—O
O
O
O

SAT-based Finite Model Generation
for Higher-Order Logic

Tjark Weber

Lehrstuhl fiir Software & Systems Engineering
Institut fiir Informatik
Technische Universitat Miinchen

Lehrstuhl fiir Software & Systems Engineering
Institut fur Informatik
Technische Universitat Miinchen

SAT-based Finite Model Generation
for Higher-Order Logic

Tjark Weber

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitdt Miinchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. F. J. Esparza Estaun
Priifer der Dissertation: 1. Univ.-Prof. T. Nipkow, Ph. D.

2. Univ.-Prof. Dr. H. Veith, Technische Universitit Darmstadt

Die Dissertation wurde am 30. April 2008 bei der Technischen Universitdt Miinchen eingereicht
und durch die Fakultéit fiir Informatik am 30. September 2008 angenommen.

Kurzfassung

Diese Arbeit prisentiert zwei Erweiterungen des Theorembeweisers Isabelle/HOL, einem auf
Logik hoherer Stufe basierenden System.

Der Hauptbeitrag ist ein Modellgenerator fiir hoherstufige Logik, der seine Eingabeformel in
Aussagenlogik iibersetzt, so dass ein herkdmmlicher SAT-Solver fiir die eigentliche Modellsuche
verwendet werden kann. Die Korrektheit der Ubersetzung wird gezeigt. Der Modellgenerator ist
in das Isabelle-System integriert worden, unterstiitzt verschiedene definitorische Mechanismen,
wie sie in Isabelle/HOL zur Verfiigung stehen, und ist auf mehrere Fallstudien angewandt
worden.

Dariiber hinaus sind SAT-Solver beweisgenerierend mit Isabelle integriert worden: Aussagen-
logische Tautologien kénnen von einem SAT-Solver bewiesen werden, und der von dem Solver
gefundene Resolutionsbeweis wird von Isabelle verifiziert. Eine giinstige Repréisentation des
Problems erlaubt die Verifikation von Beweisen mit mehreren Millionen Resolutionsschritten.

ii

Abstract

This thesis presents two extensions to the theorem prover Isabelle/HOL, a logical framework
based on higher-order logic.

The main contribution is a model generator for higher-order logic that proceeds by translating
the input formula to propositional logic, so that a standard SAT solver can be employed for
the actual model search. The translation is proved correct. The model generator has been
integrated with the Isabelle system, extended to support some of the definitional mechanisms
provided by Isabelle/HOL, and applied to various case studies.

Moreover, SAT solvers have been integrated with Isabelle in a proof-producing fashion: propo-
sitional tautologies can be proved by a SAT solver, and the resolution proof found by the solver
is verified by Isabelle. An adequate representation of the problem allows to verify proofs with
millions of resolution steps.

iii

iv

Acknowledgements

I would like to thank Tobias Nipkow, my supervisor, for his invaluable support, advice, and
patience. The current and former members of his research group have contributed to a fruitful
work environment: Clemens Ballarin, Gertrud Bauer, Stefan Berghofer, Amine Chaieb, Florian
Haftmann, Gerwin Klein, Farhad Mehta, Steven Obua, Norbert Schirmer, Sebastian Skalberg,
Martin Strecker, Markus Wenzel, and Martin Wildmoser. I am particularly indebted to Lars
Ebert and Marco Helmers for proof-reading my thesis, to Michael Fortleff for providing shelter,
and to Nora for distracting me. I thank Helmut Veith for acting as a referee.

My thanks also go to Helmut Schwichtenberg, speaker of the “Graduiertenkolleg Logik in der
Informatik”, which provided both financial and intellectual support, and to the other members
of the Graduiertenkolleg—in particular to Andreas Abel, Klaus Aehlig, Steffen Jost, and Ralph
Matthes for inspiring discussions and more.

Many other people have influenced this thesis in one way or another. Among them are Reinhold
Letz, Gernot Stenz, Jan Jiirjens, and Manfred Broy from Technische Universitat Miinchen,
Martin Hofmann from Ludwig-Maximilians-Universitdt Miinchen, Hasan Amjad and Larry
Paulson from the University of Cambridge, Sharad Malik and Zhaohui Fu from Princeton Uni-
versity, Pascal Fontaine, Stephan Merz, and Alwen Tiu from INRIA Lorraine, John Harrison
from Intel Corporation, John Matthews from Galois, Inc., David Aspinall from the Univer-
sity of Edinburgh, Annabelle McIver from Macquarie University, and Moshe Vardi from Rice
University.

Finally T would like to thank everyone who has played a part in making the past years in
Munich a pleasant and successful time for me. Friends and family have been a steady source
of encouragement.

vi

Contents

[2.2.3 Satistiability|

[2.3 Translation to Propositional Logic|

[2.3.1 Propositional Logic|. o

[2.3.2 Interpretation of Types|

[2.3.3 Interpretation of Terms|

2.3.4 Examples|

[2.4.1 Finding a Satistying Assignment|

[2.4.2 Type

Environments and Type Models|

[2.4.3 The Algorithm| o o

P44 Building the HOL Modell . . . o o v oo e e

vii

DD W Ny = -

o oo I N

11
14
15
15
16
22
40
41
41
42
43
45
45

47

viii

3.2 Optimizations|

13.3 Isabelle’s Meta-Logic|

13.4 Type and Constant Definitions, Overloading|

BA1

Type Definitions|

[3.4.2 Constant Definitions and Overloading|

13.4.3 Definite Description and Hilbert’s Choice)

[3.5 Axiomatic Type Classes|

13.6 Datatypes and Recursive Functions|

B6.1

Non-Recursive Datatypes|

13.6.2 Recursive Datatypes|

)

Implementation in Isabelle/HOL|

|4.4.2 Translation to Propositional Logic|

CONTENTS

CONTENTS

6.1 Summary]|

X

CONTENTS

All men by nature desire to know.
Aristotle, 350 B.C.

Chapter 1

Introduction

1.1 Motivation

Interactive theorem proving is about identifying false conjectures almost as much as it is about
finding proofs for theorems. False conjectures may occur for a number of reasons. They can be
caused by a trivial typographical error in a formalization, but also by a possibly subtle flaw in
the design of a complex system. During interactive proof, false conjectures may be produced
by proof strategies that can potentially render a goal unprovable, e.g. by dropping an essential
premise.

False conjectures can be seen as intermediate stages of a validation. A true conjecture is often
obtained from a sequence of false conjectures and their disproofs. Once identified, it is usually
clear how a false conjecture needs to be fixed. Determining that a conjecture is false can
however be a time-consuming process. Interactive theorem provers have been enhanced with
numerous automatic proof procedures for various application domains over the past years, but
failure of an automatic proof attempt is far from sufficient to conclude that a statement is false.
It may just be that an additional lemma needs to be proved, or that an induction hypothesis
needs to be generalized. The user typically gets little useful information about these reasons,
and it may take hours (sometimes days even) of failed proof attempts before he realizes that
the conjecture he is trying to prove was false to begin with. In such cases an automatic tool
that can refute non-theorems could be highly useful.

One particularly illuminative way to identify a false conjecture is by providing a counterexam-
ple. More specifically, when the conjecture is a logical formula, a (counter-)example is given
by a (counter-)model. A finite model generator is an automatic tool that attempts to find a
finite model which satisfies (or, equivalently, refutes) a given formula. Finite model genera-
tion is an instance of the constraint satisfaction problem, with—apart from the generation of
counterexamples—numerous applications in artificial intelligence [92], operations research [34],
and finite mathematics [102), [175].

2 CHAPTER 1. INTRODUCTION

This thesis presents (in Chapters [2| and [3]) a finite model generator for higher-order logic. A
translation to propositional logic is employed and proved correct, so that a standard SAT
solver can be used to search for a satisfying model. Such a model constitutes a counterexample
to a false conjecture, which can be displayed to the user together with a suitable diagnostic
message. This thesis is among the first to consider finite model generation in the context of
interactive theorem proving; see Section for a discussion of related work.

Interactive theorem provers can benefit from efficient SAT solvers in a second way. Many
problems that occur in hardware or software verification can be encoded in propositional logic.
The performance of an interactive theorem prover on propositional formulae can therefore
be of great practical significance, and the use of SAT solvers for model generation naturally
raises the question if they can be used for finding proofs as well. In Chapter [5| we give a
positive answer by considering proof-generating SAT solvers, which output either a satisfying
assignment for a propositional formula, or a resolution-style proof of unsatisfiability. Here
the main challenge is to provide an efficient solution within the LCF-style framework that is
underlying Isabelle [I34], our theorem prover of choice. This framework ensures soundness of
the prover by requiring that theorems are generated via a fixed set of simple functions only,
which correspond to the inference rules of the prover’s logic.

The next section ([1.2)) presents the contributions of this thesis. Section discusses related
work, and Section [1.4] gives some facts about the Isabelle system that are worth knowing.
Section [1.5| contains a brief overview of the remaining chapters.

1.2 Contributions

The primary contribution of this thesis is a finite model generator for higher-order logic, inte-
grated with the Isabelle system.

e This thesis presents in detail a translation from higher-order logic to propositional logic
such that the resulting propositional formula is satisfiable if and only if the HOL formula
has a model of a given finite size. A proof of the translation’s correctness is given.

e Based on the above translation, a finite model generator for higher-order logic has been
implemented in Standard ML [I15] and tightly integrated with Isabelle. The model gen-
erator supports datatypes, recursive functions, type classes, records, and other features
of Isabelle/HOL [125].

e The model generator has been applied to several case studies which, despite the dis-
couraging theoretical complexity of the underlying algorithm, demonstrate its practical
utility. For one of these case studies, an abstract model of probabilistic programs was
developed that is susceptible to counterexample search via finite model generation.

The second major contribution is an LCF-style [61] integration of state-of-the-art SAT solvers
with Isabelle/HOL. Propositional tautologies (or instances thereof) are proved by the SAT
solver, and the resolution proof found by the solver is verified by Isabelle.

e The proof found by the SAT solver is translated into the inference rules provided by
Isabelle’s kernel. This is, to our knowledge, the first LCF-style integration of highly
efficient SAT solvers with an interactive theorem prover.

1.3. RELATED WORK 3

e The SAT solver approach dramatically outperforms the automatic procedures that were
previously available for propositional logic in Isabelle/HOL. It allows many formulae
that were previously out of the scope of built-in tactics to be proved—or refuted—
automatically, often within seconds.

e A highly optimized implementation is presented that allows proof reconstruction for
propositional logic to scale quite well even to large SAT problems and proofs with mil-
lions of resolution steps. Our optimization techniques are applicable to other LCF-style
theorem provers apart from Isabelle.

e A prototype implementation for persistent proofs is discussed. Proof objects are stored
on disk and re-imported into the theorem prover later. This makes the verification of
proof scripts that rely on external tools (such as a SAT solver, or a first-order prover)
possible on systems where either the external tool or the proof object is available.

Chapter [6] contains a more detailed discussion of the contributions.

1.3 Related Work

The model generator presented in this thesis was originally inspired by the Alloy Analyzer [82],
which is developed by the Software Design Group (headed by Daniel Jackson) at MIT. In
contrast to the work presented here however, the Alloy Analyzer is based on first-order logic,
uses its own input language (incidentally called Alloy), and—unlike the Isabelle system—has
no support for theorem proving.

Various other finite model generators exist, although not many for higher-order logic. SAT
solvers, which are still a very active research area (resulting in substantial performance im-
provements over the past years, see e.g. [I78]), can be seen as model generators for propositional
logic. Finite model generators for first-order logic are typically classified into MACE-style gen-
erators (named after McCune’s tool MACE [103}, [104]), which use a translation to propositional
logic, and into SEM-style generators (named after Zhang’s and Zhang’s tool SEM [177]), which
perform the model search directly on a set of first-order clauses. Paradox [41] and Kodkod [159]
(the model generator that is used in the most recent version of the Alloy Analyzer) are MACE-
style generators, while FINDER [149] and FMSET [21] are SEM-style generators, to name only
a few. The model generator presented in this thesis can be classified as a MACE-style generator
(albeit for higher-order logic).

Most existing model generators are stand-alone tools that are not in any way integrated
with theorem provers. McCune’s automated theorem prover Otter [105] and its successor
Prover9 [106] are among the few systems that search for a proof and a countermodel. Both
Otter and Prover9 are first-order logic provers; they employ the MACE generator for model
search. Based on Otter and MACE, Colton and Pease have developed the TM system [43]
for repairing non-theorems, which automatically alters false first-order conjectures to prov-
able statements that are (in a certain sense) related to the conjecture. Earlier work that
argues for an integration of first-order finite model generation and automated theorem proving
includes [I50], which considers a combination of Otter and FINDER. More recently, the Para-
dox model generator has been augmented by an automated first-order theorem prover called

4 CHAPTER 1. INTRODUCTION

Equinox [39]. We observe that theorem proving and model generation are increasingly seen as
complementary activities.

Kimba [92], by Konrad, is a model generator for a linguistically motivated fragment of higher-
order logic, but with a slightly special syntax and semantics in order to avoid performance
issues. MONA [89] implements an automaton-based decision procedure for the weak monadic
second-order theory of one successor (WS1S) that is able to provide counterexamples for un-
provable formulae. MONA has been integrated with an earlier version of Isabelle as a trusted
oracle [17]. In [12], an abstraction from first-order logic to monadic second order logic is
proposed that enables MONA to identify false first-order conjectures. Model checkers, e.g.
SPIN [72] or UPPAAL [19], can typically provide counterexamples (in the form of execution
traces) for unprovable temporal logic formulae, where the model however is fixed.

Many other techniques exist to identify false conjectures. Tableau calculi are among the most
popular proof procedures for first-order and modal logics [66]. They frequently allow a counter-
model to be obtained immediately from a failed proof attempt. There are connections between
finite model generation and testing: Kurshid and Marinov use model generation to obtain test
cases for Java programs [88]. On the other hand, Berghofer has adapted QuickCheck [40], a
tool for random testing of Haskell programs, for Isabelle [24]. The Isabelle quickcheck tool
instantiates free variables in a conjecture with random integer values. If the resulting ground
term evaluates to false, a counterexample is found. Support for functions has been added
to quickcheck only recently however, and input formulae must belong to an executable frag-
ment of higher-order logic. Brucker and Wolff use Isabelle/HOL to generate test cases for
specification-based unit tests [29] B0]. Steel et al. use a method called proof by consistency to
find counterexamples to inductive conjectures [152], with an emphasis on security protocols.
[90] contains a survey of techniques for the generation of infinite models.

Perhaps most closely related to the integration of proof-producing SAT solvers is John Har-
rison’s LCF-style integration of Stalmarck’s algorithm and BDDs into HOL Light and Hol90
respectively [68] 69]. Harrison found that doing BDD operations inside HOL performed about
100 times worse (after several optimizations) than a C implementation.

Further afield, the integration of automated first-order provers with HOL provers has been
explored by Joe Hurd [74 [75], Jia Meng [111], and Lawrence Paulson [112, 113]. Proofs found
by the automated system are either verified by the interactive prover immediately [74], or
translated into a proof script that can be executed later [112].

A more extensive overview of work related to the integration of proof-producing SAT solvers
is given in Section

1.4 Isabelle

Isabelle [I34] is a popular interactive theorem prover (being developed primarily by Tobias
Nipkow at Technische Universitat Miinchen, and by Larry Paulson at Cambridge Univer-
sity), whose (meta) logic is based on the simply typed A-calculus. Isabelle is generic, in the
sense that different object logics—e.g. first-order logic, modal and linear logics, and Zermelo-
Fraenkel set theory—can be defined on top of the meta logic. This thesis mostly considers
Isabelle/HOL [125], an incarnation of Isabelle for higher-order logic, which is currently the
best-developed object logic. Isabelle/HOL provides the user with convenient means to define

1.4. ISABELLE)

datatypes, recursive functions, axiomatic type classes, sets and records, and more. This makes
Isabelle/HOL a very expressive specification language. Syntax and semantics of the logic are
presented in detail in Chapter

With a few notable exceptions, the Isabelle/HOL notation follows standard mathematical
conventions. Application is written without parentheses, e.g. f(z) is instead written f z.
Application is left-associative: fzy is the same as (f z)y. Set comprehension is written with
a dot “. instead of the more common vertical dash “|”: {x.Px} denotes the set of all z
that satisfy P. In this thesis, we use mathematical notation in (informal) definitions and
proofs, while Isabelle notation is used only in terms and proofs that are machine-checked by
the theorem prover. Basic familiarity with ZFC set theory [84] is assumed.

Isabelle is written in Standard ML [115] (SML for short) and can be executed on a number of
different SML implementations/compilers. SML is a functional programming language with
eager evaluation and some imperative features, e.g. references. It supports higher-order func-
tions and an advanced module system. Historically, SML evolved from the ML programming
language (ML stands for metalanguage), which was used in Robin Milner’s LCF theorem prover
at the University of Edinburgh in the late 1970s [61]. Nowadays the term “LCF-style” is used
to designate theorem provers that allow new theorems to be generated via a fixed set of simple
functions only. Each function corresponds to an inference rule of the underlying logic. Isabelle
is such an LCF-style prover; its soundness therefore only depends on a relatively small kernel,
and cannot be compromised by programming errors in advanced (and possibly complicated)
proof strategies. This restriction motivates the work presented in Chapter

Isabelle supports different styles of writing formal proofs. They can be given as tactic scripts,
or they can be written in a human-readable (yet fully formal) proof language called Isar [171].
Variants of tactic-style proof development are currently found in most interactive theorem
provers. Conjectures stated by the user become proof goals. Tactics are then applied in-
teractively in order to transform, simplify, and ultimately solve the proof goal. Tactics can
implement simple natural deduction rules or powerful decision procedures, e.g. for Presburger
arithmetic [36]. Application of a tactic may spawn several new subgoals, which then need to be
solved as well. Isabelle’s tactics are implemented in SML, but this is irrelevant to the average
Isabelle user, who usually works with the collection of provided tactics only, and does not need
to implement his own.

Since the effect of powerful tactics on the proof state is often hard to predict, tactic scripts
are essentially incomprehensible without the theorem prover at hand. The Isar proof language
remedies this disadvantage of tactic-style proofs by providing a language that is closer to
mathematical textbook reasoning. Well-written Isar proofs can be followed by a human reader,
independently of the theorem prover. The focus of this thesis however is not a machine-checked
formalization of some theorem in Isabelle, but an extension of the theorem prover itself, and
we are concerned with disproving more than with proving. Therefore this thesis contains only
some minor Isabelle proofs, and we will not present either proof style in more detail. The
interested reader is referred to [123] and [125]. The former contains a tutorial introduction
to Isar, while the latter is an extensive overview of Isabelle/HOL, with various examples of
tactic-style proofs.

6 CHAPTER 1. INTRODUCTION
1.5 Overview

The rest of this thesis is structured into five more chapters as follows:

Chapter [2] presents a translation from higher-order logic (on top of the simply typed -
calculus) to propositional logic, such that the resulting propositional formula is satis-
fiable iff the HOL formula has a model of a given finite size. A standard SAT solver
can then be used to search for a satisfying assignment, and such an assignment can be
transformed back into a model for the HOL formula. The algorithm has been imple-
mented in Isabelle/HOL, where it is used to automatically generate countermodels for
non-theorems.

Chapter [3| discusses how the translation to propositional logic can be augmented to cover
various extensions that the actual Isabelle/HOL system offers on top of the basic HOL
logic, mostly to improve usability. Among them are datatypes and recursive functions,
axiomatic type classes, set types and extensible records. We also discuss how the trans-
lation can be improved to generate smaller propositional formulae.

Chapter [4] contains a presentation of three case studies. We have applied Isabelle’s finite
model generation techniques to obtain a correctness proof for a security protocol, coun-
terexamples to conjectures about probabilistic programs, and a Sudoku solver.

Chapter 5| describes the integration of zChaff and MiniSat, currently two leading SAT solvers,
with Isabelle/HOL. Both SAT solvers generate resolution-style proofs for (instances of)
propositional tautologies. These proofs are verified by the theorem prover. The presented
approach significantly improves Isabelle’s performance on propositional problems.

Chapter [6] summarizes the results presented in this thesis, and gives directions for possible
future work.

It is undesirable to believe a proposition when there
is mo ground whatsoever for supposing it is true.
Bertrand Russell, 1872-1970.

Chapter 2

Finite Model Generation

A translation from higher-order logic (on top of the simply typed A-calculus) to
propositional logic is presented, such that the resulting propositional formula is sat-
isfiable iff the HOL formula has a model of a given finite size. A standard SAT
solver can then be used to search for a satisfying assignment, and such an assign-
ment can be transformed back into a model for the HOL formula. The algorithm
has been implemented in Isabelle/HOL, where it is used to automatically generate
countermodels for non-theorems.

2.1 Introduction

This chapter presents a translation from higher-order logic to propositional logic (quantifier-
free Boolean formulae) such that the propositional formula is satisfiable if and only if the
HOL formula has a model of a given finite size, i.e. involving no more than a given number
of individuals. A standard SAT solver can then be used to search for a satisfying assignment,
and if such an assignment is found, it can easily be transformed back into a model for the HOL
formula.

An algorithm that uses this translation to generate (counter-)models for HOL formulae has
been implemented in Isabelle/HOL. This algorithm is not a (semi-)decision procedure: if a
formula does not have a model of a given size, it may still have larger or infinite models. The
algorithm’s applicability is also limited by its complexity, which is non-elementary for higher-
order logic. Nevertheless, formulae that occur in practice often have small models, and the
usefulness of a similar approach has been confirmed e.g. in [R1].

Section [2.2)introduces the syntax and semantics of the logic considered in this chapter, a version
of higher-order logic on top of the simply typed A-calculus. The translation to propositional

7

8 CHAPTER 2. FINITE MODEL GENERATION

logic is described and proved correct in Section while the remaining details of the model
generation algorithm are explained in Section We conclude with some final remarks in

Section 2.5

2.2 Higher-Order Logic

The translation presented in this chapter can handle the logic that is underlying the HOL [64]
and Isabelle/HOL theorem provers. The logic is originally based on Church’s simple theory of
types [38]. In this section we present the syntax and a set-theoretic semantics of the relevant
fragment. A complete account of the HOL logic, including a proof system, can be found e.g.
in [63].

2.2.1 Types

We distinguish types and terms, intended to denote certain sets and elements of sets respec-
tively. The definition of types is relative to a given type structure.

Definition 2.1 (Type Structure). A type structure is a triple 2 = (TyVars, TyNames, TyArity),
where TyVars is a set of type variables, TyNames is a disjoint set of type constructors, and
TyArity: TyNames — N gives each type constructor’s arity.

We use lowercase greek letters, e.g. a, 3, ..., to denote type variables.

Definition 2.2 (HOL Type). Let Q = (TyVars, TyNames, TyArity) be a type structure. The
set Typesq, of types (over 1) is the smallest set such that

1. TyVars C Typesq, and

2. if ¢ € TyNames, TyArity(c) = n, and o; € Typesg, for all 1 < i < n, then (01,...,0,)c €
Typesq. In case TyArity(c) = 0, we write ¢ instead of ()c.

The sets of type variables and type constructors, respectively, that occur in a type are de-
fined by straightforward structural induction. We distinguish type constructors with different
arguments.

Definition 2.3 (Type Variables in a Type). Let Q = (TyVars, TyNames, TyArity) be a type
structure, and let o € Typesq. The set TyVars(o) of type variables in o is defined as follows:

1. If 0 € TyVars, then TyVars(o) := {o}.
2. If 0 = (01,...,04)c with ¢ € TyNames, then TyVars(o) := [J;_; TyVars(o;).

Definition 2.4 (Type Constructors in a Type). Let Q = (TyVars, TyNames, TyArity) be a
type structure, and let o € Typesq. The set TyNames(o) of type constructors in o is defined
as follows:

1. If o € TyVars, then TyNames(o) := ().

2.2. HIGHER-ORDER LOGIC 9

2. If 0 = (01,...,0p)c with ¢ € TyNames, then TyNames(o) := {o} UJ;"_; TyNames(o;).

Remark 2.5. Let Q = (TyVars, TyNames, TyArity) be a type structure, and let o € Typesg,.
TyVars(o) is a finite subset of TyVars. Likewise, TyNames(o) is a finite subset of Typesq.

Proof. By structural induction on o.]

To define the semantics of types, we follow [63] and fix a set of sets U, our set-theoretic universe,
which is assumed to have the following properties.

Inhab Each element of i/ is a non-empty set.

Sub If X e/ and) #Y C X, then Y € U.

Prod If X € Y and Y € U, then the cartesian product X X Y is in U.
Pow If X e U, then P(X)={Y | Y C X} €U.

Infty U contains a distinguished infinite set I.

Choice There is a distinguished element ch € I1x ¢ X.

One can show the existence of such a universe I/ from the axioms of Zermelo-Fraenkel set
theory together with the Axiom of Choice (ZFC). Two easily provable consequences of the
above requirements are important.

Lemma 2.6. U contains a two-element set.
Proof. The infinite set I € U has a two-element subset, which is in U because of Sub. O

We distinguish a two-element set B = {T, L} € U.

Lemma 2.7. If X €U and Y € U, then X — Y, i.e. the set of all total functions from X to
Y, isinU.

Proof. Let X, Y € U. In set theory functions are identified with their graphs, which are certain
sets of ordered pairs. Therefore X — Y is a subset of P(X x Y'), which is in ¢/ due to Prod
and Pow. Furthermore X — Y is non-empty since Y is non-empty because of Inhab. Hence
X — Y €U by virtue of Sub. O

We are now ready to define the semantics of types. Type variables denote arbitrary non-empty
sets, which are given by a type environment. The meaning of type constructors is given by a
type model.

Definition 2.8 (Type Environment). Let 2 = (TyVars, TyNames, TyArity) be a type struc-
ture. A type environment for is a function E: TyVars — U.

Definition 2.9 (Type Model). Let Q = (TyVars, TyNames, TyArity) be a type structure. A
type model M of Q) assigns to each type constructor ¢ € TyNames a function M (c): U TyArity(c) _,
U. Tn case TyArity(c) = 0, we identify M(c): U° — U with M(c)() € U.

10 CHAPTER 2. FINITE MODEL GENERATION

Definition 2.10 (Semantics of Types). Let Q = (TyVars, TyNames, TyArity) be a type struc-
ture. The meaning [o] BM of a type o € Typesq (wrt. a type environment E and a type model
M) is defined as follows:

1. If o € TyVars, then [o] \, := E(0).
2. If 0 = (01,...,00)c with ¢ € TyNames, then [o] 5, := M(c)([o1] g ass- - - [on] 5 00)-

Remark 2.11. [o] g 5 (for o a type) is an element of U, i.e. [-]p 5 Typesg — U.
Proof. By structural induction on o. O

The meaning of a type only depends on the meaning of those type variables and type construc-
tors that actually occur in the type. For f: X — Y a function and Z C X, we write f|z for
the restriction of f to Z, i.e. for the function with domain Z that sends z € Z to f(z) € Y.

Lemma 2.12. Let Q = (TyVars, TyNames, TyArity) be a type structure, let E, E': TyVars —
U be two type environments for Q, and let M, M’ be two type models of Q. Let o €

Typesq. Suppose E|ryvars(s) = E’|Tyvars(a), and furthermore M(c)([[al]]EM, el [Un]]E,M) =
M'(c)(o1]gars- - lonl g ar) for all (o1,...,0n)c € TyNames(o). Then

[[U]]E,M = [[U]]E’,M’-
Proof. By structural induction on . For ¢ € TyVars, we have
1o 2I1a
[[U]]E,M = E(0)=FE'(0) = [U]]E/,M/

since o € TyVars(o).

If o = (01,...,0pn)c with ¢ € TyNames (hence (01,...,0,)c € TyNames(o)), then applying
the induction hypothesis to o1, ..., o, yields

lol g ar M(c)(lodpars-- - [onl g)
= M)(lolgns---lonlp)
4 M'(e)(lolgr s -+ lond graar)
210
= [[U]]E’,M"

O]

We call type structures that contain two distinguished type constructors, namely bool and —,
standard. We say that a type model is standard iff these type constructors are interpreted as
the two-element set {T, L} and as the function space constructor, respectively.

Definition 2.13 (Standard Type Structure). A type structure 2 = (TyVars, TyNames, TyArity)
is standard iff {bool, —} C TyNames, TyArity(bool) = 0, and TyArity(—) = 2.

Definition 2.14 (Standard Type Model). A type model M of a standard type structure is
standard iff M(bool) = B and M(—)(X,Y) = X — Y (the set of all total functions from X
toY) for all X, Y € U.

2.2. HIGHER-ORDER LOGIC 11

From now on we only consider standard type structures and standard type models, where the
meaning of bool and — is fixed. We use infix notation for —, i.e. we write o1 — o5 instead of
(01,02)—. As usual, — associates to the right: o3 — 09 — o3 is short for o7 — (09 — 03).

In the literature, standard HOL type structures are sometimes required to contain another
nullary type constructor, inf, whose intended interpretation is an infinite set [126]. Note that
we do not require such a type constructor here, since it would immediately disallow to find
finite models. We still require the set-theoretic universe U to contain an infinite set, so merely
the (type) syntax of the logic is affected by this deviation, while model-theoretic issues are
not. A possible approach to extending finite model generation to formulae with infinite types
is discussed in Chapter [3]

2.2.2 Terms

Just like the definition of types is relative to a given type structure, the definition of terms is
relative to a given (term) signature.

Definition 2.15 (Signature). A signature (over a type structure Q) is a triple ¥ = (Vars,
Names, Typ), where Vars is a set of wvariables, Names is a disjoint set of constants, and
Typ: Names — Typesq gives the type of each constant.

Terms are explicitly annotated with their type. A term ¢, of type o is either an (explicitly
typed) variable, a constant, an application, or a A-abstraction. The actual type of a constant
only needs to be an instance of the type given by the signature, so we need to define type
instances before we can define terms.

Definition 2.16 (Type Substitution). A type substitution for a type structure Q@ = (TyVars,
TyNames, TyArity) is a function ©: TyVars — Typesq.

The application of a type substitution © to a type 0 € Typesq, written ¢ O, is defined by
structural induction on o:

1. If 0 € TyVars, then 0 © := O(0).
2. If o =(01,...,0p)c with ¢ € TyNames, then 0 © := (01 0,...,0,0)c.

Remark 2.17. For ¢ € Typesq and © a type substitution for 2, 0 © is again in Typesq. In
other words, - ©: Typesg — Typesq.

Proof. By structural induction on o. O

Definition 2.18 (Type Instance). Let Q be a type structure. For o, o’ € Typesq,, we say that
o is an instance of o’ iff o = o’ © for some type substitution ©.

Definition 2.19 (HOL Term). Let ¥ = (Vars, Names, Typ) be a signature over a standard
type structure §2. The set Termsy, of terms over ¥ is the smallest set such that

1. if x € Vars and ¢ € Typesq, then z, € Termsy,

2. if ¢ € Names, Typ(c) = o and ¢’ € Typesg, is an instance of o, then ¢,» € Termsy,

12 CHAPTER 2. FINITE MODEL GENERATION

3. if t,r_, € Termsy, and t/, € Termssy;, then (t,/_5t.,)s € Termsy, and

4. if x € Vars, o1 € Typesq and t,, € Termsy, then (Azs,.ts,)0 -0, € Termss.

Terms of type bool are called formulae. We frequently omit the type annotation of terms when
it can be deduced from the context.

The sets of a term’s (explicitly typed) free variables and its (explicitly typed) constants, re-
spectively, are defined as usual, by structural induction on the term.

Definition 2.20 (Free Variables in a Term). Let ¥ = (Vars, Names, Typ) be a signature over
a standard type structure Q. Let ¢, € Termsy. The set FreeVars(t,) of free variables in t, is
defined as follows:

1. If t € Vars, then FreeVars(t,) := {t,}.
2. If t € Names, then FreeVars(¢,) := 0.

t2, € Termsy,, then FreeVars(t,) := FreeVars(t!, |)U

1
for some t oo

o' —o

3. Ity = (th %),
FreeVars(t2,).

4. If t, = (M\oy.1,,)01 -0, for some x € Vars, o1 € Typesqg and t,, € Termsy, then
FreeVars(t,) := FreeVars(t’)\ {zo, }-

Definition 2.21 (Constants in a Term). Let ¥ = (Vars, Names, Typ) be a signature over a
standard type structure €. Let t, € Termsy. The set Names(t,) of constants in t, is defined
as follows:

1. If t € Vars, then Names(t,) := ().
2. If t € Names, then Names(t,) := {ts}.

t2, € Termsy, then Names(t,) := Names(t},) U

1
for some t_, P

o/—ao?

3. If ty = (t!
Names(t2,).

' o o')

4. If t, = (M\o,-1,,)01—0, for some x € Vars, o1 € Typesqg and ¢, € Termsy, then
Names(t,) := Names(t,,).

Remark 2.22. Let ¥ = (Vars, Names, Typ) be a signature over some standard type structure,
and let ¢, € Termsy. FreeVars(t,) and Names(t,) are finite subsets of Termssy..

Proof. By structural induction on %,. O

Having defined the syntax of terms, we now come to the definition of their semantics. The
analogue of a type environment at the term level is a variable assignment, and type models
correspond to term models.

Definition 2.23 (Variable Assignment). Let ¥ = (Vars, Names, Typ) be a signature over a
type structure Q. A variable assignment A (for ¥) assigns to each variable z € Vars a function
A(x): U — |JU which satisfies A(z)(Y) € Y for every Y € U.

2.2. HIGHER-ORDER LOGIC 13

Definition 2.24 (Term Model). Let ¥ = (Vars,Names, Typ) be a signature over a type
structure Q. A term model M (for ¥) assigns to each constant ¢ € Names a function
M(c): U — |JU which satisfies M(c)(Y) € Y for every Y € U.

To shorten notation, we write A(z,) for A(z)([o] g /), and likewise M(c,) for M(c)([o] g 5r),
when the type environment E and the type model M are clear from the context.

For f: X — Y a function, a € X and b € Y, we write fla — b] for the function that sends
x € X tobif x = a, and to f(x) otherwise. We can now define the semantics of terms. The
semantics of variables is given by a variable assignment, and the semantics of constants is given
by a (term) model. Term application corresponds to function application, and A-abstractions
denote functions.

Definition 2.25 (Semantics of Terms). Let ¥ = (Vars, Names, Typ) be a signature over a
standard type structure 2. Let E be a type environment for {2, and let M be a standard type
model for €. Let A be a variable assignment and M be a term model for . The meaning
[ts] AM of a term t, € Termsy, wrt. A and M is defined as follows:

1. If t € Vars, then [t5] 4 o = Alts).
2. If t € Names, then [t,] 4 pq := M(t5).

3. If t, = (t},_._t2,), for some t! t2, € Termsy;, then [tolqp = e o) g (20 4)

o'—o Yo’ o'—o’ Yo’
(function application).

4. If to = (Ao - 15,)01 -0, for some x € Vars, 01 € Typesg and t;,, € Termsy, then [to] 4
is the function that sends each d € [o1] 5 5, to [t,,] Al od M
k) aq y

Remark 2.26. [t,;] 4 o4 (for t, a term) is an element of (JU/, i.e. [-] 4 r,: Termsy — JU.
Proof. The claim follows from Lemma below, where [o] 5 5, € U due to Remark O

More specifically, the meaning of a term is an element of the meaning of the term’s type.

Lemma 2.27. Let ¥ = (Vars, Names, Typ) be a signature over a standard type structure SQ.
Let E be a type environment for Q, and let M be a standard type model for Q. Let A be a
variable assignment and M be a term model for ¥. Then [t;] 4 pq € [o]p s for any term
ty € Termssy.

Proof. By structural induction on ¢,. For the two base cases t € Vars and ¢ € Names, the claim
follows immediately from Def. and Def. respectively, together with Remark

The two remaining cases are proved using the fact that M is standard, and hence interprets
o1 — o2 as the full function space from [o1] 5 5, to [o2]p ;- We note that in the case of a
A-abstraction, the updated assignment A[x,, — d] is again a variable assignment. O

The meaning of a term only depends on the meaning of its free variables and constants. This
is the analogue of Lemma (which states that the meaning of a type only depends on its
type variables and type constructors) for terms.

14 CHAPTER 2. FINITE MODEL GENERATION

Lemma 2.28. Let ¥ = (Vars, Names, Typ) be a signature over a standard type structure €.
Let E be a type environment for Q, and let M be a standard type model for Q. Let A, A’ be
two variable assignments and M, M’ be two term models for 3. Let t, € Termsy. Suppose

'A’Free\/ars(tg) - A/’FreeVars(tg) and M’Names(tg) - M/‘Names(tg)' Then
[[tcf]]A,M = [[tU]]A’,M"

Proof. By structural induction on t,. For the two base cases t € Vars and ¢ € Names, the
claim follows immediately from 'A’FreeVars(tg) - AI|FreeVars(t[,) and M‘Names(tg) - MI‘Names(%):
respectively.

Ift, = (tclr,ﬂa tgl)g for some t},g o ti/ € Termsy, the claim follows from the induction hypoth-
esis, applied to ti,,_,a and tg,,.

If t = (Ao, t,,)01 -0, for some x € Vars, 01 € Typesq and t,, € Termsy, the claim follows
from the induction hypothesis, applied to t;,. Note that for d € [o1]g ,, both Alzy, —
d] and A'[x,, — d] are again variable assignments, they agree on z,,, and therefore (since
FreeVars(t;,,) C FreeVars(t,) U {2, }) they agree on FreeVars(t,,). O

We require that signatures contain two logical constants, namely = and =, which are
interpreted as implication and equality, respectively.

Definition 2.29 (Standard Signature). A signature ¥ = (Vars, Names, Typ) over a standard
type structure Q is standard iff { = ,=} C Names, Typ(=) = bool — bool — bool, and
Typ(=) = a — a — bool for some type variable «.

Definition 2.30 (Standard Term Model). Let ¥ = (Vars, Names, Typ) be a signature over a
standard type structure). Let E be a type environment for 2, and let M be a standard type
model for 2. A term model M for ¥ is standard iff

T, T toT
. . T,1 to L

1. M(= bool—bool—bool) is the function that maps LT toT and
1,1 toT

2. for every o € Typesq, M(=¢—s—bool) is the function that maps z, y € [[UHEM to T if
xr =1y, and to L otherwise.

Both = and = are usually written in infix notation, with = associating to the right.

This particular choice of constants is arbitrary. Other logical constants can be defined in terms
of the chosen ones, e.g. Truepool as (ATbool- Thool) = (ATbool- Thool); Universal quantification
v(ozﬂbool)ﬂbool as)‘Pa—>boo|‘ Py —bool = (Afl:oz- Truebool)’ and I:alsebool as v()\l'bool- xbool) [1()]

2.2.3 Satisfiability

A HOL formula is satisfiable iff its meaning is T in some standard model.

Definition 2.31 (HOL Satisfiability). Let ¥ be a standard signature over a standard type
structure €2, and let tpoo € Termsy be a formula. For E a type environment for €, M a

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 15

standard type model for 2, A a variable assignment and M a term model for X, we say that
A, M satisfies tpool, Written A, M thool, iff [thooll 4 pq = T-

For E a type environment for 2 and M a standard type model for 2, we say that tpee is
satisfiable wrt. E and M iff there exist a variable assignment A and a standard term model

M for ¥ such that A, M = tpool-

We say that tpoo is satisfiable iff there exist a type environment E for 2 and a standard type
model M of € such that ¢, is satisfiable wrt. £ and M.

It is well-known that it is not semi-decidable in general if a HOL formula is satisfiable. Even
satisfiability in finite models is not semi-decidable. Consequently, the algorithm presented in
Section is not a semi-decision algorithm. It is however sound and complete in the following
sense: given unbounded space and time, the algorithm will find a finite model for a HOL
formula if and only if such a model exists.

2.3 Translation to Propositional Logic

The model generation for a HOL formula tp0 proceeds in several steps. The input formula is
first translated into a propositional formula that is satisfiable iff ¢,,0 has a model of a given
size.

2.3.1 Propositional Logic

Let us briefly recall the basic notions of propositional logic. We fix an infinite set B of Boolean
variables.

Definition 2.32 (Propositional Formula). The set PP of propositional formulae (over B) is the
smallest set such that

1. BCP,
2. True € P, False € P,
3. if p € P, then (—p) € P,

4. if p, ¢ € P, then (¢ Vo) € P and (¢ A1) € P.

As a standard convention, — binds stronger than A, which in turn binds stronger than V. Using
this convention, we frequently omit unnecessary parentheses. The semantics of propositional
formulae is defined wrt. a truth assignment.

Definition 2.33 (Truth Assignment). A truth assignment A is a function A: B — B.

Definition 2.34 (Semantics of Propositional Formulae). Let A be a truth assignment. The
meaning [¢] 4 of a propositional formula ¢ € P wrt. A is defined as follows:

1. If ¢ € B, then [¢] 4 := A(p).

16 CHAPTER 2. FINITE MODEL GENERATION

2. [True] 4 := T, [False] 4, := L.

3. [-¥la '_{ 1 otherwise.
T if[p],=Tor], =T;
4. [e V], = { i othervj?lise, o and
[AY]4 = { 1 otherwise.

Remark 2.35. Let A be a truth assignment, and let ¢ € P. Then [¢], € B, ie. [-]4: P — B.

Proof. By structural induction on ¢. O

Definition 2.36 (Propositional Satisfiability). Let A be a truth assignment, and let ¢ € P be
a propositional formula. A satisfies ¢, written A |= ¢, iff [p], = T.

We say that ¢ is satisfiable iff A |= ¢ for some truth assignment A.

2.3.2 Interpretation of Types

Types in the input formula ¢y, are interpreted as finite, non-empty, mutually disjoint sets.
(Disjointness is justified because in HOL, one cannot express that different types contain
equal elements: equality is only available for equal types in the first place. Therefore the
type algebra can be seen as freely generated.) Let us fix a standard type structure 2 =
(TyVars, TyNames, TyArity) and a standard signature ¥ = (Vars, Names, Typ) over Q such
that tpool € Termssy,.

We choose a type environment E that only assigns finite sets to type variables, and a standard
type model M where each M (c) (for ¢ a type constructor) maps finite sets to finite sets.

Definition 2.37 (Finite Type Environment). Let Q = (TyVars, TyNames, TyArity) be a type
structure, and let E be a type environment for Q2. We say that E is finite iff F(«) is finite for
every type variable a € TyVars.

Definition 2.38 (Finite Type Model). Let Q = (TyVars, TyNames, TyArity) be a type struc-
ture, and let M be a type model for €. We say that M is finite iff, for every type con-
structor ¢ € TyNames, M(c)(X1,...,X,) is finite whenever Xi, ..., X,, are finite (where
n = TyArity(c)).

Remark 2.39. Let M be a standard type model. Then M (bool) = B is finite, and M (—)(X,Y) =
X — Y is finite if both X € U and Y € U are finite. (More precisely, |B|] = 2, and
X - Y| =y X

Proof. Immediate, using Def. O

Then every type denotes a finite set wrt. E and M.

