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Abstract/Kurzfassung

Abstract

This thesis addresses two main issues of devices that assist human movements: One is sta-
bility of the coupled human-robot system, the other is how to make the human the master
of the device. Firstly, passive control of exoskeletons with Series Elastic Actuators (SEAs)
is investigated. SEAs decouple motor inertia from the human by a spring, reducing unde-
sired interaction forces as a prerequisite for making the human the master. An important
result is that if passivity is desired, the SEA cannot guide the limbs with a higher stiffness
than that of the spring. Besides passivity analysis, which does not require a model of the
human, also model-based stability analysis of human-robot systems is presented, explicitly
addressing nonlinearity, time-variability, input saturation, and uncertainty. The example
is a Hybrid Neuroprosthesis, which combines an exoskeleton with electrical stimulation
of the human muscles. Robustness and performance of different controllers is compared.
Conservative over-approximation enables simple stability analysis of the complex structure,
indicating that elastic coupling between human limbs and robot can cause instability. The
required model of muscle recruitment dynamics is obtained via identification, using an in-
verted, anti-causal system description. Finally, a correlation-based method is proposed to
estimate desired motion for impaired or missing human limbs by complementing residual
body motion. This way, the assistive device is reduced to a mere tool for the human, who
regains control of lost motor functions. All methods are evaluated in simulations and in
practical experiments with healthy subjects.

Kurzfassung

Diese Arbeit untersucht zwei Hauptaspekte bei kiinstlicher Assistenz menschlicher Bewe-
gungen: Zum einen Stabilitat des gekoppelten Systems Mensch-Maschine, zum anderen
Ubertragung der Kontrolle iiber das Geriit auf den Menschen. Zunéichst wird passive Re-
gelung von Exoskeletten mit seriell-elastischen Aktuatoren (SEAs) untersucht. SEAs ent-
koppeln Motortragheit vom Menschen durch eine Feder und reduzieren so unerwiinschte
Interaktionskrafte, eine Vorbedingung fiir Kontrolle durch den Menschen. Es zeigt sich,
dass unter der Pramisse der Passivitdt der SEA die Gliedmafien nur maximal mit der
Steifigkeit der Feder fiihren kann. Neben Passivitdatsanalyse, die ohne Modell des Men-
schen auskommt, wird auch eine modellbasierte Stabilitdtsanalyse des Systems Mensch-
Roboter prasentiert, die auf Nichtlinearitaten, Zeitvarianzen, Stellgroffenbeschrankungen
und Unsicherheiten explizit eingeht. Als Beispiel wird eine Hybride Neuroprothese be-
trachtet, eine Kombination aus Exoskelett und elektrischer Stimulation der menschlichen
Muskeln. Robustheit und Regelgiite verschiedener Regler wird verglichen, wobei konser-
vative Uberabschiitzung eine einfache Stabilitdtsanalyse der komplexen Struktur erlaubt
und Risiken durch elastische Kopplung zwischen Roboter und Mensch aufzeigt. Das notige
Modell der Muskelaktivierungsdynamik wird mithilfe eines neuen Identifikationsverfahrens
erstellt, das auf einer invertierten, antikausalen Systembeschreibung basiert. Schliellich
wird eine korrelationsbasierte Methode zur Schatzung gewiinschter Bewegungen beein-
trachtigter oder fehlender menschlicher Gliedmaflen vorgestellt, die die Bewegung des
iibrigen Korpers vervollstandigt. So wird das Assistenzgerat zu einem bloflen Werkzeug
fiir den Menschen, der die Kontrolle tiber verlorene Motorik wiedererlangt. Alle Methoden
werden in Simulationen und praktischen Experimenten mit gesunden Probanden evaluiert.

xiil
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1 Introduction

1.1 Neural Impairment and Motor Rehabilitation

The human motor apparatus is controlled by a sophisticated interplay of various hierar-
chies in the Nervous System. The Nervous System consists of the Central Nervous System
(CNS), incorporating spinal cord and brain, and of peripheral nerve pathways. Motor com-
mands are encoded in sequences of electrical impulses, which travel via neuronal pathways
to the muscles, and sensory information (afferent feedback) is sent back to the CNS.

A lesion to the nervous system, as for example due to stroke or spinal cord injury, can
disrupt the generation of appropriate motor commands, and/or the signal transmission
to and from the limbs. Stroke is a sudden brain lesion, which can either be due to an
interruption of blood supply (ischemic stroke), or to bleeding into the brain (hemorrhagic
stroke) [172]. The lack of oxygen causes the death of nerve cells and an abrupt loss of
brain function. Another, less frequent lesion to the CNS is complete or incomplete Spinal
Cord Injury (SCI). A frequent disability especially in stroke survivors is hemiparesis, which
denominates the loss of sensorimotor functions on one half of the body. Hemiparesis can
vary from one-sided weakness and numbness up to a complete paralysis, called hemiplegia.

Although the death of nerve cells is irreversible, the nervous system shows an astonishing
capability of re-organizing itself, a phenomenon called plasticity [72]. Neuronal plasticity is
a continuous process, which enables permanent adaptation to new challenges and the ability
to acquire new skills. The size of the control region in the brain for a specific limb seems
to be directly correlated with the use of this limb. For example, professional violinists
have a significantly enlarged control area for their string digits compared to the bow
hand [73]. Furthermore, new research has confirmed that besides neuronal reorganization,
also neurogenesis (birth of new nerve cells) takes place, especially after severe lesions such
as stroke [59]; and there are also indications for training-related plasticity at a spinal
level [62]. However, when a patient does not use an impaired limb anymore but relies on
compensatory movements in other limbs instead, CNS plasticity may even lead to further
loss of function in the impaired limbs [7]. This phenomenon is called learned disuse [243].

Motor rehabilitation after a lesion to the CNS can exploit plasticity in a positive way,
modulate cortical reorganization [168], and in some cases, even lead to a total recovery
of the lost functions. A cue trigger for this neural reorganization seems to be afferent
feedback [201], sensory information to the CNS. These signals are generated by muscle
contractions and limb movement, and they can be triggered artificially using rehabilitation
technology (Fig. 1.1): Depending on the type and level of the lesion, external stimulation
can substitute motor commands in the nerves, it can provoke muscle contractions and
thereby afferent feedback to the CNS. Nerves can be stimulated via electric or magnetic
fields, and App. C contains a description of this principle. Here, the focus will be on electric
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Figure 1.1: Plasticity of the Central Nervous System (CNS) is triggered by sensory feedback
on muscle contraction and limb movement. This is facilitated by Functional Electrical
Stimulation (FES) and robotic assistance, as the lesioned CNS fails to send sufficient
motor commands.

stimulation, because this is easier to apply to moving limbs. For neurorehabilitation of up-
per extremities, Functional Electrical Stimulation (FES) has shown good results [191], and
it can also be advantageous to apply electrical stimulation during walking [152]. FES has
been shown to be superior to passive stretching exercises: [150] showed better hand func-
tion after cyclic neuromuscular electrical stimulation of hand and forearm. An extensive
review of therapeutic applications of FES is given by Burridge and Ladouceur [42].

However, there seems to be a small time window in which rehabilitation is most beneficial,
afterwards, in a chronic state, the chances of recovery decrease significantly [227]. There-
fore, extensive training directly following a lesion to the nervous system is important. Such
extensive training can greatly be facilitated by robotic rehabilitation technology. Robots
can provide stability and ensure functional locomotion, thereby lowering the physical strain
on physiotherapists.

The therapy effect depends on the specific intervention paradigm. Whenever a human
subject tries to acquire new movement skills, active participation of the subject is a key
to efficient learning, and unnecessary assistance is counterproductive. Recent studies on
human motor learning revealed that making errors is an important driving force of learning
a new task, because the required mental task representation is built in an error-driven
adaptive process [218,246]. Departing from this finding, Emken and Reinkensmeyer [75]
hypothesized that augmentation of the errors of a subject can accelerate the adaptive
process and lead to even faster learning, and they were indeed able to show this effect
(though it is small) in healthy subjects in experiments with robotically applied force fields



1.2 Technology to Assist Human Movement

during treadmill stepping. A recent study [264] compared various force fields in terms
of the motor adaptation they provoke: Subjects are exposed to visuomotor rotations,
and they have to learn to perform a reaching task. While doing this, they are either
passively moved, guided along the correct path (soft or hard), left to move unhindered,
or subjected to error-augmenting forces. Results show that active and error-augmented
group adapt to the visuomotor rotation much better than the other groups, though with no
significant differences between active and error-augmented group. A conceptual framework
that explains basic motor learning mechanisms is the challenge point idea [95]. This theory
sees the amount and interpretability of information that can be gained during a motor task
as the driving motor for learning. As the amount of available information depends on task
difficulty, and the interpretability of information depends on the skill level of the subject, it
is hypothesized that task difficulty needs to increase with skill in order to train at the point
of optimal learning. This would explain why too much assistance is counterproductive.

In systematic studies with patients, many findings on motor learning of healthy subjects
showed to transfer also to neurorehabilitation. Active patient participation is essential
for successful rehabilitation [44, 82,110, 138], and encouragement therefore remains the
most important therapeutic means. An extreme example is Constraint Induced Movement
Therapy (CIMT) [243], which shows remarkable improvements by simple immobilization of
the patient’s sound arm, such that he has to use the paretic one. Analog observations have
been made in FES therapy: The combination of FES and voluntary activity to Functional
Electrical Therapy (FET) also showed to be more efficient than FES alone [227]. Burridge
and Ladouceur [42] also stress the importance of a volitional component during therapy and
use the metaphor of a “catalyst” to describe the effect of FES. Patton has also shown the
benefits of error augmentation during robot-assisted rehabilitation compared to guidance
along the correct path [176]. In conventional manual physiotherapy, there are also methods
that increase task difficulty instead of making it easier. For example, “Proprioceptive
Neurofacilitation (PNF)” [273] includes resisting instead of assisting a patient’s motion. It
has been shown that such a challenging exercise is beneficial after neurologic injury [276].

1.2 Technology to Assist Human Movement

In a stroke rehabilitation scenario with robotic assistance and Functional Electrical Stimu-
lation, as motivated in the previous section, various control aspects need to be considered.
Fig. 1.2 shows a hierarchical control concept with four main sub-tasks for such a system:
Low-level control aspects are the control of each individual actuator, i.e. the robot and
the patient’s muscles. In addition, both actuators need to be coordinated in a cooperative
manner. A top level defines the reference for the assistive system, in close interaction with
the patient. The following sections provide a short overview of the State of the Art with
respect to these four sub-tasks.
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Figure 1.2: Investigated control aspects of assistive technology for gait rehabilitation.

1.2.1 Rehabilitation Robots

Robots that assist human subjects to perform movements represent a special class of
haptic interfaces. A haptic interface is a robotic manipulator in contact with human limbs
(e.g. the hand), which provides a kinesthetic (sensed by muscle force sensors) or tactile
(sensed by skin sensors) impression of a virtual or telepresent (remote) environment. Haptic
interfaces are not limited to therapeutic applications for motor-impaired patients. They
are also used to enhance or train motor capabilities in healthy subjects, such as a knee
simulator for orthopedic education [203] or a bone drilling simulator for surgeons [78].
Independent of the application, there are many common issues in haptic devices, such
that rehabilitation robot technology can build on a broad basis of experience with physical
human-robot interaction.

Hardware Concepts

To categorize rehabilitation robots, one division can be made according to whether the
robot is intended for upper or for lower extremities. An early overview of rehabilitation
robots for arms and legs is given in [102]. For the arms, there exists a large variety of
assistive robots, e.g. [46,109,167,235]. These devices are mainly intended for rehabilitation.
Due to fundamental differences between arms and legs (e.g. postural stability during gait,
higher forces, almost periodic versus discrete movements, etc.), the scope of this thesis is
narrowed down to the lower extremities.

An alternative categorization can be made according to the kinematic concept, which can
either be an end-effector-based robot, or a so-called exoskeleton. An exoskeleton is an ac-
tuated orthosis that kinematically resembles the human Degrees of Freedom (DoFs), and
which is attached externally to the limbs. This is the most frequent realization for a gait
rehabilitation robot. In contrast, in an end-effector-based concept, the robot is only in con-
tact with the human at a single interaction point. Such a concept for the lower extremities
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is e.g. represented by the mechanized gait trainer [104,277]. This robot uses footplates,
which are operated by a doubled crank and rocker gear system, and it generates foot
trajectories that emulate normal walking. Its advanced version, the HapticWalker [219],
allows almost arbitrary foot trajectories, such that e.g. stair climbing can be emulated.

A third categorization can be made according to the portability of the device. On the
one hand, there are lightweight, low-power devices that the user can carry around and
obtain functional assistance in everyday life. The RoboKnee [196] and the active knee
orthosis presented in [171] assist only the knee during locomotion, and the Human Muscle
Enhancer [157] provides assistive torques to the whole leg for partial weight support. The
HAL (Hybrid Assistive Limb) system [130] can compensate the lack of muscle strength by
a 2-DOF exoskeleton and a force-augmenting control. This is done via electromyographic
(EMG) measurement of muscle activity. An EMG-controlled actuated knee orthosis has
also been proposed by Fleischer [83]. The BLEEX (Berkeley Lower Extremity EXoskele-
ton) [52], and the exoskeleton developed by Sarcos Incorporated in Utah, USA, can provide
super-human forces to the human body, and they are intended for military applications.
An interesting development is a swimming exoskeleton for underwater assistance [169].
The mentioned devices are wearable and lightweight, and thus they are interesting for
healthy and disabled alike. From pioneering work of Vukobratovi¢ in Belgrade [274] to
the ReWalk currently developed by Argo Medical Technologies in Israel, a major goal of
portable devices remains re-enabling spinal cord-injured users to walk. Another focus of
newly developed active orthoses, especially in Korea and Japan, is to assist the elderly (see
e.g. [136]). A recently presented assistive device by Honda, Japan, resembles a bike saddle
with legs, and it enables variable body weight support during walking. A comprehensive
review of portable lower-extremity exoskeletons is given in [66].

On the other hand, there are non-portable gait trainers, which are mainly intended for time-
limited use during rehabilitation. These devices are often stationary and combined with
treadmills. The first commercially available gait training robot was the Lokomat [55], which
has already become a standard tool for gait therapy in many clinics. It allows patients
with strong lesions to walk in a very early stage of therapy, as it incorporates a suspension
system and does not require balance nor the ability to stand freely. However, the Lokomat
has only two Degrees of Freedom per leg, constraining lateral motion of the pelvis. Today,
maximum freedom for the human is increasingly recognized as an important feature. This
is realized firstly by compliant actuation, like in PAM (Pelvic Assist Manipulator) and
POGO (Pneumatically Operated Gait Orthosis) presented in [13], in the LOPES (LOwer
extremity Powered ExoSkeleton) [269], or in the pneumatic exoskeleton presented in [27].
Secondly, the human Degrees of Freedom are left unconstrained, either by a high number
of DoFs in the robot, like in the LOPES, or by minimizing contact between human and
robot, as in the overground walking apparatus KineAssist [180] and WalkTrainer [35].
The LOPES is a treadmill-based stationary exoskeleton similar to the Lokomat, but in
contrast to that device, it allows also lateral pelvis translation and hip ab-/adduction.
There are also robots that are not portable, but still enable overground gait training:
The KineAssist [180] and the WalkTrainer [35] are mobile overground walking devices
with a body weight support system that can apply guiding forces at the hip. The ALEX
(Active Leg EXoskeleton) [19] similarly allows overground walking, and it also includes an
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exoskeleton for the legs. The Zero-G [166] is a simplistic actuated body weight support
system that runs on rails on the ceiling.

This list is not exhaustive, as the number of assistive robots for the lower extremities has
been growing almost exponentially over the last years.

Control of Rehabilitation Robots

Motivated by the findings above on how important active patient participation is for motor
learning and rehabilitation, control strategies for rehabilitation robots have changed fun-
damentally in recent years: Whereas the first generation devices were optimized to stiffly
guide the subject’s limbs, second-generation devices aim at concepts like Assist-as-Needed
(AAN) [74]. This type of strategy determines the level of assistance required by the subject
in order to perform a certain task, and the device provides exactly this needed amount of
assistance. AAN means that the device only helps when it is crucial for task execution, and
whenever the subject can move autonomously, the device should be maximally transparent,
implying that the subject should hardly feel the robot.

To enable AAN, a cooperative assistive device must be able to guide the human limbs
with a varying amount of stiffness or impedance. For a haptic interface, this implies that
assistance must range from stiff guidance to minimal interaction forces between robot
and human. These requirements can be translated to stiff position control of the device
on the one hand, and zero-torque control on the other hand. Whereas position control
enforces tracking of a trajectory despite any interaction forces by the human, zero-torque
control aims for transparent behavior. High transparency depends on good force tracking
capabilities, which implies that the robot should be a good force source.

There is a trade-off to be considered in the hardware design, making the device more
suitable either for stiff guidance or for zero-torque tasks. This trade-off lies mainly in
the choice of the actuation principle: A robot optimized for stiff position control will
be equipped with stiff actuators, like the Lokomat gait rehabilitation robot [55]. It is
possible to render stiff robots somewhat compliant by control using concepts based on
impedance control or admittance control (see e.g. [40,45,108,174,222,251]). Impedance
control has therefore been implemented on the Lokomat [205]. However, a stiff robot’s
actuator inertia cannot be fully masked by any causal controller [53], and this inertia
can lead to large undesired interaction forces between human and robot during dynamic
movements. A relatively new actuator design with an elastic element between drive and
user has been shown to improve transparency. This concept was first introduced by Pratt
and termed Series Elastic Actuator (SEA) [194]. Excellent force tracking and inherent
safety are the two major reasons why compliant actuation is more and more incorporated
in rehabilitation robots, like linear springs in the actuation of LOPES [269] or pneumatic
actuators in POGO [13]. Although such a robot is not optimal anymore for stiff trajectory
tracking, its force tracking capabilities enable high transparency and make it more suitable
for direct interaction with humans.
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1.2.2 Functional Electrical Stimulation
Benefits

Motor neuroprostheses based on Functional Electrical Stimulation (FES), frequently also
termed Functional Nerve Stimulation (FNS), are applied successfully today in many areas.
For example, neuroprostheses control control bladder function for SCI patients [127], or
they treat the so-called drop foot in stroke patients. Such a restoration of function is an
important application area of FES. It has been shown that motor neuroprostheses using
transcutaneous (surface) stimulation for the lower extremities can allow the realization of
functional gait for paraplegic patients [86,88], and even stair ascending and descending
[89]. However, due to rapid fatigue, high complexity, and limited controllability, these
applications have rarely gone beyond laboratory experiments. In contrast, more simple
stimulation devices have become common, e.g. stimulators that permanently correct the
frequent impairment of foot drop. A review of foot-drop stimulators can be found in [147].
For such long-term applications, it is in some cases justified to use implantable stimulators
instead of transcutaneous stimulators, because they provide more selective control of muscle
activation. For example, [145] presented an implantable system for foot drop, which has
been found to be a feasible alternative to surface stimulation by [275].

Besides restoration of function, FES has also other effects and purposes, for example a
training effect. Muscle training is important in the case of paralysis, because atrophied
muscles can lead also to secondary problems with the motor apparatus, e.g. with bones.
With the training effect in focus, paraplegic cycling [117,241] is much more convenient
compared to the physically straining gait training. Therefore, it is a popular application
of FES for paralyzed users, who experience a certain mobility using their own muscles
again. Furthermore, it allows more simple control structures due to the reduced number
of Degrees of Freedom. There are other beneficial effects of FES, e.g. it was reported to
reduce tonic spasticity [232].

Most important in the context of this thesis, however, is the indirect effect of FES: It
stimulates efferent pathways and activates muscle groups or reflexes. Thus, by increasing
sensory input to the CNS, FES aims to trigger neural plasticity and to restore the patient’s
own neural control of the muscles. This importance of FES as a therapeutic means in
neurorchabilitation has already been outlined in Sec.1.1.

Control of Functional Electrical Stimulation

Control of electrically stimulated muscles has been investigated for decades (e.g. [271,272])
and applied for neuroprostheses. However, artificial muscle activation is still a challenging
task for control design due to numerous reasons: Firstly, electrically stimulated muscles
are not recruited in a physiological manner, which leads to substantially increased fatigue.
Secondly, muscle response to stimulation is highly nonlinear and exhibits time delays (see
App. C). Thirdly, surface stimulation cannot offer sufficient selectivity, which means that
motor units cannot be targeted precisely enough. This results in suboptimal force gener-
ation and a high uncertainty. One of the main sources of variability has been identified
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by [250] as being related to the movement of different tissues between the electrodes and
the nerve.

In order to reduce the influence of fatigue, different stimulation pattern shapes have been
investigated: Lower frequency reduces fatigue [230], although this competes with the desire
for maximum output power, which increases with frequency (with the optimum at 50 Hz)
[79]. Furthermore, other shapes have been investigated apart from the conventional single
pulse (with a complementing pulse with opposite sign, to prevent accumulation of charge
in the tissue) followed by a pause: [26] showed that n-lets (e.g. doublets or triplets) can
postpone the onset of fatigue, and this result was confirmed both for healthy [128] and for
paralyzed muscle [85].

Delays in the system can be addressed by using feedforward muscle control with pre-
calculated patterns. Thereby, principles of optimality can be utilized as in [267]. To
deal with nonlinearities, [268] presented a study that compared a linear PID controller
with and without a nonlinear compensator to compensate angle-torque and velocity-torque
relationship in a cat hind limb. However, the results showed that the combination of the
two is only slightly better than the PID alone. This indicates that the main task is to deal
with the uncertainty of the muscle behavior.

The high uncertainty and time-variance of the muscle behavior motivated extensive investi-
gations on closed-loop control of FES, e.g. by Hunt and colleagues [115]. Linear closed-loop
control of muscle recruitment does still not suffice to make the muscles a reliable means
of actuation, due to excessive time-variance, nonlinearities and delays in the system [215].
Therefore, diverse nonlinear and adaptive control methods have been suggested. To deal
with time-varying behavior, adaptive cycle-to-cycle control has been investigated by [86].
Riess and Abbas [206] developed adaptive controllers based on artificial neural networks.
They showed that the controller can adapt on-line to fatigue [207]. A general possibility
to deal with time-varying gains is to use gain scheduling, i.e. to update the controller pa-
rameters to follow the time-varying gains [31]. The drawback of this method is that the
gains need to be known. Being a popular control method for uncertain systems, Sliding
Mode control has frequently been applied to control FES, both in theoretic and practical
investigations. For example, [122] used the Lokomat (in zero-torque mode) to provide a
testbed for FES with a Sliding Mode controller. High-order Sliding Mode appeared to
be less sensitive to disturbances for this application than predictive control in simulation
studies [158]. Finally, uncertainty can be reduced in part by better targeting of the specific
muscle groups. With surface electrodes, such better selectivity can be obtained by mak-
ing the electrode shape adaptive, i.e. by using a freely configurable matrix or multi-field
electrode array [193].

Most of the studies on FES control have been performed on able-bodied subjects. In
neurologically impaired patients, the limitations are even more severe: Sensory-motor
mechanisms are modified and the muscles do not respond in the same way as the muscles
would in able-bodied humans. Furthermore, modified reflexes produce major problems
since stimulation triggers unwanted responses. Especially in this context, reliable tracking
with artificial muscle stimulation alone remains a challenging task. Therefore, FES is
difficult to apply as the only therapeutic means during gait training.
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1.2.3 Hybrid Neuroprostheses

When FES is combined with a robot, the advantages of both methods can be combined:
The robot assures stability, FES maximizes afferent input to the CNS, which is relevant
for rehabilitation, trains the muscles, and lowers power requirements of the robot. For gait
rehabilitation, it has already been shown that the restoration of motor control is supported
better by a combinative therapy involving a robot and FES than by mere external guidance
by the robot [43]. When exoskeleton and FES are combined, a hybrid structure results.
Here, the attribute “hybrid” refers to a parallel usage of two redundant actuators: One
actuator is represented by the patient’s muscle, the other is the robot, which can generate
additional joint moments.

The hybrid motor neural prosthesis for the application in paraplegic patients was intro-
duced in the seventies by Tomovi¢ [188,248] and little later by Andrews [11] and colleagues.
Solomonow and colleagues also investigated the application of FES with unpowered walk-
ing orthoses for paraplegics [107]. Popovié¢ et al. developed powered walking orthoses and
introduced the concept of hybrid control [186,187]. One important finding from these
studies is that a powered orthosis for use in paraplegics has to be adaptive and lightweight
and that in most cases it will not be accepted by patients.

New developments focus less on functional restoration of gait, but on rehabilitation and
muscle training, like the MotionMaker [154] or projects for paraplegic cycling [117,241].
These vehicles often dispose of a motor as a second actuator, which improves both exercise
quality and range of operation. Thus, they also represent hybrid, or redundantly actuated
systems. For therapeutic use in arm rehabilitation, Popovi¢ today recommends again
the application of a Hybrid Assistive System (HAS) [190]. There, he suggests a serial
combination, where the exoskeleton guides the arm, and FES actuates the fingers.

1.2.4 Intuitive Interfacing

As outlined in Sec. 1.1, active patient participation is essential for successful rehabilitation.
Therefore, the robot should not enforce given motions on the patients, but it should be
cooperative and allow the patients to take part as much as possible. Various concepts have
been introduced that allow human users to intuitively control robotic manipulators, and
the term shared control is frequently used in this context. The aim is often to combine
the advantages of robotic manipulators (precise execution) and human capabilities, like for
example in the development of microsurgical devices that enable tremor-free microscopic
manipulation [244].

A frequent concept in shared control is to classify the human’s intended motion, followed
by assistance in this specific manipulation task (see e.g. [1] for an overview). With low-
level tasks, like grasping and holding objects, assigned to the robot, the human user can
concentrate on high-level control tasks like using the grasped object as a tool [93]. Tt has
been shown that shared control of the robotic manipulator can even improve the perception
of presence in a remote, telepresent environment [252]. Similar concepts have been used to
estimate the intention of a wheelchair user [64]. However, such a strategy assumes that the
task can be divided hierarchically: A discrete level of motion primitives (e.g. movements
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to different targets) supersedes a continuous domain of corresponding trajectories (e.g.
straight lines to these targets). The robot’s task is to disburden the human from the low-
level motions with an arbitrary degree of assistance. However, there are two important
limitations: Firstly, success depends on a sufficiently large space of motion primitives, and
on a correct classification of the motion. Secondly, the subdivision into high-level and low-
level tasks, as well as the degree to which the human should participate is often not that
clear. For example, in a rehabilitation scenario, the focus is on training of the continuous
motion itself, not on “disburdening” the human.

Shared control is often also based on the principle of Virtual Fiztures introduced by Rosen-
berg [212], which provide physical constraints to facilitate task execution (like a ruler for
moving in a straight line). Similar concepts have been suggested to provide a virtual “tun-
nel” or path for joint angles during motion training. For example, the strategy of Path
Control [67,254] supervises correct execution of a gait trajectory during robotic gait reha-
bilitation only in terms of the spatial course of joint angles, and the timing of the motion
is left free to the patient.

An intuitive approach to make the robot a simple tool for the user is to augment any motion
the user might perform, which can be done using positive feedback as in the BLEEX [131]
and by inverse dynamics, as suggested for a patient-controlled neuroprosthesis [204]. For
the control of human limbs with at least partially preserved neuronal activity, it is also
possible to directly use the electric motor commands sent to the human muscles, which can
be measured by electromyography. This has e.g. been suggested by [83] for the control of an
exoskeleton. Similar approaches have been used for a long time for so-called myoelectric
prostheses, especially to restore arm and hand function [139]. EMG-based estimation
of the user’s intention has also been combined with FES; pioneering work was done by
Hansen [266]. However, there are several difficulties that arise during simultaneous EMG
and FES, which require sophisticated signal detection and filtering, as e.g. used in the
EMG-controlled neuroprostheses proposed in [217] or [132].

Major difficulties arise when there is hardly any coordinated activity in the limbs to be
assisted. Then, the described strategies, which augment human motion, will fail. However,
there are still possibilities to estimate the intended movement for disabled limbs: The
remaining limbs of the body, as well as contact with the environment can still be observed
and used for control. A selection of motion primitives can be performed by a manual switch-
based interface, as e.g. in the neuroprosthetic system proposed by Fuhr [88], or by an
intention estimation similar to the hybrid discrete-continuous concepts mentioned above.
For example, Azevedo and Héliot [15] deduced the intention of a paraplegic user to stand
up from his thorax acceleration. The leg prosthesis C-Leg (Otto Bock AG, Duderstadt),
detects the current gait phase and adapts damping properties of the controlled knee joint
appropriately. These are all rather discrete, high-level interfaces, because transferring
full control of movement (possibly of multiple joints) in the continuous domain to the
user poses high demands on the interface, otherwise it will put a burden on the subject’s
cognitive functions. For some special cases, where motions are symmetric, a mirror-control
can be used. This is e.g. done in rehabilitation of hemiparetic (having a half-sided partial
paralysis) patients, who can use their “good” arm to generate reference trajectories for
their paretic arm, such that the motion can then be assisted by a robot [103]. However,
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for general assistive systems, mirror control does not suffice, and more generic interfacing
methods need to be found, while still not augmenting the cognitive burden for the user.

1.3 Stability Considerations in the Control of
Biomechanical Systems

Whenever human limbs are part of a control loop, safety is one of the most important
issues. Absolute safety can never be guaranteed during direct contact of a technological
device with a human user, but should nevertheless be striven for. Various hazards need to
be considered, and redundant measures should be taken to minimize the chance of injury.
The general term “safety” subsumes a multitude of requirements. For example, the range
of motion in the human joints should not be exceeded, malfunctioning of a robotic device
should not lead to electric shocks to the patient, etc.. A particularly important facet of
safety is stability. This term is still ambiguous, and various aspects of stability are relevant
in an assistive device, especially for gait therapy.

For a device that assists walking, postural stability is an essential requirement. This means
that the subject’s balance must be maintained, such that he cannot stumble and fall. For
knee exoprostheses, stability has been defined as “the avoidance of sudden or uncontrolled
flexion” during stance phase [189]. For postural stability, methods from biped robots can
be applied, like supervision of the so-called Zero Moment Point (ZMP). In analogy to
walking robots, it might also be desirable to assure global stability, i.e. a so-called limit
cycle behavior with a stably repeating gait pattern. Such a global stability analysis of
periodic trajectories is generally done via Poincaré maps. An exemplary application of
ZMP control and Poincaré maps can be found in [229].

When a robot is in physical interaction with a human, stability should comprise local
asymptotic stability or BIBO (Bounded Input Bounded Output) stability. A frequent ex-
ample definition of local stability is that the interaction forces between robot and human or
the energy exchanged must be bounded. Harwin [97] points out that in all assistive robots
for “prosthetics, aids for daily living and physiotherapy [...] there is the potential for the in-
teraction to be non-passive with a resulting potential for the human/machine/environment
combination to become unstable”.

In the specific context of biomechanical systems, there is the special challenge of high
uncertainties within the loop, generated by unpredictable voluntary human behavior and
still deficient knowledge of the exact biomechanical properties. For any practical system,
it will be impossible to model all factors. Thus, a high degree of uncertainty in the
control loop has to be tolerated, and there is hardly any “nominal” operating point like
in a deterministic machine. Instead, the system must be robust, i.e. stable for a large
uncertain manifold. Generally, there are two fundamentally different approaches to prove
stability of coupled systems (like a robot and a human), which will be outlined in the
following.

The first approach is to model the entire system with human biomechanics and robot, to
quantify uncertainties, and to design a controller that leads to stable behavior for the entire
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uncertain manifold. However, there is an almost infinite number of influencing factors in
the human biomechanical system. Therefore, simplified models are commonly used for
the compound of assistive device and human, controllers are designed for this nominal
behavior, and it is not investigated which repercussions the initial simplifications have
on stability. One example is the common simplifying assumption of rigid human-robot
contact. Although this is incorrect due to multiple elastiticies in the coupling and in the
human tissue, it is generally justified by the fact that a reliable quantification of the time-
varying elasticity between robot and bone is very difficult. Although discrepancies between
the predicted outcome of rigid models and actual behavior of actuated orthoses have been
documented by various groups [8,83,184], repercussions of the simplifications during control
design in terms of stability have not been analyzed systematically. Such an analysis can be
done by formulating the system as having time-varying uncertain parameters and applying
the concept of Lyapunov [146]. Using so-called common or piecewise Lyapunov functions,
conditions for the stability of systems with parameters that are variable but confined in
given polytopes can be derived [4,9,36,124,283]. As far as relevant for the investigations
in this thesis, this literature will be reviewed in Chap.4, more specifically in Sec. 4.4.

