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Zusammenfassung

Im Rahmen dieser Arbeit wurde eine Methodik zur automatisierten Transformation
von Assertions, eine erweiterte Auswertungssemantik und eine dazugehörige Transfor-
mationssprache entwickelt. Unter Benutzung dieser Methodik ist es möglich, beste-
hende Assertions auf andere Abstraktionsebenen zu transformieren. Dies erlaubt
die Wiederverwertung bestehender Assertions, die für abstrakte Modelle geschrieben
wurden, für die Entwicklung von weniger abstrakten Modellen, wobei die Gefahr,
manuell Fehler während der Transformation einzuführen, minimiert wird.

Abstract

In this work, a methodology for automated assertion transformation, an extended
assertion evaluation semantics, and a corresponding transformation language has been
developed. Using this methodology it is possible to transform existing assertions to
other levels of abstraction. This allows reusing existing assertions, which were written
for abstract models, for the development of less abstract ones while minimizing the
danger of manually introducing errors during the transformation process.
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1 Introduction

1.1 The Pervasiveness of Embedded Systems

Technical progress over the past decades has made high technology more and more
part of people’s every day life. Not only the number of devices, but also the complexity
of these systems has increased drastically. Nevertheless, most people are only partly
aware of the extent of this phenomenon, since in many cases the complex systems
are part of seemingly simpler devices. Today, these systems can be found in almost
all aspects of daily life: Domestic appliances like dishwashers or washing machines
include them for controlling water supply or dosage of detergents in order to clean
dishes or clothes as efficiently as possible. HiFi systems like CD players include
controlling systems for the laser that reads the information stored on an audio CD.
Mobile phones have rapidly spread and have already become a standard accessoir for
most people. Clothes with built-in mp3 players are created. Cars include electronics
for engine control or electrical control of locks, while current research aims at features
as break-by-wire and warning systems that can alert the driver of potential dangers
like collisions or leaving the road; these systems are intended not only alert the driver
in the end, but also automatically correct wrong behavior. When compared with
personal computers, these complex systems are not or not directly visible to the user.
Instead they are embedded within a larger system and can only be accessed by a
restricted interface.

1.2 Quality of Embedded Systems

In contrast to personal computers where a bug in a program can be corrected by
a patch of the affected Software (SW) even after the product has been delivered
to the customer, access to embedded systems for this purpose is difficult at best.
Additionally, bugs in the Hardware (HW) that has already been delivered cannot be
fixed at all.

Considering that at least some of these embedded systems control safety critical
tasks like the break-by-wire system mentioned above, it is essential that the quality
of embedded systems is checked according to strict standards during all stages of the
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1 Introduction

design process. Whenever a bug is detected during those tests, the reaction depends
on the location, the severity of the encountered bug, and the stage in the design
process. While SW bugs can usually be fixed without much additional effort, bugs
in a HW component are not as easily fixed. In simple cases maybe the SW of the
embedded system can be adapted to take the bug into account. In more serious cases
this might lead to a complete respin of the system development and even fabrication
if the system has already been shipped.

In order to minimize the immense costs of having to start the whole development
process again from the beginning (even worse if the system has already been fabri-
cated), the usual course of system development follows the so called VP model [1],
which is shown in Figure 1.1.

Requirements
Elicitation

Prototype

Prototype

ESL

RTL

System 
Use

Prototype

User Model

Architectural Model

Implementation Model

Figure 1.1: The VP Model [1] for System Development

According to this process, system development starts with a very abstract model
that neglects many of the characateristics of the final design in order to focus on the
important aspects as for instance the algorithms involved and the basic functionality
coverd by the system. The corresponding prototype is then subjected to extensive
tests concerning these features. If there are already bugs within the implementation,
only a small part of the development work has to be redone. This early model can
also help with architecture exploration, since several design decisions only have to be
done for less abstract models.
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After this model has passed an appropriate number of tests, a more complex model
is developed. In this context, the more abstract models serve as golden reference for
the newly developed ones. At the same time, the more abstract models can be used
for early software development or system documentation, before the final version of
the design is even ready.

1.3 Model Equivalence

If various models on different abstraction levels exist, a method for checking the
functional equivalence of these models is needed. Several different technologies exist
that can cover at least a part of this problem, depending on the exact application.

1.3.1 Connection Verfication

There are already efforts of standardizing the description of an Intellectual Property
(IP) in order to ease its integration into a system of another company. The SPIRIT
consortium [3] for instance already published a standard for the description of Reg-
ister Transfer Level (RTL) model interfaces. At the moment, the standard is being
extended in order to also cover Transaction Level (TL) models. A SPIRIT descrip-
tion captures the necessary data in several Extensible Markup Language (XML) files,
which are then delivered to customers in combination with the precompiled IP. A
specific IP may include a TL and an RTL implementation.

Using the SPIRIT description as a reference, it is possible to check that the inter-
faces of both models are consistent. Note that this does not require that they are
identical (which will not be the case anyway), but just that the available connections
are the same. If for instance, the TL model has a transaction port for a read access to
a connected memory module with an address parameter and a data parameter, then
the RTL implementation should at least contain an address output to the memory
and a data input from the memory.

If the modules in question consist of several submodules then the correct intercon-
nection of these submodules can be verified as well.

1.3.2 Formal Verification

Formal verification includes a variety of different technologies which all examine the
model or models in question based on mathematical and logical criteria. In general,
two different kinds of formal verification approaches can be distinguished:
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1. Equivalence Checking: This technique examines two models and breaks down
the corresponding functionality into small logical blocks. In order to be equiva-
lent, both models have to behave in exactly the same way when they are faced
with the same circumstances. For that purpose, the involved algorithms assume
that both models are not equivalent and try to lead this assumption to a logical
contradiction.

2. Property Checking: This technique tries to prove that a model fulfills a certain
set of specified properties which reflect the original specification. When used to
prove the equivalence of two models using this technique, it is required to check
all properties with both models.

Formal techniques cover all possible transition paths through the design state space
(in contrast to just a large number of sample tests). The larger the model in question,
the more resources are necessary for a formal analysis. Due to the problem of state
space explosion - the size of the state space increases exponentially with the number
of design states - today’s complex systems simply cannot be evaluated using formal
verification.

Equivalence Checking

In order to at least reduce the problem of state space explosion, it is necessary to have
efficient algorithms for the creation of the simplified models which are then compared.

There are already approaches for the formal equivalence checking between RTL
models and gate level models. On the other hand, these concepts cannot be trans-
ferred easily to higher levels, as for instance the equivalence check between TL and
RTL. This is partly the result of the very abstract modeling style on higher abstrac-
tion levels. Complex function calls and transfers of complex data objects cannot
easily be reduced to logical representations as needed for the equivalence checks.

While a generalized formal equivalence check between TL and RTL is not possible
yet, there have been first approaches for the application of formal equivalence checking
in a more restricted context. The approach discussed in [4] for instance uses the
equivalence checks in combination with a high-level synthesis tool. In other words,
the less abstract model is not written by hand in this case and the additional data
used or acquired during the model transformation is then used in order to formally
verify the equivalence of original and generated model.
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Property Checking

When applying property checking to models of different abstraction levels, checking
the same property with all models might require the adaptation of the property
description. This leads to similar problems as faced when using assertions (see below).

1.3.3 Simulation-Based Verification

Instead of analyzing a model mathematically, simulation-based verification uses a
special testbench that generates stimuli sent into the model and receives the cor-
responding responses of the model. The generated stimuli might be either specify
directly - so called directed tests - or created randomly, with or without constraints.
The latter approach is much more efficient of finding bugs, since the randomization
leads to checks that normally would not have been specified; thus, it is possible to
detect bugs resulting from dependencies that nobody had considered before. The
most common approach for simulation based verification is a combination of these
two approaches: The testbench starts with generating random stimuli and gathers
the results. These results are then stored in a database for several kinds of coverage
data. Examples for coverage data include:

� Code coverage measures which parts of the code have been executed how often

� Functional coverage measures how often a certain functionality has been used

� Assertion coverage measures how often a certain assertion has fired or not re-
sulted in a vacuous success (see below)

Since a complete check including every possible combination of values by simulation
is impossible for realistic systems1, certain coverage goals have to be defined (for
instance, ”every memory address has to be written three times”). As soon as a
coverage goal has been achieved, this particular situation does not have to be checked
anymore. As a result, the stimuli generation can be constrained to the remaining
situations, which in turn improves the probability of achieving the remaining coverage
goals faster. This approach is called Constrained Random Simulation.

Depending on the abstraction level of the Design Under Test (DUT), the interfaces
between the testbench and the DUT are either method based for TL models, or signal
based for RTL models.

1A chip with fifty one-bit registers has 250 different states. When checking one million states per
second, an exhaustive simulation would take about 850 years.
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However, in order to ensure equivalence between the corresponding models, it would
be beneficial if the same testbench can be used for the verification of both models.
This is possible by using dedicated components called Bus Functional Model (BFM)
or Transactor that ”translate” between the high level and the low level protocol.
While it does not matter for this method if the testbench is implemented on a higher
or lower level, using an abstract testbench has two advantages:

1. It is easier to specify abstract test patterns, since the complex signal protocol
does not have to be taken into account.

2. According to the VP model, the high-level implementation of the design is
created first. Additionally, the creation of the Transactors can be postponed to
the start of the low-level implementation. This means that the verification of
the high-level model can be started sooner.

When using this method to check the equivalence of a TL model and an RTL
model, the testbench sends the same stimuli to both models, and stores the response
in two separate data bases. The corresponding structure is shown in Figure 1.2.

Testbench

TL

DUT

RTL

DUT
BFM BFM

Figure 1.2: Use of Testbenches for Multi Abstraction Checks

While the stimulus generation can be used for both models in the same way, the
coverage goals usually have to be redefined for the RTL model, since the modeling
styles and paradigms differ greatly in some regards. Low-level structures might not
even exist in high-level models, on the other hand, several distinct structures of the
high-level model might be mapped on a shared structure in the low level model.

The use of Transactors is not restricted to the direct interaction with a testbench
though. It is also possible to include an RTL component including the corresponding
Transactors into an existing TL system, replacing the original TL component.
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Assertions

Assertion Based Verification (ABV) uses specialized watchdog components called
assertions that are either included in the design itself or attached to an existing design
from the outside. Assertions specify a required temporal and logical behavior that
must never be violated. Assertions can be used in addition to both formal verification
(property checking) and simulation-based verification. In the former case, assertions
are used for specifying both the properties of the design and assumptions about the
behavior of external components. In case of simulation-based verification, assertions
are simulated in combination with the model and continously check if the specified
behavior is violated. If this is the case, the user is immediately informed about this
error and - depending on the configuration of the assertion - the simulation is stopped.

In case of simulation-based verification the immediate notification of an error makes
localization of the actual error much easier when compared to the tedious backtracking
if an error shows up in the testbench (since the error had to propagate to the output
first, it could have happened quite some time before it is noticed). Additionally,
since assertions monitor the internal behavior of a model in contrast to the external
monitoring a testbench does, they ar able to check behavior errors that only rarely
become visible at an output. As a result of applying assertions to a design, the
amount of coverage goals inside a testbench can be reduced.

In contrast to testbenches, assertions can and should also be written by designers
while creating a model. This makes it possible to specify constraints of the model
interface, for instance ”port A and port B may never be one at the same time”.
Whenever this model is used within an existing system, every wrong usage would be
notified immediately.

Since assertions can also be used in combination with simulation-based verification,
it is also possible to apply them to equivalence checking. Besides adding correspond-
ing assertions to both the TL model and the RTL mode, there is also the additional
possibility of writing mixed level assertions that try to correlate the behavior of both
models at certain matching points (for instance, in both models a register has to
be written). Due to the variety of modeling styles on higher levels of abstraction
and the fact that both models might differ greatly concerning the timing, finding
these matching points within the various functional blocks of both models might be
difficult.

While wide spread for RTL verification, only recently first approaches for applying
ABV to TL models have been developed.
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1.4 Motivation

It is vital to ensure consistency between the various models developed during the
design process, which are written on different abstraction levels.

Right now, there is no methodology in place for the automated transformation
of TL designs down to RTL. Instead, all models are transformed manually, which
introduces additional sources for errors.

Unfortunately, verification efforts are mostly focused on checking the correctness of
RTL designs. Simulation-based verification using testbenches is applied to TL models
as well, in some cases the corresponding testbenches are even reused for RTL models
later on. However, in many cases TL testbenches are much less sophisticated than
their RTL counterparts. Furthermore, while the usage of assertions in simulation
based verification for RTL is common, it is far from wide spread. On TL on the other
hand it is almost non-existent (this is partly based on the fact that TL assertion
languages are mostly still in development, however). Applying the same sophisticated
test strategies already for TL models would allow an earlier identification of errors
which in time reduces the overall verification effort. This is even more important
since future designs will have a drastically increased complexity which in turn makes
early identification of errors critical.

While TL testbenches can be reused for RTL in combination with Transactor com-
ponents, it is not possible to reuse TL assertions in that way, since they are partly
included within the design or access data not visible at the model interface.

As a result, even if assertions will be used more often in combination with TL
models in the future, they will have to be manually transformed to a corresponding
RTL equivalent, which may introduce additional errors, just as mentioned for the
design refinement above.

This work addresses this lack of automated assertion transformation. Based on an
existing assertion language capable of handling both RTL and TL assertions (includ-
ing the various TL sublevels), a dedicated transformation language has been created
that allows the automated transformation of assertions from and to all supported
abstraction levels.

The peculiarities of all supported abstraction levels have been considered and the
underlying assertion language has been enhanced by several features required for a
consistent specification of assertions on these abstraction levels. As a consequence,
consistent mixed level assertions are supported as both original and generated asser-
tions. This allows the specification of assertions for the equivalence checking method
based on matching points mentioned above.

8



1.5 Outline

The transformation descriptions can be formulated in a flexible way, which allows
a reuse of existing transformation rules for other assertion transformation tasks as
well.

The expected benefit is the efficient reuse of TL assertions for RTL verification,
while only requiring little effort to adapt existing transformation rules. If desired,
transformation of RTL assertions for the verification of TL models is possible as well.

1.5 Outline

This work is structured as follows:

Chapter 2 describes the problems an assertion transformation approach has to face
and outlines possible solutions.

Based on this analysis, Chapter 3 introduces requirements for assertion transforma-
tions, split into requirements for the underlying assertion language and requirements
for the transformation description.

Existing solutions for these are requirements are analyzed in Chapter 4 and the
new work is motivated.

Chapter 5 describes the concepts introduced in this work, split into the extension
of an existing assertion language and the development of a dedicated transformation
language.

A formal representation of the modified assertion language is described in Chap-
ter 6.

In Chapter 7 an overview over the application framework is given.

The results presented before are used in Chapter 8, which describes how to system-
atically apply the transformation language using an example that covers all relevant
abstraction levels.

Finally, Chapter 9 summarizes the scientific contribution of this work and outlines
further directions.
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2 Problem Statement and Targeted
Approach

This chapter discusses the problems an assertion transformation approach has to deal
with and also outlines possible ways of solving these problems.

2.1 Today’s Top-Down Design

Today, designs are created in a top-down process, beginning with a highly abstract
model, containing only the information provided by the design specification that
serves as a Virtual Prototype (VP) for SW validation and as a golden reference for
later models. Partially, more abstract models are used to validate specific aspects, as
for instance the algorithms behind a 3G receiver. Due to the high level of abstraction
and the ensuing absence of details, the simulation of the VP can be done much faster
and with greatly reduced computation effort. The following models gradually add
more and more details, while still being consistent with the VP.

2.1.1 Abstraction Levels

In order to provide means for easier model comparison concerning the amount of de-
tails involved, several attempts of defining specific abstraction levels have been made.
These abstraction levels differ in the way timing is modeled, how data is exchanged
between different functional units, how this data is represented, etc. Most of these
attempts differ in the names, number, and characteristics of levels defined. One ex-
ample of how these differences can be categorized is presented in [5]. An example
for a list of abstraction levels can be found in [6]. All in all, there are no established
standards which clearly define all abstraction levels and what characteristics a model
written at a certain abstraction has to show.

The most common abstraction levels are the following1 (ordered from most abstract
to most detailed):

1While the names may differ depending on the source, the underlying concepts are usually present
in all approaches.
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� Specification Level: This level only deals with the information relevant for cor-
rect system functionality. Timing is only considered when absolutely essential
for the system behavior; similarly this levels rarely considers functional parti-
tioning into several components, and thus, there is no concurrency either. Data
processing is done in the most abstract way possible while using abstract data
representation.

� TL: This level introduces partitioning of the model into different functional
blocks which have to exchange data according to one or several protocols. This
data exchange is handled by so called transactions, usually modeled as func-
tion calls, using abstract data types for parameters and return values; these
transactions can be used to encapsulate certain functionality as well as to hide
protocol details. Since a Transaction Level Model (TLM) is frequently used as
VP, decisions concerning elements accessible by the SW have to be made here
and kept for later design stages. In contrast to the other levels mentioned, this
level does not represent one specific abstraction of a design but can be further
divided into several sublevels. The Open SystemC Initiative (OSCI) TLM stan-
dard has introduced specific names for these sublevels, but unfortunately their
characteristics are not clearly defined:

– Programmer’s View (PV): This sublevel is located only slightly below the
Specification Level. PV models do not consider timing in any way, so
synchronization between components is restricted to zero-delay wait state-
ments and specific events in combination with conditional wait statements.

– Programmer’s View with Timing (PVT): This sublevel additionally intro-
duces the notion of time, modeled by absolute time values. Every kind
of functionality including transactions can consume a certain amount of
time. Synchronization is done via timed wait statements, in addition to
the methods available on PV.

– Cycle Approximate (CA): This sublevel is very similar to PVT, but in-
stead of using arbitrary time values within the components, all delays are
replaced by cylic delays, expressed as a multitude of one (or several) clock
periods. The available synchronization schemes match those of PVT.

– Cycle Callable (CC): The final TL sublevel replaces the cylic time of the
CA models by the introduction of one or several clock signals. The syn-
chronization between different component happens only according to these
clock signals.

� RTL: This level models both functionality and structure of the design in a very
detailed way. Synchronization is done via clock signals as in Cycle Approximate
(CA), but additionally the TL concept of transactions is replaced by signals and
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corresponding protocols (e.g., handshake). These signal protocols exactly repre-
sent the behavior of the final silicon chip and can be automatically synthesized
by corresponding tools. For that purpose, the abstract data types of the upper
abstraction layers are replaced by HW data types. Since handling of complex
protocols requires more effort than a simple high-level function call, RTL models
often implement Finite State Machine (FSM)s for that purpose. The complete
description can be easily mapped to simple logical circuits, like AND gates and
multiplexors, while abstracting away everything but their functionality.

� Gate Level: This level introduces the other parameters of the low-level logical
circuits comprising the RTL description. In adddition to their functionality
parameters like throughput time and power consumption are modeled.

2.1.2 Refinement

In order to ensure continuity during the design process, whenever a less abstract model
is created based on a more abstract one, the differences between the abstraction levels
have to be kept in mind. In this context the term refinement is often used:

Definition 1 Refinement describes the transition between different levels of abstrac-
tion2, for example the transformation of a Programmer’s View with Timing (PVT)
model to an RTL model. This transition includes the removal of information no
longer relevant on the new abstraction level, as well as the inclusion of additional
information that was not available on the original level.

Although number and exact details of the different abstraction levels differ depend-
ing on the source, the characteristics used for distinguishing the various levels are the
same in all approaches (modeling of time, structure, etc.). As long as refinement
processes are discussed in relation to these characteristics and not to particular ab-
straction levels, everything discussed is generally valid, independently of the definition
used. For that reason, the remainder of this work will use the terms and abstraction
levels presented above.

The effects of design refinement can be divided into effects on the module interfaces
and effects on the module implementation. Interface changes foremost happen at the
transition between TL and RTL since the abstract function calls of TL are replaced
by complex signal protocols on RTL or vice versa. Implementation changes are less
obvious and include the aforementioned topics of timing and data representation.

2This term is usually applied to a transformation towards a less abstract version, but it is not
restricted to that.
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Since an equivalence check between two different implementations of a complete
system is very difficult and resource intensive, in many cases a BFM, also called
transactor, is used which transforms the interface of a component modeled on one
abstraction level to another one. This allows to create a less abstract version of
a single component first and then to simulate this component within the existing
abstract system.

When creating a design in a top-down process according to the abstraction levels
described in Section 2.1.1, the following refinement steps have to be performed:

� Specification Level to Programmer’s View (PV): The monolithic functionality
of the Specification Level Model has to be partitioned into smaller components
which exchange data through transactions.

� PV to Programmer’s View with Timing (PVT): The purely untimed PV model
is enhanced by the addition of timing information.

� PVT to Cycle Approximate (CA): The timing information expressed by absolute
values is converted to cyclic timing.

� CA to Cycle Callable (CC): The cyclic timing is replaced by the usage of one
or several dedicated clock signals.

� CC to RTL: Transactions are replaced by elaborate signal protocols. Addition-
ally, data representation is changed to synthesizable data types. Finally, the
functionality is modeled with great detail, including the use of state machines
and the choice of specific computation architectures.

� RTL to Gate Level: All functional blocks are annotated with information con-
cerning their timing and power consumption.

In most cases, there is not one prototype for each of these abstraction levels. Thus,
the resulting refinement steps might combine several of the steps mentioned here.
However, the underlying concepts are not touched by this.

It has to be noted that while some of these refinement steps can be automated (for
some, automation has even become the standard procedure), all of them require that
the details added on the less abstract level are provided to the automation tool. While
this problem can be (partially) solved - for instance, most tools for the synthesis from
RTL to Gate Level provide easy means for specifying the required data (choice of a
suitable technology, clock frequency, etc.) - this approach also limits flexibility. Thus,
a completely automated and flexible refinement without any kind of user interaction
is - and very probably will always be - impossible.
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2.2 Assertion Based Verification

ABV is one of the most effective way of checking designs for both intent (done by
the designer during the creation of the model) and for correct functionality (done by
a verification engineer after the design process has been completed). The approach
uses so called assertions, code constructs that monitor a specific part of the design
and issue an error message as soon as the observed behavior differs from a specified
pattern.

The use of assertions within a design is complementary to the use of testbenches in
simulation based verification and can also be used for formal verification. Assertions
offer an easy way of specifying desired behavior and being notified immediately when
this behavior is violated. Since assertions may be part of the design and thus may have
immediate access to internal design objects, it is much easier to locate the origin of
an error. In other cases the verification engineer has to rely on the error propagating
out of the design, in which case the potential delay can complicate correlating the
error to its reason.

While ABV is a frequently applied technology with regards to RTL design, only
recently the first successful methods for applying assertions to higher levels of ab-
straction, namely the various TL sublevels, have emerged. This is based on the fact
that most of the existing ABV approaches make heavy use of the specifics of RTL
models: Assertions have to run synchronously to the design which is usually achieved
by relying on clock signals for triggering the assertion evaluation. Due to this, most
current approaches are ill equipped to deal with the very different concepts of timing
on TL. Additionally, since they are mostly signal centric, the use of transactions as
a means to abstract away parts of the design details causes further problems.

2.3 Assertion Refinement

Similarly to a design, high-level assertions can be refined into less abstract assertions
in order to perform the same checks on the refined design. Since assertions are
closely linked to a design, concerning both the behavior and the structure, assertion
refinement follows the same steps and guidelines as design refinement.

Providing a methodical approach for assertion refinement that includes some checks
for the correctness of the refined assertion could decrease the effort for the overall ver-
ification process. Since the refined assertion, as an additional source of simulation
errors, has already passed these checks, the main effort can be used for the verifi-
cation of the design refinement. In order to ensure the correct assertion refinement,
the underlying structure of the assertion has to be kept as much as possible. If
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different assertion languages are used for the different abstraction levels, this struc-
ture preservation gets more complicated due to the conceptual differences between
most assertion approaches. Additionally, creating mixed-level assertions - especially
useful for the aforementioned example of simulating a low-level component within a
high-level environment using transactors - become almost impossible. As a result,
assertion refinement is easiest when applied to a language supporting all abstraction
levels involved.

Nevertheless, even given such an assertion language, certain problems arise due
to the differences in the abstraction levels themselves. For instance, the different
synchronization schemes on the various TL sublevels and RTL have to be matched
somehow and the notion of TL transactions has to be converted to a comparable
concept on RTL.

The refinement process should be captured in a way that allows easy reuse of the
transformation description - in case the abstract assertion has been changed, so that
the refined assertion does not have to be rewritten from scratch. Additionally, there
might be similar assertions in different designs that have to be refined. If the assertion
refinement can be described in a flexible way, it could be possible to apply the existing
description to these similar assertions as well.

2.3.1 Example

1 property p DATA PIPE tlm
2 int D1 ;
3 #1{PUT’END}{true , D1=PUT.X}
4 |−>
5 #{1:6}{GET’END}{GET.X==D1} ;
6 endproperty

Listing 2.1: FIFO assertion for TLM

1 property p DATA PIPE rtl
2 int D1 ;
3 #1{CLK’POS}{SND ACK, D1=SND DATA}
4 |−>
5 #{1:6}{CLK’POS}{RCV ACK && (RCV DATA==D1) } ;
6 endproperty

Listing 2.2: FIFO assertion for RTL

Figure 2.1 shows a FIFO circuit, once modeled on Transaction Level Model (TLM)
and once on RTL. The Listings 2.1 and 2.2 give an example of what behavior could
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Figure 2.1: FIFO Example

be checked by an assertion in this example: With a given FIFO depth of five, both
assertions check that each successful write access to the FIFO is followed by a read
access providing the same data within the next six read accesses.

As can be seen, the underlying structure of both assertions are quite similar, al-
though the details are necessarily different due to the different abstraction levels.

2.4 Targeted Approach

The approach presented in this work provides solutions for assertion refinement taking
into acount the problems stated above. These solutions consist of two parts: First,
an assertion language capable of TL, RTL, and mixed-level assertions is enhanced
by several features which are required to map concepts from one abstraction level to
another; second, a framework consisting of a new language for the description of the
refinement process combined with a refinement generator is introduced.
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This framework allows an easy refinement of existing assertions towards lower,
higher, and mixed abstraction levels while preserving their structure. Additionally,
refinement rules can be written in a flexible way so that they can easily be reused
and applied to other assertions as well.
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3 Requirements and Objectives for
Assertions Refinement

In this chapter, the specific requirements for an assertion refinement approach cover-
ing all TL sublevels as well as RTL are listed and explained. First, requirements for
the underlying assertion language are discussed, afterwards, the requirements for the
transformation language are detailed. The text will provide references to the require-
ment summary at the end of the chapter (see Appendix A) as Rx where x represents
the number of the requirement.

3.1 Requirements for the Assertion Language

In order to successfully refine existing assertions, the assertion language has to fulfill
certain conditions as well. The following section details these requirements. Be-
ginning with some general requirements which are valid for all kinds of assertions,
requirements based on the covered abstraction levels, pipelined execution, and the
connection to SystemC as the corresponding design language are listed.

3.1.1 General Requirements

Assertions are defined to monitor a design - either constantly or at certain points in
time - for any mismatch between the actual behavior and a specified desired behavior.
In order to fulfill this role as mere observers, assertions may not influence the design
behavior in any way (R 1). Additionally, assertions only monitor a certain part of a
design, so that changes of the remaining design parts that are entirely unrelated to
the behavior checked by the assertion may not influence the assertion results (R 2);
neither may these assertion results be influenced by adding further assertions to the
design or removing them (R 3).

There are several different ways in which assertions can be used to support the
verification of designs:
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� Dynamic Verification: The Design Under Verification (DUV) is simulated in
combination with a testbench module that applies stimuli to the design and
evaluates the corresponding data provided by the design. This data can be
stored in a coverage database and / or compared to the results of a golden
reference model. This method has the advantage of easy use and low resource
consumption, but it is almost impossible to guarantee that a design is absolutely
error free.

Assertions in Dynamic Verification can be used to immediately detect design
errors during the simulation run; additionally they can be used to provide cov-
erage data for the testbench.

� Formal Verification: This verification method does not rely on testbenches or
other ways of stimulus generation. Instead, abstract properties are formulated
which the design has to fulfill. The formal checker then tries to falsify the given
properties. If these tries result in a contradiction, the corresponding property
is proven. The advantage of proving that specified properties are fulfilled at all
times without having to simulate every possible combination of inputs is offset
by the amount of resources this method requires for formally verifying even a
medium sized design.

Assertions in Formal Verification are used for specifying both the properties to
be proven and certain assumptions that can be made about the behavior of the
environment.

� Semiformal Verification: This combination of the two methods mentioned above
starts out with a normal simulation run during which ”states of interest” are col-
lected. Beginning with each of these states of interest, a bounded formal check1

is then started. Basically this method enhances the probability of detecting
design errors, but without the certainty of a pure formal check.

Assertions in Semiformal Verification can serve for all purposes described for
dynamic verification and formal verification.

Since the targeted approach deals with dynamic verification, assertion evaluation
has to be done during the simulation run (R 4) while the assertions also have to be
able to provide coverage information (R 5).

3.1.2 Abstraction Levels

As mentioned in Chapter 2.1.1, a typical design process spans several abstraction
levels with corresponding prototypes created on these levels. Currently, there are no

1”Bounded” in this context means that the formal check is not completed, but only executed to a
certain iteration depth, the bound.
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attempts to bring ABV to the specification level yet, while gate level on the other
hand introduces a lot of data to the models that are not present on the higher levels
even in an abstract way. Thus, it is of low interest to cover these two abstraction
levels in an approach for assertion refinement. The remaining levels on the other
hand should be supported by a transformation approach (R 6). Since TLMs often
contain parts on different TL sublevels and in order to allow verification of low-level
components inside a high-level system (using transactors for connecting both parts),
assertions containing parts on different abstraction levels have to be supported as
well (R 7).

While it is possible to transform assertions of one abstraction level written in one
language to another abstraction level and another language, this is no longer feasible
if mixed level assertions have to be considered. Since any mix of abstraction has to
be supported, the whole refinement approach should be based on only one assertion
language that is able to cover all required abstraction levels by itself (R 8).

Transactions and Signals

All TL sublevels exchange data using remote function calls (so called transactions). In
order to check TL models for correct behavior, these transactions and their arguments
and return values have to be accessible for assertions as well. Thus, the assertion
language has to be able to detect transaction occurrence as well as provide access to
transaction parameters (R 9 and R 10).

Since RTL designs use signal protocols for data exchange, it is necessary to pro-
vide the assertions with access to all design signals (R 11). If assertions containing
transactions have to be refined to RTL, it is necessary to provide a mechanism which
maps TL transactions to a comparable RTL representation in order to ease the trans-
formation (R 12).

Synchronization

Since the various abstraction levels differ greatly in how timing is modeled (or if it is
modeled at all), there are also different synchronization schemes in place.

Programmer’s View (PV) models do not consider timing at all. This does not
necessarily mean that the model executes in zero time, but just that timing is of no
importance for the interaction between the different components. As a result synchro-
nization between these components and also synchronization between the design and
the assertions is based on implicit events (zero delay wait statements) and explicit
events (conditional wait statements) only (R 13).
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Programmer’s View with Timing (PVT) and Cycle Approximate (CA) models ad-
ditionally include timing. Synchronization between design components and assertions
can now happen based on simulation time (timed wait statements) as well (R 14).

Cycle Callable (CC) and RTL designs use clock signals for synchronization which as
a consequence have to be usable for the synchronization of assertions as well (R 15).

Temporal Relations

As a consequence of different synchronization schemes, the abstraction levels also
differ in what temporal relations between events, transactions and signal changes can
be detected.

Since timing is not modeled in PV designs, and since the simulation kernel simulates
the concurrent processes of a design in a sequential way, it is not possible to detect
any kind of simultaneity between different events or transactions. However, it is
possible to order events and transactions according to the execution order in the
simulation kernel. This order might originate from causal dependencies between
the corresponding events or transactions (in which case every simulator and every
simulation run will produce this particular order), or by the fact that the kernel
randomly processed first one event and then the other if there is no causal dependency
(in which case the order might differ between simulation runs or simulators).

event

order

transactions

Consecutive Overlapped Inclusion

 T1

 T2

Figure 3.1: Transaction Relations

If care is taken to only reason about dependent transactions / events, then this
order allows detecting the order of occurrence of events and of the different relations
transactions have to each other (R 16) (see Figure 3.1).

Since every part of the design is able to produce events or call transactions, it
is very likely that the use of a global event counter for determining the distance
between two events would lead to dependencies between the assertion result and the
completely unrelated parts of the design which are not checked by the assertion at
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all; this behavior though would contradict R 2. Therefore, it is necessary to specify
partial orders on events, which consider only those events relevant for a particular
assertion and neglect the rest (R 17). One additional problem lies in the unreliable
occurrence of specific events; in contrast to RTL where it can be easily assumed that
the next clock edge will happen, the same is not true for TL. But if an expected event
does not happen due to an error in the design, the assertion has to be able to detect
this absence. The specification of strict partial orders on events allows the detection
of event absences relative to the occurrences to other events (R 18).

PVT models introduce timing to the design. When comparing every occurrence
of events or transations with the corresponding time stamp, it becomes possible to
correlate these events and transactions not only with regard to their order, but also
based on the simulation time. Since an arbitrary amount of events can happen at the
same simulation time, it is now possible for several events to occur simultaneously.
Additionally, events or transactions that happened one after the other may now
happen simultaneously (e.g. ”A before B” becomes ”A before or simultaneous to
B”). These possibilities have to be taken into account for the assertion evaluation,
which implies that temporal relations based on simulation time have to be detectable
as well (R 19).

