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Particle Physics and Dark Energy: Beyond Classical Dynamics

Abstract

In this work, quantum corrections to classical equations of motion are investigated for dynamical
models of dark energy featuring a time-evolving quintessence scalar field. Employing effective quan-
tum field theory, the robustness of tracker quintessence potentials against quantum corrections as
well as their impact on cosmological observables are discussed. Furthermore, it is demonstrated that
a rolling quintessence field can also play an important role for baryogenesis in the early universe. The
macroscopic time-evolution of scalar quantum fields can be described from first principles within
nonequilibrium quantum field theory based on Kadanoff-Baym equations derived from the 2PI ef-
fective action. A framework for the nonperturbative renormalization of Kadanoff-Baym equations is
provided. Renormalized Kadanoff-Baym equations are proposed and their finiteness is shown for a
special case.

Zusammenfassung

In dieser Arbeit werden Quantenkorrekturen klassischer Bewegungsgleichungen in dynamischen Mo-
dellen der Dunklen Energie untersucht, welche ein zeitabhängiges Quintessenz-Skalarfeld beinhalten.
Im Rahmen effektiver Quantenfeldtheorie wird die Stabilität von Quintessenz-Potentialen bezüglich
Quantenkorrekturen sowie deren Einfluß auf kosmologische Parameter diskutiert. Darüber hinaus
wird gezeigt, daß ein zeitabhängiges Quintessenzfeld auch für die Baryogenese im frühen Univer-
sum eine wichtige Rolle spielen kann. Die makroskopische Zeitentwicklung von skalaren Quanten-
feldern kann basierend auf Grundprinzipien der Nichtgleichgewichtsquantenfeldtheorie mittels Ka-
danoff-Baym Gleichungen beschrieben werden. Es wird ein Formalismus für die nichtperturbative
Renormierung von Kadanoff-Baym Gleichungen entwickelt, renormierte Kadanoff-Baym Gleichun-
gen vorgeschlagen, und deren Endlichkeit für einen Spezialfall nachgewiesen.
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Chapter 1

Introduction

According to the standard model of cosmology, the evolution of our universe experienced a rapidly
inflating and highly correlated phase at its beginning. This phase ended in an explosive entropy
production (reheating), during which all kinds of sufficiently light particles were produced and ther-
malized, most of them highly relativistic. Reheating was followed by a controlled expansion during
which the temperature decreased and more and more massive species became non-relativistic (radi-
ation domination). Subsequently, pressure-less baryonic and cold dark matter became the dominant
contribution to the total energy density, and underwent gravitational clustering (matter domination).
However, in recent cosmic history, the expansion of the universe started to accelerate. This may be
attributed to the so-called dark energy, which became more and more important and makes up over
two third of the energy density of the universe today.
All that is known about dark energy is based on its gravitational interaction. While the total energy
density can be measured by observations of the anisotropy of the cosmic microwave background
(CMB), the forms of energy which cluster gravitationally can be inferred from large-scale structure
surveys together with appropriate models of structure formation. However, the clustered energy is
much less than the total energy density, such that an additional, homogeneously distributed com-
ponent is required. On top of that, such a dark energy component can precisely account for the
accelerated expansion observed by measurements of the luminosity of distant supernovae [133]. This
concordance of different observations makes the need for dark energy convincing and the question
about its nature one of the most outstanding questions in astro-particle physics.
The inclusion of a cosmological constant in Einstein’s equations of General Relativity provides a
parameterization of dark energy which is compatible with cosmological observations [89]. The cos-
mological constant can be viewed as a covariantly conserved contribution to the energy-momentum
tensor which is invariant under general coordinate transformations. For any quantum field theory for
which coordinate invariance is unbroken, this is precisely the property of the vacuum expectation
value of the energy-momentum tensor. Therefore, the cosmological constant may be interpreted as
the vacuum energy within quantum field theory [188]. However, since quantum field theory together
with classical gravity determines the vacuum energy only up to a constant, it is impossible to predict
the value of the cosmological constant. Furthermore, the naïve summation of zero-point energies of
all momentum modes of a free quantum field leads to a divergent result. Once a cutoff between the
TeV and the Planck scale is imposed, this amounts to a value which is between 60 and 120 orders
of magnitude too large. This fact is known as the cosmological constant problem [178]. If the value
inferred from cosmological observations is taken at face value, an enormous hierarchy between the
vacuum energy density and the energy density of radiation and matter must have existed in the early
universe (smallness problem). Subsequently, radiation and matter get diluted due to the cosmic ex-
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pansion, and the cosmological constant becomes of comparable order of magnitude precisely in the
present cosmological epoch (coincidence problem).
These unsatisfactory features of the cosmological constant have motivated an extensive search for
alternative explanations of dark energy. Apart from attempts to explain cosmic acceleration by modi-
fications of the equations of General Relativity [74, 151], models of dynamical dark energy [65, 162]
explore the possibility that the dark energy density might evolve with time and become diluted during
cosmic expansion, similar to the radiation and matter components. In this way its smallness today
could be attributed to a dynamical mechanism and the huge age of the universe.
Similar dynamical mechanisms are well-known in cosmology. For example, cosmic inflation pro-
vides a dynamical mechanism leading to a spatially flat universe in which the total energy density
is naturally very close to the critical energy density [108] as observed by CMB measurements [89].
Another example is provided by baryogenesis. Here, the observed baryon density (as well as the
absence of antibaryons) is attributed to a dynamically produced asymmetry. If the three Sakharov
conditions [163] are fulfilled in the early universe, namely violation of baryon number conservation,
violation of charge-conjugation and its combination with parity, and departure from thermal equilib-
rium, a baryon asymmetry can develop. For specific realizations, the final observable value of the
asymmetry is even insensitive to a primordial asymmetry [48, 71]. Both examples show that a dy-
namical mechanism can help to explain a measurable quantity which would otherwise have required
an enormous amount of fine-tuning of the “initial” state after the Big Bang.
Dynamical models for dark energy typically require the introduction of new degrees of freedom. For
example, cosmic acceleration could be powered by a slowly rolling scalar field [157, 182], called
quintessence field, similar to the inflaton field in the early universe. A special class of quintessence
models featuring so-called tracking solutions [169] exhibits a dynamical self-adjusting mechanism of
the dark energy density. This means that the evolution of the dark energy density today is insensitive to
the amount of primordial dark energy in the early universe. Therefore, the energy densities of matter
and dark energy can be comparable not only in the present epoch, but also in the early universe. For
specific models, both energy densities are even of comparable magnitude during the entire history of
the universe [85,157]. These features represent advantages of tracker quintessence models compared
to the cosmological constant.
However, quintessence models cannot address the fundamental cosmological constant problem of
quantum field theory. Additionally, introducing scalar fields brings up even more theoretical ques-
tions on the quantum level. Above all, this includes the hierarchy problem. It states that a scalar
field is unprotected against large quantum corrections to its mass, originating in quadratically diver-
gent loop corrections (where “large” refers to an ultraviolet embedding scale). Nevertheless, particle
physicists and cosmologists commonly resort to scalar fields. The most prominent examples are the
Higgs field in the Standard Model and the inflaton field in cosmology. However, up to now no direct
experimental evidence for the existence of an elementary scalar field exists.

In the context of quintessence models, it is therefore an urgent question what role quantum corrections
play for the dynamics of the quintessence scalar field. In particular, the quintessence field is charac-
terized by two striking properties, which deserve special attention. These are (i) the quintessence
tracker potential and (ii) the macroscopic time-evolution of the field value over cosmic time-scales.

Quintessence tracker potentials have a form which is not well-known within particle physics, in-
volving exponentials and inverse powers of the field. Therefore, it is important to investigate the
robustness of such exceptional potentials with respect to quantum corrections.
Typically, tracker quintessence fields feature non-renormalizable self-interactions suppressed by in-
verse powers of the Planck scale. This indicates that tracker potentials may result from integrating
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out some unknown degrees of freedom at the Planck scale. Below this scale, effective quantum field
theory can be employed. The ignorance about the superior theory is encapsulated into a few effective
parameters (like the potential energy at a certain field value, e.g. today) and the ultraviolet embedding
scale.
In order to assess the self-consistency of quintessence tracker models, it is crucial to investigate their
robustness with respect to quantum corrections originating from self-interactions. In particular, it
is necessary to investigate whether the asymptotic flatness of the potential is stable under radiative
corrections.
Phenomenological signatures which could reveal the existence of a rolling quintessence field in-
clude time-varying fundamental ‘constants’ as well as apparent violations of the equivalence prin-
ciple [157]. Both effects result from couplings between quintessence and Standard Model particles.
However, once quantum corrections are taken into account, such couplings destroy the desired prop-
erties of the quintessence field if they are too large. Therefore it is important to investigate their
quantum backreaction and to obtain quantitative upper bounds.
Additionally, it is necessary to check whether radiatively induced non-minimal gravitational cou-
plings are in conflict with experimental tests of General Relativity. For example, non-minimal cou-
plings of the quintessence field can lead to a time-variation of the effective Newton constant over
cosmological time-scales [181].

The second characteristic property of the quintessence field mentioned above is its macroscopic time-
evolution over cosmological time-scales. Therefore, the question arises how to calculate radiative
corrections for a time-evolving scalar field. If the kinetic energy of the field is much smaller than the
potential energy and if its environment can be approximated by a vacuum or a thermal background, it
is possible to use a derivative expansion of the effective action in vacuum or at finite temperature, re-
spectively. At leading order, this amounts to replacing the classical potential by the effective potential
in the equations of motion.
Quantum corrections within quintessence models as described in this work employ the derivative
expansion of the effective action. The latter is applicable since the quintessence field is slowly rolling
today. However, this might not have been the case in the early universe. Therefore, it is necessary
to develop methods that can describe the quantum dynamics of scalar fields beyond the limitations of
the derivative expansion. This falls into the realm of nonequilibrium quantum field theory.
Note that similar questions arise for other nonequilibrium phenomena within astro-particle and high-
energy physics, like inflation and reheating, as well as baryogenesis or heavy ion collisions. Tradi-
tionally, these processes are modeled by semi-classical approximations. These include Boltzmann
equations, hydrodynamic transport equations or effective equations of motion for a coherent scalar
field expectation value, for example based on mean-field approximations [18, 63, 130].
Since it is of great importance to assess the reliablity of these approximations, a comparison with
a completely quantum field theoretical treatment is desirable. In recent years it has been demon-
strated that scalar (and fermionic) quantum fields far from equilibrium can be described based on first
principles by Kadanoff-Baym equations [1, 2, 25, 32, 142]. These are evolution equations for the full
one- and two-point correlation functions obtained from the stationarity conditions of the 2PI effective
action [66]. The advantages of this treatment are twofold: First, its conceptual simplicity is very
attractive. The only assumption entering the derivation of Kadanoff-Baym equations is the truncation
of the so-called 2PI functional, which amounts to a controlled approximation in the coupling constant
or the inverse number of field degrees of freedom for specific quantum field theories [25]. Other-
wise, no further assumptions are required. In particular, no assumptions that would only hold close to
thermal equilibrium or in the classical limit are required. Furthermore, for any time-reversal invari-
ant quantum field theory, the Kadanoff-Baym equations are also time-reversal invariant, in contrast
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to Boltzmann equations. Second, Kadanoff-Baym equations inherently incorporate typical quantum
(e.g. off-shell) effects as well as “classical” (e.g. on-shell) effects in a unified manner. Therefore
they are very versatile and can be employed both to assess the validity of conventional semi-classical
approximations (e.g. for baryogenesis and leptogenesis), and in situations where a single effective
description does not exist (e.g. for (p)reheating by inflaton decay and subsequent thermalization).
In addition, Kadanoff-Baym equations can describe the quantum dynamics of a time-evolving scalar
field beyond the ‘slow-roll’ approximation (e.g. for inflation and quintessence).
It has been shown that numerical solutions of Kadanoff-Baym equations not only provide a descrip-
tion of the quantum thermalization process of relativistic quantum fields for closed systems [30, 32,
33], but also feature a separation of time-scales between kinetic and chemical equilibration (prether-
malization) [31]. Furthermore, they have been compared to semi-classical transport equations for
bosonic and fermionic systems [1, 123, 142, 143]. Moreover, Kadanoff-Baym equations can describe
the decay of a coherent, oscillating scalar field expectation value under conditions where parametric
resonance occurs [33], and have also been investigated in curved space-time [115, 170].
These successes of nonequilibrium quantum field theory make it worthwhile and, in view of realistic
applications, necessary to answer remaining conceptual questions, like renormalization. There are
several reasons why a proper renormalization of Kadanoff-Baym equations is essential. First, it is
required for a quantitative comparison with semi-classical Boltzmann equations, which are finite
by construction. Second, renormalization has an important quantitative impact on the solutions of
Kadanoff-Baym equations, and therefore affects thermalization time-scales. Third, it is crucial for
identifying physical initial states, meaning all nonequilibrium initial states that can occur as real
states of the physical ensemble. The fact that this class excludes for example an initial state featuring
bare particle excitations shows that this is of significance. Finally, a proper renormalization leads
to a stabilization of the computational algorithm used for the numerical solution of Kadanoff-Baym
equations such that its range of applicability is extended and its robustness is improved.

In chapter 2, quintessence models with tracking solutions are briefly reviewed, and in chapter 3, an
overview over perturbative as well as nonperturbative calculation techniques of the quantum effective
action is given. In chapter 4, the robustness of tracker quintessence models with respect to quantum
corrections is studied. Quantum corrections induced by the self-interactions of the quintessence field,
by couplings to Standard Model particles, and by the gravitational interaction are investigated, and
consequences for cosmology as well as for observational signatures of a rolling quintessence field are
discussed. Next, in chapter 5, it is demonstrated that the quintessence field can also play an important
role in the early universe. This is done by presenting a model where baryogenesis and late-time
cosmic acceleration are both driven by a time-evolving complex quintessence field.
The derivation of Kadanoff-Baym equations starting from the 2PI effective action is briefly reviewed
in chapter 6, as well as the nonperturbative renormalization procedure of the 2PI effective action in
thermal equilibrium, which has recently been formulated [28, 29, 37, 173–175].
The remaining part of this thesis is dedicated to the renormalization of Kadanoff-Baym equations.
This requires two steps. First, in chapter 7, the nonperturbative renormalization procedure for the 2PI
effective action in vacuum and in thermal equilibrium is adapted to the closed Schwinger-Keldysh
real-time contour, which is the starting point for nonequilibrium quantum field theory. Second, in
chapter 8, extended Kadanoff-Baym equations that can be used to describe systems featuring non-
Gaussian initial correlations, are derived from the 4PI effective action. An ansatz for renormal-
ized Kadanoff-Baym equations within λΦ4-theory is proposed and verified analytically for a special
case. Furthermore, properties expected from solutions of renormalized Kadanoff-Baym equations
are checked and the importance of renormalization for nonequilibrium quantum dynamics is demon-
strated.



Chapter 2

Dynamical Dark Energy

In the following, the main theoretical motivations for dynamical dark energy models are reviewed,
and it is briefly discussed in how far dynamical dark energy, and specifically quintessence models with
tracking solutions, can address the problems connected to the cosmological constant. Furthermore,
possible observational signatures of a quintessence field are reviewed. For a detailed discussion of
the observational evidence for accelerated expansion and dark energy, it is referred to Refs. [89, 100,
133, 160].
In order to be able to distinguish clearly between the different cosmological questions it is useful to
make a detailed definition:

QFT smallness problem: Why is there no huge cosmological constant contributing a vacuum en-
ergy density of order M4

pl, M4
GUT, M4

SUSY or M4
el.weak ?

Cosmological smallness problem: How can one explain a small nonzero cosmological constant or
dark energy density?

Coincidence of scales: The present dark energy and matter densities are1

ρde ≈ 1.3 ·10−123 M4
pl and ρM ≈ 0.5 ·10−123 M4

pl .

Coincidence of epochs: In our present cosmological epoch the expansion of the universe changes
from decelerated to accelerated [160].

The last two items are observational statements. The question is whether there is a natural explanation
for these coincidences or whether they are just an “accident”.
It appears likely that these questions cannot be answered by a single approach. On the one hand,
a mechanism (or a symmetry) is needed that explains why the huge field theoretical contributions
including contributions from potential shifts do not exist at all or at least why they do not act as a
source of gravity. On the other hand, the observed acceleration of the universe has to be explained.
The cosmological standard model with a cosmological constant and a cold dark matter component
(ΛCDM) is in accordance with all present observations inside the errorbars [89]. However, it does
not answer any of the four cosmological questions above. The value of the cosmological constant has
to be fine-tuned to fulfill the two “coincidences”: At the Planck epoch there is a hierarchy of order
10−123 between the energy density of the cosmological constant and the relativistic matter content in
this model.

1 The values are based on the “concordance model” ΩDE = 0.7, ΩM = 0.3 and use H0 = 70km/sMpc.
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Figure 2.1: Schematic illustration of the evolution of the radiation, matter and dark energy densities
for the cosmological constant (left) and a tracking quintessence model (right).

Starting point for dynamical dark energy models is the “cosmological smallness problem”. The aim is
to explain the smallness of dark energy by the huge age of the universe. Therefore a “time-dependent
cosmological constant” can be introduced that decays (similar to matter or radiation density) during
cosmic evolution thus providing a natural explanation for its smallness today (see figure 2.1). At the
Planck scale the dark energy content of the universe does not have to be fine-tuned to an extraordi-
narily small number.
General covariance of the equations of motion dictates that the dark energy cannot only depend on
time but is given by a space-time dependent field2which has to be added to the Lagrangian of the
theory as a new dynamical degree of freedom. This opens up a whole field of possibilities mani-
festing themselves in a huge variety of scalar-field-based models, like Chaplygin Gas (a cosmic fluid
derived from a Born-Infeld Lagrangian with equation of state p ∼ −1/ρ), phantom energy (derived
from a scalar-field Lagrangian with kinetic term with a “wrong sign” and with pressure p < −ρ) or
k-essence (with nonlinear kinetic term) and of course, most straightforward and probably most elab-
orated, quintessence with a standard kinetic term and a self-interaction described by the quintessence
potential, to name only a few (see [65, 162] for reviews, [16]).
The details of the decaying field are important when addressing the “coincidence of scales”. Gener-
ally, it will therefore depend on the specific model in how far a natural explanation for this remarkable
coincidence is found. Quintessence provides a special class of so-called tracking solutions that ac-
counts for this coincidence, which will be discussed in the following.
The “coincidence of epochs” is not generically addressed by dynamic dark energy models. In some
models the two coincidences are linked (like for a cosmological constant), while in other models they
have to be discussed separately.

2.1 Quintessence Cosmology

The framework of cosmology is the general theory of relativity, and cosmological models with dy-
namical dark energy can be formulated within this setting. However, one should keep in mind that
cosmology is based on some fundamental assumptions, like isotropy and large-scale homogeneity of
all components of our universe. Their validity is assumed in the following. Scalar-fields in cosmol-
ogy are actually not unusual. Already shortly after the big bang the universe may have undergone

2Just replacing the cosmological constant by a function Λ(t) is not possible because the Einstein equations can only be
solved for covariant conserved energy-momentum tensors Tµν ;ρ = 0. However, (Λgµν );ρ = 0 only if Λ≡ const.
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an accelerated phase, the cosmic inflation, which is often described by a slowly rolling scalar-field,
called inflaton [108,139,140]. In this section, the quintessence scalar-field will be introduced into the
general theory of relativity, in close analogy to the inflaton scalar-field3. Starting point is the gravi-
tational action with a standard kinetic term and a potential for the quintessence scalar-field φ given
by [157, 182]

S =
∫

d4x
√
−g(x)

(
− R

16πG
+

1
2

gµν
∂µφ∂νφ −V (φ)+LB

)
, (2.1)

where G is Newton’s constant and LB is the Lagrangian describing all other forms of energy like dark
matter, baryonic matter, radiation and neutrinos, which will be called “background”. Furthermore,
g(x) is the determinant of the metric gµν(x) and R is the curvature scalar as defined in appendix A. The
coupling of the quintessence field to gravity is called minimal in this case since there are no explicit
coupling terms like φ 2R. It is only mediated through the integration measure and the contraction
of the space-time derivatives in the kinetic term dictated by general coordinate invariance. Possible
constant contributions in the action (i.e. the cosmological constant) are assumed to be absorbed into
the potential V (φ). Variation of the action with respect to the metric yields the Einstein equations

Rµν −
R
2

gµν = 8πG(T B
µν +T Q

µν) , (2.2)

with the Ricci-tensor Rµν , the energy-momentum tensor for the background T B
µν = 2√

−g
δ (
√
−gLB)

δgµν and

T Q
µν = ∂µφ∂νφ −gµν

(
1
2
(∂φ)2−V

)
≡ (ρφ + pφ )uµuν −gµν pφ . (2.3)

The energy-momentum tensor can be expressed in analogy to a perfect fluid with unit 4-velocity
vector uµ = ∂µφ/

√
(∂φ)2 and energy density and pressure given by

ρφ =
1
2
(∂φ)2 +V (φ) and pφ =

1
2
(∂φ)2−V(φ) . (2.4)

Variation of the action with respect to φ leads to the equation of motion for the quintessence field4

2φ +
dV (φ)

dφ
= 0 , (2.5)

with the covariant D’Alembertian for a scalar-field

2 = DµDµ =
1√
−g

∂µ

√
−g∂

µ .

Under the assumptions of isotropy, homogeneity and a spatially flat universe the Robertson-Walker-
Metric for comoving coordinates xµ = (t,x) with a dimensionless scalefactor a(t) can be used,

ds2 = gµνdxµdxν = dt2−a(t)2dx2 .

After specializing the energy-momentum tensors to contain only space-independent densities ρB(t)
and ρφ (t) and pressures5 pB(t) and pφ (t) the Einstein equations reduce to the Friedmann equations

3M2
plH

2 = ρφ +ρB , (2.6)

3M2
pl

ä
a

= −1
2
(ρφ +3pφ +ρB +3pB) ,

3It is also possible to construct models where the quintessence and the inflaton fields are identical [154].
4 If the background Lagrangian LB contains φ (e.g. quintessence-dependent couplings) the right hand side of the

equation of motion has to be replaced by δLB/δφ . For the basic discussion of quintessence it will be assumed that this
term has a negligible influence on the dynamics of the φ field.

5The energy momentum tensors for the background and the φ field are assumed to be of the form of an ideal fluid
T i

µν = (ρi + pi)uµ uν −gµν pi with uµ = (1,0).
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Figure 2.2: Schematic illustration of the equation of motion of the quintessence field.

with the Hubble parameter H = ȧ/a and the Planck-Mass Mpl = 1/
√

8πG. The critical density is
defined as ρc ≡ 3M2

plH
2. The first Friedmann equation is often written in terms of Ωi ≡ ρi/ρc

1 = Ωφ +ΩB .

In the case of a spatially homogeneous scalar field φ(t) the covariant D’Alembertian is

2 = a−3
∂t a3

∂t = ∂
2
t +3H∂t ,

yielding an equation of motion from (2.5) for the homogeneous quintessence field:

φ̈ +3Hφ̇ +
dV (φ)

dφ
= 0 . (2.7)

Illustratively, the derivative of the potential acts like a force which accelerates the scalar field value
towards smaller potential energies thereby being “damped” by the 3Hφ̇ -term. However, the damping
depends on the contents of the universe including quintessence itself which means there is a back-
reaction (see figure 2.2). The latter is responsible for the existence of non-trivial “tracking” solutions.

The equation of motion is equivalent to the “first law of thermodynamics”

d(a3
ρφ )/dt =−pφ da3/dt , (2.8)

which can also be obtained from the requirement of covariant conservation of the energy-momentum
tensor T Q ;ν

µν = 0. Actually, this law is also valid for each independent6 species i in the background

d(a3
ρi)/dt =−pi da3/dt . (2.9)

Furthermore it can be shown that the corresponding equation for the total energy density ρtotal ≡
ρφ +∑i ρi and the (analogically defined) total pressure ptotal can be derived from the Friedmann equa-
tions. Thus, assuming N species in the background, there are 4 + N independent equations (second
order differential equations are counted twice) from (2.9, 2.7, 2.6) with 4+2N independent variables

6An independent species should have negligible interaction with other species.
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a, ȧ,φ , φ̇ ,ρi, pi. This means the system can only be solved by specifying N additional equations,
conventionally taken to be the equations of state for the N background species,

pi = pi(ρi)≡ ωiρi . (2.10)

A constant “equation of state parameter” ωi, together with the first law of thermodynamics (2.9),
yields the scaling behavior of the most important background components7

ωM = 0 ρM ∝ a−3 nonrelativistic matter ,
ωR = 1/3 ρM ∝ a−4 relativistic matter ,
ωΛ = −1 ρΛ ∝ a0 cosmological constant .

It is useful to define the equation of state parameter ωφ analogously to the background for the quint-
essence field,

ωφ =
pφ

ρφ

=
φ̇ 2/2−V
φ̇ 2/2+V

. (2.11)

However, the crucial difference is that this parameter will in general not be a constant. Therefore the
scaling behavior of quintessence cannot be integrated as easily as for matter and radiation. Like in
inflationary scenarios, it is used that ωφ can be close to −1 if the scalar-field is slowly rolling (i.e.
φ̇ 2/2� V ) down its potential. It can be seen from the second Friedmann equation (2.6) that it is a
necessary condition for an accelerated expansion of the universe that ωφ <−1/3. If the quintessence
field is static (φ̇ = 0), it acts like a cosmological constant V with ωφ =−1. On the other hand, a freely
rolling field (φ̇ 2/2�V ) has ωφ = +1 and scales like a−6. In any intermediate case one has

−1≤ ωφ ≤+1

if the potential is positive. Models with ωφ < −1 can be obtained by flipping the sign of the kinetic
term in the Lagrangian (tachyonic or phantom dark energy) or by introducing new terms in the action,
leading to cosmologies with a Big Rip in the future. Such models allow superluminal velocities and
are unstable on the quantum level since the energy density is not bounded from below [162]. These
models are not considered here. Instead, the focus lies on those models which are able to address the
“cosmological smallness problem” most efficiently.

2.2 Quintessence with Tracking Solutions

Within quintessence cosmology, specific models are obtained from specific choices of the potential.
A priori, the potential may be an arbitrary function of the field value. From the point of view of par-
ticle physics, a polynomial which contains quadratic and quartic terms, similar to the standard Higgs
potential, would be the most straightforward choice, since it is renormalizable and well-understood.
Furthermore, such a potential furnishes the simplest model of cosmic inflation in the early universe,
which is compatible with all observational constraints [89]. However, for dynamical dark energy, a
renormalizable potential suffers from several shortcomings. First, it would be necessary to fine-tune
the mass and the coupling constant to extraordinarily small values8 in order to prevent the field from

7The cosmological constant is only given for completeness. It does not appear in the background since it is absorbed
into the potential V .

8For a quadratic potential, the typical relaxation time-scale is given by the mass. Requiring that this time-scale is of the
order of the age of the universe means that the mass has to be of the order of the Hubble constant H0 ∼ 10−33 eV. When
a quartic term is present, it is additionally required that the quartic coupling constant is extremely tiny, λ � H2

0 /M2
pl. A

similar constraint is well-known for chaotic inflation, λ � H2
inf /M2

pl . 10−10.
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reaching the stable potential minimum already long before the present epoch, and thereby disqualify
as dynamical dark energy. Second, even if the fine-tuning of the mass and the coupling constant is
permitted, it would additionally be necessary to fine-tune the initial conditions of the field in the early
universe in order to achieve precisely the observed dark energy density today.
On the other hand, it is possible to specify desired properties of dynamical dark energy and then try
to construct potentials which yield solutions featuring these properties. This philosophy has been
followed in Ref. [157], and generalized in Ref. [169] leading to the notion of tracker quintessence
models, which are characterized by the following properties: First, the dynamics of the quintessence
field today should be insensitive to the initial value in the early universe. Second, it should be possible
to explain the smallness of the quintessence energy density today due to its dilution caused by the
cosmic expansion, similar to the dark matter density. Thereby, it is desired that the ratio of dark
energy and dark matter densities stays ideally of order unity during the complete cosmic history, such
that their similarity is not a special “coincidence” at all. Third, a necessary property is the cross-
over from matter domination to dark energy domination. The last property is the only one shared by
the cosmological constant, which, however, is absolutely sensitive to the “initial” value, since it is a
constant, and requires a huge hierarchy between the dark matter and dark energy densities in the early
universe.
As has been shown in Ref. [169], the upper properties are realized for quintessence potentials which
fulfill the so-called tracker condition. It states that the dimensionless function

Γ(φ)≡ V (φ)V ′′(φ)
V ′(φ)2

has to be larger or equal to unity, and (approximately) constant for all field values for which V (φ) is
between the critical energy density today and after inflation. The latter requirement can be shown to
guarantee the existence of attractors in phase space, which wipe out the dependence on initial con-
ditions for all solutions which approach the attractor solution [169]. Thus, the first desired property
is fulfilled. For the attractor solution, the quintessence field dilutes with cosmic expansion with an
approximately constant equation of state [169]

ω
∗
φ = ωB−

Γ−1
Γ− 1

2

(1+ωB) , (2.12)

where ωB = 1/3 during radiation domination and ωB = 0 during matter domination. The equation of
state parameter determines the evolution of the quintessence energy density in the expanding universe.
For a quintessence potential where Γ ∼ 1, the quintessence equation of state ω∗

φ
is close to ωB, such

that the quintessence energy density evolves with time approximately proportional to the dominant
background density. Thus, for a quintessence potential where Γ∼ 1, the dark energy density “tracks”
first the radiation density and then the matter density, and thereby meets the second desired property.
For Γ = 1, the ratio of the dark energy and dark matter densities would even be exactly constant during
matter domination, and exhibit perfect tracking behaviour. For Γ > 1, however, one has that ω∗

φ
<

ωB. This means that the ratio of the quintessence energy density and the background energy density
increases with time. Therefore, a cross-over from matter domination to dark-energy domination has
to occur at some point, which was the third desired property.
The prototype tracker potentials are those for which Γ(φ) is precisely constant. They are given by

V (φ) =

{
M4

pl exp
(
−λ

φ

Mpl

)
for Γ = 1 ,

c ·φ−α for Γ > 1 with Γ = 1+ 1
α

.
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Both the exponential and the inverse power law potentials decrease monotonously with φ , and ap-
proach their minimal value (zero) asymptotically for infinitely large field values. For the tracker solu-
tion, the field slowly rolls down the potential, with φ ∗(t)|t→∞→∞. Their properties have been studied
extensively in the literature [9,10, 34, 157,169, 182], and will therefore only be briefly sketched here.
Furthermore, many alternative potentials, for which Γ is only approximately constant, are typically
built up from combinations of the prototype potentials, like the inverse exponential potential [169] or
the so-called SUGRA potential [42, 43], and share many of their basic properties.

Exponential potential: For the exponential potential, the quintessence energy density is precisely
proportional to the radiation density during radiation domination (with Ωφ = 4/λ 2), and to the matter
density during matter domination (with Ωφ = 3/λ 2). Therefore, the exponential potential motivates
the search for early dark energy, which clearly discriminates it from the cosmological constant. Con-
straints on early dark energy arise from its impact on BBN, structure formation and the CMB [85,86].
A typical upper bound for the dark energy fraction at redshifts z & 2 is Ωφ < 0.05, which implies
that λ > 7.75. For a single exponential potential, Ωφ would always remain constant and no cross-
over towards accelerated expansion would occur, which disqualifies it as a viable dark energy model.
However, the tracking attractor just exists if λ >

√
3(1+ωB), i.e. if the potential is steep enough.

Otherwise, the exponential potential features an attractor for which the quintessence energy density
dominates over the radiation and matter densities, with equation of state ω∗

φ
= −1 + λ 2/3, such that

accelerated expansion occurs when λ is small enough. Therefore, viable models can be constructed
for which the cross-over is triggered by an effective change in the slope of the exponential potential.
This can be accomplished by a potential which is given by the sum of two exponentials with different
slope [21], or by a “leaping kinetic term” [111]. For the cross-over to occur now, it is necessary to
adjust the relative size of the exponentials, which may be considered as an unavoidable tuning of the
potential. In Ref. [111] it is argued, however, that the tuning is much less severe as required for the
cosmological constant (over two instead of 120 orders of magnitude).

Inverse power law potential: The inverse power law potential alone already leads to a viable dy-
namical dark energy model, for which the dark energy density dilutes during cosmic expansion ac-
cording to the tracking solution, but the fraction Ωφ grows. At some point the quintessence density
becomes comparable to the dark matter density and then leads to the onset of a dark energy domi-
nated epoch of accelerated expansion. This cross-over occurs when the field value is of the order of
the Planck scale. Therefore, it happens in the present epoch if V (Mpl)∼M2

plH
2
0 . Thus, the pre-factor

c≡ Λ4+α of the inverse power law potential has to have the order of magnitude

Λ =O

((
H0

Mpl

) 2
4+α

Mpl

)
=O

(
10−

122
4+α Mpl

)
.

For example, Λ∼ 10keV for α = 1. The smaller the inverse power law index α , the more shallow is
the potential. Since the field rolls more slowly in shallow potentials, its equation of state today is the
more negative the smaller the inverse power law index. A conservative upper bound ωφ < −0.7 on
the dark energy equation inferred from SN1a and CMB measurements leads to an upper bound α . 2
for the inverse power law index [84].

Self-adjusting mass

For tracking solutions, not only the potential energy of the quintessence field decreases with time, but
also the effective time-dependent mass m2

φ
(t) ≡ V ′′(φ(t)) of the quintessence field, which is given
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by the second derivative of the potential, approaches zero for t → ∞. For the tracking solution, it is
explicitly given by [169]

m2
φ (t) = V ′′(φ ∗(t)) =

9
2

Γ

(
1−ω

∗
φ

2
)

H(t)2 . (2.13)

Thus, for tracker quintessence potentials, the classical dynamics drive the mass of the quintessence
field towards a value which is of the order of the Hubble parameter. It is emphasized that, on the
classical level, this is a self-adjusting mechanism for the mass, since, even if one starts with a different
value, the mass converges towards the value given above since the tracking solution is an attractor
solution. A mass of the order of the Hubble scale, which corresponds to the inverse size of the
horizon, is also desirable for stability reasons, since it inhibits the growth of inhomogeneities in the
quintessence field [157].

Possible origins of tracker potentials

Exponential and inverse power law potentials are very unusual from the point of view of high energy
physics. Nevertheless, some attempts have been made to obtain such potentials from a superior theory.
In Ref. [34] it was proposed that the quintessence field can be interpreted as a fermion condensate in a
strongly interacting supersymmetric gauge theory, whose dynamics may, under certain assumptions,
be describable by an inverse power law potential. An extension of the upper scenario to supergravity
discussed in Ref. [42] leads to the so-called SUGRA-potential. Exponential potentials may occur in
the low-energy limit of extradimensional theories [165] or could result from the anomalous breaking
of dilatation symmetry [182]. In any case, the quintessence field is an effective degree of freedom,
described by an effective theory which is valid below an ultraviolet embedding scale. The aim of
the present work is to investigate the robustness of tracker potentials under quantum corrections in
a model-independent way, which includes a wide range of possibilities for the unknown underlying
UV completion.

2.3 Interacting Quintessence

Interactions between the rolling quintessence field and Standard Model fields lead to striking phe-
nomenological consequences [157, 172, 184], which can be tested experimentally in many ways. In
general, interactions of the quintessence field are expected if it is embedded in an effective field theo-
ry framework [51]. For a neutral scalar field, there are plenty of possibilities for couplings between
quintessence and Standard Model fields [11, 15, 36, 44, 46, 56, 64, 83, 87, 95, 137, 145, 183, 184, 186].
For tracker quintessence potentials, it is plausible that also the couplings may have a non-trivial de-
pendence on the quintessence field. The effects described below are generic for quintessence models,
and are treated as model-independent as possible.
In principle, one can discriminate between direct effects of the quintessence coupling on the proper-
ties of the Standard Model particles, and indirect backreaction effects of the Standard Model fields
on the quintessence dynamics [96]. The quantum vacuum contribution of the latter is discussed in
section 4.2. Here, the most prominent direct effects are briefly mentioned.

Apparent violations of the equivalence principle: Yukawa-type couplings between the quint-
essence field and fermion fields ψi may be parameterized as [157]

LYuk =−∑
i

Fi(φ) ψ̄iψi . (2.14)
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Each function Fi(φ) gives a φ -dependent contribution to the mass (mi) of each fermion species. Since
the field value φ(t) changes during cosmic evolution, the fermion masses are also time-varying on
cosmological time-scales. Actually, this is a very typical feature of quintessence models. Of course,
the time-variation of the fermion mass is supposed to be tiny in comparison to the total mass.
The fermions ψi do not need to be fundamental fermions but should be understood as effective fields,
e.g. describing neutrons or protons, with effective Yukawa couplings Fi(φ). In this case, the φ -
dependence of the nucleon masses could also be mediated by a φ -dependence of the QCD scale, that
could for example result from a φ -dependent unified gauge coupling in some GUT theory [184].
The Yukawa couplings (2.14) mediate a long-range interaction by coherent scalar-boson exchange
between the fermions [157]. This interaction can be described by a Yukawa potential between two
fermions of type i and j of spatial distance r

UYukawa(r) =−yi y j
e−mφ r

r
, (2.15)

with couplings yi ≡ dFi/dφ and the dynamical quintessence mass m2
φ

= V ′′(φ). As mφ is typically
of the order H, inside the horizon (mφ r� 1) this interaction is a long-range interaction like gravity.
Therefore, it can be seen as a correction to the Newtonian potential,

U(r) =−Gmi m j
1
r

(
1+8πM2

pl
yi

mi

y j

m j

)
, (2.16)

where the first term in the brackets represents the Newtonian contribution and the second term the
quintessence contribution for an interaction of species i with j. One consequence of the species
dependence is a violation of the equivalence principle. This turns out to put the most stringent bound
on the couplings yi. The acceleration of different materials towards the sun has been shown to be
the same up to one part in 1010 [157] from which a bound for the Yukawa couplings of neutrons and
protons can be derived9 [157]:

yn, yp . 10−24 . (2.17)

This means a coupling of quintessence to baryonic matter has to be highly suppressed. In other words,
the strength of the interaction for baryonic matter is of the order y2

n/m2
n ∼ y2

p/m2
p ∼ (1024GeV)−2 and

thus 10 orders of magnitude weaker than the gravitational coupling G∼ (1019GeV)−2.

Time-variation of masses and couplings: Not only the fermion masses, but basically all “con-
stants” in the Standard model (and beyond) could depend on the quintessence field10. A time-variation
of fundamental gauge couplings can be induced by the term

LGauge =
1
2

Z(φ)Tr(FµνFµν) ,

where Fµν is the field strength tensor of some gauge symmetry [184]. The time-dependent normaliza-
tion can also be expressed by replacing the gauge coupling g according to g2→ g2/Z(φ) which leads
to a time-dependent effective coupling. For the photon field, this leads to a time-varying fine-structure
“constant” αem. Actually, a detection of such a variation could be considered as a possible signal for
quintessence [82]. Furthermore, a variation in the strong coupling (and thereby the QCD scale) could

9Numerically, this bound corresponds to M2
ply

2/m2 < 10−10 where m is the nucleon mass.
10The presence of the non-constant field φ will also alter the classical conservation laws since it is possible that e.g.

energy and momentum is exchanged with the quintessence field. However, the total energy and momentum are still con-
served.
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lead to varying masses of baryons. If the Standard Model is embedded in a GUT theory, it is even
possible to relate the variation of the various gauge couplings, yielding interrelations between the
variation of nucleon masses and the fine-structure constant [184]. Thus quintessence could predict a
relation between the violation of the equivalence principle and the change of αem.
The effect of changing fundamental constants can show up in many different ways, giving the pos-
sibility to extract experimental bounds (see [184]). Besides geonuclear bounds (Oklo, |∆αem(z ≈
0.13)|/αem < 10−7) and astronuclear bounds (decay rates in meteorites, |∆αem(z ≈ 0.45)|/αem <
3 · 10−7), there are measurements from the observation of absorption lines in Quasars (typically
∆αem(z ≈ 2)/αem ∼ −7 · 10−6 with errors of the same order [168, 176]). Furthermore, Big Bang
Nucleosynthesis (BBN) constrains |∆ΛQCD(z ≈ 1010)|/ΛQCD < 10−2 and |∆αem(z ≈ 1010)|/αem <
10−2(10−4) where the latter bound applies if a GUT-motivated relation between αem and ΛQCD is
used [50, 75, 118, 172]. Possible time variations of the electron to proton mass ratio are investigated
in Refs. [119, 158]. The experimental bounds imply that the functions Z(φ) and Fi(φ) may only vary
slightly while φ changes of the order Mpl or more during a Hubble time.

Time-variation of the effective Newton constant: Non-minimal gravitational couplings of the
quintessence field lead to modifications of Einstein gravity [52, 55, 73, 94, 155, 171]. A non-minimal
coupling which is linear in the curvature scalar can be understood as an additional contribution to the
Newton constant in the Einstein-Hilbert action,∫

d4x
√
−g
(
− R

16πG
− f (φ)R+ . . .

)
≡
∫

d4x
√
−g
(
− R

16πGeff
+ . . .

)
,

where
1

16πGeff
=

1
16πG

+ f (φ) .

Hereby Geff is an effective Newton constant which appears in the gravitational force law for systems
which are small compared to the time- and space-scales on which φ(x) varies, analogically to Brans-
Dicke scalar-tensor theories [41]. For a scalar field with time-dependent field value, a non-minimal
coupling which is linear in R thus leads to a time-variation of the effective Newton constant over
cosmological time-scales. Of course, a variation in the strength of gravity is highly restricted by
experiments [155,181]. Laboratory and solar system experiments testing a time variation of G restrict
today’s value to

∣∣Ġeff/Geff
∣∣
today ≤ 10−11yr−1 and an independent constraint from effects induced on

photon trajectories gives
∣∣ f ′2/( f −1/16πG)

∣∣
today≤ 1/500 . The requirement that the expansion time-

scale H−1 during BBN may not deviate by more than 10% from the standard value means that the
value of the gravitational constant during BBN may not have differed by more than 20% from today’s
value [181]. This can be rewritten in the form∣∣∣∣(Geff)BBN− (Geff)today

(Geff)today

∣∣∣∣≤ 0.2 .



Chapter 3

Quantum Effective Action

The effective action contains the complete information about a quantum theory. In this chapter,
approximation techniques for the effective action of a scalar quantum field in Minkowski space-time
are reviewed, which is described by the classical action

S[φ ] =
∫

d4x
(

1
2
(∂φ)2−Vcl(φ)

)
. (3.1)

The extension to curved space-time and the calculation of the contribution to the effective action from
couplings between the scalar field and heavier degrees of freedom is discussed in appendix B.
The quantum field operator Φ(x) and its conjugate ∂x0Φ(x) obey equal-time commutation relations
(units where h̄ = 1 are used hereafter),

[Φ(x0,x),Φ(x0,y)]− = 0 ,

[Φ(x0,x),∂x0Φ(x0,y)]− = ih̄δ
(3)(x−y) , (3.2)

[∂x0Φ(x0,x),∂x0Φ(x0,y)]− = 0 .

A statistical ensemble of physical states in the Hilbert space belonging to the real scalar quantum field
theory can be described by a density matrix ρ . In any orthonormal basis {|n〉} of the Hilbert space,
the density matrix

ρ = ∑
n

pn|n〉〈n| (3.3)

describes a statistical ensemble in which the state |n〉 can be found with probability pn. The expecta-
tion value of an observable described by the operator O is given by

〈O〉= Tr(ρO) . (3.4)

Total conservation of probability implies that Trρ = 1. Since 0≤ pn ≤ 1, it follows that Trρ2 ≤ 1. If
Trρ2 = 1, the ensemble can be described by a pure state1 |ψ〉 with density matrix ρ = |ψ〉〈ψ|. An
example for the latter case is an ensemble in the vacuum state |0〉,

ρ = |0〉〈0| . (3.5)

The vacuum state is defined as the eigenstate of the Hamiltonian

H(x0) =
∫

d3x
(

1
2
(Φ̇(x))2 +

1
2
(∇Φ(x))2 +Vcl(Φ(x))

)
(3.6)

1This can easily be seen by choosing a basis of the Hilbert space which contains the state |ψ〉.
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with lowest energy. For any external classical source J(x) coupled to the quantum field Φ(x) the state
|0〉J is defined as the eigenstate of the Hamiltonian

HJ(x0) =
∫

d3x
(

1
2
(Φ̇(x))2 +

1
2
(∇Φ(x))2 +Vcl(Φ(x))− J(x)Φ(x)

)
(3.7)

with lowest energy. The density matrix of a canonical ensemble in thermal equilibrium2 at tempera-
ture T is known explicitly,

ρ =
1
Z

exp(−βH) , (3.8)

where3 β = 1/(kT ) and Z−1 = Tr exp(−βH). The vacuum ensemble is obtained from the thermal
ensemble in the limit T → 0. Any density matrix which can not be written in the form of eq. (3.5)
or eq. (3.8) characterizes a nonequilibrium ensemble. The computation of the effective action for en-
sembles which are characterized by a Gaussian density matrix at some initial time tinit = 0 is treated in
appendix D, and the generalization to arbitrary density matrices with initial non-Gaussian correlations
can be found in section 7.1.

3.1 1PI Effective Action

In this section, the effective action for ensembles described by the density matrix

ρ = |0〉J J〈0| , (3.9)

including the vacuum state for vanishing external source J(x) = 0, is treated. The expectation value
of the field operator Φ(x) in the presence of the external classical source J(x),

φ(x)≡ Tr(ρ Φ(x)) =
δW [J]
δJ(x)

, (3.10)

can be obtained from the derivative of the generating functional W [J] for connected correlation func-
tions, which is given by the path integral [180]

exp
(

iW [J]
)

=
∫
Dϕ exp

(
iS[ϕ]+ i

∫
d4xJ(x)ϕ(x)

)
. (3.11)

The effective action Γ[φ ] is the Legendre transform of W [J],

Γ[φ ] = W [J]−
∫

d4xJ(x)φ(x) , (3.12)

where the dependence on J is expressed by a dependence on φ using relation (3.10). By construction,
the equation of motion determining the field expectation value φ(x) including all quantum corrections
for vanishing external source is obtained from the stationary point of the effective action,

δΓ[φ ]
δφ(x)

= 0 . (3.13)

2When considering a quantum field theory with conserved global charges, there is an additional contribution from
the corresponding chemical potentials in the equilibrium density matrix. For the real scalar quantum field, there are no
symmetries which could lead to conserved charges, and thus the chemical potential vanishes in thermal equilibrium.

3In the following, units where k = 1 are used.
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The effective action can be calculated using its expansion in terms of “one-particle-irreducible” (1PI)
Feynman diagrams [122],

Γ[φ ] = S[φ ]+
i
2

Tr lnG−1
0 +Γ1[φ ] , (3.14)

iΓ1[φ ] = + + . . .

=
1
8

∫
d4x [−iV (4)

cl (φ(x))]G0(x,x)2 +
1
12

∫
d4x
∫

d4y [−iV ′′′cl (φ(x))]G0(x,y)3[−iV ′′′cl (φ(y))]

+ . . . .

The functional iΓ1[φ ] is equal to the sum of all 1PI Feynman diagrams [122] without external lines.
A Feynman diagram is “one-particle-reducible” (1PR) if it can be separated into two disconnected
parts by cutting one of its internal lines. Conversely, a Feynman diagram is 1PI if it is not 1PR. The
lines of the 1PI Feynman diagrams represent the classical, field-dependent propagator

G−1
0 (x,y) =

−iδ 2S[φ ]
δφ(x)δφ(y)

= i(2x +V ′′cl(φ(x)))δ 4(x− y) , (3.15)

and the field-dependent interaction vertices are given by the third and higher derivatives of the classi-
cal action,

iδ 3S[φ ]
δφ(x1) . . .δφ(x3)

= −iV ′′′cl (φ(x1))δ 4(x1− x2)δ 4(x2− x3) ,

iδ 4S[φ ]
δφ(x1) . . .δφ(x4)

= −iV (4)
cl (φ(x1))δ 4(x1− x2)δ 4(x2− x3)δ 4(x3− x4) ,

(3.16)

and so on.
Each 1PI Feynman diagram contributing to the loop expansion of the effective action formulated
in terms of the field-dependent classical propagator G0(x,y) and the field-dependent classical ver-
tices (3.16) resums an infinite set of Feynman diagrams which are being composed of the free field-
independent propagator

G−1
0 (x,y) = i(2x +V ′′cl(0))δ 4(x− y) ,

and the field-independent vertices which are given by the derivatives iδ kS[φ ]/δφ k|φ=0 (k ≥ 3) of the
classical action evaluated at φ = 0, and an arbitrary number of external lines given by the field value
φ(x). This infinite resummation can be recovered from each 1PI Feynman diagram by replacing the
classical propagator G0(x,y) by its Schwinger-Dyson expansion around the free propagator G0(x,y),

G0(x,y) = G0(x,y)+
∫

d4vG0(x,v)[−iV ′′cl(φ(v))− iV ′′cl(0)]G0(v,y)

= G0(x,y)+
∫

d4vG0(x,v)[−iV ′′cl(φ(v))− iV ′′cl(0)]G0(v,y) +

+
∫

d4v
∫

d4uG0(x,v)[−iV ′′cl(φ(v))− iV ′′cl(0)]G0(v,u)[−iV ′′cl(φ(u))− iV ′′cl(0)]G0(u,y)

+ . . . ,

and performing a Taylor expansion with respect to the field value φ around φ = 0,

V ′′cl(φ(x)) = V ′′cl(0)+V ′′′cl (0)φ(x)+
1
2

V (4)
cl (0)φ(x)2 + . . . , (3.17)
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as well as inserting a similar Taylor expansion of the higher derivatives of the classical potential
into the classical field-dependent vertices (3.16). In general, the effective action can equivalently be
expanded in terms of Feynman diagrams involving the classical propagator and in terms of Feynman
diagrams involving the free propagator. The former possibility has the advantage that only a finite
number of Feynman diagrams contributes to the effective action at each loop order, since no infinite
resummation of external lines is required as in the latter case [122]. Furthermore, the 1PI resummed
loop expansion in terms of the classical propagator has a larger range of applicability. In the case
of spontaneous symmetry breaking, for example, the free propagator is formally ill-defined since
V ′′cl(0) < 0. This is due to an unsuitable choice of the expansion point (here φ = 0) in the field. In
contrast to that, the 1PI resummed loop expansion does not require a Taylor expansion in the field
and is therefore manifestly independent of the expansion point. It is well-defined for all field values φ

where V ′′cl(φ) > 0, and is therefore applicable to theories with spontaneous symmetry breaking [122].
Alternatively to the expansion in 1PI Feynman diagrams, the effective action can be expanded in
powers of space-time derivatives of the field φ(x),

Γ[φ ] =
∫

d4x
(
−Veff (φ)+

Z(φ)
2

(∂φ)2 + . . .