Lemma 2.40. Let Q) be a type structure, let E be a finite type environment for Q, and let M
be a finite type model for Q). Then for every o € Typesq, [[U]]E’M is finite.

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 17

Proof. By induction on ¢. For ¢ a type variable, the claim follows directly from the fact that
E is finite.

In case 0 = (01,...,0,)c, where ¢ is a type constructor, we apply the induction hypothesis to
01, ..., Opn to obtain finiteness of [o1] 5/, ... [on] g 5 The lemma then follows since M is
finite. O

Because of Lemma [2.12] it is de facto sufficient to define £ and M for those—finitely many—
type variables and type constructors, respectively, that occur in the typing of tpo0. Having fixed
the meaning of relevant type variables and type constructors, we want to find a propositional
formula that is (propositionally) satisfiable iff tpo0 is (HOL-)satisfiable wrt. E and M. But
before we describe the translation of HOL formulae to propositional formulae in Section
a few more remarks concerning the interpretation of types are in order.

Ordered Sets

Without loss of generality we require each finite set in the range of ' and M to be equipped
with a total order, i.e. with an antisymmetric, transitive, and total binary relation. For sets that
denote type variables and type constructors other than bool and —, this order is presupposed.
For B, we make an arbitrary choice.

Definition 2.41 (Order on B). The (canonical) order on B, written <g, is given by T < L.

Given two totally ordered finite sets X and Y, we use the lexicographic order as a total order
on X —Y.

Definition 2.42 (Lexicographic Order). Let (X, <x) and (Y, <y) be totally ordered finite
sets. The (lexicographic) order on X — Y, written <x_,y, is given by

f<x—yyg iff 3zeX.(f(z) <y glx)AV2 <x z. f(a') = g(z')).

Remark 2.43. Using finiteness of X, one verifies that <x_,y is in fact a total order on X — Y.
The function space is isomorphic to the | X|-fold cartesian product of Y.

A totally ordered finite set X = {x1, z2,...,2,}, where the order on X is given by 21 < x93 <
... < my, can be identified with the list [x1,z2,...,x,] of its elements. We say that z;, xo,
..., xp is the first, second, ..., n-th element of X, respectively.

A function f: X — Y can be identified with its graph, i.e. with the set of ordered pairs
{(z, f(z)) | z € X}. Afunction f: X — Y, where X = [x1,...,2,] is finite and totally ordered,
can be identified with the list [f(z1),..., f(x,)] of its values. Since these identifications are
crucial in the context of our work, we give a formal definition of lists.

Definition 2.44 (List). Let X be a set of list elements. The set Listx of lists with elements
in X is the smallest set such that

1. [] € Listx, and

2. if [€ Listx and = € X, then (z#!) € Listy.

18 CHAPTER 2. FINITE MODEL GENERATION

We write [x1,...,zy] for the list (z1#(. .. (xo#[])-..)).

The List operator is monotonic wrt. the subset relation.

Lemma 2.45. Let X CY. Then Listx C Listy.
Proof. Let | € Listx. The proof is by structural induction on . O

Given a totally ordered finite codomain Y = [y1, ..., ¥] and the cardinality | X| of a domain X,
we can define an auxiliary function pick that computes the list representation of the function
space X — Y, equipped with the lexicographic order. In other words, pick enumerates all
functions in X — Y (where each function is represented as the list of its values) in the order

given by Def.
Definition 2.46 (pick). Let Y = [y1,...,ym], m > 1. Define
ple(17 [?/17 s 73/m]) = Hyl]a sy [ym“:

and for n > 1 define

pick(n, [ylv" . 7ym]) = [yl#fla"wyl#fm"*la SRR ym#fla" . 7ym#fm"*1]a

where [f1,..., frun—1] = pick(n — 1, [y1, ..., Ym])-

Remark 2.47. For n, m > 1, pick(n, [y1,...,ym]) is a list in Listrs, of length m™, and each
list element (which is again a list) has length n.

Proof. By induction on n. O
Lemma 2.48. Let | X|=n,Y =[y1,...,Ym|, where n, m > 1. Then
pick(n, [y1,...,ym]) = X = Y]

where X —'Y 1s equipped with the lexicographic order.
Proof. By induction on n, using Def. 2.42] and Def. [2.46] O

While the order used on the function space and the definition of pick are of course interdepen-
dent, using the lexicographic order was an arbitrary choice. It is merely important that we
can enumerate the elements of the function space, based on enumerations for the domain and
the codomain.

Isomorphic Types

Type environments and standard type models are determined uniquely up to isomorphism by
the size of the sets that they assign; the names of individuals are irrelevant.

Definition 2.49 (Isomorphic Type Environments). Let € be a type structure. We say that
two type environments E, E’ for Q are isomorphic iff there exists a bijection I: U — U such
that I(F(a)) = E'(«) for every type variable a.. I is called an isomorphism (between E and
E).

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 19

Definition 2.50 (Isomorphic Type Models). Let ©Q be a type structure. We say that two
type models M, M’ of Q are isomorphic iff there exists a bijection I: U4 — U such that
I(M(e)(X1,...,Xpn)) = M'(¢)(I(Xy1),...,1(X,)) for every type constructor ¢ and every X7,
..oy X, €U (where n = TyArity(c)). I is called an isomorphism (between M and M’).

The meaning of types wrt. isomorphic type environments and type models is given by the
image of their original meaning under the isomorphism.

Lemma 2.51 (Semantics of Isomorphic Types). Let Q2 be a type structure. Let E, E' be two
type environments for Q, and let M, M' be two type models of Q2. Suppose that E, E' and M,
M’ are isomorphic wrt. the same isomorphism I: U — U. Then

I([[U]]E,M) = [[U]]E/,M'

for every type o € Typesq.

Proof. By structural induction on ¢. For ¢ a type variable, we have
210 210
I([[U]]E,M) = I(E(0)) = E'(0) = [[J]]E’,M’

since £ and E’ are isomorphic.

If o = (01,...,0pn)c with ¢ € TyNames, we apply the induction hypothesis to o1, ..., o, to
obtain
210
I(HU]]E,M) = I(M(C)([[Ul]]E,M> SRR [[Un]]E,M))
= M/(C)(I([[Ul]]E,M)v e vI(HUn]]E,M))
IH
= M,(C)([[Ul]]E’,M” cee [[Un]]E',M/)
210

[o] E'M'"

O]

This result can be “lifted” to the semantics of terms. Suppose that the isomorphism I operates
on elements of sets in U, rather than on sets in /. Then the meaning of terms wrt. an isomorphic
variable assignment and term model is given by the image of their original meaning under the
isomorphism.

Definition 2.52 (Pointwise Isomorphism). Let € be a type structure. Let E, E’ be two type
environments for Q (let M, M’ be two type models of 2, respectively). We say that FE, E' (M,
M’ respectively) are isomorphic wrt. a bijection I: | JU — JU iff [(X) := {I(z) | z € X}
(for X € U) defines an isomorphism I: U — U between E and E' (M and M’, respectively).
In this case I is called a pointwise isomorphism (between E and E', or between M and M').

More generally, any function f: X — Y can be ‘“lifted” to a function f:P(X) = P(Y) in the
obvious way, by defining f(Z) := {f(z) | z € Z} for Z C X. We simply write f(Z) for f(Z)
when there is no danger of confusion. Note that f is bijective if and only if f is bijective.

20 CHAPTER 2. FINITE MODEL GENERATION

Lemma 2.53 (Isomorphic Variable Assignment and Term Model). Let Q be a standard type
structure, and let ¥ be a standard signature over Q). Let E, E' be two type environments for
Q, and let M, M’ be two standard type models of Q. Suppose that E, E' and M, M’ are
isomorphic wrt. the same pointwise isomorphism I: |JU — |JU with I(T) = T. Let A be a
variable assignment for X3, and let M be a standard term model for 3.
Then

A(@)(Y) = I(A)IH(Y)))

(for x a variable, Y € U) defines a variable assignment for ¥, and

(for ¢ a constant, Y € U) defines a standard term model for .

Proof. Let x be a variable, let ¢ be a constant, and let Y € Y. Then A(z)(I71(Y)) € I71(Y)

(Def., hence A'(z)(Y) = I(A(z)(I"'(Y))) € Y. Likewise, M'(c)(I"1(Y)) € I"}(Y)
(Def. [2.24)), hence M'(c)(Y) = I(M'(c)(I71(Y))) € Y. It remains to show that M’ is standard.

Since M and M’ are standard, we have I(B) = B (hence I(T) = T and I bijective implies
I(l) =1)and I(X — Y) =I(X) - I(Y) for X, Y € U. Due to the identification of
functions with sets of ordered pairs (cf. Lemma [2.7), the latter implies I(a,b) = (I(a), (b))
for a, be JU, and I(f)(I(a)) =I(f(a)) for fe X - Y €U, a € X € U. Thus

1. M'(=)([bool — bool — bool] 5,/)

I(M(=)(I"([bool — bool — bool] ; 1,:)))
(M(=)' (I([bool — bool — bool] 5 ;,))))
(M(==)([bool — bool — bool] 5,))

(
(

] oE
~

~

IES

I
{

{7 AT 1), (L D), (LA,), (L, THHE)
AT, (L D)), (L AT, T), (L, T H}

_|

and

2. for every o € Typesgq,
M/(:)(IIU — 0 — bOOl]]E/’M/)

IM(=)(I"Y([o — o — bool] g 571)))
IM(=)I"(I([o — o — booll; 4))))
IM(=)([o — o — booll 5 5/)),

and since M(=)([oc — o — bool] ;) is the function that maps z, y € [o] 5, to T if
x =y, and to L otherwise (Def. , I(M(=)([o — o — bool] 5 5,)) is the function
that maps z, y € I([o] g) = [0] g 4y to I(T) =T if z = y, and to I(L) = L otherwise
(again using bijectivity of I) 7

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 21

as required by Def. O

The above lemma merely shows that the pointwise isomorphism I can be used to define a
new variable assignment A’ and a new standard term model M’. We now make the relation
between a term’s semantics wrt. the original variable assignment A and term model M on the
one hand, and its semantics wrt. A" and M’ on the other hand precise.

Lemma 2.54 (Semantics of Terms wrt. Isomorphic Types). Let Q2 be a standard type structure,
and let ¥ be a standard signature over Q. Let E, E' be two type environments for Q, and let
M, M' be two standard type models of Q. Suppose that E, E' and M, M’ are isomorphic
wrt. the same pointwise isomorphism I: \JU — JU with I(T) = T. Let A be a variable
assignment for 3, and let M be a standard term model for . Define a variable assignment
A" and a standard term model M’ as in Lemma[2.53. Then for any term t, € Termssy,

I([[to]]A,M) = [[to]]A',M"

Proof. By structural induction on t,. For t € Vars, we have

[t ar e 2 A () ([0] g 2rr) R A0 (I ([0] 5.00)) 2 TCA®) (10T 01)) 22 T[] g p)-
Likewise for ¢t € Names,
[to] ar e 222 M () ([0] 1) 28 MO ([0] 50)) B2 IM(E) ([0 5.00)) B2 T[] g p)-

If ¢ is an application, i.e. t, = (t}, _t2,), for some t!, . t2, € Termsy, then
D251 1 2
[[tU]]A’,M’ = [[to’ﬂa]]A’,M’([[tcr’]]A’ M')

I([tor -l and) (I ([t2] 4 00))
I([tor—olama([t5] 4)

I([to] 4 m0)-

Proof of

2.2

||I
-

If t is a A-abstraction, i.e. to = (A2s,.1},)s, -0, for some variable x, some o1 € Typesg, and
some € Termsy, then

[to] . pe (@ 1t0,) ey oy pn) | @ € [0] 0000}
B {U@) Bl e, rayae) |4 € o)p)
= U@ 1) g, g pn) | E [0l 0}
Proot B 1({(d, [t gy g pe) | 4 € [l 0r})
([t ane)

22 CHAPTER 2. FINITE MODEL GENERATION

The main result of this paragraph is now an easy corollary. A HOL formula is satisfiable wrt.
a type environment and a standard type model iff it is satisfiable wrt. any isomorphic type
environment and standard type model.

Corollary 2.55 (Satisfiability wrt. Isomorphic Types). Let Q be a standard type structure,
and let ¥ be a standard signature over Q. Let E, E’ be two type environments for Q, and let
M, M’ be two standard type models of Q. Suppose that E, E' and M, M’ are isomorphic wrt.
the same pointwise isomorphism I: |JU — JU with I(T) = T. Let tpoo) € Termsy. Then
thool s satisfiable wrt. E and M iff tpeo 45 satisfiable wrt. E' and M’.

Proof. Let A be a variable assignment and M be a standard term model for 3 such that
[tolar =T (wrt. E'and M). For £’ and M’, define a variable assignment A’ and a standard
term model M’ as in Lemma Then using Lemma we have

[to] o = ITto] gpa) = I(T) = T.

O]

Therefore satisfiability of HOL formulae needs to be tested only modulo pointwise isomor-
phisms. If a formula is not satisfiable wrt. one type environment and standard type model, it
is not satisfiable wrt. any isomorphic type environment and model either.

2.3.3 Interpretation of Terms

Given a type environment £ and a standard type model M, our task now is to find a variable
assignment A and a term model M with [tpool] am = T (To generate a countermodel
instead of a model, we can either consider —tpeo, or—equivalently—search for A and M with
[tbool] AM = L.) At this point one can already view finite model generation as a generalization
of satisfiability checking, where the search tree is not necessarily binary, but still finite.

In principle we could search for A and M by explicit enumeration and evaluation of tpeo under
all possible combinations of variable assignments and term models. This however is infeasible
for all but the smallest examples. We therefore translate tpoo into a propositional formula,
leaving the search for a satisfying variable assignment and term model to a SAT solver. Our
confidence that the SAT solver is more efficient than a brute force approach is justified by
significant advances in the area of propositional satisfiability solving in recent years [27].

The translation 7 of terms into propositional formulae is by structural induction on the term.
Although our final aim is to translate a term of type bool into a single propositional formula,
a more complex intermediate data structure is needed to translate subterms, which may be of
arbitrary type. We use finite trees whose leafs are labeled with lists of propositional formulae.
The construction of these trees is described in detail in the remainder of this section.

Definition 2.56 (Labeled Tree). Let X be a set of labels. The set Treex of trees with labels
in X is the smallest set such that

1. if z € X, then Leaf(z) € Treex, and

2. if ¢t € Listryee, then Node(t) € Treex.

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 23

The Tree operator is monotonic wrt. the subset relation.

Lemma 2.57. Let X CY. Then Treex C Treey.
Proof. Let t € Treex. The proof is by structural induction on ¢, using Lemma [2.45]

The translation is then a (parameterized) function from Termsy, to Treers,. A leaf of length
m corresponds to a term whose type is given by a type variable, or by a type constructor other
than — (denoting a set of size m), while an n-ary function or predicate is given by a tree of
height n + 1. We will show how application and A-abstraction can be “lifted” from the term
level to this intermediate data structure.—Note that we could have chosen Treep instead of
Treerst, for the codomain of 7, since each leaf labeled with a list can easily be encoded as
a tree of height 2, with as many labeled leafs as the original list had elements. This makes
no real difference, except that the current choice is more natural for our application: leafs
immediately correspond to base types, and nodes correspond to function types.

Definition 2.58 (Trees for Types). Let Q = (TyVars, TyNames, TyArity) be a standard type
structure. Let F be a finite type environment for €2, and let M be a finite standard type model
for Q. For o € Typesq, the set Trees(o) of trees for o (wrt. E and M) is defined as follows:

1. If o € TyVars or 0 = (01,...,0p)c with ¢ € TyNames \ {—}, then

Trees(o) := {Leaf([@ly---aSOk]) |1, €P k= H[UHE,M‘ }

2. If 0 = 01 — 09 with 01, 02 € Typesq, then

Trees(o) := { Node([t1,...,t]) | t1,. .., tx € Trees(o2), k = lo1] g ar }.

Note that k£ > 1 in both cases, since types are interpreted as non-empty sets. Also note that
Trees(c) = Trees(o’) does not imply o = ¢’. The condition ¢ € Trees(o) merely ensures that ¢
has the proper shape to denote an element of [o] g, according to the semantics of trees given
below.

Remark 2.59. Let 0 € Typesq. Then Trees(o) C Treepist,-
Proof. By structural induction on o. O

The meaning of a tree denoting an element of some type o is defined wrt. a truth assignment
that gives the meaning of propositional formulae occuring in the tree’s labels. To refer to the
i-th element of a type, the definition makes use of the total orders that were introduced for
finite sets representing types in Section [2.3.2]

Definition 2.60 (Semantics of Trees). Let 2 = (TyVars, TyNames, TyArity) be a standard
type structure, let ¥ be a finite type environment for €2, and let M be a finite standard type
model for). Furthermore, let o € Typesq, and let A be a truth assignment. The meaning
[t], 4 of a tree t € Trees(o) (wrt. o and A) is defined as follows:

24 CHAPTER 2. FINITE MODEL GENERATION

1. If o € TyVars or 0 = (071, ...,0p)c with ¢ € TyNames \ {—}, then ¢t = Leaf([p1,. .., ¢x])

for some o1, ..., ¢ € P, where k = [[o] 5 5/|. Let [dy,...,dy] = [0] 5 5 In this case,
d;, if [pi] 4 = T and [¢;], = L for all j # i
[t]ya = (where 1 < j < k);

undefined, if no such i (with 1 < i < k) exists.

2. If 0 = 01 — 09 with o1, 09 € Typesq, then ¢t = Node([t1,...,t]) for some 1, ...,
tr, € Trees(og), where k = |[o1] 5 /|- Let [di,...,dig] = [01] 5 - In this case [t], 4 is
defined as the—possibly partial—function that sends d; € [[017]] pa (for 1< < k:) to
[til,, (if the latter is defined).

Remark 2.61. Let t € Trees(o). Then [t], 4 € [o]g s iff [t], 4 is defined or—in case o is a
function type—[t] 0.4 1s a total function, and the same holds recursively for every subtree of ¢
(wrt. its corresponding type).

Proof. By structural induction on o. O

Note that for o, o' € Typesq, both [t], 4 and [t],/ 4 may be defined (and may or may not
differ) if Trees(c) = Trees(c”).

As one can see from Def. Boolean variables are used in a unary, rather than in a binary
fashion. This means that we need n variables to represent an element of a base type of size
n, rather than [logy n| variables. However, at most one of these variables may later be set to
true (which keeps the search space for the SAT solver small due to unit propagation [I78]),
and our encoding—which is inspired by [81]—allows for a relatively simple translation of first-
order application: only a single Boolean variable needs to be considered when we want to
know if a function’s argument (of base type) denotes a particular value. On the other hand,
the representation of functions by trees still yields an encoding that is linear in the size of a
function’s domain.

The previous paragraph already hints at the two somewhat independent choices that must be
made when one defines the translation from terms to propositional formulae. First, terms of
base type are encoded as lists of Boolean variables, which can be used either in a unary or
in a binary fashion. Second, functions can be encoded as trees, supporting the view that a
function corresponds to a table of its values. Alternatively, functions could be encoded as lists
just like terms of base type—making trees completely unnecessary—, merely by noticing that
the function space is finite (and by forgetting its “internal” structure).

Both choices affect how the application of a function to its argument must be encoded. The
translation of application is in any case based on the idea of an explicit case distinction over
the function’s domain: if we know which value in the domain is denoted by the argument, we
also know which entry in the table of function values gives the result of the application. From
this point of view, it is best to encode the function as a tree (from which we can immediately
read off a function value by looking at the corresponding subtree), and to use the linear list
encoding for the argument (since a case distinction over the domain then depends on the truth
value of single Boolean variables). Any other combination of encodings would result in a fair
amount of arithmetic having to be used in the encoding of the application’s result.

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 25

In higher-order logic however, functions can be arguments themselves. We still encode functions
as trees, but when a function occurs as an argument to another (higher-order) function, we will
need an additional translation step to turn the tree encoding of the argument function into its
linear list encoding. The formal details are given later in this section, when the translation 7°
is defined for applications.

Well-formed Truth Assignments

The alert reader will notice that Def. introduces two kinds of partiality: a leaf has an
undefined meaning if none of the label’s elements evaluate to T, or if more than one label
element evaluates to T. The first kind of undefinedness will actually turn out to be useful
later, when we consider datatypes and recursive functions (see Section [3.6)). Nevertheless for
the time being we want to rule out this kind of undefinedness (to simplify the correctness proof
given in this chapter), as well as the second kind, which could be interpreted as “a leaf denotes
two (or more) of the type’s elements at the same time”. To this end well-formedness formulae
are introduced that impose restrictions on the truth assignment.

Definition 2.62 (Well-formed Truth Assignment). Let ¢ € Treepis,. A truth assignment
A: B — Bis well-formed wrt. t iff every label [x1, ..., z,] of t contains exactly one propositional
formula z; with [z;], = T.

Let T' C Treer,;st, be a set of trees. A truth assignment A: B — B is well-formed wrt. T iff A

is well-formed wrt. each t € T'.

Lemma 2.63. Let tq, ..., t, € Treeris,. A truth assignment A: B — B is well-formed wrt.
Node([t1, ..., tn)) iff A is well-formed wrt. {t1,...,tn}.

Proof. 1 € Listp is a label of Node([t1,...,t,]) iff [is a label of (at least) one of the trees 1,
ot 0

Definition 2.64 (Well-formedness Formula). Let [= [x1,...,x,] € Listp. The well-formedness
formula for 1, written wf(l), is defined as

(\”/ xl> A /"\ (mzi V).

i=1 ij=1
i#j
Let t € Treepst,. The set of well-formedness formulae for ¢, wf(¢), is defined as the set of all
well-formedness formulae wf(l) such that [is a label of ¢.
Let T' C Treer,st, be a set of trees. The set of well-formedness formulae for T', wf(7'), is defined
as Uyer wi(2).

Lemma 2.65. Let T C Treey,st, be a set of trees. A truth assignment A: B — B is well-formed
wrt. T iff A= @ for every ¢ € wi(T).

Proof. Let T' C Treerst, be a set of trees, and let A: B — B be a truth assignment.

Suppose A is well-formed wrt. T. Let ¢ = (\/i_; i) A Nij=1.iz; (72 V majy) be in wi(T).
Then [z1,...,x,] is a label of some tree in 7. Hence well-formedness of A implies that there
is exactly one formula x; with [z;] , = T. Therefore also [¢], =T, i.e. A= .

26 CHAPTER 2. FINITE MODEL GENERATION

For the other direction of the equivalence, suppose [¢], = T for every ¢ € wf(T). Let
l =[z1,...,z,] be alabel of a tree in T'. Then in particular wf(l) € wf(7T"). Hence [wf(l)], =T,
and therefore [z;] , = T for exactly one propositional formula z;. O

The truth assignment being well-formed is a necessary and sufficient condition for the meaning
of a tree to be an element of the tree’s corresponding type.

Lemma 2.66. Let) be a standard type structure, let E be a finite type environment for €,
and let M be a finite standard type model for Q). Furthermore, let o € Typesq, and let A be a
truth assignment. Let t € Trees(o). Then [t], 4 € [o] g o iff A is well-formed wrt. t.

Proof. From Def. 2.60] using Remark O

Terms are variables and constants, A-abstractions, or applications. We will now consider each
of these cases, before we put everything together to define a single translation function near
the end of the section. Aside from describing how terms are translated to trees in each case,
we will also prepare the correctness proof by explaining why the translation works as intended.
The general proof structure is as follows. For the base case of variables and constants, we
show that (under certain assumptions) the existence of a variable assignment and term model
that assign certain meanings is equivalent to the existence of a well-formed truth assignment
that assigns the same meanings to the trees that result from translating the variables and
constants. Next we show that the translation of A-abstraction and application preserves the
meaning of terms, i.e. a A-abstraction is translated as a tree which denotes a certain function,
and an application term is translated as function application. (In particular, if the trees for
the immediate subterms of a term have a defined meaning, then so does the tree for the whole
term. In other words, a truth assignment which is well-formed wrt. the trees for a term’s
free variables and constants is also well-formed wrt. the tree which results from translating
the entire term.) Together these properties imply that a HOL formula is satisfiable iff its
translation, under some well-formed truth assignment, denotes T.

Variables and Constants

We define tree assignments and tree models as analogues of variable assignments and term
models. Tree assignments (tree models) map each explicitly typed variable (constant) to a
tree of the proper shape. They allow us to establish a connection between the interpretation
of terms via variable assignments and term models on the one hand, and the interpretation of
Boolean variables via truth assignments on the other hand.

Definition 2.67 (Tree Assignment). Let ¥ = (Vars, Names, Typ) be a signature over a stan-
dard type structure €. Let E be a finite type environment for €2, and let M be a finite standard
type model for 2. A tree assignment T for ¥ (wrt. E and M) assigns to each explicitly typed
variable x, € Termsy, (where x € Vars, o € Typesq) a tree T(x,) € Trees(o).

Definition 2.68 (Tree Model). Let ¥ = (Vars, Names, Typ) be a signature over a standard
type structure 2. Let F be a finite type environment for €2, and let M be a finite standard
type model for . A tree model M for ¥ (wrt. E and M) assigns to each explicitly typed
constant ¢, € Termsy, (where ¢ € Names, o € Typesg) a tree M(c,) € Trees(o).

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 27

A term’s variables and constants are interpreted independently of each other by a variable
assignment and term model, respectively, with no restrictions other than those imposed on
standard term models in Def. A tree assignment and tree model on the other hand
could impose restrictions on the interpretation of variables and constants by using proposi-
tional formulae, rather than just Boolean variables, as label elements. Also, the same Boolean
variable could be used in more than one label. We rule out such unwanted restrictions and
interdependencies with the following definition of standard tree assignments and tree models.

Definition 2.69 (Standard Tree Assignment/Tree Model). Let ¥ = (Vars, Names, Typ) be a
standard signature over a standard type structure 2. Let E be a finite type environment for
2, and let M be a finite standard type model for . Let T and M be a tree assignment and
a tree model, respectively, for ¥ (wrt. E and M). We say that T and M are standard (wrt.
each other) iff

1. T(zs) € Treeysty, for every z, € Termsy, (where x € Vars, o € Typesg); and

2. M(cy) € Treepsty, for every ¢, € Termsy, (where ¢ € Names, o € Typesg,), provided ¢, is
not equal to = pool—bool—bool; and ¢, is not equal to =,/ 5/ ool for any o’ € Typesq;
and

3. M(= pool—bool—bool) = Node([Node([Top, Bot]), Node([Top, Top])]), where Top and
Bot abbreviate Leaf([True, False]) and Leaf([False, True]), respectively; and

4. for every o € Typesq, M(=y_4—bool) = Node([Node(UV¥),..., Node(UV¥)]), where
k= |[o] g 5| and UVE is defined as the list [ty,...,t;] that is given by

b Top ifi=mn;
v Bot otherwise;

and

5. each Boolean variable occurs at most once as the element of a label in the range of T and
M, i.e. no label contains the same Boolean variable more than once, and no two labels
contain the same Boolean variable.

The first condition states that trees for variables may only use Boolean variables in labels,
but no other propositional formulae. The second condition imposes the same restriction on
trees for constants (other than implication and equality, whose meanings are fixed, and hence
the corresponding trees are fixed by the third and fourth condition, respectively). The last
condition allows us to interpret different terms—and moreover a function’s values for different
arguments—independently of each other.

Remark 2.70. Without loss of generality we may assume that standard tree assignments and
tree models for our fixed standard signature ¥ (over the fixed standard type structure) exist.

Proof. Regarding conditions [1| and [2| note that any function f: P — B, if applied to every
label element of a tree in Trees(o), will yield a tree in Treeps, N Trees(o). In particular,
Treerist, N Trees(o) # 0 for any type o € Typesq.

28 CHAPTER 2. FINITE MODEL GENERATION

Conditions |3| and {4 are trivially satisfiable: Node([Node([Top, Bot]), Node([Top, Top])]) €
Trees(bool — bool — bool), and Node([Node(UVY¥), ..., Node(UV¥)]) € Trees(c — o — bool)
for any type o € Typesq (where k = [[o] g y/])-

For condition |5, recall that our only requirement on 2 = (TyVars, TyNames, TyArity) and
Y. = (Vars, Names, Typ) so far, aside from being standard, was that the input formula tpee is
in Termsy. Therefore we can choose sufficiently small sets for TyVars, TyNames, Vars and
Names to allow the Boolean variables used as label elements (which are drawn from the infinite
set B) to be distinct. O

The rationale behind Def. 2.69] is the following. For any tree assignment and tree model that
are standard wrt. each other, we want the existence of a variable assignment and standard term
model that assign certain meanings to variables and constants, respectively, to be equivalent
to the existence of a well-formed truth assignment that assigns the same meanings to the trees
that correspond to these variables and constants. This property indeed holds, as shown by the
next lemma.

Lemma 2.71. Let ¥ = (Vars,Names, Typ) be a standard signature over a standard type
structure 2. Let E be a finite type environment for Q, and let M be a finite standard type
model for Q. Let T and M be a tree assignment and a tree model, respectively, for ¥ (wrt. E
and M). Assume that T and M are standard (wrt. each other). Let t, € Termsy.

For every variable assignment A and standard term model M (for ¥) there ezists a truth as-
signment A that is well-formed wrt. T(FreeVars(t,)) U M (Names(t,)) such that [2o] anm =
[[T(ng)]]a,yA for every x5 € FreeVars(t,), and [cor]ypq = [[M(cof)]]U,A for every c, €
Names(ty).

Also, for every truth assignment A that is well-formed wrt. T (FreeVars(t,)) U M (Names(t,)),
there exist a variable assignment A and standard term model M (for) such that [[330’]],4,/\4 =

[T(xaf)]]g,A for every xy € FreeVars(t,), and [cor]y 4 = [[M(CU/)]]U,A for every cy €
Names(ty).

We prove an auxiliary lemma first, namely that trees of Boolean variables satisfying the dis-
tinctness condition of Def. can denote any particular element of their corresponding type’s
meaning if a suitable truth assignment is chosen. In addition, we may assume that this truth
assignment is well-formed.

Lemma 2.72. Let Q = (TyVars, TyNames, TyArity) be a standard type structure, let E be a
finite type environment for), and let M be a finite standard type model for Q. Furthermore,
let o0 € Typesq, and let t € Trees(o) N Treerist, such that t satisfies condition @ of Def. .

Then for any d € [[U]]E,M there exists a truth assignment A: B — B that is well-formed wrt. t
such that [t], 4, = d.

Proof. By structural induction on o. If o € TyVars or 0 = (071,...,0,)c with ¢ € TyNames \
{—1}, then t = Leaf([z1,...,z]) for some z1, ..., 2 € B, where k = |[o] 5[Let [o]g 5 =
[d1,...,dx], and assume d = d; (for some 1 < i < k). In this case, define A: B — B by

Alz) T, ifx=ux;
x) =
1, otherwise.

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 29

Note that x1, ..., z are distinct due to Def. In particular, z; = x; (for 1 < j < k) if
and only if j = . Using this, one easily verifies that A is well-formed wrt. ¢ (Def. [2.62)), and

that [t], 4 = d; as required (Def. .

If o = 01 — o2 with o1, 02 € Typesq, then t = Node([t1,...,t;]) for some 1, ..., tx €
Trees(o2), where k = [[o1] g s|- Let [dy, ..., di] = [o1] g 5;- Then d, as a function from [o1] g
to [o2] g s is given by d = {(d1,d(d1)), ..., (dy,d(dy))}, where d(d1), ..., d(dk) € [o2] gy
In this case the induction hypothesis yields truth assignments A;, ..., Aix: B — B such that
each A; (for 1 <4 < k) is well-formed wrt. ¢, [t;], 4, = d(d;), and without loss of generality
Ai(x) = T only for variables x € B that occur as label elements of t;. Now define A: B — B
by

A is well-formed wrt. each t; because Def. implies that the label elements of each tree ¢;
(for 1 < j <k, j # i) are disjoint from those of ¢;; hence A;(x) = L for each j # i, where z is a
label element of ¢;. Therefore A is well-formed wrt. ¢ (Lemma [2.63). Moreover, [t;], 4 = d(d;)
for the same reason. This immediately implies [t] oA =10 (Det. [2.60)). O

The proof of Lemma, follows.

Proof. Assume that A is a variable assignment and M is a standard term model for 3. Since
T and M are standard, we can use Lemma [2.72 “ to obtain well-formed truth assignments
Az, (for every z, € FreeVars(ty)) and A, , (for every c,» € Names(t,), provided ¢,/ is not
equal t0 = pbool—bool—bool, and ¢,/ is not equal to =, _.; ool for any 7 € Typesg) such that
[[T(xo’)]]a',Aza/ = [vo/] 4 g and [[M(CU’)]]U,ACG, = [co'] g p- Now define A: B — B by

Ag ,(v), if vis a label element of T'(z4);
A(v) == ¢ A, (v), if vis alabel element of M(c,);
1

, otherwise.

Condition 5| I of Def. [2.69 mensures that A is well-defined. A is well-formed wrt. T'(FreeVars(t,))U
M (Names(t,)) because each truth assignment A, , and A, , is well-formed wrt. T'(z,/) and
M (c,r), respectively. Furthermore, [2,] AM = [T(z5)], a for every z,/ € FreeVars(t,), and

leol g q = [M(cor)], a for every ¢y € Names(t,) (Where conditions |3 I and (4 I of Def.
are needed for imphcatlon and equality terms, respectively). This proves the first part o the

lemma.

Next, assume A: B — B is a truth assignment that is well-formed wrt. T (FreeVars(t,)) U
M(Names(s)). Then [T(x,1)] oA € [0y for every z,/ € FreeVars(t,), and [M(c,)], 4 €
[0’ 5 as for every ¢, € Names(t,) by Lemma [2.66} - Thus we can simply define the variable
asmgnment A and the term model M by

A(@o) = [T(26)] 0,4

for z,, € FreeVars(t,), and
M(cor) = [M(co)] 5 a

30 CHAPTER 2. FINITE MODEL GENERATION

for ¢, € Names(t,) U { = bool—bool—bool} U {=r—7—bool | T € Typesq} (where we extend
A and M to other variables and constants in an arbitrary fashion). Conditions |3| and 4] of
Def. imply that M is standard. This concludes the proof of the lemma’s second part. [

Lemma [2.71] establishes the close connection between the existence of HOL models and propo-
sitional models that we need to show satisfiability equivalence of our translation for the base
cases of variables and constants.

A-Abstraction

To simplify notation, we introduce an auxiliary operator map (well-established in functional
programming) which applies an argument function to every element of a list.

Definition 2.73 (map). Let X, Y be sets. For f: X — Y and [z1,...,2,] € Listx, define

map(f, [z1,...,2n]) = [f(x1),..., f(zn)].

Remark 2.74. For f: X — Y a function and | € Listx, we have map(f,l) € Listy, i.e.
map(f,-): Listx — Listy. Furthermore, [and map(f,1) have the same length.

Proof. By structural induction on /. O

Lemma 2.75. Let f: X — Y, g: Y — Z be two functions, and let | € Listx. Then
map(g, map(f,1)) = map(go f,1).

Proof. By structural induction on /. O

We now define trees whose leafs are labeled with lists of propositional constants (i.e. True and
False) only, and where exactly one element in each label is True, while all others are False.
Independently of the truth assignment, these trees denote specific (i.e. the first, second, ...)
elements of their corresponding type. Moreover, we can define a function consts which returns
trees corresponding to a type’s elements in the correct order. This function will be used in the
translation of A-abstractions, whose body needs to be evaluated separately for each possible
value of the bound variable.

Definition 2.76 (Propositional Unit Vector). For 1 < n <k, uvf;, the n-th propositional unit
vector of length k, is defined as the list [p1,. .., px] € List{mye Faise} that is given by

) True if i =n;
v False otherwise.

Definition 2.77 (Constant Trees). Let 2 = (TyVars, TyNames, TyArity) be a standard type
structure, let E be a finite type environment for €2, and let M be a finite standard type model
for Q2. For o € Typesq, the constant trees for o (wrt. E and M), written consts(o), are defined
as follows:

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 31

1. If o € TyVars or 0 = (01,...,0p)c with ¢ € TyNames \ {—}, then
consts(o) := [Leaf(uv¥), ..., Leaf(uv})],
where k = |[o] g /-
2. If 0 = 01 — o9 with 01, 02 € Typesq, then
consts(o) := map(Node, pick(k, consts(o2))),
where k = [[o1] g 5]-

Example 2.78. As an example, consider the constant trees for bool (wrt. an arbitrary finite
type environment and finite standard type model). Using the canonical order on B (Def. ,
the tree for T is given by Leaf([True, False]), while the tree for L is given by Leaf([False, True]).

Remark 2.79. Let 2 be a standard type structure, let ' be a finite type environment for €2,
and let M be a finite standard type model for Q. For o € Typesq, consts(o) is a list of length
lo] s, Where each list element is in Trees(o) N TreeList 1,y parse; -

Proof. By structural induction on o. If o € TyVars or 0 = (071,...,0,)c with ¢ € TyNames \
{—1}, the claim follows immediately from Def. and Def.

If o0 = 01 — 02 with 01, 02 € Typesq, then consts(oz) has length |[o2] 5 5| by the induction
hypothesis. Hence consts(o) has length |[o2] 5 /¥ (Remark and Remark , which is
equal to [[o] g /| = [[o1 — o2l | = |[[02]]E7M||[[‘71]]E,M‘ since M is standard (Remark .

That each list element is in Trees(o) NTreerist, g, False} also follows from the induction hypoth-
esis, together with Remark and Remark (and of course Def. [2.58]). O

The key property of consts(co) is stated and proved below.

Lemma 2.80. Let € be a standard type structure, let E be a finite type environment for €,
and let M be a finite standard type model for 2. Furthermore, let o € Typesq, and let A be
an arbitrary truth assignment. Then

map([-], 4, consts(a)) = [o] g ps-

Proof. By structural induction on o. If o € TyVars or 0 = (071,...,0,)c with ¢ € TyNames \
{—1}, the claim follows immediately by unfolding the relevant definitions (i.e. Defs.
2.73, and . Note that the semantics of a tree in Treerp;s (True.palse) 1S independent of the
truth assignment A.

If 0 = 01 — 09 with o1, 09 € Typesq, then

map([-]]U,A’ consts(o)) map([-]]0714, map(Node, pick(] [[0'1]]E7M|, consts(02))))

map([[-], 4 o Node, pick(|[o1] g [, consts(o2)))

[N

map([-]]a,A o Node, [[UlﬂE’M — consts(o2))

I3

[o1] g.ar — map([-], 4, consts(o2))

[[UlﬂE,M - [[U2HE,M

¥

[[U]]E,M7

32 CHAPTER 2. FINITE MODEL GENERATION

where we again identify functions over the (finite and totally ordered) domain [o1]p 5, with a
list of their values. O

Lemma shows that consts(c) enumerates trees corresponding to the elements of o] ,,
in the correct order. Moreover, since a constant tree only carries propositional unit vectors as
leaf labels, any truth assignment is well-formed wrt. the tree.

Lemma 2.81. Let Q) be a standard type structure, let E be a finite type environment for €,
and let M be a finite standard type model for Q). Furthermore, let 0 € Typesq, let t be a
constant tree for o, and let A be an arbitrary truth assignment. Then A is well-formed wrt. t.

Proof. This is an immediate consequence of Lemma [2.80] with Lemma [2.66 O

Alternatively, it can easily be seen directly also, by structural induction on o.

Application

Functions of arity n are represented by trees of height n + 1. Intuitively, when a function is
applied to the i-th element of its domain, the result is given by the i-th subtree of the tree
representing the function. As mentioned earlier, the function may be higher-order, i.e. its
argument may be a function again. In this case the argument is itself represented by a tree of
height > 1.

We define a function enum that tells us if a tree denotes the i-th element of its corresponding
type. More precisely, enum(t) returns a list of propositional formulae, where the i-th formula
of the list evaluates to T iff the tree ¢t denotes the i-th element of its corresponding type.

If t is a tree representing a function, we want to employ pick (Def.[2.46]) to define enum. A minor
complication in this case is caused by the fact that pick(n,Y’) returns (an enumeration of) Y,

while for the definition of enum, we need a more general function pick” with pick’([Y,...,Y,]) =
Y1 x - XY, (where Y7 x--- x Y, is again equipped with the lexicographic order obtained from
the individual orders on Y7, ..., Y,). We define pick’ first.

Definition 2.82 (pick’). Let n > 1, and let Y; (for 1 < i < n) be finite, non-empty and totally
ordered, with Y7 = [y1,...,ym] (for some m > 1). Define

pick'([Y1]) == [[y1], .- -, [ym]],
and for n > 1 define
pick([Y1,Ya, ..., Vo)) o= [n#f1, o i # frs ooy YmES1s - Ym#E L2,

where [f1,..., fr] = pick'([Ya, ..., Yy]).

Remark 2.83. For n > 1 and Y; (for 1 < ¢ < n) finite, non-empty and totally ordered,
pick’([Y,...,Y,]) is a list in Listrs, (where Y :=J ;) of length [, |Y;|, and each list
element (which is again a list) has length n.

Proof. By induction on n. O

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 33

Lemma 2.84. Let n > 1, and let Y; (for 1 < i < n) finite, non-empty and totally ordered.
Then
pick’([Y1,...,Y,]) =Yy X -+ x Y,

where Y1 X - -+ X Yy, is equipped with the lexicographic order.

Proof. By induction on n, using Def. (adapted for cartesian products), and Def. of
course. 0

Another auxiliary function /\, which returns the conjunction of a (non-empty) list of formulae,
is needed as well.

Definition 2.85 (A). For 1, ..., ¢, € P, n > 1, define
/\([(Pla"-a(pn]) =1 AN ANpp.

The definition of enum follows.

Definition 2.86 (enum). Let 2 be a standard type structure, let E be a finite type envi-
ronment for €2, and let M be a finite standard type model for 2. Let o € Typesq, and let
t € Trees(o). Then enum(t) is defined as follows:

1. If t = Leaf([p1, ..., pk]) for some @1, ..., pr € P, then
enum(t) = [3017 SRR ‘Pk]
2. If t = Node([t1,...,tx]) for some t1, ..., tx € Trees(o’) (where o’ € Typesg), then

enum(t) := map(/\, pick’(map(enum, [t1, . .., t]))).

Remark 2.87. Let ¢t € Trees(o). Then enum(t) € Listp is a list of length |[o] 5 5]

Proof. By structural induction on o. If 0 € TyVars or 0 = (071, ...,0,)c with ¢ € TyNames \
{—1}, the claim follows immediately from Def.

If 0 = 01 — 09 with o1, 02 € Typesq, then by the induction hypothesis enum(t;) € Listp
(for 1 < i < k, where k = [[o1] 5 5/| by Def. 2.58)) is a list of length |[o2]f 5,|. Hence
map(enum, [¢y,...,t;]) € Listriy, is a list of length £ by Remark Now Remark

implies that pick’(map(enum, [t1,...,#])) € Listris, is a list of length |[[02]]E7M|k, and from
this enum(¢) € Listp follows with Remark while Remark shows that the length is
equal to [[o] 5 5[O

The next lemma shows that enum indeed builds the desired list of formulae, where the i-th
formula is true iff the corresponding tree denotes the i-th element of its type.

