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“If one advances confidently in the direction of his dreams, and endeavors to live the life 

which he has imagined, he will meet a success unexpected in common hours. He will put 

some things behind, will pass an invisible boundary; new, universal, and more liberal 

laws will begin to establish themselves around and within him; or the old laws be 

expanded, and interpreted in his favor in a more liberal sense, and he will live wih the 

license of a higher order of beings. In proportion as he simplifies his life, the laws of the 

universe will appear less complex, and solitude will not be solitude, nor poverty poverty, 

nor weakness weakness. If you have built castles in the air, your work need not be lost; 

that is where they should be. Now put the foundations under them.” 

 
Henry David Thoreau – Walden. 
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Zusammenfassung 

Auf Grund bedeutender technologischer Fortschritte konnte in der Vergangenheit auf 

molekularer Ebene ein systematisches Profiling von Krebs erstellt werden, wobei 

eine überwältigende Anzahl an Genomik-Daten (Oncogenomics) generiert wurde. 

Daraus ergibt sich ein Bedarf an innovativen und integrierten Ansätzen, die diese 

Reichhaltigkeit an Information in Wissen umwandeln. In der vorliegenden 

Dissertation wurden drei Fallstudien analysiert, die Hochdurchsatz-Datensätze wie z. 

B. RNAi-Screens, Mutation Profiling und Microarrays beinhalten. Durch das 

Kombinieren verschiedener Datensätze wurden Hypothesen erstellt und getestet, die 

zur Charakterisierung genetischer Determinanten in der Tumorbiologie und deren 

Relevanz für die Entwicklung neuer Medikamente dienen sollten. Die erzielten 

Ergebnisse identifizieren neue Gene, die in Zusammenhang mit Krebs stehen, geben 

Aufschluss über den Mechanismus der kürzlich entdeckten genetischen 

Fehlentwicklungen und führen zu  rationellen therapeutischen Anwendungen, die 

nun in Labor und Klinik geprüft werden müssen. Die verwendeten globalen Ansätze 

sind vielversprechend und können erweitert werden, um unser Verständnis des 

„Onkogenoms“ zu verbessern. Außerdem bieten sie die Möglichkeit zur 

Entwicklung und Optimierung neuer bzw. bestehender Krebstherapien.  
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1 Introduction 

Advances in high throughput technologies such as large-scale sequencing and functional 

genomics have created a wealth of high resolution and high content information. The 

completion of several genome projects (including the Human Genome Project), 

uncovering protein-protein interaction networks, large scale knock-out/mutagenesis 

experiments, ever increasing molecular profiling and imaging experiments, construction 

of predictive models and generation of synthetic genomes are all a testament to a modern 

age of unprecedented information explosion that has shaped and continues to change the 

landscape of basic and applied biomedical research. Nowhere is this more apparent than 

in the field of oncology where large datasets have been generated and analyzed at various 

levels of molecular detail – genes, proteins, metabolites. Integration of such genome-wide 

datasets, aided by creative unconventional analysis, has begun to provide a systems level 

understanding of tumor biology. As a result, these powerful discoveries can be translated 

into clinical applications for better prevention, detection, diagnosis, prognosis and 

personalizing treatment for improved outcomes.   

1.1 Cancer as a paradigm for systems analysis  

Researchers at the Institute for Systems Biology (ISB, Seattle, WA) have nicely 

summarized the properties of biological systems that make them attractive for systems 

level exploration—emergent properties, robustness and modularity [1]. Emergence is a 

trait in which the whole is greater than the sum of the parts; robustness is characteristic of 

resilience to fluctuations in the immediate environment resulting from redundancy and 

control mechanisms; modularity is a phenomenon that explains the ‘clustering’ of parts 

into a functional or structural entity. Several aspects of cancer pathobiology make it 

particularly interesting for global investigations. A case in point for emergent properties 

is the accumulated genetic and epigenetic changes that collectively transform a normal 

cell into a cancer cell demonstrating the hallmarks of disease – self-sufficiency in growth 

signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death 

(apoptosis), limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis [2]. Robustness is a characteristic seen when tumors that are in initial 

remission after treatment frequently relapse and become resistant to anti-tumor therapy. 
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Modularity is manifested in how genetic aberrations drive disease progression such as an 

amplification of the EGFR genetic locus that triggers the ERK/MAPK cascade of 

downstream activation events leading to neoplasia. Taken together, these examples 

demonstrate that the cancer genome or ‘oncogenome’ provides a rich opportunity for 

large-scale systems and integrative analyses. 

1.2 Systems level ‘oncogenomic’ profiling efforts 

Great strides have been made scientifically and technologically in trying to dissect out the 

molecular ‘parts list’ of cancer genomes. A sampling of genomic surveys of resequencing, 

array profiling and RNAi screens will be presented below. Excellent reviews of systems 

approaches to understand epigenomic mechanisms in a global context can be found in [3-

5]. These functional genomic approaches provide a top down view of the cancer system 

being investigated.  

1.2.1 Genomic resequencing efforts 

Cancer is a complex heterogeneous genetic disease that is acquired as a phenotypic 

consequence of the collective action of multiple genomic alterations. These can be 

broadly classified into growth promoting activation events (oncogenes) and growth 

inhibiting inactivating changes (tumor suppressors) (Figure 1). The dependence on such 

events drives the multi-step pathological process and is the basis of oncogene addiction. 

This has provided avenues for pharmacological inhibition as demonstrated by successful 

‘magic bullet’ targeted drugs such as Herceptin® (also known as trastuzamab which 

targets Her2/Neu in breast cancer), Gleevec® (also known as imatinib which targets Bcr-

Abl in CML, c-kit/PDGFRA in GIST) and EGFR inhibitors (gefitinib (Iressa®), erlotinib 

(Tarceva®), cetuximab (Erbitux®) or panitunimab (Vectibix®)). Furthermore, several 

papers [6-8] have prospectively analyzed retrospective data and shown that a subset of 

patients harboring EGFR mutations are responsive to EGFR specific tyrosine kinase 

inhibitors such as gefitinib and erlotinib. Therefore, undoubtedly, unbiased sequencing 

projects will yield valuable insights into the mechanisms of cancer and suggest novel 

means for disease treatment.  
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Automated sequencing has allowed systematic study of genetic alterations in cancer 

relevant gene families. Victor Velculescu’s team carried the first ever analysis of the 

kinome [9] and phosphatome [10] in colorectal cancer. Among other genes (8 kinases, 6 

phosphatases), their work pointed to PIK3CA as an oncogene that is frequently mutated 

in several human cancers [11] and that the PI3K pathway was the most frequently 

(~50%) mutated pathway in colorectal cancers [12] . From a more focused analysis by 

another group, BRAF mutations were discovered to be highly prevalent (66%) in 

malignant melanomas and relatively less common in other human cancers [13]. The 

Sanger group has carried out similar work to identify commonly altered kinases by 

sequencing 518 kinases in breast [14], lung [15] and testicular germ cell tumors [16]. 

Based on these studies and others, they generally found low frequencies of non-

synonymous somatic mutations (e.g., 1 in 7 seminomas, ~40 in 26 primary lung 

neoplasms) with significant differences between individual cancers in the number (some 

having none) and pattern of mutations due to mutagen exposure, mutator phenotype or 

tissue of origin.  They conclude that several mutations are likely to be ‘passenger’ or 

‘bystander’ effects that do not contribute to tumorigenesis, but ~120 genes harbor ‘driver’ 

or ‘causal’ mutations [17].  
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Gene (synonym) Mutation type Cancer type

ABL1 (ABL) Translocation Chronic myelogenous leukemia

AKT2 Amplification Ovarian, breast

ALK Translocation Anaplastic large cell lymphoma

BAX Inactivating codon change Colon, stomach

BCL2 Translocation Lymphomas

BCL6 Translocation Lymphomas

BRAF Activating codon change Melanoma, colorectal, thyroid

CCND1 (cyclin D1) Amplification, translocation Leukemias, breast

CTNNB1 (-catenin) Activating codon change Colon, liver, medulloblastomas

EGFR Amplification, activating codon change Glioblastomas, non?small cell lung cancers

EPHB2 Inactivating codon change Prostate

ERBB2 Amplification Breast, ovarian

EVI1 Translocation Leukemias

EWSR1 Translocation Ewing's sarcomas, lymphomas, leukemias

FBXW7 (CDC4) Inactivating codon change Colon, uterine, ovarian, breast

FES Activating codon change Colon

FGFR1?3 Translocation

Lymphomas, gastric cancers, bladder 

cancers

FLT3, 4 Activating codon change Leukemias, angiosarcomas

FOXO1A, 3A Translocation Rhabdomyosarcomas, leukemias

GLI Amplification, translocation Brain, sarcomas

HMGA2 Translocation Lipomas

HOXA9, 11, 13; 

HOXC13, HOXD11, 

13; HOX11, HOX11L2 Translocation Leukemias

HPVE6 HPV infection Cervical

HPVE7 HPV infection Cervical

JAK2 Translocation Leukemias

KRAS2, N-RAS Activating codon change

Colorectal, pancreatic, non?small cell lung 

cancer

MAP2K4 (MKK4) Inactivating codon change Pancreas, breast, colon

MDM2 Amplification Sarcomas

MLL Translocation, activating codon change Leukemias

MYC, MYCN, MYCL1 Amplification

Lymphomas, neuroblastomas, small cell 

lung cancers

NOTCH1 Translocation Leukemias

NTRK1, 3 Translocation, activating codon change Thyroid, secretory breast, colon

PDGFB Translocation Dermatofibrosarcomas and fibroblastomas

PDGFRB Translocation Leukemias

PI3KCA Activating codon change Colon, stomach, brain, breast

PTNP1, 11 Activating codon change Leukemias, colon

RARA Translocation Promyelocytic leukemia

RUNX1 Translocation Leukemias

SMAD2 Inactivating codon change Colon, breast

SS18 Translocation Synovial sarcomas

TAL1 Translocation Leukemias

TFE3 Translocation Kidney, sarcomas

TGFBR1, TGFBR2 Inactivating codon change Colon, stomach, ovarian

TNFRSF6 (FAS) Activating codon change Lymphomas, testicular germ cell tumors

a.

b.

c.

d.

 

Figure 1. Summary of genetic alterations in human cancers. The Sanger group cataloged a census of 

291 genes whose genetic alterations are widely studied in various human cancers [18]. ~90% harbor 

somatic (dark blue), ~20% germline (orange) and ~10% harbor both (light blue) types of mutations (a). 

(b)Majority of the reported somatic alterations involve translocations (light blue, e.g. ABL1, FLT3) as 

opposed to non-translocation events (dark blue, e.g. amplifications, missense mutations) or a combination 

(orange). (c) These cancer genes have been studied in a wide variety of indicated tumors, 

leukemias/lymphomas being the largest group. (d) A sampling of these genes which are somatically altered 

and not inherited (adapted from [19]). Oncogenes typically involve activating mutations, amplifications, 

translocations (except genes like RUNX1) while inactivating mutations or deletions occur in tumor 

suppressor genes. (a), (b), (c) were adapted from [18]. 

 

These results are broadly consistent in 2 subsequent consecutive publications [20, 21] by 

Vogelstein and colleagues. By sequencing 20, 857 cDNAs corresponding to 18, 191 

genes in 11 breast and 11 colorectal cancers, they found that ~ 90 mutant genes make up 

an individual tumor genome, but only a handful of  these form commonly mutated gene 

‘mountains’ and several low frequency mutations form gene ‘hills’ (<5%). Out of these, 
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they suggested that ~80 mutations were non-consequential but <15 were ‘driver’ events 

that were responsible for initiation, progression or maintenance of disease. In total, they 

validated 183 genes in colorectal and 189 genes in breast cancers (on average, 11 per 

tumor) that were largely novel, affect diverse cellular functions and are frequently 

mutated. Although the numbers were similar for breast and colorectal, the actual genes 

and their patterns differed and no two tumors of the same type overlapped to a large 

extent which is likely due to tumor heterogeneity. Furthermore, they were able to cluster 

the large number of mutant genes into commonly altered pathways. Their findings 

suggest that the gene ‘hill’s and not ‘mountains’ dominate disease genetic landscape by 

providing collective incremental fitness advantage.  

In a more recent study, the Ullrich lab carried out cDNA based sequencing of 254 

established tumor lines, representing 19 different tissues, to identify 155 polymorphisms 

and 234 somatic mutations in 72MB of the tyrosine kinase gene family [22]. They found 

that the germ-line polymorphisms followed a Gaussian-like distribution with an average 

of 12.3 variations per cell line while somatic alterations were unevenly distributed. They 

did not find any somatic mutations in the tyrosine kinome of 119 cell lines which is in 

agreement with the low frequency of kinase mutations in breast [14], lung [15] and 

testicular germ cell [16] tumors seen by the Sanger group. On the other hand, 9-14 

somatic mutations were detected in LNCaP, Jurkat (T-cell leukemia), MeWo (melanoma), 

MKN-1 (gastric), HCT-15 (colorectal) and DLD-1 (colorectal). While several 

polymorphisms were previously reported (e.g. NTRK1 R780Q), their relevance to cancer 

had not been established. Also, the authors compared frequencies of occurrence in normal 

versus cancer cells to suggest polymorphisms that maybe more oncogenic (e.g. TNK 

M598delinsEVRSHX) or tumor suppressive (e.g. EGFR R521K) in nature. It must be 

noted that an explosion of genome-wide studies [23-33] has bolstered the relevance of 

SNPs in cancer disease etiology. For somatic mutations, a total of 28 recurring events 

were identified. Furthermore, they were able to confirm several novel (e.g. FGFR4 

Y367C and CSK Q26X) and previously known observations (e.g. EGFR G719S) in 165 

tumor and 90 healthy blood DNA specimens. Interestingly, 70 kinases harbored at least 

one somatic mutation and only 9 of all the sporadic alterations were in common with 

previously published reports.  
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Collectively all the large scale resequencing studies underscore the relevance of fewer 

driver versus several passenger events in tumor genomes, the existence of biological 

relevant low mutation frequencies, the significance of kinase alterations, the pathway 

relevance of mutations and the overabundance of SNPs. Next generation sequencers such 

as Illumina, ABI and Helicos are likely to significantly expand this data by increasing 

coverage in larger number of individual genomes. Nonetheless, we already have an 

excellent repertoire of targets to begin therapeutic and diagnostic characterizations.  

1.2.2 Genome-wide array profiling studies 

The advent of gene chip or microarray technology has provided a genome-wide analytical 

tool to assess relative abundance of RNAs or DNA copies and identify SNPs or bindings 

sites of DNA binding proteins (e.g., transcription factors) in a high-throughput, 

parallelized format. This field has made leaps and bounds since the mid-90s 

overwhelming scientists with a bout of data as evidenced by thousands of freely 

accessible datasets collated in public data ware houses such as ArrayExpress[34] and 

GEO[35] Clearly, transcriptomic analysis by expression arrays, which are in principle 

analogous to large-scale RT-PCR, has dominated this area. Improvements in technology, 

access and cost have empowered widespread use of microarray studies in cancer research 

– lymphomas [36-42], lung cancer [43-46], breast cancer [47-60], ovarian cancer [61, 62], 

colon cancer [63-65], prostate cancer [66-70], brain cancer [71-77] and others [78, 79]. 

The underlying theme of these diverse studies has been definition of distinct molecular 

sub-classes of cancer based on gene expression profiles, development of prognostic 

signatures and demonstration of superiority over conventional pathological diagnoses.  

One of the earliest breakthrough studies by Alizadeh et al [36] aimed to classify clinically 

heterogeneous diffuse large B-cell lymphomas (DLBCL) based on microarray derived 

gene expression profiles of 96 patient samples. They came up with 2 distinct previously 

unknown molecular subtypes indicative of different stages of B-cell differentiation from 

peripheral blood B cells –  ‘Germinal centre B (GCB) like’ which had significantly 

improved prognosis and better outcome after CHOP therapy, and ‘activated B (ABC) 

like’ (Figure 2). Perou and colleagues [80] published similar work to capture the 

transcriptional blueprint of 65 primary breast cancer specimens into ~8K cDNA array 
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derived ‘molecular portraits’ which revealed new cancer subtypes that were associated 

with cell type origin – luminal A /ER+, luminal B/ER+, normal breast-like, ERBB2+, 

basal-like. They identified the underlying signatures which provided novel mechanistic 

insights and tested their stability and reproducibility to classify new patient populations 

into disease entities associated with clinical phenotype [56]. While such signatures have 

been unraveled in aforementioned studies for a whole host of tumor types, breast cancer 

has been most extensively characterized by genomics efforts. Of particular note is work 

[58, 81] by the Netherlands Cancer Institute (NKI) group in deriving a 70-gene classifier 

with the power to predict 10-year disease recurrence of node-negative early stage (N0, 

T1/T2) breast cancer patients under 53 years old who would otherwise unwarrantedly 

receive debilitating standard of care cytotoxic treatment. This signature outperformed 

classification by conventional histopathological risk factors and was far superior to St 

Gallen’s and National Institute of Health guidelines in determining patient eligibility for 

not receiving adjuvant therapy. This clinically useful finding has been validated in large 

multi center studies to stratify patients for improved outcome with adjuvant systemic 

therapy [47, 82]. An often cited success story of the power of genomics, it was translated 

into a diagnostic tool, which received regulatory approval in 2007 and is currently 

marketed as MammaPrint® by Agendia.  

a. b.

 

Figure 2. DLBCL subgroups with differential prognosis defined by gene expression profiling. (a) 

Hierarchical clustering of 128 cDNA microarrays corresponding to 96 samples of normal and malignant 

lymphocytes revealed 2 distinct subgroups, GC B-like DLBCL (orange) and activated B-like DLBCL 



Systems and integrative approaches in oncogenomics 

 10 

(blue), based on germinal center B cell (black) gene expression signature. Genes that are selectively 

expressed in each subtype are shown where each row represents a gene on the microarray and each column 

a tumor sample. Values depicted in the heatmap represent log2 based hybridization ratios for each sample 

(to a common reference) from red to green indicating high to low relative gene expression, respectively. (b) 

Kaplan-Meier plot of overall survival shows statistically significant clinical relevance, in terms of distinct 

prognosis, of these molecularly defined patient groups. Adapted from [36]. 

 

Many groups have similarly discovered and evaluated novel correlates of biological 

effect such as pathway activity and clinical end points such as tumor grade, disease 

progression, prognosis, survival and response to therapy. However, they suffer from lack 

of statistical power, sound validation and/or prospective analysis.  

While we discussed genetic alterations that affect nucleotide sequence (e.g. point 

mutations, insertions, deletions, translocations), cancer genomes acquire changes in gene 

dosage by amplifications (such as oncogenes) or deletions (such as tumor suppressors) of 

a genetic locus that confer a growth selective advantage. DNA microarrays have also 

been effectively used in elucidating such chromosomal aberrations in a wide variety of 

tumor types. Aneuploidy is better detected by traditional cytogenetics methods (e.g. SKY, 

FISH), but array-based comparative hybridization (aCGH) can deliver genome-level 

assessments of high resolution gains and losses that are likely to be, like mutations, 

passenger or driver events. Genomic copy number alterations that manifest in 

transcriptional changes have a high likelihood of separating signal from noise. A case in 

point is the first such examination of primary breast tumor aCGH results where the 

investigators found that 60% of genomic amplifications corresponded to coordinately 

overexpressed genes. SNP arrays are also widely used in copy number analyses and while 

their application is limited in revealing large alterations, they are effective at elucidating 

copy number neutral loss-of-heterozygosity (LOH) events.  

1.2.3 High throughput RNAi screens 

Andrew Fire and Craig Mello were awarded a Nobel Prize in 2006 for their work on 

RNA interference (RNAi) which was first discovered in the worm Caenorhabditis 

elegans [83]. RNAi is an endogenous cellular process by which long double stranded 

RNAs are cleaved by the RNAse III-like ribonuclease enzyme Dicer into short 20-25 

basepair fragments with 3’ overhangs called small interfering RNA (siRNA), one strand 

of which (guide strand) binds to and activates the ribonucleoprotein complex called RISC 
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(RNA-induced silencing complex), containing endonucleases, to target complementary 

regions on messenger RNAs for degradation (Figure 3).  In this manner, RNAi causes 

sequence-specific target silencing, regulates gene expression and causes a loss-of-

function phenotype. The availability of RNAi reagent libraries, ranging from unbiased 

full genome coverage to customized subsets (e.g. gene family, druggable genome), has 

opened the doors to rapid, systematic, large scale, genome-wide loss of function 

screening in cells and whole organisms (e.g. C. elegans and Drosophila) by use of 

automated assays. The reagents often used for mammalian cells are synthetic silencing 

RNAs (siRNAs), short hairpin RNA (shRNAs) or endoribonuclease derived siRNAs 

(esiRNAs) [84]. 21-23 nucleotides long siRNAs are generally used due to activation of 

the interferon response by long double-stranded RNAs. In contrast to traditional gene 

‘knockout’ experiments, RNAi is essentially a forward genetics screen using a reverse 

genetics technique that is empowered by flexibility and speed due to apriori knowledge 

of sequence information. However, except in invertebrates, significant caveats are 

phenotypic variability as a result of incomplete or inefficient knockdowns and off-target 

effects which can lead to artifacts in large scale screens. Nonetheless, this powerful 

technology has far reaching applications in target validation and drug discovery efforts 

[85]. Guidelines highlighting the importance of sound experimental design and analysis 

in carrying out robust screens and validating hits can be found in [86-88]. A sampling of 

published screens is presented below.  
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Figure 3. Mechanism of experimental RNAi. Chemically synthesized siRNAs or vector encoded shRNAs 

(short hairpin RNAs), processed by RNAse DICER, are loaded in ribonucleoprotein complex RISC (RNA 

induced silencing complex) to recognize and cleave complementary target mRNAs (‘target expression 

silencing’) in a sequence specific manner. Adapted from [89]. See text for details.  

