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Ohne Sie wäre diese Arbeit nicht möglich gewesen. Mein besonderer Dank gilt auch
den Gutachtern Prof. Dr. Gerd Fischer und Prof. Dr. Tomás Recio sowie dem Vorsitzen-
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Zusammenfassung

Diese Arbeit beschäftigt mit reellen ebenen algebraischen Kurven und ihren Eigen-
schaften. Dabei stellt sich heraus, dass reelle Kurven am besten durch komplexe Zahlen
repräsentiert werden. Das Transformationsverhalten und Normalformen lassen sich in ih-
nen wesentlich einfacher beschreiben. So bewirken Rotationen der Ebene entsprechende
Rotationen der Kurvenkoeffizienten. Eine translatorische Normalform kann darüber hin-
aus durch Auslöschung von Kurvenkoeffizienten erreicht werden. Eine derartige Form
vereinfacht die Erkennung etwaiger Rotations- und Spiegelsymmetrien: Es sind nur Ko-
effizientenmuster aufzudecken und Winkeldiagramme zu analysieren. Für die Darstel-
lung invarianter Eigenschaften werden Tensordiagramme herangezogen. Dabei genügt es
geschlossene Diagramme aus den gewünschten Tensonsorknoten zu erstellen. Diagramm-
Rechenregeln schaffen zusätzliche Vereinfachungen, um geometrische Eigenschaften der
Kurven ansprechend darzustellen.

Abstract

This thesis concerns real plane algebraic curves and their attributes. It can be ascer-
tained that real curves are best represented by complex numbers. In this case, normal
forms and the behavior of curves under transformations of the plane can be described
quite intuitively. Rotations of the plane effectuate rotations of the curve-coefficients.
Even more: A translatorial normal form is accessible just by greedily making coeffi-
cients vanish. The presented form also permits an easy symmetry-detection. Potential
rotational and reflectional symmetries can be uncovered by finding additional coefficient
patterns and by analyzing angle diagrams. Invariant attributes of curves are visualized
by closed tensor-diagrams with the desired tensors as nodes. Diagrammatical calcula-
tion rules cut complicated situations down and geometric properties of the curve have a
simplified representation.
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1. Introduction

For searching and examining, for describing and understanding structures the appropri-
ate language is always crucial: It must be powerful enough to encompass the circum-
stances, yet succinct enough to get to the point of things. The best way to describe
structures is mathematics. But also within mathematics different things require differ-
ent descriptions - have their own languages so to say. We follow this path of finding and
analyzing real plane algebraic curves - or short: curves - in their adequate languages.
We will see complex numbers in two- and three-dimensional coefficient tables represent-
ing curves, revealing deeper structures of transformations, closed diagrams talk about
invariant properties, angle diagrams tell from symmetries and many more. In principle
it does not matter where the curves came from, however nowadays they will most likely
originate from dynamic geometry. All that matters is that in the end a curve coeffi-
cient vector can be provided for our analysis of features such as normal forms, invariant
properties and symmetries.

1.1. Curves from dynamic geometry programs

In dynamic geometry programs algebraic curves mostly occur as loci. For example a ruler
and compass construction is made by placing free points in a plane, restricting points to
a line or a circle (semi-free points) and constructing one or more points, whose position
is totally determined by the construction (dependent points). Already at this point the
existing programs differ widely: Many programs do not incorporate points at infinity.
Thus parallel lines do not have an intersection available for further constructions. Also
complex intersections, such as intersection points of two unit circles, whose centers are
more than two units apart, are not at all common.
A locus emerges when a distinct semi free point (mover) - a point with one degree of free-
dom like a point on a circle or a line - is moved while a distinct dependent point (tracer)
is watched: To each position of the moved semi-free point, the dependent point describes
a point on a curve (see Figure 1.1). If no more than ruler and compass constructions
are used, the described curve is algebraic. A rigorous mathematical formalization by the
use of straight-line programs can be found in [30] and [31].
In this way dynamic geometry programs are able to determine a large enough sample
point set of a branch of a curve. These points are usually of high arithmetic precision.
These points can be used to determine a curve coefficient vector of minimal degree. As
a first entry-point on this topic my thesis-supervisor and I wrote a paper [35], which can
be interpreted as preliminary work to this thesis (see also Appendix C). Alternatively
we refer to [48], [49] and [50] for further work on coefficient-recognition.
Of course, the numerical quality of the coefficient vector depends on the selection of
the points given by the dynamic geometry program. We would normally expect the
points to be somehow “distributed well” over the “whole” curve, but certain difficulties
impose restrictions. If the software does not make use of the projective extension of the

1



1. Introduction

Figure 1.1.: Construction of a Limaçcon with Cinderella

Euclidean plane or if it lacks complex numbers, only small parts of curve-branches might
be represented by sample points. When the mover runs into a situation where points at
infinity or (intermediately) complex points would be needed, no more sample points are
available thereafter.
There is also a more subtle restriction by singularities: Singularities impose a serious
boundary for the mover-movement in some dynamic geometry software. Only a complex
detour can solve this problem (see [31]). Thus only dynamic geometry software incor-
porating complex projective calculation is capable of providing a reasonably distributed
sample point set, in case the selection is not restricted by the user. We therefore use
Cinderella (see [40]), not only for dealing with algebraic curves from dynamic geometry
software, but also for our figures. However, a principle difficulty remains: The user him-
self may constructively restrict the sample-points to a tiny part of a curve. For example,
an extreme case would be if the samples were taken from such a tiny part of a parabola
that computationally it could not be told apart from a sample point set of a line.

1.2. Feature detection in general

In the framework of this thesis we refrain from all these interesting questions and begin
our study with a curve coefficient vector to a real algebraic plane curve. It does not
matter where it came from and which problems arose getting it. This thesis can extend
existing coefficient-recognition-programs by a downstream feature recognition. Those
may provide the user with additional information on his or her construction.
In this case we take a given coefficient-vector and the curve represented by it, as is.
For example a Limaçon C = Cg may be given via a zero set V (g) of a polynomial g:

Cg = V (g) =
{

(x, y) ∈ R2 | g(x, y) = 0 ∧ g ∈ R[x, y]
}

g(x, y) = −192 + 96
√

2y + 24x2 − 96xy + 24y2

+24
√

2x3 − 24
√

2x2y + 24
√

2xy2 − 24
√

2y3 + 6x4 + 12x2y2 + 6y4

with curve coefficient vector(
−192 0 96

√
2 24 −96 24 24

√
2 −24

√
2 24

√
2 −24

√
2 6 0 12 0 6

)
.
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1. Introduction

This way the coefficients of the polynomial g become curve-coefficients. For some algo-
rithms, however, it is necessary for the polynomial to represent an irreducible or at least
a square-free curve. These terms are defined in detail in Chapter 2. Only so far: Super-
imposing the unit-circle with another unit-circle provides a new curve, which naturally
looks like a unit-circle, but now is covered twice. This can generate problems.
To be able to apply the proposed techniques nonetheless, we feel free to restrict the given
coefficient-vectors in that way. This naturally imposes restrictions on the coefficient-
recognition-algorithm if one is used. However, this is more a desirable feature of such
an algorithm than a restriction, since it enables fast and unique output.
Now starting with a given curve, we want to detect features. Features in our sense are
characteristics with respect to a transformation group: Invariant properties and normal-
forms, but also symmetries like rotational and reflectional symmetry. In general, the
approach in this thesis is finding the right languages for feature detection followed by a
detailed analysis of the expressions in that language.

1.3. Chapters and languages

In Chapter 2 we introduce many technical terms, but also the language of curves: Real
algebraic plane curves are best represented by a complex coefficient vector (see Section
2.3 and also [46], [47], [52]). Complexification comes from the substitution of x and y by
z+z

2 and z−z
2i , respectively. This is best complemented by multinomial scaling, altering

the absolute values of the coefficients.
The Limaçon from the last section is represented by the following complexified coefficient
vector (compare with left image in Figure 1.2 on page 5):(
−192 12

√
2e−i

π
2 12

√
2ei

π
2 4ei

π
2 2 4e−i

π
2 0 2ei

π
4 2e−i

π
4 0 0 0 1 0 0

)
This leads to easy and beautiful structure-analyzations: Simple transformations of the
plane, being complicated in real calculations, become simple again (see Section 2.2.3 and
Section 4.1.1). However, we will not neglect profound, fascinating structures: Section
2.2.4 contains one of the first examinations on coefficient structures in this thesis. In it
we speak in terms of two- and three-dimensional coefficient-tables, unveiling what impact
transformations of the plane have on curve-coefficients. These structures confirm that
the language of curves is complex (see Section 2.3.2).
Another very powerful language is tensor-notation. Chapter 3 introduces the basics on
tensor-algebra in connection with curves and rapidly switches to diagrams. Curves of
degree d are now represented via tensors Gk1,k2,...,kd , whose components are taken from
the curve coefficients. In diagrams they appear as nodes with d edges pointing inwards:

. We became aware of tensor-diagrams by a series written by Jim Blinn (cf.

[9], [10]), but similar diagrams were even earlier in use (cf. [14], [15]). When it comes
to invariant properties of curves, tensor diagrams are fantastic. Only closed diagrams
with very few different nodes need to be drawn in order to obtain an invariant property
(see Section 3.2.2 and Blinn’s series). For projective ones only two types of tensors are
needed: the curve-tensor and a totally skew-symmetric 3× 3× 3-tensor. For Euclidean
properties two more tensors are added and further extensions of the used tensors lead

3



1. Introduction

to yet further sub-geometries.

is a diagram resulting in a leading curve-coefficient of a curve of degree d = 4. In the
case of our Limaçon, this is the rightmost non-vanishing coefficient in our complexified
coefficient vector above. The nodes I and J represent the complex conjugate absolute
circle points.
Diagrammatical calculations can also be carried out. We can juggle with tensor-nodes,
replace the absolute circle-points I and J by corresponding conics and get another fasci-
nating coefficient-study: Linear-combinations of generalized Pascal-Triangles build the
connection and geometrically we may speak of a coefficient pyramid as the source of the
scalars in these combinations (see Section 3.3.4).
Chapter 4 focuses on the actions of transformations of the plane on curves: rotations,
translations, scalings and projective transformations are discussed. Thereby all the
previously introduced languages are used and (partially) even new ones are created.
Rotations of curves in complex representation are particularly simple, since they are
just a rotation of the complexified coefficients (see Section 4.1.1). Invariant properties
become visible and are easy to formulate in diagram-language (see Section 4.1.7). A
complete set of rotational invariant expressions may be generated by multiplying the
curve tensor with a series of I, J and the center of rotation. We propose a minimal
system, permitting the reconstruction of any curve up to rotations. Also a normal-form
with respect to rotations around the origin is proposed in Section 4.1.6. It is obtained
by successively minimizing the angles ϕ ∈ [0, 2π) of complex curve coefficients c = reiϕ.
Rotating our Limaçon by ψ = −π

4 we get(
−192 12

√
2e−i

π
4 12

√
2ei

π
4 −4 2 −4 0 2i −2i 0 0 0 1 0 0

)
.

Each new coefficient has the same absolute value as the previous one. The rotation of
the coefficients is easily related to ψ as shown in Section 4.1.1. This curve is shown in
the middle of Figure 1.2 on page 5.
Translations are a bit more complicated to handle. But again beautiful structures can be
discovered, when curves are moved (cf. Section 4.2.2). It is astonishing to see that there
are curves where certain coefficients are contained in a one-dimensional set, wherever
the curve is translated (see Sections 4.2.4 and 4.2.5). We present a translatorial normal
form, which can be established by coefficient analysis: Greedily making sub-leading, sub-
sub-leading, ... coefficients vanish (or at least minimizing them) results in the desired
form (see Section 4.2.6).
The translatorial normal form of our rotated Limaçon makes the “2i”-coefficient vanish:(

0 12 12 0 −6 0 0 0 0 0 0 0 1 0 0
)
.

This is done by a translation with t = −2i (see right image in Figure 1.2).
At first our normal form looks similar to the (inspiring) form, proposed in [46]. How-
ever, that form implies too many disadvantages and does not satisfy the “normal-form-
condition” without additions. (For a detailed analysis see Appendix B.) Our normal
form seems to be more natural to curves and also permits easier symmetry detection.

4



1. Introduction

But extra care has to be taken for numerical stability in special cases. Scalings are the
most simple transformations to handle. Together with rotations and translations they
give us the features of curves with respect to orientation preserving Euclidean motions.
The direct analysis of the effects of projective transformations on curve coefficients is
almost useless (see Section 4.4.1). However, it never becomes any clearer than there
that tensor-diagrams are the suitable language to describe features of curves. Analytical
expressions of hundreds and more terms can be contained in simple and easy-to-handle
diagrams. Bigger configurations can be cut down by diagrammatical calculation rules,
which correspond in some way to Grassmann-Plücker relations. However, until now a
complete set of invariant properties, permitting a reconstruction of any curve of any
degree with respect to projective transformations, remains unknown to us. Now, with
the observations made, it seems to be within reach.
Finally Chapter 5 focuses on symmetry-features. If a curve can be rotated non-trivially
such that it is equal to the original, it is called rotational symmetric. Given a com-
plexified curve, rotational symmetry with respect to the origin as center can be brought
down to analyzing patterns in a triangular coefficient scheme. If the only non-vanishing
coefficients of a curve are contained in equally spaced columns of that scheme, we have
a rotational symmetry (see Section 5.1.2). The biggest benefit arises from the study
of translations: Translating any curve in a way that it is in our proposed translatorial
normal form, means it is rotational symmetric with respect to the origin or not at all
(see Section 5.1.3). An analogous result holds for reflectional symmetries (see Section
5.2.3): Either the curve in translatorial normal form is not at all reflectionally symmetric
or its axis is passing through the origin. The language of reflectional symmetries is the
one of angle diagrams: The angle ϕ of each non-vanishing coefficient c = reiϕ contains
information on the angles of potential hyper-plane-mirrors. Taking all these angles to-
gether - for example in the form of angle diagrams - permits the detection of reflectional
symmetry (see Section 5.2.2).
In the last (complexified) coefficient-vector of our Limaçon, all coefficients were real.
The first coefficient being equal to twelve is named c10 = r10e

iϕ10 = 12e0πi. It leads to
the angle diagram

and thus to a detected reflectional symmetry with the horizontal coordinate axis as
mirror.

original Limaçon rotated Limaçon translated rotated Limaçon

Figure 1.2.: A close-up of a Limaçon

5



2. Curves and Tensors in Algebra and
Geometry

Real plane algebraic curves - or short: curves - can be represented in various ways. One
of the most elementary representations is probably the curve as zero set of a polynomial.
Therefore, we precede the examination of curves with some results on polynomials (Sec-
tion 2.1), the concepts of which are then transferable to the zero sets and thus the curves.
Polynomials, however, build a vector space. They can be represented with respect to
infinitely many different bases. We will have a closer look at monomial basis (Section
2.1). Especially a change to a specific complex basis is discussed in 2.3. For us poly-
nomials will be one possible ingredient to describe curves via zero sets (Section 2.2.1).
If curves are subject to translations, we will make extensive use of polynomials with
complex coefficients. To spice up this technical introduction, an excursus on a mathe-
matically beautiful tetrahedral coefficient structure is also included (Section 2.2.4). We
will encounter such coefficient structures more than once: for example, when curves are
rotated.

2.1. Polynomials

We do not intend to cover the general theory of polynomials. The algebra behind these
objects is only used in so far that it helps to work with curves later on. For a more in-
depth algebraical study of polynomials we refer to algebra textbooks (cf. [21]). We also
confine ourselves to polynomials over the field C of complex numbers. Generalizations to
arbitrary polynomial rings can be found in the cited algebra textbooks or in the context
of curves in [11]. The benefit of complex polynomials in contrast to real polynomials
is the algebraic closure of C, which can be extensively exploited. In what follows, we
will take the “detour” through C and come back to real curves later on. For a direct
in-depth study on real algebraic geometry we refer to [13].

2.1.1. Attributes of polynomials

Using homogenized and dehomogenized set-ups, we do not yet fix the number of ar-
guments of polynomials. We also want to dwell on real and complex represented real
polynomials as well as complex polynomials. Therefore, we also do not fix the field:
K ∈ {R,C}. Most concepts and terminology presented here will be transfered to curves
in Section 2.2.1.

Definition 2.1
Let K be the field C or R. Let f ∈ K[X1, ..., Xk] be a polynomial over K. It can be
written in the following form

f(x1, ..., xk) =
∑

r1+...+rk=d
r1,...,rk≥0

Ar1...rk · x
r1
1 · ... · x

rk
k

6



2. Curves and Tensors in Algebra and Geometry

with coefficients Ar1...rk ∈ K. Without loss of generality we may assume that there are

indices r1, ..., rk with
∑k

s=1 rs = d and Ar1...rk 6= 0. Then d = deg(f) is called the degree
of f.
If f(tx1, ..., txk) = tdf(x1, ..., xk) in K[X1, ..., Xk][T ], then f is called homogeneous of
degree d.
If the implication a ∈ K or b ∈ K holds for any pair of complex polynomials a, b ∈
K[X1, ..., Xk] satisfying f = a · b, then f is called irreducible. f is named prime, in
cases when f , dividing a polynomial a · b, implies that f divides a or f divides b.
A point (x1, ..., xk) is called a zero or root of f if f(x1, ..., x2) = 0.
The set

V (f) =
{

(x1, ..., xk) ∈ Kk
∣∣∣ f(x1, ..., xk) = 0

}
is called zero set of f or variety of f .

Examples of irreducible polynomials over C are: 1, i, x + i, x1 + 3ix2, etc. Irreducible
polynomials over R are for example: 1, x+2, x2 +1, ... But the polynomial x2 +1 is not
irreducible over C, because it can be decomposed into two factors: x2 +1 = (x+i)(x−i).
From algebra we know that C[X1, ..., Xk] is factorial (see [11] or [21]). This means
that any non-constant polynomial f ∈ C[X1, ..., Xk] \ C is a product of finitely many
irreducible elements and each irreducible element is prime. Now if f is a polynomial and
f = a · b then V (a) ⊆ V (f) and V (b) ⊆ V (f). The conclusion from varieties back to
polynomials is not that easy. Before we go into details we examine the resultant, which
connects two polynomials by the use of their coefficients.

2.1.2. Resultant

Definition 2.2 Let R = C or R = C[X1, ..., Xk]. Furthermore let f, g ∈ R[X]. Let
f(x) =

∑m
r=0Arx

r be of degree m and g(x) =
∑n

r=0Brx
r be of degree n. Then

det



Am Am−1 . . . . . . A0

Am Am−1 . . . . . . A0

. . .
. . .

. . .

Am Am−1 . . . . . . A0

Bn Bn−1 . . . B0

Bn Bn−1 . . . B0

. . .
. . .

. . .

Bn Bn−1 . . . B0


= res (f, g)

is called the resultant of f and g. Thereby the coefficients of f are contained in the
first n lines (above the dashed line). The coefficients of g appear in the remaining m
lines. If g is the derivative f ′ of f , namely g(x) = f ′(x) =

∑m
r=1 rArx

r−1, then res (f, f ′)
is called discriminant of f .

Resultants and discriminants have many interesting features. We will state a few of
them here. For proofs and further treatment we refer to [21] and [24].

Theorem 2.1 Let R = C or R = C[X1, ..., Xk] and let f, g ∈ R[X] be non-constant
polynomials. Then the following statements are equivalent:

7



2. Curves and Tensors in Algebra and Geometry

• res (f, g) = 0

• ∃ p, q ∈ R[X] with deg(p) < deg(g) and deg(q) < deg(f), such that 0 = pf + qg

• deg(gcd(f, g)) ≥ 1, i.e. f and g have a non-constant common divisor.

Corollary 2.2 The discriminant res (f, f ′) of a polynomial f vanishes if and only if f
has multiple components. If the discriminant of f is non-zero, f is called square-free.

2.1.3. Polynomials versus zero sets

The following lemma is very important. It connects the zero sets and polynomials
reasonably. It permits conclusions from a zero set to the underlying polynomial:

Theorem 2.3 (Study’s Lemma)
Let f, g ∈ C[X1, ..., Xk] be two complex polynomials. If the polynomial f is irreducible
and V (f) ⊆ V (g), then f divides g.

Proof This proof is very technical but straightforward algebra.
If g = 0, the above theorem is trivially true. Otherwise g 6= 0 and also f 6= 0 due
to f being irreducible by assumption. Let f be non-constant because f ∈ C trivially
divides g. Thus a non-constant term is contained in f . Without loss of generality we
can say that this term involves xk. More formally we have: Without loss of generality
f 6∈ C[X1, ..., Xk−1]. Thus f can be written as polynomial of degree d ≥ 1 in xk, namely

f(x1, ..., xk) =
d∑

n=0
An(x1, ..., xk−1)xnk with coefficients An ∈ C[X1, ..., Xk−1]. For given

(x1, ..., xk−1) we abbreviate this polynomial by fx1,...,xk−1
(xk) = f̃(xk).

We show first that this implies g 6∈ C[X1, ..., Xk−1], i.e. g also contains a non-vanishing
term in xk. Assume the contrary, then Ad · g ∈ C[X1, ..., Xk−1]. Due to Ad 6= 0, there
must be a point (x1, ..., xk−1), which is not a root of Ad · g. Consequently, g as element
of C[X1, ..., Xk] satisfies g(x1, ..., xk−1, y) 6= 0 for all y ∈ C. But f̃(y) must have a root
due to d ≥ 1 and the fundamental theorem of algebra. Therefore, V (f) * V (g) in
contradiction to the assumption.
The next step in this proof is to show that the resultant res (f̃ , g̃) = 0 vanishes in-
dependently from the values x1, ..., xk−1. Let us first look at the (c1, ..., ck−1), where
the leading coefficient Ad(c1, ..., ck−1) 6= 0 of f̃ does not vanish: Due to the funda-
mental theorem of algebra, there must be a ck such that f̃(ck) = 0. By assumption
V (f) ⊆ V (g) and thus by Theorem 2.1 res (f̃ , g̃)(c1, ..., ck−1) = 0. As a consequence
0 = An · res (f̃ , g̃) ∈ C[X1, ..., Xk−1]. Since An is not vanishing identically, we have the
resultant res (f̃ , g̃) = 0.
By Theorem 2.1 f and g have a non-constant common divisor. By the irreducibility of
f , f divides g. 2

The clue in the proof is that f and g are polynomials over an algebraically closed field.
A corresponding theorem based on the field R does not hold. Take f(x) = 1 +x2, which
is irreducible over R. Then V (f) = ∅ ⊆ V (g) for any polynomial g. But clearly f does
not divide any polynomial.
Study’s Lemma connects the polynomials and the zero sets reasonably. If f and g with
V (f) = V (g) are irreducible, then f and g are equal up to a constant multiple. When it
comes to feature detection of curves this will be very helpful. We will mainly use the

8



2. Curves and Tensors in Algebra and Geometry

Corollary 2.4 Let f, g ∈ C[X1, ..., Xk] be complex polynomials.
If f and g are irreducible (and thus also square-free) with V (f) = V (g), then f differs
from g only by a constant multiple: f = λg for some λ ∈ C.
If only f is irreducible (and thus also square-free) with V (f) = V (g), then g = λfu for
some λ ∈ C and u ∈ N.

2.1.4. Polynomials in the affine and projective plane

Geometry is largely the examination of objects and invariants under the action of trans-
formation groups. Eventually, we will encounter the group of translations, rotations
around the origin, Euclidean motions and projective transformations. Each framework
has its optimal representation for objects such as points, polynomials or zero sets for vi-
sualizing results: Point-coordinates may be homogeneous in one case and inhomogeneous
in the next or vice versa.
We briefly sketch the basic concepts and terminology of projective geometry. For more
detailed and formal descriptions see [39]. Again let K ∈ {R,C}. Then KP2 denotes
the projective plane over K. The set of points (and due to the duality also the set of
lines) is given by K3\{(0,0,0)}

K\{0} . Formally a point is an equivalence class [p] (p 6= (0, 0, 0))
with [p] =

{
q ∈ K3

∣∣ q = λp ∧ λ ∈ K \ {0}
}

. In what follows, we will mostly omit the
brackets [ ] and write p instead of [p]. Non-zero-multiples λp will be identified with p
and p is called a point in homogeneous point coordinates.
The canonical embedding of the affine plane K2 in KP2 is given by

emb :

{
K2 −→ KP2

(x, y) 7−→ (x, y, 1)
. (2.1)

The points at infinity are KP2 \ emb(K2) =
{

(x, y, h) ∈ KP2
∣∣ h = 0

}
. They are all

contained in a line, the line at infinity l∞. In projective geometry any line can be
singled out as the line at infinity.
In Euclidean geometry, we know that a point (x, y) ∈ V (f) for some f ∈ K[X,Y ] if
f(x, y) = 0. We are now interested in the projective equivalent: Let

f = f(0) + f(1) + ...+ f(d)

with homogeneous polynomials f(n) of degree n. The f(n) are so called homogenous
part of degree n of f . Then F ∈ K[X,Y,H] with

F (x, y, h) = hdf(0)(x, y) + hd−1f(1)(x, y) + ...+ f(d)(x, y)

is the homogenization of f . For h 6= 0 we have

F (x, y, h) = h · f
(x
h
,
y

h

)
and f(x, y) = F (x, y, 1) .

In this treatise we study plane curves. Therefore we use inhomogenous polynomials
f ∈ K[X,Y ] and their homogenized equivalents f = fhom ∈ K[X,Y,H]. In order to
show that we are talking about the pair of inhomogenous polynomial and homogenized
equivalent, we denote both by the same letter. The difference is in the number of
arguments: f(x, y) versus f(x, y, h). (This notational technique is known as identifier-
overload in computer science.)

9



2. Curves and Tensors in Algebra and Geometry

2.1.5. Polynomials as elements of a vector space

Before we study the curves themselves, let us dwell on polynomials as elements of a vector
space (compare with [22]): Let K ∈ {R,C} and d ∈ N. Then the set of polynomials
f ∈ K[X,Y ] up to degree d is denoted by Pd(K). The set of all homogeneous polynomials
g ∈ K[X,Y,H] of degree d is Phom

d (K). The polynomial 0 ∈ K[X,Y,H] is homogeneous
of any degree and thus contained in Phom

d (K). Now Pd(K) and Phom
d (K) constitute a(

d+2
2

)
dimensional vector space. The standard (or monomial) basis in Pd(K) is

1, x, y, x2, xy, y2, ..., xd, xd−1y, ..., yd .

The monomial basis in Phom
d (K) can be obtained by multiplying the inhomogeneous

basis elements from above by suitable powers of h such that they become homogeneous
of degree d in x, y, h:

hd, xhd−1, yhd−1, x2hd−2, xyhd−2, y2hd−2, ..., xd, xd−1y, ..., yd .

The number of basis elements determines the dimension. It is
∑d

n=0 n+ 1 = (d+2)(d+1)
2 ,

which equals
(
d+2

2

)
as stated above. Thus, using the monomial basis, f and its (de-)

homogenized equivalent can be represented by

f(x, y) =
d∑

k=0

d−k∑
l=0

Aklx
kyl or f(x, y, h) =

d∑
k=0

d−k∑
l=0

Aklx
kylhd−k−l .

In both cases, the coefficients can be stated by the use of two indices k and l. The
polynomials can be written as

f =
∑
k+l≤d

Aklbkl

with a basis b00, b10, b01, ..., bd0, bd−1 0, ..., b0d of the corresponding space of polynomials.
In what follows we will always write our polynomials as a linear combination of basis
vectors using coefficients with two indices. This allows a clearer view on the struc-
ture with interesting relations between transformations of the plane and corresponding
transformations on the coefficients (see for example Section 4.1).
We will now introduce an order on the formal coefficients of polynomials, using both of
their two indices.

Definition 2.3 Let Ω = {ωkl | k, l ∈ I} be a set of formal variables with two indices
originating from an index set I ⊂ N. Then ��� defines a total order on Ω by

• ωkl � ωpq if k + l > p+ q and

• ωkl � ωpq, whenever k + l = p+ q and k > p

for all ωkl, ωpq ∈ Ω. Thus equality holds only if k = p and l = q.
Ω is separated into blocks by blockn(Ω) := {ωkl ∈ Ω | k + l = n}.
Two elements ωkl � ωpq are called succeeding or succeeding pair if there is no ωab ∈ Ω
with ωkl � ωab and simultaneously ωab � ωpq.

10
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Now we are able collect all coefficients of f and put them into a vector, the coefficient
vector of f . We do this in such a way that the elements are arranged according to �.
Starting with the smallest and ending with the largest Akl with respect to �, we get

AT = ( A00︸︷︷︸
block0(A)

, A10, A01︸ ︷︷ ︸
block1(A)

, A20, A11, A01︸ ︷︷ ︸
block2(A)

, ..., Ad0, Ad−1 0, ..., A0,d︸ ︷︷ ︸
blockd(A)

) .

Thereby AT denotes the transpose of the coefficient vector A. The order of the Akl
corresponds to the printed order from above:

f(x, y) = AT · (1, x, y, x2, xy, y2, ..., xd, xd−1y, ..., yd)T =: ATX and
f(x, y, h) = AT · (hd, xhd−1, yhd−1, ..., xd, xd−1y, ..., yd)T =: ATXhom .

This way we get an isomorphism ι : Pd(K) → K(d+2
2 ), which maps an f(x, y) = ATX

onto A and ιhom : Phom
d (K)→ K(d+2

2 ), which maps an f(x, y, z) = ATXhom onto A. As
a result we have the isomorphism Pd(K) ∼ Phom

d (K).
The block-structure of the coefficient vector A can be transfered to the formal vector
X: blockn(X) =

{
xkyl

∣∣ k + l = n
}

. The transfer to Xhom is analogous. We will use
the block-structure to introduce auxiliary separating lines in vectors and matrices. This
way the structure of transformations will be more clearly visible.

2.2. Curves

2.2.1. Curves as zero sets

Now, with the basics about polynomials and zero sets at hand, we can define curves with

Definition 2.4 Let K be either R or C.
A subset C ⊂ K2 is called a real respectively complex affine algebraic plane curve if
there is a non-constant polynomial f ∈ K[X,Y ] \K of degree d ∈ N such that C = V (f).
A subset C ⊂ KP2 is called a real respectively complex projective algebraic plane curve
if there is a non-constant polynomial f ∈ K[X,Y,H] \ K of degree d ∈ N such that
C = V (f).

Generally, we use affine algebraic curves by means of handling projective algebraic curves:
When results are more clearly visible and easier to read without homogenizing compo-
nents, we use the affine standpoint. Nevertheless, we do not forget the points at infinity,
i.e. points with homogeneous coordinates (x, y, 0) 6= (0, 0, 0), which lead us to the pro-
jective extension of the affine plane. Switching from affine to projective view is possible
by using the emb-function from (2.1), i.e. by homogenization. Restricting the projective
view to the affine is done by selecting a line to be l∞, e.g. (0, 0, 1), and substituting x
by x

h , y by y
h and h by 1.

As curves are defined with the help of zero sets, we can transfer the terminology from
the last section to curves by

Definition 2.5 A curve C is irreducible if it is not a union of two different plane
curves.

With Study’s Lemma and our Corollary 2.4 we get

11
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Lemma 2.5 Let C be a curve with C = V (f) for some (homogeneous) polynomial
f ∈ C[X1, . . . , Xk]. Let f = fd11 · ... · fdrr be a decomposition of f into irreducible
(homogeneous) polynomials f1, ..., fr ∈ C[X1, ..., Xk]. Then

• C is irreducible if and only if f is a power of an irreducible polynomial, i.e. if r = 1.

• C has a unique decomposition into irreducible curves C1, C2, ..., Cr with
C =

⋃r
n=1 Cn. With a suitable numeration we also get Cn = V (fn). The Cn

determine the fn up to a multiplicative constant.
The Cn are called irreducible components of C.

For the proof we refer to [11] or [20] .
What we get by this lemma is that curves may be identified with a certain class of
polynomials: If f =

∏r
n=1 f

dn
n is a decomposition into irreducibles, then

C = V (f) = V (λ
r∏

n=1

fn)

with λ ∈ K. Let [f ] := {λf | λ ∈ K}. Then the set of all plane algebraic curves is
equivalent to the set of all [f ], where f is a square-free product of irreducible polynomials.

Definition 2.6 Let C be a curve and C =
⋃r
n=1 Cn its decomposition into irreducible

curves. Further let the fn be the up to a constant multiple uniquely determined irre-
ducible polynomials with Cn = V (fn). Then f with f(x, y) =

∏r
n=1 fn(x, y) = 0 is called

an associated curve-equation with respect to C and f an associated polynomial.
This definition is analogous for homogenous polynomials.
deg(f) is called the degree of C = V (f).

If f is an associated polynomial of C = V (f), we will often speak of f as curve and
identify all λf for all non-zero constants λ.
Now we are able to associate coefficient vectors of polynomials to curves and introduce
curve coefficients: Let C = V (f). Then the polynomial f with f(x, y) = ATX has
a coefficient vector A (see Section 2.1.5). With [f ] ∼ C we can associate the class
[A] = {λA | λ ∈ K} with C, but we will not name A a curve coefficient vector: Curve
coefficients shall be scaled coefficients of polynomials. The predefined scaling factors
will be the so-called multinomial coefficients. This scaling will make calculations much
easier. The connection between curves and tensors (see Section 3.1) will be much clearer
in a much more natural way. Additionally, multinomial coefficients make interesting
structural properties very easily accessible. The usage of these scaling factors could
be exploited also in the field of pattern analysis. However, a direct identification of
coefficients of polynomials and curves is common (for example see [26], [29]).

Definition 2.7
Let p, q, r ∈ N. The numbers mpqr := (p+q+r)!

p!·q!·r! are called multinomial coefficients.
Let C = V (f) be a curve of degree d for some (associated) polynomial f . Further let
f =

∑
k+l≤dAklbkl with the basis vectors bkl. Then each coefficient Akl can be associated

with a multinomial coefficient mkl := mk l (d−k−l) = d!
k!·l!·(d−k−l)! , such that Akl = mklakl.

Thus
f(x, y) = ATX = (ma)TX ,

12
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where m = m(d) = diag(m00,m10,m01, ...,md0,md−1 0, ...,m0d) is a diagonal matrix with
multinomial coefficients as entries. The corresponding vector a is called (associated)
multinomially scaled curve coefficient vector of C = V (f).

[a] :=
{
v ∈ K(d+2

2 )
∣∣∣ v = λa ∧ λ ∈ K

}
are the (associated) coefficients of C = V (f).

Through this definition we finally have

C = V (f) ∼ [f ] ∼ [A] = [m · a] ∼ [a] .

The diagonal matrix m is invertible by construction. Thus it constitutes an isomorphism
between the space of all coefficient vectors of polynomials and the space of all multino-
mially scaled coefficient vectors of polynomials. As a consequence, the set of all curves
is equivalent to the set of all [a], with [a] being the set of multinomially scaled coefficient
vectors of square-free products of irreducible polynomials as stated above.
For example, take C = V (f) with f(x, y) = (y − x2). Thus C is the standard parabola
and f(x, y) = ATX = (0, 0, 1,−1, 0, 0) ·(1, x, y, x2, xy, y2)T . Introducing the multinomial
coefficients, we get f(x, y) = (0, 0, 1

2 ,−1, 0, 0) ·m ·X. Because C = V (λf) for all λ 6= 0,
we introduce equivalence classes and C corresponds to [f ] and [(0, 0, 1

2 ,−1, 0, 0)]. As
already mentioned above, we mostly omit the brackets [ ] during notation.
Summarizing our results, we have an implicit representation f(x, y) = 0 for a curve C
via the zero set C = V (f) of a polynomial f . One of the benefits of this representation
is that the union V (f) ∪ V (g) of two curves C1 = V (f) and C2 = V (g) is just V (f · g).

2.2.2. Effects of transformations of the plane on curves

In geometry we examine the behavior of objects under the action of certain transforma-
tion groups. Here we want to clarify the principal effects transformations have on curves
or on their associated polynomials.
Let KP2 with K ∈ {R,C} be a projective plane containing a curve C = V (f). We use
the projective viewpoint to have a general framework. For affine observations dehomog-
enization can be used. A point in the projective plane can be described by (x, y, h). (We
omit the brackets “[ ]” symbolizing equivalence classes.)
In case we want to transform the plane, we have to distinguish between the transforma-
tion of the plane itself and the corresponding coordinate transformation: The transfor-
mation of the plane determines the image of the used basis of the space. Identifying
the basis elements with unit-vectors, this transformation can be identified with a matrix
P . A coordinate transformation is an automorphism describable by its action on the
point-coordinates:

transformation :

{
KP2 −→ KP2

(x, y, h)T 7−→ Q · (x, y, h)T = (x̃, ỹ, z̃)T
(2.2)

with an invertible matrix Q = (qkl)1≤k,l≤3 ∈ K3×3 acting on the points of KP2. The
connection between P and Q is known from linear algebra (cf. [22]): Q = (P−1)T . Due
to the equivalence of (x, y, h) and λ(x, y, h) for all λ ∈ K \ {0}, the transformations Q
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and µQ with µ ∈ K \ {0} act in the same way. Thus we can confine our study to the
actions of equivalence classes

[Q] :=
{
N ∈ K3×3

∣∣ N = µQ ∧ µ ∈ K \ {0}
}
.

Again we will omit the brackets and identify all elements of an equivalence class. A
representation system of our transformations is, for example, the set of all three by
three matrices with determinant one.
Let us look at how polynomials behave under transformations of the plane. Therefore
let f(x, y, h) =

∑d
k+l=0Aklx

kylhd−k−l = ATX be a polynomial of degree d in monomial
basis-representation. If we want to transform the plane according to (2.2), we have to
examine the monomial expressions x̃k ỹl z̃d−k−l: Due to the linearity of (2.2) we get

x̃k ỹl h̃d−k−l = (q11x+ q12y + q13h)k (q21x+ q22y + q23h)l (q31x+ q32y + q33h)d−k−l,

which in itself is a linear expression in the xryshd−r−s with r, s ∈ N and r+s ≤ d.
Consequently, a transformation of the plane, like the one in (2.2), induces a linear
transformation of the vector X containing the monomials by L = LQ: namely X 7→ LX

for a
(
d+2

2

)
×
(
d+2

2

)
matrix L. Per assumption Q is invertible and thus also L.

Returning to our polynomial f we can see that

f(x, y, h) = ATX = ATL−1LX =
(
L−TA

)T︸ ︷︷ ︸
= eAT

X̃ = f̃(x̃, ỹ, h̃) (2.3)

with L−T being the transposed inverse of L. Thus the transformation of X and A is
contragredient, i.e. L, acting on X, counteracts on A. If we transform the curve
C = V (f) by some Q′ ∈ [Q], then there is a µ 6= 0 with Q′ = µQ. The monomials satisfy

x̃′
k
ỹ′
l
h̃′
d−k−l

= λd ·x̃k ỹl h̃d−k−l and thus L′ = λdL. This means that any transformation

Q′ ∈ [Q] consistently maps [a]
Q′7−→ [b] because V (f) = V (λf) for any non-zero λ. Thus

it suffices to study a single curve coefficient vector a under transformations of the plane,
rather than a whole set [a] of vectors. According to Definition 2.7, the curve coefficients
contained in a satisfy A = ma, where m contains multinomial coefficients. Then

f(x, y, h) = (ma)TX = (ma)TL−1LX = (m (m−1L−Tma)︸ ︷︷ ︸
=ea

)T X̃ = f̃(x̃, ỹ, h̃) . (2.4)

and the curve coefficients are transformed by m−1L−Tm =: L−Tm . Thus L and Lm are
similar matrices. We will say that Q and also L−Tm transform a curve.
Summarizing this we can say that transformations T of the plane induce a change L in
the basis X 7→ X̃ of the associated polynomial corresponding to a contragredient change
L−Tm in the curve coefficients.
A further very important concept concerning curves and transformations is the one of
normal forms. A normal form in our sense is defined by

Definition 2.8 Let G be a transformation group of the plane, e.g. the group of all
rotations or the group of all Euclidean mappings. Then G introduces an equivalence
relation ∼ on the set of all algebraic curves of a fixed degree d. For two curves f and g:
f ∼ g if and only if there is a transformation τ ∈ G such that τ maps f onto g. Thus ∼
subdivides the set of our curves into classes. A designated representation system with
respect to this transformation group will be called a normal form. A curve is in normal
form if it is given as one of the designated representatives.

14



2. Curves and Tensors in Algebra and Geometry

We present normal forms with respect to various transformation groups in the next
chapter and show how a given curve must be transformed such that it is in normal form.
When it comes to recognizing a curve, normal forms are very helpful: We can take
a given curve and apply transformations such that the given curve is in normal form.
Afterwards we can look for such a curve in a database and associate a corresponding
name with it, such as conchoid, limaçon or something else. Given a zero set, one of the
ultimate goals of a curve recognition algorithm would be an output like:

“The curve is a limaçon with parameters r = 0.54 and s = 0.72. A limaçon
is given by the equation (x2 + y2 − 2rx)2 = s2(x2 + y2).”

Optionally, the output is amended by the curve coefficients and a declaration of the
relative position of the given curve with respect to the displayed equation. Potentially
existing symmetries may also be of interest.
The term normal form has been defined such that it stays the same even if the respective
transformation group acts on a curve. The normal form is invariant so to say. Another
way of recognizing curves is to compare invariants of curves with database entries to
attain an output like the one above. Invariants in this sense are defined by

Definition 2.9 Let f be a polynomial with coefficient vector A
Let C = V (f) be a curve with coefficient vector A = m · a of f . Further let a transfor-
mation of the plane P with determinant ∆ = det(P ) transform C into C̃ = V (f̃) with
coefficient vector Ã = m · ã of f̃ . Let I be a function satisfying

I(ã) = ∆gI(a) .

Then I is called an invariant of C. g is called the weight of the invariant. If g = 0, we
speak of I as absolute invariant and if g 6= 0, I is called a relative invariant.

