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Abstract

This dissertation explores the problem of reconstructing a three dimen-
sional scene from stereo images. It describes several propositions to enhance
this process so that it can be applied in scenarios where flexibility, delay and
accuracy are required as in Telepresence and Teleaction. The work mainly
emphasizes on calibration of automatic zoom cameras, mesh approximation
of images, stereo matching and camera motion estimation.

A method is first derived based on the theory of data fitting to calibrate
automatic zoom lenses. A zoom camera is calibrated offline at a number of
focus and zoom settings to obtain some measurement points of the intrinsic
parameters. The unmeasured values are then interpolated by approximating
each variable with local polynomial functions. A technique is then found to
reduce the number of points in the image based on the concept of content
adaptive mesh representation of images. There, an image is represented
with a mesh where its nodes are the only pixels necessary to recover the
structure of the scene. To benefit from the obtained reduced set of pixels, a
sparse stereo matching strategy based on dynamic programming is developed
to compute the depth only at the nodes of the mesh. This reduces the
computational time to the one needed for their evaluation. At the end, a
technique is established to estimate the motion of a camera by parameterizing
the latter on the manifold of the rigid motion. A suitable cost function
is defined. Then, a projective Newton-type minimization scheme on the
manifold is derived to optimize it.
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Chapter 1

Introduction

1.1 Problem Statement

Estimating the depth information of the environment from planar images is
one of the major research areas in computer vision. The objective of this
field is to let the computer visualize its surroundings in 3D from a pair of
cameras as the human vision system can achieve with the eyes. This aim,
however, faces diverse issues that have to be dealt with simultaneously and
that make the goal very challenging for researchers. Recovering the geometry
of a 3D scene has a variety of applications where it can be used in. One of
them is telepresence where a person has to feel fully present at a location
different from his own true location. This thesis explores several known
issues in the 3D reconstruction process of static scenes from stereo images.
The emphasis is to design and develop efficient algorithms in order to enhance
the stereo-based 3D reconstruction and make it more feasible for telepresence
applications. This dissertation focuses on the problems of camera calibration,
stereo matching, mesh generation and camera motion estimation.

1.2 Motivation

Telepresence and teleaction (TPTA) is the experience of being present and
active at a location distant from one’s real physical location. In a typical
scenario, a mobile robot equipped with a stereo camera is placed at a remote
scene. This unit is referred to as the teleoperator. The human operator, situ-
ated at another location, can interact in the remote scene of the teleoperator
by means of a generated virtual 3D environment. The environment should
be transparent to the operator. It has to provide him with all the feedbacks
necessary to feel “fully present” at the remote location. With the recent
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advances in computational resources, research in telepresence is becoming
more intensive due to the wide range of its applications, e.g. teleconferenc-
ing, telemedicine, telemaintenance and collaborative virtual environments.
In order to have the virtual feeling of being present, the human operator
should perceive the environment of the teleoperator using realistic 3D views
at a very low latency. In a high fidelity telepresence and teleaction scenario,
this setup is a part of a closed control loop which suffers from severe stability
problems. One cause is the time required to construct the visual 3D environ-
ment. Another cause lies in the signal transmission round-trip delays. These
delays are significant since there are too many processes that occur in TPTA
and have to access the network simultaneously, see Figure 1.1. Among them
are the audio, video, haptic, controls between operators and teleoperators [1].

Operators )
Remote Network

-

Remote
Computers

Sensors
&
Actuators

Visual Display

Audio Feedback

Communication Channel
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Haptic Device
Control Unit
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Figure 1.1: Overview of a TPTA scenario.

Research in TPTA has been pursued by several scientists and engineers
due to the flexibility that can be achieved by its application. Most of the
developed systems are built to support specific tasks. These tasks are mainly
emphasized in the current research with 3D video teleconferencing and col-
laborative virtual environments. Both of these applications are somehow
similar. 3D teleconferencing aims at creating long distance calls where the
participants are visualized in 3D as if they were present in the same room
while in collaborative visual environments, the users have to perform some
tasks together, e.g. virtual gaming. In both scenarios, the environment is
assumed to be known in advance and can be subtracted from the compu-
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tations. The main issue is to extract the local participant from the images
and display him with an immersive stereoscopic representation to the other
user. The classical way of performing this task is by applying stereo recon-
struction methods as was done in [2,3,4,5,6]. Another strategy is to con-
struct the convex hull of the participant from silhouette images [7,8,9,10,11].
A third methodology is to employ image-based rendering techniques where
some functions that describe the flow of light in all different directions and
positions, i.e. plenoptic functions, are computed. These functions are then
used to synthesize novel views of the participant [12, 13,14, 15].

In a general TPTA scenario, however, the issue is more complex. An
environment has to be first acquired by the operator in order to later per-
form some required tasks. One example is telemaintenance where the scene
has to be scanned to locate and repair the malfunction in a remote sys-
tem. Another example is telenavigation where the operator needs to scan
the entourage of the teleoperator before navigating. The application of 3D
reconstruction methods based on image silhouettes is not straightforward in
this case. Although these methods are computationally efficient, they are
focused on constructing the foreground of a segmented scene by estimating
its convex hull [7,8,9,10,11]. This scheme is not straightforward in a general
TPTA scenario since the structure of the scenery is not known and has to be
acquired on the fly. The employment of image based rendering techniques
is also not feasible for they require a large array of cameras mounted on the
teleoperator to compute the flow of light in all directions [12,13,14,15]. This
leaves us with the stereo-based reconstruction techniques. Recovering the 3D
geometry of a scene using a stereo scheme requires several operations to be
performed. The captured images of the teleoperator have to be calibrated
and rectified. A stereo matching algorithm is then applied to calculate the
depth map of the scene upon which the 3D points are computed. The ob-
tained points are then registered, meshed and finally textured so that the
complete 3D model can be rendered on the virtual display.

Acquiring the 3D environment has a major role in TPTA since it provides
the teleoperator with the feeling of being immersed in the virtual world. The
sense of immersion is mainly affected by the latency in the acquired geometry,
the visual errors in the reconstructed scene and the restrictions imposed on
the operator. Each of these problems has one or more sources that affect it.
The latency of the 3D model generation is dependent on the network delays
of a TPTA system as was previously mentioned, see Figure 1.1. It is also
dependent on the complexity of the stereo matching algorithm used and the
size of the stereo images [2,12,15,16,17]. Note that the size of the generated
3D model is also related to the size of the image. If its size is large, it will
introduce further delay to the network and the rendering task since it has to
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be transmitted, textured and rendered on the virtual display to be visualized
later by the teleoperator. The errors in the generated model are due to the
inaccuracy induced from the camera calibration algorithm used, the type of
the stereo matching algorithm employed and the technique applied to regis-
ter the consecutive 3D meshes [2,1,17]. In addition, restrictions are imposed
on the movements of the operator if variable zoom lenses are installed on
the teleoperator since they require continuous calibration to determine the
camera parameters as the zoom changes. Using auto or self-calibration algo-
rithms to compute these parameters make the movement of the teleoperator
subject to some critical motion where these methods might fail, see [18,19,20)]
for more information on camera auto-calibration algorithms.

Beside that, the work of this dissertation is related to the subproject M3
of the SFB 453 telepresence and teleaction project. Its goal is to construct
a photo-realistic predictive display for a TPTA scenario. The display should
generate for the operator 3D model of the scene viewed by the teleoperator
in the local network, see Figure 1.1. The model is used to compensate for the
delay caused by the signals being transmitted over the communication chan-
nel. It should let the operator depict the scene from the positions viewed by
the teleoperator and predict the views of the positions that were not covered.
In order to accomplish this objective, the local model should be frequently
updated at a very low latency. In addition, the reconstruction errors should
be as minimum as possible to lower the artifacts so that the model remains
visually acceptable. Both of these criteria are important to make the operator
have the virtual feeling of being present at the remote scene. The part of the
subproject M3 that concerns this thesis is to construct the 3D model. This
will be fulfilled using a stereo-based reconstruction scheme due to the reasons
that were mentioned earlier. Before we get into details of the contributions
made in this work, we will first show how to integrate such a reconstruction
scheme in a general TPTA system. A schematic of the scenario is illustrated
in Figure 1.2. At the teleoperator site, the stereo images are captured with
firewire cameras, passed to a MPEG4 video encoder and then transmitted
over a channel. At the other side of the channel where more computational
power is available, the video stream is received, decoded and processed to
reconstruct the 3D scene. The generated model is placed in a server and
can be accessed by the operator via the MPEG4 BIFS standard [21]. This
standard possesses a streaming architecture which provides the operator with
the ability to connect from anywhere without any restrictions on his loca-
tion. At the operator site, the 3D scene is received and rendered. The control
line feeds the teleoperator with the controls of the stereo cameras, i.e. head
tracker of the operator and camera controls. In addition, it provides the ac-
quisition algorithm with the controls of the zoom lens needed for calibration.
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The stereo-based 3D reconstruction scheme lies in the middle of the depicted
system. It is composed of several independent blocks which have to be all
accomplished in order to obtain a complete 3D model of a scene. The images
have to be first calibrated, especially if variable zoom lenses are used, then
rectified. A stereo matching algorithm should run to estimate the depth of
the scene. The mesh approximation of the generated depth map should be
constructed. The motion of the camera should be computed to register the
generated mesh with the previous ones and update the overall model accord-
ingly. In order for the latter to occur, feature matches have to be tracked all
over the image sequence. Moving objects should be detected and segmented
from the scene so that they can be tracked and updated separately ...

This dissertation will consider four challenging problems arising in this
process. It will deal with the calibration of an automatic zoom lens camera.
It will also discuss the topic of constructing the mesh representation of stereo
images. Another important topic that will be covered is stereo matching since
it is required to recover the 3D geometry of the scene. Finally, the thesis will
address the problem of estimating the global motion of a stereo camera which
is necessary to track the movement of the teleoperator.

1.3 Original Contributions

There are several points in which the author believes that the thesis presents
an original contribution and will be explained in the rest of this manuscript:

e An algorithm that allows an automatic zoom camera to be calibrated
and integrated in a TPTA scenario without incurring any constraints
or restrictions on the teleoperator.

e A method that reduces the number of pixels to be processed in an
image based on non-uniform sampling. The approach is also able to
represent the image with a content adaptive mesh which can be used
to render the scene on a virtual display.

e A stereo matching technique based on dynamic programming that han-
dles sparse images.

e The idea of generating the mesh and reducing the number of pixels
to be processed in stereo reconstruction. This accelerates the overall
acquisition process along with the rendering of the 3D model on the
virtual display due to the reduced number of points. This methodology
becomes more benefitable when the size of the used images gets larger.
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e A framework to optimize the motion of a stereo camera (teleopera-
tor) by parameterizing the motion variables using the manifold of the
rigid motion, defining a cost function to be minimized and deriving a
projective Newton-type scheme to optimize it accordingly.

@ @‘ " Controls "

MPEG4 N ) MPEG4 3D Scene 3D Model Rendering /
Transmitter Receiver = Reconstruction > Server Virtual Display

Teleoperator Operator

A 4
v

Commlmication Local Eatwork
Channel
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Chapter 2 Chapter 3 Chapter 4 Chapter 5
Figure 1.2: A stereo-based 3D scene reconstruction scheme integrated in a TPTA
system.

1.4 Organization of the Dissertation

This thesis addresses some of the problems that present a challenge in stereo
reconstruction in telepresence scenarios like camera calibration, mesh gener-
ation, stereo matching and camera motion estimation. A review on existing
telepresence systems was conducted in this chapter. Each specific part, how-
ever, has its own research field where intensive studies have been conducted.
We will therefore present the literature review of each topic that will be dealt
with in this work in the corresponding chapter where it is discussed. The
work is structured as follows:

Chapter 2 proposes an approach to determine the intrinsic parameters
of an automatic zoom camera by estimating continuous functions of their
variations as the focus and the zoom change. The method is based on the
moving least-squares (MLS) multiple regression scheme which determines
from a predefined number of samples, the complete function of the intrinsic
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parameters. MLS fits locally a polynomial function at each focus and zoom
setting by using the measured neighboring points. In order to reduce the
computational complexity of MLS, we propose another algorithm in which
the MLS generated curves are clustered. Then, each cluster is approximated
with a single polynomial function.

Chapter 3 suggests a method based on binary space partitions to ap-
proximate an image with a content adaptive mesh. The algorithm is able to
simultaneously reduce the number of pixels and generate the mesh approx-
imation of the scene represented by an image. The idea is to assume that
each triangle of the mesh is a plane formed by its three vertices. Thus, it
will be possible to reconstruct the inlying pixels inside each triangle with its
parametric equation. If a triangle does not have the ability to reconstruct
the pixels lying within up to a predefined error, it will be recursively subdi-
vided into smaller triangles until the error is satisfied across the image. The
resulting mesh can then be used to construct the 3D mesh of the scene using
the depth information estimated from stereo matching.

Chapter 4 derives a framework to generate a sparse depth map in order
to benefit from the reduced set of pixels obtained in the previous chapter. A
dynamic programming based stereo matching algorithm is formulated which
computes the depth only at the sparse samples and hence accelerating the
stereo reconstruction process. The smoothness constraint is modified to take
into account the distance between the sparse samples. It is then shown by
setting up some tests that the non-uniform samples are sufficient to recover
the dense depth map of the scene by interpolating the samples using the
mesh with an acceptable error.

Chapter 5 presents a projective Newton-type approach on the manifold
to enhance the accuracy of the estimated motion parameters while not signifi-
cantly increasing the accompanying costs in the computations. The key issue
is to parameterize the motion variables of a camera on the manifold of the
Euclidean motion by using the underlying Lie group structure of the motion
representation. A cost function is formulated. The gradient and the Hessian
formulation on the manifold are derived to minimize the cost function such
that the minimum is the sought estimate of the rigid camera motion.

Chapter 6 applies the developed schemes in this dissertation in a real
telepresence and teleaction scenario and assesses their performance.

Chapter 7 summarizes the thesis and reviews the main contributions.
Possible directions of research are also highlighted.

Appendix A sums up all the abbreviations, mathematical symbols and
notations that are used throughout this work.

Parts of this thesis have been published in [22,23,24,25 26,27 28,29, 30,

,32].



Chapter 2

Calibration of Automatic Zoom
Cameras

The application of automatic zoom lenses in camera systems has become
significantly important in the field of machine vision. By varying the focal
length, the focus and the aperture values, a zoom camera system can be
adjusted to different fields of view, depth of fields and lighting conditions.
These advantages present some of the main reasons why zoom lenses are
increasingly being adopted in applications like 3D scene reconstruction, visual
tracking, robot navigation [33,341,35]. Such benefits are also important in a
TPTA scenario since they provide the operator the ability to interact with
the virtual environment by zooming on some specific regions of interest.

2.1 Overview of Camera Calibration

The challenge of applying automatic zoom lenses in the vision systems lies
in modeling the image formation process as the lens parameters, i.e. focus,
zoom and aperture, are varied continuously. The image formation process
describes the relationship between P = (XY, Z )T, an existing point in the
real world coordinate system R?, and its corresponding point p = (x,y)? in
the image coordinate system R2. This relationship is expressed as

. X
o) =xm®ig| |, 2.1
1 1
using the perspective projection camera model [20], see Figure 2.1 for an

illustration. The matrix R € R3*? is a rotation matrix representing the
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Image Plane

Pw = (xw’ yw’ zw)

Projection Center 3D Object

Figure 2.1: The camera perspective projection model. An object in 3D is pro-
jected on the image plane through the camera projection center. The distance of
the projection center to the image plane along the optical axis is the focal length
f. The projection of the center along the optical axis on the image plane is the
principal point (zg, yo).

camera’s orientation in the world coordinate system, t € R3 is the translation
vector between the origin of the world and the origin of the camera coordinate
system, [ is a scalar and K € R®*3 is the matrix of the intrinsic parameters

defined by

fa: g Ty
K= 0 fy Yo , (2.2)
0 0 1

where (zg,yo) are the coordinates of the principal point, (f,, f,) are the
components of the focal length and o is the skewness of the two image axes.
Due to manufacturing imperfections in a zoom lens, errors are introduced and
have to be taken into account when calibrating a camera [30,37,38]. These
faults are mainly known as the radial and tangential distortions. They tend
to add some non-linear effects to the perspective projection camera model
and consequently to the image formed on the sensor [39,10]. An example of
such erroneous effects is illustrated in Figure 2.2.

In order to take these variables into account, the simplest approach is
to calibrate the zoom camera at a number of lens settings, i.e. determine
the intrinsic parameters and the distortions at a number of zoom, focus and
aperture settings and then save the obtained values in a look-up table [11].
This setup, however, requires numerous measurements and the resulting data
requires large memory resources. A different and well known strategy is to
apply auto-calibration algorithms. These methods are either based on finding
the absolute conic, which will be used to compute a transformation from the
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(b)
Figure 2.2: Example of a distorted image in (a) and its undistorted version in (b)
after undistorting the image.

projective frame to the (calibrated) metric frame, or on solving the Kruppa
equations which represent an algebraic representation of the correspondence
of the epipolar lines tangent to the absolute conic [12,13,20]. These tech-
niques estimate the parameters directly from a given sequence of uncalibrated
images, e.g. by means of rotating the visual system [14,15], by zooming [1(]
or by pan-tilt movements [17,418]. The importance of finding the absolute
conic in both groups resides in the fact that it is invariant under Euclidean
transformations, i.e. it’s relative position to a moving camera is constant,
see Figure 2.3. Once the absolute conic is found in the projective form, a
calibration transformation can then be uniquely determined. However, the
usage of these methods is limited since they are highly susceptible to errors
mainly due to the inaccuracy in finding the image of the conic [19, 50, 20].
Another limitation resides in the constraints imposed on the movement of the
camera system. These constraints are due to the degenerate configurations
where the auto-calibration algorithms might fail [18,19,20]. This makes the
application of such methods in TPTA limited.

Another approach is to treat the zoom camera system as an input/output
function as shown in Figure 2.4. The inputs in this case are the focus,
the zoom and the aperture, while the outputs are the intrinsic parameters
of the camera. With a predictive model of the zoom camera system, it is
possible to derive a function that is able to return the intrinsic parameters
of the camera at some measured points of focus, zoom and aperture. In
addition, this function will be able to interpolate the intrinsic parameters
at the unmeasured points. The drawback of such techniques, as compared
to the auto-calibration methods, is the need to perform offline calibration
at some predefined values of focus, zoom and aperture settings. Once the
model of the intrinsic parameters is computed, i.e. the vision system is fully
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The Absolute Conic
Plane at Infinity

(o) <

First Camera o, \

Second Camera

Figure 2.3: The absolute conic which lies on the plane at infinity and it’s pro-
jections on the images, i.e. the images of the absolute conic. Most of the auto-
calibration algorithms are based on finding the absolute conic since it’s relative
position to a camera is constant.

calibrated, the metric reconstruction of the scene is possible with the first
pair of images. No sequence of images is needed to calibrate the system
at each zoom setting. In addition, no “critical motion” can appear as with
the classical auto-calibration techniques. Hence, there will be no constraints
imposed on the movement of the teleoperator in TPTA. For more information
on camera calibration, the interested reader may refer to [20,51,52]. Due to
these reasons, the developed method that will be described in the rest of this
chapter will be adopting the last strategy.

2.2 General Assumptions

The intrinsic parameters of a camera are expressed by the focal length, the
coordinates of the principal point and the skew parameter. The image dis-
tortion terms which are incurred from the imperfectness of the optical lenses
are described by the coefficients of their Taylor series expansion [11,53, 20].
To facilitate the estimation of the underlying function, some assumptions
have to be made regarding some of these variables.

Skew Parameter: The skew parameter reflects the angle between the
axes of a pixel. In modern camera systems, the angle can be safely assumed
to be 90° due to the improvement of the manufacturing process [20]. Thus,
the skew parameter o will be neglected in our analysis and will be set to 0.

Aperture Setting: The aperture of a camera controls the amount of
light that reaches the sensor. By varying the width of the aperture, a camera
system can be brought into focus by extending its depth of field. In this work,
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] [ Focal Length ]
[ Zoom %—V LEN% —P[Principal Point]

L Aperture

| Distortion ]

Figure 2.4: Schematic of the zoom camera system. The focus, zoom and aperture
are the inputs to the function. The camera intrinsic parameters, i.e. focal length
and principal point, and the radial distortion represent the output.

the aperture will be set to a constant value suitable for all lighting conditions
since it has been shown in [11,54] that it has a very negligible influence on
the intrinsic parameters. Another reason is to limit the input because the
combination of focus, zoom and aperture has a huge number of possibilities.
Consequently, it will require a large amount of measurements to be done in
order to estimate the underlying model of the camera parameters.

Lens Distortion Coefficients: The usage of lenses leads to non-linear
distortions in the image. These distortions have to be taken into account in
the perspective projections camera model in order to rectify them. In [39],
an expression that models the distortion of a mono-focal lens was proposed

Tg = Tp (1 + K1T2 + RQ?A + Ii37“6 + - )
+ [QTlxnyn + 7 (T2 + 2:1:%)} (1 + 73r2 4 - ) , (2.3)
Yda = Yn (1 + HITQ + H2T4 + Ii37“6 + - )

+ |:7—1 (T2 + 23/721) + QTQZL‘nyn} (1 -+ 7'37"2 + .. ) ,

where
xn=X/Z,yp =Y/Z,r = /1,2 + y,2. (2.4)

xq and yg represent the distorted pixel coordinates of the object point P
in the image; z, and y, are the normalized coordinates of P in the image,
K1, kg, ... are the coefficients of the radial distortion and 7q,7s,... are the
coefficients of the tangential distortion.

The effect of the tangential distortion is insignificant in today’s lens sys-
tems. The radial distortion is mostly dominated by the leading term of the
power series expansion s;7%; whereas, higher order terms ror?, k3rS, ... are
barely significant. It can be also shown, that the higher order terms would
result in a numerical instability in Equation (2.3) [38,39,41]. Hence, only
the first radial distortion coefficient x; which will be referred to as  in the
sequel is considered.
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The matrix K of the intrinsic parameters can be thought of as a transfor-
mation that maps a pixel from the camera coordinates to its true position on
the sensor plane. Taking into account the previous assumptions, the intrinsic
parameters and the radial distortion form three consecutive transformations
which can be written in the form

1 0 = fz 0 0 1+ kr? 0 0
01 wl|-[0 £ ol | 0o 1+s20 (2.5)
0 0 1 0 0 1 0 0 1

The matrix to the right transforms the undistorted camera pixels (a:n, yn)
to the distorted form (a;d, yd). The middle matrix scales the pixels with the
focal length and the left matrix shifts the pixels to their true positions with
the coordinates of the principal point.

2.3 Related Work

The objective of this work is to find the underlying model of the intrinsic
parameters of a zoom lens camera. This objective intersects with the goal
of the manifold learning methods. There, some multidimensional measured
data assumed to be uniformly sampled from a smooth manifold is given. The
main issue is to obtain a meaningful representation of the data in order to
perform subsequent operations such as dimension reduction and clustering.

Principal component analysis (PCA) and independent component anal-
ysis (ICA) present some state of the art methods. They are able to find
such representations by estimating a linear combination of some basis func-
tions [55]. When the parameters vary in a non-linear manner as in the case
of the intrinsic parameters of a camera [53], however, they cannot be well
represented using such a linear basis. The limitation induced by the usage of
PCA and ICA motivated the development of other methods like local linear
embedding (LLE) [56,57,58], diffusion maps [59,60] and isomap [61]. These
algorithms parameterize the data using lower dimensional manifolds. Never-
theless, the methods do not have the capability to back project the computed
model into the original data set as can be done using PCA and ICA. This
is of major importance in our case since what is sought are the real values
of the intrinsic parameters in order to calibrate a camera. Despite the fact
that some limited techniques have been recently developed to overcome this
issue [62], this topic remains an active area of research.

To find the underlying model of camera parameters, the simplest devel-
oped method is to measure each intrinsic parameter using a standard offline
calibration technique at several focus and zoom settings. Then, the data is
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stored in a look-up table [63,411,51]. This leads unfortunately to a large mem-
ory requirement especially when a precise model is needed. This is justified
since for a single focus and zoom setting, it is necessary to store the values of
the focus, zoom, focal length in x- and y-direction of the pixel axes, the two
coordinates of the principal point and the coefficient of the radial distortion.

Another methodology is to consider a zoom camera as an input/output
function. The focus and zoom settings of the camera are considered to be
the inputs while the intrinsic parameters are considered to be the outputs,
see Figure 2.4. Consequently, by taking some samples of the input and the
output of the system, it is possible to find the functions that relate these
two entities using curve fitting techniques. The goal of curve fitting is to
find a curve that approximates the variation of the scattered data points and
which will also allow the interpolation of the unmeasured points. Many curve
fitting techniques can be found in the literature such as regression analysis,
polynomial fitting and radial basis functions. Good reviews on such methods
can be found in [64,65,66].