In most cases the underlying paradigms of CA models are very similar to PVT.
The one big difference concerning the detection of temporal relations is that in a CA
model it is possible to change the frequency of the simulated clock by changing the
corresponding clock period. As a consequence it is possible for time delays to change
dynamically which means that assertions have to support dynamic temporal behavior
as for example the dynamic change of a time delay (R 20).

CC and RTL models do not use direct time delays anymore. Instead clock signals
are used for synchronization and execution. Therefore, assertions have to be able to
correlate events, transactions, and signal changes according to the clock signals as
well (R 21).

3.1.3 Pipelining

Pipelining in one way or other is a quite frequently used mechanism. When refining
a TL design down to RTL for instance, a previously sequential computation is often
transformed into a parallel one, either by introducing some sort of dedicated pipeline,
or by using multiple resources of a kind. Similarly, many TL designs make use of
FIFOs or other structures with a built-in pipelined evaluation. In order to capture
this behavior with assertions, the assertion language has to support checks of pipelined
behavior (R 22).
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3.1.4 SystemC

Simulation Kernel

With the rise of Electronic System Level (ESL) and Transaction Level Modeling,
several new languages have been developed. One of them, SystemC2, has managed
to establish itself as the de facto standard for creating TLMs while also supporting
the modeling of RTL designs.

For that reason the assertion language should be able to check SystemC designs
(R 23), which also means that all SystemC and C++ data types have to be supported
for assertion notation and refinement (R 24).

A SystemC reference kernel including infrequent new releases is provided by Open
SystemC Initiative (OSCI). It is possible to either use the unchanged simulation kernel
of OSCI SystemC or to include some custom changes that have to be transferred on
every new version, followed by extensive tests to ensure compliance to OSCI SystemC.
Since the continuous update of various kernel versions is too tedious, it is essential
that the assertion evaluation does not require changes of the basic simulation kernel
(R 25).

OSCI also provides a standard for TL modeling, including the definition of basic
communication protocols and corresponding transaction interfaces, in order to allow
easier interoperability between different TL IPs. For obvious reasons, an assertion
approach dealing with (among others) TL designs should comply to this standard as
well (R 26).

In the same way as any Hardware Description Language (HDL), SystemC offers
several features especially useful for modeling HW, for instance hierarchical designs.
In order to check hierarchical designs with assertions, a mechanism for seamless access
to modules and their internal objects has to be provided (R 27).

Event Handling

SystemC models concurrency through the use of processes running in parallel to each
other. These processes communicate through and are scheduled for execution by
events. SystemC offers basically three different kinds of events:

1. Signal change events: Whenever the value of a signal changes, it emits a corre-
sponding event as a notification.

2To be precise, SystemC is merely an extension of C++ in the form of a class library.
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2. Explicit events: SystemC provides several types of explicit events that can be
emitted by the programmer after a specific simulation time has passed, in the
next delta cycle, or immediately.

3. Implicit events: These events are used by processes to suspend themselves while
at the same time marking themselves for waking up either after a specific sim-
ulation time has passed or at the beginning of the next delta cycle. Implicit
events are generated by timed or zero-delay wait statements.

Processes can be made sensitive to certain events by the use of static or dynamic
sensitivity lists or by wait statements, which allows influencing under which circum-
stances a process is to be evaluated. Thus, an assertion language has to be able to
track the various kinds of events SystemC provides (R 28).

Transactions

SystemC allows the modeling of two different kinds of transactions:

� Blocking: Blocking transactions are able to suspend the calling process and
only resume its execution when a condition is met (a certain time has passed,
an event has occurred, etc.).

� Non-blocking: Non-blocking transactions cannot be suspended. The whole
transaction is executed in an atomic manner within one delta cycle.

An assertion language has to be able to detect both blocking and non-blocking
transactions (R 29). Since non-blocking transactions are executed within one delta
cycle, the available time resolution has to be more granular than delta-time in order to
monitor details within these transactions (R 30). For the same reason, it is necessary
that assertions are notified immediately if a transaction has occurred (R 31).

Access to Data Objects

Objects storing data usually differ between RTL and TL. While RTL models make
heavy use of signals for communication and also for storage, on TL this is usually
replaced by the use of transactions for communication and variables for storage. In
addition to the access to signals (R 11) and to transaction parameters (R 10), these
variables have to be accessible as well (R 32). Furthermore, assignments on these
variables have to be detectable (R 33).
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Sampling

In addition to the general possibility of accessing the aforementioned objects, due
to the different synchronization schemes used on the various abstraction levels, it is
necessary to provide flexible ways of sampling the values of these objects, either with
the occurrence of transactions or events (including signal change events of a clock
signal) or at any particular simulation time (R 34).

3.2 Requirements for the Transformation Language

In addition to requirements for the assertion language, there are also certain require-
ments that have to be met by the transformation language. These requirements are
discussed in the following section. After introducing the concept of structure preser-
vation and its consequences, the special requirements brought up by the support of
multiple abstraction levels, method based and signal based communication, timing,
and reset mechanisms are discussed. Subsequently, assertions which would lead to
ambiguous transformation results and the aspect of reusing existing assertion trans-
formation descriptions are addressed.

3.2.1 Abstraction Levels

Since the main purpose of this approach is to provide flexible means for assertion re-
finement, the assertion transformation process should not be unnecessarily restricted
concerning what can be refined and what cannot. As a result, transformations to
both higher and lower abstraction levels have to be supported (R 35). For the same
reasons, all abstraction levels that can be covered by assertions have to be covered by
the transformation language as well. This includes RTL and the various TL sublevels
as well as any mix of these (R 36 and R 37).

3.2.2 Behavioral Consistency

When trying to transform an assertion to another abstraction level, it has to be taken
care that the transformed assertion still checks the same behavior as the original
one. Since the various abstraction levels differ quite a bit concerning the amount
of implementation detail they model, ensuring this fact is not trivial. While the
corresponding behavior has to be consistent, the assertions can hardly be completely
equivalent, since the abstraction levels involved use different models of computation,
different notions of time, etc.
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As a result, the general composition of the assertion may not be changed while
changing specific elements is allowed (R 38). If the original assertion checks a hand-
shake protocol for example then adding a check that deals with writing a register
value is not consistent behavior anymore. On the other hand, changing the required
time for the handshake from 10 ns to two clock cycles is based on the abstraction
level and may thus still represent consistent assertion behavior.

3.2.3 Conversion of transactions and events

While all TL sublevels support the notion of transactions and events, on RTL trans-
actions and most events (with the exception of clock events) are usually represented
by a sequence of signal changes. Thus, the transformation language has to support
the conversion between transactions and events on the one side and arbitrarily com-
plex signal protocols on the other side (R 39 and R 40). Transaction arguments and
return values have to be mapped to corresponding signals (R 41).

3.2.4 Timing

In order to cope with the different concepts of timing and synchronization on the
various abstraction levels, the transformation has to provide the possibility to ex-
change one timing concept with another one, namely absolute delay values, cyclic
delay values, and clock signals (R 42).

Additionally, it is necessary to be able to add timing information to an assertion
or remove it again (R 43). This modification does not contradict R 38 if an un-
timed assertion is just considered as having unconstrained timing. Thus, addition of
timing information can be regarded as replacing the unconstrained bounds (0 or ∞
respectively) by tangible values, while removing timing works the other way round.

3.2.5 Reset

While TL designs often do not contain a specific reset mechnanism, RTL designs
on the other hand mostly do. Though evaluating an assertion during the time the
design is reset does not cause problems in most cases, an assertion under evaluation
at the exact moment the design is reset will almost certainly lead to a failure if the
assertion is not reset as well. Thus, the transformation approach has to support the
addition or removal of statements handling reset in the design to / from an assertion
(R 44). Again, this modification does not contradict R 38 since the reset statement
does nothing more than only constrain the time during which the assertion will be
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actually evaluated. In case of a reset, all assertion evaluations that are currently
running are terminated without having any effect.

3.2.6 Ambiguity

There are some situations where an assertion cannot be transformed correctly without
violating the structure preservation. This might be due to some peculiar details of
one of the designs in question or because a specific assertion construct simply cannot
be mapped onto the target abstraction level. In this case the transformation language
should provide the following three options (R 45):

1. Warning: The transformation issues a warning message stating that the desired
transformation might createsible without creating behavioral discrepancies be-
tween the original and the target assertion.

2. Strict transformation: While the target assertion might produce false negatives,
it avoids all false positives. In extreme cases this could lead to an assertion that
is always violated.

3. Safe transformation: While the target assertion might produce false positives,
it avoids all false negatives. In extreme cases this could lead to trivial assertions
that will never fire.

While the results of the latter two choices are not exactly a correct refinement of
the original assertion, it allows to at least get an estimation about the behavior of
the refined design. It might even be useful to run the design with both the ”safe”
and the ”strict” assertion and evaluate the corresponding coverage results. In any
case, the transformation results can at least point in the right direction for manually
creating an appropriate assertion.

3.2.7 Reuse

Using a transformation language provides two basic advantages when compared to
manually transforming the assertions from one abstraction level to another:

1. Since the transformation description only specifies the changes that have to be
done to the assertion, the user can be certain that everything not mentioned in
this description will remain exactly as it was before. As a consequence, there
will be less sources for potential errors than compared to the manual refinement
process.
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2. Some parts of that transformation description might - after slight adaptations
- be useful for future refinement of similar assertions.

With some additional features for the transformation language this reuse of trans-
formation descriptions could be made much easier. The language should support
the combination of several transformation directives that serve a common goal into
transformation rules (R 46). Providing these rules with parameters in order to dy-
namically adapt them for the task at hand would then reduce the modification effort
when applying existing rules to a new project (R 47). Finally, the language should
support the encapsulation of parameterizable rules in order to provide transformation
libraries for frequently used transformation processes (R 48).
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This chapter discusses the two topics assertion refinement is based on. First, the
various approaches for ABV and similar verification methods, and second, approaches
dealing with automated or semiautomated refinement in other areas, be it related to
design refinement or the concepts involved in crossing abstraction levels in general.
This chapter discusses corresponding related work and motivates the choice of the
underlying assertion language by comparing existing approaches with regard to the
requirements discussed in Chapter 3.

After presenting current ABV approaches for both TL and RTL, refinement based
on the use of transactors is discussed. Finally, general refinement approaches and
other related work are covered.

4.1 Assertions in a Top-Down Design

As explained in Chapter 2, the design process covers several different abstraction
levels. Assertions that are applied to a design during this process, differ according
to the abstraction level of the corresponding design. Using ABV on TL requires the
support of several features that are typical for TLMs, for instance a way of dealing
with the abstract communication that is used at this level. Other requirements lie
in the support of synchronization schemes that do not rely on clock signals and the
possibility of untimed modeling. Compared to that, RTL assertions have to deal
with completely different design features. RTL designs are based on signals, which
are used for communication, storage, and synchronization (clocks), in contrast to the
transaction and event based evaluation of TLMs. As a consequence, assertions on
this level have to support a view centered on clock cycles. Since clock signals can
be assumed to be regular and reliable, it is always guaranteed that assertion will be
evaluated within a known time period. Several approaches for ABV have been created
during the last years, with sometimes quite noticable differences concerning available
functionality and applicability. In order to make a reasonable decision about which
approach to base the refinement idea on, the following section details these different
approaches and also compares their functionality in accordance to the requirements
listed in Chapter 3.
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4.1.1 SVA and PSL

SystemVerilog Assertions (SVA) [7][8] and Property Specification Language (PSL)
[9] are two wide spread languages for ABV. While SVA is part of the Hardware De-
scription and Verification Language (HDVL) SystemVerilog, PSL is an independent
language completely focused on specifying assertions. Both are comparable concern-
ing the included features (for a comparison of functionality and expressiveness of both
languages, see [10]).

Both languages are very well equipped for verifying RTL designs due to the sup-
port of assertion evaluation based on clock signals, the ability to specify sequences
of Boolean propositions to be checked, the ability to connect several sequences or
properties by dedicated operators, etc. Both languages are only capable of very rudi-
mentary support of TL designs by providing some features that allow the specification
of rudimentary TL assertions (e.g., the use of events for triggering). Nevertheless,
they lack several of the required features for specifying full fledged assertions on TL:
For instance, neither language provides the ability to detect transactions (R 9), ac-
cess to the corresponding transaction parameters (R 10), to synchronize assertion
evaluation with delays in the design, for instance timed wait statements (R 14), or
to detect dynamic or pipelined behavior (R 20 and R 22).

4.1.2 Research work

Finite Linear Temporal Logic

In [11][12] a bounded version of Linear Temporal Logic (LTL) called Finite Linear
Temporal Logic (FLTL) and a SystemC implementation of the corresponding formulas
is presented which is then applied to the verification of TLMs [13], [14]. While a
notion of transactions exists, blocking transactions are not supported (R 29) which
also prevents the detection of transaction relations (R 16). The detection of temporal
relations based on simulation time is not supported (R 19). While event order can be
detected, unfortunately, this event order is global. As a result all events of the design
influence the distance between two events in question and thus, changing unrelated
parts of the design influences the assertion behavior (R 2). Finally, neither RTL and
mixed level assertions (R 6 and R 7), nor pipelining (R 22) are supported.

Transaction Level SystemC Assertions

The approach presented in [15][16] allows the specification of TL assertions in Sys-
temC. While a notion of transactions exists here as well, again, there is no support
for the detection of transaction relations (R 16). Linking to transaction parameters
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(R 10) and the use of simulation time for synchronization or for detection of temporal
relations is not supported either (R 14 and R 19). The detection of transactions in
PV models is enabled by the use of callbacks. This approach does not support RTL
and mixed level assertions either (R 6 and R 7). Detection of pipelined behavior is
only possible if the designer provides a large amount of code annotations within the
design and is furthermore restricted to PVT models (R 22).

Usage of SystemVerilog Assertions with SystemC Designs

In [17][18] SVA is used for specifying TL assertions on SystemC designs. Additional
signals are introduced that indicate whether a specific transaction is active. An
artificial clock signal is introduced which produces an edge with each edge of one of
these auxiliary signals. The simulation run is stored in a Value Change Dump (VCD)
file which is then read into a Verilog module representing that particular trace. The
resulting Verilog module is simulated in combination with the SVAs. Due to the
required update of the auxiliary signals, there is always an additional delta cycle
between the actual transaction and the corresponding detection based on the signal.
Thus, non-blocking transactions cannot be captured in this way (R 29). Since the
artificial clock signal considers all transactions, the resulting event order is global,
which leads to assertions depending on unrelated parts of the design (R 2). Since this
approach is based on SVA it has to deal with all inadequacies this language shows
concerning TL modeling. Thus, TL sublevels are not completely supported and as a
direct consequence neither are mixed level assertions (R 6 and R 7).

Temporal Logic of Actions

The approach presented in [19] correlates so called actions (assignments to state
variables) over time using operators similar to known LTL operators. Since neither
a notion of events nor a notion of transactions exists, none of the corresponding
requirements can be fulfilled (R 9, R 13, etc.). Finally, this approach does not support
the detection of dynamic or pipelined behavior (R 20 and R 22).

Duration Calculus

In [20][21] an approach for using Duration Calculus (DC) to specify real time prop-
erties is presented. DC formulas allow reasoning about the duration and temporal
correlations of so called phases (states). Thus, only detection of temporals relations
based on simulation time is supported. On the other hand, detecting relations based
on events or clock signals is not possible (R 17 and R 21), which makes it impos-
sible to correlate transactions in pure PV models and requires additional effort to
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do the same in CC models. Furthermore, both the DC formulas, and the Design
Under Verification (DUV) need to be translated into so called phase event automata,
which means that designs modeled according to the classical abstraction levels are
not supported (R 6).

Logic of Constraints

In [22][23] an approach for simulation based checking of abstract SystemC models
using a combination of LTL and Logic of Constraints (LOC) is presented. Temporal
checks are specified using LTL while LOC is used for specifying performance checks.
Using LOC formulas in combination with events that can be associated with specific
values allows checking of pipelined behavior. Under certain conditions however, the
results of these checks can be non-deterministic. This approach aims at higher levels
of abstraction and lacks support for RTL designs (R 6 and R 7).

SystemC Implementation of SystemVerilog Assertions

In [24][25] a complete implementation of SVA on SystemC is presented. SVA are writ-
ten natively in SystemC using a macro-style syntax. There is however no mentioning
of how the differences between the sampling semantics of the simulation kernels of
SystemC and SystemVerilog are resolved. Since SVA is used as the basis for this
approach, most features necessary for the TL verification are missing (R 6 and R 7).

XML Based Assertion Generation

In [26][27][28] a generator based approach for creating assertion libraries in VHDL
(VHDL), Verilog, SystemVerilog, and SystemC from an XML description is presented.
In addition to classical RTL features this approach also allows the specification of
assertion evaluation based on simulation time. However, this approach does not
provide TL features (R 6 and R 7).

4.1.3 UAL

In [29][30][31][32] an assertion language for specifying assertions for SystemC designs
is presented that covers TL, RTL, and mixed level assertions. This language is nei-
ther based on LTL, nor on Computation Tree Logic (CTL). Assertion evaluation
happens on the basis of events; signal changes are directly converted to events, while
specialized operators translate simulation time to events as well (in addition to that,
operators for creating complex event expressions are provided). As a consequence,
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sampling of design states can be done with regards to events, simulation time, and
clock signals. Transactions are considered a pair of events, notified to the assertion
by callbacks; this mechanism also allows the detection of transaction relations. But
while it is possible to express the corresponding signal protocols on RTL, the language
lacks direct support of an RTL transaction representation (R 12). The absence of
events can be expressed by so called negative trigger events. Since the language is
translated to native SystemC modules that are then co-simulated with the design,
the language naturally is compliant to OSCI SystemC and also provides access to all
internal elements, including signals, variables, and transaction arguments. Detection
of pipelined behavior is supported as one of several evaluation modes.

While this language does not provide all required features for assertion refinement,
it comes closest. The most important factor is that it does not only cover all ab-
straction levels in question, but also handles them in a consistent way. This in turn
leads to greater similarities between high level and low level assertions (better for the
refinement) and makes the specification of mixed level assertions much easier.

4.2 Transactor based Refinement

Several different verification approaches deal with the reuse of high level verification
components, like assertions and testbenches. This reuse is accomplished by the use
of transactor components which translate the low level protocol of the design to the
high level protocol of the verification components or vice versa.

In the following, several approaches related to transactors are discussed.

4.2.1 Flexible Transactor Specification

SpiraTech, now a subsidiary of Mentor Graphics Inc., offers a methodology for easy
specification of transactor components covering multiple abstraction levels[6]. Using
SpiraTech’s own language CY that was specifically developed for that purpose, the
user can easily create transactors covering all abstraction levels he desires, and only
those.

Using a generator, the CY description can be transformed into a simulatable trans-
actor model which provides links to SystemC and RTL simulators as well as assertions
concerning the correct protocol behavior.

This offers some benefit in transactor modeling productivity, but does not provide
any new features to transactors at a glance.
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4.2.2 Multi-Level Testbenches and Transactors

Each of the leading Electronic Design Automation (EDA) vendors has developed a
methodology for the application of simulation based verification: the Advanced Veri-
fication Methodology (AVM) [2] by Mentor Graphics Inc., the Verification Methodol-
ogy Manual (VMM) [33] by Synopsys Inc., and the Unified Verification Methodology
(UVM) [34] by Cadence Inc.

All these methodologies are based on distributing the verification functionality into
several different functional components (see Figure 4.1):

1. Stimulus Generator: Provides stimuli for the DUV (usually constrained ran-
dom)

2. Response Checker: Compares the DUV responses with data from a golden
reference model

3. Coverage Collector: Gathers coverage data

4. Test Controller: Uses coverage data to control stimuli generation

test

controller

coverage

collector

scoreboard/

response

checker

monitor monitor

stimulus

generator
driver DUT responder slave

Figure 4.1: Sample Testbench System According to AVM[2]

When verifying an RTL design instead of a TLM, several additional transactor
components translate the stimuli towards low level signal protocols and the response
of the design back towards high level transactions. This way, the same testbench can
be used for both models.

Assertions can be used in addition to this approach. They can help uncover design
errors, while the assertion coverage information can be used in combination with the
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conventional coverage for controlling the stimulus generation. Additionally, assertions
allow to not only check behavior at the interface between different modules, but also
the internal behavior, which in turn can reduce the overall verification effort.

Since assertions work in a way that is fundamentally different from testbenches -
desired behavior is specified in an imperative way in testbenches, while assertions use
a declarative approach - the combination of both approaches helps to achieve better
verification results, since two different points of view are applied.

Another approach is presented in [35]. Here, an RTL component is embedded in
a TL system. The communication between the different parts is again handled by
a transactor. Both parts are co-simulated using two coupled simulators, one per
abstraction level, in order to reduce the impact on simulation performance. The
transactor component not only serves the purpose of translating high level protocols
to low level signal interfaces and back, but also coordinates the information exchange
between the two simulators (one simulator first receives data from the other one,
then proceeds its own simulation for one step, and finally passes control back to the
other simulator; only one simulator is active at any given time). Furthermore, the
replacement of the RTL part by an HW emulator is also presented.

A different direction is persued in [36]. Here, existing RTL testbenches are reused
for the verification of a TLM, either by means of mixed level (and potentially mixed
language) simulation in combination with a transactor, or by using a transactor to
record the signal protocols during the RTL simulation and to generate a corresponding
TL testbench which will provide equivalent stimuli for the TLM.

4.2.3 Automated Transactor Generation

In [37], an approach for generating transactors from an Extended Finite State Ma-
chine (EFSM) is presented. A protocol description (for standardized protocols) or a
given testbench (for non-standardized protocols) is transformed into an EFSM. This
EFSM is then used to automatically generate interfaces and implementation for the
corresponding transactor component.

A similar approach is presented in [38]. Interface protocols are specified using an
enhanced version of PSL, specifically its Sequential Extended Regular Expression
(SERE) subset. These expressions are transformed to an abstract syntax tree and
from that to a Finite State Machine (FSM). Finally, the transactor implementation
is generated from this FSM.
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4.2.4 Transaction Level Assertions and Transactors

In [39][40], an approach for using TL assertions in combination with transactors and
RTL designs is presented. The high level assertions are written in PSL without a
real notion of transactions (R 9). Instead, the state of the design is represented by
signals. Due to the additional delay for updating these signals, it is not possible to
reason about behavior within a delta cycle (R 30). Furthermore, specifying temporal
relations between different design behaviors based on simulation time is also not
supported (R 19).

Since most of the inadequacies of this approach are based on its reliance on PSL
for specifying the assertions, it is possible to use another assertion language, which is
more suitable for TL, in combination with transactors. However, even if this language
supports the transaction concept, due to the very nature of transactors, only the end
of transactions can be detected. As a result, the different possible temporal relations
of several transactions cannot be distinguished (R 16), since there is no way to reason
about the start of the corresponding transaction calls.

4.3 General Refinement Approaches

This section covers various related topics, like various forms of design transformations
and Aspect Oriented Programming (AOP). These topics either show some common
properties to the assertion refinement presented in this work, or provide the basics
on which the assertion refinement is built.

4.3.1 Model Driven Architecture

Model Driven Architecture (MDA) [41] describes an approach to specify systems
with a separation between the system’s functionality and the corresponding imple-
mentation. Due to this separation, it is possible to map one specific functionality on
multiple corresponding implementations. In this context, a model represents a part
of the function, structure and / or behavior of a system.

MDA requires a formal specification of a model, which means that the specification
is done in a language / representation with clearly defined syntax and semantics. For
instance, every simulatable HDL code would be a model.

In this context the terms of abstraction and refinement are used. Abstraction is
defined as the suppression of irrelevant detail. Two models, one more abstract than
the other, can be connected by a refinement model, which describes the abstraction
steps taken from one model to the other while at the same time ensuring some basic
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correlations. This refinement model could describe the transformation from a plat-
form independent model to a platform specific model. Both are mostly based on XML
description, with the actual transformation done via Extensible Stylesheet Language
Transformations (XSLT) or a script language as for instance PERL.

4.3.2 Design Refinement

The topic of refining or transforming existing models is not new. In [42] the different
aspects of model transformations are categorized in order to help programmers with
approaching the transformation of their designs in a methodical manner.

There are already several different approaches for transforming an existing design
to another abstraction level. Some examples are listed here:

� Abstraction: In [43] a methodical transformation of RTL models towards TL
is described. RTL models are described as EFSMs which are then analyzed in
order to extract the information relevant for the TL model.

� Systems:

– The tool CatapultC from Mentor Graphics Inc. [44] as one example for a
high level synthesis tool allows the creation of RTL code from high level
C++ programs (functional to RTL)

– In [4] an approach for high level synthesis is presented which also includes
an equivalence check between the original and the generated models (TL
to RTL)

– Bluespec Inc. offers several approaches to describe hardware in a high level
language (based on either SystemC or SystemVerilog) which can then be
synthesized towards Verilog RTL code automatically [45] [46] (CC to RTL)

� Mapping: The IP-Xact standard developed by the SPIRIT consortium[3] is
capable of describing the mapping information of RTL designs. Currently the
standard is enhanced in order to also include TL designs and an automatic
mapping of RTL and TL components.

4.3.3 Refinement Description Languages

For several other refinement tasks corresponding languages have been developed al-
ready.

For instance [47] presents a language for the stepwise refinement of software ar-
chitectures. This language uses a set of refinement primitives that allow a formal
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description of the refinement process. In this context, the language makes use of
the fact that an abstract program does not specify all aspects of the implementa-
tion. These open aspects are then determined during the refinement. The language
is formally based on the π-calculus, which was developed to describe concurrent com-
putations with dynamically changing configurations.

In [48] a refinement of architectural specifications written in Common Algebraic
Specification Language (CASL) is presented. The approach uses so called refinement
trees which basically splits a refinement task in several independent subtasks that
can be evaluated easier than the original one.

4.3.4 Aspect Oriented Programming

The transformation language presented in this work uses features known from AOP
[49]. This programming technique tries to break down programs into parts with
(in the best case) disjunctive functionality. If this is not possible, these so called
cross cutting concerns can be implemented in separate modules called aspects. These
aspects can then be added to all parts of the program where they are needed.

Usually, aspects fall into one of three categories:

1. New functionality is added to a program

2. Existing functionality is modified or replaced

3. Existing functionality is removed

Using similar methods, the new features of a less abstract level can be added to an
assertion, while they are removed when moving to a more abstract description.
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This chapter introduces an approach for assertion refinement, allowing free transfor-
mation1 between all TL sublevels and RTL. First, general concepts are discussed,
followed by the changes to an existing assertion language named Universal Asser-
tion Language (UAL) in order to provide the necessary features for the refinement
process2. Afterwards a dedicated transformation language is presented, which allows
the formal specification of the transformation process. The chapter concludes with
an overview of the transformation file structure as well as general guidelines for the
applicability and usage of the transformation rules.

5.1 Concept

Every approach of assertion refinement has to be based on a corresponding refine-
ment of the underlying design. As a direct consequence, the peculiarities of design
refinement have to be examined and - if possible - categorized in order to provide a
conceptual basis for the transformation of assertions.

5.1.1 Basic Definitions

This section discusses several required definitions for the refinement process:

Concepts of Simultaneity

A concept connected to the notion of timing is simultaneity. Due to the different
ways of modeling time within the various abstraction levels, there are also different
possibilities to order events and the actions - operations or assignments on the states of
a design - triggered by the occurrence of these events. This order can be either causal

1While the transformation language supports both refinement and abstraction, in the following
sections we focus on a top-down design process and accordingly on assertion refinement.

2In order to illustrate some of the general concepts, code examples are used at several places. For
convenience reasons these code examples also use UAL.
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or arbitrary depending on the relation between those events. However, all actions
invoked by the occurrence of one event can be considered to happen simultaneously.

Models without time can order events only by their occurrence, while others might
additionally allow the use of simulation time values and even clock cycles. As a
consequence, three different notions of simultaneity are defined:

Definition 2 All events of a simulation run are unambiguously ordered concerning
their occurrence. All actions occurring between two adjacent events are considered
simultaneous to the first event. This relation is called Event Based Simultaneity
(EBS).

Definition 3 Two events of a simulation run with the same simulation time stamp
are considered simultaneous with regard to simulation time. All actions invoked by
these events are hence considered simultaneous as well. This relation is called Time
Based Simultaneity (TBS).

Definition 4 Two events of a simulation run occuring between two event occurrences
of the same event object are considered simultaneous with regard to the corresponding
event. All actions invoked by these events are hence considered simultaneous as well.
This relation is called Cycle Based Simultaneity (CBS).

Cycle Based Simultaneity (CBS) is most commonly used in combination with clock
edges. In this case all events within the same clock cycle (for instance between two
rising edges of the same clock signal) fulfill this requirement.

Note that all actions that are simultaneous according to Definition 2 are also si-
multaneous according to Definition 3 and Definition 4. The inverse of this relation
does not hold.

There is no direct way to determine if actions that are simultaneous according to
Definition 3 are also simultaneous according to Definition 4 or vice versa, since two
adjoining occurrences of the relevant events for CBS might happen within one time
step (for instance in different delta steps) or distributed on several different time
steps.

When using a modeling style or abstraction layer which only uses one event per
clock cycle (and thus also per time slot), all three definitions converge to the concept
of simultaneity known from RTL3.

As mentioned above, the modeling of time differs between the various abstraction
levels. As a consequence, some forms of simultaneity are not detectable on all levels
and thus cannot always be preserved when transforming an assertion.

3This assumes that the clock signal does not include any delta glitches.
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Event Based Simultaneity (EBS) is always detectable but may have no sensible
meaning in certain situations. It is always preserved when transforming an assertion
to a lower abstraction level.

Time Based Simultaneity (TBS) is only detectable if the model includes time. It
is always preserved when transforming an assertion to a lower abstraction level but
dissapears when transforming to a more abstract level that does not model time
anymore.

CBS is only detectable if the model includes the corresponding events or infor-
mation about their occurrence (for instance a clock signal or a corresponding clock
period). It is preserved as long as the target level includes information about these
events.

Structure Preservation

As mentioned in Chapter 3, preserving the structure of an assertion during the trans-
formation is necessary, since otherwise the transformation result cannot be correlated
with the original assertion concerning the checked behavior any more. While an asser-
tion transformation preserving the structure might still not be equivalent, checking
the equivalence of transformed assertions violating this requirement might become
very complicated. This can be easily seen when considering that checking this kind
of equivalence includes the equivalence check of two Boolean expressions which is
known to be an NP-complete problem [50].

Structure preservation is defined as follows:

Definition 5 (Structure Preservation) Structure Preservation of an assertion
implies that the structure of an assertion, including the exact number of subcom-
ponents (properties, sequences, event expressions, Boolean expressions) and the way
these subcomponents are connected, is not changed. Replacing an element by another
element of the same type is allowed, while adding new elements, removing elements,
or replacing elements by elements of another type is illegal.

Since all operators entail a structure by their nature, they may not be replaced.

The following figures demonstrate this concept. Figure 5.1 shows a possible struc-
ture of an assertion: The assertion instantiates a property, the property connects
two sequences with an implication operator, and each sequence includes two delay
operators with their corresponding event expressions and Boolean expressions.
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Figure 5.1: Sample Assertion Structure

In Figure 5.2 the event expression and the Boolean expression of one of the delay
operators have been replaced, but the general structure of the assertion remains
unchanged4.

Delay

Event

X

Bool

X

Figure 5.2: Transformed Assertion with Structure Preservation

The assertion shown in Figure 5.3 on the other hand changes the structure by
adding a new delay operator to one of the sequences. An additional delay operator
means that the corresponding assertion includes at least one additional check of the
design behavior, which means that the transformed assertion cannot be equivalent to
the original one any more.

Another example is shown in Listing 5.1. The topmost property shows the original
version that has to be refined. Below, two possible results of this refinement are
presented.

4Note that this example simplifies the issue a bit, since the exact composition of event and Boolean
expressions is also part of the assertion structure. As a result, it is allowed to replace literals or
objects within these expressions by other literals or objects, but not a complete expression by a
different one.
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Figure 5.3: Transformed Assertion without Structure Preservation

1 property Orig prop
2 int l add r ;
3 #1{read mem ’END}{true , l add r = read mem.param2}
4 #1{write mem ’END}{( write mem.param1 == l addr ) } ;
5 endproperty
6

7 property Wrong prop
8 int l add r ;
9 #1{c lk ’POS}{RDMEM == 1 , l addr = read mem.param2}

10 #2{c lk ’POS}{(WRMEM == 1) && ( write mem.param1 == l addr ) } ;
11 endproperty
12

13 property Right prop
14 int l add r ;
15 #1{read mem ’END}{true , l add r = DATA IN}
16 #1{write mem ’END}{(ADDR OUT == l addr ) } ;
17 endproperty

Listing 5.1: Assertion Example for Structure Preservation

The assertion in the middle replaces the start and end of a transaction by a positive
clock edge, changes the number of delay steps for the second delay, and modifies the
structure of the Boolean checks - in the first check a simple true is replaced by
a comparison, in the second check another subexpression has been added. While
the replacement of the transaction events does preserve the assertion structure5 the
change of the delay steps and of the Boolean expressions does not.

The third assertion replaces references to transaction parameters by signals. Al-
though the type of the underlying objects is different now, the assertion structure has
been preserved.

5Note, that even though the structure is preserved, it cannot be guaranteed that this replacement
is correct or legal.
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5.1.2 Problem Classes for Assertion Refinement

When regarding the differences between the various abstraction levels as discussed in
Chapter 2.1.2, assertion refinement can be divided into three different categories:

� Interface Type

� Timing

� Additional Information

These categories are explained in detail in the following, combined with a descrip-
tion of the difficulties for any transformation approach to handle them in assertions.

Interface Types

This category basically includes two different interface types: transaction based in-
terfaces on the one hand, and signal based interfaces on the other. The transaction
concept is mainly used for the modeling of TL designs, while signal interfaces are the
prevalent concept for RTL designs.

