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Abstract

Software engineering is a quest for appropriate modeling and abstraction. Writing programs
that simulate parts of the real world requires programmers to fill the conceptual gap between the
domain knowledge and computer languages. As a consequence of the conceptual distance be-
tween the business domain and the general purpose programming languages, clearly identifiable
concepts at the domain level are implemented delocalized in the code and interleaved with each
other and with a myriad of implementation details. This results in the loss of abstract information
in programs. Once the code is written, it needs to be understood and this requires programmers
to go the inverse way and to bridge the source code to the domain knowledge that it imple-
ments. Without doing this, the programs are meaningless for humans and are merely content
interpretable only by machines. The recovery of domain specific information from programs is
in the focus of the reverse engineering and program comprehension research efforts.

In this dissertation we develop a method for bridging the gap between domain knowledge
and programs, by defining explicit mappings between program entities and domain concepts
shared within domain ontologies. We call these mappings the intentional interpretation and they
define the intentional meaning of a program. We use the intentional meaning to characterize the
degree in which programs reflect the domain knowledge along four directions: the coverage of
the domain in the code, the level of homomorphism between parts of the modeled domain and
the code (distortion of knowledge), the distinguishability of domain concepts at the code level
(diffusion of knowledge), and the logical redundancy in the implementation of domain concepts
in the code. We investigate the measure in which the mismatches between the programs and the
domain knowledge affect different quality attributes of programs such as: the extensibility of
programs with new domain concepts, the conciseness and consistency in the implementation of
domain concepts in the code and the protection against logical errors. By investigating different
implementation strategies of concepts from the IEEE Suggested Upper Merged Ontology in
Java programs, we show that many times mismatches originate in the limited conceptualization
covered by the Java constructs and thereby they cannot be avoided at all.

In order to automate the conceptual analyses, we present a technique for automatic recov-
ery of the intentional meaning based on the similarities between the names of concepts and the
program identifiers. We discuss the limitations of the usage of identifiers for recovering the in-
tentional meaning, with focus on their meaningfulness and ambiguity. Further, we investigate
possible sources of domain ontologies that contain knowledge suitable for analyzing programs.
We develop a method for extracting fragments of domain ontologies by analyzing similarities
of domain specific APIs that implement the same domain. We present our experience with
extracting fragments of domain ontologies from well-known APIs from Java, C++, .NET, and
Smalltalk. Based on several case-studies, we show that a part of the intentional meaning can
be automatically recovered, that it is feasible to automate the intentional analyses, and that they
are useful for characterizing the conceptual coverage of APIs, the level of logical redundancy,
and the level of diffusion. We show examples of mismatches between several domain ontolo-
gies fragments and parts of the Java standard API, and present our experience with performing
intentional analyses of the Java systems JHotDraw and JEdit.
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Kurzfassung

Im Zentrum des Software Engineerings steht die Suche nach geeigneter Modellierung und Ab-
straktion. Immer wenn Programme erstellt werden, die Teile der realen Welt simulieren, muss
die konzeptuelle Diskrepanz zwischen der modellierten Domäne und den Programmiersprachen
gefüllt werden. Programme müssen von Entwicklern verstanden werden. Dieses Verstehen er-
fordert, dass Entwickler die Lücke zwischen dem Programmtext und dem Domänenwissen, das
dieser implementiert, schließen können. Ohne diesen Schritt sind Programme für Menschen
sinnleer und sind nur Konstruktionen, die nur von Maschinen interpretiert werden können. Die
Wiederherstellung von Domänenwissen aus Programmen ist im Zentrum des Forschungsbere-
ichs des Programverstehens und des Reverse Engineerings.

In dieser Dissertation wird ein neuartiger Ansatz erarbeitet, um die Verknüpfung zwischen
Programmen und Domänenwissen mit Hilfe von expliziten Abbildungen zwischen Program-
melementen und Domänenkonzepten aus Domänenontologien zu schaffen. Wir nennen diese
Abbildungen die “intentionale Interpretation” (intentional interpretation), welche die “inten-
sionale Bedeutung” (intentional meaning) eines Programms definieren. Wir benutzen diese
intensionale Bedeutung um die Art und Weise der Darstellung von Domänenwissen in Program-
men zu charakterisieren, mit Fokus auf die folgenden Aspekte: Das Maß der Abdeckung einer
Domäne in einem Programm, dem Grad in dem Teile der modellierten Domäne homomorph
zum Quellcode sind (Verzerrung des Wissens), der Erkennbarkeit von Domänenkonzepten in
Programmen (Diffusion des Wissens) und der logischen Redundanz in der Domänenkonzepte im
Quelltext implementiert sind. Es wird diskutiert, in wie weit diese Divergenzen zwischen dem
Domänenwissen und dem Code bestimmte Qualitätsattribute von Programmen beeinflussen, wie
zum Beispiel deren Erweiterbarkeit, Konsistenz und Prägnanz, oder Absicherung vor logischen
Fehlern. Zunächst wird eine Technik vorgestellt, um die intensionale Bedeutung basierend auf
der Ähnlichkeiten zwischen Konzeptnamen und Programmidentifikatoren zu extrahieren. Wir
diskutieren die Schwierigkeiten und Grenzen der Benutzung von Identifikatoren mit Fokus auf
deren Ambiguität und Bedeutung. Um Wissen für die Analysen zu bekommen, wird eine Meth-
ode entwickelt, um Fragmente von Domänenontologien automatisch durch die Analyse von
Ähnlichkeiten von mehreren domänenspezifischen APIs zu extrahieren.

Es wird die gewonnene Erfahrung mit der Extraktion von Ontologiefragmenten aus unter-
schiedliche APIs von Java, C#, C++ und Smalltalk dargestellt. Es werden Beispiele von Abwe-
ichungen der Java Standard APIs von deren modellierter Domäne gezeigt und logische Analysen
von JHotDraw und JEdit vorgestellt. Der gewonnen Erfahrung nach enthalten Programme inten-
sionale Bedeutung, von der ein großer Teil automatisch extrahiert werden kann und auf dieser
Basis können konzeptionelle Analysen automatisiert durchgeführt werden.
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1 Introduction

Software engineers use computer languages for describing parts of the real world. Ideally, in
order to develop programs for a specific domain, engineers should use languages that directly
support the description of that domain. Unfortunately, the currently widely used modeling, spec-
ification and programming languages are highly general, most of the times domain independent languages

and ontologically neutral (van Lamsweerde, 2000). This leads to a big conceptual distance
between the professional languages of domain experts and the languages used by software en-
gineers. The same software engineering languages are used for describing a wide variety of
situations. These languages make (almost) no difference whether they are used for building
software for a vehicle, for a bank or for managing a hospital. One of the key challenges of mod-
eling languages is the abstraction challenge namely, how can a language provide support for
creating and manipulating problem-level abstractions as first-class entities (France and Rumpe,
2007). Whenever this challenge is not fulfilled, the generality of languages leads to loss of con-
ceptualization: clearly defined and distinguishable concepts in the domain are not captured by conceptualization loss

language constructs and this subsequently leads to weakly defined models. The modeling and
programming languages are “not aware” of the specifics of a domain and thereby the domain
specific information is encoded informally as conventions or is simply lost.

Intuitively, the situation in today’s programming practice is similar to trying to explain to
a four years old child (with a restricted vocabulary) advanced notions related to a particular
software engineering project. Then give the same description, that is written in the vocabulary
known by our child, to an experienced software engineer. None of them would understand what
is the description about – the child due to the high amount of information and the engineer due
to the loss of intentionality because of the different conceptual level at which the description is
done.

Conceptual gap: There is a big conceptual distance between the domain specific concepts and
the today’s widely used programming languages. As a result, many of the domain concepts are
weakly defined and only partially (at best) captured in programs.

Instead of programming from basic principles (e. g. implementing algorithms) the program-
mers are most of the times users of already existing code. The programming practice is bi-
ased from writing small and complex algorithms (programming in the small) towards mastering
a large amount of knowledge about the existent libraries that many times have to be reused need for reuse

(programming in the large) (Meyer, 2000, p.80). Most system development involves exten-
sion of preexisting software systems and integration with legacy infrastructures (Finkelstein and
Kramer, 2000). In the everyday programming activities, programmers are faced with the chal-
lenge of re-using large pieces of code, most of the times available in form of software libraries
or collection of classes that model domain concepts. In Figure 1.1 we intuitively illustrate the
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representation of domain knowledge in APIs (or general program interfaces) and how is this
used by their clients to implement other programs.

Programs World

c

b d

API reflection of domain

API clients

a

Domain knowledge
Real World

Figure 1.1: Programmers use the reflection of the domain knowledge in APIs

By having to implement business requirements in a pre-existing infrastructure, or to use APIs
that do not fit perfectly the needs of the business domain, the programmers have to perform addi-
tional encoding steps. Whenever programmers implement software solutions by using abstrac-
tions that are inadequate to describe the problem, there occurs a high encoding bias – relations
between concepts are not reflected anymore at the code level and the code structure is biased
from the conceptual structure of the business domain.

Innapropriateness of implementation means: Many times the programmers have to use in-
napropriate means (e. g. languages, libraries) for a specific programming task. In these cases
the programmers need to perform an encoding of the desired domain concepts by using the lan-
guages or libraries at hand.

The general purpose programming languages allow their users to decompose the domain along
a main direction (problem also known as tyranny of dominant decomposition (Tarr et al., 1999)).dominant decomposition

Different views over the domain are today impossible to define and integrate in a single module
and this leads to delocalization, a central problem in the program comprehension (Letovsky and
Soloway, 1986; Rajlich and Wilde, 2002)

Delocalization: The implementation of concepts from the business domain is spread across
many software modules.

Pieces of code that implement core domain functionality are scattered among pieces of code
that refer to programming technologies. Many times pieces of code that are responsible for im-
plementing more than one purpose are woven together in a single program part – phenomenon
known as “interleaving” (Rugaber et al., 1995).

20



CHAPTER 1. INTRODUCTION

Interleaving: The information belonging to the business domain is combined at the code level
with information about technical domains.

Each of the problems presented above is related to the loss of intentionality manifested in an intentionality loss

ambiguous mapping between the concepts of the business domain and parts of programs. Due
to this loss it is very difficult (or even impossible) to interpret programs from the point of view
of the domain concepts that they implement and thereby to understand programs and to raise the
abstraction level at which program analyses are performed.

1.1 Thesis

In this dissertation we develop a method to express the meaning of a program in terms of the
domain concepts that it implements. We call this the intentional meaning of programs. intentional meaning

Thesis. To characterize the faithfulness of the implementation of domain knowledge in code,
we need to capture explicitly the intentional meaning of programs.

We capture the intentional meaning with the help of mappings between concepts shared within
domain ontologies and the program elements (e. g. classes, methods, attributes) that implement
them. Our main research hypotheses are: research hypotheses

1. Programs do exhibit intentional meaning and it is sensible to interpret program elements
from the point of view of domain concepts that they implement.

2. Regarding programs from the point of view of the concepts that they implement increases
the abstraction level at which software analyses are performed.

3. Light-weighted domain ontologies, made up of domain concepts and relations among
them, can be used as semantic domain to perform conceptual analyses of programs.

4. It is feasible to automatically recover the intentional meaning based on the similarities
between the program identifiers and the names of concepts.

1.2 Approach

Intentional meaning of programs. In Figure 1.2 we present an intuitive view over our
method for defining the meaning of programs: we use ontologies to represent the semantic
domain (the meaning) with respect to which a program is interpreted.

Use ontologies as semantic domains. Ontologies play a central role in different fields of
artificial intelligence (e. g. natural language processing, semantic web) as means to model and
share knowledge about the real world (McGuinness, 2003). At the core of representing (light-
weighted) ontologies are concepts arranged in a taxonomy and a set of relations among them.
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1.2. APPROACH

Intentional program abstraction. In order to map programs to ontologies, we need a represen-
tation of programs that is comparable with the chosen semantic domain. We abstract programs
as graphs: the nodes are named program elements and the edges are program relations among
these elements.

Program

Abstraction

Program Abstraction Domain Ontology

Formalization

Domain

Interpretation : i

iImplementation :

Figure 1.2: Intentional meaning intuition

Expressing intentional meaning. Through intentional meaning of programs we understand
the links (specified with the intentional interpretation (

−→
i ) and intentional implementation (

←−
i )

functions) between its program elements and the domain concepts that they implement (Fig-
ure 1.2). With other words we make explicit the meaning of a particular program element in the
program from the point of view of the domain knowledge that it implements. Starting from this,
we can characterize programs from the point of view of the implemented concepts. We do this
along three directions: the reference of domain concepts – how are the concepts be referenced
at the code level; the definition of domain concepts – how are the concepts defined through pro-
gram abstractions; and representation of domain concepts – how does the program encode the
concepts internally.

The intentional implementation and interpretation are extensions of the concept location (Ra-
jlich and Wilde, 2002) and concept assignment (Biggerstaff et al., 1994). The extension consists
in the facts that the concepts are parts of domain ontologies and that they are assigned to pro-
gram entities through well defined mappings. This has two implications: firstly, being part of a
domain ontology, the concepts are part of a system of symbols (given by the ontology itself), are
related to other concepts and thereby have meaning; secondly, individual program elements are
mapped to concepts and thereby the mappings have a finer granularity.

Characterize the implementation of domain knowledge in programs. We use the
intentional meaning in order to identify and characterize problems with the implementation of
the domain knowledge in programs. We do this by measuring the level of isomorphism between
a program and a domain ontology. We focus on the following issues:

1. conceptual coverage, meaning the measure in which programs implement domain con-
cepts and the measure in which they can be extended to implement new domain concepts;

2. distortion of domain knowledge in programs, meaning the measure in which the program
structure reflects the structure among domain concepts;

3. diffusion of domain knowledge in programs, meaning the measure in which different do-
main concepts are distinguishable at the program level; and
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4. logical redundancy, meaning the conciseness in the implementation of domain concepts
in programs.

Based on the explicit mappings between concepts, names and program elements, we char-
acterize the quality of identifiers in terms of their meaningfulness (i. e. the measure in which
they reflect the implemented concepts) and ambiguity (i. e. the measure in which the names are
consistently used).

Automatic recovery of the intentional meaning. The structuring of programs and the
information conveyed by the names of program elements play a central role in understanding
programs. We use these observations to automate the recovery of the intentional meaning.

Programs are knowledge bases. Due to the program structure, the identifiers names appear in
a program in relations (given by the structure) with other names. Thus, programs can be seen
also as systems of names. We combine both the naming and structural information contained in
programs and we regard programs as knowledge bases: the content of these knowledge bases
is given by the set of identifiers and the knowledge representation language by a sub-set of the
programming language. The program knowledge base contains a mix of knowledge varying
from business domain to implementation details. In order to pull these dimensions apart and to
be able to answer questions specific to a particular dimension (e. g. where is a domain concept
implemented) we use the intentional meaning.

Automatic recovery of intentional meaning. We represent both programs and ontologies as
graphs. The uniform representation enables us to (semi-)automatically recover the intentional
meaning by mapping programs to ontologies using graph matching techniques. We define the
similarity of nodes to be the similarity of names of program elements and respectively concepts;
besides this we define a set of mapping strategies between the paths in the ontology and the
program graphs.

Extracting domain knowledge from APIs. To make our approach usable in the practice we
need a high amount of domain knowledge expressed as domain ontologies and that are at the
level of abstraction appropriate for code analyses. In the practice, the ontologies available off-
the-shelf are not suitable for analyzing programs due to their restricted conceptual coverage or
to their different abstraction level. Furthermore, there are no ontologies that cover the domain
of programming technologies (e. g. GUI, XML, data structures), that represent the most wide-
spreaded form of knowledge contained in programs. In the practice there are many APIs that
address the same domain. We take advantage of this fact and analyze the commonalities between
different sets of APIs that address the same domain in order to extract domain knowledge in form
of fragments of domain ontologies.

Experiments and relevance in the practice. In order to show the pervasiveness and (potential
high) consequences of the mismatches between the domain knowledge and programs, we present
examples of problems in the implementation of the domain knowledge in the Java standard APIs
and two other Java systems (JHotDraw and JEdit). The case-studies that we perform have the
following aims: to investigate the degree in which programs exhibit intentional meaning, the
degree in which light-weighted ontologies can be used to represent the domain meaning, and the
degree in which the intentional program analyses are automatable.
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1.3 Contribution

This dissertation develops a program analysis technique, based on mapping program elements to
concepts from a domain ontology, in order to define the intentional meaning of programs. Based
on this, we define code analyses that capture the mismatches in the representation of domain
knowledge in programs, with focus on public interfaces (e. g. APIs). The current work presents
the following contributions to the current state of the art:

1. Definition of intentional meaning: We define the notion of intentional meaning of pro-
grams. Instead of describing what a program does in terms of the computation that it
performs, the intentional meaning describes the program in terms of domain concepts that
it implements. We show that there are many research works which, in a way or another,
point out the need for “intentional meaning” of programs. We present a method for ex-
pressing the intentional meaning of a program by using ontologies as semantic domains.
We describe the implementation of domain concepts along three directions: the manner
in which programs reference domain concepts, the manner in which they define domain
concepts at the code level, and the manner in which they represent internally domain con-
cepts.

2. Logical analyses of programs: Based on the intentional meaning of programs, we iden-
tify, describe, and categorize four categories of mismatches in the implementation of the
domain in programs: the conceptual coverage of the domain in the code, the level of homo-
morphism between parts of the modeled domain and the code (distortion of knowledge),
the distinguishability of domain concepts at the code level (diffusion of knowledge), and
the logical redundancy in the implementation of domain concepts in the code. We ex-
plain how these mismatches affect different quality attributes of programs such as their
extensibility with new domain concepts, consistency, and conciseness. By investigating
the implementation strategies of the concepts and relations from the Suggested Upper
Merged Ontology (SUMO) in Java programs, we show that many mismatches cannot be
avoided at all.

3. Automatic recovery of intentions: We define an algorithm and methodology for the
automatic location of concepts in the code based on the similarity between the program
identifiers and names of the concepts from the ontology. The automatic concepts loca-
tion algorithm is a basis for automating intentional program analyses. We define a formal
framework for describing the program identifiers, concept names and the relations be-
tween them. We use this framework to characterize the quality of names in terms of their
ambiguity and meaningfulness.

4. Extraction of domain knowledge from domain specific APIs: By analyzing the com-
monalities between different domain-specific APIs that address the same domain, we ex-
tract domain knowledge in form of fragments of domain ontologies. Our focus is on tech-
nical domains typically covered by APIs such as XML, graphical user interfaces (GUI),
or data structures. We show that (parts of) the standard APIs implement their domain in
a similar manner and that by analyzing different APIs we can extract a large amount of
knowledge about typical programming technologies.
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1.4 Overview of the Dissertation

Figure 1.3 illustrates at a glance our contribution (left) and the structure of this dissertation
(right).

Chapter 2:    The Quest for Abstraction in Software Engineering

Chapter 3:    Intentional Meaning of Programs

Chapter 4:    A Framework for Characterizing the Reflexion of Domain in Programs

Part II – Intentional meaning

Chapter 5:    Characterizing the Implementation of Concepts and Relations 

Part III – Reflexion of Domain in Programs

Chapter 7:    Identifiers Based Recovery of Intentions

Chapter 8:    Characterizing the Reflexion of Concepts Names in Program Identifiers

Chapter 9:    Sources of Domain Ontologies Adequate for Program Analysis

Part IV - Automation

Chapter 6:    From Suggested Upper Merged Ontology to Java

Chapter 10:  Evaluation of the Automation

Definition of intentional meaning

Logical analyses of programs

Automatic recovery of intentions

Extracting knowledge from APIs

Figure 1.3: Overview of the main parts of this dissertation

Typographical conventions. Due to the high similarity between some of the domain con-
cepts and Java programming elements, whenever there is a danger of confusion we use the fol-
lowing typographical conventions: through SMALL-CAPS we denote the domain concepts (e. g.
CLASS, FILE) and through type-writer fonts we denote the entities from Java programs (e. g.
class, java.io.File).

1.5 Origins of the Chapters

A significant part of this thesis was published in a series of scientific papers. These papers
however use slightly different terminologies and formalizations. Our formal framework and our
view over the relation between the domain concepts and programs, that represent the background
material of our work, developed and matured in time. Even if the need for a coherent text
demanded us to change the terminology and to broaden the scope, there is a clear correspondence
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between parts of this dissertation and some (parts) of the published papers. Below we present
this correspondence according to the chronology of the papers:

• (Ratiu and Deissenboeck, 2006b) – the intentional program abstraction and the general
idea of giving meaning of programs by mapping them to ontologies.

• (Ratiu and Deissenboeck, 2006a) – formal definition of identifiers quality, general idea of
logical duplications and their effects.

• (Deissenboeck and Ratiu, 2006) – the unified meta-model that contains the concepts, pro-
gram elements and the names.

• (Ratiu and Juerjens, 2007) – the formalization of reflection of domain in the APIs and the
presentation of a set of distortions.

• (Ratiu and Deissenboeck, 2007) – the formalization and description of diffusions of the
domain knowledge in programs; the methodology for manually building domain ontolo-
gies that are fit for performing the intentional analyses.

• (Ratiu et al., 2008b) – the algorithm and methodology for extraction of domain ontologies
from domain-specific APIs.

• (Ratiu and Juerjens, 2008) – the difference between the reference, definition and rep-
resentation of domain concepts in the APIs; a formal definition and characterization of
problems with the representation of domain concepts in code.

• (Ratiu et al., 2008a) – the presentation of the repository of technical knowledge, the issues
in building it and the advantages of having it for enhancing program analyses.

Acknowledgments: The publications of these papers would have been impossible without
the joint work and discussions with: Florian Deißenböck, Jan Jürjens, Martin Feilkas and Radu
Marinescu. Thank you!
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2 The Quest for Abstraction in Software
Engineering

X lied to Y =
X said something to Y
X knew that it was not true
X said it because X wanted Y to think that it was true
people think that it is bad if someone does something like this

The definition of “lie” in the “Natural Semantic Metalanguage”

Abstract: Programs simulate parts of the real-world: they act and respond to users actions as
such they would “know” about a certain situation from the application domain. Writing pro-
grams that simulate real-world phenomena require programmers to fill the (huge) abstraction
gap between the application domain and the machine. In this chapter we regard the software en-
gineering efforts as a quest for abstraction. The artefacts produced during forward engineering
are described in a few number of languages that are general enough to accommodate a wide vari-
ety of domains. These languages usually do not reflect in any way the semantic of the domain to
which the applications are targeted. Furthermore, they introduce a considerable amount of im-
plementation details that are interleaved with the information about the application domain. This
leads to a loss of abstract information and intentionality even from the early phases of software
engineering with a culmination on programming. A central theme of reverse engineering is the
recovery of abstract information from programs. The current reverse engineering approaches are
limited in terms of the abstraction level of the recovered information, in the precision with which
the domain information is described, and the accuracy with which the recovery is performed. We
advocate that in order to recover the lost abstraction and to characterize the faithfulness of the
implementation of domain knowledge in programs, we need to explicitly take into consideration
the relations between program elements and domain concepts that they implement.

Structure of this chapter. After the introduction (Section 2.1), in Section 2.2 we regard the
software engineering process from the perspective of closing the gap between the application
domain and the implementation technologies. In Section 2.3 we present examples of abstraction
and intentionality loss in different artefacts produced in the software engineering process with
emphasis on the source code. In Section 2.4 we present the reverse engineering approaches to
recover the domain knowledge from programs. In Section 2.5 we advocate that we need a more
rigorous manner to link the source code to the domain knowledge that it implements, in order
to be able to characterize the effects of the loss of abstract information in programs. Section 2.6
ends this chapter with a summary and a road-map for the next parts of this dissertation.
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2.1 Introduction

At the beginning of this chapter we presented an example from the Natural Semantic Meta-
language Project1, that aims to identify the smallest number of words (called semantic primes)semantic primes

that can be used to describe all other words of the English language. We notice the intricacies that
occur when we define a relatively simple word (i.e. “lie” in our case) in terms of these semantic
primes. Let us make the following mental experiment: try to write a professional (e. g. software
engineering, accounting) book using only the semantic primes and the words defined with these
semantic primes. We envision here two strategies: the first is to define incrementally all the
terms related to the professional domain (beginning with the most simple ones and continuing
with the more complex ones) and only writing the book once the first phase is completed and all
the needed words are defined; the second strategy is to define no professional terms but instead
to describe them in-place by using the semantic primes whenever necessary.

The situation with the current programming practice is not much different: we have to use low-
level programming constructs (similar to the semantic primes), in order to model a wide variety
of domain situations, and to define a vocabulary consisting of program abstractions. Similarly
with the two options from above, we can build incrementally the more complex vocabulary by
using layers of definitions of increasingly complex concepts or we can directly use the already
existent basic means (e. g. standard APIs) to directly define the complex concepts. These situ-
ations are exemplified below: before they are used, the concepts NAME, AGE, and HEIGHT are
firstly defined explicitly (left); or the concepts are encoded using the primitive types (right). In
the latter situation we lose conceptualization since clearly defined and distinguishable concepts
from the application domain are now encoded in the program and (partially) not distinguishable
anymore (i. e. the variables height and age are both integers).

class Name { ... }
class Age { ... }
class Height { ... }
class Person {

Name name;
Age age;
...

}

class Person {
String name;
int age;
int height;
...

}

The loss of conceptualization brings the inability to directly address and manipulate the ap-
plication domain concepts at the code level. In this chapter, we regard the software engineering
process as a quest for abstraction and modeling: the challenge of transforming back and forth
the domain knowledge to and from programs. Figure 2.1 presents the major phases of software
engineering and the abstractions that correspond to these phases (Harandi and Ning, 1990):software engineering

phases and abstractions
• the implementation view abstracts away the concrete syntax of a program and the low level

implementation details and represents programs as syntax graphs,

• the structural view reveals the program structure from different perspectives and abstracts
away the program to a set of components (modules) and dependencies between them (e. g.

1http://www.une.edu.au/bcss/linguistics/nsm/
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CHAPTER 2. THE QUEST FOR ABSTRACTION IN SOFTWARE ENGINEERING

architecture, control flow, data flow),

• the functional view relates program modules to high-level functionality (e. g. sorting, per-
forming persistence) and reveals the logical relations among them, and

• the domain-level view further abstracts the programs to a set of concepts specific to the
application domain.

While the implementation view is close to programming and therefore can be automatically
derived from the code, in the case of programs that implement non-technical domains (e. g.
banking), the domain-level view is very different from programming and therefore hardly recov-
erable. The research in reverse engineering and program comprehension is focused on crossing
these borders, namely on obtaining a higher-level description of programs. However, as we will
show at the end of this chapter, most of the current automatic analysis approaches are focused on
the implementation, structural and functional views while a disciplined and systematic treatment
of the domain-level view is currently missing.

Forward engineering involves loss of abstract information (Section 2.2)

Reverse engineering is recovery of abstract information (Section 2.4)

Requirements
specification

Formal
specification

Design
specification

Implementation
specification

Domain-level
abstraction

Function-level
abstraction

Structure-level
abstraction

Implementation-level
abstraction

Adapted from: “Knowledge-Based Program Analysis”, by Mehdi Harandi and Jim Ning 

Humans
world

Machine
world

Figure 2.1: “Forward engineering” vs. “Reverse engineering” as the quest for implementing and
recovering abstraction (adapted from (Harandi and Ning, 1990))

2.2 The Loss of Abstract Information during Forward
Engineering

Almost everything that we do in software engineering is to describe various aspects of the appli-
cation domain or of the computing domain (Jackson, 1995, p. 58). We use different descriptions descriptions in software

engineeringin order to communicate with the stakeholders and with the computer itself. These descriptions
are at different levels of abstraction and are meant to fill in the gap between the real-world phe-
nomena (observations) and the computers world. Each of these descriptions is expressed in a
language. Unfortunately, only a very small number of computer languages (and language con-
structs) that are currently employed in software engineering, must accommodate all real-world
situations that need to be described. In contrast to these languages that make (almost) no differ-
ence between various problem domains, experts from various fields use professional languages
to work in their domains – e. g. the set of concepts used by a biologist is very different in com-
parison to the concepts used by a mechanical engineer or an economist. Unfortunately, this
difference is mostly ignored (not explicitly considered) in the process of producing software and
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this inherently leads to loss of abstract information manifested as conceptualization loss – once
implemented in a program, different domain concepts are not distinguishable anymore.conceptualization loss

In the following parts of this section we describe the challenge of filling in the conceptual gap
between the business and the computer domains through building cascades of models. These
models have to be expressed in a small number of computer languages that are most of the times
too general and inappropriate for capturing the domain information. This subsequently leads
to difficulties (or inabilities) in referencing, distinguishing and manipulating the domain level
concepts once they are modeled.

2.2.1 Programs Simulate the Real World

The meaning of programs, as illustrated in Figure 2.2, can be expressed in terms of their inter-
actions with the world outside of computers (black-box view). For making our argument more
clear, we regard programs as communication partners that interact with human users (e. g. the
domain experts). This model of regarding programs as communication partners applies (at least
partially) also in the case of embedded systems; in this case the communication partners are
sensors, actuators, or other programs. We can imagine the interaction to take place through a set
of questions and answers: the domain expert asks questions by providing all the necessary input
and the program answers these questions. In the case of embedded systems, the questions are for
example activated through interrupts and the information is transferred as parts of the memory
(e. g. registers). The communication is mediated by an interface that the program provides for
its clients. The questions and answers contain information about the application domain. The
interface provides representations of domain concepts that domain experts can easily understand.

Ideally, the dialogue between a user and the program is done at the knowledge level (Newell,
1982) – the user thinks, acts and expects results from the program in terms of its domain ofknowledge level

expertise, and according to the principle of rationality: the actions are performed in order to
achieve well defined goals. In order to answer the questions, the program needs to ‘know’ about
the concepts and the current state of affairs of the modeled domain.

Behind the user interface, programs use layers of representation of the domain knowledge: the
texts and graphics of the user interface represent directly domain concepts that are understand-
able by the domain expert; behind the graphical user interface different domain abstractionsrepresentation layers

are defined in a program. These domain abstractions are in turn represented in terms of a pro-
gramming paradigm (e. g. the object-model in the case of object-oriented languages). In order to
implement their persistency, the objects need to be saved in a data-base model (e. g. very often a
relational model).

Example 2.1: Examples of the interaction between domain-experts and programs

Let us consider that an economist works with a payroll system. The interaction between the
program and the economist is done through a graphical user interface. For searching the infor-
mation about an employee, the program asks the user for the name of the person (e. g. provides
a dialog-box where the economist can enter the name of the employee). After entering the em-
ployee’s name (and thereby answering the question of the program) the user presses the “start
search” button (and thereby asks the program about the employee’s information). The program
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Figure 2.2: Programs interact with the real world

uses the name of the employee to perform the search and displays the information about the
employee (answers the question). We can easily imagine that a person without knowledge about
economy (e. g. an engineer) is not able to use the payroll system because she cannot provide the
proper input or properly interpret the system’s output.

2

Fact: Many programs simulate parts of the real world. Their inputs can be given and
their results can be interpreted by domain experts solely in terms of their domain

knowledge.

2.2.2 Languages Used in the Software Engineering

The artefacts that are produced during the development are described in different languages
ranging from natural languages (e. g. requirements) to specification languages (e. g. Z (Spivey,
1992), Focus (Broy and Stolen, 2001)), modeling languages (e. g. UML) and programming lan-
guages (e. g. Java, C#). Bjørner characterizes the professional languages to be: professional languages

“[...] the languages of domain-specific fields, such as the those used by those people
for whom we make software.” (Bjørner, 2006, p.218)

The professional languages are on the one hand application-domain-specific language (e. g. rail-
ways, banking, finance) and on the other hand software engineering languages (e. g. design,
specification). The professional languages use precisely defined terminologies that denote spe-
cific phenomena from the domain:

“The professional languages are characterized by a relatively precise use of terms.
Certain verbs, nouns, adjectives and adverbs stand in relatively precise relations
to the phenomena they designate they are, so to speak, part of the jargon of the
professional trade.” (Bjørner, 2006)

Each language provides its own set of constructs that can be used to describe a particular
state of affairs in terms of a set of domain concepts – called domain conceptualization. The
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link between the real-world things and the language can be visualized as in Ullman’s triangle
(Ullmann, 1972) (Figure 2.3): an entity from reality is abstracted to a concept and this concept
is represented by a language construct. The language constructs can be used to (indirectly) referUllman’s triangle

to things from the reality. Furthermore, the interaction between entities is reflected in the lan-
guage as relations and compositions between their corresponding constructs. These constructs
and the compositions between them can be further used to describe situations from a domain.
The constructs of modeling languages can then be interpreted according to the concepts that
they represent (the “represented by” relation describes the real-world semantics of a languagereal-world semantics

(Guizzardi, 2005, p.27)).

A language provides a set of concepts directly. These concepts can be used to
represent more concepts indirectly.

Symbol
(language)

ab
str

ac
ted

 to

referred by

represented by

Concept
(conceptualization)

Thing
(reality)

Figure 2.3: Ullman’s triangle represents the relation between things in the reality and the con-
structs of a language (Ullmann, 1972)

Figure 2.4 illustrates the relation between abstractions of the real-world (model), a domain
conceptualization, a modeling language and the specifications written with this language (Guiz-
zardi, 2005, p.27). A conceptualization determines all possible valid state of affairs that are
admissible in a domain and a language determines all possible specifications that can be con-
structed by using that language. When there is no clear relation between the domain conceptu-
alization and the modeling language then the language is not appropriate to the domain. In these
cases the relations between the real world situations and the specifications that describe them are
also not clear: the same real world situation can be specified in completely different manners or
vice-versa, the same specification can be interpreted to represent different situations.

One of the key challenges of the modeling languages is the abstraction challenge, namelyabstraction challenge

how can one provide support for creating and manipulating problem-level abstractions as first-
class modeling elements (France and Rumpe, 2007). The abstraction challenge is approached
from two directions:

1. by using extensible general-purpose modeling languages that provide facilities for exten-
sion with domain-specific abstractions (e. g. the profiles mechanism make UML extensi-
ble);

2. by using domain specific languages that allow the direct representation of domain con-
cepts (e. g. Bibtex allows the direct representation of bibliography information).
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Figure 2.4: Relation between conceptualization, model, modeling language and specification
(Guizzardi, 2005)

Language expressiveness. Besides the computational expressive power (e. g. Turing com-
pleteness) and abstraction power (Felleisen, 1991; Mitchell, 1993) of languages, the domain
appropriateness represents another facet of their expressiveness2. (Krogstie, 2000) notes that: language expressiveness

“[...] if one is looking for the suitability of a modeling language across a number of
different, potentially unknown domains, one usually uses the term expressiveness.”

The expressiveness of a language affects the understandability of the models built within this
language (Selic, 2003). Lamsweerde notes in the context of the expressive power of specification
languages two shortcomings (van Lamsweerde, 2000):

1. each specification paradigm “has some built-in semantic bias in order to be useful” – e. g. semantic bias

state-based specifications focus on sequential behavior and provide rich means to describe
the structure of objects that are manipulated, and transition-based specifications focus on
concurrent behavior while providing simple structures for defining the objects that are
manipulated;

2. beside the encoding bias, today’s formal specifications suffer from the fact that they are
based on low-level (programming-oriented) ontologies – namely that “the concepts in
terms of which problems have to be structured and formalized are programming concepts”
– and that for the future the formal specifications need to support richer, problem-oriented
ontologies.

The different focuses of languages lead to impedance mismatch. The impedance mismatch impedance mismatch

denotes the ambiguities and the difficulties of translation between different languages that are
used to represent the same domain phenomena (state of affairs) that are at a possibly different
abstraction levels (Evermann and Wand, 2005). For example, there are difficulties in imple-
menting data management tasks of a financial application with the help of relational database
management systems (Rozen and Shasha, 1989):

2Expressive means: “ effectively conveying meaning” and meaning is defined as: “ the thing, person, etc. for which
a word or expression stands“ (Merriam-Websters English Dictionary)
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“Developers of a Wall Street financial application were able to exploit a relational
DBMS to advantage for some data management tasks (the good). For others, the
relational system was not helpful (the bad), or could be pressed into service only by
means of major or minor contortions (the ugly).” (Rozen and Shasha, 1989) (our
emphasis)

Even if the above description of implementation difficulties is very expressive, it does not pro-
vide any information about the details, consequences or quantification of “contortions”. In
Chapters 4 and 5 we will formally describe different kinds of “contortions” and discuss their
consequences on different programming and maintenance activities.

Example 2.2: Example of impedance mismatch when translating an E-R model into Java

Rectangle SquareisAE-
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class Shape { ... }

class Rectangle extends Shape { 
    int width, height; 
    void setWidth(int width) {
      this.width = width;
   }
    void setHeight(int height) {
      this.height = height;
   } ...
}

class Square extends Rectangle { 
    void setWidth(int width) {
      super.setWidth(width); 
      super.setHeight(height);
   }
    void setHeight(int height) {
      super.setHeight(height);
      super.setWidth(width); 
   } ...
   ... 
}

void boo(Rectangle r) {
   r.setWidth(3);
   r.setHeight(5);
   assertTrue(3, r.width); \\might fail
   assertTrue(5, r.height);
}

Shape isA

class Shape { ... }

class Square extends Shape { 
   int width;
    void setWidth(int width) {
      this.width = width;
   } ... 
}

class Rectangle extends Square { 
   int height;
    void setHeight(int height) {
      this.height = height;
   } ...
}

int computeArea(Square s) {
   return s.width ^2;
}

class Shape { ... }

class Rectangle extends Shape { 
   int width, height;
    void setWidth(int width) {
      this.width = width;
   }
    void setHeight(int height) {
      this.height = height;
   } ...
}

class Square extends Shape { 
   int width;
    void setWidth(int width) {
      this.width = width;
   } ... 
}

int computeArea(Square s) {
   return s.width ^2;
}
int computeArea(Rectangle r) {
   return r.width * r.height;
}

a) b) c)

Figure 2.5: Impedance mismatch when translating portions of an E-R diagram into Java

Let’s suppose that we have to implement a hierarchy of shapes that contains also ’rectangles’
and ’squares’. In the upper part of the Figure 2.5 we present our hierarchy of shapes modeled
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at a conceptual level with the help of Entity-Relationship diagrams. Even if this structure seems
simple, to represent the same hierarchy in Java, as shown in the lower part of our figure, is rather
tricky:

• In the case a) we have a violation of Liskov’s substitution principle (Liskov, 1987) (also
detailed in (Martin, 1996)). The assertion written in function boo will fail if the parameter
is an object of type Square. The assertion illustrates the fact that a programmer that wrote
the function boo assumed that by changing the width of rectangles their height will remain
the same. The problem is that, from the point of view of their behavior, the objects of type
Square do not behave like the objects of type Rectangle – the methods setHeight and
setWidth from Square do not conform to the contracts of the corresponding methods
from Rectangle.

• In the case b) we cannot substitute squares for rectangles (as we would expect) but vice
versa. When substituting objects of type Rectangle where objects of type Square are
expected, the result can be wrong as shown in the computeArea function that obviously
returns a wrong value when called for a Rectangle object.

• The case c) is the best object-oriented design with respect to the implementation of the
’simple’ conceptual hierarchy defined with the E-R diagram. This design however, does
not reflect the relations between squares and rectangles.

This represents an example of ’contortion’ of a model in another language – the relation between
’square’ and ’rectangle’ cannot be clearly translated between E-R diagrams and Java.

2

Many of the advances in programming language design are concerned with raising the level
of discourse at which software developers work. The ability of programming languages to
“program the domain” was envisioned to be a “strategic direction” in programming languages the quest for domain

appropriate languagesand in software engineering (Gunter et al., 1996). Domain experts should be allowed to easily
and effectively express programs in a language specific to their domain and thereby to elimi-
nate the risks of inappropriate decisions made by non-experts in the domain. Furthermore, a
language should enable its users to build only models that make sense from the point of view
of the modeled domain. Ideally, the constructs of a language should be at the abstraction level
of application domain and should correspond to the ontological categories (concepts) of the do-
main (Hruby, 2005). Depending on how abstract the language constructs are, the language can
be used to express a wider or narrower domain as presented in Figure 2.6.

There are several works in the literature of information systems (e. g. (Krogstie, 2000; Wand
and Weber, 1993; Guizzardi, 2005)) that analyze the domain appropriateness of languages used
for conceptual modeling. In order to describe the (non-)correspondence between language con-
structs and domain concepts, Wand performs ontological analysis of the language by defining ontological analysis

evaluates the domain
appropriateness of
languages

two mappings: one from ontological entities to language constructs (representation mapping),
and the other from language constructs to ontological entities (interpretation mapping). The
faithfulness of the language in reflecting domain is described through the following terms: con-
struct deficit of a language, when the language is not powerful enough to express a domain
concept, construct excess, when the language is able to express things that are not in the do-
main, construct overload when a language construct is used to express different things from
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Source: “Ontology-Based Domain-Driven Design”, by Pavel Hruby 

Figure 2.6: Levels of abstraction (here “abstraction” means “generality”) and covered domain
(Hruby, 2005)

the domain, and construct redundancy when two language constructs express the same domain
concept (Figure 6.6).

Source: “Toward a formal research framework for ontological analyses”, by Andreas Gehlert and Werner Esswein

Figure 2.7: The (non-)correspondence between language constructs and domain con-
cepts (Gehlert and Esswein, 2007)
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The loss of intentionality resulting from encoding a domain concept in an inappropriate lan-
guage is well known in the programming languages community: effects of domain

innapropriateness of
languages“A language supports a programming style if it provides facilities that make it con-

venient (reasonably easy, safe, and efficient) to use that style. A language does not
support a technique if it takes exceptional effort or skill to write such programs; in
that case, the language merely enables the programmers to use the technique. For
example, you can write structured programs in Fortran and type-secure programs in
C, and you can use data abstraction in Modula-2, but it is unnecessarily hard to do
so because those languages do not support those techniques.” (Stroustrup, 1988)

Stroustrup does not describe exactly what “unnecessarily hard” or languages that “support
techniques” mean. He uses in this case three ’domain – language’ pairs: structured programming
– Fortran, strong typing – C, and data abstraction – Modula-2. In this case the ’domains’ are
close to programming, but in the more general cases, when the domains resemble the real-world,
the presented situation is essentially similar.

The same phenomenon, namely that programmers use a wide variety of ways for encoding
abstractions in programs, is well known also in the context of reverse engineering:

“It is a trivial realization that the programming language has to provide means to
express what we want to detect. However, these means can be very rudimentary.
Talented programmers are thoroughly able to simulate higher concepts with only
little support by the language.” (Koschke, 1999, p. 102)

Furthermore, the following situations can occur when implementing (domain) concepts:

“[...] the concept is not properly defined because the programming language does
not provide the means to model this concept or a programmer has ignored these
means [...] if the language does not provide adequate means of expression, pro-
grammers find ways to simulate these means in part” (Koschke, 1999, p. 104)

Summary. The current state of the practice requires the usage of a particular (a priori given)
language for modeling or implementing a certain aspect of a domain. Many times the given
languages are not appropriate to the domain that they describe. Domain appropriateness of a
language is affected by the generality and the semantic bias. On the one hand, a language that
is too general can express different models in a manner that does not allow their distinction
in the language – we call these situations diffusions (Section 5.4). However, this still allows
the definition of a homomorphism between the domain models and their implementation in the
language. On the other hand, a language that presents a semantic bias leads to different kinds of
encodings of the situations that are non-conform to the bias – we call these situations distortions
(Section 5.3). Both of these facts cause a big encoding step in which the domain concepts need
to be twisted and compressed in order to be expressed in the language constructs.

Fact: The bigger the difference between the concepts directly supported by a
language and the concepts that are implemented using that language, the more

difficult it is to implement and recover the latter.
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2.2.3 Interleaving and Delocalization

Beside the conceptual differences between different languages, the loss of conceptualization
is also caused by interleaving of multiple dimensions of knowledge in the code and by the
delocalized implementation of domain concepts in the code.

2.2.3.1 Interleaving

One way to investigate the knowledge contained in a program is to study the program identifiers.
Empirical studies on the meaning of identifiers in large systems, presented in (Anquetil, 2001),
classify the identifiers from Mosaic3 system in three domains: general domain (e. g. mathemat-
ics, general activities such as read or write), computer science domain (e. g. data structures) and
the application domain (e. g. web browsing). Circa 20% of the identifiers were classified to refer
to concepts that belong to the application domain, 10% to the computer domain and 60% to the
general domain. However, the identifiers belonging to the computer science and the application
domains are used more frequently than the identifiers belonging to the general domain.

During an empirical analysis of the knowledge needed for understanding a program, Clayton
(Clayton et al., 1998b) remarks that the various dimensions of knowledge are woven in pro-
grams: the same part of code can refer both to concepts from the modeled domain and to soft-
ware engineering and programming concepts. A single fragment of the source code can contain
knowledge about the modeled domain, design, programming technologies and the programming
language. This situation is known in the programming comprehension literature as the inter-
leaving problem (Rugaber et al., 1995) which occurs whenever a contiguous textual area ofinterleaving problem

the code contains different fragments that accomplish unrelated purposes. One of the causes of
interleaving is the inability to decompose programs in multiple directions – also known as the
“the tyranny of the dominant decomposition” (Tarr et al., 1999). Other causes are the integration
between the developed program and other libraries (e. g. in order to be integrable in a particular
framework, classes that implement domain concepts need to implement specific interfaces), or
the implementation details introduced by the basic programming language functionality (e. g.
many classes implementing domain concepts need to implement methods such as hashCode).

Example 2.3: The source code weaves information from the application domain and the
programming (sub-)domains

Figure 2.8 illustrates the multitude of information that can be found in a fragment of the source
code. In the same code fragment can occur both information about the application domain
(e. g. Person) as well as information produced in the development steps such as design (e. g.
Visitor), information related to programming technologies (e. g. XML) or information related
to the programming language (e. g. clone). A class can implement in the same time a do-
main abstraction (e. g. class Person), a design pattern (e. g. play the role of a subject in the
observer design pattern), can contain methods for conversion to and from XML (e. g. for seri-
alization) and methods specific to the language infrastructure (e. g. inherit the clone method
from java.lang.Object). In order to understand a piece of code (e. g. for implementing a

3Mosaic is the ancestor of the Netscape web browser
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non-trivial change request) the programmers need to have knowledge about each of these do-
mains and about how are their concepts implemented in the code.

Business Domain
(e.g. Banking)

public class Person implements Element  { ...
  public void accept(Visitor v) { ... }
  public Person clone() { ... }
}
public class XMLSerializer implements Visitor { ...
   public visitPerson(Person p) { ...  }
}

Java Knowledge

Design Domain
(e.g. Patterns)

Programming Technologies
(e.g. XML)

Source code

Figure 2.8: Multiple (sub-)domains are weaved (interleaved) in the source code

2

Fact: Knowledge about multiple domains is weaved in the same program fragment.

2.2.3.2 Delocalization

Brachman and his colleagues studied the typical activities done by maintainers during the main-
tenance of large systems at AT&T (Brachman et al., 1990). The study revealed the fact that up to
60% of the total effort spent by programmers is due to various searches in the code. The cause is
the delocalized information in the system (firstly described in (Letovsky and Soloway, 1986)). delocalization

Pieces of information that logically belong together are implemented in different manners and
spread. Consequently, the information for understanding a piece of code is spread across many
files. One cause for the delocalization is the fact that the programs can be modularized in only
one way at a time (aka. “tyranny of dominant decomposition” (Tarr et al., 1999)) and therefore
clearly expressible concepts in the problem domain are spread across many modules or mixed to-
gether at the code level. Other causes of delocalization can be bad design, unexpected evolution
or the need of integrating the system under development with existent technologies.

Example 2.4: Procedural and object-oriented decompositions

Below we present two program fragments written in Java that represent different decompo-
sitions in the implementation of figures and their functionality. The procedural decomposition
(left) promotes the modularization along functionality and the object-oriented decomposition
(right) promotes the modularization along data.
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class Rectangle2D implements Shape { ... }
class Line2D implements Shape { ... }
class Graphics2D {

void draw(Shape s) { ... }
void fill(Shape s) { ... }
void clip(Shape s) { ... }

}

interface Shape {
void draw(Shape s);
void fill(Shape s);
void clip(Shape s);

}

class Rectangle2D implements Shape {
void draw(Shape s) { ... }
void fill(Shape s) { ... }
void clip(Shape s) { ... }

}

class Line2D implements Shape {
void draw(Shape s) { ... }
void fill(Shape s) { ... }
void clip(Shape s) { ... }

}

The different decomposition dimensions are illustrated below: the functionality dimension
(on the left) and the data dimension (on the right).

draw
Shape
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Rectangle2D

fill
Shape
Line2D
Rectangle2D

clip
Shape
Line2D
Rectangle2D

Shape
draw
clip
fill

Line2D
draw
clip
fill

Rectangle2D
draw
clip
fill

In the object-oriented style the data is gathered together but the behavior is spread in more
classes; in the procedural style the situation is vice-versa. These different modularization impact
the maintenance and evolution. If during the evolution more figures are expected, then the
object-oriented modularization is better since we can use the inheritance and polymorphism
to add and use new classes for new shapes. In the case when during the program evolution
more functionality will be added and the set of figures remains unchanged then the procedural
organization is better since this will involve only localized changes.

2

Fact: The domain knowledge is dispersed in programs.

Conclusions. Due to todays technical constraints, clearly defined concepts at the domain
level need to be expressed in pre-defined languages with a small set of constructs. The generality
of implementation languages and their semantic bias involve both loss of abstract information
about the modeled domain and addition of information in form of implementation details. The
domain knowledge is interleaved in programs with knowledge about the implementation and is
implemented delocalized in more modules.
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2.3 Examples of Intentionality Loss

In the following, we present several examples from the literature that point out the problem of
recovering the domain concepts (real-world meaning) from different artefacts produced in the
software engineering process. Even if these problems have been acknowledged since a long
time, currently there is no notion of (program) meaning that considers explicitly the domain
concepts that these artefacts (intend to) implement.

Example 2.5: Comprehensibility of specifications

According to Liskov and Zilles (Liskov and Zilles, 1975), a specification is comprehensible
when:

“A person trained in the notation being used should be able to read a specification
and then, with a minimum of difficulty, reconstruct the concept which the specifi-
cation is intended to describe.” (Liskov and Zilles, 1975) (our emphasis)

We remark in this definition that during the comprehension a person realizes a mapping be-
tween the specification and the concept that this describes. The concept that is only “intended
to be described” means that the definition of the concept is not necessarily fully captured in
the specification and a part of the meaning remains outside of the specification. The recovery
of the intended concept is similar to a recognition process – based on the possibly incomplete
information, we need to identify the concept.

2

Example 2.6: Formal specifications need to be interpreted in terms of their domain

van Lamsweerde (van Lamsweerde, 2000) gives a set of principles to be followed when writing
formal specifications. Below we present an excerpt of these principles:

“Formal specifications are meaningless without a precise, informal definition of
how to interpret them in the domain considered. A formalization involves terms
and predicates which may have many different meanings. The specification thus
makes sense only if the meaning of each term/predicate is stated precisely, by map-
ping function/predicate names to functions/relations on domain objects. This map-
ping must be precise but necessarily informal (to avoid infinite regression).” (van
Lamsweerde, 2000) (our emphasis)

We remark that the author considers that the meaning of formal specifications should be given
by an informal, though precise, definition of how to interpret the terms and predicates in the
domain. Here the term “meaning” is linked to a domain object (similar to a conceptual model)
rather than a mathematical theory. Furthermore, “meaning” is treated distinctly from “seman-
tics” – i. e. even if each specification has a well-defined semantics since it is written in a formally
defined language, specifications can be “meaningless” with respect to the domain. The author
refers to a meaning that is not covered by the mathematical objects. A possible approach for
tackling the problem of having “meaningless specifications” is to rise the abstraction level at
which the specifications are done towards specifications that are closer to the domain:
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“Specification techniques should move from functional design to requirements en-
gineering; higher-level, problem-oriented ontologies must therefore be supported
instead of program-oriented ones. [...] The terms in which problems have to be
structured and formalized are programming concepts - most often, data and oper-
ations. It is time to raise the level of abstraction and conceptual richness found in
informal requirements documents - such as, e. g. goals and their refinements, agents
and their responsibilities alternatives, and so forth” (van Lamsweerde, 2000) (our
emphasis)

2

Example 2.7: The “magic numbers” do not reveal their intentions

(Weissman, 1974) represents a pioneering work in empirical evaluation of the psychological
complexity of programs. According to Weissman, the “magic numbers” are among the important
factors that affect the understanding of programs:

“”Magic numbers” are numbers whose meaning are not implied by their values. For
example, DO I=1 TO 437 is perhaps less meaningful than DO I=1 TO TABLE SIZE
where TABLE SIZE has previously equated to be 437.” (Weissman, 1974) (our
emphasis)

In this example, the word “meaning” denotes the intentions of the constants. In other words,
the meaning in this context is given by the purpose of the constants, by the domain phenomena
that they refer to. The mathematical meaning of 437 is clear but this number can be used to
represent different real world concepts: the size of a table, the number of lines of a file, etc.