The second approach is to separate human biomechanics and robot, and to design a con-
troller for the robot that ensures passivity [54]. A passive system is stable when coupled
to any other passive system. Therefore, this approach does not need an explicit model of
the human, and it does not rely on the simplifying assumption of rigid coupling. Instead,
it suffices to assume the abstract property that the human behaves passively, too. This
method has several drawbacks: The assumption that the human behaves passively is not
valid when e.g. the limbs are spastic. Furthermore, the concept can only be used when a
clear cut can be made between biomechanics and device; for example, it cannot be easily
transferred to closed-loop control of neuroprostheses. However, compared to an explicit
model of both robot and human, passivity analysis of only the robot is attractive due to
its simplicity, and because it is a conservative approach. This method has been applied
to control of rigid robots [53], and also to early control concepts for compliantly actuated
robots [194]. However, more efficient later control strategies for compliant robots have not
been analyzed with respect to stability, which means that theoretical limitations of these
robots in terms of robustly achievable performance are still not known.

1.4 Contribution and QOutline

This thesis investigates suitable control strategies for rehabilitation robots, FES, and com-
binations in form of Hybrid Neuroprostheses. Several methods are proposed to match the
derived requirements of stable and user-controlled assistance from different points of view.
This thesis is organized according to the hierarchic control concept in Fig. 1.2, and each
of the following chapters is dedicated to one of the four aspects. The derived methods can
also be used on a stand-alone basis.

First, Chap. 2 investigates haptic interfaces with compliant actuation, a hardware concept
that is increasingly used in rehabilitation robotics. To allow variable assistance tailored
to the patient’s individual needs, the aim is to maximize both achievable transparency
and achievable stiffness. The main focus here is on stable human-robot interaction. The
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control approach is based on impedance control, and it proceeds from the inside to the
outside: First, the inner force controller is designed, with the aim to minimize undesired
interaction in zero-torque control (i.e. make the device transparent), and to achieve good
force tracking properties. Then, the outer impedance loop is closed, in order to investigate
maximum achievable stiffness. Stability in interaction with a human user is investigated by
the concept of passivity, which means that no explicit model needs to be assumed, neither
of the human biomechanics, nor of the human-exoskeleton coupling. As a contribution
to the field of compliant robots, the passivity analysis delivers both practical constraints
for parameter tuning, as well as theoretical insights into performance limitations of SEAs.
The most prominent result is that the rendered stiffness cannot be increased arbitrarily if
passivity is desired; instead, it is limited by the intrinsic compliance of the elastic element.
In practical experiments with the LOPES robot, the excellent force tracking capabilities are
validated, and theoretical predictions of performance limitations are compared to practical
results.

Chap. 3 addresses modeling issues for the control of Functional Electrical Stimulation. To
obtain a biomechanical model and to quantify associated uncertainties for an individual
human subject, identification is necessary. The biomechanical model can be split into two
parts: One part contains the mechanical properties of the leg and exoskeleton, like inertia,
mass, and elastic joint moments. This can be robustly done using state-of-the-art iden-
tification methods, and the procedure is explained in App. E. The second part, muscle
response to Functional Electrical Stimulation, is difficult to identify due to a high num-
ber of unknown influencing factors. Under isometric conditions (constant muscle length),
muscle response to FES is commonly described by a Hammerstein model. Hammerstein
models consist of a nonlinear recruitment curve in series with linear activation dynam-
ics. To identify these dynamics, mainly forward approaches are used. The advantage,
provided that the nonlinearity and the dynamics are linear in the parameters, is that a
simple least-squares solution can be found. However, for model-based control with input-
output linearization, the inverse nonlinearity is needed, and the identified nonlinearity is
not necessarily invertible. Furthermore, muscle recruitment is generally of saturation char-
acteristic, complicating a linear parameterization with a low number of parameters. Here,
a reverse identification is performed, changing the structure to Wiener type. The number
of parameters can be very low, exploiting the fact that an inverted saturation characteristic
is approximated well by a simple third-order polynomial. The algorithm is evaluated in
practical experiments with quadriceps and hamstrings muscles of healthy human subjects.

Chap. 4 is concerned with the coordination of the two actuators, a robot and the pa-
tient’s muscles. Based on the obtained biomechanical model, four different controllers are
designed for the redundantly actuated system. These controllers aim at a varying task
distribution for the two actuators. The concepts range from shared, pari passu control
over a master-slave concept to a concept where the motor is solely responsible for tracking,
and the muscles are simply incorporated in a feedforward manner. In the course of this
work, a detailed model of the system has been identified, incorporating numerous param-
eters; however, such a procedure is almost impossible in a practical environment. There,
simplified models will have to be used and controllers must be robust. To investigate the
repercussions of such model simplifications during the design process, all controllers are
designed based on a simplified behavior. The major simplification is the common assump-
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tion of rigid coupling between robot and human. Furthermore, parameters are assumed
to be constant. The stability analysis is then performed based on the full model with
non-rigid coupling, as well as on the identified model uncertainty. Theoretical predictions
of the stability analysis are compared to practical results obtained with healthy subjects,
and performance and robustness of the various control concepts are evaluated.

In Chap. 5, the aim is to investigate intuitive interfaces that allow subjects with partial
paralysis (or amputation) to regain control of their limbs via an assistive device. The
example system is again the lower extremity exoskeleton LOPES. The challenge is to
maximize information transfer about the intended movement from the human to the device,
without a heavy cognitive burden on the human. The contribution of this work is a
new method to estimate intention based on synergies between different limbs. Healthy
human motion is controlled via a sophisticated hierarchical network with multiple inter-
dependencies. These inter-dependencies can be used to retrieve information about the
intended motion of the whole body by observation of only a limited number of joints.
With this information, it is possible to complement the motion also for limbs that can
no longer be controlled by the human. This approach is named Complementary Limb
Motion Estimation (CLME). Groups that might profit from this method are patients with
complete or incomplete loss of function in parts of their body, which are e.g. stroke patients,
patients with incomplete Spinal Cord Injury, and amputees. The example application used
for evaluation is a lower-leg exoskeleton, and a half-sided impairment of the patient. The
method is implemented on the LOPES gait rehabilitation robot and evaluated with healthy
subjects in two experiments: In a first study, subjects walk only with one leg, while the
robot’s other leg acts as a fake prosthesis, to simulate complete loss of function in one leg.
In a second study, subjects walk with both their own legs to assess the interference with
self-determined, normal walking. Walking with zero-torque control is thereby chosen as the
baseline of minimum achievable interference. Evaluation criteria are joint power introduced
by the robot, as well as changes in muscle activity (measured by electromyography, EMG)
and kinematic distortions compared to the zero-torque case.
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2 Biomechanics in a Black Box: Passivity-Based
Control of a Compliant Assistive Robot

2.1 Introduction and State of the Art

For the control of haptic manipulators, which interact with a human being, safety con-
cerns are among the most important issues during the design process. Stability of the
manipulator, however, does not suffice. The manipulator and the human, being in direct
contact, become a coupled system. Coupled systems may become unstable, even if all
their components are stable. The main problem is that the control strategies of the human
are far from known, complicating the design process of the manipulator. A conservative
procedure is to design the manipulator in such a way that the range of stable couplings
with different environments is as large as possible. For the family of passive systems,
general statements about coupled stability can be made: It can be shown that passive
systems coupled in feedback or in parallel manner again yield a passive system. Therefore,
it is commonly assumed that the human being acts as a passive system, resulting in the
requirement that the controlled manipulator needs to be passive. The design of passive
control for stiff actuators has been investigated for a long time. In recent years, however,
compliant actuation of robots is becoming more and more common, because it allows the
realization of highly interactive haptic interfaces with low undesired interaction forces. As
these compliant mechanisms still represent a young actuation principle for haptic manip-
ulators, little investigations have been performed concerning stability or passivity. This
chapter investigates compliant actuators under the aspect of passivity. From this analysis,
limitations in achievable performance are derived, mainly concerning achievable stiffness

and bandwidth.

2.1.1 The Series Elastic Actuator (SEA)

For haptic interfaces, a variety of actuation principles is possible, e.g. as surveyed in [112]
or [286]. After the introduction of a compliant actuation principle termed Series Elastic
Actuator (SEA) by Pratt [194], a large number of actuators with series elastic elements has
been presented. Before, compliance had always been considered a disturbing component
and was treated as such [18]. Various robots with SEAs were developed by MIT groups
210, 249], Sensinger and Weir [224-226], or Wyeth [282]. A translatory SEA version has
been proposed in form of the robotic tendon by Sugar [237]. SEAs are used for various
applications, e.g. for walking robots [96], for prosthetic and orthotic leg systems [101], or for
force-sensing robot arms [134]. Similar principles have also been investigated, such as e.g.
the SDA (Series Damper Actuator) [50], or a compliance in parallel with the actuator [98,
238]. In recent years, there is also a growing number of compliant robots with mechanically
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2 Biomechanics in a Black Box: Passivity-Based Control of a Compliant Assistive Robot

adjustable stiffness, for example a version of the robotic tendon that varies the number of
active spring coils [111], the MACCEPA [96], or the Variable Stiffness Mechanism [100].
The investigations of this chapter are limited to SEAs with linear stiffness as the basic
concept.

The principle of a rotary SEA is schematically illustrated in Fig. 2.1, and the idea can
easily be transferred to the linear case'. The load is coupled to the drive via a compliant
element, in this case a spring with linear characteristic.A relative displacement of load and
actuator provokes a spring torque 7, making the spring length a direct measure of the
interaction torque.

. PA . YL

‘—» ‘—D—D

l K TrI, TrI, :
l»—» Motor Load

Jada
-——

Figure 2.1: Series Elastic Actuator. The drive is connected to the load via a compliant element
(here a torsion spring with constant k). Drive inertia is .J4, the motor torque is 74. The
spring torque 7, acting on the load is proportional to the difference between motor angle
w4 and joint angle ¢p.

2.1.2 Advantages and Limitations of a SEA

Although an elastic concept does have several drawbacks, such as limited bandwith [76],
it has its advantages in the extremely low realizable impedance. As the force-elongation
relationship of the elastic element is known, the elongation can be used for a very cheap
force sensor. Furthermore, in contrast to stiff actuators, where actuator saturation leads to
high torques at high load accelerations (such as the onset of a movement), a Series Elastic
Actuator takes on the low natural impedance of the elasticity at high frequencies.

Table 2.1 lists advantages and drawbacks of Series Elastic Actuation. One important
advantage is that it allows treating the force control loop as a position control, because the
spring length can be considered proportional to the force output. It has been demonstrated
that a higher compliance in the force control loop allows for higher control gains [209]. This
way, better force tracking performance can be achieved.

PROS CONS
Decoupled Actuator Inertia Limited Stiffness
Reduction of Friction Effects Limited Bandwidth
Inherent Safety and Impact Resistance | Extra Mechanical Element
Energy Storage High Power Requirements

Table 2.1: Advantages and Disadvantages of Series Elastic Actuation

'Figures in this chapter are re-printed, with permission, from [259], (©[2007] IEEE / [262], (©[2008] IEEE.
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2.1 Introduction and State of the Art

Another important advantage of a SEA is that the spring decouples motor inertia from
the exoskeleton. This reduces the reflected mass of the device, which is crucial to lower
undesired interaction torques, especially at high frequencies. A compliantly actuated robot
will give way at impact. This is advantageous in terms of safety issues and actuator impact
resistance, as well as for realistic experience and training efficacy during impact-type events.

The SEA thus gains easier and robust force control without depending on expensive (high
speed, high precision) mechatronics components, yet there is a price to pay in terms of
bandwidth and achievable stiffness. This will be outlined in a theoretical and practical
evaluation of impedance control performance.

The properties mentioned above make the SEA highly attractive for rehabilitation robots:
During rehabilitation, active participation of stroke survivors is required since it promotes
neural recovery [44,110]. New developments in the field therefore focus on interactive
control algorithms to assist the subjects only when it is needed, so that the patients are
challenged to walk themselves and not to rely on the robot.

2.1.3 Control Strategies for the SEA

Force and impedance control of Series Elastic Actuators are generally kept very simple
and linear. The common approach is to design an inner force control loop with the aim to
make the spring torque 7, track a desired spring torque 77, ,ef. An outer impedance loop
can then be used to generate a force depending on the current load position, for example
to guide the user along a reference position trajectory with a certain stiffness.

The controller suggested by Pratt [194] is a simple PID (Proportional-Integral-Derivative)
torque controller with some feedback terms added to it. In transfer function notation, this
gives the control law:

J

TA(S) = Tpret(S) + Gpin () [TL et (8) — TL(8)] + ?ASQTL,ref(S) + kyJas*pr(s), (2.1)
with D /
s
=P —. 2.2
Gpip(s) + Ts+1 + S (2.2)

If there is no sensor for the acceleration ¢, then the last term cannot be implemented,
because it can easily be shown that filtered differentation will derogate passivity for any
value of k. Therefore, this feedforward term is neglected from here on. Furthermore, the
system will not be passive for any value of I > 0, such that [194] decided to replace the
integrator term by a first order lowpass, which, however, does not counteract static errors.
Later, the group proposed driving the motor by a voltage source for the robot Troody [195],
this way closing an inner loop for the motor velocity, which is in their case measured via
Hall sensors. Wyeth [282] also suggested using a cascaded control loop with Proportional-
Integral (PI) controllers, but encoder-based. Sugar suggested control concepts for the
Robotic Tendon [237], which can be regarded as a translatory SEA version. Moreover, his
control concepts (nut control and equilibrium controlled stiffness) are also very similar:
The inner loop is a PD position control of the motor position, which is mathematically
equivalent to a PI motor velocity control. Around this inner position controller, Sugar
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2 Biomechanics in a Black Box: Passivity-Based Control of a Compliant Assistive Robot

closes a loop that calculates the reference motor position linearly depending on the desired
force and the actual spring length, which amounts to a derivative controller in the outer
loop of a velocity-based control. Therefore, the mechanical concept and control for the
robotic tendon is equivalent to the cascaded schemes proposed later by Pratt and Wyeth
for the SEA, only with the outer controller relying on D action instead of PI action.

Pratt also presented another control scheme [195], which couples outer impedance loop
and inner force control loop. Besides a desired offset torque, the outer impedance loop
commands virtual stiffness and damping to the inner loop, such that a structure-varying
system results. Stability and passivity issues of such time variant systems are tedious.
Furthermore, this scheme seems not suitable for impedances close to zero, because nonzero
virtual elasticity and damping parameters have to be given. Therefore, this control scheme
is not considered here, and the analysis is limited to the cascaded schemes.

In contrast to stability of undesired elasticity [91], stability of SEAs has only rarely been
investigated. Except for the investigations in [194], which concern earlier, suboptimal con-
trol attempts, there is no systematic analysis of coupled stability of humans in interaction
with SEAs. Passivity properties of newer control concepts, which are based on cascaded
force control, have not been investigated yet.

2.1.4 Contribution and Outline of this Chapter

This chapter investigates and illustrates the trade-off introduced by the use of compliant
actuation in light of stability and passivity. First, the state-of-the-art force control schemes
for Series Elastic Actuators are investigated. By using a PID controller for the outer force
control loop and an inner velocity loop, all control concepts can be generalized, and each
concept represents a special case with varying parameters set to zero. The properties
derived in this chapter are thus valid both for the SEA and the robotic tendon. As a
result of the comparison, cascaded control with inner velocity loop is chosen and passivity-
ensuring boundaries for controller parameters are calculated. The presented control design
process is straightforward and allows proceeding from the inside to the outside.

Around the force control loop, an impedance control loop is closed. For this complete
scheme, passivity is analyzed again. The stability analysis provides an interesting new
result: If the rendered stiffness of an elastically actuated joint is increased beyond the
intrinsic stiffness of the elastic element, stability of the coupled system human-robot can-
not be guaranteed, at least not in the conservative terms of passivity. Furthermore, the
compliance severely limits bandwidth, and the reflected mass of the exoskeleton further
limits the effectiveness of impedance control to low frequencies.

Using the gait rehabilitation robot LOPES of the university of Twente [269] as a testbed,
experimental results are presented to compare theoretical predictions with practice. Fol-
lowing the description of force control and impedance control of the LOPES, the advan-
tages and limitations of SEAs will be illustrated. In this treadmill-based exoskeleton, the
torques are transmitted from synchronous motors via Bowden cables and springs to the
joints. Higher gains allow the realization of proper feedback controlled torque actuators
for LOPES despite substantial adverse effects of high friction and stick-slip in the Bowden
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2.2 Force Control

cables, as well as play in the transmission. In LOPES, reduction of mass is achieved by
two complementary features of the actuation: Firstly, using the concept of Series Elastic
Actuators, drive inertia is decoupled from the load side. Secondly, the drive units are also
locally detached from the exoskeleton by the use of Bowden cables. More information on
the LOPES is given in App. A. The low realizable impedance of the LOPES robot will be
demonstrated in practical experiments.

2.2 Force Control

The task of the inner force control loop is to make the spring torque 7, track the desired
spring torque 77, ... The goal is to reach a relationship as close as possible to 77, = 77 ref,
which would also allow for an ideal realization of zero impedance. An important constraint
is the conservation of stability and passivity aspects, which leads to certain boundaries for
the control parameters.

2.2.1 Generalization of Existing Strategies

First, the SEA is modeled as a plant to be controlled. The differential equation for the
system in Fig. 2.1 is

Japa =Ta — 71 =Ta — K(pa — ¢1), (2.3)

with ¢ and ¢4 denoting load and motor angles, respectively, J4 the motor moment of
inertia, 74 the motor torque and K the torsion spring constant. Fig. 2.2 displays the block
chart. Seen from the motor, the uncontrolled system (74 = 0) has the input —¢; (load

PL

TL

K

\

TA 1 [ Pa
» ? > Tas2 |

Figure 2.2: Block chart of the plant, i.e. the uncontrolled SEA. Motor dynamics are represented
by the inertia J4. The spring torque depends on motor angle ¢4 and joint angle ¢y, the
spring constant is K.

displacement that provokes spring compression), and the output 7, (the spring torque
that counteracts compression). Thus, the position-torque transfer function G,(s) of the
uncontrolled plant is:

m(s)  JaKs®
—or(s)  Jas2+ K’

Gy(s) = (2.4)

Now, the control strategies mentioned above are subsumed in a generalized control, as
displayed in Fig. 2.3. In order to keep the notation simple, the dependency on s in transfer
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T == o Controller T
1 || WA K >
| Tas+1 [~
|
— |
TLref | WA ref TA 1
- Gpp,o e Gpri i
[ ’ ) | A
1= | _
N ]

Figure 2.3: Generalized cascaded torque controller. An inner Pl velocity loop controls motor
velocity wy. A first-order lowpass represents delay caused by numerical differentiation of
the motor angle. The reference velocity is calculated by an outer PID controller for spring
torque 7.

function notation will not be indicated explicitly anymore in the following. With the inner
and outer controllers

1; 1, D,s
Gpri =P +~—, Gppo=PFP,+=> 2 2.5
PI, +s’ PID, +5+T5+1’ (2.5)
the reference velocity wy e is given in dependence of the torque error:
WA ref = GPID,O(TL,ref - TL)? (26>
and the general control law can be written as:
wA S
74 = Gprilwa rer — = Gp1i|Gp.o(Trref — T1) — . 2.7
A PLi[WA ref Tds+1] pLi|GPID o (TL ret — T1) SOATds—l—l] (2.7)

In any setup similar to LOPES, where the motor encoder signal is less noisy than the
potentiometer for spring length measurement, the necessary time constant 7" of the spring
torque differentiation filter will be larger than the necessary time constant T, for the motor
angle differentiation filter. If the inner velocity loop is already closed in the PWM with
Hall-based velocity sensors instead of filtered differentation of the encoder signal, the inner
phase delay vanishes, T, ~ 0.

In contrast to the single-loop force control mentioned above, this cascaded scheme can
ensure passivity while still counteracting static errors via integrators, if some boundaries
on the parameters are obeyed. This will be outlined in the following.

For haptic systems, the impedance Z(s) is generally defined as the transfer function from
input velocity to opposing torque. This definition allows to assess stability in terms of
passivity. First, the autonomous case is considered where 77, o = 0, which is equivalent to
zero desired impedance. Using the notation of Fig. 2.3, Z(s) equals:

TL

2(s) = — . (2.8)

This results in: K(P I+ JaTus® + Jas2)s(T 1)
is +1i + Jalas” + Jas7)s(Ls +
Z(s) = — (2.9)
Zi:O d;s'
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2.2 Force Control

with

de = JAT,T

ds = Ja(T;+T)

dy = K(P,P+ O)T,T + KDyPTy+ Ja
+T P,

ds = P,+TI,+ K|[(I,P,+ P,1,)T,T
+(P,P+1)(Ty;+T)+ D,P, + D,I;T,]

dy = L+ K[(I,P,+ LP,)(Ty+T)
+P,P;+ D,1I; + 1+ I,I,TT,]

d = K[LI,(T+Ty) +1,P,+ I;P,)

dy = KI,I,.

2.2.2 Stable and Passive Force Control

Now, passivity conditions for the force control of Fig. 2.3 will be investigated, resulting in
bounds for the control gains.

Passivity is ensured if the impedance (2.8) is positive real [54]. Necessary and sufficient
conditions for this are:

e 7(s) must be stable,

e the real part of Z(jw) must be nonnegative for all w for which jw is not a pole of
Z(s).

First, the real part of Z(jw) is calculated, which gives:
Re{Z(jw)} = r(aw® + bw® 4 cw* + dw?), (2.10)
with

a = K?JJT5[Dy(P; — TIL)
—T*(I,P, + P,I;)]

b = K?[D,[(P,— LT)Ja+ (T —Tys)P?
+T?[(P; — I,Ty) + P*(I,T; + P,)]
—JaA(T? + T3)(LP; + Po1;)]

¢ = K*I}(Do(T —Ty) + T*(P, + I,T,))
+PX1,Ty+ P,) — Ja(L;Py + P1L,)

+P; — LTy
d = K*I*(1,T,+P,)
r > 0

Equation (2.10) is nonnegative for all w # 0, if all coefficients a, b, ¢, d are nonnegative. Dur-
ing controller design, these inequalities have to be checked. First, the case of encoder-based
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2 Biomechanics in a Black Box: Passivity-Based Control of a Compliant Assistive Robot

velocity control is considered, which implies a nonzero phase delay in the differentiation
with T; # 0. Then, in order to ensure positiveness of coefficient a, there are only two
options: Either the integrators cannot be used, or an outer D, has to be implemented.
However, the latter is undesirable in most cases, because it requires numerical differen-
tiation of two possibly noisy signals: the torque sensor signal, and the reference signal,
which generally originates from an outer impedance controller. Therefore, T,; should be
as small as possible, ideally it should completely be removed by using a motor velocity
sensor. However, this is a conservative, theoretical case. In a technical realization, there
is always damping present, e.g. due to friction. Viscous friction v, which can be modeled
by replacing the term (Jas?) by (Jas? + vs), also allows to implement nonzero values for
both integrator gains I. However, for the Bowden cables used, friction is hard to quantify
due to the complex and highly time variant behaviour.

For easy tuning of both controllers separately, a possible set of simple rules that ensures
obedience of passivity requirements is (assuming 7, < T'):

P> Ja
A I; <05P
A 1, <05P,
A D, > 4T*P,. (2.11)

By checking the Hurwitz determinants, it can be shown that the conditions above also
ensure asymptotic stability. If T; = 0, the inequalities generated from (2.10) become very
simple and D, may be omitted. However, the first 3 rules should still be followed.

2.3 Impedance Control

Fig. 2.4 shows the force control of the SEA with T; = 0 embedded in a Single Input Single
Output (SISO) impedance control loop. The outer impedance controller sets the desired
impedance, whereby only the case of a rendered stiffness P is considered. The analysis of

PL

iiiiiiiiiiiiiiiii w —l T
| Controller : d K £,
| |

(pL,ref_ ! TL ref wA,ref_ ] ! TA vA

O P Pl Ptk 7 5

Figure 2.4: Impedance control. Around the cascaded torque controller, an impedance control
loop is closed on the joint angle . Here, it displays a virtual stiffness P.

impedance control with the SEA will first illustrate the well-known drawback of bandwidth
limitations in a compliant actuator [76]. Then, a new result will be presented: The fact
that the rendered stiffness of the device cannot be increased beyond the stiffness of the
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2.3 Impedance Control

elastic element, if passivity is to be maintained. The analysis concludes with the influence
of these limitations, as well as the influence of uncompensated exoskeleton mass, on the
performance of impedance control in Cartesian space.

2.3.1 Bandwidth Limitations

Bandwidth limitations will be illustrated on the example of the LOPES actuators, first for
the SEA alone and then for the more realistic case, in which there is an extra endeffector
mass (an exoskeleton) between the patient and the elastic element.

Bandwidth of the SEA with Massless Endeffector

The impedance Z(s) is now calculated again according to (2.8). With the simplified model
of Fig. 2.1, which neglects friction and elasticity of the Bowden cables, and with the
parameters given in Fig. 2.4, the impedance transfer function is:

Z(s) = K(Jas*+Pis®+(P; PoP+1;) s+ Ps+1;1,P) (2.12)
T (Jast+ P+ (PP, K+K+1)sS2+Ks+ LI K)s’ ‘

with ¢ = (I,P, + I,P).

Replacing the complex variable s in (2.12) by jw, the frequency response Z(jw) is obtained:

; _ _ K(JaA(w)*+Pi(jw)* +(PiPo P+ 1i) (jw) >+ P(jw) +1i 1o P)
2(gw) = (JA(J'UJ)Z‘+P¢(jw)3+(P¢PoK+K+I¢)(jw)2+1/;K(jw)+IiIoK)(ju)7 (2.13)

A look at asymptotic behavior of Z(jw) is useful for an intuitive understanding of the
SEA behavior: For low frequencies (w — 0) and nonzero integrators, the programmed
impedance can be achieved, which is that of a virtual spring with stiffness P:

P
lim Z(jw) = —. 2.14
lim Z(j) = - (2.14)
For high frequencies (w — o0), however, the impedance of the haptic display will approach
the impedance of the SEA’s mechanical spring with stiffness K:

K
lim Z(jw) = —. 2.15
Jim Z(jw) = =5 (2.15)

The integrators only show considerable influence for low frequencies; thus bandwidth anal-
ysis can be simplified by considering only the case where both integrator gains are zero.
This makes major effects more obvious as it reduces (2.12) to

Ja(jw)* + Pjw + P,P,P
(Ja(jw)? + Pjw + PP, K + K)jw’

Z(jw)

(2.16)

I;=I,=0 =

The actually displayed stiffness value Ky, at low frequencies deviates from the value of
P if no integrators are employed:

PP,P,

- et 2.1
1+ PP’ 0

Kaisp = lim jwZ (jw)lr=r,=0
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2 Biomechanics in a Black Box: Passivity-Based Control of a Compliant Assistive Robot

and a desired stiffness K, must be mapped to a higher P.

Fig. 2.5(a) illustrates bandwidth limitations: For low frequencies, the desired impedance
is successfully rendered, whereas for frequencies above the bandwidth, the system behaves
like the (stiffer) mechanical spring. For frequencies in between, the behavior approaches a
spring-damper, the damping parameter of which only depends on the control parameters
P; and P,. A look at the intersection of asymptotes of damper and rendered spring in
Fig. 2.5(a) shows that the bandwidth, i.e. the maximum frequency until which rendering
of the pure desired stiffness is possible, is bounded by w = PP,. This implies that the
control gain P, can be used to increase bandwidth. A high value of P,, however, lowers the
damping characteristics of Z(s) which can easily be seen in (2.16). To counteract this, the
motor velocity loop gain value P; needs to be increased as well. Practical considerations
such as motor saturation, however, put bounds on the realizable gains.

80
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(a) Massless endeffector. (b) Endeffector with mass J..
==== desired impedance Z,; = 1§ij "=~ damper Z,(jw) = %

— displayed impedance Z(jw) — " pure mass Z,,(jw) = jwJ. (exoskeleton)

""" pure spring Z(jw) = ]% (of SEA)

Figure 2.5: Bandwidth limitations. (a) Massless endeffector: At high frequencies, the displayed
impedance matches the spring stiffness. Bandwidth depends on the torque control gain
P,. (b) Additional mass at the load side (e.g. an exoskeleton) further limits bandwidth.
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Influence of Exoskeleton Mass on Bandwidth

In a realistic rehabilitation robot, there will always be some mass between the actuator and
the patient, generally connection elements like an exoskeleton. The exoskeleton LOPES is
constituted of several coupled segments, such that a Multi Input Multi Output (MIMO)
system results. For schematic purposes, i.e. to illustrate the general influence of this
extra mass on bandwidth, only the simplified case is considered where a rigid body with
inertia J, is introduced on the load side of the SEA model of Fig. 2.1, which could be
interpreted as a 1-DoF exoskeleton. This extra mass augments the impedance transfer
function (2.12) by the extra summand J.s. The system will no longer behave like a spring
at high frequencies, its behavior will then be dominated by the added mass, as displayed in
Fig. 2.5(b). Depending on its value, such an additional mass can also lower the bandwidth
even further: Another upper bound for the bandwidth is indicated at the intersection of

the asymptotes in Fig. 2.5(b), with a value of w = \/Kaisp/ Je.

2.3.2 Stiffness Limitations due to Passivity Concerns

Now, passivity conditions for the impedance control of Fig. 2.4 will be investigated with
similar methods as in section 2.2.2, resulting in bounds for the control gains (with integra-
tors).

First, we look again at the stability condition for the impedance (2.12). As the system
poles are independent of the impedance parameters, stability only depends on the inner
force control loop. Checking the Hurwitz determinants gives a necessary and sufficient
condition:

PiP,I? + KP,(1+ PP — K Js9* > 0. (2.18)

This can e.g. conservatively be achieved by following the simple rules in [259], which is to
select a velocity loop gain higher than the motor inertia, and constraining both integrator
gains to half of the respective proportional gain values.

Here, Z(jw) is a fraction of the form

Z(jw) = A(jw)/B(jw). (2.19)

For passivity, the real part of Z(jw) has to be nonnegative for all w € (—o0,00) that are
not roots of the denominator B. For nonzero denominator B, the real part of the complex
fraction can only be nonnegative if the function R(w) with

R(w) = Re{A}Re{B} + Im{A}Im{B} = > " d;’ (2.20)

is nonnegative for all w € (—o0,00). All coefficients d; of the polynomial in w are zero,
except for dy and dg:

ds = K[(PP,—4Ja)(K — P)+ PK]
dy = K[I?P,(K—P)—¢KP].
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The requirement that both coefficients have to be nonnegative bounds the achievable stiff-
ness: With positive integrator gains, the coefficient d4 is only nonnegative for

IP
<K——— <K 2.21
- PP+ YK (2:21)

With zero integrator gains, (2.20) simplifies to
R(w) = w’K(=P}P,P + P!P,K + P,K) > 0. (2.22)

The controller gain P may thus exceed the value of K. However, without integrators, the
stiffness displayed at low frequencies deviates from the value of P, as given in (2.17), and
the actually displayed stiffness Kgisp equals K for the maximum value of P allowed in
(2.22). This implies that:

The Series Elastic Actuator cannot display
a higher pure stiffness than the spring stiffness,
if passivity is desired.

It is important to note that the real part of the impedance and thus passivity is independent
of the presence of additional endeffector mass .J., because this simply adds the imaginary
term jw.J, to the frequency response.

Fig. 2.5(a) and Fig. 2.5(b) feature a desired stiffness lower than the allowed value. The
phase never leaves the range of +90° to -90°, which is equivalent to a positive real part,
thus the system is passive. In constrast, Fig. 2.6 illustrates the case of an excessive desired
stiffness: The phase falls below -90°. This implies that the haptic display is not passive,
and the coupled system will only be stable with a certain number of environments, for
example with a pure spring (a differentiator, which shifts the phase up). However, coupled
to a pure mass (an integrator), the open loop frequency response will invariably have a
phase below -180° for all frequencies, and thus the closed loop system is unstable.

