
Lehrstuhl für Rechnertechnik und Rechnerorganisation der
Technischen Universität München

Application Specific, Automatic Distributed
Evaluation of Performance Data on the Grid

Hamza Mehammed

Vollständiger Abdruck der von der Fakulität für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. M. Gerndt
Prüfer der Dissertation:

1. Univ.-Prof. Dr. A. Bode
2. Univ.-Prof. Dr. R. Wismüller,

Universität Siegen

Diese Dissertation wurde am 30.04.2009 bei der Technischen Unversität München
eingereicht und durch die Fakulität am 23.07.2009 angenommen.

Abstract

The exploitation of distributed evaluation of data in parallel tools has been one
of the main concerns of tool developers in their effort to meet the ever-increasing
demand on scalability of online parallel tools. Recently, the inherent complexity
of parallel machines is enlarged with the sharing, transparency and dynamicity of
the available resources in the environment like the Grid introducing a new chal-
lenge on performance analysis. In a grid computing environment which is devoted
for a coordinated utilization of geographically distributed large parallel computing
resources, most of the available parallel tools (like performance analyzers, debug-
gers and load balancers), which relied on a centralized evaluation of data, often
fail to scale well since the centralized evaluation in such modestly sized comput-
ing environment mostly leads to a bottleneck at the front-end. Specially, in on-line
parallel tools, the results computed at the back-ends must all arrive at the front-end
without any loss of data in order to be evaluated properly. This is hard to achieve
when the number of back-ends increases and/or they produce computed data more
frequently.

This thesis addresses a novel method of automatic, distributed evaluation of
performance data in order to decrease the frequency and the amount of data trans-
ferred from the back-ends to the front-end to ensure the scalability of the tool.
The main research topic is the automatic generation of application specific vir-
tual networks used for the distribution of the subtasks that can be computed on a
given location independently. Building such virtual networks depend merely on
the metrics specification provided by the users. These specifications are used to
describe applicable objects and partner objects (sites, hosts and processes), code
regions (portion of source code or location of certain methods) and time specifica-
tions (time interval, a point in time or virtual time) which are going to be used for
a computation to enhance a very flexible multicast reduction network.

For the realization of the virtual networks, an augmented dataflow model based
on the classical dataflow model is developed which supports a hierarchical par-
allel execution of subtasks and enables also the reassembly of the measurement
results asynchronously. The reassembly process includes correlation, aggregation
and synchronization of the result data values. Through its hierarchical nature, the
virtual network allows the evaluation of data at their origin (instead of transferring
them to a central location) by taking the abstraction level of the defined applicable
objects into consideration.

The feasibility of the distributed evaluation methodology is performed in a
real parallel tool called Grid Performance Measurement Tool (GPM). In GPM,
the number of communications between the front-end and the back-ends increases
rapidly since the performance measurements are resolved in time, location in the
system and location in the code. Using the automatic, distributed evaluation of
the performance data, a well manageable front-end is achieved which increases the
scalability of the parallel tools.

Acknowledgement

This thesis wouldn’t have been possible without the assistance of many people to
whom I would like to express my sincere appreciation.

First of all, I would like to express my special gratitude to Prof. Dr. Arndt Bode
for providing me with an excellent research environment to work on my thesis. I
am also pleased to gratefully acknowledge the contribution of Prof. Dr. Roland
Wismueller to my thesis through valuable comments and detailed improvement. In
addition, I would like to thank Prof. Dr. Gerndt for all his assistance and advice.
As any other research, this work builds upon previous ideas and achievements of
many other researchers to whom I would like to express my gratitude.

I would also like to thank Mrs. Margret Bezold-Chatwin for her detailed com-
ments and corrections on language issues. Finally, I would like to express my
deepest gratitude to my family for their love, patience, encouragement, and sup-
port during the work of this thesis.

Hamza Mehammed
Munich, Germany

April 2009

Contents

1 Introduction and Motivation 1
1.1 Motivation . 1
1.2 Challenge . 2
1.3 Solutions . 4
1.4 Contribution of the work . 6
1.5 Scope of the Thesis . 7

2 Background of the Thesis 9
2.1 Performance Analysis . 9

2.1.1 Methods for Collecting Monitoring Data 10
2.1.2 Measurement Analysis 11
2.1.3 Online versus Off-line Performance Analysis 12
2.1.4 Automatic Performance Analysis 14
2.1.5 Instrumentation . 15

2.2 Grid Computing . 15
2.2.1 Resource Sharing . 17
2.2.2 Grid Applications . 18
2.2.3 Virtual Organization . 19
2.2.4 Components of Grid Computing 19

2.3 Interactive Applications . 23
2.3.1 CrossGrid’s Interactive Applications 24
2.3.2 Tools and Services for the Interactive Applications 27

3 Evaluation of Measurement Data 29
3.1 Introduction . 29
3.2 Measurement Issues . 29

3.2.1 Acquisition of Monitoring Data 30
3.2.2 Acquisition of Event Based Monitored Data 32
3.2.3 Difficult Measurement Issues 37

3.3 Developing Augmented Dataflow Graph 38
3.3.1 Introduction . 38
3.3.2 Dataflow Model (DFM) 38
3.3.3 Augmented Dataflow Graph 40

i

CONTENTS ii

3.3.4 The Push and The Pull Models 45
3.4 Distributed versus Centralized Evaluation 46

3.4.1 Centralized Evaluation 47
3.4.2 Distributed Evaluation 47

4 Related Works 48
4.1 Introduction . 48
4.2 Methods of Distributed Evaluation 49

4.2.1 Paradyn/MRNet . 49
4.2.2 Lilith . 50
4.2.3 Ganglia . 51
4.2.4 Supermon . 51
4.2.5 Periscope . 52

4.3 Methods of Performance Specifications 53
4.3.1 ASL and JavaPSL . 53
4.3.2 Paradyn/MDL . 54
4.3.3 EARL/Expert . 56
4.3.4 Paraver . 56
4.3.5 Pablo . 57
4.3.6 KappaPI-2 . 57
4.3.7 Other Tools . 57

4.4 Methods of Handling the Flow of Data Items 58
4.4.1 Kahn’s Dataflow Network (KDN) 59
4.4.2 Synchronous Dataflow (SDF) Networks 59
4.4.3 Tagged-token model . 60
4.4.4 Component Based Design versus Dataflow Processes . . . 60

4.5 Conclusion . 61

5 Context of the Distributed Evaluation 63
5.1 Introduction . 63
5.2 OCM-G . 64

5.2.1 Basic Concepts and Functionality of OMIS 66
5.2.2 OCM-G Components . 68

5.3 Grid Performance Measurement Tool (GPM) 70
5.3.1 Basic Concepts and Functionality of GPM 70
5.3.2 GPM Components . 71

6 Overlay Networks for Distributed Evaluation 75
6.1 Introduction . 75
6.2 Performance Metrics Specification Language (PMSL) 80

6.2.1 Basic Concepts of PMSL 81
6.2.2 PMSL Usage . 85

6.3 Evaluation of Metrics Specification 85
6.3.1 Creating Intermediate Representation (IR) 85

CONTENTS iii

6.3.2 Measurement Definition 89
6.4 Generating Augmented DFGs 91
6.5 Decomposition of the DFG . 96

6.5.1 Determining the Access Locations of Sub-DFGs 96
6.5.2 Creating Communication Links 102

6.6 Distributing Subtasks . 105
6.6.1 Plug-ins to Transfer the Sub-DFG 105

6.7 Generating Monitoring Requests 106
6.7.1 Event Based Actions . 108
6.7.2 Types of Actions for the Distributed Evaluation 109
6.7.3 Requests for the Actions to be Performed at the Front-end 111
6.7.4 Requests for the Actions to be Performed at the Back-ends 112

6.8 Processing the Measurement Result Values 113
6.8.1 Evaluation of the Result Values 117
6.8.2 Synchronization of Result Values 118
6.8.3 Routing of Result Values Using Firing Rules 119

7 Usage Scenarios and Evaluation 121
7.1 Introduction . 121
7.2 Usage Scenarios . 121
7.3 Automatic Visualization of DFGs Using DOT 127

7.3.1 Visualization of the IR Graphs of GPM Using DOT 131

8 Summary and Outlook 133
8.1 Summary . 133
8.2 Outlook . 135

Chapter 1

Introduction and Motivation

1.1 Motivation

The demand for powerful distributed computing like the Grid has lead to significant
increases in the number of resources residing on different sites which are unprece-
dented both in amount and geographical distribution. In order to address one of the
today’s challenge of having on-demand access to any computational service, the
"computing as service" vision, the number of processes in modern super comput-
ers grows up to hundred of thousands of processors. These super computers can be
one of the sites used in the Grid environment which increases the overall number
of processes exponentially.

Clusters, as another basic component of the Grid computing, gained renewed
importance as the "super-servers" of the emerging Grid infrastructure since the use
of computational and data resources in high-performance applications used in a
Grid environment have started to become reality. The wide proliferation of grid
computing is shown by different projects worldwide. In those projects, resources
may reside in different sites of a country (like the D-Grid1 project), in different
countries of a continent (like the CrossGrid [17] project), or in different coun-
tries residing in different continents (like the resources of the Enabling Grid for
E-sciencE2 (EGEE) project). As a connection component between those clusters
and super computers, the network connection can be one of the critical factors for
some applications (like search engines) to run on the Grid, which may raise the ne-
cessity to provide an independent network connection to minimize such problems.

In order to support the development of distributed applications running on such
environments, parallel tools like performance analyzers, debuggers or load lev-
ellers are developed whose scalability issue in such an environment becomes a
paramount importance. Those parallel tools are usually used to optimize the dis-
tributed application running in a Grid environment. The main activities of such
distributed tools are computation, communication and storage, and if the cost of

1http:// www.d-grid.de
2http://www.eu-egee.org/

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

any of these activities is larger than the underlying system can support, the overall
scalability will be limited by the factor of that cost. The functional components
of most of those runtime tools are divided into two parts. The front-end, which
usually consists of the user interface for the interaction with the users and for the
visualization purpose, and the back-ends, which control the process and manage
the collected monitored data.

In most of the existing parallel tools, a single front-end process controls the in-
teractions between back-end tool processes and the process at the front-end. Thus,
the front-end spends mostly unacceptably long times managing the reassembly of
the results from the back-ends in such a high scaled environment. Therefore, there
should be a new way of managing those big amount of data produced in such
an environment to replace the classical approach of a centralized evaluation. The
centralized approach leads mostly to a bottleneck at the front-end and increases the
complexity of the interactions between the front-end and back-ends. Unfortunately,
the centralized evaluation mechanism is the design pattern of most of the existing
important parallel tools. Because of the performance degradation caused by this
kind of centralized computation, failure in large-scale systems become common-
place.

It is difficult for the users to search for bottlenecks in the application which
are, for example, related to the Grid environment or application specific data. For
example, the determination of inefficiencies in application is a time-consuming and
a very complex task but is a necessary step to ensure that the application behaves
as expected and users can use the provided expensive resources efficiently. One of
the important tool is a performance analysis tool on the Grid which is used for the
identification of bottlenecks and provides different information in order to find the
real cause of the inefficiencies.

The context of this thesis is a parallel tool in general and an on-line perfor-
mance analysis tool in particular. On-line tools are closed-up tools that dynami-
cally control the application or system based on their analysis while the programs
as well as the monitoring are running which makes the computation more com-
plex. The distributed evaluation provided in this thesis deals with the performance
analysis tools’ computation and communication activities.

1.2 Challenge

In order to satisfy the aggressive optimization of Grid applications, the parallel
tools used for the optimization (like a performance analysis tool) must be adapted
to the challenging new Grid environment with an enormous amount of resources.
One of the challenges to cope with the increasing number of resources is to pro-
vide an efficient way of managing those thousands of processes. A decentralized
evaluation process is one of the approaches used usually to solve such problems.
A distributed evaluation as proposed by this thesis, is based on a multicast and re-

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

duction mechanisms. This kind of approach can also be used as a possible solution
for other parallel tools in the same category.

One of the main prerequisites for an on-line performance measurement tool is
that the measurement results computed at the back-ends must be delivered to the
components at the front-end without any significant lose of data [1, 2]. The reason
for those possible loose of data is that the front-end communicates unnecessarily
too often with the back-ends over a network to collect and analyze the measurement
results and this increases the number and size of the data to be managed by the
front-end. The intensive communication results also a complex and unmanageable
interaction between the front-end and the back-ends.

One of the main challenges of this thesis is to provide a solution on how such
scalability problems can be solved with an efficient distribution and collections of
the necessary computations. This includes:

• management of a large number of communication partners and processing
their monitored data in a distributed way.

• efficient communication between the front-end and back-ends in both direc-
tions which includes an efficient broadcasting control commands, and col-
lecting the possible aggregated result data.

• partition of the main computation task into subtasks which can be evaluated
on remote hosts independently, aggregation of the results of such subtasks,
as far as possible, and sending only the necessary results to the front-end.

• managing the aggregation of time-aligned computed data which belongs to
the same time interval or point of time, and synchronizing results that belong
together.

• avoiding the participation of the user in all distributed evaluation activities
by performing all the steps automatically, as far as possible.

• computing application, as well as Grid infrastructure specific measurements
by supporting predefined as well as user defined high-level measurements.

• supporting request as well as event triggered measurement evaluation.

One of the challenges is managing the partition of the main task into its subtasks
and to distribute them to their corresponding remote host. An efficient distribu-
tion of those subtasks which can be performed at a specified location without the
need of further communication with other processes residing on another hosts, is
very important in the Grid environment where inter-site communication can limit
its over all performance. This is also a reason why communication intensive appli-
cations are not suitable for the Grid.

Most of the performance analysis tools available today provide low-level in-
formation which desires expertise knowledge to deal with them. High-level and

CHAPTER 1. INTRODUCTION AND MOTIVATION 4

application oriented metrics are meaningful not only for the application domain
specialist but also for the application users. Providing a possibility to deal with
such metrics enables custom tailored solutions for the applications and the Grid
environment based measurements.

In the process of performance measurement (as it is also the case for mon-
itoring, debugging, and visualization tools), the effect of concurrency and non-
determinism play an important role in an event based evaluation. A Distributed
application consists of processes which communicate by messages and execute
sequences of elementary or atomic actions called events. Therefore, a proper un-
derstanding of a distributed program and its execution through determining the
causal and temporal relationship between the events that occur in its computation
is indispensable. Event based measurements enable, for example, phase based per-
formance analysis of parallel programs, which are poorly addressed by the existing
tools.

Managing all the above listed challenges will improve the scalability behavior
of performance analysis tool by preventing a scalability bottleneck within the tool
system itself by avoiding resource saturation, which may be caused by the tool
processes. The distributed evaluation enables obtaining not only global application
performance data (such as CPU or Memory utilization across all processes), but
also complex aggregated values.

It is desired that all the possible computation details of the provided solution
be performed in an automated and user-friendly way since application developers
are not expected to be performance analysis experts. In addition, the realization of
all the suggested concepts must not have the effect of any performance degradation
on the tool to assure its quality.

1.3 Solutions

Since most HPC systems usually have a life period of five years, providing a so-
lution depending on the design of a system, which may vary in the next design
generation, will not be a good solution. An important goal of this thesis is there-
fore, to develop a powerful execution model based on a distributed evaluation to
achieve a scalable distributed computing environment.

The scalability problem mentioned above can be reduced to its minimum by
distributing the evaluation of some tasks from the front-end to the back-ends.
Through this distributed evaluation, customizable, scalable and high-throughput
communication software system applications and parallel tools can be developed.
This solution provides a more accurate performance measurement result in an on-
line and scalable way through off-loading the computing activity from the tools’
front-end to the back-ends.

This distributed evaluation is designed through developing an Augmented Data-
flow Model (ADFM) based on the classical Dataflow Graph (DFG). One of the ad-
vantages using a dataflow model is that the execution sequencing is constrained

CHAPTER 1. INTRODUCTION AND MOTIVATION 5

only by data dependencies. And as a result of this the control information is
the same as the control of data. Using the DFGs for software based solution has
two main synergistic parts: first, an efficient way of distributing subtasks can be
achieved and second, a high throughput data assembly can be efficiently realized.

Since distributed systems are loosely coupled in the sense that the relative
speed of their local activities is usually not known in advance, it is also necessary
to synchronize the result values to assure a proper computation. This kind of syn-
chronization is supported by the DFG automatically. The DFG used is composed
of dataflow nodes and data providers where dataflow nodes are used to realize the
firing rule and the aggregation methods. In addition, those nodes are used to en-
force synchronization of result values. The data processing abstraction embodied
in the dataflow nodes of the DFG facilitates the aggregation and reduction oper-
ation on in-flight result packages. Multiple result packages are supported by the
DFG as input as well as output providing the same result values for different result
consumers, which is a shortage of other approaches based on, for example, a tree-
like structure. The data providers are used to store the result values and facilitate
the synchronization of result values.

The topology of the DFG is determined for every measurement implicitly by
the user during the specification of the metrics in a very flexible way. Therefore,
there is no need of having statically defined DFG topologies. Since every back-end
is responsible for the subtasks to be computed there, there is also no need of assign-
ing extra resource for the dataflow nodes of the DFG. To control the complexity
of the generated dataflow graphs, sub-DFGs describing the same tasks are com-
bined into a composite sub-DFG. In effect, application processes, nodes or sites
are clustered dynamically based on their computational behavior and this enables
an earlier data reduction and efficient multicast of subtasks to be performed on the
corresponding site, node or process independently.

Using the DFG approach allows the building of an overlay network built on the
real network. This facilitates to control the execution of the measurements. Using
this kind of computation provides a very flexible distributed computing and shows
significantly better performance than the centralized approach. Since the on-line
nature of some parallel tools results in a collection of stream data, and most of the
computed data are coming in an asynchronous manner, the issues associated with
the assigning of the proper consumer of those data must be addressed. This must
be determined during the distribution of the subtasks and by the time of building
the requests to the monitoring system.

In the course of finding the performance bottleneck in an application, the de-
veloper of the application might want to measure some metrics that are critical for
the application. Describing those metrics is simplified using Performance Metrics
Specification Language (PMSL). For the aggregation, correlation and reduction
purpose, all the mathematical operations are supported. Using this dedicated spec-
ification language, one can combine and chain the provided mathematical relations
and operations to realize any desired custom data reduction. The distributed eval-

CHAPTER 1. INTRODUCTION AND MOTIVATION 6

uation of this concept is performed on a real-world on-line semi-automatic perfor-
mance measurement analysis tool using real world interactive applications.

1.4 Contribution of the work

The main research goal of this thesis is not only the development of an effective,
distributed evaluation of performance measurements, but also presenting a power-
ful execution model for the same sort of computation. This is achieved by using
the proposed dataflow model which increases the efficiency and throughput of the
executions by supporting parallelism automatically.

A scalable data analysis with a possible minimum overhead is also achieved
by supporting aggregation and correlation chaining which facilitates a complex
time-aligned data aggregation mechanism. This guarantees the management of
large volume of dataflow by providing an automatic partition of the dataflow graph
created from an intermediate representation of an execution and reassembling the
appropriate results automatically.

For the purpose of distributed evaluation, a complete process, as depicted in
the Fig. 1.1 has been developed that consists of the parsing process (arrow 1)
to translate the measurement specification into an intermediate representation in
form of DAG which is optimized to its minimum number of nodes and sub-DAGs
(arrow 2), the generation of a DFG from the intermediate representation (arrow
3), generating the desired monitoring requests to facilitate an efficient and fast
processing of the computed data (arrow 4). For the reassembling the computed
result data which are arriving asynchronousely and must be routed to the proper
consumers, a notification mechanism (arrow 9) is used. In order to evaluate the
specified measurement in a distributed manner, the DFG representing the whole
measurement task is partitioned in to different sub-DFGs which represents sub-
tasks which can be evaluated in their corresponding hosts independently as shown
by arrow 4 in Fig. 1.1. Following that a communication (arrow 9) between those
sub-DFGs and the main DFG at the front-end will be set up in order to enable result
data assembly when the measurement is performed. The final result will be then
sent to the user interface as described by arrow 11 in Fig. 1.1.

As a real-world tool to demonstrate the feasibility of the distributed evaluation
idea, the Grid Performance Analysis Tool (GPM) and its underlying Grid-enabled
OMIS3-compliant Monitoring System (OCM-G) is used. Both of them are devel-
oped in the CrossGrid IST-2001-3224 project (the EU 5th Framework Program).
One of the GPM components, as depicted in Fig. 1.1, is called Performance Mea-
surement Component (PMC) and deals only with the built-in metrics. In order to
evaluate those predefined metrics, the PMC communicates directly with the under-
lying monitoring system OCM-G using the OMIS-Interface [31] as shown by the
arrow 6b.

3On Line Monitoring Interface Specification

CHAPTER 1. INTRODUCTION AND MOTIVATION 7

Dataflow
Gtraph
(DFG)

 . . .

...

. . .

Site_2 Site_nSite_1

n_1 n_n n_n n_1 n_nn_1

p−1 ... p_np−1 ... p_n p−1 ... p_n

Graph (DAG)

Directed
Asyclic

active measurement
user defined

PMCOCMG

UIVC

HLAC

...

Inter_comm(...){
int volume,

op
tim

iz
at

io
n

notification

transformation

generate

acquisition
result

parsing result
visualisation

result acquisition
task distribution/

notification

request request

request

reply

metrics specification

1

2

3

4

5

6a 6b

6c

7

8

9

10

11

graphical visiualization of measurement results

Figure 1.1: The overall processes of the distributed evaluation using GPM and
OCM-G

All those activities are performed without the participation of the user and are
performed in an online and distributed manner without altering the application run-
time behavior. This online behavior allows the user to use the experience gained
in the previous measurements into the next measurements. Lastly, a graphical rep-
resentations of all intermediate representations (including the DAG, DFG and par-
titioned sub-DFGs) is generated automatically in order to provide an insight into
sequence of computations and helps the user to verify the specification of the mea-
surements.

1.5 Scope of the Thesis

The rest of the thesis is organized as follows:
In Chapter 2, the background of the thesis is discussed which includes per-

formance analysis, the Service-Oriented Approach (SOA) of Grid computing and

CHAPTER 1. INTRODUCTION AND MOTIVATION 8

the interactive applications of the CrossGrid project. It shows that a performance
analysis is a very vital process in developing Grid applications in general and in-
teractive application in particular.

An important but non-trivial aspect for understanding the behavior of dis-
tributed programming is to understand the causality and its relation to logical time.
Therefore, some fundamental characteristics of event triggered measurements and
their influence on the performance measurement data evaluation is discussed in
chapter 3. In the same chapter the design and development of the proposed ADFM
for the distributed evaluation based on the classical DFG is formally described.

In chapter 4 a brief survey of related works is presented. It discusses the state-
of-the-art of distributed evaluation which mostly relies on a tree-based approach,
the developments of different specification languages used to describe measure-
ments, and the origin and scope of dataflow model. Chapter 5 is devoted to the
discussion of the performance analysis tool GPM and the monitoring tool OCM-
G, which are used as context of this thesis.

Chapter 6 illustrates the main work of the thesis and shows how the distributed
evaluation is designed and developed. It includes the description of the Measure-
ment Specification Language (PMSL), the specification of measurements, creating
intermediate graphs, performing monitoring request and reassembling remotely
evaluated measurement results. The comparison of the performance gained by
using the distributed versus centralized evaluation, some usage scenarios used to
show the distributed evaluation and the generation of the graphical intermediate
representation (DAGs and DFGs) created during the distributed evaluation are dis-
cussed in chapter 7. Finally, the last chapter presents the outlook and summary of
the thesis.

Chapter 2

Background of the Thesis

2.1 Performance Analysis

In order to obtain the results of many applications developed in different fields of
science in a very short period of time or to handle the large possible problem size
of those applications, the physicists, biologist, chemists, etc. are interested in envi-
ronments like the Grid. Grid computing provides an efficient way of solving data
and compute intensive problems by providing a big amount of resources. Never-
theless, the programmers should exactly know the performance of his application
in such an environment in order to use the provided efficiency. Even a profound
knowledge of the code of the applications does not contribute much for its de-
tailed run-time behavior and thus parallel tools like performance analyzers should
be applied for that purpose. Since the Grid environment is not under the control
of a single administrator and involves a dynamically changing system resulting in
a non-reproducible working condition, performing performance analysis on it can
be a complex task.

Performance analysis on the Grid is not yet defined precisely. Even the term
Grid does not have an exact definition [6, 47] since there are different kinds of
Grids for different purposes which makes it difficult to provide a general solution
concerning performance analysis in the Grid environment. In general, performance
analysis deals with the qualitative, quantitative and economical aspects of the re-
sources. Resources on the Grid includes but is not limited to servers, clients, special
equipments, networks, storages service instants, and the ultimate goal of the Grid
computing is to provide the resources as well as services for co-ordinated usage.

In order to have a benefit from the promising approach of parallel and Grid
computing to solve complex problems in many scientific fields, the application in
focus must be designed to perform properly. To achieve this goal, a performance
tuning must be accomplished after the implementation and functional test of the
application. To perform the performance tuning, performance analysis must be
performed that includes the detection of performance bottlenecks, and pinpointing
the reason of the performance flaws. Following this, the application code responsi-

9

CHAPTER 2. BACKGROUND OF THE THESIS 10

ble for the performance degradation must be modified to optimize and thus improve
the over all performance quality. Thus, performance analysis is a cyclical process
consisting of those steps which must be repeated until the desired performance
behavior is achieved. This time-consuming and complex process must be accom-
plished before the application is used in a production environment. In addition, the
analysis processes must be performed in a similar environment as intended for the
production usage.

To support the performance analysis of the application, information taken from
a performance prediction can be used. When there is no suitable performance
prediction available for the desired analysis, an unexpected behavior of the appli-
cation can be taken as a starting point. Consuming an unacceptable much time for
the communication by certain processes is an example of such poor performance.
Usually, performance experts should do the task of performance analysis unless the
process is automated to some extent.

In general, there are lots of reasons for the performance degradation of an ap-
plication which can not be identified using a performance analysis tools. Using a
wrong algorithm, for example, cannot be identified through any of the performance
analysis tools available today. Another category of problems is functional incor-
rectness of the applications, which will results in computational error. Therefore,
applying a performance analysis tool can have an advantage only when it is applied
on applications which have proven to be functionally correct and use an optimized
and efficient algorithm.

Normally, performance analysis should be used to check the performance of
the application in the context of the distributed environment and the suboptimal
usage of the underlying programmer model such as waiting for a message. Perfor-
mance analysis covers, in general, the topics of data acquisition and data process-
ing. The former deals with monitoring system observing the instrumented applica-
tion whereas the latter deals with analysis and visualization of the computed data.
In order to get the data about the application and/or Grid infrastructure, the per-
formance analysis tool uses the monitoring system. Usually, the type and amount
of data collected will have an influence on the expressiveness of the performance
problem that can be detected.

2.1.1 Methods for Collecting Monitoring Data

There are different ways to perform performance analysis, which can be catego-
rized according to the way the monitored data are collected. The well-known mech-
anisms handling the monitored data are tracing, profiling and the online approach.
Those mechanism are described as follows:

Tracing: Using this method, all the desired and undesired data are recorded
from the sequence of events occurring during the application run. Since the amount
of data collected using this mechanism can be very huge, specially for long run-
ning applications, there must be a way of filtering the necessary information for the
visualization. Since extracting the desired information will have a very big over-

CHAPTER 2. BACKGROUND OF THE THESIS 11

head, the analysis will be performed after the program has finished its execution.
Therefore, the use of this mechanism is devoted for an offline usage and for appli-
cations not running for a long period of time (see also 2.1.3). Vampir1 [9] is a good
example for an offline performance analysis tool which uses a stream of recorded
data from a trace file.

Profiling: This is a way of collecting data desired for performance analysis in
a selective way. Particularly, the result of a profiling is the data collected about the
frequence and duration of function calls in a program. Using this information, an
optimization of the program code can be performed for those methods which are
executed very often and are highly time-consuming at the same time. Comparing
this to the tracing mechanism, profiling reduces the amount of data to be collected
and gives summarized information about the applications behavior. The Unix tool
gprof , for example, is a profiling tool which presents the complete call graph anal-
ysis listing each function and how much of program execution time is consumed
by each of them.

The online approach: The more interesting approach is to analyze the moni-
tored performance data in an online fashion that provides the unique opportunity
to change the measurement constraints and to see the changes immediately at the
run time - as expected by the interactive applications. Since in the online approach
the data are not stored persistently, they are used immediately in the computation,
or accumulated in the aggregator. The main advantage of this mechanism is the
possibility to access the data as soon as they are produced and that there is no need
to deal with huge amount of data stored (see also 2.1.3).

2.1.2 Measurement Analysis

To start the performance measurement of an application, one can look for undesired
behavior of the application. Fortunately, certain parts of the code are usually known
to be critical for the performance of the application, especially routines used for
the communication and I/O. In general, the cause of performance problems related
communication can be identified at different levels [18]: applying communication
library which is not optimized for a given system, using unnecessary blocking time
in a receive primitive, operating system features (e.g. inappropriate buffer size),
incapability of the underlying hardware concerning latency, bandwidth, to mention
a few. In case of MPI, for instance, the performance degradation of a CPU usage
can be one of the hints for imbalance in the volume of communication. Inspecting
the delay behavior of each process may then help to find out where the reason for
the bottleneck could be.

Even if a lot of tools are provided for the performance analysis and monitoring
of applications running on the Grid, no single tool may satisfy all the needs of
the end users (Grid users, administrators or tool developers). This is due to the

1 http://www.vampir.eu

CHAPTER 2. BACKGROUND OF THE THESIS 12

diversity of the requirements of the applications and their type as well as the type
of Grid.

Despite this fact, a significant set of functionality can be achieved by using
complementary tools together as suggested in [20, 40]. Using GRM/PROVE and
mercury [66], for example, will provide most of the desired functionalities. In
this case GRM is used for the application performance analysis whereas PROVE
is applied to visualize trace data online, and mercury to provide Grid performance
monitoring based on the push and the pull mechanisms. Another example in this
category is the combination of the SCALEA-G [42] and the Askalon [61] tools.
In this combination, SCALEA-G (based on the OGSA standard) provides online
measurement using the pull and the push approach for profiling and tracing appli-
cation related as well as Grid infrastructure related information. On the other hand,
the Askalon tool is used for the visualization purpose. Since Askalon is based on
Java and XML technologies, it is easier to use it in other tools.

In the EU-DataGrid2 which is a homogenous Grid environment (supporting
only RedHat Linux operating system), almost 10 different complementary tools
are used to satisfy the diversity of requirement arising there. This clearly shows
the difficulty to find a suitable performance and monitoring tool, which satisfies
the desire of the majority of the users. Since most of the tools are not interoper-
able with each other, the same functionalities provided by different tools co-exist
unnecessarily (like the performance analysis ability of both Askalon and SCALEA
in the example above). Providing interoperability at least at the level of standard,
self-defining data format for the input and outputs may help.

When performance analysis and monitoring tools are used in a Grid environ-
ment, the security issue of the Grid environment (as discussed in 2.2.4) must be
taken into consideration. Even if security is not a big issue in the process of perfor-
mance analysis, there are reasons in some commercial sectors to deal with it. Some
companies do not want to reveal how and when they use the provided resources.
Monitoring the application belonging to other users must also be protected, since
some monitoring systems facilitate, for example, the manipulation of process ac-
tivities.

2.1.3 Online versus Off-line Performance Analysis

There are two different ways of analyzing the performance of an application in a
distributed environment: online and offline. Depending on the environment and
types of applications, those two mechanisms are used in different manners. The
offline approach uses tracing and profiling, whereas the online approach tries to
evaluate the data as they are produced and uses also profiling to have an access to
the summarized computed values.

2http://eu-datagrid.web.cern.ch/eu-datagrid/

CHAPTER 2. BACKGROUND OF THE THESIS 13

On-line Performance Analysis

For the long-running and/or interactive applications, the method of collecting all
possible monitored data and extracting the desired data is not suitable. The results
of the performance analysis must be provided immediately to give a feedback to the
user in order to adapt their activity in response to the application’s behavior during
the run time of the application. The available result values can be used again to set
up new measurements during the application run.

The online approach enables defining and processing performance related mea-
surement at run-time since it makes possible to focus on specific execution aspects
which can be the cause of the performance problem. As a consequence, tuning
the application can be performed on the fly without stopping, recompiling, or re-
running the application. Comparing this to the offline approach, performance prob-
lems can be identified earlier.

In addition to this fact, the Grid environment can not be reproduced once again
to achieve the same resources utilization due to the dynamic nature of the Grid,
and this makes the collected data to be a special case which may not represent the
next run time results and this is one of the reasons not to collect data in a Grid en-
vironment. Nevertheless, there are also disadvantages of the online approach. One
of them is the overhead of processing the monitored data. To reduce this analysis
overhead, there is a possibility to shift the analysis process to a dedicated machine
since this overhead must be kept to its minimum in order not to perturbate the run-
ning application’s behavior. The instrumentation overhead can be reduced to its
minimum by inserting and removing the instrumentation at the run time according
to the actual behavior of the application.

Off-line Performance Analysis

The offline performance analysis, which is carried out in a post-mortem manner, is
a widely used method for analyzing the performance of parallel programs. In this
case, the traced data containing information about the interactions between differ-
ent processes or threads that occurred during communication or synchronization
operations will be examined. As a result, information how concurrent activities
influence each other’s performance can be studied.

The performance analysis based on this approach allows investigating all the
event data gathered during the application run. Since it is usually not known a
priori which data are important, detailed information about the application must be
recorded which requires the generation of many events by the instrumented code.
Therefore, this mechanism results in processing a huge amount of data that must
be stored permanently in a centralized storage, and thus must be transferred to the
centralized component.

Using the traced data, a comprehensive analysis can be performed since all the
necessary information is available, and time is not a critical factor in such cases.
This also allows reproducing the application scenarios on demand. That means,

CHAPTER 2. BACKGROUND OF THE THESIS 14

the investigation about the application’s behavior can be performed after the appli-
cation finished its execution. This method of analysis does not introduce any extra
overhead in to the execution of the application, with the exception of the overhead
results from the monitoring process since the analysis as well as the transfer of data
can be performed after the application is executed. Using some patterns to iden-
tify the most important performance bottlenecks, the analysis process of the traced
data can be simplified. In addition, the recorded trace data are also important for
statistics and archiving purposes.

However, recent applications are too large to use this approach. Monitoring an
interactive application in an offline mode may be feasible, but will not be efficient
and easy to implement. In this case, not only the information about the applica-
tion’s behavior will increase the amount of trace data to store, but also the user’s
interaction must be monitored and stored. For long running application, it is not
convenient to use offline monitoring since the user wants to see the results of the
interaction immediately to enable application steering.

