Untersuchungen zur Reaktivität der Zintl-Anionen der Tetrele in Lösung

MIT GOLD-VERBINDUNGEN

Annette Spiekermann

Technische Universität München

Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien

Juni 2009

Technische Universität München

Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien

Untersuchungen zur Reaktivität der Zintl-Anionen der Tetrele in Lösung mit Gold-Verbindungen

Annette Spiekermann

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigte Dissertation.

Vorsitzender:	UnivProf. Dr. U. K. Heiz
Prüfer der Dissertation:	1. UnivProf. Dr. Th. Fässler
	2. UnivProf. Dr. A. Türler

Die Dissertation wurde am 23.9. 2008 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 13.11. 2008 angenommen.

"... It's a magical world, Hobbes let's go exploring!"

B. Watterson

Danke!

Meinem Doktorvater, Prof. Dr. Thomas F. Fässler für Vertrauen, wissenschaftliche Begleitung und Förderung sowie Toleranz gegenüber meinen didaktischen Bestrebungen

Herrn Prof. Dr. Andreas Türler für die spontane, freundliche Bereitschaft zum Zweitgutachten

Meinen Kollegen Andreas, Bele, Bernhard, Burghard, Christian, Daniel, Dieter, Flo, Florian, Frank, Georgeta, Ingrid, Jian-Qiang, Klaus, Lisa, Manuela, Markus, Martin, Rainer, Peggy, Sandra, Saskia, Sebastian, Stephan, Sung-Jin, Viktor, Ulla für viel mehr als ,nur' Chemie

> Andreas, Anita, Anja, Bina, Grant, Heinz, Jürgen, Rike, meinen ,Zürichern' für freundschaftliches und musikalisches Gegen- und Gleichgewicht

> > Meiner Familie für Wurzeln und Flügel

> > > Danke!

Inhaltsverzeichnis

1.	Einleitung	1
1.1.	Zintl-Anionen der Tetrele	1
1.2.	Gold(I)-Verbindungen	11
1.3.	Gold-Clusterverbindungen	15
1.4.	Ziele der vorliegenden Arbeit	18
1.5.	Literatur zu Kapitel 1	20
2.	Zintl-Phasen K4E9 (E = Ge, Sn, Pb) mit Goldphosphinkomplexen:	
		24
2.1.	Einfluß der Reaktionsbedingungen	24
2.2.	ESI-MS Untersuchungen von Zintl-Ionen in Lösung	31
	2.2.1. ESI-MS von Lösungen der Edukte	33
	2.2.2. ESI-MS der Reaktionslosungen	36
	2.2.3. ESI-MS VON $[K(2.2.2-Cryp1)]_{2}[Geg^{27}/Ge10^{27}]$	39
	2.2.5. Veraleichende Diskussion	40
2.3.	Literatur zu Kapitel 2	44
3.	Umsetzungen von K4Ge9 mit AuPPh3Cl	45
3.1.	Einleitung	45
3.2.	[K(2.2.2-crypt)]5[Au3Ge18]	45
	3.2.1. Darstellung und Analytik	45
	3.2.2. ESI-Massenspektroskopie	46
	3.2.3. Kristallstruktur	49
	3.2.4. Strukturbeschreibung	51
	3.2.5. Theoretische Untersuchungen	57
3.3.	[K(2.2.2-crypt)] ₈ K[Au ₃ Ge ₄₅]	60
	3.3.1. Darstellung und Analytik	60
	3.3.2. Kristalistruktur	60
	3.3.4 Theoretische Untersuchungen	63 70
3 1	Vordojchondo Dickussion	72
J.4. 2 Б	literatur zu Kapital 2	7 J 0 1
3.5.	Liferatur zu Rapiter S	01
4.	Umsetzungen von K4Pb9 mit AuPPh3Cl	84
4.1.	Einleitung	84
4.2.	[K(2.2.2crypt)] ₂ [Pb ₅]	85
	4.2.1. Darstellung und Analytik	85
	4.2.2. Kristallstruktur	85

	4.2.3. Strukturbeschreibung	87
4.3.	[K(2.2.2crypt)]2[Pb10]	90
	4.3.1. Darstellung und Analytik	90
	4.3.2. Kristallstruktur	90
	4.3.3. Strukturbeschreibung	92
4.4.	Vergleichende Diskussion	96
4.5.	Literatur zu Kapitel 4	101
5.	Reaktionen der Zintl-Anionen K4E9 mit [Au9(PPh3)8](NO3)3	102
5.1.	Einleitung	102
5.2.	Synthese und Analytik von [Au9(PPh3)8](NO3)3	104
5.3.	K4E9 mit [Au9(PPh3)8] (NO3)3: Untersuchungen der Gleichgewichte	
	in Lösung	108
	5.3.1. Cluster-Synthese in situ	109
	5.3.2. Umsetzungen von [Au₂(PPh₃)ଃ] (NO₃)₃ mit K₄E₂	111
	5.3.3. Kristallisations experimente von $[Au_9(PPh_3)_8](NO_3)_3$ mit K ₄ E ₉	113
5.4.	Diskussion	115
5.5.	Literatur zu Kapitel 5	118
6. 7.	Zusammenfassung und Ausblick Experimenteller Teil	119 123
7.1.	Schutzgastechnik	123
7.2.	Verwendete Chemikalien	124
7.3.	Analytische Methoden	125
	7.3.1. Energiedispersive Röntgenspektroskopie	125
	7.3.2. Elementaranalysen	125
	7.3.3. Massenspektroskopie	125
	7.3.4. Kernmagnetresonanz-Spektroskopie (NMR)	127
	7.3.5. Einkristall-Rontgendittraktometrie	12/
7 4		12/
/.4.	Synthesen der Edukte	128
	7.4.1. Synthesen der Au(I)-Edukte	120
	7.4.3. Synthese von $[Au_{0}(PPh_{3})_{3}](NO_{3})_{3}$	135
75	Experimente zu Kapitel 2	138
7.0.	7.5.1 Synthese von [K(2.2.2-crypt)] ₃ [Ge ₉]PPh ₃	138
76		
/ .0.	Experimente zu Kapitel 3	138
	Experimente zu Kapitel 3 7.6.1. Synthese von [K(2.2.2-crvpt)]5[Au3Ge18]	138 138
	Experimente zu Kapitel 3 7.6.1. Synthese von [K(2.2.2-crypt)]5[Au3Ge18] 7.6.2. Synthese von [K(2.2.2-crypt)]8K[Au3Ge45]	138 138 139
7.7.	Experimente zu Kapitel 3 7.6.1. Synthese von [K(2.2.2-crypt)]5[AU3Ge18] 7.6.2. Synthese von [K(2.2.2-crypt)]8K[AU3Ge45] Experimente zu Kapitel 4	138 138 139 139

	7.7.2. Synthese von $[K(2.2.2-crypt)]_2[Pb_{10}]$	140
7.8.	Experimente zu Kapitel 5	141
	7.8.1. Synthese von [K(2.2.2-crypt)]₅[Au₃Ge₁8] aus [Au₅(PPh₃)8](NO₃)₃ und K₄Ge₅	141
	7.8.2. Synthese von [K(2.2.2-crypt)]&K[Au3Ge45] aus [Au9(PPh3)8](NO3)3 und K4Ge9	141
	7.8.3. Synthese von [K(2.2.2-crypt)]4K2[Ge9-Ge9] aus [Au9(PPh3)8](NO3)3 und K4Ge9	142
	7.8.4. Synthese von [K(2.2.2-crypt)] ₂ {Ge ₉ ²⁻ /Ge ₁₀ ²⁻ } aus [Au ₉ (PPh ₃) ₈](NO ₃) ₃ und K ₄ Ge ₉	142
	7.8.5. Synthese von [K(2.2.2-crypt)3]K[Sn9] aus [Au9(PPh3)8](NO3)3 und K4Sn9	143
7.9.	Literatur zu Kapitel 7	144

Anhang

Anhang I	Strukturdaten von [K(2.2.2-crypt)]₅[Au₃Ge18]	145
Anhang II	Strukturdaten von [K(2.2.2-crypt)]8K[Au3Ge45]	152
Anhang III	Strukturdaten von [K(2.2.2-crypt)]₂[Pb₅]	167
Anhang IV	Strukturdaten von [K(2.2.2-crypt)]2[Pb10]	168
Anhang V	Liste der Veröffentlichungen	170

Verzeichnis der Abkürzungen

18-c-6	18-Krone-6, 1,4,7,10,13,16-Hexaoxacyclooctadecan
2.2.2-crypt	4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosan
2b	zweibindig
3b	dreibindig
Α	Alkalimetall
A-P	Antiprisma
Су	Cyclohexyl (C6H11)
DMF	Dimethylformamid
E	Tetrelelement
EDX	Energiedispersive Röntgenspektroskopie
En	Ethylendiamin
ESI	Electrospray Ionisation
Et	Ethyl (C ₂ H ₅)
FAB	Fast Atom Bombardment
GE	Gerüstelektronenanzahl
НК	Handschuhkasten
HPLC	Hochdruck-Flüssigkeitschromatographie
HSAB	Hard and Soft Lewis Acids and Bases
L	Ligand
Μ	Metall
min	Minute
Ме	Methyl (CH3)
мо	Molecular Orbital, Molekülorbital
MS	Massenspektroskopie
NMR	Kernmagnetresonanz-Spektroskopie
Ph	Phenyl (C ₆ H ₅)
quadr.	quadratisch
SEN	Shared electron numbers
†Bu	tert-Butyl (C4H9)
tol	Toluol
tppme	1,1,1-tris(diphenylphosphino-methyl)ethane
trig.	trigonal

1. Einleitung

1.1. Zintl-Anionen der Tetrele

Die Elemente der 4. Hauptgruppe zeigen bereits in ihren elektronischen Eigenschaften – vom Isolator (C) über die Halbleiter (Si, Ge), das Halbmetall (α -Sn), zum Metall (β -Sn, Pb) – eine Vielfalt, die ihrer zentralen Stellung im Periodensystem Rechnung trägt. Ihre Strukturen vereinen klassische Konzepte der chemischen Bindung (kovalente Bindung und metallische Bindung) und ermöglichen Einblicke in Grenzbereiche herkömmlicher Bindungsverhältnisse zum besseren Verständnis der "wahren" chemischen Natur dieser Elemente und ihrer Verbindungen.

Homoatomare Clusteranionen der Tetrele bieten nicht nur ein weites Forschungsgebiet zum Verhältnis zwischen der Anordnung der Atome und den beobachteten elektronischen Eigenschaften, ihre klare Ästhetik fasziniert Wissenschaftler und Laien seit über einhundert Jahren.

Albert Ioannis beobachtete im letzten Jahrzehnt des 19. Jahrhunderts^[1], dass ammoniakalische Lösungen der Alkalimetalle in der Lage sind, Blei aufzulösen. Trotz herausragender experimenteller Fähigkeiten fehlten ihm und seinen Mitarbeitern Konzepte der chemischen Bindung, um die Beobachtungen zu systematisieren und einzuordnen. Erst 40 Jahre später gelang es *Eduard Zintl* in Darmstadt, auf Basis der Beobachtungen von *Ioannis* und seiner eigenen systematischen Arbeiten auf dem Gebiet der Metalle und Halbmetalle der 3. bis 5. Hauptgruppe, die Zusammensetzung der beteiligten Spezies mithilfe potentiometrischer Titrationen auszuklären und formal zu beschreiben.^[2, 3]

Bis zu diesem Zeitpunkt war die Aufteilung der Elemente des Periodensystems in Metalle und Nichtmetalle die Basis für das Verständnis chemischer Bindungen. Klassische Regeln der Elektronenübertragung vom Metall auf das Nichtmetall zur gegenseitigen Erfüllung der Oktettregel ermöglichten eine theoretische Beschreibung fast aller bis dahin bekannten und untersuchten Verbindungen. Auch Metalle und Legierungen ließen sich mit dem heute noch in Grundlagenkursen der Chemie gebräuchlichen Modell der metallischen Bindung erklären, welches mit dem Konzept positiver Atomrümpfe, umgeben von einem "See" von Elektronen metallische Eigenschaften wie Glanz, Elastizität und elektrische Leitfähigkeit der Metalle schlüssig erklärt.

Hume und Rothery hatten zudem ein erweitertes Konzept zum strukturellen Verständnis der nach ihnen benannten intermetallischen Phasen entwickelt, welches Eduard Zintl bereits bekannt war und voraussichtlich Denkansätze für die eigene Arbeit lieferte.^[4]

Intermetallische Phasen^[4-6], wie sie in Form von Legierungen seit langer Zeit bekannt und eingesetzt werden, haben makroskopisch die Eigenschaften von Metallen; ihre atomare Struktur und die daraus abzuleitenden physikalischen wie chemischen Eigenschaften lassen sich auf Basis der metallischen Bindung einordnen und systematisieren. Ionische bzw. kovalente Verbindungen hingegen basieren auf dem Elektronenübertrag vom Metall auf das Nichtmetall, bedingt durch entsprechende Differenzen in der Elektronegativität. Die von Zintl und seinen Mitarbeitern erstmals systematisch erfasste und in dieser Beschreibung neue Substanzklasse setzt sich hingegen aus zwei (oder mehreren) Metallen zusammen, die aber weder ausschließlich die klassischen Eigenschaften der Intermetalle noch jene der kovalenten Verbindungen haben. Für diese Substanzklasse, posthum als Zintl-Phasen bezeichnet, musste also eine neue Beschreibung der chemischen Bindungsverhältnisse gefunden werden, die im Einklang sowohl mit den experimentellen Befunden als auch mit den bis dato etablierten Konzepten der Bindungslehre konform war.

Zintl-Phasen bestehen aus einem elektropositiven Metall (in der Regel Alkali- oder Erdalkalielemente) sowie einem elektronegativeren (Semi-)Metall. Ihr Schmelzpunkt liegt höher als der beider Reinelemente, sie sind trotz metallischem Glanz spröde, hart und besitzen halbleitende Eigenschaften.^[7] Schon diese makroskopischen Eigenschaften erlauben ihre Einordnung zwischen Intermetallverbindungen und kovalenten Verbindungen.

In Anlehnung an die für Hauptgruppenelemente maßgebliche Oktettregel formulierten Zintl, Klemm und später auch Busmann das Konzept der Elektronenübertragung von der elektropositiveren Komponente auf des elektronegativere Metall, also eine quasi-ionische Trennung in Kation (Alkali- bzw. Erdalkalimetall) und Anion (Metalle der 3. bis 5. Hauptgruppe).^[8] Strukturbestimmend ist nach der (8-N)-Regel die anionische Komponente, welche in der Regel die Struktur des isoelektronischen ungeladenen Elementes zeigt. Klemm definiert hierfür den Begriff des "Pseudoelementes",^[9] welcher die enge chemische Verwandtschaft isoelektronischer Spezies betont. Historisch der erste Beleg für dieses neue Konzept war NaTI,^[10] welches eine dreidimensio-

nal verknüpfte Diamantstruktur der TI-Anionen zeigt und damit die Struktur des isoelektronischen Kohlenstoffs im Diamantgitter adaptiert. Damit gelang Zintl und Klemm der Brückenschlag zwischen Topologie und elektronischer Struktur einer Verbindung, welcher das grundlegende Verständnis der Hauptgruppenelementverbindungen bis heute maßgeblich beeinflusst.

Auf Basis der über hundertjährigen Forschung können Zintl-Phasen wie folgt zusammenfassend beschrieben werden:^[7]

- Sie zeigen einen exakten Zusammenhang zwischen chemischer und elektronischer Struktur auf Basis der erweiterten Oktettregel.
- Sie sind Halbleiter mit typischen Bandlücken in der Größenordnung von 2 bis 2.5 eV.
- Sie sind meist diamagnetisch, zeigen keinen temperaturunabhängigen Pauli-Paramagnetismus.

Mit diesem Konzept gelang und gelingt es bis heute, zahlreiche Strukturen von Zintl-Phasen zu verstehen bzw. gezielt zu verändern; allein die verschiedenen allotropen Formen zahlreicher Elemente erschweren die Vorhersage von Strukturen auf Basis des Zintl-Klemm-Busmann Konzeptes der Pseudoelemente.

Historisch basierten diese Arbeiten, wie eingangs erwähnt, auf Untersuchungen der Lösungen von Alkalimetallen mit Elementen der 4. und 5. Hauptgruppe; lange Zeit betrachtete man das Verhalten gelöster Spezies als prinzipiell getrennt von dem der beschriebenen Festkörperphasen. Schon zu Zeiten von Zintl waren die Strukturen diverser "Metallanionen" in Lösung bekannt, wie beispielsweise [As₇]³⁻ oder [Sb₇]³⁻.^[11] Erst die eindeutige Strukturaufklärung der Phasen Cs₄Ge₉^[12] sowie A₁₂E₁₇,^[13-15] welche unter anderem die gleichen E₉ Cluster enthalten, die bereits in Lösung gefunden waren, schaffte den klaren, noch fehlenden Brückenschlag zwischen den bis dahin getrennt betrachteten Systemen der Zintl-Phasen und Zintl-Ionen.

Bis heute ist eine Vielzahl von Clusteranionen in Lösung strukturell eindeutig charakterisiert;^[16-19] die vorliegende Arbeit beschränkt sich auf die Untersuchungen zu Zintl-Ionen der Tetrele (Gruppe 14); darum soll in dieser Übersicht den [E₉]^{x-} Clusteranionen besondere Aufmerksamkeit gezollt werden.

[E₇]^{x-} Ionen der Gruppe 14 bilden deltahedrale Clustergerüste, deren Topologie hinreichend mit Hilfe der von *Wade* ^[20] definierten Regeln für den Aufbau von Boranen (B-H)_n^{x-} verstanden werden kann. Nach *Wade* investiert jedes B-Atom eines seiner drei Valenzelektronen in die B-H Bindung, womit zwei Elektronen für den Aufbau des Clustergerüstes übrig bleiben. Bei einem n-Ecken Deltaeder entspricht dies n bindenden Orbitalen für die B-H exo-Bindungen, sowie (n+1) bindenden Gerüstorbitalen bzw. mit (2n+2) Elektronen, woraus sich klar definierte Strukturen in Abhängigkeit der Gerüstelektronen-Anzahl ableiten lassen:

- closo: (2n+2) Gerüstelektronen, ein geschlossene Deltaeder-Käfig
- nido: (2n+4) Gerüstelektronen; ein Deltaeder, dem eine Kappe fehlt
- arachno: (2n+6) Gerüstelektronen: Deltaeder mit zwei fehlenden Kappen
- hypho: (2n+8) Gerüstelektronen: Deltaeder mit drei fehlenden Kappen

Damit fordern die Wade schen Regeln für die Verbindung $CaB_{\delta}^{[21]}$ ein $[B_{\delta}]^{2-}$ Oktaeder, eine closo Struktur (6:2 + 2 = 14 Gerüstelektronen).

Abbildung 1.1: a) closo- $[B_{\delta}H_{\delta}]^{2-}$; b) nido- $[B_{5}H_{8}]^{-}$. B-Atome sind grau dargestellt, H-Atome sind nicht gezeigt.

Aus Abbildung 1.1 ist ersichtlich, dass man bei einem n-Ecken-Deltaeder mit m Flächen und (n+m-2) Kanten (Eulers Theorem) mit (2n+2) Gerüstbindungselektronen nicht mehr von klassischer 2-Zentren-2-Elektronenbindungen (2Z-2E) entlang der Polyederkanten sprechen kann. Das Elektronendefizit wird ausgeglichen durch die Bildung von 2-Elektronen-mehr-Zentren-Bindungen, was einer Delokalisation der Gerüstbindungselektronen über das gesamte Clustergerüst entspricht.

Die Übertragung der Wade schen Regeln auf die anionische Teilstruktur von Zintl-Ionen (Festkörper, Lösung, Gasphase) ermöglicht in weiten Teilen eine hinreichend gute Strukturbeschreibung der Clusteranionen^[22]; detaillierte Analysen fordern allerdings eine Erweiterung der Regeln für die Zintl-Ionen, wie im Folgenden vorgestellt wird.

Ein erster notwendiger Schritt hierfür ist die Anpassung der Regeln für die 3. Hauptgruppe auf Elemente der 4. Hauptgruppe, die im Gegensatz zu den Boranen in [E₇]^{x-} häufig keine exo-Bindungen ausbilden; damit formuliert man für jedes Tetrelatom einen Beitrag von 2 Valenzelektronen für das Clustergerüst und zwei Elektronen in einem nichtbindenden Elektronenpaar, welches radial nach außen gerichtet ist. Der Beitrag der Tetrele zu den Zintl-Anionen ist isovalenzelektronisch zu dem der B-H-Einheit zum Clusteraufbau der Borane und macht eine Übertragung der *Wade schen Regeln* sinnvoll. Hinzu kommt bei den schwereren Homologen der Tetrele eine zunehmende Flexibilität in Bezug auf Bindungslängen und –winkeln, die eine Fluktuation zwischen ähnlichen Clustergerüsten möglich macht.

Kristalle aus Lösungen der Phasen A₄E₉ (A = Na, K, Rb, Cs, E = Ge, Sn, Pb) enthalten das Anion [E₉]⁴⁻, was nach den *Wade schen Regeln* mit 9·2+4 = 22 Gerüstelektronen beschrieben werden kann. Der entsprechende *nido*-Cluster ist das einfach überkappte quadratische Antiprisma mit $C_{4\nu}$ -Symmetrie. Entgegen der bei den Boranen beobachteten strengen Systematik zeigen [E₉]-Clusteranionen der Tetrele wie oben erwähnt eine weit größere strukturelle Vielfalt und Fluktuation der Gerüste, sodass streng kein eindeutiger Rückschluss von Gerüstelektronenanzahl auf Clusterstruktur erfolgen kann.^[23] Auf derartige Abweichungen wird an gegebener Stelle besonders hingewiesen. Neben der quadratisch-antiprismatischen Geometrie beobachtet man auch in diversen Fällen eine (verzerrte) dreifach überkappte trigonale Struktur, die streng einem *closo*-Cluster entspricht, also [E₉]²⁻ mit 20 Gerüstelektronen. Der Übergang zwischen beiden Strukturen ist in Abbildung 1.2 dargestellt:

Abbildung 1.2: Zwei mögliche Strukturen neunatomiger Polyeder: a) Einfach überkapptes quadratisches Antiprisma; b) dreifach überkapptes trigonales Prisma.

Senkt man zwei gegenüberliegende Ecken 1 und 3 der offenen Quadratfläche des Antiprismas a) ab, so bewirkt dies eine Neigung der ehemals flachen Quadratfläche und der Ausbildung zweier Deltaederflächen, bis hin zur dreifach überkappten trigonal-prismatischen Struktur. Dadurch kommt es zur Annäherung der Ecken 2 und 4, die eine der Höhen des trigonalen Prismas ausbilden. Berechnungen^[23] haben gezeigt, dass die Energiebarriere zwischen beiden Strukturen äußerst gering ist, was begründet, warum man beide Strukturen für Clusteranionen der gleichen Ladung findet (vergleiche Kapitel 3). Um trotzdem die beobachteten Strukturen gegebenenfalls einer der beiden Varianten zuzuordnen und damit eine Aussage über die Anzahl der Gerüstelektronen machen zu können, bedient man sich der folgenden Parameter:

- h/e: Das Verhältnis der gemittelten Höhen h des trigonalen Prismas zu den gemittelten Kantenlängen e des Dreiecks ist im idealen Prisma 1; Verzerrungen erfolgen meist durch Verlängerung der Prismenhöhen.
- d₁/d₂: Das Verhältnis der Diagonalen d_i der offenen Quadratfläche ist im idealen quadratischen Antiprisma 1; der Übergang zum trigonalen Prisma und damit die Verzerrung der idealen Struktur zeigt sich in der zunehmenden Verlängerung einer Diagonale.
- α: der Torsionswinkel α beschreibt die Abwinkelung der idealerweise flachen offenen Quadratfläche.

Anhand dieser drei Parameter können Clusterstrukturen unterschiedlicher Verbindungen rasch und effektiv miteinander verglichen werden und Trends abgeleitet werden, die das Grundverständnis dieser Verbindungsklasse fördern.

Abbildung 1.3: Beispiele vierfach negativ geladener Clusteranionen [K(18-c-6)]K₃[Ge₉]^[24]; [K(18-c-6)]₂K₂[Sn₉]^[25] bzw. [K(18-c-6)]₄[Pb₉]*en*tol^[26]. Tetrel-Atome sind grau dargestellt.

Bis heute sind die Clusteranionen [E₉]⁴⁻ sowie [E₉]³⁻ für alle schweren Homologen der 4. Hauptgruppe (Ge, Sn, Pb) aus Lösungen kristallisiert und strukturell eindeutig charakterisiert.^[7, 16] Allein für das Anion [E₉]²⁻ konnte mit Ausnahme von Silizium keine zufrieden stellende Strukturlösung gefunden werden, begründet durch massive mehrfache Fehlordnungsprobleme der Clusteratome, sodass im Fall von Ge das vermeintliche [Ge₉]²⁻ auch als [Ge₁₀]²⁻ diskutiert wird.^[27] Dies legt die vielfach diskutierte und bis heute nicht eindeutig belegte Vermutung nahe, dass neben den Anionen [E₉]⁴⁻ auch Clusteranionen geringerer Ladung vorliegen, die in komplexen Gleichgewichts-Systemen zueinander stehen und die Grundlage für mögliche Reaktionsmechanismen legen. Ein Beitrag zu dieser Diskussion wird an gegebenen Stellen dieser Arbeit geleistet.

Einen wichtigen Durchbruch erlebte die Chemie der Zintl-Anionen in Lösung durch die Einführung von 2.2.2-crypt als Kationen-Komplexbildner durch erste Arbeiten von *Corbett et al.*,^[28-30] die die Kristallisation der Clusteranionen durch vergleichbar große komplexierte Kationen erleichterte und damit chemische Reaktionen an den Cluster-Anionen nachvollziehbar machten. Ein weiterer Fortschritt war dann die Einführung von Kronenethern zur Komplexierung der Kationen, die zum einen wesentlich billiger sind und durch ihre planare Struktur Kontakte zwischen den Kationen bzw. zwischen Kation und Clusteranion ermöglichen.^[16]

Bis heute ist eine Vielzahl von Derivaten der [E₉]-Clusteranionen untersucht, die an dieser Stelle ohne Anspruch auf Vollständigkeit exemplarisch in vier Kategorien vorgestellt werden sollen:

Cluster-Anionen mit Hauptgruppenelement-Fragmenten: Verbindungen wie [Ph₂Sb-Ge₉-SbPh₂]^{2- [31]} und [Ph₂Bi-Ge₉-BiPh₂]^{2- [32]} waren die ersten Vertreter dieser Klasse, die aus der Reaktion der Zintl-Anionen in Lösung mit SbPh₃ bzw. BiPh₃ erhalten wurden; die Ge-Sb bzw. Ge-Bi exo-Bindungen liegen im Bereich herkömmlicher Einfachbindungen der betreffenden Elemente.

Abbildung 1.4: a) [K(2.2.2-crypt)]₂[(Sb-PPh₂)₂Ge₉]^[31]; b) [K(2.2.2-crypt)]₂[(Bi-PPh₂)₂Ge₉]^[32]; c) [K(18-c-6)₂[(H₂C=CH)₂[Ge₉]*en^[33]. Tetrel-Atome sind grau, Hauptgruppenmetallatome hellgrau und Kohlenstoff weiß bzw. in Strichschreibweise dargestellt.

Arsan und Phosphan wurden in der Reaktionslösung reduziert, sodass keine Bindung zum Ge₉ Cluster erfolgen konnte.^[18] Entsprechende Analoga konnten mit Substituenten der 4. Hauptgruppe, wie beispielsweise GePh₄, erhalten werden. Jüngste Untersuchungen zeigten auch die Alkylierung der Ge- bzw. der Sn-Clusteranionen durch Alkinderivate oder in Einzelfällen durch Alkylhalogenide.^[33-35] Vorgeschlagene Mechanismen formulieren nucleophile bzw. radikalische Angriffe des Hauptgruppenelement-Fragments auf das Clusteranion; abschließende Aussagen wurden aber aufgrund der Komplexizität der Gleichgewichtssysteme nicht gemacht.

Cluster-Anionen mit Übergangsmetallfragmenten: Historisch die erste "Funktionalisierung" von [E₉] Clusteranionen erfolgte durch die Addition von M(CO)₃, mit M = Cr, Mo, und W.^[36-40] Die erhaltenen Sn und Pb Cluster binden das Metallcarbonyl-Fragment über der offenen Seite des quadratischen Antiprismas und erreichen so die *closo-*Struktur (22 Gerüstelektronen), ohne dass das Metallfragment einen elektronischen Beitrag zum Clustergerüst liefert. Ausgehend vom Edukt M(CO)₃L (L = Mesitylen bzw. Cycloheptatrien) entspricht diese Reaktion einem Austausch des Mesity-

len- bzw. Cycloheptatrien-Liganden durch das Zintl-Anion, welches als η^4 -Ligand fungiert (vergleiche Abbildung 1.5b). Die Tatsache, dass diese Verbindungsklasse bisher noch nicht an [Ge₉] Clusteranionen realisiert wurde zeigt die feinen aber oft signifikanten Unterschiede zwischen den [E₉] Clustern der Tetrele.

Umsetzungen der Zintl-Anionen mit elementarem Quecksilber lieferten das Polymer ¹_a[HgGe₉]²⁻, bei dem es sich um den ersten Vertreter der Verbindungsklasse handelt, in der die Zintl-Anionencluster linear über ein spätes Übergangsmetall verknüpft sind.^[41] Analoge Reaktionen mit anderen Übergangsmetallkomplexen führten im Falle von XZnPh (X = Cl, Br) zur vergleichbaren Verbindung [E₉Zn-Ph]³⁻ (E = Si, Ge, Sn, Pb),^[42] wobei Ge keine Ausnahme von der Regel mehr bildete; analoge Nickelverbindungen führten meist zu gefüllten Clustern.

Abbildung 1.5: a) [K(2.2.2-crypt)]₄[Sn₉-Mo(CO)₃]*en^[42] b) [K(2.2.2-crypt)]₂[HgGe₉]; c) [K(2.2.2-crypt)]₃[Ph-Zn-Ge₉]*tol. Tetrel-Atome sind dunkelgrau, Übergangsmetallatome weiß schraffiert, Kohlenstoffatome weiß und Sauerstoffatome grau schraffiert dargestellt.

Übergangsmetall@E₉: Ni, obgleich in Carbonylkomplexen isoelektronisch zu den oben beschriebenen Cr-, Mn-, bzw. W-Komplexen, führte zu Ni-zentrierten Tetrel-Clustern, wie [Ni@Ge₉Ni-PPh₃]^{2-[43, 44]}; strukturell fast völlig analog ist auch der überkappte *closo* Cluster Pt@[Sn₉Pt-PPh₃]^{2-.[45]} Übergangsmetallatome im Zentrum des Clusteranions stabilisieren offensichtlich das Clustergerüst; die 'doppelte Funktion' des Übergangsmetalls als Zentralatom sowie als Kappenatom verdient besondere Aufmerksamkeit und gibt erneut Anlass zu mechanistischen Diskussionen. Größenverhältnisse sowie Ladungsdichten der beteiligten Atome spielen bei den zentrierten Clustern eine besondere Rolle. Neben der strukturellen Verwandtschaft der Clusteranionen von Ge bis Blei mit den geschlossenen "Clustern" des leichten Homologen

des Kohlenstoffs – den Fullerenen – weist auch das Vorkommen zentrierter Zintl-Ionen auf Ähnlichkeiten zwischen den beiden Substanzklassen hin.

Abbildung 1.6: Einige Beispiele für ,gefüllte' Zintl-Anionen: a) [K(2.2.2-crypt)]₄[Ni@Ge₉-Ni-PPh₃]*en^[44]; b) [K(2.2.2-crypt)₄[Ni@Ge₉]Ni[Ni@Ge₉]*tol^[46]; c) [K(2.2.2-crypt)]₄[Pd₂@Ge₁₈]*tol^[47]; d) [K(2.2.2-crypt)]₂[Pt@Sn₉-Pt-PPh₃]^[45]; e) [K([2.2.2]crypt)]₃[Cu@Sn₉]*2 dmf; f) [K([2.2.2]crypt)]₃[Cu@Pb₉]*2 dmf^[48]. Tetrelatome sind grau, Übergangsmetallatome weiß schraffiert, P-Atome weiß dargestellt und C-C Bindungen in Strichschreibweise gezeigt.

Oligomere der Zintl-Ionen: geeignete Reaktionsbedingungen, in der Regel in Gegenwart eines milden Oxidationsmittels, führt bei Cluster-Anionen des Germaniums zu Dimeren, Trimeren und Tetrameren, die mit Ge-Ge exo-Bindungen im Bereich üblicher kovalenter 2-Elektronen-2-Zentrenbindungen beschrieben werden können. Jede Ge-Ge Bindung reduziert dabei die Netto-Ladung des Cluster-Anions um eins und führt zu den Anionen [Ge₉-Ge₉]⁶⁻ ^[49], [Ge₉-Ge₉-Ge₉]⁶⁻ ^[50, 51] bzw. [Ge₉-Ge₉-Ge₉-Ge₉]⁸⁻. ^[52, 53] Analog den monomeren Cluster-Anionen können auch die Oligomere gezielt derivatisiert werden, zum Beispiel durch die Addition von Hauptgruppenelement-Fragmenten (siehe Abbildung 1.7).

Abbildung 1.7: $[K(2.2.2-crypt)_2K_4[Ge_9-Ge_9] \cdot en^{[49]}; b] [K (18-c-6)]_6[Ge_9-Ge_9-Ge_9] \cdot en^{[51]}; c) [K(2.2.2-crypt)]_8[Ge_9-Ge_9-Ge_9-Ge_9]^{[53]}; d) [K(2.2.2-crypt)]_4(Ph_2-Sb-[Ge_9-Ge_9]-Sb-Ph_2)^{[34]}.$ Tetrelatome sind grau, Sb-Atome weiß schraffiert dargestellt; C-Atome und -Bindungen sind in Strichschreibweise gezeigt.

Auffallend ist die Tatsache, dass zahlreiche Reaktionswege (Reaktionspartner) zur Bildung der Oligomere von Ge₉ führen,^[18] allerdings keine zu den schwereren Homologen Sn und Pb. Auch hier bietet sich ein reiches Betätigungsfeld für zukünftige Forschungen.

1.2. Gold(I)-Verbindungen

Seit Jahrtausenden ist die Menschheitsgeschichte unlösbar mit dem Edelmetall Gold verknüpft. Farbe und Glanz des Goldes, seine Beständigkeit faszinieren, sein Besitz verleiht Ansehen und Macht. Gold ist selten und doch verfügbar, sein Wert, materieller wie ideeller Art, ist universell und bestimmt neben anderen Faktoren maßgeblich die politische und die wirtschaftliche Struktur menschlicher Gemeinschaften, von der Familie bis hin zu Nationen und Staatengemeinschaften.

In den vergangenen 50 Jahren ist die wissenschaftliche Bedeutung von Gold weit über die des Zahlungsmittels hinaus gewachsen; der Einsatz des Metalls im exponentiell wachsenden Feld der Elektroindustrie, seine katalytische Bedeutung sowie erste pharmazeutische und biochemische Anwendungen^[54] belegen die Sonderstellung des Edelmetalls und das grosse Forschungspotential, das es heute mehr denn je birgt. Neben der historisch bedingten Sonderstellung des Metalls Gold zeigt das Element auch aus zahlreichen Trends herausragende physikalische und chemische Eigenschaften; eine vergleichende Betrachtung soll an dieser Stelle nur einen übersichtlichen Einblick bieten:^[55]

Als Metall mit der größten Pauling-Negativität von 2.4 besitzt Gold darüber hinaus das positivste Redoxpotential ($\epsilon^0 = 1.50$ V für Au/Au³⁺), die am stärksten negative Elektronenaffinität (EA = -2.31 eV) sowie eine der positivsten Ionisierungsenergien (IE = +9.22 eV). Als einziges Metall seiner Umgebung im Periodensystem bildet Gold ein stabiles Monoanion (CsAu mit Au⁻); seine Chemie zeichnet sich neben typischen metallischen Eigenschaften (Kationenbildung, Komplexbildung) auch durch bestimmte nichtmetallische Eigenschaften aus und wird anhand der oben erwähnten Parameter als analog zu den schweren Halogenen beschrieben. Die mittlerweile bei zahlreichen anderen Metallen beschriebene Fähigkeit zur Bildung von M-M Kontakten in Molekülen ist bei Gold besonders stark ausgeprägt und ein wesentliches Element zum Verständnis der Strukturen zahlreicher Goldkomplexe^[56-61].

Der relativistische Effekt ist eine maßgebliche Ursache der vielen chemischen und physikalischen Besonderheiten von Gold: die hohe Kernladung (Ordnungszahl 79) führt zu annähernd relativistischen Geschwindigkeiten kernnaher Elektronen und damit zur entsprechender Massenzunahme. Dies bedingt die räumliche Kontraktion aller Orbitale mit hohen Aufenthaltswahrscheinlichkeiten in Kernnähe, namentlich den s- und in einem geringeren Ausmaß den p-Orbitalen. Daraus folgt eine verbesserte Abschirmung der Kernladung für die d-Orbitale und damit zu einer d-Orbital-Expansion. Im Fall von Gold führt das zu einer Kontraktion und energetischen Anhebung der 5s-, 6s- und 6p-Orbitale sowie zur Expansion und energetischen Absenkung der d-Orbitale. Die zusätzliche auftretende Lanthanoiden-Kontraktion verstärkt den relativistischen Effekt zusätzlich.

Au(I)-Verbindungen ([Xe] $5d^{10}$, $6s^{0}$) sind durch die voll besetzten, energetisch abgesenkten 5d-Orbitale besonderst stabil und neigen zur Koordinationszahl 2, obgleich einige Komplexe mit Koordinationszahl 3 und 4 ebenfalls bekannt sind.^[62, 63] Starke π und σ -Donorliganden kompensieren die relativistische Anhebung der s- und p-Orbitale und bilden die weitaus stabilsten Komplexe mit Au(I). Zahlreiche Phosphinund Thio-Komplexe von Au(I) sind einfach zugänglich und detailliert untersucht. ^[64]

Weniger stabilisierende Liganden fördern die Ausbildung von Au-Au Wechselwirkungen. Die Atomisierungsenergie von 368 kJ/mol und Au-Au Bindungslängen im Bereich von 2.884 Å im kubisch dichtest gepackten Gitter^[65] zeigen, dass Bindungsenthalpien der Au-Au Bindungen deutlich für stabile Au-Au Wechselwirkungen sprechen. Zudem belegt die in der Gasphase auffallend stabile Au₂-Einheit mit einer Dissoziationsenergie von 228 kJ/mol und einer Bindungslänge von 2.427 Å diese vielfach auch im Festkörper beobachtete Tendenz. Au-Au Kontakte zwischen 2.900 Å bis 3.095 Å liegen damit im Bereich der sogenannten aurophilen Wechselwirkungen,^[59, 66] welche auf Basis von NMR-Untersuchungen mit 30 kJ/mol bis 45 kJ/mol beschrieben werden^[67] und energetisch vergleichbar zu Wasserstoffbrückenbindungen bzw. zu S-S Wechselwirkungen sind.

Diese als Aurohphilie bezeichnete besondere Tendenz des Edelmetalls, Au-Au Kontakte auszubilden, ist unter anderem auf ungerichtete Wechselwirkungen der 5d-Orbitale zurück zu führen, die aufgrund ihrer energetischen Absenkung auf diese Weise einen wesentlichen Beitrag zur Stabilisierung von Gold-Komplexverbindungen leisten. Darüber hinaus sind aurophile Kontakte auch wesentliches strukturgebendes Merkmal und Grund für die Vielzahl an beobachteten Au-Oligomeren.^[68]

Goldkomplexe mit den schweren Homologen der 4. Hauptgruppe sind am besten untersucht für Germanium^[69, 70]; für Zinn und Blei wurde eine kleine Anzahl analoger Verbindungen charakterisiert^[64, 71]. In allen Fällen handelt es sich um die Koordination eines GeX₃—Fragmentes (X = Cl, Br, I) an Au(I)-Phosphin, wobei die Bildung eines unlöslichen Salzes das Gleichgewichtslage günstig beeinflusst:^[72-74]

$R_3PAuCl + LiGeX_3 \rightarrow R_3PAu-GeX_3 + LiCl.$

Ein alternativer Reaktionspfad führt über die Einschiebung von Dichlorogermylen GeCl₂ in die Au-Cl Bindung eines Phosphin-Komplexes:^[69]

$R_3PAUCI + GeCl_2 \rightarrow R_3PAUGeCl_3$

Die Aufklärung der Struktur dieser Au-Ge Komplexe zeigte neben kovalenten Au-Ge Kontakten (2.6 Å) auch schwache überbrückende Au-Cl bzw. Ge-Cl Wechselwirkungen sowie aurophile Wechselwirkungen (siehe Abbildung). Analoge Umsetzung des *tris*-(Triphenylphosphin)-Goldkomplexes führte zur Bildung des quasi-tetraedrischen Komplexes [Au(PPh₃)₃-GeCl₃].^[75] Vollständige Substitution der Phosphinligan-

den führt zu *bis-* bzw. *tris-*(trichlorogermyl)-Au(I)-Komplexen, welche die Stabilität von Au(I) neben GeR₃-Anionen belegen.

Abbildung 1.8: Zwei Beispiele für Au(I)-Ge-Verbindungen: a) [Au(PPh₃)₃-GeCl₃]^[75]; b) [Ph₃P-Au-GeCl₃]₂^[69]. Au-Atome sind hellgrau, Ge-Atome dunkelgrau, P Atome weiß und Cl-Atome grau schraffiert dargestellt; C-Atome und -Bindungen sind in Strichschreibweise gezeigt.

Ternäre Festkörperverbindungen des allgemeinen Typs M_3AuE_4 (M = K, Rb, Cs; E = Ge, Sn, Pb)^[76] sind umfangreich untersucht und zeigen stets das wiederkehrende Motiv Au-verknüpfter [E₄]-Tetraeder. Au-Au Wechselwirkungen zwischen den Au-Ge Ketten wurden in diesen Verbindungen nicht beobachtet.^[77]

Damit begründet sich die Umsetzung von Zintl-Anionen der Tetrele in Lösung mit Au(I)-Verbindungen wie folgt:

- Die Kombination der Reduktion von Au(I) zur Bildung von Aun-Clustern (siehe Kapitel 1.3) mit der Oxidation von [Ge₉]⁴⁻ zum Aufbau oligomerer Tetrel-Cluster kann die Bildung gemischter [AunGem]-Cluster ermöglichen.
- Die stabile d¹⁰-Konfiguration von Au(I) verhindert die vollständige Elektronenübertragung der Zintl-Anionen auf das Kation.
- Zintl-Ionen können als Donorliganden Au-Komplexe stabilisieren.
- Nichtmetallische Eigenschaften (Halogen-analog) von Gold ermöglichen die Stabilität neben den stark reduzierenden Zintl-Anionen in Lösung.

1.3. Gold-Clusterverbindungen

Die herausragende Stabilität der Au-Au Bindung spiegelt sich in der Vielzahl bis heute bekannter homonuklearer Gold-Clusterverbindungen wider.^[78] Von tetranuklearen Clustern als kleinsten Vertretern dieser Klasse, wie beispielsweise [Au₄(P(C₆H₃Me₃)₃)₄][BF₄]₂ ^[79] oder [Au₄(PPh₃)₄l₂ ^[80] bis hin zu dem seit über 20 Jahren bekannten aber nie eindeutig strukturell charakterisierten Au₅₅[P(C₆H₅)₃]₁₂Cl₆^[81] eröffnet diese Verbindungsklasse ein erweitertes Verständnis der Reaktivität und Bindungsverhältnisse des Edelmetalls (siehe Abbildung 1.9).

Abbildung 1.9: Homonukleare Gold-Cluster: a) $[Au_4(P^{t}Bu_3)_4][BF_4]^{[79]}$; b) $[Au_6(PPh_3)_6](NO_3)_3^{[82]}$; c) $[Au_8(PPh_3)_8](PF_6)_2^{[83]}$; d) $[Au_9(P-pTol_3)_8](NO_3)_3^{[84]}$; e) $[Au_{11}(PPh_3)_7S_3]I_3^{[85]}$. Au-Atome sind grau, P-Atome weiß, S-Atome schraffiert dargestellt; C- und H-Atome sind nicht gezeigt.

Den nonanuclearen Clustern kommt hierbei aufgrund ihrer thermodynamischen Stabilität eine zentrale Rolle zu; sie sind nicht nur Ausgangsprodukt für die Synthese zahlreicher höher- und niedernuclearer Cluster sondern zudem in Struktur und Bindungsverhältnissen am besten untersucht.

Einige [Au₉L₈]-Clusterverbindungen sind strukturell eindeutig charakterisiert; sie unterscheiden sich neben der Art der Liganden und Gegenionen auch in der Struktur des Clustergerüsts. Weitere [Au₉L₈]-Cluster konnten aufgrund mehrfacher Fehlordnungen nicht eindeutig strukturell bestimmt werden, erlauben aber eine grobe Strukturaufklärung der Schweratome und werden in die Betrachtung der Cluster-Geometrien von Au₉ einbezogen. Man kann zwischen zwei prinzipiellen Strukturtypen unterscheiden (vergleiche Abbildung 1.10):^[86]

- einer zentrierten Krone, bestehend aus 8 Au Atomen; [Au₉(P(p-Tol)₃)₈] (BF₄);^[86]
- einem zentrierten Ikosaeder, von dem zwei Au-Au Kanten entfernt wurden; z.B.
 [Au₉(P(C₆H₄OMe)₃)₈](PF₆)₃.^[87]

Abbildung 1.10: Zwei mögliche Cluster-Strukturen der [Au₉L₈]-Cluster: a) [Au₉(P-pTol₃)₈](BF₄)₃; b) [Au₉(P(C₆H₄OMe)₃)₈](PF₆)₃. Au-Atome sind grau, P-Atome weiß dargestellt; C- und H-Atome sind nicht gezeigt.

Die vergleichsweise geringen Unterschiede zwischen den beiden Verbindungen – der para-Substituent des Phosphins sowie das Gegenion – unterstreichen den Stellenwert der Liganden und Anionen für die Clusterstruktur.

Bindungsverhältnisse in [Au₉L₈] Clustern können wie folgt beschrieben werden:^[88] Aufgrund relativistischer Effekte hybridisieren die 5d-Orbitale im Goldatom nur minimal mit den 6s-Orbitalen, während die 6p-Orbitale energetisch zu hoch liegen, um einen signifikanten Beitrag zur Clustergerüstbindung zu liefern. Die nicht-gerichteten 6s-Orbitale lassen sich hingegen sehr gut mit der Hückel-Näherung beschreiben. Das zentrale Goldatom begünstigt die Clusterstabilität maßgeblich durch energetische Absenkung der Gerüstbindungsorbitale. Der Beitrag der s- und p-Orbitale der Phosphinliganden führt weiterhin zur energetischen Absenkung der bindenden und nichtbindenden Orbitale und damit zu einer Stabilisierung des Clusters. Extended-Hückel-Rechnungen^[88] haben zudem gezeigt, dass die Energiebarriere zwischen den beiden im Festkörper gefundenen Clusterstrukturen derart gering ist, dass man von dynamischen Übergängen zwischen beiden Formen in Lösung ausgeht. Experimentelle Arbeiten von Jansen et al haben gezeigt, dass eine Cokristallisation der kationischen [Au₉L₈]-Cluster mit Polyoxometallaten^[89] sowie mit Fulleriden möglich ist. Eine entsprechende Übertragung auf Zintl-Anionen der 4. Hauptgruppe ist ebenfalls denkbar.

1.4. Ziele der vorliegenden Arbeit

Seit gut 20 Jahren ist die Nanotechnologie mit Partikeln in Größenordnungen weniger Nanometer im Fokus wissenschaftlichen wie wirtschaftlichen Interesses. Begründet durch die immer weiter fortschreitende Miniaturisierung technologischer Anwendungen, verbunden mit einer stetig wachsenden Datenmenge, postuliert man der Nanotechnolgie eine zentrale Rolle in zahlreichen elektronischen und optoelektronischen Anwendungen der nahen Zukunft. Dabei unterscheidet man zwei prinzipielle Annäherungen an den Nanobereich: im *,top-down'* Ansatz erreicht man durch schrittweises Zerkleinern größerer Einheiten eine Partikelgröße im Nanometerbereich; umgekehrt verfolgt der *,bottom-up'* Ansatz den Aufbau derartiger Strukturen aus wohldefinierten kleineren molekularen (Cluster-)Einheiten. Beide Ansätze bewegen sich bis heute im Bereich der Grundlagenforschung.

Halbleitermaterialien wie Silicium und Germanium stehen mit ihren vielfältigen photovoltaischen Anwendungen im Brennpunkt des Interesses. Das Wachstum eindimensionaler Si- bzw. Ge-Nanodrähte an Gold-Nanopartikeln hat sich als eine effiziente Methode zur Darstellung nanostrukturierter Halbleitermaterialien herausgestellt; dabei katalysiert Au das Drahtwachstum und bestimmt durch seine Partikelgröße den Durchmesser der Nanodrähte. Deren einheitlicher Durchmesser ist ein wesentliches Qualitätsmerkmal und limitiert ihre technologische Anwendung; ein durch geeignete (Ge-Au) Cluster katalysiertes einheitliches Drahtwachstum brächte damit entscheidende Vorteile gegenüber den bis heute üblichen Techniken. Damit kommt den Gold-Tetrel-Clusterverbindungen neben ihrer wissenschaftlichen auch eine große technologische Bedeutung zu. Zudem zeigte sich in den letzten Jahren, dass die schrittweise Substitution bzw. Zersetzung von Cluster-Strukturen zu neuen Element-Allotropen führen kann,^[90] die auch im ,bulk'-Material unerwartete und für technologische Anwendungen interessante physikalische wie chemische Eigenschaften besitzen.

Auf Basis dieser bereits existenten bzw. postulierten Verwendungen der Gold- und Tetrelverbindungen werden folgende Ziele für die vorliegende Arbeit genannt:

- Optimierung der Reaktionsbedingungen von Zintl-Ionen der Tetrele in Lösung mit Gold(I)-Verbindungen: Systematische Variation aller beteiligten Reaktionsparameter soll zu einer Optimierung der Reaktionsbedingungen für die Umsetzung von Zintl-Anionen [Ge₉]⁴⁻, [Sn₉]⁴⁻ und [Pb₉]⁴⁻ mit Goldverbindungen führen. Die für die erfolgreichen Reaktionen essentiellen Parameter sollen identifiziert werden. Ein Einblick in die Komplexität der Gleichgewichte während der Reaktionen soll durch die Analytik in Lösung (ESI-MS, NMR) geschaffen werden.
- Synthese neuer Verbindungen der Tetrel-Clusteranionen mit Gold: Es sollen gezielt neue E-Au-Verbindungen synthetisiert und strukturell charakterisiert werden, bei denen Goldatome den Aufbau größerer Clusterstrukturen ermöglichen. Die daraus gewonnenen Erkenntnisse bezüglich der elektronischen Struktur der beteiligten Atome soll in das erweiterte Konzept der chemischen Bindung der Tetrele eingeordnet werden.
- Synthese neuer Tetrelcluster-Verbindungen durch partielle Oxidation: Gold(I)-Verbindungen können als sanftes Oxidationsmittel zur partiellen Oxidation von Zintl-Ionen in Lösung beitragen und sollen damit Synthese und strukturelle Charakterisierung neuer oxidierter Cluster-Spezies ermöglichen. Einblicke in Gleichgewichte in Lösung sowie mögliche mechanistische Vorstellungen zur Reaktivität können damit geschaffen werden.
- Untersuchung der Reaktivität von Zintl-Anionen mit Gold-Clusterverbindungen: die gegenseitige Beeinflussung vorliegender Gleichgewichte in Lösung soll untersucht und eine Aussage über Cluster-Stabilität und –Redoxverhalten beider Verbindungsklassen gemacht werden. Im Fall von Gold sollen Ligand-stabilisierte und –freie Cluster in Lösung untersucht werden.

Die Arbeit verfolgt damit das grundlegende Ziel einer systematischen Untersuchung von Reaktionen bei und Reaktionsprodukten aus der Umsetzung von Zintl-Anionen der Tetrele in Lösung mit Gold-Verbindungen.

1.5. Literatur zu Kapitel 1

- [1] A. Joannis, C.R. Hebd. Seances Acad. Sci. 1891, 113, 795.
- [2] E. Zintl, J. Goubeau, W. Dullenkopf, Z. Phys. Chem. 1931, A 154, 1.
- [3] E. Zintl, A. Harder, Z. Phys. Chem. 1931, A 154, 47.
- [4] W. Hume-Rothery, J. Inst. Metals **1926**, 35, 295.
- [5] F. Laves, H. Witte, Metallwirtschaft 1936, 15, 840.
- [6] A. Simon, Angew. Chem. **1983**, 95, 94.
- [7] S. M. Kauzlarich, in The Chemistry of Metal Clusters, VCH Publishers, Inc., Weinheim, 1996.
- [8] E. Busmann, Z. Anorg. Allg. Chem. 1961, 313, 90.
- [9] W. Klemm, Proc. Chem. Soc. London 1959, 329.
- [10] E. Zintl, W. Dullenkopf, Z. Phys. Chem. 1932, B16, 195.
- [11] E. Zintl, W. Dullenkopf, Z. Phys. Chem. B 1932, 16, 183.
- [12] V. Quéneau, S. C. Sevov, Angew. Chem. 1997, 109, 1818.
- [13] H. G. von Schnering, M. Baitinger, U. Bolle, W. Carrillo-Cabrera, J. Curda, Y. Grin, F. Heinemann, J. Llanos, K. Peters, A. Schmeding, M. Somer, Z. Anorg. Allg. Chem. 1997, 623, 1037.
- [14] V. Quéneau, E. Todorov, S. C. Sevov, J. Am. Chem. Soc. 1998, 120, 3263.
- [15] C. Hoch, M. Wendorff, C. Rohr, Acta Crystallogr. C 2002, 58, 145.
- [16] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
- [17] J. D. Corbett, Chem. Rev. **1985**, 85, 383.
- [18] S. C. Sevov, J. M. Goicoechea, Organometallics 2006, 25, 5678.
- [19] J. D. Corbett, Structure and Bonding **1997**, 87, 158.
- [20] K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
- [21] S. V. Okatov, A. L. Ivanovskii, Y. E. Medvedeva, N. I. Medvedeva, Phys. Stat. Solidi B. Basic Res. 2001, 225, R3.
- [22] E. L. Muettertie, Boron Hydride Chemistry, Academic Press, New York, 1975.
- [23] L. Kloo, T. F. Fässler, J. Rosdahl, Inorg. Chem. Eur. J. 2005, 14, 2888.
- [24] C. Downie, J.-G. Mao, A. M. Guloy, Inorg. Chem. 2001, 40, 4721.
- [25] T. F. Fässler, R. Hoffmann, Angew. Chem. 1999, 111, 526.
- [26] T. F. Fässler, R. Hoffmann, J. Chem. Soc. Dalton Trans. 1999, 3339.
- [27] C. Belin, H. Mercier, V. Angilella, New J. Chem. 1991, 15, 931.
- [28] J. D. Corbett, D. G. Adolphson, D. J. Merryman, P. A. Edwards, F. J. Armatis, J. Am. Chem. Soc. 1975, 97, 6267.

- [29] D. G. Adolphson, J. D. Corbett, D. J. Merryman, J. Am. Chem. Soc. 1976, 98, 7234.
- [30] J. D. Corbett, P. A. Edwards, J. Am. Chem. Soc. 1977, 99, 3313.
- [31] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2003, 125, 14059.
- [32] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2002, 124, 2442.
- [33] M. W. Hull, S. C. Sevov, Angew. Chem. Intern. Ed. 2007, 46, 6695.
- [34] M. W. Hull, A. Ugrinov, I. Petrov, S. C. Sevov, Inorg. Chem. 2007, 46, 2704.
- [35] M. W. Hull, S. C. Sevov, Angew. Chem. **2007**, 119, 6815.
- [36] B. Kesanli, J. Fettinger, B. Eichhorn, Chem. Eur. J. 2001, 7, 5277.
- [37] L. Yong, S. D. Hoffmann, T. F. Fässler, Eur. J. Inorg. Chem. 2005, 18, 3363.
- [38] B. W. Eichhorn, R. C. Haushalter, J. Am. Chem. Soc. 1988, 110, 8704.
- [39] B. W. Eichhorn, R. C. Haushalter, J. Chem. Soc. Chem. Commun. 1990, 937.
- [40] J. Campbell, H. P. A. Mercier, H. Franke, D. P. Santry, D. A. Dixon, G. J. Schrobilgen, Inorg. Chem. 2002, 41, 86.
- [41] A. Nienhaus, R. Hauptmann, T. F. Fässler, Angew. Chem. 2002, 114, 3352.
- [42] J. M. Goicoechea, S. C. Sevov, Organometallics **2006**, 25, 4530.
- [43] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2006, 128, 4155.
- [44] E. N. Esenturk, J. Fettinger, B. W. Eichhorn, Polyhedron 2006, 25, 521.
- [45] B. Kesanli, J. Fettinger, D. R. Gardner, B. Eichhorn, J. Am. Chem. Soc. 2002, 124, 4779.
- [46] J. M. Goicoechea, S. C. Sevov, Angew. Chem. Int. Ed 2005, 44, 4026.
- [47] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2005, 127, 7676.
- [48] S. Scharfe, T. F. F. Fässler, S. Stegmaier, S. D. Hoffmann, K. Ruhland, Chem. Eur. J. 2008, 14, 4479.
- [49] A. Nienhaus, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2006, 632, 1752.
- [50] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. **2002**, 124, 10990.
- [51] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2005, 631, 1149.
- [52] A. Ugrinov, S. C. Sevov, Inorg. Chem. 2003, 42, 5789.
- [53] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2004, 630, 1977.
- [54] C. F. Shaw III, in Gold progress in Chemistry, Biochemistry and Technology, Vol. 1 (Ed.: H. Schmidbaur), Wiley, Chichester, 1999, p. 259.
- [55] Holleman, Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 1, 102 ed., Walter deGruyter & Co, Berlin, **2007**.
- [56] A. Hamel, N. W. Nitzel, H. Schmidbaur, J. Am. Chem. Soc. 2001, 123, 5105.
- [57] S.-G. Wang, W. H. E. Schwarz, J. Am. Chem. Soc. 2004, 126, 1266.
- [58] R. V. Parish, Hyperfine Interactions **1988**, 40, 159.
- [59] M. Melnik, R. V. Parish, Coord. Chem. Rev. 1986, 70, 157.