It can be shown (see [16], [25] or [55]) that the study of invariants can be reduced to
examining homogenous integer rational algebraic I’s. In addition a generalization in
the direction of arbitrary factors λ instead of ∆g is not necessary. When we restrict
ourselves to transformations Q with det(Q) = 1, then we are looking for invariants of
the form I(ã) = I(a). This reduction is possible as stated above. This case resembles a
common definition of invariants, used e.g. by Hurwitz in [27].

2.2.3. Rotating real curves around the origin

In this section we will exemplarily show how transformations act on curves. Therefore
we take real plane curves, i.e. curves with associated polynomials f over R. f shall be
in monomial representation.
A rotation around the origin can be described very easily: Abbreviating cos(ϕ) = c and
sin(ϕ) = s, a point p = (x, y, h) with homogenizing component h is rotated by applying
the map xy

h

 7−→
c −s 0
s c 0
0 0 1

xy
h

 . (2.5)
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The transformation matrix Q = Q(ϕ) has a determinant equal to one. The question now
is, what happens to the polynomial f(x, y, h) of the curve C = V (f), when the plane
is rotated. As we have seen, a curve of degree d is given by a zero set of a polynomial
equation:

f(x, y, h) =
d∑

k+l=0

mklakl · xkylhd−k−l = (ma)TX = 0 . (2.6)

According to Equation (2.4) we have f(x, y, h) = (m(L−Tm a))T X̃ = (mã)T X̃ with
X̃ = LX. This means that the rotated curve f̃(x, y, h) = f̃ϕ(x, y, h) = (mã)TX. For a
given curve coefficient vector a we are interested in the shape of L

T

m = L
T

m(ϕ). We can
extract L

T

m directly by observing that in the affine setup

f̃(x, y) =
d∑

k+l=0

mklakl(cx+ sy)k(−sx+ cy)l

=
d∑

k+l=0

mklãklx
kyl . (2.7)

If we scaled the transformation matrix in (2.5) by λ, then we would have to scale all ãkl
by λd.

Theorem 2.6 If Equation (2.7) holds, then

ãkl =
k∑
p=0

l∑
q=0

(
k

p

)(
l

q

)
(−1)k−p · cl+(p−q) · sk−(p−q) · a(p+q),((k+l)−(p+q)) . (2.8)

Proof Expanding the product (cx+ sy)k(−sx+ cy)l, suitably changing summation in-
dices a few times and recollecting the coefficients of monomial terms proofs the theorem.
A more detailed calculation can be found in the appendix (see Appendix A.1). 2

A first interesting property can be seen in Equation (2.8): A coefficient ãkl only depends
on the coefficients auv of the same block, i.e. u+v = k+ l. A second interesting property
is contained in the coefficients: Using the generalized binomial formula we get

(c− s)k(c+ s)l =

 k∑
p=0

(
k

p

)
cpsk−p(−1)k−p

 ·
 l∑
q=0

(
l

q

)
sqcl−q


=

k∑
p=0

l∑
q=0

(
k

p

)(
l

q

)
(−1)k−pcl+(p−q)sk−(p−q) .

This corresponds directly to Equation (2.8).
We can rewrite Equation (2.8) in a much more descriptive way using matrix-vector
notation. Doing so we can expect a block diagonal structure with entries corresponding
linewise to the terms of the expanded version of the product (c− s)k(c+ s)l. Indicating
the block-affiliations by auxiliary lines, we have in fact
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(
a00 a10 a01 a20 a11 a02 a30 a21 a12 a03 . . .

)T 7→ L−Tm a = (2.9)

1
c −s
s c

c2 −2cs s2

cs c2 − s2 −cs
s2 2cs c2

c3 −3c2s 3cs2 −s3

c2s c3 − 2cs2 s3 − 2c2s cs2

cs2 2c2s− s3 c3 − 2cs2 −c2s
s3 3cs2 3c2s c3

. . .


︸ ︷︷ ︸

= L−Tm

·a

Having a closer look at this transformation we can see that

L−Tm = m−1Lmm . (2.10)

This is due to the fact that L−Tm is inverted by writing down the transformation matrix
corresponding to a rotation by −ϕ, rather than ϕ. Thus inversion is equivalent to
substituting s by −s, because cos(−ϕ) = cos(ϕ) and sin(−ϕ) = − sin(ϕ). Transposition
of LTm sends the signs back to where they were in L−Tm . The change in the coefficients
of the matrix-components induced by transposition may be undone by multiplication by
m and m−1, respectively. Thus Equation (2.10) holds.
Let us have a short look at the coefficient vector A of the curve-describing polynomial: It
incorporates the multinomial coefficients and thus A = ma. Under rotation of the plane
around the origin, A changes according to Ã = L−TA and according to Equation (2.10)
L−T = Lm. This can also be shown analogously to Theorem 2.6.

Remark 2.1 Let us briefly validate the third block in the diagonal of L−Tm shown in
(2.9) without the formalism of multiple sums from Appendix A.1: According to Equation
2.5 we have

x̃2 = (cx− sy)2 = c2x2 − 2csxy + s2y2

x̃ỹ = (cx− sy)(sx+ cy) = csx2 + (c2 − s2)xy − csy2

ỹ2 = (sx+ cy)2 = s2x2 + 2csxy + c2y2

and thus x̃2

x̃ỹ
ỹ2

 =

c2 −2cs s2

cs c2 − s2 −cs
s2 2cs c2

x2

xy
y2

 =: L(2)

x2

xy
y2

 .

The coefficients of block2(a), i.e. a20, a11 and a02, transform among themselves. Accord-
ing to (2.4):

(ã20, ã11, ã02)

m20

m11

m02


︸ ︷︷ ︸

=:m(2)

x̃2

x̃ỹ
ỹ2

 = (ã20, ã11, ã02)m(2)L(2)m
−1
(2)m(2)

x2

xy
y2

 ,
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which gives us ã20

ã11

ã02

 = m−1
(2)L

−T
(2) m(2)

a20

a11

a02


with

m−1
(2)L

−T
(2) m(2) = m−1

(2)

 c2 −cs s2

2cs c2 − s2 −2cs
s2 cs c2

m(2) =

 c2 −m11
m20

cs m02
m20

s2

2m20
m11

cs c2 − s2 −2m02
m11

cs
m20
m02

s2 m11
m02

cs c2


No matter what the degree of the curve is, m20 = m02 and m11

m20
= m11

m02
= 2 holds in any

case. Thus ã20

ã11

ã02

 =

c2 −2cs s2

cs c2 − s2 −cs
s2 2cs c2

a20

a11

a02


2.2.4. Excursus on tetrahedral coefficient structure

This section is dedicated to the beauty of mathematics. The transformation formulas
(2.8) and (2.9) exhibit a lot of structure that we should dwell on for a while. Further-
more, the attributes shown will reappear in other transformation laws analogously (cf.
Section 2.3).

line k of coefficients sub-line coefficients
block3(L−Tm ) (weighted) weight (not weighted)

0

1 1 1
-3 -3 1

3 3 1
-1 -1 1

1
1 1 1 1 1

-2 -2 -2 1 1
1 1 1 1 1

2
1 2 1 1 1 2 1

-1 -2 -1 -1 1 2 1
3 1 3 3 1 1 1 3 3 1

Table 2.1.: Tetrahedral coefficient structure of block3(L−Tm )

Let blockn(L−Tm ) denote the n-th block in the diagonal of L−Tm , starting with the zeroth
block block0(L−Tm ) =

(
1
)
. When it comes to line-numbering within blocks we will also

start counting at zero and line k = 0 denotes the topmost line.
At first we can see that blockn(L−Tm ) is homogenous of degree n in c and s. The coeffi-
cients of the products of c and s exhibit a tetrahedral structure of binomially weighted
binomial coefficients: For example take block3(L−Tm ) from Expression (2.9). The coeffi-
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Coefficients Coefficients Coefficients Coefficients

of line k = 3 of line k = 2 of line k = 1 of line k = 0

Figure 2.1.: Tetrahedron sliced four times

cient structure is
1 −3 3 −1
1 1,−2 1,−2 1
1 2,−1 1,−2 −1
1 3 3 1

 given by


1c3 −3c2s 3cs2 −1s3

1c2s 1c3−2cs2 1s3−2c2s 1cs2

1cs2 2c2s−1s3 1c3−2cs2 −1c2s
1s3 3cs2 3c2s 1c3

 . (2.11)

Having a closer look at the rows of this coefficient structure we can detect binomial
coefficients: In the bottom line we have the coefficient-structure as in (a+ b)3 = 1a3 +
3a2b + 3ab2 + 1b3. One line above we have twice (1, 2, 1) but the second one is scaled
by −1 and shifted by one position. We say that the two copies of (1, 2, 1) form two
sub-lines of that line k = 2. These coefficients are binomial coefficients corresponding
to (a + b)2 = 1a2 + 2ab + 1b2. This pattern may be continued. In the line k = 1, one
line above, we have (1, 1) three times, each shifted by one position. Additionally, the
second copy, i.e. the second sub-line, is scaled by −2. The total pattern is displayed in
Table 2.1.
It is interesting to note that the weights of the sub-lines are themselves binomial coeffi-
cients: They belong to the coefficient-structure of (a−b)d−k. Thus we have a binomially
weighted binomial coefficient-structure as stated above. In general we can associate line
k of any blockn(L−Tm ) with d + 1 − k times the coefficients of (a + b)k, weighted by the
coefficients of (a− b)d−k.
Let us once more look at the coefficient-pattern in Table 2.1. On the one hand we have
a triangular structure of the binomial coefficients, corresponding to Pascal’s Triangle.
On the other hand we have certain lines of Pascal’s Triangle more than once: In line
k = 0 there is exactly the same number of sub-lines as we have coefficients in line k = 3.
Now embedding the two-dimensional Pascal-Triangle in three-space, we can arrange
the multiple copies of the corresponding line in the “surplus” dimension: The copies are
positioned above each other. This way we get a three-dimensional tetrahedral coefficient
pattern (compare with Table 2.1 and Figure 2.1).
To visualize the coefficients we slice our tetrahedron with the help of four parallel planes.
Thereby the first and the last plane shall intersect the tetrahedron in two opposing edges
and the coefficients of a line in block3(L−Tm ) shall be contained in one plane. The result
can be seen in Figure 2.1.
Summarizing the above, we got a tetrahedral structure by associating the lines in a block
by powers of (a+b) with weights according to powers of (a−b). Likewise, we could have
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line of coefficients sub-line
block3(L−Tm ) (weighted) weight

0 1 -3 3 -1 1

1
1 -2 1 1

1 -2 1 1

2
1 -1 1

2 -2 2
1 -1 1

3

1 1
3 3

3 3
1 1

Table 2.2.: Tetrahedral coefficient structure of block3(L−Tm )

done it the other way round arriving at a tetrahedron which is dual to the one above.
Associating the lines of block3(L−Tm ) by coefficients of powers of (a − b) with weights
according to coefficients of (a + b) we get the pattern of table 2.2. The corresponding
images of the tetrahedron will be omitted here. It can be obtained by rotating the
tetrahedrons from Figure 2.1 by π

2 . Thereby the rotation-axis is perpendicular to the
displayed planes and passes through the center of the tetrahedrons.
Let us switch back to our first pattern in Table 2.1 and Figure 2.1. The affiliation
of coefficients to a column in the Pattern 2.1 are shown by the auxiliary lines on the
particular planes.
This brings us to the idea of scanning block3(L−Tm ) in Expression (2.11) columnwise.
In our tetrahedron this means that we scan it by four parallel planes aligned by two
different opposing edges. Now each plane contains the coefficients of the corresponding
column. In Figure 2.1 the intersections of these four planes with the ones from above
are highlighted by orange lines. Unfortunately, the pattern is not as nice as the one
before. This is due to Equation (2.10), saying L−Tm = m−1Lmm (compare also with
Remark 2.1). This means that we must introduce weighted weights, i.e. weights for a
whole column, and line-weights in order to compensate the multiplication with the two
diagonal matrices. The resulting pattern is shown in Table 2.3 and Figure 2.2.
Scanning the first column of the matrix in (2.11), we get (1, 1, 1, 1), which corresponds to
the fourth line in Pascal’s Triangle (1, 3, 3, 1), when the line weights are associated. The
second column may be split into two sub-columns, the third into three and so on. Again,
we will always encounter binomial coefficients corresponding to lines in Pascal’s Triangle:
for example in the column weights, in the sub-column weights for each column, in the
coefficients of the columns and in the inverted line weights. Altogether we associated
the first and the last column of block3(L−Tm ) with two opposing edges in our tetrahedron.
Now given a tetrahedron, we know that it has three different opposing edge-pairs. Two
of them have already been identified with the coefficients of block3(L−Tm ) shown in Ex-
pression (2.11). Now, if we scan through our tetrahedron, using the remaining opposing
edge pair, we get again an interesting coefficient pattern (see Figure 2.3). It is in fact
exactly the same one we arrived at while scanning columnwise. Thus the tetrahedral
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column 0 1 2 3 line weights
1 1 1 1 1

coefficients 3 1 2 1 1 1 1
3

(not weighted) 3 2 1 1 1 1 1
3

1 1 1 1 1
subcolumn weight 1 1 -1 1 -2 1 1 -3 3 -1
column weight 1 3 3 1

a) Tabular with non-weighted coefficients

column 0 1 2 3 line weights
1 -3 3 -1 1

coefficients 1 1 -2 -2 1 1 1
3

(weighted) 1 2 -1 1 -2 -1 1
3

1 3 3 1 1
subcolumn weight 1 1 -1 1 -2 1 1 -3 3 -1
column weight 1 3 3 1

b) Tabular with weighted coefficients

Table 2.3.: Tetrahedral coefficient structure according to the columns and the diagonals
of block3(L−Tm )

a) column 0 b) column 1 c) column 2 d) column 3

Figure 2.2.: Tetrahedron sliced four times corresponding to columns of (2.11)

structure is clear by the preceding examinations (compare with Table 2.3).
What strikes most is that in a tetrahedron opposing edge pairs are equivalent due to the
symmetry. However, our coefficient structure does not resemble this symmetry without
exceptions: We got two times the structure shown in Table 2.3 and one time the one
shown in Table 2.1. This corresponds to singling out one opposing edge pair in our
tetrahedron. The corresponding coefficient pattern to this singled out edge pair is in
fact simpler than the other patterns: No additional line and column-weights are needed.
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a) Coefficients of the first series b) Coefficients of the second series

c) Coefficients of the third series d) Coefficients of the fourth series

corresponding to a) corresponding to b) corresponding to c) corresponding to d)

Figure 2.3.: Diagonal coefficient association in block3(L−Tm )

The simpler pattern of Table 2.1 corresponds to the lines of block3(LTm). A single line
in turn specifies the transformation of a curve coefficient under rotation of the plane.
This connection of coefficient transformation and simple tetrahedral pattern is due to
the introduction of multinomial coefficients.
In the last section and exemplarily in Remark 2.1 we saw that m−1L−Tm = L−Tm ,
which transforms a by ã = L−Tm a. Thus the introduction of multinomial coefficients
leads to a rotation of the tetrahedron. According to the observations above and without
multinomials we would have the lines of L−T associated with the pattern of Table 2.3
(modulo signs), which would introduce unnecessary complexities.

2.3. Complexification

We have seen that Equation (2.8) and thus Equation (2.9) exhibit a lot of structure. But
it is still unclear what this operation is doing geometrically with the curve coefficients.
Can it be associated with a rotation of coefficients or is it something more complex?
The answer is yes, but this operation is hidden because the examined polynomials were
all in real monomial representation. In this section we will derive a better basis for our
polynomials - better, in the sense of clearer structure and easier transformation matrices
for curve coefficients under transformations of the plane. In Section 4.1 we will see that
a rotation of the plane is in fact a rotation of the complexified curve coefficients.
Indeed complex representation was found useful for algebraic curves by two research
groups independently and simultaneously (see [46] and [52]). We follow their approach of
complexification and complement it by the use of multinomial coefficients. The previous
examination of the tetrahedral coefficient structure may be understood as motivation
for the subsequent transformation as complexification leads to similar structures. Thus
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complexification will take care of the “complicated” parts that a rotation induces on
the transformation of the curve coefficients. Consequently, rotations of the plane for
complexified curves will be quite easy to describe (see Section 4.1).

2.3.1. Complexified curves

Looking back at the transformation in (2.5), it can be seen that it describes a rotation
of the plane by

x 7→ cos(ϕ)x− sin(ϕ)y and y 7→ sin(ϕ)x+ cos(ϕ)y .

This leads to the messy transformation (2.9) of the curve coefficient vector. From com-
plex analysis we already know a shorter description for rotations: We may interpret the
plane R2 as complex plane C. The variables x and y can be transformed into complex
variables z and z by a (complex) linear transformation of the plane:xy

h

 7−→
1 i 0

1 −i 0
0 0 1

xy
h

 =

x+ iy
x− iy
h

 =

zz
h

 . (2.12)

In this framework a rotation by ϕ around the origin is simply

z 7−→ eiϕz and consequently z 7−→ e−iϕz .

Curves, former represented by f(x, y, h) = 0, are then represented by functions F (z, z, h)
depending on a complex variable z and its conjugate z. We will denote these curve-
describing polynomials by

F (z, z, h) = f

(
z + z

2
,
z − z

2i
, h

)
=

d∑
k=0

d−k∑
l=0

mkl ckl z
k zl hd−k−l . (2.13)

The dependence of F on z and z is necessary for F to be an algebraic polynomial.
Thereby d is the degree of f . The mkl are multinomial coefficients and the ckl will be
called (complex) curve coefficients. F (z, z, h) is said to be the complexification
of f(x, y, h). The question now is, how the coefficients akl and the complex coefficients
ckl of a curve can be related. As complexification leaves the homogenizing component h
invariant, we cover this relation in the affine set-up by

Theorem 2.7 Let f(x, y) =
∑

k+l≤dmklaklx
kyl = 0 describe a curve C = V (f) of

degree d. The introduction of z = x+ iy and z = x− iy permits a substitution of x by
z+z

2 and y by z−z
2i in f . The result is an algebraic polynomial F (z, z) = f

(
z+z

2 , z−z2i

)
in

z and z. Its homogenized version may be written in the form of Equation (2.13) with
complex curve coefficients ckl ∈ C. The connection between the coefficients akl and ckl
is given by

ckl =
1

2k+l

k∑
p=0

l∑
q=0

(
k

p

)(
l

q

)
i(p−q)−(k−l) a(p+q) ((k+l)−(p+q)) . (2.14)
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Proof The proof is completely analogous to the one of Theorem 2.6: We have

F (z, z) = f

(
z + z

2
,
z − z

2i

)
=

d∑
k+l=0

mklakl ·
(
z + z

2

)k (z − z
2i

)l
.

The right side of this equation may be expanded using the generalized binomial formula.
Changing summation indices and collecting the coefficients of all terms containing a cer-
tain product zkzl results in the desired expression for ckl. Carrying out these calculations
is analogous to the detailed calculations shown in Appendix A.1. 2

The complex curve coefficients ckl may be collected and written as coefficient vector c.
The variable vector now containing products of powers of z, z (and h) will be named Z.
If we explicitly want to distinguish between the homogenous and inhomogenous variant,
we use Zhom and Z. Thus F (z, z) = (mc)TZ and F (z, z, h) = (mc)TZhom. Thereby
Z = Zd and Zhom = Zhomd depend on the degree d of F and analogous to Section 2.1.5:

ZT = (1, z, z, ..., zd) and (Zhom)T = (hd, zhd−1, zhd−1, ..., zd) .

In Equation (2.14), we can see an interesting property analogous to the examinations
after Theorem 2.6: The terms preceding a(p+q) ((n+l)−(p+q)) in Equation (2.14) can be
viewed as an expansion of a generalized binomial formula:

k∑
p=0

l∑
q=0

(
k

p

)(
l

q

)
i(p−q)−(k−l) = (1 + i)k(1− i)l .

Now, we may rewrite Equation (2.14) in a more descriptive way, using matrix-vector
notation. According to the structure of the above equation, we may expect a block-
diagonal structure with the coefficients of (1 + i)k(1 − i)l scaled by 1

2k+l
. For a better

view on this structure we put these scaling factors 1
2r−1 afar from the transformation

matrix and compare with

(1 + i)2 = 1 + 2i− 1; (1 + i)(1− i) = 1 + 0i+ 1; (1− i)2 = 1− 2i− 1 .

Altogether we get(
a00 a10 a01 a20 a11 a02 a30 a21 a12 a03 . . .

)T
7→
(
c00 c10 c01 c20 c11 c02 c30 c21 c12 c03 . . .

)T = W−Ta

=



1
1 −i
1 i

1 −2i −1
1 0 1
1 2i −1

1 −3i −3 i
1 −i 1 −i
1 i 1 i
1 3i −3 −i

. . .





a00
1
2 · a10
1
2 · a01
1
4 · a20
1
4 · a11
1
4 · a02
1
8 · a30
1
8 · a21
1
8 · a12
1
8 · a03

...



(2.15)
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2.3.2. Structure of Complexification

A whole section could again be written about the beautiful tetrahedral structure of
the Transformation (2.15). In fact Transformations (2.8) and (2.14) are very similar.
Therefore this structural analysis will be handled very briefly. To transfer the results of
the excursus in Section 2.2.4 we have to examine the expressions (1− i)r and (1 + i)r:

(1− i)0 1 (1 + i)0 1
(1− i)1 1 −i (1 + i)1 1 i
(1− i)2 1 −2i −1 (1 + i)2 1 2i −1
(1− i)3 1 −3i −3 i (1 + i)3 1 3i −3 −i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Both of the above schemes resemble modified Pascal Triangles: They differ from the
commonly used one by a multiplication of the columns: Column r is multiplied by
(±i)r−1.
The pattern for the tetrahedral scheme according to the lines and columns of the block
block3(W−T ) is given by Tables 2.4 and 2.5. On the left tabular of Table 2.4 we can
directly see the summands of (1 − i)r and (1 + i)r. A pattern corresponding to the
diagonals may also be established with corresponding (sub-)weights, which we will omit
here because nothing new happens.

line of coefficients subline
block3 (not weighted) weight

1 1 −3i −3 i 1

2
1 −2i −1 1

1 −2i −1 i

3
1 −i 1

1 −i 2i
1 −i i2

4

1 1
1 3i

1 3i2

1 i3

line of coefficients subline
block3 (not weighted) weight

1 1 3 3 1 1

2
1 2 1 1

1 2 1 −1

3
1 1 1

1 1 −2
1 1 1

4

1 1
1 −3

1 3
1 −1

column
(−i)0 (−i)1 (−i)2 (−i)3

weight

without column weights with column weights

coefficients correspond to summands coefficients correspond to coefficients

of (1− i)r and sub-line weights to of (a+ b)r and sub-line weights to

those of (1 + i)r those of (a− b)r

Table 2.4.: Tetrahedral coefficient structure with respect to the lines of block3(W−T )
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column 1 2 3 4 line weights
1 1 1 1 1

coefficients 3 1 2 1 1 1 1
3

(not weighted) 3 2 1 1 1 1 1
3

1 1 1 1 1
subcolumn weight 1 1 -1 1 -2 1 1 -3 3 -1
column weight 1 3i -3 -i

Table 2.5.: Tetrahedral coefficient structure with respect to the columns of block3(W−T )
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c00
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c11 c30
c21

c40
c31

c22

1.0

a

C22C31

c40

C30 c11
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ABCt
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cT =
`

0 0 0 cT =
`
−3 0 0 cT =

`
0 0 0

−8 −7 −8 0 −1 −1 0 1+2i 4 1−2i 0 0 0 0 0 0 0 6i 2i −2i −6i

0 3
4

1 3
4

0
´

3−2i 0 0 0 3+2i
´

0 0 −1.5 0 0
´

Figure 2.4.: Curves determined by a complex coefficient vector

2.3.3. Equivalence of real and complexified curves

The most important feature of the structure of (2.14) is that each blockr(W−T ) has
⌊
r
2

⌋
complex conjugate line pairs. The first is conjugate to the last line, the second to the
second-last line and so on:

clk =
1

2k+l

k∑
p=0

l∑
q=0

(
k

p

)(
l

q

)
1

i(p−q)−(k−l)a(p+q) ((k+l)−(p+q)) = ckl .

In every second block in the diagonal of W−T , starting with block0(W−T ), the entries
of the line in the middle are real. Thus

ckl = clk and ckk = ckk ∈ R . (2.16)

The relations in (2.16) are also exactly the conditions a curve f(z, z) = 0 with complex
coefficients must satisfy, such that it represents a real algebraic curve. One can easily
prove this by counting the degrees of freedom of the curve describing polynomial.
The pairwise connection of the coefficients ckl and clk is necessary to maintain the size,
i.e. the dimension, of the coefficient-space of curves. The complexified representation
of a curve, or better the complexified curve coefficient vector, contains redundant infor-
mation. Figure 2.4 shows three curves. The curve coefficients are indicated as vectors
below the curves. The vertical lines in the vectors indicate the separation into blocks.
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2.3.4. The coefficient triangle

When speaking of a complexified curve, we normally have a coefficient vector c describing
the curves totally. In many contexts it is beneficial not to use a linear notation for the
vector components but a notation in form of a special triangle. Thereby we sort the
coefficients according to their occurrence in the corresponding parts of the form f(z, z):
All coefficients which belong to the part being homogenous of a certain degree in z and
z are grouped in a line. This corresponds to Definition 2.3 and coefficients of a block
are grouped linewise. The columns of our notation-scheme is ordered by the difference
of indices in such a way that we obtain

blockt(c) curve coefficients
t = 0 c00

t = 1 c10 c01

t = 2 c20 c11 c02

t = 3 c30 c21 c12 c03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

index difference . . . −3 −2 −1 0 1 2 3 . . .

(2.17)

This notation-scheme will be called coefficient triangle.
During the complexification-process, Equation (2.16) showed that ckl = clk for any k
and l. This may be interpreted as a kind of symmetry: Both ckl and clk contain the
same information. They only appear in complex conjugated versions of each other. In
this context the coefficient triangle is symmetric with respect to the column exhibiting a
vanishing index-difference. We will call this column the symmetry axis of the “reflectional
symmetric” coefficient triangle. The axis is characterized by its real coefficients ckk ∈ R.
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Tensors have been known about for approximately a century. Einstein showed the power
of this kind of calculus in his disquisition of the relativity theory (cf. [18]) and brought
tensors to popularity. Soon tensors found a wide application in mathematics, espe-
cially in the field of invariant theory. Tensors were extensively exploited for example by
Weitzenböck in [55], by Gurevich in [25] and by many others.
However, tensor-notation has deficiencies despite its descriptive power: In this notation
expressions get easily overcrowded with indices and indices of indices and even higher
iterations of indices of indices. Things become very impractical and structural properties
are literally buried under these indices. To avoid this we will simply replace the tensor-
components by a node of a graph and attach in- and outgoing arrows to it, according
to the co- and contravariant indices (see Section 3.1.3). For a first entry-point to this
technique we recommend [41]. We happened to discover this technique in a series of
articles written by Jim Blinn (cf. [9], [10]). He used this technique to treat projective
geometry on a diagrammatic level and examined especially lines, conics and cubics and
some of their invariants (see [3], [4], [5], [6], [7], [8]). But tensor-diagrams have already
been used in the literature (see [17],[38]). First attempts can be traced back to Clifford
and the so-called Clifford’s Graphs (see [14], [15], [28], [42], [45]). There are many
other examples in which tensor diagrams are useful tools. For example, in group theory
(cf. [43]) or in quantum information theory (see [2]).

3.1. Connection between tensor algebra and curves via forms

We have seen that a plane algebraic curve C = V (f) of degree d can be represented by
a zero-set of a polynomial

f(x) =
d∑

k=0

d−k∑
l=0

mklckl · xk1xl2xd−k−l3 .

Here x may be (x1, x2, x3) = (x, y, h) or (x1, x2, x3) = (z, z, h), depending on the working
frame. A point P = (p1, p2, p3) in homogeneous coordinates is on a curve if f(P ) = 0. In
most cases this formula is very unhandy and structural results and especially invariants
can be very hard to extract. As stated above, we will derive a very simple representation
of C, introducing tensor notation and visualizing C using diagram techniques. In contrast
to the triangular notation-scheme from Section 2.3.4, the coefficients are now ordered in
form of squares, cubes and in general hyper-cubes.
We will start by recapitulating tensor-algebra basics from an operational point of view:
We do not use tensors as abstract algebraic objects of a tensor-space. But tensors are
viewed as multilinear objects defined via their transformation behavior. We begin with
an examination of so-called co- and contravariant vectors. With a view to their trans-
formation behavior general tensors are introduced. After examining tensor operations,
such as multiplication, addition and contraction, curve-tensors are focused on.
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3.1.1. Covariant and contravariant vectors

Working in the projective plane or in the projectively extended Euclidean plane, scalars,
vectors with three elements, 3×3 matrices and in general 3×3× ...×3 tensors are used.
The simplest quantities besides scalars are vectors. Points x = (x1, x2, x3)T as well
as lines l = (l1, l2, l3) may be represented by vectors. The simplest operation between
vectors is probably the scalar product 〈l, x〉. If for a point x and a line l the equation

〈l, x〉 = l1x1 + l2x2 + l3x3 =
3∑
i=1

lixi = 0 (3.1)

is satisfied, the point x is on line l. Thus vectors represent two different but dual
concepts: points and lines. In order to be able to distinguish between these two, we
introduce a new notation for points by ”moving“ the index: A point will be represented
by a vector whose components have an upper index. In this way Equation 3.1 changes
to

〈l, x〉 =
3∑
i=1

lix
i = 0 .

Dealing with higher order curves and more complex products, many sums show up. To
shorten notation, we use the Einstein Sum Convention (ESC): Every time an index
shows up as an upper and as a lower index, the whole expression is summed over all
possible values of this index.
This notation is credited to Albert Einstein, who introduced it in [18]. It is widely used
especially in relativistic theory (cf. [23]). With the ESC Equation (3.1) shortens to

〈l, x〉 = lix
i = 0 . (3.2)

In Equation (3.2) the range of the index i must be clear. Here we deal with plane
algebraic curves, utilizing homogeneous coordinates. The possible values for any index
will always be 1, 2 and 3, i.e. i ∈ {1, 2, 3}, unless explicitly stated otherwise. Thus we
will mostly omit the addendum of the range of our indices. Nevertheless, the concepts
shown also apply for other finite dimensional spaces.
In Section 2.2.2 we introduced transformations P of the (projective) plane. Points
(x1, x2, x3) were mapped onto Q(x1, x2, x3)T , where Q = P−T ∈ K3×3 (K ∈ {R,C}).
The result was a transformed point (x̃1, x̃2, x̃3). Let piα with 1 ≤ i, α ≤ 3 be the compo-
nents of P , then in an ESC-conform notation:

xi = piαx̃
α , i, α ∈ {1, 2, 3} . (3.3)

In fact, we say that a geometric object consisting of three components (x1, x2, x3), which
transforms according to (3.3) under a transformation of the plane, is called a contravari-
ant vector.
Solving Equation (3.3) for the transformed coordinates x̃α, we get

x̃α = qαi x
i , i, α ∈ {1, 2, 3} , (3.4)

where

piαq
β
i = δβα =

{
1 if α = β

0 if α 6= β
(3.5)
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Let
∆ = det

(
(piα)1≤α,i≤3

)
be the determinant of the transformation matrix P = (piα)1≤α,i≤3. This way, qαi is the
minor of ∆ with respect to piα divided by ∆.
Accordingly a covariant vector may be defined by its 3 components l1, l2, l3 and its
transformation behavior under liner transformations of space. It is:

l̃α = piαli , i, α ∈ {1, 2, 3} (3.6)

or by utilizing Equation (3.5):

li = qαi l̃α , i, α ∈ {1, 2, 3} .

With these definitions we ensure that an incidence of a point and a line remains un-
changed under linear transformation of space. The invariance of equation (3.2) is shown
by

lix
i = piαlix̃

α = l̃αx̃
α . (3.7)

Remark 3.1 Point-like vectors are named contravariant for the following reason: Points
(vectors) as an element of a vector space are given by a linear combination of base
vectors. Performing a linear transformation of space, the coordinate vectors of the
points change. Let P be the transformation matrix representing the transformation of
the base vectors. Then P−T acts on the point-vectors, i.e. P counter-acts on the points
(cf. [22]). Thus vectors which transform like base vectors are called covariant vectors
and vectors transforming point-like are called contravariant.

We may also have taken Equation (3.7) as a prerequisite for our treatment of tensors.
This way a transformation of covariant vector would consequently act contragrediently
(in a counter-acting manner) on contravariant vectors. Using matrix vector notation as
in Remark 3.1 we get for example PlT = l̃. Then by 3.7

〈l, x〉 = lx = lP T︸︷︷︸
=el
(
P T
)−1

x︸ ︷︷ ︸
=Qx=ex

= l̃x̃ = 〈l̃, x̃〉 .

Thus Equation (3.7) and contragredient transformations are closely related.

3.1.2. Tensors

We saw in Section 2.2.2 that a transformation of space may be interpreted as multi-
plication with a matrix P . Suppose we have a plane, which was already transformed
by the use of another matrix R. Carrying P over to this plane means that we have to
transform it by P̃ = R−1PR. This is clearly a transformation law for transformations:
They can be regarded as geometric objects, which transform point- and line-like. We
now generalize the concept of co- and contravariant vectors, which had been objects
defined by components and a transformation law. This way we get co, contravariant and
mixed tensors. A first example for mixed tensors are transformations.
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Definition 3.1 (Tensor) A tensor
(
tj1,j2,...,jsi1,i2,...,ir

)
of covariance r and contravariance s

(or in short: a r-s-tensor) is a set of numbers tj1,j2,...,jsi1,i2,...,ir
, which changes under linear

transformations of space in accordance with the law

t̃β1,β2,...,βs
α1,α2,...,αr = pi1α1

pi2α2
. . . pirαr · q

β1
j1
qβ2
j2
. . . qβsjr · t

j1,j2,...,js
i1,i2,...,ir

. (3.8)

Any index is within the range of {1, 2, . . . , n} and n = 3 for the projective plane. (If
it is clear, we often omit the brackets “( )” around t, symbolizing that the tensor is
meant rather than a component of that tensor.) The sum of the number of co- and
contravariant indices r + s of a tensor is called its variance or order.

Remark 3.2 There are alternative definitions for tensors in the literature: It is Equiv-
alent to the above Definition 3.1 to speak of a tensor as a multilinearform. The compo-
nents of which may be accessed by applying all combinations of the standard unit vectors
(vectors of length one and with all but one component vanishing). For an introduction
to this concept see [22]. A comprehensive study can be found in almost all books on
tensor algebra (cf. [38], [55], ...). Here, we use the definition most common in physics.
The focus lies on the transformation behavior which is most beneficial in our context of
curve recognition using invariants.

Special cases of tensors are scalars, which are tensors of variance zero. Covariant vectors
are 1-0-tensors and contravariant vectors are 0-1-tensors. As we have seen, transforma-
tions may be interpreted as 1-1-tensors. The number of components of a tensor depends
on the range of its indices and its variance. If the index-range of all tensor-indices is n
and if the variance of that tensor equals v, then it has nv components. nv is the number
of possible combinations of indices attached to the tensor. Thus a 3 × 3 × 3 tensor tikl
has 33 = 27 components, since i, k, l ∈ {1, 2, 3}.
In what follows we will encounter special tensors exhibiting symmetries.

Definition 3.2 Let i1, i2, ..., ir ∈ In = {1, 2, ..., n} be tensor-indices.
A covariant r-tensor (ti1,i2,...,ir) (or a contravariant r-tensor

(
ti1,i2,...,ir

)
) is called (par-

tially) symmetric with respect to the indices ia and ib if

ti1,...,ia,...,ib,...,ir = ti1,...,ib,...,ia,...,ir (or ti1,...,ia,...,ib,...,ir = ti1,...,ib,...,ia,...,ir)

for all ia, ib ∈ In. A tensor is called (totally) symmetric if it is symmetric with respect
to all index-pairs.
A covariant r-tensor (ti1,i2,...,ir) (or a contravariant r-tensor

(
ti1,i2,...,ir

)
) is called skew

symmetric with respect to the indices ia and ib if

ti1,...,ia,...,ib,...,ir = −ti1,...,ib,...,ia,...,ir (or ti1,...,ia,...,ib,...,ir = −ti1,...,ib,...,ia,...,ir)

for all ia, ib ∈ In. A tensor is called (totally) skew symmetric if it is skew-symmetric
with respect to all pairs (ia, ib) of different indices ia 6= ib.

Let us take the tensor (tikl) as an example. It is symmetric if tikl = tilk = tkli = tkil
= tlik = tlki. It is skew-symmetric if tikl = −tilk = tkli = −tkil = tlik = −tlki.
This way the number of the effective components, i.e. the number of possibly differ-
ent components, diminishes. For symmetric tensors (ti1,i2,...,ir) it is

(
n+r−1

r

)
and for
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skew-symmetric tensors it is
(
n
r

)
. This can be proven by analyzing the possible index-

permutations (cf. [25]).
(Skew-)Symmetric tensors are important, because their symmetry is preserved by linear
transformations of the plane (or linear transformations of higher dimensional spaces):

t̃α1,...,αa,...,αb,...,αr = pi1α1
pi2α2

...pirαr · ti1,...,ia,...,ib,...,ir
= ±pi1α1

pi2α2
...pirαr · ti1,...,ib,...,ia,...,ir (3.9)

= ±t̃α1,...,αb,...,αa,...,αr .

The space of the components of a tensor (ti1,i2,...,id) is nd-dimensional. A basis for
this space is given by the objects (ti1,i2,...,id)ik∈{1,2,...,n},∀k, where all but one component
equal to one vanish. For our purposes another basis is more suitable. There is one,
which gets along with only totally symmetric and skew-symmetric tensors with respect
to two indices. No non-symmetric tensors are needed. For a proof we refer to Appendix
A.2. For example, any 3× 3-tensor (tkl) may be given by

(tkl) =

λ1 λ4 λ5

λ4 λ2 λ6

λ5 λ6 λ3

+

 0 µ1 µ2

−µ1 0 µ3

−µ2 −µ3 0

 .

The nine degrees of freedom for a 3 × 3-tensor are split into six degrees of freedom for
symmetric matrices and three degrees of freedom for skew-symmetric matrices.
We will now define a partition on the set of all tensors (ti1,i2,...,id) with i1, i2, ..., id being
elements of {1, 2, ..., n} into equivalence classes. This will help us in the context of curves.
In our context usually n = 3. Therefore let skewd,n be the set d-0-tensors which are
skew-symmetric with respect to at least two indices. Then

[ti1,i2,...,id ] :=
{
λ (si1,i2,...,id)

λ 6= 0 and (si1,i2,...,id) is a linear combination
of elements of skewd,n and (ti1,i2,...,id)

}
(3.10)

Due to the above stated existence of a basis, consisting of totally symmetric and skew-
symmetric elements, [ti1,i2,...,id ] is an equivalence class. A representational system of the
set of all such classes are the totally symmetric tensors. We can speak of an equivalence
class of tensors, since linear transformations of the plane or space are consistent with
the separation into such classes: This is ensured by the invariance of the symmetry
attributes of tensors under such transformations (see Equation (3.9)).

3.1.3. Diagram notation of tensors

To get rid of the many indices, we represent a tensor by a node with in-going and
out-going edges standing for co- and contravariant indices. We will name the in-going
edges entries and the outgoing edges exits. If necessary, we will attach an index to the
corresponding edge. If a tensor has more than one in- or outgoing arc, then these will be
ordered counter-clockwise with respect to the order of sub- and supscripts (see Figure
3.1). Naturally, if a tensor is totally symmetric, this order is irrelevant. A scalar is just a
node without dangling edges. A line-describing and therefore covariant vector is a node
with one entry. A node with one exit represents a contravariant vector. The tensor tlmijk
has three entries and two exits. These examples are displayed in Figure 3.1.
By Equation (3.6) a covariant vector transforms with l̃α = piαli. On the right hand side
the ESC implies a summation of piα and li over the joint index i. In diagram notation the
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scalar ρ covariant vector li contravariant vector xi mixed tensor tlmijk

Figure 3.1.: Diagrams for simple tensors

summation is expressed by the connection of the nodes with an edge corresponding to
index i. i is exit to xi and an entry to piα. The directedness of these edges corresponds to
the ESC: Implicit summation takes place only with respect to an index appearing as co
and as contravariant index. Figure 3.2 shows the transformation of tensors in accordance
with Equations (3.3), (3.6) and (3.8).

eρ = ρ elα = piαli

exα = qαj x
j etλµαβγ = piαp

j
βp
k
γq
λ
l q
µ
mt

lm
ijk

Figure 3.2.: Transformation of tensors in diagram notation

Connecting the dangling “α-edges” of the second and third image of Figure 3.2 means
building the scalar product of the two vectors l and x: The indices corresponding to the
two dangling α-edges are identified - they are already named equally - and summation
over that index takes place. Using Equation (3.5), saying that whenever piα is connected
with qβj , it can be replaced by an edge without nodes and we get our scalar product
(cf. Figure 3.3).