2.1.4 Automatic Performance Analysis

The huge amount of data produced in a Grid environment needs an intelligent and
automatic filtering, aggregating, and/or converting mechanism to provide a clear
and abstracted view representing only the necessary information (see also [55]).
Automated mechanisms are indispensable to deal with such enormous amount of
data through which a transparent (from the user’s point of view) transfer of low
level data to a high level compact data will be performed. The row data provided
by the monitoring system are enough to give useful information to the end users.

The heterogenous Grid infrastructure, its dynamic nature and the different ad-
ministrative domains used in the Grid environment adds an enormous amount of
complexity to the performance analysis process by producing further performance
flaws that can hardly be allocated without an automatic mechanism. Without re-
ducing the amount of data automatically, it will be very difficult for the end user
to deal with all the monitored data manually. That means that user involvement
for the performance analysis process must be as minimal as possible to achieve a
highly effective large scale performance tuning. Even by using an online perfor-
mance analysis tool where monitored data are not collected but analyzed as they
are available, the monitored data volume in a large-scale application can be huge
enough to create management problems. This automated approach also relieves
the user from the difficult tasks of identifying which performance data is important
and which is not. In addition, the complexity of the interaction between the per-
formance analysis tool, and the underlying monitoring system will be transparent
to the users when writing applications to run in a Grid environment in a distributed
way and to perform performance measurements to tune the application.

CHAPTER 2. BACKGROUND OF THE THESIS 15

2.1.5 Instrumentation

Instrumentation is a mechanism to insert code portions into programs or library
interposition linked to the application to observe the execution of certain part of the
code and to provide monitored data [38]. Adding a code to a program or library
can be performed at different levels of the program execution: before or during
the compilation of the program code, at the time of linking a program, or at the
run time. Since each of those levels contains different kind of information, the
corresponding collected data differ in quality and quantity.

From all the instrumentation mechanism, the binary or dynamic run-time in-
strumentation is a complex but efficient way of instrumentation. An API for such
purpose can be found in [23]. This mechanism is used to collect performance data
for the actual measurement at the location where the important performance data
are expected. This allows to point out the nature and location of the performance
bottleneck more precisely. Since this kind of instrumentation is performed while
the application runs, there is a certain amount of overhead which can alter the be-
havior of the application execution and thus must be taken into consideration. Due
to this overhead, dealing with such instrumentation on the fly may not be possi-
ble or may perturbate the application’s behavior, therefore the modification to be
performed must not involve very complex processes.

2.2 Grid Computing

The vision of Grid computing [3, 6, 47] is, in general, the transition of today’s
world of static, manual, application-oriented world towards the dynamic, virtual,
automated and service-oriented approach. Grid computing started as a generaliza-
tion of cluster computing, promising to deliver unprecedented levels of parallelism
to high-performance applications by crossing different administrative boundaries.
Grid evolved to support on-demand access to a composition of different computa-
tional services provided by multiple independent sources. Grid computing provides
the solution to utilize computing resources of organizations (both in academia and
in industry) in an efficient way. Since most of the Unix servers are idle more than
90% of the time and most of the desktop machines are busy less than 5% of the
time, exploiting this issue will bring the advantage of increasing the resource uti-
lization enormously. This gap of utilization can be compared to an airplane using
just 10% of its passenger seats. Grids are also used for collecting, processing, and
searching large data sets.

Unleashing the computer power of an organization will provide benefits to
have a huge business, education and research facilities which will be used to re-
duce the inefficiency caused by idle resources through harnessing the technology
innovation. Using the concept of virtual organization will also enable sharing the
avaliable, locally controlled resources easily and efficiently through providing a
simplified collaboration between different heterogenous organizations which may
have different policies.

CHAPTER 2. BACKGROUND OF THE THESIS 16

One of the goals of the Grid computing is to solve problems arising during
the running of a program on different machines belonging to different organiza-
tions. An existing remotely executable application which can be broken down to a
number of jobs on a remote machines, may need to fulfil some special hardware,
software and resource requirements which should be managed in an efficient way.
Thus, the main problem areas of Grid computing includes security, data process-
ing, and data and information management between systems distributed across the
world. In the near future, Grid computing can also be used to solve real time prob-
lems, as far as the reliability of the desired resources is guaranteed. Such kind of
approaches can be seen as a beginning of utilizing autonomic computing in a Grid
environment, which automatically tries to repair problems.

Since the resources used in a Grid environment are unlikely to be of the same
type or running the same operation system, open standards like Open Grid Service
Architecture (OGSA) and Web-Service Description Language (WSDL) are used to
solve problems concerning interoperability of services provided by different orga-
nizations. The same question will be raised for the security issue, which may be
satisfied by using the Grid Security Infrastructure (GSI) technology as discussed
in 2.2.4. Interactions in a Grid computing environment are not just client/server,
but also service-to-service which require service access on behalf of the user which
needs the delegation of rights by user to services which is also covered by GSI.

Types of Grid

Even if there is no clear boundary for the type of Grids [3], the following types
of Grids can be identified from which computational Grid has reached today much
higher level of maturity than the other type of Grids.

Computational Grid is a type of Grid computing that most products are apply-
ing today. This is a term used for aggregated processing power involved in the Grid
environment. The components of these types of Grid are mostly high performance
servers, which provide a very big amount of computing power for applications that
need those big super computers for their computation. There are a lot of projects3

around the world which represent this type of Grid. TeraGrid, NorduGrid and
EGEE are good examples for this category.

Data Grid is a kind of Grid computing that provides a secure access to dis-
tributed, heterogenous data which includes a federated database. Data Grid is of-
ten underestimated in the sense that it is supposed to be the largest challenge in
the Grid computing field. The questions how to bring structure and order into the
large amount of data produced, for example, during the research process of the
LHC (Large hadron Collider) Computing Grid (LCG) are challenging. A sophisti-
cated, scalable and robust data management is required to deal with the exponen-
tial growth of data which are presented in many different formats, distributed over
many sites and replicated for the sake of international collaboration in a virtual

3http://www.globus.org/alliance/projects.php

CHAPTER 2. BACKGROUND OF THE THESIS 17

organizations. The main problem areas are heavy load, performance bottlenecks,
and dealing with different policies. In spite of this fact, the response time for the
services dealing with those data must be kept at a minimum.

Scavenging Grid is another type of Grid which is mostly related to the com-
putational Grid. It uses a large number of desktop machines to provide a large
amount of CPU capacity. As an example, SETI@home4 uses the idle CPU cycle
of personal computers which is mostly 95% of their running time. In this case,
those idle CPU cycles are used to analyze a radio transmission received from outer
space. This kind of Grid is useful to come up with problems which requires more
computational power than available. Most of the time, this kind of computation is
not suitable for real time computation, since the speed up of the computation of an
application depends highly on how network intensive those application will be.

2.2.1 Resource Sharing

The most common resource of a Grid environment that can be shared is the com-
puting cycle used to run applications that cannot be processed in a single local
environment. The second most used resources are storage capacities, which can
either be memory or secondary storages. Another big storage can be achieved
through using federated databases which contain different types of database from
different providers accessible in uniformed manners.

Other resources focus on data communication capacities. These kind of re-
sources are very important for the success of Grid computing since the Grid re-
sources can be dispersed geographically. As an Example, the DEISA project uses
a dedicated network for its distributed computing to avoid such problems. The
communication capacity of the Grid environment can be used not only to transfer
the jobs to the remote machine and to fetch the result from them, but also to du-
plicate a large amount of data used as input for applications. In addition to those
resources, software, special equipments, and licenses can also be shared.

To access those resources, an organization can use its own policy to assure pri-
orities not only for resources but also for users. Using a Service Level Agreements5

(SLA) as a contract that can exist between two service providers, the negotiation
of services, priorities, etc. can be arranged to specify the levels of availability,
serviceability, performance, or other attributes of the service.

For instance, licenses that are purchased in a limited amount in an organization
because they are very expensive, can be made accessible using a Grid environment
to get their full advantage. This can be performed by sending jobs to the remote
machines where those licenses are available. Expensive special devices like tele-
scopes which cannot be replicated and thus may be accessed remotely, can be used
in a Grid environment in an efficient way.

4http://setiathome.ssl.berkeley.edu/
5http://www.grid scheduling.org/

CHAPTER 2. BACKGROUND OF THE THESIS 18

2.2.2 Grid Applications

Not every parallel job should run in an environment like the Grid. Suitable and
simple jobs for Grid computing are especially batch jobs that expect a set of input
data to produce sets of output data. If the input data is of large amount and con-
tinuously needed during the runtime of the application, this data can be replicated
and managed automatically using the Grid computing service for data replication
and file stage-in mechanisms are used to transfer the files before and after the ap-
plication is execution. Jobs that expect a small number and amount of input data
for their execution, which may take a large amount of time and produce any type
of output data, are best examples of simple Grid jobs. On the other hand, jobs
which may have an intensive communication of the processes running on differ-
ent machines which are geographically distributed, will spend a lot of time for the
communication to send data over the network and they are thus not suitable for the
Grid.

Grid computing includes also replicating shared data to avoid transferring a
huge amount of data repeatedly. Through replicating the necessary data, input data
are brought near to the host where the application is running. Some highly ad-
vanced scheduling techniques use this future to increase their efficiency. Schedul-
ing is used to minimize the execution time of tasks through providing the required
resources, and thus increase the overall performance.

Grid Computing can also be used to balance the resource utilization of an orga-
nization through migrating running jobs with their current state. Such job migra-
tion is used in case the resource in focus fails or some priority must be achieved.
This is the case when an organization has an expected peak of activities, which
demands more resources.

Grid applications are, in general, single-instruction-multiple-data (SIMD). En-
abling an application in order to run it in the Grid environment is not a trivial task
and at present there is no automated way of performing such processes. Through
the network limitation, it is also clear that not all applications can be Grid enabled
to achieve high performance. Since almost all new parallel programs are well op-
timized to be executed in parallel in a Grid environment, such issues are mainly
concerning applications designed earlier. One of the most attractive features of
Grid computing is to provide massive parallel CPU capacity. This requires that the
applications use algorithms which support the partition of the main task into its sub
tasks so they can be executed independently.

Unfortunately, there are indeed a lot of factors which prevent the partition of
a task to its sub tasks using input and output data exclusively. This can have both
design and/or algorithm backgrounds. The scalability of an application depends
mostly on the algorithms used to partition the main job into sub-jobs. Theoreti-
cally, a perfect decomposable application would be n times faster when it uses n
number of resources. That means that this application will have n tasks running
independently. From the user point of view, a Grid environment depends on the
running application and the speed of the interconnecting network. In general, the

CHAPTER 2. BACKGROUND OF THE THESIS 19

time spent on data exchange must be negligible compared to that of processing the
corresponding data.

2.2.3 Virtual Organization

In a Grid environment, different resources belong to different administrative do-
mains, which can be federated to form virtual organisations. The Grid can offer a
resource balancing effect by scheduling Grid jobs within the virtual organization.
An advanced scheduler for load balancing purpose can use those virtual resources.
This minimizes the communication traffic since individual resources can provide
their availability and capacity, which will be used for resources brokering.

Virtual organization can also be used as a basis for a functional reliability.
Instead of using duplicated resources (like power suppliers), an organization can
share resources in order to achieve reasonable reliability. Some virtual organization
use a mountable file system like AFS (Andrew file system), NFS (Network file
system), DFS (distributed file system), or GPFS (global parallel file system), which
increases the capacity of the virtual system. Some of these systems support an
advanced synchronization that can be used to reduce inconsistency whenever many
different users shared data.

A virtual organization can offer the management of priorities among different
projects. Through controlling and managing the underutilized resources of certain
projects and using them in projects which may have a higher priority for a given
period of time.

2.2.4 Components of Grid Computing

The basic set of components of the Grid computing generally encompasses the
following components: grid security infrastructure, resource management, infor-
mation management and, data management components. There are different kinds
tool which either support the development of Grid software (e.g. Globus) or pro-
viding software which enables some Grid functionality (e.g. Uniform Interface to
Computing Resources (UNICORE6)). Since the standardisation process bei OGF
is not yet completed, functionality of different middleware co-exist on the same
host. In the reference installation of the D-Grid project, the three well-known grid
software are used at the same time on the same host [4].

Grid Security Infrastructure (GSI)

Security is a basic factor in any IT-System. In a Grid environment, it is mostly di-
vided into three fundamental services: Authentication, authorization and Encryp-
tion of the data. Authentication is a process to find out whether an individual is the
one who is claiming to be whereas authorization is used to control the access right
to an individual. On the other hand, encryption of the data will insure that data

6http://www.unicore.eu/

CHAPTER 2. BACKGROUND OF THE THESIS 20

are neither destroyed nor altered by unauthorized persons during the data transfer
between resources which assures the data integrity.

The GSI 7 is based on the Private Key Infrastructure (PKI) containing private
and public key pairs. A Certificate Authority (CA) is used to guarantee the own-
ership of each of the public keys. The basic of GSI is the Generic Security Ser-
vice Application Interface (GSS-API) used mainly for single sign-on mechanism
and is a standard specified by Internet Engineering Task Force (IETF). Beside the
functionality mentioned, it includes the confidentiality issues involved during the
communication between Grid resources. This privacy prevents that no data will be
accessed by individuals that it was not intended for.

For a secure data transfer, TLS is be used to encrypt all data transfer between
the Grid sites to assure the data confidentiality and integrity. The encrypted tunnel
created by TLS uses a Grid session ID. To make the data transfer faster, the asym-
metric encryption usually used by all Grid components is replaced by symmetric
encryption.

Authentication, Authorization and Encryption

Generally, in a Grid computing environment, not only the users, but also every
other resources must authenticate itself before accessing any Grid functionality.
This authentication is based on a mutual authentication of both sides using TLS.
From the Grid user’s point of view, it is necessary to have a proxy before submit-
ting jobs. Myproxy server are also used as online credential repository to store
x.509 proxy credentials for a later retrieval over the network. Myproxy is used
mainly by Grid portals (which provide Grid functionality using web browsers) for
the authentication purpose since it provides an automatic credential update func-
tionality, in case the proxy used is expired. To realize the single sign-on concept
of Grid computing, a remote delegation of credentials (supported only by GSI) is
used to submit jobs to a remote machine which may in turn submit some sub-jobs
to other remote machines on behalf of the user.

In order to have a secure remote communication using a GSI, GSI-SSH can be
used. This enables the user a secure remote authentication with a local proxy and
can also be configured to support remote delegation as stated above. If there is no
local proxy, or GSI-SSH is not configured on the remote host, a usual SSH will be
automatically used in place.

Resource Management

The resource management component provides an interface for requesting and us-
ing remote system resources especially for the execution of jobs. This addresses
a range of jobs where reliability, stateful monitoring, credential management, and
file staging are important. Therefore, the resource management component plays a

7http://www.globus.org/security/overview.html

CHAPTER 2. BACKGROUND OF THE THESIS 21

Figure 2.1: Job submission using GRAM

decisive role in a Grid environment by acting as an interface between the difference
heterogenous resources and the consumer of those resources.

In general, the resource management helps to ensure an optimal work of all
available elements of Grid solutions in an organization. Workload management
helps to assure, for example, that SLA can be met. This can be challenging when
multiple applications are running from the same user on the Grid. If the Grid
environment in focus is fully utilized, jobs with lowest priority may be suspended
for the time being to execute the jobs with higher priority in order to assure the
negotiations, which guarantee the Quality of Services (QoS) as desired by the SLA.

The corresponding component in the globus toolkit is the Globus Resource Al-
location Management (GRAM), which supports a stateful job control and assures
the reliability of the submitted jobs by allowing an asynchronous monitoring and
control of job activities. It uses a file staging mechanism to transfer input and
output data using RFT as depicted in Fig. 2.1. Through implementing a protocol
enabling a communication with scheduler, GRAM forwards batch jobs to a lo-
cal scheduler, which can be PBS, LSF, Condor or SGE. Using the meta-scheduler
GridWay8 makes the choice of the schedulers transparent for the user. For the se-
curity of the network, a firewall9 should be used. GRAM is more complex than, for
example, Remote Procedure Call (RPC), since its life cycle includes file staging,
execution and cleanup mechanism. Fig. 2.1 shows the interaction of the compo-
nents used in GRAM.

8http://www.Gridway.org
9http://www.globus.org/toolkit/security/firewalls/

CHAPTER 2. BACKGROUND OF THE THESIS 22

Information Management

One of the important features of a Grid environment is providing dynamic and dis-
tributed resources. To cope with constantly changing resources, the availability of
the resources and their status must be updated as often as possible. Those infor-
mation resources include but not limited to software, network, CPU load, memory
and storage space.

Information management is concerned with extracting, distributing, indexing,
and processing information about the configuration and states of the services and
resources that can be used to search suitable resources and to allocate them. This
also provides a specialized view to support discovery of resources in a VO com-
munity. To provide Grid-wide resource information, usually a distributed indexing
mechanism based on XML, which facilitates querying using e.g., XPath is used.
The distribution is realized by collecting the local indices of each installation in a
tree-like hierarchy. Each directory index service provides the necessary static and
dynamic information of the local resources. This enables workload management
tools or schedulers to retrieve actual information to find a suitable resource for a
given application.

It is possible and is also advantageous to have similar kinds of resources pro-
viding the same functionality in a single Grid environment. Providing such redun-
dant resources insures the QoS of the Grid environment by providing alternative
resources in case some resources fail, or when the same kind of resource is desired
by different component at the same time.

Data Management

The data management part is concerned with the transfer, allocation and manage-
ment of distributed data and provides a robust, secure, fast and efficient transfer of
a bulk of data. In the Globus toolkit, GridFTP and RFT are used in such a way
that GridFTP takes the secure data transfer part by providing stripped and paral-
lel stream mechanism whereas RFT deals with the reliability of the transfers used
to recover from failure of network outages, and server and client failures. For the
proper functionality of the GridFTP, Data storage Interface (DSI) must be available,
usually achieved by using the standard POSIX system. DSI for Storage Resource
Broker (SRB) and high performance storage systems is also available.

A number of storage devices connected together in a Grid environment can be
regarded as a single massive data storage system. As one of the leading projects
dealing with data in a Grid environment, LHC provides the date storage capacity as
its main shared resource. In the near future, the service provided by LHC will have
the same type of services provided by WWW at present. This fosters to achieve
the ultimate goal of the current Grid development to provide a single global Grid
environment.

Other important components of data management are Replica Location Service
(RLC) and Data Replica Service (DRS). The former is used to keep track where

CHAPTER 2. BACKGROUND OF THE THESIS 23

replicated data are kept on a physical storage system through using a distributed
registry mechanism to register files from users or services. This is performed by
using logical and physical names when files are created. Managing those replicated
data can be challenging if the number of those data are very high. For instance, the
RLS provided by the Globus Toolkit manages some 40 million files across 10 Grid
sites at present. DRS provides a high level data management web service, which
uses a pull based reallocation capability for the files. It uses the functionality of
RFT and RLS. In order to deal with data stored in a different database (which
may based on XML or relational database), OGSA-DIA provides a web service
allowing to query, update, transform and deliver structured data as well as semi
structured data.

2.3 Interactive Applications

The CrossGrid project10 aimed to extend the functionality of Grid computing with
interactive applications (having a typical characteristics of involving a human being
in the processing loop for computational steering) provides four interactive Grid
applications which are discussed below. Tools facilitating the development and
tuning of interactive applications and to adapt existing applications for use within a
Grid environment are presented. There are also services developed which supports
the new interactive functionality as shown in the Fig. 2.4. The description of GPM
and OCM-G can be found under the tools and services provided by this project and
are discussed briefly in chapter 5.

The CrossGrid project co-operated with other European and international Grid
projects, such as Globus, LCG (former DataGrid), EGEE (former EuroGrid), Grdi-
Lab and GridStart, to provide services to those projects and to have also an access
to the services provided by those projects. For instance, it developed enhancements
to the LCG middleware to submit interactive jobs transparently to the Grid.

One of CrossGrid’s research and development effort was the development of
the four user-friendly Grid-enabled interactive applications, both to serve as proof
of concept for the project approach, and to solve actual important scientific prob-
lems within the EU. Due to the difference of scientific fields and the corresponding
different tools used by the CrossGrid project, the software modules developed was
heterogenous in nature, which results in using non uniform methodology and pro-
gramming models. This was a barrier to have a unified architecture. In spite of this
fact, the products of the projects are based on Web-Service and XML technologies
in order to facilitate its future integration to the products based on the OGSA and
WS-RF based Grid environment.

10http://www.eu-crossgrid.org

CHAPTER 2. BACKGROUND OF THE THESIS 24

2.3.1 CrossGrid’s Interactive Applications

The interactive applications developed in the CrossGrid project have the objective
to design and develop large-scale Grid-enabled applications for simulation and vi-
sualization that require real-time responses from the system. Thus, the main chal-
lenges are pointing to the distribution of source data, simulation and visualization.
The main activities of the provided tools and services was porting those models
to the Grid, integrating them to the CrossGrid testbed and optimizing the underly-
ing simulations. Those applications cover simulation of vascular blood flow, flood
crisis support tool, meteorology and air pollution simulation, as well as data min-
ing in High Energy Physics. In order to show the complexity of these interactive
applications, their description will be presented here.

Interactive Simulation and Visualization of a Biomedical System

This work has demonstrated the Grid-based Problem-Solving Environment (PSE)
for the vascular reconstruction procedure, which includes a solver for blood flow
simulation, a Virtual Radiology Explorer (VRE) system for applying the bypass
procedure as shown in Fig. 2.2, and Grid Visualization Kernel (GVK) for the Grid-
enabled visualization of the result of the blood flow simulation.

The simulation volume is divided in to several sub-volume, and each sub-
volume is processed concurrently in order to achieve parallel execution of the com-
ponents. The inputs for this simulation are scanned data of the patient, which are
first segmented so that the arterial structures of interest remain in the dataset. The
segmented data are then converted into a computational mesh as shown in the Fig.
2.2. Some other natural inputs for the Virtual Reality (VR) are context sensitive
interaction by voice, hand gestures and direct manipulation of virtual 3D objects
generated from 2D scans. The VRE runs on a local machine. There is also a
lightweight version of the portal deployed on a PDA as a thin-client, which is a
Java portlet and enables monitoring the simulation progress.

The demonstration of this interactive simulation shows the possibility of hav-
ing a virtual surgery procedure on the Grid using Grid resources, which allows the
medical experts, mainly radiologist, to intervene in the simulation to get a support
in their pre-operative decision-making. A performance analysis tool GPM plays a
big role here to optimize the complex interaction to be performed. Using the avail-
able environment in the project, the following results are achieved in this context:
secure Grid access, node discovery and registration, Grid data transfer, application
initialization, medical data segmentation, segmented data visualization, distributed
blood flow visualization and bypass creation as shown in the Fig. 2.211.

The pictures 2.2 show the overall process of the medical simulation. From top
left to bottom right the process can be described as follows: A patient is scanned
in the Netherlands; the result data will be stored (e.g. in Poland); the data will
be segmented, filtered and cropped, using a Grid service; a bypass is added; a

11http://www.ercim.org/publication/Ercim_News/enw59/sloot.html

CHAPTER 2. BACKGROUND OF THE THESIS 25

Figure 2.2: Distributed blood-flow simulation and visualization on the Grid

computational mesh is generated (on the local machine) and given to the parallel
flow solver, running Amsterdam and Spain; the resulting flow fields are displayed
on the local machine using visualization services offered by the GVK in Austria.

Flooding Forecasting Application Simulation

The flood simulation is used to forecast a possible flood in a specific region and
to compute borders of disaster areas. The application core consists of two Grid
services: Workflow engine and metadata catalog as shown in the Fig. 2.3. Those
services operate on another service provided by the CrossGrid and LHC Grid mid-
dleware. The application itself is built on metrological, hydrological and hydraulic
simulation models, and post processing tools, connecting those simulations and
forming the Grid-Work-flow.

The metrological model used to forecast precipitation used by hydrological
model for computation of discharge of the river, is a parallel application using
MPICH-P4 for interprocess communication. This application is communication
intensive (circa 4 MB/s on 100 MB Ethernet network) with scalability of up to
8-10 nodes depending on the size of the problem. The hydrological models are
sequential jobs running only a few seconds. Thus, a multiple parallel execution of
the jobs with modified parameters was possible.

The result of the whole simulation can be registered to the replica manager,
which is used to download a file found in the meta-data catalog, and the meta-data
describing those results will be stored in the meta-data catalog service for later
search and retrieval. The CrossGrid Portal and the Migration Desktop as shown
in Fig. 2.4 provide a complete data management enabling the user to search and

CHAPTER 2. BACKGROUND OF THE THESIS 26

GRID

Data

Job

Data

JS
S

Portal

+
LB

RB

R
M

Metadata catalog
Metadata Application

Portal
Web

Browser

Metadata

W
or

kf
lo

w
/jo

bs

Desktop
Megration

Data source

Metreological simulation

Hydrologivcal Simulation

Hydraulic Simulation

HTML

Workflow engine

Figure 2.3: The architecture of the flood application

browse the meta-data. The work-flow engine uses the job submission service (JSS),
which uses the resource broker (CrossBorker) based on the scheduler developed
in DataGrid project, and Logging and Bookkeeping (L&B) services to select the
appropriate resources that will be used for job execution and job state change events
logging as shown in the Fig. 2.3.

To manage the creation, execution and deletion of the user’s work-flows, a
work-flow service providing an interface to the work-flow engine and database,
runs the whole work-flow in the Grid, and handles the job dependencies automat-
ically. This service stores also the previous work-flow result in order to provide a
possibility to compare the results.

Distributed Data Analysis in High Energy Physics (HEP)

The next generation of HEP like LHC at CERN requires unprecedented computing
resources for data analysis. In LHC, a proton will be accelerated in 2008 to get
hundreds of times heavier particles called Higgs-Boson, which may occur once in
1012 collisions and is the key to understand the origin of a mass and consequently
the origin of the universe. The amount of data which should be collected and
analyzed to get this information is 15 Petabytes (15∗1015) of data annually coming
from 109 proton-proton collisions every second. Those data should be stored and
computed in a distributed way and data mining will be applied for the analysis.

To facilitate this, this part of the CrossGrid project develops an end-user appli-
cation providing the interactive histogram and parallelized Artificial Neural Net-
work (ANN) training using the Migration Desktop as a user interface.

CHAPTER 2. BACKGROUND OF THE THESIS 27

Whether Forecast and Air Pollution Simulations

This application focuses on long- and medium-range weather forecasts for the
Baltic Sea basin, as well as comprehensive air pollution modeling for selected
sites. The simulation consists of a metrological modeling, which is the driving
force data delivery service, atmospheric pollution and wave models for the use by
atmospheric and oceanographic community.

The atmospheric model produces data for air pollution models, wave sea mod-
els, and data mining applications. This MPICH-P4 application is communication
intensive and thus unsuitable to run in an environment having more than 16 CPUs.
The aim of running this application in CrossGrid environment was to have a possi-
bility of running different setups of the model parallel in different domains. The air
pollution model uses metrological data and runs MPICH-G2 application request-
ing three-dimensional wind and rain information. Investigating the distribution of
air pollution, which is one of the tasks beside the whether forecasting, uses infor-
mation about the chemical concentration of the air, the topology of the region and
metrological data.

2.3.2 Tools and Services for the Interactive Applications

To facilitate the development and tuning of distributed, compute- and data-intensive,
interactive applications on the Grid as mentioned above, a set of tools and services
was developed and integrated in the CrossGrid project, which foster the deploy-
ment of the parallel applications to the Grid. Those components are shown in Fig.
2.4. The main tools developed include MARMOT, a debugging and verification
tool for MPI programs for both C and FORTRAN language binding; a Grid Per-
formance Measurement Tool (GPM) to detect application-specific bottleneck; a
performance Prediction Component (PPC) to predict the behavior of both appli-
cation dependent and general purpose computations and communications; and a
custom tailored benchmarks dealing with data transfer, synchronization, I/O delay
and CPU utilization.

Beside the monitoring service OCM-G for application monitoring (which is the
context of this thesis), the following services are developed to enhance the deploy-
ment and development activities of the interactive applications: Grid portal and
Migration Desktop (MD) for the user friendly interaction between the user and the
provided services; a roaming access, i.e., a mobile personalized environment, sup-
ported by a dedicated Roaming Access Server (RAS); CrossBroker for the purpose
of job scheduling; JIMS for the infrastructure monitoring; and a Grid-enabled Sys-
tem Area Network Trace Analysis (SANTA-G) for monitoring mainly the network
traffic. The Grid Visualization Kernel (GVK) is also used as standalone service
dealing with the visualization of the results of the simulation of an interactive ap-
plication. Those services are also intended to augment the middleware components
developed in Globus Toolkit, DataGrid, and EGEE Projects. In order to assure the

CHAPTER 2. BACKGROUND OF THE THESIS 28

Figure 2.4: Components developed in the CrossGrid project

integration between the applications, programming tools and the new services, a
realistic Grid-environment through an international testbed was set up.

Chapter 3

Evaluation of Measurement Data

3.1 Introduction

In this section the measurement issues of event triggered measurements and an
efficient execution model for the computed result data based on a Dataflow Graph
(DFG) approach is discussed.

It is often the case that the same event in an application can occur at different
times in different processes depending on, for example, the load of the machine in
focus. Because of this, one cannot assume concurrency of events in a parallel com-
puting environment. A metrics measurement for an interval can result in inaccurate
results since the desired event detection may occur out of the time interval scope.
To deal with this and similar measurement behaviors, the first section of this chap-
ter deals with different measurement issues. Following this, the development of
an efficient execution model based the flow of data is illustrated. Using a dataflow
model in the parallel computing environment is a novel approach that provides a
clean model for parallel computation of continuous streaming data since it auto-
matically supports parallelism. The Dataflow Model is suitable for composability
and decomposability of tasks which are vital for the distributed evaluation.

3.2 Measurement Issues

Tools for performance analysis measurement, like GPM [16, 74], usually show
the behavior of applications which are described using the corresponding metrics.
Some of those tools visualize the result of those metrics measurements in an online
fashion; others use the post-mortem technique providing the result values in an
offline manner. GPM, as one of the tools using the online approach, displays those
results while the application is running. Providing measurement results in an online
manner is much more difficult than the offline approach due to the fact that the
results must be provided on time and the mechanism used must not have an effect
on the application running.

29

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 30

The prerequisite to measure any quality is that the object to measure has a well-
defined value at any point in time [7]. For instance, a tree has a well-defined length
at any point in time, which can also be constant for a long period of time. If the
tree, for example, is cut down and processed to produce papers, the length can be
considered as zero. There are also cases where it does not make sense to measure.
For example, measuring the velocity of a house will not have any meaning, as far
as the house is not sinking.

With the same sense, a well-defined measurement metrics describes a measur-
able quantity, which has a defined value at any point in time as discussed in [7].
Therefore, the value of a metrics is a function of time : V (t). Depending on the
visualization component, the value of this metrics at discrete points t1, t2, t3, t4, ,
tn are sampled values at those points in time and given as:

V1 = V (t1) ,V2 = V (t2) ,V3 = V (t3), ..., Vn = V (tn)

In order to show more accurate measurement result values, the update interval
to collect those sampled values must be as short as possible. Having a short up-
date interval, on one hand, will result in an intensive communication between the
front-end and the back-ends via the network leading to unmanageable front-end.
On the other hand, the underlying monitoring system may not be able to provide
results of measurements in such a short period of time which may result in a less
accurate result values. Those and related problems and their possible solutions will
be discussed in this section. Even though different components of a parallel tool
can be consumer of the computed measurement result values, a visualization com-
ponent is choose to be as a consumer of the measured result values to simplify the
discussion.

3.2.1 Acquisition of Monitoring Data

For the visualization of performance measurement result values, we will discuss
the two different approaches of measurement visualization. The first one shows
the current measurement values using, for example, bar graphs. The second one
presents an aggregated measurement value showing the values evolution over time,
for example, using a curve diagram. In both cases, the update interval of the mea-
surement values, as determined by the visualization component is given as4t:

4t = max(4ti)

where
4ti = ti+1− ti, with i ∈ [1,n−1]

In order to show the current measurement value Vcur at a time tdis where dmin

and dmax denotes the minimum and maximum communication delay (latency), be-
cause of the delays in communication, needed to transfer the result data from the
back-ends to the front-end, the following equation should be satisfied where tcur

donates the current time.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 31

mpi_send
t3 t4

Time

mpi_send

V

t1 t2

V+=V(t2)−V(t1)

t

mpi_send
t5 t6

ti

VV+=V(t4)−V(t3)
V+=V(t6)−V(t5)

GPM

P1

OCM−G

d
ti+1

Figure 3.1: Interaction between front-end and back-end

∃tdis ∈ [tupper−4t, tlower] : Vcur = V (tdis)

where

tupper = tcur−dmax∧ tlower = tcur−dmin

When4t→ 0, the graph showing the values evolution over time converges to
the function graph V (t). In order to achieve this optimal value, the update interval
must be short enough. This means that the data acquisition of the visualization
component must happen more frequently. This increases the communication be-
tween the visualization component and the underlying monitoring system, which
may be result in bottleneck at the front-end.

To show the aggregated values using curve diagram, the dmin and dmax above
will not play an important role since the current results will not affect the graph
that much. Fig. 3.1 shows the data acquisition by the visualization component
where 4d ∈ [dmax, dmin]. In this example, the data returned by the volume V is
accumulated from all MPI_Send occurred in the given measurement interval (4t).

In some special cases, as it is sketched further below, achieving those theoret-
ical values, however, is not as feasible as it appears to be. In order to aggregate
different values at different time, the following additivity property of the measured
values must be fulfilled which is a pre-request for further computations based on
this assumption.

∀t0 , t1 , t2 with t0 ≤ t1 ≤ t2 :

V (t0, t2) = V (t0, t1)+V (t1, t2)

This equation enables us to compute measurement results in a measurement
interval as shown below, where ts represents the start time of the whole measure-
ment:

V (t1 , t2) = V (ts, t2)−V (ts, t1)

To compute the time derivative measurement values, which gives, e.g., the
bandwidth measured when sending data, the following equation can be used which

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 32

Time

Measured Result(M)

e1 b2b1 e2 b3 e3

M(e1)−M(b1)

M(e3)−M(b3)

M(e2)−M(b2)

Figure 3.2: Curve diagram showing measurements at the begin and end events

does not require the result value at the start of the measurement measured by M(ts).
The additive metrics assigned by M′(tlast , tcur) is used to measure the computed
data between tlast and tcur. Those points are represented by begin (b) and end (e)
events in Fig. 3.2.