)
. (3.18)

The lowest order of the derivative expansion is called effective potential. The next Lorentz-invariant
order contains two derivatives. Both expansions may be combined to obtain an expansion of the
effective potential in terms of 1PI Feynman diagrams,

Veff (φ) = Vcl(φ)+
1
2

∫ d4k
(2π)4 ln

(
k2 +V ′′cl(φ)

k2

)
+V1(φ) ,

−V1(φ) = + + . . .

=
1
8

[
−V (4)

cl (φ)
][∫ d4k

(2π)4
1

k2 +V ′′cl(φ)

]2

+
1

12
[
−V ′′′cl (φ)

]2 ∫ d4k
(2π)4

∫ d4q
(2π)4

1
(k2 +V ′′cl)(q2 +V ′′cl)((q+ k)2 +V ′′cl)

+ . . . ,

formulated in Euclidean momentum space using the Euclidean classical propagator

G−1
0 (k) = k2 +V ′′cl(φ) .

The momentum integral over ln((k2 +V ′′cl(φ))/k2) in the first line is obtained from the one-loop
contribution i/2Tr lnG−1

0 to the effective action, see eq. (3.14), up to a field-independent constant.
The Feynman diagrams are obtained from the Feynman rules given above transferred to Euclidean
momentum space, i.e. with lines representing the field-dependent classical propagator G0(k) and
field-dependent classical vertices given by −V (k)

cl (φ) (k ≥ 3).
The integrals over the loop momenta contain ultraviolet (UV) divergences. Therefore, it is either
necessary to remove these divergences by a suitable renormalization of the parameters appearing in
the classical action, which is, for a given fixed UV regulator, possible for the renormalizable classical
potential

Vcl(φ) = V0 + µ
3
φ +

1
2

m2
φ

2 +
1
3!

gφ
3 +

1
4!

λφ
4 , (3.19)
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or to embed the quantum theory at a physical UV scale and treat it as an effective field theory. In the
latter case, the loop momenta are confined to be below the UV scale since the theory is only valid
up to this scale, such that there are no UV divergences. Instead, the result explicitly depends on the
energy scale of the UV embedding.

3.2 2PI Effective Action

The 2PI effective action is a straightforward generalization of the expansion of the effective action in
terms of 1PI Feynman diagrams. It can be derived from the generating functional W [J,K] including
local and bilocal external classical sources J(x) and K(x,y),

exp
(

iW [J,K]
)

=
∫
Dϕ exp

(
iS[ϕ]+ iJϕ +

i
2

ϕKϕ

)
, (3.20)

with the short-hand notation

Jϕ =
∫

d4xJ(x)ϕ(x) , ϕKϕ =
∫

d4x
∫

d4yϕ(x)K(x,y)ϕ(y) . (3.21)

The field expectation value and the connected two-point correlation function (“full propagator”) in
the presence of the sources J(x) and K(x,y) can be obtained from the derivatives of the generating
functional W [J,K],

φ(x) ≡ Tr(ρ Φ(x)) =
δW [J,K]

δJ(x)
, (3.22)

G(x,y) ≡ Tr(ρ (Φ(x)−φ(x)(Φ(y)−φ(y)) =
2δW [J,K]
δK(y,x)

−φ(x)φ(y) .

The 2PI effective action is defined as the double Legendre transform of the generating functional,

Γ[φ ,G] = W [J,K]−
∫

d4xJ(x)φ(x)− 1
2

∫
d4x
∫

d4yK(y,x)(G(x,y)+φ(x)φ(y)) . (3.23)

The equations of motion of the field expectation value φ(x) and the full propagator G(x,y) are

δΓ[φ ,G]
δφ(x)

=−J(x)−
∫

d4yK(x,y)φ(y) ,
δΓ[φ ,G]
δG(x,y)

=−1
2

K(x,y) . (3.24)

For vanishing external sources the equations of motion including all quantum corrections are, by
construction, given by the stationarity conditions of the 2PI effective action,

δΓ[φ ,G]
δφ(x)

= 0,
δΓ[φ ,G]
δG(x,y)

= 0 . (3.25)

The 2PI effective action can be calculated using its expansion in terms of “two-particle-irreducible”
(2PI) Feynman diagrams [66],

Γ[φ ,G] = S[φ ]+
i
2

Tr lnG−1 +
i
2

Tr
(
G−1

0 G
)
+Γ2[φ ,G] , (3.26)

iΓ2[φ ,G] = + + . . . (3.27)

=
1
8

∫
d4x [−iV (4)

cl (φ(x))]G(x,x)2 +
1
12

∫
d4x
∫

d4x [−iV ′′′cl (φ(x))]G(x,y)3[−iV ′′′cl (φ(y))]

+ . . . .
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The functional iΓ2[φ ,G] is equal to the sum of all 2PI Feynman diagrams [66] without external lines.
A Feynman diagram is “two-particle-reducible” (2PR) if it can be separated into two disconnected
parts by cutting two of its internal lines. A Feynman diagram is 2PI if it is not 2PR. The field-
dependent interaction vertices of the 2PI Feynman diagrams are given by the third and higher deriva-
tives of the classical action as before, see eq. (3.16). However, in contrast to the 1PI effective action,
the lines of the 2PI Feynman diagrams contributing to the 2PI effective action represent the full prop-
agator G(x,y).
Using the upper parameterization of the 2PI effective action, the equation of motion for the full
propagator G(x,y) is

δΓ[φ ,G]
δG(y,x)

= 0 ⇔ G−1(x,y) = G−1
0 (x,y)− 2iδΓ2[φ ,G]

δG(y,x)
. (3.28)

This equation of motion can be written in the form of a self-consistent Schwinger-Dyson equation,

G−1(x,y) = G−1
0 (x,y)−Π(x,y) , (3.29)

where the self-energy Π(x,y) is obtained from opening one line of each 2PI Feynman diagram con-
tributing to the 2PI functional Γ2[φ ,G],

Π(x,y)≡ 2iδΓ2[φ ,G]
δG(y,x)

. (3.30)

In contrast to the perturbative Schwinger-Dyson equation, the self-energy contains Feynman dia-
grams with lines given by the full propagator G(x,y) which appears also on the left hand side of the
self-consistent Schwinger-Dyson equation. Therefore, the self-consistent Schwinger-Dyson is an im-
plicit, i.e. nonperturbative, and in general non-linear equation for the propagator G(x,y). In spite of
these complications, the self-consistency of the 2PI formalism has some advantages which are indis-
pensable when studying the time-evolution of quantum fields. For example, approximations based
on a loop truncation of the 2PI effective action lead to evolution equations for the two-point func-
tion which are free of the secularity-problem (see appendix D) in contrast to approximations based
on a loop truncation of the 1PI effective action, which break down at late times even for arbitrarily
small values of the coupling constant. Thus, approximations based on a loop truncation of the 2PI
effective action have a larger range of applicability than those based on a loop truncation of the 1PI
effective action. This is similar to the difference between free perturbation theory and 1PI resummed
perturbation theory discussed in the previous section.
For the exact theory, the 2PI effective action evaluated with the field-dependent solution Ḡ[φ ] of the
self-consistent Schwinger-Dyson equation agrees with the 1PI effective action [66],

Γ[φ , Ḡ[φ ]] = Γ[φ ]. (3.31)

Truncations of the 2PI effective action, for example up to a certain loop order, correspond to an
infinite resummation of 1PI Feynman diagrams of all loop orders but with certain restrictions on
their topology [37,66]. Assume the 2PI functional is truncated such that it contains just some finite or
infinite subset of all 2PI diagrams, denoted by iΓtrunc

2 [φ ,G]. Then the propagator in this approximation
is determined by solving the equation of motion

G−1(x,y) = G−1
0 (x,y)−Π

trunc(x,y;G) , (3.32)

where the self-energy Πtrunc(x,y;G) is derived from iΓtrunc
2 [φ ,G], but still contains the propagator

G(x,y), i.e. the equation of motion is still a self-consistent equation [120]. The solution of this equa-
tion for a given φ , denoted by Ḡ[φ ], is therefore called the “full” propagator [120] (even though it is
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not the exact propagator due to the truncation of iΓ2[φ ,G]). An approximation to the exact effective
action is obtained by inserting Ḡ[φ ] into the truncated 2PI effective action, Γappr[φ ] = Γtrunc[φ , Ḡ[φ ]].
In principle, the same approximation can also be obtained via the perturbative expansion of the effec-
tive action in terms of 1PI Feynman diagrams containing the classical propagator. However, even if
just one single Feynman diagram was kept in the 2PI functional iΓtrunc

2 [φ ,G], it yields an approxima-
tion Γappr[φ ] to the effective action which corresponds to a selective infinite series of perturbative 1PI
Feynman diagrams [120] (see also appendix C.1). In the following the superscripts are omitted and
truncations of the 2PI functional are also denoted by iΓ2[φ ,G].

3.3 nPI Effective Action

The nPI effective action is derived from the generating functional W [J1, . . . ,Jn] including external
classical sources Jk(x1, . . . ,xk) for 1≤ k ≤ n,

exp
(

iW [J1, . . . ,Jn]
)

=
∫
Dϕ exp

(
iS[ϕ]+ i

n

∑
k=1

1
k!

J12···k ϕ1ϕ2 · · ·ϕk

)
, (3.33)

with the short-hand notation

J12···k ϕ1ϕ2 · · ·ϕk =
∫

d4x1 · · ·
∫

d4xn J(x1, . . . ,xk)ϕ(x1) · · ·ϕ(xk) . (3.34)

The nPI effective action is obtained by the multiple Legendre transform

Γ[φ ,G,V3, . . . ,Vn] = W [J1, . . . ,Jn]−
n

∑
k=1

J12···k
δW

δJ12···k
. (3.35)

The equations of motion of the field expectation value φ(x), the full propagator G(x,y) and the full
connected vertex functions Vk(x1, . . . ,xk) including all quantum corrections for vanishing external
sources are, by construction, given by the stationarity conditions of the nPI effective action,

δΓ

δφ(x)
= 0,

δΓ

δG(x,y)
= 0,

δΓ

δV12···k
= 0 . (3.36)

For the exact theory, all nPI effective actions with propagator and vertices evaluated at the stationary
point agree with the 1PI effective action in the absence of sources,

Γ[φ ] = Γ[φ , Ḡ] = Γ[φ , Ḡ,V̄3] = . . . = Γ[φ ,G,V̄3, . . . ,V̄n] .

Loop approximations still obey an equivalence hierarchy for vanishing sources [26],

Γ[φ ]1−loop = Γ[φ , Ḡ]1−loop = Γ[φ , Ḡ,V̄3]1−loop = Γ[φ ,G,V̄3,V̄4]1−loop = . . . ,
Γ[φ ,G]2−loop = Γ[φ ,G,V̄3]2−loop = Γ[φ ,G,V̄3,V̄4]2−loop = . . . ,

Γ[φ ,G,V3]3−loop = Γ[φ ,G,V3,V̄4]3−loop = . . . .

4PI Effective Action

As an example, the 4PI effective action Γ[G,V4] = Γ[0,G,0,V4] for a theory with Z2-symmetry φ →
−φ is considered. In this case, the connected two- and four-point functions are given by

G(x1,x2) = G12 =
2δW [K,L]

δK12
, V4(x1,x2,x3,x4) =

4!δW [K,L]
δL1234

−G12G34−G13G24−G14G23 ,
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in terms of the generating functional W [K,L] = W [0,K,0,L]. For λΦ4/4!-theory, the three-loop
approximation of the 4PI effective action reads [27]

Γ[G,V4] =
i
2

Tr lnG−1 +
i
2

Tr
(
G−1

0 G
)
+Γ2[G,V4], (3.37)

iΓ2[G,V4] =

=
1
8

∫
d4x [−iλ ]G(x,x)2 (3.38)

+
1

24

∫
d4x1234

∫
d4y [iA4(x1,x2,x3,x4)]G(x1,y)G(x2,y)G(x3,y)G(x4,y)[−iλ ]

− 1
48

∫
d4x1234

∫
d4y1234 [iA4(x1,x2,x3,x4)]G(x1,y1)G(x2,y2)×

×G(x3,y3)G(x4,y4)[iA4(y1,y2,y3,y4)] ,

where a compact notation d4x1234 = d4x1 · · ·d4x4 is used, and the kernel A4 is defined via

V4(x1,x2,x3,x4) =
∫

d4y1234 G(x1,y1)G(x2,y2)G(x3,y3)G(x4,y4)[iA4(y1,y2,y3,y4)] .

The equation of motion for V4 in the absence of sources is obtained from the stationarity condition,

δΓ[G,V4]
δV4

= 0 ⇔ iA4(x1,x2,x3,x4) =−iλδ
4(x1− x2)δ 4(x1− x3)δ 4(x1− x4) .

Thus, the full 4-point function V̄4(x1,x2,x3,x4) is, in this approximation, given by the classical vertex
with four full propagators attached to it. Inserting the 4-point kernel into the 4PI effective action
yields the corresponding approximation of the 2PI effective action,

iΓ2[G] = iΓ2[G,V̄4] =
1
8

∫
d4x [−iλ ]G(x,x)2 +

1
48

∫
d4x
∫

d4y [−iλ ]G(x,y)4[−iλ ] .

This is precisely the three-loop approximation of the 2PI effective action Γ[G] = Γ[φ = 0,G], i.e.

Γ[G]3−loop = Γ[G,V̄4]3−loop ,

for vanishing sources. According to the equivalence hierarchy, one would expect that only the nPI
effective actions for n ≥ 3 coincide at three-loop level. However, due to the Z2-symmetry all corre-
lation functions involving an odd number of fields vanish, such that 2PI and 3PI also coincide, and
therefore also 2PI and 4PI.



Chapter 4

Quantum Corrections in Quintessence
Models

Quintessence models admitting tracking solutions [169] feature attractors in phase-space which wipe
out the dependence on the initial conditions of the field in the early universe, as discussed in chapter 2.
Furthermore, tracking solutions exhibit a dynamical self-adjusting mechanism yielding an extremely
small time-evolving classical mass mφ (t)∼ H(t) of the quintessence field of the order of the Hubble
parameter. The smallness of mφ (t) inhibits the growth of inhomogeneities of the scalar field [157] and
makes quintessence a viable dark energy candidate. In this context, it is an important question whether
the self-adjusting mechanism for the classical mass and its smallness are robust under quantum cor-
rections [22,43,83,102,132,152,159,171]. The long-standing “cosmological constant problem” can
be reformulated as the problem to determine the overall normalization of the effective quintessence
potential. Apart from that, quantum corrections can influence the dynamics by distorting the shape
or the flatness (i.e. the derivatives) of the scalar potential Vcl(φ)→ Veff (φ). Additionally, quantum
corrections can induce non-minimal gravitational couplings between the field φ and the curvature
scalar R, or a non-standard kinetic term.
Note that the fundamental “cosmological constant problem” of quantum field theory is not addressed
in this work. Since quantum field theory together with classical gravity determines the effective
potential only up to a constant, it will always be assumed here that the freedom to shift the potential
by an arbitrary constant, Veff (φ)→ Veff (φ)+ const, is used in such a way that it yields the observed
value for dark energy in the present cosmological epoch. However, as mentioned above, even with
this assumption there remain quantum corrections to the dynamics of the quintessence field which
can be addressed by quantum field theory. In this chapter, these impacts of quantum fluctuations on
the dynamics of a light quintessence field from three different sources are investigated. These sources
are self-couplings, couplings to Standard Model particles and couplings to gravity.
In section 4.1, quantum corrections to the shape of the scalar potential originating from the quint-
essence self-couplings are investigated in the framework of effective field theory. In this framework,
it is assumed that the quintessence field arises from a high-energy theory, which is governed by a UV-
scale of the order of the GUT or Planck scales. This is possible, since the self-couplings of the dark
energy field, although typically non-renormalizable, are Planck-suppressed in tracking quintessence
models [9, 10, 34, 157, 169, 182]. Suitable approximations of the effective action are discussed, and
previous studies [43,83] are extended by identifying and resumming the relevant contributions, which
explicitly depend on the UV-scale. For two exemplary classes of models the resulting effective po-
tential is used to study their robustness.
In section 4.2, quantum corrections induced by couplings between the quintessence field and Stan-
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dard Model particles are investigated. The low-energy effective action is studied, which contains the
quintessence-field-dependent contributions of the Standard Model fields to the vacuum energy [20,
81]. Even under relatively conservative assumptions, these contributions dominate the effective po-
tential unless the couplings are tiny [20,81]. Upper bounds on the couplings of a tracker quintessence
field are quantified and translated into upper bounds for time-variations of Standard Model particle
masses on cosmological time-scales caused by these couplings, as well as into upper bounds on the
coupling strength to a long-range fifth force mediated by the quintessence field. These are linked
to potentially observable effects like a variation of the electron to proton mass ratio [119, 158] over
cosmological time-scales or tiny apparent violations of the equivalence principle [172, 184].
In section 4.3 it is investigated which kinds of non-minimal gravitational couplings are induced by
quantum fluctuations of the dark energy scalar field. Gravitational couplings of the quintessence field
are a crucial property of dark energy. The minimal gravitational coupling contained in the covariant
derivative in the kinetic term of the quintessence action and the covariant integration measure are re-
quired due to general coordinate invariance. Non-minimal gravitational couplings between the rolling
scalar field and the curvature scalar lead to a time-variation of the effective Newton constant over cos-
mological time-scales. This is constrained observationally by solar system tests of gravity and by Big
Bang Nucleosynthesis [39, 52, 53, 55, 73, 94, 101, 155]. The non-minimal couplings which are gener-
ated radiatively for a tracker quintessence field in one-loop approximation are derived and compared
to the observational bounds. Corrections to the kinetic term are also discussed in section 4.3.

4.1 Quantum Corrections from Self-Interactions

If the light scalar field responsible for dark energy has itself fluctuations described by quantum field
theory, quantum corrections induced by its self-interactions do contribute to the quantum effective
action. In this section, this contribution is investigated. Typical potentials used in the context of
quintessence contain non-renormalizable self-couplings, involving e.g. exponentials of the field,
Vcl(φ) = V0 exp

(
−λφ/Mpl

)
[9, 10, 34, 157, 169, 182]. These enter the effective action via the field-

dependent vertices (see eq. (3.16))

− iV (k)
cl (φ) =−iVcl(φ)/Mk, M = Mpl/λ ∼Mpl

√
Ωde/3 , (4.1)

which are suppressed by a scale M between the GUT and the Planck scale. Such couplings could
arise from an effective theory by integrating out some unknown high-energy degrees of freedom at
an ultraviolet scale Λ∼O(M). The effective field theory is only valid up to this physical embedding
scale Λ, and the quantum effective action explicitly depends on the value of Λ. Ultraviolet divergent
contributions to the effective action lead to marginal dependence ∝ lnΛ (for logarithmic divergences)
or relevant dependence ∝ Λn (e.g. n = 2 for quadratic divergences) on the embedding scale Λ. In the
simplest case, Λ can be imagined as a cutoff for the momentum cycling in the loops of the Feynman
diagrams.
It turns out that it is useful to keep track of the dependence on the suppression scale M of the vertices
and the embedding scale Λ separately, although they are closely related in a way depending on the
unknown underlying high-energy theory. Since the suppression scale M is of the order of the GUT or
the Planck scale, the same is possibly true for Λ. Because unknown quantum gravity effects dominate
above the Planck scale, an upper bound Λ . Mpl is assumed. In order to establish a meaningful
approximation, it is desirable to resum all relevant contributions proportional to powers of

Λ
2/M2 ∼O(1) ,
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whereas the tiny mass m2
φ
∼ V ′′(φ) of the quintessence field, which is typically of the order of the

Hubble scale, admits a perturbative expansion in powers of

V ′′(φ)/M2 ∼V (φ)/M4 ≪ 1 .

In section 4.1.1 power counting rules for tracker potentials within effective field theory are derived
and used to identify the dependence of Feynman diagrams on V (φ), M and Λ within this scheme.
In section 4.1.2 an approximation to the effective action which resums the field-dependent relevant
contributions at leading order in V (φ)/M4 is discussed. In section 4.1.3 the same approximation
is applied to a quantum field theory in 1+1 space-time dimensions where the effective potential is
known independently due to the symmetry properties of the theory, and it is demonstrated that the
resummation introduced in section 4.1.2 yields concordant results. In section 4.1.4 the robustness
of the prototype tracker potentials, namely the exponential and the inverse power-law potential, is
studied.

4.1.1 Effective Field Theory for Tracker Potentials

An effective theory describes the dynamics of a system by reducing it to effective degrees of freedom
with effective interactions, which are not fundamental, but only exist up to a certain energy scale Λ.
Above this ultraviolet scale Λ of the effective theory, it has to be replaced by another (effective or
fundamental) theory.
An example for an effective field theory is the Fermi model of β -decay [97], based on an effective
point-like 4-fermion interaction between the electron, the neutrino, the neutron (down quark) and the
proton (up quark). The interaction strength is given by the Fermi constant GF = 1.166 ·10−5GeV−2.
The non-renormalizable effective interaction has to be replaced by the electroweak W -boson exchange
at the UV scale of the order Λ∼ 1/

√
GF .

An example for a loop calculation within an effective field theory is provided by the Nambu–Jona-
Lasinio model [149], which features a 4-fermion self-interaction which is invariant under the chiral
transformation ψ → eiαγ5ψ ,

L= ψiγµ
∂µψ +

G
4
[
(ψψ)2− (ψγ5ψ)2] .

Similar to the Fermi model, it is an effective field theory with UV scale Λ∼ 1/
√

G. If the interaction
strength is stronger than a critical value, the chiral symmetry is broken dynamically, such that the vac-
uum expectation value 〈ψψ〉 ≡ −2M/G is non-zero. The scale M of the dynamical chiral symmetry
breaking is determined by a self-consistent Schwinger-Dyson equation (gap equation) which involves
a one-loop “tadpole” Feynman integral. If the UV scale of the theory is implemented by a Lorentz
invariant cutoff for the Euclidean loop momentum, the gap equation reads [149]

M = = 2GM
∫

k2<Λ2

d4k
(2π)4

1
k2 +M2 = 2GM

Λ2

16π2 f1(M2/Λ
2) , (4.2)

with f1(M2/Λ2) = 1+ M2

Λ2 ln
(

M2

Λ2+M2

)
, f1(0) = 1. It has a non-zero solution M if G > Gcrit = 8π2/Λ2.

Loop integrals in effective field theory

In order to resum the relevant contributions to the quantum effective action for the scalar field de-
scribed by the action (3.1) with a tracker potential Vcl(φ), it is important to identify the dependence



26 4. Quantum Corrections in Quintessence Models

on the embedding scale Λ. In analogy to the Nambu–Jona-Lasinio model, the embedding scale is
assumed to cut off the ultraviolet divergences in the loop integrals. However, the form of this cut-
off depends on the unknown degrees of freedom at the embedding scale. In general, this lack of
knowledge can be captured by a form factor FΛ(k), which parameterizes the cutoff-function. For our
purpose, it is not required to know this form factor in detail, but it is sufficient to know its asymptotic
behaviour,

FΛ(k) =
{

1 for |kµ | � Λ ,
0 for |kµ | � Λ .

(4.3)

The form factor modifies the high-momentum contribution of the loop integrals, accomplished by
modifying the integration measure1

d4k→ d4k FΛ(k)≡ d4
Λk .

A hard momentum cutoff in Euclidean momentum space corresponds to a form factor FΛ(k) = θ(k2−
Λ2). As an illustrative example, the two-loop contributions to the effective action (see eq. (3.14)) are
considered. The same parameterization of the quadratically divergent Feynman integral (“tadpole”)
is used as in eq. (4.2), ∫ d4

Λ
k

(2π)4
1

k2 +m2 =
Λ2

16π2 f1(m2/Λ
2) , (4.4)

where the shape of the dimensionless function f1(x) depends on the form factor, but, as above, is
of order one for m2 � Λ2, i.e. f1(x) ∼ O(1) for 0 ≤ x� 1. Similarly, the following quadratically
divergent two-loop Feynman integral (“setting sun”) is parameterized as∫ d4

Λ
k

(2π)4

∫ d4
Λ
q

(2π)4
1

(k2 +m2)(q2 +m2)((q+ k)2 +m2)
=

Λ2

(16π2)2 f2(m2/Λ
2) ,

where the dimensionless function f2(x) has been defined such that f2(x)∼O(1) for 0≤ x� 1. With
these definitions, the two-loop contributions to the effective action in the limit m2

φ
= V ′′cl(φ) ≪ Λ2

can be evaluated,

=
1
8

V (4)
cl (φ)

[∫ d4
Λ
k

(2π)4
1

k2 +V ′′cl(φ)

]2

(4.5)

=
1
8

V (4)
cl (φ)

[
Λ2

16π2 f1(V ′′cl/Λ
2)
]2

≈ 1
8

V (4)
cl (φ)

[
Λ2

16π2 f1(0)
]2

= Vcl(φ) ·

{
λ 4

8M4
pl

[
Λ2

16π2 f1(0)
]2
}

for Vcl(φ) = V0 exp(−λφ/Mpl) ,

=
1

12
[
V ′′′cl (φ)

]2 ∫∫ d4
Λ
kd4

Λ
q

(2π)8
1

(k2+V ′′cl)(q2+V ′′cl)((q+k)2+V ′′cl)
(4.6)

=
1
12
[
V ′′′cl (φ)

]2 Λ2

(16π2)2 f2(V ′′cl/Λ
2) ≈ 1

12
[
V ′′′cl (φ)

]2 Λ2

(16π2)2 f2(0)

= Vcl(φ) · Vcl(φ)
M4

pl︸ ︷︷ ︸
10−120

·

{
λ 6

12M2
pl

Λ2

(16π2)2 f2(0)

}
for Vcl(φ) = V0 exp(−λφ/Mpl) .

1The most general form factor FΛ(k1, . . . ,kn) for overlapping loop integrals can depend on all loop momenta k1,. . . ,kn.
Here, it is assumed for simplicity that FΛ(k1, . . . ,kn) = FΛ(k1)FΛ(k2) · · ·FΛ(kn). This choice is sufficient to identify the
relevant contributions. The results below do not depend on this assumption.
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As an example, the two diagrams are also evaluated for an exponential potential. First it can be ob-
served that both are proportional to the classical potential Vcl(φ) in this case. Second, it is emphasized
that the second diagram is suppressed with respect to the first one by a relative factor

Vcl(φ)/M4
pl ≈ ρφ/M4

pl ≈ 10−120 .

The value 10−120 applies for the present epoch. Even if the quintessence energy density was much
larger in cosmic history, the ratio ρφ (t)/M4

pl ≪ 1 is a very small number2. It turns out that the
suppression of the non-local diagram with two vertices with respect to the local diagram with one
vertex is a result which can be generalized for tracker potentials.

Power counting rules for tracker potentials

In order to identify proper approximations for quintessence tracker potentials, it is necessary to esti-
mate the orders of magnitude of the contributions to the effective action. Since these involve deriva-
tives of the (classical) quintessence potential, it is desirable to set up a power counting rule giving an
estimate of their order of magnitude.
For tracker quintessence potentials, it turns out that the scale height M yields such an estimate,

V (k)
cl (φ)∼Vcl(φ)/Mk . (4.7)

It is an exact relation for exponential potentials, see eq. (4.1), where Vcl(φ) is of the order of the
critical energy density ∼M2

plH
2 and M is between the GUT and the Planck scales. For inverse power

law potentials, the scale height depends on the field value, M∼ φ . However, during the present epoch,
the field value is also of the order of the Planck scale.
By dimensional analysis, a 2PI Feynman diagram with V vertices and L loops can, within effective
field theory, be estimated with the upper power counting rule. For example, an extension of the upper
analysis leads to

Diagrams with V = 1 ∼ Vcl(φ) ·
{

Λ
2/M2}L

,

Diagrams with V = 2 ∼ Vcl(φ) · Vcl(φ)
M4 ·

{
Λ

2/M2}L−1
.

In general, only the maximally divergent L-loop diagrams yield relevant contributions, which are not
suppressed by powers of V (φ)/M4

pl ≪ 1 compared to the classical potential. These diagrams are
precisely those which only involve “tadpole” integrals, i.e. those with one vertex. Apart from the
“double bubble” diagram discussed above, all higher-dimensional operators suppressed by powers of
M yield a “multi bubble” diagram with one vertex.
Motivated by the above estimate, it will be shown in the next section that, for tracker potentials,
the leading quantum correction to the classical potential can be obtained in terms of 2PI Feynman
diagrams with V = 1 but with arbitrarily high number of loops. The resummation of all diagrams
with V = 1 is accomplished by a generalized Hartree-Fock approximation of the 2PI effective action.

4.1.2 Hartree-Fock Approximation

Within the framework of the 2PI effective action the Hartree-Fock approximation consists of a trun-
cation of the 2PI functional iΓ2[φ ,G] containing all local 2PI Feynman diagrams [66]. In the context

2An upper bound ρφ < ρmax for the energy density of the quintessence field is assumed, where ρmax is the maximal
energy density at the end of the inflation, ρmax ∼M2

plH
2
inf ∼ 10−8M4

pl(Hinf /1014GeV)2.
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of λΦ4-theory, there is only a single local 2PI Feynman diagram, the “double bubble” diagram which
is the first contribution in eq. (3.28). In general, a 2PI Feynman diagram F contained in iΓ2[φ ,G]
is “local” if its contribution to the 2PI self-energy Π(x,y), see eq. (3.30), can be written in the form
2δF/δG(x,y) = −iΠloc(x)δ 4(x− y), i.e. it is only supported at coincident space-time points. For
a general scalar potential Vcl(φ) of interest here, there are infinitely many local 2PI Feynman dia-
grams, which are precisely given by all diagrams with one vertex (“multi-bubble” diagrams). The 2PI
effective action in Hartree-Fock approximation is thus given by

iΓ2[φ ,G] =
∞

∑
L=2

1
2LL!

∫
d4x(−iV (2L)

cl (φ(x)))G(x,x)L , (4.8)

where the L = 2 contribution is the “double-bubble”. The factor 1/2LL! takes into account the correct
symmetry factor for the “multi-bubble” contributions, which contain a 2L-vertex.
The self-consistent Schwinger-Dyson equation for the full propagator G(x,y) in Hartree-Fock ap-
proximation follows from the stationarity condition of the 2PI action, see eqs. (3.29,3.30),

G−1(x,y) = G−1
0 (x,y)− 2iδΓ2[φ ,G]

δG(y,x)
(4.9)

= i(2x +V ′′cl(φ(x))δ 4(x− y) −
∞

∑
L=2

L
2LL!

(−iV (2L)
cl (φ(x)))G(x,x)L−1

δ
4(x− y) .

Due to the locality of the self-energy, it is possible to make the Hartree-Fock ansatz

G−1(x,y) = i(2x +M2
eff (x))δ

4(x− y) , (4.10)

for which the full propagator in Hartree-Fock approximation is parameterized by a local effective
mass Meff (x). The upper self-consistent Schwinger-Dyson equation is indeed solved by a propagator
of this form3, which reduces to a self-consistent “gap equation” for the effective mass M2

eff (x),

M2
eff (x) = V ′′cl(φ(x))+

∞

∑
L=2

L
2LL!

V (2L)
cl (φ(x))G(x,x)L−1 .

This equation can equivalently be written in a compact form with an exponential derivative operator,

M2
eff (x) = exp

[
1
2

G(x,x)
d2

dφ 2

]
V ′′cl(φ(x)) . (4.11)

The gap-equation is still a self-consistent equation for M2
eff (x), since the effective mass enters also in

the propagator G(x,x) on the right-hand side. The effective potential is obtained from the effective
mass in the limit of a space-time independent field value (see below). In this limit the effective mass
is also space-time independent, and the self-consistency of the gap equation can explicitly be seen by
switching to Euclidean momentum space,

M2
eff = exp

[
1
2

(∫ d4
Λ
k

(2π)4
1

k2 +M2
eff

)
d2

dφ 2

]
V ′′cl(φ) .

3Note that this is due to the structure of the Hartree-Fock approximation. For truncations containing non-local dia-
grams, one indeed has to solve the equation in the complete x− y plane if the self-consistency should not be sacrificed.
This is important for nonequilibrium quantum fields discussed in chapter 6 and also for the renormalizability of general
approximations based on the 2PI formalism, see appendix E.
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In order to obtain the effective potential Veff (φ) at some range of field values φ , the gap equation has
to be solved for these values of φ . Since the solution depends on φ , it is denoted by Meff (φ), and
determined by the requirement

M2
eff (φ) = exp

[
1
2

(∫ d4
Λ
k

(2π)4
1

k2 +m2

)
d2

dφ 2

]
V ′′cl(φ)

∣∣∣∣∣
m2=M2

eff (φ)

. (4.12)

More generally, for a space-time dependent field φ(x), the solution of the gap equation (4.11) is a
function of the space-time point x and a functional of the field φ(·) which is denoted by Meff (x;φ). It
is determined by the requirement

M2
eff (x;φ) = exp

[
1
2

G(x,x)
d2

dφ 2

]
V ′′cl(φ(x))

∣∣∣∣∣
G(x,x)=G(x,x ;M2

eff (· ;φ))
, (4.13)

where, for any function M2(x), G
(
x,y ;M2(·)

)
is the solution of the equation(

2x +M2(x)
)

G
(
x,y ;M2(·)

)
=−iδ 4(x− y) .

The Hartree-Fock approximation to the effective action Γhf [φ ] follows from inserting the field-depen-

dent full propagator Ḡ[φ ](x,y)≡G
(

x,y ;M2
eff (· ;φ)

)
determined by the solution M2

eff (x;φ) of the gap
equation into the 2PI effective action (see section 3.2, [66]). Up to a field-independent constant, the
effective action is obtained from eqs. (4.8, 3.26, 4.10),

Γhf [φ ] = Γ[φ , Ḡ[φ ]]

=
∫

d4x
(

1
2
(∂φ)2−Vhf (φ)

)
+

i
2

Tr
[

ln
(
2x +M2

eff (x;φ)
)
− iM2

eff (x;φ)Ḡ[φ ]
]

,

where

Vhf (φ(x))≡ exp
[

1
2

Ḡ(x,x;φ)
d2

dφ 2

]
Vcl(φ(x)) . (4.14)

The effective potential in Hartree-Fock approximation is the lowest order contribution to the derivative
expansion of Γhf [φ ],

V hf
eff (φ) = Vhf (φ)+

1
2

∫ d4
Λ
k

(2π)4

[
ln

(
k2 +M2

eff (φ)

k2

)
−

M2
eff (φ)

k2 +M2
eff (φ)

]
, (4.15)

where Vhf (φ) can be written as

Vhf (φ) = exp
[

1
2

(∫ d4
Λ
k

(2π)4
1

k2 +m2

)
d2

dφ 2

]
Vcl(φ)

∣∣∣∣∣
m2=M2

eff (φ)

= V (φ ,m2)
∣∣
m2=M2

eff (φ) .

In order to simplify the notation, an auxiliary potential has been introduced,

V (φ ,m2)≡ exp
[

1
2

(∫ d4
Λ
k

(2π)4
1

k2 +m2

)
d2

dφ 2

]
Vcl(φ) , (4.16)

which is obtained from applying the exponential derivative operator containing a propagator with an
auxiliary mass m2 to the classical potential Vcl(φ). The gap equation for M2

eff (φ) can also be expressed
via the auxiliary potential,

M2
eff (φ) =

∂ 2V (φ ,m2)
∂φ 2

∣∣∣∣
m2=M2

eff (φ)
. (4.17)
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Resummed perturbation theory

In order to check the validity of the Hartree-Fock approximation, it is necessary to have a formalism
available which allows to estimate the corrections. Since the Hartree-Fock approximation is based
on the intrinsically nonperturbative self-consistent gap equation derived from the 2PI effective action,
the calculation of corrections to this approximation is not straightforward as in perturbation theory.
Instead, the exact propagator has to be expanded around the self-consistently determined Hartree-
Fock propagator, similar to the expansion of the full propagator around the classical propagator (see
appendix C.1), in order to obtain an expansion of the exact effective action around the Hartree-Fock
result. In appendix C.2, it is shown that this yields an expansion of the exact effective action in terms
of tadpole-free 1PI Feynman diagrams with dressed propagators and dressed vertices. Applying the
result from eq. (C.9) to the lowest order of the derivative expansion of the effective action yields a
corresponding expansion of the exact effective potential V exact

eff (φ) in terms of 1PI Feynman diagrams
without tadpoles,

V exact
eff (φ) = V hf

eff (φ)+V notad
eff (φ) (4.18)

−V notad
eff (φ) = + . . .

=
1
12

[
−V (3)(φ)

]2 ∫ d4
Λ
k

(2π)4

∫ d4
Λ
q

(2π)4
1

(k2 +V (2))(q2 +V (2))((q+ k)2 +V (2))
+ . . . ,

where V hf
eff (φ) is the effective potential in Hartree-Fock approximation as given in eq. (4.15), and

−V notad
eff (φ) is the sum of all 1PI Feynman diagrams without tadpoles with lines representing the

field-dependent dressed propagator in Euclidean momentum space

G−1
hf (k) = k2 +M2

eff (φ) = k2 +V (2)(φ) ,

determined self-consistently by the solution of the gap equation (4.12), and field-dependent dressed
vertices given by the derivatives of the auxiliary potential (4.16) evaluated with auxiliary mass m2 =
M2

eff (φ),

− iV (k)(φ)≡ −i∂ kV (φ ,m2)
∂φ k

∣∣∣∣
m2=M2

eff (φ)
, (4.19)

for k ≥ 3. The gap equation (4.12) can be rewritten as M2
eff (φ) = V (2)(φ) (see also eq. 4.17), which

was already used above. A Feynman diagram contains a “tadpole” if it contains at least one line
which begins and ends at the same vertex. The effective potential expanded in terms of the dressed
propagator and vertices defined above contains only Feynman diagrams which have no “tadpoles”.

Hartree-Fock approximation for tracker potentials

The gap equation and the effective potential in Hartree-Fock approximation are now evaluated within
effective field theory for a tracker potential characterized by the power-counting rules discussed in
section 4.1.1. The dependence of the effective mass on the UV embedding scale Λ is obtained by
inserting eq. (4.4) into the gap equation (4.12),

M2
eff (φ) = exp

[
1
2

(
Λ2

16π2 f1(m2/Λ
2)
)

d2

dφ 2

]
V ′′cl(φ)

∣∣∣∣∣
m2=M2

eff (φ)

.
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In the limit M2
eff (φ)� Λ2, the gap equation has an approximate solution

M2
eff (φ)' exp

[
Λ2

32π2 f1(0)
d2

dφ 2

]
V ′′cl(φ) ·

{
1+O

(
M2

eff

Λ2

)}
.

This solution can be trusted for all values of φ where the approximate solution fulfills the assumption
M2

eff (φ)� Λ2. Within the range of field values where this is the case, the approximate solution of the
gap equation can be used in order to obtain a corresponding approximation of the effective potential
using eq. (4.15). The momentum integral in the second term in eq. (4.15) is only logarithmically
divergent, since the quadratic divergences of the two contributions to the integrand cancel (this can
be verified using ln(1+x)≈ x). Therefore, it has a marginal dependence on the UV scale Λ, and may
be parameterized in the form∫ d4

Λ
k

(2π)4

[
ln
(

k2 +m2

k2

)
− m2

k2 +m2

]
=

m4

16π2 f0(m2/Λ
2) , (4.20)

where f0(x) ∼ O(1) (for 0 ≤ x� 1) contains a logarithmic dependence on Λ. Thus, all relevant
contributions are captured by the first term in eq. (4.15). Using that M2

eff (φ)� Λ, one finally obtains
the effective potential in leading order in M2

eff /Λ2 and Veff /M̃4 from eq (4.15),

Veff (φ)' exp
[

Λ2

32π2 f1(0)
d2

dφ 2

]
Vcl(φ) ·

{
1+O

(
M2

eff

Λ2

)
+O

(
Veff

M̃4

)}
, (4.21)

where, for simplicity, the effective potential is denoted by Veff (φ) ≡ V hf
eff (φ) unless otherwise stated.

Here, the suppression scale M̃ is defined as the scale height of the effective potential Veff (φ),

V (k)
eff (φ)∼Veff (φ)/M̃k , (4.22)

analogously to the scale height M of the classical potential Vcl(φ). In section 4.1.4, it will be shown
that the effective potentials obtained for classical tracker potentials indeed fulfill a relation of this type.
The corrections of the order M2

eff /Λ2 are inherited from the corrections to the approximate solution
of the gap equation, and the corrections of order Veff /M̃4 originate from the marginal contributions to
the effective potential which have been neglected. The latter can be seen in the following way. The
marginal contributions can be written in the form

δV marginal
eff (φ) =

1
2

M4
eff (φ)

16π2 f (M2
eff (φ)/Λ

2) ,

where f (x)≡ f0(x)+δ f (x)∼O(1) (for 0≤ x� 1) contains a logarithmic Λ-dependence. Here, f0(x)
is the marginal contribution to the effective potential in Hartree-Fock approximation (see eqs. (4.15,
4.20)), and δ f (x) stands for marginal corrections to the Hartree-Fock approximation (see also below).
The power counting rule (4.22) for the effective tracker potential directly yields that V ′′eff ∼ Veff /M̃2,
i.e. the order of magnitude of the effective mass can be estimated as M2

eff ∼ Veff /M̃2 at leading

order in M2
eff /Λ2. Thus, the marginal corrections δV marginal

eff ∼M4
eff · lnΛ ∼ [Veff · (Veff /M̃4) · lnΛ] are

suppressed by a factor of the order Veff /M̃4 compared to the leading contribution to the effective
potential.
Using the resummed perturbation theory, the order of magnitude of corrections to the Hartree-Fock
effective potential can also be estimated. The first correction comes from the non-local tadpole-free
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1PI Feynman diagrams with two vertices connected by l + 1 lines (l ≥ 2). Within effective field
theory, their contribution is of the order (see eq. (4.6))

δV nonloc
eff (φ) =

∞

∑
l=2

1
2(l +1)!

[
V (l+1)(φ)

]2 Λ2(l−1)

(16π2)l fl(M2
eff (φ)/Λ

2) ,

where again fl(x) ∼ O(1) (for 0 ≤ x� 1). Using the upper power counting rule (4.22), the dressed
vertices (4.19) for the effective potential (4.21) can be estimated as V (l+1) ∼ Veff /M̃l+1, such that
[V (l+1)]2Λ2(l−1) ∼ Veff ·Veff /M̃4 · (Λ/M̃)2(l−1). Thus, δV nonloc

eff ∼ Veff ·Veff /M̃4 ·F(Λ/M̃), is also sup-
pressed by the tiny factor of order Veff /M̃4 ≪ 1, where F(Λ/M̃) contains a resummation of the
subleading relevant contributions ∼ (Λ/M̃)2(l−1) fl(0)/[2(l +1)!(16π2)l] .O(1) (for Λ . M̃).
In summary, the approximation to the effective potential from eq. (4.21) can be used in the range of
field values φ where the conditions

M2
eff (φ)� Λ

2 . M̃2 and Veff (φ)� M̃4

are fulfilled. For a quintessence tracker potential, both conditions are in fact identical if the UV
embedding scale and the suppression scale of the non-renormalizable interactions are of the same
order (as expected for an effective field theory) Λ ∼ M̃, since M2

eff ∼ Veff /M̃2 at leading order in
M2

eff /Λ2. Furthermore, for exponential tracker potentials, the suppression scale M̃ ∼M . Mpl turns
out to be close to the Planck scale (see section 4.1.4), such that the corrections to the leading effective
potential in eq. (4.21) within the effective field theory framework are indeed of the order4 Veff /M4

pl ∼
10−120 during the present cosmological epoch. Clearly, the corrections are negligible even if some of
the upper assumptions are relaxed, for example if a UV embedding scale Λ�Mpl is allowed, as will
be discussed in detail in section 4.1.4.
For simplicity, it may be assumed that the function f1(x) appearing in the parameterization of the
“tadpole” Feynman integral in eq. (4.4) is normalized to f1(0) = ±1. This can be achieved without
loss of generality by rescaling the precise value of Λ by a factor of order one. For generality, the
possibility that f1(0) can be positive or negative has been included, for the following reason. Since
the Feynman integral (4.4) has a relevant dependence on Λ, the value of the integral is dominated by
contributions close to the UV embedding scale, at which the unknown underlying theory becomes
important. Thus, although the integral (4.4) is of the order of magnitude ∼ Λ2, the precise numerical
value will strongly depend on the form factor FΛ(k). Therefore, due to the unknown shape of the form
factor, it cannot be decided a priori whether f1(x) is positive or negative, even though the integrand
without the form factor is positive definite. There are also similar examples like the Casimir effect,
where the sign of the renormalized 0-0-component of the energy-momentum tensor can be positive
or negative, depending e.g. on boundary conditions and geometry, even though the unrenormalized
contribution is positive definite [35].
Finally, an approximation of the effective potential is obtained, which resums all relevant contribu-
tions for quintessence tracker potentials (which are characterized by the power-counting rule (4.7)),
and which explicitly depends on the UV embedding scale Λ,

Veff (φ)' exp
[
± Λ2

32π2
d2

dφ 2

]
Vcl(φ) . (4.23)

The corrections have been estimated to be of the order M2
eff (φ)/Λ2 and Veff (φ)/M̃4. This result can

be compared to the one-loop analysis of Refs. [43, 83]. The one-loop result can be recovered by

4 As mentioned in the beginning, it is assumed here that the freedom to shift the effective potential by a constant is used
to match the present quintessence energy density with the observed value today.



4.1. Self-Interactions 33

inserting the Taylor-expansion exp[c ·∂ 2] = ∑
∞
L=0 cL∂ 2L/L! of the exponential derivative operator up

to first order,

V1−loop(φ)'
[

1± Λ2

32π2
d2

dφ 2

]
Vcl(φ) .

For tracker potentials obeying the power counting rule (4.7), the higher-order contributions which are
resummed by the Taylor-series of the exponential derivative operator are proportional to

Λ
2L/M2L, L = 2,3,4, . . . .

These relevant corrections are unsuppressed for an effective theory where the UV embedding scale
Λ is of the order of the suppression scale M of non-renormalizable interactions, and therefore it
is important to take them into account. As discussed above, this is accomplished by the effective
potential (4.23) in Hartree-Fock approximation which is valid as long as the effective quintessence
mass and potential energy are much smaller than Λ∼M . Mpl.
It should be mentioned that the upper results are valid under the assumption that the embedding scale
Λ itself does not depend (strongly) on the value of the scalar field φ . This is a reasonable assumption
if the UV completion is generically connected to quantum gravity effects, in which case Λ ∼ Mpl
can be expected [58, 65], which is also compatible with M ∼ Mpl. On the other hand, in principle,
the UV embedding scale Λ might depend on the field value φ in a way which is specific for the UV
completion. If, for example, the quintessence field influences the size R(φ) of a compactified extra-
dimension, and if the embedding scale Λ ∝ R−1(φ) corresponds to the compactification scale of this
extra-dimension, it might depend on φ . The parametric dependence of Λ on φ thus has to be studied
case-by-case for any possible UV completion and will depend on the details of the embedding. In
order to be able to investigate the robustness of tracker potentials in a model-independent way, the
analysis is restricted to those classes of UV completions where the field-dependence of the embedding
scale is negligible compared to the field-dependence of the classical tracker potential in the Hartree-
Fock approximated effective potential (4.23). An analogous restriction has also been made in the
one-loop analysis of Refs. [43, 83].