3.1.4. Tensoroperations

Next we will discuss three operations on tensors: multiplication, addition and contraction
(see also Figure 3.4). A multiplication of two tensors of any variance again equates to a
tensor, where the co- and contravariances add up, respectively: We can write two tensor
nodes next to each other and interpret the result as a new ”bigger“ node. The dangling
edges of the two multiplied tensors become dangling edges of the result. Clearly, the
new node represents a tensor because the edges, pointing inwards and outwards, define
its behavior under transformations.
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piαq
β
i = δβα elαexα = lip

i
αq
α
j x

j = liδ
i
jx
j = lix

i

Figure 3.3.: Invariance of the algebraic equation of a line

Addition is a slightly more difficult. We can add up only tensors with the same number
of co- and contravariant indices. If we add up two matrices A and B for example, the
dimensions must match each other because addition is componentwise. For square ma-
trices A and B, A+BT is also expressible with diagrams. Let A and B have components
aij and bkl, respectively. Let crs be the result of the addition. We get the result C of
A+B in tensor notation by identifying i = k = r and j = l = s. A+BT is accessible by
identifying i = l = r and j = k = s (see also the right image in Figure 3.4). We call every
tuple of three identified indices in a tensor-summation a parallel triplet. In any case we
need to specify these triplets in order to be able to perform tensor addition. Clearly,
every index must be contained in exactly one parallel triplet. A co- and a contravariant
index may of course never be parallel because the transformation laws do not match.
Thus addition, parallel to covariant (contravariant) indices, results in a covariant (con-
travariant) structure. The summed expression has the same variance as the summands.
The result of tensor addition is again a tensor inheriting the transformation law from
the summands (see Figure 3.5).
Contraction is an operation we have already met, caring for transformations: We built a
tensor by multiplying xi by a transformation-tensor pαi . This way, we got a tensor tiαi with
a loop: An exit was directly connected to an entry. Now we may simply draw a bigger
node around our tiαi , totally containing the “i-loop” and name it uα. This corresponds
to tensor-contraction. The new tensor uα behaves like a contravariant vector (see the
right image in Figure 3.4), because tiαi transforms like uα. In general, contraction of a
tensor reduces its variance by two: The number of co- and contravariant indices reduce
each by one.

Remark 3.3 When we contract a tensor with respect to all its indices, we speak of total
contraction. A totally contracted tensor is a scalar. It does not change under linear
transformation of space. In diagram notation totally contractible tensors are closed
diagrams. As a scalar they can be represented by a single node without dangling edges.
Transformation of space replaces edges by edges with transformation-nodes. Thus we
can also see from diagram notation that closed diagrams in total or single nodes without
edges do not change.
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alij · bmk = clmijk alij + blji = clij

tensor-multiplication tensor-addition

tiαi = uα

tensor-contraction

Figure 3.4.: Product, sum and contraction in diagram notation

The transformed tensor-sum has again tensor structure.

Figure 3.5.: Transformation law for the sum of two tensors
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3.1.5. Curves as tensors

In Section 2.2.1 we introduced curves as zero-sets. A curve C was defined by an implicit
form-function f , namely C = V (f). Thereby we have a one to one correspondence
between C and [f ], when f is an associated polynomial of C. Now we will show the
connection between tensors and polynomials and plane algebraic curves in general. For
this reason we set the index-range of all tensor indices to {1, 2, 3}. The curves and
polynomials shall be of degree d for a predefined d ∈ N \ {0}.
First let us examine ti1,i2,...,idx

i1xi2 · ... ·xid . Due to ESC we have to sum over all indices
and

ti1,i2,...,id · x
i1 · xi2 · ... · xid =

3∑
i1=1

3∑
i2=1

· · ·
3∑

id=1

ti1,i2,...,id · x
i1 · xi2 · ... · xid .

We may collect all terms according to the powers of x1, x2 and x3 and rewrite this
expression as

ti1,i2,...,id · x
i1 · xi2 · ... · xid =

d∑
k=0

d−k∑
l=0

Akl
(
x1
)k(

x2
)l(
x3
)d−k−l

. (3.11)

Thereby Akl =
∑

π∈Sd tπ(1,...,1,2,...,2,3...,3) is the sum over all ti1,i2,...,id with exactly k indices
equal to 1 and exactly l indices equal to 2 in all permutated variations. Thus adding
any skew-symmetric tensor to ti1,...,id leads to the same Akl and thus to the same form.
Furthermore, multiplication of this tensor by any constant λ leads to a multiplication of
all Akl by the same constant λ.

Theorem 3.1 Let

Md =
{

[ti1,...,id ]
∣∣∣ ∃(j1, ..., jd) ∈ {1, 2}d : tj1,...,jd 6= 0

}
.

The set of all plane algebraic curves C of degree d is structurally isomorphic to Md.

The restriction on the tensors in the above theorem ensures that ti1,i2,...,idx
i1xi2 ...xid

contains a term of degree d in (x1) and (x2).
For totally symmetric ti1,i2,...,id we have

Akl = mklt 1,1,...,1︸ ︷︷ ︸
k times

l times︷ ︸︸ ︷
2,2,...,2 3,3,...,3︸ ︷︷ ︸

d−k−l times

=: mklakl (3.12)

and Equation (3.11) evaluates to

ti1,i2,...,id · x
i1 · xi2 · ... · xid =

d∑
k=0

d−k∑
l=0

mklakl
(
x1
)k(

x2
)l(
x3
)d−k−l

. (3.13)

Equations (3.12) and (3.13) give us a direct correspondence between totally symmetric
tensors and curve describing polynomials. Thus with a totally symmetric ti1,i2,...,id we
can identify

C ←→ [f ]←→ [ti1,i2,...,id ]←→ {λti1,i2,...,id | λ 6= 0} .

f and ti1,i2,...,id play an equivalent role in the definition of a curve.
Therefore we will often speak of totally symmetric tensors as curve-tensors. Simplify-
ing notation we also speak of ti1,i2,...,id as a curve. Two examples will provide a feeling
for the connection between curves and tensors.
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Example 3.1 Let us take an ellipsis given by (x−1)2

a2 + (y−1)2

b2
− 1 = 0 with major axis

a = 1 and minor axis b = 1
2 . Homogenizing this equation and setting x = x1, y = x2

and the homogenizing component to x3, we get

f(x1, x2, x3) = 4
(
x3
)2 − 2

(
x1
) (
x3
)
− 8

(
x2
) (
x3
)

+
(
x1
)2 + 4

(
x2
)2 = 0 .

Thus taking care of the multinomial coefficients the curve-coefficient vector is(
a00 a10 a01 a20 a11 a02

)
=
(
4 −1 −4 1 0 4

)
.

The corresponding totally symmetric tensor ist11 t12 t13

t21 t22 t23

t31 t32 t33

 =

a20 a11 a10

a11 a02 a01

a10 a01 a00

 =

 1 0 −1
0 4 −4
−1 −4 4


and in fact

tklx
kxl =

(
x1 x2 x3

) 1 0 −1
0 4 −4
−1 −4 4

x1

x2

x3

 = f(x1, x2, x3) .

The curve C = V (f) can be identified with [f ] = {λf | λ 6= 0} or with

[tkl] =

λ
 1 α −1 + β
−α 4 −4 + γ
−1− β −4− γ 4

 ∣∣∣∣∣∣ α, β, γ ∈ R λ 6= 0

 .

In diagram notation this looks like = f(x) = f(x1, x2, x3).

Example 3.2 Suppose we have a cubic given by

0 = f(x, y) = a00 + 3a10x+ 3a01y + 3a20x
2 + 6a11xy + 3a02y

2

+a30x
3 + 3a21x

2y + 3a12xy
2 + a03y

3 .

We can arrange the ten curve coefficients akl in a 3 × 3 × 3 totally symmetric tensor
tpqr according to Equations (3.12) and (3.13). Thereby we can visualize tpqr by a tensor,
a cube-shaped “matrix”, (see Figure 3.6) with 33 = 27 components. The number of
effective components of the totally symmetric tklm is

(
5
3

)
= 10, exactly matching the

number of curve coefficients of our cubic. Each of the remaining 17 components of tpqr
are equal to one of those 10 components. Figure 3.6 shows this equality by highlighted
orbits. The cardinality of tensor-components on each orbit corresponds to the associated
multinomial coefficient. Visualizing the tensor as a cubical matrix, the curve describ-
ing polynomial f(x, y) can be obtained by multiplying the cube by (x, y, 1) from three
directions (see Figure 3.7). We can write

= f(x, y) = tklmx
kxlxm = 0 .

Thereby due to the affine set-up we fix the homogenizing component to be x3 = 1.
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cube shaped tensor tklm t111 = a30 t123 = t312 = t231 =

top left front: t111 = a30 t222 = a03 = t132 = t321 = t213 = a11

bottom right back: t333 = a00 t333 = a00

t112 = t121 = t211 = a21 t113 = t131 = t311 = a20 t122 = t212 = t221 = a12

t233 = t323 = t332 = a01 t133 = t313 = t331 = a10 t223 = t232 = t322 = a02

Components which are equal by virtue of the total symmetry of the tensor, are displayed

within an orbit in each picture.

Figure 3.6.: Cubical and symmetry-structure of a totally symmetric tensor tklm corre-
sponding to a curve of degree three

cube shaped tensor tklm

Figure 3.7.: Cubic polynomial via multiplication of a cubical tensor
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3.2. Invariants

In this section we gather all ingredients we need to state invariants in an elegant tensor-
diagram notation. Due to the concept of homogenous coordinates and the identification
of objects with non-zero multiples, certain difficulties in stating the term of an invariant
arise. We avoid these by referring to vector-configurations and therefore distinguish
between multiples of the objects.

Definition 3.3 Let G be a transformation group and T ∈ G. Let O be a collection
of tensors (representing geometric objects) and Õ the collection of the tensors of O
transformed by T . A polynomial ϕ(O) (or ϕ(tensor1, tensor2, ...)) is called a relative
invariant if

ϕ(Õ) = det(T )gϕ(O)

for all choices of corresponding elements in O and for all T ∈ G. g is called the weight
of the invariant. If g = 0, then ϕ is called an absolute invariant.

Projectively invariant properties may be expressed by the vanishing of a polynomial in-
variant ϕ. In those cases a multiplicative factor of det(T )g changes nothing. Measuring
projectively invariant functions such as the cross ratio, we have to consider special ra-
tional functions: a polynomial function divided by another, exhibiting exactly the same
kind and the same number of objects. We will see examples later on.
In case of relative invariants ϕ has only geometric significance if tested against zero. In
our case O will mainly consist of a single tensor representing an algebraic curve. We
already encountered an example of an invariant with two distinct objects in Figure 3.3:
The incidence between a point and a line: = 0. Another one is pipjQij = 0

with a point pi and a conic Qij . is the corresponding diagram and the

property of a point lying on a conic - the property of the diagram evaluating to zero - is
projectively invariant.

3.2.1. The δ- and ε-tensor

So far we have built diagrams only by using “object-tensors” and the diagrams were
quite linear in structure. This changes when we introduce the so called ε-tensor and the
closely related δ-tensor. For further introduction regarding these tensors compare with
[25] or [41].
Let us start with the seemingly unimposing δ-tensor. It is just the Kronecker-Delta δji ,
being δii = 1 and δji = 0 for i 6= j. The benefit of it is that it enables arrow-relabeling:
For instance piδji = pj . In the diagrammatic point of view it is just an intermediate
arrow:

In total this additional arrow remains unnoticed because of the arbitrariness of summa-
tion indices. Its power in diagram simplification unfolds in connection with the ε-tensor
(see Section 3.3.6): If the ambient space is RP2 as it is here, the ε-tensor is a threefold
co- or a threefold contravariant tensor. The speciality is its total skew-symmetry: inter-
changing two indices flips the sign. Additionally fixing ε123 = 1 totally determines this
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tensor:
ε123 = ε231 = ε312 = −ε132 = −ε321 = −ε213 = 1 .

All other components vanish due to the skew-symmetry. The contravariant ε-tensor εklm

is defined analogously. We represent the co- and contravariant ε-tensor in this order by

and

Let us state a few results concerning the ε-tensor. For further descriptive explanations
we recommend [41]. If l = p × q results from the join-operation of two points and if
p = l ×m results from the meet-operation of two lines, we get:

and

The first diagram represents an object with an incoming arrow. Thus it is contravari-
ant, “line-like” so to say. The second diagram represents an object with an outgoing
arrow, a “point-like” object. A simple calculation shows that, performing the necessary
summations, we obtain exactly the stated vector products. Another remarkable identity
is:

piqjrkε
ijk = det

 p1 q1 r1

p2 q2 r2

p3 q3 r2

 .

The ε-tensor simply selects all six summands that are present in the evaluation of a
determinant. In diagram notation determinants of three points or three lines read:

and

Now knowing about the effect of δ- and ε-tensor, we focus on their behavior under trans-
formations. The δ-tensor has one co- and one contravariant index and thus transforms
as we already have seen in the left of Figure 3.3. It does not change at all. The ε-
tensor also demonstrates a remarkable transformation behavior: Applying a projective
transformation T to an ε-tensor results in a multiple of the ε-tensor:

40



3. Curves and Tensor-Algebra

The covariant ε-tensor transforms analogously: When εklm is transformed as above, εpqr
transforms by T−T . The arrows are reverted and the factor becomes 1

det(−T ) . This
behavior gives rise to

Definition 3.4 Let A be a tensor with Aj1,j2,...i1,i2,...
and T be the matrix representation of a

transformation of space. Let Ãj1,j2,...i1,i2,...
be the transformed version of the tensor A. Then

A is called relative invariant tensor of weight g if A = Ã · det(T )g. In case g = 0, A
is called an absolute invariant tensor.

As we have seen εklm is a relative invariant tensor of weight one. In projective geometry
we do not distinguish between multiples. Doing so with the ε-tensor, it becomes an
object which is not changed by any projective transformation. This property makes the
ε-tensor a key ingredient in stating projective invariants.

3.2.2. Closed diagrams and projective invariants

The invariants we have met so far and the ones we will meet are all represented by a
single or a linear combination of closed diagrams, i.e. there are no dangling arrows. In
fact linear combinations of closed diagrams are invariants (cf. [41]) and the converse also
holds due to the first fundamental theorem of invariant theory (see [25]). (Beware that
the role of T and T ∗ = T−T is swapped in [41].)

Theorem 3.2 Let O be a collection of tensors representing geometric objects (like
curve-tensors). Let D be a closed diagram consisting of tensors in O and ε-tensors. Let
there be k covariant and l contravariant ε-tensors in D. If the space is transformed by
the use of a matrix T , the diagram with the transformed tensors evaluates to det(T )l−k

times the diagram D.

Proof Scalar tensors are not affected by transformations. All other tensors get trans-
formed according to the number and location of their indices. Lower covariant indices
imply a transformation by T and upper contravariant indices imply transformations by
T−T . (We also introduce transformation tensors around the ε-tensors.) Speaking di-
agrammatically: Entries get a T attached: and exits get a

T ∗ = T−T : . But in a closed diagram each arrow is an entry as well as an

exit to corresponding nodes. Altogether an arrow is replaced by a T−T - and a subsequent
T -tensor and the diagrams are identical. All tensors in D originating from O are thus
surrounded by corresponding transformations. The entities of each such tensor with the
corresponding transformations may be labeled as transformed tensors. The only remain-
ing T and T−T tensors surround the ε-tensors: The T−T -tensors are grouped around
εklm and the T -tensors around εpqr. Due to the transformation behavior of the ε-tensors
the transformation results in a multiplication of the original diagram by the determinant
of T to the power of l − k. Thereby k and l are the numbers of co- and contravariant
ε-tensors used. Per construction no T or T−T remains in our diagram. 2

For a detailed example on this theorem we refer to [41].
The next step is to reformulate the first fundamental theorem of invariant theory. It
ensures the converse of the above theorem: Every polynomial invariant may be written
in diagram notation using only our geometric objects and ε-tensors. For a detailed proof
we refer to [25] and [39].
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Theorem 3.3 Let O be a collection of tensors, i.e. a collection of coordinate-collections
with specified transformation behavior, representing geometric objects.
Let ϕ(Õ) = det(T )g · ϕ(O) be a polynomial invariant of the objects in O with respect
to projective transformations. Thereby T ∈ GL(3) is arbitrary and Õ is the set of the
by T transformed Objects in O. Then ϕ may be written as a linear combination of
tensor-products of tensors in O and co- and contravariant ε-tensors.

According to this theorem, the set of all polynomial invariants of objects in O is equiv-
alent to the set of all diagrams containing tensors from O and ε-tensors.

3.2.3. Diagrams and (non)-Euclidean invariants

Diagrams can also be used to represent invariants under other transformation groups
than the projective group (cf. [41]). According to Felix Klein’s Erlanger Program, Eu-
clidean and non-Euclidean geometries can be considered as special cases of projective
geometry, with a conic section - the fundamental object - attached to it (cf. [39]). Thus
according to Felix Klein, we just have to add tensors to our diagram-ingredient-list, which
represent these fundamental objects: Building diagrams consisting of object-tensors like
a curve-tensor and ε-tensors together with the fundamental-form-tensors gives an invari-
ant expression.
We consider points represented by homogeneous coordinate vectors (x, y, z). In the stan-
dard embedding on the z = 1 plane Euclidean transformations are all those projective
transformations that leave a certain pair of points {I, J} invariant as a pair. These two
points have the complex coordinates I = (i, 1, 0) and J = (−i, 1, 0). Thus they both
lie on the line at infinity and both of them have complex coordinates. Rotations and
translations leave each of the two points invariant, while reflections and glide reflections
interchange them. As common in invariant theory, we will also consider similarities
and similarities followed by (glide-)reflections as Euclidean transformations. They also
leave the pair {I, J} invariant. In the set-up of Cayley-Klein geometry the pair {I, J}
plays the role of a dual degenerate conic, the fundamental object. The corresponding
primal conic is the (doubly covered) line at infinity. All tangents to this fundamental
object will pass through either of the points I or J. A Euclidean (relative) invariant
of a collection O of geometric objects is a polynomial in the coordinate entries of O
such that f(τ(O)) = det(T )gf(O) for every Euclidean transformation τ . Here T is the
corresponding 3× 3 transformation matrix and g is a suitable integer.
If we want to represent Euclidean invariants on the level of tensors (or tensor diagrams),
we could draw diagrams involving the tensors of O and I and J. Then we must take care
of using I and J in a symmetric way in the diagram. However, we could also combine
I and J immediately in a symmetric and an antisymmetric manner and introduce two
(covariant!) quadratic forms E and A (compare [53] and [54]). In matrix/vector language
the forms are defined as

E =

1 0 0
0 1 0
0 0 0

 =
IJT + JIT

2
and A =

 0 1 0
−1 0 0
0 0 0

 =
IJT − JIT

2i
.
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Diagrammatically we get:

and

(3.14)

.

The tensors E and A are covariant (they have two outgoing arrows). Since I and J
remain invariant (up to a factor) under rotations, the E- and A-tensor are also invariant
(up to a certain factor). For rotations expressed by a projective 3× 3 matrix T we have

and

.

For orientation reserving Euclidean transformations (they interchange I and J) the sit-
uation is slightly different. Here E becomes transformed as above. However, A will
change its sign.
Thus having a tensor-diagram containing and , we can substitute them by

using and :

Analogously we get

This means that if X is symmetric with respect to the I- and J-tensor, must

vanish. This is also clear due to the skew-symmetry of A. Thus we have

Theorem 3.4 If a diagram-term consists of I- and J-tensors in the symmetry of Equa-
tion (3.14), there is an equivalent diagram-expression without these tensors but with an
E- and an A-tensor.
If the number of I- and the number of J-tensors are equal, the I- and J-tensors may be
removed completely by application of E- and A-tensors.
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If the remaining tensor is symmetric with respect to its I and J pairs, the resulting
expression without I- and J-tensors is a linear combination of diagrams, each contain-
ing no or an even number of A-tensors. Moreover: Diagrams with an odd number of
A-tensors vanish.

In the sense of Cayley-Klein geometries we have

Theorem 3.5 The set of all closed diagrams consisting of E-, A- and ε-tensors as well
as of tensors from a collection O are linear combinations of Euclidean invariants of the
objects whose tensor-representants are in O.

3.3. Diagram laws or how to calculate with diagrams

We have seen how diagrams represent (complicated) analytical expressions. Now we
focus on calculation formulas consisting of tensor diagrams. We especially examine
diagrams containing curve-tensors. As we have seen: The “language” of real plane alge-
braic curves is also complex. Thus we almost always state our diagrams for complexified
curves. The conversion from real to complex represented curves in tensor-notation will
be examined before we focus on diagrammatical laws.

3.3.1. Complexification in tensor-notation

In Section 2.3 we got to know a special transformation for points, namely complexifica-
tion: There

T ∗ =

1 i 0
1 −i 0
0 0 1


and det(T ∗) = −2i. Introducing complexification as transformation, our key ingredients
for Euclidean invariants I and J transform to 2i times the first canonical unit vector
e1 = (1, 0, 0)T and to −2i times the second canonical unit vector e2 = (0, 1, 0)T , respec-
tively. Therefore, if we have a closed diagram containing copies of a single curve-tensor,
ε-, I- and J-tensors, we can exchange the curve-tensor by its complexified version, I by
e1 and J by e2. In the end, up to a certain factor, we have essentially the same but
complexified diagram.
For example, let us take the curve tensor Qkl representing the conic

a11(x1)2 + 2a21(x1)(x2) + a22(x2)2 + 2a13(x1)(x3) + 2a23(x2)(x3) + a33(x3)2 = 0 .

Let ckl be the corresponding complexified coefficients of this conic. Plugging I and J

into Q we get the identity = 4 · = 4 · c11. Thereby Q̂

denotes the tensor with the complexified coefficients. It is useful to note that allowing
asymmetric usage of I and J permits filtering leading coefficients:

= −4c20 and = −4c02 .

Taking a curve tensor, and using only I- and J-tensors, the number of I-tensors, say k,
and the number of J-tensors, say l, essentially lead to ckl.
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In the same manner, we can complexify E-, A- and ε-tensors. The transformation
of the latter is clear by Section 3.2.1: ε-tensors are relative invariants of weight ±1.
Complexification replaces the covariant ε-tensor by itself multiplied by det(T ) = 1

2i .
The contravariant ε-tensor gets multiplied by det(T ∗) = 2i. For the remaining tensors
we have

Theorem 3.6

and ,

with Ê =

0 1 0
1 0 0
0 0 0

 ,

with Â = A .

For the complexified version of replacing I- and J- tensors by E- and A-tensors we get

and

3.3.2. Juggling with Ê-, Â- and one curve-tensor

Now that we know what the complexified versions of the E-, A- and curve-tensors look
like, we can stick them together and get various beautiful results. Of course they may
be obtained analogously by putting E-, A- and (real) curve-tensors G together. In any
case the complexified curve tensors will be denoted by Ĝ, the components of which are
the complex coefficients ckl (see Section 3.1.5).
In this and the next sections we will juggle with multiple tensors in an equal manner:
Often we will have n multiple copies of one and the same tensor, say Ê, connected to
the same symmetric tensors in the same way. Thus it will be convenient to introduce a
diagrammatical abbreviation. We replace the multiple Ê-nodes by one Ên-node. Then
n times the arrows from Ê are dangling from the new Ên-node. As an example, we have:

Gluing only Ê-, Â- and Ĝ-tensors, we will always get a corresponding analytical expres-
sion in the leading coefficients ckl. This is due to the shape of Ê and Â. The degree of
the curve, given by the variance of Ĝ, is the number of arcs pointing to the node. By
algebraic evaluation or by means of formal tensor composition it can be shown that:

= 2 · c11 , = 4 · c22 and = 2k · ckk .
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Due to the total symmetry of G̃ and the skew-symmetry of Â = A, the expression
must vanish, whatever tensors might also be connected to Ĝ.

3.3.3. Formal tensor-decomposition and the role of Ê and Â

For a better understanding of the structure of diagrams we use yet a different notation.
Let

an ∼ Ĝ1,1,...,1︸ ︷︷ ︸
n times

,2,2,...,2 = cn,d−n . (3.15)

The switch in the notation is a formal trick. This twist is similarly used, especially
in older books on invariant theory (cf. [38] or [55]): Interpreting n as an index, an

fully describes an entry of the Ĝ-tensor, provided d is known. Then an may have been
defined to be equal to a tensor-component, and would consequently have an equality
“=” in (3.15) instead of a similarity “∼”. Interpreting n as an exponent, we get n copies
of a meaningless formal component a. This a is only meaningful in an expanded and
simplified expression, namely an =

∏n
i=1 a. This way we only have a similarity of an

with the corresponding component of Ĝ. As such ar, in a non-simplified term ar · an−r,
can not be identified with a tensor-component. However, multiplying a term by ar

and subsequent simplification (gathering exponents) such that identification according
to Equation (3.15) is possible, has the following effect: The complete term may be
interpreted as an expression in components of Ĝ, which have at least r indices equal to
one. Keeping all this in mind, we will ignore the difference between “=” and “∼”. We
simply write “=” instead of “∼”.
Now, if we are juggling with multiple copies of a Ĝ-tensor, we need to distinguish the
formal components. Those which originate from different copies must also be named
differently. We do so by associating each copy of Ĝ with a different letter. Having two
copies of a Ĝ-tensor, one of them gets associated with the formal component a and the
other with b. Of course, in a term with gathered exponents we have an equivalence
between these letters for any n:

an = Ĝ1,1,...,1︸ ︷︷ ︸
n times

,2,2,...,2 = bn but a 6= b .

This notational trick becomes clearer by looking at what an Ê-tensor is doing, when it
is connected to Ĝ-tensor(s). First of all, Ê is creating a sum. In the first summand one
index, say i, gets assigned to i = 1 and a second index, say j, gets assigned to j = 2.
The second summand is equal to the first one but with switched roles of i and j. There
i = 2 and j = 1. Consequently, an Ê-tensor connected to one and the same symmetric
tensor, may be described by a multiplication with (a + a). If Ê is connected to two
tensors, we have a multiplication with (a+ b). Thus for the diagrams in the last section

= ÊijĜij = Ĝ12 + Ĝ21 = (a+ a) ,

= ÊijÊklĜijkl = 4Ĝ1122 = (a+ a)(a+ a) ,

= 2kĜ11...122...2 = (a+ a)k = 2kak .
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In the second expression (a+a)(a+a), a single factor (a+a) may not be associated with
tensor-components, let alone with Ĝ12 + Ĝ12. This product first has to be expanded and
then each term must be simplified: (a+a)(a+a) = aa+aa+aa+aa = a2 +a2 +a2 +a2.
Now a2 = Ĝ1122 (see the diagram above).
With two copies of Ĝ involved, we get

= ÊijĜiĜj = Ĝ1Ĝ2 + Ĝ2Ĝ1 = (a+ b) ,

= ÊijÊklĜikĜjl

= Ĝ11Ĝ22 + Ĝ12Ĝ21 + Ĝ21Ĝ12 + Ĝ22Ĝ11

= a2b0 + ab+ ab+ a0b2 = (a+ b)2 ,

=
d∑

k=0

(
d
p

)
akbd−k = (a+ b)d .

Taking an Â-tensor connected to one or two Ĝ-tensors, we get a difference: In the
minuend one index, say i, gets assigned to i = 1 and a second index, say j, gets assigned
to j = 2. The subtrahend is equal to the minuend but with switched roles of i and
j, where i = 2 and j = 1. Thus analogous to the Ê-tensor, the Â-tensor may be
described by a multiplication with (a−a) or (a−b), depending on whether Â is connected
to one or two different symmetric Ĝ-tensors. If Â is connected to one and the same
symmetric tensor, Â produces two equal expressions to be subtracted from each other.
Thus vanishes as we have seen at the end of the last section. With two

copies of a Ĝ-tensor we get:

= ĜkĜlÂ
kl = Ĝ1Ĝ2 − Ĝ2Ĝ1 = 0 = (a− b)1 ,

= Ĝ11Ĝ22 − 2Ĝ12Ĝ21 + Ĝ22Ĝ11 = 2c20c02 − 2(c11)2 = (a− b)2 ,

= Ĝ111Ĝ222 − 3Ĝ112Ĝ122 + 3Ĝ122Ĝ211 − Ĝ222Ĝ111 = 0 = (a− b)3 ,

=
d∑

k=0

(
d
p

)
akbd−k(−1)d−k = (a− b)d .

It is interesting to note that by using exactly one or three Â-tensors, the corresponding
diagram evaluates to zero. This generalizes to

Theorem 3.7 For odd d

= 0 .

Proof The reason for this lies in the coefficient structure of (a − b)d. For odd d it is
skew-symmetric: The coefficient of akbd−k is

(
d
k

)
(−1)d−k, which is exactly the negative

of the coefficient
(
d

d−k
)
(−1)k of ad−kbk. Consequently summation yields

=
d∑

k=0

(
d

p

)
akbd−k(−1)d−k =

b d2c∑
k=0

(
d

p

)
(−1)d−k

(
akbd−k − ad−kbk

)
.

On the right hand side of this equation we only have expanded and simplified terms.
Identification with tensor-components shows akbd−k = ad−kbk for any k. 2
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Finally, mixing Ê- and Â-tensors we get

Theorem 3.8

= (a+ b)p(a− b)q .

(3.16)

Summarizing the above, we can see by those two theorems what formal decomposition
of Ĝ is capable of and what it can not do: Two Ĝ-tensors connected by several Ê- and
Â-tensors may be described by (a + b)p(a − b)q. This is just a linear-combination of
all akbd−k (0 ≤ k ≤ d) with corresponding coefficients. The akbd−k may directly be
associated with ck,d−kcd−k,k = |ck,d−k|2. Here we can see the redundancy contained in
(a + b)p(a − b)q: Analogously to ck,d−kcd−k,k = cd−k,kck,d−k we have akbd−k = ad−kbk.
This redundancy was introduced by associating different names to different copies of one
and the same tensor Ĝ. But the possibility to distinguish between the two tensors is
necessary when calculating on the formal level. For example:

2c11 = = (a+ a) 6= (a+ b) = = 2c10c01 .

By the use of Equations (3.15) and (3.16) we are able to easily transform diagrams
with two copies of a curve tensor Ĝ into a corresponding linear combination of curve-
coefficients.

3.3.4. Excursus: Generalizing Pascal-Triangles or the Pascal-Pyramid

We have seen the importance of the formulas (a + b)p(a − b)q in Theorem 3.8. The
coefficient structure of the corresponding expanded expressions exhibits a lot of structure.
Now let us to have a closer look at the coefficient structure and examine its attributes.
This will help us later on to determine linear-combinations of diagrams in Ê-, Â- and
Ĝ-tensors being equal to a single product and rotational type-2 expression cklclk.
Again, after a little technical work, we will see a whole net of beautiful mathematical
connections. We will see that for a fixed l the coefficients of (a + b)l−q(a − b)q with
0 ≤ q ≤ l form a basis of Rl+1 respectively Cl+1. Moreover, the dual basis and thus the
coefficients of the linear-combinations we are looking for, will be easily accessible. By
convention, the coefficients of (a+ b)p(a− b)q will be named C

(p,q)
i with

(a+ b)p(a− b)q =
p+q∑
i=0

C
(p,q)
i ap+q−ibi .

These coefficients C(p,q)
i are closely related to those of Pascal’s Triangle. They may

be nicely arranged in a pyramid, exhibiting recursive building-principles analogous to
Pascal’s Triangle. This is why the section-subtitle is Pascal-Pyramid.

Building principles of (a+ b)p and (a− b)q

Let us start with the (original) Pascal-Triangle: It is a geometric arrangement of binomial
coefficients in a triangle (cf. [56] and Figure 3.8.a). In each row l = p (starting with
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l = 0) we have the coefficients C(p,0)
i of

(a+ b)p =
p∑
i=0

(
p

i

)
ap−ibi =

p∑
i=0

C
(p,0)
i ap−ibi

and C(p,0)
i =

(
p
i

)
are binomial coefficients. The well-known building principle of Pascal’s

Triangle is that each coefficient C(p,0)
i with p ≥ 1 is the sum of its two neighboring

coefficients one line above. This recursion is due to the equivalence with a multiplication
by (a+ b) and may be generalized:

Lemma 3.9 If for a set of coefficients Ci and Di

(a+ b) ·
l∑

i=0

Cia
l−ibi =

l+1∑
i=0

Dia
l+1−ibi ,

then with C−1 = Cl+1 = 0 we get Di = Ci−1 + Ci for 0 ≤ i ≤ l + 1.

Consequently for the coefficients C
(p,q)
i of (a+ b)p(a− b)q to arbitrary p, q ∈ N0:

C
(p+1,q)
i = C

(p,q)
i−1 + C

(p,q)
i with C

(p,q)
−1 = C

(p,q)
l+1 = 0 . (3.17)

Proof With C−1 = Cl+1 = 0:

(a+ b) ·
l∑

i=0

Cia
l−ibi =

l∑
i=0

Cia
l+1−ibi +

l+1∑
i=1

Ci−1a
l+1−ibi

=
l+1∑
i=0

(Ci + Ci−1)al+1−ibi =
l+1∑
i=0

Dia
l+1−ibi . 2

We call Equation (3.17) our “+ building-principle”, because in combination with
C

(0,0)
0 = 1, the coefficient-triangle to (a+ b)l is totally described.

Analogous to (a+b)p we also get a coefficient arrangement for (a−b)q and a corresponding
“− building-principle” (see (3.18)):

Lemma 3.10 If for a set of coefficients Ci and Di

(a− b) ·
l∑

i=0

Cia
l−ibi =

l+1∑
i=0

Dia
l+1−ibi ,

then with C−1 = Cl+1 = 0 we get Di = −Ci−1 + Ci for 0 ≤ i ≤ l + 1.

Consequently for the coefficients C
(p,q)
i of (a+ b)p(a− b)q to arbitrary p, q ∈ N0:

C
(p,q+1)
i = −C(p,q)

i−1 + C
(p,q)
i with C

(p,q)
−1 = C

(p,q)
l+1 = 0 . (3.18)

Proof With C−1 = Cl+1 = 0:

(a− b) ·
l∑

i=0

Cia
l−ibi =

l∑
i=0

Cia
l+1−ibi −

l+1∑
i=1

Ci−1a
l+1−ibi

=
l+1∑
i=0

(Ci − Ci−1)al+1−ibi =
l+1∑
i=0

Dia
l+1−ibi . 2

The coefficient triangle to (a−b)q can be seen in Figure 3.8.f. It is a kind of a generalized
Pascal-Triangle. Starting with the tip C

(0,0)
0 = 1, we may generate this triangle just by

using Equation (3.18).
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Analyzing (a+ b)p(a− b)q

Now we may generalize the Pascal-Triangle to obtain many coefficient triangles with some
of the top lines cut off, coefficient trapezes so to say. We can do so in two different ways:
The arrangement may correspond to (a+ b)...(a− b)q for a fixed q or to (a+ b)p(a− b)...
for a fixed p and variable remaining exponent. In the first case we take the coefficients
C

(0,q)
i corresponding to (a− b)q and generate new coefficients of our arrangement by our

“+ building principle” (3.17). This way the C(0,q)
i fill the topmost row in our triangle,

which is not cut off. Figure 3.8.b-e show this for q ∈ {1, 2, 3, 4}. In the second case
we take the coefficients C(p,0)

i corresponding to (a+ b)p and our “− building principle”
(3.18). Figure 3.8.g-j show this for p ∈ {1, 2, 3, 4}. In any case, we get an arrangement
which is triangular in shape with the top q, respectively p, rows missing.
Looking at the coefficient pattern of (a+b)...(a−b)q (Figure 3.8.a-e) we can see symmetric
and skew-symmetric arrangements with the symmetry-axis passing through the tip of
the triangle. In the patterns of (a + b)p(a − b)... (Figure 3.8.f-j) we have alternating
symmetric and skew-symmetric lines. In any case the elements on the symmetry-axis
vanish in the skew-symmetric lines. Let us gather these observations in

Lemma 3.11 The coefficient-pattern for (a+ b)p(a− b)q is skew-symmetric if q is odd
and symmetric for even q. Thus

C
(p,q)
p+q−i = (−1)qC(p,q)

i . (3.19)

Proof According to the “+ building principle” (3.17), the pattern for (a+ b)...(a− b)q
inherits its symmetry from the symmetry of the line corresponding to (a− b)q. We may
think of the coefficient-arrangement corresponding to (a + b)...(a − b)q as a line with
coefficients from (a− b)q. Attached to each coefficient there is a whole Pascal-Triangle,
scaled by the coefficient the triangle is attached to. Summation over the overlap gives the

desired coefficient pattern. (In Figure 3.8.c we have three overlapping triangles
1

1 1
1 2 1

scaled by 1, −2 and 1, respectively.) Algebraically (compare with Equation (A.1) in the
appendix):

(a+ b)p(a− b)q =
p+q∑
i=0

min(p,i)∑
r=max(0,i−q)

(
p

r

)(
q

i− r

)
(−1)i−r

︸ ︷︷ ︸
=C

(p,q)
i

ap+q−ibi ,

C
(p,q)
p+q−i =

min(p,p+q−i)∑
r=max(0,p−i)

(
p

p− r

)(
q

−p+ i+ r

)
(−1)p+q−i+r

s=p−r
=

min(p,i)∑
s=max(0,i−q)

(
p

s

)(
q

i− s

)
(−1)q−i+s = (−1)qC(p,q)

i . 2

Analogously we may get a correlation between the coefficients of (a + b)p(a − b)q and
(a+ b)q(a− b)p.
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Lemma 3.12 Corresponding coefficients of (a + b)p(a − b)q and (a + b)q(a − b)p differ
at most by a factor of −1:

C
(p,q)
i = (−1)iC(q,p)

i (3.20)

Proof

C
(q,p)
i =

min(q,i)∑
r=max(0,i−p)

(
q

r

)(
p

i− r

)
(−1)i−r

s=i−r=
min(p,i)∑

s=max(0,i−q)

(
q

i− s

)(
p

s

)
(−1)s = (−1)iC(p,q)

i . 2

Building the Pascal-Pyramid

Now that we have the coefficient structure of (a + b)p(a − b)q for any given q we may
stick these together and form a coefficient pyramid. Figure 3.8.p shows the pyramid
viewed from the top. We call it the Pascal-Pyramid. The pyramidal structure is
formed by successively superimposing the (tip-less) triangles for (a + b)x(a − b)q with
x = 0, x = 1, ... in a decent distance from the previous triangle, such that the
planes containing the arrangements are parallel to each other. The same is true for the
(a+ b)p(a− b)x-arrangements. This way the original Pascal-Triangle and the triangle to
(a− b)q automatically are opposing triangular faces of the pyramid (see Figure 3.8).
In our pyramid we have a lot of coefficients, which may be generated by the “+ building-
principle” as well as with the “− building-principle”. These are exactly those coefficients
C

(p,q)
i with p 6= 0 6= q.

Slicing the pyramid into horizontal layers

Now we may slice our pyramid into layers. A layer l of the pyramid is formed by all
coefficients of (a+ b)p(a− b)q with constant l = p+ q. This corresponds to placing the
square-face of the pyramid on the ground and slicing horizontally. Layer 0 consists of just
the tip of our Pascal-Pyramid and layer l has an (l+ 1)× (l+ 1)-coefficient-arrangement
(see Figure 3.8.k-o). Taking four neighboring coefficients, which form a square in a layer,
these coefficients are related. This relation is due to the connection of these coefficients
via the “+ and − building-principle” to one and the same coefficient one layer below:

Lemma 3.13 For all p, q ≥ 1 and 0 ≤ i ≤ p+ q with C
(...,... )
−1 = C

(l−r,r)
l+1 = 0

C
(p,q−1)
i = C

(p−1,q)
i−1 + C

(p−1,q)
i + C

(p,q−1)
i−1 . (3.21)

Proof Equation (3.17) and (3.18) prove the assumption. 2

Thus graphically this lemma tells us: The upper left coefficient of four neighboring
coefficients forming a square in a pyramid layer is the sum of the other three coefficients.
Let us interpret the coefficients of a layer l as coefficients of a matrix L(l). The compo-
nents of L(l) are L(l)

qi = C
(l−q,q)
i with 0 ≤ q, i ≤ l. The “+ and − building-principle” can
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a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

a) (a+ b)...(a− b)0 e) (a+ b)...(a− b)4 i) (a+ b)3(a− b)... m) pyramid layer 2

b) (a+ b)...(a− b)1 f)(a+ b)0(a− b)... j) (a+ b)4(a− b)... n) pyramid layer 3

c) (a+ b)...(a− b)2 g) (a+ b)1(a− b)... k) pyramid layer 0 o) pyramid layer 4

d) (a+ b)...(a− b)3 h) (a+ b)2(a− b)... l) pyramid layer 1 p) Pascal-Pyramid

Figure 3.8.: Pascal-Pyramid
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also be seen in this layer-notation. For any l ∈ N0 we have

L(l+1) =


0

L(l)
...
0

C
(0,l)
0
2 . . . . . .

C
(0,l)
l
2

+


0
... L(l)

0
C

(0,l)
0
2 . . . . . .

C
(0,l)
l
2



=


C

(l,0)
0
2 . . . . . .

C
(l,0)
l
2

0

L(l)
...
0

+


C

(l,0)
0
2 . . . . . .

C
(l,0)
l
2

0
... −L(l)

0


There are many other relations in the pyramid-layers: The l − 2 rows in the middle of
layer l contain two copies of layer l−2 or three binomially weighted copies of layer l−4.
However, we want to focus on a different property of the pyramid-layers: The linear
independence of the row-vectors in a layer.

Theorem 3.14 The row-vectors of each L(l) form a basis of Rl+1 respectively Cl+1 and
the basis of the dual-space is formed by the column-vectors of L(l):

L(l) · L(l) = 2lI ,

with the (l + 1)× (l + 1)-unit matrix I.

Proof The proof of this theorem mainly makes use of Equations (3.17) to (3.21). As
it is rather technical, we omit a proof here and refer to Appendix A.3. 2

3.3.5. Juggling with Ê-, Â- and two curve tensors

Let us revisit Theorem 3.8. It said that the diagrams, consisting of two Ĝ-tensors
connected by several Ê- and Â-tensors, behave like (a+ b)d−q(a− b)q:

= (a+ b)d−q(a− b)q .

Expanding this expression we get
d∑
r=0

C(d−q,q)
r ad−rbr =

d∑
r=0

C(d−q,q)
r Ĝ1,...,1︸︷︷︸

d−r times

,2,...,2Ĝ1,...,1︸︷︷︸
r times

,2,...,2 =
d∑
r=0

C(d−q,q)
r cd−r,r cr,d−r .