- [60] P. G. Jones, Gold Bull. **1981**, 14, 102.
- [61] P. G. Jones, Gold Bull. **1081**, 14, 159.
- [62] P. G. Jones, Acta Cryst. 1980, B36, 3105.
- [63] M. C. Gimeno, A. Laguna, Chem. Rev. 1997, 97, 511.
- [64] H. Schmidbaur, (Ed.: H. Schmidbaur), Wiley, Chichester, 1999.
- [65] W. B. Pearson, Lattice Spacings and Structures of Metals and Alloys: Au Metall, Pergamon, Oxford, **1957**.
- [66] H. Schmidbaur, W. Graf, G. Müller, Angewandte Chemie Int. Ed. 1988, 27, 417.
- [67] P. Pyykkö, J. Li, N. Runeberg, Chem. Phys. Lett. 1994, 218, 133.
- [68] H. Schmidbaur, K. Dziwok, A. Grohmann, G. Müller, Chem. Ber. 1989, 122, 893.
- [69] A. Bauer, A. Schier, H. Schmidbaur, J. Chem. Soc. Dalton Trans. **1995**, Inorganic Chemistry 17, 2919.
- [70] A. Bauer, H. Schmidbaur, J. Chem. Soc. Dalton Trans. 1997, 1115.
- [71] M. Contel, K. W. Hellmann, L. H. Gade, I. J. Scowen, M. McPartlin, A. Laguna, Inorg. Chem. 1996, 35, 3713.
- [72] F. Glockling, M. D. Wilbey, J. Chem. Soc. A: Ilnorganic, Physical Theoretical 1968, 9, 63.
- [73] F. Glockling, K. A. Hooton, J. Chem. Soc. 1962, 2658
- [74] F. Glockling, R. J. Cross, J. Organomet. Chem. 1963, 3, 146.
- [75] A. Bauer, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118.
- [76] U. Zachwieja, U. Müller, J. Wlodarski, Z. Anorg. Allg. Chem. 1998, 624, 853.
- [77] U. Zachwieja, J. Wlodarski, Z. Anorg. Allg. Chem. 2004, 630, 993.
- [78] P. J. Dyson, D. M. P. Mingos, in Gold Progress in Chemistry, Biochemistry and Technology, Vol. 1 (Ed.: H. Schmidbaur), Wiley, Chichester, 1999, p. 511.
- [79] Y. Yang, P. R. Sharp, J. Am. Chem. Soc. 1994, 116, 6983.
- [80] F. Demartin, M. Manassero, L. Naldini, R. Ruiggeri, M. Sansoni, J. Chem. Soc. Chem. Comm. 1981, 222.
- [81] G. Schmid, Inorganic Synthesis 1990, 27.
- [82] J. W. A. Van der Velden, J. J. Bour, W. P. Bosman, J. H. Noordik, Inorg. Chem. 1983, 22, 1913.
- [83] F. A. Vollenbroek, W. P. Bosman, J. J. Bour, J. H. Noordik, P. T. Beurskens, J. Chem. Soc. Chem. Comm. 1979, 1218.
- [84] C. E. Briant, K. P. Hall, D. M. P. Mingos, J. Chem. Soc. Chem. Comm. 1984, 290.
- [85] J. A. McCleverty, M. M. M. daMotta, J. Chem. Soc. Dalton Trans. 1973, 2571.
- [86] K. P. Hall, B. R. C. Theobald, D. I. Gilmour, D. M. P. Mingos, A. L. Welch, J. Chem. Soc. Chem. Comm. 1982, 582.

- [87] P. L. Bellon, F. Cariati, M. Manssero, L. Naldini, M. Sansoni, J. Chem. Soc. Chem. Comm. 1971, 1423.
- [88] D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 1976, 1163.
- [89] M. Schulz-Dobrick, M. Jansen, Eur. J. Inorg. Chem. 2006, 4498.
- [90] A. Grüttner, R. Nesper, H.-G. von Schnering, Angew. Chem. 1982, 94, 933.

2. Zintl-Phasen K_4E_9 (E = Ge, Sn, Pb) mit Goldphosphinkomplexen: Gleichgewichte in Lösung

Die große stöchiometrische wie auch strukturelle Vielfalt der bis heute charakterisierten [E₂]-Clusterverbindungen^[1-4] der 4. Hauptgruppe aus Reaktionen in Lösung legt die Vermutung komplexer Gleichgewichtssysteme nahe. Die anhand von Röntgenstrukturaufklärung gefundenen anionischen Clusterverbindungen sind voraussichtlich nur ein Bruchteil der in Lösung vorhandenen und miteinander reagierenden bzw. der sich ineinander umwandelnden Cluster-Einheiten. Die Umsetzung derart komplexer Systeme mit Goldphosphinkomplexen liefert nicht nur durch neue Verbindungen (siehe Kapitel 3 und 4) Hinweise über Bindungsverhältnisse im Festkörper, sondern darüber hinaus auch wertvolle Einsichten in das Reaktionsverhalten der Zintl-Ionen in Lösung. Eine systematische Untersuchung des Einflusses der Reaktionsbedingungen sowie die Analyse der Reaktionslösungen mittels ESI-Massenspektroskopie erlaubt es, diverse offene Fragen zu beantworten.

2.1. Einfluss der Reaktionsbedingungen

Ein Schwerpunkt der vorliegenden Arbeit ist die Umsetzung von Lösungen der Zintl-Phasen A_4E_9 (A = K, Rb, Cs, E = Ge, Sn, Pb) mit Goldphosphin-Komplexen; dabei werden die folgenden Parameter systematisch variiert:

- Zintl-Phase: K4Ge9, K4Sn9, K4Pb9, Rb4Ge9, K2Cs2Ge9, Cs4Ge9
- Reaktionsführung/Reihenfolge der Edukte
- Goldphosphin-Komplex: AuPPh₃Cl, AuPMe₃Cl, AuP^tBu₃Cl, AuPCy₃Cl
- Lösungsmittel: Ethylendiamin, Dimethylformamid; sowie Überschichten der Reaktionslösung (Toluol)
- Kationenkomplexbildner: Kryptand (2.2.2-crypt), Kronenether (18-c-6, Diaza-18-c-6, Dibenzo-18-c-6, Dicyclohexyl-18-c-6)
- Zugabe von Kalium
- Temperatur: Zimmertemperatur (25 °C), 40 °C, 70 °C, 123 °C

Die intensive Farbigkeit der Reaktionslösungen, welche auf gelöste Zintl-Ionen schließen lässt, ist ein sicherer Indikator für deren Stabilität; beginnende Zersetzung ist rasch und eindeutig an der Entfärbung der Lösung und der Bildung eines grau-schwarzen Niederschlags zu erkennen.
Die folgende zusammenfassende Übersicht fokussiert auf die für erfolgreiche Umsetzungen des Systems K₄E₉ – AuPR₃Cl optimierten Parameter.

Wahl der Zintl-Phasen A4E9

Alle Zintl-Phasen A₄E₂ (A = K, Rb, Cs; E = Ge, Sn, Pb) sind in den verwendeten Lösungsmitteln gut löslich (0.15 mmol A₄E₂ in 3 mL Lösungsmittel, entsprechend 0.05 mol/L) und lassen sich mit Goldphosphinen umsetzen. Man beobachtet einen klaren Trend der Stabilität: von Ge über Sn zu Pb werden die erhaltenen Lösungen zunehmend oxidationsempfindlich. Während die gelösten Germanide und Stannide eine große Toleranz gegenüber der Wahl der Reaktionsbedingungen zeigen und unproblematisch über Wochen in Lösung mit Au(I)-Verbindungen stabil sind, erweist sich K₄Pb₂ als äußerst zersetzungsanfällig und kann in Gegenwart von Au(I) nur unter speziellen, exakt eingehaltenen Reaktionsbedingungen stabilisiert werden. Maßnahmen zur Verbesserung der Löslichkeit der festen Zintl-Phasen, wie die Zugabe von Kationenkomplexbildnern oder elementarem Kalium (siehe unten) sind vor allem für Umsetzungen mit K₄Pb₂ wichtig.

Reaktionsführung und Reihenfolge der Edukte

Es werden vier prinzipielle **Reaktionsführungen** unterschieden, die sich vor allem in der Reihenfolge der Edukt-Zugabe unterscheiden:

- K₄Ge₉ und AuPPh₃Cl werden gemeinsam in Ethylendiamin gelöst, nach ca. zweistündigem Rühren auf Kryptand bzw. Kronenether (fest) filtriert, erneut gerührt, anschließend filtriert und zur Kristallisation gelagert.
- (2) K₄Ge₉ wird in Ethylendiamin gelöst, über zwei Stunden gerührt, auf AuPPh₃Cl (fest) filtriert, erneut gerührt, daraufhin auf Kryptand bzw. Kronenether filtriert, eine Stunde gerührt, anschließend filtriert und zur Kristallisation gelagert.
- (3) K₄Ge₉ und Kryptand bzw. Kronenether werden gemeinsam in Ethylendiamin gelöst, nach zweistündigem Rühren auf AuPPh₃Cl filtriert, erneut gerührt, ein zweites Mal filtriert und zur Kristallisation gelagert.
- (4) K₄Ge₉ und AuPPh₃Cl werden gemeinsam (im Unterschied zu (2) in Ethylendiamin gelöst, zwei Stunden lang gerührt, anschließend auf Kryptand bzw. Kronenether filtriert, erneut gerührt, und nach einer weiteren Filtration zur Kristallisation gelagert.

Vergleicht man die Umsetzungen der Zintl-Phasen K₄Ge₉, K₄Sn₉ und K₄Pb₉ mit AuPPh₃Cl in Ethylendiamin, zeigen sich signifikante Unterschiede (siehe Abbildung 2.1; alle in dieser Übersicht aufgeführten Ansätze wurden in 3 mL Ethylendiamin durchgeführt). Im Fall von K₄Ge₉ zeigt sich die größte Toleranz gegenüber der Reihenfolge der Edukt-Zugabe, optimal für die Kristallbildung sind hier die Reaktionsführungen (2) und (3). K₄Sn₉ ist unter den Bedingungen (3) und (4) am stabilsten; Reaktionsführung (1) ist äußerst ungünstig. K₄Pb₉ ist in Umsetzungen nur innerhalb eng definierter Grenzen stabil; am besten geeignet sind hier die Reaktionsführungen (2) bzw. (3). Für die Kristallbildung hat sich einzig Reaktionsführung (3) bewährt. Dies unterstreicht die Rolle des Kationenkomplexbildners, der ganz offensichtlich nicht nur die Kristallisation der Zintl-Ionen erleichtert sondern auch in Lösung durch Komplexierung der K-Ionen stabilisierend wirkt.

Die Zugabe von elementarem K stabilisiert das stark reduzierende Reaktionsmedium; die Bildung solvatisierter Elektronen wird durch die Gegenwart des Komplexbildners zusätzlich verstärkt. Im Fall des besonders redoxstabilen K₄Ge₉ macht sich der Effekt folglich am wenigsten bemerkbar, im Fall von K₄Pb₉ bewirken leichte Abweichungen der idealen Bedingungen eine rasche Zersetzung der Reaktionslösung.

Abbildung 2.1: Umsetzungen von a) K4Ge9, b) K4Sn9 und c) K4Pb9 mit AuPPh3Cl in jeweils 3 mL En in Abhängigkeit der Reaktionsführung.

Die Länge der Balken entspricht den Einwaagen der Edukte in 10⁻¹ mmol. Negative Werte symbolisieren die Zersetzung der Reaktionslösung, eine Kristallbildung ist durch einen roten Balkenabschnitt gekennzeichnet.

Vergleich Kryptand – Kronenether

2.2.2-crypt koordiniert Kationen mit einer angenähert sphärischen Struktur^[5] (dreidimensional), welche die Kationen von der Umgebung quasi vollständig abschirmt; Kronenether (18-c-6, Diaza-18-c-6, Dibenzo-18-c-6) bilden einen planaren Komplex mit Alkalikationen, die somit noch über freie Koordinationsstellen verfügen. Vergleicht man die Umsetzungen von K4Ge9 mit AuPPh3Cl in Ethylendiamin mit Kryptand (Abbildung 2.1) mit den analogen Umsetzungen mit verschiedenen Kronenethern, ist ein klarer Trend erkennbar (siehe Abbildung 2.2):

Abbildung 2.2: Umsetzungen von K₄Ge₉ mit AuPPh₃Cl in jeweils 3 mL Ethylendiamin mit 18-c-6 in Abhängigkeit der Reaktionsführung (1) bis (4). Die Länge der Balken entspricht den Einwaagen der Edukte in 10⁻¹ mmol. Negative Werte repräsentieren die Zersetzung der Reaktionslösung.

Nur vereinzelt lassen sich mit Kronenethern stabile Lösungen erhalten; Kristalle konnten aus keinem der Ansätze erhalten werden. Auffällig ist, dass die Zugabe von Kalium in allen Fällen bei der Verwendung von Kronenethern zur Zersetzung der Reaktionslösungen führte. Mögliche Ursache hierfür ist die weniger starke Komplexierung der K-Ionen, die wiederum das Auflösen des Metalls und damit die Bildung solvatisierter Elektronen erschwert.

Wahl des Lösungsmittels

Ethylendiamin ist für Umsetzungen aller Zintl-Phasen A₄E₉ das am besten geeignete Lösungsmittel. Au(I)-En-Komplexe sind aus der Literatur bekannt und erleichtern die Solvatisierung und damit die Stabilisierung des Ions in Lösung. Die Polarität ist günstig für den Löseprozess der beteiligten Edukte, eine Verringerung der Polarität durch abschließendes Überschichten mit Toluol möglich.

Umsetzungen in DMF waren mit K₄Ge₉ und AuPPh₃Cl unproblematisch, lieferten allerdings meist Kristalle der strukturell bis heute nicht eindeutig lösbaren Verbindung $[K(2.2.2-crypt)]_2{Ge_{9}^{2-}/Ge_{10}^{2-}}, 7^{[6, 7]}$ (siehe Abbildung 2.3).

Abbildung 2.3: Umsetzungen von K₄Ge₉ mit AuPPh₃Cl in DMF unter Reaktionsführung (1) bzw. in Mischungen aus En und DMF unter Reaktionsführung (1a). Die Länge der Balken entspricht den Einwaagen der Edukte in 10⁻¹ mmol. Negative Werte repräsentieren die Zersetzung der Reaktionslösung.

Wie aus Abbildung 2.3 ersichtlich ergab auch die Mischung der Lösungsmittel Ethylendiamin und Dimethylformamid (Reaktionsführung 1a) keine stabilen Lösungen. Analoge Umsetzungen der Sn- bzw. der Pb-Phase in DMF führten zur raschen Zersetzung der Reaktionslösung innerhalb weniger Stunden bis Tage.

Wahl des Phophin-Liganden

In zahlreichen Reaktionen und Synthesen hat sich AuPPh₃CI als eines der stabilsten Au(I)-Phosphine herausgestellt; dies wird auch bei den Umsetzungen mit Zintl-Phasen in Lösung beobachtet. AuPCy₃CI ist darüber hinaus das einzige aliphatische Phosphin, welches in Lösungen mit [E₉]⁴⁻ stabilisiert werden konnte; Kristalle wurden aus diesen Umsetzungen bisher nicht gewonnen. Kurzkettige aliphatische Gold-Phosphinkomplexe mit PMe₃ und P^tBu₃ führten zur Zersetzung der Lösungen innerhalb weniger Tage, unabhängig von den weiteren Reaktionsbedingungen. Dies zeigt, dass das Phosphin nicht nur Ligand für Au(I) mit besonderer Bereitschaft zum Ligandenaustausch ist (siehe auch Kapitel 7), sondern als Reaktionspartner in die Gleichgewichtsreaktionen in Lösung eingreift. Damit ist das redoxunempfindliche und äußerst stabile Triphenylphosphin der ideale Ligand für Au(I) im Rahmen dieser Arbeit.

Einfluss der Temperatur

Durch eine Erhöhung der Temperatur werden Reaktionen ermöglicht, die sonst aufgrund hoher Aktivierungsenergie nicht stattfinden. Zudem ist es interessant, die bei erhöhter Temperatur verstärkte Dynamik von Clusterauf- und abbau zu untersuchen, was wiederum Rückschlüsse auf die Reaktivität der Ionen in Lösung zulässt.

Wie aus Abbildung 2.4 ersichtlich bilden sich bei Umsetzungen von K_4Ge_9 mit AuPPh₃Cl bei erhöhter Temperatur bevorzugt Kristalle von $[K(2.2.2-crypt)]_2{Ge_9^{2-}/Ge_{10^{2-}}}$, **7**. ^[8] Dies beweist die besondere Stabilität dieser Verbindung. Der nachweisliche Erhalt des Clustergerüstes auch bei der Siedetemperatur des Lösungsmittels Ethylendiamin (123°C) zeigt eindrücklich die Stabilität der Clustergerüst-Bindungen speziell in diesem Oxidationszustand. Dies ergänzt auch andere Beobachtungen, nach denen {Ge₉²⁻/Ge₁₀²⁻} auf sehr unterschiedlichen Reaktionspfaden und mit vielen verschiedenen Reaktionspartnern erhalten wurde.

Abbildung 2.4: Umsetzungen von K4Ge9 bzw. K4Sn9 mit AuPPh3Cl in En mit Liganden in Abhängigkeit der Temperatur.

Die Länge der Balken entspricht den Einwaagen der Edukte in 10⁻¹ mmol. Negative Werte repräsentieren die Zersetzung der Reaktionslösung.

Bei 65°C wurde ausserdem die von Belin et al. beschriebene Verbindung [K(2.2.2-crypt)₃][Ge₇]PPh₃^[7] in Form roter blockförmiger Kristalle erhalten und anhand der erhaltenen Gitterparameter strukturell charakterisiert (vergleiche Kapitel 7.5).

2.2. ESI-MS Untersuchungen von Zintl-Ionen in Lösung

Die Elektronensprayionisations-Massenspektroskopie (ESI-MS) ermöglicht die Untersuchung von Substanzen *in Lösung*, die im Spektrometer unter vergleichsweise sanften Bedingungen verdampft und ionisiert werden (vergleiche auch Kapitel 7) und damit einen Rückschluss auf die vorliegenden Spezies in Lösung zulassen. Die Analysenlösung wird beim Durchgang durch eine geheizte Kapillare in eine Unterdruckkammer (10⁻⁷ mbar) verdampft, mittels Elektronenspray schonend ionisiert und im Ionenfallen-Massenspektrometer detektiert. Diese Methode hat neben der wesentlich verringerten Fragmentierung der Substanzen zudem den Vorteil, auch Aggregationen der Teilchen zu ermöglichen. Clustermoleküle, die auf diese Weise in der Gasphase detektiert werden, liefern einen Hinweis auf Verbindungen, die auch in den oft komplexen Gleichgewichten in Lösung vorliegen.

ESI-massenspektrometrische Analysen der Lösungen von Zintl-Anionen sowie ihrer Reaktionslösungen mit Gold-Phosphinkomplexen tragen damit wesentlich zum besseren Verständnis der Vorgänge und Gleichgewichte in Lösung bei. Die Isotopenverteilung der Tetrelatome erlaubt zudem eine klare Zuordnung gemessener Signale zu entsprechenden Verbindungen; das Fragmentierungsmuster ermöglicht in den meisten Fällen eine klare Ladungszuweisung.

Frühe massenspektroskopische Untersuchungen kondensierter Dämpfe von Ge, Sn bzw. Pb von Martin et al^[9] zeigten Serien von [E_n]-Clustern mit n = 2 bis 9 bzw. 10 mit abnehmender Signalintensität bei steigenden Werten von n. Diese wurden systematisch durch die Arbeiten von *Fässler et al*^[10] ergänzt; mittels Laserabtragung erzeugten die Autoren [E_n] Cluster (E = Ge, Sn bzw. Pb) aus verschiedenen Quellen: dem elementaren Tetrel, Mischungen von Metall mit K, Phasen der nominellen Zusammensetzung K₄E₂ sowie eingedampfter Lösungen definierter (K(2.2.2-crypt))-Clusterverbindungen. In allen Fällen wurden im ESI-Massenspektrum Signalserien der En-Cluster detektiert, deren Peakintensität mit wachsendem n abnimmt. Erhält man aus Proben der reinen Tetrele bzw. deren Mischungen mit K Cluster bis zu einer maximalen Größe von n = 6 (Ge) bzw. 5 (Sn, Pb) sowie einige Sauerstoffaddukte, so zeigen die Spektren aus Proben mit definierten [E₂]-Verbindungen im Fall von Ge und Sn einen deutlichen Trend zu größeren Clustern (n = 8 bis 15). Spektren entsprechender Bleiverbindungen zeigen die Clusterionen [Pb_n] bis n = 10. Besonders auffällig im Fall von Sn ist die große Intensität der Peaks von [Sn₈] bis [Sn₁₀], welche den Trend der

31

generellen Intensitätsabnahme mit zunehmendem *n* unterbrechen. Direkte Untersuchungen der Spezies in Lösung konnten mit dieser Methode nicht durchgeführt werden.

Jüngste massenspektroskopische Untersuchungen binärer Cluster ME_n (M = Cr, Mn, Cu, Zn; E = Si, Ge, Sn, Pb) von *Lievens et al*^[11] bzw. [CoGe_n]^[12] bestätigen und ergänzen die von *Fässler et al*.^[10] dokumentierten Trends abnehmender Signalintensität mit wachsendem *n* und der besonderen Stabilität ausgewählter [ME_n]-Cluster mit *n* = 9 bis 12, in Abhängigkeit von M. Untersuchungen binärer Anionencluster der 5. Hauptgruppe zeigen eine ähnliche Tendenz zur Anlagerung von Alkalimetall an das entsprechende Monoanion.^[6] Eine Vielzahl theoretischer Berechnungen möglicher Clustergerüste für [E_n]-Cluster der Tetrele haben diesen Trend zum Teil voraus gesagt bzw. die experimentellen Befunde ergänzt und bestätigt.^[13]

Zahlreiche Verbindungen der Zintl-Ionen der Tetrele (vergleiche Kapitel 1) sind seither ESI-massenspektroskopisch untersucht worden; die verbesserte Empfindlichkeit der Spektrometer erlaubt mittlerweile eine detaillierte Untersuchung der Spezies in der Gasphase. Auch hier lassen sich deutliche Trends erkennen, wobei unmittelbare Vergleiche erschwert werden durch zum Teil deutlich variierende Messbedingungen (Lösungsmittel, Konzentration, Ionisierungsspannung; siehe auch Kapitel 7) sowie unterschiedliche Löslichkeit und Reaktivität der untersuchten Verbindungen. Übereinstimmend beobachten die Autoren im ESI-Massenspektrum gelöster Verbindungen der Zintl-Ionen von Ge und Sn Signale, die dem Monoanion der gelösten Verbindung entsprechen, sowie die dazugehörigen Peaks der K- bzw. K₂-Addukte. In einigen Fällen wie beispielsweise bei K[Ge₉Ni₂(PPh₃)]⁻ ^[14] oder K[Sn₉Ni₂(CO)]⁻ ^[15] treten die K-Addukte mit deutlich größerer Intensität auf als ihre K-freien Analoga. In einigen Fällen endohedral gefüllter Zintl-Ionencluster ([(Pd-Pd)@Ge₁₈]^{4- [16]}, [Ni@Ge₉Ni-(CO)]^{2- [17]} und [Ni₂@Sn₁₇]^{4- [8]} treten darüber hinaus auch die deutlich schwächeren Peaks der (K{2.2.2-crypt})-Addukte auf.

Massenspektroskopische Untersuchungen der entsprechenden Reaktionslösungen und ihr Vergleich mit Lösungen der Edukte bzw. der Produkte sind bis heute in der Literatur nicht dokumentiert.

ESI-MS Untersuchungen wurden im Rahmen dieser Arbeit an den folgenden drei Systemen durchgeführt:

32

- Lösungen der Edukte (K₄E₉, AuPPh₃Cl, [Au₉(PPh₃)₈](NO₃)₃, siehe 2.2.1)
- Reaktionslösungen zweier Edukte (siehe 2.2.2)
- Lösungen von Kristallen, welche wohl definierte Spezies enthalten: ([K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, 7, bzw. [K(2.2.2-crypt)]₅[Au₃Ge₁₈], 1, siehe 2.2.3 und 3.2.2).

Die in diesem Kapitel beschriebenen massenspektroskopischen Untersuchungen wurden in den meisten Fällen an DMF-Lösung durchgeführt, da Ethylendiamin zu einer raschen Verstopfung des ESI-Einspritzblocks führt; Vergleichsmessungen einzelner Proben ergaben aber stets ein äquivalentes Spektrum für Lösungen in Ethylendiamin. Auf Unterschiede (siehe Kapitel 5) wird an gegebener Stelle hingewiesen.

[Pb₉]-haltige Reaktionslösungen konnten aufgrund ihrer Redoxlabilität nicht mittels ESI-MS untersucht werden, da sich die Lösungen bereits während des Einspritzens zersetzten.

2.2.1.ESI-MS von Lösungen der Edukte

K₄Ge9 in DMF

Die Tatsache, dass Ge und DMF sehr ähnliche Molmassen haben (74.2 g/mol bzw. 73.1 g/mol) erschwert die Unterscheidung zwischen $[Ge_{n+1}]$ und $[Ge_n]$ ·dmf. Eine Analyse des Isotopenmusters kann nur dann zur Unterscheidung beitragen, wenn es nicht zu einer Signalüberlagerung kommt, wie im Folgenden beschrieben. Der Vergleich zahlreicher gemessener Spektren zeigt aber gewisse Trends der Anlagerung von Lösungsmittelmolekülen, die gemeinsam mit der Annahme chemisch sinnvoller Fragmente und Verbindungen zu begründeten Signal-Zuordnungen führen. Zweifach geladene Anionen E_{2n} können klar von (im Spektrum äquivalenten) einfach geladenen Anionen E_n der halben Molmasse unterschieden werden, da nur im Fall der doppelt geladenen Spezies das Signal des Fragments E_{2n-1} auftritt und chemisch sinnvoll ist. Zudem wurde in allen Spektren eine Koordination von Lösungsmittelmolekülen vor allem für die höher geladenen Ionen (±2, ±3) beobachtet.

Lösungen von $[Ge_9]^{4-}$ in DMF zeigen im positiven Modus nur das Signal von $[K(2.2.2\text{-}crypt)]^+$ bzw. das von $[2.2.2\text{-}crypt]^+$. Im negativen Modus gemessene Spektren zeigen die Signalserie $[Ge_n]^-$ mit n = 5 bis 10, sowie die Serie von $[Ge_nO]^-$ mit n = 6 bis 10. Die Tendenz der Clusterionen, Sauerstoff anzulagern, wurde bereits von Fässler et al. berichtet.^[10] Das ungünstige Verhältnis von Signal zu Rauschen lässt auf

vergleichsweise geringe Konzentration der Clusterionen in Lösung bzw. in der ESI-Quelle schließen. Größere Clusterionen mit n > 10 werden nicht beobachtet.

Abbildung 2.5: ESI-MS (negativer Modus) von K₄Ge₉, gelöst in DMF. In separatem Rahmen eingefügt sind das gemessene Signal von [Ge₉]⁻ (oben) und das berechnete Isotopenmuster von [Ge₉] (unten).

m/z	lon	m/z	lon
364	[Ge ₅]-		
436	[Ge₀]⁻	452	[Ge₀O]⁻
508	[Ge7]-	524	[Ge70]-
581	[Ge ₈]-	596	[Ge ₈ O] [_]
653	[Ge ₉]-	669	[Ge ₉ O] [_]
729	[Ge ₁₀]-	745	[Ge100]-

Tabelle 2.1: Liste zweier Serien von ESI-MS Peaks von K4Ge9 gelöst in DMF.

Bemerkenswert sind die Spektren zu Beginn der Messung: nachdem der gesamte Einspritzblock während 20 Minuten mit absolutiertem DMF gespült wurde (vergleiche Kapitel 7), kann ein kurzzeitiger Luftzutritt beim Austausch der Analysenspritze nicht vermieden werden; Spektren der folgenden 1.5 Minuten zeigen im positiven Modus stets die Gen-Cluster (n = 4 bis 12) mit schrittweiser Anlagerung von einem bis zu vier O-Atomen (siehe Abbildung 2.6). Man beobachtet Abweichungen vom theoretisch berechneten Isotopenmuster, die auf die vergleichsweise geringe Signalintensität und die damit verbundenen Fehler bei der Integration der Messsignale zurückgeführt werden können.

Abbildung 2.6: ESI-MS (negativer Modus) von K4Ge9 gelöst in DMF; Messung unmittelbar nach dem Austausch der Spritzen.

K₄Sn₉ in DMF

Lösungen von K₄Sn₉ in DMF in Gegenwart von 2.2.2-crypt zeigen im negativen Modus vergleichbare Serien von Signalen zu den Messungen von [Ge₉]⁴⁻; da hier die Unterscheidung zwischen Metallatomen und Lösungsmittelmolekülen eindeutig ist, kann eine klare Zuordnung der Signale zu entsprechende Molekülfragmenten erfolgen:

	lon		lon	
m/z	[Sn _?]⁻	m/z	[\$n ₇ ·O]⁻	
594	[Sn5]-			
711	[Sn6]-	528	[Sn₀O]⁻	
831	[Sn ₇]-	848	[Sn ₇ O]-	
949	[Sn ₈]-	966	[Sn ₈ O]⁻	
1069	[Sn ₉]-	1085	[Sn₀O]-	
1187	[Sn₁₀] ⁻			

Tabelle 2.2: Liste einiger Serien von ESI-MS Peaks von K₄Sn₉ in DMF.

ESI-massenspektroskopische Untersuchungen der Lösungen von K₄Sn₉ in DMF im positiven Modus ergaben neben dem prominenten Signal von [K-2.2.2-crypt]⁺ keinerlei Sn-haltige Kationen; auch eine Erhöhung der Durchflussrate der Probenlösung und damit verbunden eine erhöhte Konzentration reaktiver Teilchen in der ESI-Quelle brachte keine anderen Ergebnisse.

2.2.2.ESI-MS der Reaktionslösungen

K4Ge9 mit AuPPh3Cl in DMF

Frisch angesetzte Reaktionslösungen von K₄Ge₉ mit AuPPh₃Cl in Dimethylformamid zeigen im negativen Modus neben vergleichsweise schwachen Signalen der Serie [Ge_n]- prominente Signale diverser Au-Ge Addukte bei kleineren Molmassen (m/z < 900, vergleiche Abbildung 2.7). Das Signal mit maximaler Intensität ist [AuPPh₃·Ge]-. Im Bereich größerer Molmassen treten keine Signale auf.

Abbildung 2.7: ESI-MS (negativer Modus) von K4Ge9 mit AuPPh3Cl, gelöst in DMF. R = Phenyl.

Ganz anders im positiven Modus: neben dem Signal maximaler Intensität von [K(2.2.2-crypt)]⁺ treten bei m/z = 1899 bzw. 1972 die prominenten Isotopenmuster von [Ge₁₈Au₃]⁺ bzw. von [Ge₁₈Au₃·dmf]⁺ auf. Wiederholte Messungen nach 2, 4 bzw. 24 Stunden zeigen eine Zunahme der Peakintensität des lösungsmittelfreien Clusterions gegenüber dem DMF-Addukt.

Eine detaillierte Diskussion der Befunde findet sich in Kapitel 3.

K4Ge9 mit [Au9(PPh3)8](NO3)3 in DMF

Ganz ähnliche Verhältnisse finden sich in Lösungen von K₄Ge₉ mit Au₉(PPh₃)₈](NO₃)₃: im negativen Modus dominieren neben den schwachen Signalen der [Ge_n]⁻-Cluster auch hier wieder die Ge-Au-Addukte (vergleiche Abbildung 2.7 und Tabelle 2.3).

lon			lon
m/z	[Gen]⁻	m/z	[Ge∙AuPPh₃]⁻
364	[Ge5]-	459	[AuPPh3] ⁻
436	[Ge6]-	533	[Ge•AuPPh₃] ⁻
508	[Ge7]-	605	[Ge₂·AuPPh₃]⁻
581	[Ge8]-		

Tabelle 2.3: Liste der ESI-MS-Peaks (negativer Modus) einer frisch angesetzten Lösung von K₄Ge₉ und $[Au_9(PPh_3)_8](NO_3)_3$ in DMF.

Im positiven Modus zeigen sich O-Addukte der Signalreihen von [Ge₁₈Au]⁺ und [Ge₁₈Au₂]⁺ (vergleiche Abbildung 2.8 und Tabelle 2.), welche Hinweise auf schrittweisen Auf- bzw. Abbau des Clusterions [Ge₁₈Au₃] geben. Im Gegensatz zu vergleichbaren Ansätzen mit AuPPh₃Cl anstelle des Au₂-Clusters tritt das Signal des Clusterions [Ge₁₈Au₃]⁺ nur äußerst schwach auf. Auffällig ist zudem die gleichzeitige Anlagerung von K bzw. NO₃⁻. Derartige formale Salzanlagerungen beobachtet man auch in ESI-Massenspektren von Proteinen und anderen organischen Molekülen großer Molmassen, wobei man allerdings von einer räumlich getrennten Anlagerung des Kations und des Anions ausgeht, bedingt durch örtlichen Ladungsüberschuss. Diese formale Salzanlagerung wird durch die Formulierung [Ge₁₈Au(K)(NO₃)]⁺ wiedergegeben.

Abbildung 2.8: ESI-MS (positiver Modus) der Reaktionslösung mit K_4Ge_9 und $[Au_9(PPh_3)_8](NO_3)_3$ in DMF. A = Addukt von (K)(NO₃).

	lon		lon
m/z	[Ge18AunOm]+	m/z	[Ge ₁₈ Au _n O _m ·(K)(NO ₃)] ⁺
1520	[Ge ₁₈ Au]+	1621	[Ge ₁₈ Au(K)(NO ₃)] ⁺
1536	[Ge ₁₈ AuO] ⁺	1637	[Ge ₁₈ AuO·(K)(NO ₃)]+
1552	[Ge ₁₈ AuO ₂]+	1654	[Ge ₁₈ AuO ₂ (K)(NO ₃)] ⁺
1569	[Ge ₁₈ AuO ₃] ⁺	1671	[Ge18AuO3(K)(NO3)]+
1703	[Ge ₁₈ Au ₂]+	1804	[Ge ₁₈ Au ₂ (K)(NO ₃)] ⁺
1720	[Ge18AU2O]+	1822	[Ge ₁₈ Au ₂ O·(K)(NO ₃)] ⁺
1736	[Ge18AU2O2]+	1837	[Ge ₁₈ Au ₂ O ₂ (K)(NO ₃)] ⁺
1753	[Ge ₁₈ Au ₂ O ₃] ⁺	1856	[Ge ₁₈ Au ₂ O ₃ (K)(NO ₃)] ⁺

Tabelle 2.4: Liste der ESI-MS-Peaks (positiver Modus) einer frisch angesetzten Lösung von K_4Ge_9 und $[Au_9(PPh_3)_8](NO_3)_3$ in DMF.

K4Sn9 mit AuPPh3Cl in DMF

Die Untersuchungen der Reaktionslösungen von K₄Sn₉ mit AuPPh₃Cl in DMF ergaben im negativen Modus ein vergleichbares Spektrum zu dem von K₄Sn₉ ohne Au-Edukt. Allerdings ist die Signalintensität deutlich geringer und damit das Verhältnis von Signal zu Rauschen schlechter. Au-Sn Verbindungen werden nicht beobachtet. Im positiven Modus dominiert erneut das Signal von [K(2.2.2-crypt)]⁺; Peaks der Ionen [Au(PPh₃]₂]⁺ bzw. [(AuPPh₃)₂]⁺, die in Spektren des reinen Au-Eduktes sehr intensiv sind (vergleiche Kapitel 7), treten hier nur sehr schwach auf. Dieser Befund wird durch die ³¹P-NMR-spektroskopischen Untersuchungen der gleichen Lösung unterstützt, die eine vollständige Abspaltung des Phophin-Liganden in Gegenwart der Zintl-Phase zeigen (vergleiche Kapitel 3.4).

2.2.3.ESI-MS von [K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, 7

Lösungen von Kristallen der bis heute nicht eindeutig strukturell charakterisierten Verbindung $\{Ge_9^{2^-}/Ge_{10}^{2^-}\}^{[7]}$ in DMF zeigen Signale von $[Ge_n]^-$ mit n = 3 - 11. Entgegen des von Fässler et al.^[10] beschriebenen Trends der Abnahme der Signalintensität mit zunehmenden n für $[E_n]^-$ beobachtet man hier eine Zunahme der Intensität mit einem Maximum bei m/z = 729, was $[Ge_{10}]^-$ entspricht. Diese Intensitätsverteilung stützt die von Belin et al. vertretene Beschreibung der mehrfach fehlgeordneten Ge-Verbindung als $[Ge_{10}]^{2^-}$. Im Fall der kleineren Clusteranionen kommt es zu Signalverbreiterungen, bedingt durch die Überlagerung der $[Ge_n]^-$ Signale mit denen von $[Ge_nO]^-$, wie bereits schon von Fässler et al. beschrieben.

Reaktionen, die zur Bildung von $\{Ge_9^{2-}/Ge_{10}^{2-}\}$ führten, ergaben in vergleichbaren Umsetzungen auch das Dimer $[Ge_9-Ge_9]^{6-[18-20]}$ bzw. das Trimer $[Ge_9-Ge_9-Ge_9]^{6-[19, 21]}$; dies lässt vermuten, dass in Lösungen von $[Ge_9]^{n-}$ komplexe Gleichgewichte und damit alle genannten Spezies vorliegen bzw. dass sich diese aus den Reaktionslösungen bilden können. Die ESI-Massenspektren der Lösungen von $\{Ge_9^{2-}/Ge_{10}^{2-}\}$ unterstützen diese Annahme, da sie sowohl das Dimer $[Ge_9-Ge_9]^{2-}$ (697 m/z) sowie das Trimer $[Ge_9-Ge_9-Ge_9\cdot4 \text{ dmf}]^{2-}$ (1141 m/z) zeigen. Dies ist ein deutliches Beispiel für die Tendenz höher geladener Anionen, mehr Lösungsmittelmoleküle zu koordinieren als die einfach geladenen Clusteranionen. Auch in diesem Spektrum beobachtet man Abweichungen von der berechneten Isotopenverteilung, bedingt durch Fehler bei der Integration aufgrund vergleichsweise geringer Signalintensitäten.

Abbildung 2.9: ESI-MS (negativer Modus) von [K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, 7, gelöst in DMF. L = dmf

m/z	lon	m/z	lon
364	[Ge ₅] ⁻	729	[Ge10] ⁻ bzw. [Ge18 *2dmf] ²⁻
436	[Ge₀]-	767	[Ge ₁₈ *3dmf] ²⁻
508	[Ge ₇]-	799	[Ge11]-
581	[Ge ₈]-	1067	[Ge ₂₇] ²⁻
653	[Ge ₉] ⁻ bzw. [Ge ₁₈] ²⁻	1141	[Ge ₂₇ *4dmf] ²⁻
697	[Ge18 *dmf]2-		

Tabelle 2.5: Liste einiger ESI-MS-Peaks von [K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, **7**, gelöst in DMF, mit den dazugehörigen Ionen.

Die Messung der gleichen Lösung im positiven Modus zeigt einzig im Bereich niedriger Molmassen das prominente Signal von [K(2.2.2-crypt)]⁺ bei m/z = 415.

2.2.4.ESI-MS von [K(2.2.2-crypt)₃]K[Sn₉]

Lösungen von [K(2.2.2-crypt)₃]K[Sn₉], **8**, in DMF zeigen im negativen Modus verschiedene Serien von Signalen; dank der klaren Unterscheidung zwischen Metallatomen und Lösungsmittelmolekülen kann eine eindeutige Zuordnung der Signale zu entsprechende Molekülfragmenten erfolgen:

Abbildung 2.10: ESI-MS (negativer Modus) vor	[K(2.2.2-crypt)3]K[Sn9],	8 , ir	DMF.	Peak-Serien	(Sn ₉ ,	Sn7,
Sn13) sind mit horizontalen Klammern zusammer	ngefasst; L = dmf.					

Sn₂ m/z	lon	Sn7 m/z	Ion	Sn ₁₃ m/z	Ion
357	[Sn ₉] ³⁻	450	[Sn7·dmf] ²⁻	771	[Sn13·dmf] ²⁻
431	[Sn ₉ ·3dmf] ³⁻	524	[Sn ₇ ·3dmf] ²⁻	845	[Sn13·2dmf]2-
505	[Sn ₉ ·6dmf] ³⁻	598	[Sn ₇ ·5dmf] ²⁻	919	[Sn13·4dmf]2-
539	[Sn ₉] ²⁻	672	[Sn ₇ ·7dmf] ²⁻	993	[Sn13·6dmf]2-
1069	[Sn ₉]-	744	[Sn7·9dmf]2-	1064	[Sn13·8dmf] ²⁻

Tabelle 2.6: Liste einiger Serien von ESI-MS Peaks von [K(2.2.2-crypt)₃]K[Sn₉], 8, in DMF.

Auch hier erfolgt die Ladungszuordnung eindeutig anhand des Auftretens von schwächeren Signalen bei jeweils der halben Molmasse von DMF im Falle doppelt geladener Anionen bzw. bei einem Drittel der Molmasse von DMF im Fall der dreifach negativ geladenen Ionen. Die auffällige Verbreiterung des Peaks bei m/z = 1069 ist auf die Signalüberlagerung von [Sn₉]⁻ mit [Sn₁₃·8dmf]²⁻ zurück zu führen. Auch im Fall von [Sn_n]^{x-} zeigen die höher geladenen Anionen eine größere Tendenz zur Koordination von Lösungsmittelmolekülen als die Monoanionen, die im obigen Spektrum nicht gezeigt werden. Der auffällig große Unterschied der Signalserien zu früheren Messungen von Fässler et al.^[10] sowie zu den Messungen von

[K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, **7**, ist Hinweis darauf, dass trotz vergleichbarer Trends in Lösungsverhalten und Reaktivität der E₉-Zintl-Anionen einige signifikante Unterschiede verzeichnet werden. Diverse Verbindungen von [Ge₉]^{x-} mit anderen Elementen (vergleiche auch Kapitel 3 und 4) konnten nicht auf [Sn₉]^{x-} Verbindungen übertragen werden, und umgekehrt; entsprechende unterschiedliche Gleichgewichte der reaktiven Spezies in Lösung, wie anhand der ESI-Massenspektren gezeigt, können dafür ein Grund sein.

2.2.5. Vergleichende Diskussion

Die Untersuchungen der Edukt- und Reaktionslösungen der Zintl-Ionen $[Ge_3]^{4-}$ und $[Sn_9]^{4-}$ mit Au-Verbindungen mithilfe der ESI-Massenspektroskopie zeigen deutlich, welche Vielzahl von Cluster-Aggregaten (in der ESI-Quelle) möglich und detektierbar sind; dieser Befund stützt die These komplexer Gleichgewichte von $[E_n]^{\times-}$ Clustern in Lösung und unterstreicht das Reaktionspotential dieser Verbindungsklasse. Ein Vergleich der Peak-Intensitäten zeigt, dass im Gegensatz zur Clusterbildung durch Laser-Desorption die größeren Gen-Cluster (n = 8-12) in Lösung klar dominieren und damit auch im ESI-Massenspektrum prominent sind. Anlagerungen von K- bzw. O-Atomen sowie von DMF-Molekülen vor allem bei höher geladenen Anionen führen zu Serien von Peaks, die anhand ihrer schrittweisen Fragmentierung eindeutig den entsprechenden Verbindungen zugeordnet werden können. Die Zugabe von Au(I)-Verbindungen bewirkt unmittelbar eine Verschiebung der Gleichgewichte in Lösung; kleinere Cluster [Gen]⁻ mit n = 3 bis 7 sind nun kaum mehr nachweisbar, Au-Ge Addukte überwiegen neben den offensichtlich besonders stabilen und damit auch in höherer Konzentration vorliegenden [Ge₉]- und [Ge₁₀]-Addukten (O, DMF).

Spektren der Lösungen kristalliner Verbindungen der Zintl-Ionen liefern darüber hinaus erstmals deutliche Hinweise auf das Vorliegen anionischer Cluster in Lösung, wie sie auch im Festkörper nachgewiesen wurden. Bemerkenswert ist hierbei der deutliche Unterschied der Signalmuster zwischen Ge- bzw. Sn-Lösungen: während die ESI-Massenspektren kristalliner Ge-Verbindungen sehr ähnliche Peakserien zu denen der Reaktionslösungen zeigen, erkennt man im Fall kristalliner Sn-Verbindungen eine klare Präferenz der Clusteranionen [Sn_n] mit n = 7, 9 und 13.

42

Ohne Anspruch auf abschließende quantitative Aussagen liefert damit die ESI-Massenspektroskopie ein wertvolles Werkzeug zur Untersuchung von Clusterspezies und -gleichgewichten in Lösung.

2.3. Literatur zu Kapitel 2

- [1] J. D. Corbett, Chem. Rev. **1985**, 85, 383.
- [2] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
- [3] T. F. Fässler, S. D. Hoffmann, Angew. Chem. 2004, 116, 6400.
- [4] S. C. Sevov, J. M. Goicoechea, Organometallics 2006, 25, 5678.
- [5] J. M. Lehn, Structure and Bonding (Berlin) 1973, 16, 1.
- [6] B. Kesanli, J. Fettinger, B. Eichhorn, J. Am. Chem. Soc. **2003**, 125, 7367.
- [7] C. Belin, H. Mercier, V. Angilella, New J. Chem. **1991**, 1**5**, 931.
- [8] E. N. Esenturk, J. C. Fettinger, B. W. Eichhorn, J. Am. Chem. Soc. 2005, 14, 232.
- [9] T. P. Martin, Angewandte Chemie **1986**, 98, 197.
- [10] T. F. Fässler, H.-J. Muhr, M. Hunziker, Inorg. Chem. Eur. J. 1998, 1433.
- [11] S. Neukermans, X. Wang, N. Veldeman, E. Janssens, R. E. Silverans, p. Lievens, Int. J. Mass Spectr. 2005, 252, 145.
- [12] X. Zhang, G. Li, Z. Gao, Rapid Comm. Mass Spectrometry 2001, 15, 1573.
- [13] V. Kumar, A. Kumar Singh, Y. Kawazoe, Nano Letters **2004**, 4, 677.
- [14] E. N. Esenturk, J. Fettinger, B. W. Eichhorn, Polyhedron 2006, 25, 521.
- [15] B. Kesanli, J. Fettinger, D. R. Gardner, B. Eichhorn, J. Am. Chem. Soc. 2002, 124, 4779.
- [16] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2005, 127, 7676.
- [17] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2006, 128, 4155.
- [18] A. Nienhaus, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2006, 632, 1752.
- [19] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2005, 631, 1149.
- [20] L. Xu, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 9245.
- [21] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2002, 124, 10990.

3. Umsetzungen von K_4Ge_9 mit AuPPh₃Cl

3.1. Einleitung

Der Aufbau ausgedehnter, in Struktur und Größe wohl definierter Clusterverbindungen durch die Verknüpfung der Zintl-Anionen der Tetrele mit geeigneten Metallzentren war bereits in einigen Fällen^[1] erfolgreich und hat dazu beigetragen, die elektronische Struktur sowie die Bindungsverhältnisse der beteiligten Spezies besser zu verstehen. Während die Übergangsmetalle der Gruppe 10 dazu tendieren, zentrierte intermetalloide Cluster mit Zintl-Ionen zu bilden, wie beispielsweise [M@Pb12]²⁻ (M =Ni, Pd, Pt)^[2], [M@Sn₉ML]ⁿ⁻ (M = Ni, L = CO, n = 3; M = Pt, L = PPh₃, n = 2]^[3] oder [Ni@Ge₉NiL]²⁻ (L = CO, PPh₃, CCPh)^[4], wobei man vom entsprechenden M⁰ Metallkomplex als Reagens ausgeht, führte die Umsetzung mit isoelektronischen Au(I)-Komplexen zur Bildung der ersten beiden ligandfreien anionischen Gold-Germanium-Cluster [K(2.2.2-crypt)]₅[Au₃Ge₁₈]^[5], **1**, und [K(2.2.2-crypt)]₅[Au₃Ge₄₅]^[6], **2**. Die Stabilität solcher Cluster liefert wertvolle Hinweise sowohl auf deren Einsatz als katalytische Initiatoren für das Wachstum von (Germanium-) Nanodrähten^[7] als auch auf ihre Verwendung als "Bauelement' zum Aufbau größerer ein- und mehrdimensionaler Systeme.

3.2. [K(2.2.2-crypt)]₅[Au₃Ge₁₈]

3.2.1. Darstellung und Analytik

Die Synthese von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, wurde mit Schlenktechnik unter Argon-Schutzgasatmosphäre analog der im Kapitel 2 beschriebenen optimierten Reaktionsbedingungen durchgeführt. Dazu wurde K₄Ge₉ in Ethylendiamin gelöst, vom unlöslichen Rückstand auf AuPPh₃Cl filtriert, eine Stunde gerührt und erneut auf 2.2.2-crypt filtriert. Nach einer weiteren Filtration wurde die unverändert intensiv rotbraune Lösung abschließend mit Toluol überschichtet (detaillierte Angaben zur Synthese finden sich in Kapitel 7).

Dunkel orangefarbene bis rote plättchenförmige Kristalle von **1** wurden in ca. 20 % Ausbeute nach einer Woche erhalten. Die Synthese konnte mehrmals erfolgreich wiederholt werden, wobei sich die oben beschriebenen Reaktionsbedingungen als optimal in Bezug auf Ausbeute und Kristallqualität erwiesen. Halb-quantitative EDX Analysen der Kristalle weisen die Elemente Ge, K und Au nach.

EPR und SQUID magnetische Messungen bestätigen durch negative Werte der Magnetisierung den Diamagnetismus von 1.

3.2.2. ESI-Massenspektroskopie

Kristalle von **1** lösen sich gut in Dimethylformamid; von der braunen klaren Lösung wurden ESI-Massenspektren ermittelt und mit denen von $[Ge_{?}]^{4-}$ sowie der Reaktionslösungen verglichen (vergleiche auch Kapitel 2). Die Spektren zeigen neben der erwarteten Serie $[Ge_{n}]^{-}$ (n = 7 bis 10) eine weitere mit dem K-Addukt der Cluster, $[Ge_{n}K]^{-}$ (n = 8 bis 14), was die bereits von *Fässler et al.* beschriebene Tendenz zur Bildung größerer Cluster in Gegenwart von Kalium bestätigt.^[8] Der prominenteste Peak mit m/z = 909 entspricht $[Ge_{12}K]^{-}$. Auch die Clusterverbindung $[Au_{3}Ge_{18}]^{2-}$ wird als K-Addukt bei m/z = 970 klar nachgewiesen. Die Anlagerung eines weiteren Au-Atoms wird zudem beobachtet (m/z = 1071), allerdings nicht die schrittweise Abspaltung von Au-Atomen, wie in der Reaktionslösung von K₄Ge₉ mit $[Au_{9}(PPh_{3})_{8}]$ (NO₃)₃.

Abbildung 3.1: ESI-MS (negativer Modus) von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], 1, in DMF. L = dmf.

	[Gen]⁻		[Ge _n ·K]⁻		[Ge18AuxL] ²⁻
m/z	lon	m/z	lon	m/z	lon
436	[Ge6]-	691	[Ge9·K]⁻	970	[Ge18AU3K] ²⁻
508	[Ge7]-	762	[Ge10·K]-	1016	[Ge ₁₈ Au ₃ ·2dmf] ²⁻
581	[Ge ₈]-	838	[Ge11⋅K]-	1072	[Ge ₁₈ Au ₄ K] ²⁻
655	[Ge ₉]⁻	910	[Ge12·K]-	1091	[Ge ₁₈ Au ₃ ·4dmf] ²⁻
727	[Ge10]-	984	[Ge₁₃·K]⁻	1164	[Ge18Au3·6dmf] ²⁻

Tabelle 3.1 Serien der ESI-MS-Peaks von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], 1, in DMF.

Obgleich K und 2.2.2-crypt durch das Auflösen von **1** in äquimolaren Mengen vorliegen, beobachtet man keine Anlagerung von [K(2.2.2-crypt)]; entsprechende Befunde finden sich auch an anderen Stellen in der Literatur.^[9-11]

Messungen im positiven Modus zeigen neben dem prominentesten Peak von $[K-2.2.2-crypt]^+$ auch das einfach geladene Clusterion von **1**, $[Ge_{18}Au_3]^+$ in vergleichsweise geringer Intensität, sowie das entsprechende DMF-Addukt bei m/z = 1972(vergleiche Abbildung 3.2).

Abbildung 3.2: ESI-MS von 1, gelöst in DMF, im positiven Modus.

Eine fokussierte Messung des Peaks von [Ge₁₈Au₃·dmf]⁺ zeigt ein Isotopenmuster, welches sehr gut mit dem theoretisch berechneten Muster übereinstimmt (vergleiche Abbildung 3.3).

Abbildung 3.3: ESI-MS von 1, gelöst in DMF (oben), im Vergleich zu dem theoretisch berechneten Isotopenmuster von 1 (unten). Die mit * markierte Linie ist ein messtechnisches Artefakt.

Die ESI-Massenspektren von 1 in DMF liefern einen klaren Hinweis darauf, dass das Clusterion auch in Lösung existiert sowie in der Gasphase hinreichend stabil ist, um mittels Ionenfallen-Detektor nachgewiesen zu werden. Obgleich die sanfte Ionisierungstechnik der Elektrospray-Ionisation nachweislich die Aggregation von Teilchen in der ESI-Quelle ermöglicht und sogar begünstigt, ist die Wahrscheinlichkeit, "zufällig" zwei [Ge9]-Cluster und 3 Au-Atome zu aggregieren, äußerst gering, was für das Vorliegen des Ions in Lösung spricht. Die Intensitätsverhältnisse der Peaks weisen in die gleiche Richtung. Es ist grundsätzlich nicht trivial zu entscheiden, welche im ESI-Massenspektrum auftretenden Ionen auch in der Analysenlösung vorliegen bzw. welche sich erst in der Gasphase während der Ionisierung bilden. Intensitätsverhältnisse der Peaks zueinander erlauben in jedem Fall eine Aussage über die relative Stabilität der Ionen. Da Kristalle von 1 in der Analysenlösung die einzige Au- bzw. Ge-Quelle sind, ist das Auftreten von [Ge₁₈Au₄] bzw. der diversen [Ge_n]-Cluster ein starker Hinweis auf das Vorliegen komplexer Gleichgewichte in Lösung, die sowohl den Abbau bzw. die vollständige Dissoziation des Verbindung 1 als auch deren Anlagerung weiterer Atome ermöglichen.

Vergleichbare Umsetzungen der Phase K₄Ge₂ mit [Au₂(PPh₃)₈](NO₃)₃ anstelle von AuPPh₃Cl (vergleiche Kapitel 5) führten in einigen Ansätzen ebenfalls zu Kristallen von 1, allerdings in geringerer Ausbeute und vorwiegend schlechterer Kristallqualität. ESI-Massenspektren dieser Kristalle zeigen ein annähernd identisches Signalmuster wie das oben beschriebene. Die entsprechenden Reaktionslösungen, die frisch angesetzt unmittelbar gemessen wurden, zeigen bereits nach weniger als 2 Stunden Reaktionszeit die Signale von 1 im positiven Modus, neben einer Vielzahl weiterer Peaks, vor allem Au-Phosphin-Addukte (vergleiche auch Kapitel 2). Dies erlaubt den Rückschluss, dass [K(2.2.2-crypt)]₅[Au₃Ge₁₈], 1, ein Produkt eines Gleichgewichts in Lösung ist, welches durch Kristallisation auf die Seite des Produktes verschoben wird. Durch Auflösen der Kristalle stellen sich diverse Reaktionsgleichgewichte der beteiligten Spezies in Lösung wieder ein und sind denen der ursprünglichen Reaktionslösungen vergleichbar. Trotzdem bleibt auch in Lösung das Clusterion [Au₃Ge₁₈] zumindest teilweise bestehen.

3.2.3. Kristallstruktur

Einkristalle von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, wurden auf Glaskapillaren fixiert. Die Strukturlösung (SHELXS-97^[12]) und -verfeinerung (SHELXL-97^[13]) erfolgte mit direkten Methoden und der Methode kleinster Fehlerquadrate gegen F². Gold-, Germaniumund Kaliumatome sowie die Kryptand-Moleküle, die an K1, K3 und K4 koordinieren, wurden mit Hilfe anisotroper Auslenkungsparameter verfeinert. Die Kryptand-Einheiten um K2 und K5 zeigen eine Fehlordnung, die auch mit Split-Modellen nicht gelöst werden konnte, und wurden darum mit isotropen Auslenkungsparametern mit Einschränkungen für bestimmte Bindungslängen verfeinert. Die verbleibende Elektronendichte weist auf ein fehlgeordnetes Lösungsmittel-Molekül hin. Auch die Ver-

49

wendung von Splitpositionen brachte kein befriedigendes Ergebnis, weshalb PLATON SQUEEZE^[14, 15] benutzt wurde.

Tabelle 3.2 gibt eine Übersicht der Kristallstrukturdaten von **1.** Eine Aufstellung der Atompositionen sowie ausgewählter Bindungslängen und –winkel findet sich in Anhang I.

Zusammensetzung	C94H196AU3Ge18K5N14O30	
Molmasse	4095.67 g/mol	
Temperatur	120(2) K	
Wellenlänge λ (Mo k _{α})	0.71073 Å	
Kristallsystem	triklin	
Raumgruppe	ΡĪ	
Zellparameter	a = 15.090(1) Å	$\alpha = 111.326(3)^{\circ}$
	b = 19.911(1) Å	β = 92.123(2)°
	c = 25.967(1) Å	γ = 93.120(2)°
Volumen der Einheitszelle	7243.3(4) Å ³	
Z	2	
Dichte (berechnet)	1.878 g/cm ³	
Absorptionskoeffizient µ	6.904 mm^{-1}	
F(000)	4012	
Kristallabmessungen	0.40 x 0.20 x 0.02 mm ³	
Meßbereich 0	3.04 bis 20.86°.	
Indizierung	-15 ≤ h ≤ 13, -18 ≤ k ≤ 19, -25 ≤ l ≤ 20	
Gemessene Reflexe	29141	
Unabhängige Reflexe	14346 [R _{int} = 0.0306]	
Unabhängige Reflexe mit I > 2 σ	7812	
Vollständigkeit der Daten (θ = 0.86°)	94.0 %	
Absorptionskorrektur	Semi-empirisch	
Max. und min. Transmission	1.16002 and 0.77358	
Verfeinerungsmethode	Methode der kleinsten	
	Hehlerquadrate; vollstandige	
	Temperaturfaktoren	
Daten / Beschränkungen / Parameter	14346 / 11 / 1097	
Güte der Anpassung für F ²	0.935	
R-Werte [I>2σ(I)]	R ₁ = 0.0525, wR ₂ = 0.1206	
R-Werte (alle Daten)	$R_1 = 0.0959, wR_2 = 0.1301$	
Gewichtung*	a = 0.0647; b = 0.000	
Restelektronendichte	1.852 und -0.791 e·Å ⁻³	

Tabelle 3.2: Kristallstrukturdaten von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**. * w = $1/[\sigma^2(F_0)^2 + (aP)^2 + bP]$, mit P = $(F_0^2 + 2 F_c^2)/3$

Standardabweichungen aller Bindungsabstände und -winkel in diesem Kapitel sind kleiner als 0.005 Å bzw. 0.03 °.