In [53], a camera parameter is fitted with a bivariate polynomial. The
polynomial is empirically estimated by minimizing an error function over the
measured data points. This method has a very efficient memory consumption
since only the coefficients of the polynomial functions need to be stored. The
general equation that defines a bivariate polynomial w is

BN

m—

w (s,0) = Z Yijs'o’, (2.6)

where s and o represent a single focus and zoom setting, m is the degree
of the polynomial and 7;; are the polynomial coefficients. The number of
coefficients £ of the polynomial function is given by

¢ = (m + 1)2(m + 2)' @7

A polynomial of order m can be generally considered as a Taylor’s series
expansion of the underlying function truncated after m coefficients. The
higher the order m of the polynomial, the more close can the Taylor series
approximate the underlying behavior of the measured points.

However, a high order m leads to a large number & of coefficients, as
shown in Equation (2.7). The increase in £ leads in its turn to an increase in
both the computational costs and the number of points needed to estimate
the polynomial. In addition, a high order polynomial can also overfit the
data. To overcome these issues, the term m,,,, was derived. It reflects the
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maximum order of the polynomial that can fit a set of N data points

V8N +1-3
Mpazx = | —— = | » (28)
2
with |-] representing the floor operator [53]. To approximate the intrinsic

parameters, a polynomial of a specific degree is chosen to represent each
of the variables, i.e. polynomials of degree 5 for each of the focal length
and principal point components and one of degree 2 for the radial distortion
coefficient. Then, the solution polynomial for each variable is computed
globally using the whole measured points in a least-squares (LS) sense.

2.4 Calibration with Moving Least-Squares

The LS fitting technique of [53] fits the camera parameters using a global
scheme. This will cause the approximation not to be accurate especially for
highly scattered variables, e.g. see Figure 2.10. If the global LS solution
can be combined from several local solutions instead, the accuracy of the ap-
proximation will be enhanced. This is the basic idea behind deriving moving
least-squares (MLS) in this section to approximate the intrinsic parameters
of a zoom lens camera. This idea is similar in spirit to that of the LLE
method of [56] used to embed the data to a lower dimensional manifold. The
objective here is to approximate the 3D surface of an intrinsic parameter in
order to interpolate its values at the unmeasured focus/zoom settings. In
addition, an extension is proposed to reduce the computational complexity
of MLS and make it more suitable to be utilized in TPTA applications.

2.4.1 Problem Formulation

The basic idea of the MLS approximation is to start with an arbitrary fixed
point and then move it over the entire domain where the variable is defined.
At each point, an approximation function is locally minimized and evaluated
using weighted least-squares by fitting the neighboring data points. The
approximation function must be chosen while taking into account that it is
continuously differentiable. This guarantees that the computed MLS surface
is smooth [67,68]. A comparison between the LS and MLS approximation in
the two dimensional case is shown in Figure 2.5.

Given is a set of measured focus/zoom inputs and the corresponding
intrinsic parameter, e.g. focal length, at these points. Let x; = {s;, 0; }ics be
the set of these distinct data points in R?, and let {p(s;, 0;) }ses be the intrinsic
parameter values at the focus and the zoom settings, i.e. p(s;,0;) = 6;. The
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objective of MLS is to find the coefficients vector v of the polynomial that
minimizes a local error function of the intrinsic parameter at an unmeasured
point x; using its (measured) neighboring points from y;. Note that the
vector 7 is formed by the coefficients ~;; of Equation (2.6). The length of ~ is
given by Equation (2.7) which depends on the order of the chosen polynomial.
With a bivariate polynomial of degree m, the basis vector ¥(s;, 0;) of the
polynomial at each of its neighboring points is

V(84,0)) = (1, 84,04, 8 - 04, ..., S, OT)T € an, (2.9)

where IT2, presents the space of the polynomial vectors of degree m in R?
of the intrinsic parameter. The error function of MLS should be able to
estimate the value of the intrinsic parameter at y; from its neighbors in a
least-squares sense. The suggested error function that performs this task is
given in the sequel.

Definition 2.1 The mouving least-squares approximation of degree m at a
point x; € R? of the focus/zoom settings is the vector y that minimizes the
weighted least-squares error function E

E = 219 (d (xi, x5)) - [IPT (8i,0i) 7y — P(Si,Oi)}Q, (2.10)

iel

where ¥ (-) is a non-negative weighting function and d (x;, x;) s a distance
in R?.

As can be noticed, the MLS approximation leads to a weighted LS solu-
tion. It decides using the weighting function ¥ () how each of the neighbors
of x; can contribute to the result depending on its distance from x;. In the
selection of a suitable weighting function for our problem, it is important to
keep the following definition into consideration.

Definition 2.2 The MLS weighting function must satisfy two conditions.
First, it should allow the approrimation of the intrinsic parameter to be local.
Second, it should ensure that the approximation allows for interpolation.

An approximation is local if it is rapidly decreasing or of finite support.
The first condition suggests that the weighting function ¥ (-) of MLS must
force the weights of the points that are distant from x; to vanish. Con-
sequently, the solution will be local in the sense that only the neighboring
points to x; will be affecting the solution. An approximation allows for in-
terpolation if  lim 019 (d(xi,xj)) = oo. This means that the closer is x;

d(xixj)—
to a measurement point, the more probable that it has a similar value of the
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Figure 2.5: Comparison between LS in (a) and MLS in (b) approximations using
a polynomial of degree 1. The global nature of LS treats all data points equally,
i.e. equal weights. Using MLS, local weights are computed at the neighboring
data points of a certain point (s;,6;) (solid line). By moving this particular point
over the whole domain, the resulting approximation surface is closer to the data
points (dashed line) than that of the LS.

intrinsic parameter. The importance of this condition is that it obliges the
close points to have similar values and, hence, enforcing the MLS approxi-
mation to be smooth.

Proposition 2.1 A weighting function that satisfies the conditions of Defi-

nition 2.2 18 .
15 XJ

Proof To prove that Equation (2.11) satisfies the first condition of Def-
inition 2.2, it is necessary to show that the J(d (x;, x;)) is rapidly decreas-
ing as d(x;,x;) — oo. The proof of this condition is quiet straightfor-
ward since the first derivative of Equation (2.11) is always negative. To
prove that the proposed function satisfies the second condition, it is suffi-

cient to show that N lim) Y (d (xi, x;)) = oo which is true in our case since
XiXj)—0
1 J
0

1 = 0. |

d(xinxs)—0 T 00X5)

2.4.2 Minimization of the Error Function

Before deriving the solution, let us rewrite Equation (2.10) as

2
)

Wy — W)

(2.12)
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where each row of W represents the polynomial basis vectors ¢(s;, 0;) at every
point x;, W is the diagonal weight matrix, v reflects the vector coefficients
of the MLS approximation at x; and 6 is the vector of the measured values
of the intrinsic parameters at each y;, i.e. 6;, and HH is the 2 norm.

To solve for «, it is necessary to calculate the Euclidean distances d;;
of each point x; with its neighbors. The weights are then computed using
Equation (2.11) and rearranged into the diagonal matrix W. The estimated
vector of MLS coefficients v, the solution of Equation (2.12), is computed as

v = (TWE) " B TWo. (2.13)

Once 7 is estimated, the MLS approximated value of the intrinsic parameter
6, at the focus/zoom setting y; is then obtained as

0, = (s5,0) - 7. (2.14)

The MLS computations have to be carried out at every camera setting x;
that needs to be interpolated and for every intrinsic parameter. Fortunately,
Equation (2.12) can be formulated to estimate simultaneously all the intrinsic
parameters at x; by rewriting it in the form

[Wer - we*, (2.15)

where every column of T represents the vector of coefficients v corresponding
to each intrinsic parameter. Similarly, each column of ® holds the measured
values of an intrinsic parameter at each ;.

To ensure that only the points in a certain distance around x; contribute
to the MLS approximation, the computation of the distances can be extended
in a way that only the points within a certain predefined radius are considered
in the calculations. This leads, however, to the problem of the proper choice
of the radius since if the distance between the data points is too large, it is
possible that no neighboring values will be chosen.

To overcome this limitation, the k nearest neighbors with k£ > & are chosen
instead in this work. For a bivariate polynomial function of degree m, the
minimum number of neighbors £ is computed using Equation (2.7). In order
to retain the stability of the computations, it is preferable to always choose
more than ¢ points so that Equation (2.13) remains well conditioned.

Searching for the £ nearest neighbors is a computationally expensive op-
eration which has to be performed for every focus/zoom setting. The com-
plexity of the search is in the order of O (ND + k) where N is total number
of measured focus and zoom settings and D in our case is 2 (focus and zoom).

In order to accelerate this process, it is preferable to build a kD-tree of
the measured points. Then, the search for the nearest neighbors is performed
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along this tree. This will reduce the complexity of the computations to
@) (Nl_% + k:> which is in the case of this work O (N% + k:) [69]. The MLS

based modeling algorithm is illustrated in Table 2.1.

MLS is considered to deliver the best approximation of scattered data
points since it bounds the local error with the error of the best local approx-
imation [07,08]. This explains the wide employment of MLS to approximate
the surfaces of 3D scattered data points from range images [70, 71,72, 73].

The MLS algorithm uses the data values within an open ball around y;
since the weighting function suggested in Equation (2.11) forces the weights
of the points that are outside of the ball to vanish even if the k£ nearest neigh-
bors are used in the computations. In other words, only the close neighbors
contribute to the reconstruction of the intrinsic parameter at x; by mini-
mizing the linear error function in Equation (2.10). However, the nearest
neighbor search introduces a non-linearity in the MLS solution since it can
be considered as a non-linear thresholding function. These points are similar
to what is performed in the LLE method, see [56]. Both techniques use the
nearest neighbor search to construct a group of local least-squares solutions
which when concatenated forms a global solution. The main difference resides
in the fact that the MLS technique approximates the data with polynomials
and thus allowing us to interpolate the unmeasured values of the intrinsic
parameters while the LLE method embeds the data to a lower dimensional
manifold. If the embedded data is interpolated, it cannot be back projected
to recover the sought values of the intrinsic parameters.

The MLS technique approximates each intrinsic parameter independently.
It interpolates each variable without taking into account its interdependency
with the other ones. Despite the fact that the focus/zoom measurements can
be obtained using a global optimization method like [74] which considers this
issue, it might be more convenient to model the intrinsic parameters using
a scheme that counts this dependency. This motivates the investigation of a
suitable parametric representation of the manifold structure of the intrinsic
parameters. The representation must allow us to have a two way mapping
between the parameters and the manifold structure and not just a one way
mapping as in LLE or any other manifold learning algorithm, see [56,57,

,00,61]. Such a feature will provide us with the possibility to embed the
seven dimensional space, formed by the focus and zoom inputs along with the
intrinsic parameters, into a lower dimensional space where the data can be
fitted easier than the original space. Then, by back projecting the computed
model into the higher space, it will be possible to recover the real values of
the intrinsic parameters required for camera calibration. Whether it can be
achieved or not, this point presents an interesting topic for future research.



20 CHAPTER 2. CALIBRATION OF AUTOMATIC ZOOM CAMERAS

Table 2.1: The MLS based zoom lens modeling algorithm.

Construct a kD-tree using the measured focus and zoom settings
FOR every focus and zoom setting (s;,0;), do the following:

1 Determine at least k nearest neighbors of (s;,0;) using
the tree where k is computed with Equation (2.7).

2 Calculate the Euclidean distances between the chosen
setting (s, 0;) and all of its neighbors (s;, 0;).

3  Weight the distances with Equation (2.11) and solve
Equation (2.12) using a bivariate polynomial of order m.

4 Calculate the local approximation éj with Equation (2.14).

2.4.3 Clustered Moving Least-Squares

The MLS based approach requires a lot of computations to determine the
intrinsic parameters of a zoom lens camera. If it has to be applied to an online
system like telepresence, numerous computation steps has to be made; while
in [53], it is only necessary to evaluate a simple polynomial function. To
reduce the computational power, a clustering technique will be employed
to subdivide the points of each intrinsic parameter into several clusters. A
MLS surface is then generated for each cluster as in Section 2.4.2; hence,
the naming clustered MLS (CMLS). At the end, each cluster will be modeled
with a bivariate polynomial function. Consequently, each intrinsic parameter
will be approximated by several bivariate polynomial functions. This will
reduce the required online computations by CMLS to the evaluation of these
functions as in [53]. The method is summarized in Table 2.2.

Clustering

In the current problem, some of the lens parameters suffer from irregularities
in their densities, i.e. they are very scattered, as in the case of the coordinates
of the principal point and the radial distortion coefficient. The main idea in
CMLS is to cluster the highly scattered data into similar regions. Then,
each one will be approximated in a similar manner to [53]. So instead of
obtaining a single representative polynomial for an intrinsic parameter, it will
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be described by several polynomials. In general, two groups of methods can
be applied to cluster a data set [70]. The first, known as clustering by region
growing, is based on choosing a random point and then building a cluster by
successively adding neighboring points. An example from this group is the
kmeans clustering method [75]. The second, hierarchical clustering or binary
space partitions [70], splits the data set into different clusters recursively
using some predefined criteria, see Figure 2.6.

A hierarchical clustering scheme is used in this work since it has the
advantage of organizing a data set. In order to split the data, two criteria
are used: The scatterness of the points and the minimum number of points
within a cluster. The interpretation of the second criterion is simple, a cluster
is formed if the number of its points is more than a predefined number. To
fulfill the first criterion, the coefficient of determination is applied [77].

Definition 2.3 The coefficient of determination R? reflects the goodness of
the fit, i.e. it describes how precise the cluster is approrimated with a plane.
A value R?* = 1 denotes that all the points of the cluster are located on the
regression plane while a value of 0 means that the data is highly scattered.

Given a cluster of n zoom and focus setting points, a multiple linear
regression is carried out to fit a plane. Suppose that (sj, oj) is a point of this
cluster where 6, is the measured value of the intrinsic parameter. The point
can be approximated using a planar equation as

0; = o0 + Y01 - 05 + 710 - S5, (2.16)
where 70, Y01 and 719 are the coefficients of the plane using Equation (2.6)
with m = 1 and 6; is the approximated (fitted) value of ;. The coefficient
of determination R? is defined as [77]

» SSR
~SST
SSR describes the sum of the squared residuals given by

SSR = Zn: <éj - 9]-)2 , (2.18)

j=1

(2.17)

where 6; is the mean of the samples in the cluster, i.e. § = %2?21 ¢; and
SST reflects the total sum of squares errors
SST =" (0, - 6,)". (2.19)
j=1
As a result, it is possible to decide whether or not to subdivide the data in
the cluster by setting an appropriate threshold value for R2.
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Figure 2.6: Hierarchical clustering. The original region S of the data is recursively
split into a set of clusters .S; by subdividing the space using certain criteria.

Approximation of the Clustered Moving Least-Squares Surfaces

In order to save the online computations, the LS technique of [53] will be used
to generate a polynomial function like Equation (2.6) for each cluster. So
instead of obtaining a global bivariate function for each intrinsic parameter,
several bivariate functions will be defined.

Suppose that S; is the cluster to be modeled. In order to approximate S;
with a bivariate polynomial of degree m, it is required to obtain the regression
coefficients vector using an equation similar to Equation (2.13)

s = (7)) w70, (2.20)

Here, the approximated points éj obtained from Equation (2.14) are grouped
into one vector § and are used to compute the regression coefficients vector
vs of the cluster.

To ensure that the transition between S; ant its neighboring clusters is
smooth, a constraint must be enforced. Suppose that S; is a neighboring
cluster of S;. The points that lie on the border between \S; and S; must have
the same values to avoid abrupt jumps in the model. This can be ensured
by considering that the border points belong to both S; and S;. Thus, ¥
and 0 in Equation (2.20) have to be appended by the corresponding entries
of the border points of the neighboring clusters. What remains is to find the
degree m of each polynomial that will be used to fit S;. In [53], a bivariate
polynomial of degree 2 was used to fit the coefficient of the radial distortion
and others of degree 5 to fit each of the coordinates of the principal point
and the focal length components. The same thing is done here. To prevent
overfitting of the data, however, the order of the fitting polynomial is reduced
following Equation (2.8) depending on the number of points in S;.
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Table 2.2: The CMLS zoom lens modeling algorithm.

FOR all intrinsic parameters (fz, fy, %o, Yo, £) do the following:

Apply the clustering procedure described in Section 2.4.3.
2 Generate the surfaces (interpolate new setting points) within
each cluster by applying the MLS algorithm in Table 2.1.
FOR each cluster
3.1 Calculate the LS approximation of the MLS
surface by using polynomial functions of
order m = 5 for f;, fy, o and yp and a
polynomial of order m = 2 for k. Details
are in Section 2.4.3.
3.2 Save the polynomial function of this cluster.
4 Combine all the saved polynomials into the model of the

intrinsic parameter.

2.5 Results and Discussion

The first camera system used in the experiments is a PROSILICA (EC
1280C) CCD camera with a motorized PENTAX zoom lens (C6Z1218M3).
The pixel size, as specified in the manual, is 6.7 um in both directions of the
pixel. As discussed in Section 2.2, the skew parameter o is set to 0. The
aperture setting is assumed to be constant and is fixed in this experiment to
a value of F' = 5.6 which corresponds to a proper opening for the lightning
conditions of the conducted experiments.

The lens system’s zoom range is between 12.5 mm - 75 mm and that of
the focus is between oo - 1.2m. The zoom setting in motor units is varied
between 0 — 700 in steps of 100. This is equivalent to a change in focal
length between 12.5 mm - 65 mm. For the focus, a range of 150 - 600 motor
units with a step size of 50 is used, which roughly corresponds to the focused
distance of the lens system. To avoid a hysteresis problem due to backlash, as
mentioned in [53], the lens motor is driven to the desired setting by starting
with smaller values for both, focus and zoom.

The measured set of data points, consisting of a total of 80 focus/zoom
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settings, is used to generate the models. For each lens setting, 40 images of
a calibration grid with 64 points for calibration on it are taken from different
fields of view. Due to the wide range of focal length, 6 checkerboards, dif-
ferent in size, are used for the calibration procedure. The calibration is done
separately for each focus and zoom setting by treating each one as a single
mono-focal lens.

To determine the intrinsic lens parameters at the chosen settings of focus
and zoom, the Camera Calibration Toolbox for MATLAB is used [74]. This
toolbox is mainly inspired from the classical calibration approach described
in [78]. A slight difference resides in the closed-form estimation of the intrinsic
parameters from the homographies and in the initialization of the distortion
coefficients. These parameters are considered the ground truth data of the
modeling process.

As a measure of accuracy, the pixel reprojection error or the Undistorted
Image Plane Error (UIPE), as was called in [53], is used

where (z;,y;) are the measured coordinates the image point p; and (&;, J;)
are the computed coordinates of the image point with the camera’s intrinsic
parameter model. A value UIPE = 0 means that the camera model has
totally corrected the reprojection error of the pixel.

To make the proposed measure invariant to the number of data points
involved, it is also suggested to use the Mean UIPE expressed as

G
1
M UIPE = — E UIPE 2.22
ean G - ) ( )

where G is the number of calibration points multiplied by that of the cali-
bration grids, i.e. G = 64 x 40 = 2560 in our case. In addition, it is possible
to define the Root Mean Squared Error (RMSE) of the pixels’ reprojection
error of the total number of focus/zoom settings N as

N-G
1 L2 L \2

To assess the correctness of the measured ground truth points, the plot
of the Mean UIPE of the pixel reprojection error is given in Figure 2.7. The
mean value of this curve, or the Mean Mean UIPE (MM_UIPE), is 0.08 pixels
which reflects that the ground truth data is accurate. This value is of the
same order of magnitude of that of the ground truth data used in [53].
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Figure 2.7: Mean UIPE of the measured ground truth data set of the PENTAX
PROSILICA zoom camera system used in this work.

The first thing to be inquired is the best order m of each bivariate poly-
nomial function that has to be used to model the intrinsic parameters of
the PENTAX PROSILICA using MLS. For this, the hold-out cross valida-
tion test was performed [79]. A number of camera point settings varying
between 1 and 55 are randomly chosen from the total of 80 points as the
validation data. The remaining ones are retained as the training data. Each
time, the training data is used to generate the models of the intrinsic param-
eters which are then tested by predicting the validation data. The limit 55
was chosen since a bivariate polynomial function of order 5 requires at least
21 neighboring points to be estimated since it is formed of 21 coefficients,
see Equation (2.7). As a measure of significance, the RMSE of the pixel
reprojection error is employed. Furthermore, the RMSE of the estimation
of each intrinsic parameter is also computed using similar equations as in
Equation (2.23); i.e. by replacing the pixels variables with the corresponding
intrinsic parameters.

Figure 2.8 illustrates the outcome of the cross validation test for the
polynomial orders 1 to 5. What can be noticed on the one hand is the
sufficiency of a polynomial of order m = 1 to model each point setting of the
focal length and the coordinates of the principal point. On the other hand,
the coefficient of the radial distortion resulted in almost the same dependency
with the five orders. When looking at the RMSE of the reprojection error
in Figure 2.8f, the polynomial of degree 1 shows the lowest error. Thus,
bivariate functions of order 1 will be utilized in the following to approximate
the intrinsic parameters.

Figures 2.9 to 2.12 show the model of the intrinsic parameters of the used
zoom lens camera system by employing the LS technique of [53] and the
proposed MLS and CMLS techniques. The LS algorithm is applied by taking
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Figure 2.8: Evaluation of the MLS modeling algorithm of Section 2.4.2 with
different orders of the bivariate polynomial functions. The polynomials of order 1
result clearly in the best modeling ability of MLS.

bivariate functions of order 2 to model the coefficient of the radial distortion
and of order 5 to model each of the coordinates of the principal point and the
components of the focal length as specified in [73]. The threshold coefficient
of determination upon which the data in CMLS is clustered is set to 0.9.
By examining the models of the focal length in Figure 2.9, it can be seen
that the variation of this parameter is smooth along its domain. This is why
all of the techniques have the ability to model its variation. Note that only
the first component f, is presented here since the second one f, undergoes
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Figure 2.9: The focal length component f, of the PENTAX PROSILICA camera
system obtained with the different modeling algorithms. The measured points are
marked with triangles.

almost the same behavior. In the obtained models of the coordinates of the
principal point illustrated in Figures 2.10 and 2.11, however, the LS technique
of [53] fails in capturing their variations when compared to both versions of
the proposed method. The main reason is that the variable is very scattered
by nature. Hence, a global bivariate polynomial of order 5 is not enough
to reflect the model. To get a feeling of the scatterness of the data, the
coefficient of determination R? defined in Equation (2.17) is computed for
each of the intrinsic parameters while assuming the whole measurements as
a single cluster. The outcome is illustrated in Table 2.3. The coefficient of
determination of both components of the focal length is found to be 0.95 since
they are smooth while those of the coordinates of the principal point are very
close to zero due to their scatterness. Such a result justifies the employment
of R? as a measure to cluster the data in CMLS. A similar conclusion is
obtained with the curve approximation of the coefficient of radial distortion
in Figure 2.12. In this case, the coefficient of determination R? is 0.62 which
means it is in the middle region between being scattered and smooth.

Compared to MLS, the CMLS approach leads to almost the same results.
Nevertheless, some of the ground truth points do not lie on the approxima-
tion curve. This is because CMLS approximates each cluster with a single
polynomial while MLLS computes a polynomial for every point.
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Figure 2.10: The coordinate of the principal point zy of the PENTAX PROSIL-
ICA camera system obtained with the different modeling algorithms. The mea-
sured points are marked with triangles.

Table 2.3: Variation of the coefficient of determination R2.
fz fy xo Yo R
R2(0.95(0.95(0.13]0.06|0.62

What is left to be appraised is the robustness of the algorithms against
the number of measured focus and zoom sample points. The importance of
this test is to inquire the minimal number of measurement points required
to obtain an accurate model of the intrinsic parameters, i.e. low pixel re-
projection errors. A powerful test that provides this measure is again the
hold-out cross validation using the RMSE of the pixel reprojection as a sig-
nificance measure. The length of the validation data is varied between 1 and
55 in the LS method since the coordinates of the principal point are modeled
with a function of order 5 [53]. That of the MLS and CMLS algorithms are
varied between 1 and 70 since here only polynomials of order 1 will be used
by MLS to generate complete surfaces of the intrinsic parameters. This will
provide CMLS enough number of points to approximate the models even
with bivariate functions of order 5.

