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Understanding is, after all, what science is all about - and
science is a great deal more than mere mindless compu-
tation.

Roger Penrose

1
Introduction

Contemporary science is able to explain many astrophysical phenomena based on observations
of stars which irradiate energy during most of their life in form of photons. However, all photons
come from the stellar atmosphere which is typically very thin and in terms of volume and mass
covers only a minor fraction of the whole star. Since, the stellar interior is optically thick, it does
not leak any radiation which we can observe and therefore remains well hidden. Most of the stars
are too far away for a detection of any physical signature coming from below their atmospheres
(e.g.neutrinos, surface oscillations, gravity waves) and moreover, current observations reveal to
us only a snapshot from the evolution of stars which may take billions of year. The only way
to understand stars is therefore by numerical simulations. Such a canonical stellar evolutionary
simulation, based on a solution of the stellar structure equations (Kippenhahn & Weigert 1990;
Weiss et al. 2004) can provide us with valuable informations about the structure of a star
from its center up to the surface over its whole life. The canonical simulation is typically
one-dimensional, hydrostatic and employs phenomenological theories. This approach is not
computationally demanding which is one of its main advantages, however, faces the problem of
free parameters based on incomplete physical models which must be often calibrated in order to
fit observations.

With increasing computational capabilities, the importance of multidimensional hydrodynamic
simulations in stellar evolution studies grows rapidly since they are based on a solution of
conservation laws and are essentially parameter free. With present supercomputers we are not
able to follow the whole “hydrodynamic” life of a star but still have to rely on the canonical
stellar evolutionary studies. Mutual comparison of these two approaches to stellar evolution is
therefore crucial, since it can give us hints on where the canonical theory is doing fine, and where
and up to what extent it fails.

The canonical stellar evolutionary calculations are typically in agreement with observations
during most of the life of stars which can be represented by the Herzsprung-Russell diagram (or
H-R diagram); a graph of stellar luminosity versus surface temperature of a star. The stellar
calculations can fit in many cases the diagrams very well. Problems occur when stars experience
evolutionary phases which are hydrodynamic i.e. involving fast expansion, rapid collapse or
strong turbulent convection.

While the standard stellar evolutionary calculations have been successful in reproducing obser-
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6 CHAPTER 1. INTRODUCTION

vations of stars characterized by core hydrogen burning (the main sequence or MS), and of the
stars that have exhausted central hydrogen and burn it only in a shell (the red giant branch
or RGB), we recognize several discrepancies concerning the phases after the subsequent central
helium ignition, the core helium flash. In particular, we recall the lack of an understand-
ing about the horizontal-branch morphology (Catelan 2005), where the star quiescently burns
helium in its core (a phase following shortly after the core helium flash). Low-luminosity car-
bon stars and hydrogen-deficient stars are difficult to explain as well. Since all of these (and
other) problems appear after the RGB phase, it is plausible to suspect that the helium flash
may be treated incorrectly in standard (hydrostatic) stellar evolutionary calculations. We hope
to resolve this issue by an analysis of our hydrodynamic simulations.

1.1. The Core Helium Flash

In low-mass stars of mass 0.7 M�
1 ≤ M ≤ 2.2 M�, the onset of helium burning constitutes

a major event – the core helium flash. When the star finishes hydrogen burning period in its
center and starts to leave the main sequence on the H-R diagram (Fig. 1.1), it contains a core
composed of almost pure helium with a surrounding hydrogen burning shell (Fig. 1.2). The
hydrogen burning shell moves outwards and leaves helium layers behind, i.e. the helium core
grows in mass. At the same time, the helium core contracts until the central densities reach
values of ρc ∼ 106 g cm−3 at which the plasma is electron degenerate and the supporting
pressure of the electron gas stops the contraction.

The density of the ambient hydrogen burning shell is by a factor of 1010 lower than the density
in the center of the star (Fig. 1.3). Therefore, it does not have any influence on the upper layers
of the helium core which on the other side has a strong influence on the hydrogen shell due to
gravitational energy release in the helium core during its contraction. Refsdal & Weigert (1970)
have shown that the temperature of the hydrogen burning shell TH obeys the following relation
TH ∝MHe/RHe, where MHe and RHe are the mass and radius of the helium core, respectively.
Since the electron gas is a very good heat conductor, the helium core is almost isothermal and
has a temperature equal to that of the hydrogen burning shell.

The radius of objects containing degenerate matter decreases with increasing mass, therefore
TH will be rising which results in an increase of the energy production due to hydrogen burning
shell, and consequently to an increase of the luminosity of the star. At the same time, outer
layers of the star expand and the temperature drops on its surface i.e. the star becomes a red
giant that climbs up the H-R diagram towards the right (Fig. 1.1).

The temperature in the helium core TH increases due to the strong thermal coupling with the
hydrogen burning shell and due to the release of the gravitational energy of the contracting core.
When the temperature reaches ∼ 108 K in the core, the strong temperature dependent triple-α
reaction ignites in a relatively dense environment. The ignition occurs off-center due to plasma-
and photo-neutrino cooling. The neutrinos are efficiently produced only in the densest central
part of the core and leave the star without interaction. Therefore, helium burning (triple-α
reaction) begins in a concentric shell, and not in the center. This happens when the helium core
of the star has a mass of ∼ 0.45M�

2. At this point, the helium core contains a white dwarf-like
degenerate structure and an off-center temperature maximum (Fig. 1.3).

1M� is a mass of Sun which is equal to ∼ 1.98×1033 grams.
2In stars with a mass less than 0.45 M� helium will never be ignited. This led Hansen (2005) to the conclusion

that some bright white dwarfs observed in open clusters are ∼ 0.5 M� white dwarfs with a helium core instead
of a carbon core. This may happen if mass loss during the ascent along the red giant branch is strong enough
to prevent the star from reaching the core helium flash.
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Figure 1.1.: (a) Theoretical evolutionary track of a 1.25 M� star with a metallicity Z=0.02 in the
H-R diagram. The core helium flash begins at the the tip of the red giant branch indicated by the arrow
(MS is the main sequence, RGB is the red giant branch, HB is the horizontal branch). (b) Temporal
evolution of helium luminosity LHe (solid) versus the hydrogen luminosity LH (dash-dotted) during the
core helium flash (L�∼ 3.839× 1033 erg s−1 is a luminosity of Sun).

Figure 1.2.: Sketch of a helium core (white region) surrounded by a hydrogen burning envelope (blue
layer) up to a radius r = 2.2×109 cm enclosing a mass Mr ∼ 0.5 M� in a 1.25 M� star with a metallicity
Z=0.02 near the peak of the core helium flash. The dotted lines mark boundaries of the convection zone
(grey circles).
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Figure 1.3.: (a) Temperature and (b) density profile of a 1.25 M� star with a metallicity Z=0.02 at
the peak of the core helium flash as a function of enclosed mass Mr at radius r. The vertical lines mark
the surface of the helium core at Mr ∼ 0.47 M�.

When helium burning commences in the degenerate core, the liberated nuclear energy cannot
be used to expand and cool the layers close to the temperature maximum. Instead it causes
further heating and a strong increase in the nuclear energy release. Only when convection sets
in can part of the excess energy be transported away from the burning regions, inhibiting a ther-
monuclear runaway. This convection zone never reaches the hydrogen burning shell (Fig. 1.2),
unless metallicity 3 of the star is very small. By the end of the flash, the core has expanded to
densities of the order of 104 g cm−3 and helium burning continues quiescently in the core. The
star has settled onto the horizontal branch (Fig. 1.1). Given that the maximum temperature in
the helium core is T ∼ 1 × 108 K, the star reaches the peak in nuclear energy production rate
during the core helium flash in less than 104 yrs (Fig. 1.4).

A core helium flash can be described by the following general scenario (based on the evolution
of a 1.25 M� star with a metallicity Z=0.02):

1. Helium ignition occurs off-center due to neutrino cooling and the resulting off-center tem-
perature maximum (Fig. 1.3, Fig. 1.4). The temperature and the nuclear energy produc-
tion begins to rise slowly. From the onset of core helium burning at a helium luminosity
LHe ∼ 101L�, it takes almost 3×104 yrs to reach LHe ∼ 104 L� during which the core
builds up a convection zone, and starts to expand slowly (∼ m s−1)

2. During the next 40 yrs, the core helium flash reaches its peak with a central temperature
up to 2 × 108 K, and a peak luminosity of LHe ∼ 1010 L� (Fig. 1.1). At this point, the
core’s degeneracy is almost completely lifted, and the core expansion inhibits a further rise
of the core temperature.

3. When the temperature drops in the core again, the thickness of the helium burning shell
decreases. When the shell reaches a critical thickness it becomes thermally unstable
i.e. the first core helium flash described above is followed by several subsequent mini flashes
(Fig. 1.1) identified as thermal pulses by Thomas (1967) until the degeneracy is lifted com-
pletely in the helium core and the star settles down on the horizontal branch quiescently
burning helium in its core.

3Metallicity is the ratio of the mass fraction of all elements heavier than helium to the whole mass of a star.
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Figure 1.4.: (a) Temperature and (b) density profile of a 1.25 M� star with a metallicity Z=0.02 at
the onset of the core helium flash (0) till its peak (4). The different curves correspond to the peak of the
core helium flash t = 0 yrs (4) and the rest to t = -0.12 yrs (3), t = -4.52 yrs (2), t = -485 s (1) and t =
-8715 yrs (0), respectively.

All these results were obtained from canonical hydrostatic stellar evolutionary calculations (see
the next Sect. 1.1.1).

1.1.1. Hydrostatic Calculations

Stars are during most of their life in hydrostatic equilibrium, and roughly spherical. This gives
one an opportunity to model the evolution of stellar structure by means of one-dimensional simu-
lations where multidimensional flow phenomena are treated by an approximate phenomenological
description (Kippenhahn & Weigert 1990; Weiss et al. 2004). Such simulations are called stellar
evolutionary calculations.

Indeed, the first results on the core helium flash were gained from such one-dimensional hydro-
static numerical simulations. The star had a mass of a 1.3 M� star and a metallicity Z = 0.001
(Schwarzschild & Härm 1962). This simulation was done under the assumptions of a simple
equation of state consisting of an ideal ion gas and an degenerate electron gas with γ = 5/3.
For the nuclear reactions they considered only helium and hydrogen burning approximated by
a simple fit formula. In addition, they assumed the core to be in hydrostatic equilibrium and
completely degenerate at the edge of the core, being surrounded by an ideal gas. They have
found that the star underwent a thermal runaway due to the ignition of helium under degen-
erate conditions in its center. From the beginning of helium burning at a central temperature
∼ 8.3×107 K, it took half a million years before helium burning started to accelerate at temper-
atures ∼ 108 K. From that time on, the star reached a peak core temperature of ∼ 3.5× 108 K
and a total energy generation rate of ∼ 1012L� in less than 700 yrs. Therefore, Schwarzschild
and Härm called this event core helium flash. With improved physics and numerical approaches,
similar simulations were done later by Härm & Schwarzschild (1964, 1966) with no significantly
different outcome.

An interesting study was performed by Tomasko (1970) who studied the pulsational stability of
the helium core during the flash. He found that perturbations in the interior of the core can
propagate outwards and can be partially reflected from the relatively abrupt change in density at
the edge of the core (Fig. 1.3). Upon returning to the central regions, these reflected disturbances
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can enhance the central perturbations and result in a pulsation of the core. The pulsation can
be energized by the high rate of nuclear burning at the peak of the flash, and eventually lead to
mass loss of a star.

A major breakthrough in the research of the flash was achieved by Thomas (1967) and Demarque
& Mengel (1971) who found that the ignition of helium during the flash can occur off-center due
to neutrino losses (Ramadurai 1976). Calculations of the flash were redone later with better
numerical techniques and an improved treatment of the major physical processes by Sweigart &
Gross (1978). The ignition of helium occurred again off-center due to neutrino processes, but
the general picture mentioned earlier remain unchanged.

Based on the core helium flash, Paczynski & Tremaine (1977) attempted to explain peculiar
carbon abundances observed in some stars. They assumed the mass fraction at which helium
ignites to be a free parameter as at that time the neutrino cooling rate was only poorly known
(Ramadurai 1976). Indeed, from their simulations of a 0.8 M� star with helium ignition at the
mass coordinate Mr ∼ 0.4 M� , they got a significant surface carbon increase. Nowadays, the
neutrino production is very well understood, and their approach is no longer adequate.

At very low metallicity, the helium ignites further out from the center in low-mass stars. This fact
leads to interesting phenomena in metal-poor stars due to hydrogen entrainment in the helium
core during the flash (Fujimoto et al. 1990; Schlattl et al. 2001). Under certain circumstances,
such a flash results in an enrichment of the stellar surface by elements produced during helium
burning and can explain observations of metal-poor, but carbon-rich stars.

1.1.2. Hydrodynamic Calculations

The conceptual problems associated with the helium core flash arise from the extremely short
timescales involved in the event. While the pre-flash evolution proceeds on a nuclear timescale
of ∼108 yrs, typical e-folding times for the energy release from helium burning can become as
short as hours at the peak of the flash. These short times are comparable to convective turnover
times, i.e. the common assumptions used for the treatment of convection in stellar evolution codes
(instantaneous mixing, time-independence) are no longer valid. In addition, the assumption of
hydrostatic equilibrium no longer needs to be fulfilled. Early attempts to avoid these assumptions
by modeling one-dimensional hydrodynamic flow (Edwards 1969; Zimmermann 1970; Villere
1976; Wickett 1977) remained inconclusive. The results ranged from a confirmation of the
general scenario to a complete disruption of the star.

Cole & Deupree (1980, 1981) performed a two-dimensional hydrodynamic study of the core
helium flash. However, their study was limited by the computational resources available at that
time to a rather coarse computational grid (23×4 zones), a diffusive first-order difference scheme
(weighted donor cell), and a short time evolution (105 s compared to the duration of the core
helium flash of 1011 s from the onset of convection). At the radius of the off-center temperature
maximum, they observed a series of thermonuclear runaways where heat transport by convection
and conduction was sufficiently efficient to limit the rise in temperature. Each runaway modified
the convective flow pattern and generated some inward transport of heat across the off-center
temperature inversion. During the simulation, the time interval between runaways continuously
shortened, and the maximum temperature steadily increased until it eventually exceeded 109 K.

Deupree & Cole (1983) and (Deupree 1984a,b) confirmed these findings using two-dimensional
models with an improved angular resolution (6◦ instead of 20◦), and three-dimensional simula-
tions (with 8×8 angular zones in a 80◦×80◦ cone, i.e. 10◦ angular resolution). Cole et al. (1985)
performed stellar evolution calculations of the core helium flash using a model for convective



1.2. AIMS 11

overshooting based on these hydrodynamic simulations. They found that the evolution of the
core helium flash was unchanged except for the last week prior to its peak. Furthermore, the
possibility of the mixing of core material into the hydrogen shell was suggested by numerical
experiments where point source explosions were enforced (Deupree 1984b, 1986; Deupree & Wal-
lace 1987). These results raised the hope that some problems concerning abundance anomalies
and mass loss could be solved by understanding the core helium flash.

The results of the hydrodynamic simulations, though varying in details, indicated a dynamic
flash that could disrupt the star (Deupree 1984a) or at least lead to a significant loss of the
envelope (Cole & Deupree 1981). The simulations were criticized by Iben & Renzini (1984)
and Fujimoto et al. (1990) because (i) the radial grid was too coarse, (ii) the gravitational
potential was “frozen in” (i.e. time-independent), and (iii) because a “closed” outer boundary
was used. The last two assumptions tend to underestimate the expansion of the core, and hence
overestimate the violence of the flash.

1.2. Aims

Since the work of Deupree and Cole (see Sect. 1.1.2), the computational capabilities have grown
tremendously and methods to simulate hydrodynamic flow have improved considerably. Thus,
the limitations of the early studies concerning the grid resolution and the numerical treatment,
which were the main points of critique, meanwhile can be reduced considerably. At the same
time, we still have no coherent picture up to what extent and under what circumstances (stellar
mass and composition) hydrodynamic core helium flash evolution could differ from canonical
stellar evolution calculations. It therefore appears necessary to have a new and fresh look
into the dynamics of the core helium flash. Deupree (1996) re-examined himself the problem
already more than a decade ago concluding that the flash does not lead to any hydrodynamic
event. Quiescent behavior of the core helium flash is also favored by recent three-dimensional
simulations (Dearborn et al. 2006; Lattanzio et al. 2006) where the energy transport due to
convection, heat conduction, and radiation seems to be always able to transport most of the
energy generated during the flash quiescently from the stellar interior to the outer stellar layers,
implying no hydrodynamic event, and hence a quasi-hydrostatic evolution.

In the following we will present an investigation of the core helium flash mainly by means of two-
and three-dimensional hydrodynamic simulation using state-of-the-art numerical techniques, a
detailed equation of state and time-dependent gravitational potential. Using a modified version
of the Herakles code (Kifonidis et al. 2003, 2006; Mocák et al. 2008) which is now capable of
solving the hydrodynamic equations coupled to nuclear burning and thermal transport in up to
three spatial dimensions, we want to deepen our understanding of the flash. Its hydrodynamic
evolution in multi-dimensions will provide us with information on the structure and topology of
turbulent convection and on the entrainment into convectively stable layers which can give us
hints where the one-dimensional canonical calculations may fail. One of our goals is a compar-
ison of two- and three-dimensional hydrodynamic simulations versus predictions made by the
mixing length theory (Vitense 1953; Böhm-Vitense 1958), typically adopted for a description of
convection in canonical hydrostatic stellar evolutionary calculations.

Few studies of mixing length theory and multi-dimensional hydrodynamic simulations of turbu-
lent convection with nuclear burning deep within a star were performed already (Bazan & Arnett
1998; Kercek et al. 1998, 1999; Asida & Arnett 2000; Herwig et al. 2006; Meakin & Arnett 2006;
Dearborn et al. 2006; Arnett et al. 2007; Meakin & Arnett 2007b). This work is inspired by
these studies in many aspects.
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The thesis is organized as follows. In Sect. 2 we discuss characteristic properties of a helium
core at the peak of the flash. In Sect. 3 we describe the input physics for our calculations. Our
hydrodynamic code is described briefly in Sect. 4. In Sect. 5, we introduce the stellar models
used as input for the calculations. Section 6 deals with one-dimensional hydrodynamic simula-
tions. Section 7 gives a detailed analysis of our two-dimensional simulations. Three-dimensional
simulations and the results from a comparison between three-dimensional simulation and two-
dimensional simulations with the same angular resolution are discussed in Sect. 8. Finally, a
summary is given in Sect. 9.

We note, that the present investigation was instigated by a similar, meanwhile technically ob-
solete study that was performed by Kurt Achatz (Achatz 1995) in the context of his diploma
thesis. The results of this study have unfortunately never been published.



2
Properties of the System

2.1. Regime

Almost 100 % of the stellar core during the core helium flash is composed of helium gas which
is completely ionized. For helium particles, the ratio of the binding energy of the innermost
electrons EB ∼ 24.7 eV to their microscopic thermal energy is in the whole core very small,

EB

kBT
< 0.01 , (2.1)

where kB is Boltzmann constant, and T is the temperature (1 × 106 K < T < 2 × 108 K).
The electron density in the core is so high that the gas is partially degenerate. The degeneracy
parameter ψ 1, in the center of the helium core during the flash at its peak under the convection
zone powered by the helium burning is usually greater than 20, but in the convection zone the
degeneracy is due to the strong expansion already significantly lifted, and ψ < 4.

On the other side, the ions can be described as an ideal and non-relativistic Boltzmann gas as
the ratio of their Fermi energy EF,I ∼ 2.24× 10−12 erg and the typical thermal energy of ions
is small,

EF,I

kBT
< 0.01 (2.2)

The influence of the Coulomb forces between ions is negligible.

Γ =
Z2e2/a

kBT
< 1 with a =

(
3

4πnI

)1/3

(2.3)

where Z is the proton number, e is the electron charge, nI is a number of particles per volume
unit (∼ 1.5× 1028 cm−3), and a is the mean distance between the charges.

1It can be shown that the gas pressure is essentially that of a nondegenerate gas for ψ < −2 (Clayton 1968).

