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Abstract — The template coefficients (weights) of a CNN, which will give a desired performance,
can esther be found by design or by learning. “By design” means, thai the desired function to
be performed could be translated into a set of local dynamic rules, while “by learning” is based
ezclusively on pairs of input and corresponding oulput signals, the relationship of which may
be by far too complicated for the ezplicit formulation of local rules. An overview of design and
learning methods applicable to CNNs, which sometimes are not clearly distinguishable, will be
given here. Both technological constraints imposed by specific hardware implementation and
practical constraints caused by the specific application and system embedding are influencing
design and learning.

1 Imtroduction

Since their introduction in 1988 [1] the design of both continuous-time and discrete-time
cellular neural networks (CT-CNNs and DT-CNNs) has been an interesting research topic.
The aim is to find a set of parameters (coefficients, synaptic weights), which in the case
of locally connected translationally invariant CNNs are usually called templates, so that
the network performs according to a given task. The equation for each cell ¢ of CT-CNN
is as follows:

i‘ = 7% +d€§-(c)a‘-cyd +‘€Eic)bd—c“d'+ ic T
Ye = f (3;:) » (1)
fiz) = j(e+1l-l=-1]),

while for a DT-CNN
Ie(k) = ‘E%(c) ad-cyd(k) + “§'(‘) bd-cul + ic ’
ve(k) = f(z(k-1)), 2
f(z) := sgn(z).
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The symbolic notation a4_. and by_. of the feedback and control coefficients indicates
that only the relative position of cells within a neighborhood N, determines the connection
weight.

The first useful templates have been derived in analogy to known image processing
algorithms, while the first systematic approach for the design of CT-CNNs was aim-
ing at programming desired fixed points [2] (see Section 2). This technique has later
been adapted to the discrete-time case in [3) (see Section 3), and it requires the a-
priori knowledge of the trajectories. Modified versions of recurrent backpropagation and
backpropagation-through-time have been developed [4] to make sure, that the CT-CNN
will not only have the desired fixed point, but evolve from a given initial condition (e.g.
input image) into the corresponding fixed point (output image) along a desired trajec-
tory. While all the aforementioned techniques. require the intuition of an experienced
designer in choosing proper training patterns and specifying the local dynamics, the ap-
proach described in Section 5 [5) for DT-CNNs leaves the choice of the trajectories to an
optimization procedure. It is therefore the only (global) learning procedure in the strict
sense.

For such global learning approaches the question arises, how many samples (input-
output pairs) are necessary for reliable generalization. In [6], an upper bound on the
sample size is derived by applying the probably approximately correct (PAC) learning
theory to DT-CNNs.

Finally the optimization of the nominal parameters of a CNN, which has been designed
with one of the previous procedures, with respect to parameter tolérances as well as
pattern disturbances is treated (Section 6) [7]. This is already a step towards taking
into account the hardware constraints at the design or learning stage. The approach in
(8] is even proposing the use of modified network equations for the actual behavior of a
simplified CNN hardware.

Multilayer CNNs, where a sequence of operations (various virtual layers) is carried out
on one programmable physical layer taking advantage of in-place computations [9], are
first broken down into individual tasks by the intuition and the experience of the designer
and then being dealt with as in single layer CNNs above.

2 Designing Fixed Points

In this section, the issue of designing fixpoints £* of a CT-CNN, specified by the cor-
responding output ¥y = f(z*) in the saturation region, is discussed. Given an output
in the saturation region |y°| = 1 and a fixed input u., the corresponding state must be
given by . ;

2= Y aa-yT+ Y, bacudtic 3)
dENH(c) dEN,(c) ‘

since the derivative has to vanish. One still has to make sure that the output of the cell
¢ Eq. 3 really is given by the desired y*, which is equivalent to

©> 41 if y@ =41 ' ;
R e R o e
e = 3 deN(c) deN-(<)

for each cell ¢ of the network (¢ = 1,---, M). In general, one has L > 1 desired fixed
points y™°¥ along with some input patterns ufl (I = 1,---,L). For each pair of training
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patterns, one obtains the system of affine inequalities Eq. 4 for the unknowns a, 5, and
i [2]. This can now be solved by many methods, e.g. the relaxation method in [10},
the perceptron algorithm [11], Rosenblatt’s algorithm [12] and the AdaTron algorithm
[13), just to mention a few. For each algerithm there is a convergence theorem stating
that, if a solution exists, the algorithm finds a solution. In some applications (e.g. image
processing), rotationally invariant or isottopic templates are needed. All of the above
mentioned algorithms can be adapted to incorporate these additional equality constraints
(2], [14].
Simply replacing Eq. 4 by
To(koo) 20 i yo(koo) =41
(ko) <0 if Ye(koo) = —1 } =

Nl yc(kon) E a’d-cyd(kw) + E bd—cud + ic) >0
dEN(c) deNy(c)

(5)

with some ko, large enough for the network to settle at a fixed point will give the inequal-
ities to program the fixed points of a DT-CNN.

