stochastic discount factor setting as2

Bd = EP

[
1

1 + k
(1− 1{τ<T}LGDτ )

]
=

1

1 + rf
(1− EP

[
1{τ<T}LGDτ

]
)− Cov

(
1

1 + k
, 1{τ<T}LGDτ

)
,

2Cf. formula (2.2), Cochrane (2005), and LeRoy/Werner (2006).
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where rf denotes the risk-free rate, PDP denotes the real-world default

probability, 1/(1 + k) is the stochastic discount factor, Vt the asset value,

and LGDτ the loss given default. This offers two channels that drive the

difference between actual and risk-neutral quantities: First, a positive covari-

ance between the pricing kernel and the default time. In structural models

of default, this can be further broken down into 1a) a negative covariance

between the pricing kernel and asset returns and 1b) a positive covariance

between the pricing kernel and the default boundary. Third, a positive co-

variance between the pricing kernel and the loss given default (LGDτ ).

Our model considers the first channel, i.e., the negative covariance between

asset prices and the pricing kernel. Chen et al. argue that the contribution

of this channel can even be increased by introducing time-varying, counter-

cyclical asset Sharpe ratios. They also conclude that countercyclical default

boundaries might significantly increase credit risk premia. Finally, they note

that the contribution by the third channel – positive covariance between the

pricing kernel and the loss given default – is likely to be very small. Their

analysis for the time-varying Sharpe ratio is based on levels that have been

helpful in explaining the equity premium puzzle, the analysis of the time-

varying default barrier is based on a goal-seek procedure. They do not make

any statements about the empirical validity of the resulting time variation

in either Sharpe ratios or default boundaries. Huang/Huang (2003) docu-

ment that if time variation and countercyclicality in Sharpe ratios is fitted

to historically observed parameters, the difference to a simple model with-

out time variation is again very small, cf. also appendix C.2 for an intuitive

explanation.

Taken together, there is theoretical evidence that countercylical Sharpe ra-

tios and default boundaries might increase the difference between actual and

risk-neutral default probabilities. In this case, our estimates for the equity

premium would be further upward biased. However, there is small empirical

evidence that the time variation in Sharpe ratios and default boundaries

is large enough to lead to a significant deviation from the classical Merton

model. A deeper analysis of these effects might be an interesting area for

further research.
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Information uncertainty: As documented in section 3.4, information uncer-

tainty does not only influence default probabilities itself but also increases

the difference between actual and risk-neutral default probabilities. This

effect is especially pronounced for shorter maturities. However, research on

the magnitude of information uncertainty is rare, cf. Duffie/Lando (2001)

and Andrade et al. (2009), for example, so that an accurate calibration of

this parameter is hardly possible. Further research in this area could be

especially useful to explain differences between actual default probabilities

and credit spreads for very short horizons.

Distributional assumptions: So far, we have focussed on a normal distribu-

tion driving log asset value changes. One could easily rewrite formula (4.2)

to account for other distributional assumptions, i.e.,

SRV :=
µ− r
σ

=
F−1(PDQ(t, T ))− F−1(PDP (t, T ))√

T − t
, (6.1)

where F denotes any distribution function. However, there are some prob-

lems with this approach. First, one might be inclined to replace the normal

distribution by a fat-tailed distribution. However, if the logarithm of the as-

set returns is fat-tailed, neither the first nor the second moment of the asset

value distribution exists.3 Depending on the type of fat-tailed distribution,

the Sharpe ratio of the log asset value process might exist while the Sharpe

ratio of the asset value process itself does not exist.4 This poses further

challenges for the interpretation of historical equity premia and for asset

valuation purposes. Second, if asset value processes are modeled in continu-

ous time, the distributional assumption from a Brownian motion (i.e., nor-

mal distribution) cannot simply be substituted for a fat-tailed distribution,

because this will usually require discontinuous trajectories, cf. Embrechts

et al. (1997). Third, the derivation of formula (4.2) was based on the as-

sumption that volatility in the risk-neutral world equals the volatility in

3Cf. Goldie/Klüppelberg (1998), Bamberg/Dorfleitner (2002), and Bamberg/Neuhierl
(2008).

4Formally, the Sharpe ratios and equity premia we estimated are log Sharpe ratios
and equity premia. For a geometric Brownian motion (dVt = µVtdt + σVtdBt),
E[Vt/Vt−1] = eµ ≈ 1 + µ, so differences are minimal in this case.
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the real-world. Volatility does not generally remain the same for changes of

measure, e.g., in binomial models, risk-neutral and real-world volatilities are

usually not the same.5 Fourth, it can in general not be guaranteed that real-

world and risk-neutral probability distributions belong to the same class F.

Taken together, distributional assumptions deviating from the normal dis-

tribution might seem to be a natural robustness test for credit risk related

topics and therefore an interesting area for further research – although there

are substantial mathematical problems to overcome. However, we do want to

point out that our approach is not subject to the same sensitivities with re-

spect to the distributional assumption as classical applications of structural

models of default. The reason is that we only look at the difference between

actual and risk-neutral default probabilities. This difference is driven by the

(average) slope of the distribution function, cf. figure 3.1 and formula (6.1).