13
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2.2. Convection and Turbulence

The helium core in a star near the peak of the core helium flash contains a convection zone
(Fig. 1.2). Convection in stars is a dynamic process where gas currents transport energy and mix
chemical elements. It appears in regions where small fluctuations in e.g. temperature may grow
and give rise to macroscopic non-spherical motions. Imagine an initial temperature fluctuation
as an element of gas with a temperature T which is higher than that of the surrounding gas
i.e. its temperature is higher by δT > 0. In a convection region, the element feels a buoyant force
and rises upwards until it cools down sufficiently enough so that gravity can stop the motion
and pull it back to its original position. The condition for the existence of convection can be
expressed using temperature gradients ∇ in the following way (Kippenhahn & Weigert 1990;
Weiss et al. 2004):

∇surr > ∇ele +
ϕ

δ

(
d ln µ
d ln P

)
surr

with ∇ ≡ d ln T
d ln P

(2.4)

where the subscript “surr” refers to the surrounding of the element “ele”; δ ≡ ∂ ln ρ/∂ ln T , and
ϕ ≡ ∂ ln ρ/∂ ln µ. The quantities P , ρ and µ are the pressure, density and mean molecular
weight of the gas, respectively. Assuming the simplified case when the chemical gradient is zero,
the condition means that the temperature of the rising element must be dropping slower than
the temperature of the surrounding, i.e. the element remains less dense than its environment on
its path, i.e.buoyancy can pull it upwards (Fig. 2.1). When we assume that the element does not
exchange energy with its surrounding, ∇ele becomes equal to the adiabatic temperature gradient
∇ad and we get the Schwarzschild criterion, commonly used in canonical stellar evolutionary
calculations. In reality, there is always a small exchange of energy between the hotter element
and its environment, and therefore ∇ele > ∇ad.

In a case, when heavier elements in a star are located under the lighter ones, the chemical
gradient ∇µ increases inwards (as the pressure does) and ∇µ > 0 (ϕ and δ are both positive).
Then, the last term in Eq. 2.4 has a stabilizing effect. This is plausible as the element carries its
heavier material upwards into a lighter surrounding.

∇surr is usually positive as both pressure and temperature are decreasing with increasing radius
of star. However, at the position of the temperature inversion, that we have in the helium core
during the core helium flash, ∇surr becomes negative and the criterion Eq. 2.4 does not hold.
Therefore, the temperature inversion acts as an impenetrable reflective mirror for the convective
motion.

The most popular theory in stellar evolution that describes transport of energy and mixing due
to the convection is the mixing-length theory (Vitense 1953; Böhm-Vitense 1958; Kippenhahn
& Weigert 1990; Weiss et al. 2004). The theory assumes that convection consists of blobs that
travel over a certain distance, the mixing length λ, before they dissolve into the surrounding gas.
Let’s consider a convective element or blob with an excess temperature δT over its surrounding
gas which is in pressure equilibrium with the ambient gas and rising vertically with a velocity
vMLT (Fig. 2.1). According to mixing-length theory, the flux of energy transported by the blobs
in a convectively unstable region, i.e. the convective energy flux Fcon, is given by

Fcon = ρ vMLT cP δT , (2.5)

where ρ and cp are the density and the heat capacity at constant pressure of the gas, respectively.
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Figure 2.1.: (a) The adiabatic temperature gradient ∇ad (dotted) and an actual temperature gradient
∇surr (solid) in a 1.25 M� star with a metallicity Z=0.02 at the peak of the core helium flash. The
gradient ∇surr exceeds the value of the adiabatic gradient and therefore this region is convectively
unstable. (b) Convective velocities vMLT in the convectively unstable region within the helium core
predicted by the mixing length theory.

The temperature excess δT is determined by the mixing length λ:

δT

T
= (∇surr −∇ad)

1
Hp

λ

2
, (2.6)

where Hp = |p/∂rp| is the pressure scale height (∂r = ∂/∂r is a partial derivative with respect
to the radius r). The mixing length λ is a free parameter. In addition, the theory is a local one,
and therefore fails to capture genuine properties of convection which is a non-local phenomenon.

In a convectively stable region, any displaced mass element is pushed back by the buoyancy
force. On its way back to its original position, the blob gains momentum and therefore starts
to oscillate2 at around its original position. Assuming, the element is displaced by a distant ∆r,
has an excess density ∆ρ and is in its pressure equilibrium with the surrounding gas (∆P = 0),
one can derive an equation for an acceleration of the element:

∂2(∆r)
∂t2

=
gδ

Hp

[
∇ele −∇surr +

ϕ

δ
∇µ

]
∆r , with ∇µ =

d ln µ
d ln P

, (2.7)

where g is the gravitational acceleration. Let us assume now that the element, after an initial
displacement ∆r0, moves adiabatically (∇ele = ∇ad) through a convectively stable layer. The
element is accelerated back towards its equilibrium position around which it oscillates according
to the solution of Eq. 2.7:

∆r = ∆r0 ei ωad t (2.8)

The frequency ωad of this adiabatic oscillations is called Brunt-Väisälä frequency, and is given
by

2These oscillations are called internal gravity waves (Dalsgaard 2003).
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ω2
ad =

gδ

HP

(
∇ad −∇surr +

ϕ

δ
∇µ

)
(2.9)

The corresponding period is τad = 2π/ωad. In a convectively unstable region (assuming∇µ = 0)
Eq. 2.9 gives ω2

ad < 0, i.e.ωad is imaginary. Thus, the displaced element moves exponentially
away from its initial position, instead of oscillating around it.

Nevertheless, the convective motions can also significantly influence regions which are convec-
tively stable according to criterion Eq. 2.4. When a blob hits the boundary between the con-
vectively stable and unstable layers with a sufficiently high momentum, it can overshoot into
the stable region leading to additional heat transport and mixing within stars. This is a very
common phenomenon in geophysical flows (Fernando 1991). Therefore, there is no reason to
believe that it does not occur also in stratified media within stars.

Convection is a form of turbulence, which can be described by the dimensionless Rayleigh number
(Landau & Lifshitz 1966), that measures the relative importance of buoyancy and frictional
forces, and that also takes into account the effects of heat transport:

Ra =
gαcpρ

2|∆T |d3

Kη
with α = −1

ρ

∂ρ

∂T

∣∣∣∣
p

(2.10)

where cp is the heat capacity at constant pressure p, K is the thermal transport coefficient, α
is the isobaric expansion coefficient, and η is the viscosity of the gas. The quantities d and ∆T
describe the extent of the convection zone and the temperature difference across it. For typical
values 3 we get for the convection zone of the helium core Rayleigh numbers Ra > 1033 i.e. the
region is highly turbulent (Achatz 1995).

Turbulent motion is characterized by random spatial and temporal fluctuations, and by the
dimensionless Reynold number Re (Landau & Lifshitz 1966). When that number exceeds a
certain critical value Rcrit, small fluctuations in the flow are amplified, and the flow eventually
becomes turbulent. The critical value of Re depends on the exact flow configuration. In gases,
the Reynolds number is very high due to their low viscosity. In the convection zone during the
flash

Re ∼
v · l · ρ
η

∼ 1014 (2.11)

where l and v are the characteristic length and velocity of the flow, respectively. This confirms our
previous statement based on the estimate of the Rayleigh number, that the flow in the convection
is turbulent, which leads to complications when trying to simulate this event. Turbulence is a
three-dimensional phenomenon involving a large range of dynamical scales. We recall that, in
three-dimensional turbulent flow, large structures are unstable and cascade into smaller vortices
(as, e.g. in smoke plumes from chimneys) down to molecular scales where the kinetic energy of
the flow is eventually dissipated into heat.

If L is the largest scale characterizing a flow and l the scale where viscous dissipation begins,
one has the well known relation:

3An estimate of η for strongly degenerate and completely ionized helium gas comes from the calculations of Itoh
et al. (1987) that imply a value of η < 4× 105 g cm−1 s−1.
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L

l
∼ R3/4

e (2.12)

For example, in the Sun where the Reynolds number Re is typically 1012, one obtains L/l ∼ 109

i.e. the dissipation length scale is a billion times smaller than the largest length scale. There-
fore, the number of grid points N that a numerical simulation would require to resolve all the
relevant length scales is N ∼

(
L
l

)3 ∼ R
9/4
e ∼ 1027 which is 17 orders of magnitude larger

than N∼ 1010 ; the largest resolution computers can handle today (Canuto 2000). To account
for turbulence on the numerically unresolved scales, one usually adopts sub-grid scale models
e.g.by Smagorinsky (1963) which describe the energy transfer from the smallest numerically
resolved turbulent elements to those at the dissipation length scale, using various model and
flow dependent parameters.

2.3. Important Time Scales

A major disadvantage of multidimensional hydrodynamic simulations of stars today is related
to the fact, that stars evolve on a nuclear timescale which is typically of the order of 109 years.
But, even with the best supercomputers nowadays, we are not able to cover more than a few
days of stellar evolution (Herwig et al. 2006; Meakin & Arnett 2007b; Mocák et al. 2008).

Nevertheless, hydrodynamic simulations are an important tool for studying the evolution of
stars. Let us first define three major timescales, which one can associate with nuclear burning
and hydrodynamic flow.

• Nuclear timescale τbrn: An e-folding time, τbrn = T/Ṫ ≈ cV T/ε̇nuc, where ε̇nuc is the
energy release rate of the nuclear processes, T is the temperature, and cV is the specific
heat.

• Sound crossing timescale τhyd: A time, during which a region of a radius δr reacts to any
pressure imbalance. Such a reaction occurs with the local sound speed cs and therefore
the sound crossing time scale is τhyd = δr/cs.

• Convective turnover timescale τcnv : A time, which a convective element needs to cross
the convection zone of width Rcnv with a velocity vcnv, i.e. , τcnv = Rcnv/vcnv.

When the convective turnover timescale τcnv in a stellar convection zone becomes comparable or
smaller than the nuclear burning timescale τbrn, the border between quiescent quasi-hydrostatic
evolution and an explosion of a star is narrow (an issue which caused a lot of confusion in
the past; see Sect. 1.1.2). At this stage convection is losing its ability to transport as much
energy as it is produced by nuclear reactions, and the convective layers begin to expand rapidly.
Whenever such a situation occurs in stellar evolution, the convective flow should be studied by
hydrodynamic simulations, as they are able to correctly follow the reaction of the flow to any
pressure imbalance occurring on the sound crossing timescales τhyd.
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Figure 2.2.: Radial profile of the energy generation rate in a 1.25 M� star with a metallicity Z=0.02
(a) and a metal-free (Z=0) 0.85 M� star (b) during the core helium flash. In the latter case the energy
production rate by the CNO cycle exceeds the energy production rate by triple-α reaction.

2.4. Thermonuclear Reactions

The dominant energy source in stars undergoing the core helium flash is the triple-α reaction
(Fig. 2.2) where three 4He nuclei are fused into one 12C nucleus through the following nuclear
chain including the unstable 8Be 4:

4He + 4He 
 8Be
8Be + 4He → 12C

The reaction rate of these processes 〈σv〉, which is a product of the cross section and the velocity
of particles, averaged over distribution of kinetic energy of particles, is extremely sensitive to the
temperature of the gas 〈σv〉3α ∝ T 20..40. Thus, temperature fluctuations may play an important
role during the core helium flash.

The situation is different for the extremely metal-poor stars which can experience entrainment
of hydrogen into the helium burning regions i.e. consequently, the dominant energy source is
provided by the CNO cycle:

12C + 1H → 13N + γ
13N → 13C + e+ + νe
13C + 1H → 14N + γ
14N + 1H → 15O + γ
15O → 15N + e+ + νe
15N + 1H → 12C + 4He

Although, energy generation rate by the triple-α reaction is still relatively high at the peak of
the flash in the metal-poor stars, it is by an order of magnitude smaller than that provided by
the CNO cycle (Fig. 2.2).

4The unstable nucleus 8Be decays in ∼ 10−6 s



2.5. NEUTRINOS 19

If the gas density is high, the reaction rates of the nuclear processes are influenced by the
Coulomb interaction of the charged particles. The charged particles can shield the nuclei and
therefore influence their Coulomb potential and lead to an enhancement of the reaction rate.
This effect is called screening and can be described by a screening factor f which depends on
the density and the temperature of the gas (see Sect. 4.3).

2.5. Neutrinos

Neutrinos ν and antineutrinos ν̄ created in the helium core during the flash leave the star un-
affected. They carry energy away from the star, and are responsible for the central temperature
inversion and the off-center ignition of the helium at the onset of the core helium flash (Thomas
1967; Demarque & Mengel 1971; Ramadurai 1976). There exist three dominant ν processes in
stellar interiors (Inman & Ruderman 1964; Reeves 1963):

• Plasma Neutrino Process: plasmon → ν + ν̄. Plasmons are electromagnetic waves in a
plasma possessing an excess of energy for a given momentum, which results from the inter-
action of the photons with the plasma. They are energetically unstable against neutrino-
decay mode, whereas a free photon is stable (Clayton 1968).

• Photo Neutrinos Process: γ + e− → e− + ν + ν̄. A photon is converted into a neutrino-
antineutrino pair by scattering off an electron. This is a modified form of Compton scat-
tering (Beaudet et al. 1967).

• Pair-Annihilation Process: e+ + e− → ν + ν̄. Annihilation of electron-position pairs can
lead to the production of neutrino, antineutrino pair instead of the production of two
photons. This process is interesting at higher temperatures where the amount amount of
electron-positron pairs increases.

The plasma neutrino process is the most important energy loss during the core helium flash
(Ramadurai 1976).

2.6. Thermal Transport

We can imagine a thermal transport as a process, which leads to a transfer of heat by radiative
and conductive processes, i.e.particle collisions (electrons and ions). The energy flux density
due to thermal transport fTH can be expressed in the following form:

fTH = −KTH ∇T = −(Kγ +Ke,i) ∇T ∝ 1
κγ

+
1
κe,i

∝ 1
κ
, (2.13)

where KTH is the total thermal conductivity (in erg K−1 cm−1 s−1). It is the sum of the ther-
mal conductivity due to photons Kγ and particle collisions Ke,i, respectively. The corresponding
opacities are κγ and κe,i (in cm2 s−1), respectively. ∇T is the local temperature gradient. There
exists a relation between the conductivity K, velocity v, and the mean free path of particles λ:

Kγ,e,i ∝ vγ,e,i · λγ,e,i . (2.14)
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Figure 2.3.: Radial profiles of the inverse opacities due to radiation 1/κγ (dotted) and electrons 1/κe

(dashed), respectively, and of the inverse of the total opacity i.e. 1/κ = 1/κγ + 1/κe (solid) in the helium
core of a 1.25 M� star with a metallicity Z=0.02 during the core helium flash at its peak.

It tells us that in non-degenerate matter, the transport due to radiation dominates, as the speed
vγ and the mean free path λγ of photons are much higher than those of massive particles in
the gas. The situation is different in electron degenerate matter where the electrons can have
very high velocities and their collisions become rather unlikely leading to an increase of their
mean free path λe. Therefore, in this regime, the radiative opacity κγ exceeds the value of κe

considerably, i.e. thermal transport due to electron conduction dominates the thermal transport.

In the helium core at the peak of the flash one encounters both regimes (Fig. 2.3). The electron
degeneracy is almost completely lifted at the top of the helium core and heat conduction due to
electrons is small. On the other hand, the center of the helium core is still highly degenerate.
Therefore, we need to take both contributions into account in our calculations.

2.7. Geometry

The computational grid for the hydrodynamic simulations of the core helium flash must contain
the whole convection zone as the typical length scales of convective motions are roughly com-
parable to the width of the convection zone. As we simulate only a fraction of a star, which is
a sphere, to simplify calculations at boundaries of the computational grid, it is appropriate to
perform the simulations in spherical polar coordinates (r, θ,φ) where r is the radius, θ ∈ [0◦, 180◦]
the polar angle, and φ ∈ [0◦, 360◦] the azimuthal angle.



3
Input Physics

3.1. Evolutionary Equations

The hydrodynamic and thermonuclear evolution of the core helium flash was computed by solving
the governing set of fluid dynamic equations in spherical coordinates on an Eulerian grid. Using
vector notation, these equations have the form,

∂U
∂t

+∇F = S (3.1)

with the state vector U

U ≡


ρ
ρv
ρe
ρXi

 (3.2)

the flux vector F

F ≡


ρv
ρvv

(ρe+ p)v + fcond

ρXiv

 (3.3)

and the source vector S

S ≡


0

−ρ∇Φ
−ρv · ∇Φ + ρε̇nuc

ρẊi

 (3.4)
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with i = 1, . . . , Nnuc, where Nnuc is the number of nuclear species considered in the nuclear reac-
tion network, and ρ, p, v, and Φ are the density, pressure, velocity, and gravitational potential,
respectively. The term fcond describes energy transport by thermal conduction (see Sect. 3.5),
and ε̇nuc and the Ẋi are the nuclear energy generation rate and the change in the mass frac-
tion of species i due to nuclear reactions, respectively (see Sect. 3.3). The total energy density
ρe = ρε+ ρvv/2, where e is the specific total energy and ε is the specific internal energy.

3.2. Equation of State

The equation of state employed in our hydrodynamic code includes contributions due to radi-
ation, ions, electrons, and positrons. The total pressure and energy density is therefore given
by

P = Pγ + Pion + Pe + Pp

ρe = Eγ + Eion + Ee + Ep
(3.5)

where

Pγ =
a

3
T 4

Eγ =
3 Prad

ρ

is the radiation pressure and energy density of a photon gas of temperature T , a is the universal
radiation constant,

Pion =
∑

i

<ρXi

Ai
T = <ρT

∑
i

Yi

Eion =
3
2
<ρT

∑
i

Yi =
3
2
Pion

ρ

is the pressure and energy density of a non-relativistic Boltzmann gas of density ρ which consists
of a set of ions of abundance Yi = Xi/Ai (where Xi and Ai are the mass fraction and the atomic
mass number of species i, respectively).

The pressure of an arbitrarily degenerate and relativistic electron-positron gas Pe + Pp is based
on table interpolation of the Helmholtz free energy (Timmes & Swesty 2000).

3.3. Nuclear Burning

The energy generation rate by nuclear burning is given by

ε̇nuc =
∑

i

∆mic
2

mu
Ẏi , (3.6)

where

∆mi = Mi −Aimu (3.7)

is the mass excess of a nucleus of mass Mi, and mu is the atomic mass unit.
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Abundance changes are described in our simulations by a nuclear reaction network consisting
of the four α-nuclei 4He, 12C, 16O, and 20Ne, coupled by seven reactions (including the triple-α
reaction). We used the reaction rate library of Thielemann (private communication), which
provides the product of the Avogadro number NA and the velocity averaged cross section 〈σv〉
in terms of the fit formula

NA〈σv〉 =
nl∑

l=1

exp
[
c1l + c2lT

−1 + c3lT
−1/3 + c4lT

1/3

+ c5lT + c6lT
5/3 + c7l lnT

]
, (3.8)

with rate dependent coefficients cil (1 ≤ i ≤ 7). Up to three sets of coefficients (i.e. 1 ≤ nl ≤ 3)
are used. The total reaction rate due to all one-body, two-body, and three-body interactions has
the form (Müller 1998):

Ẏi =
∑

j

ciλjYj +
∑
j,k

ci(j, k)ρNA〈σv〉j,kYjYk

+
∑
j,k,l

ci(j, k, l)ρ2N2
A〈σv〉j,k,lYjYkYl (3.9)

where the weight factors ci prevent multiple counts in the sums. The following nuclear reactions
were considered:

He4 + C12 → O16 + γ
He4 + O16 → Ne20 + γ
O16 + γ → He4 + C12

Ne20 + γ → He4 + O16

C12 + C12 → Ne20 + He4

He4 + He4 + He4 → C12 + γ
C12 + γ → He4 + He4 + He4

Mathematically, this produces a nuclear reaction network consisting of four non-linear first-order
differential equations of the form given by Eq. (3.9) and a temperature equation

∂T

∂t
= ε̇nuc

∂T

∂ε
, (3.10)

where ε is the specific internal energy.

Abundance changes due to CNO-cycle are described in our simulations by a nuclear reaction
network consisting of the eight nuclei, namely 1H, 3He, 4He, 12C, 13C, 14N, 16O and 20Ne, coupled
by the following twelve reactions:

H1 + He3 → He4 + γ
He4 + C12 → O16 + γ
H1 + C13 → N14 + γ
He4 + O16 → Ne20 + γ
C12 + C12 → He4 + Ne20 + γ
He3 + He3 → H1 + H1 + He4 + γ
N14 + γ → H1 + C13

O16 + γ → He4 + C12

Ne20 + γ → He4 + O16

C12 + γ → He4 + He4 + He4

He4 + He4 + He4 → C12 + γ
H1 + H1 + He4 → He3 + He3 + γ
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In both networks, the effects of electron screening were included according to Dewitt et al. (1973)
for the triple-α reaction rate.