M′(tlast , tcur) =
M(ts, tcur)−M(ts, tlast)

tcur− tlast

=
M(tlast , tcur)

tcur− tlast

3.2.2 Acquisition of Event Based Monitored Data

Since we are dealing with different processes which communicate by messages and
execute events, one can aggregate the values delivered by those events by associat-
ing the event occurrence.

This is possible since those events occur at a particular process are assumed
to be atomic in nature and linearly ordered by their local sequence of occurrence.
In addition to this fact, those kinds of events can be modeled as having a negligi-
ble duration. There are different possibilities to deal with event related data. One
can compute the collected data whenever an event occurs. In order to measure
computed data in an interval, the beginning and the end of the interval can be asso-
ciated with two different events which can be associated to each other. In [16] it is
discussed how to detect the reason for a performance degradation, which involves
event based measurement evaluation. Use cases as discussed in section 7.2) illus-
trates how the distributed evaluation is performed using the dataflow technologies.

There is also a possibility to use an event in a loop to monitor the activities
of every iteration. For event triggered measurements, since the necessary actions

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 33

 _ _ _
 _ _

end 0 begin 1 end 1 begin 2 end 2 begin 3 end 3 begin 4

a

measurement interval

+

+

+

+

b

t
s t

cur

time

Figure 3.3: Accumulating the result values of event based measurement within a
measurement interval

are modelled by events, time needs only be advanced with the occurrence of an
event and is therefore discrete. Thus, it is obvious that with respect to the causal-
ity relation the exact global time at which those events happen is of no concern.
Therefore, the so-called virtual time is used which is an arbitrary and monotoni-
cally increasing integer number used to associate events belonging together.

Using the information delivered by the begin and end events togather with one
or more built-in metrics, some meaningful metrics can be specified. A value of such
metrics is computed by subtracting an accumulated sampled value of the standard
metrics at the end event from the one at the beginning, as shown in Fig. 3.2 and
3.3. For a single event occurring in the application loop, the value of a previous
iteration will be subtracted from the current one.

Actually, this is an ideal model which cannot be met easily in a distributed
computing. The very first prerequisite for this kind of computation is that the be-
gin and the end of the measurements are picked up on all the processes involved to
compute the desired metrics at the same time. This is not feasible in a distributed
environment where the relative speed of the process’s local activity is usually not
known in advance. Even if one repeats the execution of the same algorithm in
different processes, the execution time and message delays may vary substantially.
In addition to this fact, there is no perfectly synchronized system clock and this
can affect some measurement activities. Therefore, it is not easily feasible to iden-
tify concurrent activities in such a distributed computations which does not share
memory.

In general, we are dealing with a distributed system consisting of n sequential
processes P1, P2, ..., Pn communicating by the means of messages. A coordinated
execution of the same algorithms on all of those processes (except the master pro-
cess which usually manage the computed result values coming from the backend
processes) forms a distributed computation. Thus, a convenient way of represent-
ing such a computation would be a space-time diagram as sketched in Fig. 3.4.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 34

Since simultaneity cannot be guaranteed in a distributed system, an event can-
not trigger a measurement on a remote node properly. In Fig. 3.4, the measurement
values marked with “a” will not be taken in to account even if it belongs to the mea-
surement at the begin event . A computed value of P1 is sent to P2 after the begin
event detected at P2. The values computed at marker “a” and/or “b” will not also
be taken in to consideration because of the very same reason.

begin

enda

b
c

P1

P2

Figure 3.4: Causal relationship between actions performed by different processes

A possible solution, which also results in providing more accurate measure-
ment results for this kind of problems, is to compute the measurements between
those events for each process separately and to aggregate them when the corre-
sponding end events come up. This technique helps us also to evaluate measure-
ment results at the place where their corresponding events occur which is an im-
portant factor for the distributed evaluation of measurements. Even if the measure-
ments between the begin and end events are measured separately for each process,
there are other measurement problems to deal with.

One of the problems arises because of the communication delay of the underly-
ing monitoring processes. That means, measurement result values at the beginning
and at the end of an interval may be handled in the way which may not be desired
by the user. The user may intend to include all end events in spite of the fact that
they may be out of the measurements interval scope, or he may be interested only
for the values computed in the measurement interval. This is due to the fact that
some measurements at the end and at the beginning of the measurement interval
may not be taken into consideration or they will be taken into account mistakenly
since they may be out of the scope of the measurement interval like the first begin
event of P2 and the last end event of P4 as shown in Fig. 7.11.

If, for example, one of the pair events is not detected at all since it is not within
the measurement or update interval, we cannot compute the measurement result
value for that pair of events without modifying the provided approach. When
the visualization component tries to read the measurement results between pair
of events belonging together as depicted in Fig. 3.3, we must also compute the
measurement results computed until the first end event is detected.

This can happen, especially, when the update interval of the visualization com-
ponent is shorter than the interval between the begin and the corresponding end
event. That means, if the visualization component reads a result value after a begin

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 35

event is detected, but the corresponding end event does not yet occurs, then the
result value computed between the time when begin event is detected and the time
when GPM reads the result value must be computed. On the other hand, when
the measurement is started between a begin and an end event, the value computed
between the start of the measurement and the begin event must be deducted from
the final result.

Let us now see the ideal case where the measurements are computed for all pair
events belonging together. Assuming that the measurement is started between any
two consecutive events, the result of the measurement M (providing the measure-
ment results between the start of the whole measurement and the current read time
which is also between to consecutive events) can be modelled as follows:

M(ts, tread) = ∑
i|ts+4d/2<tb

i , te
i ≤tread+4d/2

(V (tb
i)− (V (te

i))

Where ts represents the start time of the whole measurement, tread donates the
time when the measurement is read for the last time, tb

i describes the ith begin event,
and te

i the corresponding end event. Assuming that the request and response delay
for the data acquisition represented by4d/2 are equal, ts +4d/2 and tread +4d/2
describes the accurate start and read time of the monitoring system, respectively.
As shown in the Fig. 3.1, 4d describes the latency between the monitoring inter-
face and the visualization component, therefore the time elapsed at the beginning
till the monitoring system get the request is 4d/2 and is also the same at the end
of the measurement during the data acquisition by the visualization component.
This shows that the measurement value M(ts, tread) can be measured at any point
in time.

In order to implement the measurement M, the following algorithm can be
used:

1. M−1:= 0, to initialize the result value

2. Si = V (tb
i), when a begin event is invoked

3. Mi = Mi−1 +V (te
i)−Si, when an end event is invoked

From the observation above, it follows that:

M(ts, tread) = Mn

where n describes the index number of pair detected events so far and satisfies
the following equation

n = sup{i|ts ≤ tb
i , te

i ≤ tread}

If the frequency of the update interval of the visualization component is higher
than the event rate, then we may get an inaccurate result value. The reason for
such kind of problems is that the probability to read results between two pair of

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 36

events will be higher. A possible solution for this kind of problem can be achieved
by returning the values when measurement results are acquired between the two
paired events. This is performed by providing result values between ts and te

i and
tb
i and tread . If the end event of a certain measurement is not detected, then the

value M will be adjusted to its accurate value as shown below.

M(ts, tread) = Mcur +V (tread)−V (tb
n−1)

where

Mcur = ∑
i|ts+4d/2≤tb

i , te
i <tread+4d/2∧0≤i<n−1

(V (te
i)− (V (tb

i))

where n represents the number of start and end event pairs as before.
Consequently, if a user starts a measurement while the execution of the appli-

cation is just between a begin and an end event. The measurement result between
the start of the measurement and the first upcoming end event must also be taken
into account. In this case, if the algorithm described above is used without any
modification, reading the results after the te

i would be V (te
i) and this includes the

results between tb
i and ts which is not correct. Therefore, the equation must be

adjusted so that the result will be reduced by the value computed between tb
i and ts

as shown below:

M(ts, tread) = V (te
0)−V (ts)+Mcur

where

Mcur = ∑
i|ts+4d/2≤tb

i , te
i <tread+4d/2∧0<i≤n−1

(V (te
i)− (V (tb

i))

If both of the above cases are happening at the beginning and at the end of
certain measurements, the following modified equation will provide the correct
result value:

M(ts, tread) = V (te
0)−V (ts)+Mcur +V (tread)−V (tb

n−1)

where

Mcur = ∑
i|ts≤tb

i , te
i ≤tread∧0<i<n−1

(V (te
i)− (V (tb

i))

The algorithm for this equation can be obtained by extending the algorithm
above with the initial value H0 = V (ts). If the first event is a begin event then H0
will be overwritten with V (te

i) otherwise if the next event is an end event the value
between the start of the measurement and this end event will be added to the result
values.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 37

2s

10

20

30

40

50

60

4s 6s 8s 10s

written data in MB

70

Time

a)
b)

c)

Figure 3.5: Writing data to a disc.

3.2.3 Difficult Measurement Issues

Providing result values between a begin and the corresponding end event can only
be possible if the measurement provides the desired data at the time of reading
the measurements. This enables to provide a more accurate result data. Unfortu-
nately, this is not possible for all kinds of measurements. There are measurements
which cannot provide interim result at an arbitrary point in time. For example the
operating system function write() provides results only at the end of the writing
process. If the writing process is not accomplished, reading the result values will
be impossible.

Let us assume that writing 900MB of data to a disc takes 6 seconds and the
update interval of the visualization component is one second. In this case, if the
visualization component wants to access the results between the first and the 6th
second, the result value returned will be 0. Providing the amount of data written
to the disc before the writing process is accomplished is not supported by the OS
and thus requires to go deep into the operating system kernel which may be time-
consuming and may adulterate the final results. The problem is also that after 7th

second the visualization component will get information that 900MB are written to
the disc in 1 second which is obviously not true.

In such a case, a better solution is to return no result at all until the writing
process is finished, instead of returning a wrong result. At the end of the writing
process, a summary result value can be returned which may provide the average
result value as shown in Fig. 3.5c. The summary result, in this case, is 900MB in
6 seconds which is 150 MB/s.

Another problem involved in such measurements is concerning about the visu-
alization of those results. For the curve diagram, the summary value, as described
in Fig. 3.5c, will be shown with a delay of the writing process time, i.e., with a
delay of 6 seconds. Unfortunately, there is no way to present these results using

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 38

bar graphs, since bar graphs are only used to show the current result values of the
online measurements.

3.3 Developing Augmented Dataflow Graph

3.3.1 Introduction

In order to achieve a manageable parallel tools to be used in a Grid environment,
the underlying design of most of the parallel tools which are used for multi clusters
and super computers must support hundreds of thousands of processes. If this is
not the case, the design must be adapted to the new challenging environment in
order to profit from the variety of resources provided on the Grid.

In this section an approach based on a distributed evaluation of data using an
augmented dataflow model will be presented which provides an efficient way of
computation in a distributed way. This includes, in general, the distribution of the
tasks, collecting, and processing the desired result values. In order to have an ef-
ficient execution model, the dataflow graph must be application specific since the
flow of data depends on the desired measurement scenario. Even for the same ap-
plication, the flow of data can be different if the applicable objects used are not
the same. This and other issues enforce the development of a new and modified
dataflow model, which also support the dynamical creation of measurement sce-
nario specific dataflow graphs.

Since the augmented dataflow graph used for the distributed evaluation of per-
formance data is based on the classical dataflow model, the next section describes
the formal specification of the dataflow computing model. Following that, it will
be shown how the classical dataflow model is modified to suite the requirement
needed to build an efficient multicast/reduction overlay network using the Aug-
mented Dataflow Model (ADFM).

3.3.2 Dataflow Model (DFM)

Several ideas of dataflow models are developed and different software are also
implemented using the dataflow model as discussed in section 4.4. By the imple-
mentation of a software, a dataflow graph can be used to generate intermediate
representations, specially for data processing. Using this model, the execution
sequence of certain expression can be altered without affecting the function com-
puted, as a partially ordered set of expressions. This increases the total throughput
and decreases the execution time.

As the underlying mathematical model, the Dataflow Model (DFM) prescribes
the essential data dependencies. To achieve a better utilization of the processing el-
ements and to create a more balanced load between front-end and back-ends with
master/slave architecture, the ADFG is developed which is based on the classi-
cal Dataflow Graph (DFG) [35, 36]. The DFG technique has proven to provide a

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 39

powerful computation model since its fundamental properties are to support par-
allelism automatically, and to enable the execution of scalable, high performance
computations on continuously streaming data.

In addition to the behavior mentioned above, composability, decomposability
and functionality are also the exciting behavior of the DFM to be strongly consid-
ered in the distributed programming.

The Classical Dataflow Graphs

Despite the fact that there are various implementations for the DFM, all dataflow
graph schemes are based on a number of common concepts. A DFG consists of
nodes (actors) and arcs representing data dependencies (the node of the DFG will
be called Dataflow Node (DFN) hereafter). While the composability behavior of
the dataflow graph enables combining different sub-DFGs to form a new single
DFG, its decomposition behavior enables to create multiple different sub-DFGs
from a single DFG. The functional behavior of a DFG depends on the firing rules
possessed by its nodes.

A DFN, in general, has a finite number of inputs and a finite number of out-
puts, and is describes by the mathematical function it consists. The outputs are the
result of absorbing the input tokens and applying a firing rule on them. A firing
rule is a condition under which the actor may compute the input tokens and gen-
erates output token. Thus, the evaluation of a dataflow graph is equivalent to the
evaluation of the firing rules it consists. The DFM is also self-scheduling in that
instruction sequencing is constrained only by data dependency and flow of control
is encapsulated with the flow of data.

The precondition for the firing rule is the availability of all input tokens which
are necessary to compute the function describing the firing rule. This uniform
firing rule comes from the classical approach. As it will be described for ADFG,
this can be modified to suite the underlying algorithm. The simplest mechanism
is that the DFN fires when its operands are made available by the children DFNs
and the results are passed to the parent DFNs without a control whether the token
produced before is consumed or not.

Formally, a DFG is an abstract structure represented by Directed Acyclic Graph
(DAG). Such a graph consists of actors as operator that fulfils a partial order rela-
tion.

Definition: A directed graph [32] G = (V, E) consists of a set of vertices

V = {n1 ,..., nk} and a set of edges E =
(

V
2

)
of pairs {(v, w) : v, w ∈V}

Definition: In a graph G = (V, E) a path p is a sequence of vertices p = {v1, ...,vk :
vi∈V, with i ∈ [1,k]} such that {(v1,v2),(v2,v3), ...,(vk−1,vk)} ⊆ E

Let p(G) be the set of all paths in graph G.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 40

Definition: A cycle is a path p = {v1, ...,vk} such that k ≥ 2∧v1 = vk

Definition: A DAG G is a directed graph with no cycles.

Definition: A dataflow graph

DFG = (V, E)

is a DAG used for the flow of data from the leafs to its root.
This classical DFG has drawbacks which avoids its direct usage in some soft-

ware development. For the scalability reason, a buffer (which will be called as Data
Provider (DP) hereafter) must be available between any two consecutive DFNs to
store data which cannot be consumed immediately. This DP should have an unlim-
ited length to overcome the scalability requirement of the augmented new model.
In order to build an efficient DFG, this must be extended to support the desired
feature.

Beside this, it must be possible to have a bi-directional communication between
any DFN and DP to enable the flow of control data in a top-down manner as well
as to support a flow of result data in a bottom up fashion. Those drawbacks are
the basic requirements arises from the need of having a more efficient, scalable,
flexible, dynamic and powerful model which should result in a high throughput to
distribute control information and to collect computed date in tools which oper-
ates in an online manner. In addition to this, the new ADFM supports a suitable
dynamic dataflow splicing mechanism which simplify distribution of the subtasks
represented by sub-DFGs. Thus, it is possible to create and destroy all or part of
the dataflow graph dynamically.

In order to synchronize the results using a pull or push mode [7], it is also
necessary to have a bi-directional communication between the DPs and the DFNs.
Whether all the input token are consumed by the DFNs and/or a result goes to all
the output arcs, should also be decided as a result of computing the firing rule of
the specified DFN. In order to fulfill this and other requirements an ADFG will be
presented in the next subsection.

3.3.3 Augmented Dataflow Graph

This subsection describes the modified DFM which fulfill the necessary require-
ments to build an efficient broadcast/reduction overlay network. The first major
difference between this and the classical DFG approach is that this model provide
a first-in, first-out queue as DP between any two consecutive DFNs which makes it
scalable. This DP may generally be used to control the flow of data (which will be
called result token hereafter). The DFN which needs to write the data in to the DP
must not wait untill the data written into this DP are consumed. At the same time,
the DFN which is going to read those data must not also read those result token
immediately to make the DP ready for the next activities. That means that all DFN

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 41

can read and write the result token on demand, which is also helpful to synchronize
the data belonging together. Therefore the ADFG is be defined as follows:

Definition: An ADFG

ADFG = (DFN, DP)

is DAG where its edges are DPs.
To provide a single result of the ADFG, the root of an ADFG is always a

DP. All the leaves are DFNs which provide the input data, and every DFN can
have multiple child DPs and also (except for the root DFN) multiple parent DPs
whereas every DP can have only a parent and a child DFN as shown in Fig. 3.6.
The different properties of these DFNs and DPs are described as follows:

Dataflow Nodes (DFNs) and Data Providers (DPs)

An ADFG consists of a finite number of DFNs and DPs. The DFN processes
a stream of input data provided by its child DPs. After processing these values
the DFN produces an output result token only to those DPs which are specified
to consume the computed result value. To simplify the formal description of the
ADFG, the ith DFN of the ADFG is represented by DFNi where i is a unique
identifier and the root DFN is represented by DFN0. Since we are interested with
backwards as well as forwards flow of information, we write

DFNi→ DFN j

to represent the flow of data from the ith DFN to the jth DFN in a top-down and

DFN j← DFNi

in bottom-up manner.
A single DP is represented by DPj where j, analogous to the DFN, represents a

unique identifier and DP0 represents the DP at the root DFN. The DFN which is a
destination of a DP is called parent DFN of that DP and is represented by Pd f n(DPi)
whereas that which is source is called child DFN and represented by Cd f n(DPi).

Similarly,

Ci
d f n(DFN)and Pi

d f n(DFN)

represents the ith child and ith parent DFN of a DFN. A single DFN can have
none or multiple child DPs, but must have at least one parent DP. Analogous to the
DFNs, the ith child and the ith parent DPs of a DFN are represented with

Ci
d p(DFN)and Pi

d p(DFN)

respectively. In both cases above if i is omitted, it means that the whole parent
and child DFNs and DPs.

The number of those parent and child DFNs and DPs are given by

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 42

DFN

DFN

DFN DFN

DP

...

. . .

. . .

f(I (DFN))n i

O (DFN) n i

Elements of a single
result token

DFN 0

DP0

DFN

DPDPDP1

1

DPDP2 3

4

2

3 4

5

6

5

. ..

. . .

. . .

Figure 3.6: A simple example of an ADFG.

N(Cd f n(DFN)), N(Pd f n(DFN)), N(Cd p(DFN))and N(Pd p(DFN))

respectively.
The ith child and parent DFN of a DFN are assigned as follows:

Cd f n(DFNi), and Pd f n(DFNi)

Since a DFN can be used to merge or sink the input DPs, the number of the
input and the output DPs is usually not equal.

An input for a DFN is then described by a {DFN, DP} set. In(DFNi, DPj) is
then the nth input of the ith DFN on its jth input DP and In(DFNi) represents the
set of all nth input of all child DPs of the ith DFN. Analogous to this, the output of
the DFNs are given by

On(DFNi, DPj)and On(DFNi)

respectively.
In order to avoid having the same DFN, which has the same parent DFN mul-

tiple times in a single DFG, the ADFG supports also multiple DPs between two
consecutive DFNs as used by DFN1 and DFN2 as shown in Fig. 3.6. This ac-
tually results in a complex dataflow graph which allows defining the underlying
functional elements of the DFN only once. At the same time, this allows to have an
access to different results of the same DFN at different time which avoids accessing
multiple results from the same DP and so simplify the computation.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 43

DFN Functionality

After the above formal description, the functionality (f) of ADFG can be given as
a mathematical function that consumes a set of input result tokens from all child
DPs of a DFN and produce a single output result token to be forwarded to parent
DPs.

f (In(DFNi)) = On(DFNi)

Since this function may result in a result token which may not be forwarded
to all Pd p(DFNi), conditional forwarding can be enabled by using additional con-
straints like a requester identifier to be used by the firing rule. Clearly, outputs
of child DFNs are inputs of the corresponding parent DFN of the DP in focus as
shown below. In general, the nth output of a DFN is not the nth input of its parent
DFN, because of the possible conditional forwarding of the result tokens.

{On(DFNl, DPp), . . . , On(DFNl, DPq), . . . , Oo(DFNm, DPr), . . . ,\

Oo(DFNm, DPs)}

= Ik(DFNu)

where
DFNu = Pd f n(DFNl) = . . . = Pd f n(DFNm)

and

[p, q]⊆ Pd p(DFNl)

and

[r, s]⊆ Pd p(DFNm)

Since every DP can contain m number of result tokens R, the ith result of the jth

DP is given by Ri(DPj) and the numbers of results in a DP is given as N(Ri(DPj).

Composition and Decomposition

The ADFG supports also the composition of a set of sub-DFGs (SDFG) in to a
single DFG and decomposition of a single DFG into a set of SDFG. A SDFG is
a part of DFG which has at least a DP and a child DFN. In case of composition,
in general, an ADFG is generated by successively inserting a SDFG to it. In order
to differentiate the created ADFG from the SDFG, the former is assigned as a
main DFG. SDFGs can also be built-up from a set of sub-DFGs, which are called
SSDFGs.

Therefore, an ADFG can be described in terms of the possible SDFGs it con-
tains:

ADFG = {SDFG1, SDFG2, . . . , SDFGn}

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 44

A SDFG can be given as

SDFGi = {SSDFG1, SSDFG2, . . . , SSDFGm}, with i ∈ [1, n]

and SDFG(DFNi) represents the sub-DFGs rooted at the DFNi.
Therefore, ADFG consists a set of SSDFGs. These SSDFG can be disjunct in

such a way that there is no single SDFG which may represent them. Thus, those
SDFG are allocated using the location where they reside. In spite of this fact, a
virtual link will be created in that host between the main SDFG and those SSDFGs
which are disjunct. This virtual link is used to have an overall control over all the
disjunct SSDFGs.

Location (Host) of the SDFGs

The location of the SDFGs is given by H(SDFG). The value of this is a monoton-
ically increasing integer number and H(SDFG) = 0 shows always that the SDFG
resides at the location where the main DFG resides. In addition, different SDFG
can have the same location. That means if

H(SDFGi) = H(SDFG j) 6= 0

then both graphs are residing at the same remote host.
In order to avoid a frequent request of a DP by the corresponding parent DFN

whether data is available or not, a notification from the DP to the DFN is necessary.
For the synchronization purpose, the DFN must also be able to request the DP
directly whether a data is available or not, without receiving a notification. This
results in a bidirectional connection for the control flow between the DFNs and the
corresponding child DPs as shown in the Fig. 3.7.

In addition to those bidirectional connections which are used only for control
flow between DFNs and their DPs, there is always a single connection used for the
flow of result tokens between them. In fact, these connections can also be used
by DFNs to identify the type and location of the DFNs which are behind the DPs.
For example DFN B in Fig. 3.7 can identify the DFN A by using the control flow
connection ”g” between DFN B and the DP and ”d” between the DP and the DFN
A. In a similar way, the DFN A can identify the DFN B. The four control flow
connection, as depicted in Fig. 3.7, will be described as follows:

• the arc ”c” and ”g” are intended to be used by the DFN A and DFN B for a
request purpose (e.g. to request the availability of data values in the DP by
the arc ”c”).

• the arc ”d” and ”h” are supposed to be used for notification purposes (e.g.
to inform DFN A that a token is available in the DP) and to identify a child
DFN, respectively.

• the arc ”e” and ” f ” are used to fetch a result token from the DP and to write
a data token to the DP, respectively.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 45

Data Provider

Dataflow Node B

Dataflow Node A

a e

f

b d

g h

c

Figure 3.7: Bi-directional connection between a DFN and a DP.

The ADFG supports event oriented as well as request oriented flow of data
which is also known as the push and the pull model, respectively. For the purpose
of clarity, the control flow connections (like ”c”, ”d”, ”g” and ”h”), between the
DP and the DFNs will be mostly omitted in the DFG and only the connection (like
”e” and ” f ”) for the flow of data will be used as an arc between any consecutive
DFNs.

3.3.4 The Push and The Pull Models

In order to realize an automatic flow of result token from the leaves of the ADFG
to its root DP and also to enable request oriented flow of data, this design supports
also, as mentioned above, the pull as well as the push model.

The pull model enables a flow of data initiated by the root DFN in a top-down
manner. This means the leaves of the DFNs of the ADFG are requested to provide
result tokens to the consumer of those data (e.g., the UI used to visualized the re-
sults in case of performance analysis tools can be considered as the consumer of
the final result tokens). In order to provide an efficient implementation, callback
function can be used to deal with result tokens which are provided asynchronously
since they cannot be accessed immediately. The push mode, as a bottom-up ap-
proach, is initialized by the events triggered to provide result token to the leaves
of the ADFG. This means that whenever an event occurs, the triggered consumer
DFN will get the computed result tokens.

In both cases, the received result tokens will be written automatically to the
requester DPs using the communication assigned by row ” f ” in Fig. 3.7. The DP
in turn notifies its parent DFN to access that result value using the communication
represented by arc ”c” and the parent DFN reads the result tokens using the com-
munication assigned by arc ”e”. Since every DP notifies its parent DFN as soon
as it gets the first result token and the parent DFN tries to read all the available
result tokens from all its child DP, it is guaranteed that the flow of continuous data
is automated.

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 46

...

...

Front−end

Back−end_3

Back−end_2

Back−end_1

Back−end_4

Back−end_n−3

Back−end_n−2

Back−end_n−1

Back−end_n

Back−end_n−4

Front−end

Back−end_n−4

Back−end_n−3

Back−end_n−2

Back−end_n−1

Back−end_n

Back−end_4

Back−end_2

Back−end_1

Back−end_3

site m

site m−1

centralized distributed

site 1

Figure 3.8: Centralized versus distributed architecture

In order to collect result tokens belonging together and evaluate them at any
level of the DFG, those result tokens will be synchronized according to a specified
constraint in the DFN. This method allows controlling the consistency of the data
at every level of the DFG through checking the availability of the necessary result
tokens which will be used by the firing rule of the DFNs. This means that the DFN
will wait until all the results, which belong together, are available.

In this way, an automated parallel execution model is developed which is highly
scalable and also able to cope with stream of time-stamped result tokens.

3.4 Distributed versus Centralized Evaluation

In this subsection we will discuss the differences between the centralized and dis-
tributed evaluations. Both methods are dealing with front-end and back-end com-
ponents of parallel and distributed computing. The front-end is usually used to
broadcast control information and collect the computed result values, whereas the
back-ends compute the result values and send them to the front-end, as shown
in Fig. 3.8. In other words, the back-ends are the input data producers, and the
front-end is the consumer of the computation output. Such increase in number of
back-ends has driven the desire of a distributed evaluation to make the evaluation
manageable by the front-end and reduce communication overhead.

Specially, for the optimal computation in an environment like the Grid [5],
where intersite communication must be reduced, the additional tools used with
the application running on the Grid should not have an additional communication
overhead which will reduce the performance of the whole Grid environment. In

CHAPTER 3. EVALUATION OF MEASUREMENT DATA 47

general, an intensive communication between different processes residing specially
on different sites will reduce the advantage gained through grid computing.

3.4.1 Centralized Evaluation

A centralized evaluation as used by most of the tools in a distributed computing
environment works well in a small-scale environment. But, when systems and
application get larger, those tools would have significant performance problems.
The reason is that the front-ends of those tools would not be able to process quickly
enough because of the huge amount of data sent to them.

The amount of data to be sent to the front-end increases immensely when the
number of back-ends increases and/or when they produce measurement results
more frequently. For instance, the front-end must be able to manage event based
measurements which may produce hundreds of event based result values in a sec-
ond resulting in intensive network communication making the front-end hardly
manageable.

Most of the centralized components send measurement results to the front-end
to evaluate there without leveraging the possibility to evaluate those results locally.
As far as the number of result values sent to the front-end is not so big in a given
time interval, this method will work well. Centralized evaluation may even be
helpful if all the detail information is needed at the centralized component, for ex-
ample, for the purpose of statistic. Centralized evaluation may not scale not only
when the number of back-ends increases but also when the number of communi-
cation between a single back-end and the front-end increases which is application
specific. To use a centralized evaluation, for example, for the performance analysis
of interactive applications on the Grid will not scale since this must be done in an
online fashion for the application which will run for a long period of time.

3.4.2 Distributed Evaluation

A performance bottleneck, which is the result of centralized evaluation, can be sig-
nificantly reduced when the computation of the measurement results are computed
as local as possible, and only the end results are sent back to the front-end. As lo-
cal as possible means that measurements which can be computed at a single remote
host must also be evaluated on the corresponding process in that host. And only
the possible aggregated result value will be transferred to the front-end as shown
in the left side of Fig. 3.8. Even at the front-end, it is possible to have another
aggregation operations before the result values are sent to their end consumer.

The distributed evaluation presented in this thesis is briefly discussed in chapt.
6, and it is applied on a performance measurement analysis tool. This is achieved
by introducing an enhanced dataflow model for an efficient evaluation of dis-
tributed data in an online fashion.

Chapter 4

Related Works

4.1 Introduction

Achieving scalable performance analysis of both infrastructure and applications
related behavior in a distributed environment has always been a main concern and
motivation for many research communities. This scalability issue demands a con-
tinuous effort for innovation a distributed evaluation. The increasing in number of
processes of high-performance computing system from hundreds to hundreds of
thousands has enforced the development of new programming models and infras-
tructure to cope with the new emerging demands.

There are a lot of efforts to provide efficient parallel tools which use different
kinds of approaches to increase scalability. Those tools provide different methods
to realize the distributed evaluation of data which are related to the solution pre-
sented in this thesis. Most of the solutions are motivated by the requirements of
the different applications in focus. As a result, different tools are being developed
for different kinds of applications. There are many solutions using software based
collective communications infrastructure to support parallel tools and applications,
and most of them are using tree based computation infrastructure which reduces the
computational complexity from O(n) to O(logn

2). However, most of the provided
solutions are not suitable for scalable, interactive Grid applications. Even if most
of the concepts and approaches are related to the distributed evaluation presented
in this thesis, none of them are applying a dataflow mechanism, which is most ef-
ficient by supporting parallelism automatically. In addition, the provided solutions
are based on different communication models, tool architecture and infrastructure
and software engineering trade-offs than the one presented in this thesis.

At the same time, many tools are also trying to provide an efficient and flex-
ible way of specifying metrics to describes the computation to be evaluated in a
distributed way. In this section, therefore, first the approaches for distributed eval-
uation will be discussed which will be followed by the presentation of the avail-
able specification mechanisms. At the end of this chapter, the development of the
dataflow model is discussed which shows the historical success of the dataflow

48

CHAPTER 4. RELATED WORKS 49

graph approach. Those approaches are the basic for the development of the aug-
mented dataflow model presented in this thesis.

4.2 Methods of Distributed Evaluation

4.2.1 Paradyn/MRNet

Multicast Reduction NETwork (MRNet)1 [13, 29] is part of an effort used to im-
prove the scalability behavior of parallel performance and system administration
tools and is used by the Paradyn performance analysis tool [54] developed in Com-
puter Sciences Department University of Wisconsin. The Paradyn distributed eval-
uation tool contains components that belong to the front-end, the intermediate pro-
cesses and the back-ends. It uses message multicast from the front-end to the back-
ends, and data aggregation from the back-ends to the front-end using multiple data
channels for logical streams of data.

Through incorporating a tree of processes as intermediate components between
the tools front-end and back-ends, MRNet facilitates the distribution of tools’ activ-
ities and the reduction of the computed data. Within the internal processes, filters
(avg, sum, min, max and concat) are built-in to aggregate the data sent to the front-
end. To extend the filter mechanism provided by the MRNet, a new filters must be
provided by the user and will be loaded as required. The same is true for the con-
figuration file consisting of the topology of the tree and the host assignment which
must be available a priori to be used as a layout for the internal processes. The
internal processes use balanced tree topologies to benefit from its regularity which
makes the analysis process easier. Comparing the filtering mechanism of this tool
with the one provided in this thesis, the filter used in MRNet are too complex to be
extended by the user, whereas in our case, all filter functions can be specified in a
very flexible way in the metrics specification and are automatically and efficiently
implemented in the distribution evaluation process.

MRNet consists of two components: libmrnet and mrnet_comnode. The for-
mer is a library linked to the front-end and back-ends and exports an API to enable
the interaction of those two components using the network of internal processes.
The latter is a distributed program which facilitates scalable communication and
runs on intermediate nodes. Its instances are, therefore, the internal processes.

The back-end consists of communicators (as a container for the groups of end-
points), which are created and managed by the front-end and provide a way to
identify a set of end-points for point-to-point, multicast or broadcast communica-
tions (just like the communicators in MPI). For the flow of data, streams are used
to connect the front-end to the end-points of a communicator. The MRNet network
is instantiated by the network object. As shown in Fig. 4.1, after instantiating the
MRNet network object at the beginning, a communicator object will be generated
from it. A stream object, which will use the maximum floating point as a filter, will

1http://www.Paradyn.org/mrnet/release-1.1/UG.html

CHAPTER 4. RELATED WORKS 50

FrontEndMain(){

float result; Packet *packet;

Network * net = new Network(<confFile>, <exe>, <argv>);

Communicator * comm = net->get_communicator();

stream * stream=new Stream(comm,FMAX_FIL):

stream->send(tag,�%d�, FLOAT_MAX_INIT);

stream->receive(&tag, &Packet);

NetWork::unpack(Packet, �%f�, result);

}

Figure 4.1: A simplified code for the front-end of MRNet.

BackEndMain(){

Stream * stream; Packet * packet; int tag, val;

Network * net=new Network();

net->recv(&tag, &packet, &stream);

NetWork::unpack(Packet, �%d�, &val);

if (val==FLOAT_MAX_INIT){

stream-> send(�%f�, rand_float);

}

}

Figure 4.2: A simplified code for the back-end of MRNet.

be then created and sent to the back-ends where the tag attribute specifies the na-
ture of the message. At the end, a blocking receive function will be used to collect
the computed data. The initialization of the corresponding back-end components
is shown in Fig. 4.2.

The back-end sample code reciprocates the front-end actions. At the beginning,
each back-end connects itself to the appropriate internal process. Instead of having
stream based receive like the front-end, the back-end performs a stream anonymous
receive. It returns the tag sent by the front-end, the packet containing the actual data
sent, and a stream object representing the stream established by the front-end. In
this way, broadcast/reduction activities are realized. As shown in Fig. 4.1, a lot
of important functionality must be fixed a priori which limits the flexibility of the
tool. For instance, functional chaining is not possible since a single aggregation
function must be determined for the given layout.