2

Example 2.8: The code structure does not entirely reflect the intent of the design

In the case of design patterns recovery, many of the state-of-the-art approaches are based exclu-
sively on identifying the design patterns in terms of program structures. However, the design
patterns have a design intent that is only incompletely (also weakly) captured by their structure.
Well-known patterns with similar structure but different intent are: “Composite” and “Decora-
tor” or “State” and “Strategy”. Many of the relations between the components of patterns are
determined mostly by the intent rather than by explicit language mechanisms:

“There’s no distinction in the programming language between aggregation and ac-
quaintance. [...] Ultimately, acquaintance and aggregation are determined more by
intent than by explicit language mechanisms. [...] Some patterns result in similar
designs even though the patterns have different intents. For example, the struc-
ture diagrams of Composite and Decorator are similar.” (Gamma et al., 1995) (our
emphasis)

2
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Example 2.9: Expressing the computational intent in “humans-oriented terms” and in
“programming terms”

In their landmark work on concepts centered program comprehension, Biggerstaff and his col-
leagues (Biggerstaff et al., 1994) describe the information available in programs:

“[...] it is qualitatively different for me to claim that the program “reserves an air-
line seat” than [...] to assert that ‘if(seat = request(flight)) && available(seat) then
reserve(seat, customer)’.

Apart from the difference in the level of detail and formality, the first case expresses
computational intent in human-oriented terms. [...] The first expression of com-
putational intent is designed for succinct, intentionally ambiguous (i.e. informal)
human-level communication, whereas the second is defined for automated treat-
ment (e. g. program verification or compilation). Both forms of the information
must be present for a human to manipulate programs [...] in any but most trivial
way. Moreover, one must understand the association between the formal and infor-
mal expressions of computational intent.

[...] human-oriented concepts such as [...] reserve airplane seat are decoupled from
the formal patterns of their algorithms because they involve an arbitrary semantic
mapping from operations expressed on numbers and data structures to computa-
tional intent expressed in terms of domain concepts (e. g. , [...] a seat). There is no
algorithm [...] that allows us to recognize these concepts with complete confidence.”
(Biggerstaff et al., 1994) (our emphasis)

According to Biggerstaff, the computational intent can be expressed in human-oriented or
programming oriented terms. The programming oriented concepts are signaled by the semantics
of the language in which the program is written and can be inferred by analyzing the program.
In contrast to this, the human oriented concepts appear in informal sources of information in a
program (the most important one is the names of identifiers) and their identification requires a
priori knowledge about the domain to which they belong. Furthermore, in order to perform any
non-trivial operation on programs the programmers have to understand both these intents and
the associations between them. The subject of this dissertation is to assign a humans-oriented
meaning to programs.

Remark. Recovering the human-oriented intent is similar to the recognition rather than verifi-
cation: the programmers suppose that the program part “reserves an airline seat” without any
proof that this actually happens! If we want to be more precise we should re-write the above
sentence to “tries to reserve an airline seat”.

2

Example 2.10: Reflecting dependencies from the domain in the code

In an introductory book on programs design, Felleisen (Felleisen et al., 2001)[p. 36] presents two
examples of code for calculating the profit obtained by selling tickets for an event. Regarding
these fragments, Felleisen notes:
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;; How to design a program
(define (profit ticket-price)
   (- (revenue ticket-price)
      (cost ticket-price)))

(define (revenue ticket-price)
   (* (attendees ticket-price) ticket-price))

(define (cost ticket-price)
   (+ 180
        (* .04 (attendees ticket-price))))

(define (attendees ticket-price)
   (+ 120
       (* (/ 15  .10) (- 5.00  ticket-price))))

;; How not to design a program
(define (profit price)
   (-   (*  (+  120
                    (*  (/  15   .10)
                         (-  5.00  price)))
              price)
        (+ 180
             (*  .04
                  (+ 120
                       (*  (/   15   .10)
                            (-   5.00   price)))))))

Source: “How to design programs”, by Matthias Felleisen, page. 36 

Figure 2.9: How (not) to design programs (Felleisen et al., 2001)[p. 36]

“[...] it is easy to check that the two profit programs [...] produce the same profit
when given the same ticket price. Still, it is also obvious that while the arrange-
ment on the left conveys the intention behind the program directly, the program
on the right is nearly impossible to understand. Worse, if we are asked to modify
some aspect of the program, say, the relationship between the number of attendees
and the price of the ticket, we can do this for the left column in a small amount of
time, but we need to spend a much longer time for the right one.” (Felleisen et al.,
2001)[p. 36] (our emphasis)

The right program fragment from Figure 2.9 “conveys the intentions directly”, since the struc-
ture of the program and the program abstractions mirror the application domain concepts. The
measure in which the program mirrors the domain structure affects the extensibility of the pro-
gram. In Section 5.2 we will discuss the conceptual coverage and extensibility of programs.

2

Intentionality is lost in all phases of the software engineering process and is
manifested in the difficulty to discover the domain concepts once they are expressed

in a computer language.

2.4 Reverse Engineering is in Search of the Lost Abstraction

In the previous section we pointed out several examples of intentionality loss when domain
concepts are expressed in computer languages. In this chapter we present several approaches for
recovering the lost (domain) abstractions. One of the most frequently cited definitions of reversereverse engineering

engineering is:

“Reverse engineering is the process of analyzing a subject system to
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1. identify the system’s components and their interrelationships and
2. create representations of the system in another form or at a higher level of

abstraction.” (Chikofsky and Cross, 1990)

From this definition, we remark that the recovery of abstract information from the code is
one of the major goals of reverse engineering. What does “abstract information” mean and how
“abstract” can it be?

2.4.1 Knowledge Needs During Maintenance

Antequil presents results of an empirical study about the knowledge needed by maintainers (An-
quetil et al., 2003). The study was performed by observing programmers during the maintenance
tasks and recording the atoms of knowledge they needed (think-aloud-protocol). The study iden-
tified 12 dimensions of knowledge divided in 3 categories: knowledge dimensions

• computer science knowledge: programming (e. g. paradigms), programming language
(e. g. syntax), development environment (e. g. tools used in development), application im-
plementation (e. g. how is the application implemented), diagramming (e. g. knowledge
on design techniques), organization’s programming rules (e. g. naming conventions)

• business knowledge: application functionalities (e. g. what application does), problem
analyzed (e. g. knowledge of the situation at hand), production environment (e. g. using
some databases)

• general knowledge: additional tools (e. g. web browser), help (e. g. manuals), other
knowledge

Maintainers made use of little business knowledge (12%) and general knowledge (13%) and
used a lot the computer science knowledge (74%). Furthermore, maintainers use little new
knowledge and they rather try to formulate hypothesis starting from what they already knew.

Rugaber and his colleagues investigates the roles played by the domain knowledge in program
understanding (DeBaud et al., 1994; Clayton et al., 1998a; Rugaber, 2000). A domain model
offers the reviewer a set of domain constructs (e. g. representations of real-world objects such as
persons or accounts, of algorithms such as tax calculation) to look for in a program. A domain role of domain

knowledgemodel can also act as a schema for controlling the program understanding and for organizing
the analysis results – for example if the program reflects the modeled domain, the relations
among domain concepts are hints for relations at the code level between their corresponding
implementations.

Ramal and his colleagues (Ramal et al., 2002) present their results after conducting an em-
pirical study on the knowledge needed by developers for performing maintenance activities.
The authors of this study came to the (disturbing) conclusion that the maintainers make little
use of the knowledge about the business domain. An explanation for this fact is the extremely
high level of details of a program and that most of the information needed for performing local
maintenance tasks (that were observed in this study) is related to the programming and to the
intricacies of implementation. The fact that the needs for business domain knowledge is rather
restricted in comparison to the needs for programming and implementation knowledge when
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performing maintenance tasks, is confirmed also by other studies. For example, Sillito (Sillito
et al., 2006) presents the result of an empirical study as a set of questions that the programmers
ask themselves when performing software evolution tasks. Relatively few of these questions are
strongly related to the representation of domain concepts in the code; the other questions are
related to understanding the intricacies of the implementation.

The multiple dimensions of knowledge weaved in a program and the intricacies in the
implementation of domain knowledge in code are major burdens for maintenance.

2.4.1.1 Expressing the “meaning” in the program understanding community

In the literature of reverse engineering, the units of (domain) knowledge come along in different
forms:

• Clichés, plans: represent knowledge about how typical programming algorithms (e. g.
searching, iterating) are implemented in the code (Soloway and Ehrlich, 1984; Yu and
Robertson, 1988). Many of the early program understanding approaches are focused on
the recognition of plans in programs by using knowledge bases that contain programming
plans. However, plans capture and express only functional abstractions and are not ab-
stract enough to express domain information. For example, the approach of Harandi and
Ning (Harandi and Ning, 1990) supports understanding by matching a program to a set of
plans defined as patterns over the code and that are saved in a knowledge base (e. g. such
a plan is the “forward-map-enumerator”).

• Concerns: (Robillard, 2003, p. 1) defines concerns to “refer to any consideration a de-
veloper or team of developers might have about the implementation of a program”. In
(Robillard and Murphy, 2007) the concerns are defined to represent: “anything that stake-
holders of a software project may want to consider as a conceptual unit. Typical concerns
in a software project include features, nonfunctional requirements, design idioms and im-
plementation mechanisms (e. g. caching)”.

• Business rules: “A requirement on the condition or manipulation of data expressed in
terms of the business enterprise or application domain” (Selfridge et al., 1993). Business
rules are thus high-level knowledge about different conditions and manipulation of data
in the application domain and that are desired in a particular project. They comprise a
wide variety of conditions such as integrity constraints, computation rules or rules about
the ordering of activities in a process.

• Features: are defined as requirements of a program that a user can exercise and which
produce an observable behavior (Wilde and Scully, 1995; Antoniol and Gueheneuc, 2006).
Domain concepts that belong to the functional requirements of a program are called “fea-
tures” (e. g. add customer, create new account). Feature identification represents the iden-
tification of program parts that are activated when one of the features of the program
are exercised. The typical manner of exercising the program features is through the user
interface.
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• Concepts: refer to general entities and can belong to the programming or business domain
(Biggerstaff et al., 1993; Rajlich and Wilde, 2002). We will focus in the following on
concepts-centered approaches for reverse engineering. In Section 3.2 we propose the
usage of domain ontologies to specify the (domain) meaning of concepts. A concept
belongs to a domain ontology and its meaning is given via its neighbours (i. e. concepts)
from the domain ontology.

We remark that all these notions denote in a way or another different kinds of abstract
knowledge: clichés represent knowledge very close to the implementation, business

rules are knowledge about the dynamic of the system or integrity constraints, features
are domain concepts that are accessible by the user through the program’s interface.

2.4.2 Concepts Centered Program Understanding

The cognitive models of program understanding study the mental models that the programmers
develop during comprehension. A mental model is a representation of the program under in- mental model

vestigation and consists of different kinds of information at different abstraction levels (e. g.
information about the program text, program structure, or about the application domain). The
models of understanding study how do programmers increase their understanding of the program
by exchanging information between different abstraction levels.

The concepts centered comprehension model (Rajlich and Wilde, 2002) is based on the as-
sumption that in large software projects it is not feasible to assume that the programmers can
know, read or understand the entire program or that they can have competence in all aspects of
the application domain. Many maintenance tasks are goal driven and oriented on how specific concepts-centered

understanding modelconcepts are reflected in the code. For example, for implementing a change request, program-
mers need to know how the concepts that are referred by the change request are implemented in
the code. According to the concepts centered comprehension model, programmers do not com-
prehend the entire programs, but it is sufficient to locate concepts in the code. This operation
is called concept location. The opposite operation namely of linking a piece of code with the
concepts that it implements is called concept assignment:

“concept assignment is a process of recognizing concepts within a computer pro-
gram [...] A degenerated case of this recognition process is the familiar process of
parsing programming language for compilation.” (Biggerstaff et al., 1994)

Rajlich emphasizes the problems of intricacies in the implementation and on linking con-
cepts to code – “Frequently in program comprehension the programmer understands domain
concepts, but not the code”. This observation correlates well with the empirical observations
made by Ramal and his colleagues that the maintainers are challenged mostly by the intricacies
of the implementation of domain knowledge (e. g. interleaving, delocalization) and not about the
domain knowledge per se (Ramal et al., 2002) – Section 2.4.1.
Remark. The programmers need to a priori know the concepts they are looking for (Biggerstaff
et al., 1994; Rajlich and Wilde, 2002).

The concepts-centered program understanding shows that there exists a
correspondence between program parts and the domain concepts.
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2.4.3 Definitions and Descriptions of Concepts

In the literature of reverse engineering and program comprehension are several definitions of the
term “concept” as shown in the following paragraphs.

Concepts as “units of human knowledge”. Rajlich and Wilde (2002) give the following
definition of concepts:

“Concepts are units of human knowledge that can be processed by the human mind
(short-term memory) in one instance” (Rajlich and Wilde, 2002)

Rajlich includes in his definition both domain concepts such as “credit card” and concepts related
to implementation such as “I/O Error”. This definition of concepts has the following limitations:

1. it does not allow to make the concepts explicit in order to be shared among the participants
(different people can process different units of knowledge in one unit),

2. it does not allow to automate the concepts-based program analyses.

Concepts as words. There is a significant body of research in reverse engineering that con-
siders that “concepts” are words contained in the names of identifiers, in the comments or in
the names of files. For example Anquetil and Lethbridge (1998a) use the words contained in the
names of source code files to obtain a conceptual decomposition of the software system: the files
that contain the same word in their name belong to the same conceptual module. The definition
of concepts simply based on words has the following limitations:

1. it does not consider the situations of naming ambiguities (synonymy and polysemy),

2. it does not consider the concepts that are described through multiple words (aka. com-
pound words), and

3. it does not consider the structure of the conceptual space.

Concepts as clusters of words. The reverse engineering approaches based on Latent Se-
mantic Indexing compute clusters of words of program identifiers based on some similarity
metric (e. g. words that recurrently occur together belong to a cluster). According to these ap-
proaches, these words clusters represent concepts (Kuhn et al., 2005; Maletic and Marcus, 2001).

Example 2.11: Concepts described by clusters of words (LSI)

Below we present several examples of concepts described by identifiers, as are presented in
(Kuhn et al., 2005). These clusters were identified by analyzing the words that form the identi-
fiers of JEdit and that recurrently occur together.

1. cell, renderer, pane, scroller, frame
2. menu, VFSBROWSER, popup, show, adapter
3. key, stroke, traversal, bindings, event
4. directory, dir, file, interrupted, install
5. run, request, runnable, later, thread

6. plugin, unload, dependencies, deactivate, jar
7. area, display, manager, range, text
8. dirty, redo, position, undo, bh
9. font, hints, paint, opaque, metrics
10. mymatch, substitute, RE, sub, expr
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2

The definition of concepts as clusters of words that recurrently occur together has the follow-
ing drawbacks:

1. it offers a weak and ambiguous definition of concepts. The interpretation of concepts
depends exclusively on the human who reads the cluster of words. Two different persons
can understand different concepts – e. g. is the first cluster from above referring to TABLE

or to more general graphical containers?

2. the concepts are isolated and there is no structure among them.

3. the relation between concepts and program parts is weakly defined since the program parts
are regarded as flat text documents. By linking a cluster to a program part it is not clear
how is the concept implemented in that part.

Concepts in formal concept analysis. The notion of “concept” also occurs in reverse
engineering with the use of formal concepts analysis (FCA) (Tilley et al., 2003; Arévalo et al.,
2005; Eisenbarth et al., 2003). FCA takes as input a set of objects, each object having its own
attributes. These objects are clustered according to their common attributes. A concept is a
maximal collection of objects that share common attributes and is described through a pair of
sets – the set of objects (its extent) and the set of attributes (its intent). The concepts are arranged
hierarchically in a concept lattice. Each node of the lattice represents a concept and the concepts
are arranged in an is-a hierarchy. The concept that contains a set of attributes A has as sub-
concepts all those concepts that contain a set of attributes B that is included in A.

Example 2.12: Computing a concepts lattice using FCA

In Figure 2.10 we present an example of performing concepts analysis on a set of persons
(acting as object) and a set of preferred sweets (acting as properties). The relation between
the objects and their attributes is presented in the table on the left-hand side and the con-
cepts lattice on the right-hand side. For example, we have the concept described by the pair
({Adrian, Stefan}, {ice cream, cake}) that contains the objects Adrian and Stefan that
have the common attributes ice cream and cake.

true

chocolate ice cream

John

Adrian

juice

Stefan true

true

true

cake

true

true

true

true

likes

({Adrian, Stefan}, {ice cream, cake})

({Adrian, John, Stefan}, Ø)

({Adrian, John}, {chocolate}) ({John, Stefan}, {juice})

({Adrian}, {chocolate, ice cream, cake}) ({John}, {chocolate, juice})({Stefan}, {ice cream, juice, cake})

(Ø, {chocolate, ice cream, juice, cake})

Figure 2.10: Example of a concepts lattice
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2

The definition of concepts with FCA has the following limitations:

1. it does not assign the concepts a domain meaning. By simply considering that properties
that occur together define a concept, we do not have any connection with the modeled
domain.

2. it does not define a rich structure among the concepts (defines only the is-a hierarchy).

“Programming oriented” vs. “human oriented” concepts. In their landmark work
on concept assignment, Biggerstaff et al. (1993) classify concepts into “programming oriented”
(e. g. searching, sorting) or “human oriented” (e. g. customer, seat booking). The programming
oriented concepts can be (mostly) recognized in the code in terms of sequences of steps that
make up their algorithms and by using techniques similar to parsing. The programming oriented
concepts are signalized by the language features or other information that can be algorithmically
deduced from these features. In contrast to this, the human oriented concepts can be recognized
by using the informal information contained in the program.

“the recognition process depends heavily upon a priori knowledge about the ap-
plication domain, the domain entities that are typically important and the typical
relationships among them.” (Biggerstaff et al., 1993)

Even if the work of Biggerstaff is the closest to our research, he does not define exactly what
concepts are and does not detail on how could human concepts be made explicit. In our work
we consider a framework for describing concepts as entities of domain ontologies. The meaning
of concepts is made explicit by their place in the domain ontology (Section 3.2).

In all of the above approaches the meaning of concepts is (at most) weakly defined.
This fact does not allow the unambiguous interpretation of concepts, their sharing

between different programmers, or the automation of conceptual analyses.

2.4.4 Approaches for Making the Domain Concepts Explicit

In the reverse engineering literature are different approaches for making the domain knowledge
explicit. These approaches vary in their formalization and in the typical knowledge that they
can represent – e. g. on the one hand, by using computation patterns we can formally specify
programming concepts; on the other hand, by using textual documentation we specify a much
wider category of concepts but only informally and poorly structured.

Using computation patterns. The programming oriented concepts (e. g. sorting, accumulating,
interchanging, lists) can be made explicit through patterns of computation, called program plans.
The plans are saved into libraries (also called “plan bases”) (Harandi and Ning, 1990).

Using graphs containing higher level information. The knowledge about the structure of a
system can be captured by using different kinds of high-level diagrams (e. g. class diagrams)
that describe different views of the architecture. The meaning of programs is then given by map-
ping the modules contained in these diagrams on the parts of the code (Murphy et al., 1995).
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However, Murphy does not define the meaning of these modules – but only that they are used
and interpreted by software engineers to communicate about the structure of a system. A con-
crete usage of these diagrams is to describe the design patterns in order to document the design
rationale for a code fragment (Baniassad et al., 2003).

In their work on domain based reverse engineering (Clayton et al., 1997), Rugaber and his
colleagues use the Object Modeling Technique (OMT) (Rumbaugh et al., 1991) for representing
a conceptual model of the application domain.

Using ontologies. (Devanbu et al., 1990) is a pioneering work in reverse engineering that uses
ontologies for representing the domain knowledge. Hsi et al. (2003) represent the knowledge
that is implemented by an application with the help of an ontology that is built by manually
analyzing the graphical interface (GUI) of the application.

Using textual documentation. The most common way to make the knowledge about a sys-
tem explicit is to write textual documentation. Even if this is easily interpretable by humans,
the natural language texts (due to their ambiguity) are difficult to access and manipulate by
the machines. Many reverse engineering approaches define the meaning of programs by using
traceability links between the source code and textual documentation (Antoniol et al., 2002;
Witte et al., 2007).

2.4.5 Approaches for Assigning (Conceptual) Meaning to Programs

In the following we present several approaches to assign conceptual meaning to programs by
mapping the code to different kinds of higher-level information.

2.4.5.1 Recovering programming plans

Programming plans (Soloway and Ehrlich, 1984) are stereotypic fragments of programs that ex- programming plans

perienced programmers use to implement typical algorithms (e. g. sorting, searching, accumulat-
ing a value). Programming plans can be automatically recognized by matching (patterns-based
matching) their representation to parts of the analyzed programs. The recognition is similar to
parsing. Harandi and Ning (1990) use a pattern-directed inference engine for performing and
combining advanced mappings of plans to the code. Wills (1993) proposes a flexible approach
for recovering programming plans by using graphs parsing. The flexibility resides in the pos-
sibility to vary the accuracy of the recognition (e. g. to allow near-miss recognition) by using
different heuristics based on different analysis needs. There are two fundamental limitations of
the recognition of plans: Firstly, all these approaches assume that all programmers implement
plans in a similar manner. Secondly, the programming plans capture only knowledge very close
to implementation (e. g. programming idioms) and ignore the other kinds of knowledge like
about the business domain or knowledge about implementation technologies such as XML.

2.4.5.2 Bridging domain models to architectural program abstractions

Clayton et al. (1997) propose a program understanding approach that takes as input the source
code, a description of the application domain, and various sources of programming knowledge.
The output contains three elements: a refined domain model, an abstract program description
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(architectural abstraction of the program) and a mapping between the program description and
the domain model that describes how the code implements the domain model. This approach
has the following limitations: firstly, it defines the domain meaning of the program architecture
and not of the source code itself; secondly, it is high granular since it maps domain knowledge
on the architecture; thirdly, it does not specify clearly the semantics of mappings; and finally, it
assumes that such a mapping is always possible (and thereby assumes a correspondence between
the architecture and the domain model). The latter limitation is very pregnant in the presence of
delocalization (DeBaud, 1996) and interleaving.

(Gall et al., 1996) proposes a method for transforming the procedural architecture of a system
to an object oriented architecture by making use of domain knowledge. Without the domain
knowledge, the transformation would be ambiguous – the procedural program structures could
be interpreted in different ways in an object-oriented manner. During their work to transform
the procedural into object-oriented architecture, Gall and his colleagues manually assign domain
meaning to the program structures (semi-)automatically extracted from the code.

2.4.5.3 Reflexion models, intentional views and concern graphs

In order to make the relation between the high-level models and the source code explicit, Murphy
et al. (1995) propose the software reflexion models. Figure 2.11 presents the general approachsoftware reflexion

models for building the reflexion models: in the first step, a programmer defines high-level models of
the structure of the software system; in the second step, the programmer chooses an abstraction
of the source code (typically a kind of graph such as call graph or inheritance hierarchy) that is
appropriate to be mapped to the high-level model and in the third step the programmer specifies
how the models are to be mapped to the source code. All these three ingredients, namely the high
level model, the mapping strategies and the code abstraction, are used as inputs of a tool that
computes the reflexion of the high-level model in the code. Using the reflexion, the programmer
can inspect where the code agrees or does not agree with the high-level model. The programmer
interprets the reflexion and iteratively computes additional (more detailed) reflexion models.
The approach described by Murphy is very general and can be used to map a wide variety of
abstract models to programs. The high-level models used by Murphy and colleagues are mostly
structural and they mostly target the architecture of the system and not domain knowledge.

Example 2.13: A simple reflexion model

In Figure 2.12 we present an example of a reflexion model. In our example, the high-level
model represents the general 3-tier layered architecture: presentation layer, business logic and
persistency. In this layered architecture there are links only between the presentation and the
business logic and between the business logic and the persistency. In the lower part of the
Figure 2.12 we define a set of mappings (based on the names of packages) for mapping the source
code parts to the high-level model. Once the reflexion model is obtained, it can be compared
to the original high-level model: we notice two kinds of differences in form of not wanted
dependencies (between the presentation and persistency layers) and of missing dependencies in
the code (between the business logic and the persistency layers).

2
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Source: “Software Reflexion Models: Bridging the Gap between Source and High-Level Models”, by Murphy et.all 

Figure 2.11: Software reflexion models overview (Murphy et al., 1995)

[ package = *ui*        mapTo = Presentation]
[ package = *logic*    mapTo = Business Logic]
[ package = *db*       mapTo = Persistence]

Business Logic

Persistence

Presentation

package bank.ui;
class NewCustomerDialog { 
  Bank b; ...
}
class NewAccountDialog { 
  DatabaseFacade db; ...
}
class ErrorMessage { ... }

package bank.logic;
class Bank {
   void addCustomer() { ... } ...
}

package bank.db;
class DatabaseFacade { ... }
class DBSession { 
  ErrorMessage em; ...
}

Business Logic

Persistence

Presentation

High­level Model Reflexion Model Source code

Figure 2.12: Example of defining, computing and using the “reflexion models”

Concern graphs. An extension of the reflexion models are the concern graphs (Robillard
and Murphy, 2002; Robillard, 2003). A concern graph contains program elements and program
relations among them that are relevant for implementing a concern. The goal of concern graphs
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is to make the dependencies between contributing program elements explicit. A concern graph,
mostly built manually, represents another decomposition of the program. As we showed in Sec-
tion 2.4.1.1, a concern is “anything that can be considered as a conceptual unit”. This definition
is very general and therefore weakly connected to the real-world semantics of a domain.

Intentional views. Mens et al. (2003) develop intentional source code views to make explicit
the conceptual structure of software systems and to provide means for reasoning about the ab-
stract information contained in the code in an explicit manner. An intentional source code view
is a set of related program entities (such as classes, instance variables, methods) that is specified
by one or more alternative descriptions written in a declarative (meta-programming) language.
These descriptions reflect the commonalities shared by the program entities and thereby they
present the intention that is common to all of these elements. The descriptions of views are
similar to the high-level models of Murphy et al. (1995). The intentional views can be used to
define and compute a conceptual structuring of the code – the conceptual structure represents
how we conceptually think of the code to be structured as opposed to how it is structured in the
reality. Another example of use of intentional views is to check the architectural conformance
of a software system (Mens, 2002) – i.e. whether the implementation corresponds to the abstract
view of the architecture of the system. For example, one can discover and prevent the direct
access of the data persistency layer of an application from the code that deals with the graphical
user interface.

Example 2.14: Defining an intentional view

Below we present the definition of an intention through an example adapted from (Mens et al.,
2003). In this example, the intention “uiClasses” is defined to contain all classes that belong to
packages that contain in their names the substring “ui”.

intention(uiClasses, byPackage, ?Class) if
classInPackage(?Class,?Package),
containsSubstring(?Package, “ui”)

2

2.4.5.4 Programs as information systems

Brachman et al. (1990) studied the knowledge needed and the actions taken by maintainers
during the maintenance of large systems at AT&T. These studies revealed the fact that up to
60% of the total effort spent by programmers is due to various searches in the code and in the
domain model. The cause for this is the delocalized information in the system – namely pieces
of information that logically belong together are spread across many files, many times slightly
modified. The early code searches were exclusively based on “grep” and “find” and this leads to
a high amount of noise and low efficiency.

The study of Brachman and colleagues lead to the idea of regarding the software itself (the
code) as data that needs to be searched. A software information system (SIS) provides a domain
model which contains an explicit representation of the business domain knowledge and a codesoftware information

system model that contains information about the implementation.
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LaSSIE. Devanbu et al. (1990) present an approach for creating a software information system
that integrates architectural, conceptual, and code views of a software system into a knowledge
base. This integration allows to overcome the invisibility by formulating queries that combine
different views (a query can contain information about the domain, architecture and code). The
most common usage scenario of LaSSIE was performing (semantic) queries over the software
and the domain. Since the LaSSIE knowledge base is based on knowledge frames, queries are
performed through classification. The knowledge base of LaSSIE was based on two ontologies:

ontologies of LaSSIE

• The application domain ontology contained around two hundred concepts of the tele-
phony domain (the “Definity 75/85” telephony switch). In Figure 2.13 (left) we present
the upper-level concepts of this ontology. This ontology was built after the program was
constructed through a “reverse knowledge engineering” by analyzing different develop-
ment artefacts (code, documentation, requirements) and reverse-engineering the domain
knowledge. The upper concepts from the domain ontology are repeatedly referred in the
specification and documentation. Based on these concepts are defined (taxonomically)
concepts that are closer to the telephony domain: cable, microphones, cable-trunks. The
domain ontology is based on DOERS (things that are capable of performing actions), OB-
JECTS (things on which actions are performed), ACTIONS (represent systems’ functional
components) and STATES (the state of the system after an action is performed).

• The code ontology Figure 2.13 (right) is rather high-granular and contains only around
twenty concepts but many instances. The code ontology is populated automatically with
instances obtained after a code analysis.

Using these ontologies the programmers could make queries about the code specific information
(e. g. “Where is the variable with name “cable” used in the program?”) and about the domain
concepts (e. g. “What is a dial-tone generation?”). In order to allow combined queries about the
code level and domain information (e. g. “Which files implement the dial-tone generation?”) the
users of LaSSIE manually made mappings between these ontologies.

The major advantage of LaSSIE was the integration of domain and code ontologies in a man-
ner that facilitates querying, browsing and the change of perspectives. However, LaSSIE offered
an integrated view of (only) the domain knowledge and the code while ignoring the other kinds
of knowledge that are contained in the programs (e. g. knowledge about programming tech-
nologies used). The most important drawback of LaSSIE is that although the code ontology
is populated automatically, the domain ontology and the connection between it and the code
needed to be maintained by hand and this was very expensive. The relation between the models
degraded during the evolution and after a while the programmers did not trust the LaSSIE sys-
tem anymore to provide accurate information. Such a system with advanced searching proved
to greatly support comprehension tasks but the overhead of manually synchronizing the models
reduced the overall benefit (Welty, 2003).

Comprehensive software information system. Welty (1995) developed the notion of
“comprehensive software information system” (CSIS). CSIS advances with respect to SIS along
three directions:
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Source: “LaSSIE: a Knowledge-based Software Information System”, by Devanbu et.all 
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Source: “An Integrated Represent. for Softw. Devel. and Discovery”, by C. Welty

Figure 2.13: The upper parts of the code and domain ontologies used by LaSSIE (Devanbu et al.,
1990; Welty, 2003)

1. it offers a richer ontology for the code model that is expressive enough in order to replace
the need for programming languages (beside the basic structural information represented
in SIS, CSIS represents also the information contained inside the methods),

2. it offers a deeper integration of the code and the domain models, and

3. it offers support for the development and modification of the code through the SIS.

A CSIS is a programming language that supports both the execution and the information re-
trieval. By developing programs using CSIS, programmers can take the advantages of having
an information retrieval from up-front. However, from the point of view of analyzing already
existent programs developed in conventional languages CSIS is basically a SIS and inherits all
its disadvantages.

2.4.5.5 Recovering traceability between code and documentation

In the cases when the domain concepts are made explicit only as a textual documentation, we
can assign meaning to program parts by linking them to their corresponding documentation
fragments. There are several works in reverse engineering that use information retrieval tech-
niques to map code parts to textual documentation (Antoniol et al., 2002; Marcus, 2003) and
thereby to recover traceability links. This method to assign meaning to programs has two dis-
advantages: firstly, the traceability links are high granular (parts of programs are linked with
parts (e. g. paragraphs) of the documentation); secondly, the semantic domain lacks structure
(the documentation is a free text).
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(Zhang et al., 2006; Witte et al., 2007) present an alternative approach for the recovery of
traceability links between the source code and the documentation (Figure 2.14). In order to do
this, the authors create an ontological representation of both source code and documentation
and use semantic web technologies (ontology alignment) for mapping common concepts and
instances of these two ontologies. The source code ontology is populated automatically by ana-
lyzing the sources and the documentation ontology is populated by analyzing the documentation
with the help of natural language processing (NLP) tools. We need to remark that the ontologies
are used here primary as a technology enabler: once the code and documentation are represented
as ontologies (in a standard ontology language such as OWL4), semantic web specific techniques
can be used to find the commonalities between them. The use of semantic web technologies is
similar to the LaSSIE approach with the following differences:

1. instead of using a domain ontology (as in the case of LaSSIE), (Zhang et al., 2006) use
the ontology of the documentation. This ontology contains a large number of concepts
that are expected to be found in software documents and is automatically populated with
instances extracted from the documentation by using NLP tools, and

2. the links between the code and the documentation ontology are established automatically
through ontology alignment techniques.

Source: “An Ontology-based Approach for Traceability Recovery”, by Yonggang Zhang et. all

Figure 2.14: Overview over the ontology-based recovery of traceability between documentation
and source code (Zhang et al., 2006)

4http://www.w3.org/TR/owl-features/
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2.4.6 Summary

A central topic of reverse engineering is the recovery of abstract information contained in pro-
grams. The “abstract information” ranges from algorithmical knowledge (e. g. sorting), to archi-
tecture (e. g. components) and to knowledge about the business domain (e. g. account, customer).
In Figure 2.15 we summarize the approaches employed in reverse engineering for giving mean-
ing to programs by mapping the source code to higher-level knowledge. The approaches are
classified along two directions:

• Firstly, according to the intentionality of information recovered, namely whether the ab-
stract information is related to programming or business domains. For example, the inten-
tional views or reflexion models are used mainly for recovering the structural information
from the code, while LSI is used to recover the information that is closer to the domain.

• Secondly, according to the specification degree of the definition of abstract information
and the granularity of the mappings, namely, the measure in which the domain meaning is
captured and the precision of the mapping between the abstract information and the code
entities. For example, in the case of reflexion models the high-level information is well
defined and in the case of the LSI the knowledge is weakly defined (only as sets of words).

We remark that the current approaches either aim to recover information close to the program-
ming domain (e. g. architecture), or lack structure in the level of specification of the knowledge
in the case of more intentional domains that are farther from programming (e. g. business do-
main). A notable exception is LaSSIE (Devanbu et al., 1990) that used a rich representation of
the domain (as an ontology) and precise mappings between the program elements and the do-
main concepts. However, the mappings between the LaSSIE ontology and the program are done
manually, and the LaSSIE system did not contain information about the other dimensions of
knowledge typically found in programs – e. g. programming technologies. Our work resembles
mostly the LaSSIE approach and defines the domain meaning of programs by mapping them to
domain ontologies.

Technical
domain

Business
domain

Weak Rich

Intentional views

Reflexion models

Programming plans

Concepts location (LSI)

Code-documentation traceability recovery

Intentionality

Specification level

Less interesting

LaSSIE

Figure 2.15: Spectrum of approaches for abstraction recovery in reverse-engineering
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2.5 Towards an Intentional Meaning of Programs

Due to the big conceptual gap between the domain concepts and the programming languages
constructs there is a strong and steep encoding of the domain knowledge in the code. As we
presented in Section 2.2, during the forward engineering occurs a loss of abstract information
manifested through the following sympthoms:

1. Loss of conceptualization. Concepts clearly distinguishable at the domain level need to
be implemented through low-level programming constructs and this makes many times
impossible their distinction at the code level.

2. Encoding bias. The use of inadequate (biased) languages or libraries, or the choice of
unfortunate design decisions, leads to a high encoding of the representation of domain in
the code and thereby to an ever increasing difference between the domain knowledge and
how the program reflects it.

3. Interleaving. In single program parts is interleaved knowledge that belongs both to the
business and to the programming domains. Distinguishing the knowledge atoms that be-
long to one dimension or to another is highly challenging.

4. Delocalization. Domain concepts are implemented in different parts of the code. Finding
the (spread) code parts that implement a concept is highly desirable but very difficult.

These general sympthoms favour other mismatches between the domain knowledge and the
code such as: logical redundancy, implementation details, or distortion of the implementation
of groups of concepts in the code. Many programming and maintenance activities are strongly
influenced by the mismatches between program parts and their business domains. In order to
characterize the mismatches between the code and the domain, we need to analyze the code
from the point of view of the domain knowledge that it implements. With other words, we need
to systematically express the domain-meaning of programs 1) by using rich descriptions of the
domain, 2) by mapping the domain description to the code in a fine-granular manner, and 3) by
considering all dimensions of knowledge that are implemented in the code.

Our approach for assigning meaning to programs.

In Figure 2.16 we depict an intuitive view of our approach to define the meaning of programs
in terms of their implemented domain concepts. There are two categories of actors that interact
with programs: the program users and the program developers. The developers write programs
that resolve problems from a particular domain and the program users use the programs ac-
cording to their knowledge about that domain. The meaning of programs is described in the
classical programming language literature with the help of programming language semantics –
e. g. through a denotational theory. In order to analyze programs at a higher level of abstraction
they need to be put in link with a humans-oriented description of the real-world. For doing this,
we define the “intentional meaning” of programs as an explicit mapping between the program
entities (e. g. classes, methods, variables) and the concepts of a domain ontology. The domain
ontology is a product of knowledge engineering in the domain of interest and represents a body
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of knowledge upon which both the program users and developers need to agree. The domain
ontology is built by domain experts. By making the domain knowledge and the mapping of the
program to the domain ontology explicit, we can characterize programs from the point of view
of the concepts that they implement and thereby bridge the abstraction gap between the domain
knowledge and the code. We use these mappings to characterize the faithfulness of the reflexion
of domain knowledge in the code.

The “real world”

Objective
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Program

Denotational 
theory

The domain 
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A domain ontology Intentional meaning

Formal
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Figure 2.16: An overview of the intentional meaning

2.6 Summary and Roadmap

During the forward engineering process occurs a loss of abstract knowledge. Due to the big
conceptual gap between the professional and the computer languages, domain concepts are en-
coded, commingled and interleaved in different degrees in all software artefacts with culmination
in programs. Reverse engineering and program understanding approaches aim at recovering the
abstract knowledge from programs. However, the current approaches either stop at the structural
level or lack a clear definition of the domain information that is recovered.

In the next chapter we introduce the intentional meaning as an interpretation of programs
with respect to a domain ontology. In Part III we use the intentional meaning to characterize the
mismatches between domain knowledge and programs. In Part IV we present our approach to
automate the recovery of intentional meaning.
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3 Intentional Meaning of Programs

“In the works of man [ ... ] it is the intention which is chiefly worth studying.”

Goethe

Abstract: Due to the big conceptual gap between the application domain knowledge and pro-
gramming languages, there is a myriad of possibilities to implement domain concepts in the
code. Ideally, in order to be easy to understand, there should be a clear correspondence between
program parts and the domain concepts that they implement. We call this correspondence the
intent of a program part. Due to the intricacies of encoding of (abstract) domain concepts in
(lower-level) programming constructs, the intent of a program part is not explicit and is many
times lost and dissipated in a huge amount of implementation details. Instead of having a mod-
ularization that reflects the application domain, parts of programs are an amorphous and dense
bulk of computation. In this chapter we define the meaning of programs with respect to the
domain knowledge that they implement, and propose the use of ontologies as semantic domain
for capturing the domain knowledge. We define the intentional interpretation of programs, by
mapping program entities to concepts from a domain ontology that they implement. By doing
this, we bridge the gap between the domain knowledge and programs, and we can interpret the
source code from the perspective of the domain concepts that it implements. We show how does
the intentional meaning relate to the programming language semantics and pragmatics. In order
to enable a rigorous characterization of the correspondence between the domain concepts and
the source code, we develop a formal framework that describes program elements, the domain
concepts that they implement, and the relations between them. We further refine the intentional
interpretation into more specific components: reference of concepts, definition of concepts, and
representation of concepts in the code.

Structure of this chapter. After the introduction, in Section 3.2 we present domain on-
tologies as means to describe and share domain knowledge. Using the ontologies as semantic
domains, we define the intentional meaning of programs as a function that maps program en-
tities on concepts from domain ontologies (Section 3.3). Section 3.4 presents a formalization
of programs and respectively domain ontologies as labeled graphs. The relation between pro-
gram elements and the concepts that they implement is refined in Section 3.5 with the help of
three functions: the reference of concepts, definition of concepts, and representation of concepts.
Section 3.6 presents the mapping between the program and ontological relations. We end this
chapter with a summary and an outlook on the next chapters.
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3.1. INTRODUCTION

3.1 Introduction

Once a piece of code is written, it is read many times, during a long period of time, by re-users
or maintainers. Besides their role of interfaces between humans and computers, programs play
an important role also in communicating among programmers. Thus programs can be regarded
as works of humans targeted towards humans and therefore it is worth studying their intention.

Filling the conceptual gap between domain concepts and programming language constructs
and the big amount of additional knowledge about programming technologies contained in pro-
grams, lead to approximations in reflecting the business domains in programs, to implementation
details, and different distortions and diffusions of concepts. Due to the loss of conceptualization,
clearly defined concepts in the problem domain can be hardly recognized in programs. Even the
simple intent of a piece of code, in the sense of the domain concepts that it implements, is most
of the times not explicit, but buried in a myriad of implementation details. In this chapter we
propose a method to define the domain meaning of programs by explicit mappings between the
program entities and the concepts from domain ontologies that they implement.

3.2 Specifying Meaning with Domain Ontologies

The meaning of a language is given by a mapping between its syntax and a semantic domain.
In a denotational style, the semantic mapping associates to each syntactic construct an object
from the semantic domain. In the cases when the semantic mapping is compositional, the mean-language semantics

ing of a program phrase is obtained by combining the atomic meanings of its atomic syntactic
elements. Therefore, the semantics of programs written in a language is given in terms of the
semantics of the language in which they are written and that is general enough to accommodate
all programs that can be written in the language (Harel and Rumpe, 2004). The semantic domainsemantics of programs

specifies every concept that exists in the universe of discourse. By using a language, we cannot
describe more than what is defined in its semantic domain. Conveying more information in a
program, beside the one that is expressible in the semantic domain, can be done only by using an
additional medium – e. g. domain information is communicated through the names of identifiers
or documentation.

In this work we concentrate on the domain-specific meaning of programs.
Therefore, our semantic domain should reflect the domain knowledge as close as

possible to how humans understand it.

3.2.1 Real-World Meaning

Formal models are described by using logical frameworks such as First Order Logics (FOL). But
FOL alone is not sufficient to describe a real world situation since FOL is ontologically free. Just
like any general purpose programming language, FOL can be used to describe anything about
anything. In order to describe a domain we need to fix a set of predicates, a set of functions and
the universe of discourse.
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CHAPTER 3. INTENTIONAL MEANING OF PROGRAMS

Example 3.1: Simple formula in first-order logic

Woman(x) ≡ Person(x) ∧ Female(x)

In this sentence the symbols “(, ≡, x” belong to the definition of FOL and the Female,
Person, Woman make the relation to a particular domain. The truth value of the formula
depends on the universe of discourse, on the choice of predicates and on the choice of logical
connectors (i. e. Woman(x) ≡ Person(x) ∧ ¬Female(x) is obviously false).

2

A domain can be described in terms of a set of concepts. The important concepts that belong
to the domain form the conceptualization of that domain. The same domain can be described conceptualization

from several points of view by using different conceptualizations (e. g. we can describe the
information about the ’age’ in two different ways: by using the concept ’age’ or by using the
’birth date’). When FOL is used to describe a particular situation of the domain, one needs
to decide on the sets of predicates – these predicates represent the domain conceptualization
(Sowa, 2000). In the fields of semantic integration of information and semantic interoperability
the word “semantics” means a mapping of objects in the model onto a domain conceptualization
(Guizzardi, 2005, p.20) (Uschold, 2003). Domain conceptualizations are captured and shared in
domain ontologies.

Terminological clarification. The word “ontology” has a multitude of meanings in the liter- ontology

ature depending on the community that uses it (Guarino and Giaretta, 1995):
1) Ontology as a philosophical discipline. As a branch of philosophy, ontology is concerned

with the nature and the organization of reality. It deals with entities that are general enough to
be at the basis of more domains and with the organization of knowledge in its broadest sense.
Typical philosophical questions with which the ontology deals are: What kinds of entities exist?
What is the essence of things? What is being? What features are common to all beings? Is the
world three or four dimensional?

2) Ontology as a conceptual system. According to this view, ontologies are conceptual sys-
tems which we may assume to underly a particular knowledge base. From this point of view,
ontologies are similar to database schemas in the sense that they define what entities can be
contained in the knowledge base.

3) Ontology as an “explicit, formal specification of a shared conceptualization”. This defini-
tion is given in the seminal paper of (Gruber, 1995). The words “explicit” and “formal” mean
that the ontology is expressed in a formal language whose semantic is explicitly defined. The
fact that is “shared” means that the ontology reflects a common understanding of a certain do-
main that is assumed by a community of users. The users exchange information based on the
vocabulary defined by the ontology; they commit to the ontology if they agree to use the vo-
cabulary in a consistent manner. Sharing the same vocabulary does not mean that the ontology
users share the knowledge since each user can know things that the others do not know.

4) Ontology as a representation of a conceptual system via a logical theory a) characterized
by specific formal properties, or b) characterized only by its specific purpose. The first case
means that an ontology is a logical theory of a certain kind (e. g. a terminological theory that
describes concepts (called TBox) or an assertional one that describes individuals (called ABox)).
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3.2. SPECIFYING MEANING WITH DOMAIN ONTOLOGIES

According to the sense b) an ontology is any logical theory and only its specific purpose (and not
a particular form) makes it to be an ontology. For example, many researchers call “ontologies”
– sense a) – any object that is represented in the OWL or RDFS languages.

5) Ontology as a vocabulary used by a logical theory. With other words, if a domain is
described by a logical theory (e. g. a specification) then this logical theory will use predicates,
relations and functions that are defined by the ontology. Guarino and Giaretta (1995) use the
following definition of this sense of the word ontology: “A set of logical axioms designed to
account for the intended meaning of a vocabulary.”

We need to remark several differences between the interpretations of ’ontology’ presented
above. The first interpretation denotes a discipline of study while the following ones denote
objects (artefacts). While in the second interpretation the object is a semantic description of a
conceptual system, in the following ones the term ontology denotes a syntactic object. In the
practice the term ontology is many times used in a polysemous manner. Below we give our
definition of an ontology.

Definition 3.2.1 (Ontology): An ontology represents a conceptual model of a domain in formontology

of named concepts arranged in a generalization / specialization hierarchy (taxonomy) and rela-
tions among them. The concepts and relations represent a consensual agreement on the domain
by a category of domain experts.

Discussion: 1) Our definition has two parts: the first part refers to the logical categories that
can exist in a domain and the second part addresses a subjective agreement on these categories
by the ontology users. We can regard an ontology as an instance of predicate logic with a choice
of predicates whose names make the link with the natural language descriptions of a domain.
Depending on the choice of predicates, we can express (or not) different parts of the knowledge
about a domain.

2) Our notion of ontology is close to the definition given by Gruber (1995). We also regard
ontologies to be specifications of a domain vocabulary (our concepts should have names) that
is assumed by a community of users. The difference is that we do not require ontologies to be
formally specified (but we do not restrict this). This difference is caused by the different use
of ontologies: while Gruber uses them for knowledge sharing among agents (and therefore the
semantics should be formally specified) we use them for program understanding (i. e. recognition
of domain knowledge in programs) and based on this for evaluation of the clarity, adequacy and
faithfulness of the implementation of domain concepts in programs. The intentional meaning of
programs means the mapping of the program elements on the ontological entities that they (are
supposed to) implement and not checking if the program elements implement the concepts.

3) The spectrum of details in the specification of ontologies is described in (McGuinness,
2003). From the point of view of the formalization degree, our understanding of ontologies
is similar to conceptual schemas, or signatures of Σ-algebras. We call these ontologies to be
“light-weighted”. The interpretation of the entities from ontologies is given by the domainlight-weighted

ontologies objects described through glossary entries.
4) Mylopoulos (1992) defines conceptual modeling to be “the activity of formally describing

some aspects of the physical and social world around us for purpose of understanding and com-
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CHAPTER 3. INTENTIONAL MEANING OF PROGRAMS

munication”. By the fact that our ontology is a “conceptual model” of the domain we require conceptual model

that each interesting domain concept to be explicitly reflected through an entity in the ontology.
For example, if we are interested in the “family domain”, the ontology needs to contain all the
concepts FEMALE, PARENT and MOTHER explicitly, even if the concept MOTHER can be defined
as a term composed from the intersection of concepts PARENT and FEMALE.

5) We require that ontologies represent an agreement among different domain experts (i. e.
that they faithfully describe the knowledge from a domain). Prior to using an ontology, ontology
users need to commit themselves to the ontology and take it as a faithful representation of the ontological commitment

domain (Figure 3.1).

Domain experts

Domain
knowledge

Ontology users

Domain ontology defines 
the domain vocabulary

Make the domain
vocabulary explicit

Commit to the 
ontology

Figure 3.1: Ontologies share the domain knowledge by defining a vocabulary of the domain

Below are criteria for designing ontologies for knowledge sharing (Gruber, 1995): criteria for good
ontologies

• Clarity: The concepts defined in the ontology should clearly reflect the intended meaning
in the domain (i. e. the ontology should represent a conceptual model of a domain).

• Coherence: The definitions in the ontology should be coherent (well-formed) – e. g. cycles
of is-a relation are not allowed).

• Minimal encoding bias: The vocabulary should reflect the phenomena at the “knowledge
level” and be independent of some specific encodings.

• Minimal ontological commitment: An ontology should have a clear focus and should
define only the vocabulary that is necessary for a specific communication purpose. The
users of an ontology that commit to it should agree only on the core information that is
relevant for the actions they want to perform.

3.2.2 Examples of domain ontologies

Below we present several examples of fragments of domain ontologies. Each of these ontologies
addresses a different kind of knowledge (e. g. business domain, design, Java), each of these
kinds being representative for the knowledge contained in programs (Section 2.2.3.1) and needed
during the maintenance (Section 2.4.1).

Example 3.2: An ontology fragment representing a family

In Figure 3.2 we present a domain ontology that contains concepts that describe the members of
a family and their relations (the full arrows represent taxonomic is-a relations).
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Entity

Family Family Member

Child Parent

hasMember

hasParent

hasChild

Figure 3.2: The family ontology

The meaning of the concepts is given as glossary entries in form of natural language descrip-
tions as shown below:

Family the basic unit in society consisting of two parents and their children
Family Member a member of the family
Child a son or daughter
Parent a person who brings up and cares for another

2

Example 3.3: An ontology fragment representing a ’Pedestrian Traffic Lights Controller’

In Figure 3.3 we present a domain ontology that contains concepts that describe the behavior
of a “pedestrian traffic lights” (PTL) system. This behavior can be modeled through a state
automaton containing two states in which the traffic lights can be: RED and GREEN. These
states are connected through two transitions: GREENRED and REDGREEN.

Entity

State Transition

Red Green RedGreen GreenRed

hasSource

Red Green

GreenRed

RedGreen

hasTarget

Figure 3.3: A state automaton that models a pedestrian traffic lights (left); a domain ontology
fragment that represents the pedestrian traffic lights concepts (right)

The meaning of the concepts is given below:

State the state of an automaton
Transition the change of states of a state automaton
Red, Green states of the pedestrian traffic lights system
RedGreen, GreenRed transitions of a pedestrian traffic lights system

2
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Example 3.4: A domain ontology representing the ’Observer’ pattern

In Figure 3.4 we present a domain ontology that describes the “Observer” design pattern. There
are two participants in this pattern: an OBSERVER and a SUBJECT. The observers register them-
selves to the subjects. Every time when the state of a subject changes, it notifies all its observers.
The meaning of these concepts is described in prose text such as in the following (adapted from
the description of Observer pattern in (Gamma et al., 1995)):

Subject Provides an interface for attaching and detaching Observer objects.
Register Adds a new observer to the list of observers observing the subject.
NotifyObservers Notifies each observer by calling the notify method in the observer,

when a change occurs.
Observer Defines an updating interface for objects that should be notified of

changes in a subject.
Notify Updates the information the Observer has about the Subject’s state.

DesignEntity

Class Method

Observer Subject Notify Register
aggregates

hasParameterOfType

notifyObservers

hasMethod

Observer Subject

notify() register(Observer)
notifyObservers()

Figure 3.4: The “Observer” design pattern (left); a design patterns domain ontology that repre-
sents the “Observer” design pattern (right)

2

Example 3.5: A domain ontology representing the core constructs of Java

In Figure 3.5 we present a domain ontology fragment, in this case the “domain” is (a part of)
the Java language. The concepts of this domain are the constructs of the Java programming
language.

JavaProgramEntity

Class MethodAttribute

hasMethod
hasAttribute

Figure 3.5: Fragment of the Java ontology

2
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3.3 Intentional Meaning of Programs

Implementation versus interpretation. Figure 3.6 illustrates that for performing an im-
plementation task, developers use a wide variety of knowledge belonging to several dimensions
such as: knowledge about the business domain of the application, knowledge about the design,
or knowledge about the programming technologies. Due to the fact that the general purpose
programming languages are ontologically neutral, this knowledge is only partially reflected in
programs. Figure 3.7 illustrates that for performing a maintenance task, maintainers need to
interpret the program with respect to the knowledge that the code (intends to) implement(s) and
thereby to understand (the meaning of) the code.

Business domain ontology

Developer

Express the task in
terms of knowledge

dimensions

Program

Programming 
task

Design ontology

Programming technologies
ontology

Im
plem

entation

Figure 3.6: Developers implement a task by using different kinds (dimensions) of knowledge
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Figure 3.7: For performing a task, maintainers need to interpret the program with respect to the
dimensions of knowledge that were implemented
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Intuition. According to the Oxford English Dictionary 1 the adjective intentional means:

“Done on purpose, resulting from intention”
intention

the noun intention means:

“The way in which anything is to be understood”

We resume that “intentional” is how the purpose of something should be understood.