In both cases (Eq. 4 and Eq. 5), the initial condition z(0) or y(0) is not involved in
the learning of fixed points. Therefore, no control of the basins of attraction of these fixed
points is provided. In [15], a step towards taking into account initial conditions is made,
but this approach works reliably only, if the transients are simply monotonic.

3 Design of DT-CNNs with Prescribed Trajectories

Gradient-based methods are not applicable to DT-CNNs, since error gradients do not
exist everywhere in the space of the network parameters. The reason for this is the hard
threshold function used as the nonlinearity. The advantage is, that the transition from
y(k) to y(k+ 1) can be described by linear inequalities. Hence the methods described
in Section 2 can be used, though one has to be willing and able to prescribe a sensible
trajectory u,y(0),---,y(T). From the recursion Eq. 2, the following set of inequalities
can be derived for each time step k= 0,---,T - 1:

z(k) 20 if ye(k+1)=+1
ze(k) <0 if ye(k+1)=—-1] &

(6)
<> y(k+1) ( Y ad-cya(k)+ 3 ba-cua+ ic) >0.
deNw(c) deNy(c)

Again, more than one trajectory can be prescribed, and one can replace the in-
equality “> 0" in the above equation by “> R” to ensure some kind of robustness of
the solution [3]. This does not change the solvability of the system since by appropri-
ately scaling a solution of the original system one obtains a solution of the new sys-
tem. This reflects the fact that the space of solutions of a general system of inequalities
L :=v£p eRY:ptvill > R>0; vl e RN for1 <1< L} is a convex cone. By increasing
the value of R, the vertex of the cone is moved away from the origin. A precise definition
of the robustness of a solution p € £ and how the most robust solution is obtained will
be discussed in Section 6.

An example for the application of Eq. 6 for extracting the edges of an image and
simultaneously suppressing the noise is given in the following. It is remarkable, how
simple the learning samples (Fig. 1) are, and how well this works for quite general images

(Fig. 2).
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Input ¥(0) y(1) y(2) y(3)
Figure 1: Learning Samples for Edge Detection

Input y(20)

Figure 2: Edge Detection on “Lena” image

4 Gradient Based Methods for Learning CT-CNNs with Prescribed Trajec-
tories

The design of fixed points, however, does not guarantee the correct behavior of the dy-
namical system, since the initial states do not necessarily lie in the basins of attraction
of the correct fixed points. It is thus necessary to find a parameter vector p = (a,b,1)
such that the output of the CNN equals the desired output d¥(c0) starting with a given
initial state x%(0) and input ull for all training patterns (I=1,..., L).

A common way for learning in neural networks is to define an error measure or cost
function of the fixed points and the desired outputs (Recurrent Backpropagation [16]) or
in general of the trajectory of the system and the desired trajectory (Backpropagation-
Through-Time [17)).

L M
E(p) =33 E(al,dl), (M)

1=1e=

The gradient of this error with respect to the weights can then be used to descend to a
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local minimum of the error.

E_EE; ap(zclc)' (8)
For the sake of notational simplicity, we will omit the index [{], since the gradient is simply
summed over all learning samples I =1,..., L.

Due to the piecewise linear output function, it is better to define the error as a function
of the states instead of the output [4]. With the following function with a parameter R

(vIR) = { =B, <404 R); .

the state-based distance and the partial derivative are given by

O0E. _, Oz,
Bp = (zcde|R)d, o (10)

The error of a cell is zero, whenever a cell is in the proper saturation region of the output
function having at least a distance of R to the boundary of this region.

Recurrent Backpropagation (RBP) [16] is a generalization of the well-known Back-
propagation algorithm to learn the fixed points of recurrent neural networks. The error
is taken at the fixed points, assuming a fixed point is reached:

E (=, dt:) = e(zcdt:lR) 3

E.(p) = e(z(c0)d|R), (11)
and the equations for RBP read:
d0E. OF, :
= Ac'—" ) Ac = _Ac + z: ﬂc—df'(mc(oo))’\d + e‘(zc(m)dclR)dc ) (12)
p 0P |yee deNe

where F, is the right-hand side of Eq. 1. X € IR™ is an “error signal” vector, which is com-
puted from the associated dynamical system, with any initial condition A.(0). Thereby,
the ODEs for A (the associated dynamical system) are simply introduced to avoid a ma-
trix inversion, which would be necessary otherwise. If the algorithm succeeds in finding a
suitable parameter vector, not only the fixed points of the dynamical system are learned,
but also the trajectories from the given initial states to the desired fixed points.