 

Among the first mammalian screens performed, Rene Bernard’s group screened 50 

human de-ubiquitinating enzymes to identify CYLD as a novel suppressor of NF-kappaB 

which functions by deubquitination of TRAF2 and consequently causes resistance to 

apoptosis [90]. Since inactivating mutations in CYLD are associated with familial 

cylindromatosis, a rare genetic disorder that predisposes individuals to skin tumors, the 

authors hypothesized aberrant NFkB pathway activation as the culprit. They went on to 

show interesting trial data where topical application of aspirin derivatives, salicylic acid 

(NFkB inhibitor), elicited a favorable clinical response in small group of patients. In 

subsequent work, the same group [91] used a barcode RNAi library containing 23,742 

shRNAs targeting 7914 human genes to identify one known (TP53) and 5 novel proteins 

(RPS6KA6, HTATIP, HDAC4, KIAA0828, CCT2) that modulate p53-mediated cell 

cycle arrest. In 2005, MacKeigan and colleagues [92] reported the first ever RNAi screen 

to categorically knockdown kinases and phosphatases in HeLa cells by siRNAs to 

identify genes that offers a selective growth advantage to promote survival and escape 

apoptosis. They validated several known and novel survival kinases and presented 

intriguing data on several previously unknown tumor suppressive and oncogenic 
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phosphatases. Furthermore, they showed that RNAi-mediated silencing of specific 

survival kinases sensitized resistant cells to cytotoxic agents (e.g. PINK1 kinase 

suppression that enhanced Taxol mediated killing in HeLa and BT474 cells), suggesting 

new targets for therapeutic intervention. In a different study, the Genomics Institute of 

Novartis Research Foundation [93] applied an innovative 384-well wound healing assay 

coupled with microscopy to screen ~ 5K genes covered by a library of ~ 10K siRNAs for 

genes that were associated with migration in SKOV3, an ovarian cancer cell line. Out of 

4 genes (CDK7, DYRK1B, MAP4K4, SCCA-1) whose inhibition blocked motility, 

MAP4K4’s effect on invasiveness was found to be mediated through c-Jun N-terminal 

kinase, proposing the rational use of a MAPK pathway inhibitor to arrest tumor cell 

migration. RNAi-based genetic screens have generally been utilized to study function of 

oncogenes in cancer cells, but a group at Harvard [94] used a shRNA screen to identify a 

novel tumor suppressor candidate gene REST, previously implicated in neuronal gene 

expression, which inhibited transformation of mammary epithelial cells. The authors also 

uncovered well known tumor suppressors such as TGFBR2 and PTEN, but found REST 

to be a frequently deleted or mutated gene in colorectal cancer and was dependent on 

PI3K signaling for cellular transformation.   

Due to the aforementioned incomplete or inefficient knockdown associated with siRNAs, 

reagent redundancy in producing consistent phenotype is widely accepted as the best 

parameter to confirm target specificity in producing a phenotype. To this end actives or 

hits are screened with multiple independent siRNAs individually or in pools, the latter 

being more likely to introduce artifacts due to off target effects. On the other hand, vector 

based shRNAs offer several advantages. They are generally cheaper and can be used to 

transfect or infect cells, especially untransfectable primary non-dividing cells, through 

packaged lentiviruses or retroviruses which can also be leveraged to produce stable 

knockdown clones. In barcoding screens [91, 95-97], pooled shRNA bearing viruses with 

a unique barcode that selectively integrate into cells to produce the desired phenotype are 

uniquely identified by sequencing or microarrays containing the barcode sequences. 

These screens have also been carried out in arrayed format by other groups [98]. shRNA 

screens, however, are limited by production of high titers of virus and selection of ‘low 

hanging fruit’ due to pooling. Improvements in library design and use as well as assay 
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formats are rapidly evolving and are highly likely to mitigate existing drawbacks. 

Compared to conventional functional genomics studies which are essentially global 

surveys that aim to provide ‘associations or correlations’, high throughput RNA 

interference screens are powerful methods to carry out targeted knockdowns that help 

assign ‘causal’ relationships. 

A creative use of RNAi has been in synthetic lethality experiments in concert with drugs 

to identify enhancers or suppressors of drug efficacy in vitro. These are analogous to 

genetic modifier screens in model organisms. Whitehurst et al [99] recently published a 

genome-wide screen for sensitizers of paclitaxel in NCI-H1155, a human non-small-cell 

lung cancer line, and found 87 gene hits (false discovery rate < 5%) that compromised 

cell viability in the presence of sublethal concentrations of paclitaxel.  Several of these 

genes were involved in microtubule biology and mitosis. Similarly, Berns and others 

[100] employed a shRNA barcode screen to uncover genetic determinants of Herceptin® 

resistance and showed that activation of PI3K pathway (PTEN loss and PIK3CA 

mutational activation) was a predictor of chemosensitivity in vitro and in vivo. This is in 

agreement with previous findings of PTEN-deficient tumors being poor responders to 

trastuzamab therapy and loss of PTEN conferring resistance in vitro [101]. Therefore, 

drug modifier screens hold great promise to reveal clinically useful insights into 

predictive biomarkers of response for patient selection, understanding mechanism of 

action and potentially discovering alternative indications as well as combination therapy 

opportunities.  

1.3 Examples of integrative analysis 

The abundance of genes and proteins with therapeutic or diagnostic potential that are 

unraveled by functional genomics studies necessitates innovative and integrative analyses 

to reveal underlying mechanisms, establish cause-effect links and triage and prioritize 

this information for biopharmaceutical applications. A few examples are discussed below.  

Some of the earliest attempt to combine diverse sets of functional genomics data included 

microarray-based gene expression profiles and chemosensitivity correlations.  
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The NCI-60 is a 60 cell line panel, representing various tumor types, that has been 

routinely in use to screen anti-tumor compounds for several years  as part of the NCI 

Developmental Therapeutics Program [102]. In 2000, researchers at the NCI attempted to 

correlate cDNA gene expression profiling studies (~3700 genes) of the NCI-60 cell lines 

with their growth inhibition responses (GI50) to 1400 compounds [103]. Since these were 

untreated cells, their goal was to identify molecular patterns of drug activity analogous to 

selecting therapy based on basal characteristics of patient tumors and predicting response. 

Several gene-gene, gene-drug, drug-drug correlations were uncovered, showing known 

(5-FU and asparaginase) and novel relationships. In a follow up publication [104] using 

an Affymetrix platform with more genes, they showed successful predictions using gene 

expression based correlates of chemosensitivity for 88 out of 232 compounds. More 

recently, they reported a novel algorithm, “coexpression extrapolation” (COXEN), that 

can accurately predict drug sensitivity of bladder cancer cell lines and clinical responses 

of breast cancer [105]. McDermott et al. [106] have expanded on this to profile 500 

diverse cancer cell lines for sensitivity to 14 kinase inhibitors and showed mutually 

exclusive toxicity in small subsets of cell lines. In their analysis, EGFR, HER2, MET, or 

BRAF inhibitors were selectively efficacious in cells with underlying activating 

mutations or amplifications for the respective target, suggesting that genetic context or 

genotype, regardless of tissue type, can predict response and guide early clinical 

development to kinase inhibitors. This is reinforced in promising results from Joseph 

Nevins’ group who generated pathway activation signatures in cell line models and 

applied them to tumor gene expression data to predict sensitivity to agents that target 

members of the pathway, thus enabling guided use [45]. This continues to be an area of 

active research in pharmacogenomics applications as well as methodological 

improvements to identify genetic determinants of sensitivity/resistance in in vitro models 

as well as patient samples.  

Three interesting studies recently showed the discovery of novel genetically altered and 

therapeutically relevant oncogenes by integrating diverse high throughput genome-wide 

profiling datasets. Garraway et al [107] integrated high-density single-nucleotide 

polymorphism (SNP) array-based genotypes with gene expression data for the NCI-60 

cell panel. They elegantly identified a novel MITF amplification in melanoma cell lines. 
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They went to provide clinical support in patient samples with metastatic disease and 

decreased survival and reported co-occurrence with BRAF and p16 mutations. The 

authors leveraged the power of SNP arrays in unveiling LOH (loss of heterozygosity) 

events and copy number changes to identify 3p12-3p14 as a region of high gain in the 

melanoma cell line cluster and used transcript profiling to hone in on MITF as the only 

statistically significant and highly expressed gene in this region and confirmed the 

alteration in 10% primary and 20% metastatic melanoma tumors.  MITF is a master 

regulator of melanocyte lineage commitment and survival and increase in copy number 

may well cause commonly found resistance to standard chemotherapeutic agents which 

could be addressed by combination therapy, as suggested in the study. In a different study, 

Boehm and colleagues [108] combined gain-of-function and loss-of-function screens 

with whole genome cell line SNP arrays and tumor arrayCGH to discover IKKepsilon 

(IKBKE) as an tumorigenic kinase that is frequently amplified in breast cancer. The team 

first identified IKBKE, among other hits, as a strong substitute for myristoylated-Akt in 

inducing transformation of immortalized non-tumorigenic HEK cells expressing activated 

MEK pathway members from a myristoylated kinase library screen and discovered that it 

was the only amplification seen in SNP array based copy number survey of 49 breast 

cancer cell lines and arrayCGH analysis of 30 primary breast cancer specimens. They 

proceeded to confirm over expression and show convincing data to implicate IKBKE in 

activation of the NFkB survival pathway. Interestingly, they found that 3/5 shRNAs 

targeting IKBKE compromised cell proliferation and viability of MCF7 cells in a 

separate shRNA screen. In our third case study, Kim et al [109] employed a comparative 

oncogenomics approach to identify NEDD9 as an orthologously conserved oncogene in 

human and mouse melanoma. They found that an acquired focal amplification (850kb on 

chromosome 13) in an inducible H-Ras mouse model of melanoma was shared with 

human metastatic melanoma samples, subjected to array-based comparative genomic 

hybridization, and that NEDD9 was the only over expressed gene among 8 genes in this 

region. Rigorous functional analyses supported an invasive role in vitro and a metastatic 

role in animal studies and human tumors. An intriguing thought to note is that mutations 

in MITF, IKBKE or NEDD9 have not been reported to date, demonstrating the power of 
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integrative approaches in discovering and validating novel alterations that are essential 

for cancer development and progression and hold translational potential.  

Compendia analyses such as combining large sets of microarray data represent another 

attractive means to intelligently extract patterns. One such example is the Connectivity 

Map [110] which connects disease, genes and perturbagens (compounds) by matching 

transcript profiles of interest against a reference database comprising gene expression 

data from cells treated with various small molecules. Toward this end, the Broad Institute 

has compiled >400 gene-expression profiles derived from treating cultured human cells 

(MCF7, PC3, HL60, SKMEL5, HepG2, SHSY5Y) with a large number of perturbagens 

to populate a reference database. Pattern-matching algorithms using Kolmogrov-Smirnov 

statistics score each reference profile for the direction and strength of enrichment with a 

query signature. Perturbagens are ranked by this "connectivity score" where those at the 

top ("positive") and bottom ("negative") are suggested as being functionally connected 

with the query signature and thus provide data-driven ‘leads’ for experimental followup. 

While the method has several challenges and considerations, the group reported a variety 

of interesting applications such as finding molecules sharing similar mechanisms of 

action (e.g. HDAC inhibitors) for compound signatures; positively and negatively 

associated compounds (e.g. estrogens and anti-estrogens); mechanism of action from 

gene expression fingerprints of unknown compounds; compounds related to disease 

signatures (e.g. mTOR inhibitor sirolimus phenocopies dexamethasone sensitivity and 

reverts dexamethoasone resistance in ALL). They show that signatures can be agnostic to 

contextual (cell line, concentration) parameters and can produce real, confirmable in 

silico findings.  A significant challenge with such large scale compendia analysis is 

collecting, parsing, standardizing, analyzing and making the data available to do a variety 

of global analyses. Oncomine [111, 112] (http://www.oncomine.org) is a large-scale 

initiative that has embarked on such a mission for the oncology community by collating > 

18, 000 diverse cancer gene expression microarrays and enabling extremely valuable 

analysis of genes, pathways and networks that are affected in different cancers and their 

genetic or histological subtypes.  
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1.3.1 Challenges and considerations in integrative analyses  

Genome-wide approaches inherently suffer from experimental and computational 

drawbacks. High-throughput technologies are sensitive to the way in which the samples 

are collected and handled, and a variety of factors such as RNA and protein degradation 

and presence of contaminating tissue can influence gene expression and proteome 

analysis. Efforts such as MAQC [113], a consortium of over 150 regulatory, industrial 

and academic scientists, have reassuringly shown comparability of cross-platform DNA 

microarray data from two commercially available RNA samples. Similar analyses are 

warranted for other technologies. The variability and lack of reproducibility across 

platforms and between laboratories is exacerbated by tumor heterogeneity for primary 

tumor tissue studies. Therefore, well annotated clinical samples from growing tissue 

banks and tumor repositories are essential for discovery and validation purposes. 

Furthermore, generating multiple molecular readouts (e.g. mutations, arrayCGH, 

expression) on the same sample and consistent measurements across samples would 

enable within-sample and between-sample cross-comparisons of diverse data types which 

can lead to powerful testable hypotheses of translational value. Such explorations, as 

exemplified by the Cancer Genome Atlas (http://cancergenome.nih.gov/), will allow 

interesting associations of genetic determinants with clinical covariates (histopathology, 

survival, disease stage, etc.). Since biological systems and in particular cancer models can 

be complex, multi-faceted, context-dependent and inherently dynamic, care should be 

taken to sample sufficient and informative time points 

It must be noted, however, that due to the descriptive or observational nature of global 

profiling in a few samples, the designs are usually statistically underpowered and results 

are likely to yield false positives. In such cases, error propagation ought to be considered 

due to noisy correlations in fusing two disparately generated datasets in a ‘fishing 

expedition’. Several quantitative and statistical approaches, with varying degrees of 

sensitivity and specificity, have been developed to analyze, mine and model individual 

data types, but they can produce confounding and non-overlapping answers. These issues 

can be overcome by targeted hypothesis-driven analyses where specific questions are 

asked and different approaches are cleverly combined to find concordant results to 

minimize false positives. Particularly in cancer, these are likely to differentiate driver 
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events from bystander effects since, intriguingly, the mutation rate of sporadic cancers is 

apparently not higher than that of normal cells [114]. Also, rather than trying to 

understand single gene/protein changes in ‘lists’ of differential expression, pathway level 

analyses can provide powerful hypotheses for follow up analyses.  While still in its 

infancy, there is a serious need for powerful knowledge bases and 

creative/unconventional integrative methods that yield high confidence hypotheses. 

Efforts such as Oncomine [112] are a step in this direction where large compendia of sub-

optimal datasets are fused with apriori information to achieve an in silico genomic 

understanding of genes and pathways in a wide variety of tumor  tissues. Data 

visualization becomes a formidable challenge with such integrative analyses. Novel 

insights and hypotheses generated by such approaches necessitate thorough and rapid 

validation as well. Advances in microfluidics, nanotechnology and non-invasive 

molecular imaging are beginning to enable this in a cost-effective and robust manner.  

One of the greatest challenges of applying systems approaches is the curse of 

dimensionality and the complexity therein. Scientists are able to generate large volumes 

of data relatively easily and quickly and the rate-limiting step clearly is knowledge 

discovery for real world applications. This is in part due to a focus on generating ‘parts 

lists’ rather than understanding deeper biological meaning. Also, new data types (e.g. 

micro RNA profiles) with better understanding of regulation and technological 

innovation, new data sources, databases, tools and systems are constantly emerging. 

These together with pre-existing heterogeneity of data sources and lack of standardization 

in experiments, data types, tools and analysis pose significant challenges in data 

management, storage, processing, analysis , integration and interpretation. This impedes 

realization of the full power of systems level data for hypothesis generation. Efforts 

towards standardizing information contained in high throughput experiments as well as 

data exchange standards such as MIAME, PSI-MI, MIARE (reviewed in [115]) are 

definitely going to be helpful in this regard. 

1.4 Specific aims of thesis 

This dissertation was aimed at a systems level characterization of genetic determinants of 

tumor biology and their relevance, if any, to drug discovery applications. To this end, a 



Systems and integrative approaches in oncogenomics 

 20 

variety of integrative approaches were applied to three case studies, involving high-

throughput genome-wide molecular profiling datasets of human cancer: 

(1) Druggable genome-wide loss-of-function siRNA screens in four cancer cell lines 

were analyzed and integrated with orthogonal datasets (genetic alterations, 

transcriptomics, pathways, survival) to identify strong candidate target genes that 

are essential for cancer cell survival.  

(2) A recent large resequencing effort [22] uncovered SYK, an unconventional 

tyrosine kinase tumor suppressor in breast cancer, as the most frequently mutated 

gene. By fusing heterogeneous data such as microarrays, pathways and compound 

sensitivity from SYK altered contexts, we generated hypotheses on the biological 

significance of the mutations identified as well as novel aspects of SYK biology.  

(3) Mining gene expression profiling data from compound treated cancer cells can 

provide clues on acquired resistance mechanisms which are a clinical challenge. 

5-FU treated colon cancer cell transcriptional profiles were combined with other 

sources to shed light on relevant druggable targets, survival pathways and testable 

compounds for combination/adjuvant therapy opportunities.   
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2 Materials and Methods 

2.1 Computational methods 

2.1.1 Datasets and tools 

High throughput mutational screens published by the Singapore Oncogenome Group 

(SOG) [22], Sanger’s COSMIC effort (http://www.sanger.ac.uk/genetics/CGP/) and the 

Johns Hopkins group (JHU) [20, 21] were the source of genome-wide mutation data. 

ArrayCGH data used in this dissertation came from genomic DNA from a panel of cell 

lines, including Calu6, HCT116, MCF7 and U87, were hybridized onto 44A/B Agilent 

CGH oligo arrays (Agilent, Santa Clara, CA, USA) and a novel method was employed to 

detect copy number changes (Xiang Y et al., unpublished). Publicly available microarray 

datasets were compiled from primary literature and compendia such as GNF 

(http://symatlas.gnf.org/), GEO (http://www.ncbi.nih.gov/geo/) or Oncomine 

(http://www.oncomine.org) and have been described elsewhere. Wherever applicable, 

differential gene expression analysis was performed using Significance Analysis of 

Microarrays (SAM) [116]. Clustering and heatmap analyses were carried out in TIGR’s 

MeV4.0, a Java-based, open-source software 

(http://www.tm4.org/documentation/MeV_Manual_4_0.pdf). Overrepresentation analysis 

of Gene Ontology (GO) Biological Process (BP) terms was done using NCI’s DAVID 

tool (http:///david.abcc.ncifcrf.gov/). Connectivity Map from the Broad Institute [110]was 

leveraged for compound derived gene expression profiles. Gene Set Enrichment Analysis 

(GSEA) [117] helped in determining enrichment of custom assembled signatures. 

Oncomine (http://www.oncomine.org) [112] and Ingenuity Pathway Analysis, IPA 6.0 

(Ingenuity Systems, Redwood City, CA, USA)  served as the platform for pathway and 

network analyses. We also queried Oncomine for published datasets where a statistically 

significant (p<10-e6) differential expression profile was noted for cancer versus normal 

tissues for SYK. SpotFire (TIBCO Spotfire, Somerville, USA) was used for visualization 

and R/BioConductor [118] (http://www.r-project.org) was employed for all other 

analyses.  

 

2.1.2 Gene expression analysis 
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Affymetrix gene chip datasets were downloaded and processed, if not done already, by 

the Micro Array Suite 5.0 (MAS5) algorithm 

(http://www.affymetrix.com/support/technical/index.affx). The signal estimates were 

scaled by setting the target intensity to 500 to account for systematic differences in 

intensity between chips for cross comparability. Probesets with Absent calls across all 

arrays were dropped. Differential expressed genes were determined by SAM [116] for 

log2 transformed values. Significant results were filtered for a false discovery rate (FDR) 

<10% and fold change >2 or <-2. Functional grouping into gene families – ion channel, 

phosphate, kinase, transporter, receptor, enzyme, secreted, transcription regulator, other – 

were based on IPA’s classification. Kaplan Meier statistics were implemented for 

survival analysis (see 2.1.4). 1-way or 2-way hierarchical 

clustering was applied in MeV 4.0 using Pearson correlation distance metric with average 

linkage on log transformed, normalized and median centered data. 

 

2.1.3 SYK_interactions_network generation 

Direct and indirect gene interactions of SYK were extracted from IPA using the 

Neighborhood Explorer feature (118 human genes). Protein-protein interactions 

involving SYK were also mined from Human Protein Reference Database, HPRD 

(http://www.hprd.org; 45 genes). A master list of 125 non-redundant genes was thus 

compiled that broadly represented a SYK molecular network. These genes were mapped 

to probesets demonstrating considerable variation across microarray profiles of a panel of 

13 cell lines selected for varied SYK background (See relevant section for details). 

Probesets with a coefficient of variation (ratio of standard deviation to mean), CV > 0.4 

were considered. A total of 109 genes mapped to 201 probesets comprised the SYK 

network that was used in clustering and gene set enrichment analyses.  

 

2.1.4 Survival analysis 

We compiled a list of publicly available Affymetrix microarray datasets from primary 

tumor patients (see below) with associated survival information. Further details of each 

study can be found in the primary citation. These datasets were pre-processed and signal 
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values were generated using MAS5 algorithm, as described in 2.1.2. Probesets with 100% 

Absent calls were filtered out. Samples were grouped based on median, quantiles (0-25%, 

25-50%, 50-75%, 75-100%) or extreme quantiles (0-25%, 75-100%) of log2 transformed 

gene expression values for each probeset. Kaplan-Meier plots for each probeset were 

calculated in R/Bioconductor and statistical significance, unless otherwise specified, was 

established by a log-rank test p <0.05. Results were summarized by the number of 

significant instances for each gene across the datasets grouped by tumor type.  

Dataset Tumor type 
Microarray 
Platform 

n 
GEO 

Accession 
No. 

Ref. 