Further applications: In chapter 5 we determined the slope of the risk pre-

mium term structure (defined as 10-year Sharpe ratio minus 3-year Sharpe

ratio). This slope may be useful for several applications. First, practition-

ers might use it as a simple turmoil indicator. E.g., if the slope is a lot

smaller than zero, there are two possible interpretations: Either standard

methodology to estimate default probabilities or correlations does not work

or short-term risk premia are indeed far above long-run levels. Both inter-

pretations are likely to indicate a turmoil situation. This turmoil indicator

may also be useful to assess if and when a turmoil has ended. Second, it can

be used in asset allocation decisions as well as for asset pricing applications

(e.g., company valuation). Finally, there are strong theoretic arguments that

the slope of the risk premium term structure is also a factor in asset pricing.

We see a deeper analysis of the relation of this risk premium term struc-

ture slope with other parameters such as equity returns, interest rates, and

business sentiments as an interesting area for further research.

5However, Gisanov’s theorem tells us that this is true in continuous time, i.e., the
difference between the volatility in the real and risk-neutral world is only a second-
order effect.
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The general comparability idea can also be applied to other areas. So far,

we have used this idea to estimate equity premia from CDS spreads and

analyze the time-series behavior of CDS-implied Sharpe ratios. There are

other open questions in finance which might be analyzed in this context.

Recently, Philippon (2008) published a working paper which relies on esti-

mates from the bond market to implement the q-theory of investment. He

finds that the bond market’s q fits the investment equation six times better

than the usual measure of q derived from equity markets. The idea presented

in this thesis could also be used to analyze the cross-section of returns. E.g.,

CDS-implied equity premia could be analyzed with respect to the relevance

of certain factors proposed in the literature such as the Fama/French (1993,

1996) three-factor model. This might help to gain further insight into the

economic drivers of some of these factors.

Synopsis: Taken together, we hope that we have provided some insight

into the relationship between risk premia on debt and equity markets and

that this work might be used as a basis for further research on this topic.

We think that this area of research can be especially fruitful in times of

turbulence such as the current financial crisis. While many investors may not

like the current situation on the financial markets, it might indeed provide

an excellent research basis for several issues in finance.
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A. Default probabilities

A.1. Historical default probabilities from

Moody’s (2007)

A.1.1. Per rating grade and notch

For the mapping of Moody’s rating grades to default probabilities we smoothed

historically observed default frequencies from Moody’s (2007) via a log-

linear relationship, i.e., we performed the regression

ln(PD) = β1 + β2 ·NRG,

where NRG denotes the numerical rating grade ranging from 1 (Aaa) to 16

(B3) and PD denotes the historical default probabilities per rating grade.1

The resulting cumulative default probabilities are shown in table A.1 (per

rating grade and notch) and table A.2 (per rating grade).

A.1.2. Average default time

We calculated the average conditional default time based on a discrete ap-

proximation of (3.9):

DT =
1

PDP
cum(T )

T∑
t=1

(t− 0.5) ·
[
PDP

cum(t)− PDP
cum(t− 1)

]
(A.1)

1The log-approach is a common approach for the calibration of default probabilities (cf.
for example Bluhm et.al (2003)).
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where PDP
cum(x) was determined based on table A.2. The resulting average

conditional default times are depicted in table A.3.

A.2. Discrete duration model based on

Löffler/Maurer (2008)

The model of Löffler/Maurer (2008) estimates cumulative default probabilities

via a discrete duration model. The hazard function h(t) is defined via

h(t+ k) = P (Yt+k,t+k+1 = 1|Yt+k−1,t+k = 0, Xt) =
1

1 + exp(−αk − βkXt)

where Yt+k,t+k+1 ∈ {0, 1} is the default indicator for the period (t+k, t+k+1] and

Xt denotes the vector of covariates. (αk, βk) is the vector of coefficient estimates,

see table A.4 below. Multi-period default probabilities can be derived via

P (Yt,t+k = 1) = 1−
k−1∏
j=0

(1− h(t+ j)).
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Maturity

RAT 1 2 3 4 5 6 7 8 9 10

Aaa 0.00 0.01 0.02 0.04 0.07 0.09 0.11 0.13 0.14 0.15
Aa1 0.00 0.01 0.03 0.07 0.11 0.14 0.17 0.19 0.20 0.22
Aa2 0.00 0.02 0.05 0.10 0.17 0.22 0.26 0.29 0.31 0.34
Aa3 0.01 0.03 0.08 0.16 0.26 0.33 0.39 0.43 0.47 0.51
A1 0.01 0.05 0.14 0.26 0.39 0.50 0.60 0.66 0.71 0.78
A2 0.02 0.09 0.23 0.40 0.60 0.76 0.90 0.99 1.08 1.17
A3 0.04 0.16 0.37 0.64 0.92 1.16 1.36 1.51 1.63 1.77