3.2.4. Strukturbeschreibung

Die Verfeinerung von **1** in der triklinen Raumgruppe P1 zeigte, dass **1** den anionischen Cluster [Ge₉Au₃Ge₉]⁵⁻ **1a** (siehe Abbildung 3.4) und fünf [K(2.2.2-crypt)]⁺⁻ Einheiten pro Anion enthält. Der Cluster besteht aus einer dreieckigen Au₃ Einheit mit je einer Ge₉ Untereinheit zu beiden Seiten des Dreiecks, wobei jedes Goldatom annähernd linear an zwei Germaniumatome koordiniert.

Abbildung 3.4:a) Der anionische Cluster [Au₃Ge₁₈]⁵⁻ 1a; b) Detailansichten des quadratischen Antiprismas A und des trigonal dreifach überkappten Prismas B. Ge-Atome sind grau, Au-Atome weiß, alle Atome mit 50 % Aufenthaltswahrscheinlichkeit dargestellt. Die Prismenkanten des trigonalen Prismas in B sind dunkel hervor gehoben.

Aus Abbildung 3.4b ist ersichtlich, dass die beiden 9-atomigen Cluster unterschiedliche Strukturen aufweisen, wobei jeder neun kristallographisch unabhängige Positionen hat.

Cluster A kann als einfach überkapptes quadratisches Antiprisma mit leichter Abweichung von der idealen C_{4v} Symmetrie beschrieben werden. Diese Verzerrung von Cluster **A** drückt sich im Verhältnis der Diagonalen des nicht überkappten Quadrats (Ge10, Ge11, Ge12, Ge13) aus: $d_{Ge10-Ge12}/d_{Ge11-Ge13} = 1.03$. **Cluster B** kann am besten als Variante eines dreifach überkappten trigonalen Prismas beschrieben werden. Die Abweichung von der idealen D_{3h} Symmetrie spiegelt sich wieder im Verhältnis der drei Prismenhöhen $h_{1(Ge5-Ge6)} : h_{2(Ge1-Ge3)} : h_{3(Ge7-Ge8)} = 1 : 1.02 : 1.05$ mit $h_{(Ge5-Ge6)} = 2.879$ Å.

Eine detaillierte Untersuchung von Bindungslängen und –winkeln ergibt ein Verhältnis *h/e* = 1.14 von mittlerer Prismenhöhe *h* zu mittlerer Kantenlänge e des verzerrten trigonalen Prismas **B** (Ge1, Ge3, Ge5, Ge6, Ge7, Ge8). Dieses Verhältnis liegt im Bereich literaturbekannter Cluster mit 21 Gerüstelektronen ([Ge₉]³⁻: *h/e* = 1.17^[16]) bzw. mit 22 Gerüstelektronen ($_{\infty}^{1}$ [Ge₉]²⁻: *h/e* = 1.07 ^[17] sowie [Ge₉–Ge₉]⁶⁻: *h/e* = 1.12^[18]). Damit ist die eindeutige Zuordnung von Clusterstruktur zur Ladung von [E₉] nicht möglich, umso mehr als dass in **1** jeder der [Ge₉]-Cluster drei exo-Bindungen zu Gold-Atomen aufweist und damit zusätzlich verzerrt. Damit ist für beide Cluster eine Ladung von 3– bzw. 4– denkbar. Die beschriebene Unsicherheit bei der Zuordnung von Elektronen zu homoatomaren Strukturen auf Basis der Gerüststrukturen wurde für den Fall der 9-atomigen Zinn-Cluster erst kürzlich diskutiert^[19].

	Cluster A	Cluster B	[Ge ₉] ^{3-[20]}	¹ [Ge 9] ²−[21]
d_1/d_2	1.03			1.23
h1:h2:h3*	0.96:1:1.25	1:1.02:1.05	0.98:1.11:1.14	0.94 : 0.95 : 1.11
h/e	1.16	1.14	1.17	1.07
α		17.4	17.9	

Tabelle 3.3: Geometrische Parameter der Cluster **A** und **B** im Vergleich mit anderen [Ge]₉-Clusteranionen.

d: Diagonale der nicht-überkappten Quadratfläche; h: Höhe des trigonalen Prismas; e: Kantenlänge der Grundfläche des trigonalen Prismas; α : Torsionswinkel der quadratischen Grundfläche. *: zur Normierung wurde die mittlere Prismenhöhe mit 2.84 Å gleich 1 gesetzt.

In **Cluster A** beobachtet man zum überkappenden Ge-Atom eine signifikant verkürzte Bindungslänge Ge14-Ge18 von 2.479 Å gegenüber 2.554 Å bis 2.559 Å für die benachbarten Bindungen (Ge15, Ge16) zu Ge18 sowie die entsprechend verlängerte gegenüberliegende Bindung Ge17-Ge18. Die verkürzte Bindung zwischen dem Kappenatom und dem an das Au-Dreieck gebundenen Ge-Atom bewirkt eine Verzerrung der Kappe hin zum Gold-koordinierenden Deltaeder. Eine vergleichbare Verzerrung findet sich in der von Sevov et al. beschriebenen Verbindung [K(2.2.2-crypt)]₃[Ge₉-SnMe₃]^[22]; in diesem Fall befindet sich der Sn(Me₃) Ligand annähernd verbrückend über einer Deltaederfläche und bewirkt eine Verkürzung der zugehörigen Bindung zu dem entsprechenden Kappenatom. Diese Übereinstimmung ist umso erstaunlicher, als es sich im Fall des Sn-substituierten Clusters um einen nucleophilen, elektronenreichen Liganden handelt, während Au(I) in Verbindung **1** ein Lewis-saures System ist.

Auch im Cluster **B** sind die drei überkappenden Germaniumatome (Ge2, Ge4 und Ge9) nicht zentral über den rechteckigen Seiten des trigonalen Prismas angeordnet, sondern in Richtung des Golddreieckes verschoben. Die Abstände von 2.54 Å bis 2.56 Å zwischen den überkappenden Ge-Atomen und den zu Gold koordinierten Ge-Atomen (Ge1, Ge5 und Ge8) sind deutlich kürzer als jede andere Ge-Ge Bindung der Kappen (2.62 – 2.64 Å). Eine derartige Verkürzung der Ge-Ge Bindung wurde bereits in anderen Clustern mit 22 Gerüstelektronen und kovalenten exo-Bindungen beobachtet, wie beispielsweise in [Ph₃Sn-Ge₉-SnPh₃]²⁻. ^[22] Aufgrund der Elektronendelokalisierung entlang des Clustergerüstes wird der lokale 'Mangel' an Elektronen, bedingt durch die Ausbildung der exo-Bindung, zumindest teilweise durch die Elektronen der Nachbaratome kompensiert.

Abbildung 3.5: Verkürzte Ge-Ge Bindungen in den 22-Gerüstelektronen-Clustern: a) [Ge₉]-Cluster **B** mit den drei koordinierten Au-Atomen; b) [Ph₃Sn-Ge₉-SnPh₃]^{2–}. Ge-Atome sind grau, Au-Atome weiß, Sn-Atome schwarz dargestellt. Prismenkanten sind dunkel hervorgehoben. Alle Atomabstände sind in Å angegeben.

Das Golddreieck ist beiderseits angenähert coplanar von zwei Ge₃-Dreiecken der [Ge₉] Polyeder **A** und **B** koordiniert. In Cluster **A** ist dies eine der deltaedrischen Flächen, die die beiden Quadrate des Antiprismas verbinden; in Cluster **B** ist es die Dreiecksfläche des zugrunde liegenden trigonalen Prismas. Jedes Au-Atom ist wiederum angenähert linear an zwei Ge-Atome koordiniert, mit Ge-Au-Ge Winkeln zwischen 168.3 ° und 173.7 °. Diese Abweichung von der Linearität lässt sich begründen durch die im Mittel längeren Au-Au Kontakte (2.981 Å) im Vergleich zu den Ge-Ge Abständen im Deltaeder (2.541 Å).

Au-Ge Abstände liegen im Bereich von 2.437 Å und 2.460 Å und sind damit beträchtlich kürzer als die Summe der Kovalenzradien (Ge: 1.22 Å, Au : 1.44 Å^[23]). Au-Au Abstände liegen zwischen 2.900 Å und 3.095 Å, was die vielfach untersuchte Tendenz von Gold, Bindungen zu anderen Goldatomen einzugehen, erneut bestätigt.^[24]

Sowohl die Au-Au- als auch die Au-Ge-Kontakte von **1a** sind mit denen in molekularen Verbindungen der Elemente vergleichbar. Solche Verbindungen sind bisher nur in der Form von GeCl₃-Komplexen des Goldes bekannt.

Abbildung 3.6: a) Das Dimer [(Ph_3P)Au(GeCl_3)]_2^[25]; b) das ,Tetramer'(GeCl_3)_2Au-[(PhMe_2P)_2Au]_2-Au(GeCl_3)_2^[26].

Au-Atome sind hellgrau, Ge-Atome dunkelgrau, P-Atome weiß und Cl-Atome schraffiert, C-C Bindungen in Strichschreibweise dargestellt. Aurophile Wechselwirkungen sind gestrichelt gezeigt.

Im Dimer [(Ph₃P)Au(GeCl₃)]₂ (Abbildung 3.6a) wird die Assoziation der Monomere durch kurze Au–Au Kontakte von 2.960 Å erreicht.^[25] In der Verbindung (GeCl₃)₂Au– [(PhMe₂P)₂Au]₂–Au(GeCl₃)₂, (Abbildung 3.6b), die formal die kationische Einheit [(PhMe₂P)₂Au]+ und die anionische Einheit [Au(GeCl₃)₂]⁻ enthält, bilden die symmetrisch substituierten Au-Atome kurze Kontakte zwischen 2.88 Å und 2.98 Å aus und sind angenähert linear angeordnet.^[26]

54

Vergleicht man die oben genannten dimeren und tetrameren Au-Verbindungen mit der Anordnung der Au Atome in **1a**, so liegen die Au-Au Bindungslängen genau in deren Bereich. Die Anordnung der Au Atome im Dreieck ist hingegen ungewöhnlich. Damit können sowohl die Tendenz von Au(I) zur Ausbildung aurophiler Kontakte als auch die deltaedrische Struktur der Germanide als wesentliche strukturbestimmende Faktoren zur Bildung von **1a** identifiziert werden. Die annähernd sphärische Koordinationsgeometrie der Kryptand-Moleküle um das Zentralatom K erlaubt keine kurzen K-Ge Abstände, wie sie beispielsweise von *Fässler et a*^[27, 28] bzw. von *Guloy et a*^[29] in Verbindungen mit Kronenethern beschrieben werden.

Wie aus Abbildung 3.7 ersichtlich ordnen sich die Cluster parallel zu ihrer Ge₉-Au₃-Ge₉ Achse entlang der c-Achse an, wobei benachbarte Cluster stets um 180° gegeneinander verkippt sind. In Richtung der *b*-Achse zeigen sich Stapel primitiv angeordneter [Au₃Ge₄₅] Cluster, wobei diese Stapel jeweils in *a*-Richtung um ½ c gegeneinander versetzt sind.

Die K-Atome umgeben die Cluster in Form gewellter Achtringe mit maximalen K-K Abständen von 7.5 Å (vergleiche Abbildung 3.7b-Einschub). Die Koordination mit 2.2.2-crypt erlaubt nur K-Ge Abstände von minimal 6 Å.

Abbildung 3.7: a) Stapelung der [Au₃Ge₁₈] Cluster entlang der *b*-Achse, Schichten der jeweils um 180° gegeneinander verkippten Cluster entlang der *a*-Achse sind rot bzw. grau hervorgehoben. b) Aufsicht entlang der *b*-Achse; die eingefügte Detailansicht einer Elementarzelle zeigt die Anordnung der gewellten Achtringe aus K-Atomen, die die anionischen Cluster umgeben.

[Ge₉] Polyeder sind grau bzw. rot dargestellt, Au-Atome sind orange, K Atome blau gezeigt; K-K Abstände (< 7.5 Å) sind blau gezeichnet. Aus der Strukturbeschreibung und dem Vergleich mit anderen, ähnlichen Au- bzw. [Ge₉]-Verbindungen lässt sich für die Cluster die folgende Ladungsverteilung postulieren: [Ge₉]⁴⁻[Au⁺]₃[Ge₉]⁴⁻.

Damit entspricht **1a** einem kationischen [Au⁺]₃-Dreieck, komplexiert von zwei *nido*-[Ge₉]⁴⁻ Clustern. Ähnliche Strukturelemente finden sich auch im Gold-Borankomplex [(H₁₂B₁₀Au)(η-AuPPh₃)₄(AuB₁₀H₁₂)].^[30] Hier verknüpfen zwei Goldatome die beiden Boran-Clustereinheiten und werden zusätzlich stabilisiert durch verbrückende Au-Phosphinkomplexe.

3.2.5. Theoretische Untersuchungen

Einzelpunkt-DFT-Rechnungen wurden mit Lan2DZ Basissatz und B3LYP Funktional mit den röntgenographisch bestimmten Atomkoordinaten durchgeführt. Eine theoretische Analyse der elektronischen Struktur von 1a unter Verwendung der Dichte-Funktional-Theorie zeigt klar getrennte HOMO und LUMO mit einem Abstand von 2.60 eV. Eine NBO Analyse ergab eine vergleichbare Bindungssituation der Au-Atome in 1a und in AuPH₃Cl mit einer positiven Ladung der Au-Atome von 0.24 bzw. 0.34. Der kleinere Mittelwert für 1a spiegelt die hohe negative Ladung des Clusters wieder. Die beiden Cluster A und B tragen in vergleichbarem Ausmaß zu den Molekülorbitalen von 1a bei, was sich im gleichen Mittelwert der Atomladungen für die Ge-Atome von -0.32 zeigt.

Die vollständige Strukturoptimierung für AuPH₃CI ergab einen P-Au-CI-Winkel von 180.0 ° sowie eine Au-P Bindungslänge von 2.380 Å und einen Au-CI Abstand von 2.373 Å, was mit früheren Studien gut übereinstimmt.^[31]

MO-Rechnungen wurden mit Gaussian 03 Package, Revision C durchgeführt.^[32] Dabei beobachtet man kovalente Orbital-Wechselwirkungen zwischen den Ge- und Au-Atomen, die von den Donororbitalen des Germaniums zu den Akzeptororbitalen des Golds reichen.

Die lineare Koordination der Au-Atome, die Elektronegativitätsdifferenz zwischen Ge und Au sowie die ähnliche NBO Ladung der Au-Atome in **1a** und in AuPH₃Cl weisen auf eine Au(I)-Verbindung in **1a** hin. Um eine Nettoladung von -5 für **1a** zu erhalten, müssen die Cluster **A** und **B** formal jeweils vierfach negativ geladen sein. Tatsächlich ist auch die Form des Clusters **A** sehr ähnlich zu mehreren [Ge₉]⁴⁻ nido-Clustern (siehe Abbildung 3.8) wie beispielsweise $(Cs^+)_4[Ge_9]^{4-}$. ^[33] Cluster **B** mit drei beinahe gleichen Prismenhöhen lässt sich gut vergleichen mit dem 22-Elektronen-nido Cluster $([Bi]^{5+})_2([BiX_5]^{2-})_8([Bi_2X_8]^{2-})_2$. ^[34, 35] Eine ganz ähnliche Verzerrung eines 22-Gerüstelektronen-Clusters mit dem gleichen Verhältnis *h*/e findet man auch in dem vierfach negativ geladenen Zinncluster [K⁺(18-Krone-6)]₃(K⁺)[Sn₉]^{4-[27]}.

Abbildung 3.8: Vergleich neunatomiger Clusterstrukturen: a) einfach überkapptes quadratisches Antiprisma $(Cs^+)_4[Ge_9^{4-}]$; die dreifach überkappten trigonalen Prismen b) $([Bi]_{5^+})_2([BiX_5]_{2^-})_8([Bi_2X_8]_{2^-})_2, c)[K^+(18-Krone-6)]_3(K^+)[Sn_9]_{4^-} und d) [K^+(18-c-6)]_3[Sn_9]_{3^-}[36].$ Ge- bzw. Sn-Atome sind grau, Bi Atome weiß dargestellt.

Damit ist die Bindungssituation sehr ähnlich zu der im Polymer ¹_∞[HgGe₉]^{2-[37]}. Auch hier (Abbildung 3.9) sind [Ge₉]⁴⁻ *nido*-Cluster über das Übergangsmetall verknüpft, wobei jedes Clusteranion zwei exo-Bindungen zu Hg an jeweils gegenüber liegenden Ecken ausbildet, was zu einer unendlichen Kette aus Zintl-Clustern, verknüpft mit Hg, führt.

Abbildung 3.9: Das Polymer $\frac{1}{2}$ [HgGe₉]^{2-[37]}. Ge-Atome sind grau, Hg-Atome weiß dargestellt.

Eine Reduktion zu Au⁰, erkennbar an der linearen Kette P–Au–Au–P und den sehr kurzen Au–Au Abständen von 2.625 Å wie im Stannaborat-Gold Komplex $[(Ph_3P)Au(SnB_{11}H_{11})]_2^{2-[38]}$ (siehe Abbildung 3.10), tritt in **1a** nicht auf.

Au-Atome sind hellgrau, B-Atome schwarz, das Sn-Atom dunkelgrau und P- sowie H-Atome weiß dargestellt; C-C Bindungen sind in Strichschreibweise gezeigt.

Damit bestätigen die Rechnungen die formale Ladungsbilanz für **1a** mit $[Ge_9]^{4-}[Au^+]_3[Ge_9]^{4-}$. [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, stellt somit den ersten anionischen Goldcluster der Gruppe 14 dar und belegt die in Kapitel 1 formulierte Annahme, dass Au(I)-Verbindungen aufgrund ihrer durch den relativistischen Effekt besonderen Stabilität sowie ihrer Tendenz zu aurophilen und damit verbrückenden Wechselwirkungen geeigneter Reaktionspartner für Zintl-Ionen in Lösung sind. Der gezielte und kontrollierte Aufbau von Au-E Nanostrukturen (E = Si, Ge, Sn, Pb) rückt in greifbare Nähe.

3.3. [K(2.2.2-crypt)]₈K[Au₃Ge₄₅]

3.3.1. Darstellung und Analytik

Die Verbindung [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, wurde durch die Reaktion von K₄Ge₉ mit AuPh₃Cl in Ethylendiamin in Gegenwart von 2.2.2-crypt erhalten. Hierzu wurde K₄Ge₉ in Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand auf AuPPh₃Cl filtriert, erneut gerührt und anschließend auf 2.2.2-crypt filtriert. Der wesentliche Unterschied zur Synthese von **1** besteht in der 2.5-fachen Verdünnung der Reaktanden. In dem rotbraunen Filtrat bilden sich nach zwei Wochen plättchenförmige, dunkelrote Kristalle von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, in ca. 15 % Ausbeute neben rautenförmigen dunkelroten bis schwarzen Kristallen von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, in ca. 5% Ausbeute. Eine weitere Verdünnung der Ansätze (bis zu 10 mL Ethylendiamin) lieferte ausschließlich Kristalle von **2**.

Semiquantitative EDX-Analysen weisen im Kristall K, Ge und Au, aber kein P bzw. Cl nach.

3.3.2. Kristallstruktur

Kristalle von 2 wurden auf Glaskapillaren fixiert und im Stickstoff-Strom bei 120 K auf einem Oxford-Diffraction Xcalibur3-Diffraktometer gemessen. Die Strukturlösung erfolgte durch direkte Methoden (SHELXS-97^[12]) und die Strukturverfeinerung (SHELXL-97^[13]) mit der Methode der kleinsten Fehlerquadrate gegen F². Alle Au-, Ge- und K-Atome konnten direkt lokalisiert und mit anisotropen Auslenkungsparametern verfeinert werden. Die Kristalle streuen die Röntgenstrahlung nur mäßig, was durch die großen Zellkonstanten sowie die geringe Kristallqualität begründet werden kann. Daher konnten die Elektronendichte-Maxima der 2.2.2-crypt Moleküle nur schlecht gelöst werden. Die durch Differenz-Fourier-Synthesen ermittelten Restelektronendichten konnten deshalb nur ungefähr den Atomlagen der 2.2.2-crypt-Moleküle zugeordnet werden. Daher wurden die Elektronendichten um die Kaliumatome mittels eines bekannten Strukturfragments [K(2.2.2-crypt)] angepasst und als starre Gruppe verfeinert. Die Verfeinerung der Wasserstoffatome erfolgte auf berechneten Positionen. Die Restelektronendichten in den Hohlräumen der Struktur ließen auf fehlgeordnete Ethylendiaminmoleküle schließen und wurden mittels der PLATON SQUEEZE-Routine beschrieben.[14, 15]

60
Der Flack Parameter weicht signifikant von Null ab und weist damit auf ein racemisches Zwillingsproblem oder auf die Existenz eines Inversionszentrums hin. Das nicht zentrosymmetrische Modell wurde durch die PLATON ADDSYM Routine bestätigt^[14], speziell für die Atome Au, Ge und K. Darum wurde die abschließende Verfeinerung in der Raumgruppe *Pna2*¹ mit racemischer Verzwillingung durchgeführt. Der Flack Parameter verfeinert bis 0.36(1). Eine Reihe anderer vermessener Kristalle ergaben identische Gitterkonstanten, die Verfeinerungen führten jedoch zu den gleichen oder zu schlechteren Ergebnissen.

Messdaten der Kristallstrukturbestimmung sind in Tabelle 3.4 zusammengefasst. Eine Liste der Atompositionen sowie ausgewählter Bindungslängen und –winkel findet sich in Anhang II.

Zusammensetzung	C144H288AU3Ge45K9N16O48
Molmasse	7221.25 g/mol
Temperatur	120(2) K
Wellenlänge λ (Mo k _a)	0.71073 Å
Kristallsystem	orthorhombisch
Raumgruppe	Pna21
Zellparameter	a = 69.300(14) Å
	b = 25.071(5) Å
	c = 31.607(6) Å
Volumen der Einheitszelle	54915(19) Å ³
Z	8
Dichte (berechnet)	1.747 g/cm ³
Absorptionskoeffizient µ	6.625 mm ⁻¹
F(000)	27968
Kristallabmessungen	$0.4 \times 0.2 \times 0.1 \text{ mm}^3$
Meßbereich 0	2.89 ° bis 20.83 °.
Indizierung	$0 \le h \le 69, \ 0 \le k \le 25, \ -31 \le \le 31$
Gemessene Reflexe	387296
Unabhängige Reflexe	56016 [R _(int) = 0.0924]
Unabhängige Reflexe mit I > 2 σ	37662
Vollständigkeit der Daten (θ = 20.86°)	98.6 %
Absorptionskorrektur	semiempirisch
Max. und min. Transmission	0.98155 und 0.55048
Verfeinerungsmethode	Methode der kleinsten Fehlerquadrate; vollständige Matrix, Basis F ₀ ² -Werte, anisotrope Temperaturfaktoren
Daten / Einschränkungen / Parameter	56016 / 1 / 1076
Güte der Anpassung für F ²	1.033
R-Werte [l > 2σ(l)]	R ₁ = 0.0769, wR ₂ = 0.2124
R-Werte (alle Daten)	$R_1 = 0.1029$, $wR_2 = 0.2239$
Gewichtung*	a = 0.137; b = 0.000
Absolute Strukturparameter	0.364(8)
Restelektronendichte	2.916 und -1.944 e·Å⁻₃

Tabelle 3.4: Kristallstrukturdaten von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**. * w = $1/[\sigma^2(F_0)^2 + (\alpha P)^2 + bP]$, mit P = $(F_0^2 + 2 F_c^2)/3$

Standardabweichungen für alle in diesem Kapitel erwähnten Atomabstände und -winkel sind kleiner als 0.007 Å bzw. 0.05 °.

Die Strukturbestimmung und -verfeinerung in der Raumgruppe *Pna2*₁ ergab für [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, acht [K(2.2.2-crypt)]-Einheiten sowie ein weiteres K-Atom, welches direkt an das Anion gebunden ist, was insgesamt zu einer Ladung von 9- für den Cluster führt.

Abbildung 3.11: Die Cluster-Einheiten **2A** und **2B** von [Au₃Ge₄₅]⁹⁻. Ge-Atome sind grau, Au-Atome weiß, K-Atome schwarz, alle Atome sind mit 50 % Aufenthaltswahrscheinlichkeit dargestellt. Atombeschriftungen für Ge sind ohne Elementsymbol gezeigt.

3.3.3. Strukturbeschreibung

Die asymmetrische Einheit enthält zwei unabhängige Cluster-Einheiten [Au₃Ge₄₅]⁹⁻, **2A** und **2B**, sechzehn [K⁺(2.2.2-crypt)]-Einheiten und zwei K⁺-Kationen, die jeweils an einen der beiden Cluster koordiniert sind, wie in Abbildung 3.11 dargestellt. Die beiden [Ge₄₅] Cluster **2A** und **2B** sind sehr ähnlich in Bezug auf ihre Struktur; daher fokussiert die folgende Strukturdiskussion auf einen der Cluster, **2A**; strukturelle Besonderheiten von **2B** werden im Anschluss aufgeführt.

Die strukturelle Einheit [Au₃Ge₄₅]⁹⁻, **2A**, bestehend aus drei Au-Atomen und 45 Ge-Atomen, setzt sich aus vier polyedrischen [Ge₉] Einheiten I bis IV zusammen (siehe Abbildung 3.), die über weitere neun Ge-Atome und drei Au-Atome verknüpft sind.

Abbildung 3.12: [Ge₉] Untereinheiten I bis IV von Cluster **2A**. Ge-Atome, die an Au- oder weitere Ge-Atome des Clusters koordinieren, sind schwarz dargestellt, alle Atome sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt. Trigonale (I bis III) bzw. quadratische (IV) Prismen sind grau hervor gehoben.

Die drei nahezu strukturell identischen [Ge]⁹ Untereinheiten I bis III sind je an zwei Au-Atome gebunden. Damit bilden die drei Au-Atome und die Cluster I bis III ein cyclisches System mit lokaler dreizähliger Symmetrie (siehe Abbildung 3.13). Die Polyeder I bis III bilden außerdem je eine exo-Bindung zu den benachbarten Ge-Atomen Ge51, Ge52 und Ge53. Diese Ge-Atome bilden wiederum eine Brücke zu den Au-Atomen sowie kovalente Bindungen zu den Ge-Atomen Ge54, Ge55 und Ge56. Dadurch befinden sich die Atome Ge51 bis Ge53 in einer angenähert tetraedrischen Umgebung von je zwei Au-Atomen und zwei Ge-Atomen.

Das K⁺-Kation, welches nicht von 2.2.2-crypt komplexiert ist, befindet sich nahezu im Zentrum der [Ge₉] Einheiten I bis III, wobei die kürzesten K-Ge Abstände im Bereich von 3.476 bis 3.575 Å liegen.

Abbildung 3.13: Aufsicht auf die lokale dreizählige Einheit I bis III von **2A** (links) und **2B** (rechts), jeweils mit dem zentralen K-Atom. Ge-Atome sind grau, Au-Atome weiß, das K-Atom schwarz, alle Atome sind mit 50 % Aufenthaltswahrscheinlichkeit dargestellt.

Die drei neunatomigen Baueinheiten I bis III (vergleiche Abbildung 3.) können am besten als dreifach überkappte trigonale Prismen beschrieben werden. Die Kantenlängen der Polyeder im Bereich von 2.502 bis 3.078 Å liegen im Bereich delokalisierte Clustergerüstbindungen.^[39] Die trigonalen Prismen I bis III besitzen eine verzerrte C_{2v} Symmetrie, ein Hinweis auf 20-Elektronen-*closo*-Cluster mit je einer kovalenten exo-Bindung; alle Prismenhöhen h_i sind gegenüber dem idealen Deltaeder verlängert; jeweils eine davon besonders stark um 7 % bis 10 %. Diese verlängerte Prismenhöhe h_3 ist jeweils direkt benachbart zu der Ge-Ge exo-Bindung. Die homoatomaren exo-Cluster-Bindungen (Ge11–Ge51, Ge21–Ge52 und Ge31–Ge53) liegen zwischen 2.583 Å und 2.617 Å und können als leicht aufgeweitete kovalente Bindungen angesehen werden. Die Lage dieser exo-Bindung in Verlängerung der längsten Prismenhöhe h_3 ist durch die Lage des energetisch höchsten besetzten Molekülorbitals begründet, welches zur Bindung zur Verfügung steht.

Im Gegensatz zur üblichen annähernd parallelen Ausrichtung der exo-Bindung zur verlängerten Prismenachse ist die exo-Bindung zu Ge51 (Cluster I), Ge52 (Cluster II) bzw. Ge53 (Cluster III) um 20.3°, 21.2° bzw. 15.5° in Richtung des Deltaeder-Zentrums verkippt. Das legt den Rückschluss nahe, dass auch die beiden anderen zur Prismengrundfläche gehörenden Ge-Atome (Ge12 und Ge13; Ge22 und Ge23; Ge32 und Ge33) mit ihren freien Elektronenpaaren an der exo-Bindung beteiligt sind, was wiederum durch die Verlängerung ihrer zugehörigen Prismenachsen bestätigt wird (2.809 Å bis 2.852 Å). Zudem ermöglicht diese Neigung eine stärkere Wechselwirkung zwischen den exo-gebundenen Ge-Atomen (Ge51, Ge52, Ge53) mit Au. Eine Aufweitung der Bindungswinkel innerhalb des Clustergerüsts, bedingt durch die exo-Bindung und die damit verringerte Abstoßung des freien Elektronenpaares der entsprechenden Ge-Atome mit den Gerüstbindungselektronen, wie sie beispielsweise für [Ph₂Bi-(Ge₉)-BiPh₂]^{2-[40]} beschrieben wurde, tritt im Falle der Cluster I bis III nicht auf.

Die verbleibende 15-atomige Clustereinheit kann unterteilt werden in ein neunatomiges Polyeder IV (Ge41 bis Ge49), drei dreifach koordinierte Ge-Atome (Ge57, Ge58 und Ge59) und ein Ge-Dreieck (Ge54, Ge55 und Ge56). Das Polyeder IV zeigt die Form eines einfach überkappten quadratischen Antiprismas (siehe Abbildung 3.14; die Atome Ge41 bis Ge44 bilden die nicht überkappte quadratische Grundfläche), welches mit einem Diagonalverhältnis d_1/d_2 der nicht überkappten Fläche von 1.02 kaum verzerrt, also nahezu ideal ist. In Cluster **2B** tritt eine deutlich größere Verzerrung auf (siehe unten).

Abbildung 3.14: Vergleich der 15-atomigen Cluster-Einheit von **2A** und **2B**. Ge-Atome sind grau dargestellt, die 3-Zentren-2-Elektronen-Bindung (Ge54-Ge55-Ge56) ist als schwarzes Dreieck hervorgehoben. Aus Gründen der Übersichtlichkeit wurde auf die anisotrope Darstellung der Atome verzichtet.

Die Ge-Ge Bindungslängen in Cluster **2A-IV** liegen mit 2.492 Å bis 2.858 Å im Bereich herkömmlicher *nido*-Cluster, auffällig ist die Verlängerung einer der vier Bindungen zum Kappenatom (Ge48-Ge49), die mit 2.707 Å weit oberhalb der üblichen Abstände zwischen vierbindigen und fünfbindigen Ge-Atomen (2.57 Å – 2.65 Å) liegt; dadurch wird das Kappenatom Ge49 aus seiner zentralen Lage über der quadratischen Grundfläche herausgedrängt. Berücksichtigt man, dass Untereinheiten **IV** in **2A** je drei Ge-exo-Bindungen ausbildet, so ist trotzdem die gesamte Verzerrung der neunatomigen Cluster erstaunlich klein.^[41-47]

Bemerkenswert ist die Lage der exo-Bindungen: einfach überkappte quadratischantiprismatische [Ge]₉-Cluster bilden in der Regel eine bzw. zwei exo-Bindungen an gegenüberliegenden Ecken der offenen Quadratfläche aus, wie zum Beispiel in [Ph₂Bi-(Ge₉)-BiPh₂]^{2-,[40]} Wie Guloy et al. zeigen, entsprechen die höchsten besetzten Molekülorbitale denen der freien Elektronenpaare der offenen Quadratfläche unsubstituierter *nido*-[Ge₉]⁴⁻ Cluster. Dadurch sind diese besonders reaktiv und stehen für die Bildung von exo-Bindungen zur Verfügung.^[21] Im Fall von Cluster **IV** in **2A** ist dies nicht der Fall: die drei exo-Bindungen befinden sich an zwei benachbarten Ge-Atomen der offenen Quadratfläche (Ge 41 und Ge44) sowie Ge45, welches die Dreiecksfläche ergänzt. Dies kann durch sterische Ansprüche begründet werden und belegt zudem ein weiteres Mal die strukturelle Flexibilität der [Ge₇]-Cluster. Vergleichbare Bindungsverhältnisse finden sich im einfach überkappten quadratischen Antiprisma **A** der Verbindung [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, wie im vorangegangenen Kapitel beschrieben: auch dort erfolgt die Koordination des Golddreiecks über eine der Deltaederflächen des quadratischen Antiprismas.

Während die interatomaren Abstände innerhalb von **IV** typisch sind für polyedrische Ge-Cluster, weisen die drei Ge-Ge exo-Bindungen von **IV** (Abstände zu Ge57, Ge58 und Ge59 liegen zwischen 2.482 Å und 2.490 Å) sowie die Kontakte zum Dreieck (Ge54-Ge55-Ge56) mit Abständen zwischen 2.479 Å und 2.514 Å auf kovalenten Bindungscharakter hin. Ge-Ge Kontakte innerhalb des Dreiecks sind deutlich länger und reichen von 2.785 Å bis 2.834 Å für **A** und 2.777 Å bis 2.798 Å für **B**.^[21]

Der Bindungscharakter dieses Ge-Dreiecks Ge54-Ge55-Ge56 ist vergleichbar mit dem Ge-Dreieck (Ge4-Ge5-Ge6) im kationischen Cluster [Ge10(SitBu3)6]^{+,[48]} (siehe Abbildung 3.15).

Abbildung 3.15: a) Die zentrale [Ge₁₈] Einheit von **2A** im Vergleich zu b) dem [Ge₁₀] Cluster in [Ge₁₀(Si¹Bu₃)_d]⁺. Ge-Atome sind grau, Si-Atome schwarz und das I-Atom weiß dargestellt. Das Dreieck der 3-Zentren-2-Elektronenbindung ist schwarz hervor gehoben.

Dieser Cluster zeigt eine ähnliche Atomanordnung mit dem Unterschied, dass die überbrückenden Ge-Atome Ge7 bis Ge9 in [Ge10(Si[†]BU3)6]⁺ vierfach verknüpft sind, während die entsprechenden Ge-Atome in **2A** nur dreifach gebunden sind. Die Bindungen innerhalb des Dreirings Ge4 bis Ge6 in [Ge10(Si[†]BU3)6]⁺ wurden als 3-Zentren-2-Elektronen-Bindung beschrieben; mit Bindungslängen zwischen 3.254 bis 3.264 Å sind sie aber deutlich länger als ihr Gegenstück in **2A**. Damit können die Bindungsverhältnisse in **2A** sogar noch zutreffender als 3-Zentren-2-Elektronen-Bindung beschrieben werden.

Die drei Goldatome Au1, Au2 und Au3 sind jeweils von vier Ge-Atomen verzerrt quadratisch koordiniert (Winkelsumme 359°, Ge-Au-Ge Winkel zwischen 79° und 113°).^[49] Darüber hinaus sind die Au-Ge Abstände zwischen 2.479 Å und 2.565 Å deutlich kürzer als die Summe der Kovalenzradien (Ge: 1.22 Å, Au: 1.44 Å)^[23], nur wenig länger als die Au-Ge Bindungen in **1a** und liegen im Bereich anderer Au-Ge Verbindungen.^[50] Au-Au Kontakte liegen mit 3.667 Å bis 3.727 Å deutlich oberhalb der aurophilen Wechselwirkungen, sodass man von drei isolierten Au-Atomen ausgehen kann, die von ,Ge-Liganden' komplexiert werden.

Die Atomverknüpfung im Cluster **2B** ist identisch zu der im Cluster **2A**; vier [Ge₉] Cluster sind über eine weitere neunatomige Ge-Einheit und drei Goldatome verknüpft. Auffälliger Unterschied zu Cluster **2A** sind die deutlich vergrößerten anisotropen Auslenkungsparameter der Atome in **2B** (vergleiche Abbildung 3.11), die eine detaillierte Interpretation von Bindungslängen und -winkeln erschweren bzw. an einigen Stellen verbieten. Aus diesem Grund werden diese im folgenden Abschnitt nur auf zwei Dezimalstellen gerundet angegeben.

Die drei [Ge₉] Cluster I bis III können wie in **2A** am zutreffendsten als dreifach überkappte trigonale Prismen beschrieben werden; auch hier findet man die Verlängerung einer Prismenkante (3.00 Å bis 3.08 Å) in Fortsetzung der Ge-Ge exo-Bindung und eine Neigung der Kappenatome (Ge17, Ge27 bzw. Ge37) in Richtung der exo-Bindung. Das unkomplexierte K-Kation im Zentrum der Einheiten I bis III erhält die lokale C_{3v} Symmetrie. Die anisotropen Auslenkungsparameter der zusätzlich durch exo-Bindungen verknüpften Ge-Atome sind deutlich kleiner (vergleiche Abbildung 3.16) als die der Gerüstatome ohne exo-Bindungen, da jene eine größere 'Bewegungsfreiheit' innerhalb des Clustergerüstes haben.

Cluster **2B-IV** wird als stark verzerrtes quadratisches Antiprisma beschrieben. Die Verzerrung zeigt sich im Diagonalverhältnis d_1/d_2 von 1.18 und einem Neigungswinkel der quadratischen Grundfläche von 13°; allerdings weichen die Werte für die Beschreibung als dreifach überkapptes trigonales Antiprisma (vergleiche Tabelle 3.6) deutlich weiter von den idealen Werten ab, womit diese Struktur für **IV** ausgeschlossen werden kann. Extrem große anisotrope Auslenkungsparameter der Ge-Atome in **IV** lassen eine genauere Diskussion der Struktur nicht zu.

Abbildung 3.16: Die Clustereinheiten I bis IV von 2B. Die zugrunde liegenden Prismen sind als Polyeder grau hervor gehoben. Ge-Atome ohne exo-Bindungen sind grau, jene mit exo-Bindungen schwarz dargestellt; alle Atome sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt.

Sowohl die drei Ge-Ge exo-Bindungen (Ge44-Ge59, Ge41-Ge54, Ge45-Ge58) als auch die Bindungen aller Atome Ge51 bis Ge53 und Ge57 bis Ge59 untereinander liegen im Bereich kovalenter Ge-Ge Bindungen (2.47 Å bis 2.51 Å), wie auch schon im Cluster **2A** beobachtet. Das Dreieck Ge54-Ge55-Ge54 lässt sich analog zu **2A** mit Bindungslängen zwischen 2.78 Å und 2.80 Å als 3-Zentren-2-Elektronenbindung beschreiben.

Die Koordination der Au-Atome in **2B** erfolgt verzerrt quadratisch planar analog der in **2A** beschriebenen; auch hier kommt es nicht zur Ausbildung aurophiler Wechselwirkungen der Au-Atome untereinander.

Für beide Cluster **2A** und **2B** führt die Annahme, jede exo-Bindung reduziere die Ladung eines polyedrischen homoatomaren Clusters um eins, zu folgender formalen Elektronenzählung:

 Die Cluster I bis III, abgeleitet von einem closo [Ge₉]²⁻ Cluster mit je einer exo-Bindung, haben demnach je eine negative Ladung;

- Der 22-Elektronen-*nido*-Cluster **IV** mit drei exo-Bindungen erhält ebenfalls eine negative Ladung.
- Nach der (8-N) Regel tragen zwei- bzw. dreifach gebundene Ge-Atome eine zweifache bzw. eine einfache negative Ladung.
- Der zentrale Dreiring Ge54-Ge55-Ge56 mit fünffach gebundenen Ge-Atomen bildet eine 3-Zentren-2-Elektronen-Bindung aus, was zu einer Gesamtladung von +1 für das Dreieck führt.

Damit kann **2a** beschrieben werden als

 $\{([Ge_{9}]^{-})_{4}(3b-Ge^{-})_{3}(2b-Ge^{2-})_{3}([Ge_{3}]^{+})\}.$

Abbildung 3.17: Cluster **2A** als {($[Ge_{9}]^{-}$)_4(3b-Ge⁻)_3(2b-Ge²⁻)_3($[Ge_{3}]^{+}$)}. [Ge₉] Einheiten I bis IV sind als Polyeder hervorgehoben.

Ge-Atome sind grau, Au-Atome weiß, das K-Atom schwarz dargestellt.

Der Ladungsausgleich des formal als $[Ge_{45}]^{12-}$ zu beschreibenden Anions ist gegeben durch neun K-Kationen sowie die Annahme von Gold als Au(I).

Die Packung der Cluster **A** und **B** in der Elementarzelle zeigt Schichten entlang der c-Achse, welche jeweils ausschließlich aus Cluster **2A**, bzw. aus Cluster **2B** bestehen; dabei sind benachbarte Cluster innerhalb der Schichten jeweils um 90° gegeneinander verkippt. Entlang a erfolgt eine Stapelung dieser Schichten, wobei benachbarte Cluster **2A** und **2B** um 180 ° gegeneinander verkippt sind (siehe Abbildung 3.18). (K-2.2.2-crypt)-Einheiten schirmen die anionischen Schichten voneinander ab; dabei erlauben die annähernd sphärisch komplexierenden Kryptand-Moleküle eine K-Ge Annäherung von minimal 5.02 Å.

Abbildung 3.18: Inhalt dreier Elementarzellen: a) in Richtung der *b*-Achse: abwechselnde Schichten von **2A** (rot) und **2B** (blau) in Richtung a; b) Packung der Cluster in der *ab*-Ebene; c) Packung der Cluster in der *b*c-Ebene.

Zur besseren Übersichtlichkeit sind die Cluster **2A** und **2B** nur durch die Schwerpunkte der [Ge₉] Einheiten I bis IV, durch den Schwerpunkt des Au-Dreiecks sowie durch den Schwerpunkt der 3-Z-2-E-Bindung dargestellt.

3.3.4. Theoretische Untersuchungen

Um einen Einblick in die Bindungsverhältnisse von **2a** zu bekommen und um die Natur der annähernd quadratischen Koordination der Au-Atome zu verstehen, die in der Regel ein Hinweis auf Au(III) ist, wurden Berechnungen mit dem Programm TUR-BOMOLE, Version 5.8.0^[51] durchgeführt. Die Strukturen wurden auf (RI)-BP86 Niveau^[52-55], unter Verwendung des SV(P) Basissatzes^[56] optimiert; die Rechnungen wurden mit Hilfe des COSMO Modells^[57] in Ethylendiamin ($\varepsilon_r = 13.82$) durchgeführt. Um Partialladungen zu erhalten, wurde eine Populationsanalyse auf Basis von Besetzungszahlen durchgeführt.^[58, 59] Die Strukturoptimierung führte zu Au-Ge und Ge-Ge Abständen, die hervorragend mit den gemessenen Daten übereinstimmen, obgleich die berechneten Bindungslängen etwas zu lang sind, was aber ein übliches Problem der DFT Methoden ist (siehe Tabelle 3.5).

Atome	Abstand (gemessen)	Abstand (berechnet)	SEN
Ge54-Ge55	2.834 (Å)	2.838	0.72
Ge54-Ge56	2.785 (Å)	2.843	0.71
Ge55-Ge56	2.819 (Å)	2.841	0.70
Ge54-Ge55-Ge56	2.803	2.810	0.26
Au–Ge Cluster	2.554	2.654	0.52
Au–(2b-Ge)	2.491	2.531	0.30

Tabelle 3.5: Vergleich der gemessenen und berechneten Abstände [Å] in **2a-A** zwischen ausgewählten Atomen und ihre gemeinsamen Elektronen (Shared Electron Numbers, SEN).

Man unterscheidet zwei Gruppen von Au-Ge Abständen: sechs längere Kontakte zu Ge-Atomen, die zu den Clustern I bis III gehören, mit einem durchschnittlichen Wert von 2.554 Å, sowie drei kürzere Kontakte zu Ge-Atomen, die zwei homoatomare Bindungen (Ge51 bis Ge53) ausbilden, mit einem Mittelwert von 2.491 Å. Die größten und kleinsten Werte unterscheiden sich von den experimentellen Daten um maximal 0.111 Å bzw. 0.052 Å. Damit werden die Au-Ge Wechselwirkungen durch das Modell sehr gut beschrieben. Die Ge-Ge Kontakte variieren maximal um 0.143 Å und die Anzahl der gemeinsamen Elektronen (SENs, shared electron numbers), die als Einzelbindung betrachtet werden, liegen zwischen 0.9 und 1.1. Zum Vergleich beträgt die SEN im Falle von Ge₂H₆ 1.24 und 1.68 für Ge₂H₄.

Für das Dreieck Ge54-Ge55-Ge56 stimmen die berechneten Ge-Ge Abstände von 2.8 Å sehr gut mit denen des Experimentes überein. Die berechneten SENs sind mit Werten um 0.71 zu klein für Einfachbindungen, allerdings findet man hier auch einen signifikanten 3-Zentren-Beitrag von 0.26 gemeinsamen Elektronen zu den Bindungen von Ge54-Ge5-Ge56, welcher die 3-Zentren-2-Elektronen-Wechselwirkung bestätigt.

Au(I) bevorzugt üblicherweise eine lineare oder verzerrt tetraedrische Koordination. Trotzdem gibt es Beispiele für planare, vierfach koordinierte Komplexe: das D_{2h} symmetrische Kation $[Ag(P_4)_2]^{+[60-62]}$, sowie $[Au^{I}(M(tppme))_2]^{+}[PF_6]^{-}$ (M = Co, Rh, Ir, tppme = 1,1,1-tris(diphenylphosphinomethyl)ethan),^[63] mit einem Diederwinkel zwischen den AuP₂ Flächen von durchschnittlich 51°, was zwischen tetraedrischer und planarer Koordination liegt.

Abbildung 3.19: a) Das Kation $[Ag(P_4)_2]^+$, und b) $[Au_2^{l}(Ir(tppme)_2)]^+$. Ag- bzw. Au-Atome sind grau, P-Atome weiß und das Ir-Atom schwarz dargestellt.

Da das $[Ge_4]^4$ Anion (4·2 Elektronen + 4 negative Ladungen = 12 Elektronen) isoelektronisch zu P₄ (4·3 Elektronen) ist, wurde die Modellverbindung (Au[Ge_4]_2]ⁿ⁻ berechnet. Eine Variante der Modellverbindung findet sich auch in der linearen eindimensionalen Kette (Au[Ge_4])³⁻, welche als Strukturdetail von A₃AuGe₄ (A = K, Rb, Cs)^[64, 65] auftritt. C_{2v} verzerrte [Ge]₄ Tetraeder sind über η^2 - verbrückende Au-Atome verknüpft, wobei die Orientierung der *trans* Ge-Ge Vektoren senkrecht aufeinander stehen, was zu einer C_{2v} verzerrten tetraedrischen Koordination des Au Atoms mit d(Au-Ge) = 2.59 - 2.62 Å führt. Die Struktur wurde in D_{2d} und D_{2h} Symmetrie mit einer Ladung von n = -5 und n = -7 optimiert, was zu zwei [Ge₄]⁴⁻ Anionen sowie zu Au(III) bzw. Au(I) führt. Zum Vergleich wurden außerdem Strukturoptimierungen von [AuCl₄]⁻ in D_{2d} und D_{4h} Symmetrie sowie von Au₂Cl₆ mit planarer und tetraedrischer Konfiguration durchgeführt.

Der Energieunterschied zwischen planarer und tetraedrischer Konfiguration dieser Verbindungen kann einen guten Hinweis auf die Oxidationsstufe der Goldatome liefern. Bei den Chloriden, zweifelsfrei Au(III) Verbindungen, beträgt der Unterschied zwischen den beiden Konfigurationen 144 kJ/mol (AuCl₄⁻) bzw. 289 kJ/mol (Au₂Cl₆), womit eindeutig die planare Struktur bevorzugt wird. Die Au-Ge Modellverbindungen zeigen hingegen kein solch einfaches Verhalten: im Fall von (Au[Ge₄]₂)⁷⁻ ist die D_{2h} Konfiguration nur um 6 kJ/mol begünstigt gegenüber der D_{2d} Konfiguration; in (Au[Ge₄]₂)⁵⁻ ist die D_{2d} Konfiguration energetisch 13 kJ/mol günstiger als die D_{2h}

Konfiguration. Derart kleine Unterschiede sind vernachlässigbar, womit die beiden Konformationen angenähert isoenergetisch sind.

Eine Berücksichtigung der Elektronegativitäten von Gold und Germanium lässt vermuten, dass Au(III) im Laufe der Reaktion [Ge₄]⁴⁻ zu [Ge₄]³⁻ oxidiert und dabei selbst zu Au(I) reduziert wird. Darüber hinaus sind die Partialladungen der Au-Atome in (Au[Ge₄]₂)⁷⁻ Verbindungen sehr ähnlich mit einem durchschnittlichen Wert von +0.10, während jene in den (Au[Ge₄]₂)⁵⁻ Konformeren +0.18 und +0.30 für beide Isomere betragen. Zum Vergleich ergab die berechnete Partialladung von **2A** einen Wert von +0.35, wohingegen die Ladung in (AuCl₄)⁻ und Au₂Cl₆ im Durchschnitt +0.69 beträgt.

Zusammenfassend erlauben sowohl die minimalen Energieunterschiede zwischen tetraedrischem und planar koordiniertem $[Au(I)[Ge_4]_2]^{n-}$ als auch die berechneten Partialladungen für $(Au(I)[Ge_4]_2)^{n-}$ die Annahme der Oxidationsstufe +I für Gold in **2A**. Darüber hinaus kann die ungewöhnliche Koordination von Au(I) mit der Koordination onsumgebung begründet werden: die Struktur des Au-Ge Clusters verlangt eine angenähert planare Koordination der Au-Atome, wohin auch die vollständige Struktur-optimierung von **2** führt.

Die DFT-Rechnungen und der Vergleich mit entsprechenden Modellverbindungen zusammen mit den mehrfach in der Literatur bestätigten Ladungen der exogebundenen Cluster I bis IV sowie der Annahme einer 3-Zentren-2-Elektronen-Bindung des dreigliedrigen Ringes Ge54-Ge55-Ge56 ([Ge₃]⁺), bestätigen die aus der Strukturbeschreibung gewonnene Annahme von Au(I) und damit die Formulierung von **2a** als

 $\{([Ge_{9}]^{-})_{4}(3b-Ge^{-})_{3}(2b-Ge^{2-})_{3}([Ge_{3}]^{+})\}.$

3.4. Vergleichende Diskussion

Ordnet man die Verbindungen $[K(2.2.2-crypt)]_5[Au_3Ge_{18}]$, **1**, und $[K(2.2.2-crypt)]_8K[Au_3Ge_{45}]$, **2**, in die Reihe der bis heute synthetisierten und strukturell charakterisierten Cluster-Verbindungen ein, die sich von dem "Grundbaustein" $[Ge_9]^{x-}$ (x = 2, 3, 4) ableiten, so lassen sich neben zahlreichen Ähnlichkeiten auch deutliche strukturelle Unterschiede feststellen:

Verbindung	h1	h ₂	h₃	h/e	α 1	Q (2	X 3	d 1/ d 2	GE	Struktur	Lit.
(K-18-c-6)2K2[Ge9]	3,026	3,140	3,194	1,191	17,2	18,6	22,5	1,258	22	trig. P.	
(K-crypt)3[Ge9*PPh3]	2,823	3,202	3,268	1,171	14,4	16,4	21,4	1,203	21	trig. P.	[20]
(K-crypt)2[HgGe9]	2,743	2,750	3,148	1,034	6,5	25,1	24,7	1,286	20	quadr. A-P.	[37]
(K-crypt)₃[Ge9-ZnPh]	2,831	2,838	3,914	1,211	0,0	26,2	26,0	1,008	21	quadr. A-P.	[11]
(K-crypt)2[Ge9(BiPh2)2]	2,717	2,733	2,985	1,046	4,6	22,2	22,5	1,397	22	quadr. A-P.	[40]
(K-crypt) ₂ K ₄ [Ge ₉] ₂	2,766	2,795	3,916	1,177	3,8	28,4	29,4	1,164	22	quadr. A-P.	[18]
(K-18-c-6)2[Ge9]				1,070				1,230	22	trig. P.	[17]
[Au3Ge18] ⁵⁻ :											
Cluster A (1a)	2,765	2,870	3,593	1,156	2,9	26,3	27,2	1,032	22	quadr. A-P.	*
Cluster B (1a)	2,879	2,931	3,027	1,095	15,0	17.5	19,5	1,374	22	trig. P.	*
[Au3Ge45] ⁹⁻ :											
Cluster I (2A)	2,809	2,814	3,078	1,072	10,9	20,3	21,2	1,352	20	trig. P.	*
Cluster II(2A)	2,814	2,846	3,007	1,063	13,1	19,0	20,2	1,396	20	trig. P.	*
Cluster III (2A)	2,806	2,852	3,013	1,096	10,8	19,3	19,7	1,383	20	trig. P.	*
Cluster IV (2A)	2,831	2,885	3,592	1,170	1,9	31,4	23,0	1,021	22	quadr. A-P.	*
Cluster I (2B)	2.791	2.826	3.079	1.080	10.1	18.6	20.1	1.362	20	trig. P.	*
Cluster II(2B)	2.769	2.843	3.060	1.076	10.1	19.2	20.7	1.378	20	trig. P.	*
Cluster III (2B)	2.802	2.841	3.000	1.062	11.4	19.6	20.3	1.381	20	trig. P.	*
Cluster IV (2B)	2.777	3.088	3.288	1.147	12.8	20.2	24.5	1.019	22	quadr. A-P.	*

Tabelle 3.6: Strukturelle Parameter für ausgewählte [Ge9]-Clusterverbindungen. GE: Gerüstelektronenanzahl; *: vorliegende Arbeit.

Die Zuordnung der [Ge₉]-Cluster-Struktur (trigonales Prisma bzw. quadratisches Antiprisma) ist anhand der Parameter in Tabelle 3.6 möglich und vergleichbar mit anderen [Ge₉]-Verbindungen mit und ohne Übergangsmetall. Auffällig ist, dass die dreifach überkappten trigonalen Prismen I bis III von **2A** mit einem *h/e*-Verhältnis < 1.10 von allen in Tabelle 3.6 aufgeführten Verbindungen den kleinsten Wert besitzen und damit sehr nah am idealen Deltaeder mit *h/e* = 1 liegen. Die dazugehörigen Diederwinkel (ein kleinerer, zwei größere) spiegeln die Struktur der Koordinationsumgebung wider; es kommt zu einer Neigung der Prismenkappe in Richtung der Au- bzw. Ge-Koordination. Die symmetrische Ge-Au-Ge Koordination in **1** verlangt hingegen, dass alle drei Diederwinkel α_i nahe beieinander liegen..

Beide Verbindungen, 1 und 2, zeigen in den strukturellen Parametern ihrer Ge⁹ -Untereinheiten Abweichungen vom idealen Deltaeder im Festkörper und erschweren damit eine klare Zuordnung der Cluster-Struktur zur Gerüstelektronenanzahl; unter Berücksichtigung der Bindungsverhältnisse lassen sich Trends aber eindeutig erkennen. Die oben beschriebenen strukturellen Abweichungen von anderen [Ge₉]-Clusterionen können darin begründet liegen, dass das umgebende Clustergerüst, vor allem im Fall von **2A**, ganz neue Bindungsverhältnisse schafft und mit "globaler' Elektronendelokalisation sowie -interaktion die Beschreibung der [Ge₉]-Cluster als isolierte Untereinheiten nur bedingt möglich und sinnvoll ist.

Ähnliche Synthesewege unter vergleichbaren Reaktionsbedingungen führten zur Darstellung von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, und [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**. Damit ist es sinnvoll, die beiden Verbindungen vergleichend zu diskutieren. Zahlreiche Folgeexperimente unter schrittweiser Variation der Reaktionsparameter ermöglichen darüber hinaus verallgemeinernde Schlussfolgerungen zur Reaktivität von K₄Ge₉ mit AuPPh₃Cl.

Unter der Voraussetzung, dass Lösungen der binären Phase der nominellen Zusammensetzung K₄Ge₉ unter anderem das Cluster-Anion [Ge₉]⁴⁻ enthalten, führt ein möglicher Reaktionspfad für die Bildung von [Au₃Ge₁₈]⁵⁻, **1a**, über die elektrostatisch getriebene Koordination zweier *nido*-Cluster [Ge₉]⁴⁻ an Au(I)-Kationen; die Deltaederfläche der Tetrel-Cluster dirigiert die Anordnung der weiteren Au-Atome und ermöglicht damit aurophile Wechselwirkungen, die den Cluster **1a** zusätzlich stabilisieren. Dabei bleibt die Anzahl der Gerüstelektronen für beide [Ge₉]-

Einheiten unverändert erhalten, womit die Koordination von Au(I) über die freien Elektronenpaare von je drei Ge-Atomen einer Deltaederfläche erfolgt.

Damit lässt sich unter Annahme einer äquimolaren Reaktion formal für die Bildung von **1** die folgende Bruttoreaktionsgleichung formulieren:

 $2 K_4 Ge_9 + 3 AuPPh_3 Cl \rightarrow K_5 [Au_3 Ge_{18}] + 3 KCl + 3 PPh_3$

(Kryptand-Moleküle sind aus Gründen der Übersichtlichkeit nicht aufgeführt.)

Dies trägt sowohl der Ladungs- und Elektronenbilanz als auch der Tatsache Rechnung, dass während und nach der Kristallisation in der überstehenden Lösung nur freies Triphenylphosphin nachgewiesen wurde und die Kristalle von **1** in klarer Lösung ohne nennenswerten amorphen Rückstand anfielen.

