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Chapter 1

Introduction

Recent years have shown a clear trend in integrated circuit (IC) design to implement
functionality by means of digital hardware. Still, there is a growing need for analog
circuitry. Real world signals are analog. Digital circuits need analog interfaces and
analog-to-digital as well as digital-to-analog (AD/DA) converters to communicate
with the real world. Additionally, analog circuits are used in power management and
clock generation of digital circuits as well as for RF signal processing tasks. Modern
mixed-signal system-on-chip (SoC) solutions implement the digital circuit together
with analog blocks on one single chip [KCJ+00]. This requires the design of ana-
log circuit blocks with the same digital complementary metal-oxide-semiconductor
(CMOS) technology. Digital CMOS technologies have shown a constant rate of de-
vice shrinking and decreasing supply voltage in recent years. Due to device shrink-
ing, more transistors can be realized on the same area, as described in the famous
forecast by Gordon Moore known as ’Moore’s Law’ [ITR06].

The number of transistors in analog circuits is usually only a fraction of the number
of transistors in digital circuits. Still, analog circuit design poses a major challenge
and can be the bottleneck in SoC design. Due to the many physical effects and per-
formance trade-offs in analog design, the introduction of higher abstraction levels is
difficult. Many analog circuits are still designed manually by looking at the circuit at
transistor level.

Currently, research in analog electronic design automation (EDA) has focused on
automating analog design steps as well as to add hierarchy to the analog de-
sign flow. New design tools for circuit optimization are commercially available
[Mar01, MAW07]. Hardware description languages (HDL), such as VHDL-AMS
[APT02, DV03] andVerilog-A [VLR], can be used to describe analog circuits on higher
abstraction levels. Still, the analog design flow is lacking behind the digital flow in
terms of automation, offering a challenging field for the development of new design
methodologies for analog and mixed-signal circuits.
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1 Introduction

1.1 Analog Design

1.1.1 Analog Design Flow

The analog design flow for CMOS circuits can be broken into three steps [CGRS96,
Sch02, Gra07]:

1. Circuit structure (topology) generation or selection: First, a circuit structure, also
known as topology, must be generated. Often, one can start from existing topolo-
gies (structure reuse).

2. Circuit sizing: One or more device parameters have to be chosen for each device
of the analog circuit. This step is known as circuit sizing. The selectable device
parameters are known as design parameters or sizing parameters. For example,
CMOS transistors are described by their size, which is defined by the length and
width of the channel.

3. Layout generation: Finally, a layout must be generated for the sized circuit. The
layout holds the geometric information required to produce the integrated circuit
in silicon.

Figure 1.1 illustrates the analog design flow. This thesis focuses on the circuit sizing
step.

Topology Generation Circuit Sizing Layout Generation

Figure 1.1: The analog design flow

1.1.2 Process Variations and Operating Conditions

Some device parameters are subject to statistical variances due to inaccuracies in the
production process of integrated circuits. These process variations often have great
impact on the electrical behavior of the circuit. Shrinking device sizes lead to a rela-
tive increase of the importance of process variations, since the absolute variations in
the device parameters do not scale down by the same factor as the device sizes. Addi-
tionally, environmental conditions such as temperature affect the electrical properties
of the circuit during operation.

The process variations and operating conditions - in the following referred to as tol-
erances - must be considered during the design phase of analog circuits. The circuit
sizing step is separated into nominal sizing and tolerance sizing.

2



1.1 Analog Design

During nominal sizing, the influence of the tolerances is ignored. The device parame-
ters that are subject to process variations are set to fixed values. Operating conditions
are set to standard environmental conditions, such as, e.g., room temperature.

During the tolerance sizing, the influence of the tolerances on the electrical properties
of the circuit is analyzed. This requires methods that calculate the influence of process
variations and operating conditions on the electrical properties of the circuit.

1.1.3 Circuit Performances

The electrical properties of the circuit are usually described by a set of circuit perfor-
mances. For example, the performances of operational amplifiers typically include
the gain, the bandwidth and the phase margin. The circuit performances depend on
the circuit structure and the design parameters. Additionally, process variations and
operating conditions affect the circuit performances.

Usually, a set of requirements on the properties of the circuit is defined, the so-called
specification. The specification is usually given as bounds on the performances.

In order to measure the circuit performances, the circuit is connected to a test bench.
The test bench defines the input signal (stimulus), the output signals as well as test
circuitry, which can include, e.g., load capacitances or voltage/current feedback. The
circuit performances are usually classified by the type of stimulus, which is applied
on the circuit. The three major types of stimulus are direct current (DC), alternating
current (AC) and transient (TR).

Various methods are available to evaluate the circuit performances before the circuit
is manufactured. These methods can roughly be classified in:

• Numerical analog circuit simulators such as SPICE [Nag75], Spectre [Kun95]
or Titan [FWZ+92]. The simulator requires a netlist of the circuit and de-
vice simulation models such as BSIM [SSP87] or a macromodel of the circuit
[WD06][GESSL95] as input.

• Circuit performance models based on symbolic analysis [GWS89, VDL+01,
NBHB04].

• Circuit performance models based on numerical models [HS96, Ziz01, DV05].

Numerical simulation is very accurate due to the great effort taken in describing the
behavior of the transistor by its device simulation model. This accuracy comes at the
cost of relative high computational costs to evaluate the circuit performances.

Circuit performance models are used to reduce the time required to evaluate the per-
formances. They are generated for each analog circuit topology either manually or,
if available, by automatic methods. The generation of such models raises issues such
as setup time, complexity, accuracy and number of required circuit simulations.

3



1 Introduction

1.1.4 Automatic Circuit Sizing and Analog Synthesis

Most automatic sizing methods, also known as circuit optimization methods, require
as input the circuit structure and the test benches. These methods, usually, apply a
simulator-in-a-loop concept to automatically generate an optimized sizing.

Performances

Candidate sizings

Optimization engine

Performance evaluation engine

Figure 1.2: Simulator-in-a-loop concept

This concept is illustrated in figure 1.2. The optimization engine generates new can-
didate sizings. The performances of the candidate sizing are evaluated by the perfor-
mances evaluation engine. The loop is repeated until a satisfactory sizing is found or
a maximal number of iterations is reached. Usually, several performance evaluations
are required per iteration. As performance evaluations are computationally expen-
sive, the computational efficiency of such methods can be evaluated by the number
of required performance evaluations.

State-of-the art automatic sizing methods can be classified either by the type of per-
formance evaluation method:

• numerical simulation [LD81, NRSVT88, AEG+00, MFDCRV94, ORC96, KPRC99,
PKR+00],

• numerical models [Ziz01, DGS03, ABD03, LGXP04, LGXP07] or

• symbolic equations [De87, ETP89, HRC89, KSG90, MC91, HEL92, dMHBL98,
dMHBL01, VDL+01, GWS90, ORC96, DLG+98, VDL+01].

or by the type of optimization method:

• deterministic [LD81, NRSVT88, AEG+00, Ziz01, DGS03, LGXP04, LGXP07] or

• stochastic [MFDCRV94, ORC96, KPRC99, PKR+00, ABD03].

Analog optimization methods are already available in commercial tools [Mar01,
MAW07, Cad]. On the other side, circuit structures are still mainly generated by
hand. Some approaches for an automatic generation of circuit structures, referred to
as analog synthesis, have been presented [KL95, HRC89, WH06].
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1.2 Motivation

1.2 Motivation

A major challenge in analog design is to find a good trade-off between the various
circuit performances [BHT+03]. A range of different circuit performances can be re-
alized by each circuit structure based on the choice of the design parameters (sizing).
To find an optimized sizing, each performance becomes an objective of the optimiza-
tion. Automatic sizing is, therefore, a multi-objective optimization problem. Usually,
there is no single sizing, for which all performances take their optimal values at the
same time. Due to trade-offs in the design, one performance can only be improved
at the cost of the others. The designer must decide on a compromise between the
competing performances.

The designer usually sets the importance of each performance, e.g., in form of
weights before running an automatic sizing method. Based on these relative im-
portance, automatic sizing leads to a certain compromise between the performances
based on an internal objective function (also known as cost function). It is usually not
known, which performance compromise is obtained for certain weights. Addition-
ally, a single sizing only shows one performance compromise and, thus, does not give
much insight in the performance capabilities of the circuit structure. To gain more in-
sight in the performance trade-offs, new methods have to be developed to explore
the complete range of the performance capabilities of a circuit structure, so-called
performance space exploration methods.

1.2.1 Performance Space Exploration

Performance space exploration methods aim at calculating the complete range of fea-
sible performances for an analog circuit structure, the so-called feasible performance
space. Usually it is not required to generate the complete feasible performance space,
since not all performance combinations in the feasible performance space are op-
timal. An optimal compromise between the performances is reached, if one perfor-
mance can only be further improved at cost of another performance. Such an optimal
compromise between the performances is called Pareto-optimal.

This is illustrated graphically for two performances noise and power for an exam-
ple circuit in figure 1.3 left. Point B is sub-optimal since both noise and power can
be improved (decreased). Point A is Pareto-optimal as lower noise requires higher
power and vice versa in order to stay in the feasible performance space. All Pareto-
optimal compromises between the performances make up the so-called Pareto front.
The Pareto front is located at the boundary of the feasible performance space as
shown in figure 1.3.

Most performance space exploration methods only generate the Pareto front, since
it shows the most ambitious feasible performance compromises. Performance space
exploration methods have two major application fields:

5



1 Introduction

• Performance trade-off analysis and circuit structure (topology) selection.

• Automatic hierarchical sizing.

A

B

N
oi
se

Power

better

Power
N
oi
se

Suited forPareto front
low power
Suited for

low noise

of structure 2

of structure 1
Feasible performance space

Feasible performance spaceFeasible performance space

Pareto front

Figure 1.3: Feasible performance space and structure selection. Left, feasible perfor-
mance space and Pareto front. Point B is sub-optimal, point A is Pareto-
optimal. Right, structure selection based on performance space explo-
ration.

1.2.2 Performance Trade-off Analysis and Circuit Structur e
Selection

After performance space exploration, all feasible compromises between the perfor-
mances are available to the designer. It is shown what amount of one performance
must be sacrificed to improve another. This knowledge can be used to decide on
the most suited performance compromise. If there is more than one circuit structure
to implement an analog circuit block for a specified functionality, the performance
capabilities of each alternative structure can be generated. Based on the feasible per-
formance spaces, the designer can easily choose the best fitting circuit structure. This
is illustrated graphically in figure 1.3, right. Structure 1 can be sized to obtain low
power, while structure 2 can be sized for low noise.

1.2.3 Automatic Hierarchical Sizing

Hierarchical sizing is required for large-scale analog andmixed-signal circuits such as
Phase Locked Loops or Sigma-Delta ADConverters. The time to simulate a complete
large-scale circuit on circuit level can be very long, possible up to days or weeks.
Since automatic sizing requires many simulation runs, a flat automatic sizing of such
large-scale circuits on the circuit level is not feasible.

Large scale circuits are commonly made up of several functional sub-blocks. Figure
1.4 illustrates exemplarily the block structure of a Charge Pump Phase Locked Loop

6



1.2 Motivation

(CPPLL). In order to speed up the simulation, the simulation is conducted hierarchi-
cally as follows: First, the large-scale circuit is split into its sub-blocks. The blocks are
described by the transistor circuit on circuit level and by behavioral models on sys-
tem level. The behavioral models implement the input/output characteristic of the
circuit blocks. The models are parametrized to describe the input/output behavior
for different circuit structures and sizings, e.g. VCOs with different gain.

In order to obtain the system performances for a certain sizing of all blocks, the faster
hierarchical bottom-up simulation is conducted:

1. Each block is simulated on circuit level to obtain its performances for the given
sizing. These circuit performances describe the input/output behavior of the
block. The parameters of the behavioral models are extracted directly from the
circuit level simulation, such that each block has the same electrical input/output
behavior as was found by circuit level simulation.

2. The parametrized behavioral models are used to simulate the performances of
the complete circuit much faster.

Automatic hierarchical sizing makes use of this hierarchical description of the circuit.
Figure 1.5 shows the hierarchical sizing flow for the CPPLL. The VCO and CP are
replaced by behavioral models to speed-up the simulation of the complete PLL. The
hierarchical sizing includes a bottom-up characterization of the circuit blocks and a
top-down sizing process:

1. In the bottom-up characterization the performance capabilities for each circuit
block are obtained by performance space exploration methods. The performance
capabilities show which model parameter sets in the parametrized behavioral
models can be realized by the underlying circuit structure. The feasible model
parameter sets are propagated bottom-up.

2. The sizing process is top-down. First the PLL is optimized for best performance
by changing the parameters of the behavioral models. The optimal model param-
eter set found describes the desired input/output behavior of the blocks. They
are propagated down as block specification. It must be assured that the model
parameters stay in the feasible ranges calculated in the bottom-up step to avoid
unrealistic block specifications. Finally, each block is optimized individually to
meet its block specification.

Performance space exploration is a key part of this hierarchical sizing flow. The top-
down sizing process can only work if it is known, during system level optimization
which block specifications can be realized by each block. For example, if we have
no knowledge about the circuit implementation of the VCO, the system level opti-
mization step might generate block specifications for the VCO demanding unrealis-
tic high gain. In order to avoid such unrealistic block specifications, the system-level
optimizer must have information about the feasible performance ranges of each sub-
block, which are found by performance space exploration.
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Figure 1.4: Block diagram of a Charge Pump Phase Locked Loop (PLL)
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Figure 1.5: Hierarchical sizing flow for a Phase Locked Loop (PLL)

1.3 State-of-the-art

In this section, the state-of-the art in analog performance exploration methods, hier-
archical sizing and tolerance analysis is discussed.

1.3.1 Performance Space Exploration Methods

Various methods have been published for calculating the performance capabilities of
an analog circuit structure. These methods differ in the way the circuit performances
are evaluated, the type of used optimization algorithm, and whether they consider
process variations or operating conditions.

In an early work, [HS96], regression and radial basis functions are used to build a
performance model. A binary search on the model is used to find the feasible perfor-
mance space of an analog circuit structure.
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Some statistical optimization algorithms , which are applied for the performance ex-
ploration of an analog circuit structure, model the biological evolution. They are
known as Genetic Algorithms (GAs) or Evolutionary Algorithms (EAs). These algo-
rithms are based on a so-called population. Each member of the population repre-
sents one candidate sizing of the circuit structure. Imitating the biological evolution,
new members are generated iteratively by two mechanisms: Cross-over, which is
a random combination of two or more members of the population, and mutation,
which is a random change of a member of the population. By using a selection mech-
anism, the algorithm aims at improving the overall quality of the members of the
population in each iterations. The selection is based on a fitness criterion, which
reflects the quality of each member of the population. In [DG03], a GA is used to
generate the nominal Pareto Front. A performance model is constructed based on
multi-variate regression. Regression and a GA are applied in [SG03] to generate a
Pareto front between a performance and its yield value. In [SCP05], a GA is applied
and the performances are evaluated by symbolic expressions. The Strength Pareto
Approach [EMG05] and Elitist Non-dominated Sorting algorithm [CA05] make use
of the concept of Pareto-optimality to calculate their fitness value. They keep the
members of the population in two separate sets. In one set, solutions are kept that
are not dominated ∗ by any other member of the population while the other holds the
dominated members of the population. The fitness is assigned based on the number
of solutions that are dominated or dominate the member. One problem is addressed
in both works: The found solutions do not spread evenly along the complete Pareto
front. Therefore, the fitness is also assigned such that solutions on sparsely covered
areas on the Pareto front are preferred.

In [AV05], a sampling strategy is applied that uses a numerical model of the feasi-
ble design region to place the samples. So-called Analog Platforms are presented in
[DJSV03, BNSV05]. These Analog Platforms include behavioral input/output and
performance models as well as a model of the Feasible Performance Space based on a
classifier method known as Support Vector Machines (SVM). Simulating Annealing (SA)
is used as optimization method on behavioral level for a hierarchical design flow.

A deterministic optimization method, which has been the focus of some analog per-
formance exploration research, is Geometric Programming (GP). GP finds the global
optimum for a convex constrained optimization problem. The objective function
and constraints must be in the form of posynomial functions. Therefore, GP requires
a posynomial model of the circuit performances. Due to the fast evaluation of the
posynomial performance model, the optimization is very fast. A challenge is located
in the model setup. For good model accuracy, the performances must be able to be
represented by posynomial functions. In [dMHBL01, dMH03], the nominal Pareto
front is generated with GP. In [dMHBL01], additionally, a method, which is based
on GP, is shown that generates robust designs �. A so-called robust GP method is
presented in [XHL+05] to find the Pareto front between a performance and its yield.

∗ A solution dominates another, if it is at least in one performance better and in no performance
worse.
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Other deterministic optimization methods have been studied. In [SGA04, MSGS05,
Ste05, SGA07], a method based on a linear performance model is presented. It gener-
ates the complete feasible performance space by applying numerical projection meth-
ods for polytopes. A deterministic gradient-based optimization method called Se-
quential Quadratic Programming (SQP) is used in [SGA03, MSGS05, Ste05, SGA07].
The performances are evaluated by simulation. In order to find evenly spread so-
lutions on the Pareto front, a method called Normal-Boundary Intersection (NBI)
is used. NBI describes the formulation of objective functions, such that sizings are
found that are evenly spread on the Pareto front.

Recently, methods have been presented that consider the influence of the tolerances
on the performance capabilities of an analog circuit structure. In [TTR06], a com-
bined GA and SA method is used to generate a nominal Pareto front. By an efficient
Monte-Carlo analysis, the so-called yield-aware Pareto front is generated in a sub-
sequent step. The yield-aware Pareto front describes the performance capabilities of
the circuit, which is related to a certain minimum yield. In [YL07], another method to
generate the yield-aware Pareto front is presented. It uses a numerical performance
model known as Kriging model. The Kriging model was originally developed for
applications in geostatics.

1.3.2 Hierarchical Sizing Methods

The need for a top-down design flow for large-scale analog and mixed-signal cir-
cuits was discussed in [FOK96, VCD+96, CCC+97]. With the upcoming availability
of performance exploration methods, more and more approaches for an automatic
hierarchical sizing of large-scale analog and mixed-signal circuits are developed. A
good overview is given in [RGR07]. In the following, some methods are outlined
shortly:

In [DBdMHL01, dMH02], Geometric Programming (GP) and posynomial perfor-
mancemodels are used to assign the performances on different stages of amulti-stage
circuit. Additionally, a circuit structure is selected for each stage. An optimization
approach that does not run a top-down sizing but an simultaneous optimization of
circuit block and system performances was presented in [LWP+05]. It targets at opti-
mizing safety margin for a set of block and system specifications based on Geometric
Programming.

Deterministic performance exploration methods are applied to realize a top-down
hierarchical sizing in [TVR04]. The Pareto front found by Normal-Boundary In-
tersection (NBI) is used to optimize a Phase Locked Loop (PLL) hierarchically. In
[SGA04, Ste05, SGA07], a linear performance model is used to find the block perfor-
mance capabilities within a hierarchical sizing approach. Due to the inaccuracy of� Robust design: These robust designsmeet the specification for a finite set of process parameters de-
scribing variations in the production process. This finite set is found by sampling a given interval
for each of the process parameters.
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the linear models, an iterative approach is proposed that updates the linearization of
the performances repeatedly.

In [EMG05], the Strength Pareto approach is applied to find the performance capabil-
ities of the circuit blocks. Analog platforms, which are discussed in section 1.3.1, are
used to realize a hierarchical sizing approach in [DGV+04, BNSV05, BNV06]. Statis-
tical optimization is used. A way to consider process variations in order to generate
a robust system � is presented in [BNV06].
A different hierarchical sizing approach is suggested in [ESG+06, GME05]. Instead
of propagating the performance capabilities up to the system level and running a
top-down sizing process, a bottom-up sizing process is conducted. This is referred
to as Multi-Objective Bottom-Up Methodology (MUBU). MUBU works as follows: For
each block, sizings with different optimal compromises between the performances
are generated. On system level, the system performances are evaluated for all com-
binations of generated optimal compromises of block performances. Assuming a
monotonic relationship between the system level performances and block perfor-
mances, then optimal block performance compromises lead to optimal system per-
formances. By testing all combinations of compromises for all blocks, the complete
range of system performances is found. The method to find the sizings with optimal
block performance compromises uses an Evolutionary Algorithm (EA).

In [MPGS07, ESG+07], the hierarchical sizing includes a structure selection. In order
to find the most suitable structure, the performance capabilities of all structures are
generated with an EA.

1.3.3 Tolerance Analysis Methods

Methods for the analysis of process variations [PDML94] can be divided in statis-
tical and deterministic methods. The most common used method is Monte-Carlo
analysis (MCA) for its very straightforward applicability. This statistical method is
used to judge the influence of tolerances on the capabilities of analog circuits in
[TTR06, YL07]. The accuracy of MCA depends on the used sample size, which also
determines the number of required function evaluations.

Other methods, which are based on so calledworst-case analysis, have been presented.
An elaborate description is given in [Gra07]. The tolerance analysis problem is for-
mulated as optimization problem and can be solved with statistical or deterministic
optimization algorithms.� Robust system: In these systems safety margins are generated systematically to avoid that circuit
specifications are violated due to performance degradations caused by changes in the operating
conditions such as temperature or by process variations.
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1.4 Contributions of this Thesis

This thesis presents several improvements in the field of deterministic methods to
generate the Pareto front of analog circuit performances. In the following, the contri-
butions to the state-of-the-art are outlined:

In this thesis an efficient simulation-based deterministic performance space explo-
ration method is presented. Numerical simulators are widely available and accepted
in industry, require little setup and offer very good accuracy. The use of efficient
gradient-based optimization algorithms offers a way for fast optimization.

A widely used method in this field is Normal-Boundary Intersection (NBI). Al-
ready known, NBI has a numerically unfavorable problem formulation with equality
constraints when compared to the closely related Goal-attainment method [Ste05,
SGA07]. In this thesis, an new approach is present that uses the favorable Goal-
attainment method in combination with its equivalent Minmax method. This ap-
proach leads to a further improved problem formulation compared to the state-of-
the-art because it avoids drawbacks encountered by using solely one of the methods.
The Minmax method introduces a discontinuity in the gradient-based optimization
due to a discontinuous objective function. The Goal-Attainment method, on the other
hand, sometimes flags candidates infeasible that are valid sizings of the circuit due to
its additional optimization constraints. These issues are resolved with the presented
approach by applying both methods.

Another known drawback of the NBI method is that peripheral regions of the Pareto
front are not captured when the trade-off between more than two performances is
investigated [MA04, Ste05]. A new iterative approach is presented in this thesis to
generate a discretized approximation of the Pareto front that shows the total extent
of the Pareto front for any number of performances. The boundary of the Pareto
front is defined by so-called trade-off limits, for which one performance can not be
further improved at the cost of the others. The presented approach generates the
trade-off limits first. Each trade-off limits is equal to the Pareto front of a subset of
the performances. By computation of the Pareto fronts of all performance subsets, the
boundary of a Pareto front is found, which shows the total extent of the Pareto front.
During the computation, the number of performances in the subsets is increased by
one in each iteration of this algorithm such that as many iteration steps are required
as performances are investigated.