Thus with the excursus on the Pascal-Pyramid we are now able to state the “converse”:
the linear-combination of diagrams evaluating to the products cd−r,r cr,d−r:

Theorem 3.15 The product of leading coefficients cd−r,rcr,d−r (0 ≤ r ≤ d) is a Eu-
clidean invariant and

cd−r,rcr,d−r = =
1
2d

d∑
q=0

C(d−r,r)
q
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Proof We use the terminology of our excursus on the Pascal-Pyramid. The expression
on the right hand-side is a linear combination of (a + b)d−q(a − b)q (0 ≤ q ≤ d). This
corresponds to a linear-combination of lines in the Pascal-Pyramid layer L(d). The
left hand-side corresponds to ad−rbr. Thus we are looking for a linear combination
of layer-lines equating to the canonical unit-vector er ∈ Rd+1. According to Theorem
3.14 the coefficients of the desired linear-combinations are the coefficients C(d−r,r)

q of
(a+ b)d−r(a− b)r. 2

In Theorem 3.7 we have seen that = 0 for odd d. The proof used the

antisymmetric coefficient structure from (a− b)d. In Lemma 3.11 we have seen that also
the coefficients of (a+ b)d−q(a− b)q with odd q have this property. Consequently

= 0 for odd q.

Thus the sum in Theorem 3.15 contains zero-summands if d ≥ 1. This is no contra-
diction to Theorem 3.14. The summation over all q effectively is a summation over
every second line having an even q. These lines have a symmetric structure, namely
C

(d−q,q)
i = (−1)qC(d−q,q)

d−i = C
(d−q,q)
d−i and thus all linear combinations have a symmet-

ric structure: This symmetry corresponds exactly to the symmetry in the coefficient-
products: cd−q,qcq,d−q = ad−qbq = aqbd−q = cq,d−qcd−q,q (be aware of the indices).
Among the expressions cklclk we have the interesting special cases, when k = l. Section
3.3.2 introduced ckk as a Ĝ-node connected with k times an Ê-tensor. From Theorem
3.15 we get a different representation for the squared diagram. With k = d

2 we have

( )2

=
d∑

q=0, q even

C
( d2 , d2 )
q

(3.22)

Especially:

= −
(3.23)

This is so to say the simplest version of (3.22). It encodes 4 · ab = (a + b)2 − (a − b)2.
Equation (3.23) is not using any symmetry or other properties of Ĝ and is therefore
independent of Ĝ. Thus

which corresponds to ÊklÊmn = ÊkmÊln − ÂkmÂln. In fact Equation (3.22) may be
taken as an application of this rule. Consequently we get the
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Theorem 3.16 The Euclidean invariants cklclk of a curve may be written as a linear-
combination of diagrams containing only the curve tensors Ĝ and Ê-tensors:

cklclk ∈ span

{ ∣∣∣∣∣2r + s = k + l ∧ r, s ∈ N0

}
.

The evaluation of the diagrams in the above theorem gives us:

(a+ a)r · (a+ b)s · (b+ b)r = 4rarbr(a+ b)s = 4r
s∑
i=0

(
s

i

)
cs+r−i,r+icr+i,s+r−i .

Thus the coefficients are binomial coefficients. For a given variance of Ĝ, the relevant
coefficient structures correspond to every second line in Pascal’s Triangle. Due to the
scaling by 4r we have a coefficient sum of 22r+s. Thus this sum is equal for all such
diagrams using two Ĝ-tensors of the same fixed variance.

Example 3.3 Let Ĝ be a curve-tensor to a curve of degree d = 4. Then we have:

diagrams and evaluation coefficient structure

= 2c40c04 + 8c31c13 + 6c22c22 1 4 6 4 1

= 8c31c13 + 8c22c22 4 · 1 4 · 2 4 · 1

= 16c22c22 16 · 1

The first diagram corresponds to the fifth line in Pascal’s Triangle: 1 4 6 4 1 and
1 · c40c04 + 4 · c31c13 + 6 · c22c22 + 4 · c13c31 + 1 · c04c40 is the diagram-evaluation. The next
diagram corresponds to four times 1 2 1, etc. . The coefficient sum is always 24 = 16.

Summarizing our results, we have seen that coefficient-products cklclk of leading coeffi-
cients are Euclidean invariants. They may be written in simple diagrams using only the
curve-tensor Ĝ and e1- and e2-tensors or G-, I- and J-tensors. We are also able to restate
these invariants without e1- and e2-tensors (or I- and J-tensors). We can restrict our-
selves to the invariant geometric objects of the corresponding Cayley-Klein-Geometry:
the dual conics given by E and A or, in the complexified version, by Ê and Â. In the
connection between cklclk and the diagrams with only Ĝ-, Ê- and Â-tensors binomial
coefficients, or generalized ones from the Pascal-Pyramid, can be found almost every-
where. Finally we are able to state these invariants as linear-combination of diagrams
which dispense of Â-tensors.
The linear-combinations of diagrams containing only Ê- and Ĝ-tensors evaluating to
absolute values of leading coefficients are not far away. Theorem 3.15 in combination
with Equation 3.22 would lead to corresponding expressions. We will omit this very
special replacement-examination and focus on more general ones.
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3.3.6. More replacement rules

The representation of invariants is by far not unique. We have already seen a replacement
rule linking I-, J-, E- and A-tensors. But also projective invariants may be represented
by several linear combinations of diagrams, which look completely different. This effect
is common to invariant theory. For instance, in the classical projective invariant theory
there exist certain syzygies. Grassmann-Plücker relations may, for example, be written
as always vanishing expressions, independent of the value of the objects involved in
the expression. Adding such a syzygy to an invariant does not change it as such but it
changes its concrete algebraic appearance. On the level of tensor diagrams the structural
components of a syzygy can be nicely separated from its coordinate entries. For instance
the Grassmann-Plücker relation

det(a, b, c)d− det(a, b, d)c+ det(a, c, d)b− det(b, c, d)a = 0

translates to the tensor diagram equation:

Here sub-diagrams in each summand have to be multiplied. The four letters a, b, c, d
occur in each single summand. And each single summand has exactly one outgoing
arrow. This is also the requirement on terms to enable tensor-addition (compare with
Section 3.1.4). As a matter of fact, the specific points that are used in the summands
can be neglected as long as the fact that the ends of the ε-tensors and the free arrows
are connected to consistent parts of a surrounding diagram is ensured. If we rewrite the
above equation in the tensor language, we get:

aibjckdlεijkδ
m
l − aibjckdlεijlδmk + aibjckdlεiklδ

m
j − aibjckdlεjklδmi = 0

where m plays the role of the outgoing index. We can factor out the points and derive:

εijkδ
m
l − εijlδmk + εiklδ

m
j − εjklδmi = 0 .

This is the essential structural part of the Grassmann-Plücker relation. It tells us that
for any diagram that involves an ε-tensor and a disjoint arrow, we get an equivalent
diagram by summing three copies of the original diagram in which the ε-tensor and the
arrow have been suitably rewired. One might wonder about the use of this replacement
of a diagram by the sum of three diagrams with equivalent complexity. A first answer
to this is that it imitates addition of a Grassmann-Plücker relation or a similar syzygy
to an invariant as mentioned before. This is a powerful operation in classical projective
geometry and invariant theory, for instance it is the basis of the straightening algorithm
(see [44]). However, there is also a second answer: The above equation is not the only
one of a similar type – and there are some of them that greatly help to cut down the
complexity of diagrams. For the projective plane the following one is perhaps the most
elementary and most useful. It is the so-called ε-δ-rule:

εijkε
lmk = δliδ

m
j − δmi δlj .
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It can be proven by brute-force-expansion of the terms. Translated into diagram language
this becomes:

Thus the ε-δ-rule can take a diagram that contains two adjacent (co- and contravariant)
ε-tensors and replace it by the difference of two diagrams, in which these ε-tensors have
vanished. We will see later how useful this operation is. Perhaps one word of caution is
required here: ε-tensors are antisymmetric tensors. This means that interchanging two
indices corresponds to a multiplication by −1. When dealing with diagrams one has to
be careful not to interchange two arrows of an ε-tensor without changing the sign of the
corresponding diagram. It is even possible to derive the Grassmann-Plücker relations by
suitable application of the ε-δ-rule.
Another very important replacement rule concerns the E- and A-tensors. The tensor
(Akl) can also be generated in a different way. Let ∞m = (0, 0, 1) be a covariant tensor
that represents the line at infinity. The line at infinity is spanned by I and J (in vector
notation we have I× J = 2i · ∞) and we get:

Thus Aklεklm = 2∞m. This can also be proven by expanding the tensors. Furthermore
it is easy to prove that ∞mε

klm = −Akl, as the following diagram shows:

Thus in the presence of ε-tensors, the A tensor and the line at infinity are essentially
the same. Diagrams that only involve the A tensor, geometric objects and ε-tensors
represent affine invariants.
In diagrams that contain both A tensors and E tensors we always may assume that there
is at most one A tensor involved. This is due to the behavior of Ê and Â as shown in
the last section. We need only one A-tensor since we can replace any pair of A tensors
by a suitable linear combination of a pair of E tensors, as the following theorem shows

Theorem 3.17
AijAkl = EilEjk − EikEjl .

This could again be easily proven either by expansion or by expanding the terms into lin-
ear combinations of I and J or by carrying over our results with Ê and Â. Diagrams that
only contain E-tensors are invariant under all Euclidean transformations. Diagrams that
contain an (odd number of) A tensor(s) are only invariant under rotations. Nevertheless
setting such a diagram to zero may result in an Euclidean invariant property.
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At this point there is a wide range of possibilities for future work: The diagram notation
and the replacement rules enable very elegant visualizations of geometric incidence the-
orems (for a first approach see [41]). It is also very interesting to examine substructures
which make the whole diagram vanish. This way a diagram construction kit can be
built up. We abstain from this general diagram examination and refocus our attention
on curves, especially on the behavior of curves under transformations. Later we will
visualize our results, mainly the invariants, by the use of tensor-diagrams.
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4. Curves and selected transformations of
the plane

In this chapter we focus on invariants and on features of real algebraic curves. We
assume that we have a given coefficient vector. Furthermore we assume that the curve is
complexified unless explicitly stated otherwise. A curve is, of course, entirely determined
by a coefficient vector, which contains all information. Consequently, features of the
curve, such as rotational symmetry, must find their correspondence in the algebraic
structure of the coefficients. In this chapter we will investigate how geometric curve
features can be extracted from the algebraic description of the curve. The complexified
representation allows for a much simpler extraction process. Also normal forms and
invariants are easily accessible.
Firstly, however, we will focus on rotations, more precisely on rotations around the origin.
We will extract a set of invariants, which allows us to totally reconstruct the curve up
to this kind of rotations. Also a normal form with respect to these transformations
will be presented and diagrammatical results will be contained. In a second step we
mainly study the same issue for translations. Together with rotations we get orientation
preserving Euclidean motions. Reflection and scaling are studied afterwards as well as
detection of rotational and reflectional symmetry.

4.1. Rotating curves around the origin

A rotation is a Euclidean motion with a fixpoint: the center of rotation. Any rotation
with arbitrary center can be carried out in three steps: First apply a translation τ , which
maps the center of rotation to the origin. Then perform the rotation by the desired angle
ϕ and apply τ−1 afterwards. We will deal with translation later on (see Section 4.2).
Thus, when speaking of rotations, we confine ourselves to rotations around the origin
and an arbitrary rotation angle ϕ.
The description of the coefficient-transformation conceptually differs from [46] only in
the use of multinomial coefficients. The presented complete set of invariants however is
purely on the basis of the complexified curve-coefficients. A proof of completeness and
a method for reconstruction of curves with only the invariants at hand is not contained
in [46]. Even more: [46] as well as [47] lack the examination of potentially undefined
invariants due to vanishing coefficients leading to undefined expressions or division by
zero.

59



4. Curves and selected transformations of the plane

4.1.1. Effects of the complexification

The main benefit of complexification is that in this representation a rotation of the plane
is very easy to describe. A rotation of the plane is a mapping where

z 7−→ z̃ = x̃+ iỹ = (cos(ϕ)x− sin(ϕ)y) + i(sin(ϕ)x+ cos(ϕ)y)
= (cos(ϕ) + i sin(ϕ))(x+ iy) = eiϕz

and consequently z 7→ e−iϕz.
This means that zkzl 7→ ei(k−l)ϕzkzl, which in itself is also a rotation. Thus rotating a
curve F (z, z, h) = 0 by ϕ we get

F̃ϕ(z, z, h) = F̃ (z, z, h) = F (e−iϕz, eiϕz, h) =
d∑

k+l=0

mklckl · ei(−k+l)ϕ · zkzlhd−k−l = 0

and the transformation of the coefficients ckl is particularly simple:

ckl 7−→ ei(−k+l)ϕckl . (4.1)

In matrix notation we have only entries of the form ei·nϕ with n ∈ Z:(
c00 c10 c01 c20 c11 c02 c30 c21 c12 c03 . . .

)T 7→M−Tϕ c =

1
e−i·ϕ

ei·ϕ

e−i·2ϕ

1
ei·2ϕ

e−i·3ϕ

e−i·ϕ

ei·ϕ

ei·3ϕ

. . .


︸ ︷︷ ︸

= M−Tϕ



c00

c10

c01

c20

c11

c02

c30

c21

c12

c03

...



(4.2)

M−Tϕ = W−TL−Tm W T is the complexified version of L−Tm from (2.9). Thereby multipli-
cation by W−T and W T causes complexification (see (2.15)). The matrix M−Tϕ acts on
our complexified curve coefficients ckl and is of diagonal shape. We have:

Theorem 4.1 Rotating the plane around the origin by an angle ϕ means rotating the
complexified curve-coefficients according to Equation (4.2).

If a curve is rotated by ϕ, the rotation of a ckl is determined by the coefficients’ indices:
ckl 7→ eiϕ(−k+l)ckl, i.e. ckl is rotated by ϕ · (−k + l). Therefore we call (−k + l) the
(oriented) rotation speed of ckl.
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c40c31c22

F0 F π
18

Fπ
9

Figure 4.1.: Rotated curves: c00 is stationary, c10 and c21 rotate by −ϕ, c20 by −2ϕ and
c30 by −3ϕ.

The coefficient triangle introduced in (2.17) on page 27 shows that the order of the
columns corresponds to the rotation speeds of the coefficients:

blockt(c) curve coefficients
t = 0 c00

t = 1 c10 c01

t = 2 c20 c11 c02

t = 3 c30 c21 c12 c03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotation speed . . . −3 −2 −1 0 1 2 3 . . .

The transformation matrix M−Tϕ from Equation (4.2) is consistent with our complexi-
fication process: Conjugate coefficient pairs remain conjugate after the transformation
and the real ckk stay real. Comparing (4.2) to the transformation for the coefficients akl
of a curve in our real representation as shown in (2.9), we can directly see how powerful
complexification is.
Figure 4.1 shows a curve F and by ϕ ∈ { π18 ,

π
9 } rotated copies Fϕ of F . The coefficients

behave according to (4.1) and (4.2) and are indicated by vectors.

4.1.2. Invariants with respect to rotations around the origin

When a curve is rotated around the origin, curve coefficients of the form ckk remain
unchanged - invariant so to say. But there are also other expressions in the curve
coefficients, which remain unaltered. For example c10 · c01 7→ e−iϕc10 · eiϕc01 = c10 · c01.
Any product of curve coefficients is multiplied by eirϕ (for suitable r), when the plane
is rotated by ϕ around the origin. This is likewise a rotation. The rotation speed r of
such a product is the sum of the rotation speeds of factors of the product. For example

ckl · cpq 7−→ exp(i [(−k + l) + (−p+ q)]︸ ︷︷ ︸
=r

ϕ) · ckl · cpq = eirϕ · ckl · cpq .

The rotation speed of ckl is −k + l, the one of cpq is −p + q and the rotation speed of
the product ckl · cpq is r = (−k + l) + (−p+ q).
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4. Curves and selected transformations of the plane

The clue is now to find products of coefficients which have a vanishing rotation speed.
These products must be invariant under rotations of the plane. To find these products,
it is helpful to look at the coefficient triangle above, since the coefficients were ordered
according to their rotation speed.
Now we have a wide range of invariant expressions. At a first glance we can directly see
three types of invariant expressions:

1. form parameters ckk
(rotation speed: r = −k + k = 0)

2. lengths cklclk = |ckl|2
(rotation speed: r = −k + l − l + k = 0)

3. angle relations contained in (ckl)
p−q
m (cpq)

−k+l
m with positive

m = gcd(|−p+ q| , |−k + l|)
(rotation speed: r = (p−q)

m (−k + l) + (−k+l)
m (−p+ q) = 0)

These expressions are purely formal. Not all of them lead to necessarily well-defined
expressions for a specific curve. For example, take a curve with c10 = 0, then type-
3 invariant c1

20c
−2
10 is not defined. However, these expressions are already complete in

the following sense: Given all values to the well-defined expressions for a specific curve
C, a curve-coefficient-vector may be reconstructed. This vector belongs to a curve Cϕ,
differing from C only by a rotation. We will see this in detail in Section 4.1.3.
The above expressions are complete but they are not well-defined for all curves nor are
they free of redundancies. They have to be removed in order to get a minimal necessary
invariant set.

4.1.3. Reducing rotation invariants

Rotation invariants, graphs and the folded coefficient triangle

Let us interpret the invariant expressions with the help of a graph whose nodes cor-
respond to the entries of our coefficient-triangle. Type-1 invariants, for example, are
represented by the coefficients (nodes) on the symmetry axis. All other expressions
constitute the set of edges in a graph: An edge connects two coefficients which are the
ingredients for one invariant expression. The invariant cklclk corresponds to the edge
connecting the nodes ckl and clk. Interpreting the rotation invariants this way we get a
graph whose nodes are the curve-coefficients and whose edges correspond to the type-2
and type-3 expressions. Moreover, some nodes are self-connected (ckl = cpq) and some
edges occur more than once (clk = cpq).
Removing the redundancy in the set of the above expressions translates to removing
superfluous components of the graph, the self-connectedness for example. If in the type-
3 expressions ckl = cpq, then (ckl)

k−l
m (ckl)

−k+l
m = 1. This is a scalar and thus naturally

invariant under rotations. Such an invariant does not carry any information on the
curve.
Talking about information contained in the invariants, we have to bear in mind that any
coefficient ckl carries the same information as clk = ckl. This is also the source of the
symmetry of our coefficient triangle. Thus reflectionally symmetric edges in our graph
carry the same information because they differ only by conjugation (see left image of
Figure 4.2). One of these edges is superfluous. Instead of removing one edge in our graph
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4. Curves and selected transformations of the plane

we switch to an easier representation, which does not contain the redundant symmetry:
Imagine a folded version of the coefficient triangle, where the original symmetry axis
is now triangle-border. This way conjugate coefficient-pairs get superimposed and ckk-
coefficients stay alone.
Using this folded triangle as basis for a graph, we get nodes of the form ckk and of
the form (ckl, clk) with k 6= l. Former symmetric edges are now two edges connecting
the same two nodes (see Figure 4.2). We also reintroduced self-connectedness: Type-2
invariants are the products cklclk, connecting (ckl, clk)-nodes with itself.

(c02)(c21)2 and (c12)2(c20) folded coefficient triangle

differ by conjugation incorporating both expressions

Figure 4.2.: Redundant rotation invariants

Removing redundant invariants

Focusing on the reduction of redundant expressions, we have already removed type-3
expressions with ckl = cpq. Also clk = cpq leads to (ckl)

l−k
m (clk)

−k+l
m = cklclk, which is of

type 2 and therefore excludable from type 3. Other trivialities are: type-2 expressions
with k = l. These expressions may be obtained by squaring suitable type-1 invariants.
Furthermore we may restrict k > l to get rid of doubly listed type-2 expressions. Type-3
invariants containing a coefficient of the form ckk may also be generated only by type-
1 expressions: (ckk)

p−q
m (cpq)

−k+k
m = (ckk)±1 or (ckl)

p−p
m (cpp)

−k+l
m = (cpp)±1. Removing

these invariants form type 3 isolates the ckk-nodes in our graph. It also rids us of
divisions by zero in case a ckk vanishes for a given curve.
But there might be more division-by-zero problems. Let us focus on all invariants relating
to the two nodes (crs, csr) and (ctu, cut). These are crscsr, ctucut and altogether eight
type-3 expressions

(crs)
t−u
m (ctu)

−r+s
m︸ ︷︷ ︸

= α

, (ctu)
r−s
m (crs)

−t+u
m︸ ︷︷ ︸

= 1
α

, (csr)
t−u
m (ctu)

−s+r
m︸ ︷︷ ︸

= β

, (ctu)
s−r
m (csr)

−t+u
m︸ ︷︷ ︸

= 1
β

,

(cut)
s−r
m (csr)

−u+t
m︸ ︷︷ ︸

= α

, (csr)
u−t
m (cut)

−s+r
m︸ ︷︷ ︸

= ( 1
α)

, (cut)
r−s
m (crs)

−u+t
m︸ ︷︷ ︸

= β

, (crs)
u−t
m (cut)

−r+s
m︸ ︷︷ ︸

= ( 1
β )

.

The latter eight invariants correspond to the eight edges between two non-isolated nodes.
They may be generated by taking one coefficient of each node and putting them into the
context of a type-3 expression. Thereby the order of the coefficients is important due to
the antisymmetric choice of the exponents.
Some relations between these expressions, i.e. conjugation or inversion, are already in-
dicated below the brackets. But there are many more, when the type-2 expressions are
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α

α

β

β

1
β

( 1
β )

( 1
α)

1
α

|ctu|
−r+s

m

|ctu|
r−s
m

α

α

β

β

1
β

( 1
β )

( 1
α)

1
α

|crs|
−t+u

m

|crs|
t−u
m

{β, β, ( 1
α

), 1
α
}←→{α, α, 1

β
, ( 1
β

)} {α, α, β, β}←→{ 1
β
, ( 1
β

), ( 1
α

), 1
α
}

α

α

β

β

1
β

( 1
β )

( 1
α)

1
α

conjugation

α

α

β

β

1
β

( 1
β )

( 1
α)

1
α
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{α, β, 1
α
, 1
β
}←→{α, β, ( 1

α
), ( 1

β
)} {α, β, α, β}←→{ 1

α
, 1
β
, ( 1
β

), ( 1
α

)}

Figure 4.3.: Connections between type-3 expressions

utilized. For example α · |ctu|
r−s
m = β or α · |crs|

−t+u
m = 1

β . Figure 4.3 shows the rich
connections between these expressions.
These connections make obvious that the two type-2 expressions crscsr and ctucut to-
gether with only one of the eight type-3 expressions contain all the information: With
these invariants at hand, the seven missing expressions may formally be calculated. In
our reduction process we are now free to choose one of the eight invariants. This is
a great benefit because we may now ensure that we only use invariants with positive
exponents. This way type-3 expressions never run into divisions-by-zero.
According to these observations and the equivalence of conjugate expressions with re-
spect to their informational content, we restate our rotationally invariant expressions in
reduced form:

reduced 1: expressions of the form ckk

reduced 2: expressions of the form cklclk with k 6= l
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reduced 3: expressions of the form (ckl)
p−q
m (cpq)

−k+l
m with m = gcd(p− q,−k + l)

3a: and additionally if k + l = p+ q, then p− q > −k + l > 0

3b: and additionally if k + l < p+ q, then p− q,−k + l > 0

The exclusion of type-3 expressions with k+l > p+q is due to informational conjugation-
symmetry. In the same way we could have chosen to exclude k + l < p + q. The
division into the two sub-cases 3a and 3b is necessary. 3a occupies itself only with
coefficients contained in a single block blockk+l(c). Therefore 3a-expressions will be
called intra-block-invariants and 3b expressions inter-block-invariants. Figure 4.4 shows
two expressions in the context of the folded coefficient triangle.

Left: type-3a expression is indicated by an edge between (c30, c03) and (c21, c12) Due to −k + l > 0 and
p− q > 0 follows: (k, l) ∈ {(0, 3), (1, 2)} and (p, q) ∈ {(3, 0), (2, 1)}. With p− q > −k + l, the indicated
invariant is (c12)3(c30)1.
Right: type-3b expression is indicated by an edge between (c20,c02) and (c21, c12). From k + l < p + q
follows: (k, l) ∈ {(2, 0), (0, 2)}. With −k + l > 0 and corresponding analysis for (p, q), the indicated
expression is exactly (c02)1(c21)2.

Figure 4.4.: Expressions of type 3a and 3b

Returning to our graph, representing the invariant expressions, we now have a reduced
one: The ckk-nodes are isolated. All other nodes are self-connected due to invariant
cklclk expressions. Additionally any (ckl, clk)-node is connected with any other (cpq, cqp)-
node exactly once. Thus the non-ckk-nodes build a complete graph. The edges of the
complete sub-graph, together with the isolated nodes, resemble the set of the reduced
expressions from above.
In the context of a given curve some nodes of the complete sub-graph might vanish. If this
is the case, then all edges connected to this node represent vanishing type-3 expressions.
However, the information whether a coefficient ckl in the sub-graph vanishes (and thus
also ckl) is already contained in a corresponding type-2 expression cklclk. Consequently
these type-3 invariants carry no additional information and are superfluous in the context
of this given curve.
The number of invariant expressions listed in the reduced form may be calculated as
follows: If we restrict ourselves to coefficients contained in block0(c) up to blockd(c),
then we have n1 = dd+1

2 e type-1 expressions, n2 = dd4(d + 2)e type-2 expressions and
n3 =

(
n2

2

)
type-3 expressions.

Meaning of the invariants

The geometrical meaning of the invariants was already indicated when we listed the
expressions for the first time. Now, with the reduced version, it becomes much clearer.
In fact, only the reduced version allows such a strict association because the original type-
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3 formally contains expressions of the other types. However, the general idea behind it
justifies this approach.
Starting with type-1 expressions we have ckk as form parameters or radii. ckk appears
in connection with ckkz

kzk, which in real representation evaluates to ckk(x2 + y2)k. In
c11zz = c00 we have a circle with radius c00

c11
.

Expressions of type 2 are lengths: cklclk = |ckl|2. The corresponding expressions with
real curve coefficients are slightly more complicated but still lengths. For example,
4·|c10|2 = 4·c10c01 = a2

10+a2
01 = |(a10, a01)| or 16·|c20| = 16·c20c02 = (a20−a02)2+a2

11

= |(a20 − a02, a11)|. We can rewrite our coefficients in polar form ckl = rkl · exp(iϕkl)
with non-negative rkl. Then type-2 invariants fix rkl because

rkl = |ckl| =
√
cklclk . (4.3)

Thus in the coefficient-space of curves an invariant of type 2 fixes one degree of freedom.
In the same way, we may rewrite invariants of (reduced) type 3 by

(ckl)
p−q
m (cpq)

−k+l
m = rklpq · exp(iϕklpq) .

According to our observations above, rklpq = (rkl)p−q(rpq)−k+l is already known by type-
2 invariants.
So let us focus on the exp-part and apply the logarithm. Consequently, with the gcd of
the corresponding rotation speeds m = gcd(|−p+ q| , |−k + l|) we have

p− q
m

ϕkl +
−k + l

m
ϕpq ≡ ϕklpq mod 2π . (4.4)

Thus a type-3 invariant contains an angle-relation between two coefficients. Invariants
of type 3 essentially are weighted sums of angles. The corresponding expressions in real
curve coefficients may be calculated by using trigonometric functions in the real coeffi-
cients akl. The type-3 products’ main feature is that any coefficient may be combined
with any other such that the result builds an invariant. Thus considering expressions
with three or more different coefficients is superfluous. These can be generated by com-
bining invariants listed above.

4.1.4. Reconstruction of a curve by rotation invariants

Suppose we have given values to all type-1 and type-2 invariants and (at least) all values
to all non-vanishing expressions of type 3. By type 1 all ckk-coefficients are determined
and by type 2 all rkl ∈ R≥0 with ckl = rkle

iϕkl are known. If rkl = 0 for all rkl with
k 6= l, all curve-coefficients are already determined and the invariants belong a curve
consisting of one ore several concentric circles. Otherwise, we are left with determining
the angles ϕkl for coefficients ckl 6= 0 with k 6= l.
According to the sole rotational degree of freedom, one of these angles will be left
undetermined. For any pair of non-vanishing coefficients ckl and cpq (k 6= l and p 6= q),
we get a non-vanishing type-3a/3b invariant and thus a relation between the angles ϕkl
and ϕpq (see Equation (4.4)). The principal problem of this Equation (4.4) is that with
given ϕklpq and with one given angle, the other angle is in general not totally determined
modulo 2π: We have either

ϕkl ≡
−k + l

−p+ q
· ϕpq −

m · ϕklpq
−p+ q

mod
2π ·m
−p+ q
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or
ϕpq ≡

−p+ q

−k + l
· ϕkl +

m · ϕklpq
−k + l

mod
2π ·m
−k + l

with m = gcd(|−p+ q| , |−k + l|). In any case, one given angle determines the other
only up to certain complex roots of unity. Figure 4.5 illustrates this: We oppose the two
related angles displayed as nodes with rays in the according angles.

ϕpq determines ϕkl up to −p+q
m

-th roots ϕkl determines ϕpq up to −k+l
m

-th roots

here: ϕkl ≡ 0 mod 2π
8

here: ϕpq ≡ π
4

mod 2π
4

Figure 4.5.: Rotation invariants determine angles up to complex roots of unity

In addition to the ambiguity due to the rotational degree of freedom there is might be
ambiguities due to the angle-relations. Such ambiguities are not always resolvable, even
if we take all invariants into account. However, we will see that all coefficients satisfying
the given relations lead to rotated copies of each other and reconstruction up to rotations
is possible.
Now, let ϕpq be chosen arbitrarily. We show that all possible angles for ϕkl can be
obtained by a rotation of the plane leaving ϕpq invariant. Rotating the plane around the
origin by ψ, we get ϕkl 7→ ϕkl+(−k+l)ψ and ϕpq 7→ ϕpq+(−p+q)ψ (see Equation (4.1)).
Thus rotations by ψ = n 2π

−p+q do not change ϕpq for any n ∈ Z, but

ϕkl 7→ ϕkl + (−k + l)ψ = ϕkl + 2πn
−k + l

−p+ q

= ϕkl +
2π ·m
−p+ q

· n−k + l

m

With m = gcd(|−k + l| , |−p+ q|) we have relatively prime −p+qm and −k+l
m . Thus{

2π ·m
−p+ q

· n−k + l

m
mod 2π

∣∣∣∣ n ∈ Z
}

=
{

2π ·m
−p+ q

· r mod 2π
∣∣∣∣ r ∈ Z

}
.

Consequently, choosing the rotation properly we can switch between the choices (rays)
for ϕkl. One brief note: Here it becomes clear why the type-3 invariants have their
exponents divided by a corresponding gcd-value m. If we had stated our invariant
expressions without m, then the choices for ϕkl would have included angles which could
not be obtained by our special rotations of the plane.

Example 4.1 As an example take ckl = c02 and cpq = c40. To a chosen ϕ40 = ϕ̂40 we
obtain

ϕ̂02 ≡ −
1
2
ϕ̂40 +

1
4
ϕ̂0240 mod

π

2
versus ϕ02 ≡ −

1
2
ϕ40 +

1
2
ϕ0240 mod π .

In the first case, without the division by the gcd, we have twice as many angles as with
the division. Now suppose ϕ̂0240 = ϕ0240 = 0 and ϕ̂40 = ϕ40 = 0.
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Then ϕ̂20 ∈M = {0,±π
2 , π} satisfies the above relation. Rotations leaving ϕ̂40 invariant

are rotations by ψ ∈ π
2 Z. But such rotations rotate ϕ̂02 by multiples of π and M resolves

into two rotationally inequivalent orbits.

Consequently, the invariants would not have determined the curve up to rotations! All
observations from above have already shown

Theorem 4.2 Let g be a complexified curve of known degree d. The values of all
invariants of (reduced) type 1, 2, 3a and 3b with respect to g shall be known. Then it
is possible to reconstruct g from the invariants up to a rotation of the plane around the
origin: Expressions of type 1, 2 and 3 build a complete set of invariants, so to say.

Let us dwell on this theorem to better understand the peculiarities of the reconstruction
process. If we have a curve with exactly one non-vanishing coefficient of the form ckl
with k 6= l, then our graph-terminology shows only isolated nodes. Reconstruction is
simple: All ckk are given by type-1 invariants and rkl = |ckl| =

√
cklckl is also clear.

A single parameter, namely ϕkl, remains undetermined, resembling the one rotational
degree of freedom. A rotation of the plane can arbitrarily transform ϕkl.
If we have exactly two different non-vanishing coefficients ckl and cpq with k 6= l, p 6= q
and (k, l) 6= (q, p), we are in the situation which lead us to the theorem above. If there
is a third coefficient cuv or even more coefficients, we have more invariants. Arbitrarily
fixing an angle, say ϕkl, determines the other angles up to angles of complex roots of
unity. Within these angle-sets we may now determine subsets such that all the other
invariant expressions are satisfied. We may do so by iteratively using Equation (4.4)
or our graphical schemes representing the type 3 invariants. Finally we end up with
an non-empty set of angles, which may be assigned to all the ϕkl, ϕpq, ... . This set is
non-empty because the original curve may be rotated such that ϕ̃kl is of the fixed value.
Thus there is an angle set satisfying all invariant expressions. If we end up with multiple
possibilities, we have shown that these are of one and the same (but rotated) curve. We
exemplify reconstruction with three non-vanishing type-3a/3b expressions in the next
section.

Theorem 4.3 The set of type 1, 2, 3a and 3b expressions in their reduced form are
minimal in the following sense: Any curve is reconstructible by given values to any of
these expressions. If a single expression is left out, then there is a curve which is no
longer reconstructible up to rotations.

Proof It is clear that no type-1 or type-2 expressions may be omitted. If a type-3a/3b
expression is missing, then we would have problems with certain curves: There are
curves, having exactly two non-vanishing coefficients (and their corresponding conjugate)
of the form ckl, cpq with k 6= l, p 6= q. A suitable multiplication would lead to the missing
invariant. Without the value for this invariant expression we only have the absolute
value but no angle to these coefficients. Thus we get a two-dimensional pencil of curves
satisfying all the remaining invariants. Consequently, the curve is not reconstructible up
to rotations because two degrees of freedom can not be resolved. 2

The number of invariants which are necessary for reconstruction of a specific curve,
depends a lot on the curve: All type-1 and all type-2 expressions are necessary. But
if a coefficient ckl with k 6= l vanishes, then - speaking in our graph terminology - all
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connections to and from this node are superfluous. Thus, if we have exactly r coefficients
ckl 6= 0 with k 6= l, then we need at most

(
r
2

)
type-3a/3b expressions. This is only an

upper bound, because in special cases some invariants may be implied by the remaining
ones (see the example in the next section).

4.1.5. Reconstruction of specific given curve

Let us examine a curve g of degree d = 8 with the only non-vanishing coefficients c22 = 1
2 ,

c20 = 5 · ei
π
4 , c80 = 4 · ei

3
5
π and c71 = e−i

π
2 . The corresponding curve is displayed in

Figure 4.6.a. The set of non-vanishing relevant rotational invariants to this curve is

type 1 type 2 type 3

c22 = 1
2 c20c02 = 52 (c02)4(c80) = 54 · 4 · ei

8
5
π

c80c08 = 42 (c17)4(c80)3 = 43 · ei
9
5
π

c71c17 = 12 (c02)3(c71) = 53 · ei
3
4
π

Suppose we only have the above table of invariants and we try to reconstruct a curve
g̃ of degree eight from this data. The type-1 invariants directly give us c̃22 = 1

2 and
c̃00 = c̃11 = c̃33 = c̃44 = 0. The type-2 expressions provide us with the absolute values
of all other coefficients and the only non-vanishing among them are r̃20 = r̃02 = 5,
r̃80 = r̃08 = 4 and r̃71 = r̃17 = 1.
Using the notation rklpqeiϕklpq = (ckl)

p−q
m (cpq)

−k+l
m with m = gcd(|k − l| , |p− q|), we get

the following invariants from the type-3 expressions in the tabular above:

ϕ0280 =
8
5
π, ϕ1780 =

9
5
π and ϕ0271 =

3
4
π .

The absolute values rklpq are not of interest since the type-2 expressions take care of
consistency. According to Equation (4.4) and the fact that ϕkl = −ϕlk we have the
three equations

ϕ0280 = 8
5π ≡ −4ϕ̃20 + ϕ̃80 mod 2π , ϕ1780 = 9

5π ≡ −4ϕ̃71 + 3ϕ̃80 mod 2π
and ϕ0271 = 3

4π ≡ −3ϕ̃20 + ϕ̃71 mod 2π . (4.5)

These correspond to the (remaining) type-3 edges in our graph:

Now we are free to choose one of the angles. This freedom corresponds to the one dimen-
sional degree of freedom when dealing with rotations around the origin. For example let
ϕ̃80 = 0. Then ϕ̃20 and ϕ̃71 are restricted according to the invariants ϕ0280 and ϕ1780.
According to Equation (4.5):

ϕ̃20 ≡
ϕ̃80

4
− ϕ0280

4
≡ π

10
mod

π

2
and ϕ̃71 ≡

3ϕ̃80

4
− ϕ1780

4
≡ π

20
mod

π

2
.
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4. Curves and selected transformations of the plane

The angle-combinations satisfying these two expressions are shown in Figure 4.6.b: The
four choices of ϕ̃20 and ϕ̃71 are indicated by the two times four line segments, rotationally
shifted according to −ϕ0280

4 and −ϕ1780

4 .
Not all of these angle-combinations necessarily lead to a rotated copy of the original
curve. We also have one constraint left: ϕ0271 relates ϕ̃20 to ϕ̃71. Let us choose ϕ̃71,
cycling through Φ = { π20 ,

11π
20 ,

21π
20 ,

31π
20 } and check the equation with ϕ0271 in (4.5) to

determine the possible angles for ϕ̃20. Thereby Φ is the set of valid angles ϕ̃71 according
to our selection of ϕ̃80 and ϕ1780. In Figure 4.6.c-f the situations are illustrated. When-
ever angles coincide with angles in Figure 4.6.b, the corresponding line segments are
highlighted. The highlighted angle sets must satisfy all our given invariant expressions
and thus may serve as angles for the reconstructed coefficients. In our case, we get four
valid coefficient sets, satisfying all our invariant expressions. The corresponding curves
are shown in Figure 4.6.g-j: The curves are all rotated copies of our original curve.
Instead of fixing ϕ̃80, we likewise could have chosen to fix ϕ̃71 or ϕ̃20. Fixing ϕ̃71 would
have meant having a choice of three angles for ϕ̃80 or ϕ̃20 (see Figure 4.6.c) and in the
end we would have got three rotated copies of our original curve. Fixing ϕ̃20 as first
angle would have been the fastest way for reconstruction: For example, setting ϕ̃20 = π

10
automatically determines the other angles modulo 2π. According to Equation (4.5) we
have ϕ̃80 ≡ ϕ0280 + 4ϕ̃20 ≡ 2π ≡ 0 mod 2π and ϕ̃71 ≡ ϕ0271 + 3ϕ̃20 ≡ 21π

20 mod 2π.
The relation between ϕ̃80 and ϕ̃71 is automatically satisfied because of the equivalence
−4ϕ0271 + 3ϕ0280 ≡ −4ϕ̃71 + 3ϕ̃80 ≡ ϕ1780 mod 2π. As corresponding diagram we may
take Figure 4.6.e but only with the highlighted segments.
In any case, we end up with one or more rotated copies of our original curve. As already
mentioned, this would not be the case if the exponents in our invariant expressions
(ckl)

p−q
m (cpq)

−k+l
m had not been divided by the gcd-value m = gcd(|p− q| , |k − l|). Let

us take our curve example again. Ignoring m we get

(c02)8(c80)2 = 58 · 42 · ei
6
5
π, (c17)8(c80)6 = 46 · ei

8
5
π and (c02)6(c71)2 = 56 · ei

3
2
π .

These expressions are of course invariant but they do not permit a reconstruction up to
rotations of the original curve:

ϕ′0280 = 6
5π ≡ −8ϕ̃′20 + 2ϕ̃′80 mod 2π , ϕ′1780 = 8

5π ≡ −8ϕ̃′71 + 6ϕ̃′80 mod 2π
and ϕ′0271 = 3

2π ≡ −6ϕ̃′20 + 2ϕ̃′71 mod 2π .

Thus fixing ϕ̃′80 = 0 we would get the situation shown in Figure 4.6.k. A possible choice
satisfying all above constraints, especially the one with ϕ′0271, is highlighted. There
ϕ̃′71 = 3π

10 and ϕ̃′20 = 17π
20 . The corresponding curve is shown in Figure 4.6.l. Clearly it is

not a rotated copy of our original curve.
By this example we already get a glimpse on rotational symmetry. The given curve has
a twofold rotational symmetry. According to the above observations, the rotation speeds
±8, ±6, ±2 and 0 must be part of the cause: They all have a greatest common divisor
of gcd(8, 6, 2, 0) = 2. Consequently, a rotation of the plane by ψ = π will not effect any
of these coefficients. This finds its correspondence in our invariant expressions: In any
type-3 invariant the gcd had been m = 2.
In fact, if we have a curve with a gcd of all rotation speeds being a number s, then
the curve must have at least a s-fold rotational symmetry. In Section 5.1 we will see
that there are more curves with a s-fold rotational symmetry. In fact, the criteria for
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4. Curves and selected transformations of the plane

a) The original curve g b) eϕ80 = 0 determines c) eϕ71 = π
20

determineseϕ71 and eϕ20 modulo π
2

eϕ80 and eϕ20 modulo 2π
3

d) eϕ71 = 11π
20

determines e) eϕ71 = 21π
20

determines f) eϕ71 = 31π
20

determineseϕ80 and eϕ20 modulo 2π
3

eϕ80 and eϕ20 modulo 2π
3

eϕ80and eϕ20 modulo 2π
3

g) corresponding to c h) corresponding to d i) corresponding to e

by 17π
40

rotated original by 27π
40

rotated original by 37π
40

rotated original

j) corresponding to f k) without gcd in l) corresponding to k

by 47π
40

rotated original invariant expressions no rotated copy of a)

Figure 4.6.: Reconstructing a curve from invariants
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4. Curves and selected transformations of the plane

such a symmetry is that s is the greatest common divisor of all possible differences of
rotation speeds of non-vanishing coefficients (see Section 5.1). But the gcd of all our
rotation speeds divides any sum and difference of the rotation speeds and thus also the
corresponding gcd.