Transactions are usually modeled as remote function calls, where one component
provides the corresponding function which is then called by another component. In-
formation is transmitted by the use of parameters and return values.

In order to transform a TL assertion, which is sensitive to transactions, to RTL, it
is necessary to align TL transactions and the corresponding RTL counterparts.

One of the difficulties faced in this context lies in the fact that the TL transaction
packages all relevant information in one method call, while the RTL signal protocols
might share control signals between several transactions. Another problem, which
is partially based on the first, is that detecting start and end of transaction calls
becomes more difficult. Instead of one central location, several signals have to be
monitored in order to correctly capture the corresponding events.

Timing

The second category concerns the modeling of time and temporal relations within the
models. While the interface type as described above is uniform on all TL sublevels,
they differ greatly in this regard. The less abstract the sublevel, the more timing
details are added to the model - and accordingly also to the assertions.
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Beginning with the abstract PV descriptions which do not contain any notion of
time, PVT models introduce the notion of absolute timing, CA models use cyclic
timing, and finally CC models employ clock signals in the same way as RTL models.
When transforming assertions, it has to be possible to convert every one of these
modeling styles into every other one.

This requirement seems to be at odds with the requirement of preserving the struc-
ture of a given assertion: How can an assertion that does not contain timing be
transformed into one that does, since adding operators to an assertion is not allowed?

This dilemma can be avoided by introducing the concept of implicit timing infor-
mation:

Definition 6 (Implicit Timing) Every event expression within an assertion that
does not already include an explicit time constraint can be considered to be implicitely
constrained to occur within a time frame of immediately to infinity. In the same way,
every event expression can be considered to produce a definite result as soon as the
simulation time reaches infinity.

According to Definition 5, changing the arguments of an operator does not change
the structure of an assertion, as long as the new values are of the same type as the old
ones. Consequently, using Definitions 5 and 6, transforming the timing information
of one assertion to another abstraction level can be achieved easily by just replacing
the corresponding values within a timer or time constraint, while still preserving the
assertion structure.

Listing 5.2 shows an example for both the concept of implicit timing and for cor-
responding transformations.

1 sequence Orig seq
2 #1{put ’END}{true}
3 #1{get ’END}{true } ;
4 endproperty
5

6 seqence Exp l i c i t s e q
7 #1{put ’END}{true}
8 #1{get ’END@( $delta t >= 0 && $delta t <= $ i n f i n i t y ) ; timer (

$ i n f i n i t y ) }{true}
9 endproperty

10

11 sequence Transformed seq
12 #1{put ’END}{true}
13 #1{get ’END@( $delta t >= 3 && $delta t <= 5) ; timer (6 ) }{true}
14 endproperty

Listing 5.2: Example for Implicit Timing
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The first sequence looks for the occurrence of a completed put transaction followed
by the occurrence of a get transaction without taking the temporal relation between
those two into account (a typical situation for a PV design). The second sequence
illustrates the concept of implicit timing by explicitely showing this information. The
occurrence of the get transaction is constrained by a temporal distance between 0
and ∞ and if it does not occur within this time frame, the timer operator leads to a
not match result as soon as the temporal distance equals ∞. Obviously, these time
related operators do not change the behavior of the original sequence.

The third sequence shows a possible result after a transformation to PVT. Now,
timing information is included in the model and thus, it also has to be included in the
assertion. When comparing the second and the third sequence, it becomes clear that
only the boundaries of the time constraint and the argument of the timer operator
have been replaced by different values; the overall structure of the sequence has not
been affected.

Additional Information

The last category is a catch all for the remaining differences between the abstraction
levels, again mostly for the differences between all TL sublevels on one side and RTL
on the other.

The most important issue in this context is the handling of design reset. While
many RTL designs include a reset mechanism, this is not always the case for TL.
When dealing with a resetable RTL design and a TL design without reset however,
it is not possible to create an assertion with equivalent behavior if equivalence checks
include the reset case. If the reset is excluded on the other hand, this problem is
reduced to merely disabling the assertion during the reset phase.

As the reset statement merely disables the assertion evaluation for a certain time,
it has no impact on the general assertion structure and thus, does not violate the
requirement for structure preservation.

Other items in this category include the inclusion of scan or debug capabilities,
additional registers containing status information or simulation specific data, etc.
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Summary

Table 5.1 shows an overview of the possible combinations resulting from the first two
categories6.

Interface Type Transaction
Based

Signal Based

Time
Ordered Events PV Behavioral (Zero Delay)
Token Cycle PVT Behavioral (Timed)
Cycle related (time) CA Behavioral (Cyclic)
Cycle related (clock) CC Behavioral (Clocked) / RTL

Table 5.1: Abstraction Levels

Transaction based interfaces are represented by the various TL sublevels, while
RTL and behavioral modeling use signal based interfaces.

As can be seen, the transformation between models / assertions along the timing
abstraction is orthogonal to transformations along the interface abstraction. As a
consequence, the corresponding transformations can be considered independent from
each other.

5.2 Implementation of Assertion Refinement

This section discusses the reasons for basing the assertion refinement on the lan-
guage UAL and explains how the problem classes mentioned above are dealt with in
UAL. A detailed discussion of both the problems refinement has to face, and of the
corresponding solutions follows.

5.2.1 Reasons for choosing UAL

As discussed in Chapter 4, the assertion language UAL provides almost all features
required for supporting assertion transformation between the various TL sublevels,
RTL, and even mixed level assertions. Due to the fact that the language covers all
necessary sublevels and even allows mixed level assertions, a seamless approach for
the transformation framework is possible. With only slight changes or enhancements
to the existing language, a UAL assertion written on any abstraction level can be
transformed into another UAL assertion on any other abstraction level.

6Since the third category does not follow a specific theme, but basically just contains everything
not covered by the first two, it is not considered here.
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5.2.2 UAL Overview

This section gives a short overview over the organization and the features of UAL.

Layers

Like most assertion languages UAL is organized in several layers. Some of these
layers are common to all assertion languages while others are new or at least greatly
enhanced:

1. The Modeling Layer includes the structure of the assertion monitor file.

2. The Verification Layer includes all directives that interact with the simulator,
which means assertions and coverage directives. Assertions notify the user in
case of abnormal or erroneous design behavior, while coverage directives collect
data on how often a certain behavior occurred.

3. The Property Layer allows the specification of properties. Properties describe
desired design behavior, for instance in form of logical and temporal implica-
tions. Every property evaluation produces one of the following results:

� Failure: The design violates the specified behavior.

� Success: The design complies with the specified behavior.

� Vacuous Success (only for implications): The antecedent condition of the
implication is not met, so the consequent is not checked.

4. The Sequence Layer allows the specification of sequences. Sequences describe
temporal patterns which are matched against the temporal behavior of the
design. Every sequence evaluation produces one of the following results:

� Match: The pattern has been recognized.

� Not Match: The pattern has not been recognized.

5. The Event Layer provides operators for the logical combination of events which
are used for the sampling of design states by UAL and for progression of the
delay operator.

6. The Boolean Layer provides operators for the logical combination of Boolean
propositions. This layer is responsible for defining the checks on design states.

The biggest difference between UAL and other assertion languages lies in the ex-
istence of an independent event layer that is responsible for handling the various
abstraction levels.
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Event Operators

The event layer offers a variety of operators which are used to generate events or com-
bine existing events to event expressions. Table 5.2 lists the existing event operators
and provides a short description of their functions.

Name Syntax Function
Single Event event fires if event occurs
TIMER timer(timeval) fires timeval time units later than the

current evaluation time
ACCUMULATOR ev expr%(expr) fires after expr occurrences of ev_expr
CONSTRAINT ev expr@(expr) fires if expr is true on occurrence of

ev_expr

OR ev expr | ev expr fires if either of the operand event ex-
pressions occurs

AND ev expr & ev expr fires if both operand event expressions
occur at the same simulation time

Table 5.2: UAL Event Operators

Delay Operator

One of the key features of UAL is a general delay operator which works indepen-
dently from the abstraction level and thus allows the specification of sequences across
abstraction levels. Figure 5.4 depicts the overall structure and functionality of this
delay operator.
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Figure 5.4: General Delay Operator
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One evaluation attempt of a sequence built from this delay operator is called a
thread. The specification of a delay range leads to a split into several so-called
subthreads.

Listing 5.3 shows a sample use of this delay operator. The first set of curly brackets
specifies the delay range, i.e. the required number of occurrences of a trigger expres-
sion. The trigger expressions are specified within the second set of curly brackets -
divided into positive triggers in front of the semicolon which shift the evaluation and
negative triggers after the semicolon which stop the evaluation - while the third set
of curly brackets contains the Boolean propositions to be checked at the time of the
trigger.

1 #{3:5}{( e1 | e2 )@( $delta t>=45 && $delta t <=50) ; e3 | timer (51) }{A ==
B} ;

Listing 5.3: Sample Event Sequence

This configuration delays the evaluation until e1 or e2 have occurred between three
and five times with a temporal distance of 45 to 50 time steps. If the positive trigger
occurs for the third, fourth, or fifth time, the Boolean expression (A == B) to the
right is evaluated. If this expression evaluates to “true” the delay operator results
in a “match”. The delay operator results in “not match” if either e3 occurs, or the
evaluation per delay step takes 51 time steps, or the Boolean expression evaluates to
false.

Evaluation Modes

UAL provides several different modes which determine the way several evaluation
threads of a property or sequence interact with each other.

Sequence modes only lead to different results if the sequence in question includes
more than one subthread (introduced by ranged delays). The following sequence
evaluation modes are available:

� AnyMatch: No interaction between different subthreads of an evaluation occurs.
Thus, each subthread is treated separately and will produce a result of its own.
A sequence running in this mode will produce exactly as many results as the
product of all its range possibilities.

� FirstMatch: This mode introduces interaction between the different subthreads.
As soon as one subthread of an evaluation attempt results in a match, all other
subthreads are canceled (if more than one subthread result in a match at the
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same time, only the subthread with the smallest delay value will match). Thus,
a sequence running in this mode will always produce exactly one result.

� FirstMatchPipe: Additionally to the behavior of the previous mode, interaction
also happens between different evaluation attempts of the same sequence. There
are two additional restrictions concerning the matching of a subthread:

1. A subthread may only match at a certain event index if no older thread
tries to match at the same event index.

2. Every matching thread ”consumes” the Boolean expressions specified
within its delay operators at the corresponding event indices7. A sub-
thread may only match if the Boolean expressions it tries to consume have
not already been consumed by an older thread.

Similarly, there are several modes for the evaluation of implication properties. The
following property evaluation modes are available:

� Restart: If the antecedent sequence of the implication produces another match
while the consequent sequence is still under evaluation, the current evaluation
is canceled and a new one is started.

� NoRestart: If the antecedent produces another match during the consequent
evaluation, this additional match is ignored.

� ReportOnRestart: This mode shows similar behavior to the previous mode, but
additionally the restart attempt is reported by another assertion message.

� Overlap: Each additional match of the antecedent starts another evaluation
attempt of the consequent, regardless of existing consequent evaluations. One
consequent match is correlated to all antecedent matches that apply.

� Pipe: This mode shows similar behavior to the previous mode, but every match
of the antecedent has to be followed by a separate match of the consequent.

UAL allows the specification of a sequence mode (for the antecedent sequence) and
a property mode in case of implication properties, and the specification of a sequence
mode in case of single-sequence properties. The mode for the consequent sequence of
implication properties is derived from the property mode: Use of the Pipe property
mode leads to the application of the FirstMatchPipe sequence mode, all other modes
result in the use of the FirstMatch mode.

7The trivial true expression is never consumed since it does not represent any resource.
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Mixed Level modeling

The modeling of the various abstraction levels in UAL is done by the use of different
event operators within the event expressions of the various delay operators. The lan-
guage does not include any restrictions concerning which operators can be combined
or how. As a result, modeling mixed level assertions can be done in a quite straight
forward way. Listing 5.4 shows an example for this.

1 sequence mixed l eve l
2 #1{T1 ’START}{true}
3 #1{T2 ’START; T1 ’END}{true}
4 #1{T1 ’END & T2 ’END;T3 ’START) {true}
5 #1{T3 ’START@( $delta t == 10) ; timer (11) }{true}
6 #2{c lk ’POS}{IRQ}
7 #1{c lk ’POS}{ ! IRQ}
8 #1{T4 ’START@( $delta t == 2 * CLOCK CYCLE) }{} ;
9 endsequence

Listing 5.4: Example for Mixed Level Assertions

The first delay operator matches with the start of transaction T1, the second
checks that transaction T2 starts before T1 ends. T1 and T2 have to end at the same
simulation time and before the start of transaction T3. T3 is required to start with a
temporal distance of 10 time steps after the end of T1 and T2. At the second positive
edge of signal clk the signal IRQ is checked and has to be true, followed by false

at the next positive edge of clk. Finally, transaction T4 has to start with a temporal
distance of two clock cycles after the second check of IRQ.

The following sections discuss the necessary enhancements of UAL in order to
support the various concepts introduced by the assertion transformation.

In the following, the modified version of UAL will be referred to as UAL+.

5.2.3 Transformation Problem Classes and UAL

Interface Types

In order to detect transaction relations, it is necessary to recognize start and end of
every single transaction call. UAL realizes this by the implementation of callbacks,
that means an additional proxy module intercepts the transaction call, reports the
start of the transaction to the assertion by an event, relays the transaction call to the
target module, waits for the completion of the call, reports the end of the transaction
to the assertion by a second event, and finally relays this information back to the
calling module.
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RTL designs on the other hand package this information in complex handshake
protocols implemented with the help of signals. Changes of these signals can be
tracked by the use of signal change events.

If TL assertions include transactions, then the corresponding refined assertion has
to include an equivalent feature bundling the RTL signal protocols. This feature is
not part of UAL and is introduced as a language extension.

Timing

UAL is exclusively based on events for sampling of design states, correlating actions,
etc. All event based communication (as typically done on PV) can thus directly be
captured by assertions. Those concepts that normally do not work with events are
converted to events as well:

� As discussed above, start and end of transactions are converted to events by
proxy modules.

� UAL provides an operator that is capable to generate events based on a certain
amount of simulation time that has passed.

� Clock edges (as well as all other kinds of signal changes) directly produce events.

In most cases, the transformation of one timing scheme to another can be achieved
by either replacing one event by another, or by exchanging specific delay values (for
instance replace an absolute value by a multitude of a given clock period).

Since all relevant features for this are already part of UAL no extension in this
context is necessary.

Additional Information

The various elements in this category do not require any specific adaptation of UAL.

5.2.4 Transaction Representation on RTL

Transactions are used for transporting data from one module to another and synchro-
nizing their execution. A TL transaction is usually modeled as a remote function call
which might be either blocking or non-blocking. On the other hand, communication
in an RTL design is done via signals. These handshake signals lead to blocking be-
havior. The information bundled together in the transaction is usually distributed
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among several signals which show a certain change pattern within one or several
clock cycles. Hence, each TL transaction involved has to be converted to a sequence
of signal changes representing that transaction.

In order to correlate a TL transaction to its RTL counterpart, both the signal
sequence and the mapping of transaction parameters and return values to the corre-
sponding signals have to be specified.

Here it has to be noted that it is necessary to still provide a mechanism for triggering
the RTL assertions with events representing start and end of the different transactions.
Otherwise, if clock edges are used instead, the structure of the assertion is changed
which violates one of the basic requirements.

Detecting the end of a transaction is relatively easy. The simulator only has to
check for the complete occurrence of the corresponding signal sequence. On the
other hand detecting the start of an RTL transaction is a lot more complicated.
While a TL transaction is called explicitly and can thus be easily identified from the
very beginning, an RTL transaction might take several clock cycles for its complete
execution; if there are more than one transaction starting with the same signal pattern
in the first few clock cycles and only showing differences later on, it might be difficult
to tell which transaction (if any at all) has been started by a certain signal sequence.
The only possible solution to that problem lies in waiting until the check of the
corresponding transaction sequence has been completed. At that time it becomes
clear whether the transaction has really occurred. This problem will be discussed in
detail below.

Parameters and return values of transactions have to be mapped to corresponding
RTL registers or signals. Both, the mapping and the transaction sequence have to be
provided by the designer, which has to be supported by the assertion language.

5.2.5 Trigger Concept

Introducing so called trigger sequences into UAL+ allows the specification of the
signal sequence corresponding to an RTL transaction representation.

UAL+ files contain five sections for specifying different parts of the assertions8:

� The Ports section defines the interface of an assertion monitor and may include
signals, events, and transactions.

� The Constants section defines constants of various data types that are visible
within the whole monitor.

8For the original UAL grammar see Appendix B.
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� The Sequences section allows the specification of UAL sequences.

� Similarly, the Properties section defines UAL properties.

� The Verification section specifies assertion and cover directives.

In order to use triggers, two steps have to be performed on the assertion. First, a
sequence or property that should serve as the trigger has to be declared in the cor-
responding sections of the monitor. Instead of instantiating this sequence / property
within an assertion however, it needs to be independent. As a consequence, the gram-
mar of the UAL file gets extended by including an optional triggers section according
to the following rule9 (see also B.112):

monitor = "monitor" identifier
[ import section ]
[ ports section ]
[ constants section ]
[ triggers section ]
[ sequences section ]
[ properties section ]
verification section
"endmonitor" ;

Within this section, it is possible to declare one or more triggers. The declaration
of a trigger is defined by the following rule (see also B.113 and B.114):

triggers section = "triggers"

trigger declaration { trigger declaration }
"endtriggers" ;

trigger declaration = "trigger" identifier "=" trigger kind ";" ;

Every trigger declaration consists of a unique identifier and a type which determines
whether the trigger is a sequence or a property by using the corresponding keyword.
The following rules show the correct declaration of triggers (see also B.115, B.116,
and B.117):

trigger kind = sequence trigger
| property trigger ;

sequence trigger = "sequence" sequence instance ;

property trigger = "property" property instance ;

Afterwards, the sequence / property is instantiated following the normal UAL
syntax.

9The import section that has also been added is discussed in Section 5.3.2.
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The problem of still needing a representation for transaction start and end when
transforming transactions to sequences can be remedied by the introduction of several
new attributes which can then be used in combination with trigger sequences and
properties, either as parts of the event expressions triggering a delay operator or
as part of its Boolean propositions. Table 5.3 shows an overview of the attributes
producing events, while Table 5.4 details the attributes producing a Boolean result.

Attribute Produces an Event if ...
seq’ATTEMPT an evaluation attempt for seq has started
seq’START seq has started
seq’END seq has ended
seq’MATCH seq has matched
seq’NOTMATCH seq has finally not matched
prop’SUCCESS prop has succeeded
prop’FAIL prop has failed

Table 5.3: Trigger-related Attributes that produce Events

Since the resulting events might be used for the triggering of other sequences,
these attributes have to be evaluated with the occurrence of every new event, in an
analogous manner to how SVA starts new evaluation threads for all assertions with
the occurrence of every new clock edge.

Attribute Evaluates to “true” if ...
seq.ATTEMPTED an evaluation attempt for seq has started
seq.STARTED seq has started
seq.ENDED seq has ended
seq.MATCHED seq has matched
seq.NOTMATCHED seq has finally not matched
prop.SUCCEEDED prop has succeeded
prop.FAILED prop has failed

Table 5.4: Trigger-related Attributes that produce Boolean Results

These attributes can be used within the Boolean expression of a delay operator
or within the Boolean constraint condition within the sensitivity expressions of the
delay operator. They are set whenever the corresponding events listed in the table
above are generated and are cleared with the next occurrence of a primary event.
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5.2.6 Categorization of Events

If the matching of a sequence is used for triggering other sequences another problem
might occur for the implementation, though: If one sequence reacts not only to the
matching of a second sequence but also to the event responsible for this match, it
might be triggered several times instead of once.

1 sequence s1 ;
2 #1{e1 }{A == B} #1{e2 }{A == C} ;
3 endsequence
4

5 sequence s2 ;
6 #5{e2} true ;
7 endsequence
8

9 sequence s3 ;
10 #2{e2 | s1 ’END | s2 ’END}{B == C} ;
11 endsequence

Listing 5.5: Example for Primary and Secondary Events

Listing 5.5 shows an example of this situation. Sequence s3 can be triggered by
the event e2 as well as by the match of s1 or s2. In some cases the occurrence of e2
produces a match of s1, s2 or even both, which might lead to an early match of s3,
since one occurrence of e2 basically triggers both delay steps of s3 at once. Thus, it
is essential that the delay operator is only triggered once in this case.

As a solution all events can be grouped into the following categories:

� Primary Events: This group captures all events that occur independently from
all other events:

– Design events: All events in this group originate in the design:

* Annotated events (for instance sc event)

* Signal change events (for instance a positive clock edge)

* Callback events (for instance start of a transaction)

– Monitor events: This category includes all timer events that are not part
of the design itself, but declared within the assertion monitor.
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� Derived Events: This category includes all trigger events located in the assertion
monitor. Each event in this group depends on exactly one specific primary
event that happens simultaneously to all of its derived events according to
Definition 2:

– Sequence events: Start, end, matching, and not matching of sequences

– Property events: Start, end, success, and failure of properties

This classification is shown in Figure 5.5.

Figure 5.5: Classification of Events

If a primary event occurs during the normal execution, first all associated derived
events are computed. A specific sequence evaluation thread may be triggered at most
once per primary event, regardless of the number of occurring associated derived
events.

In our example e1 and e2 are primary events while s1’END and s2’END are derived
events associated with e2. An evaluation thread for s3 may never be triggered twice,
i.e. start and complete successfully, with only one occurrence of e2, even if this event
also causes an occurrence of s1’END and / or s2’END.

In order to realize this behavior, the event handling of UAL has to be enhanced
by an Evaluate-Update mechanism. The results of the various delay operators may
not be passed to the next delay operator immediately; instead, the primary event
and all corresponding derived events are processed by the assertion components and
the results are stored temporarily. After all evaluations are finished, the results are
propagated to the next delay operator. Thus, only one event can trigger any specific
delay operator at a time.
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5.2.7 Tentative Matching

As discussed above, the detection of transaction start on RTL can be difficult under
certain conditions. If the corresponding signal protocol covers more than one clock
cycle and several transactions start with the same signal signature, the real occurrence
of the transaction can only be detected at a later point in time. In the most extreme
cases, this might mean that the detection is possible only at the end of a long signal
protocol.

Concept

The seemingly obvious solution for this scenario is to wait until the detection is
complete and only then report the start of the transaction.

However, in this case an assertion might miss events located between the real and
the apparent start of the transaction which results in overall wrong behavior.

In order to solve the problem without introducing the difficulties just mentioned,
it is necessary to immediately issue an event with the first step of the signal protocol
representing the transaction. Since it is not clear yet if this supposed transaction
start is real or not, this event is declared tentative. As soon as a decision can be
made on whether it is a real event or not, the evaluation thread is either allowed to
continue or canceled. In all other regards, the tentative event is treated just as a
normal event.

Interaction with Execution Modes

The various UAL execution modes for sequences and properties may cause additional
problems when combined with the tentative matching concept:

� A sequence running in FirstMatch mode might lead to the situation that the
shorter subthread contains a tentative event, while the longer one does not. If
it is not clear whether the tentative event is a real event or not when the longer
subthread tries to match, this match attempt has to be considered dependent
on the final result of the shorter subthread. The tentative status is more or less
inherited by this subthread.

� Pipelined evaluation might lead to the situation that a thread involving tenta-
tive events blocks the matching event index and / or consumption of Boolean
expressions for other, non-tentative threads. Again, the latter becomes depen-
dent on the status of the original, tentative thread.
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� When using on of the various property modes dealing with additional antecedent
matches during the consequent evaluation, an antecedent match including a
tentative event requires a decision of whether or not to cancel existing evaluation
threads, or ignore / report the new attempt.

Figure 5.6 illustrates these challenges. Events E1, E2, and E3 represent normal
events, while event T is a tentative event.

A

A: #{1:2}{E1}{true} #1{E2|T}{true}
B: #1{E1}{true} #1{E2|T}{true} #1{E3}{true}

1 2 3 4events

E1

E2

E3

threads

5

T

C: #1{E1}{true} #1{E2|T}{true} |-> #1{E3}{true}

B

C

Figure 5.6: Interaction of Execution Modes with Tentative Concept

Assertion A, running in FirstMatch mode, includes a delay range and every evalu-
ation thread is split into two subthreads. The upper subthread could match at time
step 2 under the condition that T is validated. The lower subthread is not tentative
and could produce a normal match at time step 4. If at time step 4 it is not clear
yet, whether T will be validated or falsified, the final result has to be delayed.

Assertion B, running in Pipe mode, shows two independent evaluation threads. At
time step 5 both could produce a match, but due to the pipelined evaluation, only the
older thread may match. Since the older thread includes a tentative event however,
it might not be clear yet at that time if this thread is even valid. If the older thread
is discarded, the younger thread is allowed to match after all.

Assertion C is structured similar to assertion B, however it includes an implication.
If this assertion is running in NoRestart mode, the younger thread has to be canceled
before the consequent is evaluated. But due to the fact that the older thread again
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includes a tentative event, it might be discarded later, which would imply that the
younger thread has to be evaluated after all.

Implementation

In order to deal with the problems posed by the different evaluation modes, the
implementation of tentative events consists of two parts:

1. Whenever a tentative event is encountered, all assertion evaluation threads
waiting for this event are split at this point. One half assumes that the event
is a real event and proceeds the evaluation accordingly while the other one
assumes that the event is not real and continues waiting for the occurrence of
the next instance (both threads store the result of their decision).

There is one exception to this rule however: If the first delay operator of an
antecedent sequence (or of the sole sequence of a single-sequence property) en-
counters a tentative event, no split happens. Instead, only the thread assuming
the event is real is created (including its corresponding marking). The second
thread waiting for the next occurrence is not created, since no evaluation would
have been started without an event anyway. As a result, the start point of this
assertion evaluation thread would be wrong if the tentative event occurrence
proves to be false.

2. As soon as it becomes clear which decision was the right one - and accordingly
which thread represents the correct assertion behavior - all evaluation threads
using the wrong decision are canceled.

Figure 5.7 shows several examples for this splitting of threads. Again, events E1,
E2, and E3 represent normal events, while event T is a tentative event.

The evaluation thread of assertion A is split when encountering a tentative event.
The upper thread (running under the premise that T will be validated) could match
at time step 2, the lower one (under the premise that T will be falsified) could match
at time step 3. Both threads are mutual exclusive. Whichever decision will be made
concerning T, one thread will continue, the other will be canceled.

Assertion B is a little bit more complicated. After the first occurrence of T, the
thread is split as before. While the upper thread continues as usual, the lower one
encounters another occurrence of T. So again, the thread is split. With the next
occurrence of T, this is repeated, and so on. Altogether it can be said that using a
tentative event in an event expression without alternatives always leads to an infinite
number of threads (unless one of the already created threads is validated in between).
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A

A: #1{E1}{true} #1{E2|T}{true}
B: #1{E1}{true} #1{T}{true} #1{E3}{true}

1 2 3 4events

E1

E2

E3

threads
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C: #1{T}{true} #1{E3}{true}

B

C
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Figure 5.7: Split of Threads in case of Tentative Events

Assertion C looks similar to assertion B, however the tentative event is located in
the first delay operator of the sequence. In this case, the thread is not split (since it
should be started anyway if there is no real event). Instead the next occurrence of T
starts a new evaluation thread (which is again tentative).

While the rejection of a tentative event might happen earlier, the confirmation is
only possible after the whole signal protocol representing the transaction has occurred
completely. In case of long protocols, this results in a huge computation overhead.
However, it might be possible for the user to determine whether the transaction will
occur or not even before that point. An example for that is a couple of transactions
that start with the same protocol steps, can be differentiated by several signal val-
ues in the middle, and continue with the assignment of parameter values afterwards.
Knowledge about the parameter values is not necessary for the identification of the
transaction. So, if the user is willing to ignore the possibilities of incorrect imple-
mentation of the signal protocols, it is sensible to provide means for early decision on
the tentative events. By adding the directive $confirm to the trigger sequence, the
assertion engine is able to reduce the required computation effort for the confirmation
of the tentative event.
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1 sequence t r i g s e q
2 #1{c lk ’POS}{WR}#1{c lk ’POS}{ !WR, $confirm}#1{c lk ’POS}{true } ;
3 endsequence

Listing 5.6: Early Confirmation of Tentative Events

Listing 5.6 shows a sample trigger sequence consisting of three delay steps. The first
two are relevant for the identification while the third might be used for the correct
setting of parameter signals10. By including the $confirm directive in the second
delay operator, the evaluation concerning the tentative status of start events can be
finished sooner. As a result, the number of threads to be taken into consideration all
the time is lower, which means the simulation performance is better.

In many cases, the decision concerning tentative events can be made before the
corresponding evaluation thread produces a result. On the other hand, if this is
not the case, then the presence of one or more tentative events in the sequence
evaluation leads to a tentative sequence result, which in turn would propagate to the
corresponding property and even the assertion. Since every assertion evaluation has
to have a definite result, this is not acceptable. Thus, the propagation of these results
has to be delayed until a definite decision is reached. In the worst case, the assertion
is not able to report a possible violation immediately. But since the event index of
the violation can be stored, so it is still possible to correlate the assertion violation
with the actual cause.

5.2.8 Constrained RTL transactions

Another transaction related challenge for the refinement lies in the use of constraint
operators referring to transaction parameters in combination with the start or end
events of a transaction. An example for this is shown in Listing 5.7.

1 sequence s1 ;
2 #1{Write ’START@( Write.Addr == 1) }{true } ;
3 endsequence

Listing 5.7: Example for Constrained RTL transactions

On TL, it is very easy to check these kinds of constraints, since these values have to
be known when calling the function. On RTL however, the signals corresponding to
these parameters are not necessarily stable at the beginning or the end of the signal
protocol.

10This step cannot be omitted though, since otherwise the transaction end event would be issued
too early.
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If a transaction call of this kind has to be refined towards RTL, a method for
checking exactly this kind of behavior is required.

If the constraint is applied to the end of a transaction, then it is possible to simply
store the values of all parameters in dedicated variables and then use these variables
instead of the original signals.

In case of constrained start events however, the situation is a little bit more com-
plicated: First of all, since the data is only available after it has to be checked, storing
these values does not solve the problem. Second, start events per se are always ten-
tative, which means that this has to be taken into account when dealing with the
problem.

The solution for the start problem depends on the exact time when the required
value or values are stable:

� If all values are stable at the first step of the signal protocol, no adjustment is
necessary.

� If all values are stable at the same time, but after the first protocol step, the
constraint expression can instead be moved into the trigger sequence11. Here, it
is placed in the Boolean expression of the corresponding delay operator where it
is connected to existing expressions via an AND operator. While strictly speaking
the structure of the assertion is changed in this case (since a Boolean constraint
operator vanished from an event expression), the missing part is merely moved
to another place due to different timing notions of the designs / assertions
involved. As such, it can be defined that this move does not affect the assertion
structure in a wider sense.

� If all values are stable at different times but all constraints are connected to-
gether via AND operators, then the different parts can be distributed over the
various Boolean expression parts of the trigger sequence, since all of them have
to evaluate to true one after the other.

� If the stability points are distributed and the connection includes other op-
erators than AND (for instance OR, XOR), then this approach does not work
anymore. Instead several sequences have to be connected together using the
corresponding sequence operators (s_AND, s_OR, s_XOR, etc.) where every of
these subsequences contains one part of the constraint expression.

While the first three possibilities have been included into UAL+, the last one is not
possible yet, since the language does not yet support the required sequence operators.

11If this trigger sequence is also used in other, unconstrained expressions, the trigger sequence has
to be duplicated instead and the changes are applied to the copy only.

66



5.2 Implementation of Assertion Refinement

5.2.9 Enhancement of time related Operators and Functions

UAL provides one operator and one function that deal with simulation time:

� The timer(X) operator allows the scheduling of an event X timesteps after the
assertion evaluation reaches the operator.

� The $delta_t function provides the number of time steps that have passed
between the triggering of the previous delay operator and the current evaluation
time point.

Both are used for assertions checking PVT and CA designs and both do not affect
the structure of a given assertion (see Definition 6). On the other hand, CC and
RTL designs use dedicated clock signals for the synchronization instead of simulation
time. In order to keep the corresponding assertions as similar as possible on the one
hand and to not cause additional problems concerning structure preservation both
are enhanced to also support counting of clock edges.

When specifying an event in brackets directly after the timer(X) operator, the
X th occurrence of the specified event will cause the timer operator to emit an event.
The following grammar rule demonstrates this (see also B.118):

trigger timer = "timer" [ "[" event operand "]" ]
"(" timer expression ")" ;

A sample timer expression could look like this:

timer[clk’POS](5)

Similarly, specifying an event in brackets after the $delta_t function causes the
function to not count the passed simulation time since the last trigger event, but
instead to count the number of occurrences of the given event.

Since these features are mainly intended for the counting of clock edges, tentative
events are not allowed to be used in this context. This also results in an easier
implementation.
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5.2.10 Summary

Altogether, the assertion language was enhanced by the introduction of an RTL rep-
resentation for transactions, the trigger concept and the corresponding categorization
of events. Furthermore, the concept of tentative events and tentative matching was
introduced, the challenge of dealing with constrained RTL transactions and event
based time expressions were discussed.

A formal representation of both the tentative event handling and the event based
timer operator introduced here will be shown in Chapter 6.

5.3 Assertion Transformation Language

This chapter introduces a new language developed for the transformation of UAL+
assertions. This transformation language is capable of handling assertions covering
all TL sublevels, RTL, and any kind of mixed level assertions.