Additionally, analog performance space exploration is a computational expensive,
highly nonlinear optimization problem that requires application-specific methods to
implement efficient optimization tools. In this thesis, an application-specific imple-
mentations to improve the efficiency, robustness and quality of the results of deter-
ministic optimization of analog circuits is presented. A new gradient-based opti-
mization algorithm is introduced, which is referred to as Wavefront Feasible Sequen-
tial Quadratic Programming (FSQP). It is a feasible SQP algorithm. In contrast to the
state-of-the-art, it avoids the violation of constraints of the optimization completely.
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This is an important feature in analog sizing, because sizings with constraint viola-
tions are usually treated as invalid solutions to the sizing problem and, therefore, are
not part of the performance capabilities of analog circuit structures. The Wavefront
FSQP method solves several optimization problems simultaneously and features an
exchange of solution between these optimizations. This exchange of solutions im-
proves the global convergence. Parallel simulation calls are used to improve the effi-
ciency for multiple CPUs.

Most important, the influence of tolerances such as process variations and operating
conditions on the capabilities of analog circuit blocks were not yet addressed for this
class of methods. The inclusion of tolerances in deterministic performance space ex-
ploration method is presented in this thesis. The influence of process variations and
operating conditions is considered in a so-called Specification Pareto front. It shows the
most ambitious specification on the performances that can be realized by the analog
circuit structure, such that a certain minimum yield can be guaranteed. A straight-
forward computation of this specification Pareto front in reasonable time is infeasible
due to the computational costs involved. Therefore, approaches that run an efficient
computation of the specification Pareto front in reasonable time are presented in this
thesis.

Due to the increasing significance of tolerances in analog circuit design, the impor-
tance of these specification Pareto fronts will increase in comparison to the nominal
Pareto front for investigating the performance capabilities of analog circuits in future
analog design tasks.

1.5 Previous Publications

Parts of the research work on this thesis’ topics have been published in [MSGS05,
MSGU05, ZMG+05, ZMGS06, MSGS06, MGS06, MGS07b, GZMS07, GMS07,
ZMGS07b, ZMGS07a, MGS07a, GMGS08]. In [MGS06, MGS07b], the Wavefront Fea-
sible Sequential Quadratic Optimization algorithm is detailed. The approach to
consider tolerances during Pareto optimization is published in [GMS07, MGS07a,
GMGS08]. The applicability to hierarchical sizing is shown for a Charge Pump Phase
Locked Loop (CPPLL) circuit in [ZMG+05, ZMGS06]. The generation of the system
level Pareto front of the CPPLL was shown in [ZMGS07b]. A first approach to con-
sider tolerances in a hierarchical sizing flow is presented in [ZMGS07a].

1.6 Organization of this Thesis

The remainder of this thesis is organized as follows. In chapter 2, basic definitions
are given for a mathematical formulation of the sizing step. In chapter 3, the iterative
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approach to generate the Pareto front for any number of performances is discussed.
In chapter 4, the Wavefront Feasible Sequential Quadratic Programming algorithm
is outlined. In chapter 5, the generation of the Specification Pareto front, which also
considers the influence of tolerances, is discussed. Chapter 6 describes the experi-
mental results for various circuit examples. Chapter 7 concludes this thesis.

14



Chapter 2

Description of the Performance
Space Exploration Task

This section starts with basic definitions, followed by the description of the perfor-
mance space exploration task.

2.1 Basic Definitions

2.1.1 Circuit Parameters

The circuit parameter vector p can be divided into three sub-vectors: The design
parameter vector d, the operating parameter vector θθθ and the statistical parameter
vector s:

p =





d
θθθ
s



 ; p ∈ R
np ;

d ∈ R
nd ;

θθθ ∈ R
nθ ;

s ∈ R
ns ;

(2.1)

The design parameter vector d consists of parameters that have to be be chosen by the
designer. Typical design parameters of CMOS circuits include the lengths and widths
of the CMOS transistors, bias current values, the capacitance values of compensation
capacitors or resistor values. For automatic circuit sizing, lower and upper bound
values must be supplied for the design parameters:

dL ≤ d ≤ dU (2.2)

The operating parameter vector θθθ models environmental conditions, which influence
circuit behavior during its operating time such as temperature or supply voltage. A
nominal operating parameter vector θθθ0 must be given for the investigation of the
nominal circuit behavior, e.g., at room temperature and nominal supply voltage.
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During the production of integrated circuits, so-called process variations occur. For
example, the geometries of the physical devices of the produced integrated circuits
show a statistical behavior. In order to investigate the process variations by circuit
simulation, the statistical behavior of the physical device parameters are modeled by
distributions of transistor model parameters like oxide thickness, charge mobility or
threshold voltage [PDML94].

Additionally, arbitrarily distributed parameters can be transformed into Gaussian
distributed parameters [Esh92]. These transformations allow to model arbitrarily
distributed process variations by a statistical parameter vector s with ns Gaussian dis-
tributed components. Its mean value vector is denoted as s0 and its covariance matrix
as C. The probability density function (pdf) of the multi-dimensional Gaussian dis-
tribution of s is given as:

pdf(s) =
1√

2π
ns√
det(C)

· e−
β2(s)
2 (2.3)

β2(s) = (s− s0)TC−1(s− s0) (2.4)

Furthermore, the statistical parameters can be separated into globally varying param-
eters, which affect all devices of the circuit, and locally varying parameters, which
lead to device mismatch [Sch04]. For nominal circuit behavior, the statistical param-
eter vector is set to its mean vector s0.

2.1.2 Circuit Performances and Simulation

The performances f ∈ R
n f of a circuit structure such as gain, bandwidth or power

consumption depend on the circuit parameters. The circuit performances are ob-
tained by circuit simulation:

d, θθθ, s Simulation→ f(d, θθθ, s); R
nd ,Rnθ ,Rns 7→ R

n f (2.5)

In the following, the circuit performances are defined such that the optimal value of
the performance corresponds to its minimum value. ∗

For a so-called nominal investigation of the circuit behavior, the operational and sta-
tistical parameters are set to nominal values, given as s0 and θθθ0. For simplicity, we
denote the nominal circuit performances as:

d, θθθ0, s0
Simulation→ f(d) = f(d, θθθ0, s0); R

nd 7→ R
n f (2.6)

∗ This can be done without loss of generality. A performance that is optimal at its maximum can
be transformed into a performance that is optimal at its minimum by multiplication of the perfor-
mance values with -1.
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2.1.3 Sizing Rules and Valid Parameter Space

Analog circuits usually are composed of so-called basic analog building blocks such
as current mirrors, level shifters and differential pairs [GZEA01]. In order for these
basic building blocks to work properly, certain geometric and electric requirements
must be met. The requirements implement fundamental analog design rules: An
example of a geometric requirement is the need of matching transistor geometries in
a differential pair. An example of an electrical requirement is the need of transistors
to operate in the saturation region.

These requirements, which are referred to in the following as sizing rules, are men-
tioned under different names in various publications [HRC89, VLv+95, dMHBL98,
DNAV99, dMHBL01, VDL+01, GZEA01,MV01, DG03, DSV04]. In [GZEA01,MSG03]
a method is presented, which sets up the sizing rules based on a hierarchical recog-
nition of basic analog building blocks in analog CMOS circuits. The method was
recently extended to analog Bipolar circuits [MGS08].

Equality sizing rules lead to a reduction of design parameters, since some transistor
geometries can not be chosen independently. Additionally, a set of inequality con-
straints must be fulfilled to assure proper functionality of the basic analog building
blocks �:

c(d) ≥ 0 (2.7)

The valid parameter space D includes all design parameter vectors that fulfill the
sizing inequality constraints inside given lower bounds dL and upper bounds dU :

D = {d | c(d) ≥ 0 ∧ dL ≤ d ≤ dU} (2.8)

Any sizing that violates the constraints is treated as not valid, since it does not follow
fundamental analog design rules. Only the design parameter vectors inside D are
taken into account for evaluating the performance capabilities of an analog circuit
structure.

2.1.4 Specification

Dependent on the application, analog circuit performances must meet a set of re-
quirements, the so-called specification. Without loss of generality, we define a set of
upper bound values on the performances as performance specification �. For nominal� sizing rules are usually checked for nominal operating and statistical parameters. Therefore op-
erating and statistical parameters are not included, even though the sizing rules also depend on
these.� A lower bound value can be transformed into an upper bound value by multiplication with -1.
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circuit design, the nominal performance values must meet the performance specifi-
cation:

f(d) ≤ fspec (2.9)

Usually, the specification also includes ranges for the operating parameters, defining
a tolerance region Tθθθ :

Tθθθ = { θθθ | θθθL ≤ θθθ ≤ θθθU } (2.10)

The circuit works properly, if it meets the performance specification for all operating
parameter vectors inside the specified tolerance region:

∀θθθ∈Tθθθ
f(d, θθθ, s) ≤ fspec (2.11)

The performance values of each individual produced circuit differ statistically from
the nominal values due to the process variations. This leads to the definition of the
parametric yield.

2.1.5 Parametric Yield

The parametric yield is defined as the percentage of produced circuits that work
properly after production according to (2.11). The parametric yield does not con-
sider circuits, which are dysfunctional due to other effects than process variations
such as, e.g., spot defects on the wafer.

The acceptance region As includes all the statistical parameters that satisfy the speci-
fication according to (2.11):

As(d) = { s | ∀θθθ∈Tθθθ
f(d, θθθ, s) ≤ fspec } (2.12)

The parametric yield Y for a circuit design parameter vector d is given as the inte-
gral of the probability density function of the statistical parameter vector inside the
acceptance region As:

Y =

∫

...
∫

As(d)

pdf(s)ds (2.13)

A so-called yield analysis solves this integral to obtain the yield of a design parameter
vector for a given tolerance region of the operating conditions and a given perfor-
mance specification:

d, Tθθθ , fspec, pdf(s)
Yield analysis→ Y (2.14)
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2.2 The Performance Space Exploration Task

In this section, a problem description for the performance space exploration of analog
circuits is derived.

2.2.1 Feasible Performance Space

As was mentioned in section 2.1.3, only those design parameter vectors for which
the sizing rules are fulfilled constitute technically meaningful sizings. The perfor-
mance capabilities of an analog circuit structure are determined by the valid design
parameter space D:

F = { f(d) | d ∈ D } (2.15)

This is illustrated graphically in figure 2.1 for two performances and two parameters.
The set F is the feasible performance space and includes all performance vectors that
can be realized with the analog circuit structure.
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Figure 2.1: Valid design parameter space and feasible performance space

2.2.2 Multi-objective Optimization and Pareto Optimality

A design parameter vector with optimal (minimal) performance values must be gen-
erated in order to find an optimal sizing. This requires to solve a multi-objective
optimization problem:

min
d∈D
f(d) = min

d∈D







f1(d)
.
.

fn f (d)







(2.16)

Usually, there exists no single design parameter vector, for which all performances
become optimal simultaneously. A trade-off situation occurs, such that we have
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to decide on a compromise between the performances. This leads to the concept
of Pareto-better performance vectors and domination. A performance vector fA is
Pareto-better than or said to dominate a performance vector fB, if:

∀i fA,i ≤ fB,i ∧ ∃j fA,j < fB,j (2.17)

In other words: If at least one component of fA is better than the same component
of fB and no component of fA is worse than the same component of fB, then fA is
Pareto-better than fB.

This can be further illustrated. We look at the set of all Pareto-better performance vectors
M(f+) of a given performance vector f+. It is defined as:

M(f+) = {f 6= f+ | f ≤ f+} = {f | ∀i=1,...,n f fi ≤ f+i ∧ ∃j f j < f+j } (2.18)

This area is illustrated graphically in figure 2.2 for two performances. It has a box
shape and it is unbounded below. The performance vector is equal to the upper right
vertex of the upper box boundaries.

A performance vector f∗ is considered Pareto-optimal, if there exists no feasible
Pareto-better performance vector. This is the case, if the set of all Pareto-better so-
lutionsM(f∗) is empty in F :

f∗ ∈ F is Pareto-optimal ⇔ M(f∗) ∩ F = ∅ (2.19)

A Pareto-optimal performance vector f∗ represents an optimal compromise between
the individual performances. Each performance can only further be improved at
the cost of the others. This is shown in figure 2.2. The illustrated Pareto-optimal
performance vector f∗ is located on the lower left boundary of the feasible space. The
box-shaped area of Pareto-better solutions is located completely outside the feasible
performance space.
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Figure 2.2: Set of Pareto-better solutions and Pareto optimality. The performance vec-
tors Pareto-better than f+ and f∗ respectively are located in an area, whose
upper boundary is defined by f+ and f∗ respectively. The areasM(f+)
andM(f∗) are unbounded below.
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2.2.3 Pareto Front

The Pareto front δF is the set of all Pareto-optimal performance vectors. It includes
all optimal compromises between the performances:

δF = {f | f ∈ F ∧ M(f) ∩ F = ∅ } (2.20)

The Pareto front includes all solutions to the multi-objective optimization problem of
(2.16). It shows the ultimate performance capabilities of the analog circuit structure.

The Pareto front concept is illustrated geometrically in figure 2.3 in the two dimen-
sional performance space. In both cases, the so-called utopia performance vector is
not part of the feasible performance space such that we can not optimize all perfor-
mances simultaneously. A compromise between the performances must be made.
These optimal compromises are located on the respective Pareto fronts.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

f2

F
f1

f2,min

f1,min futopia

f2

f1

f2,min

f1,min futopia

convex case non-convex case

δF
better

δF F

better

Figure 2.3: Pareto front δF and utopia point futopia. The minimal performance val-
ues are denoted as f1,min and f2,min respectively. The so-called utopia
performance vector futopia combines all minimal performance values
component-wise futopia,i = fi,min. The figure shows the Pareto front, on
the right, for a convex multi-objective optimization problem and, on the
left, for a non-convex multi-objective optimization problem.

2.2.4 Weak Pareto Optimality

The condition for weak Pareto optimality is given as:

fw ∈ F is weakly Pareto − optimal ⇔ N (fw) ∩ F = ∅ (2.21)

with
N (fw) = {f | f < fw} (2.22)
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In other words: A feasible performance vector fw is weakly Pareto-optimal, if no
performance vectors exist that are better (smaller) in all components.

The set δFw of all weakly Pareto optimal performance vectors is given as:

δFw = {f ∈ F | N (f) ∩ F = ∅} (2.23)

The Pareto front δF is a subset of the set of all weakly Pareto-optimal performance
vectors δFw [Mie04]. Therefore, there can exist feasible performance vectors that are
weakly Pareto-optimal but not Pareto-optimal. This is illustrated in figure 2.4. The
boundary of the feasible performance space runs in parallel to the f1 axis in between
the performance vectors f∗W and f∗P. The performance f1 can be improved without a
degradation of f2. The performance vectors along the boundary in between these two
points are weakly Pareto-optimal but not Pareto-optimal. They are all dominated by
f∗P but no performance vector exists that is better in all components.

If the set of Pareto-optimal performance vectors (Pareto Front) and the set of weakly
Pareto-optimal performance vectors are equal, the following holds:

δF = δFw ⇒ (f∗ ∈ F is Pareto-optimal ⇔ N (f∗) ∩ F = ∅) (2.24)

If it is known that the sets are equal for the investigated feasible performance space,
any feasible performance vector that meets the condition for weak Pareto optimality
also meets the condition for Pareto optimality. In this case, we only need to check for
weak Pareto optimality to see if a feasible performance vector is part of the Pareto
front.

F δF

f∗P f∗W

M(f∗W)

f2

f1

Figure 2.4: Feasible performance space with weakly Pareto-optimal performance
vectors. The performance vector f∗W is weakly Pareto-optimal. The per-
formance vector f∗P is Pareto-better than f∗W but not better in all perfor-
mance values.
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2.2 The Performance Space Exploration Task

2.2.5 Application-Dependent Pareto Front

The application-dependent Pareto front describes the performance capabilities for an
analog circuit structure with an additional application-dependent performance spec-
ification:

f(d) ≤ fspec (2.25)

These performance specifications can be handled like additional sizing rules. The
valid parameter space is reduced for the generation of an application-dependent
Pareto front to:

Dad = {d | c(d) ≥ 0 ∧ f(d) ≤ fspec ∧ dL ≤ d ≤ dU} (2.26)

Application-dependent Pareto fronts are computed, e.g., often for the visual trade-off
analysis. It is only possible to visualize the Pareto front for up to three performances.
In order to obtain meaningful results, it is required that the remaining circuit per-
formances do not take arbitrary values. For example, we might want to look at the
performance trade-offs, but also assure we have a stable circuit. This can be realized
by placing a specification that assures stability.

In the following, we will use D for the valid parameter space, but any application-
dependent Pareto front can be generated by exchanging D with Dad.

2.2.6 Specification Pareto Front

In order to evaluate the capabilities of a circuit under process variations and changing
operating conditions, we propose to compute the specification Pareto front. The spec-
ification Pareto front is defined as the set of most ambitious specifications that can
be achieved for a required minimum yield under any operating condition in (2.10).
Usually, the yield is calculated for a specification via (2.13). In order to generate the
specification Pareto front, we face the inverse problem of mapping a yield require-
ment on a realizable specification. We refer to this as specification analysis (SpA).
The SpA is given as:

d, Tθθθ ,Ymin, pdf(s)
SpA→ fY,i (2.27)

The resulting specification value fY,i represents the most ambitious specification
bound for the performance fi, which leads to a yield of Y = Ymin (if only this sin-
gle bound is used to determine the yield).

In order to find the specification Pareto front, the vector of realizable specifications fY
has to be the target of the optimization. Specification analysis can be used to calculate
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2 Description of the Performance Space Exploration Task

fY for a design parameter vector d. We can write the multi-objective optimization
problem to find the specification Pareto front as:

min
d∈D

fY(d) = min
d∈D







fY,1(d)
.
.

fY,n f (d)







(2.28)

Similar to the nominal case in (2.16), there usually exists no single sizing for which all
specification values take their minimal (optimal) value. A trade-off situation occurs:
To keep the yield above the minimum yield requirement for all performances, the
realizable specification on one performance can only be tightened at the cost of the
specification on another performance. We define the space of realizable specifications
FY, which includes all realizable specifications for minimum yield Ymin obtainable
from valid design parameters:

FY = {fY(d) | d ∈ D} (2.29)

The specification Pareto front δFY is composed of all Pareto-optimal specification
vectors in the feasible specification space FY:

δFY = {fY ∈ FY | M(fY) ∩ FY = ∅ } (2.30)

The specification Pareto front shows the performance capabilities of the analog circuit
structure for the given minimum yield requirement.

2.2.7 Performance Space Exploration to Obtain a Discretize d
Pareto Front

Most performance space exploration methods target at finding the Pareto front, since
it describes the optimal performance trade-offs. It is usually not possible to gener-
ate the Pareto front analytically. A set of Pareto-optimal performances is generated
instead. This set of Pareto-optimal performance vectors represents a discrete descrip-
tion of the Pareto front:

δF = {f1, ... fk, ... fK} (2.31)

The number or density of Pareto-optimal points on the discretized Pareto front
δF can for instance be chosen by the designer. Figure 2.5 illustrates two discretized
Pareto fronts for two performances and seven Pareto-optimal trade-offs graphically.

Pareto optimization targets at finding the design parameter vectors for Pareto-
optimal performance vectors systematically. Deterministic gradient-based optimiza-
tion algorithms minimize a scalar objective function or cost function. We formu-
late one scalar objective function for each Pareto-optimal performance vector that

24



2.3 Summary

we want to generate. Pareto optimization, therefore, requires to solve one optimiza-
tion problem for each point on the discretized Pareto front. This requires efficient
optimization algorithms. The formulation of the objective functions is discussed in
chapter 3. In chapter 4, we present an efficient way to run the optimization for all
objective functions simultaneously.

f2 f2

f1 f1

F F

δF δF

Figure 2.5: Discretized Pareto fronts. Left, for the convex case. Right, for the non-
convex case.

2.3 Summary

The circuit parameters can be divided in design, operating and statistical parame-
ters. Sizing rules guarantee a proper functional behavior of basic analog building
blocks. The electrical behavior of a circuit is described by the circuit performances.
Specifications on the circuit performances describe the desired functionality of the
circuit. Parametric yield is defined as the percentage of proper working circuits after
production.

The feasible performance space includes all performance vectors from technically
meaningful design parameter vectors of the analog circuit structure. The perfor-
mance vectors with an optimal compromise between performances are called Pareto-
optimal and are located on the boundary of the feasible performance space. For these
optimal compromises, one performance can only be improved at the cost of degrad-
ing the other performances. A Pareto-optimal point is found by solving a multi-
objective optimization problem. The set of all optimal compromises is called Pareto
front. It shows the performance capabilities of the circuit.

The specification Pareto front describes the most ambitious specifications that can be
obtained for a circuit structure for a givenminimum yield requirement. Compared to
the nominal Pareto front, it requires to run specification analysis to obtain specifica-
tions realizable with the given minimum yield instead of circuit simulation to obtain
nominal performance values.

Most performance space exploration methods target at finding a discretized Pareto
front. This is called Pareto optimization.
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Chapter 3

Pareto Optimization

3.1 Introduction

The task of generating a discretized Pareto front, which shows the performance ca-
pabilities of an analog circuit structure, is denoted as Pareto optimization (see Sec.
2.2.7). A discretized Pareto front consists of several Pareto-optimal performance vec-
tors. Pareto optimization consists of solving the multi-objective optimization prob-
lem of (2.16) in order to find the design parameter vectors for the Pareto-optimal
performance vectors.

Most deterministic Pareto optimization solves one single-objective optimization
problem for each Pareto-optimal performance vector. Two aspects are of importance:

1. The appliedmulti-objective optimization method that combines the different per-
formances in one scalar objective function.

2. The approach to systematically compute Pareto-optimal performance vectors
with different performance compromises.

These two aspects of deterministic Pareto optimization are introduced in the follow-
ing:

3.1.1 Multi-Objective Optimization Methods

Most deterministic optimization algorithms minimize scalar objective functions, also
known as cost functions [Fle87, NW99]. A multi-objective optimization task must be
transformed into such a scalar optimization task. There are different ways to com-
bine the competing performances in a scalar objective function. They are referred
to as multi-objective optimization methods. A good overview of various multi-objective
optimization methods can be found in [MA04] or [Mie04].
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3 Pareto Optimization

Not every one of these multi-objective optimization methods is equally suited for
Pareto optimization. The straight-forward weighted-sum method does not guaran-
tee to find every Pareto-optimal performance vectors for non-convex constrained
multi-objective optimization problems [DD97]. Alternatives have been suggested
for analog circuit sizing and Pareto optimization. In [LD81], Goal-attainment (GA)
and the Minmax method are presented as multi-objective optimization methods.
For Normal-Boundary Intersection (NBI), a multi-objective optimization method with
characteristic equality constraints was suggested as alternative to the GA method
[DD98, Ste05, SGA07]. This method with equality constraints is actually a back-step
from the GA method because:

1. The GAmethod achieves better numerical efficiency than the method with equal-
ity constraints for deterministic optimization algorithms. This was shown in
[Ste05].

2. The method with equality constraints may compute non-optimal performance
vectors for discontinuous Pareto fronts whereas the Minmax and GA method
always lead to Pareto-optimal or weakly Pareto-optimal performance vectors
[Lin03].