4.1.6. Normal form with respect to rotations around the origin

If we have a curve whose only non-vanishing coefficients are of the form ckk, then the
curve is not affected by rotations around the origin. Thus the whole curve is rotationally
invariant. It must therefore consist of one or several circles concentric to the origin.

These curves are of the form
∑ d

2
k=0mkkckkz

kzkhd−2k = 0, which is and has to be a
normal form with respect to rotations around the origin.
If there is a ckl 6= 0 with k 6= l, the curve is affected by rotations. Let S be the set of
all such coefficients for a given curve g. If a ckl is contained in S, we can find angles by
which the curve has to be rotated such that the transformed curve g̃ has a positive real
c̃kl ∈ R>0. In general, there is a whole set of possible angles ψ with this property: The
coefficient ckl = rkle

iϕkl transforms under rotations according to c̃kl = ckle
iψ(−k+l). For

c̃kl to be real, ϕkl + ψ(−k + l) ≡ 0 mod 2π must be satisfied. Thus eiψ is determined
up to the (k − l)th complex roots of unity and

ψ ≡ ϕkl
k − l

mod
2π
k − l

.

The transformation group of rotations around the origin separates the set of curves into
equivalence classes. The class of all rotationally equivalent curves to a given curve g will
be denoted by [g]rot. A representation system and thus a normal form with respect to
rotations can be obtained by selecting a specific well-defined curve in each equivalence
class. We do so by choosing the curve whose coefficients ckl = rkle

iϕkl exhibit angles ϕkl
satisfying a certain minimality-criterion. In what follows we describe this criterion and
how the corresponding curve may be obtained.
Let g be an arbitrary curve and S = Sg = {ckl | ckl 6= 0 ∧ k 6= l} the set of all non-
vanishing non-ckk-coefficients. Rotating g, the coefficients may change but S will always
contain the same coefficients. Thus we have a rotationally invariant S. According to
Definition 2.3, S is totally ordered by �. Let |S| = n and s = (s1, s2, ..., sn) be a
vector, listing all elements of S in a by � ordered manner. Furthermore, let sk = rke

iϕk

with rk > 0 for any k. The so called angle-vector to a vector s is denoted by ϕ with
ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ [0, 2π)n. This vector contains exactly those values of a curve which
are affected by rotations around the origin.
A total order on these (angle-) vectors in [0, 2π)n allows us to single out a unique vector
and thus a rotational normal form. Therefore let ϕ < ϕ′, whenever there is an index
k < n with ϕk < ϕ′k and ϕj = ϕ′j for all j < k. Thus we have already proven

Theorem 4.4 Among each class or rotationally equivalent curves there is a unique
curve with a minimal angle-vector. The set of all these curves constitutes a rotational
normal form.

This theorem becomes even more obvious when we calculate the angle(s) ψ by which a
given curve g has to be rotated such that it is in rotational normal form. At first all
ψ ∈ Ψ0 = [0, 2π) are admissible. Now we successively minimize the components of the
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4. Curves and selected transformations of the plane

angle-vector ϕ of g. In the r-th step we rotate g by any angle in Ψr−1 and determine
the resulting angle-vectors. Those rotation-angles leading to the smallest angle-vectors
constitute Ψr. After |S| = n steps we have the desired angle(s) contained in Φn. If in
the meantime |Ψr| = 1, we may already stop, because then Φn = Φr.
In any case all angles ψ ∈ Ψn lead to one and the same curve, independent from any
rotations the curve may have previously undergone: For |Ψn| = 1 this is trivial and for
|Ψn| 6= 1 we have minimized all coefficients in S. Thus we have several rotation angles
but exactly one curve and this is crucial in the context of normal forms. If |Ψn| 6= 1, the
given curve must have been rotationally symmetric. More on rotational symmetry will
be covered in Section 5.1.

Example 4.2 As an example for transforming a curve into rotational normal form look
at Figure 4.7. The coefficients of the original curve g are c40 = 5 · ei

5
6
π, c31 = 4 · ei

1
6
π,

c20 = 7 · ei
5
4
π, c22 = 3 and c00 = −3. The remaining coefficients are either complex

conjugates to the given values or zero. The (sorted) set S is given by S = {c40, c31, c20}
and |S| = 3. We already left the complex conjugate out, because minimizing a ϕkl
renders a minimization of ϕlk irrelevant. Ψ1 must lead to a minimized angle of the
largest coefficient in S with respect to �. This means that c̃40 = 5. Thus the elements
ψ ∈ Ψ1 satisfy 0 ≡ ϕ40 − 4ψ mod 2π and consequently Ψ1 = 5π

24 + {0, π2 , π,
3π
2 }. Figure

4.7 shows the corresponding rotated copies of g. In a next step we can minimize ϕ̃31 by
using rotations and ψ ∈ Φ1. Rotations by ψ ∈ 5π

24 +{0, π} lead to ϕ̃31 ≡ 7π
4 mod 2π and

ψ ∈ 5π
24 + {π2 ,

3π
2 } lead to ϕ̃31 ≡ 3π

4 mod 2π. Thus Φ2 = 5π
24 + {π2 ,

3π
2 }. Any rotation by

ψ ∈ Φ2 leads to the same ϕ̃20 ≡ 11π
6 mod 2π and consequently Φ2 = Φ3. Now, we end

up with two angles which transform our given curve in one and the same curve shown
in Figure 4.7.c. The curve is unique but the rotation-angle leading to this curve is not.

a) original curve g b) rotated by ψ = 5π
24

c) rotated by ψ = 5π
24

+ π
2

or ψ = 5π
24

+ π or ψ = 5π
24

+ 3π
2

Figure 4.7.: Rotational normal form

4.1.7. Invariants under rotations around the origin in tensor notation

In Section 3.2.3 we saw that Euclidean invariants of curves are built up by the use of
ε-tensors together with the E- and A-tensor. According to Theorem 3.4, we can also use
I- and J-tensors in equal numbers, because the diagrams may be replaced by a linear
combination of corresponding diagrams. Dealing with rotations around the origin, a
new geometric object remains invariant: the origin itself as a point. Consequently, we
may construct invariants of curves under rotations around the origin by building closed
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4. Curves and selected transformations of the plane

diagrams consisting of curve-, ε-, E-, A- (or I- and J-) and 0-tensors. Thereby

denotes the contravariant 0-tensor (0, 0, 1)T . We will see that this additional tensor is
enough to formally describe all our invariant expressions of type 1, 2 and 3 and thus all
invariants necessary for reconstruction.
For example, if there is a curve-tensor for a curve Cg of degree d, we have a node with
d arrows pointing to the node. Connecting d times the 0-tensor we get a00 = c00 as a
result. As we have seen, c00 is invariant under rotations around the origin because it is
of type 1. Clearly the complexified version of 0 is 0̂ = 0 itself:0

0
1

 =

1 i 0
1 −i 0
0 0 1

0
0
1

 = 0 .

Connecting 0 to a curve-tensor Ĝ of variance d is like filtering a sub-tensor:

Ĝk,i2,i3,...id0
k = Ĝ3,i2,i3,...id .

The components of this sub-tensor could as well be the coefficients of a curve with
one degree less, namely d − 1. Deleting the leading coefficients gives us the curve cor-
responding to the sub-tensor. In this sense we can deal with any 0-tensor as a tensor
virtually reducing the degree of the curve. We can address any curve-coefficient by using
a curve-tensor connected to suitably many 0-, I- and J-tensors. Theorem 3.6 provides:

In what follows we will confine ourselves again to the complexified notation (see Section
3.3.1). The curve-tensor in real representation G will be replaced by the complexified
version Ĝ and the role of E, I and J is played by Ê, e1 and e2, respectively.
Looking back at the construction of our invariants under rotations of the plane, we can
see the following: All expressions satisfy that the rotation-speed of the expression is zero,
i.e. the sum of all rotation speeds −k + l of the participating coefficients ckl vanishes.
But this means that the sum of all first indices of the participating coefficients is exactly
the sum of the second indices. However, stating our invariants as suitable products of
the tensor-diagrams shown above, we see: The sum of the first indices indicates how
many e1-tensors are used in total and the sum of the second indices indicates how many
e2-tensors are used in total. Thus stating our invariants in diagram notation we have
equally many e1- and e2-tensors. According to Theorem 3.4, we can now replace all e1-
and e2-tensors and instead get linear combinations of diagrams with Ê- and Â-tensors.
Consequently, we have rotation-invariants because we only used curve-tensors together
with Ê-, Â- and 0-tensors.
Type-1 invariants for a curve of degree d, the ckk (0 ≤ k ≤

⌊
d
2

⌋
), are particularly simple:
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4. Curves and selected transformations of the plane

According to Section 3.3.2 and the behavior of the 0-tensor we have

1
2k

= ckk

According to Theorem 3.15 we get for the type-2 invariants cn−r,rcr,n−r (0 ≤ r ≤ n ≤ d):

cn−r,rcr,n−r =
1
2n

n∑
q=0

C(n−r,r)
q

As we have seen, the summands for odd q vanish and an even number of Â tensors may
be substituted by an expression without Â (compare with Theorems 3.7 and 3.17).
The type-3 invariants are more complex. Naturally, they may be written easily with e1-
and e2-tensors. But in general it is difficult to write down the corresponding expression
with Ê- and Â-tensors. What we can do is replace pairs of one e1- and one e2-tensor
connected to the same curve-tensor:

Thus we can confine ourselves to diagrams with Ĝ-tensors which are only connected
to (several) 0- and E-tensors as well as to either several e1- or e2-tensors. The re-
maining e1- and e2-tensors may then be combined according to Theorem 3.4 in Sec-
tion 3.2.3. Concerning our type-3 invariants, we confine ourselves to the existence of
a linear-combination of diagrams with Ê- and Â- and without e1- and e2-tensors. The
linear-combinations may be obtained similarly to the ones in Section 3.3.5 by applying
a corresponding formal decomposition as described in Section 3.3.3. Anyway, the type-3
invariants may be written as

(ckl)
p−q
m (cpq)

−k+l
m =
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4. Curves and selected transformations of the plane

4.2. Translation

In Section 2.3 we complexified a curve by writing it as a zero set of a polynomial
g(z, z, h) = 0 with z ∈ C. In addition to its great advantages when dealing with ro-
tations, this notation will also be beneficial when curves are translated. As in the last
chapter, we start by analyzing the effects of translations on curve coefficients. Getting
to know special transformations making coefficients vanish, we arrive at a translatorial
normal form. Curves having intersections with the line at infinity of multiplicity greater
than one play a special role. A treatment of translation invariants of curves is also
included in this chapter.

4.2.1. Effects of translations on complexified curve coefficients

When talking about translations, it is convenient to use dehomogenized coordinates or
to scale the homogenizing component to h = 1. Thus a point p, given by p = (z, z, h)
with h = 1, is translated by t whenzz

h

 7−→
1 0 t

0 1 t
0 0 1

zz
h

 . (4.6)

If h 6= 1, then t would be a scaled Euclidean translation parameter.
This transformation of the plane has its implications on the curve-coefficients. The
transformation of the curve coefficients is covered in

Theorem 4.5 Let g be a curve with coefficients ckl and let g̃ be the by t translated
copy g̃t = g̃ with coefficients c̃kl. The translation induces the following map on the
coefficients:

ckl 7−→ c̃kl =
d−l∑
p=k

d−p∑
q=l

(−1)(p+q)−(k+l) (d− k − l)!
(p− k)! (q − l)! (d− p− q)!

tp−ktq−lcpq . (4.7)

Proof The strategy of this proof is the same as in the proof of Theorem 2.7, which is
carried out in detail in Appendix A.1. Translating g by t we get

0 = g̃(z, z) = g(z − t, z − t) =
d∑

k−l=0

mklckl(z − t)k(z − t)l .

Expanding the (z− t)k(z− t)l, changing summation indices a few times and recollecting
the coefficients of monomial terms proofs the theorem. 2

Equation (4.7) completely describes the transformation of the coefficients. The fraction
with the faculties may be restated by the use of binomial coefficients:

(d− k − l)!
(p− k)! (q − l)! (d− p− q)!

=
(
d− (k + l)
d− (p+ q)

)(
(p+ q)− (k + l)

p− k

)
.
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However, the matrix representation of this transformation is by far more instructive. To
visualize the transformation using matrix notation, we choose d = 3.(

c00 c10 c01 c20 c11 c02 c30 c21 c12 c03

)T 7→ Ttc =

1 −3t −3t 3t2 6tt 3t2 −t3 −3t2t −3tt2 −t3
1 −2t −2t t2 2tt t2

1 −2t −2t t2 2tt t2

1 −t −t
1 −t −t

1 −t −t
1

1
1

1


︸ ︷︷ ︸

= Tt



c00

c10

c01

c20

c11

c02

c30

c21

c12

c03


(4.8)

4.2.2. Structure of the coefficient transformation

The block-structure of the curve coefficients as defined in Definition 2.3 carries over to
the transformation matrix: Auxiliary lines are shown in (4.8). In order to be able to
uniquely refer to blocks, let

Tt =


block0,0 block0,1 block0,2 block0,3

block1,0 block1,1 block1,2

block2,0 block2,1

block3,0


with the block-borders corresponding to the auxiliary lines above. In general, the first
index n of blockn,m(Tt) specifies the “block-row”: The transformation of coefficients c̃kl
with index-sum k+ l = n is described by these blocks. The second index b indicates that
the block is contained in the b-th sup-diagonal. Thus blockn,m(Tt) gets multiplied with
blockn+m(c).
Blocks below the diagonal are not needed due to the visually most dominant property of
Tt: the upper triangular shape. The lowest possible values for the summation indices in
Equation (4.7) are k and l, respectively. Thus c̃kl depends only on coefficients cpq with
cpq � ckl.
To analyze the structure within the blocks, it is best to reformulate Equation (4.7): It
is convenient to rewrite c̃kl by c̃k,n−k with n being the sum of the indices and the cpq
analogously. Changing summation accordingly we get

c̃k,n−k =
d−n∑
m=0

m∑
p=0

(−1)m
(
d− n
m

)(
m

p

)
tptm−pc(p+k),(m+n)−(p+k) . (4.9)

Now the block-indexing is synchronized with the transformation formula: Analyzing a
c̃k,n−k gives us the the number n of the first index to relevant blocks: blockn,∗(Tt). Then
the first summation, the summation over m, gives us the second index: coefficients of
c(p+k),(m+n)−(p+k) with the same m are contained in the same block, namely blockn,m(Tt).
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Let us have a closer look at the coefficients of our curve-coefficients in Equation (4.9).
Focusing on blockn,m(Tt), we have

m∑
p=0

(−1)m
(
d− n
m

)(
m

p

)
tptm−p = (−1)m

(
d− n
m

)
(t+ t)m .

Thus for a given n the whole coefficient structure for any c̃k,n−k is given by the summands
of the corresponding expanded expression of

d−n∑
m=0

(−1)m
(
d− n
m

)
(t+ t)m = (1− (t+ t))d−n .

This proves the very nice and simple general structure we saw in the matrix-notation
of Equation (4.8) for the case of d = 3: In each row within a block we have the same
coefficients, only shifted. All entries in blockn,m(Tt) have a sign of (−1)m, i.e. odd
sup-diagonals have minus signs. They depend on t and t of order m. The coefficient
structure of t and t in the rows of the blocks are binomially scaled binomial coefficients.
The overall scaling of blockn,m(Tt) is (−1)m

(
d−n
m

)
, corresponding to coefficients in a

generalized Pascal-Triangle (compare with Figure 3.8.f on page 52). In our case for
d = 3 we get the scaling pattern

1 −3 3 −1
1 −2 1

1 −1
1

 .

It is not too surprising that tetrahedral coefficient structures may also be found in (4.8),
or more generally in (4.7). Back in Section 2.2.4 we examined a tetrahedral coefficient
structure of a coefficient transformation induced by rotations of the plane. The secret
behind the tetrahedral structure was that we had, as here, binomially weighted binomial
coefficients. Let us look at the columns of the transformation-matrix in (4.8), as an
example, the rightmost column. We may arrange the coefficients on a tetrahedron in
such a way that the coefficients of a block are all contained in a plane intersecting our
tetrahedron. With parallel intersecting planes, we have the same structure as in Section
2.2.4. The signs may be integrated in the weights and the coefficients themselves are
always binomial (see the subsequent Figure 4.8).
Another interesting structural property of the transformation (4.7) emerges when we
translate it into terms of our coefficient triangle introduced by Equation (2.17): High-
lighting all coefficients which are involved in the transformation of a specific coefficient
ckl, we can see that they form a sub-triangle ∆kl in the coefficient triangle: The tip, i.e.
row m = 0, of ∆kl is ckl itself (see Figure 4.9). The entries in row m = 1 of ∆kl contain
the coefficients depending linearly on t and t in the transformation of ckl:

c̃kl = ...+ const1 · (tck+1,l + tck,l+1) + ... .

The coefficients in the row m = 2 evoke a quadratic change

c̃kl = ...+ const2 · (t2ck+2,l + 2ttck+1,l+1 + t2ck,l+2) + ...
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block coefficients weight
(not weighted)

block0,3 1 3 3 1 -1

block1,2
1 2 1

1
1 2 1

block2,1

1 1
-11 1

1 1

block3,0

1
11

1
1

block0,3-coefficients block1,2-coefficients

block2,1-coefficients block3,0-coefficients

Figure 4.8.: Translation and tetrahedral coefficient structure

Sub-triangle ∆n−2,1 with c = cn−2,1,a = cn−1,1 and b = cn−2,2

Sub-triangle ∆n−3,1 with f = cn−3,1, d = cn−2,1, e = cn−3,2, a = cn−1,1, b = cn−2,2, c = cn−3,3

Figure 4.9.: Sub-triangles in the coefficient triangle

and so on. Thus the line in the sub-triangle determines the order of dependence on t
and t. The premultiplying constants may be determined according to their affiliation
to blocks. These constants are exactly the overall block-scaling factors discussed above.
Therefore constm = (−1)m

(
d−(k+l)

m

)
. Thus the integer factors, equipping the coefficients

of a sub-triangle, form nice pattern. For d=3 and c00 = j (or likewise for d = 4 and
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c01 = j, ...) we have:

j

−→

1
scaled by←− 1 = (−1)0

(
3
0

)
h i 1 1

scaled by←− −3 = (−1)1
(

3
1

)
e f g 1 2 1

scaled by←− 3 = (−1)2
(

3
2

)
a b c d 1 3 3 1

scaled by←− −1 = (−1)3
(

3
3

)
Switching to yet another interesting structural property, we may interpret the trans-
formed coefficients c̃kl as functions c̃kl(t, t) depending on t and t. What is most interest-
ing is that c̃kl(t, t) and c̃(k+r),(l+s) = c̃(k+r),(l+s)(t, t) are connected via a differentiation
process.
Unfortunately, ∂t∂t is not holomorphic, but we can formally distinguish between the vari-
ables t and t. Therefore we assume t being constant when applying ∂

∂t , and we assume t
being constant, when applying ∂

∂t
. (Alternatively we can perform the real differentiation

and identify ∂
∂t by ∂

∂<(t) + ∂
∂(−=(t)) and ∂

∂t
by ∂

∂<(t) + ∂
∂(+=(t)) . Thereby <(t) is the real

part of t and =(t) the imaginary part of t, but care of the signs has to be taken.) Anyway
with d as the degree of the curve we have

∂r+s

∂tr∂ts
c̃kl(t, t) = (−1)r+s

(d−k−l)!
(d−(k+r)−(l+s))!

c̃(k+r),(l+s)(t, t) . (4.10)

The proof of this is straight forward calculation, just derivating Expression (4.7). Thus
looking at two rows of the transformation matrix in (4.8), we may obtain the lower one
by suitably deviating the upper row and a subsequent rescaling.
Comparing the curve describing polynomial g(z, z) with the transformed coefficients, we
can see that c̃00(t, t) = g(−t,−t). Again we interpret the derivatives of g with respect to
z and z analogously to the derivatives of c̃kl(t, t) with respect to t and t. Evaluating the
derivatives at (z, z) = (−t,−t) and comparing the result with Equation (4.10), we have

c̃kl(t, t) =
(−1)k+l

k! · l! ·mkl
· ∂

k+lg(z, z)
∂zk∂zl

∣∣∣∣
(−t,−t)

.

Thus calculating the coefficients of a translated curve means calculating scaled deriva-
tives of the curve describing polynomial g at (−t, t), where t is the translation parameter.
This operation can be performed, for example, by the use of Horner’s scheme without
the explicit calculation of Tt.
Now, we have seen how a given translation parameter effects curve coefficients. Naturally,
we can examine the converse problem and ask for a translation parameter such that the
transformed coefficients exhibit a special property. We will study this later in Sections
4.2.4 and 4.2.5, ending up with a normal form with respect to translations in Section
4.2.6.

4.2.3. Reference for translations

Before we study translations causing directed annihilation or minimization of coefficients,
we will introduce some useful terminology and abbreviations. This section may be seen
as a reference guide for the subsequent sections.
We have seen that coefficients ckl change, under translations of the plane, dependent
on the coefficients contained in a sub-triangle ∆kl. To avoid the many indices we will
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4. Curves and selected transformations of the plane

abbreviate the coefficients in a specified sub-triangle by gothic letters. Unless explicitly
stated otherwise, a will denote the greatest coefficient in ∆kl with respect to � (see
Definition 2.3), b the second largest and so on. Thus for a sub-leading ckl the sub-
triangle ∆kl will be denoted by c = ckl, a = ck+1,l and b = ck,l+1 (see Figure 4.9 for a
further example). The only sub-leading coefficient in this triangle is c. In many cases
we make use of polar coordinates. There we will write a = rae

iα, b = rbe
iβ, c = rce

iγ

and so on. The radii are supposed to be non-negative.
To be able to address the coefficients by the “distance” to the leading coefficients, we
name coefficients cpq k-leading if p + q + k = d, where d is the degree of the curve.
Leading coefficients are 0-leading, sub-leading coefficients are 1-leading and so on.
Especially in the context of changing a sub-leading coefficient by translations of the
plane, we come across certain angles very often. Therefore we will abbreviate these:
Let ∆kl be a sub-triangle in the coefficient triangle with tip c and base a and b (for an
example see the top image in Figure 4.9). Then by convention:

ϑ =
−α+ β

2
, τ =

α+ β

2
and σ = ϑ+

π

2
.

The angle 2ϑ = −α + β will be called (oriented) angle-difference of the succeeding
coefficient pair a and b.
These angles play an outstanding role and are needed to describe special lines, which in
turn specify restrictions on transformed coefficients (see next section). For reference we
name these auxiliary lines

L =
{
λeiτ

∣∣ λ ∈ R
}

, Lc =
{
λeiτ + c

∣∣ λ ∈ R
}

= c + L

and L⊥ =
{
λei(τ+π

2 )
∣∣∣ λ ∈ R

}
.

Interpreting C as a (real) two-dimensional space and L as a one-dimensional subset,
we can see that C/L = {Lc | c ∈ C}. A representation system can be obtained by
intersecting all possible lines Lc with a traversing line. Such a set of intersections may
of course be identified with the traversing line itself. A special representation system is
L⊥ (the line passing through the origin) being perpendicular to any Lc. The point of
intersection p with {p} = L⊥ ∩Lc is singled out by its absolute value: Among all points
of Lc, p has minimal absolute value.
In the sections ahead we will have to examine translations by parameters t lying on lines
which are closely related to the auxiliary lines above. To be able to reference these lines
too, we introduce special meaningful points: The orthogonal projection of c onto L is
given by

cL = rc cos(γ − τ)eiτ .

In case when ra 6= 0 we define

tc =
|cL|
2ra

eiϑ =
rc cos(γ − τ)

2ra
eiϑ .

If ra = rb, tc may be rewritten in a simpler form without trigonometric functions.
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4. Curves and selected transformations of the plane

Expanding cL, cos(γ − τ) and the angle-abbreviations we get

tc =
rc

4ra

(
ei(γ−

α+β
2 ) + ei(−γ+α+β

2 )
)
ei(
−α+β

2 )

=
rc

4ra

(
ei(γ−α) + ei(−γ+β)

)
=

ca + cb

4r2
a

.

Together with tc we get further auxiliary lines with

T =
{
λeiσ | λ ∈ R

}
, Tc =

{
λeiσ + tc

∣∣ λ ∈ R
}

= tc + T

and T⊥
{
λeiϑ

∣∣ λ ∈ R
}
.

Here we have analogous conditions for a representation-system compared to the lines Lc.
We have the set C/T = {Tc | c ∈ C}. As a special representational system we have T⊥

with Tc ⊥ T⊥ for all c and 0 ∈ T⊥. Additionally, tc with Tc ∩ T⊥ = {tc} has minimal
absolute value amongst all points of Tc.

cL

a

b

c
Lc

L

L⊥

τ
τ + π

2

a

b

c

Tc T

T⊥
tc

ϑ
σ

Figure 4.10.: Auxiliary lines for translations

4.2.4. Minimizing coefficients by a translation

With the abbreviations of the last section we can exploit the linear dependence of sub-
leading coefficients on t and t. We use it to find a translation such that the absolute
value of a transformed sub-leading coefficient is minimized or annihilated. The process
of translating a curve such that some c̃kl = 0 with k + l = d − 1 will be called anni-
hilation. If only a minimization of the absolute value is possible, we speak in short of
minimization. We will study minimization and annihilation in detail because they are
the key ingredients for our normal form for curves with respect to translations. There-
fore an examination of the behavior of coefficients under arbitrary translations and under
translations with a fixed direction takes place. By such translations of fixed direction
we understand translations with translation parameter t restricted to a predefined line
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4. Curves and selected transformations of the plane

passing through the origin. At first we will look at a ∆kl to a sub-leading ckl = c. By
Equation (4.7) we have

c̃ = c− ta− tb . (4.11)

For almost all curves ra 6= b holds. In this case annihilation is possible: A translation
parameter t may be found such that c̃ = 0. We state this in

Theorem 4.6 Let ra 6= rb and ∆ = r2
a − r2

b. The by

t =
1
∆

(c a− c b) (4.12)

translated copy F̃ = F̃t of F has a vanishing sub-leading coefficient c̃ = 0. Translations
by a parameter different from t in Equation (4.12) imply c̃ 6= 0.

Proof We determine t from the condition c̃ = 0 and the transformation law for sub-
leading coefficients (4.11) c̃ = c− ta− tb. Splitting the participating coefficients into real
and imaginary parts yields:

a = xa + iya, b = xb + iyb and c = xc + iyc .

Together with t = xt + iyt we get

xc + iyc = [(xa + xb)xt + (−ya + yb)yt] + i [(ya + yb)xt + (xa − xb)yt] .

Interpreting C as two-dimensional real space gives us(
xc

yc

)
=
(
xa + xb −ya + yb

ya + yb xa − xb

)(
xt
yt

)
= M

(
xt
yt

)
. (4.13)

In order to be able to solve for t, det(M) needs to be non-zero. But

det(M) = x2
a − x2

b + y2
a − y2

b = r2
a − r2

b = ∆ 6= 0 .

Thus, by the preconditions of our theorem, M is invertible and(
xt
yt

)
=

1
∆

(
xa − xb ya − yb

−ya − yb xa + xb

)(
xc

yc

)
.

Consequently,

t =
1
∆

[(xa − xb)xc + (ya − yb)yc + i(−ya − yb)xc + i(xa + xb)yc]

=
1
∆

(ca− cb) .

This asserts our theorem. 2

An example for this and the subsequent theorems will be given in a separate section
(Section 4.2.7) after we have arrived at our translatorial normal form. In the above
theorem the translation, making a curve coefficient vanish, was unique. This was ensured
by the precondition ra 6= rb. This means we use both translatorial degrees of freedom
for our translation. In case of ra = rb, there might still exist a translation of the given
curve, annihilating c. But in general we can only minimize |c̃|.
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4. Curves and selected transformations of the plane

Theorem 4.7 Let ra = rb 6= 0. Then any translation by t moves c to a point c̃ on Lc

and annihilation is only possible if c ∈ L.

Proof Translating the curve means calculating c̃ = c−ta−tb. Let t = rte
iξ be arbitrary

and z ∈ C with z = ta + tb. Then

z = rart

(
ei(α+ξ) + ei(β−ξ)

)
= rart

(
ei(

α−β
2

+ξ) + ei(
−α+β

2
−ξ)
)
ei
α+β

2

= rart · 2 cos (ξ − ϑ) eiτ . (4.14)

With c ∈ Lc we have c̃ ∈ Lc. Thus annihilation is only possible if 0 ∈ Lc, which means
that Lc = L0 = L. 2

According to the above theorem c̃ = 0 is only possible if already c = 0 or γ ∈ τ + πZ.
Therefore in the case of Figure 4.10 annihilating c is not possible. But by the above
proof it becomes clear that for suitable choices of t the transformed c̃ may be moved to
any position on Lc. Hence the absolute value of such a coefficient can be minimized.

Remark 4.1 It is interesting to note that in case of ra = rb 6= 0 a translation by any
t ∈ T does not change the sub-leading coefficient c. If t ∈ T , then ξ = ϑ ± π

2 and thus
z = ta + tb = 0. Consequently, |c| is not minimized by a unique t. If tmin is one of those
translation parameters, so is any t ∈ tmin + T .

Theorem 4.8 Let ra = rb 6= 0, then any t ∈ Tc minimizes |̃c|. Especially this is true for

tc ∈ Tc. (tc = rc cos(γ−τ)
2ra

eiϑ was defined in the reference section 4.2.3.)

Proof According to Remark 4.1 it suffices to show that Tc ∩ T⊥ = {tc} minimizes |̃c|.
With Equation (4.14) and t = rte

iξ = tc = rc cos(γ−τ)
2ra

eiϑ we have

c̃ = c− tca− tcb
= rce

iγ − rc cos(γ − τ)eiτ

= rc sin(γ − τ)ei(τ+π
2 ) ∈ L⊥ .

c̃ ∈ L⊥ means having a minimal |̃c| according to Section 4.2.3. 2

With Theorems 4.7 and 4.8 the auxiliary lines from Section 4.2.3 come alive. L, Lc and
L⊥ are directly connected to the possible locations of c̃. T , Tc and T⊥ are connected
to the corresponding translation parameters evoking a movement of c. What is most
interesting is that in case of ra = rb 6= 0 we only need one translatorial degree of freedom
to minimize (or annihilate) a sub-leading coefficient c: Translations with any parameter
t ∈ T⊥ do the trick.

4.2.5. Minimizing coefficients by a translation of fixed direction

By the above observations it becomes clear why studying translations by parameters
restricted to a line is so important: There are curves where minimization of a coefficient
leaves us with one translatorial degree of freedom, i.e. with the freedom to choose the
translation parameter from a line. To obtain a normal form this freedom must be used.
But not all constellations are suitable:
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4. Curves and selected transformations of the plane

Suppose the translation parameter t is restricted to a linear set R =
{
λeiξ

∣∣ λ ∈ R
}

for a given ξ. Let ∆kl be a sub-triangle to a sub-leading coefficient c = ckl. The two
leading coefficients in this triangle a and b exhibit an angle-difference of 2ϑ. Now, if
ξ = ϑ± π

2 , then R = T and according to Remark 4.1 we have c̃ = c for any t ∈ R. Thus
nothing can be done to c, when t is restricted the way it is. The reason behind this is
the special angle-difference of the leading coefficients, making c̃ independent of a and
b under these special translations. This independence may be generalized to arbitrary
non-leading coefficients in the following way:

Theorem 4.9 Let ∆kl be a sub-triangle to an arbitrary non-leading coefficient ckl.
Furthermore, let ∆kl contain a row of coefficients with identical absolute value and with
constant angle-difference of 2ϑ for any succeeding coefficient pair of that row. Then
these coefficients give no contribution to the calculation of c̃kl if and only if t ∈ R and

R =
{
λei(ϑ+π

2 )
∣∣∣λ∈R

}
holds for the translation parameter t.

Proof Let c = ckl. The first coefficient of the special line described above shall be a.
According to the given angle-difference the second coefficient of that line is aei·2ϑ. The
subsequent one is aei·4ϑ and so on (see Figure 4.11). Let there be r+1 coefficients in that
specific line. The sum of the indices of coefficients in that row is k+ l+ r. According to
Equation (4.9) a translation changes c into c̃, which depends on the coefficients contained
in ∆kl. This Equation states that the contribution of our coefficients in our special row
is a constant multiple of

r∑
p=0

(
r

p

)
tp tr−p · a e2(r−p)iϑ = a

(
t+ e2iϑ t

)r
.

But with t ∈ R we get

a
(
t+ ei·2ϑt

)k
= a eikϑ

(
te−iϑ + eiϑt

)k
= a eikϑrt

(
ei
π
2 + e−i

π
2

)k
= 0 .

Thus the coefficients of our special row do not contribute to the calculation of c̃. 2

Figure 4.11.: Coefficient triangle with ∆kl exhibiting a line of coefficients with identical
absolute value and identical angle-differences
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4. Curves and selected transformations of the plane

This theorem simplifies calculations immensely. For example, take a 2-leading coefficient
f = ckl as in Figure 4.9. Let a, b and c in ∆kl have the same absolute value and identical
angle differences −α + β = −β + γ = 2ϑ. Translating the curve by a t ∈ R with
R =

{
λei(ϑ+π

2 )
∣∣∣ λ ∈ R

}
means that a, b and c do not contribute and f changes linearly,

depending solely on d and e. (For an exemplary study of conics we refer to Section 4.2.7.)

Remark 4.2 There is an interesting special case: Suppose all coefficients of each block
have a common absolute value and all succeeding coefficient pairs have one and the

same angle-difference 2ϑ. Then translations by any t ∈ R =
{
λei(ϑ+π

2 )
∣∣∣ λ ∈ R

}
have

no effect on any curve coefficient and the curve is invariant under such translations.
Thus the curve must be a collection of parallel lines, where some lines might coincide.

At first sight, the above theorem and remark have nothing to do with minimizing coeffi-
cients for restricted translation parameters, but they give us the ingredients to continue
our minimization process with k-leading coefficients for k > 1. If all blocks of leading
up to (k − 1)-leading coefficients have the same absolute and the same angle-difference
for succeeding coefficient pairs, then these coefficients may be ignored. Thus minimizing
k-leading coefficients with restricted translation parameters is still linear in t and t.
For the following cases, let t be restricted to R =

{
λeiξ

∣∣ λ ∈ R
}

with a fixed ξ. Fur-
thermore, let ∆kl be an arbitrary coefficient-sub-triangle. If it consists of more than two
rows, all coefficients below the second row shall be irrelevant in the sense of the above
theorem. This means that for a curve of degree d the coefficient c = ckl changes linearly
by

c̃ = c− (d− k − l)
(
ta + tb

)
. (4.15)

For sub-leading coefficients c this degenerates to the well known Equation (4.11). It is
instructive to compare the factor (d− k − l) with the coefficients in the transformation
formula (4.8), especially with those in blocks in the first sup-diagonal.
Now we have to study minimization in two cases, analogously to the last section: ra 6= rb
(Theorem 4.10) and ra = rb 6= 0 (Theorem 4.11).

Theorem 4.10 Let ra 6= rb and let the set of available translation parameters be re-
stricted by t ∈

{
rte

iξ
∣∣ rt ∈ R

}
. Let m = rme

iµ = aeiξ + be−iξ. Then

t =
1

2(d− k − l)

(
c

m
+

c

m

)
eiξ

leads to a c̃ of minimal absolute value with respect to all available translation parameters.
The translation annihilates c̃ if and only if γ ≡ µ mod π.

Proof Let t = rte
iξ for some rt ∈ R, s = d − k − l and m = rme

iµ. Then Equation
(4.15) evaluates to

c̃ = c− srt(aeiξ + be−iξ) = c− srtrmeiµ .

Minimizing |̃c| in this context is equivalent to removing the eiµ-component from c. Conse-
quently c may be annihilated if it has only an eiµ-component. This component is removed
in case of srtrmeiµ being the orthogonal projection of c onto the line

{
λeiµ

∣∣ λ ∈ R
}

.
This is the case if

srtrm = rc cos(γ − µ) or rt =
rc cos(γ − µ)

srm
=

1
2s

(
c

m
+

c

m

)
. 2
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Theorem 4.11 Let ra = rb 6= 0 and let the set of available translation parameters be
restricted to t ∈ R =

{
rte

iξ
∣∣ rt ∈ R

}
. Furthermore, let −α+β+π

2 6∈ ξ + πZ. Then

t =
2tc

d−k−l
· e2iξ

e2iξ + e2iϑ

leads to a c̃ of minimal absolute value with respect to all available translation parameters.
The translation annihilates c̃ if and only if c ∈ L.

Proof The precondition −α+β+π
2 6∈ ξ + πZ assures that a translation by a t ∈ R may

have an effect on c at all. T and R are not parallel.
In Theorem 4.8, we stated that the set of all translation parameters leading to a minimal
|̃c| is Tc = tc +T . The situation here differs from that former one by the factor (d−k− l)
in the transformation law (compare Equations (4.11) and (4.15)). Consequently, here
any t ∈ tc

d−k−l + T would minimize |̃c|.
However, t is restricted to R ∦ T by our preconditions. Thus the desired translation
parameter is contained in the intersection of those two sets. Bearing in mind that
tc ∈ T⊥ we get:

t = rt · eiξ =

∣∣∣ tc
d−k−l

∣∣∣
cos(ξ − γ)

· eiξ =
tc

d−k−l
· e−iϑ

cos(ξ − ϑ)
· eiξ

=
2tc

d−k−l
· e2iξ

e2iξ + e2iϑ

This proves our theorem. 2

With these ingredients we are now able to construct translatorial normal forms.

4.2.6. Translatorial normal form

To establish a translatorial normal form for curves, we must make use of both translato-
rial degrees of freedom and move each curve in a predefined manner. The result must be
independent of any previous translations. We can achieve this by selectively annihilating
or minimizing coefficients making use of the last two sections.
Building a normal form for a curve of degree d, we proceed block-wise, starting with the
sub-leading coefficients (leading coefficients are invariant under translations) and going
upwards in our coefficient triangle. Given a block we can greedily annihilate coefficients:
If more than one coefficient can be annihilated, we start with the largest coefficient
with respect to �. If annihilation is not possible, we try minimization within this
block, again starting with the largest coefficient with respect to �. Either annihilation
or minimization of a sub-leading coefficient is possible because either Theorem 4.6 or
Theorem 4.8 applies. If a translatorial degree of freedom is left, we try to annihilate
(or if impossible minimize) another sub-leading coefficient. Thereby larger coefficients
with respect to � are preferred. If none is possible, we neglect the leading coefficients,
because all succeeding pairs must exhibit the same angle-difference and we can pretend
that the degree of the curve is d−1. Then we start over from the beginning and greedily
annihilate (or minimize) coefficients. Eventually we have used both translatorial degrees
of freedom or otherwise the curve consists of parallel lines. Anyway we end up in a
predefined curve. Summarizing this we have

87



4. Curves and selected transformations of the plane

Theorem 4.12 Block-wise greedily annihilating - and if impossible minimizing - coef-
ficients translates given curves in a predefined form, a normal form.

Proof Application of Theorems 4.6, 4.8, 4.10, 4.11 and Remark 4.2 proves the assump-
tion. 2

Remark 4.3 We give a detailed step-by-step algorithm for establishing the above nor-
mal form for a given curve. Thereby we will use the necessary translatorial degrees of
freedom. Additionally we refer to the translation parameters, which must be used and
refer to results from the last two sections. If a case does not apply in the given situation,
we step over to the next.
Whenever a process of annihilation or minimization is applicable to multiple coefficients
it shall be applied to the largest one with respect to �. The used expressions always
refer to the corresponding ∆kl. Whenever normal form is reached “3” is displayed.
In this algorithm we can see the freedom of swapping steps 2b and 2c and/or steps 2d
and 2e. However, for a normal form the order must be specified in advance. Changing
the order leads to different normal forms. With all the ingredients we may of course
think of a whole lot more normal forms: For example one, where annihilation is ignored
and only minimization is greedily performed. However, most of these different normal
forms have an unfavorable drawback, when it comes to symmetry-detection.

Translatorial normal-form-algorithm:

• If there is a sub-leading coefficient c with ra 6= rb:
translate by t = 1

r2a−r2b
(c a− c b) (Theorem 4.6). 3

• Otherwise all leading coefficients have identical absolute value (6= 0) and thus two
translations are necessary to establish normal form.

1. If for any sub-leading coefficient c ∈ L: annihilate c by t = tc. Otherwise
minimize the first sub-leading coefficient by t = tc (Theorem. 4.8).
In any case one translatorial degree of freedom is used and further parameters
t are restricted to R =

{
rte

iξ
∣∣ rt ∈ R

}
with ξ being equal to σ from this first

translation.

2. a) There is any sub-leading c ∈ L and 2ϑ+ π 6≡ 2ξmod 2π: annihilate c by

t = 2tc e2iξ

e2iξ+e2iϑ
. Otherwise if the same holds for any sub-leading c 6∈ L:

minimize c by t = 2tc e2iξ

e2iξ+e2iϑ
(Theorem 4.11). 3

* Now all succeeding leading coefficient-pairs have the same angle-difference
and are irrelevant for translations by t ∈ R (Theorem 4.9). Reduce the degree
of the curve by one and neglect the leading coefficients. (Former sub-leading
coefficients are now leading.) Let m = rme

iµ = aeiξ + be−iξ with a and b

corresponding to the cases.

b) There is any sub-leading coefficient c = ckl with ra 6= rb and eiµ = ±eiγ :
annihilate c by t = 1

2(d−k−l)
(

c
m + c

m

)
eiξ (Theorem 4.10). 3

c) There is any sub-leading coefficient c = ckl with ra = rb 6= 0, c ∈ L

and 2ϑ+ π 6≡ 2ξ mod 2π: annihilate c by t = 2tc
d−k−l ·

e2iξ

e2iξ+e2iϑ
(Theorem

4.11). 3
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d) There is any sub-leading coefficient c = ckl with ra 6= rb: minimize c by
t = 1

2(d−k−l)
(

c
m + c

m

)
eiξ (Theorem 4.10). 3

e) There is any sub-leading coefficient c = ckl with ra = rb 6= 0 and

2ϑ + π 6≡ 2ξ mod 2π: minimize c by t = 2tc
d−k−l ·

e2iξ

e2iξ+e2iϑ
(Theorem

4.11). 3

If there is still one translatorial degree of freedom left, we stop calculations
if c00 is sub-leading. In this case the curve is invariant under any translation
by t ∈ R (Remark 4.2). Otherwise we start over with *. 3

Assume that a curve g is in translatorial normal form. Rotating this curve preserves the
absolute value of each coefficient, changing only the corresponding angle by a multipli-
cation with eikϕ for some angle kϕ. Thus transforming g into rotational normal form
preserves the translatorial normal form. Taking the two normal forms together we have
a normal form with respect to arbitrary rotations and translations: a normal form with
respect to orientation preserving Euclidean transformations.
Naturally there are much more possible translatorial normal forms. The benefit of this
one is that it easily permits feature extraction (see Chapter 5). In Appendix B we discuss
a “normal form” which is proposed for shape-recognition purposes.

