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Abstract—Classical retiming optimization algorithms do not consider cir-
cuits containing muitiplexers or demultiplexers driven by a clock signal 1,
because the associated retiming equations differ from the special classical
form, which make applicable combinatorialalgorithms of polynomial order.
In order to provide an algorithm for multiplexer circuits it is shown here
that retiming, being an integer linear programming problem inherently, can
be relaxed fo a linear programming formulation with real valued variables.
This is due to the unimodularity of the matrices of the retiming formula-
tion. Multiplexer circuits change this property in a way, which suggests
how to use an integer linear programming problem to derive an polynomial
retiming algorithm.

1. INTRODUCTION

The synthesis of high speed circuits is an important topic of
VLSI design. Retiming, a methodology to speed up circuits
without introducing additional pipeline stages, was introduced
initially by Leiserson et al. [1,2]. Registers are relocated in a
way that data dependencies remain unchanged but maximize the
clock frequency or other optimization criteria. Since the basic
concept of retiming was formulated nearly a decade ago, a lot of
research work was done in order to make it applicable to CAD
designs and tools.

Further work examined the usage of more sophisticated circuit
models. Soyata, Friedman and Mulligan integrated clock skew
and register delays into retiming [3]. In [4] and [5], Lockyear,
Ebeling, Ishii and Leiserson studied retiming with level-sensitive
latches. De Micheli examines logic synthesis and cycle-time mi-
nimization without separating the combinational elements from
registers, see [6]. In [7], Malik et al. consider retiming with
logic synthesis. Registers are temporarily removed from the
circuit in order to apply combinational optimization to the logic
elements. Additionally, in [8,9], Potkonjak, Dey et al. apply
algebraic speed up to those temporarily register free subcircuits.

In this paper multiplexer circuits are examined concerning
retiming. It is shown in Section 2 that the introduction of mul-
tiplexers, driven by a clock signal, modifiy the usual retiming
problem. In Section 3, retiming is formulated as a linear pro-
gramming problem (LP) for circuits, which do not contain any
multiplexer. The associated matrices have the so called uni-
modular property such that the simplex algorithm can be used
to compute an optimum retiming solution. The introduction of
multiplexers change this unimodular property. A polynomial al-
gorithm to solve this optimization problem is given in Section 4,
which introduces additional edges to the circuit graph and which
is based on the cutting plane extension of the simplex algorithm.

1 These circuits are called multiplexer circuits from now on.
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The Model

In the following, the graph model, presented in Leiserson’s
paper is used. Each circuit is characterized by a directed graph
with a set of vertices V' and a set of edges . An edge weight
w, which represents the number of registers of an edge, and a
vertex delay d, which is the combinational delay of a vertex,
is associated with each edge and vertex respectively. Thus, a
circuit can be abbreviated by G =< V| F, d, w >. The number
of registers moved over every vertex v by retiming is assigned
to the variable 7(v). Thus, the number of registers w, after
retiming of an edge e¢(u — v) can be computed as follows [1]:

wr(e) = w(e) +r(v) —r(u). €Y
This equation is denoted as retiining equation from now on.

1I. RETIMING EQUATIONS OF MULTIPLEXER CIRCUITS

The retiming equations (1) for edges adjacent to a multiplexer
vertex are derived in the following. A register being moved
over a multiplexer vertex u with & incoming edges provides k
registers in the outgoing edge e(u,v), which is illustrated in
Fig. 1.

A h

k Registers
Fig. 1. Movingregisters over a multiplexer vertex.

This is obvious, if the cut-set rule, which inserts a delay At
for the incoming data of the cut-set and — At for the outgoing
data, is examined. Usually, the time interval At is identical to
the number of registers »(u) moved over a vertex u because
of the uniform clock frequency of the circuit. Data leaving
the muitiplexer vertex have a greater clock frequency f» than
arriving data with the clock frequency f;. Therefore, referring
to the clock frequency fi, the quotient of the frequencies f»/ f;
has to be taken into account such that the delay A¢ for an outgoing
edge moving r(u) registers from the incoming edges over vertex
u results in: At = r(u)f2/fi. The ratio fo/fy is identical to
the number & of incoming edges, if multiplexer circuits are
considered. We obtain the following retiming equation for
being a multiplexer and demultiplexer vertex respectively:

Multiplexer: wr(e) = w(e) + r(v) — kr(u)

Demultiplexer: w,(e) = w(e) +r(v) — k™ r(u). @

The retiming equations (1) can be regarded as a special integer
LP (ILP) concerning the variables r. This ILP consists of in-
equalities, which only contain the differences of the unknowns
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Zi, &9, ..., Ty, which in our case are equal to the unknowns r.
This can be written as z; — ®; < a;; with the constants a;;.
Thus, shortest path based algorithms can be used to solve this
problem. As retiming equations of multiplexers (2) do not have
this property (z; — kz; < a;;), a new retiming algorithm has to
be developed.