Bild_Lung 

NSCLC; 
Adenocarcinoma 
& Squamous cell 
carcinoma (Lung) 

U133Plus2 111 GSE3141 [45] 

Beer_Lung 
NSCLC; 

Squamous cell 
carcinoma (Lung) 

U133A 130 GSE4573 [43] 

Bhatt_Lung 
NSCLC; 

Adenocarcinoma 
(Lung) 

U95Av2 125 NA [44] 

Bild_Ovarian Ovary U133A 146 GSE3149 [45] 

Phillips_Astrocytoma 
Astrocytoma 

(Brain) 
U133A&B 100 GSE4271 [75] 

Freije_Glioma 
Glioblastoma 

(Brain) 
U133A&B 85 GSE4412 [71] 

Nutt_Glioma 
Glioblastoma 

(Brain) 
U95Av2 50 NA [76] 

Hummel_Lymphoma 
B-cell lymphomas 

(Lymphoma) 
U133A 221 GSE4475 [40] 

Miller_Breast_A Breast U133A&B 251 GSE3494 [54] 

Bild_Breast Breast U95Av2 158 GSE3143 [45] 

Sotiriou_Breast Breast U133A 178 GSE2990 [45] 

Cromer_H&NSCC 
Head and Neck 
squamous cell 

carcinoma 
U95Av2 31 GSE2379 [78] 

Shipp_Lymphoma Lymphoma Hu6800 77 NA [41] 

Pomeroy_Medulloblastoma 
Medulloblastoma 

(Brain) 
Hu6800 94 NA [77] 

 

2.1.5 Gene Set Enrichment Analysis (GSEA) 

Custom gene sets were compiled for EGFR/MAPK/ERK pathway – 42 genes, NFkB 

pathway – 45 genes, PI3K/Akt pathway – 99 genes using IPA’s canonical pathway 

content. SYK direct and indirect interactions (SYK_interactions_network) – 125 genes 

were derived as described in 2.1.3. GSEA was implemented by using the desktop GSEA 
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version 2.0 program as published previously [117]. Enrichment of each geneset was 

calculated in a ranked list of genes based on a signal-to-noise, SNR (µclass 0 - µclass 1)/(σ 

class 0 + σclass 1) score that discriminated transcript profiles in any 2 group comparisons of 

NULL and/or MUT cell lines with respect to WT. Normalized enrichment scores, NES 

were calculated based on a weighted Kolmogorov–Smirnov statistic and statistical 

significance was assessed by 1000 permutations to produce FDR q-values. To explore 

other pathways and biological processes that are differentially modulated in NULL & 

MUT vs. WT cell lines, we filtered 1000 genes with SNR> 0.5 or <-0.5 that were 

differentially expressed in MUT & NULL groups relative to WT cell line. 

 

2.1.6 Pathway and network analysis 

2.1.6.1 GO analysis 

Overrepresentation analysis of Gene Ontology (GO) Biological Process (BP) terms was 

done using NCI’s DAVID tool (http:///david.abcc.ncifcrf.gov/). This was assessed by 

comparing the frequency of GO BP, level 5 categories represented in the nonredundant 

list of  genes versus the global frequency of GO categories in the reference gene set 

which corresponded to all known genes in the human genome. Given the small numbers 

in each of the lists, statistical significance in terms of p-values was deemed to be less 

informative; therefore, we focused on examining relative enrichment or over 

representation of members to rank the categories. A fold enrichment >=1.5) in BP 

categories containing >=5 genes were considered significant.  

2.1.6.2 IPA analysis 

Canonical pathways and biological functions were queried for a given list of genes in IPA. 

2 parameters were calculated for each pathway represented in the Ingenuity pathways  

knowledgebase. Ratio measures the fraction of genes in the list to the total number of 

genes making up that pathway. – log P values are calculated with the right-tailed Fisher’s 

Exact test and can be used to support a non-random association. Relevant pathways 

containing >=2 members are shown with corresponding ratio and –logP values. Due to 

sparse lists of genes, canonical pathway analysis can be limited. In such cases, network 

analysis was performed in IPA. Functional networks, comprising <35 network eligible 



Systems and integrative approaches in oncogenomics 

 25 

molecules each were generated by the Network Generation Algorithm 

(https://analysis.ingenuity.com/pa/info/help/ingenuity_pathways_analysis_network_gener

ation.htm). These networks were ranked by scores based on a hypergeometric distribution 

and calculated with a right-tailed Fisher’s Exact Test as well. The topmost or top two 

overlapping networks were analyzed for tissue specific expression, top biological 

functions as well as inhibitors. Supplementary information on methods can be found at 

https://analysis.ingenuity.com/pa/info/help/ipa_help.htm 

 

 

2.1.7 Connectivity Map analysis 

The Connectivity Map [110] contains a compilation of  >400 gene-expression profiles 

derived from treating cultured human cells (MCF7, PC3, HL60, SKMEL5, HepG2, 

SHSY5Y) with a large number of perturbagens to populate a reference database. 131 

upregulated and 68 downregulated probesets, processed and analyzed in manner 

described earlier (2.1.2), represented our query signature of 5FU modulated gene changes 

in GC3 cells. Enrichment of these up and down ‘tags’ in each compound treatment 

instance in the Connectivity Map was calculated using a Kolmogorov-Smirnov statistic 

as reported [110] and combined into a ‘connectivity score’. Each compound instance was 

ranked in this manner. Negative scores which were presumably negatively connected 

with the input signature were examined for multiple occurrences of compounds with 

similar chemistry or mechanism. These were suggested as putative combination therapy 

molecules. Supplementary information can be found at http://www.broad.mit.edu/cmap/
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2.2 Experimental methods 

2.2.1 Cell lines and reagents 

A total of 7 cancer cell lines used in the primary RNAi screen and confirmation steps 

were obtained from American Tissue Culture Collection, ATCC (Rockville, MD, USA): 

HCT116 (Cat.# CCL-247), U87 (Cat.#HTB-14), MCF7 (Cat.#HTB-22), Calu6 

(Cat.#HTB-56), A549 (Cat.#CCL-185 ), BxPC3 (Cat.#CRL-1687), SKOV3 (Cat.#HTB-

77). All cells were cultured in the recommended growth medium supplemented with 

2mM L-glutamine and 10 % fetal bovine serum (FBS), in a humidified 37°C incubator 

with 5 % CO2.  Human Druggable Genome siRNA Set V2.0 (Qiagen, Valenica, CA, 

USA), covering 6992 genes X 4 siRNA duplexes per gene arrayed in 96-well format, 

served as the screening library. Reverse transfections were done using Lipofectamine
TM

  

2000 (Catalog# 11668-500; Invitrogen, Carslabd, CA, USA). Cell Titer Glo® (Cat.# 

G7570; Promega) and ToxiLight cytotoxicity assay kit (Cat.# LT07-217; Cambrex Bio 

Science Inc., Rockland, MD, USA) were used to measure cell viability and cell death, 

respectively. Forward and reverse primers and probes for Taqman® QPCR were obtained 

from ABI Taqman Gene Assay Catalog (Applied Biosystems, Foster City, CA, USA): 

PIK3CA (Cat.#Hs00180679_m1), AKT1 (Cat.#Hs00178289_m1), AURKA 

(Cat.#Hs00269212_m1), ILK (Cat.#Hs00177914_m1). 

 

2.2.2 siRNA high-throughput screen (HTS) 

Prior to HTS, 300 384-well plates were pre-printed using 2 siRNAs per target in the 

screening library such that each well contained 13nM of an individual siRNA duplex. 

High throughput reverse transfections were performed by adding transfection agent and 

seeding ~1500 cells into each well as previously reported [119]. 72hr (for HCT116) or 96 

hr (for Calu-6, U87MG and MCF7) later, cell viability was measured using 

chemiluminescence based CellTiter Glo assay readout, according to manufacturer’s 

recommendations. This assay was selected due to greater dynamic range and low 

variability. Plates that passed QC in terms of high transfection efficiency, performance of 

controls, plate uniformity, low plate to plate variation, edge effects or systematic errors 
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were taken forward for analysis. Several screening parameters (cell growth, transfection, 

controls, etc.) were thoroughly optimized before commencing HTS. UBB siRNA was 

chosen as a positive cell killing control and a scrambled non-silencing siRNA or GFP 

siRNA as negative controls. Only half of the library was screened for HCT116.  

 

2.2.3 Hit selection 

Raw signal values from the screen were normalized to untreated control wells to compare 

across plates. Viability ratios are calculated for normalized signals of each target siRNA 

with respect to the negative control. Based on prior experience, an arbitrary cutoff of > 

60% lethality or <40% viability was used to filter siRNAs with cytotoxic properties for 

the Cell Titer Glo readout. To short-list genes that are broadly essential to cell survival 

(general hits), we applied a cutoff of <40% viability in 2 or more cell lines where 

phenotypic concordance for duplicate siRNAs was seen in at least 2 cases. For cell 

specific lethality (cell specific hits), we picked out genes where the cognate siRNAs 

showed consistent cell kill phenotype for the cutoff used in a particular cell line. In cases, 

where concordance was not observed, single hits demonstrating <40% viability for a 

given cell line, but >80% viability for the remaining cell lines were picked.  

 

2.2.4 Cell toxicity assays 

Follow up analyses of screen actives by selecting all 4 siRNA from the library for each 

short-listed target was done using Cell Titer Glo (CTG) or ToxiLight (TXL) assay 

readouts according to the manufacturer’s instructions. These experiments were performed 

using the same conditions as developed for the screen. Out of the short-listed targets that 

caused general cytotoxicity upon siRNA mediated inhibition, PLK1 and KIF11 were 

confirmed by both assays in 7 cell lines (A549, BxPC3, SKOV3, HCT116, Calu6, U87, 

MCF7). Out of the cell-specific targets, NOTCH4, AKT1, MCL1 were confirmed by 

both assays in the same 4 cell lines (HCT116, Calu6, U87, MCF7) used in the primary 

screen. Based on prior experience, we applied a threshold of  >60% loss of viability for 

the CTG readout and  >1.5 fold difference for the TXL assay relative to control siRNA.  
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2.2.5 RT-PCR 

Cells were reverse transfected as described above and incubated with siRNAs for 72 

hours at 37
0
C and washed with 1X PBS using a plate washer (BIO-TEK ELx 405) before 

lysis. RNA was extracted using magnetic beads (Ambion, MagMax-96 Total RNA 

Isolation Kit, Cat # 1830) according to the manufacturer’s protocol.  Total RNA 

concentration of the samples was measured using a NanoDrop-1000 spectrophotometer. 

BioRad’s iScript cDNA Synthesis Kit (Cat # 170-8891) is used for cDNA synthesis and 

reactions were run on MJ Research’s DNA Engine Tetrad Peltier Thermal Cycler 

according to the manufacturer’s recommendation. 5ng final concentration of cDNA was 

used per 10ul qPCR reaction volume. Gene expression was determined using TaqMan® 

probe chemistry (ABI, Foster City, CA, USA) and qPCR was run on an ABI 7900HT 

Fast Real-time PCR System. The reactions were carried out in triplicate per sample with 

endogenous (GAPDH), buffer, scrambled and non-template controls. Gene expression 

values were normalized to GAPDH and calculated by the relative quantification (RQ) 

method (∆∆CT method) using ABI’s SDS RQ Manager 1.2 software. Knockdown of a 

gene of interest by a particular siRNA relative to endogenous expression is given by: 

  (∆CT) test = Average Target Gene CT – Average GAPDH CT 

(∆CT) control  = Average Target Gene CT – Average GAPDH CT 

∆∆CT = (∆CT) test – (∆CT) Control 

RQ = 2
– ∆∆∆∆∆∆∆∆CT  

%KD = (RQsi – RQbuffer )*100/RQbuffer 

where ‘test’ refers to siRNA treated (si) or buffer control (buffer); ‘control’ refers to 

scrambled siRNA control, a negative control. RQsi and RQbuffer are calculated as shown 

above to determine relative gene expression values for a target of interest with and 

without (endogenous levels) siRNA treatment, respectively. These RQ values are then 

used to measure % knockdown (KD). Standard error is estimated by calculating 2
– (∆∆CT + 

SD)
 and 2

– (∆∆CT - SD)
. Further details of using QPCR to measure target gene expression 

knockdown in RNAi experiments are given in [120].  
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2.2.6 High-content imaging 

Live/dead assays involving each cell line were prepared under the same parameters 

established for each cell line in HTS. Live and dead cells were determined by two widely 

used fluorescent probes, calcein acetoxymethyl (calcein AM) and ethidium bromide 

homodimer (EthD).  Live cells are determined by the enzymatic conversion of the non-

fluorescent, membrane-permeable calcein AM to calcein, a polar lipid-insoluble green 

fluorescent product that is retained by viable cells. On the other hand, EthD enters cells 

with damaged membranes and undergoes a 40-fold enhancement of fluorescence upon 

binding to nucleic acids, thereby producing a red fluorescence in dead cells. Microscopy 

images were captured and analyzed using the IN Cell Analyzer 3000 (GE Healthcare, 

Piscataway, NJ, USA) and analyzed using the cell viability analysis module.   

Briefly, the analysis module uses colors of the fluorescent dye assays and reports viability 

and/or toxicity events through changes in fluorescent intensity. The algorithm requires 

the use of a fluorescent marker dye such as Hoechst (blue) to identify each nucleus as an 

individual object or cell (object definition) in the image based on user defined thresholds. 

Once the thresholds are set, the algorithm identifies every object surrounded by a white 

mask and gives a total object count output.  Next, the green channel (Calcein AM) is used 

to detect number of live cells and the red channel (EtDh-1) is use to detect dead cells. In 

this manner, high content images were captured for ILK and AURKA inhibition by 4 

siRNAs in Calu6, HCT116, MCF7 and U87 cells.  
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3 Results and Discussion 

3.1 Genome-wide RNAi profiling to determine contexts of 

vulnerability in cancer cells 

A genome-wide loss-of-function siRNA screen of druggable targets (~7000 genes) in 4 

cell lines – Calu6 (lung), HCT116 (colon), MCF7 (breast), U87 (glioblastoma) – 

representing different tumor types and genetic backgrounds was performed (see Figure 4). 

Following an extensive assay development phase, high throughput screens (HTS) were 

implemented using a cell viability assay readout using 2 siRNAs per target. Screen 

actives that caused significant lethality (‘essential’ or ‘survival’ genes) in a general or 

cell-specific context were analyzed by integrative and systems approaches with a variety 

of oncogenomics datasets (mutation, arrayCGH, microarray data) to identify targets and 

pathways that cancer cells depend on for proliferation, survival and evasion of cell death. 

Several genes were confirmed and validated by additional siRNAs, assays and cell lines. 

Our results provide a rich repertoire of rational targets and druggable pathways/networks 

to tailor existing or future cancer therapies.  

 

Figure 4. Experimental design of high throughput cell-based RNAi screen. Following an extensive 

phase of assay development and validation where a variety of assay parameters were optimized, HTS in 

384-well plate format was carried out in duplicate. siRNAs from the Qiagen Druggable Genome v2 library 

(6992 targets X 2 siRNAs each) were printed on 384-well plates and reverse transfected into each of the 4 

indicated cell lines on Day 0 and 4-5 days later, cell viability readouts were measured by Cell Titer-Glo 

assay, a cell viability assay. HCT116, Calu6, U87MG and MCF7 are colon, lung, glioblastoma, breast 

cancer cell lines, respectively. *Details of cut-offs for hit selection are explained elsewhere. 
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3.1.1 Distribution of hits and hit selection 

From a histogram analysis of hits from HTS for each cell line (see Figure 5) a right 

skewed distribution is observed that suggests that the screen results are biased towards 

genes that are essential for cell viability. This may not be too surprising since the library 

used in the primary screen contained targets from the druggable genome. As expected, 

most of siRNAs have little effect on cell survival (~70-80% have minimal effect) as seen 

in most high throughput screens where outliers correspond to significant hits that 

drastically increase or decrease cell survival. In our case, we focused on identifying 

siRNA hits that correspond to genes essential for cell survival.  

 

 

Figure 5. Distribution of hits from HTS for each cell line. Average control (i.e. GFP) normalized values 

are shown along the X-axis and the frequency counts are shown on the Y-axis. Only half the library was 

used for the HCT116 HTS run.   

 

While many population-based statistical methods for determining a cutoff may exist, 

based on prior experience we applied an arbitrary threshold of >60% loss of viability to 

average normalized readouts for each cell line independently to select hits. These results 



Systems and integrative approaches in oncogenomics 

 32 

for Calu6, MCF7, HCT116 and U87MG are summarized in Figure 6. Our chosen cutoff 

provided an average hit rate of <15% which is consistent with similar published reports 

of large scale RNAi screens.  

We then proceeded to perform unsupervised hierarchical clustering of these hits and 

clusters of siRNAs that that are broadly toxic to all 4 cell lines and selectively toxic to 

one or more cell lines were observed. These represent and will be referred to as ‘general’ 

and ‘cell/context-specific’ survival genes henceforth (Figure 6).  

cell/context-cell/context-

Calu6 MCF7 HCT116 U87MG

# of siRNAs/ genes in 

QDGv2 library

13984/ 

6992

13984/ 

6992 

6055/ 

3027

13984/ 

6992

# of siRNAs/ genes 

causing > 60% loss 

of viability

694/ 

654 

(~4%) 

1140/ 

1040 

(~8%)

809/ 740 

(~13%)

516/ 489 

(~4%)

*Only half the library was used for the HCT116 HTS run

a. b.

 

Figure 6. Hit selection and patterns of lethality. (a) An empirical cut-off value of 0.4 was applied to the 

control normalized averaged HTS readouts from each cell line. The breakdown of these filtered siRNAs or 

gene hits that cause >60% loss of viability in Calu6, MCF7, HCT116 and U87MG and the respective hit 

rates (in parentheses) are shown. (b) Hierarchical clustering of these hits reveals patterns of general and cell 

or context-selective lethality. Normalized (with respective to GFP) values from green (high killing) to red 

(low killing) are shown in the heat map where individual siRNAs are depicted along the rows and cell lines 

are along the columns.  
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3.1.2 General survival genes 

By teasing out the pattern of siRNA hits that were broadly toxic (>60% lethality with 

respect to control) across all cell lines, a total of 147 genes were selected. We applied the 

following stringent cut-off criteria to reduce false positives and maximize high 

confidence hits:  <40% viability in 2 or more cell lines where phenotypic concordance for 

duplicate siRNAs was seen in at least 2 cases (19genes, see Figure 7 and Table 1) or  

<40% viability in 3 or more cell lines where single hits occurred.  Since siRNAs are 

known to have non-specific off-target effects, in the absence of target specific 

knockdown information, observing reagent redundancy in cellular phenotypic outcome is 

a well accepted criterion for target specific effects [86]. In other words, when 2 siRNAs 

show concordant phenotype (i.e. significant loss of viability, here) it increases the 

confidence in the gene hit. This was enabled by the use of 2 siRNAs per target in the 

primary screen. Therefore, we applied this parameter in generating lists for general and 

cell-specific survival genes (see 3.1.3). Arguably, when phenotypic siRNA concordance 

is seen in 2 or more cell lines for the same target, the emerging gene list is likely to be 

highly robust. 19/147 genes were, therefore, short-listed in this manner (see Figure 7 and 

Table 1).   
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Figure 7. General survival genes. (a) A total of 147 genes were selected for <40% viability in 2 or more 

cell lines (b) 19 genes that are a subset of this list cause a  significant lethal effect in 2 or more cell lines 

with siRNA phenotypic concordance in at least 2 cases. Green represents high degree cell kill, red 

represents insensitivity to cell kill and missing values are shown in grey. 
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Table 1: 19 short-listed essential genes. siRNAs targeting these genes show a broad range of toxicity 

(selected for <40% viability in 2 or more cell lines with phenotypic concordance in at least 2 cases). 

Gene Description

ADAMTS17 ADAM metallopeptidase with thrombospondin type 1 motif, 17

BSPRY B-box and SPRY domain containing

CKAP5 cytoskeleton associated protein 5

COPB2 coatomer protein complex, subunit beta 2 (beta prime)

EIF3S8 eukaryotic translation initiation factor 3, subunit C

DDX48 eukaryotic translation initiation factor 4A, isoform 3

FPR1 formyl peptide receptor 1

ILK integrin-linked kinase

KIF11 kinesin family member 11

KIFC2 kinesin family member C2

KLC3 kinesin light chain 3

OR3A3 olfactory receptor, family 3, subfamily A, member 3

PLK1 polo-like kinase 1 (Drosophila)

PPP1R10 protein phosphatase 1, regulatory (inhibitor) subunit 10

PSAP prosaposin (variant Gaucher disease and variant metachromatic 

leukodystrophy)

RETN resistin

RPL35 ribosomal protein L35

SMAD7 SMAD family member 7

XAB2 XPA binding protein 2  
 

3.1.3 Cell-specific survival genes 

To identify contexts of vulnerability, we filtered siRNAs that showed <40% viability 

relative to control (GFP) in one cell line but were relatively less toxic in other cell lines. 

Using the rationale for siRNA concordance explained above, we picked out genes where 

the cognate siRNAs showed consistent cell kill phenotype for the cutoff used in a 

particular cell line. In cases, where concordance was not observed, single hits 

demonstrating <40% viability for a given cell line, but >80% viability for the remaining 

cell lines were picked. Within the limits of the chemiluminesence based Cell Titer Glo 

assay, this represents a minimum 2-fold window of selectivity over other cell lines.  

Together, these hits comprise the list of cell-specific or context-specific survival genes: 

59hits (38genes) in Calu6, 134 hits (74 genes) in HCT116, 233 hits (162 genes) in MCF7 

and 54 hits (39 genes) in U87 (Table 2). Out of these 21, 57, 145 and 22 genes showed 

siRNA concordance for Calu6, HCT116, MCF7 and U87, respectively (Table 2). It is 

interesting to note that although half the library was screened for HCT116, a relatively 

large set of cell selective survival genes were observed. This could be attributed to the 
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MMR deficient nature of HCT116 which causes genomic instability. Several groups [121, 

122] have similarly reported the highly variable nature of MCF7 which may partially 

explain the large number of survival genes found in this cell line. Heat map visualizations 

illustrating these results along with the identities of these can be seen below (Figure 8 and 

Table 2).  

Due to off-target effects of siRNAs, variable transfection and technical and/or biological 

variation, there are likely several false positive still, which can be eliminated by further 

testing with additional siRNAs. That being true, it is also possible to prioritize targets of 

interest by integrating this data (general or cell specific essential genes) with other 

genomics datasets.  

(a) (b) (c) (d)

 

Figure 8. Cell-specific survival genes. siRNA hits that demonstrated >60% lethal effect (relative to 

control) and strong selectivity for each cell line were picked. Details on filtering can be found in the text 
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above. Heatmap visualizations for 59 hits in Calu6 (a), 134 hits in HCT116 (b), 233 hits in MCF7 (c) and 

54 hits in U87 (d) runs are presented. Green represents high degree cell kill, red represents insensitivity to 

cell kill and missing values are shown in grey. 