Therefore, the approach in this thesis is based on the Goal-attainment (GA) and the
Minmax method. Both methods are well documented but reviewed in this chapter.
An understanding of these methods is required as basis for describing the generation
of the Pareto front.

Additionally, the equivalence of the two methods is derived in a comprehensive way.
This equivalence can be used to increase the efficiency of a deterministic optimization
algorithm. This was not yet presented for any other state-of-the-art algorithm. This
feature of the GA and Minmax method is discussed in section 4.5 in more detail.

3.1.2 Approaches to find different performance compromises

An approach to compute systematically Pareto-optimal performance vectors with
different performance compromises is required. The computed Pareto-optimal per-
formance vectors should show the total extent of the Pareto front and cover it without
any clustering. Then, the discretized Pareto front is a good representation of the real
Pareto front.

The NBI approach is the state-of-the-art method used often in deterministic Pareto
optimization [DD98, Ste05, SGA07]. It can generate the discretized Pareto front for
two performances such that an even spread of the Pareto-optimal performance vec-
tors is reached and all parts of the Pareto front are covered. For more than two per-
formances, it fails to generate Pareto-optimal performance vectors in peripheral parts
of the Pareto front [MA04].

In this chapter, a novel approach is presented that systematically narrows down the
region, in which the Pareto front is located. It is based on the idea that the generated
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3.1 Introduction

Pareto-optimal performance vectors always must include solutions on the boundary
of the Pareto front, which show the total extent of the Pareto front. It is shown for
the first time that the boundary of a Pareto front consists of so-called trade-off limits.
A trade-off limit is found by sacrificing one performance to optimize the remaining.
This is equal to generating the Pareto front of a subset of the performances. This
subset includes all performances except one. A total of n f such subsets are found by
leaving out one of the n f performances. Therefore, n f trade-off limits compose the
boundary of a Pareto front of n f performances.

With the insights in the trade-off limits, a new iterative approach to generate the
Pareto front for any number of performances is formulated. It allows to find Pareto-
optimal performance vectors that show the total extent of the Pareto front. Pareto-
optimal performance vectors on the boundary are computed in a first step by using
the trade-off limits. Then, the approach populates the inner part of the Pareto front.
In this step, the approach aims at achieving a nearly even spread of the generated
Pareto-optimal performance vectors. This approach to set up the scalar optimization
problems to find nearly evenly spaced Pareto-optimal performance vectors on the
inner part of the Pareto front using linear programming.

The approach works iteratively, since the generation of the trade-off limits is a Pareto
optimization on its own. The approach computes the discretized Pareto front of n f
performances in exactly n f subsequent iteration steps. In the ni-th iteration step, the
discretized Pareto front for each performance subset with ni elements is generated.
These discretized Pareto fronts are the trade-off limits for those Pareto fronts that are
computed in the following iteration. In the final iteration, the desired discretized
Pareto front for all n f performances is found.

3.1.3 Presence of weakly Pareto-optimal performance vecto rs

The presence of weakly Pareto-optimal performance vectors that are not Pareto-
optimal adds complexity to the Pareto optimization task. For the presented approach,
it is assumed that the set of weakly Pareto-optimal performance vectors and Pareto-
optimal performance vectors is equal. This allows to change the strict requirement
for Pareto-optimality (2.19) to the looser requirement (2.24). All conclusions that
are based on this assumption are marked to accent they do not represent the gen-
eral case. In appendix A, a straight-forward approach to include the case of weakly
Pareto-optimal but not Pareto-optimal performance vectors in the presented Pareto
optimization approach is outlined.

3.1.4 Structure

This chapter is structured as follows. First, the Minmax and Goal-attainment meth-
ods are discussed in section 3.2. Thereafter, the generation of the Pareto front is dis-
cussed in section 3.3. In section 3.4, it is shown that its boundary is made of the
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3 Pareto Optimization

so-called trade-off limits. Then, the novel iterative Pareto front generation approach
is presented in section 3.5. A way to find evenly spread Pareto-optimal performance
vectors on the inner part of the Pareto front is presented in section 3.6. Its use with
the new iterative method to generate the Pareto front is shown in section 3.7. The
results for a numerical example are compared to the state-of-the-art in section 3.8.
Finally, section 3.9 summarizes the chapter.

3.2 Goal-Attainment and Minmax Method

3.2.1 Minmax Method

The Minmax method combines the different performances with the max operator in
order to find a design parameter vector d∗ with Pareto-optimal performance vector
f∗ = f(d∗):

min
d∈D

max
i=1..n f

fi(d) → d∗, f∗ = f(d∗) (3.1)

The scalar objective function value is equal to one target performance, which is the
performance with the largest performance value. It can be shown with (2.24) that the
resulting performance vector f∗ is always a Pareto-optimal performance vector ∗:

∀f∈F max
i=1..n f

fi ≥ max
i=1..n f

f ∗i (3.2)

⇒ ∀f∈F ∃ fi,i=1..n f fi ≥ f
∗
i

⇒ N (f∗) ∩ F = {f | f < f∗} ∩ F = ∅

⇔ f∗ is Pareto-optimal

In other words: The Minmax method assigns all performance vectors in N (f∗) a
better scalar objective function value than f∗. N (f∗) includes all performance vectors
that are better in all components than a performance vector f∗. If f∗ is the optimum
there cannot be a feasible performance vector that is part of N (f∗). The optimum f∗

is Pareto-optimal.

The method is illustrated graphically in figure 3.1 for two performances f1 and f2.
The optimum is reached for the Pareto-optimal performance vector f∗. It is the feasible
performance vector with minimal performance value f ∗1 and f

∗
2 inside the optimiza-

tion regions for f1 and f2 respectively.

Different Pareto-optimal performance vectors can be found by scaling each perfor-
mance according to:

f̂i =
fi − bi
vi

with vi > 0, i = 1, ..., n f ; (3.3)

∗ The derivation assumes that no weakly Pareto-optimal performance vectors exist.
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f∗

F

f2

Minimum for f2
in opt. region of f2

f ∗1

Minimum for f1
in opt. region of f1

f1

f ∗2

f1 = f2

min
d
f2(d)

Opt. region for f2

min
d
f1(d)

Opt. region for f1

f2 > f1
f1 > f2

δF

N (f∗)

Figure 3.1: Illustration of the Minmax method. Two optimization regions are sep-
arated by the line f1 = f2. In each one of these regions, one the per-
formances is the target performance. Better objective function values are
reached by decreasing the target performance value while staying inside
the feasible performance space as indicated by the arrows.

The general Minmax method minimizes the maximum of the scaled performance
values:

min
d∈D

max
i=1..n f

fi(d) − bi
vi

→ d∗, f∗ = f(d∗) (3.4)

There exists an equivalent Goal-attainment formulation to the Minmax method. It is
introduced in the following section.

3.2.2 Equivalent Goal-Attainment Method

This Minmax formulation of (3.4) is not well suited for gradient-based optimization,
since the max operator is discrete and non-continuous. The max operator can be
transformed into a continuous optimization problem. The largest scaled performance
value f̄max can be found by solving a continuous minimization problem:

f̂max = max
i=1..n f

fi(d) − bi
vi

(3.5)

⇔ f̂max = min
t
t s.t. t ≥ fi(d) − bi

vi
, i = 1, ..., n f

The discrete max operator is replaced with a set of inequality constraints (GA con-
straints) by introducing the so-called bound parameter t. Such inequality constraints
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can be handled by deterministic gradient-based optimization algorithms with so-
called active set methods [Fle87, NW99]. We replace the discrete maximization prob-
lem in (3.4) by the continuous minimization problem with the additional GA con-
straints:

min
d∈D

min
t
t s.t. t ≥ fi(d) − bi

vi
, i = 1, ..., n f

It is possible to merge the two minimization problems:

min
t,d∈D

t s.t. t ≥ fi(d) − bi
vi

, i = 1, ..., n f
︸ ︷︷ ︸

fi(d)≤vi t+bi,+ i=1, ..., n f

The scaling values can be combined in two vectors v and b. The GA constraints can
then be written in vector notation:

min
t,d∈D

t s.t. f(d) ≤ vt+ b → d∗, f∗ = f(d∗) (3.8)

This formulation is known as Goal-attainment. It leads to the same design parameter
vector d∗ as the Minmax problem of (3.4), but is continuous.

3.2.3 Performance Compromise at the Optimum

The performance compromise obtained at the optimum f∗ of the Minmax or Goal-
attainment optimization is set by the scaling vectors v and b. The two scaling vectors
v and b define a so-called target trajectory in the performance space. This is illus-
trated for two performances in figure 3.2.

The figure on the left illustrates the Minmax method: One of the performances f1
or f2 is the target of the optimization in their two respective optimization regions
in the performance space. The regions are separated by the target trajectory. The
optimum f∗ has the smallest performance value for f1 and f2 inside their respective
optimization region. It is located on the target trajectory.

The figure on the right illustrates the Goal-attainment method: The additional GA
constraints in (3.8) restrict the performance values f(d) to a box-shaped area with
upper-right vertex given by the expression vt + b. The position of the vertex on the
line is defined by the value of the bound parameter t. The optimization targets at
minimizing t inside the feasible region. A decrease in t decreases the box-shaped
area by moving the vertex vt + b to the lower left along the target trajectory. This
is illustrated for two values t1 and t2. The optimum is found for the performance
vector f∗. It is the only feasible performance vector for t = t2. For smaller t, no
feasible performance vectors exist. The optimum f∗ is located on the target trajectory.
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f(d) ≤ v · t1 + b
f(d) ≤ v · t2 + bb

v

f2

f1

F

b

v

f2

f∗
v · t1

f1

f1−b1
v1

=
f2−b2
v2 Target trajectory

f∗

Target trajectory

v · t2

δF
δFF

Figure 3.2: Target trajectories for the Minmax and Goal-Attainment method. Left,
Minmax method. The target trajectory corresponds to the line that sep-
arates the two optimization regions for f1 and f2. The arrows point in
the direction of better objective function values. Right, Goal-Attainment
method. The performance vector f(d) is restricted to a box-shaped area
with upper-right vertex given by the expression vt + b. This vertex is
located on the target trajectory in the performance space.

Both the Minmax and Goal-Attainment method find an optimal performance com-
promise on the target trajectory. This optimal compromise is characterized by:

f ∗i (d) − bi
vi

=
f ∗j (d) − bj
vj

for i, j = 1, ..., n f (3.9)

In the illustrated example, the target trajectory intersects with the Pareto front. In the
following, we investigate the case that the target trajectory does not intersect with the
Pareto front.

Two examples are illustrated in figure 3.3. In the left figure, the target trajectory does
not cross the feasible performance space F . The optimum f∗ is a Pareto-optimal per-
formance vector. In the right figure, F has an irregular shape, such that the Pareto
front is discontinuous. The intersection point fA of the target trajectory and the
boundary of F is not Pareto-optimal, since, e.g., f∗G and f∗L are Pareto-better. Due
to the Minmax formulation, fA is not the optimum of the optimization. The Minmax
can find one of two optima. There is a global optimum at f∗G and a local optimum at
f∗L. Both optima correspond to Pareto-optimal performance vectors.

The graphical illustrations show that the optima of the Minmax method are always
Pareto-optimal unless weakly Pareto-optimal solutions exist that are not Pareto-
optimal. If the target trajectory intersects with the Pareto front, the compromise is
characterized by (3.9).
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f1

f2

f∗

F

δF

f1

f2

F

f∗G

f∗L

fA

M(fA)

Figure 3.3: Solutions to the Minmax method for the case that the target trajectory
does not intersect with the Pareto front. Left, target trajectory does not
intersect with the feasible performance space. Right, discontinuous Pareto
front.

3.3 Basics of Pareto Front Generation

The Minmax and Goal-attainment formulation form the basis to compute a Pareto-
optimal performance vector. It is located on the target trajectory in the performance
space as was shown in the previous section if the target trajectory intersects with the
Pareto front. The performance vectors on the target trajectory are characterized by
(3.9). We approximate the Pareto front in a discretized way by calculating several
Pareto-optimal performance vectors. The art of generating this discretized Pareto
front is to define a set of target trajectories intelligently, such that the following holds
true:

1. All target trajectories intersect with the Pareto front.

2. The generated Pareto-optimal performance vectors at the intersections show the
total extent of the Pareto front.

3. The generated Pareto-optimal performance vectors at the intersections have an
even spread.

Solving the scalar optimization problem for a target trajectory is very costly. The
number of Pareto-optimal solutions on the discretized Pareto front is limited. The
above requirements assure that the generated Pareto-optimal performance vectors
capture the Pareto front as efficiently as possible.

In order to define a set of target trajectories, either their direction v or their base
point b can be changed. Each target trajectory then targets at different Pareto-optimal
performance vector. This is illustrated in figure 3.4 for two performances f1 and f2.

The feasible performance space is a bounded region for technical applications. One
performance cannot be improved unlimitedly on cost of the others. The generation
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of the limits of the trade-offs between the performances is investigated in the next
section. It is shown that these trade-off limits compose the boundary of the Pareto
front. The boundary shows the total extent of the Pareto front. Additionally, target
trajectories that intersect with the Pareto front can be defined with knowledge of the
boundary.

f1

f2

f1

f2

b

v5

v1

v2

v3
v4

b5
b4
b3
b2
b1

v

v
v

v
v

Figure 3.4: Approaches to define a set of target trajectories to find different Pareto-
optimal points. Left, the approach uses trajectories with different direc-
tions vk which intersect in one common base point b. Right, the approach
uses multiple parallel trajectories with same direction v and different base
points bk.

3.4 Performance Sub-Spaces, Trade-Off Limits and
Boundary of the Pareto front

In the following sections, the boundary of the Pareto front is investigated by looking
at the trade-off limits on the Pareto front. First, the concept of performance sub-
spaces is introduced.

3.4.1 Performance Sub-Spaces

In this section, performance sub-spaces are defined. The set of all performances is
given as:

S f = { f1 , ..., fn f } (3.10)

If only a subset of the performances Sm ⊆ S f is considered, then we are working
in the corresponding performance sub-space. Elements for performances that are
not part of the performance subset must be removed from all vectors. A superscript
denotes that the vector is defined in the performance sub-space of Sm, e.g., bSm , vSm

and fSm .

For example in the performance sub-space of the subset Sm = { f1, f3}, the vectors are
defined as b{ f1 , f3} = [b1 b3]

T, v{ f1 , f3} = [v1 v3]
T and f{ f1, f3}(d) = [ f1(d) f3(d)]

T.
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The same superscript is used to denote the Pareto front δFSm or set of Pareto-better
solutionM(fSm) in respect to the reduced set of performances Sm:

M(f∗Sm) = {f | fSm ≤ f∗Sm ∧ fSm 6= f∗Sm} (3.11)

δFSm = {f | M(fSm) ∩ F = ∅}

If the superscript is omitted, the vector or set refers to the complete set of perfor-
mances S f .

3.4.2 Trade-Off Limits

For a Pareto-optimal performance vector one performance can only be improved at
the cost of the others. The trade-off can only be shifted along a so-called trade-off di-
rection. A shift in a trade-off direction is equal to sacrificing one performance fi to
improve the remaining performances. All performance vectors which are located in
the i-th trade-off direction from a performance vector f∗ are combined in the follow-
ing set:

Ti(f∗) = {f | fi > f ∗i ∧ fSi ≤ f∗Si ∧ fSi 6= f∗Si
︸ ︷︷ ︸

f∈M(f∗Si)

} with Si = S f \ fi (3.12)

In other words: The set Ti(f∗) includes all those performance vectors, which are
worse in the component fi compared to the same component f ∗i , but Pareto-better in
regard to the remaining components. Si includes all performances except fi.

Figure 3.5 illustrates the sets Ti for two performances. For technical applications, the
feasible performance space is a bounded region. The Pareto front is, therefore, also
bounded. The trade-offs are limited such that one performance cannot be improved
unlimitedly at the cost of the other performances. At the trade-off limit δFB,i, the
compromise between the performances cannot be shifted further in the correspond-
ing trade-off direction along the Pareto front δF :

δFB,i = {f | Ti(f) ∩ F = ∅ ∧ f ∈ δF } (3.13)

In other words: The trade-off limit δFB,i includes all Pareto-optimal performance
vectors, for which a degradation of fi cannot be used to improve the remaining per-
formances.

Theorem: The trade-off limit δFB,i is equal to the Pareto front for the performance
subset Si:

δFB,i = δFSi , with Si = S f \ fi (3.14)

Proof: Let there be a performance vector fA ∈ δFSi . Applying (3.11) and (3.12), we
show that Ti(fA) ∩ F = ∅:

fA ∈ δFSi ⇔ M(f
Si
A) ∩ F = ∅ ⇒ Ti(fA) ∩ F = ∅
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In other words: For the performance vectors on the Pareto front δFSi , the perfor-
mances in the subset Si = S f \ fi can not be further improved at the cost of fi because
δFSi already calculated the ultimate performance capabilities in regard to Si.

With (3.11) and (2.24) we show that fA ∈ δF �
fA ∈ δFSi ⇔ M(f

Si
A) ∩ F = ∅

⇒ ∀
f∈F ,fSi 6=fSiA

fSi 6≤ fSiA ⇒ ∀f∈F f 6< fA
⇒ N (fA) ∩ F = ∅ ⇔ fA ∈ δF

In other words: If there exists no feasible performance vector that is in every com-
ponent of the subset Si better or equal than fA, there can also not exist a feasible
performance vector that is better than fA in all n f components.

The relation fA ∈ δFSi ⇒ fA ∈ δFB,i holds. Now let there be a performance vector
fB ∈ δFB,i. We use (2.18), (3.11) and (3.12) to show that fB ∈ δFB,i ⇒ fB ∈ δFSi also
holds:

fB ∈ δFB,i ⇔ Ti(fB) ∩ F = ∅ ∧ fB ∈ δF
⇔ {f | fi > fB,i ∧ fSi ≤ fSiB ∧ fSi 6= fSiB } ∩ F = ∅ ∧ {f | f ≤ fB ∧ f 6= fB} ∩ F = ∅

⇒ {f | fSi ≤ fSiB ∧ fSi 6= fSiB } ∩ F = ∅ ⇒ M(f
Si
B ) ∩ F = ∅ ⇒ fB ∈ δFSi

such that the sets δFB,i and δFSi are equal.

�

The trade-off limits are generated by computing the Pareto fronts of the performance
subsets Si = S f \ fi. Table 3.1 and table 3.2 illustrate the trade-off directions and the
generation of the trade-off limits for two and three performances.

Table 3.1: Trade-off directions and trade-off limits for two performances

Trade-off direction Trade-off limit generation

Improvement of f1 at the cost of f2 min
d
f1 → d∗1, δF { f1} = f∗1 = f(d∗1)

Improvement of f2 at the cost of f1 min
d
f2 → d∗2, δF { f2} = f∗2 = f(d∗2)� This derivation is only valid if the set of weakly Pareto-optimal performance vectors and Pareto-

optimal performance vectors is equal.
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Table 3.2: Trade-off directions and trade-off limits for three performances

Trade-off direction Trade-off limit generation

Improvement of f1 and f2 at the cost of f3 min
d

[
f1
f2

]

→ δF { f1 , f2}

Improvement of f1 and f3 at the cost of f2 min
d

[
f1
f3

]

→ δF { f1 , f3}

Improvement of f2 and f3 at the cost of f1 min
d

[
f2
f3

]

→ δF { f2 , f3}

3.4.3 Boundary of the Pareto Front

The trade-off limits compose the boundary δFB of the Pareto front:

δFB =
⋃

i=1...n f

δFB,i =
⋃

i=1...n f

δFSi , with Si = S f \ fi (3.16)

On the boundary, the trade-off cannot be further shifted in one of the trade-off
directions. The Pareto front for each performance subset Si = S f \ fi , i = 1...n f must
be generated in order to generate the boundary.

Figure 3.5 illustrates the boundary for the case of two performances. In this case,
the boundary consists of the two so-called Individual Performance Minima (IPM)
f∗1 and f∗2 (See table 3.1). At the IPM, the respective performance has its overall
smallest value. For each IPM, the set Ti of the corresponding trade-off direction is
empty inside the feasible performance space.

�
�
�
�

����

f2

T2(f∗1)

f1

T1(f∗2)

δFB

f2,min

f1,min

F
δF

f∗1

f∗2

Figure 3.5: Boundary of the Pareto front for two performances.
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For three performances, the trade-off limits are equal to the Pareto front of each per-
formance pair respectively, denoted as δF { f1, f2}, δF { f1, f3} and δF { f2, f3} (See table 3.2).
Figure 3.6 illustrates the boundary of the Pareto front for three performances in the
performance space. Each Pareto front of a performance pair is a curved edge. Every
two edges share an IPM as common vertex. The three Pareto fronts of the perfor-
mance pairs form the closed boundary of a face. The bounded face is the Pareto front
for the three performances.

����

����

��

f1

f3

f2

δF { f1, f3}

δF { f2, f3}

δF { f1, f2}
Pareto front of all three performances δF
is bounded by Pareto fronts of performance pairs

f∗1

f∗2

f∗3

Figure 3.6: Boundary of the Pareto front for three performances.

3.5 Iterative Pareto Front Generation Approach

The idea of the iterative approach to generate the Pareto front will be illustrated in
the following for two and three performances. Then, its general structure for any
number of performances is presented.

3.5.1 Generation of the Discretized Pareto Front for Two
Performances

Target trajectories that intersect with the Pareto front can only be definedwith knowl-
edge about the location of the Pareto front. The region, in which the Pareto front must
be located, can be found by generating its boundary first.

The discretized Pareto front for two performances can be generated in a two-step
process as is illustrated in figure 3.7. The boundary consists of the two IPM δFB =
{f∗1, f∗2} (see table 3.1). The IPM can be generated by single-objective optimization
in a first step. The target trajectories are defined in a second step. Two ways to define
the target trajectories are illustrated: For the left approach, the base point is the utopia
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point and the directions of the target rays are chosen to run in between the IPM. In
the right approach, multiple base points are set on the connecting line between the
IPM. A common direction of the target trajectories is chosen, which is normal to the
connecting line of the IPM. This approach was suggested and name-giving for the
NBI method [DD98, Ste05, SGA07].
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f1,min

f2,min

f2

f∗1

f∗2

fUtopia
f1 f1

f2

f∗1

f∗2

Pareto front δF
somewhere here

2. step: Two ways to get Pareto front δF

δF
δF

1. step: IPM f∗1 and f∗2

Figure 3.7: Generation of the discretized Pareto front for two performances. Left, IPM
generation to locate Pareto front. Middle, multiple direction approach.
Right, multiple base point approach.