The problem with RBP is that the algorithm breaks down, if the CNN becomes unsta-
ble during some step of the learning procedure. To avoid this dilemma, Backpropagation-
Through-Time has been introduced.

With Backpropagation-through-Time (BTT) [17],[18], not only fixed points, but also
prescribed trajectories can be learned. The gradient of the state-based error can be
simplified

T T
Ep) = ex(eTILIR) [ exfaclt)dclR)dt, ";‘ -/ ,\c%gs dt (13)
using the associated dynamical system
Se= e = X te-af (@) = ex( T)de| R)ey (o)l R) e, (14)

deN.
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which has to be integrated backward in time, since the boundary value of ). is known at
the terminal time T':

M) = (D)l R [ T ea(ze(t)de| R)dt . (15)

Depending on the choice of e; and e3, BT'T can be used to follow a prescribed trajectory
dlf(t), or to gain information from the trajectory to find a parameter vector, for which
the system converges in a given time T to the desired output.

One problem in common with all gradient-based learning algorithms is that only local
minima of the error surfaces are found. Therefore, the result depends on the selected initial
parameter. This is true, although the state-based versions of RBP and BTT, which are
described here, are much better in this respect when compared with their output-based
counterparts [(4].

For both algorithms, versions applicable to DT-CNNs are also available [19], provided
that their threshold nonlinearity is replaced by a continuously-valued one.

5 Global Learning for DT-CNNs

In global learning algorithms, the task, which has to be learned by the network, is de-
fined by a set of input images (training patterns) and the corresponding desired output
images of the network. The input images are inputs for the whole network as opposed
to local cell input patterns in local learning algorithms. The global learning algorithm
is used to find the network parameters for this task, which implies that the algorithm
itself designs the trajectory. Thus much more complicated trajectories are obtainable,
and more complicated tasks can be implemented by the network. Unfortunately, global
learning algorithms are computationally expensive. Following from the results in (20], it
can be concluded that global learning for DT-CNNs belongs to the class of NP-complete
problems [5].

All different variants of global learning algorithms are based on the idea that an
objective function (cost function) is defined, which measures how well the network maps
a set of input images onto the desired output images. Learning is thus achieved by
minimizing the cost function.

DT-CNNs have two stable output behaviors: either they run into a stable fixed point,
or they perform stable limit cycles (oscillations). In many applications, oscillations cannot
be tolerated, and thus they have to be punished by the objective function.

Let p be the parameter vector, which contains the template coefficients of the DT-
CNN. A distance measure Af)(p) and the cost function o(p) are defined as follows:

M
Am(p) = i Z__:l we - (yg.]p(oo) —dif)? for stable output fixed points (16)
1 for stable limit cycles
L
ofp) = ‘Z 2,A%(p) (17)
=1

The w, € [0,1] and Q, € [0,1] are weighting factors, which obey

M L
Yw=1 and Y =1.
1=1

e=1
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L is the number of training patterns, and M is the number of cells in the network.
yg]p(oo) denotes the output of cell ¢, when input image utl was fed into the network, and
the network has reached a stable fixed point. dI is the corresponding desired output
image of the network.

In some applications, moderate oscillations can actually be tolerated. In this case, it
makes sense to use a modified distance measure AM(p), in which the distances between
the actual and the desired output image ate averaged over one period of the limit cycle.

Due to the inherently nonlinear'behavior of a DT-CNN cell (caused by the SGN func-
tion in Eq. 2), the objective function o{p) has some unpleasant properties: It consists
of multi-dimensional plateaus with constant value and abrupt boundaries between the
plateaus. Thus gradients of the objective function are either zero (on the plateaus) or
undefined (at the boundaries), and classical optimization methods using gradient infor-
mation are not applicable. ’

Still, different ways seem feasible to solve the problem. One approach is to use opti-
mization methods, which do not require gradient information, to minimize the objective
function o{p). This has been done using alternate variable methods [21] and using a
combination of Rosenbrock’s method and the Simplez method [19].

In another approach, the SGN-type nonlinearity'in Eq. 2 is replaced by a sigmoidal
nonlinearity with variable gain. In this case, the system becomes a (continuously-valued)
discrete-time dynamical system, where gradients are well-defined and classical optimiza-
tion algorithms can be applied. The idea is to use Continuation methods, i.e. to start
with a low gain of the sigmoidal function and find the minimum for the objective function
in that case. Then the gain is increased by a small amount, and the objective function
is minimized again, using the result of the last optimization as the starting point. This
scheme is repeated until the gain is very high, and thus the sigmoidal functions becomes
similar to the SGN-type nonlinearity [22].