ITI. RETIMING AS A LINEAR PROGRAMMING PROBLEM

In this section, retiming is formulated as a linear programming
problem for circuits, which do not contain multiplexers, in order
to derive a polynomial algorithm in the following section for
multiplexer circuits. The retiming equation (2) can be written

in matrix form [10] with the vector w and w, for the positive_

register weights: w, — W = AT r, w, > (. Mairix A is the
incidence mairix of the circuit G. These equations can be used
to formulate the set of all retiming solutions using the vector r
of the vertex labeis r:

ATr< —w. (3)

’

Alternatively, the set of ali retiming solutions can be formulated
using | E| — (|V] — 1) loop equations, as stated in [10], with | E|
and |V | being the number of elements of the sets £ and V. Here,
the following lemma is expanded on undirected loops instead of
directed cycles [10] only.

Lemma 1. The register sum of a loop is constant during reti-
ming, if the sum is computed as follows: Add the register weights
of edges, ifthe edge direction and loop orientation of which coin-
cide, and subtract the register weights otherwise. This sum is
invariant during retiming:
ZIOOP we (3, §) = Zlmp w(i, §). 4

Proof. Add the Equations (i) of each edge belonging to the
loop. Multiply the equation being added with -1, if the direction
of the associated edge is opposite to the chosen loop direction.
Thus, the variables » are eliminated in the final sum and (4) is
obtained. O

The [E] — (]V| — 1) loop equaiions can be written in matrix
form with the vector of non-negative register weights w,:

Mw, = Mw, w.>0. (5)

Matrix M is the circuit matrix of G with each row representing
one loop. The circuit matrix M and the incidence matix A belong
te a special class of martices:

Definition. A matrixisitotally unimmodular, iff all determinantes
of its submatrices are -1, 0, 1.

Lemma 2. The incidence and circuit matrix of a circuit graph
G are totally unimodular.

Proof. See [12,13].

The Systems (3) and (5) containing sl possible retiming solu-
tions of the circuit (& with the integer variables rand w, represent
a convex polytope such that the following Theorem of Hoffman
and Kruskal {14] can be used:
xireme poiniz of the convex pelytope Ux <
in f& ger COmpORents for any urbf‘rary
,szeger vecior &, iff matrix € is totaily unimodular.

Proof. See [12,14].
The optimum retiming solution concerning a cost function of the
integer variables r or w, can be computed such that the retiming
problem can be regarded as an [LP. Due to the total unimodula-
rity of the matrices the simplex algorithm can be used to solve
this retiming ILP, although the simplex algorithm produces real
valued solutions in general. The simplex algorithm starts with
an arbitrary vertex of ihe polytope and moves from vertex to
vertex improving the value of the cost function each siep. As
all vertices are integer as stated in Theorem 1, the simplex al-
gorithm provides an integer solution. The simplex algorithm
will probably not lead to a reduced computation time compared
to classical retiming algorithins but an extension of the simplex
algorithm is suited to solve the multiplexer problem, see Section
4. Besides, the simplex algorithm being generally available e.g.
in computer algebra systems like Mathematica the optimum re-
timing solution of a circuit can be computed, if no appropiate
CAD tool is available.

in order to find a retiming solution, which fulfills a certain
clock frequericy or obeys certain structural constraints, the effect
of those constraints on the retiming ILP has to be examined. This
can be done, considering whether and how these constraints
influence the unimodularity of the circuit matrix.

1. Timing Constraints

In {11, two matrices W and D of dimension |V |x|V| are com-
puted from G, to formulate timing constraints. Matrix W con-
tains the shortest path values concerning register weights of
every pair of vertices. The entries D(u,v) of the matrix D
are the maximum path value concerning the vertex delays d
among the shortest paths found by the computation of W. A
path between two vertices v and v must contain one register
minimum after retiming, if the path delay D(u, v) is greater
than the required clock period ¢. This is formulated in [1] as:
r{v) — r(u) < W(u,v) — 1if D{u,v) > c. These inequalities
with the unknowns r have the same structure as mentioned above
(z; — z; < a;;) such that the timing condition can be re*garded
as additional edges of a modified graph G. Let matrix M be
the circuit matrix of the modified circuit graph G, M is totally
unimodular according to Lemma 2. Thus, the snmpiex algorithm
will produce integer solutions, if timing constraints are applied,
additionally.

