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Abstract-Classical retiming optimization algorithnis do not consider cir- 
cuits containing multiplexers or demultiplexers driven by a clock signal l ,  
because the associated retiming equations differ from the special classical 
form, which make applicable conibinatorialalgorithnisofpolynomial order. 
In order to provide an algorithm for multiplexer circuits it is shown here 
that retiming, being an integer linear programming problem inherently, can 
be relaxed to a linear programming formulation with real valued variables. 
This is due to the unimodularity of the matrices of the retiming formula- 
tion. Multiplexer circuits change this property in a way, which suggests 
how to nse an integer linear programming problem to derive an polynoniial 
retiming algorithm. 

I. INTRODUCTION 
The synthesis of high speed circuits is an important topic of 
VLSI design. Retiming, a methodology to speed up circuits 
without introducing additional pipeline stages, was introduced 
initially by Leiserson el al. [1,2]. Registers are relocated in a 
way that data dependencies remain unchanged but maximize the 
clock frequency or other optimization criteria. Since the basic 
concept of retiming was formulated nearly a decade ago, a lot of 
research work was done in order to make it applicable to CAD 
designs and tools. 

Further workexamined the usage of more sophisticated circuit 
models. Soyata, Friedman and Mulligan integrated clock skew 
and register delays into retiming [31. In 141 and [ 5 ] ,  Lockyear, 
Ebeling, Ishii and Leiserson studied retiming with level-sensitive 
latches. De Micheli examines logic synthesis and cycle-time mi- 
nimization without separating the combinational elements from 
registers, see [6] .  In [ 7 ] ,  Malik et al .  consider retiming with 
logic synthesis. Registers are temporarily removed from the 
circuit in order to apply combinational optimization to the logic 
elements. Additionally, in [8,9], Potkonjak, Dey et al .  apply 
algebraic speed up to those temporarily register free subcircuits. 

In this paper multiplexer circuits are examined conceming 
retiming. It is shown in Section 2 that the introduction of mul- 
tiplexers, driven by a clock signal, modifiy the usual retiming 
problem. In Section 3, retiming is formulated as a linear pro- 
gramming problem (LP) for circuits, which do not contain any 
multiplexer. The associated matrices have the so called uni- 
modular property such that the simplex algorithm can be used 
to compute an optimum retiming solution. The introduction of 
multiplexers change this unimodular property. A polynomial al- 
gorithm tQ s0lve this optimization problem is given in Section 4, 
which introduces additional edges to the circuit graph and which 

The Model 
In the following, the graph model, presented in Leiserson's 

paper is used. Each circuit is characterized by a directed graph 
with a set of vertices V and a set of edges E.  An edge weight 
U : ,  which represents the number of registers of an edge, and a 
vertex delay d ,  which is the combinational delay of a vertex, 
is associated with each edge and vertex respectively. Thus, a 
circuit can be abbreviated by G =< V,  E ,  d ,  w >. The number 
of registers moved over every vertex w by retiming is assigned 
to the variable ~ ( z ' ) .  Thus, the number of registers w, after 
retiming of an edge e (u  --* w )  can be computed as follows [I]: 

(1) w,(e) = w(e) + ~ ( v )  -.(U). 

This equation is denoted as retiming equation from now on. 

11. Rn?MWG EQUATIONS OF MULTIPLEXER CIRCUITS 

The retiming equations (1) for edges adjacent to a multiplexer 
vertex are derived in the following. A register being moved 
over a multiplexer vertex U with Ic incoming edges provides k 
registers in the outgoing edge e(u,  U), which is illustrated in 
Fig. 1. 

J -  ( -  - 
k Registers 

Fig. 1. Moving registers over a multiplexer vertex. 

This is obvious, if the cut-set rule, which inserts a delay At 
for the incoming data of the cut-set and -At for the outgoing 
data, is examined. Usually, the time interval At is identical to 
the number of registers r ( u )  moved over a vertex u because 
of the uniform clock frequency of the circuit. Data leaving 
the multiplexer vertex have a greater clock frequency f2 than 
arriving data with the clock frequency fi . Therefore, refemng 
to the clock frequency fi , the quotient of the frequencies j 2 / f i  
has to be taken into account such that the delay At for an outgoing 
edge moving r( U )  registers from the incoming edges over vertex 
U results in: At = r ( u ) f 2 / f i .  The ratio f 2 / f i  is identical to 
the number k of incoming edges, if multiplexer circuits are 
considered. We obtain the following retiming equation for U 

being a multiplexer and demultiplexer vertex respectively: 

( 2 )  
is based on the cutting plane extension of the simplkx algorithm. Multiplexer: 

Demultiplexer: 
w,(e) = w(e) +.(U) - Icr(u) 
w,.(e) = w(e) + . ( U )  - Ic-'r(u). 

nese circuits are multiplexer circuits from now on 

The retiming equations (1) can be regarded as a special integer 
LP (ILP) concerning the variables T .  This ILP consists of in- 
equalities, which only contain the differences of the unknowns 
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used to solve this 

problem for circuits, which do not GOntain 
to derive a polynomial algorithm in the 
multiplexer circuits. The retiming quatior, 
in matrix form [lo] 

m 

register weights: wr - w = A' F, wr 2 0. Matrix A is the 
incidence matrix of the circuit C. These 
to formulate the set of dl retiming solutions using the vw:or r 
of the vertex labels T :  

~ ~ e ~ a ~ v e l y ~  the set of dl retiming soludon 
usinglEl-(IVI- I)Ioopequations,assta 

the number of elements of the sets E and V. Here, 
lemma is expanded on undkected loops instead of 

directed cycles [ 101 only. 