2.3.3 Limitations in Cartesian Space

One of the control approaches implemented on the LOPES robot is Virtual Model Control
(VMC) [71,263]. VMC attempts to separately modify selected gait characteristics using
virtual passive components such as springs and dampers. These elements are mainly
implemented in Cartesian space, e.g. to intuitively modify step height or step length. As
indicated in the preceding section, both the bandwidth and the maximum value of the
rendered stiffness are constrained in joint space due to the compliant actuator. Further
performance limitations originate from undesired interaction forces due to exoskeleton
inertia. The influence of these effects on the achievable stiffness and bandwidth in Cartesian
space has been analyzed in [262] by the coauthor Herman van der Kooij, and this analysis
is given in App. B.
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Figure 2.6: Impedance control with too high desired stiffness (exceeding the natural spring
stiffness): The phase has values below -90°, thus the system is not passive.

2.4 Practical Evaluation

2.4.1 Force Control Performance

For the practical implementation, we use an inner velocity loop in the PWM to control
a brushless synchronous motor. The SEA is controlled via MATLAB/Simulink xpc, the
sampling frequency is 1000 Hz. For the force controller, we chose control parameters
P, = 0.8 (rad/s)/Nm and P, = 5 Nm/(rad/s), with the integrator gains at 1/3 of the
respective proportional gains. The joint is restrained manually in the experiments. In
Fig. 2.7, the tracking performance for different frequencies is illustrated. The time plot
illustrates the influence of friction, which is compensated well. Frequency analysis of
the input-output data shows a bandwidth of 16 Hz, with a phase lag of 112° at this
cutoff frequency. However, motor saturation prohibits amplitudes larger than 5 Nm at
this frequency. The analysis is performed using system identification methods (Matlab
procedure: pem). The theoretic response for comparison also includes a measured average
viscous friction of 4 Nm/(rad/s). In order to illustrate the zero-torque behavior, the
joint was moved manually at different frequencies. The resulting interaction torques are
displayed in Fig. 2.8. At the onset of a motion, peak torques can be noticed, probably
due to backlash and stick-slip. However, these are hardly perceivable in practice, and
maximum torques are very low, ranging around 5 Nm.
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Figure 2.7: Force tracking performance of the Controlled SEA, assessed via a sine sweep.
Above, an excerpt of the time response is plotted, with frequencies ranging from 0 to
6 Hz. Below, the bode plot illustrates magnitude and phase of the experimental and the
theoretically expected frequency response.
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Figure 2.8: User-induced joint movement and resulting interaction torque in zero-torque mode
of the controlled SEA.
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2.4.2 Impedance Control Performance

To evaluate limitations of renderable stiffness, two different experiments have been con-
ducted: Firstly, an evaluation of maximum achievable impedance with the “empty” ex-
oskeleton, and an evaluation of maximum achievable stiffness with a human subject. As
representative values of achievable impedance during walking, the results of Virtual Model
Control (VMC) [71,263] with the LOPES robot are used. The goal of VMC is to modify
selected gait characteristics while leaving others unaffected. Virtual passive components
such as springs and dampers can be chosen intuitively, such that a therapist-friendly train-
ing is achieved. In the experiments, the employed elements influence step height and step
length.

For control of an individual joint of the exoskeleton alone (without human subject), the
maximum achievable stiffness before undesired oscillations occurred is almost exactly equal
to the spring stiffness (+10%), depending on gain variations in the torque control loop), as
predicted by the theoretical analysis.

In contrast, the maximum achievable Cartesian stiffness in practical experiments with
healthy subjects walking under the influence of Virtual Model Control (VMC) resulted
to be 1500 N/m in vertical direction (step height control), and 700 N/m in horizontal
direction (step length control), which is considerably higher than the theoretic worst-case
bound: Following the derivation in App.B, more specifically (B.1), the Cartesian stiffness
should be limited to 200 N/m in horizontal direction, and to 355 N/m in vertical direction,
given the joint angles occurring in the experiment.

The reflected mass of the exoskeleton constrains the achievable bandwidth, as illustrated
in section 2.3.1 for the SISO case: The limit is given by the square root of the desired
stiffness of the virtual component divided by the reflected exoskeleton mass. Below this
frequency, the virtual spring is felt, whereas above, the reflected device mass is felt. In case
the reflected mass is minimal (0.95 kg), this frequency is 4.3 and 6.3 Hz for the stiffnesses
of 700 and 1500 N/m, respectively. For a desired stiffness of 700 N/m and using a worst
case approach, it reduces to 2.14, 1.93, 1.21, and 0.44 Hz for 90°, 60°, 30°, and 10° knee
flexion, respectively.

Despite these heavy bandwidth limitations, the combination of the mechanical design of
LOPES and Virtual Model Control (VMC) was well able to modify step height and step
length of healthy subjects [263]. Each of the two parameters could be lengthened or
shortened by VMC, simply by scaling the reference path. The change in each specific gait
parameter left other parts of the gait cycle almost unaffected, and the modification was not
perceived awkward until it got excessively large. In experiments with varying stiffness we
found that subjects perceived stiffer controllers as less comfortable; they preferred more
compliant virtual springs. Adjustment of the reference parameters beyond the desired
value in combination with a softer controller (equivalent to additional feedforward torques,
which is not unique to VMC) also achieved the desired modification and was perceived as
more comfortable than a stiff control. However, the step length was not exactly modified
by the desired 20% due to the compliant interface. The experiments are described in detail
in [70].
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2.5 Discussion

A comparison of theoretically predicted stability limitations in Sec. B.1 and experimental
outcome in Sec. 2.4.2 shows good agreement for joint-space control with constant stiffness
and without human subject. However, it also shows that the Cartesian stiffness used with
healthy subjects walking in LOPES can be higher than the theoretically derived worst case
bound. The fact that this higher stiffness is rendered without stability problems can be
explained by several factors: Firstly, the “worst case” in terms of kinematic configuration
hardly occurred in the practical experiments, or at least the system never remained in this
state for long, such that instable effects might have been transient. Secondly, passivity
is a conservative means of ensuring stability of coupled systems, and a less conservative,
explicit MIMO stability analysis could replace it (requiring the exoskeleton, the patient’s
impedance, the compliant coupling between human and exoskeleton, and the environment
to be modeled reliably, which is difficult). A contraindication of this second reasons is
that without human subject, theoretical and practical results coincided well. Therefore, a
probable reason is that the healthy subjects did not behave like pure masses, the “worst
environment” of section 2.3.2, but formed stabilizing elements in the control loop. This
positive contribution might stem from intrinsic and neuronally coordinated stiffness and
damping, and it is e.g. exploited for the control of robots that are intentionally not passive,
like the BLEEX [131]. Although it seemed possible to render higher stiffness for healthy
subjects than theoretically derived, it might not be advisable to rely on this effect when
working with patients. Instead, the stiffness of the SEA was increased by a factor of 2.5
in reaction to the experimental outcome. Equipped with these stiffer springs, LOPES can
operate with sufficiently stiff VMC, and still remain within the conservative limits resulting
of the passivity analysis. Generally, there is a trade-off between achievable stiffness on the
one hand, and low undesired interaction torques on the other. One possibility would be
to use an adaptive compliance, as e.g. suggested by [111], to meet the individual patient’s
needs.

2.6 Conclusion

This chapter explored performance limitations of impedance-controlled Series Elastic Ac-
tuators under the premise of passivity. The passivity analysis follows control design from
the inside to the outside, beginning with the internal force control loop.

First, a systematic analysis of existing approaches to force control of Series Elastic Actua-
tors is presented. The resulting recommended control is based on cascaded PI controllers
with an inner motor velocity loop. Using passivity analysis, simple boundaries for the
control parameters are calculated. The advantages of the scheme are the the possibility to
include integral action without jeopardizing passivity. Both theoretically and in practical
experiments, the effectiveness of a fast inner velocity loop for good force tracking and low
realizable impedances has been shown.

Based on an outer impedance control loop, benefits and limitations of compliant actuation
for rehabilitation robots on the example of the LOPES are discussed, focusing on the
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limitations. After illustrating bandwidth limitations, a new result is derived: If stability
in terms of passivity of the haptic device is desired, the renderable stiffness is bounded by
the stiffness of the SEA’s elastic component.

Practical experiments demonstrate the good performance of the force control scheme in
terms of low undesired interaction torques. Furthermore, experimental studies with healthy
subjects walking in LOPES also demonstrate the theoretically derived limitations of SEAs:
Desired gait modifications were not tracked exactly, because the subjects were able to de-
viate from the prescribed pattern even in the stiffest possible configuration. However,
rendered stiffnesses with healthy subjects walking in the robot can be higher than those
predicted by theory, and also higher than renderable stiffness in the empty robot. The dis-
crepancy between theoretical bounds and rendered stiffness indicates that healthy subjects
might represent a stabilizing component of the coupled system. This could be different
for patients. In light of the theoretical stability analysis and with the focus on patients,
the LOPES actuation has been slightly modified after these experiments: The robot is
equipped with stiffer springs in order to obtain sufficient stiffness and to ensure stability
without relying on stabilizing effects of the human.

For this specific application, the disadvantages of compliant actuation can thus be tolerated
or dealt with, and they are small compared to the advantages: Given that a rehabilitation
robot, in the first place, is supposed to imitate therapist action, limitations of bandwidth
and stiffness do not pose severe problems. In contrast, safety and backdrivability are highly
relevant, and they can be ensured more easily with a compliant actuator.
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3 ldentification of Muscle Response to
Functional Electrical Stimulation

3.1 Introduction and State of the Art

As muscle activity is triggered by electrical signals transmitted by the nerves, deficient
motor control can be assisted using an external electrical field. Such assistance is called
Functional Electrical Stimulation (FES). To allow model-based control of these artificially
induced contractions, this chapter deals with robust identification of muscle response to
FES. The analysis is limited to the isometric case (constant muscle length), where the
response is generally described by a Hammerstein model in the literature. Here, a re-
verse identification is performed, changing the structure to Wiener type. The algorithm is
compared to forward nonlinear and linear identification in practical experiments.

3.1.1 Modeling and ldentification of FES

In FES, the correlation between stimulation parameters and muscle force is strongly nonlin-
ear and time-variant. The generated joint torque depends on spatial and temporal muscle
fiber recruitment, on muscle length, and on the velocity of contraction.

There is a considerable amount of different muscle models, some of which are rich in physi-
ological detail and have many parameters; for example, [99] describes muscle activity using
a set of differential equations. A survey on muscle models with varying complexity can be
found in [280]. However, mainly simple models have been used in clinical practice, most
are based on the models developed by Hill [106]. A very popular one is given by Veltink
et al. [268], which describes the muscle by a simplified nonlinear model in terms of the
easily measurable quantities joint angle and velocity instead of muscle length and contrac-
tion velocity. This model is described in detail and with the physiological background in
App. C. In this model, the recruitment dynamics are modeled by a static nonlinearity
(the recruitment curve) followed by a linear transfer function, which is a Hammerstein
structure. Joint angle and angular velocity also influence the generated joint torque.

It needs to be mentioned that a linear representation of the activation dynamics can
only provide a very crude approximation. For example, an important property of muscle
behavior is that muscles take longer to turn off than to turn on [278]. Furthermore,
hysteresis effects have been observed [137], and the concept of superposition does not hold
for muscle recruitment [41,175,233,284]. According to [178], the largest deviations from the
linear assumption are transient and appear at the onset of recruitment and derecruitment.
However, it is common practice to use a linear transfer function to model the dynamics of
muscle recruitment and derecruitment together, and Veltink’s model was reported to have
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an accuracy of 85 to 90% when tested on a cat hind limb, whereby recruitment, angle,
and angular velocity were varied simultaneously, independently, and in a pseudorandom
manner [268].

The most frequent procedure to identify the model’s parameters is to identify recruitment
dynamics in an isometric (constant muscle length) setup, and to determine the nonlinear
dependencies on muscle length and contraction velocity in a separate setup, e.g. with the
widely used commercial product Kin Com (IsoKinetic International, USA) for isokinetic
(constant force) identification.

To reduce the time needed for identification, both activation dynamics and nonlinear de-
pendency on muscle length and contraction velocity can be quantified simultaneously un-
der non-isometric conditions, provided that the biomechanical properties of the leg (mass,
inertia, etc.) are known. A feasible strategy is then to adapt the muscle model param-
eters using the (measurable) error in joint position instead of the (unmeasurable) error
in produced muscle force. The joint position error follows from the muscle torque error,
which is filtered by the known transfer function of the limb dynamics. In case this error
transfer function is asymptotically stable (or can be transformed using suitable observer
techniques [221] to fulfill this criterion), convergence of the adaptation is guaranteed [163].
This method has successfully been employed for non-isometric identification during mag-
netic stimulation of the biceps brachii by Bernhardt [24]. Schauer et al. also proposed
a procedure for non-isometric identification of the quadriceps and hamstrings [216]. The
investigations here are limited to isometric identification only.

For the identification of Hammerstein models, there exists a large variety of identification
methods. For example, iterative correlation analysis has been suggested, orthonormal basis
functions [61,92], and discrete-time Volterra models (DVMs) [151]. DVMs are a special
class of feedforward artificial neural networks with polynomial activation functions and
have been found suitable in the context of muscle recruitment dynamics [12]. Another
method is the so-called small signal identification [17]. Furthermore, identification in the
frequency domain is popular [182].

Frequently, muscle identification approaches employ iterative computation. A recent sys-
tematic study concerning the efficacy of iteratively identified Hammerstein models to de-
scribe muscle behavior at different frequencies has been conducted by Chou at MIT [51]
on leopard frog (Rana pipiens) plantaris longus muscles. For low stimulation frequencies,
a high success in convergence and good estimation performance was obtained. However,
success rate and error degraded with frequencies above 40 Hz. Bai suggested a method
to separate nonlinearity and dynamics of Hammerstein models [16], which ensures conver-
gence. Based on this concept, a reverse identification of models for heart rate has been
suggested [236]. However, Bai’s method requires specially shaped input signals, pseudo-
random binary sequences (PRBS), and it thus depends on calibration and identification
routines prior to any actually functional control. In order to deal with more general exper-
imental data, for example gathered during FES therapy, nonlinearity and dynamics still
need to be identified in conjunction. In the context of the work presented here, prelimi-
nary attempts with various iterative identification methods have also been made to identify
hamstrings and quadriceps of healthy subjects [197,198]. There, a two-step identification
strategy following the Narendra-Gallmann algorithm [164], which reduces the number of it-
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eratively determined parameters, showed considerably improved robustness [170] compared
to the simple Prediction Error Method with gradient descent of all parameters. However,
the convergence was still not satisfying.

To avoid local minima and to increase robustness, two strategies are possible: One is
to reduce the number of model parameters, and the other is to resort to non-iterative
identification based on analytical solutions. Analytical solutions are readily found for a
model that is linear in its parameters. However, an accurate description of the nonlinear
recruitment curve that linearly depends on a low number of parameters is difficult, as the
curve is of saturation type. Such curves are e.g. not well represented by polynomials,
which would be the simplest basis functions. The difficulty of finding such simple models
may be one reason why only few attempts have been made to identify Hammerstein models
based on analytical solutions, e.g. by [47].

3.1.2 Contribution and Outline of this Chapter

In this chapter, an anti-causal or reverse identification method for Hammerstein models
is employed, as presented at [260]. The system order is reversed, such that a linear anti-
causal transfer function is followed by the inverted recruitment curve. Such an inverted
muscle recruitment curve resembles a polynomial of third order, which can be exploited
to describe it in a linear fashion using a very low number of parameters. This allows
analytical optimization, such that finding the global minimum is guaranteed. The main
advantage of the anti-causal approach is that the identified recruitment curve can be used
directly to transform the stimulation input, in order to obtain an input-output linearized
system. In contrast, a forward-identified nonlinearity is not necessarily invertible and may
need further processing to be used for this purpose.

The reverse algorithm is tested in a practical setup on hamstrings and quadriceps muscles
of two healthy subjects, and it is compared to forward identification with various basis
functions, and to purely linear identification.

3.2 Muscle Model for Isometric Contractions

Muscle response to FES is modeled by a Hammerstein model, which consists of a static
nonlinearity followed by a linear transfer function, as displayed in Fig. 3.1.

P es
P : ¢ Gal(s) | Thes
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Figure 3.1: The stimulated muscle with stimulation pulse width PV as input and the effective
torque T on the joint as output can be modeled as a Hammerstein Model: A static
nonlinearity f,. is followed by a linear transfer function G,(s).
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3 Identification of Muscle Response to Functional Electrical Stimulation

The pulse width PW of the FES signal is the input to a system with a static nonlinearity f,
(the recruitment curve) in series with a linear dynamic model (the activation dynamics),
represented by the transfer function G,(s). The output of the nonlinearity is termed
activation level a. In the isometric case, the output of the transfer function is the torque
Ttes acting on the joint.

The transfer function G,(s) is a critically damped second-order system with eigenfrequency
wo-
7-fes<$ ) o wg —sT}
= e
a(s) 8%+ 2wos + W

Ga(s) =

(3.1)

The dead time 7; in this model is due to signal transport in the nerve pathways. Its value
is about 25 ms [185]. Further details and background of the model can be found in App. C.

3.3 Nonlinear ldentification

For identification, the linear dynamics in (3.1) are expressed in a more general time-
continuous representation’:

y(t+T,) = — Z ay(t +T,) + a(t), (3.2)

=1

with the superscript ) denoting the i-th time derivative. Here, the output v is the torque
Tes, the input u is the pulse width PW, and a is the activation level. The dead time 7} is
assumed to be known.

3.3.1 Forward Ildentification

The conventional, intuitive approach to fit the model to measured data is forward identi-
fication, modeling the nonlinearity by a sum of several basis functions:

aft) = F(a) = 3" 7 fiult). 33)

The estimated output y then follows from the input u and the output time derivatives
depending on the parameters a; in (3.2) and ~; in (3.3), and the formulation is linear in
these parameters. This allows easy calculation of globally optimal parameter estimates
(subsumed in the vectors @ and =) using N data points at time steps t; with the cost
function:

N
1
Cla,y) = N ZQk€2(tka o, ) (3.4)
k=1

LA yet more general approach would be to allow dynamics that include also zeros and not only poles.
A possible procedure then would be to treat the system as a multi-input single-output system, where
each derivative of u is a separate input. This has been proposed and evaluated by [47] for Hammerstein
models.
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with
e(t,o,y) =yt +1) —y(t + 1) (3.5)

and weighting factors gy.

It is possible to identify the parameters of the dynamics and of the nonlinearity together us-
ing Least Squares. However, in the present application, additional knowledge can be used,
being that the activation dynamics are critically damped, as described in (3.1). Therefore,
the parameters of the dynamics depend nonlinearly on the muscle’s eigenfrequency wy:

o= (w%) wig))T (3.6)

With this constraint, the problem is not of Linear Least Squares form anymore. However,
the solution is still simple: Using Separable Least Squares, the optimal parameters vy, can
be expressed as functions of the parameter wy, and the remaining one-dimensional problem
can be solved for wy.

The choice of basis functions f; usually depends on a prior: knowledge about the nonlin-
earity. Popular choices in the context of saturation characteristics are polynomials, radial
basis functions (RBFs), and superpositions of arctan or tanh-functions.

A major disadvantage is that the resulting forward nonlinearity is not necessarily invertible.
However, the inverse recruitment function is often needed for transformation of the input,
to cancel recruitment nonlinearity and to obtain a linear control system. Therefore, an
additional post-processing of the nonlinearity may be required to make it invertible, and
the resulting processed function is not optimal anymore.

3.3.2 Reverse ldentification

Due to the these limitations of the forward model in the context of saturation-type nonlin-
earities, a different approach is used here: The system order is reversed, making the inverse
dynamics the first, and the inverse nonlinearity the second part. The torque is then sys-
tem input, and the stimulation is system output, which produces a system of Wiener type.
From this theoretical point of view, the dynamics become anti-causal.

There are two advantages of this approach: One is that the inverse function can directly
be used for input-output linearization, and the other is that an inverted saturation is easily
represented by a simple third-order polynomial, reducing the number of necessary basis
functions without requiring previous knowledge on the recruitment curve.

Like the forward identification, the linear dynamics are described as in (3.2), but now
an estimate for the activation level is obtained from the muscle torque using backward
calculation:

alt) = ylt+ T) + 3" (e + ), 37)

i=1
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The nonlinearity is also modeled inversely, such that an estimate for the input w is given
in dependence of the estimated activation level a, and thus as a function of the output y:

i) = S (0(6) = 3 0,00 38)

The parameters o; and 7; describing nonlinearity and dynamics are subsumed in the vectors
a and 7. The cost function is analogous to the one in (3.4), but in contrast to the forward
identification, the error values are now defined depending on the input u:

e(t, o, ) = u(t) — a(t). (3.9)

The choice of basis functions is easy, because the inverse recruitment curve is approximated
well by an (odd) polynomial of low order. This is due to the fact that the function values go
to infinity for large input values, like in polynomials. In this work, the inverse relationship
between input u (pulse width PW') and activation level a is approximated by a third-order
polynomial, in order to keep the number of parameters as low as possible:

~

a(t) = r3a®(t) +roa’(t) + 1 a(t) + o (3.10)

The simultaneous iteration of all unknown parameters in a and r can be avoided by a
Separable-Least-Squares approach, which is basically analogous to the forward identifica-
tion algorithm. However, in contrast to the unconstrained optimization performed there
for the parameters =y, the optimization for the parameters r of the inverse nonlinearity is
constrained, in order to obtain an invertible solution. To enable inversion, the function
f,7 (@) in (3.8) needs to be monotonically increasing or decreasing. For muscle recruitment
curves, only increasing functions are plausible. Requiring the function’s derivative to be
positive for all values of a and using the parameterization in (3.10) leads to the following
inequality constraints for the coefficients r;:

r3>0 A 15— 3ryr; <0. (3.11)

These constraints define a convex set X for the entries of = (see proof in App. D.1). As
the error function is quadratic and thus convex as well, the resulting internal optimization
problem in 7 is convex and therefore easy to solve for the global minimum r* for a given
a. The analytical solution is given in App. D.2.

Replacing the estimate of 7 in the cost function (3.4), with (3.9) and (3.10), only an
optimization problem in a remains. Additional knowledge of the critical damping of the
system allows to replace the entries of a by functions of wy, as given in (3.6), so that again
a one-dimensional optimization problem in the variable wy results.

This approach provides an injective function with a as input, as needed for compensation
of the recruitment curve.

Remark: For identification in the continuous domain, good estimates of 3 and 7 need to
be provided. Here, the estimates are obtained by local polynomial approximation of the
output y, which has recently been proven to be optimal in the presence of noise [149]. To
avoid the usage of time derivatives, a discrete-time algorithm could be used alternatively.
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3.4 Evaluation and Results

3.4.1 Experimental Protocol and Data Analysis

The reverse algorithm based on a polynomial of third degree for the inverse nonlinearity is
now used to identify muscle behavior, and the results are compared to linear and nonlinear
forward identification. For the nonlinear forward identification, three different models of
the nonlinearity are employed: A polynomial approach, normalized radial basis functions
(NRBFs) of Gaussian form, and a superposition of tanh functions.

An isometric test setup for force measurement was designed, which couples the ankle
to a 6-DOF force sensor using a custom-made orthopedic cuff and a pre-stressed cable.
The apparatus is displayed in Fig. 3.2. With this setup, a quite rigid connection can be

quadriceps ID setup hamstrings ID setup

FES

)= =1 | FES

sensor cable

Figure 3.2: Torque response of quadriceps (left) and hamstrings (right) to Functional Electrical
Stimulation is measured using a force sensor connected to the ankle via a pre-stressed cable
and a custom-made orthopedic cuff. The tables do not move.

realized at the ankle joint with its predominantly bony structure. Quadriceps group and
hamstrings, respectively, are stimulated transcutaneously using the commercially available
stimulator MOTIONSTIMS from Krauth-+Timmermann (Hamburg), which is accessed via
a freely available Matlab/Simulink protocol using RTAI Linux RealTime communication.
Biphasic pulses are applied with a frequency of 40 Hz. The pulse width is varied in order
to change stimulation intensity. The current is adjusted so that the stimulator’s maximum
pulse width (500 us) can be applied without exceeding the subject’s pain limit.

The excitation signal, i.e. the pulse width trajectory, contains a succession of two different
signals (with two seconds pause in between): A trapezoidal trajectory, and a step followed
by a sine sweep. The composite signal is applied to the muscles 2 times in a row, and then
a pause of about 3 minutes follows, to avoid fatigue. This procedure is repeated 3 times,
such that each of the two excitation signals is applied 6 times. The muscle torque response
of these six trials is measured using the force sensor attached to the ankle via the cuff and
a steel cable. For identification, the mean torque responses of the six trials is used. These
two different signals allow identification and testing with qualitatively different data: The
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3 Identification of Muscle Response to Functional Electrical Stimulation

identification is done based on the dynamic sweep excitation, and the model is evaluated
using the quasi-static slow ramp up-ramp down signal.

For identification, the following five algorithms and models of the nonlinearity are used:
1. Linear identification, LIN

. Inverse identification, polynomial of third order, INV

2
3. Forward identification, superposition of four tanh functions, F-t
4. Forward identification, polynomial of third order, F-p

5

. Forward identification, superposition of four Normalized Radial Basis Functions, F-r

All nonlinear algorithms use four parameters to describe the nonlinearity, and only one
parameter (wp) to describe the dynamics. This is done to make the approaches compara-
ble. All solutions are found analytically and not iteratively, to ensure global optimality.
Furthermore, the error weighting matrix Q is the identity matrix.

To compare the different approaches, the identified models are simulated in a forward man-
ner. For the inverse identification, this requires prior inversion to obtain the forward model.
To quantify goodness of fit, the Coefficient of Determination is used. This commonly used
measure is defined according to [80]:

Zi]il(yi - Qi)2‘
Zﬁil(yi —9)?

with y;, © = 1, ..., N being the output torque to be approximated, and g; being the corre-
sponding model estimates. Thus, R? is related to the variance in the data y that cannot be
explained by the model (unexplained variance). A flawless model (y; = y;Vi € {1,...,N})
yields a value of R? = 1.

R*=1-

(3.12)

It should be noted that this performance measure biases the results slightly in favor of the
forward identification, because for that algorithm, the cost is defined in the output domain
both for identification and for evaluation. The reverse algorithm defines the cost based on
the input.

3.4.2 Results

Two healthy subjects (24 and 27, one male, one female) took part in the evaluation. Fig. 3.3
shows the Coefficient of Determination R? achieved by the five approaches for hamstrings
and quadriceps. The R? value is high for most trials. However, for one subject and one
muscle, the models hardly explain the behavior. An advantage of one the various nonlinear
identification methods against each other or compared to linear identification cannot be
deduced from these results. The ramp response time courses are plotted in Fig. 3.4 to
analyze this behavior in more detail.

Furthermore, the maximum muscle torque during slow ramp stimulation is much higher
than the maximum torque observed during sine-sweep stimulation, although the maximum
ramp pulse width is only at 80% of the sine amplitude.
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Figure 3.3: Coefficient of Determination of the models that have been identified using a sine
sweep, when excited by a trapezoidal stimulation signal.

3.5 Discussion

The ramp response shows that the identified nonlinearities of the forward algorithms are
almost indistinguishable, such that the choice of basis functions for the nonlinearity does
not seem to play an important role concerning modeling performance. The identification
direction does not make a large difference in performance either.

Furthermore, Fig. 3.4 shows heavy, non-Gaussian modeling uncertainty: Firstly, there are
indications that muscle dynamics are not sufficiently described by a single transfer function
in combination with a nonlinearity. In fact, the response looks like the superposition of
two responses, i.e. at a certain threshold, a second muscle group seems to be superimposed.

The simple model thus cannot capture the dominant effects reliably, such that the resulting
uncertainty in torque generation can indeed be very large (more than factor 2).

Secondly, the figure shows the high degree of inter-trial variability present in the data
(indicated by the shaded standard deviation), even when excited with identical input
signals. This variability does not exhibit a systematic variation, e.g. a decline due to
fatigue.

Deficiencies of the setup may have caused some of these effects. For example, as the
subject is sitting on the hamstrings, and muscle contractions under these circumstances
can cause shear forces and displacement of the electrodes. This may be one explanation
why the hamstring identification worked less well. However, the aim was not to develop
ideal laboratory conditions, but to find identification algorithms that work robustly under
practical circumstances.
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Figure 3.4: Measured and predicted muscle torque in response to stimulation with a pulse
width of slow trapezoidal time course, with mean and standard deviation over six trials.
The models have been identified using a different excitation signal, a sine sweep.

With the given data, the nonlinear models do not show many advantages compared to
the linear one. This may partly be due to the fact that in the experiments, stimulation
levels were below the saturation limits, where the recruitment nonlinearity does not exhibit
extensive plateaus and is still well approximated by a linear function. Further experiments
with higher stimulation levels could not be conducted because they would have exceeded
the pain limit for the healthy subjects in this study.

The main reason might be that the Hammerstein model itself does not capture the domi-
nant effects satisfactorily, such that the large uncertainties render the differences between
identification methods marginal. A source of large uncertainty is the large skin and tissue
displacement that is observed during stimulation. Unpredictable fluctuations within the
tissue can be observed visually, such that varying motor units or even different muscle
groups are activated. This is congruent with the literature: Trnkoczy [250] identified the
unpredictable tissue displacement between electrodes and stimulated nerve as one of the
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main sources of torque variability, and he even postulated that closed-loop control of such
a variable actuator could not be efficient enough for an orthosis, whether controlled via
surface or implanted stimulation systems. Investigations of Hunt et al. [116] also indicate
that Hammerstein models do not accurately represent isometric muscle contractions.

3.6 Conclusion

This chapter focused on robust identification of Hammerstein models for Functional Elec-
trical Stimulation. An analytical anti-causal identification has been performed. This re-
verse algorithm is especially suitable if the nonlinearity has a saturation characteristic:
It exploits the fact that an inverse saturation curve resembles a third-order polynomial,
such that it can be described by a simple model that depends linearly on a low number of
parameters. Furthermore, the algorithm outputs the inverse nonlinearity, which is needed
commonly for compensation of the nonlinearity during control.

The proposed algorithm has been tested in a practical setup and compared to forward
nonlinear and linear identification. The results show that both forward and reverse non-
linear models do not fit the observed dynamics much better than a simple linear model,
although the global parameter optimum is found in each case using analytical optimization.
This indicates that the Hammerstein model does not predict muscle recruitment reliably
enough to allow generalization from the dynamic training excitation to the quasi-static
evaluation excitation, which makes it difficult for the more detailed models to outperform
simple ones. Thus, it is doubtable whether the effort of such complex identification ap-
proaches is justified in a practical setup e.g. in a clinical environment, where uncertainties
are dominant.
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4 Model-Based Control of a Hybrid
Robotic/Biomechanical System

4.1 Introduction and State of the Art

Functional Electrical Stimulation (FES) is a state-of-the-art therapeutic tool in clinical
practice. Besides restoration of muscle function, it also induces a training effect and
promotes neural rehabilitation. However, artificially recruited muscles do not represent
reliable actuators due to adverse properties such as time-variance and uncertainties, as
outlined in the preceding chapter and in Sec. 1.2.2. To remedy this issue, FES can be
complemented by a robotic exoskeleton. Such a Hybrid Neuroprosthesis combines the
advantages of the two systems, which are therapeutic benefit and reliable motion execution,
as motivated in Sec. 1.2.3. Main questions to be investigated in this chapter concern
modeling of the redundantly actuated system, cooperative control of the actuators, and
analysis of robustness to heavy uncertainties.

4.1.1 Control of Redundantly Actuated Systems

With a complementary exoskeleton, many disadvantages of FES can be overcome. Correct
task execution can be ensured by the reliable motors, such that the heavy uncertainties of
the biomechanical system are less grave.