In the same dictionary the noun meaning is defined as: meaning

“The sense or signification of a word, sentence, etc. [...] By extension: the thing,
person, etc., for which a word or expression stands; the denotation or referent of a
word or expression.”

“Meaning” is a link between a word and entities from a domain for which it stands.

Combining the above definitions of “intentional” and of “meaning”, the “intentional meaning
(of something)” is the entity denoting how something should be understood. The current work
has programs as subject of matter. As we described above, we define the domain entities through
concepts in a domain ontology. intentional meaning

The intentional meaning of a program is defined by linking the program entities (e. g.
classes) and the concepts from domain ontologies which they intend to implement.

Example 3.6: Different interpretations of a program fragment

In Figure 3.8 we present fragments of three domain ontologies (right) that can possibly serve
as interpretation for the same program fragment (left). Each domain ontology allows a different
interpretation of program variables from a different perspective: In the first case (a) all variables
are integers and thereby they refer to the same concept in the ontology (namely “integer vari-
able”). In the second case (b), only three of the four variables are entities of an API (the first
variable does not belong to the API since it is private). Java does not allow us to distinguish
between APIs entities that are public and those that are published (Fowler, 2002). In the third
case (c) all variables implement different concepts of the application domain.
Remark. In the cases a) and b) the meaning of a program element (the mapping between the
element and its corresponding concept from the domain ontology) can be computed by using
the information from the definition of the Java language (e. g. every variable with the type “int”
is an “IntegerVar” and every program element with the keyword “public” in front of it is an
“API program entity”). In case c), the interpretation requires information that is “outside” of the
language (i.e. not captured in the language definition).

2

The same program fragment can have different intentional meanings depending on
the domain ontology serving as semantic domain for the intentional interpretation.

1http://www.oed.com
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Variable
private int account;

public static int age;

public final int NORTH = 1;

public final int SOUTH = 2;

PrimitiveVar ConstructedTypeVar

Integer Var Boolean Var Double Var

a) Ontology of variable types

ProgramEntity

API Prog. Ent. Hidden Prog. Ent.

b) Ontology of APIs elements visibility

Thing

Cardinal Points Account

North South

c) Ontology of the business domain

Age

Public Entity Published Entity

private int account;

public static int age;

public final int NORTH = 1;

public final int SOUTH = 2;

private int account;

public static int age;

public final int NORTH = 1;

public final int SOUTH = 2;

Figure 3.8: The same program fragment can have different intentional meanings

3.3.1 Definition

Definition 3.3.1 (Program): A program consists of a set of named program entities (e. g. classes,
methods, and variables) and program relations among them. The program entities correspondprogram

to (part of) the nodes of the abstract syntax graph and the relations correspond to (part of)
syntactic relations between these nodes.

A formalization of programs with the help of labeled graphs is presented in Section 3.4.2. In
in Chapter 6.3 we discuss in detail the kinds of program elements that we consider and their
relations by presenting an ontology of Java programming knowledge. Similarly, a formalization
of domain ontologies as labeled graphs is presented in Section 3.4.3. For the moment, in order to
keep the presentation simple, it is enough to regard programs as sets of related program elements
and ontologies as sets of related concepts, whereby concepts can be understood (simplified) as
the content represented by words in the natural language.

Definition 3.3.2 (Intentional interpretation and implementation): Let C be a set of concepts
defined by a domain ontology and P be a set of program elements. The intentional interpretationintentional interpretation

is a function
−→
i : P → ℘(C) that associates a program element to the set of concepts that it

implements. The intentional implementation is a function
←−
i : C → ℘(P ) that associates aintentional

implementation concept to the set of program elements that implement it.
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In Figure 3.9 we present an intuitive view over the intentional implementation and interpre-
tation. For simplicity, we do not depict in the figure the types of relations between program
elements or between concepts from the ontology.

Notation. The symbol
←→
i denotes both intentional implementation and interpretation.

i : P℘C 

Program Entities  (P) Domain Concepts (C)

interpretation:

i :C℘P implementation:

Figure 3.9: Intentional interpretation and implementation

Example 3.7: Interpreting a program

In Figure 3.10 we present a piece of code that implements a part of a traffic lights controller
(left) and two domain ontologies (right): one contains concepts related to the modeled domain
and the second contains concepts related to the design. The intentional interpretation, given by
the relation between a program element to a set of concepts that it refers to, is presented with a
dotted line. We can remark that the class State implements both the concept STATE (belonging
to the business domain) and the concept SUBJECT (belonging to the design domain).

class Transition { 
   void register() { ... }
   void notifyObservers() { ... }
}

class State {

   void register() { ... }
   void notifyObservers() { ... }
}

class TrafficLightsController {
   State red, green;
   Transition rg, gr;
}

Entity

State Transition

Red Green RedGreen GreenRed

hasSource

hasTarget

DesignEntity

Class Method

Observer Subject Notify Register
aggregates

hasParameterOfType

notifyObservers

hasMethod

Figure 3.10: Program (left); domain ontologies (right); intentional interpretation (dotted line)
2
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Discussion

1) What is the “domain” of a “domain ontology”? We have defined the intentional
meaning as a mapping between the programs and a domain ontology. Depending on what the
domain under consideration is, the intentional meaning can take many forms. Below we present
several examples of domains:kinds of domains

i) Language syntax: If the domain is the syntax of the Java language then the intentional in-
terpretation is the classification of program elements according to their type in the syntax
graph (as shown in Figure 3.8a). In this case the domain concepts are explicitly repre-
sented in programs and therefore there is an exact correspondence between a part of a
given program and a concept from the ontology. In this case the intentional interpretation
is recovered by parsing the program.

ii) Design patterns: If the domain is “design patterns” then the intentional interpretation
represents the identification of design patterns (Florijn et al., 1997). In this case the mean-
ing is represented by an ontology of design patterns (a fragment of such an ontology is
presented in Figure 3.4).

iii) Programming technologies: The source code contains a great bunch of knowledge that
is related to programming technologies such as XML, graphical user interface (GUI),
databases or communication. Even if these domains exist mostly only in the “computers
world” (i. e. they are unknown to non-programmers), they contain a big amount of knowl-
edge that is used in every program. In Section 9.3 we will take a closer look at this domain
and propose a method for automatically extracting the domain knowledge by analyzing
the commonalities of several domain specific APIs.

iv) Application (or business) domain: The most interesting cases are represented by the
domains that are completely independent from the “world of programming”. Examples
of such domains are banking or document processing, and are referred in this thesis as
application or business domains . The characteristics of these domains is that most of thebusiness domain

times there is no clear correspondence between their concepts and the language constructs.

Remark. While we do not exclude the domains closely related to programming languages –
i. e. i) and ii) – we focus in this work on highly intentional domains (e. g. the business domain).
The concepts of the highly intentional domains cannot be trivially (directly) expressed in pro-
gramming language constructs.

2) Interleaving and delocalization. Many times a part of a program can implement different
concepts. This phenomenon, known as interleaving, was presented in Section 2.2.3.1. We
capture these situations by requiring the co-domain of

−→
i to be the power-set of concepts (℘(C)).

In many cases the interleaving involves concepts of different domains (described in different
ontologies). In the case when more domains are interleaved in the code, then each domain
ontology enables an interpretation of the program from the point of view of that domain. A
program element can be related with more concepts from different ontologies (as we illustrated
in Figure 2.8 and Figure 3.10).
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Many times a concept (or aspects thereof) is implemented in different program parts – a phe-
nomenon known as delocalization and presented in Section 2.2.3.2. We capture these situations
by requiring the co-domain of

←−
i to be the power-set of program elements (℘(P )).

3) What does “implement” mean? We defined the intentional interpretation to map a
program element to “a set of concepts that it implements”. In Section 3.5 we refine the notion of
implementation of a concept along three directions: reference of concepts, definition of concepts,
and representation of concepts.

4) How can the implementation and interpretation be recovered? Intuitively, the
functions

←→
i are similar to the knowledge of a senior programmer (“project guru”) that knows

exactly where the domain concepts are implemented. If no guru is available, these functions can
be defined by using other sources of information such as the documentation or the identifiers
names. In Part IV we take the second approach and use the similarities between the names
of identifiers and the names of concepts in order to recover

←→
i . A fundamental restriction on

the functions
←→
i is made by the available domain knowledge (ontology) – i. e. intuitively, if the

“project guru” does not know a domain concept then he cannot find (or recognize) it in the code.

5) Limitations. With respect to the definition of
←→
i we notice the following limitations:

a) No program terms. We defined the intentional interpretation for individual program ele-
ments. Our definition does not take into consideration program phrases (program terms). With
other words, our semantic is not compositional.

b) No conceptual terms. We assume that all the entities that can be recognized are explicitly
defined as concepts in the ontology. We cannot use the predefined concepts to define new ones
(i.e. we do not use any mechanism for defining terms at the conceptual level). In our view all
concepts need to be lexicalized – this means that they should have a representation through a set
of words (formally described by Definition 3.4.2).

3.3.2 Comparison with Other Notions of Program Meaning

The subject of this work is to define the meaning of a program in terms of the domain knowledge
that it implements. In the following we compare the intentional meaning with program semantics
and with pragmatics.

3.3.2.1 Program semantics

One of the most common ways to define the semantics of a programming language is in a
denotational style. The semantics of a language is given in a denotational manner through a denotational semantics

of a languagemapping of syntactic constructs (Synt) to a semantic domain (Sem):

M : Synt→ Sem

This mapping associates a mathematical object (e. g. number, tuple) to each phrase of the lan-
guage. The semantic domain should be general enough in order to be able to express all pro-
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grams that can be written in the language. In the case of general purpose languages, the seman-
tics is defined thus in an ontologically neutral manner.

The syntax of a language defines the language constructs and the basic rules to combine these
constructs in order to form terms. What is not directly supported by the language constructs, is
expressible (if possible) only as terms (e. g. programs). If the programming languages semanticsprogram semantics

is compositional, the semantics of a program is given through a composition of the semantics of
its parts. Once the meaning of the language is defined then the meaning of its programs can be
computed based on the recursive composition of the semantics of the program parts.

The generality of the semantic domain does not allow the explicit representation of domain
concepts. As we present in the next example, an object can be interpreted as a state machine.
Even if this view enables an accurate description of objects from the point of view of the com-
putation that they perform, it is (most of the times) inappropriate for the manner in which people
understand programs in analogy with the phenomena from reality.

Example 3.8: Objects can be regarded as state machines

Below we present an example of a simple class that models the concept FILE: it has two attributes
of type boolean that are true if the file is OPEN and if it is READ ONLY. There are several methods
that set the values of these attributes. In Figure 3.11 we present the state automaton that models
the semantics of the objects of class File. The mathematical objects (e. g. state machines in our
case) do not offer (almost) any information about the modeled domain.

class File {
boolean isOpen = false, isReadOnly = false;
void open() { isOpen = true; }
void close() { isOpen = false; }
void setReadOnly() { isReadOnly = true; }
void setReadWrite() { isReadOnly = false; }

}

isOpen == false
isReadOnly == false

open

isOpen == true
isReadOnly == false

close

isOpen == false
isReadOnly == true

isOpen == true
isReadOnly == true
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Figure 3.11: The state machine that describes the behavior of the objects of class File

In a similar manner, classes that implement other domain concepts such as PERSON, ACCOUNT

(see below) can be interpreted as state machines. Describing objects of these classes as state
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machines is inappropriate for communicating among programmers that take part in a software
project, or with domain experts – e. g. a banking expert would not regard its clients and accounts
as state machines.

class Account {
String accountName;
int sum;

void setSum(int newSum) {
sum = newSum;
}
}

class Person {
String personName;
int age;

void setAge(int newAge) {
age = newAge;
}
}

2

We define the intentional meaning of a program element p ∈ P through the intentional inter-
pretation function:

−→
i : P → ℘(C). The meaning of a program element is given by a set of

domain concepts that it implements. Each concept is part of a domain ontology and is defined
by its relations with other concepts from the ontology. The concepts reflect the knowledge that
humans have about the modeled domain.

As opposed to the program semantics, we focus on domain meaning of programs.

The two semantic faces of a program are illustrated in Figure 3.12: On the one hand, in the “semantic faces” of
programslower part of the figure, we have a classical (mathematical) interpretation of a program based

on the formal semantics of the language in which the program is written. On the other hand, in
the upper part, we regard programs from the point of view of how they implement the domain
concepts.
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Figure 3.12: Human vs. computer - oriented interpretation of programs
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In the following we present examples of differences between the semantics of programs and
their intentional meaning.

Example 3.9: Programs with the same formal semantics but different intentional meanings

Below we give some code fragments that have the same semantics in the classical sense (pro-
gramming language semantics) but have different meanings from the point of view of the appli-
cation domain:

public static int main(String[] args) {
int brutto = Integer.parseInt(args[0]);
int taxRatio = Integer.parseInt(args[1]);
int netto = brutto * (1 - taxRatio);
System.out.println(netto);

}

public static int main(String[] args) {
int pageWidth = Integer.parseInt(args[0]);
int marginRatio = Integer.parseInt(args[1]);
int textWidth = pageWidth * (1 - marginRatio);
System.out.println(textWidth);

}

In the pieces of code from above we presented how two different real-world situations (i. e.
computing the netto salary (left), and computing the text size (right)) can be encoded in a pro-
gram in an identical manner. Even if these code fragments implement clearly different situations
from the real world and thus have different intentions, the formal semantic of these fragments
is identical. By ignoring the intent of these fragments (and thereby considering them to be the
same), we can draw flawed conclusions (e. g. we might consider these code fragments to be code
clones which is obviously not the case).

2

The difference between the intentional meaning and the semantics of the above code frag-
ments can be remarked through different interpretations of the above fragments in plain English.
If we take into account the intentional meaning we can explain the left code fragment with the
following sentence: “This code fragment computes the netto salary given the brutto income and
a tax ratio.” If the intentional aspects would be left out, we can describe the same program frag-
ment as: “Given x, y, this code fragment prints the result of computing x ∗ (1− y)”. The latter
explanation addresses the program fragment from the point of view of the language semantics
and therefore, it is true for both code fragments. The former explanation cannot be used for the
right code fragment (that computes the page size).

Two programs can have the same formal semantics but different intentional meanings.

Example 3.10: Programs with the same intentional meaning but different semantics

Below we present two different implementations of the concept PERSON. These code frag-
ments have different formal semantics even though they obviously implement the same domain
situation.

class Person {
String name;
Account myAccount;
}

class Account {
String accountID;
int accountStatus;
}

class Person {
String name;
String accountID;
int accountStatus;
}
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A more tricky example is given below and addresses two possible implementations of the
searching functionality. Even if these two functions have different semantics (the function on
the right is a flawed searching algorithm because it does not check the last position in the list)
the methods have the same intentional meaning, namely to perform the action of searching.

Item search(ArrayList<Item> list, String name) {
for (int i = 0; i < list.size(); i++)

if (list.get(i).getName().equals(name))
return list.get(i);

return null;
}

Item search(ArrayList<Item> list, String name) {
for (int i = 0; i < list.size() - 1; i++)

if (list.get(i).getName().equals(name))
return list.get(i);

return null;
}

The above fragment suggests that we can define a bug to be a case where an implementation
of an intention is not a model of the intention.

2

Two programs can have the same intentional meaning but different semantics.

Remark. An important distinction between the classical program semantics and intentional
meaning of a program is that in the latter case the meaning usually stays outside of the language
definition – i. e. there is no definable mapping between the language constructs and the appli-
cation domain (e. g. we cannot define a mapping between the constructs of the Java language
and the entities from the banking domain). From this point of view the intentional meaning
is more related with the use of the programming language and thereby our work concerns the
pragmatics.

3.3.2.2 Pragmatics

Pragmatics is the study of language use in contrast with the syntax and semantics, which are
the study of language structure and meaning. In natural language processing, semantics versus
pragmatics is the distinction between literal meaning and the speaker’s meaning. The pragmatics
considers the ability of the users of a language to communicate more than what is explicitly
stated. The meaning of the speaker can be interpreted differently through different bindings of
the indexicals (e. g. pronouns like “he”, “she” can be bound differently in different contexts) or
through different background knowledge.

Example 3.11: Interpreting the pragmatic meaning beside the literal meaning

For example, by saying that:

“John’s wife is a mathematician.”

one may understand (pragmatically) that John is married and that she knows calculus. This
additional information is not conveyed directly by the sentence but it is due to the background
knowledge (domain knowledge) of the reader.

2
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In order to compare the pragmatics to intentional meaning, we need to decide whether the
additional bits of information (e. g. identifiers is the most common source of information), that
link the program to the modeled domain, belong to a program. For domains other than program-
ming, the formal definition of programs (as terms over a language) does not tackle the additional
information and thereby the intentional interpretation is outside the language definition.

From the point of view of the programming languages, our work regards the
pragmatics – we use background knowledge (ontologies) to interpret the programs.

3.4 A Rigorous Representation of Programs and Concepts

In this section we present our formalization of programs and domain ontologies as labeled
graphs. This formalization will represent the basis for the further parts of this dissertation: the
characterization of the reflexion of domain knowledge in programs (Part III), and the automation
of performing intentional analyses (Part IV).

3.4.1 A Unified Meta-Model

In Figure 3.13 we present a meta-model that explicitly considers the concepts and conceptual
relations (the domain ontology), the program elements and program relations, and the mappings
between the program elements and concepts. Instances of this meta-model, or parts thereof, are
(implicitly and mentally) built in many code comprehension activities. Having such a represen-
tation of programs explicit enables us to reason about programs in terms of the domain concepts
that they implement.

ProgramElement Concept

Relation

Conceptual Layer
(domain ontology)

Program Layer

ProgramRelation

C

eΩe∏

P

(interpretation)
i

(implementation)
i

Figure 3.13: A unified meta-model for representing programs, their modeled domain and the
relation between them

Our main aim is to use the intentional meaning to describe and quantify the reflexion of the
domain knowledge in programs (Chapter 4). In order to do this we need a rigorous description
of both programs and domain knowledge. Intuitively, we can regard this description as being
layered according to the domain appropriateness of its entities (Figure 3.14): the programs arelayered representation of

programs less appropriate to their domain in comparison with the domain concepts shared in the ontol-
ogy. In Chapter 7 we will extend this layered representation with a new layer (placed between
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conceptual and program layers) that contains the information about the names of program ele-
ments. This information is used in practice to link the program and the conceptual layers and
will represent the basis for our automation.
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Figure 3.14: An intuitive view over the program and conceptual layers.

3.4.2 The Program Layer

We abstract programs as labeled directed graphs whose nodes are program elements and whose
arcs are typed relations between these program elements.

Definition 3.4.1 (Program layer): We define the program layer Π to be the triple: program layer

Π = (P, ΣΠ, eΠ)

where,

• P is a set of program elements (e. g. classes, methods, variables),

• ΣΠ is the set of elements representing the types of program relations among the elements
from the set P ,

• eΠ : P × P → ΣΠ ∪ {ε} is a function that returns the type of the edge between two
program elements or ε if there is no relation between these program elements.

Configurations of the program layer.

The set of program elements and of relations that are considered depends on the purpose of the
analysis. In this thesis, we will use two configurations of the program layer:

1) The entire program ( ΠProg). ΠProg represents the program layer obtained from the
entire program. Depending on the programming language, the set of program elements types
and of relations types can be different. In Section 6.3 we perform an in-depth analysis of the
types of program elements in a Java program and on the relations among them. To discuss the
implementation of domain concepts in programs, it is sufficient that the set P contains classes,
attributes, methods, parameters and local variables and that the set ΣΠProg contains the following
relations:

ΣΠProg = {hasSupCls, hasType, hasMeth, hasAcc, hasAtt, hasRetType, hasParam}
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The meaning of these relations is given in Table 3.1.

Relation Source (S) Target (T) Description
hasSupCls class or interface class or interface S extends (implements) T
hasAtt class or interface attribute S has attribute T
hasMeth class or interface method S has method T
hasAcc class or interface accessor method S has accessor method T
hasType variable type S has type T
hasParam method parameter S has parameter T
hasRetType method type S has return type T

Table 3.1: Relations types of the program layer

Remark. Beside the relations generated through the program syntax, in Table 3.1 is also a re-
lation generated by Java programming idioms (hasAcc). In Section 6.3 we present a richer
set of program relations by considering beside the syntactical relations also those generated by
programming idioms and those between elements of the core library.

2) The API (ΠAPI ). ΠAPI represents a projection of ΠProg by considering only the program
elements that belong to the public interface: public classes, public attributes, public methods
and parameters of public methods. We use the same set of relations as in the case of ΣΠ

Prog.

Example 3.12: Example of a program layer

public class Shape { ... }
public class Rectangle extends Shape {
   int _x, _y;
   public void setLocation(int x, int y) {...}
   public void setLocation(Point p) { ... }
   public Size getSize( ) { ... }
   public Object clone() { ... }
}

P = {Shape, Rectangle, setLocation, x, y, setLocation, 
                    Point, p, Size, getSize, Object, clone}

hasAcc(Rectangle) = {setLocation, setLocation, getSize}

hasSupCls(Rectangle) = {Shape}

hasParam(setLocation) = {x, y}

hasParam(setLocation) = {p}

hasType(x) = {int}

hasType(y) = {int}

Rectangle

Shape

getSizesetLocationsetLocation

x y p

hasType(p) = {Point}hasMeth(Rectangle) = {clone}
clone

Object Size

hasRetType(clone) = {Object}

hasRetType(getSize) = {Size}

hasRetType hasParhasPar

hasRetType

hasSupCls

hasM
eth hasAcc

hasAcc

hasAcc

Figure 3.15: Program layer example (with the ΠAPI configuration)

In Figure 3.15 (left) we present an example of a program that contains two classes: Shape and
Rectangle. The class Rectangle contains several public methods and two attributes with the
“package” visibility. In the center of the same figure we present an instantiation of the program
layer and illustrate the content of the sets that define ΠAPI . We need to remark that the program
layer does not contain the attributes x and y because they are not declared public. On the right
side of the Figure 3.15 we illustrate the graph-based representation of the program layer.

2
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Remark. Given two nodes of the program graph, the type of the edge between them tells us
whether the nodes represent classes, methods, attributes and so on. For example,
hasParam(setLocation, x) tells us that setLocation is a method and x is a parameter.

3.4.3 The Conceptual Layer

As presented in the last sections, we use (light-weighted) domain ontologies to define the se-
mantic domain. We describe domain ontologies through a set of triples of the form: “concept
– relation – concept”. These triples can be represented as labeled graphs whose nodes are the
concepts and whose edges are the relations between these concepts.

concept
Definition 3.4.2 (Concept): We define a concept to be the tuple:

(Names,Gloss)

where,

• Names is a set of names of the concept, and

• Gloss is a gloss entry in natural language that uniquely describes the concept.

Definition 3.4.3 (Conceptual layer): We define the conceptual layer Ω to be the triple: conceptual layer

Ω = (C, ΣΩ, eΩ)

where,

• C is a set of concepts that are relevant for understanding the program; beside the concepts
directly implemented in the program, this layer also contains concepts that are strongly
related with them.

• ΣΩ is the set of elements representing the types of conceptual relations,

• eΩ : C ×C → ΣΩ ∪ {ε} returns the type of the edge between two concepts or ε if there is
no edge between these concepts.

The conceptual layer has a generic form and, in order to be usable in practice, it needs to be
instantiated with concrete relation types. Below we present a configuration of the conceptual
layer. The types of the conceptual relations directly affect the expressivity of the conceptual
layer – the more domain appropriate the relations are, the better (more explicit) can we describe
that domain; but, the harder to map the conceptual layer on programs it is.

Configuration of the conceptual layer

We instantiate the set ΣΩ with four relation types:

• isA defines the generalization / specialization relations between two concepts,
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• hasProp between a concept and one of its properties,

• actsOn between a concept representing an action and the concept which stands for the
entity on which it acts, and

• isDoer between a concept representing an agent and the concept that stands for the action
that this agent performs.

ΣΩ = {isA, hasProp, actsOn, isDoer}

In Section 6.2 we present a richer set of conceptual relations based on the “Suggested Upper
Merged Ontology” (Niles and Pease, 2001b). However, the above conceptual relation types
suffice for describing a wide variety of domain conceptualizations and thereby for describing
the important issues related to the way the domain knowledge is reflected in the code.

Example 3.13: Example of a conceptual layer

In Figure 3.16 (left) we present an example of a set of concepts described in fragments of (highly
simplified) natural language sentences. Based on these fragments, we illustrate an instantiation
of the conceptual layer (center). On the right-hand side of the figure we illustrate the conceptual
graph that represents the ontology. In this example we have eight concepts (i. e. described in the
middle of the figure by the set C) and two relations (i. e. isA and hasProperty).

As we notice, this conceptual layer is an ontology fragment of the geometry domain that is
implemented by the program from Figure 3.15. In addition to the concepts directly implemented
in the program, we have a set of other related concepts (i. e. WIDTH and HEIGHT).

isA

isA

Shape       hasProperty   Location
X            isA             Location  
Y            isA             Location
Rectangle   isA             Shape
Rectangle   hasProperty   Width
Rectangle   hasProperty   Height
Width       isA             Size
Height       isA             Size

C = {Shape, Rectangle, Location, X, Y, Width, Height, Size}

hasProperty(Rectangle) = {Width}

isA(Rectangle) = {Shape}

hasProperty(Shape) = {Location}

isA(Width) = {Size}

isA(x) = {Location}

isA(y) = {Location}

Rectangle

Shape

Location

x y

isA(Height) = {Size}

Size

Width HeightisA

hasProperty

hasP
rope

rty

hasProperty(Rectangle) = {Height}

Figure 3.16: Conceptual layer example

2

Remark. In our definitions of the program and conceptual layers configurations, the set of re-
lation types is fixed and the sets C and P are extensible with new concepts and respectively
program elements. The sets ΣΠ and ΣΩ define the “language” for expressing the program and
the conceptual layer: ΣΠ defines our abstraction over programs and ΣΩ defines what can we
express in the conceptual layer.
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Notations

1) Relations as predicates. Another manner to express the relation between two entities e1, e2

(program elements or concepts) is through a binary predicate – e. g. hasType(a, int) means that
the program element a has type int.
2) Relations as functions. Each relation type (program relation σΠ or conceptual relation σΩ)
can be written as a function that maps a program element (or a concept) to the set of related pro-
gram elements (respectively of concepts) – e. g. hasAtt : P → ℘(P ), hasAtt(Rectangle) =
{ x, y}.
3) Accessing the kind of a program element. Whenever we need to access directly the type of
a program node we use a unary predicate that corresponds to the type of the node. For example
Cls(Person) holds if the program element Person belongs to P and if it is a class.

3.5 Relating Program Elements and Domain Concepts

In Section 3.3 we defined the
←→
i functions that make the link between domain concepts and the

program elements that “implement” them. We left the meaning of “implement” underspecified.
In the next subsections we elaborate on this with the help of the following functions: refinements of the

implementation

• Reference of concepts in the code represents the weakest relation between the program
and conceptual layers – namely the case when a program element refers to a concept.

• Definition of concepts in the code represents the classes that define the characteristics and
functionality of a concept.

• Representation of concepts in the code represents the program elements that are used to
internally encode the concepts.

We use these functions to describe different aspects of the implementation of domain
concepts in programs.

Remark. Whenever we refer to one of these functions without caring about which one, we will
use the notion of “implementation”.

3.5.1 Reference of Concepts

There is a many-to-many relation between program elements and the domain concepts that they
refer to. We capture this mapping through the functions

←−−
Ref and

−−→
Ref .

Definition 3.5.1 (Reference of concepts): Let Ω = (C, ΣΩ, eΩ) be a conceptual layer and
Π = (P, ΣΠ, eΠ) be a program layer. We define the function reference of concepts

←−−
Ref : C → ℘(P )
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that associates to a concept the set of program elements from the program that directly refer to
it, and the function

−−→
Ref : P → ℘(C)

that associates to each program element a set of concepts that are referred by it. The correlation
between these functions is expressed through the following equation:

−−→
Ref (p) =

{
c ∈ C | p ∈

←−−
Ref (c)

}
When we refer to both functions we use the following notation:

←→
Ref .

Example 3.14: Examples of
←→
Ref functions

Based on the program layer from Figure 3.15 (extended with attributes x and y) and on the
conceptual layer from Figure 3.16, we exemplify below several instances of

←−−
Ref and

−−→
Ref :

←−−
Ref (SIZE) = {getSize}

←−−
Ref (SHAPE)={Shape}

←−−
Ref (RECTANGLE)={Rectangle}

←−−
Ref (X) = { x, x}

←−−
Ref (Y) = { y, y}

←−−
Ref (WIDTH) = ∅

←−−
Ref (HEIGHT)=∅

←−−
Ref (LOCATION) = {setLocation,setLocation}

−−→
Ref (getSize) = {SIZE}

−−→
Ref (Shape) = {SHAPE}

−−→
Ref (Rectangle) = {RECTANGLE}

−−→
Ref (x) = {X}

−−→
Ref ( x) = {X}

−−→
Ref (setLocation) = {LOCATION}

−−→
Ref (clone) = ∅

−−→
Ref (p) = ∅

−−→
Ref (setLocation) = {LOCATION}

We notice that the concepts HEIGHT and WIDTH are not implemented, that the method clone
does not refer any concept and that there are several concepts (e. g. LOCATION) referred by more
program elements.

2

Discussion. In the context of program comprehension, the function
←−−
Ref is similar to concept

location (Rajlich and Wilde, 2002) and the function
−−→
Ref to concept assignment (Biggerstaff

et al., 1993). However, there are several differences:comparison between←→
Ref and concepts
location and assignment 1. as concept location is defined by Rajlich and Wilde (2002), the concepts are mapped to

fragments of code and not to individual program elements:

“All domain concepts should map onto one or more fragments of the code. The
process of concepts location is the process that finds this code.”

Furthermore, when the location of concepts is based on names Rajlich and Wilde (2002)
note:

“The concept is implemented not only in the place where the identifier was
found, but also in previous and following statements, the variables that are
used in these statements and so on.”
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This means that (arbitrary big) fragments of code implement a concept. According to our
definition the concepts are assigned to individual program elements rather than program
fragments.

2. the notion of ’implementation’ defined by Rajlich and Wilde (2002) (see the above quote)
is more ambiguous and under-specified. In contrast with this, we define

←−−
Ref to map con-

cepts only to program elements that refer to them (and not to arbitrary program fragments
that implement them). A concept can be implemented by a fragment of program without
any program element to directly refer to it; however, whenever a program element refers
to a concept it also contributes to its implementation.

We assume a tighter relation between domain concepts and the code. Instead of
linking the concepts to code fragments we link them to individual program elements
and instead of using the “implementation” as meaning of the links we assume that

program elements “refer” to the concepts.

In Chapter 5 we will use the
←→
Ref functions to characterize the reference of domain concepts

in programs. The manner in which program elements refer to concepts influences the measure
in which the implementation of domain concepts in programs can be explicitly accessed by
programmers.

3.5.2 Definition of Concepts

Many concepts are not only referenced by some program elements but also defined as program
abstractions. There is a many-to-many correspondence between the concepts and the program
abstractions that define them: a concept can be defined in different program parts through dif-
ferent abstractions and an abstraction can define more concepts.

Definition 3.5.2 (Definition of concepts): Let Ω = (C, ΣΩ, eΩ) be a conceptual layer and
Π = (P, ΣΠ, eΠ) the program layer. We define the function definition of concepts

←−−
Def : C → ℘(P ),

←−−
Def (c) = {p ∈ P | Cls(p) ∧ c ∈

−−→
Ref (p)}

that associates to a concept the program elements that define it, and the partial function

−−→
Def : P ↪→ ℘(C)

that associates to a program element the set of concepts that it defines. The correlation between
these functions is expressed through the following equation:

←−−
Def (c) = {p ∈ P | c ∈

−−→
Def (p)}

When we refer to both functions we use the following notation:
←→
Def .
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We consider that classes are the most important means in object-oriented languages for defin-
ing domain concepts. The function

−−→
Def is defined only on classes and this is why it is partial (in

the above definition we require that:
−−→
Def : P ↪→ ℘(C)).

Example 3.15: Examples of definition of concepts

In Figure 3.15, the concept RECTANGLE is defined by the class Rectangle. Not all the concepts
referred in the program are also defined. For example, in the program layer from Figure 3.15, the
concept X is referred through the parameter x of the method setLocation(int x, int y).
However, the concept X is not defined in the program. In order to manipulate it at the program
level, it is represented in the program through the type int.

2

Discussion. We make a distinction between the case when a program element defines a do-
main concept and the case when a program element only refers a domain concept. Once a
domain concept is defined, it can be subsequently instantiated and used in a program. Since
a definition of a concept can be used at the program level, domain concepts are defined only
through classes: the interface of the class represents the way in which the implementation of
the corresponding domain concept can be used in the program. The implementation of the class
represents the semantic of the concept as defined in the program.

3.5.3 Representation of Concepts

Clearly, not every concept from the domain is defined in a program. However, in order to
manipulate the concepts, a program provides representations for them. There is a many-to-
many correspondence between the concepts and the data types that are used to represent them:
a concept can be represented in different program parts through different data types and a data
type can be used to represent more concepts.

Definition 3.5.3 (Representation of concepts): Let Ω = (C, ΣΩ, eΩ) be a conceptual layer and
Π = (P, ΣΠ, eΠ) be the program layer. We define the functionconcepts representation

←−−
Rep : C → ℘(P )

←−−
Rep(c) = {p ∈ P | ∃p′ ∈ P.

−−→
Ref (p′) = {c} ∧ hasType(p′) = p}

that associates to a concept the set of types that are used to represent it, and the function
−−→
Rep : P → ℘(C)

that associates to a program element the set of concepts that are represented by it. The correla-
tion between these functions is expressed through the following equation:

−−→
Rep(p) = {c ∈ C | p ∈

←−−
Rep(c)}

When we refer to both functions we use the following notation:
←→
Rep.
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Intuitively, if a variable references a single concept then the concept is represented in the
program through the type of this variable. For example, in Figure 3.15 the concepts X and Y are
represented as integers.

Discussion. We consider that a concept is represented in the program through the type of
the variable that refers to it. This is known in the literature of programming languages as “rep-
resentation commitment” and is made many times during the development phase. From the
programming language point of view choosing a representation is a “binding time commitment”
(Gunter et al., 1996). The problem of changing this early commitments during the evolution of binding time

commitmentthe software is challenging. Once the concept NAME is represented, for example, as a String
and it is used in many places in a program, it is very difficult to change its representation (for
example as a class Name).

The importance of the correspondence between the concepts implemented in a program and
the program abstractions used to represent them is widely acknowledged in the program compre-
hension literature. For example, Bastani and Iyengar (1987) empirically investigate the effects
of using (or not) appropriate data structures for implementing abstract data types on errors iden-
tification. One of the experiments involved finding errors in the implementation of the ’push’
operation of a stack. This operation was implemented in three procedures, each of them using
a different data structure (e. g. array, linked list). The results of the experiments suggest that the
difficulty in comprehending a program increases as the opaqueness of the mapping between the
representation and abstract data types increases itself.

From the knowledge representation point of view, if a variable refers to a domain concept
(e. g. the variable name refers to the domain concept NAME), then by choosing the type of this
variable to be, for example, String we perform an encoding bias. One of the important criteria encoding bias

for building ontologies for knowledge sharing is the minimal encoding bias of concepts (Gruber,
1995). In the following example we present two representation anomalies.

Example 3.16: Examples of representation anomalies

int c = getColor();
int r = getRadius();
aCircle.setRadius(c);
aCircle.setColor(r);

Point p1 = aCircle._pos;
Point2D p2 = new Point2D(p.getX(), p.getY());
anotherCircle.move(p2);

Figure 3.17: Examples of anomalies introduced by representation

In Figure 3.17 we depicted examples of
←−−
Rep and

−−→
Rep. The concept POSITION is represented

in the program through the classes Point and Point2D. Therefore, in order to combine different
instances of this concept at the program level we need to convert between representations (right).
The primitive type int is used to represent the domain concepts COLOR and RADIUS and thus
we can use different implementation of concepts at the program level in an inappropriate manner
(left).

2

In Chapter 5 we present a set of defects generated by the inappropriate and non-homogeneous
representation of concepts in programs.
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Comparing the Reference, Definition and Representation of Concepts

Regarding the difference between the reference, definition and representation of concepts we
make the following remarks:

1) While the reference of concepts affects their identification in the program, the representa-
tion of concepts affects the manners in which the clients can manipulate and compose the con-
cepts at the program level. Figure 3.17 presents two such examples of anomalies which originate
from using the same representation for two different concepts or using different representations
for the same concept.

2) The definitions of concepts tell us about the explicitness of the program abstractions. Once
a concept is defined at the code level, it can be subsequently used in other program parts. There
is a duality between computation and structure in a program: on the one hand, once the concepts
are explicitly defined, the computations needed to manipulate them are more simple; on the other
hand, if concepts are not explicitly defined, the amount of computation increases.

3) All the functions defined above can be expressed in terms of
←−−
Ref . Therefore, the key for

automatizing the computation of
−−→
Ref ,

←−−
Rep,

−−→
Rep,

←−−
Def and

−−→
Def is the automation of

←−−
Ref . In

Chapter 7 we present our approach for locating concepts in the code in an automatic manner,
which is based on the similarities between the names of identifiers and the names of concepts.
Remark. These functions do not cover the whole spectrum of relations between domain con-
cepts and the program elements. One could easily imagine other (more complex) functions that
elaborate even more on the notion of “implementation”. However, we claim that these functions
are enough in order to characterize a wide variety of problems that typically occur in the pro-
gramming practice and that are rooted in the mismatched reflexion of the domain in programs.

3.6 Relating Conceptual and Program Relations

There is a many-to-many mapping between the types of ontological relations (ΣΩ) and the types
of program relations (ΣΠ): a relation type between concepts can be reflected in the code through
several relations types between program elements and vice-versa. We capture this correspon-
dence through two functions: relations implementation

←−
t and relations interpretation

−→
t .

Definition 3.6.1 (Implementation and interpretation of relations): Let Ω = (C, ΣΩ, eΩ) be a
conceptual layer and Π = (P, ΣΠ, eΠ) be the program layer. We define the implementation of
relations to be the functionimplementation of

relations ←−
t : ΣΩ → ℘(ΣΠ)

that maps a relation type from the ontology to the corresponding relation types from the program
graph. The interpretation of relations is defined by the functioninterpretation of

relations −→
t : ΣΠ → ℘(ΣΩ)

that maps a relation type from the program graph to a corresponding relation type from the
ontology. The duality between these functions is expressed through the following equation:

−→
t (σΠ) = {σΩ ∈ ΣΩ | σΠ ∈ ←−t (σΩ)}
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When we refer to both functions we use the following notation:
←→
t .

Example 3.17: Examples of relations mapping

Below we present examples of mappings between relation types from our conceptual layer
and relation types from the program layer. Intuitively, the isA relation is implemented through
the hasSupCls or hasType relation, the hasProp relation is implemented through the hasAtt or
hasAcc relation, the actsOn relation through hasParam and isDoer through hasMeth.

←−
t (isA) = {hasSupCls, hasType}

←−
t (hasProp) = {hasAtt, hasAcc}
←−
t (actsOn) = {hasParam}
←−
t (isDoer) = {hasMeth}

2

In Section 6.4.2 we present in more detail possible implementation strategies of different
conceptual level relations. Also, due to different implementation decisions, many times the
mapping between conceptual and program relations is more complex – e. g. a conceptual relation
can be mapped to a sequence of program relations (Section 7.5.2). For example, as shown below,
the property of a concept can be implemented either direct (b); as an attribute of the sub-class
of the class implementing the concept (c); or as an attribute of a class that is aggregated by the
class implementing the concept (d). The more degenerate the implementation is the harder it is
to recognize the relations between concepts in programs.

Person hasProp Name class Person {
String name;

}

class Person { ... }

class Mother extends Person {
String name;

}

class Person {
Infos info;

}

class Infos {
String name;

}
a) b) c) d)

In Chapters 4 and 5 we discuss in detail the intricacies generated by different implementations
of concepts and relations.

Limitation: We implicitly assume that the conceptual level relations and the program relations
are at the same abstraction level – namely that different types of real-world relations among
concepts are directly implemented through different types of program relations that connect
the program elements implementing these concepts. In our framework, we have no way to
define new relation types in a program. The set of program relations types is fixed by the kind
of program elements that form the program layer. This is because in the current mainstream
object-oriented languages there is no language construct that allows the definition of relations
as first-class program entities. Abstract relations can be only defined through programming
trickery such as data structures (e. g. maps) or attributes of classes. The advantages to explicitly
define relations as first-class constructs in object oriented languages was recognized since the
80s (Rumbaugh, 1987).
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3.7 Summary and Roadmap

In order to bridge the abstraction gap between (application) domain concepts and their imple-
mentation in the code, we proposed to explicitly map program entities to concepts from domain
ontologies that they implement. We called this mapping the “intentional interpretation”. We
showed that this notion is complementary to the formal semantics (denotational theories) of
programming languages and is more close to pragmatics. We presented a rigorous model of in-
tentional meaning firstly by formalizing programs and domain ontologies as labeled graphs and
secondly by defining a set of mappings between programs and domain ontologies: reference of
concepts, definition of concepts, and representation of concepts in programs.

Roadmap. In the previous chapter we showed that abstract information is lost during the
software engineering process. In this chapter we proposed the intentional meaning as a solution
to recover this information by explicitly linking domain concepts with program entities. The
core of this dissertation contains two more parts:

• in Part III we use the intentional meaning to characterize the reflexion of domain knowl-
edge in the code. We do this by evaluating the level of isomorphism between the graph
based representations of programs and domain ontologies.

• in Part IV we focus on practical means to automate the recovery of the intentional mean-
ing. We concentrate on the use of similarities between the names of identifiers and of
program elements in order to recover

←→
Ref .
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Part III

Reflexion of Domain in Programs
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4 A Framework for Characterizing the
Reflexion of Domain in Programs

A good FORTRAN programmer can write FORTRAN code in any language.

Fortran Folklore

Abstract: Due to the conceptual gap between the domain knowledge and programming con-
structs the choice of a specific implementation strategy of domain concepts in programs is most
of the times ad-hoc. Many of the implementation decisions prevent a faithful correspondence
between the business domain and programs and this leads in turn to a variety of intricacies in
reflecting the domain knowledge in the code: domain concepts are left out from the implementa-
tion or program elements implement concepts that do not belong to the domain, distinct concepts
are compacted in the same program elements, groups of concepts are implemented in a distorted
manner and the same concept is implemented redundantly in more program parts. These issues
lead in turn to code decay and to programs that are hard to understand and maintain. In this
chapter we investigate these intricacies with the help of our formalization of programs and on-
tologies defined in the previous chapter. We develop a framework to characterize the reflexion
of the domain in programs with respect to: the measure in which the program covers the domain
concepts, the faithfulness of the implementation of groups of concepts, the ambiguity degree
in the implementation of concepts, and the logical redundancy. In Chapter 5 we will instan-
tiate this framework with concrete cases of mismatches and discuss their influence on typical
programming and maintenance activities and on the usability of APIs.

Structure of this chapter. In the introduction (Section 4.1) we present the ideal implementa-
tion of concepts that maintains an isomorphism between the domain ontology and the program.
After the introduction, we dedicate a section to each category of issues generated by the im-
proper implementation of domain concepts in the code: Section 4.2 characterizes the coverage
of the domain in programs, Section 4.3 characterizes the unfaithfulness in the implementation
of groups of related concepts, Section 4.4 presents the diffusion of concepts in programs, and
Section 4.5 presents the logical redundancy. The chapter ends with a summary (Section 4.6) and
a short outlook on the next chapters.
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4.1 Introduction

Most of the programming languages widely used today are Turing complete. This means that
from a computational point of view, they are equally powerful: each program written in a lan-
guage could be written in any other language as well. In the same time, there is a huge con-
ceptual gap between the domain knowledge that is usually implemented in programs and the
general purpose programming languages used for its implementation. With respect to this gap,
the differences among the general purpose programming languages (most of the times syntactic)
seem small for programmers. One can easily simulate the use of a language within another – e. g.
one can write object-oriented or functional-style programs in the “ANSI C” language (Schreiner,
1994) or can use (almost) any programming language for writing Fortran-like code. However,
when it comes to implementing a domain model in a program, the big conceptual gap can be
filled in a multitude of ways by taking different implementation decisions.

In practice there is almost never a “best implementation decision” and choosing an imple-
mentation in favor for another is most of the times only a matter of technical trade-offs (and
programming experience or taste) rather than an informed and systematically followed strategy.
These decisions preserve (or not) the similarity between the program and the groups of concepts
from the domain and this affects in turn different quality attributes of programs such as their
extensibility, understandability or usability of APIs. In order to understand and characterize
the relation between different implementation decisions and the quality attributes, we need to
explicitly and rigorously characterize the reflexion of the domain in the code.

We propose a framework for investigating the faithfulness of the implementation of
domain concepts in programs that implement them by measuring the level of

isomorphism between the ontology and program graphs.

In the following we present an introductory example in order to illustrate different implemen-
tation possibilities of the same domain situation.

Example 4.1: Different implementations of concepts about a family

In the upper-left part of Figure 4.1 we present a domain ontology that covers different members
of a family, their relations and basic information such as their names and addresses. We present
several code fragments that represent typical ways to implement these concepts. The ideal imple-
mentation, that mirrors the domain, is presented on the top-right side (Figure 4.1a). However,
such implementations (similar to those found in object-oriented programming textbooks) can
seldom be seen in the programming practice. Due to pragmatic constraints, programmers leave
out some domain concepts while adding implementation details that fill the conceptual gap be-
tween the domain knowledge and the programming constructs (Figure 4.1b). Furthermore, due
to different technical constraints (or lack of programming skills) the relations between related
concepts (e. g. PARENT and HUMAN) can be distorted in the code (Figure 4.1c). In Figure 4.1d
we present situations when the same program elements are used to implement different domain
concepts. Thereby the differences between concepts disappear at the code level between their
corresponding implementations (e. g. the concepts NAME and ADDRESS are both variables of
type String and thereby they can be interchanged in a program). Finally, many times the same
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   class Address { ... }
   class Name { ... } 
   class Human {
       Address address;
       Name name;
    }

Human

Parent

Mother Father

Child

NameAddress
hasProperty hasProperty

hasProperty

   class Parent extends Human { 
      Child[] children;
   }
   class Child extends Human { ... } 
   class Mother extends Parent { ...}
   class Father extends Parent {...}

isA isA

isA

   class Parent { ... }
   class Human extends Parent {
       Address address;
       Name name;
    }

   class Parent {
       String name;
       ArrayList children;
   }
   class Child { ... }

   class Human {
       String address, name;
       Human mother, father;
    }
    

   class Parent { 
       Name name;
   }
   class Child {
       String name; ... }

a) Ideal implementation

b) Abstraction and 
implementation details

c) Distorted 
implementation

d) Diffused 
implementation

e) Logical
redundancy

Figure 4.1: Introductory example: different implementations of family relations

concept is implemented redundantly in different ways in different parts of the program – in
Figure 4.1e the concept NAME is defined as a class and represented as a String.

2

Notation (Function application). Let f : A→ ℘(B) be a function that maps elements of a set A
to subsets of a set B. Let A′ ⊂ A be a subset of A. We use the following notation:

f [A′] =
⋃

x∈A′

f(x)

Let F ⊂ (A → ℘(B)) be a set of functions that map elements of a set A to subsets of a set B.
We use the following notation:

[F ](x) =
⋃
f∈F

f(x)

Notation (Navigating the graphs). Let Ω = (C, ΣΩ, eΩ) be a conceptual layer. To denote the
neighbors of a concept c ∈ C with respect to the relation type σΩ ∈ ΣΩ we use the following
notation:

σΩ(c) = {c′ ∈ C | eΩ(c, c′) = σΩ}

Remark (Presentation structure). Each mismatch characterization has the same structure: we
first define formally the (non-)mismatch situation, then we explain and give the intuition of the
formula and we discuss the causes and consequences of the mismatch.
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Note on reading the formulas. In this chapter we develop a formal framework to
characterize the reflexion of domain models in programs. We do this by investigating
the level of isomorphism between the conceptual and the program layers. Most of
the formulas used in this chapter contain several basic building blocks as described
below:

• −→i [
←−
i (c)] – means the interpretation (

−→
i ) of the set of program elements that

make up the implementation (
←−
i ) of the concept c.

–
−→
i [
←−
i (c)] = {c} means that each program element that implements the

concept c does not implement any other concept (i. e. injectivity).

• ←−i [
−→
i (p)] – means the implementation (

←−
i ) of the set of concepts that make up

the interpretation (
−→
i ) of the program element p.

–
←−
i [
−→
i (p)] = {p} means that each concept that is implemented by the

program element p is not implemented by any other program element.

• −→i [σΠ(p)] – means the set of concepts that are implemented by the program el-
ements that are neighbors of the program element p with respect to the relation
σΠ.

• ←−i [σΩ(c)] – means the set of program elements that implement the concepts
that are neighbors of the concept c with respect to the relation σΩ.

• ←−t (σΩ) – denotes the set of program level relations that are used to implement
the relation σΩ.

– [
←−
t (σΩ)][

←−
i (c)] – means the set of program elements that are neighbors

with the one of the program elements that belong to the implementation
of the concept c with respect to the implementation of the relation σΩ.

Definition 4.1.1 (Ideal implementation): Let Π = (P, ΣΠ, eΠ) be a program abstraction and
Ω = (C, ΣΩ, eΩ) a domain ontology. The implementation of Ω in Π is ideal iff:ideal implementation

∀c ∈ C. −→i [
←−
i (c)] = {c} ∧ ∀σΩ ∈ ΣΩ.

−→
t [
←−
t (σΩ)] = {σΩ} ∧ (4.1)

∀p ∈ P.←−i [
−→
i (p)] = {p} ∧ ∀σΠ ∈ ΣΠ.

←−
t [
−→
t (σΠ)] = {σΠ} ∧ (4.2)

∀σΩ ∈ ΣΩ.
←−
i [σΩ(c)] = [

←−
t (σΩ)][

←−
i (c)] ∧ (4.3)

∀σΠ ∈ ΣΠ.
−→
i [σΠ(p)] = [

−→
t (σΠ)][

−→
i (p)] (4.4)

The ideal implementation represents the case in which there is a one-to-one correspondence
between the entities and relations from the ontology and the entities and relations from the
program. Figure 4.2 illustrates this situation intuitively. The above formula can be understood
as a conjunction between the following affirmations:
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• each concept and conceptual relation is implemented by a set of program elements and
respectively program relation that do not implement any other concept respective con-
ceptual relation (Formula 4.1) – i. e. there is a one-to-many relation between program
elements and program relation types and concepts and conceptual relation types,

• each program element and program relation implements a set of concepts and respectively
conceptual relations that are not implemented by any other program element respectively
program relation (Formula 4.2) – i. e. there is a one-to-many relation between concepts
and conceptual relation types and program elements and program relation types,

• every relation between two concepts is reflected in the program – in other words, the
structure of the ontology is preserved in the program (Formula 4.3),

• every relation between two program elements reflects a relation between their correspond-
ing concepts – in other words, the structure at the program level is not richer than that in
the ontology (Formula 4.4)

Mathematically, the first two formulas taken together (4.1 and 4.2) define a bijection between the
program elements and concepts on the one hand and the program relation types and conceptual
relation types on the other; the next two formulas together (4.3 and 4.4) define the equality
between structures. To sum up, the conjunction of all these four formulas represent the case isomorphic

implementationwhen there is an isomorphism between the program and the conceptual layer. In this case,
the conceptual and program “worlds” are completely indistinguishable as far as our chosen
representations (Ω and Π) are concerned.

p Legend:

Domain concept

Program entity

Directed relation

c

{ p}=i c ∧ {c}=i p 

Figure 4.2: Ideal implementation intuition

Remark. Our abstractions of programs and domain knowledge (i. e. the program and the con-
ceptual layers) are quite coarse grained and therefore not complete – i. e. we cannot describe all
intricacies that occur in implementing domain concepts in programs. However, our claim is that
the framework presented in this chapter is powerful enough to capture a wide variety of mis-
matches that occur in practice and that have important consequences on different programming
and maintenance activities.

Discussion: The ideal implementation cannot be realized due to the conceptual gap between
the high-level representation of the real world knowledge through domain ontologies and the
low-level programming constructs. Below we enumerate the effects of this gap and how they
influence the implementation of domain concepts.

99



4.2. CONCEPTUAL COVERAGE

1. Due to the high complexity of the modeled domain and the limited resources of program-
mers, an ideal implementation is not feasible in practice. This leads to the implementation
of only an abstraction (Definition 4.2.1) of domain models in programs.

2. In order to bridge the conceptual gap, the programs contain many implementation details
(Definition 4.2.2). The implementation details are program elements that are irrelevant
from the point of view of the modeled domain.

3. Groups of concepts are implemented in the code in a distorted manner (Definition 4.3.1)
and therefore the structure among them is changed in the code. The changed structure
leads to (ever increasing) conceptual biases between the domain and the code.