4.2.2 Lilith

Lilith [49] is a framework used to distribute user code across a heterogenous plat-
form in an efficient way to improve the scalability of not only the distribution of
control information but also the collection of the computed result values. The Lilith
framework provides services to the user components deployed in it. Thus, using
Lilith, the developer only needs to concentrate on the details of his code implemen-
tation to be executed in a distributed manner and Lilith takes all detailed tasks for

CHAPTER 4. RELATED WORKS 51

the propagation of the code to the destination nodes, and also for the communica-
tion among the nodes.

To achieve this goal, Lilith links recursively host objects on the adjacent nodes
to generate a binary tree communication pattern. At the same time, the user code
object called Lilim will be propagated to the hosts in the tree. Through this way,
the development of a tool can be accelerated. Lilith handles synchronous wave
messages by sending them to the root of its process tree. Written in Java, Lilith
is platform independent and easy to use, but it does not support extensible data
synchronization and flexible aggregation mechanisms.

4.2.3 Ganglia

As a widely used monitoring system, Ganglia [48] provides a scalable distributed
monitoring system for multi-clusters and also for Grids. This system relies on a
multicast-based listen/announce protocol to monitor states within clusters and a
tree of point-to-point connection between the cluster nodes to aggregate their state.
The main advantages of this approach are the automated discovery of nodes and
the facility that every node knows the state of the cluster. This allows constructing
the state of crashed nodes using the reliable information by polling any node in the
cluster to obtain the entire cluster’s state.

Even if its initial design was aimed to support only cluster monitoring, using
the widely known technologies like XML for data representation, XDR for portable
data transport, and Round Robin Database (RRD) tool for data storage and visu-
alization enables the tool’s interoperability behavior and integration to the new
emerging distributed and loosely coupled systems. Providing the monitored data
in an XML format, for example, enables Ganglia to be used in the Grid environ-
ment based on the widely used de-facto standard toolkit Globus by providing the
monitored data to the Monitoring and Discovery Service (MDS4) of the toolkit as
discussed in 2.2.4. MDS4 as well as other information services add query language
and indexing to facilitate efficient information extraction using Ganglia.

To have an efficient evaluation of the monitored data, Ganglia defines a hi-
erarchical design targeted at federations of clusters through building a tree like
structure where aggregation at each point of the tree is done by polling child nodes
at periodic intervals. Ganglia uses heartbeat message to identify the availability
of nodes and provides not only system information, but also application-specific
metrics, as used in the Network Weather Service [59].

4.2.4 Supermon

Supermon [50] is one of the tools which provide a scalable monitoring tool in het-
erogenous terascale cluster system. It allows to monitor characteristics of cluster
behavior by supporting sample rates up to 66 000 per second.

The name Supermon is used as a data concentrator coming from a single node
data server called mon. Mon again is used to collect low level data from the

CHAPTER 4. RELATED WORKS 52

supermon

supermon

Node 1

/proc

mon

Node 1

/proc

mon

Node 1

/proc

mon

client

. . .

Figure 4.3: The architectural components of supermon

loadable kernel module. The Kernel, mon and supermon as used in the Network
Weather Service together build the hierarchy in Supermon and use the same client-
server protocol. To represent the data flowing at all its hierarchy levels, Super-
mon uses the so-called symbolic-expressions or s-expressions, as it is introduced in
LISP programming language for the first time, in order to describe the self-defined
version of data provided by operating systems like /proc file system. In addition,
the s-expressions are architecture-independent and also in an ASCII format which
increases the efficiency. Using the composability behavior of Supermon as shown
in Fig.4.3. Supermon can act as a client and at the same time as a server by building
a tree like structure. The mon server acts as an intermediate filter (using bitmax)
between the /proc file system and TCP clients and parses the s-expression found
in the dedicated files under /proc. The supermon connects nodes running mon to
provide information from a set of nodes. Another supermon can also be started
to connect the created supermons and to build the hierarchy. This improves per-
formance whenever the number of mon increases and/or the sampling rate is very
high.

As a disadvantage of Supermon, the tree structure is not determined automat-
ically, but configured manually. In addition, there is no filter mechanism in the
levels of Supermon which increase the amount of unnecessary data to be propa-
gated to the client.

4.2.5 Periscope

Periscope [51] provides another approach to have an on-line distributed evaluation
for automated performance analysis of application based on the Apart Specification
Language (ASL) notation. Its main target systems are clusters of SMP nodes where
the distributed analysis process is decomposed into entities called agents which
are distributed over the parallel machines available for the computation. Those
agents are arranged in a hierarchical way, providing a master agent at the top of

CHAPTER 4. RELATED WORKS 53

the hierarchy which is used as a connection point to the front-end. Beneath the
master agent, there are high-level agents which perform aggregation functions on
the node-level agents, located in the lowest level of the hierarchy.

The master agent disseminates commands coming from the front-end to the
node-level agents. The node level agents on the other hand perform the actual per-
formance analysis. Between all those hierarchy components, socket-based com-
munication protocol is used to exchange messages. Building new performance
properties and integrating them in to this tools is not as easy as in our case. In
addition to this, user-defined event based measurement is not supported.

4.3 Methods of Performance Specifications

4.3.1 ASL and JavaPSL

The APART2 [20, 40] Specification Language (ASL) is designed to formalize high-
level specification of performance data and performance property to analyze MPI
and OpenMP applications using an object-oriented specification model. The per-
formance related data contained by ASL data model are static and dynamic data.
Static data are gathered at compile time and include code regions, code version,
source file and so on and the dynamic data are gathered at run time that include
performance summaries of an experiment and of timing events. Load imbalance,
communication and cache misses can be considered as an example of ASL perfor-
mance properties.

In ASL, performance property represents specific performance behavior of an
application which can be checked using certain conditions associated with a confi-
dence value. A confidence value describes the existence of a performance property
by giving a degree of confidence. Since not every performance property is a per-
formance problem, a severity value determines the importance of a performance
property in terms of its contribution to limiting the performance of the program.
The severity value is determined by the user’s threshhold to identify performance
problems.

In order to give a generic representation for similar performance properties,
a template is provided which can be used by substituting the template parameter
with a concrete entity to instance the process. Meta-properties, on the other hand,
support the specification of a high-level performance property using previously
defined performance properties.

An example specification of a performance property based on a property tem-
plate is shown in Fig. 4.4. Based on this property template, a meta-property can be
defined for all properties, which specifies that a property holds for all processes in
the system and the conditions and severity are also applied on all the processes.

2Automated Performance Analysis: Real tools

CHAPTER 4. RELATED WORKS 54

PROPERTY TEMPLATE CostPerProcess <float CostFunc(MPISummary)>

(Region r, Experiment e, Process p, Region RankBasis){

LET cost = costFunc(summery(r,e,p)) IN

CONDITION: cost >0;

CONFIDENCE: 1;

SEVERITY: cost/duration(RankBasis,e);

}

float SyncCostFunc(MPISummary rs)=rs.SyncTime;

float CommCostFunc(MPISummary rs)=rs.CommTime;

PROPERTY CostPerProcess <SyncCostFunc> SyncCostPerProcess;

PROPERTY CommPerProcess <CommCostFunc> CommCostPerProcess;

Figure 4.4: Describing performance property using template in ASL.

JavaPSL3 [21], as a Java version of ASL, is a flexible API using the syntax and
semantic of the Java programming language to describe the performance proper-
ties and experiment related data of applications by using ASL concept. It not only
provides an easy way to define new performance properties without the need of
understanding the storage format of the experiment data, but also allows building
complex properties by grouping property instances. Using Java classes for perfor-
mance summaries, information about a specific execution of a Code Region in a
version’s source code can be obtained. While an application is modeled as a set of
versions, an experiment refers to an execution with a specific parameter. To per-
form performance analysis, every property must implement three methods which
are used to describe severity, confidence, and the value describing whether a prop-
erty holds,.

4.3.2 Paradyn/MDL

As one of the most known parallel performance analysis tool, the Paradyn per-
formance analysis tools [54] introduces the so-called W 3 search model which de-
scribes performance behavior along the three dimension: performance problems
which are expressed in terms of thresh-hold, program resource which include hard-
ware and software resources, and time.

A performance analysis process is facilitated by using a dynamic instrumenta-
tion approach [23] generating a code dynamically and incrementally, which will be
inserted or removed to the running application on demand. This instrumentation
enables to insert predicates and primitives at the desired points in a program and
will be done at procedure granularity, i.e., the created code will be inserted at the
entry and exit points, and call sites of a procedure. During the instrumentation,
code snippets are inserted not only to the procedure, but also to the message pass-
ing routines listed at the beginning of the metrics specification (like the pvm_send
and pvm_recv in the Fig. 4.5).

3http://www.dps.uibk.ac.at/projects/aksum/JavaPSL.php

CHAPTER 4. RELATED WORKS 55

The code to be inserted is written in a dedicated specification language called
Metrics Definition Language (MDL) [22] which includes not only simple con-
trol and data operations but also enables to instantiate and control real and vir-
tual timers. In addition, performance data can be constrained to different program
components which can also be combined using the ”and” operations. Those com-
ponents include modules (as a collection of procedures), procedure, nodes, files
and message channels. For example, to restrict a metrics to measure a message
sent or received by a module, a module constraint can be combined with a message
type.

list pvm_msg_func is procedure {

flavor pvm; items {�pvm_send�, �pvm_recv�};

}

constraint procedure /Code is counter {

append preInsn $constraint[0].entry

(*procedure=1*)

prepend preInsn $constraint[0].return

(*procedure=0*)

}

metric msgs {

name �messages�; units opsPerSecond;

aggregateOperator sum; flavor { pvm };

constraint modul; constraint procudure;

constraint msgTag; base is counter {

for each func in pvm_msg_func

append preInsn func.entry constrained

(*msgs++;*)

}

}

Figure 4.5: An example metrics specification using MDL

The MDL specification consists of a part which describes where the generated
code will be inserted, and a part which shows what code will be inserted. A fully
specified metrics to count messages sent and received by message passing routines
pvm_send and pvm_recv is shown in Fig. 4.5.

This example shows a MDL specification, which uses all procedure found in
the files under /Code directory and inserts a code snippet at the entry and exit lo-
cation of all the procedures to count the message sent or received by the message
passing routines pvm_send and pvm_recv. In order to increment the number of
messages sent and received, a code snippet (msgs++) will be inserted condition-
ally (only when the corresponding procedures are called) into the message passing
routines pvm_send and pvm_recv. In order to achieve this goal, an executable file
is processed and most of the desired information (size and address of the code and
data segment) is extracted from the symbol table. For instance, the start address of
the function obtained from the symbol table is used as an entry point information.
The code to be inserted will be placed in to trampolines which are dynamically

CHAPTER 4. RELATED WORKS 56

allocated patch areas. To insert the code, the application process will be stopped
and OS facilities like ptrace or /proc will be used.

4.3.3 EARL/Expert

Tracing based post-mortem performance analysis solution for C/C++ and Fortran
application using MPI and/or openMP message passing protocol is also provided
by EXPERT [19, 27] which is embedded in the ESPRIT4 working group APART.
The performance analysis is performed in three dimensions: class of performance
behavior, position within the dynamic call tree and location like node or process.
Each of those dimensions arranged in a hierarchy to make the analysis comfortable.
By providing a user interface which shows the severity of the performance property
using different colors, a user can identify the performance problems easily. One of
the recent extensions of EXPERT to realize multi-expert analysis by performing
algebraic operations of the performance results.

To perform trace analysis using EXPERT by mapping them to a higher level
abstraction, which is used to identify complex compound events, a language called
EARL [26] is used. The EPILOG (Event Processing, Investigating and LOGging)5,
as a binary event trace format plus a run-time library for generating event traces
of MPI and OpenMP applications is used, on the other hand, to investigate the
trace file and produces also an input for the well known off-line performance tool
Vampire. In this context, Opari is used as an instrumentation tool for OpenMP
applications on the source code level allows tracing events and linking them back
to the source code. For the MPI, PMPI is used as a profiling interface, whereas
TAU [53] is used for user-defined functions.

4.3.4 Paraver

As a visualizer and analyzer tool for a parallel event traces of MPI, OpenMP, and
Java programs, PARAVER6 gives an overview on the quantitative analysis of trace
files in an off-line fashion. The data are collected through instrumenting the li-
braries, and the data analysis is performed by a distributed memory machine simu-
lator called DIMEMAS [67], which allows to reconstruct the behavior of the appli-
cation using the trace file provided. To create the trace file, any tool which respects
the PARAVER trace file format can be used including the DIMEMAS itself. The
features of paraver include: detailed quantitative analysis of program performance,
fast analysis of very large traces, support for hyprid (MPI/OpenMPI) programming
and building of derived metrics.

4http://cordis.europa.eu/esprit/home.html
5www.fz-juelich.de/zam/kojak/
6http://www.cepba.upc.es/paraver/

CHAPTER 4. RELATED WORKS 57

4.3.5 Pablo

Pablo [24] is mainly used for the gathering and visualization of execution statis-
tics using multi-dimensional scatter plot arrays and the hierarchy of source code
to view process based information using compile-time program transformation for
both sequential and parallel programs. Pablo is an off-line tool and supports MPI
and PVM programs developed by Department of Computer Science (DCS) at the
University of Illinois. The recorded traces are stored in a format called Self Defin-
ing Data Format (SDDF) which can be extended with desired attributes. Those
trace files can be stored not only as ASCII, but also in a binary format depend-
ing on whether interoperability or compactness is more essential. As a descendant
tool, SvPablo facilitates language independent performance analysis and visual-
ization by providing a single interface for both instrumentation and visualization
purposes. Both tools lack the ability to show important performance behaviors of
communication bottlenecks and are also exposed to handle a large amount of data.

4.3.6 KappaPI-2

KappaPI-2 [44] is a descendent of Knowledge-based Automatic Parallel Program
Analyzer for Performance Improvement (KappaPI) and uses trace files (generated
by a tracer based on DyninstAPI [23] for MPI and TapePVM for PVM applica-
tions) to detect performance bottlenecks. It uses the idle processing intervals, de-
termine their causes by applying certain rules and relate the performance degrada-
tion to the application source code in order to provide some recommendation to
the user. A set of performance knowledge is coded in the kernel of the KappaPI
tool which limits the flexibility of the tool to define new performance bottlenecks.
To avoid such limitations, performance specification in KappaPI-2 is based on the
compound event concept of the ASL language by translating it into XML syntax.
Using a trace file and performance knowledge representation as an input, KappaPI-
2 tries to identify behavioral patterns in the trace file and perform the desired anal-
ysis to determine the real cause of the bottleneck.

4.3.7 Other Tools

One additional tool which is not discussed in the section is TAG, which also pro-
vides one of the interesting approaches. It also contains a tree based aggregation
infrastructure providing a query language to be used for the specification of tasks
to be executed on the nodes of the sensor network which also supports aggregation
operation based on a request/response manner. Other parallel database tools are
also using several algorithms to achieve an efficient data aggregation mechanism.

Tree based approaches are also used to improve the scalability of some inter-
faces, like MPI, which uses broadcast and reduction primitives. MPI implemen-
tations mainly use serialized point-to-point operations to implement those func-
tionalities. MagPI [39] proposes optimized versions of those primitives for geo-
graphically distributed applications which run on environments like the Grid by

CHAPTER 4. RELATED WORKS 58

providing an algorithm supporting hierarchical interconnections of MPI collective
operations. Another example in this field is the ACCT [71] which tune the under-
lying algorithm of the MPI collective communication primitives automatically.

4.4 Methods of Handling the Flow of Data Items

Dataflow model is a drastically different way of looking at computation. Due to its
elegance and simplicity, the dataflow model is used in different parts of hardware
and software technologies. It is used to design different multi-threaded comput-
ers based on asynchronous instruction scheduling, for the optimization of compiler
implementations [35] , during the development of compilers to facilitate code op-
timization and in the distributed computing sector. For example, the state-of-the-
art in the field of multi-threaded computing, signal processing and reconfigurable
computers is illustrated in [58, 73].

In the hardware sector, the dataflow concept and von Neumann architecture
are handled as orthogonal computing paradigms. Comparing it to the von Neu-
mann architecture where the main focus is the program counter, dataflow model
is a different approach to handle computation in the computer architecture design
since the movement and scheduling of data have priorities. The DFM provides
solutions for problems of von Neumann computer concerning memory latency and
synchronisation overhead. Several dataflow architectures have been proposed by
various research groups around the world. Those are mostly used to build faster
and more powerful computers. The list of most popular architecture includes the
dataflow multiprocessor, dataflow machine using tagged token [33] and the Manch-
ester dataflow machine [34] .

The basic idea of dataflow model was developed by Jack Dennis [60] in the
early of 1970s. Dataflow model represents the flow of computed results and con-
trol data through a dataflow graph. In general, those methods are described by
a dataflow graph where nodes are representing computations and arcs are used
to schedule stream of data and thus to describe the dependency relationships be-
tween the nodes. Using a firing rule, a DFN consumes its inputs and generates
the corresponding outputs. In addition, processes described by the nodes can only
communicate through channels and use their firing rules to compute data items and
to alter the routing of the computed data items and thus enable the development of
data driven controlled environment which can be used for applications producing a
continues stream of data. The firing rule performed by the dataflow nodes can also
be used to relay, duplicate, and merge data. Since many nodes maybe able to fire
simultaneously, they may represent many asynchronous concurrent computations
of events.

As described in the following subsections, there are many kinds of process
networks which differ in their model of computation (FIFO or synchronous com-
munication) or execution (blocking and non-blocking characteristics).

CHAPTER 4. RELATED WORKS 59

4.4.1 Kahn’s Dataflow Network (KDN)

In the early of 1970s, Gilles Kahn7 [46] laid the theoretical foundation for DFM
which can be seen as the extension of the DFM proposed by Jack Dennis. Despite
this fact, Kahn’s model is not used widely since it is too flexible to develop efficient
models and not flexible enough for a wide class of applications. Using this model,
it is not also possible to achieve statical scheduling.

Dataflow Process Networks (DPN) are used as a model of computation mostly
in industrial practice in signal processing software environments as it is used in
electrical engineering and also as a basis for different programming language de-
sign. The idea of developing DPNs is first described by Kahn in 1974 as a particu-
lar case of his processes networks called Kahn Processes Networks (KPN). In this
model a group of deterministic sequential processes are communicating through
unbounded uni-directional FIFO channels to support infinite stream of data emerg-
ing mostly from the signal processing systems. The data items to be handled by
DPN can be very huge. For example, a digital audio stream may contain over 44
000 samples per second per channel and run for hours. Such channels represent
the causality of dataflow between processes which are communicating by sending
messages. This characteristic makes the dataflow communication more predictable
than the shared memory approach.

In Kahn’s model, a part of input sequence of data items can be used to pro-
duce part of output data through a property called monotonicity where writing to
a channel is non-blocking and destructive, and reading from a channel is blocking.
In addition to that this model does not allow processes neither to test the existence
of data items without consuming them nor to wait for data items coming from mul-
tiple channels at once which results in determinism which means that for certain
sequence of input, there is only one possible sequence of output. This is a dis-
advantage of this model since responding to unpredictable sequences of events is
impossible. Non-deterministic characteristics are, for example, supported by most
of modern programming languages to deal with exceptional unexpected situations.

The dataflow semantic, as proposed by this model, fits for signal processing
since the algorithms of signal processing are expressed as block diagrams, which
make it easy to apply visual syntax to specify the graph representing the network.
This, as a graphical dataflow programming method, is used as a fundamental basic
tool in industrial practice in a signal processing development environment which
allows also mostly textual specification of the dataflow process networks. Matlab8

is a good example using such graphical dataflow programming environment.

4.4.2 Synchronous Dataflow (SDF) Networks

This model is based on the Kahn’s model with some restrictions. The basic idea of
this schedulable dataflow model, as proposed by Edward Lee and David Messer-

7http://www.inria.fr/actualites/2006/gilleskahn/gk_hommage.fr.html
8http://www.mathworks.de/

CHAPTER 4. RELATED WORKS 60

chmitt [43] in 1987, is that each process reads and writes a fixed number of tokens
each time a firing rule is applied which results in a deterministic characteristic. In
order to perform the firing rule, there must be at least as many tokens on the input
channels as it can be consumed. This atomic characteristics supports that the fir-
ing sequence can be determined statically in which a set of balance equation relate
firing rates according to the production and consumption of data items. The limita-
tion of this model is that it doesn’t allow dynamic configuration. In contrast to the
asynchronous message passing where tasks do not have to wait until outputs are
accepted, in this model all tokens are consumed at the same time. The scheduling
is performed using a finite amount of memory and not by using infinite buffers.

4.4.3 Tagged-token model

In this model the tag of the token will be used to relate the firing sequences. A tag
is a context identifier that specifies the activation to which the token belongs. An
operator is ready to fire when a matched set of input tokens arrives for all its input
ports that have the same tag. Every output token is tagged with the same tag that the
corresponding input token was assigned. For instance, in the MIT9 (Massachusetts
Institute of Technology) tagged-token dataflow project, the tagged-token approach
is used to provide a general-purpose high-performance parallel computing.

The tagged-token dataflow graphs are directly executed on the MIT Tagged-
Token Dataflow Architecture (TTDA) which is a multiprocessor architecture. To
generate the dataflow graph, a high-level language is used which is compiled to
dynamic dataflow graphs. One of the advantages of such tagged-token approach as
an execution model, as described by Arvind and Gostelov [37], is that it prevents
deadlock by using delay as an initial tagged-token on a channel.

4.4.4 Component Based Design versus Dataflow Processes

Systems that are composed of different components are suitable to be modeled with
the help of, e.g. process networks or Petri Nets. Components, as black-box entities
that provide services behind their interface, can be defined as process of networks
communicates through their input/output ports which can be represented by the
channels used in the dataflow model where the components are seen as dataflow
nodes. For the composition of such components, the so-called interface automata
are used to specify mostly the characteristics of components. Such interface can
be used as a base of a contract between architecture designer and component de-
veloper.

Interface automata, as a bridge between the architectural model and heteroge-
nous processes, are used mainly to assure the two main properties of DPN by taking
the environmental assumption into consideration. These properties are safety and
deadlock freedom. Safety means that no unexpected reception of data takes place
whereas deadlock emerges when no process can make any progress since processes

9http://www.csail.mit.edu/index.php

CHAPTER 4. RELATED WORKS 61

e−store

customer
purchase

purchase

purchase

ok ok

fail fail

fail

deficit

delivered

payable

payable outOfStock

bank

outOfStock

delivered

deficit

Figure 4.6: DPN used to purchase an online store

are blocking each other. This can be avoided by checking the consistency of com-
ponents. Component based development and modular analysis of dataflow process
networks are described in [56]. Component based approaches are used in differ-
ent sectors of businesses. Fig. 4.6 shows a process used in a bank model which
accepts purchase requests from customers and reports back whether the process is
succeeded or fails [56].

4.5 Conclusion

In general, tree based computing networks have proven to provide scalability and
efficiency to distribute control information and to collect measurement result values
(Lilith, Supermon, Ganglia, etc.) through which the complexity of the analysis
processes is reduced from linear to the logarithm of the number of processes in
focus.

Most of the tree structures are used to organize the distributed processes in
such a way that network communications can be reduced. In most of the tools,
organizing the processes according to the site where they reside is not handled
which is a very important level of abstraction for the Grid. Most of the tool uses
configuration file for the layout used to determine the structure of a tree which
requires expertise knowledge from the user, whereas our approach uses a dataflow
graph which is related to the dataflow models discussed at the end of this chapter
and generates its layout automatically. An efficient and flexible aggregation of the
computed values is also very important to reduce the amount of data produced by
the distributed processes back-ends and this issue is also not addressed in most of
the tools.

Compared with all the related tools discussed above, our dataflow graph en-
ables a very effective and efficient way of managing huge amounts of data pro-
duced by back-ends and provides a very flexible aggregation mechanism to deal
with time-stamped computed result values in an efficient way. The way how met-
rics specifications are described is also well supported by using PMSL, which is
highly configurable and user friendly specification language.

CHAPTER 4. RELATED WORKS 62

Most of the available tools, developing on-line or off-line analysis, provide
very low-level information which is mostly communication or hardware events.
Tools produced by the project Kojac, Paradyn, PERIDOT, SCALEA, APART and
KappaPi, for example, are providing the user with a limited number of automati-
cally created performance metrics. Only with such information, it is not possible
to analyze application specific performance metrics and combining those metrics
is usually complex. The possibility to support user defined metrics make our ap-
proach, therefore, very suitable to create more abstracted metrics measurements.

Chapter 5

Context of the Distributed
Evaluation

5.1 Introduction

As the context of this thesis, a performance analysis tool and the underlying moni-
toring system are used together to perform on-line performance analysis in the Grid
environment. When on-line performance analysis of an application is performed
in the Grid environment, the underlying monitoring system plays a vital role not
only by observing the behavior of the grid infrastructure and the application run-
ning, but also by facilitating the manipulation of the targets’ runtime behavior as
desired.

Therefore, in this section, we will discuss first the OMIS Compliant Moni-
toring Tool for the Grid (OCM-G) [11] used as the monitoring system, and then
the Grid Performance Measurement tool (GPM) [1, 16]. GPM enables the user or
developer to measure metrics describing performance behavior in an on-line fash-
ion. That means that the performance measurement can be performed while the
application is running. In order to specify the performance behaviors in focus, the
Performance Metrics Specification Language (PMSL) [2, 10] is used, which will
also be discussed, subsequently.

The on-line nature of the GPM tool enables the user to have a possibility to
take part in the application steering process. On the other hand, the on-line nature
of OCM-G allows the developer to have full control over the application. The com-
bination of those two makes it possible to provide a powerful on-line performance
analysis tool. For interactive grid applications which are supported, for example,
in the CrossGrid [17] project and in its successor Interactive Grid project1, con-
trol information must be provided from the underlying monitoring infrastructure in
an on-line fashion to facilitate the interactivity. When measuring the performance
behavior of interactive applications, most researchers need answers in seconds, not
hours. This performance analyses tool provides a very good opportunity to facili-

1http://www.interactive-grid.eu

63

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 64

tate their desire. In addition, it creates a most suitable environment to support grid
infrastructure and application specific performance measurements.

The G-PM monitors the application by appropriate programming of the OCM-
G since the initial processing of performance measurement results (e.g. partial
aggregation of measured values) is performed by OCM-G. This approach signif-
icantly reduces the computational overhead associated with the monitoring, thus
minimizing the influence of the G-PM on the grid application behavior. Further-
more, it reduces the overhead on the user workstation, which is important in case
of monitoring large numbers of processes. The main advantage of using GPM,
OCM-G and PMSL together is having the combination of on-line monitoring with
the support for user-defined, application specific performance metrics.

There are a number of performance tools available that enable monitoring the
performance of a distributed environment, although few of them deal with the per-
formance analysis of a Grid application. Those tools either focus on hardware
infrastructure or do not provide user-defined metrics whose functionality is com-
parable to G-PM. In addition, none of them support the performance analysis of an
interactive application in a Grid environment.

Beside the tools mentioned in chapt. 4, the following tools are also related
to the monitoring of performance behavior. The Globus Heartbeat monitor [65]
which is used to monitor the state of processes in order to identify the status event
exceptions, NetLogger [41] which enables real-time and post mortem performance
analysis of applications and system-level data, and Network Weather Service [59]
which enables to predict the performance of not only computational resources but
also various networks.

5.2 OCM-G

Monitoring is the act of observing a system state via a set of sensors which provide
values at a regular interval or only when they are requested to do so. These values
can be used to compute desired behavior. In almost all monitoring systems, OS
commands are used internally to get those desired values to obtain information
about the machine in focus. For instance, a very simple method of monitoring
a node in a cluster is to use the command ”ping”. A usual way of getting more
interesting information is achieved by using information provided by the /proc file
system and the ptrace system command. Most monitoring tools build GUI on top
of such commands. Nevertheless, that information is rather low level and thus can’t
represent high level information for the end user.

For the applications running on the grid in general and for interactive appli-
cations in particular, a monitoring environment is indispensable in order to detect
bugs in the application code, find a bottleneck or to visualize the applications over-
all behavior. The tools using this monitoring system contain but are not limited to
performance analyzers, debuggers, visualization tools and load balancers.

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 65

T
oo

ls

Debugger Visualization
Tool Balancer

Load Performance
Analyzer

Socket MPI

OCM−G

O
bj

ec
ts

O
C

M
−

G

Application Application Infrastructure Other objects

Figure 5.1: Layered structure of OCM-G environment

The OCM-G Monitoring System is designed as an autonomous infrastructure
using the standard interface OMIS (Online Monitoring Interface Specification) and
it facilitates a fast on-the-fly information delivery which is a main prerequisite for
application steering on the Grid. As an intermediate component between parallel
tools and the applications (as depicted in Fig. 5.1), the OCM-G provides services
not only for collecting, but also for pre-processing information about the applica-
tion at runtime. And these collected data can be used as input for the parallel tools
used, and can be computed further and then visualized by the corresponding tools
as desired. The bottom layer represents hereby the objects to be monitored, e.g.,
CPUs, Networks, application processes and grid infrastructure components.

This fully operational high performance system supports MPI and PVM appli-
cations running across multiple sites and can also be implemented to support other
kind of applications. This system enables, for instance, the G-PM to get perfor-
mance measurement data, like communication and synchronization delay, volume
of communication and CPU cycle usage to mention a few.

This distributed monitoring system is intended to support the developers during
the deployment of their application. This is most usefull especially for interactive
applications. Therefore, this flexible, extensible, and interoperable system is used
by the GPM, for instance, to show not only the progress of the application but also
the activity of individual processes in order to figure out the possible bottlenecks.
In addition to this functionality, this scalable system provides the observation of
the communication patterns between different processes.

The unique characteristics of this user-installable system are a location trans-
parent access to the monitored objects, supporting grid application running across
multiple sites, guarantee extremely low overhead and high responsiveness, support-
ing interoperability of multiple tools monitoring the same application, the ability
to invoke services on sets of objects, plus a fast data acquisition. Furthermore, this
system can be programmed by the tools using monitoring requests comprising of
information, manipulation and event services.

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 66

Even if the standardization of the interface between the applications and mon-
itoring system is difficult due to the involvement of the operation system services,
the interface between tools and the monitoring system is standardized with OMIS.
This interface understands the target system as a hierarchy of applicable objects.
These objects include processes, nodes and sites. From the OMIS point of view,
those objects have a unique identification used as token. The OMIS interface de-
couple tool and monitoring system functionality and so provides abstraction and
increases modularity.

This monitoring system provides the monitored data of the application using
local buffering. Those data are used only on-demand. Using profiling, summarized
information being stored in integrators can be accessed in an efficient manner. The
information is gathered via selective run-time instrumentation that facilitates con-
ditional executions and thus reduces the overhead through using the instrumented
functions only when they are required for the actual measurement. This instrumen-
tation of the applications is performed automatically on the run time and is based
on binary wrapping through providing a pre-instrumented version of communi-
cation libraries. This instrumented libraries, in case of MPI, enables to evaluate
application communication performance and parallelization-associated overhead.
OCM-G contains also OCM-G tracer to record data related to some MPI functions
which includes time stamp, process information and event specification parame-
ters. Instead of providing a fixed set of predefined metrics, this system allows
construction of service-driven metrics using lower level building blocks as desired.

The services provided by the OCM-G is useful not only to monitor the appli-
cation as a whole or a particular execution of an application, but also to collect
information about the grid infrastructure, such as network or grid site loads from
which some of the grid services, such as resource allocation, job migration, re-
source monitoring and job brokers, are depending on.

5.2.1 Basic Concepts and Functionality of OMIS

In order to program this monitoring system by the tools, OMIS defines the fol-
lowing three types of services which are used intensively to realize the distributed
evaluation handled by this thesis. Those services are:

• Information service

• Manipulation service

• Event services

The information service provides different information especially about the state
of the objects, the manipulation service is used to operate on those objects by
changing their states, for example. These kinds of services are actions which are
performed without any preconditions to be fulfilled, and they result in an immediate
action in the target system, as a response to the request.

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 67

: node_get_inf([],0)

: node_attach([n_1])

Figure 5.2: An example of unconditional requests

thread_has_started_lib_call([p_4], �MPI_Send�):

pa_counter_local_increment(pa_lc_1, $par5)

Figure 5.3: An example of a conditional request

Examples of such kinds of services are depicted in Fig. 5.2. The first one lists
all the information from all the nodes currently observed by the monitoring sys-
tem, whereas the second one (as a manipulation service) results in the monitoring
system attaching itself to the specified node n_1. The first parameter in the former
case shows that the request will be performed for all applicable objects whereas
the second parameter of it indicates that all available information is requested. As
a result of which, a long list containing all desired information about all the nodes
in focus will be provided.

The event service, on the other hand, executes an information or manipula-
tion services when a specified event occurs. This allows formulating Conditional
Service Requests (CSR) which enables to trigger a list of actions to be executed,
only when the corresponding events are detected. That means, when an event is
detected, a chain of action can be executed which can contain one or more infor-
mation and/or manipulations services. Whenever those events occur, a callback
function for the triggered actions will be executed, asynchronously. An example of
an event triggered request is shown in Fig. 5.3.

The first part of this request describes the event to be triggered, whereas the
second part illustrates which action will be performed when that event occurs.
That means, whenever the execution of the MPI_Send command is detected in
a process p_4, the counter pa_lc_1 will be incremented with the sent volume so
far. By combining those services, it is possible to perform non trivial monitor-
ing requests which can include conditional, as well as unconditional requests. An
unconditional service request can contain a list of information and/or manipula-
tion services, which will be executed immediately, whereas conditional requests
are composed of an event service and a list of actions. All the provided services
can also be extended easily through defining new services which can be loaded
dynamically at the run time.

The main interface procedure used between tools and monitoring system is
shown in Fig. 5.4. This function is used to handle the co-operation for both condi-
tional and unconditional requests. The parameters represent: the string represent-
ing conditional or unconditional requisites, a callback function which is activated
whenever the specified action have been executed, immediate reply of the request

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 68

Omis_reply

omis_request(char * request,

void (* callback (Omis_replay replay,

void * param),

void * param,

Omis_flags flags);

Figure 5.4: An OMIS request function.

Shared
Memory

Shared
Memory

Shared
Memory

AM

AP

AM

AP

AM

AP

AM

AP

MainSM

SM SM

LMLM LM

Figure 5.5: OCM-G components.

describing the status of the request, and flags which are used, for example, to select
whether this call should be performed in a blocking or non blocking manner.