4.1.3 Manifestly finite Effective Potential in 1+1 Dimensions

Before studying the robustness of quintessence potentials using the generalized Hartree-Fock approx-
imation, it will be applied to quantum field theory in 1+1 space-time dimensions in order to check
whether the approximation introduced above yields correct results in a case where the exact effec-
tive potential is known independently due to the symmetry properties of the theory. Furthermore,
it turns out that the generalized Hartree-Fock approximation can be used efficiently to compute the
renormalized effective potential for a scalar quantum field in 1+1 dimensions with non-derivative
self-interactions.
The Hartree-Fock approximation discussed in section 4.1.2 can be extended in a straightforward way
to d-dimensional quantum field theory described by the classical action

S[φ ] =
∫

ddx
(

1
2
(∂φ)2−Vcl(φ)

)
. (4.24)

Since the action is dimensionless (h̄ = 1 in natural units), the field has mass-dimension [φ ] = (d−
2)/2. The expansion of the effective action in terms of 1PI or 2PI diagrams described in sections 3.1
and 3.2, respectively, can be transferred to d dimensions by replacing all 4-dimensional integrals in
position and momentum space by d-dimensional integrals, d4x→ ddx, d4k/(2π)4→ ddk/(2π)d , as
well as δ 4(x− y)→ δ d(x− y).
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For d = 1 + 1, i.e. for two-dimensional Minkowski space, the field value φ is dimensionless, and
therefore all non-derivative k-point self-interactions with classical vertices given by the derivatives
−iV (k)

cl (φ) of the potential (k ≥ 3) are renormalizable. It will now be shown that it is even possible
to perform the renormalization explicitly for the self-consistent Hartree-Fock approximation and for
a general potential Vcl(φ) in d = 1+1.
The effective action in d dimensions in Hartree-Fock approximation is given by eq. (4.14) with d4x→
ddx, and with a full propagator G(x,y) parameterized, as in eq. (4.10), by an effective mass M2

eff which
is determined self-consistently by the field-dependent gap equation (4.13). For simplicity, the lowest
order of the derivative expansion of the effective action, i.e. the effective potential, is treated here.
The effective potential in d dimensions in Hartree-Fock approximation is, up to a field-independent
constant, given by (see eq. 4.15)

V hf
eff (φ) = Vhf (φ)+

1
2

∫ ddk
(2π)4

[
ln

(
k2 +M2

eff (φ)

k2

)
−

M2
eff (φ)

k2 +M2
eff (φ)

]
. (4.25)

As above (see eqs. (4.12, 4.14, 4.17)), M2
eff (φ) and Vhf (φ) can be rewritten as

M2
eff (φ) =

∂ 2V (φ ,m2)
∂φ 2

∣∣∣∣
m2=M2

eff (φ)
, Vhf (φ) = V (φ ,m2)

∣∣
m2=M2

eff (φ) , (4.26)

using the d-dimensional auxiliary potential

V (φ ,m2)≡ exp
[

1
2

(∫ ddk
(2π)4

1
k2 +m2

)
d2

dφ 2

]
Vcl(φ) . (4.27)

Renormalization in 1+1 dimensions

For d = 1 + 1, the momentum integral in the second term in eq. (4.25) is convergent and can be
explicitly calculated, such that the effective potential in Hartree-Fock approximation is (the effective
potential has mass-dimension two in d = 1+1)

V hf
eff (φ) = Vhf (φ)+

1
8π

M2
eff (φ) =

(
V (φ ,m2)+

1
8π

∂ 2V (φ ,m2)
∂φ 2

)
m2=M2

eff (φ)
. (4.28)

In the second expression on the right-hand side, the effective potential is rewritten in terms of the
auxiliary potential V (φ ,m2). Obviously, the effective mass and the effective potential are finite if
V (φ ,m2) is finite. In order to completely renormalize all divergences in Hartree-Fock approximation
it is thus sufficient (in d = 1 + 1) to introduce counterterms which remove the divergences of the
“tadpole” Feynman integral appearing in eq. (4.27). Note that this integral is only logarithmically di-
vergent in d = 1+1, such that dimensional regularization [61] may be used without loss of generality.
With ε ≡ 1−d/2 for d near 2, the dimensionally regulated “tadpole” integral is given by

∫ ddk
(2π)d

1
k2 +m2 =

Γ(ε)
(4π)d/2 md−2 =

µ̃−2ε

4π

(
1
ε

+ ln
4πe−γ µ̃2

m2 +O(ε)
)

, (4.29)

where the renormalization scale µ̃ has been introduced in the last equality, and γ ≈ 0.5772 is Euler’s
constant. To keep the field value a dimensionless quantity as in d = 2, the replacement φ → µ̃−εφ

is made. In order to remove the term which diverges when ε → 0, all coupling constants appearing
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in the (bare) classical potential V B
cl (φ) are split into a renormalized part and a counterterm5, and all

renormalized terms are collected in V R
cl (φ) and all counterterms in δVcl(φ), to get

V B
cl (φ) = V R

cl (φ)+δVcl(φ) .

Here, the bare classical potential V B
cl (φ) can be identified with the potential appearing in the (bare)

classical action (4.24), such that the dimensionally regulated auxiliary potential is

V (φ ,m2) = exp
[

1
8π

(
1
ε

+ ln
4πe−γ µ̃2

m2 +O(ε)
)

d2

dφ 2

]
V B

cl (φ) .

The auxiliary potential can be renormalized according to the minimal subtraction scheme if the coun-
terterms are chosen according to

δVcl(φ)≡
(

exp
[
− 1

8π

1
ε

d2

dφ 2

]
−1
)

V R
cl (φ) . (4.30)

Note that the counterterms do not depend on m2, which is crucial for the self-consistency of the gap
equation (4.26). With this, the auxiliary potential can be written in terms of the renormalized classical
potential (for ε → 0),

V (φ ,m2) = exp
[

1
8π

ln
µ2

m2
d2

dφ 2

]
V R

cl (φ) , (4.31)

where µ2 ≡ 4πe−γ µ̃2. The auxiliary potential is thus manifestly finite for an arbitrary finite renormal-
ized classical potential V R

cl (φ), and arbitrary auxiliary mass m2, and depends on the renormalization
scale µ . Consequently, it can be seen from eqs. (4.26) and (4.28) that the effective mass M2

eff (φ) and
the effective potential Veff (φ) in Hartree-Fock approximation are also manifestly finite in d = 1 + 1.
In particular, the self-consistent gap equation which determines the field-dependent effective mass
can be rewritten in terms of the renormalized classical potential,

M2
eff (φ) = exp

[
1

8π
ln

µ2

m2
d2

dφ 2

]
V R

cl
′′(φ)

∣∣∣∣∣
m2=M2

eff (φ)

, (4.32)

and is also manifestly finite in d = 1+1.

Renormalized resummed perturbation theory

Before calculating the renormalized effective potential for a specific example, it should be noted
that the counterterms contained in δVcl(φ) as defined in eq. (4.30) are actually already the exact
counterterms, i.e. the exact effective potential is rendered finite by this choice of δVcl(φ). This can
be seen using the resummed perturbation theory discussed above (see also appendix C.2), where an
expansion of the exact effective action in terms of 1PI Feynman diagrams without tadpoles, but with
dressed propagators and vertices, has been derived.
The corresponding expansion (4.18) of the exact effective potential can easily be transferred to an
arbitrary dimension d. In d = 1 + 1 dimensions, it was shown above that the auxiliary potential
V (φ ,m2) is rendered finite by the counterterms (4.30) for arbitrary auxiliary masses m2. Therefore,
the dressed propagator Ghf (k) and the dressed vertices (4.19) −iV (k)(φ) are themselves finite in d =
1 + 1, and can be calculated explicitly from the manifestly finite expression (4.31) for V (φ ,m2).

5 A field rescaling Z is not introduced here since this in not necessary in d = 1+1.
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Furthermore, there is only one type of Feynman integral which is divergent in d = 1 + 1, given by
the logarithmically divergent “tadpole” integral6 (4.29). Since the expansion (4.18) of the effective
potential is characterized by the property that it just contains Feynman diagrams without tadpoles,
and precisely these diagrams do not contain any divergent loop integrals, the effective potential in
d = 1+1 is completely renormalized by the counterterms (4.30).
This result can be interpreted in the following way: All divergences have been resummed into the
dressed propagator and the dressed vertices (4.19) introduced above, which are renormalized by the
counterterms (4.30). The Feynman diagrams without tadpoles contributing to V notad

eff (φ) according to
the expansion (4.18) are convergent in d = 1 +1, and thus no further counterterms are required. For
example, the two loop contribution to V notad

eff (φ) is convergent, and equal to

=
1

(8π)2

ψ ′(1
6)+ψ ′(1

3)−ψ ′(2
3)−ψ ′(5

6)
54

(
V (3)(φ)

)2

V (2)(φ)
, (4.33)

where ψ ′(x) = dψ(x)/dx is the first derivative of the digamma function ψ(x) = Γ′(x)/Γ(x). Note
that due to the self-consistently determined dressed propagator and dressed vertices this diagram
corresponds to an infinite resummation of perturbative diagrams (see section 3.2 and appendix C).
Since all contributions to V notad

eff (φ) are convergent, it is possible to calculate an arbitrary Feynman
diagram up to its numerical prefactor by dimensional analysis. Let F be a diagram contributing to
V notad

eff (φ) with Vk vertices with k legs (k ≥ 3). Then it has V = ∑kVk vertices, P = ∑k kVk/2 internal
lines and L = P−V+ 1 loops [179]. Since all vertices have mass-dimension two in d = 1 + 1, their
product contributes a factor with dimension 2V . Since F has also mass-dimension two and the only
further scale which appears in the convergent loop integrals is the effective mass M2

eff =V (2) contained
in the dressed propagator Ghf (k), the diagram can be written as

F =
1

(8π)L g(F)
∏

k≥3

(
V (k)(φ)

)Vk

(
V (2)(φ)

)V−1 , (4.34)

with a constant numerical prefactor denoted by g(F). For example, for the two loop diagram (4.33)
it is g(F) = (ψ ′(1

6)+ψ ′(1
3)−ψ ′(2

3)−ψ ′(5
6))/54≈ 0.781.

Altogether, it was shown that the exact and completely renormalized effective potential (4.18) for a
scalar quantum field in 1+1 dimensions with non-derivative self-interactions can be written as

V exact
eff (φ) = V hf

eff (φ) + V notad
eff (φ) (4.35)

=
(

V (φ)+
1

8π
V (2)(φ)

)
+ ∑

F

g(F)
(8π)L

∏
k≥3

(
V (k)(φ)

)Vk

(
V (2)(φ)

)V−1 ,

where V hf
eff (φ) is the effective potential in Hartree-Fock approximation (4.28), which was rewritten

using V (φ)≡V (0)(φ) =Vhf (φ) and V (2)(φ) = M2
eff (φ). The sum runs over all 1PI Feynman diagrams

6 A Feynman diagram for a scalar quantum field is convergent if the superficial degree of divergence of the diagram and
all its subdiagrams is negative [38, 61, 113, 177, 191]. For a diagram with V momentum-independent vertices, P internal
scalar lines and an arbitrary number of external lines, the superficial degree of divergence is D = dL− 2P [179], where
L = P−V + 1 is the number of loops. In d = 1 + 1, D = 2L−2P = −2(V −1), i.e. only (sub-)diagrams with one vertex
can contain divergences. The internal lines of loop diagrams with one vertex have to begin and end at this vertex, i.e. they
are “tadpoles” attached to this vertex.



4.1. Self-Interactions 37

F without tadpoles for which the dimensionless numerical constants g(F) are defined via eq. (4.34),
and with dressed vertices (4.19)

V (k)(φ)≡ ∂ kV (φ ,m2)
∂φ k

∣∣∣∣
m2=M2

eff (φ)
,

derived from the “tadpole-resummed” auxiliary potential V (φ ,m2) (4.31) evaluated with the effective
mass m2 = M2

eff (φ) determined by the renormalized gap equation (4.32).

Exponential potential — Liouville theory

In this section the Hartree-Fock approximation is applied to a quantum field with an exponential
potential,

Vcl(φ) = V0 exp(−λφ) , (4.36)

with a dimensionless parameter λ , known as Liouville Theory [76, 148]. In 1+1 dimensions, this
is a renormalizable potential. In the following, it will be show that the effective potential can be
renormalized and computed explicitly with the techniques introduced above, and yields a result which
agrees with an independent method based on the conformal symmetry of Liouville Theory [67, 76,
156] (which exists, for the exponential potential, in 1+1 dimensions only).
The Hartree-Fock approximation is ideally suited for the exponential potential. It is possible to find
an exact solution of the gap equation (4.32), since the derivative d2/dφ 2 appearing in the exponential
derivative operator can be just replaced by λ 2,

M2
eff = exp

[
λ 2

8π
ln

µ2

M2
eff

]
V R

cl
′′(φ) = λ

2V0 exp

[
λ 2

8π
ln

(
µ2

M2
eff

)
−λφ

]
. (4.37)

Inserting eq. (4.36) for V R
cl (φ), the gap equation can be easily solved algebraically for each value of

φ by dividing the equation by the renormalization scale µ2 and taking the logarithm on both sides,

ln

(
M2

eff

µ2

)
= ln

(
λ 2V0

µ2

)
+

λ 2

8π
ln

(
µ2

M2
eff

)
−λφ

⇒ ln

(
M2

eff (φ)

µ2

)
=

1
1+λ 2/(8π)

[
ln
(

λ 2V0

µ2

)
−λφ

]
.

The solution of the gap equation thus reads

ln

(
M2

eff (φ)

µ2

)
= ln

(
M2

r

µ2

)
− φ

λ−1 +λ/(8π)
,

where ln(M2
r /µ2)≡ [ln(λ 2V0/µ2)]/(1+λ 2/(8π)). Furthermore, using eqs. (4.26, 4.31) yields

Vhf (φ) = exp

[
λ 2

8π
ln

(
µ2

M2
eff (φ)

)]
V R

cl (φ) = Vr exp
[
− φ

λ−1 +λ/(8π)

]
,

where ln(Vr/V0)≡−[ln(M2
r /µ2)]λ 2/(8π). Together with the solution of the gap equation, the effec-

tive potential in Hartree-Fock approximation is obtained from eq. (4.28),

V hf
eff (φ) = Vhf (φ)+

1
8π

M2
eff (φ) =

(
Vr +

1
8π

M2
r

)
exp
[
−λ̃ φ

]
.
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The effective potential in Hartree-Fock approximation is also an exponential of the field φ , with a
renormalized pre-factor Vr +M2

r /(8π) and with slope given by

λ̃
−1 = λ

−1 +λ/(8π) .

The upper relation can also be obtained completely independently from the transformation properties
of the energy-momentum tensor, which is highly constrained by the conformal symmetry of Liouville
Theory in 1+1 dimensions [67, 76].
Using the expansion of the exact effective potential in terms of 1PI tadpole-free Feynman diagrams
with dressed propagator and dressed vertices, it is additionally possible to show that the effective
potential in Hartree-Fock approximation captures basically already all quantum corrections to the
potential. The dressed vertices and propagator for the exponential potential (4.36) are given by

V (k)(φ) =
∂ kV (φ ,m2)

∂φ k

∣∣∣∣
m2=M2

eff (φ)
= (−λ )k Vhf (φ) = (−λ )k Vr exp

[
−λ̃ φ

]
.

Using this, it can be seen from eq. (4.34) that the contribution from a tadpole-free diagram F with Vk
vertices with k legs (k≥ 3), i.e. with V = ∑kVk vertices, P = ∑k kVk/2 internal lines and L = P−V+1
loops has the form

F =
1

(8π)L g(F)
∏

k≥3

(
(−λ )kVhf (φ)

)Vk

(
λ 2Vhf (φ)

)V−1 =
1

(8π)L g(F)
(−λ )2P

λ 2(V−1)Vhf (φ) = g(F)
(

λ 2

8π

)L

Vhf (φ) .

Thus all contributions to the effective potential are proportional to Vhf (φ). Consequently, using eq.
(4.35) the exact effective potential is obtained

V exact
eff (φ) = VR exp

[
−λ̃ φ

]
, (4.38)

where all contributions have been resummed into the constant prefactor

VR = Vr

(
1+

λ 2

8π
+∑
F

g(F)
(

λ 2

8π

)L
)

= Vr

(
1+

λ 2

8π
+0.781

(
λ 2

8π

)2

+ . . .

)
.

The sum runs over all 1PI Feynman diagrams F without tadpoles, L ≥ 2 is the number of loops
of F , and g(F) is the dimensionless numerical prefactor defined in eq. (4.34). This diagrammatic
calculation of the effective potential also agrees with the result given in Ref. [76] without derivation.

4.1.4 Robustness of Quintessence Potentials

For tracker potentials which obey the power-counting rule (4.7), non-renormalizable interactions are
suppressed by a high-energy scale M . Mpl. Within effective field theory embedded at a UV scale
Λ ∼ M, the effective potential (4.23) obtained from the Hartree-Fock approximation is the leading
contribution to the effective potential for classical tracker potentials. Therefore, eq. (4.23) yields a
useful prescription to estimate the stability of tracker quintessence potentials Vcl(φ) under quantum
corrections induced by its self-interactions. This prescription consists of applying the exponential
derivative operator

exp
[
± Λ2

32π2
d2

dφ 2

]
(4.39)

to the classical potential Vcl(φ). In the following, the effect of this operator on the prototype tracker
quintessence potentials is investigated. Furthermore, the dependence on the embedding scale Λ is
discussed, as well as the validity conditions of the Hartree-Fock approximation. The impact on cos-
mological tracking solutions is studied for some examples.
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Exponential potential

One prototype class of tracker potentials are (combinations of [21, 150]) exponential potentials [10,
157, 182]. Remarkably, an exponential of the field φ is form-invariant under the action of the opera-
tor (4.39). Consider e.g. the following finite or infinite sum of exponentials,

Vcl(φ) = ∑
j

Vj exp
(
−λ j

φ

Mpl

)
. (4.40)

The only effect of applying the operator (4.39) is a simple rescaling of the prefactors Vj according to

Vj → Vj exp

[
±

λ 2
j Λ2

32π2M2
pl

]
. (4.41)

This extends the result of Ref. [83] for the one-loop case, which would correspond to the first term
in a Taylor expansion of (4.39). Note that if Λ∼Mpl the correction can be of an important size, and
can influence the relative strength of the exponentials in (4.40). The necessary conditions of validity,
V ′′eff (φ)� Λ2, and Veff (φ)� M̃4 ∼M4

pl, for the Hartree-Fock approximation are both fulfilled when

Veff (φ)� Λ
2M2

pl . M4
pl ,

which implies that it is applicable if Λ� Hmax, where Hmax is the maximum value of the Hubble
parameter where the field φ plays a role. For example, Hmax could be the inflationary scale Hinf . For
chaotic inflation with quadratic potential, it is typically of the order Hinf ∼ (δTCMB/TCMB) ·Mpl ∼
10−5Mpl ∼ 1013GeV [140, 141]. Furthermore, note that the effective potential indeed fulfills the
power-counting rule (4.22) for tracker potentials with scale-height of the order M̃ ∼ M . Mpl for
λ j &O(1).
Altogether, it is found that exponential potentials are stable under radiative corrections from self-
interactions in the domain of validity of the Hartree-Fock approximation within effective field theory.
In particular, ultraviolet embedding scales up to the Planck scale Λ . Mpl are possible. The subleading
corrections, which would lead to a distortion of the exponential shape, are suppressed by a factor of
the order of Veff (φ)/M4

pl. This is an extremely tiny number of the order H2/M2
pl in the context of

quintessence models.

Inverse power law potential

The second prototype class of tracker potentials are (combinations) of inverse powers of the quint-
essence field φ [43, 83, 157, 169],

Vcl(φ) = ∑
α

cαφ
−α . (4.42)

The action of the operator (4.39) yields

Veff (φ) = ∑
α

cαφ−α

Γ(α)

∞

∑
L=0

Γ(α +2L)
L!

(
±Λ2

32π2φ 2

)L

= ∑
α

cαφ−α

Γ(α)

∫
∞

0
dt tα−1 exp

(
−t± Λ2

32π2φ 2 t2
)

,

(4.43)

where the Γ-function inside the sum over L has been replaced by an integration over the positive
real axis in the second line, by using its definition. This integral gives a finite result if the negative
sign in the exponent is used, which will therefore be assumed from now on. First two limiting cases
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Figure 4.1: Comparison of the Hartree-Fock approximation of the effective potential Veff (φ) (red)
with the leading one- and two-loop contributions as given by the Taylor expansion of the derivative
operator (4.39) up to first and second order, respectively, (blue) as well as the classical potential
Vcl(φ) ∝ φ−α (black) for α = 2. The loop expansion breaks down at small field values φ � Λ.
The non-perturbative “multi-bubble” resummation accomplished by the Hartree-Fock approximation
allows to extend the range of validity to the complete admissible range of field values φ > 0.

will be discussed, where the integral can be solved analytically. For large field values φ � Λ, which
corresponds to small potential energy and -curvature, the second term in the exponent appearing in
the second line of eq. (4.43) can be neglected, which implies that asymptotically

Veff (φ)→Vcl(φ)≡∑
α

cαφ
−α , φ → ∞ . (4.44)

This means the low energy regime where the potential and its derivatives go to zero is not changed by
quantum corrections. For the opposite limit where φ � Λ, the integral in the last line of (4.43) can be
calculated by neglecting the first term in the argument of the exponential,

Veff (φ) → ∑
α

cαφ−α

Γ(α)
1
2

Γ(
α

2
)
(

Λ2

32π2φ 2

)− α

2

= ∑
α

Γ(α

2 )
2Γ(α)

cα

(
Λ

4π
√

2

)−α

= const . (4.45)

Thus the effective potential approaches a constant finite value for φ . Λ/(4π
√

2) of the order Vcl(Λ)
in the small-field limit φ � Λ (see figures 4.1 and 4.2). Furthermore, it is easy to see that also the
second derivative of the effective potential approaches a constant value

V ′′eff (φ)→∑
α

Γ(α+2
2 )

2Γ(α)
cα

(
Λ

4π
√

2

)−(α+2)

. (4.46)

Similarly, all higher derivatives approach constant values for φ � Λ. Therefore, the effective poten-
tial Veff (φ) fulfills the power-counting rule (4.22) with scale height given by

M̃ ∼
{

Λ for φ � Λ

φ for φ � Λ
. (4.47)
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Figure 4.2: Dependence of the effective potential Veff (φ) on the UV embedding scale Λ for an inverse
power law potential Vcl(φ) ∝ φ−α with α = 2. The potential is normalized to the value of the potential
Vcl(φ0) at redshift z = 0. From top to bottom, Λ is enlarged by a factor 2 for each red line. The
black line is the classical potential Vcl(φ), which is a straight line due to the double logarithmic
scale. For φ � Λ, the effective potential Veff (φ) approaches a constant value, whereas Vcl(φ) grows
unboundedly. The redshift-scale on the right-hand side applies for the classical tracking solution only
and illustrates when the deviations of the effective potential Veff (φ) from the classical potential Vcl(φ)
become relevant in cosmic history going backward from φ/φ0 = 1 (today).

The scale-height M̃ of the effective potential approaches a constant value for small field values φ ,
in contrast to the scale height M ∼ φ of the classical potential Vcl(φ). Thus, the singularity of the
classical potential Vcl(φ), see eq. (4.42), for φ → 0 is not present for the effective potential Veff (φ),
where a constant value of the order Vcl(Λ) is approached instead.
The Hartree-Fock approximation requires that V ′′eff (φ)�Λ2 . M̃2 and Veff (φ)� M̃4. From eq. (4.47),
it can be seen that the requirement Λ2 . M̃2 is fulfilled in the whole range of possible field values
φ > 0. In order to check the other conditions of validity, the case where the potential consists of only
one inverse power-law term Vcl(φ) = cαφ−α will be treated first for simplicity. In the range φ � Λ,
the limits of the effective potential (4.44) and the effective mass (4.45) can be used,

V ′′eff (φ)∼ cαΛ−(α+2)� Λ2 ⇔ Λ� c1/(α+4)
α ,

Veff (φ)∼ cαΛ−α � M̃4 ∼ Λ4 ⇔ Λ� c1/(α+4)
α .

Thus, both conditions of validity yield the same lower bound on the embedding scale Λ. The condi-
tions of validity in the range φ � Λ can be evaluated using that Veff (φ)'Vcl(φ) in this range,

V ′′eff (φ)∼ cαφ−(α+2)� Λ2 ⇔ Λ� c1/(α+4)
α (Λ/φ)

α+2
α+4 ,

Veff (φ)∼ cαφ−α � M̃4 ∼ φ 4 ⇔ Λ� c1/(α+4)
α (Λ/φ) .

Since Λ/φ � 1 by assumption, the bounds obtained in the large-field range are weaker than the
bounds obtained in the small-field range. All conditions of validity are thus fulfilled if the embedding
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Figure 4.3: Evolution in the (Ωφ ,ωφ )-plane for the effective potential Veff (φ) of an inverse power-
law potential Vcl(φ) ∝ φ−α with α = 1 for various values of Λ keeping H0 = 73km/sMpc and Ωde ≡
Ωφ (z = 0) = 0.76 fixed. The UV embedding scale Λ is enlarged by 0.2Mpl for each red line starting
from Λ = 0.1Mpl. The black line is the tracking solution in the classical potential Vcl(φ), from which
the solutions deviate considerably for embedding scales Λ close to the Planck scale. The four arrows
on each trajectory mark the points with redshifts z = 2,1,0.5,0.1 from left to right.

scale fulfills the lower bound Λ� c1/(α+4)
α . For the classical potential (4.42) which contains a sum

of inverse power-laws, the generalized bound is

Λ�max
α

c1/(α+4)
α .

For a single inverse power-law, the order of magnitude of the constant cα required to reproduce the
correct abundance of dark energy is [169]

c1/(α+4)
α ∼

(
H2

0 Mα+2
pl

)1/(α+4)
∼
(
(100MeV)6Mα−2

pl

)1/(α+4)
.

Thus, the lower bound on the embedding scale is a relatively mild restriction Λ � 100MeV for
observationally allowed [169] values of the inverse power-law index α . 2. For extremely steep
potentials, α→∞, the lower bound asymptotically approaches the Planck scale. It is emphasized that
loop approximations to the effective potential break down in the limit φ → 0, whereas the Hartree-
Fock approximation is applicable (see figure 4.1). The dependence of the effective potential on the
UV embedding scale Λ is shown in figure 4.2 for the case Vcl(φ) ∝ φ−2.
Finally, the question in how far typical tracking quintessence models are changed by considering the
effective potential from eq. (4.43) is investigated. Since the field value today is typically of the order
of the Planck scale [169], the large-field limit eq. (4.44), where the effective potential approaches the
classical potential and the corrections are negligible, is only applicable when Λ ≪ Mpl. For values
up to Λ . Mpl/10 the field φ can have a tracking solution. The redshift zquant in cosmic history where
the effective potential starts to deviate from the classical tracking potential, see figure 4.2, gives a
rough estimate at which redshift the tracking sets in. For a potential dominated by a single inverse
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Figure 4.4: Contour plot of the equation of state ωde today (z = 0) using the effective potential
Veff (φ) obtained from the classical potential Vcl(φ) ∝ φ−α depending on the embedding scale Λ and
the inverse power-law index α . The limit Λ = 0 corresponds to the classical limit Veff ≡ Vcl. Again,
H0 and Ωde = 0.76 are chosen as in figure 4.3.

power-law Vcl(φ) ∝ φ−α ,

zquant ∼

(
Mpl/10

Λ/(4π
√

2α(α +1))

) α+2
3(1+ωB)

,

is obtained by requiring a deviation of the effective potential of less than 1% and using the tracking
solution during matter and radiation domination with equation of state ωφ = α

α+2(1+ωB)−1 [169],
with ωB = 0,1/3 respectively. For example, assuming Λ∼Mpl/100 (where Mpl ≡ 1/

√
G), the track-

ing sets in at redshift zquant ∼ 300 for α = 2 and zquant ∼ 130 for α = 1. Similar bounds also hold
for other types of potentials, e.g. like the SUGRA-potential [43], which are dominated by an inverse
power-law behaviour at redshifts z� 0.5. For values Λ & Mpl/10, there are large deviations from
the tracking solution even at low redshifts and today, as is shown in figure 4.3 for an exemplary case
with Vcl(φ) ∝ φ−α . If the UV embedding scale Λ is of the order of the Planck scale, there is a direct
transition from the slow roll regime with φ . Λ, equation of state ωφ ∼−1 and dark energy fraction
Ωφ ≪ 1 in the flattened effective potential Veff (φ) to the dark energy dominated accelerating solution
for φ & Mpl with Ωφ → 1 and ωφ →−1. Thus the solution never performs tracking with ωφ =− 2

α+2
as for the classical potential Vcl(φ). In the case α = 1, the equation of state today ωde ≡ ωφ (z = 0)
is enhanced for 0.1 . Λ/Mpl . 1.3 compared to the tracking value, and gets smaller for even larger7

Λ, see figures 4.3 and 4.4. Moreover, the sign of dωφ/dz can change depending on the value of the
embedding scale Λ.

7Note that even when Λ & Mpl the pre-factor of the tadpole integral (4.4) is still sub-Planckian due to the loop factor
1/16π2.



44 4. Quantum Corrections in Quintessence Models

4.2 Quantum Corrections from Matter Couplings

If the quintessence dynamics is governed by a low-energy effective theory which is determined by
integrating out some unknown high energy degrees of freedom, involving e.g. quantum gravity, string
theory or supergravity [58, 65], the low-energy theory should generically contain couplings and self-
couplings of the quintessence field suppressed by some large scale, e.g. the Planck scale. In this
section, radiative corrections induced by couplings between the quintessence field and “low-energy”
particle species will be investigated. In this context, “low-energy” stands for degrees of freedom
which exist well below the UV embedding scale of the quintessence field, including the well-known
Standard Model particles.
On the one hand, such couplings can influence the properties of the Standard Model particles. The
rolling quintessence field can, for example, drive a time-variation of particle masses and couplings
over cosmological time-scales. Quintessence models leading to time-varying Standard Model masses
and couplings, as well as mass-varying neutrinos (MaVaNs), have been frequently investigated, see
e.g. [11, 15, 36, 44, 46, 56, 64, 83, 87, 95, 137, 145, 183, 184, 186]. In some cases such couplings can be
directly constrained observationally, like for a coupling to Standard Model gauge fields [51]. For
the photon, quintessence couplings can lead to tiny time-variations of the fine-structure constant
αem [54,176], and a coupling to the gluons could manifest itself by a tiny time-variation of the proton
mass [119, 158] over cosmic history. Such time-variations can be tested observationally, for example
by comparing the frequency of spectral lines which depends on first and second powers of αem re-
spectively, from spectra emitted by quasars at various redshifts [54,176]. Other constraints arise from
the impact of time-varying couplings and masses on Big Bang Nucleosynthesis [50, 75, 172] predic-
tions. Additionally, the coupling to a light quintessence field mediates a gravity-like long range force,
leading to tiny apparent violations of the equivalence principle [172, 184], which is constrained by
high-precision test of General Relativity [155, 181]. A significant interaction with dark matter is less
constrained [13] and is considered in many contexts, e.g. [14, 96, 117, 189, 190], often accompanied
by a varying dark matter mass (varying mass particles, VAMP) [62, 99, 114, 161].
On the other hand, the interactions of matter with the quintessence field can also influence the dy-
namics of the quintessence field itself via the backreaction effect, i.e. due to the contributions to
the equation of motion of the scalar field originating from its matter interaction [96]. Illustratively,
classical backreaction occurs due to a background matter density which the quintessence field feels
due to the matter interaction. As a consequence, only the sum of the energy-momentum tensor of
the quintessence field and of the interacting particles are conserved. Such a backreaction effect might
trigger the cross-over from matter domination to quintessence domination. For example, a coupling
to neutrinos, which leads to growing neutrino masses, slows down the rolling quintessence field due
to the presence of the cosmic neutrino background. If the increase of the neutrino masses becomes
strong enough, the rolling quintessence field gets stopped and yields a cosmic expansion similar to
the cosmological constant which can be linked to the neutrino mass scale in specific models [11].
Due to the presence of vacuum quantum fluctuations, the interactions of the quintessence field lead
to a backreaction effect even in the limit of vanishing background matter density. For cosmological
matter densities, it turns out that this “quantum vacuum” backreaction generically overwhelms the
classical backreaction for particle species much heavier than the dark energy scale around ∼meV, as
will be investigated in the following using the low-energy effective action.
Note that the low-energy effective action as defined in appendix B.1 captures quantum fluctuations
of (renormalizable) Standard Model degrees of freedom, i.e. the quintessence field is treated as a
classical background field here. Thus, the opposite limit as in the previous section is taken, where
the impact of quantum fluctuations of the quintessence field itself has been investigated but matter
couplings have been assumed to be absent. As discussed in appendix B.1, the full quantum effective
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action for a coupled quintessence field can be obtained in two steps by first calculating the low-energy
effective action by a path integral over the matter fields, and then calculating the effective action by
a path integral over the quintessence field. This means, if the low-energy effective action discussed
here is considered as the input for the “classical” action in the previous section, one could recover, in
principle, the full effective action for a coupled quintessence field8.
At lowest order in a derivative expansion of the low-energy effective action, the quantum vacuum
backreaction is determined by the response of the quantum vacuum energy to variations of the quint-
essence field value. This response, in turn, is given by the quintessence-field-dependence of the low-
energy effective potential, obtained from integrating out all matter fields heavier than the quintessence
field.

4.2.1 Quantum Backreaction

Generically, the light classical mass m2
φ
(φ) = V ′′cl(φ) of the quintessence field is unprotected against

huge corrections induced by quantum fluctuations of heavier degrees of freedom coupled to the quint-
essence field (“hierarchy problem”). Furthermore, this is not only the case for the classical mass, but
also for all higher derivatives V (k)

cl (φ) and the slope V ′cl(φ) of the classical potential, as well as the
total potential energy Vcl(φ). The latter is the “old cosmological constant problem”, which is not ad-
dressed here. As before, the freedom to shift the effective potential by an arbitrary field-independent
amount will be used instead, such that the total effective potential energy today has the value required
for dark energy. Furthermore, if a huge amount of fine-tuning is accepted, also the quintessence mass
and slope can be chosen to have the required values today by a suitable renormalization of the quan-
tum fluctuations of (renormalizable) heavier degrees of freedom coupled to the quintessence field, like
the Standard Model particles. However, even in this case there may still be huge corrections to the
classical potential and its derivatives evaluated at a quintessence field value which is slightly displaced
from todays value. Since the scalar field is rolling, such corrections would affect the behaviour of the
quintessence field in the past, and could destroy some of the desired features (like tracking behaviour)
of dynamical dark energy if they are too large.
The effective quintessence potential slope and mass are given by the first and second field derivatives
of the low-energy effective quintessence potential, respectively. Their values today may be fixed by
imposing renormalization conditions on the low-energy effective quintessence potential. Even if these
are chosen such that the corrections to the quintessence potential are minimized today, the quantum
vacuum still leads to a remaining “minimal response” on the dynamics of the quintessence field. In
the following, the minimal response of one-loop quantum fluctuations of Standard Model particles
on the quintessence field will be calculated. It will be shown that the low-energy effective potential
can be renormalized by imposing three independent renormalization conditions (linked to the quartic,
quadratic and logarithmic divergences) in this case. The minimal response is obtained by choosing
the three renormalization conditions such that the quantum contributions to the low-energy effective
potential Veff (φ) and its first and second derivative vanish today,

Veff (φ = φ0) = Vcl(φ = φ0) ,
V ′eff (φ = φ0) = V ′cl(φ = φ0) , (4.48)

V ′′eff (φ = φ0) = V ′′cl(φ = φ0) ,

8This would require, however, to know details about the UV completion of the quintessence field combined with the
Standard Model, which imposes constraints on the combination of the field-dependence of the self-interactions and the
field-dependence of the couplings. At the level of approximation represented by the low-energy effective action, radiative
corrections induced by quintessence couplings can be investigated in a model-independent way, i.e. no information about
the details of the unknown UV completion is required.
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where φ0 ≡ φ(t0) is the quintessence field value today (t = t0). Here Vcl(φ) represents the (renor-
malized) classical quintessence potential, in terms of which the low-energy effective potential can be
expanded as

Veff (φ) = Vcl(φ)+V1L(φ)+ . . . ,

where V (φ)1L denotes the (renormalized) one-loop contribution. Since the quintessence field generi-
cally changes only slowly on cosmological time-scales, one expects that the leading effect of quantum
fluctuations is suppressed by a factor of the order

V ′′′cl (φ = φ0)1L(φ̇(t0)∆t)3 , (4.49)

with ∆t of the order of a Hubble time, compared to the classical potential Vcl(φ).
The coupling between quintessence and any massive particle species j is modeled by assuming a
general dependence of the mass on the quintessence field. This general form includes many interesting
and potentially observable possibilities, like a time-varying (electron- or proton-) mass m j(φ(t)),
a Yukawa coupling dm j/dφ to fermions (e.g. protons and neutrons) mediating a new long-range
gravity-like force, or a coupling between dark energy and dark matter (dm) of the form (see e.g. [13])

ρ̇dm +3Hρdm = ρdm
d lnmdm(φ)

dφ
φ̇ . (4.50)

In terms of particle physics, a dependence of the mass on the dark energy field φ could be produced
in many ways, which are just briefly mentioned here. One possibility would be a direct φ -dependence
of the Higgs Yukawa couplings or of the Higgs VEV. For Majorana neutrinos, the Majorana mass
of the right-handed neutrinos could depend on φ leading to varying neutrino masses via the seesaw
mechanism [107, 186]. The mass of the proton and neutron could also vary through a variation
of the QCD scale, for example induced by a φ -dependence of the GUT scale [185]. Additionally,
a variation of the weak and electromagnetic gauge couplings could directly lead to a variation of
the radiative corrections to the masses [81]. Possible parameterizations of the φ -dependence are
m(φ) = m0(1+β f (φ/Mpl)) with a dimensionless coupling parameter β and a function f (x) of order
unity or m(φ) = m0 exp(βφ/Mpl) [83].

One-loop low-energy effective potential

The one-loop contribution to the low-energy effective potential for the quintessence field can be cal-
culated from the functional determinants of the propagators with mass m(φ) (see section B.1),

V1L(φ) =
1
2

∫ d4k
(2π)4

(
∑
B

gB ln(k2 +mB(φ)2)−∑
F

gF ln(k2 +mF(φ)2)

)
, (4.51)

where B and F run over all bosons and fermions with internal degrees of freedom gB and gF respec-
tively. The momentum has been Wick-rotated to Euclidean space. To implement the renormalization
conditions (4.48), the following integrals are considered,

I0(m2) ≡
∫ d4k

(2π)4 ln(k2 +m2) , (4.52)

Il(m2) ≡
∫ d4k

(2π)4
1

(k2 +m2)l =
(−1)l−1

(l−1)!
dl

(dm2)l I0(m2) ,
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which are finite for l ≥ 3. Following the procedure described in Ref. [179], the divergences in I0, I1
and I2 are isolated by integrating I3 with respect to m2, yielding

I0(m2) = 2
∫ m2

dm2
3

∫ m2
3
dm2

2

∫ m2
2
dm2

1 I3(m2
1) + D0 +D1m2 +D2m4 , (4.53)

with infinite integration constants D0, D1 and D2. Thus one is led to introduce three counterterms
proportional to m0, m2 and m4 to cancel the divergences, which can be easily reabsorbed by a shift
of the scalar potential Vcl(φ). This leaves a finite part Ifinite

0 of the same form as (4.53) but with
the three infinite constants replaced by three finite parameters that have to be fixed by the three
renormalization conditions (4.48). The appropriate choice can be expressed by choosing the lower
limits in the integration over the mass m2 to be equal to its todays value m2

0,

Ifinite
0 (m2;m2

0) = 2
∫ m2

m2
0

dm2
3

∫ m2
3

m2
0

dm2
2

∫ m2
2

m2
0

dm2
1 I3(m2

1)

=
1

32π2

(
m4
(

ln
m2

m2
0
− 3

2

)
+2m2m2

0−
1
2

m4
0

)
, (4.54)

where I3(m2) = 1/(32π2m2) has been used.
Thus, the renormalized one-loop contribution to the low-energy effective potential which fulfills the
renormalization conditions (4.48) is uniquely determined to be

V1L(φ) =
1
2

(
∑
B

gBIfinite
0 (mB(φ)2;mB(φ0)2)−∑

F
gF Ifinite

0 (mF(φ)2;mF(φ0)2)

)
. (4.55)

The higher loop corrections involve interaction vertices of the (Standard Model) matter particles. The
one-loop result is exact in the limit of vanishing interaction strength. Thus, the best approximation
to the full low-energy effective potential is obtained by applying the one-loop approximation to the
effective low-energy degrees of freedom of the Standard Model, i.e. to nucleons instead of quarks.
The low-energy effective potential renormalized in this way can be regarded as the result of a fine-
tuning of the contributions from the quantum fluctuations of heavy degrees of freedom to the quint-
essence potential energy, slope and mass at its todays values, i.e. evaluated for φ = φ0. However,
when the quintessence field had different values in the cosmic history, the cancellation does not occur
any more and one expects the huge corrections of order m4 to show up again, unless the coupling is
extremely weak. Indeed, this argument yields extremely strong bounds for the variation of the masses
with the rolling field φ [20, 81]. To obtain a quantitative limit it is required that the one-loop contri-
bution to the potential should be subdominant during the relevant phases of cosmic history up to now,
which is taken to be of the order of a Hubble time, in order to ensure that the quintessence dynamics,
e.g. tracking behaviour, are not affected. For the corresponding φ -values this means that

V1L(φ)�Vcl(φ) , (4.56)

is required. If the one-loop effective potential (4.55) is Taylor-expanded around todays value φ0, the
first non-vanishing contribution is by construction of third order,

V1L(φ) ≈ 1
3!

V ′′′1L(φ0)(φ −φ0)3 ≈ 1
3!

1
32π2 ∑

j

(−1)2s j g j

m j(φ0)2

(
dm2

j

dφ
(φ −φ0)

)3

≈ 1
96π2 ∑

j
(−1)2s j g jm j(φ0)4

(
d lnm2

j

d lnV ′′cl
ln

V ′′cl(φ)
V ′′cl(φ0)

)3

. (4.57)



48 4. Quantum Corrections in Quintessence Models

Here the index j runs over bosons B and Fermions F (with spin s j), and eq. (4.54) has been used. In
the last line, the dependence on the quintessence field φ has been rewritten as a dependence on its
mass m2

φ
≡V ′′cl(φ). Today, the mass is of the order of the Hubble constant H0 ∼ 10−33eV. For tracking

quintessence models [169], the quintessence mass also scales proportional to the Hubble parameter
H during cosmic evolution. Therefore, it is assumed that

lnV ′′cl(φ)/V ′′cl(φ0)∼ lnH2/H2
0 . 3ln(1+ z) . (4.58)

In order to investigate under which conditions the inequality (4.56) is fulfilled up to a redshift zmax, the
most conservative assumption is to replace the logarithm in the last line in (4.57) by its maximal value
of order 3 ln(1+zmax) and the right hand side of (4.56) by the minimal value Vcl(φ0). Furthermore, the
inequality (4.56) is certainly fulfilled if each individual contribution to the one-loop potential (4.55)
respects it. Altogether, under these assumptions the requirement (4.56) that the quintessence dynam-
ics are unaltered up to a redshift zmax yields a bound for the variation of the mass m j of a species j
(with g j internal degrees of freedom) with the quintessence mass scale V ′′cl ∼ H2

∣∣∣∣∣d lnm2
j

d lnV ′′cl

∣∣∣∣∣� 1
3ln(1+ zmax)

(
96π2Vcl(φ0)
g jm j(φ0)4

) 1
3

. (4.59)

This bound is the main result of this section. It scales with mass like m−4/3, i.e. the bound gets tighter
for heavier particles. Inserting zmax ∼ zeq ∼ 103 and expressing the potential energy

Vcl(φ0) =
1−ωde

2
Ωde

3H2
0

8πG

in terms of the dark energy fraction Ωde and equation of state ωde with H0 ∼ 70km/sMpc yields∣∣∣∣∣d lnm2
j

d lnV ′′cl

∣∣∣∣∣�
(

1−ωde

2
Ωde

0.7

) 1
3 1

3
√g j

(
1.3meV
m j(φ0)

) 4
3

. (4.60)

Finally, it should be remarked that there remains the possibility that several masses m j(φ) change in
such a way that the total contribution to the low-energy effective potential stays small [81]. Generi-
cally, this would require an additional dynamical mechanism or symmetry which leads to such fine-
tuned correlated changes at the required level. The total low-energy effective action would then
depend on the details of such an unknown explicit mechanism, presumably closely related to the UV
embedding. An example for such a mechanism could be based on supersymmetry, where the masses
of fermions and their superpartners would have to change in the same way if SUSY was unbroken,
so that their contributions in eq. (4.51) would always cancel. However, this is not the case below the
SUSY breaking scale. The bound (4.59), which applies for mass-variations with arbitrary relative
size for all species, is independent of the details of the unknown UV completion.

4.2.2 Bounds on Quintessence Couplings

The upper bound (4.59) can be directly related to upper bounds for the coupling strength to the long-
range force mediated by the light scalar field, and for cosmic mass variation. The relative change of
the mass m j since redshift z can be related to the derivative d lnm2

j/d lnV ′′cl using eq. (4.58),

∆m j

m j
≈

d lnm2
j

d lnV ′′cl
ln

V ′′cl(φ)
V ′′cl(φ0)

. 3ln(1+ z)
d lnm2

j

d lnV ′′cl
, (4.61)
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Figure 4.5: Bounds for cosmic mass variation since redshift z∼ 2 from the radiative correction to the
quintessence potential in dependence of the mass m. The red (vertical) lines mark the masses of some
Standard Model particles. The limits inferred from observations, e.g. of ∆αem/αem strongly depend
on the considered particle type and further assumptions, but typically lie around 10−4 to 10−5 [172].

which means the bound (4.60) directly gives an upper limit for the relative mass variation of species
j since redshift z. For example, for the variation of the electron mass since z∼ 2, the upper bound

∆me

me
� 0.7 ·10−11

(
1−ωde

2
Ωde

0.7

) 1
3

, (4.62)

is obtained, which is at least six orders of magnitude below direct observational constraints for a
change in the electron-proton mass ratio [172]. For heavier particles, the bounds are even stronger
by a factor (me/m)4/3, see figure 4.5, e.g. of the order ∆mp/mp � 10−15 for the proton. It should
be emphasized that these upper bounds are valid under the assumption that the mass-variation is
driven by a rolling scalar field with tracker properties, and in the absence of cancellations among the
contributions from different particle species. In this case, however, the upper bound is a conservative
upper bound due to the renormalization conditions which correspond to the “minimal response”. This
means that for any other choice of renormalization conditions, the upper bounds will be even stronger.

The only known particles which could have a sizeable mass variation due to the bound (4.60) are
neutrinos. Thus, models considering mass-varying neutrinos or a connection between dark energy
and neutrinos (see e.g. [11, 45, 95]) are not disfavored when considering quantum fluctuations. If
the bound (4.60) is saturated, quantum backreaction effects are of the same order of magnitude as
classical backreaction effects, and can have an impact on the quintessence dynamics in the recent
past, where the turnover to a dark energy dominated cosmos occurs.
Fermions with quintessence-field-dependent masses are subject to a Yukawa-like interaction medi-
ated by the quintessence field (“fifth force”), with typical range given by the inverse mass of the
quintessence field m−1

φ
∼ H−1

0 and Yukawa coupling strength given by the derivative of the fermion
mass [157],

y j =
dm j(φ)

dφ
,
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which can be described by a Yukawa potential (see section 2.3). Since this interaction leads to an
apparent violation of the equivalence principle, an upper bound on the effective quintessence Yukawa
couplings for nucleons can be inferred [157]. On the other hand, for a rolling quintessence field the
coupling strength is constrained by the bound (4.59) via the relation

y j =
dm j

dφ
=

1
2

m j
V ′′′cl
V ′′cl

d lnm2
j

d lnV ′′cl
≡

m j

2M

d lnm2
j

d lnV ′′cl
,

where the scale height M ≡ (d lnV ′′cl/dφ)−1 of the quintessence mass was introduced, which is typi-
cally of the order of the Planck scale today [169]. For the proton and neutron an upper limit

yp,n� 0.4 ·10−35
(

Mpl

M

)(
1GeV
mp,n

) 1
3
(

1−ωde

2
Ωde

0.7

) 1
3

, (4.63)

is obtained which is far below the limit from the tests of the equivalence principle [157], see eq. (2.17).
These limits can be compared to the corresponding gravitational coupling given by m j/Mpl , e.g. of
the order 10−19 for the nucleons. Thus the bound in eq. (4.60) also directly gives a bound for the
relative suppression

β j ≡
y j

m j/Mpl
=

d lnm j

d(φ/Mpl)

of the coupling strength to the fifth force mediated by the quintessence field compared to the gravita-
tional coupling, giving (for M ∼Mpl , ωde +1 . 1, Ωde ∼ 0.7)

β j .
∆m j

m j
� 4

(
meV
m j

)4/3

∼ 10−11
(

me

m j

)4/3

. (4.64)

Note that the bound from eq. (4.63) also holds for other species (with mass-scaling ∼ m−1/3), whose
quintessence couplings are in general not constrained by the tests of the equivalence principle [157].
This is also true for dark matter, if it consists of a new heavy species like e.g. a weakly interacting
massive particle (WIMP), which severely constrains any coupling via a φ -dependent mass,

ydm = dmdm/dφ � 10−36 (TeV/mdm)1/3 ,

corresponding to a limit of the order

∆mdm/mdm� 10−19 (TeV/mdm)4/3 ,

for a mass variation between z∼ 2 and now from eq. (4.64).
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4.3 Quantum Corrections from Gravitational Coupling

Since any dynamical dark energy scenario is necessarily situated in a curved space-time setting, for
example described by a Robertson-Walker metric, it is important to study the quantum corrections
on such a background. In φ 4-theory, one-loop radiative corrections induce a non-minimal coupling
(NMC)

ξ Rφ
2/2

between the curvature scalar R and the scalar field φ , with a dimensionless coupling ξ [35]. Even if
the renormalization condition

ξ (µ0) = 0

is chosen at some renormalization point characterized by a scale µ = µ0, the corresponding renormalization-
group improved effective action which is applicable at very different scales µ 6= µ0 contains a non-
zero non-minimal coupling as described by the renormalization group running of ξ (µ) [92, 116].
For a scalar field with non-zero field expectation value φ , the non-minimal coupling ξ Rφ 2/2 leads to
a rescaling of the Newton constant G = M−2

pl (see section 2.3),

1
16πGeff (φ)

=
1

16πG
+

1
2

ξ φ
2 ,

where the effective Newton constant Geff (φ) appears in the gravitational force law for systems which
are small compared to the time- and space-scales on which φ = φ(x) varies. A rolling quintessence
field with a non-minimal coupling which is linear in R thus leads to a time-variation of the (effective)
Newton “constant” on cosmic time-scales,

∆Geff

Geff
≡

Geff (φ(t))−Geff (φ(t0))
Geff (φ(t0))

=−ξ

2
(
φ

2(t)−φ
2(t0)

)
16πGeff (φ(t)) ,

which is constrained by precision tests of General Relativity and Big Bang Nucleosynthesis [55,155,
181].
For tracking quintessence models, the scalar field value today is of the order of the Planck scale,
φ(t0)2 ∼ M2

pl = 1/G. Thus, a non-minimal coupling of the form Rφ 2 potentially yields a large
contribution to the effective Newton constant, unless the coupling ξ is small enough. For inverse-
power-law potentials, constraints on the time-variation of the Newton constant lead to an upper limit
|ξ |. 3 ·10−2 [55, 155].
Radiative corrections which lead to a non-minimal coupling of the form Rφ 2 as for the φ 4-theory
could thus lead to a conflict with experimental constraints on a time-varying Newton constant. How-
ever, dynamical dark energy scenarios making use of a scalar field involve non-renormalizable inter-
actions suppressed by some high-energy scale up to the Planck scale, described by a tracker potential
Vcl(φ), with properties which are very different compared to a φ 4-potential. Therefore it is important
to include the non-renormalizable interactions in the investigation of radiatively induced non-minimal
couplings between the dark energy scalar field and gravity.
In the following, this analysis will be performed based on the semi-classical9 one-loop effective ac-
tion on a curved background discussed in appendix B.2, which is obtained using Heat Kernel Expan-
sion [35] and zeta-function regularization [91, 110].