4. Several concepts are implemented by single program elements or several conceptual re-
lations by single relations at the program level. In these cases one cannot distinguish the
borders between the implementations of two concepts or relations at the code level. We
call these situations diffusions of the domain model in the code (Definition 4.4.2). The
diffusion leads to (ever increasing) decay of the code due to the conceptualization loss.

5. A concept is implemented by more program elements and this leads to logical redundancy
(Definition 4.5.2).

In the subsequent sections we present different relaxations of the constraints imposed by the
ideal implementation. Each of the following section has a corresponding section in Chapter 5
where we study in detail each mismatch category.

4.2 Conceptual Coverage

Definition 4.2.1 (Abstraction): Let Π = (P, ΣΠ, eΠ) be a program abstraction and Ω =
(C, ΣΩ, eΩ) a domain ontology. The implementation of a concept c ∈ C and relation σΩ ∈ ΣΩ

is an abstraction iff:abstraction

σΩ(c) ⊃ −→i [[
←−
t (σΩ)][

←−
i (c)]] (4.5)

The abstraction implementation represents the case in which a part of the concepts related
to c or the relations between them are not reflected at the code level (Figure 4.3). Step-by-
step the formula should be read like this: the concepts related to c (denoted σΩ(c) ) form a
superset of the interpretation (denoted

−→
i ) of the neighbors of the implementation of c (denoted

[
←−
t (σΩ)][

←−
i (c)]). This can be noticed also by comparing Figure 4.3 with Figure 4.2: in the

former figure we have less concepts and relations.

Discussion: The implementation exhibits abstraction due to the pragmatic decisions that pro-
grammers made when a system was planned and due to the way in which the boundaries of
the system were chosen. Depending on what was left out from the modeled domain during the
abstraction process, and on the relations between the left out and the already implemented enti-
ties, it can be more difficult or even impossible to extend or adapt a particular program. In the
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Legend:p c

p ∈ i c

Domain concept

Program entity

Directed relations

Figure 4.3: Abstraction intuition

case of APIs, the abstraction prevents their users to use (direct) implementations of domain con-
cepts. In Section 5.2 we discuss several abstraction cases and how they influence the extension
of programs.

Definition 4.2.2 (Implementation details): Let Π = (P, ΣΠ, eΠ) be a program abstraction and
Ω = (C, ΣΩ, eΩ) a domain ontology. The implementation of a concept c ∈ C and relation
σΩ

i ∈ ΣΩ introduces implementation details iff: implementation details

[
←−
t (σΩ)][

←−
i (c)] ⊃ ←−i [σΩ(c)] (4.6)

The implementation details represent the case in which additional to the program elements
and relations corresponding to the implemented concepts, other program elements and relations
appear on the program side (Figure 4.4). This can be noticed also by comparing Figure 4.4 with
Figure 4.2: in the first figure we have more concepts and relations in the program graph.

p c Legend:

Domain concept

Program entity

Directed relationsp ∈ i c

Figure 4.4: Implementation details intuition

Discussion: The implementation details are inherent due to the discrepancy between the
declarative representations of the real-world knowledge and the operational implementation sup-
ported by the current languages. Many times the implementation details belong exclusively to
the programming machinery. By introducing the implementation details that do not represent
concepts from the modeled domain, programs lose their conciseness. Due to the implementa-
tion details, the vocabulary of APIs is cluttered with implementation related words and thus hard
to learn, understand and use.
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4.3 Distortion of Domain in Programs

Intuition. The “Oxford English Dictionary”1 defines the word distort as in the following:

“To put out of shape or position by twisting or drawing awry; to change to an un-
natural shape; to render crooked, unshapely, or deformed”

In a similar way, groups of related concepts can be implemented in programs in a “deformed”
manner: the structure of the concepts group is not preserved among the corresponding program
elements in a program part; instead, they are reflected through non-equivalent relations. We call
these “deformations” distortions.

Definition 4.3.1 (Distorted implementation): Let Π = (P, ΣΠ, eΠ) be a program abstraction
and Ω = (C, ΣΩ, eΩ) a domain ontology. The implementation of related concepts c1, c2 ∈
C, c2 ∈ σΩ(c1) through the program elements p1, p2 ∈ P such that p1 ∈

←−
i (c1) and p2 ∈←−

i (c2) is distorted iff:distorted
implementation

∃σΠ ∈ ΣΠ. p2 ∈ σΠ(p1) ∧ σΠ 6∈ ←−t (σΩ) (4.7)

Intuitively, the distorted implementation represents the situation when the program relation
between the implementations of two related concepts does not reflect the conceptual relation.
With other words, the program “lies” about the real-world (Figure 4.5).

Legend:

Domain concept

Program entity

Directed relations
p
1
∈ i c

1
∧ p

2
∈ i c

2


p1 c1

c2p2

Figure 4.5: Distorted implementation intuition

Discussion: The distorted implementation deforms the reflexion of the ontology in the pro-
gram. Many times the sources of distortion are the technical constraints imposed by the pro-
gramming languages (see Section 2.2.2, impedance mismatch example), the need of integration
with pre-existent software components, unfortunate design decisions, or not anticipated evolu-
tion. Distortion leads to a bias between the modeled domain and the code which subsequently
influences the programming and maintenance activities. For example, in the case of an API, the
API users cannot work with it in direct analogy to the modeled domain but have to take into
consideration how is the domain implemented.

1http://www.oed.com
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4.4 Diffusion of Domain in Programs

Intuition. The “Merriam Webster Dictionary”2 defines the word diffusion as in the following:

“[...] 3 a: the process whereby particles of liquids, gases, or solids intermingle [...]
5: the softening of sharp outlines in a photographic image”

In the same manner, the implementation of several concepts can be intermingled in the same
program element, or the same relation type at the program level can be used to implement several
conceptual relation types. In these cases the sharp distinction between different concepts (or
relations) that can be made at the domain level is lost in the code – e. g. when inspecting a class
that implements more concepts it is hard to find out which methods and attributes belong to the
implementation of one concept or of another, or how do these concepts interact.

Definition 4.4.1 (Sub-ontology): Let Ω = (C,ΣΩ, eΩ) be a domain ontology. We call Ω′ =
(C ′,ΣΩ′

, eΩ′
) a sub-ontology of Ω (denoted Ω′ ⊂ Ω) iff: sub-ontology

C ′ ⊂ C ∧ ΣΩ′ ⊂ ΣΩ ∧ ∀c1, c2 ∈ C ′. eΩ′
(c1, c2) = eΩ(c1, c2) (4.8)

Intuitively, a sub-ontology of an ontology contains only a subset of the concepts and rela-
tion types of the initial ontology and preserves the remaining ontological relations among the
concepts.

Definition 4.4.2 (Diffusion): Let Ω = (C,ΣΩ, eΩ) and Ω′ = (C ′,ΣΩ′
, eΩ′

) be two domain
ontologies and Ω′ ⊂ Ω. Let Π = (P, ΣΠ, eΠ) be an intentional abstraction of a program. We
call that between Ω and Π is a diffusion iff: diffusion

−→
i [
←−
i [C ′]] ⊃ C ′ ∨ −→t [

←−
t [ΣΩ′

]] ⊃ ΣΩ′
(4.9)

Intuitively, diffusion is the situation when interpreting the implementation of a set of concepts
and conceptual relation types results in a bigger set of concepts or conceptual relation types.
With other words, there are program elements that implement several concepts or program rela-
tion types that are used to implement several conceptual relation types (Figure 4.6).

p

c1 Legend:

Domain concept

Program entity

p ∈ i c1 ∧ p ∈ i c2

c2

Implemented by

Figure 4.6: Diffusion intuition

Definition 4.4.3 (Directly implemented concept): A concept c ∈ C is directly implemented iff directly implemented
concept−→

i
[←−
i (c)

]
= {c}

2http://www.merriam-webster.com

103

http://www.merriam-webster.com


4.5. LOGICAL REDUNDANCY

Intuitively, every time when a concept c is implemented in the code, the program elements that
implement it do not implement any other concept. This represents the ideal case when individual
concepts from the real world have individual counter-parts among the program elements within
the program. In practice concepts are commingled with other concepts in the same program
elements: ∣∣∣−→i [←−i (c)

]∣∣∣ > 1

Definition 4.4.4 (Directly implemented relation): A relation σΩ ∈ ΣΩ is directly implemented
iffdirectly implemented

relation
−→
t
[←−
t (σΩ)

]
= {σΩ}

Intuitively, every program relation that is used to implement a conceptual relation does not
implement any other conceptual relation. In practice many program relations types can be inter-
preted as different conceptual relations types:∣∣∣−→t [←−t (σΩ)

]∣∣∣ > 1

Discussion: As we explained in Section 2.2.2, a wide variety of situations from the application
domain has to be encoded in programs by using only a small set of programming constructs. In
Chapter 6 we show that the abstraction level of the current programming constructs is at the level
of the most general concepts in the upper ontologies. In order to assure a lean transition to the
domain knowledge, the programmers should incrementally implement more and more specific
concepts until they reach the generality (specificness) level of their domain. In practice, this is
not possible and most of the times there is a steep encoding step of the domain knowledge in
programs. The consequence of this big encoding step is a diffusion of domain knowledge: once
a domain fragment is implemented in a program, many concepts or relations clearly distinguish-
able at the domain level are not any more recognizable in programs. Instead of being explicit
(reflected in the structure), the interaction between concepts is implicit and has an algorithmical
nature. The diffusion of relation types is due to the limitations of the language to express differ-
ent conceptual relations. This is similar to construct overload, as we presented in Section 2.2.2
(the same language construct is used to express different things from the domain).

4.5 Logical Redundancy

Intuition. The “Oxford English Dictionary”3 defines the word redundant as in the following:

“1. b. Characterized by superfluity or excess in some respect; having some addi-
tional or superfluous part, element, or feature.”

Many times program parts are superfluous with respect to the domain knowledge that they
implement: whenever a certain group of domain concepts is implemented several times, this

3http://www.oed.com
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introduces redundancy from the point of view of domain knowledge. There are special cases
when this redundancy is justified by technical constraints such as efficiency or different limita-
tions of programming languages (Kapser and Godfrey, 2006), but as a general rule, redundancy
in programs is regarded as a negative fact.

Definition 4.5.1 (Sub-program): Let Π = (P,ΣΠ, eΠ) be a program abstraction. We call Π′ =
(P ′,ΣΠ′

, eΠ′
) a sub-program of Π (denoted Π′ ⊂ Π) iff: sub-program

P ′ ⊂ P ∧ ΣΠ′ ⊂ ΣΠ ∧ ∀p1, p2 ∈ P ′. eΠ′
(p1, p2) = eΠ(p1, p2) (4.10)

Intuitively, a sub-program contains only a subset of the program elements of the program.
Whenever these elements are related in the original program, the relations among them are
preserved in the sub-program.

p1

c

Legend:

Domain concept

Program entity

c ∈ i p 1 ∧ c ∈ i  p 2

p2

Implements

Figure 4.7: Redundancy intuition

Definition 4.5.2 (Logical redundancy): Let Π = (P,ΣΠ, eΠ) and Π′ = (P ′,ΣΠ′
, eΠ′

) be two
program abstractions and Π′ ⊂ Π. Let Ω = (C, ΣΩ, eΩ) be a domain ontology. We call that
between Π and Ω is a logical redundancy iff: logical redundancy

←−
i [
−→
i [P ′]] ⊃ P ′ ∨ ←−t [

−→
t [ΣΠ′

]] ⊃ ΣΠ′
(4.11)

Intuitively, redundancy is the situation when computing the implementation of the interpre-
tation of a set of program elements and relations, results in a bigger set of program elements
or relations. With other words, there are concepts implemented by several program elements
and conceptual relation types implemented by several program relation types (Figure 4.7). This
situation occurs in two cases: 1) when a concept or conceptual relation type is implemented
redundantly in the code, or 2) when the domain ontology does not distinguish between two
implementations of (potentially different) concepts.

Remark. The redundancy of relation types is due to the multiple implementation possibilities
of the same conceptual relation. This is similar to the construct excess (Gehlert and Esswein,
2007) as we presented in Section 2.2.2 – the implementation language offers more possibilities
for expressing the same conceptual-level situation.

Definition 4.5.3 (Concise implementation): Let Π = (P, ΣΠ, eΠ) be a program abstraction
and Ω = (C, ΣΩ, eΩ) a domain ontology. The program element p ∈ P exhibits concise
implementation iff: concise implementation

←−
i [
−→
i (p)] = {p}
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Intuitively, the program element that is a concise implementation implements a concept that
is not implemented anymore by other program elements. Many times the implementation of a
concept is redundant:

|←−i [
−→
i (p)]| > 1

In comparison with the identification of code clones which is essentially a bottom-up ap-
proach, we address here the problem of logical redundancy in a top-down manner: we are
looking for multiple implementations of concepts in the code.

Mind twister. The general aim of this work is to define the meaning of programs with
respect to the domain that they implement. In order to do this, we use the functions

←→
i .

• ←−i : C → ℘(P ) – where
←−
i (c) means the implementation of a concept c ∈ C, and

• −→i : P → ℘(C) – where
−→
i (p) means the interpretation of a program element p ∈ P .

Since we represent both programs and domain ontologies as labeled graphs, we can change
the perspective and give the meaning of the domain ontology as it is defined by the pro-
gram that implements it. To be more clear, we propose the following mental experiment: a
programmer reads a program that implements a domain that is (partially) unknown to him.
He could learn new things about that domain by reading the program. With other words,
instead of interpreting the program with respect to the domain, he interprets the domain
concepts with respect to the program. In this case the meaning is the program and the ob-
ject to which meaning is assigned is an incomplete domain model. Due to the change of
perspective (the semantic domain is the program and the syntactical object is the domain
ontology), implementation and interpretation functions would exchange their meaning.

• ←−i : C → ℘(P ) – where
←−
i (c) means the “interpretation” of a concept c ∈ C with

respect to the program, and

• −→i : P → ℘(C) – where
−→
i (p) means the “implementation” of a program element

p ∈ P in the incomplete domain ontology.

This is why, maybe somehow unintuitive, diffusion is in our framework similar to redun-
dancy (see Formulas 4.9 and 4.11). Redundancy means that our ontology cannot distinguish
between two implementations of a concept and considers these two implementations to be
the same (superfluous, redundant). Diffusion means that the program does not distinguish
between two concepts and it assigns them a single program element.
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4.6 Summary

In this chapter we presented a framework that allows a concise characterization of the mapping
between domain models and the code along several directions:

1. the conceptual coverage of domain in the code,

2. the level of homomorphism between groups of concepts from the domain and the program
parts that implement them (distortions),

3. the distinguishability of the implementation of different concepts in code (diffusions), and

4. the conciseness in the implementation of domain concepts (logical redundancy).

Remark. All these mismatches are defined with respect to a given domain ontology. As we
presented in the previous chapter, a domain ontology always reflects the domain knowledge from
a particular point of view. There can be more (equally good) domain ontologies that describe
the same domain. Therefore, a program can exhibit mismatch with respect to a domain ontology
and in the same time be faithful with respect to another ontology that describes the same domain.

Outlook. In the following chapter we take a closer look at a set of frequent types of mismatches
between domain knowledge and programs and we discuss how these mismatches affect typical
programming activities with focus on maintenance. In Chapter 6 we investigate how the most
abstracts domain concepts (as defined by the Suggested Upper Merged Ontology (Niles and
Pease, 2001b)) are implementable in Java programs. The results of this investigation suggest
that the ideal implementation is in most of the situations impossible to realize.
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5 Characterizing the Implementation of
Concepts and Relations

You can do anything in this world if you are prepared to take the consequences.

Somerset Maugham1

Abstract: Due to the big conceptual gap between the real-world knowledge and programming
languages and technologies, programmers have to take a multitude of design and implementa-
tion decisions. Many of these decisions (inevitably) lead to mismatches between the domain
knowledge and the code that implements it. These mismatches have in turn consequences on the
future programming and maintenance activities such as implementing new features or using the
APIs. In the previous chapter we presented a framework that allows us to characterize the level
of mismatch between the domain knowledge shared as domain ontologies and programs along
the following directions: in what measure are the domain concepts implemented in programs
(conceptual coverage), how faithful are they implemented (distortion and diffusion of concepts)
and how concise are the domain concepts implemented (logical redundancy). In this chapter we
instantiate our framework firstly by instantiating the general functions

←→
i into the more refined

parts (i. e.
←→
Ref ,

←→
Rep, and

←→
Def ) and discussing them in the context of the mismatches frame-

work, and secondly by taking a closer look at particular cases of mismatches and discuss their
influence on programming in general and on the use of APIs in particular. Our general aim is
to identify, describe and investigate the consequences of concrete cases of mismatches that are
often encountered in the practice. Furthermore, we aim to define these mismatch cases so that
they can be (automatically) detectable in the practice.

Structure of this chapter. In Section 5.1 we give a brief overview of how the functions←→
Ref ,

←→
Rep and

←→
Def can be combined with the coverage, diffusion, distortion, and logical redun-

dancy. Each of the following sections correspond to a section from Chapter 4: in Section 5.2
we present in more detail the issues related to conceptual coverage of programs and define the
notion of conceptual extensibility, in Section 5.3 we present a characterization of distortions, in
Section 5.4 we look into more detail at diffusions, and in Section 5.5 we present a characteri-
zation of different cases of redundancy. In Section 5.6 we present related approaches that deal
with different aspects of the conceptual mismatch between the code and higher-level artefacts.
Section 5.7 ends this chapter with a summary and a set of conclusions.

1British novelist
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5.1 Introduction

In the current chapter we take a more detailed look upon the categories of mismatches defined
in Chapter 4 along two directions. Firstly, we instantiate the implementation and interpretation
functions

←→
i into their more concrete correspondents:

←→
Ref (reference),

←→
Rep (representation),

and
←→
Def (definition) (as defined in Section 3.5). In Table 5.1 we present how do these functions

combine with different categories of mismatches. Secondly, we discuss concrete situations of
mismatches and how they influence different programming and maintenance activities. Our
general aim is to investigate how the implementation decisions leading to mismatches affect the
programmers (API users or maintainers) in the future. With other words, we are aware that
in many cases mismatches cannot be avoided and programmers have to use different (obscure)
encodings of domain knowledge (e. g. “write Fortran code in another language”). However, we
can alow these mismatches as long as we are aware of their future consequences.

←→
Ref

←→
Rep

←→
Def

Conceptual coverage x x
Distortion of concepts x
Diffusion of concepts x x x
Logical redundancy x x

Table 5.1: How different kinds of implementation combine with the categories of mismatches

Remark. We describe each mismatch by following the same presentation structure: at first we
define the mismatch rigorously by using our formal framework, we then present the intuition
behind the formula, give examples of occurrences of the mismatch in the Java standard API
and finally discuss the variation points and influences of the mismatch on the programming
and maintenance activities in general and on the usage of APIs in particular. By presenting
mismatch examples from the Java standard API (instead of toy-examples) we want to point out
their pervasiveness in the practice. We present the mismatches from Java with respect to the
WordNet off-the-shelf ontology that is described in more detail in Section 9.2. We detected
these mismatches by performing (semi-)automatic analyses as we detail in Part IV.

All the mismatches formalized in this chapter are given by considering our intentional pro-
gram abstraction Π = (P, ΣΠ, eΠ) and a domain ontology Ω = (C, ΣΩ, eΩ).

5.2 Characterizing Conceptual Coverage

As presented on the first line of Table 5.1 we consider the coverage from two perspectives: the
reference of concepts and the definition of concepts.

Definition 5.2.1 (Pure implementation details): A program element p ∈ P exhibits pure imple-
mentation details iff:pure implementation

details −−→
Ref (p) = ∅
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Intuitively, pure details means that, according to our conceptual level knowledge, the program
element cannot be assigned to any concept (Figure 5.1a).

Example 5.1: Example of implementation details

An example of implementation detail is the method hashCode from the class
java.util.Calendar. The method hashCode does not refer to any concept that is known by
the WordNet ontology2. Even if they do not refer to any domain concept, the methods hashCode
play an essential role in the Java programs. This is a typical case when the details are introduced
by the underlying programming machinery.

2

Discussion. From the point of view of API clients the pure details represent accidental com-
plexity in the library with which they have to deal. Even if the pure details do not have any
meaning for the modeled domain, many times they have a central meaning for the program-
ming language. From the point of view of working with the code at the abstraction level of the
modeled domain, the pure details represent accidental complexity and are a burden for the pro-
grammers and maintainers. These details are introduced solely by the underlying programming
(representation) infrastructure. During their daily work, the programmers need to be very much
aware of these details since failing to do this leads to programs that do not work.

c?

a) Pure details b) Absent implementation

?

?

c

p Program element

Absent program element

Unknown concept

Domain concept

Refers toLegend:

?
c''

c'

c''

c'
p

p''

p'

p''

p'

Figure 5.1: Conceptual coverage intuition: a) pure details; b) absent implementation

Definition 5.2.2 (Absent implementation): A concept c ∈ C exhibits absent implementation iff: absent implementation

←−−
Ref (c) = ∅

Intuitively, absent implementation means that there are concepts from the modeled domain
that are not referred by any program element (Figure 5.1b).

Example 5.2: Example of absent implementation

An example of absent implementation in the Java standard library (Figure 5.2) is the concept
SOLAR CALENDAR that is defined in the WordNet ontology. Since it is not referenced by any
program element, it cannot be used at the program level.

2

2http://wordnet.princeton.edu
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S: (n) calendar (a system of timekeeping ...)
   + direct hyponym
        S: (n) lunar calendar (a calendar based on lunar cycles)
        S: (n) lunisolar calendar (a calendar based on both lunar and solar cycles)
        S: (n) solar calendar (a calendar based on solar cycles)
           + direct hyponym
                 S: (n) Gregorian calendar (the solar calendar now in general use, ... )  
                   

Calendar

java.util

GregorianCalendar

Figure 5.2: The concept SOLAR CALENDAR defined in the WordNet ontology (left) is not im-
plemented in the Java API

Discussion. In the case of absent implementation, a concept is not referenceable in the pro-
gram at all. So, even if it is implemented somehow in the code in an algorithmic way, it cannot
be referenced explicitly, and consequently cannot be accessed and manipulated at the code level
(e. g. through refactorings). In Section 10.5.1 we present our experience with assessing concep-
tual coverage of several well-known Java APIs by identifying absent reference.

Please note that the functions
←→
Ref represent the weakest form of mapping between programs

and domain concepts. The concepts that are not referenced are not represented and not defined
(since

←→
Rep and

←→
Def are defined based on

←→
Ref ). On the other hand, there are many situations

when concepts are referenced in programs but are not defined.

Definition 5.2.3 (Absent definition): A concept c ∈ C exhibits absent definition iff:absent definition

←−−
Def (c) = ∅

Intuitively, absent definition of a concept means that it does not have any associated class that
defines it at the program level.

Example 5.3: Example of absent definition

Calendar

public final static int MONTH = 2;
public final static int WEEK_OF_MONTH = 4;
...

java.util

S: (n) month (one of the twelve divisions of the calendar year ...)
   + part meronym
        S: (n) week (a period of seven consecutive days starting on ...)  
                 

Figure 5.3: The concepts MONTH and WEEK are not defined in the Java API

An example of absent definition in the Java API is the concept MONTH (Figure 5.3). Even
if this concept is referenced by several program elements, there is no class associated with it.
Instead it is encoded as a constant and thereby the programmers can manipulate it only al-
gorithmically. Furthermore, the concepts related to MONTH need also to be encoded. In the
WordNet ontology, MONTHS have WEEKS as their parts (meronyms). In the Java implementa-
tion of CALENDAR this relation is only algorithmically implemented. From the point of view
of the implementation, the concept MONTH is a second class citizen compared to the concept
CALENDAR that is defined (as a class) in the Java library.

2
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Discussion. The concepts that exhibit absent definition are not directly and explicitly defined.
Instead, they are encoded in programs and their dependencies with related concepts are not
visible in the program structure but instead are hidden behind algorithms. Even if this situation
can be well motivated by performance concerns, it hampers the relation between the code and
the domain that it implements. By making this relation implicit, it has a negative influence on
the comprehensibility of the code, and this could negatively influence other programming and
maintenance activities.

Definition 5.2.4 (Absent relation): Let c1, c2 ∈ C be two related concepts with c2 ∈ σΩ(c1).
The implementation of the concepts c1 and c2 through program elements p1, p2 ∈ P with p1 ∈←−−
Ref (c1), p2 ∈

←−−
Ref (c2) exhibits absent relation iff: absent relation

6 ∃σΠ ∈ ΣΠ. p2 ∈ σΠ(p1)

In this case two related concepts are implemented in the code but the relation at the program
level does not reflect the fact that the concepts are related. This situation can happen because:

1. The chosen program abstraction (i.e. the configuration of the program layer Π) is too
weak to reflect this relation, even if it explicitly exists (somehow) in the code structure;

2. The relation is implemented only implicitly (algorithmically). In this case, the implemen-
tation is not explicit and is only hidden in the logic of the program. Generally, the less
structure a program has, the more computation to implement different relations is needed.

3. The relation is not implemented in the code at all.

Example 5.4: Example of absent relation

As we presented in Figure 5.3, the WordNet meronymy relation between MONTH and WEEK

is not (explicitly) implemented in the Java API. Instead, the relation between these concepts is
only algorithmically implemented in the Java standard library.

2

Absent relation

c1

c2

p1

p2

Added relation

c1

c2

p1

p2

Legend:

Directed relation

Domain concept

Program entity

Figure 5.4: Relations coverage

Definition 5.2.5 (Added relation): Let c1, c2 ∈ C be two unrelated concepts. The implementa-
tion of the concepts c1 and c2 through program elements p1, p2 ∈ P with p1 ∈

←−
i (c1), p2 ∈←−

i (c2) exhibits added relation iff: added relation

∃σΠ ∈ ΣΠ. p2 ∈ σΠ(p1)
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Intuitively, there are relations at the code level between program elements that implement
unrelated concepts.

Example 5.5: Example of added relation

In the java.util package the GregorianCalendar class contains the attribute second even
though these two concepts are independent (not directly related) in the WordNet ontology.

2

Discussion. This case represents a case of implementation details. Through the added relation
we define unnecessary details at the level of the code between the implementation of concepts
and this can make the program harder to understand and maintain. In the case of APIs, added
relations represent the pollution of their interface.

Conceptual extensibility of programs

Definition 5.2.6 (Extension of a program): Let Π = (P,ΣΠ, eΠ) and Π′ = (P ′,ΣΠ′
, eΠ′

) be
intentional abstractions of two programs. We say that Π′ is an extension of Π with {p′1, ..., p′n} 6∈
P (denoted Π′ = Π⊕ {p′1, ..., p′n}) iff:

P ′ = P ∪ {p′1, ..., p′n} ∧ ΣΠ′
= ΣΠ ∧ ∀p1, p2 ∈ P.eΠ(p1, p2) = eΠ′

(p1, p2)

Intuitively, a program Π′ is an extension of the program Π when the extended program is
obtained by adding a set of program elements to the original program. The program relations
from the original program are preserved in the extended program.

Example 5.6: Examples of extension

Below we present two examples of program fragments, the one from right representing the
extension of the program fragment from left. The right fragment (playing the role of Π′) is
obtained from the fragment from the left (playing the role of Π) by adding two new program
elements – namely the attribute age and the type int.

class Person {
String address;

}

class Person {
String address;
int age;

}

P = {Person, String, address}
eΠ(Person, address) = hasAtt
eΠ(address, String) = hasType

P = {Person, String, address, int, age}
eΠ(Person, address) = hasAtt
eΠ(address, String) = hasType
eΠ(Person, age) = hasAtt
eΠ(age, int) = hasType

2
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Definition 5.2.7 (Completely implementable concept): A concept c′ ∈ C that exhibits absent
implementation in the program Π is completely implementable if there is an extension
Π′ = Π⊕ {p′, pi, ..., pj} with

−−→
Ref (p’) = {c’} such that: completely

implementable concept

∀c ∈ C,∀σΩ ∈ ΣΩ. σΩ(c′) = c ∧
←−−
Ref (c) 6= ∅ ⇒ c ∈

−−→
Ref [[

←−
t (σΩ)](p′)]

Intuitively, the concept c′ is completely implementable if the program can be extended lo-
cally in order to implement the concept. A local extension is performed by simply adding a
new program element (p′) with the condition that the conceptual relations between the newly
implemented concept c′ and the concepts (c) that were already implemented (

←−−
Ref (c) 6= ∅) are

reflected at the code level (c ∈
−−→
Ref [[

←−
t (σΩ)](p′)]). We can also add other program elements

({pi, ..., pj}) that might be necessary for the implementation of p′.

Example 5.7: Examples of (non-)implementable concepts

Below we present an example of a domain ontology fragment that models persons and their
addresses (left) and a program that implements a part of these concepts (right-top). On the
one hand, the concept AGE is completely implementable (by simply adding a new attribute to
the class Person – on the right-bottom of our example). On the other hand, the program is
not conceptually extensible with respect to the concepts TOWN and POSTAL CODE since their
relation with ADDRESS cannot be reflected in the program. In order to extend the program with
these concepts we need to restructure the original code.

Person hasProp Adress
Person hasProp Age
Adress hasProp Town
Adress hasProp Postal Code

C = {Person, Address, Age, Town,
Postal Code}

eΩ(Person, Address) = hasProp
eΩ(Person, Age) = hasProp
eΩ(Address, Town) = hasProp
eΩ(Address, Postal Code) = hasProp

class Person {
String address;

}

P = {Person, String, address}
eΠ(Person, address) = hasAtt
eΠ(address, String) = hasType

——————————————–
class Person {
String address;
int age;

}

P ′ = {Person, String, address, age, int}
eΠ′

(Person, address) = hasAtt

eΠ′
(address, String) = hasType

eΠ′
(Person, age) = hasAtt

eΠ′
(age, int) = hasType

2

Discussion. In order to implement a new concept there can be many other constraints than the
ones given by our definition of extension ⊕. A formal treatment of the semantic extensibility of
programs can be found in (Krishnamurthi and Felleisen, 1998). In the work of Krishnamurthi
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the extensibility is considered from a behavioral point of view. In comparison with Krishna-
murthi’s extensibility, our notion of extensibility (⊕) represents the extensibility with respect to
the domain model. Our notion of conceptual extensibility is clearly more conservative – i. e. thesemantic versus

conceptual extensibility class of conceptually extensible programs is included in the class of behaviorally extensible pro-
grams defined in (Krishnamurthi and Felleisen, 1998). This happens because even if a program
is not conceptually extensible, one can implement the extensions and integrate them with the
existing implementation of the other domain concepts in an algorithmical manner. In the above
example, the parts of the concept ADDRESS can be implemented as a convention on the format
of the string object – e. g. at first comes the postal code and after this the name of the town
such as “80336 München”. However, in these cases we loose the explicitness in the correspon-
dence between the program organization and the modeled domain. This correspondence would
be realized only implicitly through computation.

5.3 Characterizing Distortion

Distortion occurs when the program relations between the implementation of related concepts
correspond to not-similar relations at the conceptual level. In Figure 5.5 we present an intuitive
overview over (non-)distorted situations. Each of these cases will be presented below in detail.

Equivalent relation Inverted relation Misused relation

c1

c2

c1 c1

c2 c2

p1

p2

p1

p2

p1

p2

Legend:

Directed relations

Program entity

Domain concept

Figure 5.5: Equivalent, inverted or misused relations

Definition 5.3.1 (Equivalent relation): Let c1, c2 ∈ C be two related concepts with c2 ∈ σΩ(c1),
and p1, p2 ∈ P such that p1 ∈

←−−
Def (c1), p2 ∈

←−−
Def (c2). The implementation of the relation σΩ

is equivalent iff:equivalent relation

p2 ∈ [
←−
t (σΩ)](p1)

Intuitively, if two related concepts are defined in the code, then the relation between their
implementations reflects the relation from the domain ontology.

Example 5.8: Example of equivalent relation

As shown in Figure 5.6, in the Java API the WordNet hyponymy relation between LIST and
STACK is implemented through a similar relation between the interfaces java.util.List and
java.util.Stack (in this example we considered the hasSupCls relation to be transitive).

2
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Definition 5.3.2 (Inverted relation): Let c1, c2 ∈ C be two related concepts with c2 ∈ σΩ(c1),
and p1, p2 ∈ P such that p1 ∈

←−−
Def (c1), p2 ∈

←−−
Def (c2). The implementation of the relation σΩ

is inverted iff: inverted relation

p1 ∈ [
←−
t (σΩ)](p2)

Intuitively, a relation between two concepts is implemented in the program through a similar
relation but in the inverse sense. This case represents a form of distorted implementation which
can lead to a non-intuitive (or false) usage of the implementations of concepts.

Example 5.9: Example of inverted relation

S: (n) list (a database containing an ordered array of items (names or topics))
   + direct hyponym
        S: (n) queue ((information processing) an ordered list of tasks to be ... 
        S: (n) stack (a list in which the next item to be removed is the item ...)            

Queue
java.util

LinkedList

List
java.util

Stack

Vector

Figure 5.6: Example of equivalent and inverted implementation of relations

As shown in Figure 5.6, the WordNet hyponymy relation between LIST and QUEUE is imple-
mented in the Java API through an inverted relation between the interface java.util.Queue
and the class java.util.LinkedList. The consequence of the program relation is that
whenever a Queue object is needed, we can use a LinkedList object. The latter can be
easily used in a way that violates the Queue constraints. Below is an usage example of the
LinkedList implementation for a Queue that breaks the ordering of elements within the queue:
the server writeMessage function writes always at the same end from which the client reads.
The client will read the elements in an opposite order and thus our “queue” functions as a stack.

1. Queue〈Message〉 aQueue = new LinkedList〈Message〉();
2. void server writeMessage() {
3. ((LinkedList)aQueue).addFirst(new Message()); ...
4. }
5. ...
6. Message client readMessage(Queue aQueue) {
7. return aQueue.element();
8. }

2

Discussion. Many times the sources of distortion are the technical constraints imposed by the
programming languages and the impedance mismatch between the conceptual level modeling
and programming languages. For example, the well-known difference between sub-classing and
sub-typing represents a source of distortion: when the inheritance is used primarily as a mech-
anism for reuse of implementation then it causes a distortion. In Figure 2.5 from Section 2.2.2
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we presented an example of good and distorted object-oriented implementation of RECTANGLES

and SQUARES. That example is similar with the example Queue - LinkedList from the Java
API and that is presented above.

Definition 5.3.3 (Misused relation): Let c1, c2 ∈ C be two concepts, related through the relation
σΩ ∈ ΣΩ with c2 ∈ σΩ(c1), and let p1, p2 ∈ P be two program elements such that p1 ∈

←−−
Def (c1)

and p2 ∈
←−−
Def (c2). The implementation of the relation σΩ is misused iff:misused relation

∃σΠ ∈ ΣΠ. σΠ 6∈ ←−t (σΩ) ∧ p2 ∈ σΠ(p1)

Intuitively, a relation between two concepts is implemented in the code through a relation with
which it is not similar. This case represents a distortion since the model of the reality captured
through the domain ontology is misleading at the code level.

Example 5.10: Example of misused relation

S: (n) font (a specific size and style of type within a type family)
   + direct hyponym
        S: (n) bold (a typeface with thick heavy lines)
        S: (n) italic (a typeface with letters slanting upward to the right)  
         

Font

public final static int BOLD = 1;
public final static int ITALIC = 2;
...

java.awt

Figure 5.7: Example of misused relation

In Figure 5.7 we present an example of misused relation. In the java.awt package the
BOLD FONT and ITALIC FONT concepts are implemented through the attributes BOLD and ITALIC
of the class Font. This is contrary to the WordNet definition of BOLD FONT and ITALIC FONT

according to which both of these concepts are hyponyms (sub-ordinates) of the concept FONT

(and not parts as they are implemented). Adding more font types in this class will cause it to
grow and will clutter its interface.

2

Remark. The usage of constants is a typical way to implement the hypernymy (is-a) relation in
a light-weighted manner (not by creating subclasses). This is however an example of encoding
of knowledge in programs since the relations between the program elements that implement the
concepts are hidden.

Discussion. Many conceptual-level relations do not have a clear and unique interpretation
in object-oriented languages. For example the triple: DRAW – actsOn – FIGURE can be im-
plemented (in an object-oriented manner) as the method draw of the class Figure (Figure
– hasMeth – draw), or can be implemented (in a procedural style) as parameter of the method
draw (draw – hasParam – Figure). Whenever the relations are (slightly) misused, they increase
the gap between the domain knowledge and the programs. The misused relations also hamper
the extensibility of programs.
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5.4 Characterizing Diffusion

The diffusions of concepts represent cases when pieces of the domain knowledge are commin-
gled in the code. In the following subsections we discuss in detail the diffusions generated by
the reference and representation of concepts.

5.4.1 Reference Diffusion

Definition 5.4.1 (Direct reference): Let p ∈ P and c ∈ C. The program element p represents a
direct reference iff: direct reference

−−→
Ref (p) = {c}

Intuitively, program elements that refer to only one concept are direct reference.

Definition 5.4.2 (Compacted reference): Let p ∈ P and c1, ..., cn ∈ C, n > 1. The program
element p represents a compacted reference iff: compacted reference

−−→
Ref (p) = {c1, ..., cn}

Intuitively, program elements that refer to several distinct concepts exhibit compacted refer-
ence (Figure 5.8). The concepts whose reference is compacted in the same program element are
called intimate program neighbours.

c1
p

c2

ci cn...

..
. c

p Program element

Domain concept

Reffers to

Legend:

Figure 5.8: The program element p is a compacted reference; the concepts c1, ..., cn are intimate
program neighbours

Definition 5.4.3 (Intimate program neighbors): Let C ′ = {c1, ..., cn} be a subset of the set of
concepts C. C ′ represents intimate program neighbors of a concept c ∈ C \ C ′ iff intimate program

neighbors

∀ci ∈ C ′.ci ∈
−−→
Ref

[←−−
Ref (c)

]
Intuitively, intimate neighbors of a concept c are all those concepts ci that are referred by

program elements that also refer to c. In Figure 5.8 we illustrate that the concepts ci are intimate
program neighbors of each other since the program element p refers to all of them.
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Example 5.11: Examples of direct reference, compacted reference and intimate program
neighbors

In the upper part of Figure 5.9 we present an ontology fragment that contains several concepts
representing graphical figures, their properties and graphical operations. In Figure 5.9 (down-
left) we present an example of the implementation of the drawing functionality in the Java AWT
library (since Java 1.1). The references of concepts DRAW and FILL are compacted with the
reference of concepts LINE, OVAL and RECTANGLE. Even if there is a clear relation between
drawing actions and the geometrical figures (e. g. the draw action is performed over figures and
thereby we have the relation “DRAW – actsOn– LINE”), these relations are encoded implicitly in
the method bodies of drawRect, drawLine, etc. Furthermore, due to the compact reference,
we notice also a pollution of the interface of Graphics: we have several program elements that
implement combinations between these concepts (e. g. drawOval(), fillOval, drawRect(),
drawLine()). Figure 5.9 (down-right) presents the direct reference of the same concepts by
new program elements that were added in the Java API more recently (the version 1.2).

Graphics

drawLine(int x1, int y1, int x2, int y2)
drawRect(int x, int y, int width, int height)
drawOval(int x, int y, int width, int height)
fillRect(int x, int y, int width, int height)
fillOval(int x, int y, int width, int height)

. . .

Drawing primitives in Java (since 1.1)

Graphics2D

draw(Shape s)
fill(Shape s)

Shape

Line2D Rectangle2D Ellipse2D

Drawing in Java (since 1.2)

. . .

Rectangle

Shape

x yWidthHeight

Size Location

Line Ellipse, oval

Graphical operation

draw fill

actsOnhasProp

hasProp

Ontology fragment

Figure 5.9: The concepts DRAW, FILL, LINE, OVAL and RECTANGLE are intimate program
neighbors (down-left) or exhibit direct reference (down-right)

2

Discussion. Ideally, each program element should refer to only one concept and the program
should combine the concepts exclusively by using the structuring and composition mechanisms
provided by the modularization and composition features of the language (e. g. class member-
ship, method call, parameter passing, overloading, overriding). In the case of compacted refer-
ence more concepts are weaved into a single program element. In many cases it is difficult to
determine which parts of the program element implementation belong to a concept and which
to the others. It is even more difficult to find where and how the composition between them
is realized. Program elements that represent compacted implementation negatively affect the
modularization of a program by intermingling more concepts and thereby by creating implicit
and hidden coupling at the code level between the implementation of distinct concepts. In the
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case of APIs the diffusion of reference prevents the API users to access individual concepts and
allows the access of only pre-defined combination of concepts.

The compacted implementation is similar to the interleaving of programming plans (Rugaber,
2000). If we consider the implementation of each concept to be a plan, then compacted imple-
mentation represents two or more plans that are merged within a method, class, or variable.

5.4.2 Representation Diffusion

Definition 5.4.4 (Faithfully represented concept): A concept c ∈ C is faithfully represented iff: faithful representation

−−→
Rep [

←−−
Rep(c)] = {c}

Intuitively, a type is used in the API to represent only one concept and each concept is repre-
sented through only one type. This is an ideal case when a program uses distinct representations
for distinct concepts and the same representation whenever a concept is referenced several times
in the program. Failing to do this makes the combination of the concepts unnatural and error-
prone (as illustrated in Figure 3.17, p. 89).

Definition 5.4.5 (Representation overloading): The type p ∈ P exhibits representation over-
loading iff: representation

overloading

∃c1, c2 ∈ C. c1 6= c2 ∧ p ∈
←−−
Rep(c1) ∧ p ∈

←−−
Rep(c2)

Intuitively, a type exhibits an overloaded representation if it is used to represent more concepts
(i.e. there are several variables with this type, each variable refers to a single concept (c1 and c2)
and the concepts referred by these variables are distinct c1 6= c2).

Example 5.12: Examples of representation overloading

In the fragment from the Java API presented in Figure 5.9, the type int exhibits representation
overloading since it is used to represent the concepts X, Y, WIDTH and HEIGHT. This fact leads
to unwanted combinations of concepts. A dangerous case of overloading is when two parameters
of a method have the same type as in our example, since it allows clients to call the method with
exchanged parameters and thereby to introduce bugs.

In Figure 5.10 we present another example of two parts of the Java library that implement
functionality related to class loading. In this code fragment the type String represents an
overloaded representation since it is used to represent both the CODEBASE address as well as
the NAME of the class to be loaded. Furthermore, the order of parameters of these two methods
is changed: the first parameter of the RMIClassLoader.loadClass has the meaning of the
second parameter of Util.loadClass and vice-versa. Due to this fact, there are very high
chances of misuse of RMIClassLoader by the programmers that already used the Util class.

2
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package java.rmi.server;
public class RMIClassLoader { ...

public static Class loadClass(
String codebase,
String name,
ClassLoader defaultLoader) { ...

}
}

package javax.rmi.CORBA;
public class Util { ...

public static Class loadClass(
String className,
String remoteCodebase,
ClassLoader loader) { ...

}
}

Figure 5.10: Dangerous overloading example

Discussion. In practice, many times programmers do not use distinct representations for con-
cepts. Instead, several concepts are represented through the same type and thereby are diffused
– the language cannot recognize that these variables refer to different (and many times incom-
patible) concepts. The more concepts are represented through a single type, the more freedom
in composing concepts we have and the easier it is for the clients to make uncaught logical mis-
takes. In the case of APIs, they are easy to misuse. Furthermore, the usage of representation
overloading (different incompatible concepts are implemented as variables of the same type)
nullifies the advantages of the type system.

The representation overloading seems to have been the root cause of the well-known Mars
Climate Orbiter accident (NASA, 1999, p.16). The accident happened because the software
used interchangeably two different concepts: the metric and the English based measurements of
distances. The designers should have been used distinct representation for these distinct concepts
and this should have warned them up-front and not allowed the interchanged usage of metric and
English measurements.

Quantifying representation diffusion

Definition 5.4.6 (Overloading degree): Let p ∈ P be a type. We define the overloading degree
(OD) of p to be:overloading degree

OD(p) = ‖
−−→
Rep(p)‖

Intuitively, the overloading degree quantifies the number of concepts represented through the
same type. In the case of types that do not represent any concept (

−−→
Rep(p) = ∅) the value of

OD is zero, otherwise the value of this metric is greater or equal than one; in the case when
OD(p) = 1 then the type exhibits no overloading.

Example 5.13: Example of overloading degree

In case of the Java API fragment from our example from Figure 5.9 the overloading degree of
int is 4 since int is used to represent four concepts – namely X, Y, WIDTH, and HEIGHT.

In our experiments performed on different Java APIs, and presented in Section 10.5.2, we
found out that the primitive types and the type java.lang.String have a high overloading
degree. This follows from the usage of numbers and strings as basic building blocks to represent
real-world concepts whenever programmers do not have anything better at hand.

2
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Discussion. Usually the primitive types exhibit a high overloading degree. This happens be-
cause some primitive types seem to be “natural” for representing domain concepts (e. g. float
width, String address, String name). In our opinion this view is highly flawed since,
for example, NAMES are not strings but rather more complex structures that have FIRST NAME,
LAST NAME or even MIDDLE NAME; WIDTHS are not floating point numbers but also have a
unit of measure, and so on. Furthermore, whenever two concepts are represented through the
same type then the program cannot distinguish among them (in our example for the program
NAMES can be interchangeably used with ADDRESSES. The higher the overloading degree, the
lower the modeling level of the domain in the program and the higher decay the code exhibits. In
Section 10.5.2 we present our experience with approximating the overloading degree for several
Java systems.

5.4.3 Definition Diffusion

Definition 5.4.7 (Clear definition): A concept c ∈ C is clearly defined iff: clear definition

−−→
Def [

←−−
Def (c)] = {c}

Intuitively, a concept is clearly defined when the classes that define it, do not define any other
concept. This is an ideal case when a program uses distinct definitions for distinct concepts.

Definition 5.4.8 (Compacted definition): The class p ∈ P exhibits compacted definition iff: compacted definition

∃c1, c2 ∈ C. c1 6= c2 ∧ p ∈
←−−
Def (c1) ∧ p ∈

←−−
Def (c2)

Intuitively, a class exhibits compacted definition if it is used to define more concepts. In this
situation is not clear which parts of the class define which concepts and how are the definitions
of different concepts combined in the class.

Discussion. Classes represent in object-oriented programs the basic modularization mecha-
nisms. The compacted definitions represent cases when the modularization at the code level
does not mirror the conceptual-level modularization. The classes that define distinct concepts
have usually a small cohesion (the methods used to define different concepts do not interact with
each other). Furthermore, in the case of APIs, classes that exhibit compacted definition are more
difficult to use since their interface is big and refers to different sets of unrelated concepts. Many
times compacted definition leads to the segregation of the interface of the class.

5.4.4 Diffusion of Relations

Definition 5.4.9 (Directly implementable relation): The relation σΩ ∈ ΣΩ is directly imple-
mentable iff: directly implementable

relation−→
t [
←−
t (σΩ)] = {σΩ}

Intuitively, a relation type can be implemented in the code unambiguously.
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Definition 5.4.10 (Ambiguous relation): The relation σΠ ∈ ΣΠ is ambiguous iff:ambiguous program
relation

|−→t (σΠ)| > 1

Intuitively, a relation type from the program can be interpreted in more ways at the conceptual
level. This impacts negatively the reverse engineering of relations represented within programs.

Example 5.14: Ambiguous interpretation of relations

The hasAtt relation between a class and one of its attributes can be interpreted in two different
ways: as the hasProp relation between a concept and one of its properties and as hasPart between
a concept and one of its parts.

2

Discussion. Due to the big conceptual gap between the real-world and the general purpose
programming languages, several (few) relation types at the code level have to be used to imple-
ment a big number of relation types from the modeled domain. This situation leads to diffusions
of conceptual relations in programs. In Section 6.4.2 we study in detail the diffusions generated
by the implementation of conceptual relations defined in the Suggested Upper Merged Ontology
in Java programs. We show that due to the conceptual distance between SUMO and Java, diffu-
sions are inherent. Diffusions of relations are similar to construct deficit (Gehlert and Esswein,
2007) presented in Section 2.2.2: namely, the implementation language offers a single program
relation for expressing distinct relations at the conceptual-level.

5.5 Characterizing Logical Redundancy

As presented on the last line of Table 5.1, we consider the logical redundancy from two perspec-
tives: redundancy in the representation and the definition of concepts.

5.5.1 Definition Redundancy

Definition 5.5.1 (Definition redundancy): A concept c ∈ C exhibits (logical) definition redun-
dancy iff:definition redundancy

∃p1, p2 ∈ P.
−−→
Def (p1) =

−−→
Def (p2) = {c} ∧ p1 6= p2

Intuitively, definition redundancy are different program elements that are used to define the
same concept.

Example 5.15: The definition of the concept POINT in Java AWT exhibits redundancy

The POINT concept is defined in the AWT part of the Java standard library three times – namely,
through classes java.awt.Point, java.awt.geom.Point2D.Float and
java.awt.geom.Point2D.Double. The reasons for these definition redundancies are the
different representations chosen for the coordinates – in the scopes of these classes we have←−−
Rep(x) = {int, float, double}.
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public abstract class Point2D ... {
public static class Float extends Point2D {

public float x, y; ...
}

public static class Double extends Point2D {
public double x, y; ...
}
...

}

public class Point extends Point2D ... {
public int x, y; ...

}

2

Example 5.16: The definition of days of the week and of months in the Java library exhibit
redundancy

Since the version 1.5 of Java we can define enumerations. Before the Java 1.5 version, program-
mers encoded enumerations through public constants. Below we present two examples of du-
plications in encoding of enumerations with constants. The concepts of the DAY OF THE WEEK:
SUNDAY, MONDAY, TUESDAY, etc. are implemented identically as static constants in the classes
Calendar and BaseCalendar.

package java.util;
public abstract class Calendar {

public final static int SUNDAY = 1;
public final static int MONDAY = 2;
...
public final static int JANUARY = 0;
public final static int FEBRUARY = 1;
...

}

package sun.util.calendar;
public abstract class BaseCalendar {

public final static int SUNDAY = 1;
public final static int MONDAY = 2;
...
public final static int JANUARY = 1;
public final static int FEBRUARY = 2;
...

}

Another example of logical redundancy is the implementation of months. As we can see
in the above code, they are implemented as public static constants with different values (e. g.
Calendar.JANUARY = 0 and BaseCalendar.JANUARY = 1). We emphasize that in the
Java library these two classes are used several times together (e. g. BaseCalendar is used in
the implementation of Calendar). Below we give a possible (imaginary) example of a bug
originating from the interchanged usage of the months.

aCalendar = new java.util.Calendar();
...
void trickySetDate(int year, int month, int day) {

aCalendar.setMonth(year, month, day);
}
...
trickySetDate(2006, BaseCalendar.JANUARY, 30);

2
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Discussion. Ideally, a domain concept should be defined only once in a program. When we
use different definitions of a concept at the program level we introduce logical redundancy since
we cannot use them in an uniform and seamless manner. We need to build adapters that trans-
form between different definitions of the same concept. Many redundancies occur due to some
inherent technical constraints such as efficiency: in the first example from above, the concept
POINT is defined more times in order to accommodate both expressiveness (the coordinates are
real numbers) and efficiency (integers are manipulable more efficiently); in the second example
the redundancy was favored also by the lack of advanced constructs for defining enumeration in
Java versions earlier than 1.5. In Section 10.5.3 we present our experience with the detection of
definition redundancy in the Java AWT API.

5.5.2 Representation Redundancy

Definition 5.5.2 (Representation ambiguity): A concept c ∈ C exhibits representation ambigu-
ity iff:representation ambiguity

∃p1, p2 ∈ P. p1 ∈
←−−
Rep(c) ∧ p2 ∈

←−−
Rep(c) ∧ p1 6= p2

Intuitively, a concept is ambiguously represented in a program if it is represented through
distinct types.

Example 5.17: Example of representation ambiguity

As explained in the previous section, the representation ambiguity leads to additional, not wanted
complexity in combinations of concepts at the API level (Figure 3.17). Below we present cases
of ambiguity in the Java SWING API: the concepts that refer to cardinal points are represented
both as strings and as integers.

package javax.swing;
public class SpringLayout {

public static final String NORTH = “North”;
public static final String SOUTH = “South”;
}

package javax.swing;
public class SwingConstants {

public static final int NORTH = 1;
public static final int SOUTH = 5;
}

Figure 5.11: Example of representation ambiguity

2

Discussion. Whenever a concept is ambiguously represented, the programmers cannot uni-
formly use this concept at the program level and many times they should convert between its
different representations. This leads to a significant redundancy that negatively affects the pro-
grammers in general. When the ambiguities occur in APIs their users cannot work with the API
in direct analogy with the domain.
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5.6 Related Work

In this chapter we investigated different conceptual problems generated by the implementation
of domain knowledge in programs. In the reverse engineering and program analysis literature,
concepts similar to ours (coverage, distortion, diffusion and redundancy) occur in different con-
texts. Below we present several examples of other reverse engineering works that deal (in a
way or another) with the mismatches in the implementation of high-level concepts (e. g. domain
concepts or design concepts) in the code.