Figure 2.13 shows the outcome of the experiment. When compared to the
MLS based methods, the LS has the worst performance due to the global type
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Figure 2.11: The coordinate of the principal point yo of the PENTAX PROSIL-
ICA camera system obtained with the different modeling algorithms. The mea-
sured points are marked with triangles.

of the solution. Using only 10 measurements of the focus/zoom settings, the
RMSE of both MLS methods is 40, which is attained with 38 measurement
points using LS. This means by applying the MLS based techniques, it is
possible now to save 70% of the measurement points needed to estimate the
model, i.e. 10 measurement points equally distributed along the zoom range
to get a rough estimate of the zoom camera model of the intrinsic parameters.
This shows that the proposed method has a very good interpolation capa-
bility which makes it require less points. This capability is obtained because
MLS finds a global fit of the intrinsic parameters by concatenating several
local fits. Hence, the computed surface will be more adapted to the variation
of the data. This result is of major importance since each focus/zoom setting
point requires numerous measurements of the calibration grid followed by an
offline calibration algorithm.

MLS leads to the most accurate model of the intrinsic of a zoom camera
system. After a certain number of samples, the RMSE of MLS drops a lot
faster than that of CMLS. This is due to the same reason that was earlier
described. Its only disadvantage is its prerequisite for more computational
power than the CMLS and LS approaches. To determine the intrinsic pa-
rameters at each focus/zoom setting, MLS needs to search for the nearest
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ICA camera system obtained with the different modeling algorithms. The mea-
sured points are marked with triangles.

neighbors, an operation which has a complexity of O <N >+ k;) followed by

the evaluation of the distances, and then the minimization of Equation (2.10).

By employing CMLS, the amount of computations required in an online
system is nothing but the time needed to evaluate 5 bivariate functions corre-
sponding to the 5 intrinsic parameters as in LS. The only difference between
the two is the number of polynomial functions that has to be stored. In the
case of the PENTAX PROSILICA zoom camera system used in these tests,
the number of these functions is shown in Table 2.4. The number of functions
to be saved for the focal length is similar to that of LS since this parame-
ter has smooth variation, i.e. R? = 0.95. In the case of the coordinates of
the principal point, this number goes to 16 due to the high variation of the
parameter while that of the radial distortion is 9. This result suggests that
CMLS adapts to the variation of the parameters. In case of a smooth vari-
able, it leads to a similar result as LS while it results in many LS solutions
if the variable is scattered, e.g. principal point and radial distortion.

In order to validate our results, the proposed algorithms are applied to
another camera system. A PENTAX motorized zoom lens, of the same model
as the one previously used, is integrated to a DOLPHIN F145C IRF cam-
era. The PENTAX DOLPHIN system was calibrated and then the modeling
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algorithms were applied in the same manner as was done to the previous
system. The visual results reflected in Figures 2.14 to 2.17 emphasize once
again on the accuracy of the derived methods.

. . . . -e.f-LS

RMSE of Reprojection

L
n

}}numbermof Lenjsn Settin;s
Figure 2.13: Dependency of the RMSE of the pixel reprojection on the number
of used lens settings for the different modeling techniques.

Table 2.4: The number of bivariate functions to be stored for the LS algorithm
of [53] and the proposed CMLS technique.

fz|fy|®o|yo| K| TOTAL
LS 1(1]1]1]1 5
CMLS|1]1(16(16|9 43

2.6 Summary

A new technique was proposed in this chapter, MLS, to calibrate an auto-
matic zoom camera. MLS locally fits the intrinsic parameters with some
polynomial functions. Compared to previous methods, MLS was able to in-
crease the fitting accuracy of the variables. The cause of this improvement is
the ability of the proposed technique to better fit the scattered data due to
the concatenation of several local regression models. Moreover, the proposed
method was less sensitive to the number of measured focus and zoom settings
since it has a better ability to interpolate the missing data. To reduce the
computational complexity of MLS, the CMLS algorithm was derived which
clusters and approximates the MLS curves with several polynomial functions.
Compared to MLS, CMLS requires very simple computation in a TPTA sce-
nario; however, the latter results in more accurate values of the intrinsic
parameters. The obtained results motivate the application of the MLS based
methods in TPTA without imposing any constraints on the teleoperator.
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Principal Point X,
Principal Point X,

400
300

Focus Zoom Focus Zoom

(a) zp with LS. (b) xg with MLS.

Principal Point X,

400

Focus Zoom

(¢) xo with CMLS.

Figure 2.15: The coordinate of the principal point xg of the PENTAX DOLPHIN
camera system obtained with the different modeling algorithms. The measured
points are marked with triangles.
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Chapter 3

Meshing the Stereo Images

Rendering the scene on the virtual display is one of the most important steps
in a TPTA system. The rendering process should be performed with a very
minimal delay to let the operator incur the feeling of being immersed in the
virtual world. The speed of this process is affected by the size of the gener-
ated 3D model. The larger the model is, the more are the delays introduced
to both the rendering task and the network transmissions. The size of the
3D model is measured using the number of the triangles in the mesh approx-
imation of the scene. It is also related to the size of the images of the stereo
cameras integrated to the teleoperator. Taking a 640x480 VGA camera for
example, there are 307200 pixels that have to be processed and which lead
each frame to a mesh of more than 600000 triangles. These figures will nat-
urally increment with cameras of higher resolution. To reduce the size of the
mesh and accelerate the stereo based scene acquisition, surface simplifica-
tion algorithms must be applied. A simplification scheme can be applied in
a TPTA scenario, however, as long as it does not significantly increase the
latency of scene reconstruction. This dilemma is the main motivation behind
addressing the topic in this thesis.

3.1 Overview of Surface Simplification

The aim of a surface simplification algorithm is to reduce the size of a mesh
without deteriorating the details of the corresponding scene. Some of these
methods reduce the number of the 3D points before constructing the mesh
as in [82,73,80,83]. In such a case, the points are first clustered into several
groups by employing methods like k-nearest neighbors, binary space parti-
tions or quadtrees. Representative points of each cluster are then computed
upon which the approximation mesh of the scene is constructed. The flow

34
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Figure 3.1: Example of a 3D meshing scheme by applying the method of [30] to
the Stanford Bunny [31]. (a): The dense 3D points. (b): The reduced set of the
points. (c): The 3D mesh approximation of the Stanford Bunny using the reduced
set of points.

of such algorithms is perhaps better understood by looking at the exam-
ple shown in Figure 3.1 using the Stanford Bunny [81]. Other approaches
store a primary mesh of the scene in the memory which is formed by inter-
connecting all the pixels in the image. The mesh is then reduced with the
help of the depth information using decimation algorithms as the ones pro-
posed in [4, 84,85, 86]. The objective of such techniques is to reduce the
number of triangles in the areas where there are no significant variations in
the surface of the scene and preserve the ones where high variations occur.
An alternative methodology is to reduce the number of points directly in
the image by choosing the pixels that are necessary to recover its content.
These pixels are then used with their depth values to construct the 2.5D
mesh of the scene. The pixels, which are also the nodes of the mesh, should
be selected in such a way that they are able to recover all the other pixels in
the image with minimal error. Such methods are called the content adaptive
mesh approximation techniques of images, the goal of which is to obtain a
realistic visualization of an image using a mesh, e.g. see [28, 87,88, 89, 90].
The nodes of the mesh form the non-uniform samples of the image since they
are sampled in an irregular manner. An example is illustrated in Figure 3.2.



36 CHAPTER 3. MESHING THE STEREO IMAGES

Figure 3.2: Sample result using the proposed 2.5D meshing algorithm. (a): The
sample image. (b): The 2D mesh obtained by the tritree meshing scheme of
Section 3.4.2. (c): The non-uniform samples of the sample image (nodes of the
mesh). (d): The 2.5D mesh of the scene; the depth values are obtained via the
sparse dynamic programming stereo matching technique described in Chapter 4.

Any algorithm from these groups can be used in a TPTA scenario as long
as it satisfies the low delay constraint. In this chapter, the interest lies in the
direction of the third set of methods. This is justified from the fact that these
techniques perform the reduction directly in the image. This will allow us to
employ in the next chapter the sparse stereo matching strategy to estimate
the depth of the pixels for only the non-uniform samples of the image are
required to generate the mesh approximation of the scene. Therefore, stereo
matching will be accelerated because the number of pixels that has to be
computed in 3D is reduced. The combination of content adaptive mesh
representation of images along with sparse stereo to construct the 3D scenes
is one of the new ideas presented in this thesis since the surface simplification
problem and the stereo matching problem are usually treated independently.
This point will be clarified in the next chapter. In this chapter, the focus
will be on representing an image with a mesh that preserves its content.
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3.2 Related Work

Representing an image with a triangular mesh is a major research area due to
the wide range of its applications in image processing, computer vision and
computer graphics. The aim of this field is to allow a realistic visualization
of an image by using an approximating mesh. This is usually achieved by
removing the redundant pixels from the image and retaining only the ones
with the most of the information, see Figure 3.2. Then, a mesh is generated
from the remaining pixels using a triangulation scheme.

The advantage of such approximation is that it allows the image to have
a more compact representation. The approximating or representing mesh,
usually possesses a lot less number of pixels than the original image and which
are designated as the significant pixels or the mesh nodes. Getting back to
Figure 3.2, the number of pixels used to construct the mesh forms around 40%
of the total pixels in the image. These pixels are used in combination with
the generated mesh to recover the intensity of the other pixels using some
interpolation schemes [25, 90, 87]. Such a representation has proved to be
useful in various applications as in image compression and coding [91, 88,92,

,87], image processing for medical application [94,95], super resolution [96],
image authentification [97,98] and computer vision [25,31,99, 100].

The major issue in this research is in the methodology that should be
used to find the lowest possible number of significant pixels in an image
while preserving its content. As a consequence, the aim becomes equivalent
to finding the non-uniform samples of the image [39,90,101,102]. This makes
the methods developed for progressive image coding and transmission, as
in [103,101,104,105], relevant since non-uniform sampling is in the core of the
implemented schemes. These can then be easily followed by a triangulation
method to generate the adaptive mesh as done in [39,90] for example. Other
techniques that can also be equivalently used in determining the non-uniform
samples are based on finding the verge points of an image [106,107].

The work of [90] derives a content adaptive mesh approximation technique
for an image by finding its non-uniform samples. The developed method
has shown in the analytical comparisons with several other approaches as
the ones proposed in [108, 88 89] to have a better performance in terms of
quality and speed. The work derived in [101], which concentrates on the
adaptive non-uniform sampling for image coding and transmission, presents
also a good candidate for mesh approximation since it can be followed by
a triangulation method to generate the mesh. This scheme was also the
basis of other developed techniques as the one suggested in [105]. These two
algorithms will be briefly introduced in the sequel since they will be later
used in the comparisons with the approach that will be developed.
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e Yang’s algorithm: In [90], a pixel is chosen to be a non-uniform

sample if its second directional derivative is significant. Let = (x,y)
denote the magnitude of the second derivative of the intensity I (x,y)
of each pixel

= (Z‘, y) :@Enf(i;(ﬂ

I (). (3.1

where ¢ € [0, 27] is the direction of the second derivative of the image
function. Each pixel that possesses a value Z(x,y) above a prede-
fined threshold is put into a feature image. Then a modified version of
the classical Floyd-Steinberg algorithm is used to diffuse the error of a
feature pixel to its neighbors. As experiments showed, this technique
works better if the serpentine raster order was used instead of the stan-
dard raster order diffusion method. The reason for the improvement is
that the errors are propagated in a more balanced manner between a
pixel and its neighbors. After that, Delaunay triangulation follows to
generate the content adaptive mesh of the image.

Ramponi’s algorithm: In [101], the main issue is to derive a non-
uniform sampling technique that can be used for progressive image
coding. Given an image, the initial set of the non-uniform samples is
determined by first computing the skewness of the pixels. The skew-
ness sk of a pixel evaluated on a w x h mask is defined as

sk (z,y) = Lhzz (1,7) (i,5))°, (3.2)

where v (+) is the mean of the intensity values of the pixels in the mask.
To make this measure insensitive to the dynamic range of the image,
it is better to normalize Equation (3.2) as

sk (2,y)]
max (|sk (z,y)[)’

g

sk (x,y) = (3.3)

where sk is the normalized skewness and the denominator is the maxi-
mum skewness obtained in the image. After that, a threshold is defined
and each pixel that has a normalized skewness sk (, y) higher than the
threshold is considered as a non-uniform sample. To further reduce the
number of the obtained samples and get a more compact representa-
tion of the image, the initial set is decimated by defining a forbidden
circular area around each sample. Therefore, if a sample belongs to the
area of another one, it is removed from the set.
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3.3 Problem Formulation

The goal of content adaptive mesh representation is to represent an image
with an approximating mesh. The nodes of the mesh are the non-uniform
samples and they can be used to recover the original image with minimal er-
ror. Non-uniform, irregular or adaptive sampling is the process of sampling
the signal at different rates. Uniform or regular sampling is the process of
sampling the signal at a uniform rate. Both sampling techniques have to obey
the Nyquist sampling theorem, but the non-uniform sampling takes in addi-
tion the statistics of the signal into account. The sampling rate is adapted
to the variation of the intensities in the image, i.e. it is high in the regions of
the image where there are a lot of intensity variations; otherwise, it is low.
The difference between non-uniform and uniform sampling can be visualized
by looking at the non-uniform samples of Figure 3.2a in Figures 3.2¢ and
the uniform samples in Figure 3.3. Figure 3.2c¢ preserves the structure of the
image while Figure 3.3 simply leads to a smaller version of the image.

In most of the developed methods, the content adaptive mesh is con-
structed in two steps. The non-uniform samples are first extracted then the
mesh is formed upon them. This makes the mesh relatively dependent on
the samples found since reconstructing the missing pixels using the mesh
highly depends on the ability of each triangle of the mesh to represent and
recover the pixels lying within. A more convenient way would be by finding
the non-uniform samples that best describe the nodes of the approximating
mesh; hence, making the samples found depend on the structure of the mesh
and not vice versa. Consequently, the main objective becomes equivalent to
finding the vertices of all the triangles in an image which can interpolate the
intensities of the pixels lying within up to a predefined error.

In order to that, it is necessary to have a quantity that measures the
error between the intensity values I(x,y) of the original image and those of
the approximated image I (z,y) interpolated using the nodes of the mesh'.
A well known measure is the peak signal to noise ratio (PSNR), see [109],
which is defined as

2 2
PSNR = 101log (1\4?3) . (3.4)

MSE is the mean squared error in the approximated pixels. It can be defined
over the area of a triangle T' by
1 |AT]—1 )
MSE = ——— ([ o) —1 ) 3.5
AT > (o) = 1w w) (3.5)

1=

!The derivations made in this work assume gray-scale intensity images. In the case of
color images, similar derivations apply but have to be done using all the color planes.
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Figure 3.3: The uniform sampling grid of Figure 3.2a taken at every third sample.

where A is a symbol denoting the area of a triangle, i.e. AT is the area of
T, and (z;,y;) are the coordinates of a pixel in 7T'. It is also possible to use
the MSE as a quality measure instead since it is equivalent to PSNR.
Equation (3.4) presents the cost function that has to be maximized over
all the triangles of the mesh. What remains is to find a methodology that will
allow us to reconstruct the intensity values of the pixels inside each triangle.
To derive it, it is necessary to describe the geometry of the problem in hand
and which is illustrated in Figure 3.4. The points of an image describe a 3D
space represented by the 2D coordinates of the pixel in the image and the
corresponding intensity. Each triangle is formed by three points which are
parts of the nodes or the vertices of the mesh. In a similar manner, a plane
can also be defined by the three vertices of the triangle. Let v;(z;, y;, I;) with
1 = 1,2,3 be the three vertices of a triangle 7" under consideration. The
plane describing these vertices is defined using the normal equation as

7-pr+mn =0, (3.6)
where p; denotes a pixel with coordinates (x,y) and intensity value I lying

on the plane, 17 = [:?% } is the vector normal to the plane and 7y is the distance

from the origin such that ny = —7 - v;. The vector 77 can be computed with
the three vertices v; as the cross product of any of the two edges of the
triangle as

7= [v1 —v2] X [v3 — vy]. (3.7)

Consequently, the equation of the plane is directly now obtained as
e +n2y +n3l +ny = 0. (3.8)

Therefore, it is possible now to recover the intensity value I of a pixel lying
inside the triangle T' by rewriting Equation (3.8) in the form

I == (mz+ 1y +m) /ns. (3.9)
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Figure 3.4: Geometrical setting of the problem.

Note that it is also possible to define the reconstructed intensity value I
of p; in a different way by considering it as the weighted sum of the intensity
values of the vertices of the triangle

[=) 6-1I(vy), (3.10)

where I (v;) is the intensity value of the vertex v; and ¢; is the weight assigned
to v;. The weights in this case have to reflect the distance of the point p;
from the vertices of the triangle. In the special case where the weights 9;
satisfy the following constraints

3 3
p1:Z(5i‘vi such that Z&;: 1, (3.11)

i=1 i=1
they are called the barycentric coordinates of p; in the triangle 7" [L10]. The

barycentric coordinates are also known as the areal coordinates since they
are also described by the ratio of the signed areas of the triangles formed by
Prv1vy, Prvsvs and prvsv; to that of the triangle vivovs, see Figure 3.4 for
an illustration of the concept. The barycentric coordinates can be written as

_ Aprvivy i Aprvyvs _ Aprvzv,

51 and 53 (312)

= 9 = = .
A’Ul’UQ’Ug ’ A’Ul'UQ’Ug A’UI’UQ’U:;

Theorem 3.1 The weights imposed by Equation (3.9) to reconstruct the in-
tensity of the point pr in the plane are equivalent to the barycentric coordi-
nates of pr in the triangle T defined by the vertices vy, vy and vs.

Proof To prove the equivalence of the barycentric coordinates of p; to the
weights imposed by Equation (3.9), it is necessary to reformulate the equation
of the plane defined by T. Let us define the terms of the cross product in
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Equation (3.7) as vav; = v; — v9 and vov3 = v3 — ve. The parametric
equation of the plane shown in Equation (3.8) can be now written as

Vg + VU] + yvov3 = vy + (1 — 2 — y) ve + yvs. (3.13)

By comparing Equations (3.11) and (3.13), it is easy to notice the correspon-
dence between the weights by setting 61 = x, o = 1 — 2 — y and 3 = y.
Hence, the equivalence is proved. |

As a result of this proof, it is possible now to reconstruct the intensities
of the pixels lying inside a triangle by simple computation of the barycentric
coordinates of the pixel in the triangle or using the planar equation since they
are equivalent. In addition, one can check how does each triangle represent
the pixels which lie within by simple computation of the PSNR described
in Equation (3.4). If the PSNR of the reconstructed intensities of the pixels
lying inside the triangle T is lower than a predefined threshold, then 7" should
be further decomposed into two smaller triangles.

3.4 BSP based Image Mesh Representation

Given an input image, the objective of this section is to construct an adaptive
mesh that approximates the original image with the lowest number of non-
uniform samples while preserving its contents using the formulas derived in
the previous section. The proposed method is based on the binary space
partitions (BSP) principle, see [111], which clusters a data set recursively
as was formerly depicted in Figure 2.6. In each step, one cluster is divided
into two sub-clusters depending if some predefined criteria are not met. The
cluster in our case is a triangle in the mesh. As a starting point, an image
is first divided into two triangles along one of the diagonals. Then, each
of the two triangles is recursively split into smaller triangles if it does not
satisfy the criteria. The criteria that will be used are the maximum number
of points that the triangle can hold and the minimum acceptable threshold e
of the reconstruction error of the pixel intensities, i.e. PSNR. The flowchart
of the proposed BSP based content adaptive meshing algorithm is illustrated
in Figure 3.5 and the rest of this section is dedicated to explain it.

3.4.1 Determining the Inlying Points of a Triangle

The first thing to assess is to find the pixels that belong to the triangle T’
under consideration. All the pixels inside the triangle have in common that
they lie on the same side of each of the triangle’s edges in a similar manner
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Figure 3.5: Flow chart of the BSP based content adaptive meshing technique.

to the barycenter of T. In order to determine if a point lies inside T, it is
sufficient to verify this property at each point using the following theorem.

Theorem 3.2 A point p; is said to be lying inside a triangle T' of the mesh
iof all the barycentric coordinates of pr with respect to T' are positive.

Proof Theorem 3.2 is a direct consequence to the definition of the barycen-
tric coordinates in Equation (3.12). The barycentric coordinates of p; in the
triangle T" are proportional to the signed areas of the smaller triangles pyv,v,,
prvsvs and prusvy, see Figure 3.4 for a reminder on the problem setup. To
prove the theorem, it is necessary to show that the signed areas of the three
smaller triangles of a point p; lying inside T" are positive. Taking the triangle
prviv, for example and by denoting the angle formed by vsp;v; to be a.
The area of the triangle is given by

1
Aprvvy = B lele . Hpﬂ)zH -sin () , (3.14)

where HH denotes the norm of the vector. From this equation, it is easy to
notice that the signed area of the triangle is positive if the sine of the angle «/ is
positive. This is satisfied only if the point p; lies inside the triangle assuming
the positive direction to be counter clockwise. A similar demonstration can
be done for the other triangles. |

Corollary 3.3 One can infer from the proof of Theorem 3.2 that a point py
lies outside the triangle T if any of its barycentric coordinates is negative
while it lies on an edge of the triangle if any of the coordinates is zero.
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3.4.2 Computing the Partition Line

If the PSNR of a triangle is less than the predefined threshold or the number
of points is larger than the specified maximum size of the triangle, it has to
be divided into two new triangles. In order to let BSP decide how a triangle
should be divided, three methods will be discussed.

The Tritree Subdivisions

Tritree subdivisions consists of dividing an area into a triangular grid [112].
A triangle is first generated that includes all the area to be triangulated.
Then, it is subdivided into smaller triangular regions until all the area of
interest is meshed. This technique has been applied to compress images
in [92]. In this work, a different strategy is used to allow the formulation
of the recursive subdivisions using BSP. An image is first divided into two
triangles along one of its longest diagonals. Then, each triangle is recursively
split until the criteria that were earlier presented are satisfied. For simplicity,
the difference between the original tritree method and the proposed one is
illustrated in Figure 3.6. Here, each triangle is divided from its longest edge.
The new vertex v,,, hence the non-uniform sample, is nothing but the middle
point of this edge. Let v, be the opposite vertex of the triangle’s longest
edge. The partition line that splits the triangle is given by

V, + Bp(v, — v,), (3.15)

where 3, is the coefficient of the division line that can be determined using
the coordinates of v,, and v,.

(a) (b)

Figure 3.6: Sketch illustrating the tritree subdivisions applied to an image. (a):
The algorithm of [112]. (b): The proposed tritree partitioning scheme.

The tritree subdivisioning scheme is very simple to implement. Each
triangle is divided into two smaller triangles of the same size. Tritree is similar
in spirit to the quadtree subdivisioning method that was used in [113, 85]
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to represent an image with a mesh. There, an image is subdivided into
rectangles which can be then divided into two or more triangles depending
on the error criterion, i.e. MSE or PSNR, and hence obtaining the mesh
approximation of the image. Thus, it seams more practical to start directly
building a tree of triangles instead of generating a tree of rectangles and
transforming it after that into a tree of triangles.

Kmeans Clustering

Kmeans is a method that divides a data set into k clusters by finding the
center of each of them [75]. In this work, the interest resides in dividing
a triangle into two smaller ones and thus £k = 2. The aim of kmeans is
to minimize the variance in each of the sought clusters by minimizing the
following error function

miny Y |lpy — el (3.16)

i=1 pr;€S;

where S; represents a cluster, ¢; is the center of each cluster and p;; is a pixel
in S;. In general, the kmeans algorithm starts by randomly initializing two
cluster centers in the triangle and by assigning each point of the triangle to
its nearest cluster center. Then, a new center is recomputed for each cluster
and the points are reassigned to the new centers. This process is repeated
until there is no change in the pixels’ reassignment.

The drawback of kmeans is the possibility to get different results on the
same image since the initial cluster centers are usually randomly selected [75].
The alternation of the results may lead to a degradation of the quality of the
mesh approximation especially if kmeans does not converge to a solution.
To overcome this burden, kmeans is modified in this work by initializing the
first two cluster centers as the vertices of the longest edge of the triangle.
In this case, the first two clusters will be similar to the result of the tritree
subdivisions. After several iterations, however, the clusters will adapt to the
variation of the pixels inside the triangle.