 

Table 2: List of cell specific survival genes. Genes, inhibited by siRNAs, that demonstrated >60% lethal 

effect (relative to control) and strong selectivity for each cell line were picked. Details on filtering can be 

found in the text above. The number of genes filtered for each cell line screened are indicated in brackets 

and those with duplicate siRNA hits are marked with a *.  
Calu6 (38) U87 (39)

ABCA7 ALDH9A1 ADM2* MARLIN1* ABCG1 EPS8 JPH3 RET

CCR8 ASB2 ADRBK1* MGC2408* ADAMTS2* ERCC5 KCNC3* RGS14

CETN2 ATP1A2 AGBL3 MYH7B ADAR ETV4* KCNE1L RGS8

CIB3* C15orf27 AKT1* OPN1SW* ADCY5 EYA1* KCNF1 RHOA*

CLTCL1 CALCA ALX4* OPRK1 ADFP FBXL5 KCNH4 RNF6

CRKL CDC25B ANAPC4* P2RY8* AK5* FBXO22 KCNH5 RORA

DKFZP586A0522* COPG* APOA5* PATE* ANG FBXO44* KCNK2 RP1

FLJ25801* CPM ASCC2* PDK3 APOH* FCN1 KCNMB1 RPL27*

GDF11 CSF2RA CARD14* PIK3CD* APRT FRS2 KCNMB4 RPL36*

HCN3* DAD1* CD300LE* PPP1R12C* AQP2* FTL* KIAA1161* RPL7A*

HDAC11* DAF CHRM2 PRSS36* ASB17 GALE KIF1A* RPS19*

IK* DGUOK CHRM4* PTOV1* BAK1* GCDH* KIF1C RTN4RL1*

IL17RD E2F3 CLK2 RLN3* BMP4 GDNF LDLR RXRA*

ITGA3* EEF1A1* CPA5* RNF113B* BPHL GGA1 LRRN6C* SEMA4D*

KIF18A* F5 CSNK1D* RNF39 BRPF3* GMEB2 MAN2A1 SERPINB3

KLF10 FLJ22028 CYP20A1* RPS27A* C9orf97 GNG3 MBL2 SGSH

KNTC2* FOLH1 DEDD2* RTN4RL2* CA4* GPI MCL1 SH2D3C*

LIPG GALC EDG5* SCUBE1* CAPN7 GPX1* MINA* SLC18A3

MAFK GAS6 FLJ12118 SLC35B2* CDK5R2* GPX3* MLLT10 SLC25A17

MAPK15* GRB10 FLJ20558* SLC6A17* CFH GRINA* MPP2 SLC7A4

MGC23280* HMGCL FLJ21736* SMYD2* CGA* GUCY1A2 MSH5 SLC7A6

MLX IFNA2 FLJ25530 STK10* CHRNG* GUCY2F* MX2 SSH2

NGFRAP1* IL23A* FLT1* STK32C* CLEC2B* H1F0 NAGA* SSR4

NOS2A JMJD2C* FLT4* STK40* COMMD5 HDAC1 NME3* STAR

OTX1 KCNQ3 GALR2* STX1B2 CTSW HEXB* P2RY6 STK38

PKMYT1* LGI1 GDF7* TGFBR2* CUL5 HGD* PDE6G* SUHW2*

PRPF8* LOXL2* GIT1 TK2* CXCL6 HIP1* PELI2 SYNE2

PSMA4* MYO3B GNG8* TLN2* CXorf23 HMBS* PHPT1* TGM5

PSMB3* NEUROD6* GPR7* TMEM16J CYB5R2 HMGA1* PIK3CA THOP1

PSMB7* NOTCH4* HIF3A* TNFRSF13C* DAPK2* HOM-TES-103* PIK3R1* TNFRSF14*

PSMC4* OLFM4* INPP4B TRIM49* DCLRE1B* HTR1A PLA2G7 TPMT*

PSMC5* PARP3 ITPKA* TRPS1 DHRS9 HTR3C* PMS1 TRERF1*

SELE PSMC3* KCNV2* ULBP3* DMBT1 ICAM1 POLA* TREX1*

SFRP5* RFK* KREMEN2 UNC13C DRD1IP IGF2R* PPARG* TUBB4

STUB1* TLR2 LOC134145* UNQ9391* DTX1 IL10 PPM1G* ULK3

TNFRSF19 UGT1A9 LOC136242* DVL2* IL10RA PPP2R1A UNC13B

TRIM23 VDAC2* LZTS2* DVL3* IL19 PRPF19* USP31*

TUBB4Q WNT1 MAP2K6 ECE2* INSIG1 RAB30 VWF*

ZIC3* MAPK14* ENC1* ITGAX RAB9B WDR5

ENDOG* ITGB6 RAPGEF1*

EPS15* JAG2 RELN

HCT116 (74) MCF7 (162)

 

3.1.4 Integration with array-based comparative hybridization data 

We proceeded to overlay general and cell specific survival genes with genome-wide copy 

number alterations derived from array-based comparative hybridization (aCGH) profiling. 

Genomic DNA from a panel of cell lines, including 4 used in our study, were hybridized 

onto 44A/B Agilent CGH oligo arrays and a novel method was employed to detect copy 

number changes (Xiang Y et al., unpublished). By combining copy number information 
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with lethality caused by siRNA targeted knockdowns from the primary screen, we can 

identify target dependence that is governed by genomic aberrations such as amplification 

and partially deleted loci, conferring a survival advantage. Figure 9(a) depicts hits from 

the primary screen causing <40% viability that have a corresponding high copy (>2 

copies) gain or loss (1 copy losses representing putative loss-of-heterozygosity events). 

This is detailed for genes in our cell specific lethal gene list in Table 5. It is highly likely 

that several targets are missed by the thresholds applied and the library or aCGH platform 

used, but their dependence could be attributed to other genetic or epigenetic mechanisms 

such as mutation or expression. Nonetheless, interesting examples were noted among 

genes that were broadly lethal upon inhibition. TPX2 is phosphorylated by Aurora kinase 

A (STK6/AURKA) and is involved in G2/M checkpoint by regulating mitotic spindle 

assembly and centrosome duplication. TPX2 is found in high copy number for the first 

time, to our knowledge, in Calu6 aCGH data and has been reported to be commonly 

amplified in lung cancers [123]. Although TPX2 (20q11) was not a Calu6 cell-specific hit 

in our analysis, knocking down the gene leads to potent cell killing (see Figure 9). 20q 

amplifications are widely reported in a variety of neoplasias, including breast, colon, 

bladder, ovarian and pancreatic (references in [124]). It is therefore interesting to note 

that, AURKA (20q13) was identified as an essential gene whose inhibition resulted in 

significant killing of Calu6, MCF7, HCT116 cells and relatively less for U87 

(Confirmation in Figure 16). MCF7 cells in particular, carry high gains of AURKA (see 

Figure 9). Furthermore, several studies have utilized AURKA siRNAs as positive cell kill 

controls. Efforts are underway to design inhibitors for Aurora kinase inhibitors which 

would presumably have broad activity in several tumors. 

Since several gains or losses are likely to be ‘passenger’ events and several hits from a 

screen are likely to be false positives, by integrating these two orthogonal data types, we 

can determine ‘driver’ events that may be causally responsible for ‘true’ screen positives. 

Such genes with frequent aberrations in human tumors can be prioritized for therapeutic 

intervention.  
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Gain Loss

TPX2

AURKA

TPX2

20q11

AURKA

20q13

(a)(a)(a)(a) (b)(b)(b)(b)

 

Figure 9. Integration of screening data with array-based comparative hybridization. (a) Scatter plots 

of siRNA hits that cause loss of viability (values < 0.4, as described above, are shown along the Y-axis) are 

overlayed with high gain (red) and loss calls (green) of gene lists for each corresponding cell line from 

array-based CGH data generated from Agilent 244K oligo chips. (b) 3 examples are shown with 

corresponding genomic copy number alteration (assessed by normalized log2 ratios) views. AURKA and 

TPX2 are amplified and cause low survival upon siRNA inhibition in MCF7 and Calu6 cell lines, 

respectively. 

 

3.1.5 Integration with mutation data 

Several high throughput mutational screens have been recently performed as described in 

Introduction. We compiled data published by the Singapore Oncogenome Group (SOG) 

[22], Sanger’s COSMIC effort (http://www.sanger.ac.uk/genetics/CGP/) and the Johns 

Hopkins group (JHU) [20, 21].  From our list of general survival genes, 34 unique genes 

(see Table 3) mapped to mutations occurring in a broad range of tumor types from 

COSMIC or Hopkins collections. KDR, also known as VEGFR/VEGFR2, is one such 

example. It is the receptor tyrosine kinase that binds VEGF and result in epithelial to 

mesenchymal transition in the tumor microenvironment by endothelial cell activation and 

altering tumor vasculature. As an angiogenesis target, it is integral to a variety of drug 

discovery projects in various companies. Mutations in kidney and lung cancers were 

identified by Sanger while JHU identified several mutations in colorectal primary tumor 
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samples. In the SOG dataset, 2 somatic mutations were found in skin cancer cell lines – 

K107K in BOW-G and P1280S in MM-Du. In our screen, KDR siRNA caused >60% 

lethality in Calu6, U87 and HCT116 cells and ~ 45% killing in MCF7 cells. Interestingly, 

Avastin which is a clinically approved anti-VEGF monoclonal antibody is effective 

against a variety of cancers as well. These facts suggest that KDR inhibitors are likely to 

have broad spectrum activity.  

When overlapping our lists of cell-specific genes, we were interested in commonly 

mutated genes of the same tissue type (see Table 5). No mutations were found in cognate 

tumors for Calu6 and U87 specific lethal genes. ADAR (JHU), DVL3 (JHU), GUCY2F 

(Sanger and JHU), PIK3CA (Sanger and JHU), PIK3R1 (JHU), SYNE2 (JHU), ULK3 

(Sanger), VWF (JHU) came up as survival genes in the MCF7 screen and showed 

corresponding mutations in breast tumors from the indicated sources. PIK3CA is mutated 

in both MCF7 and HCT116 cells, yet appears to cause relatively higher killing in MCF7 

cells. This can be explained by the KRAS mutation in HCT116 cells which may render 

them less sensitive to PI3K inhibition alone. ANAPC4 (JHU), LZTS2 (JHU), MARLIN 

(JHU), STK32C (JHU) and TGFBR2 (Sanger and JHU) were similarly identified from 

HCT116 RNAi screen and mutations in colorectal samples. ANAPC4 is a subunit of the 

anaphase promoting complex and is critical for cell cycle. Interestingly, ANAPC4 was 

seen in a shRNA dropout screen using pools of half hairpin barcodes in cell lines 

including HCT116 and DLD1 [96]. Intriguingly, LZTS2 is a leonine zipper tumor 

suppressor gene that regulates cell cycle and TGFBR2 is another tumor suppressor that is 

commonly truncated in colorectal tumors with microsatellite instability (MSI). 

Collectively, these targets are probably highly relevant to breast and colorectal 

subpopulations.  
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Table 3: Mutations identified in general survival genes from 3 published data sources. SOG refers to 

somatic mutations identified by the Singapore Oncogenome Group [22]; Sanger refers to cell line and 

tumor mutations published by COSMIC  (http://www.sanger.ac.uk/genetics/CGP/); JHU refers to mutations 

in colorectal and breast transcriptomes published John Hopkins University [20, 21].   

Gene Symbol SOG Sanger JHU

AKAP13 X (kidney)

ALS2CR2

AMPD2 X (breast)

ARHGEF4 X (skin; breast) X (breast)

AURKA X (large_intestine; lung; skin)

BSPRY X (breast)

CACNA1H X (breast)

CLCN1 X (breast)

EPHA5 X (bladder; colorectal; breast; 

lung; skin; ovary; stomach)

X (lung)

FASTK X (lung; stomach)

FLJ23356 X (lung)

FZR1 X (lung)

GRK4 X (lung)

JMJD1C X (breast)

KCNK17 X (skin)

KDR X (skin) X (kidney; lung) X (colorectal)

KHSRP

KIAA0664 X (breast)

KIAA1632 X (breast)

MAML2

MAP3K1 X (skin; ovary)

PKN1 X (breast)

PPFIA4 X (skin)

PPP1R10 X (lung; kidney)

PTK9L X (lung; ovary)

RACGAP1 X (kidney)

SLAMF1 X (breast)

SMG1 X (breast; lung; stomach)

TAOK3 X (lung)

TESK1 X (breast) X (breast)

TGM2 X (colorectal)

TRIB1 X (lung)

XAB2 X (brain; skin) X (breast)

ZNRF4 X (colorectal)  

3.1.6 Integration with clinical outcome 

To understand the clinical relevance of the various targets identified in this study, we 

cross-referenced the essential and cell specific survival gene lists against publicly 

available compendia of primary tumor microarray gene expression datasets with 

associated clinical covariates to see if they stratify patient subgroups informatively. 
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Datasets corresponding to lung, breast, glioma, medulloblastoma, head and neck tumors 

(see Materials and Methods) were downloaded and analyzed by Kaplan Meier curves. 

Significant (p<0.05) associations of survival were determined by grouping patient 

expression profiles on median, quantile or extreme quantile expression values of the 

target of interest. 50 general essential genes correlated with poor outcome in lung, 

ovarian, breast, brain or lymphoma cancers. 7 Calu6 specific survival genes showed poor 

survival in primary lung cancer datasets. 11 U87 specific survival genes showed poor 

survival in brain tumor datasets. 34 MCF7 specific survival genes showed poor outcome 

in primary breast cancer compendia. Since gene expression and clinical information 

coupled datasets were not accessible for colorectal tumors, we did not query for HCT116 

specific gene list. MCL1 is anti-apoptotic protein whose overexpression in a variety of 

breast cancers has been linked to poor survival [125] and in this regard, it is interesting to 

note MCL1 in the list of MCF7 specific survival genes. Figure 10 shows a set of 

representative targets in general and cell-specific lists where overexpression from 

microarray profiling data corresponds to poor prognosis. This implies that inhibition of 

such targets is likely to enhance clinical outcome. Therefore, these clinically relevant 

genes make ideal targets for drug discovery.  
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Table 4: List of clinically relevant general survival genes. Summary of Kaplan Meier survival analysis 

of 50 genes, a subset of those that are broadly toxic upon siRNA knockdown. The number of probesets 

corresponding to a given gene in each of the tumor types (see Materials and Methods) analyzed are shown. 

Gene

Total 

probesets

Total 

tumor 

type Lung Ovarian Lymphoma Breast Brain

CD47 9 5 1 2 3 1 2

FASTK 4 4 0 1 1 1 1

PHKA2 5 3 3 0 1 0 1

FXYD5 5 3 0 1 2 0 2

HSDL2 5 3 3 0 0 1 1

KIF11 4 3 1 0 0 2 1

SMG1 4 3 2 0 0 1 1

COPB2 4 3 1 0 2 0 1

OGFR 4 3 1 2 0 0 1

PFKL 4 3 1 0 0 2 1

CKAP5 3 3 1 0 1 1 0

FZR1 3 3 1 1 1 0 0

RPL35 3 3 1 0 0 1 1

TAOK3 3 3 1 1 1 0 0

TGM2 3 3 0 1 1 1 0

WDHD1 6 2 0 0 0 3 3

PLK1 5 2 0 0 0 3 2

MARVELD3 5 2 3 0 0 2 0

OPRS1 5 2 0 0 2 3 0

KIF9 5 2 2 0 0 0 3

AKAP13 4 2 3 0 0 0 1

SNRP70 4 2 3 0 0 0 1

TPCN2 4 2 3 0 0 1 0

TSHR 4 2 1 3 0 0 0

ADORA3 3 2 1 0 0 2 0

ARHGEF4 3 2 2 0 0 0 1

MRPS17 3 2 0 0 0 2 1

PSPH 3 2 0 0 0 1 2

RACGAP1 3 2 0 0 0 2 1

SFRS2IP 3 2 0 1 0 0 2

XAB2 3 2 2 1 0 0 0

DDX54 3 2 1 0 0 0 2

ECE1 3 2 0 2 0 0 1

MGST1 3 2 0 0 0 2 1

ALDH16A1 2 2 0 0 0 1 1

BSPRY 2 2 1 0 1 0 0

EPHA5 2 2 0 0 0 1 1

FBXL18 2 2 1 1 0 0 0

FZD5 2 2 0 0 1 0 1

GEMIN6 2 2 0 0 0 1 1

HK1 2 2 1 0 0 1 0

LMBR1L 2 2 1 1 0 0 0

MUC17 2 2 1 0 0 0 1

NACA 2 2 0 0 0 1 1

OR3A3 2 2 0 1 0 0 1

PKN1 2 2 0 1 0 1 0

PSAP 2 2 0 1 0 1 0

SPATA20 2 2 0 0 1 1 0

TNFAIP2 2 2 1 0 0 0 1

TOP1MT 2 2 1 0 0 0 1  
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Table 5: Cell-specific survival genes with associated information. Subsets of the indicated cell-specific 

survival genes with corresponding mutations (as described in Table 3), copy number alterations (based on 

internal aCGH data) in the same cell line context or association with survival in the same tumor type (see 

Materials and Methods) are shown below. * refers to findings in [126]. 

 
Gene 

Symbol

Gene Description Cell line Mutation? Copy 

number 

alteration?

Association 

with 

survival?

Gene 

Symbol

Gene Description Cell line Mutation? Copy 

number 

alteration?

Association 

with 

survival?

GDF11 growth differentiation factor 11 Calu6 Yes IGF2R insulin-like growth factor 2 receptor MCF7 Yes

IL17RD interleukin 17 receptor D Calu6 Yes IL10 interleukin 10 MCF7 Gain

KLF10 Kruppel-like factor 10 Calu6 Yes IL10RA interleukin 10 receptor, alpha MCF7 Gain

KNTC2 Kinetochore associated 2 Calu6 Yes IL19 interleukin 19 MCF7 Gain

PRPF8 PRP8 pre-mRNA processing factor 8 homolog 

(S. cerevisiae)

Calu6 Yes INSIG1 insulin induced gene 1 MCF7 Yes

PSMA4 proteasome (prosome, macropain) subunit, 

alpha type, 4

Calu6 Yes ITGB6 integrin, beta 6 MCF7 Yes

TNFRSF19 tumor necrosis factor receptor superfamily, 

member 19

Calu6 Yes KCNH4 potassium voltage-gated channel, subfamily H 

(eag-related), member 4

MCF7 Yes

ADRBK1 adrenergic, beta, receptor kinase 1 HCT116 Sanger KCNK2 potassium channel, subfamily K, member 2 MCF7 Gain Yes

AKT1 v-akt murine thymoma viral oncogene homolog 

1

HCT116 * KIAA1161 KIAA1161 MCF7 JHU

ANAPC4 anaphase promoting complex subunit 4 HCT116 JHU MCL1 myeloid cell leukemia sequence 1 (BCL2-

related)

MCF7 Gain Yes

LZTS2 leucine zipper, putative tumor suppressor 2 HCT116 JHU MLLT10 Myeloid/lymphoid or mixed-lineage leukemia 

(trithorax homolog, Drosophila); translocated to, 

10

MCF7 Yes

MARLIN1 janus kinase and microtubule interacting protein 

1

HCT116 JHU MX2 myxovirus (influenza virus) resistance 2 (mouse) MCF7 Gain

PDK3 pyruvate dehydrogenase kinase, isozyme 3 HCT116 JHU PIK3CA Phosphoinositide-3-kinase, catalytic, alpha 

polypeptide

MCF7 JHU; Sanger

STK32C serine/threonine kinase 32C HCT116 JHU PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 

(alpha)

MCF7 JHU

TGFBR2 transforming growth factor, beta receptor II 

(70/80kDa)

HCT116 JHU; Sanger PLA2G7 phospholipase A2, group VII (platelet-activating 

factor acetylhydrolase, plasma)

MCF7 Yes

ABCG1 ATP-binding cassette, sub-family G (WHITE), 

member 1

MCF7 Gain PPP2R1A protein phosphatase 2 (formerly 2A), regulatory 

subunit A , alpha isoform

MCF7 Yes

ADAR adenosine deaminase, RNA-specific MCF7 JHU RET ret proto-oncogene MCF7 Yes

ADFP Adipose differentiation-related protein MCF7 Yes RORA RAR-related orphan receptor A MCF7 Yes

APOH Apolipoprotein H (beta-2-glycoprotein I) MCF7 Gain RPL27 ribosomal protein L27 MCF7 Yes

APRT adenine phosphoribosyltransferase MCF7 Yes RPS19 ribosomal protein S19 MCF7 Yes

BRPF3 Bromodomain and PHD finger containing, 3 MCF7 Yes RXRA retinoid X receptor, alpha MCF7 Yes

CA4 carbonic anhydrase IV MCF7 Gain SERPINB3 serpin peptidase inhibitor, clade B (ovalbumin), 

member 3

MCF7 Loss

CLEC2B C-type lectin domain family 2, member B MCF7 Yes SGSH N-sulfoglucosamine sulfohydrolase 

(sulfamidase)

MCF7 Yes

COMMD5 COMM domain containing 5 MCF7 Yes SLC25A17 solute carrier family 25 (mitochondrial carrier; 

peroxisomal membrane protein, 34kDa), 

member 17

MCF7 Loss Yes

CUL5 cullin 5 MCF7 Loss STK38 Serine/threonine kinase 38 MCF7 Yes

DCLRE1B DNA cross-link repair 1B (PSO2 homolog, S. 

cerevisiae)

MCF7 Gain SUHW2 suppressor of hairy wing homolog 2; zinc finger 

protein 280B

MCF7 Yes

DVL3 dishevelled, dsh homolog 3 (Drosophila) MCF7 JHU SYNE2 spectrin repeat containing, nuclear envelope 2 MCF7 JHU

ENDOG endonuclease G MCF7 Yes VWF von Willebrand factor MCF7 JHU

ERCC5 excision repair cross-complementing rodent 

repair deficiency, complementation group 5 

(xeroderma pigmentosum, complementation 

group G (Cockayne syndrome))

MCF7 Loss WDR5 WD repeat domain 5 MCF7 Yes

FBXO22 F-box protein 22 MCF7 Yes CPM carboxypeptidase M U87 Yes

GALE UDP-galactose-4-epimerase MCF7 Yes CSF2RA colony stimulating factor 2 receptor, alpha, low-

affinity (granulocyte-macrophage)

U87 Yes

GGA1 golgi associated, gamma adaptin ear 

containing, ARF binding protein 1

MCF7 JHU E2F3 E2F transcription factor 3 U87 Yes

GPI Glucose phosphate isomerase MCF7 Yes EEF1A1 eukaryotic translation elongation factor 1 alpha 

1

U87 Yes

GPX1 glutathione peroxidase 1 MCF7 Yes FLJ22028 pyridine nucleotide-disulphide oxidoreductase 

domain 1 

U87 Yes

GRINA glutamate receptor, ionotropic, N-methyl D-

aspartate-associated protein 1 (glutamate 

binding)

MCF7 Yes GALC galactosylceramidase U87 Yes

GUCY1A2 guanylate cyclase 1, soluble, alpha 2 MCF7 Loss Yes GRB10 growth factor receptor-bound protein 10 U87 Yes

GUCY2F guanylate cyclase 2F, retinal MCF7 JHU; Sanger IFNA2 interferon, alpha 2 U87 Loss

HDAC1 histone deacetylase 1 MCF7 Yes LOXL2 Lysyl oxidase-like 2 U87 Yes

HMBS hydroxymethylbilane synthase MCF7 Gain OLFM4 olfactomedin 4 U87 Yes

HMGA1 high mobility group AT-hook 1 MCF7 Yes PARP3 poly (ADP-ribose) polymerase family, member 3 U87 Yes

ICAM1 intercellular adhesion molecule 1 (CD54), 

human rhinovirus receptor

MCF7 Yes RFK riboflavin kinase U87 Yes
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Figure 10. Kaplan Meier survival plots for a few representative screen actives. Shown above, are 

statistically significant (log-rank p<0.05) patient stratifications where over expression (from publicly 

available microarray gene expression data, see text and Materials and Methods for details) is associated 

with poor prognosis for a few select hits from general (a) and indicated cell-specific survival genes (b,c,d). 