Der Reaktionsweg zu [Au₃Ge₄₅]⁹⁻, **2A** bzw. **2B**, muss hingegen anhand der formalen Ladungsbilanz über oxidative Kopplungsschritte unter Ausbildung von Ge-Ge exo-Bindungen führen.

Unter der Voraussetzung der anhand von Kristallstrukturdaten und theoretischen Untersuchungen ermittelten Ladungsverteilung wird **2A** wie in Kapitel 3.3.3 gezeigt beschrieben: $\{([Ge_{9}]^{-})_{4}(3b-Ge^{-})_{3}(2b-Ge^{2-})_{3}([Ge_{3}]^{+})\}$.

Die Umsetzung kann formal wie folgt formuliert werden:

5 [Ge₉]⁴⁻ + 3 AuPPh₃Cl → [Au₃Ge₄₅]⁹⁻ + 3 PPh₃ + 3 Cl⁻ + 8 e⁻

Damit ergibt sich formal durch die Bildung von [Ge₄₅]¹²⁻ aus 5 Einheiten [Ge₉]⁴⁻ eine Verlust von 8 Elektronen durch Oxidation, die nicht durch die Reduktion anderer Ge-Atome kompensiert werden.

AuPPh₃Cl kann als Oxidationsmittel fungieren und selbst zu elementarem Gold reduziert werden. Ethylendiamin, welches unter Bildung des Amids und Wasserstoff als Oxidationsmittel reagieren könnte, wird ausgeschlossen, da bei keiner der Reaktionen eine Gasentwicklung beobachtet wurde. Triphenylphosphin kann ebenso nicht als Elektronenakzeptor fungieren, da das ³¹P-NMR-Spektrum der überstehenden Lösung sowohl während als auch nach erfolgter Kristallisation ausschließlich nur freies Triphenylphosphin zeigte. Damit lässt sich für die Bildung von **2A** die folgende Brutto-Reaktionsgleichung formulieren:

5 K₄Ge₉ + 11 AuPPh₃Cl \rightarrow K₉[Ge₄₅Au₃] + 8 Au⁰ + 11 PPh₃ + 11 KCl

Die Zintl-Phase reagiert demnach mit AuPPh₃Cl im stöchiometrischen Verhältnis von angenähert 1:2. Der äquimolare Ansatz der Synthese entspricht also einen stöchiometrischen Überschuss an K₄Ge₉. Dieser Überschuss kann allerdings zumindest teilweise kompensiert werden durch die unvollständige Löslichkeit der Phase in Ethylendiamin sowie durch mögliche Nebenreaktionen.

Bei beiden Synthesen wurde der Kationenkomplexbildner, 2.2.2-crypt, erst im letzten Syntheseschritt zugegeben, sodass er einzig für die Kristallisation, nicht aber für das Auflösen der Phase K₄E₉ zur Verfügung stand. Ergänzende Experimente ergaben, dass die Gegenwart von Kryptand das Lösungsverhalten der festen Zintl-Phasen verbessert, erkennbar an wesentlich geringeren Rückstandsmengen beim Lösungsprozess. Die gewählte Reihenfolge der Eduktzugabe begünstigt damit das oben beschriebene optimale stöchiometrische Verhältnis.

Semiquantitative EDX-Analysen bestätigen das Vorhandensein von großen Mengen Au sowie K und CI im Rückstand der Filtration während der Synthese. Im Vergleich zu den Reaktionsbedingungen für die Synthese von 1 begünstigt die verringerte Konzentration der Edukte die Bildung von 2, da das Reaktionsmedium insgesamt weniger reduzierend ist. In mittleren Konzentrationsbereichen liegen damit 1 und 2 nebeneinander vor, wie experimentell nachgewiesen; zunehmende Verdünnung verringert das Reduktionspotential der Lösung und erleichtert die Oxidation von [Ge₉]⁴⁻ und damit die Bildung von 2.

Der Konzentration der Edukte und damit dem Redoxpotential der Lösung kommt offensichtlich eine zentrale Rolle beim Cluster-Wachstum zu. Hoch konzentrierte Lösungen führen meist zu Cluster-Aggregaten, bedingt durch annähernd gleiche Elektronenbilanz bei Edukt und Produkt, wie im Fall von [Au₃Ge₁₈]⁵⁻, **1a**, aber auch in zahlreichen anderen Übergangsmetall-Komplexen der Zintl-Ionen aus Lösung, wie beispielsweise [E₉Cr(CO)₃].^[66, 67] Zunehmende Verdünnung erleichtert oxidative Kopplungsreaktionen und führt zu größerer Vielfalt in Clusterstruktur und Bindungsverhältnissen, wie [Au₃Ge₄₅]⁹⁻ eindrücklich zeigt.

Triphenylphosphin hat sich unter den beschriebenen Reaktionsbedingungen als idealer Ligand für Au(I) herausgestellt. Kein anderer Gold-Phosphin-Komplex führte zu nachhaltig stabilen Lösungen mit Zintl-Ionen [E₉]⁴⁻ bzw. zur Kristallisation neuer (**1**, **2** sowie [K(2.2.2-crypt)₂[Pb₅], **3**, und [K(2.2.2-crypt)]₂[Pb₁₀], **4**; vergleiche Kapitel 4), sowie diverser literaturbekannter Verbindungen (vergleiche Kapitel 7). Offensichtlich ist die rasche Abspaltung des Phosphinliganden von Au(I) und damit die sofortige Verfügbarkeit von [Au⁺]_{solv} wesentlich für den Reaktionsverlauf und damit für die Bildung von **1** und **2**.

Als Lösungsmittel erweist sich Ethylendiamin als ideal, um das beschriebene Reaktionssystem zu stabilisieren. Sowohl die Fähigkeit primärer Amine, in Analogie zu Ammoniak Elektronen zu solvatisieren, als auch ihre Eigenschaft, als nach dem HSAB-Prinzip weicher Ligand Au(I) in Lösung zu stabilisieren, sogar in Gegenwart stark reduzierender Reaktionspartner wie [E₉]⁴⁻, sind für die erfolgreichen Synthesen von **1** und **2** maßgeblich.

Die 18 über Au koordinierten Ge-Atome in **1a** bzw. die 45 kovalent gebundenen Ge-Atome in **2a**, zusammen mit den kürzlich beschriebenen Clustern $[Ge_{9}-Ge_{9}-Ge_{9}]^{6-[44, 47]}$ und $[Ge_{9}-Ge_{9}-Ge_{9}-Ge_{9}]^{8-[46]}$, werfen ein neues Licht auf die Strukturchemie von Germanium. Die unerwartete homoatomare Koordination der Ge-Atome sowie die vielen unterschiedlichen Bindungstypen dieses Elements eröffnen neue Perspektiven in der Chemie der 4. Hauptgruppe. In manchen Bereichen zeigen sich Ähnlichkeiten zu den Trielen Bor und Gallium sowie zu diversen Teilstrukturen der Boride und Gallide. Auch diese zeigen Wade-Cluster neben 2-Zentren-2-Elektronen Bindungen.

Damit erweist sich das System der Germanium-Zintlionen mit Au(I) Verbindungen als äußerst vielversprechend; sei es zum gezielten Aufbau definierter Nanostrukturen oder auf dem Weg zu neuen Ge-Allotropen. Gold zeigt auch in diesen Fällen als verbrückendes Metallzentrum seine Sonderstellung unter den Edelmetallen: die Reaktion anderer niedervalenter Edelmetallkomplexe ML_x mit Zintllonenclustern führte stets zu größeren Tetrelclustern, welche das Edelmetall einschließen. Beispiele hierfür sind [Pd-Pd@Ge₁₈]^{4-[68]} und [Cu@Sn₉]^{x-} sowie [Cu@Pb₉]^{x-}.^[69]

3.5. Literatur zu Kapitel 3

- [1] S. C. Sevov, J. M. Goicoechea, Organometallics 2006, 25, 5678.
- [2] E. N. Esenturk, J. Fettinger, Ý.-F. Lam, B. Eichhorn, Angew. Chem. 2004, 116, 2184.
- [3] B. Kesanli, J. Fettinger, D. R. Gardner, B. Eichhorn, J. Am. Chem. Soc. 2002, 124, 4779.
- [4] D. R. Gardner, J. C. Fettinger, B. W. Eichhorn, Angew. Chem. 1996.
- [5] A. Spiekermann, S. D. Hoffmann, F. Kraus, T. F. Fässler, Angew. Chem. 2007, 119, 1663.
- [6] A. Spiekermann, S. D. Hoffmann, T. F. Fässler, I. Krossing, U. Preiss, Angew. Chem.
 2007, 119, 5404
- [7] T. Hanrath, B. A. Korgel, J. Am. Chem. Soc. 2002, 124, 1424.
- [8] T. F. Fässler, H.-J. Muhr, M. Hunziker, Inorg. Chem. Eur. J. 1998, 1433.
- [9] E. N. Esenturk, J. C. Fettinger, B. W. Eichhorn, J. Am. Chem. Soc. **2005**, submitted for publication.
- [10] M. W. Hull, S. C. Sevov, Inorg. Chem. 2007, 46, 10953.
- [11] J. M. Goicoechea, S. C. Sevov, Organometallics **2006**, 25, 4530.
- [12] G. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, Universität Göttingen, **1997**.
- [13] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, **1997**.
- [14] A. L. Spek, Program PLATON, Acta Cryst. 34c, 46, 1990.
- [15] P. van der Sluis, A. L. Spek, Acta Cryst. **1990**, 46a, 194.
- [16] T. F. Fässler, M. Hunziker, Inorg. Chem. 1994, 33, 5380.
- [17] A. Ugrinov, S. C. Sevov, Comp. Rend. Chimie **2005**, 8, 1878.
- [18] A. Nienhaus, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2006, 632, 1752.
- [19] L. Kloo, T. F. Fässler, J. Rosdahl, Inorg. Chem. Eur. J. **2005**, 14, 2888.
- [20] C. Belin, H. Mercier, V. Angilella, New J. Chem. 1991, 15, 931.
- [21] C. Downie, Z. Tang, A. M. Guloy, Angew. Chem. 2000, 112, 346.
- [22] A. Ugrinov, S. C. Sevov, Chem. Eur. J. 2004, 10, 3727.
- [23] A. Bondi, J. Phys. Chem. 1964, 68, 441.
- [24] M. Melnik, R. V. Parish, Coord. Chem. Rev. 1986, 70, 157.
- [25] A. Bauer, W. Schneider, H. Schmidbaur, Inorg. Chem. 1997, 36, 2225
- [26] A. Bauer, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 5324.
- [27] T. F. Fässler, R. Hoffmann, Angew. Chem. 1999, 111, 526.
- [28] T. F. Fässler, R. Hoffmann, J. Chem. Soc. Dalton Trans. 1999, 3339.
- [29] C. Downie, J.-G. Mao, A. M. Guloy, Inorg. Chem. 2001, 40, 4721.
- [30] A. J. Wynd, S. E. Robins, A. L. Welch, D. A. Welch, J. Chem. Soc. Chem. Comm. 1985, 819.

- [31] P. Schwerdtfeger, H. L. Hermann, H. Schmidbaur, Inorg. Chem. 2003, 42, 1334
- [32] M. Frisch.
- [33] V. Quéneau, S. C. Sevov, Angew. Chem. 1997, 109, 1818.
- [34] A. Hershaft, J. D. Corbett, Inorg. Chem. 1963, 2, 979.
- [35] R. M. Friedman, J. D. Corbett, Inorg. Chim. Acta **1973**, 7, 525.
- [36] S. C. Critchlow, J. D. Corbett, J. Am. Chem. Soc. **1983**, 105, 5715.
- [37] A. Nienhaus, R. Hauptmann, T. F. Fässler, Angew. Chem. 2002, 114, 3352.
- [38] S. Hagen, I. Pantenburg, F. Weigend, C. Wickleder, L. Wesemann, Angewandte Chemie Int. Ed. 2003, 42, 1501.
- [39] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
- [40] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2002, 124, 2442.
- [41] L. Xu, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 9245.
- [42] R. Hauptmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2003, 629, 2266.
- [43] R. Hauptmann, T. F. Fässler, Z. Kristallogr. NCS 2003, 218, 461.
- [44] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2002, 124, 10990.
- [45] A. Ugrinov, S. C. Sevov, Inorg. Chem. **2003**, 42, 5789.
- [46] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2004, 630, 1977.
- [47] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2005, 631, 1149.
- [48] A. Sekiguchi, Y. Ishida, Y. Kabe, M. Ichinohe, J. Am. Chem. Soc. **2002**, 124, 8776.
- [49] M. Sircoglu, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G. Bouhadir, L. Maron,
 D. Bourissou, Angewandte Chemie Int. Ed. 2007, 46, 8583.
- [50] H. Schmidbaur, (Ed.: H. Schmidbaur), Wiley, Chichester, 1999.
- [51] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.
- [52] J. C. Slater, Phys. Rev. 1951, 81, 385.
- [53] S. Vosko, L. Wilk, M. Nussair, Can. J. Phys. **1980**, 58, 1200.
- [54] J. P. Perdew, Phys. Rev. B **1986**, 33, 8822.
- [55] A. D. Becke, Phys. Rev. A **1988**, 38, 3098.
- [56] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. **1995**, 242, 652.
- [57] G. Klamt, Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 5, 799.
- [58] E. R. Davidson, J. Chem. Phys. 1967, 46, 3320.
- [59] K. R. Roby, Mol. Phys. 1974, 27, 81.
- [60] I. Krossing, J. Am. Chem. Soc. 2001, 123, 4603.
- [61] I. Krossing, L. van Wüllen, Chem. Eur. J. 2002, 8, 700.
- [62] A. Bihlmeier, M. Gonsior, I. Raabe, N. Trapp, I. Krossing, Chem. Eur. J. 2004, 10, 5041.
- [63] P. Di Vaira, P. Stoppioni, J. Chem. Soc. Dalton Trans. 1990, 109.
- [64] U. Zachwieja, J. Wlodarski, Z. Anorg. Allg. Chem. 2004, 630, 993.
- [65] U. Zachwieja, U. Müller, J. Wlodarski, Z. Anorg. Allg. Chem. 1998, 624, 853.
- [66] B. W. Eichhorn, R. C. Haushalter, J. Am. Chem. Soc. 1988, 110, 8704.

- [67] B. W. Eichhorn, R. C. Haushalter, J. Chem. Soc. Chem. Commun. 1990, 937.
- [68] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2005, 127, 7676.
- [69] S. Scharfe, T. F. F. Fässler, S. Stegmaier, S. D. Hoffmann, K. Ruhland, Chem. Eur. J.
 2008, 14, 4479.

4. Umsetzungen von K₄Pb₉ mit AuPPh₃Cl

4.1. Einleitung

Die Wade 'schen Regeln wurden ursprünglich für das Verständnis der polyedrischen Strukturen der Borane entwickelt.^[1] Die Erweiterung der Regeln auf ligandenfreie Polyeder aus Atomen der Gruppe 13 bis 15 ist möglich, doch ist sie immer wieder Gegenstand kontroverser Diskussionen. So führt der isolobale Ersatz der B-H Einheiten, welche je zwei Elektronen zur Gerüstbindung der polyedrischen Borane beitragen, durch ein Atom E der Gruppe 14 (E = Si, Ge, Sn, Pb) nur in einer groben Näherung zu vergleichbaren elektronischen Verhältnissen. Für jedes Atom E ist in diesem Fall ein radial nach außen gerichtetes nicht-bindendes Elektronenpaar zu formulieren, welches im Vergleich zu einer externen B-H Bindung energetisch höher liegt.^[2, 3]

Viele der bislang strukturell charakterisierten ligandfreien Käfigstrukturen der Gruppen 13 bis 15 weichen deutlich von der von *Wade* vorgeschlagenen idealen Polyederstruktur ab (siehe auch Kapitel 2). Deutlich wird dies an einer Fülle von [E₉]-*nido*-Strukturen, die anstelle des idealen einfach überkappten quadratischen Antiprismas eine dreifach überkappte trigonal-prismatische Struktur bevorzugen,^[4] wobei der dynamische Übergang zwischen beiden Strukturen fließend ist. Im Falle der *closo*-Cluster ist eine verallgemeinernde Aussage dadurch erschwert, dass es bisher nur sehr wenige eindeutig charakterisierte *closo*-Verbindungen der Triele^[5] (ohne Bor), Tetrele [Si₉]^{2- [4, 6, 7]} und Pentele gibt, wohingegen diese Verbindungs-klasse bei den Boranen detailliert erforscht wurde.

Dies unterstreicht den Stellenwert der beiden in diesem Kapitel vorgestellten neuen Verbindungen: [K(2.2.2-crypt)]₂[Pb₅], **3**, ergänzt die Reihe der bekannten [E₅]²⁻-Anionen um das Kaliumsalz des Bleis; [K(2.2.2-crypt)]₂[Pb₁₀], **4**, ist das erste eindeutig charakterisierte E₁₀ closo-Anion der Tetrele.

4.2. [K(2.2.2-crypt)₂][Pb₅]

4.2.1. Darstellung und Analytik

[K(2.2.2-crypt)₂][Pb₅], **3**, wurde erhalten durch partielle Oxidation einer Lösung von [Pb₉]⁴⁻ in Ethylendiamin in Gegenwart von AuPPh₃Cl (Synthese A, vergleiche Kapitel 7) bzw. von PPh₃ (Synthese B). Hierzu wurde K₄Pb₉ mit 2.2.2-crypt in Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde auf eine äquimolare Menge von AuPPh₃Cl filtriert, eine Stunde gerührt und erneut filtriert. Nach zwei Tagen bildeten sich in der rotbraunen Lösung nadelförmige, dunkelrote Kristalle von **3** in ca. 15% Ausbeute.

Eine alternative Syntheseroute B führte über die Umsetzung einer Lösung von K₄Pb₉ in Ethylendiamin mit Triphenylphosphin anstelle von AuPPh₃Cl, wobei eine leichte Gasbildung beobachtet wurde. Vergleichbare dunkelrote, nadelförmige Kristalle von **3** bildeten sich innerhalb weniger Tage in bis zu 30 % Ausbeute.

Semiquantitative EDX-Analysen wiesen in den Kristallen K und Pb nach, aber kein Au. ²⁰⁷Pb-NMR-Spektren der intensiv braun gefärbten und extrem luft- und feuchtigkeitsempfindlichen DMF-Lösungen, welche durch Digerieren der Kristalle erhalten wurden, zeigten im gesamten Frequenzbereich kein Signal, was möglicherweise auf paramagnetisches [Pb₉]³⁻ in Lösung zurückzuführen ist, wie von Corbett et al.^[8] vorgeschlagen.

4.2.2. Kristallstruktur

Einkristalle von **3** wurden auf Glaskapillaren fixiert und bei 150 K im Stickstoffstrom gemessen. Die Strukturlösung (SHELXS-97^[9]) und -verfeinerung (SHELXL-97^[10]) erfolgte mit direkten Methoden und der Methode kleinster Fehlerquadrate gegen F^2 für alle Nichtwasserstoffatome mit anisotropen Auslenkungsparametern.

Zusammensetzung	C72 H144 Pb10 K4 N8 O24
Molmasse	3734.35 g/mol
Temperatur	150(2) K
Wellenlänge λ (Mo k _a)	0.71073 Å
Kristallsystem	hexagonal
Raumgruppe	P 3 C1
Zellparameter	a = 11.6766(2) Å
	c = 22.1138(5)) Å
Volumen der Einheitszelle	2613.13 Å ³
Z	2
Dichte (berechnet)	2.375 g/cm ³
Absorptionskoeffizient μ	6.625 mm^{-1}
F(000)	1720
Kristallabmessungen	0.4 x 0.2 x 0.1 mm ³
Meßbereich 0	2.89 ° - 21.46 °.
Indizierung	0 ≤ h ≤ 69, 0 ≤ k ≤ 25, -31 ≤ l ≤ 31
Gemessene Reflexe	49429
Unabhängige Reflexe	6011 [R _(int) = 0.0324]
Unabhängige Reflexe mit I > 2 σ	4718
Vollständigkeit der Daten (θ = 20.86°)	99.2 %
Absorptionskorrektur	Semiempirisch
Max. und min. Transmission	0.99721 and 0.49780
Verfeinerungsmethode	Methode der kleinsten Fehlerquadrate; voll- ständige Matrix, Basis F ₀ ² -Werte, anisotrope Temperaturfaktoren
Daten / Beschränkungen / Parameter	56016 / 1 / 1076
Güte der Anpassung für F ²	1.033
R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.035$, $wR_2 = 0.088$
R-Werte (alle Daten)	$R_1 = 0.073$, $wR_2 = 0.095$
Gewichtung*	a = 0.041; b = 2.109
Restelektronendichte	1.91 und -0.87 e·Å-₃

Tabelle 4.1: Strukturdaten von [K(2.2.2-crypt)]₂[Pb₅] **3**.

* w = $1/[\sigma^2(F_0)^2 + (\alpha P)^2 + bP]$, mit P = $(F_0^2 + 2F_c^2)/3$

Standardabweichungen aller Atomabstände und -winkel in diesem Kapitel sind kleiner als 0.005 Å bzw. 0.01 °.

Die Strukturbestimmung und -verfeinerung in der Raumgruppe $P\overline{3}c_1$ ergab für jede der zwei in der Elementarzelle vorhandenen asymmetrischen Einheiten zwei [K(2.2.2-crypt)]⁺ Einheiten, was zu einer Ladung von 2– für den *closo*-Cluster führt.

4.2.3. Strukturbeschreibung

Zwei symmetrieunabhängige Pb-Atome bilden im Cluster-Anion [Pb₅]²⁻, **3a**, eine trigonale Bipyramide; mit 5·2+2 gerüstbildenden Elektronen entspricht dies einem *clo*so-Cluster in Übereinstimmung der *Wade* schen Regeln. Mit Pb-Pb Kontakten von 3.008 Å zwischen Pb-Atomen der Kappen zur trigonalen Grundfläche bzw. 3.262 Å innerhalb der trigonalen Grundfläche ist das Deltaeder gegenüber dem idealen trigonalen Prisma deutlich gestaucht, wobei die lokale D_{3h}- Symmetrie erhalten bleibt. Der auf 65.7 ° aufgeweitete Bindungswinkel an den Kappenatomen spiegelt die Stauchung wieder.

Abbildung 4.1: Die closo-Anionen Pb5²⁻, a) **3a** aus dieser Arbeit, b) von Corbett et al^[8]. Die Pb Atome sind mit 50 % Aufenthaltwahrscheinlichkeit dargestellt. Angabe der Atomabstände in Å.

Die im Rahmen dieser Arbeit erstmals erhaltene und strukturell eindeutig charakterisierte Verbindung [K(2.2.2-crypt)]₂[Pb₅], **3**, weist große Ähnlichkeit zu dem von Corbett et al. beschriebenen Natriumsalz des Pentaplumbid-Anions, [Na(2.2.2-crypt)]₂[Pb₅]^[8], auf, ist allerdings nicht streng isotyp, da sich die Atompositionen der Schweratome beider Verbindungen unterscheiden. Tabelle 4.2 vergleicht die Gitterkonstanten sowie Bindungslängen und -winkel der beiden Verbindungen. Es gilt allerdings zu beachten, dass Corbett die röntgendiffraktometrische Messung bei 278 K durchführte, während 3 unter Stickstoffkühlung bei 150 K gemessen wurde. Auch die Anzahl der gemessenen Reflexe ist bei 3 mit 49429 angenähert fünf mal größer als die von Corbett gemessenen (9745); entsprechend größer ist auch die Zahl der unabhängigen Reflexe (6011 gegenüber 1878). Die von Corbett ermittelten

	[K(2.2.2-crypt)]₂[Pb₅] 3	[Na(2.2.2-crypt)]2[Pb5] [8]	Differenz [%]
a /Å	11.6766(2)	11.615(3)	0.5
c/Å	22.1138(5)	22.120(12)	0.03
d _(equ-equ) /Å	3.262(2)	3.238(4)	0.7
d _(equ – ax) /Å	3.008(4)	3.002(3)	0.2
equ – ax – equ /°	65.66(3)	65.26(9)	0.6
ax-equ-ax/°	102.481(1)	103.0(1)	0.7
equ – equ - ax /°	57.168(0)	57.37(5)	0.4

R-Werte über die Daten mit ($l > 2 \sigma$) sind mit R₁ = 0.086 und wR₁ = 0.091 deutlich größer als die entsprechenden Werte von **3** (vergleiche Tabelle 4.1).

Tabelle 4.2: Vergleich der Gitterkonstanten sowie der Bindungslängen und -winkel von 3 mit [Na(2.2.2-crypt)]₂[Pb₅].

Die große strukturelle Ähnlichkeit der beiden Verbindungen [K(2.2.2-crypt)]₂[Pb₅], **3**, und [Na(2.2.2-crypt)]₂[Pb₅] war zu erwarten, auch im Hinblick auf andere Verbindungen der Zintl-Ionen, bei denen ein Austausch des Gegenions nur sehr geringe strukturelle Veränderungen bewirkt.

Auffällig in beiden Strukturen sind die relativ grossen anisotropen Auslenkungsparameter der equatorialen Pb-Atome, besonders im Vergleich zu den sehr kleinen Schwingungsellipsoiden der Kappenatome (Werte für U_{ij} finden sich im Anhang III).

Die [Pb₅]-Polyeder sind in der *ab* Ebene hexagonal angeordnet; die primitive Packung der Polyeder entlang der c-Achse wird unterbrochen durch Schichten von [K(2.2.2-crypt)]⁺ Einheiten (siehe Abbildung 4.2); die kürzesten Pb-K Abstände sind mit 6.8 Å relativ groß, bedingt durch die annähernd sphärische Koordination der Kryptandmoleküle. Die K Atome bilden im Gegensatz zu den planar-hexagonalen Schichten der [Pb₅] Polyeder gewellte Schichten, wobei die Atome in Sesselkonformation angeordnet sind (siehe Abbildung 4.2 a).

Die Packung von **3** kann als inverse hierarchische Variante des Cdl₂-Typ beschrieben werden, mit [Pb₅]²⁻ anstelle von Cd²⁺ sowie [K(2.2.2-crypt)] anstelle von I⁻; im Fall von **3** beobachtet man eine stärkere Durchdringung der Schichten aufgrund der beträchtlichen Flexibilität der [K(2.2.2-crypt)]-Einheiten.

Abbildung 4.2: a) Packung der [Pb5]-Polyeder und der K-Atome in der Elementarzelle; b) hexagonalprimitive Packung der [Pb5]-Polyeder in der *ab*-Ebene.

[Pb5]-Cluster sind als Polyeder, K-Atome schwarz gezeigt. K-K Abstände (7.074 Å) sind grau, Abstände der Polyederschwerpunkte innerhalb einer Schicht (11.677 Å) sind gestrichelt gezeigt. Kryptand-Moleküle sind aus Gründen der Übersichtlichkeit nicht dargestellt.

Mit [K(2.2.2-crypt)]₂[Pb₅], **3**, wird die Reihe der anionischen [E₅]-Polyeder der Gruppe 14 um das Kaliumsalz des Bleis ergänzt; darüber hinaus liefert dessen Existenz wichtige Hinweise auf vorliegende Reaktionsgleichgewichte in Lösung (siehe auch vergleichende Diskussion, Kapitel 4.4).

4.3. [K(2.2.2-crypt)]₂[Pb₁₀]

4.3.1. Darstellung und Analytik

[K(2.2.2-crypt)]₂[Pb₁₀], **4**, wurde durch Oxidation einer Lösung von [Pb₉]⁴⁻ in Ethylendiamin in Gegenwart von AuPPh₃Cl erhalten. Hierzu wurden K₄Pb₉ mit 2.2.2-crypt in Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand auf AuPPh₃Cl filtriert, eine Stunde gerührt und erneut filtriert. Nach zwei Tagen bildeten sich in der rotbraunen Lösung plättchenförmige, dunkelbraune bis schwarze Kristalle von **4** in ca. 5 % Ausbeute. Im Gegensatz zur Synthese von **3**, die in einem vergleichsweise großen Bereich der Eduktkonzentrationen erfolgreich war, führten nur äquimolare Ansätze von K₄Pb₉ und AuPPh₃Cl (0.0375 mol/L) zu **4**.

Semiquantitative EDX-Analysen wiesen in den Kristallen K und Pb nach, aber kein Au. Auch in diesem Fall (vergleiche Kapitel 4.2) zeigten die ²⁰⁷Pb-NMR-Spektren der intensiv braunen und extrem luft- und feuchtigkeitsempfindlichen DMF-Lösungen, welche durch Digerieren der Kristalle erhalten wurden, kein Signal.

Analoge Umsetzungen ohne AuPPh₃CI führten nicht zu **4**, was auf Au(I) als Oxidationsmittel hindeutet. Umsetzungen mit reinem PPh₃ anstelle des Gold-Phosphinkomplexes führten ausschließlich zu [Pb₅]²⁻ (siehe Kapitel 4.2). Die Kristalle von **4** sind in einem voluminösen Bleischwamm eingebettet; im Filtratrückstand konnten mittels EDX sowohl Blei als auch Gold nachgewiesen werden. Eine an späterer Stelle zu formulierende Reaktionsgleichung muss diesen Beobachtungen Rechnung tragen.

4.3.2. Kristallstruktur

Einkristalle von **4** wurden auf Glaskapillaren fixiert und bei 135 K im Stickstoffstrom gemessen. Die Strukturlösung (SHELXS-97^[9]) und -verfeinerung (SHELXL-97^[10]) erfolgte mit direkten Methoden und der Methode kleinster Fehlerquadrate gegen F² für alle Nichtwasserstoffatome mit anisotropen Auslenkungsparametern.

Zusammensetzung	C ₃₆ H ₇₂ K ₂ N ₄ O ₁₂ Pb ₁₀	
Molmasse	2903.08 g/mol	
Temperatur	135(2) K	
Wellenlänge λ (Mo k _a)	0.71073 Å	
Kristallsystem	monoklin	
Raumgruppe	C 2/c	
Gitterparameter	a = 24.682(2) Å	
	b = 11.863(1) Å	$\beta=97.23(1)^\circ$
	c = 21.271(2) Å	
Volumen der Einheitszelle	6178(2) Å ³	
Z	4	
Dichte (berechnet)	3.121 mg/m ³	
Absorptionskoeffizient μ	27.322 mm^{-1}	
F(000)	5080	
Kristallabmessungen	0.2 x 0.1 x 0.006 mm ³	
Meßbereich θ	3.08 to 25.31°.	
Indizierung	-29 ≤ h ≤ 29, -14 ≤ k ≤ 14, -20 ≤ l ≤ 25	
Gemessene Reflexe	34647	
Unabhängige Reflexe	5628 [R _{int} = 0.0582]	
Unabhängige Reflexe mit I > 2 σ	4128	
Vollständigkeit der Daten (θ = 25.31°)	99.8 %	
Absorptionskorrektur	Numerisch	
Max. und min. Transmission	0.85 und 0.07	
Verfeinerungsmethode	Methode der kleinsten Fehler- quadrate; vollständige Matrix, Basis F ₀ ² -Werte, anisotrope Tem- peraturfaktoren.	
Daten / Beschränkungen / Parameter	5628 / 0 / 289	
Güte der Anpassung für F ²	1.171	
R-Werte [I>2ơ(I)]	R ₁ = 0.059, wR ₂ = 0.130	
R-Werte (alle Daten)	R ₁ = 0.089, wR ₂ = 0.145	
Gewichtung*	a = 0.064; b = 26.388	
Restelektronendichte	5.735 und -2.563 e∙Å ⁻³	

Tabelle 4.3: Strukturdaten von [K(2.2.2-crypt)]₂[Pb₁₀], **4**. * w = $1/[\sigma^2(F_0)^2 + (aP)^2 + bP]$, mit P = $(F_0^2 + 2 F_c^2)/3$

Standardabweichungen aller Atomabstände und -winkel in diesem Kapitel sind kleiner als 0.003 Å bzw. 0.06 °. Die Strukturbestimmung und -verfeinerung in der Raumgruppe C 2/c ergab für jede der vier in der Elementarzelle vorhandenen asymmetrischen Einheiten je zwei [K(2.2.2-crypt)]-Einheiten, was zu einer Ladung von 2- für den *closo*-Cluster führt.

4.3.3. Strukturbeschreibung

Die Einkristall-Röntgenstrukturanalyse von **4** zeigt, dass fünf symmetrieunabhängige Pb-Atome ein Pb₁₀-Polyeder mit zweifach überkappter quadratisch-antiprismatischer Struktur und nahezu perfekter D_{4d}-Symmetrie bilden (siehe Abbildung 4.3).

Abbildung 4.3: Struktur des Anions [Pb10]²⁻, **4a**. Die Pb-Atome (grau) sind mit 50 % Aufenthaltswahrscheinlichkeit dargestellt.

Da entsprechend den erweiterten Wade'schen Regeln jedes Pb-Atom zwei Elektronen zum Cluster-Gerüstaufbau beisteuert, liegt ein 22-Gerüstelektronen-cluster $(10 \cdot 2 + 2)$ vor. Damit repräsentiert [Pb₁₀]²⁻, **4a**, den ersten 'leeren' [E₁₀]-*closo*-Cluster der Gruppe 14, der strukturell eindeutig charakterisiert ist.

Die kürzesten Pb-Pb Kontakte findet man zwischen den Atomen der sich gegenüberliegenden quadratischen Flächen (Pb1 bis Pb4 bzw. Pb5 bis Pb8) des Antiprismas $(3.068 \le k_1 \le 3.093, \emptyset(k_1) = 3.074 \text{ Å})$ und von diesen Atomen zu den Kappenatomen $(3.036 \le k_2 \le 3.109 \text{ Å}, \emptyset(k_2) = 3.082 \text{ Å})$. Mit $3.294 \le k_3 \le 3.339 \text{ Å}$ und $\emptyset(k_3) = 3.310 \text{ Å}$ sind die Pb-Pb-Abstände der Atome innerhalb des Quadrats deutlich länger (> 9 %), so dass ausgehend von einem idealen Polyeder mit gleichen Kantenlängen der Käfig von **4a** als ein leicht gestauchtes zweifach überkapptes quadratisches Antiprisma beschrieben werden kann. Die Abfolge der Kantenlängen $k_1 \approx k_2 < k_3$ entspricht somit derjenigen, die für das Anion $[B_{10}H_{10}]^{2-}$ beobachtet wird.^[11] Die Struktur ist direkt mit dem kürzlich von *Eichhorn et al.* vorgestellten binären Cluster $[Ni@Pb_{10}]^{2-}$ vergleichbar (siehe Abbildung 4.4).^[12] Bezogen auf den kürzesten Mittelwert $\emptyset(k_1)$ ergibt das Längenverhältnis k_1 : $k_2 : k_3$ für $[Pb_{10}]^{2-}$ die Werte 1: 1.00 : 1.08 und für $[Ni@Pb_{10}]^{2-}$ 1.01 : 1.02 : 1.11. Durch den Einbau eines Ni-Atoms in den Cluster wird das Gerüst damit nur sehr wenig aufgeweitet (für k_3 weniger als 3 %). Die Ähnlichkeit der Anionen spiegelt sich auch in der bis auf die Ni-Atomlage vorhandene Isotypie von **4** und [K(2.2.2crypt)]_2[Ni@Pb_{10}],^[12] wider.

Mangels weiterer strukturell charakterisierter *closo*-[Pb₁₀]-Verbindungen ist ein Vergleich von **4** mit den *closo*-Anionen [Pb₉Mo(CO)₃]^{4-[13]} und [Pb₉Zn(Ph)]^{3-[14]} interessant, wobei jeweils eine der 10 Ecken des Deltaeders von einem Übergangsmetall (Mo bzw. Zn) besetzt ist (siehe Abbildung 4.4).

Abbildung 4.4: Die *closo*-Anionen a) [Pb₁₀]²⁻, b) [Ni@Pb₁₀]²⁻, c) η⁴-[Pb₉Mo(CO)₃]⁴⁻, d) η⁵-[Pb₉Mo(CO)₃]⁴⁻ und e) [Pb₉Zn(Ph)]³⁻.

Pb-Atome sind dunkelgrau, Übergangsmetallatome hellgrau, C-Atome weiß und O-Atome schwarz dargestellt.

Abstände	[Pb ₁₀] ²⁻ 4	[Ni@Pb ₁₀] ^{2-[12]}	[PbゥMo(CO)₃] ^{4-[13]} η5 η4		[Pb ₉ Zn(Ph)] ^{3-[15]}	
Ø k1 [Å]	3.074	3.094	3.051	3.047	3.072	
Ø k2 [Å]	3.082	3.135	3.136	3.140	3.064	
Ø k₃ [Å]	3.310	3.405	3.320	3.322	3.311	

Tabelle 4.4: Vergleich der mittleren Bindungslängen verschiedener Pb-Clusteranionen. Pb-Mo bzw. Pb-Zn Kontakte wurden zur Mittelwertsbildung nicht berücksichtigt. k_i (i = 1-3) entspricht den Kantenlängen wie in Abbildung 4.3 dargestellt.

Weder das endohedrale Ni-Atom in [K(2.2.2-crypt)]₂[Ni@Pb₁₀] noch die Substitution einer Ecke bzw. einer Kappe mit einem Übergangsmetallatom verändern die Bindungslängen und damit die Struktur des Anions maßgeblich. Im Fall von [Pb₉Zn(Ph)]³⁻ zeigt sich die strukturelle Ähnlichkeit zu **4** besonders stark mit Änderungen der Pb-Pb Abstände von weniger als 1 %.

Eine Projektion der Elementarzelle in Richtung der c-Achse zeigt eine verzerrt hexagonale Packung der [Pb₁₀] Polyeder in der *ab*-Ebene; in c-Richtung sind diese hexagonalen Schichten primitiv gestapelt (vergleiche Abbildung 4.5). Innerhalb dieser Schichten beträgt der Intercluster-Abstand benachbarter Polyeder (Abstand der Cluster-Schwerpunkte) 13.699 Å bzw. 11.864 Å, zwischen den Schichten 10.753 Å. Der Abstand zwischen den Kappenatomen zweier Cluster aus benachbarten Schichten (Pb1-Pb1') ist mit 4.755 Å deutlich kleiner als der innere Abstand der beiden Kappenatome eines Clusters (Pb1-Pb1) mit 6.482 Å. Eine vergleichbare Packung anionischer Tetrel-cluster kennt man bereits von den Fulleriden; in [K(2.2.2-crypt)]₂[C₆₀]^[16] sind die [C₆₀]^{2–} Anionen hexagonal-primitiv in Schichten angeordnet.

Die Schichten der Clusteranionen in **4** sind durch Schichten der mit Kryptand komplexierten) K-Atome getrennt; diese bilden gewellte Stränge mit K-K Abständen von 6.944 Å bzw. 7.109 Å (vergleiche Abbildung 4.5 c). Auffällig ist, dass die beiden Pb5 Atome jedes Clusters mit 5.431 Å den mit Abstand kürzesten Kontakt zu K ausbilden.

Abbildung 4.5: [K(2.2.2-crypt)]₂[Pb₁₀], **4**, Inhalt zweier Elementarzellen: a) Projektion in Richtung der *a*-Achse; b) Projektion in Richtung der *b*-Achse; c) Aufsicht auf die *ab*-Ebene. [Pb₁₀]-Cluster sind als Polyeder, K-Atome sind schwarz dargestellt; K-K Abstände sind als dünne schwarze Linien, Abstände der Polyederschwerpunkte als gestrichelten Linien gezeigt. Kryptand-Moleküle sind aus Gründen der Übersichtlichkeit nicht gezeigt. Angabe aller Abstände in Å.

Neben dem eingangs genannten [Si₉]³⁻Anion^[17], welches stark von der erwarteten D_{3h}-Symmetrie abweicht, wurde bisher mit {Ge₉²⁻/Ge₁₀²⁻}^[18] und [Pt@Pb₁₂]²⁻ nur über zwei weitere *closo*–Struktur der Tetrele mit n > 5 berichtet. Im erstgenannten Fall verhindert eine unklare Ladungszuweisung bzw. unzureichende strukturelle Charakterisierung bedingt durch eine dreifache Rotationsfehlordnung des Clusters die eindeutige strukturelle Charakterisierung und erlaubt damit auch keine greifbare Aussage in Bezug auf die Korrelation von Gerüstbindungselektronenpaaren und Polyederstruktur.^[19] Kristalle mit nahezu gleichen Gitterparametern und Symmetrie erlauben auch die Interpretation als fehlgeordneter [Ge₉]²⁻–Cluster. Das Beispiel eines 12-atomigen Clusters ist bisher nur in Form des endohedral gefüllten Anions [M@Pb₁₂]²⁻ (M = Ni, Pd, Pt) bekannt.^[20]

Somit stellt [Pb₁₀]²⁻ nicht nur den ersten strukturell eindeutig charakterisierten Vertreter seiner Klasse dar, sondern belegt durch seine Ähnlichkeit zum endohedral gefüllten Analogon [Ni@Pb₁₀]²⁻, dass die Bindung zwischen den Pb-Atomen und dem Ni-Atom für die Ausbildung eines stabilen 10-atomigen Clusters nicht erforderlich sind, aber durchaus durch das Zentralatom erleichtert werden kann (siehe vergleichende Diskussion, Kapitel 4.4).

4.4. Vergleichende Diskussion

Sehr ähnliche Synthesewege führten zur Bildung und eindeutigen strukturellen Charakterisierung zweier *closo*-Zintl-Anionen, $[Pb_5]^{2-}$ und $[Pb_{10}]^{2-}$. Die Tatsache, dass beide Verbindungen aus den gleichen Edukt-Phasen der nominellen Zusammensetzung KPb_{2.25} bzw. K₄Pb₉ (siehe Kapitel 7) gewonnen wurden, beweist, dass beide Anionen in Lösung im Gleichgewicht vorliegen, neben den bereits in Lösung charakterisierten Anionen $[Pb_9]^{x-}$ (x = 3, 4).

Verbindung	mittlere Pb- Pb-Abstände [Å]	minimaler Pb-Pb- Abstand	maximaler Pb- Pb-Abstand	Lit.
[K(2.2.2-crypt)] ₂ [Pb ₅], 3	3.135	3.008	3.262	*
[Na(2.2.2-crypt)]2[Pb5]	3.120	3.002	3.238	[8]
[K(2.2.2-crypt)] ₂ [Pb ₁₀], 4	3.155	3.074	3.310	*
[K(18-c-6)] ₃ K[Pb ₉]	3.205	3.070	3.475	[21]
Pb Metall	3.49			[22]

Tabelle 4.5: Vergleich der Pb-Pb Abstände verschiedener anionischer Pb-Verbindungen mit metallischem Blei.

*: diese Arbeit.
Sämtliche Pb-Pb-Abstände anionischer Pb-Cluster liegen deutlich unterhalb der Atomabstände in Pb-Metall, was auf delokalisierte Bindungen bzw. auf kovalenten Bindungscharakter schließen lässt.

Die closo-Anionen [Pb₅]²⁻ **3a** und [Pb₁₀]²⁻ **4a** stellen zwei Zwischenstufen auf dem Weg der Oxidation von [Pb₉]⁴⁻ zu elementarem Blei dar. Ein weiterer Reaktionspfad führt über [Pb₉]³⁻; dessen alternative Bildung aus [Pb₉]⁴⁻ soll an dieser Stelle nicht betrachtet werden. Im folgenden wird eine formale Elektronenbilanz über die beiden Zwischenstufen **3a** und **4a** erstellt, die ein Grundverständnis schaffen soll für Elektronenübertragungs-Prozesse, welche wiederum Rückschlüsse auf den prinzipiellen Reaktionsmechanismus zulassen.

Unter Berücksichtigung der anhand der Strukturlösung eindeutig ermittelten Ladungen der Zintl-Ionen kann die Brutto-Umsetzung wie folgt formuliert werden:

 $10 \ [Pb_9]^{4-} \rightarrow 18 \ [Pb_5]^{2-} \rightarrow 9 \ [Pb_{10}]^{2-} \rightarrow \rightarrow Pb^{\pm 0}$ (1) Die Bildung von $[Pb_5]^{2-}$ fand sowohl in Gegenwart von AuPPh₃Cl als auch nur von reinem Triphenylphosphin statt; damit ist Wasserstoff des Lösungsmittels Ethylendiamin der wahrscheinlichste Elektronenakzeptor. Damit lassen sich für die Bildung von **3a** die folgenden Netto-Reaktionsgleichungen formulieren:

 $\begin{array}{ll} 10 \; [Pb_{9}]^{4-} + 4 \; H^{+} & \rightarrow 18 \; [Pb_{5}]^{2-} + 2 \; H_{2} \\ \text{bzw.} \end{array}$

10 $[Pb_9]^{4-}$ + 4 Au⁺ \rightarrow 18 $[Pb_5]^{2-}$ + Au⁰ (in Gegenwart von AuPPh₃Cl)

Der zweite Schritt, die weitere Oxidation zu [Pb₁₀]²⁻ **4a**, erfolgte ausschließlich in Gegenwart von AuPPh₃Cl, was durch folgende Netto-Teilgleichung beschrieben wird:

 $18 \ [Pb_5]^{2-} + 18 \ Au^+ \rightarrow 9 \ [Pb_{10}]^{2-} + 18 \ Au^0$

Dies ergibt die Netto-Gesamtgleichung wie folgt:

 $10 K_4 Pb_9 + 4 H^+ + 18 A UPPh_3 CI \rightarrow 9 K_2 Pb_{10} + 2 H_2 + 18 A U^0 + 18 PPh_3 + 18 K CI + 4 K^+ bzw.$

 $10 \text{ K}_4\text{Pb}_9 + 22 \text{ A}_0\text{Ph}_3\text{Cl} \rightarrow 9 \text{ K}_2\text{Pb}_{10} + 22 \text{ A}_0^0 + 22 \text{ PPh}_3 + 22 \text{ KCl}$

(Aus Gründen der Übersichtlichkeit sind die Kryptand-Moleküle nicht aufgeführt).

Semiquantitative EDX-Analysen bestätigen das Vorhandensein von Au im Rückstand der Filtration; die relativ grossen Mengen an Pb, die wie ein Schwamm die Kristalle von **4** umgaben, können durch Folgereaktionen mit vollständiger Oxidation des Zintl-Anions erklärt werden und liefern darüber hinaus einen Grund für die zum Teil äußerst geringen Ausbeuten von **4**. Zudem konnte eine schwache Gasentwicklung bei der Umsetzung von K₄Pb₉ zu **3** mit Triphenylphosphin beobachtet werden, was die obige Reaktionsgleichung weiter stützt. Variationen der Konzentration der beteiligten Edukte bei der Synthese von **4** zeigten, dass nur in einem äußerst kleinen, exakt aufeinander abgestimmten Konzentrationsbereich das *closo*-Anion [Pb₁₀]²⁻ erhalten werden kann, alle anderen Ansätze zersetzten sich und lieferten dabei annähernd quantitativ das Endprodukt der vollständigen Oxidation, Pb^{±0}.

In Analogie zur Retrosynthese kann die Bildung von [Pb₁₀]²⁻ über [Pb₅]²⁻ als Zwischenstufe über folgende Übergangszustände rationalisiert werden (vergleiche auch Abbildung 4.6a):

Zwei trigonal-bipyramidale Anionen [Pb₅]²⁻ verzerren durch gegenseitige Annäherung unter partieller Oxidation derart, dass die beiden Kappenatome Pb1 bzw. Pb4 aus dem Zentrum der trigonalen Grundfläche heraus in Richtung der Kante Pb3-Pb5 gedrängt werden und damit den Bindungswinkel Pb1-Pb2-Pb4 entsprechend stauchen. Gleichzeitig entfernen sich die beiden Pb3-Atome von der ehemals trigonalen Grundfläche so, dass der Bindungswinkel Pb2-Pb3-Pb5 auf annähernd 90° (91.0°) zur Bildung der (zukünftigen) Grundfläche des quadratischen Antiprismas aufgeweitet wird. Die erhaltene Anordnung erlaubt die Fusion zweier derart verzerrter [Pb₅]-Einheiten zu einer [Pb₁₀]-Einheit. Wie oben beschrieben sind für diese oxidative Kopplung zweier [Pb₅]²⁻-Einheiten zwei Äquivalente Au(I) als Elektronenakzeptor nötig.

Eine Alternative zur oben beschriebenen Verzerrung der trigonalen Bipyramide ist die Verlängerung einer der drei Grundflächenkanten bis zur Aufweitung des gegenüberliegenden äquatorialen Bindungswinkels auf annähernd 90° (siehe Abbildung 4.6b). Diese Verzerrung liefert somit eine quadratische Pyramide, eine der ,Kappen' des zukünftigen zweifach überkappten Antiprismas, welche dann analog der obigen Beschreibung zu einem [Pb₁₀] Deltaeder fusionieren. Diese Alternative benötigt nur den Bruch einer Bindung pro [Pb₅]-Cluster, während im ersten Fall zwei Bindungen gebrochen werden.

Abbildung 4.6: Zwei alternative Routen der Fusion zweier [Pb5]-Deltaeder zu einem [Pb10]-Cluster. Pb-Pb Bindungen, die im Laufe der Fusion gebrochen werden, sind gestrichelt dargestellt.

Für eine definitive Entscheidung, welcher der beiden Reaktionspfade eingeschlagen wird, sind weitere Untersuchungen nötig.

Die in Kapitel 4.3.3 beschriebene große Ähnlichkeit zwischen der hier vorgestellten Verbindung **4** und dem endohedral gefüllten Analogon [Ni@Pb₁₀]²⁻ ist auch auf Basis der obigen Betrachtung sinnvoll: bei der Fusion zweier [Pb₅]-Einheiten kann Ni^{±0} als Templat dienen und damit die Annäherung der beiden Cluster zusätzlich erleichtern, was sich in drastischer Steigerung der Ausbeute widerspiegelt (45% gegenüber 5%). Dies begründet auch die Tatsache, dass eine Vielzahl "gefüllter" Cluster lange vor ihren ,leeren" Analoga gefunden und strukturell eindeutig charakterisiert wurden, wie es auch bei **4** und [Ni@Pb₁₀]²⁻ der Fall war. Der hohe sterische Anspruch dieser Reaktion, zusammen mit der Notwendigkeit einer exakt kontrollierten Elektronenübertragung begründet die äußerst anspruchsvolle Synthese von **4** sowie die wesentlich höheren Ausbeuten an [Pb₅]²⁻.

Au(I) ist aufgrund seiner besonderen elektronischen Struktur (relativistischer Effekt,

siehe auch Kapitel 1 und 3) als 'Templat'' wesentlich schlechter geeignet als andere Übergangsmetalle, da eine endohedrale Komplexierung die Ausbildung stabilisierender aurophiler Wechselwirkungen unmöglich macht.

Leere und endohedral gefüllte Hauptgruppenelement-Polyeder derselben Spezies kennt man bisher nur bei den Fullerenen.^[23, 24] Das hier beschriebene Anion dokumentiert eindrucksvoll, dass diese Charakteristik auch bei Zintl-Ionen angetroffen wird. Bemerkenswert ist dabei die Tatsache, dass dies sogar beim schwersten Homologen der Kohlenstoffgruppe Pb auftritt, obwohl die Gerüste im Vergleich zu denen der Fullerene als weit weniger starr anzusehen sind. Die Existenz "leerer" und "gefüllter" Zintl -Anionen der Gruppe 14 belegt somit ein weiteres Mal die erstaunliche Parallele zwischen Fulleren-Käfigen und polyedrischen Zintl-Ionen.

4.5. Literatur zu Kapitel 4

- [1] K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
- [2] M. E. O'Neill, K. Wade, Polyhedron **1983**, 2, 963.
- [3] M. E. O'Neill, K. Wade, Inorg. Chem. 1982, 21, 461.
- [4] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
- [5] H. Schnöckel, Angew. Chem. **1996**, 108, 141.
- [6] J. D. Corbett, Chem. Rev. **1985**, 85, 383.
- [7] T. F. Fässler, in Metal Clusters in Chemistry, (Eds.: P. Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH Verlag, Weinheim, **1999**, pp. 1612.
- [8] P. A. Edwards, J. D. Corbett, Inorg. Chem. 1977, 16, 903.
- [9] G. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, Universität Göttingen, **1997**.
- [10] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, **1997**.
- [11] S. Chitsaz, H. Folkerts, J. Grebe, T. Grob, K. Harms, W. Hiller, M. Krieger, W. Massa, J. Merle, M. Mohlen, B. Neumuller, K. Dehnicke, Z. Anorg. Allg. Chem. **2000**, 626, 775.
- [12] E. N. Esenturk, J. Fettinger, B. W. Eichhorn, J. Chem. Soc. Chem. Commun. 2005, 247.
- [13] L. Yong, S. D. Hoffmann, T. F. Fässler, Eur. J. Inorg. Chem. 2005, 18, 3363.
- [14] J. M. Goicoechea, S. C. Sevov, Organometallics **2006**, 25, 4530.
- [15] S. C. Sevov.
- [16] T. F. Fässler, A. Spiekermann, M. Spahr, R. Nesper, Angew. Chem. 1997, 109, 502.
- [17] J. M. Goicoechea, S. C. Sevov, Inorg. Chem. 2005, 44, 2654.
- [18] C. Belin, H. Mercier, V. Angilella, New J. Chem. 1991, 15, 931.
- [19] T. F. Fässler, M. Hunziker, M. Spahr, H. Lueken, Z. Anorg. Allg. Chem. 2000, 626, 692.
- [20] E. N. Esenturk, J. Fettinger, Ý.-F. Lam, B. Eichhorn, Angew. Chem. 2004, 116, 2184.
- [21] J. Campbell, D. A. Dixon, H. P. A. Mercier, G. J. Schrobilgen, Inorg. Chem. 1995, 34, 5798.
- [22] Holleman, Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 1, 102 ed., Walter deGruyter & Co, Berlin, **2007**.
- [23] C. A. Reed, R. D. Bolskar, Chem. Rev 2000, 100, 1075.
- [24] A. L. Balch, M. M. Olmstead, Chem. Rev. 1998, 98, 2123.

5. Reaktionen der Zintl-Anionen K₄E₉ mit [Au₉(PPh₃)₈](NO₃)₃

5.1. Einleitung

Gold(I) neigt bei schrittweiser Reduktion zur Bildung kationischer, ligandstabilisierter Cluster [Au_nL_m]^{x+} (L = PR₃) mit Au-Atomen in formalen Oxidationsstufen zwischen 0 und 1, die seit Ende der 1960er Jahre bekannt und detailliert untersucht sind.^[1, 2] Dabei variieren die Anzahl der Goldatome im Cluster sowie die räumliche Anordnung sehr stark und hängen wesentlich von Art und Verfügbarkeit der Liganden ab.^[3] Größere Cluster (n > 8) zeigen eine zunehmend sphärische, Au-zentrierte Struktur, welche mehr Au-Au Kontakte ermöglicht, als kleinere Cluster mit einer offenen, ringförmigen Struktur. Damit benötigen kleinere Cluster im Verhältnis mehr Liganden zur Stabilisierung (n : m = 1, z.B. [Au₆(PPh₃)₆]²⁺) als größere Cluster (n : m >1, z.B. [Au₁₁(PPh₃)₉]³⁺).^[2] Nach dem HSAB-Prinzip^[4] 'weiche' und für Au(I) optimale Liganden fördern damit die Bildung kleinerer Cluster, während 'harte' Liganden das Clusterwachstum fördern und dadurch ein weniger ungünstiges Verhältnis von Au-Atomen zu Liganden von >1 ermöglichen. Eine hohe Konzentration weicher Liganden, z.B. Phosphin, führt beispielsweise zum Cluster-Abbau, häufig unterstützt durch zusätzliche Oxidationsmittel, da so die maximale Komplexierung von Au(I) möglich wird.

Wie in den vorangegangenen Kapiteln beschrieben, führt die Umsetzung von Gold(I)-Phosphinkomplexen mit Zintl-Phasen in Lösung zu den Verbindungen [K(2.2.2crypt)]₅[Au₃Ge₁₈], **1**, und [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**. Dabei kommt es zur vollständigen Abspaltung des Phosphinliganden von Au. Im Gegensatz zu anderen Reaktionen, wo man diese Reaktionsbedingungen durch den Einsatz von Phosphinfängern erzwingt, indem PR₃ aus dem Gleichgewicht entfernt wird, bleibt hier der ungebundene Ligand in Lösung erhalten und steht für weitere Reaktionen zur Verfügung. Derart einzigartige Reaktionsbedingungen ermöglichen die Untersuchung von Cluster-Auf- und Abbau in Lösung mit der Option auf erneute Phosphinkomplexierung zu einem späteren Zeitpunkt.

Spektroskopische Untersuchungen der Gold-Cluster in Lösung^[5, 6] sowie theoretische Berechnungen^[1] zeigten, dass die Verbindungen [Au_nL_m]^{x+} keineswegs nur eine optimale Atomanordnung bevorzugen, sondern meist komplexe Gleichgewichte zwischen verschiedenen Isomeren der [Au_n]-Cluster in Lösung vorliegen. Deren Struktur lässt sich allerdings nicht mit den Wade´schen Regeln verstehen und ist seit mehr als

30 Jahren Gegenstand kontroverser Diskussionen. Ein allen Au-Clustern gemeinsames Prinzip ist die Tatsache, dass durch relativistische Effekte der Beitrag der 5d-Orbitale der Au-Atome zum Clustergerüst-Aufbau sehr gering ist. Zudem erschwert die hohe Energiedifferenz zwischen den 6s- und 6p-Orbitalen die s-p Hybridisierung; ihr minimales Ausmaß beeinflusst wesentlich die Clusterstruktur.^[2] Damit sind vor allem die 6s-Orbitale von maßgeblicher Bedeutung für die Ausbildung des Clustergerüsts. Der Aufbau eines Gold-zentrierten Clusters sowie die Komplexierung durch Phosphinliganden führt zu zusätzlicher Stabilisierung, wie *Mingos et al.* anhand von MO-Rechnungen gezeigt haben.^[7] Eine umfassende Systematik der Clusterstruktur von kationischen [Au_nL_m]×+ Clustern sowie ein mechanistisches Verständnis von Clusterauf- und abbau steht nach wie vor aus. Analog zu den Verhältnissen der Zintl-Ionen in Lösung konnte bisher nicht geklärt werden, ob die im Festkörper nachgewiesene Struktur der Cluster-Verbindungen auch in Lösung dominiert oder erst die Kristallisation aus der Lösung das Gleichgewicht zugunsten der Festkörperstruktur verschiebt.

Diese Dynamik von Clusterbildung und –abbau in Lösung, verknüpft mit der Möglichkeit zusätzlicher Elektronenübertragungsprozesse, sowie die Tatsache, dass die kationischen Cluster [Au_nL_m]^{x+} (n = 7-13) in ihrer räumlichen Ausdehnung vergleichbar mit jener der Zintl-Ionen in Lösung sind, war der Grund für die Umsetzung von K₄E₉ mit [Au_9 (PPh₃)₈](NO₃)₃.