5.3.1 General Overview

The various features of the transformation language can be grouped into four layers:

1. Modeling Layer: Describes the structure of the transformation file

2. Rule Layer: Consists of rules - complex transformation commands - composed
of directives, transactor calls, and / or other rules

3. Transactor Layer: Consists of transactors, used to change from signal based
interfaces to transaction based ones and back

4. Directive Layer: Consists of directive calls, predefined transformation com-
mands

These layers are described in the following sections. The formal grammar rules that
are mentioned in this context are an excerpt of the complete grammar in Appendix B.
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5.3.2 Modeling Layer

Every set of transformation descriptions can be encapsulated within a corresponding
structure. Several of these structures can be placed within one refinement file. The
following grammar rules illustrate this concept (see also B.1 and B.2):

refinement file = refinement definition { refinement definition } ;

refinement definition = "refinement" identifier
[ import section ]
[ declarations section ]
[ transactors section ]
[ rules section ]
apply section
"endrefinement" ;

Every refinement definition consists of up to six different sections which are de-
scribed below.

Import Section and Library Files

This section provides the possibility to include one or several library files with pre-
defined transformation descriptions according to the following rules (see also B.5 and
B.6):

import section = import declaration { import declaration } ;

import declaration = "import" identifier ";" ;

The structure of the imported library files looks like this (see also B.3 and B.4):

library file = library definition { library definition } ;

library definition = "library" identifier
[ declarations section ]
[ sequences section ]
[ properties section ]
[ transactors section ]
[ rules section ]
"endlibrary" ;

With the exception of an import section and an apply section, a library file may
contain the same elements as a refinement file. The former is excluded in order to
avoid recursive dependencies, the latter since a libray file is a passive element and
thus, should not contain active directive calls.
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Library files can be used to package generic, often used transformation descriptions,
in order to allow easy reuse. A common application is the tranformation of assertions
on standardized design behavior like communication protocols.

Additionally, it is possible to declare sequences and properties within a library file.
In combination with port and constant declarations, all reusable parts of a monitor
definition can be placed within a library in this way.

Declarations Section

This section allows the specification of various elements that can be used for the
transformation process, namely constants, ports, and local variables. The declara-
tions sections is structured as follows (see also B.7):

declarations section = "declarations"

[ ports section ]
[ constants section ]
[ variables section ]
"enddeclarations" ;

All elements declared here are usable within the apply section of the refinement
file.

The constants section follows the same grammatic rules as the one within the
UAL+ monitor file (see also B.49). Its main purpose is the possibility to specify
clock periods for transformations from or to the CA sublevel. Other uses include the
specification of reset modes, active levels for enable signals, etc.

In the ports section various monitor ports (signals, events, and transactions) can
be specified. These ports might be added to an assertion interface during a trans-
formation. The ports section follows the same grammar rules as the one within the
UAL+ monitor file (see also B.47).

The variables section consequently allows the specification of local variables that
are to be used within the transformation according to the following grammar rule
(see also B.8):

variables section = "variables"

localvar declaration { localvar declaration }
"endvariables" ;

The declaration of the variables themselves happens exactly as in UAL+ (see also
B.107).
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Transactors Section

This section allows the specification of transactors, that means the exact mapping of
a TL transaction call to an RTL signal protocol. This section can hold an arbitrary
number of transactors according to the following grammar rules (see also B.9 and
B.10):

transactors section = "transactors"

transactor section { transactor section }
"endtransactors" ;

transactor section = "transactor" identifier transactor interface
[ map section ]
sequence section
"endtransactor" ;

The transactor interface is defined according to the following rule (see also B.11):

transactor interface = "<" identifier ">" formal argument list ;

The list of formal arguments has to include one TL transaction definition (including
name, return type, name and type of arguments), a name for the corresponding trigger
sequence, and type and names of all RTL signals involved (either used within the
signal protocol or for holding data).

The map section details which parameter or return value of the transaction has to
be connected to which signal (see also B.12 and B.13):

map section = "map"

map declaration { map declaration }
"endmap" ;

map declaration = identifier "." ( identifier | "RET" ) "=>" identifier ";" ;

The left side of the arrow contains the TL transaction parameters - the name of
the transaction, followed by a dot, followed by the parameter name or the keyword
RET for the return value - while the right side lists the corresponding RTL signals.

The sequence section on the other hand specifies the RTL sequence that represents
the transaction. Since this sequence is a standard UAL+ sequence it follows the
corresponding UAL+ grammar rules (see also B.68).

An example for a transactor specification can be seen in Listing 5.8.

Note that this transactor mechanism can also be used in order to specify an RTL
equivalent for a TL design event. In this case, the map section is ommitted and only
the sequence section is used. If the transactor represents an event then this event
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1 transactor put t ransac to r <l o ca t i on >(transaction void PUT( int
data ) ,

2 trigger put t r i g g e r ,
3 signal sc signal<bool> c lk ,
4 signal sc signal<bool> en ,
5 signal sc signal<int> data )
6 map
7 PUT.data => data ;
8 endmap
9 sequence pu t t r i g g e r [ FirstMatch ] ( signal sc signal<bool> c lk ,

signal sc signal<bool> en )
10 #1{c lk ’POS}{en} #1{c lk ’POS}{ ! en } ;
11 endsequence
12 endtransactor

Listing 5.8: Transactor Example

corresponds to the match of the transactor sequence.

Rules Section

The rules section is used for the specification of rules - complex transformation de-
scriptions - in the following way (see also B.15):

rules section = "rules"

rule section { rule section }
"endrules" ;

Every rule consists of a unique identifier, an interface, and the actual rule spec-
ification as can be seen in the following grammar rules (see also B.16, B.17, and
B.22):

rule section = "rule" identifier rule interface
rule specification
"endrule" ;

rule interface = "<" identifier ">"

"(" [ rule parameters ] ")" ;

rule specification = rule item { rule item } ;

Rule parameters consist of a type entry and an identifier (see also B.18, B.19, and
B.20):

rule parameters = rule parameter { "," rule parameter } ;

rule parameter = rule parameter type identifier ;
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rule parameter type = "declaration"

| "name"
| "value"
| "type"
| "expression" ;

The various parameter types differ in how the object that is passed as parameter
can be accessed and what information is available:

� Type declaration can only be used in combination with objects declared within
the declarations section (constants, ports, variables). All elements of the corre-
sponding declaration can be accessed by special functions which are defined as
follows (see also B.44):

declaration access = "name()"

| "type()"
| "value()" ;

� Type name refers to an existing object name, for instance the name of a variable,
an event on a port signal, etc.

� Type value refers to a literal value, for instance the value ”5”.

� Type type refers to the data type of an existing object, for instance ”sc bit”.

� Type expression refers to a complex expression composed of elements of types
name and / or value.

Every rule item can be either the activation of another rule that has already been
declared (or imported), the call of a transactor, or the call of a transformation direc-
tive (see also B.23):

rule item = directive instance
| transactor instance
| rule instance ;

Details concerning the usage and meaning of rules can be found in Section 5.3.3,
details about the usage of transactors can be found in Section 5.3.4, and finally details
concerning directives can be found in Section 5.3.5.
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Apply Section

This section contains the actual refinement description. Predefined or imported rules,
transactors, and directives can be applied here in order to perform the assertion
transformation. The underlying grammar rule for the apply section can be seen here
(see also B.21):

apply section = "apply"

rule specification
"endapply" ;

As can be seen, the apply section may contain the same elements as a rule. Thus,
the transformation description within the apply section can be considered the master
rule which in turn relies on ”sub”-rules. The only restriction for this master rule is
that it may not make use of parameters.

5.3.3 Rule Layer

The rule layer can be used to group several transformation directives and other rules
in order to encapsulate related functionality. A rule could for instance include all
necessary directives in order to transform the timing information within an assertion
while another rule transforms the interface.

An additional benefit of rules is that they allow the use of parameters which can
then be used for the included directives or sub-rules. By providing the possibility of
parameterizing existing rules, it is easy to collect rules related to a specific goal and
all additional information required by these rules (constants declarations, objects,
transactors, etc.) and put them in a library file. Every refinement file using this
library file can then provide different parameters for the given rule.

As mentioned above, rules may also use other rules. In order to avoid recursive
calls, rules may only use rules that have been declared further up within the rules
section. Rules imported from a library file may be used as well. Since library files
cannot import other library files, recursive calls are prevented by default.

The declaration of rules was already discussed in the previous section. Declared
rules are instantiated within either the apply section or other rules according to the
following grammar rule (see also B.24):

rule instance = identifier "<" target locations list ">"

"(" [ rule arguments ] ")" ";" ;

The identifier specifies one of the rules declared within the rules section. The
location parameter has to specify an existing sequence within the assertion monitor.
For details on the location parameter see Section 5.3.6.
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The rule arguments can be passed to transactor or directive calls within the rule or
other instantiated rules. They follow these grammar rules (see also B.25 and B.26):

rule arguments = rule argument { "," rule argument } ;

rule argument = string
| expression
| event expression
| ( identifier "." declaration access )
| value ;

An example for a rule instantiation can be seen in Listing 5.9.

1 my transform<my monitor .my assert ion >(c lk , CLOCK CYCLE.name( ) ) ;

Listing 5.9: Example for Rule Instantiation

5.3.4 Transactor Layer

The transactor layer covers the use of transactors in order to transform between a
signal based interface on the one hand and a transaction based interface on the other
hand.

Using a transactor happens similarly to the usage of rules or directives. Transactors
fall in neither category, since they can be defined by the user, but at the same time
they cannot include other functionality. Thus, they are located between rules and
directives.

Instantiating a transactor causes the transformation of a sequence interface. An
existing transactor is instantiated according to the following rule (see also B.14):

transactor instance = identifier "<" target locations list ">"

"[" refinement mode "]"

param argument list ";" ;

The identifier specifies one of the transactors declared within the transactors sec-
tion. For details on the location parameter see Section 5.3.6.

The refinement mode paramter is defined as follows (see also B.45):

refinement mode = "up"

| "down" ;
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This parameter determines which interface transformation has to be performed:

� The value up represents a transformation from a signal based interface up to a
more abstract transaction based interface.

� The value down specifies a transformation from a transaction based interface
down to a less abstract signal based interface.

The parameter list finally is used to pass the TL transaction and the corresponding
RTL signals to the transactor.

If the transactor is applied to a sequence, then all of the corresponding events and
objects are replaced, the interfaces of the sequence itself, its instantiating property,
the verification directive, and the monitor are adapted, and finally, a trigger sequence
is added or removed.

Listing 5.10 shows an example for a transactor instantiation.

1 put t ransac to r <my monitor .my assert ion .my property .my sequence >[
down ]

2 (PUT, pu t t r i g g e r , c lk , en , data ) ;

Listing 5.10: Example for Transactor Instantiation

5.3.5 Directive Layer

This layer provides the built-in transformation functionality of the transformation
language that consists of a list of predefined directives. In constrast to rules which
can be specified by the user - which also allows the addition of new rules - the
directives are an inherent part of the transformation engine and cannot be extended.

Activating a directive is done according to the following grammar rule (see also
B.27):

directive instance = add directive
| modify directive
| remove directive ;

All directives fall into one of three groups: The first group adds an object to a
monitor, the second group modifies an existing object, while the third group removes
an object from a monitor.
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Add Directives

All add directives are used for introducing new elements into a given assertion mon-
itor, assertion, or part of an assertion. Add directives follow the grammar rule (see
also B.30):

add directive = "add" "." directive target
"<" target locations list ">"

add specification { add specification } ;

The directive target specifies which add directive is to be executed (see also B.43):

directive target = "boolean expression"

| "constant"
| "parameter"
| "pass copy"

| "pass reference"

| "reset"
| "sensitivity"
| "time constraint"

| "timer"
| "variable"
| "variable assignment" ;

Note that not all possible values result in existing directives. Table 5.5 presents all
available add directives including the location where these directives are applied (for
details on location parameters see Section 5.3.6). All directives listed in parentheses
do not exist.

Directive Target Location
(add.boolean expression) n/a
add.constant Monitor
add.parameter Sequence / Property
add.pass copy Sequence / Property
add.pass reference Sequence / Property
add.reset Verification Directive
(add.sensitivity) n/a
add.time constraint Sensitivity
add.timer Sensitivity
add.variable Sequence / Property
add.variable assignment Delay Operator

Table 5.5: Available Add Directives

77



5 Assertion Refinement

The corresponding add specification determines the content of the addition and in
some cases it also provides additional information about the location of the addition
(see also B.31):

add specification = "{" [ refines ] additives "}" ;

The additive keyword specifies what element has to be added. This could be the
declaration of a constant, a reset expression, etc. The corresponding grammar rules
look like follows (see also B.32 and B.33):

additives = additive { additive } ;

additive = "additive" [ position marker ] directive string ";" ;

The position marker in this rule is only used in combination with the optional
refines keyword. These constructs may only be used for the add.time constraint and
add.timer directives. The corresponding grammar rule looks like this (see also B.34):

refines = "refines" [ "[" event operand "]" ] directive string
{ "," position marker "," directive string } ";" ;

These two directives allow the specification of one or more parts of the correspond-
ing event expression where the new element has to be inserted. Every specified iden-
tifier is then used with a separate additive expression in order to insert this particular
string at the place of the identifier within the refines expression.

Listing 5.11 shows an example of how the add.time constraint directive can be used.

1 add . t ime cons t ra in t <l o ca t i on >
2 {
3 ref ines ”E1” , expr1 , ” |E2” , expr2 ;
4 additive ( expr1 ) ”$delta t==(”,var name , ” ) ; ” ;
5 additive ( expr2 ) ”$delta t==(10) ; ” ;
6 }

Listing 5.11: Example for Adding a Time Constraint

The directive in this case looks for all occurrences of the expression ”E1|E2” at the
specified location. After the ”E1” a time constraint depending on a local variable is
to be inserted, after the ”E2” a time constraint of ten time steps.
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Modify Directives

Modification directives change existing parts of an assertion monitor. Modify direc-
tives are specified according to the following grammar rule (see also B.35):

modify directive = "modify" "." directive target
"<" target locations list ">"

modify specification { modify specification } ;

The meaning of directive target and location parameters is the same as for add
directives. Table 5.6 lists the legal directive targets for modify directives as well as
the corresponding locations.

Directive Target Location
modify.boolean expression Delay Operator
modify.constant Monitor
(modify.parameter) n/a
(modify.pass copy) n/a
(modify.pass reference) n/a
modify.reset Verification Directive
modify.sensitivity Sensitivity
modify.time constraint Sensitivity
modify.timer Sensitivity
(modify.variable) n/a
modify.variable assignment Delay Operator

Table 5.6: Available Modify Directives

The modify specification is defines as follows (see also B.36):

modify specification = "{" refines modification "}" ;

In contrast to add directives, the refines branch is mandatory now, since it specifies
the original expression that is to be modified. The new expression is specified using
the modification keyword (see also B.37):

modification = "modification" [ "[" event operand "]" ]
directive string ";" ;

The specification of an event operand is only legal for modify.time constraint and
modify.timer directives. If it is left out, the corresponding operator - original or
new - works on the basis of simulation time. Otherwise, the corresponding clock
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event expression has to be specified and the operator works on the basis of this event
expression (see Section 5.2.9 for details).

Listing 5.12 shows an example of how the modify.timer directive can be used.

1 modi fy .t imer<l o ca t i on >
2 {
3 ref ines ”10” ;
4 modification [ c lk ’POS] ”1” ;
5 }

Listing 5.12: Example for Modifying a Timer

The directive looks for all occurrences of the value ”10” within the timer operator
at the specified location. This value is replaced by the value ”1” and the timer is
changed from being based on simulation time to counting positive edges of the clk
signal.

Remove Directives

Remove directives are the opposite of add directives and delete existing elements
from an assertion monitor. Remove directives are specified according to the following
grammar rule (see also B.38):

remove directive = "remove" "." directive target
"<" target locations list ">"

{ remove specification } ;

Table 5.7 shows an overview over the legal choices for directives.

The structure of the remove specification is defined according to the following
grammar rules (see also B.39 and B.40):

remove specification = "{" removal { removal } "}" ;

removal = "removal" directive string ";" ;

After the removal keyword, the element that should be removed is specified. Re-
move directives do not contain a refines keyword, since it is not necessary to further
narrow down the description of where to find the element that is to be removed.

In case of remove.time constraint and remove.timer directives, even the removal
keyword is not needed. These directives will simply remove all time constraints and
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Directive Target Location
(remove.boolean expression) n/a
remove.constant Monitor
remove.parameter Sequence / Property
remove.pass copy Sequence / Property
remove.pass reference Sequence / Property
remove.reset Verification Directive
(remove.sensitivity) n/a
remove.time constraint Sensitivity
remove.timer Sensitivity
remove.variable Sequence / Property
remove.variable assignment Delay Operator

Table 5.7: Available Remove Directives

timer operators they encounter at the specified location (it also does not matter
whether these operators work based on time or on events).

Listing 5.13 shows an example of how the remove.reset directive can be used.

1 remove . re se t<l o ca t i on >
2 {
3 removal ” rs t ’NEG” ;
4 }

Listing 5.13: Example for Removing a Reset

The directive removes the negative edge of the rst signal from the reset expression
of the given assertion (specified by the location parameter).

5.3.6 Location Parameters

Every rule, every transactor, and every directive requires a location parameter that
specifies at which point of a given monitor they are supposed to be applied. As
shown in Tables 5.5, 5.6, and 5.7, the various directives require different locations:
An add.constant directive for instance would only require the name of the monitor to
which the constant declaration is to be added, in case of a remove.timer directive on
the other hand, the location has to point to the correct sensitivity entry (that means
choosing either positive or negative sensitivity of a given delay operator) where the
timer operator should be removed.
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The location parameter is defined according to the following grammar rule (see also
B.28 and B.29):

target locations list = target locations { "," target locations } ;

target locations = identifier
{ "." ( identifier
| number
| "*" ) } ;

If the location is too specific - for instance if the directive requires a sequence loca-
tion but is provided with the location of a specific delay operator within that sequence
- then only the relevant part of the location is considered. In case of directives that
can have several legal locations, the longest part of the specified location that still
applies is considered.

If on the other hand the location is too unspecific - for instance if the directive
requires a property location but is provided with only the location of an assertion -
then the compiler will issue an error message and abort the transformation.

In some cases, it might be necessary to distinguish between a class of objects or a
specific instance for the same object when transforming an assertion. One example is
the use of a particular sequence in several properties. If one of these properties checks
a part of the design that has been changed while the other checks an unmodified part,
then only the sequence instance used in the first property has to be modified. On the
other hand, if a transformation step changes the timing of a PVT model on a whole
then all instances of a specific sequence have to be modified.

This problem is addressed by a flexible use of the location parameter. A specified
location parameter always expects a hierarchical path to the destination, but there
are two different ways this hierarchy could be specified:

1. When addressing a specific instance of a sequence, the location would start
with the name of the monitor, followed by the name of the verification directive
instantiating the sequence, followed by the name of the corresponding property,
and finally by the name of the sequence itself (all elements are separated by a
”.”). Specifying the location of other design units (properties, etc.) works in a
similar way.

2. When addressing all instances of a sequence, the location would still start with
the name of the monitor. In this case the next part would be the keyword
sequences (referring to the sequences section of the monitor file), followed by
the name of the sequence.

If only one element of an object class is affected by the transformation, the transfor-
mation engine duplicates the original object declaration and modifies only the copy.
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It is taken care that all corresponding references are updated to refer to the copy
afterwards.

Some operations should be performed on more than one element - for instance the
remove.timer directive mentioned above is supposed to remove all timer operators
from all trigger expressions of all delay operators of a given sequence. For these pur-
poses, several locations can be specified at once. Alternatively, the wildcard operator
”*” can be used. This wildcard specifies that at this particular level of hierarchy all
possible elements are affected.

1 monitor t e s t
2

3 sequences
4 sequence read ( . . . )
5 #1{c lk ’POS; r s t ’NEG} {en && ! wr} #1{c lk ’POS; r s t ’NEG} {true } ;
6 endsequence
7

8 sequence wr i t e ( . . . )
9 . . .

10 endsequence
11 endsequences
12

13 properties
14 property read ( . . . )
15 read [ . . . ] ( . . . ) |−> wr i t e ( . . . )
16 endproperty
17

18 property i n i t ( . . . )
19 . . .
20 endproperty
21 endproperties
22

23 veri f icat ion
24 assert cover my test ( . . . ) = read [ . . . ] ( . . . ) ;
25 endverification
26

27 endmonitor

Listing 5.14: Location Example: Sample Monitor

1 t e s t . m y t e s t . r e a d . w r i t e . 1 . *
2

3 t e s t . s e q u e n c e s . r e a d . * . p o s i t i v e
4

5 t e s t . * . r e ad

Listing 5.15: Location Example: Sample Locations

Listing 5.14 shows an excerpt from a monitor description (irrelevant parts were
abbreviated by . . . ). The monitor contains one assertion directive as well as two
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properties and two sequences. Listing 5.15 provides several possible location descrip-
tions that could be used with this monitor.

The first location consist of the name of the monitor (test), followed by the name
of the assertion directive (my test), the name of the property (read), and the name of
the sequence (write). The number ”1” specifies the first delay operator within that
sequence. The following wildcard addresses both the positive and the negative event
expression of this delay operator.

The second location starts again with the name of the monitor (test), but now
uses the keyword sequences, followed by the sequence name (read). The remainder of
the location specifies the positive event expression of all delay operators within that
sequence.

As can be seen, the wildcard operator can be used when targeting a class of objects.
However, it is not possible to use a wildcard for replacing the keyword specifying the
file section where the object is declared.

This is shown in the third location example. After specifying the monitor name, a
wildcard is used, followed by the name read. This location does not target both the
property object and the sequence object of this name. Instead, the wildcard stands
for all assertion directives and thus, the location targets property instances of the
name read that are instanciated within all assertion directives of this monitor.

This also means that it is not possible to affect objects of different kinds (for
instance a sequence and a property) with the same directive activation by the use of
wildcards. In order to do this, both locations have to be specified explicitely instead.

5.4 Constraints and Guidelines for Refinement

The following section summarizes several restrictions the transformation process has
to face either due to the inherent differences of the abstraction levels involved or
based on design complexity of some modeling styles. Additionally, there are some
transformations that are not easily reusable while others might have a big impact on
the simulation performance.

5.4.1 Ambiguity Issues

In some cases, differences between the various abstraction levels result in the fact that
a structure preserving assertion transformation will produce errors even though the
design refinement is correct. An example for this behavior can be seen in Listings 5.16
and 5.17.
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1 sequence TLM
2 #1{PUT’END}{true}#1{GET’START}{true } ;
3 endsequence

Listing 5.16: Example for Transformation Ambiguity (1)

1 sequence PUT
2 #1{c lk ’POS}{WR}#1{c lk ’POS}{ !WR} ;
3 endsequence
4

5 sequence GET
6 #1{c lk ’POS}{ !WR} ;
7 endsequence
8

9 sequence RTL
10 #1{PUT’MATCH}{true}#1{GET’START}{true } ;
11 endproperty

Listing 5.17: Example for Transformation Ambiguity (2)

The first listing shows a TL sequence checking for the successful termination of a
PUT transaction followed by the start of a GET transaction.

In the second listing these transactions are replaced by trigger sequences (the actual
trigger declaration is omitted, since it does not add any useful information to the
example). It is clear that in the RTL model the end of the PUT transaction and
the start of the GET transaction can happen at the same clock edge. According
to the concept of derived events, assertions may be triggered at most once by any
occurrence of a primary event and any of its derived events. As a consequence,
the assertion would miss the start of the GET transaction and subsequently would
produce results that do not match with the results of the TL assertion.

There are three ways of dealing with the situation which can be chosen by using
corresponding options of the transformation engine:

1. The transformation engine produces a warning and states that this situation
might lead to incorrect results. The assertion is then transformed preserving
its structure.

2. The assertion is transformed in a strict manner. False positives are avoided at
the cost of potential false negatives. In the example the second #1 of the RTL
sequence would have to be replaced by a #0.

3. The assertion is transformed in a safe manner. False negatives are avoided at
the cost of potential false positives. In the example the second #1 of the RTL
sequence would have to be replaced by a #{0:1}.
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Note that the last two choices violate the structure preservation.

Another example for this phenomenon is the transformation of a PVT model to
CA. If the time values used within the PVT model are not an exact multitude of
the CA clock period, an exact transformation is not possible. For this scenario no
safe or strict way exists. Instead, the transformation engine will automatically issue
a warning and allow the transformation of every time value to the closest multitude
of the clock period, to a range of appropriate values, etc.

5.4.2 Detectability Issues

In Section 5.2.4, an RTL representation for transactions was introduced in order
to allow a structure preserving transformation of TL assertions down to RTL. If
this representation (including the use of triggers) is used when manually writing
UAL+ assertions on RTL then a transformation to higher abstraction levels is possible
without restrictions. If on the other hand RTL assertions include the signal protocols
of RTL transactions directly within the assertion code, then structure preservation
is no longer possible. Due to the great difficulty of identifying the distributed signal
changes contributing to the RTL transaction in order to map them to a function
call on TL, it is also very difficult to provide a method without regard to structure
preservation as described in the previous section. This is especially true, since it is
not uncommon that one signal is used for several different transactions.

Note that the remaining RTL features, like clock based timing, are not influenced
by this restriction.

5.4.3 Restrictions on Reuse

The transformation language presented here was developed with a focus on potential
reuse of the various transformation descriptions in mind. In some cases however,
direct reuse is difficult at best and impossible at worst. The most obvious example
for this problem is the transformation of PV assertions to a lower abstraction level
if timing is to be introduced. If it is not possible to make some general statements
about the timing (for instance ”all time delays within the assertion have to be exactly
ten time steps”), then all timing information introduced is probably highly specific
to the model in use and will not fit another, similar model. This part of the problem
could be avoided by extensive use of the parameterization option of rules, but as soon
as several assertions with slightly different structures are to be transformed with the
same description, even this approach will not work anymore.
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5.4.4 Performance Issues

Another problem that is completely unrelated to the capabilities of assertion refine-
ment concerns simulation performance. Due to the extensive computation effort for
tentative events, simulations might take quite long if tentative events are used exten-
sively, especially, if the corresponding trigger sequences are very long.

In order to keep this effect manageable, every verification engineer should try to
avoid checking for the start of long transactions whenever possible. If this is not
possible, the use of the $confirm command can help speed up the simulation by
shortening the livetime of wrong decisions for tentative events.

5.4.5 Further Issues

Additional problems for assertion refinement stem from the fact that very different
design architectures probably show many differences concerning the temporal and
logical interactions of different actions, while the overall behavior is still identical.

An example for this is the implementation of a pipelined execution within an RTL
CPU, whereas the corresponding TLM does not use any pipeline. For simple asser-
tions, this might not lead to any problems, since both models are still supposed to
provide the same results. More complex assertions that take the pipeline into account
might not be transformable with a preserved structure. In some cases this require-
ment could be dropped as seen in the previous sections - for instance an assertion
could be changed from Overlap mode to Pipe mode while adapting the delay steps
in some delay operators - but for many cases even this is not sufficient.

5.4.6 Summary

While the assertion refinement approach presented here cannot take into account all
possible scenarios for the configuration of designs and / or assertions, it is capable
of handling all standard situations. Timing transformation between the various lev-
els can be done very easily, similarly, it is possible to change between signal based
interfaces and transaction based interfaces.

Some of the unresolved challenges faced are not based on lacking capabilities of the
transformation engine, but instead stem from the inherent properties of the abstrac-
tion levels involved.
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This chapter describes the formal semantics of UAL+ while considering all necessary
modifications presented in the last chapter.

While the actual changes to UAL+ seem to be only minimal - mere addition of
some useful features - these changes require fundamental changes in the underlying
execution engine. As a result, the formal model presented here is still similar in
structure to the original one but almost all elements show major changes. This is
primarily a consequence of the introduction of the tentative matching concept.

First a formal trace representation, a formal specification of data that is checked
by UAL+ assertions is defined. Afterwards, the UAL+ language itself is mapped to
an High-Level Colored Petri Net (HLCPN). After explaining the representation of
various language elements by HLCPN components, a description of how to assemble
these components in order to represent a complete assertion is given.

6.1 Trace Semantics

Due to the similarities in the formal basics of this work and the dissertation of Volkan
Esen [51], the definitions presented in this section have been aligned with the defini-
tions presented there.

This section presents a trace definition that is capable of holding the necessary
data for the UAL+ assertion evaluation. Afterwards, it is explained why neither ap-
proaches like LTL nor finite automatons are sufficient for checking UAL+ assertions.
Instead, a HLCPN is introduced as formal representation on top of the trace.

6.1.1 Classical Trace

While traces are used in many contexts and for many different purposes, there is no
uniform definition of what a trace has to show and what not. Different definitions
and explanations can be found in [9], [52], [53], and [23] for instance.

89



6 Formal Semantics

The common point of all these definitions and descriptions of a trace can be sum-
marized as follows:

A trace is an array which stores a sequence of values within a design in ascending
temporal order beginning from an initial value. Depending on the model this initial
value can be either arbitrary or fixed.

The description however does not include any information on whether the trace
contains all state transitions that happen during the simulation, or if the trace is cre-
ated by sampling the design state while ignoring everything that happens in between
two sampling events. In the latter case, the sampling might both reduce and increase
the numbers of elements within the trace when compared to the asynchronous version:

� The number gets reduced if the sampling causes many state transitions to be
left out (because they happen in between two sampling events).

� On the other hand, if the design state is sampled without the occurrence of
state transitions, the trace might include several elements with the exact same
values.

In RTL designs, a trace may be obtained by using a dedicated clock signal for this
sampling process. Very often combinational behavior, such as asynchronous output
reaction to changes on inputs, is not caught in this case in order to reduce the number
of trace entries. The other case - sampling introducing several identical trace elements
- can still happen, but is quite rare with most designs.

It has to be noted that some RTL traces include the clock signal while others do
not. If the clock is included then in most cases the trace includes about double the
number of entries than required (since most synchronous designs use only one kind of
clock edge). If the clock is not part of the trace on the other hand, the correlation of
trace elements to the clock edges is no longer possible (unless the trace was specifically
generated by sampling the design state with every relevant clock edge).

Traces are mostly used in combination with temporal formulas such as LTL. An
LTL formula specifies a Boolean condition on one or several elements of the trace,
beginning with a specific element. An LTL formula holds if it evaluates to true

starting at every trace element. LTL based assertion approaches formulate these
kind of conditions.
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6.1.2 UAL Trace Definition

UAL+ uses sampling for the generation of a trace as well. The sampling events
are not restricted to only clock edges, but can come from a variety of sources, for
instance callback events, annotated SystemC events, etc. In order to distinguish the
event source, events are also part of the trace.

Due to the importance of events for the definition of the UAL+ trace, the term
event has to be formally defined first. In this context it is important to distinguish
between an event object (a design element just like signals and transactions), and
event occurrences. The use of the term event means the latter.

Definition 7 An event object e ∈ Ve is a two-state valued object. The value set Ve

is defined as follows:
Ve := {Fire, Idle} (6.1)

Event objects can be inputs, outputs, and internal objects of a design.

An event occurrence is an infinitely short impulse which indicates a single emission
of the corresponding event object. During an event occurrence, the value of an event
object is Fire. As long as an event object does not occur, its value is Idle. The
occurrence of an event does not consume time and disappears immediately. Every
event object can emit an arbitrary number of event occurrences during simulation.

Note that if two adjacent trace entries show the same event object as firing then
two event occurrences happened and not just one, since an event occurrence has no
duration. In this, events differ from signals or other value objects.

Definition 8 The event object tuple E consists of all existing event objects observed
by assertions. The element tx is a special assertion timer event object which is part
of the assertion engine.

E := (e1, . . . , ei, tx) with e1, . . . , ei ∈ Ve := design event objects,
i := number of event objects in a design and
tx ∈ Ve := assertion timer event object

(6.2)

The value set VE of the event object tuple E is the product of the value sets of all
event objects in E.

VE := Ve
(i+1) (6.3)

Occurrences of events are always ordered but the order may be one of a set of
non-deterministically given choices. Any two events are defined to never occur con-
currently. Hence, occurrences of event objects are disjunctive and only one event
object in tuple E may have the value Fire at a time.
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The timer event object tx is used within the assertion engine. A UAL timer operator
is capable of scheduling the firing of this event object at a specific point in time.

In order to represent variable and signal values as well as transaction arguments
and return values in a trace, it is necessary to define value objects.

Definition 9 A data object is an object which stores data values. Such objects can
be function arguments and return values, variables, and signals of different data types
Vdi

and represent inputs, outputs, or internal objects of a design.

Definition 10 The data object tuple D consists of all existing data objects.

D := (d1 ∈ Vd1 , . . . , di ∈ Vdi
) with i := number of data objects in a design (6.4)

The value set VD of the data object tuple D is the product of the value sets of all data
objects in D:

VD := Vd1 × Vd2 × . . .× Vdi
(6.5)

Definitions 7 and 9 correspond to the UAL+ port kinds event and state. The
port kinds transaction and signal map to transaction objects and signal objects re-
spectively. These objects can be considered as compounds of the objects defined in
Definitions 7 and 9:

Definition 11 A transaction object represents a transaction including its associated
events and values. Every transaction object includes two distinct event objects in E
representing its start and end. In addition, every transaction object includes data
objects in D for each transaction parameter and - if present - its return value.

Definition 12 A signal object represents any data object in a design which is capable
of emitting value-change events. Every signal object hence, consists of a data object
in D and a corresponding value-change event object in E.

Definition 13 The simulation time T is represented by a natural number.

T = N0 (6.6)

The current state ts ∈ T shall be observable at the occurrence of any event of the
event object tuple E.