Lemma 2.88. Let 2 be a standard type structure, let E be a finite type environment for), and
let M be a finite standard type model for Q. Let o € Typesq, and let t € Trees(o). Assume
enum(t) = [p1,...,¢x], and [0 = [di,...,dy] (where k = |[o] g pf]). Let A be a truth
assignment that is well-formed wrt. t. Then, for 1 <1i <k,

leda=T iff [t],a=di

34 CHAPTER 2. FINITE MODEL GENERATION

Proof. By structural induction on o. If o € TyVars or 0 = (071, ...,0,)c with ¢ € TyNames \
{—}, the “«<” direction of the equivalence follows immediately from Def. while the “="
direction uses the well-formedness of A (Def.|2.62)).

If o = 01 — o2 with 01, 02 € Typesq, then t = Node([t1,...,t;]) for some 1, ..., tx €
Trees(o2), where k = |[o1] 5 5] For 1 <i <k, let enum(t;) = [cpl, ..., i) for some @i, ...,
¢t € P (where | = [lo2] & ar])- In this case,

enum(t) = map(/\ pick’ (map(enum, [t1, . .., t])))
213 map(/\ pick’([enum(ty), . .., enum(t;)]))
251 map(/\ enum(ty) X - -+ x enum(ty))
= map(A. [let,. . ell et @)
TG At et
[p1 A AP, o A A,
hence the lemma follows with Def. and the induction hypothesis. O

To define the application of one tree to another, we need further auxiliary functions. An
analogue of the map function for trees, treemap(f,t), returns the tree that results from ap-
plication of f to every element of every leaf of t. merge(g,t1,t2) applies a binary function g
to corresponding leaf elements in two trees t; and t2 of the same shape. (Note that we will
need treemap and merge only for trees that are labeled with lists. The following definitions are
therefore adapted to this special case. They can easily be generalized to trees with arbitrary la-
bels, but this would require the use of treemap(map(f,-),t) in place of treemap(f, t)—likewise
for merge.)

Definition 2.89 (treemap). Let X, Y be sets. For f: X — Y and t € Treers,, define
treemap(f,t) as follows:

1. If t = Leaf([x1, ..., 2,]) for some z1, ..., x, € X, then
treemap(f,t) := Leaf([f(z1),..., f(zn)])-

2. If t = Node([t1,...,t,]) for some t1, ..., t, € Treepist, , then
treemap(f,t) := Node([treemap(f,t1),...,treemap(f,t,)]).

Remark 2.90. Let Q be a standard type structure, let E be a finite type environment for {2, and
let M be a finite standard type model for 2. Let o € Typesq. Let f: P — P and t € Trees(o).
Then treemap(f,t) € Trees(o).

Proof. By structural induction on o.]

Definition 2.91 (merge). Let X, Y be sets. For f: X x X — Y and ¢, ta € Treepg, , define
merge(f,t1,t2) as follows:

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 35

1. If t; = Leaf([ay, ..., ay]) and to = Leaf([by,...,by,]) for some aq, ..., ap, by, ..., by € X,
then

merge(f,t1,t2) := Leaf([f(a1,b1), ..., f(an,bn)]).

2. If t4 = Node([uy,...,uy]) and t2 = Node([vy,...,v,]) for some uy, ..., un, v, ...,
vp, € Treergt ., then

merge(f) t1, t2) = Node([merge(f, uy, /Ul)) s 7merge(f7 U, Un)])
3. Otherwise, merge(f,t1,t2) is undefined.

We extend the definition of merge to any non-empty list [¢1, ..., ¢,] of trees in Trees(o) by defin-

ing merge(f, [t]) := t1, and merge([, [t1, 12, .., tn]) := [(t1, merge(f, [ta,. .., tn])) (provided f
has type X x X — X, for some set X).

Remark 2.92. Let € be a standard type structure, let E be a finite type environment for
Q, and let M be a finite standard type model for 2. Let o € Typesg. For f: Px P — P
and t1, to € Trees(o), merge(f,t1,t2) is (defined and) in Trees(o). Furthermore, for ¢y, ...,
tn € Trees(o), n > 1, merge(f, [t1,...,ts]) is (defined and) in Trees(o).

Proof. The first claim follows by structural induction on o, while the second claim follows by
structural induction on the (non-empty) list [¢1, ..., ,]. O

Finally we can define a translation function apply which corresponds to function application.
apply (¢, u), where t is a tree representing a function, and u is a tree for the function’s argument,
is a tree that encodes the value of the function when applied to this specific argument. The
tree’s leafs are labeled with propositional formulae that simulate selection of the correct subtree
of ¢, based on the value denoted by the argument tree u.

Definition 2.93 (apply). Let Q be a standard type structure, let E be a finite type envi-
ronment for Q, and let M be a finite standard type model for . Let o', o € Typesq. Let
t € Trees(o’ — o) and u € Trees(o”). Assume t = Node([ty,...,t;]) with ¢1, ..., t; € Trees(o),
and enum(u) = [¢1,..., k| (where k = |[[0’]]E7M|). Define apply(t,u) as follows:

apply(t,u) := merge(V, [treemap((¢1 A +),t1), ..., treemap((@g A -), tx)]).
Remark 2.94. Let t € Trees(o’ — o) and u € Trees(o’). Then apply(t,u) € Trees(o).

Proof. Immediate, using Remark and Remark O

The following lemma shows that the meaning of apply is indeed that of function application.

Lemma 2.95. Let) be a standard type structure, let E be a finite type environment for €,
and let M be a finite standard type model for Q. Let o', o € Typesq. Let t € Trees(o’ — o)
and u € Trees(c’). Let A be a truth assignment that is well-formed wrt. t and u. Then

[apply (¢,)], 4 = [t]5r 0 a(lulyr a)-

36 CHAPTER 2. FINITE MODEL GENERATION

Proof. Assume t = Node([t1,...,tx]) with ¢1, ..., tx € Trees(o), and enum(u) = [p1, ..., Yk
(where k = [[0'] g 5/]). Furthermore, assume [o'] 5, = [d1, ..., dk], and [[uﬂ o1.4 = dj (for some
1 <j<k). Then [p;], =T, and for each 1 <7 < k with 4 75 J, lpila = by Lemma-

The proof is by structural induction on o.

If o € TyVars or 0 = (01,... Un)c with ¢ € TyNames \ {—}, then (for each 1 < i < k)

t; = Leaf([2,..., %)) for some ¢, ..., 2} € P, where | = [lo] g |- In this case,
233
[apply (t, u)]]U,A =" [merge(V, [treemap((p1 A +),t1),. .., treemap((¢x A +), tk)])]]a,A
[merge(V,
[Leaf([o1 Azl,...,1 Ax}]),. .., Leaf([pr A 2 op A l‘ﬂ)])]]UA
k
z91 i i
= [[Leaf([\/ i Nz, ..., \/cpi /\Il])]]UA
i=1 i=
60 - j
=" [Leaf([z],... ,$§D]]U,A
= [[t]]]o’,A
=0 [Node([t, -, ti])] —,4(d))
= ﬂt]]o"—m',A([[H ’A)
If 0 = 01 — 09 with 01, 09 € Typesg, then (for each 1 <1i < k) t; = Node([t¢, ... ,tﬂ) for some
th, ..., t € Trees(oz), where | = [fo1] g as- In this case,
233
[apply(t, u)], s B [merge(V, [treemap((g1 A), 1), ..., treemap((pi A), te)D], o

')
[merge(V, [Node([treemap((¢1 A -),t1), ..., treemap((¢1 A), 1)), - .,
t

Node([treemap((gy A), £), ... 7treemap((eok At a

230 [Node([merge(V, [treemap((p1 A -),t1), ..., treemap((px A), tH)]), .. .,
merge(V, [treemap((¢1 A -), 1), ..., treemap((@x A -), tF)])])

23 [Node([apply(Node([t, ..., t}]),u),. ..,
apply (Node([t] . .. /1), w)])] .4

lI=

[Node([t], .., #])], 4
[[tj]]a,A

[[NOde([tla ce >tk’])]]a’—>a,A(dj)
[[tﬂa’—»U,A([[u]]a’,A)'

g

O]

In particular, [apply (¢, u)] oA € [o] g Thus every truth assignment that is well-formed wrt.
t and u is also well-formed wrt. apply (¢, u).

Lemma 2.96. Let) be a standard type structure, let E be a finite type environment for €,
and let M be a finite standard type model for Q. Let o', o € Typesq. Let t € Trees(c’ — o)

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 37

and u € Trees(c’). Let A be a truth assignment that is well-formed wrt. t and u. Then A is
well-formed wrt. apply(t,u).

Proof. This is an immediate consequence of Lemma [2.95 and Lemma [2.66 O

Alternatively, and similar to Lemma|2.81], it can be proved directly also, by structural induction
on o.

Translation to Trees

Having considered variables, constants, A-abstraction and application, we are now ready to
define the translation 7 from terms to trees of propositional formulae. The translation is
parameterized by a tree assignment T', which is updated when the translation descends into
the body of a A-abstraction to give the tree for the bound variable. (Isabelle internally uses
de Bruijn indices [47] to represent bound variables, so in the actual implementation of our
translation, a mapping from indices—rather than variables—to trees is extended every time
a A is encountered. Terms with de Bruijn indices however are not particularly easy to read for
humans, and for the sake of clarity, we have instead chosen to use terms with variable names
in this presentation.)

Definition 2.97 (Translation from Terms to Trees). Let ¥ = (Vars, Names, Typ) be a signa-
ture over a standard type structure €2. Let E be a finite type environment for €2, and let M
be a finite standard type model for Q. Let T and M be a tree assignment and a tree model,
respectively, for ¥ (wrt. E' and M). The translation Tt j;(t;) of a term t, € Termsy, wrt. T
and M is defined as follows:

1. If t € Vars, then 77 y;(t5) == T(ty).
2. If t € Names, then T7 y;(to) := M (o).
3. If t, = (! t2,), for some t! t2, € Termsy, then

o' —o U’) o’'—o? Yol

T (to) = apply(T7 yz (tr o) Tr 1 (t21)).

4. If t, = (/\:cc,l.tfm)al_w2 for some x € Vars, 01 € Typesq and tf,Q € Termsy, then
T7 57 (ts) := Node([t1, ..., ta]),
where n = |[o1] g 5|, consts(o1) = [c1,...,¢,], and (for 1 <i < n)
ti = TT[xglb—rci},M (t:TQ)

We first prove that the translation of a term ¢, is an element of Trees(o).

Remark 2.98. Let t, € Termsy. Then 77 j;(t5) € Trees(o).

38 CHAPTER 2. FINITE MODEL GENERATION

Proof. The proof is by structural induction on t,. If ¢ € Vars or ¢ € Names, the claim follows
immediately from Def. 2.67] and Def. respectively.

If to = (th_,t2)s for some t},_, . t2, € Termsy, then 77 y(th,_) € Trees(a — o) and

T 51 (t2,) € Trees(o”) by the induction hypothesis. Hence T ;(t,) € Trees(o) by Remark-

If to = (Ao, t,,)01—0, for some x € Vars, o1 € Typesq and t),, € Termss, then T'[zy, — ¢
(for 1 <4 < n, where n = [[o1] g 5,| and consts(o;) = [c1,...,¢cp]) is a tree assignment for
Y (wrt. E and M) due to Remark [2.79] Hence each TT[IUI’_’C'LLM({::J'Z) (for 1 < i< mn)isin
Trees(oz2) by the induction hypothesis. Thus 77 y;(ts) € Trees(o1 — o2) (Def. [2.58)). O

Next we show that the translation preserves the meaning of terms (wrt. their HOL semantics,
while the meaning of the translation result is given by its tree semantics).

Theorem 2.99. Let ¥ = (Vars,Names, Typ) be a signature over a standard type structure
Q. Let E be a finite type environment for 2, and let M be a finite stcmd_m"d type model for
Q. Let A be a variable assignment and M be a term model for ¥. Let T and M be a tree
assignment and a tree model, respectively, for X (wrt. E and M). Let t, € Termsy. Suppose
A is a truth assignment such that [T(z,1)],1 4 = A(zs) for every z, € FreeVars(t,), and
[M(cg/)]]g@A = M(cy) for every c,r € Names(t,). Then

Trsa(to)], 4 = ol
Proof. The proof is by structural induction on t,. If t = z € Vars or t = ¢ € Names, the claim
follows immediately from [T(z,)], 4 = A(zo) or [M(c,)], 4 = M(co), respectively.

If t, = (t},__t2,), for some t!, and

o/'—o O’ o/—o? U’ S TeI‘I'IlSE, then [[TT M(o’ *}U):I]
[77, M(t?}/)ﬂo/ A= = [t2/] 4 o, by the induction hypothesis. Hence

o'—0,A HtU HU]].A,M

[[TT,M(%)]]G’A = I]:ti’/—>o’]],47_/\/l([[tg’/]]A7M)
by Lemma [2.95
If ty = (ATo, . 15,)01 -0, for some x € Vars, o1 € Typesg and t,,, € Termssy, then [77 y;(t5)]

o,A
is defined as the function that sends each d; € [[UlﬂE v (for 1. <@ < n, where n = [[o1] g 5l
loil g o = ldi, ..., dy)], and consts(o;) = [c1, ..., ¢)) to (770, , e 01 (t5,)] o Which is equal
k) O- T 0-27
o [t,,] Al di] M by the induction hypothesis and Lemma [2.80) O
o1 il

We now state the main result of this section: there is a well-formed truth assignment under
which the tree that results from translating ¢, denotes d € [o] 5 ,, if and only if there exist a
variable assignment A and a standard term model M such that [t,] 4\, = d.

Theorem 2.100. Let ¥ = (Vars, Names, Typ) be a standard signature over a standard type
structure 2. Let E be a finite type environment for 2, and let M be a finite standard type
model for Q. Let T and M be a tree assignment and a tree model, respectively, for ¥ (wrt.
E and M). Assume that T and M are standard (wrt. each other). Let t, € Termsy, and let

de [[O']]E7M.

There exist a variable assignment A and a standard term model M (for) such that

[tolanm =4d

2.3. TRANSLATION TO PROPOSITIONAL LOGIC 39

iff there exists a truth assignment A that is well-formed wrt. T (FreeVars(t,)) U M (Names(t,))
such that

177,52 (t)], 4 = d-

Proof. Assume that A is a variable assignment and M is a standard term model for > such
that [ts] Am = d. Then by Lemma there exists a truth assignment A that is well-
formed wrt. T(FreeVars(o)) U M(Names(t,)) such that [T(z,/)], 4 = A(z,) for every z, €
FreeVars(t,), and [M(c,)],/ 4 = M(c,) for every c,r € Names(t) Hence [77 y;(t)]]07,4 =d
by Theorem [2.99

For the other direction of the equivalence, assume that A is a truth assignment that is well-
formed wrt. T(FreeVars(tg)) U M (Names(t,)) such that [77 w(ts)], 4 = d. Then—again by
Lemma there exist a variable assignment A and a standard term model M (for ¥) such
that [T(:L‘U g4 = Alxor) for every 51 € FreeVars(t,), and [M(co)] 5 4 = M(cqr) for every
¢or € Names(t) Hence [[tg]] Am =dby Theoremm O

As an immediate corollary, a HOL formula is satisfiable iff its translation denotes T under
some well-formed truth assignment.

Corollary 2.101. Let X be a standard signature over a standard type structure . Let E be
a finite type environment for Q, and let M be a finite standard type model for Q. Let T and
M be a tree assignment and a tree model, respectively, for ¥ (wrt. E and M). Assume that T
and M are standard (wrt. each other). Let tpool € Termsy.

Then tpool s satisfiable wrt. E and M iff there exists a truth assignment A that is well-formed
wrt. T (FreeVars(t,)) U M (Names(t,)) such that [77,51 (tooo)] ooy 4 = T

Proof. Recall that a formula is satisfiable wrt. £ and M iff its meaning (wrt. some variable
assignment and standard term model for) is T. Choose ¢ = bool and d = T in Theo-
rem [2.100) O

Translation to Propositional Logic

T7 51 (tboot) is still not a propositional formula, but a tree in Trees(bool), i.e. of the form
Leaf (1, p2]) for some formulae ¢1, @2 € P. Obtaining a single propositional formula however
is a rather small final step now. By Def. and Def.

[Leaf([1, p2D)]poora = T iff [e1]ls =T and [po] 4, = L.

This motivates the following definition.

Definition 2.102 (Translation from Terms to Propositional Formulae). Let © be a standard
type structure, let E be a finite type environment for €2, and let M be a finite standard type
model for . Let ¥ be a signature over Q. Let T and M be a tree assignment and a tree
model, respectively, for 3 (wrt. E'and M). The propositional formula ¢r 7 (tboot) for a term
thool € Termsy, wrt. T and M is defined as follows:

&7 11 (tbool) 1= 1 A =02 A /\Wf((FreeVars(thool))) A /\Wf (Names(thoot)))

where 77, 17 (thoot) = Leaf([p1, @2]).

40 CHAPTER 2. FINITE MODEL GENERATION

A HOL formula tpeo is satisfiable (wrt. a fixed finite type environment and model) iff its
corresponding propositional formula is satisfiable.

Corollary 2.103. Let X be a signature over a standard type structure Q). Let E be a finite
type environment for Q, and let M be a finite standard type model for Q. Let T and M be a
tree assignment and a tree model, respectively, for ¥ (wrt. E and M). Assume that T and M
are standard (wrt. each other). Let tpoo € Termsy.

Then tpool is satisfiable wrt. E and M iff ¢T7]\7[(tbool) is (propositionally) satisfiable.
Proof. This is a direct consequence of Corollary and Lemma O

We have thus defined (and proved correct) a satisfiability-equivalent translation from HOL to
propositional logic, which is exactly what we had set out to do at the beginning of this section.

2.3.4 Examples
As an example, consider the formula

thool 1= (()\xa'xa)a—wc = (a—a)—(a—a)—bool ya—»a)bool

(with = written in infix notation). Its only type variable is «, and its only free variable is yo—q-
Assume E is a type environment with E(«) = [a1, az], and let M be an arbitrary standard
type model (hence [[ar — a] g 5/ = 22 = 4). A possible standard tree assignment T is given by

T (Ya—a) := Node([Leaf ([y1, yo]), Leaf ([y3, y4])]),

where 41, y2, y3, y4 are four distinct Boolean variables. Furthermore, let M be an arbitrary
standard tree model.

The subterms of tpoo are then translated into the following trees:

T7 j1((ATa- Ta)a—a) = Node([Leaf([True, False]), Leaf([False, True])]),
TT,M(:(aﬁa)ﬁ(aaa)ﬁbool) = NOde([NOde(UV%)’ S ,NOdG(UVi)]),
17 51(Ya—a) = Node([Leaf([y1, y2]), Leaf([ys, ya])])-

Using the translation rule for application (and simplifying the resulting formulae), we thus
have
TT,M(:(a—»a)a(aaa)—»bool (AZa- Ta)a—a) = Node([Bot, Top, Bot, Bot])

(where the position of Top reflects that the identity function, due to the use of the lexicographic
order, is the second element of the function space o — «] g.r) and

T7 17 (tooot) = Leaf([y1 A ya, (y1 Ays) V (Y2 Ays) V (Y2 Aya)]).
Additionally two well-formedness formulae are constructed for T(yo o), namely

wi([y1,v2]) = ~y1 V —y2

2.4. MODEL GENERATION 41

Property /Formula Countermodel

“Every function that is onto is invertible.” E(«) = {a1,a2}, E(8) = {b1}
(Vy.Fz. fo=y) = (Jg.Va.g(fz)=2) f={(a1,b1),(az,b1)}

“There exists a unique choice function.” E(a) ={a1}, BE(B) = {b1,b2}
(Vz.Jy. Pzry) = (3f.Vo.Pa (fx)) P ={(a1,{(b1,T), (b2, T)}H}
“The transitive closure of AN B is equal to E(a) = {a1,a2}

the intersection of the transitive closures of A = {(a1,as2), (a2, a1), (az,a2)}
A and B B ={(a1,a1), (az,a1), (az,as2)}

Table 2.1: Refutable HOL formulae (examples)

and
wi([ys, y4]) = Y3 V —a.

Hence the only satisfying assignment for ¢z y;(tbool) is given by A(y1) := A(ys) := T, A(y2) :=
A(ys) := L. This assignment corresponds to an interpretation of y,—. as the function that
maps a; to a; and az to ag (i.e. as the identity function on {a1,as}, which is of course just
what the original formula states: namely that y,—.o is equal to the identity function). On
the other hand, there are three well-formed falsifying assignments; e.g. A'(y1) := A'(y3) := T,
A'(y2) := A'(ys4) := L. This particular assignment corresponds to an interpretation of yo—q
as the function that maps both a1 and as to ay.

Table shows a few examples of formulae for which our algorithm can automatically find a
countermodel. Type annotations are suppressed, and functions in the countermodel are given
by their graphs. “3!” denotes unique existence, defined as usual:

(Jz.Pz) := (Ir. Px AN (Vy. Py = y =1x)).

The countermodels are rather small, and were all found within a few milliseconds on a current
personal computer. The main purpose of these examples is to illustrate the expressive power
of the underlying logic. Some larger case studies are discussed in Chapter

2.4 Model Generation

Translating the HOL input formula to propositional logic, while crucial, is only the first part of
the task that the model generation algorithm must accomplish. Next, a satisfying assignment
for the resulting propositional formula must be found, and this assignment must be translated
back into a HOL model, which is then displayed to the user of the Isabelle system. If no
satisfying assignment can be found, the translation is repeated for larger types.

2.4.1 Finding a Satisfying Assignment

Satisfiability of the resulting propositional formula can be tested with an off-the-shelf SAT
solver. To this end translations into DIMACS SAT and DIMACS CNF format [50] have been
implemented. The translation into SAT format is trivial, whereas CNF format (supported by
zChaff [119], BerkMin [59] and other state-of-the-art solvers) requires the Boolean formula to

42 CHAPTER 2. FINITE MODEL GENERATION

be in conjunctive normal form. We translate into definitional CNF [161] to avoid an expo-
nential blowup at this stage, introducing auxiliary Boolean variables where necessary. A more
sophisticated CNF conversion might further enhance the performance of our approach [83].

Isabelle/HOL runs on a number of different platforms, and installation should be as simple
as possible. Therefore we have also implemented a naive DPLL-based [45], [I78] SAT solver in
Isabelle. This solver is not meant to replace the external solver for serious applications, but
it has proved to be efficient enough for small examples. Hence it allows users to experiment
with the countermodel generation without them having to worry about the installation and
configuration of an additional tool that is external to Isabelle/HOL.

If the SAT solver cannot find a satisfying assignment, the translation is repeated for a larger
type environment and standard type model. Details of this loop are explained in the following
paragraphs.

2.4.2 Type Environments and Type Models

The translation to propositional logic defined in Section [2.3| requires that we fix a finite type
environment F and a finite standard type model M, at least for those—finitely many—type
variables and type constructors, respectively, that occur in the typing of tpe0. Remember that
types denote non-empty sets. Initially, we fix £ and M such that each type variable and
each type constructor (other than bool and —) is mapped to a singleton set. If translating
thool Wrt. this type environment and model yields an unsatisfiable propositional formula, we
proceed by employing a function that incrementally assigns larger sets to types. After the
initial assignment of singleton sets, we try every assignment which maps but one type to a
singleton set, and the remaining type to a two-element set. Next, every assignment is tried
which maps either two types to two-element sets, or one type to a three-element set (and all
remaining types to singleton sets). In this way we can enumerate all possible assignments of
(finite, non-isomorphic) sets to the types that occur in tpee: if there are k > 1 types in tpool,
and the total number of individuals (i.e. the sum of the sizes of sets assigned to these types) is
n > k, then after assigning one individual to each type, there are n — k individuals which can
be assigned to types freely; hence there there are

<Z:11) - (Z:D " (& —(?)!_(i)i k)l

assignments to consider. If kK = 0, i.e. o0 contains no types other than bool and —, whose
interpretation is fixed, then translating tpoo once will determine its satisfiability.

Note that it would clearly not be sufficient to assign the same size to every type. Consider the
formula

(Elfra Ya- T 7é ya) A (V(L’g Y- Tp = yﬂ)
for example, which states that type « has size at least 2, while type § has size 1. This formula
is obviously satisfiable wrt. a finite model, but using equinumerous sets to interpret a and
would not find this satisfying model.

On the other hand, any enumeration of all assignments (of positive sizes to types) would do
for our purposes. Using the enumeration described above, which minimizes the sum of the
sizes of all sets that are assigned to types, was merely a design choice, driven by our desire to
obtain small models.

2.4. MODEL GENERATION 43

fun find_model (t : term) : type_environment * type_model x
tree_assignment * tree_model * truth_assignment =
let
V = ty_vars t
T = ty_names t
F = free_vars t
N = names t
E := singleton_type_environment V
M := singleton_type_model T
T := tree_assignment (F, !'E, M)
M := tree_model (N, !E, M)
sat := sat.solver (¢p; t)
in
while (!sat = Unsatisfiable) do
(
(E, M) := next_type_environment_and_model (!E, M)
T := tree_assignment (F, !E, IM);
M := tree_model (N, !E, M);
sat := sat_solver (¢py t)
('E, 'M, 'T, M, !sat)
end

Figure 2.1: Model generation algorithm

There also is a practical need however to consider small models first, namely performance.
Translation time and memory requirements to a large extend depend on the sizes of the types
involved, and assigning large sets to types may make a translation of the input formula practi-
cally infeasible. Therefore assigning the same size to every type may not be a good idea even
for those input formulae for which we can (e.g. due to syntactical restrictions) guarantee that
this will in theory not miss all satisfying models: it is not unlikely that the smallest satisfying
model that meets the same-size property is beyond the practically feasible search space, while
at the same time a practically feasible satisfying model which assigns different sizes to types
may exist (but would not be found). More sophisticated analyses (e.g. from [I38]) could be
used to obtain bounds on the necessary size of types, but this hasn’t been implemented yet.

2.4.3 The Algorithm

Figure 2.1 depicts a simplified version of the overall model generation loop in SML-style pseudo
code. We know from Corollary that this algorithm is sound and complete, i.e. that
find_model t will return with a type model and satisfying truth assignment if and only if the
input formula ¢ is satisfiable wrt. a finite model, provided

e functions tree_assignment and tree_model return a standard tree assignment and tree
model, respectively; and

44 CHAPTER 2. FINITE MODEL GENERATION

e function next_type_environment_and_model implements an enumeration of all possible
size assignments to types, as discussed in Section [2.4.2} and

e the underlying SAT solver is sound (i.e. will not claim an unsatisfiable formula to be
satisfiable) and complete (i.e. will find a satisfying assignment for the input formula if
the input formula is satisfiable); and

e the function is given unbounded space and time.

If t is not satisfiable wrt. any finite model, then find_model t will loop forever.

In practice, neither unbounded memory nor unbounded time are available. In fact, Isabelle
is an interactive system, and the average user hardly wants to wait more than a few seconds
for feedback from the (counter-)model search. Therefore several termination conditions can be
specified: a minimal and maximal size for types, a limit on the number of Boolean variables
to be used, and a runtime limit. As soon as either limit is exceeded, the loop terminates. In
case t only contains types bool and —, the SAT solver is called at most once.

These are rather simple termination conditions, and implementing them was mostly straight-
forward. Bounded time execution however posed a bit of a technical challenge, and there-
fore deserves a more detailed discussion. It is achieved via a function timeLimit of SML
type time — (a — ’b) — ’a — ’b, whose actual implementation is compiler-specific. Under
SML/NJ [56], the TimeLimit structure provides the needed functionality. Under Poly/ML [99],
no such structure is available. Therefore we had to implement the functionality ourselves.

There are two essentially different approaches to implementing bounded time execution: first,
the function to be executed can repeatedly check in an inner loop whether it should terminate
prematurely. Second, the function to be executed is executed in parallel with a monitor
function, whose only purpose is to terminate the former when the specified amount of time has
elapsed. Since the first (cooperative) approach has the disadvantage of relying on the worker
function to be modified in a proper way to support bounded time execution, we decided to
implement the second (preemptive) approach, which provides functionality similar to that of
SML/NJ’s TimeLimit structure.

Getting concurrent applications right is notoriously hard however, and despite our final im-
plementation of the timeLimit function consisting of a few lines of code only, our experience
is no different. First, we tried installing a handler function for the Posix.Signal.alrm signal
via Signal.signal and calling Posix.Process.alarm with the desired timeout value. Several at-
tempts to obtain a stable implementation this way failed due to bugs related to signal handling
in the Poly/ML runtime implementation. Under Poly/ML 5.0, we now use the Process struc-
ture (whose process model is based on Milner’s CCS [114]) to create two console processes;
one which sleeps for the specified amount of time before sending a timeout flag to the result
channel, and one which performs the computation of f(x), sending the result to the same
channel when it is available. A call to Process.receive in the main process blocks until either
the timeout flag or the actual function value has been sent. Function f should not manipulate
the timer used by Posix.Process.sleep.

Various bugs in the Poly/ML runtime implementation were uncovered and subsequently fixed
in the course of this work. Particularly unpleasant was a race condition between process cre-
ation/termination and garbage collection, which would infrequently cause our code to produce
a segmentation fault. Due to its sporadic nature, this bug required extensive testing before

2.5. CONCLUSION 45

it could be reproduced and tracked down. It has been fixed by David Matthews in Poly/ML
Version 5.0 [98].

Still, minor problems remained: Poly/ML’s scheduling algorithm did not always assign enough
CPU time to the timer process, which then could not indicate a timeout when (or soon after)
the specified time had elapsed. While we could use further communication between the timer
and the worker process to ensure that the timer process receives some time from the scheduler,
there was no way to guarantee that the timer process was scheduled with sufficient priority to
complete its task. The latest version of Poly/ML, Version 5.1, therefore abandons the CCS-
based process model in favor of a Thread structure [100] that implements the POSIX Threads
standard [78]. This structure provides new primitives that allow to implement the timeLimit
function without the issues mentioned above.

2.4.4 Building the HOL Model

The satisfying truth assignment returned by the SAT solver (and then by the find model
function) assigns truth values to Boolean variables that were introduced only as intermediate
artifacts by the translation from HOL to propositional logic. These variables have no meaning
by themselves. Hence there is little point in displaying the satisfying truth assignment to
the user directly. Instead, from the truth assignment, the type environment/model, and the
tree assignment/model, we should build the corresponding HOL variable assignment and term
model, which then need to be rendered in a human-readable form.

This is quite straighforward, and essentially just involves computing the meaning (cf. Def.
of those trees that were assigned to the input term’s variables and constants by the given tree
assignment and tree model, wrt. to the truth assignment returned by the SAT solver. There
is a twist to this however. Instead of mapping terms to (string representations of) semantic
values, we map terms to terms again. Suppose type « is given by the set {a1,...,a,}. We then
introduce constants al, ..., a? as actual Isabelle terms, and map z,, to the term a, (for some
1 <4 < n). Likewise, variables of type bool are mapped to either Truepoo or Falsepool, rather
than to semantic values T and L. Finally functions are mapped to a set of (argument, value)
pairs, where the argument ranges over all (constants for) elements of the function’s domain,
and the corresponding values are given by the meaning of the function’s tree.

Interpreting terms as terms in particular allows us to use Isabelle’s pretty-printing facilities for
terms to display the model. This may appear to be a small advantage at the moment, as we
could easily have implemented pretty-printing for ground types, bool, and functions ourselves.
It will turn out to be very useful however when we extend the translation to cover datatypes (see
Section, elements of which can then be printed with any user-defined syntax that may exist
for them in the Isabelle system: e.g. lists as “[a, b, c]” instead of “Consa (Consb (ConscNil))”,
or pairs as “(a,b)” instead of “Pairad”.

2.5 Conclusion

We have presented a translation from higher-order logic to propositional formulae, such that
the resulting propositional formula is satisfiable if and only if the HOL formula has a model of
a given finite size. A correctness proof for the translation was given in this chapter. A working

46 CHAPTER 2. FINITE MODEL GENERATION

implementation, consisting of roughly 3,500 lines of code written in Standard ML [115], is
available in the Isabelle/HOL theorem prover. A standard SAT solver can be used to search
for a satisfying assignment for the propositional formula, and if such an assignment is found,
it can be transformed into a model for the HOL formula. This allows for the automatic
generation of finite countermodels for non-theorems in Isabelle/HOL. A similar translation
has been discussed before [81]; our main contributions are its extension to higher-order logic,
a proof of its correctness, and the seamless integration with a popular interactive theorem
prover.

The applicability of the algorithm is limited by its non-elementary complexity. We believe
that the algorithm can still be useful for practical purposes, since many formulae have small
models (and small order). To substantiate this claim, some case studies are carried out in
Chapter [4. First however, a number of extensions to the basic algorithm that was presented
here are discussed in the following Chapter

You know you will never get to the end of the journey. But this, so

far from discouraging, only adds to the joy and glory of the climb.
Winston Churchill, 1874-1965.

Chapter 3

Extensions and Optimizations

The actual Isabelle/HOL system offers various extensions on top of the basic HOL
logic, mostly to improve usability. Among them are datatypes and recursive func-
tions, axiomatic type classes, set types and extensible records. In this chapter we
discuss how the translation to propositional logic can be augmented to cover these
extensions, and also how it can be improved to generate smaller propositional for-
mulae.

3.1 Introduction

The basic HOL logic described in Chapter 2| as implemented in the Isabelle/HOL system,
has been augmented with several extensions. There are packages that provide the user with
convenient means to define datatypes, recursive functions, axiomatic type classes, sets and
records, and more. Figure [3.I] shows a dependency graph for some of these packages.

Their basic purpose, at a conceptual level, is similar: to let the user define objects in a concise,
accessible and safe way, and handle the necessary translation from this description into the
logic. The translation itself can be done in various ways. We distinguish the axiomatic, the
definitional and the internal approach. The axiomatic approach simply asserts the properties
that the user has stated about an object as new axioms of the theory under consideration.
This is the easiest approach (especially from a package implementor’s point of view), but also
the most dangerous one. No logical means ensure that an object with the desired properties
in fact exists, which makes introducing inconsistencies all too easy. Therefore the definitional
approach is usually the approach of choice in the Isabelle system, even though it puts a much
greater burden on the package. This approach requires new objects to be defined in terms
of existing ones, and their properties derived (and proved), rather than just asserted. The

47

48 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

HOLCF

HOL

primrec | I _——> record
\

datatype
}

constdefs | _—"

o i

is used in Pure

axclass typedef

Figure 3.1: HOL package structure

current datatype package for example uses this approach [25]. For some concepts however,
neither approach is feasible, because the underlying logic does not allow to define them. In
this case the logic itself needs to be extended, and new objects are encoded internally, i.e. in the
extended logic, rather than through added axioms or definitions. Axiomatic type classes [170]
are an example of this.

The translation to propositional logic must be extended before it can properly deal with the
various features present in the Isabelle/HOL implementation of higher-order logic. This also
can be done in several ways, which roughly correspond to the axiomatic, definitional, and
internal approaches described above. When a formula containing certain constants or types
is translated, it is often sufficient to translate a set of relevant axioms, e.g. a constant’s defi-
nition, along with the given formula to sufficiently restrict the possible models that the SAT
solver may find. This straightforward solution may not always work however, perhaps because
those relevant axioms mention infinite types (which would prevent us from finding any finite
models at all), or perhaps because translating those axioms might pose a performance issue.
Therefore some features require the translation to be extended in a more direct (and usually
more involved) way, to interpret HOL concepts in propositional logic such that their relevant
properties are implicitly preserved. Also a combination of both approaches can be used, where
some properties are preserved by the translation itself, while others are guaranteed by adjoining
relevant axioms. Finally extensions to the logic must be reflected in corresponding extensions
to the translation. In the following sections of this chapter, we will consider individual features
of Isabelle/HOL, and describe how the translation is extended to accommodate them. First
however, we will discuss some modifications to the translation which can reduce the size of the
generated propositional formula.

3.2 Optimizations

We describe some optimizations in the implementation of the translation ¢z i7(-). None of
them affect soundness or completeness of the algorithm that was proved correct in Chapter

3.2. OPTIMIZATIONS 49

Well-formedness. In Chapter [2, we had defined ¢z y;(thool) as

w1 A 2 A /\ wf (T (FreeVars(tpool))) A /\ wf (M (Names(tpoo)))

(Def. , where 77 17 (tbool) = Leaf([¢1,p2]). We only consider well-formed truth assign-
ments however, i.e. truth assignments which make exactly one formula ¢; in each (sub-)tree of
the form Leaf([p1,...,¢n]) true. One can easily show (and in fact, we have already done so:
see Lemmas and that this property propagates from trees for variables and constants
to trees for A-abstractions and applications. Thus exactly one of the two formulae 1 and @9
is true (provided the truth assignment is well-formed), and it is sufficient to require

1 A /\Wf((FreeVars(thool))) A /\Wf (Names(tpool)))-

The SAT solver never needs to consider —,.

Undefined values. We can relax the notion of well-formedness to require truth assignments
to make at most one formula ; in each (sub-)tree of the form Leaf([¢1,...,pn]) true, rather
than exactly one formula. This amounts to allowing undefined values and partial functions
in our models, which will be put to good use when we consider recursive datatypes (see Sec-
tion . Application of one tree to another, apply(t,u), yields a tree with a defined meaning
if and only if u has a defined meaning, and ¢ (which now denotes a partial function) is defined
for the meaning of u. Thus undefinedness propagates from arguments to application terms.

The correctness proof given in the previous chapter can be modified to cover this different
notion of well-formedness as well. The necessary modifications are significant however (because
well-formedness is no longer equivalent to a defined meaning for trees), and we do not spell
out the details. We merely note that the property of at most one label element being true, just
like the property of exactly one being true, propagates from trees for variables and constants
to trees for A-abstractions and applications. Thus the optimization described in the previous
paragraph on well-formedness remains valid.

An immediate consequence of this change in the notion of well-formedness is that our well-

formedness formulae become simpler: let [= [x1,...,z,] € Listp. Instead of
n n
wf(l) = (\/ xz> A /\ (—z V —zy)
i=1 i,j=1
i#]

(Def. , it is now sufficient to define

n
wf(l):= /\ (—x V —xy),

ij=1

i#]
i.e. the first clause can be omitted. The effect of this change on overall performance is not
totally clear however, due to the complexity of today’s SAT solvers. While either definition
ultimately requires the SAT solver to find a truth assignment that corresponds to a model
where the HOL formula tp0 is true (thus in particular defined), the former definition may
help to reduce the search space.

50 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

Application. The translation of application is based on the idea of an explicit case distinc-
tion over the argument’s possible values: tu (i.e. ¢ applied to u) is equal to d if u is equal to
u1 and ¢t maps uy to d, or if u is equal to uz and ¢ maps uy to d, or Thus apply(t, u) yields
a tree with labels which contain disjunctions of conjunctions.

Converting a disjunction of conjunctions to CNF (conjunctive normal form, i.e. a conjunction
of disjunctions), the standard input format of most SAT solvers, is rather expensive and causes
an increase in the size of the formula or (in case a definitional CNF transformation is used) in
the number of Boolean variables. The problem is aggravated by nested applications: e.g. ¢ (uv)
first requires uv to be translated into a tree whose labels contain disjunctions of conjunctions,
while applying ¢ then yields a tree whose labels contain disjunctions of conjunctions of (nested)
disjunctions of conjunctions. Thus nested applications lead to an unfavorable nesting of dis-
junctions and conjunctions at the propositional level. Furthermore, nested applications cause
a duplication of sub-formulae: t (uv) is equal to d; if uwv is equal to u; and ¢ maps uy to dy;
t (uv) is equal to dy if uv is equal to uy and ¢ maps uy to dg; Thus the (possibly complex)
formula which describes that wv is equal to u; is duplicated once for every element in the
codomain of ¢, and likewise for every formula which is used as a label element to describe that
uv is equal to u;, where u; is in the domain of ¢.

We can tackle these problems at the HOL level already (rather than at the propositional
level) by introducing new variables as abbreviations for more complex subterms. For example,
instead of translating ¢ (uv), we can consider ¢ s (where s is a fresh variable of the appropriate
type), while adding s = (uv) as an additional premise. This can greatly reduce the alternation
depth of nested disjunctions and conjunctions, and instead of complex formulae, only single
Boolean variables (which occur as labels in the tree for s) still need to be duplicated.

Propositional simplification. The translation of implication, equality, and bound vari-
ables introduces propositional constants True and False as label elements, which may then be
combined with other label elements to produce more complex propositional formulae. The
resulting formulae can immediately be simplified, using the following basic algebraic laws of
-, V, A, True, and False:

—True = False TrueV e = True TrueAhy =

—False = True eV True = True pNATrue = ¢
FalseVyp = o False Ap = False
pVFalse = o p A False = False

Doing this consequently results in closed HOL formulae without constants (other than impli-
cation and equality) being translated simply to Leaf([True, False]) or Leaf([False, True]). The
SAT solver is used only to search for an interpretation of free variables.

Stripping outermost quantifiers. In contrast to what we just said, outermost universal
quantifiers are stripped before a formula is translated when we are searching for a countermodel,
e.g. Vx,y. Pxy is instead translated as Pxy. (Likewise, outermost existential quantifiers can
be stripped when we are searching for a model.) The advantage of this is two-fold. First,
we avoid translating the body several times: universal/existential quantification is in essence
translated as a finite conjunction/disjunction over all possible values, which can lead to a
combinatorial explosion in the presence of nested quantifiers. Second, we use the SAT solver

3.2. OPTIMIZATIONS 51

to search for an interpretation of the now free variables; if a model is found, it contains actual
instantiations for these variables, which can be displayed to the user. (Models of course don’t
contain instantiations for bound variables.)

Small types. Variables of a type with size 1 can be represented by Leaf(|True|), using
no Boolean variable at all (instead of one Boolean variable = together with a well-formedness
formula x). While this has little effect at the SAT solver level due to unit propagation, it allows
a more extensive simplification (cf. the above paragraph on propositional simplification) of the
resulting Boolean formulae. Also variables of a type with size 2, including variables of type
bool, can be represented by a tree of the form Leaf([x, —~z]), rather than by a tree Leaf([zg, z1])
and a corresponding well-formedness formula (zo V z1) A (mzo V —z1).

Unfolding and specialization. More importantly, we avoid unfolding the definition of
logical constants (16 Truepool, Falsepool, —hool—bools /bool—bool—bools Vbool—bool—bool, and the
quantifiers ¥, _.pool)—bools I(oc—bool)—bool) 85 A-terms as far as possible. Instead these constants
are replaced directly by their counterparts in propositional logic. Since every type is finite,
quantifiers of arbitrary order can be replaced by a finite conjunction or disjunction.

The latter leads to a more general optimization technique, applicable also to other functions and
predicates (including e.g. equality): namely specialization of the rule for function application
to particular functions. While any given function can be represented by a tree, it is often
more efficient to implement a particular function’s action on its arguments, assuming these
arguments are given as trees already, than to translate the function into a tree to which the
general translation rule for application needs to be applied. For =;_,,_.pool this avoids creating
a tree whose size is proportional to |[o] ;,|%, and instead uses a function that operates on
two trees representing elements of [o] EM to produce a tree for a Boolean value.