Although a large amount of research has been done in the field of closed-loop FES control
on its own, there is a lack of systematic investigations which concepts are most efficient
in combining the two actuators, and which are most robust given the heavy uncertainties
of the biomechanical part of the system. In the realizations of Hybrid Neuroprostheses,
control is frequently rule-based, such as in [11] or in [186,187]. For such an approach,
however, extensive expert knowledge has to be integrated, and stability analysis is diffi-
cult. Automated design methods have been suggested for paraplegic cycling, e.g. in [117]:
First, the controller for the additional motor is designed with inactive muscles (via pole
placement), based on an identification of the leg’s passive dynamical properties. Then, the
motor is used to generate motion, and the muscle’s power output is identified in response to
pulse width. Finally, pole placement is used again for closed-loop FES power control, and
muscle power can then controlled. Disturbance rejection properties are quantified in prac-
tical experiments, but stability is not analyzed theoretically. In the MotionMaker [154],
which is intended for training, muscles and motors do not cooperate, instead they work
against each other, and the motors are used to generate resistance for the muscles, which
are controlled to generate a desired force.
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4 Model-Based Control of a Hybrid Robotic/Biomechanical System

There are many other examples of systems where the number of actuators exceeds the
number of Degrees of Freedom, such that there are various control strategies that might
also be applicable for Hybrid Neuroprostheses. For example, missiles have multiple actu-
ators to control direction: Their fins are “cheap” actuators, but they have the problem of
saturations. The additional reaction jets are expensive, yet do not suffer from saturation.
To exploit both actuators optimally, actuator blending has been suggested by [58, 153].
Another example are CPUs, which allow distributed computation. Power Plants are yet
another example, where low-potent actuators with fast, and high-potent actuators with
slow dynamics are coordinated in order to react dynamically to varying demands. For
valves, which cover only part of the range, so-called “split-range” concepts are employed.
Load sharing is not necessarily done using software methods, it can sometimes also be
performed mechanically, as in power-split transmissions that variably coordinate electrical
motors and combustion engines.

A popular concept to combine two actuators is the master-slave concept, as used e.g. for
inverters and converters. Another popular control concept to combine two actuators is the
so-called Macro/Mini concept, where one serves the base demand, and the other actuator
can cope with high-frequent tasks. It has e.g. been used to combine a compliant and a stiff
actuator [161], and it has already been applied in a setup similar to the one here: Artificial
air muscles combined with a stiff actuator [214].

A frequent observation in redundant systems is that several actuators do not necessarily
cooperate well. For example, in dual-actuator hard disk drives, vibrations may occur due to
their interaction. Therefore, a feedforward decoupling control has been suggested by [285].

The Hybrid Neuroprosthesis does exhibit some similarities to the afore mentioned sys-
tems: One actuator has slower dynamics and saturations, but is supposed to participate
as much as possible (which corresponds to a less capable, but “cheap” actuator). However,
the application differs also from the other examples: In contrast to most other examples,
there are additional considerable uncertainties in the slow actuator, which also need to be
compensated by the fast one. Another major difference lies in the fact that Functional
Electrical Stimulation (in a therapeutic environment) is mainly used to generate propri-
oceptive feedback. Studies with Functional Electrical Stimulation stress the importance
of proprioceptive feedback, as well as functional movements. This implies that the torque
produced by the muscles, which is sensed via proprioceptive feedback, should be congruent
with the generated motion. Therefore, the concept has to consider this in a therapeutic ap-
plication, and the load cannot be distributed arbitrarily between the actuators. Concepts
such as the Macro/Mini might be functionally beneficial, yet their therapeutic outcome

would be doubtful.

4.1.2 Contribution and Outline of this Chapter

In this chapter, general control aspects of Hybrid Neuroprostheses are studied exemplarily
in a single-joint study conducted with healthy subjects: A motor-driven orthosis, in addi-
tion to the stimulated muscles, exerts a torque on the knee of a sitting subject (Fig. 4.1).
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4.2 Biomechanical Modeling

Quadriceps

Motor Torque 7qry

Hamstrings

Figure 4.1: Motor-driven orthosis and electrically stimulated muscles (quadriceps and ham-
strings) to control the knee joint angle @je,.

Main foci are on modeling and stability analysis of systems that exhibit time-variability,
parameter uncertainty, and nonlinearities. Especially for the unreliable muscles, param-
eter identification is a considerable challenge and motivated the development of robust
identification methods, as described in the preceding chapter. The present application
of a Hybrid Neuroprosthesis is used as a prototypical biomechanical example system to
illustrate that time-variability, parameter uncertainty, and nonlinearities can frequently be
modeled as structure-variability in a simple polytopic description, such that they can all
be assessed the same way (if a certain amount of conservatism is tolerated) during stability
analysis using state-of-the art control theoretic methods. Based on the obtained models for
the Hybrid Neuroprosthesis, different control strategies are investigated to coordinate the
redundant actuators. Some of the above mentioned control concepts are used and modi-
fied to suit the demands of the Hybrid Neuroprosthesis. Four approaches are compared,
whereby the baseline is represented by a MIMO controller with full state feedback, which
is designed based on optimal feedback control. Both stability properties and performance
of the controlled systems are evaluated, with a special focus on the individual influence of
the various uncertainties.

4.2 Biomechanical Modeling

For reliable control design and stability analysis, knowledge of the plant and the residual
modeling uncertainty plays a vital role. Numerous models of the human body can be found
in the literature, which vary widely in their degree of detail. Especially the actuators of
the human body, i.e. the muscles, and their complex functioning, have motivated extensive
investigations. However, it is hardly feasible to model all inter-dependencies and measure
all influencing variables in a practical environment. Therefore, always a compromise has
to be found between modeling complexity and tolerable uncertainty.
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4.2.1 Sources of Variability

The problems that arise in FES control are common for biomechanical control applica-
tions, which frequently face a large number of time variabilities and uncertainties of dif-
ferent types. For example, when black-box models are used and identified, structural
uncertainties are introduced by unknown system order. Another example are unmodeled
nonlinearities, such as input saturations. Parametric uncertainties are large when model
parameters are empirical and not sufficiently tailored to the individual patient. Time
variability is e.g. introduced by muscle fatigue in artificially recruited muscles.

More generally, the following frequent sources of state- or input-dependent uncertainty and
time-variability in biomechanical applications can be identified.

1. Linearized system descriptions that deviate from the true, nonlinear behavior
2. Time-dependent plant parameter variations

3. Input saturation

4. Varying controller gains, e.g. in adaptive control

5. Unmodeled plant dynamics

Using the example of a Hybrid Neuroprosthesis, the above mentioned sources of uncertainty
will now be specified exemplarily.

Concerning the first type of variability, (which is only an ostensible variability due to
a linearized system representation), there are the nonlinearities in leg and muscle. The
simplified muscle model to be used in the following does not include the considerable
dependency of muscle torque and joint angle and velocity, which is both intrinsic and
reflexive. Furthermore, the nonlinearities of elastic joint moments in the leg are replaced
by linear functions during control design.

Of the second kind, there is e.g. the influence of fatigue or varying temperature on muscle
force generation. In Functional Electrical Stimulation, muscles are subject to heavily
accelerated fatigue.

Input saturations also mainly concern the muscle, if the assistive robot is dimensioned ap-
propriately. In transcutaneous electrical stimulation, the muscle torque is severely limited
compared to healthy muscle activity.

The fourth source of variability is the only variability that is deliberately introduced by the
designer: The control strategies might involve an adaptive component. In the exemplary
strategies to be presented, such an adaptive component is integrated by a varying amount
of desired muscle participation.

The compliant coupling between leg and orthosis is an important factor, yet nonlinear and
difficult to quantify or supervise. Therefore, it is neglected during control design, yet needs
to be considered during stability analysis. Further unmodeled dynamics could be spasms
or correlated voluntary activity that might be provoked by stimulation.
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4.2 Biomechanical Modeling

4.2.2 Objective: Affine System Representation

A popular modeling assumption in the context of stability analysis for uncertain, time-
varying systems is that the uncertainty can be expressed in the form of time-varying
parameters that affect the state space matrix in an affine manner. To make these powerful
tools applicable for stability analysis, the aim of the following sections is to use state-
of-the-art muscle and leg models to represent the Hybrid Neuroprosthesis as a structure-
varying system that is linear in uncertain, time-varying parameters p;. In other words, a
representation of the form

z = Atz (4.1)

All) = Aot S nDA, (12)

is to be found, with constant matrices A;, i =0, ..., n.

This representation is obtained in a modular manner: First, the integrands of the bio-
mechatronic system are modeled separately, i.e. the leg, the muscles, and the coupling
between leg and exoskeleton. Then, the three components are combined to a complete
system description.

4.2.3 Leg Model

The human knee and shank are modeled as a simple pendulum as displayed in Fig. 4.2,
and the degree of freedom of the ankle joint is neglected. Biomechanical parameters that
are assumed to be constant are the mass mye, of the limb, the distance [, between joint and
center of mass of the shank, and its inertia Ji;. Time-varying parameters are subsumed
in the nonlinear function N, (g, Pleg), which contains the (nonlinear) passive elastic joint
moments [69] and damping,.

The dynamics of the leg in dependence of the joint torque 7., are described by the differ-
ential equation

JlegSéleg + mleggls sin Pleg T Np(@lega leeg) = Tieg- (4.3)

With appropriate coordinate transformation of ¢, and the definition of a generalized
joint impedance described by the variable parameters Cieg(@leg, Pleg) for elasticity and
Fieg (@leg, Pleg) for damping, the dynamics are rewritten as

Jleg()bleg + Cleg(gplega Sbleg)goleg + kleg((plega Sbleg)(pleg = Teg- (44)

A state-space representation with the state vector

wile;g = (‘pleg leeg) ) (45)

and input wjeg = Tieg is given by
i’leg = Aleg(mleg)mleg + blengeg (46)
Plog = ClogTieg- 4.7)
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Teg

Jleg¢ + -/\/;;(Soleg, Sbleg> :

Figure 4.2: The shank is modelled as a simple pendulum with inertia Jjs, mass mee, and non-
linear damping and elasticity NV, (@leq, @1eg)- The location of the Center of Mass is defined
by ls. A torque T acts on the shank (which is produced by muscles and exoskeleton),
and the leg’s motion is described by the angle ¢,

The matrices are

0 1 0
Aleg(wleg) = (_Cleg(wleg) _kleg(wleg)> ) bleg - (L) y ng = (1 0) . (48)

Jleg Jleg Jleg

Parameterization of the leg model is achieved via identification with state-of-the-art non-
linear identification algorithms. The procedure is described in App. E.

4.2.4 Muscle Model

In FES, the correlation between stimulation parameters and exerted torque by muscle
contraction is strongly nonlinear and time-variant. The torque depends on the spatial
and temporal recruitment of muscle fibers, on the muscle length, and on the velocity of
contraction.

As has been mentioned in the previous chapter, a large number of muscle models are
available in the literature [280]. Here, the scope is limited to the popular model in [268],
which is based on works of Hill [106]. There, the muscle torque is calculated in dependence
of joint angle and velocity rather than muscle length and contraction velocity. The effects
of the varying moment arm of the muscle are thus included implicitly.
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4.2 Biomechanical Modeling

This muscle model is illustrated in Fig. 4.3: The pulse width PW of the stimulation signal
is the input to a system with a static nonlinearity f,. (the recruitment curve) in series with
a linear dynamic model (the activation dynamics), represented by the transfer function
Ga(s). In analogy to Chap. 3, this transfer function is a critically damped second-order
system with eigenfrequency wy:

Tes () wy —sT,
() = - o A
Gals) a(s) 8%+ 2wps + wi ‘ (49)

The dead time 7T} in this model accounts for signal transport in the nerve pathways. Its
value is about 25 ms [185]. The output of the nonlinearity is termed activation level a.
This output is multiplied by nonlinear terms depending on joint angle and angular velocity,
and then yields the muscle torque 75 acting on the joint.

Ple
= / (9016g>
PW : a . Ga(S) Ttes
Ir .
Pleg .
— ™ g (‘Pleg)

Figure 4.3: Torque response T to FES is modeled with a nonlinear recruitment curve f, that
relates pulse width PIW and activation level a, followed by a linear transfer function G,(s),
and a multiplicative dependency on joint angle and angular velocity (modified from [185]).

This model is very much simplified, and it cannot explain measurable effects such as hys-
teresis [143] and dependence of the muscle response on history of stimulation and move-
ment. However, according to [268], the model proved to be accurate to 85 to 90% when
tested on a cat hind limb, whereby recruitment, angle, and angular velocity were varied
simultaneously, independently, and in a pseudorandom manner. In App. C, the biologi-
cal background and typical characteristics of the different parts of the model (activation
dynamics, force-length and force-velocity feedback) are explained.

Although the physiological processes are described in a highly simplified macroscopic man-
ner, the muscle model is still complex and nonlinear, and there is also time variance to
be considered due to fatigue. The usual approach for its parameterization includes several
measurements on the subject in isokinetic (constant muscle force) and isometric (constant
length) test setups. Isometric identification has been described in Chap. 3. To complement
the contraction dynamics under non-isometric conditions, the nonlinear dependencies on
muscle length and contraction velocity can be quantified in a separate setup, e.g. with the
widely used commercial product Kin Com (IsoKinetic International, USA) for isokinetic
measurement.

Here, a different approach is taken: The description is simplified even further, but all
unmodeled effects are implicitly considered and described as uncertainties. This reduces
the time and effort needed to adapt the model to a specific human subject, and it also leads
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4 Model-Based Control of a Hybrid Robotic/Biomechanical System

to a conservative system description for robust controller design. To simplify the model, the
explicit dependencies on muscle length and contraction velocity are not identified. Instead,
the nonlinear dependency on angle and angular velocity is accounted for by unknown, time-
varying, bounded functions of time. It will now be shown that these uncertain nonlinear
functions, as well as input saturations, imperfect modeling of the recruitment curve, and
fatigue effects can be treated in a very similar fashion, such that all these influences can
be included in form of time-varying factors in an affine description according to Sec. 4.2.2.

First, the static nonlinearity of the Hammerstein muscle model is compensated by using its
inverse to transform the input, the stimulation pulse width. This cancellation is only valid
for the region where the recruitment curve is invertible, i.e. as long as the desired torque
stays below the maximum realizable torque. Above the maximum achievable muscle torque
Tfmaz given by the saturation value of the recruitment characteristic, the controller output
needs to be saturated. Using the control signal s as a virtual input for the input-output
linearized muscle model, the nonlinear transformation is written as:

f_l(ﬁfes(t)) for ﬁfes(t) € [07 Tf maa:]
PW(t) = " - ’ 4.1
W( ) { fr_l(Tf,max) for ufes<t) > Tfmazx, ( 0)
such that . -
a(t) _ ufes(t) . or ?fes(t) € [Oan,maz] (411)
Tf maz < Ufes(t) for Ufes (t) > Tfmaz-
To obtain the desired affine system representation, a polytopic description of a(t) is used,
which does not require knowing the exact course of tgs(t). Introducing the saturation
factor ks, the reduction of a(t) due to saturation can then be written more generally:

a(t) = kaae(D)ies(t),  ous(t) € [0,1] V. (4.12)

This description conservatively overbounds imperfect cancellation of the recruitment curve,
at least as long as the erroneously modeled nonlinearity consistently over-estimates the
achievable muscle torque.

The force-velocity and force-length relationships are now subsumed in the single factor

Ntes(t) := 9(Preg) f(reg), (4.13)

which is also simply handled as an unknown, yet bounded function of time in the following:
Using physiological knowledge, as presented in App. C, and identification results of the
preceding chapter, the boundaries are chosen as

nies(t) € [0,2). (4.14)

Muscle fatigue mainly influences the static gain of the muscle response [160]. Being a
slow process, this reduction can be interpreted as a reduction of torque, expressible by a
reduced value of ngg, or as a further input saturation, thus decreasing the value of kg, In
the following, it is interpreted as a reduction of 7.

Taking the antagonistic muscle pair of hamstrings and quadriceps, positive and negative
torques on the joint can be realized. The muscle behavior can then be represented in
state-space form with state vector

wg;s - (Tfes 7‘—fes) ) (415)
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and output yps = Tres by transformation of the previously given transfer-function represen-
tation (4.9):

djfes - Afesmfes—i_bfesafes(t_,—rt) (416)
Tfes — Cg;s(t)wfesa (417)

with matrices

Afesz< o1 ) bfesz(ko ) er()T = (n(t) 0). (4.18)

2 2
—wj —2wp satWp

Robust identification methods for the muscle model’s parameters have been described in
Chap. 3.

4.2.5 Compliant Coupling between Limbs and Exoskeleton

Although commonly neglected, the compliance in the coupling between leg and exoskeleton
has an important influence on performance and stability of the controlled system, as will
be outlined later. This influence grows with the extent the muscles get involved. As a
basis for later theoretical investigations, a simplified model of the compliant coupling is
provided here, which augments the system dynamics by two additional states.

Fig. 4.4 displays the elastic coupling between the orthosis and the leg. The torque 7ey,

(-Pdrv | Spleg
:—» —
| |
T L |
drv .
drive leg

N ) Kexo(t
Jdrv@drv + U(Spdrv> ¢ O( )
g

Figure 4.4: Compliant coupling between orthosis and leg: The drive produces a torque 74y,
which acts on the drive unit with inertia Jy,., and friction v depending on the angular
velocity g, of the drive. The torque 7y, is transmitted to the leg via a compliant
coupling, described by a varying stiffness cexo(t) and damping kexo(t).

introduced into the leg by the exoskeleton is

Texo = Cexo(t> (Spdrv - Sﬂeg) + kexo(t) (derv - Sbleg> (419)

With Cexo(t) and keyxo(t) denoting the variable stiffness and damping of the entire trans-
mission between orthosis and bone, thus comprising the connecting elements themselves
(orthosis and straps), as well as impedance of muscles and tissue during compression. The
angle g, and velocity 4, are the states of the drive unit.

The drive torque 74, and the load torque 7., act on the drive unit with inertia Jg,, (the
orthosis has negligible mass and inertia) and friction v(Qgyy):

Tdrv — Texo = Jdrvgp'drv + U(derv)' (420)
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4 Model-Based Control of a Hybrid Robotic/Biomechanical System

These two equations can be used to derive a state-space model for the exoskeleton dynam-
ics. With the state variables of the exoskeleton selected as the angle ¢q,, and velocity pq,v
of the drive unit:

zlo = (Parv Par) (4.21)

input 74,v and output 7., the model can be written as:

& rv 0 ]- v 0 0 e O
( ?d ) - ( — e o M ) ( (ed ) + ( T @ ) ( ()?l . ) + ( . ) Tdrv
gOdrV Jdrv Jdrv derv Jdrv Jdrv gpleg Jdrv

Texo — ( Cexo kexo ) ( SOdrv > +< —Cexo _kexo ) ( Qpleg ) ) (422)

derv (,‘Dleg

or rewritten in short notation, considering the variability of Cexo and keyo:

m.exo - Aexo (t)mexo + Bexo(t)mleg + bdrVTdrv (423)
Texo — Cexo (t)Twexo + dexo (t)Twleg- (424)

To parameterize the model, the stiffness c., is quantified using a simple test setup: The
leg is immobilized (by placing the foot on the ground) and a slow sinusoidal feedforward
torque is applied to the motor. Afterward, encoder angle and motor torque are used to
quantify the impedance of the coupling as a function of direction and magnitude of the
transmitted torque.

4.2.6 Complete Model

The joint torque 7., acting on the leg is a superposition of the torque 7.y, transmitted by
the orthosis and the muscle torque 7, as indicated in Fig. 4.5:

Teg = Texo + Ttes- (425)

Subsuming the models of leg, muscles, and compliant coupling of the previous sections, a
state space representation of the redundant system can now be written as:

= Alt)z+B(t)u (4.26)
y = c'z (4.27)
with
Afes 0 0
A<t> = 0 Ao B (428)
blegcg;s blegcg(o Aleg + blegdg
bfes 0
B(t) = 0 byy |, ¢"=(0 01 0 0 0) (4.29)
0 0
Lfes ~
T = | Towol|, Y=, U= (ufes(:d Tt)) : (4.30)
wleg rv
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Figure 4.5: The three modular descriptions are combined to a complete model: Both muscles
and exoskeleton exert a torque on the leg, which is modelled as a simple pendulum.
Feedback of leg angle and angular velocity is explicitly modelled for the compliant coupling,
and it is implicitly included in the muscle model.

This is the description of a structure-varying system, although the time-dependency of the
individual matrices and vectors in A(t) has not been explicitly indicated here to improve
readability. The motor angle @q4,, is the only measurable output, it is measured by the
motor encoder signal. In App. F, the explicit entries of the matrices are given.

The system matrix is linear in the uncertain, time-varying parameters p; of leg, muscle,
and exoskeleton-leg coupling, i.e. in Cieg, Kieg; Mes, Cexo, aNd keyxo, and can thus be written
in the required affine notation of (4.2). A noticeable characteristic of the system matrix
A(t) is that the parameters ¢z and ke, only appear in sum with the coupling parameters
Coxo NA Kexo-

4.3 Control of the Hybrid Neuroprosthesis

This section deals with the control of the Hybrid Neuroprosthesis. Thereby, four different
control approaches are presented, which exploit the redundancy of the actuators to a
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varying extent. Control and observer design are based on a simplified model with nominal,
constant parameters.

4.3.1 Model Simplifications during Control Design

The Hybrid Neuroprosthesis represents a highly nonlinear system. Simplifying the de-
scriptions of the previous sections, control design is based on a linear model with constant
parameters. The uncertain function ngg(t) of (4.14) in the muscle model is set to unity,
such that the muscle force is calculated directly as a function of the activation level a.
This simplification is acceptable for short-time isometric contractions or at least for slow
motions with small range, otherwise it will lead to errors. These errors appear as uncertain-
ties during observer design and in the stability analysis. The nonlinearities of gravitational
components and elastic joint moments of the leg are not compensated, as the superposition
of both is already well represented by its linearization, at least for the knee angle range used
in the practical experiments (see App. E). Furthermore, the coupling between exoskeleton
and human bone is assumed to be rigid. This assumption is incorrect, because the value of
coupling stiffness varies strongly. However, this assumption is commonly made, and it can
be justified by the argument that coupling stiffness can hardly be measured nor adapted
robustly during the experiments. The repercussions of this grave simplification will be
investigated later during a stability analysis.

In the consequent simplified system representation for controller design, the parameters
thus equal the following nominal values:

Cleg(t) = Cleg = const. (4.31)
kieg(t) = kiog = const. (4.32)
nfes(t) = 1= const. (4.33)
ksat(t) = 1= const. (4.34)
Cexo(t) — 0 (4.35)
kexo(t) — 00 (4.36)

Inputs to the combined system are the virtual input w; = @ges(t — T;) for the muscle, and
the motor torque us = 74,y of the motor; output is the knee joint angle y = i, With
rigid coupling, angles and velocities of the drive unit and of the leg are identical:

Lexo = Lleg- (437)

The simplified state space representation of the complete system with rigid coupling is:

w.rig = Arig Lrig + Brig u (438)
y = ng Lrig- (439)

. Lfes afes t—1T
with @y, = (Jfleg) ., ou= ( <7'drv t)) s Y= QPleg = Pdrv- (4.40)
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4.3 Control of the Hybrid Neuroprosthesis

T

The system matrix A, the input matrix B, and the output vector Cpig are composed

as follows (compare the full state space representation of (4.26)):

A 0 by, 0 T T
Ari = . s Bri = . s Ciigc — 0 c . (4.41

& bleg—i—drvcgés Aleg+drv:| & |: 0 bleg+drv:| & ( leg> ( )
The index leg 4 drv indicates that instead of the moment of inertia Ji, only, the combi-
nation Jig + Jarv is used within the respective leg model matrices.

4.3.2 Observer-Predictor

For a full state-feedback controller, all states need to be provided. To obtain an estimate
of the muscle torque, the simple model of Sec. 4.3.1 is used to design an observer-predictor
of the muscle states using the standard procedure of a Kalman Filter in combination with
a least mean-squares predictor [135].

It is assumed that model uncertainties of each of the two model parts (muscles and leg) in
(4.38-4.39) can be modeled as a combination of process noise w and measurement noise v:

w.rig - Arig m1rig + Brig u + w, wT - (’U)?;S wlﬁg) (442)

y = ch gt (4.43)

The values wys and wye, denote the process noise of muscle and leg, respectively, whereby
wies contains both voluntary activity of the subject, as well as spasticity or model un-
certainties. The process noise wie; represents uncertainties of the ideally modeled motor,
modeling uncertainties of the leg, as well as also not stimulation-related muscle activity.
Measurement noise v mainly results from elasticity in the orthosis, as well as in the leg
tissue. During identification, both systems are separately analyzed regarding their param-
eters and uncertainties. Therefore, also a measurement noise v of the muscle torque
is determined, which disturbs the muscle model output, but this is assigned to the force
sensor and therefore neglected in the overall observer design.

During this design of the Kalman filter, several important assumptions required for the
Kalman Filter to be stochastically optimal are violated: The errors of the leg model are
mainly caused by elasticities, which represent additional dynamics and not Gaussian noise.
The simple model has only two states, reducing the system order by two. Furthermore,
during the experiments, the muscles are no longer recruited in an isometric manner, adding
further (state-correlated) error sources that are not considered during observer design.
Although the Kalman filter provides a good approximation also when noise is not Gaussian
and dynamics are nonlinear [60], it must be noted that the observed muscle torque can
only provide a rough approximation of the true value. Furthermore, the predictor requires
the time delay to be known well, otherwise it can lead to unstable behavior.

One possibility to quantify the noise levels of leg and muscles is to use an innovation
sequence approach [33]. However, the noise covariance matrix entries could not be quanti-
fied with this approach because the algorithm did not converge. Therefore, process noise
is calculated by reverse calculation of the states and inputs under the assumption that
measurement noise can be removed (via phaseless filtering based on local polynomial ap-
proximation of the measured variable). This is possible because both leg and muscle models
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4 Model-Based Control of a Hybrid Robotic/Biomechanical System

are flat. Flatness means that there is an output y such that the states and inputs can all
be expressed as functions of derivatives of y [84]. Here, the flat output y is the torque T
for the muscle model, and the leg angle ¢, for the leg model (including drive inertia as
well, due to the assumption of rigid coupling).

The observer theoretically produces the best possible estimate under consideration of the
comparably low uncertainties of the leg model and the high uncertainties of the muscle
model. However, the leg model is so much more reliable compared to the muscle model
(compare Chap. 3 and App. E) that the observer feedback matrix has to be saturated to
avoid numerical problems. Therefore, almost a Sliding Mode input observer results, mainly
calculating backwards from the leg model.

4.3.3 Controllers

The muscle model presented in Sec. 4.2.4 is extremely simplified and subject to considerable
uncertainties. Due to this reason, the muscle controller is most probably not suitable for
good tracking of the reference trajectory. However, using the motor as a second, highly
reliable actuator, tracking is assured. The purpose of muscle activation is then primarily
reduced to the generation of proprioceptive feedback, the provocation of voluntary activity,
and a training effect. In other words, it is desired that the muscle activation is correlated
with the motion produced in order to produce suitable proprioceptive feedback, but high
control performance is traded in for low calibration effort.

Four different approaches will be presented and compared: A Linear Quadratic Gaussian
controller, a blending strategy with variable torque distribution, a master-slave concept,
and a simple feedforward approach for the muscles combined with closed-loop control for
the motor. The four approaches are shown schematically in Fig. 4.6.

In all controllers, there is a recruitment factor r(t). This factor is constrained in the
interval [0, 1], and it represents a possible control gain variation for muscle recruitment.
This includes the possibility to switch muscles on or off, or to recruit them more or less
according to the current situation. This more general factor can also take over the role of
the unavoidable saturation factor kg of (4.12), if the muscle input signal is constrained
appropriately:

(r(t) < 'Mf—m

Ufes

ANO<r(t) < 1) Vt = kgt =const. =1 . (4.44)

The blending controller makes explicit use of this time-variable recruitment factor, in order
to tune the muscle participation freely and shift load variably from one actuator to the
other. The LQG controller is designed for the time-invariant case, and the recruitment
factor represents an unavoidable disturbance. Both the Master-Slave concept and the
muscle feedforward controller are designed to tolerate this unavoidable saturation, as well as
other disturbances in the muscle model subsumed in ngg in (4.13), and motor participation
is increased or reduced based on the observed currently active muscle torque.
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ﬁﬁ”,fes

LQG > S fes
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=l’—> r(t) —

Trof T, drv
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Figure 4.6: Block diagrams of the four controllers. Feedforward inputs (with index ff) for
muscles and motors are designed for the single-actuator case, and the distribution of
desired torque between the actuators is realized via factors sg. Time-variable control gains
are represented by a scalar factor r(t).
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4 Model-Based Control of a Hybrid Robotic/Biomechanical System

LQG controller

The first controller is designed via conventional linear quadratic dynamic optimization,
and it provides a baseline of maximum performance for the other controllers. The func-
tional to be optimized during the control design combines criteria of tracking performance
and energy consumption. By using a weighting matrix with different weights for energy
consumption of the actuators, muscle recruitment in comparison to exoskeleton power gen-
eration can be adapted to the patient. The disadvantage of this full state feedback is that
also for control of the motor, it relies on the leg model, which is only accurate in a theo-
retical environment of a freely swinging shank. For practical purposes, e.g. during gait, it
is rarely possible to provide a full model of the legs, especially during stance phase. This
controller is not designed to exploit fluctuations of the recruitment factor r, as the motor
gain does not vary with varying muscle participation.

Actuator Blending

This control scheme is directly developed to account for adaptive muscle recruitment and
adaptive motor assistance. Each controller is designed independently as if it was the only
one. Then, the recruitment factor r(t) is used to blend variably between these controllers.
In the extremes, either only motor or only muscle are used. The motor controller is fully
independent of observed muscles states and thus of the patient model.

Master-Slave

The third control concept is designed to deal with uncertain muscle response to stimulation:
The motor controller is designed in a way that it is solely responsible for tracking. The
muscles receive a fraction of the motor torque and are controlled to track this torque in a
separate loop. The parameters p; and p, are thereby used to tune the muscle control loop
manually. A compensation of the observed muscle torque can be performed if available
(e.g. during swing phase, when a more reliable leg model is assumed). The motor then
only provides the residual torque that is not (yet) exerted by the muscles. Theoretically,
the muscle’s slow dynamics are compensated fully and the system behaves as if controlled
by the motor alone. This scheme can also be interpreted in a different way: The muscles
are a disturbance to the motor controller, but an observable and thus compensable one.
Although this is probably not fully achieved in a practical surrounding due to the muscle
uncertainties and the inexact observer, increased robustness of this approach is expected in
comparison to the preceding two strategies. This controller can deal with varying muscle
recruitment as represented by r(t), because the motor constantly reacts on the actually
active (observed) muscle torque.

Feedback Motor Control and Feedforward Muscle Control

The last control approach almost completely absolves the muscles from the tracking task.
They are recruited in a feedforward manner with pre-specified patterns. The motor, which
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4.3 Control of the Hybrid Neuroprosthesis

is in feedback control, is responsible for tracking. This way, the muscles are mainly re-
cruited for proprioceptive feedback. Like in Master-Slave control, a compensation can
be performed if a reliable muscle torque estimate is available, and fluctuations of the re-
cruitment factor r(¢) are therefore dealt with. From this concept, maximum robustness is
expected.

Flatness-based Feedforward Components

Assuming rigid coupling of exoskeleton and leg, the compound is a flat system, and the
flat output is measurable. Flatness has already been used for noise quantification during
observer design in Sec. 4.3.2: It means that with a finite number of derivatives of the output
y (the angle ¢jes), the input u (the necessary joint torque 7e, to move leg and drives), can
be reconstructed. The muscles are also a flat system, i.e. with known torque 7, the pulse
width can be reconstructed (at least for torques below the maximum achievable value). For
each of the two actuators, feedforward input signals ug can thus be calculated that would
be needed if the respective actuator was solely active. Then, the torque is distributed a
priori via the factors sg to the two actuators. All controllers except for the LQG controller
intrinsically resolve the problem of redundancy also in the feedforward components, but
the factors sg are included in every scheme in order to achieve a uniform description.

4.3.4 State-Space Description of the Controlled System

In a practical environment, it might be convenient or necessary to be able to switch the
muscles off abruptly, to saturate the muscle torque, or to blend the muscles in or out
arbitrarily. This possibility has been prepared by the scalar recruitment factor r(¢) in each
controller.