9The metric gµν (x) is treated as a classical background field in this approach.
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4.3.1 Radiatively induced Non-minimal Coupling for φ 4-Theory

The action of a scalar field in curved space-time with standard kinetic term,

S[φ ,gµν ] =
∫

d4x
√
−g
(

1
2

gµν
∂µφ∂νφ −Vcl(φ)

)
, (4.65)

contains minimal couplings to the metric via the integration measure and the contraction of the space-
time derivatives in the kinetic term required by general coordinate invariance. In quantum field theory,
radiative corrections to the classical action furthermore lead to additional non-minimal couplings to
gravity.
Before investigating non-minimal couplings for a quintessence theory, the calculation of radiative
corrections in curved space-time will be reviewed for a theory described by the φ 4-potential

Vcl(φ) = Λ+m2
φ

2/2+λφ
4/4! ,

in order to compare the generalized formalism discussed in appendix B, which is also suitable for
the quintessence case, with known results. The minimal scalar action in curved space-time which is
stable under one-loop quantum corrections is [35, 92, 116]

S[φ ,gµν ] =
∫

d4x
√
−g L(φ(x),gµν(x)) (4.66)

=
∫

d4x
√
−g
(

1
2

gµν
∂µφ∂νφ −V (φ ,R)+ ε1C + ε2G+2B(φ ,R)

)
,

where

V (φ ,R) = Vcl(φ)+
1
2

ξ Rφ
2 +

R
16πG

+ ε0R2 , (4.67)

B(φ ,R) = ε3φ
2 + ε4R ,

C = Rµνρσ Rµνρσ −2RµνRµν +R2/3 ,

G = Rµνρσ Rµνρσ −4RµνRµν +R2 ,

with dimensionless constants εi and including the Einstein-Hilbert term linear in R10. The necessity
to include all the upper terms can be seen from the renormalization group improved effective action,
which arises in the following way. Assume that some given approximation to the effective action
contains parameters which can describe the dynamics around a typical energy scale µ0. At another
energy scale µ 6= µ0, radiative corrections may change the effective values of these parameters, as
described by the renormalization group. Then the renormalization group improved effective action is
an improved approximation to the effective action where the running of the parameters is incorporated
such that it is applicable also at scales µ 6= µ0 (see appendix B).
The renormalization-group improvement of the one-loop effective action (“leading logarithm approx-
imation”) is accomplished by starting with the classical action at the reference scale µ0, and taking
the running into account as described by the renormalization group equations obtained from the one-
loop approximation. As shown in appendix B, the renormalization-group improved effective action
in leading logarithm approximation for a scalar in curved space and for the renormalization scheme
discussed in section B.2 is

ΓLL[φ ,gµν ; µ] =
∫

d4x
√
−g
(

1
2

gµν
∂µφ∂νφ −VLL(φ ,R; µ) (4.68)

+ ε1(µ)C + ε2(µ)G+2BLL(φ ,R; µ)
)

,

10The latter two terms are total derivatives and thus not relevant for the dynamics, but they are needed for the cancellation
of divergences and do appear in the dynamics if their running is considered [92, 116].
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where, for φ 4-theory, it is possible to make the ansatz

VLL(φ ,R; µ) = Λ(µ)+
m2(µ)

2
φ

2 +
λ (µ)

4!
φ

4 +
1
2

ξ (µ)Rφ
2 +

R
16πG(µ)

+ ε0(µ)R2,

BLL(φ ,R; µ) = ε3(µ)φ 2 + ε4(µ)R .

Inserting the ansatz into the partial differential equations (B.19) for VLL and BLL yields

∂VLL

∂ t
=

dΛ

dt
+

1
2

dm2

dt
φ

2 +
1
4!

dλ

dt
φ

4 +
1
2

dξ

dt
Rφ

2− R
16πG2

dG
dt

+
dε0

dt
R2

=
1

64π2

(
∂ 2VLL

∂φ 2 −
R
6

)2

=
1

64π2

(
m(µ)2 +

λ (µ)
2

φ
2 +
(

ξ (µ)− 1
6

)
R
)2

∂2BLL

∂ t
=

dε3

dt
2φ

2 +
dε4

dt
2R

=
1

192π2

(
∂ 22VLL

∂φ 2 − 2R
5

)
=

1
192π2

(
λ (µ)

2
2φ

2 +
(

ξ (µ)− 1
5

)
2R
)

,

where t = ln(µ2/µ2
0 ). By comparing the coefficients of the terms proportional to φ 2, φ 4, Rφ 2, R,

R2 and φ 0R0 = const in the two upper expressions for ∂VLL/∂ t and the coefficients of the terms
proportional to 2φ 2 and 2R in the two upper expressions for ∂2BLL/∂ t, the one-loop renormalization
group equations for φ 4-theory in curved space [92, 116] within the renormalization scheme from
section B.2 are obtained,

dλ

dt
=

3λ 2

32π2 ,
dm2

dt
=

λm2

32π2 ,

dG
dt

= −
8πG2m2(ξ − 1

6)
32π2 ,

dΛ

dt
=

m4

64π2 ,

dξ

dt
=

λ (ξ − 1
6)

64π2 ,
dε0

dt
=

(ξ − 1
6)2

64π2 ,

dε1

dt
= − 1

120 ·32π2 ,
dε2

dt
= − 1

360 ·32π2 ,

dε3

dt
=

λ

12 ·32π2 ,
dε4

dt
=

ξ − 1
5

6 ·32π2 ,

(4.69)

where the β -functions from eq. (B.17) for the parameters ε1 and ε2 were also included. The first
line, which describes the running of the quartic coupling and the mass, is identical to the MS result
in flat space. The second line describes the running of the Newton- and the cosmological constants.
The running of the non-minimal coupling ξ is given in the third line, along with the running of
the coefficients of higher curvature scalars whose presence in the action leads to modifications of
standard General Relativity. For non-zero quartic coupling λ , the renormalization group equation for
the non-minimal coupling ξ has no fixed point at ξ = 0. Thus, even if the renormalization condition
ξ (µ0) = 0 is imposed at the reference scale µ = µ0, a radiatively induced non-minimal coupling is
generated in the renormalization-group improved effective action applicable at other scales µ 6= µ0.
For generic values λ 6= 0, m2 6= 0 and ξ 6= 1/6, the same is true for all the running parameters, for
which reason the action (4.66) is indeed the minimal scalar action in curved space which is stable
under one-loop renormalization group running. Note that the fixed point ξ = 1/6 of the non-minimal
coupling corresponds to the value of ξ for which the classical action is conformal invariant in the
limit m,Λ,G−1→ 0 [35].
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4.3.2 Radiatively induced Non-minimal Coupling for Quintessence

In order to study radiatively induced non-minimal couplings for a quintessence field, it is desirable to
generalize the renormalization group equations to general scalar potentials Vcl(φ), for which effective
field theory is applicable. Within effective field theory, ultraviolet divergences are absent since the
theory is only valid up to the UV embedding scale Λ. Nevertheless, for a given approximation to the
effective action within effective field theory, which can describe the dynamics around an energy scale
µ0 � Λ, radiative corrections can lead to a rescaling of the effective parameters at different scales
µ 6= µ0, µ � Λ. Similarly as before, this scale-dependence can be incorporated in a renormalization
group improved effective action which yields generalized renormalization group equations for an
effective field theory below the embedding scale.
For a quintessence field, the UV embedding scale is typically of the order of the Planck or the GUT
scale, whereas the dynamical scale is of the order of the Hubble scale µ ∼H(t) ≪ Λ. If it is assumed,
for example, that non-minimal gravitational couplings of the quintessence field are absent for some
reference scale µ0 ∼ H(t0) ≪ Λ, non-minimal couplings can be generated radiatively at different
scales µ ∼ H(t). Since the dynamical scale H(t) changes (slowly) in cosmic history, radiatively
generated non-minimal couplings could manifest themselves, as described above, by a time-variation
of the effective Newton constant. In general, non-minimal couplings between the field φ and the
curvature scalar R which are linear in R, i.e. of the form f1(φ)R with some (scale-dependent) function
f1(φ), lead to an effective Newton “constant”

1
16πGeff (φ)

=
1

16πG
+ f1(φ) ,

which varies over cosmic time-scales due to the rolling quintessence field φ(t). Such a time-variation
is constrained observationally between Big Bang Nucleosynthesis (BBN) H(tBBN) ∼ T 2

BBN/Mpl ∼
10−15eV and today H0 ∼ 10−33eV to be less than ∼ 20% [181]. Therefore, it is important that radia-
tively induced non-minimal couplings from renormalization group running between these scales do
not violate this bound. Since both scales are far below the UV scale Λ and far below any other thresh-
olds of known particle masses, one may focus on the logarithmic scale dependence ∼ ln(µ2/µ2

0 )
as described by the renormalization group derived from the one-loop β -functions obtained via zeta-
function regularization [110] in curved space (see appendix B).
In the following it will be shown that the minimal scalar action in curved space-time with general
scalar potential Vcl(φ), which is stable under one-loop quantum corrections, has the same form as
for φ 4-theory, see eq. (4.66), however with a “generalized potential” V (φ ,R) and a function B(φ ,R)
with a more general dependence on φ and R. In order to capture radiatively induced non-minimal
couplings involving higher powers of φ and R, the ansatz

V (φ ,R) = ∑
nm

cnmφ
nRm , (4.70)

B(φ ,R) = ∑
nm

cnmφ
nRm ,

is made, with coefficients cnm and cnm, respectively. This ansatz is possible for all functions which can
be written as a Taylor series around φ = 0 and R = 0. Equivalently, it is possible to expand around any
other values φ = φ0 and R = R0, if necessary. Since the final result does not depend on the choice of
the expansion point, it is set to zero for simplicity. It should be emphasized however, that the result is
applicable to all theories where V (φ ,R) and B(φ ,R), including especially the potential Vcl(φ), possess
Taylor expansions around at least one arbitrary expansion point, which does not necessarily have to
be at φ = R = 0. The generalized potential V (φ ,R) and the function B(φ ,R) from eq. (4.67) for
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φ 4-theory correspond to the choice

c00 = Λ, c20 =
m2

2
, c40 =

λ

4!
, c21 =

ξ

2
, c01 =

1
16πG

, c02 = ε0, c20 = ε3, c01 = ε4 .

The one-loop effective action for the action given in eq. (4.66) with V (φ ,R) and B(φ ,R) parameterized
as in the ansatz (4.70) has been derived in appendix B.2. Inserting the first three terms of the Heat
Kernel Expansion (B.15) into eq. (B.14) yields

Γ[φ ,gµν ]1L =
∫ d4x

32π2

√
−g
[
− (X−R/6)2

2

(
ln

X−R/6
µ2 − 3

2

)
(4.71)

−
(

1
120

C− 1
360

G− 1
30

2R+
1
6
2X
)

ln
X−R/6

µ2 +
∞

∑
j=3

ḡ j(x,x)( j−3)!
(X−R/6) j−2

]
≡ Γ1L[φ ,gµν ; µ]+Γ1L,HD[φ ,gµν ] ,

where
X = X(φ ,R) = ∂

2V (φ ,R)/∂φ
2 ,

and µ is the renormalization scale. In the last line of eq. (4.71), the contribution Γ1L,HD[φ ,gµν ] is
defined, which contains the sum over the higher terms of the Heat Kernel Expansion ( j ≥ 3). These
involve curvature scalars built from higher powers of the curvature tensor and higher derivative terms
which are independent of the renormalization scale (see appendix B.2 and Ref. [121]). In contrast to
this, the first two terms (which correspond to j = 0,2, see eq.(B.15)), denoted by Γ1L[φ ,gµν ; µ], do
depend on µ .
In appendix B, the renormalization group improved effective action for the one-loop effective ac-
tion (4.71) was derived. It has a similar form as for φ 4-theory, see eq. (4.68). However, it contains
a renormalization group improved “generalized potential” VLL(φ ,R; µ) and a function BLL(φ ,R; µ)
with a more general dependence on φ and R compared to φ 4-theory. The scale-dependence of VLL

and BLL is determined by the partial differential equations (see eq. (B.19), t = ln(µ2/µ2
0 ))

∂

∂ t
VLL(φ ,R; µ) =

1
64π2

(
∂ 2VLL(φ ,R; µ)

∂φ 2 − R
6

)2

, VLL(φ ,R; µ0) = V (φ ,R),

∂

∂ t
2BLL(φ ,R; µ) =

1
192π2

(
∂ 22VLL(φ ,R; µ)

∂φ 2 − 2R
5

)
, 2BLL(φ ,R; µ0) = 0 .

This result is indeed independent of the choice of the expansion point in eq. (4.70). The running of
the parameters ε1(µ) and ε2(µ) in the action (4.68) is identical to that of φ 4-theory (see eqs. (B.17)
and (4.69)).
In order to investigate the radiatively induced non-minimal couplings, the “generalized potential”
VLL(φ ,R; µ) is expanded in powers of R,

VLL(φ ,R; µ) = f0(φ ; µ)+ f1(φ ; µ)R+ f2(φ ; µ)R2 + · · · .

As discussed above, the non-minimal coupling of the form f1(φ ; µ)R which is linear in R results
in a time-variation of the effective Newton constant. The partial differential equation determining
VLL(φ ,R; µ) yields a hierarchy of partial differential equations for { fk(φ ; µ) |0≤ k≤ N}. The lowest
two are

∂

∂ t
f0(φ ; µ) =

1
64π2

(
∂ 2 f0(φ ; µ)

∂φ 2

)2

, f0(φ ; µ0) = Vcl(φ) , (4.72)

∂

∂ t
f1(φ ; µ) =

1
32π2

∂ 2 f0(φ ; µ)
∂φ 2

(
∂ 2 f1(φ ; µ)

∂φ 2 − 1
6

)
, f1(φ ; µ0) = f1(φ) .
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The renormalization group equation in the first line describes the running of the quintessence po-
tential, and the second line yields the running of the non-minimal coupling which is linear in R
(“NMC”). The renormalization group equations for φ 4-theory are recovered by inserting f0(φ ; µ) =
Λ(µ) + m2(µ)φ 2/2 + λ (µ)φ 4/4! and f1(φ ; µ)R = R/(16πG(µ)) + ξ (µ)Rφ 2/2. It is emphasized
that, in general, the functional dependence of f0(φ ; µ) and f1(φ ; µ) on the field is only subject to the
restriction that it can be written as a Taylor series around some field value φ = φ0, which need not
necessarily be φ0 = 0. The partial differential equation for BLL(φ ,R; µ) can be decomposed similarly
by an expansion in R.
Here, it is demanded that the potential is given by a (tracker) quintessence potential Vcl(φ) at the
reference scale µ0. Furthermore, a renormalization condition f1(φ ; µ0) = f1(φ) is imposed on the
non-minimal coupling parameterized by the function f1(φ). If

∂ f1(φ ; µ0)/∂φ = ∂ f1(φ)/∂φ ≡ 0 , (mNMC) (4.73)

is set, i.e. f1(φ ; µ) ≡ const, then the quintessence field is minimally coupled at the reference scale
µ0 (e.g. µ0 ∼ H(tBBN)∼ 10−15eV). Note that the partial differential equation describing the running
of f1(φ ; µ) does not have a fixed point at f1(φ ; µ)≡ const. Therefore, the renormalization group im-
proved effective action contains a non-vanishing NMC at all scales µ 6= µ0 (e.g. µ ∼ H0 ∼ 10−33eV)
even though ∂ f1(φ ; µ0)/∂φ ≡ 0, which is purely generated by radiative corrections. Since this non-
minimal gravitational coupling is unavoidably present in the theory, it is denoted by mNMC (“mini-
mal NMC”).
Note that the scale-dependence of the functions f0(φ ; µ) and f1(φ ; µ) already includes the running
of the “cosmological constant” Λ(µ) ≡ f0(φ ; µ)|φ=0 and the “Newton constant” 1/(16πG(µ)) ≡
f1(φ ; µ)|φ=0, respectively. In fact, the non-minimal coupling11 f1(φ(t); µ(φ(t))) for a rolling field
φ(t) evaluated with a renormalization scale of the order of the dynamical scale of the quintessence
field µ2(φ(t)) ∼ m2

φ
(φ(t)) encodes the time-variation of the effective Newton “constant” (which is

relevant for astrophysical and laboratory measurements since it appears in the gravitational force law)

1
16πGeff (φ(t))

=
1

16πG
+ f1(φ(t); µ(φ(t))) ,

caused by both the renormalization group running and the rolling quintessence field, in a unified
manner12. It is emphasized that the choice of the renormalization scale µ is not free here, but is fixed
by the matching of the renormalization group improved effective potential with the one-loop effective
potential (see appendix B and Ref. [60]),

µ
2(φ) ≡ V ′′cl(φ)+

(
ξ0−

1
6

)
R (4.74)

=
[

9
2

Γ

(
1−ω

∗
φ

2
)

+9
(

ξ0−
1
6

)(
ωB−

1
3

)]
H2

∝ H2 ,

where the renormalization condition f1(φ ; µ0) = ξ0φ 2/2 + const has been inserted as an example,
as well as the dynamical mass (2.13) of a tracker quintessence potential Vcl(φ) and the curvature
scalar R of a FRW solution with ωB = 0,1/3 during matter/radiation domination. The mNMC (4.73)
corresponds to the choice ξ0 = 0.

11For the rolling quintessence field φ(t), t denotes the time.
12Similarly, the time-variation of the effective energy density ρφ = 1

2 φ̇ 2 + f0(φ(t); µ(φ(t))) encodes the time-variation
of dark energy caused by both the rolling quintessence field and the renormalization group running of the cosmological
constant due to quantum fluctuations of the quintessence field in a unified manner. However, the latter is negligible here
(see below).
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Finally, note that the renormalization group equation (4.72) for the non-minimal coupling f1(φ ; µ)R
has fixed-points of the form

f1(φ ; µ) = f ∗1 (φ)≡ 1
16πG

+bφ +
1
2

ξ
∗
φ

2 ,

for the “conformal coupling” ξ ∗ = 1/6 and arbitrary constant values G and b.

4.3.3 Robustness of Quintessence Actions

The impact of radiative corrections which are not encoded in the effective potential, i.e. non-minimal
gravitational couplings and corrections to the kinetic term, on tracker quintessence fields will now be
investigated. Therefore, the results of the previous section are applied to a quintessence field with
classical action containing a tracker potential Vcl(φ), characterized by the power-counting rules (4.7).

Linear non-minimal gravitational coupling

The renormalization group improved effective action contains the scale-dependent “generalized po-
tential” VLL(φ ,R; µ) = ∑

∞
k=0 fk(φ ; µ)Rk, which simultaneously encodes the renormalization group

running of the potential f0(φ ; µ) and all non-minimal couplings between the field φ and the curva-
ture scalar R in leading logarithm approximation. It is determined by the partial differential equa-
tion (B.19), which can be decomposed into a hierarchy of partial differential equations for the contri-
butions fk(φ ; µ), see eq. (4.72).
For scales where |t|= | ln(µ2/µ2

0 )|� 32π2, the solution of the renormalization group equations (4.72)
for fk(φ ; µ) (k = 0,1) in linear approximation is

f0(φ ; µ) = Vcl(φ)+
t

64π2

(
V ′′cl(φ)

)2
+O

( t
32π2

)2
, (4.75)

f1(φ ; µ) = f1(φ)+
t

32π2V ′′cl(φ)
(

f ′′1 (φ)− 1
6

)2

+O
( t

32π2

)2
.

For example, for the running between the Big Bang Nucleosynthesis era, µ0 ∼ H(tBBN) ∼ 10−15eV,
and today, µ ∼ H0 ∼ 10−33eV, |t|/(32π2) ≈ 0.26. According to the power counting rules (4.7), the
running of the quintessence potential is completely negligible, since the scale-dependent part propor-
tional to V ′′cl(φ)2 ∼ Vcl(φ)(Vcl(φ)/M4) is suppressed by the tiny factor Vcl(φ)/M4 ≪ 1, which is of
the order 10−120 today, compared to the classical potential. This is in agreement with the suppression
of logarithmic corrections with respect to the UV scale found in section 4.1.
Assuming, for example, that the non-minimal coupling at the reference scale is quadratic in the field,
f1(φ ; µ0) = f1(φ) = ξ0φ 2/2+ const, the radiative correction to the non-minimal coupling is

f1(φ ; µ) = f1(φ ; µ0)+
t

32π2V ′′cl(φ)
(

ξ0−
1
6

)2

+O
( t

32π2

)2
. (4.76)

The combined effect of the rolling quintessence field and the running non-minimal coupling thus
leads to a time-variation of the effective Newton constant given by

∆Geff

Geff
=

Geff (φ(t))−Geff (φ(t0))
Geff (φ(t0))

= −
(

f1(φ(t); µ)− f1(φ(t0); µ0)
)

16πGeff (φ(t))

= − ξ0

2

(
φ

2(t)−φ
2(t0)

)
16πGeff (φ(t))

− 1
32π2 ln

(
µ2(φ(t))

µ2
0

)
V ′′cl(φ(t))

(
ξ0−

1
6

)2

16πGeff (φ(t)) ,
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where the renormalization scale is given by eq. (4.74). The first contribution is the classical contri-
bution, and the second is the one induced by radiative corrections. Even if the non-minimal coupling
at the reference scale µ0 vanishes, i.e. ξ0 = 0, radiative corrections induce a non-minimal coupling
(“mNMC”) which leads to a time-variation of the effective Newton constant.
For tracker quintessence fields, the time variation of the effective Newton constant between BBN and
today is (Geff ≡ Gobs = 1/M2

pl, ∆φ 2 ≡ φ 2(t)−φ 2(t0))

∆Geff

Geff
≈ −8πξ0

∆φ 2

M2
pl
− 1

32π2 ln
(

H2
0

H2
BBN

)
V ′′cl(φ(t))

H2
0

(
ξ0−

1
6

)2 16πH2
0

M2
pl

.

The first term on the right-hand side is the classical contribution. It vanishes if the quintessence field
is minimally coupled at the reference (BBN) scale, i.e. in the limit ξ0 → 0. The second term on
the right-hand is the quantum contribution. It denotes the non-minimal coupling which is generated
radiatively between the reference scale and today.
The agreement between the abundances of light elements and predictions from BBN lead to the upper
bound ∆Geff /Geff . 20% [181]. Since the rolling quintessence field is of the order of the Planck scale
today, ∆φ 2/M2

pl can be of order one. Therefore the BBN bound yields restrictive upper bounds on
|ξ0|. 0.05 [55,155]. However, the radiatively induced contribution to the non-minimal coupling (the
mNMC) is suppressed by the tiny factor H2

0 /M2
pl. Therefore, if the non-minimal coupling |ξ0| is small

enough at the BBN scale, tracker quintessence models are robust against radiative corrections to the
non-minimal coupling between the BBN scale and today.
Note that the linear approximation in t to the solutions (4.75) of the renormalization group equations
has to be extended if the scope of the running is enlarged, for example, to be between the GUT
scale and today. Using the power-counting rules (4.7) for tracker potentials, it is found that the
coefficients of the contributions proportional to higher powers of t/(32π2) are highly suppressed by
powers of Vcl(φ)/M4 ∼ Vcl(φ)/M4

pl. However, it is also possible to show that for specific examples,
e.g Vcl(φ) ∝ exp(−λφ/Mpl), the expansion in powers of t is an asymptotic expansion, in which case
a non-perturbative treatment is obligatory for |t|/(32π2)→ ∞.

Nonlinear non-minimal gravitational coupling

Apart from the non-minimal coupling which is linear in the curvature scalar R, the scale-dependent
“generalized potential” VLL(φ ,R; µ) = ∑

∞
k=0 fk(φ ; µ)Rk also encodes the running of non-minimal cou-

plings fk(φ ; µ) between the scalar field and higher powers of R for k ≥ 2.
The presence of nonlinear terms in the curvature scalar leads to modifications of General Relativity,
which are suppressed if their contribution to the action is suppressed with respect to the Einstein-
Hilbert term [12]. This is the case if fk(φ ; µ)� M2

pl/R1−k for all relevant values of the curvature
scalar R. For cosmology, the curvature scalar is of the order of the Hubble scale, R∼ H2.
The running of the non-minimal coupling f2(φ ; µ)R2, as obtained from eq. (B.19), is given by the
partial differential equation

∂

∂ t
f2(φ ; µ) =

1
64π2

[
2

∂ 2 f0(φ ; µ)
∂φ 2

∂ 2 f2(φ ; µ)
∂φ 2 +

(
∂ 2 f1(φ ; µ)

∂φ 2 − 1
6

)2
]

,

f2(φ ; µ0) = f2(φ) . (4.77)

For φ 4-theory, f2(φ ; µ)≡ ε0(µ) does not explicitly depend on φ . The running of the coupling ε0(µ)
in φ 4-theory is recovered by inserting ∂ 2 f2(φ ; µ)/∂φ 2 = 0 and ∂ 2 f1(φ ; µ)/∂φ 2 = ξ (µ) .
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In order to estimate the radiatively induced non-minimal coupling ∝ R2, the initial conditions

f2(φ ; µ0) = f2(φ)≡ ε0 ≡ const and f1(φ ; µ0) = f1(φ)≡ ξ0φ
2/2+ const

are assumed. With this choice, the field is minimally coupled at the reference scale µ = µ0 for ξ0 = 0.
The approximate solution of the renormalization group equation is

f2(φ ; µ) = ε0 +
t

64π2

(
ξ0−

1
6

)2

+
1
2

( t
32π2

)2
V (4)

cl (φ)
(

ξ0−
1
6

)3

+O
( t

32π2

)3
.

Up to linear order in t = ln(µ2/µ2
0 ), f2(φ ; µ) does not explicitly depend on φ , similar to φ 4-theory.

A non-minimal coupling ∝ V (4)
cl (φ)R2 arises at order t2, which is extremely suppressed by the factor

V (4)
cl (φ)∼Vcl(φ)/M4 for a tracker potential.

For a potential Vcl(φ) involving higher-dimensional operators, radiative corrections also induce non-
minimal couplings between the field and higher powers Rk, k ≥ 3, of the curvature scalar. For ex-
ample, for a potential which contains a dimension six (or higher) operator, a radiatively induced
non-minimal coupling ∝ V (6)

cl (φ)R3 arises at order t3,

f3(φ ; µ) =
1
3!

( t
32π2

)3
V (6)

cl (φ)
(

ξ0−
1
6

)4

+O
( t

32π2

)4
,

where f3(φ ; µ0) = 0 was assumed. For a tracker potential, this is extremely suppressed compared to
the linear term ∝ R/(16πG)∼ RM2

pl since

V (6)
cl (φ)R3/(RM2

pl)∼ (M2/M2
pl) · (Vcl(φ)/M4) · (R2/M4) ,

where R∼ H2 and M ∼Mpl.

Kinetic term

The one-loop effective action (4.71) contains, apart from one-loop non-minimal gravitational cou-
plings, also the one-loop higher-derivative contributions to the effective action. The first contribution
to the derivative expansion (3.18) has the form of a modification of the kinetic term Z(φ)(∂φ)2/2. In
the flat space-time limit, the one-loop contribution obtained from the Heat Kernel Expansion (4.71)
is

Γ[φ ,ηµν ]1L =
∫ d4x

32π2

[
−V1L(φ)−

(
1
6
2X
)

ln
X
µ2

+
(
− 1

12
∂µX∂

µX− 1
60

22X
)

1
X

+
∞

∑
j=4

ḡ j(x,x)( j−3)!
X j−2

]

=
∫ d4x

32π2

[
−V1L(φ)+

1
12X

∂µX∂
µX +O

(
∂

4)]
=

∫ d4x
32π2

[
−V1L(φ)+

1
2

Z1L(φ)(∂φ)2 +O
(
∂

4)] ,

where the third coefficient of the Heat Kernel Expansion g3(x,x) (see Ref. [121]) was inserted in the
Minkowski limit in the second line. The one-loop correction to the kinetic term is thus given by

Z(φ) = 1+Z1L(φ), Z1L(φ) =
[
V ′′′cl (φ)

]2
/V ′′cl(φ) .

It is independent of the renormalization scale µ , in accordance with the vanishing anomalous dimen-
sion, see eq. (B.17). For a tracker potential, the one-loop correction to the kinetic term is suppressed
by the factor Z1L ∼V ′′′cl (φ)2/V ′′cl(φ)∼Vcl(φ)/M4 ≪ 1 compared to the classical value Z = 1.
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4.4 Summary

In this chapter quantum corrections to quintessence models have been investigated. These provide a
form of dynamical dark energy for which an extremely light rolling scalar field is responsible for the
present cosmic acceleration, similar to the inflaton in the early universe.

First an approximation scheme suitable to investigate the impact of quintessence self-couplings on
the shape of the effective potential has been introduced. An additive constant has been fine-tuned
to be zero, thus bypassing the unresolved “cosmological constant problem”. It has been shown that
the quantum corrections to the scalar potential can be self-consistently calculated in leading order in
V ′′(φ)/Λ2. Hereby Λ denotes the embedding scale characteristic for an underlying theory and V ′′(φ)
denotes the square of the quintessence mass, which is of the order of the Hubble parameter for track-
ing solutions. While potentials involving exponentials just get rescaled, inverse power law potentials
are flattened at small field values. The effective potential approaches a finite maximum value, thus
truncating the singular behaviour of the inverse power law. This distortion of the potential directly
plays a role cosmologically if Λ is large, roughly Λ & Mpl/10, and affects general properties like
tracking behaviour.

Second couplings between the quintessence field and heavier degrees of freedom, like the Standard
Model fermions or dark matter, have been discussed. The discussion has been constrained to cou-
plings that can effectively be written in the form of quintessence-field-dependent mass terms. The
quantum corrections induced by these couplings have been described by the low-energy effective
action obtained from integrating out the Standard Model degrees of freedom. An upper bound for
the couplings was quantified under the assumption that fine-tuning in the form of renormalization
conditions for the low-energy effective potential is admitted. This fine-tuning was used to minimize
the quantum corrections in the present cosmological epoch. The remaining corrections constitute the
minimal quantum vacuum backreaction of the Standard Model fields on the dynamics of the quint-
essence field.
Next, the upper bounds on the couplings have been translated into upper bounds for potentially ob-
servable effects, like tiny time-variations of particle masses between redshift z ∼ 2 and now, or tiny
apparent violations of the equivalence principle. Note that it has been assumed that the mass varia-
tions are uncorrelated. In this case, they are constrained to be far below observational bounds for all
Standard Model particles. The latter are of the order |∆m/m|. 10−5 [119,158]. However, it has been
found that massive neutrinos can have large relative mass variations of order one. The bound can be
avoided for correlated mass variations of different species which are finely tuned in such a way that
their quintessence-field-dependent contributions to the vacuum energy cancel.

Third non-minimal gravitational couplings induced by quantum corrections have been investigated.
For φ 4-theory, a non-minimal coupling of the form φ 2R is induced by radiative corrections in the
effective action, where R denotes the curvature scalar. For a tracker potential, however, all couplings
of the form φ nRm with integers n and m have to be included at one loop level, and will be induced
by quantum corrections unless the field is exactly conformally coupled. Potentially, non-minimal
couplings of the quintessence field can lead to conflicts with tests of General Relativity. However, for
tracker potentials, it has been shown that the radiatively induced non-minimal couplings as obtained
from the one-loop renormalization group analysis are suppressed by powers of H2/M2

pl ≪ 1 and
therefore do not lead to sizeable deviations from General Relativity.



Chapter 5

Leptonic Dark Energy and Baryogenesis

Scalar fields with time-dependent expectation value are not only considered in quintessence models,
but are commonly invoked in cosmology, above all to describe the inflationary phase [108] of the
early universe. Furthermore, rolling fields are the basis of a number of baryogenesis models [8, 78]
and also play an important role in the context of a possible time-variation of fundamental constants
over cosmological time-scales [172]. Due to the similarity of the underlying concepts, it is an inter-
esting question whether some of these issues could be related. This has been studied for example for
the early- and late time acceleration, called quintessential inflation [154], or for the combination of
spontaneous lepto- and baryogenesis with quintessence [138, 187] and quintessential inflation [72].
Here, a toy model is discussed where baryogenesis and cosmic acceleration are driven by a leptonic
quintessence field coupled indirectly to the Standard Model sector via a massive mediating scalar
field. It does not require the introduction of new interactions which violate baryon (B) or lepton (L)
number below the inflationary scale. Instead, a B−L-asymmetry is stored in the quintessence field,
which compensates for the corresponding observed baryon asymmetry.

5.1 Quintessence and Baryogenesis

Complex scalar fields have been discussed as candidates for dynamical dark energy [40, 106], which
offer the possibility that the field carries a U(1)-charge [8, 78], and thus could itself store a baryon or
lepton density [23]. This approach can very well be accommodated within the so-called “baryosym-
metric baryogenesis” [79, 80] scenario, where one attempts to explain the overabundance of matter
over antimatter without postulating new baryon- or lepton number violating interactions, nevertheless
starting with no initial asymmetry. This requires the introduction of an invisible sector, in which an
asymmetry is hidden that exactly compensates the one observed in the baryon (and lepton) sector,
thereby circumventing one of the Sakharov conditions [163]. Here a possible realization is discussed
where the anomaly-free combination B−L is conserved below the inflationary scale, and the invisible
sector, which compensates for the B−L-asymmetry of the Standard Model (SM) baryons and leptons,
is leptonic dark energy [23, 103]. For other realizations involving dark matter or neutrinos see e.g.
Refs. [77, 79].

Toy Model

In this section the question is addressed of how B−L-asymmetries in the dark energy sector, real-
ized by a complex quintessence field charged under B−L, and in the SM sector can be created by a
dynamical evolution within an underlying B−L-symmetric theory. For this, it is necessary to con-
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sider a suitable interaction between both sectors. Direct couplings between the quintessence field and
SM fields are commonly investigated for example in the context of time-varying coupling constants
and/or -masses [172] or violations of the equivalence principle [157], which leads to strong constraints
in the case of a coupling e.g. to photons or nucleons [51, 102, 157] (see also section 4.2). Here, a toy
model is discussed where it is assumed that direct interactions between the quintessence field φ and
the SM are sufficiently suppressed, allowing however an indirect interaction mediated by a “mediat-
ing field” χ which couples to φ and the SM. In the late universe, the χ-interactions should freeze out.
This means that the massive scalar χ is hidden today and also that the transfer of asymmetry between
the quintessence and the SM sector freezes out. Thus, once an asymmetry has been created in each
sector in the early universe, it will not be washed out later on. In the specific setup considered here
the quintessence field is taken to carry lepton number −2, so that it carries a B−L-density given by

nφ =−2|φ |2θ̇φ (with φ ≡ |φ |eiθφ ) , (5.1)

and analogously for the mediating field χ which carries the same lepton number. The effective toy-
model Lagrangian for φ and χ is

L =
1
2
(∂µφ)∗(∂ µ

φ)−V (|φ |)+
1
2
(∂µ χ)∗(∂ µ

χ)− 1
2

µ
2
χ |χ|2

−1
2

λ1|φ |2|χ|2−
1
4

λ2(φ 2
χ
∗2 +h.c.)+LSM(χ, . . .) ,

with dimensionless coupling constants λ1 > 0 and λ2 < λ1 responsible for the coupling between
the quintessence and the mediating field. This Lagrangian has a global U(1)-symmetry under a
common phase rotation of φ and χ which corresponds to a B−L-symmetric theory. The coupling of
the mediating field to the SM encoded in the last contribution should also respect this symmetry. This
is compatible e.g. with a Yukawa-like coupling of the form LSM 3 −gχνc

RνR + h.c. to right-handed
neutrinos, see Ref. [23]. For the quintessence potential an exponential potential of the form [21, 98,
157, 182]

V (|φ |) = V0

(
e−ξ1|φ |/Mpl + ke−ξ2|φ |/Mpl

)
(5.2)

is assumed, which leads to tracking of the dominant background component and a crossover towards
an accelerating attractor at the present epoch for ξ1�

√
3� ξ2 and a suitable choice of k [21]. For the

dynamics in the early universe one can safely neglect the second term. Since the vacuum expectation
value (VEV) of φ increases and typically |φ |& Mpl today, the effective mass m2

χ ≈ µ2
χ +λ1|φ |2 of the

mediating field gets huge and the field indeed decouples the quintessence and the SM sectors in the
late universe. However, before the electroweak phase transition the dynamics of φ and χ can lead to
a creation of the baryon asymmetry.

5.2 Creation of a B−L-Asymmetry

To study the evolution of the scalar fields φ and χ in the early universe, it is described by a flat
FRW metric after the end of inflation with a Hubble parameter H = Hinf and with VEVs φ = φ0 and
χ = χ0e−iα0 inside our Hubble patch which are displaced by a relative angle α0 in the complex plane.
These initial conditions correspond to dynamical CP violation if sin(2α0) 6= 0, which is necessary for
the formation of an asymmetry [19,80]. Under these conditions, the fields start rotating in the complex
plane and thus develop a B−L-density, see eq. (5.1). This asymmetry is then partially transferred to
the SM by the B−L-conserving decay of the χ-field into SM particles, leading to a decay term for the
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Figure 5.1: Numerical solution for the absolute value of the quintessence VEV |φ | (upper) and its
complex phase (lower) for various initial conditions φ0 and the choice λ1 = 1,λ2 = 0.1,V0/ρ0 =
10−5,ξ1 = 7,χ0 = Hinf = 1012GeV,α0 = π/4,g = 1 of parameters.

χ-field in the equations of motion [23]

φ̈ +3Hφ̇ = −2
∂V
∂φ ∗
−λ1|χ|2φ −λ2φ

∗
χ

2 ,

χ̈ +3H χ̇ +3Γχ→SMχ̇ = −µ
2
χ χ−λ1|φ |2χ−λ2χ

∗
φ

2 ,

where Γχ→SM = g2

8π
mχ is the decay rate and g2 stands for the squared sum of the Yukawa couplings

corresponding to the relevant decay channels. Provided that the quintessence behaviour is dominated
by the exponential and not by the mixing terms (which is roughly the case if |V ′(φ0)| � χ2

0 φ0,χ3
0 ), it

will roll to larger field values with only small changes in the radial direction (see figure 5.1), whereas
the χ-field oscillates and decays once Γχ→SM & H (see figure 5.2).
Due to the B−L-symmetry, the total B−L-density is conserved, and thus the asymmetries stored in the
different components always add up to the initial value which was assumed to be zero after inflation,
i.e.

nφ +nχ +nSM ≡ 0 . (5.3)

After the decay of the χ-field, the comoving asymmetry freezes (see figure 5.3) since there is no more
exchange between the quintessence and the SM sectors1 [23],

nSMa3→−nφ a3→ const =
∫

∞

0
dt a3

Γχ→SM ·nχ ≡ A∞ , (5.4)

and thus the B−L-asymmetry in the SM is exactly compensated by the B−L-asymmetry stored in the
quintessence field. The final yield of the B−L-asymmetry

nSM/s = D ·κ ≡ D · −A∞

3.2ρ
3/4
0

∝ A∞ (5.5)

1Here, t ≡ 0 and a≡ 1 at the end of inflation.
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Figure 5.2: Numerical and approximate WKB solution for the absolute value of the mediating field
VEV |χ| for the same parameter values as in figure 5.1 despite φ0 = Hinf .

(where ρ0 ≡ 3H2
inf M

2
pl) can actually be calculated either numerically or, for a restricted parameter

range, analytically via the integral in eq. (5.4) using an approximate WKB solution for χ(t) [23] (see
figure 5.2 and figure 5.3),

κ ≈−N
2

sin(2α0)
(

χ0

Hinf

)2

·


3.6 ·10−10 φ0

1013GeV

(
Hinf

1012GeV

)1
2

if φ
3
0 � χ

2
0 φ0, |V ′(φ0)|

1.7 ·10−8
(

ξ1

7
V0

ρ0

)1
3
(

Hinf

1012GeV

)7
6

if |V ′(φ0)| � φ
3
0 ,χ

3
0 ,

(5.6)
where N ≡ N (λ1,λ2,g) contains the the dependence on the coupling constants, with N ∼ 1 for
g2/(8π) ∼ λ2/λ1 � λ1 ∼ 1 [23]. The analytic estimate agrees well with the numerical results (see
figure 5.3) inside the respective domains of validity. In the notation of eq. (5.5) κ ∝ A∞ is the
contribution which depends on the dynamics of the quintessence and the mediating field, and D is a
factor of proportionality which depends on the expansion history of the universe after inflation and
can vary in the range 1 & D & 10−6 for various models of inflation and re/preheating [23]. Thus,
arriving at the observed value2 nSM/s ∼ 10−10 is possible if the asymmetry parameter κ is in the
range

10−10 . κ . 10−4 , (5.7)

which is indeed the case for a broad range of values for the initial energy density and VEV of the
quintessence field (see figure 5.4).

2Note that the B−L-asymmetry and the baryon asymmetry differ by an additional sphaleron factor of order one, see
Ref. [109].
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5.3 Stability

An important issue in the context of complex quintessence models is to study the stability against the
formation of inhomogeneities, which could otherwise lead to the formation of so-called Q-balls [59],
and destroy the dark energy properties. Once the comoving asymmetry is frozen one can estimate
from eq. (5.1) the phase velocity θ̇φ which is necessary to yield an asymmetry nφ/s∼ 10−10,

|θ̇φ |
H

=
|nφ |

2H|φ |2
∼ 10−10 2π2

45
g∗S(T )

T 3

2H|φ |2
. 10−8 (HMPl)3/2

2H|φ |2
� 10−8 , (5.8)

where it was assumed that g∗S(T ) ∼ 100 and |φ | & Mpl. Thus the field is moving extremely slowly
in the radial direction compared to the expansion rate of the universe, which is exactly the opposite
limit as that which was studied for example in the spintessence models [40]. Quantitatively, one
can show [134] that there exist no growing modes for linear perturbations in |φ | and θφ for any
wavenumber k provided that

θ̇
2
φ <

3H +2ϕ̇/ϕ

3H +6ϕ̇/ϕ
V ′′ , (5.9)

(with ϕ ≡ |φ |, V ′′ ≡ d2V/dϕ2). Since the mass V ′′ ∼ H2 of the quintessence field tracks the Hubble
scale [169] and since ϕ̇/ϕ > 0 this inequality is safely fulfilled once the tracking attractor is joined,
and thus there are no hints for instabilities in this regime. Details of the analysis, including also the
early moments of evolution as well as additional particle processes, can be found in Ref. [23].
Finally, it is mentioned that, since the underlying Lagrangian is B−L-symmetric, it offers a possibil-
ity to combine Dirac-neutrinos with baryogenesis aside from the Dirac-leptogenesis mechanism [77].
Note that the lepton-asymmetry in the SM is of opposite sign compared to Dirac-leptogenesis. Fur-
thermore, there is no specific lower bound on the reheating temperature like in thermal leptogene-
sis [70].
In conclusion, the coupled leptonic quintessence model discussed here can account for the observed
baryon asymmetry of the universe without introducing new B−L-violating interactions below the
inflationary scale by storing a lepton asymmetry in the dark energy sector.



Chapter 6

Quantum Nonequilibrium Dynamics
and 2PI Renormalization

The standard big bang paradigm implies that cosmology is nonequilibrium physics. As has been seen
in the previous chapters, nonequilibrium phenomena do not only occur in the early universe (like
baryogenesis). A rolling quintessence field, for which the expectation value evolves with time during
all cosmological epochs, also provides an example for a nonequilibrium situation.
The description of nonequilibrium phenomena within quantum field theory has traditionally been
limited to semi-classical approximations. These can either describe highly correlated systems, like
a system with time-varying field expectation value, or systems where correlations are quickly lost,
but which are nevertheless sufficiently dilute, such that quantum nonequilibrium effects, like off-shell
effects, are sufficiently suppressed, and Boltzmann equations may be used. However, in situations
where neither of the two limits described above can be applied, a full quantum field theoretical de-
scription is required. An example is a system where a time-evolving field expectation value and a
non-thermal distribution of particle-like excitations have to be treated simultaneously, as it occurs for
the inflaton field during reheating, and could also occur for a quintessence field.
A self-consistent quantum field theoretical description of quantum fields far from equilibrium is avail-
able in the form of Kadanoff-Baym Equations derived from the 2PI effective action, and many inter-
esting nonequilibrium questions have been addressed within this framework in the recent years. Their
derivation is briefly reviewed in section 6.1.
Due to the inherently nonperturbative structure of Kadanoff-Baym equations, their renormalization
is still an unresolved question, which is tackled in chapters 7 and 8 of this work. There are various
reasons why a proper renormalization of Kadanoff-Baym equations is desirable, as mentioned in the
introduction. In particular, it is required for quantitative comparisons with semi-classical approaches.
Renormalization is indispensable in order to obtain reliable predictions from realistic applications of
Kadanoff-Baym equations.
The renormalization techniques for Kadanoff-Baym equations developed in this work are based on
the nonperturbative renormalization procedure of the 2PI effective action, which has been recently
formulated at finite temperature, and which is reviewed in section 6.2.
For concreteness, the nonequilibrium formalism is discussed for a real scalar λΦ4/4! quantum field
theory, although the underlying concepts are more general and can be adapted to more realistic quan-
tum field theories. The fundamental action in Minkowski space is given by

S[φ ] =
∫

d4x
(

1
2
(∂φ)2− 1

2
m2

φ
2− λ

4!
φ

4
)

. (6.1)
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6.1 Kadanoff-Baym Equations from the 2PI Effective Action

The closed real-time path

Within quantum nonequilibrium dynamics, one is interested in the time-evolution of correlation func-
tions for a system which can be described by a density matrix ρ at a given initial time tinit ≡ 0. In
general, the correlation functions are defined as expectation values of products of field operators and
their conjugates with respect to the statistical ensemble. Such expectation values can be calculated
using the so-called in-in or closed-time-path (CTP) formalism [68, 126, 166]. In contrast to the usual
in-out formalism, the calculation of expectation values requires the evaluation of matrix elements
where the left state and the right state are both specified at the initial time. For a Heisenberg operator
OH(t), which may be an arbitrary product of field operators and their conjugates all evaluated at a
common time argument t, the expectation value is given by [68]

〈OH(t)〉= Tr
(

ρ U(tinit , t)OI(t)U(t, tinit)
)

(6.2)

= Tr
(

ρ T̃
[

exp
(

+i
∫ t

tinit

dt ′HI(t ′)
)]
OI(t) T

[
exp
(
−i
∫ t

tinit

dt ′HI(t ′)
)])

,

where OI(t) = exp(itH0)OH(0)exp(−itH0) denotes the interaction picture operator. The interaction
picture time-evolution operator is given by [68]

U(t, t ′) = exp(itH0)exp
(
−i(t− t ′)H

)
exp
(
−it ′H0

)
(6.3)

=

 T
[
exp
(
−i
∫ t

t ′dt ′′HI(t ′′)
)]

for t > t ′

T̃
[
exp
(
+i
∫ t ′

t dt ′′HI(t ′′)
)]

for t < t ′ ,

where H0 is the quadratic part of the Hamiltonian and the interactions are contained in HI(t) =
exp(itH0)(H−H0)exp(−itH0). T and T̃ denote the chronological and the antichronological time-
ordering operator, respectively. The product of operators appearing in the trace (6.2) contains a
chronologically ordered part and an antichronologically ordered part. Therefore the contour C shown
in figure 6.1 is defined, which is running along the real axis from tinit to tmax = t and back to tinit , as
well as a time-ordering operator TC on the contour. The time arguments of the operators may also
be assigned to the contour C. The operator TC becomes the chronological time-ordering operator on
the branch running forward in time and the antichronological time-ordering operator on the branch
running backward in time. All operators belonging to the antichronological branch C− are placed
left of the operators belonging to the chronological branch C+. In this way, the expectation value in
eq. (6.2) can be written as

〈OH(t)〉= Tr
(

ρ TC

[
exp
(
−i
∫

C
dtHI(t)

)
OI(t)

])
, (6.4)

where the time integral is performed along the contour C = C+ +C−. Note that it is possible to extend
the contour to a maximal time tmax > t by inserting the unity operator 1 = U(t, tmax)U(tmax, t) left or
right of the operator OI(t) in eq. (6.2).

The Schwinger-Keldysh propagator

The Schwinger-Keldysh propagator is defined as the connected two-point correlation function on the
closed real-time contour C,

G(x,y) = 〈TC Φ(x)Φ(y)〉−〈Φ(x)〉〈Φ(y)〉 . (6.5)
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Figure 6.1: Closed real-time contour [68, 126, 166].