3.4. Neutrino Emission

The evolutionary time covered by our hydrodynamic simulations is too short for neutrino cooling
to be of importance. The neutrino losses computed from the analytic fits of Itoh et al. (1996)
provide a cooling rate ε̇ < 102 erg g−1 s−1, or a corresponding decrease in the maximum tem-
perature by |∆T | < 10−1 K during the longest simulations that we performed. Hence, cooling
by neutrinos was neglected.

3.5. Thermal Transport

The energy flux density due to thermal transport is given by

fcond = −Kcond∇T , (3.11)

where Kcond is the total conductivity ( erg K−1 cm−1 s−1) and ∇T the temperature gradient.

In the helium core, which is partially degenerate, thermal transport due to both radiative diffu-
sion and electron conduction is important, while heat transport by ions is negligible, i.e.

Kcond = Kγ +Ke . (3.12)

The radiative conductivity is given by

Kγ =
4ac
3

T 3

κγρ
, (3.13)

where κ, a, and c are the Rosseland mean of the opacity, the radiation constant, and the speed
of light, respectively. For the opacity, we use a formula proposed by Iben (1975), which is based
on the work of Cox & Stewart (1970a,b). It takes into account the radiative opacity due to
Thomson scattering, free-free (Kramers opacity), bound-bound, and bound-free transitions (see
e.g.Weiss et al. (2004)).

• Thomson scattering is a process where an electrodynamic wave interacts with a charged
particle. The electric and magnetic components of the wave exert a Lorentz force on the
particle and accelerate it, making the particle to oscillate. The oscillating particle then
emits radiation i.e. the energy is absorbed from the incident wave by the particle and re-
emitted as electromagnetic radiation in different direction. In case of the scattering of free
electrons, the Thomson electron scattering opacity can be expressed as

κe = σ0ne/ρ , (3.14)

where σ0 = (8π/3)(e2/mec
2) is the Thomson scattering cross section; e and me is electron

charge and mass, respectively.
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• Free-free transitions result when a free electron passes an ion during its thermal motion.
The system then absorbs and emits radiation. The free-free opacity

κff ∝
ρ

T 3.5
(3.15)

and is called Kramers opacity.

• Bound-bound transitions and bound-free transitions are very rare in the helium core since
the gas is almost completely ionized. The opacity which could result from these transition
is therefore negligible.

The total opacity is given by the sum of all contributions, κγ = κe + κff , due to interaction of
photons with particles.

For the thermal transport by electron conduction, we consider contributions due to electron-ion
and electron-electron collisions. The thermal conductivity Ke of degenerate electrons in a gas is
described in detail in work by Yakovlev & Urpin (1980) and Potekhin et al. (1997).
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4
Code

The numerical simulations were performed with a modified version of the hydrodynamic code
Herakles (Kifonidis et al. 2003, 2006), which is a descendant of the code Prometheus developed
by Bruce Fryxell and Ewald Müller (Müller et al. 1991; Fryxell et al. 1991). The hydrodynamic
equations were integrated to second order accuracy in space and time using the dimensional
splitting approach of Strang (1968), the PPM reconstruction scheme (Colella & Woodward
1984), and a Riemann solver for real gases according to Colella & Glaz (1984). The evolution of
the chemical species was described by a set of additional continuity equations (Plewa & Müller
1999). Source terms in the evolutionary equations due to self-gravity and nuclear burning were
treated by means of operator splitting. Every source term was computed separately, and its effect
was accounted for at the end of the integration step. The viscosity tensor was not taken into
account explicitly, since the solution of the Euler equations with the PPM scheme corresponds
to the use of a sub-grid scale model that reproduces the solution of the Navier-Stokes equations
reasonably well (Sitine et al. 2000; Meakin & Arnett 2007b). Thermal transport was treated in a
time-explicit fashion when integrating the evolutionary equations. Self-gravity was implemented
according to Müller & Steimnetz (1995), while the gravitational potential was approximated by
a one-dimensional Newtonian potential derived from the spherically averaged mass distribution.
The nuclear network was solved with the semi-implicit Bader-Deuflhard method that utilizes
the Richardson extrapolation approach and sub-stepping techniques (Bader & Deuflhard 1983;
Press et al. 1992) allowing for long effective timesteps.

In Herakles, a program cycle for multi-dimensional simulations consists of two hydrodynamic
timesteps and proceeds as follows:

1. The hydrodynamic equations are integrated in r-direction (r-sweep) including the effects
of heat conduction. The time averaged gravitational forces are computed, and the mo-
mentum and the total energy are updated to account for the gravitational source terms.
Subsequently, the equation of state is called to update the thermodynamic state due to
the change of the total energy.

2. Step (1) are repeated in θ-direction (θ-sweep).

3. Step (1) are repeated in φ-direction (φ-sweep).

27
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4. The nuclear network is solved in all zones with significant nuclear burning (T > 108K).
Subsequently, the equation of state is called to update the pressure and the temperature.

5. In the subsequent timestep the order of Step (1), (2) and (3) is reversed to guarantee
second-order accuracy of the time integration, and Step (4) is repeated with the updated
quantities.

6. The size of the timestep for the next cycle is determined.

For one-dimensional simulations, Step (2),(3) and Step (5) are omitted. For two-dimensional
simulation, Step (3) is omitted.

The two- and three-dimensional simulations had to be initially perturbed explicitly to trigger
convection, because an initially exactly spherically symmetric model remains that way forever
when evolved in spherical polar coordinates with our code. We imposed a random flow field with
a maximum (absolute) velocity of 10 cm s−1, and random density perturbations with ∆ρ/ρ ≤
10−2.

4.1. Hydrodynamics

The hydrodynamic equations (Eq. 3.1) 1 were integrated by the piecewise parabolic method
(PPM) of Colella & Woodward (1984).

4.1.1. Piecewise Parabolic Method

Following Colella & Woodward (1984), we discuss the principles of PPM using the one-dimensional
Euler equations in conservative form:

∂U
∂t

+
∂(AF)
∂V

+
∂H
∂r

= 0 (4.1)

where

U =

 ρ
ρu
ρe

 F(U) =

 ρu
ρu2

ρue+ up

 H(U) =

 0
p
0

 (4.2)

u is velocity, V (r) = rα+1/(α + 1) is a volume coordinate and A(r) = rα, where α = 0,1,2
depending on whether there is planar, cylindrical or spherical symmetry, respectively.

The scheme consist of the following major steps (Fig. 4.1):

1. We discretize the state variable U on a numerical grid and assign to it a parabolic function
a(ζ) which has the following properties:

• Let ζj+1/2 be the boundary between the jth and the j + 1st grid zone on the compu-
tational grid and assume that we know an

j , the average value of the solution between

1The complete set of hydrodynamical equations in the spherical coordinates is in the Appendix A.1
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Figure 4.1.: Computation of numerical fluxes with PPM. (a) Piecewise parabolic reconstruction of
initial data. (b) Left and right domain of dependence (LDD and RDD, respectively) for a given interface
is computed by tracing back the characteristics which are the solid inclined lines (c) The interpolated
distribution of each variable (e.g.pressure p) within each domain of dependence is replaced by its averaged
value (pj+1/2,L and pj+1/2,R). (d) The interaction of the two averaged states adjacent to the interface is
described by a solution of Riemann’s shock tube problem indicated here. The nonlinear waves moving
away from the interface reach the edges of the averaged domains at the end of the timestep. At the
position of the interface we get the new effective value of p̄j+1/2.
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ζj+1/2 and ζj−1/2 at time tn. The average of the parabolic function over a zone j at
timestep tn which we will call an

j (ζ, tn,) has to be equal to

1
∆ζj

∫ ζj+1/2

ζj−1/2

a(ζ, tn)dζ = an
j (4.3)

where ∆ζ = ζj+1/2 − ζj−1/2.

This shows, how PPM differs from traditional finite difference techniques. While the
latter describe variable at discrete gridpoints, PPM uses zone averages an

j i.e.PPM
belongs to the class of finite-volume methods.

• a(ζ) is monotone within grid zones (i.e.no additional extrema appear there). In
case that the zone contains a local extremum, the reconstructed function is set to be
constant.

• In case of smooth flow a(ζ) is continuous.

2. We determine the domain of dependence2 for each zone interface for every timestep ∆t =
tn+1− tn by tracing the paths of sound waves (the characteristics) arriving at the interface
at the end of the timestep.

3. Then we determine, our effective left and right state Ū for the following solution of the
Riemann problem at every zone interface, by averaging over the domain of dependence
(predictor step).

4. We solve a Riemann shock tube problem3 according to Colella & Glaz (1984) and compute
the numerical flux Fi+1/2 and Fi−1/2 at the zone interfaces.

5. The solution at the next time level tn+1 is obtained by (corrector step):

Un+1
j = Un

j + ∆t

(
Aj−1/2F(Ūj−1/2)−Aj+1/2F(Ūj+1/2)

∆Vj
+

H(Ūj−1/2)−H(Ūj+1/2)
∆rj

)
(4.4)

where Aj+1/2 = A(rj+1/2)

PPM involves the solution of Riemann problems which allows one to adequately treat the non-
linear nature of the waves, i.e. it provides highly accurate numerical solutions that can involve
shocks, discontinuities, or large gradients. The accuracy of the whole scheme is of 2nd order in
space and time, and it possesses a small numerical diffusion. In the vicinity of sharp gradients,
the scheme is only 1st order accurate. PPM is a numerical technique that was developed for
modeling astrophysical fluid flows with shocks, and its validity in the subsonic flow regime, typ-
ical for stellar convection (e.g.during the core helium flash) with low Mach numbers (M∼0.01),
has been questioned. (Schneider et al. 1999; Turkel 1999; Almgren et al. 2006). However, a re-
cent study by Meakin & Arnett (2007a) based on a direct comparison of anelastic (Kuhlen et al.
2003) and fully compressible simulations performed with PPM shows that at Mach numbers
down to 10−2, PPM can capture the properties of convective flows well.

2An interval within the grid zone which is able to influence the solution at tn+1

3A Riemann problem is an initial value problem with piecewise constant initial conditions which resemble a
situation in a tube with two containers filled with a gas of different properties (e.g.density, pressure etc.)
separated by a membrane.
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Figure 4.2.: Upper panels: Snapshots of the spatial distribution of the velocity modulus |v| (in units of
106 cm s−1) from a two-dimensional simulation of the core helium flash not sustained by nuclear burning
at 8 000 s (a), 24 400 s (b), and 40 400 s (c), respectively. Lower panels: Temporal evolution of the total
kinetic energy EK (d), and the dissipation factor µ (e). The vertical line denotes the reference time t0.

It turns out, that numerical schemes like PPM can lead to fast artificial dissipation of kinetic
energy in simulations of subsonic flows (Mach numbers < 0.1) (Miczek 2008). As we expect the
convective flow during the core helium flash to be subsonic (M∼ 0.01), we studied how fast the
kinetic energy is dissipated in hydrodynamic simulations of the convective flow in the helium
core during the flash which is not sustained by nuclear burning (details of the corresponding
simulation hefl.2d.2 where nuclear burning was included are given in Sect. 7). We define a
dissipation factor for kinetic energy as µ = Ekin(t0)/Ekin(t), where Ekin(t0) and Ekin(t) are
total kinetic energies at time t0 and at a later time t, respectively. Ideally, the dissipation factor
should remain close to 1 throughout the flash simulation, as the convective flow will be partially
supported by the hot bottom of the convection zone at the temperature maximum.

Figure 4.2 shows that the dissipation of kinetic energy is not serious. The total kinetic energy of
the two-dimensional convective flow does not decrease rapidly, as the dissipation factor µ stays
close to or above 1. The typical vortex structure is visible even at t ∼ 40 400 s, i.e. after roughly
30 convective turnover times (see Sect. 2.3).
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4.1.2. Courant-Friedrich-Levy Condition

PPM is an explicit scheme which causes a limit on the size of the timestep for numerical stability.
The timestep has to obey the Courant-Friedrich-Levy condition i.e.no information can spread
over a larger distance than the size of a grid cell within one timestep

∆t ≤ ∆tCFL = mink

{ d∑
i=1

vi(k)
∆xi(k)

+ c(k)

√√√√ d∑
i=1

1
∆x2

i (k)

−1}
(4.5)

where the search of the minimum has to extend over all grid zones k = 1 . . . N (N is a number
of all grid zones). The parameter d is the number of considered dimensions, ∆xi(k) is the size
of a grid cell k, vi(k) is a local speed of flow and c(k) is a local sound speed.

4.1.3. Double Mach Reflection of a Strong Shock

To test the hydrodynamic solver of the Herakles code we simulated the the double mach reflection
of a strong shock in Cartesian geometry (Fig. 4.3). It consists of a Mach 10 shock in a gas
extending from the top to the bottom of the grid which initially makes a 60◦ angle with a
reflecting wall coincident with the x-axis at x=1/6 cm. The left-hand boundary (at x = 0 cm) is
assigned with the values for the initial post-shock flow and at the right-hand boundary (x = 3 cm)
all gradient are set equal to zero. The values along the top boundary are set to describe the
exact motion of the initial Mach 10 shock. The bottom boundary is reflective and set from
x = 0 cm to x = 1/6 cm, to the values of the initial post-shock state. A detailed description of
the problem can be found in Woodward & Colella (1984).

The density structure at t = 0.2 s agrees very well the structure described by Woodward &
Colella (1984). The flow has a complicated structure consisting of several shocks colliding with
each other, namely the incident shock, a curved reflected shock and the two Mach stems (or
waves) connecting the intersection points (Fig. 4.3). The density jumps clearly mark the shock
boundaries.

4.2. Nuclear Reactions

In order to take into account nuclear burning in our calculations, we have to solve a nuclear
network, which consists of 1st order nonlinear differential equations describing the change in
temperature due to the amount of energy released by nuclear burning resulting from element
transmutation.

Ẏi − F (Yi, T ) = 0 (4.6a)

Ṫ −H(Yi, T ) = 0 (4.6b)

where Ẏi is the abundance change of i-th element, F is the right hand side of Eq. 3.9, and H
the right hand side of the Eq. 3.10. This system is stiff, i.e. standard numerical techniques fail
as very different timescales have to be treated. Therefore, we solve the nuclear reaction network
with the semi-implicit Bader-Deuflhard method (Bader & Deuflhard 1983; Press et al. 1992)
which uses small time substeps to integrate the set of equations up to a desired accuracy.
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Figure 4.3.: Density (in g cm−3) contour plots of the flow resulting from the double Mach reflection of
a Mach 10 shock from a wall at (a) 0.06 s (b) 0.12 (c) t = 0.2 s computed on a two-dimensional Cartesian
grid with 480×120 zones. The number of contours is 30, and they span a density range from 1.7 to 20.9
g cm−3. The white region to the right has a density of 1.4 g cm−3.
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Figure 4.4.: Illustration of the Richardson extrapolation. The large intervalH over which the integration
is performed is divided into substeps (2,4,6 etc.) until the desired accuracy of solution Y is achieved when
extrapolating to infinitely fine substeps h→ 0 (crossed circle).

Bader-Deuflhard Scheme

It is a numerical scheme for the integration of ordinary differential equations which returns high
accuracy solutions with minimal computational efforts (Press et al. 1992). The basic principle
of the scheme, i.e. the Richardson extrapolation, is demonstrated in the Figure 4.4. We seek for
a solution Y at time t+H, where H is a timestep over which we need to integrate the equations.
A single timestep which takes us from t to t+H is a grand leap consisting of smaller substeps
h at which the solution of the equations is calculated. A more accurate solution at time t+H
can be obtained by larger number of substeps. The timestep H is computed several times with
increasing number of substeps, which allows one to construct a series of solutions at time t+H
as a function of the size of the substeps. Such a series can be extrapolated to the limit when
the size of the substeps is zero (h→ 0), and the solution is supposed to have high accuracy.

There is always an upper limit for the timestep H and we are forced to reduce H rather than
further subdivide it more finely, as the extrapolation to the limit h → 0 is not possible. The
scheme has therefore subroutines which adapt the stepsize H to match a prescribed bound on
the accuracy of the integration.

All serial subroutines of the Bader-Deuflhard integrator can be found in the Numerical Recipes
in Fortran by Press et al. (1992). For the Herakles code the subroutines were vectorized by
Konstantinos Kifonidis.

Alternative Numerical Scheme

In order to test our solver of the nuclear reaction network based on the Bader-Deuflhard scheme
(see the next Sect. 4.2.1) we used an approach suggested by Müller (1986) using the implicit
Euler-backward discretization of the nuclear reaction network:

Y n+1
i − Y n

i −∆t · F (Y n+1
j , Tn+1) = 0 (4.7a)

εn+1
i − εni −∆t ·H(Y n+1

j , Tn+1) = 0 (4.7b)
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Figure 4.5.: Temporal evolution of temperature T (a) and mass fractions Xi (b) in one-zone burning
computed with the Euler-backward plus Newton scheme (red-dashed) and with the Bader-Deuflhard
scheme (black). The initial density is ρ = 1× 107 g cm−3, initial temperature is T = 2× 109 K and the
initial composition is X(12C)=0.5 and X(16O)=0.5 .

where i = 1 . . .M , j = 1 . . .M and M is the number of species. F and H are nonlinear functions
of the arguments (Eq. 3.9 and Eq. 3.6, respectively). The internal energy is a known function
of abundances Yi and temperature T via the equation of state (see Sect. 3.2) and therefore the
above equations are a nonlinear system for the M + 1 unknown variables Y n+1

i and Tn+1. The
whole system is solved by Newton scheme in which are abundances and temperature updated
together.

4.2.1. One-Zone Nuclear Burning

We performed several calculations of nuclear reaction network build up from 13 α nuclei (from
4He up to 56Ni). We tried to simulate a homogeneous region of constant density with a certain
initial composition and temperature. Evolution of chemical species from one of such simulations
is shown in the Fig. 4.5.

We computed composition evolution for several homogeneous regions having density within the
range from 1×107 g cm−3 to 1×1010 g cm−3 and temperature within the range from 1×109 K
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Figure 4.6.: A structure of the spherical detonation wave at t = 13 ms computed on a cylindrical grid
with 120×45 zones (45◦ > θ > 135◦). (a) Angular averaged distribution of temperature T9 (in 109 K),
pressure p24 (in 1024 dyn cm−2), density ρ7 (in 107 g cm−3) and velocity v8 (in 108 cm s−1). (b) Angular
averaged mass fraction profiles of 4He (♦),12C (+), 16O (�), 24Mg (no symbol), 28Si (×),40Ca (4) and
56Ni (*).

to 2× 1010 K. To check the correctness of our implementation of the Bader-Deuflhard scheme,
all calculations were performed by both, the Bader-Deuflhard method and by the semi-implicit
Euler backward method with a Newton scheme.

Considering the temporal evolution of the mass fraction and temperature, the relative difference
between the schemes is better than 1 %. Our experience with the Bader-Deuflhard scheme is
such that in comparison to the approach by Müller (1986), it is faster under moderate conditions
(i.e. ρ ∼ 107 g cm−3 and T ∼ 109 K). At more extreme conditions with higher temperatures or
densities, the schemes are roughly equally fast.

4.2.2. White Dwarf Detonation Problem

In order to check our coupling of the nuclear solver to our hydrodynamic solver (Sect. 4.1) we
attempted to compute a detonation problem in a white dwarf star.

The white dwarf problem is about calculating of spherical detonation in a homogeneous star with
density ρ = 107 g cm−3. Its inner part up to a radius of 1.5×107 cm is heated to a temperature
of 2 × 109 K. The surrounding envelope is kept cold at a temperature T = 4 × 108 K. The
composition is constant across the whole star and consists of an equal mass of 12C and 16O.

The results from our simulation (performed on a cylindrical grid) are depicted in the Fig. 4.6 and
compared with those of a similar computation performed with the Prometheus code (Müller et al.
1991; Fryxell et al. 1991) by Ewald Müller and Matthias Steinmetz. The agreement between
both calculations is better than 2%, although there is a minor difference in the position of the
detonation front which reaches a radius r ∼ 2.5×107 cm already at 13 ms using our code, whereas
in the other simulation it reaches the same position a bit later at 15 ms.

Clearly, one can recognize that the detonation front is followed by 56Ni, and 28Si - 40Ca rich
layer with mass fraction at around 10−1 and 10−2, respectively. The hot central region has a
very low 12C and 16O mass fraction at around 10−6 and 10−5, respectively. The latter numbers
fit well those obtained by the Prometheus code, within a relative discrepancy less than a few
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percent. We suspect that our different approach for solving the nuclear reaction network could
lead under such extreme conditions to differences of this order.