4.2.7. Annihilation and normal form for complexified conics

We exemplify the process of annihilation with conics. Knowledge from the theory of
conics is not needed but may help to understand. The treatment of curves of higher
order is in principle not very different from the following. Throughout this section we
will use the notation from above and rid ourselves of the double-indices by setting

a = rae
iα = c20, b = rbe

iβ = c11, c = rce
iγ = c10 and d = rde

iδ = c00 .

The radii ra, rb, rc and rd shall be real and non-negative unless explicitly stated other-
wise. Thus a conic is given by

q(z, z) = d + 2cz + 2cz + az2 + 2bzz + az2 = 0 .

The only sub-leading coefficients of q(z, z) are c and c. Because of c = (c), annihilating c

means automatically annihilating c and vice versa. Thus, without loss of generality, we
focus on c alone.
According to Theorem 4.6 we can perform annihilation when ra 6= rb. Figure 4.12.a il-
lustrates a quadric curve satisfying this condition. The uniquely determined annihilating
translation vector

t =
ca− cb

r2
a − r2

b

according to Theorem 4.6 is also indicated. A translation by this parameter t uses both
translatorial degrees of freedom. This concludes our study of this kind of curves.
Now let ra = rb. In this case our auxiliary lines come to life. Figures 4.12.b+c illus-
trate those lines, given already by the leading coefficients. By b = c11 ∈ R we have
eiβ = sign(b) and thus
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parallel line pair parameter tc ∈ Tc ∩ T⊥ have no effect;

0 = ec ∈ Lc ∩ L⊥ curve is in normal form
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Lc L⊥
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d′
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T
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g) ra = rb and c 6∈ L h) translated parabola i) second translation

parabola parameter tc ∈ Tc ∩ T⊥ parameter s ∈ Tec ∈ Lc ∩ L⊥ red curve is in normal form

Figure 4.12.: Translation of a parabola and a pair of parallel lines

0 = q(z, z) = d + 2cz + 2cz +ra
(
eiαz + 2 · sign(b)zz + e−iαz

)
= d + 2cz + 2cz +ra

(
ei
α
2 z + sign(b)e−i

α
2 z
)2

= d + 2cz + 2cz +ra
(
ei
α
2 z + eiβei

−α
2 z
)2

= d + 2cz + 2cz +raeiβ
(
ei
α−β

2 z + ei
−α+β

2 z
)2

.
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The condition ra = rb affects only the leading terms of q. Let us have a short look at
the projective extension of the complex plane - to be more precise: at the restriction of

q to the line at infinity, namely rae
iβ
(
ei
α−β

2 z + ei
−α+β

2 z
)2

. There we can see a double
root for any z ∈ T with

T =
{
λei

−α+β+π
2

∣∣∣ λ ∈ R
}
.

From the theory of quadric equations, we know that double roots at infinity are charac-
teristic for parabolas or pairs of parallel lines. In Figure 4.12 both cases are illustrated.
Looking back to the case where ra 6= rb, we must have had hyperbolas, ellipses, circles
or intersecting line pairs. There the linear (sub-leading) part of the equation was extin-
guishable by translations, which is also confirmed by the theory of quadratic equations.
Now with ra = rb we have two cases: either c ∈ L (Figure 4.12.d) or c 6∈ L (Figure
4.12.e) with L =

{
λeiτ

∣∣ λ ∈ R
}

and τ = α+β
2 . In the first case annihilation is possible

by Theorems 4.7 and 4.8. With c = rce
iτ for a rc ∈ R we get

q(z, z) = d + 2rc
(
ei
α+β

2 z + ei
−α−β

2 z
)

+ rae
iβ
(
ei
α−β

2 z + ei
−α+β

2 z
)2

= d + 2rceiβ
(
ei
α−β

2 z + ei
−α−3β

2 z
)

+ rae
iβ
(
ei
α−β

2 z + ei
−α+β

2 z
)2

.

With β ∈ πZ we have ei
−3β

2 = ei
β
2 and we can employ Vieta’s theorem to get

q(z, z) = d + 2rceiβ
(
ei
α−β

2 z + ei
−α+β

2 z
)

+ rae
iβ
(
ei
α−β

2 z + ei
−α+β

2 z
)2

=
(
ξ +
√
rae

iβ
2

(
ei
α−β

2 z + ei
−α+β

2 z
))
·
(
ζ +
√
rae

iβ
2

(
ei
α−β

2 z + ei
−α+β

2 z
))

for suitable ξ, ζ ∈ R, satisfying ξ · ζ = c00 and ξ + ζ = 2rc√
ra
ei
β
2 . This means that q

degenerates in two parallel lines: q is a product of two terms which are linear in z and
z exhibiting equal leading coefficients. This again corresponds nicely to the theory of
conics.
Now taking our two parallel lines, we may translate them such that the origin is equally
far away from both lines. Consequently ξ = −ζ holds for the translated curve. Thus
ξ + ζ = 0 = 2rc√

ra
, which is only satisfied if rc = 0. This means that c = 0 after this

translation (see Figure 4.12.e). In fact, annihilating c in this case we need Theorem 4.8
and a t ∈ Tc. An additional second translation with translation parameter s restricted
to s ∈ T is not needed: Any such translation would leave the parallel lines invariant.
Anyway, there is no further sub-leading coefficient to minimize and c00 = d may not be
changed by the use of an s ∈ T . As a result our parallel lines are in normal form (see
Figure 4.12.f).
Now only the examination of parabolas is missing, i.e. when ra = rb and c 6∈ L (Figure
4.12.g). In a first translation according to Theorem 4.8, |̃c| may be minimized by any
t ∈ Tc (Figure 4.12.h). In a second translation by parameter s ∈ T , we may only change
the constant term c00 = d. But the leading coefficients have no influence on it and d̃

depends only on the minimized c and c. These two coefficients have the same absolute
value and are conjugate. Thus automatically d can only be moved on the real axis, which
is fine because c̃00 must be real anyway. Consequently d̃ is annihilable and the resulting
parabola is in normal form and must contain the origin (Figure 4.12.i).
Retrospectively, we can easily observe what the single translations did with the original
parabola: The second translation was in the direction of the axis of the parabola, sending
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4. Curves and selected transformations of the plane

the apex to the origin. Thus the first translation moves the original axis such that it
passes through the origin.

4.2.8. Invariants under translation

We will confine ourselves to curves where the absolute values |ckl| of all leading coeffi-
cients ckl are not equal. By Theorem 4.6 there is at least one sub-leading coefficient cpq
which can be annihilated by a unique translation: Let cpq be the one with greatest p. A
normal form for a given curve with respect to translation can be achieved by annihilating
the coefficient cpq.
For curves with leading coefficients of the same absolute value the translation process,
transforming a curve into translatorial normal-form, is uniquely determined: |Tmin| = 1.
Thus the coefficients of the translated curve are invariants of the curve describing equa-
tion with respect to translations. The leading coefficients are not affected by translations
and are thus also invariant. The other coefficients c̃kl with k + l < d can be calculated
using Expression (4.7) and have a more complicated structure.
Take a quadric q(z, z) = 0 for example. Annihilating a sub-leading coefficient by trans-
lation means c̃10 = 0. The translated quadric will be

q̃(z, z) = c̃00 + c̃20z
2 + c̃11zz + c̃02z

2 .

The translation parameter t is t = c10c20−c10c11
|c20|2−|c11|2

according to Theorem 4.6. Thus by the

transformation law (4.7) we get (with ∆ = c20c02 − c2
11):

c̃00 = q(t, t) = c00 +
1
∆
(
2c10c01c11 − c2

10c02 − c2
01c20

)
=

1
∆

det

c20 c11 c10

c11 c02 c01

c10 c01 c00

 =
det(M)

∆
,

c̃10 = 0, c̃01 = 0,

c̃20 = c20, c̃11 = c11 and c̃02 = c02 .

We have the following invariants of the quadric equation: c̃00, c̃20 = c̃02 and c̃11. There-
fore ∆ = |c20|2 − c11

2 is invariant. Thus ∆ · c̃00 = det(M) is also invariant. det(M) is
even a projective invariant of the quadric equation.
Invariants of the conic as curve can be obtained by normalizing the coefficients. This
can be done by dividing the coefficients by the Frobenius norm ‖c‖F of the coefficient
vector c. Thus det(M)

‖c‖3F
and ∆

‖c‖2 are invariants of the curve. If det(M) 6= 0, the same is

true for the combination ∆3

det(M)2
.

It is instructive to analyze what this specific invariant means. To do so, consider the
very simple quadric given by ax2 + by2−1 = 0. If both a and b are positive, this quadric
is an ellipse, whose axes of symmetry are aligned to the coordinate system. In this case,
the complex representation turns out to be a−b

4 z2 + a+b
2 zz + a−b

4 z2 − 1. Thus we have
c20 = c02 = a−b

4 , c11 = a+b
4 (remember we have multinomial pre-scaling), c10 = 0 and

c00 = −1. We want to study what happens if we insert these coefficients into ∆3

det(M)2
.

First observe that the numerator as well as the denominator are of homogeneous degree
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6 in the cij . Thus we may multiply all coefficients by 4 without altering the value of the
expression. So we get:

det3

(
a− b a+ b
a+ b a− b

)

det2

a− b a+ b 0
a+ b a− b 0

0 0 −4

 = −ab
4
.

This amazingly simple expression is nothing else but −
(
Ω · 1

2π

)2, where Ω = π
√
ab is

the area of our ellipse. Thus we have a Euclidean explanation for our expression being
invariant: It is just a function of the area!
More translatorial invariants can be obtained by establishing translatorial normal form
and taking the resulting curve coefficients. However, they will not be necessary in most
cases because we want to establish a normal form anyway and therefore do not need to
reconstruct the curve up to translations. The translatorial normal form allows an easy
symmetry detection, which would be quite difficult for arbitrary curves (see Chapter 5).

4.3. Scaling

Another elementary operation is scaling. In the last chapter we already dealt with
translations and so we confine ourselves here to scalings with respect to the origin as
center. Together with rotations and translations, we get the orientation preserving
Euclidean motions. In this chapter we will analyze the effects of scaling on the curve
coefficients and take a look at a normal form and invariants with respect to scalings.

4.3.1. Effects of scaling on curve coefficients

Let us start with the analysis of what scaling does to points contained in our plane.
With the homogenizing component h we havezz

h

 7−→
λ 0 0

0 λ 0
0 0 1

zz
h

 . (4.16)

Thereby λ ∈ R>0 is the scaling parameter. λ = 0 is excluded because everything
would shrink to a point. Negative scaling parameters may be ignored in the presence of
rotations: Rotating a curve around the origin by an angle ψ = π is equivalent to scaling
by λ = −1. Consequently, a scaling by a negative λ may be split up to a rotation by π
with subsequent scaling by |λ|. The effect of scaling on the curve coefficients is given by

Theorem 4.13 Let g be a curve with coefficients ckl and let g̃ be the by λ ∈ R>0 scaled
copy g̃ = g̃λ of g with coefficients c̃kl. Then the mapping on the coefficients, induced by
the scaling, is

ckl 7−→ c̃kl = λ−(k+l)ckl . (4.17)

Proof Equation (4.16) directly proves (4.17). 2
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4.3.2. Normal form and invariants

Theorem 4.13 shows that a (uniform) scaling of the plane results in a (non-uniform)
scaling of the curve coefficients. All coefficients ckl are scaled except c00, which conse-
quently is an invariant under these transformations. But there are whole curves, too,
which are invariant under scaling by an arbitrary parameter: In the Euclidean plane
these are exactly the curves consisting of one or more lines passing through the origin.
In the projective plane this set is complemented by the points on the line at infinity.
Talking about normal forms with respect to scalings, these curves are already in normal
form. All other curves may be transformed to a sheer wealth of different normal forms:
We can normalize any collection S \ {c00} of coefficients ckl 6= c00, containing at least
one non-vanishing coefficient, with respect to any norm. In the following we list a few
of them:

• We can scale a curve such that the largest non-vanishing coefficient |ckl| with
respect to � has an absolute value of one: Simply choose λ to be the unique
positive real (k + l)-th root of |ckl|.

• We can make use of the block-structure of the curve-coefficient-vector as defined
in Definition 2.3. Via scaling we may achieve that the sum of the absolute values
of coefficients in a non-vanishing blockt(c) (t 6= 0) equals one: Set λ to the unique
positive t-th real root of ‖blockt(c)‖1 =

∑t
l=0 |ct−l,l|. Generically we only know

that the leading block blockd(c) contains at least one non-zero coefficient.

• A normal form using all coefficients except c00 may also be calculated: Let cp be
the projection of the curve coefficient vector into a vector space of one dimension
less such that cpkl = ckl except for k = l = 0. Selecting λ to be the unique positive
root of

0 = 1−
d∑
t=1

λt
t∑
l=0

|ct−l,l|︸ ︷︷ ︸
≥0

leads to ‖cp‖1 = 1. The root is unique due to the non-negative coefficients of
the polynomial in λ, which is subtracted from unity. Thus this polynomial is
monotonically increasing for positive λ and zero for λ = 0 because there must be
at least one non-vanishing leading coefficient.

With all these normal forms, care has to be taken about the overall scaling of the
coefficient vector because of the identity V (f) = V (λf) for all λ 6= 0. In any case these
normal forms do not interfere with a rotational or translational normal form potentially
established earlier: The angles ϕkl of coefficients ckl = rkle

iϕkl are preserved under
scalings by positive λ and the property of being a vanishing or non-vanishing coefficient
is also invariant under scalings. Thus taking translatorial, rotational and one of the
scaling normal forms together, we obtain a normal form with respect to orientation
preserving Euclidean mappings of the plane.
As invariant expressions with respect to scalings, we get all quotients of products of coef-
ficients with equal index-sum per product: Let Q as well as D be a family of coefficients.
A single coefficient ckl may be contained in Q or D more than once. Its index-sum is
k + l. The sum over all index-sums of all coefficients in Q shall be equal to the one of
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D. Index-sums to coefficients which are contained more than once have to be counted
according to their multiplicity. Then ∏

ckl∈Q
ckl∏

cpq∈D
cpq

is an invariant with respect to scalings. This property directly drops out of Equation
(4.17) from the end of the last section.

4.4. Projective transformations

In the previous sections we studied special Euclidean transformations. Now we want
to focus on projective ones. In general, we can proceed analogously to the rotations,
translations or scalings. But we will see very early the impracticability of this ansatz to
derive a normal form or invariants. In the literature, a complete projective classification
to higher order curves can not be found. “Higher order curves” already means curves of
order five (compare with [11]). To overcome most of these problems, we propose using
diagram techniques. We will follow this path for a while and refer to Section 3.2. Further
observation on diagrammatical projective invariants are covered by [1].

4.4.1. Effects of projective transformations on curve coefficients

Projective transformations of the plane may be considered as mere matrix multiplications
by matrices with a non-vanishing determinant. After complexification and simplification,
a real projective transformation of our plane curve is given byzz

h

 7−→
m n o
n m o
p p κ

zz
h

 (4.18)

with m,n, o, p ∈ C and κ ∈ R. This transformation has nine real degrees of freedom.
We might restrict the transformation-matrix to exhibit a determinant equal to unity:
This is due to the fact that in projective geometry (z, z, h)T is not at all different from
det(M) · (z, z, h)T . This would reduce the degrees of freedom by one.
However, extracting structures and thus normal forms or invariants from this point of
view is too complicated. Already the transformation of the curve-coefficients of a conic,
induced by the above transformation, is too messy:

c00

c10

c01

c20

c11

c02

 7→M−1



κ2 2pκ 2κp p2 2pp p2

κo po+ κm po+ κn pm pm+ pn pn
κo po+ κn po+ κm pn pm+ pn pm
o2 2mo 2no m2 2nm n2

oo mo+ on no+ om mn nn+mm nm
o2 2no 2mo n2 2nm m2



−1

M



c00

c10

c01

c20

c11

c02


Thereby M denotes the diagonal-matrix containing the multinomial coefficients. The
expansion, especially the inversion of the matrix in the middle, results in a very in-
transparent expression. Extracting structures and invariants must be done by using a
different approach.
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4.4.2. Projective invariant expressions

A promising ansatz is the use of tensor-diagrams. According to Theorem 3.3 we can
draw closed diagrams using only the co- and contravariant ε-tensors together with the
curve tensor and we will obtain an invariant. Thus it is highly interesting which closed
diagrams are generically non-vanishing. We call these diagrams non-trivial. Having all
these at hand, we are able to form any invariant according to Theorems 3.2 and 3.3.
The ultimate goal would be to determine a (minimal) system of diagrams, which permits
the generation of any projective invariant. If we had such a system for any degree of
a curve, we would be able to reconstruct any curve from its invariants. According to
a famous basis theorem of Hilbert (see [25] or [51]) the corresponding minimal systems
are finite.
The question now is how to find such basis-sets for curves of a fixed degree. We do not
solve this problem here, but we propose a few steps in the direction to the solution which
seem promising to us.
According to Theorem 3.2 and 3.3, projective invariants of a curve are represented
by the set I of closed diagrams consisting of the curve tensor together with co- and
contravariant ε-tensors. Due to the ε-δ-rule from Section 3.3.6 we know that two directly
connected ε-tensors may be replaced. Applying this rule to the diagrams in I we are
left with I ′. These diagrams consist of curve-tensors and not directly connected co- and
contravariant ε-tensors. However, the curve-tensor is per definition covariant and thus
not directly connectable to a covariant ε-tensor. As the diagrams in I ′ are closed, they
do not contain covariant ε-tensors.

Theorem 4.14 The set of all projective invariants of a curve may be described by the
set of closed diagrams containing (multiple copies of) the corresponding curve-tensor
and contravariant ε-tensors.

If we have a non-trivial invariant, then no ε-tensor is connected twice or even more often
to one and the same curve-tensor. This is because

= = 0 .
(4.19)

Ĝ is totally symmetric and thus we may interchange the incoming edges. However, if we
swap the outgoing edges at the ε-tensor, we have to change the sign. Thus the original
expression must have been identical to its negative and therefore it is vanishing.
In order to build a diagrammatical invariant at all, we are not allowed to have dangling
arcs. But this has implications on the degree of a non-trivial invariant in the curve
coefficients. This degree is given by the number of copies of the involved curve-tensor.
It is constrained by the fact that the variance var(Ĝ) of a curve-tensor Ĝ is given by
the degree d of the corresponding curve and the variance var(ε) = 3 of the ε-tensor.
Consequently, there is no non-trivial invariant or non-trivial closed diagram of degree
one or two in the curve-coefficients.

Theorem 4.15 If d is the degree of a curve and k the degree of a non-trivial invariant
of this curve, then k · d ≡ 0 mod 3.

Now the search for a diagrammatical basis of invariants may start. At first we may fix
the degree d of curves under observation. Then we start to list a few diagrams and try
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to extract building blocks with interesting attributes that may help listing or ignoring
further diagrams: For example diagram-parts which vanish identically reduce the amount
of diagrams that have to be considered. One such rule is already known: If we have a
diagram where one curve-tensor is directly connected to an ε-tensor more than once,
then it must vanish (see Equation (4.19)). We are also interested in (more complicated)
diagrammatical calculation rules to be able to cut complex and big diagrams down to
small ones. These rules are nothing more than adapted Grassmann-Plücker-Relations.
In the end, we must reach the point where we listed a basis of invariants due to its
secured finiteness.
For an exemplarily study, let d = 2. From the theory of quadratic equations we know
that essentially the sole invariant is the determinant of the corresponding curve-tensor.
But for now let us ignore this knowledge and let us check whether we can confirm this
from a diagrammatical point of view. By Theorem 4.14 we only need two kinds of nodes
in our diagrams. We therefore replace our curve-tensor-node by a small circle:

= .

The smallest possible non-trivial diagram must contain k = 3 -nodes. In fact

= = 6 · det(Ĝ) .

(4.20)

This is also the only non-trivial diagram containing three curve-tensors. One interesting
building block, taken from this diagram, is the following (beware of the sign-flip!):

= −2 · det(Ĝ)

(4.21)

This means that whenever two curve-tensors share the same two ε-tensors we can find
the sub-graph shown above. Replacing this subgraph by −2 · det(Ĝ) times the identity-
transformation (δji ), we get a diagram with three -nodes less.
Now, by Theorem 4.15, the next smallest (non-trivial) diagram(s) must already contain
six copies of the curve tensor. If two of them share the same two ε-tensors, we can apply
Equation (4.21) and get a diagram with three nodes. This is either trivial or a multiple
of det(Ĝ). Thus the whole diagram was either trivial or a multiple of (det(Ĝ))2. Conse-
quently, we can discard such diagrams because we can generate something equivalent by
Equation (4.20). The only remaining diagram is of tetrahedral shape with the ε-tensors
at the vertices:
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Resolving this one is a bit more complicated and we need to revisit Grassmann-Plücker
relations:

[abc][def ] = [abd][cef ] − [abe][cdf ] + [abf ][cde]

= − +

This formula uses two ε-tensors sharing a curve tensor. This leads to a vanishing last
diagram according to Equation (4.19). Now, let us apply this rule to our tetrahedral
diagram: The first summand is just the negative of the original diagram because we may
swap the blue nodes, changing the connection-order of one ε-tensor. Thus with Equation
(4.21) (blue sub-graph):

2 = = −2 · det(Ĝ)

= 12(det(Ĝ))2 .

Consequently, all non-trivial diagrams with six curve-tensors are equivalent to (det(Ĝ))2.
In essence, we used the Grassmann-Plücker relation above and exploited the fact that
the entry-points c and d as well as b and e were connected to an ε-tensor. Thus the
diagrammatical rule is

2 =

= 4 · (det(Ĝ))2

(4.22)

Comparing this rule with Equation (4.21), we can see certain cells, bounded by nodes
and arcs. On the left hand-side in Equation (4.21), we have one cell with two ε-nodes
and in Equation (4.22) two neighboring cells with three ε-nodes. Having six - and four

-nodes, it is not possible to have a cell with four black ε-nodes without shortcuts and
without configurations from Equation (4.21) (try it!).
Analogously the largest cells without shortcuts are bounded in size for all diagrams. For
example in diagrams with nine curve-tensors, there is no cell with five or more ε-nodes,
which does not have any short-cuts: Just suppose the contrary. Then we have a ring
with at least five ε-tensors and equally many curve-tensors. The curve tensors in the
ring are already fully connected but the ε-tensors have one dangling arc each. But now
we have only four (or less) free curve-tensors left, to which these arcs may connect.
Consequently, one of the free curve-tensors must be connected to two ε-tensors in the
ring, building a short-cut.
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In fact (by enumeration) we get only two possible diagrams with six ε-tensors: a prism
and a Möbius strip:

= − and

Thus with nine curve-tensors, we must either have a known sub-configuration, reducing
the diagram, or there are two neighboring cells of size four. The neighboring cells must
either have two or three ε-tensors in common. Applying the Grassmann-Plücker relation,
we get (beware of the signs and the vanishing term)

[abc][def ] = [abd][cef ] − [abe][cdf ]

= +

In any of these summands we can see a cell with five ε-nodes. But in case of the prism
or Möbius strip, the bottom left node gets connected to one of the rightmost nodes via
an intermediate curve-tensor. Thus a careful application of this rule on our Möbius strip
shows

= − = 0

“Möbius = prism − prism = 0”

and the application on the prism gives us

= − +

prism = −prism + 3 · (−2 · det(Ĝ))
·(2 · (det(Ĝ))2)

Consequently, the prism equates to −6 · (det(Ĝ))3. Now we are able continue to cut
one connection and formulate diagrammatic calculation rules which can be used for
higher order invariants. We will omit this here. However, we want to advert to the
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vanishing Möbius strip. It is interesting that the configuration exhibits none of the
former structures and vanishes anyway. All cells in this Möbius strip are of size four, i.e.
contain four ε-tensors. It does not matter where the Grassmann-Plücker relation with
the two cells of size four is applied: The result is always “prism − prism” and thus zero.
As such, the Möbius strip is the second non-trivially vanishing diagram.
Let us close the topic of conics and switch to cubics. Thus d = 3 and Theorem 4.15
impose no restrictions on the degree of the invariant: Any number of curve-tensors
is conceivable. However, it is clear that the number of curve-tensors must match the
number of ε-tensors in order to get a closed diagram. At first we get the pendant to
Equation (4.19), which is of course extendable to curves of arbitrary degree:

= = 0 .
(4.23)

Thus the smallest diagram is

= 0 .

(4.24)

In contrast to conics, this diagram vanishes and in it we can discover symmetries: Re-
flecting the diagram at an axis through the ε-tensors and one curve-tensor, we obtain
the same diagram. On such an axis, we have an odd number of ε-tensors. Finally, we
can say that the following sub-configuration leads to a vanishing tensor:

= 0

(4.25)

The next smallest configuration must use four nodes of each type. The only possibility
with no sub-configuration (4.25) is a cube:

=
∑

k+m+o+q=4
l+n+p+r=4

αklmnopqr · cklcmncopcqr .

This diagram also showed up in [9], but additionally we can state the following: Ex-
panding this expression we get a sum of 25 terms. The terms themselves are products
of four coefficients cklcmncopcqr, where the sum of the first indices k+m+ o+ q and the
sum of the second indices l + n+ p+ r equals four. In fact, this diagram is a weighted
sum over all such possible expressions. This is our “smallest” non-trivial invariant for
cubics.
In the next step we have to examine diagrams with five curve- and five ε-tensors. Discard-
ing diagrams with vanishing sub-configurations, we get as sole possibility a pentagram

100



4. Curves and selected transformations of the plane

or if reconfigured, a Möbius strip

= 0 =

This configuration also vanishes, which can be proven by evaluating this diagram alge-
braically. Again we have reflectional symmetries with an odd number of ε-tensors on
the axes. We have verified this property for a lot of diagrams and arrive at the

Conjecture 4.16 For cubics (or any other curve of odd degree), a closed tensor-diagram
vanishes if it can be arranged such that there is a reflectional symmetry-axis with an
odd number of ε-tensors on it.

Studying the diagrams with six curve- and six ε-tensors, we get an interesting diagram
in the shape of a hexagonal cylinder:

=
∑

k+m+o+q+s+u=6
l+n+p+r+t+v=6

αklmnopqrstuv · cklcmncopcqrcstcuv .

In fact, all other diagrams of this size are either vanishing or equivalent to this one.
Again if this diagram is evaluated algebraically, one can see that only summands of
degree six in the curve-coefficients occur. There are in total 103 of them. Thereby the
sum of the first and the sum of the second indices always equate to six. [9] shows how
this diagram, in connection with the cube above, is related to the discriminant of a cubic.
Dividing the cube-invariant to the power of three by the squared hexagonal cylinder,
we get an expression which is independent from the homogeneous scaling of a curve
equation: The cube-invariant to the power of three and the squared hexagonal cylinder
are polynomials of homogenous degree twelve in the curve coefficients. Dividing these
two polynomials by each other, it does not matter whether the curve coefficients belonged
to V (g) or to a V (λg) for arbitrary λ 6= 0. Thus we have an invariant which must be
equivalent to the Weierstrass invariant for cubics. Consequently, we already have all
basic diagrams for cubics and other non-vanishing diagrams must be reducible.
At this status, proving and calculating a minimal or at least a generating set of invariants
for curves of arbitrary degree would involve a detailed observation of invariants. We omit
this here and refer to [1], [8] and [9] for additional information that might help finding
the desired bases.
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5. Symmetry detection

5.1. Rotational symmetry

5.1.1. Definition and restrictions

An interesting feature of a curve is its rotational symmetry. A curve is rotationally
symmetric if it can be rotated around a center by an angle ψ such that the rotated curve
is identical to the original one. Such an angle ψ is called symmetry angle. In Figure 5.1
we can see a few rotationally symmetric curves.

rotational 2-symmetry rotational 3-symmetry rotational 4-symmetry

Figure 5.1.: Rotationally symmetric curves

Definition 5.1 Let g be a curve given by the zero set Cg = {z ∈ C | g(z, z) = 0} and
let n ∈ N \ {0, 1}. g is said to be n-fold rotationally symmetric with respect to the
origin as center of rotation if Cg and

Cg,n = C̃g =
{
z ∈ C

∣∣∣ g(e
2πi
n z, e−

2πi
n z) = 0

}
(5.1)

coincide. If n ∈ N \ {0, 1} is maximal, then g is said to be rotationally n-symmetric
with respect to the origin as center of rotation.
g is rotationally symmetric with respect to a center t ∈ C if the by −t translated copy
of g is rotationally symmetric with respect to the origin.
Rotationally invariant curves consist of one or several concentric circles and are rota-
tionally ∞-symmetric.
An angle is called symmetry angle if a curve can be rotated around an arbitrary center
by this angle such that the rotated copy and the original curve coincide.

The curves from Figure 5.1 are all rotationally symmetric with respect to the origin as
center of the rotation. From left to right we have a rotational 2-symmetry, 3-symmetry
and 4-symmetry. Naturally, the right curve is also 2-fold rotationally symmetric. The
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5. Symmetry detection

symmetry angles of the displayed curves are integral multiples of π, 2π
3 and π

2 , respec-
tively.
In general, the symmetry-angles are directly readable from Equation 5.1: The set C̃g
in Definition 5.1 is exactly the curve g rotated by −2π

n . Consequently, if C̃g = Cg,
integral multiples of 2π

n are symmetry-angles. We will now revisit some results from
[36] to clarify the connections between symmetry angles and rotationally symmetric
curves. The following two lemmata show that the above definition of a symmetry angle
is consistent to the one of rotational n-symmetry.

Lemma 5.1 Let g be a rotationally symmetric algebraic curve with respect to a given
center. Then any symmetry angle ψ is a rational multiple of 2π or g is an arrangement
of concentric circles.

Proof We interpret the origin as a circle with zero radius. If the curve is a circle, then
any ψ is a symmetry angle. Assume that ψ is an irrational multiple of 2π and g is not
a circle. Then there is a point z on the curve which is not the origin. The images of z
under iterated rotations by ψ build a set of points which is dense on a circle cz through
z and centered at the origin. By assumption g 6= cz, and consequently g must intersect
cz in infinitely many points. But g was algebraic and therefore of finite degree d. Thus
the number of intersections of g and cz is at most 2 · d by Bezout’s theorem (cf. [11]). 2

Lemma 5.2 If g is rotationally symmetric with respect to a given center and not a
circle, then the smallest positive symmetry angle ψ may be written in the form ψ = 2π

n
with n ∈ N \ {0, 1} and the curve is rotationally n-symmetric.

Proof Due to the rotational symmetry and by Lemma 5.1, there is a symmetry angle
ψ = p

q · 2π with p, q ∈ N. Without loss of generality, we may assume gcd(p, q) = 1. Thus
there are v, w ∈ Z with vp+wq = 1 = gcd(p, q). If ψ is a symmetry angle, then for any
l ∈ Z the angles v · ψ + l · 2π have this property, too. Let l = w. Then

v · p
q
· 2π + w · q

q
· 2π =

vp+ wq

q
· 2π =

1
q
· 2π < ψ .

Having more than one symmetry angle ψi = pi
qi
· 2π, we know that all angles 1

qi
· 2π

are symmetry angles. n equal to the least common multiple of all the qi proves this
lemma. 2

The n-fold rotational symmetry is always connected to a rotation center. The question
now is how many of these centers a single curve can have. The answer is given in

Theorem 5.3 Let g be an algebraic curve which is not a single line or an arrangement
of parallel lines. Then g has at most one center of rotational symmetry.

Proof Suppose g is rotationally m-symmetric with respect to the center a and rotation-
ally n-symmetric with respect to the center b 6= a. We will show that if these conditions
hold, g is invariant under a special translation by t 6= 0. Consequently, all iterations
of that translations map the curve onto itself. Thus curve-intersecting lines which are
parallel to the translation direction intersect the curve in infinitely many points. Now
Bezout’s Theorem (see [11]) implies that the line itself must be part of the curve. There-
fore, the original curve must have been an arrangement of parallel lines contradicting
the assumptions.
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5. Symmetry detection

To retrieve the non-trivial translation, let α = 2π
m and β = 2π

n . The rotation around
a by α will be denoted by ρa and the one around b by β will be denoted by ρb. Let
us decompose each of ρa and ρb into two concurrent hyperplane-reflections with one
common reflection: ρa = σ2 ◦ σ1 and ρb = σ3 ◦ σ2. (For more details on geometry with
mirrors see [12].) Thereby the fixed line of σ2 contains a and b (see Figure 5.2). The
angles between the fixed lines of the reflections are half the rotation angles and thus at
most π

2 . If both α = β = π
2 , then a ρ2 ◦ ρ1 is clearly a translation. Figure 5.2 shows

this case with half the translation vector. This means that the curve must be invariant
under this translation.

ρa = σ2 ◦ σ1 and ρb = σ3 ◦ σ2 ρa = σ2 ◦ σ1 and ρb = σ3 ◦ σ2

with σ1 ∦ σ2 with σ1 ‖ σ2

Figure 5.2.: Multiple rotation centers

If at least one of α and β is different from π
2 , then the fixed lines of σ1 and σ3 intersect

in a point. Let us call it c. We get ρb ◦ ρa = σ3 ◦ σ2 ◦ σ2 ◦ σ1 = σ3 ◦ σ1, which is
a rotation around c by the angle α + β. Thus g is also rotationally symmetric with
respect to c and α + β is an associated symmetry angle. We now play the same game
analogously with the inverse rotations ρ−1

a and ρ−1
b . Thus we get another rotation

symmetry center d 6= c with an associated symmetry angle −α − β. Consequently
ρ−1
b ◦ ρ

−1
a ◦ ρb ◦ ρa = (σ2 ◦ σ3 ◦ σ1) ◦ (σ2 ◦ σ3 ◦ σ1) is a squared glide-reflection and thus

a translation. The fixed lines of σ1, σ2 and σ3 constitute a non-degenerate triangle and
are not concurrent. Thus the translation is non-trivial and g must be invariant under
this translation. 2

Let us continue with the detection of a potential rotational symmetry of a curve g. To
detect one, we have to locate the center and determine the symmetry angles. For the
latter it suffices to calculate a maximal n ∈ N \ {0, 1} such that 2π

n is a symmetry angle.
To keep it simple, we will first focus on determining a potential rotational symmetry with
respect to the origin as center of rotation (see the following Section 5.1.2). Rotational
symmetry with an arbitrary center will be covered afterwards.
In general, we will pull everything down to Definition 5.1: We check whether there is
a n such that C̃g = Cg. Comparing sets is much more difficult than comparing polyno-
mials. Thus we make use of Hilbert’s Nullstellensatz or alternatively of Study’s Lemma
(see Theorem 2.3 and Corollary 2.4). They both grant us the equality of g(z, z) and
g(e

2πi
n z, e−

2πi
n z) up to a scalar factor for arbitrary z ∈ C, whenever C̃g = Cg. But these

theorems impose restrictions: We have to confine ourselves to irreducible curves or at
least to square-free curves.
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5. Symmetry detection

5.1.2. Rotational symmetry with respect to the origin as center

According to Definition 5.1, we have to determine whether there is an n such that
Cg = C̃g. Let g be an irreducible curve (or at least a square-free curve). Then by
Corollary 2.4 there is a λ ∈ C with

g(z, z) = λg(e
2πi
n z, e

−2πi
n z) ∀z ∈ C . (5.2)

The importance of this statement is its validity for all z. This equation holds even for
those z where g(z, z) 6= 0. This means that the equality of the two polynomials in (5.2)
implies the equality of all their coefficients: Consequently, there must be a λ ∈ C such
that for all coefficients cpq of g

cpq = λ · cpq · e
2πi
n

(p−q) . (5.3)

The aim is now to determine the largest n ∈ N satisfying Equation (5.3) by using the
uniqueness of λ. Vanishing coefficients obviously impose no restriction because Equation
(5.3) is satisfied for all λ and all n. If cpq 6= 0, then λ = e

2πi
n

(q−p). In the case of p = q
we have λ = 1.
Let us examine the restrictions on n, imposed by two non-vanishing coefficients ckl 6= 0
and cpq 6= 0. We get

λ = exp
(

2πi
n

(l − k)
)

= exp
(

2πi
n

(q − p)
)

⇔ 2π
n

(l − k) ≡ 2π
n

(q − p) mod 2π

⇔ (l − k)− (q − p) ∈ nZ
⇔ n | (l − k)− (q − p) .

This means that the differences (l−k)− (q−p) of the rotation speeds (q−p) and (l−k)
of any pair of non-vanishing coefficients ckl and cpq determine the rotational symmetry:
Let R be the set of all such differences (l−k)−(q−p), then n must divide any element of
R. Because of ckl = clk we have R = {0} exactly while the only non vanishing coefficients
are of the form ckk. Thus R = {0} only for circles and unions of circles where n, dividing
the elements of R, is arbitrary. Otherwise, if R 6= {0}, the maximal n is gcd(R) and g
is rotationally gcd(R)-symmetric. This proves

Theorem 5.4 Let R be the set of all differences in the rotation speed of all pairs of
non-vanishing coefficients for a curve g. Then g is n-fold rotationally symmetric if

n | r ∀r ∈ R .

To determine gcd(R) and thus a maximal n, we can look at our coefficient triangle in
(2.17). We highlight a column whenever it contains a non-zero entry (see Figure 5.3).
If two neighboring columns are highlighted, no rotational symmetry exists because the
difference between two special rotation speeds equals one. If we have a pattern with
equally spaced highlighted columns, the distance in between specifies the maximal n.
Figure 5.3 shows the pattern on the coefficient triangle for rotational symmetry of the
first two curves of Figure 5.1: The non-vanishing coefficients are highlighted. The dis-
tance between them specifies the type of rotational symmetry.
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5. Symmetry detection

rotational 2-symmetry (from Fig. 5.1) rotational 3-symmetry (from Fig. 5.1)

Figure 5.3.: Pattern on the coefficient triangle for rotationally symmetric curves

5.1.3. Rotational symmetry with respect to an arbitrary center

Knowing how to detect rotational symmetry with respect to the origin as center of
rotation, we switch to arbitrary centers. It would be nice if we had a translation which
moves a center of rotational symmetry onto the origin. In fact, we already have such
a translation: It is our translatorial normal form, which focuses on the annihilation of
coefficients.
Before we can conclude this, let us first gather some results:

Lemma 5.5 Let g be a rotationally symmetric curve with respect to the origin as
center of rotation. Furthermore, let cpq 6= 0 be a non-vanishing coefficient of g. Then
cp−1,q = cp,q−1 = 0 vanish if they are coefficients of g.

Proof Let cpq 6= 0 be a coefficient of g. Its rotation speed is q − p. If cp−1,q or cp,q−1

were non-zero, then the corresponding rotation speed would differ by one from q−p. As
a consequence, g would not be rotationally symmetric (see Theorem 5.4). If p = q = 0
then this lemma introduces no coefficient-restrictions because c−1,0 and c0,−1 are no valid
curve coefficients. 2

Speaking in terms of our coefficient triangle, this lemma says: A curve can not be
rotationally symmetric if there are non-zero coefficients to the upper left or to the upper
right of a non-vanishing coefficient. Of course, we can extend this lemma to all coefficients
in the neighboring columns of a non-zero coefficient. The proof is of course analogous:

Lemma 5.6 Let the preliminaries be the same as in Lemma 5.5. Then any coefficient
ckl must vanish if one of the following conditions holds:

• ∃α ∈ Z : cp−1,q = ck+α,l+α

• ∃α ∈ Z : cp,q−1 = ck+α,l+α

Now we are already able to prove

Theorem 5.7 Let g be a curve whose leading coefficients are not of the same absolute
value. By Theorem 4.6 there is a translation such that the translated copy of g has a
vanishing sub-leading coefficient. Let g̃ be a copy of g, which had been translated by
such a transformation. Then g is rotationally n-symmetric with respect to an arbitrary
center if and only if g̃ is rotationally n-symmetric with respect to the origin as center of
rotation.

Proof If g is not rotationally symmetric, then any translated copy of g is also not
rotationally symmetric. But if g is in fact rotationally symmetric, then there naturally
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5. Symmetry detection

exists a translation such that the center of the rotational symmetry is mapped onto the
origin. Let the translated curve be g′. It must satisfy the above lemmata.
Let ck+1,l and ck,l+1 be an arbitrary pair of succeeding leading coefficients with different
absolute values. Then at least one of them is non-zero. Of course, the same is true
for one of the coefficients c′k+1,l and c′k,l+1 of g′. (Translations do not change leading
coefficients.) Thus by Lemma 5.5 the coefficient c′kl must vanish. But by Theorem
4.6 there is exactly one translation annihilating ckl. Consequently, annihilation of an
arbitrary sub-leading coefficient sends the center of rotational symmetry onto the origin
if g is rotationally symmetric. 2

The clue of the above proof is that the transformation annihilating a coefficient, which
had to be zero, was unique. But for curves with leading coefficients of the same absolute
value this argument does not hold. There the transformations minimizing a sub-leading
coefficient were not unique. For our normal forms we introduced a second translation
to overcome this deficiency. This will also save us here: The combination of the two
translations was a unique transformation minimizing two coefficients. But before we
deal with these special curves, let us examine the behavior of coefficients in the rows of
our coefficient triangle (2.17).
We remember from previous chapters what blocks of coefficients had been: There
blockb(c) was the collection of all coefficients cpq with index-sum p + q = b. We will
see that under certain circumstances a whole family of blocks must vanish, i.e. all coef-
ficients of theses blocks are zero.