2. Structural Constraints

2.1. Local Data Communication. Broadcast interconnections
can be avoided and local data corraunication 18 achieved, if cer-
tain edges contain a minimurn number of registers: w,(u, v) >
wy,. This condition can be written as an equaticn introducing
the variable wy{u,v) > G w,(u,v) — W,(v, 4) = wy. The
equation can be interpreted as an additional loop such that the
circuit matrix is modified to an unimedular circuit matrix Mof an
extended problem. Therefore, the optimum scluticn computed
by the simplex algorithm is integer in general.

2.1, Modularity. In order to obtain a motular design vertices
should have identical surrounding register configurations such
that the number of registers wiw, v) and w{i, 7) of coriain edges
e{u, v) and e{i, ) should be tdentical: w{u, v} = w(i, j). If this
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identity is applied to the circuit matrix M of the original circuit,
the column of the edge e(i, j) has to be added to the column
e(u, v) and the column of the edge e(i, j) has to be deleted or
vice versa. Obviously, this will not lead to unimodular circuit
matrices in general. Therefore, the associated polytope may
have vertices with non-integer coordinates and the presented
retiming algorithms have to be extended.

In order to derive an algorithm for the multiplexer problem the
structure of the circuit matrix as done for timing and structural
constraints is examined for multiplexer circuits in the following
section.

IV. A RETIMING ALGORITHM FOR
MULTTPLEXER CIRCUITS

Lemma 1 has to be modified for multiplexer circuits as follows:

Lemma 3. Compute the sum as done in Lemma 1 replacing the
register weight by the product of register weight and associated
clock period T(i, 7) of the considered edge €(4, j):

Zloop TG, §)we(i, §) = ZIOOPT(i,j)w(i,j)- (6)

Proof. To proof the correctness of (6), the cut-set rule is con-
sidered, which inserts the delays At in the edges of G. The
sum . At around a loop of G is zero. The delay At of an
edge applying a cut-set rule is the difference of registers be-
fore and after retiming muliiplied with the clock period of data
propagating along this edge: At = T'(3, j)(w, (%, 7) — w(i, 7))
Applying this to the sum . A¢, which equals zero, Equation (6)
is obtained. O

Equation {(4) is identical to (6), if the circuit contains no mul-
tiplexer at all because all T'(7, j) have ths same value 7' = 1/f.
Equation (6) can also be written in matrix form, introducing a
square matrix K of the dimension |E'|x|E|, additionally. This
square matrix K is diagonal with the diagonal entries 7'(7, j)
because to obtain (6), the columns of M have to be scaled with
T'(%, 7). Lemma 3 is formulated in matrix form as follows:

MEKw, = MKw, w,>0. (7)

Matrix K is the product of the | E| dimensional indentity matrix
T and the vector T of the clock periods: K = [ T. If the clock
period of each edge is not given, matrix K can be computed
with a unit time scale using the retiming equations (2) with the
multiplexer constants &, see [11].

Since the matrix product M K is not necessarily unimodular,
the optimum solution may be non-integer. This optimum can
either be computed with the simplex algorithm applied to (7)

or classical retiming alg9rithms of polynomial order using the .

following substitution:w, = K w. The retiming formulation
results in M wi. = M K w, which is identical to a circuit with
every multiplexer being treated as a usual combinational vertex
but modified edge weights before retiming.

Obviously, the final values w, need not to be integer. In order
to provide an algorithm to compute integer register values let us
assume that a loop containing a multiplexer vertex with constant
k contains an associated demultiplexer with constant £ such that

only pairs of multiplexers and demultiplexers exist. Otherweise,
registers would be created, if a register is moved around this loop
and a conflict of clock periods of date associated with a vertex
would occur.

Algorithm RMC (retiming of multiplexer circuits)

1. Add an edge between each multiplexer and demultiplexer
vertex of a pair with the clock period associated with the
leaving edge of the multiplexer. Choose an arbitrarily high
number of registers (e.g. number of all registers of the
circuit multiplied with all multiplexer constants) to each
of those new edges before retiming such that the same
optimum retiming solution can be computed as before.

2. Find the optimum retiming solution with the simplex al-
gorithm or the classical retiming algorithm applying the
substitution: w; = K w. Let ; be the optimum register
weights of the elements of the vecior w’, .

3. Consider all paths from a demultiplexer to a multiplexer
vertex of a pair with constant k. If a path p contains an
edge e; with a non-integer register weight w;, assign the
foliowing number of registers w, before retiming to the
edge e, inserted in step 1: w, = k3 _,({;] — wi). The
summation concerns the values (|;] — w;) of all edges
belonging to the chosen path p.

4. Use the register weights w; before retiming with the modi-
fied vaiue w. of step 3 and go io step 2 until all multiplexer
and demultiplexer pairs with non-integer path weights in-
between are treated. If multiplexer demuitiplexer pairs are
nested, begin with the innermost pair.