4.3. Screening

At higher densities each nucleus tends to attract neighboring electrons and form a negative
charge cloud around it, which shields its Coulomb barrier (screening) and increases the rate of
thermonuclear reactions. To determine the enhancement effect, one usually computes a screening
factor and multiplies it with a given reaction rate of two charges Z1, Z2 which participate in the
reaction. For densities at around 105 g cm−3 (weak screening regime) which are typical for the
core helium flash simulations, the screening factor

f = exp
Z1Z2e

2

λDkBT
(4.8)

where λD is Debye-length. The Debye-length is a distance beyond which the positive charge is
shielded by the surrounding cloud of negative charges i.e. the radius of the charged cloud.

Dewitt et al. (1973) give the following expression for weak screening:

f = exp[Λ12 + Λ2
12(lnΛ12 + 0.8364)] with Λ12 =

Z1Z2e
2

λDkBT
. (4.9)

In our simulations, we implemented the screening using a modified version of public subroutine
written by Frank Timmes 4. The subroutine calculates screening factors of nuclear reaction
rates based on the calculations of Graboske et al. (1973); Alastuey & Jancovici (1978) and Itoh
et al. (1979). Considering that mainly the triple-α reaction contributes to the energy generation
during the flash, we were calculating screening factors only for this reaction, assuming the weak
screening regimes. There is almost no difference in nuclear energy generation when assuming
screening of all nuclear reactions involved in our calculations. This simplification saved us almost
20 % of total computational time per computed model. The screening factors for the included
reactions during core helium flash varies between 2 and 26 (for the triple-α reaction rate is
f ∼ 2.5).

4.4. Neutrinos

Neutrino losses were implemented as a sink term εν in the temperature equation of the nuclear
reaction network

∂T

∂t
= ε̇

∂T

∂ε
where ε = εnuc − εν (4.10)

εν was calculated with a modified subroutine of Frank Timmes 3. It computes neutrino losses
using the analytic fits of Itoh et al. (1996) that include plasma neutrino, photoneutrino and
Bremsstrahlung neutrino processes [e−+(z, a) → e−+(z, a)+ν+ν̄ , n+n→ n+n+ν+ν̄ , n+p→
n+ p+ ν + ν̄].

4http:\\cococubed.asu.edu\code pages\codes.shtml
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4.5. Gravitation

We computed effects of gravity using approach by Müller & Steimnetz (1995). Since our models
of the core helium flash are non-rotating and do not show large-scale deviation from sphericity,
we used the one-dimensional Newtonian gravitational potential

Φ = G
M(r)
r

(4.11)

where M(r) is the angle averaged mass distribution.

To account for gravity effects during integration by PPM scheme over a single timestep ∆t =
tn+1 − tn, the following four steps are performed:

1. A modification of the left and right velocity state of the Riemann problem (ūi,R and ūi,L,
respectively) is performed, using the time-centered prediction of gravitational acceleration
∇Φn+1/2

i according to the following relations

ūi,R → ūi,R −
∆t
2

(∇Φn+1/2
i )R (4.12)

ūi,L → ūi,L −
∆t
2

(∇Φn+1/2
i )L (4.13)

2. The calculation by PPM scheme continues by solving the Riemann problem with the
modified left and right states (Step 1).

3. At the end of the integration at tn+1, new values are obtained for velocity ṽn+1
i , specific

total energy ẽn+1
i and gravitational potential Φ̃n+1

i

4. The velocity and the total energy are corrected via

vn+1
i = ṽn+1

i − ∆t
2

(∇Φn
i +∇Φ̃n+1

i ) (4.14)

en+1
i = ẽn+1

i − ∆t
2

(vn
i ∇Φn

i + vn+1
i ∇Φ̃n+1

i ) (4.15)

4.5.1. Polytropic Star

In order to test this implementation of gravity we were inspired by Swesty & Myra (2006). We
choose a polytrope with an index n = 1, which corresponds to polytropic equation of state with
an adiabatic index γ = 2. Using a solution of the Lane-Emden equation, we constructed a
polytropic star according to the analytical solution (Chandrasekhar 1967).

ρ(ξ) = ρc
sin ξ
ξ

, (4.16)
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Figure 4.7.: The (normalized) density profile of the polytrope with gravity switched off (a) after 0.01
(dash-dotted) and 0.5 of sound crossing timescale (dotted), respectively and (b) with gravity switched on
after 135 sound crossing timescales (crosses). The red solid line represents the analytical profile of the
polytrope.

where ρc is the central density, and ξ is a radial coordinate defined such that the radius,

r = βξ (4.17)

and

β =
(

(n+ 1)K
4πG

ρ(1/n)−1
c

)1/2

, (4.18)

The quantity K is a polytropic constant. For n = 1, β is independent of ρc. For practical reasons
we set ρc = 1 g cm−3, and choose K = 2πG, such that β = 1. Thus, the density varies between
0 and 1 g cm−3, and the radius from 0 to π centimeters.

Our simulations show (Fig. 4.7) that without gravity, the initial analytical density stratification
quickly becomes very shallow because of the fast expansion of the star. When gravity is switched
on, the polytropic density distribution keeps its initial shape even after 135 sound crossing
timescales (see Sect. 2.3). The relative difference with the analytical profile is less than 0.1 %.

4.6. Thermal Transport

For taking into account the energy transport by conduction and radiation (Sect. 3.5) we used
the thermal transport coefficient obtained with the modified version of the subroutine written
by Frank Timmes 5. Temperature gradient was discretized by the first order Euler scheme. The
thermal energy flux is subtracted from the energy flux of the hydrodynamical flow.

5http:\\cococubed.asu.edu\code pages\codes.shtml
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4.7. Performance and Parallelization

The code was designed to perform reasonably on different computer systems, including massively
parallel ones with vector processors. The computational kernels are fully vectorized and allow
the vector length to be adjusted to the particular memory architecture of the system to be used.
This allows for optimal performance on both vector and superscalar, cache-based machines.

We tested the code on the IBM p690, IBM p575, IBM Power6 System supercomputers and on
the supercomputer ALTIX 4700 with cc-NUMA architecture which requires special treatment
of the initialization and data scatter for parallel computing.

The current version of the code is parallelized with OpenMP. Its scaling properties on the SGI
ALTIX 4700 machine of the Leibniz Rechenzentrum6 are listed in Tab. 4.1. The achieved per-
formance is satisfactory which allowed us to compute a set of multidimensional hydrodynamical
core helium flash models with the highest resolution ever done.

Table 4.1.: The scaling behavior of the code HERAKLES on the SGI’s ALTIX 4700 platform 5. The
various table entries are: number of processors nProc, speedup with a given number of processors of the
full code SpeedUp (total), of the hydrodynamical part of the code SpeedUp (hydro), and of the nuclear
network solver SpeedUp (nuclear), respectively. Performed on domain with 400×180×360 grid zones.

nProc SpeedUp (total) SpeedUp (hydro) SpeedUp (nuclear)
1 1. 1. 1.
8 7.8 7.95 7.6
32 25.6 28.7 24.
64 42. 50. 38.
128 43. 80. 34.5

6www.lrz.de



5
Initial Stellar Models

Hydrodynamic simulation of a star is an initial value problem and therefore it requires initial
conditions which provide the thermodynamic structure e.g. an initial stellar model computed
by a stellar evolutionary code. Stellar evolution calculations are based on the numerical so-
lution of one-dimensional stellar evolution equations. Within a star they describe hydrostatic
equilibrium, energy conservation, energy transport and changes of chemical composition due to
nuclear reactions and mixing of elements (Kippenhahn et al. 1967; Kippenhahn & Weigert 1990).
Multi-dimensional phenomena are described by phenomenological theories like e.g.mixing length
theory (Vitense 1953; Böhm-Vitense 1958; Kippenhahn & Weigert 1990; Weiss et al. 2004).

5.1. General Remarks

Stellar evolutionary models contain information about the whole stellar structure from the center
of the star up to its surface. Since only the helium core of the model (without its very central
part) is of interest to us, we consider only initial data of the models from and up to a certain
radius of a star, and interpolate all relevant quantities (e.g.density, temperature, composition)
onto our Eulerian computational grid using polynomial interpolation (Press et al. 1992). Due
to interpolation errors and subtle differences in the input physics, the interpolated model is
no longer in perfect hydrostatic equilibrium. To balance perfectly also the gravitational and
pressure forces in the interpolated model, we use an iterative procedure in the first hydrodynamic
timestep (see next Sect. 5.2). The process produces a small temperature decrease with respect to
the temperature profile of the original model (e.g. Fig. 5.1). Depending on the radial resolution
of the Eulerian grid, the differences do not exceed a few percent. The resulting changes in
density and pressure profiles are negligible due to the strong electron degeneracy of the gas. The
main cause of the slight destabilization of the mapped initial stellar model is the use of different
equations of state in our hydrodynamic and stellar evolutionary code.

41
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5.2. Stabilization

The stabilization subroutine consists of iterative procedure whereby one tries to reconstruct
hydrostatic equilibrium in the mapped stellar model using the equation of state implemented
in the hydrodynamic code. It is computing the difference ∆p between the pressure gradient
computed for a given radial density profile according to the equation of hydrostatic equilibrium
and the pressure gradient ∇p, which we get by solving the Euler momentum equation. The
equation of the hydrostatic equilibrium is

∇p = −ρg (5.1)

The stabilization algorithm consists of the following steps:

1. The pressure gradient ∇p is computed by our PPM solver and the following Eq. 5.2

d

dr
∆p = (∇p− ρg) (5.2)

is integrated along the radial direction. The product of the right hand side is multiplied
by a factor, typically having a value ∼ 10−3 in order to allow the equation of state to
converge to a new temperature (Step 3) for a new value of the pressure (Step 2).

2. The correction ∆p to the original pressure p0
i for every grid cell i is applied and a new

pressure pi is obtained.

pi = p0
i + ∆p (5.3)

3. The equation of state is called in order to update temperature and the internal energy.

4. The deviation from hydrostatic equilibrium (Eq. 5.4) is computed

∇p+ ρg

∇p− ρg
(5.4)

and if it is less than a certain value (typically ∼ 10−5), that we choose at the beginning,
the iteration is stopped. If the criterion is not fulfilled, the algorithm returns to the Step
1, with the new (corrected) pressure pi, which is now closer to the equilibrium pressure,
than the original one p0

i and the whole stabilization process is repeated again.

5.3. The Models

For our hydrodynamic simulations we used four initial stellar evolution models (Tab. 5.1). All
initial models are partially electron degenerate. Whereas the region beneath the temperature
maximum of all models is strongly electron degenerate (degeneracy parameter ψ ∼ 20), the
degeneracy at and above the temperature maximum is already significantly reduced due to
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Table 5.1.: Some properties of the initial models: Total mass M , stellar population, metal content Z,
mass MHe and radius RHe of the helium core (X(4He) > 0.98), nuclear energy production in the helium
core LHe, temperature maximum Tmax, radius rmax and density ρmax at the temperature maximum.

Model M Pop. Z MHe RHe LHe Tmax rmax ρmax

[M�] [M�] [109 cm] [109L�] [108 K] [108 cm] [105 g cm−3]
M 1.25 I 0.02 0.47 1.91 1.03 1.70 4.71 3.44
DM 0.85 II 0.001 0.48 1.6 3.4 1.91 4.9 2.15
JW 1.49 I 0.02 0.47 2.65 0.5 2.01 7.7 0.67
SC 0.85 III 0.00 0.5 5.45 0.004 2.04 11. 0.08

strong expansion. In the convection zone, the degeneracy parameter ψ remains almost constant
which is a result of an almost adiabatic temperature gradient 1. The gradient is also responsible
for an almost constant entropy in the convection zone. Every model was modified slightly by
our stabilization procedure to retain the hydrostatic equilibrium in our hydrodynamic code.

5.3.1. Model M: Mass = 1.25 M� and Z = 0.02

Table 5.1 summarizes some properties of our initial model M, which was obtained from stellar
evolutionary calculations with the “Garstec” code (Weiss & Schlattl 2000, 2007). It corresponds
to a Pop I star with a mass of 1.25 M� and a metallicity Z = 0.02 at the peak of the core helium
flash (LHe ∼ 109L�), computed with the hydrostatic stellar evolution code. During this violent
episode, the star is located at the tip of the red giant branch in the H-R diagram (Fig. 1.1),
hence being a red giant consisting of a small central helium core with a radius of ∼ 1.9×109 cm,
surrounded by a hydrogen burning shell and a huge convective envelope with a radius of ∼ 1013

cm. Figure 5.1 shows the temperature distribution inside the helium core, which is characterized
by an off-center temperature maximum Tmax, from where the temperature steeply drops towards
smaller radii and follows a superadiabatic2 gradient towards larger radii (convection zone). The
radius rmax of the temperature maximum coincides with the bottom of the convection zone. The
almost discontinuous temperature stratification near Tmax (temperature inversion), where the
temperature rises from 7×107 K to 1.7×108 K, results from an interplay between neutrino cooling
and heating by nuclear burning. Figure 5.1 also shows the density and pressure stratification of
the model. One recognizes that the temperature inversion is correlated with a drop in density. A
detailed view reveals that the steep increase in temperature corresponds to a decrease in density
by 11%, an increase in the ion pressure by 70%, and a drop in the electron pressure by 9%,
respectively. Even at the peak of the core helium flash, the helium core is strongly degenerate:
compared with the electron pressure, the ion pressure is lower by a factor of 6, while the radiation
pressure is smaller by almost 3 orders of magnitude.

The stellar model contains the chemical species 1H, 3He, 4He, 12C, 13C, 14N, 15N, 16O ,17O,
24Mg, and 28Si. However, as we are not interested in the detailed chemical evolution of the star,
it is therefore unnecessary to consider all of these species in our hydrodynamic simulations, since
the triple-α reaction dominates the energy production rate during the core helium flash. In our
hydrodynamic simulations, we therefore adopt only the abundances of 4He, 12C, and 16O. The
remaining composition is assumed to be adequately represented by a gas with a mean molecular
weight equal to that of 20Ne (Fig. 5.1).

1In the convection zone holds the relation T ∝ ργ−1 with the adiabatic exponent γ ∼ 5/3. Since ρT−3/2 = f(ψ),
is the ψ constant.

2The superadiabatic gradient ∇ is defined by the condition ∇ > ∇ad (see Sect. 2.2).
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Figure 5.1.: The initial internal structure of the model M as a function of radius. (a) Original tempera-
ture T (dashed) and temperature after mapping and stabilizing the model (solid) used as initial condition
in the hydrodynamic simulations. CVZ marks the convection zone. (b) Density ρ, (c) Pressure p, (d)
Chemical composition Xi (e) Entropy s, and (f) Degeneracy parameter Ψ.
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5.3.2. Model DM: Mass = 0.85 M� and Z = 0.001

This initial model (Tab. 5.1, Fig. 5.2) was computed by Demarque & Mengel (1971), (sequence
G in their paper), and represents a 0.85 M� Pop II star with a metallicity Z=0.001 at the
peak of the core helium flash. It was further modified for hydrodynamic simulations by Cole &
Deupree (1980) to guarantee hydrostatic equilibrium with respect to the physics included in their
models. This model also we used for our hydrodynamic simulations. As expected, the model
is characterized by an off-center temperature maximum Tmax. The composition of the model
is assumed to be constant throughout the whole star: X(4He) = 0.975, X(12C) = 6.25×10−3,
X(16O) = 5×10−4, the rest being 20Ne.

5.3.3. Model JW: Mass = 1.49 M� and Z = 0.02

This initial model (Tab. 5.1, Fig. 5.2) was computed by Josef Wagenhuber with the stellar evo-
lution code “Garstec” (Weiss & Schlattl 2000, 2007). It represents a metal-rich Pop I star with
a mass of 1.49 M� at the peak of a not very violent core helium flash; helium luminosity
LHe ∼ 5.6× 107L�. Due to the low energy production, it would take relatively long to reach a
stable convection within our hydrodynamic simulations. Therefore, the model was recomputed
with suppressed convective mixing in the early phases of the flash. It led to an increased energy
production and a higher temperature maximum at the peak of the flash (Wagenhuber 1996;
Achatz 1995). Since it is not necessary to consider all species included in the original stellar
model, as the triple-α reaction dominates the energy production, we used for our hydrodynamic
simulations only abundances of 4He, 12C, and 16O and the remaining is assumed to be 20Ne.

5.3.4. Model SC: Mass = 0.85 M� and Z = 0.0

This initial model (Tab. 5.1, Fig. 5.3) was computed by Simon W. Campbell using the Monash/Mount
Stromlo STAR code i.e.MONSTAR code (Campbell & Lattanzio 2008; Wood & Zarro 1981). It
corresponds to a metal-free Pop III star with a mass of 0.85 M� at a peak of a rather peculiar
core helium flash that is typical for extremely metal-poor stars. It commences by an off-center
ignition of helium in a relatively dense environment under degenerate conditions, and results in
a fast growing convection zone powered by helium burning that relatively quickly reaches the
surrounding hydrogen shell (Fujimoto et al. 1990). This suddenly causes mixing of protons down
into the hot helium convection zone (Fig. 5.3), and leads to rapid nuclear burning via the CNO
cycle: the dual core flash (Campbell & Lattanzio 2008). This event has also been refereed to
as helium flash induced mixing (Schlattl et al. 2001; Cassisi et al. 2003; Weiss et al. 2004), and
helium flash-driven deep mixing (Suda et al. 2004). The CNO burning leads to an increase of
the temperature inside the helium-burning driven convection zone, and causes its splitting into
two: one still powered by the helium burning and a second one by the CNO cycle (Fig. 2.2). The
energy production rate by helium burning is by almost an order of magnitude lower at around
the peak of the dual core flash than the production by the CNO cycle. For our hydrodynamic
simulations we adopted exactly mass fractions of 1H, 3He, 4He, 12C, 14N, 16O. In addition we
assumed an equilibrium CNO mass fraction of 13C equal to X(12C)/3.5 in the hydrogen rich
region. The remaining composition is assumed to be 20Ne. Incorporating of these species does
not allow for complete CNO nuclear chain because 13N and 15O is missing. We neglected this
elements intentionally, as consideration of more species makes simulations more computation-
ally demanding. The neglect of 13N and 15O resulted in a reduced energy generation rate in the
region of injected hydrogen by 30 % compared to the original stellar model.
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Figure 5.2.: The initial internal structure of the model DM and JW as a function of radius. (a), (b)
Original temperature T (dashed) and temperature after mapping and stabilizing the model (solid) used
as initial condition in the hydrodynamic simulations. CVZ marks the convection zone. (c), (d) Pressure
p (in 1022 dyn cm−2) and density ρ (in 105 g cm−3) in JW and DM (e) Chemical composition Xi in JW.
(f) Degeneracy parameter Ψ in JW (solid) and DM (dashed).
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Figure 5.3.: The initial internal structure of the model SC as a function of radius. (a) Temperature T
(solid) used as initial condition in the hydrodynamic simulations. CVZ marks the convection zone. (b)
Density ρ, (c) Pressure p, (d) Chemical composition Xi (e) Entropy s, and (f) Degeneracy parameter Ψ.
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6
One-Dimensional Hydrodynamic Simulations

We performed several one-dimensional simulations using model M, which differed only in their
grid resolution (see Table 6.1), to assess, whether a thermonuclear runaway could be avoided
without a convective flow which can spontaneously appear only in two- and three-dimensional
simulations.

6.1. Temporal Evolution

Table 6.1.: Some properties of the 1D simulations: number of radial grid points (Nr), radial resolution
(∆r in 106cm), time up to the thermonuclear runaway, ttrn, and maximum evolution time tmax (both in
s).

run Nr ∆r ttrn tmax

hefl.1d.1 180 5.55 40 700 42 500
hefl.1d.2 270 3.77 14 600 16 250
hefl.1d.3 360 2.77 12 300 15 600

Figure 6.1 demonstrates that heat conduction and adiabatic expansion alone (i.e.no convection)
fail to keep the model in hydrostatic equilibrium, i.e. one-dimensional hydrodynamic simulations
result in a thermonuclear runaway. Initially, the maximum temperature increases only slowly,
but starts to rise rapidly after a time ttrn (Table 6.1) up to a value T ∼ 109 K. For instance,
from the temperature evolution of model hefl.1d.3, one can determine that a local hot spot with
a temperature of 2.3 × 108 K will runaway after about 80 s (Fig. 6.1). The time at which the
runaway is triggered depends on the grid resolution, being longer in models with lower resolution
(Fig. 6.1). In every case, a thermonuclear flame with T ∼ 109 K eventually forms and propagates
outwards with subsonic velocity depending on the grid resolution. The layers passed by the flame
expand i.e.pressure and density drops there (Fig. 6.1). A similar behavior was also observed in
our one-dimensional simulations based on the initial models DM and JW. Since our two- and
three- dimensional simulations, with convection triggering spontaneously, do not show such a
behavior, we refrain from further discussion of the one-dimensional simulations.
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Figure 6.1.: (a) Evolution of the temperature maximum Tmax in the one-dimensional models hefl.1d.1
(solid), hefl.1d.2 (dashed), and hefl.1d.3 (dash-dotted), respectively. Temperature T (b), density ρ (c)
and pressure (d) stratification in the helium core of model hefl.1d.3 during the runaway at t1 = 12 270 s
(dotted), t2 = 12 352 s (dashed), t3 = 12 392 s (dash-dotted), and t4 = 12 762 s (dash-dot-dotted),
respectively. The solid line corresponds to the initial model (t0), and the arrow indicates the direction of
the flame propagation.