3.5.2 Generation of the Discretized Pareto Front for Three
Performances

As was shown, the Pareto front for two performances can be generated through its
boundary that is defined by the two IPM. The complexity of calculating the bound-
ary of the Pareto front increases for three performances. The trade-off directions are
defined by improving two of the three performances at the cost of the third ( See
table 3.2). The boundary consists of the Pareto fronts of each performance pair re-
spectively: δF { f1, f2}, δF { f1, f3} and δF { f2 , f3}. The boundary of the Pareto front is ap-
proximated by generating the discretized fronts of the performance pairs:

δFB = δF { f1 , f2} ∪ δF { f1, f3} ∪ δF { f2 , f3} (3.17)

The generation of the Pareto front for three performances requires three steps. This
is illustrated in figure 3.8 for an approach with parallel search trajectories. The IPM
are generated by single-objective optimization in the first step. In the second step,
the discretized Pareto fronts of the performance pairs are generated as described in
the previous section. The discretized boundary is found by joining the discretized
Pareto fronts according to (3.17). In the final third step, target trajectories are defined
that run ‘inside‘ the boundary to populate the inner parts of the Pareto front with
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3.5 Iterative Pareto Front Generation Approach

Pareto-optimal performance vectors. A method to define fitting target trajectories
is introduced in section 3.6. The resulting Pareto-optimal performance vectors on
the inner part are joined with the points on the discretized boundary. Together they
construct the discretized Pareto front of all three performances.
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δF { f1, f3}
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f3
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3. step: Pareto front δF { f1, f2, f3}

1. step: IPM f∗1, f∗2 and f∗3

min
d
f2 → f∗2

min
d
f1 → f∗1 2. step: Pareto fronts δF { f1, f2}, δF { f1, f3}, δF { f2, f3}

min
d
f3 → f∗3

δF { f1, f2}
δF { f1, f2}

δF { f1, f3}

δF { f2, f3}
δF { f2, f3}

f∗1 f∗1

f∗1 f∗1 f∗1

f∗3

f∗2

f∗3f∗2

f∗2

f∗3

f∗2

f∗3

f∗2
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Figure 3.8: Generation of the discretized Pareto front for three performances with
parallel target trajectories. Left, IPM generationMiddle, generation of dis-
cretized Pareto fronts of performance pairs Right, generation of the dis-
cretized Pareto front of all three performances.

3.5.3 Generation of the Pareto front for Any Number of
Performances

The Pareto front for any number of performances n f can be found systematically in
n f subsequent iteration steps. Themain idea of the iterative approach is to assure that
the boundary of the Pareto front is known before it is generated. The boundary must
be built up iteratively starting from the Individual Performance Minima. During the
iterative process, the Pareto front for every combination of the n f performances is
generated.
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The approach is illustrated in figure 3.9 for four performances. In the 1st iteration
step, the Individual Performance Minima (IPM) are generated by single-objective
optimization. The IPM define the boundaries of the Pareto fronts of all performance
pairs or 2-performance combinations completely, such that their location is known.
The Pareto fronts of the performance pairs are generated in the 2nd iteration step.
They, again, can be used to estimate the boundaries of the Pareto fronts of the per-
formance triples. Those are generated in the 3rd iteration step. Finally, the Pareto
fronts of all performance triples define the boundary of the Pareto front of all four
performances, which can then be generated in the final iteration step.

f∗1 f∗2 f∗3 f∗4

δF { f1 , f2} δF { f1, f3} δF { f1 , f4} δF { f2 , f3} δF { f2, f4} δF { f3, f4}

δF { f1 , f2, f3} δF { f1, f2, f4} δF { f1, f3, f4} δF { f2, f3, f4}

δF { f1 , f2, f3, f4}

Iteration

1

2

3

4

"is boundary of"

"is boundary of"

"is boundary of"

Figure 3.9: Illustration of the iterative Pareto front generation approach.
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3.5.4 Structure of the Iterative Pareto Front Generation Ap proach

The structure diagram of this iterative Pareto front generation approach is shown in
table 3.3. We define the following family set to keep track of all performance combi-
nations and their boundaries:

C(ni)(S f ) : Family set of all subsets of S f with ni elements

For example, we obtain for the performance set S f = { f1, f2, f3, f4}:

C(1)(S f ) = {{ f1}, { f2}, { f3}, { f4}}
C(2)(S f ) = {{ f1 , f2}, { f1, f3}, { f1 , f4}, { f2 , f3}, { f2, f4}, { f3 , f4}}
C(3)(S f ) = {{ f1 , f2, f3}, { f1, f2, f4}, { f1 , f3, f4}, { f2 , f3, f4}}

The boundary of any performance combination S(ni)
m is given as:

δFS
(ni)
m
B =

⋃

j=1...ni

δFS
(ni−1)
j with S

(ni−1)
j = S

(ni)
m \ fh (3.19)

The performance fh is the j-th element in the set S
(ni)
m

�.
As can be seen from the structure diagram in table 3.3, the IPM are generated first.
In the main while loop, the number of performances ni in the performance subsets is
increased by one iteratively.

In the ni-th iteration step, the discretized Pareto front for each performance combina-

tion S(ni)
m with ni elements is generated in four steps:

1. The discretized boundary of a Pareto front of the ni-performance combination

S
(ni)
m is looked up. It consists of discretized Pareto fronts that were generated in
the previous iteration step.

2. Target trajectories are defined that intersect evenly with the Pareto front of the

ni-performance combination S
(ni)
m .

3. Pareto-optimal performance vectors are computed on the inner part of the Pareto

front for the combination S(ni)
m . One scalar optimization problem must be solved

for each target trajectory.

4. The Pareto-optimal performance vectors on the discretized boundary are joined
with those on the inner part of the Pareto front.

In the n f -th iteration step, the performance set S
(ni)
m is equal to the complete perfor-

mance set S f . The final front for the set S f is the desired discretized Pareto front for
all n f performances.� Assuming we have chosen some order in the elements of S(ni)

m .
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Table 3.3: Structure diagram of the iterative Pareto front generation approach

Choose set of all performances S f = { f1, ... fn f }

for each fm ∈ S f
Run single-objective optimizations to find IPM f∗m

Set δF { fm}
= {f∗m};

Set ni=2

while ni ≤ n f

for each ni-combination S
(ni)
m ∈ C(ni)(S f )

Look up boundary δFS
(ni)
m
B from the results of the previous iteration.

Define target trajectories to populate inner parts

of Pareto front δFS
(ni)
m (See sec. 3.6)

Compute performance vectors on inner parts of Pareto front δFS
(ni)
m

Join Pareto-optimal performance vectors on boundary and inner parts

ni=ni+1
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3.6 Definition of Target Trajectories to Populate Inner
Parts of the Pareto Front

The step of populating the inner parts of the Pareto front with Pareto-optimal per-
formance vectors was not detailed in the previous section. The iterative approach
computes Pareto-optimal performance vectors on the boundary first. Therefore, a
method is required that spreads the remaining Pareto-optimal performance vectors
as evenly as possible inside the region defined the boundary. The method presented
in the following uses parallel target trajectories. These are advantageous because the
problem can be described on a projection plane normal to the direction of the target
trajectories. A set of Pareto-optimal performance vectors is found by defining a set
of evenly spaced so-called compromise weight vectors. These describe the relative
importance of each performance. The compromise weight vectors are mapped on
the base points by solving a linear program.

3.6.1 Problem Description for Parallel Target Trajectorie s

The target trajectory must run ’inside’ the boundary in order to intersect with the
Pareto front. For parallel target trajectories, this problem can be best described by
looking for a hyperplane which is normal to the direction of the target trajectories
v. We project the boundary and base point on this hyperplane. This is illustrated in
figure 3.10 for three performances. In this case the hyperplane is a two-dimensional
plane.

The target trajectory intersects with the Pareto front if the projected base point b
′
is

part of the projected Pareto front δF ′
. The area of the projected Pareto front, δF ′

, is
enclosed by the boundary δF ′

B. A discretized approximation of the boundary, δF ′
B,

is available by using the presented iterative method. The problem of finding equally
spaced Pareto-optimal performance vectors can then be simplified to:

Find K base points, bk, whose projections, b′k, are evenly spread inside the known

approximation of the boundary δF ′
B.

3.6.2 Calculation of the Direction of the Target Trajectori es

The approach uses parallel search trajectories. Since the Minmax optimization tries
to find a point in the opposite direction of v on the target trajectory, v must point
towards worse performance values:

vi = fi,max − fi,min, with fi,max = max
j=1...n f

f
∗j
i , fi,min = f ∗ii (3.20)
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Figure 3.10: Projection to hyperplane normal to the direction of the target trajectories
for three performances. The target trajectory defined by the base point
b and direction v intersects with the Pareto front, because the projection
of the base point b

′
on the plane normal to the search direction v is in-

side the projection of the boundary. The area enclosed by the boundary,
highlighted in gray, is the projection of the Pareto front δF ′

.

The direction vector is equal to the diagonal line of a hyperbox that contains the
Individual Performance Minima. This formulation is independent of the used nor-
malization of the performances. This means, a normalization of the performances
does not change the optimization result in the unnormalized performance space.

3.6.3 Compromise Weight Vectors

We start from an abstract representation of the desired optimal compromises. All op-
timal compromises on the Pareto front are represented by an element of the following
set of compromise weight vectors:

W = {w | w ≥ 0 ∧ ∑
i=1...n f

wi = 1} (3.21)

Each so-called compromise weight vector w ∈ W shows the relative importance
of each performance in the desired compromise. This set of optimal compromises is
mapped on actual Pareto-optimal performance vectorsW → δF .
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We choose a set of evenly distributed weight vectors W , for which we compute the
corresponding Pareto-optimal performance vectors:

W = {w1...wk ...wK} → δF = {f∗1...f∗k ...f∗K} (3.22)

The density D of the weight vectors can be chosen by the designer. For a known
density D, the compromise weight vectors are generated in a grid-like fashion. Table
3.4 illustrates the compromise weight vector set W for three performances and the
density D=3.

Table 3.4: W for three performances n f = 3 and density D=3

w1 1 0 0 .75 .5 .25 0 0 0 .75 .5 .25 .5 .25 .25
w2 0 1 0 .25 .5 .75 .75 .5 .25 0 0 0 .25 .5 .25
w3 0 0 1 0 0 0 .25 .5 .75 .25 .5 .75 .25 .25 .5

W { f1} W { f2} W { f3} W { f1, f2} W{ f2 , f3} W{ f1 , f3} W{ f1 , f2, f3}

3.6.4 Mapping of Compromise Weight Vectors on Base Points

The iterative Pareto front generation approach computes the Pareto-optimal perfor-
mance vectors systematically in n f steps. In the ni-th step, the discretized Pareto

front of each performance combinations S(ni)
m with ni elements is generated. To each

combination belongs a subsetWS
(ni)
m of the compromise weight vectors:

w ∈ WS
(ni)
m if wi

{

6= 0, , fi ∈ S(ni)
m

= 0, , fi 6∈ S(ni)
m

with i = 1...n f (3.23)

Table 3.4 shows the distribution of weight vectors among the performance combina-

tions. In the following, we will look at the generation of one Pareto front δFS
(ni)
m for a

combination S(ni)
m . For simplicity, we omit the superscript S

(ni)
m .

Each wk is first mapped to a base point bk. The base point bk defines the target
trajectory together with the fixed direction v according to figure 3.2. It is used to
calculate the Pareto-optimal performance vector f∗k by the Minmax method:

wk 7→ bk 7→ f∗k (3.24)

In the following, we look at the mapping of the compromise weight vectors wk to
the base points bk: The projected base point b′k must be located inside the projection
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of the boundary δFB on the plane normal to the direction of the search trajectory.
The discrete boundary δFB was already calculated in previous iterations. The com-
promise weight vectors for points on δFB are combined in a set WB. The mapping
is illustrated in figure 3.11 for the case of three performances and density D=3 (See
table 3.4).

The boundary compromise weight vectors in WB and the boundary Pareto-optimal
performance vectors in δFB are combined column-wise in two matrices WB and FB
with same ordering:

WB = {wB,1, ...wB,l , ...wB,L}
︸ ︷︷ ︸

WB=[wB,1...wB,l...wB,L]

; δFB = {f∗B,1, ...f∗B,l , ...f∗B,L}
︸ ︷︷ ︸

FB=[f∗B,1...f
∗
B,l...f

∗
B,L]

(3.25)
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Figure 3.11: Mapping of weight vectors on base points. Left, illustration of the grid-
like structure of the weight vectors for the case n f=3 and D=3. The lines
correspond to a constant value of one weight component. Right, base
points and boundary in the plane normal to the direction of the target
trajectories.

A new base point, bk, is generated as a linear combination of the boundary Pareto-
optimal performance vectors in δFB by representing its compromise weight vector
wk as a linear combination of the boundary weight vectors inWB:

wk =WB ρρρk = ∑
l

wB,l ρk,l 7→ bk = FB ρρρk = ∑
l

f∗B,l ρk,l (3.26)

The vector ρρρk holds the weights of the linear combination. The same linear combi-
nation is applied to FB to obtain bk. Figure 3.12 illustrates the relation of the vectors
ρρρk, wk and bk. In the example with two performances, the boundary consists of the
two known IPM. A base point bA is placed in the middle of both IPM, which is equal
to the linear combination of both IPMweighting each with a factor ρA,1 = aA,2 = 0.5.
The corresponding vector of relative importance wA is found by forming the linear
combination over the vectors w∗1 and w∗2 of the IPM. The resulting weight vector

48



3.6 Definition of Target Trajectories to Populate Inner Parts of the Pareto Front

wA that corresponds to bA shows, that both performances are given equal relative
importance. Clearly, the target trajectory aims at such a compromise, since it includes
performance vectors, which have about the same distance from the two IPM.

In the example with three performances, the base point bC is now placed in between
two points fA and fB of the boundary. Forming the linear combination over their
weight vectors wA and wB, we obtain wC. The generated base point bC corresponds
to a double as high relative importance of f1 compared to f2 and f3.
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Figure 3.12: Relation between the vectors ρρρ, w and b. Upper, example with two per-
formances. Lower, example with three performances.

3.6.5 Calculation of the Base Points by Linear Programming

The system of linear equalities wk = WB ρρρk in the mapping in (3.26) becomes under-
determined for more than two performances. There are degrees of freedom for find-
ing a weight vector wk as linear combination of the boundary weight vectors inWB.
A vector ak can be chosen by selecting a set of basis vectors from WB to represent
wk. A similar problem is described in [JP07, DT05]. In these works, the target is to
obtain a solution for ρρρk with minimal number of non-zero entries (sparsest vector) by
solving a linear program that minimizes the L1 norm of the vector ρρρk. In our case the

49
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target is to select the vectors ρρρk such that the resulting base points are evenly spread
inside the boundary.

One solution is to chose the vector ρρρk in the following way: Those Pareto-optimal
performance vectors on the boundary are preferred in the linear combination that
have a ’similar’ performance compromise compared to the compromise defined by
wk. The similarity of the compromise weight vector wk and a compromise weight
vector wB,l of a boundary point is measured with the L1 norm of the difference:

dk,l = || wB,l −wk ||1 =

n f

∑
i=1

| wBnl,i −wk,i | (3.27)

The value dk,l is also a measurement for the distance of two points in the perfor-
mance space. The more similar the compromise, the closer the two Pareto-optimal
performance vectors will be located on the discretized Pareto front. The main idea of
this approach is the following:

By preferring ’close’ points on the boundary, the base points are placed according to
the ‘nearest‘ boundary. This is advantageous, because it will automatically assure,
that target trajectories for compromises, which are near to a concave boundary are
shifted to the interior of the Pareto front. Compromises near convex parts are shifted
to the exterior, which leads finally to an even spread of the base points.

The vector ρρρ∗k , which prefers ’close’ points on the boundary, is found by solving the
following linear program (LP):

ρρρ∗k = argmin
ρρρk

dTk ρρρk s.t. WB ρρρk = wk ∧ ρρρk ≥ 0 (3.28)

The objective function of the linear program is the L1 norm of the vector ρρρk weighted
by the distances in the vector dk. The optimal vector ρρρ∗k has large values ρρρ∗k,l for ’close’
Pareto-optimal performance vectors fB,l with small difference value dk,l. The linear
program does not always have a unique optimal vector ρρρ∗k . Each of the alternative
optima is equally suited.

The base point bk is found by the linear combination of all Pareto-optimal perfor-
mance vectors fB,l using the optimal vector ρρρ∗

k that is resulting from the LP:

bk = FB ρρρ∗
k (3.29)

The resulting base points are shown for different densities D and three performances
in figure 3.13. The linear combination vectors ρρρ∗k are illustrated by the dashed lines.
A connection with a dashed line shows that the boundary point has a non-zero in the
linear combination to calculate the base point.

This linear programming based approach can be easily implemented. Its main ad-
vantage is that the base points are obtained with relatively low computational costs.
Considering the computational effort to find a Pareto-optimal performance vector,
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3.6 Definition of Target Trajectories to Populate Inner Parts of the Pareto Front

the computational cost to solve the linear program is insignificant. The solutions ρρρ∗k
to (3.28) lead to a sufficiently even spread of the base points inside the area enclosed
by the projected boundary.

Calculating base points with a perfect spread, e.g., by maximizing the minimal dis-
tances in between all base points and all boundary points is a complex optimization
task. The complexity is increased since the base points must be located inside the
projected area enclosed by the boundary. This area can be concave and, therefore,
not described by a set of linear inequalities. Especially in high dimensions, a mathe-
matical description of the projected area becomes difficult. In contrast, the LP-based
method can be used to determine base points for Pareto fronts with more than three
performances. In the investigated cases, the linear combination vector ρρρ∗

k mapped the
boundary in the compromise weight vector space to the discretized boundary in the
performance space. This shows empirically that the method creates no base points
outside the boundary. All target trajectories intersect with the Pareto front.

The complete algorithm using the iterative Pareto generation approach is given in
section 3.7 after comparing the approach to the state-of-the-art NBI approach.
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Figure 3.13: Linear combinations to generate base points found with linear program-
ming. Base points and boundary are shown in the plane normal to the
direction of the target trajectories.
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3.6.6 Comparison to Normal-Boundary Intersection

It can be shown that the NBI approach is a special case of the presented approach. If
the elements of the discrete boundary are solely the Individual Performance Minima
(IPM), the matrices that describe the boundary are given as

FB = [f∗1...f∗n f ]; WB = I (3.30)

whereas I is the identity matrix. Looking at (3.26), the unique solution towk =WB ρρρk
is ρρρ∗k = wk. This means a base point bk can be directly calculated to

bk = FB ρρρ∗
k = FBwk = ∑

i=1...n f

wk,i f
∗i (3.31)

without solving the linear program. This is equal to the generation of the base points
on the convex hull of individual minima (CHIM) as it is described for the NBI ap-
proach [DD98, Ste05, SGA07].

The presented approach is equal to theNBI approach if the discretized boundary only
includes IPM. This is only the case for the generation of Pareto fronts for two perfor-
mances. For a higher number of performances, the presented approach considers the
location of more Pareto-optimal performance vectors on the boundary than just the
IPM.
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3.7 Iterative Pareto Front Generation Approach with
Parallel Target Trajectories

3.7.1 Structure

The structure diagram of the approach for the iterative Pareto front generation with
parallel search trajectories is shown in table 3.5. It combines the iterative Pareto front
generation approach with the method to define parallel search trajectories by linear
programming.

3.7.2 Complexity

The number of Pareto fronts that must be found to generate the trade-off limits grows
fast with the number of performances n f , since the number of performance combina-
tions increases combinatorically. The numberM of ni-performance combinations out
of n f performances is given as:

M(ni , n f ) =

(
n f
ni

)

(3.32)

The overall number of Pareto-optimal performance vectors to be generated depends
on the desired density D of Pareto-optimal performance vectors. The higher the den-
sity, the more Pareto-optimal performance vectors are used to describe the discretized
Pareto front.

The total number of Pareto-optimal performance vectors K, which will be generated,
depends on the number of performances n f and the density D:

K =

(
n f + D
n f − 1

)

=
(n f + D)!

(n f − 1)!(D + 1)!
(3.33)

One scalar optimization problem is solved for each Pareto-optimal performance vec-
tor. The number of scalar optimization runs K increases fast with the number of
considered objectives n f and the density of the solutions D. Therefore, an efficient
optimization algorithm to solve the scalar optimization problems is required. Such
an algorithm is described in chapter 4.
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Table 3.5: Structure diagram of the iterative Pareto front generation approach with
LP approach to populate inner parts of the Pareto front

Choose set of all performances S f = { f1 , ... fn f } and density D

Generate set of all compromise weight vectorsW (Sec. 3.6.3)
for each fm ∈ S f

Run single-objective optimizations to find IPM f∗m

Set δFS
(1)
m = {f∗m};

ni=2;
while ni ≤ n f

for each ni-performance combination S
(ni)
m ∈ C(ni)(SG):

Calculate direction vector of the target trajectories vS
(ni)
m ; (Eq. (3.20))

Look up boundary δFS
(ni)
m
B andWS

(ni)
m
B

from the results of the previous iteration; (Eq. (3.25))

Look up compromise weight vector subsetWS
(ni)
m (Eq. (3.23))

for each compromise weight vector wS
(ni)
m
l ∈ WS

(ni)
m :

Calculate ρρρ∗S
(ni)
m

l via LP (Eq. (3.28))

Calculate base point bS
(ni)
m
l = ρρρ∗S

(ni)
m

l FS
(ni)
m
B (Eq. (3.29))

Run scalar optimization with target trajectory vS
(ni)
m
l and bS

(ni)
m
l (Sec. 3.2)

Insert found solution fS
(ni)
m
l to δFS

(ni)
m

Insert boundary points δFS
(ni)
m
B in δFS

(ni)
m

to construct Pareto front δFS
(ni)
m with boundary

ni=ni+1
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3.8 Numerical example

The difference of the presented approach compared to the state-of-the-art can be illus-
trated with a numerical example. We solve the following multi-objective optimiza-
tion problem:

min
p

[ f1 = d1 f2 = d2 f3 = d3]
T (3.34)

s.t. 0 ≤ d1 ≤ 10, 0 ≤ d2 ≤ 10, 0 ≤ d3 ≤ 10
d21 + d22 + d3 ≥ 119, d1d2d3 ≥ 300

The IPM of the performances are:

f∗1 = [3 10 10]T f∗2 = [10 3 10]T f∗3 = [10 10 3]T (3.35)

The Pareto fronts of the performance pairs can be calculated analytically to:

δ f { f1 , f2} = { f | f1 =
√

109− f2; f3 = 10; 3 ≤ f2 ≤ 10} (3.36)

δ f { f1 , f3} = { f | f1 = 30/ f3 ; f2 = 10; 3 ≤ f3 ≤ 10} (3.37)

δ f { f2 , f3} = { f | f2 = 30/ f3 ; f1 = 10; 3 ≤ f3 ≤ 10} (3.38)

We compare the novel iterative approachwith the NBI approach andwith theNBI ap-
proach with added boundary that is suggested in [Ste05, SGA07]. Figure 3.14 shows
the base points and available boundary points in the projection plane normal to the
direction of the search trajectories for all three methods.

The NBI approach generates the Individual Performance Minima (IPM) first. The
base points are defined based on the location of the IPM. Some of the base points
are located outside the concave boundary in the projection plane. Additionally, no
base points are generated on the convex boundaries. Figure 3.15 shows the resulting
discretized Pareto front. The Pareto-optimal performance vectors do not cover the
convex boundaries and their spread is uneven near the concave boundary.