Baa1 0.08 0.28 0.61 1.00 1.42 1.76 2.06 2.28 2.47 2.68
Baa2 0.15 0.49 1.00 1.58 2.17 2.67 3.11 3.45 3.75 4.06
Baa3 0.28 0.86 1.64 2.50 3.34 4.06 4.70 5.22 5.68 6.14
Ba1 0.51 1.48 2.69 3.93 5.12 6.17 7.10 7.89 8.61 9.29
Ba2 0.95 2.57 4.41 6.20 7.86 9.38 10.72 11.95 13.04 14.05
Ba3 1.74 4.45 7.23 9.78 12.06 14.24 16.20 18.08 19.76 21.25
B1 3.20 7.72 11.85 15.41 18.51 21.64 24.49 27.35 29.94 32.14
B2 5.90 13.37 19.42 24.30 28.41 32.87 37.01 41.39 45.36 48.62
B3 10.85 23.18 31.82 38.31 43.61 49.94 55.93 62.64 68.72 73.54

Table A.1.:
Historical cumulative default probabilities for Moody’s ratings per rating

grade and notch in percent.
Cumulative default probabilities based on Moody’s (2007) and based on a log-approach
ln(PD) = β1 + β2 ·NRG, where NRG denotes the numerical rating grade ranging from
1 (Aaa) to 16 (B3). RAT denotes rating grade.

Maturity

RAT 1 2 3 4 5 6 7 8 9 10

Aa 0.00 0.02 0.05 0.10 0.17 0.22 0.26 0.29 0.31 0.34
A 0.02 0.09 0.23 0.40 0.60 0.76 0.90 0.99 1.08 1.17

Baa 0.15 0.49 1.00 1.58 2.17 2.67 3.11 3.45 3.75 4.06
Ba 0.95 2.57 4.41 6.20 7.86 9.38 10.72 11.95 13.04 14.05
B 5.90 13.37 19.42 24.30 28.41 32.87 37.01 41.39 45.36 48.62

Table A.2.:
Historical cumulative default probabilities for Moody’s ratings per rating

grade in percent.
Cumulative default probabilities based on Moody’s (2007) and based on a log-approach
ln(PD) = β1 + β2 ·NRG, where NRG denotes the numerical rating grade ranging from
1 (Aaa) to 16 (B3). RAT denotes rating grade. PDs for rating grades Aa, A, ... taken
from respective PDs of Aa2, A2, ...
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Maturity

RAT 1 2 3 4 5 6 7 8 9 10

Aa 0.50 1.29 2.07 2.78 3.44 3.92 4.35 4.64 4.92 5.31
A 0.50 1.24 1.98 2.64 3.25 3.73 4.15 4.47 4.78 5.16

Baa 0.50 1.19 1.86 2.46 3.01 3.48 3.90 4.26 4.60 4.97
Ba 0.50 1.13 1.70 2.22 2.70 3.16 3.58 3.98 4.36 4.73
B 0.50 1.06 1.51 1.91 2.28 2.72 3.14 3.60 4.03 4.40

Table A.3.:
Average conditional default time in years

Average conditional default time based on Moody’s (2007) and formula (A.1) and table
A.2.

Prediction Horizon in Years
1 2 3 4 5

L 4.89*** 2.97*** 2.41*** 1.49** 0.99*
(0.53) (0.41) (0.39) (0.46) (0.48)

EBIT/TA -1.85 0.95 -0.24 1.86 2.23
(1.06) (1.16) (1.29) (1.48) (1.68)

EBIT/XINT -0.3** -0.33*** -0.19** -0.29** -0.31***
(0.1) (0.08) (0.07) (0.09) (0.09)

SIZE -0.18*** -0.2*** -0.19*** -0.22*** -0.21***
(0.05) (0.05) (0.05) (0.05) (0.06)

dTA 1.09** 1.13*** 1.12** 1.17* 1.37**
(0.39) (0.34) (0.4) (0.5) (0.45)

RET -1.67*** -0.65*** -0.29 -0.24 -0.11
(0.31) (0.18) (0.16) (0.19) (0.2)

VOLA 4.7*** 4.39*** 3.42** 0.66 0.33
(1.01) (1.11) (1.07) (1.36) (1.39)

Constant -9.05*** -7.53*** -7.08*** -6.47*** -6.12***
(0.54) (0.49) (0.44) (0.5) (0.53)

Table A.4.:
Coefficients for discrete duration model based on Löffler/Maurer (2008)

This table contains the coefficient estimates from Löffler/Maurer (2008). L: leverage (=
Total debt / (Total debt + Marketcap)), XINT: interest expenses, SIZE: log of the market
cap divided by the S&P-500 market capitalization, dTA: one-year asset growth, RET:
12-month cumulative equity return, VOLA: 12-month monthly equity volatility.
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B.1. Autocorrelation of expected returns vs.

realized returns

This section briefly discusses the pitfalls when using realized returns to make

statements about expected returns. We will demonstrate that if expected ex-

cess returns are positively autocorrelated then realized excess returns may

well be either positively autocorrelated, negatively autocorrelated, or not

exhibit any autocorrelation at all.

To illustrate this point consider a simple model with mean-reverting eq-

uity premium EPt and realized excess returns rt (= returns above the risk-

free rate) which are modeled as the sum of the equity premium and a noise

term:1

EPt = EPt−1 + κ(µ− EPt−1) + εt (B.1)

rt+1 = EPt + ut+1 (B.2)

with ρ(ut, εt) = ρ (B.3)

where κ > 0 is the mean reversion speed for the equity premium, µ is the

long-run mean of the equity premium and u and ε are each serially uncor-

related standard normally distributed error terms with standard deviations

σε and σu. The two error terms are correlated with each other with a corre-

lation of ρ.