5.2.2 OCM-G Components

As shown in Fig 5.5, the decentralized system OCM-G consists of three main
components: Main Service Manager (MainSM), Service Manager (SM) and Lo-
cal Manager (LM). All three components use the OMIS protocol to communicate
with each other.

The MainSM is the top-level component allowing tools to be connected to it
and it is available per user. This component holds the necessary information about
the whole application and is used to forward partial requests from the connected
tool to the corresponding SMs as well as to collect all the results from the underly-
ing SMs. It is also responsible to create and start the SMs. Since the grid-enabled
and platform-independent start-up character of this component can be configured,
this component can reside on the UI or any workstation depending on the permis-
sions for incoming connections.

Using Globus, the Computing Elements (CE) of the remote host can be used
to deploy the MainSM where specified ports can be used to avoid a firewall issues.
Even if it seems to be a performance degradation to have this centralized compo-
nent, the messages will not always be routed directly from the SMs to the MainSM,
and also the localization information stored in MainSM can also be copied to other

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 69

SMs. This centralization is aimed to keep the localization information up-to-date.
It is planed to support the discovery process by another component based on Grid
information management system and to use the Grid job scheduler to get some
more additional information.

The SM is available one per each site and is used to forward the partial requests
coming from the MainSM to the LMs which also desire permission for an incoming
connection. The LMs are yet available one per each host and are reside on the
Worker Nodes (WN) where the application processes are running. Those LMs
accept and execute monitoring requests for application processes resides in their
own host. Those components of an application build together a Virtual Monitoring
System (VMS).

As shown in Figure 5.5, there are additional components like Application Mod-
ule (AM) which are libraries linked to the application in order to perform perfor-
mance critical actions and to store performance data locally. Since the whole mea-
surement depends on the integrator and counters at the operating system level, the
computed result values are stored in the shared memory segment of every node
which is mapped onto the virtual address space of the process within that node.
This shared memory is accessible by the local monitor and application modules
to avoid process switches which could be time consuming. Whenever an instru-
mented basic metrics is computed, those stored values are being updated.

In order to monitor an application, the user should start the MainSM, which
returns a connection string composed of the host’s IP address and the port number
dedicated for incoming connections. After this, the application can be started on
some WNs which then register in LMs and those LMs report those site names to the
MainSM. The MainSM then starts SMs on those hosts to which the corresponding
LMs register. At the end, the tool can be started and will be connected to the
OCM-G.

This monitoring system uses RSA based encrypted connection and user au-
thentication. For the communication between the components of this system, au-
thentication using the Grid Security Infrastructure GSI is used, as discussed in
section 2.2.4. In addition to this, a digital signature is used to avoid pretends and
forged-component attacks.

Other tools in the same category are also providing related functionality. Those
monitoring tools include: the Grid Analysis and Display System GrADS2 [72],
which focuses on an automatic performance tuning based on patterns and also sup-
ports System Level Agreement (SLA), GRM [57]/R-GMA [68], which define the
monitoring architecture in terms of producer-consumer model and used to support
batch processing in a DataGrid project, and Mercury [66], which uses performance
prediction. In contrast to the OCM-G, those tools do not support interactive appli-
cation in an on-line manner.

2http://www.hipersoft.rice.edu/grad

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 70

5.3 Grid Performance Measurement Tool (GPM)

5.3.1 Basic Concepts and Functionality of GPM

GPM is an application and grid infrastructure performance analysis tool for parallel
grid applications. Its purpose is to monitor the run-time behavior of applications
and is used to detect possible performance bottlenecks. It is designed to provide the
user with performance data in an on-line fashion. As a result, it is not necessary to
wait for the end of the application’s execution in order to analyze its performance
since the analysis is being performed constantly and the user can react to improper
application behavior as it occurs. This is particularly important in case applications
have a long execution time, which is quite common in the grid environment. The
tool works in X-Windows environment and provides a convenient graphical inter-
face to define measurement and to visualize performance data. One of the most
important features of the G-PM is its flexibility. The tool can be customized to
support a huge range of monitoring scenarios.

GPM plays a big role in providing the ability to perform performance analy-
ses which are used to optimize the application and to improve the quality of the
application code running in a Grid environment. One big challenge was to mini-
mize the influence of such tools on the Grid application’s behavior and reducing
the overhead on the user workstation for large amount of processes.

In order to perform performance analysis in a dynamic Grid environment, the
control of the application during its runtime is necessary. A common way of hav-
ing low-level performance data, as it is used by most classical performance analysis
tools, will only help the performance specialists. Those low-level measurements
deal with the volume of send and receive date or I/O operations, delay of synchro-
nization, memory and CPU usage, and many others.

Since the users of Grid applications are not all specialists, it is necessary to
provide a way of having more abstract and application specific performance mea-
surements. The G-PM provides a number of pre-defined performance metrics for
MPI applications [30] and supports also both automatic and user-defined instru-
mentation. In order to support a user-defined metrics, PMSL has been developed,
which enables the user to define new metrics out of pre-defined metrics and a user-
defined instrumentation. Using this language and a manual insertion of functional
calls, called probes, into the source code, the user is able to specify a high-level per-
formance measurement which summarizes the information in a very suitable way.
Those inserted probes do not define any measurement by themselves. They are
only used to mark the region of interest, thus, the same probe can be used to define
different metrics. The process of creating measurements from such specifications
is briefly discussed in chapt. 6.

This tool is used to discover the performance bottlenecks of both sequential
and parallel applications including MPICH-G2 (used by, e.g., flooding forecast-
ing application) and MPICH-P4 (used by, e.g., whether forecast and air pollution
simulations).

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 71

Measurement

UIVC

PMC

HLAC

Measurement
Interface

GPM

OCM−G

Interface

Interface
OMIS

OCM−G

Figure 5.6: Module decomposition of the G-PM tool

5.3.2 GPM Components

As shown in the Fig. 5.6, GPM consists of three components: The High Level
Analysis Component (HLAC), which deals with user defined metrics measure-
ments, the Performance Measurement Component (PMC), which is used to create
and manage low level metrics automatically, and the User Interface Visualization
Component (UIVC), which is used to visualize the result of pre-defined as well as
user-defined measurements.

The measurement interfaces used to define performance measurements, and
also to read the performance related computed data, are also shown in Fig. 5.6.
Those interfaces are provided for both HLAC and PMC components. In order to
communicate with the monitoring system and to have an access on the monitoring
data, the OMIS based OCM-G interface is also presented.

The Performance Measurement Component (PMC)

This component deals with all the built-in standard metrics, which provide the
functionality for basic performance measurements of both Grid application and the
Grid infrastructure. While the application-specific metrics deal with data transfer,
resource utilization and delays, the infrastructure related metrics, provide informa-
tion about the availability of resources, node load, and dynamic and static resource

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 72

information. This component communicates with the OCM-G monitoring service
in order to have access to the raw data represented by the standard metrics. Those
data are also used as an input to the HLAC and UIVC through the provided mea-
surement interface.

The High-Level Analysis Component (HLAC)

This component is used to handle user defined measurements, which combine and
correlate different built-in metrics measurements and user defined application in-
strumentation using probes. The functionality of HLAC is enhanced through an
efficient implementation of probe-based metrics which can be used to measure
complex measurements like the time used by one iteration of a solver, the response
time of a specific request, convergence rates, etc. Finally, the results of the user
defined metrics are presented in the same way as the built-in ones.

This component scans and parses the specifications written in PMSL, translates
the specification of the built-in metrics into PMC requests, and handles the probe
events, which can deliver application-specific information. To deal with measure-
ments using probe events, HLAC communicates directly with the OCM-G. This
component is vital to the concept of distributed evaluation of the measurements in
this thesis.

The User Interface Visualization Component (UIVC)

This component is used to visualize the computed results of the low-level as well as
the high-level measurement results by allowing the user to specify the quantities to
be measured. It contains different graphical interfaces used to demonstrate the re-
sults. It provides a list of user-defined and built-in metrics, all available applicable
objects and regions in the program code for which the performance measurement
should be computed as depicted in Fig. 5.7. This enables to determine, for exam-
ple, single or multiple origin and destination of a point to point communication and
to restrict the measurements to the specified regions of code.

The main window of this GUI provides menus to manage the measurements
by enabling the start and stop functionalities for the defined measurements. The
visualization windows show performance data including a BarGraph, PieChart,
Histogram, Matrix diagrams and value-versus-time function plots. A multi-graph
bar can also be used to show multiple measurements at the same time so that a
comparison between the same metrics with different parameters can be visualized
easily.

One of the windows is also devoted for the specification of user defined metrics
by providing a textarea. Loading a bulk of user defined metrics from a file is also
supported which facilitates defining, for example, a group of platform dependent
metrics. This allows also accompanying programming libraries with appropriate,
library-specific performance metrics.

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 73

Built-in Metrics

Performance measurement using only a built-in metrics is performed automatically.
Those metrics can be categorized in the following two ways: function-based met-
rics, which includes the instrumented functions of the MPI-library used and sam-
pled metrics, which are not related to any function and thus can be measure at any
point in time. The former types of metrics include delay, communication volume
and invocation count of the MPI-Send, MPI-BSend, MPI_SSend, MPI_RSend,
MPI_Recv, and all other communication related MPI-functions. The sampled met-
rics consist of: Compute_time, Node_load, Time and Memory_size. Both kinds of
metrics are time-stamped so that a reasonable measurement result can be provided
in spite of the possible delay of messages between nodes which could not be avoid
even if the clock synchronization is performed for all available nodes.

Those built-in metrics are not high-level and application specific and there-
fore do not provide suitable measurements for complex applications running on
the grid, but they can be used as build block for the high-level metrics since they
can be combined and/or correlated together to build very useful metrics. By ap-
plying event detections defined by the user, yet another high-level metrics could be
constructed which can be application or infrastructure specific.

In order to visualize the performance measurements of metrics, the specified
measurement must be defined in a measurement definition window, and then the
visualization type should be selected. After that, the user can observe the perfor-
mance results as shown in Fig. 5.7.

Using Built-in Metrics

In order to investigate the reasons for the occurrence of performance problems, the
following two built-in metrics in GPM can be used as an example. For the class
of communication based metrics, the functional metrics MPI_Send can be taken
into consideration. Defining and measuring those built-in metrics will be used to
detect communication bottlenecks between the communication partners [2]. As an
example, to visualize such behavior, the Matrix diagram component of the UIVC
showing communication activities can be used. When all processes are executing
the same algorithm, the metrics must show evenly distributed activities which will
be described by the uniformly distributed colours of the Matrix diagram. If this is
not the case, that is an indication of some irregularity in the MPI_Send function
which might be the reason for the unbalanced load in the computation.

The second built-in metrics that can be used to show the load of the processes
is the sampled metrics CPU_usage. This can be visualized using a MultiCurve
diagram showing the load of the processes. If the load decreases for some or all
processes, performance degradation is detected. In order to find out which process
is the reason for this performance problem, a histogram can be used to see how
the MPI_Receive function is performing. If the result is not acceptable for all
processes, a PieChart can be used to identify the exact process responsible for this

CHAPTER 5. CONTEXT OF THE DISTRIBUTED EVALUATION 74

Figure 5.7: The GPM user interface.

imbalance. After running the application for a while, the PieChart shows for each
process, whether an imbalance is detected in those MPI_Send and MPI_Receive
functions.

Chapter 6

Overlay Networks for Distributed
Evaluation

6.1 Introduction

The exploitation of distributed evaluation as a solution for scalability problems
becomes essential for distributed tools like performance analysis, debuggers, and
load levellers. This has been one of the main concerns of runtime tool developers in
their effort to meet the ever-increasing demand of high-speed and high-throughput
computation of on-line tools in the environments like the Grid.

The main concept of the distributed evaluation presented here is the evaluation
of measurement results locally at the place where those results are produced, and
to send the result values to the front-end where those measurement values may
also be evaluated further or used directly by their consumer. Fig. 6.1 shows how,
in general, distribution, aggregation and reassembling of results can be performed
between nodes residing on different hosts that are controlled by different adminis-
trative domains, and the visualization component at the local machine. Specially,
most execution models which have broadcast/reduction behavior can benefit from
this approach to achieve an efficient high-speed and high-throughput computation
processes.

In order to illustrate the distributed evaluation idea, a Grid Performance Mea-
surement Tool [74] (GPM) as discussed in section 5.3, is used. In this tool, the user
can perform performance measurements using the built-in metrics. This tool is ex-
tended to support user defined metrics using the Performance Measurement Speci-
fication Language (PMSL), which is developed for this purpose. Applying PMSL,
the user can specify new metrics, which can be application and infrastructure spe-
cific. The user can also use this language to have an impact on the distributed
evaluation of the measurement results by specifying the desired distribution. The
High Level Analysis Component (HLAC), as one of the three components of GPM,
handles all the user defined metrics and implements most of the solutions for the
distributed evaluation.

75

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 76

For the distributed evaluation in GPM, its UIVC is used as a front-end, and
the remote sites which are used for the computation of the user defined metrics are
back-ends. The aim of the distributed evaluation is to compute the subtasks as local
as possible, i.e., the computation must be performed at back-ends whenever possi-
ble. Especially, measurements which are event triggered should be evaluated at the
back-ends as far as possible since the underlying events can occur very often and
thus intensify the network communication. Through evaluating the measurements
exactly at the location where the events occur and not in the centralized location,
the unnecessary communication between the computing and the visualization com-
ponents of the tool is avoided. This was, in most cases, the reason for bottlenecks
at the front-end of the GPM tool. In other words, to increase the high-speed of a
computation involved in a distributed computing, the frequency and the amount of
data transferred from the back-ends to the front-end must be reduced.

The distributed evaluation presented in this work is realized using an Aug-
mented Dataflow Model (ADFM) as briefly discussed in chapter 3.3. This supports
not only the distributed evaluation by providing an automated parallel execution of
the subtasks, but also the asynchronously reassembly of the measurement results.
Through its asynchronous nature and because it does not impose any complete
ordering on the elementary functions of a task, the DFM used for the distributed
evaluation is suitable for the computation of measurement results which are de-
rived at different time as they are triggered by different events. This is the case for
GPM and other tools in the same category. This approach is also the best way to
combine the measurement results to provide a final result value.

In order to realize the distributed evaluation, an ADFG is created from the
measurement specification provided by the user. This ADFG is then used to build
an efficient and flexible overlay network used for the cooperated computation of
different sites, computer nodes and processors participating in the distributed eval-
uation. Under overlay network, in this context, is to understand that a transient
network which overlie on the real network used for the communication between
different computing components. This overlay network exists only, as will be ex-
plained latter, during the run-time of the corresponding measurement scenario. The
behavior of this network facilitates destroying and creating those network commu-
nication on-demand. In other words, the overlay network is set up for every defini-
tion of the metrics specification and will be available as long as the measurement
is not deleted. Fig. 6.1 shows two different overlay networks which are the results
of defining a metrics for two different sets of applicable objects. Fig. 6.1a shows
all the available sites and nodes whereas Fig. 6.1b shows only the sites and nodes
chosen during the definition of the measurement in focus.

The main objective of building such an overlay network is to reduce the over-
head due to token transfer through the communication network during the evalu-
ation of the distributed computation. This can arise during broadcast as well as
reduction operations. That means that this overlay network enables not only the
flow of data from the back-ends to the front-end but also the flow of control data
from the front-end to the desired back-ends. In contrast to the other approaches

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 77

...
Front−end

Back−end_n−4

Back−end_n−3

Back−end_n−2

Back−end_n−1

Back−end_n

Back−end_4

Back−end_2

Back−end_1

Back−end_3

site m

site m−1

...
Front−end

Back−end_n−4

Back−end_n−1

Back−end_n

Back−end_4

Back−end_3

site m

site m−1

site 1

Front−end

Back−end_n−4

Back−end_n−3

Back−end_n−1

Back−end_4

site m

site m−1

site 1

site 1

a) b)

Figure 6.1: Multicast/reduction overlay network

(see also section 4.2) which deal with similar problems, this solution allows the
user to have full control over the distribution of the computation since the overlay
network is specific for the measurement scenario, and thus it depends only on the
metrics specification and definition performed by the user.

The first step towards building this overlay network is to have a flexible way of
describing the metrics to be measured. There are different ways to specify metrics
as discussed in section 4.3. Those methods include the most widely used graphi-
cal or menu-driven and specification language based ones. Through menu-driven
metrics specification, information is collected usually from the user interface using
different kind of components (buttons, lists, combo-boxes, check-boxes, etc.). This
approach is actually user friendly in such a way that the user can specify metrics
fast and easily but is not flexible enough to specify a more abstract metrics since
it is defined by the programmer of the user interface who can not cover all the
possible measurement scenarios that the user may want to define.

An efficient way of specifying metrics is, therefore, using a dedicated speci-
fication language which is more flexible and gives individually more freedom of
specifying metrics. Using a specification language can allow to express the aims
of the user rather than that of the developer. Due to this fact, the dedicated spec-
ification language PMSL is used to specify all the metrics, as will be discussed in
section 6.2.

In GPM, the performance measurement specified by the user defined metrics
is usually based on pre-defined metrics, plus some events to be detected in the ap-

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 78

plication to be monitored. After the specification of a metrics using PMSL, the
measurement definition must follow. As shown in the Fig. 6.1 defining a specified
metrics for different parameters results in creating different measurement scenarios
using different overlay networks. After the specification of the metrics and the def-
inition of the corresponding measurement, the measurement can be started which
in turn starts the process of distributed evaluation, automatically. The process of a
distributed evaluation of user defined measurement, as it is realized in this thesis
can be described with the list of subtasks as shown in Fig. 6.2.

1. Generating an intermediate representation in form of DAG from the metrics
specification.

2. Generating a DFG from the corresponding DAG.

3. Partition of the DFG to sub-DFGs according to the remote locations where
those subtasks will be computed.

4. Creating communication links between the front-end and the back-ends com-
ponents of the DFG.

5. Creating monitoring requests for the whole measurement.

6. Distributing the sub-DFGs to their proper remote hosts.

7. Reassembling, synchronizing, and routing the measured result values to the
consumer.

Figure 6.2: Steps of the distributed evaluation of performance data.

Through distributing the sub-tasks represented by sub-DAGs to their appropri-
ate hosts and evaluating them in a distributed way and collecting the asynchronous
measurement results dynamically on the run time through evaluating the main task
represented by the main DFG, an overlay network between the front-end and the
back-ends is established. This is used to manage the distribution, computation and
reassembling of the measurement results. With this efficient distributed evaluation
of computations, applications can be monitored with minimal and thus negligible
additional overhead.

In general, every developer who programs an application to run in a distributed
environment would like to see whether his application is executed correctly and
behaves as expected in a given environment. There are applications which need
process level investigation in order to find out, for example, the reason for the per-
formance degradation. The developer, therefore, want to see, e.g., that each pro-
cess of his MPI grid application uses the CPU more or less evenly, and that there is
no process which shows a heavily loaded CPU. For MPI applications where every
process, except the master process, usually behaves similarly since they are execut-

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 79

// test_probe.c file

void region_begin_event(int vt) {}

void region_end_event(int vt, double residuum) {}

void probe_in_iteration(int iter) {}

Figure 6.3: An example of a C file used to define probe functions

ing the same algorithm and synchronize themselves after each iteration, unevenly
usage of some of the processes can be an indication for performance degradation.

Another important behavior for metrics based on communication is to achieve
a balanced volume of communication. Since the performance for such an environ-
ment is reduced to the performance of the slowest process, a per-process evaluation
of the application, as it is supported by the OCM-G, must be performed. Thus,
OCM-G, as a hierarchical monitoring system, is a suitable infrastructure for such
kind of computation.

In order to inspect application and grid environment specific behavior, one must
be able to combine built-in metrics with each other. In addition to the built-in
metrics, the user must also use probes (see also subsection 6.2.1) in order to have an
access on event triggered measurement results and application specific data. Using
those probes, the developer can specify a portion of source code of the application
program as a location for a measurement. This is achieved through inserting pair
of probes at the beginning and at the end of the desired location. Those probes can
be used in different metrics without recompiling and re-running the application.
As shown in Fig. 6.4, only the relevant places are marked in the source code using
probes. The only additional information needed from the user is to define an empty
probe function in a separate C file as shown in Fig. 6.3.

To avoid recompiling the source code, the developers of the applications can
insert some more probes in the location where a performance problem is suspected
or even in the locations which may contribute to find the location where the per-
formance problem arises. The probes defined in Fig. 6.3 can then be used in the
application code as shown in Fig. 6.4. The probe identified by probe_in_iteration
function is used in two nested “for” loops to compute, for example, the data re-
ceived in each outermost loop iteration using MPI_receive. Another parameter of
a probe in the metrics specification is a virtual time, which is an arbitrary, mono-
tonically increasing integer value, used to identify not only different events, but
also measurements belonging together. Thus, probes using the same virtual time
can easily be combined together. For example, the region_begin_event and re-
gion_end_event in Fig. 6.4 can be used to compute the data provided by the
built-in metrics in the application code between the two probes. In addition, the
region_end_event probe provides the residuum value, which is an application spe-
cific data.

Using these probes, the developer can access computation results between the
beginning and the end of the processing of a certain class of user interaction, which

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 80

// ... some application code here ...

int loop_iter = 0;

for (...){

for (...){

//some code for the communication

//and computation here

...

}

probe_in_iteration(++loop_iter);

}

// ...some application code here ...

region_begin_event(vt);

// some application code here ...

//like MPI_send, MPI_receive, IO_volume, ...

...

double residuum = ...

region_end_event(vt, double residuum);

Figure 6.4: Using probe functions in an application code

enables to measure a metrics for a single interaction phase. Through using different
virtual times for the same probes, it is also possible to measure, for example, the
amount of data transferred to the other processes during application steering. This
is possible while the value of the virtual time can be associated, for example, with
the loop counter as shown in Fig. 6.4. Such issues are discussed briefly in chapt.
6 and 7. For those probes to work, a wrapper function creates code from the probe
function definition during the compilation of the application to enable measuring
the event triggered measurements.

6.2 Performance Metrics Specification Language (PMSL)

As discussed above, GPM provides low level built-in metrics which can be used to
analyze basic behavior of applications, but the performance information provided
by those built-in metrics are not abstract enough to evaluate metrics specifying a
grid infrastructure or application specific computation. In contrast to these standard
metrics, user defined metrics can combine and aggregate these built-in metrics and
use event detection in order to have a complex and high level measurements. PMSL
provides the possibility of defining user defined metrics which supports application
dependent and/or grid environment specific measurements.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 81

6.2.1 Basic Concepts of PMSL

PMSL [2, 10] is a declarative, functional language, which has been developed to
support the user to describe new metrics and to simplify the distributed evaluation
of metrics measurements. This language is used to specify performance metrics
of MPI applications [30] running on the Grid. Using this dedicated specification
language, it is possible for the user to specify a high level measurement metrics
used not only to correlate the applications performance to the performance of the
Grid environment, but also to inspect the performance of every single interaction
of interactive applications. This language simplify the way how built-in metrics
can be combined with each other and how to take application specific data into
consideration. Through this way, the performance analysis tool can be adjusted
to the needs of the user. In this section the syntax and semantic of PMSL will be
discussed while examples and usage scenarios are illustrated in chapt. 7.

Combining Pre-defined Metrics

As a devoted language for the GPM tool, PMSL allows to combine and correlate
all pre-defined metrics in order to provide more abstract metrics. The pre-defined
metrics as discussed in section 5.3 provide data which are not enough to formu-
late more abstracted metrics, e.g., to describe complex performance measurement
analysis of interactive applications on the Grid. For the combination and corre-
lation, PMSL, as shown in Fig. 6.5. supports all usual arithmetic (plus, minus,
times, div, mod, ...) and logical operations (as illustrated by the non terminal sym-
bol “RELOP”). Using some aggregation function (as specified by the non terminal
symbol MATHFUNC), computed values can be aggregated depending on certain
conditions to be fulfilled. Those conditions can be restriction in time and/or lo-
cation. For example, a selective computation can be performed only for certain
applicable objects or virtual times within an interval.

Probes

As mentioned above, the detection of specific events occurring in the application
can be realized by using probes. Those probes, used for event triggered measure-
ments, are applied in the level of arbitrary code and require to be inserted at the
relevant places in the source code. In the PMSL specification, a probe is defined
using an arbitrary name followed by at least two parameters as shown in Fig. 6.5.
Those parameters point out the process where events may occur and the virtual
time. Since the same probe can be executed by different process when the cor-
responding event occur, the first parameter, which indicates the process in focus,
can be used to evaluate per process computation. Using the virtual time parameter,
probes can be paired or associated to each other through assigning the same virtual
time for different probes.

Additional parameters can be used to access application specific data which is
accessible under the scope of the probe function. A probe can also have a shifted

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 82

metricsDefinition: ID '(' parameterDecList ')' body

parameterDecList: parameterDec

| parameterDecList ',' parameterDec

parameterDec: type ID

type: ID dimensions

dimensions: � | dimensions '[' ']'

body: '{' statementList '}'

statementList: declaration statementList

| assignment statementList | 'RETURN' expr ';'

declaration: type names ';' | type ID '=' expr ';'

| 'PROBE' ID '(' probeParameterTypeList ')' ';'

names: ID | names ',' ID

probeParameterTypeList: probeParameterType

| probeParameterTypeList ',' probeParameterType

probeParameterType: type | type ID

assignment: lhs '=' expr ';'

lhs: ID defIndices

defIndices: � | defIndices '[' ID ']'

expr: - expr | + expr | expr '+' expr | expr '-' expr

| expr '*' expr | expr '/' expr | expr '%' expr

| term | term 'AT' ID '(' parameterList ')'

term: '(' expr ')'

| MATHFUNC defIndices '(' expr optWhere ')'

| MATHFUNC '(' expr ',' parameterList ')'

| ID '(' parameterList ')' | DOUBLE | INTEGER

| ID indices | term '.' ID | '[' ID ',' expr ']'

| term '.' ID '(' parameterList ')'

indices: � | indices '[' expr ']'

parameterList: expr | parameterList ',' expr

optWhere: �

| 'WHERE' boolExpr

boolExpr: boolExpr 'OR' boolExpr | boolExpr 'AND' boolExpr

| 'NOT' boolExpr | '(' boolExpr ')' | expr 'IN' expr

| expr RELOP expr

MATHFUNC: 'SUM' | 'PROD' | 'MIN' | 'MAX' | 'MEAN'

| 'STDEV' | 'COUNT' | 'UNIQUE'

RELOP: '==' | '!=' | '>' | '<' | '>=' | '<='

Figure 6.5: An abstract grammar for the PMSL language

virtual time parameter, which enables to access result values computed at a previ-
ous virtual time. It is, therefore, possible to access, for example, result values in a
loop that are computed previously than the actual loop.

PMSL Syntax

The syntax of the PMSL resembles a function definition of C/C++ as shown in
Fig. 6.6. A metrics specification in PMSL contains the name of the metrics to be
defined, a list of parameters, and a body as shown in Fig. 6.5. A single specifica-
tion can contain one or more functions which may depend on one another. Each
function must be specified with a unique function name and a return value. Option-
ally, functions can have different number and kind of parameters which are used
to specify the constraint of the specified metrics. After specifying a user defined
metrics, the metrics must be submitted to be measured. This results in inserting

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 83

Figure 6.6: An example specification of user defined metrics

the new defined metrics (dynamically in the run time) to the list of available met-
rics. After the submission, the metrics will be parsed by the tool to create a C++
specification object representing the metrics. This new metrics can be measured
and visualized in the same way as the built-in metrics. If an error occurs during the
parsing process, the user will be informed about the exact location of the error in
the specification.

During the specification of multiple metrics at once, if there is a dependency
between them, as shown in Fig. 6.6 (see also [1]), their order must be taken into
consideration. I.e. a user defined metrics to be used in another user defined metrics
must be specified a priori. In our example above the function with the virtual time
(_vt) must be defined before the function without it.

During the parsing process of the user defined metrics, the first element to
parse is the name of the metrics, which is used to identify the metrics in the whole
measurement process. Therefore, this name should be unique to the predefined
metrics and to the metrics defined by the user previously. The superset of the
parameters, which are the next to parse, contains the following number and type of
parameters:

• APPOBJECT[] OBJECTS

• APPOBJECT[] PARTNERS

• REGION[] REGIONS

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 84

• TIMESPEC TIME

The first three parameters are optional. These parameters describe which object
type is allowed to use for the measurements and which dimension they possess.
Thus, the user can have different metrics definition with different numbers and
combination of parameters. Every specification must posses at least one param-
eter describing the time of the measurement. These four possible parameters are
explained as follows:

1. Objects: For every measurement, the location where the measurement will
be performed, can be defined. Those are applicable objects including pro-
cesses, nodes and sites. That means that the user can specify a measurement
for the whole sites, for nodes in a particular site or for particular groups of
processes within a node. Omitting this parameter in the parameter list of
the specification will lead to the computation of the specified metrics for all
possible applicable objects.

2. Partners: For measurements related with communications, the user can de-
scribe which partner object should be taken into consideration. This again
can be specified as granular as the applicable objects.

3. Regions: The user can assign the region of the measurement for which the
measurement will be performed. This could be either a portion of source
code or the location of certain methods. That means that any measurement
can be performed for the part of the code, or for the whole application.

4. Time: There are three different kinds of time specifications. Those are: a
point of time, time interval and virtual time. To define a measurement inter-
val, the following special values are used:

(a) NOW describes the current time,

(b) START provides the starting point of time for the whole measurement,
and

(c) LAST presents the point of time when a measurement value is read for
the last time.

The body of the specification can contain a list of statements (declarations of vari-
ables and functions), assignments (which can be multi-dimensional), and a return
statement used to provide the computed value of the specified metrics.

During the assignment, the expression on the right hand side must not contain
any free variable that is not indexed. A free variable, in this case, is a variable
in an expression, which has not yet a value assigned and into which a definite
substitution may take place. Thus, a free variable is used as a placeholder. This
declaration supports also multi-dimensional variables which are indexed variables
realized by index substitution.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 85

6.2.2 PMSL Usage

Using the text editor of UIVC of GPM, the user can specify any measurable metrics
as shown in Fig. 6.6 which illustrates two metrics specifications showing the most
important features of PMSL. In this metrics specification there are two different
metrics dealing with the amount of sent data. The first one describes the sum of
the amount of data sent in all the processes which are involved in the specified
metrics measurement. Using the begin_send and end_send probes defined at the
beginning of the specification, only those Send_volume values between the two
probes are taken into account.

The specification Send_volume_for_interaction in Fig. 6.6 uses the specifica-
tion Send_volume_for_interaction_vt to get the values of Send_volume computed
between the two probe events within the specified time interval. Those time inter-
vals can have a start point which can be the starting point of the whole measurement
or the point of time when the measurement is read for the last time, whereas the
end point is the actual measurement time.

The actual values of the parameters, except for the parameter dealing with the
time specification, must be defined via the user interface during the measurement
definition phase. The time parameter will be delivered from the underlying oper-
ating system after the measurement is started, when the measurement is read, and
when an event in focus is occurred.

6.3 Evaluation of Metrics Specification

In order to measure performance data, the parameters of the metrics describing the
measurement must be defined. Defining a metrics means assigning values to the
parameters describing, the applicable objects, the partner objects, and the region of
the measurement in the code of the application for which the specified metrics will
be measured. The time parameter can only be defined fully when the measurement
is started.

6.3.1 Creating Intermediate Representation (IR)

After the user writes the desired metrics specification, an intermediate represen-
tation in form of a user defined metrics object will be created during the parsing
process of the specification. This user defined object contains the IR of the speci-
fied metrics in form of a DAG. Fig. 6.8 shows, for example, such an intermediate
representation of the metrics specification as shown in Fig. 6.7. The generated
intermediate representation will then be used as a template for the definition of
the specified metrics. Depending on the parameters used during the definition, the
corresponding template will be adapted to the required measurement scenario.

The example metrics, as depicted in Fig. 6.7, shows some important future
of the PMSL (see also some other features in section 7.2) describing the load im-
balance at barrier. For this example metrics, a bottom up concept is applied on

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 86

1. Load_imbalance_at_barrier(Process[] procs, VirtualTime vt)
2. {
3. PROBE loop_start(Process, VirtualTime);
4. PROBE loop_stop(Process, VirtualTime);
5. Process p;
6. Process p0 = UNIQUE(p WHERE p.rank == 0);
7. Value loop_time = Time(NOW) AT loop_stop(p0,vt)

- Time(NOW) AT loop_start(p0,vt);
8. Value[] barrier_time;
9. barrier_time[p] = Barrier_delay(p, [START,NOW]) AT loop_stop(p,vt)

- Barrier_delay(p, [START,NOW]) AT loop_start(p,vt);
10. Value bmax = MAX(barrier_time[p] WHERE p IN procs);
11. Value bmin = MIN(barrier_time[p] WHERE p IN procs);
12. return (bmax-bmin)/loop_time;
13. }

Figure 6.7: Metrics specification for load imbalance at barrier

the measurement specification to generate the desired intermediate representation.
That means that starting from the leaves of the DAG, the whole DAG will be con-
structed successively. That means that whenever an assignment is parsed, a sub-
DAG will be created and whenever the value of an assignment is applied, the cre-
ated sub-DAG will be attached to the existing DAG to create the final DAG, which
represent the specified metrics. For example, if we have an operation between any
two expressions, an operation node will be created and those two expressions will
be its child nodes. Those child nodes in turn can also have child nodes if they have
to be computed further.

For example, at line 6 in Fig. 6.7 the first sub-DAG will be created which have a
root node representing the UNIQUE operation returning a single arbitrary process
with a rank 0. With the same mechanism, all other sub-DAGs will be created and
will be joined together to create the final DAG rooted at DIV operation node using
the return assignment at line 12. The root node contains the two sub-DAGs rooted
at their SUB operation nodes as shown in Fig. 6.8. The first one contains the MAX
and MIN operation nodes as its child nodes whereas the second one represents
the value of the elapsed time assigned as a subtraction of the predefined metrics
Time measured at two different probe events. In this way, the complete DAG is
constructed.