Based on these definitions the UAL+ trace τ can be defined.
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Definition 14 The alphabet Σ is defined as follows:

Σ := V E × V D × T (6.7)

The UAL+ trace τ reveals the succession of symbols s ∈ Σ:

τ := 〈s1, s2, . . .〉 s1, s2, . . . ∈ Σ (6.8)

A symbol consists of one valuation of the event object tuple E, the data object tuple
D, and a time stamp. The trace contains one symbol per occurrence of any event in
E.

The superscript is the index value of the trace. It denotes the global count of event
occurrences in E.

sj := (Ej, Dj, ts
j)

Ej := (e1
j, e2

j, . . . , en
j) with e1...n: event objects in E and

e1...n
j : current value of event objects at index j

n ∈ N : number of all event objects in E
Dj := (d1

j, d2
j, . . . , dm

j) with d1...n: data objects in D and
d1...n

j : current value of data objects at index j
m ∈ N : number of all data objects in D

ts
j ∈ T with ts

j : current time at index j
(6.9)

The current value of Ej yields which event object has the value Fire. The according
event occurrence marked by Fire is the occurrence at which the values in D and the
value in T are sampled leading to the creation of symbol sj in τ .

Definition 15 The UAL+ trace τ can be considered as a compound of three sub-
traces formed by the tuple items of s over the index j:

1. ε sub-trace: ε := 〈E1, E2, . . .〉 with ε(j) ≡ Ej

2. ω sub-trace: ω := 〈D1, D2, . . .〉 with ω(j) ≡ Dj

3. χ sub-trace: χ := 〈ts1, ts
2, . . .〉 with χ(j) ≡ ts

j

Combined together, the trace holds information about the order of event occur-
rences as well as simulation time stamps and the sampled design state at these event
occurrences.
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6.1.3 Benefits and Problems of LTL for Trace Evaluation

Using LTL formulas in combination with traces allows the specification and verifica-
tion of temporal properties beginning from a certain state. In this case, the difficulties
introduced by the tentative matching concept disappear, since all information about
a simulation run is available and thus, the final decision for every tentative event can
be done via lookup-checks in the trace.

This greatly reduces computation effort and - as a result - performance impact,
since it is not necessary to double up all evaluation threads as soon as a tentative
event is encountered. On the other hand, all information of the trace has to be stored.
In bigger designs the required storage space can easily exceed sensible amounts.

Using LTL in combination with UAL+ has several additional restrictions.

First of all, every assertion evaluation - and even every delay operator within an
assertion evaluation - can specify its own sampling events. In other words, every delay
operator is sensitive to a specific event expression and ignores all remaining events.
As a result, every delay operator works on a specific reduced version of the whole
trace that filters out all irrelevant information. When an assertion evaluation passes
through the various delay operators, the decision about required information changes.
In order to keep track of this behavior, it would be necessary to provide means of
dynamically reducing the complete trace every assertion. While it is possible to do
this with LTL, it is quite complicated: A trace entry has to be created for every
potentially triggering event. Auxiliary steps have to be introduced to step over trace
entries not of interest. Manual counting of potentially occurring events is required.

Another problem lies in the various different evaluation modes of UAL+. Some of
these modes allow interaction between different evaluation threads, as for instance
the Restart or Pipe modes. The first mode cancels running evaluation threads of the
consequent sequence of an implication property when another match of the antecedent
sequence is detected. The second mode allows the parallel evaluation of threads,
but places restrictions concerning legal ending time and resource consumption. LTL
formulas on the other hand only provide access to the future values of the current
evaluation thread and do not allow references to other threads, regardless of whether
it is older or newer ones. Thus, expressing pipelined or retransmission behavior using
LTL is impossible. For the same reason, a mapping of UAL+ to FSMs as a whole is
not possible.
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6.2 Petri Net Semantics

As described in the section above, the use of FSMs as the only formal representation
of the complete set of UAL+ functionality is impossible. This section describes an
alternative model for formally describing the behavior of the language. An HLCPN
is introduced and it is shown how the various UAL+ elements are mapped to this
structure.

Every assertion is mapped to a specific petri net representation where the tokens
represent the various evaluation threads. Due to the necessity of distinguishing be-
tween different evaluation threads, the petri net has to be colored, while a high level
petri net was chosen, since every token is required to hold information about the
current evaluation thread. As a result, every token contains an internal structure.

The HLCPN uses several levels of hierarchy, since this allows the easy assembly of
assertions from modular components.

Using petri nets enables a runtime evaluation of assertions on the trace items which
means that no knowledge about future events or even the complete simulation trace
is required.

6.2.1 Definitions of Global Functions

Throughout the description of the HLCPN, several functions are used that either refer
to elements of the trace or to objects or parameters within the HLCPN components:

� The function C IDX returns the current trace index (which equals the global
count of design events and timer events at the current point of time and is thus
also called event index).

� The function C EV returns the current event object with value Fire stored in
ε(C IDX)

� The function C TIME returns the current time value χ(C IDX)

� The implication operator includes a counter object that is used to determine
ID values for consequent evaluation threads. The current value of the object
can be accessed by Cons Cnt.

� The evaluation mode of antecedent sequence, consequent sequence, and prop-
erty can be accessed by AMode, CMode, and PMode, respectively.
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6.2.2 Petri Net Definition

An HLCPN is defined as a tuple:

HLCPN := (P, TR, A, M0, C) (6.10)

P := Finite set of places
TR := Finite set of transitions
A := Finite set of arcs A ⊆ ((P × TR) ∪ (TR× P ))
M0 := Initial marking of the net
C := Set of colors

6.2.3 Token Structure

Tokens in this HLCPN represent assertion evaluation attempts, while the different
elements of the HLCPN represent the various parts of the assertion itself. Several of
these assertion parts provide information to the evaluation attempt that is necessary
for determining the final result of the evaluation. Thus, this information is to be
stored within the token itself.

The token is defined as follows:

Definition 16 (Token) A colored token - with the exception of black tokens - repre-
sents one evaluation attempt (also referred to as evaluation thread) of a given asser-
tion specification. Every token TK stores information, part of which comprises the
structured color type Ct while the rest comprises the structured information type It.

Ct := (ATID,ASTID, CTID,CSTID) (6.11)

It := (ASTS, CSTS, S, IDX, TS, ACC LST,

AMI, CMI, ACA LST, CCA LST, TE LST ) (6.12)

The various structure items are defined as follows:
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ATID ∈ N0 := AntecedentThreadID as unique identifier of one antecedent
evaluation attempt; unused in single sequence properties

ASTID ∈ N0 := AntecedentSubThreadID as unique identifier of one alternative
of one antecedent evaluation attempt; unused in single sequence
properties

CTID ∈ N0 := ConsequentThreadID as unique identifier of one consequent
evaluation attempt; also used for single sequence properties

CSTID ∈ N0 := ConsequentSubThreadID as unique identifier of one alternative
of one consequent evaluation attempt; also used for single
sequence properties

ASTS ∈ N0 := Available Subthread ID space in antecedent; unused in single
sequence properties

CSTS ∈ N0 := Available Subthread ID space in consequent; also used for single
sequence properties

S ∈ R := Current state of the evaluation attempt, with
R := {Match,NotMatch,VacuousMatch,Cancel}

IDX ∈ N0 := Trace index at the arrival of the token in a place
TS ∈ N0 := Time stamp; used for evaluating timeout conditions as required

by TIMER and AND operators
ACC LST := List of accumulator data elements acci ∈ N0with i ∈ N0 being

the unique ID of a given ACCUMULATOR operator while acci

holds the corresponding accumulation counter
AMI ∈ N0 := Trace index at the match of the antecedent; unused in single

sequence properties
CMI ∈ N0 := Trace index at the match of the consequent; also used in single

sequence properties
ACA LST := List of antecedent consumption attempts; each attempt is

represented by a tupel (Index,Bool ID), with Index, Bool ID ∈ N0

where Index specifies the trace index at the occurrence of the
consumption attempt while Bool ID identifies the Boolean
expression to be consumed; unused in single sequence properties

CCA LST := List of consequent consumption attempts; each attempt is
represented by a tupel (Index,Bool ID), with Index, Bool ID ∈ N0

where Index specifies the trace index at the occurrence of the
consumption attempt while Bool ID identifies the Boolean
expression to be consumed; also used for single sequence properties

TE LST := List of tentative event occurrences; each occurrence is
represented by a tupel (Index,Event ID,Decision), with
Index, Event ID ∈ N0, Decision ∈ B where
Index specifies the trace index at the moment of the tentative
event occurrence, Event ID identifies the occurred tentative
event, and Decision marks whether the token assumes the
event really occurred or not
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Tokens are distinguished by their color c ∈ C. A specific color corresponds to a
valuation of the structured color type Ct. Since, the value set of ATID, ASTID,
CTID, and CSTID is the set of natural numbers, the set of possible colors C is
infinite:

C := N0
4 (6.13)

Definition 17 (Structure Item Reference) References to a structure item in TK
are written using a ”.” operator. Since all structure items of both the color type Ct

and the information type It have a unique name a structure item is referenced directly.
Referring to item ATID for instance is written in the form TK.ATID.

In some parts of the assertion evaluation however, another kind of token is re-
quired. This token is used for the implementation of semaphore-like mechanisms, for
interacting with various other tokens, and so on. On the other hand, every assertion
evaluation needs a special iniator token which is used for starting the first evaluation
thread. Thus, two token valuations with a special meaning are introduced:

Definition 18 (Black Token) Black tokens do not carry any information. A black
token is identified by its valuation:

TKBlack = ((0, 0, 0, 0), (0, 0, Match, 0, 0, ∅, 0, 0, ∅, ∅, ∅)) (6.14)

Definition 19 (Initial Token) The initial token is only needed for starting the as-
sertion evaluation. Otherwise it is treated as any other colored token. The valuation
of the initial token is defined as follows:

TK0 = ((1, 1, 0, 0), (ASTS, CSTS, Match, 0, 0, ∅, 0, 0, ∅, ∅, ∅)) (6.15)

The values for ASTS and CSTS depend on the assertion structure. They can be
calculated as follows:

ASTS =
M∏
i=1

(max delayi −min delayi + 1) (6.16)

M equals the number of range-delay operators within the antecedent sequence, while
max delayi and min delayi specify the maximum and minimum number of delay steps
of the ith delay operator.

CSTS =
N∏

j=1

(max delayj −min delayj + 1) (6.17)

N equals the number of range-delay operators within the consequent sequence, while
max delayj and min delayj specify the maximum and minimum number of delay steps
of the jth delay operator.

98



6.2 Petri Net Semantics

The subthread space calculation takes into account that every delay range multi-
plies the number of possible subthreads. Thus, the overall number equals the product
of all delay ranges.

In some cases, two or more tokens have to interact during the assertion evaluation,
while in other cases they must not. Thus, it is necessary to define how tokens can be
distinguished from each other:

Definition 20 (Token Color Equality) Two tokens are considered to have the
same color if the valuation of their structured color type Ct is equal, regardless of
possibly different valuations of the structured value type It.

One exception to this rule are black tokens. A black token is defined to have the
same color as a token of any color.

When referring to functions that change color of information of a token, it is often
important to differentiate between the original valuation of a token and the new
valuation.

Definition 21 In combination with actions that change the color of a token, the
original valuation of the token is referred to as TK while the valuation after the
action is indicated by TK’.

6.2.4 Places

Places are the storage elements of petri nets, since tokens may stay in a place for
a while. Every place may have one or more incoming transitions as well as one or
more outgoing transitions. Every incoming transition may put additional tokens in
the place, independent from other incoming transitions. If there are several outgoing
transitions, then every token can only use one of them. The HLCPN presented here
uses two different kinds of places, normal places and hierarchical places (used to build
up hierarchical nets). Both are defined as follows:

Definition 22 (Place) A Place p ∈ P can hold an unconstrained number of tokens
of any combination of colors. A place p stores the current trace index in each token
arriving in p, which means a change of the token’s additional information while the
color is not affected:

TK ′.IDX = C IDX (6.18)

A place may also include an additional action to be performed uniformly on all tokens
arriving in p. This action may also change color or additional information of a
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token. If no action is specified, a NULL action is performed which does not modify a
token. Whenever several tokens leave a place simultaneously - according to EBS (see
Definition 2) - they are removed from the place in the same order they arrived.

Definition 23 (Hierarchical Place) A Hierarchical Place p is an encapsulation of
a petri sub-net. Hierarchical places allow a concise description of the overall petri net
out of primitives that are closely related to grammar nodes. In order to comply with
the rules of petri net connectivity, all transitions connected to a hierarchical place
must be connected to a normal place inside the hierarchical place.

Figure 6.1 shows the corresponding symbols that are used in the remainder of this
chapter.

Place Hierarchical Place

Figure 6.1: Types of Petri Net Places

Definition 24 (Marking) The set of tokens residing in a non hierarchical place p
is called the marking m(p). Similarly, the marking mc(p) ⊆ m(p) specifies the set of
tokens of a specific color c ∈ C in a place p. The marking of a place can vary over
time.

The marking of a place m(p) can be changed to a new marking m′(p) by two basic
operations, subtraction and addition.

m′(p) = m(p)± k TKx (6.19)

These operations add or remove k tokens of kind TKx to / from m(p).

Since markings of a hierarchical place as such (without considering internals) is not
needed, the corresponding definition is omitted.
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6.2.5 Transitions

Transitions are the elements that allow propagation of a token from one place to
another. In contrast to places, tokens do not stay within a transition, they just pass
through. Every transition can have one or more input places as well as one or more
output places. A transition can only be activated if there is a token in each of its
input places. After removing these tokens from the input places a transition will
place a token into each of its output places. It is not unusual that transitions possess
an additional condition for their activation or show different behavior with regard to
how tokens are removed from input places or placed into output places, so petri nets
frequently contain several different kinds of transitions. The HLCPN presented here
uses five different kinds of transitions. Figure 6.2 shows the corresponding symbols
that are used in the remainder of this chapter.

Type-0 Type-1 Type-2 Type-3 Type-4 Port

Unconditional,
Instantaneous

Conditional,
Instantaneous

Conditional,
Instantaneous,

Conditional,
Delayed

Conditional,
Instantaneous,

No Token Removal

Connection

only in groups with
disjunctive and

complementary conditions

1 2 3 4

Figure 6.2: Types of Petri Net Transitions

The general behavior of all transition types is defined as follows:

Definition 25 (Enabling and Firing of Transitions) Every transition tri ∈ TR
has an enabling condition tre

i which describes a precondition for the firing of the
transition. Every enabling condition includes a requirement concerning the markings
of all input places of the transition. The set of all input places of a transition tri is
described by .tri, the set of all output places by tri

.. While the firing of a transition
is defined to be atomic, it can be split into three logical phases:

� Removing Phase tr-
i: Removing tokens of the same color c from all input places

p ∈ .tri

� Action Phase tra
i : Absorption or transformation of the removed tokens; if .tri =

∅ black tokens are created instead

� Adding Phase tr+
i : Adding the modified or created tokens to all output places

∈ tri
.
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If one or more (but not all) of the tokens removed in the Removing Phase are black
tokens, both color and additional information of the resulting token are determined
by the non-black input tokens.

All five transition types used in this HLCPN differ only in their corresponding
enabling conditions and Removing Phases. Action Phase and Adding Phase have the
same behavior. In the following, first the enabling conditions for the various transition
types are defined, followed by the definitions of the various Removing Phases, and
finally by the definitions of the shared Action Phase and Adding Phase behavior.

Port transitions are just placeholders for transitions on the next higher level of
hierarchy connected to the hierarchical sub-net. A port transition can represent any
other transition type and thus, there is no specific behavior associated with it.

Type-0 transitions are the most common transitions within the HLCPN. They do
not contain an additional Boolean condition.

Definition 26 (Type-0 Transitions (Enabling)) A Type-0 transition tri is
enabled for a color c ∈ C if all input places hold at least one token of this color:

tre
i : M 7→ B

∃c ∈ C,∀p ∈ .tri : |mc(p)| ≥ 1
(6.20)

Type-1 transitions introduce an additional Boolean condition for enabling. Type-2
transitions are identical to Type-1 transitions in all execution related regards, but
they can only occur in groups. The corresponding enabling conditions within a group
are disjunctive and complementary. Hence, exactly one transition of a group fires
immediately. Type-2 transitions are introduced for clarity reasons - due to the nature
of their conditions, Type-2 transitions never cause a delay of the execution. Type-4
transitions also use an identical Boolean enabling condition.

Definition 27 (Type-1 / Type-2 / Type-4 Transitions (Enabling)) A Type-
1, Type-2, or Type-4 transition tri is enabled for a color c ∈ C if all input places hold
at least one token of this color and if an additional Boolean condition G evaluates to
true:

tre
i : M 7→ B

∃c ∈ C,∀p ∈ .tri : (|mc(p)| ≥ 1) ∧ (G = true)
(6.21)

Type-3 transitions combine the Boolean condition introduced with Type-1 transi-
tions with an additional delay condition. The enabling condition checks that at least
one additional event has occurred after the token arrived at the corresponding input
place.
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Definition 28 (Type-3 Transitions) A Type-3 transition tri is enabled for a
color c ∈ C if all input places hold at least one token of this color, if the current
trace index is bigger than the trace index stored in the token (expressed by the ad-
ditional Boolean term D), and if an additional Boolean condition G evaluates to true:

tre
i : M 7→ B

∃c ∈ C,∀p ∈ .tri : (|mc(p)| ≥ 1) ∧ (D = true) ∧ (G = true)
(6.22)

with

D ≡ (TKc.IDX < C IDX for at least one token of color c in all p ∈ .tri)
(6.23)

Most transition types remove one token from all input places.

Definition 29 (Type-0 / Type-1 / Type-2 / Type-3 Transitions (Removing Phase))
The Removing Phase for Type-0, Type-1, Type-2, and Type-3 transitions extracts
one token TKc from all input places for color c:

tr-
i : M 7→ M , mc 7→ m′

c

∀p ∈ P, c ∈ C : m′
c(p) =

{
mc(p)− 1 TKc if p ∈ .tri

mc(p) else
(6.24)

Type-4 transitions just copy the tokens from the input places instead of removing
them.

Definition 30 (Type-4 Transitions (Removing Phase)) The Removing Phase
for Type-4 transitions copies one token TKc from all input places for color c:

tr-
i : M 7→ M , mc 7→ m′

c

∀p ∈ P, c ∈ C : m′
c(p) = mc(p)

(6.25)

As discussed above, Action Phase and Adding Phase show the same behavior for
all transition types:

Definition 31 (All transitions (Action Phase)) The Action Phase uses the
following rules to determine the additional information of the output token TKc

+

depending on the information of all input tokens TKc
1...n:
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TKc
+.ASTS = max(TKc

1...n.ASTS)
TKc

+.CSTS = max(TKc
1...n.CSTS)

TKc
+.S =



Cancel if ∃TKc
i : TKc.S = Cancel

V acuousMatch if (@TKc
i : TKc.S = Cancel)∧

(∃TKc
i : TKc.S = V acuousMatch)

NotMatch if (@TKc
i : TKc.S = Cancel)∧

(@TKc
i : TKc.S = V acuousMatch)∧

(∃TKc
i : TKc.S = NotMatch)

Match else

TKc
+.IDX = max(TKc

1...n.IDX)
TKc

+.TS = max(TKc
1...n.TS)

TKc
+.ACC LST [i] = max(TKc

1...n.ACC LST [i]) ∀i ∈ N0

TKc
+.AMI = max(TKc

1...n.AMI)
TKc

+.CMI = max(TKc
1...n.CMI)

TKc
+.ACA LST =

⋃n
i=1 TKc

i .ACA LST
TKc

+.CCA LST =
⋃n

i=1 TKc
i .CCA LST

TKc
+.TE LST =

⋃n
i=1 TKc

i .TE LST
(6.26)

Whenever the additional information of two or more tokens is merged as indicated
above, all integer values are either identical or will not be used anymore. Thus, the
maximum function could also be replaced by any other mathematical function that
keeps the original value if all incoming tokens share the same value1.

The action phase may also include an additional operation which is to be uniformly
performed on the tokens removed in the previous phase. This action may also change
color or additional information of the tokens. If no action is specified, a NULL action
without any side effects is performed.

Definition 32 (All transitions (Adding Phase)) The Adding Phase then sends
one token TKc

+ to all output places.

tr+
i : M 7→ M , m′

c 7→ m′′
c

∀p ∈ P, c ∈ C : m′′
c (p) =

{
m′

c(p) + 1 TKc
+ if p ∈ tri

.
m′

c(p) else
(6.27)

1The implementation just takes one of these values in order to reduce computation effort.
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6.2.6 Lists

The match filter component (see Section 6.2.11) and the AND operator (see Sec-
tion 6.2.8) need to store auxiliary information which is independent from the data in
the tokens. While it is possible to store this information in a single token of an ap-
propriate type and provide arcs from the storage place of this token to all transitions
where it is needed and back again, this would make the graphical representation of
the petri net overly complicated. Due to this reason, all of this additional information
is stored in two lists in the match filter and one list in the AND operator which are
visible to all transitions and places of the corresponding component.

Definition 33 (Tentative List (Match Filter)) The tentative list stores occur-
rences and evaluations for all tentative events in the simulation. It is used to deter-
mine whether a specific token using tentative events is to be discarded in the end or
not. Each list element is of the following structure type TL:

TL := (Index, Event ID,Decision) (6.28)

with the structure items

Index ∈ N0 := Trace Index of the tentative event occurrence
Event ID ∈ N0 := Identifies the occurred tentative event
Decision ∈ B+ := Marks if the tentative event was a real event or not, or

if the status is still undecided, with
B+ := {TRUE,FALSE,UNKNOWN}

Definition 34 (Match List (Match Filter)) The match list keeps track of the
various assertion evaluation attempts and stores their final results. The list entries
can be used to decide whether all subthreads of an evaluation attempt have already
been completed, to see which threads have already matched and when, to keep track of
the Boolean propositions being consumed by matching threads, etc. Each list element
is of the following structure type ML:

ML := (ATID,ASTID, CTID,CSTID, S, AMI, CMI, ACA LST, CCA LST )
(6.29)

with the structure items
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ATID ∈ N0 := AntecedentThreadID as unique identifier of one antecedent
evaluation attempt; unused in single sequence properties

ASTID ∈ N0 := AntecedentSubThreadID as unique identifier of one alternative
of one antecedent evaluation attempt; unused in single sequence
properties

CTID ∈ N0 := ConsequentThreadID as unique identifier of one consequent
evaluation attempt; also used for single sequence properties

CSTID ∈ N0 := ConsequentSubThreadID as unique identifier of one alternative
of one consequent evaluation attempt; also used for single
sequence properties

S ∈ R := Current state of the evaluation attempt, with
R := {Match,NotMatch,VacuousMatch,Cancel}

AMI ∈ N0 := Trace index at the match of the antecedent; unused in single
sequence properties

CMI ∈ N0 := Trace index at the match of the consequent; also used in single
sequence properties

ACA LST := List of antecedent consumption attempts; each attempt is
represented by a tupel (Index,Bool ID), with Index, Bool ID ∈ N0

where Index specifies the trace index at the occurrence of the
consumption attempt while Bool ID identifies the Boolean
expression to be consumed; unused in single sequence properties

CCA LST := List of consequent consumption attempts; each attempt is
represented by a tupel (Index,Bool ID), with Index, Bool ID ∈ N0

where Index specifies the trace index at the occurrence of the
consumption attempt while Bool ID identifies the Boolean
expression to be consumed; also used for single sequence properties

Definition 35 (AND operator list) This list stores occurrences of completed
AND connections. Based on this information it can be decided whether a new AND
combination should be propagated or discarded. Each list element is of the following
structure type AL:

AL := (ATID,ASTID, CTID,CSTID, TE LST ) (6.30)

with the structure items
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ATID ∈ N0 := AntecedentThreadID as unique identifier of one antecedent
evaluation attempt; unused in single sequence properties

ASTID ∈ N0 := AntecedentSubThreadID as unique identifier of one alternative
of one antecedent evaluation attempt; unused in single sequence
properties

CTID ∈ N0 := ConsequentThreadID as unique identifier of one consequent
evaluation attempt; also used for single sequence properties

CSTID ∈ N0 := ConsequentSubThreadID as unique identifier of one alternative
of one consequent evaluation attempt; also used for single
sequence properties

TE LST := List of tentative event occurrences; each occurrence is
represented by a tupel (Index,Event ID,Decision), with
Index, Event ID ∈ N0, Decision ∈ B where
Index specifies the trace index at the moment of the tentative
event occurrence, Event ID identifies the occurred tentative
event, and Decision marks whether the token assumes the
event really occurred or not

6.2.7 Mapping Concept

In the following section, the different elements of UAL+ are mapped to petri net
representations. Mostly, this is done according to the UAL+ layer the corresponding
element belongs to. Some components cannot be placed within one specific layer
though, so they are discussed at the end.

Note that neither the verification layer nor the Boolean layer are discussed here,
since the UAL+ elements of these layers would only appear as an action to be per-
formed or a Boolean condition to be checked in a petri net.

Some general methods and functions are used to modify or check the status of an
evaluation thread and to replace a colored token by a black token. The corresponding
methods are listed in Table 6.1, while Table 6.2 contains the functions.

Symbol Definition
SetBlack() TK’ = TKBlack

SetCancel() TK’.S = Cancel
SetNotMatch() TK’.S = NotMatch
SetVacuousMatch() TK’.S = VacuousMatch

Table 6.1: General Methods
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Symbol Definition
IsCancel() TK.S = Cancel
IsMatch() TK.S = Match
IsNotMatch() TK.S = NotMatch
IsVacuousMatch() TK.S = VacuousMatch

Table 6.2: General Functions

6.2.8 Event Layer

Every UAL+ event operator has its own HLCPN representation. These operators can
be interconnected in a flexible way in order to form event expressions. As a result, it
is necessary to also provide a representation for the occurrence of a single event.

Every operator has an enable port where tokens from a higher level of hierarchy
(another event operator or a delay operator) can come in and a result port where
tokens can be passed back to that hierarchy level.

Several of these event operators require functions for checks of certain conditions
and methods for the manipulation of tokens. The methods are listed in Table 6.3,
while Table 6.4 contains the functions.

Symbol Definition
Acc() TK’.ACC LST[AccID] = TK.ACC LST[AccID] - 1
ClearTokenTime() TK’.TS = 0
Count() TK’.TS = TK.TS - 1
SetAccValue(X) TK’.ACC LST[AccID] = X
SetTentativeMark() TK’.TE LST = TK.TE LST ∪ (C IDX,ex,true)
SetTentativeMarkLeft() TK’.TE LST = TK.TE LST ∪ (C IDX,ex,false)
SetTentativeMarkRight() TK’.TE LST = TK.TE LST ∪ (C IDX,ex,true)
SetTokenTime() TK’.TS = C TIME
SetTokenTime(X) TK’.TS = X

Table 6.3: Event Layer Methods

The method SetAccValue(X) sets the list entry in the ACC LST token item that is
associated with the current ACCUMULATOR operator to X, while Acc() decrements
it by one.
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The method SetTokenTime() sets the TS token item either to the current simu-
lation time (if called without parameter) or to the value of a given parameter. The
method Count() decrements this token item, while ClearTokenTime() sets it to zero.

The methods SetTentativeMark() and SetTentativeMarkRight()2 mark the token
representing the assumption that the tentative event is a valid event. For this pur-
pose, a tuple containing the current trace index, the ID of the tentative event, and
the term true marking the decision is added to the token item TE LST. Similarly,
SetTentativeMarkLeft() marks the token representing the assumption that the ten-
tative event is not valid. This decision is marked by using the term false in the
tupel.

Symbol Definition
AccDone() TK.ACC LST[AccID] = 0
CountDone() TK.TS = 0
ListEmpty() @q ∈ AND LST:

(q.ATID = TK.ATID) ∧ (q.ASTID = TK.ASTID) ∧
(q.CTID = TK.CTID) ∧ (q.CSTID = TK.CSTID)

TimeOut(X) C TIME - TK.TS = X ∧ C EV = tx
TokenInList() ∃q ∈ AND LST:

(q.ATID = TK.ATID) ∧ (q.ASTID = TK.ASTID) ∧
(q.CTID = TK.CTID) ∧ (q.CSTID = TK.CSTID) ∧
(q.TE LST =

⋃n
i=1 TKi.TE LST)

Table 6.4: Event Layer Functions

The function AccDone() checks if the list entry in the ACC LST token item that
is associated with the current ACCUMULATOR operator has the value zero after
the decrement. The function CountDone() does the same for the token item TS.
The function ListEmpty() checks whether the list of the AND operator contains at
least one entry of the same color as the current token. The function TimeOut(X)
checks whether the difference between the current time value and the value stored in
the token equals X and if the current event is the timer event. Finally, the function
TokenInList() checks whether the token resulting from the merger of all input tokens
is already stored in the list of the AND operator.

2Although these two methods are identical, different names were chosen to simplify the explanation
of the corresponding event operators.
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Single Event Occurrence

The HLCPN representation of a single event occurrence is depicted in Figure 6.3.
Every instance of this representation features a parameter specifying to which event
ex it is sensitive. When a token arrives via the enable port it resides in the place Input
until the result of the function C EV equals ex; at this time the token is transported
to the place Output and consequently leaves via the result port.

EnablePort ResultPortC EV = ex

Input Output3

Figure 6.3: Single Event

The introduction of the tentative matching concept however has led to two variants
of this HLCPN representation. Figure 6.4 depicts the version dealing with a tentative
event. In contrast to the original representation the Type-3 transition duplicates the
token while passing through in order to represent the two possible decisions for the
event status. The token that is sent to the Output place assumes that the tentative
event is a real event, while the token traveling back to the Input place assumes it is
not. This information is stored within the token according to the formulas listed in
Table 6.4.

SetTentativeMarkLeft()

EnablePort ResultPort

Input Output

C EV = ex

SetTentativeMarkRight()

3

Figure 6.4: Tentative Event

Figure 6.5 shows the special case of a tentative event within the first delay oper-
ator of a sequence (in case of implication properties this only affects the antecedent
sequence). The token is not duplicated, but the token is still marked as seen in
Table 6.4.
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EnablePort ResultPort

SetTentativeMark()

C EV = ex

Input Output3

Figure 6.5: Tentative Event in First Delay Operator

TIMER Operator

The enhanced UAL+ TIMER operator has two HLCPN representations. The first
one deals with the classical occurrence of a timer event, while the second one handles
the count of clock events.

The first representation is depicted in Figure 6.6. Every instance of this representa-
tion features a parameter specifying after which time X the timer event has to occur.
When a token arrives via the enable port it resides in the place Input where the
current simulation time is stored within the token and a timer event tx is scheduled
X time steps later. As soon as this event is detected the token is transported to the
place Output, where the stored time value is cleared in the token, and consequently
leaves via the result port. The required functions are described in Table 6.4.

ClearTokenTime()

timer(X)

EnablePort TimeOut(X) ResultPort

Input Output

SetTokenTime()

3

Figure 6.6: TIMER Operator

The second representation is depicted in Figure 6.7. Every instance of this rep-
resentation features two parameters: One specifies which event ex is to be counted,
the second specifies the required number of occurrences. When a token arrives via
the enable port, the value X is stored within the token at the Input place. In the
Loop place it is checked whether the required number of occurrences has already
been reached, in which case the token leaves via the result port. Otherwise, the token
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reaches the Check place, where it awaits the occurrence of an event. Afterwards, the
value stored within the token is decremented and the token returns to the Loop place.
The required functions are described in Table 6.4.

SetTokenTime(X)

EnablePort

ResultPort

Count()timer[ex](X)

Check

Output

Input Loop

CountDone()

C EV = ex

¬ CountDone()

2

3

2

Figure 6.7: Event-based TIMER Operator

ACCUMULATOR Operator

The HLCPN representation of the ACCUMULATOR operator is depicted in Fig-
ure 6.8. As can be seen it is very similar to the event-based TIMER operator3.
But instead of counting the occurrences of a single event, this operator is capable
of counting the occurrence of a complex event expression, represented by a hierar-
chical place. Since it is possible that several ACCUMULATOR operators are nested
within the same event expression, every operator is assigned a unique ID AccID. The
accumulator counters are no longer stored in the TS element of the token, instead,
the list ACC LST is used, where every active accumulator gets a speparate entry.
The remaining behavior is identical to that of the event-based TIMER operator. The
required functions are described in Table 6.4.

CONSTRAINT Operator

The HLCPN representation of the CONSTRAINT operator is depicted in Figure 6.9.
The CONSTRAINT operator checks that whenever a given event expression (again
represented by a hierarchical place) matches, a certain Boolean condition has to hold.
When a token arrives via the enable port, it is sent to the hierarchical place of the

3The reason for this similarity is that the event-based TIMER operator has been derived from the
ACCUMULATOR operator and simplified.
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SetAccValue(X)

EnablePort

EXPR

ResultPort

EXPR%(X)
Acc()

Input Loop

Output

¬ AccDone()

AccDone()

2

2

Figure 6.8: ACCUMULATOR Operator

event expression. After the expression has been processed and the token has arrived
in the place Check, the Boolean constraint condition is evaluated. If it does not hold,
the token is sent back to the hierarchical place. Otherwise, the token leaves via the
result port.

EXPR@(BE)

EnablePort

EXPR

BE ResultPort

Check

¬ BE

Input Output

2

2

Figure 6.9: CONSTRAINT Operator

OR Operator

Figure 6.10 shows the HLCPN representation of the OR operator. The structure of
this operator is very simple. Every token arriving via the enable port is just split
up and sent to both alternative event expressions (again represented as hierarchical
places). Both expressions can produce independent results which are then propagated
out of the operator via the result port.