The Schwinger-Keldysh propagator can be obtained by functional differentiation from the generating
functional for correlation functions formulated on the closed real-time path. The generating functional
in the presence of a local external source J(x) and a bilocal external source K(x,y), written down using
a complete basis of common eigenstates of the field operator Φ(x) at the initial time tinit ≡ 0,

Φ(0,x)|ϕ,0〉= ϕ(x)|ϕ,0〉 , (6.6)

is given by

Zρ [J,K] = Tr
(

ρ TC

[
exp
(

i
∫

C
d4xJ(x)Φ(x)+

i
2

∫
C
d4x
∫

C
d4yΦ(x)K(x,y)Φ(y)

)])
=

∫
Dϕ+

∫
Dϕ− 〈ϕ+,0 |ρ|ϕ−,0〉×

〈
ϕ−,0

∣∣∣∣TC

[
exp
(

i JΦ+
i
2

ΦKΦ

)]∣∣∣∣ϕ+,0
〉

,

where the short hand notation (3.21) applies (with
∫
→
∫
C). The second matrix element can be

expressed by a path integral over all field configurations ϕ(x) with time argument attached to the
contour C fulfilling the boundary conditions ϕ(0±,x) = ϕ±(x) [49],

Zρ [J,K] =
∫
Dϕ+

∫
Dϕ− 〈ϕ+,0 |ρ|ϕ−,0〉

ϕ(0−,x)=ϕ−(x)∫
ϕ(0+,x)=ϕ+(x)

Dϕ exp
(

iS[ϕ]+ i Jϕ +
i
2

ϕ Kϕ

)

≡
∫
Dϕ 〈ϕ+,0 |ρ|ϕ−,0〉 exp

(
iS[ϕ]+ i Jϕ +

i
2

ϕ Kϕ

)
. (6.7)

The information about the initial state enters via the matrix element of the density matrix. The stan-
dard case which has been used for numerical studies so far is a Gaussian initial state.

2PI effective action for a Gaussian initial state

A Gaussian initial state is an initial state for which all connected n-point correlation functions vanish
for n≥ 3. The density matrix element for a Gaussian initial state can be parameterized as

〈ϕ+,0 |ρ|ϕ−,0〉= exp
(

iα0 + iα1ϕ +
i
2

ϕα2ϕ

)
. (6.8)
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Figure 6.2: Diagrams contributing to the three-loop truncation of the 2PI effective action in the
symmetric phase (setting-sun approximation) for a Gaussian initial state.

Therefore, in the Gaussian case, the contribution of the density matrix to the generating functional (6.7)
can be absorbed into the external sources, J + α1→ J and K + α2→ K (the constant α0 can be ab-
sorbed into the normalization of the path integral measure).
The 2PI effective action is the double Legendre transform of the generating functional (6.7) with
respect to the external sources. The latter has the same structure as the generating functional (3.20) in
vacuum, except that all time-integrations are performed over the closed real-time path. Consequently,
the 2PI effective action for a Gaussian initial state is obtained from the parameterization given in
eq. (3.26) by replacing the time-integrations

∫
→
∫
C . For example, the three-loop truncation of the

2PI effective action Γ[G]≡ Γ[φ = 0,G] in the Z2-symmetric phase (〈Φ(x)〉= 0), which is referred to
as setting-sun approximation, is given by (see figure 6.2)

Γ[G] =
i
2

Tr lnG−1 +
i
2

Tr
(
G−1

0 G
)
+Γ2[G] , (6.9)

iΓ2[G] =
−iλ

8

∫
C
d4xG(x,x)2 +

(−iλ )2

48

∫
C
d4x
∫

C
d4yG(x,y)4 .

Here, G−1
0 (x,y) = i(2x +m2)δ 4

C(x− y) is the free inverse Schwinger-Keldysh propagator which con-
tains the (bare) mass and the Dirac distribution on the time path C.

Kadanoff-Baym equations for a Gaussian initial state

The equation of motion for the full Schwinger-Keldysh propagator is obtained from evaluating the
functional derivative of the 2PI effective action with respect to the two-point function (which yields a
stationarity condition for vanishing external source K(x,y) by construction)

δ

δG(x,y)
Γ[G] =−1

2
K(x,y) . (6.10)

Here, the external sources are formally not zero for the physical situation, but J(x) = α1(x) and
K(x,y) = α2(x,y), due to the density matrix element. However, their contribution to the equation
of motion will be omitted below because it vanishes in the Kadanoff-Baym equations. Instead, the
information about the initial state only enters via the initial conditions for the two-point function for
a Gaussian initial state (see appendix D).
In setting-sun approximation, the equation of motion for the propagator is given by (see figure 6.3)

G−1(x,y) = G−1
0 (x,y)−Π(x,y) , (6.11)

Π(x,y) ≡ 2iδΓ2[G]
δG(y,x)

=
−iλ

2
G(x,x)δ 4

C(x− y)+
(−iλ )2

6
G(x,y)3 , (6.12)

where Π(x,y) is the full self-energy. The Kadanoff-Baym equations are an equivalent formulation of
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Figure 6.3: Diagrams contributing to the self-energy Π(x,y) in setting-sun approximation for a Gaus-
sian initial state.

the equation of motion. They are obtained by convolving eq. (6.11) with the full propagator(
2x +m2 +

λ

2
G(x,x)

)
G(x,y) = − iδ 4

C(x− y)− i
∫

C
d4zΠ(x,z)G(z,y) , (6.13)

and inserting the decomposition of the full two-point function into the statistical propagator GF(x,y)
and the spectral function Gρ(x,y),

G(x,y) = GF(x,y)− i
2

sgnC(x0− y0)Gρ(x,y) . (6.14)

The Kadanoff-Baym equations read(
2x +M2(x)

)
GF(x,y) =

∫ y0

0
d4zΠF(x,z)Gρ(z,y)

−
∫ x0

0
d4zΠρ(x,z)GF(z,y) , (6.15)

(
2x +M2(x)

)
Gρ(x,y) =

∫ y0

x0

d4zΠρ(x,z)Gρ(z,y) .

The effective mass M2(x) = m2 + λ

2 G(x,x) contains the bare mass and the local part of the self-
energy (6.12). The non-local part of the self-energy can be decomposed into statistical and spectral
components similarly as the propagator. In setting-sun approximation, one has

Πnon−local(x,y) = ΠF(x,y)− i
2

sgnC(x0− y0)Πρ(x,y) =
(−iλ )2

6
G(x,y)3 . (6.16)

A more detailed derivation can be found in appendix D.
For a Gaussian initial state, the complete information about the initial state enters via the initial
values of the connected one- and two-point functions and their time derivatives (up to one derivative
of each time argument, see section D.2.2). For the spectral function, these initial conditions are
fixed by the equal-time commutation relations (see eq. (D.49)). For the statistical propagator, it
is convenient to parameterize the initial conditions in terms of an effective kinetic energy density
ω(t = 0,k) and effective particle number density n(t = 0,k) at the initial time t = 0 for each spatial
momentum mode k (see eq. (D.51)). The definitions obtained from the free-field ansatz [25] (where
G(x0,y0,k) =

∫
d3xe−ik(x−y) G(x,y))

ω
2(t,k) =

(
∂x0∂y0GF(x0,y0,k)

GF(x0,y0,k)

)∣∣∣∣∣
x0=y0=t

,

n(t,k) = ω(t,k)GF(t, t,k)− 1
2

, (6.17)

have proven to yield meaningful results, although there is no unique definition.
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Quantum dynamics far from equilibrium

With the formalism presented above, it is possible to answer the question of how a quantum field
evolves out of equilibrium for a wide class of circumstances. In particular, the quantum thermalization
process can be studied from first principles for a closed system [32]. It is interesting to note that the
derivation of Kadanoff-Baym equations within quantum field theory does not require any further
approximations or assumptions. The Kadanoff-Baym equation (6.15) is an exact evolution equation
for the full two-point correlation function (the approximation enters on the level of a truncation of
the self-energy Π(x,y), like in eq. (6.12)). In particular, no assumptions are required which would
only hold for systems close to equilibrium [32]. Kadanoff-Baym equations are suitable to study
quantum fields arbitrarily far from equilibrium as long as the underlying quantum field theory is valid.
Furthermore, Kadanoff-Baym equations do not violate time-reversal invariance [32], in contrast e.g.
to Boltzmann-equations [164]. Due to the unitary time-evolution, thermal equilibrium can never
be reached completely. Nevertheless, observables like the two-point correlation function have been
shown to converge towards a thermal value at late times for closed systems involving scalar quantum
fields on a lattice in 1+1 [32], 1+2 [123] and 1+3 [33,142] space-time dimensions (see also [69] for the
nonrelativistic case) as well as for fermionic quantum fields in 1+3 space-time dimensions [30, 143].
Furthermore, in contrast to semi-classical descriptions given e.g. by Boltzmann equations [164],
Kadanoff-Baym equations include memory effects since they are non-local in time and are capable
of describing scattering processes which involve exchange of virtual (quasi-)particles (“off-shell”)
as well as on-shell particles in a unified, quantum-field theoretical manner. Therefore, in situations
where the upper effects become important, the application of standard Boltzmann equations, including
e.g. the lowest order 2-to-2 scattering process, might lead to quantitatively or even qualitatively
incorrect results [142, 143, 147]. Since standard Boltzmann equations are widely used in all areas
of physics, it seems worth to investigate under which circumstances they are reliable and in how
far various extensions of Boltzmann-equations [147] can capture the off-shell and memory effects
included in the quantum-field theoretical Kadanoff-Baym treatment. For such a comparison to work
quantitatively, it is desirable to have a proper renormalization procedure available which allows to
compare the evolution of semi-classical Boltzmann-ensembles with physical renormalized excited
states rather than bare excited states.
There are also situations where semi-classical descriptions are not available, e.g. for highly correlated
systems, which may undergo an instability. A typical situation of this type is the decay of a scalar
condensate. A coherent scalar condensate which periodically oscillates in its potential starts to de-
cay, due to its couplings, into (quasi-)particle excitations. This decay may additionally be resonantly
enhanced if parametric resonance conditions are fulfilled [127, 128], creating a highly non-thermal
population of field quanta, which are then expected to thermalize on a much longer time-scale. How-
ever, this subsequent thermalization process cannot be described in the conventional 1PI framework.
Within a quantum field theoretical treatment based on Kadanoff-Baym equations, the evolution of
the system can be followed at all stages starting from the coherent condensate to the thermalized
plasma [33]. If the oscillating field is the inflaton, the upper scenario is known as reheating (or pre-
heating if parametric resonance occurs) [5, 128, 129, 167]. Using Kadanoff-Baym equations it is thus
possible to explore the period between the end of inflation and the beginning of the radiation dom-
inated regime [3, 4]. This is relevant e.g. for the production of primordial gravitational waves [88],
which will be tested by future precision measurements of the polarization of the cosmic microwave
background [125], and for the reheating temperature. This is the maximal temperature of the plasma
in the early universe, which is relevant e.g. for leptogenesis [70] and the production of long-lived
thermal relics (“gravitinos”) [93].
In principle, Kadanoff-Baym equations can even be applied in regimes where a priori no well-defined
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notion of (quasi-)particle excitations exists, as might occur in strongly coupled theories under extreme
nonequilibrium conditions [27]. Such a situation may be encountered in high-energy Heavy Ion
Collisions performed at RHIC and planned at the LHC [6, 7].
Finally, it is mentioned that it is possible to analyze kinetic and chemical equilibration using Kada-
noff-Baym equations. Kinetic equilibration requires energy-momentum exchange between different
momentum modes, e.g. via quantum scattering processes, while chemical equilibration occurs due
to energy-momentum transfer between different species, e.g. via decay and recombination processes.
Due to these different underlying microscopic processes, one expects that kinetic and chemical equi-
libration occur on different time-scales. Such a separation of time-scales has indeed been found for
the quantum equilibration process described by Kadanoff-Baym equations [143]. Microscopic kinetic
equilibration already occurs long before macroscopic observables have reached their final equilibrium
values [31]. An important requirement for the applicability of effective, e.g. hydrodynamic, descrip-
tions of nonequilibrium processes is the validity of local thermal equilibrium [112]. The “prethermal-
ization” [31] featured by solutions of Kadanoff-Baym equations is a justification from first principles
regarding the domain of applicability of hydrodynamic equations, used e.g. for the interpretation of
data from high-energy Heavy Ion Collisions [131].

6.2 Nonperturbative Renormalization of the 2PI Effective Action at fi-
nite Temperature

The 2PI effective action provides the appropriate framework for the investigation of quantum nonequi-
librium dynamics. However, due to its nonperturbative nature, renormalization is more complicated
compared to the conventional perturbative approach.
In general, a perturbative approximation (for example a loop approximation of the 1PI effective ac-
tion) is compatible with the renormalizability of the underlying quantum field theory if the following
condition holds: LetM denote the set of perturbative Feynman diagrams belonging to the approxi-
mation of interest. Then, for any diagram inM, it is necessary that all diagrams which are required
to cancel its UV divergences and subdivergences (as determined by the BPHZ renormalization pro-
cedure [38, 113, 191]) do also belong toM.
Since the solution of the self-consistent equation of motion for the full 2PI propagator corresponds
to a selective infinite resummation of perturbative Feynman diagrams, it is non-trivial whether an
approximation based on a truncation of the 2PI effective action is compatible with renormalizability.
Recently, it has been shown [28, 29, 37, 173–175] that systematic (e.g. loop, 1/N) truncations of
the 2PI effective action lead to approximations which are compatible with renormalizability, and a
completely nonperturbative renormalization procedure for the 2PI effective action in vacuum and
at finite temperature has been formulated. The 2PI vacuum counterterms, which render all n-point
functions finite, have to be determined self-consistently.
The derivation of the nonperturbative renormalization procedure at finite temperature is briefly re-
viewed in this section for the setting-sun approximation (6.9) of the 2PI effective action.

The thermal time path

The density matrix ρ = Z−1 exp(−βH) in thermal equilibrium at temperature T = 1/β is explicitly
known in terms of the full Hamiltonian. The exponential appearing in the thermal density matrix
can be interpreted as the full time-evolution operator exp(−itH) evaluated for the imaginary time
t = −iβ . Accordingly, the matrix element of the thermal density matrix can be written as a path
integral over field configurations ϕ(x) with time argument on a time contour I running along the
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Figure 6.4: Thermal time contour C+I [136].

imaginary axis from t = 0 to t =−iβ [49] (see section D.1.1),

〈ϕ+,0 |ρ|ϕ−,0〉 =

ϕ(−iβ ,x)=ϕ+(x)∫
ϕ(0−,x)=ϕ−(x)

Dϕ exp
(

i
∫

I
d4xL(x)

)
. (6.18)

The upper path integral representation of the thermal density matrix element yields a generating func-
tional for the thermal state by concatenating the time contours C and I (the derivation is analogous
to that of eq. (6.7)),

Zβ [J,K] = Tr
(

ρ TC+I

[
exp
(

i
∫

C+I
d4xJ(x)Φ(x)+

i
2

∫
C+I

d4x
∫

C+I
d4yΦ(x)K(x,y)Φ(y)

)])
=

∫
Dϕ exp

(
i
∫

C+I
d4x {L(x)+ J(x)ϕ(x)}+ i

2

∫
C+I

d4x
∫

C+I
d4yϕ(x)K(x,y)ϕ(y)

)
. (6.19)

The path integral is performed over all field configurations ϕ(x) with time argument attached to the
thermal time path C+I (see figure 6.4) which fulfill the periodicity relation ϕ(0+,x) = ϕ(−iβ ,x).
The time arguments of the external sources are also attached to the thermal time path C+I .

The thermal propagator

The thermal propagator is defined as the connected two-point correlation function on the thermal time
contour C+I ,

Gth(x,y) = 〈TC+I Φ(x)Φ(y)〉−〈Φ(x)〉〈Φ(y)〉 . (6.20)

The thermal propagator can be obtained from the generating functional (6.19) for correlation functions
formulated on the thermal time path by functional differentiation.
For calculations in thermal equilibrium, it is sometimes convenient to use a pure imaginary time for-
malism by setting tmax = 0 such that only the path I contributes. Since thermal correlation functions
considered here are space-time translation invariant, it is convenient to Fourier transform the thermal
two-point function with respect to the relative imaginary times and spatial coordinates,

Gth(x,y) =
∫

q
eiq(x−y)Gth(q) for x0,y0 ∈ I . (6.21)
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The meaning of
∫

q depends on the context. For zero-temperature calculations
∫

q ≡
∫ d4q
(2π)4 denotes

the integral over Euclidean momentum space. For finite-temperature calculations, however,
∫

q ≡∫ T
q ≡ T ∑n

∫ d3q
(2π)3 , where q0 = iωn and the sum runs over the Matsubara frequencies ωn = 2πn/T (see

section D.1.2).

2PI effective action and Schwinger-Dyson equation

The 2PI effective action in thermal equilibrium is the double Legendre transform of the generating
functional (6.19) with respect to the external sources. The latter has the same structure as the gen-
erating functional (3.20) in vacuum, except that all time-integrations are performed over the thermal
time path. Consequently, the 2PI effective action in thermal equilibrium is obtained from the parame-
terization given in eq. (3.26) by replacing the time-integrations

∫
→
∫
C+I . Especially, the setting-sun

approximation of the 2PI effective action is obtained from eq. (6.9) by replacing
∫
C→

∫
C+I .

The equation of motion for the full thermal propagator is obtained from the stationarity condi-
tion (3.28) of the 2PI effective action with respect to variations of the two-point function. In setting-
sun approximation, it is given by

G−1
th (x,y) = G−1

0,th(x,y)−Πth(x,y) , (6.22)

Πth(x,y) ≡
2iδΓ2[Gth]
δGth(y,x)

=
−iλ

2
Gth(x,x)δ 4

C+I(x− y)+
(−iλ )2

6
Gth(x,y)3 , (6.23)

where Πth(x,y) is the full thermal self-energy, and G−1
0,th(x,y) = i(2x + m2)δ 4

C+I(x− y) is the free
inverse thermal propagator. Note that x0,y0 ∈ C+I take real as well as imaginary values.

Nonperturbative renormalization procedure — derivation

Starting from the bare classical action

S[φ ] =
∫

d4x
(

1
2
(∂φ)2− 1

2
m2

Bφ
2− λB

4!
φ

4
)

, (6.24)

the field is rescaled and the bare mass mB and the bare coupling λB are split into renormalized parts
and counterterms,

φR = Z−1/2
φ , Zm2

B = m2
R +δm2, Z2

λB = λR +δλ , Z = 1+δZ , (6.25)

where Z is the rescaling factor of the field value. The equation of motion for the renormalized 2PI
propagator Gth,R = Z−1Gth in setting-sun approximation and at finite temperature is obtained by using
eq. (6.22) on the imaginary time path I and switching to 4-momentum space,

G−1
th,R(k) = k2 +m2

R−Πth,R(k) , (6.26)

Πth,R(k) = −δZ0k2−δm2
0−

λR +δλ0

2

∫
q
Gth,R(q)+

λ 2
R

6

∫
pq

Gth,R(p)Gth,R(q)Gth,R(k−q− p) .

Here, δZ0, δm2
0 and δλ0 denote the 2PI counterterms in setting-sun approximation, which have to

be chosen such that the divergences in the tadpole- and setting-sun contributions to the renormalized
self-energy Πth,R(k) as well as the divergences hidden in the full propagator are removed indepen-
dent of the temperature. As will be shown in the following, this is accomplished by imposing two
renormalization conditions

G−1
T0

(k = k̃) = k̃2 +m2
R ,

d
dk2 G−1

T0
(k = k̃) = +1 , (6.27)
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Figure 6.5: Bethe-Salpeter equation.

for the propagator supplemented by a third renormalization condition for an appropriate 4-point func-
tion. Here GT0(k) is the solution of eq. (6.26) for an (arbitrary) reference temperature T0, and k̃ is an
(arbitrary) reference scale (e.g. T0 = 0, k̃ = 0).
The aim is to find a set of counterterms which also renormalizes the propagator GT (k) for all T 6= T0,
the equation for which can be written as

G−1
T (k) = G−1

T0
(k)−∆Π(k) ,

∆Π(k) = −λR +δλ0

2

[∫ T

q
GT (q)−

∫ T0

q
GT0(q)

]
(6.28)

+
λ 2

R

6

[∫ T

pq
GT (p)GT (q)GT (k−q− p)−

∫ T0

pq
GT0(p)GT0(q)GT0(k−q− p)

]
.

Inverting the first line yields an expansion

GT (k) = GT0(k)+∆G(k) = GT0(k)+GT0(k)∆Π(k)GT0(k)+∆
2G(k) . (6.29)

At large momenta k2 � T 2,T 2
0 , both propagators agree asymptotically, such that ∆Π(k) ∼ c1 lnk +

c2(lnk)2 + . . . (with coefficients ci) just grows logarithmically. Thus, ∆G(k) and ∆2G(k) fall off like
k−4 and k−6 times powers of logarithms, respectively. Furthermore,

∫ T
q ≡

∫ T0
q +

∫
∆T
q where the latter

is exponentially suppressed for q2 � T 2,T 2
0 . Altogether, using Weinbergs theorem [177] one finds

that

∆Π(k) =
1
2

[∫ T0

q
∆G(q)+

∫
∆T

q
GT (q)

]
ΛT0(q,k)+F(k) , (6.30)

where F(k) contains all finite contributions (and falls off like k−2 times powers of logarithms), and
where ΛT0(q,k) is equal to

ΛR(q,k) =−λR−δλ0 +λ
2
R

∫
p
Gth,R(p)Gth,R(k−q− p) , (6.31)

evaluated at temperature T0. Using the second part of eq. (6.29) in eq. (6.30), one can write∫ T0

q
∆Π(q)

[
δ (q− k)− 1

2
G2

T0
(q)ΛT0(q,k)

]
=

1
2

[∫ T0

q
∆

2G(q)+
∫

∆T

q
GT (q)

]
ΛT0(q,k)+F(k) .

Multiplying by δ (k− p)+G2
T0

(k)VT0(k, p)/2 (with VT0 arbitrary) and integrating over k yields

∫ T0

q
∆Π(q)

{
δ (q− p)− 1

2
G2

T0
(q)
[
VT0(q, p)−ΛT0(q, p)− 1

2

∫ T0

k
ΛT0(q,k)G2

T0
(k)VT0(k, p)

]}
=

=
1
2

∫ T0

k

{[∫ T0

q
∆

2G(q)+
∫

∆T

q
GT (q)

]
ΛT0(q,k)+F(k)

}(
δ (k− p)+

1
2

G2
T0

(k)VT0(k, p)
)

.

If one demands that VT0(q, p) fulfills the “Bethe-Salpeter equation” (see figure 6.5) at temperature T0,
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VR(q, p) = ΛR(q, p)+
1
2

∫
k
ΛR(q,k)G2

th,R(k)VR(k, p) , (6.32)

it is possible to encapsulate all divergences of the upper equation into VT0(q, p),

∆Π(p) =
1
2

∫ T0

q

[
∆

2G(q)+F(q)G2
T0

(q)
]
VT0(q, p)+

1
2

∫
∆T

q
GT (q)VT0(q, p) .

The momentum integrals are finite provided that the 2PI 4-point function VT0(q, p) is finite and grows
at most logarithmically when one of its arguments tends towards infinity while the other is fixed. It
turns out [28] that this is achieved by requiring VT0(q, p) to be finite at the renormalization point,

VT0(q = k̃, p = k̃) =−λR . (6.33)

Finally, since ∆Π(p) is finite, eq. (6.28) implies that the renormalized 2PI propagator GT (k) is finite
for all temperatures T .
In summary, the renormalization conditions eq. (6.27) for the propagator Gth,R(k) and eq. (6.33) for
the 4-point function VR(q, p) (evaluated at some arbitrary reference temperature T0) together with the
nonperturbative Schwinger-Dyson equation (6.26) and Bethe-Salpeter equation (6.32) form a closed
set of equations for the determination of the 2PI counterterms.





Chapter 7

Renormalization Techniques for
Schwinger-Keldysh Correlation
Functions

In this chapter, a framework appropriate for the nonperturbative renormalization of Kadanoff-Baym
equations is developed and applied to the three-loop truncation of the 2PI effective action.

The nonperturbative 2PI renormalization procedure is transferred to the 2PI effective action formu-
lated on the closed Schwinger-Keldysh real-time contour. Therefore, a Kadanoff-Baym equation for
the full thermal propagator formulated on the closed real-time contour is derived. This requires the in-
corporation of initial states characterized by non-Gaussian n-point correlation functions (for arbitrary
n) into the Kadanoff-Baym equations.

In section 7.1, Kadanoff-Baym equations for non-Gaussian initial states are derived. In section 7.2,
it is shown how to calculate the thermal values of the non-Gaussian n-point correlation functions for
a given truncation of the 2PI effective action, and a Kadanoff-Baym equation for the thermal initial
state is derived. This equation can then be renormalized explicitly by transferring the renormalization
procedure of the 2PI effective action at finite temperature to the closed real-time contour, which is
done in section 7.3.

These renormalized Kadanoff-Baym equations for thermal equilibrium then provide the basis for the
transition to renormalized nonequilibrium dynamics.

7.1 Kadanoff-Baym Equations for Non-Gaussian Initial States

A statistical ensemble of physical states in the Hilbert space belonging to the real scalar λΦ4/4!
quantum field theory is considered, which is described by a density matrix ρ at the time tinit ≡ 0.
The generating functional Zρ [J,K] for nonequilibrium correlation functions in the presence of a local
external source J(x) and a bilocal external source K(x,y) can be conveniently formulated on the
closed real-time path C (see figure 6.1), and has a path integral representation given in eq. (6.7). The
information about the initial state of the system enters via the matrix element of the density matrix
with respect to two arbitrary eigenstates Φ(0,x)|ϕ±,0〉= ϕ±(x)|ϕ±,0〉 of the quantum field operator
evaluated at the initial time.
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Non-Gaussian Initial State

The matrix element of the density matrix ρ is a functional of the field configurations ϕ+(x) and
ϕ−(x), which can be written as [49]

〈ϕ+,0 |ρ|ϕ−,0〉= exp(iF [ϕ]) . (7.1)

For a Gaussian initial state, F [ϕ] is a quadratic functional of the field (see eq. (6.8)). For a general
initial state, the functional F [ϕ] may be Taylor expanded in the form

F [ϕ] = α0 +
∫

C
d4xα1(x)ϕ(x)+

1
2

∫
C
d4xd4yα2(x,y)ϕ(x)ϕ(y)

+
1
3!

∫
C
d4xd4yd4zα3(x,y,z)ϕ(x)ϕ(y)ϕ(z)+ . . . , (7.2)

where the integrals have been written in four dimensions. Since F [ϕ] only depends, by definition, on
the field configuration ϕ±(x) = ϕ(0±,x) evaluated at the boundaries of the time contour, the kernels
αn(x1, . . . ,xn) for n≥ 1 are only nonzero if all their time arguments lie on the boundaries of the time
contour. With the notation δ+(t) = δC(t − 0+) and δ−(t) = δC(t − 0−), they can be written in the
form

αn(x1, . . . ,xn) = α
ε1,...,εn
n (x1, . . . ,xn)δε1(x

0
1) · · ·δεn(x

0
n) , (7.3)

where δC denotes the Dirac distribution on C and summation over ε j = +,− is implied. In this way,
the explicit dependence of the functional F [ϕ] on the field configurations ϕ+(x) and ϕ−(x) may be
recovered,

F [ϕ] = α0 +
∫

d3xα
ε
1 (x)ϕε(x)+

1
2

∫
d3x
∫

d3yα
ε1ε2
2 (x,y)ϕε1(x)ϕε2(x)+ . . . . (7.4)

Thus, the kernels αn contribute only at the initial time. Furthermore, the complete set of kernels αn

for n ≥ 0 encodes the complete information about the density matrix characterizing the initial state.
Not all the kernels are independent. The Hermiticity of the density matrix, ρ = ρ†, implies that

iαε1,...,εn
n (x1, . . . ,xn) =

(
iα(−ε1),...,(−εn)

n (x1, . . . ,xn)
)∗

. (7.5)

If the initial state is invariant under some symmetries, there are further constraints. For example, for
an initial state which is invariant under the Z2-symmetry Φ→ −Φ, all kernels αn(x1, . . . ,xn) with
odd n vanish. If the initial state is homogeneous in space, the initial correlations αn(x1, . . . ,xn) are
invariant under space-translations xi→ xi +a of all arguments for any real three-vector a, and can
be conveniently expressed in spatial momentum space,

iαε1,...,εn
n (x1, . . . ,xn) =

∫ d3k1

(2π)3 · · ·
∫ d3kn

(2π)3 ei(k1x1+...+knxn)

(2π)3
δ

3(k1 + . . .+kn) iαε1,...,εn
n (k1, . . . ,kn) . (7.6)

Altogether, the generating functional for a statistical ensemble is given by

Zρ [J,K] =
∫
Dϕ exp

(
i
{

S[ϕ]+ Jϕ +
1
2

ϕKϕ +F3[ϕ;α3,α4, . . .]
})

,

where the kernels α0, α1 and α2 have been absorbed into the measure Dϕ and into the sources J and
K, respectively. The functional F3[ϕ;α3,α4, . . .] contains the contributions of third, fourth and higher
orders of the Taylor expansion (7.2). It vanishes for a Gaussian initial state.



7.1. Non-Gaussian Initial States 81

7.1.1 2PI Effective Action for Non-Gaussian Initial States

The 2PI effective action in the presence of non-Gaussian correlations is obtained from the standard
parameterization [66] of the 2PI effective action applied to a theory described by the modified classical
action S̃[φ ;α3,α4, . . .]≡ S[φ ]+F3[φ ,α3,α4, . . .],

Γ[φ ,G] = S̃[φ ]+
i
2

Tr lnG−1 +
i
2

Tr
(
G̃−1

0 G−1
)
+ Γ̃2[φ ,G] , (7.7)

where iG̃−1
0 ≡ δ 2S̃[φ ]

δφ(x)δφ(y) . This parameterization may be rewritten by splitting it into a part which
contains the contributions from non-Gaussian initial correlations and one which resembles the pa-
rameterization obtained in the Gaussian case (D.31),

Γ[φ ,G] = S[φ ]+
i
2

Tr lnG−1 +
i
2

Tr
(
G−1

0 G−1
)
+Γ2[φ ,G]+ΓnG[φ ,G;α3,α4, . . .] , (7.8)

where iG−1
0 ≡

δ 2S[φ ]
δφ(x)δφ(y) is the classical inverse propagator (D.32) and the non-Gaussian contribution

is obtained by comparing eq. (7.8) and eq. (7.7),

ΓnG[φ ,G;α3,α4, . . .] = F3[φ ;α3,α4, . . .]+
1
2

Tr
(

δ 2F3

δφδφ
G
)

+Γ2,nG[φ ,G;α3,α4, . . .] . (7.9)

The 2PI functional

iΓ̃2[φ ,G;α3,α4, . . .]≡ iΓ2[φ ,G]+ iΓ2,nG[φ ,G;α3,α4, . . .] (7.10)

is equal to the sum of all 2PI Feynman diagrams with lines given by the full propagator G(x,y) and
with vertices given by the derivatives of the modified classical action S̃[φ ;α3,α4, . . .]. Apart from the
classical three- and four-point vertices given by eq. (D.33), for a general non-Gaussian initial state,
the initial n-point correlations (with n≥ 3) lead to additional effective non-local vertices connecting n
lines (see figure 7.1). They result from the contribution of the corresponding sources αm(x1, . . . ,xm),
m≥ n, contained in the contribution F3[φ ;α3,α4, . . .] to the generating functional (7.7), and are given
by

i
δ nF3[φ ;α3,α4, . . .]
δφ(x1) . . .δφ(xn)

= iαn(x1, . . . ,xn)+
∫

C
d4xn+1iαn+1(x1, . . . ,xn+1)φ(xn+1)

+
1
2

∫
C
d4xn+1d4xn+2iαn+2(x1, . . . ,xn+2)φ(xn+1)φ(xn+2)+ . . .

≡ iᾱn(x1, . . . ,xn) . (7.11)

Note that, since the sources αm(x1, . . . ,xm) are only supported at the initial time, all the upper inte-
grals along the time contour C just depend on powers of the initial value of the field expectation value
φ(x)|x0=0. Therefore, the effective non-local n-point vertex iᾱn(x1, . . . ,xn) indeed encodes informa-
tion about the initial state and is in particular independent of the subsequent time-evolution of φ(x).
Analogously,

iᾱ2(x,y)≡ iα2(x,y)+ i
δ 2F3[φ ;α3,α4, . . .]

δφ(x)δφ(y)
, (7.12)

is defined. For a Z2-symmetric initial state, the field expectation value vanishes, φ(x)|x0=0 = 0, such
that ᾱn(x1, . . . ,xn) = αn(x1, . . . ,xn). From eq. (7.3) it can be seen that the effective non-local vertices
are supported at the initial time similarly to the sources iαn(x1, . . . ,xn),

iᾱn(x1, . . . ,xn) = iᾱε1,...,εn
n (x1, . . . ,xn)δε1(x

0
1) · · ·δεn(x

0
n) . (7.13)
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Figure 7.1: Non-local effective vertices iᾱn(x1, . . . ,xn) connecting n lines for n = 3,4,5,6 encoding
the non-Gaussian three-, four-, five-, six-, . . . -point correlations of the initial state.

Thus, the contribution of these effective non-local vertices will be most important in the first moments
of the nonequilibrium evolution. In particular, e.g. the four-point source α4(x1, . . . ,x4) can lead to
a non-vanishing value of the connected four-point correlation function at the initial time, which is
impossible for a Gaussian initial state.
The 2PI functional (7.10) is thus equal to the sum of all 2PI Feynman diagrams with lines given by
the full propagator G(x,y), and with n-point vertices (n ≥ 3) given by eq. (7.11) as well as classical
three- and four-point vertices given by eq. (D.33). Note that those 2PI diagrams which contain ex-
clusively the classical vertices given in eq. (D.33) by definition contribute to the functional iΓ2[φ ,G].
Therefore, the diagrams contributing to the non-Gaussian part iΓ2,nG[φ ,G,α3,α4, . . .] contain at least
one effective vertex from eq. (7.11) involving a source αn(x1, . . . ,xn) (n≥ 3). Thus, the non-Gaussian
contribution to the 2PI effective action defined in eq. (7.8) indeed vanishes for Gaussian initial con-
ditions (D.24),

ΓnG[φ ,G;α3 = 0,α4 = 0, . . .] = 0 . (7.14)

As an example, an initial 4-point correlation is considered for an initial state which is Z2-symmetric
such that φ(x) = 0. Then the 2PI functional Γ̃2[G;α4]≡ Γ̃2[φ = 0,G;α3 = 0,α4,α5 = α6 = . . . = 0]
in “naïve” 1 three loop approximation reads (see figure 7.2)

iΓ̃2[G;α4] =
1
8

∫
C

d4x1234

[
− iλδ12δ23δ34 + iα4(x1, . . . ,x4)

]
G(x1,x2)G(x3,x4)

+
1
48

∫
C

d4x1234d4x5678

[
− iλδ12δ23δ34 + iα4(x1, . . . ,x4)

]
G(x1,x5)× (7.15)

×G(x2,x6)G(x3,x7)G(x4,x8)
[
− iλδ56δ57δ58 + iα4(x5, . . . ,x8)

]
,

where a compact notation δ12 = δC(x1− x2) and d4x1234 = d4x1 · · ·d4x4 has been used. Note that the
contribution to the mixed “basketball” diagram in the second and third line with one classical and one
effective vertex appears twice, which accounts for the symmetry factor 1/24. This truncation of the
2PI functional is also referred to as setting-sun approximation in the following.

7.1.2 Self-Energy for Non-Gaussian Initial States

The equation of motion for the full propagator is obtained from the stationarity condition of the 2PI
effective action in the presence of the source α2(x,y), δΓ[G]/δG(y,x) = −α2(x,y)/2. Using the
parameterization (7.7) and eq. (7.12),

G−1(x,y) = G−1
0 (x,y)−Π(x,y)− iᾱ2(x,y) , (7.16)

1This means no difference is made between diagrams with or without non-local effective vertices when counting loops.



7.1. Non-Gaussian Initial States 83

Figure 7.2: Diagrams contributing to the three-loop truncation of the 2PI effective action in the sym-
metric phase (setting-sun approximation) in the presence of an effective non-local four-point vertex.

is obtained, where the self-energy Π(x,y) is given by

Π(x,y) =
2iδ Γ̃2[φ ,G;α4,α6, . . .]

δG(y,x)
=

2iδΓ2[φ ,G]
δG(y,x)

+
2iδΓ2,nG[φ ,G;α4,α6, . . .]

δG(y,x)
. (7.17)

For the non-Gaussian case, the self-energy can be decomposed as

Π(x,y) = Π
G(x,y)+Π

nG(x,y) , (7.18)

Π
G(x,y) = −iΠloc(x)δC(x− y)+Π

G
non−loc(x,y) ,

Π
nG(x,y) = Π

nG
non−loc(x,y)+ iΠnG

surface(x,y) ,

where ΠG = 2iδΓ2/δG contains the contributions to the self-energy which are also present for a
Gaussian initial state, and ΠnG = 2iδΓ2,nG/δG contains all contributions which contain at least one
non-Gaussian initial correlation. The latter can be further decomposed into a non-Gaussian non-local
part ΠnG

non−loc(x,y), which contains diagrams where both external lines are attached to a local standard
vertex, and a part iΠnG

surface(x,y), which contains all non-Gaussian contributions which are supported
only at the initial time surface where x0 = 0 or y0 = 0. In general, such contributions can arise in the
following ways:

1. From diagrams where both external lines are connected to an effective non-local vertex as given
in eq. (7.11). They are supported at x0 = y0 = 0.

2. From diagrams where one of the two external lines is connected to an effective non-local vertex,
while the other one is connected to a classical local vertex as given in eq. (D.33). They are
supported at x0 = 0,y0 ≥ 0 or vice-versa.

3. Via the contribution iᾱ2(x,y) of the initial two-point source which is supported at x0 = y0 = 0.
This is the only Gaussian surface-contribution.

Accordingly, the contributions to the self-energy which are supported at the initial time surface can
be further decomposed as

Πsurface(x,y) = Π
nG
surface(x,y)+ ᾱ2(x,y) = Παα(x,y)+Πλα(x,y)+Παλ (x,y), (7.19)

where

Παα(x,y) = δε1(x0)Π
ε1,ε2
αα (x,y)δε2(y0) ,

Πλα(x,y) = Π
ε

λα
(x0,x,y)δε(y0) , (7.20)

Παλ (x,y) = δε(x0)Πε

αλ
(x,y0,y) = Πλα(y,x) .

Παα contains all contributions of type (1.) and (3.). Diagrams of type (2.) contribute to Πλα or Παλ

depending which external line is attached to the effective non-local vertex and which to the classical
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Figure 7.3: Contribution Πλα(x,y) to the self-energy Π(x,y) where the left line is connected to a
classical vertex, and the right line to an effective non-local vertex.

local vertex. Thus, for all diagrams contributing to Πλα the left line is connected to the classical four-
or three-point vertex, which means that it can always be written in the form (see figure 7.3)

iΠλα(x,y) =
−iλ

6

∫
C
d4x123G(x,x1)G(x,x2)G(x,x3)iAnG

4 (x1,x2,x3,y)

+
−iλφ(x)

2

∫
C
d4x12G(x,x1)G(x,x2)iAnG

3 (x1,x2,y) . (7.21)

The non-local part contains all diagrams where both external lines are attached to a classical local
vertex as given in eq. (D.33). It can be split into statistical and spectral components, similarly to the
Gaussian case,

Πnon−loc(x,y) = Π
G
non−loc(x,y)+Π

nG
non−loc(x,y) = ΠF(x,y)− i

2
sgnC(x0− y0)Πρ(x,y) . (7.22)

The local part does not receive any changes in the non-Gaussian case and is included in an effective,
time-dependent mass term

M(x)2 = m2 +
λ

2
φ

2(x)+Πloc(x) = m2
B +

λ

2
φ

2(x)+
λ

2
G(x,x) . (7.23)

For the setting-sun approximation from eq. (7.15), the self-energy is given by (see figure 7.4)

Π
G
non−loc(x,y) =

(−iλ )2

6
G(x,y)3 , M(x)2 = m2 +

λ

2
G(x,x) ,

Π
nG
non−loc(x,y) = 0 ,

iΠλα(x,y) =
−iλ

6

∫
d4x123 G(x,x1)G(x,x2)G(x,x3) iα4(x1,x2,x3,y) , (7.24)

iΠαα(x,y) = iα2(x,y)+
1
2

∫
d4x34 iα4(x,y,x3,x4)G(x3,x4)

+
1
6

∫
d4x234567 iα4(x,x2,x3,x4)G(x2,x5)G(x3,x6)G(x4,x7) iα4(x5,x6,x7,y) .

A comparison with eq. (7.21) yields that

iAnG
4 (x1,x2,x3,x4) = iα4(x1,x2,x3,x4) , iAnG

3 (x1,x2,x3) = 0 ,

for the upper approximation.

7.1.3 Kadanoff-Baym Equations for Non-Gaussian Initial States

Multiplying eq. (7.16) with the propagator and integrating yields(
2x +M2(x)

)
G(x,y) = −iδC(x− y)− i

∫
C
d4z [Π(x,z)+ iᾱ2(x,y)]G(z,y) (7.25)

= −iδC(x− y)− i
∫

C
d4z
[
Π

G
non−loc(x,z)+Π

nG
non−loc(x,z)+ iΠλα(x,z)

]
G(z,y) .
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Figure 7.4: Diagrams contributing to the self-energy Π(x,y) in setting-sun approximation in the
presence of an effective non-local four-point vertex. From left to right, the diagrams contribute to
Πloc, ΠG

non−loc, Πλα , Παλ and the last two both contribute to Παα .

The second line follows from using the parameterization (7.18) of the self-energy, and assuming
x0 > 0 and y0 > 0. Using eqs. (7.20,7.22) yields the Kadanoff-Baym equations for GF(x0,y0,k) and
Gρ(x0,y0,k) for an (arbitrary) non-Gaussian initial state,

(
∂

2
x0 +k2 +M2(x0)

)
GF(x0,y0,k) =

∫ y0

0
dz0

ΠF(x0,z0,k)Gρ(z0,y0,k)

−
∫ x0

0
dz0

Πρ(x0,z0,k)GF(z0,y0,k) (7.26)

+Πλα,F(x0,k)GF(0,y0,k)

+
1
4

Πλα,ρ(x0,k)Gρ(0,y0,k) ,(
∂

2
x0 +k2 +M2(x0)

)
Gρ(x,y) =

∫ y0

x0

dz0
Πρ(x0,z0,k)Gρ(z0,y0,k) ,

where

Πλα,F(x0,k) = Π
+
λα

(x0,k)+Π
−
λα

(x0,k) ,

Πλα,ρ(x0,k) = 2i
(
Π

+
λα

(x0,k)−Π
−
λα

(x0,k)
)

. (7.27)

Using eq. (7.21) yields an equivalent formulation,

(
2x +M2(x)

)
GF(x,y) =

∫ y0

0
d4zΠF(x,z)Gρ(z,y)

−
∫ x0

0
d4zΠρ(x,z)GF(z,y) (7.28)

− λ

6
V nG

4 (x,x,x,y)− λφ(x)
2

V nG
3 (x,x,y) ,(

2x +M2(x)
)

Gρ(x,y) =
∫ y0

x0

d4zΠρ(x,z)Gρ(z,y) ,

where

V nG
4 (x1,x2,x3,x4) ≡

∫
C

d4y1234 G(x1,y1)G(x2,y2)G(x3,y3)G(x4,y4) iAnG
4 (y1,y2,y3,y4) ,

V nG
3 (x1,x2,x3) ≡

∫
C

d4y123 G(x1,y1)G(x2,y2)G(x3,y3) iAnG
3 (y1,y2,y3) , (7.29)

denote the four- and three-point functions constructed from the kernels AnG
4 and AnG

3 appearing in
the initial-time-surface contribution Πλα(x,y) to the self-energy, respectively (see eq. (7.21) and fig-
ure 7.3). Note that these new contributions on the right hand side of the Kadanoff-Baym equations
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do not have to vanish in the limit x0,y0→ 0, unlike the memory integrals. This is due to the fact that
the higher non-Gaussian correlations of the initial state can lead to a non-vanishing value of the con-
nected four- and three-point correlation functions at the initial time. In contrast to this, for a Gaussian
initial state all higher correlations vanish at the initial time by definition.

7.2 Kadanoff-Baym Equations with Nonperturbative Thermal Initial
Correlations

The Kadanoff-Baym equations discussed in section 7.1 are in principle capable to describe the time-
evolution of the full two-point correlation function for a statistical ensemble which is described by an
arbitrary state at some initial time tinit = 0. Since the nonperturbative renormalization is established
at finite temperature, it is an important step to show that the full equilibrium propagator is indeed a
solution of the nonperturbatively renormalized Kadanoff-Baym equations for a thermal initial state.
This requires the incorporation of appropriate thermal initial correlations into the Kadanoff-Baym
equations. However, since the underlying approximation based on the truncation of the 2PI effective
action is highly non-perturbative, the choice of appropriate thermal initial correlations is not straight-
forward. For example, for the three-loop truncation of the 2PI effective action, the thermal n-point
correlation functions for all n = 2,4,6, . . . are non-zero, although only two diagrams have been kept in
the 2PI effective action. Therefore, one has to expect that non-Gaussian initial n-point correlations for
all n = 2,4,6, . . . are required to describe thermal equilibrium with Kadanoff-Baym equations. In the
following, it is shown how to construct the thermal initial correlations required for a given truncation
of the 2PI effective action explicitly. This is accomplished by matching the nonperturbative equation
of motion for the propagator formulated on the thermal time path with the Kadanoff-Baym equation
for a non-Gaussian initial state formulated on the closed real-time path.
Thus, it is necessary to relate the following two equivalent descriptions of thermal equilibrium:

1. Via the thermal time contour (“C+I ”).

2. Via the closed real-time contour C and a thermal initial state, characterized by thermal initial
correlations α th

n (x1, . . . ,xn) (“C+α ”).

The first formulation exploits the explicit structure of the thermal density matrix, whereas the second
one can easily be generalized to a nonequilibrium ensemble.

The thermal value of any (nonperturbative) Feynman diagram can directly be computed via the ther-
mal time contour C+I , if the thermal (nonperturbative) propagator for real and imaginary times
is available. For the computation of the corresponding (nonperturbative) Feynman diagram via the
closed real-time contour C, only real times appear. However, it requires the knowledge of the thermal
initial correlations α th

n (x1, . . . ,xn) which are appropriate for the considered approximation.

Since nonequilibrium Kadanoff-Baym equations are formulated on the closed real-time path C, it
is required to use the second approach. In the following, it is shown how to construct the thermal
correlations α th

n (x1, . . . ,xn) explicitly for a given truncation of the 2PI effective action. Before turning
to the nonperturbative case, the relation between the two descriptions of thermal equilibrium will be
discussed within perturbation theory.
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7.2.1 Thermal Initial Correlations — Perturbation Theory

Thermal time contour C+I

The free thermal propagator defined on C+I is (see also eq. (D.10))

iG−1
0,th(x,y) =

(
−2x−m2)

δC+I(x− y) for x0,y0 ∈ C+I , (7.30)

which may be decomposed into the free thermal statistical propagator and the free thermal spectral
function

G0,th(x,y) = G0,F(x,y)− i
2

sgnC+I(x0− y0)G0,ρ(x,y) .

The explicit solution of the equation of motion is

G0,F(x0,y0,k) =
nBE(ωk)+ 1

2
ωk

cos
(
ωk(x0− y0)

)
, (7.31)

G0,ρ(x0,y0,k) =
1

ωk
sin
(
ωk(x0− y0)

)
for x0,y0 ∈ C+I ,

where nBE(ωk) is the Bose-Einstein distribution function,

nBE(ωk) =
1

eβωk −1
, ωk =

√
m2 +k2 .

Each of the two time arguments of the propagator can either be real or imaginary, which yields four
combinations GCC

0,th, GCI
0,th, GIC

0,th, GII
0,th. These appear in perturbative Feynman diagrams which are

constructed with the free propagator G0,th and the classical vertices. In position space, each internal
vertex of a Feynman diagram is integrated over the thermal time contour C+I . In order to disentangle
the contributions from the real and the imaginary branch of the time contour, the following Feynman
rules are defined,

GCC
0,th(x,y) = , GCI

0,th(x,y) = ,

GII
0,th(x,y) = , GIC

0,th(x,y) = ,

−iλ
∫

C
d4x = , −iλ

∫
I
d4x = , −iλ

∫
C+I

d4x = .

(7.32)

The filled circles denote a real time, and the empty circles denote an imaginary time. As an example,
the perturbative setting-sun diagram is considered with propagators attached to both external lines,
and evaluated for real external times x0,y0 ∈ C. Both internal vertices are integrated over the two
branches C and I , respectively. Using the upper Feynman rules, the resulting four contributions can
be depicted as

S0(x,y)≡ =
(−iλ )2

6

∫
C+I

d4u
∫

C+I
d4vG0,th(x,u)G0,th(u,v)3G0,th(v,y)

= .
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Closed real-time contour with thermal initial correlations C+α

In this paragraph, it will be shown how to explicitly construct the perturbative setting-sun S0(x,y)
(or any other perturbative diagram) from corresponding perturbative Feynman diagrams which just
involve real times which lie on the closed real-time contour C as well as the appropriate thermal
initial correlations α th

n (x1, . . . ,xn). As discussed in section 7.1, initial correlations appear in Feynman
diagrams as additional effective, non-local vertices, which are supported only at the initial time tinit ≡
0, at which the closed contour C starts (t = 0+) and ends (t = 0−).
Starting from the diagram on the thermal time contour C+I , one would like to obtain the function
S0(x,y) without reference to imaginary times. The parts with imaginary and those with real times are
connected by the free propagator evaluated with one imaginary and one real time. Using the explicit
solution (7.31) together with elementary trigonometric addition theorems, it can be written as

GIC
0,th(−iτ,y0,k) =

GII
0,th(−iτ,0,k)
G0,th(0,0,k)

GCC
0,F(0,y0,k)+ i∂τGII

0,th(−iτ,0,k)GCC
0,ρ(0,y0,k) .