To combine and aggregate built-in metrics (like Time, Barrier_delay and Bar-
rier_time metrics in Fig. 6.7), different mathematical operations are provided by
the PMSL. Since all other operations are used as usual, the functionality of some
special operators like AT and IN will be discussed here. The AT operator is a
special expression used to specify the probe functionality. This operator takes the
value of an expression when an event occurs. Therefore it must have at least two
child nodes, as shown in line 7 and 9 of Fig. 6.7.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 87

SU
B

SU
B

M
A

X

Barrier_delay

Barrier_delay

M
IN

SU
B

IN

pr
oc

es
se

s

SU
B

Barrier_delay

loop_stop

vt
"P

"
"P

"
"P

"
"P

"
vt

A
T

A
T

IN

pr
oc

es
se

s
"P

"
"P

"

Barrier_delay

loop_stop

vt
"P

"
"P

"
"P

"
"P

"
vt

A
T

A
T

time interval

time interval

time interval

time interval

loop_start

loop_start

Time NOW

vt

loop_stop

A
T

Time NOW

vt

loop_start

A
T

D
IV

un
iq

ue

p

ra
nk

eq
ua

l
p

0

un
iq

ue

p

ra
nk

eq
ua

l
p

0

Figure 6.8: A DAG for the Load_Imbalance_at_barrier metrics in Fig. 6.7

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 88

The AT operation must have a sub-DAG and a probe node as its child node,
and the child sub-DAG is not allowed to contain any specification describing event
triggered computations. This sub-DAG can be a single node, which, e.g., may pro-
vide a constant value or a complex sub-DAG. The semantic of this intermediate
representation is as follows: Whenever an event on the right hand side arises, the
sub-DAG at the left hand side will be evaluated or a constant value will be deliv-
ered. For each pair of events (for example, a begin and an end event specified at
line 7 and 9 in Fig. 6.7) the sub-DFG as shown in Fig. 6.11 will be generated.

The IN operation, as shown in the example metrics at line 10 and 11, is used
to prove if an element belongs to a group of elements. This actually provides
to some extent the functionality of control statements like if and else in classical
programming languages. For example, the expression p IN processes returns true
if and only if the process assigned with p belongs to the list of processes assigned
with processes. Since the IN operator is used most of the time with the WHERE
functionality, Fig. 6.12 shows the part of the DAG for the IN operator together
with the WHERE operator. A simple example of the WHERE expression is used
in line 6, 10, and 11 and the corresponding DAG for such expressions is shown in
Fig. 6.8. For this example metrics, if the applicable object parameter is defined for
three processes, then three sub-DAGs will be created during the definition of the
DAG.

The set operations MAX, MIN and UNIQUE are used in the specification to
perform the corresponding mathematical operations over all elements of the spec-
ified set. The DAG created for those operations can only have one or two child
nodes depending on the parameter used. The first parameter is a simple expres-
sion and the second one is again an expression containing the precondition to be
fulfilled in order to evaluate the first expression. These preconditions are realized
using free variables which are used as an iterator. Those free variables are appli-
cation objects, regions, or virtual times. Those two expressions are separated by
a WHERE operator to perform the operations only on the selected set of applica-
ble objects. The expression on the left hand side must not contain additional free
variables. Fig. 6.12 shows the DAG and the corresponding DFG for the statement
containing the WHERE expression. Line 6 in Fig. 6.7, for example, shows the
usage of the attribute rank applied on a process object returning the master node.

In order to optimize the whole evaluation and reduce the complexity of the
computation, an Common Subexpression Elimination (CSE) process is performed
before the measurement is defined. This is realized by searching for common sub-
DAGs and replacing them with a pointer to a single common sub-DAG to eliminate
multiple copies. This is used mostly for the nodes representing the built-in metrics
and enables to have their efficient implementation. Fig. 6.8 shows the intermediate
representation of the example metrics used, whereas Fig.6.9 shows the DAG after
the elimination of the common subexpressions of the corresponding DAG. After
the optimization of the intermediate representation, the creation of the user defined
specification object representing the whole user defined measurement specification
is completed. This object contains an intermediate representation of the given spec-

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 89

SUB

AT

IN
B

ar
ri

er
_d

el
ay

AT p processes

MINMAX

SUB

DIV

SUB

T
im

e

ATAT

vtP0

lo
op

_s
ta

rt

lo
op

_s
to

p
tim

e

vt

lo
op

_s
to

p

lo
op

_s
ta

rt

Figure 6.9: A template for the example metrics shown in Fig. 6.7

ification for the corresponding metrics as a DAG and is used to generate an Active
User Defined Metrics object (AUDM), which will be used to control (specially to
start, stop and delete) the whole measurement.

To simplify the complexity of the resulting graph, sub-DAGs having similar
structure and having the same applicable objects are represented with a single sub-
DAG (like the sub-DAG rooted at MAX and MIN). This summarizes the number
sub-DFGs representing the same qualitative information. When there is more than
one user defined metrics specified, the same procedure will be applied for all other
specifications. That means that for every single metrics there will be an interme-
diate representation, which specifies the user defined specification object. Those
specifications can also consist previously defined metrics, which are specified by
the user.

After the parsing process of the example metrics is accomplished, we will have
the corresponding intermediate representation as shown in Fig. 6.9. As will be
discussed in the following subsection, all possible parameters must be defined in
order to measure the specified metrics.

6.3.2 Measurement Definition

After eliminating the common sub-expressions, the DAG has now an optimized in-
termediate representation in form of another DAG which will be used as a template
for the specified metrics. Since a metrics is only a quantity description like area or
volume that needs to be measured, the necessary additional information has to be
provided by the user using the UIVC of GPM. During the definition of a specified

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 90

SUB

be
gi

n_
se

nd

en
d_

se
nd

T
im

e

ATAT

p0tim
e vt

SUB

MINMAX

DIV

p2 p3

SUB

AT AT

be
gi

n_
se

nd

en
d_

se
nd

vt

SUB

AT AT

be
gi

n_
se

nd

en
d_

se
nd

vt

SUB

AT AT

be
gi

n_
se

nd

en
d_

se
nd

vtp1

tim
e

in
te

rv
al

tim
e

in
te

rv
al

tim
e

in
te

rv
al

B
ar

ri
er

_d
el

ay

B
ar

ri
er

_d
el

ay

B
ar

ri
er

_d
el

ay

Figure 6.10: The result of metrics definition for the metrics specification in Fig.
6.7

metrics, the user must determine the applicable objects for which the measurement
will be performed.

In order to provide the processes to be used for the evaluation of the speci-
fied metrics, the user must specify the Fully Qualified Domain Names (FQDM) of
all the sites to be used for the distributed evaluation. Using these FQDN, the UI
provides all the processes to be used for the computation. Thus, during a measure-
ment definition, the corresponding template will be used to create a real measure-
ment definition of the specified metrics using the provided information. When a
measurement is defined for multiple applicable objects, the corresponding template
will be used to generate a DAG for each applicable object and those DAGs will be
summed up to a single DAG representing the whole measurement. Fig. 6.10 shows
the definition of the example metrics only for three different processes (p1, p2 and
p3).

Using the provided information for the metrics, different kinds of measure-
ments can be created using the same template. As a result, once a metrics is spec-
ified and the necessary probes are created, a user can perform a parameter study
through defining the same metrics using different applicable objects. In doing so,
he can, for example, identify a suitable grid environment for his application through
performing some metrics measurements using different sites and comparing their
application progresses as will be discussed in section 7.2.

As discussed in subsection 6.2.1, the user defined metrics can have different
number and types of parameters. The user should specify only those parameters
which are going to be used even if parameters which are defined but not used will
be ignored. For example, the metrics Load_imbalance_at_barrier, as shown in

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 91

Fig. 6.7 is a kind of metrics in which the partner objects and regions are omitted in
the parameter list since they are not required.

After the definition of a measurement, a partial evaluation of the DAG using
those available parameters is performed automatically. All elements which are ac-
tually not related with the time parameter can be used for the partial evaluation
of the DAG. The parameter describing the time of the measurement can only be
substituted with a real value whenever the user starts measuring the defined mea-
surements and the GPM reads the result values. Before starting the measurement, a
user is only able to determine the summary and aggregation mode of the measure-
ment, which has also an impact on the final measurement result values. As a result,
the final value can be a single summarized value, or a set of individual measure-
ment values come from a set of partner objects. The start point of a measurement
can either be a start point of the whole measurement or the point of time where the
last measurement has been read as discussed in section 6.2.

During the evaluation of a priori defined user metrics, their measurement defi-
nition will be used. This is the case for the Send_volume_for_interaction_vt met-
rics as depicted in Fig. 6.6. That means that the corresponding template DAG
for this measurement definition will be used in the Send_volume_for_interaction
measurement. During the metrics definition phase, the parameters of not only the
user defined metrics and the built-in metrics, but also user defined measurements
defined a priori will be assigned.

If the user decided to use an array of parameters, even if the measurement
was specified to accept scalar parameters, the tool will perform an optimization
automatically, so that for each combination of those parameters a sub-DAG will
be created to be summed up to a single final DAG. For example, if the user wants
to use x application objects, y partners and z regions, the number of sub-DAG
to generate will be the result of multiplying the dimension of those three objects
(x∗ y∗ z).

6.4 Generating Augmented DFGs

After a measurement is specified and defined as desired, it will be evaluated in a
distributed way. The defined measurement describes the main task to be performed.
This main task will be partitioned into different subtasks. Those subtasks will be
distributed and evaluated on a remote host independently. In order to distribute the
subtasks into their appropriate locations and to reassemble the results effectively,
the introduced ADFG (in order to simplify the description, we use DFG instead of
ADFG hereafter) is used which is discussed briefly in section 3.3.

The introduced DFG created form the intermediate representation consists dif-
ferent kinds of DFNs with different kinds of firing rules. Those DFNs are used
to aggregate, correlate, reroute and evaluate the result values properly whereas the
entire DPs consume result values. This DFG is generated from the corresponding
DAG after the definition of the measurement has taken place. The DFNs are cre-

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 92

F
I

O
F

F
I

O
F

ATAT

Operation

Sub DAG

be
gi

n_
ev

en
t

en
d_

ev
en

t

. . .
p VT P1 PN

Dataflow Graph
Operation

notificationnotification

Sub DFG

en
d

ev
en

t

be
gi

n
ev

en
t

Figure 6.11: Transformation of a sub-DAG to the corresponding sub-DFG

ated from the respective nodes of the DAG, i.e., almost every node of the DAG will
be converted to the corresponding node of the DFG.

For the event triggered measurements, for example, the AT node will be elim-
inated and its information will be embedded in the measurement object and in the
corresponding monitoring requests as will be discussed in section 6.7. Fig. 6.11
shows the conversion of a DAG representing the AT operation into the correspond-
ing DFG. Since the same DFN must handle different results, a requester identifier
is used to route the results to the correct DPs. The DFG in the Fig. 6.11 shows how
the result of a sub-DFG is forwarded to two different DPs depending on whether
the result belong to the begin or end event. When the request to the monitoring
system is created, the correct consumer is associated with the unique identifier.
Therefore, it is possible to forward the result values to the proper requester using
the requester identifier, which is associated with the measurement.

The IN operation is used to perform actions on a selected set of objects as
discussed in subsection 6.3.1. For the set operations using the WHERE expression,
the transformation is done as depicted in Fig. 6.12. In this case, the sub-DAG is
evaluated for those objects which are selected using the IN operation. This may
result in a number of sub-DAGs on which the set operation will be performed.
If the IN operation is used to perform action for specified virtual times in a time
interval, only one child DFG will be created and the virtual time operation node
will collect the result values computed using the virtual time and wait until it is
requested to provide its intermediate results.

In order to set up a communication link between two DFNs residing on differ-
ent sites, the DPs serves also as a connector component. The main purpose of those
DPs is to collect the measurement results, which eventually must be synchronized
before they are aggregated. To manage the distribution of subtasks and to collect
all the necessary result values, a bidirectional connection between any DFNs and
their corresponding parent and child DPs, as discussed in section 3.3, is applied.
The final DFG for the example metrics in the previous section is depicted in Fig.
6.13.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 93

sub
DFG

sub
DFG

sub
DFGWHERE

boolean expresion

IN

set Operation

Sub DAG
el

em
en

t

el
em

en
ts

se
t o

f

Sub DAG

VT Operation

applic
able o

bjec
t b

ase
d

virtual time based

set Operation

. . .

Figure 6.12: Transformation of sub-DFG using set operations for the aggregation

DFG Components

There are different kinds of DPs and DFNs used in the DFG.

Kinds of DPs

There are two types of DPs:

• DPs for constant values: These date providers don’t have child DFNs which
provide them with result values. They are simply delivering a constant value,
which was assigned to them during the specification of the measurement.
Therefore, these DPs are not used to connect DFNs. Instead, they are used
as producers of constant numerical data and thus reside at the endpoints of
the DFG.

• DPs for measurement values: These types of DPs are FIFOs used to collect
the result tokens delivered by their child DFNs. The collected values will
then be propagated into the parent DFNs to be aggregated or combined on
their way to the root of the DFG. This means that the child DFNs of a DPs
write result values into the DPs and the DPs inform the availability of these
result values to the parent DFNs which may try to collect the result values.

There are also different types of DFNs connected by DPs. These sorts of DFNs are
described as follows:

• Attribute DFNs: Those nodes are used to evaluate the attribute of objects.
They are used to find out, for example, the rank, site, and node of a process.

• Iterator DFNs: Such nodes are used to provide measurement results or con-
stant result values to the parent DPs. They are created from the iterator nodes
of the corresponding DAG. An event based measurement use such kind of

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 94

M
IN

SU
B

M
A

X

B
ar

ri
er

_d
el

ay

SU
B

B
ar

ri
er

_d
el

ay

SU
B

SU
B

T
im

e

B
ar

ri
er

_d
el

ay

SU
B

D
IV

Figure 6.13: A DFG for the Load_at_barrier metrics

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 95

data producer to provide a constant value when the corresponding event oc-
curs.

• Operation DFNs: Those nodes represent mathematical operators as dis-
cussed in subsection 6.2.1. Those nodes are created from the corresponding
operation nodes of the DAG. Except for the "AT" operation node, which will
be eliminated during the creation of a DFG as shown in Fig. 6.11, a DFN
will be created for all other operation nodes.

• Virtual time aggregated DFNs: Those nodes accumulate result values ac-
cording to the given virtual time. Those accumulated values will then be
accessed whenever they are desired.

• Virtual time shifted DFNs: These nodes are used to have an access on the
values computed for the previous virtual times than the actual one, and are
created during the evaluation of the underlying DAG. They can be used to
compute the values between the actual and the previous virtual times. There-
fore, they are the results of probe nodes which have a virtual time shifted
with an integer number.

• DFNs for measurement results: Such kind of DFNs are used to manage the
measurement results provided by the built-in metrics and are also used as
connector DFNs (see also section 6.5.2). Since the built-in metrics provide
the results asynchronously via a callback function, an active measurement
which is created from the built-in metrics assigns this DFN as a consumer
object in order to forward the measurement results to this DFN. In addition
to this information, an active measurement context containing the neces-
sary information for the measurement will be created at the same time. This
context object comprises information like requester identifiers, the consumer
DFNs, the corresponding active measurements of the built-in metrics, a mea-
surement specification of the built-in metrics, plus the information whether
and how the results of the measurement can be read from within an OCM-G
extension.

For the aggregation modes of the built-in metrics represented by the measurement
result DFN, the following four time specification are used to provide the result of
the measurement as an integral over time:

• SINCE_START: In this case, the result of the measurement will be computed
for all of the results from the start of the measurement. For example, for the
built-in metrics Send_volume, the sum of the data sent from the beginning
of the measurement are taken in to consideration.

• SINCE_LAST_READ: The result of a measurement using this integration
mode is the difference between the current integral value and the integral
value at the time of the previous reading of the measurement. This is used

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 96

specially by the user defined metrics in order to provide, for example, results
related to user interactions.

• SINCE_START_DIVIDE_BY_TIME: The result of this integration mode is a
measurement result divided by the duration of the time interval which has its
starting point at the beginning of the measurement. The results are something
like a mean derivative.

• SINCE_LAST_READ_DIVIDE_BY_TIME: For this mode, the result is the
difference between the current integral value and the integral value at the
time of the previous reading of the measurement, divided by the duration
of the time interval. For example, for the metrics specifying the amount of
communication, the result would be the obtained communication bandwidth.

6.5 Decomposition of the DFG

In this part, the cost-effective scheme for partitioning the main DFG will be pre-
sented. The main objective of this is to reduce the overhead due to token transfer
through communication network. In other words, the partition of the main task to
its subtasks leads to load distribution from the front-end to the back-ends.

Most of the metrics which can be measured in a distributed parallel compu-
tation environment can be reduced to different sub measurements, which can be
measured independently in their remote location depending on the definition of the
measurement in focus. In our case, the main DFG represents the whole task, which
may be partition to sub-DFGs representing the subtasks. Therefore, the first step
for the partition of the main DFG is to identify those subtasks. This is done through
determining the remote host (such hosts will be referred to as access location, here-
after) for the sub-DFGs where they can be evaluated without communicating with
objects which are reside in another host.

Before starting the partition process of the main DFG, it must be determined
which sub-DFG is going to be taken into account. Thus. the first step is to de-
termine whether a sub-DFG fulfils the criteria to be computed at a remote host.
For this purpose, the access location of the sub-DFGs must be determined first. To
achieve an efficient implementation, determining the access locations is performed
on the DAG and the computed attributes describing the access locations are prop-
agated to the DFG. Therefore, in the following subsection the determination of the
access locations on the DAG will be discussed.

6.5.1 Determining the Access Locations of Sub-DFGs

In order to determine the access location of the sub-DAGs, a bottom-up approach
is used on the main DAG. For this purpose, end-points of the DAG representing the
back-ends return the necessary information to find out the access location of the sub
measurement. This information is provided by the attribute specifying the access

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 97

 Central

Process Application

P1

N1

S1

P1

N2

P2P1

N3

GPM

P1

P2 P2P1

S2

Back−ends

Front−end

Site

Node

data provider

operations
dataflow node

Manager
Main Service

Service
Manager

Local
Manager

Context

Figure 6.14: Hierarchy of applicable objects and their corresponding monitoring
components

location. Since the end-points of the DAG are sub measurements specified by the
built-in metrics or events to be detected, determining the access location of those
end-points will be performed at first. For the sub measurements, the measurement
specification object of the corresponding metrics will be used to get the desired
measurement access location. The information to determine the evaluation location
of a built-in metrics is extracted from the applicable object parameter.

For example, when a task represented by end-points of the DAG is going to
be computed by the processes located on different nodes which reside on different
sites, and when the processes must communicate with each other during the evalu-
ation of the measurement, then the overall evaluation of this subtask can obviously
be evaluated only globally at the front-end. That means that end-points of the DAG
representing constant values or representing metrics which can be computed on ev-
ery process, like the Time metrics (which returns the synchronized time), deliver
the access location attribute which describes that the computation of that metrics
can be performed on any process located on any host. In this way, the access loca-
tions of the end-points are determined correctly.

After determining the access locations of the end-points, the access location
of the parent nodes can easily be determined depending on the information of the
child nodes. The following algorithm describes the determination of the access lo-
cation of the parent nodes, which are then recursively used to determine the access
location of a sub-DAG. This is used to determine whether two applicable objects
are located on the same host. Similar algorithm can be used to find out whether the
applicable objects resides on the same site.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 98

SameNode(a, b) :=


a.node == b.node i f (a ∈ process ∧ b ∈ process)
a.node == b i f (a ∈ process ∧ b ∈ node)
a == b i f (a ∈ node ∧ b ∈ node)
f alse else

where a and b are child nodes of a node calling the SameNode function which
returns whether a and b are on the same node or not.

When a parent node has child nodes whose access location are on different
hosts but on the same site, then the parent node becomes the common site as its
access location otherwise the access location will be the front-end. In this way, the
access location of all sub-DFGs will be determined. Fig. 6.14 shows the hierarchi-
cal view of the applicable objects and the corresponding monitoring components.

This determination process is slightly different for the AT operation node which
deals with the event based measurements. Generally, the access location of a probe
node is the location where the corresponding event arises and this is the same as
the location where the action will be performed. This is usually a remote host
except for the reason that the machine where the user interface runs is also used to
compute measurement.

If the parameter used by the built-in metrics to determine the access location is
one-dimensional array, the common evaluation location of the corresponding ap-
plicable objects must be determined. This means, if the processes of the applicable
objects are on the same remote host, then the common evaluation location will be
that host. Otherwise, the evaluation will be performed at the front-end in a cen-
tralized manner. In this way, the access location of every node of the DAG can be
determined.

Specifying Subtasks

According to the definition of measurement metrics, the subtasks to be performed
at the desired location at the back-ends can be determined. Subtasks to be sent to
their corresponding remote hosts can consist of different sub-DFGs. Therefore, it
is efficient to collect these sub-DFGs at the front-end before sending them to their
corresponding back-ends.

Using the access location of the sub-DFG, we can search for sub-DFGs which
can be computed on the remote hosts. However, the information provided by the
access location of a sub-DFG will is not sufficient for the partition of the main
task, since a subtask can contain multiple sub-DFGs. For this main reason, the
determination of subtasks represented by similar sub-DFGs, which are going to be
sent to the same remote host, must be done to achieve an optimized DFG partition.

To reach this goal, the first task is searching for sub-DFGs which can be eval-
uated at their remote host. This will be performed in a top-down manner as fol-
lows: Starting from the root node of the main DFG, all child nodes will be verified

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 99

whether they have an attribute representing a remote host as their access location.
If they have a global access location, then their child nodes will be examined re-
cursively. If a sub-DFG is going to be sent to its appropriate remote host, then its
root DFN will be assigned as a parent DFN for all DFNs of this sub-DFG.

The following algorithm assigns the access location of the sub-DFG, recur-
sively. The function setParent sets the root node of the sub-DFG to be the parent
of the entire DFNs of that sub-DFG and the root DFN (DFN0) of the main DFG
will initiate the setRemoteHost function as shown below.

setRemoteHost(DFN)
{

f or(i = 0, i < N(Cd f n(DFN)), i++)
{

i f (H(Ci
d f n(DFN))! = 0)

{
setParent(Ci

d f n(DFN));
}else{
setRemoteHost(Ci

d f n(DFN));
}

}
}
Latter, if the root DFN of a sub-DFG is visited by another DFN which has the

same access location, the parent DFN of this sub-DFG may be replaced by visitor’s
DFN. Through this process, the sub-DFG which belongs to the same destination
host are collected together.

This task is essential since during traversing the graph, the same DFN can be
visited by different parent DFNs which can be sent to the same destination host.
The visited sub-DFG can be sent as part of the visitor’s sub-DFG which is more
general. Without resetting this attribute, a sub-DFG would be partitioned too early
which can have an impact on the computational processes. In addition, it also
avoids performing the same tasks which are necessary to disconnect the sub-DFGs
from the main DFG, sending sub-DFGs to the same remote host and joining them
on the remote host.

Only after this process, a root DFN of the sub-DFG can have its final status
whether it will be sent as a sub-DFG or as part of another sub-DFG. As an example
for this scenario, the connection between the DFNn and DFNi, as shown in Fig.
6.16 can be used in which case the sub-DFG rooted at DFNi will be sent as part of
the sub-DFG rooted at DFNn since this will be visited first when using depth-first
algorithm.

In addition to the root DFNs of the sub-DFGs, some DFNs are also used as
connector points for different sub-DFGs residing at different remote hosts. Thus,
the next issue is concerning about the entire DFNs or sub-DFGs within sub-DFGs
to be sent to the remote host. I.e. it is possible to have some common sub-DFGs
between two sub-DFG which can be sent to the same or to different destination

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 100

DFN

sub
DFG

DFN

host
host

DFN

sub
DFG

DFN

sub
DFG

l
DFNm

n o p
t

u

Figure 6.15: Handling common sub-DFGs within sub-DFG to be sent to remote
host(s)

hosts. In addition to this the main DFG and sub-DFGs to be sent to the remote host
may also share some common sub-DFG components as depicted in the Fig. 6.15.
The kind of DFN which connect a sub-DFG with the main DFG will be referred to
as connector DFN as discussed in section 6.17.

Concerning common sub-DFGs, we have the following three cases to differ-
entiate. As discussed in section 3.3 H(DFNi) means that the access location of
sub-DFG rooted at DFNi and if its value is equal to 0 then it means that the access
location is the front-end.

i f ((H(DFNo) == H(DFNm))! = 0)
{
// creating a link between sub-DFNl and sub-DFNm

// set sub-DFGo be part of the sub-DFGm

}
i f ((H(DFNo)! = H(DFNm))! = 0)
{
// copy the sub-DFGo

}
elsei f ((H(DFNi)! = 0) ∧ (H(DFNm) == 0))
{
// create a communication link (see section 6.5.2)
}

As it is depicted in Fig. 6.15, the sub-DFG rooted at DFNo is a common sub-
DFG for the sub-DFGs rooted at DFNl and DFNm.

Those three cases are described according to the visitor’s access location as
follows:

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 101

1) The same remote host:

If hostt and hostu are the same hosts, the common sub-DFG between them will be
sent as part of one of the visitor’s sub-DFG whereas the other one will have only
a pointer to the common sub-DFG. Through this process sub-DFGs are clustered
to be sent to their remote host. At the destination host the original structure of the
sub-DFGs will be reconstructed.

2) Different remote hosts:

This implies that such a kind of common sub-DFG is independent from any access
location and can be computed at a place where it is needed. In this case the common
sub-DFG will be copied and sent to both destination (hostt and hostu), and this will
not change the semantic of the computation since this common sub-DFG does not
posses any access location. Because the two parent DFNs have different access
location and the determination of the access location is performed in a bottom-up
manner, this sub-DFG can not have any fixed access location and, thus, must be
accessible everywhere.

3) Remote host and front-end:

For the third case, one of the visitors DFN resides at the front-end and has a global
access location since it must be computed centrally at the front-end whereas the
other one is to be sent to the remote host. In this case, a communication link will
be created as discussed in subsection 6.5.2. This communication link between the
two hosts will be used to transfer the necessary measurement result values from the
back-end to the front-end.

Let us assume, for example, the three sub-DFGs as shown in Fig. 6.16, rooted
at DFNi, DFNk and DFNn, respectively and these are going to be sent to the same
destination host. Without resetting the parent DFN of some of the sub-DFGs, all
the three sub-DFGs will be sent to the same remote host, separately. Since the
sub-DFG rooted at DFNi is part of the other two sub-DFGs, it will be sent multiple
times. To avoid this, this sub-DFG must be sent once.

Since the sub-DFG rooted at DFNk is on the higher hierarchical level, it will
reset the “parent root node” of the sub-DFG rooted at DFNi. That means, the sub
DFN rooted at DFNi will be part of the sub-DFG rooted at DFNk. Through this
process, it is possible to identify every DFN to which sub-DFG it belongs.

After it is correctly decided which sub-DFGs are going to be sent to the corre-
sponding remote location, the process of detaching the sub-DFGs can be started.
The detaching process itself is performed recursively on all of the child DFNs as
far as possible. Before the sub-DFGs are detached, a communication link between
the nodes which are going to be detached must be setup. Thus, the next section
is devoted to illustrate how communication links between the main DFG and the
sub-DFGs sent to their appropriate remote host will be created.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 102

DFN h
DFN i

DFN j

DFN g

DFN k DFN m

DFN p

DFN o

DFN e

Node s Node tNode r

Node u

DFN d

DFN l DFN nDFN f

Node s

DFN q

Figure 6.16: Collecting sub-DFGs belonging to the same remote host

6.5.2 Creating Communication Links

After the partition of the main DFG into sub-DFGs representing the subtasks to
be computed at the remote hosts, there should be a way to connect those sub-
DFGs to the main DFG. This connection is used to perform the reassembly of the
measurement results computed by the sub-DFGs. The best way to do this is to
create communication links between the back-ends and the front-end as depicted
in Fig. 6.17.

Since the root DPs as well as the entire DPs of the sub-DFG are to be connected
to the front-end, a communication links will be created not only between the root
of the sub-DFGs at the back-ends and the corresponding DFN resides at the front-
end, but also between the entire nodes of the sub-DFGs at the back-ends and the
corresponding DFNs at the front-end as shown in Fig. 6.18. The only precondition
for the creation of those communication links is that one of the DFNs resides on
the main DFG at the front-end and the corresponding one resides on the sub-DFG
to be sent to the remote host. As discussed in section 6.5.1, communication links
are not necessary for the other scenarios since the common sub-DFGs are copied,
or the common sub-DFGs are sent to the same remote hosts. For example, between
two sub-DFGs residing on two different remote hosts as shown in Fig. 6.15.

A communication link is created between a DP at the back-end and a DFN at
the front-end. This communication link allows a notification from those DPs to its
corresponding DFN at the front-end. This allows to build up communication for the
request and event triggered measurements. For the event triggered measurements,

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 103

it must be possible for the DP resides on the back-end to inform the availability of
result data to the corresponding DFN resides on the front-end which may collect
the available data. In case of request triggered mode, it must be possible for the
front-end to have on demand access to the result values provided by the back-ends.

For this purpose, a new DFN is created on the front-end to be used as a con-
sumer of data provided by the back-ends. Through this DFN, a communication
between a front-end and a back-end will be established (hereafter, such DFN will
be called connector DFN The parent DP(s) of the root DFN of the sub-DFG resides
at the remote host will also be referred to us connector DP(s)).

At the front-end a connector DFN represents the whole sub-DFG resides on
the back-end and also performs any desired communication between them at any
point of time.

comunication link

front−end

back−end

to be sent to remote host

Dataflow node

sent to remote hostDFN n

DFN m

DFN k

representing the node

Dataflow Graph
Sub

The root of a sub−dataflow graph

DFN n

= data provider

= dataflow node n

q

 r

 q
p

Figure 6.17: Building a communication link between a sub-DFG and the main
DFG

As shown in Fig. 6.17 and heretofore we have the relationship

DPq = Cd p(DFNn) = Pd p(DFNm)

before a communication link is created. After creating the communication link,
we have the relationship

DPq = Cd p(DFNn) = Pd p(DFNk)

at the front-end and

DPr = Cd p(DFNk) = Pd p(DFNm)

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 104

DFN m

DFN p

DFN l

DFN r

DFN rDFN q

DFN dDFN cDFN bDFN a

DFN p

DFN s

DFN t

DFN s

DFN n

DFN p

DFN t

DFN o

DFN q

sub−DFG
sub−DFG

Sub−DFG
to be sent

Figure 6.18: Multiple communication links

at the back-end where DPr and DFNk are the newly created DP and DFN, re-
spectively, and their parent-child relationship is realized through the newly created
communication link.

For the communication between the front-end and the back-end, the DPr regis-
ters the DFNk as a callee object, which will be used by the callback function. Only
through this callee object, a DP which resides on the back-end and must setup a
communication link towards to the front-end will find its appropriate connector
DFN.

In order to evaluate the sub-DFG, when the whole DFG is launched, all the
connector DPs will be read at the same time. To enable this process, all connector
DPs of a sub-DFG are collected together. This avoids not only traversing the whole
DFG during the result reading process, but also makes it easier to manage the
OCM-G requests which will be discussed in detail in section 6.7. This speeds up
also the whole computation since it provides all possible result values at the same
time.

The same procedure will be used to set up a communication link between the
nodes which are entire nodes of a sub-DFG. This is shown through the communi-
cation between DFNt and DFNq in Fig. 6.18 for which a connector DFNa is cre-
ated. The connector DFNs (DFNb, DFNc and DFNd) are connected with the three
root connector DPs of the SSDFG(DFNs) which represents the sub-DFG rooted at
DFNs (hereafter, SDFG will be used to represents the set of such sub-DFG residing
at the same remote host as discussed in 3.3).

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 105

During these processes and specially through generating the bidirectional con-
nections, the SSDFG(DFNs) is disconnected from the main DFG. That means that
the partition of the SSDFG(DFNs) is performed automatically during the creation
of the bidirectional connections between the front-end and the back-end. As shown
in Fig.6.17 and 6.18, the newly created DFN is a type of node used to collect
measurement results, and whenever result data is available at the connector DP, a
communication link will be setup to have an access on those data.

6.6 Distributing Subtasks

The SSDFG to be sent to the back-ends are now determined and also detached
from the main DFG but reside still on the front-end and should be sent to their
appropriate remote host. In order to achieve this goal, those SSDFG should be
serialized and sent via the network. Arriving at the remote host, those DFGs must
be de-serialized to reconstructed the desired DFG again. For this purpose, OCM-
G plug-ins are developed which provide the desired functionalities to perform the
necessary tasks and the OCM-G is programmed to use them as desired.

The marshaling process of a SSDFG is done by parsing and creating its string
representation. The parsing process encodes not only the DFNs and DPs but also
the necessary attributes attached to them. In addition, all the information used
to connect the SSDFGs with the main DFG is encoded. Those attributes include
parameters identifying the requester of result values and virtual times in order to
associate the correct result values to the corresponding requester. In order to build
up the string form of the SSDFG, every DP and DFN, starting from the root node
of the SSDFG, will be requested to provide the string form of its components and
the important attributes belong to them.

Every DP, for example, will be encoded with the parameters which describe its
unique identifier, the type of the DP and the requester identifiers it possesses. For
the DFNs, there are additional attributes like the type of operators for the operation
and aggregation nodes.

6.6.1 Plug-ins to Transfer the Sub-DFG

As mentioned earlier, for the whole communication between the GPM tool and
the underlying monitoring system, the OMIS standard interface is used. In order
to send the SSDFG to their remote host, the OCM-G is extended with two plug-
ins. Transferring of a sub-DFG is performed in two consecutive steps: creating an
empty SDFG and adding SSDFG to that SDFG. The creation of an empty SDFG
will be performed only once for every back-end. This SDFG will collect the root
DFNs of all SSDFGs sent to that back-end.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 106

OMIS requests to create a sub-DFG

The only parameter needed to create a SDFG at the remote by the OCM-G plug-in
is a unique identifier of the remote host which looks like n1,, n2,, . . . ,nx,. where x
stands for the number of hosts used for the computation. The immediate result of
the OMIS request after the creation of a sub-DFG at the remote host is a token,
which represents the created DFG within OCM-G. This token is used to manage
(localize, delete, ...) the created SDFG.

This token, together with a host identifier, will be stored globally at the front-
end and used also to indicate the existence of an empty DFG in the specified remote
host. The connector DFN, as discussed previously, will also store the SDFG token
belongs to the host where the corresponding connector DP is residing. In order to
add a SSDFG to a SDFG at the remote host, its string representation is used by
the OCM-G plug-in. After arriving at the destination host, its string form will be
parsed back to reconstruct the SSDFG.

During the creation process of the SSDFG at the remote host, a map data struc-
ture is used to map the pointers to the DFG component against their unique identi-
fier. This avoids handling parts of the same sub-DFG multiple times. This method
is also used to join the common sub-DFGs of the SSDFGs sent to the same desti-
nation host as shown in Fig. 6.15. If the SSDFGs have no DFNs in common, i.e., if
they are disjoint, they will evaluate the result values independently and send the re-
sults to the corresponding consumer residing at the front-end as shown in Fig.6.19.
In order to have a full control of the all SSDFGs, their root DFNs are collected in
a list data structure as depicted in Fig. 6.19, and the root DFN of the SDFG have
an access on this list.