Diffusion of relations. For example, the ambiguities in the implementation of composition,
association, and aggregation relations from UML, require a considerable effort for their recovery
from programs (Guéhéneuc and Albin-Amiot, 2004):

“While we can identify easily the inheritance relationship in Java (extends key-
word), how would the aggregation relationship between class B and class C be
expressed? As a field? As a collection? How would the implementation reflect an
aggregation or a composition relationship? More generally: How to define binary
class relationships so we can detect them in implementation?” (Guéhéneuc and
Albin-Amiot, 2004)

In this case, the “domain” with respect to which the code is interpreted are parts of UML, and
therefore the domain ontology contains the UML concepts. Guéhéneuc also notes the difference
between UML relations that are directly expressible in the code and those that are only am-
biguously implementable. In the latter cases, the correct interpretation of implementation-level
relations needs additional information or lacks accuracy.

Degeneration of design patterns. Much work in reverse engineering was carried to re-
cover design patterns from existing programs. Beside the most simple implementation of pat-
terns, many times the patterns are reflected in programs in a degenerated manner. These non-
modularities and degenerated situations are similar to our notions of diffusion and distortion.

“Pattern occurrences were often “degenerated” in that many conceptual roles did
not exist as distinct program elements, but were cluttered onto a few, more complex
ones.” (Florijn et al., 1997)

The “degeneration” of the design patterns implementation is similar to our notion of diffusion –
i. e. more concepts (roles) are implemented by the same program element. However, our notion
of diffusion is more general and is not defined only on patterns but for domain concepts (for a
larger variety of domains) – if we consider a domain ontology about design patterns, then our
definition of diffusion would match the Florijn’s notion of degeneration.

Logical redundancy. The problem of redundant implementation is in-depth studied in the
community of reverse engineering. However, with a few exceptions the redundancy is ap-
proached and evaluated at the syntactic level in form of the detection of code clones. We advo-
cate that logical redundancy is even more pervasive and dangerous in the programs since it is
most of the times not wanted and programmers (and most tools) are unaware of it.
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Marcus and Maletic (2001) present a usage scenario for the Latent Semantic Indexing to
identify conceptual clones in programs. LSI is used to determine semantic similarities between
source documents (e.g. files, classes) and thereby to identify the documents that implement the
same concepts – i. e. the documents with high semantic similarity are candidates to implement
the same concepts. The definition of concepts in LSI is only vague (as a set of words) and the
linking of concepts to the code is weakly defined. Our notions of representation ambiguity (re-
dundancy) and definition redundancy allow us to define the logical redundancy more precisely.

Logical coverage. By examining the user interface of interactive programs (e. g. office ap-
plications) one can build an ontology of the domain. For example, Hsi et al. (2003) present
an approach for building an ontology of the application domain of a program by manually an-
alyzing its graphical interfaces (GUI). The concepts in the ontology are given by the labels of
different graphical widgets (e. g. dialogs, menus) and the relations are chosen from is-a, has-a
and different associations. This ontology is subsequently used to discover and investigate the
central concepts of an application and that can have a significant impact on its evolution (logical
extensibility). A major drawback of this work is that it does not take into consideration how are
the domain concepts implemented in the program but only how are they reflected in the GUI.
For example, due to different implementation decisions, a concept that is central in the GUI can
be extended easier while a marginal concept from the GUI can be more difficult to extend.

5.7 Summary

Based on our mismatches classification framework presented in Chapter 4, in this chapter we
characterize the logical mismatches that can occur between the domain knowledge and pro-
grams. For each mismatch category we discussed its influence on the typical maintenance activ-
ities and whenever we could, we gave examples from the Java standard API in order to point out
the pervasiveness of these mismatches in practice.

Outlook. In the next parts of this dissertation, there are two other chapters that are related to the
current one. Firstly, in the next chapter we investigate the measure in which domain knowledge
can be faithfully implemented in the code. By studying the implementation strategies of the
concepts and relations from the Suggested Upper Merged Ontology (SUMO) in Java programs,
we will show that due to the conceptual gap between the code and the “real-world” knowl-
edge (as described by SUMO), the implementation will be inherently mismatched. Secondly, in
Chapter 10 we present our experience with detecting these mismatches in practice.
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6 From Suggested Upper Merged
Ontology to Java

The limits of my language mean the limits of my world.

Ludwig Wittgenstein1

Abstract: Programs implement parts of the real world. Programming language constructs are
the means for reflecting the application domain knowledge in programs. There is a big concep-
tual gap between the domain knowledge and the object-oriented programming languages con-
structs. A small number of general language constructs need to accommodate a huge variety of
domain-specific situations that should be implemented in programs. In the previous chapters, we
showed that due to this gap, the implementation of domain concepts in programs leads to loss of
conceptualization and this subsequently favors mismatches in the reflexion of domain models in
the code. In this chapter we investigate possible implementations of real-world concepts that are
at the generality level comparable with the constructs of object-oriented languages. We ground
our study on the similarities between the concepts of the Suggested Upper Merged Ontology
(SUMO) (Niles and Pease, 2001b) and the Java object-oriented programming constructs and its
core library. We focus on a direct and accurate implementation of SUMO concepts and ignore
other aspects such as efficiency, technical constraints, or interaction with other technologies.
Our motivation is to analyze the ideal ways of how can the most general ontological concepts
of SUMO be expressed by using the Java programming language. Thereby, we investigate the
conceptual limitations of the mainstream object-oriented languages (with focus on Java) to ac-
curately reflect parts of the real world in programs. These limitations are the root for many
mismatches between programs and the modeled domain that can be hardly avoided (or, many
times, cannot be avoided at all).

Structure of this chapter. After the introduction (Section 6.1), in Section 6.2 we present
the Standard Upper Merged Ontology (SUMO) that comprises the most general concepts from
the real-world. Section 6.3 presents an ontology of the core object-oriented programming knowl-
edge that includes language constructs, core object oriented programming idioms and core stan-
dard libraries (we focus on the features commonly used in Java). In Section 6.4 we identify
typical implementation possibilities of the most general real-world concepts by mapping SUMO
on our ontology of object-oriented programming knowledge. In Section 6.5 we discuss the lim-
itations of the Java language to explicitly reflect the SUMO concepts. In Section 6.6 we present
the related work on ontological evaluation of modeling languages and in Section 6.7 we present
a summary of this chapter.

1Austrian philosopher

129



6.1. INTRODUCTION

6.1 Introduction

In the quotation at the beginning of this chapter the expression “my language” can be easily
understood by computer scientists since everyone works daily with more (e. g. programming,
modeling, specification) languages. The “limits” mean the measure in which the language sup-
ports expression of facts in direct analogy to the domain knowledge and the automation in ana-
lyzing and manipulating the content that is described with this language (e. g. programs, models,
specifications). What does “my world” mean is however more problematic and the answer stays
most of the times outside of computer science – most of the content we produce addresses other
domains (e. g. banking, automotive). In this chapter we use a description of the world as it is
given by the IEEE Suggested Upper Merged Ontology (SUMO) (Niles and Pease, 2001b) and
compare it with an ontology of basic object-oriented programming knowledge (with focus on
Java). In this manner we aim to investigate the limits of Java with respect to SUMO.

Terminological clarification. In the previous chapters we used the term ontology to denote
an artefact – namely a set of concepts and relations that describe a domain. We needed these
artefacts in order to analyze programs (other artefacts). In this chapter we focus on ontological
analysis (Gehlert and Esswein, 2007), namely, we are interested in the kinds of entities that canontological analysis

exist in the real-world, the kinds of object-oriented features of Java and the mappings between
them – i. e. how can the real-world concepts (given by SUMO) be implemented in Java.

The Suggested Upper Merged Ontology is an ontology (artefact) that was obtained
through analysis of the categories of things that exist in the real-world.

Ontologies specificness spectrum. According to the domain specificity of the concepts
that they represent, ontologies are classified into: domain specific, mid-level and upper-level –
Figure 6.1(left). Domain ontologies contain concepts from a particular domain – e. g. an on-domain ontology

tology about the SSL security protocol contains concepts used by this protocol such as X.509.
Mid-level ontologies share concepts that cover more general domains that subsume families ofmid-level ontology

related domains – e. g. an ontology of the data communication contains concepts about the data
transfer. Mid-level ontologies act as bridges between domain ontologies and upper ontologies .upper ontology

The latter contain concepts that are abstract enough to subsume concepts from all domains. Up-
per ontologies originate from the studies of philosophers, linguists and knowledge representation
experts.

Upper-ontologies describe the organization of the real-world knowledge in terms of
the most general concepts.

Remark. There is a strong similarity between the concepts from upper ontologies and core con-
structs of object-oriented programming languages (Figure 6.1 - top), between concepts from
the mid-level ontologies and classes from standard software libraries (Figure 6.1 - middle) and
between concepts of domain specific ontologies and entities of domain specific libraries (Fig-
ure 6.1 - bottom). In Section 6.4 we discuss the correspondence between the Suggested Upper
Merged Ontology and the core object-oriented constructs from the Java programming language.
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Figure 6.1: Ontologies specificness (left); Programming concepts specificness (right)

Based on this correspondence we investigate the possibilities to extend our set of conceptual
level relations (ΣΩ), our set of program relations (ΣΠ) and the mappings between them (

←→
t ).

Well-known upper ontologies. Describing the real-world as a whole is an extremely com-
plex process due to the intricacies, the high number of details and the multitude of perspectives
under which the same phenomena can be considered. There are currently several well-known up-
per ontologies that cover the abstract real-world knowledge from different perspectives: DOLCE
(Masolo et al., 2003), Sowa’s Upper Ontology (Sowa, 2000), or Suggested Upper Merged On-
tology (SUMO) (Niles and Pease, 2001b). As we will see in the following, we have chosen
SUMO because it describes the real-world in a similar manner to our conceptual layer – namely
based on concepts and relations among them.

6.2 The Suggested Upper Merged Ontology (SUMO)

The IEEE Standard Upper Ontology Working Group2 defines a general-purpose, upper-level,
formal ontology that is extensible with domain specific ontologies. SUMO is designed to be
useful for a large variety of purposes, such as integrating domain ontologies, design of new
knowledge bases or enhancing the applications interoperability. The standardization effort is
sustained by specialists from various domains like information science, philosophy and engi-
neering, both from academia and from industry. SUMO did not start from scratch but by merg-
ing publicly available (fragments of) upper-level ontologies into a single comprehensive and
cohesive structure (Niles and Pease, 2001a). In our work we will use the version 1.73 of SUMO
published in September 20053.

We analyze how can the most general real world concepts be implemented in
programs. We assume that SUMO is an accurate, technical independent and
humans-oriented description of the most abstract concepts of the real world.

2http://suo.ieee.org/
3http://suo.ieee.org/SUO/SUMO/index.html
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6.2. THE SUGGESTED UPPER MERGED ONTOLOGY (SUMO)

6.2.1 SUMO Top-Level Concepts

In Figure 6.2 we present a subset of the most general concepts of SUMO4. All the other SUMO
concepts (ca. 200) are derived through a (possible multiple) subordination relation from these
concepts. As SUMO is intended to describe the real world (including feelings, natural sciences),
and our interest is only restricted to the common knowledge captured in programs, we will
present in the following a subset of SUMO concepts that satisfies our needs.

Entity

Object

Attribute

Relation

Agent

Process

Abstract

Physical

Quantity
Number

PhysicalQuantity

Collection

BinaryRelation

InternalAttribute

RelationalAttribute
SetOrClass

SelfConnectedObject

Set
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subordinate
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Legend:

. . .

Figure 6.2: A part of the most abstract SUMO concepts

ENTITY is the most general concept of SUMO and represents the universal class of individuals.
It is the root of the concepts hierarchy and thus, it subsumes the other concepts in the world.
ENTITIES are exhaustively partitioned into: PHYSICALS, representing everything that has a well
defined position in space and time; and ABSTRACTS, representing properties or qualities as
distinguished from any particular embodiment in a physical medium.

OBJECTS are PHYSICALS that exist in full at any instant at which they exist at all. They corre-
spond roughly to the class of ordinary objects in the real world. Among the kinds of OBJECTS

distinguished by SUMO are:
1) AGENTS represent those OBJECTS that can act on their own and produce changes in the

world (e. g. humans). AGENTS are the active determinants of PROCESSES.
2) COLLECTIONS represent those OBJECTS whose instances consist of disconnected parts

that can be added or subtracted without thereby changing their identity (e. g. a “family” is a
COLLECTION since the birth or the dead of one of its members do not affect its identity).

3) SELFCONNECTEDOBJECT represent those OBJECTS that do not consist of disconnected
parts. COLLECTIONS are disjoint with SELFCONNECTEDOBJECT.

PROCESSES are the complement of OBJECTS in the PHYSICAL class and they subsume all
entities that happen in time (e. g. reading). PROCESSES are only partially present at any time at
which they are present. In the natural language, PROCESSES are denoted through verbs.

4For obtaining the descriptions of the concepts and relations from SUMO we used the following online ontology
browser: http://virtual.cvut.cz/ksmsaWeb/browser/title
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SETORCLASS is the common super concept of SET and CLASS. It subsumes any subordinate
of ABSTRACT that has elements or instances. There are three differences between SETS and
CLASSES: Firstly, CLASSES are not assumed to be extensional and thus distinct CLASSES might
have exactly the same instances. SETS are extensional and two SETS with the same elements
are always equal. Secondly, CLASSES typically have an associated ‘condition’ that determines
their instances (e. g. common properties), while for SETS there is no associated condition that
determines the membership. Thirdly, the instances of a CLASS may occur only once within the
CLASS, while a SET can contain duplicated elements.

ATTRIBUTES are qualities which are not reified into subclasses. There are two kinds of
ATTRIBUTES: INTERNAL ATTRIBUTES represent intrinsic properties of entities (e. g. shape,
color); and RELATIONAL ATTRIBUTES are properties that entities have by the virtue of their
relationships with other entities (e. g. social roles such as president).

RELATIONS are used to represent tuples of elements. Relations are classified according to their
arity (e. g. BINARY RELATION, TERNARY RELATION). BINARY RELATIONS are relations de-
fined between pairs of ENTITIES and are the most common relations encountered in the knowl-
edge representation formalisms (e. g. binary relations are represented as slots in the frame-
based knowledge representation paradigm). SUMO contains a large number of instances of
BINARY RELATIONS defined between its concepts. A subset of these relations are presented in
the following section.

6.2.2 SUMO Relations Between the Top-Level Concepts

Relation Source (S) Target (T) Description
PROPERTY ENTITY ATTRIBUTE S has an attribute T
INSTANCE ENTITY SETORCLASS S is included in T
PART OBJECT OBJECT S is part of T
EXPLOITS OBJECT AGENT S is used by T for performing a PROCESS

MEASURE OBJECT PHYS.QUANT. S is measured by the constant quantity T
AGENT PROCESS AGENT T determines S
MANNER PROCESS ATTRIBUTE S is qualified by T
INSTRUMENT PROCESS OBJECT T is an instrument in performing S
RESOURCE PROCESS OBJECT T is used and changed by S
CAUSES PROCESS PROCESS S causes T
RESULT PROCESS ENTITY T is the output of S
SUBPROCESS PROCESS PROCESS S implies the execution of T
PATIENT PROCESS ENTITY T is a patient of S
SUBCLASS CLASS CLASS S is a subordinate of T
LESSTHAN QUANTITY QUANTITY S is less than T
GREATERTHAN QUANTITY QUANTITY S is greater than T

Table 6.1: A part of the SUMO relations between the most general concepts
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KNOWLEDGE

In Table 6.1 we describe a part of the relations that are defined in SUMO between the concepts
discussed in the previous section. These relations are good candidates for the set of relations at
the conceptual layer (ΣΩ).

6.3 An Ontology of Java Core Object-Oriented Programming
Knowledge

As we presented in Section 3.4.2, we abstract programs as graphs whose nodes are named pro-
gram entities and edges are relations among them. Up to this point, we considered the program
nodes to be only the basic object-oriented program entities (classes, attributes and methods) and
accessors. In this section we investigate in more detail the kinds of program entities that can
make up the program layer and the types of relations among them. In Figure 6.3 we illustrate
our Java programming knowledge ontology.

Remark. Some of the program entities and program relations presented below are defined ex-
plicitly by the syntax of the Java language and therefore they can be automatically extracted
from the parse tree. Other program entities and relations are programming idioms and entities
from the standard library and their identification in a program involves information that is not
given by the Java language definition taken alone.

6.3.1 Named Program Entities

We consider only the program entities that have names associated with them (e. g. classes, meth-
ods, attributes, parameters). We categorize the program entities along the following directions:

1) Basic named entities. These entities represent all program entities that are explicitly
defined by the language syntax and that have names.

• Types are either abstract datatypes (i. e. classes or interfaces), primitive types (e. g. int)
and arrays (e. g. Object[]). Classes represent the main modularization mechanism. Prim-
itive types are the most basic types of the Java language and are used as building blocks
for defining abstract data types. Arrays are a convenience for representing fixed-size
collections of objects.

• Variables are program entities used to denote references to run-time objects. According
to where they are defined, variables are classified in: attributes, parameters and local
variables.

• Methods are operations defined on classes. Constructors are special methods used for
the basic initialization of objects at the creation time.

2) Idiomatic entities. Different languages provide different support for typical programming
features. For example, in Java (as opposed to C# that has language constructs for properties)
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Figure 6.3: Java core programming knowledge

there is no built-in support for working with properties of objects. Such limitations are over-
come in the practice through basic programming conventions (also known as idioms). Accessor
methods (also known as setters and getters) are classical Java programming idioms. They are
so important that they are at the core of wide-spreaded technologies such as JavaBeans.

“If we discover a matching pair of “get<PropertyName>” and “set<PropertyName>”
methods that take and return the same type, then we regard these methods as defin-
ing a read-write property whose name will be “<propertyName>”. ” (Sun, 1997,
p. 55)

Programmers use idiomatic entities to overcome the lack of advanced features of
programming languages.

3) Entities belonging to core libraries. Many general concepts are not reflected directly
in the programming language syntax but are provided by their core libraries. Many times, there
is no clear distinction between the programming language itself and its core libraries - i. e. the
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semantics of the classes belonging to the Java core library goes beyond the “standard” semantics
of user-defined classes. Among the Java standard library classes, we pay special attention to the
following two:

• Collections: The objects of the interface java.utils.Collection are used as a stan-
dard Java mechanism for defining collections of arbitrary objects.

• Comparable: The objects of the interface java.lang.Comparable are used as a stan-
dard Java mechanism for defining ordering.

6.3.2 Program Relations

In addition to the named program entities, the relations represent an essential part of our program
abstraction. In a similar manner with the classification of program entities, we distinguish among
three categories of program relations (Table 6.2): 1) language defined relations are directly
expressible within the language syntax, 2) idiomatic relations are relations between program
entities representing programming idioms, and 3) library-defined relations are relations that
involve entities from the core libraries.

Relation Source (S) Target (T) Description
hasSubType Class Class T is a subtype of S
hasAtt Class Attribute S has attribute T
hasMeth Class Method S has method T
hasType Variable Type S has type T
hasParam Method Parameter S has parameter T
ctrHasPar Constructor Parameter S has parameter T
hasRetType Method Type S has return type T
calls Method Method S calls T
accesses Method Variable S accesses T
hasAcc Class Accessor S has method T
collHasMember Collection Variable T is used in the add method

call on S
compareTo Comparable Comparable T is used as parameter of the

Variable Variable compareTo method call on S

Table 6.2: Relation among core Java entities
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6.4 From SUMO to Java

We presented in the last two sections the SUMO upper ontology and our ontology of the Java
core programming knowledge. In the following we will give an answer to the question:

How can the SUMO concepts and relations be the most natural implemented using
the programming concepts from our Java ontology?

With other words, we aim to find the similarities and differences between the SUMO and
Java ontologies. With respect to our question we emphasize two aspects: 1) we are interested
in a faithful implementation, where the diffusions, distortions and implementation details are
the smallest possible, and 2) we are interested in the Java core (object-oriented) features and we
leave out other language details (e. g. primitive types).

Remark. Please note our typographical convention (presented also in Section 1.4): through
SMALL-CAPS we denote the domain concepts (e. g. CLASS) and through type-writer fonts
we denote the entities from Java programs (e. g. class).

6.4.1 Implementation of SUMO Concepts

Implementation of ENTITIES. ENTITIES are the most general concepts of SUMO and thus
they subsume every concept that exists in the world. Therefore, they can be implemented in
arbitrary program parts, as sequences of method-calls, any of their side effects, and so on. Our
program abstraction is based on named program elements and relations among them, and this is
why we are interested only in how the subconcepts of ENTITY are implementable by using the
named program elements and relations.

Implementation of CLASSES. CLASSES are ABSTRACTS that have instances defined through
a set of PROPERTIES. Correspondingly, Java classes are used to define instances, and each
instance has a well defined set of properties (Java attributes). CLASSES are implemented
through classes and interfaces.

Implementation of SETS. In SUMO, SETS are collections of arbitrary ENTITIES. The Java
arrays and instances of the standard-library class java.utils.Collection provide sup-
port for dealing with arbitrary collections of objects. Therefore we consider that SETS are
implemented by classes that implement the interface Collection or as variables with array
type. The differences between SUMO CLASSES and SETS remain valid in Java: 1) different
Java classes can have the same instances (classes that implement more interfaces) while collec-
tions with the same elements are equal; 2) every instance of a Java class has a set of common
properties with the other instances (the Java attributes) while Java collections or arrays can con-
tain arbitrary elements; 3) instances are singular within classes, while a collection can contain
the same object several times (if the collection is not an instance of java.util.Set).

Implementation of PROCESSES. PROCESSES are ENTITIES that are unfolding in time. The
execution of a program also unfolds in time and thus, PROCESSES are naturally implemented as
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methods, parts of methods, or sequences of methods. With respect to our conceptualization
of Java we notice two major limitations:

1. Since we only deal with the named program entities, and the parts of methods do not
have a name, we consider that PROCESSES are implementable exclusively as methods.

2. In Java the methods are not first class entities (they cannot be sent as parameters nor can
they be results of other methods). For this reason, many times the methods are encapsu-
lated in objects (the well-known Command design pattern (Gamma et al., 1995, p. 233)).
These classes whose sole purpose is to provide a wrapper for methods in order to allow
them to be treated as first class entities is a typical example of implementation details.

Implementation of QUANTITIES. QUANTITIES can be explicitly implemented as instances of
the class java.lang.Comparable. By doing so, the method compareTo is very similar to
conceptual relations LESSTHAN and GREATERTHAN. However, these relations are implemented
by an algorithm inside of the compareTo method.

Implementation of COLLECTIONS. Implementing COLLECTIONS as instances of
java.util.Collection would be inadequate since in SUMO COLLECTIONS do not change
their identity by adding or removing members. Thus, COLLECTIONS are implementable through
classes which contain as one of their attributes an instance of java.util.Collection.

Implementation of other concepts. Beside the implementation of concepts described in the
above paragraphs, there is no direct and explicit support in Java to implement other concepts
from our SUMO fragment. For every other concept we can use a Java class to define it.

Implementation of RELATIONS. SUMO RELATIONS raise for us a special interest since they
match very well the relations between concepts at the conceptual level. RELATIONS are defined
in SUMO as tuples of ENTITIES. The implementation of arbitrary relations in object-oriented
languages in general, and in Java in particular, is not directly supported through programming
constructs. Even though, the importance of relations is widely acknowledged and led to different
proposals for the extension of object-oriented languages (Rumbaugh, 1987; Bierman and Wren,
2005). In order to describe the fact that two program entities that correspond to two domain
concepts are related we can:

1. use the small set of relations defined by the programming language (e. g. SUBCLASS is
a binary relation directly expressible in Java), interpret the relations between program
entities from the standard library (e. g. collHasMember is a relation between a collection
and its members), or between different idioms (e. g. hasAcc is a relation between a class
and one of its accessors),

2. use attributes to implement new relations between the class where they are defined
and their types, or use methods to implement single-valued relations.

In the following we take the first approach and use the relations from our Java ontology to
reflect the SUMO relations.
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6.4.2 Implementation of SUMO Relations

For each SUMO relation presented in Section 6.2.2 we discuss its implementation in Java in
one of the following paragraphs. Each paragraph has the following structure: at first, we briefly
present the meaning of the relation in the SUMO ontology and then we discuss several strate-
gies to directly reflect this relation in Java programs. To each paragraph corresponds a part of
Figure 6.4 that illustrates with examples the implementation strategies.

Implementation of PROPERTY. PROPERTY(?Entity, ?Attribute) represents the relation between
an ?Entity and one of its ?Attributes. As we illustrate in Figure 6.4a there are the following
possibilities for implementing the PROPERTY relation:

1) hasAtt(?Class, ?Attribute) – between a Class and its Attributes,
2) ctrHasPar(?Constructor, ?Parameter) – between a constructor and one of its pa-

rameters.
3) hasAcc(?Class, ?Accessor) – between a class and one of its accessor methods.

Remark. The implementations presented above do not cover the whole spectrum of the PROPERTY

relation – e. g. in SUMO one can define PROPERTIES of PROCESSES and they cannot be directly
implemented in Java.

Implementation of INSTANCE. INSTANCE(?Entity, ?SetOrClass) represents the relation be-
tween ?Entity and the ?SetOrClass in which it is included. As we illustrate in Figure 6.4b there
are two possibilities to implement the INSTANCE relation in Java:

1) hasType(?Variables, ?Type) – between a variable and its type,
2) collHasMember(?CollectionVariables, ?Variable) – between a variablewhose

type is Collection and another variable that is added to the collection (i. e. the actual param-
eter of a method add).

Implementation of MANNER. MANNER(?Process, ?Attribute) is a sub-relation of PROPERTY

that means that ?Process is qualified by ?Attribute. In the natural language this relation is usually
denoted through adverbs attached to verbs – e. g. MANNER(draw, quickly) means that quickly is a
manner of drawing. The information about the MANNER in which a PROCESS is executed cannot
be directly reflected in the source code since the methods cannot have attributes. However, an
indirect possibility to implement PROCESSES that are executed in different MANNERS is via
parameters that are used to switch between different execution “manners” of their methods.
As we illustrate in Figure 6.4c, MANNERS can be as: hasParam(?Method, ?Parameter).

Implementation of PART. PART(?Object1, ?Object2) is the basic mereological relation and
expresses the fact that ?Object1 is part of ?Object2. As we illustrate in Figure 6.4d, the PART

relation can be implemented through the hasAtt(?Class, ?Attribute) relation.

Implementation of RESULT. RESULT(?Process, ?Entity) means that ?Entity is the output of
the ?Process – e. g. RESULT(translate, Point) means that Point is the result of move. As we
illustrate in Figure 6.4e the RESULT relation between a PROCESS and its output ENTITY can be
directly expressed in programs as the hasRetType relation between the method implementing
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    class Rectangle {
1     int color;
2     Rectangle(int color) {... }
3     void setColor(...) { ... } 
    }

hasAtt (Rectangle, Color)
ctrHasPar (Rectangle, color)
hasAcc (Rectangle, setColor)

a) Implementing 'property(Rectangle, Color)'

       
1     Point p1;
2     Collection contourPoints;
       countourPoints.add(p2);

hasType (p1, Point)

collHasMem (contourPoints,
                       p2)

b) Implementing 'instance(p1, Point)' ; instance(contourPoints, p2)

    class DialogBox {
      Button button;
    }

hasAtt (DialogBox, button)

d) Implementing 'part(DialogBox, Button)'

    class Sender {
       void transfer() {
           channel.send(,,,)
           ... }
    }

hasMeth (Sender, transfer)
and accesses(transfer, channel)

n) Implementing 'exploits(Sender, Channel)'

     class Container {
     void refresh(...) {
           child.repaint();
       }

accesses (refresh, child)

k) Implementing 'patient(Refresh, Child)' l) Implementing 'agent(Repaint, Container)'

     class Container {
     void refresh(...) {
           child.repaint();
       }

hasMethod(Container, refresh)
and calls(refresh, repaint)

     void draw(...) {
           ... pen ...
     }

accesses (draw, pen)

g) Implementing 'instrument(Draw, Pen)' h) Implementing 'subprocess(transfer, connect)'

     void transfer(...) {
           connect();
      }

calls(transfer, connect)

  class Distance implements
                      Comparable {}
  class Road {
     Distance length;
  }

hasAttribute (Road, length)
and hasType(length, Distance)
and hasSupCls(Distance, 
                         Comparable)

m) Implementing 'measure(Road, Distance)'

j) Implementing 'subclass(Component, Window)'

     class Window extends 
                           Component {
      }

hasSubType(Component,
                  Window)

    
 void move(boolean quick) {
    ... 
 }     

hasPar (move, quick)

c) Implementing 'manner(Move, Quick)'
       
 Point translate() { ...

 }

hasRetType (translate, Point)

e) Implementing 'result(Translate, Point)'

    
 void change(...) {
    refresh(...); ... 
 }     

calls (change, refresh)

f) Implementing 'causes(Change, Refresh)'

       
 void transfer(String buffer) { ...

 }

hasPar (transfer, buffer)

i) Implementing 'resource(Transfer, Buffer)'

Figure 6.4: Possible implementations of SUMO relations in Java

that PROCESS and the return type that represents the class of the entity. However, it is often
the case that the result of a method is a side-effect and these situations are not captured by our
program abstraction.
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Implementation of CAUSES. CAUSES(?Process1, Process2) means that ?Process2 is caused by
?Process1. As we illustrate in Figure 6.4f the CAUSES relation between two PROCESSES can be
directly expressed in programs as the calls relation between the method that implements the
source PROCESS to the method that implements the destination PROCESS. However, more so-
phisticated causality relations are not implementable by using our program ontology (we would
need information about the control-flow). Furthermore, CAUSES can be also implemented by
standard design patterns – e. g. in the Observer design pattern, the cause of an update is a change
in the state of the subject.

Implementation of INSTRUMENT. INSTRUMENT(?Process, ?Object) denotes that ?Object is
used by an agent to perform ?Process and ?Object is not changed. As we illustrate in Figure 6.4g,
the INSTRUMENT relation can be represented in our program abstraction as the accesses re-
lation between a method that implements the ?Process and a variable that refers the ?Object
used as instrument.

Implementation of SUBPROCESS. SUBPROCESS(?Process1, ?Process2) denotes that ?Process1
implies the execution of ?Process2. As we illustrate in Figure 6.4h, the SUBPROCESS relation
between two PROCESSES can be implemented through method calls.

Implementation of RESOURCE. RESOURCE(?Process, ?Object) relation between a PROCESSES

and an OBJECT that it consumes can be directly represented as a relation between the method
that implements the PROCESS and one of its parameters that refer to the resource (Figure 6.4i).
However, Java methods can access other variables besides the parameters (e. g. attributes)
and these variables can play the role of RESOURCES as well.

Implementation of SUBCLASS. The SUBCLASS relation is directly expressible in Java through
the subtyping relations hasSubType between classes or interfaces (Figure 6.4j).

Implementation of PATIENT. PATIENT(?Process, ?Entity) is a relation between a PROCESS and
an ENTITY that is a direct participant in the process. The PATIENT relation is used to express as
broadly as possible the participants of processes – such a participant may or may not undergo
changes as result of the process (e. g. INSTRUMENT, RESULT, RESOURCE are sub-relations of
PATIENT). This relation can be directly represented as a relation between the method that im-
plements the PROCESS and one of the variables accessed in the method representing the ENTITY

(Figure 6.4k).

Implementation of AGENT. AGENT(?Process, ?Agent) is a relation between a PROCESS and
one of its active determinants. The AGENT can be directly implemented as a relation between a
class that implements the AGENT and one of the methods, that implement the PROCESS, and
that are called from this class (Figure 6.4l).

Implementation of MEASURE. MEASURE(?Object, ?PhysicalQuantity) is a relation between
an OBJECT and a quantity that measures it. This relation can be implemented between a class
that implements the OBJECT and one of its attributes that is a sub-type of Comparable and that
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implements the QUANTITY (Figure 6.4m).

Implementation of EXPLOITS. EXPLOITS(?Object, ?Agent) is a relation between an AGENT

and an OBJECT that is used as a resource for performing a PROCESS that the AGENT deter-
mines. This relation can be implemented between a class that implements the AGENT and
a variable (implementing the exploited OBJECT) that is accessed from a method that imple-
ments the PROCESS (Figure 6.4n).

Implementation of LESSTHAN and GREATERTHAN. LESSTHAN(?Quantity, ?Quantity) and
GREATERTHAN(?Quantity, ?Quantity) are relations between two QUANTITIES. As we presented
before, QUANTITIES are implemented as instances of the interface java.lang.Comparable.
The LESSTHAN and GREATERTHAN relations can be implemented only algorithmically (im-
plicit) in the body of the method compareTo.

6.5 Discussion on Conceptual Limitations of Java

The results from our analysis on typical mappings between the Java programming knowledge
ontology and SUMO, show that Java is able to express explicitly only a few concepts from
SUMO: CLASSES, PROCESSES, SETS, and QUANTITIES. Even these concepts can be only par-
tially expressed in Java (not every relation between them can be reflected in the corresponding
Java constructs). All the other SUMO concepts can be implemented (in the most explicit way)
only as user defined classes. We remark that apart from a small set of RELATIONS instances that
can be directly expressed through programming language defined relations (e. g. SUBCLASS),
or relations among entities from standard libraries (e. g. collHasMember), general RELATIONS

are not directly expressible in Java. The conceptual relations defined by SUMO are most of the
times implementable through different kinds of program relations (redundancy) and program
relations can be interpreted in different manners (diffusion). We summarize that:

• beside a few SUMO concepts that have correspondence in the Java ontology, all other
SUMO concepts can only be encoded in Java;

• given a SUMO concept (or relation), there are more ways to map it on the Java ontology;

• the same (sequence of) program relation types can be used to implement distinct SUMO
relations;

• in addition to the language constructs, the Java language provides “standard means” for
implementing abstract concepts as part of its library; furthermore, basic programming
idioms are many times used to implement more abstract concepts.

Regarding the implementation of individual concepts or relations, we identified the following
issues:

• even if there is a good correspondence between SUMO PROCESSES and the Java methods,
in order to manipulate the Java implementation of PROCESSES (e. g. to return a process as
a result), we need to pack the methods, that implement the PROCESS, into classes;
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• even if SUMO PROPERTIES can be implemented as Java attributes, there is no clear
way to express the properties of PROCESSES;

• both PROPERTY and PART relations are implemented usually as attributes of classes and
this leads to difficulties in their recovery;

• RESULTS of PROCESSES are implemented many times only as side-effects and this make
their implementation difficult to recover;

• there is no clear manner to implement different kinds of participants in PROCESSES such
as INSTRUMENT, PATIENT, or RESOURCE;

• complex relations between PROCESSES such as CAUSES or SUBPROCESS are not explicitly
implementable (these relations are implemented only as method calls);

• the LESSTHAN and GREATERTHAN relations are encoded in the body of compareTo
methods.

Remark. 1) We performed the analysis of how can the real-world knowledge be implemented
in programs only in a restricted manner. This restriction is because we base ourselves on two
pre-defined conceptualizations: the SUMO ontology and our ontology of Java programming
knowledge. Both of these ontologies represent only a description of the subject of matter (real-
world and Java programs) from a particular point of view and thus are inherently incomplete.
However, we claim that both of these ontologies are relevant since SUMO is an IEEE standard,
and the Java ontology covers big parts of the knowledge about programs that is used in typical
reverse engineering analyses.

2) We investigated the best possible implementations. We did not take into account different
other constraints that can occur in the practical programs. For example, most of the times the im-
plementation needs to be integrated in a framework, to interact with already existing programs,
or to be performed by using existent means. These facts make the life of programmers much
more complex than we described here.

6.6 Related work

Ontological evaluation of modeling languages. There are several works in the literature
of information systems that concern the comparison of modeling grammars with respect to exis-
tent ontologies (Opdahl and Henderson-Sellers, 2002; Wand and Weber, 1993). By performing
ontological analysis are detected different kinds of mismatches between the grammar and the
ontology (Wand and Weber, 1993): construct overload – a modeling construct corresponds to
several ontological concepts, construct redundancy – several modeling constructs represent the
same ontological concept, construct excess – a modeling construct does not represent any onto-
logical concept, construct deficit – an ontological concept is not represented by any modeling
construct. As we presented in Section 2.2.2 (Figure ), in order to identify these mismatches one
needs to analyze two mappings (Wand and Weber, 1993):
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1. representation mapping: from the ontology (semantic domain) to the modeling language.
This mapping associates concepts from the ontology to the constructs of the modeling
language. This mapping can be used to identify the construct redundancies or construct
deficits.

2. interpretation mapping: from the modeling language to the reference ontology. This
mapping associates constructs of the modeling language to the ontological concepts. By
doing this, it can be used to identify modeling constructs that are non problem oriented
(construct excess) or constructs that represent more concepts (construct overload).

The representation mapping is similar to our implementation strategies. However, we can notice
the following differences: Firstly, the purpose of the above mentioned ontological analyses is
to evaluate the constructs of conceptual modeling languages. Our purpose is to identify typical
manners in which abstract real world concepts and relations (as defined by SUMO) are imple-
mented in Java programs. Secondly, the conceptual gap between conceptual modeling languages
(e. g. UML) and upper level ontologies is smaller than between Java and SUMO because the
conceptual modeling languages provide many constructs (e. g. actors, events, states, transitions,
relations or roles to name only a few) that are at a higher level of abstraction than the Java object-
oriented constructs. Thirdly, we map our Java programming knowledge ontology to SUMO and
the other works use Bunge-Wand-Weber ontology – e. g. (Opdahl and Henderson-Sellers, 2002).

6.7 Summary

In this section we investigated the similarities between the Standard Upper Merged Ontology
and our ontology of basic Java programming knowledge. Based on these similarities we iden-
tified a set of mismatches that can occur when we try to implement SUMO concepts in Java
programs: most SUMO concepts can only be encoded and are not directly implementable, a
program relation can be interpreted as several SUMO relations and vice-versa. We considered
SUMO to be an accurate description of the most general concepts of the real-world. Therefore
the mismatches between SUMO and our Java ontology are likely to be perpetuated (and even
accentuated) when implementing domain knowledge in programs.

Due to the big conceptual gap between the domain knowledge and general purpose
programming languages constructs, many mismatches cannot be avoided.
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7 Identifiers Based Recovery of Intentions

Nomen est omen1

Latin proverb

Abstract: In this dissertation we define the meaning of programs through mappings between
program elements and concepts from a domain ontology that they implement. When the domain
is close to programming (e.g. design patterns, architecture) then domain concepts (e. g. the “Sin-
gleton” design pattern) can be identified in a program based only on the information captured in
the language (e. g. the structure of the program). For example, numerous reverse engineering ap-
proaches deal with such problems: based exclusively on the structural information of a program
they recover concepts from a (many times implicit) domain ontology about architectural knowl-
edge. In our work we focus on the case when the domain is very different from programming and
when the only hints about the mapping between a program and domain concepts are given by
sources of information that are exterior to the language in which the program is written. In this
chapter we focus our investigations on the use of informal knowledge contained in identifiers.
We start by reviewing the roles of identifiers and program structure in program comprehension
and the difficulties and pitfalls that can occur when using this information for understanding
programs. We propose an approach to automatically detect concepts in the code by matching
parts of the domain ontology with parts of the program based on the similarity between concepts
and program elements names and between the conceptual and program relations. We develop a
systematic approach for dealing with program elements names, extend our unified meta-model
to take into consideration the names of identifiers and concepts, and present an algorithm for the
location of concepts (and thereby recovering

←→
Ref ).

Structure of this chapter. After the introduction (Section 7.1), in Section 7.2 we review
the role of identifiers and modularization in program understanding and the most important chal-
lenges in using them for concepts location. In Section 7.3 we present our view over programs as
knowledge bases: the content of the knowledge bases is the identifiers and the knowledge rep-
resentation language is the program structure. In Section 7.4 we present our unified meta-model
that contains explicitly the concepts, program elements and the naming information. In Sec-
tion 7.5 we present an algorithm for identification of concepts in programs using the similarities
between the names of the concepts and the program entities. The chapter ends with an overview
of the related work on concepts location (presented in Section 7.6) and a summary (presented in
Section 7.7).

1Names contain a purpose
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7.1 Introduction

Program identifiers are the most important source of information to link the code to its applica-
tion domain. Even if they many times exhibit limitations (ambiguities and lack of meaningful-
ness), most of the times identifiers reflect the purpose of the program elements. In this chapter
we use the identifiers in order to (semi-)automatically recover the intentional meaning by map-
ping programs to domain ontologies. In comparison to the existent automatic approaches that
use identifiers in reverse engineering, we advance in two directions: 1) increase the accuracy of
the mapping by detecting which program element refers to which concept, and 2) give semantic
content to identifiers since they are part of ontologies.

7.2 Good Identifiers and Modularization Help Program
Understanding

In this section we present a short literature survey on the benefits of good program identifiers
and modularization for program understanding and on the issues that can occur due to the low
quality of identifiers and of modularization.

7.2.1 The Role of Identifiers in Program Understanding

As we presented in the previous chapter, a large part of the domain concepts are not captured
explicitly by the constructs of the languages used today in the development process. Most of
the times, the domain concepts are only captured (hinted to) informally in the names of program
entities. The central role of identifiers in program understanding was acknowledged by numer-
ous works (Carter, 1982; Anquetil and Lethbridge, 1998b; Deissenboeck and Pizka, 2006). The
names of identifiers bring an additional source of information to the programming language: the
identifiers can be freely chosen and used to transmit knowledge that is not expressible in the
language itself. Conventions on forming identifiers (for PL/I) were introduced almost 30 years
ago:

“First write down a list of all the English words that are likely to be used in the
construction of identifiers. Even for large systems, this list numbers only in the
hundreds, not thousands, of words [...] When making up an identifier, start with
the English word or phrase that serves as a name. For each word in the name, pick
the permitted form from the list, and connect the result with underscores.” (Carter,
1982)

Not only good identifiers help program understanding, but scrambled identifiers (identifiers
whose names are changed into meaningless strings of characters) are used as one of the basic
methods of code obfuscation (Collberg et al., 1997).

Identifiers are the most important source of information that link programs to domains
that are different from programming.
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7.2.2 Issues with the Identifiers

Identifiers are only informal source of information, the names of program elements are chosen
mostly in an ad-hoc manner or in bigger projects the naming conventions are only locally ap-
plied. Besides the typical naming conventions at the lexical level (e.g. Hungarian notation, Java
naming conventions), there is remarkably few work that deals with the naming conventions at
the conceptual level (a notable exception is (Deissenboeck and Pizka, 2006)). Identifiers exhibit
a series of problems as presented below:

1. Identifiers can be meaningless. There are several studies in the literature of reverse engi-
neering that report on the encountered identifiers which are meaningless with respect to
the modeled domain. For example, Sneed (1996) reports about identifiers that represent
names of football players or of programmers’ girlfriends. Anquetil reports that even if the
identifiers of Mosaic are meaningful in general, they encountered also strange situations
like “mo here we are son” (Anquetil, 2001). Furthermore, many identifiers have only a
single character and they do not reveal their intended meaning. However, even if the prob-
lems of meaningless names occurs very often, there is a general agreement that overall the
identifiers are meaningful.

2. Polysemy and synonymy. Many times a name is used to refer to several concepts (syn-
onymy) or a concept is referred in the code under different names (polysemy) (Deis-
senboeck and Pizka, 2006). The fact that people use a high variety of words to refer to
the same things is recognized for a long time to be a central problem in human-computer
communication and is known as the “vocabulary problem” (Furnas et al., 1987).

3. Abbreviations and acronyms. Many times the names of concepts are abbreviated in pro-
grams – instead of using the full name for referring to a concept (e. g. “length”), the
programmers use short names (e. g. “len”). In the cases when both the abbreviated names
and the full names are used, we have a special case of synonymy. Anquetil (2001) reports
on the difficulties generated by dealing with acronyms – e. g. whether the acronym “IO”
should be split or not.

4. Compound identifiers. At the code level, the identifiers that contain several words are
named “compound identifiers” (e. g. “drawAndMoveColoredRectangle”). Splitting iden-
tifiers into basic words represents a problem in the analysis of identifiers (Anquetil and
Lethbridge, 1998a; Feild et al., 2006). In order to deal with special cases, beside the
general rules for splitting the compound identifiers, many times is used a list of “special
strings” that do not comply to the general splitting rules. Furthermore, proper interpreta-
tion of the meaning of long compound identifiers might require the usage of natural lan-
guage processing techniques (Deissenboeck and Pizka, 2006; Caprile and Tonella, 1999).

5. Dealing with morphological variations of words. Many times the same word occurs in a
program in a variety of forms – e. g. infinitives, gerund, past tense or plurals. Recognizing
that two strings represent the same word but in various inflexions is a challenging problem.
Many times this is solved by approximating all identifiers to their basic form by using a
words stemming algorithm (Anquetil, 2001) or by using a pre-defined dictionary.
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6. Compound words. The natural language does not contain enough words for describing all
the possible situations and only the most common concepts are lexicalized. The concepts
that are not common enough to be lexicalized or variations of concepts are described
through sequences of words, named “compound words” – e.g. “Gregorian Calendar”
(Deissenboeck and Pizka, 2006). The identification and interpretation of compound words
is another problem in dealing with identifiers.

7. Special words. Many times the words contained in identifiers do not represent common
natural language words (that we might find for example in dictionaries). Many times
identifiers refer to names of standards or other technical acronyms – e. g. “X059” is the
name of a security standard. It is obvious that splitting the compound identifiers that
contain these words require the usage of explicit knowledge about special names.

7.2.3 The Role of Modularization in Program Understanding

Beside the identifiers, other important factors that affect the understanding of programs are the
modularization and structuring mechanisms. Empirical experiments made on the influence of
modularization on program understanding show that modularization improves the comprehensi-
bility. Pennington (1987) suggests the fact that programmers’ mental representation of programs
is procedural (structural) rather than functional and emphasize on the importance of the program
structure for understanding.

Woodfield et al. (1981) represent an early work based on empirical studies of the influence of
modularization and comments in comprehending programs. The authors conclude that the “ab-
stract data type modularization” improved the comprehension even if the more modular program
had a bigger size than the non-modular one.

Bastani and Iyengar (1987) draw the conclusion that the efforts for comprehending a program
increase with the opaqueness between the abstract data structures (e. g. domain concepts) and
the physical data structures used to implement them.

7.2.4 Issues with the Modularization

Even if the modularization mechanisms are defined in the programming language, the practice
of software development shows the following problems:

1. Dominant decomposition. The programs are modularized along a single direction. This
leads to the well-known problem of the “tyranny of dominant decomposition” (Tarr et al.,
1999) that represents the inability of programmers to implement in a modular manner
certain application concerns that do not fit in the current decomposition of the software in
modules.

2. Lack of modularization. Many program parts lack an adequate modularization and big
portions of the code belong to a single module. Furthermore, different programming
languages provide different modularization capabilities: at one spectrum are the assembly
languages that offer no mechanism for modularization; at the other spectrum are object-
oriented languages that offer several modularization mechanisms.
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Observation: From the point of view of the explicitness in the implementation of concepts in
the code, “lack of modularization” is similar to “meaningless names”. In an extreme case the
program can be obfuscated by deleting all names and compressing the program structure (e.g.
convert local variables into global ones, inline methods) (Collberg et al., 1997). In these cases
our abstraction of programs would not function anymore.

The automation in the recovery of intentions can be achieved if the program
modularization follows (agrees to, is in concordance with) the modularization of its
domain (as modeled by the ontology) and the names of program elements reflect the

domain concepts that they refer to.

7.3 Programs are Knowledge Bases

In a broader sense, programming is a process of representing the domain knowledge in the world
of computers. Within this perspective, programming languages can be viewed as knowledge
representation languages. These observations bring us to regard programs as knowledge bases: program knowledge

base
• the content of the knowledge base is the names of program identifiers, and

• the knowledge representation language is a subset of the programming language.

Furthermore, by combining the program structure with the names of program elements, we
regard programs as semi-structured data:

• the structure among identifiers is given by the relations between their corresponding pro-
gram elements, but

• inside compound identifiers there is no structure since we consider that compound identi-
fiers are flat lists of words.

Example 7.1: Example of programs seen as semi-structured data

In Figure 7.1 we present two examples of programs that implement the same domain concepts.
In the first case, (Figure 7.1 top) there is obviously less structure in the implementations of
concepts DRAW and OVAL. Since “drawOval” is a compound identifier there is no structuring
between the words “draw” and “oval”. The only structuring is between the program elements
Graphics and drawOval (e.g. Graphics – hasMeth – drawOval) and drawOval and its
parameters (e. g. drawOval – hasParam – x). In the second case, (Figure 7.1 down) we present
a similar program, but better structured. In this case each program element refers to a lexicalized
concept and the relations among concepts implementation are explicit: Graphics – hasMeth –
draw – hasParam – oval).

2

The modularization of a program induces structure in the corpus of identifiers.
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class Graphics {
   ...
   void drawOval(int x, int y, int w, int h) { ... }
   ...
} 

Graphics

drawOval

x

y

w

h

hasMethod hasParameter

class Oval {
   int x, y, w, h;
}

class Graphics {
   void draw(Oval oval) { ... } ...
} 

Graphics

Oval

x

y

w

h

ha
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et
ho

d hasAttribute

draw oval
hasParameter

ha
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Unstructured Text

Figure 7.1: Programs as semi-structured data

7.4 A Unified Meta-model of Concepts, Names and Program
Entities

In order to make the role of identifiers as links between the program elements and domain con-
cepts explicit, we extend our unified metamodel (presented in Figure 3.13) to take into account
the names of program entities, the names of concepts and the words they are composed of. In
Figure 7.2 we present the extended meta-model that explicitly bridges the domain concepts to
the code via identifiers (Deissenboeck and Ratiu, 2006). In order to describe the relations be-
tween the domain concepts, the names and the program elements we add to the meta-model from
Figure 3.13 the lexical layer. The new layer explicitly describes the relation between program
elements, their identifiers, the words that compose these identifiers on the one hand, and between
the domain concepts, their names and the words that make up the concept names on the other
hand. The words represent the glues that link the identifiers and the names of domain concepts.
In Figure 7.2 we also show the functions that make the links between elements of these layers
(e. g. P2I links program elements to their corresponding identifiers).

Name ProgramElementIdentifierWordConcept

Relation

Conceptual Layer Program LayerLexical Layer

ProgramRelation

C NC2N

eΩ e∏

WN2W
II2W P2I

P

Ref

 

Ref

Figure 7.2: A unified meta-model for representing programs (right), domain ontologies (left)
and naming information (center) (Deissenboeck and Ratiu, 2006)

The formalization of the program and conceptual layers was presented in Section 3.4.2 and
Section 3.4.3. In the next section we present the formalization of the lexical layer.
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7.4.1 The Lexical Layer

We describe the lexical layer as a tuple consisting of three sets: the set of program identifiers,
the set of concept names and the set of words obtained by the reunion of both the words that
make up identifiers and the ones that make up concept names.

Remark. In Definition 3.4.2 (on page 83) we formally defined a concept c ∈ C to be a pair
(Names,Gloss), where Names is the set of the concept names and Gloss is a glossary entry
that describes the concept.

Definition 7.4.1 (Lexical layer): Let Π = (P, ΣΠ, eΠ) be a program abstraction and Ω =
(C, ΣΩ, eΩ) a domain ontology. The lexical layer Λ is: lexical layer

Λ = (N,W, I) (7.1)

where,

• N is the set of elements representing the reunion of the names of concepts from C as
defined below

N =
⋃
c∈C

c.Names,

• I is the set of elements representing the identifiers of program elements P ,

• W is the set of morphologically normalized words obtained by splitting the elements of N
and I into words.

In Figure 7.3 (middle) we present an example of the lexical layer.

Definition 7.4.2 (Name-to-Words): Given the lexical layer Λ = (N,W, I), we define the func-
tion name-to-words name-to-words

N2W : N →W ∗

that given a name returns the sequence of normalized words that compose it.

Definition 7.4.3 (Identifier-to-Words): Given the lexical layer Λ = (N,W, I), we define the
function identifier-to-words identifier-to-words

I2W : I →W ∗

that given an identifier computes the set of words that compose the identifier.
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Computing the functions I2W , N2W

In order to compute N2W or I2W we need to perform two basic operations: 1) obtain the set of
words from a name or an identifier, and 2) perform a morphological normalization of the words.

1) Splitting the identifiers. Identifiers that contain more words are named compound. They
either denote stand-alone concepts that are formed of more words (e. g. Gregorian Calendar) or
combinations of concepts (each concept being represented through a (compound-)word). The
first step in assigning meaning to identifiers is to split them into words. The most common used
techniques for splitting identifiers into words are based on CamelCase or the usage of special
words markers such as underscores (see the example below). Various techniques for splittingword markers

identifiers into words are presented in the reverse engineering literature. Caprile and Tonella
(1999) propose a technique for identifiers splitting that is based on a dictionary of already iden-
tified words. Anquetil and Lethbridge (1998a) propose a method for splitting the names of
source code files that do not contain word markers based on two steps: 1) identify the abbrevia-
tions in the system, 2) split long names into words by making use of the abbreviations list. Feild
et al. (2006) present a comparison of several techniques for splitting identifiers based on greedy
algorithms for splitting and on neural networks.

Example 7.2: Example of identifiers splitting

’GregorianCalendar’ 7→ {’Gregorian’, ’Calendar’} ’gregorianCalendar’ 7→ {’Gregorian’, ’Calendar’}
’gregoriancalendar’ 7→ {’gregoriancalendar’} ’gregorian calendar’ 7→ {’Gregorian’, ’Calendar’}

2

We assume that the identifiers have word markers and that we can use these markers
to split identifiers into words.