Next, the unequal-time statistical propagator and the spectral function are rewritten as

GCC
0,F(0,y0,k) =

∫
C
dz0

δs(z0)GCC
0,th(z

0,y0,k) , (7.33)

GCC
0,ρ(0,y0,k) = −2i

∫
C
dz0

δa(z0)GCC
0,th(z

0,y0,k) , (7.34)

where

δs(z0) =
1
2
(
δC(z0−0+)+δC(z0−0−)

)
,

δa(z0) =
1
2
(
δC(z0−0+)−δC(z0−0−)

)
. (7.35)

Combining the upper equations, a helpful expression for the free propagator evaluated with one imag-
inary and one real time is obtained,

GIC
0,th(−iτ,y0,k) =

∫
C
dz0

∆0(−iτ,z0,k)GCC
0,th(z

0,y0,k) ,

=
(7.36)

where the free “connection” defined in eq. (D.7) was inserted. In terms of the symmetric and anti-
symmetric Dirac-distributions δs,a(z0), the free connection reads

∆0(−iτ,z0,k) = ∆
s
0(−iτ,k)δs(z0)+∆

a
0(−iτ,k)δa(z0) (7.37)

=

(
GII

0,th(−iτ,0,k)
G0,th(0,0,k)

)
δs(z0)+

2∂τGII
0,th(−iτ,0,k)

δa(z0)

= . (7.38)

Analogously, the free propagator evaluated with one real and one imaginary time can be written as

GCI
0,th(y

0,−iτ,k) =
∫

C
dz0 GCC

0,th(x
0,z0,k)∆T

0 (z0,−iτ,k) ,

= ,
(7.39)
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where ∆
T
0 (z0,−iτ,k) = ∆0(−iτ,z0,k) = .

The connections ∆0 and ∆T
0 are attached to an imaginary and a real vertex on the left and right sides,

respectively. Their Fourier transform into position space is

∆0(v,z) =
∫ d3k

(2π)3 e+ik(v−z)
∆0(v0,z0,k) for v0 ∈ I,z0 ∈ C ,

as well as ∆T
0 (z,v) = ∆0(v,z). Conversely, the Fourier transform of the connection with respect to the

imaginary time is a function of one Matsubara frequency ωn = 2πβn and one real time z0 ∈ C,

∆0(ωn,z0,k) =

(
GII

0,th(ωn,k)
G0,th(0,0,k)

)
δs(z0)+

2iωnGII
0,th(ωn,k)

δa(z0) , (7.40)

and ∆T
0 (z0,ωn,k) = ∆0(ωn,z0,k). Eq. (7.36) for the free propagator with one imaginary and one real

time then becomes

GIC
0,th(ωn,y0,k) =

∫
C
dz0

∆0(ωn,z0,k)GCC
0,th(z

0,y0,k) . (7.41)

By replacing all free propagators which connect an imaginary and a real time inside a perturbative
Feynman diagram via the convolution of the connection and the real-real propagator, it is possible to
encapsulate the parts of the diagram which involve “imaginary” vertices represented by empty circles.
For example, the setting-sun diagram with one real and one imaginary vertex can be rewritten as

= ≡ ≡ th

0L
.

According to the symbolic notation employed here, the subdiagram containing the imaginary vertex,
marked by the box, can be encapsulated into an effective non-local 4-point vertex. Its structure is
determined by the connections ∆0 and ∆T

0 , as can be seen by rewriting the above diagrams in terms of
the corresponding formal expressions,

(−iλ )2

6

∫
C
d4u
∫

I
d4vG0,th(x,u)G0,th(u,v)3G0,th(v,y)

=
(−iλ )2

6

∫
C
d4u
∫

C
d4z1

∫
C
d4z2

∫
C
d4z3

∫
C
d4z4 G0,th(x,u)G0,th(u,z1)G0,th(u,z2)G0,th(u,z3)[∫

I
d4v∆

T
0 (z1,v)∆T

0 (z2,v)∆T
0 (z3,v)∆0(v,z4)

]
G0,th(z4,y)

≡ −iλ
6

∫
C
d4u
∫

C
d4z1

∫
C
d4z2

∫
C
d4z3

∫
C
d4z4 G0,th(x,u)G0,th(u,z1)G0,th(u,z2)G0,th(u,z3)[

α
th
4,0L(z1,z2,z3,z4)

]
G0,th(z4,y) .

In the last line, the thermal effective 4-point vertex has been introduced,

α
th
4,0L(z1,z2,z3,z4) = −iλ

∫
I
d4v∆0(v,z1)∆0(v,z2)∆0(v,z3)∆0(v,z4)

th

0L
= ≡ .
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Since the connection ∆0(v,zi) is only supported at the initial time z0
i = 0±, the effective 4-point vertex

vanishes as soon as one of the four real times z0
1, . . . ,z

4
0 lies beyond the initial time. Thus, the effective

4-point vertex has precisely the same structure as the non-local effective vertices describing the initial
correlations for arbitrary initial states (see section 7.1). Within the perturbative framework treated
here, the above 4-point vertex constitutes the leading order contribution to the loop expansion of the
thermal initial 4-point correlation function (see section D.1.1),

α
th
4 (z1,z2,z3,z4) = α

th
4,0L(z1,z2,z3,z4) + α

th
4,1L(z1,z2,z3,z4) + . . .

th
=

th

0L
+

th

1L
+ . . . .

In general, for any thermal diagram on C+I with V vertices, there are 2V possibilities to combine
the integration over C or I at each vertex. For each of these 2V contributions, all lines connecting
a real and an imaginary vertex are replaced using relation (7.36). Thereby the parts containing I-
integrations are encapsulated into non-local effective vertices. Thus, any thermal diagram on C+I
can be equivalently represented by 2V diagrams on C, which contain the classical vertex along with
appropriate non-local effective vertices.
These non-local effective vertices indeed match the thermal initial correlations α th

n discussed in sec-
tion D.1.1. This has been demonstrated above for the setting-sun diagram which contains a single
imaginary vertex. For diagrams which contain internal lines which connect two imaginary vertices,
representing the propagator GII

0,th(−iτ,−iτ ′,k), the following relation can be employed

GII
0,th(−iτ,−iτ ′,k) = D0(−iτ,−iτ ′,k)

+
∫

C
dw0

∫
C
dz0

∆0(−iτ,w0,k)GCC
0,th(w

0,z0,k)∆T
0 (z0,−iτ ′,k)

= D0(−iτ,−iτ ′,k)+∆
s
0(−iτ,k)G0,th(0,0,k)∆s

0(−iτ ′,k)

= + ,

(7.42)

which can be verified by explicit calculation from eqs. (D.6, 7.31, 7.37). Hereby the propagator
D0(−iτ,−iτ ′,k), which is defined in eq. (D.6), is represented by the dotted line which connects
two imaginary times. It furnishes the perturbative expansion of the thermal initial correlations (see
section D.1.1). By applying the upper relation to the setting-sun diagram with two imaginary vertices,
it can be rewritten as

= ≡ =

= + + +

= + + + .

In the first step, the propagators connecting real and imaginary vertices were replaced by the convo-
lution of the connection and the real-real propagator. This already yields an effective non-local two-
vertex, as indicated in the third diagram in the first line. In order to check that this effective non-local
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two-vertex is indeed composed from the thermal initial correlations, the three propagators connecting
the two imaginary vertices are replaced using relation (7.42), such that it falls apart into eight terms,
which combine to the four inequivalent contributions shown in the second line2. Finally, the parts
which contain imaginary vertices and dotted lines can be identified with the corresponding contri-
butions to the perturbative expansion of the thermal initial correlations discussed in section D.1.1,
which is represented graphically by encapsulating the subdiagrams inside the boxes. In the third line,
the first diagram thus contains a thermal effective two-point vertex, which itself appears at two-loop
order in the perturbative expansion of the thermal initial correlations. Similarly, the thermal effective
four- and six-point vertices contained in the second and third diagram, respectively, appear at one-
and zero-loop order in the perturbative expansion of the thermal initial correlations. The two effective
four-point vertices contained in the fourth diagram are identical to those already encountered above.
Thus, using the representation (7.36) of the free propagator connecting a real and an imaginary time,
any perturbative thermal Feynman diagram formulated on the thermal time contour C+I can be
related with a set of perturbative Feynman diagrams formulated on the closed real-time contour C,
and the required approximation to the full thermal initial correlations α th

n can be explicitly constructed
with the help of the formalism introduced here. For example, for the perturbative setting sun diagram,
the equivalence between C+I and C+α can, in summary, be written as

S0(x,y) = =

+ + +

+ + + .

Within perturbation theory, the dotted and dashed propagators as well as the connection are known
explicitly. They are given in terms of elementary functions, such that the upper equivalence can be
cross-checked by an explicit calculation of both types of diagrams. After this reassuring exercise, one
can proceed to the nonperturbative case.

7.2.2 Thermal Initial Correlations — 2PI

Thermal time contour C+I

The full thermal propagator defined on C+I fulfills the nonperturbative Schwinger-Dyson equation
derived from the 2PI effective action (see also eq. (6.22))

G−1
th (x,y) = i(2x +m2)δC+I(x− y)−Πth(x,y) for x0,y0 ∈ C+I . (7.43)

2Note that the symmetry factors are taken into account properly. For example, the symmetry factor of the second
diagram in the second line is one third times the symmetry factor of the original diagram in the first line. Since there are
three possibilities to obtain this diagram from the first one, it is obtained with the correct prefactor.
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It furnished the expansion of the 2PI effective action in terms of 2PI Feynman diagrams. Similar to
the perturbative case, the following Feynman rules are defined,

GCC
th (x,y) = , GCI

th (x,y) = ,

GII
th (x,y) = , GIC

th (x,y) = ,

−iλ
∫

C
d4x = , −iλ

∫
I
d4x = , −iλ

∫
C+I

d4x = ,

(7.44)

in order to disentangle the contributions from the real and the imaginary branch of the thermal time
contour. In order to derive a nonperturbative generalization of eq. (7.36), it is helpful to define a
“mixed propagator” which coincides with the full propagator on the imaginary branch I of the ther-
mal time contour, and obeys the free equation of motion on the real branch C.

Mixed thermal propagator

It is helpful to define projections on the parts C and I of the thermal time contour,

1I(x0) =
{

0 if x0 ∈ C
1 if x0 ∈ I , 1C(x0) =

{
1 if x0 ∈ C
0 if x0 ∈ I , (7.45)

which fulfill the relation

1I(x0)+1C(x0) = 1 for all x0 ∈ C+I . (7.46)

The mixed thermal propagator is defined by the following equation of motion,

G−1
m,th(x,y) = i(2x +m2

B)δC+I(x− y)−1I(x0)1I(y0)Πth(x,y) for x0,y0 ∈ C+I , (7.47)

where Πth(x,y) is the full thermal self-energy. It can be decomposed into statistical and spectral
components,

Gm,th(x,y) = Gm,F(x,y)− i
2

sgnC+I(x0− y0)Gm,ρ(x,y) .

The equation of motion for the mixed propagator can equivalently be written as(
2x +m2)Gm,th(x,y) =−iδC+I(x− y)− i1I(x0)

∫
I
d4zΠm,th(x,z)Gm,th(z,y) . (7.48)

Each of the two time arguments of the propagator can either be real or imaginary, which yields four
combinations GCC

m,th, GCI
m,th, GIC

m,th, GII
m,th. The mixed propagator evaluated with two imaginary time

arguments is identical to the full thermal 2PI propagator,

GII
m,th(x,y) = GII

th (x,y) for x0,y0 ∈ I, (7.49)

whereas the mixed propagators evaluated with two real time arguments GCC
m,th(x,y) as well as GCI

m,th(x,y)
(where x0 ∈ C,y0 ∈ I) fulfill the equation of motion of the free propagator,(

2x +m2
B
)

GCI
m,th(x,y) =

(
2x +m2

B
)

GCC
m,F(x,y) =

(
2x +m2

B
)

GCC
m,ρ(x,y) = 0 . (7.50)

At the initial time x0 = y0 = 0, the propagators on all branches of the thermal time path agree,

GCC
m,th(x,y)|x0=y0=0 = GCI

m,th(x,y)|x0=y0=0 = GIC
m,th(x,y)|x0=y0=0 = GII

m,th(x,y)|x0=y0=0 = Gth(x,y)|x0=y0=0 .
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Thus, the initial value of the mixed propagator at x0 = y0 = 0 is given by the full thermal propagator.
For the mixed propagator with one imaginary and one real time, GIC

m,th(x,y) (x0 ∈ I,y0 ∈ C), the
equation of motion, transformed to spatial momentum space, reads(

−∂
2
τ +k2 +M2

th
)

GIC
m,th(−iτ,y0,k) =−

∫
β

0
dτ
′
Π

II
th (−iτ,−iτ ′,k)GIC

m,th(−iτ ′,y0,k) .

Compared to the corresponding equation (D.17) for the full thermal propagator, the memory integral
along the real axis is absent. Next, a Fourier transformation with respect to the imaginary time is
performed, using in particular∫

β

0
dτ e−iωnτ

∂
2
τ GIC

m,th(−iτ,y0,k) =−ω
2
n GIC

m,th(ωn,y0,k)+disc(iωn GIC
m,th +∂τGIC

m,th)(y
0,k) ,

where a possible contribution from boundary terms has to be taken into account,

disc(iωn GIC
m,th +∂τGIC

m,th)(y
0,k) =

[
(iωn GIC

m,th +∂τGIC
m,th)(−iτ,y0,k)

]τ=β

τ=0 .

The Fourier transformed equation for the mixed propagator reads(
ω

2
n +k2 +M2

th
)

GIC
m,th(ωn,y0,k) = (7.51)

=−Π
II
th (ωn,k)GIC

m,th(ωn,y0,k)+disc(iωn GIC
m,th +∂τGIC

m,th)(y
0,k) .

The boundary terms have to fulfill the equation of motion(
∂

2
y0 +k2 +m2

B

)
disc(GIC

m,th)(y
0,k) =

(
∂

2
y0 +k2 +m2

B

)
disc(∂τGIC

m,th)(y
0,k) = 0 ,

which follows from using GIC
m,th(ωn,y0,k) = GCI

m,th(y
0,ωn,k) and the equation of motion (7.50) for

GCI
m,th. Furthermore, the initial conditions at y0 = 0 are fixed by the periodicity relation of the thermal

propagator as well as the equal-time commutation relations,

disc(GIC
m,th)(0,k) = Gth(0,0,k)−Gth(−iβ ,0,k) = 0 ,

∂y0 disc(GIC
m,th)(0,k) = ∂y0Gth(0,0,k)−∂y0Gth(−iβ ,0,k)

= ∂y0Gth(0,0,k)−∂x0Gth(0,0,k) = i ,

disc(∂τGIC
m,th)(0,k) = ∂τGth(0,0,k)−∂τGth(−iβ ,0,k) = 1 ,

∂y0 disc(∂τGIC
m,th)(0,k) = ∂y0∂τGth(0,0,k)−∂y0∂τGth(−iβ ,0,k) = 0 .

The statistical and spectral components GCC
m,F(0,y0,k) and GCC

m,ρ(0,y0,k) of the mixed propagator
are two linearly independent solutions of the free equation of motion. Since it is a second order
differential equation, any solution can be expressed as a linear combination, especially

disc(GIC
m,th)(y

0,k) = GIC
m,th(−iτ,y0,k)

∣∣τ=β

τ=0 = −iGCC
m,ρ(0,y0,k) , (7.52)

disc(∂τGIC
m,th)(y

0,k) = ∂τGIC
m,th(−iτ,y0,k)

∣∣τ=β

τ=0 =
GCC

m,F(0,y0,k)
Gth(0,0,k)

.

Inserting this result together with the self-consistent Schwinger-Dyson equation (D.20) for the full
thermal propagator into eq. (7.51) finally yields

GIC
m,th(ωn,y0,k) =

(
GII

th (ωn,k)
Gth(0,0,k)

)
GCC

m,F(0,y0,k)−
(

iωnGII
th (ωn,k)

)
GCC

m,ρ(0,y0,k)

=
∫

C
dz0

∆m(ωn,z0,k)GCC
m,th(z

0,y0,k) , (7.53)
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where, in the second line, an integration over the closed real-time path C was inserted, as well as the
“mixed connection”

∆m(ωn,z0,k) =
(

GII
th (ωn,k)

Gth(0,0,k)

)
δs(z0)+

(
2iωnGII

th (ωn,k)
)

δa(z0)

= ∆
s
m(ωn,k)δs(z0)+∆

a
m(ωn,k)δa(z0) , (7.54)

= ,

which is only supported at the initial time z0 = 0±. Furthermore, the transposed connection is defined
as ∆T

m(z0,ωn,k) = ∆m(ωn,z0,k). Eq. (7.53) for the mixed propagator is the extension of eq. (7.36)
for the free propagator. Thus, the mixed propagator evaluated with one real and one imaginary time
is decomposed into the convolution of the mixed connection, which involves the full 2PI propagator,
and the real-real mixed propagator which obeys the free equation of motion.

Full thermal propagator

Using the equation of motion (7.47) of the mixed propagator, the self-consistent equation of mo-
tion (7.43) of the full propagator can be rewritten as

G−1
th (x,y) = G−1

m,th(x,y)−
[
1−1I(x0)1I(y0)

]
Πth(x,y) for x0,y0 ∈ C+I .

By convolving this equation with Gth from the left and with Gm,th from the right, the integrated
Schwinger-Dyson equation is obtained,

Gth(x,y) = Gm,th(x,y)+
∫

C+I
d4u
∫

C+I
d4vGth(x,u)

[
1−1I(u0)1I(v0)

]
Πth(u,v)Gm,th(v,y) . (7.55)

Evaluating it for x0 ∈ C and y0 ∈ I , and performing a Fourier transformation with respect to the
relative spatial coordinate x−y as well as the imaginary time y0 gives

GCI
th (x0,ωn,k) = GCI

m,th(x
0,ωn,k)+

∫
C+I

du0
∫

C
dv0
(

Gth(x0,u0,k)Πth(u0,v0,k)GCI
m,th(v

0,ωn,k)
)

− i
∫

C
du0 GCC

th (x0,u0,k)Πth(u0,ωn,k)GII
m,th(ωn,k) .

Next, GCI
m,th(x

0,ωn,k) and GCI
m,th(v

0,ωn,k) are replaced using eq. (7.53) with interchanged arguments,

GCI
th (x0,ωn,k)

=
∫

C
dz0
[

GCC
m,th(x

0,z0,k)+
∫

C+I
du0

∫
C
dv0
(

Gth(x0,u0,k)Πth(u0,v0,k) GCC
m,th(v

0,z0,k)
)]

∆
T
m(z0,ωn,k)

− i
∫

C
du0 GCC

th (x0,u0,k)Πth(u0,ωn,k)GII
th (ωn,k)

=
∫

C
dz0
[

GCC
th (x0,z0,k)−

∫
C
du0
∫

I
dv0
(

GCC
th (x0,u0,k)Πth(u0,v0,k) GIC

m,th(v
0,z0,k)

)]
∆

T
m(z0,ωn,k)

− i
∫

C
du0 GCC

th (x0,u0,k)Πth(u0,ωn,k)GII
th (ωn,k)

=
∫

C
dz0 GCC

th (x0,z0,k)

{
∆

T
m(z0,ωn,k)− iΠth(z0,ωn,k)GII

th (ωn,k)

−
∫

C
du0
∫

I
dv0

Πth(z0,v0,k)GIC
m,th(v

0,u0,k)∆T
m(u0,ωn,k)

}
,
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where GII
m,th(ωn,k) = GII

th (ωn,k) has been used (see eq. (7.49)). In the second step, the Schwinger-
Dyson equation (7.55) evaluated for x0,z0 ∈ C was used again. In the third step the full real-real
propagator was factored out by interchanging the integration variables u0↔ z0 in the second and third
term. The last line can be simplified by Fourier transforming the imaginary time v0, and performing
the integral over C using eq. (7.54),∫

C
du0
∫

I
dv0

Πth(z0,v0,k)GIC
m,th(v

0,u0,k)∆T
m(u0,ωn,k) =

= −iT ∑
l

∫
C
du0

Πth(z0,ωl,k)GIC
m,th(ωl,u0,k)∆T

m(u0,ωn,k)

= −iT ∑
l

Πth(z0,ωl,k)GIC
m,th(ωl,0,k)∆s

m(ωn,k)

= −iT ∑
l

Πth(z0,ωl,k)GII
th (ωl,k)

GII
th (ωn,k)

Gth(0,0,k)
.

Finally, a decomposition of the full thermal 2PI propagator evaluated with one real time and one
Matsubara frequency is obtained,

GCI
th (x0,ωn,k) =

∫
C
dz0 GCC

th (x0,z0,k)

{
∆

T
m(z0,ωn,k)− iΠth(z0,ωn,k)GII

th (ωn,k)

− iT ∑
m

Πth(z0,ωm,k)GII
th (ωm,k)

GII
th (ωn,k)

Gth(0,0,k)

}
=

∫
C
dz0 GCC

th (x0,z0,k)∆T (z0,ωn,k) . (7.56)

In the last line, the “full connection” was introduced,

∆
T (z0,ωn,k) = ∆

T
m(z0,ωn,k)− iT ∑

m
Πth(z0,ωm,k)

[
δn,m

T
GII

th (ωn,k)−
GII

th (ωm,k)GII
th (ωn,k)

Gth(0,0,k)

]
≡ ∆

T
m(z0,ωn,k)− iT ∑

m
Πth(z0,ωm,k)D(ωm,ωn,k) , (7.57)

with ∆(ωn,z0,k) = ∆T (z0,ωn,k). Compared to the mixed connection, the full connection contains an
additional term, which is the convolution of the thermal self-energy, evaluated with one real time and
one Matsubara frequency, with the propagator D(ωm,ωn,k) defined in the last line. This propagator
can be rewritten as

D(ωn,ωm,k) =
δn,m

T
GII

th (ωn,k)−
GII

th (ωn,k)GII
th (ωm,k)

Gth(0,0,k)
(7.58)

=
δn,m

T
GII

th (ωn,k)−∆
s
m(ωn,k)Gth(0,0,k)∆s

m(ωm,k)

=
δn,m

T
GII

th (ωn,k)−
∫

C
dw0

∫
C
dz0

∆m(ωn,w0,k)Gth(w0,z0,k)∆T
m(z0,ωm,k)

=
δn,m

T
GII

th (ωn,k)−
∫

C
dw0

∫
C
dz0

∆(ωn,w0,k)Gth(w0,z0,k)∆T (z0,ωm,k) .

In the last line
∫
Cdw0∫

Cdz0 X(ωn,w0,k)Gth(w0,z0,k)Πth(z0,ωm,k)= 0 was used, where X ∈{∆,Πth}.
The propagator D has the properties

D(ωn,ωm,k) = D(ωm,ωn,k), T ∑
m

D(ωn,ωm,k) = 0 . (7.59)
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From the last property it can be inferred that only the non-local part of the thermal self-energy
Πth(z0,ωm,k) = Πloc

th + Πnl
th(z

0,ωm,k) contributes in eq. (7.57), since the local part is independent
of the Matsubara frequency (see eq. D.13),

T ∑
m

Πth(z0,ωm,k)D(ωm,ωn,k) = T ∑
m

Π
nl
th(z

0,ωm,k)D(ωm,ωn,k) .

By applying the inverse Fourier transformation with respect to imaginary time, using in particular

D(−iτ,−iτ ′,k) = T 2
∑
nm

eiωnτ−iωmτ ′D(ωn,ωm,k) ,

the full thermal 2PI propagator with one imaginary and one real time can be decomposed as

GCI
th (x0,−iτ,k) =

∫
C
dz0 GCC

th (x0,z0,k)∆T (z0,−iτ,k) ,

=

GIC
th (−iτ,y0,k) =

∫
C
dz0

∆(−iτ,z0,k)GCC
th (z0,y0,k) , (7.60)

=

where the full connection is given by

∆(−iτ,z0,k) = ∆m(−iτ,z0,k) +
∫

I
dv0 D(−iτ,v0,k)Πnl

th(v
0,z0,k) (7.61)

= ∆
s(−iτ,k)δs(z0)+∆

a(−iτ,k)δa(z0) +
∫

I
dv0 D(−iτ,v0,k)Πnl

th(v
0,z0,k)

= = + ,

∆
T (z0,−iτ,k) = ∆(−iτ,z0,k) = . (7.62)

The coefficients ∆s,a(−iτ,k) are derived from eq. (7.53). They are given in terms of the full thermal
2PI propagator evaluated on the imaginary contour I ,

∆
s(−iτ,k) = ∆

s
m(−iτ,k) =

GII
th (−iτ,0,k)
Gth(0,0,k)

,

∆
a(−iτ,k) = ∆

a
m(−iτ,k) = 2∂τGII

th (−iτ,0,k) . (7.63)

Eqs. (7.60,7.61,7.63) constitute the nonperturbative generalizations of eqs. (7.36,7.37). The nonper-
turbative generalization of eq. (7.42) is obtained from eq. (7.58) using eq. (D.19),

GII
th (−iτ,−iτ ′,k) = D(−iτ,−iτ ′,k)+

∫
C
dw0

∫
C
dz0

∆(−iτ,w0,k)Gth(w0,z0,k)∆T (z0,−iτ ′,k)

= D(−iτ,−iτ ′,k)+∆
s
m(−iτ,k)Gth(0,0,k)∆s

m(−iτ ′,k) . (7.64)

= +

= +

Note that only the parts of the connections which are proportional to δs,a(w0) and δs,a(z0) contribute
to the integrals in the first line. The parts involving Πnl

th do not contribute since the integrals over the
closed real-time path in the first line vanish for them. This is due to the fact that GII

th and D purely
depend on imaginary time arguments.
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Closed real-time contour with thermal initial correlations C+α

Similar to the free propagator, the full propagator connecting imaginary and real times can be de-
composed into a convolution of the full “connection” ∆(−iτ,z0,k) and the full real-real propagator.
However, equation (7.61) for the full connection is an implicit equation due to the extra contribution
of the non-local part of the full thermal self-energy. For example, for the 2PI three loop approxima-
tion in the Z2-symmetric phase, the thermal self-energy is given by the tadpole- and the setting-sun
diagrams, which itself contain the full propagator. Only the latter contributes to the non-local part,
such that eq. (7.61) takes the form,

= + .

The full connection within a given 2PI truncation is the exact solution of equation (7.61). Formally, it
can be expanded in an infinite series obtained from iteratively inserting the mixed connection for the
full connection,

∆
(0)(−iτ,z0,k) = ∆m(−iτ,z0,k) ,

∆
(k+1)(−iτ,z0,k) = ∆m(−iτ,z0,k)+

∫
I
dv0 D(−iτ,v0,k) Π

nl
th(v

0,z0,k)
∣∣
GIC

th →∆(k)∗GCC
th

.
(7.65)

For example, for the 2PI three loop approximation in the Z2-symmetric phase, the first steps of this
iteration can be depicted as

= + +

+

+

where the first line represents the zeroth step and the first step, and the second line shows all diagrams
contributing at the second step. The diagrams in the third line appear at the third step. The diagrams
are generated with the correct symmetry factors (see footnote 2 on p. 91). Obviously, the expansion
can be re-organized as an expansion in the number of mixed connections contained in each diagram.
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Similar to the perturbative case, the formalism established above can be used to relate any Feynman
diagram formulated on the thermal time path (“C+I”), the lines of which are given by the full
propagator, with a set of Feynman diagrams formulated on the closed real-time path containing non-
local effective vertices representing the thermal initial correlations (“C+ α”). This is accomplished
by three steps:

1. First, the contour integrations over the thermal time path C+I associated with interaction ver-
tices are split into two integrations over C and I . A diagram with V vertices is thus decomposed
into 2V contributions.

2. Second, all internal propagator lines connecting a real and an imaginary time are replaced by
the convolution of the full connection with the real-real propagator according to eq. (7.61). Ad-
ditionally, the internal propagator lines connecting two imaginary times are replaced according
to eq. (7.64). The parts containing imaginary times are encapsulated, which can be visualized
by joining the full “connections” to boxes surrounding the imaginary vertices.

3. Third, the series expansion of the full connection in terms of the mixed connection is inserted.
Each resulting contribution can be identified as a diagram formulated on the closed real-time
path C containing non-local effective vertices αn. The latter are constructed explicitly, as
appropriate for the underlying 2PI approximation.

The first two steps are analogous to the perturbative case, with full propagators and connections
instead of free ones. The third step is special for the nonperturbative case. It results in contributions
which contain non-local effective vertices α th

n of arbitrarily high order n. These take into account
thermal initial n-point correlations, which are present for all n due to the underlying nonperturbative
approximation. For example, for the full setting sun diagram, step one and two can be written as

S(x,y) = =
(−iλ )2

6

∫
C+I

d4u
∫

C+I
d4vGth(x,u)Gth(u,v)3Gth(v,y)

=

= + + +

+ + +

(7.66)
The symmetry factors of all diagrams are taken into account properly (see footnote 2 on page 91).
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For the setting-sun diagram with one real and one imaginary vertex, the third step can be written as

=

+

+ . . . .

The first diagram in the second line is obtained by inserting the zeroth iteration for the four full
connections, ∆→ ∆(0) = ∆m. The other diagrams are obtained by inserting the first iteration ∆→ ∆(1).
The ellipsis stand for the contributions obtained by inserting the second and higher iterations of the
full connection. All diagrams shown above are generated with the correct symmetry factor.
Each of the boxes with thin lines represents a non-local effective vertex, encoding the correlations
of the initial state. Accordingly, a thin box which is attached to n propagator lines represents a
contribution to the initial correlation αn.
The thermal initial correlations are determined by the matrix element of the thermal density matrix.
As has been shown in section D.1.1, the thermal initial correlations can be expanded in a series
of connected Feynman diagrams with propagator D0(−iτ,−iτ ′,k) (see eq. (D.6)) and “imaginary”
vertices within perturbation theory. Moreover, in section 7.2.1 it has been shown that these appear as
sub-diagrams inside the perturbative non-local effective vertices denoted by the thin boxes.
Within the 2PI framework, the thermal effective non-local vertices are also given by subdiagrams
inside the thin boxes, however with lines representing the propagator D(−iτ,−iτ ′,k) which is deter-
mined by the full thermal propagator (see eq. (7.64)). These subdiagrams represent the approximation
of the full thermal initial correlations which are appropriate in the nonperturbative case. Within the
formalism established above, these can be constructed explicitly. For example, the lowest order non-
perturbative thermal 4-point and 6-point initial correlations are given by

α
th
4,0L,2PI(z1,z2,z3,z4) = −iλ

∫
I
d4v∆m(v,z1)∆m(v,z2)∆m(v,z3)∆m(v,z4)

th

0L, 2PI
= ≡ (7.67)

α
th
6,0L,2PI(z1,z2, . . . ,z6) = (−iλ )2

∫
I
d4v
∫

I
d4w∆

T
m(z1,v)∆T

m(z2,v)∆T
m(z3,v)D(v,w)

∆m(w,z4)∆m(w,z5)∆m(w,z6)

th

0L, 2PI
= ≡ (7.68)
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7.2.3 Kadanoff-Baym Equation for the Thermal Initial State

On the one hand, the equation of motion for the full thermal propagator defined on the closed real-
time contour C is given by the Kadanoff-Baym equation for a thermal initial state, represented by
thermal initial correlations α th

n (“C+α”). The latter is a special case of the Kadanoff-Baym equation
for a non-Gaussian initial state (see eq. (7.25)), which has the form(

∂
2
x0 +k2 +M2

th
)

Gth(x0,y0,k) =−iδC(x0− y0) (7.69)

− i
∫

C
dz0 [

Π
G
th,nl(x

0,z0,k)+Π
nG
th,nl(x

0,z0,k)+ iΠth,λα(x0,z0,k)
]

Gth(z0,y0,k) ,

where ΠG
th,nl(x

0,z0,k) and ΠnG
th,nl(x

0,z0,k) denote the Gaussian- and non-Gaussian parts of the non-
local self-energy, respectively, and

Πth,λα(x0,z0,k) = Πth,λα,F(x0,k)δs(z0)− i
2

Πth,λα,ρ(x0,k)δa(z0)

denotes the contribution from the non-Gaussian initial correlations which is only supported at the
initial time surface z0 = 0 (see section 7.1).
On the other hand, the equation of motion of the full thermal propagator based on the thermal time
contour (“C+I”) evaluated for x0,y0 ∈ C (see eq. D.14) is(

∂
2
x0 +k2 +M2

th
)

Gth(x0,y0,k) =−iδC(x0− y0)− i
∫

C+I
dz0

Π
nl
th(x

0,z0,k)Gth(z0,y0,k) .

For example, for the three-loop truncation of the 2PI effective action in the Z2-symmetric phase
(setting-sun approximation), the convolution of the thermal non-local self energy and the full thermal
propagator is

∫
C+I

dz0
Π

nl
th(x

0,z0,k)Gth(z0,y0,k) = .

Using the full connection (7.61), the integral over the imaginary contour I can be rewritten as∫
I
dz0

Π
nl
th(x

0,z0,k)Gth(z0,y0,k) =
∫

I
dv0

Π
nl
th(x

0,v0,k)
∫

C
dz0

∆(v0,z0,k)Gth(z0,y0,k)

=
∫

C
dz0
[∫

I
dv0

Π
nl
th(x

0,v0,k)
(

∆m(v0,z0,k)+
∫

I
dw0 D(v0,w0,k)Πnl

th(w
0,z0,k)

)]
Gth(z0,y0,k) .

Inserting this into the upper equation of motion, it takes precisely the form of the Kadanoff-Baym
equation for a non-Gaussian initial state. By comparison, the non-Gaussian contributions to the self-
energy for the thermal initial state can be inferred,

Π
G
th,nl(x

0,z0,k) = Π
nl
th(x

0,z0,k)
∣∣
x0,z0∈C , (7.70)

Π
nG
th,nl(x

0,z0,k) =
∫

I
dv0
∫

I
dw0

Π
nl
th(x

0,v0,k)D(v0,w0,k)Πnl
th(w

0,z0,k)
∣∣∣∣
x0,z0∈C

,

iΠth,λα(x0,z0,k) =
∫

I
dv0

Π
nl
th(x

0,v0,k)∆m(v0,z0,k)
∣∣∣∣
x0,z0∈C

.

For the setting-sun approximation, the steps listed above leading from the formulation of the Kada-
noff-Baym equation on the thermal time path (“C+I”) to the formulation on the closed real-time
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path with thermal initial correlations (“C+α”) are

Thus, the Gaussian and non-Gaussian contributions to the self-energy in setting-sun approximation
for a thermal initial state are

Π
G
th,nl(x

0,z0,k) =

Π
nG
th,nl(x

0,z0,k) = (7.71)

iΠth,λα(x0,z0,k) = .

In order to explicitly obtain the thermal initial correlations which are appropriate for a specific 2PI
approximation, the iterative expansion (7.65) of the full connection in terms of the mixed connection
has to be inserted. This yields a series expansion of the non-Gaussian self-energies,

Πth,λα =
∞

∑
k=0

Π
(k)
th,λα

, Π
nG
th,nl =

∞

∑
k=0

Π
(k),nG
th,nl , (7.72)

where

Π
(0)
th,λα

(x0,z0,k) = Πth,λα(x0,z0,k)
∣∣∣∣
GIC

th →∆(0)∗GCC
th

,

Π
(k)
th,λα

(x0,z0,k) = Πth,λα(x0,z0,k)
∣∣∣∣
GIC

th →∆(k)∗GCC
th

− Π
(k−1)
th,λα

(x0,z0,k) ,

and analogously for Π
(k),nG
th,nl . For example, in setting-sun approximation, the thermal initial correla-

tions obtained from inserting the zeroth, first and second iteration of the full connection are

iΠ(0)
th,λα

(x0,z0,k) = =
th

0L, 2PI
(7.73)
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iΠ(1)
th,λα

(x0,z0,k) =

iΠ(2)
th,λα

(x0,z0,k) = .

The zeroth contribution contains the thermal non-local effective 4-point vertex (7.67). The first con-
tribution contains three diagrams with thermal effective 6-, 8-, and 10-point vertices, and the second
iteration yields six contributions with thermal effective 8-, 10-, 12- (two diagrams), 14-, and 16-point
vertices, the smallest and largest of which are depicted in the last line of (7.73). The expansion of
ΠnG

th,nl contains thermal non-local effective vertices of order six and higher,

Π
(0),nG
th,nl (x0,z0,k) = =

th

0L,2PI

Π
(1),nG
th,nl (x0,z0,k) =

The zeroth contribution contains the thermal non-local effective 6-point vertex (7.68). The first con-
tribution contains 15 diagrams with thermal effective vertices of order 8 to 18.
The order of the thermal initial correlations appearing up to the fifth contribution in setting-sun ap-
proximation are shown in table 7.1. Only a single term contains an initial 4-point correlation, which
is given in the first line of eq. (7.73),

iΠ(0)
th,λα

(x,z) =
−iλ

6

∫
C
d4x123Gth(x,x1)Gth(x,x2)Gth(x,x3) iα th

4,0L,2PI(x1,x2,x3,z) . (7.74)

Furthermore, the upper term yields the only contribution to the Kadanoff-Baym equation (7.69) for
the thermal initial state which does not contain an internal “real” vertex. Thus, all other contribu-
tions contain at least one contour integral over the closed real-time path C associated to internal real
vertices. These integrals have to vanish when all external times approach the initial time, since the
integrations over the two branches of the closed real-time contour yield identical contributions with
opposite sign. Therefore, in the limit x0, y0→ 0, only the diagram containing the initial 4-point cor-
relation given in the first line of eq. (7.73) contributes to the right hand side of the Kadanoff-Baym
equation (7.69) for the thermal initial state in setting-sun approximation,(

∂
2
x0 +k2 +M2

th
)

Gth,F(x0,y0,k)
∣∣
x0=y0=0 = Π

(0)
th,λα,F(x0,k)Gth,F(0,y0,k)

∣∣∣
x0=y0=0

,(
∂

2
x0 +k2 +M2

th
)

Gth,ρ(x0,y0,k)
∣∣
x0=y0=0 = 0 . (7.75)
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Πth,λα(x0,z0,k)

4 6 8 10 12 14 16 · · · 22 · · · 28 · · · 34 · · ·
0 ×
1 × × ×
2 × × × × ×
3 × × × × ·· · ×
4 × × × ·· · × · · · ×
5 × × ·· · × · · · × · · · ×
...

ΠnG
th,nl(x

0,z0,k)

4 6 8 10 12 14 16 18 · · · 30 · · · 42 · · · 54 · · · 66 · · ·
0 ×
1 × × × × × ×
2 × × × × × ·· · ×
3 × × × × ·· · × · · · ×
4 × × × ·· · × · · · × · · · ×
5 × × ·· · × · · · × · · · × · · · ×
...

Table 7.1: Thermal initial correlations in 2PI setting-sun approximation. The column number is the
order n = 4,6, . . . of the thermal initial n-point correlation. The row number k = 0,1, . . . shows which
initial correlations contribute to Π

(k)
th,λα

(upper table) and Π
(k),nG
th,nl (lower table), respectively. Due to

the Z2-symmetry, only even correlations are non-zero.

In summary, the formulation of the equation of motion for the thermal propagator derived from the
2PI effective action on the closed real-time path can now serve as the link required to combine the
nonperturbative 2PI renormalization with Kadanoff-Baym equations.

7.3 Renormalized Kadanoff-Baym Equation for the Thermal Initial
State

On the one hand, the nonperturbative renormalization procedure of the 2PI effective action described
in section 6.2 renders the thermal propagator defined on the thermal time path finite. On the other
hand, the Schwinger-Keldysh propagator which is the solution of the Kadanoff-Baym equations for
the thermal initial state coincides with the thermal propagator on the real time axis. Therefore, the
nonperturbative renormalization procedure of the 2PI effective action also renders the Kadanoff-
Baym equations for the thermal initial state finite. The corresponding renormalized thermal initial
correlations

αn,R(x1, . . . ,xn) = Zn/2
αn(x1, . . . ,xn) (7.76)

are obtained by transferring the renormalized Schwinger-Dyson (6.22) equation formulated on the
thermal time path C+I to the formulation on the closed real-time path with initial correlations (C+α)
as described above.
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The renormalized Kadanoff-Baym equation for the thermal initial state thus reads(
2x +δZ02x +m2

R +δm2
0 +

λR +δλ0

2
Gth,R(x,x)

)
Gth,R(x,y) =−iδ 4

C(x− y) (7.77)

− i
∫

C
d4z
[
Π

G
th,nl,R(x,z)+Π

nG
th,nl,R(x,z)+ iΠth,λα,R(x,z)

]
Gth,R(z,y) ,

where δZ0, δm2
0, and δλ0 are the 2PI vacuum counterterms as determined by the nonperturba-

tive renormalization procedure of the 2PI effective action at finite temperature, and Gth,R(x,y) =
Z−1Gth(x,y). The renormalized self-energies for the thermal initial state are obtained from eq. (7.70),

Π
G
th,nl,R(x,z) = Z Π

G
th,nl(x,z) = Π

nl
th,R(x,z)

∣∣
x0,z0∈C , (7.78)

Π
nG
th,nl,R(x,z) = Z Π

nG
th,nl(x,z) =

∫
I
d4v
∫

I
d4wΠ

nl
th,R(x,v)DR(v,w)Πnl

th,R(w,z)
∣∣∣∣
x0,z0∈C

,

iΠth,λα,R(x,z) = Z iΠth,λα(x,z) =
∫

I
d4vΠ

nl
th,R(x,v)∆m(v,z)

∣∣∣∣
x0,z0∈C

,

where DR(x,y) = Z−1D(x,y) is the renormalized propagator from which the thermal initial correla-
tions are constructed via the iterative expansion (7.72).
In the three-loop approximation of the 2PI effective action, the non-local part of the renormalized
thermal self-energy, which is given by the setting-sun diagram,

Π
nl
th,R(x,y) =

(−iλR)2

6
Gth,R(x,y)3 ,

contains the renormalized coupling. Therefore, all thermal initial correlations which are generated via
the iterative expansion (7.72) also contain the renormalized coupling. For example, the contribution
of the zeroth iteration (which is the only one containing an initial 4-point correlation) is given by

iΠ(0)
th,λα,R(x,z) =

−iλR

6

∫
C
d4x123Gth,R(x,x1)Gth,R(x,x2)Gth,R(x,x3) iα th

4,0L,2PI,R(x1,x2,x3,z) , (7.79)

where the renormalized thermal initial 4-point correlation is given by

iα th
4,0L,2PI,R(z1,z2,z3,z4) =−iλR

∫
I
d4v∆m(v,z1)∆m(v,z2)∆m(v,z3)∆m(v,z4) . (7.80)

Altogether, it has been possible to explicitly construct a class of renormalized solutions of Kada-
noff-Baym equations (namely those for thermal initial states), which can serve as the basis to derive
renormalized Kadanoff-Baym equations for nonequilibrium initial states.



Chapter 8

Renormalization of Kadanoff-Baym
Equations

In recent years it turned out that the 2PI effective action [66] defined on the closed real-time path [68,
126,166] is an excellent starting point to study quantum fields out of thermal equilibrium [1,2,25,32].
So far, however, in this highly nonperturbative context the issue of renormalization has not been
addressed properly.
As mentioned in the introduction, there are several reasons why a proper renormalization of Kadanoff-
Baym equations derived from the 2PI effective action is desirable. Most important, it is required for a
quantitative comparison with semi-classical approximations, like Boltzmann equations. Furthermore,
renormalization can have an important quantitative impact on solutions of Kadanoff-Baym equations,
is crucial in order to identify physical initial states, and enhances the robustness of the computational
algorithm [147].
In this chapter, nonperturbatively renormalized Kadanoff-Baym equations are proposed, and their
finiteness is verified analytically for a special case. The relevance of renormalization for Kadanoff-
Baym equations is illustrated by means of numerical solutions.
In section 8.1, it is shown that it is necessary to extend the Kadanoff-Baym equations (6.15) (which
have been the basis for numerical investigations so far) in order to be compatible with renormalization.
Then, the tools derived in chapter 7 are used in order to tackle the nonperturbative renormalization of
Kadanoff-Baym equations, which is done in section 8.2 by including an initial 4-point correlation. An
important reference value for the latter is the thermal value, for which the connection to the nonper-
turbative renormalization procedure of the 2PI effective action is demonstrated explicitly. Finally, the
relevance of nonperturbative counterterms as well as non-Gaussian initial correlations for numerical
solutions of Kadanoff-Baym equations is demonstrated in section 8.3.

8.1 Kadanoff-Baym Equations and 2PI Counterterms

On the one hand, it has been shown [28] that nonperturbative 2PI vacuum counterterms render all
n-point functions derived from the 2PI effective action finite in thermal equilibrium. In particular,
this means that these 2PI counterterms can be chosen independent of the temperature.
On the other hand, it has been shown [32] that Kadanoff-Baym equations respect late-time univer-
sality, meaning that the late-time behavior depends only on conserved quantities like average energy
density and global charges, but not on the details of the initial conditions, and that the solutions
asymptotically approach a stationary state for which the effective particle number distribution con-
verges towards a thermal Bose-Einstein distribution.
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Altogether, this suggests that the 2PI vacuum counterterms are adequate to renormalize the solutions
of Kadanoff-Baym equations for late times for any appropriate initial condition. However, as will be
shown below, inserting the 2PI counterterms into the Kadanoff-Baym equations (6.15) is not sufficient
for their renormalization. Instead, it is additionally required to remove the restriction to a Gaussian
initial state.
By splitting the bare mass- and coupling appearing in the bare classical action (6.24) into renormal-
ized parts and counterterms (see eq. 6.25), and rescaling the field value, the self-consistent Schwinger-
Dyson equation (6.11) derived from the 2PI effective action (6.9) for a Gaussian initial state formu-
lated on the closed real-time path can be written as,

G−1
R (x,y) = i

(
2x +m2

R
)

δ
4
C(x− y)−ΠR(x,y) (8.1)

ΠR(x,y) = −i
(

δZ02x +δm2
0 +

λR +δλ0

2
GR(x,x)

)
δ

4
C(x− y)+

(−iλR)2

6
GR(x,y)3 .

It is equivalent to the Kadanoff-Baym equations (6.15). The full connected Schwinger-Keldysh prop-
agator GR(x,y) ≡ Z−1G(x,y) also appears in the self-energy ΠR(x,y), which is given in “setting-sun
approximation” (see section 6.1) here. It contains counterterms parameterized analogously to the
corresponding Schwinger-Dyson equation (6.26) in thermal equilibrium.
One peculiarity of the Kadanoff-Baym equations (6.15) is that, at the initial time, only the local part of
the self-energy (which is proportional to δ 4

C(x−y)) contributes, while the non-local part is suppressed
due to the memory integrals which vanish at the initial time. Since both parts of the self-energy
contain divergences, it is thus impossible to choose the counterterms such that the Kadanoff-Baym
equations for a Gaussian initial state are finite at t = 0 and t > 0 simultaneously.
So far, an approximate perturbative renormalization prescription has been used by default [17]. This
prescription is designed such that it is appropriate at the initial time t = 0, while it misses divergences
occurring at t > 0. In contrast to this, the nonperturbative renormalization procedure (see section 6.2),
which can, as explained above, be expected to be correct for t→ ∞, fails at t = 0 for a Gaussian ini-
tial state, since the divergence contained in the setting-sun diagram, which is to be canceled by the
coupling counterterm, vanishes at the initial time. The reason for this are the missing higher correla-
tions at the initial time. Therefore, it is necessary to extend the Kadanoff-Baym equations (6.15) to
non-Gaussian initial states.

8.2 Renormalizable Kadanoff-Baym Equations from the 4PI Effective
Action

In thermal equilibrium, the full thermal 4-point correlation function carries logarithmic divergences
which are accounted for by the 2PI renormalization prescription. However, for a Gaussian initial state
the connected 4-point correlation function vanishes at the initial time by construction. In order to
transfer the 2PI renormalization prescription to Kadanoff-Baym equations, it is therefore important
to take a 4-point correlation into account from the beginning on.
The 4PI effective action provides an efficient framework to derive Kadanoff-Baym equations for
initial states featuring a non-Gaussian 4-point correlation, for which reason its three-loop truncation
is employed below1.