Three-valued logic. We apply the same specialization technique to the logical constants to
achieve a translation that corresponds to a three-valued logic, where a logical constant applied
to possibly undefined arguments yields a tree with an undefined meaning if and only if the
meaning of the entire expression depends on the truth value of an undefined argument. More
precisely, let * denote arguments of type bool whose tree has an undefined meaning. Then the
special rules implemented are

False
False,

True False A %
True * A False

True V %
*V True

and quantifiers are again treated as finite conjunctions or disjunctions. In all other cases,
our usual definition of the translation of application will cause undefined argument values to
propagate. In effect, this implements Kleene’s three-valued logic [57]. The SAT solver is thus
relieved from assigning a defined meaning to irrelevant parts of a formula.

Equality can be extended to this three-valued logic as well: trees are considered equal if they
both denote the same total function, and not equal if they denote (possibly partial) functions
that disagree for at least one argument. It is undefined (i.e. unknown, neither true nor false)
however whether a tree whose meaning is a partial function is equal to another tree whose
meaning is an extension of this partial function. This definition is applied recursively to
curried functions, which yield values of function type.

52 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS
3.3 Isabelle’s Meta-Logic

Aside from HOL, a variety of other logics can be (and have been) defined in Isabelle, e.g.
first-order logic [130], modal and linear logics [I8, 87|, and Zermelo-Fraenkel set theory [131],
132], [133]. These logics are formulated within Isabelle’s meta logic [129], Isabelle/Pure. Isa-
belle/Pure offers a 2-element type Prop of propositions, and three logical constants: (meta)
implication, (meta) equality, and (meta) universal quantification.

These constants are translated just like their Isabelle/HOL counterparts. No distinction is
made between types Prop and bool, and the constant Trueprop, which converts a Boolean
value into a proposition, is treated as the identity function. Despite the different names, Isa-
belle/Pure really is just an implementation of what we defined as higher-order logic in Chap-
ter [2| while Isabelle/HOL extends this logic substantially, as mentioned before and described
in detail in the following sections of this chapter.

The fact that the translation can handle Isabelle’s meta logic allows it to be applied to other
logics defined on top of Isabelle/Pure, aside from Isabelle/HOL. The (counter-)model finder
could easily be turned into a generic tool that is not restricted to a single object logic.

3.4 Type and Constant Definitions, Overloading

When we search for a model of a HOL formula tpee, it is clear that this model should not
only satisfy tpeol, but also every axiom of the theory under consideration. The axioms of the
basic HOL theory are already respected by the hard-wired translation of the logical constants
presented earlier, but these axioms can be augmented with arbitrary user-supplied axioms.
Therefore not only t,001, but also all axioms of the current theory would have to be translated
to propositional logic and passed to the SAT solver.

As there can be hundreds or even thousands of axioms in a theory, this is usually infeasible.
Luckily, and because it is all too easy to introduce inconsistencies with the azxiomatic approach,
the Isabelle system provides more controlled means of asserting axioms to define new types
and constants. Users are encouraged to develop their theories via the definitional approach
(described below), which has been shown to be consistency-preserving and meta-safe [I70], in
the sense that additional axioms merely define new names as abbreviations for pre-existing
syntactic objects. For such theories it is sufficient to consider a (usually small) set of axioms
that are relevant wrt. the given term tpo0), while all irrelevant axioms can safely be ignored.

3.4.1 Type Definitions

A type definition introduces an axiom stating that (a1, ...,a,)T is isomorphic to A, where T
is a type constructor with arity n, and A is a term representing some set. There are several side
conditions: T" must be new and not occur in A, A must be closed, TyVars(A) C {a1,..., o},
and non-emptiness of the set A must be derivable. The type definition then introduces three
new constants Repp, Absp and T' (where the constant T is just defined to abbreviate the term
A), and the isomorphism axiom type_definition is stated as follows:

(Vz.Reppx € T) A (Vx. Absy (Reprx) =) A (Vy.y € T = Repy (Absry) = y).

3.4. TYPE AND CONSTANT DEFINITIONS, OVERLOADING 53

Rep

Abs

some pre—existing
type

Figure 3.2: HOL type definition

In other words, the range of Repy is contained in A, Absr is a left inverse of Repp, and Repy is
a left inverse of Absy when the latter is restricted to the set A. Figure provides a graphical
illustration.

The isomorphism axiom type_definition; is considered relevant for a given term ¢, if and only
if the type (o1,...,0,)T occurs in (a subterm of) ¢,. (Note that this is automatically the
case if Repy or Absy occur as constants, i.e. if {Repy, Absp} N Names(t,) # ().) In this case,
the axiom—with all type variables a1, ..., a, replaced by the actual type parameters o1,

.., o0,—is conjoined to the HOL formula under consideration, and translated to propositional
logic as well.

Ignoring the type_definition axiom otherwise is justified precisely because type definitions are
safe. Note that this in turn requires the interpretation of types from a subset-closed universe
U (property Sub in Section . A counterexample which shows that type definitions become
unsafe if we drop the Sub requirement on U is sketched in [I70].

3.4.2 Constant Definitions and Overloading

An overloaded constant definition introduces a finite set of equations of the form c,.i = t¢,
provided that ¢ is a new constant of type 7, 7% is an instance of 7 (for every i), every t'
is closed, and TyVars(t') = TyVars(7!). Furthermore no two different c,1, c¢;2 may have a
common instance, and recursive occurrences of ¢,/ in some ¢’ require that 7’ is strictly simpler
than 7! in a well-founded sense. (Structural containment of 7/ in 7% is certainly sufficient, but
not necessary. See [127] for a detailed discussion.)

An equation c.i = t' is considered relevant for a given term t, if and only if ¢+ occurs in t,,
and 7' is an instance of 7. (No other equation c,; =t/ with i # j can be relevant in this case,
since 7% and 7/ may not have a common instance.) In this case, the relevant equation—again
with all type variables replaced by their image under the type substitution which shows that
7/ is an instance of 7—could be conjoined to the HOL formula under consideration, similar to
how we treated type definitions above.

However, conjoining a definition and translating it to propositional logic can be rather ineffi-
cient, especially in the case of function definitions with multiple (curried) arguments, where
the translation needs to build a function tree by iterating over all possible values for the ar-

54 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

guments. This quickly leads to a combinatorial explosion. Our default strategy thefore is to
unfold the relevant definition, i.e. to replace the constant c,s in the input formula by the right-
hand side ¢ of the defining equation (with type variables in ¢* replaced as described above).
Then B-reduction is performed if possible, i.e. if the right-hand side is a A-abstraction that is
applied to one or more arguments in t,. Theoretically this can cause a non-elementary blowup
in the length of the input term, but since most definitions are well-behaved in practice, the
unfolding approach has so far proved to be superior to conjoining relevant definitions.

The Isabelle/HOL implementation for convenience allows function definitions to have the form
crixl ... o™ =t where each x* is a variable, and FreeVars(t!) C {x!,...,2"}. Since there
may be less than n actual parameters for ¢, in the input formula, we first normalize such an
equation to the equivalent form c,.. = Az!,..., 2™ ¢, before substituting the new right-hand
side for ¢, and possibly performing S-reduction as described above.

Constant definitions that adhere to the format and restrictions described here are safe [170].
Thus irrelevant constant definitions (just like irrelevant type definitions) can be ignored when
the axioms of a theory are translated to propositional logic. In practice, this eliminates the
largest deal of all axioms: Isabelle/HOL, at the time of writing, contains 3721 axioms, out
of which 3672 are constant definitions. The remaining axioms are mostly type definitions,
class axioms (see Section , or defining the relation between basic logical constants in Isa-
belle/HOL and Isabelle/Pure.

3.4.3 Definite Description and Hilbert’s Choice

Hilbert’s choice operator, €, is a polymorphic constant of type (¢ — bool) — o, satisfying the
axiom

somel : (Jz.Px) = P (eP).

Similarly, The, also a constant of type (o — bool) — o, satisfies
the_eq_trivial : (Thez.z = a) = a,

and arbitrary is a completely unspecified polymorphic constant. (Of course one can nevertheless
prove certain theorems that mention arbitrary, e.g. arbitrary,, = arbitrary,, by reflexivity.) For the
purpose of our translation 7', we can treat these logical constants just like any other constant,
and introduce trees labeled with Boolean variables that determine their interpretation. For e
and The, we then translate the conjunction of the input formula tpeo with the relevant axiom
(i.e. somel or the_eq_trivial, or both axioms if both € and The occur in tpee). As usual, the
type variable in somel (or in the_eq_trivial) is instantiated to match the type of € (or the type
of The, respectively) in tpool-

Note that we have to add multiple copies of the relevant axiom(s), instantiated to different
types, when there are multiple occurrences of € (or The) in tpoo which differ in type. This
is similar for usual constant definitions, and also for type definitions when a type constructor
(with arity at least 1) is applied to different argument types.

3.5. AXIOMATIC TYPE CLASSES 55

3.5 Axiomatic Type Classes

Axiomatic type classes extend the first-order type system of HOL introduced in Section
with ordered type classes that qualify types. An axiomatic type class is the class of all types
that satisfy certain properties, the class axioms. As an example, consider the HOL formula
VZa, Yo Ta = Ya, Which has one free type variable a. As a class axiom, it describes the class
of singleton types, i.e. types containing only one element. Type classes were introduced for
Isabelle in [122], and a more recent description is found in [170].

Type classes are encoded in HOL by adding a new type constructor itself with arity 1 to
the type structure, and a new polymorphic constant TYPE of type «aitself to the signature.
Furthermore, a polymorphic constant C of type aitself — bool is introduced for every type
class C. Now the term Cjyitseif—bool T YPEsitself is intended to encode that type o belongs to
type class C. To achieve this, the meaning of itself is chosen to be the function that maps
A € U to the singleton set {A} (which is assumed to be in /), and consequently the meaning
of TYPE, jtseif must be the meaning of o.

A type class definition for a class C' with class axioms ¢1, ..., ¢, aside from introducing the
constant C' mentioned above, also asserts an axiom

Cclass.def : CTYPEgitself = &1 A -+ A ¢n,

provided that FreeVars(¢;) = () (which we can always achieve by taking the universal closure
over all free variables otherwise) and TyVars(¢;) C {a} for 1 <i <n.

Isabelle/HOL encourages the definition of type classes which have one or more superclasses
C4, ..., C;. Superclasses allow to establish an inclusion relation on type classes, which is a
necessary prerequisite for an order-sorted type system [122]. Their logical significance is that
every type in C satisfies not only the class axioms of C', but also those of C’s superclasses
Cy, ..., Ck (and in turn the class axioms of their superclasses, if they have any). The axiom
C_class_def in this case has the following form:

CTYPE itself = C1 TYPEitsett A - -+ A Cp TYPEyitsels A @1 A -+ A .

Class axioms become relevant for a term ¢, in two (not necessarily related) cases: when ¢,
contains the constant C', and also when t, contains a type variable which is explicitly restricted
to the class C'. (Isabelle annotates type variables with sorts, which are finite sets of type classes.
A sort is understood as an intersection, i.e. a type variable that belongs to a sort S belongs
to each type class C' € §. We write « :: S for a type variable « that is annotated with sort S,
and we usually omit the empty sort: « is short for « :: ().)

In the first case, the entire axiom C_class_def is relevant, and conjoined with the input term
as usual, after the type of C in the class axiom has been instantiated to match the type of the
actual occurrence of C in t,. More needs to be done however. Isabelle’s inference system has
been enhanced to support sort annotations on type variables, and contains the axiom scheme

class_triv : C TYPEa::{C} itself

(where C'is an arbitrary type class) as a basic rule. It is this axiom scheme that defines the
logical meaning of sort annotations. The axiom scheme, with C instantiated to the actual class

56 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

constant in t,, is therefore conjoined as another relevant term. Note that type instantiation
will fail if the domain of class constant C' in £, is not restricted to be in the type class C, i.e.
if the actual domain type is not annotated with a sort S that contains class C'. No instance of
the class_triv axiom scheme is considered relevant then. Of course the C_class_def axiom must
still be satisfied though.

In the second case, t, merely contains a type variable « :: S with C € S. We could consider
the same relevant axioms as in the first case (i.e. C_class_def and class_triv), but this would
unnecessarily introduce the constants C' and TYPE in relevant axioms, which can be avoided.
Instead, only the class axioms ¢1, ..., ¢, (with their single type variable replaced by « :: S) are
considered relevant. In addition, we now need to keep track of superclass relations ourselves:
also all class axioms of (direct or indirect) superclasses of C' are considered relevant.

3.6 Datatypes and Recursive Functions

Isabelle/HOL has packages that ease the definition of inductive datatypes (e.g. lists, trees)
and recursive functions over datatypes. The current version of the datatype package [22] 25]
supports a number of advanced features, including mutual and indirect recursion, and arbitrary
branching over existing types. A general datatype specification looks as follows:

1
1
1,my

1

datatype (o1,...,ap)t1 = Cl o7, ... 0 e Ohymd
Tk

| ... \C’,il Jihl
and ...

— mn n n n n n
and (a,...,ap)t, = C] OL1 - Ol |...|C o Tkt Ol

Here a1, ..., ap are type variables, constructors Cl-j are distinct, they are annotated with

the types Uil, cees Uimj_- of their arguments (where mz > 0), and each argument type agﬂ-/
must be an admissible type containing at most the type variables ap, ..., ap. Admissibility
is defined in [25]; it is required to restrict recursive occurrences of types in a way that ensures

the existence of a set-theoretic model for the datatype. For example,
datatype ¢t = C (¢t — bool)

would not be a valid datatype specification, because a model for this datatype would require an
injection C': ([t] g 1y — B) — [t] g oy, violating Cantor’s theorem [32]. Admissibility currently
also rules out heterogeneous datatypes like the type of powerlists [1], which could otherwise be
defined as

datatype (a)PList = Zero | Succ (v x a)PList.

Furthermore, each datatype must be non-empty, since HOL does not admit empty types. This
is guaranteed iff each datatype (aq,...,ap)t; (for 1 < j < n) has a constructor CY such that
each argument type Jii, (for 1 < i’ < m{) which is an instance of a simultaneously defined
datatype (a1,..., o)ty (for some 1 < j' < n) is non-empty.

Internally, the datatype package follows the definitional approach. Instead of just asserting
the properties of a datatype, the new datatype and its constructors are defined in terms of

3.6. DATATYPES AND RECURSIVE FUNCTIONS o7

existing concepts (using HOL’s type and constant definitions, respectively). The actual defi-
nition (which is hidden from the user, who can always work with the more convenient notions
provided by the package) is fairly elaborate. Starting from a type («, [3)dtree of trees, the
representing set for a datatype is cut out inductively as the least set (using the Knaster-Tarski
theorem [I57], which justifies inductive definitions) that contains representing trees for all of
the datatype’s elements. More specifically, the type («, 3)dtree is defined as («, 3)nodeset,
where (a, #)node is defined as (nat — (8 + nat)) X (« + bool). For this type, certain injec-
tive operations can be defined (namely Leaf of type @ — («, 3)dtree, In0, In1, both of type
(a, B)dtree — (a, B)dtree, Pair of type (a, 3)dtree — (o, B)dtree — («, ()dtree, and Lim of type
(8 — (a, B)dtree) — («v, B)dtree), which allow to embed non-recursive occurrences of types in a
datatype specification (Leaf), to model distinct constructors (In0, Inl), to model constructors
with multiple arguments (Pair), and to embed functions types (Lim). More details can be found
in [25].

Using a datatype’s internal definition is not an option when we translate a HOL formula to
propositional logic. The type (a, 3)dtree, regardless of a and f3, is infinite. This would pro-
hibit finding finite models even for datatypes that only have a finite number of elements. We
could alleviate the problem by considering some finite subset of dtrees only. However, the
correspondence between dtrees and a datatype’s elements is not very intuitive, and disallowing
certain dtrees may lead to unexpected models at the datatype level. Furthermore, expand-
ing the internal definitions—in particular the definition of a datatype’s representing set as a
least fixed point—would be rather inefficient at the propositional level. Therefore we have in-
stead extended the translation to be able to deal with datatypes directly. Inductive types are
fully determined by freeness of their constructors (which guarantees that the datatype is “big
enough”) and structural induction (which guarantees that there are not “too many” elements).
These are the two important properties that must be preserved by the translation.

3.6.1 Non-Recursive Datatypes

We distinguish between recursive and non-recursive datatypes. The reason is that we search
for finite models, and thus we can accommodate only finite datatypes offhand. A non-empty
datatype (a1, ...,ap)t; is finite iff it has no recursive or mutually recursive constructor, and
every argument type of each of its constructors is finite. The latter is ensured by the fact
that we have fixed a finite type environment and model before translation (cf. Lemma .
Therefore the finite datatypes coincide with the non-recursive ones. (As a simple example,
consider the datatype («)option = None |Some . This type is finite since [[a]]E?M is finite in
our setting; its size is 1+ |[a] 5,].) Freeness and structural induction imply that in this case
the datatype’s size, i.e. the number of elements of the datatype, is given by

) J
ki m;

2 11l il ol

i=14=1
i.e. by the sum over the datatype’s constructors of the product over the constructor’s arguments
of their respective type’s size.

This immediately leads us to the representation of a datatype’s elements as trees of proposi-
tional formulae. With regard to this representation, a datatype is treated just like a ground

58 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

type of the same size. A datatype’s element is given by a leaf, its length equal to the datatype’s
size. The tree-like structure that can be imposed on constructor terms denoting elements of a
datatype is not reflected in the tree structure of the corresponding propositional tree, which
remains to be used for the encoding of function types only. It is clear then that each element
of a datatype (just like each element of a ground type) has exactly one representing constant
propositional tree.

Datatype constructors are functions, mapping their arguments to an element of the datatype.
A nullary constructor is a certain element of the datatype, and hence translated as a constant
leaf. Constructors which take n arguments are translated as constant propositional trees of
height n+1, representing an n-ary function. To translate a datatype constructor, it is necessary
to have a fixed order for the elements of a datatype (and vice versa: a precise definition of the
translation for datatype constructors implies a fixed order for the datatype elements). For non-
recursive datatypes, this order—and hence the corresponding translation of constructors—is
relatively simple. The (user-supplied) datatype specification already imposes an order on the
datatype’s constructors, namely the order in which they are given (i.e. C’g1 < ng iff i1 < i9).
Assuming orders for all their argument types, we can “lift” this order to the datatype elements.

Definition 3.1 (Order on Non-Recursive Datatypes). Let (a1,...,a)t; be a non-recursive
datatype, given by the general datatype specification stated at the beginning of Section [3.6
The (datatype) order <, on [(a1,...,an)t;] 5 5, is given by

[[C’L']1:|]A,M TlZUmZ‘l <tj HC‘ZQ]]A,M Yy - .- ymz2 iff

11 <19V |11 =i2/\($1,...,xmj_') < (yl,...,ymj_') ,
i1 i9
where the argument tuples are compared wrt. the lexicographic order on [[ail]] pa XX
j .. o j -
[[Gi,mfl]]E N that is induced by the individual (presupposed) orders on [[Ui,l]] PRVIRREE [[Ui,mfl L

We merely write < instead of <;; when the datatype is clear from context.—As an exam-
ple, consider the type (o)option again, with its above specification. Suppose that [a]g ,, =
[a1,...,ay], i.e. a; < -+ < a,. Because None comes before Some in the datatype speciﬁcétion,
the order on («)option (which is a type of size n + 1 in this case) is then given by

[None] 4 v < [Some] 4 pqa1 < -+~ < [Some] 4 yq an-

The translation of None is the tree Leaf(uv?“) (recall Def. [2.76)), and Some, which is a
function of type a — (a)option, is translated as the following tree of height 2 and width

n: Node([Leaf(uvyth), ..., Leaf(uvﬁﬂ)]).

More generally, the order of elements for a non-recursive datatype with constructors C, ...,
Ck, where O takes arguments of type o1, ..., oy, (and [oi] 5 5, = [%,..., 2}), for 1 <i<m)
is shown in Figure Def. is generalized to instances (71,...,7)t; of a non-recursive
datatype (o, ..., o)t in the obvious way.

3.6.2 Recursive Datatypes

Recursive datatypes like nat, the type of natural numbers (with its constructors On,: and
SuCnat—nat), or (a)list, the type of lists with elements of type o (with constructors Nil(4)jist and

3.6. DATATYPES AND RECURSIVE FUNCTIONS 59

Ci ... Cs ... C ...
Crat..al™ .. Cq 55;1 a::{ln_lil
C’lz%...x;’lnfl‘w{”‘... ‘Clw%...wé’lnflxnmm‘... ‘ ‘ ‘ ‘ ‘
first last

Figure 3.3: Element order for non-recursive datatypes

Cons, . (a)list—(a)list)s s Well as more complex examples involving mutual or nested recursion,
require an infinite model. Hence they cannot be treated in full generality in a finite model
generation framework.

To be able to treat them at all, we consider finite approximations of such datatypes. When
translating a HOL formula t,,, that involves recursive datatypes, we extend the type model
(which gives us the semantics of type constructors in tpo0 as finite sets) to provide finite sets for
all recursive datatypes in tpoo as well. Currently these sets correspond to initial fragments of a
datatype, i.e. to all elements of the datatype whose canonical representation contains at most
a certain number of constructor applications. (The elements of type nat that can be written
with at most 3 constructor applications, for example, are Opat, Suc0, and Suc (Suc0).) When
the search for a model fails for a given initial fragment, the size of the fragment is increased,
similar to how the size of sets corresponding to other types is increased (cf. Section . The
only difference is that we increment the allowed number of constructor applications, rather
than the cardinality of the finite approximation. The following definition already covers the
general case of (instances of) mutually recursive datatypes.

Definition 3.2 (Initial Datatype Fragment). Consider the general datatype specification
stated at the beginning of Section Let r = (r1,...,r,) € N*. The r-th initial (datatype)
fragment of a type o, written o”, is defined as follows:

1. If o = (71,...,7h)t;j is an instance of (v, ..., ap)t; forsome 1 < j < n,ie. (7,...,7)t; =
(o, ..., ap)t; © for some type substitution ©, then
0 if r; = 0;
ol = {[[CZ]]AMxlwm] 1§i§kj/\
j'/ 6)(7"1?...,7371,...,7"71)

zy € (07,

for 1 <i¢ < mz} otherwise.

2. 0" 1= [o] g 5, otherwise.

Lemma 3.3. Letr = (r1,...,r,) € N". Then 0" is a finite subset of [o] g -

Proof. By induction on Z;LZI rj. If o is not an instance of a datatype, then ¢ = [[JHEM.
Finiteness in this case follows from Lemma [2.40l

If o = (ov1,...,0ap)t; O, then 0" = 0 if r; = 0. In this case the claim is trivial. Otherwise, i.e. if
i yeensTi— Loy

r; > 0, the claim follows from the induction hypothesis, applied to (o7 ,, @)(T1 " ™) (for

eachlgigkj,lgi’gmg)_ O

60 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

Note that the proof assumes that all infinite datatypes were declared within the same gen-
eral datatype specification. The actual Isabelle/HOL system does not impose this restric-
tion. Therefore if a datatype specification mentions instances of previously declared infinite
datatypes, the vector r has to be augmented accordingly, to provide bounds for all relevant
infinite datatypes.

Lemma 3.4. Let r = (r1,...,m,) € N". Let 1 < j' <n. Then o" C g (TorjrtLn)

Proof. By induction on Z?Zl r;. If o is not an instance of a datatype, then 0" = [o] 5, =

)

0.(7'17---,7"j/+17---7rn)'

If o =(aq,...,04)t; O, then 0" = () if r; = 0. In this case the claim is trivial. Otherwise, i.e. if
r; > 0, the claim follows from the induction hypothesis, applied to (o7 ,, @)(rl " ™) (for
eachlgigkj,lgi’gmg). O

Lemma 3.5. Let r € (N\ {0})". Then o" is non-empty.

Proof. 1f o is not an instance of a datatype, then clearly [o] g.v 18 non-empty because HOL
does not permit empty types (see Remark and property Inhab, Section [2.2]).

If o = (ou,...,0p)t; © is a datatype instance, non-emptiness of ¢” follows from the restric-
tion imposed on datatype specifications (to enforce non-emptiness of datatypes), namely that
(a1,...,ap)t; must have at least one constructor C such that each argument type UZJ- » which
is an instance of a simultaneously defined datatype (a1,...,ap)t; is non-empty. 7]

We can in fact easily compute the exact size of an initial datatype fragment, by generalizing
the formula (given earlier in this section) for the size of non-recursive datatypes.

Lemma 3.6. Consider the general datatype specification stated at the beginning of Section[3.6]
Let1 <j<mn. Letr = (r1,...,m,) € N" such that r; > 0. Let © be a type substitution. Then

1

r ; (r1yerj—1,..mn)
(o1, an)t;0) 1 = >] (el)" k

Proof. By induction on 2?21 7, using Def. Freeness of constructors justifies the above
sum, while the fact that each constructor is an injective function explains the nested product.
O]

We have thus eliminated the need for infinite models for recursive datatypes, and instead
replaced them by finite approximations, based on a limit on the number of nested constructor
occurrences.

Treating infinite datatypes in this way comes at a price: the resulting algorithm is not sound
anymore; spurious (counter-)models may be returned. For example, consider the formula
VNnat- 7 = Opat. This formula is clearly false, but it becomes true when we only consider those
elements of type nat that can be written with at most 1 constructor application (the only
such element in fact being Onat itself). For this simple example, the spurious model could be
ruled out by considering nat? instead of nat!, but that is not always the case: e.g. the formula

3.6. DATATYPES AND RECURSIVE FUNCTIONS 61

Vnnat-n < m is satisfiable for any nat” (where r > 1: take m to be r — 1), but false for the
infinite type nat.

What can we say about the algorithm then, if it may not find (infinite) models for satisfiable
formulae, and if it may return spurious models for unsatisfiable formulae? At least that
it remains sound if recursive datatypes occur only positively. Formulae like Onat < 7inat O
f o = Opat are satisfiable in nat? and nat!, respectively. Therefore they are also satisfiable in
nat simply because of the syntactic restriction on the datatype’s occurrences. After all, nat” is
a subset of nat (for any r). Therefore any element of nat” also is an element of nat, and any
function to nat” is (or rather, can be seen as) a function to nat as well.

The fact that we simply “cut off” a datatype at a certain number of nested constructor appli-
cations also raises another question: how should we translate terms that cannot be interpreted
in the initial fragment of the datatype that we consider? What does Suc (Suc0) mean, for
example, when we are working with nat? (or nat!) instead of nat? We propose to treat such
terms as undefined. As explained earlier in Section this undefinedness propagates when
functions or predicates are applied to these terms. Recursive datatype constructors become
partial functions then. Before we can focus on their translation in detail, we need to fix the
order of datatype elements. Of course we have quite a bit of freedom here; any order will do as
long as we later translate datatype constructors and recursion operators accordingly. To keep
their translation as simple as possible, we chose to use a straightforward generalization of the
order on non-recursive datatypes. Definition is extended to initial fragments of recursive
datatypes as follows.

Definition 3.7 (Order on Initial Datatype Fragments). Let (aq,...,p)t; be a datatype,
given by the general datatype specification stated at the beginning of Section Let r =
(r1,...,mn) € N" such that r; > 0. Let v = (r1,...,7; — 1,...,m). The (datatype) order <i,
on (a1,...,an)t;" is given by

[[Ci]l]]A,M 1 ... :Bmg-l <;j HCZ‘QHA,M Y1 - Yy

1 <12V i1=i2/\(.%'1,...,xmj_')<(y1,...,ymj_') ,
, i

where the argument tuples are compared wrt. the lexicographic order on (af)X (0].' i)
) z,mil

that is induced by the individual (inductively defined) orders <”’ on (O‘ZJ D (07 ;)T/.
) i,my,

For o not a datatype, we define <Q/ to mean the usual (presupposed) order on [o] M-

Induction on Z?Zl rj shows that <ji is in fact well-defined. We write <" or just < instead of
<} when t; and r are clear from the context. This definition is again generalized to instances
(11,...,mh)t; of a datatype (aq,...,a)t; in the obvious way.

As a simple example, consider the datatype («)list, given by the specification

datatype (a)list = Nil | Cons « («)list.

62 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

Suppose that [a]p) = [a1,. .., a5, L.e. a1 <--- <ap. Then
()list" = [[Nil] 4]
()list? = [[[Nil]]AM, [Cons] 4 uq a1 [Nil] 4 pgs - - - [Cons] 4 pq an [[NilﬂAM],
(a)list® = [[Nil] 4 s,

[[COHSH_AM al [[NII]].A,M’ [[COHS]]A,M al ([[COHS]]A’M aq IINII]].A,M)7 ceey
[[COnS]]A7M 0/1 ([[COHS]]AyM an ”:Nll]].A,M)’

[Cons] 4 g @n [Nil] 4 o [Cons] 4 pq an ([Cons] 4 uq a1 [Nil] 4 pg)s-- -
[Cons] 4 rq an ([Cons] 4 uq an [[Nil]]AyM)],

and for arbitrary r € N, |(«)list"| = ZZ;%) [[a]]E7M|k, in accordance with Lemma We can
see that [Nil] 4 , is always the first element of (a)list”. Thus the translation of Nil, which is a
non-recursive constructor (without any arguments at all), is straightforward: it is translated as
Leaf (uv'l(a)IEStr‘). The translation of Cons however is more complicated. We already mentioned
that recursive constructors become partial functions: e.g. if we restrict ourselves to the initial
fragment (a)listl, then Cons z,, is interpreted as a function with domain and codomain (Oz)listl7
but [Cons x4 Nil] 4 1 clearly cannot be equal to [Nil] 4 o, (Which happens to be the only element
of (a)list!), as this would violate the freeness assumption on different constructors. Our best
option is to leave [Cons x, Nil] AM undefined. We translate an undefined value (of a datatype
or ground type of size k) as a tree Leaf([False, ..., False]) of length k.

Definition 3.8 (Undefined Leaf). The undefined leaf of length k, written undef®, is defined
as the tree Leaf([False, ..., False]), where [False, ..., False] € List{pais} is a list of length k.
Remark 3.9. Let 0 € TyVars or 0 = (01, ..., 0,)c with ¢ € TyNames\ {—}. Let k = |[o] 5 /-
Then undef® € Trees(o).

Proof. Immediate, using Def. O

Remark 3.10. Let undef® € Trees(c), and let A be a truth assignment. Then [[undefk]]a’A is
undefined.

Proof. Immediate, using Def. O

Thus Cons, if we restrict ourselves to the initial fragment (a)listl, is translated as the tree
Node([Node([undef!]), ..., Node([undef])]), where the root node has n children (one for each
element of [o]) u)s and each child node in turn has one child leaf of length 1 (simply because
|(@)list'| = 1). If we consider (a)list? instead, Cons is again translated as a tree of height 3 and
width n at the root, but now each child node has |(a)list?| = n + 1 child leafs, each of length
n+ 1. All but the first child leaf of each node (which corresponds to [Cons] 4 v a; [Nil] 4 r4:
for the respective 1 < i < n) is the undefined leaf. Thus Cons in this case is translated as the
tree

Node([Node([Leaf(uvy™!), undef"™ ... undef"™]),

ey

Node([Leaf(uvZﬂ), undef™ ™! ... undef"1)))).

3.6. DATATYPES AND RECURSIVE FUNCTIONS 63

The case (oz)list3 is still more complicated, since Cons now yields defined values also when
applied to lists of length 1, which are themselves in the range of [Cons]| Am- Again Cons is
translated as a tree of height 3 and width n at the root. Each of the n child nodes now has
|()list®| = n% 4 n + 1 child leafs, each of length n? +n + 1. The first child leaf in each node
corresponds to the Nil argument (which was mapped to a defined value by Cons already when
we considered (a)list?), and leafs with index 2 + k(n + 1), for 0 < k < n — 1, correspond to
argument lists of length 1, while all other leafs correspond to argument lists of length 2 (and
are thus mapped to undefined values). More precisely, let N = n? +n + 1. Then Cons is
translated as the tree

Node([Node([Leaf (uvd), Leaf (uvy), undef™ ... undef", ...,

Leaf(uvy ,), undef, ... undef"]),
Node([Leaf(uvngﬂ) Leaf(uvnngQ) undef™ ... undef?, ...,
Leaf (uv®), undef?, ... undef™])]).

Another, perhaps even more instructive, example is given by two mutually recursive datatypes

datatype X = A|BX|CY
andY = DX|EY|F.

Here from Def. it follows that X (") =y (0 = ¢ for any r € N, and

XO0 = [[A] 4],

yon = [[[F]]AM]

x@0 = [[[AAMv[[BAAM]7

y©2) — [[[EF]]AM, F]]AM]’

xth = [[[A_AM?[[CF]]AM]7

YU = [[D Al e [Flaudl,

x@n = H[AAM,[[BAHAM,[[BWF)]]AM,[[C(DAWA,MJ[CFHAW
y@1l) [[[DA]]AM, (BA]]AMa[[F]]AM]

X2 = [[Al g, [C (B F)] g [C F] g pd)

VU2 = (1D ALy g, [0 (€ F)] s 1B (D AN s 1B Fla s [P s

The datatype constructors Ax, Bx_x, Cy_x, Dx_y, Fy_y, and Fy must be translated to
trees accordingly.

Our algorithm to achieve this for an arbitrary constructor C] with (possibly recursive) argu-
ment types 0] RIRERE JZ ; proceeds as follows. We first compute the number of elements of the

T i

datatype that are generated by constructors Cw with ¢/ < 4, using Lemma This gives the
index of the first element generated by constructor CY. Next we compute a list of all elements

64 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

] 1 [IXXX) '_17---7 n
of (af’l)r, and also of (01]',1) (i "), in their canonical representation (similar to the lists

shown in the above example). Note that we do not need to know the translation of datatype
constructors to compute these lists (which would lead to infinite recursion), but we are merely
working with HOL terms. Nevertheless, care must be taken to obtain an implementation that
always terminates. To compute the list of canonical representations of elements of a datatype,
we consider the datatype’s constructors (together with their argument types), and form their
application to all possible combinations of argument terms (in the order given by Def. . The
argument terms are obtained by a recursive application of the enumeration function, where the
size of the initial fragment of the datatype under consideration has been reduced by 1. (The
0-th initial fragment of each datatype is empty.) The constructor C{ now maps those elements

j)(le"'ﬂ‘j*lw"’rn)
1

of (0571)71 that are already present in (0'2-7 to subtrees which may contain defined

values. For these elements, we proceed recursively over the remaining argument types o7, ...,

j .7 r s j (7‘17'-'7Tj_17"'1rn)
o Elements of (ai’l) that are not present in (O‘i,l)
70T

which contain undefined values only.

are mapped to subtrees

When the SAT solver returns a Boolean model, we need to print elements of datatypes that
are given by their index (according to Def. in a user-readable form, i.e. in their canonical
representation involving (possibly nested) constructor applications. Of course the internals
of our enumeration of datatype elements, i.e. the order that we use on datatype fragments,
should not matter to the user. To print an element of a datatype (a,...,ap)t;, we translate
the datatype’s constructors C{ Y ey C,zj to trees, and search for a tree that yields the element
with the given index. Since every element of the datatype is generated by some constructor,
we will find such a tree. The position of the element within the tree determines indices for the
constructor’s arguments (in their respective types). To print arguments whose type is again
given by a datatype, this algorithm is applied recursively. Termination is guaranteed because
every datatype element can be written with a finite number of constructor applications. We
could implement the printing of datatype elements more efficiently, by computing the correct
constructor and argument indices using an algorithmic “inverse” of Def. (which allows us to
compute an element’s index from its canonical representation), but the current implementation
has the advantage that it is completely independent of the order that we use on datatype
fragments.

3.6.3 Recursive Functions

Isabelle/HOL provides convenient ways to define functions by primitive recursion on datatypes:
e.g. the addition function on natural numbers may be defined as

consts add :: nat — nat — nat
primrec

addO0y =y

add (Sucz)y = Suc(addzy).

Internally, such a definition is recast in terms of the recursion operator(s) on the datatype,
which are provided by the datatype package. The above, for example, becomes

add = nat_rec ()\ynat- y) (Axnat fnat—mat Ynat- Suc (f y))

3.6. DATATYPES AND RECURSIVE FUNCTIONS 65

(On a side note, the ability to perform recursion at higher-order types allows one to even
define functions which are not (first-order) primitive recursive. The Ackermann function [2],
for example, may be defined as

consts Ack :: nat — nat — nat
primrec
AckOy = Sucy
Ack (Sucz)y = (Ackz)"(Sucy) (Suc0),

where f'n is defined as n-fold application of f.)

In general, the datatype specification stated at the beginning of Section introduces recursion
operators recy, ..., rec, of respective type

1 1 1 1
(01,1_>"'_”71,m}_’71,1_>"'_>T1,m§—’51)—’"'—>

1 1 1
(Ukl,l T Jkl’m}cl - Tk'l,]. T Tkl m - ﬁl)

R —
(71 =+ = Y = T = e Tl =) e
(O-]?n,l —_ ... _>g]7clmm7kln —>7‘I?n’1 _>...—>7']?mm2n —>ﬁn) —
(Ocl,...,Oéh)tj—th

(for 1 < j < n), where type Tj// is present if and only if aj/,, contains a mutually recursive

datatype, and in this case 7' =0(o]) where 6 is given by

L 0((oa,...,ap)tj) := By (for 1 < j" < n), and

2. O(o1 — 02) := 01 — H(09).

Admissibility of O‘ . ensures that 0 eliminates all recursive datatype occurrences. (Indirect
recursion is 1mplemented by the datatype package via mutually recursive datatypes.) The
internal definition of the recursion operators is based on an inductive definition of their graphs,
from which the operator functions are obtained using Hilbert’s choice [25]. Using this internal
definition is again prohibitively expensive (in terms of translation time), so instead we have
implemented a more direct translation which respects the relevant recursion equations for these
operators. The relevant equations for operator rec; are

1 1 J J J — fI 0 J J J
recjfl...fkl...ff...f,?n(C’la:M...xlm]l-) = flxm...a:lm]l-yl’l...ylm
st 1 n n Jo..J J _ g J J J J
rec; fi oo fry - S fr (Ck,j Thpd o T) = i, Tyq - Tpomd Yhpl o Y g
J TRy TRy

where argument yf » 1s present if and only if type Tij ;, is present in the type of the recursion

operator, and in this case yg o= @(mi), where © is given by

1. 9(1.(041,..-,Oéh)tj/> = recj/ fll . fkl;l e fln . f]? X

n

i, (for 1< j' <mn), and

o

66 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

2. O(Toy—0y) = Aoy - O((Toy 00 20y)iy) -

Note that ©(z,) has type 0(c), as required for the above recursion equations to be type-correct.
We assume that trees for the arguments f[, ..., f,il, oo ST ooy ffL are given (otherwise
we use 7-expansion to obtain sufficiently many arguments to rec;), and focus on translating
rec; ... flil oo J{' ... fi as a function of type (01,...,ap)t; — B; then.

The case where (o, .., ap)t; is a non-recursive datatype is simple. Because of Def. leafs
(or subtrees in case 3, is a function type) in f{, ..., f,gj directly correspond to results of the

recursion operator applied to elements of the datatype, in the order given. When (a, ..., op)t;
is a recursive datatype, we have to take into account that constructors with recursive arguments

become partlal functions. Subtrees in f] that are obtained for a combination of constructor

J

arguments xl 1 T which are mapped to “undefined” by constructor C’J (rather than to

j

a defined element of the datatype) must be ignored.

The hard part is to obtain translations for the recursive arguments yj Lrves yj (as far as they

mJ
are present). This requires that we already know the translation of recursmn operators recs
J

4,y

of mutually recursive datatypes, at least for the constructor’s arguments x’ il & Now

j*

3
5T

Def. does not (in general) imply a:mv, <Y :Uijl . xz , where xf ,+ 1s a recursive argument.

Therefore care must be taken again to obtain a terminatlng 1mplementat10n. We recursively
translate recjs i fk1 oo J{' .. fi x only for those arguments z that are of interest, rather
than rec; fi.. fk,1 oo J{' - fi, in its entirety. Termination is guaranteed then because each
recursive invocation removes one constructor application from the argument.

Note that recursive functions (like addition and multiplication on nat, or list concatenation
on type (a)list), similar to datatype constructors with recursive arguments, will frequently
become partial functions when we restrict the model to some initial fragment for their recursive
codomain type. (E.g. addmn is defined in nat” only if m+n < r, and undefined otherwise.) In
this case, the translation of equality that was discussed in Section will cause our translation
of the defining equation for the recursive function to yield a tree whose meaning is either
undefined or false, but never true—regardless of how the SAT solver chooses to interpret the
function. Therefore if we add the defining equation to the set of relevant axioms, the SAT
solver will unfortunately not be able to find a model that satisfies all relevant axioms.

This is not a problem when we simply unfold the definition of recursive functions, replacing
the function constant by its definition in terms of the recursion operators. Otherwise however,
it makes sense to translate defining equations with a different notion of equality. In contrast to
what we said about equality in Section [3.2] we now consider two trees for the left-hand side and
right-hand side of a definition equal iff they both denote the same (possibly partial) function.
(This is the usual notion of equality on the space of partial functions.) Two “undefined”
elements are considered equal to each other. This is more in the spirit of a definition, which
should allow one to use the (tree for) the left-hand side as an equivalent abbreviation for
the (tree for) the right-hand side, without changing the meaning of a formula from true to
undefined. Note that we must use this notion of equality for definitions only, but not for
equality operators in general: we do not want e.g. SucO = Suc (Suc0) to hold in any model,
not even when we are considering nat! only (where both sides of this equation are undefined),
as this would violate freeness of constructors.

3.7. SETS AND RECORDS 67

3.7 Sets and Records

Isabelle/HOL provides a type (a)set, containing sets whose elements are of type a. This
type is isomorphic to (and, wrt. to the translation, is treated as) @ — bool. The constant
Collect (set comprehension) of type (o — bool) — (a)set is simply ignored when encountered
with an argument, and translated as the identity function otherwise. The constant op : (set
membership) of type @ — (a)set — bool, when translated, applies its second argument to its
first argument, i.e. x : P is translated as P x. Eta expansion is used when op : occurs with less
than two arguments. This translation clearly satisfies the two relevant axioms

mem _Collect_eq: (a:{z.Pz})=Pa

and

Collect_mem_eq: {z.z:A} = A,

which are declared in HOL/Set.thy. (The notation {z. Pz} is merely syntactic sugar for
Collect (Ax. Px), and op : is written in infix notation as usual.) All other operations on sets,
e.g. union, intersection, and the power set operator, as well as related constants, e.g. {} (the
empty set) and UNIV (the set containing every element of the underlying type) are derived
concepts that can be treated by considering their respective definitions.