7
Two-Dimensional Hydrodynamic Simulations

In Table 7.1, we summarize some characteristic parameters of our two-dimensional (i.e. axisymmetric)
simulations which are based on model M.

Table 7.1.: Some properties of the 2D simulations: number of grid points in radial (Nr) and angular
(Nθ) direction, radial (∆r in 106cm) and angular grid resolution (∆θ), characteristic length scale lc of the
flow (in 108cm), characteristic r.m.s velocity vc of the flow (in 106 cm s−1) averaged over the width of the
convection zone R ∼ lc, Reynolds number Rn associated with the numerical viscosity of our code (Porter
& Woodward 1994), damping timescale due to the numerical viscosity tn, typical convective turnover
time to = 2R/vc, and maximum evolution time tmax (in s), respectively.

run Nr ×Nθ ∆r ∆θ lc vc Rn tn to tmax

hefl.2d.1 180×90 5.55 2◦ 4.7 1.29 1 900 11 000 730 30 000
hefl.2d.2 270×180 3.70 1◦ 4.7 1.79 8 900 36 000 525 30 000
hefl.2d.3 360×240 2.77 0.75◦ 4.7 1.84 21 000 83 000 510 130 000

We first discuss in some detail one specific simulation hefl.2d.3, which serves as a standard to
which we compare the results of our other simulations. Thereafter, we discuss some general
properties of all 2D simulations. Every simulation covered approximately 3× 104 s (∼ 8 hrs) of
the evolution near the peak of the core helium flash except of hefl.2d.3 which covered roughly
36 hrs. They were performed on an equidistant spherical grid encompassing 95% of the helium
core mass (X(4He)> 0.98) except for a central region with a radius of r = 2 × 108 cm, which
was removed in order to allow the use of longer timesteps. This radius is sufficiently smaller
than the radius of the temperature inversion (r ∼ 5 × 108 cm) and therefore its presence does
not influence the convection zone. The used boundary conditions are in all directions reflective.

7.1. Temporal Evolution

After the beginning of the simulation, the initial velocity perturbations started to grow in a
narrow layer just outside the temperature maximum (r ∼ 5× 108 cm), i.e. in the region heated
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Figure 7.1.: (a) Temporal evolution of the horizontally averaged temperature maximum 〈T 〉max (solid),
and of the global temperature maximum Tmax (dotted) in model hefl.2d.3. The dashed line corresponds
to the temporal evolution of the maximum temperature in the stellar evolutionary calculations of the
model M. (b) The r.m.s convection velocity vcnv in simulation hefl.2d.3 averaged over 6 000 s (solid)
versus the convection velocity predicted by the mixing length theory vmlt (dashed).

by nuclear burning. Later on at t ∼ 800 s, several hot bubbles appeared (Fig. 7.2, Fig. 7.3),
which rose upwards with maximum velocities of ∼ 4 × 106 cm s−1. They were typically about
0.2% hotter than the angular-averaged temperature at a given radius. The 4He mass fraction of
all hot bubbles was about 0.4% less than the corresponding angular-averaged value, since helium
was depleted in the bubbles by the tripleα reaction. Consequently, 12C and 16O (produced in
helium burning) were enhanced by ∼ 0.7% in the bubbles.

During the first 700 s of the evolution, the off-center maximum mean temperature 〈T 〉max rose
at a rate of ∼ 1000 K s−1, until it reached a value ∼ 1.67 × 108 K. At this moment, from the
region at the 〈T 〉max, the bubbles emerged and caused its decrease by ∼ 2.6 × 106 K in just
570 s corresponding to a temperature drop rate of 4540 K s−1 (Fig. 7.1). This phase marked the
onset of convection (Fig. 7.2, Fig. 7.3), where a fraction of the thermonuclear energy released
via helium burning started to be transported efficiently away from the burning regions by mass
flow, thereby inhibiting a thermonuclear runaway.

As soon as the bubbles had formed, they rose upwards and started to interact and merge, i.e. the
convective layer began to grow in radius. About ∼ 1300 s after the start of the simulation, the
entire convection zone was covered by an almost stationary flow pattern of almost constant
total kinetic energy roughly equal to 1045 erg. At this time, vortices dominated the flow pattern.
They extended across the entire convective region (width R ∼ 2.2Hp), and were of approximately
similar angular size, one vortex covering about 40 degrees (diameter ∼ 5× 108 cm). Usually we
found about four such vortices with two dominant up-flows of hot gas at both θ ∼ 60◦ and
θ ∼ 120◦ (see, e.g. Fig. 7.2). These large vortices were rather stable, surviving until the end
of our simulations. Typical convective flow velocities were vcnv ∼ 1.8× 106 cm s−1, well below
the local sound speed cS ∼ 1.7× 108 cm s−1, i.e. a vortex required about 500 s for one rotation.
The persistence of vortices is not typical for turbulent convection and their dominance was a
consequence of the imposed axial symmetry.

The Mach number M of the convective flow was ∼ 0.01. Is PPM suited for this type of subsonic
flow? This question, which is beyond the scope of the present study, needs to be investigated.
It is known that the artificial viscosity of standard Riemann solver methods exhibit an incorrect
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Figure 7.2.: Snapshots of the onset of convection at 1020 s (upper panels), and of the evolved convection
(lower panels) in model hefl.2d.3 at 29 000 s (middle panels) and 120 000 s (bottom panels), showing the
temperature contrast ∆T = 100 × (T − 〈T〉θ)/〈T〉θ (left panels), the velocity field (middle panels), and
the density contrast ∆ρ = 100 × (ρ − 〈ρ〉θ)/〈ρ〉θ (right panels), respectively. 〈〉θ denotes a horizontal
average at a given radius.
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Figure 7.3.: Snapshots of the onset of convection at 1020 s (upper panels), and of the evolved convection
(lower panels) in model hefl.2d.3 at 29 000 s (middle panels) and 120 000 s (bottom panels), showing
the helium 4He contrast ∆4He = 100 × (4He − 〈4He〉θ)/〈4He〉θ (left panels), the carbon 12C contrast
∆12C = 100× (12C−〈12C〉θ)/〈12C〉θ (middle panels), and the oxygen 16O contrast ∆16O = 100× (16O−
〈16O〉θ)/〈16O〉θ(right panels), respectively. 〈〉θ denotes a horizontal average at a given radius.
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scaling with the flow Mach number as M → 0 (Turkel 1999), i.e. the inherent artificial viscosity
of PPM may be too high for simulating flows at low Mach numbers (e.g.M ∼ 0.01) adequately.

However, Meakin & Arnett (2007a) demonstrated that the PPM method operates well even at
these low Mach numbers.

Energy transport by convection within the vortices is concentrated into a few narrow upward
drafts, compensated partially, but only to a small extent, by down-flows. The vortices transport
energy mostly along their outer edges. Matter in their centers does not interact at all with the
regions of dominant nuclear energy production.

The horizontally averaged value of the maximum temperature, barring some additional temper-
ature fluctuations due to convection, increased slightly following the onset of convection during
the entire subsequent evolution at an approximate rate 40 K s−1 (see Fig. 7.1).

This rate appears to be about 60 % lower than the rate measured in the stellar evolutionary
calculations (∼ 100 K s−1): this could be the result of either an initially lower value of the
temperature maximum, after the stabilization phase, at the beginning of the simulation (see
Sect. 5.2), or more dynamic convective motion, since the mean convective velocities vcnv exceed
the velocities predicted by mixing length theory, vmlt, on average by a factor of four (Fig. 7.1).

Convection distributes the energy in such a way that the temperature gradient ∇ never exceeds
∇ad significantly. Although, the value of ∇ established at the beginning of the simulation
deviates slightly after some time from the gradient at later times, it remains close to the adiabatic
temperature gradient ∇ad (the relative difference being less than 1%). In this respect, there
is no indication of any significant deviation from the situation obtained in stellar evolutionary
calculations.

The apparent spike in the initial 12C distribution at the location of the temperature maximum
(Fig. 5.1) is a result of a non-instantaneous treatment of the convective mixing in stellar evolu-
tionary calculations. It turns out that a non-instantaneous treatment of mixing is not required
during the core helium flash since simulation hefl.2d.3 indicate that the spike is smeared out
immediately after convection commences. This implies that the assumption of instantaneous
mixing is a good approximation locally, despite the strong temperature dependence of the en-
ergy production rate.

7.2. Energy Fluxes

Figure 7.4 (a,b,c,d) displays the individual contributions of various energy fluxes, time-averaged
over almost 12 convective turnover times (see Table 7.1), i.e. only the average effect of convection
should be apparent. The derivation of these quantities is explained in AppendixA.2. All energy
fluxes, F , describe the amount of energy transported per unit of time across a sphere of a given
radius.

Most of the nuclear energy production in the convection zone occurs in a relatively narrow shell
about the location of the temperature maximum. This energy is transported away by both
convection and thermal transport due to heat conduction and radiation. The convective (or
enthalpy) flux, FC , varies from −0.2 × 1042 erg s−1 up to 1.6 × 1042 erg s−1. The kinetic
flux, FK , reaches a value of at most 1× 1042 erg s−1, and is mostly positive in the convection
zone, i.e. the motion has a predominantly upward direction. This implies that the fast, narrow,
upwardly directed streams dominate over the slower and broader downward flows. The ratio
of the extreme values of FC and FK is almost 2:1, i.e.nuclear energy is stored predominantly
in the internal energy of the rising hot gas. Both convective and kinetic energy flux transport



56 CHAPTER 7. TWO-DIMENSIONAL HYDRODYNAMIC SIMULATIONS

Figure 7.4.: Snapshots of various energy fluxes and source terms in model hefl.2d.3 (time averaged over
6 000 s or almost 12 convective turnover times, from t = 18 000 s to t = 24 000 s): (a) convective flux FC

(solid), and the energy flux due to the thermal transport FR (dash-dotted); (b) kinetic flux FK (solid),
acoustic flux FP (dash-dot-dotted), and sum of the kinetic and convective flux FC + FK (dashed); (c)
source terms due to work done by buoyancy forces PA, and (d) due to volume changes PP . The vertical
lines enclose the nuclear burning zone (T> 108 K). Temporal evolution of the convective flux FC (e) and
kinetic flux FK (f) where the snapshots were averaged over 200 s and at around t1 = 19 300 s (solid), t2
= 19 500 s (dashed) and t3 = 19 700 s (dashed-dotted).
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more than 90% of the generated nuclear energy upward through the convection zone, the value
is dropping to zero towards its border. Part of the heat released in the nuclear processes is
in fact transported downwards towards the inner edge of the temperature inversion. Almost
none of the nuclear energy reaches the surface of the helium core, either by convection or by
conduction, i.e. all the energy released is deposited within the core causing its expansion. Energy
transport due to heat conduction and radiation is everywhere negligible compared with other
contributions. The viscous flux, FV , is negligible as well, and losses due to friction, influence
only the dynamics significantly close to the borders of the convection zone (Achatz 1995).

The distribution of the kinetic and convective flux is during a single turnover of a vortex changing
significantly (Fig. 7.4: e,f) due to the appearance of new hot streams of gas (Muthsam et al. 1995).

For completeness, we also consider the flux and source terms of the kinetic energy (see Ap-
pendixA.2), which allow us an additional insight into the operation of convection. The radial
profile of the source term PA, corresponding to the work done by buoyancy forces, indicates
that the vertical convective flows are accelerated due to their density fluctuations in the entire
region of dominant nuclear burning (burning zone) above Tmax. Corresponding pressure fluctu-
ations (causing expansion due to a pressure excess, respectively compression due to a pressure
deficit) powered by the volume work PP show that the gas within the burning region expands,
which effectively again implies that an acceleration occurs. Due to the importance of PP in the
convection zone, the acoustic flux FP , which transports pressure fluctuations, reaches a value
comparable to that of the kinetic flux FK , its value being negligible elsewhere.

7.3. Turbulent Entrainment

Turbulent entrainment (Fernando 1991; Meakin & Arnett 2007b), commonly referred to as
overshooting, is a hydrodynamic process that permits mixing and heating in regions that are
convectively stable according to the Schwarzschild or Ledoux criterion. Turbulent entrainment,
i.e.penetration beyond the formal convective boundaries, occurs at both edges of the convection
zone, and is driven by down-flows and up-flows. We study the entrainment by monitoring the
temperature changes and the 12C concentration at the (formal) edges of the convection zone.
12C is the most suitable element for investigating the extent of convective mixing, because at
the beginning of the simulations, it is mostly absent outside the convection zone, and therefore
can be enhanced there only due to turbulent entrainment.

At t = 30 000 s during simulation hefl.2d.3, the temperature inversion is located at r = 4.65 ×
108 cm (Fig. 7.5). It is therefore about 70 km closer to the center of the star than it was at
the beginning of the simulation (4.72 × 108 cm). Its shape remains almost unchanged and
discontinuous during the whole simulation, and its propagation speed1 can be estimated from
the heating rate δT/δt ∼ 2760 K s−1 and the local gradient δT/δr ∼ 12 K cm−1 at the steepest
point of the inversion:

v ' −(δT/δt) / (δT/δr) ∼ −2.3 m s−1 (7.1)

This speed is significantly higher than the propagation speed due to heat conduction alone. We
note that the energy flux carried by the heat conduction is seven orders of magnitude smaller
than the energy flux carried by the convection. Assuming that the convective energy flux at the
position of the temperature inversion (Fc ∼ 0.2× 1042 erg s−1) is used up completely to heat the
layers beneath the temperature inversion, a typical heating rate of Ṫ = Ė/Cinv ∼ 1250 K s−1

1The speed at which convective boundaries move due to turbulent entrainment is called entrainment rate.
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Figure 7.5.: Angular averaged 12C distribution (dashed) and temperature stratification (thick) at the
inner (a) and outer edge (b) of the convection zone in model hefl.2d.3 at t = 30000 s. The vertical dotted
lines mark the initial boundaries of the convection zone at t = 0 s determined by the Schwarzschild
criterion.

can be derived, which is by roughly 50 % lower than the value inferred from the simulation. Cinv,
the heat capacity of the layers including the temperature inversion is ∼ 1.6× 1038 erg K−1.

This implies that turbulent entrainment leads to a strong heating of the inner neutrino-cooled
center of the star that occurs on timescales relatively short compared with stellar evolutionary
timescales. This heating was studied by both Deupree & Cole (1983) and Cole et al. (1985),
who derived qualitatively similar results.

Assuming that the estimated propagation speed of the temperature inversion remains constant,
it would reach the center of the helium core and lift the electron degeneracy there within 24
days. This scenario would exclude the occurrence of mini-flashes after the main core helium
flash, which are observed in stellar evolutionary calculations (Fig. 1.1).

Sweigart & Gross (1978) found that in stars with higher mass and helium abundance, the flash
occurs closer to their center, which implies that in these stars can the temperature inversion
reach the center of the helium core due to the turbulent entrainment even faster.

We also found that turbulent entrainment influenced the outer boundary of the convection zone.
In the initial model, this boundary was located at r = 9.2 × 108 cm and corresponded to a
discontinuous change in the distribution of elements (Fig. 5.1), which is in stellar evolutionary
models a consequence of the assumption of the instantaneous mixing. In these models, all species
in the convectively unstable region are mixed instantaneously across the entire convection zone,
while the regions that are assumed to be convectively stable do not experience any mixing at
all.

The distribution of 12C at t = 30 000 s is depicted in Fig. 7.5. Compared with that of the initial
model, there is a clear shift of the carbon discontinuity, at the outer edge of the convection
zone, to a larger radius (r = 9.7 × 108 cm). In hydrodynamic simulations, the gas overshoots
naturally from the convectively unstable to the formally convectively stable region because of
its inertia. At the boundaries of the convection zone, the overshooting appears to destroy the
stability, according to the Schwarzschild criterion, transforming the originally convectively stable
region into a convectively unstable one. This allows the boundary to propagate further when a
subsequent load of gas will try to overshoot at a later time. We estimated that the propagation
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Figure 7.6.: Temporal evolution of the horizontally averaged temperature maximum 〈T 〉max (solid), and
of the global temperature maximum Tmax (solid thin) in the long-term 2D model hefl.2d.3. The dashed
line corresponds to the temporal evolution of the maximum temperature in the stellar evolutionary
calculation.

speed of the outer boundary of the convection zone is about 14 m s−1. With a propagation
speed of this magnitude, the convection zone would reach the hydrogen-rich layers surrounding
the helium core (Fig. 1.2) at a radius r = 1.9 × 109 cm and trigger a hydrogen injection flash
(Schlattl et al. 2001) within 10 days. Hydrodynamic phenomena expected due to the extra
hydrogen mixing into the helium burning shell via this extended convection zone could alter the
structure of the star significantly. Additional nucleosynthesis could also be triggered because
hydrogen entrainment will result in a production of neutrons and possibly also in a production
of s-process elements.

The hydrogen injection flash in Pop I stars is in contradiction with the canonical stellar evolu-
tionary calculations where stars fail to inject hydrogen to the helium core during the core helium
flash, unless their metallicity is close to zero (Fujimoto et al. 1990).

7.4. Long-Term Evolution

In the following we describe the long-term evolution of model hefl.2d.3, whose early evolution
was discussed in detail in previous Sect. 7.1, 7.2, 7.3.

The model is characterized by a very dynamic flow involving typical convective velocities of
∼ 1.8× 106 cm s−1. Our long-term hydrodynamic simulation of this model covering 36 hrs (see
Fig. 7.6) has revealed that the global and angle-averaged maximum temperatures continue to rise
at the initial rate of 40 K s−1 that is 60% lower than the rate predicted by stellar evolutionary
calculations. As a consequence, the typical convective velocities increase by about 50% and
reach a level of 2.8× 106 cm s−1 at the end of the simulation (Fig. 7.7).

Hydrodynamic simulations of convection driven by nuclear burning covering several convective
turnover times show a rapid growth of the convection zone due to the turbulent entrainment
(Meakin & Arnett 2007b). An analysis of our simulations based on a tracing of the radial position
of the convective boundaries (defined by the condition X(12C) = 2×10−3; see Sect. 7.3), shows a
similar behavior. Turbulent motion near the upper edge of the convection zone pumps material
into the convectively stable layer at an entrainment rate of 14 m s−1 without any significant
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Figure 7.7.: Snapshots of the spatial distribution of the velocity modulus |v| (in units of 106 cm s−1)
for the 2D model hefl.2d.3 at 24 000 s (a), 60 000 s (b), and 120 000 s (c), respectively.

slowdown over the whole duration of the simulation (Fig. 7.8) covering ∼ 130 000 s (or more than
250 convective turnover timescales). The entrainment rate at the inner convective boundary
is about a factor of six smaller (2.3 m s−1) slightly increasing during the second half of the
simulation (t > 60000 ; see Fig. 7.8). These entrainment rates have to be considered as upper
limits because of the imposed axisymmetry which leads to exaggerated convective velocities and
large filling factors for the penetrating plumes. The turbulent entrainment causes a growth of
the convection zone on a dynamic timescale, in agreement with the hydrodynamic models of
oxygen shell burning of Meakin & Arnett (2007b).

Both interfaces at the edges of the convection zone remain sharp during the whole length of the
simulation (Fig. 7.8). The entrainment is correlated with a decrease of the temperature at the
outer edge of the convection zone due to the decreasing entropy (Fig. 7.8). At the inner edge of
the convection zone the entrainment leads to heating of the cold region at r < 4.72×108 cm that
is cooled by neutrinos (Fig. 7.8). Contrary to the finding of Asida & Arnett (2000), the heating
does not penetrate deeper into the star than the mixing of 12C and the other nuclear ashes.