Lemma 5.8 Let g be of degree d and a rotationally n-symmetric curve with respect to
the origin as center of rotation. Further let n ∈ 2N and let cpq 6= 0 be a leading coefficient
of g with p 6= q. Then all coefficients of blockb(c) with b ∈ {d − 1, d − 3, d − 5, ...} ⊂ N
vanish.

Proof Suppose ckl 6= 0 is a non-vanishing coefficient of g and k + l = d − α with
α ∈ 2N + 1. Thus p+ q = d = k + l + α. Then by Theorem 5.4:

n | r with r = (q − p)− (l − k) = 2(k − p) + α

Consequently, r ∈ 2Z + 1 and n 6∈ 2N, which contradicts our assumption. 2

Thus by the above lemma, at least every second line vanishes if we have an even rotational
symmetry and a leading coefficient cpq 6= 0 with p 6= q. Conversely, if every second line in
the coefficient triangle vanishes, then the curve is rotationally n-symmetric with even n or
it is rotationally∞-symmetric. Figure 5.3 shows two patterns: One with even rotational
symmetry and every second line vanishing and one with odd rotational symmetry.

Lemma 5.9 Let g be of degree d ≥ 1, rotationally symmetric with the origin as center
of rotation and a curve where Theorem 4.6 is not applicable. Thus all leading coefficients
of g are of the same absolute value. Then all blockb with b ∈ {d− 1, d− 3, d− 5, ...} ⊂ N
have only vanishing coefficients.

Proof By assumption every leading coefficient is non-vanishing. Thus the curve is
rotationally 2-symmetric. Lemma 5.8 proves this lemma. 2
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5. Symmetry detection

With these ingredients at hand we are finally able to examine rotational symmetry
with arbitrary centers for any curve. This theorem is one main result, finalizing our
observations on rotational symmetry.

Theorem 5.10 Let g be an arbitrary curve and let g̃ be the corresponding curve in
translatorial normal form, where coefficients were greedily annihilated (see Theorem
4.12). Then g is rotationally symmetric with respect to an arbitrary center or rotation
if and only if g̃ is rotationally symmetric with respect to the origin as center of rotation.

Proof If g has leading coefficients of different absolute values, Theorem 5.7 proves the
assumption.
Now let g have leading coefficients of the same absolute value. If g is not rotationally
symmetric, then an arbitrary translation does not change this. The resulting curve can
never be rotationally symmetric with respect to the origin.
However, if g is an arrangement of parallel lines, then it has either no center of rotational
symmetry or infinitely many. In the latter case these must be contained in a line, which
passes through the origin if g is in translatorial normal form.
Let g be rotationally symmetric with respect to an arbitrary center and let g be no
arrangement of parallel lines. Naturally, there is a translation moving the center of
rotation to the origin. Let this translated curve be g′. By Lemma 5.9 we get vanishing
blockb(c′) with b ∈ {d − 1, d − 3, d − 5, ...} ⊂ N and with d as the degree of g. We
remember from the discussions about our translatorial normal form: There were two
translations necessary to send g to g′. The composition of these translations is uniquely
determined if and only if g is not a line or an arrangement of parallel lines.
Establishing translatorial normal form, the first sub-leading coefficient of g can be min-
imized. Due to the existing rotational symmetry of g, this must be an annihilation
because cd−1,0 ∈ blockd−1, which has to vanish. This transformation leaves us with a
one parameter family of translations. Possibly a further sub-leading coefficient ckl can
be minimized. This is the case when the angle differences of the succeeding leading
coefficient pairs are not always the same. Then ckl ∈ blockd−1 must also be anihilate-
able. The translation annihilating cd−1,0 and ckl is unique and therefore the rotational
symmetry center must be at the origin.
Now let the angle differences of the leading coefficient pairs be always the same. Then
minimizing cd−1,0 is still an annihilation and we have a one parameter family F of trans-
lations left. But F is exactly the set of all translations preserving the annihilated cd−1,0.
Even more, any f ∈ F does not change any sub-leading coefficient. Consequently, the
annihilation of cd−1,0 annihilates all sub-leading coefficients along the way. By Theorem
4.9 we know that all curve coefficients change independently from the leading coefficients
under any f ∈ F . Thus we can treat the curve with annihilated cd−1,0 as a curve of
degree d′. Thereby ckl is its first non-vanishing non-leading coefficient and d̂ = k+ l. We
have d′ 6∈ {d− 1, d− 3, d− 5, ...}. Otherwise, the g would not be rotationally symmetric.
Now we are in the same situation as before: There might be a coefficient in the block
below the one of ckl which can be minimized. This minimization would necessarily be
an annihilation and the grand total translation would be uniquely determined. If none
of these coefficients can be changed, then they already must all be zero due to the anni-
hilation of cd−1,0. Thus we effectively have a curve of even lower degree d′′ < d′ and the
game begins anew. The case where no coefficient besides cd−1,0 can be changed is the
case when g is a line or an arrangement of parallel lines. This case was discussed above.
Thus the theorem is proven. 2

108



5. Symmetry detection

5.2. Reflectional symmetry

Detecting reflectional symmetry with respect to a line is not so different from detecting
rotational symmetry. We will take the zero set Cg of a curve g and compare it to a C̃g
which denotes the reflected curve with curve describing polynomial g̃. The aim is to
detect whether there is such a non-trivial equality Cg = C̃g as well as if and where there
is a mirror and how many mirrors there are.

5.2.1. Definition and restrictions

Definition 5.2 Let g be a curve given by the zero set Cg = {z ∈ C | g(z, z) = 0}. Let
l : p + µeiα be an arbitrary line (µ ∈ R). g is said to be (reflectionally) symmetric
with respect to l if and only if Cg and

Ceg = C̃g =
{
z ∈ C

∣∣∣ g̃(z, z) = g
(

(z − p)e2αi + p, (z − p)e−2αi + p
)

= 0
}

(5.4)

coincide. Thereby C̃g is the reflection of Cg on the mirror l. The line l is also called
symmetry axis. The angle α of l is called mirror-angle.

Figure 5.4 shows reflectionally symmetric curves. We can already see that intersecting
symmetry axes imply a rotational symmetry. However, point-symmetric curves will be
ignored here, because we may interpret such curves as rotationally 2-symmetric. Thus
we restrict ourselves to hyperplane-reflections.

c00

c10

c20 c40

c31

c22

c20

c40 c31
c00

c20

c11

c40
c31

c22

symmetric curve two mirrors point symmetry

Figure 5.4.: Reflectionally symmetric curves

Let us now have a closer look at the special shape of C̃g in Definition 5.2. If g is symmetric
with respect to the real axis, then clearly

Cg = C̃g = {z ∈ C | g(z, z) = 0} .

Reflections on mirrors l passing through the origin in an angle α to the real axis are
easily described. We can perform such a reflection by the following steps: First rotate
the plane by −α around the origin, then reflect at the real axis and third rotate back.
This means that z rotate7−→ e−iαz

reflect7−→ e−iαz = eiαz
rotate7−→ e2iαz and thus

Cg = C̃g =
{
z ∈ C

∣∣ g(e2iαz, e−2iαz) = 0
}
.
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If l does not contain the origin but an arbitrary point p, we can prepend and append a
corresponding translation by −p and p and get C̃g from Definition 5.2.
With respect to reflectional symmetry there are special curves: A circle or concentric
circles are of course reflectionally symmetric. All lines passing through the circle center
are symmetry axes. Given an arbitrary symmetry angle there is always a corresponding
mirror. Thus these curves have infinitely many mirrors, which build a pencil. Lines
or arrangement of parallel lines also have infinitely many symmetry axes, namely their
perpendiculars. For the converse we can use

Lemma 5.11 If an algebraic curve g has two different but parallel symmetry axes, then
g is a line or an arrangement of parallel lines.

Proof The reason for this is that two parallel mirrors l1 and l2 imply a translation τ
by two times their distance. g must be invariant under this translation. Consequently,
if z is a point on g, so is τk(z) for any k ∈ Z. Let the line passing through all these
points be h. Then g must either intersect h in all τk(z) or contain the line. But g is
algebraic and therefore intersects h in finitely many points or contains it (see [11] for
Bezout’s Theorem). 2

Here we have used the equivalence of translations and two reflections with parallel mir-
rors. But we can also use the equivalence of two intersecting mirrors and rotations. (For
more details on the geometry with mirrors see [12].)

Lemma 5.12 Let g be an algebraic curve with two different intersecting symmetry axes
l : p+ λeiα and m : q + µeiβ (λ, µ ∈ R). The point of intersection shall be w. Then g is
rotationally symmetric with respect to w as center of rotation.

Proof Different intersecting symmetry axes mean α 6= β. The reflections on l and m
imply a rotation ρ of the plane by 2(α− β) around w. The first case is that 2(α− β) is
a rational multiple of 2π, i.e. 2(α−β) = s

r · 2π with s, r ∈ Z and gcd(r, s) = 1. Thus if z
coincides with g, so does zei

s·2πi
r . Due to gcd(r, s) = 1 our curve g is r-fold rotationally

symmetric. In the second case 2(α− β) is no rational multiple of 2π. Let g(z) = 0 and
z 6= w. Then the set of all iteratively rotated copies of z are contained in a circle cz. This
set has infinitely many elements. g can only intersect this circle in finite many points
or contain it due to Bezout’s Theorem (see [11]). Therefore g is a circle or a union of
concentric circles. 2

Example 5.1 For example take a curve g which is reflectionally symmetric with respect
to the real axis and with respect to the line given by µeiβ (µ ∈ R). Then g is invariant
under the transformationszz

h

 7→
0 1 0

1 0 0
0 0 1

zz
h

 and

zz
h

 7→
 0 e2iβ 0
e−2iβ 0 0

0 0 1

zz
h

 .

As a consequence, g is invariant under combination of these reflections, especially underzz
h

 7→
0 1 0

1 0 0
0 0 1

 0 e2iβ 0
e−2iβ 0 0

0 0 1

zz
h

 =

e−2iβ 0 0
0 e2iβ 0
0 0 1

zz
h

 .

But this transformation is just a rotation of g by −2β around the origin.
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Using the above insights and our knowledge from our observations on rotational sym-
metry, we get

Theorem 5.13 Let g be an algebraic curve which is not a line and not an arrangement
of parallel lines. Then all symmetry axes are concurrent.

Proof By Lemma 5.11 g has no parallel symmetry axes. Suppose there are at least three
different non-concurrent mirrors. They would have three different points of intersection.
By Lemma 5.12 each of these intersections must be a center of a rotational symmetry.
But Theorem 5.3 states that we can only have one if g is algebraic. 2

Now we are able to start with the detection of reflectional symmetry. We proceed
analogous to the detection of rotational symmetry: We pin everything down to the
Definition 5.2. Again we use Corollary 2.4 to get an equality of polynomials rather
than an equality of zero-sets. Therefore we restrict ourselves to irreducible or at least
square-free curves.

5.2.2. Reflectional symmetry with axes passing through the origin

In accordance with Definition 5.2 and the observations thereafter, we have to determine
whether there is a p and α such that Cg = C̃g. In this section we focus on the detection
of reflectional symmetry with respect to axes passing through the origin. Thus w.l.o.g.
p from Definition 5.2 is the origin p = 0. Let g be an irreducible curve. If g is a line,
then all symmetry axes are clear: All perpendiculars to g and g itself are mirrors. Let g
be of degree d > 1 and reflectionally symmetric with respect to the mirror µeiα (µ ∈ R).
Then by Corollary 2.4 there is a λ ∈ C such that for all z ∈ C

g(z, z) = λg
(
e2αiz, e−2αiz

)
.

The irreducibility of g and d > 1 secure the existence of a point q = µqe
iα on our mirror,

which is not a point on our curve g. Thus g(q, q) 6= 0 and

g (q, q) = g
(
µqe

iα, µqe
−iα) = λg

(
µqe

iα, µqe
−iα) = λg

(
e2αiq, e−2αiq

)
and consequently λ = 1. This means that g(z, z) = g

(
e2αiz, e−2αiz

)
= g̃(z, z) for all

z ∈ C. Thus g and g̃ must have equal polynomial coefficients:

cpq = cqpe
2αi(−p+q) = c̃pq . (5.5)

Again the rotation speed of cpq, namely −p + q, comes in. If cpq vanishes or if p = q,
then this equation is trivially satisfied.
Now if we want to detect a potential reflectional symmetry of a given curve g, we have
to find all angles α such that Equation (5.5) holds for all coefficients cpq of g. As we
have seen, vanishing coefficients and coefficients of the form cpp impose no restrictions
on α. This fits nicely: If we have a curve with vanishing coefficients cpq when p 6= q,
then we have (concentric) circle(s). Thus we have infinitely many mirrors and arbitrary
α. If a cpq 6= 0 with p 6= q, we get a constraint on α from Equation (5.5). Let us write
the coefficients in exponential form: cpq = rpq exp(iϕpq) with positive rpq ∈ R>0. Thus
Equation (5.5) is equivalent to

ϕpq ≡ −ϕpq + 2α(q − p) mod 2π .
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Consequently,
ϕpq ≡ α(q − p) mod π .

This means that there is a k ∈ Z such that

ϕpq = α(q − p) + kπ ,

which is equivalent to

α =
ϕpq − kπ
q − p

(5.6)

for some k ∈ Z. Thus a single non-vanishing coefficient cpq with p 6= q constrains α to
the form of (5.6). If α is a mirror-angle, so is α+π, because both angles lead to the same
mirror. One may live with this ambiguity, or as we do, one can restrict α to α ∈ [0, π).
Consequently, α must be contained in the finite set

Apq =
{
ϕpq − kπ
q − p

mod π

∣∣∣∣ k ∈ Z
}

.

The cardinality of Apq is |−p+ q|, the absolute value of the rotation speed of the corre-
sponding non-vanishing coefficient cpq.
The above observation already proves

Theorem 5.14 Let S be the set of all coefficients cpq 6= 0 with p 6= q for a given curve
g. Let A be the set of all mirror-angles α ∈ [0, π) of g with respect to symmetry axes
passing through the origin. Then

A =
⋂
cpq∈S

Apq .

Graphically one can take an angle ϕpq of a non-vanishing coefficient cpq with p 6= q,
divide it by its rotation speed −p+ q and add the 2(−p+ q)-th complex roots of unity.
Figure 5.5 shows A20 for ϕ20 = −π

5 . The mirror-angles in [π, 2π) are displayed in grey
and lead to the same mirrors as the angles in A20. Generating such diagrams to each
non-vanishing coefficient cpq with p 6= q leads to potentially many graphics. If all the
diagrams have one or more lines, or respectively angles, in common, then this line (angle)
denotes a reflection-symmetry with the corresponding mirror-angle. In this way we are
able to detect reflectional symmetries with respect to axes passing through the origin.

Figure 5.5.: Graphical version of A20 with additional (grey) angles

Before we switch to reflectional symmetry with respect to arbitrary positioned axes, let
us once more focus on the reflection-operation: Reflecting a curve g on a line passing
through the origin with angle α to the real axis gives us a reflected copy g̃ of g. Equation
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5. Symmetry detection

(5.5) gives us the transformation law for the curve coefficients. As with rotations and
translations it is instructive to look at this transformation, using matrix-vector notation:
We have (

c00 c10 c01 c20 c11 c02 c30 c21 c12 c03 . . .
)T 7→ Sαc =

1
e−2iα

e2iα

e−4iα

1
e4iα

e−6iα

e−2iα

e2iα

e6iα

. . .


︸ ︷︷ ︸

= Sα



c00

c10

c01

c20

c11

c02

c30

c21

c12

c03

...



(5.7)

5.2.3. Reflectional symmetry with arbitrary symmetry axes

Let us look at reflections from an elementary geometric point of view. Therefore let p
be a point on the mirror (symmetry axes) and α be the angle between the mirror and
the (positive) real (half-)axis. The reflection operation S(p,α) on this mirror may be
decomposed into the following operations as indicated in Section 5.2.1:

1. Translation by −p, which sends the axis to a line passing through the origin. The
operation on the coefficient-vector may be described by matrix-multiplication with
T−p (compare with Equation (4.8)).

2. Rotation by −α, which sends the axis to the real coordinate axis. The corre-
sponding transformation on the coefficient-vector is encoded in R−α (compare with
Equation (4.2)).

3. Reflection on the real axis, which may be described by S0 (compare with Equation
(5.7)).

4. Rotation by α, representable by Rα and

5. Translation by p, with the corresponding translation-matrix Tp.

Thus
S(p,α) = Tp ·Rα · S0 ·R−α · T−p .

By expansion or by elementary geometric means (see [12]) one can show the identities
RαS0R−α = Sα = R2αS0 = S0R−2α and TpS0 = S0Tp. Additionally, TeiαpRα = RαTp.
Consequently,

S(p,α) = TpR2αT−pS0 = R2αTe−2iαp−pS0 . (5.8)

Thus the decomposition into five steps may be reduced to three steps: the reflection at
the real axis, a translation by e−2iαp−p and a rotation around the origin by 2α. Equation
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(5.8) describes the shape and structure of S(p,α): Basically, it is like the translation matrix
Te−2iαp−p. The difference is that the lines of the translation matrix have to be scaled
by e2iα·... according to the entries of R2α and the order of the columns in each block is
inverted due to the multiplication with S0.
Analogously we can think of S(p,α) as S(p,α) = R2αS0Te2iαp−p, a translation-matrix with
block-wise inverted line-order and scaled lines. To better see this it may be instructive
to write the corresponding matrices down. We will omit this here.
Having a reflectionally symmetric curve, we know that for the curve coefficient-vector
c the Equation c̃ = S(p,α)c = c must hold. The curve is reflectionally symmetric if and
only if the coefficient vector is invariant under multiplication with S(p,α). One of our
main results in studying reflectional symmetry is that we have a translation, sending
potentially unknown mirrors to lines passing through the origin. This is already clear
for curves with two or more different concurrent mirrors: Lemma 5.12 shows that the
point of intersection is a center of rotational symmetry and Theorem 5.10 states that
this center is the origin if the curve is in translatorial normal form. But in general we
have the following theorem:

Theorem 5.15 A reflectionally symmetric curve in translatorial normal form with
greedy coefficient annihilation (see Theorem 4.12) has a mirror passing through the
origin.

Proof We prove this theorem in three steps: First we look at reflectionally symmetric
curves whose mirrors are the real axis. In a second step the mirrors are lines passing
through the origin and, lastly, the mirrors are arbitrary.
Let g be a curve which is reflectionally symmetric with respect to the real axis. Then
ckl = clk ∈ R and all coefficients are real. The translatorial normal form g̃ of g can be
established according to the algorithm presented in Remark 4.3. Any of the described
translations use a real t ∈ R: ca−cb

r2a−r2b
∈ R, tc ∈ R, e2iξ

e2iξ+e2iϑ
∈ R (because e2iϑ = b

a and

2ξ ∈ {0, 2π}) and
(

c
m + c

m

)
eiξ ∈ R (because m = aeiξ + be−iξ with ξ ∈ {0,±π

2 , π} and
thus either m ∈ R or m = −m). Consequently, the translatorial normal form g̃ is also
reflectionally symmetric with respect to the real axis.
If g is reflectionally symmetric with respect to an arbitrary axis passing through the
origin, then so is g̃: A rotation of g̃ in translatorial normal form does not destroy the
normal-form-property because the coefficients are just multiplied with a factor having
an absolute value of one. Thus rotations do not change the coefficients’ absolute values.
The translatorial normal form, however, is minimizing certain absolute values. Now let
R−α be the rotation which transforms g into a curve g′ which is reflectionally symmetric
with respect to the real axis. By the above observations g̃′, the translatorial normal form
of g′, has also this property. Finally, the by Rα rotated g̃ must be the normal form of g,
exhibiting the same mirror as g.
Now let g be a curve with arbitrary reflectional symmetry. Let p be a point on the
mirror. Then the by t = −p translated copy g′ of g is a curve which is reflectionally
symmetric with respect to a mirror passing through the origin. Both curves g and g′

differ only by a translation and therefore they must have the same translatorial normal
form g̃. But g′ has a normal form which is reflectionally symmetric with a mirror passing
through the origin. Thus the same is true for g. 2

By this theorem and our preliminary observation we know that a reflectionally symmetric
curve in translatorial normal form, which is neither a line nor an arrangement of parallel
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lines, has only mirrors containing the origin. Detecting these symmetries was the subject
of our last section and thus we know how to detect arbitrary reflectional symmetries.
A nice special relationship for mirror-angeles is contained in

Theorem 5.16 A curve g with leading coefficients of the same absolute value, which is
neither a line nor an arrangement of parallel lines, has at most two different symmetry
axes. If there are two different mirrors, then these are perpendicular to each other.

Proof Let ckl and ck−1,l+1 be leading coefficients of g. If g is reflectionally symmet-
ric, the curve-coefficient-vector of g is invariant under multiplication with SαTe2αip−p.
Thereby p is a point on the corresponding mirror with mirror-angle α. Thus these leading
coefficients imply

c̃kl = ckl = e2α(−k+l)iclk and c̃k−1,l+1 = ck−1,l+1 = e2α(−k+l+2)icl+1,k−1 .

After substituting ckl = rkle
iϕkl and ck−1,l+1 = rkle

i(ϕkl+2ϑ), 2ϑ denotes the angle-
difference between our two succeeding leading coefficients. Bearing this in mind, we get
the equivalent expressions

2ϕkl ≡ 2α(−k + l) mod 2π and 2ϕkl + 4ϑ ≡ 2α(−k + l + 2) mod 2π .

Therefore the angle-difference fixes our possible mirror-angles to

α ≡ ϑ mod
π

2
.

In combination with Theorem 5.13 the assumption is proven. 2

This proof gives rise to the following Corollary:

Corollary 5.17 Let g be neither a line nor an arrangement of parallel lines and let
g have a non-vanishing succeeding coefficient-pair in any of its blocks. Then g has at
most two different symmetry axes. If there are two different mirrors, then these are
perpendicular to each other.

5.3. Examples

Let us review the preceding sections by looking at two curves of degree four. Multinomial
coefficients are denoted by mkl = 4!

k! l! (4−k−l)! .

• Cf1 : f1(x, y) =
∑

k+l≤4

A
(1)
kl x

kyl =
∑

k+l≤4

mkl a
(1)
kl xkyl with the coefficient vector

a(1) = (a(1)
00 , a

(1)
10 , ..., a

(1)
04 ) given by(

11906 −1958 −806 350 76 154 −62 −14 −2 −50 10 4 −2 4 10
)

• Cf2 : f2(x, y) =
∑

k+l≤4

A
(2)
kl x

kyl =
∑

k+l≤4

mkl a
(2)
kl xkyl with the coefficient vector

a(2) = (a(2)
00 , a

(2)
10 , ..., a

(2)
04 ) given by(

158 −168 −36 60 24 20 −6 −12 −2 −12 6 0 2 0 6
)
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These curves can be seen in Figure 5.6 together with transformed versions.
After complexification we get two complex coefficient vectors c(1) for f1 and c(2) for f2.
We describe them with the help of coefficient triangles:

blockt(c(1)) curve coefficients
t = 0 11906
t = 1 −979 −979

+403i −403i
t = 2 49− 38i 126 49 + 38i
t = 3 −7− i −8 + 8i −8− 8i −7 + i
t = 4 2 −i 1 i 2

rotation
speed −4 −3 −2 −1 0 1 2 3 4

blockt(c(2)) curve coefficients
t = 0 158
t = 1 −84 + 18i −84− 18i
t = 2 10− 12i 20 10 + 12i
t = 3 3i −1 + 3i −1− 3i −3i
t = 4 0 0 1 0 0

rotation
speed −4 −3 −2 −1 0 1 2 3 4

Calculating the translatorial normal form for f1 means annihilating the coefficient c(1)
30

by a translation with t1 = −5− 3i. The translatorial normal form for f2 is obtained by
a translation of t2 = −1 − 3i, annihilating c(2)

21 . We denote the translated curve f̃1 and
f̃2. The corresponding coefficient vectors are given by the triangles

blockt(c̃(1)) curve coefficients
t = 0 10
t = 1 0 0
t = 2 1 -2 1
t = 3 0 0 0 0
t = 4 2 -i 1 i 2

rot. speed -4 −3 -2 −1 0 1 2 3 4

and

blockt(c̃(2)) curve coefficients
t = 0 -10
t = 1 0 0
t = 2 0 0 0
t = 3 3i 0 0 -3i
t = 4 0 0 1 0 0

rot. speed −4 -3 −2 −1 0 1 2 3 4

Looking at the structure of the non-vanishing coefficients in the corresponding coefficient
triangles, we can directly see the rotational symmetry: f̃1 and thus f1 is rotationally
2-symmetric and f2 is rotationally 3-symmetric.
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The rotational normal form of f̃1 can be obtained in the following way: c̃(1)
40 is already

contained in R>0. Rotations by ψ ∈ {0, π2 , π,
3π
4 } preserve this property. But c̃(1)

31 may be
changed. If ψ ∈ {π2 ,

3π
2 }, then the coefficient ĉ(1)

31 of the rotated copy f̂1 of f̃1 changes its
sign: ĉ(1)

31 = c̃
(1)
31 e
−2ψi = −c̃(1)

31 . If ψ ∈ {0, π}, then ĉ
(1)
31 = c̃

(1)
31 . Consequently ĉ(1)

31 ∈ {±i}.
Writing ĉ(1)

31 in form of reiϕ with ϕ ∈ [0, 2π), we can see that ϕ ∈ {π2 ,
3π
2 } and π

2 <
3π
2 .

This means that we have to rotate the curve by an angle ϕ, which implies ϕ = π
2 .

Consequently ψ ∈ {π2 ,
3π
2 }. ψ is not uniquely determined. So we continue with the next

relevant non-vanishing coefficient: ĉ
(1)
20 . It has the same angular velocity as c(1)

31 and
therefore no new restriction on ψ can be implied. Thus we end up with two possible
rotations to transform f̃1 into rotational normal form. This confirms again the 2-fold
rotational symmetry. Both ψ ∈ {π2 ,

3π
2 } give us the same coefficient vector of f̂1:

ĉ(1) =
(

10 0 0 −1 −2 −1 0 0 0 0 2 i 1 −i 2
)
.

Similar calculations for f̃2 lead to rotations by ϕ ∈ {π6 ,
5π
6 ,

3π
2 }, resulting all in a positive

and real c(2)
30 . The final coefficient vector for f̂2 is

ĉ(2) =
(
−10 0 0 0 0 0 3 0 0 3 0 0 1 0 0

)
.

Thus, finally, f̂1 and f̂2 are in rotational and translational normal form and hence in
normal form with respect to orientation preserving euclidean motions of the plane.

f1 ef1 bf1

f2 ef2 bf2
Figure 5.6.: Two curves under observation

Let us continue to examine g = f̂2 and detect its reflectional symmetries. The curve is in
translatorial normal form and thus potentially existing mirrors pass through the origin.
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To detect these we need the set S of all non-vanishing coefficients ckl with k 6= l. Here
S = {c30}. Thus Theorem 5.14 gives us the set of mirror angles:

A =
⋂
ckl∈S

Akl = Akl =
{
ϕ30 − nπ
−3

mod π | n ∈ Z
}

=
{

0,
π

3
,
2π
3

}
,

which means that we have three different concurrent mirrors.
A normal form with respect to scalings remains to be established: Choosing to normalize
the largest non-vanishing coefficient, we can see that f̂2 is already in normal form.
However, f̂2 must be scaled such that c′40 = 1. Thus the scaling parameter must be
λ = 16 and the resulting coefficient vector is

c′
(1) =

(
10 0 0 −4 −8 −4 0 0 0 0 32 16i 16 −16i 32

)
.
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6.1. Summary

Summarizing the preceding chapters, we have seen that the language of curves is com-
plex. Complex numbers in connection with multinomial scaling allow simple translation
descriptions and short formulations. The effects of transformations of the plane on curve
coefficients demonstrate best why complex numbers are the right language for describing
curves. When it comes to invariant properties, tensor-diagram language is best suited.
Many invariant expressions would involve an enormous amount of summands, which can
be reduced to a simple diagram. The clearest examples are given in Section 4.4.2 by the
projective invariants of cubics: An expression consisting of 103 terms can be reduced to
a diagram of a hexagonal cylinder.
With these ingredients, it becomes evident how rotations, translations, scalings and pro-
jective transformations can be exploited. We established normal forms with respect to
these transformations. Integrating the knowledge from symmetry detection, arbitrary
Euclidean motions are covered. The presented normal forms and curve describing in-
variant sets may be used for further examination. In a searchable database the desired
normal form can be looked up and additional information such as the name of the curve
can be retrieved: Given an arbitrary curve, it can be translated such that it is in trans-
latorial and scaling normal form. By using the rotational normal form or rotational
invariants and optionally reflections, one may identify a curve in such a database and
inform the user:

“You constructed a Limaçon with parameters r = 0.54 and s = 0.72. A
Limaçon is given by the equation (x2 + y2 − 2rx)2 = s2(x2 + y2). Your
construction will generically generate a Limaçon.”

The statement concerning the generical construction may be accessible by producing
randomized input curves of the same construction.
The main results include also the normal forms, especially the translatorial one. Greed-
ily annihilating (or at least greedily minimizing) coefficients is already a normal form
algorithm. This normal form may be used as a basis for further examination: Fea-
tures such as rotational and reflectional symmetry may be easily extracted because the
symmetry centers and reflectional axes contain the origin. Besides these theoretical re-
sults, many beautiful cross-references to interesting coefficient structures are presented.
Two-dimensional as well as three-dimensional coefficient tables show up during transfor-
mations: For example tetrahedral structures in rotations and complexification, general-
ized Pascal Triangles or the Pascal Pyramid in linear-combinations of tensor-diagrams,
angle-diagrams in connection with rotations and reflectional symmetries and, last but
not least, patterns in coefficient-triangles in connection with rotational symmetry.
With all these ingredients, features of curves and even curves itself become easily acces-
sible. You only have to speak the right language.
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6.2. Outlook

By far this work does not close the topic on feature detection, it rather opens up an even
greater range of new lines of action. One of the biggest and probably most challenging
one is the practical realization in the framework of dynamic geometry.
As indicated in the introduction, the first task is to extract a curve coefficient vector from
a sample point set. We also dealt with this problem in [35], reprinted in Appendix C.
There, and also in the field of pattern recognition, a real coefficient vector representing
a real algebraic curve was extracted by means of minimizing a kind of distance from a
curve to the sample-point set. In this thesis, we have directly seen that a recognition of a
complexified coefficient vector is more desirable. Otherwise, we would have to translate
into the right language. Furthermore, there is the big question of the distances from the
sample-point-set to curves. Usually an approximated Euclidean distance to the samples
is used (see also [35], [49], [50]). We also apply such an approximation, which is quite
good for curves of low degree, since we have highly accurate samples originating from
constructions. In most cases an eigenvalue or singular-value analysis is sufficient.
[48] proposes other algorithms on the basis of ridge regression to overcome some nu-
merical deficiencies for higher order curves. The Euclidean distance approximation is,
however, still objected. At the latest when curve recognition with respect to projective
transformations are of interest, it is not at all clear why the Euclidean distance shall
be used for coefficient extraction. In fact, all algorithms known to us approximate the
sample-point set very well with virtually all sample-points contained in the recognized
curve. But higher order curves often have several branches and the recognition algo-
rithms result in curves with artifacts visually destroying features like symmetries. Often
an intelligent preprocessing helps to some extent. For us, the future lies not in such
approximations but rather in other measures. With the best language not yet known to
us, polynomial interpolated measures might offer some solutions.
A further entry-point to recognition is also an examination of what curve can be con-
structed at all. This means that not always all plane algebraic curves have to be con-
sidered. For example, rational curves are sufficient in many cases. Thus the range of
possible curve coefficient vectors is restricted, which may be exploited during calcula-
tions. Another promising option is to extract coefficients and “almost” features and
use these as restrictions for a subsequent new recognition: For example, a recognized
coefficient vector belonging to an almost reflectionally symmetric curve might be given.
Then we could try to extract a curve-coefficient vector from the same given sample
points, which is bound to belong to a reflectionally symmetric curve. Comparing the
two results might provide interesting clues and further information can be expected.
As well as specialization, generalization is also of great interest. Here the questions are:
How can the proposed algorithms be adapted to transcendental curves? What about
complex curves? ... or curves in space? Most preconditions we have used prohibit an
extension to transcendental curves. But some of them permit complex algebraic (spacial)
curves: complexification, for example. However, it is still not clear whether this is the
right language in this case. Additionally, we might extend the class of examined features
and turn our interest to singularities, the number of disconnected branches or something
else.
To be able to apply the results of this thesis in practice, additional numerical examina-
tions are necessary. Take, for example, the translatorial normal form. There are curves
with leading coefficients a = cd0 and b = cd−1,1, where ra = rb +ε. In this case the curve
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will be translated by t = ca−cb
r2a−r2b

. As a consequence, the denominator is an expression of
order O(ε). If c 6= 0 and 0 < ε� 1, then |t| downright explodes. If nothing cancels out,
the change in the curve’s constant term c̃00 is of order d in t and t. Thus the explosion of
t is magnified and the numerical information originally contained in c00 is lost. For many
applications this might be acceptable, but for higher order curves more coefficients may
suffer. However, we also gain some information: In such cases we have curves of degree
d, which have almost identical absolute values for all leading coefficients. This means
that the observed curves are near a curve which has an intersection with the line at
infinity of multiplicity d. Following the idea from above, we can restart the recognition
process and force a curve with an intersection with the line at infinity of multiplicity d.
In the context of curve-recognition in dynamic geometry, we may also use the technique of
randomization: Usually a whole bunch of sample point sets may be generated, belonging
to different instances of one and the same construction. Thus not only statements about
the whole construction are possible. Several similar generated curves may also help
improving the stability of (numerical) recognition and feature detection because all these
curves may be compared.
Comparisons are also necessary when additional information is desired: An indexed and
searchable data-base can help, but some mathematical work still has to be done: Due to
capacity and handling-reasons, the data-base should only contain classes of curves. For
example, conchoids are curves with coefficient vectors(

0 0 0 −2a2 4b2−2a2 −2a2 0 −4b −4b 0 0 3 4 3 0
)

to arbitrary a, b ∈ R. Thus, given a conchoid, we still find corresponding parameters a
and b such that the given coefficient vector matches the one above. A direct comparison
in general is not possible.
Switching to diagrams, we can see many possible future “playgrounds”. The diagrams
are incredibly powerful and we have only scratched the surface. With diagrams whole
geometric incidence theorems may be formulated (see [41]). These theorems may be
used to build and extend our diagram construction kit. With such ingredients more
complicated non-trivial and non-vanishing diagrams can be found and geometrically
interpreted. Finding a basis of projective invariants by means of diagrammatical rules is
probably one of the most interesting future tasks. But not only projective and Euclidean
invariants are of interest: With the diagrams one should - or let us say must - be
able to carry out feature detection also in elliptic, hyperbolic or any other Cayley-
Klein-Geometry. Even for higher order curves, where the algebraic expressions have an
exploding number of summands, tensor diagrams stay handy and interesting.
By all we have seen and by all we can expect to come we can finally say:

This thesis on feature detection
is a glimpse on the power and the beauty of mathematical language.
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A. Appendix

A.1. Rotation in real and monomial representation

In this section we give a detailed proof of Theorem 2.6. Thereby we use the abbreviations
c = cos(ϕ) and s = sinϕ.

f̃(x, y) =
d∑

k+l=0

mklakl(cx+ sy)k(−sx+ cy)l

=
d∑
r=0

r∑
k=0

mk (r−k)ak (r−k)

(
k∑

u=0

(
k

u

)
cuxusk−uyk−u

)

·

(
r−k∑
v=0

(
r − k
v

)
(−1)vsvxvcr−k−vyr−k−v

)

Now using the formula for Cauchy-products of finite sums(
k∑

u=0

αu

)(
r−k∑
v=0

βv

)
=

r∑
n=0

min(k,n)∑
q=max(0,n−r+k)

αqβn−q , (A.1)

we continue with

f̃(x, y) =
d∑
r=0

r∑
k=0

mk (r−k)ak (r−k) ·

·
r∑

n=0

min(k,n)∑
q=max(0,n−r+k)

(
k

q

)(
r − k
n− q

)
(−1)n−qc2q−k−n+rs−2q+k+nxnyr−n

=
d∑

n=0

d∑
r=n

r∑
k=0

min(k,n)∑
q=max(0,n−r+k)

...

=
d∑

n=0

d−n∑
l=0

l+n∑
k=0

min(k,n)∑
q=max(0,k−l)

mk (n+l−k)ak (n+l−k)

(
k

q

)(
n+ l − k
n− q

)
(−1)n−q

· c2q−k+ls−2q+k+nxnyl
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Using Equation (A.1) again with respect to the last two sums and taking care of the
terms with mixed indices, we get k → p+ q and thus

=
d∑

n=0

d−n∑
l=0

xnyl
n∑
p=0

l∑
q=0

m(p+q) ((n+l)−(p+q))a(p+q) ((n+l)−(p+q))

·
(
p+ q

p

)(
(n+ l)− (p+ q)

n− p

)
(−1)n−pcl+(p−q)sn−(p−q)

Now we make use of

m(p+q) ((n+l)−(p+q))

mnl

(
p+ q

p

)(
(n+ l)− (p+ q)

n− p

)
=

d!
(p+q)!(l+n−p−q)!(d−n−l)!

n!l!(d−n−l)!
d!

(p+q)!
p!q!

(l+n−p−q)!
(n−p)!(l−q)!

=
n!l!

p!(n−p)!q!(l−q)!
=
(
n

p

)(
l

q

)
Thus relabeling n→ k, we get

f̃(x, y) =
d∑

k=0

d−k∑
l=0

mklx
kyl · ãkl

with

ãkl =
k∑
p=0

l∑
q=0

(
k

p

)(
l

q

)
(−1)k−p · cl+(p−q) · sk−(p−q) · a(p+q) ((k+l)−(p+q)) ,

which proves Theorem 2.6.

A.2. Tensors contained in the linear hull of totally symmetric
and skew-symmetric tensors

In Section 3.1.2 we wanted to build up a contra- or covariant tensor of variance d - or
rather its coefficient-space - by a linear combination of a totally symmetric and (several)
skew-symmetric tensors. We can do so in the following way:
Without loss of generality, we confine ourselves to d-0-tensors. For the sake of simplicity
we introduce the multi-indices i and j by j = (j1, j2, ..., jd) and i = (i1, i2, ..., id). Thus
i, j ∈ {1, 2, ..., n}d.
For any j ∈ {1, 2, ..., n}d let b(j)i with i ∈ {1, 2, ..., n} be defined by

b
(j)
i =

{
1 if i = j

0 otherwise .

The b(j)i are d-0-tensors with tensor indices i1, i2, ..., id. They clearly build a basis of
our coefficient space.
Let us linearly combine b(j)i for any given j by one totally symmetric and further (par-
tially) skew-symmetric tensors. Therefore let Π(j) be the set of all permutated versions
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of the multi-index j. If j contains r1 times the number 1, r2 times 2, ... and rn times n,
then the cardinality

∣∣Π(j)

∣∣ of Π(j) is d!
r1!·r2!·...·rn! .

We use totally symmetric d-0-tensors of the form

s
(j)
i =

{
1 if i ∈ Π(j)

0 otherwise .

Example A.1 Figure 3.6 on page 38 gives an intuition on how the ten cube-shaped
tensors with d = n = 3 of the above form look like. There are exactly three tensors with
j1 = j2 = j3 having only one non-vanishing component (compare with the middle image
in the top row of that figure). The other tensors are indicated by the subsequent images

and each displayed orbit belongs to a different tensor s
(j)
i .

Let j and k be of such a kind that j 6= k and that there is a permutation π ∈ Sd with
k = π(j). We define some d-0-tensors by

a
(j,k)
i =


1 if i = j

−1 if i = k

0 otherwise

With the definition of s(j)
i and a

(j,k)
i we get for arbitrary j:

b
(j)
i =

1∣∣Π(j)

∣∣
s(j)

i +
∑

k∈Π(j)\{id}

a
(j,k)
i

 . (A.2)

The a
(j,k)
i in Equation (A.2) are not necessarily skew-symmetric. However, we can

replace those by skew-symmetric ones in the following way: Let π be associated to a
non-skew-symmetric a

(j,k)
i . As permutation, π can be rewritten by a composition of

transpositions. Each such transposition can be associated with a skew-symmetric tensor
and a

(j,k)
i is the sum of these tensors.

Consequently, there is a basis of the coordinate space of a contra- or covariant tensor of
variance d consisting only of totally symmetric and (partially) skew-symmetric tensors.

