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Absfraet - ESPRIT-type high-resolution (spatial) frequency estimation 
techniques, like standard ESPRIT, state space methods, matrix pencil 
methods, or Unitary ESPRIT, obtain their (spatial) frequency estima- 
tes from the solution of a highly-structured, overdetermined system 
of equations. Here, the structure is defined in terms of two selection 
matrices applied to a matrix spanning the estimated signal subspace. 
Structured least squares (SLS) is a new algorithm to solve this overde- 
termined system, the so called invariance equation, by preserving its 
structure. Simulations confirm that SLS outperforms the least squares 
(LS) and total least squares (TLS) solutions of this invariance equa- 
tion, since the accuracy of the resulting (spatial) frequency estimates 
and the accuracy of the underlying signal subspace are improved si- 
gnificantly. Furthermore, SLS can be used to improve the accuracy of 
adaptive frequency estimating schemes that are based on fast adaptive 
subspace tracking techniques. Moreover, SLS has been extended to the 
two-dimensional (2-D) case to be used in conjunction with 2-D Unitary 
ESPRIT, an efkient ESPRIT-type algorithm that provides automati- 
cally paired 2-D (spatial) frequency estimates. 

1. lntroductlon 

Modem subspace-based high-resolution frequency or direction of 
arrival (DOA) estimation schemes can be classified according to the 
numerical procedure they exploit into [4]: 

extrema-searching techniques, e.g., spectral MUSIC, 
b polynomial-rooting techniques, e.g., Pisarenko, Min-Norm, 

or Root-MUSIC, and 
b matrix-sh@ing techniques, e.g., standard ESPRIT 181, state 

space methods (direct data approach or Toeplitz approxima- 
tion method), malrix pencil methods, or Unitary ESPRIT [21. 

In this paper, we consider the third category, i.e., matrix-shifting or 
ESPRIT-type techniques, based on a shift-invariant structure of the 
signal subspace. After calculating a basis of the estimated signal 
subspace, an overdetermined set of equations, the so called inva- 
riance equation, can be formed by applying two selection matrices 
to the basis matrix of the estimated signal subspace, cf. (2). The 
resulting highly-sbuctured system of equations is usually solved 
via least squares (U) or total least squares (TLS). The LS and TLS 
solutions, however, are not optimal, since they do not take the rela- 
tionship between the entries on the left- and right-hand-side of the 
invariance equation into account. 

In 191, a“new state space approach” has been presented that first 
solves a least squares problem, then constructs an error covariance 
matrix for the structured problem by using a first-order perturba- 
tion expansion, and finally solves for the underlying subspace in 
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a weighted least squares sense. Notice that this approach is based 
on a first-order perturbation expansion of the SVD. In contrast to 
this “new state space approach”, structured least squares (SLS) is 
also applicable if the subspace estimate has been obtained via some 
fast adaptive subspace tracking scheme, e.g., [5] or [lo]. Further- 
more, SLS is computationally more efficient and is not restricted 
to state space methods, but can incorporate more complicated se- 
lection matrices, e.g., the selection matrices used in the element 
space [2] or DFT beamspace versions [ 111 of Unitary ESPRIT. Uni- 
tary ESPRIT is a recently developed ESPRIT-type algorithm for 
centro-symmetric array configurations, that is formulated in terms 
of real-valued computations throughout. It constrains the estimated 
phase factors to the unit circle and provides reliability information 
without the need for additional computations. The ability to for- 
mulate an ESPRIT-type algorithm for 1-D array structures that only 
requires real-valued computations from start to finish, was criti- 
cally important in developing a two-dimensional (2-D) extension 
of Unitary ESPRIT [3]. 2-D Unitary ESPRIT is a closed-form 
high-resolution algorithm to provide automatically paired source 
azimuth and elevation angle estimates. It is also possible to extend 
SLS to the 2-D case such that it is applicable in conjunction with 
2-D Unitary ESPRlT. 