Abbildung 5.1:Größenvergleich von [Au₉(PPh₃)₈]^{3+[8]} (Mitte) mit den Zintl-Ionen [Ge₉]^{4-[9]} (links) und [Pb₁₀]^{2-[10]}(rechts). Den Clustern sind zentrale Kugeln derart eingefügt, dass die Mehrzahl der Clusteratome auf der Kugeloberfläche liegt. Der Kugeldurchmesser ist ein Richtwert für die sphärische Ausdehnung der Clustergerüste.

Tetrelatome sind grau, Au-Atome weiß und P-Atome schwarz dargestellt.

Zwei Motivationen für diese Umsetzungen sollen hier besonders hervorgehoben werden:

- Cokristallisation: vergleichbare entgegen gesetzte Ladungen sowie ähnliche Größenverhältnisse sollten eine gemeinsame Kristallisation von [Au₉(PPh₃)₈](NO₃)₃,
 5, und [E₉]^{x-} möglich machen und dabei gleichzeitig das Problem fehlgeordneter Kationen bei der Strukturlösung beseitigen^[8];
- die Reaktionen kationischer und anionischer Clusterionen ermöglicht ggf. bisher nicht beobachtete Elektronenübertragungsprozesse
- die Phosphinabspaltung in Gegenwart von Zintl-Ionen ermöglicht Untersuchungen des Auf- und -abbaus von Au-Clustern in Lösung.

5.2. Synthese und Analytik von [Au₉(PPh₃)₈](NO₃)₃

[Au₉(PPh₃)₈](NO₃)₃, **5**, wird ausgehend von AuPPh₃NO₃ durch schrittweise Reduktion mit Natriumborhydrid dargestellt. Die Synthese erfolgte basierend auf den Angaben in der Literatur;^[11] gezielte Änderungen der Konzentrationsverhältnisse sowie der Techniken der Aufarbeitung führten zu verbesserter Reinheit bei wesentlich gesteigerten Ausbeuten (siehe auch Kapitel 7).

Eine Suspension aus AuPPh₃NO₃ in Ethanol wird tropfenweise mit NaBH₄, gelöst in Ethanol, versetzt und drei Stunden gerührt. [Au₉(PPh₃)₈](NO₃)₃ wird durch rasche Zugabe von Toluol ausgefällt und aus Methylenchlorid umkristallisiert.

Elementaranalysen sowie Semiquantitative EDX-Analysen des umkristallisierten Produktes bestätigen die stöchiometrische Zusammensetzung [Au₉(PPh₃)₈(NO₃)₃].

Das ³¹P-NMR-Spektrum des Goldclusters, gelöst in deuteriertem Methylenchlorid, zeigt das charakteristische Signal bei einer chemischen Verschiebung von 54 ppm neben einem wesentlich kleineren Peak bei 43 ppm; dieser entspricht dem *bis*-Phosphinkomplex [Au(PPh₃)]₂⁺, der sich stets zu einem gewissen Anteil in der Lösung bildet bzw. durch Umkristallisation nicht vom Hauptprodukt vollständig abgetrennt werden kann, wie in der Literatur von *Steggerda et al.* beschrieben^[3, 5].

Wiederholungen der Messung der gleichen Probe über einen Zeitraum von insgesamt drei Tagen zeigen, dass das Signal des *bis*-Phosphins in dem Ausmaß an Intensität gewinnt, wie der des [Au₂(PPh₃)₈](NO₃)₃ abnimmt (vergleiche Abbildung 5.2). Daraus ist zu schließen, dass [Au₉(PPh₃)₈](NO₃)₃ in Lösung an Luft nur begrenzt stabil ist. Erfahrungen aus den Umsetzungen der Zintl-Ionen mit Au(I)-Phosphin-komplexen, wie in Kapitel 3 und 7 beschrieben, zeigen, dass der in Lösung stets vorliegende *bis*-Phospinkomplex von Au(I) keinen nachteiligen Einfluss auf die Umsetzung hat.

Abbildung 5.2: ³¹P-NMR Spektren von [Au₉(PPh₃)₈](NO₃)₃, **5**, in CH₂Cl₂; a) nach 2 Stunden; b) nach 24 Stunden; c) nach 72 Stunden.

³¹P-NMR-spektroskopische Untersuchungen an Lösungen von Kristallen in Ethylendiamin, die zuvor mittels Röntgenkristallstrukturanalyse eindeutig als [Au₂(PPh₃)₈](NO₃)₃ charakterisiert wurden (siehe unten), ergaben das gleiche Spektrum, so dass der Cluster auch in diesem Lösungsmittel unverändert vorliegt. Dies beweist auch, dass es sich bei dem stets vorhandenen *bis*-Phosphinkomplex keinesfalls um eine Verunreinigung handelt, also ein Nebenprodukt der Synthese, sondern dass sich dieser Komplex spontan in Lösung bildet.

ESI-MS Spektren der in einer Mischung aus Methylenchlorid und Acetonitril gelösten Substanz zeigen neben dem Molekülpeak des [Au₉L_n]-Clusters(1376 m/z,

[Au₉(PPh₃)₉]³⁺) sowie der erwarteten Fragmentierungsmuster eine Serie größerer Cluster-Verbindungen, deren Bildung unter anderem durch die sanfte Ionisierungstechnik der Elektrospray-Ionisation ermöglicht wurde. Die eindeutige Zuordnung der Ladungen zu den Verbindungen (siehe Tabelle 5.1) erfolgte aufgrund der Tatsache, dass die Peaks als Serie mit der Massendifferenz von einem Drittel der Molmasse von Gold auftraten, so dass nur die Formulierung als dreifach positiv geladenes Kation chemisch sinnvoll ist. Das Isotopenmuster aller Peaks stimmt mit dem jeweils berechneten sehr gut überein.

Abbildung 5.3: ESI-Massenspektrum (positiver Modus) der Verbindung Au₉(PPh₃)₈(NO₃)₃ gelöst in CH₂Cl₂/CH₃CN.

m/z	lon	m/z	lon
500	[Au(PPh3)·CH3CN]+	1443	[Au10(PPh3)9] ³⁺
721	[Au(PPh ₃) ₂]+	1509	[Au11(PPh3)9] ³⁺
944	[(AuPPh3)2·CN]+	1574	[AU12(PPh3)9] ³⁺
1114	[Au9(PPh3)6] ³⁺	1640	[AU13(PPh3)9] ³⁺
1155	[Au9(PPh3)&3CH3CN] ³⁺	1705	[AU14(PPh3)9] ³⁺
1377	[Au9(PPh3)9] ³⁺	1771	[AU15(PPh3)9] ³⁺
1393	[Au₀(PPh₃)₀·CH₃CN] ³⁺	1902	[Au ₁₇ (PPh ₃) ₉] ³⁺
1409	[Au9(PPh3)9·2CH3CN] ³⁺	1968	[AU18(PPh3)9] ³⁺

Tabelle 5.1: Eine Auswahl prominenter ESI-MS Peaks von $Au_9(PPh_3)_8(NO_3)_3$ gelöst in CH₃CN/ CH₂Cl₂ mit den dazugehörigen Molekülionen. L = PPh₃.

Eine chromatographische Trennung der Lösung von [Au₉(PPh₃)₈](NO₃)₃, **5**, in Ethylendiamin bzw. in Methylenchlorid (HPLC, vergleiche Kapitel 7) zeigte anhand der kontinuierlichen UV-Detektion zwei klare getrennte Peaks (Retentionszeiten 11.8 min bzw. 14.2 min), die mittels nachgeschalteter ESI-Massenspektroskopie als [Au(PPh₃)₂]⁺ bzw. als [Au₉(PPh₃)₈]³⁺ charakterisieren ließen, was die Aussage des ³¹P-NMR-Spektrums bestätigt. Dies beweist, dass im Fall von gelöstem [Au₉(PPh₃)₈](NO₃)₃ die Vielzahl größerer Goldcluster-Verbindungen, wie in Abbildung 5.3 ersichtlich, erst durch die Ionisierung in der ESI-Quelle gebildet wird und nicht bereits in Lösung vorliegt.

Da in höheren Molmassenbereichen keine unmittelbar eindeutige Zuordnung einer Verbindung zu einem Massenpeak möglich ist (durch Anlagerung von Lösungsmittelmolekülen ist immer eine Vielzahl stöchiometrischer Zusammensetzungen denkbar), wurde auf einige der prominenten Peaks bei Massen oberhalb des Molekülpeaks von [Au₉(PPh₃)₈] (NO₃)₃ die *MS-MS-Technik* angewandt: Die im Oktapol (Ionenfallen-MS) angelegte Spannung ermöglicht das "Einfangen" eines bestimmten Ions, darauf folgt dessen erneute Ionisierung in der ESI-Quelle, sodass man ein separates Massenspektrum dieses gewählten Ions erhält. Aus dem Fragmentierungsmuster lässt sich dann eindeutig auf die tatsächliche Molekülmasse schließen, die im Ausgangsspektrum den Peak oberhalb der Molmasse von [Au₉(PPh₃)₈] (NO₃)₃ verursacht hatte. Mittels MS-MS-Kopplung konnten die folgenden Peaks eindeutig anhand ihres Fragmentierungsmusters identifiziert werden:

m/z	lon	Fragmente aus MS-MS-Kopplung
721	[Au(PPh3)2]+	262: [PPh ₃]+; 459: [Au(PPh ₃)]+; 500: [Au(PPh ₃)*CH ₃ CN]+
944	[(AuPPh3)2*CN]+	262: [PPh ₃]+; 459: [Au(PPh ₃)]+; 500: [Au(PPh ₃)*CH ₃ CN]+; 721: [Au(PPh ₃) ₂]+
1114	Au9(PPh3)6] ³⁺	1155: [Au ₉ (PPh ₃) ₆ ·3CH ₃ CN] ³⁺ , 1443: [Au ₁₀ (PPh ₃) ₉] ³⁺ , 1574: [Au ₁₂ (PPh ₃) ₉] ³⁺
1377	Au9(PPh3)9] ³⁺	1443: [Au10(PPh3)9] ³⁺ , 1574: [Au12(PPh3)9] ³⁺
1443	Au10(PPh3)9] ³⁺	1509: [Au11(PPh3)9] ³⁺ , 1574: [Au12(PPh3)9] ³⁺

Tabelle 5.2: Liste der mittels MS-MS-Kopplung untersuchten Molekülfragmente mit einer Auswahl der durch eine zweite Ionisierung gefundenen Peaks von **5** in CH₃CN/CH₂Cl₂.

Aufgrund des Fragmentierungsmusters können somit die prominenten Peaks bei Molmassen m/z > 1000 eindeutig Au_n-Clusterverbindungen zugeordnet werden, deren erneute Ionisierung in der ESI-Quelle zu größeren Clustern führt, während für die monomeren und dimeren Gold-Phosphinfragmente mit m/z < 1000 keine Clusteraggregation beobachtet werden kann.

Einkristall-Röntgenstrukturbestimmung: Um die Stabilität Verbindung der [Au₉(PPh₃)₈](NO₃)₃ in den zu den folgenden Umsetzungen verwendeten Lösungsmitteln zu untersuchen, wurde 5 in Ethylendiamin, Dimethylformamid sowie in weiteren Lösungsmitteln und Lösungsmittelgemischen umkristallisiert. In Gegenwart von N-Donoren war der Austausch eines oder mehrerer Phosphin-Liganden gegen Moleküle des Lösungsmittels und damit eine veränderte Struktur in diesem Lösungsmittel denkbar. Aus Ethylendiamin wurden würfelförmige, dunkelrote Kristalle erhalten, deren Strukturlösung und Verfeinerung für alle Au- und P-Atome eine der von Mingos et al. für [Au₉(PC₆H₄-OMe)₃]₈](NO₃)₃ vergleichbare Struktur ergab. Das bereits in der Literatur mehrfach beschriebene Problem der Fehlordnung (siehe Kapitel 1) der Au-Atome trat auch in diesem Falle auf, was die Strukturlösung maßgebend erschwert. Da an dieser Stelle vorrangig eine eindeutige Charakterisierung der eingesetzten Verbindung in Ethylendiamin interessant war, wurde auf eine vollständige Strukturlösung der bereits in analoger Form bekannten Verbindung verzichtet.

Auch aus DMF sowie den Lösungsmittelgemischen Ethanol/DMF, Ethanol/Methylenchlorid sowie Methanol/Methylenchlorid konnten Kristalle gewonnen werden; diese waren von weit geringerer Qualität als die aus Ethylendiamin gewonnenen, konnten aber anhand der röntgenographisch bestimmten Gitterparameter als [Au₉(PPh₃)₈](NO₃)₃ charakterisiert werden.

5.3. K_4E_9 mit [Au₉(PPh₃)₈](NO₃)₃: Untersuchungen der Gleichgewichte in Lösung

Wie schon bei der Synthese von **5** bieten sich zur Untersuchung der Gleichgewichte in Lösungen von K_4E_9 und $[Au_9(PPh_3)_8](NO_3)_3$ zwei analytische Techniken besonders an:

³¹*P-NMR-Spektroskopie*: ³¹P als sehr empfindlicher Kern lässt sich auch in geringen Konzentrationen rasch und eindeutig detektieren; die Methode erlaubt eine klare Zuordnung der Signale zu den einzelnen Au-Clusterstrukturen sowie die Unterscheidung zwischen Au-gebundenem und freiem Phosphin.

ESI-Massenspektroskopie: die Optimierung der Methode für die vorliegenden Reaktionsbedingungen (siehe Kapitel Experimentalteil) ermöglicht im positiven Modus die

Beobachtung der Au-Cluster-Aggregation sowie zeitgleich im negativen Modus die Untersuchung der Zintl-Anionen bzw. entsprechender anionischer Au-E-Addukte.

EDX-Analysen anfallender Rückstände bzw. überstehender Lösungen ergänzen die Befunde.

5.3.1. Cluster-Synthese in situ

Verfolgt man die Synthese von Au₉(PPh₃)₈(NO₃)₃ ausgehend von AuPPh₃Cl mit NaBH₄ in Ethylendiamin bzw. Diemethylformamid mittels ³¹P-NMR-Spektroskopie, so treten nach 15 Minuten erstmals schwache Signale von [Au_n(PPh₃)_m] in Lösung auf. Diese können entsprechend dem ungebundenen Phosphin, zwei monomeren Au-Phosphinkomplexen sowie den Au-Clusterionen mit 8, 9 und 11 Au-Atomen zugeordnet werden. Neben dem Peak von [Au₉(PPh₃)₈]³⁺ beweist das Auftreten von Au₈ und Au₁₁ während der Synthese die Dynamik des Cluster-Wachstums unter den gegebenen Bedingungen.

Abbildung 5.4: ³¹P-NMR-Spektrum der Reaktionslösung zur Synthese von [Au₉(PPh₃)₈](NO₃)₃ aus AuPPh₃Cl mit NaBH₄ in Ethylendiamin.

Nach Ablauf der Reaktionszeit vor der Aufarbeitung tritt nur noch das Signal von [Au₉(PPh₃)₈](NO₃)₃ auf. ESI-MS Spektren der Reaktionslösung zeigen bereits zum Ende der Synthese die charakteristische Aggregation der Au_n(PPh₃)_m-Cluster, wie in Kapitel 5.2 beschrieben.

Ersatz von NaBH₄ durch K₄E₉ (E = Ge, Sn): Die oben beschriebene Synthese von Au₉(PPh₃)₈(NO₃)₃ erfolgt durch Reduktion von AuPPh₃Cl mit NaBH₄; ersetzt man das Reduktionsmittel durch das ebenfalls stark reduzierende Zintl-Anion [Ge₉]⁴⁻ bzw. [Sn₉]⁴⁻, so wäre eine vergleichbare Reaktion denkbar. ESI-Massenspektren entsprechender Lösungen zeigen im positiven Modus keinerlei Au-Cluster-Aggregation, größte nachweisbare Au-Einheit ist das Dimer [AuPPh₃]₂⁺. Damit kann Au-Clusterbildung aus AuPPh₃Cl in Gegenwart von Zintl-Phasen allein ausgeschlossen werden.

Synthese von Au₉(PPh₃)₈(NO₃)₃ in Gegenwart von[E₉]⁴⁻ (E = Ge, Sn)und NaBH₄: Zugabe äquivalenter Mengen an NaBH₄ zu Lösungen von K₄Ge₉ bzw. K₄Sn₉ und AuPPh₃Cl in Ethylendiamin bzw. Dimethylformamid zeigen im ³¹P-NMR-Spektrum unverändert nur das ungebundene PPh₃, welches wie erwartet (vergleiche Kapitel 2) vollständig von Au(I) abspaltet; ESI-Massenspektren zeigen im anionischen Modus die quasi unveränderten Isotopenmuster der Ge- bzw. Sn-Cluster, im positiven Modus aber keinerlei Signale oberhalb von m/z 921 ([AuPPh₃]₂⁺) bzw. m/z 944 ([AuPPh₃]₂CN⁺), die auf größere Au-Cluster-Aggregate schließen lassen. Die Abspaltung des Phosphins erfolgt spontan und verhindert das Cluster-Wachstum zu Au₉(PPh₃)₈(NO₃)₃ aus AuPPh₃Cl.

Abbildung 5.5: ESI-Massenspektren zur Cluster-Synthese in situ: a) AuPPh₃NO₃ mit NaBH₄ nach 4 Stunden; b) Ersatz von NaBH₄ durch K₄Ge₉; c) mit NaBH₄ in Gegenwart von K₄Ge₉. Formeln der Cluster [Au_n(PPh₃)_m]⁺ sind in vereinfachter Schreibweise Au_n angegeben.

5.3.2. Umsetzungen von [Au₉(PPh₃)₈](NO₃)₃ mit K₄E₉

Aus Reaktionen von K₄Ge₉ bzw. K₄Sn₉ mit [Au₉(PPh₃)₈](NO₃)₃ konnten unter geeigneten Bedingungen über mehrere Tage bzw. Wochen stabile Lösungen erhalten werden (siehe Kapitel 5.3.3). Ge- bzw. Sn-Phase verhielten sich vergleichbar, sodass die hier genannten Beobachtungen und Rückschlüsse für beide Zintl-Anionen gelten; auf Unterschiede wird an entsprechender Stelle hingewiesen. Mit K₄Pb₉ konnten in Gegenwart von [Au₉(PPh₃)₈](NO₃)₃ keine nachhaltig stabilen Lösungen erhalten werden. ³¹P-NMR-Spektren zeigen unmittelbar nach der Zugabe von Au₂(PPh₃)₈(NO₃)₃ (gelöst oder fest) zur gelösten Zintl-Phase (EN bzw. DMF) nur das Signal des freien Triphenylphosphins, was den in Kapitel 3.3 beobachteten Trend der Au-P Bindungsspaltung in Gegenwart der Zintl-Phase auch für die Au_n-Clusterverbindungen bestätigt.

Das lässt zwei mögliche Schlüsse zu: in der Lösung von [Au₉(PPh₃)₈](NO₃)₃ mit Zintl-Ionen

- liegt [Au₉(PPh₃)₈](NO₃)₃ (im Gleichgewicht mit anderen [Au_nL_m]-Clustern) ligandfrei bzw. nur durch Lösungsmittel komplexiert vor; oder
- wurde der Goldcluster spontan zerstört, verbleibende reaktive Goldspezies ist Au(I) und Au(0) als zweites Produkt der Disproportionierung.

Weitere NMR-spektroskopische Untersuchungen der Reaktionslösungen nach wenigen Tagen bis hin zu mehreren Wochen ergaben, dass nach 24 bis 48 Stunden wieder das Signal von [Au₉(PPh₃)₈](NO₃)₃ auftritt, wenn auch in weit geringerem Maße als das des freien Phosphins. Damit ist der Beweis erbracht, dass die gelösten Zintl-Ionen zwar unmittelbar zur Abspaltung der Phosphinliganden führen, der Gold-Cluster aber in der Lösung erhalten bleibt bzw. in einer Form vorliegt, die eine erneute Komplexierung mit Phosphin möglich macht.

Die Aufnahme von ESI-Massenspektren der Reaktionslösungen wird durch die Tatsache erschwert, dass die Lösung keinerlei Feststoff enthalten darf und damit eine (bzw. mehrere) zusätzliche Filtration nötig wird, was die Lösungsgleichgewichte gegebenenfalls beeinflusst. Frisch angesetzte Lösungen von K₄E₉ (E = Ge, Sn) mit [Au₉(PPh₃)₈](NO₃)₃ zeigen übereinstimmend eine deutlich geringere Au-Cluster-Aggregation im positiven Modus mit dem prominentesten Peak bei *m*/*z* 721; die Gegenwart der Zintl-Ionen in Lösung führt also teilweise zu einem Cluster-Abbau, aber keineswegs zur vollständigen Zerstörung des Clusters.

5.3.3. Kristallisations experimente von $[Au_9(PPh_3)_8](NO_3)_3$ mit K_4E_9

Umsetzungen von K₄Ge₉ bzw. K₄Sn₉ mit [Au₉(PPh₃)₈](NO₃)₃ haben sich in Anlehnung an die Erfahrungen bei Experimenten mit Goldphosphinen (siehe Kapitel 2 und 3) in der folgenden Synthesetechnik besonders bewährt:

- 0.15 mmol Phase mit 2.2.2-crypt gelöst in Ethylendiamin
- filtrieren auf [Au₉(PPh₃)₈](NO₃)₃, gelöst in Ethylendiamin
- 30 Minuten rühren
- Filtration
- Lagerung zur Kristallisation bei Zimmertemperatur
- evtl. Überschichten mit Toluol

Aus Reihen derartiger Umsetzungen mit leichter Variation der Reaktionsbedingungen wurden intensiv rotbraun (Ge) bzw. weinrot (Sn) gefärbte Lösungen erhalten, wobei die Färbung der Zintl-Ionen in Lösung in Gegenwart von 2.2.2-crypt (rotbraun) gegenüber der der gelösten Goldcluster (weinrot) überwiegt. Eine Verringerung der [Au₉(PPh₃)₈] (NO₃)₃ -Konzentration bis auf 0.01 mmol (40.5 mg, 10 Äquivalent-%) führte ebenfalls zu stabilen Lösungen, aus denen allerdings keine Kristalle gewonnen werden konnten. Die Steigerung der [Au₉(PPh₃)₈] (NO₃)₃ -Konzentration führt zu einer gesättigten Lösung in Ethylendiamin, wobei der Anteil des ungelösten Au₉(PPh₃)₈(NO₃)₃ zu einer sichtlich rascheren Zersetzung der Reaktionsmischung führte. Der gleiche Effekt konnte beobachtet werden bei Zugabe der gelösten Zintl-Phase zu festem [Au₉(PPh₃)₈] (NO₃)₃.

In diversen Ansätzen wurden nach ca. 4 Wochen rote, blockförmige Kristalle erhalten, die mittels Einkristall-Röntgenstrukturanalyse als [Au₉(PPh₃)₈](NO₃)₃ charakterisiert werden konnten. Die Strukturdaten stimmen mit denen des aus Ethylendiamin umkristallisierten Eduktes überein (siehe Kapitel 5.2) und bestätigen zudem die Untersuchungen der Reaktionslösungen mittels ESI-Massenspektroskopie.

Besonders begünstigt wurde die Kristallisation von [Au₉(PPh₃)₈](NO₃)₃ aus der Reaktionsmischung, wenn auf den Einsatz von Kationen-Komplexbildnern verzichtet wurde.

Im Fall von K₄Ge₉ führte der Einsatz von 2.2.2-crypt in verschiedenen Ansätzen zur Bildung diverser dunkelroter bis schwarzer Kristalle neben den bereits bekannten Kristallen von Au₉(PPh₃)₈(NO₃)₃. Diese wurden röntgenographisch anhand ihrer Gitterparameter charakterisiert als

- [K(2.2.2-crypt)]₄K₂[Ge₉-Ge₉]^[12, 13] bzw.
- [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, (siehe Kapitel 3.2) bzw.
- [K([2.2.2]crypt)]₈K[Au₃Ge₄₅], **2** (siehe Kapitel 3.3).

Umsetzungen mit Sn-Phase führten neben den bereits erwähnten Kristallen von [Au₉(PPh₃)₈] (NO₃)₃ zu extrem dünnen, hellrot gefärbten nadelförmigen Kristallen von [K(2.2.2-crypt)₃K[Sn₉]^[14], deren geringe Kristallqualität nur eine Charakterisierung anhand der Gitterparameter zuließ; EDX-Analysen wiesen in den Nadeln K und Sn nach (vergleiche auch Kapitel 7).

Ein Teil der frisch angesetzten, intensiv weinrot gefärbten Lösungen wurde am Vakuum trocken gezogen, der verbleibende braunrote Rückstand in 2-3 mL Pyridin aufgenommen und mit Toluol überschichtet. Ziel dieser Vorgehensweise war der Versuch, den noch ligandfreien Goldcluster an der erneuten Phosphinkomplexierung zu hindern und durch die Veränderung der Polarität des Lösungsmittels eine Co-Kristallisation zwischen Zintl- und Gold-Cluster zu erleichtern. Innerhalb von 24 Stunden bildeten sich auch in diesen Ansätzen ausschließlich kleine blockförmige Kristalle von Au₉(PPh₃)₈(NO₃)₃.

Weitere Versuche, freies Triphenylphosphin aus dem Reaktionsgleichgewicht zu entfernen (siehe auch Kapitel 7) führten zur Beschleunigung der Zersetzung der Lösung, ein weiterer Hinweis auf die Notwendigkeit der Gegenwart von PPh₃ zur Einstellung eines optimal stabilisierenden Redoxpotentials in Lösung.

Daraus lassen sich die folgenden Schlüsse ziehen:

- K₄E₉ (E = Ge, Sn) in Lösung neigt auch neben [Au₉(PPh₃)₈](NO₃)₃ zur Bildung der bereits an anderen Stellen als besonders stabil beschriebenen Verbindungen.
- [Au₉]-Cluster erfahren in Gegenwart von gelöstem [Ge₉]⁴⁻ bzw. [Sn₉]⁴⁻ eine reversible Abspaltung der Phosphinliganden, werden dann aber durch Kristallisation aus der Lösung unverändert zurück gewonnen.
- In Lösungen von K₄Ge₉ mit [Au₉(PPh₃)₈](NO₃)₃ liegt unter anderem die monomere Au(I)-Spezies vor, die auch aus analogen Ansätzen der Phase mit AuPPh₃Cl erhalten wird; diese ermöglicht den Aufbau der Clusteranionen [Au₃Ge₁₈]⁵⁻, 1a, und [Au₃Ge₄₅]⁹⁻, 2a.

• Für beide Reaktionspartner verhindert die Existenz stabiler Reaktionsprodukte ihre direkte Reaktion miteinander.

Ansätze mit K₄Ge₉ bzw. K₄Sn₉ in Diemthylformamid, die analog zu den oben beschriebenen Reaktionsbedingungen durchgeführt wurden, konnten auch durch Zugabe größerer Menge (bis 8 Äquivalente) an 2.2.2-crypt nicht länger als 24 Stunden stabilisiert werden. Dies ist ein weiterer Hinweis dafür, dass neben der Polarität des Lösungsmittels auch dessen komplexierende Eigenschaften von maßgebender Bedeutung sind.

Die weit größere Labilität der Phase K₄Pb₉ gegenüber Feuchtigkeit bzw. Sauerstoff erschwert die Umsetzung mit [Au₉(PPh₃)₈] (NO₃)₃ maßgeblich; die intensiv rotbraunen Lösungen zeigen analog zu Versuchen mit K₄Ge₉ bzw. K₄Sn₉ unmittelbar nach Beginn des Experimentes im ³¹P-NMR-Spektrum nur das erwartete freie Triphenylphosphin; auch nach bis zu sechs Tagen ist hier kein Peak des ligandstabilisierten Goldclusters erkennbar. Aus keiner der über wenige Wochen stabilen Lösungen konnten bisher Kristalle isoliert werden; in allen Ansätzen bildete sich nach drei bis fünf Tagen ein feiner schwarzer Rückstand, dessen EDX-Analyse neben Blei und Gold auch geringe Mengen von Kalium ergab.

Die Tatsache, dass auch nach längerer Zeit kein [Au₂(PPh₃)₈](NO₃)₃ in der Lösung nachgewiesen werden konnte und dementsprechend aus den Umsetzungen mit Blei kein [Au₂(PPh₃)₈](NO₃)₃ auskristallisierte, beweist, dass es in diesem Fall zu einer irreversiblen Phosphinabspaltung und Zersetzung des Au-Clusters kommt. Eine mögliche Begründung liegt in dem besonders hohen Reduktionspotential von [Pb₂]⁴. ESI-Massenspektren konnten aufgrund der hohen Labilität der Lösungen nicht erhalten werden.

5.4. Diskussion

Die oben beschriebenen Untersuchungen zeigen, dass die Möglichkeit der Gold-Phosphin-Komplexbildung für die Darstellung von [Au₉(PPh₃)₈](NO₃)₃ essentiell ist. Damit ist die Komplexierung von Au mit PPh₃ unmittelbar verknüpft mit der Reduktion von Au(I) zur Bildung der kationischen Käfigstruktur; die beiden Prozesse bedingen sich gegenseitig und laufen ausschließlich konzertiert ab. Dieser Befund wird auch

durch MO-Rechnungen von *Mingos et al*^[1] gestützt, die für die Komplexierung des Clustergerüstes mit Phosphinliganden eine günstige energetische Absenkung ergibt.

Ist [Au₉(PPh₃)₈]³⁺ einmal gebildet, erlaubt die Gegenwart eines stark komplexierenden Lösungsmittels wie beispielsweise Ethylendiamin die anschließende Abstraktion der Phosphinliganden unter Erhalt von zumindest einem Teil der Käfigstruktur; der beobachtete sequentielle Abbau des Clusters ist in Gegenwart des freien Phosphins reversibel und erlaubt die Rückgewinnung der besonders stabilen Verbindung [Au₉(PPh₃)₈](NO₃)₃, allerdings zu einem wesentlich geringeren Anteil. Der Cluster-Abbau kann als Disproportionierungsreaktion beschrieben werden, zu der es keines weiteren Redoxpartners bedarf; Auslöser der Reaktion ist demnach die Abspaltung der Phosphinliganden in Gegenwart der gelösten Zintl-Phase:

 $[\mathsf{AU}_9(\mathsf{PPh}_3)_8]^{3+} \longrightarrow [\mathsf{AU}_9^{3+}]_{\text{solv}} + 8 \ \mathsf{PPh}_3 \rightarrow \rightarrow 3 \ [\mathsf{AU}^+]_{\text{solv}} + 6 \ \mathsf{AU}^0$

Darüber hinaus ist eine zusätzliche Reduktion von [Au₉(PPh₃)₈](NO₃)₃ zu elementarem Gold durch die Zintl-Ionen in Lösung denkbar, allerdings nicht als vorherrschender Reaktionspfad, da sowohl die kationischen Cluster [Au₉(PPh₃)₈]³⁺ als auch Verbindungen der Zintl-Ionen aus den Reaktionslösungen gewonnen werden konnten.

Die erhaltenen Kristalle von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, [K([2.2.2]crypt)]₈K[Au₃Ge₄₅], **2** und [K(2.2.2-crypt)]₄K₂[Ge₉-Ge₉] sowie [K(2.2.2-crypt)₃K[Sn₉] belegen die Einstellung des Redoxgleichgewichtes zwischen [Au₉(PPh₃)₈](NO₃)₃ und der gelösten Zintl-Phasen und bestätigen das Vorliegen der reaktiven Au(I)_{solv} Spezies, die die Bildung der anionischen Au-Ge-Cluster ermöglicht (siehe Kapitel 3). Die Existenz derartig stabiler Produkte liefert zudem eine Begründung für die bislang nicht erfolgte Cokristallisation der kationischen [Au_nLm]-Cluster mit den Zintl-Anionen.

Auffällig ist die Sonderstellung von [Pb₉]⁴⁻ in der Reaktivität der Zintl-Anionen der Tetrele mit [Au₉(PPh₃)₈](NO₃)₃: die rasche Zersetzung der Reaktionslösungen legt den Rückschluss nahe, dass eine irreversible Redoxreaktion zwischen dem kationischen Au-Cluster und dem Zintl-Anion stattfindet. Wie schon im Fall der oxidativen Bildung von [Pb₁₀]²⁻ aus [Pb₉]⁴⁻ (vergleiche Kapitel 4) wird Au(I) zu elementarem Gold reduziert, ohne weiter an der Bildung der Reaktionsprodukte beteiligt zu sein. Weiterhin ist es denkbar, dass das Redoxpotential des Nitrats ausreicht, um [Pb₉]⁴⁻ zu oxidieren, nicht aber [Ge₉]⁴⁻ bzw. [Sn₉]⁴⁻.

Die Untersuchung der Umsetzungen von Zintl-Ionen in Lösung mit [Au₉(PPh₃)₈](NO₃)₃ haben das Verständnis der Reaktivität und des Clusterauf- und –abbaus wesentlich gefördert und die herausragende Rolle der stabilisierenden Phosphin-Liganden belegt. Die bislang in Lösungen der [Au₉(PPh₃)₈](NO₃)₃ -Cluster nur unzureichend charakterisierte reaktive Au(I)-Spezies konnte sowohl in Lösung anhand der ESI-Massenspektren als auch durch die gewonnen Produkte **1** und **2** eindeutig bewiesen werden. Zudem liefern eine Vielzahl bisher nicht erhaltener Cluster-Addukte im ESI-MS einen erneuten Hinweis auf die prinzipielle Reaktivität der Tetrel-Anionen mit Gold und fordern eine weitere Untersuchung dieses vielversprechenden Systems.

5.5. Literatur zu Kapitel 5

- [1] D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 1976, 1163.
- [2] P. J. Dyson, D. M. P. Mingos, in Gold Progress in Chemistry, Biochemistry and Technology, Vol. 1 (Ed.: H. Schmidbaur), Wiley, Chichester, **1999**, p. 511.
- [3] J. J. Steggerda, J. J. Bour, J. W. A. Van der Velden, J, Royal Neth. Chem. Soc. 1982, 101, 164.
- [4] Holleman, Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 1, 102 ed., Walter deGruyter & Co, Berlin, **2007**.
- [5] F. A. Vollenbroek, J. P. Van den Berg, J. W. A. Van der Velden, J. J. Bour, Inorg. Chem. 1980, 19, 2685.
- [6] F. A. Vollenbroek, J. J. Bour, J. M. Trooster, J. W. A. Van der Velden, J. Chem. Soc. Chem. Comm. **1978**, 907.
- [7] D. Michael, D. M. P. Mingos, Polyhedron 1984, 3, 1289.
- [8] M. Schulz-Dobrick, M. Jansen, Eur. J. Inorg. Chem. 2006, 4498.
- [9] A. Spiekermann, S. D. Hoffmann, F. Kraus, T. F. Fässler, Angew. Chem. 2007, 119, 1663.
- [10] A. Spiekermann, S. D. Hoffmann, T. F. Fässler, Angew. Chem. 2006, 118, 3538.
- [11] F. Cariati, L. Naldini, J. Chem. Soc. Dalton Trans. 1972, 2286.
- [12] R. Hauptmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2003, 629, 2266.
- [13] A. Nienhaus, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2006, 632, 1752.
- [14] R. Burns, J. D. Corbett, Inorg. Chem. **1985**, 24, 1489.

6. Zusammenfassung und Ausblick

Das Ziel dieser Arbeit, die Untersuchung der Reaktivität von Zintlionen der Tetrele (Ge, Sn und Pb) in Lösung mit Goldverbindungen, wurde im ersten Schritt durch die systematische Optimierung der Reaktionsbedingungen unter Berücksichtigung aller beobachteten Produkte sowie spektroskopischer Untersuchungen (³¹P-NMR, ESI-MS, EDX) realisiert. Der Einsatz von Ethylendiamin als Lösungsmittel in Gegenwart von 2.2.2-crypt sowie elementarem Kalium bei Zimmertemperatur erwies sich als für alle untersuchten Tetrele ideal; die Reaktionsführung, namentlich die Reihenfolge der Reaktandenzugabe wurde als kritisch und für jedes Tetrel unterschiedlich identifiziert. Dabei nahm die Toleranz gegenüber Variationen der idealen Reaktionsbedingungen von Ge über Sn zu Pb drastisch ab.

ESI-massenspektroskopische Untersuchungen der Lösungen der Edukte, entsprechender Reaktionslösungen sowie Lösungen anfallender Produkte erlaubten die Korrelation gefundener ionischer Fragmente in der Gasphase mit eindeutig im Festkörper charakterisierten Spezies und damit erstmalig konkrete Hinweise auf mögliche reaktive Teilchen in Lösung.

Au(I) als verbrückendes Atom: neue Au-Ge Clusterverbindungen

Umsetzungen von K₄Ge₉ mit AuPPh₃Cl in Ethylendiamin in Gegenwart von 2.2.2-crypt sowie elementarem Kalium führten zu den ersten beiden anionischen Au-Ge Clusterverbindungen [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, und [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**.

In [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, sind zwei *nido*-[Ge₉]⁴⁻ Cluster über eine Deltaederfläche an drei im Dreieck angeordneten Au-Atome koordiniert. Aurophile Au-Au Wechselwirkungen stabilisieren den Cluster zusätzlich. Rechnungen sowie eine NBO-Analyse bestätigten je vier negative Ladungen für die [Ge₉] Polyeder sowie eine Ladung von +1 für jedes der Goldatome. Dies ergibt eine fünffach negative Ladung für [Au₃Ge₁₈], wie auch durch die Einkristall-Röntgenstrukturanalyse bestätigt. ESImassenspektroskopische Untersuchungen weisen in der Reaktionslösung diverse prominente [Au_nGe₁₈] Fragmente (n = 0-4) nach.

Abbildung 6.1: Die anionischen Au-Ge Cluster von a) [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**; b) [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**. Ge Atome sind grau, Au Atome weiß dargestellt. Alle Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt.

In [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, findet man vier quasi unveränderte [Ge₉] Polyeder und eine zentrale Einheit, bestehend aus weiteren 9 Ge Atomen, welche die Polyeder zu einem Clustergerüst verknüpft. Drei angenähert planar koordinierte Goldatome ergänzen und stabilisieren die Clusterstruktur. Für Germanium zeigt sich in **2** ein breites Spektrum an Bindungstypen: delokalisierte Clustergerüstbindungen, kovalente Bindungen sowie 3-Zentren-2-Elektronenbindungen. Die für Au(I) ungewöhnliche verzerrt planare Koordination durch je vier Ge-Atome benachbarter Polyeder wurde durch Rechnungen bestätigt und erlaubt damit die Formulierung von **2** als $\{([Ge₉]⁻)₄(3b-Ge⁻)₃(2b-Ge²⁻)₃([Ge₃]⁺)\}.$

Damit stellen 1 und 2 die ersten anionischen ligandfreien Au-Ge Cluster dar; die gezielte Verknüpfung von [Ge₉] Polyedern über Au Atome war somit erfolgreich und eröffnet einen neuen möglichen Zugang zu Au/Ge Nanopartikeln von definierter Größe und Struktur.

Au(I) als Oxidationsmittel: neue closo-[Pb_n]²⁻ Cluster

Die partielle Oxidation von *nido*-[Pb₉]⁴⁻ gelang mit AuPPh₃Cl in Ethylendiamin und führte zu den neuen closo-Verbindungen [K(2.2.2-crypt)]₂[Pb₅], **3**, und [K(2.2.2-crypt)]₂[Pb₁₀], **4**.

Abbildung 6.2: Die anionischen Pb-Cluster von a) [K(2.2.2-crypt)]₂[Pb₅], **3**, und b) [K(2.2.2-crypt)]₂[Pb₁₀], **4**. Pb Atome sind grau und mit 50 % Aufenthaltswahrscheinlichkeit dargestellt.

closo-[Pb₅]²⁻, ein den *Wade* schen Regeln entsprechender trigonal-bipyramidaler Cluster, wurde erstmals als K-Salz aus Lösung isoliert und strukturell eindeutig charakterisiert. Eine große Toleranz gegenüber Variationen der Reaktionsbedingungen weist **3** als stabiles (Zwischen-)Produkt der Oxidation von [Pb₇]⁴⁻ aus.

closo-[Pb₁₀]²⁻ stellt den ersten homoatomaren [E₁₀]²⁻ Cluster der Tetrele überhaupt dar. Als zweifach überkapptes quadratisches Antiprisma entspricht auch **4** der aus den Wade´schen Regeln abgeleiteten Polyederstruktur. Die Tatsache, dass **4** nur bei exakt optimierten Reaktionsbedingungen erhalten wurde, legt nahe, dass [Pb₁₀]²⁻ nur eines von vielen möglichen Oxidationsprodukten ist und gegebenenfalls über [Pb₅]²⁻ als Zwischenstufe erhalten wurde.

[Pb₅]²⁻ und [Pb₁₀]²⁻ ergänzen bzw. erweitern die Serie der *closo-*Zintl-Anionen der Tetrele; die Möglichkeit der gezielten partiellen Oxidation der Nonaplumbide mit Au(I)-Verbindungen wurde damit bewiesen.

Au-Clusterverbindungen als Reaktionspartner für Zintl-Ionencluster

Die Umsetzungen von K₄Ge₂ bzw. K₄Sn₂ mit [Au₂(PPh₃)₈] (NO₃)₃, **5**, führten zur Abspaltung der Phosphinliganden, allerdings nicht zur vollständigen Zerstörung des Gold-Clustergerüstes. ³¹P-NMR- und ESI-massenspektroskopische Untersuchungen der Reaktionslösungen bewiesen das gleichzeitige Vorliegen des ungebundenen Phosphins sowie des [Au₂] Clusters. Kristallisationsexperimente führten neben diversen Tetrel-Clusterverbindungen ohne Au auch zur Bildung von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, und [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, sowie zur Rekristallisation des Eduktes **5**. Dies beweist, dass die Reaktion der Zintl-Ionen mit [Au₂(PPh₃)₈] (NO₃)₃, **5**, trotz der Phosphinabspaltung das [Au₂]-Clustergerüst wenigstens teilweise erhält, während andererseits durch Clusterabbau die reaktive Au(I)-Spezies entsteht, welche die Voraussetzung zur Bildung von **1** und **2** ist. Darüber hinaus lieferte der Nachweis zahlreicher Au-Ge sowie Au-Sn Addukte in der Gasphase (ESI-MS) Hinweise auf mögliche Verbindungen dieser Elemente im Festkörper bzw. in Lösung.

Ausblick

Es gilt, das Reaktionspotential der Au(I)-Phosphinkomplexe mit Zintl-Ionen in Lösung weiter zu erforschen; Umsetzungen in flüssigem Ammoniak anstelle der im Rahmen dieser Arbeit verwendeten Lösungsmittel sollten interessante, ergänzende Einblicke sowie gegebenenfalls neue Verbindungen liefern. Die Übertragung der Befunde dieser Arbeit auf die Reaktionen von Silberverbindungen mit Zintl-Ionen ist zudem ein weites, vielversprechendes Betätigungsfeld.

Weiterführende Reaktionen an den erhaltenen Produkten sowie ergänzende spektroskopische Untersuchungen dieser wie auch verwandter Reaktionssysteme sollten systematisch zu einem besseren Verständnis der Reaktionen in Lösung beitragen. Kombiniert man die Befunde mit Erkenntnissen aus der Festkörperchemie der Tetrel-Zintlionen sowie mit entsprechenden Lösungsexperimenten an Festkörperverbindungen, so sollte dieses umfassende Verständnis der Chemie der Zintl-Ionen eine tragfähige Grundlage bilden für deren mittelfristigen technologischen Einsatz.

7. Experimenteller Teil

7.1. Schutzgastechnik

Alle Versuche wurden unter nachgereinigter Argonatmosphäre (Argon 4.6, Molekularsieb, BTS-Katalysator, P₂O₅) durchgeführt. Die Handhabung der Feststoffe erfolgte in einem Handschuhkasten (Fa. Braun) in nachgereinigter Argonatmosphäre. Umsetzungen der Lösungen erfolgten entweder an der Schlenklinie oder direkt im Handschuhkasten. Alle verwendeten Glasgeräte wurden im KOH/Isopropanolbad gereinigt und vor der Verwendung am dynamischen Vakuum (10-³ mbar) ausgeheizt (450 °C). Zugabe von Lösungsmitteln bzw. Lösungen erfolgte mittels Einwegspritzen und ausgeheizten Edelstahlkanülen. Filtrationen an der Schlenklinie erfolgten durch mit Glaswolle und Filterpapier dicht gestopfte Kanülen über Teflonschlauch; im Handschuhkasten durch mit Glaswolle befüllte Pasteurpipetten. Zur Lagerung wurden die Schlenkgefäße mit Serumstopfen und Parafilm verschlossen; im Handschuhkasten wurden die verwendeten Schnappdeckelgläser mit den entsprechenden Plastikdeckeln verschlossen.

7.2. Verwendete Chemikalien

Tabelle 7.1 gibt eine Übersicht über Herkunft, Reinheit und Aufarbeitung der verwendeten Chemikalien:

Chemikalie	Form	Formel	Hersteller	Reinheit	Lagerung
Germanium	Pulver	Ge	ChemPur	99.999%	НК
Zinn	Granaillen	Sn	Merck	99.999%	НК
Blei	Pulver	Pb	Merck	99.99%	НК
Kalium	Blöcke	Κ	Merck	> 98%	НК
Cäsium	Feststoff	Cs	Merck	> 99%	НК
Gold	Feststoff	Au	Haeräus	18 ct	Labor
Tetrachlorogoldsäure	Feststoff	HAUCl _{4*} xH ₂ O	ChemPur	> 98%	Labor
Kaliumtetrachloroaurat	Feststoff	KAUCl ₄	Merck	≥98%	Labor
Triphenylphosphin	Feststoff	P(C6H5)3, PPh3	Fluka	> 98.5%	Labor
Tricyclohexylphosphin	Feststoff	P(C ₆ H ₁₁) ₃ , PCy ₃	VWR	> 99%	НК
Trimethylphosphin	Lösung in Toluol (1M)	P(CH3)3, PMe3	VWR	> 98%	Tiefkühltruhe
Tri-t-Butylphosphin	Feststoff	P(C4H9)3, P [†] BU3	VWR	> 99%	НК
Tetrahydrothiophen	Feststoff	C ₄ H ₄ S	VWR	> 99%	Labor
Natriumborhydrid	Feststoff	NaBH4	ChemPur	> 99%	НК
Silbernitrat	Feststoff	AgNO ₃	VWR	p.a.	Labor
2.2.2-crypt	Feststoff	C18H36N2O6	Merck	> 99%	НК
2.2-crypt	Feststoff	$C_{12}H_{26}N_2O_4$	Merck	≥99%	НК
18-Krone-6	Feststoff	C12O6H24	Merck	≥ 99%, Sublimation	НК
Benzo-18-Krone-6	Feststoff	$C_{16}O_{6}H_{24}$	Merck	≥ 99%	НК
EN	Füssigkeit	$C_2N_2H_8$	Merck	Destillation (CaH2)	frisch verwendet
DMF	Flüssigkeit	C ₃ H ₇ NO	Merck	Destillation (CaH2)	frisch verwendet
Pyridin	Flüssigkeit	C5H5N	Merck	Destillation (CaH2)	НК
Methylenchlorid	Flüssigkeit	CH_2CI_2	Merck	Entgasung	
D ₂ -methylenchlorid	Flüssigkeit	CD ₂ Cl ₂	Fluka	Entgasung	НК
Toluol	Flüssigkeit	C7H8	Merck	Grubbs-Dist.	
Pentan	Flüssigkeit	C5H12	Merck	Grubbs-Dist.	Labor
THF	Flüssigkeit	C ₄ H ₄ O	Merck	Grubbs-Dist.	
Diethylentriamin	Flüssigkeit	$C_4H_{13}N_3$	VWR	Destillation (CaH2)	НК
Perfluorpolyalkylether	Flüssigkeit		ABCR		НК

Tabelle 7.1: Verwendete Chemikalien; HK: Handschuhkasten

Die Lösungsmitteltrocknung in der Grubbs-Distille erfolgt am *MB SPS* der Firma MBraun; (verwendetes Säulenmaterial MB-KOL-A bzw. MB-KOL-M (Al₂O₃) mit Katalysator MB-KOL-C).

7.3. Analytische Methoden

7.3.1 Energiedispersive Röntgenspektroskopie (EDX)

EDX-Analysen wurden am JEOL-SEM 5900LV Spektrometer durchgeführt. Ohne Verwendung eines internen Standards ist die Methode semiquantitativ; messtechnisch bedingte grosse Standardabweichungen, vor allem für das Element Germanium, lassen keine quantitativen Aussagen anhand der Messungen zu.

7.3.2 Elementaranalysen

Elementaranalysen wurden im Mikroanalytischen Labor der TU München, Abteilung Anorganische Chemie wie folgt durchgeführt:

- C, H, N: Verbrennungsanalyse am elementar vario EL (Bruker)
- P: Photometrisch als Phosphormolybdänblau bei 820 nm am Photometer PhotoXF 500 (Bruker)
- Au, Ge, Sn, Pb: saurer Aufschluss (H₂SO₄/HNO₃), Atomabsorptionsspektrometer Varian AA 280 FS (Hewlett Packard).

7.3.3 Massenspektroskopie

Fast-Atom-Bombardment-Massenspektren (FAB-MS) wurden an Festsubstanzen, verrieben in NBA (Trinitrobenzylakohol), am *Finnigan MAT* Massenspektrometer durchgeführt und erlaubten die Detektion von Molmassen bis *m/z* 1100.

Elektrospray-Ionisierung-Massenspektren (ESI-MS) wurden aus Lösungen (Acetonitril, Methylenchlorid, EN, DMF) der Substanzen am *LCQ Classic* der Firma Thermo Electron GmbH durchgeführt. Besonders luft- und feuchtigkeitsempfindliche Proben wurden mit Hilfe einer Spritzenpumpe unter Umgehung des gängigen Einspritzblocks direkt über eine Silicon-Kapillare eingespritzt. Hierzu wurde im Vorfeld die gesamte Apparatur während 20 Minuten mit dem jeweils verwendeten, absolutierten Lösungsmittel gespült. Die Messung erfolgte im positiven sowie im negativen Modus am Ion-Trap Massenspektrometer unter folgenden Messbedingungen:

Parameter	
Probenvolumen	4 bis 15 μL/min
Verdampfungs-Spannung	3 kV
Heizspannung Kapillare	neg: -45 V, pos: + 24V
Temperatur	160 - 200 °C
Trägergas (N2)	710 ml/min
Solvens	CH3CN/HCHO bzw. DMF bzw. EN
maximale Molmasse	2000 (3000) m/z

HPLC-ESI-MS Analysen erfolgten am HP Agelent 1100 LCQ über eine YMC ODS-A(C₁₈) Säule (125x2.1mm, Korngröße 3µm, Porengröße 12 nm) mit UV-Detektor.

Beim Elektrospray-Ionisations-Verfahren wird eine Lösung des Analyten in ein starkes elektrisches Feld versprüht. Die an der Kapillarspitze und einer Gegenelektrode angelegte kV-Spannung ist verantwortlich für die rasche und feine Zerstäubung der aus der Kapillare austretenden Lösung und damit für die effektive Ionisierung der Analyt-Moleküle. Ab eines Schwellenwerts der angelegten Spannung (2-6 kV) bildet sich ein stabiler Spray, der je nach Ladungspolarität zur Bildung von positiven bzw. negativen Ionen führt. Eine schonende Ionisierung wird erhalten, wenn eine stabile Vernebelung ohne Entladungen erzeugt wird. Ein um die Kapillare konzentrisch angeordneter Inertgasstrom (hier N₂) wird zur Unterstützung der Vernebelung gerade bei hohen Flussraten (µl bis ml/min) eingesetzt. Zur vollständigen Desolvatation der Iadungstragenden Flüssigkeitstropfen und zur effektiven Ionenbildung wird in einer ESI-Ionenquelle eine beheizte Transferkapillare eingesetzt. Man erreicht unter diesen ESI-Bedingungen eine außergewöhnlich hohe Ionenbildungseffizienz. Die generierten Ionen werden durch eine Öffnung im Zentrum der Gegenelektrode in den Analysatorteil des Massenspektrometers überführt.^[1, 2]

In ESI-Massenspektren werden zum Teil sehr intensive Adduktionen beobachtet, die mehrere intakte bzw. aggregierte Analytmoleküle enthalten können. Bei Molekülen mit einer molaren Masse < 1000 *u* werden in der Regel einfach positiv bzw. negativ geladene Quasimolekülionen beobachtet. Diese entstehen zum Beispiel durch Kationenanlagerung [M·Kat]⁺. Im Fall von negativer Polarität werden intensive Ionen des Typs [M-X]⁻ gebildet. Fragmentierungen werden wegen der sanften Elektrospray-Ionisation mit eher geringen Intensitäten beobachtet. Ionen hoher Masse neigen zur Generierung von vielfach geladenen bzw. aggregierten Molekülionen.^[3] Da im Mas-

senspektrometer *m*/z detektiert wird, eröffnet sich somit ein sehr großer Massenbereich.^[4]

7.3.4 Kernmagnetresonanz-Spektroskopie (NMR)

³¹P-NMR Spektren wurden am *Bruker AX 400* aufgenommen. Feuchtigkeits-stabile Feststoffe wurden in deuterierten Lösungsmitteln gelöst und gemessen. Labile Substanzen wurden im Handschuhkasten in absolutierten, undeuterierten Lösungsmitteln gelöst und mit einer geschlossenen Kapillare, befüllt mit ca. 5% H₃PO₄, versehen. Bei wiederholten Messungen erfolgte die Kalibrierung direkt während der Messung.

7.3.5 Einkristall-Röntgendiffraktometrie

Geeignete Einkristalle werden im Handschuhkasten unter dem Stereomikroskop ausgewählt, in Perfluoroalkylether von anhaftendem Lösungsmittel befreit, auf der Spitze einer Glaskapillare fixiert und unter Argon Schutzgas zum Diffraktometer transportiert. Die Messungen erfolgten an einem Oxford Diffractions Xcalibur3 Einkristalldiffraktometer (Mo-K_a-Strahlung, Graphitmonochromator) bei 150 bzw. 130 K (Kryostat Cryojet Controller). Die Strukturlösung und -verfeinerung erfolgte mit SHELXS-97^[5] bzw. SHELXL-97^[6] mit direkten Methoden und der Methode kleinster Fehlerquadrate gegen F². Zur abschließenden Darstellung der Strukturen wurde das Programm Diamond^[7] verwendet.

7.3.6 Elektronenspinresonanz-Spektroskopie

ESR-Messungen wurden an einem *JEOL JES-RE2X ESR* Spektrometer bei 153 K bzw. 201 K durchgeführt. Dazu wurden Kristalle der Proben im Handschuhkasten unter dem Mikroskop ausgewählt und in einem Glasproberöhrchen mit Quarzwolle fixiert.

7.4. Synthesen der Edukte

7.4.1 Synthese der binären Phasen A_4E_9 (A = K, Rb, Cs; E = Ge, Sn, Pb)

In der Literatur finden sich verschiedene Syntheserouten für die binären Alkali-Tetrelphasen der allgemeinen Zusammensetzung $A_4E_9^{[8]}$. Unterschiede sind zum einen historisch bedingt, da sich die Ausrüstung der Festkörperchemiker in den vergangenen 80 Jahren wesentlich verändert und weiter entwickelt hat. Zum anderen spielt aber auch der Anspruch, den man an die Phasen bezüglich ihrer Phasenreinheit hat, eine entscheidende Rolle bei der Wahl der Synthesebedingungen. Da im Rahmen dieser Arbeit ausschließlich mit Zintl-Ionen in Lösung gearbeitet wird, auftretende Verunreinigungen aber meist in den gängigen Lösungsmitteln unlöslich sind, konnte eine vergleichsweise einfache und sehr effektive Syntheseroute mit guten Ausbeuten an gewünschter Phase A_4E_9 gewählt werden.

Die binären Phasen der allgemeinen Zusammensetzung A₄E₉ lassen sich in einer Festkörpersynthese direkt aus den Elementen synthetisieren. Dabei verwendet man anstelle von exakt stöchiometrischen Einwagen einen ca. 10 %-igen Überschuss an Alkalimetall, um eventuelle Verluste durch Verdampfen oder partielle Oxidation zu kompensieren.

Die verwendeten Substanzen werden im Handschuhkasten unter Argon-Atmosphäre in eine Edelstahlhülse eingewogen, in einen Edelstahlautoklaven gesetzt und dieser dicht verschlossen. Den Autoklaven gibt man in ein vorher dreimal evakuiertes und mit Argon gespültes Korundrohr, evakuiert erneut mehrmals und flutet das Rohr schließlich mit Argon, bis ein aufgesetzter Überdruckballon prall gefüllt ist. Das Korundrohr wird senkrecht in einen Röhrenofen eingespannt folgendem Temperaturprogramm unterzogen:

Phase	Alkalimetall /mg	Tetrel /mg	Zieltemperatur /°C
K4Ge9	850	3230	650
K ₄ Sn ₉	700	4360	550
K ₄ Pb ₉	800	7620	400

Nach erfolgter Reaktion wird der Autoklav wieder in den Handschuhkasten überführt und das Produkt aus der Stahlhülse herausgekratzt, im Achatmörser fein verrieben, ausgewogen und im Handschuhkasten gelagert. Röntgendiffraktogramme an Pulverproben der Phasen ergaben im Mittel einen Gehalt der gewünschten Phasen K₄E₉ von ca. 10 %; daneben wurden, abhängig von der Charge, weitere binäre Phasen (K₄E₄,) sowie Kaliumoxid und in Einzelfällen nicht umgesetztes Tetrelmetall in geringen Konzentrationen nachgewiesen. Im Fall der Ge-Phase traten zudem in den meisten Fällen Reflexe auf, die bisher keiner bekannten Verbindung zugeordnet werden konnten.

7.4.2 Synthesen der Au(I)-Edukte

HAUCI4 * X H₂O:

Ausgangsprodukt aller im Rahmen dieser Arbeit angeführten Synthesen ist Tetrachlorogoldsäure, $HAuCl_4 * x H_2O$ (2.5 < x > 3.5), welche aus elementarem Gold nach gängigen Literaturvorschriften^[9] in annähernd 100% iger Ausbeute erhalten wird.

AuPPh₃Cl

Triphenylphosphingold(I)-Chlorid wird nach Literaturangaben^[10] aus HAuCl₄ synthetisiert. Die Ausbeute beträgt 96 % der Theorie bezogen auf Gold.