(a) KIF11 (general survival gene) quantile expression patterns show significant and distinct survival in 

primary brain [75], breast [54] and lung [44] cancer datasets. Similar results were achieved upon grouping 

tumors based on median expression of (b) GRB10 (U87-specific), (c) RET (MCF7-specific), and (d) 

KNTC2 (Calu6-specific) in the respective tissue-specific cancer datasets, as indicated. Complete lists and 

gene descriptions can be found in Table 4 and 
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Table 5. For details on the method and datasets employed, see Materials and Methods.  

 

3.1.7 Integration with pathways and networks 

3.1.7.1 Pathway mapping results 

By fusing pathway information with the general and cell specific survival gene lists, a 

mechanistic understanding of these ‘contexts of vulnerability’ can be achieved. Given the 

small numbers in each of the lists, statistical significance in terms of p-values is less 

informative; therefore, we focused on examining relative enrichment or over 

representation of members to rank canonical pathways (Ingenuity’s IPA) or biological 

processes (NCI’s DAVID).  

 

Table 6: Pathway mapping of genes essential for cancer cell survival. Genes from Figure 7(a) were 

analyzed by GO (Biological Process, level 5) and relevant top scoring (Fold enrichment >=1.5) processes 

(containing >=5 genes) are shown below. 
GO BP(5) Term Count Genes Fold enrichment

GO:0016310~phosphorylation 21

NEK3, GRK4, ILK, PLK1, HIPK4, NRBP1, ATP6V1B1, EPHA5, 

TRIB1, MAP3K1, TESK1, ALS2CR2, SMG1, FLJ23356, PKN1, 

BRSK2, KDR, AURKA, TAOK3, LYK5, FASTK, 1.55

GO:0006396~RNA processing 10

ELAC2, TXNL4B, DDX54, SNRPD3, KHSRP, GEMIN6, 

SFRS2IP, SNRP70, XAB2, DDX48, 4.23

GO:0019932~second-messenger-mediated signaling 10

ADORA3, HTR6, TGM2, P2RY4, MC2R, TSHR, ADORA2A, 

FPR1, AURKA, TRAT1, 2.08

GO:0016071~mRNA metabolic process 9

TXNL4B, SMG1, SNRPD3, KHSRP, GEMIN6, SFRS2IP, 

SNRP70, XAB2, DDX48, 5.76

GO:0043549~regulation of kinase activity 7 PKIB, PKN1, TRIB1, ALS2CR2, FPR1, LYK5, CDK5R1, 1.69

GO:0009967~positive regulation of signal transduction 6 TGM2, CARD9, UBE2V1, TAOK3, TRAT1, TICAM2, 2.49

GO:0007017~microtubule-based process 6 KIFC2, KIF11, KIF9, KIF17, CKAP5, AURKA, 2.15

GO:0000087~M phase of mitotic cell cycle 6 NEK3, FZR1, KIF11, TXNL4B, PLK1, AURKA, 1.80

GO:0007067~mitosis 6 NEK3, FZR1, KIF11, TXNL4B, PLK1, AURKA, 1.80

GO:0006412~translation 6 MRPS17, RPL35, NACA, DDX48, KIAA0664, EIF3S8, 1.59

GO:0008284~positive regulation of cell proliferation 6 CD47, SLAMF1, ILK, TGM2, EFNB1, TSHR, 1.53

GO:0000279~M phase 6 NEK3, FZR1, KIF11, TXNL4B, PLK1, AURKA, 1.48  

 

Gene Ontology offers a widely accepted and published curated systematic hierarchical 

classification of molecular function, cellular component, biological process for genes in 

the order of increasing specificity or complexity [127]. We examined level 5 terms of the 

GO Biological Process tree to identify the top common events that are at play in the 

general survival gene list (see Table 6). While there are several redundant and broadly 

classified biological processes, basic survival and metabolic functions are affected by 

genes in the general survival list. RNA processing and metabolism, cell cycle (mitosis) 

and several members of various growth factor signaling and their regulators feature 
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prominently. Cancer (39 genes) and cell death (37 genes) are the top significant functions 

and diseases associated with this list (Data not shown). 

 

Table 7: Pathway mapping of genes essential for Calu6 cell survival. Genes from Figure 8(a) were 

analyzed by Ingenuity Pathway Analysis tools and relevant top scoring (-logP >1.3; p<0.05) canonical 

pathways (containing >5 genes) are shown below. 
Pathway Count Genes  -Log(P-value)

Protein Ubiquitination Pathway 6 PSMB3 PSMB7 STUB1 PSMC4 PSMA4 PSMC5 5.04  

 

Table 8: Pathway mapping of genes essential for MCF7 cell survival. Genes from Figure 8(c) were 

analyzed by Ingenuity Pathway Analysis tools and relevant top scoring (-logP >1.3; p<0.05) canonical 

pathways (containing >5 genes) are shown below. 
Pathway Count Genes  -Log(P-value)

Purine Metabolism 10

NME3 PDE6G AK5 ADCY5 POLA1 GUCY2F GUCY1A2 ADAR 

MPP2 APRT 2.59

Integrin Signaling 7 PIK3CA RHOA PIK3R1 CAPN7 ITGB6 ITGAX RAPGEF1 2.05

Acute Phase Response Signaling 6 PIK3CA FTL MBL2 APOH PIK3R1 VWF 1.83

G-Protein Coupled Receptor Signaling 6 PIK3CA ADCY5 P2RY6 PIK3R1 RGS14 HTR1A 1.57

Notch signaling pathway 5 DVL3 JAG2 DTX1 DVL2 HDAC1 2.18  

 

Table 9: Pathway mapping of genes essential for HCT116 cell survival. Genes from Figure 8(b) were 

analyzed by Ingenuity Pathway Analysis tools and relevant top scoring (-logP >1.3; p<0.05) canonical 

pathways (containing >5 genes) are shown below. 
Pathway Molecules  -Log(P-value)

G-Protein Coupled Receptor Signaling 6 AKT1 ADRBK1 OPRK1 CHRM4 PIK3CD CHRM2 3.92

Inositol Phosphate Metabolism 5 MAP2K6 INPP4B CSNK1D PIK3CD ITPKA 3.69  

 

We probed pathway information (in Ingenuity Pathway Analysis, see Materials and 

Methods) to cluster cell-specific lists cluster into unique pathways that may suggest 

predominant signaling pathways at play in different cancers. Sparse representation was 

found, perhaps due to the size of the query lists and the coverage of well annotated 

canonical pathways. That being said, several members (PSMC4, PSMB7, STUB1, 

PSMA4, PSMB3, PSMC5) of the proteolytic machinery in the protein ubiquitination 

pathway can be noted in the Calu6 specific survival list. U87 specific hits could not be 

collectively grouped into relevant pathways for the criteria employed. On the other hand, 

HCT116 and MCF7 specific survival lists contained relatively higher numbers of the 

genes, allowing us to see multiple hits that can be significantly binned into 2 and 5 

pathways, respectively. Generic GPCR signaling pathways are represented in both lists. 

Interestingly, several members of the inositol phosphate metabolic pathway are essential 
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for the survival of HCT116 cells. On the other hand, as expected, depletion of purine 

metabolism in MCF7 cells confers loss of viability. Similarly, targeting Notch, integrin 

and acute response pathways can induce lethality. Taken together, these common 

pathways provide insight into biological mechanisms for genetic disruption and hence, 

can strengthen target selection and prioritization hypotheses for subsequent experimental 

follow up.  

3.1.7.2 Functional interaction network analysis results 

While canonical pathways provide valuable information, they can be sparse and 

restrictive in revealing the underlying web of functional interactions (gene-gene, gene-

protein, protein-protein).  To understand if the genes identified in our screen were truly 

connected we carried out a network analysis (see Materials and Methods). 116 genes 

from the general survival list were involved in 16 large or small networks. The top 

scoring network, containing 25 genes, depicting direct and indirect interactions is 

illustrated in Figure 11. Cancer, cell death, cellular growth and proliferation, cellular 

assembly and organization and cell morphology are the top significantly associated 

biological functions with this network. Several kinases that are essential for cell growth 

can be seen along with several members being targets for drugs that are marketed or in 

development. Two such examples AURKA and PLK1 are check point kinases involved 

in G2/M phase of the cell cycle and have been the subject of pharmacological 

investigations. Similar network analyses were performed for the cell-specific survival 

genes and results are shown in the figures below.  
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Figure 11.  Network analysis of general survival genes. Top ranking network representing 25 genes 

(colored in grey) that are essential for cancer cell survival. Kinases are highlighted and targets for drugs 

approved or in development are shown. Genes in the list which caused concordant loss of viability with 2 

siRNAs are marked with an *. 

 

30 genes from the Calu6 specific survival list were involved in 8 large or small networks. 

The top scoring network, containing 11 genes, composed of direct and indirect 

interactions are illustrated in Figure 12. Cell to cell signaling, cellular movement and 

cancer are the top significant biological functions associated with this network. 

Interestingly several genes are linked to NFkB and PKCs which may explain their role in 

cell survival. Furthermore, several genes in this sub-network are expressed in lung cancer 

cell lines (highlighted) suggesting their relevance and applicability to lung cancer biology 

(e.g. NOS2A and ITGA3).   
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Figure 12. Network analysis of Calu6 specific survival genes. Top ranking network representing 11 

genes (colored in green) that are essential for Calu6 cell survival. Genes that are expressed in other lung 

cancer cell lines are highlighted and targets for drugs approved or in development are shown. Targets in the 

list which caused concordant loss of viability upon knockdown with 2 siRNAs are marked with an *. 

 

34 genes from the U87 specific survival list were involved in 5 large or small networks. 

The two overlapping top scoring networks, containing 25 genes in total, are shown in 

Figure 13. Cancer, cell death, cell growth and proliferation are the top significant 

biological functions associated with this combined network. Several drug targets can be 

noted as well such as FOLH1, IL23A and CSF2RA.  It is also interesting to that multiple 

members of this merged network are also expressed in other CNS cancer cells.  
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Figure 13. Network analysis of U87 specific survival genes. Top ranking networks representing 25 genes 

(colored in green) that are essential for U87 cell survival. Genes that are expressed in other CNS cancer cell 

lines are highlighted and targets for drugs approved or in development are shown. Targets in the list which 

caused concordant loss of viability upon knockdown with 2 siRNAs are marked with an *. 

 

136 genes from the MCF7 specific survival list were involved in 16 large or small 

networks. The two overlapping top scoring networks, containing 42 genes in total, are 

shown in Figure 14. Cancer, cell death, cell growth and proliferation are the top 

significant biological functions associated with this combined network as well. 4 well 

known drug targets exist in this merged network – POLA, HDAC1, RXRA and PPARG. 

Genes that interact with caspase (e.g. MCL1, BAK) are likely to cause programmed cell 
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death. Many of these genes are likely to be relevant to breast cancer as they are expressed 

in other breast cancer cell lines as well. 

 

Figure 14. Network analysis of MCF7 specific survival genes. Top ranking networks representing 42 

genes (colored in green) that are essential for MCF7 cell survival. Genes that are expressed in other breast 

cancer cell lines are highlighted and targets for drugs approved or in development are shown. Targets in the 

list which caused concordant loss of viability upon knockdown with 2 siRNAs are marked with an *. 

 

46 genes from the HCT116 specific survival list were involved in 14 large or small 

networks. The two overlapping top scoring networks, containing 25 genes in total, are 

shown in Figure 15. Cancer, cell signaling, cell growth and proliferation are the top 

significant biological functions associated with this combined network as well. Networks 
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surrounding Akt and NFkB pathways along with angiogenic factors such as FLT1, FLT4 

and p38 survival genes form the biological basis for target dependency in these cells. 

Furthermore, it is worth noting that several genes in this merged network are expressed in 

other colorectal lines.  

 

 

Figure 15. Network analysis of HCT116 specific survival genes. Top ranking networks representing 25 

genes (colored in green) that are essential for HCT116 cell survival. Genes that are expressed in other 

colorectal cancer cell lines are highlighted and targets for drugs approved or in development are shown. 

Targets in the list which caused concordant loss of viability upon knockdown with 2 siRNAs are marked 

with a *. 
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3.1.8 Experimental confirmation  

Based on all our analyses, there were several leading hypotheses that need to be validated 

experimentally. A major consideration is the off-target effects mediated by siRNAs 

which can complicate screen outputs. Target knockdown experiments by RT-PCR are 

essential. We confirmed knockdown for a select set of targets (see Figure 16(a)) using 

previously tested siRNA reagents. Furthermore, it is widely accepted that multiple 

siRNAs causing similar phenotypes demonstrate a target-specific effect. Therefore, we 

proceeded to take some of the top leads from above and tested them with multiple 

siRNAs for concordant phenotype in cell viability, cell death and live/dead high-content 

imaging assays.  
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Figure 16. Validation of selected gene targets by knockdown and high content assays. (a) Real-time 

QPCR was performed to test 4 or more siRNAs (shown as s1, s2, s3, etc.) targeting the indicated genes for 

depletion of gene expression. %KD values on the Y-axis are GAPDH normalized values relative to those of 

a non-silencing negative control siRNA. (b) General toxicity caused by siRNA mediated knockdown of 

AURKA and ILK was tested by these siRNAs in the 4 indicated cell lines using a cell viability readout. 

GFP normalized values are shown along the Y-axis with a cutoff line drawn around 0.4 (see text for 

details). (c) High content images showing inhibition of ILK, AURKA or Non-sil (non-silencing negative 

control) by a representative siRNA in the indicated cell lines. The images represent phenotypic results for 3 

or more siRNAs for a given gene in a given cell line. Reduction in cell count can be seen by a decrease in 

live cells (green) and/or increase in dead (red) cells.  
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We chose AURKA, KIF11, PLK1 and ILK genes that were essential for cell survival 

across several cell lines. AURKA, PLK1 and KIF11 are involved in G2/M arrest and are 

commonly upregulated in several cancers and their expression is associated with poorer 

prognosis. The latter was reflected in some of our own analysis using publicly available 

gene expression datasets (Table 4). Furthermore, several drug discovery efforts have 

produced small molecules, targeting these genes, with favorable toxicity profiles that 

constitute the next generation of cell cycle inhibitors. ILK, on the other hand, is an 

integrin-linked kinase, that is known to trigger apoptosis and is widely deregulated in 

multiple cancers [128]. As we expected, multiple siRNAs that knockdown AURKA and 

ILK demonstrate significant cell death in all 4 cell lines, as measured by cell viability 

readouts (Figure 16(b)) or  % live cells parameter in live/dead high content assays (Figure 

16(c)). Almost all ILK siRNAs reduce number of live cells by < 50% in all 4 cell lines. A 

point to note is that although a few AURKA siRNAs appear to be less effective, majority 

of the siRNAs induce lethality in all 4 cell lines. The outliers can be attributed to variable 

transfection, half-life or potency issues, as we have noted from earlier experiments. To 

follow up on PLK1 and KIF11, we tested 4 siRNA in 7 different cell lines (A549, BxPC3, 

SKOV3, HCT116, Calu6, U87, MCF7), representing various tumor types, by cell 

viability (Cell Titer Glo) and cell death (ToxiLight) assays. In Figure 17(a) and (b), it is 

evident that significant lethality is caused in all cell lines for both assays with multiple 

siRNAs. While U87 cells are relatively less susceptible to target inhibition by the cell 

viability assay, they certainly undergo extensive cell killing with the ToxiLight assay. 

Also, it must be pointed out the phenotypic effect in MCF7 is significant, albeit less 

pronounced. The ToxiLight assay measures cell death, a different readout from our initial 

screen, and has lower dynamic range. As a result, it is highly likely that not all screen 

actives are likely to produce similar results when tested with different assays. For 

instance, target effects that are anti-proliferative in nature may or may not be detected by 

an apoptosis assay readout. Conversely, targets that are scored positive by multiple 

siRNAs and more than one assay are more likely to be high confidence, robust hits. 

Taken together, our data supports our initial hypothesis that these genes are generally 
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essential for cancer cell survival, regardless of tumor type. Anti-tumor agents targeting 

these genes are likely to have broad spectrum activity.  

 

a. b.

c. d.

 

Figure 17. Validation of selected general and cell specific survival genes by proliferation and cell 

death assays. KIF11 and PLK1 were tested for their ability to cause toxicity in a broad range of 7 cell lines 

upon knockdown by 4 validated siRNAs by cell viability (a), measured by Cell Titer Glo, and cell death 

(b), measured by ToxiLight, assays.  Green in (a) represents lower viability and red in (b) portrays higher 

cell death. AKT1 and NOTCH4 were similarly tested by cell viability (c) and cell death (d) assays for cell-

specific lethal effects in HCT116 and U87, respectively. Normalized values are shown along the Y-axis 

with a cutoff line drawn around 0.4 (see text for details). 

 

Based on the above integrative analyses and literature support, we hand-picked NOTCH4, 

AKT1 and MCL1 for follow up as cell-specific survival genes in U87, HCT116 and 

MCF7, respectively.  

2/4 NOTCH4 siRNAs inhibited U87 proliferation by  >70% with respective to negative 

control and gave a ~2-fold selectivity over the other 3 cell lines (Figure 17(c) and (d)). 

The same siRNAs enhanced cell death as measured by a ToxiLight assay by 2-fold which 
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is a significant readout for this assay. There was minimal to no effect seen with the other 

cell lines. The considerable loss of viability and cell death seen in HCT116 cells with 1 

siRNA is possibly an off-target effect. We believe that the remaining 2 siRNAs did not 

produce a robust effect in U87 cells due to lower target knockdown (Data not shown) and 

follow up with additional siRNAs would support our findings. NOTCH4 is a less studied 

member of the NOTCH pathway and it has been mainly studied as a vascular 

endothelium specific signaling receptor. NOTCH4 is a target gene of F-box nuclear 

protein Fbxw7 which is tumor suppressor and is mutated in several cancers. Interestingly, 

Hagedorn and colleagues [129] have recently shown that grade IV gliomas (glioblastoma 

multiforme) are deficient in Fbxw7 and show an upregulation of AuroraA and NOTCH4. 

They also showed that knocking down Fbxw7 leads to mitotic defects in U87 cells. These 

findings along with our results make NOTCH4 - a highly druggable, oncogenic signaling 

receptor - a particularly intriguing target to pursue in brain tumors overexpressing Notch4 

or lacking Fbxw7/4q13.3 locus.  

AKT1 was identified in HTS as giving HCT116 cells a ~2X  higher survival advantage 

over other cell lines. Integrative analysis has also shown that multiple members of the 

inositol phosphate metabolism pathway could be at play (Table 9). Confirmation 

experiments have shown that 3 out of 4 siRNAs cause >50% loss of viability and 2 out of 

4 siRNAs cause 2X increase in cell death with a significant degree of selectivity over 

Calu6 and MCF7 (Figure 17(c) and (d)). AKT1 is a survival kinase with several 

downstream functions that affect cell proliferation, survival, metastasis and apoptosis. 

Several growth factors and cellular insults are known to stimulate this pathway by 

signaling through PI3K and Ras. While Calu6 cells have a KRAS mutation and MCF7 

cells have a PIK3CA mutation, HCT116 cells harbor both mutations which in all 

likelihood leads to hyperactivated Akt pathway thereby causing a dependence on AKT1. 

PIK3CA depletion by siRNAs resulted in significant lethality for MCF7 cells, but, 

contrary to published findings, did not result in a non-viable phenotype for HCT116 

(Data not shown). This context for target dependence and cellular vulnerability can be 

confirmed by following up in a broader panel of cell lines with genetic aberrations in the 

Ras/PI3K pathway.  Another relevant point to note is that the cell viability assay data 

(Figure 17 (c)) show AKT1 siRNA knockdown could be similarly detrimental to U87. 
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This can be explained by the fact that U87 is PTEN-null which leads to increased levels 

of phosphorylated Akt resulting in target dependence.  Therefore, AKT inhibitors could 

have a higher degree of therapeutic success in KRAS/PIK3CA double mutant or PTEN 

null genetic backgrounds.  

MCL1 was selected as an MCF7-specific hit from HTS and represents an example of the 

power of integrative analysis.  MCL1 siRNA caused significant lethality in MCF7 cells, 

offering a > 2-fold selectivity over other cell lines (Figure 18(a)). Array CGH data have 

shown that it is amplified in MCF7 cells (Figure 18 (b)), thereby providing a genetic 

driver for target dependence. As revealed by network analysis, it is also connected by 

direct and indirect interactions with several other MCF7-specific hits identified in the 

screen (Figure 18 (c)). Upon knocking down MCL1 with 4 siRNAs in cell viability 

assays, relatively higher loss of survival (>50-60%) was observed in MCF7 cells (Figure 

18 (d)). To understand implications more broadly for breast cancer, we analyzed 

arrayCGH for primary breast tumors for a gain in copy number and discovered that the 

frequency was ~30%. Interestingly this frequency of gain was noted in other tumors (e.g. 

colon, ovarian) as well. To our knowledge, the presence of these genetic lesions is novel 

and unreported.  Furthermore, we evaluated a published breast tumor transcription 

profiling dataset [130] and found that that MCL1 was generally over expressed relative to 

normal tissue (Figure 18(e)). IHC results on Protein Atlas showed 9/12 breast cancer 

tissues that had strong to moderate staining when probed with MCL1 antibody (Figure 

18(f)). A statistically significant association of MCL1 overexpressing tumors with poor 

outcome and higher grade was recently reported as well [125] (Figure 18(g)). In our own 

Kaplan-Meier survival analysis as well, we found a significant association of RNA 

expression with survival in breast cancer (Table 5) as well as a glioma dataset (Data not 

shown). The latter is intriguing in the light of a comparable lethal effect mediated by 

MCL1 siRNAs in U87 cells (see Figure 18 (d)).   