1Note however that it is also possible to derive these equations without reference to the 4PI effective action. This has the
advantage that completely general initial states (featuring also initial n-point correlations for n > 4) as well as truncations
of the 2PI effective action, which cannot be obtained via the 4PI effective action [26], can also be incorporated on the same
footing. The general formalism can be found in section 7.1.
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8.2.1 4PI Effective Action with Initial 4-Point Correlation

The generating functional for nonequilibrium correlation functions describing an ensemble charac-
terized by the density matrix ρ at an initial time tinit ≡ 0 in the presence of classical external 2- and
4-point sources can be represented by the path integral (see section 6.1)

Zρ [K,L] =
∫
Dϕ 〈ϕ+,0 |ρ|ϕ−,0〉 exp

(
iS[ϕ]+

i
2

ϕ Kϕ +
i

4!
L1234ϕ1ϕ2ϕ3ϕ4

)
. (8.2)

The density matrix element for an initial state featuring a non-Gaussian 4-point correlation can be
parameterized as

〈ϕ+,0 |ρ|ϕ−,0〉= exp
(

iα0 +
i
2

ϕα2ϕ +
i

4!
(α4)1234ϕ1ϕ2ϕ3ϕ4

)
, (8.3)

where the short-hand notations (3.21, 3.34) apply (with
∫
→
∫
C). Here only the Z2-symmetric case

where all odd correlation functions vanish at all times is covered for simplicity. The generalization
can be found in section 7.1. The kernels characterizing the initial correlations are supported at the
initial time only (i.e. for t = 0+ and t = 0− on C),

αn(x1, . . . ,xn) = ∑
ε1=±
· · ·∑

εn=±
α

ε1,...,εn
n (x1, . . . ,xn)δC(x0

1−0ε1) · · ·δC(x0
n−0εn) . (8.4)

In this case, the contribution of the density matrix to the generating functional can be absorbed into the
external sources, K +α2→K and L+α4→ L (the constant α0 can be absorbed into the normalization
of the path integral measure).
The 4PI effective action Γ[G,V4] is the double Legendre transform of the generating functional (8.2)
with respect to the external sources. The latter has the same structure as the corresponding generating
functional (3.33) with 2- and 4-point sources in vacuum, except that all time-integrations are per-
formed over the closed real-time path. Consequently, the 4PI effective action for the initial state (8.3)
is obtained from the parameterization given in eq. (3.37) by replacing the time-integrations

∫
→
∫
C .

8.2.2 Kadanoff-Baym Equation with Initial 4-Point Correlation

The equation of motion for the connected 4-point function derived from the 4PI effective action is

δ

δV4(x,y,z,w)
Γ[G,V4] =−

1
4!

L(x,y,z,w) , (8.5)

and the equation of motion for the Schwinger-Keldysh propagator reads

δ

δG(x,y)
Γ

L[G] =−1
2

K(x,y) . (8.6)

Here, the external sources are formally not zero for the physical situation, but K(x,y) = α2(x,y) and
L(x,y,z,w) = α4(x,y,z,w), due to the density matrix element (8.3). Furthermore, ΓL[G] denotes the
2PI effective action obtained from inserting the solution V̄4 of eq. (8.5) into the 4PI effective action
and performing the inverse Legendre transform with respect to the 4-point source (where d4x1234 =
d4x1 · · ·d4x4 and G12 = G(x1,x2)),

Γ
L[G] = Γ[G,V̄4]+

1
4!

∫
C
d4x1234 L(x1,x2,x3,x4) [V̄4(x1,x2,x3,x4)+G12G34 +G13G24 +G14G23] .
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In the following, the three-loop approximation (setting-sun approximation) of the 4PI effective action
(see section 3.3) is considered for concreteness. Although the three-loop 2PI and three-loop 4PI
approximations agree in the absence of sources, this is not the case here due to the initial 4-point
correlation L = α4 6= 0. Instead, the solution of eq. (8.5) obtained from eq. (3.37) is

δΓ

δV4
=−α4

4!
⇔ iA4(x1,x2,x3,x4) =−iλδ

4
C(x1− x2)δ 4

C(x1− x3)δ 4
C(x1− x4)+ iα4(x1,x2,x3,x4) .

Thus the kernel iA4 ≡ iAG
4 + iAnG

4 is given by the sum of the classical vertex, which is also present
in the Gaussian case, and the non-Gaussian initial 4-point correlation AnG

4 ≡ α4. Accordingly, the
4-point function has two contributions given by

V̄4(x1,x2,x3,x4) =
∫

C
d4y1234 G(x1,y1)G(x2,y2)G(x3,y3)G(x4,y4)[(iAG

4 + iAnG
4 )(y1,y2,y3,y4)]

≡ V G
4 (x1,x2,x3,x4)+V nG

4 (x1,x2,x3,x4) . (8.7)

The corresponding 2PI effective action ΓL[G] is obtained by inserting V̄4 into the 4PI effective action
and setting L = α4. The result coincides with the 2PI effective action (7.15) considered in section 7.1.
Therefore, the Kadanoff-Baym equations are

(
2x +M2(x)

)
GF(x,y) =

∫ y0

0
d4zΠF(x,z)Gρ(z,y)−

∫ x0

0
d4zΠρ(x,z)GF(z,y)

− λ

6
V nG

4 (x,x,x,y) , (8.8)(
2x +M2(x)

)
Gρ(x,y) =

∫ y0

x0

d4zΠρ(x,z)Gρ(z,y) .

They constitute an extension of the Kadanoff-Baym equations (6.15) incorporating a non-Gaussian
initial 4-point correlation, which leads to the additional contribution in the second line. It has to be
emphasized that, in contrast to the memory integrals, this contribution does not have to vanish when
x0,y0→ 0. The effective mass M2(x) and the non-local self-energies ΠF/ρ(x,y) are identical to those
in the Gaussian case (see eq. (6.16)).

8.2.3 Renormalization

Motivated by the parameterization (6.26) of the renormalized 2PI effective action at finite temper-
ature, as well as the renormalized Kadanoff-Baym equation (7.77) for the thermal initial state, the
following ansatz for the Kadanoff-Baym equation determining the renormalized Schwinger-Keldysh
propagator GR(x,y) = Z−1G(x,y) is proposed,
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(
2x +δZ02x +m2

R +δm2
0 +

λR +δλ0

2
GR(x,x)

)
GF,R(x,y)

=
∫ y0

0
d4zΠF,R(x,z)Gρ,R(z,y) −

∫ x0

0
d4zΠρ,R(x,z)GF,R(z,y)

− λR

6
V nG

4,R(x,x,x,y) , (8.9a)

(
2x +δZ02x +m2

R +δm2
0 +

λR +δλ0

2
GR(x,x)

)
Gρ,R(x,y)

=
∫ y0

x0

d4zΠρ,R(x,z)Gρ,R(z,y) . (8.9b)

Here δZ0, δm2
0 and δλ0 denote the 2PI vacuum counterterms determined by the nonperturbative

renormalization procedure. The non-local part of the renormalized self-energy ΠR(x,y) = Z Π(x,y)
is given by the setting-sun diagram with renormalized couplings,

Πnon−local,R(x,y) = ΠF,R(x,y)− i
2

sgnC(x0− y0)Πρ,R(x,y) =
(−iλR)2

6
GR(x,y)3 ,

and V nG
4,R = Z−2V nG

4 is given by the renormalized initial 4-point correlation α4,R = Z2α4,

V nG
4,R(x,x,x,y) =

∫
C
d4y1234 GR(x,y1)GR(x,y2)GR(x,y3)[iα4,R(y1,y2,y3,y4)]GR(y4,y) .

Although the initial 4-point correlation α4,R is only supported at the initial time, it does lead to a non-
zero contribution to the Kadanoff-Baym equations for non-zero times x0,y0 ≥ 0. This can be seen by
inserting the parameterization (8.4) into the upper equation,

V nG
4,R(x,x,x,y) =

∫
d3y1234 GR(x,yε1)GR(x,yε2)GR(x,yε3)[iα

ε1ε2ε3ε4
4,R (y1,y2,y3,y4)]GR(yε4 ,y) .

The four time integrations over the closed contour are annihilated by the four Dirac distributions of
the initial correlation. Above, summation over εi =± is implied, and

GR(x,yε) = GR(x0,x;0ε ,y) = GF,R(x0,x;0,y)− iε
2

Gρ,R(x0,x;0,y) for ε ∈ {+,−} .

The non-Gaussian contribution to the Kadanoff-Baym equations (8.9) may also be understood as a
contribution to the self-energy which is only supported at the initial time surface y0 = 0±,

− λR

6
V nG

4,R(x,x,x,y)≡
∫

C
d4y4 Πλα,R(x,y4)GR(y4,y) , (8.10)

where

iΠλα,R(x,y) =
1
6

∫
C
d4y123 [−iλR]GR(x,y1)GR(x,y2)GR(x,y3)[iα4,R(y1,y2,y3,y)]

≡ iΠλα,F,R(x0,x,y)δs(y0)− i
2

iΠλα,ρ,R(x0,x,y)δa(y0) , (8.11)

with δs/a(y0) ≡
[
δC(y0−0+)±δC(y0−0−)

]
/2. Due to the structure of the initial correlation, the

three propagators appearing in the non-Gaussian contribution Πλα,R(x,y) to the self-energy are evalu-
ated at the times t = x0 and tinit = 0. For sufficiently dense and strongly coupled systems, the unequal-
time propagators GF/ρ,R(x0,0,k) are damped exponentially for each momentum mode k (see left part
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Figure 8.1: Left: The unequal-time propagator is damped exponentially. The damping rate increases
with the density and the coupling strength of the system. Right: The non-Gaussian contribution to
the self-energy is strongly damped. Thus, the contribution of the initial 4-point correlation is most
relevant close to the initial time t = 0.

of figure 8.1). Therefore, also Πλα,F/ρ,R(x0,k) =
∫
d3xe−ik(x−y) Πλα,F/ρ,R(x0,x,y) is damped expo-

nentially with respect to x0 (see right part of figure 8.1). Hence, the contribution of the initial 4-point
correlation to the Kadanoff-Baym equation is suppressed for times much larger than the characteristic
damping time-scale. This means in particular that all properties of solutions of Kadanoff-Baym equa-
tions at late times, including universality and thermalization, are not changed. Instead, the influence
of the initial 4-point correlation is maximal near the initial time. Additionally, the memory integrals
vanish for x0,y0→ tinit = 0, such that the non-Gaussian contribution −λRV nG

4,R(x,x,x,y)/6 makes up
the only non-zero term on the right-hand side of the Kadanoff-Baym equations in this limit.
In section 8.1 it was observed that the 2PI vacuum counterterms renormalizing the 2PI effective action
in equilibrium, which can be expected to be correct at late times, fail for x0,y0 → 0 for a Gaussian
initial state. The reason was that the divergence contained in the memory integral, which is to be
canceled by the coupling counterterm, vanishes at the initial time. Now, however, it is possible to
investigate whether the non-Gaussian initial 4-point correlation can be chosen such as to remedy this
shortcoming of the Gaussian initial state.

8.2.4 Finiteness for Renormalized Initial States

In order to verify the ansatz (8.9) for renormalized Kadanoff-Baym equations it will be shown in
the following (as a first step) that the 2PI vacuum counterterms determined via the nonperturbative
renormalization procedure indeed render the Kadanoff-Baym equations finite in the limit x0,y0→ 0
for the special case where both the initial 2- and 4-point correlations take their thermal values.
Note that, nevertheless, this initial state corresponds to a nonequilibrium situation, since all higher
correlations are omitted. However, it represents the choice for which the deviation from thermal equi-
librium is minimal within the class of initial states characterized by a density matrix of the form (8.3).
In setting-sun approximation, the renormalized thermal initial 4-point correlation is given by (see
eq. (7.80))

iα th
4,R(z1,z2,z3,z4) =−iλR

∫
I
d4v∆m(v,z1)∆m(v,z2)∆m(v,z3)∆m(v,z4) , (8.12)

where ∆m(v,z) =
∫ d3k

(2π)3 eik(v−z) T ∑n eiωnτ∆m(ωn,z0,k) for v = (−iτ,v) denotes the Fourier trans-
formed “mixed connection” defined in eq. (7.54). For thermal initial 2- and 4-point correlations, the
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2- and 4-point functions in the limit x0,y0→ 0 are thus given by (see chapter 7)

GF,R(x,y)|x0,y0=0 = Gth,R(x,y)|x0,y0=0 , (8.13)

V nG
4,R(x1,x2,x3,x4)|x0

i =0 = −iλR

∫
I
d4vGth,R(x1,v)Gth,R(x2,v)Gth,R(x3,v)Gth,R(x4,v)|x0

i =0 ,

where Gth,R is the solution of the renormalized Schwinger-Dyson equation (6.26) obtained from the
three-loop truncation of the 2PI effective action at finite temperature. Inserting this into the Kada-
noff-Baym equation (8.9) for the statistical propagator evaluated at x0 = y0 = 0 yields (after dividing
by Z = 1+δZ0)

∂
2
x0GF,R(x,y)|x0,y0=0 = −

[
−∇2 +Z−1

(
δm2

0 +m2
R +

λR +δλ0

2
Gth,R(x,x)

)]
Gth,R(x,y)|x0,y0=0

− Z−1 λR

6
(−iλR)

∫
I
d4vGth,R(x,v)3Gth,R(v,y)|x0,y0=0 .

After Fourier transforming with respect to (x−y) as well as inserting the Fourier transformation of
the thermal propagator with respect to the 4-momentum k = (ωn,k), the upper equation becomes

∂
2
x0GF,R(x0,y0,k)|x0,y0=0 = −T ∑

n
eiωnτ

[
k2 +Z−1

(
δm2

0 +m2
R +

λR +δλ0

2

∫
q
Gth,R(q)

− λ 2
R

6

∫
pq

Gth,R(p)Gth,R(q)Gth,R(k−q− p)
)]

Gth,R(ωn,k)|τ→0

= −T ∑
n

eiωnτ
[
k2 +Z−1 (m2

R +Πth,R(k)−δZ0k2)]Gth,R(ωn,k)|τ→0 .

The combination of the thermal tadpole- and setting-sun contributions in the inner brackets of the
first line is precisely the same as for the renormalized thermal self-energy (6.26), which has been
inserted in the second line. The nonperturbative renormalization procedure is designed such that
Πth,R(k) is finite. Therefore, the thermal setting-sun contribution, which stems from the contribution
of the initial 4-point correlation, is crucial for renormalization. Next, it is used that the thermal 2PI
propagator fulfills the self-consistent Schwinger-Dyson equation (6.26),

∂
2
x0GF,R(x0,y0,k)|x0,y0=0 = −T ∑

n
eiωnτ

[
k2 +Z−1

(
G−1

th,R(ωn,k)−Zk2
)]

Gth,R(ωn,k)|τ→0

= −T ∑
n

eiωnτ
[
Z−1−ω

2
n Gth,R(ωn,k)

]
τ→0

= −∂
2
τ Gth,R(−iτ,0,k)|τ→0 ,

where k2 = ω2
n +k2 and T ∑n eiωnτ = 0 for τ 6= 0 has been used. The last expression is manifestly

finite, since the full renormalized thermal propagator Gth,R(−iτ,0,k) is finite for 0 ≤ τ ≤ β . The
Kadanoff-Baym equation for the spectral function does not involve any divergences for x0,y0→ 0.

Outlook

It has been shown that the Kadanoff-Baym equations (8.9) supplied with 2PI vacuum counterterms
derived from the three-loop truncation of the 2PI effective action with thermal initial 2- and 4-point
correlation are rendered finite in the limit x0,y0 → 0. As discussed above, in the opposite limit
x0,y0→ ∞, where thermal equilibrium is approached, the nonperturbative renormalization procedure
of the 2PI effective action at finite temperature can also be expected to be appropriate. In order to



112 8. Renormalization of Kadanoff-Baym Equations

show that the Kadanoff-Baym equations with thermal initial 2- and 4-point correlation are also ren-
dered finite at intermediate times, it is required to show that the truncation of the higher thermal
n-point correlations for n ≥ 6 does not introduce any divergences. Furthermore, if the initial 2-point
correlation deviates from its thermal value, it can be expected that the initial 4-point correlation also
has to be modified such that the Kadanoff-Baym equations stay finite. In order to investigate this
question, it is necessary to expand the Kadanoff-Baym equations with nonequilibrium initial condi-
tions around the renormalized Kadanoff-Baym equations for thermal equilibrium, which have been
derived in chapter 7. Therefore, it is required to formulate the Bethe-Salpeter equation encountered
in section 6.2 on the closed real-time path. In this way, it should be possible to derive criteria which
the nonequilibrium initial state of the ensemble has to fulfill in order to be compatible with renormal-
ization. Only these “renormalized initial states” may occur as real physical states of the ensemble.
Above, already one class of renormalized initial states could be identified, namely those with thermal
initial 2- and 4-point correlation functions.

8.3 Impact of 2PI Renormalization on Solutions of Kadanoff-Baym
Equations

The Kadanoff-Baym equations (8.9) for the renormalized Schwinger-Keldysh propagator contain
counterterms determined according to the nonperturbative renormalization procedure of the 2PI effec-
tive action and take into account a non-Gaussian initial state featuring an initial 4-point correlation. In
this section, the relevance of nonperturbative 2PI counterterms as well as the initial 4-point correlation
is investigated by means of numerical solutions of Kadanoff-Baym equations.
In order to compare the nonperturbatively renormalized Kadanoff-Baym equations to the conven-
tionally used Kadanoff-Baym equations, which contain approximate perturbative counterterms and
Gaussian initial correlations, both sets of equations are given in section 8.3.1. Next, the numerical
computation of the 2PI counterterms is discussed in section 8.3.2.
The impact of the non-Gaussian initial 4-point correlation is investigated in section 8.3.3. There-
fore, solutions of Kadanoff-Baym equations with Gaussian and non-Gaussian initial states, but with
identical (2PI) counterterms, are compared.
The impact of the renormalization prescription is investigated in section 8.3.4, by comparing solutions
of Kadanoff-Baym equations with approximate perturbative counterterms and with nonperturbative
2PI counterterms, but with identical (Gaussian) initial state.
Finally, in section 8.3.5, it is shown that the nonequilibrium time-evolution of the renormalized
Schwinger-Keldysh propagator is compatible with time-independent counterterms.
The nonperturbative 2PI counterterms were determined with the renormalize program, which was
developed following the lines of Ref. [29]. Furthermore, the numerical solutions of the Kadanoff-
Baym equations are based on an extended version of the kadanoffBaymmm program [146, 147].

8.3.1 Kadanoff-Baym Equations with Nonperturbative 2PI Counterterms and Initial
Four-Point Correlation Function

The general form of the evolution equation for the full connected Schwinger-Keldysh two-point func-
tion (Kadanoff-Baym equation) for a space-translation invariant system, without further approxima-
tions, is

(
∂

2
x0 +k2 +M2(x0)

)
GF(x0,y0,k) =

∫ y0

0
dz0

ΠF(x0,z0,k)Gρ(z0,y0,k)
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−
∫ x0

0
dz0

Πρ(x0,z0,k)GF(z0,y0,k)+Πλα,F(x0,k)GF(0,y0,k)+
1
4

Πλα,ρ(x0,k)Gρ(0,y0,k) ,

complemented by a similar equation for the spectral function (see eq. (7.26)). The information about
the underlying 2PI (loop) approximation and renormalization prescription is encoded in the expres-
sions for the self-energies, which will be given below for the cases of interest. In particular, non-
Gaussian initial correlations enter via the contributions Πλα,F/ρ , which vanish for a Gaussian initial
state.
The Kadanoff-Baym equations (8.9) can be brought into the upper form by Fourier transforming with
respect to the relative spatial coordinate and parameterizing it in terms of “bare” propagators G = ZGR

and self-energies Π = Z−1ΠR (where Z = 1 + δZ0). Furthermore, the parameterization of the initial
4-point correlation described in eqs. (8.10, 8.11) is used. Before presenting the resulting expressions
for the self-energies corresponding to the full nonperturbative renormalization procedure, those for
the approximate perturbative renormalization prescription are given for comparison.

Approximate perturbative renormalization

So far, when solving Kadanoff-Baym equations, an approximate perturbative renormalization pre-
scription has been used by default [17]. Here, only the mass is renormalized at one-loop order of
standard perturbation theory, while the coupling remains unchanged. The bare mass is then given by

m2
B = m2

R−
λ

2

∫ d3p
(2π)3

1

2
√

m2
R +p2


reg

,

where the momentum integral is calculated employing a regulator (which is provided by the lattice
discretization in the case of numerical calculations). As the coupling constant is unchanged the effec-
tive mass and the nonlocal self-energies are given by

M2(x0) = m2
B +

λ

2

∫ d3p
(2π)3 GF(x0,x0,p) ,

ΠF(x0,y0,k) = −λ 2

6

(
[GF ∗GF ∗GF ](x0,y0,k)− 3

4
[Gρ ∗Gρ ∗GF ](x0,y0,k)

)
,

Πρ(x0,y0,k) = −λ 2

6

(
3[GF ∗GF ∗Gρ ](x0,y0,k)− 1

4
[Gρ ∗Gρ ∗Gρ ](x0,y0,k)

)
.

The non-local parts contain the double convolutions

[GF ∗GF ∗GF ](x0,y0,k) =
∫ d3p

(2π)3
d3q

(2π)3 GF(x0,y0,p)GF(x0,y0,q)GF(x0,y0,k−p−q) ,

with similar expressions involving Gρ . The approximate perturbative renormalization prescription is
designed for a Gaussian initial state, for which

Πλα,F(x0,k) = Πλα,ρ(x0,k) = 0 .

It is important to note that this perturbative renormalization prescription suffers from several short-
comings. First, it neglects the renormalization of the coupling. Second, it does not take into account
contributions from higher loop orders. And third, it ignores the nonperturbative nature of the under-
lying 2PI formalism.
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Full nonperturbative renormalization

The Kadanoff-Baym equations for the renormalized Schwinger-Keldysh propagator, which have been
proposed in eq. (8.9), contain mass and coupling counterterms determined according to the full non-
perturbative renormalization procedure of the 2PI effective action, as well as an initial 4-point corre-
lation function.

Nonperturbative counterterms: The Kadanoff-Baym equations (8.9) contain the full 2PI coun-
terterms. Their determination requires the solution of a self-consistent Schwinger-Dyson equation
for the full thermal propagator together with a Bethe-Salpeter equation for the appropriate 4-point
kernel (see section 6.2). Evaluated for the 3-loop truncation of the 2PI effective action both equations
read:

G−1(k) = k2 +m2
B +

λB

2

∫
q

G(q)− λ 2
R

6Z4

∫
pq

G(p)G(q)G(k− p−q) ,

V (k) = λB−
λB

2

∫
q

G2(q)V (q) (8.14)

− λ 2
R

Z4

∫
q

G(q)G(k−q)+
λ 2

R

2Z4

∫
pq

G(p)G(k−q− p)G2(q)V (q) ,

where G(k) ≡ ZGth,R(k), V (k) ≡ ZVR(k,q = 0), Z = 1 + δZ0, m2
B = (m2

R + δm2
0)/Z and λB = (λR +

δλ0)/Z2. For given bare mass m2
B and bare coupling λB the renormalized mass m2

R, the renormalized
coupling λR, and the field renormalization Z are determined by the renormalization conditions

Z
d

dk2 G−1
vac(k = 0) = +1 ,

Z G−1
vac(k = 0) = m2

R , (8.15)

Z2Vvac(k = 0) = λR ,

where Gvac (k) and Vvac (k) denote the solutions of eqs. (8.14) obtained at zero temperature. Desired
values for the renormalized mass and coupling can be achieved by an appropriate choice of the bare
mass and coupling (see section 8.3.2).

Initial 4-point correlation: It is convenient to expand the initial 4-point correlation in terms of the
symmetric and antisymmetric Dirac distributions δs/a(t) defined below eq. (8.11),

α4(x,y,z,w) = ∑
i jkl∈{s,a}

α
i jkl
4 (x,y,z,w)δi(x0)δ j(y0)δk(z0)δl(w0) ,

which is equivalent to the expansion (8.4). The possible combinations of the upper indices together
with the Hermiticity condition (7.5) imply that it is parameterized by 16 real functions of four spatial
points. However, only five of them are independent, namely αssss

4 , αaaaa
4 , αssaa

4 , αsssa
4 and αsaaa

4 ,
while the other components are obtained by permutation of the four arguments. If, in addition, the
contribution of the 4-point correlation to the density matrix (8.3) is real (which turns out to be true for
all cases considered below) the latter two vanish, such that only three independent functions remain.

Self-energy: The nonperturbatively renormalized effective mass and non-local self-energies are
given by

M2 (x0) = m2
B +

λB

2

∫ d3p
(2π)3 GF(x0,x0,p) , (8.16)
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ΠF(x0,y0,k) = − λ 2
R

6Z4

(
[GF ∗GF ∗GF ](x0,y0,k)− 3

4
[Gρ ∗Gρ ∗GF ](x0,y0,k)

)
,

Πρ(x0,y0,k) = − λ 2
R

6Z4

(
3[GF ∗GF ∗Gρ ](x0,y0,k)− 1

4
[Gρ ∗Gρ ∗Gρ ](x0,y0,k)

)
.

In addition, a real initial 4-point correlation can be incorporated in the non-Gaussian self-energies
given by

Πλα,F(x0,k) = − λR

6Z2

(
[GF ·GF ·GF · iαssss

4 ] (x0,0,k)− 3
4
[
Gρ ·Gρ ·GF · iαaass

4
]
(x0,0,k)

)
,

Πλα,ρ(x0,k) = − λR

6Z2

(
3
[
GF ·GF ·Gρ · iαssaa

4
]
(x0,0,k)− 1

4
[
Gρ ·Gρ ·Gρ · iαaaaa

4
]
(x0,0,k)

)
.

Here, the spatial Fourier transform of the initial 4-point correlation enters according to

[GF ·GF ·GF · iαssss
4 ] (x0,0,k) =

=
∫ d3p

(2π)3
d3q

(2π)3 GF(x0,0,p)GF(x0,0,q)GF(x0,0,k−p−q) iαssss
4 (p,q,k−p−q,−k) ,

with similar expressions involving Gρ .

8.3.2 Numerical Computation of Nonperturbative Counterterms

In order to be able to solve Kadanoff-Baym equations containing 2PI counterterms, it is necessary
to compute the latter according to the nonperturbative renormalization procedure of the 2PI effective
action [28,29]. This has to be done numerically, for two reasons: First, it is required to compute these
counterterms with the identical regulator as for the Kadanoff-Baym equations, which is provided
by the lattice discretization. Second, the Schwinger-Dyson and Bethe-Salpeter equations cannot be
solved analytically. Accordingly, these equations are solved numerically on a lattice with the same
size N3

s and lattice spacing as for the spatial coordinates as is used for the solution of the Kadanoff-
Baym equations (typical values are Ns = 32 and asmR = 0.5), in order to obtain the 2PI counterterms
for the same regulator.
The discretization of the temporal direction determines the temperature according to T = 1/(Ntat).
The temporal lattice spacing at is chosen small enough such that the continuum limit is approached2.
If appropriate, at may be chosen to coincide with the time-step used for the solution of the Kadanoff-
Baym equations. The lattice cutoff is then determined by the spatial spacing, Λ∼ π/as.
The 2PI counterterms are determined by solving eqs. (8.14, 8.15) at a reference temperature T0 �
mR which is sufficiently close to the zero-temperature (infinite volume) limit by choosing Nt �
10/(mRat). Using the counterterms determined at the reference temperature, the thermal propaga-
tor at some temperature T 6= T0 is determined by solving eqs. (8.14) on a lattice where Nt = 1/(Tat)
while at , as and Ns remain fixed.
In the course of this work, the numerical computation of 2PI counterterms has been achieved follow-
ing the lines of Ref. [29]. Starting from some initial values of the bare parameters, the Schwinger-
Dyson and Bethe-Salpeter equations are solved iteratively (see figure 8.2) simultaneously for all mo-
mentum modes, and the renormalized quantities are then extracted from the renormalization condi-
tions. Then, the values of the bare parameters are adjusted, and the upper iteration is repeated, until

2 The discretization required to solve Kadanoff-Baym equations apparently breaks Lorentz invariance, as does the
nonequilibrium ensemble itself. This singles out a preferred frame where the expectation value of the total momentum of
the ensemble vanishes (center of mass frame). The field renormalization can be obtained by evaluating the 4-momentum
derivative in eq. (8.15) via spatial (Zs) or temporal (Zt ) lattice points. It has been checked that both possibilities lead to
negligible differences in the results.
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Figure 8.2: Left: Renormalized mass extracted from the iterative solution of the Schwinger-Dyson
equation for the propagator G(k) according to the renormalization condition (8.15). Right: Iterative
solution of the Bethe-Salpeter equation for the kernel V (k).

the result yields the desired values of the renormalized mass and coupling. The renormalized vacuum
mass mR is used to set the scale for all simulations. The dependence of the 2PI counterterms on the
coupling λR is shown in figure 8.3.
For the subsequent calculation of the thermal propagator at some temperature T � T0, it is only
necessary to perform the iteration once since the bare parameters are fixed to those determined at
the reference temperature. The thermal mass can then be extracted via the zero-mode of the thermal
propagator,

m2
th = Z G−1

th (k = 0) . (8.17)

8.3.3 Gaussian versus Non-Gaussian Initial State

In order to verify the full nonperturbative renormalization procedure of Kadanoff-Baym equations, it
is instructive to investigate solutions which minimally deviate from thermal equilibrium, for several
reasons. First, it permits a detailed comparison with renormalized equilibrium quantities. The latter
can independently be computed within thermal quantum field theory, for which the renormalization
of the 2PI effective action is known. Second, it provides the possibility to show the importance of
the non-Gaussian 4-point correlation of the initial state for renormalization. Furthermore, the ther-
mal limit is valuable in order to investigate the dependence on the cutoff provided by the (lattice)
regulator, the elimination of which is the ultimate goal of renormalization. Finally, a reasonable de-
scription of the thermal limit within Kadanoff-Baym equations is the basis for a controlled transition
to nonequilibrium.
The reason for the existence of a minimal deviation of solutions of Kadanoff-Baym equations from
thermal equilibrium is the following. Describing thermal equilibrium requires to incorporate thermal
initial n-point correlation functions for all n∈N into Kadanoff-Baym equations, as has been shown in
chapter 7. Therefore, for Kadanoff-Baym equations incorporating initial n-point correlations for finite
n, the thermal propagator is no “fixed-point” solution3. Since numerical investigations are confined to
finite n (actually, already the inclusion of n = 4 requires a sophisticated algorithm), it is a non-trivial
question how large the unavoidable deviations from thermal equilibrium are for a given truncation of
the thermal initial correlations.

3 In contrast to this, standard (classical) Boltzmann equations do possess a “fixed-point” solution for thermal one-particle
distribution functions.
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In the case of Kadanoff-Baym equations for Gaussian initial states, only the initial 2-point correlation
is retained. Since the 4-point function carries logarithmic divergences, this means that Gaussian initial
states feature an unavoidable, cutoff-dependent offset from thermal equilibrium.
In contrast to this, Kadanoff-Baym equations incorporating a thermal initial 2- and 4-point correlation
coincide with those for thermal equilibrium in the limit x0,y0→ 0 (see section 7.2). In particular, this
means that the initial values of thermal masses or energy densities coincide with those in thermal
equilibrium, which are renormalized by the 2PI counterterms.
The thermal n-point correlations for n≥ 6 are suppressed due to two reasons: First, since the effective
non-local n-point vertices describing the initial n-point correlations are supported only at the initial
time, they would enter the Kadanoff-Baym equations accompanied by n propagators GR(t,0,k) eval-
uated at t = x0,y0, which are damped exponentially for t � m−1

R (see figure 8.1). Thus, the memory
to n-point correlations of the initial state is lost the more rapidly the higher n. Second, for Φ4-theory,
the contribution of initial correlations higher than 4 is also suppressed when approaching the initial
time, as has been shown in section 7.2.3.
In the following, a detailed comparison between the Kadanoff-Baym equations with and without
thermal initial 4-point correlation is presented. In both cases, the full nonperturbative renormaliza-
tion procedure is employed. For the first set of solutions, however, a Gaussian initial state is used.
For the second set of solutions, the non-Gaussian thermal initial 4-point correlation is added. The
2PI counterterms and the initial conditions for the thermal 2-point correlation are identical for both
sets. The solutions with initial 4-point correlation are used to show the relevance of non-Gaussian
correlations for renormalization. Finally, the cutoff dependence is investigated.

Renormalized thermal initial 2- and 4-point correlation

2-point correlation: The thermal initial 2-point correlation is encoded in the initial conditions for
the statistical propagator. For the thermal case, they are given by

GF(x0,y0,k)
∣∣
x0=y0=0 = Gth(k) ,

∂x0GF(x0,y0,k)
∣∣
x0=y0=0 = 0 , (8.18)
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∂x0∂y0GF(x0,y0,k)
∣∣
x0=y0=0 = ωth(k)Gth(k) ,

where

Gth(k) = Gth(−iτ,0,k)|
τ=0 = T ∑

n
Gth(ωn,k) ,

ωth(k)2 =
(

∂ 2
τ Gth(−iτ,0,k)
Gth(−iτ,0,k)

)∣∣∣∣
τ→0

=
T ∑n

(
1−ω2

n Gth(ωn,k)
)

Gth(k)
, (8.19)

and Gth(ωn,k) is a solution of the thermal self-consistent Schwinger-Dyson equation (8.14) at tem-
perature T = 1/β .

4-point correlation: The full thermal initial 4-point correlation appearing in the in setting-sun ap-
proximation is derived in chapter 7. It is given by (see eqs. 7.74, 7.67)

iα i jkl
4, th(k1,k2,k3,k4) = −λR

Z2

β∫
0

dτ ∆
i(−iτ,k1)∆ j(−iτ,k2)∆k(−iτ,k3)∆l(−iτ,k4),

where i jkl ∈ {s,a}, and

∆
s(−iτ,k) = ∆

s(−i(β − τ),k) =
Gth(−iτ,0,k)

Gth(k)
=

T ∑n eiωnτGth(ωn,k)
Gth(k)

,

∆
a(−iτ,k) = −∆

a(−i(β − τ),k) = 2∂τGth(−iτ,0,k) = T ∑
n

eiωnτ 2iωnGth(ωn,k) .

Using the (anti-)symmetry relations which follow from the periodicity of the thermal propagator,
one can rewrite the upper integral according to

∫ β

0 → 2
∫ β/2

0 . Furthermore, the anti-symmetry of
∆a(−iτ,k) implies that the correlations αsssa

4, th and αsaaa
4, th indeed vanish.

Comparison of solutions with and without thermal initial 4-point correlation function

The comparison is based on two sets of numerical solutions [146] of Kadanoff-Baym equations,
one with and one without thermal initial 4-point correlation, on a lattice with 323× 20002 lattice
sites and lattice spacings of asmR = 0.5 and atmR ∈ {0.01,0.025} (the latter was used for solutions
covering a total time range t ·mR > 103 in order to reduce computational costs). For both sets, the
2PI counterterms and the thermal propagator, which is required for the computation of the thermal
initial correlations, were obtained by independently solving the Schwinger-Dyson and Bethe-Salpeter
equations (8.14) on a lattice of the same spatial size and with identical spatial lattice spacing. For the
temporal lattice spacing, atmR = 0.01 was used throughout in order to minimize numerical errors. For
the computation of the 2PI counterterms, a number Nt = 1024 of sites along the time direction was
used, while Nt = 1/(Tat) for the thermal propagator at temperature T .

Energy conservation: One of the most attractive properties of approximations derived from nPI
effective actions is their compatibility with conserved charges of the underlying theory [24]. In the
case of real scalar Φ4-theory in Minkowski space-time, this means that total energy and momentum
are conserved by solutions of Kadanoff-Baym equations. Extending the derivation in Ref. [147] of
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the energy-momentum tensor from the 2PI effective action defined on the closed real-time contour to
non-Gaussian initial states yields for the total renormalized energy density

Etotal(t) =
∫ d3k

(2π)3

[
1
2

(
∂x0∂y0 +k2 +m2

B +
λB

4

∫ d3q
(2π)3 GF(t, t,q)

)
GF(x0,y0,k)|x0=y0=t

− 1
4

∫ t

0
dz0 (

ΠF(t,z0,k)Gρ(z0, t,k)−Πρ(t,z0,k)GF(z0, t,k)
)

− 1
4

(
Πλα,F(t,k)GF(0, t,k)+

1
4

Πλα,ρ(t,k)Gρ(0, t,k)
)]

+ const. (8.20)

It has been checked that the total energy density is conserved by the numerical solutions used below to
an accuracy of < 10−3 for Gaussian initial conditions and < 10−4 for non-Gaussian initial conditions.
Furthermore, similar to the Kadanoff-Baym equations, it is possible to show that the total energy
density is formally finite in the limit t→ 0 and for thermal 2- and 4-point initial correlation functions
(up to a time- and temperature-independent constant), provided the self-energies are chosen according
to the full nonperturbative renormalization procedure.

Minimal offset from thermal equilibrium: In thermal equilibrium, the propagator Gth(x0,y0,k)
depends only on the difference x0− y0 of its two time arguments. Therefore, the thermal equal-
time propagator Gth(t, t,k) = Gth(k) is given by a time-independent constant for all momentum
modes. The Schwinger-Keldysh propagator G(x0,y0,k) obtained from solving Kadanoff-Baym equa-
tions with nonequilibrium initial conditions approaches thermal equilibrium at late times, such that
G(t, t,k) = GF(t, t,k) evolves with time, but converges towards a constant value for t → ∞. How-
ever, even in the case where the initial conditions of the Schwinger-Keldysh propagator are chosen
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to coincide with the thermal propagator, G(t, t,k) does depend on time since all higher thermal cor-
relations have been truncated at the initial time due to the restriction to Gaussian initial conditions.
Thus, this unavoidable time-dependence of the equal-time propagator is a measure of the impact of
the truncation of higher correlations. It reveals the minimal deviation of solutions of Kadanoff-Baym
equations from thermal equilibrium. For the extended Kadanoff-Baym equations, which take into
account an initial 4-point correlation function, both the propagator and the non-Gaussian 4-point cor-
relation function can be chosen to coincide with their respective values in thermal equilibrium at the
initial time. Therefore, one expects that the time-dependence of the equal-time propagator, and there-
fore the minimal deviation from thermal equilibrium, is smaller compared to the case without initial
4-point correlation function.
In figure 8.4, the time-evolution of the equal-time propagator is shown for two solutions which rep-
resent the minimal deviation from thermal equilibrium for Gaussian Kadanoff-Baym equations as
well as non-Gaussian Kadanoff-Baym equations including a thermal initial 4-point correlation func-
tion. For both solutions, the initial values of the propagator are chosen to coincide with the thermal
propagator at temperature T = 2mR. For the Gaussian case, the equal-time propagator immediately
starts to oscillate for times t ·mR & 1 and then drifts towards a stationary value, which is slightly dis-
placed from the initial value. For the non-Gaussian case, the time-dependence is indeed considerably
reduced, and the Schwinger-Keldysh propagator always remains close to the renormalized thermal
propagator. The residual time-dependence can be attributed to the truncation of the higher thermal
n-point correlation functions for n > 4, as well as to numerical errors (the latter can be reduced by
choosing a smaller time-step at). Qualitatively, a similar behaviour is found when varying the initial
temperature and the lattice cutoff Λ ∝ a−1

s .

Offset between initial and final Temperature: Due to the truncation of higher correlations, the
Kadanoff-Baym equations for Gaussian initial states as well as those incorporating an initial 4-point
correlation function cannot describe thermal equilibrium exactly. However, the minimal offset from
thermal equilibrium is considerably reduced when taking a thermal initial 4-point correlation into
account.
Apart from that, a qualitative difference between both types of equations exists, which has the follow-
ing reason. As has been shown in section 7.2.3, the 4-point correlation of the initial state contributes
to the Kadanoff-Baym equations in the limit x0,y0→ 0, whereas the contributions from even higher
thermal correlations are suppressed, since these enter Kadanoff-Baym equations exclusively via mem-
ory integrals within Φ4-theory. The same is true for the total energy density (8.20). Therefore, the
total energy density Einit ≡ Etotal(t = 0) computed at the initial time using thermal initial 2- and 4-
point correlation functions corresponding to a temperature Tinit coincides with the total energy Eeq(T )
of an ensemble in complete thermal equilibrium at the same temperature, i.e. Einit = Eeq(Tinit). For
t → ∞, solutions of Kadanoff-Baym equations asymptotically approach thermal equilibrium. Due to
universality [32], the final temperature Tfinal is uniquely characterized by the value of the total energy
density, i.e. Efinal = Eeq(Tfinal). Furthermore, the initial and final total energy agree, since the total
energy is conserved. Therefore, also the initial and final temperatures have to agree, i.e. Tinit = Tfinal.
In contrast to this, if only a Gaussian thermal 2-point correlation at temperature Tinit is used, the
resulting total energy does not coincide with the corresponding value in thermal equilibrium, i.e.
Einit 6= Eeq(Tinit), due to the missing contribution from the thermal 4-point correlation function. Never-
theless, for t→ ∞ complete thermal equilibrium is approached asymptotically, i.e. Efinal = Eeq(Tfinal)
for some final value of the temperature Tfinal. Since the total energy is also conserved, the initial and
final temperatures can not agree, i.e. one expects that Tinit 6= Tfinal for a Gaussian initial state.
For solutions of Kadanoff-Baym equations which minimally deviate from thermal equilibrium, an
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Figure 8.5: Time evolution of the temperature and chemical potential obtained from a fit of the ef-
fective particle number density n(t,k) to a Bose-Einstein distribution, for Kadanoff-Baym equations
with thermal initial 2-point correlation function (red lines) as well as thermal initial 2- and 4-point
correlation functions (green lines). The shaded areas illustrate qualitatively the deviation of the mo-
mentum dependence of n(t,k) from the Bose-Einstein distribution function. They are obtained from
the asymptotic standard error of the fit (via least-square method) magnified by a factor 10, for better
visibility. Nevertheless, the errors become invisibly small at times t ·mR � 10. The insets show a
function fBE(n) of the effective particle number density n(t,k) plotted over the effective energy den-
sity ω(t,k). The function is chosen such that a Bose-Einstein distribution corresponds to a straight
line, the slope and y-axis intercept of which determine the temperature and the chemical potential
(here, fBE(n) = ln(1/n + 1)−ω/Tre f was used with Tre f = 2.75mR). At the initial time (left inset)
the particle number densities of both solutions agree with a Bose-Einstein distribution with the same
temperature and therefore lie on top of each other. At the largest time (right inset), the slope of the
red line is smaller, which corresponds to an increase in temperature. Inside the insets, the underlying
grey lines show the best-fit Bose-Einstein distribution function.

effective time-dependent temperature T (t) and chemical potential µ(t) may be obtained by fitting the
effective particle number density n(t,k) (see eq. (6.17)) to a Bose-Einstein distribution function for
each time t,

nfit(t,k) =
[

exp
(

ω(t,k)+ µ(t)
T (t)

)
−1
]−1

.

The time evolution of the effective temperature and chemical potential obtained from numerical solu-
tions of Gaussian Kadanoff-Baym equations with thermal initial 2-point correlation function as well
as non-Gaussian Kadanoff-Baym equations with thermal initial 2- and 4-point correlation functions
are shown in figure 8.5. Due to the thermal initial 2-point correlation function, the effective particle
number densities agree with a Bose-Einstein distribution at the initial time, with identical initial tem-
perature for both types of equations. For t→∞, the effective particle number densities also agree with
a Bose-Einstein distribution very well, as expected. However, for the solution without initial 4-point



122 8. Renormalization of Kadanoff-Baym Equations

correlation, the final temperature has increased compared to the initial value. In contrast to this, the
initial and final values of the temperature agree up to 0.5% for the solution with thermal initial 4-point
correlation function.
The offset between the initial and final temperature is a quantitative measure of the unavoidable
offset from thermal equilibrium which occurs for a Gaussian initial state. Equivalently, it may be
parameterized by the energy difference

∆E = Eeq(Tfinal)−Eeq(Tinit) = Efinal−Eeq(Tinit) = Einit−Eeq(Tinit)

=
1
4

∫ d3k
(2π)3 Πλα,F(t,k)GF(0, t,k)

∣∣
t=0 = − λR

24Z2 V nG
4 (x,x,x,x)

∣∣
x0=0

=
λ 2

R

24

∫
kpq

Gth,R(p)Gth,R(q)Gth,R(k− p−q)Gth,R(−k) ,

which is equal to the contribution of the initial thermal 4-point correlation function to the total energy.
This contribution contains a (quadratic and quartic) UV divergence, and therefore the Kadanoff-Baym
equations for a Gaussian initial state feature a divergent offset from thermal equilibrium. Since the 2PI
counterterms renormalize the divergences in thermal equilibrium, they cannot do so for a Gaussian
initial state as well. On the other hand, if a thermal 4-point correlation of the initial state is taken into
account, then ∆E = 0, and no (divergent) offset occurs.
The temperature-offset implies that also all quantities derived from the Schwinger-Keldysh propaga-
tor, like the total number density N(t) ≡

∫
d3k/(2π)3 n(t,k) or the effective thermal mass mth(t) ≡

ω(t,k = 0), feature an offset between their initial values and their late-time asymptotic values for a
Gaussian initial state (see figure 8.6).

Thermalization: For a real scalar quantum field, the chemical potential vanishes in thermal equilib-
rium, due to the absence of global conserved charges apart from energy and momentum. In figure 8.5,
it can be seen that the effective chemical potential µ(t) is indeed very close to zero at the initial time,
which shows that the initial thermal propagator indeed yields a thermal effective number density dis-
tribution. Furthermore, µ(t) also approaches zero in the late-time limit, which means that thermal
equilibrium has effectively been reached for times t ·mR > 2000 for both types of equation. For the
solution with thermal initial 4-point correlation function, the effective particle number density re-
mains very close to a Bose-Einstein distribution also at intermediate times, and the time-variation of
the corresponding effective temperature and chemical potential is significantly smaller compared to
the solution without initial 4-point correlation function. Furthermore, for the latter also the deviation
from the Bose-Einstein distribution is larger at intermediate times, which is illustrated by the shaded
areas in figure 8.5. It is interesting to note that, for a Gaussian initial state, the solution which mini-
mally deviates from thermal equilibrium resembles a typical non-equilibrium solution. The quantum
thermalization process is characterized by a phase of kinetic equilibration, after which the effective
particle number is already close to a Bose-Einstein distribution, however with non-zero chemical
potential (prethermalization [31]). In figure 8.5, this corresponds to the phase when the shaded area
becomes invisibly small. Subsequently, the chemical potential approaches its equilibrium value (zero)
on a much longer time-scale, as can be seen on the right part of figure 8.5. Altogether, it is concluded
that a controlled transition from equilibrium to nonequilibrium cannot be achieved for a Gaussian
initial state.

Matching of Kadanoff-Baym equations with thermal quantum field theory: In order to quan-
titatively compare solutions of Kadanoff-Baym equations, which are formulated on the closed real-
time path, with numerical solutions of the Schwinger-Dyson equation at finite temperature, which are
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mA
th ω(t,k = 0) =

√
∂x0 ∂y0 GF,R(x0,y0,k)

GF,R(x0,y0,k)

∣∣∣
x0=y0=t

ωth(k = 0) =
√

∂ 2
τ Gth,R(−iτ,0,k)
Gth,R(−iτ,0,k)

∣∣∣
τ=0

mB
th

(
lim
s→∞

∫ s
0 ds′Gρ,R(t + s′

2 , t− s′
2 ,k)

)−1/2 (
Gth,R(ωn = k = 0)

)−1/2

Table 8.1: The two rows show two definitions of the effective thermal mass as observed at different
energy scales. Both definitions can be evaluated on the real time path (left column) or the imaginary
time path (right column), and coincide in thermal equilibrium. The expressions in the left column can
also be evaluated in a nonequilibrium situation.

solved on the imaginary time path, it is necessary to identify quantities which can be computed in both
cases. One such quantity is the two-point function evaluated for coincident time arguments, as has
been discussed above (see figure 8.4). The effective thermal mass mth(t) = ω(t,k= 0) obtained from
the zero-mode of the effective energy density for Kadanoff-Baym equations, corresponds within ther-
mal quantum field theory to the zero-mode of the thermal effective energy density ωth(k= 0) defined
in eq. (8.19). However, the thermal mass mth = Gth,R(ωn = k = 0)−1/2 defined in eq. (8.17) consti-
tutes an inequivalent definition for non-zero coupling. The latter corresponds to the infrared-limit of
the two-point correlation function while the former is related to its oscillation frequency, and therefore
their difference is a manifestation of the scale-dependence of physical observables. The thermal mass
according to both definitions can be computed for solutions of Kadanoff-Baym equations as well as
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right corner. In the non-Gaussian case, the time-variation of the thermal mass is very small, such
that it remains close to the thermal mass computed within thermal quantum field theory (blue) at all
times.

for the full thermal propagator parameterized by imaginary times (see table 8.1).
In figure 8.6, the time-evolution of the effective mass according to definition (A) for Kadanoff-Baym
equations is shown. For the solution with thermal initial 2- and 4-point correlation function, the
thermal mass is nearly constant and therefore agrees with the initial equilibrium value very well. The
second definition (B) of the thermal mass provides an independent consistency check. Its computation
for Kadanoff-Baym equations amounts to the limiting value of the integral of the spectral function
over the relative time, which is obtained by extrapolating the value of the integral with definite upper
boundary for the available times. Since the spectral function is damped exponentially with respect to
the relative time, good convergence is achieved provided the maximal relative time is large compared
to the inverse damping rate. As shown in the inset of figure 8.6, the thermal masses computed ac-
cording to definition (B) also agree very well with the equilibrium value for the non-Gaussian case.
Below, definition (A) is used throughout, unless otherwise stated.

Cutoff dependence: Figure 8.7 displays the thermal masses obtained from solutions of Kadanoff-
Baym equations solved on five different lattice configurations corresponding to five values of the UV
cutoff (with constant IR cutoff), as well as three different values of the initial temperature, respec-
tively. Additionally, the renormalized thermal mass computed within thermal quantum field theory
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employing the nonperturbative renormalization of the 2PI effective action is shown, which indeed
becomes independent of the cutoff when a−1

s � T . For lower values of the cutoff, a residual cut-
off dependence occurs, which can be attributed to the Boltzmann-tail of the thermal particle number
distribution. Since the Boltzmann-tail is exponentially suppressed for smaller temperatures, also the
residual cutoff dependence decreases for smaller temperatures, as can bee seen in figure 8.7.
For the solutions of the Gaussian Kadanoff-Baym equations with thermal initial 2-point correlation
function, the errorbars in figure 8.7 represent the maximal, the minimal, and the final value4 of the ef-
fective thermal mass mth(t) in the time interval 0≤ t ·mR ≤ 100, while the initial value is given by the
renormalized thermal mass computed within thermal quantum field theory at the initial temperature.
For the solutions of the non-Gaussian Kadanoff-Baym equations with thermal initial 2- and 4-point
correlation functions, the effective thermal mass always remains very close to the renormalized ther-
mal mass, for all values of the cutoff and of the initial temperature.
For the Gaussian case, an offset between the initial and the final value of the thermal mass occurs.
This offset is equivalent to the temperature-offset discussed above. It is a measure for the influence
of the higher correlations which have been neglected in the Gaussian case. Since the non-Gaussian 4-
point correlation function contains divergences, one expects that the offset increases with the cutoff.
In figure 8.7, the offset corresponds to the difference between the dashed and the dotted lines. It
indeed increases with the cutoff for the considered parameters.