To enable more general stability analysis of all controllers in the same fashion, each one
can be represented in the autonomous case by a time-varying state feedback matrix K(t)
with

u=—-K(t)x, (4.45)
whereby the variability is given by a convex combination of two matrices K; and Ko:
K(t)=rK;+ (1 —7r()Ksy, r(t)€]0,1]. (4.46)

With such a variable control strategy introduced in the original, not simplified system
equation (4.26), the controlled system matrix is

A (t)=A(t) - BKy +r(t)B(Ky; — K;), r€][0,1]. (4.47)
This description also includes the special case of hard switching, e.g. if r(¢) is only piecewise
continuous, which amounts to a hybrid system®.

Interpreting the recruitment factor r(t) as yet another time-varying parameter, the aug-
mented description is still of the required affine form of (4.2).

!'Deviating from the prior definition, the attribute “hybrid” is used in its control-theoretic connotation
as a combination of discrete and continuous dynamics.
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4.4 Analysis of Robustness

In the preceding sections of modeling and control, the system matrix of the controlled
Hybrid Neuroprosthesis has been prepared in (4.26) and (4.47) in a way that it is linear in
the parameters p; and can be represented by:

A=A+ ZPiAu (4.48)

=1

with appropriate constant matrices Ag and A,;.

This describes an uncertain time-varying linear system, also termed Linear Differential
Inclusion (LDI).

The predominant goal of the following analysis is to look at the importance of the various
uncertainties in terms of their influence on system stability in different control architec-
tures. This is done by observation of the stability margins during augmentation of the
parameter intervals. The observed sensitivity then provides guidelines for the relevance of
the individual uncertain parameters. In other words, the analysis aims to provide answers
to the questions: Which variability is most hazardous for stability? And which control
architecture is most tolerant in this context?

4.4.1 Tools to Analyze Stability of Uncertain Systems

To enable analysis of uncertain systems, a frequent assumption is that the uncertain pa-
rameters p; in (4.48) are confined in a polytope. Another frequent simplification is to
over-approximate the polytope by the convex hull (which is largest if the parameters vary
independently). Both for constant and for time-varying uncertain parameters, well-founded
tools to investigate stability are available, which will briefly be summarized in the following.

Time-Invariant Uncertain Parameters

If the system (4.48) is time-invariant, i.e. the p; have uncertain, yet constant values
(or if they vary slowly with time and assume quasi-static values) within the interval
[Dimin» Pimaz|, Kharitonov’s theorem [21, 133] can be used to analyze stability. This is
done by considering the set of all possible Hurwitz polynomials, i.e. a so-called interval
polynomial, where the coefficients are not known exactly, but the intervals they are in, are
known. However, this procedure is conservative, as it neglects possible correlations of the
coefficients. Bartlett, Hollot and Lin [20] removed some of the conservatism by focusing
on polynomial families which are polytopic in coefficient space. Their edge theorem states
that in order to show that a Hurwitz polynomial is stable for any values of the coefficients
within the allowed polytope, it suffices to check stability for the parameters on the edges
of this polytope (The vertices are not sufficient in the general case).
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Later, stability of uncertain systems has also been investigated in the state space domain.
To prove stability of matrices that depend linearly on parameters that are bounded within
polytopes (so-called matriz polytopes), necessary and sufficient conditions have been de-
rived. For the special case of a hypercube, [34] used a Lyapunov function that depends
polynomially on the uncertain parameters and found necessary and sufficient Linear Ma-
trix Inequality (LMI) conditions. This result was later extended to the general case by [48],
who introduced the class of Homogeneous Polynomially Parameter-Dependent Quadratic
Lyapunov Functions (HPD-QLFs) and showed that a polytope of matrices is stable if and
only if there exists a HPD-QLF.

If the system is time-variant, i.e. for dynamic changes of the parameters, such an analysis
falls short of proving stability: Stability of a structure-varying system, as given by the
employed model of the Hybrid Neuroprosthesis, does not follow from stability of the edge
matrices [22].

Time-Varying Uncertain Parameters

Stability of linear systems with time-varying parametric uncertainties has been investigated
via Lyapunov functions for a long time (e.g. [253], [165]). If there are only two parameters
p1 and po, such that A, in (4.48) is described by a convex combination of two matrices,
necessary and sufficient condition for stability are computable [29,87]. However, even for
such a two-dimensional case, the necessary conditions are complex. Therefore, a popular
method is to employ a simple positive-definite quadratic Lyapunov function candidate of
the form

V=x"Px, P>0, (4.49)

which provides a sufficient stability criterion, denominated quadratic stability, for the entire
matrix polytope [113].

Quadratic stability is not a necessary condition for asymptotic stability, i.e. there are stable
systems which are not quadratically stable [36]. Therefore, a common quadratic Lyapunov
function may lead to excessively conservative results. In consequence, less conservative
classes of Lyapunov functions have been proposed, e.g. the popular piecewise quadratic
Lyapunov functions. Piecewise Lyapunov functions have e.g. been used by Rantzer and
colleagues [124] to assess the stability of hybrid systems with discrete switching. However,
in order to use Rantzer’s approach, explicit a priori knowledge of the switching time or
condition is required. Xie and colleagues [283] investigated systems with time-varying per-
turbations, and they applied the so-called S-procedure [4] to derive necessary and sufficient
conditions for the stability of polytopes that consist only of two matrices. Later, their ideas
were extended by Almeida [9] and applied to polytopes including more than two matri-
ces. Several other classes of Lyapunov functions have also been proposed, e.g. polyhedral
Lyapunov functions [30,208]. The main disadvantage of non-quadratic Lyapunov function
candidates is their complexity, because they lead to non-convex optimization problems.

A major source of conservatism is the polytopic problem description (4.48) itself. Allowing
arbitrary variation within the polytope neglects a potential dependency of parameters on
system states or time. Such an assumption may lead to conservative results, because
examples of stable structure-varying systems can be found for which stability cannot be
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4 Model-Based Control of a Hybrid Robotic/Biomechanical System

shown by a convex Lyapunov function [32], but only by taking the form of parametric
variation explicitly into account. In other words, if stability cannot be shown by a polytopic
description, more explicit analysis of the parameter variations might still reveal that the
system is stable. For example, there exist approaches that consider bounded rates of
variation of the parameters [49], which reduce conservatism if parameters vary slowly
(e.g. provoked by the comparably slow process of muscle fatigue). However, for the given
example, as for many other biomechanical applications, the time-course of most parameters
is either hard to quantify (as it is the case for compliance between exoskeleton and bone)
or at least requires substantially increased identification and modeling effort (as it is the
case for torque-length and torque-velocity characteristics of the muscle).

In conclusion, a pragmatic strategy is to check whether stability can be shown via the
sufficient condition of quadratic stability for a polytopic system description, and to resort
to more explicit modeling and more complex Lyapunov function candidates only if the
condition is violated.

4.4.2 Polytopic Problem Description

The parameter vector p(t) is assumed to be confined in a polytope with the center p; ..,
which can be written in dependency of the N auxiliary vertices v,, as:

P() = Prom + D AV D An(t) =1. (4.50)

Substituting this polytopic parameter description in (4.48) leads to

n n N
Act) =Ag+ ) PinomAi+ Y (Z )\m(t)vm,i> A, (4.51)
i=1 i=1 \m=1
Defining
Anom = AO + Zpi,nomAi (452)
i=1

and
n

A, = vaﬂ-Ai, m=1,..,N (4.53)
i=1

the set 2 containing all possible system matrices A () is given by:
A (t) =Apom + A1), A(t) € Co{Ay,.. AN}, (4.54)

whereby the notation Co{Aq,..., Ay} describes the convex hull of all possible matrix
variations around the mean matrix A,,,. Equation (4.54) is termed a “Polytopic LDI”,
and the set 2 will from here on be called a matriz polytope.

In the special case that the n parameters are independent, the 2n extreme parameter values
define, on the maximum, N = 2" vertices in matrix space.

To improve conditioning, the problem is scaled before the numerical stability analysis.
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4.4.3 Conditions for Quadratic Stability

The time derivative of the common Lyapunov function of 4.49 is:
V =z"[A.(t)"P + PA.(1)] x, (4.55)
which can be rewritten using the matrix Q with
Q=A.t)"P +PA.(t), (4.56)

to yield: ‘
V=2"Quz. (4.57)

If Q is negative definite for any matrix A.(¢) under consideration,
Q<0 VA.(t)eQ, (4.58)

the redundant system is stable for any variation of the recruitment factor r(t), and for any
isolated or simultaneous variation of plant parameters, whether state-dependent or not,
and even for discrete switching.

The challenge now lies in the definition of a suitable matrix P.

4.4.4 Solution of the Problem using LMls

It can be shown that in order to ensure (4.58), it suffices to check the vertices of the matrix
polytope [36]. Ignoring the fact that some of the N matrices in (4.53) might actually
be internal points instead of vertices (a simplification that leads only to computational
overhead), this can be written as:

Qn <0 YAyp=Awm+Anm=1,.,N=>Q<0 VYA, €0 (4.59)

This leads to a set of N + 1 Linear Matrix Inequalities (LMIs), which is parameterized by
the matrices A,,,:

ATP+PA,, < 0,m=1,..N (4.60)
P > 0. (4.61)

These LMIs can efficiently be solved numerically, and if a solution in form of the matrix
P can be found, the system is stable.

4.4.5 Alternative Solution Using Ideal Lyapunov Functions

It should be mentioned that there is also a different way of determining P, which does not
require solving a set of LMIs and thus allows easier, non-iterative computation. It is based
on the so-called Ideal Lyapunov Functions developed by Itschner [121].
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The task for the Ideal Lyapunov Functions is: Given the system matrix A, .,, an optimal
function P is to be found, which maximizes the range of possible variations of the matrix
elements a; ; that do not compromise the positive definiteness of the resulting Q matrices.
The matrix P is “ideal” in the sense that the range of acceptable variations (termed
“potato” by Itschner) is as large as possible.

Without further discussion of the proof (this can be found in [121]), the solution is directly
given:

P=T"'RT, (4.62)

with T being the matrix of eigenvectors of A,.u,, the asterisk denoting the conjugate
transpose, and R being a diagonal weighting matrix with positive and real entries. It now
suffices to check whether the matrix found fulfills the required matrix inequalities (4.60-
4.61). This method offers the advantage of reduced calculation effort, as the solution is
analytically described.

The drawback of this approach is that there is no systematic way yet to determine the
entries of the weighting matrix R depending on how the parameters a; ; vary in the given
problem, i.e. depending on the p; and their ranges. Therefore, this approach will gener-
ally lead to more conservative results. Furthermore, the numerical solution of the above
mentioned LMIs is not a computational challenge anymore today.

4.4.6 Sensitivity of System Stability to Parameter Uncertainties

The stability analysis that was presented in the preceding section can be used to ensure
that the system is stable and to justify the application of a certain controller. However,
the analysis does not illuminate the influence of each individual parameter uncertainty,
which would be useful in order to know which model simplifications are most hazardous,
and where more accurate modeling of nonlinearities is not necessary in terms of stability.
For a more thorough investigation of these individual influences, a sensitivity analysis is
now performed based on very similar ideas as the so-called quadratic stability margin [36].

The sensitivity analysis is now performed for the case that the individual parameter varia-
tions are independent. The uncertainty interval of each p; around the nominal mean value
is represented by a fractional deviation 9;:

pz(t) S [pnom,i(l - 5i)apnom,i(1 + 51)] (463)

This representation bears the advantage that variations are interpretable as fractions of
the nominal value, independently of absolute scaling.

As the parameters are independent, the vertices v,, of the auxiliary parameter polytope
consist of all possible combinations of minimum and maximum deviations of the parame-
ters. This can be coded more formally:

Ui = (—1)"™0;pnomi, ©=1,...,my, m=1,..,N, (4.64)
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whereby the set of exponents 7, 1, ..., 7, for the m-th vertex follows from

Y 2 =m—1 (4.65)
i=1

A T € {0,1}. (4.66)

The quadratic stability margin provides a measure of how much the polytope of variations
around the nominal matrix A, can be expanded about this center with the LDI remaining
quadratically stable. It is defined as the largest nonnegative o for which

& = (Apom + A ()T (4.67)

is quadratically stable.

In parameter space, the vertices would thus simply be scaled with a. However, such a
purely symmetric augmentation may become excessively conservative for av,, ; < —p;nom,
or equivalently, @d; > 1, because then the parameter polytope (4.54) includes also negative
parameter values. Biomechanical parameters are often constrained to positive values. For
example, for the parameters under consideration here, it is assured that the stiffness gen-
erated by gravity and passive elastic joint moments, as well as stiffness of the exoskeleton
coupling are nonnegative (which is assured by their passive nature), and that each mus-
cle responds with a torque of unvarying direction to stimulation (which is assured by the
mechanical principle of a muscle). Therefore, some conservatism can be removed by con-
straining the vertices of the augmented polytope to positive values, such that the modified
vertices v, are composed by the entries:

f]m,i(a) - max{avm,ia _pi,nom} (468)

This conditionally asymmetric augmentation is illustrated in Fig. 4.7 for the special case
that the parameters p; vary independently, in which case the polytope is defined by all
possible combinations of extreme values.

Figure 4.7: The uncertainty interval (dark gray) is augmented using the factor « in order
to obtain the sensitivity to each individual parameter uncertainty. The augmented inter-
val (light gray) is bounded by 0 in order to avoid excessive conservatism, because the
biomechanical parameters are always positive.
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A stability analysis following (4.59)- (4.61) now provides means to evaluate « for a given
set of constant d; in the form of an optimization problem: With

Ap(a) = bmi(@)A;, m=1,.N, (4.69)
=1

maximize « subject to

P>0,a>0A P+PAn+ (AL(0)'P+PA,(a))<0,m=1,...,N. (4.70)

nom

Numerical evaluation of this optimization problem for different uncertainty intervals and
fixed nominal values pyom; allows to express the stability margin a as a function of the
maximum parameter deviations d;:

a=f(81,...\06,). (4.71)

The variation of a as a function of the ¢§; provides a useful measure of how much the
individual uncertainty of each parameter influences stability. Especially if the function is
of high dimensionality, such that a graphical representation becomes difficult, the numerical

gradient with entries
Aa  Oa

~
~

AY;  06;
can be used to evaluate sensitivity to each parameter uncertainty at the problem-specific
point in the J-space.

(4.72)

4.4.7 Application to the Hybrid Neuroprosthesis
Types of Variability

The formulation of the plant in dependence of uncertain time-varying parameters has
already been prepared during modeling and control.

Both the leg and the coupling model include varying stiffness and damping. Nonlinear pas-
sive joint moments and nonlinearity of the gravitational torque are considered by varying
leg stiffness ¢ and damping kjee. The coupling between exoskeleton and leg is compliant
with nonlinear stiffness ce, and damping ke.,. During control design, rigid exoskeleton
coupling has been assumed, which corresponds to infinite stiffness and damping. To an-
alyze stability, the full model is used with non-rigid coupling. Both for leg and coupling,
stiffness ¢ and damping k are variable, yet they are highly correlated. Therefore, it would
be too conservative to allow independent variation of ¢ and &, which would include highly
underdamped systems. To avoid this, the inter-dependency is taken into account. Using a
first-order approximation, the damping values are varied linearly depending on the elastic-
ity values, maintaining the ratio observed for nominal conditions (where damping equals
about 10% of the stiffness value).

The muscle model includes variabilities of the first, second and third kind listed in
Sec. 4.2.1, which have all been subsumed within the generalized functions ngs(t) and
ksat (), as described in Sec. 4.2.4.
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The variation in control feedback gains has been considered in form of an interpolation
between two matrices depending on the scalar recruitment factor () in (4.47). This more
general factor also includes the saturation factor kg (t). No further assumptions are made
in the following regarding the origin or form of the trajectory of r(t) (e.g. whether it
depends on the states), instead even arbitrary switching is allowed, in order to evaluate
how robustly the controllers would react.

The vector of varying parameters thus contains 4 components:

pT:(pl P2 P3 p4):(cexo Cleg  Tfes T)' (473)

The parameter variations are named equivalently:

(ST: (51 52 53 54) = (5cexo 5cleg 5nfes 57“) (474)

Model Reliability and Uncertainty Levels

Muscle recruitment uncertainty is threefold: The first one is due to insufficient fit of the
Hammerstein model to the observed isometric muscle dynamics, as observed in Chap. 3.
The second uncertainty is generated by inter-trial variability of the muscle torque genera-
tion due to disturbances (e.g. tissue displacement), which has also been quantified during
the identification process. These effects may lead to an error of factor two compared to the
prediction of the model. Thirdly, unmodeled force-length and force-velocity nonlinearities
in the non-isometric case, as outlined in Sec. 4.2.4, can reduce the muscle torque to 0.
Overall, an uncertainty s of 100% around the nominal value of ngs = 1 is assumed, as
already presented in (4.14). This includes both the case that the muscle does not react at
all to stimulation, as well as the case that it produces twice the force as expected in any
time instant.

In contrast to muscle identification, the nonlinear identification procedure for the leg dy-
namics described in App. E showed plausible results and robust convergence in all practical
experiments [144,170]. A noticeable characteristic of the nonlinear dependency of (4.3) on
the knee joint angle is that it is actually a superposition of two functions: The gravita-
tional component of the shank depends on sin(y,) and is thus represented by a convex
function in the angle-torque diagram. The passive elastic joint moments, on the contrary,
are represented by a concave function of ¢je, [69]. The superposition of these two functions
leads to only small variations in slope over a wide range of angles, such that a linear system
description captures the main features. This explains an identified variation des of only
about 3-4% for the two subjects.

For the orthosis, nominal stiffness c., and the respective uncertainty interval d..., are
quantified using the test setup described in 4.2.5. By comparing maximum and minimum
measured stiffness, a very large uncertainty was identified: For torques that produce knee
flexion, the stiff and direct connection between tibia and orthosis leads to a ten times
higher stiffness compared to knee extension, where the soft tissue of the calf is coupled to
the orthosis via elastic straps. The variation d.ex, in coupling stiffness therefore reaches a
level of 89% and 78% for subject 1 and 2, respectively.
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4.5 Evaluation and Results

In this section, the evaluation procedure and results of the robustness analysis and control
performance of the Hybrid Neuroprosthesis are presented. The four control approaches
will be evaluated according to robustness, energy consumption of motor and muscles, as
well as tracking performance. It is of special interest in how far the first three control
approaches using observer-based closed-loop FES control are superior to the simple feed-
forward approach in the presence of large modeling uncertainties in muscles and coupling
stiffness.

4.5.1 Stability Analysis: Theoretical Results

The stability analysis is performed for all four different control strategies of Sec. 4.3.3. To
illustrate the results, the limits of feasibility of the LMIs, i.e. the surfaces defined by o« = 1,
are plotted in Fig. 4.8 in dependency of the 9;. The maximum expected deviations in the
system in percent, as quantified above, are indicated by a point in the d-space. If this point
is on the same side of the surface as the coordinate origin, the system is stable, whereby
the closer this point comes to the surface, the smaller the stability margin gets. When the
point is on the other side of the surface, system stability is not ensured anymore.

To allow a three-dimensional representation although there are 4 uncertain parameters, the
variation of the recruitment factor r is not done gradually. Instead, the feasibility limits
are evaluated for 3 nominal values of r (0, 0.5 and 1) with 6, = 0, as well as for arbitrary
variation of  within the interval [0,1], i.e. 6, = 1. The first column thus shows stability
margins for a system controlled by the motor only. The last column shows the worst
case, given that (4.44) includes the saturation factor kg, in 7. This factor kg, represents
input saturation in FES, as defined in (4.12), and kg < 1. In the calculation of the
stability margin, the interval of r is therefore not augmented anymore. In the first three
cases, i.e. the first three columns, it is assumed that the desired torque produced by the
muscles is never larger than the maximum possible muscle torque, such that the linearized
system description is valid. Furthermore, no purposeful variations in muscle recruitment
are considered either.

For the system at hand, limits of feasibility, i.e. a = 1, are frequently not reached in
certain parameter directions before the corresponding d; reach a value of 1. This means
that also with 100% parameter variation (and thus including a parameter value of 0),
the system stays stable. However, in order to be able to display the stability margins in
the graph, for values of §; > 1, an asymmetric augmentation of the interval in analogy
to (4.68) and Fig. 4.7 around the nominal value of the parameters is performed. This
augmentation is only of theoretic interest and is done to avoid ambiguity, because the
mean of the augmented interval shifts away from the nominal value, and re-definition of
the nominal value could always limit variations to below 100%.

For the same example, table 4.1 shows the values of « for each controller for both subjects
at the indicated point in the d-space, as well as the numerical gradient of (4.72).
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Figure 4.8: Limits of allowed parameter uncertainty intervals around the nominal value for all
controllers, for constant and variable recruitment factors r, and for both subjects. The
surfaces are defined by & = 1 in (4.71), which amounts to marginal stability.
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%ajeg Béaﬂes T ""?c(lleg 63,13 Droess
Controller « sl e T o sl e T
LQG
r =0 (motor only) 1.13  —0.00 0 —1.00 | 1.68 —0.98 0 —0.20
r=0.5 0.95 —0.00 —-0.45 -0.89|1.04 —-0.00 —-0.45 -—0.89
r=1 0.80 —0.00 —0.83 —0.551]0.88 —0.67 —-0.33 —0.67
r e [0,1] 0.46 —0.26 —0.93 —-0.26|0.50 —0.00 —0.89 —-0.45
Actuator Blending
r =0 (motor only) | 1.13 —0.00 0 —1.00 | 1.67 —0.98 0 —0.22
r=20.5 0.90 -0.00 —-0.71 -0.711]0.85 —-0.00 —0.71 -0.71
r =1 (muscles only) | 0.66 —0.00 —0.95 —0.32|0.48 —0.00 —0.95 —0.32
re0,1] ~ ~
Master-Slave
r =0 (motor only) | 1.13 —0.00 0 —1.00 | 1.67 —0.98 0 —0.22
r=20.5 1.13 —-0.00 —-0.00 —-1.00|1.26 —-0.67 —-0.33 —0.67
r=1 1.13 —-0.00 —-0.00 —1.00 | 1.12 —-0.00 —0.45 —0.89
r € [0,1] 1.01 —-0.00 —-0.00 —1.00|0.96 —-0.00 —0.45 —0.89
Muscle Feedforward
r arbitrary 1.13  —0.00 0 —1.00 | 1.67 —0.98 0 —0.22

Table 4.1: Stability Margins o and normalized partial derivatives in direction of parameter
variations. Left: Subject 1, right: Subject 2. The stability margin is the factor by which
the uncertainty intervals can safely be expanded while maintaining quadratic stability. For
values of v < 1, stability cannot be proven. Missing values are due to numerical issues.

4.5.2 Stability Analysis: Experimental Results

In practical experiments conducted with the neuroprosthetic setup, indeed instability oc-
curred, though only for the blending controller: Exclusive muscle control (r = 1) could
not be used at all due to instable behavior, blending control with » = 0.8 appeared more
docile, but posterior analysis of the recorded data showed that the system was excited to
oscillations with slowly increasing amplitude. For » = 0.5, such behavior was not observed
anymore. The three other control schemes showed no instabilities during the practical
experiments.

4.5.3 Stability Analysis: Discussion

Both Fig. 4.8 and Tab. 4.1 show a pronounced trend in sensitivity to parameter variations:
Dominant stability risks are introduced when the elasticity of coupling or nonlinearities of
muscle recruitment are neglected. This is an important result, because commonly, elasticity
of the coupling in robotic exoskeletons is entirely neglected.

Nonlinear variation of intrinsic joint stiffness, on the contrary, can be neglected due to two
reasons: a) the variations in percent themselves are small, as described earlier, and b) its
influence on stability is small (indicated by the small sensitivity of «). This small influence
on the system properties can be explained by the fact that in the system matrix of (4.28)
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or (F.5), the joint impedance parameters ¢y, and kje; do not appear in an isolated manner,
but only in sum with the (much larger) coupling impedance parameters cex, and kexo-

Interaction between the uncertainties is also evident in the figure: The more uncertainty
is present in the coupling stiffness, the less uncertainty is allowed for the muscles, and vice
versa. This interaction is more or less pronounced for the different controllers.

Of the different control designs, especially those controllers that rely on closed-loop FES
control suffer from stability risks. The extreme is the blending controller, which takes the
muscles as sole actuators for r = 1.

However, the performed stability analysis is conservative due to multiple overbounding.
For example, when calculating the stability margin, the intervals are augmented in both
directions. In consequence, for adeexo = 1, not only very stiff systems, but also systems
with zero stiffness and damping are included. Due to the assumption that damping varies
linearly with stiffness, interpolated systems with low stiffness have strongly underdamped
characteristics, which is a known hazard to stability. This is unrealistic, because tissue
does not exhibit oscillations, such that it is at least critically damped.

4.5.4 Control Performance: Benchmark and Evaluation Criteria

The setup consists of the orthosis and a stimulator, which controls the hamstrings and
quadriceps of a sitting subject with freely hanging shank, as displayed in Fig. 4.1. Both
the electrical motor and the stimulator are controlled by the same real time process using
Matlab/Simulink Real Time Workshop and Rtai Linux.

Of the four different control concepts in Fig. 4.6, 11 parameterizations are chosen. All are
used with a constant nominal value 7, of r(t), i.e. no purposeful adaptive strategy is
employed and r(¢) only varies unpredictably depending on input saturations, i.e. depend-
ing on kg (t) of (4.12). Four concepts are taken without feedforward components, thus
requiring no a priori knowledge of the task: The LQG with r,,, = 1, the Blender with
Tnom = 0.75, Tnom = 0.5 and 1,0, = 0 (the last one providing the special case of only motor
with no muscle recruitment), and the Master-Slave with r,.,, = 1. The special case of only
muscle control (7,0, = 1 in the blending control) was attempted in preliminary experi-
ments, but the linear quadratic muscle controller led to an unstable system, as mentioned
before. Therefore, this case was not included.

Concerning feedforward elements, the necessity of an a priori division complicates a com-
parison of the controllers’ performance, because differing divisions have to be realized
depending on the control concept. However, an attempt was made to perform the torque
division in correspondence with the respective controller: In the fourth concept, the mo-
tor always receives the full torque feedforward, as well as the muscles. The redundancy
is resolved by the compensation based on the observed muscle torque. For the master-
slave concept, the motor also receives the full torque, but the muscles receive no extra
feedforward. In the blending controller, the same recruitment factor r,., that is used for
blending is also used to distribute the feedforward torque (as displayed in the figure), i.e.
both factors sg equal 1. For the LQG controller, an assumption has to be made on how the
controller will distribute the torque, and this has been estimated via prior simulations with
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# Control Feedforward | Feedforward | Recruitment | Acronym
Scheme Muscles Motor Factor
SHF fes Sff exo Tnom
Predictive
1 LQG 0.75 0.25 1 FLQG
2 | Actuator Blending 1 1 0.5 FBle5
3 | Actuator Blending 1 1 0.75 FBle75
4 Master-Slave 0 1 1 FMaS
5 | Muscle Feedforward 1 1 0.75 FMF75
6 | Muscle Feedforward 1 1 1 FMF1
7 | Motor (Blender) 0 1 0 FMot
Not Pred.
8 LQG 0 0 1 LQG
9 | Actuator Blending 0 0 0.5 Bleb
10 Master-Slave 0 0 1 Ma$S
11 | Motor (Blender) 0 0 0 Mot

Table 4.2: Controllers, acronyms, and selected parameters. For the control schemes in Fig. 4.6,
11 parameterizations are chosen: 4 do not require predictive knowledge, and 7 use flatness-
based feedforward components that are calculated off-line. Control gains (not shown) are
the result of LQ optimization.

a nominal value of 7., = 1. The observed aproximate division of the torque of 75 : 25 in
favor of the muscles is then used also for the feedforward components. Six concepts are
taken with feedforward components. Table 4.2 summarizes the controllers and the nominal
value of 7,0, and both sg.

The control task is equal for all controllers and consists of a reference angle for the leg to
be tracked. This reference profile is a sine sweep with mirror symmetry, i.e. it starts with a
constant signal, the frequency increases from 0.1 to 1 Hz and then decreases again, whereby
the amplitude is held constant. The mean of this oscillation is not in the equilibrium
position of the leg, but in a more extended position. This way, a constant torque offset
due to gravitational load is demanded from the actuators.

To determine representative values under the heavy uncertainties and time-variabilities, the
experimental protocol contains a large number of randomized repetitions: the benchmark
signal is repeated 55 times in one trial, with no pause in between. Each time, a different
controller is chosen randomly in a double-blind manner, with each controller occuring
exactly five times. This way, subconscious preference of the tester or the subject shall
be excluded as far as possible, because the two subjects were not naive to the purpose of
the study. After one trial, a short pause follows. For one subject, 6 trials were recorded,
resulting in a total of 30 measurements, for the second subjects, 4 trials were recorded,
giving a total of 20 runs for each controller.

As evaluation criteria, tracking performance and energy consumption of the actuators is
used. Motor torque and velocity are measurable, therefore energy consumption can be
determined accurately. Positive and negative work introduced into the leg are determined
by taking the integral of the positive and negative power, respectively. Muscle torque
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and joint velocity, however, are not measured. Therefore, in order to be independent of
possibly erroneous estimates, the measure for muscle activation is simply the integral of
the squared commanded activation levels u* in (4.10), whereby no division is possible into
accelerating and decelerating components.

4.5.5 Control Performance: Experimental Results

Fig. 4.9 displays cost values of the considered controllers for the two subjects. One of
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Figure 4.9: Mean and standard error of cost function values for all controllers and both
subjects. Displayed are the integrals of: Squared muscle activation, quadratic tracking
error, positive and negative motor power. Energy, tracking error, and FES intensity are
scaled to their maximum value.
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the controllers, the blending controller with predominant muscle activity (r = 0.8) is not
included in this analysis, because it led to oscillations with slowly increasing amplitude
and was thus discarded as unstable. This went unnoticed in the trials, which consisted of
oscillations anyways, and where each controller was active only for a short time, such that
the following controller stabilized the system again.

The most prominent fact seen in the figure is the improved tracking performance when
feedforward elements are used, i.e. the difference between the first 6 and the last 4 con-
trollers. This effect is obvious in all controllers.

The next observation is the strong correlation between muscle activity and motor energy
consumption. The more the muscles are recruited, the less positive energy is required by
the motor. However, at the same time, the negative work introduced into the system by
the motor, i.e. braking activity, increases.

In the last four cases, where no feedforward components are active, shifting the load distri-
bution from the motor to the muscles is negatively correlated with tracking. However, in
the first 6 controllers, where feedforward elements are available, this effect is not observable.

Substantial differences between subjects are evident, which make it impossible to derive
more detailed consistent results from this very small sample.

In these 10 prototypical controllers, often more than one parameter had to be changed
from one design to the other, such that the 10 controllers are not directly comparable. To
allow a qualitative comparison, though, the factors that came out as most important are
analyzed in the following multivariate analysis. The results of this analysis have to be read
with extreme precaution though, because there is a large number of design parameters
involved, and these factors have not been varied systematically nor independently. This
would be almost impossible to realize in a practical setup, as it would require many more
parameter combinations, and the experimental sessions already take more than two hours
and are painful for the subjects.

Fig. 4.10 illustrates statistical results of a stepwise regression that investigates how the
4 individual cost function values depend on the individual controller parameters. Not
all control parameters are included, but representative ones: The muscle angle tracking
gain and motor angle tracking gain, muscle torque feedback gains for both actuators and
feedforward components F'F'. These feedforward components are F'Fles = S fesTnom fOr the
muscles, and F'Fy,, = Sg qry for the motor (except for the blender, there F Fy,y = Sg arv (1 —
Tnom)). The cost function values are log-transformed (based on an iterative analysis of
residuals), and all input variables are scaled prior to regression, to allow dimensionless
comparison. A dummy variable (0 for subject 1, 1 for subject 2) is used to investigate
possible differences between subjects. Confidence intervals are shown, whereby « is set
to 0.01 instead of 0.05, in order to avoid overfitting with a high number of factors. The
p-value of the entire model, as well as the adjusted coefficient of determination R? are
given (Adjustment is performed to account for the number of explanatory terms in the
model). As the figure shows, the largest and also the only significant influence on tracking
is the motor feedforward. FES energy consumption is explained mainly by the FES gains,
the FES feedforward element, and the motor feedback gains. Positive Motor energy is
explained by the parameters of motor control only, the muscle gains have no significant
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Figure 4.10: Cost value dependency on control parameters. Regression shows the influence of
control gains and feedforward on tracking error and actuator load. Negative values: The
cost function values decrease, positive values: The cost function values increase. A 99%
confidence interval is drawn for the mean value. Insignificant factors (gray) are excluded.

influence. Negative energy, in contrast, is significantly influenced by the FES gains, the
torque gain increases negative energy consumption, the angle feedback gain decreases it.