Moreover, Isabelle/HOL offers a simple interface to define extensible records with structural
subtyping [I121]. A general record definition has the form

record (ai,...,a)r = o+
Fi o oq
F, ooy,
where a1, ..., ai are type variables, o is an (entirely optional) instance of a previously defined
parent record type (with TyVars(o) C {aa,...,ax}), and Fy, ..., F, are the field names
(annotated with their respective types o1, ..., 0,) of the new record type r. Each field type
0; may again contain at most the type variables a1, ..., ag.

Internally, such a record definition is translated into a set of type and constant definitions
(see Section . The new record type is defined to be isomorphic to the cartesian product
0 X 01 X -+ X o, X unit. The final unit component (denoting a type with a single element) is
added for technical reasons, as an instance of a polymorphic more field to achieve extensibility
of the record type. In addition, an accessor function F; of type (aq,...,ax)r — o; is defined
for each field of the record type.

Currently we translate records simply by considering the generated type and constant defini-
tions, without further special treatment. This could be improved by making immediate use of
the fact that record types are isomorphic to cartesian products. Treating them as cartesian
products directly would avoid introducing an isomorphic type copy with its abstraction and
representation functions, but this—although simple in theory—is future work.

68 CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

3.8 HOLCF

HOLCF [120] [141], as it has been implemented in Isabelle, is the definitional extension of
Church’s Higher-Order Logic with Scott’s Logic for Computable Functions. The logic supports
standard domain theory (in particular fixed-point reasoning and recursive domain equations),
but also coinductive arguments about lazy datatypes. A detailed description can be found
in [T40].

HOLCEF, as a definitional extension of HOL, only makes use of concepts that we have discussed
before, in particular of axiomatic type classes. Hence in principle no special treatment is
necessary. However, the treatment of certain class axioms can be optimized because they
trivially hold for every finite model. Central to HOLCF are the notions of partial order and
chain.

Definition 3.11 (Partial Order). A function T, .4 bool 18 @ partial order iff C is reflexive
(i.e. Vx.z C z), antisymmetric (i.e. Vz,y.o T yAy C o = =z = y), and transitive (i.e.
Ve,y,z.2 CyAyC 2z = x L 2).

Definition 3.12 (Chain). Let C, ., pool be a partial order. A function fhat—q is a chain

(wrt. C) iff Vi. fi C f (Suci).

When we consider a model where the naturals are restricted to an initial fragment, e.g.
{0,...,7}, we require fi T f(Suci) to hold only for all ¢ where Suci is defined, i.e. for
all i € {0,...,r —1}.

Definition 3.13 (Chain Maximum). A chain f contains its mazimum at position i iff Vj.i <
J= fi=[J.

Definition 3.14 (Finite Chain). A chain is finite iff it contains its maximum (at some posi-
tion).

The following lemma is immediate for the kind of finite models considered by our translation
to propositional logic.

Lemma 3.15. When the meaning of nat is given by an initial fragment nat” = {0,...,r — 1}
(for some r > 0), every chain is finite.

Proof. In such a model, every chain contains its maximum at position r — 1.]

Furthermore, the maximum is also the chain’s least upper bound.
Definition 3.16 (Upper Bound). A chain f has upper bound x iff Vi. fi C x.

Definition 3.17 (Least Upper Bound). A chain f has least upper bound z iff f has upper
bound zx, and whenever f has upper bound y, then z C y.

Lemma 3.18. A chain f that contains its mazimum at position i has least upper bound fi.

Proof. For j < i, we have fj C fi because f is a chain, and C is transitive. For¢ < j, fi = fj
because f contains its maximum at position i. Hence Vj. f j E f 4, so f has upper bound f .

Now suppose that f has upper bound y. Then Vj. f j C y, hence in particular fi C y. O

3.9. CONCLUSION 69

A partial order is said to be complete iff every chain has a least upper bound.

Definition 3.19 (Complete Partial Order). A partial order T, _.4—bool 1S complete iff every
chain frat—a has a least upper bound (wrt. C).

Lemma 3.20. When the meaning of nat is given by an initial fragment nat” = {0,...,r — 1}
(for some r > 0), every partial order is complete.

Proof. This is an easy corollary of Lemma [3.15| and Lemma [3.18 O

Likewise we can show that every partial order in a finite model is chain-finite.

Definition 3.21 (Chain-Finite). A partial order T, o —bool iS chain-finite iff every chain
frat—q is finite (wrt. C).

Lemma 3.22. When the meaning of nat is given by an initial fragment nat” = {0,...,r — 1}
(for some r > 0), every partial order is chain-finite.

Proof. This is an immediate consequence of Lemma [3.15 O

These results perhaps raise the question of how interesting the HOLCF setting really is when
we restrict ourselves to finite models, but first and foremost they show that the class axioms
characterizing complete and chain-finite partial orders do not need to be translated to propo-
sitional logic and passed to the SAT solver. They can safely be ignored, even if they had
otherwise been relevant for a given formula: any model that the SAT solver may find will
automatically satisfy these axioms anyway.

3.9 Conclusion

We have discussed some optimizations of the translation from HOL to propositional logic that
was presented in Chapter [2, and we have shown how the translation can be extended from
the core HOL language (which is based on the simply typed A-calculus) to the various defini-
tional mechanisms and logical features that are present in the Isabelle/HOL implementation
of higher-order logic. Both aspects are important steps towards a practically useful tool for
(counter-)model generation, which should ideally cover the full input language of the theorem
prover, while being reasonably efficient.

70

CHAPTER 3. EXTENSIONS AND OPTIMIZATIONS

It is not enough to aim; you must hit.
Italian proverb.

Chapter 4

Case Studies

We have applied Isabelle’s finite model generation techniques to obtain a correct-
ness proof for a security protocol, counterexamples to conjectures about probabilistic
programs, and a Sudoku solver. The details are presented in this chapter.

4.1 Introduction

The model generation algorithm presented in Chapters [2| and [3, when applied to formulae of
higher-order logic, has non-elementary complexity. Consider for instance HOL terms f,_q,
where o is of the form bool, bool — bool, (bool — bool) — bool, etc. Let n be the total
number of bool type constructors in 0. Then the meaning of o (wrt. any standard type model,
cf. Def. is given by a set of size 2 11T n. (Here 1 is Knuth’s arrow notation [91], i.e.

27Tn = 92 .) Consequently, f,_., is translated as a tree of width 211 n (cf. Section [2.3.3)),

n
which (for n € N) is a rather fast growing function: already 2114 = 65,536, and 2115 has
19,729 digits [I51]. It is therefore easy to give HOL formulae for which the translation to
propositional logic fails due to time or memory constraints.

Moreover, even if the translation succeeds, the SAT solver’s task of finding a satisfying assign-
ment for the resulting propositional formula is of course NP-complete [44], hence of exponential
complexity (in the number of Boolean variables) unless P = NP. It is therefore also quite easy
to find HOL formulae for which all current SAT solvers will run out of resources, despite the
translation to propositional logic being trivial: any sufficiently complex propositional formula
will do.

This may seem discouraging, but it does not necessarily render the model generation algorithm
useless for practical purposes. In fact, higher-order types like the one above rarely occur in

71

72 CHAPTER 4. CASE STUDIES

practice. We do not aim to make a strong case for Daniel Jackson’s “small scope hypothesis”,
which states that most design flaws in system models can be illustrated by small instances [9],
but we want to demonstrate the utility of our algorithm further by applying it to several
(small to medium-sized) case studies. In this chapter, we briefly consider the RSA-PSS security
protocol (Section , counterexamples for probabilistic programs (Section , and Sudoku

puzzles (Section [4.4).

4.2 The RSA-PSS Security Protocol

A significant amount of research is concerned with the formal modeling and verification of
secure systems, and security protocols in particular. In Isabelle, Larry Paulson’s inductive
approach [135] has been used to verify various protocols, e.g. the Transport Layer Security
(TLS) protocol [137]. In this section, we shall use an encoding of protocols as first-order clauses
that is based on the popular Dolev-Yao threat model [51]. The Dolev-Yao model assumes a
worst-case scenario, where the attacker can intercept and possibly alter any message in any
way (within his computational power). Central is a unary predicate knows that describes the
attacker’s knowledge. Jirjens [85, 86] sketches a mechanic translation of protocols (given as
UML [80] sequence diagrams) into this first-order encoding, and he discusses how automated
first-order theorem provers can be used to obtain attacks on protocols. We want to show how
(counter-)model generation can be used to prove protocols secure.

4.2.1 Abstract Protocol Formalization

We investigate the RSA-PSS security protocol [145], a digital signature scheme that follows
the usual “hash-then-sign” paradigm. RSA refers to the (now classic) algorithm for public-key
cryptography devised by Ron Rivest, Adi Shamir, and Leonard Adleman [142] 143]. PSS stands
for “Probabilistic Signature Scheme”, first described by Mihir Bellare and Phillip Rogaway [20].
Starting with a message M that is to be signed, the RSA-PSS protocol—at a very abstract
level—proceeds in two steps:

1. Apply a one-way hash function to the message M to produce an encoded message
hashpss M.

2. Apply a signature function to the encoded message, using a private key k, to produce a
signature sign (hashpss M) k.

The message M is then sent together with its signature, sign (hashpss M) k. The signature can
be verified by the receiver using the sender’s public key k~!. (RSA-PSS is not an encryption
algorithm. If the contents of M need to be kept secret, any such algorithm can be used
to encrypt M before transmission. The ciphertext is then decrypted by the receiver before
signature verification.)

A detailed Isabelle/HOL formalization of the RSA-PSS protocol (by Christina Lindenberg and
Kai Wirt) is available [96]. For our purposes however, it will be sufficient to model hashing
and signing as uninterpreted functions. We take these functions as primitives, without aiming
to verify the mathematics that is underlying their implementation. A third function, conc,
forms the concatenation of two messages. We write a :: b for concab, and {M} for sign M k.

4.2. THE RSA-PSS SECURITY PROTOCOL 73

A naive implementation of the RSA signature function suffers from an undesirable homo-
morphism property, which allows to compute the signature of concatenated messages from
signatures for their components (and vice versa) without knowledge of the private key k:

{a by = {ahi = (B

Our goal is rather simple: we want to show that PSS hashing (when considered a primitive)
breaks this homomorphism property, thereby improving security of the signature scheme. An
early version of this analysis is described in [I80]. The first-order clauses that model the
RSA-PSS protocol and the abilities of a potential Dolev-Yao attacker are as follows.

1. The attacker can decrypt, provided he knows the decryption key:

VA, K. knows { A} x A knows K1 = knows A.

2. We only assume the signature function to be cryptographically strong, but not the hash
function. The attacker can recover hashed messages:

VA. knows (hashpss A) = knows A.

3. The attacker can concatenate and encrypt:

VA, B. knows A A knows B = knows A :: B A knows {A}p.

4. The attacker can decompose messages:

VA, B. knows A :: B =—> knows A A knows B.

5. The attacker can hash:

VA. knows A = knows (hashpss A).

6. The signature function satisfies the homomorphism property discussed above (1):

VA, B, K.knows {A :: B} = knows {A}x A knows { B} .

7. The signature function satisfies the homomorphism property discussed above (2):

VA, B, K. knows {A} ik A knows {B}x == knows{A :: B}.

We consider a protocol run where the message a :: b is signed with some private key k according
to the RSA-PSS protocol and then transmitted over an insecure connection, so the attacker
also has initial knowledge of this message and its signature. In addition, the attacker knows
the sender’s public key.

8.
knows (a :: b) :: {hashpss (a :: b) }.

74 CHAPTER 4. CASE STUDIES

knows kL.

The knows predicate can be seen as an inductive characterization of the attacker’s knowledge.
Starting from some initial knowledge, the attacker can extend his knowledge with every message
exchange of the protocol, and by computing new facts (within his computational abilities) from
facts that he knows already. However, we do not ensure that knows actually denotes a least
fixed point. The knows predicate is merely an upper bound on the attacker’s knowledge; an
interpretation where the attacker knows everything is allowed, but would be uninteresting.

If we consider a modified protocol without PSS hashing (by replacing Clause (8) with knows (a ::
b) :: {a :: b}y), then it is easy to show that the attacker can forge the signature for message b :: a,
using the homomorphism property that we assumed for the signature function. A machine-
checked version of this result is shown below.

lemma
assumes remove_sign: "VA K. knows (sign A K) A knows (invs K) —— knows A"
and remove_hashpss: "V A. knows (hashpss A) — knows A"
and construct_msg: "VA B. knows A N knows B —
knows (conc A B) A knows (sign A B)"
and deconstruct_msg: "VA B. knows (conc A B) — knows A A knows B"
and hashpss: "V A. knows A — knows (hashpss A)"
and sign_hom_1: "VA B K. knows (sign (conc A B) K) —
knows (sign A K) A knows (sign B K)"
and sign_hom_2: "VA B K. knows (sign A K) A knows (sign B K) —
knows (sign (conc A B) K)"
and modified_protocol_msg: "knows (conc (conc a b) (sign (conc a b) k))"
and public_key: "knows (invs k)"
shows "knows (sign (conc b a) k)"
proof -
from protocol_message deconstruct_msg sign_hom_1
have sign_b_k: "knows (sign b k)" by blast
from modified_protocol_msg deconstruct_msg sign_hom_1
have sign_a_k: "knows (sign a k)" by blast
from sign_b_k sign_a_k sign_hom_2 show ?thesis by blast
qed

However, from Clauses (1)-(9), can we conclude that the attacker knows {hashpss (b :: a)};?
(In our formalization, it is certainly possible that the attacker knows this signature—since the
knows predicate, as discussed above, may be true everywhere—, but is it also necessary?) An
encoding of this problem in TPTP syntax [I55] is shown in Figure Various first-order
provers, including E-SETHEO [60] and SPASS [169], fail to provide meaningful output for this
problem. The Isabelle/HOL encoding of the same problem (which, apart from Clause (8) and
the conjecture, is identical to the problem shown above) can be used directly as input to the
model generation algorithm:

lemma
assumes remove_sign: "VA K. knows (sign A K) A knows (invs K) —— knows A"
and remove_hashpss: "V A. knows (hashpss A) — knows A"
and construct_msg: "VA B. knows A A knows B —
knows (conc A B) A knows (sign A B)"
and deconstruct_msg: "VA B. knows (conc A B) — knows A A knows B"

4.2. THE RSA-PSS SECURITY PROTOCOL 75

and hashpss: "V A. knows A — knows (hashpss A)"
and sign_hom_1: "VA B K. knows (sign (conc A B) K) —
knows (sign A K) A knows (sign B K)"
and sign_hom_2: "V A B K. knows (sign A K) N knows (sign B K) —
knows (sign (conc A B) K)"
and protocol_msg: "knows (conc (conc a b) (sign (hashpss (conc a b)) k))"
and public_key: "knows (invs k)"
shows "knows (sign (hashpss (conc b a)) k)"
apply (cut_tac prems)
refute
oops
(Isabelle’s oops command aborts a failed proof attempt. No theorem is established in this
case.) Using zChaff [I19] as the underlying SAT solver, our Isabelle implementation of model
generation finds a counterexample with 4 elements in about 3 seconds on a current personal
computer. (This implies that there are no counterexamples with less than 4 elements, cf.
Section) The model—in text form, as rendered by Isabelle—is shown in Figure One
can easily verify by hand that the model indeed satisfies Clauses (1)—(9) and the negation of
the conjecture. Other model generators, e.g. Paradox [41], find similar counterexamples.

4.2.2 Avoiding Confusion

There is a subtlety present in our formalization. The conc function is supposed to denote
the concatenation of messages; in the model however, conc is (necessarily, since the model is
finite) not injective. This means that certain intuitively different messages are identified in
the model. More generally, if we view the functions hashpss, sign and conc, as well as the
constants a and b, as free generators of a term algebra of messages, then the model violates
the no confusion property [70], which would require it to identify only those terms that are
syntactically equal. To solve this problem, we note that Clauses (1)—(9) are all (equivalent to
one or two) strict Horn clauses. The following definitions are taken from [71].

Definition 4.1 (Horn Formula). A quantifier-free formula is said to be a Horn formula iff it
has one of the three forms

L o,

2. 1 N N = @,

3. (1 A Apn),

where the formulae ¢1, ..., pn, ¢ are all atomic.

Definition 4.2 (Horn Clause). A Horn clause is a formula that consists of universal (first-
order) quantifiers followed by a quantifier-free Horn formula.

Definition 4.3 (Strict Horn Clause). A Horn clause is said to be strict iff no negation sign
occurs in it, i.e. iff it comes from a Horn formula of the first or second kind.

Theories consisting of strict Horn clauses always have an initial model. This is known as the
initial model theorem [70), [71].

76 CHAPTER 4. CASE STUDIES

input_formula(remove_sign, axiom, (
' [A, KI : ((knows(sign(A, K)) & knows(invs(K))) => knows(A))
).

input_formula(remove_hashpss, axiom, (
! [A] : (knows(hashpss(A)) => knows(A))
).

input_formula(construct_msg, axiom, (
' [A, Bl : ((knows(A) & knows(B)) =>
(knows(conc(A, B)) & knows(sign(A, B))))
)).

input_formula(deconstruct_msg, axiom, (
! [A, B] : (knows(conc(A, B)) => (knows(A) & knows(B)))
).

input_formula(hashpss, axiom, (
! [A] : (knows(A) => knows(hashpss(A4)))
).

input_formula(sign_hom_1, axiom, (
' [A, B, K] : (knows(sign(conc(A, B), K)) =>
(knows(sign(A, K)) & knows(sign(B, K))))
).

input_formula(sign_hom_2, axiom, (
! [A, B, KI : ((knows(sign(A, K)) & knows(sign(B, K))) =>
knows (sign(conc(A, B), K)))
).

input_formula(protocol_msg, axiom, (
knows (conc(conc(a, b), sign(hashpss(conc(a, b)), k)))

).

input_formula(public_key, axiom, (
knows (invs (k))

).

input_formula(attack, conjecture, (
knows (sign(hashpss(conc(b, a)), k))
).

Figure 4.1: TPTP encoding of the RSA-PSS protocol

4.3. PROBABILISTIC PROGRAMS 7

**x*x Model found: **x*
Size of types: ’a: 4

k: a2
b: a0
a: a3

conc: {(a0, {(a0, a0), (al, al), (a2, a2), (a3, a0d)}),

(a1, {(a0, al1), (a1, al), (a2, a2), (a3, al)l}),

(a2, {(a0, a2), (a1, a2), (a2, a2), (a3, a2)}),

(a3, {(a0, a3), (a1, al), (a2, a2), (a3, a0)PH}
hashpss: {(a0, al), (al, a3), (a2, a2), (a3, a3)}
invs: {(a0, a2), (a1, a2), (a2, al0), (a3, a2)}
sign: {(a0, {(a0, al), (al, al), (a2, a0), (a3, al)}),

(a1, {(a0, al1), (a1, al), (a2, a2), (a3, ad)}),

(a2, {(a0, a0), (a1, a0), (a2, a2), (a3, al)}),

(a3, {(a0, al1), (a1, al), (a2, a3), (a3, a0)})}
knows: {(a0, True), (al, True), (a2, False), (a3, True)}

Figure 4.2: Model showing security of RSA-PSS hashing

Theorem 4.4 (Initial Model Theorem). Let T be a theory consisting of strict universal Horn
sentences. Then T has a model A with the property that for every model B of T there is a
unique homomorphism from A to B. (Such a model A is called an initial model of T. It is
unique up to isomorphism.)

The initial model satisfies the no confusion property [70]; its universe is indeed the (freely
generated) term algebra of messages. Moreover, since knows {hashpss (b :: a)}j fails in the 4-
element model found by Isabelle, existence of a homomorphism (in the sense of [71]) from the
initial model to the 4-element model implies that knows {hashpss (b :: @)}, must also fail in the
initial model. Thus we have shown that also with a more traditional algebraic interpretation of
message concatenation, a Dolev-Yao attacker cannot generally forge RSA-PSS signatures (pro-
vided the actual implementations of hashing and signing do not have cryptographic weaknesses
that would allow him to do so).

4.3 Probabilistic Programs

The mechanization of proofs for probabilistic programs is particularly challenging due to the
verification of real-valued properties that are entailed by probability. Experience has shown
that there are difficulties in automating real-number arithmetic in the context of other program
features. The infinite domain of reals needed for quantitative analysis for example prevents
the provision of counterexample search via state exploration [14§].

In this section, we describe a framework for verification of probabilistic distributed systems
(developed jointly with Annabelle McIver [108]) based on a generalization of Kleene algebra
with tests [94]. First, it is shown how a model for probabilistic systems LS can be inter-
preted over a Kleene-style program algebra, so that explicit probabilistic reasoning is reduced
significantly. Second, we propose a model of abstract propabilities ICS that is susceptible to
complete semantic exploration, yielding counterexamples even for the probabilistic model LS.

78 CHAPTER 4. CASE STUDIES

The abstract model has been formalized in Isabelle/HOL, thereby making our implementation
of finite model generation applicable to probabilistic programs.

4.3.1 The Probabilistic Model LS

Probabilistic systems can show both quantifiable and unquantifiable non-deterministic behav-
ior. The chance of winning an automated lottery is an example of the former, while the
precise order of concurrent events can be an example of the latter. The transition-system
style model that is now generally accepted for probabilistic systems [107] uses probability dis-
tributions to model quantifiable behavior, and sets of distributions to model unquantifiable
non-determinism. This model is closely related to Markov decision processes [174].

Definition 4.5 (Discrete Probability Distribution). Let S be a set. A function f: S — [0,1]
is called a discrete probability distribution (over S)iff {s € S| f(s) # 0} is at most countable,

and) g f(s) =1.

In this section, we consider finite state spaces S only. We write S for the set of discrete
probability distributions over S. A point distribution centered at point k is denoted by Jk,
ie. O0p(s) :=1if s = k, and dx(s) := 0 otherwise. The (p,1 — p)-weighted average of two
distributions d and d’, i.e. p-d+ (1 —p)-d’ (for 0 < p < 1), is written d ,® d’. If K is a subset
of S, and d is a discrete probability distribution over S, we write d(K) for) d(s).

Thus, a probabilistic system with finite state space S is modelled by a function from initial
states to subsets of distributions over final states, i.e. a function from S to P(S). For example,
a program that simulates a fair coin is modelled by a function that maps an arbitrary state s
to the evenly weighted average of the two point distributions representing heads and tails (but
see below):

St {5head 1/269 6tail}-

The details are still a bit more complicated. We follow Morgan et al. [118] in taking a domain-
theoretic approach, where the result sets of the semantic functions are restricted according to
an underlying order on the state space. In addition, we distinguish special “miraculous” or
infeasible behavior. Miracles, which will be associated with a special state T in the semantics,
have various applications in program semantics [94] [1T6] [117]. Here, they will work particularly
well with our simple Kleene-style program algebra. We write ST for S U {T}, where T is
assumed to be not in S. The underlying order C is chosen so that T dominates all states in
S, which are otherwise unrelated.

Definition 4.6 (Probabilistic Power Domain). A probabilistic power domain is a pair (SiT, Cp),
where Cp is the order on ST that is induced from C, i.e.

dCpd iff Vse S.d(s)>d(s).
Remark 4.7. Let d, d' € ST. Then d Cp d implies d(T) < d'(T).

Proof. Using Def. we have d(T)=1—-d(S) <1-d'(S)=d(T). O

We now impose certain closure conditions (so-called healthiness conditions) on the sets of distri-
butions that may be returned by probabilistic programs. These conditions, which are motivated

4.3. PROBABILISTIC PROGRAMS 79

in detail in [I07], reflect characteristics that are inherent in our model of non-determinism and
probability. In particular, we require up-closure (the inclusion of all Cp-dominating distribu-
tions), convex closure (the inclusion of all convex combinations of distributions), and Cauchy
closure (the inclusion of all limits of distributions, where distributions are viewed as vectors
in R'ST‘). This leads to the following definition, whose particular program model was first
suggested by Carroll Morgan.

Definition 4.8 (Space of Probabilistic Programs). The space of probabilistic programs is given
by (L£S,C), where

LS :={Pe ST = P(ST) | VseST.P(s) is up-, convex-, and Cauchy-closed
AP(s)£0 A P(T) = {57}},

and the order between programs is defined by

PC, P iff VseS.P(s)C P(s).

For a set of distributions D C ST, we write [D] for the smallest up-, convex-, and Cauchy-
closed set of distributions containing D. We write Hcopvex(D) for the convex hull (i.e. the
smallest convex-closed superset) of D, and Hyp(D) for the up-closure (i.e. the smallest up-
closed superset) of D.

Definition 4.9 (Up-, Convex-, Cauchy-Closed Hull). For D C ST, let
[D] := ﬂ{X D D| X CST is up-, convex-, and Cauchy-closed}.

Definition 4.10 (Convex Hull). For D C ST, let

k
Hconvex(D) = {Zazdz
=1

Definition 4.11 (Up-Closure). For D C 57T, let

=1

k
keNk>1,d; € D,a; € R,y ZO,Zazzl}

Hupy(D):={d' € ST |3d e D.dCp d'}.

Remark 4.12. Let D C ST. [D] is the smallest up-, convex-, and Cauchy-closed superset
of D. Heonvex(D) is the smallest convex-closed superset of D. H,p,(D) is the smallest up-closed
superset of D. Hence [-], Heonvex, and Hy,, are closure operators, i.e. extensive (D C [D]),
monotonically increasing (D € D’ C ST implies [D] C [D']), and idempotent ([[D]] = [D],
likewise for Heonvex and Hyp).

Proof. We note that an arbitrary intersection of up-closed subsets of ST is up-closed again;
likewise for an intersection of convex-closed and Cauchy-closed subsets, respectively. The
various claims of Remark now have standard proofs. O

Some basic lemmas about these closure operators will be useful later.

Lemma 4.13. If D C ST is up-closed, then Heonvex(D) is up-closed.

80 CHAPTER 4. CASE STUDIES

Proof. Let d Cp d' with d € Heopyex(D), ie. d = Zle o;d; for some ke N, k> 1,d; € D,
a; €R, o; >0, and Zle a; = 1. For 1 <i <k, define d;: ST — [0,1] by
di(s) + S (d'(s5) — d(s)), if s € S and d(s) > 0
d(s) :== <0, if s € S and d(s) = 0;

1-— ZUES,d(u)>O (dz(u) + Cg((s)) (d'(u) — d(u))) , otherwise (i.e. if s =T).

Clearly d € ST, and d; Cp d;. Hence up-closure implies d; € D. Consequently, d' =
Zf:l O"Ld; € Hconvex(D)- O

Lemma 4.14. If D C ST s Cauchy-closed, then Heopvex(D) is Cauchy-closed.

Proof. The proof is standard. Let (d,)nen be a convergent sequence in Heopvex(D), with
d = lim, o d,. Let (for all n € N) d,, = Zfﬁl aldi for some k, € N, k, > 1, d’, € D,
ol € R, of >0, and Y% of = 1. Let k := |ST| + 1. By Carathéodory’s theorem [33, 53],
we may assume k, < k (and hence, without loss of generality, k,, = k) for all n € N. For each
1 <i <k, the sequences () en and (df,),en have a convergent subsequence by the Bolzano-

Weierstra3 theorem; call the limits of these subsequences o' and d’, respectively. Cauchy
closure implies d° € D (for 1 <1i < k). Hence d = Zle a'd" € Heonvex (D). O

Combining these lemmas and Remark we obtain the following characterization of [-].

Lemma 4.15. If D C ST s Cauchy- and up-closed, then [D] = Heonyex(D).

Proof. Hconvex(D) is an up-closed (Lemma [4.13)), convex-closed (Remark , and Cauchy-
closed (Lemma [4.14)) superset of D. Hence we have [D] C Heonvex(D) by Remark The
other inclusion is immediate. O

The up-closure of a Cauchy-closed set of probability distributions is Cauchy-closed.

Lemma 4.16. If D C ST is Cauchy-closed, then H,p(D) is Cauchy-closed.

Proof. Let (d],)nen be a convergent sequence in Hyp(D), with d’ := lim, s d],. Then there
exists a sequence (dy)nen With d, € D and d,, Cp d], for all n € N. By the Bolzano-Weierstraf

theorem, (dp)nen has a convergent subsequence; call the limit of this subsequence d. Cauchy
closure implies d € D. Clearly d Cp d', hence d' € Hyp(D). O

Together with Lemma the previous lemma implies [D] = Heonvex(Hup(D)), provided
D C ST is Cauchy-closed.

Lemma 4.17. If D C ST s Cauchy-closed, then [D] = Hconvex(Hup(D)).

Proof. Hyup(D) is a Cauchy-closed (Lemma [4.16) and up-closed (Remark [4.12)) superset of D.
Hence [D] C [Hyp(D)] = Heonvex(Hup(D)) by Lemma and Remark [4.12] The other

inclusion is immediate. O

4.3. PROBABILISTIC PROGRAMS 81

We write Hcauchy (D) for the Cauchy closure of D. Again we need some basic lemmas relating
Hcauchy to the other closure operators. First, the Cauchy closure of an up-closed set is up-
closed.

Lemma 4.18. If D C ST is up-closed, then Hcaueny (D) is up-closed.

Proof. Let d Cp d' with d € Hcaueny (D), i.e. d = lim, . d,, with d,, € D (for all n € N). For
n €N, define d,: ST — [0,1] by

FIRD L CAERT O irses;
1= Y egmin{dy(u), d’(u)}, otherwise (i.e. if s = T).

Clearly d/, € ST, and d,, Cp d,. Hence up-closure implies d/, € D. Consequently, d’ =
limy, 00 d), € Hcaueny (D).]

Second, the Cauchy closure of a convex-closed set is convex-closed.
Lemma 4.19. If D C ST is convex-closed, then Hcauchy (D) is conves-closed.
Proof. The proof is standard. Let k € N, k > 1, d; € Hcaueny(D) (for 1 < i < k), oy € R,

ao; > 0, and Zle a; = 1. Then d; = lim,, .o d; , for some d;,, € D (for all n € N). Convex
closure implies Zle a;d; n € D. Hence Zle o;d; = limnﬂoo(Z?zl a;d;n) € Hoauehy (D). O

The previous two lemmas lead to the following alternative characterization of [-].

Lemma 4.20. If D C ST is convex- and up-closed, then [D] = Hcauchy (D).

Proof. Hcauchy (D) is an up-closed (Lemma (4.18]), convex-closed (Lemma [4.19), and Cauchy-
closed superset of D. Hence we have [D] C Hcauchy (D) by Remark The other inclusion

is immediate. O

Various mathematical operators on the space of probabilistic programs are defined next. These
operators will be needed to interpret Kleene algebra expressions; the definitions are taken
from [107].

Definition 4.21 (Operators on £S). For arbitrary states s € ST, programs P, P’ € LS, and
0 <p <1, we define

Identity Id(s) = [{ds}],

Top T(s) = {or}h

Composition (P; P')(s) = {Duegmdu)-d, |de P(s),Yue ST.d, € P'(u)},
Probability (P,®P)(s) = {dp®d |de P(s),d € P'(s)},

Non-determinism (P P')(s) := [P(s)UP'(s)],

Iteration pP* = vX.(P;X)NId,

where v X. f(X) denotes the greatest fixed point of the function f: LS — LS (with respect
to Cpr).

82 CHAPTER 4. CASE STUDIES

Remark 4.22. Let P, P € LS, and 0 < p < 1. Then Id € LS, T € LS, (P;P') € LS,
P, P € LS, PNP e LS, and P* € LS.

Proof. We note that for arbitrary d € ST, 6+ Cp d iff d = 67. Hence [{67}] = {07}

Let s € ST. For Id(s) and T (s), all relevant properties (i.e. up-closure, convex closure, Cauchy
closure, non-emptiness, and Id(T) = T(T) = {d1}) now follow immediately from Def.

Up-closure of (P; P’)(s) follows from up-closure of P’(u) for all u € ST.*TO prove convex
closure, we note that for arbitrary probability distributions d, d,, e, €/, € ST (where u ranges
over ST) and 0 < ¢ < 1, we have

S dw)-d, | o [3 ew e, | = 3 (@ e)(w) - (dy _pan @el),

d e)(u
ucST ucST ucST (@ goe)w)

assuming (without loss of generality) (d,® e)(u) > 0 for all uw € ST. Hence convex clo-
sure of (P; P')(s) follows from convex closure of P(s) and P'(u) for all w € ST. To prove
Cauchy closure, let (dp,)nen and (d, ,,)nen (Where u ranges over ST) be sequences of probabil-
ity distributions such that lim,, . (Zue g7 dn(u) - d},) exists. We note that (dy,)nen and (for
arbitrary u € ST) (d;,n)neN are bounded sequences in RIS T', which must therefore have con-
vergent subsequences by the Bolzano-Weierstral theorem. Cauchy closure of (P; P')(s) now
follows from Cauchy closure of P(s) and P'(u) for all u € ST. Non-emptiness of (P; P')(s)
and (P; P')(T) = {01} are immediate.

Up-closure of (P ,® P')(s) follows from up-closure of P(s) and P’(s). Since (for arbitrary
probability distributions d, d’, e, ¢ € ST, and 0 < ¢ < 1) we have (d,® d') ;® (e, ® €') =
(de®e)p® (d¢@ €), convex closure of (P,@ P')(s) follows from convex closure of P(s)
and P’(s). Cauchy closure of (P,® P’)(s) follows from Cauchy closure of P(s) and P'(s),

with an argument similar to the one for Cauchy closure of (P; P')(s) above. Non-emptiness of
(P,@ P')(s) and (P ,® P')(T) = {67} are immediate.

For (P11 P')(s), all relevant properties are immediate again from Def.

Finally, we note that X — (P; X) M1Id is monotonic wrt. to T, and (£S,C,) is a complete
lattice: T, is clearly a partial order (i.e. reflexive, antisymmetric, transitive), (A L)(s) :=
[Uper, P(s)] (for s € ST) defines the greatest lower bound (meet) of L C LS, and (\/ L)(s) :=
Nper P(s) defines the least upper bound (join) of L. Therefore P* exists (and is in £S) by
the Knaster-Tarski theorem [157]. O

Iteration is the most intricate of these operations. Operationally P* represents the program
that can iterate P an arbitrary (finite) number of times. This generates all results of finite
iterations of P MId. In addition, imposition of Cauchy closure implies that also all limits of
distributions are contained. Note that P* is in general not the same as IdM P M (P; P) ...
The latter program requires the number of iterations to be chosen at the start, while P* allows
the choice between P and Id to be made after each iteration. For a concrete counterexample,
consider again the program that simulates a fair coin, now (more precisely than before) given
by s + [{0head 1/2® dtait } |- If we take P to be this program, we have P = P; P = P; P; P = ..
since the probability to be in state “head” is exactly 1/2 after each iteration (and likewise for
state “tail”). The program P* on the other hand allows us to iterate P until we are in a

4.3. PROBABILISTIC PROGRAMS 83

desired state; this means that we can reach both states “head” and “tail” with probability
arbitrarily close to 1. Cauchy closure then implies that also the limit distributions dpeaq
and di,j are contained in P*. The next lemma states this operational characterization of P*
more formally. We write P" for the n-fold iteration of P, i.e. P? := Id, and (for arbitrary
n € N) prtl .= p; pn.

Lemma 4.23. Let P € LS. Then for all s € ST, P*(s) = [U,en(P N 1d)"(s)].

Proof. The lemma follows from the definition of P* as the greatest fixed point of the function
f+ LS — LS, given by f(X):=(P;X)NId.

Let (Xp)nen be a descending (wrt. Cp, i.e. X, (s) C X,41(s) for all s € S, n € N) sequence
in £S. We note that f, as a composition of program composition and non-determinism,
satisfies f(A,en Xn) = Anen f(Xn): first, we show that for all s € ST, (P;\,cn Xn)(s) =
(S st dw) -, | d € P(s),Vu € ST.d, € [Upey Xa()]} = [Upard Sy du) - &, | d €
P(s),Yue ST.d, € X, (u)}] = (Anen(P; Xn))(s). Here the “C” inclusion follows from the fact
that (J,,cny Xn(u) (for w € ST) is both up-closed (since a union of up-closed sets is up-closed)
and convex-closed (since the union of an ascending, wrt. C, sequence of convex-closed sets
is convex-closed). Hence [|J,cny Xn(w)] = Heauchy (Uney Xn(u)) by Lemma Therefore
dy, € [Upen Xn(u)] can be written as d;, = limy_. d, , for some d;, ; € U, ey Xn(u). Now
for any d € P(s), E:ueST d(u) - d;, = EueST (d(u) - limg oo d;,k) = limk—wO(ZueST d(u) - dil,,k)’
and for any k € N there exists ny € N such that d,, € X, (u) for all u € ST (because
Xn(u) € Xpy1(u) for all n € N). This proves (P; /\;LGN Xn)(5) € (Apen(P;Xn))(s). The
other inclusion is immediate from Remark Second, for all L C £S and s € ST, (AL) M
Id)(s) = [Uxer X ()1 UId(s)] = [Uxep[X(s) UId(s)]] = (Axe (X M1d))(s) follows also

from Remark

Hence by the Knaster-Tarski theorem [I57], P* = Aoy f"(V £S), i.e. for all s € ST, P*(s) =
[Unen(/"(T))(s)]-

Finally f**1(T) = (P Id)" for all n € N by induction: it is easy to show f1(T) = Id =
(P 1d)° Next, using the induction hypothesis and monotonicity of f, we have f"*%(T) =
[T 0 YT = (P r(T))nId N YT = (PId); (P OId)t = (PId) T (see
the proof of Theorem below for the detailed calculations).

Therefore [|J,,cn(f™(T))(8)] = [Upen(P N 1Id)"(s)] for all s € ST. O

A Kleene algebra [93] is an algebraic structure that generalizes the operations known from
regular expressions. It consists of a binary sequential composition operator (written as multi-
plication, -), a binary choice operator (written as addition, +), and a unary iteration operator
(written as a postfix star, -*). Terms are ordered by <, which is defined via binary choice.

Definition 4.24 (Probabilistic Kleene Algebra). A probabilistic Kleene algebra (pKA) is a
set A (containing elements 0 and 1) together with two binary operations -: A x A — A and
+: Ax A — A and a unary operation -*: A — A, as well as a binary relation < over A, such
that the following axioms are satisfied:

1. 0+a=a,

2. a+b=b+a,

84 CHAPTER 4. CASE STUDIES

3. a+a=a,
4. a+(b+c)=(a+b) +ec
5. a(bc) = (ab)c,

o

O0a = a0 =0,

a

la =al =a,

8. ab+ac < a(b+c),

9. (a+b)e = ac+ be,

10. a<biffat+b=0b,

11. a* =1+ aa™,

12. a(b+1) < a = ab* = q,

13. ab<b=— a*b=0.

Note that Axiom is weaker than the corresponding rule in standard Kleene algebra [42];
this is because of the well-documented ([107, [147], also compare the above discussion on P*
vs. IdM P (P; P)M...) interaction of probability and non-determinism.

Probabilistic Kleene algebra expressions are built from variables (z, y, z, ...) and constants (0
and 1), using the (unary or binary) operations -, +, and -*. We can now define an interpretation
of pKA expressions in the space of probabilistic programs.

Definition 4.25 (Semantic Mapping of pKA Expressions to £S). The semantic mapping
[-1 , from pKA expressions to LS is parameterized by a mapping p from pKA variables to
probabilistic programs in £S5, and defined as follows:

1. If z is a variable, then [z], := p(z).

2. =T, [1], :=Id.

p

-

D.

w
= = == =
IS
~
=
° ..
]
S
=
A
=
—
=
A}

On the right-hand side of the defining equations, Def. refers to the operators on £S that
were introduced in Def. The following theorem shows that the semantic mapping is a
valid interpretation for the pKA axioms given in Def.

Theorem 4.26. LS, with 0, 1, -, + and -* as given in Def. (and with the additional
definition P < P’ iff P' T, P), is a probabilistic Kleene algebra.

Proof. Using Def. (and a number of simple lemmas), one verifies that Axioms (1)—(L3)
of pKA are satisfied. Let a, b, ¢ be probabilistic Kleene algebra expressions, let p be a mapping
from pKA variables to probabilistic programs in £S, and let s € ST.

4.3.

. 0a = a0 = 0: [0a] (s) = {X,cq7d(u) d, | d € [0],(s),Vu € St.d, € [[a]]p(u|)}d

. la = al = a: We note that [{ds}] = {dsp® dT | 0 < p < 1}. Hence [la] (s

PROBABILISTIC PROGRAMS 85

. 0+ a = a: We note that every non-empty, up-closed subset of ST contains 6. Hence

[0+a],(s) = {or} Ula],(s)] = [[al ,(5)] = [a],(5)-

ca+b=b+a: [a+b],(s) = [lal,(s) Ub],(s)] = [[6] ,(s) Ulal,(s)] = [b+a],(s)-
cata=a: fata],(s)=la],(s) Ulal,(s)] = [[a],(s)] = [al,(s)-

. a+ (b+c) = (a+b)+c: It is easy to show that for arbitrary Dy, Dy C ST, [D;UD;] =

[[D1] U [Dy]]. Hence [a+ (b+c)l,(s) = [la],(s) U [[0],(s) U [e] ()11 = [lal,(s) L
[61,(s) U el (s)1 = [Tlal ,(s) U [B] ()T U €] ,(s) = [(@ + b) + €] ,(s)-

- afbe) = (ab)e: [a(be)],(s) = {Duest d(w) - (Lpest €ulv) - fup) | d € [a],(s),Vu €

ST ey € [b],(u),Yu,v € ST. fup € [, (v)}, and [(ab)e] ,(s) = {3 eq7 (D uest d(u) -
ew)(v) - fo | d € [a],(s),Vu € ST.e, € [6] ,(w), Vv € ST. f, € [c],(v)}. Because
S st (Cuest dlu) -)(0) - fo = Toesr d) - (Syest eul®) - £2) (for d € [al,(s),

€ [b],(u) for all u € ST, fo, € [c],(v) for all v € ST), the inclusion [a(bc)] ,(s) 2
[(ab)c] ,(s) is now immediate, by setting fy, := fy for all u € ST. To show the other
inclusion, we note that (for d € [a],(s), ex € [b] ,(u) for all u € ST, and f,, € [c],(v)

for all u, v € ST) ZuEST d(u) : (Z’UEST eu(v) - fu v) = ZUGST(ZU,EST d(u) ’ eu)(v) * fu,

where
eu(v) .
Fom 2 ey T

wesST u'eST d

(assuming, without loss of generality, >, c g d(u)-e4(v) > 0) isin [c] ,(v) (for allv € ST
because the latter is convex-closed.

m |l

{d7 | dt € [a] ,(T)} = {61} = [0],(s). Likewise, [[CLO]] (s) = {Xuesm d(u) - dy,
(s

la] (s),Vu € ST.d} € [0],(u)} = {3 g7 d(u) o7 | d € [[a]]p(s)} = {7} = [0] ,(s)-

o\./
IAN M IA

{Suest d() - d,, | d € [1] ,(5),Yu € ST.d,, € [a] ,(u)} = {d;p® o7 | di € [a] (),

p < 1} = [a] ,(s). leerse [a1],(s) = {> uesr du) - d,, | d € [a] ,(s),Vu € ST.d
[1,(w)} = (s d(u)- (5up@5T) |ded,(s),0<p<1}= {d,@br |de [al,(s),
p<1}=la a] ,(s).

o™

cab+ac < a(b+c): Jab+ac],(s) = [{X,es7 du) - dy | d € [a],(s),Vu € ST.d, €

(8], ()} U{Y a5 d(u) - dy, | d € [a] (), Vu € ST.d}, € [c] (w)}], and [a(b+c)],(s) =
{Duest d(w) - dy | d € [a],(s),Vu € ST.d, ¢ [[6],(u)} U [e] (u)]}. The inclusion
[ab+ ac],(s) € [a(b + c)] ,(s) is now immediate from Remark

. (@+b)e = ac+be: Let d € [(a+b)],(s), Le.d =3, cqrd(u)-d, for some d' €

[lal,(s) U [b],(s)], dy € [c],(u) (for all u € ST). Using Lemma we can show
[Tal,(s) U TbI,(s)] = Heonvex([al,(s) U [b],(5)). 1f ' € [a],(s) UTb],(s), then d €
[ac +bc] ,(s) = [{Dyes d'(w) - d, | d' € [a] ,(s), Vu € St.d, e [e], (W)} UL esm d'(u)-
d, | d e [b],(s),Yu € ST.d, € [c](u)}] is immediate. Next, if d' = Y | ovd; for
some k € N, k > 1, d; € [a] (s) U[b],(s), & € R, a; > 0, and Ele a; = 1, then

86 CHAPTER 4. CASE STUDIES

d =3 s (Ciy qidi(w)-dy, = 3201 ai(Xe57 di(u)-d))) € Heonvex([ac] () U[be] ,(5)).
This proves [(a + b)c] ,(s) C [[ac +bc] ,(s). The other inclusion is immediate from Re-
mark .12

10. a < biff a+b = b: By definition of Cg, [a] , < [b],, iff [a] ,(s) C [b] ,(s) for all s € S. Also
[a] ,(T) =[b] ,(T) = {07} for all [a] ,, [6], € LS. On the other hand, [a + 8], = [0] , iff
[lal,(s) U B] ,(s)] = [b] ,(s) for all s € ST. Equivalence is now immediate.

