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Abstract— We report on novel ideas to support the equipment
of technical systems with cognitive capabilities on the software
side. We represent a given data set by points in some Euclidean
space and search for certain properties of associated geometric
objects, that are characteristic for the given data set concerning
various aspects.

In this paper, our focus is on symmetry detection in the
context of identifying traffic signs from visual data. Also, we
present an algorithm which can be used to determine the
direction of a sound source from head related impulse response
(HRIR) data.

I. INTRODUCTION

Recently, it has become a key issue in engineering, to
equip technical systems with cognitive capabilities, such as
perception, recognition and even learning features. Here, we
report on a class of algorithms developed in order to support
this kind of achievements on the software side. For example,
it might be used to effiently store and analyse large sets of
audio as well as video data.

The algorithms are based on the idea, to identify specific
geometric features of a point set embedded in an Euclidean
n-space and describing a given data set. Possible geometric
features to identify are symmetries, topological and metric
properties up through manifold structures.

In this paper, we propose a class of this kind of algorithms,
that are rather robust with respect to noise in the data set
and efficient concerning the complexity. This is achieved
by smoothing and compressing the given data set through a
convexification procedure applied to the corresponding point
set.

Here we present versions of the algorithm for symmetry
detection of point sets in 2- and 3-space (Sections 2 and 3) as
well as for determining metric properties, such as the volume
of the convex hull of a point set (Section 4). For illustration,
we consider visual data representing geometric objects in 2-
and 3-space as well as head related impulse response audio
data.

Acknowledgement: We are greatful to the Cluster of
Excellence COTESYS for supporting this work within
the project LOMAMOS.

II. SYMMETRY DETECTION IN 2D

The main idea of our algorithms is to study not the whole
point set A = {A1,..,A,,} A; €R?, but just a small subset A C
A, which contains important information about the structure
of A.
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A. Characteristic Subset

On the one hand it is essential that the subset A, which
will be analyzed by our algorithm, is as small as possible to
reduce the complexity. On the other hand A should contain
all important information about the point set A, or at least
about the convex hull of the point set.

We define a subset A of A which is called the set of
characteristic vertices of A to achieve both goals. A is
supposed to represent the set of real vertices of the point
set A. So A is a subset of the set of extreme points Ag of A.

Definition 2.1: A point set A is called convex, if for every
pair of points x,y € A, every point on the line segment
connecting x and y is in A.

Definition 2.2: The convex hull of a point set A is the
smallest convex point set A.,,, such that A is a subset of
ACUV['

Definition 2.3: An extreme point of a convex point set A
is a point of A.,, which does not lie in any open line segment
connecting two points of A.,,. The set of all extreme points
of a point set A is called Ag.

The Quickhull-Algorithm (which is described in [6]) de-
termines the convex hull and the set of extreme points Ag
of every 2-dimensional, as well as 3-dimensional, point set.

If the data, which are described by the point set A, are
exact, it is obvious to choose A = Ag. But in case of
inaccuracies, there are some extreme points, which do not
correspond to a characteristic vertex of the point set. The
point set which desribes, for example, a traffic sign, which
has (nearly) the shape of a regular 8-gon, will have in most
cases more than 8 extreme points (see Figure 3).

To search for a subset A C Ax which represent the real
vertices we solve the following optimization problem, where
dcon € R is a positive integer.

OP(Ak,dcon):

d(w,Acon)-
we(Ag\A)

min
AcAk

with the constraints:

Cl:d(w,Azpm) < dcon Vw € (Ax\A)
C2:|Al=_min |4
A,‘QAK/\A,"C]

where:
d(w,Acon) = miin lw—ai| a; € Acon-



An algorithm, which solves OP(Ak,dcon), in an efficient
way, can be found in [10]. This thesis also contain a detailed
discussion of the parameter dcon.

Definition 2.4: A subset A C Ag is called the set of char-
acteristic (dcon-) vertices of A if A solves the optimization
problem OP(Ag,dcon).

B. Symmetry Value

To decide whether the set of characteristic vertices A
of a point set A has the symmetry of a regular n-gon (n-
symmetry), we define a symmetry value for every n:

Definition 2.5: The symmetry value d,(A) of a point set
A C R? concerning the n-symmetry (n € N,n > 1) is the
distance between A and B,, where B,, is generated by rotating
A about a fixed rotation center M by an angle of 27” degrees.

Even if the point set A is not exactly n-symmetric, we
define:

Definition 2.6: The rotation center M of A =

{A1,..,An} CR? is defined as follows:

— Zi:l:mAi
—m .

M :

The distance between two point sets A and B could be
measured in different ways. One method, which calculates
the distance in consideration of all entries of A and B, is to
determine a Minimal Perfect Matching (MPM) in a bigraph
G(A,B). It is only possible to use this method, if |A| = |B|
holds, which is no problem in our case, since B is generated
by rotating A.

The complete weighted bigraph G(A,B) is constructed
in the following way. One of the corresponding partitions
consists of the points wy,..,w,, € A and the other one consists
of the points vy,..,v,, € B.