4.5.6 Control Performance: Discussion

A first remarkable fact is that the dummy variable “subject” does not have a significant
influence, which means that both subjects react similarly. Furthermore, a prominent ob-
servation is that at least for the motor, the effect of feedforward elements on tracking is
positive, which indicates a good fit of the leg and exoskeleton model.

Concerning the FES part of the system, the figure indicates that muscle control has no
significant influence on tracking, and it does not significantly reduce required motor energy
either. If FES is included, it seems advisable to use angle feedback and no torque feedback,
because the only influence of the torque gain is to increase negative motor energy, which
implies that this form of feedback does not lead to cooperative behavior of the actors.
This means that FES does not contribute in a significantly positive manner to control
performance of the Hybrid Neuroprosthesis, and that if it is included, a simple controller
based on the leg angle suffices.
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There might be several reasons for the unsatisfying performance of the FES component:
Firstly, the muscle behavior is subject to heavy uncertainties, as outlined in the previous
chapter. Furthermore, the controller completely neglects compliant coupling between leg
and exoskeleton. Therefore, the observed states may not be reliable enough. Whereas the
compliance does not seem to be a problem for the motor, it is for the muscles.

4.6 General Discussion

Adverse effects of compliant exoskeleton coupling have been reported before, although not
in the context of FES. Without FES, unmodeled compliance becomes the main source of
discrepancies between model and real world, as e.g. observed by [83]. It has also been
reported to be a disturbing factor in an actuated orthosis by [8] and by [184]. When the
latter group included a model of soft tissue (approximating tissue elasticity by a first-order
filter between the CoM of the arm and bone motion), they found that the augmented model
matched their data much better. They used a cast, which would be an ideal exoskeleton,
and they looked at the arm, where there is less soft tissue in comparison to the leg.
Therefore, it is reasonable to expect further increased influence in a simple orthosis for the
lower extremities.

Still, most modeling approaches of human and robot motion are based on rigid-body
models. The results obtained here justify this procedure, yet only for certain purposes:
Identification of the leg is robustly possible with the assumption of rigid coupling, feedfor-
ward elements based on this simplified model lead to considerably improved performance,
and robustly stable control of the exoskeleton can be achieved.

However, as soon as closed-loop control of FES is attempted, some problems arise: Both
the theoretic stability analysis as well as practical experiments showed considerable risks
introduced by the existence and/or negligence of the compliant coupling during controller
design. The theoretically derived limits of the stability analysis seem too conservative, be-
cause higher gains are realizable in practical experiments. The difference can be explained
by the considerable overbounding applied to simplify the analysis, as outlined earlier. Nev-
ertheless, both theoretical and practical experiments show the same tendency: Closed-loop
control of FES using sensors on the exoskeleton introduces stability risks. This is congruent
with expectations drawn from the literature: The motor control is collocated, because the
encoder measures the motor angle at the shaft. For the muscles, control is non-collocated,
because the coupling dynamics cause differences between leg angle and motor angle. Such
configurations with non-collocated actuation and sensing are known to potentially lead to
unstable dynamics [126].

To solve this problem, one possibility would be to use the full model for control design
of the muscles. However, it would be difficult to do such a model-based approach that
accounts for the coupling, because the interaction between human motor apparatus and
exoskeleton is heavily influenced by the direction-dependent elasticity of the orthosis-leg
coupling, which is hard to quantify reliably. Therefore, the torque applied to the joint
is difficult to observe. Complex sensing mechanisms have been proposed to measure this
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torque redundantly, e.g. by [10], but for a practical clinical application, observer-based
control will introduce severe additional uncertainties and thus stability hazards.

An alternative solution to include muscle activity without stability risks and without the
actuators working against each other too much seems to be simple feedforward control of
the muscles. Then, muscle activity can be triggered for therapeutic reasons, and adverse
effects in terms of stability are avoided.

What is also noticeable is that varying passive elastic joint moments within the leg hardly
have any influence on stability. This can be explained by the fact that the leg’s stiffness
parameters only appear in sum with the coupling stiffness parameters in the system matrix.
Given that the coupling stiffness is much higher than the leg’s stiffness, the influence of
the leg’s intrinsic stiffness on system behavior is small. Therefore, it can be justified to
use simple linear models for the biomechanical properties of the leg.

4.7 Conclusion

This chapter presented a systematic assessment of a hybrid robotic/biomechanical systems.
The example system is a Hybrid Neuroprosthesis, a combination of mechanical exoskeleton
and Functional Electrical Stimulation (FES). Various sources of time-variability and non-
linearity are unified into an affine representation with uncertain, time-varying parameters.
This allows simplified control design with nominal values, as well as stability analysis based
on a polytopic system description. The model is parameterized based on identified values.

Four different prototypical control approaches were presented for a redundantly actuated
system where both actuators have different capabilities: An LQG controller, a blending
controller with variable load sharing, a Master-Slave concept where the motor is in charge
of tracking, and a controller with exclusively feedforward recruitment of the muscles and
feedback control of the motor. The four controllers are evaluated in a single-joint test
setup regarding their performance and robustness.

The analysis of quadratic stability gives an impression of which variabilities are most
hazardous for stability, and which controllers deal with the uncertainties most robustly.
Indisputable drawbacks of using an interval description of nonlinearities are that only
suboptimal controllers can be used, and that a certain conservatism is introduced in the
later stability analysis. Despite this conservatism, tendencies that were found during the
theoretical analysis were in congruence with results of practical experiments.

Concerning robustness, feedforward control of the muscles combined with feedback control
of the motor shows considerable benefits compared to feedback control of both actuators.
This is due to the dominant influence of unmodeled elasticity in the transmission, i.e. in
the coupling between leg and exoskeleton. These additional dynamics are especially haz-
ardous in the present setup, because muscles are controlled using the encoder position for
feedback, which introduces non-collocated actuation and sensing. Concerning performance
of muscle control, there were hardly any positive effects of closed-loop FES control either.
This observation confirms that the uncertainty in muscle recruitment and in compliant
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exoskeleton-leg coupling is so large that closed-loop control of the muscles has hardly any
benefits.

Another main outcome of the experiments conducted is that feedforward, i.e. predictive
elements for the motor are beneficial for performance. This is independent of whether the
muscles are recruited or not. This implies that at least the reliability of the leg model is
sufficient to make predictive elements beneficial.

A tentative answer can now be given to the introductory questions concerning which model
complexity is necessary, or which simplifications are justifiable: When modeling the human
in conjunction with an exoskeleton, it seems justifiable to use rather simple biomechanical
models for identification and control design. In contrast to nonlinear elastic joint moments
in the leg, which have only a small influence on the system behavior, coupling compliance
needs to be addressed during stability analysis, and its negligence can generate considerable
security hazards. In any case, it is desirable to keep undesired elasticity in the transmis-
sion as small as possible. This can be achieved by using contact points of high stiffness
(ankle) and long moment arms (this increases the reflected joint stiffness quadratically).
The latter strategy also lowers interaction forces between patient and exoskeleton. These
recommendations are intuitive, and corresponding designs have already been realized by
rehabilitation robots like LOPES [269] and Lokomat [56] and the robotic muscle trainer
training device MotionMaker [154].
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5 The Human in Command: Patient-Controlled
Assistance

5.1 Introduction and State of the Art

For gait rehabilitation robots, an important question is how to ensure stable gait, while
avoiding any interaction forces between robot and human in case the patient walks cor-
rectly. To achieve this, the definition of “correct” gait needs to adapted both to the
individual patient and to the situation. In this chapter, a method for online trajectory
generation is proposed and described on the example of hemiparetic patients. Desired
states for one (disabled) leg are generated on-line based on the movements of the other
(sound) leg. An instantaneous mapping between legs is performed by exploiting physi-
ological inter-joint couplings. This way, the patient generates the reference motion for
the affected leg autonomously. This Complementary Limb Motion Estimation (CLME) is
implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects
in two different experiments.

5.1.1 Reference Generation for Assistive Robots

To promote effective rehabilitation after brain injury, the key element is intensive train-
ing [140,141,227,245]. The strenuous labor of physiotherapists associated with conventional
therapy can be alleviated by rehabilitation robots such as the commercial devices Loko-
mat [55], Gait Trainer 1 [105], or AutoAmbulator [228]. The first exemplars simply used
position control along a fixed reference gait trajectory, which has been proven to be as ef-
fective in retraining as traditional manual therapy for severely affected patients [118,183].
For only mildly impaired subjects, this does not hold, these patients profit more from
manual therapy [114].

New results on motor learning and neural plasticity indicate that this is not the full po-
tential of rehabilitation robots; instead it is believed that treatment outcome could be
further optimized by increasing the active participation of the patient. This paradigm has
been confirmed in various evaluation studies on rehabilitation strategies such as Constraint
Induced Movement Therapy (CIMT) [243], Functional Electrical Therapy (FET) [192], or
Assist-as-Needed (AAN) control [44,82,110,138|.

The patient’s movements should thus not be just externally imposed, but rather assisted
to match the correct pattern. One of the key questions, however, is what that “correct”
reference should look like. It is possible to use trajectories of healthy subjects, to let the
therapist manually teach the robot a gait pattern for the patient, or to generate trajectories
for a given task that resemble very much the average pattern of a healthy subject, e.g. using
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optimization [247]. However, this reference trajectory might not be perfectly tailored to
the individual patient. Furthermore, any reference trajectory that is fixed in space and/or
time constrains the natural variability of gait.

Generally, there are three approaches to solve this problem of reference generation, which
are partly complementary: The first is to tolerate deviations from the (possibly not opti-
mal) reference trajectory, e.g. by use of a compliant device [13,269] or a compliant con-
troller [205] instead of stiff position control. The allowed deviations do not have to be only
of spatial nature, they can also be temporal. For example, the pneumatic assisting robot
presented by [13] is compliant, and it uses a reference trajectory that is variable in time and
always synchronized with the patient’s gait. Another strategy that allows both spatial and
temporal deviation is Path Control [254]. This controller tolerates all movements within
a virtual “tunnel” of allowed joint angles. The second approach to solve the reference
generation problem consists in adaptation of an initially suboptimal reference trajectory
to the individual patient. Jezernik and colleagues suggested such a strategy, and they used
interaction torques as the criterion to be minimized by the adaptation [123]. The third
approach is not to use a fixed reference trajectory at all. For example, in [3] and in [166],
gravity-compensating devices are presented. These devices relieve the patient from body
weight support, thus lowering the threshold of muscle force needed to walk. An approach
that offers more guidance is Virtual Model Control (VMC), which has been implemented
on the compliant LOPES robot [71,263]. VMC does not define any a priori reference tra-
jectory either, instead it only assists pre-selected subtasks of walking for specific training
foci (e.g. foot clearance).

Whether deviations are tolerated, the reference is adapted, or no reference is used at all,
the listed control strategies all rely on voluntary, sufficiently coordinated activity in the
impaired limbs. This implies that severely affected patients have little to no influence on
the reference, and they are invariably led along the path of a fixed gait pattern.

5.1.2 Contribution and Outline of this Chapter

To enable self-dominated gait also for patients with severe unilateral impairment (e.g. re-
sulting from stroke), an automated, generic method is proposed that generates reference
motion on-line [257]. The starting point of the idea is a particularity of human motor con-
trol: During complex, learned motions such as grasping or walking, the individual Degrees
of Freedom (DoF's) are strongly coupled [6,231]; these linear correlations are also called
synergies, and they are often quantified and analyzed using Principal Component Anal-
ysis (PCA). This observation indicates a reduced set of manipulated variables. Possibly,
our brain has developed such refined control methodologies to deal with the redundancy
or “abundance” [200] of human DoFs (A phenomenon first referred to as “motor equiva-
lence” by Bernstein [25]). Although the coupling of joint variables can be quantified and
analyzed, the driving control variables themselves and the way how the brain generates
them remain speculative. One hypothesis is e.g. the existence of a so-called Central Pat-
tern Generator (CPG) in the human spinal cord [68,142], yet this theory is controversial.
Another explanation is given by the principle of optimality [247], which suggest a so-called
“minimal intervention principle”. This strategy explains the observation of an uncontrolled
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manifold: only task-relevant features (e.g. end-effector position) are controlled, and the
others are left uncontrolled. This way, both control effort can be reduced and accuracy in-
creased, because motor noise, which depends on muscle force, in the task-relevant direction
is reduced.

Whatever the origin of couplings my be, the effect itself can be exploited for the simplified
generation of motion patterns with a reduced subset of control variables [148], and it has
been used for animation [159, 181] and robot gait [129,242]. Extending the idea beyond
the autonomous generation of full motion patterns, the method proposed here exploits
joint couplings also for the completion of partially preserved human motor capabilities,
as needed for rehabilitation and intelligent prostheses. This Complementary Limb Motion
FEstimation (CLME) uses statistical regression - either PCA, or Best Linear Unbiased Es-
timation (BLUE)- and couplings between limbs in healthy synergetic motion. Using these
physiological couplings and a patient’s sound limb motion, it estimates the corresponding
motion of the patient’s affected limbs. This inference does not cause any delay like echo
control [94], where the reference is a time-shifted replay of the sound leg’s motion; instead
states are mapped instantaneously.

As CLME does not use a fixed template gait pattern, it can be categorized in the third
group of controllers mentioned above. By defining “correct” walking only on the basis
of interjoint couplings, CLME allows a much wider range of movements compared to a
predefined reference trajectory. Other advantages are that sound limbs are not directly
influenced, and that the reference for the affected leg is intrinsically synchronized.

The strong inter-limb coordination during human walking allows for a very accurate right
leg-left leg inference using pre-recorded trajectories in simulations [257]. However, the
suitability for control of gait rehabilitation robots can only be answered by practical ex-
periments, where the human closes the loop. This evaluation proceeds along two questions:
The first question is related to functionality, denoting the requirement that even in the
case of no voluntary control in the paretic leg, the patient can walk, and without trip-
ping nor falling. This is important for patients in an early state of therapy. The second
question concerns whether in the case of coordinated voluntary activity in the assisted leg,
the controller allows self-determined gait with minimum interference by the robot. The
term “interference” here refers to the form and amount of actuator power introduced to
the human body, and to the repercussions in terms of altered EMG activity and kine-
matic trajectories. This is important to see whether CLME can be used in a later stage of
therapy, where the algorithm mainly supervises gait and applies only minor corrections.

Two studies have been conducted on the LOPES gait rehabilitation robot addressing these
requirements. This robot consists of a treadmill in combination with a light-weight ex-
oskeleton for the lower extremities. It actuates sideways and forward motion, hip ab-
duction, hip flexion and knee flexion using the principle of Series Elastic Actuation and
Bowden cable transmission. The mechanical design of LOPES is described in App. A, and
the low-level impedance control design and performance is described in Chap. 2.

The first study addresses the question whether subjects with no control at all of one leg
can walk with a robotic assistance of this leg based on CLME. Results of this first study
have already been presented in [258]. Healthy subjects are recruited, and a one-sided
impairment is simulated using the exoskeleton leg as a prosthesis. Subjects thus walk with
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their own right leg and the robotic left leg, the motion of which is commanded by PCA-
based CLME in dependence of the right leg. Each subject walks based on the extracted
coupling and scaling of another person, whose gait pattern has previously been recorded.
This first study aims to evaluate whether CLME generates functional reference motion.

The second study evaluates the performance of CLME regarding interference with self-
determined gait of healthy subjects. Results of this study have been presented in [261].
The goal is to see whether CLME interferes significantly less with self-determined gait
than control with a fixed trajectory. The study also compares the two alternative regres-
sion methods (PCA and BLUE). Criteria used to evaluate the requirement of minimum
interference are: Interaction torques or introduced power, respectively, distortion of EMG
patterns, and distortion of the kinematic gait pattern. The optimum would be to match
the robot’s behavior in zero-torque control, where desired interaction torques are zero, and
this behavior is chosen as the baseline for comparison.

After a short explanation of the basic ideas of CLME, simulation results will be provided,
and the two studies will be described in detail.

5.2 Complementary Limb Motion Estimation

The goal of Complementary Limb Motion Estimation (CLME) is to find a mapping function
that outputs the states of impaired limbs (angles and velocities) in dependence of the states
of sound limbs. To obtain this function, inter-joint coordination strategies are extracted
from recorded healthy gait trajectories. Then, reference motion can be generated on-line
for inoperable joints, using the current motion of the sound limbs. There are numerous
approaches in statistical regression to tackle this problem. 2 simple ones among them have
been investigated: One approach uses Principal Component Analysis (PCA) [125,177],
which is the most commonly used approach for analysis of joint synergies, as e.g. in [231],
and one uses the conventional Best Linear Unbiased Estimator (BLUE) as the baseline
approach to regression [5].

Assuming that the subject has only an impairment of the left leg, the states of the right
leg are known variables, and they are subsumed in the vector x,:

2T = (o7, 7). (5.1)
The states of the left leg,
x| = (o, ¢1) . (5.2)

now need to be estimated. This is only an example; there could be other limbs involved,
for example trunk motion as part of the known variables in «,.. Moreover, the state vectors
of sound and impaired limbs do not have to be of equal size. For example, hip flexion and
knee flexion of the right leg could be used to estimate only the knee motion of the left leg,
or they could be used to estimate its hip flexion, hip abduction and knee flexion.

Prior to regression analysis, biases of angles are removed, and all variables are normalized
to a standard deviation of 1. In a first attempt [256,257], Principal Component Analysis
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is used to provide an estimate of x; by minimizing the quadratic error function

I, . Fl

I I‘Q y
with unknown matrix I' = [[TTT]T € R¥P, p < d, and orthogonal column vectors, such
that the vector y € RP is of lower dimensionality than & = [x’x]|" € R?. The basis of
this approach is the assumption that the command signals sent to the limbs stem from

a common source in a lower-dimensional subspace, i.e. that there is a subset of control
variables y that can be reconstructed and used to estimate the remaining joint variables.

2
— min. (5.3)

For a simple representation of the solution of the optimization problem, the matrix Cpca
is defined, with

Cpea = I,T7, (5.4)
and with the superscript # denoting the left pseudoinverse. The estimator &;pca is given
by

& pca = DyI'T ¢, = Cpeaz, . (5.5)
The matrix I' contains the first eigenvectors (the so-called principal components) of the

covariance matrix M of x.

The PCA-based approach to CLME is based on the hypothesis that the coupling between
legs is caused by some kind of common control. Another approach is to exploit the sta-
tistical coupling between legs without using any additional knowledge at all, i.e. to find a
solution to the general optimization problem

2, — Ca,[2 — min, (5.6)

with unknown matrix C. The solution is the Best Linear Unbiased Estimator (BLUE).
Using the respective covariance matrices, this estimator is given by:

2| BLUE = (M,,'M,) "z, . (5.7)
Again, this is rewritten in a simplified manner with the matrix Cgpyg defined as
Cgrue := (M,,)M,)", (5.8)
such that

Z;sLuE = CBLUET: - (5.9)

The difference between the two regression methods is that PCA-based CLME departs from
the hypothesis of a “common controller” for both legs, and it reconstructs the common
variables in an intermediate step; BLUE-based CLME, in contrast, simply exploits the
phenomenological coupling between legs, and infers directly from right to left without
consideration of underlying reasons.
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The outputs of both regression approaches are augmented again by mean value and stan-
dard deviation, yielding reference angles and velocities for the impaired joints. The esti-
mated angles and velocities are both subject to uncertainty. Thus, the estimated velocity
can differ from the differentiated estimated position. To merge the two pieces of informa-
tion, an additional Kalman filter is used, yielding the most plausible motion intention. The
filter is designed for each joint separately based on the simple dynamic model of a double
integrator. During filtering, each of the values is smoothed and corrected, so that angle and
velocity become coherent. Under the assumption that the errors in the CLME-estimated
variables ¢ and 95 can be modelled as Gaussian, uncorrelated noise (considering that the
velocity is independently estimated, and not calculated via differentiation of the angle),
better estimates @, and ¢y, are produced on-line. This design is displayed in Fig. 5.1'. The

Figure 5.1: Design of the Kalman Filter. The estimated values ¢ and ¢ are regarded as
noisy outputs of a double integrator, and the filter produces improved values ¢, and

@1 via stochastic optimization. The needed noise levels F(v}) and E(v3) are assessed
by an error analysis of CLME-reconstructed trajectories, and F(w?) = E($?).

“measurement noise” levels E(v?) and F(v3) are quantified by a simulated right leg/left leg
inference in recorded healthy gait patterns, followed by an analysis of the errors between
PCA-reconstructed angles and velocities and original angles and velocities. The “process
noise” level F(w?) equals the original acceleration variance.

Preliminary attempts included not only the states, i.e. angles and velocities, but also
accelerations of both legs as inputs and outputs of the regression, respectively. However,
simulation results showed that the estimated accelerations hardly improve performance
[257]. Providing accelerations on the input side would rely on additional sensors or noisy
numerical derivatives of the sound leg’s states. Therefore, only angles and velocities are
used for both legs.

In summary, a recorded physiological gait pattern is reduced to the regression matrix, the
Kalman gains, and mean values and standard deviations of the states. These parameters
are then used to drive the on-line reference generation algorithm.

'Figures in this chapter are re-printed, with permission, from [256], (©[2006] IEEE / [258], (©[2007] IEEE
/ [261], ©[2008] IEEE.
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5.3 Simulative Evaluation

Fist, simulation studies with motion capture data are presented, to evaluate the success of
the proposed method in theory. These results have been shown already in [255]. 10 pre-
recorded gait patterns of healthy male subjects are included in the analysis, whereby the
data is obtained from the public Carnegie Mellon motion capture database?. The subject
group was extremely heterogeneous, concerning height, age and weight. The recorded gait
pattern of one subject is analyzed, yielding statistical characteristics for normalization
(mean and variance of angles, and variance of the time derivatives) and the eigenvector
matrix I'. Then, reconstruction performance is evaluated by a simulated impairment:
The corresponding motion variables are eliminated from the trajectories and subsequently
reconstructed from sound limb motion. The coupling matrix and statistical characteristics
are extracted from the averaged gait of the nine other healthy subjects. Finally, the
reconstructed motion is compared to the original motion. This procedure is repeated for
each subject.

As a result, BLUE-based CLME shows higher accuracy in reconstruction than PCA.
Fig. 5.2 shows the results of PCA-based CLME in this simulation for a representative
subject. Results of these theoretical investigations, however, can not be a guarantee for a
stable walking pattern. This is due to the fact that walking is a controlled motion, where
the limbs of the body interact in the control task. By contrast, a simulation studies simply
extracts a feedforward control input of the “sound” leg, which is taken from an intact
controlled system. Questions that arose were: Can a person walk with unidirectional cou-
pling? How will his own internal controller interfere? Can he maintain a normal walking
pattern with one leg, if the other one is not walking normally (e.g. due to immperfect con-
troller performance)? What happens to the overall functional performance of the coupled
system, if he changes the behavior of the sound leg? Can a person adapt to the coupling
of someone else?

To find answers to these question, two studies with healthy subjects are described in
the following, each addressing one of the extremes: A completely inactive subject, and
a completely unaffected subject, in order to evaluate both functionality and minimum
interference.

5.4 Functionality Study: Experimental Design

5.4.1 Setup and Protocol

In the study, 8 healthy subjects took part (6 male, 4 female, aged between 18 and 28,
weight between 68 and 82 kg). First, they walked for 3 minutes at 3 km/h in the LOPES
in zero-torque mode in order to get used to the robot. Then, they were asked to “sit” left-
sidedly on a small board mounted to the LOPES frame. Furthermore, a foot was attached

2The Carnegie Mellon motion capture database on mocap.cs.cmu.edu was created with funding from
NSF EIA-0196217. To process the data, the Mocap toolbox for MATLAB was used, which was developed
by N. D. Lawrence, University of Sheffield, UK.
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Figure 5.2: Comparison of the estimated motion (red dashed) of the left leg of the actual
leg motion (solid black). The motion estimation is based on separate coupling analyses
of stance and swing in the averaged gait patterns of 9 other healthy subjects.

to the exoskeleton leg on this side, such that the left LOPES leg became a prosthesis. Fig.
5.3 shows the setup in action.

Furthermore, a partial weight compensation system was used in order to lower the forces
acting on the exoskeleton (which was being challenged far beyond its originally intended
function as a joint torque source). This weight compensation was always adapted to lower
the subject weight to residual 50 kg, thus the weight compensated was different for each
subject.

Each subject then walked at 3 km/h with CLME based on the extracted coupling and scal-
ing parameters of a physiologically comparable person (criteria were gender, hip height and
weight), whose gait pattern had previously been recorded in zero-torque mode at 3 km/h.
Each subject was assigned a different reference subject, whereby the original gait pattern
of most subjects in this study also provided a reference for others. The matching was not
ideal due to the limited number of available subjects. The most unfavourable compromise
was taken for subject 6, whose hip height is approximately 8.5 cm lower than that of his
reference subject. Subjects were allowed to hold on to the lateral bars of the LOPES frame
in order to maintain balance. Prior to the experimental series, a workable input of DoF's
of the right leg was tried out. First, hip abduction, hip flexion and knee flexion angles of
the right leg plus the respective velocities were used to estimate the same variables for the
left leg. Whereas the simulative forecast looked fine, this appeared not to be a workable
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Figure 5.3: Experimental setup with the LOPES robot (without weight support). The
subject rests his left buttock on a board, which is supported by the LOPES exoskeleton
leg with a foot attached to it. The subject’s right leg is free and its motion is used as
input for CLME to give the reference motion for the robotic leg.

approach in practice. This is due to the fact that the reconstruction algorithm (working
with normalized values) becomes very sensitive to small abduction movements, because
the range of abduction is very small compared to hip and knee flexion. It was almost
impossible for the subjects to dominate their abduction with sufficient exactitude. There-
fore, walking with this configuration was neither robust nor intuitive and was replaced by
another approach: Only hip flexion and knee flexion angles and velocities of the right side
were taken to estimate the corresponding abduction, hip flexion and knee flexion of the left
side. Although this showed slightly less precise results in simulation, walking now became
feasible and robust.

5.4.2 Evaluation Criteria and Data Analysis

In a professional gait analysis [179], joint angles are generally measured via a motion
tracking system, and ground reaction forces are recorded using force platforms or sensor
insoles. However, the test setup for this experiment did not include measurements apart
from joint angle information. Neither ground reaction forces nor events like heel-strike
or toe-off were detected, because the primary goal of this study is to answer the binary
question of feasibility. However, using only kinematic data (exoskeleton angles), still some
important tendencies can be detected concerning control strategies of the right leg, spatio-
temporal gait characteristics, and gait symmetry. To assess these gait characteristics,
simple criteria are defined in this section.
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Control Strategies of the Sound Leg

It is of particular interest in how far the subjects maintain or adapt the control strategies of
their right leg when walking with the robotic left leg. This question is assessed by looking
at the synergies present in the right leg only, i.e. a PCA is performed on right angles
and velocites. Then, a correlation is sought between the original subject’s coupling, the
reference subject’s coupling, and the coupling during CLME-controlled walking. Features
of interest are the amount of variance explained by the first principal components, i.e. the
strength of correlation, and the form of correlation itself. For the qualitative analysis of the
trajectories of the first two principal components, step-to-step variance is eliminated by the
application of a Fourier series fit with four harmonics: First, the fundamental frequency
is extracted using Fast Fourier Transformation, then, a least-squares approach is used to
identify the Fourier coefficients.

Spatio-Temporal Joint Motion

Temporal joint motion is assessed by a quantification of the walking cadence, i.e. the
frequency, which has already been extracted during the Fourier series fit. Given a fixed
velocity (commanded by the treadmill), the frequency is inversely proportional to the
average step length. For a further quantification of spatial joint motion, the mean values
and the standard deviation S(¢) of the individual joint angles are calculated. The standard
deviation of the hip angle provides an indicator for hip excursion, and thus the step length
and the duration of stance. The hip angle is defined with respect to the vertical axis,
because the subject’s trunk inclination is not measured.

Gait Symmetry

For symmetry, a large amount of criteria and indices are available. In [213], a thorough
survey on gait symmetry measures is given. Most compare the same gait parameter, e.g.
step length or stance to swing ratio, between legs. A frequently used symmetry index ST,
which compares left and right parameter values z; and z,, has been introduced by [211].
Later, it has been slightly modified such that its absolute value ranges between 0 % and
100 % for positive parameters [65]:

Ty — I

ST = -100% . (5.10)

T, + 2
0% indicates perfect symmetry, such that the index could actually be considered a measure
of asymmetry.

This index is used in this study, and the chosen parameter x is the standard deviation
of the hip and knee angle (with the hip value representing an indirect measure of stance
duration and step length).
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5.5 Functionality Study: Results

All subjects were able to walk with the prosthetic robotic leg after a very short time of
practice (15-30 sec). The observations made during these trials, as well as the quantitative
measures will be described in this section.

5.5.1 Qualitative Observations

All subjects first exhibited exaggerated right hip flexion and too little extension. This
was due to the fact that their left leg was “sitting”, the hip continuously being flexed.
Anatomical constraints such as elastic joint moments then obstruct the correct extension
of the contralateral leg. The repercussions of this shifted hip motion (during the adaptation
phase) on the robotic leg were the following (which accords with calculations): Excessive
right hip flexion caused excessive extension of the left (robotic) hip, combined with ex-
cessive knee flexion. However, this caused much less functional problems than the lack of
right hip extension, which produced a lack of left hip flexion on the other side, combined
with insufficient knee extension. This led to deficient foot placement. All subjects quickly
learned to control left foot placement by adjusting their right hip extension, but many
maintained their functionally uncritical excessive hip flexion.

Apart from these difficulties, which were caused by the experimental setup, no major
difficulties appeared. Several subjects hesitated to shift their weight onto the left leg,
although the foot was properly placed. This increased the stance phase and the step
length of the right side (due to the running treadmill). Others (expecially subjects 3,7,
and 8) were more confident of their “prosthetic” foot and reached an almost normal-looking
walking pattern.

5.5.2 Quantitative Analysis

This section describes the outcome of the criteria defined in 5.4.2.

Subject Control Strategies for the Right Leg

From the analysis, only a few observations are above the level of significance (here and in the
following, p = 0.05): The cumulative fraction of variance explained by the first 2 principal
components decreases slightly (from an average of 83.9% to 85.2%). This shows a decrease
of the strength of correlations. The form of synergies changes as well, indicated by a slight
variation of the first 2 eigenvectors. However, no clear correlation was found (e.g. that the
new eigenvectors would resemble more those of the reference subjects). Instead, there was
a large variance among subjects. To illustrate these individual differences, in figure 5.4,
the trajectories of the first 2 principal components, approximated by their Fourier series
equivalents, are depicted exemplarily for four subjects. Whereas subject 5 maintained the
original couplings almost entirely, subject 8 adopted the couplings of the reference gait.
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Figure 5.4: Fourier-series approximations with 4 harmonics of the first 2 PCs of the right
leg for subjects 5-8. Solid blue line: Original gait of the subject, dotted red line: Gait
pattern of the reference subject, dash-dotted magenta line: Gait trajectory during
CLME walking. The reference gait for each subject is different.

However, no conclusions can be drawn from these contradictory results, especially given
the small sample.

Spatio-Temporal Joint Motion

The step frequency decreases in all subjects (from an average of 89 to 65 steps per minute),
which is equivalent to an increase in average step length. This is further affirmed by a
significant increase in the standard deviation of the right hip flexion by 5.6°. There is also a
slight increase in the standard deviation of the left hip, but below the level of significance.