This algorithm leads to the integer optimum solution bec-
ause step 3 can be interpreted as a cutting-plane algorithm
for integer linear programs as shown in the following. Path
p and edge e, form a loop which yields the loop equation:
> u;g+%wc =3 zZJ,-+%zZ/C. Obviously, the optimum retiming
solution concerning the edges w; is not excluded, if the value
we = kY _;(w; — w;) before retiming is chosen such that the
number of register after retimingis w. = 0. The considered loop
represents one row of the associated simplex tableau. According
to the cutting-plane algorithm for integer linear programs, see
e.g. [15, p. 329], the following inequaltiy derived from this
row can be added to the tablean: w, > k3, (w; — [w;]). This
inequality cuts off the non-integer optimum vertex of the poly-
tope and can be fulfilled by the proposed retiming algorithm,
if the value &> ,(w; — [5]) is subtracted from the register
weight w. = & > _;(w; — w;) before retiming because the regi-
ster weights are non-negative inherently. Thus, the value w,. of
step 3 is obtained.

As timing constraints can be interpreted as additional edges
without changing the algorithm, those edges can be instered, if
the clock period of the associated vertices are equal.

If classical retiming algorithms are applied like the minimum
cost-flow algorithm of polynomial computation time f(|V|, | E|)
[1] and if N is the number of multiplexer demultiplexer pairs,
then the computation time of the Algorithm RMC is
O(Nf(|V|,|E|)) because the optimium retiming solution is
computed worst case NV + 1 times.

1738

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 06:32 from IEEE Xplore. Restrictions apply.



V. RESULTS
A. An Application

In order to illustrate the Algorithm RMC the followingexam-
ple is chosen, see Fig. 2. This circuit is the arithmetic cell of a
DSP application called block matching, which is used for mo-
tion estimation in image processing [16]. Two succesive images
are divided into blocks. In order to find the block of the current
image, which matches best with the block of the previous image,
the distance L = } . |z; — v with the pixel values z;, y; of the
current and previous block is computed. The arithmetic cell of
this problem is implemented by the circuit shown in Fig. 2a.

Fig. 2. Example circuit and circuit graph G.

As the wordlength for the computation of the absolute value
|2;—y;i | is less than the wordlength of the final summation y_, itis
assumed that the pixel rate and propagation delay of the vertices
allow hardware sharing with a multiplexer and demultiplexer.
The associated circuit graph G for retiming is shown in Fig. 2b.
The self loops of the vertices 3, 4 are removed from G becausc
they will have no effect on retiming. The input and output
edge of the circuit are connected to obtain a strongly connected
circuit graph as usually required for retiming. The edge weights
w(4, ) are abbreviated as the vector elements w;. The results
of each step of the Algorithm RMC are given as follows:

1. Fig. 2cshows the circuit graph with the additional edge bet-
ween multiplexer and demultiplexer with a register weight
before optimization, which does not exclude the optimum
solution computed without this edge.

2. Thecost function S = —w3 ischosen such that the optimum
register configuration results in the circuit given in Fig 2d.

3. The computation of the register weight w, = k ) ,(|@;] —
w;) yields w, = 2 as shown in Fig. 2e.

4. The final optimization provides the integer optimum solu-
tion, see Fig 2f.

B. Computation Time

In this section a comparision between the incidence matrix
and circuit matrix formulation concerning the computation time
of the optimum retiming soluticn with the simplex algorithm is
presented. The correlator given in [1] is generalized to a n-bit
sorrelator with V' == 2n vertices. The optimization concerning
maximum clock speed using the circuit matrix formulation is
6.7 times faster than the incidence matrix formulation in ave-
rage, which corresponds to the constant gap of both curves in

Fig. 3 with a logarithmic scale of the computation time. For
other circuits the circuit matrix formulation also seems to be the
profitable choice. As the simplex algorithm is no competitor
concerning computation time compared to classical retiming al-
gorithms, we refrained from implementing an efficient sparse
matrix simplex algorithm for retiming.

Computation Time/CPU sec

¢ log scale
F '-....ﬂ"
100} Incidence . e°® L.
Matrix « © .+ "’
10 Circuit Marix
5 10 15 20 7508

Fig. 3. Computation time of the n-bit correlator.

VI. CONCLUSION

In this paper retiming is regarded as a linear programming pro-
blem with the total unimodular property of the associated matri-
ces. This formulation is used to derive a polynomial algorithm
for multiplexer circuits from general non-polynomial integer li-
near programming methodologies. As a result beyond the scope
of introducingretiming to multiplexer circuits the unimodularity
can be used generally for examining the influence of additional
constraints or properties to retiming. Future work will focus on
how other linear programming methodologies can be modified
to develop further profitable retiming algorithms.
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