Notice that SLS uses the same approximation as the recently 
developed structured rota1 least norm (STLN) algorithm [6,7], na- 
mely a second order term in the expansion of the residual matrix at 
iteration k + 1 is neglected, cf. (7). STLN has been developed to 
compute the solution of an overdetermined linear system Ax z b 
with possible errors in the matrix A and the vector b. Thereby, 
STLN preserves the affine structure of A, such as Toeplitz or Han- 
kel. Although STLN has been used for linear prediction, it is not 
applicable to ESPRIT-type techniques. 

2. Revlew of Standard ESPRIT 

Consider d narrowband, planar wavefronts with common wave- 
length X and distinct directions of arrival (DQAs) &, 1 < i 5 d, 
impinging on a sensor array of M elements. For simplicity, we will 
assumethat all sensorshaveidenticalcharacteristics. Thearray con- 
sists of two identical, possibly overlapping, subarrays. Let A denote 
the distance between the two subarrays. The signals arriving at the 
M sensors at time t are denoted as x ( t )  = As(t)  + n( t )  E C M ,  
where A is the array steering matrix and s ( t )  the d-dimensional 
vector of impinging wavefronts. The additive noise vector n( t )  
is taken from a zero-mean, spatially uncorrelated random process, 
which is also uncorrelated with the signals. Since every row of A 
corresponds to an element of the sensor array, a particular subarray 
configuration can be describedby selection matrices, that choose rn 
elements of x ( t )  E C M ,  where m, d 5 m < M, is the number of 

0-7803-3 192-3/96 $5.0001996 IEEE 2805 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore.  Restrictions apply.

mailto:maha@nws.e-technik,t-muenchen.de


elements in each subarray. Let JP1 and J P 2  be m x M selection 
matrices that assign elements of x(t) to the subarrays 1 and 2, re- 
spectively. In case of a maximum overlap situation, J P l  picks the 
first rn = M - I rows ofA, while J P 2  selects the last m = M - 1 
rows of the array steering matrix. 

ESPRIT-type algorithms are based on the following invariance 
property of the array steering matrix A ,  

JPIA* = JP2A, where 9 = diag { eJ’’}f=, (1) 

is a unitary diagonal d x d matrix with spatial frequencies given by 
p,  = ?A sin 0 , .  Let X denote the M x N complex data matrix 
composedof N snapshotsx(t,), 1 5 n 5 N .  Then, a signal sub- 
space estimate can be be obtained via an eigenvalue decomposition 
(EVD) of the (scaled) sample covariance matrix XXH, a singular 
value decomposition (SVD) of the noise-cormpted data matrix X, 
or some fast subspaceestimation technique that approximates either 
the EVD or the SVD. Assume that the columns of Us E CM span 
the estimated signal subspace. By applying the two selection ma- 
trices to the signal subspace matrix, the following overdetermined 
set of equations is formed: 

JP1US* zz J P z U ,  E ( E m x d  (2) 

Notice that the invariance equation (2) is highly-structured if over- 
lapping subarray configurations are used. Usually (2) is solved by 
using least squares (LS) or total least squares (TLS) [8]. Then, the 
eigenvaluesoftheresulting solution 9 E cdxd are estimates ofthe 
phase factors e’,”. Thus, estimates of the spatial frequencies pt and 
the corresponding DOAs 6 ,  are easily obtained. 

3. Structured Least Squares 

Let us take a closer look at equation (2). Its LS solution satisfies 

JpluS*LS = JPzUs + AUsz (3) 

such that the Frobenius-norm of AUsz is minimized. Thus, it 
is assumed that J P I U ,  is known without error and that only the 
right-hand-side of (2), i.e., J P 2 U s ,  is subject to error, clearly an 
assumption that is not satisfied in our case. 