2) Morphological normalization of words. Many times the same word occurs in a program in
various morphological forms – e. g. “house”, “houses”, “open”, “opened”, “opening”. In these
cases the string comparison simply is not sufficient for determining whether two strings refer
the same word (possibly in two different forms). In order to enable the comparison of strings we
need to morphologically normalize them by applying one of the following methods:

1. Use a stemming algorithm that given a word strips its suffix in order to obtain a normalized
word (Porter, 1997); or

2. Use a dictionary that contains the word variations and their normalized form. The advan-
tage of a dictionary, is that it can resolve more inflections of words than pure stemming –
e. g. the WordNet normalized form of the words {“are”, “was”, “were”} is “be”, and this
cannot be obtained through stemming.

We use the WordNet dictionary in order to realize the normalization of words.
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Example 7.3: Example of words normalization

’houses’ 7→ ’house’ ’moved’ 7→ ’move’ ’is’ 7→ ’be’
’children’ 7→ ’child’ ’made’ 7→ ’make’ ’were’ 7→ ’be’

2

Example 7.4: Example of the complete formalization of a program

Shape       hasProperty   Location
X            isA             Location  
Y            isA             Location
Rectangle   isA             Shape
Rectangle   hasProperty   Width
Rectangle   hasProperty   Height
Width       isA             Size
Height       isA             Size

C = {Shape, Rectangle, Location, X, Y, Width, Height, Size}

hasProperty(Rectangle) = {Size}

isA(Rectangle) = {Shape}

hasProperty(Shape) = {Location}

isA(Width) = {Shape}

isA(x) = {Location}

isA(y) = {Location}

isA(Height) = {Shape}
isAisA

Rectangle

Shape

Location

x y

Size

Width Height

isA

hasProperty hasProperty

public class Shape { ... }
public class Rectangle extends Shape {
   int _x, _y;
   public void setLocation(int x, int y) { }
   public void setLocation(Point p) { }
   public Size getSize( ) { }
   public Object clone(...) { }
}

P = {Shape, Rectangle, setLocation, x, y, setLocation, Point, 
                                   p, Size, getSize, Object, clone}

hasAcc(Rectangle) = {setLocation, setLocation, getSize}

hasSupCls(Rectangle) = {Shape}

hasParam(setLocation) = {x, 
y}hasParam(setLocation) = {p}

hasType(x) = {int}

hasType(y) = {int}

hasType(p) = {Point}hasMeth(Rectangle) = {clone}
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L
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l L
a

ye
r N = {'Shape', 'Rectangle', 'Location', 'X', 'Y', 'Width', 'Height', 'Size'}

I = {'Shape', 'Rectangle', 'setLocation', 'x', 'y', 'Point', 'p', 'Size', 'getSize', 'Object', 'clone'}

W = {'Shape', 'Rectangle', 'Location', 'Set', 'X', 'Y', 'Width', 'Height', 'Size', 'get', 'P', 'Object', 'Clone'}

Rectangle

Shape

getSizesetLocationsetLocation

x y p

clone

Object Size

hasSupCls

hasAcchasAcc
hasMeth

hasRetType hasParam hasRetType

Figure 7.3: The three layers of a program

In Figure 7.3 we present an example of the program layers (the Program Layer containing
only the API program elements). In the middle of this figure is presented the lexical layer: it
contains the names of concepts (e. g. ’Shape’, ’Location’, ’Width’), the names of program ele-
ments (e. g. ’Shape’, ’setLocation’) and the set of normalized words obtained by the reunion of
words contained in the name and in identifiers. The other layers were presented in Section 3.4.2
and Section 3.4.3.

2

7.4.2 Bridging the Layers

To obtain the names of concepts and program elements we define two functions: program
elements-to-identifier (P2I) gives the associated identifier to a program element and concept-
to-name (C2N ) returns the set of names (synonyms) of a concept.
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Definition 7.4.4 (Program element-to-Identifier): Let P be a set of program elements and I a
set of identifiers. We define the function P2I (program element-to-identifier)program

element-to-identifier
P2I : P → I

to associate a program element to its corresponding identifier.

Definition 7.4.5 (Concept-to-Names): Let C be a set of concepts and N their names. We define
the function C2N (concept-to-names)concept-to-names

C2N : C → ℘(N)

to associate a concept to its corresponding set of names.

7.5 Automatic Identification of Concepts in the Code

In the following we present an algorithm for identification of concepts in programs based on
the similarities between the concepts and program elements names on the one hand, and on the
similarities between the structure of the ontology and of the program on the other hand.

7.5.1 Making Use of Naming Clues

In the following we define two functions that use the similarities between the identifiers and
concept names as clues to bridge the program and conceptual layers.

Definition 7.5.1 (Candidate names): Let I be a set of identifiers, i ∈ I an identifier, and N a
set of concept names. We define the function candidate names to be:candidate names

CandNms : I → ℘(N),
CandNms(i) = {n ∈ N |N2W (n) v I2W (i)}

Intuitively, a concept name n ∈ N is referred by an identifier i ∈ I iff the sequence of
words that make up the name of n is a subsequence of the sequence of words obtained from
splitting the identifier i. By working with (sub)sequences and not with (sub)sets of words, we
take into consideration the ordering among words. Based on the CandNms we define below
the candidate concepts function.

Definition 7.5.2 (Candidate concepts): Let C be a set of concepts, P a set of program elements,
and p ∈ P a program element. We define the function candidate concepts to be:candidate concepts

CandCts : P → ℘(C),
CandCts(p) = {c | c ∈ C ∧ i = P2I(p) ∧ C2N(c) ∩ CandNms(i) 6= ∅}

Intuitively, given a program element the function CandCts computes, based on its name, the
possible concepts that the program element refers to.
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Example 7.5: Example of CandNms and CandCts

In Figure 7.4 we present a configuration of the program, lexical and conceptual layers and below
examples of CandNms and CandCts. We remark that according to our definitions of CandCts
and I2W , the identifier ’getmonth’ cannot be interpreted since it is not in CamelCase.

C = {Calendar, Gregorian Calendar, Month}

L
ex
ic
al

L
a
ye
r N = {'Calendar', 'GregorianCalendar', 'Month'}

I = {'Calendar', 'GregorianCalendar', 'setMonth', 'getmonth', 'equals'}

W = {'Calendar', 'Gregorian', 'Set', 'Month', 'Getmonth', 'Equals'}

C
o
n
ce
p
tu
a
l

L
a
ye
r

P
ro
g
ra
m

L
a
ye
r class Calendar { 

   public void setMonth(...)
   public int getmonth() ...

P = {Calendar, GregorianCalendar, setMonth, getmonth, equals}class GregorianCalendar { 
   public boolean equals(...) ...

Gregorian Calendar    isA                Calendar
Calendar               hasProperty      Month

Figure 7.4: The names are used as clues for bridging the program and conceptual layers

CandNms(Calendar) = {’Calendar’}, CandNms(setMonth) = {’Month’},
CandNms(getmonth) = ∅, CandNms(equals) = ∅,
CandNms(GregorianCalendar) = {’Gregorian Calendar’, ’Calendar’}

CandCts(Calendar) = {Calendar}, CandCts(setMonth) = {Month},
CandCts(getmonth) = ∅, CandCts(equals) = ∅,
CandCts(GregorianCalendar) = {Gregorian Calendar, Calendar}

2

Remark. While the functions
←→
Ref represent the real (exact) mapping between the concepts and

the program elements that refer them, the function CandCts represent an approximate mapping
due to their similar names. The mapping provided byCandCts is inexact because of the naming
ambiguities (synonymy, polysemy), or is undefined (when identifiers are meaningless).

7.5.2 Making Use of Structural Similarities

In Section 3.6 we defined the functions
←→
t that map conceptual level relations on similar pro-

gram relations. If the structure of the program is similar to the structure of the groups of con-
cepts that it implements then the functions

←→
t would be enough. However, as we showed in

Section 4.2 and 5.2, programs exhibit abstraction (i. e. leave out domain concepts) and imple-
mentation details (i. e. program elements that do not refer to any domain concept). In these
cases, the function

←→
t needs to be extended as shown in the next example.

Example 7.6: Example of cases when simple relations mapping is insufficient

In Figure 7.5 we present examples of mappings between sequences of relations from our
conceptual layer and sequences of relations from the program. In (a) the property of a concept
is implemented as an attribute of the class that implements the concept; in (b) the property of
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Person

Offspring

Child

Person

Child

Person Person

hasSupClsChild

hasProp

Name

hasAttName

Person

Child

Person

Child

isA
Impl. Detail

b) c) d)

Person Person

Name Name

a)

Legend:

Figure 7.5: Implementation details and abstraction influence the mapping of relations

a concept is implemented as an attribute of the subclass that implements the concept; in (c) the
concept in the middle of a isA relation sequence is left out; and in d) instead of implementing
the isA relation directly we have an implementation detail.

2

In order to take into consideration these issues generated by abstraction and implementation
details (i. e. structural mismatches between the program and the ontology), we define an ex-
tended version of the relations mapping function by defining mapping between sequences of
conceptual and program relations.

Definition 7.5.3 (Extended implementation and interpretation of relations): Let Ω = (C, ΣΩ, eΩ)
be a conceptual layer and Π = (P, ΣΠ, eΠ) be the program layer. We define the extended im-
plementation of relations to be the functionextended

implementation of
relations

←−
te : ΣΩ∗ → ℘(ΣΠ∗)

that maps a sequence of relation types from the ontology to the corresponding set of sequences
of relation types from the program graph. The extended interpretation of relations is a functionextended interpretation

of relations −→
te : ΣΠ∗ → ℘(ΣΩ∗)

that maps the sequence of relation types from the program graph to a corresponding set of
sequences of relation types from the ontology. The duality between these functions is expressed
through the following equation:

−→
te (〈σΠ

i ...σ
Π
j 〉) = {〈σΩ

k ...σ
Ω
l 〉 ∈ ΣΩ∗ | 〈σΠ

i ...σ
Π
j 〉 ∈

←−
te (〈σΩ

k ...σ
Ω
l 〉)}

When we refer to both of these two functions we use the following notation:
←→
te .

Example 7.7: Example of
←−
te

In the following we present several instances of the
←−
te function for the example from Figure 7.5

(−hasSupCls is the inverse of the hasSupCls relation).

←−
te (〈hasProp〉) = {〈hasAtt〉, 〈−hasSupCls, hasAtt〉}
←−
te (〈isA, isA〉) = {〈hasSupCls〉}
←−
te (〈isA〉) = {〈hasSupCls, hasSupCls〉}
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2

7.5.3 Concept Location Algorithm

In the following we present an algorithm that recovers the references of concepts in the code
(
←→
Ref ). In order to overcome the naming ambiguities, our algorithm is based on matching the

program and the ontology graphs. Below we present our algorithm in pseudo-code and in Figure
7.7 we present an example of how this algorithm works.

1. for-each c ∈ C do
2. reflection(c) = {p ∈ P | c ∈ CandCts(p)}
3. for-each 〈σΩ

i ...σ
Ω
j 〉 ∈ ΣΩe

∗with←−te (〈σΩ
i ...σ

Ω
j 〉) 6= ∅

4. neighbours(c, 〈σΩ
i ...σ

Ω
j 〉) = {c′ ∈ C | c′ ∈ 〈σΩ

i ...σ
Ω
j 〉(c)}

5. for-each c′ ∈ neighbours(c, 〈σΩ
i ...σ

Ω
j 〉)

6. reflection(c′) = {p′ ∈ P | c′ ∈ CandCts(p′)}
7. for-each p ∈ reflection(c), p′ ∈ reflection(c′)
8. check-if (∃〈σΠ

k ...σ
Π
l 〉 ∈

←−
te (〈σΩ

i ...σ
Ω
j 〉) with p′ ∈ 〈σΠ

k ...σ
Π
l 〉(p))

9. if-yes (found mapping (c, p), (c′, p′))

Figure 7.6: Concepts location algorithm

Intuitively, the mapping between concepts and program elements is done by using a graphs
matching algorithm that uses two operations:

1. maps program elements with their candidate concepts based on the names similarity given
by CandCts (lines 2, 6), and

2. maps sequences of edges from the program graph to equivalent sequences of edges from
the concepts graph given by

←−
t (lines 4, 8).

Discussion: Below we make several remarks with respect to our algorithm.
1) Our algorithm for identification of concepts in programs is similar with algorithms for

finding subgraph isomorphism. Even if the latter algorithms are known to be NP-hard, due
to the fact that our mapping of paths is based on the functions CandCts and

←−
te , that restrict

the possible mapping space very much in practical situations, this algorithm does not pose any
serious computational problems.

2) At each step the algorithm identifies a unit of knowledge (knowledge quark), that is ex-
pressed as a triple: concept – relation – concept, in the code. This allows us to avoid some of the
mistaken identifications of concepts due to polysemy. However, as we present in Section 10.4,
by mapping only a triple at a time we still have a significant amount of false positives (noise).

3) An important part of this algorithm is based on matching the identifiers names to the con-
cepts names. Thus, our algorithm cannot map concepts to program elements if the names of
these program elements do not offer strong enough clues that they implement the concepts.
Moreover, we can recover only those implementations where the sequence of relations from the
domain ontology is reflected in the code. Say it with other words, we recover the functions

←→
Ref

only partially.
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b) Program graph

isA
hasAttributehasProperty

hasSupClass

a) Concepts graph

c) Example 1: The identification of concepts Shape and Rectangle
reflection(Rectangle) = {Rectangle}

   neighbours(Rectangle, <isA>) = {Shape}

   reflection(Shape) = {Shape}

   ({<hasSupClass>} ∋ te (<isA>)) and (Shape ∋ <isA>(Rectangle)) 

                                  and (Shape ∋ <hasSupClass>(Rectangle))

        => found mapping: {(Shape, Shape), (Rectangle, Rectangle)}

d) Example 2: The identification of concepts Rectangle and Width 
reflection(Rectangle) = {Rectangle}

  neighbours(Rectangle, hasProperty) = {Width}

  reflection(Width) = {_width}

  ({<hasAttribute>} ∋ t e(<hasProperty>)) and ((Rectangle hasProperty Width) 

                                                         and (Rectangle hasAttribute _width))

      => found mapping: {(Rectangle, Rectangle), (Width, _width)}

Legend:

Rectangle

Shape

Width Height

Rectangle

Shape

_width _height

Figure 7.7: Concepts location algorithm examples
4) Once the mapping is established and concepts are identified in the code we can analyze the

quality of identifiers and we identify naming problems such as polysemy and synonymy (Chap-
ter 8). For the cases when the names have a good quality (and indeed reflect the link between
the program entities and the domain concepts) the algorithm enables automatic investigation of
how is the domain knowledge reflected in the code.

5) In Section 10.4 we present our experience with running the concepts location algorithm on
several Java systems. The most important conclusions of our experiments are that the algorithm
is powerful enough to recover

←→
Ref for a large number of program elements. However, due to

the fact that in each step the algorithm matches only pairs of related concepts with pairs of
related program elements, the algorithm can deliver a considerable number of false positives
(i. e. program elements that were assigned to concepts by mistake).

7.5.4 Discussion on Automating the Concept Location Algorithm

In the following we examine our algorithm and discuss every line from Figure 7.6 with respect
to the degree of automation:

Line 1: from the very first line we remark that in order to apply the algorithm we need to
know the set C of concepts which are searched for in the code. Where we get these concepts
from is the main subject of Chapter 9.

Lines 2, 6: as we already discussed, the CandCts can be computed automatically based on
the similarities between the names. The extraction of program layer and the slicing of identi-
fiers for obtaining the CandNms, are topics already studied in the reverse engineering literature
(Caprile and Tonella, 1999; Feild et al., 2006).

Lines 3, 4, 7: we need a concrete set of relations between concepts (ΣΩ), a concrete set of
program relations (ΣΠ) and an appropriate instance of the relations mapping function (

←−
te ). An

approach for obtaining these ingredients (ΣΩ, ΣΠ,
←−
te ) by performing ontological analysis was
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presented in Chapter 6. In the experiments from Chapter 10 we will use only ΣΠ and ΣΩ that
we defined in Sections 3.4.2 and 3.4.3.

7.6 Related Work

Modeling identifiers and concept names. There are many papers in the reverse engi-
neering literature that deal with the analysis of identifiers (Antoniol et al., 2007; Deissenboeck
and Pizka, 2006; Lawrie et al., 2007). The modeling degree of identifiers varies between flat
strings of characters and up to sequences of words obtained by different strategies for splitting
compound identifiers into words and for morphologically normalizing the words. Most of the
works (except (Deissenboeck and Pizka, 2006)) do not treat explicitly the differences between
program identifiers and names of concepts.

We advance in this direction by defining and formalizing the lexical layer that makes a distinc-
tion between the names of concepts and program identifiers; compound words and compound
identifiers. Furthermore, we define formally the relations between program identifiers and names
(CandNms), the relation between names and the words they are composed of (N2W ), and be-
tween the identifiers and the words they are composed of (I2W ).

Concept location and assignment. According to Biggerstaff et al. (1994) two tasks are
required to assign concepts to programs:

“1. Identify which entities and relations out of the often overwhelming numbers in a
large program are really important; 2. Assign them to known (or newly discovered)
domain concepts and relations.”

Biggerstaff describes a set of features that facilitate the assignment of human-oriented concepts
to program parts:

“1. natural language token meanings; 2. occurrences of closely related concepts”

The vision of Biggerstaff from early ’90s on concepts assignment is very close to our concepts
location approach described in this chapter. All major ingredients of our approach – 1) inten-
tional program abstraction (i. e. program elements and relations), 2) the conceptual layer (i. e.
concepts and relations) and 3) location of concepts based on the similarities between program
elements and concepts names – represent practically only an operationalization of the vision of
Biggerstaff.

Latent Semantic Indexing. One of the most widely-used approaches for using the infor-
mation carried by identifiers is “Latent Semantic Indexing” (LSI) (Maletic and Marcus, 2001).
LSI is an information retrieval technique based on computing clusters of words that recurrently
occur together in different program parts. These clusters of co-occurring words form high-level
concepts and thereby have a “semantic content”. LSI was used by Marcus (2003) to link source
code to documentation, to identify abstract data-types in the code or to identify high-level con-
cept clones in the software. In most of the LSI-based concept location approaches, the clusters of
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identifiers remain uninterpreted and thereby their meaning is not specified at all. There is how-
ever one exception: in the case when source code is mapped on documentation we can consider
that the documentation represents an interpretation of the clusters – the meaning of the clusters
is given by the natural language prose that is part of the documentation where the clusters were
mapped to. However, this natural language interpretation is weak and lacks structure.

In our work, we use light-weighted domain ontologies to represent the meaning of domain
the concepts. Furthermore, our graph-based algorithm aims to a higher precision in mapping the
concepts to the code and thereby we can assign better defined concepts to individual program
elements (and not to entire program parts).

Design patterns identification. In the case when the semantic domain describes design pat-
terns, our approach for locating concepts is quite similar to the identification of design patterns.
There is a large amount of work in the reverse engineering community that aimed at recovering
design patterns from the code by matching program structure with a representation of design
patterns collected in a knowledge base (and representing the semantic domain). At a certain
abstraction level, all of these works are similar to our concepts location approach. Albin-Amiot
and Guéhéneuc (2001) propose an approach to build a knowledge base of design patterns. The
identification of design patterns in programs is done by mapping the code-model to the model
defining design patterns. Tsantalis and Halkidis (2006) also use a graph matching algorithm for
detecting design patterns. They formalize the design patterns as graphs, abstract programs as
graphs and subsequently identify design patterns by matching the two graphs. The occurrences
of design patterns are identified based on the similarities between the structures of the graphs.
Compared to the works on design patterns detection our approach aims at locating (arbitrary)
domain concepts.

7.7 Summary

Identifiers are the most important source of information for recovering the intentional meaning
of programs. In this chapter we proposed an approach to automatic recovery of intentional
meaning by using the similarities between the names and structure of concepts on the one hand
and the program elements names and the program structure on the other hand. Our approach for
locating concepts differ from the ones already existent in the literature along the following lines:

• automation – our approach is fully automatic once we have a domain ontology,

• accuracy – characterized along two directions: 1) the concepts are parts of domain on-
tologies and thereby have a well defined meaning, and 2) we map individual program
elements to concepts,

• domain of the applicability – our approach can be used to locate concepts from a wide va-
riety of domains (ranging from business domains up to domains closer to programming).
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8 Characterizing the Reflexion of Concept
Names in Program Identifiers

[...] programs must be written for people to read, and only incidentally for ma-
chines to execute.

Abelson and Sussman1

Abstract: The importance of good program elements names is widely acknowledged in pro-
gram comprehension and reverse engineering communities. The similarities between the names
of program entities and domain concepts are the most important hints that help in identification
of non-technical concepts in the code. In the previous chapter we used the similarities between
identifiers parts and domain concepts names to automate the location of concepts in the code.
We assumed that the names of program elements are good enough in order to allow the location
of concepts in the code. However, in practice the identifiers are far from being perfect and the
quality of names influences the automatic location of concepts. In this chapter we use our frame-
work to formally characterize the quality of names in terms of how good they reflect the domain
concepts. By making the distinction between the functions CandCts (apparent concepts refer-
ence based only on names similarity) and

←→
Ref (concepts actually referenced) we can formally

describe naming anomalies along two directions:

1. meaningfulness of identifiers characterizes the measure in which identifiers reflect the
concepts referred by their program element, and

2. naming ambiguities characterize the synonymy and polysemy caused by non-consistent
naming.

Structure of this chapter. In the introduction (Section 8.1) we present a general discussion
on the quality of names and what it means for a program element name to be ideal. In Sec-
tion 8.2 we discuss and formalize the meaningfulness of identifiers. In Section 8.3 we present
and formalize the naming ambiguities (i. e. synonymy and polysemy). We end this short chapter
by presenting the related work in describing the quality of identifiers (Section 8.4) and with a
summary (Section 8.5).

1Preface to the first edition of “Structure and Interpretation of Computer Programs” (Abelson and Sussman, 1996)
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8.1 Introduction

As the quote at the beginning of this chapter says, programs must be written like prose in order
to be easily readable by humans. One of the features of programs that make them readable
is the quality of the identifiers. There are several works in the literature that characterize the
quality of names in terms of informal rules (Carter, 1982; Anquetil and Lethbridge, 1998b) or by
formally expressing conciseness and consistency rules (Deissenboeck and Pizka, 2006). Since
the similarities of program elements and concepts names represent our most important source of
information for automatically extraction of domain concepts in programs, we will characterize
in the following the quality of names by using our framework.

Remark. All the mismatches formalized in this chapter are given by considering our intentional
program abstraction Π = (P, ΣΠ, eΠ), a domain ontology Ω = (C, ΣΩ, eΩ), and the lexical
layer Λ = (N,W, I).

Definition 8.1.1: A program element p ∈ P has an ideal name iff:ideal name

−−→
Ref (p) = CandCts(p) (8.1)

Intuitively, all the concepts that a program element refers to are reflected as parts of its name.
Real-world programs contain many times identifiers whose names offer only partial clues about
the implemented concepts or exhibit different inconsistencies. In the following two sections
we characterize naming defects by describing the meaningfulness of names and ambiguities
introduced by naming. We discuss the influence of different naming defects on program com-
prehension in general and on the usability of APIs in particular.

8.2 Meaningfulness of Identifiers

Many empirical studies on the nature of identifiers in industrial systems report the fact that
some program identifiers are “meaningless” (Sneed, 1996; Anquetil, 2001). In the following we
formally characterize the different cases of meaningfulness of identifiers.

Definition 8.2.1 (Non-suggestive name): A program element p ∈ P has a non-suggestive namenon-suggestive name

iff:

∃c ∈ C. c ∈
−−→
Ref (p) ∧ c 6∈ CandCts(p)

Intuitively, at least one of the concepts that are referenced is not explicitly reflected in the
program element name. In this case, the concepts that the program element refers to can be
identified only by reading the code or the documentation. In the case of APIs non-suggestive
names affect the usability of their interface negatively.

Example 8.1: Example of non-suggestive naming

The name of the method getActualMaximum of the class java.util.Calendar represents
an example of non-suggestive naming: we can recognize the concept MAXIMUM but not the
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other concepts it refers to. By investigating the Javadoc corresponding to this method we find
out that2:

/**
* Returns the maximum value that the specified calendar field could have,

* given the time value of this Calendar. For example, the actual maximum

* value of the MONTH field is 12 in some years, and 13 in other years in

* the Hebrew calendar system. [...]

After reading the documentation we can propose a better name like for example “getMax-
imumFieldValue”. In order to use this method, one needs to have a deep knowledge of the
implementation details of the CALENDAR concept in the Java library.

2

Definition 8.2.2 (Clueless name): A program element p ∈ P exhibits clueless naming iff: clueless naming

−−→
Ref (p) 6= ∅ ∧ CandCts(p) = ∅

Intuitively, a program element refers to some domain concepts but its name does not give
any clue about any of these concepts. When the names of all program elements are clueless,
then we have a typical case of code obfuscation at the identifiers level. If the program element
with clueless naming belongs to the public interface of the library, the only way to use this
element is to inspect other sources of information beside its name - e. g. its documentation, its
implementation, or usages of the program element in the code.

Example 8.2: Example of clueless naming

The method java.awt.Rectangle.outcode(double x, double y), that for a given point
determines its relative position with respect to the rectangle, has a clueless name.

2

Definition 8.2.3 (Misleading name): A program element p ∈ P has misleading name iff: misleading name

c 6∈
−−→
Ref (p) ∧ c ∈ CandCts(p)

Intuitively, a program element has a misleading name if the name refers to concepts that are
not referred by the program element. This represents a worse sub-case of code obfuscation since
one can easily misuse this program element.

Example 8.3: Example of misleading name

An example of misleading name is the parameter date of the method Calendar.set(int

year, int month, int date) from the Java API. Here, the name “date” is used to denote
the concept DAY OF THE MONTH instead of a particular point in time as we would expect.

2

2Java API – http://java.sun.com/javase/6/docs/api/java/util/Calendar.html
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8.3. AMBIGUITY OF IDENTIFIERS

8.3 Ambiguity of Identifiers

Another category of naming defects is represented by naming ambiguities. In these cases the
concepts referenced by the program elements are reflected in their names but the usage of names
for denoting concepts is inconsistent: one name is used for referring to more concepts or one
concept is denoted by different names.

Definition 8.3.1 (Synonymy): The names of the program elements p1 and p2 exhibit synonymysynonymy

iff:

∃c ∈ C. {p1, p2} ⊂
←−−
Ref (c) ∧ n1 ∈ C2N(c) ∧ n2 ∈ C2N(c) ∧ n1 6= n2 ∧

n1 ∈ CandNms(P2I(p1)) ∧ n2 ∈ CandNms(P2I(p2))

Intuitively, a concept is referred through two names within two program elements. When a
concept from the real world is implemented in a program, the programmers should refer to that
concept by using only one name. By avoiding synonymy, the homogeneity is increased and this
facilitates the location of concepts.

Example 8.4: Example of synonymy

Below we present an example of synonymy from the Java AWT graphical library. The concept
ELLIPSE is implemented in this library by using two names: ‘ellipse’ and ‘oval’. As we can see
in the code fragment below, this concept is implemented in a hierarchy of shapes through the
class Ellipse2D and as drawing primitive through the method drawOval() of Graphics.
When we look at the documentation of drawOval() we see that indeed this method refers to
ELLIPSE. Furthermore, a closer inspection of these implementations reveals the fact that they are
similar since they represent an ellipse by using the upper-left corner, the height and the width of
the rectangle in which the ellipse is contained. This leads us to the conclusion that the ELLIPSE

concept is defined using different names in two relatively close parts of the graphical library and
at two levels of abstraction: firstly it is introduced as a “first class citizen” through a class, and
secondly as a primitive method used in a drawing utility class3.

1. public abstract class Ellipse2D extends RectangularShape { ... }
2.
3. public abstract class Graphics { ...
4. public abstract void drawOval(int x, int y, int width, int height); ...
5. }

2

Definition 8.3.2 (Polysemy): The names of the program elements p1 and p2 exhibit polysemypolysemy

iff:

n ∈ C2N(c1) ∧ n ∈ C2N(c2) ∧ n ∈ CandNms(P2I(p1)) ∧

n ∈ CandNms(P2I(p2)) ∧ p1 ∈
←−−
Ref (c1) ∧ p2 ∈

←−−
Ref (c2)

3More recent versions of the AWT library contain the class Graphics2D that solves this problem by offering
the method draw(Shape). However, as the original class was not removed the synonymy defect still exists.
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CHAPTER 8. CHARACTERIZING THE REFLEXION OF CONCEPT NAMES IN
PROGRAM IDENTIFIERS

Intuitively, two distinct concepts are referred through a single name by two program elements.
When two distinct concepts are implemented in a program the names of their corresponding
program entities should reflect the difference. The problems generated by polysemy at the level
of program entity names negatively affect the location of concepts and increase the program
ambiguity (Rajlich and Wilde, 2002).

Example 8.5: Example of polysemy

1. class BorderLayout {
2. ...
3. /**
4. * The north layout constraint (top of container).
5. */
6. public static final String NORTH = ”North”;
7. ...
8. /**
9. * Constant to specify components location to
10. * be the north portion of the border layout.
11. */
12. Component north;

13. ...
14. public Object getConstraints(
15. Component comp) {
16. ...
17. if (comp == north) {
18. return NORTH;
19. } else if (comp == south) {
20. return SOUTH;
21. } else if (comp == west) {
22. return WEST;
23. }
24. ...

As we can see in the above code fragment, in the class BorderLayout we have two distinct
concepts implemented as attributes and which are referred to through the same name: ‘north’.
The first concept refers to a position and is implemented through the attribute NORTH with type
int. The other sense refers to a component which is placed at the top of the layout and is
implemented through the attribute north with type Component. The only distinction between
these names is their capitalization. On the right side is a code sequence taken from the library
and which shows how these two concepts are defined. Interestingly, even the author of these
lines seems to have been confused enough to use an obviously incorrect JavaDoc comment for
attribute north with type Component (lines 9–10). There are further pieces of code that are
affected by this naming ambiguity, e. g. in lines 17–23.

2

8.4 Related Work

Anquetil and Lethbridge (1998b) describe “reliable naming conventions” that are rules for char-
acterizing identifiers at a semantic level:

“Ideally, we would say that a naming convention is reliable if there is an equivalence
between the names of the software artefacts and the concepts they implement.”

This rule is expressed by our notion of ideal name presented in Definition 8.1.1. The authors
present also a restricted version of the “reliable naming conventions” that refer only to naming
(non-)ambiguities (synonymy and polysemy):

167



8.5. SUMMARY

“Two software artefacts with the same name should implement the same concept.
[...] Two software artefacts with different names should implement different con-
cepts.”

In comparison with (Anquetil and Lethbridge, 1998b) our characterization is more detailed and
formal.

The closest work to ours related to the formal characterization of names is (Deissenboeck
and Pizka, 2006). The authors characterize the identifier names in terms of their consistency,
conciseness and composition rules for compound words. In this paper the authors assume that a
program element implements a single concept (that can be denoted through a compound word):

“The concept identified by a compound identifier must be a specialization of the
concept identified by the head of the compound identifier”

Our formal framework enriches the characterization of names along two directions:

• it allows us to characterize explicitly the difference between the apparent reference of
concepts denoted through CandCts and the real reference of concepts denoted through←−−
Ref , and

• we make a distinction between a compound word (that refers to a single concept) and a
compound identifier that can refer to more concepts.

Furthermore, once the intentional meaning is recovered, our framework allows the automatic
identification of the naming defects.

8.5 Summary

Empirical studies in program understanding revealed that in practice the identifiers represent the
most important source of information that link programs to domain concepts that they imple-
ment. However, even if the identifiers are generally useful, they exhibit many times a series of
defects. In this chapter we use our framework for classifying the defects of identifiers along two
directions: the meaningfulness of identifiers and the ambiguity of identifier names. We need
to be aware of these defects since our algorithm for automatic identification of concepts in the
code (presented in the previous chapter) uses the similarities between the concept and program
element names as basis for the identification of concepts. Therefore our algorithm is highly
restricted by the cases when the program element names are meaningless.
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9 Sources of Domain Ontologies
Adequate for Program Analysis

The only source of knowledge is experience.

Albert Einstein

Abstract: In this dissertation we present a new approach to define the meaning of programs by
mapping their program entities to domain concepts shared within domain ontologies. A corner-
stone of our approach is the fact that ontologies represent the semantic domain with respect to
which the code is interpreted and characterized. Therefore, in order to apply our approach in
practice, we need a considerable body of knowledge shared as (light-weighted) domain ontolo-
gies. In this chapter we present how we can obtain such knowledge from the following sources:
1) off-the-shelf ontologies, 2) ontology fragments built by analyzing the commonalities of do-
main specific APIs, and 3) ontologies built manually for performing particular analyses. While
off-the-shelf ontologies are cheap to get, many times they have another focus and are not at
the abstraction level of programs that need to be analyzed. Furthermore, currently there are no
ontologies that cover the technical domains such as GUI or XML. To obtain fragments of on-
tologies that cover technical domains we analyze commonalities of domain specific APIs that
implement the same domain. In the case of domains that are not covered by APIs and for which
off-the-shelf ontologies are not available, we sketch a method to manually build ontologies based
on the demands of a particular analysis. In this chapter we discuss in depth these three alterna-
tives from the perspective of their support for automation and we focus on extracting ontologies
fragments from domain specific APIs. We compare the advantages and drawbacks involved
by using these sources of ontologies in order to enable the automatic conceptual analysis of
software projects.

Structure of this chapter. After the introduction, presented in Section 9.1, we discuss in the
following sections three sources of ontologies for analyzing programs. Section 9.2 presents the
advantages and problems of using off-the-shelf ontologies for program analysis, with focus on
WordNet. The core of this chapter is Section 9.3 that presents a method for extracting ontologies
by analyzing the commonalities of more APIs that cover the same domain. A methodology for
manually building ontologies is presented in Section 9.4. Section 9.5 presents a comparison
of the three sources of ontologies with emphasis on their adequacy for program analysis. In
Section 9.6 we present the related work, and Section 9.7 ends this chapter with a summary.
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9.1. INTRODUCTION

9.1 Introduction

A major landmark of our approach is the assumption that there exists a body of domain knowl-
edge shared as domain ontologies. As consequence, a precondition for automation of our ap-
proach is to have (large enough) ontologies that represent adequate domain knowledge and at an
appropriate level of abstraction that allows their mapping to programs.

A major distinction between our approach and the other reverse engineering approaches is the
explicit assumption that this knowledge should be external to the program under analysis and
that it should reflect the knowledge (and the experience) of domain experts.

In this chapter through “ontology” we understand an artefact that represents a
conceptual model of a domain. From the point of view of the specification level, we

work with light-weighted ontologies that contain concepts and relations among them.

A domain ontology useful for analyzing a program should satisfy the following requirements:

1. Modeling view: The ontology should share domain knowledge from a point of view that
is compatible with how is the domain implemented in the program. With other words, it
should have “the same view over the world” as the program under analysis. For example,
if the ontology uses other terminology for describing the domain then its concepts cannot
be mapped (with our method) to programs.

2. Completeness: In order to analyze the domain coverage of a program the ontology must
have a high completeness degree (i. e. all interesting domain concepts and relations need
to be explicitly represented). If the ontology is not complete then the program elements
that implement the missing concepts are seen as implementation details.

3. Accuracy: In order to identify diffusion and distortion of domain concepts in programs we
need ontologies that reflect the domain knowledge as accurate as possible. If the ontology
does not represent the domain knowledge in an accurate manner then the conclusions we
draw (i. e. the mismatches we identify) are flawed.

4. Format: In order to enable automatic conceptual analyses based on our graph matching
algorithm, the ontologies need to be represented in an adequate way (as graphs). Further-
more, in order to enable the graph matching, we need to define a priori the paths matching
strategies (

←→
t ).

9.2 Off-the-Shelf Ontologies

Current off-the-self ontologies cover only restricted parts of some domains. Usually ontologies
are built for a particular purpose and represent the domain concepts from a certain perspective
that fits at best for achieving their purpose. Thus, even if the number of off-the-shelf ontologies
is growing rapidly, most of the time there are no off-the-shelf ontologies that can be used to
analyze a program.
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CHAPTER 9. SOURCES OF DOMAIN ONTOLOGIES ADEQUATE FOR PROGRAM
ANALYSIS

The WordNet Ontology. WordNet1 is an online dictionary of English inspired by psycholin-
guistic theories of human lexical memory. Instead of organizing the words according to their
form, like the majority of other dictionaries do, WordNet organizes the words according to the
meaning of the concepts they denote in sets of synonyms (synsets) (Miller et al., 1990). Word-
Net 2.0 contains over 150,000 words, of which more than 70% are nouns, grouped in more than
115,000 sets of synonyms. Due to polysemy, every word can express more lexicalized con-
cepts and due to synonymy every lexicalized concept can be represented through more words.
WordNet defines two different types of relations between the concepts denoted through nouns:

• Hypernymy/Hyponymy (Generalization). The synsets are organized hierarchically along
the hypernymy (i. e. “is-a”) relation. Every word definition consists of its immediate hy-
pernym (superordinate) followed by distinguishing features. Hyponymy is the inverse
relation of hypernymy. Both relations are transitive.

• Holonymy/Meronymy (Aggregation). In the case of nouns the distinguishing features that
are explicitly encoded in WordNet are the meronyms (i. e. “part-of”). Meronyms, which
represent parts of a whole, are features that can be inherited by hyponyms. Holonymy is
the inverse relation of meronymy. Both relations are transitive.

S: (n) calendar (a system of timekeeping that defines the beginning and length and divisions of the year)
    + direct hyponym
          S: (n) lunar calendar (a calendar based on lunar cycles)
          S: (n) lunisolar calendar (a calendar based on both lunar and solar cycles)
          S: (n) solar calendar (a calendar based on solar cycles)
              + direct hyponym
                     S: (n) Gregorian calendar, New Style calendar (the solar calendar now in general use, introduced by Gregory XIII ... )
                             + part meronym
                                    S: (n) January, Jan (the first month of the year; begins 10 days after the winter solstice)
                                    S: (n) February, Feb (the month following January and preceding March)
                                    S: (n) March, Mar (the month following February and preceding April)
                                    S: (n) April, Apr (the month following March and preceding May)
                                    S: (n) May (the month following April and preceding June)
                                    S: (n) June (the month following May and preceding July)
                                    S: (n) July (the month following June and preceding August)
                                    S: (n) August, Aug (the month following July and preceding September)
                                    S: (n) September, Sep, Sept (the month following August and preceding October)
                                    S: (n) October, Oct (the month following September and preceding November)
                                    S: (n) November, Nov (the month following October and preceding December)
                                    S: (n) December, Dec (the last (12th) month of the year)
                     S: (n) Julian calendar, Old Style calendar (the solar calendar introduced in Rome in 46 b.c. by Julius Caesar ... )
                     S: (n) Revolutionary calendar (the calendar adopted by the first French Republic in 1793 and abandoned in 1805; ...)

Figure 9.1: Example of WordNet entries related to the concept CALENDAR

Figure 9.1 shows an example of how WordNet represents the calendar concept. We notice
several hyponymy relations in the calendar hierarchy (e. g. SOLAR CALENDAR is a kind of
CALENDAR) and twelve meronymy relations (e. g. JANUARY is a part of GREGORIAN CALENDAR).
Figure 9.2 shows the conceptual graph containing these concepts.

1http://wordnet.princeton.edu
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9.3. EXTRACTING ONTOLOGIES FROM DOMAIN SPECIFIC APIS

lunar calendar

Calendar

January August

solar calendar luni solar calendar

Julian calendar Gregorian calendar Revolutionary calendar

February March April June July September October November December

hasHypernym

Legend:

hasMeronym

Figure 9.2: Example of a graph whose nodes are the concepts related to CALENDAR

Remark. Most of the relations in WordNet are hyponymy since all concepts are arranged in a
taxonomy. The number of meronymy relations is much smaller. Due to the high number of
words that it contains, there are many concepts shared in WordNet that are not relevant for the
analysis of programs – e. g. in Figure 9.1 we notice the concept REVOLUTIONARY CALENDAR

or LUNI SOLAR CALENDAR. In the same time, commonly used concepts that are specific to pro-
gramming are not represented in WordNet – e. g. WordNet does not “know” technical concepts
related to design patterns such as LISTENER, or related to graphical interfaces.

From these remarks, we can draw the conclusion that WordNet is too general to be system-
atically used as the main knowledge base in analyzing programs. However, due to the fact that
it has a high quality (it has a large community of users and is validated in many applications)
WordNet can be used for (incomplete) analyses of the mismatches in the reflexion of knowl-
edge in programs. We present our experiences with using the WordNet for concepts location in
Section 10.4.1.

Mismatches examples from Chapters 5 and 8 are obtained by comparing parts of the
Java API with the WordNet ontology.

9.3 Extracting Ontologies from Domain Specific APIs

Empirical studies on the knowledge needed by programmers during maintenance activities re-
vealed the fact that most of the knowledge necessary for understanding programs is of techni-
cal nature – e. g. knowledge related to graphical user interfaces, networking, XML processing,
communication (Anquetil et al., 2003, 2007). But technical knowledge in a machine process-
able format and that is at a proper abstraction level suitable for program analysis is not available
off-the-shelf. One of the biggest sources of technical knowledge that is represented in a (semi-
)structured form are the public interfaces of domain specific libraries. Domain specific APIsdomain-specific APIs

offer their clients ready-to-use implementations of domain concepts and we use this fact to ex-
tract ontology fragments. Extracting domain knowledge from APIs is difficult because:
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1. Due to the big abstraction gap between the domain knowledge and programs, in addition
to the knowledge about their domain, the APIs are cluttered with a considerable amount
of noise in form of implementation details.

2. An API offers a particular view on its domain and implements only a part of domain
concepts.

In order to overcome these problems, we present a technique for extracting the domain knowl-
edge based on the similarities of several APIs that cover the same domain. Different APIs that
are developed by different programmers in different organizations and even in different pro-
gramming languages, but that target the same domain, give us a much broader perspective of
that domain and help us eliminate the noise. In Figure 9.3 we illustrate this situation intuitively:
the upper part of this figure illustrates the forward engineering process of building APIs – start-
ing from the same domain knowledge, different programmers provide different implementations
of domain concepts. The lower part of Figure 9.3 illustrates our approach to extract the domain
knowledge – starting from the commonalities of more APIs we extract fragments of a domain
ontology.

c

b d
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ge
Programmer 1

Programmer 2
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xb'
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API 1

a''

yb''API 2
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c

b
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xb'
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API 1

a''

yb''

c''

API 2

Figure 9.3: Reflecting domain knowledge in APIs (up); Extracting domain knowledge from
APIs (down)

Example 9.1: Different APIs implement the same graphical concepts in similar manner

In the upper part of Figure 9.4 we present examples of basic concepts from the domain of
graphical user interfaces and the relations among them (e. g. buttons are graphical components,
graphical components have position and size). In the lower part we present how is this knowl-
edge reflected in three of the most well-known APIs that implement graphical user interfaces
(Java AWT, Eclipse SWT and .NET).

2
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package java.awt;
class Component extends Object {
  int getSize() { ... }
  int getLocation() { ... }
}
class Button extends Component { ... }
class Label extends Component { ... }

package org.eclipse.swt.widgets;
class Widget extends Object{ ... }
class Control extends Widget {
  Point getSize() { ... }
  Point getLocation() { ... }
}
class Button extends Control { ... }
class Label extends Control { ... }

namespace  WIndows.Forms;
class Control  :  Component { 
  public Point Location { get; set; }
  public Size Size { get; set; }
}
class Lael  :  Control  { ... }
class ButtonBase  :  Control  { ... }
class Button  :  ButtonBase  { ... }

Control, Component

Button Label

Position Size
hasProp hasProp

isA

Figure 9.4: How are the graphical concepts implemented in Java AWT, Eclipse SWT and .NET

Since there is a big conceptual gap between the modeled domain and the general purpose
programming languages, the domain concepts can be reflected in the code in a multitude of
ways. To extract the domain knowledge automatically

• firstly, we need to identify a way to uniformize the possibly different implementations of
the same real-world situation, and

• secondly, we need to filter out the noise introduced by particular implementation details.

9.3.1 Representing APIs

In order to identify domain concepts based on similarities of several APIs, we need to represent
the APIs in a unified manner. We represent each API using the formalization of the program
layer (ΠAPI ) presented in Section 3.4.2. Intuitively, the program layer (ΠAPI ) contains only
program entities from the public interface. Based on the program layer we build the lexical layer
(similar to the one presented in Section 7.4.1) that contains the reunion of words of the APIs
under analysis.

Definition 9.3.1 (APIs lexical layer): Let ΠAPI
1 = (P1, ΣΠ, eΠ

1 ) and ΠAPI
2 = (P2, ΣΠ, eΠ

2 )
be the program layers of two APIs. The APIs lexical layer ΛAPI is:APIs lexical layer

ΛAPI = (I1,W, I2) (9.1)

where,

• I1, I2 are the set of identifiers of the program elements of ΠAPI
1 and ΠAPI

2 ,

• W is the set of morphologically normalized words obtained by the reunion of the sets of
words after splitting the elements of I1 and of I2,
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Example 9.2: Examples of representing APIs

In the lower and upper parts of Figure 9.5 we present examples of two APIs: on the left side is
the source code, in the middle is their instantiation according to our formal framework and on
the right these APIs are represented as graphs. For example, the fact that the class Widget has
attribute size is represented through the predicate: hasAtt(Widget, size).

In API2, between the nodes Widget and Dialog is the following path:
〈hasSupCls−1, hasSupCls−1〉. If we consider the inverse sense, namely between the node
Dialog and Widget then the path is 〈hasSupCls, hasSupCls〉. Similarly, between the nodes
Widget and loc the path is: 〈hasCtr, hasParam〉.

public class Widget {
  public Dimension size;
  public Point location;
  public Widget(Point loc, 
                  Dimension size) {...}
}
public class Window extends Widget {...}
public class Dialog extends Window {...}

W={'Widget', 'Dialog', 'Menu', 'Get', 'Width', 'Height', 
                     'Location', 'Point', 'Window', 'Dimension', 'Size'}

I1={'Widget', 'size', 'location', 'loc', 'Window', 'Dialog'}
P1={Widget, size, location, loc, size, Window, Dialog}

hasSupCls(Window, Widget) hasAtt(Widget, size)

Widget

hasAtt(Widget, location)

public class Widget {
  public int getWidth() { ... }
  public int getHeight() { ... }
  public Point getLocation() { ... }
}
public class Dialog extends Widget {...}
public class Menu extends Widget {...}

I2={'Widget', 'getWidth', 'getHeight', 'getLocation', 'Dialog', 'Menu'}

P2={Widget, getWidth, getHeight, getLocation, Dialog, Menu}

hasSupCls(Dialog, Widget) hasAcc(Widget, getWidth)
hasAcc(Widget, getHeight)

hasAcc(Widget, getLocation)

hasSupCls(Menu, Widget)

Menu Dialog

hasSupCls

hasSupCls(Dialog, Window)

getWidth getHeight

getLocation

ha
sA
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Figure 9.5: Uniformization of APIs in order to allow their comparison
2

9.3.2 Commonalities Between APIs: Names and Structure

As we presented in Section 7.2, the names of program elements and the structure of programs are
the most important factors that aid the program comprehension. We make use of this information
in order to extract domain knowledge from APIs.

9.3.2.1 Naming clues

We use the identifiers as hints for matching different program elements that refer to the same
concept. In a similar manner with the natural language, we consider that the individual words
represent the basic semantic carriers. Identifiers composed of more words can refer either to one
complex concept or to several concepts (see also the discussion about compound identifiers in
Section 7.2). Below we define a similarity between two program elements based on their name.
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Definition 9.3.2 (Similar name): Given two program elements p1 ∈ P1 and p2 ∈ P2, the fol-
lowing holds:similar name

simNme(p1, p2) = true⇔ ‖W1 ∩W2‖
‖W1 ∪W2‖

≥ 0.5, where

W1 = I2W (P2I(p1)), W2 = I2W (P2I(p2))

Intuitively, two program elements have similar names when at least half of their words are the
same (the threshold 0.5 was choosen based on our experience).

Example 9.3: Example of simNme

simNme(BaseButton, Button) = true since from the two words that these identifiers con-
tain (’Base’ and ’Button’), one word (’Button’) appears in both identifiers.
simNme(ColoredButton, ColoredLabel) = false since only one of the three words con-
tained by these identifiers is shared between them.

2

9.3.2.2 Similar structure

The exclusive usage of names for the identification of commonalities between more APIs has
two disadvantages:

1. based only on names we can identify the vocabulary of the domain but not the structure
among the concepts, and

2. the names exhibit polysemy (i. e. a name refers to more concepts) and thereby matching
two names does not imply the identification of a concept.

In order to overcome these problems we use a graph matching algorithm that extracts concepts
based on the similarities of the API graphs. To apply our algorithm, we need to define similarity
between paths in the program graphs and how to interpret them as conceptual level relations.

Definition 9.3.3 (Paths equivalence): Let ΣΠ be a set of relation types among program elements
and ΣΩ a set of conceptual relation types. We define paths equivalence (∼)paths equivalence

∼ ⊂ ΣΠ∗ × ΣΠ∗

such that,

〈σΠ
i ...σ

Π
j 〉 ∼ 〈σΠ

l ...σ
Π
k 〉 ⇔ ∃σΩ ∈ ΣΩ.

←−
te (〈σΩ〉) ⊃ {〈σΠ

i ...σ
Π
j 〉, 〈σΠ

l ...σ
Π
k 〉}

Intuitively, ∼ is a relation between paths in the program graph that are used to implement
the same conceptual relation. The relation ∼ is transitive and commutative. Below are some
examples of ∼ between program paths (left) and the conceptual relation they correspond to
(right) – in Table 10.1 we present the complete ∼:
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T1. 〈hasSupCls〉 ∼ 〈hasSupCls, hasSupCls〉 ∼ 〈attHasType〉 −→ isA
T2. 〈hasAtt〉 ∼ 〈hasCtr, hasParam〉 ∼ 〈hasAcc〉 −→ hasProp
T3. 〈hasMeth〉 −→ isDoer
T4. 〈hasParam〉 −→ actsOn

Given two independent implementations of the same domain knowledge, there is a certain
amount of variation represented by different implementation decisions. Basic variations were
discussed in Chapter 6 (e. g. properties can be reflected as attributes, accessors or constructor
parameters) and are captured in the equations T1 – T4. Below we discuss a case of heterogeneity
in form of structural mismatches.

Structural mismatches. Above we presented the cases where the ontological relations are re-
flected directly in APIs. In practice, however, it is often the case that different APIs have slightly
different views over the domain. For example, it is often the case that in one API the properties
of a concept are implemented only in one of the sub-classes that refer to the concept. In Fig-
ure 9.6 we present two code fragments from two APIs where the relations “Widget – hasProp–
Size” and “Widget – hasProp– Position” are implemented directly (left) and are implemented in
a sub-class (right). From this observation we extend T2 with T5.

public class Widget { 
   public Point position; 
   public Dimension getSize(); 
}

public class Widget { ... }
public class Dialog extends Widget { 
   public Point2D position; 
   public Dimension getSize();… } 

Widget position
hasSupCls hasAtt

DialogWidget position
hasAtt

Widget getSize
hasAcc

Widget getSize
hasSupCls hasAcc

Dialog

Figure 9.6: Structural mismatches in the implementation of relations: WIDGET – hasProp– SIZE

and WIDGET – hasProp– POSITION

T5. 〈hasSupCls−1 hasAtt〉 ∼ 〈hasSupCls−1 hasAcc〉 ∼ 〈hasAtt〉 ∼ ...

Remark. A thorough discussion about the heterogeneities that can be possibly produced in rep-
resenting domain knowledge through ontologies is given in (Visser et al., 1998). Similar het-
erogeneities can occur in the implementation of domain knowledge in different APIs. We will
consider only the heterogeneities due to the structural mismatches.

9.3.3 Ontology Extraction Algorithm

Having abstracted the APIs as graphs, the identification of similarities between several APIs is
based on a graph matching algorithm (similar to our concept location algorithm presented in
Section 7.5.3). Intuitively, the algorithm performs the following steps:

1. Match pairs of nodes of the two graphs based on the similarity of their names.

2. Search for compatible paths between every pair of nodes previously matched.

3. Whenever a match between nodes and paths is found, the algorithm extracts a pair of
concepts and a conceptual relation between them.
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Below we present our algorithm in pseudo-code and in Figure 9.7 we present an example of
how this algorithm works. We consider that the APIs that are compared are ΠAPI = (P,ΣΠ, eΠ)
and ΠAPI ′ = (P ′,ΣΠ, eΠ′).