AND Operator

Normally, the AND operator has to check for the occurrence of two events or event
expressions within the same time step and then propagate a positive result. The orig-
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Input
ResultPort

EXPR A

EXPR B

EnablePort

EXPR A | EXPR B

Output

Figure 6.10: OR Operator

inal implementation of UAL+ solved this by waiting for exactly one such combination
and discarding all further ones (within the same time step). Due to the introduction
of the tentative event concept the AND operator has to consider additional situations.
It is possible that the first transmitted combination is only tentative and gets invalid
later on. Thus, all further combinations may not be discarded. In order to keep track
of the information relevant for this, the AND operator implements one list introduced
in Section 6.2.6. The corresponding update functions are defined as follows:

Adding a token to the List:

AND LST’ = AND LST ∪
{(TK.ATID,TK.ASTID,TK.CTID,TK,CSTID,TK.TE LST)} (6.31)

Update of List - all entries of the current token color are removed:

∀ j ∈ AND LST | (j.ATID = TK.ATID) ∧ (j.ASTID = TK.ASTID) ∧
(j.CTID = TK.CTID) ∧ (j.CSTID = TK.CSTID):
AND LST’ = AND LST \ j

(6.32)

Figure 6.11 shows the HLCPN representation of the AND operator. Similarly to
the OR operator, every token arriving via the enable port is split up and sent to both
event expressions (again represented as hierarchical places). Both expressions have
to produce a result. The corresponding token resides in either place A or place B and
a timer event tx is scheduled for the next time step. If the other expression produces
a result before this event is detected, it is checked whether the merger of both tokens
has already been processed this time step (as indicated by a corresponding entry in
the AND operator list). If not then both tokens are merged, the resulting token is
added to the list of the AND operator and then propagated out of the operator via
the result port. If the timer event is detected, it is checked whether the list contains
elements of the same color as the token (this represents that the operator already
produced a result this time step). If this is not the case the waiting token is sent
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back to the corresponding hierarchical place. Otherwise, all list entries of the same
color as the token are removed and the token is destroyed. The required functions
are described in Table 6.4.

¬ ListEmpty()EXPR A & EXPR B

SetTokenTime()

SetTokenTime()

ResultPortEnablePort

EXPR A

EXPR B

UpdateList()

ListEmpty() ¬ ListEmpty()

ListEmpty()

Input Output

Loop A

Loop B

A

B

ClearTokenTime()
AddTokenToList()

Remove B

Remove A

UpdateList()

TimeOut(1) ∧ TimeOut(1) ∧

TimeOut(1) ∧TimeOut(1) ∧

¬ TokenInList()

33

33

4

Figure 6.11: AND Operator

6.2.9 Sequence Layer

The UAL+ sequence layer includes mainly the various delay operators. Additionally,
a token generator component is located on this layer.

Sequence operators also require methods for token manipulation which are listed
in Table 6.5.

Symbol Definition
AddCA() TK’.CA LST = TK.CA LST ∪ (C IDX,Bool ID)
AssignSTID() TK’i.STID = TK.STID + i * (TK.STS / N)

TK’.STS = TK.STS / N
IncreaseTID() TK’.TID = TK.TID + 1

Table 6.5: Sequence Layer Methods

The method AddCA() stores the consumption attempt in the token. For this pur-
pose, a tupel containing the current trace index and the ID of the Boolean expression
is added to the token item CA LST.

The method AssignSTID() is needed whenever a ranged delay operator splits the
current thread into several subthreads. In order to distinguish the various subthreads
all corresponding tokens have to be assigned a different ID. The corresponding sub-
thread ID is calculated as follows:
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1. Divide the available subthread space by N (the number of range steps), the
result specifies the number of subthreads each token represents

2. For the ith token multiply this by the number i, with 0 ≤ i < N

3. Add this offset to the current subthread ID

Additionally, the available subthread space will be decreased accordingly.

The IncreaseTID() method increments the ID of the current token by one.

Delay Operator

The main elements of the sequence layer are the UAL+ delay operators. Due to
differences in their structure, it is not possible to include every possible configuration
within one HLCPN representation. Instead, these various possibilities are reduced
to three different representations: a zero-delay operator which does not include any
event expressions, a single-delay operator, and a ranged delay operator. All other
configurations can be built up from these three components. The following rewriting
rules are used for this purpose:

Definition 36 The minimum delay of a delay range always has to equal zero (m le
n):
#{m:n}{. . .}{BE} =>

#m{. . .}{true} #{0:(n-m)}{. . .}{BE}

If m = n then a non-ranged delay operator is implemented.

Definition 37 A multi-step delay consists of several single step-delays:
#N{. . .}{BE} =>

#1{. . .}{true}0 #1{. . .}{true}1. . .#1{. . .}{true}N−1#1{. . .}{BE}N

Basically a #N operator is replace by N #1 operators which all contain the same
event expressions as the original one. The first N-1 operators contain a simple true

as Boolean proposition, while the last one uses the same expression as the original
operator.

Similarly to the event operators, each delay operator has an enable port and a
result port.
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Figure 6.12 depicts the HLCPN representation of the zero-delay operator. Tokens
arriving via the enable port are evaluated concerning their status. If the status does
not equal Match then they just leave via the result port. Otherwise the Boolean
condition of the delay operator is checked. If it evaluates to true then the ID of the
Boolean condition (with the exception of the trivial true proposition every Boolean
proposition is assigned a unique ID) together with the current trace index is stored
within the token in order to mark the consumption attempt of this thread. If it
evaluates to false the status of the token is set to NotMatch. The functions used in
the zero-delay operator are listed in Table 6.5.

BE

SetNotMatch()

AddCA()

IsMatch()EnablePort

#0{BE}
ResultPort

¬ IsMatch()

¬ BE

2

2

2

2

Figure 6.12: Zero-Delay Operator

Figure 6.13 depicts the HLCPN representation of the single-delay operator. In
contrast to the zero-delay operator, it contains several hierarchical places represent-
ing various event expressions. UAL+ supports the specification of a positive and a
negative event expression per delay operator. The positive expression propagates the
evaluation thread while the negative expression cancels it. In addition UAL+ allows
the specification of a reset expression per assertion directive. Due to the addition
of the tentative mechanics (early cancelation of threads might lead to wrong results,
depending on the result of tentative events) this reset expression has to be included
in every delay operator of all sequences used within that assertion directive.

Tokens arriving via the enable port are first distributed to all three event expres-
sions. The status of tokens from all event expressions is checked and if it does not
equal Match they are propagated to the result port without further processing4. Oth-
erwise, the status of tokens from the negative expression is set to NotMatch while
for tokens from the positive expression the Boolean condition of the delay operator is
checked. If it evaluates to true then the ID of the Boolean condition together with
the current trace index is stored within the token in order to mark the consumption

4This only applies to tokens that were already set to a status other than Match in a previous
delay operator. It is necessary for these tokens to still pass the event expressions, since otherwise
tokens might overtake each other.
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attempt of this thread, in the same way as in the zero-delay operator. If it evalu-
ates to false the status of the token is set to NotMatch. The functions used in the
single-delay operator are listed in Table 6.5.

¬ BE

#1{POS EXPR;NEG EXPR;RST EXPR}{BE}

POS EXPR

NEG EXPR

RST EXPR

EnablePort

AddCA()

¬ IsMatch()

¬ IsMatch()

IsMatch()

IsMatch()

SetNotMatch()

SetCancel()

BE

IsMatch()

¬ IsMatch()

ResultPort

2

2

2

2

22

2

2

Figure 6.13: Single-Step-Delay Operator

Every event expression can consist of an arbitrary number of event operators (as
detailed in the previous section). In addition, up to two of the three event expressions
can also be left empty which represents the absence of positive or negative triggers or
of a reset mechanism. The corresponding HLCPN component is shown in Figure 6.14.
Tokens sent in there are just consumed.

EnablePort ResultPort

Input Output

Figure 6.14: Empty Event Expression

Finally, a ranged delay operator is shown in Figure 6.15. Basically, this operator
instantiates a number of delay operators according to the width of the delay range.
Each of these operators represents one specific delay value of that range. These
operators are either zero-delay, single-delay, or longer delay operators (the latter can
be constructed by single-delay operators as shown above). The only important thing
done within the range operator is the assignment of new subthread IDs to the various
tokens, in order to be able to distinguish them later (this is needed in order to decide
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on the correct result for the various execution modes). The corresponding functions
are listed in Table 6.5.

#0{BE}

ResultPortEnablePort

OutputInput

#N{POS EXPR;NEG EXPR;RST EXPR}{BE}

#{0:N}{POS EXPR;NEG EXPR;RST EXPR}{BE}

AssignSTID()

Figure 6.15: Ranged Delay Operator

Token Generator

Figure 6.16 shows the HLCPN representation of the token generator component. Its
purpose is to provide evaluation threads for the given assertion represented by to-
kens. To that purpose, the generator should not produce more tokens than absolutely
necessary.

The output of the token generator is connected to the input of the first antecedent
delay operator (or to the first delay operator of the single sequence in a single sequence
property).

InputPort OutputPort

SetBlack()

IncreaseTID()

Input Output

Figure 6.16: Token Generator

The token generator contains two tokens initially, a black token TKBlack and an
initial token TK0 (represented by the gray colored token).
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At the beginning of the simulation, the central transition of the token generator is
enabled, since both input places contain a token. The transition places one colored
token in the Output place, which is then propagated to the first delay operator.
The second colored token’s thread ID is increased. After passing an unconditional
transition, it reaches the initial place again. Since the black token is not present
anymore, the transition cannot be enabled.

The input of the token generator is connected to the output of the first delay
operator. If this delay operator produces a result, a copy of the corresponding output
token is sent back to the token generator and colored black; this restores the initial
configuration (with the exception of the color of the second token) and thus re-enables
the evaluation of the connected assertion. As a consequence, there will never be two
completely parallel evaluation threads present within the first delay operator.

6.2.10 Property Layer

The UAL+ property layer is represented by an implication operator. The additional
methods required by this operator for token manipulation are listed in Table 6.6.

Symbol Definition
CreateNewTID() TK’.CTID = Cons Cnt

Cons Cnt = Cons Cnt + 1
TK’.CSTID = 1

SetAMI() TK’.AMI = C IDX

Table 6.6: Property Layer Methods

The CreateNewTID() method is responsible for generating an ID for the consequent
evaluation thread, since these are independent from the antecedent IDs. The new ID
is determined by the current value of the counter Cons Cnt that is incremented after
the assignment. Finally, the subthread ID is set to one.

The method SetAMI() stores the current trace index in the AMI token item, in
order to mark when the antecedent has matched.

Similarly to the event operators, an implication operator has an enable port and a
result port.

Figure 6.17 depicts the HLCPN representation of the implication operator. Tokens
arriving via the enable port are evaluated concerning their status. If the status equals
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Cancel then they just leave via the result port (since the thread is already canceled no
further processing is required). Tokens with the status NotMatch represent a vacuous
success of the implication property already. Thus, the status is set to VacuousMatch.
Finally, tokens with the status Match require a complete evaluation of the consequent
sequence. For this purpose every one of these tokens is assigned a unique consequent
ID, since consequent evaluation threads have to be evaluated independently from each
other. The functions used in the implication operator are listed in Table 6.6.

IsCancel()

EnablePort

S1 7→ S2

ResultPortCreateNewTID()
IsNotMatch()

IsMatch()

SetAMI()

SetVacuousMatch()

2

2

2

Figure 6.17: Implication Operator

Note that in case of single sequence properties no implication operator is needed.

6.2.11 Hybrid Component: Match Filter

A UAL+ key component is the so-called match filter which is responsible for com-
puting the final assertion results based on the data aquired by the various tokens
on the one hand and the different evaluation modes of the assertion on the other
hand. Depending on the execution modes in use, it is possible that a token repre-
senting a successful evaluation attempt is still discarded because another thread /
subthread prohibits it from being validated. In contrast to the original implementa-
tion of UAL+, where the match filter was part of the sequence layer, the inclusion
of the tentative matching concept makes an immediate evaluation of the antecedent
sequence impossible. Instead, this evaluation has to be delayed until all results of all
involved tentative events are available, which can easily take more time then the com-
plete evaluation of antecedent and consequent sequence including the corresponding
property as well.

Thus, the match filter has to take the property results into account as well (includ-
ing the property execution modes). As a result, the modified match filter does not
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clearly belong to only the sequence layer. Instead it includes functionality of both
the sequence and the property layer.

Instead of having one match filter at the end of both antecedent and consequent
sequence, the revised match filter is to be attached to the end of the consequent
sequence only. It includes the functionality for antecedent checks as well.

The match filter needs to know the maximum subthread space for both the an-
tecedent and the consequent sequence. Similarly, information about the evaluation
modes of antecedent, consequent, and property is required. This information is stored
in global constants. The match filter implements two lists introduced in Section 6.2.6
in order to store additional information that has to be kept even after the evaluation
of a token is completed. The corresponding update functions are defined as follows:

Update of Match List:

MA LST’ = MA LST ∪ {(TK.ATID,TK.ASTID,TK.CTID,TK,CSTID,TK.S,
TK.AMI,TK.CMI,TK.ACA LST,TK.CCA LST)}

(6.33)

Update of Tentative List (Occurrence of Tentative Event) - a tentative event occurrs
during simulation:

TE LST’ = TE LST ∪ {(C IDX,Event ID,UNKNOWN)} (6.34)

Update of Tentative List (Decision of Tentative Event) - a previously occurred
tentative event can be decided:

(TE LST’ = TE LST \ {(C IDX,Event ID,UNKNOWN)}) ∪
{(C IDX,Event ID,Decision)} (6.35)

Table 6.7 details the remaining methods used in the match filter, while Tables 6.8,
6.10, 6.9, and 6.11 contain all functions.

Symbol Definition
CancelOldThread() ∀j ∈ MA LST | (j.AMI ≤ TK.AMI < j.CMI) ∧

((j.S = Match) ∨ (j.S = NotMatch)): j’.S = Cancel
SetCMI() TK’.CMI = C IDX

Table 6.7: Match Filter - Methods
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The method CancelOldThread() looks up all entries in the match list with a status
of Match or NotMatch5 with an antecedent match index before and a consequent
match index after the antecedent match of the current token. These entries represent
older threads that should be canceled by a restart, since their consequent was still in
evaluation when the antecedent represented by the token matched. As a consequence,
the status of these entries is changed to Cancel.

The method SetCMI() stores the current trace index in the CMI token item, in
order to mark when the consequent has matched.

Symbol Definition
ACConflict() ∃j ∈ MA LST: (j.ACA LST ∩ TK.ACA LST 6= ∅) ∧

((j.S = Match) ∨ (j.S = NotMatch))
ALastSubthread() ∀i ∈ N |(0 < i ≤ ASTS) ∧(i 6= TK.ASTID):

∃j ∈ MA LST: (j.ATID = TK.ATID) ∧ (j.ASTID = i)
AMConflict() ∃j ∈ MA LST: (j.AMI = TK.AMI) ∧

((j.S = Match) ∨ (j.S = NotMatch))
AThreadMatched() ∃j ∈ MA LST: (j.ATID = TK.ATID) ∧

((j.S = Match) ∨ (j.S = NotMatch))
A AM() AMode = AnyMatch
A FMP() AMode = FirstMatchPipe

Table 6.8: Match Filter - Antecedent related Functions

The function AMConflict() checks whether there is a match conflict between the
antecedent thread represented by the current token and an older one. For this pur-
pose, it is checked whether there is already an entry in the match list with the same
antecedent match index with status either Match or NotMatch, which represents an
antecedent match.

The ACConflict() function checks whether there is a consumption conflict between
the antecedent thread represented by the current token and an older one. For this
purpose, it is checked whether the intersection of the antecedent consumption attempt
list within the token and the antecedent consumption attempt list of any element
within the match list representing an antecedent match is not empty.

The ALastSubthread() function checks whether the current token represents the last
antecedent subthread for a given thread ID, which means whether there is already an
entry for all other subthread IDs of the current thread ID in the match list.

5Both represent a match of the antecedent sequence.
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The function AThreadMatched() checks whether the current thread has already
matched, which means whether there is already an entry for the current thread ID in
the match list with the status of Match or NotMatch, which represents an antecedent
match.

The functions A AM() and A FMP() check whether the antecedent is evaluated
using a specific mode.

Symbol Definition
CCConflict() ∃j ∈ MA LST: (j.CCA LST ∩ TK.CCA LST 6= ∅) ∧

(j.S = Match)
CLastSubthread() ∀i ∈ N |(0 < i ≤ CSTS) ∧(i 6= TK.CSTID):

∃j ∈ MA LST: (j.CTID = TK.CTID) ∧ (j.CSTID = i)
CMConflict() ∃j ∈ MA LST: (j.CMI = TK.CMI) ∧ (j.S = Match)
CThreadMatched() ∃j ∈ MA LST: (j.CTID = TK.CTID) ∧ (j.S = Match)
C AM() CMode = AnyMatch
C FMP() CMode = FirstMatchPipe

Table 6.9: Match Filter - Consequent related Functions

The functions CMConflict(), CCConflict(), CLastSubthread(), CThreadMatched(),
C AM(), and C FMP() work similarly, but check the corresponding consequent con-
ditions.

Symbol Definition
OldThread() ∃j ∈ MA LST: (j.AMI ≤ TK.AMI < j.CMI) ∧

((j.S = Match) ∨ (j.S = NotMatch))
P NR() PMode = NoRestart
P O() PMode = Overlap
P P() PMode = Pipe
P R() PMode = Restart
P ROR() PMode = ReportOnRestart

Table 6.10: Match Filter - Property related Functions

The OldThread() function checks whether there is an older thread in the match list
that might influence the behavior of the current one. It is checked, whether there is

124
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a match list entry with an antecedent match index prior to and a consequent match
index later than the current antecedent match index and whether the status of this
entry is either Match or NotMatch, since both represent an antecedent match.

The functions P NR(), P O(), P P(), P R(), and R ROR() check whether the
property is evaluated using a specific mode.

Symbol Definition
Finished() (TK.S = VacuousMatch) ∨ ((TK.S 6= Cancel) ∧

((PMode 6= Restart) ∨ (∃j ∈ MA LST:j.AMI ≥ TK.CMI)))
Ignore() (TK.S = Cancel) ∨ ((PMode = Restart) ∧

(TK.S 6= VacuousMatch) ∧
(∃j ∈ MA LST: ((TK.AMI ≤ j.AMI < TK.CMI) ∧
((j.S = Match) ∨ (j.S = NotMatch)))))

Invalid() (∃q ∈ MA LST:
(q.ATID = TK.ATID) ∧ (q.ASTID = TK.ASTID) ∧
(q.CTID = TK.CTID) ∧ (q.CSTID = TK.CSTID)) ∨
(∃i ∈ TK.TE LST, j ∈ TE LST:
(i.Index = j.Index) ∧ (i.Event ID = j.Event ID) ∧
(i.Decision 6= j.Decision) ∧ (j.Decision 6= UNKNOWN))

Valid() (@q ∈ MA LST:
(q.ATID = TK.ATID) ∧ (q.ASTID = TK.ASTID) ∧
(q.CTID = TK.CTID) ∧ (q.CSTID = TK.CSTID)) ∧
(TK.TE LST ⊆ TE LST)

Table 6.11: Match Filter - General Functions

The function Invalid() checks whether a token has to be discarded instead of enter-
ing the match filter. This happens if there already exists an entry in the match list
which uses the same thread IDs and subthread IDs for both antecedent and conse-
quent as the current token (this represents the fact that a token from another trigger
expression has reached the matchfilter, after a first one has already been processed),
or if the token includes a decision for a tentative event that has proven wrong.

The function Valid() checks whether a token is ready to proceed into the match
filter evaluation. This is the case if there is no existing entry in the match list with
identical values for thread ID and subthread ID for antecedent and consequent, and
if the decisions for all encountered tentative events have proven correct.

The Ignore() function checks whether the token has to be discarded instead of
leaving the match filter. This happens to all tokens with status Cancel since they do
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not provide useful information for the assertion. In mode Restart, this also happens
to all tokens with a status different from VacuousMatch if there is at least one match
list element representing an antecedent match (i.e. status is either Match or Not-
Match) with an antecedent match index that lies between antecedent match index
and consequent match index of the token. This fact represents the situation that the
current token is canceled due to a successful restarting of the assertion evaluation.

The Finished() function checks whether the token may leave the match filter and
provide a final result to the assertion. This happens to all VacuousMatch tokens
and to all tokens with a status different from Cancel if not running in Restart mode
or if there is already a match list entry with an antecedent match index later than
the token’s consequent match index. This last condition represents the fact that all
tokens that could restart the evaluation have already been processed.

Initial Validation / Discarding of Tokens

The general HLCPN structure of the match filter is shown in Figure 6.18.
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Figure 6.18: Match Filter

A small subnet of the matchfilter is responsible for keeping track of every occurrence
of tentative events and for storing this information in the tentative list. In the same
way all decisions concerning tentative events are also stored in the tentative list.

Incoming tokens arrive at the Input place first. Now it is checked whether a newly
arrived token is valid or not. Tokens may be invalid for one of two reasons:

1. Every single-delay operator sends an evaluation token in three event expressions
(see Section 6.2.9). Even though the first token leaving the delay operator
represents the correct result, the other tokens still remain there and might leave
the delay operator at a later time. If one of these remaining tokens later arrives
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at the match filter, there will already be a valid entry in the match list with the
exact same ID (that means thread ID and subthread ID for both antecedent
and consequent match6). Thus, the new token has to be discarded.

2. If the thread represented by the token includes one or several tentative events
and if the final decision of at least one of these events contradicts the assumption
made for the token, then the token does not represent the real design behavior
and is discarded.

If tokens are valid - there is no previous entry with the same ID in the match list
and all decisions for tentative events (if any) are correct - then the token can be
processed by the match filter.

If the token is neither valid nor invalid (this can only happen if a decision concerning
a tentative event is not known yet) then the token has to remain in the Input place
until it becomes either valid or invalid. Note that this mechanism might delay the
whole evaluation by a large amount of time. On the other hand, if the remaining
tokens were processed out of order, wrong results could be produced due to the
dependencies between several tokens.

The black token in the InputEnable place ensures that only one token can be
evaluated in the match filter at a time. Since token order is kept, tokens will always
be evaluated in the order of their arrival. This means that the evaluation of a valid
token might be delayed because an older token has not been processed yet.

Tokens entering the evaluation of the match filter are sorted in tokens of status
Cancel and all others. The former bypass the actual evaluation, while the latter have
to pass the evaluation of antecedent, property, and consequent results. Due to the
complex structure of the match filter these three evaluation steps are represented by
hierarchical places. The corresponding sub-nets are presented in the following.

Antecedent Evaluation

The antecedent evaluation is shown in Figure 6.19. First the mode of the antecedent
sequence is checked. In case of mode AnyMatch all tokens of status VacuousMatch
leave the sub-net via the AbortPort, bypassing the two remaining evaluation steps.
All remaining tokens leave via the ContinuePort and are passed to the second sub-
net. This behavior reflects the fact that all evaluation threads and subthreads are
supposed to produce an independent result.

In all other cases (modes FirstMatch and FirstMatchPipe) every evaluation thread
is only supposed to produce one result, regardless of the number of subthreads. Thus,

6In case of single sequence properties, only one pair of IDs exists.
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Figure 6.19: Match Filter - Antecedent Evaluation

it is first checked whether the thread represented by the token’s ATID parameter has
already matched. If yes, then the token is no longer needed, its status is set to
Cancel, and it leaves the sub-net via the AbortPort. If no, then it is checked if the
token represents a vacuous match, that means a ”not match” result of the antecedent
sequence. If this is the case, then it has to be determined if this is the last subthread
of this evaluation thread. If yes, the token just leaves via the AbortPort, if no its
status is changed to Cancel before (there might be a Match result in one of the later
tokens after all).

If the thread has not produced a match before, the antecedent mode determines
how the token is processed further. In case of mode FirstMatch the token has now
already passed the antecedent evaluation and proceeds to the next sub-net via the
ContinuePort. In case of mode FirstMatchPipe however, it has to be checked if one
of two possible conflict situations did occur:

1. A match conflict occurs if several assertion threads try to match at the same
trace index. In this case, only the oldest thread is allowed to match.

2. A consumption conflict occurs if several assertion threads try to ”consume” the
same Boolean proposition at the same trace index. Again only the oldest thread
is allowed to do so.
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6.2 Petri Net Semantics

If none of these situations arises, the token is propagated to the next sub-net via
the ContinuePort. Otherwise the status of the antecedent is set to ”not matched”
- which results in the status of the whole evaluation to be set to VacuousMatch -
and the aforementioned check on whether the token represents the last evaluation
subthread is performed. The results of this check are described above.

Property Evaluation

The property evaluation is shown in Figure 6.20. At the beginning, the mode of the
property is checked. In case of modes Overlap or Pipe the token immediately leaves
the sub-net via the ContinuePort. Otherwise, it is checked whether an older thread
has been evaluated that might influence the evaluation of this token. This is the
case if the match list contains an entry of status Match or NotMatch (which both
represent a match of the antecedent sequence) with an antecedent match prior to
and a consequent match later than the antecedent match of the current token. This
situation represents the fact that the current thread enabled the implication while
the consequent sequence of the older thread was still being evaluated.
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Figure 6.20: Match Filter - Property Evaluation

If there is no older thread then there is no concurrent thread evaluation and thus,
the token exits the sub-net via the ContinuePort. Otherwise the behavior depends
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on the property mode. In NoRestart mode, the new token has to be ignored. Thus,
its status is changed to Cancel and it leaves via the AbortPort. In ReportOnRestart
mode, an additional message is issued to inform about the restart attempt. In Restart
mode finally, the new token is valid, but the old evaluation thread has to be discarded.
This is achieved by changing the status of the old thread in the match list to Cancel.
The new token then leaves via the ContinuePort.

Consequent Evaluation

The evaluation of the consequent is depicted in Figure 6.21.
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Figure 6.21: Match Filter - Consequent Evaluation

The general structure is very similar to the evaluation of the antecedent. However,
three differences exist:
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1. Instead of using general or token-based data referring to the antecedent, the
corresponding consequent equivalents are used.

2. Since this is the last stage in the token evaluation, there is no need for two
separate exit ports. Thus, all tokens leave the sub-net via the ContinuePort.

3. The status references are changed:

� Match and NotMatch correspond to a match of the antecedent. On the
other hand, only Match represents a consequent match.

� While VacuousMatch represents a not matching antecedent, NotMatch cor-
responds to a not matching consequent.

Computation of Final Results

After the token has passed or bypassed the three evaluation sub-nets, its status is
stored in the match list for further token checks. Afterwards, the token passes a
transition that recreates the black input token. The colored token is now checked
again. Cancel tokens are now discarded, the same happens to tokens which are to be
ignored due to a restart token (see above). On the other hand, tokens with the status
VacuousMatch leave the match filter immediately, the same happens to tokens which
cannot be affected by a restart request anymore (if there is already an entry in the
match list with an antecedent match index later than the current consequent match
index, the relevant time window has already passed). If neither condition is fulfilled,
the token is delayed until one of them becomes true.

Single Sequence Properties

The match filter is also able to evaluate single sequence properties. In order to
produce correct behavior, it is assumed that the antecedent mode equals AnyMatch
and the property mode equals Overlap. The consequent mode is determined by the
mode parameter of the single sequence.

6.2.12 Mapping of Grammar Elements to Petri Nets

The composition of a given assertion from the various petri net components presented
above can easily be done by parsing the UAL+ grammar tree (all grammar rules listed
here can also be found in Appendix B).

The parser starts with an assertion directive (every directive results in a separate
petri net, independent from all others):
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directive = directive kind identifier "(" [ directive parameter ] ")"
"=" property instance ";" ;

Every assertion directive instantiates a property and additionally might specify a
reset expression within its parameter list:

property instance = identifier [ property mode list ]
param argument list ;

directive parameter = severity level
"," string
[ "," reset event expr ] ;

The reset event expression will be used later when instantiating the various delay
operators (see below).

First, a match filter (see Figure 6.18) and a token generator (see Figure 6.16) will
be created. The property instance contains a list of evaluation modes that will be
passed to the match filter as parameters.

Furthermore, the identifier used in the property instantiation refers to a unique
property specification:

property section = "property" identifier property interface
property declarations
property specification
"endproperty" ;

property specification = implication property
| single sequence property

Depending on its type the property instantiates either one sequence (single sequence
property) or two - antecedent and consequent - (implication property). In the latter
case an implication operator (see Figure 6.17) will be created.

sequence instance = identifier [ "[" sequence mode "]" ] param argument list ;

Again, the identifier used in the sequence instantiation refers to a unique sequence
specification:

sequence section = "sequence" identifier sequence interface
sequence declarations
sequence specification
"endsequence" ;

sequence specification = delay operator { delay operator } ";" ;

Every sequence consists of one or more delay operators:
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delay operator = "#" steps sensitivity "{" condition { action } "}" ;

In case of a delay range, a ranged delay operator (see Figure 6.15) is created.
Furthermore, every delay number of ”0” results in a creation of a zero-delay operator
(see Figure 6.12), while for every delay number of ”1” a single-delay operator (see
Figure 6.13) is created. Delay numbers greater than ”1” are split into an according
number of single delays and thus, result in N single-delay operators.

The outputs of every delay element is connected to the input of the following
element, while every ranged delay instantiates the various fixed delay operators at
the positions of the corresponding hierarchical places.

In case of single sequence properties, the output of the token generator is connected
to the input of the first delay operator of the single sequence, and vice versa. The
output of the last delay operator is connected to the input of the match filter.

In case of implication properties, the output of the token generator is connected
to the input of the first antecedent delay operator and vice versa. The output of the
last antecedent delay operator is connected to the input of the implication operator,
the output of the implication operator is connected to the input of the first conse-
quent delay operator, and finally, the output of the last consequent delay operator is
connected to the input of the match filter.

Now the only elements missing are the various event operators. The reset expression
mentioned above results in the instantiation of the corresponding event operators
within all delay operators.

If any of the three event expressions (positive, negative, and reset) is empty, the
corresponding component (see Figure 6.14) is created. In all other cases, the event
expression is constructed of the various available event operators (see Figures 6.3,
6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11).

In case of more complex event expressions, a sub-expression is connected at the
position of the corresponding hierarchical place of the instantiating expression.

Finally, all event expressions are instantiated within their corresponding delay op-
erators.

Figure 6.22 shows exemplarily the mapping of the following assertion:

assert TEST(ERROR,"Test failed!",e5) =

#1{e1|e2}{...} |-> #{1:2}{e3;e4}{...}
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Figure 6.22: Example for Assertion Mapping
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7 Assertion Transformation
Framework

This chapter describes the overall application framework for UAL+ assertion trans-
formation. Figure 7.1 gives an overview of the corresponding structure.

Original

UAL+

Assertion

Monitor

Assertion

Transformation

Description

Refinement

Generator

UAL

Bind File

Transformed

UAL+

Assertion

Monitor

UAL+

Assertion

Compiler

SystemC

Representation

of UAL+

Monitor

UAL+

Library

SystemC

DUT

SystemC

Compiler

Simulatable

Model

Assertion Transformation Framework

Figure 7.1: Assertion Refinement Framework

The refinement generator is responsible for transforming a UAL+ monitor file to
another abstraction level. The resulting file is then read in by the UAL+ assertion
compiler which produces a SystemC representation of the assertion. This represen-
tation makes use of the implementation of the various UAL+ operators which are
encapsulated in the UAL+ library. The assertion together with the required library

135



7 Assertion Transformation Framework

elements and the DUT itself are then compiled with a SystemC compiler in order to
produce a simulatable model.

The refinement generator was developed during this work, while both the UAL+
compiler and the UAL+ library had to be adapted and extended in order to support
the features required for assertion refinement.

These three components are presented in the following sections.

7.1 Refinement Generator

The refinement generator first uses the Python [54] Gnosis library to parse both a
UAL+ monitor file and a refinement file. Both are then converted into a parse tree
structure.

The parser works based on a Extended Backus-Naur-Form (EBNF) grammar (see
Appendix B) written in C++ which also had to be adopted to the new language
extensions.

During the parsing process the files are checked for syntactical and semantical
errors. The parse tree data structure keeps track of all declarations of sequences,
properties, verification directives, as well as of the dependencies between these com-
ponents.

Furthermore, all irrelevant information like keywords is either removed or translated
in corresponding sub tree structures.

A specialized Python API was created to access and manipulate the various ele-
ments of the tree.

Afterwards, the actual refinement is done by a Python program which executes
the transformation steps specified in the refinement file by directly transforming the
monitor parse tree using the parse tree API.

For each operation the refinement generator first identifies the location where it
has to be applied (e.g. a specific property or the negative sensitivity of the second
delay operator within the antecedent sequence) and then adds, modifies, or removes
nodes within the tree according to the refinement operation.

The generator also takes into account whether only one instance of a property or
sequence should be affected or all (see Section 5.3.6). If only one instance is to be
modified, the original declaration is copied and the modification is performed on the
copy.
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Similarly, if a property or sequence that is included from a library is the target
of a transformation, a local copy is created and - depending on whether one or all
instances should be affected - either the one corresponding reference or all references
are changed to the new local copy.

Finally, the modified tree is written out using the MAKO [55] template engine.
This template engine represents a flexible generation methodology by allowing to
mix static content with dynamic data (that means data obtained from the parse
tree) within a template.

MAKO offers conditional branches, loop constructs, access to data structures like
the parse trees, access to the complete Python functionality, and packaging of fre-
quently used template parts in so called sub templates. It is possible to pass parame-
ters to these sub templates which further increases their reuse potential. Additionally,
it is possible to use Python functions for often used calculation tasks.

The templates place the information stored in the transformed tree into a frame-
work of UAL+ keywords and syntax, basically reversing the reduction process that
happened during the parsing.