Several correlations seem to exist between the change of statistical parameters of the
subject and the statistical parameters of the reference person, but only one observation
is above the level of statistical significance (considering the small number of subjects):
The mean hip angle of the reference subject is correlated with the mean hip angle in
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CLME-walking, although the mean of the original subject’s hip angle is uncorrelated with
both.

Gait Symmetry

To illustrate gait symmetry, the indices have been plotted in Fig. 5.5 for the eight sub-
jects, showing both original values and values for CLME walking. Negative values show a
prevalence of the left leg, positive values of the right leg.
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Figure 5.5: Symmetry indices ST for hip and knee flexion. 0 % indicates perfect symmetry;
the labelling refers to subject numbers. Displayed are the ST for each subject’s normal
gait and gait with the robotic prosthesis replacing the left leg. Positive values indicate
a prevalence of the right leg.

The changes in joint excursion symmetry are not consistent among subjects (some maintain
a very high level of symmetry), but there is a tendency to increase the dominance of the
right foot. This is indicated by a larger hip standard deviation on the right, and more knee
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excursion on the left. This means, the right leg makes longer steps and thus has a longer
stance phase and shorter swing than the left leg.

5.6 Functionality Study: Discussion

A prominent result is increased asymmetry, meaning that many subjects exhibited a longer
stance phase on the right than on the left leg. This can be seen both by direct observation,
as well as in the increased standard deviation of the right hip flexion, in the symmetry
index, and in overall decreased step frequency. This behavior can be explained by lack of
confidence in the robotic leg, given the short practice time of only 2 minutes.

The fact that inter-joint coordination in the right leg is less pronounced when walking with
CLME might be an indication that less automated, or pre-programmed control strategies
are used, instead more voluntary or conscious control of individual joints appears.

The correlation between the mean angle of the hip of the reference subject and the mean
angle of the hip in CLME-walking is a small indication that subjects might adapt to the
employed reference gait pattern during CLME walking, at least concerning certain features.

Longer practice times might have given both more confidence and more time for adaptation
to all subjects, but due to the uncomfortable and exhausting posture and due to the high
mechanical strain on the device, longer trials were not possible.

5.7 Interference Study: Experimental Design

To study interference with self-determined gait, healthy subjects walk in LOPES (on both
their own legs) with CLME, with conventional fixed-reference impedance control of both
legs, and with zero-torque control of both legs [261]. To rate the relative performance of
CLME concerning undesired interaction compared to the two other control modes, evalu-
ation criteria are formulated in terms of interaction torques, distortion of EMG patterns,
and distortion of joint trajectories.

5.7.1 Setup and Protocol

9 healthy subjects took part (aged 19 to 37, weight 51 to 100 kg, 2 female, 7 male). Some
subjects already had experience walking in the device with other controllers, and most
had at least some knowledge on the purpose of the study. Each subject walked with four
different controllers: Impedance control of both legs along a fixed reference trajectory,
PCA-based CLME control (with the right leg in zero-torque mode), BLUE-based CLME
control in the same configuration, zero-torque control of both legs. The block diagrams
for these three controllers are displayed in Fig. 5.6. The impedance for both legs in fixed-
reference mode, and of the left leg in CLME mode was identically set to the maximum
achievable value of 155 Nm/rad (the maximum stiffness is limited, as described in Chap. 2).
Sideways and forward Degrees of Freedom of the robot were controlled in Zero Torque, the
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Figure 5.6: Block diagrams of the three controllers. The first guides right and left legs along
fixed joint angles ¢, . .; and ¢, ;. CLME uses the joint coupling of the same reference
gait, and it complements the right leg's motion on-line to generate the reference for the
left leg. Control gains for joint impedance (IMP) and torque control (TC) are identical.

vertical DoF is passively weight compensated. The four control modes directly followed
each other, whereby each controller was active for 2 minutes, with a gradual blending of 5
seconds between controllers. Subjects were not informed which controller was active, and
they were instructed to walk actively the way they wanted to, yet to avoid walking out of
phase with the robot (which was possible due to the limited stiffness). The reference gait
pattern used for each subject stemmed from a randomly chosen preceding participant in
zero-torque mode, who was not necessarily of comparable physique. This alien reference
was used both for the fixed reference mode (by simple replay), and for the CLME controllers
(by extraction of the mapping function). The experiment was repeated with the subject’s
own recorded gait pattern in zero-torque mode as reference, in order to assess also the
potential benefit of an individually tailored reference.

Recorded signals were: Joint torques of the exoskeleton, EMG signals, and joint angle
trajectories. The EMG signals were recorded from four major muscle groups of each leg:
Rectus Femoris, Biceps Femoris, Tibialis Anterior, and Gastrocnemius. The EMG is first
highpass-filtered (n = 2, w, = 5 Hz), to extract movement artifacts and drift. It is
rectified and then smoothed by spline approximation. Angle and displacement trajectories
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were recorded using the integrated sensors in each degree of freedom of the robot, whereby
in the later analysis, only hip flexion and knee flexion in the sagittal plane are analyzed.
Subjective feedback of the subjects was documented as well.

5.7.2 Evaluation Criteria and Data Analysis

For the evaluation, the results of Zero Torque are defined as the baseline, i.e. the best
achievable result, with the following reasoning behind: Both for the fixed reference and in
CLME mode, a joint-space impedance controller calculates the desired interaction torques
as a reference for the low-level force controller (see Fig. 5.6). If the reference joint trajectory
matched the subject’s actual motion flawlessly, the desired interaction torques would be
zero, and the resulting behavior would be identical to zero-torque mode. This behavior does
not imply zero actual interaction forces, because the underlying force controller cannot be
ideal, and there is still some resistance generated (mainly due to uncompensated friction).
Thus, zero-torque mode represents the best possible outcome given a perfectly matched
reference trajectory.

A first and very direct criterion of interference is given by the robot’s joint torques. In
order to distinguish between torques that assist and those that resist, the torques are
not compared directly, but instead the power delivered to the left leg is calculated by
a multiplication with the joint velocity (The power introduced to the right leg does not
provide any additional knowledge, because this leg is in zero-torque mode in both CLME
controllers.). To obtain a single number for statistical analysis, accumulated power is
calculated via integration. In order to exclude adaptation effects, only the last 60 seconds
of each mode are used.

A second criterion is derived from muscle activity, as measured by the EMG. Highpass
filters (n = 2, w, = 5 Hz) are used to extract movement artifacts and drift. Afterward,
the EMG is rectified and then smoothed by spline approximation. The criterion used is
the distortion with respect to the “normal”, minimally perturbed muscle activity pattern
in zero-torque mode. In order to assess this distortion of muscle activity quantitatively in
a systematic way, EMG of each muscle and each single step is compared to the respective
subject’s mean EMG activity in zero-torque mode. This comparison is performed using the
algorithm of spatio-temporal correspondence developed by Giese and Poggio [90], which has
already been used for various tasks in motion analysis, e.g. to assess cerebellar dysfunction
[119]. This algorithm minimizes a quadratic cost functional by dynamically warping a
(possibly multi-dimensional) template trajectory onto a trial trajectory. It is based on
dynamic programming and outputs a temporal and spatial, non-uniform distortion of the
template. Therefore, it can adaptively cope with varying combinations of spatial and
temporal distortions. Fig. 5.7 shows the principle of the spatio-temporal correspondence.
EMG signals are scaled to have a standard deviation of 1 in zero-torque mode. It also
illustrates a weakness of the algorithm that has to be taken into account when applying
it to periodic patterns: The outcome highly depends on the chosen begin and end of the
trajectory, because any distortion there is interpreted as spatial distortion. This explains
the incorrect matching observable here at beginning and end (heel strike). This problem
is avoided in the further analysis by a varying definition of the gait cycle begin for each
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Figure 5.7: Spatio-Temporal Correspondence: EMG of the Rectus Femoris in step 7 is compared
to the template, which is the average EMG in zero-torque mode. Dynamic optimization
separates temporal and spatial distortion of each sample: Horizontal connection lines
represent purely temporal distortion; vertical lines represent purely spatial distortion.

muscle: The start- and endpoint of each muscle’s EMG trajectory is defined at a different
constant offset from the heel strike, in such a way that the major burst of the muscle’s Zero
Torque EMG pattern is in the middle. The process is robustly automated for each subject
and muscle using a sinusoidal approximation of the EMG. This way, distortion values of
the same order of magnitude are achieved for all muscles. For one step, average absolute
temporal and spatial distortions are calculated, as suggested by [119]. In order to exclude
adaptation effects, only the last 30 steps with each controller are used to calculate a mean
distortion value for each subject, muscle, and controller. Furthermore, all trajectories are
scaled by the standard deviation of the zero-torque activity.

A third criterion is obtained by an analysis of kinematic trajectories. In order to asses
distortions of hip and knee trajectory with respect to zero-torque gait quantitatively, the
spatio-temporal algorithm is used again. Here, it is applied to compare the two-dimensional
hip-knee trajectories of each of the last 30 steps in each condition to the zero-torque mean.

Statistical analysis of all three criteria is performed independently, but in a similar fash-
ion. A two-factor ANOVA (factor 1: controller, factor 2: own or alien gait) is performed
for both legs separately and for each of the criteria: Accumulated joint power, EMG
distortion, and kinematic distortion. The chosen level of significance is o« = 0.05, and
a Bonferroni adjustment compensates for multiple comparisons. This statistical analysis
of all criteria, especially of EMG and kinematic distortions, can only be performed after
a transformation of the data, because the distributions are skewed, and standard devia-
tions differ heavily between conditions. Transformations are applied to obtain normally
distributed data between steps for each condition (verified using Kolmogorov test) and
to fulfill the requirement of sphericity between conditions. Accumulated power is trans-
formed by offsetting and taking the square root. To EMG and kinematic distortions, the
log-transform is applied twice. As a scalar parameter for the statistical analysis, the mean
of the transformed EMG of all muscles is used.
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5.8 Interference Study: Results

Due to technical problems, two subjects completed only one of the two conditions, one
(#9) walked only with his own, the other (#5) with an alien gait. These unmatched trials
are included in the plots (such that the number of subjects there is 8 in each case), but
they are not included in the later multivariate statistical analysis (such that the number
of observations there is 7).

5.8.1 Subjective Feedback and General Observations

All subjects noticed the transition between fixed-reference control of both legs and CLME;,
as well as between CLME and Zero Torque, although the latter often not at once. 4 of
the subjects did not notice any difference between PCA and BLUE mode, 4 preferred
the BLUE controller, 1 the PCA controller. For both CLME conditions, most reported
that they needed to do more active foot clearance than usual or they mentioned a general
impression of increased resistance in comparison to Zero Torque. One subject (#2) could
not cope with PCA-based CLME and walked, although stably, in a strange manner.

5.8.2 Interaction Torques between Robot and Human

For a first look at robot-human interaction, Fig. 5.8 displays the cumulative power, i.e.
energy introduced over time. Impedance control with a fixed reference exhibits consid-
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Figure 5.8: Introduced cumulative power to the left leg over time (excluding initial adaptation),
when walking with an alien reference gait and the own gait pattern as reference for all
three controllers, and zero-torque mode for comparison. Positive slopes indicate that the
robot assists, negative mean that it resists the subject’'s motion.
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erable inter- and intra-subject variances. For several subjects, the interaction oscillates.
This phenomenon is especially strong and also visible in the figure when walking with an
alien’s gait (top). When walking with the own gait, the phenomenon also occurs, yet less
pronounced. Apart from these oscillations, there are several abrupt changes in slope with
the fixed reference. With the CLME controllers, the slope is rather constant.

Furthermore, introduced power tends to be higher in fixed-reference mode compared to
BLUE. For PCA-based CLME, systematic differences to the other two controllers are less
obvious. These observations hold both for the own and the alien reference gait.

The two-factor ANOVA for the left leg confirms the difference between BLUE and fixed-
reference mode: BLUE does indeed introduce significantly less power than fixed-reference
control, it does not even differ significantly from Zero Torque. PCA does not differ signif-
icantly from neither of the other conditions. The upper part of Fig. 5.9 shows confidence
intervals for accumulated power with respect to factor 1, i.e. comparing the four controllers.
A significant influence of the second factor (own or alien gait) cannot be shown, and the
interaction between factors is not significant either.

accumulated power left ® ® undesired influence [ | Zero | IBLUE
of the four controllers

(results of ANOVA) [ EEEEIPCA NN Fixed
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Figure 5.9: Multiple comparisons between controllers resulting from the two-factor ANOVA.
Top: Accumulated power, middle: EMG distortions, bottom: Kinematic distortions. Non-
overlapping intervals indicate significant differences of the means (o« = .05). All graphs
are scaled to fixed reference and Zero Torque.

5.8.3 EMG signals

As an example, Fig. 5.10 shows the EMG of the Biceps Femoris for the last 30 steps. The
median is taken instead of the mean in order to lower the effects of variation in timing of
the EMG bursts present in fixed-reference mode, which lower the mean EMG amplitude
there and give the other controllers an unfair advantage in visual impression. Fig. 5.11
shows the distribution of the transformed (double logarithmic, as stated earlier) mean
EMG distortions among the 8 subjects. Between fixed reference mode and PCA, there is
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Figure 5.10: EMG of the Biceps Femoris of all subjects. Displayed are the median EMG of
the last 30 steps with each controller (dashed black line), as well as the median EMG in
zero-torque mode with standard error (gray shade), when walking with alien reference.
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no clear tendency for one or the other. In contrast, BLUE seems to lower the distortion
compared to a fixed reference. The two-factor ANOVA for spatial distortions shows no
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Figure 5.11: Mean absolute spatial and temporal distortions of the left leg's EMG with respect
to Zero Torque and standard error among the 8 subjects when walking with an alien
reference. Mean values are drawn from the last 30 steps for each controller. RF: Rectus
Femoris, BF: Biceps Femoris, TA: Tibialis Anterior, Ga: Gastrocnemius.

significant differences between PCA-CLME and the fixed reference, but it confirms the dif-
ference between BLUE-CLME and fixed-reference mode for both legs. Only in the left leg,
distortions with BLUE are also significantly lower than with PCA. For temporal distor-
tions, neither BLUE nor PCA cause significantly less distortions than the fixed reference.
The analysis also shows that all assistive controllers distort the EMG of left and right leg
both temporally and spatially significantly more than explained by normal variation in
Zero Torque. The second factor (own or alien gait) reaches a level of significance for the
left leg’s spatial EMG distortions only. The interaction of both factors is not significant.
The middle part of Fig. 5.9 illustrates the significant differences in temporal and spatial
EMG distortions between controllers.

5.8.4 Kinematics

To assess kinematics, knee and hip joint trajectories are analyzed. For a visual impression,
Fig. 5.12 illustrates temporal and spatial distortions of the subject’s median gait pattern
for 30 successive steps at the end of each controller condition. The median is again chosen
in order to obtain functional steps for fixed-reference mode. Statistical values are given in
Fig. 5.13. The results of the two-factor ANOVA with respect to the first factor (controller)
are displayed in the bottom part of Fig.5.9. For the left leg, CLME does not show clear
advantages. The right leg’s path, however, is disturbed significantly less by both CLME
algorithms. For both sides and both criteria, all assistive controllers differ from Zero
Torque, and PCA and BLUE do not differ significantly from each other. For the left leg,
the second factor, i.e. whether own or alien reference is used, reaches significance only for
spatial distortions. For the right leg, the factor is significant both in temporal and spatial
distortions. For all controllers, distortions are lower when the subject’s own gait pattern
is used, interaction of both factors is not significant.
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Figure 5.12: Median hip and knee trajectories (dashed black lines) of the 30 last steps for
each controller and each subject when walking with an alien reference gait pattern, each
compared to the mean zero-torque trajectory with standard error (gray).
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Figure 5.13: Mean and standard error among subjects of spatial and temporal distortions of
the hip-knee trajectory for the left and for the right leg, analogous to EMG.

5.9 Interference Study: Discussion

The periodic fluctuations of the introduced power can be explained by the compliance of the
device: Subjects can walk out of phase with respect to a fixed reference pattern. This leads
to cyclic oscillations with a frequency of about 0.05 to 0.1 Hz, which has been observed and
described as beat phenomenon by [13] for a pneumatic gait training robot. The controllers
suggested here, the CLME controllers, inherently avoid out-of-phase walking, and thus no
beat phenomenon occurs. However, the phenomenon could also be avoided by a temporally
variable reference with a constant synchronization between reference pattern and subject
gait, as suggested by [13].

The differences in introduced power suggest that fixed-reference control tends to assist the
subjects, although they would be able to walk on their own. Concerning this criterion,
BLUE-based CLME hardly differs from the results of zero-torque mode (the best achievable
result with the robot), both moderately resist the subject’s motions. Furthermore, the fixed
reference provokes changes in slope, which might stem from adaptation of the subject. In
BLUE mode, on the contrary, each subject is influenced almost invariably over time, leading
to the deduction that there is hardly any adaptation needed to walk with this controller.

With respect to timing, the improvement of BLUE compared to a fixed reference is less
pronounced than compared to spatial distortion, both for kinematic and for EMG data.
This leads to the conclusion that deficient synchronization of reference patterns might not
be the only cause of undesired interaction torques.

In Fig. 5.12, the distortion introduced by BLUE seems systematic and always concerns
the late swing phase. This is in congruence with subject commentaries and with simulated
reconstructions of one leg based on the other. An explanation is the weakness of the
linear estimator used for BLUE, which cannot capture all details of the gait cycle and
systematically under-estimates knee flexion amplitudes. It is probable that better results
could be obtained by using a non-linear estimator. In contrast, PCA and fixed-reference
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control show rather unsystematic distortions among subjects. Furthermore, their inter-
subject variation is also higher.

It would be expected that subjects are less perturbed when their own gait pattern is used
as a reference, because then the reference is tailored to them. This fact seems confirmed
by Fig. 5.11. However, for the statistical analysis, this effect is too small compared to the
controller type used, because significance of this second factor could not be shown for most
variables (considering the small sample).

An interesting, yet not further analyzed observation is that BLUE and PCA both signifi-
cantly influence the right leg in comparison to Zero Torque. This might be an indication
that disturbances on one side show repercussions on the other due to mechanical coupling,
but it could also be due to adaptation effects of the subject.

All observed effects are rather small, which is due to the high level of compliance of the
robot: Even in the stiffest possible configuration, subjects are able to walk their normal
pattern (depending somewhat on their physical strength), and they exhibit almost natural
EMG activity.

5.10 Conclusion

This chapter presented Complementary Limb Motion Estimation (CLME) as a new control
method to achieve patient-cooperative behavior of rehabilitation robots. The patient’s
intended motion for impaired limbs is deduced from residual body motion, using knowledge
of physiological interjoint coupling. Two experimental studies with the with the gait
rehabilitation robot LOPES addressed the extreme requirements that have to be fulfilled to
let a patient participate actively: Functionality on the one hand, and minimum interference
with independent subject activity on the other hand.

The first study investigated the capability of humans to control their leg via the other
one, meaning how far a subject can cope with a unidirectional coupling scheme of sound
and robotically moved DoFs. This study confirmed that CLME is capable of generating
functional gait for subjects with no control of the assisted leg. Functional walking was
reached after a very short time by all subjects. The level of gait symmetry varies widely
among subjects, probably due to a varying level of confidence in the robotic prosthesis.
It has also been shown that it is possible to use synergy information from other healthy
reference subjects, and indications of adaptation to the reference pattern have been found.
Thus, the question can be answered affirmatively: Inoperable limbs can be controlled
on-line using motion information of sound limbs.

The second study aimed to evaluate interference with self-determined gait. Two regression
algorithms for CLME (BLUE and PCA) are used to generate the reference for an impedance
controller on-line, and they are compared to two extreme control strategies: One extreme
is impedance control along a fixed gait pattern, which does not leave any freedom to
the subject except for the robot’s intrinsic compliance. The other extreme is zero-torque
control, which gives maximum freedom to the subjects. Results indicate that interference
of the robot is lower with BLUE-based CLME than with control along a fixed reference
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trajectory, mainly in terms of lowered introduced power and more natural EMG activity.
This implies that subjects can walk more naturally with CLME, and they are assisted less
by the robot when it is not needed. Furthermore, the fixed reference trajectory causes out-
of-phase walking in the compliant robot. This problem is inherently avoided by CLME.
For all criteria, BLUE-based CLME outperforms the original PCA method, which does not
show any significant improvement compared to a fixed reference, except for the solution
of the synchronization problem. Subject reaction to all controllers varies strongly, like in
the first experiment. Only for BLUE-based CLME;, all subjects react more or less similar:
They walk almost naturally, exhibiting only a small systematic distortion concerning a
specific gait feature, which is foot clearance.

The predictable behavior of BLUE-based CLME makes further fine-tuning easier, e.g.
using superposed Virtual Model Control, which is specialized for correction of specific
features. This leads to a superposition of two controllers: CLME generates a trajectory
for a severely impaired subject who cannot walk functionally without help, then VMC
fine-tunes this trajectory. This superposition has been tested in preliminary experiments,
and it showed very promising results. Furthermore, the fact that the specific method of
regression has such a big influence on performance motivates further investigations in this
direction, possibly by an extension into the nonlinear domain.

The described experiments with healthy subjects are not sufficient yet to prove the suit-
ability of CLME for stroke patients, who might not dispose of one perfectly “sound” or
“unaffected” leg to control their paretic leg. Optimistic expectations can be drawn from
the fact that stroke patients mostly exhibit only mild impairments on the “unaffected”
side (which seem to be due to cognitive deficiencies) [240] and fast recovery thereof, at
least for right hemispheric stroke [239]. However, clinical studies with CLME have to show
whether these expectations are justified.
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6 Conclusions and Future Directions

6.1 Summary of Methodic Contributions

This thesis investigated several control aspects for assistive devices, with major foci on
user-dominated control, and on stability of such coupled robotic/biomechanical systems.

Chap. 2 is concerned with control of Series Elastic Actuators (SEAs). A state-of-the-
art cascaded control scheme is employed for impedance control, where a motor velocity
loop is embedded in the force controller. Based on a passivity analysis of this control
scheme, parameter limitations are found both for the inner force control loop and the outer
impedance control loop. The passivity analysis for the impedance control loop leads to an
important result: If passivity is desired, the rendered stiffness cannot exceed the stiffness of
the mechanical element of the SEA. A second result is found during the analysis of the force
control loop: A cascaded controller with internal velocity loop allows to use integrators
without jeopardizing passivity. This is useful to treat static friction, and it contrasts earlier
control schemes, where passivity analysis showed that no integrators should be used [194].
The good performance of the controller is demonstrated in practical experiments, which
also confirm the theoretically predicted stability limitations.

Chap. 3 investigates an anti-causal identification method for nonlinear systems of Ham-
merstein type. Hammerstein models are commonly employed to describe muscle reaction
to Functional Electrical Stimulation. The proposed concept is advantageous if the inverted
model is easier to describe than the original causal system. This is the case for muscles,
where the inverted recruitment curve can be approximated well by a simple third-order
polynomial. Another advantage of the inverted identification is that the inverted nonlin-
earity is directly available for further control design steps like input-output linearization.
For evaluation, the method is compared to linear and nonlinear forward identification
methods. As all algorithms are based on analytical solutions of optimization problems,
the global minimum is reliably found in all approaches. However, the complex identifica-
tion algorithms do not perform much better than a simple linear model in the practical
experiments, which leads to the conclusion that the Hammerstein model itself might not
have many advantages in modeling muscle behavior in this context. One explanation are
numerous unmodeled factors and parameter variations during artificial muscle recruitment.

Chap. 4 focuses on the trade-off between modeling accuracy and practical applicability
of control strategies for hybrid robotic/biomechanical systems. The example system is a
Hybrid Neuroprosthesis, where both human muscles and an external exoskeleton are used
to actuate the human leg. In this context, rigid coupling between robot and human limbs
is the common assumption. However, the results of a stability analysis heavily depend
on the validity of such an assumption, and closed-loop control might become unstable.
Here, a stability analysis is contributed that analyzes the effect of simplifications such as
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negligence of input saturation, nonlinearities, and time-varying and uncertain parameters
in hybrid robotic/biomechanical systems. All the mentioned adverse effects are described
via an affine system representation. Using this representation, a sensitivity analysis is
performed to detect time-varying parameters with destabilizing effects, and to identify the
most robust control strategy. The results show the strongly negative effects of compliant
coupling between human limbs and robot in terms of stability: The use of a simplified
model with rigid coupling shows to be acceptable only in terms of exoskeleton control and
efficiency of feedforward components. However, the simplified model causes risks during
closed-loop FES control. The most robust controller in this case does not include feedback
control of the muscles, but only feedforward stimulation. Control performance of this
simple control concept does not deviate much from the other controllers. To deal with
uncertain muscle behavior and uncertain coupling dynamics between human and robot,
this analysis thus advocates the simple approach of open-loop FES control combined with
closed-loop control only of the (almost precisely known) robotic part of the system.

Chap. 5 describes a new approach to user-dominated control of assistive systems: Com-
plementary Limb Motion Estimation (CLME). The method can even be applied when the
human user has absolutely no control of the limbs to be assisted. CLME is based on re-
gression, and residual body motion is used as input for an instantaneous mapping of states
to the impaired limbs. The example that is considered is a patient with unilateral paresis,
and the impaired leg is estimated based on the sound leg’s motion. CLME is tested in two
experiments with extreme conditions: A subject with absolutely no control of one leg, and
a fully active subjects with no impairment at all. In the first experiment, functionality
of gait is confirmed. Results of the second experiment show that CLME lowers undesired
interaction between robot and human significantly compared to impedance control along
a fixed reference for both legs. Furthermore, muscle activity patterns are less altered with
respect to undisturbed gait. This second experiment also compares two different regres-
sion approaches: One is based on Principal Component Analysis (PCA), the other on Best
Linear Unbiased Estimation (BLUE). BLUE-based CLME clearly outperforms the original
PCA method.

6.2 Implications for Control of Assistive Devices and
Future Work

In light of the increasing proximity of robots and humans, there still remain many open
questions concerning suitable control strategies. The methods described in this thesis
might be extended in different directions in search for answers.

Modeling the human sensorimotor system has received enormous interest, and the obtained
models are becoming more and more detailed. However, there is still a gap between the
model complexity that is achieved in state-of-the-art sensorimotor models, and how much
of this knowledge can be made available to improve control of robots that interact with the
human. One reason is that the current models are subject to high structural uncertainty,
because only assumptions can be made concerning the exact functioning of spinal cord and
brain. Another reason is that parameterization and possibly even structural reconfiguration
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of the models is necessary for each individual, especially for impaired subjects. Under
laboratory conditions, isolated parts of the models can be targeted and identified. In
contrast, under practical circumstances, a large number of unmodeled influencing factors
remains. Moreover, there is limited and possibly noisy data available, especially when
using only non-invasive methods. Under such circumstances, it is difficult to identify the
high number of parameters in complex models. The shortcomings of such an approach have
been demonstrated in Chap. 3, where a complex model’s parameters are assigned contrary
to their original meaning in the model, even if the global optimum is found. In this
case, simple linear identification performs just as well. Considering these shortcomings in
identification of complex models, the solution to biomechanical uncertainty and variability
will probably not lie in an exhaustive calibration prior to the actual use of an assistive
device. Instead, a feasible strategy is to control the device in a way that it needs minimal
biomechanical information and can handle heavy parameter uncertainties.

Simple, generic concepts that allow global optimization and a macroscopic view are ben-
eficial not only during identification, but also in control: Generic safety mechanisms can
deal with growing complexity more reliably than heuristic supervision and fault detection.
Compliant actuation has been a major step in this direction. Although still a young princi-
ple, it is more and more becoming the default approach in new designs. The investigations
concerning passivity of compliant actuators, as presented in this thesis, are a small con-
tribution to this field. Another piece of the puzzle towards generic safety concepts might
be the described polytopic approach to analyze robustness of Hybrid Neuroprostheses and
the resulting advocacy for simple control concepts. Both for SEA control, as well as for the
Hybrid Neuroprosthesis, the theoretically predicted stability limitations are not far from
the ones encountered in practical experiments. These results justify theoretical exploration
of stability limitations even though a macroscopic view enforces conservative methods.

New developments in control of assistive devices increasingly aim at adaptive and learning
behavior of the controllers. For example, Assist-as-Needed control attempts to continu-
ously challenge a neurologically impaired subject during training, and it therefore reduces
assistance when tracking errors are small [281]. Adaptive strategies could be combined
with various methods presented in this thesis. For example, the passivity analysis of SEAs
should be extended to investigate also implications and limitations of a variable impedance
in the outer loop. Furthermore, adaptive strategies can be used to calibrate FES control
in Hybrid Neuroprostheses, which would replace model parameterization via prior identi-
fication. FES control could instead be optimized by a rather simple cycle-to-cycle on-line
adaptation during operation like in [162] or [86]. However, adaptive behavior of control
gains can lead to new stability risks. Following indicative results of this thesis, these
risks should not be underestimated, but they can be counteracted by avoiding unnecessary
complexity in the structural description of the system.

A major issue for assistive devices will be to find better interfaces to enable humans to
control robots like an extension of their own body. These interfaces have to be convenient
to use, and the less invasive they can be, the better. An important prerequisite is that
robot behavior should be predictable to allow efficient use by the human operator. This
can be achieved either by making robots behave human-like, or by keeping their control
very simple. The first possibility is still far away. The second is more in reach, and it
has another fundamental advantage: The device can be optimized in a form that both
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healthy and impaired humans can integrate all their functions and only use the robot as
an extension for tasks that they cannot perform alone, avoiding needless duplication of
capabilities. CLME can be seen as one step in this direction of simple robot behavior
with an intuitive interface, but it is still far away from being called a symbiosis between
robot and human. Future work to improve CLME might aim at a further generalization
of the presented motion intention estimation. Considering the different results of the two
regression methods BLUE and PCA, an interesting question is to find yet a better mapping,
e.g. using nonlinear regression. This might reduce the systematic error introduced by
BLUE concerning disturbed foot clearance. Another, though less elegant approach to
solve this problem would be a gait phase-specific fine-tuning of the reference pattern.
Preliminary experiments to combine CLME with Virtual Model Control, which can be
used to selectively increase foot clearance [71,263], indicated that a superposition of the
two assistive control concepts can be effective. Future investigations should also aim at
a clinical evaluation of CLME with hemiplegic patients, to show whether the cooperative
behavior with healthy subjects transfers to the clinical domain and whether it eventually
leads to improved therapeutic outcome.

CLME can be applied not only to exoskeletons, but also to above-knee prostheses. Pre-
liminary experiments showed a highly accurate estimation of the knee angle, and one
above-knee amputee has already successfully walked with a prosthesis controlled by BLUE-
based CLME. However, for practical application, more motions (e.g. stair climbing) and
also the transition between motion primitives must be addressed. The required motion
segmentation could be performed by hand, but possibly also by dynamic clustering, us-
ing methodologies such as Generalized Principal Component Analysis [270] or Correlation
Clustering [28].

Concerning interfaces, this thesis only focused on appropriate input devices for the human
to convey his intention to the robot. However, multisensory feedback from the robot to the
human is just as important, and future investigations should aim at an integrated solution
of input and output devices.
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A LOPES: A Low Weight Exoskeleton with
Series Elastic Actuated Joints

The experiments described in Chap. 2 and 5 have been carried out using the LOPES
gait rehabilitation robot [269], which was developed at the Laboratory of Biomechanical
Engineering at the University of Twente. The hardware description given in [262] by the
coauthoring developer Jan Veneman is reproduced here, slightly modified and shortened.

Main goal during the hardware design process was to provide a platform that can leave
maximum freedom to the user, both concerning Degrees of Freedom (DoFs), as well as
concerning low realizable impedance. In order to allow kinematically natural walking

Figure A.1: Design of the LOPES robot: (a) Degrees of freedom of the pelvis and leg segments
of the LOPES gait rehabilitation robot. (b) Design of the SEAs: Bowden cables connect
the springs to EM motors, which are detached from the exoskeleton. (c) Photographic
impression of LOPES in operation.

patterns, both horizontal pelvis translations are actuated (1 and 2 in Fig. A.1); the vertical
motion of the pelvis is free with passive weight compensation (3). There are three rotational
joints per leg: Hip abduction (4), hip flexion (5), and knee flexion (6). With these nine
DoFs, LOPES allows more versatile motion than just forward stepping (as provided by
commercial devices like the Lokomat [55]). Maintaining the fundamental instability of a
standing or walking human, LOPES allows to train balance, which has been recognized as
an important aspect of gait training [120,199]. Pelvis motion is also increasingly integrated
into other new robotic devices such as ALEX [19] or KineAssist [180].