The weight of an edge is the distance between the two
vertices, assosiated to the edge.

The problem of finding a MPM in G(A, B) can be formu-
lated as a linear program LP(U), where the entries of the
mxm matrix U are defined to be:

Lt,'j = d(W,’,Vj).

LP(U):
II';iIlZ u,-jx,-j
i.J

with the constraints:

Y xij=1vi
J
inj =1 V]

Xij € {0, 1}.

Fig. 1.

Traffic Sign

LP(U) can be solved by the Hungarian Method [5], for
instance.

To compare different symmetry values and to decide
whether A is approximatively n-symmetric, we define a
comparative value for every symmetry value:

Definition 2.7: The comparative value A? (A) of a sym-
metry value d,(A) is defined as:

A7 j(A)

Depending on the comparative value of the different
symmetry values, our algorithm assignes an approximate n-
symmetry to a point set A.

dn(A)

= 100.
ke{i,..,j}\{§n|ar)z( mod 1=0} di(A) *

Definition 2.8: We assign an approximate n-symmetry to
a point set A if and only if the comparative value A} (A)
is less than 25.

C. Example

We will illustrate the symmetry detection algorithm by
the following example. The picture in figure 1 shows the
traffic sign "STOP”, which is (approximative) 8-symmetric
(as well as 2- and 4-symmetric, but we are just interested
in the symmetry of the highest order). A is a set of 2-
dimensional points which consists of all red pixel in the
picture (see Figure 2).

With the help of the Quickhull-Algorithm we determined
the point set Ag, which is shown in figure 3. As one can
see |Ax| =31 > 8 includes more points than the number of
vertices of the traffic sign. Hence it makes sense to choose
A # Ag. The set of characteristic vertices (dcon = 3) is
illustrated in figure 4.
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The blue points are the set of extreme points Ax

The blue points are the set of characteristic vertices A
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Fig. 5. Symmetry Values, Comparative Value (n=8)

The symmetry values d;(A),..,ds(A) and the comparative
value of dg(A) are listed in figure 5. All other comparative
values are not less than 25. So our algorithm assignes an
8-symmetry to the set of characteristic vertices of A.

III. SYMMETRY DETECTION IN 3D

The algorithm, which is introduced in the chapter above,
can be extended to find also rotation symmetries of the
convex hull of a given point set A = {Ay,..,A,} A; € R3.
In contrast to the 2-dimensional case, a point set A C R3 is
called n-symmetric, if it is invariant under a rotation by 27”
degrees about some rotation axis g:x+Av x,v € R} A cR.

A. Characteristic Subset

The approach to find a subset A of A, which is at the
one hand as small as possible and has at the other hand
similar characteristic symmetry properties as A is analog to
the approach in the 2-dimensional case.

The first step is to determine the convex hull A.,, and the
set of extreme points Ax of A. This can also be done by the
Quickhull-Algorithm [6].

Once we have the set of extreme points Ag, we want to
find a (small) subset A, which represents the real vertices of
the point set. This means we are searching for a point set A,
the convex hull A,,, of which is similar to A.,,. We define:

Definition 3.1: A subset A of a 3-dimensional point set
A is called the set of characteristic (dcon—)vertices of A,
if A:={P,..,P,} fulfills the following conditions (where
dcon € RT is a positive integer):

)
A C Ag.
2)
d(W,Acon) < dcon Yw € (Ag\A).
3)

max  d(w,(A\ B)con) > dcon Vi€ {1,..,m}.
we(Ag\(A\R))

The modified definition in comparison to the 2-
dimensional case is neccessary due to the fact, that the
algorithm which solves OP (see chapter 1) is too time
consuming in the 3-dimensional case, since every extreme
point has more than 2 neighbours (for details see [10]).



B. Rotation Axes

As mentioned above, we need to find possible rotation axes
to decide whether a point set is (approximate) n-symmetric or
not. As opposed to the 2-dimensional case it is a non-trivial
problem to find such possible rotation axes. The following
theorem gives an idea of how to determine them:

Theorem 3.1: Let be A C R® a n-symmetric point set
(ne N A n>?2) with respect to the rotation axis g,
Ak the set of extreme points of A, Ay the set of geometric
centers of all faces of A.,, and Ag the set of all midpoints of
the edges of the convex hull. Furthermore let M be defined
as in Definition 2.6. Then it holds that:

Mecg A |gﬂ(A[(UAMUA5)| =2.

Proof:

See [10]

Let us keep in mind that we are not only interested in
exact but also in approximative symmetries. Hence an axis
g which satisfies the equation in theorem 3.1 within a noise-
tolerance € is also accepted to be a rotation axis.

So, we determine all possible rotation axes by considering
every 2-tuple (Py,P») of the points in (Ax UAy UAs) and
determining the distance d(gpp,,M) of M to the line gp,p,,
connecting P; and P. If

d(gpp.M) <€, ecRT
holds, then
g:=P+A(P,—P) (LER)
is a possible rotation axis.