1. for-each p1 ∈ P do
2. reflection(p1) = {p′1 ∈ P ′ | simNme(p′1, p1)}
3. for-each 〈σΠ

i ...σ
Π
j 〉 ∈ ΣΠ∗, 〈σΠ

k ...σ
Π
l 〉 ∈ ΣΠ∗.〈σΠ

i ...σ
Π
j 〉 ∼ 〈σΠ

k ...σ
Π
l 〉

4. neighbours(p1, 〈σΠ
i ...σ

Π
j 〉) = {p2 ∈ P | p2 ∈ 〈σΠ

i ...σ
Π
j 〉(p1)}

5. for-each p2 ∈ neighbours(p1, 〈σΠ
i ...σ

Π
j 〉)

6. reflection(p2) = {p′2 ∈ P ′ | simNme(p′2, p2)}
7. for-each p′1 ∈ reflection(p1), p′2 ∈ reflection(p2)
8. check-if p′2 ∈ 〈σΠ

k ...σ
Π
l 〉(p′1)

8. if-yes saveRelation(comNme(p1, p
′
1), comNme(p2, p

′
2), ontRel(〈σΠ

i ...σ
Π
j 〉))

where,

• comNme takes two program elements as parameters and returns the intersection of the
words of their identifiers – formally, comNme(p, p′) = I2W (P2I(p)) ∩ I2W (P2I(p′)).
The words obtained through this intersection represent the name of the identified concept.

• ontRel transforms a path in the program graph into its corresponding ontological relation:

ontRel : ΣΠ∗ → ΣΩ

For example, ontRel(〈hasSupCls−1 hasAcc〉) = hasProperty.

API2 graph

hasSubCls
hasAttribute
hasAccessor

API1 graph

Example 1: The identification of relation “Rectangle isA Shape”
reflection(Rectangle) = {CRectangle}
  hasSubClass ~ hasSubClass
    neighbors(Rectangle, hasSupCls) = {Shape}
    reflection(Shape) = {CShape}
    (CRectangle hasSupCls CShape) with  comNme(Shape, CShape) = {Shape}, 
       comNme(Rectangle, CRectangle) = {Rectangle}, ontRel( <hasSupCls> ) = isA 
       =>  saveRelation (Rectangle, Shape, isA)

Example 2: The identification of relation “Rectangle hasProperty Width” 
reflection(Rectangle) = {CRectangle}
  hasAtt ~ hasAcc
    neighbors(Rectangle, hasAtt) = {Width, Height}
    reflection(Width) = {getWidth}
    (CRectangle hasAcc getWidth) with   comNme(Rectangle, CRectangle) = {Rectangle},
       comNme(Width, getWidth) = {Width},  ontRel( <hasAtt> ) = hasProperty 
       =>  saveRelation (Rectangle, Width, hasProperty)

Legend:

Rectangle

Shape

Width Height

CRectangle

CShape

getWidth getHeight

Figure 9.7: Examples of the identification of concepts and relations RECTANGLE – isA – SHAPE

and RECTANGLE – hasProp – WIDTH
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9.3.4 Knowledge Extraction Methodology

We developed an algorithm based on graph matching that is able to automatically find the simi-
larities between different APIs as well as collect and interpret these similarities into fragments of
a domain ontology. In order to apply this algorithm in practice we need to perform the following
sequence of steps:

Step 1: Establish the scope of analysis. The very first step is to establish the scope of the
analysis by answering the question: what is the domain we target?

Step 2: Select the set of APIs. In the second step we need to select the set of APIs that will be
used for extracting the domain knowledge. Ideally, in order to avoid the implementation noise,
these APIs should be implemented in different languages or should be provided by different
organizations. Furthermore, in order to find the domain knowledge, these APIs should offer a
compatible perspective over the modeled domain (e. g. should use the same terminology).

Step 3: Run the concepts identification algorithm. The running of the algorithm is fully
automatic. The output of the algorithm are the ontological fragments in form of a set of concepts
(candidates) and relations among them.

Step 4: Eliminate the noise. The algorithm can extract concepts and relations that are noise
from the point of view of the domain knowledge. They are identified whenever more APIs ex-
hibit the same implementation details. We eliminate the noise in two steps: Firstly, we manually
inspect the list of concept candidates and eliminate the ones that do not make sense. Whenever
a concept is eliminated, then all the triples that contain this concept are eliminated as well. Sec-
ondly, we manually inspect the remaining triples and remove the ones that do not make sense
from the point of view of the domain.

In Section 10.2 we present our experience with extracting ontology fragments about data struc-
tures, XML and graphical user interfaces.

9.3.5 Towards a Repository of Programming Technologies Knowledge

Extracting fragments of an ontology that covers the knowledge from a domain that is modeled
by several APIs is an important step to allow knowledge based reverse engineering. However,
it is only a single step. Similar steps can be done by repeating the same knowledge extraction
method and extracting knowledge from APIs that belong to other domains.

Empirical studies on the knowledge contained in programs (Anquetil et al., 2003) and on
the knowledge used by programmers during the maintenance (Ramal et al., 2002), suggest that
programmers make most frequently use of knowledge that relates to programming technolo-
gies. Programming technologies (e. g. GUIs, XML, databases, communication, data structures) programming

technologies domainrepresent domains that are well covered by APIs – almost all standard APIs that come with a
programming language (e. g. Java, C#) implement a wide variety of concepts about program-
ming technologies domains (e. g. DIALOG, SOCKET, FILE). The similarities between parts of the
standard APIs that cover the same domain can be used as an entry point for building a knowledge
repository (Ratiu et al., 2008a).
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9.4 Manually Building Ontologies

Having an appropriate ontology is of capital importance for the practical applicability of our
approach. Even if ontologies are envisioned to provide means for sharing large quantities of
knowledge from different domains, current off-the-self ontologies cover only restricted parts of
some domains. Usually the ontologies are built for a particular purpose and represent the do-
mains from a certain perspective that fits at best for achieving their purpose. Similarly, APIs are
also built for particular usage-scenarios and their interfaces offer better support for the imple-
mentation of central concepts. Thus, even if the number of the ontologies is growing rapidly,
most of the times there are no available ontologies that can be used to evaluate a program. Fur-
thermore, the automatic extraction of ontologies from domain specific APIs assumes the fact
that there are already existent more APIs that cover the same domain and this is obviously not
always the case.

In order to perform intentional analyses of arbitrary programs, many times we have no option
but to manually build or enrich an already existing ontology. We propose a bottom-up approach
for building fragments of ontologies by manually analyzing parts of the code. This approach is
similar to the ontology building methodology presented in (Noy and Mcguinness, 2000).

Step 1: Establish the analysis scope. According to the particular analysis scope, we need to
decide on the kinds of concepts that we want to represent through our ontology. The narrower
the scope, the smaller the ontology is and therefore the easier to construct.

Step 2: Search for existing ontologies. If there exists an ontology that (partially) satisfies
our analysis needs then we use it as a starting point in the manual approach.

Step 3: Gather concepts. From the list of identifiers of program elements, extract a list of
names that are recognized as representing concepts relevant for the analysis; for each name add
one or more concepts in the ontology. For each concept, give in addition to its name a description
(glossary entry) in order to avoid confusion due to polysemy. Also record all the synonyms that
refer to a concept.

Step 4: Build taxonomy. Arrange these concepts within a taxonomy based on the isA rela-
tion. Whenever there are sibling concepts and their parent name was not identified among the
public identifiers add the parent of these concepts to the taxonomy.

Step 5: Build relations. Add additional relations between these concepts. The added rela-
tions need to be mappable to program relations (i. e. the function

←→
te need to be defined).

Step 6: Evaluation. Iteratively evaluate the consistency and accuracy of the ontology. This
step is necessary in order to enable an objective evaluation of programs based on the ontology.

Step 7: Refinement. Iteratively refine the ontology by adding missing concepts and relations
in order to achieve the needed completeness degree. The ontology should contain all the con-
cepts and relations that are useful for the particular analysis. Due to the naming ambiguity such
as polysemy, it happens that some concepts were not added in the ontology in Step 2. It is also
possible that not all relevant relations are added in Step 4. In order to capture these situations,
after mapping the ontology to programs, we should inspect the program elements that could not
be mapped to any concept even if their names denote concepts from the chosen ontology scope.

Remark. Even if building the ontology manually is expensive, the knowledge contained in this
ontology can be subsequently reused in the development process. Once an ontology (fragment)
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is built it is a valuable artefact that reflects (a part of) the domain knowledge implemented in the
program.

In Section 10.4.3 we present our experience with manually building ontology fragments.

9.5 Discussion on Ontology Sources

In the previous sections we presented different ways of obtaining domain ontologies in order
to enable automatic analysis of programs. Each of these methods has its advantages and dis-
advantages (summarized in Table 9.5). Below we discuss the advantages (+), disadvantages (-)
and neutral points (/) with respect to the cost, quality aspects (e. g. encoding bias, coverage),
availability, and suitability of ontologies for analyzing programs.

Off-the-shelf ontologies. + Cost. The publicly available off-the-shelf ontologies are easy to
obtain. + Bias. Since they are built by third parties, off-the-shelf ontologies are less biased and
represent a source of knowledge external to our analysis. Furthermore, well-established ontolo-
gies (e. g. WordNet) were already used and validated by large communities and they represent
an authoritative body of knowledge. / Scale. The publicly available ontologies are very different
in scale. Their size ranges between tens of concepts and relations up to hundreds of thousands of
concepts and relations (e. g. WordNet). - Availability. Even if they are envisioned to share large
quantities of knowledge, there are surprisingly few ontologies that are freely available and they
cover a relative small quantity of knowledge. - Focus. The focus of publicly available ontologies
can be different from what we need. - Appropriateness for program analysis. The off-the-
shelf ontologies can contain complex relations among concepts that do not fit in our framework
of automatically mapping ontologies on code.

Ontology fragments extracted from APIs. + Cost. Such ontology fragments are relatively
easy to obtain automatically. + Bias. Since they are built by analyzing the commonalities
between more APIs that are independently developed, these ontologies have a small bias.
+ Focus. The scope of these ontologies is mostly programming technologies since these domains
are covered by more APIs. + Appropriateness for program analysis. These ontologies are at
the abstraction level close to programming and therefore are appropriate for program analysis.
/ Availability. These ontologies can be built only for domains that are covered by multiple APIs.
- Completeness. We extract only ontology fragments. The more APIs are available for analysis,
the higher the completeness of the extracted ontology.

Manually built ontologies. + Focus. These ontologies are very precisely targeted towards
performing particular program analyses. + Appropriateness for program analysis. Since they
are built based on programs, these ontologies are at the abstraction level close to the analyzed
program. + Availability. Once the programmer possesses knowledge about the application
domain, these ontologies can be built anytime. + Completeness. The manually built ontologies
have a high completeness with respect to the analysis to be performed. / Bias. Since they are
built by a person there is a danger that the domain knowledge is represented in a biased manner.
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These ontologies need validation by third parties – e. g. review by a domain expert. - Cost.
These ontologies are relatively expensive to build and the method does not scale up well.

Off-the-Shelf Extracted from APIs Manually built
Cost + + -
Availability - / +
Bias + + -
Focus - / +
Coverage - + +
Appropriateness - + +

Table 9.1: Advantages (+), disadvantages (-), and neutral points (/) of ontologies sources

9.6 Related Work

Automatically extracting ontologies from software artefacts. Sabou (2004) presents a
method for extracting an ontology that corresponds to an API by analyzing the javadoc documen-
tation. The motivation for his work is to extract ontologies that provide semantical description
for web-services for the domains where software APIs exist.

Yang et al. (1999) propose a method for representing programs as ontologies (e. g. transform
records into classes of an ontology) and thereby eventually enhancing the level of abstraction at
which different analyses can be performed. Yang proposes only a syntactic transformation of
programs into a knowledge representation language.

In comparison with these approaches our work differs along two directions: firstly, we aim to
capture the domain knowledge (as opposed to a syntactic conversion of pieces of programs into
a language for representing ontologies), and secondly, we extract ontologies by analyzing the
similarities between multiple APIs and not by performing natural language processing.

Building an application ontology by analyzing the application GUI. The domain con-
cepts implemented in a program are most of the time accessible to the program users through
the UI. By examining the user interface of interactive programs (e. g. office applications) one
can build a domain ontology. For example, Hsi et al. (2003) present an approach for building an
ontology of the application domain of a program by manually analyzing its graphical interfaces.
The concepts in the ontology are given by the labels of different graphical widgets (e. g. di-
alogs, menus) and the relations are chosen from “is-a”, “has-a” and different associations. This
approach is completely manual and does not provide knowledge at the abstraction level of the
code. However, it could be used as a starting point in building an ontology of the domain of a
legacy application.

Comparing libraries. Michail and Notkin (1999) propose a method for comparing different
libraries that address the same domain. In order to do this, they match similar components that
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are provided by different libraries by using two methods: 1) names matching for identifying the
components (e. g. classes, functions) that have the same normalized name in each library; 2)
similarity matching that uses information retrieval techniques in order to assess the similarity of
the classes and functions at the structural level. Even if it is similar in the techniques used (i. e.
comparing the APIs based on program entities names), our work has another focus, namely,
to extract domain knowledge from APIs. Furthermore, we use a graph based algorithm for
identifying the similar structures and thereby to extract the domain concepts while Michail and
colleagues compare the structural similarity by using information retrieval techniques.

Manually building domain ontologies useful for program analysis. Petrenko et al.
(2008) present an approach to incrementally build fragments of a domain ontology in order
to improve the code searching steps necessary for implementing a change request. The initial
ontology fragment is built based on the domain knowledge contained in the change request and
it is used for guiding the code searching process. Whenever necessary, the initial ontology is
enlarged based on additional sources of knowledge. The ontology fragment that is built at a
moment reflects the domain knowledge acquired by the programmers during the understanding
process about the concepts implemented in the code. The approach of Petrenko and colleagues
is similar to our manual method for building the ontology. However, their purpose for building
the ontology is to mentally drive the comprehension process and not for automatically location
of concepts in the code (as our aim is).

9.7 Summary

In this chapter we discussed three methods for obtaining domain ontologies adequate for ana-
lyzing programs. We focused especially on extracting domain knowledge by analyzing multiple
APIs that address the same domain. In the next chapter we present our experience with extracting
ontologies from APIs that cover several well-established technical domains. We also present our
experience with using the WordNet ontology for locating concepts in the code, and with building
manually fragments of an ontology about FIGURES for analyzing JHotDraw (Section 10.4.3).
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10 Evaluation of the Automation

In theory, there is no difference between theory and practice.
But, in practice, there is.

Chuck Reid

Abstract: We defined the intentional meaning of programs by linking program elements to con-
cepts from domain ontologies. Even if the intentional meaning can be defined manually (by
manually mapping programs to ontologies), due to the big size of the current programs, the
applicability of the intentional analyses in the every-day reverse engineering depends on the
measure in which they can be automated. In this chapter we take a closer look at the automa-
tion in the practice and present our experience with extracting knowledge about programming
technologies from the standard APIs of Java, C#, C++ and Smalltalk, and with analyzing several
well-known Java systems (e. g. parts of the Java standard API, JHotDraw and JEdit). We focus
on the following practical aspects: 1) obtaining fragments of domain ontologies that make up
the conceptual layer, 2) automatic recovery of the

−−→
Ref function, 3) automatic identification of

mismatches in reflecting the domain knowledge in programs with focus on domain coverage,
quantifying diffusion, and identification of logical redundancy. We investigate the applicabil-
ity of our approach, its automation degree, its precision and its costs. Our results show that
programs (and especially public interfaces and APIs) exhibit high intentional meaning and its
recovery is (partially) automatable with acceptable costs.

Structure of this chapter. After the introduction presented in Section 10.1, this chapter is
logically structured in two parts. The first part is formed of Section 10.2 that presents three case
studies about extraction of domain knowledge from domain specific APIs. In the second part
we present our experience with recovering

←→
Ref and performing intentional analyses on Java

systems. We start by presenting our tool support and the experimental setup in Section 10.3.
In Section 10.4 we present our experience with automatically locating concepts by mapping
ontologies to programs. Section 10.5 presents our experience with (semi-)automatic evaluation
of the implementation of domain concepts in programs with respect to: conceptual coverage,
diffusion, and logical redundancy. In Section 10.6 we present a detailed discussion about the
threats to validity of our experimental results and in Section 10.7 we end this chapter with a
summary.
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10.1 Introduction

Our thesis is that the intentional meaning of programs is needed for evaluating the faithfulness of
the reflexion of domain knowledge in programs. We advocated that the intentional meaning can
(and should) be treated explicitly and systematically in order to increase the abstraction level of
existent program analyses and define new program analyses. We started from the assumption that
by matching program elements to entities from light-weighted domain ontologies we can recover
the intentional meaning and thereby perform logical code analyses. In the previous chapters of
this dissertation we presented many small examples of code pieces in order to support our theory.
In this chapter we investigate the measure in which intentional meaning can be automatically
recovered and the measure in which intentional analyses are automatically applicable in the
practice. We perform our investigations with the help of several case studies that involve medium
size programs. Even if these programs are not very big (i. e. they contain between one hundred
and one thousand classes), they are similar to the programs currently written in the industry.
By doing these case studies we investigate the differences between the theory and practice with
respect to performing intentional analyses. More exactly we aim to answer a set of research
questions (RQ) that can be subsumed to the categories presented below.

1. Fundamental: In what measure do real programs exhibit intentional meaning? In what
measure is it expressible through light-weighted domain ontologies? (RQ1, RQ2, RQ9,
RQ10, RQ11 )

2. Automation: In what measure can we recover the intentional meaning of real programs?
In what measure are the intentional analyses automatable? (RQ2, RQ6, RQ7, RQ9, RQ10,
RQ11 )

3. Feasibility: What are the precision and the recall of automatic intentional analyses? What
are the costs of automatic intentional analyses? (RQ3, RQ4, RQ5, RQ6, RQ7, RQ8)

Remark. We are aware that these categories of questions are too ambitious, general and long-
targeted to be answered in this chapter. However, we are convinced that the individual research
questions (RQ) offer hints about the answers to these more generic categories of questions.

10.2 Extracting Ontologies from Domain Specific APIs

Research questions. In our experiments we aim to answer the following set of questions
related to the extraction of domain ontology fragments from APIs:

RQ1) Are the overlappings between different domain-specific APIs that address the same
domain big enough for extracting domain ontologies? This question addresses the most basic
requirement of our ontology extraction approach – namely, that APIs (partly) exhibit the same
intentional meaning (Section 10.2.1).

RQ2) Can we identify the core concepts and relations from a domain? This question addresses
the relevance of the extracted concepts for the modeled domain (Section 10.2.2).

RQ3) What is the amount of noise in the extracted ontology? This question addresses the
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precision of the extraction algorithm and the feasibility of eliminating the noise (Section 10.2.3).
RQ4) What is the coverage of the extracted ontology? This question addresses the recall of

the extraction algorithm (Section 10.2.4).
RQ5) What is the effort for extracting ontologies and eliminating the noise? This question

addresses the feasibility of the approach for extracting fragments of domain ontologies from
APIs (Section 10.2.5).

Experimental setup. We present our experience with extracting domain knowledge from
APIs that cover the following domains:

1. Data structures. We used the standard libraries from Java (the collections framework
of Java 1.5), .Net (the System.Collections namespace), the implementation of col-
lections provided by Squeak1 (an implementation of the Smalltalk language), and the
implementation of the C++ Standard Template Library provided by Silicon Graphics2.

2. XML. In this case we chose the following APIs: the package org.w3c.dom is the im-
plementation of the W3C DOM (Document Object Model) available in the Java standard
library; dom4j3 open source library for working with XML; jdom4 library for accessing,
manipulating, and outputting XML data; the XML processing API from the .NET plat-
form (namespace System.Xml) and the Yaxo 2.1 API5 from Squeak (Smalltalk dialect).

3. Graphical user interfaces. We chose the following APIs: the AWT and SWING APIs
from the Java standard library, the Eclipse Standard Widget Toolkit (SWT), the .NET API
from the namespace Windows.Forms and the Morphic API6 from Squeak (Smalltalk
dialect).

The reason for choosing the data structures domain is the fact that it is well defined, es-
tablished, very wide-spreaded and relatively small. We have chosen the domain of graphical
interfaces because it is big and relatively non-standardized (there are many variants of GUI li-
braries). The XML is in-between: it is bigger than data structures but smaller than GUIs; less
standardized than data structures but better standardized and more focused than GUIs.

In Figure 10.1 we present an overview of the tools used for the extraction of knowledge from
APIs. We remark that different APIs are exported in a common format (i. e. program graphs
formally described through ΠAPI ) which is fed subsequently into the knowledge extractor mod-
ule (i. e. an implementation of the graph matching algorithm from Section 9.3.3). The output
of the knowledge extractor are concept-relation-concept triples that are candidate fragments of
a domain ontology. These triples need to be further manually reviewed in order to eliminate the
noise. Besides the program graphs the knowledge extraction module is parameterizable with the
set of equivalent program paths and their resulting conceptual relation (i. e. the functions

←→
te and

ontRel).
1http://www.squeak.org/
2http://www.sgi.com/tech/stl/
3www.dom4j.org
4www.jdom.org
5http://www.squeaksource.com/XMLSupport.html
6http://wiki.squeak.org/squeak/30
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(Smalltalk) and Petru Mihancea9 (C++). The knowledge extraction module, initially built by
me, was improved by Yongming Li. Thank you!

Java APIs

.Net APIs

C++ APIs

Smalltalk APIs

Knowledge ExtractorProgram Graphs
(∏API)

Exporters

Paths matching 
strategies ( te )

Ontology 
Fragments

Figure 10.1: Knowledge extraction overview

Paths mapping. In Table 10.1 we present the concrete instance of the equivalence of program
paths (right) and their corresponding ontological relation (i. e. the result of applying the ontRel
function of a program path) (left).

isA
〈hasSupCls〉 ∼ 〈hasSupCls, hasSupCls〉 ∼ 〈hasType〉 ∼
〈hasType, hasSupCls〉

hasProp
〈hasAtt〉 ∼ 〈hasSupCls, hasAtt〉 ∼ 〈hasAcc〉 ∼
〈hasSupCls, hasAcc〉 ∼ 〈hasCtrPar〉 ∼ 〈hasCtrPar, hasType〉

actsOn 〈hasParam〉 ∼ 〈hasParam, hasType〉 ∼ 〈hasParam, hasType, hasSupCls〉

isDoer 〈hasMeth〉 ∼ 〈hasSupCls, hasMeth〉

Table 10.1: Paths equivalence: the ontological relation (left) and the paths equivalence (right)

10.2.1 Assessing APIs Overlappings

Vocabulary Overlapping. The most naı̈ve measurement of overlapping is at the vocabulary
level. The overlapping of vocabularies shows the agreement at the terminological level between
different APIs, namely the measure in which the API builders use the same vocabulary for
denoting (presumably the same) concepts that are implemented in the APIs. In Tables 10.2, 10.3,

7http://www4.informatik.tu-muenchen.de/˜feilkas/
8http://www.adrian-lienhard.ch/
9http://www.cs.utt.ro/˜petrum/
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10.4 we present the number of words belonging to the intersection of vocabularies of APIs from
several domains. Due to the relative big differences among sizes of APIs vocabularies (even for
APIs that belong to the same domain), we choose to present the overlapping in absolute numbers
and not as percent. We can see that the overlappings range between under 100 words in the case
of the data structures APIs and up to 800 words in the case of the graphical widgets APIs.

Java .Net C++ Smalltalk
Java Collec. Framew. - 64 56 90
System.Collections (.Net) - - 64 99
STL (C++) - - - 111
Squeak Collec. (Smalltalk) - - - -

Table 10.2: Vocabulary overlapping for data structures APIs

DOM4J JDOM W3C.DOM Yaxo .Net
DOM4J (Java) - 163 180 103 209
JDOM (Java) - - 123 88 151
ORG.W3C.DOM (Java) - - - 85 205
Yaxo (Smalltalk) - - - - 98
System.Xml (.Net) - - - - -

Table 10.3: Vocabulary overlapping for XML APIs

AWT SWING SWT QT Morphic Wnd.Frm
AWT (Java) - 583 471 821 402 499
SWING (Java) 483 856 375 553
SWT (Java) - - 644 322 471
QT (C++) - - - 589 804
Morphic (Smalltalk) - - - - 346
Windows.Forms (.Net) - - - - -

Table 10.4: Vocabulary overlapping for graphical widgets APIs

There is a high number of words that belong to the intersection of the APIs from the
same domain.

The relative big number of common words is promising for extracting the knowledge but
raises the following question: Are the common words relevant for the domain of these APIs?
In Figure 10.2 we present the intersection of vocabularies of Java and .Net standard APIs for
data structures (containing 64 words). This set of words is split in two parts: on the left hand
side of Figure 10.2 we present the words that after the manual review we found that they refer
to concepts related to data structures (44 words – ca. 66% from the number of common words)
and on the right hand side of Figure 10.2 the words (22 words – ca. 33% from the number of
common words) that are false positives (i. e. do not refer to concepts related to data structures).
When we inspect closer the false positives we notice that most of them are either meaningless
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words (e. g. ’a’, ’o’), prepositions (e. g. ’at’, ’as’) or denote concepts related to programming
languages (e. g. ’clone’, ’new’, ’object’). Similar results were obtained after the inspection of
the common vocabularies of other API pairs.

Hashtable, Queue, Push, List, Capacity, First, Hash, Next, Peek, Vector,
Trim, Add, Clear, Comparator, Entry, Search, Size, Insert, Equals, Remove,
Range, Reverse, Item, Max, Contain, Binary, Previous, Factor, Last, Dic-
tionary, Type, Stack, Collection, Array, Copy, Keyed, Linked, Pop, Value,
Index, Enumerable, Load, Dest, Sort,

Code, Is, Initial, Get, All, O,
Synchronized, Of, At, New,
Clone, C, A, Has, To, I, Set,
String, Object, As, Obj, T

Figure 10.2: Intersection of the Java and .Net vocabularies of data structures – words that belong
to the data structures domain (left); words that do not belong to the data structures
domain (right)

APIs that address the same domain contain a large number of common words that
belong to the domain.

What about the words not belonging to the intersection of the vocabularies? Are they relevant
for the domain? To answer these question we manually inspected the words that do not belong to
the intersection of the vocabularies. In Figure 10.3 we present as example the words belonging
either to Java or to .Net data structures vocabularies but not to both. By manually inspecting
these words we remark that 85 words (ca. 60% from the different words) represent concepts not
related to data structures (Figure 10.3-right) and 64 words (ca. 40% from the different words)
represent words that belong to the vocabulary of data structures (Figure 10.3-left). By manually
inspecting the words that belong to the vocabulary of data structures but are not found in the
intersection of Java and .Net collection APIs we identified the following cases:

• usage of different abbreviations to denote the same concepts – e. g. Comparator – Comp
– Cmp or Collection – Coll – Col. In Figure 10.2(left) we remark the occurrence of the
words ‘Collection’ and ‘Comparator’. From this we conclude that when the full name was
used to denote a concept it was identified to belong to the common vocabulary.

• concepts missing from one API – e. g. the part of the .Net collections API that we analyzed
does not contain the concept TREE.

• naming ambiguities – e. g. the .Net uses (synonymously) both words ‘size’ and ‘length’
while Java uses only ‘size’. The common name was identified to belong to the vocabular-
ies intersection.

Due to differences in terminology and different focuses, many words denoting
domain concepts belong only to an API. Therefore, in order to get a good coverage of

the domain, we need to analyze more APIs.
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Head, Put, Tail, From, Coll, Val, Iterable, Or-
der, Rotate, Cmp, Identity, Enum, Elem, Swap,
Shuffle, Comp, Disjoint, Priority, Empty, Incre-
ment, Elements, Map, Random, Frequency, Iter-
ator, Rest, Rnd, Sequential, Unmodifiable, Tree,
Min, Access, Ensure, Fill, Complement, Replace,
Col, Root, Reset, Enqueue, Count, Mask, Con-
vert, Start, Pair, After, Table, Match, Create, Or-
dered, Equality, True, Comparison, Each, Exists,
Dequeue, Found, Length, Move, Grow, Node,
Find, Data, Before

Abstract, Expected, Target, Singleton, S, Deep, Source,
Into, Offer, Weak, K, Retain, Old, More, N, An, Dis-
tance, Src, V, Poll, Checked, None, Sub, M, E, Class, J,
Try, Hcp, Sender, Disposable, Callback, Y, B, Read, Case,
Name, Info, Default, Deserialization, Int, Action, Not,
Fixed, Ctor, X, Xor, Base, D, Util, Culture, Inner, Single,
Cloneable, Context, Or, Byte, Bits, And, Output, Insensi-
tive, Provider, Interface, Boolean, Message, Sync, Param-
eter, Repeat, System, Serializable, By, Section, Generic,
Exception, On, Hybrid, Streaming, Current, Adapter, For,
Only, Excess, Serialization,

Figure 10.3: Words not belonging to the intersection of the Java and .Net vocabularies of data
structures. On the left-hand side are words that belong to the data structures domain
and on the right-hand side are words that do not belong to the data structures domain

#Concepts #Relations #isA #hasProp #isDoer #actsOn
Data Structures 115 281 52 12 166 51

XML 314 1056 126 379 253 298
GUI 1134 3772 504 1345 1132 791

Table 10.5: Automatically obtained ontologies fragments (a quantitative overview)

Structural overlapping. In Table 10.5 we present the number of extracted concepts and
relations after running our algorithm on all of the domain APIs and mapping all APIs pairs. We
can notice the big difference in size between these domains – the GUI domain is ca. 10 times
bigger than the data structures domain.

The conceptual overlapping between different APIs that belong to the same domain is
big enough for extracting fragments of domain ontologies.

10.2.2 Identifying the Core Concepts and Relations

In order to identify the core concepts we rank the importance of the automatically extracted
concepts by counting how many times they participated in a match. Analogously we did for the
relations between these concepts: we counted how many times a relation was identified. Below
are examples of the concepts and relations with high frequency from data structures (left), XML
(center) and GUI (right) domains. In Figure 10.4 we present the most frequent 20 concepts and
some frequencies (e. g. the concept LIST was identified in 746 matches in the data structures
APIs).

In Figure 10.5 we present the most frequent 10 “concept – relation – concept” triples and their
frequencies. We remark that in the case of data structures the most frequent relations involve
the operations “remove” and “add” that represent the basic terms builders in the algebra of data
structures – e. g. the triple “list – isDoer – remove” was identified 182 times. The centrality of
frequent concepts shows the agreement among APIs on the central concepts and relations. In the
case of GUIs we remark that many triples refer to events manipulation and the Observer pattern.
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list (746), collection (737), add,

remove, set, dictionary (181),

contain, size, index of (152), link

list, object (128), array, clear, map

(85), array list (78), key (74),

remove all (70), value (66), copy,

hash map (56)

element (1350), attribute (828),

name (775), document, string

(498), node, processing instruc-

tion, value, namespace (286), text,

entity, document type, node type,

xml writer (170), parent, remove,

add, clone, content, character da-

tum (101), object (100)

add listener (1630), listener

(1614), button, scroll bar, list,

string (979), label, size, remove

listener, event, x, y (636), name,

color, add, font, object, remove,

text, html element, e, menu, com-

ponent, control (433), progress

bar, value, draw, paint (387)

Figure 10.4: Concepts with the highest matching frequency (data structures (left), XML (center),
GUI (right))

List–isDoer(182)–Remove

List–isDoer(137)–Add

Collection–isDoer(106)–Add

List–isA(99)–Collection

Collection–isDoer(88)–Remove

Set–isDoer(74)–Add

Set–isDoer(71)–Size

List–isDoer(70)–Contain

List–isDoer(67)–Index Of

Array–isA(57)–Collection

Element–hasProp(179)–Attribute

Element–hasProp(151)–Name

Attribute–hasProp(147)–Value

Element–hasProp(110)–Namespace

Name–isA(96)–String

Attribute–hasProp(86)–Name

Element–isDoer(84)–Remove

Element–hasProp(79)–Text

Attribute–hasProp(68)–Namespace

Attribute–actsOn(60)–Name

Add Listener–actsOn(1117)–Listener

Name–isA(298)–String

Remove Listener–actsOn(293)–Listener

E–isA(264)–Event

Button–isDoer(182)–Add Listener

Button–isDoer(182)–Remove Listener

Draw–actsOn(129)–X

Draw–actsOn(129)–Y

Scroll bar–hasProp(109)–Size

Insert–actsOn(102)–Index

Figure 10.5: Relations with the highest matching frequency (data structures (left), XML (center),
GUI (right))

The frequency with which domain concepts and relations are identified is a good
indicator of the centrality of these concepts in the domain.

10.2.3 Eliminating the Noise

Starting from the automatically extracted ontology, we manually inspect the concepts and the
relations in two steps:

1. Firstly, we inspected the list of concepts candidates and eliminated the concepts with
meaningless names and those that do not belong to the domain. For each concept that we
eliminate, we remove also all the triples in which it takes part.

2. Secondly, we inspected the remaining triples (that contain now only concepts that we
recognized to belong to the domain) and eliminated the triples that do not make sense
from the point of view of the domain.

In Table 10.6 we present the results of the manual inspection. We remark that ca. 45% of the
concepts and relations automatically extracted were classified to belong to the modeled domain
of the API.
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#Concepts #Relations #isA #hasProp #isDoer #actsOn
Data Structures 70 143 10 9 98 26

XML 138 403 36 284 48 35
GUI 526 1747 105 1106 362 174

Table 10.6: Ontologies fragments after noise elimination (a quantitative overview)

10.2.4 Coverage Estimation

We estimate the coverage along two dimensions: 1) the degree in which the concepts from our
extracted ontology cover the domain, and 2) the degree in which the relations between them (i. e.
from the ontology) cover the domain relations.

The coverage of the ontology can be assessed from two perspectives: the “absolute” cover-
age representing the percentage of the absolute number of domain concepts and those that are
contained in the recovered ontology, and the “relative” coverage representing the percentage of
the number of domain concepts that are implemented by at least of one of the analyzed API and
that are contained in the recovered ontology. The “relative coverage” represents the recall of the
algorithm.

Coverage of concepts in the case of data structures. To assess the relative conceptual
coverage of the data structures ontology, we determined the difference between the set of all
words belonging to the analyzed data structures APIs and those that belong to the extracted
ontology. We obtained the words that denote concepts related to data structures and that are
implemented in at least one API. We manually inspected this difference and selected 70 words
that refer to concepts that belong to the data structures domain. From the point of view of the
extracted concepts we obtained a recall of ca. 50%.

The data structures ontology contains ca. 50% of the domain concepts that are
implemented (and provided) by the analyzed data structures APIs.

To assess the “absolute” conceptual coverage we used as reference the “Dictionary of Algo-
rithms and Data Structures” 10. We consider that this dictionary (containing ca. 1500 entries)
contains all lexicalized concepts from the domain of data structures and algorithms. From the
point of view of the absolute conceptual coverage (under 5%), the extracted ontology seems
to be dissapointing. However, the concepts contained in our ontology fragments are central to
programming technologies; in the same time, many of the concepts from the above-mentioned
dictionary (e. g. PLANAR STRAIGHT-LINE GRAPH) are very seldom used in the programming
practice.

The automatically extracted data structures ontology contains only a small fraction of
the absolute number of concepts that belong to the data structures domain. However,

the concepts extracted are commonly used concepts about data structures.

10http://www.nist.gov/dads/
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Coverage of relations in the case of data structures. The more relations a concept
takes part into, the better is the concept defined by the ontology. By inspecting the automatically
extracted ontologies, we noticed big differences in the number of relations that were extracted
for different concepts. For example, the concept LIST takes part in 15 relations in our ontology
while the concept VECTOR only in two relations: VECTOR – isdoer – EQUAL, and VECTOR –
isdoer – HASHCODE.

There is a big difference in the specification of concepts in our automatically
extracted ontologies. However, the more central a concept is the more relations with

its neighbours it has.

Remark. In order to assure a good coverage of the domain, the automatically obtained domain
ontologies need to be manually extended. In Sections 10.4.2 and 10.5.1 we show that the cov-
erage of extracted ontologies (fragments) is big enough for concepts location and for evaluating
the conceptual coverage of APIs that belong to the same domain.

Coverage in the case of XML and GUI. In the case of the other ontologies (XML and GUI)
estimating the conceptual coverage is more difficult. The cause for this is that the XML and GUI
domains are less clearly defined and thereby is difficult to state wether a concept belongs to these
ontologies or not. Furthermore, they contain much more concepts described through composed
words (as opposed to the data structures domain that is relative simple and most concepts are
denoted through single words). However, if we consider the ratio of words contained in the
ontology fragments on those that refer to valid concepts, we obtain a recall around 40%. Due to
the complexity of concepts (described through compound words) and the less clear boundaries
of these domains, this approximation is very rough.

10.2.5 Effort Estimation

In Table 10.7 we present the duration measured in hours of the ontology extraction steps. These
results represent only the experiments and do not take into account the programming efforts.
We spent most of the time in selecting the set of APIs and in preparing them for analysis (e. g.
removing the tests). The numbers presented are approximations and are based on our experience
with Java APIs (for the APIs belonging to other languages than Java we made approximations
for estimating the selection of APIs and preparation of APIs). We can notice that once we have
the APIs ready for analysis, the extraction of ontological fragments and the elimination of noise
are relatively quick. From these four steps only one (i. e. running the algorithm) is automatic.

API / Operation Data Struc. XML GUI
Selection of APIs (manual) 2 4 7
Preparation of APIs (manual) 2 3 4
Algorithm running (automatic) 0.05 0.1 0.9
Manual noise elimination (manual) 0.5 1.0 3.0

Table 10.7: Estimation of the effort (in hours)
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Once a set of APIs that cover the same domain is available, the extraction of domain
ontologies fragments is (relatively) inexpensive.

10.2.6 Programming Technologies Knowledge Repository

In this section we presented our experience with extraction of knowledge about GUIs, XML
and data structures. As we advocated in Section 9.3.5, in a similar manner one can extract
knowledge about other programming technologies by systematically comparing different (parts
of) standard libraries. We started to build such a knowledge repository that contains ontology
fragments that cover technical domains and that were automatically extracted from APIs. Our
repository covers currently the following domains: graphical user interfaces, XML, common
data structures, databases, communication, calendar and networking.

By using APIs that cover the same domain we can inexpensively extract domain
knowledge especially about common programming technologies. Our knowledge

repository can be found on the web at the following address:
www4.in.tum.de/˜ratiu/knowledge_repository.html.

10.3 Tool Support and Experimental Setup for Intentional
Analyses

In the following sections of this chapter we present our experience with performing intentional
program analyses. In this section we present our knowledge-based reverse engineering frame-
work that we use to perform our analyses and the systems we studied. Once the intentional
meaning is recovered (the functions

←→
Ref ) then the other analyses are immediate. In order to

automate the recovery of
←→
Ref we need the following ingredients:

1. Program layer. We need tools to build the program layer by extracting the interesting
facts from the programs under analysis. In order to do this we use the “inCode” reverse
engineering platform (Section 10.3).

2. Lexical layer. The similarities between the names of program elements and of concepts
represent the most important source of information for automatic recovery of the inten-
tional meaning. We use the CamelCase convention for splitting the program identifiers
into words and the WordNet dictionary for performing the morphological normalization
of words.

3. Conceptual layer. A fundamental characteristic of our approach is the assumption that
domain ontologies are available beforehand. We evaluate three sources of ontologies:
the use of the WordNet off-the-shelf ontology, extracting domain ontologies from domain
specific APIs, or manually building ontology fragments that target specific analysis needs.

We also discuss several methodological aspects that should be followed in order to perform
intentional analyses in practice.
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Java code

Repository of domain 
ontologies

(e.g. WordNet, XML, GUI)

Bridge

inCode
Program analysis infrastructure

Eclipse

Program layer builder

 . . .

Analyzers

Logical duplication
detector

Conceptual coverage
analyzer

Eclipse Java Development Tools (JDT)

Unified metamodel 

Concepts extractor

Lexical layer builder

Ontology
importer

Graph
matching

Figure 10.6: Tools architecture overview

Tool support. For performing our experiments we used our tool named Bridge. Bridge is
based on the reverse engineering and program analysis framework “inCode”11 developed at the
“LOOSE Research Group”12 from “Politehnica University of Timisoara”. Both Bridge and in-
Code are Eclipse plugins. In Figure 10.6 we present an overview over our tools infrastructure.
Firstly, we need to remark that the domain knowledge (fragments of domain ontologies) is out-
side our analysis framework. The Java code is read and parsed by the Eclipse Java Development
Tools infrastructure (JDT)13. The inCode framework provides support for advanced program
analyses and for the building of the program layer. The Bridge tool is based on inCode and con-
sists of three modules: a module for building the program layer (makes the link with inCode), a
module for building the lexical layer, and a module for extracting the concepts. Based on these
builders we obtain an instance of the unified meta-model presented in Figure 7.2 (p. 152). Based
on this meta-model we can define a wide variety of analyses.

11http://loose.upt.ro/incode/
12http://loose.upt.ro/
13http://www.eclipse.org/jdt/
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The instantiation of our unified meta-model represents the key point in the automatic
analyses. Once (a part of) this meta-model is built, many conceptual analyses are

immediate. A key step in instantiating the meta-model is the recovery of
←→
Ref . This is

why we dedicate Section 10.4 only to investigate the issues with the automatic
recovery of

←→
Ref .

Systems studied. In Table 10.8 we present a short overview of the software systems on which
we performed our experiments: the number of classes of analyzed systems (this number does
not include the anonymous classes), the number of program entities that these systems contain
(classes, attributes, methods, parameters and local variables defined in the program), the number
of identifiers and the number of words.

We have chosen these case studies for the following reasons: the parts from the Java standard
library because they are wide-spreaded APIs that model established domains in daily program-
ming practice; JHotDraw14 (version 7.0.9) because this framework (used for technical and struc-
tured graphics) is used as a benchmark in the reverse engineering community, JEdit15 (version
4.3) is the biggest system that we analyzed, and SWT (version 3.2.2)16 because it is one of the
latest developed (and widely used) GUI APIs and therefore we assume that it has a very good
quality.

Name #Classes |P | |W | |I|
Java 1.4.2 Collec.(ΠAPI ) 30 979 106 176
Java 1.5.0 Collec.(ΠAPI ) 37 1175 123 211
Eclipse SWT (ΠAPI ) 245 5854 852 2001
Java AWT (ΠAPI ) 354 10881 1299 3193
Java SWING (ΠAPI ) 719 15961 1087 4337
JHotDraw (ΠAPI ) 371 7358 715 1606
JHotDraw (ΠProg) 418 14449 1151 2916
JEdit (ΠProg) 1022 28555 2211 7980

Table 10.8: Overview over case studies

10.4 Automatic Location of Concepts

Research Questions. The recovery of
←→
Ref functions is the basic (and most important) step

towards automation of our analyses. We evaluate the possibility to automate the recovery of←→
Ref by mapping different ontologies on several Java systems. More concrete we will answer the
following questions:

RQ6) How appropriate is WordNet for locating concepts in code? This question addresses
the relevance of the WordNet ontology for concept location (Section 10.4.1).

RQ7) How appropriate are the ontology fragments extracted from APIs for locating concepts

14http://sourceforge.net/projects/jhotdraw/
15http://www.jedit.org/
16Without the “internal” packages.
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in code? What are the precision and recall of the concepts location algorithm? This question
addresses the relevance of the extracted ontologies for concept location (Section 10.4.2).

RQ8) What is the effort necessary to build fragments of domain ontologies that are suited
for conceptual analysis? This question addresses the feasibility of integrating ontology building
during reverse engineering (Section 10.4.3).

10.4.1 Using the WordNet Ontology for Concept Location

We mapped the WordNet ontology on several programs by using the paths mapping strategies
(
←→
te ) presented in Table 10.9. The first line of this table represent the paths corresponding to the
isA relation and the second line to those corresponding to the hasPart relation.

Output WordNet path Program path

isA

〈hasHypern〉 ∼
〈hasHypern, hasHypern〉 ∼
〈hasHypern, hasHypern, hasHypern〉

〈hasSupCls〉 ∼ 〈hasType〉 ∼
〈hasSupCls, hasSupCls〉

hasPart 〈hasHolon〉 ∼
〈hasHypern, hasHolon〉

〈hasAtt〉 ∼
〈hasAtt, hasSupCls〉 ∼
〈hasAcc〉 ∼
〈hasAcc, hasSupCls〉

Table 10.9: Paths equivalence between WordNet (center) and the paths in the program (right)

In Table 10.10 we present the results of the automatic mapping WordNet to several Java
systems. We present the number of identified concepts, identified relations and of program
elements that could be mapped on WordNet concepts (’known program elements’). We remark
that the number of isA relations is much bigger than hasPart. This can be explained by the
fact that WordNet contains a much higher number of hypernym relations than the number of
holonym relations.

Name #Concepts #isA #hasPart #Known Program Elem.
Java AWT API 46 19 4 42
Java 1.5 Collec. API 4 2 0 12
JHotDraw 79 54 9 179

Table 10.10: Identified concepts with WordNet

By manually analyzing the results obtained through the automatic mapping of WordNet on
these Java programs we found out that many of the concepts that were identified represent noise –
i. e. noise are those concepts that were erroneously identified to occur in programs. For example,
in Figure 10.7 we present the erroneous identification of the concept BAR (with WordNet gloss
entry “a heating element in an electric fire; ‘an electric fire with three bars’ “) and COMPONENT

(with WordNet gloss entry “an artifact that is one of the individual parts of which a composite
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entity is made up; especially a part that can be separated from or attached to a system ’spare
components for cars’ ”).

Component
hasHypernymWordNet

Java AWT

Bar

MenuComponent
hasSuperClass

MenuBar

Heating element
hasHypernym

Figure 10.7: Example of erroneously identified concepts by mapping AWT to WordNet

In Table 10.11 we present the results of mapping WordNet to different programs after we
eliminated the noise (false positives). The explanation for the big number of false positives is the
big size of WordNet (over 100.000 concepts), and of the fact that it is a general purpose ontology
(and thereby lacks focus). These facts lead in turn to mistaken identification of concepts.

Name #Concepts #isA #hasPart #Known Program Elem.
Java AWT API 15 8 1 22
Java 1.5 Collec. API 2 1 0 3
JHotDraw 27 16 1 41

Table 10.11: Concepts identified with WordNet (after manual review)

By mapping WordNet to programs we can generally identify a small number of
concepts. Our results suggest that WordNet is too general to obtain a good coverage

in locating concepts in the code. The identified concepts were mapped to a small
fraction of the program elements (under 1%).

10.4.2 Using the Automatically Extracted Ontologies for Concept
Location

In this section we answer to RQ7, namely how appropriate the ontology fragments extracted
from APIs are for locating concepts in programs. We present our experience with recovering−−→
Ref for JHotDraw and JEdit. Please note that (a part of) RQ7 is answered also in Section 10.5.1
where we use the ontology fragments to evaluate the conceptual coverage of APIs. In order to
evaluate our algorithm we compute the precision and recall as described below.

Computing the “precision”: After running the concepts location algorithm we obtain a set
of candidate mappings between concepts and program elements. Some of these mappings are
false positives – i. e. the program elements do not actually refer to that concepts. We compute the
precision of our algorithm by dividing the number of correct mappings (obtained after manual
inspection) to the number of mappings identified automatically by our algorithm.

Computing the “recall”: In order to (roughly) estimate the recall of our algorithm, we com-
puted the number of program elements p that were correctly mapped to a concept by our algo-
rithm (

−−→
Ref (p) 6= ∅) divided by the maximum number of program elements p′ that could refer
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to a known concept (CandCts(p′) 6= ∅). The formula below represents a (very) conservative
approximation of the recall since it ignores the polysemy cases. In the case of polysemy, even if
a program element has a known name (CandCts is not empty), it does not refer to any concept
(the
−−→
Ref is empty). Therefore, the recall of our algorithm is bigger than RecallAPI .

RecallAPI =
|{p ∈ P |

−−→
Ref (p) 6= ∅}|

|{p ∈ P | CandCts(p) 6= ∅}|

Besides the RecallAPI , that is a global measurement of the recall, we evaluate the recall of
individual concepts. Our aim is to investigate whether there are differences in the recall between
different concepts. Given a concept c, we conservatively approximate its recall by using the
following formula:

RecallConc(c) =
|{p ∈ P | c ∈

−−→
Ref (p)}|

|{p ∈ P | c ∈ CandCts(p)}|

Remark. Our estimation of the recall assumes that the names of the concepts referred by a
program element are contained in its identifier. In the case of many meaningless identifiers of
program elements that refer to a concept c, we would erroneously obtain a high RecallConc for
that concept.

In Table 10.12 we present the mapping strategies between paths in the program and paths in
the ontology (i. e. the functions

←→
te ).

Data structure concepts. In JHotDraw our concepts location algorithm automatically iden-
tified 15 concepts that belong to the data structures ontology. The manual inspection of the
program elements automatically assigned to these concepts revealed the fact that ca. 20% of the
identified program elements were false positives (they do not refer to data structure concepts).
By computing the RecallAPI we obtained an extremely small value (ca. 6 - 7%). The manual
inspection of the program elements with known names (ca. 2170) revealed that many program
elements contain in their identifiers names of data structure concepts even if that program ele-
ments do not refer to any concept contained in the data structures ontology. Prominent examples
are the name “set”, that is used in many accessor methods in JHotDraw (ca. 270 setters) without
referring to the data structure concept SET; or the name “value” that is used in ca. 400 program
elements that do not actually refer to the concept VALUE from the data structures ontology (in
our ontology of data structures many operations act on VALUES – i. e. we have the triple ADD -
actsOn - VALUE). After the manual inspection, that removed the false mappings, we can estimate
the recall to be around 25 - 30%. By computing the RecallConc (i. e. approximating the recall
for individual concepts) we found out that the central concepts of the data structures domain
(e. g. LIST, MAP, STACK) have very high values of RecallConc (over 50%). In the same time,
the concepts with small recall are those that are either not central to the data structures domain
(e. g. KEY, VALUE) or have names commonly used as names of program elements (e. g. ADD,
REMOVE). Many of the program elements in the latter cases do not refer the concepts from the
data structures domain. By mapping triples the precision of the mappings is over 90%.

In Figure 10.8 we present two examples of the mapping of LIST concept to JHotDraw code.
On the left side we have a good mapping: we identified that JHotDraw implements a LIST in
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Output Ontology path Program path

isA
〈isA〉 ∼
〈isA, isA〉

〈hasSupCls〉 ∼ 〈hasType〉 ∼ 〈hasSupCls, hasSupCls〉
∼ 〈hasType, hasSupCls〉 ∼ 〈ctrHasClass, hasSupCls〉

hasProp
〈hasProp〉 ∼
〈isA, hasProp〉 ∼
〈isA−1, hasProp〉

〈hasAtt〉 ∼ 〈hasSupCls, hasAtt〉 ∼
〈hasType, hasAtt〉 ∼ 〈hasType, hasSupCls, hasAtt〉 ∼
〈ctrHasClass, hasAtt〉 ∼
〈ctrHasClass, hasSupCls, hasAtt〉 ∼
〈hasAcc〉 ∼ 〈hasAcc, hasParam〉 ∼
〈hasAcc, hasParam, hasType〉 ∼ 〈hasSupCls, hasAcc〉
∼
〈hasType, hasAcc〉 ∼ 〈hasType, hasSupCls, hasAcc〉 ∼
〈ctrHasClass, hasAcc〉 ∼
〈ctrHasClass, hasSupCls, hasAcc〉 ∼ 〈ctrHasPar〉

isDoer
〈isDoer〉 ∼
〈isA, isDoer〉

〈hasMeth〉 ∼ 〈hasSupCls, hasMeth〉 ∼
〈hasType, hasMeth〉 ∼
〈hasType, hasSupCls, hasMeth〉 ∼
〈ctrHasClass, hasMeth〉 ∼
〈ctrHasClass, hasSupCls, hasMeth〉

actsOn
〈actsOn〉 ∼
〈actsOn, isA−1〉

〈hasParam〉 ∼ 〈hasParam, hasType〉 ∼
〈hasParam, hasType, hasSupCls〉

Table 10.12: Paths equivalence between the automatically extracted ontologies (left) and the
paths in the program (right)

the class ReversedList. On the right-hand side we have a false positive since the word ‘list’
of the class ListFigure was erroneously mapped to the concept LIST from our data structures
ontology. The reason for the false mapping is that the super-class of ListFigure, namely
GraphicalCompositeFigure, has methods that were confused with typical operations on
lists (e. g. ADD, REMOVE, CONTAIN).

In Figure 10.9 we present a program fragment example of how is the knowledge about data
structures interleaved with knowledge about design and about graphical widgets. In order to
understand this code fragment programmers need to have knowledge about all domains that are
weaved in the code – data structures (e. g. concepts like TABLE, KEY, PUT), design patterns (e. g.
concepts like SUBJECT, OBSERVER), or user interface (e. g. concepts like TOOL BAR).

In JEdit the concepts location algorithm identified 45 concepts that belong to the data struc-
tures ontology. These concepts were mapped to 556 program elements. The manual inspection
of these program elements revealed that the false positives rate is ca. 10%. By computing the
RecallAPI we obtained again a small value (ca. 10 - 12%). By inspecting the program ele-
ments with known names (i. e. whose identifiers contain concepts names), we found out again
that many of these program elements do not refer to data structures concepts (e. g. similar with
the case of JHotDraw, we have many setters that contain the word ’set’ in their names, the word
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AbstractCollection

ReversedList

AbstractList

hasSupCls

Program Graph

hasSupCls

List

Collection

Conceptual Graph

isA

contains

ListFigure

GraphicalCompositeFigure

hasMeth

Program Graph

hasSupCls

List

Conceptual Graph

isDoer

addNotify removeNotify

hasMeth

containaddremove

isDoer

Good Mapping Example False Positive Example

Figure 10.8: Example of identification of data structures concepts in JHotDraw

’value’ occurs very often, etc). Thereby, we estimate that the recall is ca. 30-40%. Similarly
with JHotDraw, concepts central to the data structures domain have a much higher recall – e. g.
the recall for the concepts STACK, LIST, MAP, VECTOR is much higher (over 60%).