MCL1, is an anti-apoptotic BCL2 family protein, that has been predominantly studied in 

hematological and lymphoid malignancies. BCL2 family proteins, consisting of BCL2L, 

BCLXL, MCL1 share BCL2-homology regions and are required for cell survival by 

playing a key role in mitochondria-mediated intrinsic pathway of apoptosis. Perhaps due 

to assay sensitivity or mechanism, we were not able to see a noticeable effect with MCL1 
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siRNAs using the ToxiLight assay. It has been shown that BCL2 family proteins are 

overexpressed in multiple cancers and may contribute to chemoresistance. Lin and 

colleagues at Abbott laboratories reported an siRNA screen to identify mechanisms of 

resistance to their BCL2 inhibitor in development, ABT-737, and after an intriguing 

investigation, found that MCL1 knockdown drastically increased ABT-737 mediated 

lethality in a SCLC cell line [131]. These results could have a major impact on clinical 

use of standard chemotherapy or targeted agents, including ABT-737 for counteracting 

resistance. Moreover, the genetic lesions of MCL1 could also have major ramifications 

for patient selection when treating cancer patients, including breast and other types, with 

an MCL1 inhibitor as a single agent, as seen in our MCF7 example.  

(b) Amplification of 

MCL1 locus in MCF7

(e) Overexpression of MCL1 in 

40 breast tumors (p=0.026, 

Source: see legend)

(f) IHC of MCL1 in primary breast 

tumors (www.proteinatlas.org)

 Intensity 

 Strong: 4/12

 Moderate: 5/12

 Weak: 3/12

 Negative: 0/12 

(g) MCL1 is associated with survival in 125 

breast tumors (Source: see legend)

(c) MCL1 subnetwork
(a) MCL1 siRNA knockdown causes 

cell-specific lethality in MCF7
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Figure 18. Integrative analysis of MCL1 as a rational target in breast cancer.  MCL1 siRNAs had a 

profound lethal effect on MCF7 cells relative to others in our primary screen (a) which was reproduced 

upon confirmation with 4 siRNAs using the cell viability readout (d). (b) Genomic amplification of the 

MCL1 locus in MCF7 as well as primary breast tumors (not shown) was seen in internal aCGH data. (c) 

Functionally, MCL1 was also connected to various other MCF7 selective hits as shown by a subset of 
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network interactions seen in Figure 14. Mining public data revealed that MCL1 was overexpressed in a 

large subpopulation of breast tumors by microarray analysis (e) of 40 primary breast tumors versus 7 

normal controls [130] as well as by immunohistochemistry (f) of 12 tumor samples (ProteinAtlas, 

http://www.proteinatlas.org). (g) This was associated with statistically significant poor survival in a 

separate population of 125 breast tumors [125]. Collectively, this data presents MCL1 as a promising target 

for therapeutic intervention in breast cancer.  

 

3.1.9 Discussion 

To our knowledge, this is the first ever high-throughput RNAi screen done in 4 different 

cell lines representing different tumor types followed by the most comprehensive 

integrative analysis of screen actives. It must be noted that several limitations exist with 

such large-scale screens. The library used in our screen was focused on the druggable 

genome, so there certainly are several other genes that are critical for tumor cell growth, 

proliferation and survival. Several hits may have been missed due to the choice of assay, 

cell line/context and time point. Targets with an exclusive pro-apoptotic or anti-

angiogenic function are less likely to be picked up by a cell viability screen. Also, genes 

that are essential for specific cell types, genetic backgrounds or tumor subtypes will 

likely be missed. Other major concerns with the use of RNAi reagents are specificity, 

selectivity and potency. Complications arising from off-target effects of siRNAs can 

provide false positives. Furthermore, incomplete knockdown of targeted proteins can lead 

to false negatives, not to mention the possibility of hypomorphic phenotypes.  

Nonetheless, this approach provides rich information on key targets for appropriate 

follow up.  

We have provided a rich list of prioritized targets and generated robust hypotheses by 

integrating the screening data with orthogonal datasets (expression, aCGH, mutation, 

pathways). Specifically, we have shown that (1) overlaying clinical outcome data can 

provide a repertoire of novel cancer targets of clinical relevance and (2) incorporation of 

array CGH/mutation/expression data and pathways can provide genetic and mechanistic 

rationale, respectively, for prioritization and downstream followup of screen actives.  

While limited follow up has been reported, we believe we now have excellent starting 

points for a variety of future experiments: (1) Several targets have corresponding small 

molecule chemical inhibitors that are available and it would be intriguing to test them to 
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see if they would phenocopy the siRNA results. For instance, do the ‘general’ survival 

provide us with broad-spectrum agents that are agnostic to tumor type while the ‘cell-

specific’ survival genes are likely to be context specific? (2) Furthermore, siRNAs or 

compounds that inhibit our list of general survival genes may work well in combination 

with commonly used cytotoxics. John Blenis’ team [92] has shown similar results with 

hits from a kinome RNAi screen done in HeLa cells. PLK1 is one such example from our 

results that has been published as a potentiator of chemotherapeutics [132].  (3) While we 

have systematically tested single gene knockdowns in our screens and follow up 

experiments,  it would be interesting to see the effects of additivity/synergy/antagonism 

in terms of lethality by knocking down 2 or more targets which might provide rational 

leads into effective multi-targeted agents or polypharmacology. (4) The lists of general or 

cell specific survival genes are excellent candidates for resequencing, aCGH, expression, 

epigenomic studies as they are causally implicated in cell survival. (5) To truly explore 

the ‘contexts of vulnerability’ we will need to follow up on hits with or without 

combination studies. If a gene exists in inactivated form (mutation, expression, deletion) 

in certain tumor types, does it enhance killing by an anti-tumor agent? If the gene in 

question is commonly amplified or overexpressed, does it confer resistance  and would a 

combination therapy approach be more useful?  We believe these questions can be 

answered by interrogating genetic background rather than cancer type. By testing a panel 

of cell lines of same tumor types but varied genetic backgrounds (e.g. KRAS mutant vs. 

non mutant colorectal lines), such synthetic lethal oncogene addictions can be unraveled.  

This is likely to shed light on pharmacogenomics development strategies for targeted 

agents for different cancers. 

A central problem with genome-wide profiling approaches such as microarrays, 

proteomics, metabonomics is that they are associative in nature.  Differentiating driver 

versus passenger effects is not trivial. Several reports from sequencing, aCGH and 

expression profiling have implicated hundreds of genes in various types and stages of 

cancer, but not all are likely to be relevant to disease or therapeutic intervention. High-

throughput RNAi, on the other hand, offers a powerful approach to perform targeted 

knockdowns and hence provide causal information. By understanding target dependence, 

novel ‘oncogene addictions’ can be uncovered. This approach helps complement 
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conventional functional genomics approaches in prioritizing genomic alterations that are 

likely to be of significance amongst those are likely to be bystander effects of 

tumorigenesis.  

A variation of this technique is where screens can be performed with or without a drug. 

Several recent reports (see Introduction) have shown the power of such 

chemosensitization or response modifier or synthetic lethality screens to identify 

modulators (enhancers or suppressors) of drug response and putative combination therapy 

targets.  

In conclusion, we believe this is a powerful systems technique which when integrated 

informatively with other high dimensional datasets can yield valuable insights for target 

validation and predictive pharmacogenomic applications in cancer. 
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3.2 Integrative analysis of mutation profiling of human cancer 

The Singapore Oncogenome Group (SOG) published an impressive genome-wide survey 

of mutations in the tyrosine kinase trascriptome of 254 cancer cell lines followed by an 

independent assessment of a select few frequent mutations in a variety of primary tumors 

[22]. SYK was the most frequently mutated PTK – 33.3 sporadic alterations per 1MB 

expressed coding sequence – all of which were somatic in nature (Figure 19). Spleen 

tyrosine kinase (SYK) regulates transcription, signaling, cell proliferation, neutrophil 

phagocytosis, leukocyte chemotaxis and lamellipodium biogenesis. It belongs to the SYK 

family of PTKs and contains 2 adjacent SH2 domains and a kinase domain. SYK biology 

has been extensively studied in hematopoietic cells – B and T lymphocytes, NK cells , 

mast cells, etc. where SYK protein plays a scaffolding role in downstream signaling of 

ITAM-containing immunoreceptors [133]. The biological role of SYK in solid tumors is 

just being uncovered. Recent reports of SYK being an unconventional tyrosine kinase 

tumor suppressor in breast (Figure 19), gastric and melanoma suggest a broader role for 

this gene in other tumor types. In the light of these observations, the biological 

significance of the mutations identified in by Ruhe et al. [22] is intriguing, yet currently 

unknown. We attempted to discern clues by mining a variety of datasets and fusing 

various analyses to generate hypotheses for guided experimentation.  
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a. Syk genetic alterations

b. Syk effect on tumorigenicity c. Syk effect on patient survival 

 

Figure 19. Molecular and biological aspects of SYK biology. (a) Domain organization of SYK protein 

displaying known polymorphisms and novel somatic alterations (identified in [22]). SH2: Src homology 2 

domain; TK: tyrosine kinase domain. Adapted from [22]. (b) Inhibition of in vivo tumor growth of SYK-

transfected MDA-MB-435BAG(SYK negative) breast cancer cell lines in athymic nude mice relative to 

control (Zeo). Adapted from [134]. (c) Poor overall survival of 124 hepatocellular carcinoma patients as a 

result of SYK methylation status as shown by Kaplan-Meier analysis. Adapted from [135] 

 

3.2.1 Molecular consequences of SYK mutations 

In the SOG dataset, all 15 SYK mutations identified were somatic in nature (Table 10). 3 

nonsense frameshift and 12 missensense mutations were uncovered in SH2 or 

interdomain/tyrosine kinase domains, respectively. Out of these, Jurkat, MeWo and BM-

1604 harbored homozygous mutations. Notably, M34fx3 (SH2_1 domain), A353T 

(Interdomain) and V622A (Kinase domain) were recurring mutations. Precedence of a 

genetic role in gastric carcinoma, melanoma, prostate cancer, lymphoma and myeloma 

provide strong support for the relevance of these mutations (reviewed in [133]). Given 

that much is known, intriguingly, no genetic alterations were found in breast cancer cells.   
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Table 10. SYK mutations in the SOG dataset. LS-174T and LS-180; DLD-1 and HCT-15 share the same 

genotype and are presumably derived from the same individual. Homozygous mutations are highlighted. * 

refers to previously reported alteration in Jurkat cells [136, 137]. Homo, homozygous; Het, heterozygous; 

TK, tyrosine kinase; SH2, Src homology domain 

Cell line Tissue Mutation Homo/Het Domain

LS-174T Colon M34fsX3 Het SH2_1

Jurkat Hematopoietic and lymphoid M34fsX3* Homo SH2_1

LS-180 Colon M34fsX3 Het SH2_1

KG-1 Hematopoietic and lymphoid I262L Het Interdomain

MeWo Skin E315K Homo Interdomain

SK-N-SH Brain A353T Het Interdomain

MES-SA Cervix and vulva A353T Het Interdomain

DLD-1 Colon A353T Het Interdomain

MM-Arn Skin A353T Het Interdomain

MKN-1 Stomach A353T Het Interdomain

HCT-15 Colon A353T Het Interdomain

MM-Leh Skin A353T Het Interdomain

A-498 Kidney R520S Het TK

BM-1604 Prostate V622A Homo TK

DU-145 Prostate V622A Het TK  

Cell line information was sought from literature to cover as many different SYK genetic 

backgrounds possible to discern molecular consequences of the mutations. To this end, a 

total of 77 cell lines (15 from Table 1 and 62 from Table 2) from different tumor types 

with varying levels of SYK were compiled : 32 (Null), 29 (wild type, WT), 1 (Copy 

number gain), 15 (mutations, in SOG). By overlapping with the GNF Affymetrix 

transcription profiling resource (http://www.symatlas.gnf.org), a panel of 13 cell lines 

with associated basal microarray data was assembled – 5 wildtype (WT); 4 mutant from 

SOG datasets (MUT); 4 deficient in expression (NULL). This panel is listed in Table 12 

and was utilized for all subsequent analyses. A point to note is that Jurkat, a NULL cell 

line, has been reported to expresses RNA but not protein [136, 137].  RL, a WT cell line, 

likely overexpresses SYK, as confirmed by [138] and SK-MeL 28, labeled WT in our 

panel, has been shown to express very low levels of SYK (Table 11).  
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Table 11: 62 cell lines with varied SYK genetic backgrounds extracted from literature. RT- RT-PCR; 

WB-Western blot; MSP – Methylation specific PCR’ Methylated – generally rescued by 5-aza cytidine. 

Normal can be considered as wild type (WT). 
Cell line Tissue Defect_type Defect_detail PubMed ID Hypothetical effect

BT20 Breast Normal 11454707 Normal

BT474 Breast Normal 10963601 Normal

BT483 Breast Normal 11454707 Normal

BT549 Breast No expression No RNA or protein expression (RT, WB) 10963601 Null

DU4475 Breast Normal 11454707 Normal

HCC1428 Breast Normal 11454707 Normal

HCC1954 Breast Normal 11454707 Normal

Hs578T Breast No expression No RNA? or protein expression (RT, WB) 10963601 Null

Hs854T Breast No expression No RNA (RT); methylated 11454707 Null

MCF7 Breast Normal 10963601 Normal

MCF7-ADR Breast No expression No protein expression (WB) 10963601 Null

MDA-MB-130 Breast Normal 11454707 Normal

MDA-MB-134-VI Breast No expression No RNA (RT); methylated 11454707 Null

MDA-MB-231 Breast No expression No RNA or protein expression (RT, WB) 10963601 Null

MDA-MB-361 Breast Normal 11454707 Normal

MDA-MB-415 Breast Normal 11454707 Normal

MDA-MB-435 Breast No expression No RNA or protein expression (RT, WB) 10963601 Null

MDA-MB-436 Breast No expression No RNA? or protein expression (RT, WB) 10963601 Null

MDA-MB-453 Breast No expression No RNA (RT); methylated 11454707 Null

MDA-MB-468 Breast Normal 10963601 Normal

SKBr3 Breast Normal 10963601 Normal

T47D Breast Normal 11454707 Normal

ZR75.1 Breast Normal 11454707 Normal

MCF10A Breast_non tumorigenic Normal 10963601 Normal

0013" Head&Neck Normal 17699797 Normal

005B Head&Neck Normal 17699797 Normal

006/1 Head&Neck No expression No RNA or protein expression (RT, WB) 17699797 Null

011A Head&Neck No expression No RNA or protein expression (RT, WB) 17699797 Null

CAL27 Head&Neck Normal 17699797 Normal

D562 Head&Neck Normal 17699797 Normal

HM6 Head&Neck Normal 17699797 Normal

HN3 Head&Neck No expression No RNA or protein expression (RT, WB) 17699797 Null

HN4 Head&Neck No expression No RNA or protein expression (RT, WB) 17699797 Null

HN5 Head&Neck Normal 17699797 Normal

Daudi Hematopoietic and lymphoid Normal 12717427 Normal

Granta-519 Hematopoietic and lymphoid No expression 16409295 Normal

H9 Hematopoietic and lymphoid No expression No RNA or protein expression (MSP, WB) 12717427 Null

Hut78 Hematopoietic and lymphoid No expression No RNA or protein expression (MSP, WB). 12717427 Null

JeKo-1 Hematopoietic and lymphoid Increased expression arrayCGH, gene expression and FISH 16409295 Activated

K562 Hematopoietic and lymphoid Normal 12717427 Normal

Karpas-422 Hematopoietic and lymphoid Normal 16912221 Normal

Molt3 Hematopoietic and lymphoid No expression No RNA or protein expression (MSP, WB) 12717427 Null

Nalm6 Hematopoietic and lymphoid Normal 12717427 Normal

NCEB-1 Hematopoietic and lymphoid No expression 16409295 Normal

REC Hematopoietic and lymphoid No expression 16409295 Normal

RL Hematopoietic and lymphoid Normal 16912221 Normal

Hep3B Liver Normal 17121887 Normal

HepG2 Liver No expression No RNA (RT); methylated 17121887 Null

518A2 Skin; melanoma No expression No protein expression (WB) 15955106 Null

607B Skin; melanoma No expression No protein expression (WB) 15955106 Null

A375 Skin; melanoma No expression No protein expression (WB) 15955106 Null

C8161 Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

Carney Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

MelJuSO Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

MH Skin; melanoma No expression No protein expression (WB) 15955106 Null

Neo6/C8161 Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

Roth Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

SKMel-28 Skin; melanoma Very low expression Low protein expression (WB) 15955106 Very low

UACC903 Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

WM1205Lu Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null

WM35 Skin; melanoma Normal, reduced expression No RNA, some protein expression (RT, WB) 17145863 Low/Normal

WM455 Skin; melanoma No expression No RNA or protein expression (RT, WB) 17145863 Null
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Table 12: 13 cell line basal expression panel. By overlapping with the GNF Affymetrix transcription 

profiling resource (http://www.symatlas.gnf.org), a panel of 13 cell lines with associated basal microarray 

data was assembled. For details on the cell lines and associated SYK genetic defects (Label), refer to Table 

10 and Table 11. 

Cell line Tissue Label

A-498 Kidney MUT

DLD-1 Colon MUT

HCT-15 Colon MUT

Jurkat Hematopoietic and lymphoid MUT

HepG2 Liver NULL

Hs578T Breast NULL

MDA-MB-231 Breast NULL

MDA-MB-435 Breast NULL

K562 Hematopoietic and lymphoid WT

MCF7 Breast WT

RL Hematopoietic and lymphoid WT

ZR75.1 Breast WT

SKMel-28 Skin; melanoma WT  

 

We used the microarray data to examine if molecular profiles cluster cell lines based on 

their SYK genetic defects. The signal values across the 13 cell lines for SYK expression 

were far too low (data not shown), but in general, NULL cell lines showed far lower 

values than WT or MUT. Unsupervised hierarchical clustering of basal genome-wide 

transcript profiles was performed to see if the microarray profiles would cluster cell lines 

based on their SYK background. To specifically attribute relevance of expression profiles 

to SYK biology, a custom gene set of direct and indirect SYK interactions, called 

SYK_interactions_network (see Materials and Methods) comprising 109 genes was 

custom assembled, which mapped to 201 probesets with an appreciable degree of 

variation (coefficient of variation, CV>0.4) across all cell lines. A general pattern of all 

MUT samples co-occurring with NULLs while WT samples clustering separately was 

observed (Figure 20). This suggests that the mutations A498_R420S, HCT15_A353T, 

DLD1_A353T maybe inactivating mutations and may show a SYK-NULL like signature. 

Jurkat was a notable exception and clustered with RL7, possibly a SYK-overexpressing 

cell line. This may be due to 2 reasons: (1) the expression data was generated from a 

Jurkat clone without the biallelic truncating mutation (2) compensatory changes that are 

known to occur in T-cell leukemias [139]. Although SKMel-28 is labeled as WT, this cell 
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line is known to express very low levels of protein [140] which may explain why it 

groups with the NULL and MUT cell lines. It was interesting, however, to note that 

HepG2 groups with WT cell lines despite literature evidence of no RNA expression 

(Table 11).  Although 13 cell lines may be too small a sample set to give a robust 

clustering result, it is noteworthy that a clear separation exists, as expected, between WT 

and NULL samples with respect to their underlying SYK network gene expression.  

 

Figure 20. Unsupervised clustering of SYK network transcript profiles across 13 cell line panel with 

varied SYK genetic backgrounds. Log2 transformed signal values were analyzed by unsupervised 

hierarchical clustering using a Pearson correlation coefficient metric and average linkage. Red and green 

represent relatively overexpressed and underexpressed genes, respectively.   
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3.2.2 Pathway analysis of transcriptional profiling data from varied SYK 

genetic backgrounds 

To identify patterns of pathways that are upregulated or downregulated genomically as a 

consequence of SYK status, the 13 cell line expression profiles were interrogated for 

differential enrichment of pathways relevant to SYK biology. Therefore, 4 genesets were 

compiled: EGFR/MAPK/ERK pathway – 42 genes, NFkB pathway – 45 genes, PI3K/Akt 

pathway – 99 genes, SYK direct and indirect interactions (SYK_interactions_network) – 

125 genes. Gene Set Enrichment Analysis (GSEA) is a powerful method that calculates 

enrichment of user defined groups of genes in a 2 class comparison by examining whole 

array expression data and taking into account subtle but consistent profiles [117]. GSEA 

was used for MUT vs. WT, NULL vs. WT, MUT+NULL (REST) vs. WT comparisons to 

examine enrichment of the above mentioned pathways. EGF/ERK/MAPK pathway was 

seen to be consistently and significantly (FDR <0.15) upregulated in MUT and NULL 

lines relative to WT (see Table). This suggests that SYK deficiency upregulates EGFR 

signaling. This has been previously reported in MCF10A cells by Ruschel and Ullrich 

[141]. Due to limitations in number of samples (very small n), statistical significance is 

not seen for the other pathways. However, if trends are noted, PI3K and NFkB pathways 

are also enriched in NULL and MUT cell lines and SYK_interactions_network is 

enriched in WT cell lines, as expected. SYK mediated repression of PI3K and NFkB 

pathways has been previously reported [133]. 
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Table 13: GSEA results for SYK relevant gene sets. EGFR/ERK/MAPK, PI3K, NFKB and SYK 

network interactions were analyzed for enrichment by GSEA in the indicated comparisons of WT, NULL 

and MUT cell line expression profiles.  REST refers to a combination of NULL and MUT cell lines. Size 

refers to the number of probesets that the genes in each gene set mapped to. NES, normalized enrichment 

score; FDR q-val, false discovery rate after correcting for multiple testing. Interesting results are 

highlighted and described in the text above.  
Comparison Gene set Size NES FDR q-val

REST vs WT EGF_ERK_MAPK 41 1.41604 0.127193

NULL vs WT EGF_ERK_MAPK 41 1.399081 0.125

MUT vs WT EGF_ERK_MAPK 41 1.315885 0.075758

NULL vs WT PI3K 94 0.934409 0.851563

NULL vs WT NFKB_IPA 42 0.928829 0.586458

MUT vs WT NFKB_IPA 42 0.897361 0.686869

REST vs WT NFKB_IPA 42 0.770963 0.869518

WT vs MUT SYK_INTERACTIONS 116 -0.899716 0.633333

WT vs REST SYK_INTERACTIONS 116 -0.944864 0.541246

WT vs NULL SYK_INTERACTIONS 116 -0.956538 0.519558  

Having observed a greater prevalence of EGFR/MAPK activation in the transcript 

profiles of cell lines with NULL or MUT backgrounds, we investigated an inverse 

relationship, if any, between EGFR and SYK in a panel of 11 breast cancer cell lines that 

were reported in [142]. SYK status in these cell lines was obtained from Table 11. As 

seen in Table 14, 5/8 lines with low/absent EGFR expression harbor normal levels of 

SYK. Interestingly, 3 out these 5 are sensitive to erlotinib as well. It would be intriguing 

to test endogenous SYK transcript/protein in MDA-MB-453. In this panel, there wasn’t 

enough data to confirm an inverse trend, but 2 cases (MDA-MB-231 and MDA-MB-435) 

showed that absence of SYK was not inversely related to EGFR. These observations 

support the hypothesis that SYK expression may regulate EGFR expression/signaling. 