The NBI approach with added boundary calculates the performance vectors on the
boundary by generating the IPM and dicretized Pareto fronts of the performance
pairs first. Further base points are defined equally to the NBI approach based on
the location of the IPM. Equally to the NBI approach, some base points are located
outside the concave boundary. The convex boundary is captured by the previously
generated discretized Pareto front of the performance pairs. The resulting discretized
Pareto front is shown in figure 3.16. The points cluster around the boundaries. The
points on the concave boundary are obtained twice such that some optimization runs
are unnecessary. More optimization runs are required than for the other methods,
since the added boundary points do not replace any of the standard NBI points.
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New iterative approach

 

 
NBI approach

 

 
NBI approach with added boundary

Projected boundary of the Pareto front

Projection of known Pareto−optimal performance vectors

Projection of base points to generate new Pareto−optimal performance vectors

Figure 3.14: Boundary, base points and known Pareto-optimal performance vectors
projected on the plane normal to the search direction for the numerical
example.

Figure 3.15: Discretized Pareto front obtained by NBI approach

The novel iterative approach generates the IPM and dicretized Pareto fronts of the
performance pairs first. The location of the base points is set by a linear combination
of the ‘nearest‘ boundary points. The base points cover the interior of the Pareto
front evenly. The obtained discretized Pareto front is shown in figure 3.17. It covers
all parts inside the boundaries and features an even spread of the Pareto-optimal
performance vectors.
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Figure 3.16: Discretized Pareto front obtained by NBI approach with boundary
added

Figure 3.17: Discretized Pareto front obtained by new iterative approach

57



3 Pareto Optimization

3.9 Summary

This section summarizes the chapter. The multi-objective optimization problem
is transformed into a scalar optimization problem using the Minmax- and Goal-
attainment method. These methods are equivalent formulations. The Minmax and
GA methods target at a compromise, which is located on the target trajectory in the
performance space if the target trajectory intersects with the Pareto front.

The trade-offs in technical applications are limited. No performance can be improved
unlimitedly at the cost of the others. The Pareto front is bounded by the so-called
trade-off limits. An iterative approach was shown that was able to generate Pareto-
optimal performance vectors on the boundary of the Pareto front. These show the
total extent of the Pareto front. The approach calculates the Pareto front of any perfor-
mance subset (combination) and increases the number of performances in the combi-
nations by one in each iteration. Away to define parallel target trajectories by solving
a linear program was shown. It targets at an nearly even spread of the Pareto-optimal
performance vectors inside the region defined by the boundary.

58



Chapter 4

Wavefront Feasible Sequential
Quadratic Programming

4.1 Introduction

It was shown in chapter 3 that Pareto optimization consists of systematically solv-
ing a set of scalar constrained nonlinear optimization problems (CNOP). Each
CNOP targets at a different Pareto-optimal performance vector. In this chapter, a
gradient-based, deterministic optimization algorithm called Wavefront Feasible Se-
quential Quadratic Programming algorithm is presented that computes the solutions
to these scalar CNOPs.

4.1.1 Standard Form of the Scalar Constrained Nonlinear
Optimization Problem (CNOP)

The scalar CNOP is considered in the following standard form:

min
x
o(x) s.t. aineq(x) ≤ 0 (4.1)

The candidate vector x includes the parameters of the optimization, o(x) is the objec-
tive function and aineq(x) are inequality constraint functions.

4.1.2 Minmax and GA Formulation in the Standard CNOP Form

For the Pareto optimization of analog circuits, one CNOP is solved to obtain one
Pareto-optimal performance vector. The multi-objective optimization problem in
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4 Wavefront Feasible Sequential Quadratic Programming

(2.16) was transformed to a scalar CNOP using the Minmax and Goal-attainment
formulations that are given in (3.4) and (3.8). For the Minmax formulation, we obtain
the standard form of the CNOP by setting:

x = d; o(x) = max
i=1..n f

fi(d) − bi
vi

; aineq(x) =





dL − d
d− dU
−c(d)



 ; (4.2)

For the GA method, we obtain the standard form of the CNOP by setting:

x =

[
d
t

]

; o(x) = t; aineq(x) =







dL − d
d− dU
−c(d)

f(d) − vt− b






; (4.3)

The inequality constraints include the design parameter bounds, see (2.2), sizing
rules, see (2.7), and for the GA method the GA constraints, see (3.8).

4.1.3 SQP Optimization Algorithms

A numerical optimization algorithm should be able to compute the solution of the
CNOP reliable and fast. A very effective, standard numerical optimization algorithm
to solve a scalar CNOP is Sequential Quadratic Programming (SQP). The various
different implementations of SQP can be roughly classified in trust-region based and
line search based algorithms [Fle87, Spe98, NW99].

The optimization time in analog circuit sizing depends mainly on the number of can-
didates that are evaluated during the optimization and the duration of the required
simulations to evaluate the circuit performances for one candidate. For example, cir-
cuit performances that are evaluated with a transient (TR) analysis simulate usually
longer than performances evaluated with a AC analysis. The optimization can be
speeded up by either reducing the total number of candidates required to compute
the solution or by running simulations in parallel on different CPUs.

The reliability of the optimization algorithm is an important issue in analog circuit
sizing. The optimization returns the candidate vector x∗ that has the smallest objec-
tive function value compared to all other candidates encountered during the opti-
mization. For a reliable optimization algorithm it should hold:

• The returned candidate x∗ must be feasible with no violations in the constraints
aineq(x

∗).

• The objective function value o(x∗) should be the global minimum of the objective
function.

• The optimization should find the candidate x∗ in a limited number of iterations.
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4.1 Introduction

Standard SQP implementations feature the following three main issues when applied
to the Pareto optimization of analog circuits:

1. Many standard SQP algorithms accept violations in the inequality constraints
for a sufficient decrease of the objective function. This causes great reliability
issues in analog sizing because the performances become very nonlinear outside
of the valid design parameter space, e.g., caused by transistors running out of
saturation [LGXP07]. This nonlinearity can cause the optimization algorithm to
get stuck at an infeasible candidate with constraint violations. In this case, the
solution is no valid sizing of the circuit.

2. The speed of standard SQP implementations is limited because the candidates
are evaluated sequentially. Parallel simulations to obtain the performances for a
set of candidates is usually not supported.

3. Another reliability issue is caused by the fact that the standard SQP method is a
local optimizer converging to local optima.

A new Wavefront Feasible Sequential Quadratic Optimization (FSQP) algorithm is pre-
sented in this chapter. It addresses the above issues and features the following im-
provements:

1. It implements a feasible SQP (FSQP) algorithm. It does not accept any candi-
dates with constraint violations. A so-called feasibility filter removes infeasible
candidates.

2. Computation time is speeded up by making strong use of parallel simulations on
multiple CPUs. This is motivated by the great availability of multi-core PCs and
multi-PC networks.

3. The algorithm is a so-calledWavefront FSQP algorithm, because the CNOPs to ob-
tain different Pareto-optimal performance vectors are computed simultaneously.
The global convergence of the optimization algorithm is improved by exchang-
ing candidates between the different CNOP. If one CNOP converges to a local
minimum, it is supplied with alternative candidates from the remaining CNOPs.

Different FSQP approaches have been published, e.g., in [LT00, WT04]. The pre-
sented method is a line search based method. It implements a modified version of
the algorithm presented in [LT00]. As was suggested in [LT00], the presented ap-
proach features two measures to improve the feasibility of the candidates: A tilting
of the search direction as well as second-order correction.

Additionally, the presented Wavefront FSQP optimization algorithm makes use of
the equivalence of the Minmax and GA formulation of the CNOP, shown in (4.2) and
(4.3). Applying solely the Minmax formulation may cause an issue during the calcu-
lation of the search direction due to the discontinuous objective function. Applying
solely the GA method may lead to numerical problems concerning the feasibility of
candidates. Some candidates that constitute valid sizings of the circuit may be dis-
regarded because of violations in the additional GA constraints. This may be caused
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by a poor choice of the additional parameter t due to the inaccuracy of the quadratic
model created to compute the search direction in a SQP algorithm. These issues can
be avoided by applying both formulations during the optimization.

4.1.4 Structure

The chapter is structured as follows: First, basics of sequential quadratic program-
ming are given in section 4.2. Then, the FSQP algorithm is introduced in section 4.3
with a discussion of the tilting of the search direction and the second-order correction.
The Wavefront FSQP algorithm that features the exchange of solutions is presented
in section 4.4. Finally, in section 4.5, the application of the equivalence of the Minmax
and GA method is discussed. Section 4.6 summarizes the chapter.

4.2 Basics of Sequential Quadratic Programming

The flow chart of a line search sequential quadratic programming algorithm is shown
in figure 4.1. SQP is an iterative optimization method. The algorithm starts from an
initial candidate x(0). Three major steps are conducted in each iteration:

1. A local quadratic model is derived around a currently selected candidate x(r).

2. A search direction ∆x∗(r) to look for better candidates is computed by solving a
quadratic programming (QP) problem.

3. A line search along ∆x∗(r) is conducted to find a better candidate. The quality
of a candidate is measured by a merit function, which considers the objective
function and constraint values. If a better candidate is found, it is set to be the
selected candidate x(r+1) for the next iteration.

The optimization stops if no better candidate could be found during the line search
or the maximum number of iterations was exceeded. The final, selected candidate
is returned as the solution x∗ for the CNOP. These three steps are discussed in more
detail in the following.

4.2.1 Initialization and Update of the Quadratic Model

For the selected candidate x(r) of the current iteration, the quadratic model is given
as:

g(x(r)) : Estimate of ∇x o(x) |x=x(r) ; (4.4)

Aineq(x
(r)) : Estimate of ∇x aineq(x) |x=x(r) ; (4.5)

H(r) : Estimate of the Hessian matrix (4.6)

of the Lagrange function
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4.2 Basics of Sequential Quadratic Programming

The gradient of the objective function g(x(r)), and the Jacobi matrix of the inequality
constraintsAineq(x(r)) can be estimated by finite difference methods, see [NW99]. The
Lagrange function is a function that includes the constraints and objective function.
Its Hessian matrix is estimated by Quasi-Newton methods such as the SR1 or BFGS
update [NW99, Fle87, Spe98]. The presented approach will apply the BFGS update
that guarantees a positive definite Hessian matrix.

Figure 4.1: Flow chart of a line search sequential quadratic programming algorithm
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4.2.2 The Quadratic Program (QP)

The search direction ∆x∗(r) for the line search is obtained by solving the following
quadratic programming (QP) problem:

min
∆x(r)

gT(x(r)) ∆x(r) + ∆x(r)T H(r) ∆x(r) (4.7)

s.t. Aineq(x
(r)) ∆x(r) + aineq(x

(r)) ≤ 0

AQPwith inequality constraints can be solved by so-called active set methods [Fle87,
Spe98, NW99].

4.2.3 Backtracking Line Search

The flow diagram of a backtracking line searchmethod is shown in figure 4.2. It starts
with a step size α = 1. A new candidate in the search direction is found as:

x(r+1) = x(r) + α · ∆x∗(r) (4.8)

The objective function and constraints are evaluated for the new candidate. This
requires to simulate the circuit to obtain the performances and sizing rules. Finally,
a so-called merit function is calculated for the new candidate x(r+1) and compared
to the merit function value of the old candidate x(r). The merit function includes
the objective function value and constraint values. Depending on the merit func-
tion, violations of the constraints might be accepted if enough improvement in the
objective function was made. If sufficient improvement in the merit function was
made, x(r+1) is the selected candidate for the next iteration. Sufficient improvement
is often checked by applying the Wolfe-condition [Fle87, NW99]. In this work, every
improvement in the objective function is accepted. If there was no improvement, the
step size α is reduced. The reduction can for example be made by a fixed factor, e.g.
0.5 in this work. A new candidate is generated using (4.8). Finally, a termination
criteria assures the line search does not end up in a infinite loop if no improvement
in the search direction is possible. It terminates as soon as the reduction of the step
size leads to the step size being smaller than a given minimum step size.

4.3 Feasible SQP Algorithm

The flow diagram for the feasible sequential quadratic programming (FSQP) algo-
rithm is shown in figure 4.3. The optimization algorithm solves two quadratic pro-
gramming problems in each iteration: The standard QP in (4.7) and a tilted QP in-
troduced in (4.9). The search direction obtained by the tilted QP differs from the
one obtained from the standard QP. Both search directions are used to conduct a line
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Figure 4.2: Flow chart of the line search of a SQP algorithm

search and look for better candidates. Additionally, a second-order correction step is
applied to find new candidates if infeasible candidates are encountered during the
optimization. The BFGS update is used as quasi-Newton method ([Spe98] p. 507).
The FSQP algorithm is discussed in the following in more detail.

4.3.1 Tilted Quadratic Program

The tilting of the search direction applies a safety margin to those inequality con-
straints that are violated for the standard search direction. This safety margin leads
to a shift or tilt of the search direction such that the obtained tilted search direction,
∆x

∗(r)
t , differs from the standard search direction ∆x∗(r). The tilt emphasizes feasibil-

ity in the inequality constraints at the cost of descent in the objective function.

The tilted search direction ∆x
∗(r)
t is computed by solving the following tilted

quadratic programming problem [LT00]:

min
∆x

(r)
t ,γ

γ + ∆x
(r)T
t H(r) ∆x

(r)
t (4.9)

s.t. gT(x(r)) ∆x
(r)
t ≤ γ

∧ Aineq(x
(r)) ∆x

(r)
t + aineq(x

(r)) ≤ γ ηηη(r)
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Figure 4.3: Flow chart of a line search feasible sequential quadratic programming al-
gorithm (FSQP)
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This quadratic programming problem features an additional scalar optimization
parameter γ. It is part of the objective function and must be minimized. The safety
margins are set with a tilting vector ηηη with one positive component for each inequal-

ity constraint: η
(r)
j > 0.

The parameter γ takes negative values, if ∆x
(r)
t is a descent direction. This is assured

by the constraint:

gT(x(r)) ∆x
(r)
t ≤ γ (4.10)

The parameter γ is bounded below by the descent in the search direction ∆x
(r)
t .

In order to minimize the parameter γ, a direction ∆x
(r)
t with large descent must be

found.

The tilting vector ηηη(r) includes one positive value for each inequality constraint. This
value ηj is multiplied with the parameter γ to obtain a safety margin for the corre-
sponding constraint:

Aineq(x
(r)) ∆x

(r)
t + aineq(x

(r)) ≤ γ ηηη(r) (4.11)

The safety margins increase for smaller, negative values of parameter γ and larger,
positive values of the components of the tilting vector ηηη(r). In order to minimize the

parameter γ, a direction ∆x
(r)
t must be found that satisfies increasingly strict inequal-

ity constraints. The tilted search direction ∆x
∗(r)
t does not point right on the boundary

of the inequality constraints due to the safety margins.

In conclusion, the constraints (4.10) and (4.11) relate to opposite goals: (4.10) looks for
descent in the objective function and (4.11) for feasibility in the inequality constraints.
The trade-off between these two goals is controlled with the tilting vector ηηη(r). A large
value of a component of the tilting vector ηηη(r) is equal to sacrificing descent in order
to emphasize feasibility in the corresponding inequality constraint. The tilting vector
ηηη(r) is adaptively updated during each iteration of the optimization. This update is
described in the next section.

4.3.2 Update of the Tilting Vector

The tilt is controlled by the tilting vector ηηη(r). This tilting vector is updated in each
iteration. The update checks if a constraint violation occurred at the candidate found
by taking the full step size α = 1 in the standard search direction ∆x∗(r) (See eq. 4.8).

The components of the vector of tilt factors z(r)j is updated as follows [LT00]:

aineq,j(x
(r) + ∆x∗(r)) > 0 → z

(r)
j = β z

(r−1)
j (4.12)

aineq,j(x
(r) + ∆x∗(r)) ≤ 0 → z

(r)
j =

1
β
z
(r−1)
j
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4 Wavefront Feasible Sequential Quadratic Programming

Feasibility is emphasized for those constraints that are violated in the full step by

increasing the tilt factor z(r)j by a factor β > 1 compared to the value in the last itera-
tion. For the other constraints, the feasibility requirements are relaxed by decreasing

the tilt factor z(r)j by the factor 1/β.

The tilting vector ηηη for the tilted QP problem in (4.9) is found by normalizing the tilt
factors with the L2-norm of the untilted search direction [LT00]:

η
(r)
j = z

(r)
j | ∆x∗(r) |2 (4.13)

The presented method uses a tilt vector with one component for each inequality con-
straint. This is an improvement in the original FSQP algorithm presented in [LT00],
which suggests a single common tilt for all constraints. Additionally, the tilting fac-
tors are kept in fixed ranges to avoid extremely large and small values:

z
(r)
j ∈ [zlow zhigh] (4.14)

The tilt factors are initialized with the lower bound z(0)j = zlow. The update increases
the tilt factors during the optimization for those inequality constraints that are vio-
lated for the standard search direction. The following, suited choices of the parame-
ters for the tilt update were found empirically: β = 10, zlow = 0.001 and zhigh = 1000.

4.3.3 Parallel Line Search with Second-Order Correction

The flow chart of the parallel line search is shown in figure 4.4. The line search is
conducted once for the standard search direction and once for the tilted search direc-
tion as shown in figure 4.3. This is an additional modification of the original FSQP
algorithm presented in [LT00], which suggests to conduct a line search only in the
tilted search direction. The line search is presented for the standard search direction
in the following:

First, a set of Q candidates is generated along the search direction for different step
sizes in parallel:

x
(r+1)
q = x(r) + αq · ∆x∗(r) with αq = 0.5q; q = 0, ...,Q − 1 (4.15)

For example for Q = 5, the algorithm uses five step sizes α1 = 1, α2 = 0.5, α3 =
0.25, α4 = 0.125 and α5 = 0.0625. The constraints are evaluated for each of the can-
didates in the set. For infeasible candidates with violated constraints, the following
system of linear equalities is solved to obtain a so called second-order correction step

∆x
(r)
q,SOC:

Aact ∆x
(r)
q,SOC = aact (4.16)
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4.3 Feasible SQP Algorithm

Figure 4.4: Flow chart of the parallel line search with second-order correction

A list of so-called active constraints is kept during the SQP optimization. A constraint
is active if it can not be removed from the optimization problem without changing
its solution. The matrix Aact is the Jacobi matrix of the active inequality constraints,
evaluated at the candidate x(r). It is available from the QP. The vector aact equals
those components of aineq that correspond to active constraints. These are evaluated

at the candidate x(r+1)q = αq∆x
(r) + x(r). The values are available since the constraint

vector aineq(x
(r+1)
q ) of the new candidates were already simulated.

The second-order correction step is calculated with the Pseude-inverse as shown in
[NW99] p. 570:

∆x
(r)
q,SOC = −ATact (Aact ATact)−1 aact (4.17)

An additional candidate is computed by adding the second-order correction step to
the infeasible candidate:

x
(r+1)
q,SOC = x(r) + αq · ∆x∗(r) + ∆x

(r)
q,SOC (4.18)

The constraint values of these new candidates x(r+1)q,SOC are also simulated. All com-
puted candidates and their constraint vectors are handed over to the feasibility filter.
The tilted parallel line search can be implemented identically. It uses the tilted search
direction instead of the standard search direction to compute the candidates with
different step sizes.
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4 Wavefront Feasible Sequential Quadratic Programming

4.3.4 Feasibility Filter and Candidate Selection

The constraints are evaluated for all candidates during the parallel line search. The
following feasibility filter deletes all candidates with constraint violations. The can-
didate with smallest (best) objective value is selected from the remaining candidates.
It is checked whether is has a smaller objective function value than the selected can-
didate from the last iteration. If an improvement was made, the generated candidate
becomes the selected candidate for the next iteration. Otherwise, the optimization
terminates.

A problem arises if the initial candidate has some constraint violations. Sometimes,
no new feasible candidates are found in the first iteration step. In this case, all new
candidates are deleted and the optimization terminates. In order to start from an
infeasible candidate, the feasibility filter is adapted, such that it first looks at the
number of constraints violated for all known candidates. It keeps those candidates
that have a minimal number of constraint violations.

For example, if the initial candidate has two constraint violations, the filter accepts
all candidates with two violations until a candidate with one constraint violation is
found. Then, it only accepts candidates with one constraint violation until a can-
didate with no constraint violations is found. At this point, the filter returns to its
original state and only accepts candidates with no constraint violations. This adap-
tion allows the optimization algorithm to converge to feasible candidates starting
from an infeasible initial candidate.

4.4 Wavefront Approach

4.4.1 Simultaneous Optimization

An optimization algorithm for Pareto optimization can make use of the special na-
ture of the task to compute the Pareto front. The Pareto-optimal performance vectors
generated in each iteration of the iterative approach, presented in chapter 3, can be
computed in parallel. For this, one CNOP in the form of (4.2) or (4.3) must be solved
for each Pareto-optimal performance vector. The CNOPs according to (4.2) and (4.3)
are geometrically represented by a target trajectory in the performance space as de-
tailed in sections 3.2 and 3.3.

The Wavefront approach optimizes the corresponding CNOPs simultaneously. In
each iteration of the Wavefront optimization, the solutions of all CNOPs move like
a wave towards the Pareto front. Each CNOP targets at a different optimal com-
promise but looks to minimize the different competing performances. ’Neighboring’
target trajectories optimize for a ’similar’ goal. Therefore, the candidates of one CNOP
can also be good candidates for another CNOP. The Wavefront approach shares the
candidates between the CNOPs.
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CNOP1 CNOP3CNOP2
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f1

is best candidate for CNOP3

Wavefront optimization of three CNOPs

Candidate from CNOP2

candidate of CNOP2
CNOP3 switches to

Independent optimization of three CNOPs

b3

b2

b1

Figure 4.5: Illustration of the Wavefront approach, lower, compared to an indepen-
dent optimization, upper.

This is illustrated in figure 4.5 for the case of two performances (See sec. 3.5.1). There
are three CNOPs with different base points bk. For simplicity, only one candidate
per CNOP is shown. The upper part of the figure shows the progress of an indepen-
dent optimization of the CNOPs. The lower part of the figure shows the Wavefront
approach. During the optimization, a candidate of CNOP2 is better than the cor-
responding candidate of CNOP3 in regard to the progress in CNOP3. Therefore,
CNOP3 uses this candidate instead of the one created by its own line search. This
sharing of candidates leads to a larger improvement of the objective in CNOP3 in
this iteration step, which can lead to an overall faster convergence of the optimiza-
tion.

Additionally, it may occur that one CNOP converges to a local minimum. If one of
the other CNOP contributes a candidate near the global minimum, then this CNOP
may jump to this solution near the global minimum and converge from there. The
exchange of solutions can lead to an improved global convergence.
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4 Wavefront Feasible Sequential Quadratic Programming

4.4.2 Wavefront FSQP Algorithm

The flow chart of the Wavefront FSQP algorithm is shown in figure 4.6. Each CNOP
selects one candidate. It has the minimum objective function value for this CNOP
compared to all candidates encountered so far. The standard search direction and
tilted search direction are calculated by solving the quadratic programs in (4.4) and
(4.9) respectively. New candidates are computed for each CNOP. At this stage, the
candidates of all CNOPs are combined and sent to the feasibility filter. The objective
function is evaluated for the remaining feasible candidates. A parallel evaluation of
all candidates on several CPUs is possible. From the feasible candidates, each CNOP
selects the best candidate with minimum objective function value regardless which
CNOP the candidate came from.