Due to the growth of the convection zone and due to nuclear burning the mean 12C, 4He, and
16O mass fractions change in the convection zone at rates listed in Table 7.2. The mean value
of the 12C mass fraction in the convection zone decreases at a rate of −7.4 × 10−9s−1 until
t = 40 000 to a value of X(12C) = 5.2 × 10−3. Then it begins to increase again at roughly the
same (absolute) rate +7.7 × 10−9s−1 . The 12C mass fraction decreases, because the volume
of the convection zone grows initially almost discontinuously due to the sudden start of the
entrainment. Hence, nuclear reactions are for a start unable to produce enough carbon to
compensate for the volume increase. At t ∼ 110 000 s the 12C mass fraction has risen again to
its initial value of X(12C)= 5.5× 10−3, and at the end of the simulation at t = 130 000 s the 12C
mass fraction is 5.9× 10−3, a value that is 7% higher than the initial one.

The mean 16O mass fraction shows a similar trend as that of 12C as its production depends
directly on the 12C mass fraction. The mass fraction of 4He rises within the first 40 000 s because
convection is dredging up fresh 4He from the convectively stable layers. Later in the evolution
the mass fraction of 4He decreases at rate 7.85× 10−9s−1, as it is being constantly burned.
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Figure 7.8.: Upper panels: Angular averaged 12C mass fraction as a function of radius near the inner (a)
and outer edge (b) of the convection zone in the long-term 2D model hefl.2d.3 at t = 60 000 s (dashed)
and t = 120 000 s (dash-dotted), respectively, and temperature stratification (thick) at t = 120 000 s. The
vertical dotted lines mark the boundaries of the convection zone at t = 0 s. Bottom panels: Temporal
evolution of the position of the inner (c) and outer (d) edge of the convection zone in model hefl.2d.3,
respectively.

Table 7.2.: Approximate rates at which the mean mass fractions of 4He, 12C, and 16O evolve in the
long-term 2D model hefl.2d.3 in the convection zone within the first 40 000 s (Ri; in units of 10−9), and
within the time interval 40 000 s to 130 000 s (Rf ; in units of 10−9), respectively. The quantities Xi and
Xf give the initial (t = 0 s) and final (t = 130 000 s) mass fraction of 4He and mass fractions of 12C, and
16O abundances (in units of 10−3), respectively.

element Ri Rf Xi Xf
4He +7.74 -7.85 0.975 0.974
12C -7.41 +7.71 5.502 5.918
16O -0.58 +1.13 0.927 1.008
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Figure 7.9.: (a) Evolution of the total energy production rate in solar luminosity L� for models hefl.2d.1
(dotted), hefl.2d.2 (dashed), and hefl.2d.3 (dash-dotted), respectively. (b) Mean temperature distribution
near the temperature inversion for models hefl.2d.1 (dotted), hefl.2d.2 (dashed), and hefl.2d.3 (dash-
dotted) at a t = 30 000 s, respectively. The initial distribution is shown by the solid line.

7.5. Simulations with Different Resolution

We found only minor differences between the properties of model hefl.2d.3 and those of the
corresponding models computed with a different grid resolution.

First, the initial mapping process generated different interpolation errors for different grid res-
olutions. However, the major source of discrepancy in this phase of the calculation was the
stabilization itself. The iterative procedure that we used to retain the model in hydrostatic
equilibrium (see Sect. 5.2) tends to decrease the temperature stronger in models of lower resolu-
tion.

Another source of discrepancy was caused by numerical diffusion, which is obviously stronger in
models of lower resolution. Therefore, model hefl.2d.1 suffered more from numerical diffusion
than either model hefl.2d.2 or hefl.2d.3, which is evident from Fig. 7.9. The temperature inver-
sion, that is almost discontinuous at the beginning, is smoothed out faster in model hefl.2d.1. We
note, that the temperature inversion is situated at smaller radii in models of higher resolution,
since the typical flow velocities are higher in better resolved models (Table 7.1), i.e. the turbulent
entrainment is more effective, and the temperature inversion propagates at higher speed.

Nevertheless, models hefl.2d.2 and hefl.2d.3 appear to be well resolved as differences between
them are minor. The temporal evolution in their total nuclear energy production rates, for
instance, are in almost perfect agreement (Fig. 7.9). The temperature fluctuations in the two-
dimensional models are suppressed stronger in models of higher resolution. More intense tem-
perature fluctuations observed in models which we calculated with grid resolutions even lower
than that of the model hefl.2d.1, did not lead to an explosion.

7.6. Other Two-Dimensional Simulations

In order to assess the validity of our previous conclusions we performed a set of hydrodynamical
simulations based on the initial models of different stars (Sect. 5, Tab. 5.1). The models are the
same as those used in past by Cole & Deupree (1981) (model DM) and by Kurt Achatz (Achatz
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Table 7.3.: Some properties of the 2D simulations based on initial model DM: number of grid points in
radial (Nr) and angular (Nθ) direction, radial (∆r in 106cm) and angular grid resolution (∆θ), charac-
teristic length scale lc of the flow (in 108cm), characteristic r.m.s velocity vc of the flow (in 106 cm s−1)
averaged over the width of the convection zone R ∼ lc, Reynolds number Rn associated with the numer-
ical viscosity of our code (Porter & Woodward 1994), damping timescale due to the numerical viscosity
tn, typical convective turnover time to = 2R/vc, and maximum evolution time tmax (in s), respectively.

run Nr ×Nθ ∆r ∆θ lc vc Rn tn to tmax

hefl.2d.dm1 180×90 7.68 2◦ 8.7 5.05 11 500 25 100 344 47 800
hefl.2d.dm2 270×180 5.13 1◦ 8.7 5.56 42 600 84 400 313 38 800

1995) (model JW). Model SC belongs to a special category of models, atypical for the canonical
core helium flash (Campbell & Lattanzio 2008).

All simulations were performed on equidistant spherical grid where the central part was removed
to avoid the CFL restriction near the origin of the grid. To avoid possible numerical biases at
the vicinity of the temperature inversion, the radius of the removed central part was chosen to
be always smaller than that of the temperature inversion.

7.6.1. Model DM

In Table 7.3, we summarize some characteristic parameters of our two-dimensional simulations
which are based on model DM. The simulations covered 48 000 s and 39 000 s, respectively. The
grid covers a region, that in radius ranges from 1.5×108 cm till 1.5×109 cm and encompasses
the convection zone which is roughly 3.3 pressure and 1.8 density scale heights wide. The inner
boundary is located by 3.5×108 cm beneath the temperature inversion, that is located at radius
∼ 4.1 × 108 cm. The applied boundary conditions are always reflective. We will describe here
only model hefl.2d.dm2 that has the highest resolution. The differences to model hefl.2d.dm1
having a lower resolution are minor.

The qualitative temporal evolution is similar to that of model hefl.2d.3 (Sect. 7.1). During
the initial phase, temperature fluctuations grow mainly around the temperature maximum.
Convection sets in at ∼ 200 s, and is characterized by the appearance of several hot bubbles being
roughly by 1 % hotter than their enviroment (Fig. 7.10), and having 12C and 16O underabundant
(Fig. 7.11) due to triple-α burning. After the onset of convection the model is characterized by a
stable subsonic flow with typical velocities of around 5×106 cm s−1 (sound speed cs ∼ 1.7× 108

cm s−1). Therefore, one vortex which has typically radius equal to the height of the convection
zone (∼ 8.7 × 108 cm) needs about 350 s for one rotation. This values are in good agreement
with those obtained from models with lower resolution in the work of Achatz (1995).

During this phase, the maximum temperature rises steadily at an almost constant rate of
300 K s−1 until the end of the simulation (t = 48 000 s) without any indications for thermonu-
clear runaway. In contradiction to the hydrodynamic simulations of Cole & Deupree (1980, 1981)
based on the same initial model, we did not observe any thermal pulses which were characterized
in their models by a steep increase of maximum temperature, e.g. at t = 26 000 s and at 38 000
s from 1.8×108 K up to 2.1×108 K and back within roughly 5000 s intervals.

The energy fluxes in the convection zone (Fig. 7.12) have show a similar radial dependence than
those in the model hefl.2d.3, i.e. the kinetic and convective flux are mostly positive implying fast
and hot updrafts that dominate the transport of energy. The work done by buoyancy is positive,
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Figure 7.10.: Snapshots of the onset of convection at 220 s (upper panels), and of the evolved convection
(lower panels) in model hefl.2d.dm2 at 540 s (middle panels) and 26 700 s (bottom panels), showing the
temperature contrast ∆T = 100 × (T − 〈T〉θ)/〈T〉θ (left panels), the velocity field (middle panels), and
the density contrast ∆ρ = 100 × (ρ − 〈ρ〉θ)/〈ρ〉θ (right panels), respectively. 〈〉θ denotes a horizontal
average at a given radius.
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Figure 7.11.: Snapshots of the onset of convection at 220 s (upper panels), and of the evolved convection
(lower panels) in model hefl.2d.dm2 at 540 s (middle panels) and 26 700 s (bottom panels), showing
the helium 4He contrast ∆4He = 100 × (4He − 〈4He〉θ)/〈4He〉θ (left panels), the carbon 12C contrast
∆12C = 100× (12C−〈12C〉θ)/〈12C〉θ (middle panels), and the oxygen 16O contrast ∆16O = 100× (16O−
〈16O〉θ)/〈16O〉θ(right panels), respectively. 〈〉θ denotes a horizontal average at a given radius.
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Figure 7.12.: Snapshots of various energy fluxes and source terms in model hefl.2d.dm2 (time averaged
over 10000 s or almost 32 convective turnover times, from t = 13000 s to t = 23000 s): (a) convective flux
FC (dashed), and the kinetic energy flux (dash-dotted); (b) source terms due to work done by buoyancy
forces PA (dotted), and due to volume changes PP (dash-dotted).

and the work done by expansion negative in most of the convection zone, i.e. the convective
elements are accelerated along most of their path across the convection zone. Snapshots of
the convective flow (Fig. 7.10, Fig. 7.11) show that it is more irregular and not as stable as the
pattern seen for instance in the simulation hefl.2d.3 based on the model M.

The speed of the temperature inversion due to the turbulent entrainment is in a good agree-
ment with the work of Achatz (1995). It can be estimated from the heating rate δT/δt ∼
7100 K s−1 and the local gradient δT/δr ∼ 4.8 K cm−1 at the steepest point of inversion:
v ' −(δT/δt) / (δT/δr) ∼ 14.8 m s−1.

The energy generation rate in this model is the highest of all models we computed. At the
position of the temperature maximum, the energy generation rate is 7 times higher than in
model hefl.2d.3 and 8 times higher than in model hefl.2d.jw2 described in the next Sect. 7.6.2.
The rate agrees very well with that of Achatz (1995).

7.6.2. Model JW

In Table 7.4, we summarize some characteristic parameters of our two-dimensional simulations
which are based on model JW. The simulations covered 9000 s and were computed on a grid that
spans from 2×108 cm to 2.3× 109 cm and covers the convection zone which is 6 pressure and 3
density scale heights wide. The applied boundary conditions are reflective. In the following we
describe only model hefl.2d.jw2, that has the highest grid resolution.

Convection starts at ∼ 1000 s and soon after it relaxes into a stable pattern characterized by
a few upstreams or sometimes by only one major upstream of hot gas (Fig. 7.13, Fig. 7.14).
The temperature maximum drops until around 2500 s at a rate 1700 K s−1and staying almost
constant afterward. After 4000 s, the temperature maximum is dropping again at the rate of
700 K s−1.

The temperature inversion gets only smeared during the simulation and practically does not
move further to the center as observed for instance in model hefl.2d.3. It implies that this model
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Figure 7.13.: Snapshots of the onset of convection at 1 200 s (upper panels), and of the evolved convec-
tion (lower panels) in model hefl.2d.jw2 at 1 900 s (middle panels) and 6 600 s (bottom panels), showing
the temperature contrast ∆T = 100 × (T − 〈T〉θ)/〈T〉θ (left panels), the velocity field (middle panels),
and the density contrast ∆ρ = 100× (ρ− 〈ρ〉θ)/〈ρ〉θ (right panels), respectively. 〈〉θ denotes a horizontal
average at a given radius.
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Figure 7.14.: Snapshots of the onset of convection at 1 200 s (upper panels), and of the evolved
convection (lower panels) in model hefl.2d.jw2 at 1 900 s (middle panels) and 6 600 s (bottom pan-
els), showing the helium 4He contrast ∆4He = 100 × (4He − 〈4He〉θ)/〈4He〉θ (left panels), the car-
bon 12C contrast ∆12C = 100 × (12C − 〈12C〉θ)/〈12C〉θ (middle panels), and the oxygen 16O contrast
∆16O = 100 × (16O − 〈16O〉θ)/〈16O〉θ(right panels), respectively. 〈〉θ denotes a horizontal average at a
given radius.
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Figure 7.15.: Snapshots of various energy fluxes and source terms in model hefl.2d.jw2 (time averaged
over 6000 s or almost 6 convective turnover times, from t = 3000 s to t = 9000 s): (a) convective flux FC

(dashed), and the kinetic flux (dash-dotted); (b) source terms due to work done by buoyancy forces PA

(dotted), and due to volume changes PP (dash-dotted).

Table 7.4.: Some properties of the 2D simulations based on initial model JW: number of grid points in
radial (Nr) and angular (Nθ) direction, radial (∆r in 106cm) and angular grid resolution (∆θ), charac-
teristic length scale lc of the flow (in 108cm), characteristic r.m.s velocity vc of the flow (in 106 cm s−1)
averaged over the width of the convection zone R ∼ lc, Reynolds number Rn associated with the numer-
ical viscosity of our code (Porter & Woodward 1994), damping timescale due to the numerical viscosity
tn, typical convective turnover time to = 2R/vc, and maximum evolution time tmax (in s), respectively.

run Nr ×Nθ ∆r ∆θ lc vc Rn tn to tmax

hefl.2d.jw1 180×90 7.77 2◦ 11. 1.57 4 600 40 700 1400 9 000
hefl.2d.jw2 270×180 5.19 1◦ 11. 2.02 19 900 137 240 1090 9 000

is not fully resolved yet. The resolution of this model is similar to the resolution of the model
hefl.2d.1 where the temperature inversion is only smeared similarly.

The convective and kinetic energy fluxes are again exhibiting the typical shape with positive
values across the convection zone, and with positive work done by buoyant forces in the inner
part of the convection zone (Fig. 7.15).

7.6.3. Model SC

In Table 7.5, we summarize some characteristic parameters of our two-dimensional simulation
which is based on model SC. The simulation covered roughly 7500 s. The grid covers a radial
region from 5×108 cm to 6 ×109 cm, and contains a splitted convection zone due to the hydrogen
entrainment. The inner part of the convection zone (powered by triple-α burning) spans from
1.1 ×109 cm to 3.53 ×109 cm about 3.7 pressure and 2.3 density scale heights, respectively. The
outer part spans from 3.53 ×109 cm up to 5.4 ×109 cm i.e. over 2.9 pressure and 2.4 density
scale heights. Note that, the inner part is still well off the inner grid boundary. The boundary
conditions in radial direction are reflective, and in angular direction periodic.



70 CHAPTER 7. TWO-DIMENSIONAL HYDRODYNAMIC SIMULATIONS

Figure 7.16.: Snapshots of the convection in simulation hefl.2d.sc1 based on model SC, showing the
temperature contrast ∆T = 100 (T − 〈T〉θ)/〈T〉θ at t1 = 280 s (a), t2 = 530 s (b) and t3 = 5630 s (c).
〈〉θ denotes a horizontal average at a given radius.
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Table 7.5.: Some properties of the 2D simulation based on initial model SC: number of grid points in
radial (Nr) and angular (Nθ) direction, radial (∆r in 106cm) and angular grid resolution (∆θ), charac-
teristic length scale lc of the flow (in 108cm), characteristic r.m.s velocity vc of the flow (in 106 cm s−1)
averaged over the width of the convection zone and maximum evolution time tmax (in s), respectively.

run Nr ×Nθ ∆r ∆θ lc vc tmax

hefl.2d.sc1 720×360 7.64 0.5◦ 44. 0.66 7 470

Despite the high energy production rate due to the CNO cycle in the upper part of the convection
zone which is 13 times higher than the inner triple-α burning, the convective motion appears
first within the inner part of the convection zone at around 200 s (Fig. 7.16). The onset of the
convection in the outer part follows at around 500 s. After a while relaxes the model into a
steady state where the radial and angular velocity component of the flow have almost the same
r.m.s values which is an indication of internal gravity waves (Asida & Arnett 2000).

Due to the waves, the typical convective pattern with vortices practically does not exist anymore
(Fig. 7.16: c) and therefore the convective mixing and transport of energy is likely completely
different in compare what we know and assume in general (see Sect. 2.2). It might be that the
volume between the two convection zones act as a resonant chamber which amplifies the waves
until they become a dominant feature of the helium core during such a flash.
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8
Three-Dimensional Hydrodynamic Simulations

It is well known that two-dimensional hydrodynamic simulations of turbulence are seriously
biased due to the imposed symmetry restrictions. Opposite to 3D flows, the turbulent kinetic
energy increases from small to large scales in 2D simulations, i.e., the energy cascade to smaller
length scales characteristic of turbulent flows is not reproduced (Canuto 2000; Bazan & Arnett
1998). Hence, the mean convective velocities, the amount of overshooting, and the size of
turbulent structures is too large. Thus, as pointed out already by e.g.Muthsam et al. (1995) and
Bazan & Arnett (1998), three-dimensional simulations are required to validate the predictions
of two-dimensional simulations.

The hydrodynamic evolution of the core helium flash in three-dimensions will provide us infor-
mations on the structure and topology of turbulent convection and entrainment into convectively
stable layers during the core helium flash without any symmetry restrictions and give us hints
where the two-dimensional simulations fail. One of our goals in following sections is a compar-
ison of two- and three-dimensional hydrodynamic simulations versus predictions made by the
mixing length theory.

Our three-dimensional hydrodynamic models are based on the initial model M and are charac-
terized by a convectively unstable layer (the convection zone) embedded in between two stable
layers composed of several chemical nuclear species and of a partially degenerate electron gas.
Similar systems were studied in the past by many authors e.g.Hurlburt et al. (1986, 1994);
Muthsam et al. (1995); Singh et al. (1995, 1998) and Brummell et al. (2002) assuming, however,
that the stellar matter is composed of a single ideal Boltzmann gas. This gives extra relevance
to our simulations because they allow us to study, e.g., the dependence of turbulent entrainment
and the structure of convective boundary layers on the composition of the stellar gas, and on
the composition gradients present in the stellar model.

In order to study the differences between two- and three-dimensional simulations, we performed
one two-dimensional and one three-dimensional simulation which have the same radial and
angular resolution. Their properties are summarized in Table 8.1. The simulations hefl.2d.a
and hefl.3d cover 9500 s and 6000 s of evolutionary time near the peak of the core helium flash,
respectively, and were computed on a computational grid spanning a wedge of 120◦ in angular
directions centered at the equator. The rather wide angular grid appeared to be necessary for the
three-dimensional simulations, due to the size of the largest vortices (∼ 40◦) found in previous

73
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Table 8.1.: Some properties of the two and three-dimensional simulation: number of grid points in
r (Nr), θ (Nθ) and , φ (Nφ) direction, spatial resolution in r (∆r in 106 cm), θ (∆θ), and φ (∆φ)
direction, characteristic velocity vc (in 106 cm s−1) of the flow during the first 6000 s, expansion velocity
at temperature maximum vexp (in m s−1), typical convective turnover time to = 2R/vc (in s) where R
is the height of the convection zone, and maximum evolutionary time tmax (in s), respectively.

run grid ∆r ∆θ ∆φ vc vexp to tmax

hefl.2d.a 180× 90 5.55 1.5◦ - 1.44 24. 650 9500
hefl.3d 180× 90× 90 5.55 1.5◦ 1.5◦ 0.85 10. 1105 6000

two-dimensional simulations (Sect. 7).

All models posses a convection zone that spans 1.5 density scale heights and that is enclosed by
convectively stable layers extending out to a radius of 1.2 × 109 cm. In the 3D model hefl.3d,
we used reflective boundary conditions in every coordinate direction. For the model hefl.2d.a, it
turned out to be necessary to impose periodic boundary conditions in angular direction, because
reflective boundaries together with the 120 ◦wedge size affect the large scale convective flow
adversely, leading to higher convection velocities.

We are limited with our explicit hydrodynamics code by the CFL condition which is most
restrictive near the center of the spherical grid. Therefore, we cut off the inner part of the grid
at a radius of 2 × 108 cm that is still sufficiently far away from the radius of the temperature
inversion at r∼ 5 × 108 cm. To trigger convection, we imposed a random flow field with a
maximum (absolute) velocity of 10 cm s−1, and a random density perturbation ∆ρ/ρ ≤ 10−2.
Imposing some explicit non-radial perturbations is necessary, because a spherically symmetric
model evolved with Herakles on a grid in spherical coordinates will remain spherically symmetric
forever. This is different from the study of Asida & Arnett (2000), who did not perturb the
initial model by an artificial random flow, as instabilities were growing from round-off errors.
The different perturbation techniques seem not to influence the final thermally relaxed steady
state (Meakin & Arnett 2007b).