Elementaranalysen: AuPC₁₈H₁₅Cl

Molmasse g/r	nol [Au]	[P]	[C]	[H]	[CI]	
berechnet %	39.8	6.3	43.7	3.0	7.2	
gefunden %	39.7	6.3	44.1	3.0	7.0	
³¹ P-NMR:	$\delta = 33.3 \text{ ppm (CD}_2 \text{Cl}_2)$					
FAB-MS:	m/z 262: PPh₃; m/z 459: AuPPh₃⁺					
ESI-MS:	m/z 262: PPh3: m/z _500: AuPPh3*CH3CN+_m/z 721: [AuPPh3]2+:					

m/z 944: [(AuPPh₃)_{2*}CN]⁺ (CH₃CN/CH₂Cl₂) Die licht-, feuchtigkeits- und luftstabile Verbindung ist vollständig löslich in polaraprotischen Lösungsmitteln wie Dichlormethan, Chloroform, Aceton, Ethylendiamin

und DMF, schwer bis unlöslich in Alkoholen und Wasser.

Durch Umkristallisation aus Dichlormethan mit Toluol konnten farblose Kristalle erhalten werden, deren Einkristall-Röntgenstrukturanalyse mit den folgenden Zellparametern die literaturbekannte Struktur von AuPPh₃Cl^[11] bestätigten:

orthorhombisch

P212121	a = 10.1182(3)Å	V = 1615.8 Å ³
	b = 12.2669(3) Å	
	c = 13.0179(4) Å	

Abbildung 7.1: Strukturbild von AuPPh₃Cl, kristallisiert aus Ethylendiamin. Das Au-Atom ist schwarz, das P-Atom weiß und das Cl-Atom grau dargestellt; alle Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt.

Weitere Kristallisationsexperimente aus verschiedenen Lösungsmitteln, die im Laufe dieser Arbeit zum Einsatz kamen (Ethylendiamin, Dimethylformamid, Pyridin) ergaben stets Kristalle mit vergleichbaren Zellparametern.

AuPMe₃Cl

Trimethylphosphingold(I)-Chlorid wird entsprechend der Literaturangaben synthetisiert.^[12] Die Ausbeute beträgt >74 % der Theorie bezogen auf Gold.

Elementaranalysen: AuPC₃H₉Cl

Molmasse g/mol	[Au]	[P]	[C]	[H]	[CI]
berechnet %	63.8	10.0	11.7	2.9	11.5
gefunden %	62.0	9.3	12.6	2.5	11.4

³¹P-NMR: δ = -9.9 ppm (CD₂Cl₂)

ESI-MS: m/z 314: [AuPMe₃]*CH₃CN⁺; m/z 273: [AuPMe₃]⁺.

Semiquantitative EDX-Analysen bestätigten die stöchiometrische Zusammensetzung.

Die äußerst licht-, feuchtigkeits- und luftempfindliche Verbindung ist vollständig löslich in polar-aprotischen Lösungsmitteln wie Dichlormethan, Chloroform, Aceton, Ethylendiamin und DMF, schwer bis unlöslich in Alkoholen und Wasser.

Sowohl aus der oben beschriebenen Synthese als auch aus weiteren Umkristallisationsexperimenten konnten blockförmige, farblose Kristalle von AuPMe₃Cl erhalten werden; deren Einkristall-Röntgenstrukturanalyse bestätigte die Struktur des Gold-Phosphinkomplexes, wie bereits von Schmidbaur et al beschrieben.

triklin		
PĪ	a = 9.142(1) Å	V = 1065.1 Å ³
	b = 9.271(1) Å	
	c = 13.586(1) Å	

AuP^tBu₃Cl

Tri-*tert*-Butylphosphin (P^tBu₃) ist im Vergleich zu Triphenylphosphin wesentlich anfälliger gegen Oxidation mit Luftsauerstoff oder Feuchtigkeit. Entsprechende Maßnahmen müssen bei der Synthese berücksichtig werden (Schutzgastechnik). Zur Vermeidung eines übermäßigen Verbrauchs des Phosphins erfolgt die Synthese von AuP(^tBu)₃Cl über eine Austausch des Tetrahydrothiophenliganden in Au(tht)Cl gegen Tri-*tert*-Butylphosphin.

Hierzu werden 0.4 g Au(tht)Cl (1.25 mmol) in einem 50 mL Schlenk in 20 mL Dichlormethan gelöst und tropfenweise mit 0.25 g P^tBu₃ (1.24 mmol), gelöst in 10 mL Toluol, versetzt. Die Lösung wird eine Stunde gerührt und anschließend im Handschuhkasten in einem Schnappdeckelglas, welches in einem Gefäß mit gesättigter Pentan-Atmosphäre steht, bei Zimmertemperatur zur Kristallisation gelagert. Nach einer Woche bilden sich weiße Nadeln sowie größere weiße Brocken. Feststoff und verbleibende Lösung werden im Argon-Gegenstrom in einen Schlenk umgefüllt, die überstehende Lösung abfiltriert und der Feststoff im Vakuum getrocknet. Die Ausbeute beträgt 0.51 g AuP(⁺Bu)₃Cl, dies entspricht 94 % der Theorie, bezogen auf Au(tht)Cl.

Das erhaltene Goldphosphin ist luft-, licht- und feuchtigkeitsempfindlich und wird deshalb ausschließlich im Handschuhkasten unter Lichtausschluss gelagert. AuPt-Bu₃Cl löst sich gut in allen in dieser Arbeit verwendeten polar-aprotischen Lösungsmitteln; es ist schwer löslich bis unlöslich in Alkoholen und Wasser sowie in unpolaren Lösungsmitteln (Pentan, Diethylether).

Elementaranalysen: AuPC12H27Cl

Molmasse g/mol	[Au]	[P]	[C]	(H)	[CI]	
berechnet %	45.3	7.1	33.2	6.3	8.2	
gefunden %			34.8	7.0	7.7	

³¹P-NMR: δ = 95 ppm: (AuP([†]Bu)₃Cl); 89 ppm: (Au[P([†]Bu)₃]₂Cl

FAB-MS: m/z 399: [AuP([†]Bu)₃]⁺; m/z 601: [Au(P[†]Bu₃]₂]⁺.

Die EDX-Analyse bestätigt die stöchiometrische Zusammensetzung.

Die oben beschriebene Synthese liefert zum Teil nadelförmige Kristalle sehr guter Qualität; deren Einkristall-Röntgenstrukturanalyse ergab die Gitterparameter, wie sie von Schmidbaur et al ^[13] beschrieben wurden:

monoklin			
P21	a = 7.781Å	a = 90°	V = 800.771 Å ³
	b = 13.053 Å	$\beta = 101.5^{\circ}$	
	c = 8.044 Å	γ = 90°	

Weitere Versuche zur Umkristallisation von AuP('Bu)₃Cl in den für diese Arbeit relevanten Lösungsmitteln waren unproblematisch, lieferten aber innerhalb gewisser Schwankungen (< 1%) stets vergleichbare Kristalldaten. In keinem der Versuche wurde der Einbau eines oder mehrerer Lösungsmittelmoleküle beobachtet.

AuPCy₃Cl

Tricyclohexylphosphin ist mäßig oxidationsempfindlich, wird aber trotzdem unter Schutzgasbedingungen nach Literaturangaben^[14] ausschließlich im Handschuhkasten gelagert und gehandhabt. Die Synthese des Goldkomplexes erfolgt nach den Angaben von *Lorca et al.*^[14]
Die Ausbeute an AuPCy₃CI beträgt 93.5 % der Theorie, bezogen auf Gold.

Das mäßig licht- und oxidationsempfindliche Produkt AuPCy₃Cl löst sich gut in polarprotischen Lösungsmitteln, jedoch schlecht bis gar nicht in unpolaren und protischen Lösungsmitteln.

Molmasse g/mol	[Au]	[P]	[C]	[H]	[CI]	
berechnet %	38.4	6.0	42.1	6.4	6.9	
gefunden %	37.2	6.0	42.2	6.5		

Elementaranalysen: AuPC₁₈H₃₃Cl

³¹P-NMR: $\delta = 64 \text{ ppm:} (AuPCy_3Cl); 54 \text{ ppm:} (Au[PCy_3]_2Cl)$

FAB-MS: m/z 477: [AuPCy₃]*CH₃CN⁺; m/z 787: Au[PCy₃]₂Cl⁺

Semiquantitativen EDX-Analysen an Kristallen bestätigen die stöchiometrische Zusammensetzung.

Bereits aus der oben beschriebenen Synthese wie auch aus weiteren Umkristallisationen in diversen Lösungsmitteln und Lösungsmittelgemischen konnten Kristalle guter Qualität erhalten werden und mittels Einkristallröntgenstrukturanalyse als AuPCy₃CI bestätigt wurden:

triklin			
PĪ	a = 9.09 Å	α=88.8 °	V = 991,3 Å ³
	b = 10.07 Å	$\beta = 80.5^{\circ}$	
	c = 10.83 Å	γ = 76.7 °	

Au(tht)Cl

Tetreahydrothiophengold(I)-Chlorid wurde nach gängigen Literaturvorschriften aus Tetrachlorogoldsäure synthestisiert^[15]. Das kaum licht- und oxidationsempfindliche Produkt Au(tht)Cl löst sich gut in polar-protischen Lösungsmitteln, jedoch schlecht bis gar nicht in unpolaren und protischen Lösungsmitteln.

Elementaranalysen: AuC₄H₈SCl

Molmasse g/mol	[Au]	[S]	[C]	[H]	[CI]	
berechnet %	61.5	10.0	14.9	2.5	11.1	
gefunden %	59.7	10.1	14.8	2.5	10.9	

FAB-MS: m/z 604: [Autht]₂Cl⁺; m/z 373: Au(tht)₂⁺; m/z 285: Au(tht)⁺.

Semiquantitativen EDX-Analysen des mikrokristallinen Pulvers bestätigen die stöchiometrische Zusammensetzung.

AuPPh₃NO₃

Triphenylphosphingold(I)-Nitrat wird nach Literaturvorschrift^[16, 17] aus AuPPh₃Cl mit AgNO₃ synthetisiert. Das mäßig lichtempfindliche Produkt löst sich gut in polarprotischen Lösungsmitteln, jedoch schlecht bis gar nicht in unpolaren und protischen Lösungsmitteln.

Elementaranalysen: AuPC₁₈H₁₅NO₃

Molmasse g/mol	[Au]	[P]	[C]	[H]	[N]	
berechnet %	61.5	10.0	14.9	2.5	11.1	
gefunden %	59.7	10.1	14.8	2.5	10.9	

Triphenylphosphingold(I)-Nitrat wurde aus Ethylendiamin umkristallisiert und die farblosen, blockförmigen Kristalle mittels Einkristall-Röntgenstrukturanalyse charakterisiert.

monoklin		
C121	a = 23.8090(8)Å	V = 2244.7Å ³
	b = 9.1587(3) Å	
	c = 10.3448(3) Å	

AuPPh₃NO₃ kristallisiert unter Koordination von einem Molekül Ethylendiamin, welches das Nitration verdrängt und direkt an Au(I) koordiniert ist. Im Gegensatz dazu ist das Nitrat bei Kristallen, die aus Lösungsmitteln ohne Stickstoff-Donoratome gewonnen wurden, direkt an Au(I) gebunden (vergleiche Abbildung 7.2 a und b).

Abbildung 7.2: Strukturbild von a) AuPPh₃NO₃·en, kristallisiert aus Ethylendiamin; b) AuPPh₃NO₃ kristallisiert aus CH₂Cl₂.^[16]

Au-Atome sind dunkelgrau, P-Atome weiß, N-Atome schwarz und O-Atome hellgrau dargestellt; alle genannten Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt.

7.4.3 Synthese von [Au₉(PPh₃)₈](NO₃)₃

[Au₉(PPh₃)₈](NO₃)₃, **5**, wird ausgehend von AuPPh₃NO₃ durch schrittweise Reduktion mit Natriumborhydrid dargestellt. Die Synthese erfolgte basierend auf den Angaben in der Literatur^[18-21]; gezielte Änderungen der Konzentrationsverhältnisse sowie der Techniken der Aufarbeitung führten zu verbesserter Reinheit bei wesentlich gesteigerten Ausbeuten.

Eine Suspension aus 1.73 g AuPPh₃NO₃ (3.3 mmol) in 30 mL Ethanol wird tropfenweise mit 41.6 mg NaBH₄ (1.1 mmol), gelöst in 30 mL Ethanol, versetzt. Die Reaktionslösung färbt sich bereits beim ersten Tropfen bräunlich-rot; nach erfolgter vollständiger Zugabe nach 2 Stunden ist die Lösung intensiv dunkelrot und klar und wird eine weitere Stunde gerührt. Nach der Filtration (1G4-Glasfilterfritte) führt die rasche Zugabe von 350 mL Toluol zur Aufhellung der Lösung und zur Bildung eines feinen, lindgrünen Niederschlags. Dieser wird über eine Glasfilternutsche abgesaugt und dreimal mit 10 mL Pentan gewaschen. Die Mutterlauge wird am Vakuum trocken gezogen und der grüne Rückstand in 15 mL Methylenchlorid aufgenommen, erneut wie oben beschrieben ausgefällt, abfiltriert und am Vakuum eingedampft. Die Rohausbeute beträgt 1.26 g (entspricht 84% der Theorie). Zur Umkristallisation wird das Rohprodukt in 8 mL Tetrahydrofuran aufgenommen; aus der intensiv-roten Lösung bildet sich nach ca. einer Stunde ein grüner mikrokristalliner Niederschlag, der über eine Kanüle, gepackt mir Glaswolle und Filterpapier, von der überstehenden Lösung abfiltriert, mehrmals mit Pentan gewaschen und am Vakuum getrocknet wird. Die Mutterlauge wird wie oben beschrieben eingedampft und das Rohprodukt erneut aus THF umkristallisiert.

Die Endausbeute beträgt 1.23 g, dies entspricht 82% der Theorie, bezogen auf Gold. Das lindgrüne, nur mäßig lichtempfindliche und luftstabile Produkt ist gut löslich in polar-aprotischen Lösungsmitteln wie Chloroform und Methylenchlorid, schlecht löslich in Alkoholen und Wasser.

Elementaranalysen AU9P8C144H120N3O9:

Molmasse [g/mol]	[Au]	[P]	[C]	[H]	[N]	
berechnet %	43.7	6.1	42.6	3.0	1.0	
gefunden %	43.3	5.9	42.9	3.1	1.3	

³¹P-NMR: $\delta = 54 \text{ ppm: } Au_9(PPh_3)_8(NO_3)_3; 43 \text{ ppm: } (Au[PPh_3]_2^+)_3$

ESI-MS:			
m/z	lon	m/z	lon
500	[Au(PPh3)*CH3CN]+	1508	AU11(PPh3)9] ³⁺
721	[Au(PPh3)2]+	1574	AU12(PPh3)9] ³⁺
944	[(AuPPh3)2*CN]+	1640	AU13(PPh3)9] ³⁺
1114	Au9(PPh3)6]3+	1705	AU14(PPh3)9] ³⁺
1155	Au9(PPh3)6*3CH3CN] ³⁺	1770	AU15(PPh3)9] ³⁺
1377	Au9(PPh3)9] ³⁺	1902	AU17(PPh3)9] ³⁺
1443	Au10(PPh3)9] ³⁺	1968	Au ₁₈ (PPh ₃) ₉] ³⁺

Semiquantitative EDX-Analysen bestätigen das Vorhandensein von Au und P; Natrium, welches auf nicht umgesetztes Natriumborhydrid schließen ließe, konnte weder in der Elementaranalyse noch im EDX nachgewiesen werden.

Verringerung der Phosphinkonzentration in Lösungen von [Au₉(PPh₃)₈](NO₃)₃ und K₄Sn₉:

Um die Rückbildung des ligandstabilisierten Goldclusters in Lösung neben der Zintl-Phase [Sn₉]⁴⁻ nachhaltig zu verhindern, kamen folgende Strategien zum Einsatz: • Abtrennung des Triphenylphosphins durch Ausschütteln mit unpolarem Lösungsmittel, in dem sich PPh₃ bevorzugt löst: Dies wurde in Rollrandgläsern durchgeführt, die in der Mitte verjüngt waren, was nur eine schmale Kontaktfläche zwischen der Reaktionslösung und dem zum Ausschütteln verwendeten Methylenchlorid zuließ. Nach Rührzeiten von 30 Minuten bis zu 2 Stunden konnte in der überstehenden Lösung Triphenylphosphin nachgewiesen werden, ein Beweis, dass die Abtrennung des Phosphins zumindest teilweise erfolgreich war. Alle verbleibenden Reaktionslösungen zersetzten sich in den folgenden 24 Stunden. Eine Erklärung für diesen Befund kann sowohl der Eintrag des unpolaren Lösungsmittels als auch die Entfernung des Phosphins aus dem Reaktionsgemisch sein.

• Einsatz von Diethylentriamin als chelatisierendem Komplexbildner mit der Fähigkeit, Phosphin zu verdrängen: Umsetzungen wurden wie oben beschrieben in reinem Diethylentriamin sowie in 1:1 bzw. 1:2 Mischungen mit Ethylendiamin durchgeführt. Aus den nach wie vor stabilen, rötlich-braunen Lösungen konnten keine Kristalle gewonnen werden.

• Umsetzungen bei erhöhter Temperatur, um die beteiligten Gleichgewichtsreaktionen günstig zu verschieben: schon bei einer Temperaturerhöhung auf 40 °C kam es innerhalb weniger Stunden zur vollständigen Zersetzung der Reaktionsmischung und der Bildung eines schwarzen Rückstandes in klarer, farbloser Lösung.

• Lösen von [Au₉(PPh₃)₈](NO₃)₃ in Acetonitril und Überschichten der EN-Lösung von K₄Sn₉ mit der Acetonitril-Lösung: dieses Vorgehen verringert die Konzentration der beteiligten Reaktanden, da nur an der Grenzfläche eine Reaktion stattfinden kann. Offenbar beeinflusst diese Reaktionsführung die Lage der beteiligten Reaktionsgleichgewichte sehr ungünstig; alle Ansätze dieser Versuchsreihe zersetzten sich annähernd vollständig innerhalb von 48 Stunden. EN-Lösungen der Zintl-Phase, die mit reinem Acetonitril überschichtet wurden, waren deutlich länger stabil, zersetzten sich aber auch langsam innerhalb einer Woche. Dies zeigt, dass auch Acetonitril allein die Reaktion ungünstig beeinflusst.

Auf den Einsatz von Cu(I) als klassischem Phosphinfänger musste unter den gewählten Reaktionsbedingungen verzichtet werden, da Cu(I) in EN nicht stabil ist und spontan in Cu(0) und Cu(II) disproportioniert.^[9]

137

7.5. Experimente zu Kapitel 2

7.5.1 Synthese von [K(2.2.2-crypt)₃][Ge₉]PPh₃

Die Synthese von [K(2.2.2-crypt)₃][Ge₉]PPh₃ erfolgte in Schlenktechnik unter Argon-Schutzgas. 81 mg (0.1 mmol) K4Ge9 wurden mit 162 mg (0.4 mmol) 2.2.2-crypt in 3 mL Ethylendiamin gelöst und 2 Stunden gerührt. Die intensiv rotbraune Lösung wurde anschließend auf 150 mg (0.3 mmol) AuPPh3Cl filtriert, über Nacht gerührt und erneut filtriert. Nach dem Überschichten der unverändert rotbraunen Lösung mit 1 mL Toluol bildeten sich nach 2 Wochen Kristalle von [K(2.2.2-crypt)₃][Ge₉]PPh₃ in ca. 15 % Ausbeute.

EDX-Analysen der Kristalle bestätigte das Vorhandensein der Elemente Ge, P und K, aber nicht Au. Einkristall-Röntgenstrukturanalysen diverser Kristalle ergaben die Zellparameter der literaturbekannten Verbindung [K(2.2.2-crypt)₃][Ge₉]PPh₃ ^[22]:

triklin			
PĪ	a = 14.25(5) Å	α=74.03°	V = 4664.42 Å ³
	b = 14.91(6) Å	β = 83.24°	
	c = 25.42(8) Å	γ = 63.92°	

7.6. Experimente zu Kapitel 3

7.6.1 Synthese von [K(2.2.2-crypt)]₅[Au₃Ge₁₈]

Die Synthese von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, wurde mit Schlenktechnik unter Argon-Schutzgasatmosphäre durchgeführt. 122 mg (0.15 mmol) der Phase K₄Ge₉ wurden in 3 ml Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand auf 75 mg (0.15 mmol) AuPPh₃Cl filtriert, eine Stunde gerührt und erneut durch dicht gepackte Glaswolle auf 236 mg (0.6 mmol) 2.2.2-crypt filtriert. Nach weiteren 1.5 Stunden wurde erneut filtriert und die unverändert intensiv rotbraune Lösung abschließend mit Toluol überschichtet.

Dunkel orangefarbene bis rote plättchenförmige Kristalle von 1 wurden in ca. 20% Ausbeute nach einer Woche erhalten. Die Synthese konnte mehrmals erfolgreich wiederholt werden, wobei sich die oben beschriebenen Reaktionsbedingungen als optimal in Bezug auf Ausbeute und Kristallqualität erwiesen (vergleiche auch Kapitel 2). Halb-quantitative EDX Analysen der Kristalle bestätigten das Vorhandensein der Elemente Au, Ge und K.

ESR und SQUID magnetische Messungen zeigten durch die Abwesenheit eines Signals, dass die Kristalle von 1 diamagnetisch sind.

7.6.2 Synthese von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅]

Die Verbindung [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, wurde durch die Reaktion von K₄Ge₉ mit AuPh₃Cl in Ethylendiamin in Gegenwart von 2.2.2-crypt erhalten. Hierzu wurden 122 mg (0.15 mmol) der Phase der nominellen Zusammensetzung K₄Ge₉ in 4 ml Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand auf 75 mg (0.15 mmol) AuPPh₃Cl filtriert, 14 Stunden gerührt und erneut auf 236 mg (0.6 mmol) 2.2.2-crypt filtriert. In dem rotbraunen Filtrat bilden sich nach zwei Wochen plättchenförmige, dunkelrote Kristalle von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, in ca. 15% Ausbeute neben rautenförmigen dunkelroten bis schwarzen Kristallen von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, in ca. 5% Ausbeute. Eine weitere Verdünnung der Ansätze (bis zu 10 mL Ethylendiamin) lieferte ausschließlich Kristalle von **2**.

Semiquantitative EDX-Analysen bestätigten das Vorhandensein der Elemente Au, Ge und K.

7.7. Experimente zu Kapitel 4

7.7.1 Synthese von [K(2.2.2-crypt)₂][Pb₅]

Synthese A mit AuPPh₃Cl: [K(2.2.2-crypt)₂][Pb₅], **3**, wurde erhalten durch partielle Oxidation einer Lösung von [Pb₉]⁴⁻ in Ethylendiamin in Gegenwart von AuPPh₃Cl. Hierzu wurden 303 mg (0.15 mmol) der Phase der nominellen Zusammensetzung K₄Pb₉ mit 162 mg (4 mmol) 2.2.2-crypt in 4 ml Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand auf 75 mg (0.15 mmol) AuPPh₃Cl filtriert, eine Stunde gerührt und erneut durch dicht gepackte Glaswolle filtriert. Nach zwei Tagen bildeten sich in der rotbraunen Lösung nadelförmige, dunkelrote Kristalle in ca. 15 % Ausbeute.

Synthese B mit PPh₃: 303 mg (0.15 mmol) der Phase der nominellen Zusammensetzung K₄Pb₉ wurden mit 162 mg (4 mmol) 2.2.2-crypt in 4 ml Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv gefärbte Lösung wurde auf 31 mg (0.15 mmol) PPh₃ filtriert, wobei eine leichte Blasenbildung beobachtet wurde, eine halbe Stunde gerührt und erneut durch dicht gepackte Glaswolle filtriert. Nach drei Tagen bildeten sich vergleichbare dunkelrote Kristallnadeln von **3** in ca. 30 % Ausbeute.

Semiquantitative EDX-Analysen wiesen in den Kristallen K und Pb nach aber kein Au. ²⁰⁷Pb-NMR-Spektren der intensiv braun gefärbten und extrem luft- und feuchtigkeitsempfindlichen DMF-Lösungen, welche durch Digerieren der Kristalle erhalten wurden, zeigten im gesamten Frequenzbereich kein Signal, was möglicherweise auf paramagnetisches [Pb₉]³⁻ in Lösung zurückzuführen ist, wie von Corbett et al.^[23] vorgeschlagen.

7.7.2 Synthese von [K(2.2.2-crypt)₂][Pb₁₀]

[K(2.2.2-crypt)₂][Pb₁₀], **4**, wurde durch Oxidation einer Lösung von [Pb₉]⁴⁻ in Ethylendiamin in Gegenwart von AuPPh₃Cl erhalten. Hierzu wurden 303 mg (0.15 mmol) der Phase der nominellen Zusammensetzung K₄Pb₉ mit 162 mg (0.4 mmol) 2.2.2-crypt in 4 ml Ethylendiamin gelöst und zwei Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand auf 75 mg (0.15 mmol) AuPPh₃Cl filtriert, eine Stunde gerührt und erneut durch dicht gepackte Glaswolle filtriert. Nach zwei Tagen bildeten sich in der rotbraunen Lösung plättchenförmige, dunkelbraune bis schwarze Kristalle in ca. 5 % Ausbeute.

Semiquantitative EDX-Analysen wiesen in den Kristallen K und Pb nach, aber kein Au. Auch in diesem Fall (vergleiche Kapitel 4) zeigten die ²⁰⁷Pb-NMR-Spektren der intensiv braunen und extrem luft- und feuchtigkeitsempfindlichen DMF-Lösungen, welche durch Digerieren der Kristalle erhalten wurden, kein Signal.

Analoge Umsetzungen ohne AuPPh₃Cl führten nicht zu **4**; Umsetzungen mit reinem PPh₃ anstelle des Gold-Phosphinkomplexes führten ausschließlich zu [Pb₅]²⁻ (siehe 7.7.1). Die Kristalle von **4** sind in einem voluminösen Bleischwamm eingebettet; im Filtratrückstand konnten mittels EDX sowohl Blei als auch Gold nachgewiesen werden.

7.8. Experimente zu Kapitel 5

7.8.1 Synthese von [K(2.2.2-crypt)]₅[Au₃Ge₁₈] aus [Au₉(PPh₃)₈](NO₃)₃ und K₄Ge₉

Die Synthese von [K(2.2.2-crypt)]₅[Au₃Ge₁₈], **1**, mit [Au₉(PPh₃)₈](NO₃)₃ erfolgte ausschließlich im Handschuhkasten unter Argon-Atmosphäre. 120 mg (0.15 mmol) K₄Ge₉ wurden mit 45 mg (0.13 mmol) 2.2.2-crypt in ein Schnappdeckelglas eingewogen, mit 2.5 mL Ethylendiamin versetzt und 2 Stunden gerührt. Die intensiv rotbraune Lösung wurde vom unlöslichen Rückstand durch eine mit Glaswolle gestopfte Pasteurpipette auf 200 mg [Au₉(PPh₃)₈](NO₃)₃ gelöst in 1.5 mL Ethylendiamin, filtriert, erneut eine Stunde lang gerührt und nochmals filtriert. Die weinrote Lösung wurde ohne weitere Bearbeitung im Handschuhkasten zur Kristallisation gelagert. Nach drei Wochen bildeten sich feine weinrote, plättchenförmige Kristalle von **1** in wenig schwarzem, feinem Rückstand in ca. 10 % Ausbeute.

Mittels Einkristall-Röntgendiffraktometrie konnten diverse Kristalle eindeutig anhand der Gitterparameter als **1** identifiziert werden. Die Kristallqualität ist deutlich schlechter als die der Synthese mit AuPPh₃Cl (vergleiche Kapitel 3 und Kapitel 7.6.1).

EDX-Analysen bestätigten den Befund.

7.8.2 Synthese von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅] aus [Au₉(PPh₃)₈](NO₃)₃ und K₄Ge₉

Die Synthese von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], **2**, wurde im Handschuhkasten unter Argon-Schutzgas durchgeführt. Hierzu wurden 120 mg (0.15 mmol) K₄Ge₇ mit 60 mg (0.17 mmol) 2.2.2-crypt in einem Schnappdeckelglas in 3.5 mL Ethylendiamin gelöst und zwei Stunden lang gerührt. Die tief weinrot gefärbte Lösung wurde durch eine mit Glaswolle gestopfte Pasteurpipette vom unlöslichen Rückstand abfiltriert und anschließend tropfenweise mit einer Lösung aus 150 mg (0.04 mmol) [Au₇(PPh₃)₈] (NO₃)₃, in 1.5 mL Ethylendiamin, versetzt. Bereits nach wenigen Minuten beobachtete man eine Abscheidung von grauem Feststoff am oberen Flüssigkeitsrand. Nach 45 Minuten wurde die weinrote Lösung erneut filtriert und zur Kristallisation im Handschuhkasten gelagert. Nach einer Woche wurde im Schnappdeckelglas mit 2 mL Toluol überschichtet und weiter gelagert. Nach 4 bis 6 Wochen bildeten sich in der nun weniger intensiv gefärbten Lösung dunkelrote bis schwarze nadelförmige Kristalle von **2** in einem feinen grau-schwarzen Bodensatz. Die Einkristall-Röntgenstrukturanalyse diverser Kristalle ergab in allen Fällen die Gitterparameter von **2**, wie in Kapitel 3 beschrieben, allerdings waren auch hier die Kristalle nur von minderer Qualität. EDX-Analysen bestätigten die stöchiometrische Zusammensetzung.

7.8.3 Synthese vom $[K(2.2.2-crypt)]_4K_2[Ge_9-Ge_9]$ aus $[Au_9(PPh_3)_8](NO_3)_3$ und K_4Ge_9

Das Dimer [K(2.2.2-crypt)]₄K₂[Ge₉-Ge₉], **6**, wurde aus der Umsetzung von K₄Ge₉ mit [Au₉(PPh₃)₈](NO₃)₃, **5**, in Gegenwart von 2.2.2-crypt erhalten. Hierzu wurden im Handschuhkasten 120 mg (0.15 mmol) K₄Ge₉ mit 80 mg (0.30 mmol) 2.2.2-crypt in 2 mL Ethylendiamin gelöst, zwei Stunden gerührt und die intensiv rotbraune Lösung vom unlöslichen Rückstand abfiltriert. Zum Filtrat wurde anschließend tropfenweise eine Lösung von 200 mg [Au₉(PPh₃)₈](NO₃)₃, **5**, (0.05 mmol) gelöst in 1.5 mL Ethylendiamin, zugegeben und eine weitere Stunde gerührt. Die unverändert rotbraune Lösung wurde von wenig feinem, dunkelgrauen Rückstand abfiltriert, mit 1 mL Toluol überschichtet und zur Kristallisation im Handschuhkasten gelagert.

Innerhalb von vier Wochen bildeten sich kleine, blockförmige Kristalle, die mittels Einkristall-Röntgenstrukturanalyse anhand ihrer Gitterparameter als das literaturbekannte Dimer [K(2.2.2-crypt)]₄K₂[Ge₉-Ge₉], **6**, charakterisiert wurden. Semiquantitative EDX-Analysen bestätigten den Befund.

7.8.4 Synthese von [K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻} aus [Au₉(PPh₃)₈](NO₃)₃ und K₄Ge₉

[K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, **7**, wurde sowohl an der Vakuumlinie in Schlenkgefäßen als auch im Handschuhkasten in Schnappdeckelgläsern synthetisiert. Die folgende Beschreibung der Durchführung beschränkt sich auf die Synthese im Handschuhkasten, Konzentrationen und Reihenfolge der Eduktzugabe erfolgten im Schlenk analog.

160 mg (0.2 mmol) K₄Ge₉ wurden mit 100 mg (0.28 mmol) 2.2.2-crypt und 200 mg (0.05 mmol) [Au₉(PPh₃)₈](NO₃)₃, **5**, in ein Schnappdeckelglas eingewogen, mit 3 mL Ethylendiamin versetzt und 1.5 Stunden lang gerührt. Die intensiv rotbraune Lösung wurde anschließend von einer größeren Menge an schwarzem Rückstand durch dicht gepackte Glaswolle filtriert, mit 2 mL Toluol überschichtet und im Handschuhkasten zur Kristallisation gelagert. Nach zwei Wochen bildeten sich in der unverän-

dert intensiv gefärbten, klaren Lösung rote blockförmige Kristalle von **7** in ca. 40 % Ausbeute.

Einkristall-Röntgenstrukturanalysen diverser Kristalle mehrerer Ansätze ergaben übereinstimmend die Gitterparameter der bislang strukturell nicht eindeutig charakterisierten Verbindung [K(2.2.2-crypt)]₂{Ge₉²⁻/Ge₁₀²⁻}, **7**, wie von *Belin et al.* beschrieben.

EDX-Analysen wiesen in den Kristallen K, Ge sowie C, aber kein Au nach.

7.8.5 Synthese von $[K(2.2.2-crypt)_3]K[Sn_9]$ aus $[Au_9(PPh_3)_8](NO_3)_3$ und K_4Sn_9

[K(2.2.2-crypt)₃]K[Sn₉], **8**, wurde im Handschuhkasten unter Argon-Schutzgas synthetisiert. 123 mg (0.1 mmol) K₄Sn₉ wurden mit 100 mg (0.28 mmol) 2.2.2-crypt und 200 mg (0.05 mmol) [Au₉(PPh₃)₈](NO₃)₃, in ein Schnappdeckelglas eingewogen, mit 3 mL Ethylendiamin versetzt und 2 Stunden lang gerührt. Die intensiv weinrot gefärbte Lösung wurde von feinem schwarzen Rückstand durch dicht gepackte Glaswolle abfiltriert, mit 1.5 mL Toluol überschichtet und im Handschuhkasten gelagert. Nach zwei Monaten hatten sich viele sehr feine weinrote, nadelförmige Kristalle von **8** in viel dunklem Rückstand mit hell metallischen Partikeln gebildet; Teile des Schnappdeckelglases waren mit einer dünnen Goldschicht überzogen.

Die Einkristall-Röntgenstrukturanalysen diverser nadelförmiger Kristalle ergaben die Gitterparameter von **8** in guter Übereinstimmung mit den Angaben aus der Literatur^[24]. Die hell metallisch glänzenden, plättchenförmigen Partikel wurden als Gold-Metall identifiziert. Beide Befunde wurden durch EDX-Analysen bestätigt. Im amorphen Rückstand wurde neben K auch Sn und Au nachgewiesen.

7.9. Literatur zu Kapitel 7

- [1] A. P. Bruins, J Chromatogr. A 1998, 794, 345.
- [2] P. Kerbarle, L. Tang, Anal. Chem. 1993, 65.
- [3] J. M. Banks Jr, C. M. Whitehouse, Methods in Enzymology 1996, 270, 486.
- [4] S. J. Gaskell, J. Mass Spectrom. 1996, 32, 677.
- [5] G. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, Universität Göttingen, 1997.
- [6] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, 1997.
- [7] K. Brandenburg, 3.1a ed., Bonn, 2005.
- [8] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
- [9] Holleman, Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 1, 102 ed., Walter deGruyter & Co, Berlin, 2007.
- [10] N. C. Baenziger, W. E. Bennett, D. M. Soboroff, Acta Cryst. 1976, B32, 962.
- [11] J. R. Staples, T. Grant, J. P. Fackler, A. Elduque, Acta Cryst. 1994, C50.
- [12] K. Angermaier, E. Zeller, H. Schmidbaur, J. Organomet. Chem. 1994, 472, 371.
- [13] H. Schmidbaur, B. Brachthauser, O. Steigelmann, H. Beruda, Chem. Ber. 1992, 125, 2705.
- [14] J. A. Muir, M. M. Muir, E. Lorca, Acta Cryst. 1980, B36, 931.
- [15] S. Ahrland, K. Dreisch, B. Noren, A. Oskarsson, Mat. Chem. Phys. 193, 35, 281.
- [16] J. C. Wang, M. D. Nazuri, I. Kahn, J. P. Fackler, Acta Cryst. 1989, C45, 1008.
- [17] J. R. Staples, C. King, M. N. I. Khan, R. E. P. Winpenny, J. P. Fackler, Acta Cryst. 1993, C49, 472.
- [18] C. E. Briant, K. P. Hall, D. M. P. Mingos, J. Chem. Soc. Chem. Comm. 1984, 290.
- [19] K. P. Hall, B. R. C. Theobald, D. I. Gilmour, D. M. P. Mingos, A. L. Welch, J. Chem. Soc. Chem. Comm. 1982, 582.
- [20] F. A. Vollenbroek, J. J. Bour, J. M. Trooster, J. W. A. Van der Velden, J. Chem. Soc. Chem. Comm. 1978, 907.
- [21] F. Cariati, L. Naldini, J. Chem. Soc. Dalton Trans. 1972, 2286.
- [22] V. Angilella, C. Belin, H. Mercier, New J. Chem. 1991, 15, 931.
- [23] P. A. Edwards, J. D. Corbett, Inorg. Chem. 1977, 16, 903.
- [24] T. F. Fässler, R. Hoffmann, Angew. Chem. 1999, 111, 526.

Anhang

Anhang I: Strukturdaten von [K(2.2.2-crypt)]5[Au3Ge18]

Atompositionen von Ge, Au und K:

Atom	x/a	y/b	z/c
Gel	0.74344(13)	0.85461(11)	0.23716(8)
Ge2	0.87457(13)	0.79504(11)	0.18210(8)
Ge3	0.73049(14)	0.70712(12)	0.15454(9)
Ge4	0.59608(14)	0.78489(13)	0.19312(9)
Ge5	0.81668(12)	0.90173(11)	0.16217(7)
Ge6	0.80141(13)	0.75638(11)	0.08173(8)
Ge7	0.62972(13)	0.74426(12)	0.08760(8)
Ge8	0.63852(12)	0.89729(12)	0.17160(8)
Ge9	0.70555(14)	0.86041(12)	0.07801(8)
Ge10	0.78290(12)	1.09860(11)	0.37357(7)
Gell	0.84623(13)	1.21204(11)	0.45218(8)
Ge12	0.91417(13)	1.26404(12)	0.37867(8)
Ge13	0.85220(12)	1.14557(11)	0.30393(8)
Ge14	0.68098(12)	1.14235(11)	0.31013(8)
Ge15	0.67455(12)	1.19042(12)	0.42829(8)
Ge16	0.77689(13)	1.26490(11)	0.31182(8)
Ge17	0.77053(13)	1.31140(11)	0.42567(8)
Ge18	0.62788(13)	1.26199(12)	0.36417(9)
Au1	0.75884(5)	0.97207(4)	0.31274(3)
Au2	0.65220(5)	1.02150(4)	0.23890(3)
Au3	0.84257(5)	1.02754(4)	0.22730(3)
K1	0.2301(2)	0.8171(2)	0.98863(16)
K2	0.2825(3)	0.3474(2)	0.58220(17)
К3	0.2527(2)	0.0019(2)	0.36585(14)
K4	0.2764(2)	0.2075(2)	0.18945(15)
K5	0.1480(3)	0.5676(3)	0.28728(18)

Anisotrope Auslenkungsparameter von Ge, Au und K [Å²]:

Atom	U 11	U ₂₂	U ₃₃	U12	U13	U ₂₃
Gel	0.0568(14)	0.0457(15)	0.0269(12)	-0.0056(12)	-0.0011(10)	0.0131(11)
Ge2	0.0439(13)	0.0507(15)	0.0479(14)	0.0025(11)	-0.006(1)	0.0204(12)
Ge3	0.0601(15)	0.0566(16)	0.0483(15)	-0.0093(12)	0.0003(11)	0.0296(13)
Ge4	0.0508(14)	0.0745(18)	0.0549(16)	-0.0129(13)	0.0144(12)	0.0203(14)
Ge5	0.0366(12)	0.0433(14)	0.0312(12)	0.0020(11)	0.0028(9)	0.0120(11)
Ge6	0.0422(13)	0.0506(15)	0.0350(13)	0.0025(11)	0.0038(10)	0.0137(11)
Ge7	0.0449(14)	0.0708(17)	0.0418(14)	-0.0100(12)	-0.0032(11)	0.0210(13)
Ge8	0.0301(12)	0.0656(16)	0.0374(13)	-0.0007(11)	-0.0023(10)	0.0152(12)
Ge9	0.0584(14)	0.0563(15)	0.0355(13)	0.0106(12)	0.0042(11)	0.0208(12)
Ge10	0.0431(13)	0.0436(14)	0.0300(12)	-0.0011(11)	0.0027(10)	0.0141(11)
Gell	0.0418(13)	0.0549(15)	0.0397(13)	0.0006(11)	-0.0034(10)	0.0153(12)
Ge12	0.0430(13)	0.0552(15)	0.0460(14)	-0.0066(12)	0.0072(11)	0.0137(12)
Ge13	0.0323(12)	0.0445(14)	0.0436(13)	0.0017(11)	0.010(1)	0.0166(11)
Ge14	0.0330(12)	0.0503(15)	0.0445(13)	0.0006(11)	0.0031(10)	0.0190(12)
Ge15	0.0333(12)	0.0711(17)	0.0432(14)	0.0043(11)	0.0105(10)	0.0234(13)

Ge16	0.0518(13)	0.0449(14)	0.0281(12)	0.0030(11)	0.0052(10)	0.0109(11)
Ge17	0.0549(14)	0.0510(15)	0.0378(13)	0.0102(12)	0.0087(11)	0.0076(12)
Ge18	0.0464(14)	0.0672(17)	0.0524(15)	0.0176(12)	0.0060(11)	0.0229(13)
Au1	0.0413(5)	0.0495(6)	0.0354(5)	-0.0020(4)	0.0006(4)	0.0189(4)
Au2	0.0312(5)	0.0590(6)	0.0381(5)	0.0038(4)	0.0020(4)	0.0179(4)
Au3	0.0330(5)	0.0480(6)	0.0393(5)	0.0016(4)	0.0064(4)	0.0191(4)
K1	0.031(2)	0.073(3)	0.041 (3)	-0.010(2)	-0.002(2)	0.012(3)
K2	0.067(3)	0.050(3)	0.049(3)	0.022(2)	0.013(2)	0.032(3)
К3	0.030(2)	0.048(3)	0.021 (2)	0.001(2)	0.0012(18)	0.008(2)
K4	0.033(2)	0.052(3)	0.034(3)	0.005(2)	0.0074(19)	0.019(2)
K5	0.060(3)	0.082(4)	0.060(3)	0.000(3)	-0.006(2)	0.040(3)

Ausgewählte Atomabstände der Ge- und Au-Atome:

Atom 1-2	Abstand 1-2 [Å]
Gel-Ge4	2.550(3)
Ge1–Ge8	2.669(3)
Gel-Ge5	2.696(3)
Ge1—Ge3	2.931 (3)
Ge2—Ge5	2.552(3)
Ge2—Ge6	2.615(3)
Ge2—Ge3	2.620(3)
Ge3—Ge7	2.596(3)
Ge3—Ge4	2.623(3)
Ge3—Ge6	2.658(3)
Ge4—Ge8	2.552(3)
Ge4—Ge7	2.637(3)
Ge5—Ge9	2.557(3)
Ge5–Ge8	2.708(3)
Ge5—Ge6	2.879(3)
Ge6—Ge7	2.604(3)
Ge6—Ge9	2.618(3)

Atom 1-2	Abstand 1-2
	[Å]
Ge7—Ge9	2.621 (3)
Ge8—Ge9	2.536(3)
Ge10-Ge11	2.539(3)
Ge10-Ge13	2.550(3)
Ge10-Ge15	2.577(3)
Ge10-Ge14	2.615(3)
Gell-Gel5	2.617(3)
Gell-Gel7	2.621 (3)
Gell-Gel2	2.689(3)
Ge12-Ge13	2.550(3)
Ge12-Ge17	2.580(3)
Ge12-Ge16	2.658(3)
Ge13-Ge14	2.593(3)
Gel3—Gel6	2.634(3)
Ge14—Ge18	2.479(3)
Gel4—Gel6	2.754(3)
Ge14-Ge15	2.870(3)

Atom 1-2	Abstand 1-2
Ge15-Ge18	2.655(3)
Ge15-Ge17	2.766(3)
Ge16-Ge18	2.679(3)
Gel6—Gel7	2.765(3)
Ge17—Ge18	2.554(3)
Au1—Au2	2.9241(10)
Au1—Au3	3.0944(10)
Au2—Au3	2.900(1)
Gel—Aul	2.438(2)
Ge5—Au3	2.460(2)
Ge8—Au2	2.447(2)
Ge10—Au1	2.437(2)
Ge13—Au3	2.458(2)
Ge14—Au2	2.447(2)

Winkel zwischen den Atomen Au und Ge:

Atom 1	Atom 2	Atom 3	Winkel (1-2-3)
Au1	Au2	Au3	57.527(25)
		Ge13	66.461 (40)
		Ge14	41.670(38)
		Ge5	64.404(34)
		Ge8	40.495(34)
	Au3	Ge13	40.734(37)
		Gel4	64.35(4)
		Ge5	40.231(31)
		Ge8	66.237(37)
	Gel	Au2	85.326(56)
		Au3	85.238(55)
		Ge13	125.950(69)
		Ge14	126.742(69)

	Ge5	45.007(55)
	Ge8	44.914(57)
Ge10	Au2	86.950(52)
	Au3	83.177(52)
	Gel	168.277(77)
	Ge13	42.443(64)
	Ge14	45.348(64)
	Ge5	123.391(56)
	Ge8	127.223(58)
Ge13	Ge5	80.956(47)
	Ge8	97.127(50)
Ge14	Ge13	40.912(51)
	Ge5	94.697(48)
	Ge8	82.138(49)
Ge8	Ge5	41.96(4)

Au2	Au1	Gel	41.718(39)
		Ge10	41.046(32)
		Ge13	67.431(37)
		Ge5	69.443(37)
	Au3	Aul	64.189(27)
		Gel	69.331(39)
		Ge10	66.940(35)
		Ge13	41.317(34)
		Ge5	42.123(34)
	Gel	Ge10	82.466(48)
		Ge13	97.483(51)
		Ge5	43.297(47)
	Ge10	Ge13	40.167(41)
	Ge14	Au1	85.731 (55)
		Au3	85.220(51)
		Gel	127.194(69)
		Ge10	44.753(55)
		Ge13	43.979(58)
		Ge5	127.152(62)
	Ge5	Ge10	97.273(43)
		Ge13	83.182(44)
	Ge8	Au1	88.603(55)
		Au3	89.894(51)
		Gel	46.967(67)
		Ge10	129.417(60)
		Ge13	130.839(65)
		Ge14	173.727(80)
		Ge5	47.781(59)
Au3	Au1	Gel	40.032(38)
		Ge10	40.778(32)
		Ge14	65.535(37)
		Ge8	65.423(37)
	Au2	Au1	58.284(25)
		Gel	64.751 (38)
		Ge10	66.979(35)
	Au2	Gel4	42.131(34)
		Ge8	40.200(33)
	Gel	Ge8	41.307(47)
	Ge10	Gel	80.798(47)
		Ge8	96.414(45)
	Ge13	Au1	84.039(54)
		Au2	87.529(51)
		Gel	124.050(68)
		Ge10	43.261 (54)
		Ge14	45.474(58)
		Ge5	169.351(76)
		Ge8	127.383(63)
	Ge14	Gel	95.520(51)
		Ge10	41.735(41)
		Ge8	82.272(45)
	Ge5	Au1	85.425(52)

		Au2	85.621(51)
		Gel	45.393(63)
		Ge10	126.185(56)
		Ge14	127.559(61)
		Ge8	45.432(57)
Gel	Au1	Au2	52.956(48)
		Au2	52.956(48)
		Au3	54.730(49)
		Au3	54.730(49)
		Ge2	123.165(95)
		Ge2	123.165(95)
		Ge3	174.206(103)
		Ge3	174.206(103)
		Ge4	125.077(101)
		Ge4	125.077(101)
		Ge5	95.239(77)
		Ge5	95.239(77)
		Ge6	141.941(79)
		Ge6	141.941(79)
		Ge7	144.581(80)
		Ge7	144.581(80)
		Ge8	94.932(81)
		Ge8	94.932(81)
	Au2	Au3	45.918(30)
		Ge6	104.004(60)
		Ge7	91.717(59)
	Au3	Ge6	87.284(56)
		Ge7	104.608(61)
	Ge2	Au2	125.947(87)
		Au3	85.592(78)
		Ge3	56.435(76)
		Ge5	57.924(75)
		Ge6	40.835(59)
		Ge7	77.16(7)
		Ge8	108.292(95)
		Ge8	108.292(95)
	Ge3	Au2	132.570(87)
		Au3	129.550(87)
		Ge6	42.323(58)
		Ge7	40.855(58)
	Ge4	Au2	89.721(86)
		Au2	89.721(86)
		Au3	128.071(92)
		Au3	128.071(92)
		Ge2	111.137(98)
		Ge2	111.137(98)
		Ge3	56.675(81)
		Ge3	56.675(81)
		Ge5	107.286(99)
	Ge4	Ge5	107.286(99)
		Ge6	78.142(74)

		Ge6	78.142(74)
		Ge7	40.917(64)
		Ge7	40.917(64)
		Ge8	58.485(80)
		Ge8	58.485(80)
	Ge5	Au2	68.456(66)
		Au3	40.509(56)
		Ge3	89.136(89)
		Ge6	46.815(55)
		Ge7	70.172(63)
	Ge6	Ge7	38.413(44)
	Ge8	Au2	42.068(59)
		Au3	69.621(71)
		Ge3	90.521 (92)
		Ge5	60.624(74)
		Ge6	70.778(66)
		Ge7	49.670(59)
Ge10	Au1	Au2	52.004(38)
		Au3	56.045(40)
		Gell	160.557(101)
		Ge12	138.435(88)
		Ge13	97.400(93)
		Ge14	93.138(89)
		Ge15	131.597(96)
		Ge17	158.606(87)
	Au2	Ge12	108.584(58)
		Ge17	106.633(55)
	Au3	Au2	46.081 (27)
		Ge12	83.715(51)
		Ge17	110.073(55)
	Gell	Au2	146.905(79)
		Au3	128.756(75)
		Ge12	46.505(70)
		Ge13	89.829(85)
		Ge14	106.084(87)
		Ge15	61.507(78)
		Ge17	40.489(66)
	Ge12	Ge17	39.097(54)
L	Ge13	Au2	70.226(61)
L		Au3	41.355(52)
		Ge12	43.361(68)
		Ge14	60.262(77)
		Ge15	108.046(88)
	<u> </u>	Ge17	70.666(75)
	Ge14	Au2	41.211(50)
		Au3	67.723(58)
		Ge12	79.021(75)
		Ge17	65.598(72)
<u> </u>	Ge15	Au2	98.920(67)
	Ge15	Au3	134.504(76)
	Ge15	Ge12	82.899(78)

	1		
	Ge15	Ge14	67.096(75)
	Ge15	Ge17	43.890(67)
Gell	Ge10	Ge12	90.264(93)
		Ge13	45.204(59)
		Ge15	59.959(75)
		Ge17	100.533(103)
	Ge12	Ge13	45.095(60)
	Ge15	Ge12	106.276(93)
		Ge13	82.229(71)
		Ge17	63.754(81)
Gell	Ge17	Ge12	58.122(80)
	Ge17	Ge13	77.027(73)
Ge12	Gell	Ge10	43.231(66)
	Ge13	Ge10	43.366(68)
		Gell	86.562(87)
		Ge16	60.718(79)
		Ge17	100.486(95)
	Ge16	Ge10	80.118(80)
		Gell	105.483(94)
	Ge17	Ge10	75.934(80)
		Gell	59.613(79)
		Ge16	63.706(76)
Ge13	Au1	Ge17	109.996(65)
	Au2	Au1	46.108(30)
		Ge17	106.858(59)
	Au3	Au1	55.228(49)
		Au2	51.154(41)
		Ge10	95.385(79)
		Gell	137.342(81)
		Ge12	161.899(107)
		Ge14	92.01(8)
		Ge16	129.762(102)
		Ge17	157.930(84)
	Ge10	Au1	40.157(59)
		Au2	69.606(62)
		Gell	44.967(59)
L		Ge14	61.119(74)
		Ge16	107.278(105)
L		Ge17	71.738(69)
	Gell	Au1	83.826(58)
		Au2	110.113(60)
		Ge17	40.367(48)
	Ge12	Au1	131.498(93)
		Au2	146.900(88)
		Ge10	93.273(96)
		Gell	48.343(63)
		Ge14	106.090(93)
		Ge16	61.672(83)
		Ge17	40.042(64)
	Ge14	Au1	67.967(69)
		Au2	40.941(51)

		Gell	81.765(72)
		Ge16	63.58(8)
		Ge17	66.174(67)
	Ge16	Au1	131.289(94)
		Au2	95.584(77)
		Gell	84.744(76)
		Ge17	44.393(64)
Gel4	Au1	Ge17	116.372(69)
	Au2	Aul	52,598(47)
		Au3	52.649(42)
		Ge10	94.036(78)
		Ge13	95.080(82)
		Ge15	130.429(89)
		Ge16	132.514(101)
		Ge17	167.597(88)
		Ge18	149.551(111)
	Au3	Aul	50.115(33)
		Ge17	116.944(63)
	Ge10	Au1	41.514(57)
		Au3	70.542(61)
		Gel5	55.820(67)
		Gel6	102.036(99)
Ge14	Ge10	Ge17	74.895(72)
	Ge13	Au1	71.121(71)
		Au3	42.517(51)
		Ge10	58.620(73)
		Ge15	98.712(82)
		Ge16	58.921(77)
		Ge17	74.504(71)
	Ge15	Au1	87.845(71)
		Au3	126.108(73)
		Ge17	47.198(58)
	Ge16	Au1	129.795(91)
		Au3	91.320(72)
		Ge15	94.610(86)
		Ge17	47.413(64)
	Ge18	Au1	146.754(99)
		Au3	152.499(92)
		Ge10	110.277(103)
		Ge13	112.960(96)
		Ge15	58.972(78)
		Ge16	61.322(85)
		Ge17	42.716(71)
Ge15	Ge10	Gell	58.533(74)
		Ge14	57.084(68)
		Ge17	95.873(100)
		Ge18	106.076(101)
	Gell	Ge14	97.213(82)
		Ge17	58.204(79)
		Ge18	109.452(93)
	Ge17	Ge14	83.232(81)

	Ge18	Ge14	53.152(74)
		Ge17	56.177(80)
Ge16	Ge12	Ge14	98.819(90)
		Ge17	56.784(70)
		Ge18	108.062(91)
	Ge13	Ge12	57.611(77)
		Ge14	57.50(8)
		Ge17	93.826(89)
		Ge18	105.516(93)
	Ge14	Ge17	85.430(84)
	Ge18	Ge14	54.277(75)
		Ge17	55.933(72)
Ge17	Gell	Ge10	38.979(67)
		Ge13	62.607(68)
		Ge14	78.483(74)
		Ge15	58.042(82)
		Ge16	104.367(92)
	Ge12	Ge10	64.970(74)
		Gell	62.265(81)
		Ge13	39.472(60)
		Ge14	78.710(74)
		Ge15	105.087(93)
		Ge16	59.511(72)
	Ge13	Ge10	37.596(47)
	Ge14	Ge10	39.506(50)
		Ge13	39.322(48)
	Ge15	Ge10	40.237(68)
		Ge13	74.068(70)
		Ge14	49.570(65)
	Ge16	Ge10	74.211(72)
		Ge13	41.781(57)
		Ge14	47.157(60)
		Ge15	96.728(88)
	Ge18	Ge10	76.311(80)
Ge17	Ge18	Gell	112.506(99)
		Ge12	114.536(97)
		Ge13	77.995(75)
		Ge14	41.178(64)
		Ge15	59.704(79)
		Ge16	60.325(76)
Ge18	Ge14	Ge15	67.877(89)
		Ge16	64.402(82)
		Ge17	96.106(100)
	Ge15	Ge16	101.625(97)
	Ge17	Ge15	64.119(83)
		Ge16	63.742(79)
Ge2	Gel	Ge3	68.776(83)
		Ge6	99.205(89)
	Ge5	Gel	63.542(81)
		Ge3	99.666(105)
		Ge6	67.701(81)

	Ge6	Ge3	61.034(79)
Ge3	Gel	Ge5	43.009(63)
		Ge8	42.093(63)
	Ge2	Ge1	54.789(75)
		Ge4	107.269(99)
		Ge5	39.532(66)
		Ge6	59.399(80)
		Ge8	77.004(79)
	Ge4	Gel	54.315(79)
		Ge5	77.055(85)
		Ge6	106.689(99)
		Ge8	39.036(69)
	Ge5	Ge8	39.913(53)
	Ge6	Gel	89.747(88)
		Ge5	46.741(69)
		Ge8	70.260(77)
	Ge7	Ge1	91.556(90)
		Ge2	108.015(98)
		Ge4	60.699(83)
		Ge5	71.225(81)
		Ge6	59.402(80)
		Ge8	49.467(72)
Ge4	Ge1	Ge3	69.010(89)
		Ge7	99.797(96)
		Ge8	63.106(86)
	Ge3	Ge7	59.158(81)
	Ge8	Ge3	100.620(113)
		Ge7	71.338(91)
Ge5	Au1	Ge3	87.550(52)
		Ge7	103.990(51)
	Au2	Au1	46.153(27)
		Ge3	104.853(62)
		Ge7	91.614(53)
	AU3	Au1	54.344(38)
		Au2	52.256(40)
		Gel	94.098(87)
		Ge2	122.860(104)
		Ge3	141.819(87)
		Ge6	174.780(96)
		Ge7	143.833(79)
		Ge8	94.244(80)
		Ge9	124.174(88)
	Gel		39./55(49)
		AU2	68.246(62)
		Ge3	4/.856(68)
0.5	0.1	Ge6	90.114(79)
Ge5	Gel	Ge/	/0.114(6/)
	0-0	Geo	37.201(/1)
	Gez	AUI	05.468(66)
		AU2	126.342(85)
		Gel	58.534(78)