Fig. 6.19 shows

SDFG(DFNl)

and

SSDFG(DFNi) where i ∈ {l,q,s}

where SSDFG(DFNl) is at the same time SDFG(DFNl) since it has a pointer
on the list containing all Pd p(DFNi) where i ∈ {l,q,s}.

6.7 Generating Monitoring Requests

In order to be able to monitor the application and access the monitoring result val-
ues, the performance measurement tool must request the monitoring system for
the desired information. In this subsection, setting up the requests to access the
desired computed data from the underlying monitoring system will be illustrated.
Depending on the specified metrics, there are two types of measurements: request

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 107

DFN m

DFN o

DFN l

DFN p

DFN q

DFN q

DFN r

back−end

DFN s

front−end

DFN q

DFN sDFN n

DFN l

root DFNs
list of all

Figure 6.19: Disjointed SSDFGs on a single remote host

and event triggered. While generating the monitoring request for the request trig-
gered measurement is simple, in this section the event triggered measurements are
discussed briefly.

Request Based Measurements

The very first important component used to generate the monitoring request for the
request triggered measurements is the consumer DFN of the result values. This
DFN is one of the components of the active measurement object created during
the definition of the measurement. Whenever the request to read the results of
such measurements is performed, the corresponding active measurement reads the
underlying built-in metrics which in turn provide the results to the consumer DFN
using the specified callback function. The importance of this arises from the fact
that the reassembling of the result values is performed asynchronously as shown
in Fig. 6.22. The result value will be forwarded automatically using the dataflow
technique.

Event Based Measurements

For event triggered measurements, the result values have been determined by sam-
pling the specified probe. As a result, whenever an event occurs, the corresponding

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 108

action will read the required results and forward those data asynchronously to the
correct consumer DFN. As we have seen in sub section 5.2, request strings are used
to describe the requests which will be used as a parameter for the request functions
provided by the OMIS-Interface [31].

In order to deal with event triggered measurements, an OCM-G request must
be based on event/action paradigm of the OCM-G. The OCM-G plug-ins devel-
oped for this purpose accept string request, which describe the event to be detected
and a list of actions to be performed. The events are identified by their names as
they are defined by the user in the application code. The actions to be performed
when the corresponding event occurs are OCM-G functions. Before defining such
event based requests, we need objects which are going to be used as a consumer
of the data replied by the OCM-G plug-ins. In our case, those data consumers are
DFNs. Thus, a DFG token identifying a DFG where a specified DFN resides and
an identifier of that specific DFN are desired to define the proper request string.
This is the main reason why it was not possible to define such OCM-G requests
before the partition of the main DFG which provides us the desired DFG token of
the SDFG.

6.7.1 Event Based Actions

In order to associate the results to the correct consumer DFN, some additional
information must be provided. That information includes the identifier of the re-
quester and placeholder variables for the virtual time. The former is used to prop-
agate the result values to the proper consumer. Since the same consumer DFN can
be used to handle result values coming from different monitoring objects, which
will be propagated further to different requester, a unique identifier of a result value
used. On the other hand, the virtual time is used by the event triggered measure-
ments to associate result values of different events monitored at the same virtual
time. Since the virtual time is determined by the OCM-G, a placeholder is used
during the requesting process.

Since many different actions can be triggered by a single event, the occurrence
of such an event can thus results in performing multiple actions. In order to man-
age the entire event triggered measurements in a single measurement, the probe
nodes dealing with those measurements will be collected. According to the loca-
tions where those actions are going to be performed, two different lists are used to
collect the actions to be performed locally or globally. Global actions are actions to
be performed on the front-end whereas local actions will be performed at the back-
ends. The collected probes are used to create the corresponding event triggered re-
quest. Defining a probe event and the corresponding action(s) to be performed will
result in a Conditional Service Request (CSR) token. That means that a probe node
will have exactly one conditional request token through which the corresponding
active measurement will controlled of event triggered measurements. In order to
enable, disable or delete event triggered measurements, an OMIS request will use
this conditional service request token.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 109

Every CSR contains a condition and a list of actions to be performed. The
condition for each probe is their execution in the application code. Generally, the
request string for such conditions looks like as follows:

thread_executes_probe([< Host >], ” < ProbeName > ”)

This condition will be fulfilled when a probe with the name ProbeName is
detected on a host specified by the host token Host. A user can specify some more
action requests which will be appended to this request string.

Depending on the specification of the metrics, all actions that are either event
or request triggered may be performed at the front-end and/or at the back-end.
The following subsection shows how the OCM-G requests for the user defined
measurements will be constructed. Since their requirement is different, the requests
for the front-end and back-ends are handled separately.

6.7.2 Types of Actions for the Distributed Evaluation

OCM-G is extended to support the actions needed for the distributed evaluation.
Fig. 6.20 shows that a user defined measurement can consist a list of probe ele-
ments collected together to enable an efficient implementation. Since the results
are provided asynchronously, each action has in turn a callback element which
performs one of the reading actions listed. The callback object containing all in-
formation that are necessary to perform the desired actions will be inserted to the
action list. This action list may be extended with another type of actions belong-
ing to the same event as shown below. All those actions will then be performed
whenever the corresponding event occurs.

Depending on the type of measurements, there are four different types of ac-
tions to be performed by the OCM-G plug-in: assigning a constant numerical val-
ues, returning application specific data, reading measurement results provided by
the built-in metrics, and reading virtual time aggregated result values. Those activ-
ities cover all the requirements specified by the metrics for the event as well as for
request triggered measurements.

To assign the constant value when a corresponding event occurs, additional in-
formation describing the requester identifier plus a consumer DFN which will be
used as a callback object are needed. To deal with the application specific data
which are going to be returned when the corresponding probe occurs, a callback
element will be created for every specific data of the application to be returned.
The information needed by the callback object will then be inserted to the corre-
sponding callback element. Following this, the callback element will be inserted
to the list of callback elements which belongs to this probe event as shown in Fig.
6.20.

Collecting part of the information needed to read the measurement results will
also be performed in a similar way. The active measurement object is one of the
important additional information desired in this case. If the underlying built-in

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 110

.

.

.

.

.

.

.

.

.

.

.

.

probe 1

probe 2

probe 3

probe 4

probe n

event list
action list

action m

action 4

action 3

action 2

action 1

callback element 1

callback element 2

callback element 3

callback element 4

reading Event Context

Parameter (ECP) results

reading constant value

reading measurement results

reading virtual time aggregated results

possible actions

kinds of callback elements

Figure 6.20: List of probe elements and the corresponding actions

metrics provide service information, that information will also be specified in the
request string as shown below. For every measurement represented by the mea-
surement result DFN, there are two ways to access the result values from the local
monitoring system, which depend on the integration mode used. That service in-
formation can either be reading an integrator or a counter.

Those services and the corresponding parameters are shown below:

• To read a counter:

– Service: patop_measurement_counter_read

– Parameter: [< applicableOb jecID >] < aggregationmode >

• To read an integrator:

– Service: patop_measurement_integrator_read

– Parameter:[< applicableOb jecID >] < aggregationmode >

Both services are going to be applied on applicable objects by taking the given
aggregation mode into consideration. Depending on the specification, the request
describing the service and the aggregation mode will be added to the global action
request. In this case the callback element to be created contains the active measure-
ments, the number of such entries if they contain information for the monitoring
system describing which service will be used, and the requester identifier.

A callback element will also be created for each of the virtual time aggregated
data to be read whenever their corresponding event arises. In this case, the virtual
time aggregated DFN and the requester identifiers are desired to setup the corre-
sponding OCM-G requests.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 111

6.7.3 Requests for the Actions to be Performed at the Front-end

Some measurements can only be evaluated at the front-end since they are results of
some distributed measurements which must be aggregated at the front-end, or they
are collecting single results which must have been evaluated at different hosts and
sites. Depending on whether the measurements are request or event based, there
are different requests to be performed.

Usually, request triggered measurements consist merely of built-in metrics and
constant values which will eventually be combined or aggregated. The measure-
ment requests to be sent to the OCM-G regarding request triggered measurements,
therefore, consists information which are essential to read and forward the specified
built-in measurement. That information includes an active measurement, which
contains the built-in metrics to be measured and the consumer DFNs, which will
be used by the callback object. This information is sufficient to compute the results
for the built-in measurements at the front-end. For every built-in measurement an
active measurement object will be created, which will be used to access the mea-
surement results of those metrics.

For event triggered measurement to be evaluated at the front-end, the following
request will be appended to the event request. This provides some important in-
formation from the underlying monitoring system whenever an event occur which
will be described as follows:

: print([$time, $par0, $par1, . . . , $parn])

The first parameter ($time) returns the timestamp, the second one ($par0)
specifies the virtual time of the probe to be returned and the rest of the parame-
ters (from par1 to parn), which are called Event Context Parameter (ECP), return
application specific information provided by the probes as they are programmed in
the source code of the application used. Those parameters returning the application
specific data are used only when the probe is defined to return them, whereas the
first two parameters will be returned by default.

To send a conditional request of an event based measurement to be evaluated
at the front-end which may consist a list of actions to be performed, an OMIS-
request will be performed. This request string consists of the name of the probe to
be detected, the name of a callback function to be called whenever the event arises,
and an action containing all the actions to be performed. This interface is described
as follows:

Omis_reply csrReply =omis_request(requestStering,
OMISCallbackIn f o :: callback,
actionList,
OMIS_WAIT _FOR_FIRST _REPLY);

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 112

The immediate reply of this request is a token which will be used to start, stop,
or delete those event triggered measurement.

6.7.4 Requests for the Actions to be Performed at the Back-ends

After distributing the SSDFGs representing subtasks, the results computed by those
subtasks residing at the remote host will be collected and forwarded to the correct
consumer at the front-end. Since the monitoring system can not guess a priori
where the monitored data are going to be sent, the request must include information
about the consumer DFN in a specific SSDFG. Depending on the kind of result
values to be collected, additional information may be required. In general we have
the following four cases:

Handling results values of built-in metrics: In order to have an access on the
data produced by the built-in measurements, in addition to the information on the
location of the consumer DFN, the following information are necessary: informa-
tion about the service, the requester identifier, and a placeholder for the virtual
time.

Handling result values to be aggregated: In order to have an access on the
data to be aggregated and residing at the back-ends, the information needed are the
same as those which are used to access the results of built-in measurements, except
the service information.

Handling constant numerical result values: To have an access to the constant
values which are specified by the user during the specification of the metrics at the
beginning, additional information is needed which include the constant value itself
and a placeholder for the timestamp. This timestamp is not necessary in all other
cases since it is provided by the result value delivered by the monitoring system.

Handling application specific date: To provide application specific data de-
livered by the probe function inserted to the application code, an OCM-G request
must be performed for every event context parameter. The event context parameter
indicates the index number of the probe parameter, which returns the application
specific data. After creating all the necessary requests for a single probe event
including the string describing the event condition, the request string will be con-
catenated and will be sent to the OCM-G. To send an OCM-G request for every
probe based measurement, the omis_request function as shown above is used.

As mentioned earlier, there is always a user defined active measurement for
each definition of the specified metrics. All the collected measurement information
is stored in this active measurement object. This object is responsible for starting,
stopping, or deleting the whole measurement. Since this active measurement is the
callee object of the root DP of the main DFG, it will be notified by the root DP
to read the result values in the case of event triggered measurements. If the whole
measurement is request triggered, then the corresponding active measurement tries
to read the result values from time to time, without receiving any notification from
the root DP. These two types of requests are used together to enable an automated
result token propagation from the monitoring system to the consumer. The part

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 113

of the measurement which are event triggered provides the results as soon as the
corresponding event arises and propagate the results as far as possible to the desired
DFN and then at some point those result tokens will be requested and sent to the
root DP where they will be read by the active measurement.

Starting the measurement

After the specified metrics is defined and the necessary OCM-G requests are per-
formed, the user can start the whole measurement. Since a measurement contains
a set of sub measurements, starting the whole measurement means starting all the
sub measurements of the built-in metric.

Starting the active measurements means that the corresponding counter or in-
tegrator of the underlying measurement gets initiated in order to set the start time
of the measurements. For the event based measurements, it is enough to enable
the conditional service requests as discussed above. Whenever the events arise,
the computed data will then be propagated automatically to the requester DFNs.
The final measurement result can have results which can be two-dimensional since
they can be computed for a list of applicable objects with the corresponding partner
objects. The monitoring system provides those results in a serialized form which
must be de-serialized to build result token objects.

6.8 Processing the Measurement Result Values

After the measurements are started, the result values can be assembled, which will
be performed for both request and event triggered measurements in different ways.
For every request triggered measurement, the result values are accessed whenever
the user interface at the front-end updates its measurement result values. This up-
dated process is performed by requesting the corresponding active measurement to
provide the appropriate result values as shown in Fig. 6.21. The active measure-
ment reads in turn its children active measurements which request the underlying
monitoring system for the result values.

In case of event triggered measurement, those result values are getting updated
whenever the corresponding event comes up. Depending on the application, those
events can occur up to several hundred times a second. In one of the CrossGrid
interactive application, as discussed in chapter 2 which is dealing with the flood
scenario, it was observed that up to 400 events per second arise.

In both measurement modes, the result tokens go through different aggrega-
tion processes on their way to the front-end. Before the aggregation process takes
place, synchronization, as shown in Fig. 6.23, will be performed since the results
are coming at different times. On the other hand, Fig. 6.21 shows the reading
process for two different user defined measurements. If two user defined active
measurements are trying to read the same active measurement of a built-in met-
rics, the last requester will be ignored. Before starting the reading procedure, the

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 114

HLAC

UIVC

PMC

read

read read

data pointer

UDAM

child AMn

UI

.
callback

OCM−G

time

requestrequest

child AM1

UDAM

ignored

UI

replyreply

results

results results

UDAM

child AMnchild AM1

UI

UDAM = User defined Active Measurement
AM= Active Measurement of built−in metrics

Figure 6.21: Reading the user defined active measurement and its children active
measurements

information about the caller active measurement will be stored in a list if the mea-
surement is request triggered. This enables latter that the result will be read for the
correct requester.

Since the OCM-G interface library always checks for incoming messages when
sending a request, the execution of the callback objects can be called recursively
while the read measurement call for the previous request is performed. Thus, in
order to execute all commands in their order, it is important to put their commands
in a global list before starting to execute them which insure their order of execu-
tion. In order to put the necessary information needed by the computation of the
stored elements, the command itself and additional information, like the time of
the measurement, the virtual time, and the result parameters are stored together.

Reading Measurement Results

When a consumer requests to read result values of a measurement, the user defined
active measurement representing the whole measurement tries to read the result of
all sub active measurements, all virtual time aggregated measurements and then the
results provided by the connector DPs. The active measurements are measurement
of predefined metrics which are just being measured. The DFG aggregates and/or
correlates these results to provide the final result to the consumer. Since all those
reading processes are performed asynchronously, we are dealing with an embed-
ded multiple asynchronous calls to get the final result values in automated way as
shown in the Fig. 6.22.

Since the active measurements are the inputs for all the computation and are
located at the end-points of the sub-DFGs, reading them must be performed before
reading the aggregation and the connector DPs. In order to enable event triggered
aggregation, the DFN dedicated for the aggregation accumulate the result values
till they are requested. Through this process, the DFG processes stream of result

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 115

Frontend

operation or aggregation node

connector dataflow node
root data provider

UIVC

notify

notify

root data provider (sub DFG)

notify

notify

from the application
event detection

OCM−G reading built−in metrics

DFN

asynchronious call

metrics node

 counter

communication link (notify)

user defined active measurement

reading integrator or

Backend

Figure 6.22: Asynchronous calls of the distributed evaluation

tokens as illustrated in Fig. 6.22. Since the final result values of the SSDFGs will be
collected at the connector DPs and these connector DPs notify their corresponding
connector DFNs to fetch the result values, date are sent from the back-end to the
front-end automatically. Lastly, the root DP of the main DFG at the front-end
notifies the user defined active measurement through a callback function to read
the result values.

If active measurements are going to be evaluated globally at the front-end, the
read method of the active measurement will initiate the result evaluation. During
this reading process, this method returns no result. Instead, the callback object
defined for the active measurement of the built-in metrics during the definition of
the user defined metrics will be invoked when the desired results are available.
To read the aggregated measurement results computed at the front-end, the read
function of the virtual time aggregated DFN itself will be used to generate a result
token out of the aggregated values. An OCM-G plug-in function is used to read the
aggregated result tokens.

For the event triggered measurements, the occurrence of the events are respon-
sible to activate the whole measurement mechanism and thus to forward the result
values. These results are identified by their virtual time value and their requester
identifier. Therefore, the result of the event based measurement contains, in addi-
tion to the result components provided by request triggered measurements, virtual
time and identifier of the requesters. The virtual time value is used to identify
measurement results belonging together whereas the identifier of the requester is
needed when the same measurement is read by different callback object.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 116

For the request triggered measurements residing on the back-end, An OCM-G
plug-in is used to read and forward the results of the child active measurements,
which then write the result data to the appropriate consumer DFN directly.

Reading the Connector DPs

Each root DFN of a SSDFG contains in turn a list of all connector DPs. As dis-
cussed previously, every SSDFG contain at least one connector DP which is used
to build-up a communication link to the front-end. However, every DFN of a SS-
DFG, including the root DFN, can have multiple connector DPs. To read the data
out of those DPs, the connector DFN at the front-end uses OCM-G plug-ins. Such
a reading process will be performed in both service request modes: conditional
service request and unconditional service request. For event based measurements,
the action to read the connector DP will be performed by the DFN at the front-end
whenever the connector DP gets its first result, whereas for the request triggered
measurements, this will be performed when the DFN at the front-end is requested
to provide result values.

Result Assembly

The result replied by the OCM-G, which is going to be forwarded to the consumer
connector DFN at the front-end, have the following structure.

n, [result1, result2, . . . ,resultn]

Where n stands for the number of provided results and the result array contain
these n result values. Each result (resulti) contains all the necessary values used to
compute the result token. This result token is given with:

resulti = (startTimei, stopTimei, virtualTimei, requesterIDi, hasV Ti, hasTime)

The descriptions of these results is as follows:

startTime: describing the start time of the measurement.
stopTime: describing the time when the measurement ended.
virtualTime: providing the virtual time of the measurement.
requesterID: providing the identifier of requester of the measurement.
hasVirtualTime: describes whether a virtual time is available.
hasTime: describes whether the measurement results has a timestamp.

This result token object will be used to synchronize and evaluate the result
values according to the firing rule of the DFN it passes through. Such a DFN is
depicted in Fig. 6.23.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 117

For the distributed evaluation, this token will flow through the SSDFG. In gen-
eral, the serialization and de-serialization of the result token will be performed
whenever result values are going to be transferred from the back-ends to the front-
end and whenever monitored data are provided by the OCM-G. After arriving at
the connector DFNs, they will be again de-serialized to be transferred to the front-
end. In this way the result value will be forwarded automatically to the root DP of
the main DFG. If the active measurement of the user defined metrics is notified to
read the final results, it will read (in case of event triggered measurements) all the
available result values form the root DP of the main DFG. For a request triggered
measurement, the active measurement will read the results from time to time.

To de-serialized the results, parsing each of the results will be performed in
OCM-G according to the defined FORM STRING "1,1,0,1,[%s,0,0,%s,0]". Since
the result values are ordered in a matrix form, the first two values indicate the x and
y values of that matrix. The third element describes whether there is a virtual time.
This is followed by a numerical value describing the number of available results
followed by a list providing the result elements.

6.8.1 Evaluation of the Result Values

Those DFNs which are responsible for the aggregation or correlation of result val-
ues, like operation DFNs, must be notified to collect the results from their children
DPs. This notification occurs whenever a specific DP gets its first result value. Af-
ter the notification by its child DP, a DFN tries to read a single result token from
each of its child DPs continuously until at least one child DP is empty. That means
that a DFN waits until each of its child DP receive at least one measurement result
value. After the DFN reads the first element of each of its child DP, it synchronizes
and computes these result values to provide a single result token as shown in Fig.
6.23.

The result token returned by the monitoring system is given by

v = (p, q, r, s)

where
p = result value

q = timestamp

r = virtual time

s = requester identi f ier

As discussed in section 3.3 the DFN uses its function (f) to compute the input
result tokens provided by its child DPs and provides a new result token as shown
below.

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 118

The functionality of the DFN mentioned above is given as

f (I(DFN)) = (p,q,r,s)

which is shown below for m result values in the n child DPs (N(Cd p(DFN)))
and /0 indicates that there was an error during the computation of the result token.

∀k ∈ [1,m] : f ((p1k, q1k, r1k ,s1k), (p2k, q2k, r2k ,s2k), ..., (pnk, qnk, rnk ,snk))

:=

{
{p′k, q′k, r′k, s′k} i f f ∀i, j ∈ [1,n] : rik = r jk

{ /0, q′k, r′k, s′k} i f f ∃i, j ∈ [1,n] : rik 6= r jk

where

p′k = NodeOperation(p1k, p2k, ..., pnk)∧

q′k = average(q1k, q2k, ..., qnk)∧

∃t ∈ [1,n] : r′k = rtk∧

∃l ∈ [1,n] : s′k = slk

As shown above, a final result value for the DFN is computed using the op-
eration specified by the DFN and its timestamp is determined using the average
timestamp of all the result values. The value for the virtual time as well as for
requester identifier is determined by taking an arbitrary value from one of the cor-
responding input values.

6.8.2 Synchronization of Result Values

The synchronization process depends only on the virtual time. This means all the
result values must have either the same virtual time or no virtual time at all. After a
successful synchronization, the functionality of the DFN is used to produce a new
result token as discussed above. Fig. 6.23 shows such a scenario for n child DPs
and l parent DPs. An empty result value in the parent DPs shows that some of the
result tokens are not propagated for all the parent DPs. In this example, the first
result token is propagated to all the parent DPs which has the index 11, 21, . . . , l1,
the second one contains no valid result and is used to report an error to the parent
DPs and is not sent, for example, for the second parent DP, the third one with the
index 13, 23, . . . , l3 is not sent to the first and the last parent DPs, and so on.

The final measurement result of those DFNs will then be forwarded to the
parent DPs according to the value of the requester identifier (see also section 6.8.3)
of the result value. In case of an error, a new measurement result containing NAN as

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 119

creating
new

results

routing

synchronisation

firing
rule

p 11q 11r 11s11 p 21q 21r 21s21

12q 12r 12s

p 14q 14r 14s14

p n1 l1r 1lsl1

l2q l2r l2s

p l4q l4r l4sl4

. . .

. . .

. . .

15q 15r 15s 25q 25r 25s

p 26q 26r 26s26

p 1mq 1mr 1ms1m

p l5r l5s

p l6q l6r l6sl6

p lmq lmr lmslm

NAN NAN

. . .

p 23q 23r 23s23

NAN NAN NAN

. . .

.

. . .

p 11q 11r 11s11 p 21q 21r 21s21

p 22q 22r 22s22p 12q 12r 12s12

p 1mq 1mr 1ms1m p 2mq 2mr 2ms2m

p n1n1 n1r n1sn1

p n2q n2r n2sn2

p nmq nmr nmsnm

l1

l5

DFN

DP

Figure 6.23: Result synchronization

measurement value will be constructed and forwarded to the parent DPs to notify
that an error has occurred during the computation of the specified measurement
with the specified virtual time value and timestamp.

This procedure is applied only for internal DFNs. DFNs which are end-points
and thus have no children DPs forward the measurement results computed at these
DFNs without any aggregation or correlation to the parent DP according to their
requester identifier. These back-ends compute built-in measurements, like the
amount of data sent or received, which read their results using a callback mech-
anism delivering the results asynchronously.

6.8.3 Routing of Result Values Using Firing Rules

In order to optimize a measurement, the same built-in metrics measurement can
provide result values to different requesters at different time. This is the case when
an event triggered measurement must provide results for different event occurrence
(like the begin and end events) which have the same virtual time.

In order to enable such result propagations, requester identifier assigned when
the measurement request is sent to the monitoring system are used, as shown in the
Fig. 6.24 where sm = 0 and the requester identifier zero is reserved to be used as
a wildcard. That means that the DP possessing this wildcard as requester identi-
fication will get every result values from the child DFN propagated. Such a kind
of DPs are used to forward the result tokens to the parent DFN which may then

CHAPTER 6. OVERLAY NETWORKS FOR DISTRIBUTED EVALUATION 120

s’k s’,, s’l o

Dataflow Node

measurement result

time stamp

virtual time
requester ID

p’ q’
k kk k

s’r’

s’,s’k os’h s’,, s’l o

list of requester IDs

data providers

result forwarding

sm

Figure 6.24: Routing the results according to the requester identifiers

propagate the result tokens according to the value of their requester identifier or
when the DFN handles results which are not request triggered.

The routing algorithm used as a firing rule in a DFN is then as shown below:

f or(i = 0, i < N(Pd p(DFN)), i++)
{

i f (((Pi
d p(DFN)).requesterID == s′k)∨

((Pi
d p(DFN)).requesterID == 0))
(Pi

d p(DFN)).push(p′k, q′k, r′k, s′k);
}

where Pi
d p(DFN) describes the ith parent DP of the DFN.

In this way all the results will be evaluated correctly and forwarded to the
correct requester of the measurement result token and will be propagated to the
root DP.

Chapter 7

Usage Scenarios and Evaluation

7.1 Introduction

In this chapter, we will discuss some usage scenarios, which show the advantage
and feasibility of the distributed evaluation discussed in the previous chapter. In
contrast to the centralized evaluation, the distributed evaluation reduces the com-
munication between back- and front-ends immensely. Without it, tools like perfor-
mance analyzer couldn’t be used effectively in a dynamic Grid environment where
the amount of back-ends, which are grid resources, can be very huge. All the
metrics used in this chapter are dealing with event triggered measurements using
virtual time since such kind of measurements are mostly communication intensive
and need to be evaluated in a distributed way. At the end of this chapter, the tool
used in GPM to visualize the intermediate results graphically will be introduced.
This Unix filtering is called DOT, which is used mostly to draw the structure of a
programs dynamically.

7.2 Usage Scenarios

In this sub section, some usage scenarios will be shown that explain the necessity
of the automated, distributed evaluation of measurement data. Most of the example
metrics are used in the real interactive applications developed in CrossGrid project.
Specially for event triggered measurements, the distributed evaluation shows an
enormous reduction of the number of communications, since events can occur more
frequently.

To evaluate the performance analysis tool GPM, the interactive grid appli-
cations (as discussed in section 2.3.1) are used. One of those applications is a
biomedical prototype application representing a system for pre-treatment planning
in vascular intervention and surgical procedures. In each iteration of the solver
used in this application, MPI_Sendrecv is used to exchange the results of adjacent
processes using a bidirectional ring as a communication pattern which require syn-
chronization of the iterations in all processes. The iteration is structured in such

121

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 122

Loop_Counter(Process p, TimeInterval)

: Unit(�iterations�){

PROBE iteration_end(Process, VirtualTime);

VirtualTime vTime;

Value value;

val[vTime]=1 AT iteration_end(p,vTime);

return SUM(value[vTime] WHERE value[vTime].time IN t);

Figure 7.1: A specification to count iterations within a time interval

a way that a compute and output phase are separated. In order to handle these
separate regions differently, three different probes, as discussed in section 6.1, are
inserted into the iteration phase. One probe is placed at the beginning, another
one between the two compute and output phases, and a third one at the end of the
iteration. To identify the occurrence of each probe events, the loop counter of the
iteration is used as a virtual time for the probe function. Using those probes, it was
possible to specify different kinds of metrics as discussed below.

Fig. 7.1 shows a simple metrics used to compute the number of iterations
executed in a loop in a given time interval. Since this specification is automatically
translated into proper requests for the underlying monitoring system OCM-G as
discussed in section 6.7 which monitor the execution of the specified events, it
is possible to evaluate the measurement for each event occurring at the end of
every iteration step. The speed of an execution can be estimated by the speed of
the iterations, which, e.g., perform activities like communication IO, and so on.
Since such measurements may base on the occurrence of events in each iteration,
a distributed evaluation in this case means evaluating the results at the location
where the events occur. Without the distributed evaluation, the back-ends would
just be communicating with the front-end whenever any event occurs. As it is
common in an interactive application to have several hundred event occurrences
within a second, a centralized evaluation of such metrics would result in having
unmanageable front-end.

If such metrics are going to be measured on different sites, and if the measure-
ments are started at the same time, one can use a bar graph to see which site is
suitable to run the application by comparing the speed of the executions which is
expressed by the number of iterations executed in a give period of time. One of
the problems in a grid environment is that the users have no knowledge about the
performance of the provided resources for their specific applications. Using such
metrics, the users can inspect which resources are suitable for their application by
executing a small part of the application on all available resources for a short period
of time, provided that the loop in focus is going to be executed in this execution
time. This functionality can also be implemented in to grid information providers
like the Monitoring and Discovery services (like MDS4 provided by the Globus
Toolkit (as discussed in section 2.2.4)) or by meta schedulers (like the GridWay) to

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 123

b)a)

FIFO

ADD

FIFO

FIFO

FIFO

VT_SUM VT_SUM VT_SUM

FIFO

Process

FIFO

Process

FIFO

Process

SUM

AT IN

Constant_1 end_of_iteration

virtualTime

timeInterval

P

Figure 7.2: Automatically generated graphs used to show the distributed evaluation

achieve an efficient scheduling of jobs. This can be used to support the automatic
allocation of the appropriate resources for a given application.

Distributed Evaluation of a Loop Counter Measurement

In order to achieve the distributed evaluation for the loop counter metrics above,
the GPM tool creates a template DAG and a DFG out of the specification as shown
in Fig.7.2a and 7.2b, respectively. The template for the DAG is used during the
definition of the measurement and the DFG is then used to evaluate the distributed
computation. In this example, the DAG is defined for three different processes
residing on same site and node. As it is shown in Fig. 7.2, when the measurement
is started, the number of iterations executed will be stored at the VT_SUM DFN
residing at the back-ends, and will not be sent to the front-end until an explicit
request is made by the front-end. For example, if 400 events occur per second and
the update interval of GPM is one second, then the number of communications
between the front-end and a back-end will be reduced from 400 to one in every
second. This situation is illustrated in Fig. 7.3 which shows that for a single back-
end in a centralized evaluation the number of communications increase rapidly
when the number of events increases.

For the distributed evaluation, the increase in number of events executed with
in the given update interval doesn’t affect the number of communication since it de-
pends only on the number of nodes and sites used for the evaluation of the metrics
as will be discussed below. That means that the number of communication stays
constant despite the fact that the number of event occurrence increases rapidly.

Using the distributed evaluation, the reassembling process depends only on the
size of the update interval. Depending on the specification of the metrics used, a
number of nodes and sites can be specified for every measurement which may in-
crease the communication exponentially if a centralized evaluation of the measure-

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 124

Figure 7.3: A comparison of distributed versus centralized evaluation of a mea-
surement using multiple processes in a singe node

Figure 7.4: A comparison of distributed versus centralized evaluation of a mea-
surement using multiple nodes in a singe site

ment results is applied. Since the distributed evaluation presented here supports not
only process oriented but also node and site based distributed evaluation, the best
scalability is achieved by the distributed evaluation approach when different nodes
and sites are used. Fig. 7.4 shows that the same measurement is performed on mul-
tiple nodes in a single site whereas Fig. 7.5 shows the advantage of the distributed
evaluation, when different sites are used for the measurement evaluation.

Aggregating Results

While the metrics in Fig. 7.1 describes a measurement which simply counts the
iteration in the given time interval, a more higher level metrics is described in Fig.
7.6. It specifies a metrics used to compute aggregated result values describing the
value of the mean time spent by each iteration. This mean time is calculated for all
iteration within the specified time interval. In the metrics specification, the probe

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 125

Figure 7.5: A comparison of distributed versus centralized evaluation of a mea-
surement using multiple sites

Iteration_time(Process p, VirtualTime vt)

{

PROBE iteration_end(Process, VirtualTime);

return Time(NOW) AT iteration_end(p, vt)

- Time(NOW) AT iteration_end(p, vt-1);

}

Mean_iteration_time(Process p, TimeInterval time)

{

Value[] it_time;

VirtualTime vt;

it_time[vt] = Iteration_time(p, vt);

return SUM(it_time[vt]

WHERE it_time[vt].time IN time) /

COUNT(it_time[vt]

WHERE it_time[vt].time IN time);

}

Figure 7.6: A specification describing a mean iteration time

used in the previous example which is placed at the end of the iteration loop is used
again. A pre-defined metrics Time, which returns the synchronized clock time is
used to compute the elapsed time. The Iteration_time metrics uses a shifted virtual
time in order to have an access to the results of a previous iteration.

As shown in Fig. 7.7 the VT_SUM DFN accumulates the elapsed time for
each iteration while the VT_COUNT DFN counts the number of iterations within
the given time interval. Since both of these functions are applied on the same kind
of objects, one of the optimizations implemented for the DAG convert the DAG so
that both of them point to the same DFN. The same kind of optimization is also
applied for the shifted virtual time. As a result of this, a single DFN will be used
to provide the computed results for both computations as shown in Fig. 7.7b. In
order to distribute this computation, those SDFG will be sent to their corresponding
remote host and only the result value will be sent to the front-end. In order to find

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 126

FIFO

DIV

FIFO

VT_SUM

FIFO

VT_COUNT

FIFO

SUB

FIFO

FIFO

Time_Metrics

FIFO

VT_Shift

FIFO

DIV

SUM COUNT

SUB IN

AT

VT_Shift

virtualTime

timeInterval

TIMEIteration_begin

p

Figure 7.7: A template and its corresponding DFG used to compute the mean time
spent by each iteration

out which site has the smallest mean time to compute the same loop, either the
same metrics may be defined for each site or another aggregation MIN can be
performed on the results of the computed metrics coming from different sites. In
the former case, the user can compare the results by creating, for example, a bar
graph of this measurement for each of the hosts used.

Another more sophisticated use of metrics specification and distributed eval-
uation is demonstrated in one of the CrossGrid interactive applications which are
used to prevent flooding of international rivers through flood forecasting mecha-
nism (see section 2.3.1). In the so-called DaveF application, a probe inserted at the
end of the time loop is again used to trigger the request for the monitoring system.
This measurement demonstrates a measurement resolution in time for each virtual
time as well as in location for each process as discussed below.