Because thermal transport of energy by conduction and radiation is roughly seven orders of
magnitude smaller than the convective energy flux, it has been neglected in the simulations.
Most of the liberated nuclear energy is carried away by convection. All computed models are
non-rotating, because rotation seems not to play an important role during the core helium flash
(Lattanzio et al. 2006).

8.1. Temporal Evolution

The two- and three-dimensional model hefl.2d.a and hefl.3d undergo initially (t < 1200 s) a
common evolution where convection sets in after roughly 1000 s. During this phase, hot bubbles
appear in the region where helium burns in a thin shell (r∼ 5 × 108 K). After ∼ 200 s, they
cover complete height of the convective region which is ∼ 4.8× 108 cm and reach a steady state
with several upstreams (or plumes) of hot gas carrying the released nuclear energy away from
the burning region, thereby inhibiting a thermonuclear runaway.

The models are characterized by a sandwich structure with top and bottom convectively stable
layers enclosing an unstable one. The unstable convection zone is characterized by high values of
the kinetic energy density (Fig. 8.1). The top and bottom strips are the convective stable layers
being characterized by induced waves due to the convection. The strip of high kinetic energy
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Figure 8.1.: Temporal evolution of a mean kinetic energy density (in erg/g) averaged over angular
dimensions in hefl.3d (a) and hefl.2d.a (b), respectively.

density starting at time∼ 3000 s at the bottom layer in hefl.3d is strongly biased by numerical
instabilities caused by the proximity of the inner reflective grid boundaries.

The models reach a steady state after ∼ 2000 s (Figs. 8.1 and 8.2). The steep increase of the
total kinetic energy from roughly 1039 erg to 1045 erg (Fig. 8.2) marks the onset of convection.
The kinetic energy density shows small fluctuations in the fully evolved convection zone, and is
by an order of magnitude larger in model hefl.2d.a than in model hefl.3d. This is in agreement
with other studies, as it is well know that two-dimensional turbulence is more intensive (see,
e.g.Muthsam et al. (1995)). The total energy production is about 10% higher in the 3D model
due to its slightly higher temperature and the strong dependence of the triple-α reaction rate
on temperature.

We observe buoyancy driven internal gravity waves (Zahn 1991; Hurlburt et al. 1986, 1994;
Meakin & Arnett 2007b) in the convectively stable layers (Fig. 8.1, Fig. 8.7), but we do not
discuss these waves any further here, because their properties are likely biased by the reflective
boundaries (Asida & Arnett 2000). We only point out that the differences in amplitude and
frequency seen in Fig. 8.1 are physical, i.e. internal gravity waves have a lower frequency and
amplitude in 3D than in 2D.

8.2. Size and Structure of Convective Flow

Fully evolved convection (t > 2000 s) in the 3D model hefl.3d differs significantly from that
in the corresponding 2D model hefl.2d.a. The convective flow is dominated in the 2D model
by vortices having (angular) diameters ranging from 30◦ to 50◦ (Fig.8.3), and an aspect ratio
of close to one. The vortices are qualitatively similar to those found in other two-dimensional
simulations (Hurlburt et al. 1986, 1994; Porter & Woodward 1994; Bazan & Arnett 1998). This
vortex structure of 2D turbulence is quite typical, and arises from the self-organization of the
flow (Fornberg 1977; McWilliams 1984).

The convective flow in the 3D model hefl.3d consists of column-shaped plumes (Fig. 8.3, Fig. 8.7),
and contrary to the 2D model hefl.2d.a, it does not show any dominant angular mode. The
typical angular size of turbulent features ranges from 10◦ to 30◦ (Fig.8.3). The power spectra
of angular velocity fluctuations show that turbulent elements have an almost time-independent
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Figure 8.2.: Temporal evolution of the total kinetic energy EK (a) and the total energy production rate
(b) in the model hefl.3d (solid) and hefl.2d.a (dotted), respectively.

Table 8.2.: Root mean square fluctuation amplitudes of various variables within the convection zone
(cnvz: 5× 108 cm ≤ r ≤ 9.2× 108 cm) averaged over a time period of about 2500 s: temperature T

′
/〈T 〉,

density ρ
′
/〈ρ〉, helium abundance 4He

′
/〈4He〉, and carbon abundance 12C

′
/〈12C〉.

pos run T
′
/〈T 〉 ρ

′
/〈ρ〉 4He

′
/〈4He〉 12C

′
/〈12C〉

hefl.3d 0.00058 0.00015 0.00009 0.01433
cnvz

hefl.2d.a 0.00074 0.00021 0.00007 0.01272

characteristic angular size of 30◦ - 50◦in case of the 2D model, while the spectra computed for
the 3D model change with time and exhibit no dominant angular mode.

We find turbulent flow features across the whole convection zone resulting from the interaction of
convective up and downflows. Close to the edges of the convective zone we observe the smallest
turbulent flow features that form when compact turbulent plumes are decelerated and break-up
(Brummell et al. 2002). Shear instabilities likely play an important role in the development of
the turbulent flow as well (Cattaneo et al. 1991).

Tables 8.2 and 8.3 provide time-averaged root mean square fluctuation amplitudes of various
variables of the convective flow inside the convection zone and near its edges, respectively for
models hefl.3d and hefl.2d.a. The temperature and density fluctuations are 30-40 % larger in
the 2D model than in the 3D one. This is expected, because vortices are stable in 2D flows but
decay in 3D ones (Fig.8.3). The fluctuations in the composition (4He and 12C) are larger by
10-30% in the 3D model which is a result of more “broken” and hence more non-uniform mixing
of chemical elements than in the 2D one.

The temperature and density fluctuation amplitudes are a factor of 2-3 larger near the inner edge
than near the outer edge of the convective layer. At both edges are the fluctuation amplitudes
by a factor of 2-4 larger in 2D than in 3D models. The fluctuations in the composition (4He and
12C) in both models differ close to the convective boundaries as well, by up to a factor of two.
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Figure 8.3.: Upper panels: Snapshots taken at ∼ 4754 s showing contour plots of the absolute value of
the velocity (in units of 106 cm s−1) for the 2D model hefl.2d.a (a), and for the 3D model hefl.3d in a
meridional plane of azimuth angle φ = 50◦ (b) and φ = 70◦ (c), respectively. Lower panels: Normalized
power spectra of angular fluctuations in the absolute velocity as a function of radius for the 2D model
helf.2d.a (a) averaged over time from 2100 s to 9500 s, and for the 3D model hefl.3d (b) averaged over time
from 2250 s to 6000 s, and azimuthal angle. The dashed vertical lines mark the edges of the convective
zone of the initial model according to the Schwarzschild criterion.

Table 8.3.: Root mean square fluctuation amplitudes of various variables at the inner (r = 5× 108 cm)
and outer (r = 9.2 × 108 cm) edge of the convection zone averaged over a time period of about 2500 s:
temperature T

′
/〈T 〉, density ρ

′
/〈ρ〉, helium abundance 4He

′
/〈4He〉, and carbon abundance 12C

′
/〈12C〉.

pos run T
′
/〈T 〉 ρ

′
/〈ρ〉 4He

′
/〈4He〉 12C

′
/〈12C〉

hefl.3d 0.00643 0.00144 0.00045 0.11497
inner

hefl.2d.a 0.02027 0.00441 0.00024 0.08958
hefl.3d 0.00420 0.00117 0.00089 0.45105

outer
hefl.2d.a 0.00626 0.00177 0.00141 0.62193
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Figure 8.4.: (a) Auto-correlation function A1(r0; r) for different radii r0 (4.8× 108 cm, 5.9× 108 cm, 7×
108cm, 8.1× 108 cm, 9.25× 108 cm) in the model hefl.2d.a (dotted lines) and hefl.3d (solid lines) at t ∼
4000 s. (b) Auto-correlation function A2(r0; t − t0) for model hefl.3d at 2 different times t0 ∼ 2260 s
(solid) and 2900 s (dashed), respectively, and model hefl.2d.a at the same times t0 (crosses and diamonds,
respectively); r0 is 7.6× 108 cm.

8.3. Stability of the Flow Structures

To analyze the size and the stability of the vortices we introduce an auto-correlation function of
the radial velocity

A1(r0; r) =
〈vr(r0) vr(r)〉Ω,t

〈vr(r0)2〉1/2
Ω,t 〈vr(r)2〉1/2

Ω,t

(8.1)

that measures the radial extent of flow patterns at a given radius r0, or equivalently the radial
size of vortices. The notation 〈〉Ω,t indicates averaging over angles and time. A second auto-
correlation function

A2(r0; t− t0) =
〈vr(r0, t0) vr(r0, t)〉Ω

〈vr(r0, t0)2〉1/2
Ω 〈vr(r0, t)2〉1/2

Ω

(8.2)

provides a measure of the lifetime of flow patterns at radius r0, beyond time t0. Here, we
average only over angles. Both correlation functions have the properties −1 ≤ A1,2 ≤ 1, and
A1(r0; r0) = 1 and A2(r0; t0 − t0) = 1, respectively. They are similar to the autocorrelation
function used by Chan et al. (1982); Chan & Sofia (1986).

Figure 8.4 displays the radial auto-correlation for models hefl.2d.a and hefl.3d and confirms
the extension of the convective flow across the whole convective region as determined by the
Schwarzschild criterion in the initial stellar model. The broad plateaus with A1 ≈ 1 corre-
sponding to the 2D model hefl.2d.a bear evidence of the axial symmetry imposed in the two-
dimensional case which leads to pronounced circular vortices. In the three-dimensional case, the
distributions of A1 tend to differ from unity at nearly all radii.

Figure 8.4 shows the temporal auto-correlations with two typical results for different t0. The
three-dimensional model always shows the typical behavior of a decrease of the function value
to 0.5 within 200-250 s. From this we conclude that the flow pattern fluctuates always in the
same way. This is different in the two-dimensional model, where A2 can keep high values for a
much longer time implying rather persistent structure (the vortices) of the convective flow.
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8.4. Turbulent Entrainment and Size of the Convection Zone

Convection may induce mixing in convectively stable layers adjacent to convectively unstable
regions. Following Meakin & Arnett (2007b), we prefer to call this process turbulent entrain-
ment, a term also used in oceanography, see e.g.Fernando (1991). The commonly used term
(convective) overshooting accounts only for localized ascending or descending plumes crossing
the edge of the convection zone. If the filling factor of these plumes or their crossing frequency is
high, they can change the entropy in convectively stable regions surrounding convection zones,
a process that is known as penetration (Brummell et al. 2002). Turbulent entrainment accounts
for both overshooting and penetration.

Contrary to Hurlburt et al. (1994) we determine the depth of the entrainment neither by the
radius where the kinetic energy carried into the stable layers is zero, nor by the radius where the
kinetic energy has dropped to a certain fraction of its maximum value (Brummell et al. 2002).
We find both conditions insufficient, because the kinetic energy flux becomes zero much faster
than the convective flux, which is another possible indicator of the depth of the entrainment
(see next subsection). Instead, we rather use the 12C mass fraction, as it is low outside the
convection zone during the flash (X(12C) < 2 × 10−3), and as it can rise there only due to
turbulent entrainment.

In this study, we use the condition X(12C) = 2 × 10−3 to define the edges of the convection
zone. Due to the turbulent entrainment, these edges are pushed towards the stellar center and
surface (Fig. 8.6). Hence, the width of the convection zone increases on the dynamic timescale,
which is in contradiction with the predictions of one-dimensional hydrostatic stellar modeling,
where the width of the convection zone is determined by the local Schwarzschild or Ledoux
criterion. However, the criterion for the width of the convection zone cannot be a local one due
to turbulent entrainment caused by convection.

The speed, at which the radius of the outer edge of the convection zone increases with time due
to entrainment, is estimated for models hefl.2d.a and hefl.3d to be at most 14 m s−1. The radius
of the inner edge of the convection zone changes at a much smaller rate (Bazan & Arnett 1998;
Meakin & Arnett 2007b), as the region interior to the convection zone is more stable against
convection and has a higher density than the region exterior to the convection zone (Singh et al.
1995). The entrainment at the bottom of the convection zone also leads to a heating of the cool
interior layers (Deupree & Cole 1983; Cole et al. 1985). This seems to be a robust feature of
convection zones driven by nuclear burning, and is observed in other studies too (e.g.Asida &
Arnett (2000)).

The region just interior to the convection zone shows less entrainment (Bazan & Arnett 1998;
Meakin & Arnett 2007b), as the square of the Brunt-Väisälä frequency is almost ten times larger
there than that in the region just outside the outer edge of the convection zone. The Brunt-
Väisälä frequency is a good stability indicator since it is related to the behavior of convective
elements within a convection zone, a fact also pointed out by Hurlburt et al. (1994). The
Brunt-Väisälä frequency can be written as (Meakin & Arnett 2007b):

N2 = −g
(
∂ ln ρ
∂ r

− ∂ ln ρ
∂ r

∣∣∣∣
s

)
, (8.3)

where g, ρ ,and r are the gravitational acceleration, the density and the radius, respectively. A
layer is convectively stable, if N2 > 0, and unstable otherwise 1 (Kippenhahn & Weigert (1990)).

1The Brunt-Väisälä frequency is related to the bulk Richardson number known from oceanography, which is
a more direct measure of the stability of the edges of a convection zone in the presence of a turbulent flow
(Meakin & Arnett 2007b).
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Figure 8.5.: Square of the Brunt-Väisälä buoyancy frequency as a function of radius for the 3D model
hefl.3d at t = 4638 s.

The Brunt-Väisälä frequency differs in the 2D and 3D simulations slightly, and has on average
a very small negative value inside the convection zone: N2 = −4.4 × 10−6 rad2 cm−2 in the
2D model hefl.2d.a, and N2 = −1.2 × 10−6 rad2 cm−2 in the 3D model hefl.3d. Just outside
(inside) the inner (outer) edge of the convection zone of the 2D model hefl.2d.a we find N2 =
0.580 rad2 cm−2 (0.053 rad2 cm−2 ), and N2 = 0.583 rad2 cm−2 (0.052 rad2 cm−2 ) for the 3D
model hefl.3d, respectively (Fig. 8.5). In the 2D model hefl.2d.3, these frequencies are higher by
about a factor of two.

Due to its high stability, the radius of the bottom edge of the convection zone did not change
during the time covered by our simulations, except for an initial jump over one radial grid zone
from r = 4.69× 108 cm to r = 4.63× 108 cm, when it was touched by convective downflows for
the first time. However, entrainment may move the edge further towards the stellar center later
in the evolution (see Sect. 7.4). The entrainment rate (i.e. the velocity at which the convective
boundary moves) is lower by a factor of ∼ 5-6 at the bottom of the convection zone in our 2D
simulations of the core helium flash as compared to that at the outer boundary (∼ 14 m s−1;
see above). This behavior was also observed in 3D simulations of oxygen burning shell (Meakin
& Arnett 2007b). This implies that the entrainment rate at the inner edge of the convection
zone is ∼ 2.5 m s−1 in our core helium flash simulations. The corresponding change in radius
is only 1.5× 106 cm or about a quarter of the width of a radial zone during the time covered by
the simulations, and hence too small to be seen. As these estimates are resolution dependent,
the values presented should be considered as order of magnitude estimates, only.

The entrainment is more efficient in the 2D model hefl.2d.a than in the 3D model hefl.3d. In
2D, the observed convective flow structures are large and fast rotating vortices that due to the
imposed axisymmetry are actually tori (Bazan & Arnett 1998). They have a high filling factor
near the edge of the convection zone where they overshoot or penetrate (Brummell et al. 2002).
3D structures crossing the edge of the convection zones are smaller (localized) plumes with a
lower filling factor and smaller velocities.

We studied convective stability in detail only for the layer above the convection zone, where
the gas is only weakly degenerate, and we are thus able to compare our results with those of
similar systems simulated in 3D at high Reynolds numbers (∼ 104) by Brummell et al. (2002).
According to these authors, a stable layer allows for more “overshooting”, if its entropy gradient
is smaller. We found that the turbulent entrainment lowers the entropy gradient at the outer
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Figure 8.6.: Carbon mass fraction X(12C) (a), entropy S (b), and entropy gradient ∇S (c) as a function
of radius near the outer edge of the convection zone of model hefl.3d at three different epochs: t1 = 2000 s
(dashed), t1 = 4000 s (dash-dotted), and t1 = 6000 (solid). In addition, the initial X(12C) profile is shown
in the top panel (dotted).

edge of the convection zone in our simulations (Fig. 8.6). Hence, the stability of the exterior
stable layer decreases with time, allowing for more turbulent entrainment.

Contrary to Brummell et al. (2002), who studied only single fluid flow, our simulations involve a
mixture of different fluids of different composition. This complicates the above argumentation,
as in a multi-fluid flow a shallow entropy gradient does not necessarily imply that the layer is
less stable against turbulent entrainment. We plan to address this issue in more detail elsewhere.
We have not analyzed the stability of the region below the inner edge of the convection zone,
because it is highly degenerate and appears to be very stable. No significant entrainment of 12C
was observed there during the entire simulation of models hefl.2d.a and hefl.3d, respectively.
Simulations covering longer periods of time are therefore needed (see Sect. 7.4). The analysis of
the energy fluxes inside the convection zone and near the outer edge of the convection zone, which
will be discussed in the next subsection, will provide more information about the phenomenon
of the turbulent entrainment.
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Figure 8.7.: Different views of isosurfaces of the velocity field for the 3D model hefl.3d at t = 3000 s.
The blue isosurface corresponds to radial downflows with vr = −6 × 105 cm s−1, and the yellow and
brown isosurfaces show radial upflows with vr = 6 × 105 cm s−1, and 1 × 104 cm s−1 (internal gravity
waves), respectively. The edge sizes of the box are 1.2 × 109 cm and 2.4 × 109 cm, respectively. The
yellow-greenish sphere in the bottom right panel marks the top of the convection zone according to the
Schwarzschild criterion.
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Figure 8.8.: Various energy fluxes and source terms as a function of radius averaged (from 2000 s to
6000 s) over about four convective turnover times. Panel (a) shows the convective flux FC of the 2D
model hefl.2d.a (solid-red) and the 3D model hefl.3d (dashed-black) together with the kinetic energy flux
FK in the 2D (dash-dotted-red) and 3D (dash-dot-dotted-black) model, respectively. The dotted vertical
lines mark the edges of the convection zone in the initial model according to the Schwarzschild criterion.
Panel (b) gives the source terms due to the work done by buoyancy forces PA (dash-dot-dotted black)
and due to volume changes PP (dashed black) in the 3D model hefl.3d, and in the 2D model hefl.2d.a
(dash-dotted-red, solid red) respectively. The vertical lines enclose the nuclear burning zone (T> 108 K).
Panels (c) and (d) show an enlarged view of the energy fluxes and source terms displayed in panels (a)
and (b) near the outer edge of the convection zone.

8.5. Energy Fluxes

Energy fluxes are a useful tool for understanding convective flows (Chan & Sofia 1986; Hurlburt
et al. 1986; Muthsam et al. 1995; Hurlburt et al. 1994; Brummell et al. 2002; Meakin & Arnett
2007b). They allow one to discriminate the energy transport due to different processes and
mechanisms (e.g.due to convection, heat conduction, etc). We thus analyzed various energy
fluxes and source terms that are defined in AppendixA.2. All energy fluxes and source terms
(see, Fig. 8.8) are averaged over several convective turnover times, as they change considerably
with time due to the appearance of plumes (Muthsam et al. 1995).

The convective energy flux is mainly positive as heat is mostly transported upwards by convec-
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tion. It is larger in the 2D model hefl.2d.a, as in 2D the convective flow structures are more
laminar and ordered, and thus experience less dissipation. The smaller value of FC in the 3D
model hefl.3d is a result of a less ordered flow throughout the whole convection zone. This is
in agreement with Table 8.2 which shows that the fluctuations in temperature and density are
smaller in the 3D model.

A kinetic energy flux arises from deviations from the mean convective flow (i.e.mainly from
the upflow-downflow asymmetry). Typically it is largest in the most turbulent regions of the
flow, where on top of the kinetic flux due to the up- and down-flow asymmetry, there is also
a significant contribution due to the asymmetry of localized turbulent (convective) elements.
Directly connected to this is the offset between the maxima of the kinetic and the convective
flux (see Fig. 8.8), which reflects the fact that the convective flow decays more efficiently when
the flow becomes strongly turbulent.