The TLS solution however, satisfies 

such that the Frobenius-normof [ AU,i AU,z ] is minimized. 
Notice that the TLS solution is appropriate if the two subarrays 
do not share any elements, i.e., the entries of J P 1 U ,  and J,zU, 
and, therefore, also the perturbation matrices AU,, and AUsz are 
independent. For overlapping subarray configurations, however, 
structured least squares (SLS) should be preferred, since SLS ac- 
counts for the specific relationship between the entries of JP1 U ,  

SLS assumes that the entries of the matrix Us in (2)  are subject 
to error. Recall that the columns of U, only span a noise-cormpted 
estimate of the unknown signal subspace. Therefore, we can allow 
for a small change AU, of the basis of the estimated signal sub- 
space. Let U = U, + AU, denote a basis matrix of an improved 
signal subspace estimate. This improved signal subspace should be 
determined such that the Frobenius-norm of the resulting residual 
matrix 

and JpzUs. 

R(U, *) J,iU* - JP2U (5) 

is minimized. At the same time, the Frobenius-norm of matrix 
representing the subspace change AU, should be kept as small as 
possible. Given an initial basis for the signal subspace Us, SLS 
determines the matrices AU, and X& such that they minimize the 
following expression: 

Here, IC = d m  is a weighting factor that provides anorma- 
lization such that the minimization is independent of the two block 
matrix sizes in (6). Furthermore, (Y > 1 accounts for the fact that 
the entries of the residual matrix R(U, \k) should be smaller than 
the entries of AU,. 

Let us derive an algorithm that solves (6) in an iterative fashion 
bylinearizingR(U, a). To thisend, assumethattheresidualmatrix 
at the kth iteration step is given by R(Uk, *k)  = J,1Uk*k - 
JPzUk. Therefore, the residual matrix at iteration k + 1 can be 
written as 

R(Uk+i, *k+1) = R(Uk -k Auk, *k + A*k) (7) 
= 
2 

JP1[uk + AUk][*k + A*k] -J , z [Uk + Auk] 
R(Uk, q k )  + J,1[UkA*k 4- AUk*k] - JPsAuk. 

Here,thesecondordertermin Auk and A*k,i.e.,J,lAUkA*k, 
has been neglected. 

Let vec{ R) denote a vector-valued function that maps an m x d 
matrix R into an md-dimensional column vector by stacking the 
columns of the matrix. In the sequel, we will use the following 
important property of the vec-operator. Given the matrices YI E 

V ~ C { Y ~ Y ~ Y ~ )  = (Y? 8 Y,) vec{Yz}. (8) 

As usual, the symbol @ denotes the Kronecker matrix product. 
Applying the vec-operator to equation (7) and taking property (8) 
into account yields 

W X Y z , Y z  E CYzxY3,andY3 E Cy3xY4,  

vec{R(Uk+l, * k + l ) ]  (9) 
= vec{R(Uk, q k ) )  -k [Id @ (JP~Uk)]VeC{A*k) 

+ [*la @ J,1] VeC{AUk} - [ I d  @JJ,z]VeC{AUk}. 

Furthermore, let us define AU,, = 
change at the kth iteration step, such that 

AUi as the subspace 

(10) uk I Us + A U s , .  

With (9) the linearized minimization problem (6) becomes: 

112, [ vec{A*k) ] + [ vec{R(Uk, *k))  ] 11 
veC{Auk} K . vec{ AU,, ) min 

A u k  t A o  k 

The resulting overdetermined least squares problem can efficiently 
be solved by a QR decomposition of the ( M  + m)d x ( M  + d)d 
matrix 

I d  @ (J,lUk) [*: @ J,I] - [Id @ 3 ~ 2 1  . 
0 K . l M d  1 z =  [ 

Notice that 2 is block-upper triangular, which can, for instance, be 
exploited if Givens rotations are used to compute the QR decompo- 
sition of 2. Furthermore, one could exploit the fact that&@ (JU1 uk) 
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is a block-diagonal matrix with identical diagonal blocks. Finally, 
the vector [ vec{A*k}* vec{AUk}T ] can be obtained via 
back substitution [ll. 