Suppose that ¢; and ¢y are the two computed centers. The direction
vector of the partitioning line 7is nothing but the normal to the mid-point
Pm of the vector ciCh connecting to the two centers. This can be illustrated
in Figure 3.7. Since ¢;¢; is perpendicular to the optimal partition line, it
is necessary to find which vertex v, of the three vertices of the triangle
minimizes the inner product <m, (?1—(3_2>> Consequently, the direction ( of
the partition line is

(= v,pm. (3.17)
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V;
Figure 3.7: Sketch illustrating the method to obtain the direction ¢ of the parti-
tioning line of a triangle using the centers found by kmeans.

Singular Value Decomposition

The SVD is well known matrix factorization method. It has a wide use in
various engineering applications. In order to apply it here, the points p; of
the triangle have to be arranged into a measurement matrix Y as

r1 T2 T3 ... Tp

Y=y v v3... Yn |, (3.18)
L I, Is... I,

where n is the number of pixels in the triangle. The matrix Y has then to be
centered, i.e. the mean is subtracted, to obtain the centered measurement
matrix Y. Then, the SVD of Y is computed as

T =UxV7 (3.19)

As a property of the SVD, the columns of U present the directions of the
variances of the measurement matrix Y in which the first column of U, i.e.
u = (ug,us), is the largest one. It can also be shown that u is perpendicular
to the sought partition line [111]. Hence, it can be written as

Z:[ e } (3.20)

The SVD is an expensive operation and it has to be repeated for every triangle
using this partitioning scheme. In order to determine the direction of the
subdivision in a triangle, however, only the first singular vector (column) of U
is required. This can be understood since this vector represents the direction
of the highest variance in the triangle which in the only thing needed from
this factorization to compute the partition line. Therefore, the full SVD
computation is not necessary anymore. Instead, the thin, the compact or
the truncated SVD algorithms can be applied to determine the first singular
vector of U because they are much cheaper to evaluate. An excellent review
on these algorithms can be found in [114].
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3.4.3 Dividing a Triangle

The tritree subdivisioning method assumes that the vertex lies in the middle
of the longest edge of the triangle from which the partitioning line is then
determined using Equation (3.15). In the case of the kmeans and SVD clus-
tering methods, it is the other way around. Using the directional vector of
the partitioning line £ obtained from Equation (3.17) or Equation (3.20), it
is possible to compute the new non-uniform sample as the intersection of
the partitioning line and the opposite triangle’s edge. Suppose that the line
equation of the opposite edge is given by

v+ ﬁo : (’02 - ’01), (321>

and that of the partitioning line which starts at the opposite vertex wvs, i.e.
v, = V3, IS

vs+ 0, L. (3.22)
By combining Equations (3.21) and (3.22), we obtain the following
(vy — v7) Z] : { g ] = vy — vy, (3.23)
P

where 3, is the coefficient of the line opposite to v, and 3, is as defined
before. The coordinates of the new vertex or the non-uniform sample is then
determined by plugging the result in Equation (3.21) or Equation (3.22). In
the case that the scalar (3, is equal to 0 or 1, Equation (3.21) becomes ill
conditioned and it will be not possible to compute the new vertex anymore.
To overcome this concern, the subdivision of the triangle has to be conducted
by placing the new vertex in the middle of the triangle’s longest edge in a
similar manner to what is done in the tritree subdivisions.

Another issue that is important to mention is the possibility that the
computed new vertex possesses non-integer coordinates. In such a case, it
is necessary to round the coordinates so that the new vertex lies a little bit
outside the triangle 7" to be divided. This is justified since if the point lies
inside the triangle, the resulting mesh will contain gaps.

3.4.4 Implementation Issues

Two points must be addressed in order to ameliorate the performance of the
BSP based content adaptive meshing algorithm in terms of speed and let it
avoid excessive computations.

1. Minimum Size of a Triangle: The subdivision of a triangle stops if
the stopping criterion is satisfied. However, it might be possible that a
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certain triangle subdivision leads to a child triangle with an area less
then unity. Such triangles do not contain any inlying pixels and will
not lead to any enhancement in the quality of the mesh approximation
of the image. Instead, these triangles will only result in increasing both
the number of non-uniform samples and that of the triangles. To avoid
this issue, such subdivisions have to be stopped and deleted from the
triangle tree and the father triangle should be added instead.

. Parallelization of the Meshing Process: The nature of the BSP

based meshing algorithm makes it suitable for the computations to be
distributed among several processors working in parallel. After each
subdivision in the image, the processing of each of the two children
triangles is completely independent from the other one. Consequently,
each of the new triangles can be treated using a different processor. To
clarify the last idea, an example is illustrated in Figure 3.8 using the
tritree subdivision scheme. When working with a single central process-
ing unit (CPU), all the image is assigned to it as shown in Figure 3.8a.
When using two CPUs working in parallel as in the modern multi-core
processors, the image can be divided in advance into two triangles and
then each one of the triangles is processed by a CPU. The same strat-
egy can be followed with more than two CPUs. The complete adaptive
mesh of the image can be finally combined from every CPU into a sin-
gle mesh by simply padding all the parts together. A similar strategy
can be applied when using the SVD or the kmeans clustering schemes
in BSP. The image can be predivided using tritree into several trian-
gles. Then, each triangle can be independently processed using these
methods. The parallelism capability introduced by the application of
BSP cannot be executed in most of the other content adaptive meshing
techniques since the mesh cannot be easily split and merged as can be
done in this case. This issue is also valid when comparing the proposed
tritree algorithm with the original version proposed in [112] that can
be depicted in Figure 3.6.

3.5 Results and Discussion

The experiments performed consist of measuring the performance of the BSP
based algorithms and compare them to some of the state of the art methods
described in Section 3.2. We will first test the efficiency of the algorithms
by measuring the size of the mesh needed to approximate an image and the
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Figure 3.8: Distributing tritree among several processing units working in parallel.
(a): The whole image is processed by a single CPU. (b): The image is divided into
two equal triangles and then each is processed by a CPU. (c): The image is split
into four parts and each is then processed by a different CPU.

compression ratio which is defined by

image size

(3.24)

compression ratio = —,
number of feature points

where the number of the feature points denotes that of the nodes of the mesh
or the non-uniform samples. In the following, the BSP-Tritree will refer to
the BSP with the simple partitioning scheme, the BSP-kmeans refers to the
combination of BSP and kmeans clustering while the BSP-SVD refers to
BSP with SVD. In all the presented results, the image is reconstructed from
the mesh by computing the weighted sum of the intensities shown in Equa-
tion (3.8) with the weights taken as the barycentric coordinates of the pixel in
the corresponding triangle of the mesh, see Equations (3.11) and (3.12). The
maximum area of the triangle was set to 100 pixels. In addition, the meth-
ods of Ramponi and Yang are slightly modified from their original versions
to allow the variation of the PSNR threshold in the image. The first mesh
approximation is constructed as described by the authors and the PSNR of
the image is computed. If the latter is lower than a predefined threshold, e.g.
35 dB, new pixels are added to the mesh in the locations where the error is
high. A summary of the adjustment is illustrated in Table 3.1.

Figure 3.9 shows the results of the compression ratio and number of trian-
gles obtained with the different algorithms when applied to the Lena image.
The results are obtained while varying the PSNR between 25 and 40 dB. As
can be seen, the proposed method in all of its versions has a better com-
pression ratio than both of the other techniques especially at low values of
the PSNR. As the PSNR increases, i.e 40 dB, the improvement of the pro-
posed methods becomes smaller. However, by looking at the number of the
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Table 3.1: Incurring the variation of the PSNR threshold in the meshing algo-
rithms of Section 3.2.

For a given image and a PSNR threshold ¢, do the following;:

1- Compute the non-uniform samples by applying a technique from
Section 3.2
2- Apply Delaunay triangulation to the samples to generate the
adaptive mesh
3- Construct the image using the mesh
4- Compute the PSNR value €. of the reconstructed image
4a- if €. > €, exit.
4b- if e, < e,
4b1- Add some samples where the error is high
4b2- Modify the mesh
4b3- Goto Step 4

triangles in the generated meshes, the amelioration is still significant. The
proposed techniques results in 33% less number of triangles on average than
the other techniques even at 40 dB PSNR which corresponds to a high re-
construction quality of the image. Moreover, the proposed algorithm has
a stable transition while varying the PSNR. It has no abrupt jumps as in
Ramponi’s algorithm since it considers the quality of the reconstruction of
each pixel when constructing the mesh while Ramponi’s method seeks for
the non-uniform samples by simple filtering operations. Such stability is also
noticed in Yang’s technique since it propagates the error using a diffusion
algorithm in order to choose the non-uniform samples. A similar conclusion
is reached by applying the algorithms to the Peppers image shown in Fig-
ure 3.10, the Tsukuba and the Teddy images of the Middlebury data set,
available at [115], in Figures 3.11 and 3.12 respectively.

Figure 3.13 shows the original image of the Lena along with its recon-
struction using all of the methods and by setting the PSNR at 30 dB. By
analyzing the reconstructed images, it is not difficult to notice that the BSP
based methods preserve the quality of the image while presenting the image
with meshes of smaller sizes than the one obtained by the other algorithms.
The number of triangles used to represent the image is around 0.25 - 10° for
all the versions of the BSP based method while it is 0.32 - 10° for Ramponi’s
method and 10° using Yang’s method, see Figure 3.9. In addition, the pro-
posed methods tend to have a smoother reconstruction of the images and
with lower artifacts. This can be visualized in the reflection of Lena’s hat
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Figure 3.9: Results of the meshing algorithms on the Lena image with varying
PSNR. (a): Compression ratio. (b): Number of triangles in the mesh.
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Figure 3.10: Results of the meshing algorithms on the Peppers image with varying
PSNR. (a): Compression ratio. (b): Number of triangles in the mesh.

in the mirror and it’s shoulder. However, the quality of the BSP-Tritree is
slightly less when comparing it to that of BSP-kmeans and BSP-SVD. The
main reason for this degradation is that BSP-Tritree follows a simple method
to subdivide a triangle which does not take into account the variation of the
pixels’ intensities as BSP-kmeans and BSP-SVD do. For convenience, the
content adaptive mesh representations of the Lena resulting from the all the
methods in comparison are presented in Figure 3.14. By examining and com-
paring the visual outputs of the algorithms on the Teddy image of [115] in
Figures 3.15 and 3.16, one can infer a similar judgment.

To further elaborate on the results, the outcome of the algorithms on
the Lena image is presented in Figure 3.17 for 35 dB PSNR. Here, it can be
directly seen that all the algorithms have resulted in a good output. The arti-
facts have almost vanished in all of the reconstructed images to the exception
of the outcome of Yang’s algorithm where the reflection of the hat in the mir-
ror is a little bit erroneous. However, for this approximation, the proposed
algorithms resulted in around 0.7 - 10° triangles for the image, Ramponi’s



52 CHAPTER 3. MESHING THE STEREO IMAGES

20 x 10"
HFRamponi 16| & Ramponi
SYang @ SYang
2 #BSP - SVD o 14/%BsP-svD
3% 7BSP - kmeans D) 4,|7BSP - kmeans
= BSP - Tritree S BSP - Tritree
s - B [ ]
§ 10 5
§ ¢ §
E-)
5 £
8° 3
=2 v
% 40 %5 40

30 35 30 35
PSNR (dB) PSNR (dB)

(a) (b)
Figure 3.11: Results of the meshing algorithms on the Tsukuba image of [115]
with varying PSNR. (a): Compression ratio. (b): Number of triangles in the mesh.
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Figure 3.12: Results of the meshing algorithms on the Teddy image of [115] with

varying PSNR. (a): Compression ratio. (b): Number of triangles in the mesh.

algorithm required 1.65-10° triangles and Yang’s method obtained 1.25-10°.
Consequently, better image qualities are achieved with the application of the
proposed algorithms with the requirement of smaller mesh approximations.

Besides the quality, the speed of the algorithm is an important factor
to assess especially if it has to be applied in TPTA applications. For this
purpose, some tests are conducted by applying each meshing algorithms to
various sample images while varying the PSNR threshold. We used here
the Tsukuba and Teddy images of the Middlebury data set along with a
VGA sample image shown in Figure 4.7. The simulations were performed
using an AMD Athlon XP 64 bit processor (2.2 Ghz, 2 GB RAM) with a
Linux operating system and C++ programming language and their outputs
are recorded in Table 3.2. The outcome suggests that the time required
by the tritree partitioning scheme is slightly more than what is needed by
the methods of Ramponi and Yang while the other BSP variants result in a
noticeable increase in time. The reason for the increase is clearly due to the
employment of the SVD and the kmeans clustering schemes.
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Figure 3.13: Results of the different algorithms on the Lena image at 30 dB
PSNR. (a): The original 512x512 image. From (b) to (f), respectively: The recon-
structed image with BSP-Tritree, BSP-kmeans, BSP-SVD, Ramponi’s algorithm
and Yang’s algorithm.

Table 3.2: Time Evaluation in seconds of the content adaptive meshing methods
at various PSNR thresholds.

Tsukuba Teddy Sample

Algorithm 30 dB 35 dB 40 dB|30 dB 35 dB 40 dB|30 dB 35 dB 40 dB
BSP-Tritree 0.19 024 0.3 |0.28 0.36 0.47 | 0.51 0.61 0.73
BSP-kmeans | 0.62 0.76 088 | 0.97 1.16 1.43 | 1.87 2.14 2.38
BSP-SVD 0.51 0.63 0.79|0.76 098 1.26 | 1.34 1.61 1.92

Yang [90] 0.12 0.16 0.2 |0.16 0.24 0.32|0.27 0.33 0.49
Ramponi [101]| 0.11 0.13 0.18 | 0.12 0.19 0.28 | 0.2 0.31 0.41

By comparing the three BSP based methods, BSP-kmeans and BSP-SVD
lead to almost the same results in terms of visual quality and performance.
Such an event might seem to be suspicious at the beginning. However, both
SVD and kmeans cluster a data set by finding a hyperplane which passes
through the centroid of the data which explains the similarity in their results.
This was shown in several recent works as in [1 16, 117] for example and which
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Figure 3.14: The content adaptive mesh representation obtained on the Lena
image at 30 dB PSNR. From (a) to (e), respectively: The mesh with BSP-Tritree,
BSP-kmeans, BSP-SVD, Ramponi’s algorithm and Yang’s algorithm.

confirms the validity of the obtained outcome. On one hand, the two schemes
lead to an improvement in the visual quality of the reconstructed images when
compared to BSP-Tritree as was previously shown. On the other hand, they
are accompanied by an increasing complexity in the computations as was
illustrated in Table 3.2. For this reason, it makes more sense to apply a
simple partitioning scheme, i.e. BSP-Tritree, and avoid the other ones in
a TPTA scenario since it is cheaper to evaluate and does not lead to a
noticeable degradation in the quality of the results.

Although BSP-Tritree is slightly slower than the methods of Yang and
Ramponi, it has an advantage of possessing a parallel structure due to the
property incurred from BSP. By exploring this attribute as was suggested
in Figure 3.8, it will be possible to benefit from the presence of multiple
CPUs and subdivide the computations to each one accordingly. Figure 3.18
shows the average time required by BSP-Tritree applied to several 640x480
images at 40 dB PSNR. The measurements were performed using a cluster
of four AMD processors where each is similar to the one used in the previous
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Figure 3.15: Results of the different algorithms on the Teddy image at 30 dB
PSNR. (a): The original 450x375 image. From (b) to (f), respectively: The recon-
structed image with BSP-Tritree, BSP-kmeans, BSP-SVD, Ramponi’s algorithm
and Yang’s algorithm.

experiments. Each CPU was assigned an equal amount of the image to be
processed and the complete mesh of the frame is then gathered in one data
set by padding each part. To force such parallelism in the C++ programming
language, it is necessary to use the multi-threading library, i.e. “pthread”,
along with “vfork” and initiate each part of the image as a single thread.
Using a single CPU, the average frame rate is low as was remarked in Ta-
ble 3.2 for the 640x480 image. But as the number increases to 4 CPUs, i.e.
(4 parallel threads), the rate increases to 4 VGA frames per second (fps).
Note that applying this scheme requires the usage a power of two number of
processors to make the overall processing time decrease. Using three CPUs
for example, two CPUs have to process half of the image while the third
one must process the other half and thus requiring more time than the oth-
ers. This obtained result quantifies the main advantage of BSP-Tritree. The
meshing scheme can be distributed among several processing units while us-
ing other methods, the job is more complicated. The main reason lies in the
fact that if the image is split into several CPUs, there will be a difficulty
in interconnecting the partial meshes into a single one as can be done using
tritree. Such a result motivates the application of BSP-Tritree in TPTA.
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Figure 3.16: The content adaptive mesh representation obtained on the Teddy
image at 30 dB PSNR. From (a) to (e), respectively: The mesh with BSP-Tritree,
BSP-kmeans, BSP-SVD, Ramponi’s algorithm and Yang’s algorithm.

3.6 Summary

This chapter presented a new technique based on BSP to approximate an
image with content adaptive mesh. The main idea was to model the in-
tensity variation of the pixels located inside a triangle of the mesh using
the parametric equation of the plane defined by its three vertices. A cost
function using PSNR was then defined and maximized with the objective to
locate the triangles that best describe the points lying within. As a starting
point for the method, an image is divided into two triangles along one of the
diagonals. In order to make BSP decide how to recursively subdivide the
triangles, three variants of the algorithm were proposed depending on the
clustering method used. The results showed that the size of the meshes ob-
tained using the BSP scheme are smaller than the values given by the state of
the art methods. Furthermore, the quality of the reconstructed images was
preserved. In terms of speed, the BSP method using the simple clustering
scheme, i.e. BSP-Tritree, was found suitable for TPTA applications since
it can be easily expanded to real-time. As a consequence, this method will
be employed in the next chapter to reconstruct the 3D meshes of a scene in
combination with the depth information provided from stereo matching.
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Figure 3.17: Results of the different algorithms on the Lena image at 35 dB
PSNR. (a): The original 512x512 image. From (b) to (f), respectively: The recon-
structed image with BSP-Tritree, BSP-kmeans, BSP-SVD, Ramponi’s algorithm
and Yang’s algorithm.
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Figure 3.18: Average time needed by BSP-Tritree to generate a mesh versus the
number of CPUs used in parallel. The PSNR threshold was set to 40 dB. The
images used were of size 640x480.



Chapter 4

Stereo Matching

Matching the stereo images of the teleoperator is the kernel of the scene
acquisition system to assess the depth. In a TPTA scenario, it is essential
to compute a confident depth estimate of the scene by minimizing the errors
incurred from stereo matching. On one side, this is necessary to ensure
that the operator experiences an accurate depth perception of the view, and
hence ameliorating his sense of immersion in the virtual 3D environment.
On the other side, increasing the fidelity of stereo matching comes with an
increment in the required computational resources. This is due to the wide
range of possibilities that should be taken into account when formulating
the problem. Such a consequence enhances the delays and deteriorates the
sense of immersion. To resolve this predicament, the sake of this chapter is to
exploit the redundancy in an image and benefit from the derived non-uniform
image sampling strategy. A stereo matching framework will be formulated
to estimate the depth values at the samples in order to restrict the domain
of the computations while taking into account their structure in the image.

4.1 Geometrical Setup

Depth from stereo is one of the oldest problems in computer vision. The aim
of this field is to estimate the depth by finding the correct correspondences
between two images of a scene taken from different views. The main idea
behind this issue can be understood from the fact that the displacement in the
position of each pixel is directly related to its depth value in the real world.
This phenomenon occurs since when each camera perceives the scene from a
different view, a point in the 3D space will be projected to a different position
in each image. This setup can be described using the epipolar geometry of a
camera system depicted in Figure 4.1. A point P in the 3D space is projected
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Figure 4.1: The epipolar geometry of a stereo camera system.

using the perspective projection camera model of the left and right cameras
into two points p, and pj respectively'. The projection of P onto each
camera passes through the corresponding camera center, see Figure 2.1. The
plane formed by P and the two camera centers O, and Op is called the
epipolar plane. The line that joins the two camera centers, i.e. O,Op, is
called the baseline of the stereo camera. The baseline crosses each image at
the epipoles, i.e. e, and eg, which can be also considered as the projection
of the camera center of one camera in the other one. The intersection of the
epipolar plane with each image is called the epipolar line. Note that all the
possible epipolar lines in an image must pass trough the epipole since each
epipolar plane includes the baseline by definition. From this fact, one can
deduce that the candidate match of a pixel in the left image must lie on the
corresponding epipolar line in the right image and vice versa.

The epipolar geometry is very important for stereo matching since it can
be used to constrain the domain of search of every pixel in the left image to
searching only along the corresponding epipolar line in the right image. To
incorporate this knowledge, the stereo images are usually transformed such
that the epipolar lines lie along the horizontal scanlines of the images. This
process is usually referred to as stereo rectification. It consists of finding a
homography for each image that maps its epipole to infinity, see Figure 4.2a
for an illustration. Several algorithms can be found in the literature that
perform this issue as the ones proposed in [1 18,119, 120] for example. By
applying any of these techniques, the problem of stereo matching can be

!The perspective projection model of the camera was described in Section 2.1. Please
refer to it for more information.
2A more detailed derivation of the epipolar geometry can be found in [20]
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Figure 4.2: The stereo rectification process. (a): A homography is applied to each
image. Each homography maps the epipole of the corresponding image to infinity
so that the epipolar lines are parallel to the scanlines. (b): The geometrical setup
in Figure 4.1 after rectification.

formulated as to find the corresponding pixels of the images that lie along
the same scanline and, hence, reducing the complexity of the process. The
search region for each pixel reduces from the product of the size of the image
to that of the length of the scanline.

The geometrical setup depicted in Figure 4.1 will become after rectifica-
tion as shown in Figure 4.2b. Let p, (z,y) and py (2',y") be the corresponding
pixels in the left and right images respectively. The disparity value is defined
to be as the difference in the positions of the pixels. It can be written since
the images are rectified as

d(z,y) =z —2a. (4.1)

The disparity value is inversely proportional to the depth of a pixel. By
looking at Figure 4.2b, it is not difficult to prove that the depth Z is

(4.2)

assuming that the two cameras have a baseline of length B, possess the same
focal length f and have parallel optical axes. In case the focal lengths of the
cameras are different or their optical axes are not parallel to each other, the
depth can be recovered using ray intersection methods as described in [20].

4.2 Problem Formulation

The goal of stereo matching is to estimate the value of the disparity func-
tion d (x,y) at each pixel p, (z,y) that best describes the depth of the scene
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captured by the reference image®. The disparity function depends on the
similarities of the pixels in the stereo images. It can be computed when the
identical pixels or features, which represent the projections of the same 3D
object of the scene in the stereo images, are found. Therefore, it is neces-
sary to establish some costs that describe the similarities among the pixels.
The simplest and fastest cost measure between the pixels is the absolute
difference, equivalently the squared difference, between the intensities of the
pixels [16]. This measure has been extensively used in the literature because
it possesses a simple equation that allows it to be easily implemented in prac-
tice. In addition, it can be easily parallelized using MMX and SSE2 SIMD
(single instruction multiple data) instruction set of the Intel and AMD pro-
cessors respectively [121]. Another widely used measure in stereo matching
is the cross correlation which is usually performed along a patch of an image.
To make the latter more robust against lighting conditions, the zero mean
normalized cross correlation is used. The cross correlation results in more
robust costs when compared to the absolute difference, however, it leads to
a significant increase in the computational complexity. To reduce the effort
of its evaluation, it is possible to accelerate its calculation by using specific
hardware as in [, , 123], by subdividing its computations into several
steps where each can be optimized on the assembly level instruction set of
the CPU [2, 121] or by applying box filtering techniques [125, 126]. Other
than these ones, several measures exist in the literature. These include some
that are based on image gradients [127, 128] while others compare linearly
interpolated functions of the pixels instead of the pixels themselves [129].
The advantage of the last technique is its insensitivity to image sampling.