The work done by buoyancy forces is positive in the whole region of dominant nuclear burning
(see Fig. 8.8) indicating either less dense and hot gas moving upwards or more dense and cooler
gas moving downwards. A negative value of the work done by buoyancy forces implies the
opposite situation, i.e. less dense and hot gas flowing downward or denser and cooler gas flowing
upward. The latter is known as buoyancy breaking leading to a deceleration of the flow motion
(Brummell et al. 2002), and to the unusual situation that hot matter tends to sink, and cool
matter is likely to rise.

The gas should expand while rising up through the convection zone, i.e. the work done by buoy-
ancy (PA) and by volume changes (PP ) should always be anti-correlated. The anti-correlation is
clearly seen only in the 2D model hefl.2d.a, whereas in the 3D model hefl.3d the quantities are on
average anti-correlated only in the central region of the convection zone. At the inner edge of the
convection zone, buoyancy drives gas upwards which is on average simultaneously compressed,
probably by the broad downflows. At the outer edge where buoyancy braking occurs, the gas on
average expands. Hence, it must expand faster than the upflows cool and are being compressed
(a situation observed for the 2D model hefl.2d.a).

All the fluxes discussed here agree qualitatively well with those of our previous high-resolution
2D simulations (see Sect. 7.2). They are also qualitatively very similar to those of the high-
resolution 3D simulations of Brummell et al. (2002) who investigated a stratified model with
a convectively stable region located on top of a convectively unstable region both consisting of
an ideal gas with a very high Reynolds number (∼ 104). The angular and time averaged radial
distributions of the kinetic and convective fluxes seem to be robust in the convectively unstable
region, as our 3D results are qualitatively similar to those obtained in several other 3D studies
(Hurlburt et al. 1994; Brummell et al. 2002; Meakin & Arnett 2007b).

The outer part of the convection zone, where buoyancy breaking occurs, resembles the overshoot-
ing region due to active penetration of plumes described by Hurlburt et al. (1986, 1994) and
Brummell et al. (2002). Note, however, that this region is convectively stable at the beginning
of their simulations, i.e.buoyancy breaking takes already place inside the convection zone in our
models.

The distribution of the kinetic flux (Fig. 8.8) exhibits structural differences in the convection
zone between 2D and 3D flows. The typical evolved 2D flow contains well defined vortices
(Fig. 8.3) whose central parts never interact with the region of dominant nuclear burning. This
results in a reduced kinetic energy flux at r ∼ 5.5 × 108 cm, as this region corresponds to the
central region of the vortices, which do not experience any strong radial motion. On the other
hand, the distribution of the kinetic energy flux in the 3D model hefl.3d is rather smooth as a
result of the column-shaped flow structures (Fig. 8.7).
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The convective flux changes sign in stable layers since the downflows or upflows penetrating
into the stable zones are suddenly too hot or cold compared to the surrounding gas. The
penetration continues until the momentum of the convective elements is used up or diffusion
smooths out the perturbations, and the convective flux approaches zero (Brummell et al. 2002).
This fingerprint of turbulent entrainment is clearly present at both convective boundaries of our
models (Fig. 8.8, Fig. 7.4).

The convective energy flux is relatively strong even in regions where the kinetic energy flux is
almost zero. Therefore, the “zero” kinetic flux criterion (Hurlburt et al. 1994; Brummell et al.
2002) seems to be a bad indicator of entrainment which may extend well beyond the location
where the kinetic flux becomes small. In fact, what is happening at the convective boundaries
is an exchange between the potential energy of the stratification given by the buoyancy jump
db = N2 dr and the kinetic energy of the turbulence. Turbulence looses its kinetic energy
by doing work against gravity, which leads to a reduction of the buoyancy jump, and hence to
stability weakening of the stable boundary layer to the effects of the turbulent entrainment. The
buoyancy jump db is a direct measure of the stability of the boundary layer. To mix gas into the
boundary layer the buoyancy must be reduced. This is accomplished through the buoyancy flux
q = PA/ρ, which is related to the temporal variation of the buoyancy jump by db/dt = −div(q),
where PA and ρ are the sink/source term of the kinetic energy due to buoyancy forces and the
density, respectively.

The convective flux can directly be related to the buoyancy flux that is a function of PA by a
linear relation FC = FC(q) described in more detail by Meakin & Arnett (2007b). Figure 8.8
shows that this agrees well with what we observe in our simulations. It also supports our previous
conclusion that entrainment is well indicated by the convective flux and the related buoyancy
flux which via the equation db/dt = −div(q) leads to the decrease of the buoyancy jump in the
stable layer. This in turn reduces the convective stability of that layer.

The properties of the entrainment at the outer convective boundary differs in models hefl.2d.a
and hefl.3d (see Fig. 8.8). In the 2D model entrainment is reaching deeper into the stable layer
due to a more active convection zone with higher typical velocities (Fig. 8.9) than in the 3D
model. The radial distribution of the work done by buoyancy PA is qualitatively similar in both
the 2D and 3D models, i.e. it is negative indicating buoyancy breaking. Nevertheless, the work
done by gas compression or expansion PP is different. In the 2D model hefl.2d.a the gas on
average is compressed (PP is positive), while in the 3D model hefl.3d the gas is expanding at
the boundary. This again confirms that 2D and 3D convective flows are qualitatively different.

8.6. The flow within the convection zone

The amount of energy (FC +FK) which has to be transported by convection in order to prevent
a thermonuclear runaway during the flash is similar in models hefl.2d.a and hefl.3d. Since the
convective flux is almost the same in both models, the resulting typical convective velocities are
higher in the 2D model than in the 3D one (Fig. 8.9).

The velocities in the 3D model hefl.3d match those predicted by mixing-length theory better
than in the 2D model hefl.2d.a, where they are about a factor of 2 larger. This behavior was also
observed in other hydrodynamic simulations of convective flows; see e.g.Muthsam et al. (1995);
Meakin & Arnett (2007b). The radial velocities in the regions above and below the convection
zone are smaller than the angular velocities in both models, which is a typical feature of internal
gravity waves (Asida & Arnett 2000).
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Figure 8.9.: Radial distributions of the time (from 2000 s to 4000 s) and angle-averaged velocity compo-
nents (vr, vθ, vφ) and velocity modulus (vabs) for the 2D model hefl.2d.a (a), and the 3D model hefl.3d
(b), respectively. The panels also show the velocity predicted by the mixing-length theory (vmlt) .

In the 3D model hefl.3d, the flow in the convectively stable layer beneath the convection zone
exhibits some numerical artefact’s due to the proximity of the inner grid boundary (see Fig. 8.9).
The radial distributions of the time and angle-averaged components of the velocity field and of
the density and temperature fluctuations show pronounced maxima at ∼ 3×108 cm and a sharp
cut-off at r = 2.5 × 108 cm (Fig. 8.9, Fig. 8.10). The sharp cut-off is caused by the artificial
damping we had to apply to the velocity field in the innermost grid zones to prevent numerical
instabilities from spreading limitless to the convection zone.

Although, the flow velocities in the 3D model match those predicted by mixing-length theory
very well, one should keep in mind that with increasing resolution the flow velocities will likely
increase due to the reduced numerical viscosity. This trend is confirmed by the velocities obtained
for the high-resolution 2D model hefl.2d.3 (Sect. 7) that are a factor of two higher than in the
low-resolution model hefl.2d.a.

Near both edges of the convective zone there are large narrow peaks visible in the radial distri-
butions of the time and angle-averaged density and temperature fluctuations (Fig. 8.10). These
peaks are not caused by compression or expansion, but they are a result of the density and
temperature discontinuities at the edges of the convection zone (Meakin & Arnett 2007a; Arnett
et al. 2007), because any angle-dependent radial perturbation will cause large angular variations
of density and temperature at these discontinuities.

The temperature fluctuations within the convection zone (Fig. 8.11) are rather uniformly dis-
tributed, but they are more intense near the outer edge of the convection zone, where they are
only weakly correlated with the radial velocity. At the top of the convection zone the emerging
rising plumes are embedded in an environment which sinks down (Fig. 8.11, bottom panels).
This situation is similar to the sinking down-drafts with upwelling centers found in simulations
by Nordlund & Dravins (1990) and Cattaneo et al. (1991).

8.7. Upflow-downflow asymmetry

The 2D and 3D simulations share the common property of an upflow-downflow asymmetry
(Hurlburt et al. 1994; Muthsam et al. 1995; Brummell et al. 2002). The downflows cover a
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Figure 8.10.: Radial distributions of the time (from 2800 s to 4800 s) and angle-averaged density (a)
and temperature (b) fluctuations in the 3D model hefl.3d (solid red line). The panels also show the
angular variation of the respective quantity at a given radius (gray shaded region). The dotted vertical
lines mark the edges of the convection zone as determined by the Schwarzschild criterion.

much larger volume fraction of the convection zone than the upflows. The filling factor of the
downflows increases with decreasing depth (Rast et al. 1993; Meakin & Arnett 2007b) across
most of the convection zone, and the downflows are more dominant in the 3D model hefl.3d than
in the 2D models. Contrary to the simulations of oxygen shell burning of Asida & Arnett (2000)
we find that the absolute velocities are about 40% higher in the upflows than in the downflows.
Hence, the downflows in the convection zone of a star at the peak of the core helium flash are
slower and broader than the faster and narrower upflows.

8.8. Mixing Within The Convection Zone

Cuts through the 3D model hefl.3d at t = 4815 s showing the angular variation of temperature,
12C mass fraction, and radial velocity at three different radii (Fig. 8.11) demonstrate that the
helium core at the peak of the core helium flash is a very turbulent environment at all heights
of the convection zone.

The bottom of the convection zone contains hot filaments of gas where the temperature exceeds
that of the environment by about 1%. The filaments contain ashes from helium burning, i.e. 12C
and 16O, and they move across the whole bottom of the convection zone in a random way. The
filaments are correlated with upflows, as the hot gas of burned matter is forced by buoyancy to
rise towards the top of the convection zone.

The apparent turbulent nature of the convective flow indicated by our simulations implies that
the treatment of mixing in stars as a diffusive process may lead to inaccurate or even incorrect
results. Convective flows are rather advective, as suggested by Woodward et al. (2008).

8.9. Mixing Length Theory and Simulations

Mixing length theory (or MLT) commonly used for treating convection in stellar evolutionary
calculations relies on assumptions and parameters that are often chosen based on convenient
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Figure 8.11.: Cuts through the 3D model hefl.3d at t = 4815 s showing the angular variation of tempera-
ture (in units of 108 K; left panels), 12C mass fraction (in units of 10−3; middle panels), and radial velocity
(in units of 105 cm s−1; right panels), respectively, at three different radii: r1 = 4.8×108 cm (temperature
maximum; top), r2 = 6.5× 108cm (center of the convection zone; middle), and r3 = 9.3× 108cm (top of
convection zone, bottom). The black lines in the right panels mark the boundaries between positive and
negative radial velocities.
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Figure 8.12.: (a) Radial distributions of the adiabatic temperature gradient ∇ad (dotted) and of the
temperature gradients ∇sim of model hefl.3d (solid), respectively. The latter distribution is a linear fit
to the gradients averaged over angle and over the first 200 s of the evolution of the model. The gray
shaded region marks the convection zone CVZ. (b) Same as left, but showing the radial distributions in
the evolved convection zone averaged over roughly 3000 s of evolutionary time.

ad-hoc arguments about the convective flow, like e.g. the value of the mixing length, the amount
of upflow-downflow symmetry or the position where, within the convection zone, convective
elements start to rise (Kippenhahn & Weigert 1990; Weiss et al. 2004).

MLT also assumes that the temperature of a convective element (blob) is the same as that of
the ambient medium surrounding it when it starts to rise. However, as a blob will not rise
until it is hotter than the surroundings, this MLT assumption is contradictory. MLT further
assumes that once the blobs begin to rise they carry their surplus of heat lossless over a distance
given by the mixing length before they release it to the surrounding gas instantaneously at the
end of their path. These assumptions are also not fulfilled in general. Our simulations show
that convective elements typically start their rise inside the star from the region of dominant
nuclear burning where they are accelerated by buoyant forces. The assumptions of MLT that
convective blobs form and begin their motion at different depths of the convection zone, and that
the average convective blob propagates a distance equal to half of the assumed mixing length
before dissolving with the surrounding gas (Kippenhahn & Weigert 1990), therefore do not hold.
MLT finally also assumes a correlation between the thermodynamic variables and the velocity
of the flow in a convection zone. However, the results of our simulations falsify this assumption
(Fig. 8.11).

According to MLT, the temperature fluctuations in a convection zone are directly proportional
to the mixing length and to the deviation of the temperature gradient of the model ∇sim =
(d lnT/d ln p)sim from the adiabatic one ∇ad = (d lnT/d ln p)ad:

T
′

T
= (∇sim −∇ad)

1
Hp

Λ
2

(8.4)

where Λ is the mixing length, Hp the pressure scale height, T
′

the absolute value of the tem-
perature deviation from the mean (horizontally averaged) temperature T , and p the pressure,
respectively.

Since T ′/T and ∇sim − ∇ad can directly be obtained from our simulations, we attempted to
test MLT in a qualitative manner. Our simulations show that in the outer part of the con-
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vection zone, i.e. in the region where the work done by buoyancy is getting smaller (Fig. 8.8),
the temperature gradient of the models ∇sim becomes subadiabatic (see Fig. 8.12). Equation
(8.4) which was derived for the adiabatic rise of convective bubbles would then imply that the
temperature of convective elements should be lower than that of the surrounding gas (hence no
convection) in the outer part of the convection zone, or that the value of Λ should be negative.
However, convective elements do not rise adiabatically in our hydrodynamic simulations and the
sub-adiabatic gradient means only that the convective elements start to cool faster than their
surroundings. It does not imply necessarily that the elements are already cooler than the sur-
rounding gas which would prevent the gas from being convectively active. Note that initially, the
temperature gradient is super-adiabatic in the whole convection zone (see Fig. 8.12: a), because
the stellar evolutionary model used as initial input for our simulations is computed under the
assumptions of the MLT.



9
Summary

We have presented one-dimensional, two-dimensional (axisymmetric) and three-dimensional hy-
drodynamic simulations of the core helium flash close to its peak. We found no hydrodynamic
events that deviated significantly from the predictions of stellar evolutionary calculations. After
an initial adjustment phase, the two- and three-dimensional models reached a quasi-steady state
where the temperature and nuclear energy production rate were changing only slowly i.e. the
core helium flash neither rips the star apart, nor significantly alters its structure.

Convection plays a crucial role in keeping the star in hydrostatic equilibrium, as one-dimensional
hydrodynamic simulations demonstrated that thermal transport and expansion alone fail to
prevent star from thermonuclear runaway.

Based on our two-dimensional simulation with the highest grid resolution (model hefl.2d.3),
the convection followed the predictions of mixing length theory approximately, although the
temperature gradient of our dynamically evolved two-dimensional models deviated slightly from
that of the initial model obtained from (one-dimensional) stellar evolutionary calculations (the
relative difference was lower than 1%). The maximum temperature 〈T 〉max rose at a rate of
about 40 K s−1, which was about 60% lower than the rate predicted by stellar evolutionary
calculations. The mean convective velocity exceeded the velocities predicted by mixing length
theory by up to factor of four.

During early evolution (t< 1000 s) of the model hefl.2d.3, the size of the convective region did not
deviate from that of the initial (hydrostatic) model. However, after a stable convective pattern
was established, the simulation showed that the convective flow, started to push the initial
inner and outer boundary of the convection zone, due to the turbulent entrainment towards
the center of the star at a velocity of 2.3 m s−1, and towards the stellar surface at a velocity
of 14 m s−1, respectively. This produced a rapid growth in the radial extent of the convection
zone on dynamic timescales. The presence of the turbulent entrainment was confirmed by three-
dimensional simulations.

The fast growth of the convection zone due to entrainment has some potentially interesting
implications. As entrainment is not considered in canonical stellar evolutionary calculations,
stars evolving towards the core helium flash may never reach a state like the one in our initial
stellar model. This may thus influence the growth of the convection zone observed in our
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hydrodynamic simulations, as the thermodynamic conditions at the edges of the convection
zone may differ.

If the convection zone does indeed grow rapidly, the main core helium flash studied here will
never be followed by subsequent mini-flashes, as convection will lift the electron degeneracy in
the helium core within 10 days. In addition, the helium core will likely experience an injection of
hydrogen from the surrounding envelope (Fig. 1.2) within a month and undergo a violent nuclear
burning phase powered by the CNO cycle. However, the growth of the central convection zone
(within the core) simulated in our models does not have to continue until it will reach the outer
convection zone extending up to the surface of the star. Hence, mixing of nuclear ashes to the
stellar atmosphere does not necessarily take place. However a fast dynamic growth of the inner
convection zone will lead to a change of the composition of the stellar core (less carbon and
oxygen), and consequently of the luminosities of low-mass stars on the horizontal branch.

By comparison of two- and three-dimensional simulations we have found that the evolved con-
vection of the three-dimensional models differs qualitatively and quantitatively from that of the
two-dimensional (axisymmetric) ones. The typical convective structure in the two-dimensional
simulations is a vortex with a diameter roughly equal to the width of convection zone, whereas
the three-dimensional structures are smaller in extent and have a plume-like shape. The typ-
ical convective velocities are much higher in the two-dimensional models than in the three-
dimensional ones. In the latter models the convective velocities tend to fit those predicted by
the mixing length theory better. Both two- and three-dimensional models are characterized by
an upflow-downflow asymmetry, where the fractional volume occupied by downflows is higher.
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Appendix

A.1. Hydrodynamical Equations in Spherical Geometry

The hydrodynamic equations of a non-viscous multi-component reactive gas subject to a gravi-
tational potential Φ and having a heat conductivity K are given in spherical polar coordinates
(r, θ, φ) by
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∂t

(
ρe
) 1
r2
∂r(r2[vr

(
ρe+ p

)
−K∂rT ]

)
+

1
r sin θ

∂θ

(
sin θ[vθ

(
ρe+ p

)
−K

1
r
∂θT ]

)
+

1
r sin θ

∂φ[vφ

(
ρe+ p

)
−K

1
r sin θ

∂φT ] =

−ρ
(
vr∂rΦ + vθ

1
r
∂θΦ + vφ

1
r sin θ

∂φΦ) + ρṠ (A.5)
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where ρ, vr, vθ, vφ, p, e, T , ε̇, Xk, and Ẋk are the density, the radial velocity, the θ-velocity, the
rotation velocity, the pressure, the total specific energy, the temperature, the energy generation
rate per mass due to reactions, the mass fraction of species k, and the change of this mass
fraction due to reactions, respectively. Nnuc is the number of species the gas is composed of.

A.2. Energy Fluxes

The various contributions to the total energy flux (Hurlburt et al. 1986; Achatz 1995) can be
obtained by first integrating the hydrodynamic energy equation given in AppendixA.1 over the
angular coordinates θ and φ. Then, one decomposes both the specific enthalpy ε+ p/ρ (where ε
is the specific thermal energy) and the specific kinetic energy vivi/2 into a horizontal mean and
a perturbation, f ≡ f + f ′, and obtains

∂tE + ∂r(FC + FK + FR + FE) = 0 (A.7)

where
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Here, the gravitational potential Φ is assumed to be constant for simplicity. The sum of the
various flux terms Fi give the total energy transported per unit time across a sphere of radius r
by different physical processes. One has the convective (or enthalpy) flux, FC , the flux of kinetic
energy, FK , and the flux due to heat conduction and radiation, FR. Finally, FE , includes all
terms causing a spherical mass flow, i.e. the model’s expansion or contraction, while FC and FK

rest on deviations from this mean energy flow (vortices). The latter are the major contributors
to the heat transport by convection.
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In a similar way one can also formulate a conservation equation for the mean horizontal kinetic
energy that provides further insight into the effects of convective motions. Using the other
hydrodynamic equations (Eqs.A.1 to A.4), and the relation ∂t(ρvivi/2) = vi∂t(ρvi)− vivi∂tρ/2,
one finds

∂tEK + ∂r(FK + FP + FE,K) = PA + PP + PE,K (A.13)

With FK as introduced above, one obtains
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PE,K = 4πr2 ·
(
p ∂ivi − vrρ ∂rΦ

)
, i = 1, 2, 3 (A.19)

where the Pi are source or sink terms of the kinetic energy. They are separated into the effect
of buoyancy forces (PA), and the work due to density fluctuations (PP , volume changes). By
analyzing the various Pi one can determine what causes the braking or acceleration of the
convective flow. The acoustic flux, FP , describes the vertical transport of density fluctuations.
FE,K and PE,K describe the effect of expansion (volume work, and work against the gravitational
potential), similar to FE in Eq. (A.12).
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