1This is similar to Campbell/Viceira (1999).
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In this setting, expected excess returns (=equity premium) have a positive

serial autocorrelation if κ < 1:

ρEPt,EPt−1 =
Cov(EPt, EPt−1)

σEPtσEPt−1

=
Cov(EPt−1 + κ(µ− EPt−1) + εt, EPt−1)

σEPtσEPt−1

= (1− κ). (B.4)

In the last step we have used the fact that the process is stationary, there-

fore unconditional standard deviations of EPt and EPt−1 are equal. The

economic reason for this positive autocorrelation is that today’s equity pre-

mium (EPt) is the sum of yesterday’s equity premium (EPt−1) plus a mean-

reverting part plus an error term. As long as κ < 1 today’s equity premium

will always depend on yesterday’s equity premium in that sense that it will

be also on average high if yesterday’s equity premium was high.

The autocorrelation of realized returns can be calculated as follows:

Cov(rt+1, rt) = Cov(EPt + ut+1, EPt−1 + ut)

= Cov(EPt, EPt−1) + Cov(EPt, ut)

= (1− κ)V ar(EPt) + ρσuσε,

where we have again used the fact that the process EPt is stationary and

therefore unconditional variances of EPt and EPt−1 are equal. If we insert

the equation V ar(EPt) = V ar(EPt−1) into

V ar(EPt) = (1− κ)2V ar(EPt−1) + V ar(εt+1)

we can calculate the variance of EPt explicitly as

V ar(EPt) =
V ar(ε)

κ(2− κ)
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and therefore

Cov(rt+1, rt) = (1− κ) · V ar(ε)
κ(2− κ)

+ ρσuσε. (B.5)

Since

V ar(rt) = V ar(EPt) + V ar(ut) =
V ar(ε)

κ(2− κ)
+ V ar(ut) (B.6)

it follows that the autocorrelation of realized returns is

ρrt,rt−1 = (1− κ) ·
V ar(ε)
κ(2−κ)

V ar(ε)
κ(2−κ)

+ V ar(ut)
+

ρσuσε
V ar(ε)
κ(2−κ)

+ V ar(ut)
(B.7)

= (1− κ)
1

1 + κ(2− κ)V ar(u)
V ar(ε)︸ ︷︷ ︸

Part 1

+ ρ
κ(2− κ)σu

σε

1 + κ(2− κ)V ar(u)
V ar(ε)︸ ︷︷ ︸

Part 2

(B.8)

• Part 1 is the part which is caused by the positive autocorrelation in

the expected returns. If κ = 1 then the autocorrelation of expected

returns is zero, therefore this part is also zero. In addition, it is a scaled

version of (B.4): If the residual volatility σu of the realized returns

is very large compared to the residual volatility σε of the expected

returns, part 1 will be small.

• Part 2 is the part which is caused by the negative correlation between

the two error terms. If ρ is negative then positive returns (induced by

the noise) result on average in a decrease of the equity premium. Or

– interpreted the other way round – a decrease in the equity premium

results in a decrease in the discount factor and therefore in an increase

in prices and positive realized returns. I.e., equity premia are on av-

erage lower after a bull market (such as the end of 2006) and higher

after a bear market (such as the beginning of 2009).

Taken together, if ρ is negative and small enough and σu is a lot larger than

σε then this will result in a negative autocorrelation for realized returns

while expected returns are positively autocorrelated.
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B.2. Proof of proposition 3.3.1

For ease of notation we will use the notation P for PDP and Q for PDQ.

From (3.3), the first three derivatives of PDQ with respect to PDP are:

Q′(P ) = e−0.5(SR2·T+2·SR
√
TΦ−1(PDP ) > 0 (B.9)

Q′′(P ) = −Q′(P ) · SRV

√
T
√

2πe0.5(Φ−1(PDP ))2 < 0 (B.10)

Q′′′(P ) = −SR
√

2π
√
T
[
Q′′(P )e0.5(Φ−1(P ))

2

+Q′(P )e(Φ−1(P ))
2√

2πΦ−1(P )
]

> 0 for P < 50% (B.11)

• (3.3.1.1.) follows directly from (B.9), (B.10) and (3.3)

• (3.3.1.2.) follows from (3.3.1.1.) and (SR2 ·T+2SR
√
TΦ−1(P ) < 0)⇔

P < Φ[−0.5 · SR
√
T ]

• (3.3.1.3.): RelCRP (1) = 1 follows directly from (3.3).

lim
PDP→0

RelCRP (PDP ) =∞ follows from an application of the rule of

de l’Hospital and (B.9).

To see that f(P ) := RelCRP (P ) is decreasing, please note that the

first derivative is f ′(P ) = Q′(P )·P−Q(P )
P 2 . Based on a Taylor expansion of

Q(P ) in P = 0 at P it follows that Q(0) = Q(P )−P ·Q′(P )+0.5 ·
P∫
0

p̃ ·

Q′′(p̃)dp̃.2 It follows from (3.3) that Q(0) = 0 and from (B.10) that

Q′′(P ) < 0. Therefore f ′(P ) < 0 and the relative credit risk premium

is decreasing in P .