Irrespective of the similarity measure used, the cost values of each pixel
in the reference image must be computed with all the candidate pixels in
the other image. These form the cost volume of the disparity image. The
disparity function d (x,y) of the image can be thought of as a surface in the
cost volume where each pixel has a single associated disparity value from all
the possible disparity values. An example that visualize this configuration
is shown in Figure 4.3. The cost volume is also called the disparity space of
the image [10]. Tt is a discrete set since a disparity reflects the amount of
displacement between a pixel in the reference image and the corresponding
one in the other stereo image. In order to obtain an accurate estimate of the
depth value of the scene, it is necessary to compute the optimal disparity
surface (function) that reflects the optimal correspondences of the pixels
between the images. Suppose that there are a total of N pixels in the image

3The left image of the stereo pair is assumed to be the reference image throughout this
chapter. Hence, the disparity function will be constructed with respect to it.
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Figure 4.3: Example of the cost volume of an image which has the form of a

cuboid. The disparity function of the image is a 3D surface inside the cuboid.
Note that each pixel is attributed with a single disparity value on the surface.

where each has k possible disparity values. The total combinations of the
possible disparity surfaces amount to N* which is an extremely large value.
To compute the optimal disparity surface, an error or energy function which
we denote in this work by Egu. (d) is usually assigned to each combination
of the costs. We will be designating by A each of these configurations. In
terms of the cost values of the pixels, the energy term can be written for each
combination as

Edata (A) = ZC(m,y,d(m,y}) ) (43)

where C'(+) is the cost value of the pixel which depends on the similarity
measure applied. The term Eyu, (A) measures the overall cost of the match,
or the matching quality, of each pixel with the corresponding one in the sec-
ond image with respect to the chosen disparity value. The optimal disparity
function in this case is nothing but the combination that leads to the least
value of this cost function.

The techniques that operate only on the term Ey,, (A) are called the local
methods. This naming is due from the fact that the optimization process
of these algorithms ignores the effect of the neighbors of each pixel in the
computations and takes only the data costs into account. To incorporate the
effect of the neighboring pixels in the optimization process, three constraints
must be imposed on the sought disparity surface.

Definition 4.1 The projections of some points in 3D space on the stereo
images preserve almost always the order of the points in the two images.

This definition is called the ordering constraint. The reason for it is that it
is practically very difficult for a projection of a rigid surface on the image
planes to change the order of its points. This is why this constraint has been
thoroughly exploited in practice in the selection of matches [130, 131, 16].
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Since the stereo images are rectified, the ordering constraint boils down to the
fact that the order of the points on the two epipolar lines (scanlines) should
remain the same. This makes the constraint easy to consider in practice.

Definition 4.2 A pizel in one image must have at most one corresponding
pizel in the other image.

This definition is usually referred to as the uniqueness constraint. It states
that a pixel cannot have multiple matches (disparity values) which is reason-
able to assume and not difficult to reckon in practice.

Definition 4.3 The disparity surface of an image must be piecewise-smooth.

The last definition is known as the smoothness constraint. It rises from the
fact that the structure of the surfaces of real-life objects varies smoothly
between the edges. The abrupt jumps or discontinuities can only be found
at the edges of the object; therefore, each piece (surface) is smooth and this
is why it is designated by piecewise-smooth. This assumption has been dealt
with thoroughly in stereo vision [132,133,16,134]. Taking this constraint into
account is not as simple as with the previous ones. It is necessary here to
define a term Ej,,00in (A) which incorporates the interactions of each pixel of
the image with its neighbors. The term should be able to allow the surfaces
of the disparity to vary smoothly and it should be simultaneously able to
preserve the discontinuities at the edges. See Figure 4.4 of the Venus image
of [16] for an example. The smoothness term should associate a pixel with its
direct neighbors in such a way that ensures there is no abrupt jumps change
during the minimization except at the edges. To do that, it is usually written
as a function of the difference between the disparity values of the pixels

Esmooth (A> - Z Z L (ld([[’, y) - d(Z‘l, yz|)) ’ (44)

Y TiYq

where ¢ is a function that monotonically increases with the magnitude of the
disparity difference and (x;,y;) are the coordinates of the neighbors of the
pixel (x,y) under consideration. There are several ways to specify the func-
tion ¢. It can be set as an everywhere smooth function that assigns penalties
proportional to the difference between the disparities. This makes, however,
the edges to be extended since the larger differences are highly penalized
which makes the disparity jumps more difficult [132,135]. Another way is to
presume smoothness as a linear model of the disparity difference and let it
increase up to a certain threshold after which it becomes constant. This is
usually referred to as the truncated model of the smoothness cost [131]. Other
methods assume the discontinuities to be piecewise constant on the edges.
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(b)
Figure 4.4: (a): The Venus image of [16]. (b): Its ground truth disparity map.

This is achieved via the Potts energy model proposed in [136] which penal-
izes only the disparity differences above a certain threshold with a constant
value. The last two functions are widely used in stereo matching algorithms
since they have good abilities in preserving the edges.

By combining Equations (4.3) and (4.4), the error function that has to
be minimized to obtain the optimal disparity function of the image is

E(A) =Y Clayd(ey)+ 233 1(ld@,y) - d@,ul)  (45)

TY T,y

The scalar ) is introduced to weigh the relative importance of the smoothness
term with respect to the data term. It is also possible to add an extra element
to the energy function that recognizes if a pixel is occluded or not in the
other image. To seek for the optimal method to model pixel occlusions in
stereo vision is a research area by its own and it will not be covered in this
dissertation.

4.3 Related Work

Stereo matching is one of the most investigated research topics in computer
vision. One can find a huge amount of literature describing various meth-
ods that try to find the optimal disparity surface of a scene captured by
stereo images. An interesting reference is the Middlebury stereo vision web-
site [115] where a benchmark was developed to compare the performance of
matching algorithms. A detailed description of the benchmark is described
in [16]. Among the earliest algorithms in stereo vision are the cooperative
techniques which try to imitate the human vision system in their computa-
tions as in [132,137]. The methods perform the computations locally on each
pixel by applying non-linear minimization schemes. Apart from that, there
exists three different groups of techniques to compute a disparity map. First,



4.3. RELATED WORK 65

there are local algorithms which are based on the block matching technique.
These can usually incorporate all the constraints defined in the previous sec-
tion to the exception of the smoothness constraint. The resulting disparity
value of each pixel is optimal with respect to the data costs only which ex-
plains why they are sometimes referred to as the greedy methods. The second
group are the scanline based techniques which minimize the error function
defined in Equation (4.5) over each scanline. The key idea here is to partition
the error function into several ones which leads to a decrease in the complex-
ity of the problem. Therefore, the obtained solution is global for each scanline
which might lead to some artifacts between the different ones. Finally, there
are the global methods which operate on the entire image to minimize the
energy function. The illustrative example depicted in Figure 4.5 shows the
resulting disparity maps form the application of one algorithm from each
group on the Tsukuba image of [16].

The local approaches are quite fast and efficient to implement. They can

be accelerated using graphical processing units (GPUs) [138, 139], by opti-
mization on the assembly level instructions of a CPU [124,2] or by employing
DSP hardware [122,5]. However, their outcome suffer from inconsistencies,

as depicted in Figure 4.5, and they usually result in low-quality depth maps.
The scanline based methods represented by dynamic programming (DP)
are also fast and produce depth maps with better quality when compared
to the local methods. Moreover, there has been a lot of research lately to
accelerate these techniques while preserving the quality of the depth maps.
In [129], low complexity cost functions were defined and used in addition to
the fact that DP was modified to prune the bad search regions. In [125],
rectangular subregioning was employed to partition an image into several
sub-images and then each one was processed using a two-stage DP tech-
nique to obtain an efficient maximum 3D surface in the 3D volume defined
by the costs. In [126], a similar principal to the latter was implemented
using quadtree subregioning then followed by iterative DP which sweeps be-
tween horizontal and vertical optimizations. In [110], a DP scheme on a tree
(treeDP) was implemented which minimizes the inconsistencies among the
scanlines. In [141], the previous method was ameliorated by segmenting each
line into several segments where each is processed using tree DP and then
refined. In [142], like the previous method, tree DP was derived and used
on segmented image regions instead of line segments which lead to results
of better quality. In [113], a four stage DP matching strategy was suggested
which handles the occlusions in an efficient manner. Last but not least, the
GPU was employed to parallelize the computations in [144, 145 146, 147].
The global techniques as the ones described in [148, , , 119] are
usually too slow to use in real-time applications unless they are formulated
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using graphical hardware [150]. These methods, however, result in depth
maps which exhibit the best quality. In the rest of this section, the dynamic
programming approach will be briefly described for it represents the core of
the method that will be developed in this chapter.

Figure 4.5: The application of the different classes of stereo matching algorithms
on the Tsukuba image of [16]. (a): The original image (b): The ground truth
disparity map. (c): The result of zero mean normalized cross correlation which is
a local approach. (d): The scanline method of [16] based on dynamic programming.
(e): The global method of [134] based on belief propagation.

4.3.1 Dynamic Programming

The dynamic programming is an optimization technique aimed to solve large
and sequential problems which can be subdivided into overlapping subprob-
lems. DP finds the solution of each subproblem and then use their combi-
nation to obtain the optimal solution of the problem. An easy example that
illustrates this idea is the common shortest path problem in graph theory.
The route with the cheapest cost between a source and a sink has to be
computed. The path can be subdivided into nodes (vertices) where each one
is attributed with a penalty. In addition, a cost is assigned to the transition
between each consecutive two nodes. The setup is shown in Figure 4.6a. The
optimal routing path is the combination of vertices that leads to the cheap-
est cost between the source and the sink. It is highlighted in the figure with
a dashed line and amounts to a total cost of 18. Such a methodology has
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been widely used in engineering problems as in the Viterbi algorithm used
to decode the data in the cellular systems [151]. A similar approach can be
applied in stereo images to find the optimal disparity path. The nodes of
the graph are in this case the corresponding candidate matches. The cost
matrix, which designates the graph, is constructed for each scanline in the
reference image with the corresponding one in the other image. The entries
of this matrix form the costs of the nodes of the graph. An example is shown
in Figure 4.6b for a scanline of length 5 pixels. To move from node (1,1) for
example, it is necessary to choose the destination with the minimal cost be-
tween the three nodes (2,2), (2,1) and (1,2) marked in different colors. This
process is repeated until the shortest path is determined. DP was first in-
troduced in the domain of stereo vision by Baker and Binford in 1981 [130].
Its employment has then rapidly spread among researchers, as we showed
earlier in this section, because it is one of the fastest optimization methods
and leads to good quality disparity maps.

(b)

Figure 4.6: (a): The shortest path is the cheapest path between the source and
the sink. It is highlighted in a dashed line. (b): To find the shortest disparity path
using DP in stereo images, a matrix of costs is computed between the corresponding
scanlines. The numbers designate the pixel positions in the scanline. Each node,
e.g. (1,1), reflects a candidate matching pair. The shortest path corresponding to
the optimal disparity map of the scanline is the one that minimizes the matching
costs over all the scanline. It is marked here with a red color.

4.4 Sparse Stereo Matching

One aim of this dissertation is to accelerate the overall speed of stereo based
3D scene reconstruction starting from the fact that an image can be faithfully
represented by a subset of its pixels, the non-uniform samples, to interpret the
scene it represents. Non-uniform sampling consists of sampling a captured
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Figure 4.7: Sample result using the proposed stereo-based 3D reconstruction
scheme. (a): The sample image. (b): The non-uniform samples of the sample
image obtained via the BSP-Tritree algorithm of Chapter 3. (c): The sparse
depth map obtained using the sparse DP that will be described in this section.
(d): Top view of the 2.5D mesh obtained by integrating the output of BSP-Tritree
with sparse DP.

digital image from the teleoperator cameras at an irregular grid. The image is
sampled with a high rate where the intensity variation is high, otherwise it is
low. The theory of non-uniform sampling of images and its relation to image
content adaptive mesh was presented in Chapter 3. We also developed there
the BSP-Tritree technique that can approximate an image with a mesh where
its nodes are the sought non-uniform samples. Our task in this chapter is
to benefit from the sparse structure of the samples and use this information
when estimating the disparity map of a scene. A sparse stereo matching
scheme will be developed in order to estimate the depth values only at the
non-uniform samples of an image. The information obtained can be then
integrated with the 2D mesh from BSP-Tritree to construct the 2.5D mesh
approximation of the scene. An example is illustrated in Figure 4.7.
Sparsity of the data is a property that has been researched extensively
in various fields including computer vision. By exploring the sparsity of the
data, it is possible to design fast algorithms because only a small system
of equations has to be solved. Since the obtained left image is sparse, it
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makes sense taking advantage of this fact. Sparse stereo is usually performed
using a local approach. The main disadvantage of such methods, however,
is the fact that the smoothness constraint stated in Definition 4.3 cannot be
enforced within the computations. In addition, these methods have a lot of
tendencies for errors at the object boundaries which was previously depicted
in Figure 4.5. Another possibility is to apply semi-dense stereo matching
techniques as in [152, 153] which determine the depth at some pixels of the
image considered to be reliable. Applying the latter type of techniques do not
meet the goal of this chapter since the found pixels do not have to coincide
with the locations of the non-uniform samples. And for each non computed
sample, the triangles of the mesh where it belongs will be missing from the
reconstructed scene and thus deteriorating its quality. The idea is illustrated
in Figure 4.8 by applying the stratified matching algorithm of [153] to the
Tsukuba image. What is also shown is the content adaptive mesh computed
with BSP-Tritree at 40 dB PSNR threshold along with the sparse disparity
map by choosing the values of the semi-dense map at the nodes of the mesh.
The resulting sparse depth map can be seen to contain numerous missing
disparity values at the non-uniform samples. This will lead to a mesh with
missing triangles that deteriorates the quality of the constructed 3D scene.
Apart from that, we choose DP to accomplish this task since it is one
of the fastest optimization methods and leads to a good quality. DP was
first introduced in stereo vision in the context of edge based methods [130),
]. Then, the interest in it grew since it is one of the fastest optimization
techniques and leads to good quality depth maps. DP is derived in this
section to find the depth of the sparse non-uniform samples and, hence,
the naming Sparse DP. The inputs are a sparse left image and a full right
image, which are rectified such that the epipolar lines are aligned with the
corresponding scanlines as was stated in Section 4.1. Let p, (x,y) be a pixel
in the left image lying on the y* scanline and py (2’,4’) be the corresponding
pixel in the right image. Since the images are rectified, y = ¢y’ and the
disparity function d (z,y) at the pixel p, is expressed as d (z,y) = z — .

4.4.1 Computation of the Data Costs

In Section 4.3, we discussed various pixel-based similarity measures that exist
in the literature. The similarity measure C' of the pixels that we will be using
here is the absolute difference because it is simple to implement. The absolute
difference is defined at a disparity value d of a pixel p, of the left image to be

C(z,y,d(x,y)) = |p.(z,y) — pr(x —d(z,y),y) | (4.6)
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{ 1
(a) (b)
Figure 4.8: (a): The content adaptive mesh of the Tsukuba image shown in
Figure 4.5a taken at 40 dB PSNR using BSP-Tritree. (b): The semi-dense disparity
map resulting from the algorithm of [153]. (c): The sparse disparity map resulting
by taking the disparity values of the previous map at the non-uniform samples.

In this case, the disparity value of p, corresponds to the location where
C(x,y,d(z,y)) reaches a minimum.

In general, any pixel-based cost function could be used instead of the
absolute difference. The important issue in sparse DP is to evaluate only
the costs over the support region of each non-uniform sample. The support
region of a pixel p, (x,y) is defined to be the region along which the cost is
aggregated. Suppose that the support region SR of p, is a box filter of size
w x h. If p, (x,y) is a non-uniform sample, C' is evaluated at all the pixels
of S. This is justified since the aggregated cost of p, must be computed over
all of S as will be shown in Equation (4.7). Consequently, Equation (4.6)
must be performed in sparse DP across all the non-uniform samples in the
image along with the pixels belonging to their support region.

4.4.2 Aggregation of the Data Costs

The disparity surface of the image is smooth in general except at the edges
of the objects. Taking the similarity measures of the non-uniform samples
illustrated in Equation (4.6) alone as the cost volume, over which sparse DP
optimization takes place, might not consider the interaction of the neigh-
boring pixels properly. To resolve this issue, the sought disparity surface is
assumed to be locally smooth since the neighboring pixels of p, are likely to
have the same disparity value. The initial costs are thus aggregated over a
neighborhood region SR which is also called the support region of p,. The
aggregated cost C, of p, defined over its support region SR is

Col(,y,d(x,9) = Y Vsul(@i,yi,d(2,9) C (2, g0 d(2,y)), (47)

(z:,yi)€ESR
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where Y45 is a weighting function defined over SR. The aggregated cost is
the one that is associated to the data energy term defined in Equation (4.3)
that has to be minimized. Therefore, this operation has to be repeated over
all the non-uniform samples and the total costs form the cost volume of the
sought sparse disparity map of the image. Aggregating the data costs is a
very important step in a DP based stereo correspondence algorithm. It helps
in obtaining a smooth and more consistent disparity map and in reducing
the streaking effect of DP. The latter occurs due to the inconsistencies that
result from minimizing the error function in Equation (4.5) separately on each
scanline, see the disparity map in Figure 4.5d for example. The most common
aggregation form is to apply a box filter which is nothing but an averaged
summation over a fixed rectangular window around each pixel. Increasing
the size of the window minimizes this effect, however, it has the disadvantage
of over-smoothing the disparity map. Several windowing approaches were
conducted in the literature with the goal to find the optimal region of support
for each pixel that increases the reliability of the matching costs as in [154,

, 156]. The drawback that incurs with the application of such approaches
is the increasing computational time since they are complex to evaluate and
there is a wide range of possibilities that has to be evaluated in order to
compute the disparity map between two stereo images. This reason is what
mainly lead some of the latest techniques in DP-based stereo matching to
be implemented on GPUs [144, 145, 146, 147]. It is important to mention
that there are other approaches that do not concentrate on the aggregation
step but increase the quality of DP by optimizing on a tree [140, 141, 142],
by enforcing inter-scanline consistency [131] or by performing consecutive
horizontal and vertical sweeps across the image [125, 120].

One of the main advantages of proposed sparse DP scheme is that the ag-
gregated costs have to be only evaluated at the non-uniform samples; hence,
the process will be sped up. By looking at Figure 4.7c for example, the
number of non-uniform samples needed to obtain the 3D mesh of the scene
amounts to 42% of the total number of pixels. Hence, the effort of the eval-
uation of the aggregated costs reduces to 42% of the total effort as well.

4.4.3 Disparity Optimization Using Sparse DP

In DP, the stereo correspondence problem is formulated as finding the optimal
path through the disparities that minimizes an energy function defined over
a scanline. The energy function is usually minimized by conducting a search
in the cost volume defined by C, and it is written as

E (A) = Edata (A) + A Esmooth (A) 5 (48)
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where Eguq (A) is the energy term associated with the aggregated costs re-
flected by Equation (4.7), Egnootn (A) is the smoothness term and A is a
constant to weigh the relative importance of depth discontinuities with re-
spect to the data costs. The smoothness term is written as a function of the
difference between a pixel and its direct neighbors as was shown in Equa-
tion (4.4). In sparse DP, Equation (4.8) is minimized along a sparse scanline.
The data term does not change but has to be evaluated on the non-uniform
samples as was previously explained. The smoothness term, however, should
be changed in order to account for the sparsity of the data. The neighbor of
the pixel under consideration is in this case the closest non-uniform sample
in the scanline. The smoothness term should be therefore written as

Emootn () =Y 0 (|d (z) = d(.)])., (4.9)

T

where x,, represents the neighboring non-uniform sample and the index y
was dropped from the summation since the minimization is conducted inde-
pendently along each scanline. In a standard DP algorithm, the function ¢ is
usually chosen to be monotically increasing with the difference between the
disparities of the neighbors. This is also valid in our case but the distance
between the non-uniform samples should be additionally taken into account.
This can be visualized because the closer the non-uniform samples are, the
more probable that there is high intensity variation in the corresponding
region of the image. While when the samples are distant from each other,
the intensity variation is low. Consequently, the smoothness term should
consider penalizing the closer samples less than the distant ones since the
discontinuities are more probable to occur due to the high variation of the
intensity. In other words, the function ¢ should be high if the neighboring
samples are close and it should be monotonically decreasing as the distance
between the samples increases. In this work, the function ¢ we chose is

1

(x - xnb)Q ’

since it insures that Equation (4.9) is continuous and it allows for interpola-
tion between the neighboring samples. The effect of this function can be best
understood as to encourage the disparity discontinuities to coincide with the
color or the intensity edges of the image. This can be seen from the fact that
the distance between the samples is inversely proportional to the magnitude
of the image gradients. Taking this effect into account in the smoothness
term of the energy function has resulted in a good performance in global
optimization approaches [130, 16].

(4.10)

=
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Using the derived equations, the DP optimization is performed at each
scanline y to extract the best disparity path. As in DP, the optimization
process of sparse DP is composed of two steps. The first one is of a for-
ward accumulation stage which builds up a cost volume of the scanline. A
matrix C is initiated to null. It is important to mention here that when
filling this matrix, the function ¢ should reflect the distance between the
samples only when penalizing the costs related with the neighboring sample,
e.g. C(x,,d(x)—1). To penalize the cost of a pixel going to a different
disparity level, e.g. C (z,d (x) + 1), the distance between the samples should
be ignored since this cost is not related to the previous sample. In such a
case, the function ¢« must be set to unity. Thus, the matrix C has to be filled
from left to right to take the ordering constraint into account as

C(z,d(z)) =Cy(z,d(x)) +min (C, (2,4, d (x) — 1) + X - ¢,
Co(xp,d(2)),Cy (x,d(x)+1)).

After that, a backward-tracing step follows to extract the optimal disparity
path of the sparse scanline from C. This is repeated for all the scanlines
and the obtained result is a disparity map as the one shown in Figure 4.7c.
By combining the disparity map obtained from sparse DP and the mesh of
BSP-Tritree, the 2.5D mesh of the scene can be constructed as shown in
Figure 4.7d. The proposed algorithm is illustrated in Table 4.1.

(4.11)

4.5 Results and Discussion

The essence of our analysis is to assess the performance of the sparse stereo
matching algorithm in terms of quality and speed. The quality will be mea-
sured using the Middlebury data sets of [16, 157] since they are provided
with their ground truth depth maps. Two DP-based stereo algorithms will
be tested in our results. The first one is the DP implementation presented
in [16] which consists of simple box filtering technique as the aggregation
cost. The second algorithm is the DP implementation of [117] where the
aggregation is performed using the high quality adaptive weight approach
described in [156]. The latter consists of aggregating the data cost function
based on both color and geometric proximity of a pixel in the image. The
advantage of such aggregation scheme is that it avoids the problems of image
segmentation by using a continuous weighting function. We will be applying
to each of these methods the proposed sparse DP approach. The non-uniform
samples are computed in all the cases with the BSP-Tritree scheme derived
in Chapter 3. We will also test in our experiments, the (local) 5 x 5 nor-
malized correlation approach. The sparse depth maps resulting from all the
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Table 4.1: The Sparse DP stereo matching algorithm.

Given a pair of stereo images and the non-uniform samples of the reference
image. Let SP be the shortest path and I D be a matrix of pointers.

For every scanline, do the following:

Cost Accumulation:
1- Initiate the aggregated costs C, at the non-uniform samples
2- For each non-uniform sample x = 1 : ¢ and disparity level d=1:n
2a- Construct the entries C (z,d) with Equation (4.11)
2b- Store the index of the vertex corresponding to the “min”
operation of Equation (4.11) in ID (z,d)

Backward-Tracing:
1- Find the vertex associated with the minimum cost C (z, d)
2- Set the last point of the shortest path SP (i) to the vertex
3- For the remaining non-uniform samples x =i —1:1
3a- Find the pointer ID (x,d) associated with SP (z + 1)
3b- Set SP (x) to ID (x,d)

algorithm are shown in Figure 4.9. The non-uniform samples were computed
at 40 dB PSNR threshold. The error rate of the depth maps shown in the
figure are illustrated in Table 4.2. They were obtained by taking the ground
truth depth maps found in [16, 157], extracting the disparity values of the
non-uniform samples and then computing the percentage of the error be-
tween the resulting sparse disparity maps and the ground truth values. The
results show that the error rate of the DP based algorithms has increased
less than 4% on average with respect to the total number of pixels when
compared to the original DP algorithms. Compared to the correlation based
stereo, however, it is easy to notice that the quality of the DP-based sparse
stereo methods are a lot better despite the resulting decrease in the quality.
To get a feeling on what does this increase in the error rate means in the
quality of the depth maps produced by sparse DP, we show in Figure 4.11
the depth maps produced by the original algorithm of [117] along with the
reconstructed dense disparity maps of the two sparse DP versions. The dense
disparity maps of the sparse DP techniques were obtained by interpolating
the sparse disparity maps shown in the first and second rows of Figure 4.9
using Equation (3.11) with the weights taken as the barycentric coordinates
of the pixel in the corresponding triangle of the mesh. As we can see, the
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Table 4.2: Percentage error of different stereo matching algorithms. The non-
uniform samples were computed at 40 dB PSNR.