4.4.3 Stopping Criteria and Activeness of CNOPs

This simultaneous computation requires more sophisticated criteria to terminate the
optimization. Each CNOP is either active or inactive during each iteration step. If a
CNOP is active, the quadratic model is updated and new candidates are generated.
If the CNOP is inactive, these steps are skipped. The CNOP is set active or inactive
at the end of an iteration: A CNOP stays active as long as a candidate with smaller
objective function value is generated. A CNOP can become active after being inactive
if another CNOP supplies a better candidate for it. This can, for example, occur, if
the CNOP converged to a local minimum and becomes inactive. If another CNOP
supplies a better candidate, the CNOP is set active again. It restarts the optimization
from the new candidate. The optimization terminates if all CNOP are inactive be-
cause no new candidates are generated, or if the maximum number of iterations is
exceeded.

4.5 Application of the Minmax and Goal-Attainment
Formulation

The optimization can be made more effective by using the equivalence of the Min-
max and Goal-attainment formulation. In the following, the individual application
of both formulations is discussed. Then, an approach is presented that applies both
formulations during the optimization.

4.5.1 Optimization with the Minmax Formulation

The Minmax formulation has a discontinuous objective function o(x), as shown in
(4.2). The gradient g(x) is required to set up the quadratic model (See 4.4). The gradi-
ent has a discontinuity if the Minmax operator switches from one performance term
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Figure 4.6: Flow chart of the Wavefront FSQP algorithm
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4 Wavefront Feasible Sequential Quadratic Programming

to another. This leads to ’jumps’ in the gradient that introduce wrong information
in a quadratic model. Therefore, the Minmax method is not well suited to set up
a quadratic model with Quasi-Newton methods or determine the search directions
solving the QP or tilted QP in (4.4) and (4.9) respectively.

4.5.2 Optimization with the GA Formulation

The CNOP for the GA formulation is shown in (4.3). The inequality constraints of the
CNOP aineq(x) include the sizing rules c(d) as well as the design parameter bounds.
The remaining inequality constraints are based on the GA constraints. The GA con-
straints depend on the performances f(d) and the bound variable t.

These additional GA constraints effect the evaluation of newly generated candidates
during the line search negatively. Some candidates, which have no violation in the
sizing rules or bounds, are deleted by the feasibility filter because of violated GA
constraints. These violations are caused either by the approximations in the quadratic
model or by the exchange of candidates between different CNOP. The effects are
discussed in the following in more detail:

The computation of the search direction in (4.4) and tilted search direction in (4.9)
is based on a quadratic model of the optimization problem. This model consists of
the linearized inequality constraints of the QP as well as the Hessian matrix H of the
Lagrangian function. The performances and sizing rules are implicitly approximated
in this model by model functions, that are denoted in the following as fm(d) and
cm(d). The optimization looks for a search direction that yields an improvement in
the objective function t. It requires to find a step in the design parameter vectors ∆d
such that:

1. the constraint vector cm(d+ ∆d) in the quadratic model is feasible.

2. the performance vector fm(d + ∆d) in the quadratic model allows to make the
GA constraints more strict by changing the value of t by ∆t.

The upper part of figure 4.7 shows the generation of such a search direction ∆x∗ for
the GA method. The search direction is composed of two parts ∆d and ∆t:

∆x∗ =

[
∆d
∆t

]

; (4.19)

During the line search, the sizing rules and circuit performance values of the new
candidate are computed by simulation. The approximation in the quadratic model
can cause four different cases that are illustrated in the lower part of figure 4.7:

• Cases BC and BD: In these cases, sizing rules are violated. The design parameter
vector is located outside the valid parameter space. The feasibility filter removes
the candidate correctly, since it is not a valid sizing of the circuit.
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Quadratic Model

f1
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A

D

Simulation

cm(d+ ∆d)

Figure 4.7: Sizing rules, GA constraints and circuit performances obtained inside the
quadratic model and by simulation during the optimization of a CNOP
using the Goal-attainment formulation

• Case AD: The sizing rules and GA constraints are met. The feasibility filter keeps
this candidate correctly.

• Case AC: The design parameter vector constitutes a valid sizing of the circuit
since it is inside the feasible design parameter space. Still, the performance vector
of this candidate violates the GA constraints. Such a candidate is removed by the
feasibility filter although it is a valid sizing of the circuit. The case is created if the
real improvement in the performances f(d+ ∆d) did not match the improvement
in the quadratic model fm(d + ∆d). The GA constraints were made too strict
by adding the step ∆t to the parameter t. This case occurs regularly since the
GA constraint’s dependency on the performances is only approximated in the
quadratic model.

A similar effect occurs, if we use the GA formulation and exchange solutions between
CNOPs during the optimization. This effect is illustrated in figure 4.8. The CNOPs
have different base points as part of their GA constraints. The base points define
different target trajectories (See section 3.3). Due to the different target trajectories,
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f1

f2

b2 + tv

f(d)

b2

b1 + tv

b1

f1

f2

f(d)

CNOP1 CNOP2

b1 + tv

Figure 4.8: GA constraints during an exchange of a candidate between two CNOP
using the Goal-attainment formulation

the GA constraint values differ between CNOPs for one candidate x = [dT t]T. In
figure 4.8, the GA constraints are fulfilled for CNOP1. For the same candidate, the
GA constraints are violated for CNOP2. Therefore, the exchange of solutions, as done
in the Wavefront approach, would lead to an undetermined state for the candidate.
The feasibility filter deletes the candidate for one CNOP but keeps it for another.

Concluding, the GA formulation is not well suited for the line search phase of the
optimization, since the GA constraints may flag candidates infeasible that constitute
valid sizings of the circuit.

4.5.3 Optimization with the GA and Minmax Formulation

The limitations of the Minmax and GA method can be eliminated by using both for-
mulations during the optimization as follows:

• The GA formulation is used to set up the quadratic model and solve the QP prob-
lems in order to obtain the search directions.

• The Minmax method is used during the line search, the feasibility filter and the
selection of candidates.

This setup has some similarity to applying the Minmax formulation as a merit func-
tion for the GA formulated CNOP. The difference is that one component must be
added and removed from the candidate vector x. This is shown in the following in
more detail:

The selected candidate only includes circuit design parameters x(r) = d(r) according
to the Minmax formulation of the CNOP given in (4.2). The bound parameter t(r) is

appended to the candidate to obtain the candidate vector x(r)QP for the GA formulation
of the CNOP given in (4.3). It is used for the quadratic model and QP problem. The
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bound variable t is initialized, such that the GA constraints are not violated and t is
minimal ∗. This leads to the following GA candidate vector x(r)QP:

x
(r)
QP =

[
d(r)

t(r)

]

; with t(r) = max
i=1..n f

fi(d
(r)) − bi
vi

(4.20)

The candidate x(r)QP is used with the GA formulation in (4.3) to set up the quadratic

model and solve the QP problems in order to obtain the search direction ∆x
∗(r)
QP and

tilted search direction ∆x
∗(r)
QP,t:

∆x
∗(r)
QP =

[
∆d(r)

∆t(r)

]

; ∆x
∗(r)
QP,t =

[

∆d
(r)
t

∆t
(r)
t

]

; (4.21)

We are only interested in the part of the search direction that relates to the actual
design parameters. For the search directions for the line search, the component for ∆t

is removed: ∆x∗(r) = ∆d(r) and ∆x
∗(r)
t = ∆d

(r)
t . At this point, the algorithm switches

to the Minmax formulation and determines the constraints and objective function
value according to (4.2). Only invalid sizings are removed by the feasibility filter and
the exchange of solutions can easily be conducted.

4.6 Summary

The Wavefront FSQP algorithm was presented in this chapter. A feasibility filter re-
moves infeasible candidates. An adaption of the filter, that allows to find feasible
candidates from an infeasible initial candidate was shown. The FSQP algorithm fea-
tures tilting and second-order correction as methods to improve the feasibility of the
candidates. The tilt is updated in each iteration.

TheWavefront approach optimizes the CNOP to find different Pareto-optimal perfor-
mance vectors simultaneously. Candidates are exchanged between the CNOP to im-
prove global convergence. Parallel simulation of the candidates of different CNOPs
are possible.

The Wavefront FSQP algorithm applies both the Minmax and Goal-attainment for-
mulation of the CNOP. This allows a more effective optimization than applying just
one of the formulations.

∗ The initial value for t is found by setting the bound parameter t as the solution of the continuous
optimization problem that replaced the Max operator in (3.5).
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Chapter 5

Pareto Optimization With Tolerances

5.1 Introduction

The previous chapters 3 and 4 have focused on the generation of the Pareto front
for the circuit performances under nominal process and operating conditions. Usu-
ally, the specification on the performance values of a circuit does not only have to
be met for the nominal case but for any operating condition inside specified ranges.
These ranges define a box-shaped tolerance region for the operating conditions that
is given in (2.11). Additionally, process variations occur during the production of the
integrated circuit. These process variations influence the performance values of the
circuit. The yield value is equal to the percentage of circuits that meet the specifica-
tion after production. The yield is defined as an integral over the probability density
function of the statistical parameters inside an acceptance region as shown in (2.13).

The generation of the specification Pareto front is discussed in this chapter. It con-
siders the influence of tolerances such as changing operating conditions and process
variations on the performance capabilities of an analog circuit.

The specification Pareto front is defined in (2.30) as the set of most ambitious speci-
fications on the performances that can be implemented with a given minimum yield
requirement. The multi-objective optimization problem to calculate the specification
Pareto front is given in (2.28). In order to generate the specification Pareto front, a
specification analysis (SpA) is required that was introduced in (2.27). It calculates
the most ambitious specification that leads to the given minimum yield for a given
sizing. So-called geometric worst-case analysis offers an efficient method to conduct
a SpA. It formulates the specification analysis as an optimization problem.

This optimization based SpA is used in the presented approach to generate the spec-
ification Pareto front. The resulting scalar GA and Minmax optimization problems
feature two nested optimization loops. Solving these nested optimization problems
in reasonable time is infeasible due to extremely high computational costs. It requires
to run a full optimization based SpA for each performance of each candidate that is
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generated during the Pareto optimization. Approaches are needed that reduce the
number of required SpA optimizations in order to compute the specification Pareto
front in reasonable time. Two approaches are presented: The first approach runs the
SpA only once after a nominal Pareto optimization. The second approach runs the
SpA and Pareto optimization in alternation. A single step of the SpA is conducted
for each performance of each candidate instead of a full SpA optimization. The sec-
ond approach can be further speeded up by running the SpA optimization steps only
for the most promising candidates. The applicability of both approaches to different
circuit performances is discussed.

The chapter is structured as follows: In section 5.2, the optimization based specifi-
cation analysis is reviewed. The optimization problem to generate the specification
Pareto front is presented in section 5.3. The approaches to compute the specifica-
tion Pareto front in reasonable time are discussed in section 5.4. Finally, section 5.5
summarizes the chapter.

5.2 Optimization Based Specification Analysis (SpA)

The optimization based specification analysis is introduced in the following sections.

5.2.1 Optimization Problem of the Specification Analysis

The specification analysis of (2.27) can be conducted by solving the following opti-
mization problem [Gra07]:

max
θθθ∈Tθθθ ,s∈Ts

fi(d, θθθ, s) → θθθY,i, sY,i, fY,i = fi(d, θθθY,i, sY,i) (5.1)

The performance value fY,i is the worst (maximum) value of the performance inside
a given tolerance region, Tθθθ , of the operating conditions and a tolerance region,Ts , of
the statistical parameters that is given as:

Ts = {s | (s− s0)TC−1(s− s0) ≤ β2Y} (5.2)

This formula describes an ellipsoid-shaped area in the statistical parameter space.
The worst performance value fY,i inside the tolerance regions is the required specifi-
cation value, with a corresponding yield value of Y0 in regard to fY,i:

Y0 : yield value for specification fi ≤ fY,i = fi(d, θθθY,i, sY,i) (5.3)

Due to the Gaussian distribution of the statistical parameters given in (2.3), the yield
value Y0 is equal to the cumulative density function (cdf) of the one-dimensional
standard Gaussian distribution (SGD) for a given βY [Gra07]:

Y0 = cdfSGD(βY) (5.4)
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Values of Y0 are given in table 5.1 for some values of βY. The specification value
fY,i is found by computing the so-called specification parameter vectors θθθY,i and sY,i
for βY. The specification parameter vectors are obtained by solving the optimization
problem given in (5.1). The value of fY,i is equal to the worst (maximum) value of the
performance fi inside the given tolerance regions. This problem formulation is also
known as geometric worst-case analysis [Gra07]. The specification parameter vectors
θθθY,i and sY,i usually depend

• strongly on the selected performance fi. The specification parameter vectors must
be calculated separately for each performance.

• weakly on the design parameter vector d. The specification parameter vectors
must be recalculated for each sizing d of the circuit. Due to the weak dependency,
the specification parameter vectors for one design parameter vector usually con-
stitute a good approximation of the specification parameter vectors for another
design parameter vector. This weak dependency is used later for the efficient ap-
proach that runs the Pareto optimization and SpA in alternation as discussed in
section 5.4.2.

βY 1 2 3
Y0 84.1% 97.7% 99.9 %

Table 5.1: Relation between worst-case distance and yield

5.2.2 SpA and the Minimum Yield Requirement

One input parameter of the SpA is the worst-case distance βY that sets the size of
the tolerance region of the statistical parameters. It is chosen such that the minimum
yield requirement Ymin is met for all Pareto-optimal specification vectors on the spec-
ification Pareto front as follows:

The optimization based SpA computes the specification value fY,i for each perfor-
mance individually based on βY. Each βY is related to a yield value Y0 as given in
equation (5.4). The total yield Yg for the complete specification vector fY is lower
than Y0, because the yield loss for the individual specifications on different perfor-
mances might add up. The relation between the total yield Yg and yield value Y0 is
illustrated in figure 5.1 for two performances. A lower bound for the total yield Yg in
dependency of the yield for each single performance Y0 is given as:

Yg ≥ Yg,lb with Yg,lb = 1− n f (1−Y0) (5.5)

The minimum yield requirement Yg ≥ Ymin is definitely met for:

Ymin = Yg,lb = 1− n f (1−Y0) (5.6)
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The minimal yield requirement Y0 for each individual performance specification is,
therefore, determined for a given minimum yield requirement Yg ≥ Ymin by:

Y0 = 1− 1−Ymin
n f

(5.7)

To find a specification value fY,i that leads to a yield value Y0, a SpA is conducted
with the worst-case distance βY equal to:

βY = cdf−1SGD(Y0) = cdf−1SGD(1− 1−Ymin
n f

) (5.8)

For example, for two performances and aminimumyield requirement ofYmin = 95%,
the individual yield requirement Y0 is 97.5%, which leads to βY = 1.96.
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Produced circuits

fY

Figure 5.1: Relation between yield for single performance specifications and total
yield

5.3 Generation of the Specification Pareto Front

The specification Pareto front shows the performance capabilities of the analog cir-
cuit structure for the given minimum yield requirement. In the following, the corre-
sponding multi-objective optimization problem of (2.28) is formulated to apply spec-
ification analysis.
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5.3.1 Multi-Objective Problem Formulation Considering
Tolerances

The multi-objective optimization problem in (2.28) can be rewritten with the opti-
mization based specification analysis to:

min
d∈D

fY(d) = min
d∈D







fY,1(d)
.
.

fY,n f (d)







= min
d∈D









max
θθθ∈Tθθθ ,s∈Ts

f1(d, θθθ, s)

.

.
max

θθθ∈Tθθθ ,s∈Ts
fn f (d, θθθ, s)









(5.9)

This multi-objective optimization problem can be transformed to a scalar optimiza-
tion problem by applying the Minmax and GA formulation in the same way as in the
nominal case given in (3.4) and (3.8).

5.3.2 GA and Minmax Formulation Considering Tolerances

The scalar optimization problem using the Minmax formulation is given as:

min
d∈D

max
i=1..n f

max
θθθ∈Tθθθ ,s∈Ts

fi(d, θθθ, s) − bi
vi

→ d∗, f∗Y = fY(d
∗) (5.10)

The scalar optimization problem using the GA formulation is given as:

min
t,d∈D

t s.t. max
θθθ∈Tθθθ ,s∈Ts

fi(d, θθθ, s) ≤ vi t+ bi , i = 1, ..., n f → d∗, f∗Y = fY(d
∗) (5.11)

The resulting vector f∗Y is a Pareto-optimal specification vector. It constitutes the most
ambitious performance specifications that can be implemented under the condition
that the given minimum yield requirement is met. Trade-offs in the performances
also result in trade-offs in the obtainable specification values. Different compromises
between the specification values can be obtained by selecting suitable scaling vectors
b and v in the same way as was shown for the nominal case in section 3.2.3.

5.3.3 Relation between the Specification Pareto Front and th e
Nominal Pareto Front

The specification values are inferior to the values obtained by nominal Pareto opti-
mization. This is illustrated in figure 5.2 for two performances. The difference be-
tween the nominal performance value fi(d) and and specification value fY,i(d) is
given as:

∆ fi(d) = fY,i(d) − fi(d) = fi(d, θθθY,i, sY,i) − fi(d, θθθ0, s0) (5.12)
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Specification Pareto front

Nominal Pareto front

f1

f2

Better performance values

Figure 5.2: Illustration of the specification Pareto front compared to the nominal
Pareto front.

The difference ∆ fi(d) is a measure for the performance degradation due to process
variations and operating conditions. It depends on the given ranges on the operat-
ing parameters and the demanded minimum yield. Its value is also a measure of
the sensitivity of the circuit performance to changes in the operating parameters and
statistical parameters. Usually, the sensitivity of a performance to the operating pa-
rameters and statistical parameters changes for different design parameter vectors d.
This dependency of ∆ fi(d) on the design parameter vector d can lead to two cases.
They are illustrated in figure 5.3 assuming there is only one design parameter d:

• Left case: The specification value fY,i(d) is always improved by improving the
nominal performance value fi(d). A design parameter vector that has an optimal
nominal performance value f ∗i also has an optimal specification value f

∗
Y,i.

• Right case: The specification value fY,i(d) does not always improve with the nom-
inal performance value fi(d). For these performances, a design parameter vec-
tor that has an optimal nominal performance value f ∗i might have a sub-optimal
specification value f+Y,i.

The classification of the performances in these two cases requires circuit knowledge.
If performances are identified that have a ’common’ minimum for the nominal and
specification performance value, then this knowledge can be used to speed-up the
simulation. It is possible to target at the nominal values during the optimization and
save computational time because the specification values do not need to be calcu-
lated. This approach is suggested in section 5.4.1.

5.3.4 Challenges in the Computation of the Specification Par eto
Front

The GA and Minmax formulations in (5.10) and (5.11) feature two nested optimiza-
tion loops:

• The Pareto optimization loop that minimizes the performance values for the de-
sign vector d.
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fi

d

fi

d

∆ fi(d)

fi(d)

fY,i(d)
fY,i(d) fi(d)

∆ fi(d)

f ∗Y,i
f ∗i f ∗i

f ∗Y,i

f+Y,i

Figure 5.3: Illustration of the dependency of ∆ fi on one design parameter vector d.
Left, commonminimum for nominal and specification performance value.
Right, different Minima for nominal and specification performance value.

• The SpA loop that maximizes the performance values for the operating parame-
ters θθθ and statistical parameters s.

Solving this optimization problem with deterministic optimization algorithms im-
poses two major challenges:

• The Pareto optimization requires the gradient of the specification values towards
the design parameter vectors.

• The SpA loop must be conducted for each candidate, making it impossible to
conduct the computation in reasonable time.

This is illustrated in the following in more detail. For a computation with SQP, the
gradient of the specification values on each individual performance is required for
the quadratic model (See (4.4) for details):

∇d fY,i(d) |d=d(r)= ∇d max
θθθ∈Tθθθ ,s∈Ts

fi(d
(r), θθθ, s); i = 1, ..., n f (5.13)

This gradient is computed using the specification parameter vectors:

∇d fY,i(d) |d=d(r)= ∇d fi(d(r), θθθY,i, sY,i); i = 1, ..., n f (5.14)

The optimization problem of the SpA is also solved deterministically. This requires
the gradients of the performances for the operating and process parameter vectors:

∇θθθ fi(d, θθθ, s), ∇s fi(d, θθθ, s); i = 1, ..., n f (5.15)

The progression of the computation of the specification Pareto front with the applied
gradients is illustrated in table 5.2. For simplicity, the SpA is only shown for the
statistical parameters leaving out the operating parameters. It is also assumed that
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Progression It. step Perf. gradients Result

Initial PO 0 - d(0) = dinitial; s0

SpA for all fi SpA 1 ∇s fi
∣
∣
d=d(0), s=s0

s
(0,1)
i ; i = 1, ..., n f

SpA 2 ∇s fi
∣
∣
d=d(0), s=s(0,1)i

s
(0,2)
i ; i = 1, ..., n f

...

SpA S ∇s fi
∣
∣
d=d(0), s=s(0,S−1)i

s
(0)
Y,i = s

(0,S)
i ; i = 1, ..., n f

Spec. value sim. - - fY(d
(0)) =








f1(d
(0), s(0)Y,1)
.
.

fn f (d
(0), s(0)Y,n f )








Pareto opt. step PO 1 ∇d fi
∣
∣
d=d(0), s=s(0)Y,i

d(1); i = 1, ..., n f

SpA for all fi SpA 1 ∇s fi
∣
∣
d=d(1), s=s0

s
(1,1)
i ; i = 1, ..., n f

SpA 2 ∇s fi
∣
∣
d=d(1), s=s(1,1)i

s
(1,2)
i ; i = 1, ..., n f

...
...

Table 5.2: Progress of the computation of the specification Pareto front

no line search is conducted such that a single candidate is generated in each iteration
of the Pareto optimization.

Computing the specification Pareto front in this way is practically infeasible in terms
of computational costs. The SpA optimization is nested into several other loops. This
is depicted in figure 5.4: The Pareto optimization must be conducted once for each
target trajectory. In each iteration, one sensitivity analysis for the design parameters
d is required and a set of new candidates is generated. For each performance of each
candidate, one iterative SpA optimization must be conducted. In each iteration of the
SpA, one sensitivity analysis for the operating parameters θθθ and statistical parameters
s as well as one performance simulation at the computed specification parameter
vectors is required.

For simplicity, it is assumed that the number of iterations of the Pareto and SpA opti-
mization is constant and that the number of generated candidates is also constant.
Neglecting the sensitivity analysis for the design parameter vectors, the required
number of simulations is given as:

# simulations (spec. front, general) = K · R ·Q · n f · S · (ns + nθ + 1) (5.16)
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5.4 Efficient Computation of the Specification Pareto Front

As comparison, the generation of the nominal Pareto front requires one nominal sim-
ulation for each performance of each candidate:

# simulations (nom. front) = K · R ·Q · n f (5.17)

A fast computation of the nominal Pareto front already requires heavy use of parallel
simulations. Running a Pareto optimization to obtain the specification Pareto front
becomes quickly infeasible as the simulation costs are multiplied with S · (ns + nθ +
1). This factor is equal to the number of simulations required for one SpA. There-
fore, approaches are needed that allow to compute the Specification Pareto front in
reasonable time. Two such approaches are presented in section 5.4.