To see that f(P ) := RelCRP (P ) is concave, we first determine the

second derivative of f with respect to P : f ′′(P ) = 0.5·P 2·Q′′(P )−P ·Q′(P )+Q(P )
0.5·P 3 .

Again, a Tylor expansion leads to Q(0) = Q(P ) − P · Q′(P ) + 0.5 ·

P 2 ·Q′′(P )− 0.5 ·
P∫
0

p̃2 ·Q′′′(p̃)dp̃. Based on Q(0) = 0 and Q′′′(P ) > 0

for P < 50% (from (B.11)), it follows that f ′′(P ) > 0, i.e. the relative

credit risk premium is a convex function in P .

2A Taylor expansion would require Q(P ) to be differentiable in P = 0 which is not the
case here. We can, however, repeat the same argument by choosing ε > 0. Letting
ε→ 0 and using continuity of Q and Q′′ for P ∈ (0, ε) yields the result.
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C. Robustness of equity premium

estimator for other

frameworks

This chapter provides the results for the robustness of the equity pre-

mium estimator (4.7) derived in section 4.2 for other frameworks. Sec-

tion C.1 discusses the robustness of the asset Sharpe ratio estimator for

the Duffie/Lando (2001) model with unobservable asset value including the

Black/Cox (1976) model and the Leland/Toft (1996) model as special cases.

Section C.2 gives a rough approximation for a model with time-varying risk

premia. Section C.3 discusses the robustness of asset/equity correlations

which are needed to derive the market Sharpe ratio and the equity pre-

mium from the asset Sharpe ratio.

C.1. Framework with unobservable asset values

In this section we will show that the Merton estimator for the asset Sharpe

ratio is robust with respect to model changes. We will analyze a frame-

work with unobservable asset values based on Duffie/Lando (2001) and –

implicitly – all endogenous default frameworks that yield a constant default

barrier and assume a geometric Brownian motion for the asset value process

(e.g. Leland (1994), Leland/Toft (1996)).

We will show the robustness of our asset Sharpe ratio estimator (4.3)

derived in section 4.2 based on the implementation described in section

3.4.2. There, we determined the risk-neutral probability in the Duffie/Lando

framework for 50,400 parameter combinations and defined an error term (cf.
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(3.8)) as

Err :=
PDQ

D/L

PDQ
Merton

.

In this section, we will also look at the difference between the Duffie/Lando

framework and the Merton framework but instead of differences between

risk-neutral PDs we are interested in differences between the Sharpe ratio

estimator γ̂SRV ,Merton (cf. section 4.2, formula (4.3)) when applied to either

the D/L risk-neutral PDs or the Merton risk-neutral PDs. This estimator

applied to the D/L PDs is formally defined as

γ̂SRV ,Merton(PDQ
D/L) :=

Φ−1(PDQ
DL(t, T ))− Φ−1(PDP (t, T ))√

T − t
, (C.1)

where PDQ
DL denotes the risk-neutral PD derived in the Duffie/Lando frame-

work (cf. step 3 in section 3.4.2) and PDP is the cumulative actual default

probability for the rating and maturity for the corresponding parameter

combination. We will further define an adjustment factor AF via

AF :=
γ̂SRV ,Merton(PDQ

D/L)

γ̂SRV ,Merton(PDQ
Merton)

=
γ̂SRV ,Merton(PDQ

D/L)

SRV

. (C.2)

The last equation is valid because in the Merton framework the Sharpe ratio

estimator exactly yields the asset Sharpe ratio SRV , cf. section 4.2, formula

(4.2). Therefore if the Duffie/Lando framework is the true framework then

the Sharpe ratio can be estimated as

SRV =
γ̂SRV ,Merton(PDQ

D/L)

AF
.

We will now briefly give some insight into the different behavior of Err

and AF . We will demonstrate that the slope of the cumulative distribution

function between PDQ
Merton and PDQ

D/L is decisive for determining Err from

AF and vice versa. To see that, please note that

PDQ
D/L

(C.1)
= Φ

[
Φ−1(PDP ) + γ̂SRV ,Merton(PDQ

D/L)
√
T − t

]
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C.2
= Φ

[
Φ−1(PDP ) + SRV ·

√
T − t · AF

]
= Φ

[
Φ−1(PDP ) + SRV ·

√
T − t+ SRV ·

√
T − t · (AF − 1)

]
(3.3), linear approx.

≈ PDQ
Merton +m(Φ−1(PDQ

Merton)) · SRV ·
√
T − t · (AF − 1),

where m(Φ−1(PDQ
Merton)) denotes the slope of the cumulative normal dis-

tribution at x = Φ−1(PDQ
Merton).1 Therefore,

AF ≈ 1 +
1

SRV

√
T − t

PDQ
D/L − PD

Q
Merton

m(Φ−1(PDQ
Merton))

⇔ AF − 1 ≈ (Err − 1) · 1

SRV

√
T − t

· PDQ
Merton

m(Φ−1(PDQ
Merton))

,

i.e., the adjustment factor exceeds one by the amount that Err exceeds

one multiplied with a factor that depends on the asset Sharpe ratio, the

maturity, and the risk-neutral Merton PD. The last term
PDQMerton

m(Φ−1(PDQMerton))

can be explicitly evaluated.2 This term is increasing with increasing risk-

neutral Merton PD and is smaller than one for reasonable risk-neutral PDs.3

Taken together

• The adjustment factor is close to one if SRV is large or
√
T − t is

large.