DP of [16] DP of [117] | Normalized

Image ||Sparse|Original||Sparse|Original||Correlation
Tsukuba|l 11.27 | 7.79 | 1046 | 7.13 14.41
Venus || 7.34 | 6.17 6.76 | 6.01 12.83

Teddy || 21.25| 17.33 || 21.47 | 15.46 33.17
Cones | 20.63 | 15.96 || 20.2 | 14.67 30.38

Average[[ 1512 ] 11.82 [[14.72] 10.8 [ 2281

visual quality did not deteriorate significantly. This is also confirmed in Ta-
ble 4.3 obtained from the Middlebury evaluation web-tool for 0.5 pixels error
threshold. On the contrary, the table shows us that the sparse version of [117]
is better than other existing dense DP based algorithms. Nevertheless, the
performance of sparse DP deteriorates near depth discontinuities. This fact
occurs since the interpolation of the sparse disparity map takes into account
the intensity edges of the image and does not consider neither the occluded
pixels nor the geometrical edges which leads to the higher values of nonocc
and disc in Table 4.3 respectively. This is a side effect that we have to live
with for the overall time of the matching process will significantly decrease as
will be later seen in this section while obtaining disparity maps with higher
quality when compared to the correlation approach that was applied in [2] to
telepresence. The latter will naturally increase the confidence of 3D recon-
struction in a TPTA scenario. What can also be noticed is that the streaking
effect by using sparse DP is minimized. This can be visualized by looking at
the interpolated disparity map of the Tsukuba image in the third column of
Figure 4.11 and the corresponding one in Figure 4.5d. The reason for that is
the application of the adaptive depth discontinuity function in Equation (4.9)
which takes into consideration the distance between the sparse samples.
Before going to the speed analysis of our sparse stereo matching tech-
nique, there is still an issue that has to be clarified. What is the necessary
PSNR threshold at which the content adaptive meshing technique proposed
in Chapter 3 must be set so that the complete depth map of the scene can
be recovered with an acceptable error as in Figure 4.117 Why did we choose
40 dB in the previous results as a threshold? The answer to this question
is simple. We varied the PSNR threshold of BSP-Tritree between 30 and
65 dB. At each value, we computed the non-uniform samples of each Middle-
bury test image. The depth of those samples were then computed using the
proposed sparse DP and then the complete depth maps were interpolated
as was previously stated. Finally, the percentage error rate of each recon-
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Figure 4.9: Visual outcome of the proposed sparse DP algorithm applied to several
DP based stereo matching methods. The non-uniform samples were obtained at
40 dB PSNR threshold with BSP-Tritree. The first column is the sparse version
of [16]. The second column shows the sparse version of [117]. The third column
reflects the normalized correlation.

structed depth map was computed with respect to the ground truth depth
map. The results of the test are depicted in Figure 4.10. We can also see
in the figure, the percentage of the number of pixels needed at each PSNR
level. By looking at the two plots, we can easily notice that the change in
the error rate becomes minimal above a threshold of 40 dB. In addition, we
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Figure 4.10: Dependency of the quality of the depth map on the number of pixels
used. (a): Variation of the number of pixels versus the PSNR. (b): Variation of
the percentage error rate versus the PSNR.

can also notice that the optimal threshold for each image lies a little bit
above the PSNR value that corresponds to 50% of the total number of the
pixels in the image. This means that in order to obtain a reconstruction
with an acceptable error, it is only necessary to have around half of the pix-
els in each image. This constraint can also be given as a stopping criterion
instead of PSNR for BSP-Tritree. However, the threshold was always set
in our computations to 40 dB because it results in acceptable depth maps
qualities. This can be better understood by depicting how does the variation
in the non-uniform samples affects the visual quality of a reconstructed dis-
parity map. Figure 4.12 shows an example of varying the PSNR threshold
of the BSP-Tritree meshing scheme on the interpolated disparity map of the
Tsukuba image. We use in this test the sparse DP version of [117]. What can
be seen are the disparity maps that corresponds to setting the BSP-Tritree
meshing scheme to 30, 35 and 45 dB respectively while the 40 dB threshold
is illustrated in the second column of Figure 4.11. It is not difficult to realize
here that above a 40 dB threshold, the visual quality of the depth map does
not change in a noticeable manner.

The superiority of the depth map quality of DP is what makes them
more attractive than correlation based techniques. However, they are usu-
ally avoided in telepresence scenarios as was stated in [2] since they tend
to increase the overall latency in the system. This can also be noticed
here in the comparison between the different algorithms in Table 4.4. The
simulations were performed using an AMD Athlon XP 64 bit processor
(2.2 Ghz, 2 GB RAM) with a Linux operating system and C++ programming
language. Fortunately, the time needed by the sparse DP strategy is signifi-
cantly less than that of DP for it only matches the non-uniform samples. As
the size of the image increases, the improvement in time also increases since
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P

Figure 4.11: The resulting dense depth maps. First column: DP of [117]. Sec-
ond column: The interpolated depth maps of its proposed sparse version. Third
column: The interpolated depth maps of the proposed sparse version of [10].

the sampling eliminates the non-significant pixels in the image and hence the
unnecessary disparity computations are avoided. At an image resolution of
640x480 pixels and at 150 disparity levels, the time necessary to compute
the disparity map decreases on average to 50% of the original time without
significantly deteriorating the quality of the depth maps, see Table 4.2.

To enhance the speed of sparse DP, we parallelized the computations by
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(a) (b) ()

Figure 4.12: Effect of varying the PSNR threshold on the visual quality of the
interpolated disparity map of the Tsukuba image of [16] with BSP-Tritree. The
sparse DP version of [117] was used to compute the disparity maps. (a): PSNR =
30 dB. (b): PSNR = 35 dB. (c): PSNR = 45 dB.

equally assigning to each CPU in a cluster of CPUs a set of scanlines in
a similar manner that what was proposed in [2]. The measurements were
performed using a cluster of four AMD processors where each is of a similar
specification to the one used in the previous experiment. Figure 4.13 shows
the average time of generating one disparity map while varying the number
of CPUs used in parallel. For comparison, we tested the DP based techniques
of [16,147] along with the normalized correlation approach. We applied each
of these algorithms to several VGA video sequences with maximal disparity
ranges of 100 and 150 respectively and the average time is plotted. It is clear
that the correlation approach is the fastest and achieve the highest frame
rate; however, the latency introduced by the sparse DP versions is minimized.
The two DP approaches can achieve now an average speed corresponding to
1.5 to 3 frames per seconds (fps) depending on the disparity range. When
compared to the original approaches, the computation of the dense depth
maps would have required at least twice the number of CPUs to reach the
frame rate obtained with sparse stereo. Consequently, it makes sense to use
the combination of content adaptive image mesh approximation along with
sparse DP in a TPTA scenario. The application of mesh approximation will
generate the mesh needed to render the scenes on a GPU and reduce the
number of points to be processed. The usage of sparse DP will increase the
fidelity of the reconstructed scenes when compared to the correlation scheme
while minimizing the latency.

4.6 Summary

A scheme was presented in this chapter to accelerate stereo-based scene ac-
quisition. The reference image of a stereo pair is first meshed using the con-
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tent adaptive meshing scheme of images described in Chapter 3. Then, the
disparity values of the nodes of the mesh (non-uniform samples) are com-
puted by developing a sparse stereo matching strategy based on dynamic
programming. Sparse DP takes into account the sparsity of the image in
its optimization. The matching costs are only evaluated at the non-uniform
samples of the image. The smoothness cost in its turn is adapted to take
the distance of the samples into account. This will make DP increases the
smoothness penalty between the close non-uniform samples since they are
located near the edges of the image and vice versa. The tests that were con-
ducted show that the non-uniform samples are sufficient to recover the dense
disparity map of the scene with an acceptable error. In addition, they show
that using sparse DP, depth maps are now obtained up to 50% faster than
with using the original DP algorithms which reduces the latencies induced
and makes them applicable in TPTA scenarios.
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Figure 4.13: Performance of different stereo matching algorithms depending on
the number of processors used. In the test, VGA sequences were used. In the
upper row, the maximum disparity level is 100 while it is 150 in the lower.
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Table 4.3: Evaluation of the proposed sparse DP approach applied to the algorithms of [117, 16] with several other DP
techniques using the Middlebury web-tool at 0.5 pixels threshold. The sparse algorithms are designated in the table by
Sparse DP I and Sparse DP 1I respectively.

Algorithm Avg. Tsukuba Venus Teddy Cones
Rank|nonocc all disc |[nonocc all disc |jnonocc all disc ||nonocc all disc

DP of [117] || 28.3 [|24.2 54 26.0 55 24.9 54 |[10.9 26 12.1 26 27.6 52 ||19.6 23 27.0 25 33.0 21 ||16.5 28 23.7 27 29.5 29
DP of [146] || 28.4 [|19.0 22 20.7 27 17.5 14 |[12.7 20 14.0 20 26.1 31 ||26.3 31 32.5 31 36.8 20 {|23.7 34 29.9 31 31.5 30
Sparse DP I || 31.8 ||13.8 16 16.0 17 28.9 35 ||13.2 31 14.5 31 36.3 37 ||30.0 33 36.4 34 45.5 34 ||28.1 38 34.3 37 43.4 38
DP of [140] || 31.8 [|22.4 52 23.1 51 22.3 25 |[12.1 25 12.9 25 21.7 27(|32.4 36 38.9 36 45.6 35 |23.7 35 30.8 35 31.7 s
DP of [16] 32.0 {{19.6 26 20.6 26 22.8 29 [|23.5 30 24.3 38 32.8 33([30.0 34 36.3 33 36.1 25 {|22.0 33 29.6 33 33.7 32
Sparse DP II|| 34.7 ||17.8 19 19.9 27 32.5 40 [[19.0 42 20.0 42 42.2 43 {|32.5 41 38.3 30 46.5 41 ||31.5 43 37.1 43 48.4 44

Table 4.4: Time Evaluation in seconds of several stereo matching algorithms.

Disparity|| DP of [10] DP of [147] Correlation
Range ||Sparse|Original||Sparse|Original||Sparse|Original
Tsukuba [|384x288 15 0.06 | 0.09 0.22 | 047 ] 0.019| 0.07

Venus ||434x383 20 0.13 | 0.18 0.38 | 0.93 0.03 | 0.11
Teddy ||[450x375 59 0.37 | 0.53 1.27 | 245 0.12 | 0.38
Cones ||450x375 59 0.42 | 0.52 1.27 | 245 0.17 | 0.39
Figure 4.7a/|640x480( 100 0.94 | 1.52 2.24 6.6 0.19 | 0.42
Figure 3.2a/|640x480( 150 1.49 | 2.58 3.07 | 9.33 0.38 | 0.96

Image Size




Chapter 5

Motion Estimation

In a general TPTA scenario, the teleoperator is subject to navigate in the
remote scene in order to fulfill its tasks. Determining the pose of the teleoper-
ator in the remote environment is yet another important problem in machine
vision since these values are necessary for several tasks as tracking its posi-
tion and registration of the 3D models. Determining an accurate estimate of
the motion leads, however, to more computational requirements. The reason
for that is the numerous terms that have to be accounted for in the math-
ematical formulation of the problem. The aim of this chapter is to suggest
a new approach that enhances the motion estimation of a moving camera
without significantly increasing the complexity of the underlying problem.

5.1 Overview of Motion Estimation

Extracting the motion parameters of a moving camera is a significant aim in
machine vision. Based on some features in a sequence of images, it is possible
to obtain the initial estimates of the 3D structure of a scene along with the
corresponding camera positions. The pose of a camera is composed of a 3x3
rotation matrix R that describes the orientation of the camera in the real
world and a 3x1 translation vector t which reflects the distance between
the origin of the camera coordinate system and that of the world coordinate
system. The pose with the intrinsic parameters form the camera matrix
which is of size 3x4 and it is written in the from K [R | t], see Equation (2.1).
In this chapter, this notation will be slightly modified and the camera matrix
at a time instinct ¢ will be expressed as

R; t;

KL Jo] [

1 — K, [L | 0] - M, (5.1)

82
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where I, stands for the 3x3 identity matrix and 0 is the 3x1 zero vector.
The 4x4 matrix M; represents the position of the camera. It describes the
rigid transformation between the coordinate system of the world and that of
the camera. Determining the motion can be also stated as estimating the
rigid transformation M; that maps the coordinates of the camera to that of
the world coordinate system. To simplify the notations, the first position of
the camera will be set in this chapter as the origin of the world, i.e. My = 1,.
To determine the position at instinct ¢, it is necessary to first find the relative
rigid transformation M!™! that maps this position to the coordinate system
of the previous time instinct ¢ — 1. Then, the motion of the camera with
respect to the origin of the world can be written as the product of M‘™! with
all the relative homographies of the previous poses

2
M, =[] M (5.2)
Jj=t

In the case of a single moving camera with known intrinsic parameters,
determining the relative pose boils down to estimating the essential matrix
between the consecutive views. The essential matrix represents the algebraic
formulation of the epipolar geometry constraint that was introduced in Chap-
ter 4 and depicted in Figure 4.1. It incorporates all the information needed
to extract the rigid motion parameters. Several techniques have been devel-
oped to compute this entity, starting from the famous eight-point algorithm

that was formulated by Longuet-Higgins in [158] arriving to the seven-, six-,
and five-point algorithm [20, 159,160, 161] and finally to Gauss-Newton itera-
tive techniques [162,26]. Once the essential matrix is computed, the motion

can be extracted by computing its singular value decomposition (SVD). The
factorization of this entity leads, however, to four possible solutions of the
motion. To resolve this ambiguity, the 3D coordinates of any pixel in the
image are computed with these possibilities. The right solution of the motion
is the one that leads to the 3D point lying in front of both cameras. This is
usually referred to in the literature as the chieralities test [20, 160].

In a TPTA scenario, the teleoperator is equipped with a stereo camera.
To benefit from that, one can utilize the additional information provided by
the movement of the two cameras of the rig to remove the ambiguity in the
solution. In this case, it is necessary to compute the tensors or the compatible
essential matrices between the different views of the two cameras as was
illustrated in [20,27] for example. The motion estimate of the stereo camera
is in this case unique but it is computed up to a scaling factor. Therefore,
it is necessary to follow such methods with an approach to recover the scale.
One possible way is to integrate some inertial sensors or a global positioning
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system (GPS) on the teleoperator to determine the transformation between
the coordinate system of the cameras and that of the real world as was done
in [163] for example.

Fortunately, the problem in hand have several other constraints that are
beneficial for the computations of the motion. As the teleoperator moves, a
partial 3D model is constructed in each frame using the sparse stereo recon-
struction technique developed in the previous chapter. The intrinsic parame-
ters of the camera can be safely assumed to be known by using the technique
proposed in Chapter 2 for variable zoom lenses or using a technique like [74]
for monofocal lenses. The extrinsic parameters of the stereo rig are also
known since the orientation between the two cameras of the stereo rig is
fixed. Therefore, the relative Euclidean position between the stereo camera
(teleoperator) and each reconstructed partial 3D model is known. To com-
pute the relative motion between the consecutive views of the teleoperator, it
is sufficient to estimate the 3D to 3D rigid transformation between the points
of the partial 3D models. This problem is referred to in photogrammetry as
the absolute orientation and can be better explained by looking at Figure 5.1.
Suppose that Q = {Py,--- ,Py} is a set of N 3D points in the reference co-
ordinate system. Let Q° be the homogeneous coordinates of the points in Q
with respect to the current position of the stereo camera and let Q'~! be the
ones with regard to the previous one. The relative motion between the views
is computed in this case by solving the following least-squares problem

Q' =M"-Q, (5-3)

which is nothing but the rigid transformation between the two partial 3D
models reconstructed with respect to the different camera positions. The ab-
solute orientation is the process of determining the rigid transformation be-
tween two sets of corresponding 3D points. This problem is usually solved us-
ing quaternions to represent the rotation matrix or by applying the SVD [164,

,166,167]. To determine the corresponding points for the computations, it
is necessary to apply image feature detection and tracking techniques. These
are usually susceptible to errors which make the linear solution computed
from an absolute orientation method erroneous and requires correction.

To refine the motion, the obtained values can be used as initial guesses
in the iterative closest point (ICP) technique that tries to find iteratively the
best alignment of the two three dimensional models [168, 169,170, 171]. An-
other way is to apply the bundle adjustment (BA) formulation to minimize
the distance between the reprojected pixels of the 3D points and the corre-
sponding pixels determined by the feature detector. The second strategy will
present the main focus of this chapter.
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Figure 5.1: The 3D homogeneous coordinates of a static set of points Q are
constructed with respect to each position of the stereo camera, i.e. Q; and Q;_1.
The transformation between the coordinates in the two positions is equivalent to
the relative motion between the two stereo cameras, i.e. Mﬁ_l.

5.2 Problem Formulation

Bundle adjustment is to jointly adjust some noisy estimates of the 3D struc-
ture along with the motion of the cameras by correcting the bundle of rays
simultaneously in all images. Given are some N point correspondences which
are pre-computed using a feature detector and tracked over a sequence of im-
ages. In addition, the initial estimate of the 3D structure that the points form
in space is provided along with the L initial poses of the cameras that repre-
sent where each of the images was captured. Using these initial estimates, a
point from the 3D structure is projected on an image at a different position
from the pre-computed feature point. An example of this setup is illustrated
in Figure 5.2. The distance between the two points is called the reprojec-
tion error. The core of BA is to correct the motion estimates of the camera
along with the 3D structure so that the reprojection error is minimized over
all the points in all images. The cost function E to be optimized should
reflect this setup. Using the perspective projection camera model described
in Equation (2.1), it is written as

E=Y"3"d(pl,s™M'P;)’, (5.4)

i=1 j=1

where p’ are the homogeneous coordinates of the j* 2D measured points
in the i'" image (camera), M’ is a 4 x 4 transformation matrix representing
the location of the i camera in the world coordinate system, P; are the
homogeneous coordinates of the j** point in the 3D structure, 7 is a mapping
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from R* to R3 to obtain the correct the dimensions and d is the geometrical
distance measure between p; = 7M'P; and the corresponding measured
feature point pj. The measure d can be any scale invariant distance such as
the Mahalanobis or the cosine distances. The cosine distance is used here to
assess the error between reprojected image point f);. using the estimates of
the variables and the corresponding measured point pj. It describes the angle
formed by p}, the camera center O; and pj, see Figure 5.2. It is expressed by

. ) pz‘ . pz'
d(p},p}) =1—- —F——~—, (5.5)
(P5o5) =1 ]
where || - || denotes the 2 norm. The cosine distance is invariant to scale and

takes the correlation of the data into account. We chose to apply it instead
of the Mahalanobis distance for two reasons. First, it is less complex than
Mahalanobis in the sense that it makes the computations less demanding;
i.e. it does not require the derivation of the covariance matrix, but just the
norm of the vectors. Second, it has been shown in recent surveys that the
cosine distance performs as well as the Mahalanobis if not better in detecting
the similarities among the different features in the images, see [172,173,174].
It is worth to note that the performance of the Mahalanobis distance can
be improved by choosing the optimal covariances for the problem in hand.
Computing the suitable covariances, however, is a bottleneck by itself for it
requires either some trial and error experiments or the application of machine
learning algorithms. This fact additionally justifies the employment of the
cosine distance of Equation (5.5).

BA is widely used in structure from motion problems to refine the esti-
mates obtained from a single moving camera. Examples of algorithms em-
ploying this scheme are [20, 175, 176,161, 177] while an excellent survey is
presented in [178] discussing different methodologies to implement it. The
goal of this chapter, however, is to extract the motion of the teleoperator to
which a stereo rig is integrated. The structure can be assumed to be fixed
since it can be computed using stereo reconstruction as was stated in the
previous section. Doing so and keeping in mind that the motion variables
of the different positions of the rig are independent from each other, renders
the problem to a set of L pose estimation problems, one for each camera.
This will allow us to rewrite the cost function of BA as

N
E;=Y"d(pi, 7MP;)", (5.6)

Jj=1

which has to be minimized separately for each camera. As a summary, esti-
mating the pose of a moving stereo camera consists of three steps:
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1. Calculate the relative motion of the teleoperator at instinct i with re-
spect to that of the previous instinct ¢ — 1 by solving Equation (5.3).

2. Compute the relative position of the teleoperator to the world coordi-
nate system using Equation (5.2).

3. Refine the pose estimate by minimizing non-linearly Equation (5.6).

Reprojection error

Figure 5.2: Structure of the problem.

5.3 Related Work

With the reformulation of the cost function of bundle adjustment in the
form of Equation (5.6), the problem turns equivalent to estimating the rel-
ative pose between the 3D structure and the corresponding points on the
image. In this direction, one can find several linear and non-linear algo-
rithms that can accomplish this task as the techniques that were presented
in [179,180,181,182]. In our case, the linear initial estimate is computed via
absolute orientation. The task is to refine this obtained value by employing
some Newton based non-linear minimization schemes to overcome the errors
introduced from the false matches or the inaccuracies incurred from the cal-
ibration errors. Before doing that, it is necessary to first describe how the
motion variables are usually parameterized in this kind of problems.

5.3.1 Parametrization of the Variables

Assuming that the camera is calibrated and that the 3D structure is known,
the cost function F; has to be minimized for each new position of the cam-
era, i.e. each R’ and t'. To refine the motion, its variables have to be
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parameterized in such a way that the minimization algorithm can avoid the
local minima. The translation vector consists of 3 entries corresponding to
its 3 degrees of freedom (DOF). To parameterize it, it is sufficient to take
its entries as the variables. The rotation in the 3D space is described by a
3x3 matrix consisting in a total of 9 entries although it has only 3 DOF.
Parameterizing the 3D rotation using the 3 Euler angles is not a good idea
in practice since it results in numerical instabilities due to the singularities
and the uneven regions that the angles cover. A rotation can be expressed
using unit quaternions or using local perturbations of an existing rotation.
However, each of these parameterizations has its own drawback. The unit
quaternion has to be constrained so that the vector has a unit norm while
the update step of the rotation using local perturbations does not result ex-
actly in a rotation matrix [178]. In general, a rotational transformation in
R? is represented by the elements of the special orthogonal group SO;. Its
associated Lie algebra so; is the set of 3x3 skew-symmetric matrices which
are considered as the tangent space of SO, at the identity. The isomorphism
2 that allows to identify so, with R? is defined as

. w; 0 —w; w;
Q (W) R* — so,, | Wi = w 0 —uw|. (5.7)
wy | —w; Wy 0

To connect the Lie algebra to the Lie group, the exponential map is usually

used. The rotation matrix R’ can thus be expressed in the form R’ =

exp (2 (w%)). It can be written using the Taylor series expansion of the

exponential function as

sin (flw’[]) 1 —cos ([lw'])
[Jow?[|?

R =exp (2 (w')) =1+ () +Q° (W) . (5.8)

e’

The term to the right is known as the Rodrigues formula of the rotation
matrix. If the magnitude of the vector w’ is small, it can be approximated
with I+ Q (w") which is nothing but the local perturbation around R’ that
are usually used in BA [1758]. Assuming that the magnitude of the vector is
small is not always accurate especially if the initial estimate of the motion
is random or if it contains high amount of noise. In our implementations of
the Newton-based schemes in the vector space, we will be applying the whole
term reflected in the above equation to have an accurate parametrization of
the 3D rotation. Another reason is that the Manifold based scheme that
will be introduced results in the accurate rotation matrix. Thus, taking the
whole term makes the comparison among the techniques fair.
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5.3.2 Levenberg-Marquardt in the Vector Space

The Levenberg-Marquardt (LM) algorithm is a Newton based optimization
scheme that leads to the least-squares solution of the problem in a non-
linear sense [183, 184]. In order to apply LM in the given problem, the
cost function E; needs to be formulated in the form FE; = g!g; where
g = (g1, - ,gN,i]T € RY and g;;, =d (p;'-, WMin). We will be also noting
by a; = [w'T tiT}T € R® as the vector that represents the 6 parameters of
the motion of a camera. LM tries to find the solution vector a that mini-
mizes Equation (5.6) iteratively. The update step at the k" iteration can be
expressed as

Al = (3 a0 1) I (5:9)

Is is the 6x6 identity matrix, p is the damping term that controls the step
size of the iteration and Jg, is the Jacobian matrix which is computed by
taking the first order derivatives of g; with respect to a;

991,
aazT

Jo=| : | erve (5.10)

X2
89N,i

T
Oa;

The term Jgi - Jg, is the approximation of the Hessian matrix used in the
Gauss-Newton algorithm. Therefore, p - Ig can be also thought of as a reg-
ularization term for the Hessian in case if it is close to singularity. Due
to this term, LM has the properties of both the steepest descent and the
Gauss-Newton iterative techniques. Similarly to steepest descent, LM con-
verges slowly to the solution if the initial estimate is far away from the real
solution while it converges fast like Gauss-Newton methods when the ini-
tial estimate is close to the real solution. This is the main reason why LM
is widely used as an optimization scheme in structure from motion prob-
lems. The reader interested in a thorough analysis of the method may refer

to[ Y Y Y Y Y }

5.3.3 Newton Algorithm in the Vector Space

The aim of a Newton-type algorithm is to find the minimum of a given cost
function in an iterative scheme. In the case of the given problem, the update
step used to minimize Equation (5.6) has the following form

al™ =al¥ —H;! VE, (5.11)
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where £ is the iteration number as before, VE; = 2Jg. - g; is the gradient
of the cost function E; and Hp, € R°*° is the corresponding Hessian. The
matrix Hpg, is expressed by

N
Hp, =23 -Jo, + ) (9::-Hy, ). (5.12)

J=1

The matrix H,,, denotes the Hessian with respect to each term of g;, i.e.

o 095,
8aiT Oa;

IA{EZ. = 2Jg. - Jg, is what is used in a Gauss-Newton iterative technique. By

. By setting these terms to zero, the approximated Hessian obtained

adding the damping term p - I to H g, leads us to the approximate Hessian
used in LM, see Equation (5.9). The complexity induced by the computation
of H, , is the main reason that makes LM more favorable in the optimization
of BA. However, failing to take Hy, , into account will make the accuracy of
the motion estimate diverges more from the global solution especially if the
initial estimate of the motion is noisy or far from the global value. The main
reason is that taking the full Hessian notation is more favorable to the large
residual problems where the terms to be minimized, i.e. reprojection errors,
are larger than the minimizer, i.e. the motion. A detailed study of this
point is conducted in [187]. The LM scheme is, however, the state of the art
technique in structure from motion problems since it is usually hoped that
the initial estimates of the variables are accurate enough for the system to
converge to the global solution. It is worth to note that it is also possible
to add a damping factor p - I to Hg, like in Equation (5.9) to regularize
the Hessian if it is close to singularity or to vary the speed of convergence
depending on how far is the initial estimate from the global one. A good
description on how to perform such adjustments is found in [185].