11. a* = 1+ aa™: Since [a] " is a fixed point of the function X ~ ([a],;X) M 1d (with
X € LS), we have [a*] , = [a] ;" = ([a] ; [a] ") N 1d = [1 + aa’] .

12. a(b + 1) < a = ab® = a: Since [1], < [b*], (by Lemma “, [a], = [al], <
[ab*],, follows from monotonicity of comp051t10n It remains to show [ab*]] < [q],, ie.
[ab*] (s) € [a],(s) for all s € S. Let d € [ab*] (s), i.e. d = 3, cov d'(u)- d’ for some
d e [[a]]p(s), d; € [v],(u) for all u € ST. Using similar arguments as in the proof of
Lemma @ we have [b*] (u) = Hcauchy (U, e [(0+1)"] (). Hence (for all u € ST
dy = limy_ oo d;, ;, with &, € U,y [(0+1)"] ,(u) for all k& € N. Since, by induction,
[b+1)"], < [[(b+1)”+1]] for all n € N, there exists (for any k& € N) n; € N such
that d,, , € [(b+1)"],(u) for all u € ST. Now d = Y, o7 (d(u) - limy_o dy) =
hmkﬂoo(zuesr d'(u) - d;k) [a] ,(s) because (by induction) [a(b+ 1)"], < [a], for all

n € N, and because [a] ,(s) is Cauchy-closed.

13. ab < b = a™b = b: Since [1], < [a*], (by Lemma [4.23), [o], = [10], < [[a*b]]p follows
from monotonicity of composition. It remains to show [[a*b]] < [b],, ie. [ab],(s) €
[6] (s) for all s € S. Let d € [a*b],(s), ie. d = > cq7 d’() - d for some d' €
[a*],(s), di, € [b] (u) for all u € ST. Using similar arguments as in the proof of
Lemma we have [a*] (s) = Hcauchy(Upen [(a +1)"] ,(s)). Hence d’ = limy_.o0 dj,
with di € U,en[(a+1)"],(s) for all & € N. Now d = 3 g7 (limgoo dy)(u) - d;, =
im0 (D2 ,es7 di(u) - d) € [b],(s) because (by induction) [(a+1)"0], < [b], for
all n € N (where the case n = 1 ie. [(a+1)b], < [b],, follows from the premise
[ab], < [b],), and because [b] ,(s) is Cauchy-closed.

p

g

The following corollary is an immediate consequence of Theorem [4.26

Corollary 4.27. Ifa < b is a theorem of pKA (as given in Def. , then for any mapping p
from pKA wvariables to probabilistic programs in LS, [[b]]p Cr [[a]]p.

Theorem and Corollary enable us to use the probabilistic model LS to search for
counterexamples to conjectures about pKA expressions. Unfortunately however, models of
finite size are not sufficient for the real-number domain needed to model probability distribu-
tions. In the next section, we propose an abstraction of £S5 which overcomes this problem and
yields genuinely finite models.

4.3.2 The Abstract Model S

The basic idea of the abstraction is to replace a probability distribution by a simple set, in
fact its support.

4.3. PROBABILISTIC PROGRAMS 87

Definition 4.28 (Support). Let d: ST — [0, 1] be a discrete probability distribution over S.
The set {s € ST | d(s) # 0} is called the support of d, written supp d.

The support only contains the information of which transitions are probabilistic, and the range
over which each transition extends. Note that supp d is non-empty.

Remark 4.29. Let d: ST — [0, 1] be a discrete probability distribution over ST. Then suppd #
0.

Proof. The remark follows immediately from d(ST) = 1 (Def. . O

We call suppd the abstract distribution associated with the probability distribution d. This
abstraction induces an order on subsets of ST: two subsets (i.e. two abstract distributions)
are comparable iff there exist corresponding probability distributions that are comparable un-
der Cp. The next definition reformulates this idea without referring to probability distributions
at all.

Definition 4.30 (Order on Abstract Distributions). Let a, a’ C ST be two abstract distribu-
tions. Then
aCqd iff a=d v{T}Cd C{T}Ua.

With this definition, the order Cp on probability distributions is preserved by the abstraction.

Lemma 4.31. Letd, d' € ST. If d Cp d', then suppd C 4 suppd'.

Proof. Suppose d Cp d'. If d = d', then trivially suppd C 4 supp d’. If d # d’, then d(s) > d'(s)
for all s € S implies d(T) < d'(T) (cf. Remark [1.7). Thus T € suppd’. Furthermore,
d(s) > d'(s) for all s € S also implies SNsuppd’ C SNsupp d. Hence suppd’ C {T }Usuppd. O

The converse of Lemma is not true: clearly suppd T4 suppd’ does not (in general)
imply d Cp d'. (For a counterexample, consider e.g. d := 4 @ 0p, d' := gy B O, with a,
be S, a#b0<p<1, 0<p <1, and p # p'.) This shows that replacing a probability
distribution by its abstract counterpart entails a certain loss of information. However, we have
the following—only slightly weaker—implication.

Lemma 4.32. Let a, a’ C ST be two abstract distributions with a T4 o’. Suppose a = suppd
for some d € ST. Then o' = suppd’ for some d € ST withd Cp d'.

Proof. If a = d/, take d' to be equal to d. Otherwise we have {T} C o’ C {T} Ua. Define
d: ST —[0,1] as follows:

@, if sed \{T}
d(s):=4q1— 7(1(“,\2{1—}), if s =T,
0, otherwise.

Clearly > .ot d'(s) = 1, a’ = suppd’, and d(s) > d'(s) for all s € S (hence d Cp d' as
required). O

88 CHAPTER 4. CASE STUDIES

The space of abstract probabilistic programs now uses abstract distributions. Again we impose
certain healthiness conditions; these are suitable abstractions of those required in Def. In
particular union closure is an abstraction of convex closure. Cauchy closure on the other hand
has no corresponding condition in the abstract model.

Definition 4.33 (Space of Abstract Probabilistic Programs). The space of abstract probabilis-
tic programs is given by (KS,Cx), where
KS:={AeS" —P(PS")) | V¥seS'. A(s)isup- and union-closed
NA(s) 0 N0 & A(s) A A(T) ={{T}}},

and the order between abstract programs is defined by

ACk A iff Vse S A(s) C A(s).

Based on the association of abstract distributions with probability distributions, we define an
abstraction function from probabilistic programs to their abstract counterparts.

Definition 4.34 (Abstraction of Probabilistic Programs). The abstraction projection e: LS —
KCS is given by e(P)(s) := {suppd | d € P(s)}.

Remark 4.35. : LS — KS is well-defined, i.e. if P is a probabilistic program, then e(P) € KS.

Proof. Let s € ST. Up-closure of £(P)(s) follows from up-closure of P(s) (using Lemma |4.32)),

and union closure of (P)(s) follows from convex closure of P(s) (noting that for d, d' € ST, we
have supp dUsupp d’ = supp (d /o®d’)). Next P(s) # () implies (P)(s) # (), and Remark
implies) & e(P)(s). Finally P(T) = {01} implies e(P)(T) = {{T}}. O

The abstraction projection preserves the order on programs.

Lemma 4.36. Let P, P’ € LS. If P Cp P, then ¢(P) Cx e(P’).

Proof. The lemma follows immediately from the definitions of £ (Def. |4.34)), T, (Def. , and
Ci (Def. [133). =

For a set of abstract distributions A C P(ST), we write [A] for the smallest up- and union-
closed set of abstract distributions containing A.

Definition 4.37 (Up-, Union-Closed Hull). For A C P(ST), § & A, let
[A] = ﬂ{X DA|X CP(ST) is up- and union-closed}.

Remark 4.38. Let A C P(ST), 0 ¢ A. [A] is the smallest up- and union-closed superset
of A. Hence [-] is a closure operator, i.e. extensive (A C [A]), monotonically increasing
(AC A" CP(ST) implies [A] C [A']), and idempotent ([[A]] = [A]). Moreover, () & [A].

Proof. We note that an arbitrary intersection of up-closed subsets of P(S) is up-closed again;
likewise an intersection of union-closed subsets is union-closed. The various claims of Re-
mark [4.38 now have standard proofs. To show @) ¢ [A], we note that [A]\ {0} is an up-closed,
union-closed superset of A. O

4.3. PROBABILISTIC PROGRAMS 89

From Remark characterizing [A] as the smallest up- and union-closed superset of A, we
derive an induction principle that is useful for proofs: let a € [A]. If P is a predicate that is
(i) satisfied by every element of A, and (ii) P(a1) and a3 £ 4 ag imply P(ag) (for every pair
of abstract distributions a1, ag € ST), and (iii) P(a;) and P(az) imply P(a; U as) (again for
every pair of abstract distributions a;, az € ST), then P(a) holds.

The following lemma, although slightly technical, states an important fact about the relation-
ship between (up-, convex) closure of sets of probability distributions, and (up-, union) closure
of sets of abstract distributions.

Lemma 4.39. If D C ST is Cauchy-closed, then {suppd | d € [D]} = [{suppd | d € D}].

Proof. First we show [{suppd | d € D}| C {suppd | d € [D]}, using the induction principle
that follows from Remark [4.38

1. Suppose a C ST is an abstract distribution with ¢ = suppd for some d € D. Then
clearly a € {suppd | d € [D]} (because D C [D] by Remark [4.12)).

2. Suppose a1, as C ST are abstract distributions with a; = su@dl for some d; € [D],
and a; C 4 as. By Lemma as = suppds for some dy € ST with diy Cp ds. Then
dy € [D] because [D] is up-closed. Hence ay € {suppd | d € [D]}.

3. Suppose a1, ap C ST are abstract distributions with a; = suppd; for some d; € [D]
(for i = 1,2). Then dy /5@ d2 € [D] because [D] is convex-closed. Hence a; Uaz =

supp (d1 1/2® d2) € {suppd | d € [D]}.

Second we show {suppd | d € [D]} C [{suppd | d € D}|. By Lemma we have
[D] = Heonvex(Hup(D)). Now suppose a C S is an abstract distribution with a = suppd for
some d € Heonvex(Hup(D)). Then d = Zle a;d; for some k € N, k > 1, d; € Hyp(D), oy € R,
a; > 0, Zle «; = 1. For each d; there exists d; € D with d; Cp d;. Clearly (for 1 <i < k)
suppd; € [{suppd | d € D}] (because {suppd | d € D} C [{suppd | d € D}] by Remark [4.38).
Lemma implies suppd, C 4 suppd;. Hence also suppd; € [{suppd | d € D}] because
[{suppd | d € D}] is up-closed. Now (assuming, without loss of generality, o; > 0 for
1<i<k)a= Ule suppd; € [{suppd | d € D}| because [{suppd | d € D}] is union-
closed. O

The abstraction projection maps probabilistic programs to their abstract counterparts, but we
can also go the other way. For every abstract program A, there exists a probabilistic program P
such that e(P) = A. In other words, ¢: LS — KS is onto.

Lemma 4.40. For every abstract program A € KCS exists a probabilistic program P € LS with
e(P) = A.

Proof. For every abstract distribution a C ST, let d,: ST — [0,1] denote the uniform distri-

bution over a (i.e. do(s) := - if s € a, dy(s) := 0 otherwise). Clearly suppd, = a.

T al

Define P: ST — P(ST) by P(s) := [{d, | a € A(s)}]. P(s) is up-, convex-, and Cauchy-closed
by definition of [-], P(s) # 0 because A(s) # 0, and A(T) = {{T}} implies P(T) = {o71}.
Hence P € LS.

90 CHAPTER 4. CASE STUDIES

It remains to show e(P) = A. Let s € ST. We note that {d, | a € A(s)} is finite (since S is
finite), hence Cauchy-closed. Therefore, using Lemma [4.39 £(P)(s) = {suppd | d € [{d, | a €

A(s)}] = [{suppda | a € A(s)}] = [A(s)] = A(s). O

We remark that if two probabilistic programs have the same abstraction, then their iterations
also have the same abstraction.
Lemma 4.41. Let P, P' € LS. If e(P) = e(P'), then e(P*) = ¢(P'").

A proof of this non-trivial lemma is given in [I08] (see in particular [I08, Lemma 1] and [108),
Lemma 4]).

Next, we define operators on IS that correspond to the operators on LS given in Def.

Definition 4.42 (Operators on KS). For arbitrary states s € ST and abstract programs A,
A" € KS, we define

Identity Id(s) = [{{s}}],

Top T(s) — (T
Composition (A; A')(s) = {Uueca @ | @ € A(s),Yu € a.a), € A'(u)},
Probability (A A')(s) = {aUd |a€ A(s),d € A(s)},

Non-determinism (AT A")(s) := [A(s)UA'(s)],

Iteration A*(s) = e(P*)(s), for an arbitrary P € LS with ¢(P) = A.

Remark 4.43. Let A, A’ € KS. Then Id € KS, T € KS, (A4;A) € KS, Ad A’ € KS,
AN A € KS, and A* € KS.

Proof. We note that for every abstract distribution a C ST, {T} C4 a iff a = {T}. Hence
{H{TH = H{TH

Let s € ST. For Id(s) and T(s), all relevant properties (i.e. up-closure, union closure, non-
emptiness,) & Id(s), O & T(s), and Id(T) = T(T) = {{T}}) now follow immediately from
Def. [4.42]

Up-closure of (A; A’)(s) follows from up-closure of A’(u) for all v € a. Using (U,.,al,) U

uca U
(Uues) = Upeaup o (for arbitrary abstract distributions a, ay,, b, b, C ST, where z, := d/,
ifuea\b, x, =0, ifueb\a, and z, := a), Ub, if u € aNb), union closure of (A; A")(s)
follows from union closure of A(s) and union closure of A’(u) for all u € a Nb. The remaining

properties, i.e. (A; A)(s) #0, 0 & (4; A')(s), and (A; A")(T) = {{T}}, are immediate.

Up-closure of (A® A’)(s) follows from up-closure of A(s) and A’(s). Union closure of (A®A’)(s)
follows from union closure of A(s) and A'(s), using (aUa’) U (bUV) = (aUb) U (a' UY) (for
arbitrary abstract distributions a, a’, b, ¥ C ST). The remaining properties, i.e. (A @ A’)(s) #
0,0 & (A A)(s), and (Aa A")(T) = {{T}}, are immediate.

For (AM A")(s), all relevant properties are immediate again from Def.

For A*, we only need to show that A*(s) is well-defined. All relevant properties then follow
immediately from Remark Lemma [4.40| implies the existence of at least one probabilistic

program P € LS with ¢(P) = A, and Lemma shows that for any two programs P, P’ € LS
with e(P) = e(P’') = A, we have e(P*) = e(P'"). O

4.3. PROBABILISTIC PROGRAMS 91

The above definition of A* still refers to the probabilistic model £S. In [108] we show how A*
can be computed without referring to any underlying probabilistic program, by determining
the sets of states that are reachable with probability 1. It is well-known that this is possible
using the information provided by the abstract transitions alone; for example de Alfaro and
Henzinger [46] provide such an algorithm with complexity quadratic in the size of the underlying
transition system.

Finally we can give an interpretation of pKA expressions in the space of abstract programs.

Definition 4.44 (Semantic Mapping of pKA Expressions to KS). The semantic mapping [-] p
from pKA expressions to KS is parameterized by a mapping p from pKA variables to abstract
probabilistic programs in IS, and defined as follows:

1. If z is a variable, then [z], := p(z).

2. [0], =T, [1], = Id.
3. [ab], = Lol 1],

4. Ja+b], = [a], N [5],-
5. [a*], == [a],"-

While this definition looks very similar to Def. (due to the use of overloaded notation),
the operators on the right-hand side of the above equations are now of course those on IS, as

given in Def.

We do not claim that the axioms of probabilistic Kleene algebra are satisfied by this interpreta-
tion; in fact Axiom fails to hold. The abstract program s — [{{s0,s1}}], s1 — [{{s1}}]
denoting both a and b is a counterexample. Thus there is no analogue of Theorem [£.26] for CS.
This is because the abstraction does not (in general) preserve inequalities; see the earlier
discussion on the converse of Lemma [£.311

The next lemma gives the relationship between interpretations in £S5 and in KS: they corre-
spond homomorphically.

Lemma 4.45. Let e be a pKA expression, and let p be a mapping from pKA wvariables to
probabilistic programs in LS. Then

e(lel,) = lel.o,-
Proof. By structural induction on e. If e is a pKA variable, then
B4
e(le],) ="e(p(e)) = (g0 p)(e) =" [€l.op-

Moreover

and

92 CHAPTER 4. CASE STUDIES

If e = ab for pKA expressions a and b, then for any s € ST,

e(lel,)(s) =2 {suppd | d € [ab] (s)}
{supp(Z a(u) - b;)

ueST

U e

uEsupp a’

e

u€a’

{Ub; S

u€a’

a' € [a],(s),Yue ST b, € [[b]]p(u)}

a € [a] ,(s),Vu € supp a.b, € [[b]]p(u)}

a e e([al,)(s),Vu € a.b), e s(ﬂbﬂp)(u)}

a0 (5), Y € a1, € [B].., (u >}
e, (s)-

If e = a + b for pKA expressions a and b, then for any s € ST,

e(le],)(s) "2 fsuppd|d € [a+1b],(5)}
{suppd | d € [al () U [8] ()]}

[{suppd | d € [al () U [b],(5)}]

le(al,,)(s) U e([b],)(s)]

[aleop(s) U [0 (5)]

o+ B]..,(5)-

)
) U

g = @ (=l

If e = a* for some pKA expression a, then

e(lel,) 22 e(la],") = e(lal)* & [a]..,” = [07]..,-

O]

Thus we have set up a model for abstract probabilistic programs in which the precise weights
attached to probabilistic transitions have been suppressed, while the limit properties of prob-
ability theory are retained. Next we show how the abstract model can be used to obtain
counterexamples in LS.

Lemma 4.46. Let ¢ and f be pKA expressions. If e # f is satisfiable in KS, then it is also
satisfiable in LS.

Proof. Suppose e # f is satisfiable in IS, i.e. there exists a mapping p from pKA variables to
abstract programs in XS such that [[e]]p #* [[f]]p.

By Lemma there exists a mapping p’ from pKA variables to probabilistic programs in £S
such that € o p’ = p. Now

e(lel,) " elooy = [e], # 111, = [fleoy = e(If1,),

4.3. PROBABILISTIC PROGRAMS 93
hence [e] , # [f], in LS. O

Finally this section’s main result follows. If a counterexample exists in S to a conjectured
pKA equality, then the equality is not provable in pKA.

Corollary 4.47. Let e and f be pKA expressions. If e # f is satisfiable in KCS, then the
equality e = f is not provable by probabilistic Kleene algebra rules.

Proof. By Lemma[4.46] e # f is satisfiable in £S, and by Theorem interpretations in £S
satisfy the rules of probabilistic Kleene algebra. O

The corollary implies that automated counterexample search for equalities in pK A can be based
on state exploration of finite models in KS.

4.3.3 Mechanization of Counterexample Search

We have defined the abstract model IS in Isabelle/HOL. The type S option — S option set set
is used for abstract programs, with None encoding T. A well-formedness predicate selects those
functions in this type that satisfy the constraints of Def.[£.33] Next, we have defined the various
operators on KS (see Defs. and , in particular composition, non-determinism, and
iteration. With the exception of the iteration operator, -*, formulae that contain these operators
can be translated to propositional logic by the algorithm presented in Chapters [2] and
Iteration could in principle be translated as well (by unfolding its Isabelle/HOL definition, as
it is done for the other operators), but this unfortunately leads to unacceptable performance.
That the translation of iteration is challenging also seems to be the case in other systems which
use SAT solving in the context of -*-like operators [82].

We have therefore implemented dedicated SML code for the iteration operator, which translates
this operator to a tree directly, without unfolding its definition. This is an application of
the first optimization technique described in the paragraph on unfolding and specialization
in Section Our code does not actually implement a reachability algorithm, but merely
contains precomputed result trees for small state spaces. Due to the exponential growth of
S option — S optionsetset (in the size of S), we are still limited to small state spaces anyway,
despite our optimizations. Fortunately, counterexamples in practice do appear to be exhibited
within very small state spaces.

Two of the perhaps more interesting conjectures about probabilistic programs that Isabelle
can refute automatically are (i) P* < P and (ii) P*; P = P; P*. Graphical representations
of the abstract programs that were found as counterexamples are shown in Figure (For
clarity, only C 4-minimal distributions are shown, and also the transition T — {{T}} has been
omitted.) Both programs use a two-element state space S = {sg, s1}. The second program
happens to be the abstraction of the coin toss example discussed earlier. One may notice that
each of the two programs refutes both conjectures. That different counterexamples are returned
for the two conjectures is a coincidence; ultimately it depends on the underlying SAT solver
that was used for model generation.

To deal with slightly larger state spaces, we could use specialization (as described in Sec-
tion [3.2)): the iteration operator, although it might occur without an argument in a HOL

94 CHAPTER 4. CASE STUDIES

PN NN

T T

so s S0 51
(i) P*< P (ii) P*; P = P; P*

Figure 4.3: Abstract probabilistic counterexamples

formula, never does so in a pKA expression; instead, it is always applied to some program P.
Therefore we do not need to build a tree for the entire function representing -*, but we only
need the much smaller tree for P*. Of course this would require the implementation of a
symbolic reachability algorithm, which could compute the tree for P* from a tree (possibly
containing variables or complex propositional formulae as label elements) for P.

With this technique, the main bottleneck will then be the size of propositional formulae in
labels of the tree for P*. Even if the tree for P contains variables only (and not more complex
formulae), formulae in the tree for P* would quickly become huge. The problem is aggravated
because at least some of these formulae later need to be translated to CNF. A hybrid approach,
where the program P is partially known (e.g. because of an earlier case distinction), while other
parts are only given symbolically, could solve this issue. The known parts of the program
could be used to immediately simplify the resulting propositional formulae, as described in
the paragraph on propositional simplification in Section thereby keeping these formulae
reasonably small.

4.4 A SAT-based Sudoku Solver

This section presents a SAT-based Sudoku solver. A Sudoku is translated into a propositional
formula that is satisfiable if and only if the Sudoku has a solution. A standard SAT solver can
then be applied, and a solution for the Sudoku can be read off from the satisfying assignment
returned by the SAT solver. No coding was necessary to implement this Sudoku solver: the
translation into propositional logic is provided by our algorithm for finite model generation
that was described in Chapters [2 and 3| of this thesis. Only the constraints on a Sudoku
solution have to be specified in Isabelle/HOL.

Sudoku, also known as Number Place in the United States, is a placement puzzle. Given a
grid—most frequently a 9 x 9 grid made up of 3 x 3 subgrids called regions—with various digits
given in some cells (the givens), the aim is to enter a digit from 1 through 9 in each cell of the
grid so that each row, column and region contains only one instance of each digit. Figure 4.4
shows a Sudoku on the left, along with its unique solution on the right [I72]. Note that other
symbols (e.g. letters, icons) could be used instead of digits, as their arithmetic properties are
irrelevant in the context of Sudoku. This is currently a rather popular puzzle that is featured
in a number of newspapers and puzzle magazines [5], 149} [15§].

Several Sudoku solvers are available already [97, [163]. Since there are more than 6 - 10?! pos-

4.4. A SAT-BASED SUDOKU SOLVER 95

5|3 7 5131416781912
6 11915 6|7]2(1]9|5]| 3|48
918 6 11918342 5]6]|7

8 6 3 8159 7|6|1]4]2)|3
4 8 3 1 4121618537191
7 2 6 711131924856
6 218 916 |1|5|3|7] 2|84
41119 5 218|741 119|16|3]|5

719 31415 2(8|6|1]|7|9

Figure 4.4: Sudoku example and solution

sible Sudoku grids [55], a naive backtracking algorithm would be infeasible. Sudoku solvers
therefore combine backtracking with—sometimes complicated—methods for constraint prop-
agation. Here we propose a SAT-based approach: a Sudoku is translated into a propositional
formula that is satisfiable if and only if the Sudoku has a solution. The propositional formula
is then presented to a standard SAT solver, and if the SAT solver finds a satisfying assign-
ment, this assignment can readily be transformed into a solution for the original Sudoku. The
presented translation into SAT is simple, and requires minimal implementation effort since we
can reuse our framework for finite model generation.

4.4.1 Implementation in Isabelle/HOL

An implementation of the Sudoku rules in Isabelle/HOL is straightforward. Digits are modelled
by a datatype with nine elements 1, ..., 9. We say that nine grid cells z1, ..., xg are valid iff
they contain every digit.
Definition 4.48 (valid).

9 9
valid(z1, w2, 23, 24, 75, 76, 7, 08, 09) = \ \/ 21 = d.
d=11=1

Labeling the 81 cells of a 9 x 9 grid as shown in Figure [4.5, we can now define what it means
for them to be a Sudoku solution: each row, column and region must be valid.

Definition 4.49 (sudoku).

9
sudoku({w; }; jeq1,....01) = /\ valid(zi1, Ti2, T3, Tid, Tis, Ti6, TiT, Tig, Ti9)
i=1
9
A N valid(x1j, 205, 23j, 24, 55, Tej, 75, Tsjs Toj)
i=1

AN\ valid(@i, @i Tigira) T4 T (1) T(i41) (42),
i,j€{1,4,7}

T(i42)j> T(i+2) (j+1)5 T(i42)(j+2)) -

The next section describes the translation of these definitions into propositional logic.

96 CHAPTER 4. CASE STUDIES

11 12 13 14 15 z16 17 18 z19
21 22 x23 x24 25 26 z27 28 29
31 32 33 34 I35 36 37 38 39
41 42 43 44 T45 46 xaT 48 49
51 52 53 54 55 56 57 58 59
61 62 63 64 Z65 66 6T 68 69
71 72 73 x74 z75 x76 x77 78 79
g1 g2 g3 g4 85 g6 87 88 g9
Z91 92 x93 x94 95 z96 x97 98 99

Figure 4.5: Sudoku grid

4.4.2 Translation to Propositional Logic

The translation to propositional logic is an application of the general translation for HOL
formulae that was described in Section We encode a Sudoku by introducing 9 Boolean
variables for each cell of the 9x 9 grid, i.e. 93 = 729 variables in total. Each Boolean variable pfj
(with 1 <14,7,d <9) represents the truth value of the equation x;; = d. A clause

9
d
\/ Pij
d=1
ensures that the cell x;; denotes one of the nine digits, and 36 clauses
d d’
/\ Pij V TP
1<d<d’'<9

make sure that the cell does not denote two different digits at the same time.

Since there are just as many digits as cells in each row, column, and region, Def. is
equivalent to the following characterization of validity, stating that the nine grid cells z1, ...,
Tg contain distinct values.

Lemma 4.50 (Equivalent Characterization of Validity).

valid(21, 22,23, T4, 5, T, ¥7, T, Tg) = /\ Ty # T
1<i<;j<9

9
— /\ /\a:Z%d\/mj%d

1<i<j<9d=1

The latter characterization turns out to be much more efficient than the original definition
when translated to SAT. While Def. when translated directly, produces 9 clauses with
9 literals each (one literal for each equation), the formula given in Lemma is translated to

4.4. A SAT-BASED SUDOKU SOLVER 97

2 11216(4[3]7(]9]5]8

6 3 819 |5(6]2|1]4]|7|3

714 8 317141985126

3 2 4151711191386 2

8 4 1 91831246517

6) 6|1]|2(5|7|8]3]|9)|4
1 718 216193147 |8|5

) 9 514871619231
4 7131852649

Figure 4.6: Hard Sudoku example and solution

324 clauses (9 clauses for each of the 36 inequations z; # x;), but each clause of length 2 only.
This allows for more unit propagation [178] by the SAT solver, which—in terms of the original
Sudoku—corresponds to cross-hatching [172] of digits, a technique that is essential to reduce
the search space. The 9 clauses obtained from a direct translation of Def. could still be
used as well; unit propagation on these clauses would correspond to counting the digits 1-9 in
regions, rows, and columns to identify missing numbers. However, in our experiments we did
not experience any speedup by including these clauses.

This encoding yields a total of 11745 clauses: 81 definedness clauses of length 9, 81 - 36 unique-
ness clauses of length 2, and 27 - 324 validity clausesE] again of length 2. However, we do not
need to introduce Boolean variables for cells whose value is given in the original Sudoku, and
we can omit definedness and uniqueness clauses for these cells as well as some of the validity
clauses—therefore the total number of variables and clauses used in the encoding of a Sudoku
with givens will be less than 729 and 11745, respectively. (The importance of this optimization
for larger Sudoku puzzles is emphasized in [95], although the authors’ claim that we do not
perform it is erroneous.)

Note that our encoding already yields a propositional formula in conjunctive normal form
(CNF). Therefore conversion into DIMACS CNF format [50]—the standard input format used
by most SAT solvers—is trivial. Isabelle can search for a satisfying assignment using either
an internal DPLL-based [45] SAT solver, or write the formula to a file in DIMACS format
and execute an external solver. We have employed zChaff [I19] to find the solution to various
Sudoku classified as “hard” by their respective authors (see Figure for an example), and
in every case the runtime was only a few milliseconds.

Traditionally the givens in a Sudoku are chosen so that the puzzle’s solution is unique. Nev-
ertheless in case different solutions exist, our algorithm can be extended to enumerate all of
them (by explicitly disallowing all solutions found so far, and perhaps using an incremental
SAT solver that allows adding clauses on-the-fly to avoid searching through the same search
space multiple times).

Particularly remarkable is the fact that our solver, while it can certainly compete with hand-
crafted Sudoku solvers, some of which use rather complex patterns and search heuristics, re-

!This number includes some duplicates, caused by the overlap between rows/columns and regions: certain
cells that must be distinct because they belong to the same row (or column) must also be distinct because they
belong to the same region.

98 CHAPTER 4. CASE STUDIES

quired very little implementation effort. Aside from Lemma[4.50] no domain-specific knowledge
was used. The impressive performance is largely due to the SAT solver. Even the translation
into propositional logic was not written by hand, but is merely an application of the framework
for finite model generation that is readily available in Isabelle/HOL. Only the Sudoku rules
had to be defined in the theorem prover’s logic, and this was a trouble-free task.

4.5 Conclusion

In this chapter, we have discussed three case studies that illustrate possible applications of
finite model generation in general, and of our framework for model generation in Isabelle/HOL
in particular: the RSA-PSS security protocol, probabilistic programs, and a Sudoku solver.

In Section [4.2] we have shown security of an abstract formalization of the RSA-PSS security
protocol by providing a model that does not allow the attacker to forge certain signatures. The
model was finite, but the well-known initial model theorem implies that security also holds in
the (infinite) initial model, where the functions for message generation are interpreted in the
usual algebraic way.

A model for probabilistic programs that is susceptible to counterexample search via finite model
generation has been presented in Section This model has been formalized in Isabelle/HOL,
where it was used to obtain counterexamples to conjectures about probabilistic Kleene algebra
expressions. There are performance issues (especially with the star operator, -*), but for small
state spaces, the approach works reasonably well.

In Section |4.4] we have presented a straightforward translation of a Sudoku into a propositional
formula. The translation can easily be generalized from 9 x 9 grids to grids of arbitrary
dimension. It is polynomial in the size of the grid, and since Sudoku is NP-complete [176], no
algorithm with better complexity is known. The translation, combined with a state-of-the-art
SAT solver, is also practically successful: 9 x 9 Sudoku puzzles are solved within milliseconds.

Together these case studies show that the model generation algorithm presented in Chapters
and (3], despite its non-elementary complexity, can be useful for many interesting problems that
occur in practice. The algorithm’s integration into the Isabelle/HOL theorem prover allows its
easy application to any formal development carried out in this system. Higher-order logic is a
rich specification language that permitted natural formalizations of all three case studies. Some
of the logic’s (higher-order) features pose potential performance issues for model generation,
but to remedy the situation, it is sometimes possible to carry out formalization “with model
generation in mind”, avoiding a state-space explosion through the use of logically equivalent
(but combinatorially harmless) encodings in the theorem prover.

Lowve all, trust a few.
William Shakespeare,
1564-1616.

Chapter 5

Integration of Proof-producing SAT
Solvers

This chapter describes the integration of zChaff and MiniSat, currently two leading
SAT solvers, with Isabelle/HOL. Both SAT solvers generate resolution-style proofs
for (instances of) propositional tautologies. These proofs are verified by the theorem
prover. The presented approach significantly improves Isabelle’s performance on
propositional problems.

5.1 Introduction

So far we have discussed the generation of finite models for HOL formulae, the main application
being the generation of countermodels for unprovable conjectures. But what if the search for a
finite countermodel fails? More specifically, can we use SAT solvers to prove theorems as well?

Clearly the failure to produce a finite countermodel up to a certain size for some formula ¢
does not imply validity of this formula. There might still exist a finite countermodel larger
than the given size, or even an infinite countermodel. For example, consider the following
first-order formula, which only has infinite models:

(Vzdy. Pzy) N (Vxyz. Pry = Pyz = Pxz) A\ (Vz.-Pzxx).

In general it is undecidable already for first-order logic if a formula ¢ has a model at all [37],
and also if it has a finite model [160]. If ¢ has the finite model property [26] however, and the
bound on the model size is effectively computable, we could use this bound to limit the search
for a model. Since our search algorithm is complete (provided the underlying SAT solver is),

99

100 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

failure in this case does indeed imply validity of —¢. Another application of our algorithm
could be to find witnesses for monomorphic existential statements, thereby proving them.

Hence model generation could—at least in principle—be used to prove formulae from certain
fragments of HOL. However, the semantic reasoning indicated above would be difficult to
formalize in an LCF-style [61] theorem prover like Isabelle/HOL, where all proofs in the end
must be expressed in terms of the logic’s inference rules. (Even proving existential statements
wouldn’t be without practical challenges. If an incomplete, randomized SAT solver was used,
a proof script might work one time and fail another—certainly not a desirable property.)
Therefore we only consider instances of propositional tautologies in this chapter. Furthermore,
we use proof-producing SAT solvers: they are not only able to find a satisfying assignment if
one exists, but they also return a (resolution-style) proof of unsatisfiability in case the input
formula is not satisfiable. Currently the most successful SAT solvers are DPLL-based [119],
and extending such solvers with the ability to produce unsatisfiability proofs is relatively
straightforward [179).

5.2 Related Work

Perhaps most closely related to the work in this chapter is John Harrison’s LCF-style inte-
gration of Stalmarck’s algorithm and BDDs into HOL Light and Hol90 respectively [68, 69].
Harrison found that doing BDD operations inside HOL performed about 100 times worse (after
several optimizations) than a C implementation.

Michael Gordon implemented HolSatLib [62] in Hol98, a precursor to HOL 4. This library
provided functions to convert Hol98 terms into CNF, and to analyze them using a SAT solver.
In the case of unsatisfiability however, the user only had the option to trust the external solver.
No proof reconstruction took place, “since there is no efficient way to check for unsatisfiability
using pure Hol98 theorem proving” [62]. A bug in the SAT solver could ultimately lead to an
inconsistency in Hol98. The HOL 4 implementation of this library is instead based on ideas
discussed in this chapter.

A custom-built SAT solver has been integrated with the CVC Lite system [15] by Clark Barrett
et al. [I6]. While this solver produces proofs that can be checked independently, our work shows
that it is possible to integrate existing, highly efficient solvers with an LCF-style prover: the
information provided by recent versions of zChaff and MiniSat is sufficient to produce a proof
object in a theorem prover, no custom-built solver is necessary.

Further afield, the integration of automated first-order provers with HOL provers has been
explored by Joe Hurd [74, [75], Jia Meng [I11], and Lawrence Paulson [112] 1I3]. Proofs
found by the automated system are either verified by the interactive prover immediately [74],
or translated into a proof script that can be executed later [I12]. Andreas Meier’s TRAMP
system [I09] transforms the output of various automated first-order provers into natural de-
duction proofs. The main focus of that work however is on the necessary translation from the
interactive prover’s specification language to first-order logic. In contrast our approach is so
far restricted to instances of propositional tautologies, but we have focused on performance
(rather than on difficult translation issues), and we use a SAT solver, rather than a first-order
prover. Other work on combining proof and model search includes [48].

An earlier version of this work was presented in [167], and improved by Alwen Tiu et al. [58].

5.3. SYSTEM DESCRIPTION 101

Furthermore Hasan Amjad has recently integrated proof-generating versions of zChaff and
MiniSat with HOL 4 in a similar fashion [168]. Here we discuss our most recent implemen-
tation [166], which also incorporates ideas by John Harrison, John Matthews, and Markus
Wenzel. It constitutes a significant performance improvement when compared to earlier im-
plementations.

5.3 System Description

To prove a propositional tautology ¢ in the Isabelle/HOL system with the help of zChaff or
MiniSat, we proceed in several steps. First ¢ is negated, and the negation is converted into an
equivalent formula ¢* in conjunctive normal form. ¢* is then written to a file in DIMACS CNF
format [50], the standard input format supported by most SAT solvers. zChaff and MiniSat,
when run on this file, return either “unsatisfiable”, or a satisfying assignment for ¢*.

In the latter case, the satisfying assignment is displayed to the user. The assignment constitutes
a counterexample to the original (unnegated) conjecture. When the solver returns “unsatisfi-
able” however, things are more complicated. If we have confidence in the SAT solver, we can
simply trust its result and accept ¢ as a theorem in Isabelle. The theorem is tagged with an
“oracle” flag to indicate that it was proved not through Isabelle’s own inference rules, but by
an external tool. In this scenario, a bug in the SAT solver (or in our translation from HOL to
propositional logic) could potentially allow us to derive inconsistent theorems in Isabelle/HOL.

The LCF-approach instead demands that we verify the solver’s claim of unsatisfiability within
Isabelle/HOL. While this is not as simple as the validation of a satisfying assignment, the
increasing complexity of SAT solvers has before raised the question of support for independent
verification of their results, and in 2003 L. Zhang and S. Malik [I79] extended zChaff to
generate resolution-style proofs that can be verified by an independent checker. This issue has
also been acknowledged by the annual SAT Competition, which introduced a special track on
certified “unsatisfiable” answers in 2005. More recently, a proof-logging version of MiniSat
was released [53], and John Matthews extended this version to produce human-readable proofs
that are easy to parse [I01I], similar to those produced by zChaff.

One could use an independent (external) proof checker (e.g. written in C) to verify the SAT
solver’s answer. This might increase the degree of confidence in the result, but it still suffers
from potential soundness issues. The independent proof checker, as well as the translation
between the different tools, would become part of the trusted code base. Therefore in the LCF
framework our main task boils down to using Isabelle/HOL itself as an independent checker
for the resolution proofs found by zChaff and MiniSat.

Both solvers store their proof in a text file that is read in by Isabelle, and the individual reso-
lution steps are replayed in Isabelle/HOL. Section describes the necessary preprocessing
of the input formula, and details of the proof reconstruction are explained in Section [5.3.2]
The overall system architecture is shown in Figure [5.1

5.3.1 Preprocessing

Isabelle/HOL offers higher-order logic (on top of Isabelle’s meta logic, cf. Section7 whereas
most SAT solvers only support formulae of propositional logic in conjunctive normal form.

102 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

Isabelle

SAT Solver

DIMACS CNF
Input »{ Preprocessin < satisfiable?
formula o P & - '

yes no
Model
Counterexample & J
Proof Trace
Proof _/_\

- . -
Theorem ‘- reconstruction /™%

Figure 5.1: Isabelle — SAT system architecture

Therefore the (negated) input formula ¢ must be preprocessed before it can be passed to the
solver.

First connectives of the meta logic, namely meta implication (=) and meta equivalence (=),
are replaced by the corresponding HOL connectives — and =. This is merely a technical-
ity. Then the Boolean constants True and False are eliminated from ¢, as are implication,
—, and equivalence, =. The only remaining connectives are conjunction, disjunction, and
negation. Finally ¢ is converted into negation normal form, and then into conjunctive normal
form (CNF). Two different CNF conversions are currently implemented in Isabelle/HOL: a
naive encoding that may cause an exponential blowup of the formula, and a Tseitin-style en-
coding [162] that may introduce (existentially quantified) auxiliary Boolean variables, cf. [62].
Quantified subformulae of ¢ are treated as atomic.

Note that it is not sufficient to convert ¢ into an equivalent formula ¢* in CNF. Rather, we
have to prove this equivalence inside Isabelle/HOL. The result is not a single formula, but a
theorem of the form ¢ = ¢*.

The fact that our CNF transformation must be proof-producing leaves some potential for
optimization. One could implement a non proof-producing (and therefore much faster) version
of the same CNF transformation, and use it for preprocessing instead. Application of the
proof-producing version would then be necessary only if the SAT solver has shown a formula
to be unsatisfiable. This scheme can be implemented using lazy proofs [6], thus avoiding
the penalty for doing the conversion twice: first without, and later with proofs. This way,
preprocessing times for unprovable formulae would improve. In [I68] we discuss further ideas
to speed up the CNF transformation. The benchmarks used to evaluate the performance of
proof reconstruction in Section however are already given in conjunctive normal form, so
the CNF transformation does not affect the timings reported there.