• The adjustment factor is close to one if Err is close to one. We

know from section 3.4 that this is on average the case for larger real-

world PDs (longer maturities and lower ratings). In addition, we have

demonstrated in section 3.4 that Err is larger for larger asset Sharpe

ratios SRV .

• The adjustment factor is close to one if
PDQMerton

m(Φ−1(PDQMerton))
is small. This

term is the smaller the smaller the risk-neutral Merton PD.

1Another choice for the slope would be the slope at Φ−1PDP
Merton or any other point

between these two values.
2This term is equal to PDQMerton

1/
√

2πe−0.5(Φ−1(PDQ
Merton

))2
.

3It is smaller than one for all risk-neutral PDs smaller than 38.14%.
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The net effect of these three items is not directly clear and we will have to

draw back on our numerical results for an evaluation.

The results are reported in table C.1 (for a Sharpe ratio of 20%) and

C.2 (for all Sharpe ratios between 10% and 40%) based on three scenar-

ios as defined in section 3.4. Scenario 1 restricts the asset volatility to be

larger or equal to 10%. Asset volatilities below 10% are usually only ob-

served for financial services companies. Scenario 2 sets the risk-neutral drift

of the asset value relative to the default barrier to zero. This captures the

assumption of constant expected leverage. Scenario 3 captures all parame-

ter combinations where the average default time is within +/- 20% of the

historical averages for that respective rating grade based on appendix A.1.2.

In the following interpretation we will focus on table C.2.4 If one does

not restrict the parameter combination to one of these three scenarios, very

large variations of the adjustment factor may occur. E.g., for a 5-year ma-

turity, Baa-rating adjustment factors vary between 0.37 and 1.25. However,

once any additional restrictions on either the volatility, the risk-neutral drift,

or the default timing are applied, adjustment factors are close to one for

all maturities between 3 and 10 years. E.g., for maturities between 3 and

10 years (these are the CDS maturities used in chapter 4 and 5) and for

reasonable default timing, the adjustment factors for the Baa-rating are al-

ways between 0.76 and 1.36. Adjustment factors on average decrease with

increasing maturity and are on average slightly above one for shorter ma-

turities and slightly below one for longer maturities. Consequently, if the

Duffie/Lando framework is the true framework, then our estimates for larger

maturities will be slightly too low and our estimates for shorter maturities

will be slightly too high. This may be one explanation why our results from

chapter 4 usually show slightly lower 10-year CDS-implied equity premia

than 3-year CDS-implied equity premia.

Finally, for 1-year maturities – which were not used in our empirical applica-

tions – adjustment factors can be very large (almost 2 even with restrictions

4Table C.1 is shown to allow for a direct comparison with table 3.3.
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Table C.1.:

Total σ ≥ 10% m = 0% DT reasonable
Maturity Rating Min Max Min Max Min Max Min Max

1 Aa 0.93 1.96 0.98 1.78 0.98 1.93 1.22 1.86
A 0.90 1.96 0.97 1.77 0.98 1.91 1.25 1.83
Baa 0.87 1.94 0.96 1.75 0.97 1.87 1.22 1.87
Ba 0.81 1.90 0.94 1.70 0.96 1.77 0.81 1.84
B 0.70 1.77 0.90 1.54 0.94 1.49 0.83 1.77
All 0.70 1.96 0.90 1.78 0.94 1.93 0.81 1.87

3 Aa 0.67 1.39 0.95 1.30 0.97 1.36 0.87 1.37
A 0.62 1.39 0.93 1.30 0.97 1.35 0.83 1.37
Baa 0.55 1.39 0.91 1.29 0.96 1.33 0.82 1.36
Ba 0.47 1.38 0.86 1.27 0.94 1.27 0.81 1.35
B 0.37 1.35 0.76 1.18 0.89 1.08 0.81 1.27
All 0.37 1.39 0.76 1.30 0.89 1.36 0.81 1.37

5 Aa 0.49 1.25 0.91 1.18 0.97 1.21 0.87 1.21
A 0.45 1.25 0.89 1.18 0.96 1.20 0.83 1.20
Baa 0.40 1.24 0.85 1.17 0.95 1.18 0.84 1.18
Ba 0.34 1.24 0.78 1.15 0.92 1.12 0.84 1.15
B 0.26 1.23 0.65 1.08 0.86 0.97 0.79 1.12
All 0.26 1.25 0.65 1.18 0.86 1.21 0.79 1.21

7 Aa 0.41 1.18 0.88 1.13 0.96 1.14 0.81 1.14
A 0.37 1.18 0.84 1.12 0.95 1.13 0.83 1.13
Baa 0.33 1.18 0.79 1.11 0.94 1.11 0.85 1.11
Ba 0.27 1.18 0.70 1.10 0.90 1.05 0.80 1.05
B 0.21 1.17 0.56 1.03 0.82 0.92 0.82 1.07
All 0.21 1.18 0.56 1.13 0.82 1.14 0.80 1.14