5.4 Newton Minimization on the Manifold

Computation of the second order terms in a Newton algorithm, i.e. right ad-
dend in Equation (5.12), is not favorable due to the complexity arising from
the computation of the Hessian. To get a glimpse of how the computational
complexity rises, the number of floating point operations (FLOPS) required
per camera per iteration are illustrated in Table 5.1. As can be noticed, in-
cluding these terms makes the complexity required for the motion refinement
rises to 5 times more when compared to that needed in LM. The aim of this
section is, therefore, to propose some optimization methods to enhance the
accuracy of the motion estimate of a calibrated camera without a significant
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increase in the complexity. To do that, a Newton minimization scheme on
the manifold will be derived.

A manifold is a topological space in which each point has a neighbor-
hood that looks like the Euclidean space. Such an entity can be illustrated
by a complex surface in space that is sometimes difficult to be expressed
mathematically. Designing an optimization scheme on a manifold can be
visualized as making the minimization iteratively walk on the surface of the
curve described by the variables until the minimum is achieved. In order to
perform such operations, it is necessary that the manifold possesses a spe-
cial structure. It has to be differentiable and smooth so that notions like
distances and angles, necessary to determine the direction of optimization in
a Newton scheme, can be defined. Examples are the Riemannian manifolds
where each has the nice property of being equipped with a tangent space
that allows the transitions from a point to another one to be smooth. An
instance of a Riemannian manifold is the special orthogonal group SO, that
describes the 3x 3 rotations matrices, see Equation (5.7). The tangent space
to this group is its associated Lie algebra so, which is related to the latter
using the exponential map. To derive a Newton-type method, it is necessary
to compute first and second order derivatives. An intrinsic Newton method,
that is, a Newton method which is intrinsically defined on the Riemannian
manifold without referring to any embedding vector space, requires the no-
tion of a Riemannian gradient and a Riemannian Hessian. This idea often
requires an overhead of differential geometric machinery. Here, a projected
Newton-type method is formulated instead.

Definition 5.1 A projected Newton-type algorithm exploits a local parame-
terization of the variables on the manifold. The direction and step size of the
optimization are computed using the associated tangent space. The result is
then projected back on the manifold to update the variables.

In contrast to the intrinsic Newton methods, a projective Newton method is
usually performed in two steps that are explained by the above definition.
The mechanism of such schemes is illustrated in Figure 5.3. To apply this
approach, however, a suitable local parameterization of the rigid motion of
the camera must be first determined. For good references that provide de-
tailed discussions about Lie theory and differential geometry, the interested
reader may refer to [188, 189,190,191, 192].

The main motivation behind adopting such a strategy in this thesis is the
fact that optimization on the manifold has proven recently to be an extreme
success when applied to variant engineering problems. In the following, some
of the latest developments in this domain will be stated. In [162,20], the
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essential matrix of a single moving camera was determined by parameterizing
the latter on the essential manifold. In [27], the notion of the essential
matrix was extended to compute a group of compatible essential matrices by
intersecting several essential manifolds. In [193], the special orthogonal group
was used to impose the constraints of the rotation matrix in independent
component analysis while it was applied in [194] to register the 3D objects
as an alternative to the ICP algorithm. Finally, the Grassmann manifold
was integrated with principal component analysis to track moving objects
n [195]. As a consequence, it makes sense to benefit from this strategy and
apply it to estimate the pose of a moving stereo camera.

1- Computation of Step and
Direction of the minimization

Tangent Space
Local Parameterization s /
2- Back Projection on the

Manifold

Manifold of the Rigid Motion

R
Figure 5.3: Projective Newton-type algorithm on the manifold. A local param-
eterization maps the variables from RS to the manifold of the rigid motion. The
minimization is then performed in two steps: The optimization direction and step

size are computed on the tangent space to the manifold. The calculated values are
then projected back on the manifold to update the motion.

5.4.1 Parametrization of the Motion on the Manifold

The rigid motion in R® is represented by the elements of the special Euclidean
group SF; which consists of all the 4x4 matrices M € SE, of the form
Rt } , (5.13)

M:lo 1

where R € S0, and t € R? are the rotation and the translation of the
camera, respectively’. The Lie algebra se, associated to SF, is the set of

4x4 matrices m € se,
_ | 2(w) ¢
m= { 0 0 ] , (5.14)

!Note that the index i designating the camera number in Equation (5.6) will be dropped
for simplicity since the derivation is the same for any camera under consideration.
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where €2 (w) € so; is a skew symmetric-matrix as shown in Equation (5.7)
and ( is a vector in R3. The matrix m is related to M via the exponential
map, i.e. M = exp (m). Using the Taylor series expansion of the exponential,
it can be easily shown that the translation can be written as

t:(1+w.ﬂ(w)+w.g(w)2>.g’ (5.15)

o? o’

where o = \/%trace (Q7 (w) - 2 (w)). The rotation R remains the same as

was defined in Equation (5.8), i.e. R = exp (2 (w)). To design a Newton-
type optimization scheme on a manifold, it is necessary to employ w and (
to parameterize the rotation and the translation, respectively.

Proposition 5.1 A smooth and local parametrization ¢ of SE; for the cam-
era rigid motion M is defined as

2(D,a) D.,a
qb(M) . RG — SEg,qb(M) (a) = exXp (|: (01 ) 5 }) -M, (516)
where the matrices D, = [I 0] € R**¢ and D, = [0 I] € R**® select the appro-
priate variables. These matrices were introduced to keep a similar notation
for the motion parameters, i.e. a, as was done previously in the vector space.

Proof The proof of this proposition is based on the fact that se; is the
tangent space to SFE;. By the definition of a Riemannian manifold, this space
is smooth in the neighborhood of a given point on the manifold. |

The special Euclidean group SF; is homeomorphic as a topological space
to R® x SO,, i.e. SE, = R? x SO, [192]. This can be simply visualized
from the fact that the rigid motion can be thought of as two consecutive
motions, i.e. a pure translation t followed by a pure rotation R, where
each can be chosen independently from the other. The vector containing the
camera parameters can be written in this case as a = [wT tT]T € R° since
Equation (5.15) reduces to t &~ ¢. The homeomorphism leads us to another
parametrization of the rigid motion.

Proposition 5.2 An equivalent smooth and local parametrization ¢ of R? x
SO, to Proposition 5.1 for the camera rigid motion M is

exp (2(D,a)) D,a

oo : R — R* x SO, o) (2) = 0 1

‘M. (5.17)
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Proof The proof of this proposition is due to the homeomorphism between
the two topological spaces. It will be conducted by contradiction. By the
definition of homeomorphism, there exist a one to one bijective function
between the two spaces SE,; and R?® x SO,. Assuming that the mapping
presented by this proposition is not smooth and local then, the one given in
Proposition 5.1 is the same due to the bijective function. The latter is not

possible due to the properties of the tangent space to a Riemannian manifold.
|

5.4.2 Minimization of the Cost Function

A projected Newton-type method computes a Newton step for the composi-
tion E o ¢ of the cost function F with the local parametrization ¢ and maps
(projects) the update step back to the manifold using the parametrization
again, see Figure 5.3. We slightly abuse the notation to write £ o ¢y to
denote the mapping

Eo ¢(M) ‘R — R, (518)

which corresponds here to the cost function illustrated in Equation (5.6) to
be minimized on the manifold. It is given by

Eodn(a) = Zd(Pjaf’j)Q (5.19)

N
= Zd(pj,ﬂ'AngPj)z s

J=1

where A, is any of the multiplicands of M from Propositions 5.1 or 5.2,

and d (p;, p;) is the distance function depicted in Equation (5.5). As in any
Newton-based minimization scheme, the formulations of the gradient and
the Hessian need to be derived. The gradient V(E o ¢m))(0) € R of the
cost function of the projective Newton-type scheme on the manifold can be
calculated from

i(E o pa)(ca)

de = V(E© éa)(0)" - a, (5.20)

e=0

while the Hessian matrix Hpogy,, (0) € R of the local cost function eval-
uated at zero can be calculated via polarization using the quadratic form

d2
@(E o ¢ay)(ca)

The details of this concept can be found for the interested reader in [189)].

=a"- HE0¢(M)<O) - a. (521)
e=0
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Proposition 5.3 By applying the parameterization of SE; defined in Propo-
sition 5.1, the explicit formula for the gradient of the local cost function at
zero is given by

VEobup)0) = 255, | [-R(rMP)) IslTWd<pj,ﬁj> (5.22)
B s
0d(p, ;)

where € R? is the standard Euclidean derivative of the distance func-

op;
tion shown in Equation (5.5) with respect to p;. In a similar manner to the

gradient, the explicit formula of the Hessian is written as

Hioony, (0) = 2353 (5.23)

+

2y, (D{ﬂ (“(B;J)) [2(MP,) Iﬁd(pj,f»j))

J

_l’_

2 B
2y, ([—mwMPj) Ly 20 e, 131d<pj,f)j>>,
J

%ﬁ];ﬁj) € R3**% 4s the second order Fuclidean derivative of the distance

i
function with respect to p;.

where

Proof The above proposition can be proven by combining the definitions
of the gradients and Hessians illustrated in Equations (5.20) and (5.21) with
the parameterization suggested in Proposition 5.1. |

Proposition 5.4 Using the parameterization of R? x SO, defined in Propo-

sition 5.2, the explicit formula for the gradient of the local cost function at
zero 18

3‘1(91'43]')

V(Eopan)(©0) = 23N, | (DI+DIQT(RP))) 53 d(p;.b;) (5.24)
N J N~
N —8
= 2gs
while that of the Hessian is in the form
Hpopy (0) = 2JEJg (5.25)

J’_

2y, <D1Tﬂ (W) Q(Rpj)D1d(Pj7f>j))

2 B
+ ooy, ((Dgn{nT(an)a o) <D29<RPj)D1>d<pj7ﬁj>> -
J
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Proof The proof is similar to that of Proposition 5.4. In this case, the
motion matrix M is split between the rotation matrix and translation parts
when calculating the derivatives. This was done to simplify the notation since
in contrast to the parameterization of S E;, the one defined in Proposition 5.2
allows that. [

By considering the computed gradient and Hessian using any of the pro-
posed parameterizations, one can observe that their form is compact. There
is no lengthy computations in the evaluation of the first and second order
derivatives of the distance function as in Equations (5.10) and (5.12) in the
vector space. The only derivatives that need to be evaluated are the first and
second order Euclidean derivatives of the cost function with respect to p;, i.e.
ad((;)é;ﬁj) and adzélgg?,f)j)
the computation of the derivatives with respect to the motion parameters re-
duces to matrix multiplications which is a property of the projective Newton
type optimization algorithms on Riemannian manifolds [189]. Looking at
Equations (5.20) and (5.21), one can see that the derivation in this case is
made with respect to the parameter € at zero which designates the direction
in the tangent plane to the manifold and not the parameter vector a itself.
This can be illustrated in our derivations by the terms [ (7MP;) I5]" and
(DI +DTQ" (RP;)) where each represents the derivative with respect to the
camera parameters using each of the two parameterizations. In addition, by
comparing Equation (5.22) to (5.23) and Equation (5.24) to (5.25), we can
see that a lot of terms needed for the computations of the Hessian have to be
also computed for the gradient, e.g. Q (7MP;), @ (RP;)D, and %é;pj).

, which are simple to obtain. The reason for this is that

5.4.3 The Algorithm

Given an initial estimate of the motion M of a camera with respect to the
center of the world coordinate system, the proposed Newton algorithm that
refines the motion will iterate the following update scheme:

Step 1: (Newton step) Compute the vector a € R® by solving
. (u T+ Hpogy, (0)) ca=V (Eonp) (0) (5.26)
Step 2: Update the motion parameters of each camera:
M~—A, M (5.27)

Step 3: Update the reprojections p; using the new value of the motion and
compute the mean reprojection error.

Step 4: Repeat until convergence.
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5.4.4 Analysis of the Derived Scheme

The projective Newton-based minimization algorithm is initialized by first
solving the absolute orientation problem shown in Equation (5.3) to estimate
the relative pose of the camera with respect to the previous one. The pose
of the camera with respect to the world coordinate system is determined
after that by multiplying the latter with all the relative previous poses as
illustrated in Equation (5.2). Then, the method proceeds with the iterative
scheme illustrated in the previous section. Each iteration, the algorithm
performs an optimization step in Equation (5.26) on the tangent space of
the manifold of the rigid motion followed by a projection step which is an
analytic geodesic search described in Equation (5.27), see Figure 5.3. The
proposed technique implements the Riemannian Newton algorithm on a small
neighborhood of the set of local minima of the cost function E. Outside of
this neighborhood where the Hessian is close to singularity or indefinite, the
algorithm might fail. For this reason, Equation (5.26) is modified using the
damping factor p as in case of the LM technique to regularize the Hessian.
This modification is necessary here to enlarge the attraction domain of the
local minima and to control the speed of convergence of the algorithm. The
direction of the step is determined via the Newton direction and it is zero
only when the gradient is zero. Consequently, the algorithm converges to a
critical point of F when the gradient is zero.

What still remains to be shown is that the proposed algorithm will con-
verge to a minimum for a set of observed 3D points and an initial estimate of
the motion M. The proof that will be used is the global convergence theorem
derived in Chapter 6 of [190].

Theorem 5.5 Let PN denotes a mapping from SE; — SE; that calculates
from the motion estimate M* at the k™ iteration, the new estimate MFT!.
The projective Newton algorithm is said to be convergent according to the
global convergence theorem if it satisfies the following conditions:

1. The mapping PN s closed.
2. All the computed MF by the mapping are contained in a compact set.

3. The mapping PN 1is a strictly decreasing function except at the solution.

Proof

1. To prove the first condition of the theorem, we need to recall that
each iteration of the proposed scheme is composed as said before of
two mappings. The first one is from SE; — se; and which is given
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by the solution of the Newton step in Equation (5.26). The second is
the mapping that projects back on the manifold, i.e. se; — SFE;, and
which is represented with Equation (5.27). These two mappings are
continuous and smooth according to the properties of a Riemannian
manifold; therefore, both mappings are closed. Since PN is composed
of two closed mappings then the mapping defined by PN is also closed.

2. The mapping specified by PN generates some matrices of the rigid
motion from the set SFE; which is a compact set by the properties of a
Riemannian manifold.

3. The regularization term represented by the damping factor p in Equa-
tion (5.26) insures that the Hessian remains positive semi-definite.
Hence, the direction of the minimization in this equation is always
negative or decreasing. The step is zero only when the gradient is
zero, the point at which the algorithm meets a fixed point (converges).
Hence, the third condition of the theorem is also satisfied.

Since all the conditions are satisfied, the proposed scheme is globally con-
vergent. The proof was conducted for the first parameterization stated in
Proposition 5.1. A similar proof can be carried out for the second one. W

5.4.5 Comparison of the Computational Complexity

Now that the algorithm was proven to be globally convergent, the next step is
to evaluate its complexity and compare it to the state of the art methods de-
picted in Section 5.3. The main difference in the proposed scheme is that the
optimization, i.e. evaluation of gradient and Hessian, is conducted on a Rie-
mannian manifold. In order to emphasize on the computational complexity,
we present in Table 5.1 a comparison of the costs required for the calculation
of the gradient and the Hessian for each of the minimization algorithms in a
single iteration. The factors multiplied by N are the operations that have to
be evaluated for each point in each view while the others are only required
once per view, e.g. Rodrigues formula in Equation (5.8) to compute the ro-
tations. Each of the shown numbers in the table designates the equivalent
amount of flops needed while the operations that require more than one flop,
e.g. cosine and sine, are mentioned by there names since they depend on the
machine used. LM requires the least computational effort to compute these
terms while the Newton algorithm in the vector space requires the most, i.e.
5 times the computational resources. This shows why the evaluation of the
full Hessian shown in Equation (5.12) is usually avoided in such problems.
However, the amount of computations required by the two versions of the
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projective Newton algorithm on the manifold is 60% less on average than the
latter. Compared to LM, the complexity induced by the proposed method is
only twice higher. However, its application will lead to an improvement in
the accuracy of the motion estimates and will make the result more robust
against the noise. This can be seen from the fact that taking the full Hessian
notation, i.e. the second order derivatives in Equation (5.12), makes the al-
gorithm more robust against being stuck in local minima. This point will be
visualized in the results.

Table 5.1: The total number of flops needed for the computation of the gradient
and the Hessian per iteration. IV is the number of points, sqrt is the scalar square
root, cos is the scalar cosine and sin is the scalar sine. The terms exp and exp,
are the 3x3 and 4x4 matrix exponential respectively.

Algorithm Number of flops

LM N(114 4+ 2 -sqrt) + (227 4 exp +sqrt + cos + sin)
+ (1024 + exp +sqrt 4 cos + sin)
+ (154 expy)
+ (6 +exp)

(

Newton Vectorspace || N (
Newton SE, N(241 + 2 - sqrt

(

Newton R3 x SO, || N(235+ 2 -sqrt

5.4.6 Application to Structure and Motion

Although it is out of scope of this thesis, but the proposed scheme can be
extended for simultaneous structure and motion optimization in BA. We will
briefly sketch here how this issue can be fulfilled. Let us recall first that each
point P; of the 3D structure can be parameterized using its coordinates in 3D
space, 1.e. (X;,Y;, Z;), see [20]. The cost function shown in Equation (5.19)
should be reformulated to designate the mapping

Fo ¢(M1,~~ My, P1, 7pN)(Z) : REEH3N L, R (528)

L N
= > d(pl rALMP;)’

i=1 j=1

where the vector z € R°*3N holds the parameters of all the camera ma-
trices and the 3D points, i.e. z = (aJ,--- ,af, X1, Y1, 21, , XN, YN, ZN),
while Afz) is the corresponding multiplicand of the motion that depends on
the parameterization used, see Propositions 5.1 and 5.2. The derivations
of the gradient V (E o ¢ay .. My p1.py)) (0) € R and the Hessian
HEo@le’MLPl’“’PN)(0) € ROMHINXOMESN of the cost function at zero are then
computed following a similar concept to Equations (5.20) and (5.21). These
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are used after that to calculate the solution vector z using the following
update scheme

B ('u I+ HEOd)(Mlv“',ML,PL‘“,PN)(O)) z=V (E ° ¢(M17""ML7P17"'7PN)) (O)
(5.29)
Of course, the Hessian matrix of the system is sparse in nature due to the
formulation of BA. Therefore, the zero patterns of this entity can be exploited
in the inversion operation to obtain the non-linear least-squares solution of
z. For more information about this topic, the interested reader may refer
to [20,197] to see how this issue is usually performed.

5.5 Results and Discussion

A comparison will be described in this section regarding the application of
LM, the Newton algorithm in the vector space and the proposed Newton
algorithm in its both versions to refine the motion estimate of a moving
camera in the BA framework. To differentiate between the different Newton
schemes, the Newton vectorspace denotes the algorithm described in Sec-
tion 5.3.3, the Newton SFE; designates the projective Newton algorithm with
the parameterization of SE,, the Newton R?® x SO, denominates the other
projective Newton scheme with the R3 x SO, parameterization and LM is the
Levenberg-Marquardt algorithm. All of the techniques will be tested using
one simulated data set and three real image sequences. The goal of the tests
is to demonstrate the performance of the algorithms in terms of the conver-
gence and the accuracy of the estimated motion. For every algorithm, it is
assumed that the cameras are intrinsically calibrated and that the 3D struc-
ture is already computed along with the corresponding image projections. It
is important to point out that the four methods are implemented in Matlab
and they possess the same structure. The only dissimilarity among them
resides in the way the gradients and the Hessians are evaluated which was
thoroughly discussed in the previous sections and illustrated in Table 5.1.
Hence, the divergence in the execution is only dependent on this difference.

Figure 5.4 shows the output of the algorithms when applied to a simulated
data set. The set was generated by creating 100 random 3D points and
projecting them on four random 256 x 256 images. The feature points and the
ground truth 3D structure present the inputs to the Newton algorithms while
the initial estimate for the motion was randomly chosen. The set is tested
in the noise free case. The error in the rotation is measured by transforming
the rotation matrix to the Euler angles, i.e. roll, pitch and yaw, and then
calculating the absolute difference between the estimated and the ground
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truth values. For the translation, the error is computed by evaluating the
distance between the estimated vectors and the corresponding true values.
The results illustrated in the plots show the average over 1000 trials. They
demonstrate in both cases that taking the total Hessian and not just the
approximation leads to more accuracy in the estimated motion.
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Figure 5.4: Result of the algorithms on the simulated data sets. From (a) to

(d) in the respective order: Error in the roll, pitch, yaw and translation estimates
versus the number of iterations to converge in the noise free set.

The second test will be conducted using a subset of the hall stereo se-
quence, that will be applied in Chapter 6, that consists of nine stereo images
of size 640 x 480. The intrinsic and extrinsic parameters of the stereo rig
were computed using the technique of [74]. The motion of the rig consists of
both rotational and translational movements which are known. Using some
features tracked over all the nine stereo images, we computed nine partial
3D structures using each stereo pair by calculating the 3D points with the
camera matrices of the stereo rig. In order to improve the accuracy of the
estimate of the scene, we determined the epipolar geometry between each
pair using the robust version of the five-point algorithm of [162] that was
proposed in [26]. The epipolar constraint was then applied to eliminate the
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outliers and to increase the number of feature points by guiding the corre-
spondences. The absolute orientation technique of [164] was then used to
compute the linear relative pose estimates of the motion by calculating a
rigid transformation between the sequential partial structures and, hence,
resulting in eight initial estimates for the motion. We used these estimates
to obtain an initial alignment of the nine partial structures into a single one
using Equation (5.2). The structure was then inputted along with the ini-
tial estimates of the motion to refine its alignment with the minimization
schemes. The result of this experiment is depicted in Figure 5.5. We show
here the average error in the estimated motion for each frame as was done
in the simulated case but using the ground truth values of the motion and
the average mean reprojection error versus the number of iterations. As a
reference, we also provided the output of the linear algorithm of [164]. The
first thing one can notice is that the all the schemes are able to reduce the
mean reprojection error to the order of 107% to the exception of LM. One can
also realize that the average error in the motion variables is almost constant
among all the frames of the sequence and is much lower than the output of
LM. This result motivates for the employment of the manifold based New-
ton algorithm in TPTA scenarios since the mean reprojection error does not
propagate as with LM and in contrast to the Newton scheme in the vector
space it has a rather similar complexity.

