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Abstract - The template coefficients (weights) of a CNN, which d l  give a d e s i d p e t f o t " e ,  
can either be found by design OT by learning. .By designw meansl thut the dccrircdfunction to 
be performed could be translated into a set of local dynamic rules, while "ay ICorning' i s  based 
ezclwively on pairs of input and c o n q w d n g  output signals, the nlcrtioMhip of which m y  
be by far too complicated for the cqlicit  fonnulclrion of loml rules. An ov" of design and 
leaming methods applicrrbk to CNNs, which sometimes att not c M y  distingllishcrbk, d l  be 
given k. Both technological constmints imposed by spec$% hadwatt implementation and 
pmctical constraints caused by the SpCriFc application and q d e m  embedding are influencing 
design and leanzing. 

1 Introduction 
Since their introduction in 1988 [l] the d k g n  of both continuous-time and discretetime 
cellular neural networks (CT-CNNs and DT-CNNs) hae been an interding research topic. 
The aim is to h d  a set of parameters (coefficients, synaptic weighta), which in the case 
of locally connected translationally invariant CNNi are usually ulled templates, so that 
the network perform according to a given tark. The equation for each cell c of CT-CNN 
is M follows: 

f(+) := sgn(5). 
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The symbolic notation adVC aud bd-c of the feedback and control codticients indicates 
that only the relative position of cells within a neighborhood JI(~ determines the connection 
weight. 

The first useful templates have been derived in analogy to known image processing 
algorithms, while the first systematic approach for the design of CT-CNNs was aim- 
ing at programming desired fixed points [2] (see Section 2). This technique has later 
been adapted to the discrete-time case in [3] (see Section 3), and it requires the a- 
priori knowledge of the trajectories. Modified versions of recurrat backpropagation and 
backpropagation-through-time have been developed [4] to make sure, that the CT-CNN 
will not only have the desired fixed point, but evolve from a given initial condition (e.g. 
input image) into the corresponding fixad point (output image) dong a desired trajec- 
tory. While all the aforementioned techniques require the intuition of an experienced 
designer in choosing proper training patterns and specifying the local dynamics, the ap- 
proach described in Section 5 [5] for DT-CNNs leaves the choice of the trajectories to an 
optimization procedure. It is therefore the only (global) learning procedure in the strict 
sense. 

For such global learning approaches the question arises, how many samples (input- 
output pairs) are necessary for reliable generalization. In (61, an upper bound on the 
sample size is derived by applying the $robably approximately correct (PAC) learning 
theory to DT-CNNs. 

Finally the optimization of the nomind parametas of a CNN, which has been designed 
with one of the previous procedures, d t h  respect to parameter tolerances as well as 
pattern disturbances is treated (Section 6) [7]. This is already a step towards taking 
into account the hardware constraints at the design or learning stage. The approach in 
[8] is even proposing the use of modified network equations for the actual behavior of a 
simplified CNN hardware. 

Multilayer CNNs, where a sequence of operations (various virtual layers) is carried out 
on one programmable physical layer taking advantage of in-place computations [SI, are 
first broken down into individual tash by the intuition and the experience of the designer 
and then being dealt with as in single layer CNNs above. 

2 Designing Fixed Points 
In this section, the issue of designing fixpoints x') of a CT-CNN, specified by the cor- 
responding output y" = f(xm) in the saturation region, is discussed. Given an output 
in the saturation region Iy,"l = 1 and a fixed input ucr the corresponding state must be 
given by 

since the derivative has to vanish. One still has to make sure that the outpyt of the cell 
c Eq. 3 really is given by the desired y", which is equivalent to 

for each cell c of the network (c = l , . . .  , M ) .  In general, one has L > 1 desired fixed 
points yoo[q along with some input patterns di] (I = 1, - . . , L). For each pair of training 
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patterns, one obtains the system of inequalities Eq. 4 for the unknowns a, b, and 
i [2]. This can now be solved by many methods, e.g. the relaxation method in [lo], 
the perceptron algorithm [ll], bsenblatt'n algorithm [12] and the Ada" algodith 
[13], just to mention a few. For each &rithm there is a convcqence theorem dating 
that, if a solution exists, the algorithm finds a solution. In some applicatiom (e.g. w e  
procewing), rotationally invariant or isotfopic templates are needed. All of the above 
mentioned algorithms can be adapted to incorporate these additional equality condraints 
PI, ~ 4 1 .  