An example for a simple MAKO template is shown in Listing 7.1.

1 % for monitor in ap i . ge tMoni to r ( s e c t i o n ) :
2 % i f monitor != None :
3 monitor ${ a p i . g e t I d e n t i f i e r ( monitor ) }
4 % endif
5 % endfor

Listing 7.1: Example of MAKO template

The leading % in a line distinguishes between a MAKO command and a normal line
of text that should be printed. Using for and if commands it is possible to generate
several monitor declarations which all follow the same structure while the monitor
name is different.

Using a $ it is possible to refer to local variable objects like the monitor loop object
or to call functions or subtemplates that were defined previously.

A possible result of this generation process is shown in Listing 7.2.

1 monitor t imer checke r
2 monitor cpu t e s t
3 monitor f f t e xamp l e

Listing 7.2: Sample output of MAKO template
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The generator can be parameterized with several options that allow for a more
flexible way of dealing with problematic situations. It is possible for instance to
specify how the generator should deal with ambiguous situations. Details concerning
these ambiguity issues were discussed in Chapter 5.4.1.

7.2 UAL Library

The UAL+ library contains a SystemC implementation of all UAL+ operators pre-
sented in Chapter 6, including those that were developed during this work. Due to the
heavy influence of the tentative matching concept even most of the existing operators
had to be adapted.

7.2.1 Event Handler

The event handler is the central component of every UAL+ assertion. It is responsible
for gathering all event data from a design and / or the corresponding assertion itself
and then distributes these events to all delay operators that need to process it for
their triggering. Since every simulation may only contain one instance of the event
handler, it is implemented as a singleton object (see [56] for details).

The event handler does not distinguish between the various kinds of UAL+ events.
On the other hand, the different event kinds differ in their origin, behavior, and the
way they can be accessed. In order to overcome these discrepancies, all event kinds
are converted to special callback events by proxy modules that are included within
the design and capture signal changes as well as transactions.

Furthermore, the event handler holds a list specifying which event is required by
which delay operator. Whenever an event occurrs, it is distributed to only those
event operators that are sensitive to it.

Due to the introduction of triggers (and thus tentative events) and derived events,
the event handler had to be enhanced to take these extensions into account. For
this purpose an additional step is performed: All primary events are first distributed
to all corresponding trigger sequences in order to evaluate which additional derived
events occur. These derived events are then also propagated to all registered event
operators.

The event handler also continuously monitors the status of the various tentative
evaluation attempts. As soon as a tentative event is confirmed, the corresponding
entry in all token tentative lists is removed, converting the token to a non-tentative
one (unless it depends on other tentative events as well); all tokens assuming the
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tentative event to be false are removed. If the tentative event is detected as invalid,
validating and discarding of tokens happens just in the opposite way.

7.2.2 New Event Based Operators

In addition to the existing timer operator and the $delta_t function, corresponding
versions have been introduced which work on the basis of events instead of simulation
time. Since various instances of these event based operators might look for different
events, it is not sufficient to implement a global counter as in the case of the time
based versions. Instead, the UAL+ kernel has to provide one counter object per event
which is used in this way. In order to keep the overhead small, the information which
counters have to be implemented has to be passed to the kernel. This is done via the
classes generated by the UAL+ compiler.

7.2.3 Token Handling

Due to the handling of tentative information and the connected fact that antecedent
and consequent sequence within an implication property cannot be handled separately
anymore, the amount of data stored within the various tokens has increased. In order
to keep the resulting impact on performance as low as possible, the token handling
has been changed so that not the tokens themselves are passed through the various
operators, but instead only pointers to the tokens. Tokens are created and destroyed
as necessary and are stored at a centralized place.

7.2.4 Further Enhancements

In order to ensure that no delay operator triggers more than once per primary event,
an evaluate update mechanism is included. In this case, if a primary event is issued,
the corresponding derived events are computed and all of them are passed to the
assertion structure. The results of all delay operators are stored in temporary lists.
As soon as all events have been processed, the results are written back to the assertion
and the next primary event is processed.

In addition to the existing Boolean function last event( event) that indicates
whether the last occurred primary event equals ”event”, a second function is in-
troduced: has occurred() can only be used in combination with derived events but
otherwise works in the same way as last event().
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7.3 UAL Compiler

The UAL+ compiler has to generate a SystemC representation of the UAL+ asser-
tion. This means that all language elements have to be mapped on a specific SystemC
component - which is contained in the library. The compiler is responsible for building
up the necessary structures for sequences, properties, etc. by instantiating the cor-
responding library elements. Furthermore, the compiler uses an additional bind file
that specifies how the assertion monitor is connected to the DUT. Both the monitor
file and the bind file are checked for correct syntax and semantics.

Due to the fact that the UAL+ library had to be reworked quite extensively, the
existing generator was no longer usable. Instead of adapting the previous C++ based
generator, a new template based generator based on the MAKO template engine was
created.

In combination to adapting the compiler to the new library structure the various
new features introduced to the UAL+ language had to be supported as well.

One UAL+ monitor can instantiate an arbitrary number of properties which in turn
can instantiate one or two (in case of an implication property) sequences. Trigger
specifications result in additional properties and sequences.

Using MAKO’s support for hierarchical templates the generation process is struc-
tured and the assertion functionality is distributed to different output files: one Sys-
temC header file is created for each monitor, one for each property, and one for each
sequence.

� The monitor file implements all directives and trigger statements. It contains
one class that instantiates all properties used within the directives, all properties
and sequences used as triggers, and takes care of the connectivity between these
elements.

� Each property file implements two classes: the first one represents the actual
property and thus instantiates the one or two sequences used within the prop-
erty while the second one is responsible for passing local variables from the an-
tecedent to the consequent. Thus, the second class is only needed for implication
properties and only if information has to be passed between the corresponding
sequences.

� Each sequence file implements one class for the actual sequence and one class for
the handling of local variables. Since the Boolean expressions occurring as part
of the Boolean expression of the delay operator, of the constraint operator, of
the accumulator operator, or the timer / event timer operator are not mapped
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to petri net blocks (and thus UAL+ operators) but instead to basic SystemC
expressions, these are collected within four additional classes.

In order to structure the compiler further, those structures that are needed in vari-
ous contexts, like generating lists of include files, class declarations, class constructors,
or frequently used class functions have been placed into sub templates.

After parsing the monitor file, the compiler assembles the various monitor struc-
tures form library elements and connects them together in the specified way.

Note that the binding of monitors to designs has not been influenced by the UAL+
extensions and thus, the existing generator for the bind functionality has been reused.
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This chapter presents a detailed example applying the transformation process to a
given design. It focuses especially on the peculiarities of the various abstraction levels
and the corresponding influence on the transformation. Following that, an analysis of
the efficiency of the transformation process with regard to lines of code and execution
penalty is done. Finally, a performance analysis concerning several of the new features
introduced into UAL is done.

8.1 Transformation Example

The transformation process is explained using an Advanced High-performance Bus
(AHB) timer component, which is modeled on all but one of the abstraction levels
involved, combined with assertions on that abstraction level. Although creating a PV
design is not sensible due to the nature of the component, the PVT implementation
was combined with PV assertions.

8.1.1 Design Structure

The Design

The structure of the TL version of the AHB timer is shown in Figure 8.1. The design
implements 32 countdown timer components that can be used independently from
each other. It contains a TL specific transaction port1 shared by all timers, as well
as one interrupt output port, one enable register, and one counter register per timer.

A timer can be used by first setting the counter value of a specific timer and then
enabling the timer. Both are done via the transaction call WRITE that carries data
and address information. The address selects a specific enable or counter register
while the data value specifies either the counter value or information about enabling
or disabling the timer. The corresponding interrupt is issued counter value times
10 time steps after the enabling of a counter. The only legal way of reconfiguring a
running timer is by disabling it first.

1In the RTL model this transaction port is replaced by several signal ports.
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TIMER

...

...en_r_bank

cnt_r_bank

IR0

IR1

IR2

.

.

.

IR31

void WRITE(addr,data)

Figure 8.1: AHB Timer

Figure 8.2 shows the temporal behavior of one timer including its configuration.
The first call of WRITE sets the counter register of the timer, the second call ad-
dresses the timer’s enable register and sets its value to active. The interrupt is issued
after counter value times 10 time steps.

Master Timerset_cnt

enable

Interrupt

cnt * 10ns

Figure 8.2: Sequence of the Timer Interrupt Procedure

The PVT Assertion

The corresponding assertion (see Listing 8.1) specifies that after setting a counter
value and enabling a timer, either the interrupt is issued after the given time or the
timer is disabled before. Any external change of the counter value while the timer is
active causes the assertion to fire. The same happens if the interrupt is not issued in
time.
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8.1 Transformation Example

On all TL sublevels the transaction call to the timer module is detected by the
assertions via a proxy module that is inserted in between the timer module and any
possible master. This is shown in Figure 8.3. Listing 8.1 shows the sequences section
of the PVT assertion monitor.

TIMERTB PXY

.

.

.

IR0

IR1

MYTOP

void WRITE

(addr,data)

Figure 8.3: Transaction detection via Proxy Modules

1 sequence i r 1 a n t e ( transaction void WR(
2 sc uint<12>addr , sc uint<12>data ) ,
3 ref sc uint<12> cnt )
4 #1{WR’END@(WR.addr == 0) }{true , cnt = WR.data}
5 #1{WR’END@(WR.addr == 1) }{WR.data == 1} ;
6 endsequence
7 sequence i r 1 c on s ( transaction void WR(
8 sc uint<12>addr , sc uint<12>data ) ,
9 signal sc signal<bool> IR1 , ref sc uint<12> cnt )

10 #1{IR1 ’POS@( $delta t == ( cnt *10) ) |
11 WR’END@( ( ( WR.addr == 1) && (WR.data == 0) ) &&
12 ( ( $delta t >= 0) && ( $delta t <= ( cnt *10) ) ) ) ;
13 WR’START@((WR.addr == 0) &&
14 ( ( $delta t >= 0) && ( $delta t <= ( cnt *10) ) ) ) ,
15 timer ( ( cnt *10)+1)}{true } ;
16 endsequence

Listing 8.1: PVT Timer Assertion Monitor

The antecedent sequence checks for the end of a first write transaction that has to
write to the counter register of the first timer. The data parameter of the transaction
is stored in the local variable cnt. At the next step a second write transaction has to
occur that targets the enable register of the first timer and writes the value ”1” in it
in order to enable the counting.

The positive sensitivity of the consequent consists of two alternative conditions:

1. A positive edge of the first interrupt signal is detected with a temporal distance
to the enabling of exactly cnt times 10 time steps after the last triggering;
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this means the interrupt has occurred at exactly the right time (see line 10 in
Listing 8.1)

2. Another write transaction is completed that writes the value ”0” in the enable
register of the first timer; this means the timer has been disabled before it could
run out (see lines 11 and 12 in Listing 8.1)

Additionally, the consequent includes two conditions in its negative sensitivity:

1. A start of any write transaction to the counter register of the first timer before
the timer runs out which represents an illegal reconfiguration attempt of a
running timer (see lines 13 and 14 in Listing 8.1)

2. A timeout mechanism that causes the assertion to fire if the specified time for
the interrupt has expired (see line 15 in Listing 8.1)

Transformation File Basics

The various transformation files used in the examples use the language features in-
troduced in Chapter 5.3. Additionally to making use of various declarations (e.g., for
constants, ports), each transformation file uses one or several rules (see Section 5.3.3)
for handling the complex transformations between different abstraction levels, which
in turn consist of several basic transformation directives (see Section 5.3.5). For trans-
formation between RTL and the various TL sublevels transactors (see Section 5.3.4)
are required as well.

The transformation language supports the concept of removing frequently used
parts (especially declarations) from the transformation file and grouping them in
library files which are then imported in the transformation file (see Section 5.3.2).
In order to increase readability of the transformation files this feature has been used
for the examples presented here as well; all declarations, transactors, and rules have
been placed in several library files, each corresponding to a certain purpose. This
also eases reuse of existing rules as will be shown later.

The first library file (see Listing 8.2) declarations_lib.tll contains various dec-
larations that are required for the transformation process.

The constant CLOCK CYCLE is used in combination with CA models. The vari-
ous ports are needed, whenever the interface has to be changed between signal based
and transaction based; the signal port clk is also used in combination with CC mod-
els. Finally, the variable cnt is used for the transformation of PV assertions to other
abstraction levels.
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8.1 Transformation Example

1 l ibrary d e c l a r a t i o n l i b
2 declarations
3 ports
4 transaction void WRITE( sc uint<12> addr , sc uint<12> data ) ;
5 signal sc signal<bool> c l k ;
6 signal sc signal<bool> r s t ;
7 signal sc signal<bool> en ;
8 signal sc signal<bool> wr ;
9 signal sc signal<sc uint<12> > addr ;

10 signal sc signal<sc uint<12> > data ;
11 endports
12

13 constants
14 int CLOCK CYCLE = 10 ;
15 endconstants
16

17 variables
18 sc uint<12> cnt ;
19 endvariables
20 enddeclarations
21 endlibrary

Listing 8.2: Library File containing Declarations

The library transactor_lib.tll contains the necessary transactor for the conver-
sion between TL and RTL. It is shown later (see Listing 8.15) when it is used.

All conversion rules have been split up thematically into the libraries
timing_rule_lib.tll for all timing related transformations, reset_rule_lib.tll
for all transformation related to the addition or removal of a reset expression, and
misc_rule_lib.tll for all remaining rules. Excerpts from these libraries are shown
when needed later on.

8.1.2 Transformation Categories

Although during the application all abstraction levels have been transformed into all
other abstraction levels, several of these transformations repeat certain features. For
the transformation the abstraction levels can be grouped into three categories:

� PVT, CA, and CC only differ concerning the way timing is noted. The only
affected items within an assertion are timer operators and time constraints.
The only additional changes deal with adding or removing constants specifying
clock periods (CA) and clock signals (CC).

� PV models pose slightly bigger problems due to the complete lack of timing
information. On the one hand, adding time to an untimed assertion requires
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detailed information about where and which timing has to be added. On the
other hand, removing timing information when transforming an assertion to PV
might not be sufficient; if additional constructs (like local variables) refer to the
timing of the design, they have to be removed / changed as well.

� RTL designs show the biggest differences when compared to the remaining lev-
els. The notion of transactions is dropped in favor of signal interfaces. The
inclusion of reset information is only a minor issue here, though.

PV

RTL

CC

CA

PVT

Figure 8.4: Overview of the presented transformations

Figure 8.4 presents the examples for the transformation between these categories,
which will be explained in the following sections including a detailed discussion of the
features involved. The transformations denoted by the solid arrows will be covered
in Section 8.1.3, those with dashed arrows in Section 8.1.4, and those with dotted
arrows in Section 8.1.5. Not all possible transformations are covered in examples,
since some of these transformations consist of features discussed before or can even
be completely expressed by combining several of the presented transformations.

8.1.3 Transformation between PVT, CA, and CC

As mentioned above, a transformation between these TL sublevels only affects the way
timing is modeled. Thus, the corresponding rules have a relatively simple structure.
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8.1 Transformation Example

Refinement

Listing 8.3 shows the refinement file for a transformation from PVT to CA.

1 refinement t imer pvt2ca
2 import d e c l a r a t i o n l i b ;
3 import t im i n g r u l e l i b ;
4

5 apply
6 t iming pvt2ca<t ime r checke r pv t .T IMER IR1 . i r 1 p rop . i r 1 cons .

* . *>(CLOCK CYCLE) ;
7 endapply
8 endrefinement

Listing 8.3: Transformation from PVT to CA

This transformation consists of only the rule timing pvt2ca. The rule gets param-
eterized by both a reference to the constant declaration CLOCK CYCLE and the
location the rule should be applied at. The location in the example specifies all de-
lay operators (the second ’* ’) within the positive and negative trigger expressions
(the first ’* ’) of the sequence ir1 cons within the property ir1 prop of the assertion
TIMER IR1 within the monitor timer checker pvt. The implementation of this rule
can be seen in Listing 8.4.

1 rule t iming pvt2ca<l o ca t i on >(declaration const )
2 add.constant<l o ca t i on >
3 {
4 additive const ;
5 }
6 modi fy . t ime cons t ra in t <l o ca t i on >
7 {
8 ref ines c on s t . v a l u e ( ) ;
9 modification const.name ( ) ;

10 }
11 modi fy .t imer<l o ca t i on >
12 {
13 ref ines c on s t . v a l u e ( ) ;
14 modification const.name ( ) ;
15 }
16 endrule

Listing 8.4: Changing from Absolute Timing to Cyclic Timing (from
timing rule lib.tll)

The first directive add.constant adds a constant declaration at the given loca-
tion. The declaration is named const within the rule and refers to the declaration
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1 sequence i r 1 a n t e ( transaction void WR(
2 sc uint<12>addr , sc uint<12>data ) ,
3 ref sc uint<12> cnt )
4 #1{WR’END@(WR.addr == 0) }{true , cnt = WR.data}
5 #1{WR’END@(WR.addr == 1) }{WR.data == 1} ;
6 endsequence
7 sequence i r 1 c on s ( transaction void WR(
8 sc uint<12>addr , sc uint<12>data ) ,
9 signal sc signal<bool> IR1 , ref sc uint<12> cnt )

10 #1{IR1 ’POS@( $delta t == ( cnt *CLOCK CYCLE) ) |
11 WR’END@( ( ( WR.addr == 1) && (WR.data == 0) ) &&
12 ( ( $delta t >= 0) && ( $delta t <= ( cnt *CLOCK CYCLE) ) ) ) ;
13 WR’START@((WR.addr == 0) &&
14 ( ( $delta t >= 0) && ( $delta t <= ( cnt *CLOCK CYCLE) ) ) ) ,
15 timer ( ( cnt *CLOCK CYCLE)+1)}{true } ;
16 endsequence

Listing 8.5: CA Timer Assertion Monitor

CLOCK CYCLE which is passed to the rule as a parameter as explained above.
While the location points to both sensitivity lists of all consequent delay operators,
this directive expects only a monitor. Thus, the remaining part of the location is
ignored and the constant is added to the constants section of the monitor.

The second and third directive are similar in nature. They modify all time con-
straints and timer operators within the consequent sequence by replacing the value of
the constant CLOCK CYCLE (referenced by const.value()) by its name. Since the
value of this constant is ”10” (see Listing 8.2), all absolute time values of 10 time
steps are replaced by one occurrence of CLOCK CYCLE, in other words one clock
cycle. The resulting UAL file is shown in Listing 8.5.

The refinement file for other transformations from one of these levels to another
one looks almost exactly like Listing 8.3, just with another name for the rule and
potentially other parameters. Thus, these other files are not further discussed.

Abstraction

Listing 8.6 shows the same monitor modeled as CC, while Listing 8.7 depicts the rule
for transforming this CC assertion to PVT.

The directive remove.parameter removes the parameter clock, which references the
clk signal (not shown in the listing), from the interface of the specified sequence.
Since this parameter has to be passed down through the hierarchy, this means that
the signal has to be removed from the interfaces of property, verification directive,
and monitor as well (as long as it is not used by other sequences, properties, etc.).
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8.1 Transformation Example

1 sequence i r 1 a n t e ( transaction void WR(
2 sc uint<12>addr , sc uint<12>data ) ,
3 ref sc uint<12> cnt )
4 #1{WR’END@(WR.addr == 0) }{true , cnt = WR.data}
5 #1{WR’END@(WR.addr == 1) }{WR.data == 1} ;
6 endsequence
7 sequence i r 1 c on s ( transaction void WR(
8 sc uint<12>addr , sc uint<12>data ) ,
9 signal sc signal<bool> IR1 , signal sc signal<bool> c lk ,

10 ref sc uint<12> cnt )
11 #1{IR1 ’POS@( $delta t [ c lk ’POS] == ( cnt * 1) ) |
12 WR’END@( ( ( WR.addr == 1) && (WR.data == 0) ) &&
13 ( ( $delta t [ c lk ’POS] >= 0) && ( $delta t <= ( cnt * 1) ) ) ) ;
14 WR’START@((WR.addr == 0) &&
15 ( ( $delta t [ c lk ’POS] >= 0) && ( $delta t [ c lk ’POS] <= ( cnt *

1) ) ) ) ,
16 timer [ c lk ’POS ] ( ( cnt * 1)+1)}{true } ;
17 endsequence

Listing 8.6: CC Timer Assertion Monitor

The other two directives are responsible for transforming the time constraints and
timer operators. In this case the value ”1” is replaced by the value ”10” and addition-
ally the term ”[clk’POS]” is removed from all time constraints and timer operators.
As a result both counted occurrences of positive clock edges before and now consider
time in multitudes of ten time steps for triggering or Boolean results.

1 rule t iming cc2pvt<l o ca t i on >(declaration c lock , name c l o ck even t
)

2 remove.parameter<l o ca t i on >
3 {
4 removal c l o ck ;
5 }
6 modi fy . t ime cons t ra in t <l o ca t i on >
7 {
8 ref ines [ c l o ck even t ] ”1” ;
9 modification ”10” ;

10 }
11 modi fy .t imer<l o ca t i on >
12 {
13 ref ines [ c l o ck even t ] ”1” ;
14 modification ”10” ;
15 }
16 endrule

Listing 8.7: Changing from Clocked Timing to Absolute Timing (from
timing rule lib.tll)

151



8 Application

8.1.4 Transformation between PV and other TL sublevels

Abstraction

In case of a transformation from PVT, CA, or CC to PV, all timing information
has to be removed from a given assertion. Listing 8.8 shows a sample refinement file
transforming from CA to PV.

1 refinement t imer ca2pv
2 import d e c l a r a t i o n l i b ;
3 import t im i n g r u l e l i b ;
4 import m i s c r u l e l i b ;
5

6 apply
7 remove var iab le<t imer checker ca .TIMER IR1. i r1 prop >(cnt ) ;
8 remove var iab le as s ignment<

t ime r che cke r ca .T IMER IR1 . i r 1 p rop . i r 1 an t e . *>( cnt ) ;
9 t iming ca2pv<t ime r che cke r ca .T IMER IR1 . i r 1 p rop . i r 1 con s . * .

*>(CLOCK CYCLE) ;
10 endapply
11 endrefinement

Listing 8.8: Transformation from CA to PV

In this particular example, it is also necessary to remove the local variable used for
checking the timing condition.

The first two transformation rules called in the apply section can be found in
Listing 8.9.

1 rule remove var iab le<l o ca t i on >(declaration var )
2 remove .var iab le<l o ca t i on >
3 {
4 removal var ;
5 }
6 r emove .pa s s r e f e r ence <l o c a t i o n .*>
7 {
8 removal var ;
9 }

10 endrule
11 rule remove var iab le as s ignment<l o ca t i on >(declaration var )
12 remove .var iab l e as s ignment<l o ca t i on >
13 {
14 removal var.name ( ) ;
15 }
16 endrule

Listing 8.9: Removing Local Variable References (from misc rule lib.tll)

152



8.1 Transformation Example

The location passed to remove variable specifies the implication property of the
assertion. The rule consists of two parts. The first removes the declaration of a
local variable from the specified location, the second removes the local variables from
the parameter list of the interfaces of the instantiated sequences and also from the
argument list of the sequence instantiations. This is done by adding a wildcard to
the location before passing it to the remove.pass reference directive.

The third rule concerns the change of the assertion timing. The corresponding rule
can be seen in Listing 8.10.

1 rule t iming ca2pv<l o ca t i on >(declaration const )
2 remove.constant<l o ca t i on >
3 {
4 removal const ;
5 }
6 r emove . t ime cons t ra in t <l o ca t i on >
7 remove.t imer<l o ca t i on >
8 endrule

Listing 8.10: Changing from Cyclic Timing to Untimed (from timing rule lib.tll)

This rule removes all time constraints and timer operators from a given location,
in this case all sensitivity lists of all delay operators within the consequent sequence.
Additionally, the declaration of the constant CLOCK CYCLE is removed, since it is
only needed on CA. The resulting UAL monitor file can be seen in Listing 8.11

1 sequence i r 1 a n t e ( transaction void WR(
2 sc uint<12>addr , sc uint<12>data ) )
3 #1{WR’END@(WR.addr == 0) }{true}
4 #1{WR’END@(WR.addr == 1) }{WR.data == 1} ;
5 endsequence
6 sequence i r 1 c on s ( transaction void WR(
7 sc uint<12>addr , sc uint<12>data ) ,
8 signal sc signal<bool> IR1 )
9 #1{IR1 ’POS | WR’END@((WR.addr == 1) && (WR.data == 0) ) ;

10 WR’START@(WR.addr == 0) }{true } ;
11 endsequence

Listing 8.11: PV Timer Assertion Monitor

Refinement

When reversing this process, the situation gets a bit more complicated. The trans-
formation has to specify where timing information has to be added to the assertion.
Similarly, different time constraints might have to be added to the various places
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within the assertion. As a result the directives for adding timing information have
to allow the exact specification of where and what information should be added to
the assertion. An example for the transformation from PV to PVT can be seen in
Listing 8.12.

1 rule t iming pv2pvt<l o ca t i on >(name var name )
2 add . t ime cons t ra in t <l o c a t i o n .*>
3 {
4 ref ines ”IR1 ’POS” ;
5 additive ”$delta t==(”,var name ,”*10 ) ; ” ;
6 }
7 {
8 ref ines ”WR’END” ;
9 additive ”( $delta t >= 0) && ( $delta t <= (” , var name ,”*10 ) )

; ” ;
10 }
11 add.t imer<l o c a t i o n . n e g a t i v e >
12 {
13 additive ”(” , var name ,”*10 ) +1;” ;
14 }
15 endrule

Listing 8.12: Changing from Untimed to Absolute Timing (from timing rule lib.tll)

First, this rule adds time constraints to two specific expressions. The first half of the
add.time constraint directive looks for a positive edge of the IR1 signal and attaches
a time constraint of exactly 10 time steps to every occurrence of this expression. The
second half adds another constraint to all occurrences of the end of a write transaction.
Finally, the second directive adds a timer operator to the negative sensitivity list.
Since no refines keyword is used with this directive, the timer operator is just added
to the whole expression.

Additionally, a local variable declaration and a corresponding assignment have to
be added (see Listing 8.13).

8.1.5 Transformation between RTL and timed TL sublevels

The transformation from RTL includes not only a change of the timing scheme (except
for the transformation to CC), but also modifies the module interface by changing
from a transaction based variant to a signal based one. Listing 8.14 shows the corre-
sponding transformation file.

In addition to the timing change that happens similarly to the examples shown in
the previous sections, a transactor is used for the interface transformation. Further-
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1 rule add var iab l e<l o ca t i on >(declaration var )
2 add .va r i ab l e <l o ca t i on >
3 {
4 additive var ;
5 }
6 add .pa s s r e f e r en c e <l o c a t i o n .*>
7 {
8 additive var ;
9 }

10 endrule
11 rule add var iab l e as s ignment<l o ca t i on >(name var name , value

var va lue )
12 add .var i ab l e a s s i gnment <l o ca t i on >
13 {
14 additive var name ,”=” , var va lue ;
15 }
16 endrule

Listing 8.13: Adding Local Variable References (from misc rule lib.tll)

1 refinement t ime r pv t 2 r t l
2 import d e c l a r a t i o n l i b ;
3 import t r a n s a c t o r l i b ;
4 import t im i n g r u l e l i b ;
5 import r e s e t r u l e l i b ;
6

7 apply
8 t imer wr i t e <t imer checker pvt .TIMER IR1. i r1 prop . *>[down ] (

WRITE, wr i t e t r an s , c lk , r s t , en , wr , addr , data ) ;
9 t iming pvt2cc<t ime r checke r pv t .T IMER IR1 . i r 1 p rop . i r 1 cons .

*>( c lk , ” c lk ’POS”) ;
10 add rese t<timer checker pvt.TIMER IR1 >(” r s t ’NEG”) ;
11 endapply
12 endrefinement

Listing 8.14: Transformation from PVT to RTL

more, a reset statement is included in the assertion. Listing 8.15 shows the code of
the assertion transactor.

The assertion transactor instanciation then maps the various declaration objects
to the transactor interface while the keyword ”down” specifies which direction the
transformation should take. The transactor then proceeds to insert the given sequence
into the sequences section of the generated monitor file, to declare a corresponding
trigger, and finally to replace all references to events of the translated transaction by
derived events bound to the trigger. Furthermore, the various transaction parameters
are mapped to the signals mentioned in the sensitivity list.
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1 l ibrary t r a n s a c t o r l i b
2 transactors
3 transactor t imer wr i t e <l o ca t i on >(transaction void WRITE(

sc uint<12> addr , sc uint<12> data ) ,
4 trigger wr i t e t r i g g e r ,
5 signal sc signal<bool> c lk ,
6 signal sc signal<bool> r s t ,
7 signal sc signal<bool> en ,
8 signal sc signal<bool> wr ,
9 signal sc signal<sc uint<12> > addr ,

10 signal sc signal<sc uint<12> > data )
11 map
12 WRITE.addr => addr ;
13 WRITE.data => data ;
14 endmap
15 sequence wr i t e t r i g g e r [ FirstMatch ] ( signal sc signal<bool>

c lk , signal sc signal<bool> r s t , signal sc signal<bool>
en , signal sc signal<bool> wr)

16 #1{c lk ’POS; r s t ’NEG}{en && wr} #1{c lk ’POS; r s t ’NEG}{true } ;
17 endsequence
18 endtransactor
19 endtransactors
20 endlibrary

Listing 8.15: Library File containing Transactor

Finally, the last rule adds a reset expression to the assertion. The corresponding
implementation is shown in Listing 8.16 while Listing 8.17 shows the RTL implemen-
tation of the assertion.

1 rule add rese t<l o ca t i on >(name r e s e t e v en t )
2 add . r e s e t <l o ca t i on >
3 {
4 additive r e s e t e v en t ;
5 }
6 endrule

Listing 8.16: Adding a Reset Statement to an Assertion (from reset rule lib.tll)

8.1.6 Transformation between RTL and PV

As was shown in the previous sections, the transformation of the assertion interface
and the change of the corresponding timing are independent from each other. Since
there is no dependency between these two transformation steps, every transformation
between RTL and PV can be regarded as a combination of a RTL-CC and a CC-
PV transformation. The former takes care of the interface transformation without
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1 sequence wr i t e t r an s ( signal sc signal<bool> c lk ,
2 signal sc signal<bool> r s t , signal sc signal<bool> en ,
3 signal sc signal<bool> wr)
4 #1{c lk ’POS; r s t ’NEG}{en && wr} #1{c lk ’POS; r s t ’NEG}{true } ;
5 endsequence
6 sequence i r 1 a n t e ( trigger WR,
7 signal sc signal<sc uint<12> > addr ,
8 signal sc signal<sc uint<12> > data ,
9 ref sc uint<12> cnt )

10 #1{WR’MATCH@( addr == 0) }{true , cnt = data}
11 #1{WR’MATCH@( addr == 1) }{data == 1} ;
12 endsequence
13 sequence i r 1 c on s ( trigger WR,
14 signal sc signal<sc uint<12> > addr ,
15 signal sc signal<sc uint<12> > data ,
16 signal sc signal<bool> IR1 , signal sc signal<bool> c lk ,
17 ref sc uint<12> cnt )
18 #1{IR1 ’POS@( $delta t [ c lk ’POS] == ( cnt * 1) ) |
19 WR’MATCH@( ( ( addr == 1) && ( data == 0) ) &&
20 ( ( $delta t [ c lk ’POS] >= 0) && ( $delta t [ c lk ’POS] <= ( cnt *

1) ) ) ) ;
21 WR’START@(( addr == 0) &&
22 ( ( $delta t [ c lk ’POS] >= 0) && ( $delta t [ c lk ’POS] <= ( cnt *

1) ) ) ) ,
23 timer [ c lk ’POS ] ( ( cnt * 1)+1)}{true } ;
24 endsequence

Listing 8.17: RTL Timer Assertion Monitor

influencing the timing (RTL and CC are both based on clocks), while the second does
not touch the interface, but changes the timing.

8.1.7 Summary

It can be summarized that the two main topics for refinement - interfaces and timing
- can be treated independently from each other:

The transformation between RTL signal interfaces and TL transaction interfaces
can be easily handled using transactors specified in the refinement file. The only
required information is the signal sequence representing the transaction on the one
hand, and the mapping of signals and transaction parameters on the other hand.

Timing transformation between PVT, CA, and CC does not require much effort.
The parameters of time constraints and timer operators have to be adjusted according
to simple modification rules, CA designs require an additional constant that specifies
the clock period, while CC models need a clock signal. Transformation to PV is also
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quite easy, since the removal of all timing information is sufficient2. Transformation
from PV to one of the other levels requires more effort, since the exact nature of the
timing behavior has to be specified. The complexity does not increase overly much,
nevertheless the reuse potential of these transformation rules is limited due to their
specific nature.

Adding and removing reset information is very easy and can be considered inde-
pendent from both categories mentioned above.

The only area not covered by these categories is assertion specific information, like
the declaration of local variables for instance. Since this information is so specific,
these parts of an assertion are probably not reusable at all in most cases.

One advantage of this step wise approach as presented here is that the various
transformation steps can be combined to cover other transformations as well. For
instance, if the transformation rules for PV to PVT and those for PVT to CA already
exist, then both sets of transformations can be applied after each other to cover the
transformation from PV to CA. This allows easy reuse of existing transformations
and avoids the necessity to specify transformation rules from each level to every other
one.

8.1.8 Transformation Analysis

It has to be noted that the generated assertions are almost equivalent to hand written
assertions as long as only the levels PVT, CA, and CC are included, since the assertion
is only slightly modified. When refining towards PV this statement also holds true.
Refining from PV to another level however requires more sophisticated transformation
rules. In some cases these complicated rules might lead to less than optimal results.