SLS needs an initial estimate of the matrix Ik in addition to the 
initial basis of the estimated signal subspace U1 = U, for I ;  = 1. 
One simple choice would be the LS solution of (2), i.e., = *,,S. 

In fast adaptive frequency tracking applications, like FSD-ESPRIT, 
based on the fast subspace decomposition (FSD) [lo], or URV 
ESPRIT, based on the URV decomposition 151, the LS solution of 
the current system of equations should simply be replaced by the 
solution of (2) computed at the previous time step. Thereby, one 
iteration of SLS improves the "updated" signal subspace estimate 
significantly, cf. Fig. 6. Thus, the performance of the whole adaptive 
frequency tracking scheme will be improved. 

4. Simulations 

Simulations were conducted employing a uniform linear array of 
M = 10 sensors with maximumoverlap (m = 9) and A = X/2. A 
given trial run involved N = 20 snapshots. For SLS the weighting 
factor (Y was set to (Y = 10. 

Sundlm ESPRIT M d  LS 

SUnd.rd€SPRtT .nd?LS 

sunmm ESPRIT UM SLS 11 mmwn) 

S I ~ d l f d  ESPRIT and SLS Imw ) 

t 5 p \ ,  

DOA of WUIU 2 h degree* 

Fig. 1 : RMSE (in degrees) of the estimated DOA for source 1 at 6'1 = Oo as 
a function of 02 ( M  = 10 sensors, N = 20,1000 Pial runs, SNR = 0 dB). 

DOA of m r c .  2 h drprwo 

Fig. 2: RMSE (m degrees) of the estimated DOA for source 2 as a function 
of its DOA ( M  = 10 sensors, N = 20,1000 trial runs, SNR = 0 dB). 

4.1. Standard ESPRIT 

In the first experiment, d = 2 equi-powered, uncorrelated sources 
were used to evaluate the performance of algorithms based on the 
standard ESPRIT scheme. More specifically, the accuracy of the 

DOA estimates resulting from different solutions of equation (2), 
i.e., LS, TLS, and SLS. was compared. The results were averaged 
over 1000 trials. While the DOA of the first source was fixed at 
81 = Oo, the DOA of the second source 82 was varied from 5' to 
77.5' for an S N R  of 0 dB. Figs. 1 and 2 depict the resulting RMS 
error (in degrees) of the estimated DOA as a function of 82 for 
the first and second source, respectively. Notice first that there is 
hardly any difference between the LS and TLS solutions, whereas 
SLS improves the performance of standard ESPRIT considerably. 
Furthermore, SLS has already converged after its first iteration. 
SLS achieves quite a substantial improvement of the estimation 
accuracy of the first source, which is almost independent of the 
value of 82. As expected, the RMS error of the estimated value of 
82 gets larger for increasing values of 6 2 .  Notice, however, that 
the improvement obrained by SLS with respect to LS and TLS also 
increases significantly, cf. Fig. 2. 

4.2. 1-D Unitary ESPRIT 

In the second experiment, LS, TLS, and SLS were used in con- 
junction with 1-D Unitary ESPRIT [2]. Here, three equi-powered, 
uncorrelated sources were impinging from 81 = Oo, 82 = l o o ,  
and 83 = 20'. The S N R  was varied from -6 dB to 10 dB. 

o o m l  aod.gm 
10' 

LHudvd ESPRlT d LS 
U n k y  ESPRIT ud TLS 
U n W  ESPRr ud L8 
Unluy ESPRlTud8L8 (1 br) - - e - - 
Unlury ESPRr ud 8 L S  (COW ) t 

: loD 

P 

i 
a 

-6 -4 -2 0 2 4 6 8 10 
SNR k dB 

Fig. 3: RMSE (in degrees) of the estimated DOA for source 1 at Q1 = 0' 
as a function of the SNR ( M  = 10 sensors, N = 20,4000 trial runs). 