Simply replacing Eq. 4 by 

(5) 

zC(k,)  2 0 if yc(k,) = t 1  
zc(km) < 0 if yc(km) = -1 

with some k- large enough for the network to settle at a fixed point will give the inequal- 
ities to program the fixed points of a DT-CNN. 

In both cases (Eq. 4 and Eq. 5), the initial condition z(0) or y(0) is not involved in 
the learning of fixed points. Therefore, no control of the basins of attraction of thew fixed 
points is provided. In [15], a step towards taking into account initial conditionr is made, 
but this approach works reliably only, if the transients arc simply monotonic. 

3 
Gradient-based methods are not applicable to DT-CNNs, since error gradienb do not 
exist everywhere in the space of the network parameters. The " o n  for th in  is the hard 
threshold function used as the nonlinearity. The adv&tlqge in, that the transition from 
y(  k )  to y( k + 1) can be described by linear inequalities. Hence the methods deraibed 
in Section 2 can be used, though one has to be willing and able to prescribe a sensible 
trajectory U, y(O), e . . , y ( T ) .  From the recursion Eq. 2, the following set of inequalities 
can be derived for each time step k = 0,. . - , T - 1: 

Design of DT-CNNs with Prescribed Trajectories 

( 6 )  

z , ( k )  2 0 if yc(k + 1) = +1 
z , ( k )  < 0 if yc(k + 1) = -1 

Again, more than one trajectory can be prescribed, and one can replace the in- 
equality "> 0" in the above equation by "2 R" to ensure some kind of robustness of 
the solution [3]. This does not change the solvability of the system since by appropri- 
ately scaling a solution of the origin$ system one obtains a solution of the new sy5 
tem. This reflects the fact that the spsce of solutions of a general system of inequalities 

p E R~ : p W  > R 2 0; v[q E wN for 1 5 I 5 L} is a CoLlVut cone. BY increasing 
:hedue of R, the vertex of the cone is moved away from the origin. A precise definition 
of the robustness of a solution p E L and how the most robust solution is obtained will 
be discussed in Section 6. 

An example for the application of Eq. 6 for extracting the edges of an image and 
simultaneously suppressing the noise is given in the following. It is remarkable, how 
simple the learning samples (Fig. 1) are, and how well this works for quite general images 
(Fig. 2). 
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Figure 1: Learning Samples for Edge Detection 

I 

Y(3)  

Input 

Figure 2: Edge Detection on "Lena" image 

4 Gradient Based Methods for Learning CT-CNNs with Prescribed Trajec- 
tories 

The design of fixed points, however, does not guarantee the correct behavior of the dy- 
namical system, since the initial states do not necessarily lie in the basins of attraction 
of the correct fixed points. It is thus necessary to find a parameter vector p = (a, b , i )  
such that the output of the CNN equals the desired output d[q(m) starting with a given 
initial state xt'I(0) and input u[q for all training patterns (I  = 1,.  . . , L). 

A common way for learning in neural networks is to define an error measure or cost 
function of the fixed points and the desired outputs (Recurrent Backpropagation [ I S ] )  or 
in general of the trajectory of the system and the desired trajectory (BackpEpropagatzon- 
Through-Time [17]). 

The gradient of this error with respect to the weights can then be used to descend to a 
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local minimum of the error. 

For the sake of notational simplicity, we will omit the index [I], since the gradient is simply 
summed over all learning samples I = 1,. . . , L. 

Due to the piecewise linear output function, it is better to define the error M a function 
of the states instead of the output [4]. With the following function with a parameter R 

f iv - (1 + R)Ih , if u < +(1+ R )  ; 
else I 

e(v1R) = 

the state-based distance and the partial derivative are given by 

(9) 

The error of a cell is zero, whenever a cell is in the proper saturation region of the output 
function having at least a distance of R to the boundary of this region. 

Recurrent Buckpupgation (RBP) [IS] is a generalization of the well-known Bads- 
propagation algorithm to learn the fixed points of recurrent neural networks. The error 
is taken at the fixed points, assuming a $xed point is reached: 

EC(p)  = e(zC(oo)dclR) , (11) 

and the equations for RBP read. 

where Fc is the right-hand side of Eq. 1. X E IRM is an "error signal" vector, which is com- 
puted from the associated dynamical system, with any initial condition Xc(0). Thereby, 
the ODES for X (the associated dynamical system) are simply introduced to avoid a ma- 
trix inversion, which would be necessary otherwise. If the algorithm succaeds in &ding a 
suitable parameter vector, not only the 6x4 points of the dynamical system are learned, 
but also the trajectories from the given initial states to the desired fixed points. 