Target trajectories 1 ... K

Iterations of Pareto optimization

Sensitivity analysis for d

Candidates 1 ... Q

Performances 1 ... n f

Sensitivity analysis for θθθ and s

Iterations of SpA

Simulation of specification value

1 ... R

1 ... S

Figure 5.4: Illustration of the nested optimization loops for generating the specifica-
tion Pareto front.

5.4 Efficient Computation of the Specification Pareto
Front

5.4.1 SpA after Pareto Optimization

For some circuit performances, an improvement in the nominal value may simulta-
neously improve the specification value as was mentioned in section 5.3.3. A design
parameter vector with optimal nominal performance then also has an optimal spec-
ification value. If the specification Pareto front must be generated for a set of these
performances, then a design parameter vector that has a Pareto-optimal nominal per-
formance vector also has a Pareto-optimal specification vector.
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It is sufficient to generate the nominal Pareto front for such a set of performances.
The SpA are conducted subsequently to find the specification vector with the given
minimum yield for the generated solutions. This approach is illustrated in figure 5.5.
During the Pareto optimization, only nominal performance values are considered.
One SpA is run subsequently for each performance of the solution candidate of each
target trajectory.

This method speeds up the computation of the specification Pareto front significantly.
The SpA must only be conducted for one candidate of each target trajectory. The ap-
proach can not be applied to performances, that have no shared optimum for the
nominal and specification value because for such performances a sub-optimal speci-
fication vector is calculated.

Target trajectories 1 ... K

Iterations of Pareto optimization

Sensitivity analysis for d

Candidates 1 ... Q

Nominal simulation

Performances 1 ... n f
(At solution of Pareto optimization)

Iterations of SpA

Sensitivity analysis for θθθ and s

op
ti
m
iz
at
io
n

N
om
in
al
P
ar
et
o

Sp
ec
ifi
ca
ti
on
an
al
ys
is

Performances 1 ... n f

Simulation of specification value

1 ... R

1 ... S

Figure 5.5: Illustration of the approach to speed-up the optimization by conducting
the SpA after the Pareto optimization.

5.4.2 Alternating SpA and Pareto Optimization

As was noted in section 5.2, the specification parameter vectors θθθY,i and sY,i usually
depend only weakly on the design parameter vector d. Therefore the specification
parameter vectors that are obtained for one candidate are a good first approximation
for another candidate. This is used to implement an efficient SpA that is conducted
in an alternating way with the Pareto optimization. A similar approach was already
successfully applied in [SSPG02] for analog circuit sizing. The approach is outlined
in the following:
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The selected candidate in the r-th iteration of the Pareto optimization has the design
parameter vector d(r). The approximated specification parameter vectors for the per-

formance fi are θθθ
(r)
Y,i and s

(r)
Y,i . In the iteration (r+ 1) the Pareto optimization generates

a new candidate with design parameter vector d(r+1). Its specification parameter set

is found by taking the specification parameter vectors θθθ
(r)
Y,i and s

(r)
Y,i of the previous

iteration and conducting a single SpA iteration step. The progression of the compu-
tation of the specification Pareto front is illustrated in table 5.3. For simplicity, the
SpA is only shown for the statistical parameters.

Progression It. step Perf. gradients Result

Initial PO 0 - d(0) = dinitial; s0

SpA step for all fi SpA 1 ∇s fi
∣
∣
d=d(0), s=s0

s
(0)
Y,i ; i = 1, ..., n f

Spec. value sim. - - fY(d
(0)) =








f1(d
(0), s(0)Y,1)
.
.

fn f (d
(0), s(0)Y,n f )








Pareto opt. step PO 1 ∇d fi
∣
∣
d=d(0), s=s(0)Y,i

d(1); i = 1, ..., n f

SpA step for all fi SpA 2 ∇s fi
∣
∣
d=d(1), s=s(0)Y,i

s
(1)
Y,i ; i = 1, ..., n f

Spec. value sim. - - fY(d
(1)) =








f1(d
(1), s(1)Y,1)
.
.

fn f (d
(1), s(1)Y,n f )








Pareto opt. step PO 2 ∇d fi
∣
∣
d=d(1), s=s(1)Y,i

d(2); i = 1, ..., n f
...

Table 5.3: Progress of the computation of the specification Pareto front by running
the SpA and Pareto optimization in alternation

This approach conducts the optimization by alternately taking one step in the Pareto
optimization and the SpA for each performance instead of running a full SpA in each
iteration of the Pareto optimization. The design parameter vector changes in each
iteration of the SpA. The SpA converges during the Pareto optimization due to the
weak dependency of its solution (the specification parameter vector) on the design
parameter vector.

The approach reduces the simulation costs of the computation of the specification
Pareto front. The nested loops for this approach are shown in figure 5.6. Only one
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sensitivity analysis for the operating and statistical parameters is required for each
candidate. The simulation cost can be estimated to:

# simulations (spec. front, alternating) = K · R · Q · n f · (ns + nθ + 1) (5.18)

It is a factor S lower compared to the general calculation of the specification Pareto
front and a factor (ns+nθ + 1) higher than the calculation of the nominal Pareto front.

In contrast to the subsequent SpA optimization approach, the sensitivities of the per-
formances towards operating and statistical parameters are considered during the
optimization. The performances are evaluated at approximated specification param-
eter vectors. The specification Pareto front is obtained correctly for performances,
whose nominal and specification value does not share a common optimum, as dis-
cussed in section 5.3.3. This is shown with experimental results in section 6.8 and
6.9.

Target trajectories 1 ... K

Iterations of Pareto optimization

Sensitivity analysis for d

Candidate 1 ... Q

Performances 1 ... n f

Sensitivity analysis for θθθ and s

Simulation of specification value

1 ... R

Figure 5.6: Illustration of the approach to speed-up the optimization by running al-
ternating SpA and Pareto optimization.

Another speed-up can be reached by conducting the SpA step only for the most
promising candidates that are generated during an Pareto optimization step. This
approach is illustrated in figure 5.7. The decision on the best or most promising can-
didate can not be made based on the specification vector fY. This would require
to take the SpA step for all candidates first, which is exactly what is attempted to
be avoided in this approach. The best candidate can be chosen by looking either at
nominal performance values or an approximation of fY using specification parame-
ter vectors of a candidate from the previous iteration. This approach speeds up the
alternating SpA and Pareto optimization approach to obtain a very efficient method
to compute the specification Pareto front.
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Target trajectories 1 ... K

Iterations of Pareto optimization

Sensitivity analysis for d

Candidates 1 ... Q

Performances 1 ... n f

Nominal simulation

Most promising candidates 1 ... Q1<Q

Performances 1 ... n f

1 ... R

Sensitivity analysis for θθθ and s

Simulation of specification value

Figure 5.7: Illustration of the approach to speed-up the optimization by running SpA
only for the most promising candidates.

5.5 Summary

The specification Pareto front shows the most ambitious specification vectors for a
givenminimumyield requirement. It requires to conduct specification analysis (SpA)
during the Pareto optimization. An optimization based SpA is applied that is derived
from geometric worst-case analysis. The application of the optimization based SpA
leads to a nested optimization problem. Finding its solution is too costly in terms
of computational effort, since it requires to solve the SpA optimization problem for
each candidate and performance generated during the Pareto optimization. Two ap-
proaches to generate the specification Pareto front with reasonable computational ef-
fort were presented: Subsequent SpA after Pareto optimization as well as alternating
SpA and Pareto optimization, which can further be speeded up by applying the SpA
for most promising candidates only. Both approaches target at reducing the numbers
of SpA runs during the computation of the specification Pareto front.
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Chapter 6

Experimental Results

This chapter presents experimental results. First, the used CMOS test circuits are
described in section 6.1 and implementation details are given in section 6.2. Then,
the following experimental results are presented:

• The iterative Pareto generation approach is compared to the NBI approach for an
Operational Transconductance Amplifier in section 6.3 and a Voltage Controlled
Oscillator in section 6.4.

• The effectiveness of the features of the Wavefront FSQP method are investigated
for three Operational Amplifiers in section 6.5 and for a Voltage Controlled Os-
cillator in section 6.6. The Wavefront FSQP algorithm is compared to a general
purpose SQP algorithm for the three Operational Amplifiers in section 6.7.

• The specification Pareto front is computed for a Voltage Controlled Oscillator in
section 6.8 and one Operational Amplifier in section 6.9.

Additionally three application examples for the generated Pareto fronts are given:

• The Pareto fronts of three Operational Amplifiers are used to conduct a structure
selection in section 6.10.1.

• The Pareto front of the Voltage Controlled Oscillator is used to implement a be-
havioral model that includes a description of the realizable performance compro-
mises of the circuit structure in section 6.10.2.

• The Pareto front of a Phased Lock Loop is used for a trade-off analysis in sec-
tion 6.10.3.
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VDD

VSS

Ib

Vb2

V−

V+

Vb1

Vout

Figure 6.1: Structure of the CMOS Operational Transconductance Amplifier

6.1 Test Circuits

This section gives an overview of the used test circuits.

6.1.1 Operational Transconductance Amplifier (OTA)

Figure 6.1 shows the schematic of a CMOS Operational Transconductance Amplifier
(OTA). The OTA is implemented in an industrial 0.8 µm technology with a supply
voltage of 3.3 V. It features 11 tunable design parameters and 97 sizing rules.

6.1.2 CMOS Operational Amplifiers (OpAmps)

Table 6.1 shows an overview over three different CMOS operational amplifier
(OpAmp) circuits. All circuits are implemented in an industrial 180 nm technology
with a supply voltage of 2.2 V. The process variations are modeled with 13 globally
as well as 2 locally varying statistical parameters for each transistor. Changes in the
supply voltage and temperature are modeled with two operating parameters.

6.1.3 Voltaged Controlled 5-Stage Ring Oscillator (VCO)

Figure 6.2 shows the schematic of a voltaged controlled 5-stage ring oscillator (VCO).
The VCO is implemented in a non-industrial artificial technology that models a
180 nm process. It has a nominal supply voltage of vDD=1.8 V. The controlling voltage
has an input range of vc,min=0.6 V to vc,max=1.4 V.
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6.1 Test Circuits

Table 6.1: Overview: Operational Amplifiers

Circuit Nr. Nr. design Nr. operating Nr. statistical Nr. sizing
transistors parameters parameters parameters rules

Opamp A 8 11 2 29 62
Opamp B 20 14 2 53 162
Opamp C 26 14 2 65 206

Vctrl

Vout

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10

N6 N7 N8 N9 N10

N1 N2 N3 N4 N5N0

P0

VDD

VSS

Figure 6.2: Structure of the voltage controlled 5-stage ring oscillator (VCO)

The operating parameters considered are supply voltage vDD, which ranges from
1.6 V to 2.0 V and and the temperature T (in degree Celsius), with a nominal Tnom=27o

and a specified temperature range from −20o to 100o. Global variations of the thresh-
old voltage vth,n and vth,p, oxide thickness tox and carrier mobility µ0,p and µ0,n are
considered as process parameters.

6.1.4 Charge Pump Phased Locked Loop (CPPLL)

Figure 1.4 shows the block diagram of a charge pump phased locked loop. All blocks
are implemented with Verilog-A behavioral models to allow a fast simulation of the
complete circuit. A 2-stage hierarchical simulation approach is used for the Pareto
optimization of the circuit. First each block is simulated on transistor level. The per-
formances are used to determine the behavioral model parameters for a simulation
of the complete circuit on behavioral level. The circuit features 22 design parameters,
8 for the VCO, 9 for the charge pump and 3 for the loop filter.
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6.2 Implementation Details

All computations were run on a dual-quadcore 1.86 GHz Xeon PC with 4 GB
RAM. The Wavefront FSQP algorithm was implemented in C++. The tool
WiCkeD [MAW07] from MunEDA was used as simulation server. Titan [FWZ+92]
from Infineon was used as analog simulator for the OTA and OpAmp circuits and
Spectre [Kun95] from Cadence [Cad] for the VCO circuit.
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6.3 Comparison of Novel Iterative and NBI Approach
for the OTA

The iterative Pareto front generation approach, which was presented in section 3.7,
is compared with the state-of-the-art Normal Boundary Intersection approach for the
OTA circuit. Both approaches have been discussed in chapter 3.

Setup: The trade-off between the three performances transconductance, band-
width and power consumption of the OTA is analyzed. The density of the Pareto
optimal performance vectors on the discretized Pareto front was chosen to D = 8
(See sec. 3.6.3). This leads to 55 Pareto-optimal performance vectors (See eq. (3.33)).

Discussion of the resulting Pareto fronts: Figure 6.3 shows the generated dis-
cretized Pareto fronts for both approaches. The Pareto-optimal performance vectors
are triangulated to draw a surface approximation for a better visualization. For com-
parison, the Pareto front of the iterative approach is shown shaded in the plot of
the NBI approach. As can be seen, peripheral regions of the Pareto front, which are
covered by the novel iterative approach, are not covered by the NBI approach.

Computational time: The Wavefront FSQP algorithm presented in chapter 4 was
used to generate both Pareto fronts. The computation of the Pareto front for the novel
iterative approach took 7,2 hours. The computation of the discretized Pareto front for
the NBI approach took 4,3 hours.
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Figure 6.3: Pareto Fronts for a Operational Transconductance Amplifier for the per-
formances Transconductance, Bandwidth and Power Consumption. For
a better visualisation, a surface is shown that is generated by triangula-
tion of the Pareto-optimal performance vectors. Upper, the triangulated
surface obtained by the iterative approach. Lower, the triangulated sur-
face obtained by the NBI approach and, shaded, the triangulated surface
obtained by the iterative approach for comparison.
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6.4 Comparison of Novel Iterative and NBI Approach
for the VCO

The experiment is repeated for the VCO circuit. Again, the iterative Pareto front gen-
eration approach is comparedwith the state-of-the-art Normal Boundary Intersection
approach.

Setup: The trade-off between the three performances VCO gain, supply current
and VCO jitter is analyzed. The density of the Pareto optimal performance vectors
on the discretized Pareto front was again chosen to D = 8. 55 Pareto-optimal perfor-
mance vectors are generated for both fronts.

Discussion of the resulting Pareto fronts: Figure 6.4 shows the generated dis-
cretized Pareto fronts for both approaches. The iterative approach again covers large
regions of the Pareto front that are not covered by the NBI approach.

Computational time: The computation of the Pareto front for the novel iterative
approach took around 25 hours. The computation of the discretized Pareto front for
the NBI approach around 28 hours.
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Figure 6.4: Pareto Fronts for the VCO Circuit for the performances VCO gain, supply
current and VCO jitter. For a better visualization, a surface is shown that
is generated by triangulation of the Pareto-optimal performance vectors.
Upper, the triangulated surface obtained by the iterative approach. Lower,
the triangulated surface obtained by the NBI approach and, shaded, the
triangulated surface obtained by the iterative approach for comparison.
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6.5 Evaluation of Wavefront FSQP Features for the
Three OpAmps

In this experiment, the effectiveness of the different Wavefront FSQP features that
were introduced in chapter 4 is investigated.

Setup: The nominal Pareto fronts for all three OpAmp circuits are computed for the
performances slew rate and power consumption. The optimization is conducted and
the features of the Wavefront FSQP algorithm are activated one-by one as follows:

1. STD: The optimization algorithm only looks for better candidates along the stan-
dard search direction.

2. SOC: The optimization algorithm looks for better candidates along the standard
search direction. For infeasible candidates, a second-order correction step is ap-
plied.

3. TILT: The optimization algorithm looks for better candidates along the stan-
dard search direction and the tilted search direction. For infeasible candidates,
a second-order correction step is applied.

4. WAV: The optimization algorithm looks for better candidates along the stan-
dard search direction and the tilted search direction. For infeasible candidates,
a second-order correction step is applied. Additionally, the Wavefront approach
is used: The CNOPs exchange solutions.

A discretized Pareto front with 16 Pareto-optimal performance vectors is computed
for each configuration of the algorithm. A set of specifications, which are shown in
table 6.9, is set on the remaining performances.

Discussion of resulting Pareto fronts: The results are shown in figure 6.5. As
can be seen, the quality of resulting discretized approximation of the Pareto front im-
proves with the activation of additional features of the Wavefront FSQP algorithm.
Without tilting (STD and SOC), the computed discretized Pareto fronts show only
parts of the performance capabilities of the circuit. Additionally sub-optimal perfor-
mance vectors are computed, especially for OpAmp B. The optimization with tilting
(TILT) results in a discretized Pareto front that shows a wider range of the perfor-
mance capabilities of the OpAmp circuits. The activation of the exchange of solutions
(WAV) shows again an improvement in the resulting discretized approximation of
the Pareto front compared to the case without exchange (TILT), but not as drastically
as between with tilting (TILT) and without tilting (STD and SOC).

Computational costs: Tables 6.2 shows the computational time and number of
simulations for all optimization runs. One simulation includes the evaluation of all
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Figure 6.5: Evaluation of Wavefront FSQP features for OpAmp Circuits
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performances for one candidate. The activation of the different features of the Wave-
front method leads in all cases to increased simulation costs and longer computa-
tional time. This is caused by additional candidates that are computed by second-
order correction or for the tilted search direction. Secondly, the overall number of it-
erations increases. With additional features the optimization terminates after a higher
number of iteration steps, which is shown in tables 6.3, 6.4 and 6.5.

Table 6.2: Computational time and number of simulations of the Wavefront FSQP
algorithm with different features activated.

OpAmp A OpAmp B OpAmp C
Opt. Comp. Nr. of Comp. Nr. of Comp. Nr. of

time simulations time simulations time simulations
STD 24 min 428 50 min 1039 1 h 13 min 943
SOC 1 h 31 min 1802 1 h 05 min 823 2 h 18 min 1680
TILT 2 h 32 min 3692 5 h 29 min 5341 6 h 57 min 5558
WAV 4h 37 min 6226 11h 30 min 11088 10 h 16 min 7858

Discussion of the significance of the features: In each iteration, the optimiza-
tion selects one new candidate with the largest improvement in the objective function
value compared to the best candidate of the last iteration. The candidates can be clas-
sified according to the following cases:

1. SSD: Candidate that was found with the standard search direction.

2. SSD+SOC Candidate that was found with the standard search direction after ap-
plication of a second-order correction step.

3. TSD: Candidate that was found with the tilted search direction.

4. SSD+SOC Candidate that was found with the tilted search direction after appli-
cation of a second-order correction step.

A feature that generates a certain class of candidates does not contribute to the
progress of the optimization, if it never generates the candidate with the largest im-
provement in the objective function value.

Tables 6.3, 6.4 and 6.5 give an overview over the class of candidates that had the
largest improvement in the objective function value in one of the iteration steps. The
progress in all 16 CNOPs is shown together. As can be seen, every class of candidates
contributes to the progress of the optimization. All features are significant for the
Pareto optimization of the three OpAmp test circuits.

For the optimization with the Wavefront approach, the number of exchanges of solu-
tions is also shown. As can be seen, the exchange of solutions occurs in a significant
number of iteration steps. Candidates from one CNOP regularly create the largest
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improvement in the objective function of another CNOP. For the OpAmp B, an ex-
change occurred in 132 of 435 iteration steps.

Table 6.3: Nr. of selected candidates encountered during optimization by different
features to generate new candidates for OpAmp A

Nr. total Nr. selected candidates generated by Nr.
Opt. it. steps SSD SSD+SOC TSD TSD+SOC Exchanges
STD 41 41 - - - -
SOC 124 21 103 - - -
TILT 135 41 19 17 58 -
WAV 254 46 27 101 80 49

Table 6.4: Nr. of selected candidates encountered during optimization by different
features to generate new candidates for OpAmp B

Nr. total Nr. selected candidates generated by Nr.
Opt. it. steps SSD SSD+SOC TSD TSD+SOC Exchanges
STD 80 80 - - - -
SOC 125 108 17 - - -
TILT 202 66 29 84 23 -
WAV 435 94 35 272 34 132

Table 6.5: Nr. of selected candidates encountered during optimization by different
features to generate new candidates for OpAmp C

Nr. total Nr. selected candidates generated by Nr.
Opt. it. steps SSD SSD+SOC TSD TSD+SOC Exchanges
STD 120 120 - - - -
SOC 142 61 81 - - -
TILT 229 87 41 92 9 -
WAV 307 117 46 128 16 39
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6.6 Evaluation of Wavefront FSQP Features for the
VCO

In this experiment, the effectiveness of the different Wavefront FSQP features that
were introduced in chapter 4 is investigated for another circuit class. The setup is the
same as described in section 6.5. The Pareto fronts are generated for the VCO circuit
for the performances VCO Gain and Jitter. The density is D=8, such that 10 Pareto-
optimal performance vectors are generated for each configuration of the Wavefront
FSQP algorithm.

Discussion of resulting Pareto fronts: Figure 6.6 shows the resulting discretized
Pareto fronts for the four configurations of the Wavefront FSQP algorithm that are
described in section 6.5. As can be seen, the activation of the second-order correction
(SOC) generates a discretized Pareto front that shows almost the complete range of
performance capabilities. The tilting (TILT) and exchange of solutions (WAV) can
achieve slightly superior solutions at the ’knee’ of the discretized Pareto front.

It can be noted that the optimization for some circuits or performances requires more
sophisticated optimization strategies as for others. The discretized Pareto fronts of
the OpAmps shown in section 6.5 required second-order correction, tilting and the
Wavefront approach in order to show the complete trade-off range of the perfor-
mances. In contrast, the VCO requires only second-order correction to gain reason-
able insight in the performance capabilities.

Computational time and significance of FSQP features: Table 6.6 shows the
computational time and number of candidates of the different classes introduced in
section 6.5. The tilting doubles the simulation costs, caused by conducting two line
searches instead of a single one. As can be seen, the tilting is not required as often as
for the OpAmp circuits. The standard search direction with/without second-order
correction generate the largest part of the candidates with the highest improvement
in the objective function.

Table 6.6: Overview: Iteration steps and computational time for the VCO

Nr. total Nr. selected candidates found by Nr. Comp.
Opt. it. steps SSD SSD+SOC TSD TSD+SOC Exchanges Time
STD 98 98 - - - - 2 h 11 min
SOC 46 32 14 - - - 2 h 42 min
TILT 83 42 24 15 2 - 5 h 16 min
WAV 90 65 14 10 2 9 4 h 30 min
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Figure 6.6: Evaluation of Wavefront FSQP features for VCO Circuit
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6.7 Comparison of Wavefront FSQP to General
Purpose SQP for the Three OpAmps

In this experiment, the Pareto fronts of the OpAmp circuits that were generated by
the Wavefront FSQP algorithm are compared to the Pareto fronts found by a general
purpose SQP algorithm. It is a line search based SQP algorithm that uses an L1 cost
function, which accepts constraint violations.

A meaningful comparison of different optimization algorithms for Pareto optimiza-
tion is very difficult. It would require to investigate different circuit classes as well as
different performance trade-offs. Additionally, each investigation must be conducted
several times, since the results are usually also depending on the initial sizing sup-
plied to the optimizer. Therefore, this experiment can only give a basic impression
of the efficiency of the Wavefront FSQP algorithm compared to the standard SQP
optimizers. The criteria used for comparison are:

• The quality of the solutions. Are the solutions of the Wavefront FSQP algorithm
Pareto-better or Pareto-worse than the solutions found by the general purpose
SQP method?