The metrics Comm_delay_per_loop_execution, as depicted in Fig. 7.8, is used
to determine the percentage of the time spent for sending and receiving messages
in a single iteration represented by a virtual time. This is determined by subtracting
the send and receive delay of a previous iteration from the current iteration. Using
this metrics, the metrics Max_comm_delay_per_loop_execution determines first
the maximum delay of an iteration executed in each given process, and then the
maximum of the delays in all the iterations executed in the processes in focus
within the given time interval. Finally, a single result value will be returned by
the second metrics which represents the maximum delay from all the iterations
executed in all the processes. A similar situation is also illustrated in Fig. .7.11.

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 127

Comm_delay_per_loop_execution(Process p,

VirtualTime vt) {

Value time = Iteration_time(p, vt);

Value commtime =

(Send_delay(p, [START,NOW])+ Receive_delay(p, [START,NOW]))

AT Iteration_time(p,vt)

- (Send_delay(p, [START,NOW]) + Receive_delay(p, [START,NOW]))

AT Iteration_time(p,vt-1);

return commtime/time*100;

}

Max_comm_delay_per_loop_execution(Process[] procs,

TimeInterval t){

Process p; VirtualTime vt; Value[] val;

val[vt] = MAX(Comm_delay_per_loop_execution(p,vt)

WHERE p in procs);

return MAX(val[vt] WHERE val[vt].time in t);

}

Figure 7.8: Metrics to compute the maximum communication delay

From this metrics specification, a template as shown in Fig. 7.9 is used for the
measurement definition. In order to present a simple DFG created from this tem-
plate, the measurement is defined only for two processes residing in two different
hosts. The generated DFG is shown in Fig. 7.10.

That means that the measurement will be performed for all applicable objects
and all virtual times laying within the measurement interval, as shown in Fig. 7.11,
in which case there are two virtual times (1 and 2) between the measurement in-
terval of a measurement performed for four processes (P3 - P6). In this case, mea-
surement result values will be computed only for the two virtual times and for the
four processes if the time interval and the applicable objects are defined so. Spe-
cial cases where parts of the virtual times do not lie in the measurement interval
are discussed in chapt. 6. Since every metrics specification describes only a mea-
surable quantity and does not imply any measurement, a measurement definition
of the specified metrics should follow.

As it is shown above, a high level user defined metrics can be used not only
to inspect the performance of the application but also to have an insight in to an
application’s behavior.

7.3 Automatic Visualization of DFGs Using DOT

In order to provide an insight to the intermediate representation which can be used
to check whether metrics are specified as desired and to support debugging between
the steps of specifying the metrics and distributing the subtasks, a graphical output
is generated automatically. Those graphs are created using the Unix filter called

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 128

Send_delay Receive_delay

MAX

MAX IN

MULTIN timeInterval

DIVConstantprocesses

SUB SUB

AT

VT_Shift

AT

VT_Shift

ADD

virtualTimep

Iteration_begin

TIME

Figure 7.9: Template created from the specification in Fig. 7.8.

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 129

FIFO

FIFO

 MAX

FIFO

 VT_MAX

FIFO

 MULT

Const

FIFO

 DIV

FIFO

 SUB

FIFO

 SUB

FIFO

 ADD

FIFO

FIFO

 Time

FIFO

 VT_Shift

FIFO

FIFO

 Send_delay

FIFO

 Receive_delay

 MULT

Const

FIFO

 DIV

FIFO

 SUB

FIFO

 SUB

FIFO

 ADD

FIFO

FIFO

 Time

FIFO

 VT_Shift

FIFO

FIFO

 Send_delay

FIFO

 Receive_delay

Figure 7.10: DFG representing used to calculate the maximum communication
delay

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 130

Measurement interval

Begin 2

Begin 2

Begin 2

End 2

End 2

End 2

End 2

Begin 2

End 1

Begin 1 End 1

End 1

Begin 1

Begin 1

End 1
Begin 1

virtual time

P1

P2

P3

P4

P5

P6

P7

P8

processes

Begin 1

Begin 1

Begin 1

End 1

End 1

Begin 2

Begin 2

End 2

End 2

End 0

End 0

End 1

End 0

End 0

End 0

End 0

Begin 0

time

Figure 7.11: Supporting computation for selective applicable objects in an interval
of time

DOT1 . Using a specification language to describe the objects of the graph, DOT
enables to draw different kinds directed graph hierarchically.

The output format of DOT varies from GIF, PNG, and SVG to Postscript. Using
DOT, one can visualize DFGs, DAGs, cluster layouts, data structures and so on.
DOT is provided as command line program and web visualization services. In
addition, it runs also with a compatible graphical interface. Since the DOT layout
supports only acyclic graphs, it removes all cyclic edges in the specification by
reversing their internal direction before the output is generated.

DOT describes all drawings using the following three objects: graphs, nodes
and edges. Using the object graph, different sub graphs can be represented in the
main graph. The attributes used in the DOT file describe the type of graph (directed
or not), size, colour, and so on. Nodes are created when their name first appears
in the DOT specification file and edges are created when nodes are connected by
the edge operation ”− > ”. A simple command line to create a postscript file
out putGraph.ps from an input file inputGraph.dot looks like:

dot -Tps inputGraph.dot -o outputGraph.ps

While Fig. 7.12 shows an input file written in DOT language, Fig. 7.13 shows the
corresponding generated graph.

The size attribute in line 2 of Fig. 7.12 controls the size of the whole drawing
which will be adjusted when the drawing is too big. The edge in line 4 is drawn as

1http://www.graphviz.org/

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 131

1: digraph G {

2: size ="4,4";

3: A [shape=box,label=head, color=orange];

4: A -> B [styl=dotted, dir=re];

5: A -> C; C -> {E;F;G} [color=red,label="child"];

6: E [shape=polygon,sides=5,label=center];

7: F [shape=polygon,color=green,style=filled];

8: A -> F [label="child \n of \n head"];

9: G [shape=invtriangle]; B [shape=Mdiamond]; B->G

10: node [shape=record,color=blue];

11: I [shape=polygon,skew=.4,label="grand child"];

12: E->J; J [label="left|{up | down}| right"];

13: K [width=0.02,label="{ F | I | F | O}"];

14: G->K; F->I; I->I; A->J; }

Figure 7.12: An example DOT specification which shows its most important fea-
tures.

head

B C

F

child
 of

 head

left
up

down
right

G center

childchildchild

grand child

F

I

F

O

Figure 7.13: An automatically generated Graph using DOT as specified in Fig 7.12

a dotted line whereas all the three edges in line 5 are labelled with the same string
”child” and all having red colour instead of the default black one as described by
the corresponding attributes. Using the node shape record, nodes with embedded
boxes can be generated as shown in line 10, 12 and 13.

7.3.1 Visualization of the IR Graphs of GPM Using DOT

DOT is used to draw all intermediate graphs generated by the high level analysis
component of GPM. This includes the DAG, the main DFGs and the SDFG. The
header of the DOT file describing the output of those graphs in the root node of the
graphs. This header contains all the attributes which are going to be used for all
graphs. After generating the header descriptions, the nodes and edges are drawn
recursively.

CHAPTER 7. USAGE SCENARIOS AND EVALUATION 132

1: digraph G {

2: graph[...];

3: node [...];

4: subgraph DAG {

5: // attribute of the subgraph and

6: // recursive call to draw DAG components.

}

7: subgraph DFG_1 {

8: // attribute of the subgraph and

9: // recursive calls to draw all DFG components

}

10: subgraph DFG_2{

}

11: subgraph subDFG_1{

...

}
12: subgraph subDFG_n{

...

}

Figure 7.14: Content of the DOT specification for a single measurement metrics

Since a single DOT specification file can be used to draw different graphs as
sub graphs, the DOT specification file as depicted in Fig. 7.14, is used to provide
the desired intermediate representation in the GPM tool. All DAGs and DFGs of
a metrics are specified together in one file using the DOT option for sub graph as
shown in Fig. 7.14.

In line 2 and 3 the attributes for all the graphs and nodes are described, re-
spectively. In line 4 the sub graph for the DAG is presented. Using the recursive
call in line 6, the desired information for the nodes and edges of the DAG will be
collected. Similarly, the recursive call to draw the main DFG of the given metrics
is described at line 9 which provide the information for the DFNs and for the data
providers belonging to the main DFG. For the main DFG after the distribution, the
sub graph of the DOT at line 10 is used. Starting from line 11 on, the specification
for SDFGs will be generated.

Chapter 8

Summary and Outlook

8.1 Summary

The main aim of Grid computing is to enable a coordinated resource utilization,
which are geographically distributed and controlled under different administrative
domains. As an example, EGEE is the first worldwide distributed Grid computing
environment consisting of several institutions from around 50 countries worldwide.
At present, the number of processes in EGEE reaches more than 100, 000 (with 15
PB storage ca 200 Grid sites) and is used to provide a reliable worldwide Grid
infrastructure mainly for researchers. Recently, EGEE hits 100,000 jobs per day.

The trend towards extremely large scaled Grid computing environments is also
expected to continue. That means that scalability of the available parallel tools will
be more important in the future. For instance, measuring the performance of appli-
cations running on such heterogenous and dynamic environments becomes more
challenging. Unfortunately, there are few runtime tools used for such modestly
sized computing environments which can be used to solve very complex problems.
This architectural shift from few to many computing components is causing tool
designers of high performance systems to revisit numerous design issues to im-
prove the scalability and manageability of their parallel tools.

Only accessing an application faster will not be a solution in the future, since
visualization and managing the data produced from the execution will be a very
important factor. To achieve a high-performance computing in such environment,
the distributed evaluation facility of parallel tools is presented in this thesis. The
solution presented in this thesis minimizes the cost which comes from the intensive
network activities by reducing it through enabling an evaluation of the computation
as local as possible to avoid the unnecessary communications between the front-
and back-ends. This scalability work supports a distributed strategy to evaluate
application-specific as well as Grid infrastructure based measurements by reducing
the cost of the computation used for data analysis between front-end and back-ends.

In this thesis, the distributed evaluation is evaluated for a performance analy-
sis tool where the design and evaluation of performance measurement data in an

133

CHAPTER 8. SUMMARY AND OUTLOOK 134

automated, distributed way was the basic challenge of the thesis. The proposed
mechanism of the distributed evaluation supports a large number of geographically
distributed processes by providing an efficient control mechanism for large number
of back-ends using a dataflow approach. The technique used in the dataflow model
fosters not only a scalable computation of tasks, but also an efficient communica-
tion with a maximum of logarithm complexity O(logn

2) for the data aggregation.
By supporting an efficient reassembly of the distributed data asynchronously in

parallel, the tool’s centralized activity is reduced immensely. This avoids also re-
source saturation at the front-end. Using the provided mechanism, even a program
phase based measurement evaluation was possible which can also be used to de-
termine a local as well as a global behavior of applications with a large number of
processes. In order to tune the complex interactive grid applications mentioned in
section 2.3.1, a manageable performance analyzer was indispensable which could
be achieved by using the proposed distributed evaluation of the monitored data.

The distributed evaluation discussed in this thesis includes the description of
how an intermediate representation (IR) in form of DAG is created from the met-
rics specification written in PMSL, which is evaluated when the measurement is
defined. Following this, the process of generating DFGs from the DAG is per-
formed. The DFG is then partitioned to create the sub-DFGs representing the sub-
tasks. This sub-DFGs are then sent to their corresponding hosts according to the
metrics definition. To aceive this goal, the OMIS interface is used to create a proper
monitoring requests to assure the data assembly. During the runtime reassembly,
synchronization and evaluation of the final measurement results are performed.
All this is done for the request triggered as well as for event triggered measure-
ment evaluations. Specially, for event triggered measurements, evaluation of the
computation at the location where those events are detected was very necessary to
guarantee the scalability and manageability of the tool.

Through creating an overlay network using an ADFG, it was possible to create
a well manageable front-end. This front-end was usually the bottleneck in many
cases. For example, when the number of hosts used increases, which is the case in
the grid computing environment, and if the back-ends are sending information to
the front-end more frequently which increased the complexity of the computation.

In online measurement tools like the GPM, the measurement results must be
provided to the front-end possibly with out any noticeable delay. Therefore, the
concept of evaluating a computation as local as possible is the basic idea of this
distributed evaluation approach. An ADFG model is used to distribute the sub-
tasks to the appropriate remote location and to reassemble the computed result
values automatically and asynchronously. The awareness of the grid environment
and supporting online measurements at the same time enables the method devel-
oped in this thesis to provide a powerful execution model based on the distributed
evaluation. This execution model provides scalable computation processes, which
is the very first requirement of distributed online measurement tools.

Since it does not introduce a notable overhead, which might disturb the appli-
cation execution, the proposed approach does not affect the running application.

CHAPTER 8. SUMMARY AND OUTLOOK 135

Understanding the work in this thesis helps to realize a scalable, distributed com-
putation specially in the field of debugging, performance analysis, load levelers
and other related fields including job, resource and application monitoring tools.
In addition, the tools which are based on the OCM-G monitoring system can adopt
the implementation idea of this work directly.

8.2 Outlook

The discussed ADFG has proven its utility in the real world performance analy-
sis tool and it is also expected that another field of study dealing with stream of
data items will benefit from this approach. This kind of solution can be used in
different communication patterns, for example, to develop an algorithm supporting
hierarchical implementation of the MPI point-to-point operations since the current
implementation of MPI does not support hierarchical interconnections.

The distributed evaluation concept as provided in this thesis can be used not
only for performance analysis and related parallel tools but also in many appli-
cations which usually extract information describing the relationship between the
datasets and statistical results. This includes but not limited to tools used for in-
formation retrieval on the web [25], data mining used in the field of electronic
commerce and intrusion detection [28, 69], and special data base systems [70]. It
is also expected that a dataflow approach to be as effective in application domain
as it has proven to be in tool domains.

As an improvement, the result token flowing through the augmented DFG, can
be presented in a standard format which facilitates the interoperability of the pro-
posed solution with other tools. An XML kind of representation of the result token
can, for example, be used to provide information to the MDS4 which is de facto
standard monitoring tool in the grid computing environment. In order to support
the dynamic nature of the grid, the actual resource information provided by the
monitoring services like MDS4 can be used to have an updated information of the
resources to be used by GPM. This may avoid using different tools to monitor jobs
and resources simultaneously. Another similar existing combinations of Grid mon-
itoring are, for example, MDS4/ganglia and MDS4/Nagios. GPM together with
MDS4 would even be the best solution to provide application specific information
combined with resource information.

Bibliography

[1] Wismuller, R., Bubak, M., Funika, W., and Balis, B.: A Performance Anal-
ysis Tool for Interactive Applications on the Grid. International Journal of
High Performance Computer Applications, Fall 2004, SAGE Publications.

[2] R. Wismüller, H. Mehammed, M. Gerndt, and A.Bode: "Performance Mon-
itoring and Analysis for the Grid". In Engineering The Grid: Status and
Perspective, from Beniamino Di Martino among others, American Scientific
Publishers, 2006

[3] I. Foster, C. Kesselman: The Grid. Blueprint for a new computing infrastruc-
ture. Morgan Kaufman, 1998

[4] M. Alef, T. Fieseler, S. Freitag, A. Garcia, C. Grimm, W. Guerich, H.
Mehammed, L. Schley, O. Schneider, G.L. Volpato (2008): Integration of
Multiple Middlewares on a Single Computing Resource, The International
Journal of Grid Computing: Theory, Methods and Applications, Elsevier (ac-
cepted).

[5] I. Foster: The Grid: A New Infrastructure for 21st Century Science. Physics
Today, 55 (2). 42-47. 2002

[6] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Com-
puting Applications archive,Volume 15 , Issue 3 (August 2001) pp. 200 - 222
ISSN:1094-3420

[7] R. Wismüller, M. Bubak, W. Funika, T. Adrodz, and M. Kurdziel. Perfor-
mance Measurement Model in the G-PM Tool. In M. Bubak et al., editors,
Computational Science, ICCS 2004, 4th International Conference, volume
3036 of Lecture Notes in Computer Science, pages 462-465, Krakow, Poland,
June 2004. Springer Verlag.

[8] T. Ludwig, R. Wismüller, V. Sunderam, AND A. BODE: OMIS On-line Mon-
itoring Interface Specification (Version 2.0), vol. 9 of LRR-TUM Research
Report Series, Shaker-Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-
7.

136

BIBLIOGRAPHY 137

[9] Vampirtrace, ZIH, Technische Universitat, Dresden: http://tu-
dresden.de/die_tu_dresden/zentrale_einrichtungen/zih.

[10] R. Wismüller, M. Bubak, W. Funika, T. Arodz, M. Kurdziel: Support for
User-Defined Metrics in the Online Performance Analysis Tool G-PM. Euro-
pean Across Grids Conference 2004: pp.159-168

[11] B. Balis, M. Bubak, W. F, T. Szepieniec, R. Wismueller, and M. Radecki:
Monitoring Grid Applications with Grid-enabled OMIS Monitor, in Proc.
First European Across Grids Conference, F. Rivera et al., eds., vol. 2970 of
Lecture Notes in Computer Science, Santiago de Compostela, Spain, Feb.
2003, Springer-Verlag, pp. 230-239.

[12] B. Mohr and F. Wolf: KOJAK - A Tool Set for Automatic Performance Anal-
ysis of Parallel Programs, Euro-Par 2003 Parallel Processing ISBN 978-3-
540-40788-1 pp. 1301-1304, Springer, ISSN 0302-9743,2004

[13] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller: "MRNet:
A Software-Based Multicast/Reduction Network for Scalable Tools", in
SC2003 (Phoenix, Arizona, November 2003)

[14] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing.
Journal of Future Generation Computing Systems, 15(5-6):757-768, October
1999

[15] B. Balis, M. Bubak, W. Funika, T. Szepieniec, and R. Wismuller.: An In-
frastructure for Grid Application Monitoring. In: Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface, 9th European PVM/MPI
Users’ Group Meeting, Sept. - Oct. 2002, Linz, Austria, Lecture Notes in
Computer Science 2474, pp. 41-49, Springer-Verlag, 2002.

[16] M. Bubak, W. Funika, R. Wismüller, T. Arodz, M. Kurdziel: The G-PM Tool
for Grid-Oriented Performance Analysis. European Across Grids Conference
2003: pp. 240-248

[17] CrossGrid - Development of Grid Environment for interactive Applications,
EU Project, IST-2001-32243, Technical Annex. http://www.eu-crossgrid.org

[18] T. Margalef, J. Jorba, O. Morajko, A. Morajko, E. Luque, Different Ap-
proaches to Automatic Performance Analysis of Distributed Applications.
Performance Analysis and Grid Computing (Getov, Gerndt, Hoisie, Malony,
Miller), 2002, Dagstuhl, Germany, PP, 93-107.

[19] B. Mohr, A. D. Malony, S.r Shende, F. Wolf: Design and Prototype of a Per-
formance Tool Interface for OpenMP. The Journal of Supercomputing Vol-
ume 23 , Issue 1 (August 2002) pp: 105 - 128 Year of Publication: 2002

BIBLIOGRAPHY 138

[20] T. Fahringer, M. Gerndt, G. Riley, and J. L. Tra: Knowledge Specica-
tion for Automatic Performance Analysis. APART Technical Report, ES-
PRIT IV Working Group on Automatic Performance Analysis, Nov. 1999.
http://www.fz-juelich.de/apart-1/reports/wp2-asl.ps.gz

[21] T. Fahringer and C. Seragiotto: Modeling and Detecting Performance Prob-
lems for Distributed and Parallel Programs with JavaPSL. In 9th IEEE High-
Performance Networking and Computing Conference, SC’2001, Denver, CO,
Nov. 2001.

[22] J. R. Hollingsworth, B. P. Miller, M. J. R. Goncalves, Z. Xu, O. Naim,
and L. Zheng: MDL: A Language and Compiler for Dynamic Pro-
gram Instrumentation. In Proc. International Conference on Parallel Ar-
chitectures and Compilation Techniques, San Francisco, CA, USA, 1997.
ftp://grilled.cs.wisc.edu/technical papers/mdl.ps.gz

[23] Buck, B. R. and Hollingsworth, J. K. “An API for Runtime Code Patching.”
Journal of High Performance Computing Applications, 14 (4) (Winter 2000),
pp. 317-329.

[24] University of Illinois. Pablo Performance Analysis Environment: Data Anal-
ysis. http://www-pablo.cs.uiuc.edu/Project/Pablo/PabloDataAnalysis.htm

[25] M. Kobayashi and K. Takeda. Information retrieval on the web. ACM Com-
puting Surveys, 32(2):144-173, 2000.

[26] F. Wolf and B. Mohr: EARL - A Programmable and Extensible Toolkit for
Analyzing Event Traces of Message Passing Programs. In Proc. of the 7th
International Conference on High- Performance Computing and Networking
(HPCN 99), Lecture Notes in Computer Science, pp. 503-512, Amsterdam,
1999. Springer-Verlag.

[27] F. Wolf and B. Mohr: Automatic Performance Analysis of MPI Applications
Based on Event Traces. In Euro-Par 2000 Parallel Processing, 6th Interna-
tional Euro- Par Conference, Lecture Notes in Computer Science 1900, pp.
123-132, Munich, Germany, Aug. 2000. Springer-Verlag.

[28] R. Kohavi and F. Provost. Applications of data mining to electronic com-
merce. Data Mining Knowledge Discovery, 5(1-2):5-10, 2001

[29] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller, "Benchmarking the
MRNet Distributed Tool Infrastructure: Lessons Learned", in 2004 High-
Performance Grid Computing Workshop, held in conjunction with the 2004
International Parallel and Distributed Processing Symposium (IPDPS 2004,
Santa Fe, New Mexico, April 2004).

BIBLIOGRAPHY 139

[30] M. Bubak, W. Funika, K. Iskra, R. Maruszewski, and R. Wismueller: En-
hancing the Functionality of Performance Measurement Tools for Message
Passing Environments, in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, Proc. 6th European PVM/MPI Users Group Meet-
ing, J. Dongarra, E. Luque, and T. Margalef, eds., vol. 1697 of Lecture Notes
in Computer Science, Barcelona, Spain, Sept. 1999, Springer-Verlag, pp. 67-
74.

[31] T. Ludwig„ R. Wismueller, V. Sunderam, and A. Bode, OMIS On-line Mon-
itoring Interface Specification (Version 2.0), vol. 9 of LRR-TUM Research
Report Series, Shaker-Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-
7.

[32] M. Aigner, Diskrete Mathematik, 4. Aufl. Vieweg, Braunschweig, Wiesbaden
2001.

[33] Bohm, A.P.W.; Sargeant, J.: Code optimization for tagged-token dataflow
machines Computers, IEEE Transactions on Volume 38, Issue 1, Jan 1989,
pp.4 - 14

[34] Yasuhiro Inagami, John F. Foley, The specification of a new Manchester
Dataflow machine, International Conference on Supercomputing Proceedings
of the 3rd international conference on Supercomputing, Greece, pp. 371 -
380, 1986, ISBN:0-89791-309-4

[35] David W. Goodwin: Interprocedural dataflow analysis in an executable op-
timizer. Conference on Programming Language Design and Implementation
archive. Las Vegas, Nevada, United States, pp. 122 - 133, 1997, ISBN:0-
89791-907-6.

[36] B. Jonsson Swedish, A fully abstract trace model for dataflow networks. An-
nual Symposium on Principles of Programming Languages Proceedings of
the 16th ACM SIGPLAN-SIGACT. Austin, Texas, United States, pp. 155 -
165, 1989 ISBN:0-89791-294-2

[37] Arvind, Rishiyur S. Nikhil: Executing a Program on the MIT Tagged-Token
Dataflow Architecture. IEEE Trans. Computers 39(3): pp. 300-318, (1990)

[38] J. Cargille and B. P. Miller, Binary Wrapping: A Technique for Instrumenting
Object Code, ACM Sigplan Notices, 27 (1992), pp. 17-18.

[39] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, R.A.F. Bhoedjang. Mag-
PIe: MPI’s Collective Communication Operations For Clustered Wide Area
Systems. ACM SIGPLAN Notices 34, 8, August 1999, pp. 131-140.

[40] Michael Gerndt, John Gurd: Special Issue: European-American Work-
ing Group on Automatic Performance Analysis (APART). Concurrency and

BIBLIOGRAPHY 140

Computation: Practice and Experience (CONCURRENCY) 19(11): pp.
1447-1449 (2007)

[41] Dan Gunter, Brian Tierney: NetLogger: A Toolkit for Distributed System
Performance Tuning and Debugging. Integrated Network Management 2003:
pp. 97-100

[42] Hong Linh Truong, Thomas Fahringer: SCALEA-G: A Unified Monitoring
and Performance Analysis System for the Grid. European Across Grids Con-
ference 2004: pp. 202-211

[43] Edward A. Lee, David G. Messerschmitt: Synchronous Data Flow: De-
scribing Signal Processing Algorithm for Parallel Computation. COMPCON,
1987: pp. 310-315

[44] J. Jorba, T. Margalef, E. Luque: Performance Analysis of Parallel Appli-
cations with KappaPI 2, Parallel Computing: Current & Future Issues of
High-End Computing, Proceedings of the International Conference ParCo
2005, John von Neumann Institute for Computing, Jülich, NIC Series, Vol.
33, ISBN 3-00-017352-8, 2006, pp. 155-162.

[45] F. Vraalsen, R. Aydt, C. Mendes, and D. Reed, Performance contracts: Pre-
dicting and monitoring grid application behavior, in Proceedings of the 2nd
International Workshop on Grid Computing/LNCS, Springer-Verlag Lecture
Notes in Computer Science, Denver, Colorado, November 12, 2001, Volume
2242, GRID 2001, pp. 154-165.

[46] Kahn, G.: The semantics of a simple language for parallel programming.
Information Processing, 1974, pp. 471-475.

[47] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open
Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[48] M. L. Massie, B. N. Chun and D. E. Culler, The Ganglia Distributed Moni-
toring System: Design, Implementation, and Experience, Parallel Computing
30(7) (July, 2004).

[49] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable
Execution of User Code for Distributed Computing. Sixth IEEE International
Symposium on High Performance Distributed Computing (HPDC 97), Port-
land, Oregon, 1997, pp. 306-314.

[50] M. J. Sottile and R. G. Minnich. Supermon: A high-speed cluster monitoring
system. In CLUSTER ’02: Proceedings of the IEEE International Conference
on Cluster Computing, page 39, Washington, DC, USA, 2002. IEEE Com-
puter Society. http://supermon.sourceforge.net/SupermonArchitecture.html

BIBLIOGRAPHY 141

[51] K. Fürlinger and M. Gerndt, Periscope: Performance Analysis on Large-Scale
Systems, InSiDE – Innovatives Supercomputing in Deutschland , Volume 3
(2, Autumn), pp. 26-29, 2005

[52] Balis, B., Bubak, M., Funika, W., Szepieniec, T., and Wismuller, R.: Mon-
itoring and Performance Analysis of Grid Application. In: Computational
Science - ICCS 2003, June 2003, St. Petersburg, Russia, Lecture Notes in
Computer Science 2657, pp. 214-224, Springer-Verlag, 2003.

[53] Sameer S. Shende , Allen D. Malony, The Tau Parallel Performance System,
International Journal of High Performance Computing Applications, v.20 n.2,
pp. 287-311, May 2006

[54] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-
padam and Tia Newhall, "The Paradyn Parallel Performance Measurement
Tool", IEEE Computer 28, 11, (November 1995): 37-46. Special issue on
performance evaluation tools for parallel and distributed computer systems.
http://www.cs.wisc.edu/paradyn/papers/overview.ps.gz.

[55] N. Podhorszki AND P. Kacsuk, Presentation and Analysis of Grid Perfor-
mance Data, in EuroPar 2003 - 9th International Conference, Klagenfurt,
Austria, H. H. H. Kosch, L. Boszomenyi, Springer Verlag, 2003.

[56] Yan Jin, Robert Esser, Charles Lakos, Jörn W. Janneck: Modular Analysis of
Dataflow Process Networks. FASE 2003: pp. 184-199

[57] Balaton, Z., Kacsuk, P., Podhorszki, N., and Vajda, F.: From Cluster Mon-
itoring to Grid Monitoring Based on GRM. In: Euro-Par 2001 Parallel Pro-
cessing, 7th International Euro-Par Conference, August 2001, Manchester,
UK, Lecture Notes in Computer Science 2150, pp. 874-881, Springer-Verlag,
2001.

[58] Walid A. Najjar, Edward A. Lee, Guang R. Gao: Advances in the dataflow
computational model. Parallel Computing 25(13-14): 1907-1929 (1999).

[59] R. WOLSKI, N. SPRING, AND J. HAYES, The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing,
Journal of Future Generation Computing Systems, 15 (1999), pp. 757-768.

[60] Jack B. Dennis, David Misunas: A Preliminary Architecture for a Basic Data
Flow Processor. ISCA 1974: 126-132

[61] ASKALON Visualization Diagrams. Institute for Software Science, Univer-
sity of Vienna. www.par.univie.ac.at/project/askalon/visualization/index.html

[62] P. Kacsuk: Performance Visualization in the GRADE Parallel Programming
Environment, HPCN Asia, Beijing, China, 2000.

BIBLIOGRAPHY 142

[63] B. Tierney et al.: The NetLogger Methodology for High Performance Dis-
tributed Systems Performance Analyser Proc. of the IEEE HPDC-7 (July 28-
31, 1998, Chicago, IL) LBNL-42611

[64] C. Jin, R. Buyya, L. Stein, and Z. Zhang: A Dataflow Model for .NET-based
Grid Computing Systems, Proceedings of the 3rd International Workshop on
Grid Computing and Applications, June 6-7, 2007, World Scientific Press,
Singapore.

[65] The Globus Heartbeat Monitor Specification http://www-
fp.globus.org/hbm/heartbeat_spec.html

[66] N. Podhorszki, Z. Balaton, G. Gombás: Monitoring message-passing parallel
applications in the grid with GRM and Mercury monitor: Lecture Notes in
Computer Science, Laboratory of Parallel and Distributed Systems Type :
Folyóiratcikk, Volume no.: 3165, pp. 179-181, 2004

[67] S. Girona, J. Labarta, R. M. Badia: Validation of Dimemas Communication
Model for MPI Collective Operations. PVM/MPI 2000: pp.39-46

[68] Andrew W. Cooke, Alasdair J. G. Gray, Lisha Ma, Werner Nutt, James
Magowan, Manfred Oevers, Paul Taylor, Rob Byrom, Laurence Field, Steve
Hicks, Jason Leake, Manish Soni, Antony J. Wilson, Roney Cordenonsi,
Linda Cornwall, Abdeslem Djaoui, Steve Fisher, Norbert Podhorszki, Brian
A. Coghlan, Stuart Kenny, David O’Callaghan: R-GMA: An Information
Integration System for Grid Monitoring. CoopIS/DOA/ODBASE 2003: pp.
462-481

[69] D. Barbara, editor. Special Section on Data Mining for Intrusion Detection
and Threat Analysis, volume 30(4) of ACM SIGMOD Record, pp. 4-64.
ACM Press, New York, NY, USA, 2001.

[70] R. H. Guting. An introduction to spatial database systems. The VLDB Jour-
nal, 3(4): pp. 357-399, 1994.

[71] Fagg, G. E., Vadhiyar, S. S., and Dongarra, J. J. 2000. ACCT: automatic
collective communications tuning . Proceedings of EuroPVM-MPI 2000,
Lecture Notes in Computer Science Vol. 1908, Springer-Verlag, Berlin, pp.
354–361 .

[72] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-
son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon,
and R. Wolski. The GrADS Project: Software Support for High-Level Grid
Application Development. International Journal of High Performance Appli-
cations and Supercomputing 15(4), 2001.

BIBLIOGRAPHY 143

[73] Christophe G. Giraud-Carrier: A Reconfigurable Data Flow Machine for Im-
plementing Functional Programming Languages. SIGPLAN Notices, pp. 22-
28 , Volume 29, Number 9, 1994

[74] R. Wismüller, M. Bubak, and W. Funika. High-Level Application Specific
Performance Analysis using the G-PM Tool. Future Generation Computer
Systems, 24(2):121-132, February 2008.

	Introduction and Motivation
	Motivation
	Challenge
	Solutions
	Contribution of the work
	Scope of the Thesis

	Background of the Thesis
	Performance Analysis
	Methods for Collecting Monitoring Data
	Measurement Analysis
	Online versus Off-line Performance Analysis
	Automatic Performance Analysis
	Instrumentation

	Grid Computing
	Resource Sharing
	Grid Applications
	Virtual Organization
	Components of Grid Computing

	 Interactive Applications
	CrossGrid's Interactive Applications
	Tools and Services for the Interactive Applications

	Evaluation of Measurement Data
	Introduction
	Measurement Issues
	Acquisition of Monitoring Data
	Acquisition of Event Based Monitored Data
	Difficult Measurement Issues

	Developing Augmented Dataflow Graph
	Introduction
	Dataflow Model (DFM)
	Augmented Dataflow Graph
	The Push and The Pull Models

	Distributed versus Centralized Evaluation
	Centralized Evaluation
	Distributed Evaluation

	Related Works
	Introduction
	Methods of Distributed Evaluation
	Paradyn/MRNet
	Lilith
	Ganglia
	Supermon
	Periscope

	Methods of Performance Specifications
	ASL and JavaPSL
	Paradyn/MDL
	EARL/Expert
	Paraver
	Pablo
	KappaPI-2
	Other Tools

	 Methods of Handling the Flow of Data Items
	Kahn’s Dataflow Network (KDN)
	Synchronous Dataflow (SDF) Networks
	Tagged-token model
	Component Based Design versus Dataflow Processes

	Conclusion

	Context of the Distributed Evaluation
	Introduction
	OCM-G
	Basic Concepts and Functionality of OMIS
	OCM-G Components

	Grid Performance Measurement Tool (GPM)
	Basic Concepts and Functionality of GPM
	GPM Components

	Overlay Networks for Distributed Evaluation
	Introduction
	Performance Metrics Specification Language (PMSL)
	Basic Concepts of PMSL
	PMSL Usage

	Evaluation of Metrics Specification
	Creating Intermediate Representation (IR)
	Measurement Definition

	Generating Augmented DFGs
	Decomposition of the DFG
	Determining the Access Locations of Sub-DFGs
	Creating Communication Links

	Distributing Subtasks
	Plug-ins to Transfer the Sub-DFG

	Generating Monitoring Requests
	Event Based Actions
	Types of Actions for the Distributed Evaluation
	Requests for the Actions to be Performed at the Front-end
	Requests for the Actions to be Performed at the Back-ends

	Processing the Measurement Result Values
	Evaluation of the Result Values
	Synchronization of Result Values
	Routing of Result Values Using Firing Rules

	Usage Scenarios and Evaluation
	Introduction
	Usage Scenarios
	Automatic Visualization of DFGs Using DOT
	Visualization of the IR Graphs of GPM Using DOT

	Summary and Outlook
	Summary
	Outlook