Lemma 1. The i-egisber sum of a loop is  constant during reti- 
ming, i f  the sum is computed as follows: Add the register weights 
of edges, ifthe edge direction and l m p  orientation of which coin- 
cide, and subtract the register weights otherwise. This sum is 
invariant during retiming: 

44) 

Thus, the variables r are el 
obtained. 

The [ E (  - ([VI - I) loop equations 
form with the v e c m  of ~ ~ n - n e g a ~ v e  re 

Matrix M is the circuit matrix of 6' with each row ~ ~ ~ r ~ ~ e ~ ~ i ~ g  
one I s o ~ .  The ckcui 
to a special class of 

2. The incidencp and circuit matrix of a circuit grqvh 
tally unimodular. 

Proof. see [12,131. 
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vertex improving the vdue of the cost fianction each akp. As 

influence the u ~ m ~ u ~ ~ ~ y  of the circuit matrix. 

1. Timing Constraints 

g constraints. Matrix 'W con- 
concerning register wei 

entries D(u,  w )  of the m 
concerning the vertex delays d 

among the shortest paths found by the c 
path between two vertices U and v must contain one register 
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identity is applied to the circuit matrix M of the original circuit, 
the column of the edge e(i, j )  has to be added to the coiumn 
e ( U ,  U) and the column of the edge e ( i  I j) has to be deleted or 
vice versa. Obviously, this will not lead to unimodular circuit 
matrices in general. Therefore, the associated polytope may 
have vertices with non-integer coordinates and the presented 
retiming algorithms have to be extended. 

In order to derive an algorithm for the multiplexer problem the 
structure of the circuit matrix as done for timing and structural 
constraints is examined for multiplexer circuits in the following 
section. 

IV. A RETIMING ALGORITHM FOR 
"LEXER cmcms 

Lemma 1 has to be modified for multiplexer circuits as follows: 

Lemma 3. Compute the sum as done in Lemma 1 replacing the 
register weight by the product of register weight and associated 
clockperiodT(i, j )  of the considered edge ~ ( i ,  j ) :  

Proof, To proof the correctness of (6), the cut-set rule is con- 
sidered, which insests the delays At in the edges of G, The 
sum At around a loop of G is zero. The delay At of an 
edge applying a cut-set rule is the difference of registers be- 
fore and after retiming multiplied with the clock period of data 
propagating~ongthisecage: At = T(i,j)(w,(i.j) - t ~ ( i , j ) ) .  

um C At, which equals zero, Equation (6)  

all T( i .  j) have ths same value T = i / f .  
dso be written in matrix form, introducing a 

is the product of l f ie I El dimensional indentity matrix 
he vector T of the clmk periods: I6 = I T. If the clwk 

is not given, matrix M can be computed 
with a unit time scale using the retiming equations (2) with the 
multiplexer constants IC, see [ 111. 

Since the matrix product M K is not necessarily unimodular, 
the optimum solution may be non-integer. This optimum can 
either be computed with the simplex algorithm applied to (7) 
or classical retiming alg?rithms of polynomial order using the 

s u ~ ~ ~ ~ ~ t i o n : w ~  = K w. The retiming formulation 
w,. = M K w, which is identical to a circuit with 

every mul~p lex~r  being treated as a usual combinational vertex 

be integer. In order 
to provide an algorithm to compute integer register values let us 
assume that a loop containing a multiplexer vertex with constant 

ns an associated demultiplexer with constant le such that 

only pairs of multiplexers and demultiplexers exist. Btherweise, 
registers would be created, if a register is moved around this loop 
and a contlict of clock periods of date associated with a vertex 
would occur. 
Algorithm RMC (retiming of multiplexer circuits) 

Add an edge between each multiplexer and demultiplexer 
vertex of a pair with the clock period associated with the 
leaving edge of the multiplexer. Choose an arbitrarily high 
number of registers (e.g. number of all registers of the 
circuit multiplied with all multiplexer constants) to each 
of those new edges before retiming such that the same 
optimum retiming solution can be computed as before. 
Find the optimum retiming solution with the simplex al- 
gorithm or the,classical retiming algorithm applying the 
substitution: w, = K w. Let wi be t h ~  optimumregister 
weights of the elements of the vector w,. 
Consider all paths from a demultiplexer to a multiplexer 
vertex of a pair with constant IC. If a path p contains an 
edge ea with a non-integer register weight wi, assign the 
foliowing number of registers w, before retiming to the 
edge e,, inserted in step 1: w, = leCa(iwj] - wi), The 
summation concerns the values (1waJ - wa.1 of all edges 
belonging to the chosen path p .  
Use the register weights wi before retiming with the modi- 
fied value w, of step 3 and go io step 2 until all multiplexer 
and demultiplexer pairs with non-integer path weights in- 
between are treated. If multiplexer demultiplexer pairs are 
nested, begin with the innermost pair. 