	1		
		Ge3	40.802(72)
		Ge6	57.197(76)
<u> </u>		Ge7	77.295(73)
		Ge8	107.614(93)
L		Ge9	111.903(97)
L	Ge3	Ge7	38.268(51)
	Ge6	Au1	129.790(69)
L		Au2	132.554(76)
	ļ	Ge3	42.261(65)
		Ge7	40.948(58)
	Ge8	Au1	68.435(55)
		Au2	42.000(49)
		Ge3	70.640(75)
		Ge6	90.559(81)
		Ge7	49.614(59)
	Ge9	AU1	125.886(72)
		Au2	87.751(68)
		Gel	105.975(87)
		Ge3	77.809(81)
		Ge6	57.221(75)
		Ge7	40.556(61)
		Ge8	57.518(71)
Ge6	Gel	Ge8	39.396(45)
	Ge2	Ge1	39.960(58)
		Ge3	59.567(79)
		Ge5	55,102(71)
		Ge8	77.251(71)
		Ge9	107.957(97)
	Ge3	Gel	47.929(63)
		Ge5	90.998(93)
		Ge8	70.690(72)
	Ge5	Gel	43.071(53)
		Ge8	42,989(56)
	Ge7	Gel	71 208(67)
		Ge2	107.922(92)
		Ge3	59 120(78)
		Ge5	92.629(87)
		Ge8	49 642(61)
		Ge9	60.262(82)
	Ge9	Gel	76 454(70)
		Ger	106 564(105)
		C=25	55 187/741
		668	38.856(64)
C=7	<u>Cal</u>	C-05	39 71////
	603	Gel	47 589(64)
<u> </u>	000	God	47.007(04)
		Ge4	70 507/751
		Ges	/0.30/(/3)
		Geo	01.4/0(0U)
<u> </u>		Geð	87.83/(74)
<u> </u>		Ge9	108.298(111)
	Ge4	Gel	39.285(61)

		Ge5	76.586(74)
		Ge8	53.014(77)
	Ge6	Gel	70.380(67)
		Ge4	107.861(94)
		Ge5	46.423(62)
		Ge8	89.387(83)
		Ge9	60.129(84)
Ge7	Ge8	Gel	42.251 (54)
		Ge5	42.967(56)
	Ge9	Gel	76.043(71)
		Ge4	104.499(101)
		Ge5	39.352(67)
		Ge8	52.779(78)
Ge8	Au1	Au3	48.34(3)
		Ge3	87.523(56)
		Ge6	102.991(55)
	Au2	Au1	50.902(41)
		Au3	49.907(42)
		Gel	90.964(89)
		Ge3	138.326(92)
		Ge4	125.461(117)
		Ge5	90.219(76)
		Ge6	136.664(82)
		Ge7	177.625(103)
		Ge9	122.961(94)
	Au3	Ge3	102.872(66)
		Ge6	86.758(55)
	Gel	Au1	40.153(51)
		Au3	69.072(65)
		Ge3	47.386(69)
		Ge5	60.174(73)
		Ge6	69.826(68)

		Ge7	88.079(81)
	Ge4	Au1	86.685(74)
		Au3	127.446(93)
		Gel	58.408(84)
		Ge3	40.344(79)
		Ge5	106.863(97)
		Ge6	77.653(77)
		Ge7	55.648(84)
	Ge5	Au1	69.605(57)
		Au3	40.324(49)
		Ge3	69.448(75)
		Ge6	46.451(57)
		Ge7	87.419(79)
	Ge6	Ge3	39.05(5)
	Ge7	Au1	128.219(73)
		Au3	127.727(78)
		Ge3	40.696(63)
		Ge6	40.971(56)
	Ge9	AU1	127.773(80)
		Au3	86.561(73)
		Gel	107.353(95)
		Ge3	77.411(84)
		Ge4	109.610(105)
		Ge5	58.236(72)
		Ge6	40.355(61)
		Ge7	55.384(76)
Ge9	Ge5	Ge6	67.592(82)
		Ge7	100.093(98)
	Ge6	Ge7	59.609(87)
	Ge8	Ge5	64.247(77)
		Ge6	100.789(97)
		Ge7	71.837(88)

Anhang II: Ausgewählte Strukturdaten von [K(2.2.2-crypt)]₈K[Au₃Ge₄₅], 2

-

Image Image Image K1 0.23159(10) 0.7228(3) 0.9311(2) K2 -0.03049(9) 0.7365(3) 0.2070(2) K3 0.49382(6) 0.96478(19) 0.02578(16) K4 0.24764(8) -0.0045(2) 0.0793(2) K5 0.12116(7) 0.9631(2) 0.01678(17) K6 0.12012(6) 0.52977(19) 0.00382(15) K7 0.24881(7) 0.4918(2) 0.10827(16) K8 0.35652(8) 0.7683(3) 0.3725(2) K9 0.20775(9) 0.7677(3) 0.4954(2) K10 0.14349(8) 0.5979(2) 0.23429(18) K11 0.07723(8) 0.7588(2) 0.75888(18) K12 0.03486(7) 0.2344(2) 0.05075(17) K13 0.00935(7) 0.04872(18) 0.50586(16) K14 0.14262(9) 0.0055(2) 0.6361(2) K15 0.35537(10) 0.4191(3) 0.7411(3) K16 0.41479(7) 0.6507(2) 0.88322(19)<
K10.23139(10)0.7228(3)0.9311(2)K2-0.03049(9)0.7365(3)0.2070(2)K30.49382(6)0.96478(19)0.02578(16)K40.24764(8)-0.0045(2)0.0793(2)K50.12116(7)0.9631(2)0.01678(17)K60.12012(6)0.52977(19)0.00382(15)K70.24881(7)0.4918(2)0.10827(16)K80.35652(8)0.7683(3)0.3725(2)K90.20775(9)0.7677(3)0.4954(2)K100.14349(8)0.5979(2)0.23429(18)K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K2-0.03049(9)0.7385(3)0.2070(2)K30.49382(6)0.96478(19)0.02578(16)K40.24764(8)-0.0045(2)0.0793(2)K50.12116(7)0.9631(2)0.01678(17K60.12012(6)0.52977(19)0.00382(15)K70.24881(7)0.4918(2)0.10827(16)K80.35652(8)0.7683(3)0.3725(2)K90.20775(9)0.7677(3)0.4954(2)K100.14349(8)0.5979(2)0.23429(18)K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K3 0.49382(6) 0.964/8(19) 0.02578(16) K4 0.24764(8) -0.0045(2) 0.0793(2) K5 0.12116(7) 0.9631(2) 0.01678(17) K6 0.12012(6) 0.52977(19) 0.00382(15) K7 0.24881(7) 0.4918(2) 0.10827(16) K8 0.35652(8) 0.7683(3) 0.3725(2) K9 0.20775(9) 0.7677(3) 0.4954(2) K10 0.14349(8) 0.5979(2) 0.23429(18) K11 0.07723(8) 0.7588(2) 0.75888(18) K12 0.03486(7) 0.2344(2) 0.05075(17) K13 0.00935(7) 0.04872(18) 0.50586(16) K14 0.14262(9) 0.0055(2) 0.6361(2) K15 0.35537(10) 0.4191(3) 0.7411(3) K16 0.41479(7) 0.6507(2) 0.88322(19) K17 0.39228(8) 0.9198(2) 0.89401(19) K18 0.35956(6) 0.01399(18) 0.13261(15) Ge11 -0.02580(5)
K4 0.24/64(8) -0.0045(2) 0.0793(2) K5 0.12116(7) 0.9631(2) 0.01678(17) K6 0.12012(6) 0.52977(19) 0.00382(15) K7 0.24881(7) 0.4918(2) 0.10827(16) K8 0.35652(8) 0.7683(3) 0.3725(2) K9 0.20775(9) 0.7677(3) 0.4954(2) K10 0.14349(8) 0.5979(2) 0.23429(18) K11 0.07723(8) 0.7588(2) 0.7588(18) K12 0.03486(7) 0.2344(2) 0.05075(17) K13 0.00935(7) 0.04872(18) 0.50586(16) K14 0.14262(9) 0.0055(2) 0.6361(2) K15 0.35537(10) 0.4191(3) 0.7411(3) K16 0.41479(7) 0.6507(2) 0.88322(19) K17 0.39228(8) 0.9198(2) 0.89401(19) K18 0.35956(6) 0.01399(18) 0.13261(15) Ge11 -0.02580(5) 0.89424(12) 0.3349(1)
K5 0.12116(7) 0.9631(2) 0.01678(17) K6 0.12012(6) 0.52977(19) 0.00382(15) K7 0.24881(7) 0.4918(2) 0.10827(16) K8 0.35652(8) 0.7683(3) 0.3725(2) K9 0.20775(9) 0.7677(3) 0.4954(2) K10 0.14349(8) 0.5979(2) 0.23429(18) K11 0.07723(8) 0.7588(2) 0.75888(18) K12 0.03486(7) 0.2344(2) 0.05075(17) K13 0.00935(7) 0.04872(18) 0.50586(16) K14 0.14262(9) 0.0055(2) 0.6361(2) K15 0.35537(10) 0.4191(3) 0.7411(3) K16 0.41479(7) 0.6507(2) 0.88322(19) K17 0.39228(8) 0.9198(2) 0.89401(19) K18 0.35956(6) 0.01399(18) 0.13261(15) Ge11 -0.02580(5) 0.89424(12) 0.3349(1)
K6 0.12012(6) 0.52977(19) 0.00382(15) K7 0.24881(7) 0.4918(2) 0.10827(16) K8 0.35652(8) 0.7683(3) 0.3725(2) K9 0.20775(9) 0.7677(3) 0.4954(2) K10 0.14349(8) 0.5979(2) 0.23429(18) K11 0.07723(8) 0.7588(2) 0.75888(18) K12 0.03486(7) 0.2344(2) 0.05075(17) K13 0.00935(7) 0.04872(18) 0.50586(16) K14 0.14262(9) 0.0055(2) 0.6361(2) K15 0.35537(10) 0.4191(3) 0.7411(3) K16 0.41479(7) 0.6507(2) 0.88322(19) K17 0.39228(8) 0.9198(2) 0.89401(19) K18 0.35956(6) 0.01399(18) 0.13261(15) Ge11 -0.02580(5) 0.89424(12) 0.3349(1)
K70.24881(7)0.4918(2)0.10827(16)K80.35652(8)0.7683(3)0.3725(2)K90.20775(9)0.7677(3)0.4954(2)K100.14349(8)0.5979(2)0.23429(18)K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K80.35652(8)0.7683(3)0.3725(2)K90.20775(9)0.7677(3)0.4954(2)K100.14349(8)0.5979(2)0.23429(18)K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K90.20775(9)0.7677(3)0.4954(2)K100.14349(8)0.5979(2)0.23429(18)K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K100.14349(8)0.5979(2)0.23429(18)K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K110.07723(8)0.7588(2)0.75888(18)K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K120.03486(7)0.2344(2)0.05075(17)K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K130.00935(7)0.04872(18)0.50586(16)K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K140.14262(9)0.0055(2)0.6361(2)K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K150.35537(10)0.4191(3)0.7411(3)K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K160.41479(7)0.6507(2)0.88322(19)K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K170.39228(8)0.9198(2)0.89401(19)K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
K180.35956(6)0.01399(18)0.13261(15)Ge11-0.02580(5)0.89424(12)0.3349(1)
Ge11 -0.02580(5) 0.89424(12) 0.3349(1)
Ge12 -0.02375(4) 0.88178(12) 0.25044(10)
Ge13 -0.04856(4) 0.82152(12) 0.29988(10)
Ge14 -0.05869(5) 0.97353(13) 0.31675(11)
Ge15 -0.05375(5) 0.95483(13) 0.23575(11)
Ge16 -0.07835(5) 0.89515(14) 0.28405(12)
Ge17 -0.06110(5) 0.88280(13) 0.35753(11)
Ge18 -0.02360(5) 0.97402(13) 0.28444(11)
Ge19 -0.05723(5) 0.85321(14) 0.22488(11)
Ge21 0.05070(4) 0.74788(13) 0.19879(11)
Ge22 0.01956(4) 0.68982(12) 0.17647(10)
Ge23 0.01835(5) 0.80007(12) 0.17595(10)
Ge24 0.06106(5) 0.74730(14) 0.10639(12)
Ge25 0.03006(5) 0.69011(13) 0.09046(10)
Ge26 0.02903(6) 0.79787(13) 0.08902(11)
Ge27 0.05114(5) 0.83069(13) 0.15221(11)
Ge28 0.05332(5) 0.66337(13) 0.15436(11)
Ge29 0.00070(5) 0.74331(13) 0.12104(11)
Ge31 -0.01800(5) 0.58971(12) 0.33612(10)
Ge32 -0.04507(4) 0.65177(12) 0.30346(10)
Ge33 -0.01852(4) 0.60073(12) 0.25266(10)
Ge34 -0.04507(5) 0.49680(13) 0.32461(11)
Ge35 -0.07001(5) 0.56229(14) 0.29285(12)
Ge36 -0.04371(5) 0.51387(13) 0.24340(11)
Ge37 -0.01176(5) 0.51035(13) 0.28732(12)
Ge38 -0.05184(5) 0.58823(14) 0.36370(11)
Ge39 -0.05380(5) 0.61274(15) 0.23030(11)

Atompositionen der Atome K, Ge und Au:

Ge41	0.07077(5)	0.81829(14)	0.41834(12)
Ge42	0.09133(7)	0.85660(16)	0.47545(14)
Ge43	0.06932(5)	0.80143(19)	0.53114(13)
Ge44	0.05037(5)	0.76441(14)	0.46868(11)
Ge45	0.07456(5)	0.71454(13)	0.41965(12)
Ge46	0.10511(6)	0.7842(2)	0.42313(14)
Ge47	0.10348(5)	0.76803(14)	0.51171(11)
Ge48	0.07327(5)	0.69947(16)	0.50923(15)
Ge49	0.10473(6)	0.69270(18)	0.45873(16)
Ge51	-0.00304(4)	0.81187(11)	0.32635(9)
Ge52	0.02934(4)	0.74832(11)	0.26575(9)
Ge53	0.00057(4)	0.68006(11)	0.32821(9)
Ge54	0.02307(4)	0.80673(11)	0.38119(10)
Ge55	0.05026(4)	0.75529(11)	0.32808(10)
Ge56	0.02626(4)	0.69602(11)	0.38258(10)
Ge57	0.05346(4)	0.84835(12)	0.35388(11)
Ge58	0.05901(4)	0.66776(13)	0.35911(11)
Ge59	0.01654(4)	0.75033(13)	0.44537(10)
Au1	0.00551(2)	0.81994(4)	0.25008(4)
Au2	0.00817(1)	0.67067(4)	0.25142(4)
Au3	-0.02773(2)	0.74032(4)	0.31790(4)
GellB	0.22449(5)	0.86127(15)	0.79164(12)
Ge12B	0.20748(5)	0.78462(15)	0.83600(11)
Ge13B	0.22891(5)	0.86180(14)	0.87538(12)
Ge14B	0.18743(7)	0.92581(18)	0.80795(14)
Ge15B	0.17405(6)	0.84457(18)	0.84875(14)
Ge16B	0.19468(6)	0.92120(16)	0.88718(14)
Ge17B	0.22265(7)	0.94710(16)	0.83476(14)
Ge18B	0.19030(6)	0.83031(18)	0.77434(13)
Ge19B	0.19865(5)	0.82173(16)	0.90899(13)
Ge21B	0.24892(5)	0.56377(14)	0.81031(12)
Ge22B	0.25009(5)	0.58494(13)	0.89346(11)
Ge23B	0.22077(5)	0.62161(14)	0.84372(11)
Ge24B	0.22439(6)	0.46689(16)	0.83429(14)
Ge25B	0.22713(7)	0.49442(15)	0.91342(14)
Ge26B	0.19841(6)	0.53374(17)	0.86389(13)
Ge27B	0.21374(5)	0.55093(17)	0.78885(13)
Ge28B	0.25811(6)	0.49217(15)	0.86396(14)
Ge29B	0.21521(5)	0.59292(15)	0.91975(12)
Ge31B	0.30940(5)	0.77004(15)	0.93323(11)
Ge32B	0.27480(5)	0.81030(13)	0.95333(10)
Ge33B	0.28247(5)	0.70236(14)	0.96282(10)
Ge34B	0.32011(5)	0.79038(17)	1.02377(13)
Ge35B	0.28550(5)	0.82922(16)	1.03749(12)
Ge36B	0.29347(5)	0.72409(18)	1.04767(12)
Ge37B	0.31753(5)	0.69736(17)	0.98651(12)
Ge38B	0.30576(5)	0.85952(16)	0.96984(12)

Ge39B	0.26107(5)	0.75544(14)	1.01481(11)
Ge41B	0.30771(5)	0.74350(13)	0.66366(11)
Ge42B	0.31992(5)	0.75306(19)	0.58956(12)
Ge43B	0.33254(7)	0.83820(16)	0.63299(13)
Ge44B	0.32768(8)	0.80765(17)	0.70844(15)
Ge45B	0.33494(5)	0.71031(15)	0.71395(11)
Ge46B	0.33362(5)	0.67351(14)	0.63506(12)
Ge47B	0.35640(5)	0.75771(14)	0.60745(11)
Ge48B	0.36172(6)	0.80949(17)	0.67956(16)
Ge49B	0.36617(5)	0.70386(15)	0.67322(12)
Ge51B	0.25304(4)	0.79274(12)	0.80395(10)
Ge52B	0.26341(4)	0.66115(12)	0.81343(9)

Ge53B	0.28863(4)	0.74959(12)	0.86711(10)
Ge54B	0.27924(5)	0.78886(13)	0.74966(11)
Ge55B	0.28755(4)	0.68086(12)	0.75649(10)
Ge56B	0.30912(4)	0.75460(13)	0.80263(11)
Ge57B	0.27463(5)	0.72317(14)	0.69151(11)
Ge58B	0.32135(5)	0.66603(15)	0.77833(11)
Ge59B	0.30775(5)	0.84369(14)	0.76831(12)
Au4	0.23294(2)	0.71336(5)	0.82195(4)
Au5	0.27238(2)	0.66566(5)	0.89014(4)
Au6	0.26157(2)	0.81340(5)	0.87873(4)

Anisotrope Auslenkungsparameter der Atome K, Ge und Au [Ų]:

Atom	U11	U22	U33	U ₁₂	U13	U23
К1	0.044(4)	0.054(5)	0.047(5)	-0.002(4)	-0.012(4)	0.001(4)
K2	0.035(4)	0.041(4)	0.050(5)	0.001(3)	0.004(3)	0.015(4)
К3	0.045(4)	0.052(5)	0.033(4)	-0.004(4)	0.002(3)	0.009(4)
K4	0.051(5)	0.079(6)	0.074(6)	-0.001(4)	0.015(4)	-0.028(5)
K5	0.055(4)	0.036(4)	0.064(6)	-0.022(4)	-0.004(4)	-0.012(4)
K6	0.036(4)	0.043(4)	0.045(5)	-0.014(3)	0.004(3)	0.006(4)
K7	0.047(4)	0.057(5)	0.036(5)	0.001(4)	-0.001(4)	0.013(4)
K8	0.044(4)	0.098(7)	0.070(6)	0.003(4)	0.001(4)	0.022(5)
K9	0.062(5)	0.084(6)	0.074(6)	-0.003(5)	-0.005(5)	0.014(5)
K10	0.079(5)	0.044(5)	0.064(6)	-0.007(4)	-0.018(5)	0.010(4)
K11	0.080(5)	0.040(4)	0.049(5)	0.010(4)	-0.003(4)	0.010(4)
K12	0.051(4)	0.054(5)	0.049(5)	-0.006(4)	0.014(4)	-0.003(4)
K13	0.038(4)	0.031(4)	0.065(5)	0.006(3)	-0.003(4)	-0.013(4)
K14	0.070(5)	0.074(6)	0.072(6)	-0.004(5)	-0.001 (5)	0.005(5)
K15	0.077(6)	0.089(7)	0.154(11)	0.008(5)	-0.006(7)	0.062(7)
K16	0.049(4)	0.072(6)	0.066(6)	0.009(4)	-0.007(4)	-0.020(5)
K17	0.057(5)	0.052(5)	0.074(6)	-0.001(4)	0.003(4)	-0.002(4)
K18	0.049(4)	0.027(4)	0.046(5)	-0.002(3)	0.008(4)	-0.001 (3)
GellA	0.059(2)	0.0276(19)	0.032(2)	0.0004(16)	-0.0029(18)	0.0005(15)
Ge12A	0.0478(19)	0.0373(19)	0.027(2)	0.0079(16)	0.0042(17)	0.0034(17)
Ge13A	0.0420(19)	0.0321(19)	0.037(2)	0.0024(16)	-0.0023(16)	-0.0069(16)
Ge14A	0.060(2)	0.036(2)	0.049(2)	0.0079(17)	0.0011(19)	-0.0062(18)
Ge15A	0.063(2)	0.038(2)	0.041(2)	0.0129(18)	-0.0050(19)	0.0000(17)
Ge16A	0.047(2)	0.045(2)	0.058(3)	0.0077(17)	-0.0079(19)	-0.0072(19)
Ge17A	0.051(2)	0.048(2)	0.035(2)	0.0077(18)	0.0030(18)	-0.0020(18)
Ge18A	0.063(2)	0.033(2)	0.047(2)	-0.0020(18)	-0.0073(19)	0.0015(18)
Ge19A	0.065(2)	0.048(2)	0.039(2)	0.0143(19)	-0.0117(19)	-0.0124(19)
Ge21A	0.037(2)	0.041(2)	0.044(2)	-0.0086(16)	0.0097(17)	-0.0039(18)
Ge22A	0.0466(19)	0.0284(19)	0.027(2)	-0.0061(15)	0.0111(16)	-0.0044(15)
Ge23A	0.052(2)	0.0287(19)	0.027(2)	-0.0053(16)	0.0071(17)	0.0031(16)
Ge24A	0.063(2)	0.044(2)	0.060(3)	-0.0059(19)	0.033(2)	0.000(2)
Ge25A	0.073(2)	0.036(2)	0.030(2)	-0.0035(18)	0.0108(18)	-0.0054(17)
Ge26A	0.087(3)	0.035(2)	0.031(2)	0.0014(19)	0.017(2)	0.0032(17)
Ge27A	0.068(2)	0.039(2)	0.046(2)	-0.0120(19)	0.022(2)	-0.0017(18)

Ge28A	0.051(2)	0.042(2)	0.045(2)	0.0050(17)	0.0133(18)	0.0023(18)
Ge29A	0.056(2)	0.040(2)	0.032(2)	-0.0005(17)	-0.0013(17)	-0.0042(17)
Ge31A	0.058(2)	0.032(2)	0.030(2)	-0.0079(17)	-0.0026(17)	0.0026(16)
Ge32A	0.0389(18)	0.035(2)	0.036(2)	-0.0149(15)	0.0007(16)	-0.0009(16)
Ge33A	0.0486(19)	0.0313(18)	0.028(2)	-0.0109(15)	0.0033(17)	0.0013(16)
Ge34A	0.076(2)	0.041(2)	0.038(2)	-0.0178(19)	0.007(2)	-0.0035(18)
Ge35A	0.046(2)	0.057(2)	0.054(3)	-0.0209(18)	0.0040(19)	-0.002(2)
Ge36A	0.072(2)	0.045(2)	0.035(2)	-0.0187(19)	0.0043(19)	-0.0099(18)
Ge37A	0.074(2)	0.031(2)	0.049(2)	-0.0085(18)	0.001(2)	0.0020(18)
Ge38A	0.060(2)	0.053(2)	0.034(2)	-0.0209(19)	0.0120(18)	-0.0069(18)
Ge39A	0.055(2)	0.060(2)	0.043(2)	-0.0198(19)	-0.0103(19)	0.001(2)
Ge41A	0.053(2)	0.048(2)	0.061(3)	-0.0158(18)	-0.023(2)	0.008(2)
Ge42A	0.114(4)	0.055(3)	0.065(3)	-0.008(3)	-0.029(3)	-0.001(2)
Ge43A	0.057(2)	0.107(4)	0.056(3)	0.010(2)	-0.008(2)	-0.016(3)
Ge44A	0.044(2)	0.063(3)	0.040(2)	-0.0170(18)	-0.0124(18)	0.0087(19)
Ge45A	0.049(2)	0.038(2)	0.068(3)	-0.0001(18)	-0.030(2)	0.000(2)
Ge46A	0.054(3)	0.138(4)	0.068(3)	0.007(3)	0.010(2)	0.034(3)
Ge47A	0.043(2)	0.057(2)	0.043(2)	0.0035(18)	-0.0094(18)	-0.0084(19)
Ge48A	0.059(2)	0.062(3)	0.099(4)	-0.024(2)	-0.038(2)	0.039(3)
Ge49A	0.081(3)	0.087(3)	0.112(4)	0.051(3)	-0.066(3)	-0.052(3)
Ge51A	0.0340(17)	0.0223(17)	0.0252(19)	0.0031(14)	-0.0017(15)	0.0018(14)
Ge52A	0.0337(17)	0.0310(18)	0.0232(18)	-0.0041(15)	-0.0047(14)	-0.0009(15)
Ge53A	0.0285(16)	0.0216(17)	0.0277(19)	-0.0044(13)	-0.0021(15)	-0.0003(14)
Ge54A	0.0414(18)	0.0245(18)	0.031(2)	0.0004(14)	-0.0021(16)	0.0016(15)
Ge55A	0.0368(17)	0.0284(18)	0.032(2)	0.0007(15)	-0.0040(16)	-0.0020(16)
Ge56A	0.0414(18)	0.0229(17)	0.038(2)	-0.0052(15)	-0.0020(17)	-0.0013(16)
Ge57A	0.0391(19)	0.0287(19)	0.047(2)	-0.0090(16)	-0.0077(17)	0.0041(17)
Ge58A	0.041(2)	0.033(2)	0.050(2)	0.0059(16)	-0.0156(18)	-0.0041(17)
Ge59A	0.0401(19)	0.046(2)	0.031(2)	-0.0029(17)	-0.0058(16)	0.0053(17)
Aula	0.0416(7)	0.0259(6)	0.0261(7)	-0.0003(5)	0.0000(6)	-0.0007(6)
Au2a	0.0377(6)	0.0239(6)	0.0264(7)	-0.0043(5)	0.0011(6)	0.0017(6)
Au3a	0.0401(7)	0.0266(7)	0.0284(7)	-0.0001(6)	0.0002(6)	-0.0020(6)
GellB	0.080(3)	0.058(3)	0.038(2)	0.013(2)	0.002(2)	0.003(2)
Ge12B	0.049(2)	0.060(2)	0.045(2)	0.0137(19)	0.0020(19)	-0.003(2)
Ge13B	0.061(2)	0.044(2)	0.049(2)	0.0136(18)	0.006(2)	-0.0032(19)
Ge14B	0.118(4)	0.083(3)	0.065(3)	0.050(3)	-0.014(3)	-0.007(3)
Ge15B	0.060(3)	0.102(3)	0.065(3)	0.034(2)	-0.011(2)	-0.022(3)
Ge16B	0.086(3)	0.069(3)	0.067(3)	0.029(2)	-0.002(2)	-0.011(2)
Ge17B	0.127(4)	0.045(3)	0.070(3)	0.019(2)	0.019(3)	0.004(2)
Ge18B	0.080(3)	0.088(3)	0.053(3)	0.030(2)	-0.014(2)	-0.008(2)
Ge19B	0.056(2)	0.080(3)	0.054(3)	0.021(2)	0.003(2)	0.000(2)
Ge21B	0.057(2)	0.052(2)	0.051(3)	-0.0126(18)	0.005(2)	-0.0092(19)
Ge22B	0.055(2)	0.039(2)	0.044(2)	-0.0126(17)	0.0099(18)	-0.0030(18)
Ge23B	0.048(2)	0.051(2)	0.048(2)	-0.0110(18)	0.0020(18)	0.0050(19)
Ge24B	0.098(3)	0.049(3)	0.082(3)	-0.025(2)	0.015(3)	-0.019(2)
Ge25B	0.112(3)	0.040(2)	0.072(3)	-0.008(2)	0.023(3)	0.013(2)
Ge26B	0.064(3)	0.078(3)	0.071(3)	-0.031(2)	0.016(2)	-0.014(2)
Ge27B	0.057(2)	0.082(3)	0.055(3)	-0.027(2)	0.004(2)	-0.018(2)
Ge28B	0.091(3)	0.047(3)	0.083(3)	0.002(2)	0.031 (3)	0.003(2)
Ge29B	0.060(2)	0.053(2)	0.058(3)	-0.015(2)	0.016(2)	-0.007(2)
Ge31B	0.044(2)	0.064(3)	0.038(2)	-0.0063(18)	-0.0017(18)	-0.0065(19)
Ge32B	0.053(2)	0.041(2)	0.025(2)	-0.0115(17)	0.0011(17)	-0.0069(16)
Ge33B	0.042(2)	0.056(2)	0.032(2)	-0.0043(17)	-0.0055(17)	-0.0004(18)
Ge34B	0.049(2)	0.091(3)	0.057(3)	-0.011(2)	-0.010(2)	-0.013(2)

Ge35B	0.050(2)	0.079(3)	0.051(3)	-0.013(2)	-0.004(2)	-0.019(2)
Ge36B	0.058(2)	0.105(3)	0.036(2)	0.001(2)	-0.004(2)	0.010(2)
Ge37B	0.058(2)	0.085(3)	0.039(2)	0.016(2)	-0.0078(19)	0.001(2)
Ge38B	0.053(2)	0.071(3)	0.052(3)	-0.025(2)	0.003(2)	-0.013(2)
Ge39B	0.045(2)	0.066(3)	0.037(2)	-0.0028(19)	0.0057(18)	-0.0034(19)
Ge41B	0.059(2)	0.039(2)	0.037(2)	-0.0009(18)	0.0195(18)	-0.0013(17)
Ge42B	0.051(2)	0.129(4)	0.030(2)	-0.002(2)	0.0103(18)	0.003(2)
Ge43B	0.113(3)	0.067(3)	0.047(3)	0.047(3)	0.018(2)	0.002(2)
Ge44B	0.150(4)	0.055(3)	0.084(4)	-0.053(3)	0.069(3)	-0.041(3)
Ge45B	0.047(2)	0.059(2)	0.042(2)	-0.0097(19)	0.0089(18)	-0.0053(19)
Ge46B	0.064(2)	0.051(2)	0.063(3)	-0.014(2)	0.024(2)	-0.023(2)
Ge47B	0.053(2)	0.052(2)	0.045(2)	0.0003(18)	0.0127(19)	0.0023(19)
Ge48B	0.060(3)	0.066(3)	0.122(4)	0.010(2)	-0.019(3)	-0.046(3)
Ge49B	0.043(2)	0.059(3)	0.059(3)	0.0090(18)	0.0113(19)	0.010(2)
Ge51B	0.051(2)	0.0349(19)	0.023(2)	0.0036(16)	0.0096(16)	-0.0017(15)
Ge52B	0.0344(17)	0.0338(18)	0.0201(18)	-0.0036(14)	0.0044(15)	0.0019(15)
Ge53B	0.0437(19)	0.041(2)	0.028(2)	-0.0073(16)	0.0036(16)	-0.0029(16)
Ge54B	0.063(2)	0.040(2)	0.033(2)	0.0025(17)	0.0111(19)	-0.0023(18)
Ge55B	0.0375(17)	0.0306(18)	0.038(2)	-0.0056(15)	-0.0022(17)	0.0076(17)
Ge56B	0.0406(19)	0.053(2)	0.035(2)	-0.0108(17)	0.0009(17)	-0.0113(18)
Ge57B	0.040(2)	0.059(2)	0.032(2)	0.0030(18)	-0.0003(17)	0.0028(18)
Ge58B	0.042(2)	0.069(3)	0.044(2)	0.0105(19)	0.0010(18)	0.010(2)
Ge59B	0.079(3)	0.042(2)	0.050(3)	-0.018(2)	0.016(2)	-0.0120(19)
Au1b	0.0420(7)	0.0464(8)	0.0328(8)	0.0031(6)	0.0018(6)	-0.0017(7)
Au2b	0.0408(7)	0.0380(7)	0.0294(8)	-0.0021(6)	0.0015(6)	-0.0001(6)
Au3b	0.0510(8)	0.0373(8)	0.0346(8)	-0.0014(6)	0.0055(7)	-0.0007(6)

Ausgewählte Atomabstände der Schweratome [Å]:

Atome 1,2	d 1,2
GellA-Gel8A	2.563(5)
GellA—Gel7A	2.565(5)
GellA—Ge5lA	2.613(4)
GellA—Gel3A	2.653(4)
GellA-Gel2A	2.692(5)
Ge12A—Ge18A	2.550(5)
Ge12A—Aula	2.552(3)
Ge12A—Ge19A	2.559(5)
Ge12A—Ge13A	2.771(4)
Ge12A—Ge15A	2.809(4)
Ge13A—Ge17A	2.537(4)
Ge13A—Au3a	2.560(3)
Ge13A—Ge19A	2.571(5)
Ge13A—Ge16A	2.814(4)
Ge14A—Ge16A	2.605(5)
Ge14A—Ge17A	2.620(5)
Ge14A—Ge15A	2.625(5)
Ge14A—Ge18A	2.638(5)
Ge15A—Ge19A	2.582(5)
Ge15A—Ge18A	2.639(5)
Ge15A—Ge16A	2.734(5)
Ge16A—Ge19A	2.597(5)
Ge16A—Ge17A	2.630(5)

Ge21A—Ge27A	2.546(5)
Ge21A—Ge28A	2.548(5)
Ge21A—Ge52A	2.583(4)
Ge21A—Ge23A	2.694(5)
Ge21A—Ge22A	2.697(4)
Ge22A—Ge28A	2.530(4)
Ge22A—Au2a	2.543(3)
Ge22A—Ge29A	2.564(5)
Ge22A—Ge23A	2.766(4)
Ge22A—Ge25A	2.814(4)
Ge23A—Ge27A	2.513(5)
Ge23A—Aula	2.555(3)
Ge23A—Ge29A	2.556(5)
Ge23A—Ge26A	2.846(5)
Ge24A—Ge26A	2.615(5)
Ge24A—Ge25A	2.632(5)
Ge24A—Ge27A	2.635(5)
Ge24A—Ge28A	2.648(5)
Ge25A—Ge29A	2.618(5)
Ge25A—Ge28A	2.670(5)
Ge25A—Ge26A	2.703(5)
Ge26A—Ge29A	2.598(5)
Ge26A—Ge27A	2.648(5)
Ge31A—Ge38A	2.502(5)
Ge31A—Ge37A	2.554(5)

Ge31A—Ge53A	2.617(4)
Ge31A—Ge32A	2.647(5)
Ge31A_Ge33A	2,653(5)
	2.000(0)
	2.520(5)
Gesza—Auso	2.363(3)
Ge32A—Ge39A	2.583(5)
Ge32A—Ge33A	2.757(4)
Ge32A—Ge35A	2.851(4)
Ge33A—Au2a	2.549(3)
Ge33A—Ge37A	2.560(5)
Ge33A—Ge39A	2.563(5)
Ge33A—Ge36A	2.806(4)
Ge34A—Ge35A	2.587(5)
	2.007(0)
	2.014(5)
	2.040(5)
Ge35A—Ge39A	2.602(5)
Ge35A—Ge38A	2.650(5)
Ge35A—Ge36A	2.690(5)
Ge36A—Ge39A	2.609(5)
Ge36A—Ge37A	2.615(5)
Ge41A—Ge57A	2.481(5)
Ge41A—Ge42A	2.492(5)
Ge41A—Ge44A	2.521(5)
Ge41A—Ge46A	2.533(5)
Ge41A—Ge45A	2 615(5)
	2,635(7)
	2.000(7)
Ce42A = Ce47A	2.007(0)
Ge42A—Ge43A	2.707(6)
Ge43A—Ge44A	2.546(5)
Ge43A—Ge4/A	2.585(5)
Ge43A—Ge48A	2.662(6)
Ge44A—Ge59A	2.483(4)
Ge44A—Ge45A	2.603(5)
Ge44A—Ge48A	2.610(5)
Ge45A—Ge49A	2.489(5)
Ge45A—Ge58A	2.489(5)
Ge45A—Ge46A	2.747(6)
Ge45A—Ge48A	2.858(6)
Ge46A—Ge49A	2,555(7)
Ge46A_Ge47A	2.831(6)
	2.501(0)
GO47A CO47A	2.525(5)
Ge4/A - Ge40A	2.707(3)
	2./0/(/)
GestA-Aula	2.491(3)
Ge51A—Au3a	2.494(3)
Ge51A—Ge54A	2.509(4)
Ge52A—Ge55A	2.453(4)
Ge52A—Au2a	2.479(3)
Ge52A—Aula	2.489(3)
Ge53A—Au2a	2.495(3)
Ge53A—Au3a	2.497(3)
Ge53A—Ge56A	2.506(4)
Ge54A—Ge57A	2.504(4)
Ge54A_Ge59A	2.514(1)
Co51A Co54A	2.514(4)
	2.703(4)
George George	2.834(4)
Gessa—Gessa	2.4/9(4)
Ge55A—Ge57A	2.481(4)
Ge55A—Ge56A	2.819(4)

Ge56A—Ge58A	2.491(4)
Ge56A—Ge59A	2.499(5)
GellB-Gel7B	2.550(6)
GellB-Gel8B	2,553(6)
	2.666(6)
	2.047(3)
Gerre-Gerze	2.655(5)
GellB—Gel3B	2.664(5)
Ge12B—Aulb	2.550(4)
Ge12B—Ge18B	2.555(5)
Ge12B—Ge19B	2.562(5)
	2739(5)
	2.707(5)
Gel2D—Gel3D	2.790(5)
Gel3B—Gel7B	2.532(5)
Ge13B—Ge19B	2.557(5)
Ge13B—Au3b	2.570(3)
Ge13B—Ge16B	2.826(5)
Ge14B—Ge16B	2,557(6)
Ge148_Ge158	2 583(7)
	2.000(/)
	2.02/(6)
Gel4B—Gel7B	2.638(7)
Ge15B—Ge19B	2.619(6)
Ge15B—Ge18B	2.632(6)
Ge15B—Ge16B	2.685(6)
Ge16B-Ge19B	2 602(6)
ColfB Col7B	2.002(0)
	2.031(0)
Ge21B—Ge28B	2.550(6)
Ge21B—Ge27B	2.551(5)
Ge21B—Ge52B	2.642(4)
Ge21B—Ge23B	2.650(5)
Ge21B—Ge22B	2.683(5)
Ge^{22B} Au ² b	2 548(3)
	2.5+0(5)
Gezzb—Gez9b	2.364(3)
Ge22B—Ge28B	2.567(5)
Ge22B—Ge23B	2.728(5)
Ge22B—Ge25B	2.842(5)
Ge23B—Ge27B	2.527(5)
Ge23B—Ge29B	2,538(5)
	2.505(0)
	2.3+3(+)
Gezon-Gezon	2./00(3)
Ge24B—Ge28B	2.596(6)
Ge24B—Ge25B	2.601(6)
Ge24B—Ge26B	2.632(6)
Ge24B—Ge27B	2.655(6)
Ge25B—Ge29B	2.612(5)
Ge258_Ge288	2 656161
	2.000(0)
	2./1/(6)
Ge26B—Ge29B	2.583(5)
Ge26B—Ge27B	2.634(6)
Ge31B—Ge38B	2.537(5)
Ge31B—Ge37B	2.544(5)
Ge318—Ge538	2 589(5)
Ge318_Ge328	2.637 (6)
	2.070(3)
George George	2.070(5)
Ge32B—Ge38B	2.529(5)
Ge32B—Au3b	2.531(3)
Ge32B—Ge39B	2.564(5)
Ge32B—Ge33B	2.774(5)
Ge32B—Ge35B	2.802(5)
CO33B_CO37P	2515151

	0.570(4)
Ge33B—Au2b	2.572(4)
Ge33B—Ge39B	2.583(5)
Ge33B—Ge36B	2.841 (5)
Ge34B—Ge36B	2.597(6)
Ge34B—Ge37B	2.619(6)
Ge34B—Ge35B	2.625(5)
Ge34B—Ge38B	2.627(6)
Ge35B—Ge39B	2.608(5)
Ge35B—Ge38B	2.669(5)
Ge35B—Ge36B	2.712(6)
Ge36B—Ge39B	2.595(5)
Ge36B—Ge37B	2.639(5)
Ge41B—Ge42B	2.502(5)
Ge41B—Ge57B	2.508(5)
Ge41B—Ge44B	2.550(6)
Ge41B—Ge45B	2.604(5)
Ge41B—Ge46B	2.668(5)
Ge42B—Ge46B	2.636(6)
Ge42B—Ge43B	2.684(6)
Ge43B—Ge44B	2.527(6)
Ge43B—Ge48B	2.603(6)
Ge43B—Ge47B	2.731(5)
Ge44B—Ge45B	2.498(6)
Ge44B—Ge59B	2.511(5)
Ge44B—Ge48B	2.530(6)
Ge45B—Ge58B	2.502(5)

Ge45B—Ge49B	2.523(5)
Ge45B—Ge46B	2.660(5)
Ge46B—Ge49B	2.669(5)
Ge46B—Ge47B	2.777(5)
Ge47B—Ge49B	2.570(5)
Ge47B—Ge48B	2.649(6)
Ge48B—Ge49B	2.674(6)
Ge51B—Au3b	2.491(3)
Ge51B—Aulb	2.494(3)
Ge51B—Ge54B	2.500(4)
Ge52B—Au1b	2.499(3)
Ge52B—Au2b	2.506(3)
Ge52B—Ge55B	2.506(4)
Ge53B—Ge56B	2.487(5)
Ge53B—Au3b	2.492(3)
Ge53B—Au2b	2.495(3)
Ge54B—Ge59B	2.478(5)
Ge54B—Ge57B	2.488(5)
Ge54B—Ge55B	2.777(4)
Ge54B—Ge56B	2.798(5)
Ge55B—Ge58B	2.470(4)
Ge55B—Ge57B	2.479(5)
Ge55B—Ge56B	2.789(4)
Ge56B—Ge59B	2.485(5)
Ge56B—Ge58B	2.498(5)

Winkel zwischen den Atomen Au und Ge

Atom 1	Atom 2	Atom 3	Winkel 1-2-3
GellA	Aula	Ge15A	84.971 (84)
	Aula	Ge16A	103.472(96)
	Au3a	Aula	56.932(51)
	Au3a	Ge15A	104.609(87)
	Au3a	Ge16A	85.329(84)
	Ge12A	Aula	40.295(82)
	Ge12A	Au3a	75.536(97)
	Ge12A	Ge14A	85.940(126)
	Ge12A	Ge15A	44.758(97)
	Ge12A	Ge16A	69.421(111)
	Ge13A	Aula	73.568(103)
	Ge13A	Au3a	40.688(80)
	Ge13A	Ge12A	62.468(119)
	Ge13A	Ge14A	85.746(123)
	Ge13A	Ge15A	69.197(106)
	Ge13A	Ge16A	44.888(97)
	Ge14A	Aula	126.106(117)
	Ge14A	Au3a	126.021(112)
	Ge14A	Ge15A	41.183(90)
	Ge14A	Ge16A	40.858(92)
	Ge16A	Ge15A	40.149(79)
	Ge17A	Aula	131.724(140)
	Ge17A	Au3a	83.97(11)
	Ge17A	Ge12A	108.298(154)

	Ge17A	Ge13A	58.156(119)
	Ge17A	Ge14A	54.406(117)
	Ge17A	Ge15A	78.366(120)
	Ge17A	Ge16A	40.594(106)
	Ge17A	Ge51A	121.083(164)
	Ge18A	Aula	84.970(113)
	Ge18A	Au3a	133.538(129)
	Ge18A	Ge12A	58.007(122)
	Ge18A	Ge13A	108.186(149)
	Ge18A	Ge14A	54.834(118)
	Ge18A	Ge15A	40.711(103)
	Ge18A	Ge16A	78.386(125)
	Ge18A	Ge17A	108.517(160)
	Ge18A	Ge51A	121.107(153)
	Ge51A	Aula	38.688(78)
	Ge51A	Au3a	39.110(76)
	Ge51A	Ge12A	76.926(124)
	Ge51A	Ge13A	76.853(130)
	Ge51A	Ge14A	159.751(156)
	Ge51A	Ge15A	120.892(129)
	Ge51A	Ge16A	121.003(134)
Ge12A	Aula	GellA	96.710(125)
	Aula	Ge13A	99.452(115)
	Aula	Ge14A	147.624(118)
	Aula	Ge15A	169.460(145)
	Aula	Ge16A	144.574(116)

	Aula	Ge19A	123 285(140)
	Aula	Ge51A	48.325(77)
	GellA	Gel3A	58 080(113)
	Gella	Gelda	51 146(98)
	Gella	Ge15A	92 820(136)
	Gella	Gel6A	70.875(109)
	Gella	Ge51A	50 464(98)
	Col34	Col/A	68 736(101)
			89 396(128)
		Gelda	45 519(90)
		Ge51A	43.517(70)
	Ge144	Gelda	38 571 (78)
		Gelda	41 674(94)
	Gel5A		41.074(74)
	Col5A	G051A	142.030(134)
	Col8A		123 331 (143)
		Colla	59 445(100)
Ce124	Gelen	GellA	105 007/1421
Geiza	Coller	Colda	103.027 (143)
	Geloa	Colta	41.362(101)
	Geloa	ColtA	<u> </u>
	Geloa	Geloa	/9.242(11/)
	Gel8A	Gelya	112.989(157)
	Gel8A	GestA	99.992(130)
	GelyA	GellA	107.322(152)
	GelyA	Gersa	57.517(118)
	GelyA	Gel4A	76.958(119)
	GelyA	Gelsa	57.271(123)
	GelyA	Gel6A	40.454(102)
	Gel9A	GestA	118.3/3(13/)
	GestA	Gel4A	100.981(100)
	GestA	Gel6A	105.459(102)
Gel3A	Au3a	GellA	96.806(124)
	Au3a	Gel2A	102.077(123)
	Au3a	Gel4A	14/./51(120)
	AU3a	Gelsa	147.538(121)
	Au3a	Gel6A	16/.131(14/)
	Au3a	Gel9A	125.63/(14/)
	Au3a	Ge51A	48.761(74)
	GellA	Ge12A	59.452(114)
	GellA	Gel4A	51./00(97)
	GellA	Ge15A	71.625(106)
	GellA	Ge16A	93.413(134)
	GellA	Ge51A	51.023(102)
	Ge12A	Ge14A	69.945(102)
	Ge12A	Ge15A	45.695(93)
	Ge12A	Ge16A	89.844(126)
	Ge12A	Ge51A	65.571(99)
	Ge14A	Ge15A	39.141(75)
	Ge16A	Ge14A	41.713(96)
	Ge16A	Ge15A	44.150(98)
	Ge16A	Ge51A	143.232(135)
	Ge17A	Au3a	120.996(142)
	Ge17A	GellA	59.186(119)
	Ge17A	Ge12A	106.701(146)

Ge17A Ge14A 41.461(101) Ge17A Ge15A 79.855(119) Ge17A Ge16A 58.612(124) Ge17A Ge19A 113.266(163) Ge17A Ge1A 108.135(152) Ge19A Ge12A 57.091(118) Ge19A Ge14A 77.449(119) Ge19A Ge14A 77.449(119) Ge19A Ge15A 40.487(104) Ge19A Ge15A 40.487(104) Ge19A Ge1A 102.132(102) Ge51A Ge15A 106.456(105) Ge14A Ge13A Ge12A 42.914(86) Ge13A Ge13A Ge13A 45.950(103) Ge15A Ge13A 45.93(132) Ge15A Ge13A 63.035(136) Ge15A Ge13A 45.960(104) Ge16A </th <th>1</th> <th></th> <th>1</th> <th>I</th>	1		1	I
Ge17A Ge15A 79.855(119) Ge17A Ge16A 58.612(124) Ge17A Ge19A 113.266(163) Ge17A Ge19A 101.031(129) Ge19A Ge11A 108.135(152) Ge19A Ge14A 77.449(119) Ge19A Ge14A 77.449(119) Ge19A Ge16A 57.453(125) Ge19A Ge1A 102.132(102) Ge51A Ge1A 102.132(102) Ge51A Ge1A 102.132(102) Ge1A Ge1A 42.914(86) Ge1A Ge1A 45.35(103) Ge1A Ge1A 88.513(137) Ge1A Ge1A 68.91A Ge1A Ge1A 70.744(119) Ge1A Ge1A 68.91A Ge1A Ge1A 69.033(136)		Ge17A	Ge14A	41.461(101)
Ge17A Ge16A 58.612(124) Ge17A Ge19A 113.266(163) Ge17A Ge19A 101.031(129) Ge19A Ge11A 108.135(152) Ge19A Ge12A 57.091(118) Ge19A Ge14A 77.449(119) Ge19A Ge16A 57.453(125) Ge17A Ge16A 57.453(125) Ge17A Ge15A 108.732(138) Ge51A Ge15A 106.456(105) Ge14A Ge11A Ge12A 42.914(86) Ge13A Ge13A Ge13A 42.554(84) Ge15A Ge13A Ge13A 42.554(84) Ge13A Ge13A Ge13A 42.554(84) Ge15A Ge13A Ge13A 42.554(84) Ge15A Ge13A 70.711(13) Ge15A Ge13A 70.711(13) Ge15A Ge13A 60.198(132) Ge16A Ge13A 45.960(104) Ge15A Ge13A 60.198(132) Ge16A Ge13A </th <th></th> <th>Ge17A</th> <th>Ge15A</th> <th>79.855(119)</th>		Ge17A	Ge15A	79.855(119)
Ge17A Ge17A Ge17A Introluctor Ge17A Ge1A 101.031(129) Ge19A Ge11A 108.135(152) Ge19A Ge12A 57.091(118) Ge19A Ge14A 77.449(119) Ge19A Ge16A 57.453(125) Ge19A Ge16A 57.453(125) Ge17A Ge13A Ge13A Ge17A Ge1A 102.132(102) Ge51A Ge13A Ge13A Ge14A Ge1A Ge13A Ge1A Ge1A 42.914(86) Ge1A Ge13A Ge12A Ge1A Ge1A Ke13A Ge15A Ge1A 88.273(137) Ge15A Ge1A 88.273(137) Ge15A Ge1A 88.13(39) Ge15A Ge1A 88.273(137) Ge15A Ge1A 88.273(137) Ge15A Ge1A 88.13(39) Ge15A Ge1A 88.273(137) Ge15A Ge1A 88.13(39)		Ge17A	Ge16A	58.612(124)
Ge17A Ge51A 101.031(129) Ge19A Ge11A 108.135(152) Ge19A Ge12A 57.091(118) Ge19A Ge12A 77.449(119) Ge19A Ge15A 40.487(104) Ge19A Ge16A 57.453(125) Ge19A Ge1A 102.132(102) Ge51A Ge15A 106.456(105) Ge14A Ge1A 42.554(84) Ge13A Ge12A 42.54(84) Ge15A Ge1A 42.554(84) Ge15A Ge1A 88.273(137) Ge15A Ge1A 88.13(139) Ge15A Ge1A 88.273(137) Ge15A Ge1A 70.711(113) Ge15A Ge1A 70.744(119) Ge16A Ge1A 70.744(119) Ge16A Ge1A 70.744(119)		Ge17A	Ge19A	113.266(163)
Image in the image. The image in the image. The image in the image in the image in the image. The image in the image in the image in the image. The image in the image in the image in the image in the image. The image in the image in the image in the image in the image. The image in the image in the image in the image in the image. The image in the image in the image in the image in the image. The image in the image		Ge17A	Ge51A	101.031(129)
Ge19AGe12A57.091(118)Ge19AGe14A77.449(119)Ge19AGe15A40.487(104)Ge19AGe15A118.932(138)Ge1AGe19AGe15A118.932(138)Ge51AGe14A102.132(102)Ge51AGe14A102.132(102)Ge14AGe11AGe12A42.914(86)Ge1AGe13AGe13A42.554(84)Ge1AGe13AGe13A42.554(84)Ge15AGe13AGe13A45.359(103)Ge15AGe13AG017330.711(113)Ge15AGe13A70.711(113)Ge15AGe13A70.711(113)Ge16AGe13A45.960(104)Ge16AGe13A45.960(104)Ge16AGe1A60.198(132)Ge16AGe1A60.455(132)Ge16AGe1A45.950(164)Ge16AGe1A60.455(132)Ge16AGe1A52.758(113)Ge17AGe1A52.758(113)Ge17AGe1A39.877(97)Ge1AGe1AGe1AGe1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)Ge1AGe1A52.590(164)		Ge19A	GellA	108.135(152)
Ge19A Ge14A 77.449(119) Ge19A Ge15A 40.487(104) Ge19A Ge15A 118.932(138) Ge19A Ge51A 118.932(138) Ge51A Ge14A 102.132(102) Ge51A Ge14A 102.132(102) Ge51A Ge14A Ge13A Ge13A Ge14A Ge11A Ge13A 42.54(84) Ge15A Ge12A 41.319(72) Ge15A Ge13A Ge13A 559(103) Ge15A Ge13A 45.359(103) Ge15A Ge13A 70.711(13) Ge15A Ge13A 50.198(132) Ge16A Ge13A 45.960(104) Ge16A Ge13A 109.305(163) Ge16A Ge13A 109.305(163)		Ge19A	Ge12A	57.091(118)
Ge19A Ge15A 40.487(104) Ge19A Ge16A 57.453(125) Ge19A Ge51A 118.932(138) Ge51A Ge14A 102.132(102) Ge51A Ge14A 102.132(102) Ge51A Ge15A 106.456(105) Ge14A Ge11A Ge12A 42.914(86) Ge15A Ge12A 41.319(72) Ge15A Ge12A 41.319(72) Ge15A Ge12A 45.359(103) Ge15A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge15A Ge13A 70.711(113) Ge16A Ge13A 45.960(104) Ge16A Ge12A 70.744(119) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(163) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge13A 76.60(114) Ge17A Ge13A 76.60(114) Ge17A Ge13A<		Ge19A	Ge14A	77.449(119)
Ge19A Ge16A 57.453(125) Ge19A Ge51A 118.932(138) Ge51A Ge14A 102.132(102) Ge51A Ge14A 102.132(102) Ge51A Ge15A 106.456(105) Ge14A Ge11A Ge12A 42.914(86) Ge13A Ge12A 41.319(72) Ge15A Ge11A 88.273(137) Ge15A Ge12A 45.359(103) Ge15A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge15A Ge13A 70.711(113) Ge16A Ge13A 45.960(104) Ge16A Ge13A 45.960(104) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(132) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge13A 104.674(159) Ge14A Ge13A Ge13A 104.674(159) Ge13A Ge13A Ge13A 104.674(159) <th></th> <th>Ge19A</th> <th>Ge15A</th> <th>40.487(104)</th>		Ge19A	Ge15A	40.487(104)
Ge19A Ge51A 118.932(138) Ge51A Ge14A 102.132(102) Ge51A Ge15A 106.456(105) Ge14A Ge11A Ge12A 42.914(86) Ge13A Ge13A Ge13A 42.554(84) Ge15A Ge13A Ge12A 41.319(72) Ge15A Ge13A Ge13A 70.711(113) Ge15A Ge13A Ge13A 60.198(132) Ge16A Ge1A 88.513(139) Ge16A Ge1A 88.513(139) Ge16A Ge1A 50.7744(119) Ge16A Ge1A 45.960(104) Ge16A Ge1A 52.758(113) Ge16A Ge1A 52.758(113) Ge17A Ge1A 52.758(113) Ge17A Ge1A 52.758(113) Ge17A Ge1A 52.758(113) Ge17A Ge1A 52.590(116) Ge17A Ge1A 52.590(116) Ge1A Ge1A 52.590(116) Ge1A Ge1A		Ge19A	Ge16A	57.453(125)
Ge51A Ge14A 102.132(102) Ge51A Ge15A 106.456(105) Ge14A Ge11A Ge12A 42.914(86) Ge13A Ge13A Ge13A 42.554(84) Ge15A Ge13A Ge12A 41.319(72) Ge15A Ge13A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge15A Ge13A 60.198(132) Ge16A Ge1A 88.513(139) Ge16A Ge1A 88.513(139) Ge16A Ge1A 45.960(104) Ge16A Ge1A 45.960(104) Ge16A Ge1A 52.758(113) Ge16A Ge1A 52.758(113) Ge17A Ge1A 52.759(116) Ge1A Ge1A 52.970(116)		Ge19A	Ge51A	118.932(138)
Ge51A Ge15A 106.456(105) Ge14A Ge11A Ge12A 42.914(86) Ge13A Ge13A Ge13A 42.554(84) Ge15A Ge12A 41.319(72) Ge15A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge15A Ge13A 60.198(132) Ge16A Ge13A 60.198(132) Ge16A Ge13A 45.960(104) Ge16A Ge13A 109.395(163) Ge17A Ge13A 109.395(163) Ge1		Ge51A	Ge14A	102.132(102)
Ge14A Ge11A Ge12A 42.914(86) Ge11A Ge13A Ge13A 42.554(84) Ge13A Ge12A 41.319(72) Ge15A Ge11A 88.273(137) Ge15A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge15A Ge13A 60.198(132) Ge16A Ge13A 60.198(132) Ge16A Ge1A 88.513(139) Ge16A Ge12A 70.744(119) Ge16A Ge13A 45.960(104) Ge16A Ge13A 63.035(136) Ge16A Ge13A 64.755(132) Ge17A Ge13A 109.395(163) Ge17A Ge13A 104.674(159) Ge14A Ge13A Ge14A Ge17A		Ge51A	Ge15A	106.456(105)
Ge11A Ge13A Ge13A Ge12A 41.319(72) Ge15A Ge11A 88.273(137) Ge15A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge15A Ge13A 70.711(113) Ge15A Ge13A 60.198(132) Ge16A Ge14A Se13A Ge16A Ge13A 45.960(104) Ge16A Ge13A 45.960(104) Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(132) Ge17A Ge13A 39.877(97) Ge18A Ge13A 77.660(114) Ge17A Ge13A 39.710(99) Ge18A Ge13A 77.660(114) Ge13A Ge13A 44.909(90) Ge13A	Ge14A	GellA	Ge12A	42.914(86)
Ge13A Ge12A 41.319[72] Ge15A Ge11A 88.273[137] Ge15A Ge12A 45.359[103] Ge15A Ge13A 70.711[113] Ge15A Ge13A 70.711[113] Ge16A Ge14A Ge13A Ge16A Ge1A Se13A Ge16A Ge1A Ge13A Ge16A Ge13A 45.960[104] Ge16A Ge13A 52.758[113] Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge13A Ge13A Ge17A Ge13A 109.455[163] Ge17A Ge13A Ge13A Ge13A Ge13A 77.660[114]		GellA	Ge13A	42.554(84)
Ge15A Ge11A 88.273(137) Ge15A Ge12A 45.359(103) Ge15A Ge13A 70.711(113) Ge16A Ge13A 60.198(132) Ge16A Ge1A 88.513(139) Ge16A Ge1A 88.513(139) Ge16A Ge1A 70.744(119) Ge16A Ge1A 45.960(104) Ge16A Ge1A 45.960(104) Ge16A Ge1A 45.960(104) Ge16A Ge1A 45.960(104) Ge16A Ge1A Ge13A Ge16A Ge1A Ge13A Ge16A Ge1A 109.396(163) Ge17A Ge1A 52.758(113) Ge17A Ge1A 39.877(97) Ge17A Ge1A 39.877(97) Ge17A Ge1A 104.674(159) Ge1A Ge1A Ge1A Ge1A Ge1A 39.710(99) Ge1A Ge1A Ge1A Ge1A Ge1A Ge1A Ge1A		Ge13A	Ge12A	41.319(72)
Gel5A Gel2A 45.359(103) Gel5A Gel3A 70.711(113) Gel5A Gel8A 60.198(132) Gel6A Gel1A 88.513(139) Gel6A Gel2A 70.744(119) Gel6A Gel3A 45.960(104) Gel6A Gel3A 6.0335(136) Gel6A Gel3A 6.0455(132) Gel7A Gel1A 52.758(113) Gel7A Gel3A 39.877(97) Gel7A Gel3A 104.674(159) Gel7A Gel8A Gel1A Gel7A Gel3A 77.660(114) Gel7A Gel3A 44.909(90) Gel3A Gel1A 39.178(72) Gel4A Gel3A 70.148(113)		Ge15A	GellA	88.273(137)
Ge15A Ge13A 70.711(113) Ge15A Ge18A 60.198(132) Ge16A Ge11A 88.513(139) Ge16A Ge12A 70.744(119) Ge16A Ge13A 45.960(104) Ge16A Ge13A 45.960(104) Ge16A Ge13A 45.960(104) Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(132) Ge17A Ge17A Ge17A Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge18A Ge13A 70.148(13) Ge13A Ge13A 44.909(90) Ge13A Ge13A 44.909(90) Ge13A Ge13A 70.148(13) Ge14A Ge13A 70.148(13) Ge14A Ge13A		Ge15A	Ge12A	45.359(103)
Ge15A Ge18A 60.198(132) Ge16A Ge11A 88.513(139) Ge16A Ge12A 70.744(119) Ge16A Ge13A 45.960(104) Ge16A Ge15A 63.035(136) Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(132) Ge17A Ge17A Ge17A Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A Ge17A Ge17A Ge18A Ge14A Ge17A Ge18A Ge14A Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A Ge14A Ge13A 70.148(13) Ge13A Ge13A 70.148(13) Ge14A Ge13A 70.148(13) Ge14A Ge13A 70.148(13) Ge14A Ge13A 70.148(13)		Ge15A	Ge13A	70.711(113)
Ge16A Ge11A 88.513(139) Ge16A Ge12A 70.744(119) Ge16A Ge13A 45.960(104) Ge16A Ge15A 63.035(136) Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(132) Ge17A Ge11A 52.758(113) Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge13A 104.674(159) Ge14A Ge18A Ge12A Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A Ge14A Ge13A 44.909(90) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge13A 58.122(130)		Ge15A	Ge18A	60.198(132)
Ge16A Ge12A 70.744(11) Ge16A Ge13A 45.960(104) Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge17A 60.455(132) Ge16A Ge18A 109.396(163) Ge17A Ge11A 52.758(113) Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge12A 39.710(99) Ge18A Ge13A 52.590(116) Ge15A Ge15A Ge12A 39.710(99) Ge15A Ge18A Ge13A 77.660(114) Ge15A Ge15A Ge13A Ge13A 44.909(90) Ge15A Ge13A Ge11A 39.178(72) Ge14A Ge13A Ge13A 44.909(90) Ge14A Ge13A Ge13A 44.909(90) Ge15A Ge13A Ge13A		Ge16A	GellA	88.513(139)
Ge16A Ge13A 45.960(104) Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge18A 109.396(163) Ge17A Ge11A 52.758(113) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge12A Ge15A Ge17A Ge13A Ge17A Ge13A 39.710(97) Ge18A Ge13A Ge17A Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A Ge14A Ge13A 44.909(90) Ge14A Ge11A 39.178(72) Ge14A Ge13A Ge13A Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge13A 45.802(101) Ge16A Ge13A 45.802(101)		Ge16A	Ge12A	70.744(119)
Ge16A Ge15A 63.035(136) Ge16A Ge17A 60.455(132) Ge16A Ge18A 109.396(163) Ge17A Ge11A 52.758(113) Ge17A Ge11A 52.758(113) Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge12A 39.710(99) Ge18A Ge13A Ge13A 39.710(99) Ge18A Ge13A Ge13A 77.660(114) Ge15A Ge12A Ge13A 44.909(90) Ge15A Ge13A Ge11A 39.178(72) Ge14A Ge13A Ge14A Ge13A 70.148(113) Ge14A Ge13A Ge13A 70.148(113) Ge14A Ge13A 45.802(101) Ge16A Ge16A Ge13A 45.802(101) Ge16A Ge16A Ge13A 45.802(101) Ge16A		Ge16A	Ge13A	45.960(104)
Ge16A Ge17A 60.455(132) Ge16A Ge18A 109.396(163) Ge17A Ge11A 52.758(113) Ge17A Ge11A 52.758(113) Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 39.770(97) Ge18A Ge13A 77.660(114) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge13A Ge14A Ge13A Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A S8.122(130) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101)		Ge16A	Ge15A	63.035(136)
Ge16A Ge18A 109.396(163) Ge17A Ge11A 52.758(113) Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge18A Ge12A 39.710(99) Ge18A Ge18A Ge12A Ge13A 77.660(114) Ge18A Ge13A Ge13A 77.660(114) Ge12A Ge13A Ge13A 44.909(90) Ge14A Ge11A 39.178(72) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge18A Ge13A 70.148(113) Ge16A Ge13A 45.802(101) Ge16A Ge16A Ge13A 45.802(101) </th <th></th> <th>Ge16A</th> <th>Ge17A</th> <th>60.455(132)</th>		Ge16A	Ge17A	60.455(132)
Ge17A Ge11A 52.758(113) Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge11A 42.422(91) Ge13A Ge11A 39.178(72) Ge14A Ge13A Ge11A 50.545(107) Ge14A Ge11A 50.545(107) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge18A 60.133(132) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge18A Ge13A 77.383(115) Ge18A Ge13A 77.383(115) <t< th=""><th></th><th>Ge16A</th><th>Ge18A</th><th>109.396(163)</th></t<>		Ge16A	Ge18A	109.396(163)
Ge17A Ge12A 78.12(12) Ge17A Ge13A 39.877(97) Ge17A Ge13A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A Ge15A Ge12A Ge13A Ge13A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge13A Ge13A Ge14A Ge13A Ge14A Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A S8.122(130) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 77.383(115) Ge18A Ge13A 77.383(1		Ge17A	GellA	52.758(113)
Ge17A Ge13A 39.877(97) Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A 42.422(91) Ge15A Ge12A Ge11A 42.422(91) Ge15A Ge12A Ge11A 39.178(72) Ge13A Ge11A 39.178(72) Ge14A Ge11A 39.178(72) Ge14A Ge13A Ge11A 39.178(72) Ge14A Ge13A 44.909(90) Ge14A Ge11A 39.178(72) Ge14A Ge11A 39.178(72) Ge14A Ge13A Ge13A 149.909(90) Ge13A 44.909(90) Ge14A Ge11A S0.545(107) Ge13A 50.545(107) Ge14A Ge13A Ge13A 70.148(113) Ge14A Ge13A Ge13A(133) 122) Ge16A		Ge17A	Ge12A	78.12(12)
Ge17A Ge15A 109.455(163) Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge11A 42.422(91) Ge15A Ge12A Ge11A 42.422(91) Ge13A Ge11A 39.178(72) Ge14A Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge16A Ge13A 40.841(117) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge18A Ge13A 77.383(115) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(Ge17A	Ge13A	39.877(97)
Ge17A Ge18A 104.674(159) Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge13A 42.422(91) Ge15A Ge12A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge18A 60.133(132) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge13A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102)		Ge17A	Ge15A	109.455(163)
Ge14A Ge18A Ge11A 52.590(116) Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge11A 42.422(91) Ge15A Ge12A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge12A 92.966(144) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge18A 60.133(132) Ge16A Ge18A 60.133(132) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 77.383(115) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge13A 40.284(102)		Ge17A	Ge18A	104.674(159)
Ge18A Ge12A 39.710(99) Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge11A 42.422(91) Ge12A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge13A Ge14A Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge16A Ge14A Ge13A Ge16A Ge14A 69.841(117) Ge16A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 45.802(102) Ge18A Ge13A	Ge14A	Ge18A	GellA	52.590(116)
Ge18A Ge13A 77.660(114) Ge15A Ge12A Ge11A 42.422(91) Ge12A Ge13A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge18A 60.133(132) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge13A 76.933(122) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge13A 107.086(160) Ge19A		Ge18A	Ge12A	39.710(99)
Ge15A Ge12A Ge11A 42.422(91) Ge12A Ge13A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge12A 92.966(144) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge14A Ge16A 60.133(132) Ge16A Ge18A 60.133(132) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 77.383(115) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A		Ge18A	Ge13A	77.660(114)
Ge12A Ge13A 44.909(90) Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge12A 92.966(144) Ge14A Ge13A 70.148(113) Ge14A Ge13A 60.133(132) Ge14A Ge18A 60.133(132) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge16A Ge13A 45.802(101) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge13A 40.2	Ge15A	Ge12A	GellA	42.422(91)
Ge13A Ge11A 39.178(72) Ge14A Ge11A 50.545(107) Ge14A Ge12A 92.966(144) Ge14A Ge13A 70.148(113) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge12A	Ge13A	44.909(90)
Ge14A Ge11A 50.545(107) Ge14A Ge12A 92.966(144) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge13A 45.802(101) Ge18A Ge13A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge13A 76.933(122) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge13A 107.086(160) Ge19A Ge14A 107.086(160)		Ge13A	GellA	39.178(72)
Ge14A Ge12A 92.966(144) Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge18A 60.133(132) Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge14A 58.406(130)		Ge14A	GellA	50.545(107)
Ge14A Ge13A 70.148(113) Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge13A 45.802(101) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A Ge16A Ge18A Ge16A 105.533(158) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge14A	Ge12A	92.966(144)
Ge14A Ge16A 58.122(130) Ge14A Ge18A 60.133(132) Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge14A	Ge13A	70.148(113)
Ge14A Ge18A 60.133(132) Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge14A	Ge16A	58.122(130)
Ge16A Ge11A 69.841(117) Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge14A	Ge18A	60.133(132)
Ge16A Ge12A 90.710(141) Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge13A 40.284(102) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge16A	GellA	69.841(117)
Ge16A Ge13A 45.802(101) Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge16A	Ge12A	90.710(141)
Ge18A Ge11A 39.297(102) Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge16A	Ge13A	45.802(101)
Ge18A Ge12A 55.708(116) Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge18A	GellA	39.297(102)
Ge18A Ge13A 77.383(115) Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge18A	Ge12A	55.708(116)
Ge18A Ge16A 105.533(158) Ge19A Ge11A 76.933(122) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge18A	Ge13A	77.383(115)
Ge19A Ge11A 76.933(122) Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge18A	Ge16A	105.533(158)
Ge19A Ge12A 56.486(122) Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge19A	GellA	76.933(122)
Ge19A Ge13A 40.284(102) Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge19A	Ge12A	56.486(122)
Ge19A Ge14A 107.086(160) Ge19A Ge16A 58.406(130)		Ge19A	Ge13A	40.284(102)
Ge19A Ge16A 58.406(130)		Ge19A	Ge14A	107.086(160)
		Ge19A	Ge16A	58.406(130)