The performance of the transformation itself on the other hand has no impact on
the simulation speed, since the assertion refinement happens before and independent
from the simulation.

While it is possible to compare the number of lines of code between the refinement
file on the one hand and the generated UAL file on the other, this comparison leads
to very different results, depending on the circumstances.

When using a refinement file for transforming exactly one assertion exactly once,
the lines of code in the refinement file might very well exceed those in the generated
assertion, especially if a transformation from PV to another level or to / from RTL
is done. This effect becomes even more noticable when the original assertion file is
small.

2Sometimes, additional information specific to the assertion in question has to be removed as well.

158



8.2 Simulation Performance Analysis

If, on the other hand, the assertion file is bigger, this effect tends to get reversed at
some point. Similarly, writing flexible transformation descriptions and reusing them
for the transformation of several assertions also shows a gain in efficiency.

A big gain in efficiency can also be achieved by using several transformation rules
in order to generate all other abstraction levels from one given assertion. This gain
is caused by the reuse of declarations, transactors, and even several rules that are
applied at several different levels.

It has to be noted that an efficient transformation with regards to performance
and lines of code is only secondary. The primary goal of assertion refinement lies in
the verification of models written on different levels of abstraction using consistent
assertions. Thus, using transformed assertions instead of hand written ones employs
additional consistency checks and thus improves quality of the assertions. Addition-
ally, this automated refinement process saves time, since the corresponding assertions
have to be specified only on one level and can be transformed to the other ones.

8.2 Simulation Performance Analysis

Other designs - for instance a CPU subsystem - have been tested in combination with
this assertion refinement approach as well. Due to the higher complexity of these
designs, and thus also of the assertions, presenting the corresponding code examples
would exceed the scope of this work, though.

However, several general observations could be made based on these tests as to how
the various features introduced in this work impact the simulation performance.

This section will present an overview of the general performance drawback of as-
sertions, followed by a closer examination of the concrete drawback of the features
evaluate-update, tentative matching, and trigger sequences.

8.2.1 Assertion Drawback

The designs tested with this assertion approach were also used to determine the
impact of assertions on the overall simulation performance. For this purpose, every
design was simulated both without any assertions and with a typical set of assertions
attached to the designs.

The designs tested in this context include a systolic array for hardware sorting for
both up to 16 and up to 32 data words, a CPU subsystem modeled on TLM and
RTL, an FFT algorithm, and a switch device modeled on TLM and as a TLM / RTL
mix.

159



8 Application

The simulation was performed using an automated regression suite which repeated
each simulation several times and calculated an average result.

Design Assertion
Coverage

Time wo As-
sertions [s]

Time w As-
sertions [s]

Drawback
Factor

Sort (16) 398193 5.8 15.9 2.7
Sort (32) 724181 16.9 45.5 2.7
CPU (TLM) 508000 0.3 12.9 43
CPU (RTL) 508000 11.4 25.9 2.3
FFT 767918 18.9 80.2 3.2
Switch (TLM) 359991 25.2 57.2 2.7
Switch (mixed) 755970 52.7 262.2 5.0

Table 8.1: Assertion Performance Impact

The assertion drawback is shown in Table 8.1. As can be seen, first the general
impact of adding assertions to a design in terms of simulation time was measured.
The coverage information describes the sum of all assertion threads which produced
a result during the simulation. Thus, this can be used as a rough estimation about
the assertion activity.

For most examples the drawback factor ranges between 2 and 3. In case of the
FFT algorithm and the mixed level switch application (which are both algorithms
handling a high number of data words) the slightly higher drawback factor correlates
with a higher coverage as well.

The big drawback in case of the TLM CPU in contrast to the RTL CPU (while the
coverage is identical) can be explained with the difference in simulation performance
of the model itself. The absolute drawback due to the assertions is almost identical
in both cases.

8.2.2 Impact of Evaluate-Update and Tentive Mechanisms

Two of the mechanisms introduced in this work were the evaluate-update mechanism,
which is needed for the correct handling and distinction of primary and derived events,
and the tentative matching concept. Since both have quite extensive impact on the
implementation of the assertion engine, several dedicated tests for checking the impact
of these features were done.

The RTL CPU was chosen as the basis for this test, since the RTL abstraction
allows a natural application of the tentative concepts while the Central Processing
Unit (CPU) system is complex enough to allow for more and non-trivial assertions.
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Six different version were compared for this test:

1. The CPU system without any assertions

2. The assertions are directly triggered by primary events

3. The primary event sequences are transformed to trigger sequences; the asser-
tions are triggered by the corresponding derived events (non-tentative)

4. Same as above, but instead of non-tentative events, tentative events with a life
time3 of one delay step are used

5. Same as above, but with a life time of two delay steps

6. Same as above, but with a life time of four delay steps

Table 8.2 shows the corresponding results.

Design Assertion
Coverage

Simulation
Time [s]

No Assertions n/a 0.7
No EvalUpdate 4096 1.1
No Tentative 4096 2.4
Tentative (1) 4096 100.1
Tentative (2) 4096 134.8
Tentative (4) 4096 195.8

Table 8.2: Impact of Evaluate-Update and Tentative Matching

As can be seen, the impact of the assertions without evaluate-update shows a
performance drawback of less than factor 2. The drawback of assertions with evaluate-
update are within the range of the results shown in the previous section.

As soon as tentative events are used, the drawback becomes much more pronounced.
However, the test results seem to indicate a fixed initial drawback combined with a
dynamic drawback that increases directly proportionally to the life time of the used
tentative events.

Due to the complexity of the assertions used within the test example, the drawback
in a typical design might be lower. In general it can be said that the shorter the trigger
sequence in question, the lower the impact on the simulation performance.

3The life time of a tentative event denotes the number of delay steps of the corresponding trigger
sequence and thus the number of delays between the emission of the tentative token and its
confirmation.
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8.2.3 Impact of Trigger Mechanism

Since the tests presented in the last section did not show a big difference concerning
the drawbacks of the evaluate-update mechanism, another test was performed, geared
to get more concrete results in this regard. For this test the CPU system from
before was reused, in combination with a complete set of assertions for every single
instruction supported by the CPU. Each assertion checks the complete instruction
execution (which covers several clock cycles on RTL and is partially pipelined). All
in all the complexity of the complete set of assertions exceeds the complexity of the
design by far.

In this context the following design variants were compared:

1. The TLM CPU system without any assertions

2. The TLM CPU combined with the corresponding assertions

3. The corresponding RTL implementation of the CPU system without assertions

4. The RTL CPU with manually written assertions (which do not use trigger
sequences, and thus also no evaluate-update)

5. The RTL CPU with assertions that have been refined from the TLM versions
and thus use trigger sequences and evaluate-update

The corresponding results are presented in table 8.3.

Design Assertion
Coverage

Simulation
Time [s]

TLM (no assertions) n/a 0.3
TLM (assertions) 917504 79.7
RTL (no assertions) n/a 11.4
RTL (manual assertions) 917504 4728
RTL (refined assertions) 917504 2728

Table 8.3: Impact of Trigger Mechanism

As can be seen, the performance drawback for both TLM and RTL assertions is
quite big due to the high complexity of the assertions being used. Another result
is the obvious advantage of the trigger mechanism (which uses the evaluate-update
mechanism) over the version without this feature.

This seems to contradict the results of the previous test where the drawback of
assertions using the evaluate-update mechanism was about three times as big as that
of assertions without this feature.
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On second thought however, it becomes clear why this test shows the opposite
result. The assertion refinement process detects whether several assertions use the
same trigger sequence and instatiates only one version of this sequence. Only this
one sequence will then have to be evaluated during the simulation and produce eval-
uation threads. If, on the other hand, all assertions merge the trigger sequence delay
conditions with their own, then all operators and all logical computations have to be
duplicated many times with each duplicate producing its own evaluation threads.

Additionally, if trigger sequences are used, the main sequences are triggered less
often in most cases. As a result the computation effort per assertion decreases (as-
suming that assertions share their trigger sequences).

8.2.4 Results

As shown in the various tests above, the performance impact of most assertions is
within an acceptable range. The use of tentative matching has a higher impact
on the simulation performance, but on the other hand even this impact might be
acceptable for smaller designs, and additionally this feature allows checking of TLM-
like correlations also for RTL designs which was not directly possible before. Thus,
there is no other solution which this approach could be compared against.

Finally, it was shown that refined assertions might result in a big performance
gain when compared to manually written RTL assertions. Thus, using the refinement
process not only allows to specify assertions for a given design only once (and addi-
tionally on a higher level of abstraction that is easier to understand), but also leads
to better simulation performance in case of complex systems.
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9 Conclusion and Outlook

This thesis presented a novel approach for freely transforming assertions between
several abstraction levels, including register transfer level and the various transac-
tion levels above. After gathering the necessary requirements for the transformation
process, the existing assertion language UAL that is capable of modeling multi level
assertions was enhanced by additional functionality especially targeted at supporting
the transformation process. A refinement language was introduced that allows the
specification of transformation rules in order to refine an existing UAL assertion mon-
itor from one level of abstraction to another and the reuse of existing transformation
rules for other assertions. A formal model for the enhanced assertion language in the
shape of a high-level colored petri net was introduced in order to detail the underlying
semantics. The existing framework of the UAL language was extended to support
both the new functionality included in the language and the direct transformation
of existing assertions by using the new transformation descriptions. A detailed ap-
plication example was given in order to show how to categorize several classes of
transformations. Using this information, transformation rules can be written specifi-
cally for certain reocurring tasks, which eases reuse of these rules.

Parts of the results of this work were already prepublished at several conferences,
namely the following papers [27], [29], [30], [28], [31], [26], [57], [32], [58], [59], [60].

Of these publications, the paper ”Requirements and Concepts for Transaction Level
Assertion Refinement” [60] was awarded the ”Best Paper Award Bronze Medal”

Students who contributed to this work are listed as co-authors of the publications
mentioned above.

The scientific contribution of this work can be summarized as follows:

� A declarative language for the specification of assertion transformations covering
all TL sublevels as well as RTL

� Definition of the concept of structure preservation for additional consistency
between original and generated assertion

� Definition of an RTL representation of transactions useable for assertion refine-
ment
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� Introduction of the concept of derived events for the handling of RTL transac-
tions

� Definition of the tentative matching concept that allows the correct handling of
RTL transactions while handling the uncertainty of transaction occurrence

� Specification of the correct interaction between tentative matching and existing
assertion evaluation modes

� Definition of a method for refining constrained TL transactions to RTL and of
several possible interpretations of the resulting RTL transactions

� Definition of the implicit timing concept that allows the transformation of un-
timed assertions to timed assertions and vice versa

� Specification of transactor notations that allow the easy transformation between
transaction based and signal based interfaces

� Categorization of transformation tasks that allows a flexible modeling of trans-
formation descriptions between the covered abstraction levels that can be easily
reused for different assertions

� A formal representation of assertion behavior including tentative matching
based on high level colored petri nets

The concepts were validated based on a framework consisting of the following com-
ponents:

� Enhanced UAL Library written in SystemC

� Enhanced UAL Parser written in C++ (used for the following two parts)

� Enhanced UAL Compiler written in Mako and Python

� UAL Refinement Generator written in Mako and Python

The validation was done using several designs, including the timer component of
the LEON2 processor, a complete CPU subsystem, and an FFT algorithm.

The current work is able to transform given UAL assertions to every other (sup-
ported) abstraction level. However, the binding between assertion monitor and design
is not transformed. Further work has to provide a way of automatically adapting the
assertion binding as well, if necessary based on additional specifications about the
design.
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In addition to this, further work includes the following aspects:

1. It has been shown that several parts of the transformation process follow very
regular patterns. Examples for this are the timing transformation from one
timed TL sublevel to another. By providing one or several library files that
capture the required functionality (if necessary making use of parameterization
for the transformation rules), a complete package of standard transformation
tasks could be provided which only requires slight adaptation to the specific
properties of the assertion in question.

2. The current transformation approach is not yet capable of correctly handling
drastic changes in the structure of the design monitored by the assertions. Ex-
amples for these changes include the use of a pipelined or superscalar CPU
architecture on RTL while the TL model uses a sequential evaluation. Ad-
ditional research is necessary of how to take these changes into account and
incorporate this into the assertion transformation.

3. This transformation approach only covers the various TL sublevels and RTL.
It might be sensible to include higher and / or lower abstraction levels as well
(specification level and gate level respectively). Higher level assertions would be
able to enhance the verification process even more, since errors can be detected
even earlier, while gate level assertions can be included in the synthesized chip
itself later, which allows the check of assertion violations even after the prod-
uct has been delivered to the customer. Including additional abstraction levels
would require additional research though, since these levels include very differ-
ent requirements for an assertion language and, as a consequence, also for the
transformation process.

4. At the beginning of this thesis no assertion language provided all features re-
quired for a complete transformation approach. Even the language this work
is based on needed several feature extensions. On the other hand, there are
ongoing attempts to enhance established RTL assertion languages towards TL
support. Since this process is not complete yet, it might be sensible to influence
the development of these languages so that they include the necessary features
for assertion transformation as well. In this case, it is possible to also apply the
approach presented in this work to these other assertion languages.
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TL

Transaction Level

TLM

Transaction Level Model

UAL

Universal Assertion Language

UVM

Unified Verification Methodology

VCD

Value Change Dump

VHDL

Very High Speed Integrated Circuit Hardware Description Language

VMM

Verification Methodology Manual

VP

Virtual Prototype

XML

EXtensible Markup Language

XSLT

EXtensible Stylesheet Language Transformations
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Glossary

Assertion Based Verification

Dynamic or formal checking of design properties

Bus Functional Model

A component that translates between an abstract model of a communication
protocol and its implementation model

Electronic System Level

A term which describes the industry wide activities for modeling and analyzing
systems at a higher level of abstraction while taking both HW and SW into
account

Hardware

A silicon implementation

Linear Temporal Logic

A logic which enables the specification of temporal relations between Boolean
propositions

Register Transfer Level

Synthesizable, pin and cycle accurate hardware description

Software

A program which is executed on a HW platform

System-on-a-Chip

A system which is fully integrated onto a single chip, with one to four cores,
a high-speed bus, a peripheral bus, and several dedicated HW blocks like a
display controller, a USB interface, etc.
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Glossary

SystemC

A class library on top of C++ which supports HDL concepts for modeling
concurrency and communication

SystemVerilog

HDVL based on and extending the Verilog HDL which includes design features,
testbench features, and assertion features

Transactor

A component that translates between an abstract model of a communication
protocol and its implementation model (see BFM)

VHDL

The most common hardware description language in European semi-conductor
industry

Virtual Prototype

A fully virtual executable model of a System-on-a-Chip (SoC)
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A List of Requirements for Assertion
Transformation

This appendix provides a short summary of the requirements discussed in Chapter 3.
If necessary, a short explanation is given below.

R 1 : Independence of design behavior from assertions

R 2 : Independence of assertion behavior from unrelated design changes
No global event sensitivity

R 3 : Independence of assertion behavior from other assertions
No global event sensitivity

R 4 : Assertion evaluation during simulation

R 5 : Providing of different kinds of coverage data
Supported coverage information:

� Vacuous Success: Antecedent sequence not matched

� Real Success: Antecedent sequence and consequence sequence both matched

� Success: Sum of Vacuous Success and Real Success

� Failure: Antecedent sequence matched, consequent sequence not matched

R 6 : Support of multiple abstraction levels
Support of models written on PV, PVT, CA, CC, and RTL

R 7 : Support of abstraction level mix
Support of mixed level models with parts modeled on the abstraction levels listed in
R 6
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A List of Requirements for Assertion Transformation

R 8 : Single assertion language for original and transformed assertion

R 9 : Ability to detect transactions

R 10 : Ability to link to transaction return values and arguments

R 11 : Ability to link to design signals

R 12 : Support of a transaction reprensentation on RTL

R 13 : Support of synchronization based on events

R 14 : Support of synchronization based on simulation time

R 15 : Support of synchronization based on clock signals

R 16 : Ability to detect transaction relations
Supported relations:

� Consecutive: Second transaction starts after the end of the first one

� Overlapped: Second transaction starts before and ends after the end of the first
one

� Inclusion: Second transaction starts and ends before the end of the first one

R 17 : Ability to specify a partial order on events

R 18 : Ability to specify a strict partial order on events
Strict partial order is used to detect missing event occurrences

R 19 : Ability to specify temporal relations based on simulation time

R 20 : Ability to capture of dynamic temporal behavior
Supported dynamic behavior:

� Dynamic time delays

� Dynamic amount of transaction calls
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� Dynamic amount of event occurrences

R 21 : Ability to specify temporal relations based on clock signals

R 22 : Ability to detect pipelining behavior

R 23 : Assertion evaluation of SystemC designs

R 24 : Support of all SystemC and C++ base types

R 25 : Compatibility to OSCI SystemC reference simulation kernel

R 26 : Support of OSCI TLM standard

R 27 : Support of seamless access of assertions to modules and their
internals

R 28 : Support of all event types available in SystemC
Events in question:

� Signal change events: Issued by a signal after a successful signal assignment

� Explicit events: Issued by the programmer (either with a timed delay, at the
next delta cycle, or immediately)

� Implicit events: Issued by a suspending process to schedule its own wake up
(either with a timed delay or at the beginning of the next delta cycle)

R 29 : Support of blocking and non-blocking transactions

R 30 : Support of more granular time resolution than delta-time

R 31 : Support of immediate notification of occurring transactions
Notification has to happen before any of the variables or signals in the design change
their value

R 32 : Ability to link to design state variables

R 33 : Ability to detect assignments of design variables
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A List of Requirements for Assertion Transformation

R 34 : Support of flexible sampling of design states
Support of sampling with the occurrence of any transaction, any event (including clock
events), or at any simulation time

R 35 : Ability to transform between lower and higher levels of abstrac-
tion

R 36 : Support of multiple abstraction levels
Transformation to and from abstraction levels listed in R 6

R 37 : Support of abstraction level mix
Transformation to and from mixed level assertions with parts modeled on the abstrac-
tion levels listed in R 6

R 38 : Consistency of assertion behavior before and after refinement

R 39 : Ability to transform between TL transactions and RTL signal
protocols

R 40 : Ability to transform between TL events and RTL signal protocols

R 41 : Ability to transform between TL transaction arguments and re-
turn values on one side and RTL signals on the other side

R 42 : Ability to transform between absolute timing, cyclic timing, and
clocked timing

R 43 : Support of adding / removing timing information

R 44 : Support of adding / removing reset behavior

R 45 : Ability to handle ambiguous transformations
Supported Solutions:

� Warning: Issue a warning message that target assertion might produce wrong
results

� Strict transformation: Target assertion avoids false positves at the cost of false
negatives
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� Safe transformation: Target assertion avoids false negatives at the cost of false
positives

R 46 : Support of complex transformation rules
Rules can be comprised of many basic transformation directives and even other rules

R 47 : Support of parameterizable transformation rules

R 48 : Support of transformation libraries
Transformation rules can be encapsulated in transformation libraries
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B Language Grammar

B.1 Refinement Grammar

refinement file = refinement definition { refinement definition } ;
(B.1)

refinement definition = "refinement" identifier
[ import section ]
[ declarations section ]
[ transactors section ]
[ rules section ]
apply section
"endrefinement" ;

(B.2)

library file = library definition { library definition } ;
(B.3)

library definition = "library" identifier
[ declarations section ]
[ sequences section ]
[ properties section ]
[ transactors section ]
[ rules section ]
"endlibrary" ;

(B.4)

import section = import declaration { import declaration } ;
(B.5)

import declaration = "import" identifier ";" ;
(B.6)

declarations section = "declarations"
[ ports section ]
[ constants section ]
[ variables section ]
"enddeclarations" ;

(B.7)

variables section = "variables"
localvar declaration { localvar declaration }
"endvariables" ;

(B.8)
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B Language Grammar

transactors section = "transactors"
transactor section { transactor section }
"endtransactors" ;

(B.9)
transactor section = "transactor" identifier transactor interface

[ map section ]
sequence section
"endtransactor" ;

(B.10)
transactor interface = "<" identifier ">" formal argument list ;

(B.11)
map section = "map"

map declaration { map declaration }
"endmap" ;

(B.12)
map declaration = identifier "." ( identifier | "RET" ) "=>" identifier ";" ;

(B.13)
transactor instance = identifier "<" target locations list ">"

"[" refinement mode "]"
param argument list ";" ;

(B.14)
rules section = "rules"

rule section { rule section }
"endrules" ;

(B.15)
rule section = "rule" identifier rule interface

rule specification
"endrule" ;

(B.16)
rule interface = "<" identifier ">"

"(" [ rule parameters ] ")" ;
(B.17)

rule parameters = rule parameter { "," rule parameter } ;
(B.18)

rule parameter = rule parameter type identifier ;
(B.19)

rule parameter type = "declaration"
| "name"
| "value"
| "type"
| "expression" ;

(B.20)
apply section = "apply"

rule specification
"endapply" ;

(B.21)
rule specification = rule item { rule item } ;

(B.22)
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B.1 Refinement Grammar

rule item = directive instance
| transactor instance
| rule instance ;

(B.23)
rule instance = identifier "<" target locations list ">"

"(" [ rule arguments ] ")" ";" ;
(B.24)

rule arguments = rule argument { "," rule argument } ;
(B.25)

rule argument = string
| expression
| event expression
| ( identifier "." declaration access )
| value ;

(B.26)
directive instance = add directive

| modify directive
| remove directive ;

(B.27)
target locations list = target locations { "," target locations } ;

(B.28)
target locations = identifier

{ "." ( identifier
| number
| "*" ) } ;

(B.29)
add directive = "add" "." directive target

"<" target locations list ">"
add specification { add specification } ;

(B.30)
add specification = "{" [ refines ] additives "}" ;

(B.31)
additives = additive { additive } ;

(B.32)
additive = "additive" [ position marker ] directive string ";" ;

(B.33)
refines = "refines" [ "[" event operand "]" ] directive string

{ "," position marker "," directive string } ";" ;
(B.34)

modify directive = "modify" "." directive target
"<" target locations list ">"
modify specification { modify specification } ;

(B.35)
modify specification = "{" refines modification "}" ;

(B.36)
modification = "modification" [ "[" event operand "]" ]

directive string ";" ;
(B.37)
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B Language Grammar

remove directive = "remove" "." directive target
"<" target locations list ">"
{ remove specification } ;

(B.38)
remove specification = "{" removal { removal } "}" ;

(B.39)
removal = "removal" directive string ";" ;

(B.40)
directive string = ( string | ( identifier [ "." declaration access ] ) )

{ "," ( string | ( identifier [ "." declaration access ] ) ) } ;
(B.41)

position marker = "(" identifier ")" ;
(B.42)

directive target = "boolean expression"
| "constant"
| "parameter"
| "pass copy"
| "pass reference"
| "reset"
| "sensitivity"
| "time constraint"
| "timer"
| "variable"
| "variable assignment" ;

(B.43)
declaration access = "name()"

| "type()"
| "value()" ;

(B.44)
refinement mode = "up"

| "down" ;
(B.45)

B.2 Basic Monitor Grammar

monitor = "monitor" identifier
ports section
[ constants section ]
sequences section
properties section
verification section
"endmonitor" ;

(B.46)
ports section = "ports"

port declaration { port declaration }
"endports" ;

(B.47)
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B.2 Basic Monitor Grammar

port declaration = kind type identifier [ "[" number "]" ]
[ transaction parameters ] ";" ;

(B.48)
constants section = "constants"

constant declaration { constant declaration }
"endconstants" ;

(B.49)
constant declaration = type identifier "=" value ";" ;

(B.50)
sequences section = "sequences"

sequence section { sequence section }
"endsequences" ;

(B.51)
properties section = "properties"

property section { property section }
"endproperties" ;

(B.52)
verification section = "verification"

directive { directive }
"endverification" ;

(B.53)
directive = directive kind identifier "(" [ directive parameter ] ")"

"=" property instance ";" ;
(B.54)

directive kind = "assert"
| "cover"
| "assert cover"
| "assume" ;

(B.55)
directive parameter = severity level

"," string
[ "," reset event expr ] ;

(B.56)
severity level = "INFO"

| "WARNING"
| "ERROR"
| "FAILURE" ;

(B.57)
reset event expr = trigger expression ;

(B.58)
property section = "property" identifier property interface

property declarations
property specification
"endproperty" ;

(B.59)
property interface = [ property mode list ] formal argument list ;

(B.60)
property declarations = { localvar declaration } ;

(B.61)
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B Language Grammar

property specification = implication property
| single sequence property

(B.62)
implication property = sequence instance "|->" sequence instance ";" ;

(B.63)
single sequence property = sequence instance ";" ;

(B.64)
property instance = identifier [ property mode list ]

param argument list ;
(B.65)

property mode list = "[" ( ( [ sequence mode "," ] property mode )
| sequence mode ) "]" ;

(B.66)
property mode = "Restart"

| "NoRestart"
| "ReportOnRestart"
| "Overlap"
| "Pipe"
| "PipeOrdered"
| "Cover" ;

(B.67)
sequence section = "sequence" identifier sequence interface

sequence declarations
sequence specification
"endsequence" ;

(B.68)
sequence interface = [ "[" sequence mode "]" ] formal argument list ;

(B.69)
sequence declarations = { localvar declaration } ;

(B.70)
sequence specification = delay operator { delay operator } ";" ;

(B.71)
delay operator = "#" steps sensitivity "{" condition { action } "}" ;

(B.72)
steps = zero step

| multi step
| range step ;

(B.73)
zero step = "0"

| ( "{" "0" "}" ) ;
(B.74)

multi step = non zero number
| ( "{" non zero number "}" ) ;

(B.75)
range step = "{" number ":" number "}" ;

(B.76)
sensitivity = "{" [ pos sensitivity ]

[ ";" neg sensitivity ] "}" ;
(B.77)
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B.2 Basic Monitor Grammar

condition = boolean expression
[ "?" boolean expression ":" boolean expression ] ;

(B.78)
action = "," identifier "=" localvar expression ;

(B.79)
boolean expression = expression ;

(B.80)
accumulator expression = expression ;

(B.81)
timer expression = expression ;

(B.82)
localvar expression = expression ;

(B.83)
sequence instance = identifier [ "[" sequence mode "]" ] param argument list ;

(B.84)
sequence mode = "AnyMatch"

| "FirstMatch"
| "FirstMatchPipe"
| "FirstMatchPipeOrdered" ;

(B.85)
operand = lastevent

| value
| ( identifier [ "." identifier ] [ "[" array index "]" ] )
| ( identifier [ "." "RET" ] ) ;

(B.86)
factor = operand

| ( "(" expression ")" )
| ( unary operator factor ) ;

(B.87)
term = factor { arith operator factor } ;

(B.88)
expression = term { boolean operator term } ;

(B.89)
pos sensitivity = trigger expression ;

(B.90)
neg sensitivity = trigger expression ;

(B.91)
trigger expression = ( event expression [ "," trigger timer ] )

| trigger timer ;
(B.92)

trigger timer = "timer(" timer expression ")" ;
(B.93)

event operand = identifier [ "[" array index "]" ] [ "’" event kind ] ;
(B.94)

event constraint = "@(" boolean expression ")" ;
(B.95)

event accumulator = "%(" accumulator expression ")" ;
(B.96)
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B Language Grammar

unary event expr = event accumulator
| event constraint ;

(B.97)
event factor = ( event operand [ unary event expr ] )

| ( "(" event expression ")" [ unary event expr ] ) ;
(B.98)

event term = event factor { "&" event factor } ;
(B.99)

event expression = event term { "|" event term } ;
(B.100)

lastevent = "$l event(" event operand ")" ;
(B.101)

arith operator = "&"
| "|"
| "+"
| "-"
| "/"
| "%"
| "*" ;

(B.102)
boolean operator = "&&"

| "||"
| "<="
| ">="
| "!="
| "=="
| "<"
| ">" ;

(B.103)
unary operator = "!"

| "-"
| "~" ;

(B.104)
formal argument list = "(" [ formal argument decl ]

{ "," formal argument decl } ")" ;
(B.105)

formal argument decl = [ "ref" ] [ kind ] [ type ] identifier
[ transaction parameters ] ;

(B.106)
localvar declaration = type identifier ";" ;

(B.107)
param argument list = "(" [ parameter argument ]

{ "," parameter argument } ")" ;
(B.108)

parameter argument = identifier [ ( "’" event kind ) | ( "." identifier ) ] ;
(B.109)

transaction parameters = "(" type identifier
{ "," type identifier } ")" ;

(B.110)
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B.3 Changes/Enhancements of Monitor Grammar

kind = "state"
| "event"
| "signal"
| "transaction" ;

(B.111)

B.3 Changes/Enhancements of Monitor Grammar

monitor = "monitor" identifier
[ import section ]
[ ports section ]
[ constants section ]
[ triggers section ]
[ sequences section ]
[ properties section ]
verification section
"endmonitor" ;

(B.112)
triggers section = "triggers"

trigger declaration { trigger declaration }
"endtriggers" ;

(B.113)
trigger declaration = "trigger" identifier "=" trigger kind ";" ;

(B.114)
trigger kind = sequence trigger

| property trigger ;
(B.115)

sequence trigger = "sequence" sequence instance ;
(B.116)

property trigger = "property" property instance ;
(B.117)

trigger timer = "timer" [ "[" event operand "]" ]
"(" timer expression ")" ;

(B.118)
event kind = "START"

| "END"
| "POS"
| "NEG"
| "CH"
| "ATTEMPT"
| "MATCH"
| "NOTMATCH"
| "SUCCESS"
| "FAIL" ;

(B.119)
action = "," ( ( identifier "=" localvar expression ) | ual action ) ;

(B.120)
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B Language Grammar

ual action = "$confirm" ;
(B.121)

ual value = "$time"
| "$thread id"
| "$sthread id"
| ( "$delta t" [ "[" event operand "]" ] ) ;

(B.122)
kind = "state"

| "event"
| "signal"
| "transaction"
| "trigger" ;

(B.123)

B.4 Common Grammar

string = """ string characters """ ;
(B.124)

filename = ( non digit | digit | "-" | "." )
{ non digit | digit | "-" | "." } ;

(B.125)
event kind = "START"

| "END"
| "POS"
| "NEG"
| "CH" ;

(B.126)
type = object type [ template ] ;

(B.127)
template = "<" ( ( object type [ template ] ) | value )

{ "," ( ( object type [ template ] ) | value ) } ">" ;
(B.128)

object type = cpp type
| sc type
| ual type ;

(B.129)
ual type = "callback" ;

(B.130)
cpp type = int type

| "double"
| ( "long" "double" )
| "float"
| "bool"
| "void" ;

(B.131)
timeunit definition = "timeunit" "=" time number time unit ;

(B.132)

196



B.4 Common Grammar

int type = [ sign type ] cpp integer ;
(B.133)

cpp integer = ( "long" "int" )
| ( "long" "long" "int" )
| ( "long" "long" )
| "long"
| ( "short" "int" )
| "short"
| "int" ;

(B.134)
sign type = "signed"

| "unsigned" ;
(B.135)

sc type = "sc signal"
| "sc int"
| "sc uint"
| "sc event"
| "sc event queue"
| "sc time"
| "sc bit"
| "sc bv" ;

(B.136)
value = integer value

| real value
| ( "’" bit value "’" )
| ( """ bv value """ )
| boolean value
| ual value
| ( "(" array value ")" ) ;

(B.137)
array value = ( integer value

| real value
| ( "’" bit value "’" )
| ( """ bv value """ )
| boolean value
| ual value )
{ "," ( integer value
| real value
| ( "’" bit value "’" )
| ( """ bv value """ )
| ual value
| boolean value ) } ;

(B.138)
ual value = "$time"

| "$thread id"
| "$sthread id"
| "$delta t" ;

(B.139)
integer value = [ "-" ] number ;

(B.140)
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B Language Grammar

real value = [ "-" ] number "." number ;
(B.141)

bv value = bit value { bit value } ;
(B.142)

bit value = "1"
| "0" ;

(B.143)
boolean value = "true"

| "false" ;
(B.144)

time number = "100"
| "10"
| "1" ;

(B.145)
time unit = "s"

| "ms"
| "us"
| "ns"
| "ps"
| "fs" ;

(B.146)
array index = ( identifier [ "." identifier ] )

| number ;
(B.147)

number = "0"
| non zero number ;

(B.148)
non zero number = non zero digit { digit } ;

(B.149)
identifier = non digit { digit | non digit } ;

(B.150)
string characters = { digit

| non digit
| special character } ;

(B.151)
digit = "0"

| non zero digit ;
(B.152)

non zero digit = "1"
| "2"
| "3"
| "4"
| "5"
| "6"
| "7"
| "8"
| "9" ;

(B.153)
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B.4 Common Grammar

non digit = " "
| letter ;

(B.154)
letter = uppercase letter

| lowercase letter ;
(B.155)

uppercase letter = "A" | "B" | "C" | "D" | "E" | "F" | "G"
| "H" | "I" | "J" | "K" | "L" | "M" | "N"
| "O" | "P" | "Q" | "R" | "S" | "T" | "U"
| "V" | "W" | "X" | "Y" | "Z" ;

(B.156)
lowercase letter = "a" | "b" | "c" | "d" | "e" | "f" | "g"

| "h" | "i" | "j" | "k" | "l" | "m" | "n"
| "o" | "p" | "q" | "r" | "s" | "t" | "u"
| "v" | "w" | "x" | "y" | "z" ;

(B.157)
special character = "-" | "/"

| "+" | "*" | "<"
| ">" | "=" | "$"
| "!" | "^" | "~"
| "{" | "}" | "["
| "]" | "(" | ")"
| "?" | "." | "’"
| "|" | "&" | ","
| ";" | ":" | "%" ;

(B.158)
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