Not surprisingly, erlotinib IC50 values are agnostic to EGFR levels since it is widely 

known that EGFR expression is not associated with response to EGFR inhibitors. It is, 

therefore, tempting to ask if SYK status singly or in combination with EGFR would serve 

as a predictive biomarker to stratify patients for anti-EGFR therapy. 



Systems and integrative approaches in oncogenomics 

 71 

Table 14: Relation between SYK, EGFR and erlotinib sensitivity in breast cancer cells. ? refers to 

unknown status of SYK. Erlotinib sensitivity (IC50) and EGFR protein expression (Western blots) data 

were extracted from [142].  

Cell line Syk EGFR Erlotinib_IC50

MDA-MB-453 ? - >20uM

A431 ? ++ 1.53uM

MCF7 Normal - >20uM

MDA-MB-361 Normal - >20uM

SKBr3 Normal - 3.98uM

BT474 Normal - 5.01uM

T47D Normal - 9.8uM

MDA-MB-468 Normal ++ >20uM

BT20 Normal ++ >20uM 

MDA-MB-231 Null - >20uM

MDA-MB-435 Null - >20uM  

To explore other pathways and biological processes that are differentially modulated in 

NULL & MUT vs. WT cell lines, we filtered 1000 genes with a signal-to-noise ratio 

(SNR) > 0.5 or <-0.5 that were differentially expressed in MUT & NULL groups relative 

to WT cell line microarray profiles. Pathway analysis was done in Ingenuity Pathway 

Analysis. From Figure 21, it is evident that several cancer relevant growth factor 

signaling and survival pathways (e.g. PDGFR, Ephrin receptor signaling) are 

constitutively upregulated in MUT and NULL groups relative to WT.  

Taken together, this data supports the previous observation that the mutations maybe 

inactivating in nature and functionally similar to NULLs in terms of pathways and 

genomic profiles.  
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Figure 21. Pathway analysis of differentially expressed genes in SYK MUT and NULL cell lines 

relative to WT. Gene expression profiles were filtered for SNR > 0.5 or <-0.5 in NULL and MUT cases 

relative to WT (left) for pathway analysis in Ingenuity Pathway Analysis. Canonical pathways and 

biological processes (right) that are above the indicated threshold values are shown. Enrichment of growth 

factor signaling (e.g. PDGF and Ephrin receptor signaling) and survival pathways in the NULL and MUT 

cell lines can be seen.  

 

3.2.3 Relationship between differential SYK expression and clinical outcome 

in various tumor types 

A few publicly available gene expression datasets with corresponding clinical covariates 

(e.g. survival) were queried (see Materials and Methods) to check if SYK transcript 

levels were associated with clinical outcome in various primary tumors by univariate 

Kaplan-Meier (KM) survival analysis. Figure 22 demonstrates that significant 

stratification (p<0.06) of patients is achieved in non-small cell lung, breast, ovarian, 

lymphoma and glioblastoma datasets. In the NSCLC dataset, KM survival curves for both 
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adenocarcinoma (AD) and squamous (SQ) subtypes demonstrate that lower expression of 

SYK corresponds to worse outcome, thereby suggesting a poor prognosis. Interestingly, 

we noted a relatively lower expression in lung cancer samples relative to normal controls 

(Figure 23). This supports a currently unknown tumor suppressor role for SYK in lung 

tumors. Examining gene expression profiles of NSCLC cell lines and follow up 

experiments may provide additional insights. Also, survival analysis of primary breast 

cancer gene expression data supports SYK playing a tumor suppressor role. This is in 

agreement with the well studied functional role of SYK in breast cancer where reduced 

expression is associated with invasion and overexpression is associated with better 

outcome [133, 134]. Similar trends are also seen in an ovarian cancer dataset, where an 

association between high expression (above median) and poor clinical outcome is 

observed. A tumor suppressive role for SYK in ovarian cancer is unknown.  

In contrast, similar analysis of DLBCL gene chip data is in agreement with previously 

reported findings of SYK playing a proliferative role in B-cell malignancies. Similarly in 

glioblastoma multiforme (GBM) , a form of brain cancer, while the trend is conserved in 

general, relatively significant (p=0.055) separation by quantiles of expression values is 

seen where the first and third quantiles show maximum separation demonstrating that 

higher expression is associated with poor prognosis. This observation suggests that SYK 

may have a potential role in cell proliferation/survival/migration/invasiveness in GBMs. 

An oncogenic role for SYK in brain tumors is unknown. Interestingly, a somatic mutation 

was identified in SYK in SK-N-SH (neuroblastoma) cells by the SOG group. Taken 

together, based on the microarray based gene expression levels and association with 

clinical outcome in terms of survival, it appears that SYK may play context-dependent 

oncogene or tumor suppressor roles. It appears to be a tumor suppressor in lung, breast 

and ovarian cancers while playing a more oncogenic role in lymphomas and 

glioblastomas.  
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a. NSCLC (Lung)

d. Lymphoma (DLBCL)

AD SQ

c. Ovarian

b. Breast

e. GBM (Brain)

 

Figure 22. Kaplan Meier survival plots of SYK transcript profiling in multiple tumors. Prognostic 

patient stratifications where median or quantile expression pattern is associated with distinct survival 

outcome. Several publicly available microarray gene expression datasets were employed that corresponded 

to (a) NSCLC, non-small cell lung cancer (AD, adenocarcinoma and SQ, squamous) [45] (b) breast cancer 

[54] (c) ovarian tumors [45] (d) diffuse large B-cell lymphoma (DLBCL) [41] and (e) glioblastoma 

multiforme (GBM) brain tumors[76]. Statistical significance was determined by logrank p-values. For 

details on the method and datasets employed, see Materials and Methods. 

 

To understand its function role, we examined profiles of normal versus cancer in other 

publicly available epithelial tumor datasets with large sample numbers (n>=20) in 

Oncomine (http://www.oncomine.org). It is noteworthy that lower expression of SYK is 

seen in primary prostate carcinoma relative to normal cases (Figure 23). Several 

independent datasets were found where this trend was conserved (data not shown). This 

is consistent with previous findings [143, 144] where the promoter is likely methylated. 

Methylation has also been observed in multiple myeloma [145] which is consistent with a 

lower expression in myeloma patients relative to normal plasma controls (Figure 23). 
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This epigenetic inactivation of SYK suggests that it has a significant role as a tumor 

suppressor in disease progression as seen in breast cancer where progressive loss of SYK 

was observed in normal mammary to ductal carcinoma in situ to invasive carcinoma[134]. 

In a similar way, lower expression in renal cancer may be relevant in the light of the 

somatic mutation identified in A498 (see Table 10). A potential tumor suppressor role in 

renal cancer is unknown to date.  

Therefore, it appears that SYK has context-dependent roles of an oncogene or a tumor 

suppressor. This is consistent with the current knowledge of SYK function in various 

tumors.  

 

a. Bhattacharjee_Lung

Class 1:    Normal Prostate (41)  

Class 2:    Prostate Cancer (62)  

T-test: 4.048;  P-value: 1.1E-4

b. Lapointe_Prostate

Class 1:    Normal Lung (17)  

Class 2:    Carcinoid (20)  

T-test: 4.77; p-value: 6E-5

Class 1:    Normal Kidney (162)  

Class 2:    Clear Cell Renal Cell   
Carcinoma (160)  

T-test: 3.423; p-value: 7.5E-4

d. Boer_Renal e. Zhan_Myeloma

Class 1:    Normal B-Cell - Tonsil (7), 
Normal Plasma Cell - Bone Marrow 
(30), Normal Plasma Cell - Tonsil (7)  

Class 2:    Multiple Myeloma (74)  

T-test: 8.072; p-value: 8.2E-13

 
Figure 23. Differential SYK expression in Normal vs. Cancer tissues. Box plots showing the range of 

normalized expression values that show a statistically significant pattern in normal vs. cancer microarray 

studies of (a) lung cancer [44]; (b) prostate cancer [146]; (c) renal cancer[147]; (d) multiple myeloma 

[148]. Class1, normal tissue counter parts; Class2, tumor samples. The number of samples in each class is 

shown in brackets along with T-test scores and p-values. These analyses were carried out in Oncomine 

(http://www.oncomine.org) 

 

3.2.4 Insights into compound sensitivity  

From a therapeutic standpoint, understanding SYK levels and how they relate to the type 

or stage of disease is critical. Based on our analysis and published evidence, this would 
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translate to either rationally inhibiting or activating SYK. For instance, it may not be 

effective to inhibit SYK activity in breast, lung or prostate cancers. In these instances, 

pending experimental follow up, it may be altogether desirable to effect cytoprotection by 

enhancing SYK. In fact, after mining the Connectivity Map database in Oncomine 

(http://www.oncomine.org), we found that SYK expression is induced in MCF7, 

SKMEL5 and HL60 cells (top 5% of upregulated genes) upon treatment with several 

compounds, including different concentrations of HDAC inhibitors (TSA, valproic acid, 

vorinostat), geldanamycin, LY294002 (PI3K inhibitor). On the other hand, SYK 

upregulation in DLBCL and GBM (our analysis) may warrant a therapeutic intervention 

strategy. To explore what potent chemical entities might already available and understand 

their differential efficacy, if any, we scanned the literature and analyzed publicly 

available datasets.  

Analysis of growth inhibition data of piceatannol, which is purportedly a SYK inhibitor, 

did not show differential activity in the NCI60 panel of cell lines (obtained from 

http://dtp.nci.nih.gov/).  This could potentially be due to non-specific activity of the 

compound and/or assay artifacts associated with the way kill curves are generated for the 

NCI-60 panel. Other groups have used piceatannol to inhibit SYK protein [138, 149, 150]. 

Interestingly, EKB-569 (an irreversible pan-EGFR inhibitor – ERBB1,2,4) showed 

activity against SYK ~1.2uM in [151] and BMS-BMS-354825 (dual Src/Abl inhibitor) 

showed activity against SYK ~3uM in [152] in the panel of kinases examined. EKB-569 

was a potent inhibitor of proliferation in NHEK, A431, and MDA-468 cells (IC(50) = 61, 

125, and 260 nM, respectively) but not MCF-7 cells (IC(50) = 3600 nM).  

3.2.5 Discussion 

We attempted to provide an in silico explanation of the molecular consequences of SYK 

mutations identified in a systems level survey for PTK mutations. We have generated 

several hypotheses by integrative analyses of SYK biology at large that warrant 

experimental validation.  

SYK mutant cell lines (HCT15, DLD1 and A498) showed a downregulated 

transcriptional profile with respect to a SYK signature, similar to NULL cell lines, 

implying that the mutations may play an inactivating role. Based on GSEA, we found that  
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SYK-deficient lines (MUT and NULL) were associated with enhanced EGFR signaling, 

among other proliferation and survival pathways, relative to WT. Interestingly, SYK 

expression also appears to inversely correlate with EGFR status in a panel of well 

characterized breast cancer cell lines. This is in agreement with previous reports [141] 

and begs to questions if SYK status (mutation or expression) could be a predictor of 

EGFR pathway activity. It remains to be seen if SYK is upregulated in EGFR deficient 

lines or upon treatment with anti-EGFR compounds such as gefinitib or erlotinib. 

Interestingly, SYK is generally underexpressed (data not shown) in several lung cancer 

cell lines where overexpression or mutant EGFR is commonly seen. These observations 

upon testing are likely to have considerable ramifications in tailoring EGFR inhibitor 

therapy. Since several mutations were found in a wide variety of tumors, we analyzed 

clinical relevance of SYK by KM survival plots in various publicly available primary 

tumor microaray datasets. We found that depletion of SYK was associated with good 

prognosis in ovarian, lung, glioma. These are novel observations that suggest that SYK 

may play a tumor suppressor role in several cancers. Inactivation by methylation and loss 

of expression are commonly reported, but the mutations uncovered by the SOG group 

[22] suggest another molecular mechanism to turn off the potentially tumor suppressing 

activity by SYK. That said, SYK biology is far more complex and it has been reported 

play an oncogenic role in lymphomas [145] and head and neck squamous carcinomas 

[153]. In our own analysis, higher levels of SYK correspond to poorer outcome in GBM. 

Interestingly, we found several compounds that appeared to trigger SYK expression such 

as HDAC inhibitors (TSA, valproic acid, vorinostat), geldanamycin, LY294002 (PI3K 

inhibitor) which may have tumor stimulatory or inhibitory effects. Taken together, these 

results support a complex, context dependent role for SYK in solid tumors.   

There are a few caveats associated with our analysis. Our observations have been derived 

from heterogeneous sources of data – different cell lines, conditions, doses, times, 

platforms, etc. We have mostly used RNA expression profiling datasets where expression 

may not always be a good surrogate for pathway activation or inactivation. Also, not all 

cell lines had readily accessible gene chip data which limited us to analyzing genomic 

transcript profiles for 4/15 cell lines. Given the dual roles of SYK, it is likely that some of 

the mutations may play an activating role (e.g. E15K). A point to note is that most of the 
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mutations identified were heterozygous. Nonetheless, unlike classical tumor suppressor 

genes like TP53, they may still play a role by secondary allele inactivation or 

haploinsufficiency or allelic insufficiency as seen is 5q deletion syndrome [154] or PAX5 

mutations in acute lymphoblastic leukemia [155]. Additionally, basal expression is likely 

to be different from stimulated expression (by growth factors, for example) which may 

impact our observations of other pathways associated with the genetic defects. Also, 

integrative analyses such as GSEA or pathway mapping have been done on a limited 

number of samples which can limit the power of the results.  

Nonetheless, these integrative analyses offer powerful hypotheses to begin rational 

experimentation in the lab and clinic. Increasing availability of high throughput 

functional genomics data (e.g. arrayCGH, methylation, proteomics) in the future, 

profiling larger test panels of cell lines, would improve “bottoms up” integration and 

increase the power of such hypotheses by minimizing false positives. Furthermore, once 

proven, this approach can be extended to analyze the functional consequences other novel 

and unexplained mutations to enhance our systems understanding of the ‘oncogenome’.  
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3.3 Mining compound-treated cancer gene expression data for 

combination opportunities 

Transcriptomics data provide a molecular finger print of cellular state.  

When this is applied to drug-treated cancer cells, where arguably tell tale signs of 

resistance arise early and cells expressing such survival factors would dominate over time, 

combination or adjuvant therapy opportunities can be extracted. For instance, 5-

fluorouracil (5-FU) is the standard-of-care chemotherapeutic agent used for treatment of 

colorectal carcinoma. By analyzing colon cancer cells treated with 5-FU, we filtered 

compound induced gene changes for druggable targets and pathways which were 

associated with poor outcome. Furthermore, these molecular readouts were used to 

suggest suitable compounds for follow up. Figure 24 provides an overview of this 

analysis workflow. 

 

Drug treated cancer cells Transcriptional profiling Significantly upregulated genes

Kaplan-Meier 

survival analysis

Potential targets for 

combination Rx

Pathway analysis Connectivity Map

Potential compounds for 

combination Rx

Gene families

Drug Control

 

Figure 24. Overview of analysis to mine gene expression profiles for combination therapy targets and 

compounds. Statistically significant (FDR <0.1) upregulated (>2 fold) gene changes were extracted from 

cancer cells treated with standard chemotherapeutic drugs and hybridized onto high resolution gene chips. 

These genes were further analyzed for druggable classes and pathways. Clinical relevance was determined 

by querying publicly available tumor gene expression data coupled with survival information through 

Kaplan Meier survival analysis. Furthermore, the transcript profiles were matched against hundreds of 

compounds in the Connectivity Map [110] to identify compounds for follow up combination studies.  

 

3.3.1 Microarray dataset analysis 

We identified an internal microarray dataset where GC3 colon carcinoma cells were 

treated with 5-FU over time (12 and 24h) and transcript profiling was done on the 
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Affymetrix human HU-133A Plus 2 chip, representing 54 675 probesets. After analyzing 

for statistically significant gene expression changes (see Materials and Methods), 364 

probesets corresponding to 285 genes were obtained where at least a 2 fold change in 

expression was seen at 12 or 24 hour time point. While a pleiotropic response is noted, 

several genes that are involved in cell death and apoptosis are modulated as expected 

since 5-FU is an anti-metabolite with strong cytotoxic properties.  

3.3.2 Targets that are upregulated by compound treatment 

We classified genes modulated by 5-FU treatment into gene families and restricted the 

list to targets that belonged to potential druggable classes. This resulted in 184 probesets 

(148 genes) that mapped to 4 kinases, 12 cell surface receptors and 16 secreted (growth 

factor, cytokine, soluble peptidases and receptors) proteins. A detailed breakdown is 

shown in Table 15 and complete details corresponding to genes in a partial list are given 

in Table 17. 

Table 15: List of gene families for genes modulated by 5-FU treated GC3 colon carcinoma cells. Gene 

level counts are shown for probesets filtered for FDR <0.1 and foldchange >2.  

Gene family Count

ion channel 1

phosphatase 2

kinase 4

transporter 6

receptor 12

enzyme 13

secreted 16

transcription regulator 27

other 48  

 

It is interesting to note that PLAU and PLAUR are both secreted and consistently 

upregulated at both time points. PLAU is urokinase plasminogen activator that binds to 

PLAUR and converts plasminogen to plasmin by cleaving an Arg-Val bond and hence, 

causes degradation of extracellular matrix and possibly contributes to cell migration, 

angiogenesis and metastasis. Arguably, upregulation of these genes would lead to an 

invasive phenotype leading to chemoresistance, as reported by several groups [156]. 

Intriguingly, Alfano et al have shown that PLAUR expression can promote resistance to 

apoptosis by increasing BCL-XL levels through MEK/ERK and PI3K/AKT dependent 

pathways [157].  In a similar way, upregulation of MMP1, an extracellular protease, can 
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contribute to enhanced migration and proliferation. In addition, increased expression of 

growth factors such as amphiregulin (AREG) and epiregulin (EREG), EGF-like ligands, 

are noted. These trigger salvage pathways that increase downstream signaling to promote 

growth. Amphiregulin over expression, in particular, has been observed in 5-FU resistant 

HCT116 derivative lines [158]. IL8 is a pro-inflammatory cytokine that promotes NFkB 

mediated anti-apoptotic and pro survival pathways and is significantly upregulated at 

both times. This is further supported by BCL10 expression which plays a role in NFkB 

activation by forming a complex with MALT1 and CARD-family proteins. On the other 

hand, FLT1 and PLK are two popular kinase targets that are modulated by 5-FU 

treatment. FLT1, also known as VEGFR1, is a receptor tyrosine kinase that binds VEGF 

and other ligands to promote angiogenesis. Polo-like kinases are cell cycle regulators 

whose aberrant expression leads to uncontrolled mitosis and prevention of growth arrest. 

Surprisingly, PLK1 is downregulated (data not shown), but PLK2 is upregulated. PLK2 

is a relatively less studied member of the Plk family, but shares a high degree of 

homology with PLK1 and may have a redundant compensatory function. 

While we have noted several interesting genes that are over expressed upon 5-FU 

treatment, determining the ramifications at a pathway level would be warranted. We 

therefore carried out pathway analysis to evaluate enrichment, if any, of relevant 

canonical pathways (see Figure 25). Consistent with our initial observation, several 

growth (p53, cell cycle, IGF1, EGF), survival (p38, NFkB) and signaling pathways 

(PPAR, PI3K/Akt) can be seen. 
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Figure 25. Pathways upregulated by 5-FU treated GC3 colon carcinoma cells. A snapshot of canonical 

pathways for upregulated genes in GC3 cells treated with 5-FU at 48h. Analysis was done using Ingenuity 

Pathway Analysis (IPA). Several cell growth, survival and signaling pathways can be seen. Ratio of 

observed and expected genes as well as –logP for each pathway are shown.  
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3.3.3 Survival data 

To further prioritize clinically relevant targets, we cross-referenced the above gene list 

with publicly available primary tumor microarray data with associated clinical 

information. Univariate Kaplan Meier survival analyses were performed (see Materials 

and Methods), as mentioned before, to produce a list of genes whose over expression 

significantly (p<0.05) stratified patients with poor prognosis in a variety of tumors. A 

total of 60 probesets that corresponded to 51 genes were obtained (Table 16). These 

genes provide a diverse set of clinically relevant and druggable targets that are 

upregulated by 5-FU treatment and represent a rich repertoire of targets for inhibitors that 

can be administered concurrently or sequentially with 5-FU to decrease resistance and 

enhance therapeutic outcome. In our analysis, taking all the primary lung tumor gene 

expression datasets collectively, PTN, PLAU and PLAUR are most frequently observed 

as several instances of probesets (>3) seem to be associated with poor outcome. 