A third method is based on the observation that, even if the continuously-valued
template coefficients suggest otherwise, the underlying optimization problem has a finite
state space and thus can be treated as a combinatorial optimization problem. Simulated
Annealing type algorithms have been applied to this problem [5]. '

Genetic algorithms have also been tried in the global learning problem, both with
CT-CNNs and DT-CNNs [19], [23]. The results have been mixed, and it was at least
pointed out that the coding of the coefficients for these algorithms is an open problem,
which is decisive for the success.

All the above methods can be used to minimize the objective function, but extended
experiments suggest that Simulated Annealing is the most robust tool, and that it can
find good solutions even in difficult cases. It has to be mentioned, though, that Simu-
lated Annealing algorithms are expensive in terms of computational requirements. Global
Learning algorithms are no replacement for local learning algorithms, but an important
complement to solve learning problems for DT-CNNs. It has to be mentioned that, as
with most learning algorithms for neural networks, the selection of the right training
patterns is a crucial problem.

In [24] some interesting examples are given, which are quite complex and certainly
beyond the capability of local learning algorithms. The above global learning algorithms
are quite successful there and open up interesting, practically relevant areas of application
for DT-CNNs.
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6 Robust Design Issues

As already mentioned before, the trajectory of a DT-CNN (Section 3) and the fixed points
of a CT-CNN (Section 2) can be described by affine inequalities. The trajectory, as well
as the fixed points, can be designed by intuition or an appropriate learning algorithm
(see Sections 3, 4, and 5). In any case, it is desirable to obtain templates which are
robust against noise or deviations from their nominal values. It is passible to define
several notions of robustness with respect to arbitrary g-norms on IR¥ for a solution
peL:= {p € RY : ptvi? > 0;v¥ ¢ RN for 1 <1< L} (see Section 3) {7]. For example,
the relative robustness in weight space ry(p) with respect to the Euclidean norm || o || is
defined as the solution of

max r subject to VAp € R¥ : ||[Ap|| = r||p|| implies (p+Ap) € L . (18)

It can be shown that r,(p) is the minimal distance of the vector p/||p| to the planes
defined by the “patterns” vll. The most robust solution p* is therefore obtained by
solving

tylll
mg.xrw(p) = max min_ b

———— 19
2 2 ol (i)

Obviously the solution is not unique, since an arbitrary positive scaling does not influ-
ence the robustness. Therefore, one can add the additional constraint ||p{| = 1 to the
optimization problem. It can be shown that, if the problem is solvable, the objective and
the constraints can be interchanged, fesulting in an equivalent quadratic programming
problem with linear inequality constraints [13]:

min ||p|| subject to p'vll > [[v¥ffori=1,---,L. {20)

Since the objective function is very simple and the constraints are affine, it possible to
obtain an explicit expression for the dual function ¢ provided by Lagrangian duality,
which in this case is called the Wolfe dual. Denoting by ¥ = vl9/||vlJ|, the Wolfe dual
can be written as

L
max (——% ,-,Zﬂ T (ﬁ[']‘f)m) T+ éz;) subject to ¢; 2 0forj=1,---,L. (21)
Any gradient method can now be applied, and only minor modifications are necessary in
order to satisfy the constraints, since they are very simple. The solution p* of the original
problem Eq. 20 is obtained from a solution x* of by Eq. 21 p* = ¥; z;vll. The socalled
AdaTron algorithm [13] is one implementation of these ideas.

A solution, which has been robustified in accordance with the above described concept,
will be most insensitive to both the tolerances of the weights of the CNN due to an
imperfect hardware implementation and to disturbances in the input vectors (images) to
be processed.
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7 Hardware Oriented Learning

The gradient-based methods described in Section 4 rely on a system description of the
following form

x = F(x,p), (22)

where ideally the right hand side of F in Eq. 22 is given by the right hand side of Eq. 1.
Any real implementation will deviate fram that. But as long as an accurate description
of the real circuit is available, it can be used in the learning procedures of Section 4, since
they are using a quite general F. This way, important simplifications in hardware are
possible 4], {25], which are taken into account in the design stage.

8 Conclusions

The systematic steps towards design and learning with CNNs provide powerful techniques
to find the template coefficients (synaptic weights) to perform a desired task. In addition,
it also opens up the world of learning of general artificial neural networks to the VLSI-
oriented world of CNNs.
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