10 Aa 0.33 1.13 0.83 1.09 0.96 1.09 0.81 1.01
A 0.30 1.13 0.78 1.08 0.95 1.07 0.76 0.98
Baa 0.26 1.13 0.71 1.07 0.93 1.05 0.80 1.05
Ba 0.22 1.12 0.61 1.06 0.88 0.99 0.81 0.99
B 0.16 1.12 0.45 0.99 0.77 0.87 0.84 1.02
All 0.16 1.13 0.45 1.09 0.77 1.09 0.76 1.05

Adjustment factors in the Duffie/Lando framework, SR=20%.
Minimum and maximum adjustment factors in the D/L framework. Asset Sharpe ratio is
20%. For actual PDs for each rating grade and maturity cf. appendix A.1.1, for parameter
combinations cf. subsection 3.4.2. Total contains all parameter combinations as described
in subsection 3.4.2. σ ≥ 10% restricts the asset volatility to values larger or equal to 10%
(“non-financials”), m = 0% restricts the risk-neutral asset value drift relative to the
default barrier to 0% (“constant leverage”), DT reasonable restricts the average default
time to values +/-20% compared to values based on Moody’s (2007), cf. appendix A.1.2.
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Table C.2.:

Total σ ≥ 10% m = 0% DT reasonable
Maturity Rating Min Max Min Max Min AF Max AF Min Max

1 Aa 0.92 1.96 0.97 1.78 0.98 1.94 1.22 1.87
A 0.89 1.96 0.97 1.77 0.98 1.92 1.20 1.90
Baa 0.85 1.95 0.95 1.76 0.97 1.89 0.85 1.89
Ba 0.78 1.91 0.93 1.71 0.96 1.80 0.78 1.84
B 0.67 1.80 0.89 1.58 0.93 1.55 0.81 1.80
All 0.67 1.96 0.89 1.78 0.93 1.94 0.78 1.90

3 Aa 0.63 1.39 0.93 1.30 0.97 1.37 0.86 1.37
A 0.58 1.39 0.91 1.30 0.96 1.36 0.83 1.37
Baa 0.51 1.39 0.88 1.29 0.95 1.34 0.82 1.36
Ba 0.44 1.39 0.82 1.28 0.92 1.29 0.81 1.35
B 0.35 1.36 0.71 1.21 0.86 1.13 0.81 1.33
All 0.35 1.39 0.71 1.30 0.86 1.37 0.81 1.37

5 Aa 0.46 1.25 0.88 1.18 0.96 1.22 0.84 1.23
A 0.42 1.25 0.84 1.18 0.94 1.21 0.83 1.22
Baa 0.37 1.25 0.79 1.17 0.92 1.20 0.81 1.21
Ba 0.32 1.24 0.71 1.16 0.88 1.15 0.80 1.20
B 0.25 1.24 0.58 1.11 0.80 1.02 0.79 1.15
All 0.25 1.25 0.58 1.18 0.80 1.22 0.79 1.23

7 Aa 0.38 1.18 0.82 1.13 0.95 1.15 0.81 1.14
A 0.34 1.18 0.77 1.13 0.93 1.14 0.80 1.14
Baa 0.30 1.18 0.71 1.12 0.90 1.13 0.81 1.13
Ba 0.26 1.18 0.62 1.11 0.85 1.08 0.80 1.11
B 0.19 1.17 0.49 1.07 0.74 0.96 0.81 1.10
All 0.19 1.18 0.49 1.13 0.74 1.15 0.80 1.14

10 Aa 0.31 1.13 0.75 1.09 0.93 1.10 0.77 1.05
A 0.28 1.13 0.69 1.09 0.91 1.09 0.76 1.05
Baa 0.25 1.13 0.62 1.08 0.88 1.07 0.76 1.05
Ba 0.20 1.13 0.53 1.07 0.81 1.03 0.79 1.05
B 0.15 1.12 0.39 1.02 0.67 0.91 0.82 1.05
All 0.15 1.13 0.39 1.09 0.67 1.10 0.76 1.05

Adjustment factors in the Duffie/Lando framework, all asset Sharpe ratios.
Minimum and maximum adjustment factors in the D/L framework. For actual PDs for
each rating grade and maturity cf. appendix A.1.1, for parameter combinations cf. sub-
section 3.4.2. This table includes all asset Sharpe ratios between 10% and 40%. Total
contains all parameter combinations as described in subsection 3.4.2. σ ≥ 10% restricts
the asset volatility to values larger or equal to 10% (“non-financials”), m = 0% restricts
the risk-neutral asset value drift relative to the default barrier to 0% (“constant lever-
age”), DT reasonable restricts the average default time to values +/-20% compared to
values based on Moody’s (2007), cf. appendix A.1.2.
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on volatility, risk-neutral drift or default timing). This can be explained by

the asset value uncertainty effect (cf. section 3.4.3.3). The asset value un-

certainty therefore does not only seem to be an interesting feature for in-

creasing default probabilities but also for increasing the difference between

actual and risk-neutral default probabilities for very short maturities. For

these short maturities, our Sharpe ratio estimator will usually be upward

biased if the Duffie/Lando framework is the true framework.