To achieve low impedance, it is crucial to minimize inertia of the actuated construction
(the exoskeleton), because the means to reduce apparent mass by control are limited [54].
The strategy to reduce inertia is two-fold: Firstly, the exoskeleton is lightweight, and the
heavy actuators are not mounted on it; instead, they are mounted on a frame behind the
robot, and Bowden cables provide flexible torque transmission to the joints (see Fig A.1(a)).
Secondly, Series Elastic Actuators (SEAs) actuate the joints, which detach actuator inertia

111



A LOPES: A Low Weight Exoskeleton with Series Elastic Actuated Joints

from the user via compliant elements (springs). SEAs are described and analyzed in
Chap. 2. For the rotary joints, two compression springs are connected to the actuator disk
with a cable so that a torsion spring is created between the actuator disc and the load
side (see Fig. A.1(b)). Both springs are pre-tensioned with the maximum desired force,
thus the cables are always under tension during operation. The concept, construction
and functionality of the joints are described in [269]. The sideways pelvis translation is
equipped with a translatory SEA. In contrast to the devices mentioned above, Lokomat,
ALEX and KineAssist, which use stiff actuators, the SEAs make LOPES intrinsically
compliant, similar to PAM and POGO presented in [13].

Table A.1 provides the geometric and inertial specifications of the exoskeleton part. For
each segment of the exoskeleton, the length L, the centre of mass location with respect to
the proximal joint Ly, the mass m, and the moment of inertia around the centre of mass
Js1 and around the proximal joint Jg are listed for an average configuration (the segment
lengths are adaptable to the patient). Table A.2 gives the specifications of components used

L Lcom m Js1 Js2

Upper limb | 0.43 m | 0.27 m | 2.9 kg | 0.088 kgm? | 0.30 kgm?
Lower limb | 0.37 m | 0.17 m | 2.25 kg | 0.064 kgm? | 0.13 kgm?
Pelvis B/F 35 kg
Pelvis L/R 27 kg

Table A.1: Dimensions and mass properties of the LOPES exoskeleton

in the actuation part. Motor and gear inertial properties and transmission ratio ¢ determine
the reflected inertia J4 or my4 of the drives in the exoskeleton coordinate system: For the
sideways direction, the reflected mass m 4 of the drive is 1.2 kg, much less than the mass of
the pelvis segment, meaning all parts of the robot that move in lateral direction (27 kg).
In contrast, the reflected moment of inertia J4 of the drives actuating the rotational joints
is 0.13 kgm?, which is in the same order of magnitude as the moment of inertia .J;5 of the
exoskeleton segments. However, as the motor mass is decoupled from the exoskeleton by
the springs, the actuator mass is not felt by the subject, and the reflected mass of the
device is reduced to the exoskeleton mass only. The disc radius r4 and the spring constant
ks in Table A.2 define the intrinsic rotational stiffness K of the SEA: For hip and knee, K
is given by 2k.r? = 155 Nm/rad.

DoF Power | Refl. inertia Jy, my T4 ks
Flex/ext hip | 567 W 0.13 kg m? 0.047 m | 35.1 kN/m
Flex/ext knee | 567 W 0.13 kg m? 0.047 m | 35.1 kN/m

Ab/ad hip | 567 W 0.13 kg m? 0.047 m | 57.2 kN/m
Left/right | 690 W 1.2 kg 0.098 m | 3.98 kN/m
Back/forward | 250 W 2.3 kg

Table A.2: Actuator specifications of the LOPES

112



B Limitations of a Series Elastic Actuated
Robot in Cartesian Space

As illustrated in Chap. 2, both the bandwidth and the maximum stiffness are constrained
in a Series Elastic Actuator. When a robotic manipulator, such as an exoskeleton, is
actuated this way, the limitations map to limitations in Cartesian space. On the LOPES
robot, one cooperative control scheme (besides Complementary Limb Motions Estimation,
as described in Chap. 5) is Virtual Model Control (VMC) [71,263]. VMC attempts to
separately modify selected gait characteristics using virtual passive components such as
springs and dampers. These elements are mainly implemented in Cartesian space, e.g. to
separately modify step height and step length. Exoskeleton inertia generates undesired
interaction forces that cannot be masked by the controller, due to the location of the
force sensor between drives and exoskeleton. The influence of stiffness limitations in joint
space and exoskeleton inertia on the achievable stiffness and bandwidth in Cartesian space
has been analyzed in [262] by the coauthor Herman van der Kooij, and this analysis is
reproduced here with minor modifications in nomenclature and conventions.

B.1 Performance Limitations due to Limited Stiffness

To meet passivity requirements, the maximal joint stiffness that can be realized by joint-
space impedance control is limited by the spring stiffness of the series elastic element, as
was shown in the previous section. This results in boundaries for the maximum displayed
Cartesian stiffness, whereby the relation between the Cartesian stiffness matrix K, and
the joint stiffness matrix K., is defined by the Jacobian [57]:

K,=J"TK,J" (B.1)

The mapped Cartesian stiffness ellipse, with K, as the identity matrix and a joint stiffness
of 1 Nm/rad at hip and knee is displayed in Fig. B.1. Its shape and orientation are deter-
mined by the eigenvalues and -vectors of K,, whereby it can be seen that the eigenvalues
depend on the knee angle.

When the exoskeleton has 90° knee flexion, the smallest eigenvalue of K, is 2.53, and it
is 1.3 with 10° knee flexion. The worst case is when the knee is fully extended, and when
the Cartesian stiffness ellipse is aligned with one of the virtual models. In this worst case
scenario, the Cartesian stiffness is only 200 N/m given the maximal joint stiffness of the
hip and knee of 155 Nm/rad, as given in Table A.1.
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Figure B.1: Ellipses of reflected mass (red and dashed) and stiffness (green and solid) at the
ankle. The larger the ellipses, the less mass or stiffness is reflected.

B.2 Performance Limitations due to Manipulator
Dynamics

Without additional sensors, the controller cannot compensate for the open-loop impedance
of the exoskeleton. As a consequence, in free space, the human operator will always feel the
full inertia and friction of the manipulator [2], and thus not only the desired impedance.

The undesired additional interaction torques 7 in the swing phase are given by the equa-
tions of motion of the exoskeleton:

T =My(0)@ +v(p, ) +g(p), (B.2)
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where ¢ is the vector of joint angles, M, (¢) is the mass matrix in joint space, v(¢p, @) are
Coriolis and centrifugal torques, and g(¢) are gravitational torques. To give an idea of the
inertia of the device reflected at LOPES’s ankle, these unwanted torques can be mapped
to forces in Cartesian space with ankle position a:

F = M, (@)& + va(p, @) + g.(#), (B.3)

whereby the relation between joint space and Cartesian space matrices can be derived
using the Jacobian [57].

To compensate the components v,(¢, ) and g,(¢), the impedance controller could be
modified, since both terms only depend on joint angles and velocities. However, in our
application, we compensate neither of these forces: Firstly, centrifugal and Coriolis forces
in v, are negligibly small. Secondly, subjects walking with compensated exoskeleton grav-
itational forces g, reported that it felt unnatural, and compensating for g, with constant
M, increases the natural frequency (As stated before, M, can not be reduced by any
causal controller).

Especially at high frequencies, the behavior of the device is dominated by the reflected
mass M, of the exoskeleton. With respect to the ankle, this reflected mass is related to
the joint space mass matrix by:

M, =J "M, J " (B.4)

Using the specifications given in Table A.1, this reflected mass is visualized by the inertia
ellipse of Fig. B.1. Its shape and orientation are determined by the eigenvalues and -
vectors of M. The orientation of the ellipse is always perpendicular to the lower segment
of the exoskeleton, which means that the reflected mass is minimal perpendicular to and
maximal in the direction of the most distal segment of the exoskeleton. The eigenvalues
of M, only depend on the knee angle of the exoskeleton. The smallest eigenvalue remains
fairly constant around 0.95 kg. The largest eigenvalue is minimal (3.9 kg) when the knee
is 90° flexed, and increases when the knee is extended. Note that the reflected mass of the
device would be much higher if the motors were not detached from the exoskeleton, and if
the motor mass were not decoupled from the device by the series elastic element.
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C Functional Electrical Stimulation

In physiological muscle recruitment, the nerves transmit motor commands to the muscles
encoded in electrical pulses. Exploiting this mechanism, deficient motor control can be
assisted using an external electrical field, which is called Functional Electrical Stimulation
(FES). Muscle response to FES, however, is strongly nonlinear and time-variant. The
torque depends on the spatial and temporal recruitment of muscle fibers, on the muscle
length, and on the velocity of contraction. In the following, the physiological mechanisms
will shortly be outlined, including intrinsic biomechanical properties as well as reflexes.

C.1 Signal Transport in the Nervous System

C.1.1 Physiological Nerve Function

The human Nervous System consists of the Central Nervous System (CNS), which incor-
porates Spinal Cord and brain, as well as peripheral nerve pathways. There are sensory
nerve fibers, also called afferent and motor nerve fibers, also called efferent. The sensor
pathways transmit information encoding external stimuli to the CNS, whereas the motor
pathways transmit commands from brain and spinal cord to the muscles.

Signal transport in the nervous system is performed by the nerve cells or neurons. At rest,
there is a difference of potential of about -80 mV at the neuron’s cell membrane. This means
that the cell is charged negatively with respect to the extracellular space. When external
stimuli provoke a depolarization above a certain threshold (about -50 mV), internal positive
feedback loops change the potential at the membrane abruptly, such that it reaches a value
of about 30 mV. This value does not vary with the amount of external depolarization. The
abrupt variation in potential is called motor potential or action potential.

A stimulus travels along the neuron, because an action potential at a local region of the
membrane suffices to depolarize also neighboring membrane regions, initiating the positive
feedback loops also there. As the amplitude of the action potentials is constant, they
have binary character, and information is encoded in the frequency. For motor neurons,
this frequency lies between 20 and 100 Hz. A detailed description of the physiological
background can e.g. be found in standard works like [63].

C.1.2 External Nerve Stimulation

A lesion in the nervous system can disrupt the the generation of appropriate motor com-
mands, or the signal transmission to the muscles, because possibilities for regeneration of
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nerve cells are limited, in contrast to other cells of the human body. Depending on the
type and level of a a lesion, it is possible to excite peripheral efferent neurons by external
stimulation, and to cause muscle contractions this way. This is the basic principle of motor
neuroprostheses, and it can be used both for functional restoration (mainly for spinal cord
injury, SCI) and for therapy of the neurological deficits (e.g. after stroke). A depolariza-
tion of peripheral nerves can be achieved by pulsed magnetic or electric fields. The main
advantage of Repetitive Peripheral Magnetic Stimulation (RPMS) is that it does not cause
any pain in patients with intact sensory nerve pathways, whereas for mobile applications,
the generation of stimuli by electric currents, so-called Functional Electrical Stimulation
(FES), has the advantage of limited weight, size, and energy consumption of the devices.

According to the form the stimuli are supplied, three methods can be distinguished: Tran-
scutaneous, percutaneous, and fully implanted electrodes. Transcutaneous electrodes are
only attached to the skin, whereas percutaneous stimulation works via needle electrodes
inserted into the muscle. A new development in implantable systems are so-called micros-
timulators [145], which dispose of a wireless connection to controller and energy supply
outside the body. The advantages of implantable and percutaneous electrodes are improved
selectivity, i.e. that the desired muscle can be targeted with much higher precision, and that
also deeper muscle groups can be accessed. Furthermore, the required electric field strength
can be substantially reduced compared to transcutaneous stimulation, where skin and fat
tissue cause high impedances. An invasive method, however, always introduces the risk
of infection. Fig. C.1 shows the transcutaneous stimulation setup used in this work: The
eight-channel stimulator MOTIONSTIMS of the company Krauth+Timmermann, Ham-
burg, is used to stimulate the quadriceps muscles and the hamstrings of the subjects.

Figure C.1: The stimulator MOTIONSTIM8 from Krauth+Timmermann is used for transcuta-
neous stimulation of the quadriceps muscle group, which is responsible for knee extension,
and hamstring muscles (on the back of the leg), which are responsible for knee flexion.

FES artificially causes action potentials in the neurons. To achieve this, pulses are gen-
erated, which depolarize the neurons. To avoid corrosive processes at the electrodes and
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in the tissue by a cumulation of electric charge, the stimulators generate biphasic pulses:
The depolarizing, mostly rectangular impulse is followed by a second, not depolarizing
pulse in the opposite direction, which assures neutrality in the tissue. This second pulse
is commonly not rectangular, but exponentially decreasing.

Generally, there are three different parameters, which all influence muscle behavior dis-
tinctly: The frequency, the pulse width, and the amplitude of the current impulses. The
way how these parameters modulate muscle force will be outlined in the following.

C.2 Physiological and Artificial Muscle Recruitment

C.2.1 Modeling Muscle Response

Of the three types of muscles in the body, skeletal muscles, cardiac muscles, and smooth
muscles, only the skeletal muscles will be considered here, which are responsible for the
movement of limbs. The properties of the muscle are determined by its two main com-
ponents: The contractile elements, and the tissue around them. The contractile elements
consist of filaments (actin and myosin), which interact over cross bridges. The tissue
around them is called fascia, and its dynamical properties can be approximated by springs
and dampers.

In Sec. 3.1.1, several approaches have been summarized that aim to describe muscle re-
sponse to FES mathematically. Here, the view is limited to the model of [268], which
describes the muscle by a simplified nonlinear model in terms of the easily measurable
quantities joint angle and velocity instead of muscle length and contraction velocity. This
muscle model is illustrated in Fig. C.2: The pulse width PW of the stimulation signal is
the input to a system with a static nonlinearity f, (recruitment curve) in series with a
linear dynamic model (activation dynamics), represented by the transfer function G,(s).
The output of the nonlinearity is called activation level a. The output of the transfer
function is multiplied with nonlinear terms depending on joint angle and angular velocity,
and then yields the muscle torque 745 acting on the joint.

L fe)
PW : a . Ga(S) Ttes
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Figure C.2: Torque response T to FES is modeled with a nonlinear recruitment curve f, that
relates pulse width PIW and activation level a, followed by a linear transfer function G,(s),
and a multiplicative dependency on joint angle and angular velocity (modified from [185]).
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In the following, a short description of characteristics and biological background of the
model’s components (activation dynamics, force-length and force-velocity feedback) will
be given, which is mainly based on [279]. A more thorough description can be found there.

C.2.2 Activation Dynamics

The nonlinear activation dynamics are modeled by a succession of a static nonlinearity f,
and linear dynamics G,(s). The activation dynamics are determined by the behavior of the
individual motor units, as well as the neural mechanisms that control their recruitment.
The term motor unit subsumes three main elements of the command pathway to the muscle
fiber: The synaptic junction in the spinal cord, the motor axon, and the motor end plate
in the muscle fibers. One motor unit can control a varying number of fibers, whereby this
number determines how finely the control task can be executed [81].

The motor units are recruited in an all-or-nothing event by means of the electrical pulses,
the action potentials mentioned above. One action potential provokes a single muscle
twitch. The action potentials have constant amplitude, whereby the larger the motor unit,
the higher the action potential [155]. The force produced by the muscle can be increased
by temporal summation, i.e. a higher frequency of action potentials, called firing rate, or
by spatial summation, i.e. the recruitment of a higher number of motor units.

During physiological recruitment, both mechanisms are used in response to higher force
requirements in a sort of hierarchical or overlapping manner: At low tension, first only
one motor unit is recruited, and the exciting firing rate increases with tension. Before the
firing rate reaches the maximum, the next motor unit is recruited. With growing tension,
both firing rates further increase, and so on. The next motor unit is always recruited
before the maximum firing rate of the preceding one is reached [77]. Spatial summation
progresses according to the size principle: First, small motor units are recruited, which
allow more fine control and are robust to fatigue. Later, larger motor units are recruited,
which generate higher forces, but fatigue much more quickly.

Although normal and artificial action potentials are identical, there are several essential
differences in muscle activation. An unfortunate difference is that artificial stimulation
reverses the size principle: Amplitude and pulse width determine the strength of the
generated electric field. The stronger the field, the more neurons are depolarized, leading
to a spatial summation of action potentials and also increased muscle force. Larger motor
units are recruited first during FES, smaller units later, because larger motor units also
have commanding nerves with larger diameter, such that they are easier to depolarize
by the electric field. Another difference to physiological recruitment is that all units are
activated simultaneously. Both effects substantially increase fatigue. In response to a
current impulse, the muscle reacts with a single twitch. To achieve a tetanus, i.e. a
continuous contraction, the stimulation frequency must be at least 16-20 Hz. When the
stimulation frequency further increases, a temporal summation of action potentials can be
achieved, increasing muscle force. However, a side effect of increased frequency is increased
fatigue. Therefore, stimulation is mostly done with the lowest possible frequency.
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In response to external electrical stimulation, static and dynamic behavior are now mod-
eled. Concerning the static response, so-called recruitment curves are recorded. These
indicate how much force is obtained in response to stimulation at a certain constant in-
tensity of stimulation at a constant frequency. Generally, stimulation frequency is held
constant, and the electrical field is varied either by amplitude or pulse width, whereby
the respective other parameter is held constant. The recruitment curves are generally
characterized by S-shaped curves or ojives, which exhibit a threshold for low stimulation
intensity, below which no force is produced, and a saturation of force at high intensities.
These recruitment curves differ strongly between subjects or muscles. Exemplary curves
can be found in [17].

The dynamic response of a single twitch can well be approximated by the impulse response
of a critically damped second-order system [156]. The time constants differ widely among
muscles, as well as among subjects, and they heavily depend on the experimental protocol.
For example, [39] found that upper limb muscles tend to have a higher eigenfrequency, and
that eigenfrequency decreases dramatically with decreasing temperature (more than factor
2 between 37°C and 23°C). For leg muscles, about 1 to 4 Hz can be expected.

An important property of muscle behavior is that muscles take longer to turn off than to
turn on. This is one reason why a linear representation of the activation dynamics can
only provide a very crude approximation [278]. For example, hysteresis effects have been
observed [137,143], and the concept of superposition does not hold for muscle recruitment
41,233, 284]. According to [178], the largest deviations from the linear assumption are
transient and appear at the onset of recruitment and derecruitment.

However, it is common practice (and, as stated above, it leads to acceptable results) to
use the linear transfer function G,(s), which represents a critically damped second-order
system, to model the dynamics of muscle recruitment and derecruitment together.

7—feS(S) w% —sT,
= = t . -].
Gals) a(s) s+ 2wes +wi ‘ (C.1)

The additional dead time 7} in this model is due to signal transport in the nerve pathways.
Its value is about 25 ms [185].

It should be mentioned that there is elastic tissue in series with the contractile element,
mainly the tendon, which couples muscle to bone. This elasticity is e.g. described in [223]
and [38]. However, the influence of this tissue on the dynamics is negligible for frequencies
below 4 Hz [265].

C.2.3 Force-Length Dependency

The generated muscle force, or the joint torque, respectively, strongly depends on the
instantaneous length of the muscle. A physiological explanation of this dependency can
be given by two major effects.

The first effect is activation-dependent and mainly caused by the cross bridges in the con-
tractile elements: At resting length, there is the maximum number of cross bridges. During
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shortening or lengthening with respect to resting length, the filaments are either pulled
apart, such that cross bridges reduce, or cross bridges overlap and interfere. Therefore,
the muscle force is reduced in both directions. At full length, the force can drop to zero.
Brown and Loeb [37] developed a more accurate model, and they showed additional length
dependencies that scale with activation but are independent of filament overlap. They
attributed this effect to the passive elastic element, the fascicles, where thick filaments
are compressed during active contractions at short lengths. The superposition of these
nonlinear dependencies is accounted for in the model of Fig. C.2 by the nonlinearity f(y).

The second effect is activation-independent and also caused by the properties of the passive
elastic tissue. This tissue generates tension mainly depending on the muscle length or joint
angle, respectively. Thereby, it exhibits nonlinear characteristics: The tissue is slack if the
muscle is at resting length or less, and it is stretched at a length higher than resting
length. As they are independent of muscle activity, these passive elastic joint torques can
be included in the model of the leg, together with the elastic properties of other tissue in
parallel to the muscles, such as ligaments.

C.2.4 Force-Velocity Dependency

In addition to a force-length characteristic, there is also a force-velocity dependency de-
scribed by the nonlinear function ¢g(¢) in Fig. C.2. Muscle force generation during shorten-
ing (concentric contraction) can be explained by the hyperbolic Hill model [106], whereby
the muscle force can drop to zero for high shortening velocity. The effects are attributed
to break and re-formation of cross-bridges during shortening, as well as damping effects
of viscous fluids in the muscle. The separation of these passive and active components is
complicated. For lengthening (eccentric contraction), the generated force depends heavily
on the experimental protocol, which could e.g. be isotonic (constant tension) or isovelocity.
In the first case, the muscle force increases with lengthening velocity, in the second case, it
may even decrease, although not to zero. With a value of 1 for isometric (constant length)
conditions, g increases with lengthening velocity to a plateau at typical maximum values
of 1.2 to 1.8 [14]. For concentric contractions, g decreases, and it approaches a minimum
of 0 for shortening with ballistic velocities.

Recruitment dynamics (i.e. activation dynamics and recruitment curve) are frequently
identified together in a nonlinear identification, but under isometric conditions (constant
muscle length, i.e. ¢;(t) = 0Vt). Then, the muscle model of Fig. C.2 has the structure of
a Hammerstein Model, as displayed in Fig. 3.1, because the nonlinear influence of muscle
length and contraction velocity is eliminated.

C.3 Intrinsic versus Reflexive Feedback

The muscle model above explains the nonlinear viscoelastic characteristics by intrinsic
properties of the muscle, yet it neglects the strong influence of reflexive feedback loops in
intact limbs. In fact, the observed impedance in the limbs is dominated by such proprio-
ceptive feedback [265]. The feedback loops are closed using the force sensors in the tendon,
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the so-called Golgi-tendon-organs, as well as the muscle’s length and velocity sensors, the
muscle spindles. In [265], an augmented muscle model including these proprioceptive feed-
back loops is described. In [220], intrinsic and reflexive feedback are effectively separated
and identified using the knowledge that reflexive feedback must exhibit a time delay in
contrast to the intrinsic muscle properties. An important observation is that reflexive
feedback is highly time-variant and that reflex gains are continuously “tuned” in a way
that mechanical resistance to external force disturbances is maximized. Reflexes may still
be active although high-level control of the muscles is lost, possibly leading to undesired
effects such as spasticity. In the experiments with artificially recruited muscles presented
in this thesis, subjects tried to suppress any control of the muscles and to relax, meaning
that also the reflex gains were set low, however, it is hardly quantifiable (if not improbable)
whether they succeeded. To some extent, the undesired, reflexive feedback can mathemat-
ically be regarded as an additional contribution to the functions f (position feedback) and
g (velocity feedback) in Fig. C.2, which are simply modeled as arbitrarily time-varying,
bounded functions of time ¢ during control design in Chap. 4.
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D Analytic Solution of Anti-Causal
Hammerstein Identification

D.1 Convexity of Constraints

To justify the statements made in Chap. 3, and more specifically in Sec. 3.3, it is now
shown that the set X defined by the constraints

X = {’I" = (7"0 T2 T'g)T | T3 Z 0 VAN T’; - 37‘37”1 S 0} (D].)

1S convex.

Proof. Convexity of X is shown by checking the condition:

ra€XArgeXAN€[0,1] = (Ara+ (1= Nrp) € X. (D.2)

The inequality constraints are rewritten using the conventions of [173]:

h = (Z;) - (T;;I?’T) <0 (D.3)

with
0O 0 0 O
o 0 o =3
N = 0O 0 1 0
0 -2 0 0
This representation implies that for A € [0, 1]:
TA3 >0 N rpz =0
AriNr, <0 A rENrg <0
)\T’A73 + (1 — /\)TB,g >0 (D 4)
Ara+ (1= XNrp)!NOAra+ (1 —=XNrg) <0 '

Of the two inequalities to be shown, the first is trivial. For the second to be fulfilled,
negativity of the term r N7z has to be verified. This leads to

!
2rp0rp2 < 3(rairps +7Tasrpa)- (D.5)

The conditions in (D.1) are only fulfilled for nonnegative r;. The right side of (D.5) is thus
always positive. Now, there are two possible cases:
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For sign(ra2) # sign(rpz2), (D.5) is fulfilled.

For sign(r42) = sign(rps2), a bound for the left side can be derived from (D.1):

2raorpe < 64/TA1TB3TA3TB,1- (D.6)
Because of
2ypg<p+q for p>0Aqg>0, (D.7)

for real numbers p and ¢, condition (D.5) is fulfilled in this case, too.

Therefore, the set X is convex. O

D.2 Optimization

Using a matrix notation of (3.7) for N measured samples:

) go(a(tr)) - gm-r(a(tr))
Ay, a) = , (D.8)

go(a(tn)) - gm-1(a(ty))

the inverse error function C' is written as
C = ~lju— Arl} (D.9)
= —||lu — Ar )
N Q

with a positive definite, symmetric weighting matrix Q.

Defining the Lagrange function
L=C+u"h (D.10)

with the Kuhn-Tucker multiplicators g = [p1  po]?, the first order necessary conditions
for optimality of (x*, u*) are given by

V. L(z* p*) = V,C+ (V,.h) 'u* =0, (D.11)

h(z*) <0,h" (x*)u* =0, u* > 0. (D.12)

The operator V indicates the gradient of a function f in direction of a vector x. For
reasons of plausibility of the solution, the first inequality constraint will not be strictly
active, because this would imply that a decreasing recruitment curve would match the
data set better than an increasing one. In this case, the solution is not trustworthy and
should be discarded. Therefore, the multiplicator p; will be zero for a valid solution, which
allows to write (D.11) as

2ATQAr* — 2ATQu + (N + ND)r* 1 = 0. (D.13)

The solution of this equation is given for

A .
r* = (ATQA + §(N +NDYus) AT Qu. (D.14)
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Substituting this in (D.3), the auxiliary equality
P T (NI (i) = 0 (D.15)

yields a fraction in the preliminary variable po, with a polynomial of second order in the
numerator. The roots jig, 1, ft2p 2 determine the optimal value of 115:

) pap for max{jigy, piapa} >0
2 = { 0 fOI' maX{Mng,ugpz} S 0 - <D16)

With this value of the Kuhn-Tucker multiplicator and (D.14), the optimal parameter vector
r* of the nonlinearity is found. Calculation time can be saved by calculating the minimum
of the unconstrained problem first from (D.14) with pus = 0, and to solve (D.15) for ps
only if the constraint is violated.

Because the optimization problem is convex in 7, the solution at r* is the global minimum
for a given a.
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E ldentification of Leg Biomechanics

E.1 State of the Art

Biomechanical properties differ between subjects, and parameterization for a specific pa-
tient is important for model-based control. Approximate values can be taken from the
literature or calculated based on empirical formulae, e.g. mass and inertia of certain body
segments can be calculated based on segment length and body mass [279]. Although the
reliability of this data is acceptable for many purposes such as simulations, they introduce
a high degree of uncertainty when used as a basis for controller design.

One possibility is to quantify all parameters in separate tests. The advantage is high
robustness, as the number of error sources can be minimized in each test by holding
certain factors constant. The biomechanical properties of the leg are often quantified in
two separate experimental procedures, a pull test and a pendulum test [234]: In the pull
test, passive elastic joint moments are measured: The limb is slowly moved throughout
its range of motion. During this procedure, angles are measured with a goniometer, and
torques are measured with a dynamometer. In the pendulum test, the limb is lifted against
gravity and subsequently dropped, while again measuring angles and torques. However,
as stated by Stein et al. [234], the pendulum test can only be used if subjects are able to
stand on one leg for a few minutes and to relax completely under these conditions, which
they reported to be difficult even for healthy control subjects. Therefore, this method is
not generally applicable.

A severe disadvantage of separate calibration tests in separate setups is the time needed for
each patient, prior to the actual therapy. Therefore, the realization is almost impossible in
a practical clinical therapy environment. Therefore, it has been proposed to quantify all
the properties in a single, multi-purpose measurement device, e.g. as suggested by Riener
and Fuhr, who designed a Multi-Moment Chair [202]. This way, complex biomechanical
models can be parameterized. However, although such a procedure allows best possible
accuracy, the time this consumes is still considerable and makes its use in daily clinical
application difficult.

Identification methods have been suggested for the biomechanical properties of the leg,
mainly in the context of linearized models. Standard techniques used for the identification
of robot segments can be used. For example, [23] suggested to identify inertial properties of
a patient’s legs in the specific training device, in this case the Lokomat. Such an approach
usually assumes rigid coupling between human and robot. It is also possible to include
nonlinearities in the leg, generated by elastic joint moments, in a nonlinear identification
approach, e.g. using orthonormal bases [61,92]. The application of this method to estimate
the leg’s parameters is described in the following.
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E Identification of Leg Biomechanics

E.2 Nonlinear ldentification

The parameters of the leg model of Sec. 4.2.3, i.e. inertia Jiq, gravitational components
and elasticity (subsumed in cj,), and damping ki, are identified using the exoskeleton,
as described in detail in Lindner’s thesis at LSR [144]. Simplifying assumptions are rigid
coupling between leg and exoskeleton, dependency of the nonlinear elasticity cie; only on
the leg angle ¢jeq, as well as constant joint damping kje,. A sine sweep position control is
applied to the motor, and motor torque and angle are used as inputs for the identification
algorithm. After identification of the coupled system leg-exoskeleton, the known drive
inertia Jy,, is subtracted from the identified value.

The leg dynamics are identified in the discrete time domain using state-of-the-art nonlinear
identification methods, which are based on orthonormal bases [61,92]. As this identifica-
tion method is formulated in the discrete-time, transfer function domain, an alternative,
discrete-time description of the leg model in (4.3) is used:

yr = G(2)u — G(2)N (yr). (E.1)

These variables have the following physical notions: G(z) models the linearized mechanical
properties of the human shank, and N (y) refers to residual nonlinearities. The input u
is the joint torque 7i.g, the output y is the joint angle ¢i,. The linear discrete dynamics
G(z) are described as a weighted superposition of time responses, which are obtained from
orthonormal basis functions:

with p referring to the system order, and b; being the unknown weighting parameters of
the basis functions B;(z).

The nonlinearity N (yx) (with the output yx being the discretized joint angle ¢ ) is also
represented by a weighted sum:

T

N(yx) = Zaigi(yk)a (E.3)

=0

with g;(yx) being nonlinear functions depending on y,. The weightings a; are unknown
parameters.

An efficient methodology for underdamped systems like the leg is to chose the B(z) ac-
cording to the 2-parameter-Kautz construction described by [92], and this procedure is
therefore used here. A least squares estimate is then calculated for the parameter vector,
as described in [92]. Choosing the g;(yx) as powers of the output y; with = 4, such that
N (yi) is a fourth order polynomial, showed the best results. Back-transformation of the
identified G(z) into the continuous domain provides the desired representation of (4.3).

The anthropometric data provided by Winter [279] allows to estimate model parameters
like the weight m, of the limb in relation to the entire body mass, as well as center of
mass [, and inertia Jiz of the segments. These values are used to estimate the plausibility
of the identified results.
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E.2 Nonlinear Identification

The algorithm has been compared to several other identification methods (Linear Predic-
tion Error estimate, Least Squares identification in linear and nonlinear form) [170]. Both
in simulations and practical experiments, the Kautz method was found superior concerning
exactitude and robustness. Despite the high uncertainty in coupling stiffness, as outlined
in Chap. 4, the simplified model of leg and exoskeleton with rigid coupling explains exper-
imental data well: The coefficient of determination R? ranges around 0.82 in all data sets.
The reliability of the simplified model for leg and orthosis is thus much higher than the
reliability of the muscle model presented in Chap. 3.
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F State-Space Model of the Hybrid

Neuroprosthesis

The explicit matrices of the state space representation

= A(t)zr+B(tH)u
y = clx
in Sec. 4.2.6 are:
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