Since the problem in hand is the camera pose estimation, it is also possi-
ble to test the algorithms on video sequences originating from a single moving
camera. Therefore, the last two data sets we will use are the corridor and the
dinosaur sequences of the visual geometry group (VGG) where each one con-
sists of 11 and 36 uncalibrated frames, respectively’. The initial estimates of
the motion in these sets cannot be obtained as was suggested in this chapter.
To obtain these entities, we matched and tracked some feature points over
each sequence. We estimated after that the intrinsic parameters of the images
by applying the camera self-calibration technique of [12]. Using the algorithm
of [26], we computed the robust estimates of the essential matrices between
the sequential images, rejected the feature matches that do not satisfy the
epipolar constraint and then computed more correspondences by guiding the
matches. The initial estimates of the motion are computed by factorizing
the essential matrices, triangulating some of the match points and checking
which of the possible camera matrices satisfy the chieralities [20]. The 3D
structure was then obtained by computing the 3D points with the initial esti-
mates of the camera matrices. Using the different minimization schemes, we

2The sequences can be downloaded from the website of the VGG group at the University
of Oxford: www.robots.ox.ac.uk/~vgg/data/data-mview.html.
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refined the motion estimates and the results are shown in Figures 5.6 and 5.7
respectively. In both cases, the LM algorithm has failed in recovering most
of the poses of the camera while the others have lead to a good output. The
correctness of the motion estimates of the corridor sequence cannot be nu-
merically calculated because this set does not possess a ground truth value
of the motion. To the exception of LM, however, the obtained shapes of the
motion look pretty the same as the one obtained in [198]. With the Dinosaur
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Table 5.2: The results of the minimization algorithms on the dinosaur sequence
along with the ground truth values of the motion. The mean and standard de-
viation of the overall camera poses are in degrees. The outliers are the camera
positions that are not lying on the circle.

Algorithm Mean | Std | Number of Outliers
Ground Truth 10 0.05 0
LM 1.11 | 58.3 20
Newton Vectorspace 10 0.360 0
Newton SE; 10 |0.389 0
Newton R?* x SO, 10.32 | 16.71 2

sequence, the Newton method with the SFE, parameterization was able to
capture the whole circular motion of the camera. This is also the case with
the Newton algorithm in the vector space. The Newton technique with the
R3 x SO, parameterization was also able to capture most of the camera poses
to the exception of two. The ground truth set of this camera was taken in
steps of 10° rotation with a standard deviation of 0.05 [199]. The values
obtained with each of the algorithms are depicted in Table 5.2 along with
the number of outliers which reflect the positions that are not lying on the
circle. This table also confirms that the estimated motion is accurate keeping
in mind that the structure estimate is noisy. The latter was not refined to
emphasize on the robustness of the algorithms in estimating the motion.

By comparing both parameterization schemes of the projective Newton-
type algorithm, we can notice that their performance was almost the same in
all simulations except with the dinosaur sequence. There, the technique with
the parameterization on R? x SO, diverged twice. The reason for that might
be incurred from the fact that this parameterization treats each entity, i.e.
rotation matrix and translation vector, independently which was also seen in
the form of the obtained gradient and Hessian in Equations (5.24) and (5.25).
In contrast, the parameterization on S E; treats all the variables jointly which
might has lead to this slight improvement in the output.

5.6 Summary

This chapter derived a projective Newton-type minimization scheme that re-
fines the motion of a moving camera by optimizing on a Riemannian manifold.
Two parameterizations were proposed that benefits from the underlying Lie
group structure of the rigid motion. The cost function of BA was modified to
accommodate for the parameterizations and then the full numerical formulas
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of the gradients and the Hessians to be used in the process were elicited.
The theoretical proof of the convergence of the algorithm was inferred using
the global convergence theorem. When compared to a similar Newton-based
technique in the vector space, the proposed algorithm has a simpler evalua-
tion of the gradient and the Hessian since the derivations on a Riemannian
manifold are more compact. Compared to LM, the method has a comparable
complexity although the complete form of the Hessian is used and not just its
approximation as done in the previous scheme. Tested on simulated and real
image sequences, the proposed approach leads to more accurate results and it
is more robust against the noise. The derived method seems to be promising
for the camera pose estimation problem arising generally in computer vision
applications and specifically in TPTA scenarios.
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Chapter 6

Scene Reconstruction in
Telepresence

After deriving the key components of this thesis, we would like to empha-
size on the performance of the schemes in a TPTA scenario. The work of
this thesis is related to the subproject M3 which is a part of the SFB 453
telepresence and teleaction project. The subproject, along with several other
ones, had to be integrated in a demonstrator for the project appraisal. The
one that we were involved in was the “Multi-modal Multi-User Telepresence
and Teleaction system”. Its objective can be summarized as two human op-
erators have to explore and navigate in a remote environment in order to
locate and repair a broken pipe. To what concerns this thesis, the task was
to construct the 3D model of a room so that the teleoperators are able to
navigate through the door to another room where the broken pipe is located.
Each teleoperator was equipped with a stereo head, see Figure 6.1. On the
top of the head of one of the teleoperators, a time of flight camera (PMD)
was also integrated'. The latter was registered with the stereo cameras so
that it is possible to compare the output of the stereo-based system to that
of the PMD.

The VGA stereo images of the teleoperator are captured, compressed
using the MPEG4 scheme and then sent on the network. At the operator
site, the images are decoded and then rectified to align the epipolar lines of
both stereo images with the scanlines using [119]. We used the BSP-Tritree
algorithm of Chapter 3 to construct the reduced mesh of the image and then
computed the depth of the mesh nodes using the sparse stereo matching
strategy that was described in Chapter 4. The maximum disparity range was
set to 150 pixels. The depth information were then employed to construct

Ly pmdtec.com
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Figure 6.1: The remote teleoperator where our stereo camera was integrated. On
the top of the stereo head, we placed a PMD 3D camera (in black) which we used
to judge the quality of the acquired scenes with our stereo system.

the 2.5D mesh of the frame. The motion trajectory of the teleoperator’s
stereo head was known and it was used to register the sequential meshes.
The generated mesh was encoded and broadcasted over the network using
the MPEG4 BIFS standard [21]. At the operator site, the received mesh was
rendered using the image sphere techniques of [200]. The throughput (fps)
of the 3D reconstruction scheme is illustrated in Figure 6.2. The rate was
measured from the instant a stereo image is received till the mesh update
with MPEG4 BIFS is generated. The average frame rate we achieved varies
between 1 fps with the sparse DP version of [147] and 1.5 fps with the sparse
scheme of [16] by employing 4 CPUs. When compared to the normalized
correlation method, the latency that one can notice is around 1.5 fps at the
cost of reconstructing more confident virtual scene for the teleoperator. The
visual results of the scan illustrated in Figure 6.3 show that the quality of
the reconstructed scenes using the sparse DP are preserved. The constructed
3D scene of the scan is pretty overlapping with that of the PMD camera.
This result also justifies the application of sparse stereo in such scenarios.
The latter will not deteriorate the visual quality of the reconstructed scenes
and will reduce the latency of the DP-based stereo reconstruction at the
teleoperator side. Furthermore, it is possible now to attain a real-time rate
by employing a computer cluster with a fewer number of processing units
and, thus, reducing the total cost.

The motion of the stereo head in the above demonstrator was preset and,
therefore, it was not necessary to employ the motion estimation scheme that
was developed in Chapter 5. Going back to the result’s section of that chap-
ter, however, we showed in Figure 5.5 the error in the motion estimate using
a subset of the stereo sequence that was captured from the demonstrator
when the proposed algorithm is applied. The error in the proposed New-
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Figure 6.2: Evaluation of the overall throughput in fps of the DP based sparse
scene acquisition system. For reference, we also tested the normalized correlation
approach. The maximum disparity range was set to 150 pixels.

ton scheme was better and almost constant when compared to Levenberg-
Marquardt which is usually used in such problems. In order to compute the
motion in a TPTA scenario or in any computer vision problem, feature points
need to be detected and tracked over the sequence. A fast tracker that can
accomplish this job is the KLT tracker what was developed by Tomasi and
Kanade in [201] and then enhanced by Bouguet in [202]. Although it is fast,
KLT fails to track the points when the movement between the consecutive
frames is large. This explains why it was not possible to apply the motion
estimation scheme to all of this stereo sequence. What is needed to overcome
this problem is to employ a wide baseline image matching technique. How to
compute the image matches for wide baseline cameras is a wide research field
by itself. Although there have been a lot of work is this area as the meth-
ods proposed in [203, 204,205, 206], further research is necessary to develop
suitable algorithms for TPTA scenarios.

In the presented demonstrator, there was no plan to use stereo cameras
with automatic zoom lenses at that time. Integrating the MLS algorithm to
compute the camera parameters, however, is not difficult to realize. Looking
at Figure 1.2, the operator has the ability to control the automatic zoom
using the control lines. The zoom control is also required for the MLS algo-
rithm in order to know at which values the camera parameters need to be
computed. Once the parameters are interpolated, they can be fed for the
stereo rectification and the 3D reconstruction algorithms. It is worth to note
that while varying the zoom, the zooming factor has to be kept the same in
both cameras of the teleoperator. This is necessary to ensure that the stereo
matching strategy remains valid. Otherwise, it will be necessary to follow
other techniques that are capable of matching images with different resolu-
tions. Examples of such methods are proposed in [207,208]. The rectification
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theme actually opens the door for a future research topic. It is important to
see how the errors in the interpolated intrinsic parameters affect the stereo
rectification process and how can MLS be tuned to minimize the effect.

Figure 6.3: Scan of a room-environment. The first row shows three views of the
output of the proposed system using for stereo matching the sparse DP version
of [16]. The second row shows the same three views using the PMD 3D camera.
The third row shows the output of the proposed system (shaded) overlapped with
that of the PMD camera.



Chapter 7

Conclusions and Outlook

We presented in this thesis several techniques to enhance the stereo-based
3D scene reconstruction. Our motivation is to make this process more suit-
able for a TPTA scenario where several issues have to be considered. The
reconstruction process should not impose any restrictions on the TPTA ap-
plication. It should also result in an accurate perception of the scene while
minimizing the delays incurred from the computations. In the following, we
will recall the major contributions that were performed:

1. Calibration of automatic zoom cameras with MLS: A technique
called MLS was derived in Chapter 2 based on the data fitting theory
to calibrate a zoom camera. The method requires the system to be
calibrated at a number of focus and zoom settings to generate some
measurement points of the intrinsic parameters. Then, MLS proceeds
by approximating each intrinsic parameter with local polynomial func-
tions at the unmeasured points. Compared to previous fitting methods,
MLS was able to increase the accuracy of the variables. In addition,
it was less sensitive to the number of measured focus and zoom set-
tings. The reason for these improvements is the gained adaptivity in
fitting the scattered data since the final solution is the concatenation
of several local solutions. To reduce its computational complexity, the
CMLS technique was developed. The latter clusters and approximates
the MLS curves with several polynomial functions. Compared to MLS,
CMLS requires very simple computation in a TPTA scenario; however,
the latter results in more accurate values of the intrinsic parameters.
In contrast to standard camera self-calibration schemes, the MLS ap-
proach can be applied in TPTA without imposing any constraints on
the teleoperator. It does not require waiting for several images to cali-
brate the camera and does not impose any critical motions.
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2. Mesh representation of images with BSP: In Chapter 3, a new
technique based on binary space partitions was presented to approxi-
mate an image with a content adaptive mesh in which the nodes are its
non-uniform samples. The goal was to represent the intensity variation
of the pixels located inside a triangle of the mesh using the equation
of the plane defined by its three vertices. A cost function using PSNR
was then defined and maximized to locate the triangles that best de-
scribe the points lying within. BSP starts by dividing an image into
two triangles along one of the diagonals. In order to subdivide each
triangle recursively, three partitioning schemes were applied. A simple
one that divides each triangle into two equal ones if the PSNR thresh-
old is not satisfied. The other two make use of SVD and Kmeans to
estimate the direction of the cut. The results showed that the size of
the meshes constructed with BSP is smaller than the ones obtained by
the state of the art methods. Furthermore, the quality of the recon-
structed images was preserved. In terms of speed, the BSP method
using the simple clustering scheme, i.e. BSP-Tritree, was found suit-
able for TPTA scenarios since it can be easily expanded to real-time
due to the parallelism incurred from the application of BSP.

3. Stereo matching with sparse DP: One of the new ideas explored
in thesis and Chapter 4 was to benefit from the sparse structure of the
images obtained from an image content adaptive meshing scheme to
accelerate stereo matching. For this reason, a sparse stereo matching
algorithm based on dynamic programming was developed that com-
putes the disparity values only at the nodes of the mesh (non-uniform
samples) of the reference image. The method starts by computing
the matching costs just at the samples. A smoothness cost was then
proposed to take the distance between the neighboring samples into
account. This was required to let DP increase the smoothness penalty
between the close samples since they are located near the edges of
the image and vice versa. The conducted tests showed that the non-
uniform samples are sufficient to recover the dense disparity map of the
scene with an acceptable error. In addition, they demonstrated that
depth maps are now obtained up to 50% faster than when using dense
DP stereo algorithms. This makes the approach applicable in TPTA
scenarios because it requires less computational resources and, hence,
less latencies. In addition, the application of DP increases the fidelity
of the computed depth maps. This can be visualized since it introduces
lower error rate than the local approaches that have been used in recent
stereo-based telepresence systems.
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4. Camera motion estimation via Newton-type minimization on
the manifold: To estimate the global motion of the camera, i.e. tele-
operator, a projective Newton-type scheme was derived in Chapter 5.
The algorithm refines the motion in the bundle adjustment (BA) frame-
work (reprojection errors) via optimization on the Riemannian mani-
fold of the rigid motion. Two parameterizations were proposed for the
motion variables. The first one uses the underlying Lie group struc-
ture of the special Euclidean group SE; while the second one benefits
from the homeomorphism between the latter and R? x SO,. The cost
function of BA was modified accordingly to accommodate each of the
parameterization schemes. Then, the complete formulas of the gradi-
ents and the Hessians to be used in the optimization were calculated.
Compared to a similar Newton-based technique in the vector space, the
proposed methods is simpler since the evaluation of the gradient and the
Hessian are much cheaper on the manifold. Compared to Levenberg-
Marquardt, the algorithm has a comparable complexity in terms of the
evaluation of the gradient and Hessian. In addition, its application
leads to more accurate results and it is more robust against the noise.
The obtained results suggest the usage of such methods in TPTA since
they do not significantly increase the complexity and they lead to more
accurate estimates of the motion.

In the course of the thesis, we also found several issues that can extend
this work and present interesting directions for future research:

e The MLS technique proposed in Chapter 2 approximates independently
each intrinsic parameter. This motivates the exploration of techniques
that can jointly interpolate the five intrinsic parameters by considering
them along with the focus and zoom inputs as a seven dimensional
space. An interesting idea is to investigate a suitable parametric rep-
resentation of the manifold structure of this space. The representation
must allow us to have a two way mapping between the parameters and
the manifold structure and not just a one way mapping as in manifold
learning scheme, see [56, 57,58, 59,60, 61]. Such a feature will pro-
vide the possibility to embed the seven dimensional space into a lower
dimensional one where the data can be approximated in an easier man-
ner. By back projecting the computed model into the higher space, it
will be possible to recover the real values of the intrinsic parameters
required for camera calibration. A similar idea was performed in [(2]
were the authors used some deformation models to accommodate for
such mapping in image interpolation.
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e Sparse DP was derived without taking into consideration if a non-
uniform sample is occluded or not. It would be a more accurate proce-
dure to find a suitable occlusion model in sparse DP to make it detect
the occluded non-uniform samples in the other image. This knowledge
should be later incorporated to modify the position of the sample in
the mesh to the location of the nearest non-occluded pixel in the image
that retains the quality of its mesh approximation.

e The sparse stereo matching strategy was applied in this thesis to the
dynamic programming which is a scanline-based optimization scheme.
The global approaches, however, usually result in disparity maps with
better quality but they are slow to be applied in real-time applications
as in TPTA. It would be interesting to apply this strategy to the global
methods. It is necessary to analyze the effect of the sparsity of the
image on the quality of their result and their speed to assess if it is
feasible to apply them in TPTA. Some preliminary results on this topic
have been recently obtained in [31].

e The implemented stereo-based 3D reconstruction scheme considers only
static scenes. If moving objects are to occur in a TPTA scenario, it
is more convenient to update only their location and leave the static
ones intact. One methodology would be by first processing the stereo
images to detect the moving objects. For this task, several algorithms
should be tested and compared to measure their efficiency in TPTA as
the ones proposed in [209,210,211]. Once detected, the moving objects
are subtracted from the scene and their depth should be updated by
tracking their movement.

e [t would be interesting to extend the developed camera motion estima-
tion technique on the manifold to adjust structure and motion simul-
taneously as was sketched in Section 5.4.6. It is important to see how
a projective Newton-type minimization scheme on the manifold would
affect the overall optimization in bundle adjustment. It is significant
to visualize whether or not the relative performance of the algorithm
remains the same in such cases.

e As noticed in the previous chapter, it is necessary to investigate a wide
baseline matching strategy suitable for TPTA scenarios in order to
track some points and use them to estimate the motion of the teleop-
erator. In addition, it is important to study the effect of the proposed
calibration scheme on the stereo rectification process and see how it
can be tuned to minimize the induced errors.



Appendix A

Abbreviations, Notation and
Symbols

A.1 Abbreviations

2D two dimensional or dimensions
3D three dimensional or dimensions
BA bundle adjustment

BIFS binary format for scene

BSP binary space partitions
CMLS  clustered moving least-squares
DOF degrees of freedom

DP dynamic programming
FLOPS floating point operations
FPS frames per second

CPU central processing unit

GPU graphical processing unit
ICA independent component analysis
ICP iterative closest point

LLE local linear embedding

LM Levenberg-Marquardt

LS least-squares

MLS moving least-squares

MPEG moving picture expert group
MSE mean squared error

PCA principal component analysis

PSNR  peak signal to noise ratio
RMSE  root mean squared error
SSR sum of the squared residuals
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SST
SVD

THEMATICAL NOTATION

total sum of squares
singular value decomposition

TPTA telepresence and teleaction
UIPE undistorted image plane error

VGA

CoS
exp
sin
sqrt
se,
S0,

R
Rix
SE,
SO,

video graphics array, denotes an image of 640x480 pixels

Mathematical Notation

scalar, vector, matrix

transpose operation of the argument

floor operation of the argument

the 2 norm of the argument

absolute value of the argument

right hand side into left hand side

left hand side into right hand side

left hand side is defined as the right hand side
left hand side is defined to be equal to the right hand side
area of the triangle

infinity symbol

gradient operator

left hand side belongs to right hand side
composition of a function and a parameterization
first order derivative with respect to a

second order derivative with respect to a

first order partial derivative with respect to a
second order partial derivative with respect to a
the limit operator

the maximum operator

the minimum operator

cosine of the argument

matrix exponential of the argument

sine of the argument

square root of the argument

Lie algebra of the special Euclidean group

Lie algebra of the special orthogonal group

set of real numbers

vector of real numbers with a length of ¢

matrix of real numbers with a dimension of 7 x j
special Euclidean group of 3D rigid transformations
special orthogonal group of 3D rotation matrices
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A.3 Mathematical Symbols

1,7, k,l scalars or indices

0, coefficient of the line opposite to v,

Bp coefficient of the partition line in a triangle subdivision

X measurements vector of focus and zoom settings

X also x;, single measurement of a focus and zoom setting

0; where i = {1, 2,3}, are the barycentric coordinates of p; in T’
v direction of the partitioning line in a triangle

€ PSNR threshold for the mesh approximation

7 normal vector to the plane defined by the triangle T

v vector coefficients of w for any intrinsic parameter

Vij single coefficient of w for any intrinsic parameter

Vs vector coefficients of a cluster S

) monotonic decreasing function for Es,,o0n

K radial distortion coefficient

A the weighting for E,,00th

W damping term for Newton algorithms

w; where i = {1,2, 3}, are the DOF's of a 3D rotation matrix

10) parameterization of the motion on the manifold

T mapping from R* to R3

v mean value of the intensities of the pixels in a mask

w bivariate polynomial function

Y weighting function

PYsr weighting function defined over SR, needed for C,

P basis vector of the polynomial function w

p function that results in the value of intrinsic parameter at
each measured focus and zoom setting s; and o;

o skew parameter describing the angle of pixel’s axis

T tangential distortion coefficient

0 vector of intrinsic parameters of measured focus and zoom
settings

0; value of an intrinsic parameter at each measured focus and
zoom setting

éj estimated value of an intrinsic parameter at a focus and
zoom setting

6 vector of estimated values of an intrinsic parameter at several
focus and zoom settings

éj mean of the intrinsic parameters in a cluster

& number of the coefficients in @
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a configuration of all disparity values in an image

matrix of the coefficients for all intrinsic parameters

multiplicand of the motion in ¢, i.e. ¢y (a) = AgM

isomorphism from R® to so,, it denotes a skew-symmetric

matrix of the argument

space of polynomials of degree m

matrix of basis vectors of the polynomial function w

matrix of the values of all intrinsic parameters of at each

measured focus and zoom setting s; and o;

a measurement matrix containing the points p; of a triangle

magnitude of the second derivative of a pixel

also a;, 6x1 vector of the motion parameters for the i camera

skew parameter describing the angle of a pixel’s axis

disparity function of a pixel

distance function between the arguments

the epipole in the left image of a stereo camera

the epipole in the right image of a stereo camera

focal length

x component of the focal length

y component of the focal length

also g;, reformulation of E for the i'" camera, i.e. E; = gl'g;,

in BA

height of a window or mask in the image

order or degree of the polynomial w

4x4 matrix representing the Lie algebra se,

size of a subset of data points

also o, and o;, single zoom setting of the automatic zoom

a point in an image

also p, (x,y), point in the left image of a stereo camera

also pr (2',7/), point in the right image of a stereo camera

pr  also pyj, a point in an image with the intensity as the third
coordinate

P  mid-point between the centers of the two clusters in a triangle

P a point in an image with homogeneous coordinates

p; also p;, homogeneous coordinates of the 5" measured 2D point
in the i** camera

p;  also p;, homogeneous coordinates of the 4" reprojected 2D

point in the ¥ camera

= /.2 + y,2. Needed for computation of x4 and 4
S also s; and s;, single focus setting of the automatic zoom
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xnb

L
3 & o

[Si=RologoY=

gqtq

Esmooth

Esmooth

G

Hg,
Hg,
ng,i

Hrop i (0)
V(Eo¢n)(0)

>

skewness of the data (statistical term)

3x1 vector denoting the 3D translation

3D translation vector of the camera at instinct ¢
vertex of a triangle in the mesh approximation of

an image

new vertex in the mesh approximation of an image
opposite vertex to v,

width of a window or mask in the image

also z; and x;, column index in the image

also Z; and 2, reprojected column index in the image
x coordinate of the principal point

distorted x coordinate of the pixel

normalized x coordinate of the pixel

x coordinate of the neighboring sample in sparse DP
also y; and y;, row index in the image

also y; and g;, reprojected row index in the image

y coordinate of the principal point

distorted y coordinate of the pixel

normalized y coordinate of the pixel

baseline of a stereo camera

data costs for stereo matching

data costs C' aggregated over the support region SR
a matrix for all the costs, i.e. cost volume, in DP
selection matrix, equals to [I O]

selection matrix, equals to [0 I

also FE;, error or cost function to be optimized

data error or cost function associated with C'
smoothness error term or cost function for stereo
matching

smoothness error term for sparse DP

number of calibration points multiplied by that of the
calibration grids

Hessian matrix

approximated Hessian matrix, 2Jg - Jg,

Hessian with respect to each term of g;

Hessian of the composition E o ¢y on the manifold
gradient of the composition £ o ¢ on the manifold
intensity value of the pixel

constructed intensity value of the pixel

also Jg,, the Jacobian matrix
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ETAA

gy
I
—

~—~
~—

=

YT OQ00 =

<

TE QO

S,

@y

n n
=y

SR

3x3 matrix of the intrinsic parameters

matrix of the intrinsic parameters at instinct ¢

number of poses of a camera

4x4 matrix representing the position of the camera at
instinct ¢

relative position of the camera between instincts ¢ and 7 — 1
size of the data points

order of complexity

camera center

camera center of the left image of a stereo camera
camera center of the right image of a stereo camera

a point in space

a point in space with homogeneous coordinates

4" point in space with homogeneous coordinates

a set of homogeneous coordinates of 3D points in space
homogeneous coordinates of the 3D points with respect to
the camera position at instinct ¢

3x3 matrix denoting the 3D rotation

3D rotation matrix of the camera at instinct ¢
coefficient of determination

region to be clustered

also Sj, a cluster of the region S

support region of a pixel over which C|, is calculated

a triangle in the mesh approximation of an image
diagonal matrix of weights

horizontal coordinate of a point in space

vertical coordinate of a point in space

depth of a point in space
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