C.2. Approximation for time-varying risk premia

If Sharpe ratios are time-varying then the derivation of the Merton frame-

work does not hold anymore, even if we keep the assumptions concerning

default timing and complete information. However, it can be shown that

the formula from the Merton framework still approximates the average ex-

pected Sharpe ratio if Sharpe ratios follow an Ornstein-Uhlenbeck process.

For ease of notation σV = σ, ρV,M = ρ and W V
t = Wt is used. The real-world

default probability can be derived as

P [Vt+τ < L] = P
[
Vt · e

∫ t+τ
t σρθsds+r− 1

2
σ2+σWτ < L

]
= P

[
σWτ + ρσ

∫ t+τ

t

θsds < ln

(
L

Vt

)
− (r − 0.5σ2)τ

]

≈ Φ

 ln
(
L
Vt

)
− σρEP

[∫ t+τ
t

θsds
]
− (r − 0.5σ2)τ

σ
√
τ


In the last row, the approximation

V ar

(
σWτ + ρσ

∫ t+τ

t

θsds

)
= V ar(σWτ ) + ρ2σ2V ar

(∫ t+τ

t

θsds

)
+ 2Cov

(
σWτ ,

∫ t+τ

t

θsds

)
≈ V ar(σWτ ) (C.3)
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was used to substitute the integral by its expected value EP
[∫ t+τ

t
θsds

]
.

The approximation is justified since θs is mean-reverting the volatility of

ρσ
∫ t+τ
t

θsds is a lot smaller than the volatility of σWτ . In addition, the co-

variance term will usually be negative if it is assumed that negative equity

returns go hand in hand with an increase in risk aversion.

Accordingly, the risk-neutral default probability can be calculated as

Q[Vt+τ < L] = Φ

[
ln( L

Vt
)− (r − 0.5σ2)τ

σ
√
τ

]

so that

Φ−1(PDQ(t, τ)− Φ−1(PDP (t, τ))√
τ

1

ρ
≈

σρEP
[∫ t+τ

t
θsds

]
τσρ

= Θ(t, τ).

C.3. Asset/market vs. equity/market correlation

In this appendix, we will show that the correlation between asset returns

and market returns in the Merton framework as well as in the Duffie/Lando

framework is approximately equal to the correlation between equity returns

and market returns. Since covariance matrices are always positiv semidefinit,

it is sufficient to show that the correlation between asset returns and equity

returns is approximately one.5 The economic reason for a correlation of one

between asset and equity values is quite simple: As equity is modeled in

both frameworks as a deep-in-the-the-money6 call option on the companies

5Since the covariance matrix is positv semidefinit, it has a non-negative determinant.
The determinant of the covariance matrix equals σ2

1σ
2
2σ

2
3 · (1 + 2ρ1,2ρ1,3ρ2,3 − ρ2

1,2 −
ρ2
1,3 − ρ2

2,3). If ρ1,2 = 1, it follows that 2ρ1,3ρ2,3 − ρ2
1,3 − ρ2

2,3 = −(ρ1,3 − ρ2,3)2 ≥ 0
and therefore ρ1,3 = ρ2,3. We have also directly simulated the difference between
the correlation between equity and market values and asset and market values. The
results confirm the analysis in this appendix.

6Of course, this option is not by definition deep-in-the-money but rather depends on
the “closeness” of the asset value to the default barrier. Looking at investment grade
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assets7, the sensitivity of the option with respect to the asset value is al-

most linear (i.e. the delta of the option is almost one and therefore gamma

is close to zero). A linear relationship between two random variables in turn

implies a correlation of one. The correlation will be the smaller, the less

linear the relationship is, i.e., the higher the default probability (and there-

fore the less in-the-money the option) and/or the higher the effect of other

input parameters that lead to non-linearities with respect to the asset value

(e.g. taxes, insolvency costs in the Duffie/Lando framework). The determi-

nation of correlations is straightforward: First, a rating grade from Aa to

B is choosen. Second, all reasonable combinations of input parameters –

excluding the asset value – were depicted. In the third step the asset value

was choosen as to yield the cumulative default probability of the respective

rating grade choosen in the first step (cf. appendix A.1.1 for the cumulative

default probabilities). In the last step, the correlations for these parameter

combinations were numerically evaluated with a Monte Carlo simulation.

The minimum correlation for each rating grade was plotted in figure C.1.

The minimum correlation is always larger than 0.99 for investment grade

obligors and larger than 0.96 for non-investment grade obligors.

ratings, the maximum one-year default probability is approximately 0.4% and the
maximum 10-year cumulative default probability is approximately 8%. This motivates
the use of the term “deep-in-the-money”.

7The sort of option is of course different in both frameworks: a plain vanilla european
call option in the Merton framework and a knock-out option in the Duffie/Lando
framework.
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Figure C.1.: Correlation between equity and asset value in the Merton and
Duffie/Lando (2001) framework. Parameter combinations for
calculating the minimum: T (maturity):3− 10y, σ : 3%− 30%,
company Sharpe ratio: 10% − 40%, risk-neutral asset growth
rate after payouts: 0% − 5%, α (asset value uncertainty):
0%− 30%, T1 (time since last certain asset value information):
0y − 3y, other parameters: r = 6%, default barrier=100, Vt
choosen to fit target actual default probability for respective
rating grade.
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