A.3. Basis and dual basis in the layers of the Pascal-Pyramid

In Section 3.3.4 we encountered layers in the Pascal-Pyramid (see Figure 3.8 on page
52). A layer l was interpreted as a matrix L(l) with components L(l)

qi = C
(l−q,q)
i . Thereby

C
(l−q,q)
i denoted the i-th coefficient in (a + b)l−q(a − b)q (starting with i = 0). The

relations between these coefficients were mainly covered in Equations (3.17) to (3.21).
Here we will prove Theorem 3.14, stating that L(l) ·L(l) = 2l ·I with I as identity-matrix.
Let N (l) = L(l) · L(l). Then for q 6= l we have:

N (l)
qr =

l∑
p=0

L(l)
qpL

(l)
pr =

l∑
p=0

C(l−q,q)
p C(l−p,p)

r

(3.17)
=

l−1∑
p=0

(
C

(l−1−q,q)
p−1 + C(l−1−q,q)

p

)(
C

(l−1−p,p)
r−1 + C(l−1−p,p)

r

)
︸ ︷︷ ︸

=:ζ

+C
(l−q,q)
l C(0,l)

r︸ ︷︷ ︸
=:ξ
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ζ
C

(...,...)
−1 =0

=
l−1∑
p=1

C
(l−1−q,q)
p−1 C

(l−1−p,p)
r−1 +

l−1∑
p=1

C
(l−1−q,q)
p−1 C(l−1−p,p)

r

+
l−1∑
p=0

C(l−1−q,q)
p C

(l−1−p,p)
r−1 +

l−1∑
p=0

C(l−1−q,q)
p C(l−1−p,p)

r

=
l−2∑
p=0

C(l−1−q,q)
p

(
C

(l−2−p,p+1)
r−1 + C(l−2−p,p+1)

r + C
(l−1−p,p)
r−1 + C(l−1−p,p)

r

)
+C(l−1−q,q)

l−1 C
(0,l−1)
r−1 + C

(l−1−q,q)
l−1 C(0,l−1)

r

(3.21)
= 2

 l−2∑
p=0

C(l−1−q,q)
p C(l−1−p,p)

r

+ C
(l−1−q,q)
l−1 C

(0,l−1)
r−1 + C

(l−1−q,q)
l−1 C(0,l−1)

r

ξ
(3.18)

= C
(l−1−q,q)
l−1

(
−C(0,l−1)

r−1 + C(0,l−1)
r

)
Thus for q 6= l and r < l:

N (l)
qr = ζ + ξ = 2

l−1∑
p=0

C(l−1−q,q)
p C(l−1−p,p)

r = 2N (l−1)
qr

and for q 6= l and r = l we get N (l)
ql = 0. Additionally, we have for any q and any r:

N (l)
qr =

l∑
p=0

C(l−q,q)
p C(l−p,p)

r

(3.19)
(3.20)

=
l∑

p=0

C(q,l−q)
p C

(l−p,p)
l−r = N

(l)
l−q,l−r .

Therefore, N (l)
lr = N

(l)
0,l−r and

N (l) = 2


0

N (l−1)
...
0

0 . . . 0 N
(l−1)
00


With N (0) = L(0)L(0) =

(
1
)

or N (1) = L(1)L(1) = 2 ·
(

1 0
0 1

)
it follows by induction that

N (l) = 2l · I .
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B. Minimizing the norm of the coefficient
vector and translatorial normal forms

In Section 4.2.6 we presented a translatorial normal form. In the field of shape recognition
and especially in pose estimation, translations are also of special interest. There, curves
are translated such that they are in (translatorial) normal form, in order to be able
to compare shape-representing curves (see [46], [47], [52]). In principle, the task of
finding a translatorial normal form is common with ours. However, there translatorial
“normal forms” are obtained by minimizing not a single sub-leading coefficient, but some
equivalent to the sum of the squared absolute values of all subleading coefficients (see
[46]):

min
t∈C

d−1∑
k=0

∣∣cd−1−k,k − cd−k,kt− cd−1−k,k+1t
∣∣2 . (B.1)

In matrix-vector notation this is

min
t∈C

∥∥∥∥∥∥∥
cd−1,0

...
c0,d−1

−
 cd,0 cd−1,1

...
...

c1,d−1 c0,d

(t
t

)∥∥∥∥∥∥∥
2

2

= min
t∈C

∥∥∥∥ csub −M (
t
t

) ∥∥∥∥2

2

(B.2)

Thereby csub is a vector containing all sub-leading coefficients and M is a matrix con-
sisting of the corresponding entries of the sub-triangles to the sub-leading coefficients.
Let the set of all t ∈ C minimizing this expression be Tmin. [46] and [47] claim that
|Tmin| = 1, which is not true for all curves. In fact, translations by t ∈ Tmin do not
always use both translatorial degrees of freedom. Consequently, the by a t ∈ Tmin trans-
lated curve is not necessarily independent of prior translations. Thus Equation (B.1)
can not be the sole criterion for a normal form.
We will show this in three steps. Let t = xt + iyt be the decomposition of t into real and
imaginary part. At first we interpret

q(xt, yt) :=
∥∥∥∥ csub −M (

xt + iyt
xt − iyt

) ∥∥∥∥2

2

= h (B.3)

as a conic in three-space, exhibiting the level-sets Th to levels h ∈ R. In a second step,
we will show that Tmin, interpreted as level-set, may contain more than one translation
parameter. And last we will see that there are curves g with t1, t2 ∈ Tmin such that the
corresponding translated copies V (g1) and V (g2) are different.

Lemma B.1 There are real α, β, γ, δ, ε, ζ ∈ R such that

q(xt, yt) = α+ 2βxt + 2γyt + δx2
t + 2εxtyt + ζy2

t = h . (B.4)
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B. Minimizing the norm of the coefficient vector

Proof Let q(xt, yt) = ‖v(xt, yt)‖22, then

q(xt, yt) = ‖<(v(xt, yt))‖22 + ‖=(v(xt, yt))‖22

with corresponding real and imaginary parts of v(xt, yt).
Let csub = cR + icI and M = MR + iMI be the decomposition into real and imaginary
parts of csub and M . Expanding the equation above we directly get

α = cTRcR + cTI cI β =
(
−cTRMR − cTIMI

)(1
1

)
γ =

(
cTRMI − cTIMR

)( 1
−1

)
δ =

(
1 1

) (
MT
RMR +MT

I MI

)(1
1

)
ε =

(
1 1

) (
MT
I MR −MT

RMI

)( 1
−1

)
ζ =

(
1 −1

) (
MT
RMR +MT

I MI

)( 1
−1

)
This proves the assumption. 2

By construction q(xt, yt) is strictly non-negative and for variable h ∈ R we get a conic
q(xt, yt) − h = 0 in R3. Due to the non-negativity and the linearity of h, this conic
may only be either an elliptic paraboloid or a parabolic cylinder. In case of an elliptic
paraboloid, the minimum is unique and |Tmin| = 1. But for a parabolic cylinder Tmin

contains a whole line.

Lemma B.2 Let g be a curve of degree d with the following attribute: All leading
coefficients have the same absolute value. All succeeding leading coefficient-pairs have
the same angle difference ϕ. Then q(xt, yt)−h = 0 is a parabolic cylinder and |Tmin| > 1.

Proof W.l.o.g. we may assume that cd0 = 1. Otherwise, divide g(z, z) by cd0 and take
the resulting polynomial, representing the same curve (V (g) = V ( g

cd0
)). Thus

1 eiϕ

eiϕ ei2ϕ

...
...

ei(d−1)ϕ eidϕ


︸ ︷︷ ︸

= M

=


cos(0ϕ) cos(1ϕ)
cos(1ϕ) cos(2ϕ)

...
...

cos((d− 1)ϕ) cos(dϕ)


︸ ︷︷ ︸

= MR

+ i


sin(0ϕ) sin(1ϕ)
sin(1ϕ) sin(2ϕ)

...
...

sin((d− 1)ϕ) sin(dϕ)


︸ ︷︷ ︸

= iMI

By Lemma B.1

q(xt, yt) =
(
xt yt

)(δ ε
ε ζ

)(
xt
yt

)
+ 2

(
β γ

)(xt
yt

)
+ α

with

δ = 2d(1+cos(ϕ)), ε = 2d sin(ϕ), ζ = 2d(1−cos(ϕ)) and det
(
δ ε
ε ζ

)
= 0 .

Consequently, q is degenerated and therefore a parabolic cylinder. The eigenvectors of
the above 2× 2 matrix to the eigenvalue zero constitute the elements of Tmin. 2

Taking these two lemmas together we arrive at
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B. Minimizing the norm of the coefficient vector

Theorem B.3 Minimizing Expression B.2 for a given curve does not describe a normal
form.

Proof Take a curve g satisfying the preconditions of Lemma B.2, which is not an
arrangement of parallel lines. Then Tmin contains a line in the xtyt-plane and g is not
invariant under translations by t ∈ Tmin. 2

Example B.1 Let us look back to the parabolas in Section 4.2.7. We know that for
conics a minimization of c10 implies minimizing c01. Therefore minimizing |c10| is equiv-
alent to minimizing |c10| + |c01|, which in turn is exactly Equation (B.1). As we have
seen, a whole bunch of translation parameters minimizes this expression (see Figure
4.12.h). In fact Tc = Tmin. However, we have still one translatorial degree left and thus
minimization of Equation (B.1) does not constitute a normal form.

In Expression (B.1) we summed over all subleading coefficients ending up with an almost
normal form. If we extend the summation over all coefficients, we get a new minimization
problem min

t
‖c̃‖22. Thereby c̃ is the by t translated coefficient vector. But in general this

problem is of order d in t and t. Thus we could linearize and minimize the first order
approximates of the component of c̃ (see also [46]):

min
t

∑
k+l<d

|ckl − (d− k − l)[ck+1,l + ck,l+1]|2 +
d∑
j=0

|cd−j,j |2 . (B.5)

It is much more descriptive to rewrite the above expressions in matrix vector notation:
min
t
‖c̃‖ = min

t
‖Ttc‖ with the translation-matrix Tt from Equation (4.8). Clearing all

quadratic or higher order expressions in t and t in this matrix Tt, we get our approxi-
mation (B.5) in matrix vector notation, too. To exemplify this, we assume that d = 3.
Then

min
t
‖Mtc‖ = min

t

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



1 −3t −3t
1 −2t −2t

1 −2t −2t
1 −t −t

1 −t −t
1 −t −t

1
1

1
1





c00

c10

c01

c20

c11

c02

c30

c21

c12

c03



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

Analogous to our lemmas above, the translation parameter t, minimizing the Expression
(B.5), is not necessarily unique (as claimed in [46] and [47]). We remember arrangements
of parallel lines, which are invariant under translations in a certain direction. In fact,
these are the only curves where the minimizing translation parameter is not unique. But
in this case translations by an arbitrary minimizing parameter t lead to the same unique
curve. Thus we have

Theorem B.4 Let g be a curve with coefficient vector c. Minimizing the first order
approximation of ‖c‖22, Expression (B.5), transforms g into a normal form.
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B. Minimizing the norm of the coefficient vector

A drawback of this normal form is that, in general, it does not preserve vanishing sub-
leading coefficients. Vanishing coefficients will be needed for symmetry detection (see
Chapter 5).

Example B.2 Let g be a curve with coefficient vector

c = (−100, 1, 1, 0, 0, 0, 1, 0, 0, 1) = (c00, c10, c01, c20, c11, c02, c30, c21, c12, c03) .

Clearly all sub-leading coefficients vanish and Expression (B.1) is already minimal be-
cause ‖csub‖22 = 0. Additionally, we have ‖M0c‖22 = ‖c‖22 = 10004. But

‖Mtc‖22 =
∥∥(−100− 3t− 3t, 1, 1,−t, 0,−t, 1, 0, 0, 1

)∥∥2

2

= ‖c‖22 + 1200<(t) + 38<(t)2 + 2=(t) .

Thus ‖Mtc‖22 is minimal for a certain t ∈ R<0. But then c̃20 6= 0.

Remark B.1 [47] proposes to calculate a translation parameter t, which minimizes
Expression B.1 in a first step. The by this t translated copy g̃ of the original curve
g has the coefficients c̃. As we have seen in Theorem B.3 and Example B.1, g̃ is not
independent of previous translations of the curve in contrast to the claims in [47]. In a
second step Expression (B.5) shall be minimized a few times to get a good approximation
of the curve g̃∗ with minimal ‖c̃∗‖2. By Theorem B.4 we have a translatorial normal
form and therefore an independence of c̃∗ with respect to prior translations. Thus step
one is at least theoretically useless. In the above example, we have seen that step two
may and in general will, even destroy the property, established by step one: ‖c̃∗sub‖

2
2 6= 0.
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This is a joint paper by Prof. Dr. Dr. Jürgen Richter-Gebert and myself. It is a
preliminary study to this thesis concerning the recognition of a curve coefficient vector.
Given a curve coefficient vector feature detection can take place. The subsequent paper
emerged from studies preceding the ADG 2006 - conference and appeared in Lecture
Notes in Computer Science/Artificial Intelligence [35]. Some of the “open questione”,
stated at the end of this paper, are already answered in this thesis.

Abstract Curve recognition is one of the possible applications this thesis. The appli-
cation of the discussed normal forms and the calculation of the invariants give the pos-
sibility to take any curve and compare the corresponding values with database-entries.
The result may thus be to display the curves name to the user, who provides the curve-
coefficients. But mostly the curve-coefficients are not directly accessible and must be
calculated in beforehand.
In this context [35] was written: The focus lies on the extraction of curve-coefficients,
when only a high-precision sample point set is given. We reprint this study here with
only minor changes and adaptions. At the end, we include a short outlook on further pos-
sibilities to achieve a better preconditioning and a numerically more stable recognition-
procedure for curves of higher degree and lower quality samples.

C.1. Introduction

The generation of loci is one of the central applications in today’s computer geometry
programs. In abstract terms, a locus consists of all locations that a specific point of a
geometric configuration can take, while one parameter of the configuration may vary.
For instance, the locus of all points that are at a fixed distance from a fixed point is
simply a circle. Typically the locus data generated by a geometry program does not
consist of a symbolic description of the locus. Rather than that a more or less dense
collection of sample points on the locus is generated. In many cases, the user of such
a program can identify the underlying curve visually by simply looking at it or by a
pre-knowledge of the underlying construction or by a combination of both. However, for
several applications (such as automatic assistance, geometric expert systems, etc.), it is
highly desirable to recognize these curves automatically. After a geometric construction
for a locus is specified, such a recognition procedure can be carried out on two different
levels. First, one is interested in which locus is generated for a concrete instance (i.e.
position of free elements) of the construction. Second, one is interested in invariants of all
the loci that can be generated by a specific construction. We refer to this set as the type
of the locus. Very often in the literature types of loci (which are algebraic curves in our
setup) are closely related to names of the corresponding curves like cardioide, limaçon,
lemniscate, Watt curve, conic, etc. One of the ultimate goals of a locus recognition
algorithm would be an output like:
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Limaçon Trochoid

Watt curve Asteroid

Figure C.1.: Geometric constructions of loci; each curve can be interpreted as zero set
of an algebraic equation.

“You constructed a limaçon with parameters r = 0.54 and s = 0.72. A
limaçon is given by the equation (x2 + y2 − 2rx)2 = s2(x2 + y2). Your
construction will generically generate a limaçon.”

If one treats the geometric construction as a black box which takes positions of the free
elements of a construction as input and produces sample points of the generated locus as
output, the above demands imply the necessity of a curve recognition algorithm based
on discrete sets of sample points.
In our constructions we only allow primitive operations coming from ruler and compass
operations. In this case, a locus turns out to be contained in a zero set of a polynomial
equation for any specific instance of a construction. Fixing the free construction elements
in a way that only one degree of freedom is left, a dependent point is restricted to an
algebraic curve. The locus data is given by a discrete set of sample points P on this curve,
constructed for example via a dynamic geometry program. In general, these programs
trace a single point and thus return a set P contained in a single real branch of the zero
set of an algebraic equation. Therefore we presume P to be of that kind.
In our case, curve recognition for a specific instance of a construction means extracting a
single algebraic equation of minimal degree from a discrete point set P and determining
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its degree. In a second step we focus on the set B of curves obtainable by all instances
of a specific construction – the type of the curve. We presume that all coordinates of
dependent elements in a construction are analytic functions in the free parameters of the
free elements of a construction. Under this assumption, an examination of the degree of
the curves in B and geometric invariant extraction is possible. In this way we can, at
least for simple curves, associate a name with B, characterizing the type of the contained
curves. In particular, the minimal degree itself turns out to be an invariant property.
Recognizing implicit multivariate polynomials has been investigated also by other re-
search groups, most often in different contexts and with different side constraints. A
genuine feature of the setup treated in this article is that the sample points usually
come with a high arithmetic precision and that it is known in advance that they belong
to an algebraic curve with an a priori upper degree bound (usually the real degree will be
much lower than this bound). This is in contrast to related research work in computer
vision or pattern recognition where one is interested to approximate camera pictures of
geometric shapes by algebraic curves in order to recognize these shapes. There the shape
data does not a priori belong to an algebraic curve and one is only interested in relatively
roughly approximating curves of fixed degree (compare for instance [50],[37],[48]).
Another related setup was treated and implemented in the dynamic geometry program
Cabri Géomètre [33]. There a first locus recognition algorithm was implemented. Un-
fortunately, no algorithmic details are available and practical experiments show that the
algorithm used there is relatively instable in particular under rigid transformations. (We
will deal with this particular issue later in Section 5.2).
In this article we introduce a concept of locus recognition that deals with the construction
on two different levels. On both levels the construction itself is treated as a black box
that generates sample points on the locus for specific parameters of the free elements
of the construction. In the first step we propose an algorithm that takes the sample
points of one locus as sole input data and reconstructs the parameters and degree of
the underlying algebraic curve for this specific instance. In a second step we allow the
free construction elements to vary and thus produce a whole collection of sample point
sets P1,P2, . . . each of which represents locus data of the same type. Randomization
techniques are then used to finally extract common features of these loci and determine
the type of the locus (with high probability).

C.2. Computationally constructed curves

We use ruler and compass constructions as starting point for our investigations. They
provide us with locus data of high arithmetic precision. In principle, it does not matter
where discrete sample point sets come from, as long as they are very close to an algebraic
curve.
Dynamic geometry programs facilitate ruler and compass constructions in a plane: Ele-
mentary construction steps consist of placing free points in the plane, joining two points
by a line, constructing circles by midpoint and perimeter and intersecting lines with
lines, lines with circles or circles with circles. Furthermore, points can be restricted to
already constructed elements like a line or a circle. We will call such points semi-free as
they have only one degree of freedom. Lines (circles) are zero sets of linear (quadratic)
equations and can be computationally represented by the parameters of these equations.
Semi-free points can be described by a one-parametric solution manifold of an equation.
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All-in-all (for details see [32]), any instance of a geometric construction corresponds to
the solution set of a finite set of polynomial equations in the parameters generated by
the free and semi-free elements. Allowing only finitely many ruler and compass construc-
tion steps, every position of a dependent point can be described by algebraic equations
depending on the position of the free points.
While moving a free point in a dynamic geometry program, one can watch the dependent
points move consistently with the construction. Fixing all (semi-) free elements except
for one semi-free point in a construction, a single dependent point p gets restricted to a
zero set of an algebraic equation. Tracing p with a dynamic geometry program under the
movement of a single semi-free point (a mover), a single branch B of an algebraic curve
is revealed. The algebraic curve can be described by a polynomial equation b(p) = 0 of
minimal degree. B is the set of locations of the traced point p. Unless stated otherwise,
all points and curves are assumed to be given in homogeneous coordinates. Under these
assumptions a constructed branch B is contained in the zero set Z(b) of a homogeneous
polynomial function b : RP2 → R of minimal degree db:

Z(b) =


 x1

x2

x3

 ∈ RP2

∣∣∣∣∣∣ b(x1, x2, x3) =
∑

i+j+k=db

βi,j,k · xi1x
j
2x
k
3 = 0

 (C.1)

From a construction in a dynamic geometry program, we get a discrete set P containing
points lying almost exactly on a branch B of some Z(b). Using algebraic methods, we
could, in principle, determine a corresponding curve of very high degree by the following
approach: In a first step each elementary construction step is described as a polynomial
relation in the coordinates of geometric elements. In a second step elimination techniques
(for instance based on Gröbner Bases or Ritt’s algebraic decomposition method) are used
to find an implicit representation of the possible position of the locus generating point.
This type of approach to curve recognition is purely symbolic but it significantly suffers
from combinatorial explosion of the algebraic structures. Even for small constructions
one could, in general, not hope for results in reasonable computation time. In contrast,
we use the construction as a “black box” and consider only the sample point data of
the computationally constructed branch B. Our aim is to derive its describing algebraic
equation b of minimal degree. Now our driving questions are:

1. Which plane algebraic curve of minimal degree “reasonably” fits the numerical
locus data? (Which b fits P “reasonably” and what is db?)

2. Regarding a ruler and compass construction, which type of plane algebraic curves
are constructed? (What is the degree db of almost all curves B in B and what
name characterizes B?)

Clearly the problem needs some mathematic modeling which preserves quality criteria.
The next section will deal with this issue. Additionally, the first part of our work, i.e. the
parameter extraction, can be applied to any curve or even surface recognition problem
given sufficiently many points of sufficiently high precession.

C.3. Curve recognition

Given a finite set of data points P = {p1, p2, ..., pm}, e.g. a set of samples in homogeneous
coordinates on a locus from a ruler and compass construction. The problem of fitting
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an algebraic curve B to the data set P is usually cast as minimizing the mean square
distance

1
m

m∑
i=1

dist(pi, Z(b))2 (C.2)

from the data points to the curve (see [49]). This is a function in the coefficients β of
the polynomial b, where dist(p, Z(b)) denotes the Euclidean distance from a point p to
the zero set Z(b).
Unfortunately, there is in general no closed form for dist. In principle, dist could be
approximated by iterative calculations. However, they turn out to be expensive and very
clumsy for the required optimization procedure. Therefore we will use other approxima-
tion. Without any numerical noise b(p) = 0 for all p ∈ Z(b) the first choice to replace
(C.2) is

1
m

m∑
i=1

b(pi)2. (C.3)

We will use this formula as central ansatz for modeling the distance of curve and sample
points. This is adequate since our sample points are given with high arithmetic precision.
We now will describe how the coefficients of b that minimize (3) can be calculated.
For this let T1(x), T2(x), ..., Tk(x) be a basis of the linear space of all homogeneous
polynomials of degree d in three variables. If d = 2 one could take, for instance, the
monomial basis

T1(x) = x2
1, T2(x) = x1x2, T3(x) = x1x3, T4(x) = x2

2, T5(x) = x2x3, T6(x) = x2
3.

In general we have k = 1
2(d+ 1)(d+ 2) basis polynomials. Furthermore let

τd = (T1, T2, . . . , Tk) : RP2 → Rk

be the function that associates a point p ∈ RP2 with its evaluation τd(p) ∈ Rk of all the
basis functions of degree d.
Assuming we have a discrete set of n points P = {p1, . . . , pn} from an underlying con-
struction and assuming we know db, the degree of the computationally constructed
branch B, we can fix τd for polynomials of degree db. Furthermore, we can form an
n × k matrix P := Pd,P with row vectors τd(pi) of τd-transformed points pi ∈ P. Thus
minimizing (C.3) is equivalent to minimizing ‖Pβ‖2, with the unknown parameter vec-
tor β. So far the minimum can easily be obtained by setting β = (0, . . . , 0). This comes
from the homogeneity of the problem setup and the fact that β and λ · β for λ ∈ R\{0}
define the same curve. We overcome this problem by forcing additional side-constraints
on β and require ‖β‖2 = 1. In relation to our ansatz (C.3), this side constraint has two
advantages: First of all, it is geometrically reasonable, since it ensures a bound on each
coefficient of the polynomial. Second, it leads to a nicely solvable minimization problem.
All in all curve recognition in our case is stated as

min
‖β‖2=1

‖Pβ‖2 (C.4)

The above minimization problem leads to a nicely structured Eigenvector-Eigenvalue
analysis as the following considerations show. We have

min
‖β‖2=1

‖Pβ‖2 = min
‖β‖2=1

√
βTP TPβ,
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which is minimized by an eigenvector of P TP corresponding to an eigenvalue λ of minimal
absolute value. The minimum itself is this very eigenvalue λ. In terms of a singular value
decomposition of P , λ is no more than a singular value of P of minimal absolute value
and (C.4) is minimized by a corresponding right singular vector of P .

Proof P TP is symmetric and features an orthogonal diagonalization employing eigen-
vectors. Thus ∃Q ∈ O(k) : QTP TPQ=Λ with a diagonal matrix Λ=diag(λ1, λ2, ..., λk)
exhibiting the eigenvalues λi (1 ≤ i ≤ k) of P TP . The j-th column of Q is the eigenvector
corresponding to the j-th diagonal entry of Λ. Abbreviating QTβ by γ, we get:

min
‖β‖2=1

‖Pβ‖2 = min
‖γ‖2=1

√
γTΛγ.

Let λj be an eigenvalue of minimal absolute value |λj | = min{|λj | | 1 ≤ j ≤ k} and let
eTj = (0, ..., 0, 1, 0, ..., 0) be the j-th canonical basis vector. Then

min
‖γ‖2=1

√
γTΛγ =

√
eTj Λej =

√
λj .

By undoing the transformation from β to γ = ej , we get βT = (q1,j , q2,j , ..., qk,j), the
j-th eigenvector of P TP . If the minimal absolute eigenvalue is a single eigenvalue, then
we get a unique eigenvector minimizing eigenvector β. If not, then β may be any vector
in the span of all eigenvectors to the eigenvalues with an absolute value of λj . Since
a singular value of P is the root of an eigenvalue of P TP , the right singular vector
corresponds to the eigenvectors from above. 2

In practice, with large P the minimal absolute eigenvalue of P TP will always be unique.
In cases where P does not specify a singe curve and a whole bunch of curves could have
P as sample point set, we can not expect an algorithm to always return the correct
curve.
Let us assume having the sample points on a branch B of a yet unknown degree db in
a no-numerical-noise environment. If we choose an arbitrary testing degree d ∈ N\{0}
and examine the behavior of P and (C.4), we have the following cases:

d = db : As we investigate in homogeneous polynomials, the length of the parameter
vector β is kd = 1

2(d + 1)(d + 2), but the corresponding curve is determined by
kd − 1 points in general position. Per assumption, P contains this many points
in general position and thus rank(P ) = kd − 1 = rank(P TP ) and P TP has a
single vanishing eigenvalue λ = 0. The corresponding eigenvector is the desired
parameter vector of the curve.

d < db : An analysis of the corresponding P yields: P is of maximal rank and P TP has
no vanishing eigenvalue.

d > db : Let d = db + r for some r ∈ N. An analogous observation shows that P TP has
kr = 1

2(r + 1)(r + 2) vanishing eigenvalues. This is a reasonable behavior because
it shows that the resulting curves are degenerate: One component is the curve of
degree db fixed by P and the other component is a more or less random curve of
degree r.
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This shows that for a given P, the product P TP has a vanishing eigenvalue λ = 0 if and
only if the testing degree is greater than or equals to db. Thus for constructed curves,
we can compute the eigenvalues λ of P TP of minimal absolute value for testing degrees
d = 1, d = 2, ..., successively. This leads to a point where λ is zero. At that point we
reached the desired degree.
In practice, where the sample points are disturbed by a small numerical noise, we will not
observe vanishing eigenvalues but a significant drop (usually a few orders of magnitude)
of the absolute minimal eigenvalues (see section 5). Thus we are able to say:

“You constructed a curve of degree db.”

C.4. Type of constructed loci

Let B be the whole continuum of constructed branches B and let dB denote the maximum
of all degrees db of constructed curves B contained in B. Since we deal with finite
constructions, dB is bounded. P is a discrete set of points originating from discrete
positions of a semi-free mover of a construction. In the last section we saw that P TP
becoming (nearly) singular indicates that the degree of a curve is equal to or below a
certain value. Due to the analyticity (omitting the details here (see [32] for an in-depth
analysis), almost any curve contained in B is of degree dB. Therefore we can select a
generic parameter set in the parameter space of a specific construction and get a generic
curve B. The degree db of B equals dB with probability one. This means, we can detect
dB and prompt the user of a dynamic geometry program:

“You constructed a curve of degree db. Your construction will generically
generate a curve of degree dB.”

To further specify B with associated degree dB, we can calculate invariants with respect
to either projective, affine or Euclidean transformations. If all curves that belong to a
given construction show the same invariants stored in a database, a name like circles,
conchoids or limaçon can be associated with B.
One possibility to achieve this is to examine the orthogonal space B⊥. This is the space
of all kdB = 1

2(dB+ 2)(dB+ 1) dimensional vectors orthogonal to any coefficient vector of
any curve in B. Therefore B⊥ is an invariant of the underlying construction. Generating
a matrix V containing at least kdB parameter vectors to generic curves of B, B⊥ is the
null space of V . It can be determined by an eigenvalue/eigenvector analysis: B⊥ is
spanned by the eigenvectors of V TV to eigenvalues equal to zero.
The remaining task for a graduation of B would be to correlate the calculated orthogonal
space with a database and retrieve a corresponding name. Then we can say something
like:

“Your construction will generically generate a circle.”

The idea of how to avoid costly calculations of B⊥ is to simply look up some orthogonal
spaces for curve classes of degree dB in a database and perform a multiplication with V .
Getting a zero result, we know B to be a subset of all curves with the orthogonal space
taken.
As a simple example, let dB = 2 and let B be a set of circles. We assume that all
coefficient calculations are performed with the monomial basis for quadrics (see ex-
ample after equation (C.3)). Looking in a database for orthogonal spaces to curve
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Figure C.2.: Raw data of a degree-four-curve

types of degree two, we will find circles with an associated orthogonal space B⊥ =
span((1, 0, 0,−1, 0, 0), (0, 1, 0, 0, 0, 0)) =: span(o1, o2), because circles are characterized
by the following properties properties

1. the coefficient of x2 equals the coefficient of y2:
(1, 0, 0,−1, 0, 0) · τ2(x, y, z) = x2 − y2 = 0, ∀(x, y, z) on a circle.

2. the coefficient of xy equals zero:
(0, 1, 0, 0, 0, 0) · τ2(x, y, z) = xy = 0, ∀(x, y, z) on a circle.

If in fact all members of B are circles, V · o1 and V · o2 are zero or almost zero due to
numerical effects.
To specify a more complex B, a linear test like matrix multiplication may not suffice. It
has to be tested whether potentially non-linear expressions hold for kdB generic curves out
of B. Additional difficulties arise when B is tested to be a subset of a parametrized class,
like the class of conchoids (A conchoid symmetric to the x-axis and with the singularity
in the Euclidean origin can be written as b(x, y, z) = (x − σ)2(x2 + y2) − ρ2x2 = 0 for
some parameters σ, ρ.). Here, research is in progress to unify and simplify the tests of
type affiliations. Focusing on Euclidean graduation, a promising approach seems to be
to calculate an intrinsic rotation invariant center of a curve using all curve parameters as
introduced in [47]. Then mapping B to a class of curves in a database by transformations
is reduced to comparing invariants under rotations and scaling.

C.5. Experimental results

Constructing a curve C in a dynamic geometry program and applying a curve recognition
algorithm based on minimizing (C.4) yields some curve parameters. This corresponding
curve should fit the sample data if the corresponding eigenvalue is significantly small.
We present some data of numerical experiments with loci whose sample points have been
calculated with the program Cinderella [40].
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|λ2| ≈ 0.0176277 |λ3| ≈ 4.445711 · 10−6 |λ4| ≈ 3.14003 · 10−17

|λ5| ≈ 1.12952 · 10−17 |λ6| ≈ 5.12169 · 10−19 Significant eigenvalue

drop at d = 4

Figure C.3.: Estimated curves for degrees 2, 3, 4, 5 and 6 with logarithmic plot of the
minimal eigenvalues against the tested degrees and threshold-line corre-
sponding to λ = 10−14

C.5.1. Finding the degree

We start with the example of a limaçon corresponding to the first picture in Figure 1.
The corresponding sample data P of the locus corresponds to the cloud of points given in
Figure 2. The numerical precision of the data is approximately 14 digits. The Euclidean
coordinates of points p ∈ P range from −10 to 10. Figure C.3. shows a sequence of
plots for the estimated curves of degree d = 2, . . . , 6. The smallest absolute values of
eigenvalues λd in these five situations are given below the pictures. The sample points
are given for reference. One observes a significant drop of the eigenvalues from d = 3 to
d = 4. The picture in the bottom right shows the logarithm of the minimal eigenvalues
with a threshold-line at ln(λ) = ln(10−14) marked vertically against the tested degree
d ∈ {2, 3, 4, 5, 6}. Moreover, for d = 5 we obtain (as expected) three absolute eigenvalues
below λ = 10−14 and for d = 6 we obtain six absolute eigenvalues below 10−14. The
next larger absolute eigenvalues are around 10−6. This suggests that the curve under
investigation is of degree d = 4. For the degree five approximation the plot unveils an
additional component of degree one. And for degree six an additional component of
degree two shows up.
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Epicycloid samples Connected data Recognized curve

Epicycloid samples Connected data Recognized curve

Epicycloid samples Connected data Recognized curve

Figure C.4.: Recognition of Epicycloids (see Equation (C.5))

As a second example we examine a parametrizable Epicycloid

f(t) =
(
r · cos(k · t)− s · cos(l · t)
−r · sin(k · t)− s · sin(l · t)

)
. (C.5)

If we choose r = 2.4, s = 3, k = 2 and l = 5, we get samples depending on the range and
sampling rate for t. Three instances of sample point sets are shown in Figure C.4. In
the top row t ∈ [0; 2π), in the middle row t ∈ [0; 40π) and in the bottom row t ∈ [0, 10π).
In any case 72 equidistant values are used. Thus we have an ordered sequence of sample
points given by our parametrization. In dynamic geometry programs, ordered samples
can be calculated even if the constructed curve is not rationally parametrizable. (More
precisely a curve can be parametrized by rational functions if it comes from a construction
that uses exclusively ruler constructions. Constructions use ruler and compass may lead
to more general but still algebraic curves.) A good idea of what the curve belonging
to the data looks like can be provided by connecting the ordered samples linearly. The
middle column of Figure C.4 shows these line segments. In the case of t ∈ [0; 40π) in the
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|λ6| ≈ 9.553106 · 10−21 Significant eigenvalue |λ4| ≈ 1.032505 · 10−11

drop at d = 4 and d = 6

|λ4| ≈ 3.517604 · 10−15 Significant eigenvalue

drop at d = 4

Figure C.5.: Recognition of Epicycloids (see Equation (C.5))

second row, the sampling rate is too low to show the curve itself but the picture gives a
good impression of the contour. In cases, where the data is not scattered along the curve
but locally concentrated, more intuition is needed when looking at the connected data.
In either case, our algorithm detects the correct curve of degree ten (ignoring roundoff
errors).
As a further example, we take a Epicycloid of degree six with parameters r = 1, s = 6,
k = 12 and l = 4. The top left image of Figure C.5 shows it, correctly recognized by
our algorithm. The corresponding minimal eigenvalue is sufficiently small, i.e. below the
dashed threshold. The logarithmic plot of the minimal eigenvalues against the tested
degree in the subsequent middle picture reveals another significant eigenvalue-drop. It
suggests that the curve looks quite like a curve of degree four. There is, in fact, such a
curve of degree d = 4, approximating the sample points very well. It can be seen in the
right picture in the top row of Figure C.5. We could have guessed this only by looking at
the parameter vector of the correctly recognized curve: All parameters corresponding to
the xi1x

j
2x
k
3-terms with i+j ∈ {5, 6} are very small or vanish totally (x3 is the coordinate

for homogenization). This curve of degree four can be discarded because of a (second)
significant drop in the minimal eigenvalues when switching to a testing degree of six. An
acceptable threshold, e.g. 10−14, may be chosen to tell these curves apart. By altering
the Epicycloid’s parameter r to r = 0.4, (C.5) still provides us with a Epicycloid of
degree six. In this case, there is only one significant drop in the minimal eigenvalues. λ4

is already in the range of roundoff errors. Thus our presented algorithm falsely assumes
that the data belongs to a curve of degree four instead of six.
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Epicycloid of degree 14 Decreasing eigenvalues Curve or degree 12

without significant drop approximating data

Decreasing eigenvalues Relation of decreasing Corrected eigenvalues

due to matrix structure eigenvalues

Figure C.6.: Problematic recognition of an Epicycloid of degree 14 and structural de-
creasing eigenvalues

Our algorithm makes a false degree guess more often for curves of relatively high degree.
The may be recognized as curves of lower degree. Usually in most of these cases the
approximation by the low degree curve is so good that it visually fits the sample data
extremely well. The situation is qualitatively the same as with the Epicycloid in Figure
C.5. For the example in the top row, the sample data is already very nicely approximated
by an algebraic curve of degree 4.
In general, one can observe that the absolute value of the smaller eigenvalue becomes
smaller the higher the degree gets. Let us take for example the Epicycloid with a degree
of 28 from Figure C.6. It has the parameters r = 1.4, s = 5, k = 14 and l = 1 and it
comes up with a decreasing minimal eigenvalue the higher the selected tested degree is.
This is not only the case with Epicycloids but with any curve. The minimal eigenvalues
stop decreasing once they reach the region of roundoff errors. A reason for this behavior
is in the structure of the matrix P . P is used to determine the degree in the minimization
(C.4). It is built up row-by-row by τd(p) with p being a sample point. Thus the columns
of P consist of values xiyjzk, where x, y and z are the coordinates of a sample point.
Since the number of free parameters grows quadratically with the degree d, curves of
higher degree can simply approximate a set of sample points much better. We did not
analyze this effect qualitatively but experimental results exploit a roughly exponential
behavior. For this we we took a sample set of 300 random points within the range of −4
and 4 for x and y. With probability one, these points will not be contained in a curve
of degree 20 or lower. We can do this a hundred times and thereby calculate the mean
minimal eigenvalues for our testing degrees. The resulting diminishing eigenvalues, due
to our matrix structure, are shown in a logarithmic plot in the bottom left of Figure
C.6. In this logarithmic scale it is almost linear. The next picture (middle of lower
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pi 7→ pi + (10, 10) pi 7→ pi + (30, 30) pi 7→ (pi + (30, 30)) · 0.01

Figure C.7.: Experiments with shifted sample data for shifts (10, 10), (30, 30) and a shift
(30, 30) followed by scaling

row) compares this generic effect with the behavior for the Epicycloid. We see that
at least part of the systematic eigenvalue fall can be explained by this generic effect.
Knowing the structural diminution approximately, we can introduce a correction term
in our calculations. The bottom right plot of Figure C.6 reflects the outcome. This
means that in case of our Epicycloid we have small eigenvalues for high testing degrees
but not a single significant drop in the eigenvalues. The fact that λ12 in itself is lower
than our chosen threshold is no indicator that a curve and the correct degree was found.
If we accepted the curve at the testing degree d = 12, we would get the curve shown in
the right of Figure C.6. It is obviously not a good approximation to the sample points. In
relation to the structural diminution, the minimal eigenvalues of the Epicycloid decrease
even more. We interpret this as follows: The higher the testing degree gets, the better
the data may be approximated. The increasing values in the corrected plot are due to
roundoff errors.

C.5.2. Shifting and preconditioning

Our method as presented here has one significant drawback: It is very sensitive to the
location of the sample points. This is due to the following effect. If, for instance,
in our example we shift the Euclidean sample points by a vector (100, 100), then the
corresponding parameters in τd(pi) exhibit very high parameter values since the shifts
are amplified by the large exponents in the polynomial bases. This results in the fact
that our matrix P becomes more and more numerically ill-conditioned when the sample
points are far away from the origin. The first two pictures of Figure 4 show how the
estimated curve becomes more and more inaccurate the further away all sample points
are form the origin.
So far, we do not have a unified method to attack these numerical problems, however
we have several reasonable heuristics that work well in practice. As a first step one
could a priory investigate the data and translate it so that it is not too far away from
the origin. One could also scale the data. After calculating the parameter vector this
vector has to be transformed correctly to match the original data points again. We call
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this process preconditioning. The third picture of Figure C.7 demonstrates the result of
this method. There the data points have first been translated by a vector (30, 30). This
would normally result in a very badly conditioned matrix and the estimated curve would
be far off the sample points (see middle picture). However, now the whole data set is
scaled by a factor of 0.01, which again moves the data points close to the origin. The
last picture shows that after this preconditioning the estimated curve nicely matches the
sample data again.
A more subtle method to attack numerical instabilities can be achieved by using topo-
logical curve invariants. In our example the middle picture could never stem from a
locus generated by a dynamic geometry program: The curve obviously breaks up in (at
least) two branches and P contains points on different branches. This is also true for
the wrongly recognized Epicycloid of Figure C.6. Using, for example, a Bernstein Basis
(with respect to the appropriate bounded domain in each case) for representing and
dealing with the involved polynomials could help to improve the conditioning problem,
too.

C.5.3. Investigating curve invariants

The parameter vector of the curve is the eigenvector that corresponds to the smallest
absolute eigenvalue. A search for curve invariants as proposed in Section 4 would require
the generation of many instances of similar curves and the calculation of the orthogonal
space. The orthogonal space would hint to specific dependencies on the curve’s param-
eters. However, very often such dependencies also are indicated if one investigates only
in one such parameter vector. In our example of Figure 2 after multiplying by a suitable
factor, the eigenvector of the degree four approximation takes the following form (four
digits after the decimal point are shown):

β = ( 1.0, −9.4034 · 10−8, 2.0, −8.8127 · 10−8, 1.0, −28.08, −0.55999, −28.08,
−0.55999, 237.3311, 7.8623, 40.2880, −423.9761, 66.5167, −1396.3979)

Looking at these values one may suspect that the curve has the characteristic properties

β2 = β4 = 0, 2β1 = β3 = 2β5, β6 = β8, β7 = β9.

In fact, comparing these conjectures with the coefficients of a generic limaçon generated
by a computer algebra system shows that the above relations indeed hold for the general
case. Using techniques like the PSLQ algorithm [19] that is able to “guess” integral
relations between real numbers, one could also use a single eigenvector to derive many
more reasonable conjectures about the underlying curve type. Further research in this
direction is in progress.

C.6. Conclusions

With a given set of points P representing an algebraic curve approximately, we can
determine the curve’s coefficients by computing eigenvalues and eigenvectors only. This
article presented the first steps along this road. Still there are many open questions and
problems to tackle. The main research problems currently are:
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• What are good ways of preconditioning?

• How to deal with curve types that depend on parameters?

• How to derive geometric transformations that map a curve to a kind of standard
representation?

• How can one derive a reliable measure for the quality of the result?

• To what extent can randomization techniques be used to speed up the calculations?

• How to use topological curve characteristics to restrict the search space of potential
curves?

• Can similar approaches be used within the more special class of rational algebraic
functions?
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