	Ge19A	Gel8A	109 354(161)
Ge16A	Ge12A	GellA	39,704(75)
	Gel3A	Gella	41 699(90)
	Gel3A	Ge12A	44 637(87)
	Gelda	Gella	50 628(109)
			70 685(118)
			92 327(145)
		Ge154	58 8/3(130)
			60.052(133)
		Gella	70.011(116)
	Col5A		45 412(100)
	Col5A	Gel2A Col3A	45.412(100)
	GelJA Col7A	CollA	30 381/103
		Colla	77 095(103)
	Col7A	Col2A	77.703(123) EE 419(120)
	Gel/A	Gelsa	105.005(1)(1)
	Gel/A	Gelsa	105.905(166)
	GelyA	Gena	76.871(125)
	GelyA	Gel2A	39.741(102)
	GelyA	Gel3A	56.569(124)
	Gelya	Gel4A	107.239(169)
	GelyA	Gelsa	57.867(130)
0.171	Gel9A	Gel/A	109.392(1/4)
Gel/A	GellA	Gel4A	/2.836(13/)
	GellA	Gel6A	100.025(159)
	Ge13A	GellA	62.657(126)
	Ge13A	Ge14A	98.662(150)
	Ge13A	Ge16A	65.970(136)
	Ge14A	Ge16A	59.493(132)
Ge18A	GellA	Ge14A	72.575(138)
	GellA	Ge15A	99.992(158)
	Ge12A	GellA	63.528(127)
	Gel2A	Gel4A	98.928(151)
	Gel2A	Gelsa	65.526(129)
	Gel4A	Gelsa	59.669(132)
Ge19A	Ge12A	Gel3A	65.392(127)
	Ge12A	Ge15A	66.243(133)
	Ge12A	Ge16A	99.805(157)
	Gel3A	Gelsa	99.229(157)
	Gel3A	Gel6A	65.9/9(138)
	Ge15A	Ge16A	63.727(137)
Ge21A	Aula	Ge25A	103.512(92)
	Aula	Ge26A	85.119(89)
	Au2a	Aula	56.929(52)
	Au2a	Ge25A	85.111(85)
	Au2a	Ge26A	104.056(96)
	Ge22A	Aula	/3./80(96)
	Ge22A	Au2a	40.425(76)
	Ge22A	Ge24A	86.238(128)
	Ge22A	Ge25A	44.894(95)
	Ge22A	Ge26A	68.917(112)
	Ge23A	Aula	39.693(84)
	Ge23A	Au2a	/4.123(105)
	Ge23A	Ge22A	61.720(119)
	Ge23A	Ge24A	86.606(128)

		0.051	(0.050(1.10)
	Ge23A	Ge25A	69.359(112)
	Ge23A	Ge26A	45.577(102)
	Ge24A	Aula	126.029(120)
	Ge24A	Au2a	126.326(121)
Ge21A	Ge24A	Ge25A	41.345(96)
	Ge24A	Ge26A	41.029(98)
	Ge26A	Ge25A	39.669(77)
	Ge27A	Aula	82.774(111)
	Ge27A	Au2a	131.361(135)
	Ge27A	Ge22A	107.369(150)
	Ge27A	Ge23A	57.239(118)
	Ge27A	Ge24A	55.903(125)
	Ge27A	Ge25A	78.679(121)
	Ge27A	Ge26A	40.887(105)
	Ge27A	Ge28A	111.012(161)
	Ge27A	Ge52A	118.513(164)
	Ge28A	Aula	131.366(134)
	Ge28A	Au2a	82.888(111)
	Ge28A	Ge22A	57.596(117)
	Ge28A	Ge23A	108.385(150)
	Ge28A	Ge24A	56.210(125)
	Ge28A	Ge25A	41.376(103)
	Ge28A	Ge26A	78.957(122)
	Ge28A	Ge52A	119.733(163)
	Ge52A	Aula	37.794(78)
	Ge52A	Au2a	38.669(78)
	Ge52A	Ge22A	75.999(128)
	Ge52A	Ge23A	74.965(131)
	Ge52A	Ge24A	158.842(167)
	Ge52A	Ge25A	120.008(137)
	Ge52A	Ge26A	119.761(138)
Ge22A	Au2a	Ge21A	96.119(122)
	Au2a	Ge23A	100.652(125)
	Au2a	Ge24A	145.754(125)
	Au2a	Ge25A	168.732(153)
	Au2a	Ge26A	146.952(126)
	Au2a	Ge29A	125.242(151)
	Au2a	Ge52A	48.804(80)
	Ge21A	Ge23A	59.092(113)
	Ge21A	Ge24A	50.208(95)
	Ge21A	Ge25A	92.545(138)
	Ge21A	Ge26A	71.213(111)
	Ge21A	Ge52A	50.414(101)
	Ge23A	Ge24A	69.522(105)
	Ge23A	Ge25A	89.972(130)
	Ge23A	Ge26A	46.458(93)
	Ge23A	Ge52A	63.937(104)
	Ge24A	Ge26A	39.006(80)
	Ge25A	Ge24A	42.337(96)
	Ge25A	Ge26A	43.514(94)
	Ge25A	Ge52A	141.559(141)
	Ge28A	Au2a	119.662(144)
	Ge28A	Ge21A	58.252(119)
	Ge28A	Ge23A	106.760(145)

	Ge28A	Ge24A	42.198(105)
	Ge28A	Ge25A	59.654(124)
	Ge28A	Ge26A	80.316(123)
	Ge28A	Ge29A	114.812(155)
	Ge28A	Ge52A	99.507(133)
	Ge29A	Ge21A	107.715(145)
	Ge29A	Ge23A	57.165(117)
	Ge29A	Ge24A	78,164(116)
	Ge29A	Ge25A	58.026(119)
	Ge29A	Ge26A	40.822(102)
	Ge29A	Ge52A	117.597(142)
	Ge52A	Ge24A	99 920(108)
	Ge52A	Ge26A	105 364(109)
Ge234		Ge21A	97 976(133)
002077		Ge224	101 535(125)
		G022A	147 522(132)
	Aula		147.322(132)
	Aula	Gezak	140.710(120)
	AUTO	GezoA	100.303(157)
	AUTO	Gezya	124.366(131)
	AUID	Gesza	49.546(81)
	Gezia	Gezza	59.18/(115)
	Ge2IA	Ge24A	50.033(97)
	Ge2IA	Ge25A	70.910(109)
	Ge2IA	Ge26A	91.884(144)
	Ge21A	Ge52A	50.938(101)
	Ge22A	Ge24A	69.074(106)
	Ge22A	Ge25A	45.515(92)
	Ge22A	Ge26A	88.767(129)
	Ge22A	Ge52A	65.409(106)
	Ge24A	Ge25A	39.108(79)
	Ge26A	Ge24A	41.851(102)
	Ge26A	Ge25A	43.252(95)
	Ge26A	Ge52A	141.582(144)
	Ge27A	Aula	121.944(157)
	Ge27A	Ge21A	58.398(120)
	Ge27A	Ge22A	106.241(146)
	Ge27A	Ge24A	41.617(109)
	Ge27A	Ge25A	79.802(120)
	Ge27A	Ge26A	58.838(131)
	Ge27A	Ge29A	113.579(168)
	Ge27A	Ge52A	99.951(137)
	Ge29A	Ge21A	108.043(158)
	Ge29A	Ge22A	57.457(118)
	Ge29A	Ge24A	78.021(126)
	Ge29A	Ge25A	40.907(101)
	Ge29A	Ge26A	57.190(125)
	Ge29A	Ge52A	119.244(147)
	Ge52A	Ge24A	100.391(111)
	Ge52A	Ge25A	105.914(108)
Ge24A	Ge21A	Ge22A	43.554(90)
	Ge21A	Ge23A	43.361(91)
	Ge22A	Ge23A	41.403(75)
	Ge25A	Ge21A	89.63(14)
	Ge25A	Ge22A	46.077(103)

	1	1	
	Ge25A	Ge23A	71.008(121)
	Ge25A	Ge27A	108.938(163)
	Ge25A	Ge28A	60.744(131)
	Ge26A	Ge21A	89.937(145)
	Ge26A	Ge22A	70.905(126)
	Ge26A	Ge23A	46.576(114)
	Ge26A	Ge25A	62.027(142)
	Ge26A	Ge27A	60.599(134)
	Ge26A	Ge28A	109.484(165)
	Ge27A	Ge21A	53.135(121)
	Ge27A	Ge22A	77.813(121)
	Ge27A	Ge23A	39.312(101)
Ge24A	Ge27A	Ge28A	105.245(159)
	Ge28A	Ge21A	53.099(120)
	Ge28A	Ge22A	39.918(100)
	Ge28A	Ge23A	78.112(122)
Ge25A	Ge22A	Ge21A	42.562(93)
	Ge22A	Ge23A	44.512(92)
	Ge23A	Ge21A	39.731(75)
	Ge24A	Ge21A	49.025(105)
	Ge24A	Ge22A	91.585(144)
	Ge24A	Ge23A	69.884(117)
	Ge24A	Ge26A	58.679(129)
	Ge24A	Ge28A	59.943(130)
	Ge26A	Ge21A	70.156(111)
	Ge26A	Ge22A	90.689(137)
	Ge26A	Ge23A	46.177(97)
	Ge28A	Ge21A	39.122(99)
	Ge28A	Ge22A	54.876(119)
	Ge28A	Ge23A	77.378(117)
	Ge28A	Ge26A	106.241(153)
	Ge29A	Ge21A	77.083(118)
	Ge29A	Ge22A	56.199(118)
	Ge29A	Ge23A	39.745(99)
	Ge29A	Ge24A	106.635(163)
	Ge29A	Ge26A	58.429(126)
	Ge29A	Ge28A	108.537(161)
Ge26A	Ge22A	Ge21A	39.871(77)
	Ge23A	Ge21A	42.539(95)
	Ge23A	Ge22A	44.775(93)
	Ge24A	Ge21A	49.034(109)
	Ge24A	Ge22A	70.089(120)
	Ge24A	Ge23A	91.573(157)
	Ge24A	Ge25A	59.294(133)
	Ge24A	Ge27A	60.074(132)
	Ge25A	Ge21A	70.175(113)
	Ge25A	Ge22A	45.797(97)
	Ge25A	Ge23A	90.572(136)
	Ge27A	Ge21A	38.985(102)
	Ge27A	Ge22A	77.298(118)
	Ge27A	Ge23A	54.294(125)
	Ge27A	Ge25A	106.413(154)
	Ge29A	Ge21A	77.286(127)
	Ge29A	Ge22A	40.184(100)
	1		

	a a a a		55 770 (100)
	Ge29A	Ge23A	55.779(123)
	Ge29A	Ge24A	107.724(184)
	Ge29A	Ge25A	59.146(129)
	Ge29A	Ge27A	107.879(173)
Ge27A	Ge21A	Ge24A	70.962(140)
	Ge21A	Ge26A	100.128(157)
	Ge23A	Ge21A	64.362(129)
	Ge23A	Ge24A	99.071(158)
	Ge23A	Ge26A	66.867(144)
	Ge24A	Ge26A	59.326(132)
	Ge21A	Ge24A	70.691(140)
	Ge21A	Ge25A	99.503(154)
	Ge22A	Ge21A	64.152(127)
	Ge22A	Ge24A	97.884(155)
	Ge22A	Ge25A	65.47(13)
Ge28A	Ge24A	Ge25A	59.313(129)
Ge29A	Ge22A	Ge25A	65.774(129)
	Ge22A	Ge26A	98.994(153)
	Ge23A	Ge22A	65.377(128)
	Ge23A	Ge25A	99.348(154)
	Ge23A	Ge26A	67.031(139)
	Ge26A	Ge25A	62.425(138)
Ge31A	Au2a	Au3a	57.381(53)
	Au2a	Ge35A	106.599(98)
	Au2a	Ge36A	87.110(85)
	Au3a	Ge35A	87.649(85)
	Au3a	Ge36A	106.382(89)
	Ge32A	Au2a	75.562(105)
	Ge32A	Au3a	41.111(80)
	Ge32A	Ge33A	62.696(120)
	Ge32A	Ge34A	88.056(126)
	Ge32A	Ge35A	46.734(98)
	Ge32A	Ge36A	70.825(107)
	Ge33A	Au2a	41.733(84)
	Ge33A	Au3a	75.439(98)
	Ge33A	Ge34A	87.248(128)
	Ge33A	Ge35A	70.029(113)
	Ge33A	Ge36A	45.665(99)
	Ge34A	Au2a	128.472(119)
	Ge34A	Au3a	128.787(114)
	Ge34A	Ge35A	41.323(94)
	Ge34A	Ge36A	41.583(91)
	Ge35A	Ge36A	40.154(80)
	Ge37A	Au2a	84.852(115)
	Ge37A	Au3a	134.272(130)
	Ge37A	Ge32A	110.021(152)
	Ge37A	Ge33A	58.864(128)
	Ge37A	Ge34A	55.270(119)
	Ge37A	Ge35A	78.941(128)
	Ge37A	Ge36A	41.235(105)
	Ge37A	Ge53A	122.224(153)
	Ge38A	Au2a	134.218(143)
	Ge38A	Au3a	84.443(116)
	Ge38A	Ge32A	58.689(122)

	Ge38A	Ge33A	109.589(157)
	Ge38A	Ge34A	56.430(121)
	Ge38A	Ge35A	41.962(109)
	Ge38A	Ge36A	80.058(124)
	Ge38A	Ge37A	110.946(167)
	Ge38A	Ge53A	120.462(165)
	Ge53A	Au2a	40.474(79)
	Ge53A	Au3a	39.535(76)
	Ge53A	Ge32A	78.608(131)
	Ge53A	Ge33A	79.720(127)
	Ge53A	Ge34A	164.531(156)
	Ge53A	Ge35A	124.832(135)
	Ge53A	Ge36A	124.866(130)
Ge32A	Au3a	Ge31A	96.166(123)
	Au3a	Ge33A	101.114(123)
	Au3a	Ge34A	145.361(120)
	Au3a	Ge35A	170.262(147)
	Au3a	Ge36A	146.389(121)
	Au3a	Ge39A	126.648(149)
	Au3a	Ge53A	47 928(73)
	Ge31A	Ge33A	58 754(115)
	Ge31A	Ge34A	49 800 (97)
	Ge31A	Ge35A	90 744(131)
	Ge31A	Ge36A	69.855(106)
	Ge31A	Ge53A	50 302(102)
	Ge33A	Ge34A	68 982(102)
	Ge33A	Ge35A	88,330(125)
	Ge33A	Ge36A	45 340(92)
	Ge33A	Ge53A	66,567(99)
	Ge34A	Ge36A	38,553(74)
	Ge35A	Ge34A	40 945(95)
	Ge35A	Ge36A	42 990(96)
	Ge35A	Ge53A	140 336(133)
	Ge38A	Au3a	119 906(145)
	Ge38A	Ge31A	57 795(121)
	Ge38A	Ge33A	105 675(148)
	Ge38A	Ge34A	41 480(105)
	Ge38A	Ge35A	58 672(125)
	Ge38A	Ge36A	79.310(122)
	Ge38A	Ge39A	113,100(164)
	Ge38A	Ge53A	97 669(128)
	Ge39A	Ge31A	107.007(151)
	Ge39A	Ge33A	57.252(118)
	Ge39A	Ge34A	77 199/1221
	Ge39A	Ge354	56 955(125)
	Ge39A	Ge36A	40 782(105)
	Ge39A	Ge53A	120 852/1381
	Ge53A	Ge34A	99 779/1001
	Ge534	Ge364	106 058(103)
Gessa	Au2a	Ge314	94 421 (125)
	Au20	Ge32A	100 017/1161
	Au2a	Ge34A	143.832(119)
	Au20	Ge354	146 838(118)
	Au2a	Ge364	169 608(145)
	1.020	00007	107.000(140)

	Au2a	Ge37A	118.860(141)
	Au2a	Ge39A	127.387(142)
	Au2a	Ge53A	47.279(75)
	Ge31A	Ge32A	58.549(114)
	Ge31A	Ge34A	50.193(99)
	Ge31A	Ge35A	70.336(110)
	Ge31A	Ge36A	91.796(136)
	Ge31A	Ge53A	49.679(99)
	Ge32A	Ge34A	69.951(103)
	Ge32A	Ge35A	46.831(91)
	Ge32A	Ge36A	90.331(130)
	Ge32A	Ge53A	64.934(100)
	Ge35A	Ge34A	38.602(78)
	Ge36A	Ge34A	41.603(94)
	Ge36A	Ge35A	43.499(96)
	Ge36A	Ge53A	140.744(135)
	Ge37A	Ge31A	58.653(126)
	Ge37A	Ge32A	106.482(143)
	Ge37A	Ge34A	41.307(102)
	Ge37A	Ge35A	79.032(117)
	Ge37A	Ge36A	58.104(117)
	Ge37A	Ge39A	113.364(158)
	Ge37A	Ge53A	98.452(129)
	Ge39A	Ge31A	107.424(152)
	Ge39A	Ge32A	57.953(119)
	Ge39A	Ge34A	77.887(121)
	Ge39A	Ge35A	41.201(103)
	Ge39A	Ge36A	57.924(124)
	Ge39A	Ge53A	119.964(137)
	Ge53A	Ge34A	99.510(99)
	Ge53A	Ge35A	105.844(102)
Ge34A	Ge31A	Ge32A	42.144(84)
	Ge31A	Ge33A	42.559(86)
	Ge33A	Ge32A	41.067(72)
	Ge35A	Ge31A	88.404(142)
	Ge35A	Ge32A	46.261(104)
	Ge35A	Ge33A	70.509(120)
	Ge35A	Ge36A	62.439(138)
	Ge35A	Ge37A	109.425(166)
	Ge35A	Ge38A	60.845(134)
	Ge36A	Ge31A	88.248(138)
	Ge36A	Ge32A	70.785(113)
	Ge36A	Ge33A	45.689(104)
	Ge36A	Ge37A	60.147(137)
	Ge36A	Ge38A	108.925(163)
	Ge3/A	Ge3IA	53.425(117)
		Ge32A	/8.198(115)
	Ge3/A	Ge33A	40.2/6(101)
	Ge37A	Ge38A	104./46(160)
	Ge38A	Ge31A	51.993(115)
	Ge38A	Ge32A	37.231(100)
0-054	Gest	Geoda	//.181(120)
СезбА	Ge32A	George	42.521(90)
	I Gesza	I Gessa	44.030(00)

-	1		
	Ge33A	Ge31A	39.635(76)
	Ge34A	Ge31A	50.274(110)
	Ge34A	Ge32A	92.794(144)
	Ge34A	Ge33A	70.890(119)
	Ge34A	Ge36A	59.096(133)
	Ge34A	Ge38A	60.683(135)
	Ge34A	Ge39A	108.358(172)
	Ge36A	Ge31A	70.036(118)
	Ge36A	Ge32A	90.727(141)
	Ge36A	Ge33A	45.889(102)
	Ge38A	Ge31A	39.146(103)
	Ge38A	Ge32A	54.522(120)
	Ge38A	Ge33A	77.310(123)
	Ge38A	Ge36A	106.245(167)
	Ge39A	Ge31A	77,447(126)
	Ge39A	Ge32A	56.309(125)
	Ge39A	Ge33A	40.449(103)
	Ge39A	Ge36A	59.033(131)
	Ge39A	Ge38A	108.519(173)
Ge36A	Ge31A	Ge32A	39.321(72)
	Ge33A	Ge31A	42.539(91)
	Ge33A	Ge32A	44.329(90)
	Ge34A	Ge31A	50,169(107)
	Ge34A	Ge32A	70 662(114)
Ge36A	Ge34A	Ge33A	92 708(144)
0000/1	Ge34A	Ge35A	58 465(133)
	Ge34A	Ge37A	60 118(137)
	Ge34A	Ge39A	107.634(161)
	Ge35A	Ge31A	69 810(118)
	Ge35A	Ge32A	46 282(103)
	Ge35A	Ge33A	90.612(142)
	Ge37A	Ge31A	40.084(106)
	Ge37A	Ge32A	78 133(117)
	Ge37A	Ge33A	56 226(117)
	Ge37A	Ge35A	106 287(161)
	Ge39A	Ge31A	77 272(123)
	Ge39A	Ge32A	40 294(105)
	Ge39A	Ge33A	56 352(125)
	Ge39A	Ge35A	58 793(132)
	Ge39A	Ge37A	110.079(163)
Ge37A	Ge31A	Ge33A	62 483(131)
	Ge31A	Ge34A	71.305(138)
	Ge31A	Ge36A	98 681(161)
	Ge33A	Ge34A	98 417(153)
	Ge33A	Ge36A	65 669(128)
	Ge34A	Ge36A	59 735(137)
Ge38A	Ge31A	Ge32A	63.516(130)
	Ge31A	Ge34A	71 578(139)
	Ge314	Ge354	98.892(140)
	Ge324	GeRIA	99 289/1541
	Ge32A	Ge354	66 806(138)
	Ge34A	Ge35A	58 472(132)
Ge394	Ge324	Ge354	66 736/1711
	Ge32A	Co34A	00.730(141)
L	Gesza	Gesoa	10.723(101)

	Ge33A	Ge32A	64.795(127)
	Ge33A	Ge35A	98.351(157)
	Ge33A	Ge36A	65.723(134)
	Ge35A	Ge36A	62.174(135)
Ge41A	Ge42A	Ge43A	48.881(138)
	Ge42A	Ge44A	94.013(175)
	Ge42A	Ge45A	108.331(178)
	Ge42A	Ge46A	63.233(171)
	Ge42A	Ge47A	41.382(131)
	Ge42A	Ge54A	144.121(179)
	Ge42A	Ge55A	168.651(183)
	Ge43A	Ge47A	39.893(91)
	Ge44A	Ge43A	45.148(120)
	Ge44A	Ge45A	60.874(137)
	Ge44A	Ge46A	107.959(182)
	Ge44A	Ge47A	71.192(125)
	Ge44A	Ge54A	68.886(124)
	Ge44A	Ge55A	92.532(143)
	Ge45A	Ge43A	82.531(147)
	Ge45A	Ge47A	67.113(121)
	Ge45A	Ge54A	91.015(132)
	Ge45A	Ge55A	67.115(120)
	Ge46A	Ge43A	85.828(153)
	Ge46A	Ge45A	64.471(157)
	Ge46A	Ge47A	45.961(126)
	Ge46A	Ge54A	150.977(170)
	Ge46A	Ge55A	105.873(157)
	Ge54A	Ge43A	107.168(124)
	Ge54A	Ge47A	139.997(126)
	Ge54A	Ge55A	47.208(82)
	Ge55A	Ge43A	137.110(141)
	Ge55A	Ge47A	133.674(127)
	Ge57A	Ge42A	138.938(206)
	Ge57A	Ge43A	146.847(175)
	Ge57A	Ge44A	114.195(181)
	Ge57A	Ge45A	111.327(170)
	Ge57A	Ge46A	127.278(189)
	Ge57A	Ge47A	173.235(166)
	Ge57A	Ge54A	45.344(103)
	Ge57A	Ge55A	44.212(109)
Ge42A	Ge41A	Ge43A	87.245(180)
	Ge41A	Ge44A	43.300(121)
	Ge41A	Ge46A	59.142(167)
	Ge41A	Ge47A	99.952(192)
	Ge43A	Ge44A	43.960(119)
	Ge46A	Ge43A	105.080(202)
	Ge46A	Ge44A	/9.029(163)
	Ge46A	Ge47A	64.969(167)
	Ge47A	Ge43A	57.818(158)
0	Ge47A	Ge44A	/5.033(146)
Ge43A	Ge42A	Ge41A	43.8/4(127)
	Ge44A	Ge4IA	44.5//(119)
	Ge44A	Ge42A	88.43/(171)
	Ge44A	Ge47A	99.790(165)

	Ge44A	Ge48A	60.093(151)
	Ge47A	Ge41A	77.096(137)
	Ge47A	Ge42A	59.694(160)
	Ge47A	Ge48A	62.164(143)
	Ge48A	Ge41A	81.485(160)
	Ge48A	Ge42A	105.268(197)
Ge44A	Ge41A	Ge42A	42.687(119)
	Ge41A	Ge43A	90.275(167)
	Ge41A	Ge45A	61.343(141)
	Ge41A	Ge47A	71.363(124)
	Ge41A	Ge48A	107.651(178)
	Ge41A	Ge54A	69.115(127)
	Ge41A	Ge56A	92.184(138)
	Ge42A	Ge47A	40.471(97)
	Ge43A	Ge42A	47.603(127)
	Ge43A	Ge45A	107.730(177)
	Ge43A	Ge47A	40.470(111)
	Ge43A	Ge48A	62.163(150)
	Ge43A	Ge54A	141.045(164)
	Ge43A	Ge56A	172.889(169)
	Ge45A	Ge42A	80.732(136)
	Ge45A	Ge47A	67.261(119)
	Ge45A	Ge48A	66.492(140)
	Ge45A	Ge54A	91.332(135)
	Ge45A	Ge56A	67.83(12)
	Ge48A	Ge42A	83.907(140)
	Ge48A	Ge47A	43.453(110)
	Ge48A	Ge54A	154.425(166)
	Ge48A	Ge56A	110.726(150)
	Ge54A	Ge42A	105.804(124)
	Ge54A	Ge47A	140.396(124)
	Ge54A	Ge56A	45.886(83)
	Ge56A	Ge42A	134.335(131)
	Ge56A	Ge47A	134.70(12)
	Ge59A	Ge41A	114.737(171)
	Ge59A	Ge42A	146.925(164)
	Ge59A	Ge43A	140.259(185)
	Ge59A	Ge45A	111.296(166)
	Ge59A	Ge47A	172.592(156)
	Ge59A	Ge48A	129.140(177)
	Ge59A	Ge54A	45.661(101)
	Ge59A	Ge56A	43.5(1)
Ge45A	Ge41A	Ge46A	56.325(147)
	Ge41A	Ge47A	73.288(128)
	Ge41A	Ge48A	98.283(161)
	Ge41A	Ge55A	69.407(124)
	Ge41A	Ge56A	91.716(130)
	Ge44A	Ge41A	57.783(134)
	Ge44A	Ge46A	99.622(166)
	Ge44A	Ge47A	73.303(124)
	Ge44A	Ge48A	56.873(136)
	Ge44A	Ge55A	92.421(141)
	Ge44A	Ge56A	69.798(120)
	Ge46A	Ge47A	48.300(121)

	Ge46A	Ge48A	93.928(160)
	Ge46A	Ge55A	102.610(146)
	Ge46A	Ge56A	144.786(158)
	Ge48A	Ge47A	45.628(118)
	Ge48A	Ge55A	147.414(169)
	Ge48A	Ge56A	106.148(141)
	Ge49A	Ge41A	108.122(179)
	Ge49A	Ge44A	110,558(180)
	Ge49A	Ge46A	58 171(150)
	Ge49A	Ge47A	41 461(130)
	Ge49A	Ge48A	60.370(162)
	Ge49A	Ge55A	151 450(181)
	Ge49A	Ge56A	156 928(175)
	Ge49A	Ge58A	129 888(198)
	Go55A	Ge/7A	142,006(133)
	Ge55A	Ge56A	46.913/811
	G0554	Ge30A	142 418/128
	Ge50A	Ge41A	11/ 202/120
	GeJOA Co50A	Ge41A	112 000/1751
	Gesoa	Ge44A	121 (01(192)
	CoE0A	GC40A	171 200(1(1)
	Gesea	Ge4/A	1/1.300(166)
	Gesea	Ge48A	133.286(193)
	Gesea	Gessa	45.079(109)
0.1/1	Gesea	Ge56A	44.109(101)
Ge46A	Ge4IA	Ge42A	57.625(160)
	Ge4IA	Ge45A	59.204(153)
	Ge4IA	Ge4/A	94.010(178)
	Ge41A	Ge49A	108.635(212)
	Ge42A	Ge45A	100.592(198)
	Ge42A	Ge47A	57.554(154)
	Ge45A	Ge47A	85.285(163)
	Ge49A	Ge42A	109.778(225)
	Ge49A	Ge45A	55.865(149)
	Ge49A	Ge47A	55.638(161)
Ge47A	Ge42A	Ge41A	38.667(119)
	Ge42A	Ge44A	64.496(135)
	Ge42A	Ge45A	78.161(140)
	Ge42A	Ge46A	57.477(152)
	Ge42A	Ge48A	105.955(176)
	Ge43A	Ge41A	63.011(121)
	Ge43A	Ge42A	62.487(158)
	Ge43A	Ge44A	39.740(106)
	Ge43A	Ge45A	79.176(132)
	Ge43A	Ge46A	103.008(171)
	Ge43A	Ge48A	60.321(134)
	Ge44A	Ge41A	37.445(80)
	Ge45A	Ge41A	39.599(86)
	Ge45A	Ge44A	39.436(83)
	Ge46A	Ge41A	40.029(115)
	Ge46A	Ge44A	72.425(125)
	Ge46A	Ge45A	46.415(119)
	Ge48A	Ge41A	74.690(126)
	Ge48A	Ge44A	41.483(104)
	Ge48A	Ge45A	48.924(113)

-		1	
	Ge48A	Ge46A	95.339(172)
	Ge49A	Ge41A	76.207(147)
	Ge49A	Ge42A	110.640(188)
	Ge49A	Ge43A	115.541(192)
	Ge49A	Ge44A	77.591(140)
	Ge49A	Ge45A	40.740(132)
	Ge49A	Ge46A	56.635(164)
	Ge49A	Ge48A	62.160(155)
Ge48A	Ge43A	Ge45A	97.699(180)
	Ge43A	Ge47A	57.515(140)
	Ge43A	Ge49A	107.237(186)
	Ge44A	Ge43A	57.744(150)
	Ge44A	Ge45A	56.635(134)
	Ge44A	Ge47A	95.064(157)
	Ge44A	Ge49A	103.842(171)
	Ge47A	Ge45A	85.448(155)
	Ge49A	Ge45A	53.058(147)
	Ge49A	Ge47A	55.576(145)
Ge49A	Ge45A	Ge46A	65.964(166)
	Ge45A	Ge47A	97.799(198)
	Ge45A	Ge48A	66.572(165)
	Ge46A	Ge48A	102.218(205)
	Ge47A	Ge46A	67.727(187)
	Ge47A	Ge48A	62.263(155)
Ge51A	Aula	Au3a	96.778(105)
	Aula	GellA	100.341(124)
	Aula	Ge12A	49.950(81)
	Aula	Ge13A	88.616(102)
	Aula	Ge52A	47.662(75)
	Aula	Ge53A	94.600(101)
	Aula	Ge54A	120.086(139)
	Aula	Ge55A	79.657(88)
	Aula	Ge56A	111.813(104)
	Au3a	GellA	99.520(121)
	Au3a	Ge12A	90.329(100)
	Au3a	Ge13A	50.525(77)
	Au3a	Ge52A	93.226(100)
	Au3a	Ge53A	48.430(73)
	Au3a	Ge54A	122.140(134)
	Au3a	Ge55A	112.595(102)
	Au3a	Ge56A	82.673(87)
	GellA	Ge12A	52.610(101)
	GellA	Ge13A	52.125(103)
	GellA	Ge52A	147.006(136)
	GellA	Ge53A	146.285(134)
	GellA	Ge55A	147.722(129)
	GellA	Ge56A	147.345(127)
	Ge12A	Ge52A	97.361(101)
	Ge12A	Ge53A	125.120(112)
	Ge12A	Ge55A	127.333(104)
	Ge12A	Ge56A	159.695(111)
	Ge13A	Ge12A	49.878(84)
	Ge13A	Ge52A	122.289(110)
	Ge13A	Ge53A	98.685(103)

	Ge13A	Ge55A	158.405(110)
	Ge13A	Ge56A	131.488(105)
	Ge52A	Ge55A	38.081(70)
	Ge52A	Ge56A	64.228(80)
	Ge53A	Ge52A	59.061(83)
	Ge53A	Ge55A	64 653(80)
	Ge53A	Ge56A	39.012(70)
	G051A	Colla	113.862(144)
	Co54A		147 487(140)
	G054A		151 114(139)
		CoEDA	92 544/112)
	CoE4A	GeJZA CoE2A	03.340(113)
	GeJ4A	Gessa	05.250(111)
	Ge54A	Gessa	45.462(90)
	Ge54A	Ge56A	44.218(91)
0.501	Gessa	Ge56A	41.6/8(65)
Ge52A	AUIA	Ge2IA	102./25(124)
	Aula	Ge22A	90.825(102)
	Aula	Ge23A	51.361(83)
	Aula	Ge51A	47.695(73)
	Aula	Ge53A	95.316(102)
	Aula	Ge54A	81.003(88)
	Aula	Ge56A	113.087(104)
	Au2a	Aula	97.901(104)
	Au2a	Ge21A	100.724(123)
	Au2a	Ge22A	50.505(79)
	Au2a	Ge23A	90.884(105)
	Au2a	Ge51A	94.672(101)
	Au2a	Ge53A	48.846(75)
	Au2a	Ge54A	113.216(103)
	Au2a	Ge56A	82.956(90)
	Ge21A	Ge22A	53.587(108)
	Ge21A	Ge23A	54.097(110)
	Ge21A	Ge51A	148.617(138)
	Ge21A	Ge53A	146.898(139)
	Ge21A	Ge54A	145.127(134)
	Ge21A	Ge56A	143.208(134)
	Ge22A	Ge51A	124.791(114)
	Ge22A	Ge53A	99.206(106)
	Ge22A	Ge54A	160.837(116)
	Ge22A	Ge56A	130.885(112)
	Ge23A	Ge22A	50.653(91)
	Ge23A	Ge51A	98.867(108)
	Ge23A	Ge53A	126.671(118)
	Ge23A	Ge54A	129 751(112)
	Ge23A	Ge56A	162 447(117)
	Ge51A	Ge54A	39 071(73)
	Ge51A	Ge56A	65 471 (82)
	Ge534	Ge514	59 887/851
	Co53A	G051A	67.007 (00)
	Ge53A	Ge54A	39 1191711
	Gessa Cossa		37.440(/4)
	COFEA	AU10	120.043(130)
	Gessa		123.341(13/)
	Gessa	GeziA	108.65(15)
	Gessa	Ge22A	148.470(145)

	Ge55A	Ge23A	145 206(146)
	Ge55A	Ge51A	84 426(115)
	Ge55A	Ge53A	85 019(116)
	Ge55A	Ge54A	45 373(99)
	Ge554	Ge56A	45.575(99)
	Ge56A	Ge54A	41 388(72)
C-053A			95 507(104)
06337	Au2a	Go31A	94 408(121)
	Au2a	CollA	97.245(100)
	Au2a	Co22A	49 4 4 4 (70)
	Au2a	CostA	40.040(77)
	Au2a	Gesta	95.522(101)
	Auza	Gesza	40.445(76)
	AUZO	Ge54A	114.122(106)
	AUZO	Gessa	81.903(89)
	AUZO	Ge56A	122.149(140)
	AU3a	Geala	98.619(121)
	AU3a	Ge32A	49.686(75)
	Au3a	Ge33A	87.497(97)
	Au3a	Ge51A	48.336(73)
	Au3a	Ge52A	94.766(102)
	Au3a	Ge54A	82.985(87)
	Au3a	Ge55A	113.462(102)
	Au3a	Ge56A	123.420(135)
	Ge31A	Ge32A	51.090(102)
	Ge31A	Ge33A	50.601 (99)
	Ge31A	Ge51A	145.840(133)
	Ge31A	Ge52A	143.742(136)
	Ge31A	Ge54A	149.007(127)
	Ge31A	Ge55A	147.901(128)
	Ge32A	Ge33A	48.498(82)
	Ge32A	Ge54A	130.602(105)
	Ge32A	Ge55A	159.044(109)
	Ge33A	Ge54A	159.432(111)
	Ge33A	Ge55A	128.731(103)
	Ge51A	Ge32A	97.835(102)
	Ge51A	Ge33A	123.023(110)
	Ge51A	Ge54A	39.534(71)
	Ge51A	Ge55A	65.622(80)
	Ge52A	Ge32A	123.043(111)
	Ge52A	Ge33A	96.867(101)
	Ge52A	Ge51A	61.052(85)
	Ge52A	Ge54A	65.973(82)
	Ge52A	Ge55A	38.479(71)
	Ge54A	Ge55A	42.380(66)
	Ge56A	Ge31A	114.956(144)
	Ge56A	Ge32A	150.286(137)
	Ge56A	Ge33A	148.971(139)
	Ge56A	Ge51A	84.642(111)
	Ge56A	Ge52A	84.135(114)
	Ge56A	Ge54A	45.108(92)
	Ge56A	Ge55A	45.66(9)
Ge54A	Ge41A	Ge52A	103.594(10.5)
	Ge41A	Ge53A	125 706(106)
	Gella	Gella	42 000 (89)
	UC44A	UC41A	TZ.000(07)

	Ge44A	Ge52A	123.703(112)
	Ge44A	Ge53A	107.825(104)
	Ge51A	Ge41A	154.622(141)
	Ge51A	Ge44A	161.314(145)
	Ge51A	Ge52A	57.383(98)
	Ge51A	Ge53A	57.237(94)
	Ge51A	Ge55A	95.374(126)
	Ge51A	Ge56A	96.854(129)
	Ge51A	Ge59A	117.165(154)
	Ge53A	Ge52A	49.365(69)
	Ge55A	Ge41A	67.087(102)
	Ge55A	Ge44A	88.325(117)
	Ge55A	Ge52A	38.012(84)
	Ge55A	Ge53A	69.037(92)
	Ge56A	Ge41A	90.129(111)
	Ge56A	Ge44A	69.142(106)
	Ge56A	Ge52A	68.705(99)
	Ge56A	Ge53A	39.618(80)
	Ge56A	Ge55A	60.198(102)
	Ge57A	Ge41A	44.829(98)
	Ge57A	Ge44A	86.806(125)
	Ge57A	Ge51A	110.305(141)
	Ge57A	Ge52A	75.160(113)
	Ge57A	Ge53A	121.716(122)
	Ge57A	Ge55A	54.984(107)
	Ge57A	Ge56A	110.735(136)
	Ge57A	Ge59A	131.608(159)
	Ge59A	Ge41A	86.915(118)
	Ge59A	Ge44A	44.940(105)
	Ge59A	Ge52A	123.772(135)
	Ge59A	Ge53A	79.463(113)
	Ge59A	Ge55A	109.981(143)
	Ge59A	Ge56A	56.007(113)
Ge55A	Ge41A	Ge51A	102.996(99)
	Ge41A	Ge53A	124.257(105)
	Ge45A	Ge41A	43.478(92)
	Ge45A	Ge51A	124.405(106)
	Ge45A	Ge53A	106.310(101)
	Ge52A	Ge41A	155.806(148)
	Ge52A	Ge45A	158.086(150)
	Ge52A	Ge51A	57.493(96)
	Ge52A	Ge53A	56.502(95)
	Ge52A	Ge54A	96.616(137)
	Ge52A	Ge56A	96.003(137)
	Ge52A	Ge57A	112.572(152)

	1	
Ge52A	Ge58A	113.539(153)
Ge53A	Ge51A	49.725(67)
Ge54A	Ge41A	65.705(104)
Ge54A	Ge45A	87.876(112)
Ge54A	Ge51A	39.143(79)

	Ge54A	Ge53A	68.583(91)
	Ge56A	Ge41A	88.838(112)
	Ge56A	Ge45A	67.956(105)
	Ge56A	Ge51A	69.302(91)
	Ge56A	Ge53A	39.505(80)
	Ge56A	Ge54A	59.035(102)
	Ge57A	Ge41A	44.214(106)
	Ge57A	Ge45A	87.691(123)
	Ge57A	Ge51A	75.577(103)
	Ge57A	Ge53A	121.986(122)
	Ge57A	Ge54A	55.73(11)
	Ge57A	Ge56A	110.343(135)
	Ge58A	Ge41A	88.741 (125)
	Ge58A	Ge45A	45.326(108)
	Ge58A	Ge51A	123.444(124)
	Ge58A	Ge53A	77.811(106)
	Ge58A	Ge54A	109.337(135)
	Ge58A	Ge56A	55.650(113)
	Ge58A	Ge57A	132.878(157)
Ge56A	Ge53A	Ge54A	95.274(128)
	Ge53A	Ge55A	94.835(126)
	Ge58A	Ge44A	86.453(124)
	Ge58A	Ge45A	44.086(97)
	Ge58A	Ge51A	122.792(123)
	Ge58A	Ge52A	76.422(116)
	Ge58A	Ge53A	113.429(143)
	Ge58A	Ge54A	110.559(138)
	Ge58A	Ge55A	55.259(108)
	Ge58A	Ge59A	129.575(158)
	Ge59A	Ge44A	43.140(104)
	Ge59A	Ge45A	85.490(116)
	Ge59A	Ge51A	79.561(112)
	Ge59A	Ge52A	125.438(136)
	Ge59A	Ge53A	116.101(154)
	Ge59A	Ge54A	56.504(114)
	Ge59A	Ge55A	110.927(145)

Anhang III: Strukturdaten von [K(2.2.2-crypt)]2[Pb5]

Atompositionen der Pb- und K-Atome:

Atom	x/a	y/b	z/c	
Pb1	1.00000	0	0.35608	
Pb2	0.83870	0	1/4	
K1	1/3	2/3	0.45153	

Anisotrope Auslenkungsparameter der Pb- und K-Atome [Å²]:

Atom	U 11	U ₂₂	U ₃₃	U12	U13	U ₂₃
Pb1	0.04949	0.04949	0.05136	0.02474	0.00000	0.00000
Pb2	0.04224	0.08172	0.06598	0.04086	0.01397	0.02794
K1	0.02500	0.02500	0.02262	0.01250	0.00000	0.00000

Ausgewählte Atomabstände und Bindungswinkel:

Atom 1	Atom 2	d _{1,2} [Å]	Atom 3	d1,3 [Å]	Winkel 1-2-3
Pb1	Pb2	3.0084(0)	Pb2	3.0084(0)	65.664(0)
	Pb2	3.2622(0)	Pb1	4.6918(1)	38.759(0)
			Pb1	3.0084(0)	102.481(1)
			Pb2	3.2622(0)	57.168(0)
			Pb2	3.2622(1)	57.168(0)
			Pb2	3.2622(0)	57.168(0)
			Pb2	3.2622(1)	57.168(0)
			Pb2	3.2622(1)	60.00()
Anhang IV: Strukturdaten von [K(2.2.2-crypt)]₂[Pb₁₀]

Atom	x/a	y/b	z/c
К1	-0.1743(3)	0.4959(5)	0.0269(3)
Pb1	0.02754(7)	1.06384(13)	0.10509(7)
Pb2	-0.07421(6)	0.99032(11)	0.16015(6)
Pb3	0.04702(6)	0.88284(10)	0.20830(6)
Pb4	0.09718(6)	1.13995(12)	0.22782(7)
Pb5	-0.02614(6)	1.24935(10)	0.18012(6)

Atompositionen von K und Blei:

Anisotrope Auslenkungsparameter der K- und Pb-Atome [Å²]:

Atom	U 11	U22	U33	U12	U 13	U23
K1	0.022(4)	0.014(3)	0.015(3)	0.002(3)	0.002(3)	0.003(3)
Pb1	0.0659(12)	0.0556(10)	0.0437(9)	-0.0003(8)	0.0197(8)	0.0052(8)
Pb2	0.0418(10)	0.0373(9)	0.0426(9)	-0.0005(7)	-0.0086(7)	-0.0009(7)
Pb3	0.0414(10)	0.0259(8)	0.0406(9)	0.0062(6)	0.0113(7)	-0.0043(6)
Pb4	0.0423(10)	0.0402(9)	0.0614(10)	-0.0059(7)	0.0233(8)	0.0003(7)
Pb5	0.0489(10)	0.0291(8)	0.0459(9)	-0.0018(7)	0.0019(7)	0.0115(7)

Ausgewählte Atomabstände und Bindungswinkel:

Atom 1,2	d 1,2 امْا	
Pb1—Pb2	3.030(2)	
Pb1—Pb3	3.0660(19)	
Pb1—Pb4	3.075(2)	
Pb1—Pb5	3.112(2)	
Pb2—Pb3 ⁱ	3.0721(18)	
Pb2—Pb4 ⁱ	3.082(2)	
Pb2—Pb3	3.293(2)	
Pb2—Pb5	3.3020(19)	
Pb3—Pb2 ⁱ	3.0722(18)	
Pb3—Pb3 ⁱ	3.095(3)	
Pb3—Pb4	3.2982(19)	
Pb4—Pb5 ⁱ	3.077(2)	
Pb4—Pb2 ⁱ	3.082(2)	
Pb4—Pb5	3.345(2)	
Pb5—Pb4 ⁱ	3.077(2)	
Pb5—Pb5 ⁱ	3.088(3)	

Atom 1	Atom 2	Atom 3	Winkel 1-2-3
Pb1	Pb2	Pb3	65.396
	Pb2	Pb4	99.044
	Pb2	Pb5	65.028
	Pb3	Pb4	64.979
	Pb3	Pb5	99.556
	Pb4	Pb5	65.462
Pb2	Pb1	Pb3	112.084
	Pb1	Pb4	112.081
	Pb1	Pb3	57.825
	Pb1	Pb5	58.683
	Pb3	Pb4	64.813
	Pb3	Pb3	58.056
	Pb3	Pb5	103.628
	Pb4	Pb3	103.362
	Pb4	Pb5	57.497
	Pb3	Pb5	91.322
Pb3	Pb1	Pb2	111.007
	Pb1	Pb3	110.491
	Pb1	Pb2	56.779
	Pb1	Pb4	57.637
	Pb2	Pb3	64.553
	Pb2	Pb2	101.986
	Pb2	Pb4	57.740
	Pb3	Pb2	57.391
	Pb3	Pb4	102.966
	Pb2	Pb4	89.575
Pb4	Pb1	Pb5	111.271
	Pb1	Pb2	110.505
	Pb1	Pb3	57.384
	Pb1	Pb5	57.808
	Pb5	Pb2	64.844
	Pb5	Pb3	103.616
	Pb5	Pb5	57.310
	Pb2	Pb3	57.447
	Pb2	Pb5	102.058
	Pb3	Pb5	90.475
Pb5	Pb4	Pb5	65.720
	Pb4	Pb1	110.014
	Pb4	Pb2	57.659
	Pb4	Pb4	102.282
	Pb5	Pb1	109.952
	Pb5	Pb2	102.904
	Pb5	Pb4	56.971
	Pb1	Pb2	56.290
	Pb1	Pb4	56.730
	Pb2	Pb4	88.624

Anhang V: Liste der Veröffentlichungen

Teile der vorliegenden Promotionsschrift wurden bereits in den folgenden Artikeln veröffentlicht:

Das Zintl-Anion [Pb $_{10}$]²⁻ – ein seltenes Beispiel eines homoatomaren closo-Clusters

Annette Spiekermann, Stephan D. Hoffmann und Thomas F. Fässler Angewandte Chemie **2006**, 118, 3538 Angewandte Chemie International Edition **2006**, 45 (21), 3459.

[Au₃Ge₁₈]⁵⁻ – ein Gold-Germanium-Cluster mit bemerkenswerten Au-Au-Wechselwirkungen

Annette Spiekermann, Stephan. D. Hoffmann, Florian Kraus und Thomas F. Fässler Angewandte Chemie **2007**, 119, 1663 Angewandte Chemie International Edition **2007**, 46, 1638

[Au₃Ge₄₅]⁹⁻ – ein neunfach negativ geladener Germanium-Gold-Cluster mit quadratisch planarer Goldkoordination

Annette Spiekermann, Stephan. D. Hoffmann, Thomas F. Fässler, Ingo Krossing und Ulrich Preiss Angewandte Chemie **2007**, 119, 5404 Angewandte Chemie International Edition **2007**, 46, 5310