This algorithm leads to the inte P optimum solution k- 
ame step 3 can be interpreted as a cutting-plane algori 
for integer linear programs as shown in the ~ o ~ ~ o w ~ ~ g .  Path 
p md edge e, form a loop wMch yields the loop quation: 
E, u/2+$wc = E, W, + U), . Obviously, the ~ ~ t i ~ ~ ~ r e t i ~ n ~  
solution concerning the edges 20% is not excluded, if the value 
sc = k E, (U, - w,) before retiming is chosen such that the 
number of register after retiming is w, = 0. The considered loop 
represents one row of the associated simplex tableau. According 
to ihe cutting-plane algorithm for integer linear p~ogr 
e.g. [15, p. 3291, the following inequaltiy derived from t h i s  
row can be added to the tableau: w, 2 IC c,(S, - [Sa]). This 
inequality cuts off the non-integer optimum vertex of the poly- 
tope and can be fulfilled by the proposed retiming algori 
if tile value 1 zz(w, - LW,]) is subtracted from the register 
weight w, = R E, (W, - w,) before retiming because the regi- 
ster weights are non-negative inherently. Thus, the value w ,  of 
step 3 is obtained. 

As timing constraints can be interpreted as additional edges 
without changing the algorithm, those edges can be instered, if 
the clock period of tke associated vertices are equal. 

If classical retiming algorithms are applied like the minimum 
cost-flow algorithmof polynomial computation time f( I V 1, I El)  
[l] and if N is the number of multiplexer demultiplexer pairs, 
then the computation time of the Algorithm RMC is 
O( Nf( 1 V I , ]  E I)) because the optimium retiming solution is 
computed worst case N + 1 times. 
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v. -LILTS 
A. An Application 

ple is chosen, see Fig. 2. ’This circuit is 
DSP application called block matching, which is used for mo- 
tion estimation in image processing [ 161, ?kro succesive images 
are divided into blocks. In order to find the block of the current 
image, which matches best with the block of the previous image, 
the distance L = /zi - yi 1 with the pixel values q, gi o€the 
current and previous block is computed. The arithmetic cell of 
this problem is implemented by the circuit shown in Eg. 2a. 

En order eo illustrate the Algori 

Fig. 2. Example circuit and circuit graph G. 

As the wordlength for the computation of the absolute value 
1zi-y; I is less than the wordlength ofthe final summation x, it is 
assumed that the pixel rate and propagation delay of the vertices 
allow hardware sharing with a multiplexer and demultiplexer. 
The associated circuit graph G for retiming is shown in Fig. 2b. 
The self loops of the vertices 3 , 4  are removed from G because 
they will have no effect on retiming. The input and output 
edge of the circuit are connected to obtain a strongly connectea 
circuit graph as usually required for retiming. The edge weights 
w, (i, j )  are abbreviated as the vector elements wj . The results 
of each step of the Algorithm Rp*IC are given as follows: 

1. Fig. 2c shows the circuit graph with the additionaledge bet- 
ween multiplexer and demultiplexer with a register wei 
before optimization, which does not exclude the optimum 
solution computed without this edge. 

2. The cost function S = - w3 is chosen such that the optimum 
register configuration results in the circuit given in Fig 2d. 

3. The computation of the register weight w, = k. Ci( [ziii] - 
w;) yields w, = 2 as shown in Fig. 2e. 

4. The h a l  optimization provides the integer optimum solu- 
tion, see Fig 2f. 

B. Computation Time 

and circuit matrix formulation concerning the ~ o m p u ~ ~ o n  ti 
In th is section a comparision 

rage, which corresponds io the constant gap of both curves in 

17 

Computation Time/CPU sec 
f logscale 

t * _ *  

bit 5 10 15 20 ;!5 
Hg. 3. Computation time of the n-bit correlator. 

VI. CONCLUSION 
In this paper retiming is regarded as a linear programming pro= 
blem with the total unimodular property of the associated nlatri- 
ces. This formulation is used to derive a polynomial algoii 
for multiplexer circuits from general non-polynomial integer li- 
near programming methodologies. As a result beyond the scope 
of introducingretiming t~ multiplexer circuits the unimoduliarity 
can be used generally for examining the influence of additional 
constraints or properties to retiming. Future work will focus on 
how other linear programming methodologies can be modlified 
eo develop further profitable retiming algorithms. 
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