The problem with RBP is that the algorithm breaks down, if the CNN becomes unsta- 
ble during some step of the learning procedure. To avoid this dilemma, Backpropagation- 
Through-Time has been introduced. 

With BuckpmpcrgotMn-thmugh-Time (BTT) [17],[18], not only fixed points, but also 
prescribed trajectories can be learned. The gradient of the state-based error can be 
simplified 

using the associated dynamical system 
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which has to be integrated backward in time, since the boundary value of Ac is known at 
the terminal time T: 

L(T)  = e:(zc(T)AIR)A 1' ea(i,(t)CIR)dt . (15) 

Depending on the choice of el and ea, BTT can be used to follow a prescribed trajectory 
dLq(t), or to gain information from the trajectory to find a parameter vector, for which 
the system converges in a given time T to the desired output. 

One problem in common with all gradient-based learning algorithms is that only local 
minimaof the error surfaces are found. Therefore, the result depends on the selected initial 
parameter. This is true, although the state-based versions of RBP and BTT, which are 
described here, are much better in this respect when compared with their output-based 
counterparts [4]. 

For both algorithms, versions applicable to DT-CNNs are also available [19], provided 
that their threshold nonlinearity is replaced by a continuously-valued one. 

5 Global Learning for DT-CNNs 
In global learning algorithms, the task, which has to be learned by the network, is de- 
fined by a set of input images (training patterns) and the corresponding desired output 
images of the network. The input images are inputs for the whole network as opposed 
to local cell input patterns in local learning algorithms. The global learning algorithm 
is used to find the network parameters for this task, which implies that the algorithm 
itself designs the trajectory. Thus much more complicated trajectories are obtainable, 
and more complicated tasks can be implemented by the network. Unfortunately, global 
learning algorithms are computationally expensive. Following from the results in (201, it 
can be concluded that global learning for DT-CNNs belongs to the class of NP-complete 
problems [5]. 

All different variants of global learning algorithms are based on the idea that an 
objective function (cost function) is defined, which measures how well the network maps 
a set of input images onto the desired output images. Learning is thus achieved by 
minimizing the cost function. 

DT-CNNs have two stable output behaviors: either they run into a stable fixed point, 
or they perform stable limit cycles (oscillations). In many applications, oscillations cannot 
be tolerated, and thus they have to be punished by the objective function. 

Let p be the parameter vector, which contains the template coefficients of the DT- 
CNN. A distance measure Am(,) and the cost function o(p) are defined as follows: 

(16) 
U, . (&(ao) - 4q)l for stable output fixed points Arq(p) = 

for stable limit cycles 

lrl 

The wc E [O, 11 and S2, E [0,1] are weighting factors, which obey 
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L is the number of training patterns, and M is the number of cells in the network. 
y$,(oo) denotes the output of cell E, when input image UM was fed into the network, and 
the network has reached a stable fixed point. dM is the corresponding desired output 
image of the network. 

In some applications, moderate oscillations can actually be tolerated. In this case, it 
makes sense to use a modified distance measure AM(p), in which the distances between 
the actual and the desired output image ate averaged over one period of the limit cycle. 

Due to the inherently nonlinear'behavior of a DT-CNN cell (caused by the SGN func- 
tion in Eq. 2), the objective function o(p) haa some unpleasant prdperties: It consists 
of multi-dimensional plateaus with coMtmt value and abrupt boundaries between the 
plateaus. Thus gradients of the objective function are either sera (on the plateaus) or 
undefined (at the boundaries), and classical optimization methods using gradient infor- 
mation are not applicable. 

Still, different ways seem feasible to &e the problem. One approach is to use opti- 
mization methods, which do not require gradient information, to minimize the objective 
function o(p). This has been done using dternate variable methods (211 and using a 
combination of Rosenhrock's method and the Simpla method [19]. 

In another approach, the SGN-type nonlinearitylin Eq. 2 is replaced by a sigmoidal 
nonlinearity with variable gain. In this case, the system becomes a (continuously-valued) 
discrete-time dynamical system, where gradients are well-defined and classical optimiza- 
tion algorithms can be applied. The idea is to use Continuation methods, i.e. to start 
with a low gain of the sigmoidal function and find the minimum for the objective function 
in that case. Then the gain is increased by a small amount, and the objective function 
is minimhd again, using the result of the last optimization as the starting point. This 
scheme is repeated until the gain is very high, and thus the sigmoidal functions becomes 
similar to the SGN-type nonlinearity [22]. 