Unless one of the premises is already syntactically equal to False after CNF transformation

5.3. SYSTEM DESCRIPTION 103

datatype prop_formula =
True
| False
| BoolVar of int
| Not of prop_formula
| Or of prop_formula % prop_formula
| And of prop_formula % prop_formula

Figure 5.2: SML datatype of propositional formulae

(in which case we can prove the conjecture outright), the non-trivial premises are then written
to a file in DIMACS CNF format. A clause is trivial if it is syntactically equal to True, or
if it contains both an atom and the atom’s negation. Filtering out these clauses is crucial
to keep our clause numbering consistent with the one maintained by zChaff: zChaff removes
trivial clauses during its own preprocessing, without further notice in its proof trace. (This
is a general issue when integrating external provers in a proof-producing fashion. “Simple”
preprocessing steps are often not recorded in the proof trace. A common solution in this case
is to implement a proof-producing preprocessor which is at least as powerful as the one in the
external system, thereby making the external preprocessing essentially redundant.)

An intermediate SML [I15] datatype (shown in Figure is employed to translate HOL terms
into DIMACS format. A formula of propositional logic is either True, False, a Boolean variable
(with a numerical index as its name), the negation of a formula, or the disjunction or conjunc-
tion, respectively, of a pair of formulae. The translation of HOL terms into this datatype is
straightforward: HOL’s True and False are translated as their constructor counterparts True
and False, HOL’s -, V and A are translated as Not, Or and And, respectively. All other
terms are considered atomic and replaced by Boolean variables. The translation is parameter-
ized by a table (implemented as a balanced 2-3 tree [I73] for logarithmic time insertion and
lookup) which maintains a mapping from atomic terms to their corresponding variable index.
This table, which is initially empty, is updated every time a new atomic term is encountered.
a-equivalent terms are mapped to the same index.

Translation from this intermediate datatype of propositional formulae into DIMACS format
is almost trivial. Each Boolean variable is mapped to (a string representation of) its index,
logical negation is mapped to unary minus, disjunction simply inserts a space between literals,
and individual clauses are separated by “0”. We translate a formula to a list of strings, rather
than to a single string, since list concatenations are generally faster than concatenations of long
strings in today’s SML systems. Furthermore, strings in SML have a fixed maximal length,
which may not allow us to represent the result of the translation as a single string anyway.
Finally a DIMACS problem line [50] is prepended to the list of strings, which is then written
to a file in proper DIMACS CNF format. The SAT solver is invoked on this input file.

5.3.2 Proof Reconstruction

When zChaff and MiniSat return “unsatisfiable”, they generate a resolution-style proof of
unsatisfiability and store the proof in a text file. This happens on the fly, to keep memory free

104 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

type proof = int list Inttab.table x int

Figure 5.3: SML type of resolution proofs

for the SAT algorithm itself. While the precise format of this file differs between the solvers,
the essential proof structure is the same. Both SAT solvers use propositional resolution to
derive new clauses from existing ones:

PVvz QV—x
PVvQ

It is well-known that this single inference rule is sound and complete for propositional logic [144].
A set of clauses is unsatisfiable iff the empty clause is derivable via resolution. For the purpose
of proof reconstruction, we are only interested in the proof returned by the SAT solver, not
in the techniques and heuristics that the solver uses internally to find this proof. Therefore
the integration of zChaff and MiniSat is quite similar, and further SAT solvers capable of
generating resolution-style proofs could be integrated in the same manner.

We assign a unique identifier—a non-negative integer—to each clause of the original CNF
formula. Further clauses derived by resolution are assigned unique identifiers by the solver.
We are usually interested in the result of a resolution chain, where two clauses are resolved,
the result is resolved with yet another clause, and so on. Consequently, we define an SML type
of propositional resolution proofs (see Figure as a pair whose first component is a table
mapping integers (to be interpreted as the identifiers of clauses derived by resolution) to lists
of integers (to be interpreted as the identifiers of previously derived clauses that are part of
the defining resolution chain). The second component of the proof is just the identifier of the
empty clause.

This type is intended as an internal format to store the information contained in a resolution
proof. There are many restrictions on valid proofs that are not enforced by this type. For
example, it does not ensure that its second component indeed denotes the empty clause, that
every resolution step is legal, or that there are no circular dependencies between derived clauses.
It is only important that every resolution proof can be represented as a value of type proof, not
conversely. The proof returned by zChaff or MiniSat is translated into this internal format,
and passed to the actual proof reconstruction algorithm. This algorithm will either generate
an Isabelle/HOL theorem, or fail in case the proof is invalid. Of course the latter should not
happen, unless the SAT solver—or our translation from HOL to DIMACS—contains a bug.

zChaff Proof Traces

The format of the proof trace generated by zChaff has not been documented before (aside from
our own presentation in [I68]). Therefore we explain it here. We use version 2004.11.15 of
zChaff; this version is mostly identical to the more recent version 2007.3.12. See Section [5.3.2
below for a simple example of a proof trace.

The proof file generated by zChaff consists of three sections, the first two of which are optional
(but present in any non-trivial proof). A formal definition of its syntax in Extended BNF [79]

5.3. SYSTEM DESCRIPTION 105

zChaff proof trace = {clause line}, {variable line}, conflict clause;

clause line = 'CL: ', clause id, ' <= ', clause id list, new line;

variable line = 'VAR: ', variableid, " L: ', integer, " V: ', (0" | '1"),
" A: ' clause id, " Lits: ', literal id list, new line;

conflict clause = 'CONF: ', clause id, ' == ', literal id list, new line;

clause id list = clauseid, {" ', clause id};

clause id = integer;

literal id list = literal id, {" ', literal id};

literal id = integer;

variable id = integer;

Figure 5.4: EBNF syntax for zChaff proof traces

is given in Figure [5.4l The first section defines clauses derived from the original problem by
resolution. A typical line would be “CL: 7 <= 2 3 0”7, meaning that a new clause, assigned
the fresh identifier 7, was derived by resolving clauses 2 and 3, and resolving the result with
clause 0. Initial clauses are implicitly assigned identifiers starting from 0, in the order they
occur in the DIMACS file. We store the information contained in the first section of the proof
file in the table of integer lists that constitutes the first component of our SML proof type.

The second section of the proof file records variable assignments that are implied by the first
section, and by other variable assignments. As an example, consider “VAR: 3 L: 2 V: 0 A: 1
Lits: 4 77. This line states that variable 3 must be false (i.e. its value must be 0; “V: 1”
marks true variables) at decision level 2, the antecedent being clause 1. The antecedent is a
clause in which every literal except for the one containing the assigned variable must evaluate to
false because of earlier variable assignments (or because the antecedent is already a unit clause).
The antecedent’s literals are given explicitly by zChaff, using an encoding that multiplies each
variable by 2 and adds 1 for negative literals. (Thus the variable encoded by a literal n is
given by n + 2. The variable occurs positively if » mod 2 = 0, and negatively if n mod 2 = 1.
Hence “Lits: 4 7” corresponds to the clause x5 V —x3.) Our internal proof format does not
allow us to record variable assignments directly, but we can translate them by observing that
they correspond to unit clauses. For each variable assignment in zChaff’s trace, a new clause
identifier is generated (using the number of clauses derived in the first section as a basis, and
the variable itself as offset) and added as a key to the proof’s table. The associated chain of
clauses begins with the antecedent, and continues with the unit clauses corresponding to the
explicitly given literals. We ignore both the value and the level information in zChaff’s trace.
The former is implicit in the derived unit clause (which contains the variable either positively
or negatively), and the latter is implicit in the overall proof structure.

The last section of the proof file consists of a single line which specifies the conflict clause, a
clause which has only false literals: e.g. “CONF: 3 == 4 6” says that clause 3 is the conflict
clause. (Literals are encoded the same way as in the second section, so clause 3 would be
x9 V x3 in this case.) We translate this line into our internal proof format by generating a
new clause identifier ¢ which is added to the proof’s table, with the conflict clause itself and
the unit clauses for each of its variables forming the chain. Finally, we set the proof’s second
component to 7.

For each resolution, we need to determine the pivot literals (i.e. the literals to be resolved on)

106 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

MiniSat proof trace = {reference line | clause line | delete line}, conflict line;
reference line = 'R ', clause id, ' <= ', literal id list, new line;
clause line 'C ', clause id, ' <= ', clause id,
{" ', variable id, ' ', clause id}, new line;
delete line = 'D ', clause id, new line;
conflict line = 'X ', clauseid, ' ', clause id, new line;
clause id = integer;
literal id list = literal id, {" ', literal id};
literal id = integer;
variable id = integer;

Figure 5.5: EBNF syntax for MiniSat proof traces

before resolving two clauses. This could be done by directly comparing the two clauses, and
searching for a term that occurs both positively and negatively. It turns out to be slightly
faster however (and also more robust, since we make fewer assumptions about the actual
implementation of clauses in Isabelle) to use our own data structure. With each clause, we
associate a table that maps integers—one for each literal in the clause—to the prover term
representation of a literal. The table is an inverse of the mapping from literals to integers
that was constructed for the translation into DIMACS format, but restricted to the literals
that actually occur in a clause. Positive integers are mapped to positive literals (atoms), and
negative integers are mapped to negative literals (negated atoms). This way term negation
simply corresponds to integer negation. The table associated with the result of a resolution
step is the union of the two tables that were associated with the resolvents, but with the entries
for the pivots removed.

MiniSat Proof Traces

The proof-logging version of MiniSat generates proof traces in a rather compact (and again
undocumented) binary format. This is most likely because SAT competitions currently suggest
a limit of 2 GB on proof traces. We use version 1.14p of MiniSat. John Matthews [10I] has
adapted this version so that it can produce readable proof traces in ASCII format, similar to
those produced by zChaff. We describe the precise proof trace format, and its translation into
our SML proof type. An Extended BNF syntax definition is shown in Figure [5.5

MiniSat’s proof traces, unlike zChaff’s, are not divided into sections. They contain four differ-
ent types of statements: “R” to reference original clauses, “C” for clauses derived via resolution,
“D” to delete clauses that are not needed anymore, and “X” to indicate the end of proof. Aside
from “X”, which must appear exactly once and at the end of the proof trace, the other state-
ments may appear in any number and (almost) any order.

MiniSat does not implicitly assign identifiers to clauses in the original CNF formula. Instead,
“R” statements, e.g. “R 0 <= -1 3 4”7, are used to establish clause identifiers. This particular
line introduces a clause identifier 0 for the clause —z1 V x3 V x4, which must have been one
of the original clauses in this example. (Note that MiniSat, unlike zChaff, uses the DIMACS
encoding of literals in its proof trace.) Since our internal proof format uses different identifiers
for the original clauses, the translation of MiniSat’s proof trace into the internal format becomes

5.3. SYSTEM DESCRIPTION 107

parameterized by a renaming R of clause identifiers. An “R” statement does not affect the
proof itself, but it extends the renaming. The given literals are used to look up the identifier
of the corresponding original clause, and the clause identifier introduced by the “R” statement
is mapped to the clause’s original (internal) identifier.

New clauses are derived from existing clauses via resolution chains. A typical line would be
“C 7 <= 2 5 3 4 0”, meaning that a new clause with identifier 7 was derived by resolving
clauses 2 and 3 (with x5 as the pivot variable), and resolving the result with clause 0 (with x4
as the pivot variable). In zChaff’s notation, this would correspond to “CL: 7 <= 2 3 0”. We
add this line to the proof’s table just like for zChaff, but with one difference: MiniSat’s clause
identifiers cannot be used directly. Instead, we generate a new internal clause identifier for this
line, extend the renaming R by mapping MiniSat’s clause identifier (7 in this example) to the
newly generated identifier, and apply R to the identifiers of resolvents as well.

Clauses that are not needed anymore can be indicated by a “D” statement, followed by a clause
identifier. Currently we ignore such statements. Making beneficial use of them would require
not only a modified proof format, but also a different algorithm for proof reconstruction.

Finally a line like “X 0 17” indicates the end of proof. The numbers are the minimum and
maximum, respectively, identifiers of clauses used in the proof. We ignore the first identifier
(which is usually 0 anyway), and use the second identifier, mapped from MiniSat’s identifier
scheme to our internal one by applying R, as the identifier of the empty clause, i.e. as the
proof’s second component.

There is one significant difference between MiniSat’s and zChaff’s proof traces that should
have become apparent from the foregoing description. MiniSat, unlike zChaff, records the
pivot variable for each resolution step in its trace, i.e. the variable that occurs positively in one
clause partaking in the resolution, and negatively in the other. This information is redundant,
as the pivot variable can always be determined from those two clauses: If two clauses containing
more than one variable both positively and negatively were to be resolved, the resulting clause
would be tautological, i.e. contain a variable and its negation. Both zChaff and MiniSat are
smart enough to not derive such tautological clauses in the first place. We have decided to
ignore the pivot information in MiniSat’s traces, since proof reconstruction for zChaff requires
the pivot variable to be determined anyway, and using MiniSat’s pivot data would need a
modified SML proof type. Hence there is minor potential for optimization wrt. replaying
MiniSat proofs in our current implementation.

A Simple Example

We use a small example to illustrate the proof reconstruction. Consider the following input
formula

¢ = (—u’Bl V .1’2) A (—LTUQ V —%'3) A (.1‘1 V .CL'Q) A (ﬁl‘g V .%'3).

Since ¢ is already in conjunctive normal form, preprocessing simply yields the theorem F ¢ = ¢.
The corresponding DIMACS CNF file, aside from its header, contains one line for each clause

in ¢:

-1 20
-2 -30

108 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

1V X2 —x1 V Io x1 'V T -1V I9
- V X3 T2 - V X3 x9
I3 —x3
1

Figure 5.6: Resolution proof found by zChaff

1 20
-2 30

zChaff and MiniSat easily detect that this problem is unsatisfiable. zChaff creates a text file
with the following data:

CL: 4 <=20

VAR: 2 L: O V: 1 A: 4 Lits: 4
VAR: 3 L: 1 V: O A: 1 Lits: 57
CONF: 3 == 5 6

We see that first a new clause, with identifier 4, is derived by resolving clause 2, x1 V 9, with
clause 0, =1 Vx3. The pivot variable which occurs both positively (in clause 2) and negatively
(in clause 0) is zq; this variable is eliminated by resolution.

Now the value of x5 (VAR: 2) can be deduced from clause 4 (A: 4). x2 must be true (V: 1).
Clause 4 contains only one literal (Lits: 4), namely xo (since 4 + 2 = 2), occuring positively
(since 4 mod 2 = 0)—recall the above section on zChaff proof traces for an explanation of the
encoding of literals. This decision is made at level 0 (L: 0), before any decision at higher
levels.

Likewise, the value of x3 can then be deduced from clause 1, —x9 V —z3. x3 must be false
(V: 0).

Finally clause 3 is our conflict clause. It contains two literals, —xg (since 5+2 = 2, 5 mod 2 = 1)
and z3 (since 6 +2 = 3, 6 mod 2 = 0). But we already know that both literals must be false,
so this clause is not satisfiable.

In Isabelle, the resolution proof corresponding to zChaff’s proof trace is constructed backwards
from the conflict clause. A tree-like representation of the proof is shown in Figure Note
that information concerning the level of decisions, the actual value of variables, or the literals
that occur in a clause is redundant in the sense that it is not needed by Isabelle to validate
zChaff’s proof. The clause x2, although used twice in the proof, is derived only once during
resolution (and reused the second time), saving one resolution step in this example.

The proof trace produced by MiniSat for the same problem happens to encode a different
resolution proof:

RO<=-12
R1<=-2-3
R2«<=12

R 3<=-23

5.3. SYSTEM DESCRIPTION 109

—x9 V I3 —xo V X3 -9 V I3 —xo V X3
-1V X9 Xy x1V To L9
! Tl
1

Figure 5.7: Resolution proof found by MiniSat

C 4 <=
C 5 <=
C 6 <=
C7 <=
X07

O N O W
= NN W
1o Y NN

The first four lines introduce clause identifiers for all four clauses in the original problem, in
their original order as well (effectively making the renaming R from MiniSat’s clause identifiers
to internal clause identifiers the identity in this case). The next four lines define four new
clauses (one clause per line), derived by resolution. Clause 4 is the result of resolving clause 3
(mx2 V x3) with clause 1 (—xe V —x3), where x3 is used as pivot literal. Hence clause 4 is equal
to —xy. Likewise, clause 5 is the result of resolving clauses 0 and 4, and clause 6 is obtained
by resolving clauses 2 and 4. Finally resolving clauses 5 and 6 yields the empty clause, which
is assigned clause identifier 7. The full proof is shown in Figure

Proof Trace Compaction

Before proof reconstruction begins, we can remove redundant and unused information from
the proof trace. This can be done without proof, saving time.

An obvious optimization is the removal of unused clauses. During proof search, the SAT solver
may derive many clauses that are never used to derive the empty clause. Since the proof is
logged to file on the fly, these derivations end up in the final proof trace. Instead of replaying
the whole proof trace in chronological order, we perform “backwards” proof reconstruction,
starting with the identifier of the empty clause, and recursively proving only the required
resolvents using depth-first search.

While some clauses may not be needed at all, others may be used multiple times in the
resolution proof. It would be inefficient to prove these clauses more than once. Therefore all
clauses are stored in an associative array, keyed on their clause identifier, and upon first use
converted into the sequent representation described in Section below. Reusing a clause
merely causes an array lookup.

This suggests that it could be beneficial to analyze resolution chains in more detail. Often very
similar chains occur in a proof, differing only in a clause or two. Common parts of resolution
chains could be stored as additional lemmas (which need to be derived only once), thereby
reducing the total number of resolution steps. Hasam Amjad reports on some preliminary
results in [7], but we leave a detailed evaluation of this idea for future work.

110 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

5.3.3 Clause Representations

The task of proof reconstruction is to derive False from the original clauses, using information
from a value of type proof (which represents a resolution proof found by a SAT solver). This
can be done in various ways. In particular the precise representation of the problem as an
Isabelle/HOL theorem (or a collection of Isabelle/HOL theorems) turns out to be crucial for
performance.

Naive HOL Representation

In an early implementation [I65], the whole problem was represented as a single theorem
F (¢* = False) = (¢* = False), where ¢* was completely encoded in HOL as a conjunc-
tion of disjunctions. Step by step, this theorem was then modified to reduce the antecedent
¢* = False to True, which would eventually prove - ¢* = False.

This was extremely inefficient for two reasons. First, every resolution step required manip-
ulation of the whole (possibly huge) problem at once. Second, and just as important, SAT
solvers treat clauses as sets of literals, making implicit use of associativity, commutativity and
idempotence of disjunction. Likewise, CNF formulae are treated as sets of clauses, making
implicit use of the same properties for conjunction. The encoding in HOL however required
numerous explicit rewrites (with theorems like - (P V Q) = (Q V P)) to reorder clauses and
literals before each resolution step. Detailed performance figures may be found in [165].

Separate Clauses Representation

A better representation of the CNF formula was discussed in [58]. So far we have mostly con-
sidered theorems of the form F ¢ in this chapter, i.e. with no hypotheses. This was motivated
by the normal user-level view of theorems, where assumptions are encoded using (meta) im-
plication =, rather than hypotheses. Isabelle’s inference kernel however provides rules that
let us convert between hypotheses and implications as we like:

'k =1 Al—qﬁimpE

——— Assume Lk’ im
{0} F o T\oro—op ¥ TUAF

In [58], each clause p; V --- V p, is encoded as an implication py = ... = p,, = False
(where P; denotes the negation normal form of —p;, for 1 <7 < n), and turned into a separate
theorem

{p1V...Vp,}F[p1;...;Pn] = False.

This allows resolution to operate on comparatively small objects, and resolving two clauses
't [p1;...;pn] = False and A F [qi;...;¢m] = False, where —p; = ¢; for some i and
j, essentially becomes an application of the cut rule. The first clause is rewritten to I" -
[p1;- - 3Pi—1;Dit1; - - -3 pn] = —pi. A derived tactic then performs the cut to obtain

FUAF[q1;--3G5=15P15 - -3 Pim13 Pik1; - - - Pns Q415 - - - 3 Gm] = False

from the two clauses. Note that this representation, while breaking apart the given clauses into
separate theorems allows us to view the CNF formula as a set of clauses, still does not allow

5.3. SYSTEM DESCRIPTION 111

us to view each individual clause as a set of literals. Some reordering of literals is necessary
before cuts can be performed, and after each cut, duplicate literals have to be removed from
the result.

This representation improved on the proof replay times reported in [I65] by up to two orders
of magnitude. Detailed numbers are given in [58].

Sequent Representation

We can further exploit the fact that the inference kernel treats a theorem’s hypotheses as
a set of formulae, by encoding each clause using hypotheses only. Consider the following
representation of a clause p; V...V p, as a theorem:

{p1V...Vpn,p1,...,0n} - False.

Resolving two clauses p1 V...V p, and q1 V ...V gy, where —p; = gj, now starts with two
applications of the impl rule to obtain theorems

{pl V... vpnapilv"')piflva?Flu"' 7]Tn} H —Pi - False

and
{Q1 V... \/qmaaw"7qj—17q‘j+17"‘7q7m} |_pl = False.

We then instantiate a previously proven lemma
F (P = False) = (P = False) = False

(where P is an arbitrary proposition) with p; for P. Instantiation is another basic operation
provided by Isabelle’s inference kernel. Finally two applications of impE yield

{pl V...VDn,p1,--- yPi—1, Pi+1, - - - JTn} U {QI V... V@m,q1;-- '7qj—17qj+17"‘7q7m} t False.

This approach requires no explicit reordering of literals anymore, nor removal of duplicate
literals after resolution. That is all handled by the inference kernel now, which treats a theo-
rem’s hypotheses as a set of formulae (implemented as an ordered list internally). The sequent
representation is as close to a SAT solver’s view of clauses as sets of literals as is possible in
Isabelle/HOL. With this representation, we do not rely on derived rules to perform resolution,
but we gave a precise specification in terms of a few inference rules of natural deduction.

CNF Sequent Representation

The sequent representation has the disadvantage that each clause contains itself as a hypoth-
esis. Since hypotheses are accumulated during resolution, this leads to larger and larger sets
of hypotheses, which will eventually contain every clause used in the resolution proof as an
individual term. Forming the union of these sets takes the kernel a significant amount of time.

It is therefore faster to use a slightly different clause representation, where each clause contains
the whole CNF formula ¢* as a hypothesis. Let ¢* = /\f:1 C;, where k is the number of clauses.

Using the Assume rule, we obtain a theorem { /\i?:l Ci} F /\f:1 C;. Repeated elimination of

112 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

conjunction yields a list of theorems {/\f:1 Ci} F Cy,y ..o {/\f:1 C;} + Cg. Each of these
theorems is then converted into the sequent form described above, with literals as hypotheses
and False as the theorem’s conclusion. Now, throughout the entire proof, the set of hypotheses
for each clause consists of a single term /\f:1 C; and the clause’s literals only. It is therefore
much smaller than before, which speeds up resolution.

Furthermore, memory requirements do not increase significantly: the term /\f:1 C; needs to
be kept in memory only once, and can be shared between different clauses. This can also be
exploited when the union of hypotheses is formed (assuming that the inference kernel and the
underlying SML system support it): a simple pointer comparison is sufficient to determine that
both theorems contain /\,’f:1 C; as a hypothesis (and hence that the resulting theorem needs
to contain it only once); no lengthy term traversal is required. Thus, even though the size of
the sequent using this representation increases in terms of the number of symbols, there is no
detrimental effect on either performance or memory use.

We should mention that this representation of clauses, despite its superior performance, has
a small downside. The resulting theorem always has every given clause as a premise, while
the theorem produced by the sequent representation only has those clauses as premises that
were actually used in the proof. To obtain the latter, logically stronger theorem, the resolution
proof can be analyzed to identify the clauses that are used in the proof, and the unused ones
can be filtered out before proof reconstruction.

5.4 FEvaluation

Isabelle/HOL offers three major automatic proof tactics: auto, which performs simplification
and splitting of a goal, blast [136], a tableau-based prover, and fast, which searches for a proof
using standard Isabelle inference. Details can be found in [125]. In [I65], we compared the
performance of proof reconstruction with the naive HOL representation to that of Isabelle’s
existing proof procedures. As benchmarks we used all 42 problems contained in version 2.6.0
of the TPTP library [155] that have a representation in propositional logic. The problems were
negated, so that unsatisfiable problems became provable.

We found that 19 of these 42 problems are rather easy, and were solved in less than a second
each by both the existing tactics and the SAT solver approach. Table shows the times
(in seconds) that Isabelle’s procedures and our first implementation—using the naive HOL
encoding—required to solve the remaining 23 problems. These timings were obtained on a
machine with a 3 GHz Intel Xeon CPU and 1 GB of main memory. An x indicates that the
procedure ran out of memory or failed to terminate within an hour. The timings in the SAT
column include preprocessing time, zChaff solving time, and proof reconstruction in Isabelle.

None of the existing tactics could prove more than 7 of the 16 unsatisfiable problems with the
given time and memory constraints. The SAT solver approach however solved all, and only the
first problem, MSC007-1.008, took a significant amount of time to prove in Isabelle. Moreover,
all existing tactics timed out on the 7 satisfiable problems (failing to notice that their negation
is unprovable), while zChaff quickly provided counterexamples for each of them. We conclude
that on propositional problems, already our first, rather inefficient implementation of SAT
proof reconstruction was clearly superior to Isabelle’s built-in proof procedures.

This has become even more obvious with the new sequent representations that were discussed

5.4. EVALUATION 113

Problem Status auto blast fast SAT
MSCO007-1.008 unsat. X X x 726.5
NUM285-1 sat. X X bd 0.2
PUZ013-1 unsat. 0.5 b'e 5.0 0.1
PUZ014-1 unsat. 1.4 b'e 6.1 0.1
PUZ015-2.006 unsat. X X X 10.5
PUZ016-2.004 sat. X X b'e 0.3
PUZ016-2.005 unsat. X X X 1.6
PUZ030-2 unsat. X b'e bd 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYNO001-1.005 unsat. X X X 0.4
SYNO003-1.006 unsat. 0.9 X 1.6 0.1
SYNO004-1.007 unsat. 0.3 8222 2.8 0.1
SYNO010-1.005.005 unsat. X X X 0.4
SYNO086-1.003 sat. X X X 0.1
SYNO087-1.003 sat. X X X 0.1
SYNO090-1.008 unsat. 13.8 X X 0.5
SYNO091-1.003 sat. x b'e bd 0.1
SYN092-1.003 sat. X X X 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. X b'e bd 0.8
SYNO097-1.002 unsat. X 19.2 X 0.2
SYN098-1.002 unsat. X X X 0.4
SYN302-1.003 sat. X X X 0.4

Table 5.1: Runtimes (in seconds) for TPTP problems, naive HOL representation

Problem Representation = SAT

Naive HOL 726.5
Separate Clauses 7.8
Sequent 1.2
CNF Sequent 0.7

Table 5.2: Runtimes (in seconds) for MSC007-1.008

above. To give an impression of the effect that the different clause representations have on
performance, Table shows the different times required to prove problem MSCO007-1.008 in
Isabelle. The proof found by zChaff for this problem has 8,705 resolution steps. (MiniSat finds
a proof with 40,790 resolution steps for the same problem, which is reconstructed in about
3.8 seconds total with the sequent representation, and in 1.9 seconds total with the CNF
sequent representation.) The times to prove the other problems from Table have decreased
in a similar fashion and are well below one second each now.

This enables us to evaluate the performance on some significantly larger problems, such as
pigeonhole instances and industrial problems taken from the SATLIB [73] library. These
problems do not only push Isabelle’s inference kernel to its limits, but also other components
of the prover; in particular its term parser and pretty-printer. The TPTP problems were
converted to Isabelle’s input syntax by a Perl [164] script. This turned out to be infeasible for
the larger SATLIB problems. The script still works fine for these problems, but Isabelle’s parser
(which is mainly intended for small, hand-crafted terms) is unable to parse the resulting theory
files, which are several megabytes large, in reasonable time. Also, the prover’s user interface

114 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

Problem Variables Clauses Resolutions zChaff 2zChaff+ zverify_df Isabelle
¢7552mul.miter 11282 69529 242509 45 45 1.1 69
6pipe 15800 394739 310813 134 137 3.7 192
6pipe_6_000 17064 545612 782903 263 265 5.1 421
Tpipe 23910 751118 497019 440 440 6.5 609

Table 5.3: Runtimes (in seconds) for SATLIB problems, CNF sequent representation

Problem Variables Clauses Resolutions zChaff zChaff+ zverify df Isabelle

pigeon-7 56 204 8705 <1 <1 < 0.1 <1
pigeon-8 72 297 25369 <1 <1 0.1 1
pigeon-9 90 415 73472 1 1 0.2 3
pigeon-10 110 561 215718 5 6 0.4 10
pigeon-11 132 738 601745 23 24 1.2 36
pigeon-12 156 949 3186775 242 247 6.5 315

Table 5.4: Runtimes (in seconds) for pigeonhole instances, CNF sequent representation

is unable to display the resulting formulae. We have therefore implemented our own parser,
which builds SML terms directly from DIMACS files, and we work entirely at the system’s
SML level, avoiding the usual user interface, to prove unsatisfiability.

Statistics for four SATLIB problems (chosen from those that were used to evaluate zChaff’s
performance in [I79]) are shown in Table Runtimes for selected pigeonhole instances are
given in Table[5.4] The time for zChaff is time taken to solve the problem, without (zChaff) and
with (zChaff+) proof logging. (Note that we measure CPU time only, which does not include
time spent blocked on I/O. Measuring wall time is pointless because of other processes that may
be running simultaneously.) The times reported for Isabelle are total times again, including
zChaff solving time, proof replay, parsing of input and output files, and any other intermediate
pre- and post-processing. These timings were obtained on a 1.87 GHz Pentium M notebook
with 1.5 GB of main memory. Timings are rounded to the nearest second. For comparison,
runtimes for zChaff’s own proof checker zverify df [179] are shown as well, rounded to the
nearest tenth of a second[l]

The proof logging version of MiniSat 1.14 ran out of memory on all problems in Table
except ¢7552mul.miter. This is probably because MiniSat 1.14 tends to find longer proofs than
zChaff, which becomes costly when proof logging is enabled. The latest version of MiniSat often
performs better than zChaff (considering the results of the 2006 SAT-Race competition [54]),
but unfortunately it did not support proof logging at the time of writing. Therefore we do not
give performance data for replaying MiniSat proofs.

Needless to say, none of the SATLIB problems can be solved automatically by Isabelle’s built-
in tactics. Only the smallest of the pigeonhole instances succumbs, and takes far longer to do
so. Pigeonhole instances are known to be pathologically hard problems for resolution proof
systems [67]. Isabelle ran out of memory on the pigeonhole problem with 13 holes, even though
zChaff found a proof in about 10 minutes. It is hard to do a fine-grained memory analysis,

!The version of zevrify_df that comes with zChaff 2004.11.15 contains a minor bug (related to the decision
level of variables) which increases its runtime significantly. The above timings were measured with the bug
fixed. Our bug fix has been incorporated into the 2007.3.12 release of zChaff.

5.5. PERSISTENT THEOREMS 115

but we can safely say that having to store terms rather than numbers in memory contributed
to this failure.

Proof checking in Isabelle/HOL, despite all optimizations that we have implemented, is about
an order of magnitude slower than proof verification with zChaff’s own proof checker zverify_df,
written in C++. This additional overhead is to be expected; it is the price that we have to
pay for using an LCF-style theorem prover for higher-order logic, whose inference kernel is not
geared towards propositional logic. However, we also see that proof reconstruction in Isabelle
scales quite well with our latest implementation, and that it remains feasible even for large
SAT problems.

In [168], we report timings for proof reconstruction in HOL 4 and HOL Light. While comparing
these values directly is of limited significance (because of fundamental differences like the
underlying SML system and the kernels’ implementation of theorems), it is still worth noting
that our Isabelle/HOL implementation performs up to an order of magnitude better than the
(conceptually similar) implementations of proof reconstruction in those provers.

5.5 Persistent Theorems

We have seen that SAT solvers can greatly enhance Isabelle’s abilities. The same holds true
for other automated theorem provers, e.g. for first-order logic [113] or Satisfiability Modulo
Theories (SMT) [77]. Verification of proof scripts becomes more difficult however. A user
who wants to verify an Isabelle proof script that invokes external tools not only has to install
Isabelle itself, but also those additional programs. Essentially, verification of proof scripts is
restricted to systems which have a very similar configuration, and setting up a system so that
proof scripts which rely on external tools become verifiable can be a cumbersome task.

Proof terms, which were implemented for Isabelle by Stefan Berghofer [23], suggest a simple
solution to make the verification of proof scripts more independent of the presence and con-
figuration of external tools. Proof terms encode the proof of a theorem in terms of primitive
inference rules. They can be significantly larger than proof scripts (since the invocation of a
powerful automated tactic from a script may result in a large number of primitive inferences—
our SAT-solver based tactic is a good example of this). But while turning proof scripts into
theorems requires not only full Isabelle, but potentially also a number of external tools, proof
terms on the other hand can be verified by a very simple proof checker, which comprises a few
dozen lines of code only.

We have implemented a tactical (a function which transforms proof tactics) in SML that turns
a given tactic, say t, into one that potentially uses proof terms. Our implementation proceeds
as follows. Given t’s input theorem ¢, we first attempt to read a proof term that proves the
conclusion of ¢ from a file on disk. A 32-bit hash function (taken from [146]) is used to compute
the fixed-length file name. Chaining is employed to deal with potential hash collisions. We
have applied the hash function to Isabelle’s entire theorem library however, and there are no
hash collisions in the library at the time of writing.

If reading the proof term (and turning it into a theorem that proves the conclusion of ¢, using
the simple proof checker that is integrated with Isabelle) succeeds, we are done. In this case
we can simply return the theorem, with no need to apply the original tactic ¢. This is the case
that allows verification of proof scripts by the core Isabelle system (and in fact by the proof

116 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

Proof - Hash
goal o function

Figure 5.8: Persistent theorems

checker component only), if the necessary proof terms are given together with the proof script.

Reading the proof term from disk may fail for several reasons. Perhaps the file does not exist,
or it does not contain a valid proof, or the term in the file proves a different theorem. In this
case we apply the tactic ¢ (which may call external provers) to the given input theorem. This
yields a sequence of successor theorems, of which we only consider the first. (We can save
proof terms for a single theorem to disk, but not for a possibly infinite sequence of theorems—
at least not easily.) This theorem’s proof term is stored in the aforementioned file (as an
XML [28] document to simplify parsing and enhance portability), so that future invocations
of the adapted tactic can retrieve it from there. In addition, the theorem is returned as the
tactic’s result.

A flowchart depicting the algorithm and the different data formats involved is given in Fig-

5.6. CONCLUSION 117

ure To subsume, this approach allows us to easily turn a tactic which may require a number
of external tools into one that attempts to read a proof term from a file first, and performs
the original computation only if this fails. The same tactic can be used both to produce the
proof terms when they are not present (provided the required external tools are available), and
to verify them when they are. Proof scripts that use such a tactic can be verified on systems
where the necessary external provers are configured, and also on systems where they aren’t, if
the proof term files are available.

5.6 Conclusion

The SAT solver approach dramatically outperforms the automatic procedures that were previ-
ously available in Isabelle/HOL. With the help of MiniSat or zChaff, many formulae that were
previously out of the scope of built-in tactics can now be proved—or refuted—automatically,
often within seconds. Isabelle’s applicability as a tool for formal verification, where large
propositional problems occur in practice, has thereby improved considerably.

Furthermore, using the data structures and optimizations described in this chapter, proof
reconstruction for propositional logic scales quite well even to large SAT problems and proofs
with millions of resolution steps. The additional confidence gained by using an LCF-style
prover to check the proof obviously comes at a price (in terms of running time), but it’s not
nearly as expensive as one might have expected after earlier implementations.

While improving the performance of proof reconstruction, we discovered inefficiencies in the
implementation of the Isabelle kernel. Subsequently the prover implementation was modified,
and these inefficiencies were removed. Tuning an implementation to the extend presented
here requires a great deal of familiarity with the underlying theorem prover. Nevertheless our
results are applicable beyond Isabelle/HOL, really to any prover that supports propositional
logic and is able to simulate propositional resolution.

We did not find any soundness bugs in the SAT solvers during proof reconstruction. This is not
surprising, since the solvers had already been tested thoroughly on all the problems evaluated
above. We did note an odd completeness bug in the verifier bundled with zChaff, which refuses
to verify a proof of unsatisfiability if the original problem contains trivial clauses. Definitional
CVF conversions often generate trivial clauses, so in our setting this is perhaps more important
than for the usual verification of unsatisfiable SATLIB problems.

Regarding the proofs produced by SAT solvers, we would like to emphasize the importance of
having a well-documented standard, similar to what the DIMACS format is for a SAT solver’s
input. At present, the mere fact that different solvers use different (and partially undocu-
mented) proof formats makes their integration a bit more of an engineering challenge than it
would have to be. Also, solver developers need to be aware that even trivial preprocessing
steps (like reordering of clauses) may need to be reproduced in the proof checker. Therefore
these steps should (perhaps optionally) be logged in the proof trace as well, or the checker
must implement the same preprocessing algorithm as the solver.

We have already mentioned some possible directions for future work. There is probably not very
much potential left to optimize the implementation of resolution itself at this point. However,
to further improve the performance of proof reconstruction, it could be beneficial to analyze the
resolution proof found by the SAT solver in more detail. Merging similar resolution chains may

118 CHAPTER 5. INTEGRATION OF PROOF-PRODUCING SAT SOLVERS

reduce the overall number of resolutions required, and re-sorting resolutions may help to derive
shorter clauses during the proof, which should improve the performance of individual resolution
steps. Some preliminary results along these lines are reported in [7]. Also preprocessing of
CNF formulae for SAT solvers has recently shown very promising results [52] [§], so it might
be worthwhile to integrate a preprocessing SAT solver with an LCF-style prover. Note that
this is not a trivial task, as the preprocessing must be mimicked inside the HOL prover in a
proof-producing fashion.

The approach presented in this chapter has applications beyond propositional reasoning. The
decision problem for richer logics (or fragments thereof) can be reduced to SAT [11], (154 [110],
139]. Consequently, proof reconstruction for propositional logic can serve as a foundation
for proof reconstruction for other logics. Based on our work, only a proof-generating imple-
mentation of the reduction is needed to integrate the more powerful, yet SAT-based decision
procedure with an LCF-style theorem prover. This has already been used to integrate the SMT
solver haRVey with Isabelle [76] [77]. haRVey, like other SMT systems, uses various decision
procedures (e.g. congruence closure for uninterpreted functions) on top of a SAT solver.

Every solution breeds new problems.
Arthur Bloch, born 1948.

Chapter 6

Conclusion

This chapter summarizes the results presented in this thesis, and gives directions
for possible future work.

6.1 Summary

In this thesis, we have presented a finite model generation algorithm for higher-order logic. The
main theoretical contribution is a correctness proof for the underlying translation from higher-
order logic to propositional logic. On the practical side, we have achieved a seamless integration
of the model generator with Isabelle/HOL. In particular its support for many specification
techniques available in this logic, including datatypes, recursive functions, type classes, records,
set types, etc., makes the model generator applicable to a wide class of conjectures stated in
the theorem prover. If a counterexample is found, it is displayed to the user, potentially saving
a significant amount of time otherwise spent on fruitless proof attempts.

The successful application of the model generator to three case studies, namely to obtain a
correctness proof for an abstract version of the RSA-PSS security protocol, counterexamples
to conjectures about probabilistic programs, and a Sudoku solver, shows that the algorithm is
of practical utility. For the second case study, an abstract model of probabilistic programs was
developed that is susceptible to counterexample search via finite model generation, thereby
contributing to the theory of probabilistic programs.

The LCF-style integration of zChaff and MiniSat with Isabelle/HOL that has been presented
in Chapter [5| shows that an interactive theorem prover for higher-order logic can serve as
a viable proof checker for propositional resolution proofs with millions of proof steps. Our
optimization techniques are applicable also to other higher-order logic theorem provers, e.g. to
HOL 4 and HOL Light. The use of state-of-the-art SAT solvers has greatly improved Isabelle’s
performance on propositional problems, thereby enhancing its applicability for hardware and

119

120 CHAPTER 6. CONCLUSION

software verification, where many problems can be encoded in propositional logic. A prototype
implementation of persistent proofs makes the verification of proof scripts indepent of external
tools; this can facilitate the exchange of proof scripts between different Isabelle installations.

6.2 Future Work

To conclude, we give directions for possible future work. Some of the following research ques-
tions arose directly from the work presented in this thesis, while others are linked to alternative
approaches that we did not investigate in detail.

Integration with Isabelle. The model generator that was presented in this thesis has been
integrated with Isabelle/HOL, and it supports various definitional mechanisms and extensions
that this logic offers, most notably recursive datatypes. Isabelle/HOL continues to evolve
however, and support for some of its features is currently lacking or incomplete. In particular
the model generator is not yet contert-aware. This applies both to theory contexts (called
locales in Isabelle [13]) and proof contexts [14], which permit e.g. local definitions in proofs.

The model generator could also be integrated with Isabelle’s meta logic, Isabelle/Pure (see
Section , and consequently be made available for other object logics, e.g. Zermelo-Fraenkel
set theory.

Both issues are mainly software engineering tasks. The model generator, due to its tight inte-
gration with Isabelle, inevitably depends on the internal interfaces of some of Isabelle/HOL’s
packages. It will therefore continue to evolve as these interfaces change over time.

Optimizations. Our focus has been the integration of the model generator with Isabelle,
in particular with Isabelle/HOL. This allows the model generator to be applied to a wide
class of formulae, and its performance is sufficient for interesting case studies. While we have
implemented some optimizations (see Section , further work is necessary to obtain a tool
whose performance is generally competitive to that of existing (first-order) model generators.
For first-order logic, techniques have been developed to bound or estimate the size of the
model [138], to reduce the number of Boolean variables, to reuse search information between
consecutive model sizes, or to perform symmetry reduction in order to reduce the number
of isomorphic models [41], [I56]. It should be a worthwhile research project to transfer these
techniques to higher-order logic.

External model generators. An orthogonal approach that would be interesting to eval-
uate, both in terms of performance and feasibility, is the use of external (first-order) model
generators. The necessary translation from HOL to first-order logic could be based on recent
work by Meng and Paulson [I13] (which would need to be adapted however, as it targets
automated theorem provers, not model generators). The integration of external provers with
interactive proof assistants has been pursued for a long time, and the integration of external
model generators could have similar benefits. Most notably, Isabelle could profit directly from
advanced, highly efficient algorithms implemented in external tools.

6.2. FUTURE WORK 121

Other methods of disproving. Aside from finite model generation, various other tech-
niques exist that can be used to refute false conjectures. Berghofer has integrated quickcheck,
a tool based on random testing, with Isabelle [24]. The performance of quickcheck is sometimes
superior to finite model generation, but the tool is limited to an executable fragment of HOL.
It might be possible to combine quickcheck with finite model generation to obtain the best of
both worlds: an efficient tool that is applicable to a wide class of HOL formulae.