• The spread of the solutions. Is the complete trade-off range covered or does
the general purpose SQP algorithm generate compromises between the perfor-
mances that are not visible in the discretized Pareto front found by the Wavefront
FSQP algorithm?

• Computational time and required number of simulations.

Setup: The three OpAmps are used as test circuits. The Pareto front found by the
setup WAV according to section 6.5 is used for comparison. In this setup all fea-
tures of the Wavefront FSQP algorithm are used. A number of 16 Pareto-optimal
performance vectors are computed with the general purpose SQP method. The gen-
eral purpose SQP algorithm regularly returned solutions that featured violations in
the constraints. These infeasible solutions are removed subsequently from the dis-
cretized Pareto front because they are no valid sizings of the circuit.

Comparison of resulting Pareto fronts: Figure 6.7 shows the resulting discretized
Pareto fronts. The general purpose SQP algorithm only returns two feasible solutions
for OpAmp A. It accepts constraint violations during the optimization and later fails
in 14 CNOPs to converge to a feasible solution. For OpAmp B, the general purpose
method generates ten feasible solutions. These cover the complete trade-off range but
one solution is clearly non-optimal. The others are slightly inferior to the solutions
found by the Wavefront FSQP method. Finally, for OpAmp three, the SQP method
generates twelve feasible solutions. Again these solutions are slightly inferior com-
pared to the Pareto front generated by theWavefront FSQPmethod and, additionally,
do not cover the complete range of trade-offs.
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Figure 6.7: Comparison of Wavefront FSQP to general-purpose SQP algorithm for
three OpAmp circuits
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Comparison of computational time and costs: The number of required simula-
tions is significantly higher for the Wavefront FSQP algorithm. This is caused by the
need of two line searches and the parallel generation of new candidates. Due to the
efficient use of parallelism, the computational time is shorter for the Wavefront FSQP
method for the generation of two of the three Pareto fronts.

Table 6.7: Overview: Comparison of computational time for Wavefront FSQP algo-
rithm (WAV) and a general purpose SQP algorithm (SQP)

OpAmp A OpAmp B OpAmp C
Opt. Comp. Nr. of Comp. Nr. of Comp. Nr. of

time simulations time simulations time simulations
WAV 4 h 37 min 6226 11 h 30 min 11088 10 h 16 min 7858
SQP 8 h 31 min 2059 7 h 26min 1074 11 h 19 min 1797
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6.8 Specification Pareto Front for the VCO

In this experiment, the discretized specification Pareto front of the VCO circuit is
computed with the approaches presented in chapter 5.

Setup: The discretized Pareto fronts are generated for the VCO gain and the sup-
ply current. First, the nominal Pareto front is generated. Then a SpA is con-
ducted at each nominal Pareto-optimal performance vector to obtain the most am-
bitious specification vector that can be realized for a minimum yield requirement of
Yg ≥ Ymin = 99.73%. This minimum total yield requires an individual yield for each
performance of Y0 = 99.865%. The SpA is conducted with a tolerance region defined
by βY = 3.0. See section 5.2.2 for further details. The resulting specification vectors
compose the specification Pareto front as found by the approach - SpA after Pareto
optimization - that was discussed in section 5.4.1.

In a second run, the specification Pareto front is computed with the approach that
conducts an alternating SpA and Pareto optimization, see sec. 5.4.2. The approach
additionally uses the method that runs a SpA for the most promising candidates only.

Computational time: The computational time for the generating of the discretized
Pareto fronts were 3h 52min for the SpA after Pareto optimization approach and 8h
14 min for the alternating SpA and Pareto optimization.

Discussion of resulting Pareto fronts: The resulting discretized nominal Pareto
front and discretized specification Pareto fronts are shown in figure 6.8. The nomi-
nal performance vectors are, as expected, superior to the specification vectors. The
specification vectors consider the degradations to the performances due to changing
operating conditions and process variations. The specification Pareto fronts found by
the two approaches are composed of equally optimal specification vectors. It can be
followed, that the nominal values and specification values share a common optimum
for these performances as discussed in section 5.3.3. It would have been sufficient to
compute the nominal Pareto front and conduct the SpA subsequently.

Verification of minimum yield requirement with Monte Carlo a nalysis: A
Monte-Carlo analysis (MCA) with 15 000 sample elements is conducted for the al-
ternating SpA and Pareto optimization approach. In order to verify that the mini-
mum yield requirement is met, the yield is measured in regard to the corresponding
specification parameter vectors that are shown in figure 6.8. One design parameter
vector was computed for each point of the specification Pareto front. Eight Monte-
Carlo samples are required at the eight different design parameter vectors, each with
15 000 sample elements.
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Figure 6.8: Nominal and Specification Pareto Fronts for VCO circuit

The demanded total minimum yield is 99.73%. This lead to individual yield require-
ments of 99.865% in regard to each individual performance specification. This is a
lower bound consideration, such that the total yield should be equal or higher to the
demanded minimum yield. Table 6.8 shows the specification values that are equal
to the Pareto-optimal specification vectors, which compose the specification Pareto
front. The estimated yield in regard to each performance specification as well as the
total yield is also listed for each point on the specification Pareto front. The total
yield meets for all solutions the minimum yield requirement. The MCA also shows
that the specification analysis is slightly too pessimistic in the calculation of the VCO
supply current specification values. This high accuracy Monte-Carlo analysis to ver-
ify the results took about 76 hours compared to about 8h for the computation of the
complete specification Pareto front.

6.9 Specification Pareto front for one OpAmp

Setup: The OpAmp A is used as test circuit. The considered performances are
power source rejection ratio (PSRR) and the transit frequency. There is an inherent
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Table 6.8: Yield values for specification vectors on specification Pareto front

Specification values Yield [%]
Nr. Current [µA] Gain [MHz/V] (Current) (Gain) Total
1 73.85 853.9 99.92 99.85 99.77
2 80.19 939.4 99.97 99.85 99.82
3 82.69 1074 99.95 99.88 99.84
4 90.49 1317 99.95 99.88 99.83
5 104.4 1406 99.98 99.87 99.85
6 128.3 1508 99.96 99.88 99.84
7 150.0 1564 99.98 99.89 99.87
8 189.6 1590 99.95 99.89 99.84

trade-off between these two performances: A high transit frequency requires small
transistor sizes. High PSRR is reached by better matching of transistors, which re-
quires large transistor sizes. In addition to the saturation constraints, a minimum DC
Gain of 70 dB and a minimum Phase Margin of 60 degree is demanded.

The specification Pareto front for a minimum yield requirement of Yg ≥ Ymin =
99.73% is computed. This requires an individual yield requirement for both per-
formances of Y0 = 99.865% or βY = 3.0. See section 5.2.2 for details. Such a design
with βY = 3.0 is also known as 3-sigma design.

The specification Pareto front is computed once with the approach that runs the SpA
subsequently after the Pareto optimization, see sec. 5.4.1, and once with the approach
with alternating SpA and Pareto optimization, see sec. 5.4.2. The approach with
alternating SpA/Par. Opt. is further speeded up by applying the SpA only for the
most promising candidates.

Discussion of resulting specification Pareto fronts: Figure 6.9 illustrates the re-
sulting Specification Pareto fronts for the two approaches. The specification Pareto
front found by SpA after Pareto optimization shows inferior specification values com-
pared to the Specification Pareto front found by the alternating approach.

The PSRR value depends heavily on the matching of some transistors. These transis-
tors must be large to decrease the mismatch due to local process variations. The ‘SpA
after Pareto optimization‘ approach only optimizes nominal performance values. As
can be seen in figure 6.9, the nominal performance values of the solution of the ‘SpA
after Pareto optimization approach‘ show optimal performance values. In the nominal
case, the transistors are perfectly matching, such that the influence of the local pro-
cess variations is not visible. As can be seen, the resulting solutions are very sensitive
to these local process variations since the computed specification values for 99.73%
yield only reach PSRR values of about 72dB.
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Figure 6.9: Specification Pareto Fronts for OpAmp A

The ‘alternating SpA and Pareto optimization approach‘ considers the influence of the
process variations during the Pareto optimization. It computes solutions that are less
sensitive to these variations and show superior specification values with PSRR values
up to 98dB. These solutions have inferior nominal performance values. This shows
that the performance PSRR does not share a common optimum for the specification
value and nominal value as was discussed in section 5.3.3. The alternating approach
is required to generate the specification Pareto front.

Investigation with Monte-Carlo analysis: The difference in the Specification
Pareto fronts is further investigated by running a Monte Carlo analysis (MCA) with
5000 sample elements for each obtained Pareto-optimal solution. The resulting per-
formance distributions are shown together with the specification Pareto fronts in fig-
ure 6.10.

The spread of the PSRR performance values is larger for the solutions obtained by the
SpA after Pareto optimization approach. The sensitivity of the PSRR values on the
process variations is higher. The alternating approach generates solutions that have
less sensitive PSRR values. This results in the superior specification values compared
to the SpA after Pareto optimization approach.
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Figure 6.10: Monte-Carlo analysis for specification Pareto Fronts for OpAmp A
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6.10 Application Examples

In the following, two examples for the application of the Pareto front of analog circuit
structures are given. Firstly, a trade-off analysis and structure selection for the three
OpAmp circuits is described. Secondly, the development of a VCO behavioral model
that considers the trade-off between VCO gain and supply current is presented.

6.10.1 Selection of OpAmp Structure

Motivation: One application of the Pareto front is the selection of a suitable circuit
structure by looking at the performance capabilities of possible alternatives. This is
illustrated for the three OpAmp circuit structures. As can be seen in table 6.1, the
OpAmps differ in number of transistors.

Generation of the Pareto fronts: For each of the OpAmp circuits, the Pareto front
for the performances slew rate and power consumption is computed. An application-
dependent set of specifications is used for the remaining performances, which is
shown in table 6.9. It assures stability, a minimum gain, and appropriate rejection
ratios.

Trade-off analysis and structure selection: The Pareto fronts of the three OpAmp
structures are shown in figure 6.11. The figure shows that the power consumption
is decreased by switching From OpAmp A to B and from OpAmp B to C for a fixed
slew rate value. A comparison with table 6.1 reveals that this is equal to choosing a
structure withmore transistors. In this case, the designer has two degrees of freedom.
He can implement a structure with higher slew rate either by accepting a higher
power consumption or by switching to a structure with higher number of transistors.

Table 6.9: Application dependent specifications for the OpAmp circuits

Performance Spec
DC gain > 65 dB

Phase Margin > 56o

CMRR > 80 dB
PSRR > 70 dB

6.10.2 Development of a Trade-off Behavioral Model For the V CO

Motivation: For large-scale circuits, the time to simulate the complete circuit on
transistor level becomes too long. Behavioral models are used to represent analog
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Figure 6.11: Topology Selection for OpAmp Circuits

circuit blocks in such circuits. These behavioral models allow a fast simulation of the
circuit but at the expense of loosing implementation details. The behavioral models
are, usually, parametrized to represent different circuit implementations. The param-
eters of such behavioral models are circuit performances such as gain or bandwidth.

Pareto fronts can be used to extract realizable ranges as well as trade-offs between the
behavioral model parameters. This allows to apply realistic values to these model pa-
rameters and assures that a circuit can be implemented with the properties described
by the behavioral model. This is shown in the following for the VCO circuit.

Trade-off extraction of VCO performances: The extraction of the trade-offs and
realizable ranges is illustrated for the VCO circuit. The VCO output frequency fout is
modeled as a linear function of the controlling input voltage Vin and the VCO gain
Kvco:

fout = (Vin −Vmin) · Kvco + fmin (6.1)

The VCO gain depends on the circuit implementation. In order to assure that the
VCO gain can be reached by a given circuit structure, all realizable values of the VCO
gain must be computed. Additionally, higher gain will also lead to a higher required
supply current Ivco. This trade-off can be considered in the behavioral model by
generating the Pareto front between the supply current and gain of the VCO, which
is shown in figure 6.12.

In order to implement the trade-off in the behavioral model, the relation between the
current and gain is modeled by fitting a 4-th order polynomial function to the Pareto
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Figure 6.12: Polynomial fit of the Pareto front for the VCO

front as shown in figure 6.12. It describes the gain as a function of the supply current:
Kvco = p(Ivco). Additionally, the possible ranges of the supply current that lead to
different gain values can be read from the Pareto front. The range for the supply
current is about 63 µA to 171 µA as can be seen from figure 6.12. With this function,
the behavioral model can be set up that considers the extracted trade-off between
VCO gain and supply current.

6.10.3 Trade-off analysis for a CPPLL

Motivation: The Pareto front illustrates the possible optimal compromises between
the performances. It is of interest to see, how much of one performance must be
sacrificed to improve another. This can be investigated by looking at the slope the
Pareto front. This is especially interesting if the Pareto front has a ‘knee‘, at which the
trade-off rate of improving one performance at the cost of another changes quickly.
This is shown in the following for the CPPLL circuit.

Trade-off analysis: Figure 6.13 shows the Pareto front of the charge pump phase
locked loop for the performances locking time and power consumption. The Pareto
front has a clear ’knee’ at a compromise of about 2.3 µs for 0.8 mW. To obtain other
compromises, one either has to sacrifice a large amount in terms of settling time to
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reduce the power consumption or increase the power consumption by a large amount
to reduce the settling time.

Computational time: The computation of the Pareto front of the CPPLL took 6 h
and 52 min.
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Figure 6.13: Pareto front for the CPPLL
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Chapter 7

Conclusion

Despite the trend to implement functionality by means of digital hardware, there is
also a growing need for analog circuitry, e.g., digital circuits need analog interfaces
to communicate with the ’analog’ real world.

Analog circuit design requires newmethodologies for an increased automation of the
design flow. Many tasks are still done manually by analog designers. Recent years
have shown a trend towards an automatic optimization of the circuit sizing step,
known as automatic sizing or analog optimization. The sizing step is challenging
due to themany inherent trade-offs between analog circuit performances. An optimal
compromise between the performances must be found that fits the application.

This leads to the task of computing the utmost performance capabilities of the circuit,
which supplies knowledge about all possible optimal performance compromises.
The computation of the performance capabilities is denoted as performance space
exploration. Knowledge of the performance capability allows to

• select a circuit structure from alternatives based on the different performance ca-
pabilities, whichwas shown for three alternative OpAmp circuits in section 6.10.1
,

• compute realizable ranges and the trade-offs in the model parameters for
parametrized behavioral models as shown for a VCO behavioral model in sec-
tion 6.10.2,

• and realize an automatic hierarchical sizing process for large-scale circuits as de-
scribed in section 1.2.3.

Performance space exploration is a challenging field due to the computational costs
involved to evaluate the performances by circuit simulation. Additionally, the perfor-
mance capabilities are degraded due to changing environmental conditions during
the operating time of the circuit and process variations that occur during the pro-
duction of the circuit. With decreasing device sizes in modern technologies, there is
a relative increase in the influence of such tolerances on the electrical properties of
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analog circuits. Therefore, these tolerances can not be ignored when computing of
the performance capabilities of an analog circuit structure.

The approaches to solve the performance space exploration task presented in this
thesis apply simulation-based deterministic Pareto optimization. This methodology
is advantageous due to the great availability of simulation tools in industry and the
efficiency of deterministic optimization algorithms. A complete methodology for the
Pareto optimization of analog circuits has been described: In chapter 2, the funda-
mentals of the performance space exploration task and the concepts required to gen-
erate the Pareto front are discussed. It is shown that the performance space explo-
ration task requires to solve a multi-objective optimization problem. A single so-
lution to this multi-objective optimization problem is a Pareto-optimal performance
vector. The set of all Pareto-optimal performance vectors is called the Pareto front. A
discrete approximation of the Pareto front that consists of several Pareto-optimal per-
formance vectors is computed by the presented approaches. Several advancements
in the methodology of Pareto optimization and implementation with deterministic
optimization algorithms are presented in this thesis:

Iterative Pareto front generation approach: In chapter 3, the methodology to
transform the multi-objective optimization problem into a set of scalar optimization
problems is shown. The solution of one scalar optimization problems leads to a single
Pareto-optimal performance vector. The great suitability of the Minmax and equiva-
lent Goal-attainment multi-objective optimization methods are discussed. A compre-
hensive geometric illustration of the selection of different compromises is derived by
looking at the target trajectory. An iterative approach is shown that allows to capture
the total extent of the Pareto front for more than two performances for the first time.
It is based on so-called trade-off limits that are equal to the Pareto front of a subset of
the performances. These trade-off limits define the boundary of a high dimensional
Pareto front. The boundary shows the total extent of the Pareto front.

The remainder of chapter 3 describes an approach to select the target trajectories. A
set of so-called compromise weight vectors that show the relative importance of each
competing performance is mapped on a set of base points. Each base point defines
one of several parallel target trajectories. The resulting Pareto-optimal performance
vectors are nearly evenly spread over the trade-off range.

The presented contributions to the formulation of suitable scalar optimization prob-
lems lead to an improved representation of the Pareto front by the set of computed
Pareto-optimal performance vectors. It establishes a fundamental methodology to
assure, that the complete range of trade-offs are covered nearly evenly for the compu-
tation of the Pareto front for more than two performances with deterministic Pareto
optimization methods. The improved coverage of the trade-off ranges compared to
the state-of-the-art is shown for a numerical example in section 3.8, an operational
transconductance amplifier (OTA) in section 6.3 as well as a voltage-controlled oscil-
lator (VCO) in section 6.4.
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Wavefront Feasible Sequential Quadratic programming algo rithm: The Wave-
front Feasible Sequential Quadratic programming algorithm (FSQP) is described in
chapter 4. It is called a feasible optimization algorithm because it allows no violation
in any inequality constraint. This is advantageous since the optimization constraints
in analog sizing include so-called sizing rules that are based on basic circuit design
knowledge. If sizing rules are violated, the circuit behavior often becomes very non-
linear, e.g., due to a transistor leaving the saturation operating region. Such sizings
constitute no valid designs of the circuit and, therefore, must be disregarded when
computing the performance capabilities. Feasible optimization algorithms require
additional features to allow an efficient optimization. Two such features were pre-
sented, the tilting of the search direction and second-order correction. Additionally,
the algorithm makes heavy use of parallel simulations to speed up the computation
of the Pareto front.

The Wavefront approach was also introduced in chapter 4. It features an exchange of
solutions between the scalar optimization problems in order to improve global con-
vergence. If one scalar optimization is stuck at a local minimum during the iterative
optimization process, it is supplied with alternative candidates from the other scalar
optimization problems.

Finally, it is shown in chapter 4 that it is advantageous to use both the Minmax and
Goal-attainment formulation during the optimization compared to using solely one
of both formulations. The Goal-attainment method is suited to set up and solve the
quadratic optimization problem and the Minmax method is suited for the line search
and Wavefront approach.

The described algorithm is developed with the special requirements for the appli-
cation in the Pareto optimization of analog circuits in mind. It constitutes a novel
efficient deterministic optimization algorithm for this task. The clear significance of
the different Wavefront FSQP features to obtain a representative set of Pareto optimal
performance vectors is shown for the optimization of three OpAmp circuits in section
6.5 and a VCO circuit in section 6.6. The efficiency of the Wavefront FSQP algorithm
compared to other optimization algorithms is shown for the three OpAmp circuits in
section 6.7.

Specification Pareto front: The computation of the so-called specification Pareto
front is discussed in chapter 5. The specification Pareto front of an analog circuit
shows the most ambitious specifications on the performances that can be set to
achieve a given minimum yield. The specification Pareto front considers the degra-
dation of the performance values due to changing operating conditions and process
variations.

Known worst-case methods are used to compute the specification values for a circuit
sizing, known as specification analysis. It allows to formulate the optimization prob-
lem to find the specification Pareto front. The straight-forward computation of the
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7 Conclusion

specification Pareto front in reasonable time is not possible. Alternative approaches
are presented in this thesis. The applicability of the approaches to different circuit
performances is discussed. It is shown that it is relevant whether the optimum for
the nominal performance and specification value is reached for the same sizing of the
circuit. This is shown for two circuit examples, a VCO circuit in section 6.8 and an
OpAmp circuit in section 6.9.

The specification Pareto front allows to consider operating conditions and process
variations during the deterministic Pareto optimization of analog circuits. Since the
influence of such tolerances increases with modern technologies, these specification
Pareto fronts might become more relevant to describe the performance capabilities of
analog circuit structures in comparison to the nominal Pareto fronts.

In conclusion, the presented methods contribute to the development of Pareto opti-
mization methods for analog integrated circuits from a research field in analog EDA
towards an application in industrial design flows and EDA tools in order to support
designers in future analog circuit design tasks.
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Appendix A

Pareto Optimization with Weakly
Pareto-Optimal Performance Vectors

The presence of weakly Pareto-optimal performance vectors that are not Pareto-
optimal has two consequences:

1. The performance vector generated with the Minmax or Goal-Attainment method
is not guaranteed to be Pareto-optimal. It can be weakly Pareto-optimal only.
Derivation (3.2) does not hold.

2. A performance vectors that is Pareto-optimal in regard to a subset of the per-
formances does not need to be Pareto-optimal in regard to the complete set of
performances. It can be weakly Pareto-optimal only. Derivation (3.16) does not
hold.

The presence of weakly Pareto-optimal performance vectors that are not Pareto-
optimal cannot be tested easily. Be f∗ the optimum of a Minmax optimization. The
performance vector f∗ is weakly Pareto-optimal but not Pareto-optimal if an improve-
ment in one performance fi is possible without degrading the remaining. The fol-
lowing second optimization problem must be solved in order to find a guaranteed
Pareto-optimal performance vector:

min
d
fi s.t. f

Si = f∗Si ; Si = S f \ fi (A.1)

This second optimization must be conducted for all performances fi ∈ S f to assure
that the final result is Pareto-optimal. This is illustrated in figure A.1 for the case of
two performances. The intersection point of the target trajectory and Pareto front is
weakly Pareto-optimal but not Pareto-optimal. The optimum of the Minmax method
could be located anywhere along the boundary that runs parallel to the f1 axis. For
example, the optimum could be the weakly Pareto-optimal solution f∗W . By optimiz-
ing f1 without allowing a degradation of f2, the Pareto-optimal performance vector
f∗P is found. Another optimization in f2 leads to no improvement.
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A Pareto Optimization with Weakly Pareto-Optimal Performance Vectors

f1

f2

F

(c)f1

f2

F

min
d
f1 s.t. f2 = f ∗W2

f2 = f ∗W2
f∗P f∗Wf∗W

Figure A.1: Pareto optimization with weakly Pareto-optimal performance vectors
that are not Pareto-optimal. Left, The Minmax method calculates the
weakly Pareto-optimal performance vector f∗W somewhere in on the em-
braced part of the boundary. Right, a subsequent minimization of f1 finds
the Pareto-optimal performance vector f∗P.

To avoid weakly Pareto-optimal performance vectors, n f subsequent optimizations
are required for each Pareto-optimal performance vector. This increases the com-
plexity of the optimization setup but the finally obtained performance vectors are
guaranteed to be truly Pareto-optimal.
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