A third method is based on the observation that, even if the continuously-valued 
template cafficients suggest otherwise, the underlying optimization problem has a finite 
state space and thus can be treated M a Combinatorial optimization problem. Simulcrted 
Anneding type algorithms have been applied to this problem [SI. 

Genetic algorithms have also been tried in the global learning problem, both with 
CT-CNNs and DT-CNNs [19], [23]. The results have been mixed, and it was at least 
pointed out that the coding of the d a e n t s  for these algorithms is an open problem, 
which is decisive for the s u c ~ s .  

All the above methods can be used to minimize the objective function, but extended 
experiments suggest that Simulated Annealing is the mort robust tool, and that it can 
find good solutions even in difficult casea. It haa to be mentioned, though, that Simu- 
lated Annealing algorithms are expensive in temu of co rnpu ta t id  requirements. Global 
Learning algorithms are no replacement for local learning algorithms, but an important 
complement to solve learning problems for DT-CNNs. It has to be mentioned that, M 

with mort lGarning algorithms for neural networks, the selection of the right training 
patterns is a crucial problem. 

In [24) some interesting examples arc given, which are quite complex and certainly 
beyond the capability of local learning algorithms. The above global learning algorithms 
are quite successful there and open up interesting, practically relevant areas of application 
for DT-CNNs. 
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0 Robust Design Issues 
As already mentioned before, the trajectory of a DT-CNN (Section 3) and the fixed points 
of a CT-CNN (Section 2) can be described by &ne inequalities. The trajectory, M well 
as the fixed points, can be designed @ intuition or an appropriate learning algorithm 
(sec Sections 3, 4, and 5). In any cuc, it is desirable to obtain templates which are 
robust against noise or deviations from their nominal values. It is possible to define 
several notions of robustness with respect to arbitr q-norms on lRN for a solution 
p E C := {p E lRN : p'vm 2 O ; d  E laN for 1 5 I 5 ~ ( S C C  Section 3) [7]. For example, 
the relative robustness in weight space rW(p) with respect to the Euclidean norm 11 0 11 is 
defined am the solution of 

max r subject to VAp E IRN : llApl\ = rllpll implies (p + Ap) E C . (18) 

It can be shown that rw(p) is the minimal distance of the vector p/llpll to the planes 
defined by the 'patterns" v[q. The most robust solution p' is therefore obtained by 
solving 

Obviously the solution is not unique, since an arbitrary positive scaling does not influ- 
ence the robustness. Therefore, one can add the additional constraint llpll = 1 to the 
optimization problem. It can be shown that, if the problem is solvable, the objective and 
the constraints can be interchanged, resulting in an equivalent quadratic programming 
problem with linear inequality constraints [13]: 

min I(pI( subject to ptv[a 2 llv[qll for I = 1,. . . , L . (20) 

Since the objective function is very simple and the constraints are affine, it possible to 
obtain an explicit expression for the dual function 4 provided by Lagrangian duality, 
which in this case is called the Wolfe dual. Denoting by +['I = v [ ~ / ~ ~ v [ ' ~ ~ ~ ,  the Wolfe dual 
can be written as 

Any gradient method can now be applied, and only minor modifications are necessary in 
order to satisfy the constraints, since they are very simple. The solution p' of the original 
problem Eq. 20 is obtained from a solution X* of by Eq. 21 p* = xi sTd'1. The socalled 
AdaTron algorithm [13] is one impledentation of these ideas. 

A solution, which has been robustified in accordance with the above described concept, 
will be most insensitive to both the tolerances of the weights of the CNN due to an 
imperfect hardware implementation and to disturbances in the input vectors (imagea) to 
be processed. 
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7 Hardware Oriented Learning 
The gradient-bared methods described in Section 4 rely on a system description of the 
following form 

x = %P) 9 (22) 

where ideally the right hand side of F in Eq. 22 is given by the right hand side of Eq. 1. 
Any real implementation will deviate fram that. But as long M an accurate description 
of the real circuit is available, it CUI be wdd in the learning procedures of Section 4, since 
they are using a quite general F. This way, important simplifications in hardware are 
possible [4], [25], which are taken into " m t  in the der& stage. 

8 Conclusions 
The systematic steps towards dcsign and learning with CNNs provide powerful techniques 
to find the template c d c i e n t s  (ayuptic weights) to perform a desired task. In addition, 
it also opens up the world of leami- of general artificial neural networks to the VLSI- 
oriented world of CNNs. 
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