Future work could also focus on the generation of counterexamples from failed proof attempts.
Isabelle contains built-in decision procedures for various fragments of HOL, e.g. quantifier
elimination algorithms for dense linear orders, real and integer linear arithmetic [124]. While
some of these procedures output a (possibly spurious) counterexample when they cannot find
a proof, counterexample generation was generally not of high priority in their development
until now. Notably blast, Isabelle’s built-in tableau prover [136], currently does not output any
useful information when it fails.

Methods for the generation of infinite models (see [90] for a survey) could be used to refute
formulae that have no finite countermodels. These techniques could again be implemented as
part of Isabelle, or in an external tool that is then integrated with Isabelle.

SAT solving. Both the MACE-style algorithm for finite model generation and the resolution
proof reconstruction presented in this thesis crucially depend on efficient SAT solvers. Our
model generator supports various state-of-the-art SAT solvers, including zChaff and MiniSat.
The integration of other SAT solvers that use the DIMACS input format is straightforward.
However, for convenience we have also implemented our own SAT solver in Standard ML. This
simple, DPLL-based solver is now part of the Isabelle system. It would be interesting to see
if the performance of an optimized SAT solver written in Standard ML can be competitive to
that of one of the currently leading solvers (which are usually written in C or C++4), and it
would be useful to extend Isabelle’s own SAT solver with the ability to generate unsatisfiability
proofs.

Regarding the proof-producing integration of SAT solvers with LCF-style theorem provers, we
have already mentioned several directions for future work in Section Our integration can
serve as a foundation for the integration of proof-generating decision procedures for richer logics
that are based on SAT, e.g. satisfiability modulo theories (SMT), or fragments of first-order
logic. This has already been used to integrate the SMT solver haRVey with Isabelle [77].

In Chapter | we have focused on an efficient implementation of proof reconstruction, where the
resolution proof was found by a SAT solver. Another promising line of research is concerned
with obtaining an efficient (compressed) representation of the proof. One can sometimes merge
similar resolution chains and re-sort certain resolution steps to obtain a shorter proof; see e.g.
[7] for recent work.

An alternative to LCF-style proof checking is reflection, a technique where an algorithm is
proved correct in the theorem prover, and then code is generated from the algorithm’s definition
that produces trusted results [35]. Reflection offers good performance (as the reflected code
does not need to produce LCF-style proofs) and high reliability (as the trusted code base must
include the code generator, but not any reflected proof procedure). It would be interesting to
compare our LCF-style proof checker to a reflection-based approach. Some initial results were
recently given in [31].

122 CHAPTER 6. CONCLUSION

Formalization. Most theorems in this thesis were proved by traditional “pen-and-paper”
proofs only. We have focused on extending Isabelle, rather than on using it to establish fully
formal theorems. It seems natural however to suggest a machine-readable formalization of our
results. This should be a straightforward (albeit laborious) task for the results about the model
of probabilistic programs presented in Section A formalization of the model generator’s
correctness (Theorem on the other hand would be technically challenging, because the
set-theoretic semantics of higher-order logic cannot be defined in Isabelle/HOL directly. HOL-
ST, an extension of Isabelle/HOL proposed by Agerholm [3, [4] and Gordon [65], could be
a suitable framework for such a formalization. HOL-ST, which was later called HOLZF by
Obua [128], adds a type V (for the set-theoretic universe) and a function €: V x V' — bool
(for set membership) to HOL. Then the usual axioms of ZF set theory are asserted.

List of Figures

2.1 Model generation algorithm| 0oL 43
3.1 HOL package structure|. o o oo 48
3.2 HOL type definition| 53
13.3 Element order for non-recursive datatypes| 0oL 59
4.1 TPTP encoding of the RSA-PSS protocol] 76
4.2 Model showing security of RSA-PSS hashingl 77
4.3 Abstract probabilistic counterexamples|. 0L, 94
4.4 Sudoku example and solution| Lo 95
4.5 Sudoku grid| 96
4.6 Hard Sudoku example and solutionl oL 97
b.1 Isabelle — SAT system architecturel 102
5.2 SML datatype of propositional formulael 103
5.3 SML type of resolution proofs| 0oL 104
5.4 EBNF syntax for zChaff proof traces| 105
5.5 EBNF syntax for MiniSat proof traces| L. 106
[5.6 Resolution proof found by zChaft| 108
[5.7 Resolution proof found by MiniSat| 0oL 109
0.8 Persistent theoremsl. 116

123

124 LIST OF FIGURES

List of Tables

[2.1 Refutable HOL formulae (examples)| 41
[5.1 Runtimes (in seconds) for TPTP problems, naive HOL representation| 113
[5.2 Runtimes (in seconds) for MSC007-1.008|. 113
[5.3 Runtimes (in seconds) for SATLIB problems, CNF sequent representation| . . . 114
[5.4 Runtimes (in seconds) for pigeonhole instances, CNF sequent representation|. . 114

125

126 LIST OF TABLES

Bibliography

1]

Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Iteration and coiteration schemes for
higher-order and nested datatypes. Theoretical Computer Science, 333(1-2):3-66, 2005.

Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische
Annalen, 99:118-133, 1928.

Sten Agerholm. Formalising a model of the A-calculus in HOL-ST. Technical Report
354, University of Cambridge Computer Laboratory, 1994.

Sten Agerholm and Michael J. C. Gordon. Experiments with ZF set theory in HOL and
Isabelle. In E. Thomas Schubert, Phillip J. Windley, and Jim Alves-Foss, editors, Higher
Order Logic Theorem Proving and Its Applications — 8th International Workshop, Aspen
Grove, UT, USA, September 11-14, 1995, Proceedings, volume 971 of Lecture Notes in
Computer Science, pages 32—45. Springer, 1995.

Col Allan, editor. New York Post. News Corporation, New York City, NY, USA, 2005.

Hasan Amjad. Shallow lazy proofs. In Joe Hurd and Thomas F. Melham, editors,
Theorem Proving in Higher Order Logics — 18th International Conference, TPHOLs
2005, Ozford, UK, August 22-25, 2005, Proceedings, volume 3603 of Lecture Notes in
Computer Science, pages 35—49. Springer, 2005.

Hasan Amjad. Compressing propositional refutations. In Stephan Merz and Tobias Nip-
kow, editors, Proceedings of the 6th International Workshop on Automated Verification of
Critical Systems (AVoCS 2006), volume 185 of Electronic Notes in Theoretical Computer
Science, pages 3—15. Elsevier, July 2007.

Anbulagan and John Slaney. Multiple preprocessing for systematic SAT solvers. In
C. Benzmiiller, B. Fischer, and G. Sutcliffe, editors, Proceedings of the 6th International
Workshop on the Implementation of Logics, volume 212 of CEUR Workshop Proceedings,
pages 100-116, Phnom Penh, Cambodia, 2006.

Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating
the “Small Scope Hypothesis”, September 2002. Available from http://sdg.csail.
mit.edu/pubs/2002/SSH. pdf.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, volume 27 of Applied Logic Series. Kluwer Academic Publishers, second
edition, July 2002.

127

http://sdg.csail.mit.edu/pubs/2002/SSH.pdf
http://sdg.csail.mit.edu/pubs/2002/SSH.pdf

128

[11]

[12]

BIBLIOGRAPHY

G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based
approach for solving formulas over Boolean and linear mathematical propositions. In
Andrei Voronkov, editor, Proceedings of the 18th International Conference on Automated
Deduction (CADE-18), volume 2392 of Lecture Notes in Artificial Intelligence, pages
195-210, Copenhagen, Denmark, July 2002. Springer.

Serge Autexier and Carsten Schiirmann. Disproving false conjectures. In Moshe Y.
Vardi and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning — 10th International Conference, LPAR 2003, Almaty, Kazakhstan, September
22-26, 2003, Proceedings, volume 2850 of Lecture Notes in Computer Science, pages 33—
48. Springer, 2003.

Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano Berardi,
Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs, Interna-
tional Workshop, TYPES 2003, Torino, Italy, April 30 — May 4, 2003, Revised Selected
Papers, volume 3085 of Lecture Notes in Computer Science, pages 34-50. Springer, 2003.

Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In
Jonathan M. Borwein and William M. Farmer, editors, Mathematical Knowledge Man-
agement, 5th International Conference, MKM 2006, Wokingham, UK, August 11-12,
2006, Proceedings, volume 4108 of Lecture Notes in Artificial Intelligence, pages 31-43.
Springer, 2006.

Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Proceedings of the 16th International Conference on Computer Aided
Verification (CAV 2004), Boston, Massachusetts, USA, July 2004.

Clark Barrett, Sergey Berezin, and David L. Dill. A proof-producing Boolean search en-
gine. In Proceedings of the Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR 2003), Miami, Florida, USA, July 2003.

David Basin and Stefan Friedrich. Combining WS1S and HOL. In Dov M. Gabbay
and Maarten de Rijke, editors, Frontiers of Combining Systems 2, volume 7 of Studies

in Logic and Computation, pages 39-56. Research Studies Press/Wiley, Baldock, Herts,
UK, February 2000.

David Basin, Séan Matthews, and Luca Vigano. A modular presentation of modal logics
in a logical framework. In Isabelle Users Workshop — Cambridge, England, September
18-19, 1995, Proceedings, September 1995.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. In
Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-
Time Systems: 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, volume 3185 of Lecture Notes in
Computer Science, pages 200-236. Springer, September 2004.

Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In U. Maurer, editor, Advances in Cryptology — EUROCRYPT 96,
volume 1070 of Lecture Notes in Computer Science, pages 399-416. Springer, 1996.

BIBLIOGRAPHY 129

[21]

[24]

[25]

[26]

[27]

[30]

Belaid Benhamou and Laurent Henocque. Finite model search for equational theories
(FMSET). In Jacques Calmet and Jan Plaza, editors, Artificial Intelligence and Symbolic
Computation, International Conference, AISC’98, Plattsburg, New York, USA, Septem-
ber 1618, 1998, Proceedings, volume 1476 of Lecture Notes in Artificial Intelligence, pages
84-93. Springer, 1998.

Stefan Berghofer. Definitorische Konstruktion induktiver Datentypen in Isabelle/HOL.
Master’s thesis, Institut fiir Informatik, Technische Universitat Miinchen, 1998.

Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher order logic. In
Mark Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics —
13th International Conference, TPHOLs 2000, Portland, Oregon, USA, August 14-18,
2000, Proceedings, volume 1869 of Lecture Notes in Computer Science, pages 38-52.
Springer, 2000.

Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In Jorge R.
Cuellar and Zhiming Liu, editors, 2nd International Conference on Software Engineering
and Formal Methods (SEFM 2004), 28-30 September 2004, Beijing, China, pages 230—
239. IEEE Computer Society, 2004. Invited paper.

Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL — lessons learned
in formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Théry, editors, Theorem Proving in Higher Order Logics, 12th International Con-
ference, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages 19-36.
Springer, 1999.

Paul Bernays and Moses Schonfinkel. Zum Entscheidungsproblem der mathematischen
Logik. Mathematische Annalen, 99(1):342-372, 1928.

Daniel Le Berre and Laurent Simon, editors. The SAT 2005 competitions and evaluations,
volume 2 of Journal on Satisfiability, Boolean Modeling and Computation. 10S Press,
2005.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau, and
John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition), W3C' Recom-
mendation 16 August 2006, edited in place 29 September 2006, 2006. Available from
http://wuw.w3.org/TR/2006/REC-xm111-20060816/.

Achim D. Brucker and Burkhart Wolff. Symbolic test case generation for primitive re-
cursive functions. In Jens Grabowski and Brian Nielsen, editors, Formal Approaches
to Software Testing — 4th International Workshop, FATES 2004, Linz, Austria, Septem-
ber 21, 2004, Revised Selected Papers, volume 3395 of Lecture Notes in Computer Science,
pages 16-32. Springer, 2005.

Achim D. Brucker and Burkhart Wolff. Interactive testing with HOL-TestGen. In Wolf-
gang Grieskamp and Carsten Weise, editors, Formal Approaches to Software Testing —
5th International Workshop, FATES 2005, Edinburgh, UK, July 11, 2005, Revised Se-
lected Papers, volume 3997 of Lecture Notes in Computer Science, pages 87-102. Springer,
2006.

http://www.w3.org/TR/2006/REC-xml11-20060816/

130

31]

[41]

[42]

BIBLIOGRAPHY

Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkdk, and John
Matthews. Imperative functional programming with Isabelle/HOL. To appear at
TPHOLs 2008.

Georg Cantor. Uber eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 1:75-78, 1891.

Constantin Carathéodory. Uber den Variabilititsbereich der Fourierschen Konstanten
von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo,
32:193-217, 1911.

Serenella Cerrito and Marta Cialdea Mayer. Using linear temporal logic to model and
solve planning problems. In Fausto Giunchiglia, editor, Artificial Intelligence: Method-
ology, Systems, and Applications, 8th International Conference, AIMSA’98, Sozopol,
Bulgaria, September 21283, 1998, Proceedings, volume 1480 of Lecture Notes in Artificial
Intelligence, pages 141-152. Springer, 1998.

Amine Chaieb. Automated methods for formal proofs in simple arithmetics and algebra.
PhD thesis, Institut fiir Informatik, Technische Universitdt Miinchen, Germany, January
2008. Preliminary version, submitted.

Amine Chaieb and Tobias Nipkow. Verifying and reflecting quantifier elimination for
Presburger arithmetic. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning — 12th International Conference, LPAR
2005, Montego Bay, Jamaica, December 2-6, 2005, Proceedings, volume 3835 of Lecture
Notes in Computer Science, pages 367-380. Springer, 2005.

Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1(1):40—
41, 1936.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

Koen Claessen. Equinox, a new theorem prover for full first-order logic with equality.
Presentation at Dagstuhl Seminar 05431 on Deduction and Applications, October 2005.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing of
Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000,
volume 35(9) of SIGPLAN Notices, pages 268-279. ACM, September 2000.

Koen Claessen and Niklas Sorensson. New techniques that improve MACE-style finite
model finding. In CADE-19, Workshop W4, Model Computation — Principles, Algo-
rithms, Applications, 2003.

Ernie Cohen. Separation and reduction. In Roland Carl Backhouse and José Nuno
Oliveira, editors, Mathematics of Program Construction — 5th International Conference,
MPC 2000, Ponte de Lima, Portugal, July 3-5, 2000, Proceedings, volume 1837 of Lecture
Notes in Computer Science, pages 45—-59. Springer, 2000.

BIBLIOGRAPHY 131

[43]

Simon Colton and Alison Pease. The TM system for repairing non-theorems. In Wolfgang
Ahrendt, Peter Baumgartner, Hans de Nivelle, Silvio Ranise, and Cesare Tinelli, editors,
Selected Papers from the Workshops on Disproving and the Second International Work-
shop on Pragmatics of Decision Procedures (PDPAR 2004), volume 125(3) of Electronic
Notes in Theoretical Computer Science, pages 87-101. Elsevier, July 2005.

Stephen Cook. The complexity of theorem proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pages 151-158. ACM, 1971.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394-397, 1962.

Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In 15th An-
nual IEEE Symposium on Logic in Computer Science, 26-29 June 2000, Santa Barbara,
California, USA, pages 141-154. IEEE Computer Society, 2000.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae, 34(5):381-392, 1972.

Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on finite
model search. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning —
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 2000,
Proceedings, volume 4130 of Lecture Notes in Artificial Intelligence, pages 303-317, 2006.

Giovanni di Lorenzo, editor. Die Zeit. Zeitverlag Gerd Bucerius GmbH & Co. KG,
Hamburg, Germany, 2005.

DIMACS satisfiability suggested format, 1993. Available from ftp://dimacs.rutgers.
edu/pub/challenge/satisfiability/doc.

D. Dolev and A. C. Yao. On the security of public key protocols. In Proceedings of the
IEEE 22nd Annual Symposium on Foundations of Computer Science, pages 350-357,
1981.

Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing — 8th International Conference, SAT 2005, St Andrews, UK, June
19-23, 2005, Proceedings, volume 3569 of Lecture Notes in Computer Science, pages
61-75. Springer, 2005.

Niklas Eén and Niklas Sorensson. MiniSat-p-v1.14 — A proof-logging version of Min-
iSat, September 2006. Available from http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/.

Carsten Sinz et al. SAT-Race 2006 — results, August 2006. Available from http://fmv.
jku.at/sat-race-2006/results.html.

Bertram Felgenhauer and Frazer Jarvis. Enumerating possible Sudoku grids, June 2005.
Available from http://www.shef.ac.uk/~pmlafj/sudoku/.

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://fmv.jku.at/sat-race-2006/results.html
http://fmv.jku.at/sat-race-2006/results.html
http://www.shef.ac.uk/~pm1afj/sudoku/

132

[56]

[57]

[58]

BIBLIOGRAPHY

The SML/NJ Fellowship. Standard ML of New Jersey, June 2007. Available from
http://www.smlnj.org/.

Melvin Fitting. Kleene’s three valued logics and their children. Fundamenta Informaticae,
20(1-3):113-131, 1994.

Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen
Tiu. Expressiveness + automation + soundness: Towards combining SMT solvers and
interactive proof assistants. In Holger Hermanns and Jens Palsberg, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 12th International Conference,
TACAS 2006, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings, volume
3920 of Lecture Notes in Computer Science, pages 167-181. Springer, 2006.

E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Design
Automation and Test in Europe (DATE), pages 142-149, 2002.

C. Goller, O. Ibens, R. Letz, K. Mayr, M. Moser, J. Schumann, and J. Steinbach. The
model elimination provers SETHEO and E-SETHEO. Journal of Automated Reasoning,
18(2):237-246, 1997.

M. J. C. Gordon. From LCF to HOL: A short history. In G. Plotkin, Colin P. Stirling,
and Mads Tofte, editors, Proof, Language, and Interaction. MIT Press, 2000.

M. J. C. Gordon. HolSatLib documentation, version 1.0b, June 2001. Available from
http://www.cl.cam.ac.uk/~mjcg/HolSatLib/HolSatLib.html.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

M. J. C. Gordon and A. M. Pitts. The HOL logic and system. In J. Bowen, editor,
Towards Verified Systems, volume 2 of Real-Time Safety Critical Systems Series, pages
49-70. Elsevier, 1994.

Michael J. C. Gordon. Set theory, higher order logic or both? In Joakim von Wright,
Jim Grundy, and John Harrison, editors, Theorem Proving in Higher Order Logics — 9th
International Conference, TPHOLs’96, Turku, Finland, August 26-30, 1996, Proceed-
ings, volume 1125 of Lecture Notes in Computer Science, pages 191-201. Springer, 1996.
Invited paper.

Reiner Hahnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 100-178. Elsevier and MIT
Press, 2001.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297—
308, 1985.

John Harrison. Binary decision diagrams as a HOL derived rule. The Computer Journal,
38(2):162-170, 1995.

http://www.smlnj.org/
http://www.cl.cam.ac.uk/~mjcg/HolSatLib/HolSatLib.html

BIBLIOGRAPHY 133

[69]

[72]

73]

[74]

[77]

78]
[79]

[80]

John Harrison. Stalmarck’s algorithm as a HOL derived rule. In Joakim von Wright, Jim
Grundy, and John Harrison, editors, Theorem Proving in Higher Order Logics, volume
1125 of Lecture Notes in Computer Science, pages 221-234. Springer, 1996.

Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.

Wilfrid Hodges. First-order model theory. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Center for the Study of Language and Information, Stan-
ford University, Summer 2005. Available from http://plato.stanford.edu/archives/
sum2005/entries/modeltheory-fo/.

Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-
Wesley, September 2003.

Holger H. Hoos and Thomas Stiitzle. SATLIB: An online resource for research on SAT.
In Ian Gent, Hans van Maaren, and Toby Walsh, editors, SAT 2000, pages 283—-292. 10S
Press, 2000. Available from http://www.satlib.org/.

Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem Proving in Higher
Order Logics, 12th International Conference, TPHOLs 99, volume 1690 of Lecture Notes
in Computer Science, pages 311-321, Nice, France, September 1999. Springer.

Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei
Voronkov, editor, Proceedings of the 18th International Conference on Automated Deduc-
tion (CADE-18), volume 2392 of Lecture Notes in Artificial Intelligence, pages 134—138,
Copenhagen, Denmark, July 2002. Springer.

Clément Hurlin. Proof reconstruction for first-order logic and set-theoretical construc-
tions. In Stephan Merz and Tobias Nipkow, editors, Sizth International Workshop on
Automated Verification of Critical Systems (AVoCS 2006) — Preliminary Proceedings,
pages 157-162, 2006.

Clément Hurlin, Amine Chaieb, Pascal Fontaine, Stephan Merz, and Tjark Weber. Prac-
tical proof reconstruction for first-order logic and set-theoretical constructions. In Lucas
Dixon and Moa Johansson, editors, Proceedings of the Isabelle Workshop 2007, pages
2—-13, Bremen, Germany, July 2007.

Institute of Electrical and Electronics Engineers, Inc. IEEE Std 1003.1c-1995, 1995.

International Organization for Standardization. Information technology — Syntactic met-
alanguage — Extended BNF, 1996. ISO/IEC 14977:1996(E).

International Organization for Standardization. Information technology — Open Dis-
tributed Processing — Unified Modeling Language (UML) Version 1.4.2, 2005. ISO/IEC
19501:2005.

Daniel Jackson. Automating first-order relational logic. In Proc. ACM SIGSOFT Conf.
Foundations of Software Engineering, pages 130-139, San Diego, November 2000.

Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256-290, 2002.

http://plato.stanford.edu/archives/sum2005/entries/modeltheory-fo/
http://plato.stanford.edu/archives/sum2005/entries/modeltheory-fo/
http://www.satlib.org/

134

[83]

[84]

[38]

[89]

[92]

[93]

[94]

BIBLIOGRAPHY

Paul Jackson and Daniel Sheridan. The optimality of a fast CNF conversion and its use
with SAT. Technical Report APES-82-2004, APES Research Group, March 2004.

Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer, 3rd millen-
nium edition, 2003.

Jan Jiirjens. Sound methods and effective tools for model-based security engineering with
UML. In Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh, editors,
27th International Conference on Software Engineering (ICSE 2005), May 15-21, 2005,
St. Louis, Missouri, USA, pages 322-331. ACM, 2005.

Jan Jiirjens. Security analysis of crypto-based Java programs using automated theorem
provers. In Proceedings of the 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE 2006), September 18-22, 2006, Tokyo, Japan, pages 167-176.
IEEE Computer Society, 2006.

Sara Kalvala and Valeria de Paiva. Linear logic in isabelle. In Isabelle Users Workshop —
Cambridge, England, September 18-19, 1995, Proceedings, September 1995.

Sarfraz Khurshid and Darko Marinov. TestEra: Specification-based testing of Java pro-
grams using SAT. Automated Software Engineering, 11(4):403-434, 2004.

Nils Klarlund and Anders Mgller. MONA Version 1.4 User Manual. BRICS, Depart-
ment of Computer Science, University of Aarhus, January 2001. Notes Series NS-01-1.
Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

Stefan Klingenbeck. Counter Examples in Semantic Tableaux. PhD thesis, Institute for

Logic, Complexity and Deduction Systems, University of Karlsruhe, Karlsruhe, Germany,
1996.

Donald E. Knuth. Mathematics and computer science: Coping with finiteness. Advances
in our ability to compute are bringing us substantially closer to ultimate limitations.
Science, 194(4271):1235-1242, December 1976.

Karsten Konrad. Model Generation for Natural Language Interpretation and Analysis.
PhD thesis, Technische Fakultat, Universitiat des Saarlandes, Saarbriicken, Germany,
2000.

Dexter Kozen. On Kleene algebras and closed semirings. In Branislav Rovan, editor,
Mathematical Foundations of Computer Science 1990 — Banskd Bystrica, Czechoslovakia,
August 27-31, 1990, Proceedings, volume 452 of Lecture Notes in Computer Science,
pages 26-47. Springer, 1990.

Dexter Kozen. Kleene algebra with tests and commutativity conditions. In Tiziana
Margaria and Bernhard Steffen, editors, Tools and Algorithms for the Construction and
Analysis of Systems — Second International Workshop, TACAS ’96, Passau, Germany,
March 27-29, 1996, Proceedings, volume 1055 of Lecture Notes in Computer Science,
pages 14-33. Springer, 1996.

http://www.brics.dk/mona/

BIBLIOGRAPHY 135

[95]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]

Gihwon Kwon and Himanshu Jain. Optimized CNF encoding for Sudoku puzzles. In Miki
Hermann and Andrei Voronkov, editors, LPAR-13, The 13th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, Short Paper Proceedings,
November 2006.

Christina Lindenberg and Kai Wirt. SHA1, RSA, PSS and more. In Gerwin Klein,
Tobias Nipkow, and Lawrence Paulson, editors, The Archive of Formal Proofs. http://
afp.sourceforge.net/entries/RSAPSS.shtml, May 2005. Formal proof development.

DeadMan’s Handle Ltd. Sudoku solver, September 2005. Available from http://www.
sudoku-solver.com/.

David Matthews. Poly/ML 5.0 release, December 2006. Available from
http://sourceforge.net/project/showfiles.php?group_id=148318&package_
1d=163589&release_1d=470957.

David Matthews. Poly/ML home page, February 2007. Available from http://www.
polyml.org/.

David Matthews. The Thread structure and signature, November 2007. Available from
http://www.polyml.org/docs/Threads.html.

John Matthews. ASCII proof traces for MiniSat. Personal communication, August 2006.

William McCune. A Davis-Putnam program and its application to finite first-order
model search: quasigroup existence problems. Technical Report ANL/MCS-TM-194,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
1L, 1994.

William McCune. MACE 2.0 reference manual and guide. Technical Report ANL/MCS-
TM-249, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, May 2001.

William McCune. Mace4 reference manual and guide. Technical Report ANL/MCS-
TM-264, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, August 2003.

William McCune. Otter 3.3 reference manual. Technical Report ANL/MCS-TM-263,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
1L, August 2003.

William McCune. Prover9 manual, version 2008-04a, April 2008. Available from http:
//www.cs.unm.edu/~mccune/prover9/manual/2008-044/.

Annabelle Mclver and Carroll Morgan. Abstraction, Refinement and Proof for Proba-
bilistic Systems. Springer Monographs in Computer Science. Springer, 2005.

Annabelle Mclver and Tjark Weber. Towards automated proof support for probabilis-
tic distributed systems. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning — 12th International Conference, LPAR
2005, Montego Bay, Jamaica, December 2-6, 2005, Proceedings, volume 3835 of Lecture
Notes in Computer Science, pages 534-548. Springer, December 2005.

http://afp.sourceforge.net/entries/RSAPSS.shtml
http://afp.sourceforge.net/entries/RSAPSS.shtml
http://www.sudoku-solver.com/
http://www.sudoku-solver.com/
http://sourceforge.net/project/showfiles.php?group_id=148318&package_id=163589&release_id=470957
http://sourceforge.net/project/showfiles.php?group_id=148318&package_id=163589&release_id=470957
http://www.polyml.org/
http://www.polyml.org/
http://www.polyml.org/docs/Threads.html
http://www.cs.unm.edu/~mccune/prover9/manual/2008-04A/
http://www.cs.unm.edu/~mccune/prover9/manual/2008-04A/

136

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

BIBLIOGRAPHY

Andreas Meier. TRAMP: Transformation of machine-found proofs into natural deduc-
tion proofs at the assertion level. In David A. McAllester, editor, Automated Deduc-
tion — CADE-17, 17th International Conference on Automated Deduction, Pittsburgh,
PA, USA, June 17-20, 2000, Proceedings, volume 1831 of Lecture Notes in Artificial
Intelligence, pages 460-464. Springer, 2000.

Andreas Meier and Volker Sorge. Applying SAT solving in classification of finite algebras.
Journal of Automated Reasoning, 35(1-3):201-235, October 2005.

Jia Meng. Integration of interactive and automatic provers. In Manuel Carro and Jesus
Correas, editors, Second CologNet Workshop on Implementation Technology for Compu-
tational Logic Systems, FME 2003, September 2003.

Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive proof us-
ing resolution. In David Basin and Michaél Rusinowitch, editors, Automated Reasoning:
Second International Joint Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Pro-
ceedings, volume 3097 of Lecture Notes in Artificial Intelligence, pages 372-384. Springer,
2004.

Jia Meng and Lawrence C. Paulson. Translating higher-order problems to first-order
clauses. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors, ESCoR: Empir-
ically Successful Computerized Reasoning, volume 192 of CEUR Workshop Proceedings,
pages 70-80, 2006.

Robin Milner. A Calculus of Communicating Systems. Springer, October 1980.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML - Revised. MIT Press, May 1997.

Carroll Morgan. The specification statement. ACM Transactions on Programming Lan-
guages and Systems, 10(3):403-419, July 1988.

Carroll Morgan. Programming from Specifications. International Series in Computer
Science. Prentice Hall, 2nd edition, 1994.

Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate transform-
ers. ACM Transactions on Programming Languages and Systems, 18(3):325-353, May
1996.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference, Las
Vegas, June 2001.

Olaf Miiller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch. HOLCF = HOL
+ LCF. Journal of Functional Programming, 9:191-223, 1999.

Wolfgang Naraschewski and Markus Wenzel. Object-oriented verification based on record
subtyping in higher-order logic. In J. Grundy and M. Newey, editors, Theorem Proving in
Higher Order Logics — 11th International Conference, TPHOLs’98, Canberra, Australia,
September 27 October 1, 1998, Proceedings, volume 1479 of Lecture Notes in Computer
Science, pages 349-366. Springer, 1998.

BIBLIOGRAPHY 137

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Tobias Nipkow. Order-sorted polymorphism in Isabelle. In Gérard Huet and Gordon
Plotkin, editors, Logical Environments, pages 164—188. Cambridge University Press,
1993.

Tobias Nipkow. Structured proofs in Isar/HOL. In Herman Geuvers and Freek Wiedijk,
editors, Types for Proofs and Programs, Second International Workshop, TYPES 2002,
Berg en Dal, The Netherlands, April 24-28, 2002, Selected Papers, volume 2646 of Lecture
Notes in Computer Science, pages 259-278. Springer, 2002.

Tobias Nipkow. Linear quantifier elimination. In A. Armando, P. Baumgartner, and
G. Dowek, editors, Automated Reasoning (IJCAR 2008), volume ? of Lecture Notes in
Computer Science, pages ?—7 Springer, 2008.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

Michael Norrish and Konrad Slind. The HOL System Description, January 2007. Avail-
able from http://hol.sourceforge.net/documentation.htmll

Steven Obua. Checking conservativity of overloaded definitions in higher-order logic. In
Frank Pfenning, editor, Term Rewriting and Applications — 17th International Confer-
ence, RTA 2006, Seattle, WA, USA, August 12-14, 2006, Proceedings, volume 4098 of
Lecture Notes in Computer Science, pages 212—-226. Springer, 2006.

Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti,
and Antonio Cerone, editors, Theoretical Aspects of Computing — ICTAC 2006, Third
International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings, volume
4281 of Lecture Notes in Computer Science, pages 272—-286. Springer, 2006.

Larry Paulson and Markus Wenzel. The Isabelle reference manual, October 2005. Avail-
able from http://isabelle.in.tum.de/dist/Isabelle/doc/ref .pdf.

Larry Paulson and Markus Wenzel. Isabelle/FOL — first-order logic, October 2005.
Available from http://isabelle.in.tum.de/dist/library/FOL/document .pdf.

Lawrence C. Paulson. Set theory for verification: I. from foundations to functions.
Journal of Automated Reasoning, 11:353-389, 1993.

Lawrence C. Paulson. Set theory for verification: II. induction and recursion. Technical
Report 312, University of Cambridge Computer Laboratory, 1993.

Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive definitions.
In Alan Bundy, editor, Automated Deduction — CADE-12 — 12th International Con-
ference on Automated Deduction, Nancy, France, June 26 July 1, 1994, Proceedings,
volume 814 of Lecture Notes in Computer Science, pages 148-161. Springer, 1994.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer, 1994.

Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1-2):85-128, 1998.

http://hol.sourceforge.net/documentation.html
http://isabelle.in.tum.de/dist/Isabelle/doc/ref.pdf
http://isabelle.in.tum.de/dist/library/FOL/document.pdf

138

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

BIBLIOGRAPHY

Lawrence C. Paulson. A generic tableau prover and its integration with Isabelle. Journal
of Universal Computer Science, 5(3):73-83, 1999.

Lawrence C. Paulson. Inductive analysis of the internet protocol TLS. ACM Transactions
on Information and System Security (TISSEC), 2(3):332-351, 1999.

Amir Pnueli, Yoav Rodeh, Ofer Strichman, and Michael Siegel. The small model prop-
erty: How small can it be? Information and Computation, 178(1):279-293, 2002.

Erik Reeber and Warren A. Hunt, Jr. A SAT-based decision procedure for the subclass
of unrollable list formulas in ACL2 (SULFA). In Ulrich Furbach and Natarajan Shankar,
editors, Automated Reasoning — Third International Joint Conference, IJCAR 2006,
Seattle, WA, USA, August 2006, Proceedings, volume 4130 of Lecture Notes in Artificial
Intelligence, pages 453-467, 2006.

Franz Regensburger. HOLCF': FEine konservative Erweiterung von HOL um LCF. PhD
thesis, Technische Universitdt Miinchen, Germany, 1994.

Franz Regensburger. HOLCF': Higher order logic of computable functions. In E. Thomas
Schubert, Phillip J. Windley, and Jim Alves-Foss, editors, Higher Order Logic Theorem
Proving and Its Applications — 8th International Workshop, Aspen Grove, UT, USA,
September 11-14, 1995, Proceedings, volume 971 of Lecture Notes in Computer Science,
pages 293-307. Springer, 1995.

R. Rivest, A. Shamir, and L. Adleman. On digital signatures and public key cryptosys-
tems. Technical Report 82, MIT Laboratory for Computer Science, April 1977.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

John Alan Robinson. A machine-oriented logic based on the resolution principle. Com-
munications of the ACM, 12(1):23-41, 1965.

RSA Laboratories. PKCS #1: RSA Cryptography Standard Version 2.1, June 2002.

Robert Sedgewick. Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting,
Searching. Addison Wesley Professional, 3rd edition, September 1997.

Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, June 1995. Available as Technical Report MIT/LCS/TR-676.

Natarajan Shankar. Automated verification using deduction, exploration, and abstrac-
tion. In Annabelle Mclver and Carroll Morgan, editors, Programming Methodology.
Springer, 2003.

John K. Slaney. FINDER: Finite domain enumerator — system description. In Alan
Bundy, editor, Automated Deduction — CADE-12 — 12th International Conference on
Automated Deduction, Nancy, France, June 26 July 1, 1994, Proceedings, volume 814
of Lecture Notes in Computer Science, pages 798-801. Springer, 1994.

BIBLIOGRAPHY 139

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]
[159]

[160]

[161]

[162]

John K. Slaney and Timothy Surendonk. Combining finite model generation with the-
orem proving: Problems and prospects. In Franz Baader and Klaus U. Schulz, editors,
Frontiers of Combining Systems, First International Workshop, FroCos ’96, Munich,
Germany, March 26-29, 1996, Proceedings, volume 3 of Applied Logic Series, pages 141—
155. Kluwer Academic Publishers, 1996.

Neil J. A. Sloane. The on-line encyclopedia of integer sequences: A014221, December
2007. Available from http://www.research.att.com/~njas/sequences/A014221.

Graham Steel, Alan Bundy, and Ewen Denney. Finding counterexamples to inductive
conjectures and discovering security protocol attacks. AISB Journal, 1(2), 2002.

Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme, I-IV. Journal fir
reine und angewandte Mathematik, 143:128-175, 1913.

Ofer Strichman. On solving Presburger and linear arithmetic with SAT. In M. D.
Aagaard and J. W. O’Leary, editors, Formal Methods in Computer-Aided Design — 4th
International Conference, FMCAD 2002, Portland, OR, USA, November 6-8, 2002, Pro-
ceedings, volume 2517 of Lecture Notes in Computer Science, pages 160-169. Springer,
2002.

Geoff Sutcliffe and Christian Suttner. The TPTP problem library: CNF release v1.2.1.
Journal of Automated Reasoning, 21(2):177-203, 1998. Available from http://www.cs.
miami.edu/~tptp/.

Tanel Tammet. Finite model building: improvements and comparisons. In CADE-19,
Workshop W/, Model Computation — Principles, Algorithms, Applications, 2003.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5(2):285-309, 1955.

Robert James Thomson, editor. The Times. Times Newspapers Ltd., London, UK, 2005.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grum-
berg and Michael Huth, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal,
March 24 - April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Sci-
ence, pages 632-647. Springer, 2007.

B. A. Trachtenbrot. Impossibility of an algorithm for the decision problem in finite
classes. Doklady Akademii Nauk SSSR, 70:569-572, 1950.

G. Tseitin. On the complexity of derivation in propositional calculus. In A. Slisenko,
editor, Studies in Constructive Mathematics and Mathematical Logic, Part 2, pages 115—
125, 1970.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In J. Siekmann
and G. Wrightson, editors, Automation Of Reasoning: Classical Papers On Computa-
tional Logic, Vol. II, 1967-1970, pages 466—483. Springer, 1983. Also in Structures in
Constructive Mathematics and Mathematical Logic Part II, ed. A. O. Slisenko, 1968,
pp. 115-125.

http://www.research.att.com/~njas/sequences/A014221
http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/

140

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

BIBLIOGRAPHY

Pete Wake. Sudoku solver by logic, September 2005. Available from http://www.
sudokusolver.co.uk/.

Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly Media,
Inc., 3rd edition, July 2000.

Tjark Weber. Using a SAT solver as a fast decision procedure for propositional logic in
an LCF-style theorem prover. In Joe Hurd, Edward Smith, and Ashish Darbari, editors,
Theorem Proving in Higher Order Logics — 18th International Conference, TPHOLs
2005, Oxford, UK, August 2005, Emerging Trends Proceedings, pages 180-189, Oxford,
UK, August 2005. Oxford University Computing Laboratory, Programming Research
Group. Research Report PRG-RR-05-02.

Tjark Weber. Efficiently checking propositional resolution proofs in Isabelle/HOL. In
Chris Benzmiiller, Bernd Fischer, and Geoff Sutcliffe, editors, Proceedings of the 6th
International Workshop on the Implementation of Logics, volume 212 of CEUR Workshop
Proceedings, pages 44-62, November 2006.

Tjark Weber. Integrating a SAT solver with an LCF-style theorem prover. In Alessandro
Armando and Alessandro Cimatti, editors, Proceedings of the Third Workshop on Prag-
matics of Decision Procedures in Automated Reasoning (PDPAR 2005), volume 144(2) of
Electronic Notes in Theoretical Computer Science, pages 67—78. Elsevier, January 2006.

Tjark Weber and Hasan Amjad. Efficiently checking propositional refutations in HOL
theorem provers. Journal of Applied Logic, July 2007. To appear.

Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs, Thorsten Engel,
Enno Keen, Christian Theobalt, and Dalibor Topic. System description: SPASS version
1.0.0. In Harald Ganzinger, editor, Automated Deduction — CADE-16, 16th International
Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings, volume
1632 of Lecture Notes in Artificial Intelligence, pages 314-318. Springer, 1999.

Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter
and Amy Felty, editors, Theorem Proving in Higher Order Logics — 10th International
Conference, TPHOLs °97, Murray Hill, NJ, USA, August 1922, 1997, Proceedings, vol-
ume 1275 of Lecture Notes in Computer Science, pages 307-322. Springer, 1997.

Markus Wenzel. Isabelle/Isar— a versatile environment for human-readable formal proof
documents. PhD thesis, Institut flir Informatik, Technische Universitat Miinchen, Ger-
many, 2002.

Wikipedia. Sudoku — Wikipedia, the free encyclopedia, September 2005. Available from
http://en.wikipedia.org/wiki/Sudoku.

Wikipedia. 2-3 tree — Wikipedia, the free encyclopedia, October 2007. Available from
http://en.wikipedia.org/w/index.php?title=2-3_tree&o0ldid=167942797.

Wikipedia. Markov decision process — Wikipedia, the free encyclopedia, March 2008.
Available from http://en.wikipedia.org/w/index.php?title=Markov_decision_
process&oldid=193875137.

http://www.sudokusolver.co.uk/
http://www.sudokusolver.co.uk/
http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/w/index.php?title=2-3_tree&oldid=167942797
http://en.wikipedia.org/w/index.php?title=Markov_decision_process&oldid=193875137
http://en.wikipedia.org/w/index.php?title=Markov_decision_process&oldid=193875137

BIBLIOGRAPHY 141

[175]

176

[177]

[178]

[179]

[180]

Steve Winker. Generation and verification of finite models and counterexamples us-
ing an automated theorem prover answering two open questions. Journal of the ACM,
29(2):273-284, April 1982.

Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. In IPSJ SIG Notes 2002-AL-87-2. IPSJ, 2002.

Jian Zhang and Hantao Zhang. SEM: a system for enumerating models. In Morgan Kauf-
mann, editor, Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, Montréal, Québec, Canada, August 20-25, 1995, Volume 1, pages
298-303, 1995.

Lintao Zhang and Sharad Malik. The quest for efficient Boolean satisfiability solvers. In
Andrei Voronkov, editor, Proceedings of the 8th International Conference on Computer
Aided Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer Science.
Springer, 2002.

Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Design, Automation
and Test in Europe (DATE 2003), pages 10880-10885. IEEE Computer Society, 2003.

Irina Zhitomirskaja. Werkzeuggestiitzte modellbasierte Sicherheitsanalyse: RSAPSS
Signaturverfahren. Master’s thesis, Institut fiir Informatik, Technische Universitat
Miinchen, Germany, October 2005.

	Introduction
	Motivation
	Contributions
	Related Work
	Isabelle
	Overview

	Finite Model Generation
	Introduction
	Higher-Order Logic
	Types
	Terms
	Satisfiability

	Translation to Propositional Logic
	Propositional Logic
	Interpretation of Types
	Interpretation of Terms
	Examples

	Model Generation
	Finding a Satisfying Assignment
	Type Environments and Type Models
	The Algorithm
	Building the HOL Model

	Conclusion

	Extensions and Optimizations
	Introduction
	Optimizations
	Isabelle's Meta-Logic
	Type and Constant Definitions, Overloading
	Type Definitions
	Constant Definitions and Overloading
	Definite Description and Hilbert's Choice

	Axiomatic Type Classes
	Datatypes and Recursive Functions
	Non-Recursive Datatypes
	Recursive Datatypes
	Recursive Functions

	Sets and Records
	HOLCF
	Conclusion

	Case Studies
	Introduction
	The RSA-PSS Security Protocol
	Abstract Protocol Formalization
	Avoiding Confusion

	Probabilistic Programs
	The Probabilistic Model LS
	The Abstract Model KS
	Mechanization of Counterexample Search

	A SAT-based Sudoku Solver
	Implementation in Isabelle/HOL
	Translation to Propositional Logic

	Conclusion

	Integration of Proof-producing SAT Solvers
	Introduction
	Related Work
	System Description
	Preprocessing
	Proof Reconstruction
	Clause Representations

	Evaluation
	Persistent Theorems
	Conclusion

	Conclusion
	Summary
	Future Work