Figs. 3,4, and 5 show the RMS error (in degrees) of the estimated 
DOAs for sources 1.2, and 3, respectively. The results were avera- 
ged over 4000 trial runs. For comparative purposes, we have also 
plotted the performance curves for standard ESPRIT using the LS 
solution of (2) and Root-MUSIC. Bear in mind that Root-MUSIC 
is computationally more demanding than ESPRIT-type techniques 
and that all  algorithms based on 1-D Unitary ESPRIT only involve 
real-valued computations. Therefore, algorithms based on Unitary 
ESPRIT require even less computations than similar algorithms ba- 
sed on standard ESPRIT. 

Figs. 3.4, and 5 show that Unitary ESPRIT and LS always out- 
performs standard ESPRIT and LS, especially for low SNRs. For 
low S N R s ,  Unitary ESPRIT and LS also performs better than Uni- 
tary ESPRIT and TLS, a somewhat surprising result, since TLS is 
computationally more expensivethan LS. Exceptfor very low SNRs 
(5 -5 dB), the SLS solubon achieves a constant improvement (on 
a semi-logarithmic scale) over the LS solution. This improvement 
is larger for the outer sources at 81 = 0' and 03 = 20' than for the 
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Sourm 2 U 10 d q r m  
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-6 -4 -2 0 2 4 6 8 10 
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Fig. 4: RMSE (in degrees) of the estimated DOA for source 2 at 02 = 10’ 
as a function of the SNR ( M  = 10 sensors, N = 20,4000 trial runs). 
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Fig. 5: RMSE (in degrees) of the estimated DOA for source 3 at 03 = 20’ 
as a function of the S N R  ( M  = 10 sensors. N = 2 0 , 4 0 0 0  aiai runs). 

middle source at 8 2  = 10’. Once again, SLS has almost converged 
after the first iteration. Notice that Root-MUSIC is the worst algo- 
rithm for very low SNRs. while it almost attains the performance 
of Unitary ESPRIT and SLS for SNRs that are greater or equal than 
2 dB. To evaluate the quality of the updated subspace estimate (lo), 
produced by SLS, Fig. 6 depicts the largest principal angle eP bet- 
ween the estimated and the “true” signal subspace (spanned by the 
columns of A) as a function of the S N R .  Here, the largestprincipal 
angle 6 ,  (0’ 5 6 ,  5 90’) between two subspaces spanned by the 
columns of U, and A is defined as 

cos e, = (wf w2) , (11) 

where W1 = orth (U,) and W2 = orth (A) are unitary basis ma- 
trices for the subspaces and n,, (Y) denotes the smallest singular 
value of the matrix Y [I]. Although Unitary ESPRIT already pro- 
duces a better signal subspace estimate than standard ESPRlT, SLS 
used in conjunction with Unitary ESPRP improves this subspace 
estimate considerably, cf. Fig. 6. 

5. Cancludlng Remarks 
Structured least squares (SLS) is a new structure-preserving algo- 
rithm, used instead of LS or TLS, to improve the performance of 

4 8Mdd ESPRIT ud LS + i  
Unlvy EC!PRTT urd 8L8 (1 Nor.) 

U n i y  EWRITud LS 

- - e - - 

01 T 

Fig. 6: Largest principal angle B p  (0’ 2 0, 5 90’) between the estimated 
and the “true” signal subspace (in degrees) as a function of the SNR of the 
three sources (M = 10 sensors. N = 20,4000 trial runs). 

ESPFUT-type high-resolution techniques, if overlapping subarray 
configurations are used. Although SLS was designed as an iterative 
scheme, simulations indicate that this new algorithm only requi- 
res one iteration to achieve convergence. This is also true for the 
two-dimensional extension of SLS, which can be used in conjunc- 
tion with 2-D Unitary ESPRlT [3]. Moreover, SLS and 2-D SLS 
provide efficient ways to improve the performance of adaptive fre- 
quency estimation schemes that are basedon fast adaptive subspace 
tracking techniques. 
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