Remark. Many concepts from the data structures ontology are highly general and therefore many
times it is difficult to decide (even during manual inspection) whether a program element refers
to such a concept or not. For example, in Figure 10.8-right we illustrate a false mapping of
the triple LIST - isDoer - ADD to the code. However, it is difficult to decide whether the method
addNotify refers to the concept ADD that adds elements in a COLLECTION or the method refers
actually to the concept ADD NOTIFY related to the design pattern OBSERVER.

XML concepts. In the case of JHotDraw, the concepts location algorithm automatically iden-
tified 34 concepts that refer to XML. These concepts were assigned to 758 program elements.
By inspecting the program elements assigned to XML concepts, we discovered the fact that
JHotDraw contains classes that use the nanoxml17 API (we did not use this API for extracting
our XML ontology fragments). This represents a sanity check for our approach as we validate
that the XML concepts contained in our ontology are general enough and do not depend on a
particular XML API. The RecallAPI was computed to be ca. 20%. After manually investigat-
ing the program elements with known names (and eliminating those that do not refer to XML
concepts – e. g. the name “value” occurs in ca. 460 program elements from JHotDraw and only
a small fractions of these elements refer to the “value” concept defined in the XML ontology;
the word “name” is very often and occurs in ca. 537 identifiers of JHotDraw, but only a small
fraction of these identifiers refer to the concept NAME that is related to XML), we estimate the
recall to be ca. 40%.

In the case of JEdit, our algorithm recovered 37 concepts and these concepts were mapped to
764 program elements. We discovered however that JEdit contains yet another implementation
of XML parsers given in the package com.microstar.xml. Beside this old implementation,
JEdit uses also org.xml.sax. In this case our manual inspection of the mapped program
elements revealed a higher amount of noise – over 50% of the program elements were mapped to

17http://nanoxml.cyberelf.be/
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package javax.swing;
public abstract class AbstractAction implements … {
  private transient ArrayTable arrayTable; 
  …
  public void putValue(String key, Object newValue) {

Object oldValue = null;
if (arrayTable == null) {
    arrayTable = new ArrayTable();
}
if (arrayTable.containsKey(key))
    oldValue = arrayTable.get(key);
// Remove the entry for key if newValue is null
// else put in the newValue for key.
if (newValue == null) {
    arrayTable.remove(key);
} else {
    arrayTable.put(key,newValue);
}
firePropertyChange(key, oldValue, 

newValue);
    } … }

package org.jhotdraw.app.action;
public class ToggleToolBarAction extends AbstractAction 
{
  …
  public void putValue(String key, Object newValue) {
        super.putValue(key, newValue);
        if (key == Actions.SELECTED_KEY) {
            if (toolBar != null) {
                toolBar.setVisible((Boolean) newValue);
            }
        }
    } … }

Data Structures

Design 
(Observer pattern)

Data Structures

GUI

Figure 10.9: Example of interleaving of knowledge dimensions in JHotDraw

XML concepts by mistake. The reason for this is that our XML ontology contains many triples
that are more general purpose (i. e. do not belong only to the XML domain). For example,
the triple NODE – hasProp – PARENT belongs both to our XML and to our GUI ontologies.
Furthermore, our algorithm maps only a “concept – relation – concept” triple to a pair of program
elements at a time and this generates confusions in the identification of concepts. This shows
a fundamental limit of our approach that generates many false positives: we identify only a
triple (knowledge quark) at a time. The RecallAPI was computed to be ca. 10%. The reason
for this relatively small value of the RecallAPI is that among the program elements that have
a known name (program elements that contain in their identifiers names of concepts from our
XML ontology), most of them do not refer to XML concepts. After the manual inspections, we
estimate the recall to be ca. 25%.

GUI concepts. Not surprisingly, the most concepts identified in JHotDraw belong to our GUI
ontology (138 concepts). These concepts were mapped to 2437 program elements. In this case
the number of false positives is under 20%. By computing the RecallAPI we obtained a value
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of 31%. After we manually inspected the results, we estimate the recall to be around 40%.
The manual inspection of JHotDraw revealed that FIGURE, one of the central concepts of

JHotDraw, could not be located. This is due to the fact that none of our ontologies contain this
concept. In Section 10.4.3 we present how we manually constructed fragments of an ontology
that describes FIGURES.

In the case of JEdit, our algorithm identified 192 concepts and they were mapped to 4279
program elements. The manual inspection revealed a relatively high number of false positives
(ca. 30%) due to the confusions that occurred when matching the triples. By computing the
RecallAPI we obtained a value of 29%. By computing the recall values for individual concepts,
we found out that RecallConc for the central graphical concepts is much higher (for one fifth of
the most central GUI concepts RecallConc was computed to be over 70%).

In Table 10.13 we summarize our results on mapping the data structures, XML and GUI ontology
fragments on our case-studies. This table has the following structure: the number of concepts
that were identified, the number of isA, hasProp, isDoer, and actsOn relations, the number of
program elements (#Prog. El.) that could be mapped to at least one concept, namely

−−→
Ref (p) 6= ∅,

and the conceptual coverage representing the ratio of the program elements that could be mapped
to at least one concept (Cov.). The conceptual coverage is obtained by dividing the #Prog. Elem.
by the total number of program elements presented in Table 10.8. We remark that in all of these
systems, ca. 20% of the number of program elements were identified to refer to concepts from
one of the programming technologies domains covered by the data structures, XML or GUI
ontology fragments.

Name #Concepts #isA #hasProp #actsOn #isDoer #Prog. El. #Cov.
JHotDrawentire 182 45 970 63 334 3091 22%
JEditentire 262 65 1317 93 486 5117 18%

Table 10.13: Locating GUI, XML, and data structures concepts

Summary about using the technology ontologies for concept location

False positives represent the program elements that were erroneously mapped to concepts that
they do not actually reference. The false positives occur due to polysemy and one of the follow-
ing causes: our algorithm matches only pairs of concepts with pairs of program elements, the
relaxation of the paths mapping (

←→
te ), and the fact that our ontologies contain (also) information

that belong to more domains. The manual inspection revealed a relatively good precision of our
concepts location algorithm, the number of false positives being under 30%.

False negatives represent the concepts that were not mapped to program elements even if the
program elements reference these concepts. The more false negatives, the lower the recall of
our algorithm. The reason for false negatives represent the fact that no similarity was identified
between the structure of the program and the structure of the ontology. We approximated the re-
call of our algorithm by computing the RecallAPI . For both JEdit and JHotDraw we found that
RecallAPI is between 10-30%. As we explained above, RecallAPI is a conservative approx-
imation, after the manual inspection we estimate the recall to be 40-50%. However, the more
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central a concept in the ontology is, the higher its recall is (RecallConc) – for central concepts
the recall is around 70%.

Unknown concepts represent the concepts that are implemented in programs but are not
known to our ontologies. The reason for this relatively low coverage is that our knowledge bases
do not contain any information from the core of the application domain of our case studies. For
example, our used ontologies (i. e. GUI, data structures, XML) do not know at all about FIGURES

that are central concepts in JHotDraw. In the next section we present our approach for manually
extending the knowledge base with the concept FIGURE and its neighbours.

The ontology fragments related to GUI, XML and data structures that were
automatically extracted from APIs support the recovery of

−−→
Ref for 15 - 20% of

program elements.

10.4.3 Manually Building Ontology Fragments for Concept Location

In the following we present our experience with manually building ontology fragments and
thereby we answer RQ8. The semantic domain is manually built by analyzing the identifiers of
the program layer and recognizing domain concepts and relations between these concepts. We
use the steps from our ontology building methodology presented in Section 9.4.

Identifying the concept FIGURE in JHotDraw. As we presented in the previous section,
one of the central concepts that are implemented in JHotDraw is FIGURE. Since this concept is
not contained (not surprisingly) by any of our technologies ontologies, it was not located in the
code. In order to study how is this concept implemented in the code, we have no choice but to
manually build an ontology (fragment) that contains the FIGURE concept. In the public interface
of JHotDraw (JHotDrawAPI ) the word ‘figure’ is used to name 302 program elements (ca 4%
of the total number of program elements contained in the public interface of JHotDraw). Below
we present the manual steps we performed in order to build the ontology triples that describe the
concept FIGURE:

• Step 1: Build the initial ontology fragment from the interface Figure (20 min). The
interface org.jhotdraw.Figure represents the core of the implementation of the con-
cept FIGURE in JHotDraw (the concept FIGURE is referenced in many other program parts
that do not reference this interface). We manually reviewed the vocabulary of this interface
and built ontology fragments that contain the relation between figure and other concepts
identified in the interface Figure.

• Step 2: Run the concepts location algorithm and investigate the references to Figure
that were not identified (10 min). The concepts location algorithm (ran on JHotDrawAPI )
identified that 175 program elements refer to FIGURE. 127 program elements that refer to
FIGURE could not be identified.

• Step 3: Add new concepts to the ontology (30 min). We inspected the remaining pro-
gram elements referring to FIGURE (that have the word ‘figure’ in their names) and in-
crementally added new concepts that are neighbors at the program level with FIGURE.
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Constantly we ran the concepts location algorithm and inspected only the unknown pro-
gram elements that contain the word ‘figure’.

After one hour of building the ontology and running the algorithm we could identify 241
program elements (recall is ca. 80%) that contain in their name the word ’Figure’. The remaining
program elements could not be identified by our concepts location algorithm. We classified the
remaining program elements in the following categories:

• Diffusions. Many of these program elements represent methods whose names contain
both the action to be performed and the object on which the action will be performed (e. g.
findFigure). They represent cases of reference diffusion and since the relation between
the action and the object is not explicit they cannot be mapped to the ontology. In order to
identify these references we need to interpret the compound identifiers (Section 10.5.2).

• Events. Many graphical events are triggered with the help of methods and many of these
methods contain the word ‘figure’ in their name – e. g. figureRemoved,
figureAttributeChanged. Our concepts location algorithm cannot identify the occur-
rences of the concept FIGURE in these methods since our conceptual layer relations cannot
capture events (i. e. we cannot say for example TRIANGLE –isDoer – FIGURE REMOVED).

• States. There are several methods that query the state of a class – e. g.
isFigureSelected. The reference to the concept FIGURE could not be identified in
these methods.

For the concepts central to an application it is feasible to manually build ontology
fragments that can lead to a good coverage (ca. 80%) in the recovery of

←→
Ref for that

concepts.

10.5 Evaluating the Reflexion of Domain in Programs

Research questions. The following questions deal with several aspects of the reflexion of
domain in programs presented in Chapter 4: conceptual coverage (RQ9), diffusion of domain in
the code (RQ10), and logical redundancy (RQ11).

RQ9) Can the conceptual coverage of APIs be automatically assessed? Can the automatically
extracted ontologies be used for assessing the coverage of APIs from the same domain? This
question addresses the issue of automation in evaluating the conceptual coverage and conceptual
extensibility of APIs. Furthermore, it addresses the relevance of the automatically extracted
ontologies for assessing the quality of other APIs (Section 10.5.1).

RQ10) Can we identify diffusion of concepts? This question addresses the measure in which
we can detect the diffusion (Section 10.5.2).

RQ11) Can we identify redundant definitions in APIs? Can we identify redundant repre-
sentations of domain concepts in APIs? This question addresses the identification of logical
redundancy in APIs (Section 10.5.3).
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10.5.1 Assessing Conceptual Coverage of APIs

We assess the conceptual coverage of an API by analyzing
←→
Ref . The domain concepts whose

reference cannot be identified in the API represent the concepts not implemented in the API.
In our experiments we use the ontologies that we automatically extracted from APIs in order to
assess the conceptual coverage of individual APIs from the same domain. Below we present our
experience with evaluation of the coverage of three systems: the Java collections framework,
Java AWT, and Eclipse SWT.

Java collections. We use the data structures ontology to identify the domain concepts that are
(or are not) implemented in two versions of the Java collections framework that correspond to
the JDK versions 1.4.2 and 1.5. In Table 10.14 we present the number of concepts and concep-
tual relations from the data structures ontology that our automatic concepts location algorithm
could (or could not) map to the program entities and program relations of the Java collections
framework. We remark that the Java collections framework has a relatively good conceptual
coverage (ca. 80%) of the data structure ontology. We can also observe that in the version 1.5
we have more domain concepts and relations implemented.

#Found conc. #Not found conc. #Found rel. #Not found rel.
Java collec. 1.4.2 58 13 121 38
Java collec. 1.5.0 59 12 128 31

Table 10.14: Results of mapping the data structures ontology on Java collections framework

On the left side of Figure 10.10 we present the concepts that were not identified in the version
1.4.2 of the Java collections framework; on the right-hand side of the same figure we present the
concepts that were not identified in the version 1.5.0. We notice that the concept QUEUE was not
identified in version 1.4.2 but was identified in version 1.5.0. The manual inspection revealed
that QUEUE is implemented in the Java collections framework only since version 1.5.0. We
notice that apart from QUEUE, there are other concepts that were not identified in both versions of
Java collections. The meaning of some of the concepts that were not found in the Java collections
API is presented in Figure 10.11 – this figure presents triples of the data structures ontology that
contain these concepts. In this figure we see for example that ADD BEFORE and ADD AFTER

are operations on LINKED LISTS that are not provided by the Java collection framework. By
manually inspecting the class java.util.LinkedList we found out that it contains a method
addBefore but this method is private. The functionality of ADD BEFORE is implemented with
the method add(int index, E element). We also note that among concepts that were not
identified are variations of FIND. These concepts were not identified due to a terminological
mismatch – the Java library uses the method indexOf for searching. We can also notice that the
LIST NODES are not explicitly referenceable in the Java collections API.

Java AWT. In order to assess the conceptual coverage of the Java AWT API we use the GUI
ontology. After running the algorithm for concepts location (i. e. recovering

←→
Ref ) we identified
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add before, add after, capacity, count, en-
try, find, find index, find last, list node,
next, queue, search, top

add after, add before, capacity, count, en-
try, find, find index, find last, list node,
next, search, top

Figure 10.10: Concepts from the data structures ontology and that are not referenced by the Java
collections framework (version 1.4.2 (left) and 1.5.0 (right))

Queue – isA – Collection
Queue – isDoer – Peek
Queue – isDoer – Remove
Queue – isDoer – Remove All
Queue – isDoer – Be Empty
Queue – isDoer – Empty
Queue – isDoer – Clear

Linked List – isDoer – Add After
Linked List – isDoer – Add Before
Stack – isDoer – Top
Stack – isDoer – Be Empty
List – hasProp – Capacity
Array List – hasProp – Capacity
List – isDoer – Search

Map – isDoer – Find
List – isDoer – Find
Link List – isDoer – Find
List – isDoer – Find Last
Link List – isDoer – Find Last
List Node – hasProp – Value
List Node – hasProp – Next

Figure 10.11: Concepts not identified in version 1.4.2 of the Java collections framework and
some of their neighbours in the data structures ontology

that 266 concepts are not referenced by the program elements from the Java AWT API. In Figure
10.12 we present a part of the concepts that were not identified to be referenced in the AWT.

box, browser, check box, check box menu item, combo box, document, find, font dialog, form, group
box, html document, list box, print dialog, progress bar, radio button, scroll bar, slider, spinner, status
bar, table, text box, text style, tool bar, tool tip, tree

Figure 10.12: Concepts not referenced in the Java AWT API

After manual inspection, we notice that in most of the concepts from Figure 10.12 are indeed
not implemented in AWT. In order to find out the meaning of these concepts, we have to look
at their neighbours in the GUI ontology. In Figure 10.13 we present the most important triples
from our ontology in which some of the missing concepts from Figure 10.12 occur. We remark
that many of the missing concepts represent advanced graphical features (e. g. tooltips, special
dialogs, html browsing support). Indeed, these concepts are not implemented by AWT – the ex-
planation for the lack of advanced components is that AWT is the lowest-common denominator
for GUI components defined for all Java host environments.

By consulting a comparison18 of AWT, SWING and SWT (Feigenbaum, 2008) we found out
that we accurately identified most of the missing concepts from Java AWT (presented in Ta-
ble 10.15). However, by manually investigating the documentation of AWT we found out that
some of the concepts that we identified to be missing (e. g. ones presented in the lower part
of Figure 10.13) were in fact (indirectly) supported by AWT. For example, even if AWT does
not provide direct support for radio buttons, they can be simulated through check-boxes. The
class java.awt.Checkbox implements also radio buttons; to create a radio button one needs
to create a checkbox and add it to a group. Another example, are the concepts CUT, COPY and

18http://www.ibm.com/developerworks/grid/library/os-swingswt/
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Browser – hasProp – Url
Browser – isDoer – Layout
Browser – isDoer – Back
Browser – isDoer – Forward
Browser – isDoer – Refresh
Browser – isDoer – Stop
Combo Box – hasProp – Foreground
Combo Box – hasProp – Item
Combo Box – hasProp – Select Index
Combo Box – hasProp – Select Item
Combo Box – isDoer – Insert Item
Combo Box – isDoer – Find
Combo Box – isDoer – Select
Combo Box – isDoer – Paint
Combo Box – isDoer – Update

Text – isDoer – Copy
Text – isDoer – Cut
Text – isDoer – Paste

Html Document – isA – Document
Html Document – hasProp – Link
Html Document – hasProp – Link Color
Html Document – hasProp – Active Link Color
Html Document – hasProp – Visit Link Color
Html Document – isDoer – Parse
Html Document – isDoer – Open
Html Document – isDoer – Focus
Print Dialog – isA – Dialog
Print Dialog – hasProp – Printer
Print Dialog – hasProp – Print To File
Print Dialog – hasProp – Text
List View – hasProp – Item
List View – hasProp – Alignment
List View – hasProp – Select Item

Radio Button – isA – Button
Radio Button – isA – Toggle Button

Figure 10.13: Examples of concepts not identified in AWT and some of their neighbours in the
GUI ontology

PASTE. Figure 10.13 shows that these concepts belong to the set of actions that are done by/on
texts. From here, we deduced that the AWT does not provide the functionality for copying text
inside any of its component. The manual inspection of the AWT documentation revealed that the
java.awt.TextArea provides this kind of functionality. However, it is implemented in an-
other manner and because of this we could not find it automatically. The AWT implementation
of these text operations (e. g. in the classes TextComponent and TextArea) is of algorith-
mic nature – the CUT, COPY and PASTE concepts are implementable through a combination of
methods selection, insert and replace.

These false negatives show one of the fundamental limits of our approach, namely, by de-
scribing the domain as light-weighted ontologies we cannot capture algorithmic combinations
of concepts such as the simulation of advanced operations on texts with primitive operations.

Beside the graphical concepts missing from AWT and presented in Table 10.15, we identified
additional concepts that are not implemented in AWT – e. g. SPINNER, STATUS BAR, SLIDER,
SPLITTER, GROUP BOXES.

Eclipse SWT. We performed the same experiment by analyzing the conceptual coverage of
Eclipse SWT. We identified several concepts that after the manual inspection proved not to be
implemented in SWT – e. g. AFFINE TRANSFORM and FOCUS TRAVERSAL POLICIES. How-
ever, our experiments returned many false positives (i. e. concepts that we could not find even if
supported by SWT). The cause for this is the fact that many graphical components are imple-
mented only in an algorithmic manner and this is not reflected in the structure of the program.
Many special widgets are implemented as more general components that can be parameterized
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Feature not available in Java AWT19 Missing identified
Display an image yes
Display text and image no
ToolTip pop-up help yes
Styled text entry yes
Simple push button with text and/or image yes
Enter text or select from a drop-down list yes
Display an insertion caret yes
Web browser yes
Generic container of other controls no
with a border and title
Arrow buttons no
Display simple message dialog yes
Display simple prompting dialog no
Display a tool bar yes
Display a progress bar yes
Divide space between areas yes
Display tabbed areas no
Display tabular info yes
Format table columns yes
Display hierarchical info yes
Select from range of values yes
Select from discrete range of values yes
Add items to the system tray no

Table 10.15: Features not available in Java AWT (after (Feigenbaum, 2008))

with certain constants. For example, we erroneously identified that the following concepts are
missing from SWT (even if this is not the case): POPUP MENU (this is implemented in SWT
as the constant SWT.POP UP), CHECK BOX BUTTON and CHECK BOX MENU ITEM (are imple-
mented in SWT as buttons and menu items that are initialized with the constant SWT.CHECK),
RADIO BUTTONS (are implemented as buttons initialized with the constant SWT.RADIO).

Automatically extracted ontologies from domain specific APIs can be used to assess
the conceptual coverage of APIs that address the same domain. Whenever a domain

concept is identified to be implemented in an API it proved to be really implemented.
However, due to implementation intricacies, there are many concepts that are
implemented (encoded) in APIs but are not identifiable through our method.

10.5.2 Assessing Diffusion

Reference diffusion. Reference diffusion occurs when a program element refers to more
concepts (Definition 5.4.2). In order to detect the diffusion automatically, we need to be able to
interpret the compound identifiers (identifiers that contain more words) and identify the concepts
to which they refer. Most of the compound identifiers are the names of classes and of methods.
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1. Reference diffusion in classes. When more concepts are referenced by the name of a single
class, then the interface of the class is segregated between these concepts – e. g. a subset of the
methods, accessors or attributes of that class are related with a concept and another subset with
another concept. In Figure 10.14 we present an example of a class (TextAreaFigure) from
JHotDraw that was identified to exhibit reference diffusion. On the left-hand side we present a
class diagram and on the right-hand side we illustrate how the concepts TEXT and FIGURE were
identified.

TextAreaFigure

Font  getFont()
...

AbstractAttributedDecoratedFigure

draw(Graphics2D g)
...

AbstractAttributedDecoratedFigure

hasAcc

getFont

TextAreaFigure

hasSupCls

draw

hasMeth

Figure

hasProperty

Font

Text

draw

isDoer

Program Graph Conceptual Graph

Figure 10.14: Example of identification of diffusion in classes

In the case of JHotDraw we identified 25 classes that exhibit reference diffusion. The com-
pleteness and accuracy in the identification of diffusion is limited by the accuracy and coverage
of our concepts location algorithm.

2. Reference diffusion in methods. In Section 10.4.3 we showed that many references of the
concept FIGURE could not be identified in JHotDraw because they are inside methods names.
These methods refer to both the action that is performed and to the object on which the action
is performed – e. g. the identifier ‘findFigure’ refers both to the action FIND and to the object
FIGURE on which the action is performed. Based on our experience, we propose the following
heuristic to interpret the compound identifiers – for each compound identifier i of a method such
that i = 〈w1, ..., wn〉, we considered that the action is represented by the first word w1 and
that one of the next words (w2, ..., wn) refers to the object on which the action is executed. In
Figure 10.15 we illustrate how we interpret the compound identifier ‘findFigureBehind’ and how
we identify the concepts FIND and FIGURE.

Using this heuristic, we identified
−−→
Ref for 199 methods from JHotDrawAPI . All these

methods exhibit reference diffusion.

By interpreting the compound identifiers of methods we can identify diffusions in the
concepts referenced by methods.
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Drawing

Figure findFigureBehind(...)
...

find

figure

actsOn

find, Figure, Behind

Drawing

hasMeth

Program Graph Conceptual Graph

Figure 10.15: Example of identification of diffusion in methods

Representation diffusion. The diffusion of the representation occurs when the same type is
used to represent distinct concepts (Definition 5.4.5) and is quantified through the overloading
degree (Definition 5.4.6). We approximate the representation overloading degree by computing
the number of variables with the same type but with different names. In order to do this ap-
proximation we used the “reliable naming conventions” assumption (Anquetil and Lethbridge,
1998b) (also described in Section 8.4) and approximate that two variables with different names
refer to different concepts and two variables with the same name refer to the same concept.

Type OD
int 1065
MediaType 148
float 82
double 75
boolean 65
String 52
Object 50
Color 33
long 29
SystemColor 26

JavaAWTAPI

Type OD
int 451
String 288
boolean 109
Object 100
Tag 82
Region 59
Attribute 54
Color 28
float 24
Component 24

JavaSWINGAPI

Type OD
int 821
boolean 75
short 69
String 41
float 31
int[] 14
Control 11
char 9
Color 9
Object 8

SWTAPI

Type OD
int 89
String 83
double 58
AttributeKey 41
boolean 33
Object 28
float 25
Double 19
Figure 17
Map 11

JHotDrawAPI

Figure 10.16: The Top 10 overloaded types from AWT, SWING, SWT and JHotDraw

In Figure 10.16 we present examples of types with the highest overloading degree from the
APIs of AWT, SWING, SWT and JHotdraw. We remark that the primitive types, especially int
and String are highly overloaded. The explanation for this is that every time when the API
providers do not have a better solution, they tend to encode the concepts as numbers or strings of
characters. High overloading of the primitive types represent cases of underspecification at the
program level. In case a non-primitive type T exhibits a high overloading, the concepts referred
by the variables of this type are many times sub-concepts of the concept referred by the type
T – e. g. the type Html.Attribute from SWING is used as a type-safe enumeration of the
Html attributes (e. g. COLOR, SIZE); the type MediaType from AWT is a type-safe enumeration
of possible paper sizes (e. g. A0, A4, ISO C7 ENVELOPE). We also remark that apart from
enumerations, the user-defined types have a much smaller overloading degree.
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The overloading degree can be approximated by using the “reliable naming
conventions” assumption. The highest overloading is exhibited by the basic types

int, String, double, boolean, Object, and float.

10.5.3 Assessing Logical Redundancy

Once we recover
←→
Ref (and thereby we instantiate the unified meta-model), the identification

of definition redundancy is straight-forward. In order to identify the definition redundancy, we
have to identify the concepts that are defined by more classes (Definition 5.5.1); in order to
identify representation redundancy we have to find the concepts represented through more types
(Definition 5.5.2).

Our automatically obtained results showed that 43 GUI concepts were redundantly defined in
the AWT API. The redundant definitions affect 114 classes (this represents ca. 30% of the total
number of public classes of AWT). The extremely high number of classes that represent redun-
dant definitions of concepts was a surprise for us. After we manually inspected these classes, we
found out the following categories of redundancies (the manual investigation revealed that the
other classes, beside the ones presented below, were false positives):

• Parallel inheritance hierarchies: Twenty classes from the graphical components hierar-
chy (from package java.awt) have a corresponding interface in the package
java.awt.peer (Figure 10.17). By consulting the documentation corresponding to the
package java.awt.peer we found out that indeed these classes interface the function-
ality of the graphical components and are useful for porting AWT to other platforms. The
“peers” are not intended to be used or to be extended by the end-users of AWT, only by its
developers. Since our domain ontology, (the automatically extracted GUI ontology) does
not “have any knowledge” about porting graphical libraries, we identified the pairs of com-
ponents and their peers (e. g. Component – ComponentPeer, Window – WindowPeer)
to be logical definition redundancy of GUI concepts (e. g. COMPONENT, WINDOW).

• Optimizations of the speed: The manual investigation revealed several situations where
due to the optimizations of the used memory, the same shapes were implemented as having
integers and floats as coordinates (as illustrated in Figure 10.18).

In Figure 10.18 we also notice that the concepts referring to coordinates are redundantly
represented (e. g. the concept X is represented as int, float, and double).

By automatically recovering the
−−→
Ref we can identify logical redundancy. A

significant part of the redundancy cannot be however avoided due to the constraints of
the current programming languages.

10.6 Threats to Validity

In this chapter we investigated several research questions that refer to the manner in which
programs exhibit intentional meaning and to the possibility of automating intentional analyses.
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Figure 10.17: Many graphical components from AWT have a corresponding “peer”

Even if the results of our experiments seem promising to us, we are aware that due to the limited
case studies investigated and the many variability points in our approach, the exact interpretation
and generalization of our results is not trivial. Below we explicitly illustrate some of the key
issues that could influence the answers to our research questions (internal validity) and that
could prevent the generalization of our conclusions (external validity).

Internal Validity

The “internal validity” represents the validity of causal inferences (relations) that we made
(Trochim, 2006). Due to the nature of the case studies (e. g. the results are influenced by our
interpretation of domain concepts, by the informal knowledge contained in the programs) many
of the answers to our research questions can be biased. Below we discuss the most important
sources of noise that could affect our results.

Quality of identifiers. Our automatic analyses are strongly based on the similarity between
the names of concepts and the program identifiers. What happens when the identifiers are mean-
ingless, when they are ambiguous, or when they are misleadingly chosen?

• When the identifiers are meaningless we cannot identify concepts. The meaningless iden-
tifiers directly affect the analyses referring to conceptual coverage. Our analyses about
coverage used parts of the Java standard APIs as case studies and whose identifiers are
mostly well chosen. Furthermore, we validated the coverage analysis by using an external
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public class Rectangle extends Rectangle2D {
public int x, y;
public int width, height;

}

public class Rectangle2D {
public static class Double extends Rectangle2D {

public double x, y;
public double width, height;

}

public static class Float extends Rectangle2D {
public float x, y;
public float width, height;

}
}

public class Point extends Point2D {
public int x, y;

}

public class Point2D {
public static class Double extends Point2D {

public double x, y;
}

public static class Float extends Point2D {
public float x, y;

}
}

Figure 10.18: Definition and representation redundancy caused by optimizations

source of information (Feigenbaum, 2008) and this makes us more confident about our
results.

Our estimation of RecallAPI assumes that the identifiers are meaningful. If this was not
the case we would not be able to estimate the number of occurences of a concept in the
code (CandCtswould deliver completely unreliable results) and thereby we would obtain
a very high (but very erroneous) value for RecallAPI .

• When the identifiers are ambiguous (i. e. exhibit synonymy or polysemy) then the “reliable
naming conventions” do not work well. The overloading degree (OD) metric is strongly
affected. However, we interpret the results of these two metrics only qualitatively – i. e.
primitive types have a high overloading degree – and do not emphasize on the quantitative
aspects of OD.

• When the identifiers are meaningful (i. e. CandNms(i) 6= ∅) but misleading (Defini-
tion 8.2.3) we would obtain completely unreliable results. All our analyses are based on
the fact that the identifiers are ’fairly’ chosen. More simply said, the programmers do not
systematically choose misleading names – e. g. it never happens to have a class named
“window”, one of its subclasses named “dialog” and these classes to refer to geometrical
figures (e. g. “shape” and “square”).

Quality of the used ontologies. Most of the results of our analyses depend strongly on
the used ontologies. Since we consider that ontologies represent the semantic domain with
respect to which the programs are interpreted, every analysis that uses an ontology is (at most)
as reliable as the ontology itself. While WordNet is a widely used ontology and it was validated
in different applications by large communities of users in more than fifteen years, the other
ontologies (fragments) that we extracted from APIs or we manually built are far less validated
and therefore open to debate. However, whenever possible, we validated the results that we
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presented in these case studies by using external sources of information. This gives us confidence
that the conceptual biases in the ontologies that we used in our analyses did not significantly
distort our results.

External Validity

The “external validity” represents the possibility to generalize the causal inferences (relations)
identified in a certain study to other studies (Trochim, 2006). Our case studies deal with well-
known (pieces of) APIs, a small number of systems and with a small number of ontologies.
Therefore, can the results that we presented be generalized for arbitrary programs?

Using adequate ontologies. The measure in which we can recover
←→
Ref for a certain pro-

gram depends strongly on the used ontology. As we presented in Section 10.4.1 (mapping Word-
Net on programs), by using an inadequate ontology we can find only a few concepts and give
the intentional meaning of few program elements (ca. 1%). In a similar manner, trying to an-
alyze let’s say an operating system kernel by mapping it to our GUI ontology would be highly
inappropriate and the concepts location algorithm would identify only noise (if anything).

Type of the program. We are aware that the intentional analyses depend strongly on the type
of the code that is analyzed. Our basic research hypothesis is that beside a purely mathematical
view in which programs are interpreted as mathematical terms, programs can be interpreted
from the perspective of their modeled domain. In many situations this assumption is too strong
– e. g. in the case of generated code, highly optimized programs, (part of) embedded software,
this hypothesis does not hold. The latter kinds of programs might not be (easily) interpretable
from the point of view of the domain, namely, we cannot find a clear correspondence between
the program elements and the domain concepts that they implement since the domain concepts
are highly diffused in the code. In these cases program structure does not mirror the domain
but the program is rather a “computational soup” out of which the domain behavior (somehow)
emerges.

Programming style and programming language. All our case studies about intentional
analysis were performed on Java programs. While we are confident that the results can be
generalized to programs written in other object-oriented languages, making any claims about
programs written in other paradigms (e. g. functional, logic, data-flow languages) or in scripting
languages (e. g. 4GL) is impossible. Furthermore, the same limitation is applied to Java pro-
grams that are written using a non object-oriented programming style (e. g. a functional style).

10.7 Summary

In this chapter we presented our experience with applying intentional analyses to several Java
systems. Our investigations can be classified in three main categories: the existence of inten-
tional meaning, the level of automation that can be achieved by the intentional analyses, and the
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feasibility and precision of the intentional analyses. Below we summarize the most important
results of our experiments:

• The analyzed programs do exhibit intentional meaning. Therefore, by considering them
from the perspective of the domain knowledge they implement, we could apply intentional
program analyses.

• Different domain specific APIs that address the same domain contain enough common
knowledge to enable the extraction of ontology fragments. Furthermore, it is feasible to
extract domain knowledge from such APIs by investing a relative small manual effort.

• Ontology fragments automatically extracted from domain specific APIs can be used for
performing analyses of the conceptual coverage and logical redundancy. When mapped
on programs, they can be used to recover the references of domain concepts in the code.

• The WordNet ontology contains too general knowledge to be useful for coverage analyses.

Limitations of the concepts location algorithm. Even if the concepts location algorithm
could identify the function

−−→
Ref for a considerable number of program elements and was helpful

in evaluating the domain coverage of APIs, there are many program elements that could not
be mapped to any concept and the algorithm produces (quite) many false positives. Below we
present the most important reasons for these facts:

1. Diffusion. Our algorithm is based on the similarities between names of concepts and
identifiers and on the similarities between the structure of the ontology and of the program.
A major limitation of our algorithm is that we currently do not interpret the composition
of concepts at the level of identifiers (e. g. the name of the method findFigure could be
interpreted as the conceptual triple FIND – actsOn– FIGURE).

2. Knowledge base limitations. Even if the knowledge bases used contain a big number
of concepts, there are many more domain concepts not contained in our knowledge bases
and therefore they are not recoverable. Furthermore, between our concepts from the used
ontologies are a relatively small number of relations. Therefore, the structures of the on-
tology and that of the code are not similar and our algorithm does not recover the concepts.

3. Representation of the knowledge as triples. Since a “concept – relation – concept” triple
represents the basic unit of knowledge, and only these triples are used for the identification
of concepts, we obtain a (relatively) high number of false positives.
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11 Summary and Future Work

In Section 11.1 we present a summary of our work and our most important contributions in
context. In Section 11.2 we suggest several directions for extending this research.

11.1 Summary

Intentionality in software engineering. The software engineering process can be seen as a quest
for closing the conceptual gap between the knowledge of the domain to which the software
is addressed and the implementation languages. Due to the differences between the concep-
tualizations of the application domain and of the implementation languages, during forward
engineering occurs a loss of abstract information about the (intended) relation between software
artefacts and domain knowledge (Section 2.2). Researchers from different software engineering
sub-branches (from specification to programming) fight with the loss of intentionality that oc-
curs in the forward engineering (Section 2.3). At the level of programs, the intentionality loss
is amplified by the interleaving of multiple dimensions of knowledge and delocalization of the
implementation of concepts. Reverse engineering and program understanding have in center the
recovery of abstract information from the code. Many approaches are focused on the recovery
of the relations between programs and their business domain (Section 2.4). We showed that the
many approaches for program understanding aim at recovering the lost intentionality by iden-
tifying domain concepts in the code. However, when they tackle the concepts related to the
business domain (as opposed to for example, design), they suffer from the lack of precision and
structuring in the definition of concepts and of their mappings to programs.

Intentional meaning of programs. In this dissertation, we worked out a new kind of interpreta-
tion of programs that is defined in terms of the domain concepts that programs implement. The
meaning of these concepts is given by domain ontologies they are part of (Section 3.2). With
other words, domain ontologies represent the semantic domain with respect to which programs
(or parts thereof) are interpreted. We defined the intentional implementation (

←−
i ) and intentional

interpretation (
−→
i ) functions (Section 3.3) that link concepts from domain ontologies to named

program entities (i. e. classes, methods, variables). Using these explicit links we bridge the gap
between the domain knowledge and the code, and thereby we can characterize faithfulness in
the implementation of domain knowledge in the code.

Operationalization. In order to operationalize our approach we defined abstractions for both
programs and domain ontologies as labeled graphs (Section 3.4). In the case of programs, the
nodes represent the named program entities and the edges are program relations between them.
In the case of ontologies, the nodes represent concepts and the edges represent conceptual rela-
tions. We defined a unified meta-model that contains program entities and their corresponding
concepts that they implement. Instantiating this meta-model represents the starting point for our
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automatic analyses. We further refined the implementation and interpretation functions (
←→
i )

into more specific components: reference of concepts (
←→
Ref ), definition of concepts (

←→
Def ), and

representation of concepts (
←→
Rep) (Section 3.5).

Intentional analyses of programs. We use the intentional meaning to define new program
analyses about the coverage, consistency, explicitness, and conciseness (Sections 4.2 – 4.5) of
implementation of domain knowledge in the code. All these analyses are expressed by measur-
ing the level of isomorphism between the programs and the domain ontology (both represented
as graphs). We investigate the problems caused by typical implementation mismatches (Sec-
tions 5.2 – 5.5) and we present code examples from the Java standard API where such problems
occur. We use our formal framework also for characterizing the quality of identifiers from the
point of view of their meaningfulness and ambiguity (Section 8.2 and 8.3).

Conceptual adequacy of Java. By analyzing the implementation strategies of the concepts
from the Standard Upper Merged Ontology (SUMO) in Java, we identified typical cases that in-
herently lead to mismatches in reflection of domain knowledge in Java programs (Section 6.4).
We showed that these mismatches are due to the conceptual differences between the Java and
SUMO, and are (mostly) not avoidable in the practice. We draw the conclusion that whenever
we want to implement certain phenomena from the business domain in Java, we introduce a con-
ceptual bias in the implementation with respect to the business domain (no matter for example
how good the design is).

Automatic recovery of intentional meaning. In order to automate the intentional analyses,
we develop a method to recover the intentional meaning by using the similarities between the
identifier names and the names of the concepts that they implement, and a pre-defined set of im-
plementation strategies for typical categories of concepts and conceptual relations. We represent
both programs and ontologies as graphs and this enables us to (semi-)automatically recover the
intentional meaning by mapping programs to ontologies using graph matching (Section 7.5).

Obtaining ontologies fit for intentional analyses. We discuss different sources of domain on-
tologies that are fit for performing intentional analyses (Sections 9.2 – 9.4) and we focus on au-
tomatic extraction of fragments of domain ontologies from domain specific APIs (Section 9.3).
The ontology fragments obtained from the analysis of APIs offer a high conceptual coverage of
the technical domains that are commonly used in programs (e. g. GUI, XML).

Experiments and relevance in the practice. Throughout this dissertation we presented ex-
amples of code fragments and discuss their deficiencies from the point of view of the imple-
mentation of domain concepts. Whenever possible, we presented examples of problems in the
implementation of the domain knowledge in the Java standard APIs. In Chapter 10 we presented
our experience with performing intentional analyses on several Java systems. The case studies
that we performed had the following aims: to investigate the degree in which programs exhibit
intentional meaning, the degree in which light-weighted ontologies can be used to represent the
domain meaning, and the degree in which the intentional program analyses are automatable. The
defects that we identified give us insides in the nature of programming today, in the manner in
which domain concepts are reflected, represented and composed in the programs. With the help
of our case studies, we showed that it is feasible to perform intentional analyses in the practice
and they can be automated.
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11.2 Future Work

This dissertation represents only a new step in the direction of using domain knowledge for
analyzing programs. We are aware that there are many improvements to be done and the use of
domain ontologies for performing intentional analyses of programs or different kinds of models
(Section 11.2.1). Furthermore, our results suggest that the intentionality loss can be avoided only
by raising the abstraction level at which the current development is performed (Section 11.2.2).

11.2.1 Intentional Analyses

Below we enumerate several directions of future work in the direction of recovering the inten-
tional meaning and using it for enriching other program analyses with domain information.

Intended dynamics of programs. In this dissertation we did not consider the dynamic of pro-
grams. Our notion of “intentional meaning” is (mostly) structural. A next logical step is to
extend the intentional meaning by taking into consideration the intended dynamic of the busi-
ness domain. For example, in the banking domain “calculating the interest for some lend money”
is also a domain concept, that in comparison with the “account” concept, has a dynamic nature.
How can the intentional meaning be extended with intended dynamics is still an open question.

Instantiating the layers. While the identifier slicing and obtaining the words do not raise
(almost) any problems, the concrete abstraction of programs (i. e. a concrete set of program
relation types – ΣΠ), the abstraction of the domain (i. e. a concrete set of conceptual relation
types – ΣΩ) and the mapping strategies between them are far less clear and have more variability
points. Depending on the domain under consideration and on the concrete language that is used
to produce the content under analysis (e. g. programs, models), we can instantiate the programs
layer, the conceptual layers, and the mapping functions

←→
te differently.

Intentional analysis of models described in other languages. The focus of this work was the
analysis of Java programs. We can extend our framework towards other languages by choos-
ing a different ΣΠ – e. g. we can use the same approach to analyze the intentionality of UML
models and thereby ΣΠ will contain relation types like “aggregation”, “composition” from the
class diagrams part of UML, and “next activity” for the activity diagrams part of UML. By in-
stantiating the ΣΩ with different relation types we can describe other (more domain specific)
conceptualizations like for example modeling security concerns.

Extending the set of intentional functions and describe other mismatches. We refined the
intentional interpretation

←→
i into three mappings: the reference (

←→
Ref ), representation (

←→
Rep), and

definition (
←→
Def ) of concepts. We used these functions to describe concrete cases of mismatches

between a domain ontology and the code and the consequences of these mismatches on different
(maintenance) activities. The

←→
i can be further refined with other mappings between concepts

and programs, that capture other aspects of the “implementation of domain concepts”. Based on
the new mappings, new mismatches between the domain and programs could be characterized.

Enriching program analysis with intentional meaning. Many of the currently wide-spreaded
static analyses in reverse engineering (e.g. design quality assessment) are at a syntactical level.
However, the proper interpretation of their results requires semantical information about the
relation of program parts to the business domain. For example, if a class is reported as affected
by a design flaw, the criticality of the flaw could be weighted by the conceptual centrality of that
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class. Similarly, domain knowledge might lead to a better detection of architectural violations
(e. g. GUI concepts that occur in the persistency layer). Furthermore, we can use the intentional
meaning to compare the structural decomposition of a system with a conceptual decomposition
of the business domain and thereby to better assess the modularity of the system.

Recovering the intentional interpretation. We presented a method to recover the
←→
Ref functions

by using a graph matching algorithm. This algorithm can be improved in order to increase its
precision and recall. Furthermore, we envision also other methods (manual or automatic) for
recovering the mappings between the code and domain knowledge.

Building a large knowledge repository. The existence of domain knowledge in form of do-
main ontologies is a central prerequisite for the applicability of our approach on a larger scale.
Having more knowledge, our algorithm could achieve a higher recall and a bigger coverage of
the code. The work that we already started by building the programming technologies knowl-
edge repository needs to be extended (ideally) by a community of users. More APIs that cover
different domains can be analyzed and used as a source of domain knowledge. Furthermore,
methods for ontology mining from text could be used to enrich the knowledge repository.

Integrating intentional analyses in the development process. In this thesis we presented a
method to assign meaning to programs, and showed our experience with performing (reverse
engineering like) program analyses. These analyses can be integrated in the development process
and extended to other artefacts besides programs (e. g. design). Building fragments of domain
ontologies while developing the code and linking them to the program could be an effective
manner of documentation, or could guide the design of the application.

Intentional “Integrated Development Environments” (IDEs). A semantically enhanced IDE
can “look over the shoulder” of programmers and can help in performing different programming
or maintenance tasks. For example, it could guide developers to browse the development arte-
facts based on the concepts they refer to, or it could serve as (active) documentation for APIs.
A more visionary enhancement is to enable a kind of conceptual type checking – by “knowing”
the intentional meaning of two variables the IDE might give warnings when one is assigned to
the other in the case when the concepts that they represent are not compatible.

11.2.2 Domain Specific Modeling and Domain Specific Languages

The focus of this dissertation is programs analysis with emphasis on reverse engineering. How-
ever, many parts of our work can be seen and understood as a case for domain specific languages
and domain specific modeling. On the one hand, we showed that the loss of intentionality cannot
be avoided when there is a big conceptual gap between the languages which express the problem
and those in which we express the solution. On the other hand, if programs were written in a
domain specific language that is appropriate enough to their domain, the intentional meaning of
those programs would be exactly the meaning that is defined based on the underlying (domain
specific) language. In these cases the mismatches between the domain knowledge and programs
would be minimized.

We strongly advocate that domain specific modeling and domain specific languages
represent essential approaches to fight against the intentionality loss.
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A Notations

Π program layer (p. 81)
ΠProg program layer corresponding to the entire program (p. 81)
ΠAPI program layer corresponding to an API (p. 82)
P the set of program elements (p. 81)
p a particular program element (an element of P )
ΣΠ the set of relation types from the program layer (p. 81)
σΠ a relation type from the program layer (an element of ΣΠ)
eΠ(p1, p2) the type of the relation between program elements p1 and p2 (p. 81)
σΠ(p1, p2) between program elements p1 and p2 is a relation whose type is σΠ (eΠ(p1, p2) = σΠ)

Ω conceptual layer (p. 83)
C the set of concepts (p. 83)
c a particular concept (an element of C)
ΣΩ the set of relation types from the conceptual layer (p. 83)
σΩ a relation type from the conceptual layer (an element of ΣΩ)
eΩ(c1, c2) the type of the relation between concepts c1 and c2 (p. 83)
σΩ(c1, c2) between concepts c1 and c2 is an edge whose type is σΩ (eΩ(c1, c2) = σΩ)

−→
i intentional interpretation (p. 72)
−→
i (p) the set of concepts representing the interpretation of the program element p
←−
i intentional implementation (p. 72)
←−
i (c) the set of program elements representing the implementation of the concept c
←→
i implementation and interpretation functions

−→
t interpretation of relations (p. 90)
−→
t (σΠ) the set of conceptual relations representing the interpretation of the program relation σΠ

←−
t implementation of relations (p. 90)
←−
t (σΩ) the set of program relations representing the implementation of the conceptual relation σΩ

←→
t implementation and interpretation of relations functions

−→
te extended interpretation of relations (p. 158)
−→
te (〈σΠ

i , ..., σ
Π
j 〉) the set of sequences of conceptual relations representing the interpretation of the sequence

of program relations 〈σΠ
i , ..., σ

Π
j 〉←−

te extended implementation of relations (p. 158)
←−
te (〈σΩ

i , ..., σ
Ω
j 〉) the set of sequences of program relations representing the implementation of the sequence
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of conceptual relations 〈σΩ
i , ..., σ

Ω
j 〉←→

te extended implementation and interpretation of relations functions

−−→
Ref (p) the set of concepts referred by the program element p (p. 85)
←−−
Ref (c) the set of program elements that reffer the concept c (p. 85)
←→
Ref reference functions

−−→
Def (p) the set of concepts defined by the program element p (p. 87)
←−−
Def (c) the set of program elements defined by the concept c (p. 87)
←→
Def definition functions

−−→
Rep(p) the set of concepts represented by the program element p (p. 88)
←−−
Rep(c) the set of program elements that represent the concept c (p. 88)
←→
Rep representation functions

Λ lexical layer (p. 153)
N the set of names of concepts
I the set of names of program identifiers
W the set of lexically normalized words
N2W (n) the set of lexically normalized words corresponding to name n
I2W (i) the set of lexically normalized words corresponding to identifier i
CandNms candidate names (p. 156)
CandCts candidate concepts (p. 156)

∼ relation of equivalence between two paths from the program graph (p. 176)
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Index

abstraction challenge, 19, 34
API, 20, 82, 186, 197

domain specific, 172

business domain, 74
business rule, 48

candidate concepts, 156, 164
candidate names, 156
cliché, 48
code clone, 78, 223
concept, 49

assignment, 49, 86, 161
definition of, 83
location, 49, 86, 161

algorithm, 159
concept name, 83, 153
concepts definition in programs, 22, 75, 87
concepts reference, 22, 26, 75, 85
concepts representation, 22, 26, 75, 88
conceptual coverage, 22

abstraction, see reflexion characteriza-
tion

implementation details, see reflexion char-
acterization

of APIs, 206
conceptual gap, 19, 174
conceptual model, 67
conceptualization, 34, 65

of a domain, 33
conceptualization loss, 19, 30, 32, 40, 64,

100
concern, 48
concern graph, 55
construct deficit,

see language expressiveness

construct excess,
see language expressiveness

construct overload,
see language expressiveness

construct redundancy,
see language expressiveness

delocalization, 20, 41, 75
diffusion, see reflexion characterization
distortion, see reflexion characterization
domain ontology, 74, 130
dominant decomposition, 20, 40, 41

external validity, 215

false negatives, 204
false positives, 160, 198, 204
feature, 48

identifiers, 153
ambiguity, 23

polysemy, 166
synonymy, 166

compound, 149, 154
meaningfulness, 23

clueless name, 165
misleading name, 165

quality of, 23, 26, 149, 160, 214
role in understanding, 148
splitting, 154

impedance mismatch, 35, 142
implementation of relations, 90

extension of, 158
intentional implementation, 22, 72
intentional interpretation, 22, 72, 92
intentional meaning, 21, 62, 70

intention, 43, 44, 46, 71
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meaning, 43, 44, 71
intentional program abstraction, 22
intentional view, 56
intentionality loss, 21
interleaving, 21, 40, 74, 121, 201
internal validity, 214
interpretation of relations, 90

extension of, 158, 188, 198, 200

knowledge level, 32
knowledge needs during maintenance, 47

language, 33
domain specific, 34
general purpose, 34
generality of, 39
professional language, 33
semantic bias of, 39

language expressiveness, 35
abstraction power, 35
domain appropriateness, 35, 37

construct deficit, 37, 124, 143
construct excess, 37, 105, 143
construct overload, 37, 104, 143
construct redundancy, 38, 143

Turing completeness, 35
LaSSIE, 57
latent semantic indexing (LSI), 50, 60, 161
light-weighted ontology, 66, 170
logical redundancy, see reflexion character-

ization

mental model, 49
concepts centered understanding, 49

mid-level ontology, 130

Natural Semantic Metalanguage, 29

ontological analysis, 37, 130
interpretation mapping, 37, 143
representation mapping, 37, 143

ontological commitment, 67
ontology

definition of, 66
meanings of, 65

of Java programming knowledge, 134
of programming technologies, 74
of the LaSSIE system, 57
semantic, 21
sources, 181

extraction from APIs, 23, 26, 172
manually building ontologies, 180, 205
off-the-shelf, 170, 171

paths equivalence, 176, 188, 198, 200
pragmatics, 79
program, 72
program identifiers, 175
program knowledge base, 23, 151
programming idioms, 134

accessor method, 135
programming plan, 48, 52, 53
programming technologies domain, 47, 179
programming technologies repository, 26, 179,

194

real-world semantics, 34, 64
reflexion characterization

abstraction, 100
absent definition, 112
absent implementation, 111
conceptual extensibility, 114, 116

concise implementation, 105
diffusion, 22, 26, 39, 100, 103, 206,

210, 217
clear definition, 123
compacted definition, 123
compacted reference, 119, 210
direct implementation, 103
direct reference, 119
faithful representation, 121
intimate program neighbors, 119
overloading degree, 122, 211, 215
relations diffusion, 123
representation overloading, 121, 211

distortion, 22, 26, 100, 102
equivalent relation, 116
inverted relation, 116
misused relation, 118
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ideal implementation, 98
implementation details, 100, 101

added relation, 113
logical redundancy, 23, 26, 100, 105

definition redundancy, 124
representation redundancy, 126

pure implementation, 110
reflexion models, 54
reliable naming conventions, 168, 212, 215
representation layers, 32

semantic bias, 35
semantic primes, 30
semantics of programming languages, 75
software information system (SIS), 56

comprehensive SIS (CSIS), 57
stemming, 154
structural mismatch, 158, 177
sub-ontology, 103
sub-program, 105
Suggested Upper Merged Ontology (SUMO),

24, 124, 131

Ullman’s triangle, 34
unified meta-model, 26, 80, 152

bridging the layers, 85, 155
conceptual layer, 83, 195
lexical layer, 153, 195
program layer, 81, 195

upper ontology, 130

word, 153
compound, 150
normalization, 154

word markers, 154
WordNet, 111, 195, 198

for words normalization, 154
off-the-shelf ontology, 171
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