Pleiotrophin (PTN) is an angiogenic factor that causes endothelial vascularization and 

metastasis of tumor cells. Jager et al. [159] have measured plasma and serum levels of 

PTN in lung cancer patients and found that it positively correlates with stage of disease 

and negatively with response to treatment. Our results are also is in agreement with a 

recent study that found that increased levels of PLAU and PLAUR correlate with poor 

prognosis of small cell lung cancer patients [156]. Furthermore, inhibition of PLAUR in a 

mouse model of NSCLC enhanced tumor regression [160]. Similarly, most instances of 

probesets (>2) for ERCC1 and CYR61 were upregulated in brain tumors with lower 

survival. ERCC1 has been extensively studied and overexpression can lead to 

chemoresistance. ERCC1 confers protection of DNA damage of S-phase selective agents 

like 5-FU through activation of DNA repair. CYR61 is a cystein rich angiogenic inducer 

that has been shown to be prognostic for tumor progression and survival of glioma 

patients [161]. In our breast tumor data, EMP1, DUSP6 and JUN are overexpressed and 

have the highest number of associations (>3) with survival. EMP1 is a cell surface 

marker that appears to be prognostic in lung and breast tumors as well (Table 16). 

DUSP6 is a phosphatase that is upregulated in a variety of breast tumors and may predict 
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resistance to tamoxifen [162]. JUN is a transcription factor that regulates several target 

genes in breast tumors and increased expression is likely to have pleiotropic effects.  

Table 16: Summary of Kaplan Meier survival analysis of 51 genes upregulated by 5-FU treated GC3 

colon carcinoma cells. The number of probesets corresponding to a given gene in each of the tumor types 

(see Materials and Methods) analyzed are shown. 
Genes Lung Ovarian HNSCC Brain Lymphoma Breast

TRIM29 2 2 1 1 2

PTN 4 1 3

EMP1 3 5

ERCC1 2 1 3 1

DUSP6 1 1 1 4

CYR61 1 3 3

PLAU 4 1 1

JUN 1 1 4

ISG2 2 1 1 2

PLAUR 4 1

FLT1 2 1 2

F2RL1 1 1 1 1 1

EGR1 1 1 3

CCNE2 1 1 3

ZNF273 1 1 1 1

TAX1BP3 1 3

S1A11 1 1 2

PLK2 1 1 1 1

KLF6 1 1 2

ITGA2 2 1 1

FOS 1 1 2

BTG1 3 1

BHLHB2 2 1 1

SMOX 1 2

NRP1 2 1

GJB5 1 2

DCAMKL1 2 1

CREB5 2 1

BCL1 1 1 1

UPP1 1 1

TFE3 1 1

MMP1 1 1

MAST4 1 1

LAMA3 1 1

IL8 1 1

IL18 1 1

GDF15 1 1

FOSL1 1 1

EGR4 2

CDKN2B 1 1

CCNE1 1 1

AQP3 1 1

SEMA4B 1

LRP1 1

LOC28313 1

GJB3 1

EREG 1

EGR3 1

CDKN1A 1

AREG 1

ANXA3 1  
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Table 17: Summary of genes modulated by 5-FU treated GC3 cells. Filtered probesets (FDR<0.1; 

foldchange >2 at either 12h or 24h time point) were classified into relevant gene families (Table 15) and 

analyzed by Kaplan Meir survival analysis to determine prognosis in primary tumor patients (See text and 

Table 16 for details). The last two columns represent fold change values relative to control seen at the 

indicated time point. 

Probeset 
Gene 
Symbol 

Gene Description Family 
Poor 

prognosis? 
5FU_12h 5FU_24h 

209369_at ANXA3 annexin A3 enzyme Yes 1.27 2.17 

203720_s_at ERCC1 

excision repair 
cross-
complementing 
rodent repair 
deficiency, 
complementation 
group 1 (includes 
overlapping 
antisense 
sequence) enzyme Yes 1.43 3.22 

33304_at ISG20 

interferon 
stimulated 
exonuclease gene 
20kDa enzyme Yes 1.17 2.52 

1555680_a_at SMOX spermine oxidase enzyme Yes 2.07 3.13 

210357_s_at SMOX spermine oxidase enzyme Yes 1.62 2.65 

203234_at UPP1 
uridine 
phosphorylase 1 enzyme Yes 1.46 2.54 

202284_s_at CDKN1A 

cyclin-dependent 
kinase inhibitor 1A 
(p21, Cip1) kinase Yes 2.18 3.01 

229800_at DCLK1 
doublecortin-like 
kinase 1 kinase Yes 1.18 2.35 

226498_at FLT1 

fms-related 
tyrosine kinase 1 
(vascular 
endothelial growth 
factor/vascular 
permeability factor 
receptor) kinase Yes 2.21 3.47 

40016_g_at MAST4 

microtubule 
associated 
serine/threonine 
kinase family 
member 4 kinase Yes 1.38 2.54 

201939_at PLK2 
polo-like kinase 2 
(Drosophila) kinase Yes 1.79 2.09 

208891_at DUSP6 
dual specificity 
phosphatase 6 phosphatase Yes 1.49 2.29 

208893_s_at DUSP6 
dual specificity 
phosphatase 6 phosphatase Yes 1.77 2.17 

1564796_at EMP1 

epithelial 
membrane protein 
1 receptor Yes 1.41 2.67 
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201324_at EMP1 

epithelial 
membrane protein 
1 receptor Yes 1.77 4.68 

201325_s_at EMP1 

epithelial 
membrane protein 
1 receptor Yes 1.42 2.87 

213895_at EMP1 

epithelial 
membrane protein 
1 receptor Yes 1.56 2.86 

213506_at F2RL1 

coagulation factor 
II (thrombin) 
receptor-like 1 receptor Yes 1.39 2.25 

227314_at ITGA2 

integrin, alpha 2 
(CD49B, alpha 2 
subunit of VLA-2 
receptor) receptor Yes 1.39 3.14 

201412_at LRP10 

low density 
lipoprotein 
receptor-related 
protein 10 receptor Yes 1.39 2.63 

227252_at LRP10 

low density 
lipoprotein 
receptor-related 
protein 10 receptor Yes 1.93 2.71 

212298_at NRP1 neuropilin 1 receptor Yes 1.18 2.18 

201289_at CYR61 

cysteine-rich, 
angiogenic 
inducer, 61 secreted Yes 1.49 2.14 

203726_s_at LAMA3 laminin, alpha 3 secreted Yes 2.44 11.05 

200660_at S100A11 

S100 calcium 
binding protein 
A11 secreted Yes 1.40 2.51 

234725_s_at SEMA4B 

sema domain, 
immunoglobulin 
domain (Ig), 
transmembrane 
domain (TM) and 
short cytoplasmic 
domain, 
(semaphorin) 4B secreted Yes 1.33 3.03 

206295_at IL18 

interleukin 18 
(interferon-
gamma-inducing 
factor) secreted Yes 1.48 3.17 

202859_x_at IL8 interleukin 8 secreted Yes 3.97 11.22 

211506_s_at IL8 interleukin 8 secreted Yes 2.85 7.60 

205239_at AREG 

amphiregulin 
(schwannoma-
derived growth 
factor) secreted Yes 2.01 3.72 

205767_at EREG epiregulin secreted Yes 2.47 5.52 

221577_x_at GDF15 

growth 
differentiation 
factor 15 secreted Yes 2.53 3.63 
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209465_x_at PTN 

pleiotrophin 
(heparin binding 
growth factor 8, 
neurite growth-
promoting factor 
1) secreted Yes 1.95 2.01 

204475_at MMP1 

matrix 
metallopeptidase 
1 (interstitial 
collagenase) secreted Yes 1.13 3.05 

205479_s_at PLAU 

plasminogen 
activator, 
urokinase secreted Yes 2.79 5.76 

211668_s_at PLAU 

plasminogen 
activator, 
urokinase secreted Yes 2.72 4.40 

210845_s_at PLAUR 

plasminogen 
activator, 
urokinase receptor secreted Yes 1.52 3.12 

214866_at PLAUR 

plasminogen 
activator, 
urokinase receptor secreted Yes 1.31 2.05 

1557257_at BCL10 
B-cell 
CLL/lymphoma 10 

transcription 
regulator Yes 1.61 2.18 

205263_at BCL10 
B-cell 
CLL/lymphoma 10 

transcription 
regulator Yes 1.43 2.27 

201169_s_at BHLHB2 

basic helix-loop-
helix domain 
containing, class 
B, 2 

transcription 
regulator Yes 2.03 4.29 

200920_s_at BTG1 

B-cell 
translocation gene 
1, anti-proliferative 

transcription 
regulator Yes 1.11 2.11 

213523_at CCNE1 cyclin E1 
transcription 
regulator Yes 2.18 2.16 

205034_at CCNE2 cyclin E2 
transcription 
regulator Yes 2.78 2.20 

211814_s_at CCNE2 cyclin E2 
transcription 
regulator Yes 2.59 1.78 

236313_at CDKN2B 

cyclin-dependent 
kinase inhibitor 2B 
(p15, inhibits 
CDK4) 

transcription 
regulator Yes 1.40 2.64 

229228_at CREB5 

cAMP responsive 
element binding 
protein 5 

transcription 
regulator Yes 1.37 2.72 

201693_s_at EGR1 
early growth 
response 1 

transcription 
regulator Yes 1.78 4.05 

201694_s_at EGR1 
early growth 
response 1 

transcription 
regulator Yes 1.93 3.99 

206115_at EGR3 
early growth 
response 3 

transcription 
regulator Yes 2.59 4.84 

207768_at EGR4 
early growth 
response 4 

transcription 
regulator Yes 5.52 10.03 



Systems and integrative approaches in oncogenomics 

 88 

209189_at FOS 

v-fos FBJ murine 
osteosarcoma 
viral oncogene 
homolog 

transcription 
regulator Yes 3.48 4.69 

204420_at FOSL1 FOS-like antigen 1 
transcription 
regulator Yes 1.68 3.21 

201464_x_at JUN jun oncogene 
transcription 
regulator Yes 1.66 2.56 

201466_s_at JUN jun oncogene 
transcription 
regulator Yes 1.92 2.35 

1555832_s_at KLF6 
Kruppel-like factor 
6 

transcription 
regulator Yes 1.12 2.23 

208960_s_at KLF6 
Kruppel-like factor 
6 

transcription 
regulator Yes 1.02 2.45 

208961_s_at KLF6 
Kruppel-like factor 
6 

transcription 
regulator Yes 1.02 2.51 

224606_at KLF6 
Kruppel-like factor 
6 

transcription 
regulator Yes 1.15 2.25 

209154_at TAX1BP3 

Tax1 (human T-
cell leukemia virus 
type I) binding 
protein 3 

transcription 
regulator Yes 1.19 2.29 

215464_s_at TAX1BP3 

Tax1 (human T-
cell leukemia virus 
type I) binding 
protein 3 

transcription 
regulator Yes 1.20 2.26 

212457_at TFE3 

transcription factor 
binding to IGHM 
enhancer 3 

transcription 
regulator Yes 1.30 2.46 

202504_at TRIM29 
tripartite motif-
containing 29 

transcription 
regulator Yes 2.37 2.76 

243661_at ZNF273 
zinc finger protein 
273 

transcription 
regulator Yes 1.80 2.33 

39248_at AQP3 
aquaporin 3 (Gill 
blood group) transporter Yes 2.36 3.82 

205490_x_at GJB3 

gap junction 
protein, beta 3, 
31kDa transporter Yes 1.79 3.14 

215243_s_at GJB3 

gap junction 
protein, beta 3, 
31kDa transporter Yes 1.46 2.21 

206156_at GJB5 

gap junction 
protein, beta 5, 
31.1kDa transporter Yes 1.96 3.13 

236436_at SLC25A45 

solute carrier 
family 25, member 
45 transporter Yes 1.63 2.41 
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3.3.4 Connectivity Map analysis 

The Connectivity Map [110] contains a compilation of  >400 gene-expression profiles 

derived from treating cultured human cells (MCF7, PC3, HL60, SKMEL5, HepG2, 

SHSY5Y) with a large number of perturbagens to populate a reference database. Pattern-

matching algorithms were employed to score each reference profile for the direction and 

strength of enrichment with our query signature of 5FU modulated gene changes. A 

connectivity score was used to rank all perturbagens from most positive (top) to negative 

(bottom) (see Figure 26). We carried out this analysis to identify compounds whose 

signatures were negatively connected to our 5-FU treated gene expression signature, 

suggesting possible options for combination or sequential therapy. While the actual score 

has little meaning, the relative ranking of perturbagens in the list and multiple 

occurrences of compound different doses or compounds of the same class increase the 

likelihood of a true positive. Taking these criteria into consideration, we found that 

multiple instances of LY294002 and TZDs (namely, rosiglitazone and troglitazone) are 

strongly associated by a negative connection. LY 294002 is a PI3 kinase inhibitor and 

TZDs are a well-studied class of PPAR agonists. In the light of these observations, it is 

interesting to note that PI3K/Akt signaling and PPAR signaling were seen in our pathway 

analysis results (see Figure 25). It is surprising though that PPAR agonists are likely 

candidates to combine or add onto 5-FU therapy when PPAR  upregulation was seen with 

5-FU treatment. We hypothesize that this may be due to downstream effects of PPAR 

activation that are not entirely intuitive, but effectively ‘complement’ 5-FU activity. As 

such, PPAR agonists have been frequently employed and are seen to provide favorable 

endpoints in colorectal carcinoma. To verify the effectiveness of the suggested agents in a 

combination drug setting in colon cancer as our signature was derived from GC3 cells, 

we found 2 supporting publications. In one study [163], HT29 colon cancer cells treated 

with rosiglitazone and 5-FU underwent higher cell death than with either drug alone 

(Figure 27a). In another study [164], LY 294002 and wortmannin (both PI3K inhibitors) 

resulted in significant apoptosis, as measured by DNA fragmentation, in combination 

with 5-FU relative to either agent alone in KM20 colon cancer cells (Figure 27b). Taken 

together, PI3K inhibition and TZDs are likely to be effective in enhancing the effect of 5-
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FU in through simultaneous or sequential use in colon cancer. To our knowledge, this is 

the first application of the Connectivity Map to identify combination therapy agents.  

Adapted from Lamb J et al. Science. 2006

rank perturbagen dose cell line score

397 LY-294002 100 nM MCF7 -0.411

412 rosiglitazone 10 µM MCF7 -0.557

414 rosiglitazone 10 µM PC3 -0.583

419 rosiglitazone 10 µM MCF7 -0.609

420 troglitazone 10 µM HL60 -0.611

433 LY-294002 100 nM MCF7 -0.743

438 rosiglitazone 10 µM HL60 -0.794

443 LY-294002 10 µM MCF7 -0.809

445 LY-294002 10 µM MCF7 -0.814

449 LY-294002 10 µM MCF7 -0.863

450 LY-294002 10 µM MCF7 -0.866

453 LY-294002 10 µM MCF7 -1

LY 294002Rosiglitazone

5-FU treated GC3 colon 

carcinoma 

(gene expression 

signature)

 

Figure 26. Connectivity Map analysis using 5-FU treated GC3 colon carcinoma gene expression 

signature. The Broad Institute has compiled >400 gene-expression profiles derived from treating cells with 

a large number of perturbagens (at various concentrations) to populate a reference database. Compounds 

are ranked by a "connectivity score"; those at the top ("positive") and bottom ("negative") are functionally 

connected with the query signature. Above, LY294002 and TZDs are strongly associated by a negative 

score to the 5-FU gene expression signature, suggesting complementarity in drug action.   
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a. Rosiglitazone enhances 5-FU mediated apoptosis in 

HT-29 colon cancer cells. 

b. PI3K inhibition enhances the apoptotic effect of 5-FU 

in KM20 colon cancer cells.

 

Figure 27. Published evidence of effective combinations of 5-FU with rosiglitazone and PI3K 

inhibitors. (a) Apoptosis of HT29 cells as measured by acridine orange/ethidium bromide staining (top 

panel) or  flow cytometry (bottom panel) for Ros (rosiglitazone), control, 5-FU and the combination. Work 

done by Zhang et al.[163] (b) Apoptosis of KM20 cells as measured by DNA fragmentation assay for each 

treatment. *, p<0.05; zVAD-fmk, pan-caspase inhibitor. Work done by Wang et al. [164]. Figures were 

adapted from the original publications which contain details of materials and methods.   

 

3.3.5 Discussion 

Cancer is a complex disease with multiple genetic aberrations. Treatment by a single 

agent is likely to trigger resistance through innate or acquired mechanisms (see 

Introduction). A case in point is 5-FU which is highly effective and widely used to treat 

cancer patients, progressive chemoresistance is commonly encountered and poses a 

significant clinical challenge. To gain a better understanding of the molecular events at 

play, most current approaches have relied on extracting gene sets from pre- or untreated 

tumor samples based on chemosensitivity correlations. Essentially these are signatures of 

response to predict innate or basal sensitivity or resistance to a given compound treatment. 
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For instance, several in vitro and in vivo studies have demonstrated that increased levels 

of TYMS and DPD correlate and cause resistance to 5-FU.  

What we have attempted here is to use compound treated gene expression profiles to 

identify complementary targets and therapies that would increase the probability of 

clinical success in combination or as adjuvant therapy and delay or prevent acquired 

chemoresistance. While this is not easily detected in an acute treatment experiment as the 

one employed in our study (i.e. GC3 cells treated with 5-FU at 12 and 24 hours), we 

hypothesized that due to systemic changes associated with drug action, pro-survival gene 

changes can be detected temporally and can be distilled into attractive drug targets based 

on biological and clinical relevance. Also, intelligent use of gene expression based 

signatures in Connectivity Map can provide compound leads with potential for 

combination or add on to primary chemotherapeutic regimen.  

This was by no means a comprehensive survey of all druggable targets that are modulated 

by 5-FU treatment. Our analysis suffers from several drawbacks. We analyzed a sub-

optimal dataset with a single dose of 5-FU administered at only two time points. Also, all 

of our results are based on a single cell line which is sensitive to the compound under 

study. Sensitive tumor samples as well as resistant cell lines and/or tumors are likely to 

reveal other genes. For future follow experiments, we recommend experimental 

confirmation of upregulated genes by RT-PCR and Western blots, wherever possible, in a 

panel of lines with varying conditions of compound dose, time effects followed by in 

vitro and in vivo combination studies. Furthermore, with the availability of large public 

databases such as GEO (http://www.ncbi.nih.gov/geo), this analysis can be extended to 

other relevant compound treated cell lines/patient profiling datasets. Incorporation of 

such standard-of-care/targeted agents treated gene expression datasets to identify 

common targets across compounds for a given tumor/cell line and common targets across 

all tumors/cell lines for a given compound would be informative in aiding drug 

development efforts. A major limitation with the current analysis is incomplete 

knowledge around gene changes that are specific to 5-FU versus any cytotoxic agent. 

Although we focused on overexpressed genes for practical reasons, analysis of 

underexpressed genes maybe warranted as well. There are likely other genes that were 

missed by our approach either due to the univariate Kaplan Meier analysis or the datasets 



Systems and integrative approaches in oncogenomics 

 93 

examined. Therefore, we recommend expanding the repertoire of datasets coupled with 

clinical covariates and employing multivariate tests such as Cox proportional hazards.  

It can be argued that several of these targets could also serve as pharmacogenomic 

markers of response  in pre-treated samples to detect innate resistance. Although we 

found limited overlap after re-analyzing their study (data not shown), Boyer and 

colleagues demonstrated an overlap with HCT116 parental lines treated with 5-FU or 

oxaliplatin and derived resistant lines [165].  

Lastly, systematic and guided analysis of compendia of compound treated gene 

expression datasets in model systems (like Connectivity Map) can provide compound 

leads for rational combination therapy. However, care must be taken in using the most 

informative query signatures, generating meaningful reference signatures and 

interpretation of results.  

In conclusion, we have demonstrated that despite sub-optimal datasets and analyses, 

analyzing gene expression data of cancer cells treated with a standard oncoloytic agents 

can reveal clinically relevant druggable targets. By using a novel approach, we have even 

provided compounds that may work well when administered simultaneously or 

sequentially. These valuable hypotheses hold great potential and with further followup, 

their utility in combination therapy or second/third line adjuvant opportunities for better 

clinical outcome in patients can be realized. 
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4 Summary 

Cancer is a complex acquired genetic disease which is the result of molecular aberrations 

in multiple targets in various tissues, pathways and stages of disease progression. In 

recent times, a wealth of unprecedented genomics data has been generated and made 

accessible. We have demonstrated that innovative and integrated approaches can be 

applied to translate this rich information into knowledge. While RNAi screens have 

aforementioned limitations, it is noteworthy that several targets have been prioritized 

based on biological and/or clinical support of ‘oncogene addiction’ for cell survival in 

our first case study. From several intriguing results, we confirmed AURKA, KIF11, 

PLK1 and ILK as genes that had a broad spectrum lethal phenotype upon siRNA 

mediated inhibition. On the other hand, NOTCH4, AKT1 and MCL1 were followed up as 

cell-specific survival genes. MCL1, in particular, is amplified, overexpressed and a poor 

prognosticator in breast cancer and demonstrates the power of fusing different datasets. 

To our knowledge, this is the first comprehensive analysis of high-throughput RNAi 

screens combined with other high dimensional datasets. In our second case study, we 

collectively analyzed datasets from SYK wild type and defective contexts to generate 

valuable insights into SYK biology that warrant experimental validation. The recently 

uncovered mutations appear to be inactivating as the mutant cell lines share profiles and 

pathways in common with SYK-deficient cell lines and this is likely to have implications 

for EGFR inhibitor therapy. Survival analysis revealed novel information about the 

context-specific prognostic role of SYK expression in a variety of tumors. These 

investigations represents a ‘bottoms up’ systems approach and can be applied to a rapidly 

growing collection of novel genetic mutations, an active area of research empowered by 

advanced and cheaper sequencing technologies. To address acquired drug resistance in 

our last case study, 5-FU treated colon cancer cell line expression profiles were overlayed 

with druggable targets and pathways whose overexpression resulted in poor prognosis in 

primary tumor samples. Furthermore, based on Connectivity Map [110] analysis and 

literature support, TZDs and PI3K inhibitors may be effectively combined with 5-FU 

administration. We believe these analyses can be applied to other agents and tumor types 

to suggest rational combination or second/third line adjuvant therapy for testing in the lab 

and clinic. Collectively, these evolving systems and integrative approaches in 
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oncogenomics hold great promise and are necessary to enhance our understanding of 

tumor biology and to create opportunities for improvement of existing or future cancer 

treatment  
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