C. Symmetry Value

Since a point set A C R3 is exactly n-symmetric, if A is
invariant under a rotation by 27” degrees about an axis g we
define the symmetry value analogously to Definition 2.5

Definition 3.2: The symmetry value d,(A) of a point set
A C R3 concerning the n-symmetry (n € N,n > 1) is the
distance between A and B,, where B,, is generated by rotating
A about a fixed rotation axis g by an angle of 27” degrees.

The comparative value of a symmetry value (Definition
2.7) as well as the assignment of symmetries (Definition 2.8)
are defined in the same way as in the 2-dimensional case.
Moreover, the distance between two point sets A and B is
the value of the Minimal Perfect Matching in the bigraph
G(A,B), which is constructed identically to the bigraph in
the 2-dimensional case.

D. Example

We want to analyse a point set A C R? (JA| = 10338) which
represents the surface of a polyhedra, which is 5-symmetric
with respect to a certain rotation axis (see Figure 6). We
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determined the convex hull of A and computed the set of
extreme points Ak (see Figure 7; |Ax| = 197) of A.

Our algorithm found a subset A of characteristic vertices
and searched for possible rotation axes. The result is the point
set A in Figure 8 (JA| = 16) and the rotation axis g, which
is also shown in Figure 8. The symmetry values, as well as
the comparative value of ds , concerning rotation about g are
listed in Figure 9. Accordingly, a 5-symmetry is assigned to
A.

IV. ANALYSIS OF THE STRUCTURE OF AUDIO-DATA

The main idea of both algorithms introduced in the sec-
tions above, is to analyse the structure of a point set A by
studying not the whole point set, but just a characteristic
subset A C A. This procedure can be used not only to identify
approximate symmetries. As another application we want to
illustrate how it can be used to analyse head related impulse
response data (HRIR data) [3].

We use HRIR data from the CIPIC HRTF DATABASE [2],
which is a public-domain database of high-spatial-resolution
HRTF (head related transfer functions) measurments for 45
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different test persons. The database includes for every test
person the HRIR at 25 different interaural-polar azimuths o
and 50 different interaural-polar elevations 3 for both ears.
The HRIR data could be used to determine the direction of
a sound source, for instance. The HRIR data of different test
persons at one fixed angle are not identical, because they
depend on the personal anthropometry.

Hence the problem is to extract significant information
from HRIR data [1], which is common for all test persons.

To this end, we first analysed the HRIR data corresponding
to 10 test persons. For each ear and for any of the 25 available
values for the azimuth o € [, 7] we constructed the point
set A C R3 as follows:

A ={(Bo,120,HRIR(Ct, B9,120)), -, (Ba1, 180, HRIR(ex, B41,150)) },

where B; = -5+ (j—1)* %5 (j=9,..,41) is a selection
of 33 out of the 50 available elevations and #; = i* 0.01
(i =120,..,80) denote a sequence of times. Obviously the
cardinality of A is |A| =33%61 = 2013.

Moreover, we determined the convex hull A.,, of A and
identified a set of characteristic vertices A. In Figures 10 and
11, A and A, are displayed for one test person, one ear and
one azimuth.

Next we introduced functions VX (o) and VE(a) which
assign, to any available value of «, separately for the left and
the right ear, respectively, the volume of A, (o) averaged
over the 10 test persons. Finally, we chose polynomicals
pE(a) and pR(a) (Figure 12) of degree 5 which interpolate
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Fig. 11. Acon

(in the sense of a least square fit) the discrete functions
VE(a) and VR(a), respectively, in the range o € [-5,%].

It turns out that the polynomicals pl(a) and pR(a)
represent quite well all the test persons included in the CIPIC
HRTF DATABASE. So in particular, they can be used to
solve the inverse problem: Given HRIR data for some person
(or a robot having ears) at sequences of elevation f3; and
time values ¢;, as above, one can read off the corresponding
azimuth o* from the diagram in Figure 12. Of course one
looks for an ¢ that best fits the left- and right-ear curves in
a certain sense.

The discrete points in Figure 13 represent results obtained
in this way for a single test person. The vertical distance to
the solid line describes the error of the computed ¢t-values. It
is within a range of 8 degrees. So the actual and the computed
azimuths agree quite well. The correlation coefficient is:

p >0.99.
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V. CONCLUSION

Compared to other symmetry detection algorithms ([4],
[71, [8]) our algorithms have various advantages:

« Since usually |A| < |A| holds, the complexity of our
algorithms is significantly less than that of other algo-
rithms.

« The sensitivity to noise is comparatively low and there-
fore the reliability of our algorithms is relatively high,
since the point set A is regularized by convexification.

« In various cases, the symmetry of the convex hull of a
point set A is a characteristic attribute of the data, which
are represented by A, even if the whole point set A is
not symmetric.

Our analysis of the HRIR data shows, that there are various
applications where it is possible to find associated point sets
A, which contain characteristic information about the given
data set
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