8.3.4 Approximate Perturbative versus Nonperturbative Counterterms

In this section, the impact of the renormalization prescription on nonequilibrium solutions of Ka-
danoff-Baym equations is investigated. Therefore, two distinct prescriptions are used in order to
determine the mass and coupling counterterms appearing in the Kadanoff-Baym equations. First, the
mass is renormalized using the approximate perturbative prescription at one-loop order, while leaving
the coupling unchanged [17]. Second, the full nonperturbative 2PI renormalization procedure [28,29]
is employed to determine the mass and coupling counterterms in vacuum. Then, solutions of the Ka-
danoff-Baym equations for both renormalization procedures are compared. For this comparison, a
Gaussian initial state is used in both cases, in order to guarantee an identical initial state.
It is emphasized that, even for a Gaussian initial state, the approximately renormalized and the non-
perturbatively renormalized Kadanoff-Baym equations are genuinely inequivalent for two reasons.
First, for the approximate perturbative renormalization prescription the coupling constants which ap-
pear in front of the tadpole and setting-sun contributions in the self-energy are identical, whereas the
bare coupling appears in front of the tadpole and the renormalized coupling appears in front of the
setting-sun diagram of the nonperturbatively renormalized Kadanoff-Baym equations. Second, the
ratio of the bare and the renormalized masses are different, and in particular also the ratio of the bare
and the renormalized coupling are specific for the renormalization prescription.
The Kadanoff-Baym equations were solved [146] for both renormalization procedures and two val-
ues of the (renormalized) coupling, respectively, on a lattice with 323×10002 lattice sites and lattice
spacings of asmR = 0.5 and atmR = 0.05. For the approximate perturbative renormalization prescrip-
tion, the corresponding value of the bare mass is given in the left column of table 8.2. The bare
mass and coupling obtained by the full nonperturbative renormalization procedure are given in the
right column of table 8.2. The initial conditions for the propagator are determined in accordance with
Ref. [25, 142], and correspond to an initial effective particle number distribution which is peaked
around the momentum |k|= 3mR. In Figure 8.8 the time evolution of the statistical equal-time prop-
agator for the four parameter sets introduced above and identical initial conditions is shown. For

4It has been checked that the effective thermal mass has indeed reached its final value already for times t ·mR . 100, in
contrast to the effective temperature and chemical potential.
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parameter set A24 the Kadanoff-Baym numerics is very unstable and breaks down already for very
early times. Decreasing the coupling, the numerics can be stabilized, as can be seen for parameter set
A18. The curve for parameter set E24 shows two features: First, the numerics is stable although both,
the bare and the renormalized coupling, are greater or equal to the value used for parameter set A24.
Second, although both couplings are strictly greater than the value chosen for parameter set A18 the
thermalization time is dramatically larger. Thus, the exact nonperturbative renormalization procedure
indeed has a stabilizing virtue for the computational algorithm and also has a significant quantitative
impact on the numerical solutions of Kadanoff-Baym equations. Furthermore, it is important to note
that qualitative features of Kadanoff-Baym equations like late-time universality and prethermalization
are independent of the renormalization procedure.

8.3.5 Renormalized Nonequilibrium Dynamics

Above, it has been shown that extended Kadanoff-Baym equations, which take into account an initial
state featuring a 4-point correlation function, possess solutions which come very close to the renor-
malized thermal state as obtained from the three-loop truncation of the 2PI effective action at finite
temperature. This provides the possibility for a controlled transition to a nonequilibrium situation by
distorting the thermal initial 2- and 4-point correlation functions. However, these distortions cannot
be chosen arbitrarily, if one demands that the nonequilibrium state should also be renormalized by
the identical 2PI counterterms. One of these restrictions is that the nonequilibrium initial correla-

A18: λ = 18 , m2
B =−6.87 m2

R . E18: λR = 18 , λB = 37.18 , m2
B =−14.39 m2

R .

A24: λ = 24 , m2
B =−9.49 m2

R . E24: λR = 24 , λB = 63.43 , m2
B =−25.14 m2

R .

Table 8.2: Counterterms for the two sets of couplings and the approximate perturbative renormaliza-
tion prescription (left column) as well as the exact nonperturbative renormalization procedure (right
column).
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Figure 8.9: Momentum dependence of the equal-time propagator for five different times t ·mR =
0.0,0.5,2.0,10,2000 obtained from Kadanoff-Baym equations with (green lines, right side) and with-
out (red lines, left side) thermal initial 4-point correlation function, respectively. The shaded areas
show the maximum and minimum values of GF(t, t,k)/Gth(k) for all times.

tion functions coincide with the thermal values asymptotically for large spatial momenta, since this
asymptotic behaviour determines the divergences which are to be canceled by the counterterms. Fur-
thermore, one may expect that the distortions of the 2- and the 4-point correlations cannot be chosen
completely independently, but have to be related in such a way that the Kadanoff-Baym equations
remain finite.
Additionally, since the counterterms are given by fixed, time-independent numbers, a necessary con-
dition for the finiteness of Kadanoff-Baym equations at all times is that the divergences are also
time-independent. Since the divergences are related to the asymptotic behaviour of the full propa-
gator at large momenta, this can only be the case if this asymptotic behaviour does not change with
time.
In figures 8.9 and 8.10 the ratio of the equal-time propagator over the thermal propagator is plot-
ted over the absolute spatial momentum for five different times. The largest spatial momentum is
determined by the size of the spatial lattice spacing, providing the UV cutoff.
For the solutions shown in figure 8.9, a thermal initial 2-point correlation function has been used.
Therefore, at the initial time, the ratio of the equal-time propagator and the thermal propagator is
unity. However, for the solution without initial 4-point correlation function, all momentum modes
of the propagator are excited as soon as t ·mR & 1 (see left part of figure 8.9). This indicates that
renormalization with time-independent counterterms is impossible in this case. In contrast to this, the
solution with thermal initial 4-point correlation function always remains close to the renormalized
thermal propagator for all momentum modes (see right part of figure 8.9). It has been checked that
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Figure 8.10: Momentum dependence of the ratio of the equal-time propagator and the thermal prop-
agator for five different times t ·mR = 0.0,0.5,2.0,10,2000 obtained from Kadanoff-Baym equations
with (green lines, right side) and without (red lines, left side) thermal initial 4-point correlation func-
tion as well as identical nonequilibrium initial conditions for the 2-point function, respectively. The
shaded areas show the maximum and minimum values of GF(t, t,k)/Gth(k) for all times.

this behaviour stays the same when the cutoff is varied.
For the solutions shown in figure 8.10, the initial 2-point correlation function has been distorted such
that it corresponds to a nonequilibrium initial condition. At large values of the momentum, it coin-
cides with the thermal propagator, as required for renormalizability. Furthermore, the nonequilibrium
initial condition has been chosen such that the energy density is identical to the case with thermal
initial correlation. For the solution without initial 4-point correlation function, it is found again that
all momentum modes of the propagator are excited as soon as t ·mR & 1, up to the highest momentum
(see left part of figure 8.10). In contrast to this, when employing a thermal initial 4-point correlation
function, the high momentum modes of the propagator are not excited considerably. Instead, the
nonequilibrium correlation relaxes by exciting the low momentum modes of the two-point function
(see right part of figure 8.10). This is precisely the property required for renormalization with time-
independent counterterms. It is an indication that the renormalization of Kadanoff-Baym equations is
indeed possible within the framework presented here.
When going to initial conditions which deviate more strongly from equilibrium, it may be expected
that also the initial 4-point correlation function has to be modified accordingly in order to preserve
the renormalization. However, this is beyond of the scope of the present work.
Altogether, it is concluded that the Kadanoff-Baym equations (8.9) are a good candidate to describe
renormalized nonequilibrium dynamics. Furthermore, they provide the possibility for a controlled
transition from renormalized thermal equilibrium to nonequilibrium quantum dynamics.
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8.4 Summary

In this and the previous chapter, a framework appropriate for the nonperturbative renormalization of
Kadanoff-Baym equations has been developed, and an ansatz for renormalized Kadanoff-Baym equa-
tions has been proposed. For the three-loop truncation of the 2PI effective action, it has been shown
analytically that these Kadanoff-Baym equations are indeed finite for one special class of renormal-
ized initial conditions and close to the initial time. Additionally, it has been demonstrated that their
numerical solutions possess properties which are expected from renormalized Kadanoff-Baym equa-
tions.

The renormalization of Kadanoff-Baym equations is based on the nonperturbative renormalization
procedure of the 2PI effective action, which has been formulated recently at finite temperature [28,
29, 37, 173–175].

In chapter 7 the nonperturbative renormalization procedure of the 2PI effective action at finite tem-
perature has been transferred to the closed real-time path. In order to do so it is necessary to explicitly
specify all thermal correlation functions characterizing the thermal state, which plays the role of the
“initial” state on the closed real-time path. It has been shown that thermal n-point correlation func-
tions have to be taken into account for all n ≥ 0 within the nonperturbative 2PI formalism. Further-
more, an iterative computation prescription for the nonperturbative thermal initial correlations which
are appropriate for a given truncation of the 2PI effective action has been developed, and applied to
the three-loop truncation. Finally, renormalized Kadanoff-Baym equations which describe thermal
equilibrium on the closed real-time path have been derived.

In this chapter, an ansatz for renormalized Kadanoff-Baym equations describing nonequilibrium en-
sembles has been proposed. These contain mass and coupling counterterms determined according
to the nonperturbative renormalization prescription of the 2PI effective action [28, 29], and take into
account a non-Gaussian 4-point correlation function of the initial state [32, 49, 57]. They can be con-
veniently derived from the 4PI effective action. For the three-loop truncation, it has been verified
analytically that these Kadanoff-Baym equations are rendered finite close to the initial time and for
initial conditions which correspond to the minimal deviation from thermal equilibrium. In contrast
to this, Kadanoff-Baym equations for a Gaussian initial state feature a divergent offset from renor-
malized thermal equilibrium, which means that they cannot be renormalized with time-independent
counterterms. This qualitative difference could also be demonstrated by means of numerical solu-
tions. It has been found that the Kadanoff-Baym equations containing nonperturbative 2PI countert-
erms and a non-Gaussian initial 4-point correlation possess particular solutions which remain close
to the renormalized thermal propagator for all times. For Gaussian Kadanoff-Baym equations, it was
found that the offset from thermal equilibrium, which was mentioned above, indeed increases when
the cutoff is increased.
So far approximate perturbative counterterms have been used when solving Kadanoff-Baym equa-
tions [17]. It has been demonstrated that numerical instabilities which occur when the coupling is
increased can be alleviated if nonperturbative 2PI counterterms are used instead.

A necessary requirement for the renormalizability of Kadanoff-Baym equations with time-independent
counterterms is that the divergences are also time-independent. Therefore, it is required that the
asymptotic behaviour of the Schwinger-Keldysh propagator at large momenta is universal, i.e. time-
independent. It was demonstrated that this is indeed the case for nonequilibrium solutions of Kada-
noff-Baym equations containing nonperturbative 2PI counterterms and a non-Gaussian initial 4-point
correlation function. In contrast to this, all momentum modes are excited when Gaussian Kadanoff-
Baym equations are employed.





Chapter 9

Conclusions

In this work, the quantum dynamics of time-evolving scalar fields has been studied in a cosmological
context. In particular, the robustness of quintessence tracker potentials with respect to quantum cor-
rections has been investigated, and nonequilibrium renormalization techniques for Kadanoff-Baym
equations have been developed.
The classical dynamics of the quintessence field is described by its self-interaction potential. Quint-
essence potentials featuring tracking solutions avoid some of the problems connected to the cosmo-
logical constant. Therefore, it is important to investigate quantum corrections for these exceptional
potentials.
Quantum field theory together with classical gravity determines the effective quintessence potential
only up to a constant. Therefore, it was assumed here that the freedom to shift the potential by an
arbitrary constant is used in such a way that the quintessence energy density matches the observed
value for dark energy in the present cosmological epoch. However, even with this assumption there
remain quantum corrections to the dynamics of the quintessence field, which can be addressed by
quantum field theory. These quantum corrections arise from the self-interactions of the scalar field,
couplings to Standard Model particles and couplings to gravity.

Quantum corrections induced from self-interactions have been investigated for two classes of pro-
totype tracker potentials, namely exponential and inverse power law potentials. In particular, the
robustness of the shape of the potential was analyzed within the framework of effective field theory.
Therefore, a suitable Hartree-Fock approximation scheme has been developed, which resums all rel-
evant contributions. Its validity has been verified by applying it to Liouville quantum field theory.
Furthermore, it has been shown that corrections to the Hartree-Fock approximation are suppressed by
powers of the ratio of the Hubble parameter and the Planck scale for typical tracker potentials.
Remarkably, for a classical exponential potential, the Hartree-Fock approximation yields an effective
potential which also features an exponential dependence on the field value. This extends the one-loop
result of Ref. [83]. For the inverse power law potential, the one-loop approximation breaks down near
the singularity of the classical potential [83]. In contrast to this, it could be shown that the Hartree-
Fock effective potential does not have a singularity, but instead approaches a finite maximum value,
and thus is applicable in the whole range of admissible field values. Furthermore, it was shown that
the effective potential leads to a modification of the tracking solution compared to the classical case.
If the ultraviolet embedding scale of the effective theory is close to the Planck scale, the prediction
for the dark energy equation of state differs significantly from the classical value.

Quantum corrections induced from couplings of the quintessence field to Standard Model particles
have been investigated employing the low-energy effective action obtained from integrating out the
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Standard Model degrees of freedom. If the couplings are too large, these quantum corrections would
destroy the desired properties of the tracker potential. An upper bound for the couplings was obtained
under the assumption of minimal quantum vacuum backreaction. These indirect bounds were com-
pared to direct observational bounds. The latter result for example from tests of a time-variation of
the electron-proton mass ratio and of the equivalence principle.

Quantum corrections induced by the gravitational coupling of the quintessence field have been in-
vestigated using the one-loop renormalization group improved effective action in curved space-time.
They have been found to be negligibly small for tracker potentials.

Quintessence fields can also be important in the early universe, in contrast to the cosmological con-
stant. In this work, this has been demonstrated by presenting an explicit model, where baryogenesis
and the present-day acceleration are both driven by a complex quintessence field, which carries lep-
ton number. The introduction of new interactions, which violate baryon or lepton number, is not
necessary. Instead, a lepton asymmetry is stored in the quintessence field. It has been shown that the
observed baryon asymmetry can be explained quantitatively by the semi-classical dynamics resulting
from the considered model.

The nonequilibrium processes that occur in the early universe until now, e.g. baryogenesis, (p)re-
heating, or a rolling quintessence field, are typically described by semi-classical approximations like
Boltzmann equations, or by effective equations of motion for a coherent scalar field expectation value.
In order to assess the validity of these approximations a quantitative comparison with the evolution
equations for the full quantum dynamics is necessary. The latter is provided by Kadanoff-Baym
equations. For this purpose, a proper renormalization of Kadanoff-Baym equations is an indispens-
able precondition.
In this thesis, a framework for the nonperturbative renormalization of Kadanoff-Baym equations has
been developed. In particular, the nonperturbative renormalization procedure of the 2PI effective
action at finite temperature has been transferred to the closed real-time path, which is the starting
point for nonequilibrium quantum field theory.
Furthermore, an ansatz for renormalized Kadanoff-Baym equations has been proposed within λΦ4-
theory. These equations contain mass and coupling counterterms determined according to the nonper-
turbative renormalization procedure of the 2PI effective action in vacuum. Additionally, it has been
shown that renormalization requires the extension of Kadanoff-Baym equations to non-Gaussian ini-
tial states. Such an extension has been derived from the 4PI effective action. It features a non-
Gaussian initial 4-point correlation function. The ansatz for renormalized Kadanoff-Baym equations
could be verified analytically for the three-loop (setting-sun) approximation for a special class of
renormalized initial conditions and close to the initial time.
Finally, it has been demonstrated that the Kadanoff-Baym equations containing nonperturbative 2PI
counterterms and a non-Gaussian initial 4-point correlation function possess solutions with properties
which are expected from renormalized Kadanoff-Baym equations.

Thus, it could be shown that the methods used for describing the nonequilibrium quantum dynamics
of scalar fields are indeed considerably improved by the renormalization techniques developed in this
work. Applying these techniques is essential for a quantitative description of quantum fields far from
thermal equilibrium.
Therefore, the renormalization of Kadanoff-Baym equations is an important step towards realistic
applications within astro-particle and high-energy physics. In particular, renormalized Kadanoff-
Baym equations provide the basis for describing time-evolving scalar fields beyond the limitations
of the derivative expansion of the effective action. The derivative expansion is used for example to
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describe cosmic inflation, and has also been used for the quintessence field above. Within inflationary
models, predictions like the spectral index are directly tested by CMB measurements. Since these
predictions rely on the underlying derivative expansion, it is important to assess its validity.
Furthermore, renormalized Kadanoff-Baym equations can also be applied to study the quantum dy-
namics of other nonequilibrium processes, like for example for preheating, baryogenesis, or heavy
ion collisions. In view of these applications, it is important to note that the renormalization of Kada-
noff-Baym equations presented above can be transferred to quantum field theories including fermions
and gauge fields. In particular, renormalized Kadanoff-Baym equations provide a quantum field the-
oretical generalization of semi-classical Boltzmann equations. The latter are used for example to
describe the formation of a lepton asymmetry within the leptogenesis framework. However, for spe-
cific realizations of leptogenesis, quantum corrections may play an important role. In this context,
the renormalization techniques developed above are required in order to describe leptogenesis within
nonequilibrium quantum field theory.





Appendix A

Conventions

The Minkowski metric sign convention (+1,−1,−1,−1) is used. In General Relativity the sign
convention according to the classification of Misner-Thorne-Wheeler [144] is (−,+,+). In this con-
vention the curvature tensor is

Rα
µνλ = +

(
∂νΓ

α

µλ
−∂λ Γ

α
µν +Γ

η

µλ
Γ

α
ην −Γ

η

µνΓ
α

ηλ

)
,

with the Christoffel symbols

Γ
α
µν =

1
2

gαβ
(
∂µgβν +∂νgµβ −∂β gµν

)
,

and the Ricci tensor is given by
Rµλ = +Rα

µαλ .

The curvature scalar is
R = gµλ Rµλ = Rµ

µ .

Throughout, energy, momentum, frequency, time, length and temperature are all measured in natural
units, for which h̄ = c = k = 1.





Appendix B

Effective Action Techniques

B.1 Low-Energy Effective Action

The contribution to the effective action for a scalar field from quantum fluctuations of degrees of
freedom much heavier than the scalar field is discussed in this section. This is the typical situation for
an extremely light quintessence field φ coupled to Standard Model fields1 ψ j, described by the action

S[φ ,ψ j] =
∫

d4x
(

1
2
(∂φ)2−Vcl(φ)+L(φ ,ψ j)

)
, (B.1)

where L(φ ,ψ j) contains the Standard Model Lagrangian as well as couplings between operatorsOSM
k

composed from the fields ψ j and the scalar field φ ,

L(φ ,ψ j) = LSM(ψ j)+∑
k

fk(φ)OSM
k . (B.2)

As before, the effective action Γ[φ ] is the Legendre transform of the generating functional,

exp
(

iW [J]
)

=
∫
Dϕ

∫ (
∏

j
Dψ j

)
exp
(

iS[ϕ,ψ j]+ i
∫

d4xJ(x)ϕ(x)
)

. (B.3)

In order to obtain the impact of the fluctuations of the fields ψ j on the evolution of the field φ , it is
convenient to perform the path integrals in two steps. In the first step, the path integral over the heavy
fields ψ j yields the semi-classical low-energy effective action Seff [φ ],

exp
(

iSeff [φ ]
)
≡
∫ (

∏
j
Dψ j

)
exp(iS[ϕ,ψ j]) , (B.4)

where the fields ψ j are “integrated out” and the scalar field is treated as a classical background field.
The complete effective action is obtained in the second step from the path integral over ϕ ,

exp
(

iΓ[φ ]
)

= exp
(

iW [J]− i
∫

d4xJ(x)φ(x)
)

=
∫
Dϕ exp

(
iSeff [ϕ]+ i

∫
d4x J(x)(ϕ(x)−φ(x))

)
,

1A coupling of the field φ to particles beyond the Standard Model, like dark matter, can easily be included here.
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which can be recognized as the effective action for an uncoupled scalar field φ described by the
low-energy effective action Seff [φ ]. Thus, Seff [φ ] is the leading contribution to the effective action
from quantum fluctuations of degrees of freedom much heavier than the scalar field. As for the
effective action, the low-energy effective potential Veff (φ) can be defined as the lowest-order con-
tribution to the derivative expansion of Seff [φ ] defined analogously to eq. (3.18). For non-derivative
couplings between φ and ψ j the low-energy effective potential in one-loop approximation is given by
eq. (4.51) [60, 105].
Note that the one-loop low-energy effective action is analogous to the Heisenberg-Euler effective
action [90] which describes the impact of quantum (vacuum) fluctuations of the Standard Model
fermions, predominantly the electron being the lightest charged particle, on a classical electromag-
netic background field.
In the context of a rolling quintessence field, quantum (vacuum) fluctuations of the Standard Model
fields lead to quantum corrections to the equation of motion of the scalar field. In other words,
standard-model couplings of the quintessence field lead to a quantum backreaction on its dynamics
(see [96] for a discussion of the classical backreaction of Standard Model particles and dark matter).
It should be emphasized that the quantum corrections to the equation of motion of the scalar field
φ captured by the low-energy effective action Seff [φ ] have their origin in the quantum fluctuations
of the degrees of freedom ψ j. For a quintessence field φ coupled to standard-model particles, these
“heavy” degrees of freedom are well-known. In fact, for typical quintessence masses of the order of
the Hubble parameter, mφ ∼ H, even masses at the neutrino energy scale ∼meV are “heavy”.

B.2 Effective Action in Curved Background

In this section the calculation of the one-loop effective action in a non-trivial background geometry
given by the metric gµν using Heat Kernel Expansion [35] and zeta-function regularization [91, 110]
is briefly reviewed. Similarly to dimensional regularization, zeta-function regularization exploits the
analyticity properties of Feynman integrals, but is more convenient in curved space-time [110]. The
one-loop higher derivative contributions to the effective action, see eq. (3.18), can be obtained by the
same formalism. A generalization of the classical action (3.1) to curved space-time is considered,
using the covariant integration measure d4x

√
−g,

S[φ ,gµν ] =
∫

d4x
√
−g
(

1
2
(∂φ)2−V (φ ,R)+ ε1C + ε2G+2B(φ ,R)

)
. (B.5)

V (φ ,R) is a generalized potential which depends on φ and the curvature scalar R, and terms pro-
portional to the square of the Weyl tensor C = Rµνρσ Rµνρσ − 2RµνRµν + 1

3 R2, and proportional to
the Gauss-Bonnet invariant G = Rµνρσ Rµνρσ − 4RµνRµν + R2, have been added. Furthermore, an
additional term 2B(φ ,R) is included, where B(φ ,R) is a (so far arbitrary) function of φ and R and 2

is the covariant D’Alembert operator. The form of the action is chosen in anticipation of the result
that it includes all terms needed for the cancellation of divergences [35]. The latter two terms are
total derivatives and thus not relevant for the dynamics, but are also required for the cancellation of
divergences [35] and do appear in the dynamics if their running is considered [92]. Note that the
Einstein-Hilbert term −R/(16πG) as well as a possible cosmological constant have been absorbed
into the generalized potential V (φ ,R). Minimal coupling between R and φ in the classical action is
realized for the choice V (φ ,R) = Vcl(φ)+ f (R). Standard General Relativity is then recovered for
f (R) =−R/(16πG) and ε1 = 0.
The effective action can be calculated analogously to flat space by an expansion in 1PI Feynman
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diagrams with the classical propagator2

G−1
0 (x,y) =

−iδ 2S[φ ,gµν ]
δφ(x)δφ(y)

= i

(
2x +

δ 2V (φ ,R)
δφ 2

∣∣∣∣
φ(x),R(x)

)
δ

4(x− y) , (B.6)

and interaction vertices given by the third and higher derivatives iδ kS[φ ]/δφ(x1) · · ·δφ(xk) (k≥ 3) of
the classical action. In one-loop approximation, the effective action is (see eq. (3.14))

Γ[φ ,gµν ] = S[φ ,gµν ]+
i
2

Tr lnG−1
0 . (B.7)

Rewriting the trace of a logarithm as the logarithm of the determinant, the one-loop contribution to
the effective action for the action (B.5) is

Γ[φ ,gµν ]1L =
i
2

lndet Â, (B.8)

with the operator

Â≡2x +X(x), X(x) =
δ 2V (φ ,R)

δφ 2

∣∣∣∣
φ(x),R(x)

. (B.9)

The generalized zeta-function for Â is ζA(ν) ≡ ∑m λ−ν
m where λm are the eigenvalues of Â. Using

zeta-function regularization (see e.g. [35, 110]) the determinant can be written as

Γ[φ ,gµν ]1L =
i
2 ∑

m
ln

λm

µ2 =
1
2i

(ζ ′A(0)+ζA(0) ln µ
2), (B.10)

where ζ ′A = dζA/dν and an arbitrary renormalization scale µ was introduced in order to obtain dimen-
sionless quantities in the logarithm by shifting the effective action by a field-independent constant.
The zeta-function can also be expressed via the heat kernel K(x,y,s) fulfilling the heat equation

i
∂

∂ s
K(x,y,s) = Â(x)K(x,y,s) ,

with boundary condition K(x,y,0) = δ 4(x− y). The name of the “heat equation” originates from
the Helmholtz equation with a “proper time” “ i·s ” and the Laplace operator Â =4. In terms of a
complete set of normalized eigenfunctions Âφm(x) = λmφm(x), the solution of the heat equation is3

K(x,y,s) = ∑
m

e−λm is
φm(x)φ ∗m(y) ,

such that the zeta-function has the representation

ζA(ν) = ∑
m

i
Γ(ν)

∞∫
0

ds(is)ν−1 e−λm is =
i

Γ(ν)

∞∫
0

ds(is)ν−1
∫

d4xK(x,x,s), (B.11)

where the integral representation Γ(ν) = iλ ν
∫

∞

0 ds(is)ν−1e−λ is of the Γ-function and the normaliza-
tion of the eigenfunctions has been used. The ansatz for the solution K(x,y,s) of the heat equation of
Refs. [121, 153] is

K(x,y,s) =
i∆1/2

V M(x,y)
(4πis)2 Ḡ(x,y,s)exp

(
−σ(x,y)

2is
− is

(
X(y)− R(y)

6

))
, (B.12)

2The Dirac δ -distribution in curved space-time is defined through the requirement that
∫
d4x
√
−g(x)δ 4(x− y) f (x) =

f (y) for test functions f (x) [121].
3 The boundary condition K(x,y,0) = δ 4(x− y) follows directly from the completeness relation of the eigenfunctions.
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where σ(x,y) is the proper arclength along the geodesic from x to y and ∆V M the van Vleck-Morette
determinant [35]

∆VM(x,y) =− 1√
g(x)g(y)

det
[
−∂ 2σ(x,y)

∂xµ∂yν

]
, (B.13)

fulfilling ∆V M(x,x) = −g(x). After inserting this ansatz together with the expansion Ḡ(x,y,s) =
∑

∞
j=0(is)

jḡ j(x,y) of the Heat Kernel into eq. (B.11), the integration over s can be performed using
again the integral representation of the Γ-function,

ζA(ν) =
i

Γ(ν)

∫ d4x
16π2

√
−g

∞

∑
j=0

ḡ j(x,x)
Γ(ν + j−2)

(X−R/6)ν+ j−2

= i
∫ d4x

16π2

√
−g

ḡ0(x,x)
(X−R/6)2−ν

(ν−1)(ν−2)
+ ḡ1(x,x)

(X−R/6)1−ν

ν−1

+ ḡ2(x,x)(X−R/6)−ν +
∞

∑
j=3

ḡ j(x,x)
Γ(ν + j−2)

Γ(ν)(X−R/6)ν+ j−2

)
,

where Γ(α + 1) = αΓ(α) was used to rewrite the first three terms of the Heat Kernel Expansion
explicitly. From the previous relation, it can be inferred that Γ(ν + j−2)/Γ(ν) = (ν + j−3)(ν + j−
4) · · ·ν for j ≥ 3. Therefore, the limit ν → 0 for ζA(ν) and ζ ′A(ν) can be performed, and eq. (B.10)
finally yields for the one-loop contribution to the effective action

Γ[φ ,gµν ]1L =
∫ d4x

32π2

√
−g
[
−ḡ0(x,x)

X̃2

2

(
ln

X̃
µ2 −

3
2

)
+ ḡ1(x,x)X̃

(
ln

X̃
µ2 −1

)
−ḡ2(x,x) ln

X̃
µ2 +

∞

∑
j=3

ḡ j(x,x)
( j−3)!

X̃ j−2

]
,

(B.14)

where X̃ ≡ X −R/6. The coincidence limits y→ x of the coefficients ḡ j(x,y) of the Heat Kernel
Expansion can be calculated recursively. The results for the lowest orders from Ref. [121] are,

ḡ0(x,x) = 1 , (B.15)

ḡ1(x,x) = 0 ,

ḡ2(x,x) =
1

180
(Rµνρσ Rµνρσ−RµνRµν)− 1

30
2R+

1
6
2X

=
1

120
C− 1

360
G− 1

30
2R+

1
6
2X ,

where C and G are the Weyl- and Gauss-Bonnet terms as given above. The coefficients ḡ j(x,x) with
j ≥ 3 contain higher-order curvature scalars built from the curvature- and Ricci tensors and space-
time derivatives of R and X . They correspond to finite contributions to the one-loop effective action
(B.14), whereas the j = 0,1,2-contributions come along with divergences proportional to ḡ0X̃2, ḡ1X̃
and ḡ2. Using eq. (B.15) one can see that it is necessary to introduce counterterms proportional
to X̃2 = (∂ 2V/∂φ 2−R/6)2, 2(X −R/5) = 2(∂ 2V/∂φ 2−R/5), C and G in order to cancel these
divergences, which is already done implicitly in the result (B.14) for the effective action through the
zeta-function regularization [110]. Nevertheless, all operators contained in the counterterms should
be already present in the tree level action [90].
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B.3 Renormalization Group Equations

Callan-Symanzik Equation

Within the renormalization scheme provided e.g. by the zeta-function regularization [110], the renor-
malized one-loop effective action explicitly depends on a renormalization scale µ . In contrast to this,
the exact effective action is by construction independent of the renormalization scale. It can be equiv-
alently written either entirely in terms of bare parameters, which are manifestly scale-independent,
or in terms of scale-dependent renormalized parameters. In the latter case, the vanishing total µ-
derivative of the effective action yields the Callan-Symanzik equation for the effective action,

0 =
d

d ln µ2 Γ[φi] =

(
∂

∂ ln µ2 +∑
N

βN
∂

∂cN
+∑

i

∫
d4xγiφi(x)

δ

δφi(x)

)
Γ[φi] ,

where all parameters of the theory are denoted collectively by cN and all fields by φi(x). For a
scalar field in curved space, {φi(x)} = {φ(x),gµν(x)}. Furthermore, for example for φ 4-theory,
{cN} ⊃ {Λ,m2,λ ,ξ ,G,ε0, . . . ,ε4}. The coefficients βN (β -functions) and γi (anomalous dimensions)
are functions of these parameters. The Callan-Symanzik equation is a partial differential equation
which possesses characteristic solutions given by trajectories in parameter space, cN(µ), and field
space, φi(x; µ), parameterized by the renormalization scale µ , along which the effective action is
constant. These trajectories are determined by definition by the renormalization-group equations

d
d ln µ2 cN(µ) = βN({cN(µ)}), and

d
d ln µ2 φi(x; µ) = γi({cN(µ)})φi(x; µ) .

Renormalization Group Improved Effective Action

If the exact β -functions and anomalous dimensions were known, as well as the exact effective action
for one set of parameters {cN(µ0)} and one field configuration {φi(x; µ0)}, the renormalization group
equations yield the effective action along the complete trajectory for all scales µ . The effective action
at µ = µ0 then yields the initial conditions for the renormalization group equations. In practice, only
approximations to the effective action are known. Using the one-loop β -functions and anomalous
dimensions, as well as the classical (zero-loop) action S[φi] for one set of parameters {cN(µ0)} and
one field configuration {φi(x; µ0)} as initial condition at the scale µ = µ0, the renormalization group
equations yield an improved approximation (“leading logarithm approximation”) ΓLL[φi; µ] to the
effective action for all scales µ . This renormalization-group improved effective action is determined
by the partial differential equation

∂

∂ t
ΓLL[φi; µ] = −

(
∑
N

βN(µ)
∂

∂cN
+∑

i

∫
d4xγi(µ)φi(x; µ)

δ

δφi(x)

)
ΓLL[φi; µ],

ΓLL[φi; µ0] = S[φi] , (B.16)

where t = ln(µ2/µ2
0 ). The solutions of the one-loop renormalization group equations have to be

inserted for βN(µ)≡ βN,1L({cN(µ)}) and γi(µ)≡ γi,1L({cN(µ)}).

One-Loop Renormalization Group Equations

The one-loop β -functions and the one-loop anomalous dimensions are obtained by matching the
partial differential equation (B.16) at µ = µ0 with the one-loop effective action (4.71). The one-loop
β -functions will now be derived in this way for the action (4.66) of a scalar field in curved space with
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generalized potential V (φ ,R) and B(φ ,R) from eq. (4.70). On the one hand, the classical action (4.66)
can be inserted into the partial differential eq. (B.16) evaluated at µ = µ0,

∂

∂ t
ΓLL[φ ,gµν ; µ]

∣∣∣∣
µ=µ0

= −

(
∑
N

βN
∂

∂cN
+∑

i

∫
d4xγiφi(x)

δ

δφi(x)

)
S[φi]

= −
∫

d4x
√
−g
[
∑
nm

βnmφ
nRm +βε1C +βε2G+∑

nm
β nm2(φ nRm)

+ γφ φ

(
2φ − ∂V (φ ,R)

∂φ

)
+ γgµν

gµν

(
1
2

gµνL(φ ,gµν)+
δL(φ ,gµν)

δgµν

)]
,

where the β -functions βnm and β nm control the running of the coefficients cnm and cnm, respec-
tively. On the other hand, it can be used that the first derivative with respect to t = ln(µ2/µ2

0 ) of
the renormalization-group improved effective action and of the one-loop effective action coincide at
the reference scale µ = µ0 [60]. For the one-loop effective action (4.71), the following is obtained

∂

∂ t
ΓLL[φ ,gµν ; µ]

∣∣∣∣
µ=µ0

= − ∂

∂ ln µ2
0

Γ1L[φ ,gµν ; µ0]

=
∫ d4x

32π2

√
−g
[
− (X−R/6)2

2
− 1

120
C− 1

360
G− 1

30
2R+

1
6
2X
]

= −
∫ d4x

32π2

√
−g

[
1
2 ∑

nm

(
n

∑
k=0

m

∑
l=0

dkldn−k,m−l

)
φ

nRm− 1
120

C− 1
360

G

+
1
6 ∑

nm

(
(n+2)(n+1)cn+2,m−

1
5

δn0δm1

)
2(φ nRm)

]
,

where the parameterizations (4.70) were inserted for X = ∂V (φ ,R)/∂φ 2 with dnm ≡ (n + 2)(n +
1)cn+2,m− δn0δm1/6, where δnm = 1 if n = m and zero otherwise. The one-loop β -functions are
obtained by comparing the coefficients of both upper expressions,

βnm =
1

64π2

n

∑
k=0

m

∑
l=0

dkldn−k,m−l ,

β nm =
1

192π2

(
(n+2)(n+1)cn+2,m−

1
5

δn0δm1

)
, (B.17)

βε1 = − 1
32π2

1
120

, βε2 = − 1
32π2

1
360

, γφ = 0 , γgµν
= 0 .

It is convenient to define a renormalization-group improved generalized potential VLL(φ ,R; µ) and a
renormalization-group improved function BLL(φ ,R; µ),

VLL(φ ,R; µ) = ∑
nm

cnm(µ)φ nRm , BLL(φ ,R; µ) = ∑
nm

cnm(µ)φ nRm , (B.18)

where the coefficients are solutions of the one-loop renormalization group equations dcnm/dt = βnm

and dcnm/dt = β nm. Using the one-loop β -functions (B.17) gives

∂

∂ t
VLL(φ ,R; µ) =

1
64π2

(
∂ 2VLL(φ ,R; µ)

∂φ 2 − R
6

)2

,

∂

∂ t
BLL(φ ,R; µ) =

1
192π2

(
∂ 2VLL(φ ,R; µ)

∂φ 2 − R
5

)
. (B.19)
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Thus, the solution of the partial differential equation (B.16) for the renormalization-group improved
effective action can be rewritten as

ΓLL[φ ,gµν ; µ] =
∫

d4x
√
−g
(

1
2

gµν
∂µφ∂νφ −VLL(φ ,R; µ)ε1(µ)C + ε2(µ)G+2BLL(φ ,R; µ)

)
.

The initial condition at µ = µ0 in eq. (B.16) yields the initial conditions

VLL(φ ,R; µ0) = V (φ ,R), BLL(φ ,R; µ0) = 0 .

In the second equation, it was used that the initial condition for BLL(φ ,R; µ) can be chosen arbitrarily,
since it appears as a total derivative in the action4.

Sliding Renormalization Scale

The renormalization-group improved effective action ΓLL[φ ,gµν ; µ] yields an approximation to the
effective action which is applicable around the scale µ . It is desirable to have one approximation
ΓCW [φ ,gµν ] available which simultaneously describes the dynamics for a certain range of scales.
For a single scalar field, this is accomplished by exploiting the fact that the choice of the scale µ

in ΓLL[φ ,gµν ; µ] is free. In fact, so far no assumptions have been made which would restrict µ to
a constant (see footnote 4). Evaluating the renormalization-group improved effective action with a
field-dependent scale parameter t = ln(µ2/µ2

0 ) yields [60]

ΓCW [φ ,gµν ] = ΓLL[φ ,gµν ; µ]

∣∣∣∣∣
t=ln

(
∂2V/∂φ2−R/6

µ2
0

)+Γ1L,HD[φ ,gµν ] ,

where the second term denotes the scale-independent part of the one-loop effective action (4.71).
The choice for the field-dependent scale is obtained from requiring that ΓCW [φ ,gµν ]→ S[φ ,gµν ] +
Γ1L[φ ,gµν ; µ0] for t→ 0 [60].

4In fact,
√
−g ·2BLL(φ ,R; µ) is not a total derivative if a field-dependent scale µ = µ(φ(x), . . .) is chosen, and therefore

it contributes to the effective action in this case. However, since the reference scale µ0 is a constant,
√
−g ·2BLL(φ ,R; µ0)

is a total derivative (recall that
√
−g ·2 = ∂ µ

√
−g ·∂µ when applied to a Lorentz scalar).





Appendix C

Resummation Techniques and
Perturbation Theory

C.1 Relation between 2PI and 1PI

The equation of motion for the full connected two-point correlation function G(x,y) derived from the
2PI effective action has the form of a self-consistent Schwinger-Dyson equation [66],

G−1(x,y) = G−1
0 (x,y)−Π[φ ,G](x,y) , where Π[φ ,G](x,y) =

2iδΓ2[φ ,G]
δG(y,x)

. (C.1)

It is an inherently nonperturbative equation, since the self-energy Π[φ ,G] is given by an expression
which also involves the full propagator G(x,y). As explained in section 3.2, approximations within
the 2PI formalism are achieved by truncating the 2PI functional Γ2[φ ,G], which is equal to the sum of
all 2PI diagrams with lines representing the full propagator and without external lines. The full prop-
agator is the solution of the self-consistent Schwinger-Dyson equation (C.1), where the expression
for the self-energy is obtained from the functional derivative of the truncated 2PI functional Γ2[φ ,G].
Equivalently, the full propagator G(x,y) can also be expressed in terms of perturbative Feynman
diagrams involving the classical propagator G0(x,y). In section 3.2 it has been mentioned that, even
if only a very limited number of 2PI diagrams is retained in the truncated 2PI functional Γ2[φ ,G],
the resulting full propagator corresponds to an infinite set of perturbative Feynman diagrams. In this
section, the construction of this infinite set is reviewed following Refs. [37, 147]. By convolving
eq. (C.1) with the classical propagator from the left and with the full propagator from the right, the
integrated form of the Schwinger-Dyson equation is obtained,

G(x,y) = G0(x,y)+
∫

d4u
∫

d4v G0(x,u)Π[φ ,G](u,v)G(v,y) . (C.2)

This equation permits an iterative solution, starting from the classical propagator,

G(0)(x,y) = G0(x,y) ,

G(k+1)(x,y) = G0(x,y)+
∫

d4u
∫

d4v G0(x,u)Π(k)(u,v)G(k+1)(v,y)

= G0(x,y)+
∫

d4u
∫

d4v G0(x,u)Π(k)(u,v)G0(x,u)(v,y)+

+
∫

d4u
∫

d4v
∫

d4z
∫

d4w G0(x,u)Π(k)(u,v)G0(v,z)Π(k)(z,w)G0(w,y)+ . . . .
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The self-energy appearing in the kth step is obtained by inserting the propagator G(k)(x,y) into the
expression Π[φ ,G] for the self-energy derived from the (truncated) 2PI functional,

Π
(k)(u,v) = Π[φ ,G(k)](u,v) .

The propagator G(k)(x,y) is itself given by the Schwinger-Dyson series involving the self-energy
Π(k−1)(u,v). Employing a compact notation by suppressing the space-time integrations yields

Π
(0) = Π[φ , G0] ,

Π
(k) = Π[φ ,G(k)] = Π[φ , G0

∞

∑
n=0

(Π(k−1)G0)n] .

Thus, Π(k) is obtained from attaching self-energy insertions given by Π(k−1) to the internal lines of the
“skeleton” diagrams contained in Π[φ ,G]. Therefore, for k→ ∞, this leads to an infinite hierarchy of
Feynman diagrams each of which is composed from nested skeleton diagrams, with lines representing
the classical propagator G0. Since

Π[φ , Ḡ[φ ]] = lim
k→∞

Π
(k) ,

where Ḡ[φ ] is the solution of the self-consistent Schwinger-Dyson equation (C.1), the full propagator
obtained from the 2PI effective action indeed corresponds to an infinite summation of perturbative
diagrams.
If the self-energy Π[φ ,G] is derived from the exact 2PI functional Γ2[φ ,G], the self-energy Π[φ , Ḡ[φ ]]
equals the sum of all perturbative 1PI self-energy diagrams. Furthermore, these are obtained from the
iterative procedure described above with the correct symmetry factors [37]. If the self-energy Π[φ ,G]
is derived from a truncation of the 2PI functional Γ2[φ ,G], then Π[φ , Ḡ[φ ]] corresponds to an infinite
subset of all perturbative 1PI self-energy diagrams. This subset is characterized by restrictions on
the topology of the perturbative diagrams, since only a restricted set of skeletons is used for their
construction. Even if only a single 2PI diagram is retained in the 2PI functional, the corresponding
infinite subset contains perturbative diagrams of arbitrarily high loop order.
An approximation of the effective action can be obtained by inserting the full propagator Ḡ[φ ] into
the truncated 2PI effective action (see section 3.2).

C.2 Resummed Perturbation Theory

Effective action from the 2PI Hartree-Fock approximation

For the extended Hartree-Fock approximation of the 2PI effective action derived in section 4.1.2, the
solution of the self-consistent Schwinger-Dyson equation can be written in the form

G−1
hf (x,y) = i(2x +M2

eff (x;φ))δ d(x− y) , (C.3)

where Ghf ≡ Ḡ[φ ] is the full propagator in Hartree-Fock approximation. The effective mass is deter-
mined by the Hartree-Fock gap equation

M2
eff (x;φ) = exp

[
1
2

G(x,x)
d2

dφ 2

]
V ′′cl(φ(x))

∣∣∣∣∣
G(x,x)=G(x,x ;M2

eff (· ;φ))
, (C.4)

where, for any function M2(x), G
(
x,y ;M2(·)

)
is the solution of the equation(

2x +M2(x)
)

G
(
x,y ;M2(·)

)
=−iδ d(x− y) .
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An approximation of the effective action is obtained by inserting the full propagator in Hartree-Fock
approximation into the 2PI effective action,

Γhf [φ ] = Γ[φ , Ḡ[φ ]] (C.5)

=
∫

ddx
(

1
2
(∂φ)2−Vhf (φ)

)
+

i
2

Tr
[

ln
(
2x +M2

eff (x;φ)
)
− iM2

eff (x;φ)Ḡ[φ ]
]

,

where

Vhf (φ(x))≡ exp
[

1
2

Ḡ(x,x;φ)
d2

dφ 2

]
Vcl(φ(x)) , (C.6)

has been defined. Furthermore, it is convenient to define an auxiliary potential

V (φ(x) ;M2(·))≡ exp
[

1
2

G
(
x,x ;M2(·)

) d2

dφ 2

]
Vcl(φ(x)) , (C.7)

in terms of which the effective mass and Vhf (φ(x)) can be written as

M2
eff (x;φ) =

∂ 2V (φ ;M2(·))
∂φ 2

∣∣∣∣
φ=φ(x),M2(·)=M2

eff (· ;φ)
,

Vhf (φ(x)) = V (φ ;M2(·))
∣∣
φ=φ(x),M2(·)=M2

eff (· ;φ) . (C.8)

Expansion of the exact effective action in terms of 1PI Feynman diagrams without tadpoles

It is possible to expand the exact effective action around the Hartree-Fock approximation (C.5),

Γexact[φ ] = Γhf [φ ]+Γnotad[φ ] , (C.9)

iΓnotad[φ ] = + . . .

=
1
12

∫
ddx
∫

ddy [−iV (3)(φ(x))]Ghf (x,y)3[−iV (3)(φ(y))]+ . . . ,

where iΓnotad[φ ] is equal to the sum of all 1PI Feynman diagrams without tadpoles with lines repre-
senting the field-dependent dressed propagator

G−1
hf (x,y) = i(2x +V (2)(φ(x)))δ d(x− y) ,

determined self-consistently by the solution of the gap equation (C.4), and field-dependent dressed
vertices given by the derivatives of the auxiliary potential,

−iV (k)(φ(x))≡ −i∂ kV (φ ;M2(·))
∂φ k

∣∣∣∣
φ=φ(x),M2(·)=M2

eff (· ;φ)
,

for k≥ 3. The gap equation (C.4) can be rewritten as M2
eff (x;φ) = V (2)(φ(x)), which has already been

used above. A Feynman diagram contains a “tadpole” if it contains at least one line which begins and
ends at the same vertex. The effective action expanded in terms of the dressed propagator and vertices
defined above only contains Feynman diagrams which have no “tadpoles”.
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Derivation

The upper expansion of the effective action can be derived in two steps. In the first step, an ex-
pansion of the exact propagator around the full Hartree-Fock propagator is performed. Subtracting
the equation of motion of the exact propagator from the equation of motion of the full Hartree-Fock
propagator yields

G−1(x,y)−G−1
hf (x,y) =−Π[φ ,G](x,y)+Πhf [φ ,Ghf ](x,y)≡−Πnotad(x,y) ,

where Πhf denotes the expression for the self-energy derived from the Hartree-Fock truncation (4.8)
of the 2PI effective action. An expansion of the self-energy Πnotad defined above in terms of 1PI
diagrams with lines representing the Hartree-Fock propagator and vertices given by the derivatives
of the classical potential can be obtained by an iterative expansion similar to the one discussed in
section C.1,

Π
(0)
notad = Π[φ , Ghf ]−Πhf [φ ,Ghf ] ,

Π
(k)
notad = Π[φ , Ghf

∞

∑
n=0

(Π(k−1)
notad Ghf )n]−Πhf [φ ,Ghf ] . (C.10)

According to Ref. [37], any 1PI Feynman diagram with two external lines (“self-energy diagram”)
can be decomposed into a unique skeleton diagram (obtained from opening one line of a 2PI diagram
without external lines), and a set of self-energy sub-diagrams which are attached to the internal lines of
the skeleton as insertions. The Hartree-Fock self-energy Πhf [φ ,Ghf ] consists of the sum of all tadpole
self-energy diagrams, which are called tadpole-skeletons or tadpole-insertions in the following.
The 0th iteration Π

(0)
notad consists of all possible skeleton diagrams evaluated with the propagator

Ghf except those contained in Πhf [φ ,Ghf ], i.e. except tadpole-skeletons. Furthermore, the skele-
ton diagrams themselves do by definition not contain any insertions, and therefore especially no
tadpole-insertions. Thus, Π

(k)
notad for k = 0 does not contain any tadpole-skeletons or diagrams carry-

ing tadpole-insertions. It can be proven by induction that this is also true for all k ≥ 0, and therefore
for Πnotad itself. The tadpole-skeletons are explicitly subtracted at each step of the iteration (C.10).
Furthermore, the diagrams contained in Π

(k−1)
notad are the insertions of the diagrams contributing to

Π
(k)
notad. Since the former contain no tadpole-skeletons, the latter contain no tadpole-insertions.

The fact that Πnotad does neither contain tadpole-skeletons nor diagrams carrying tadpole-insertions
can also be formulated in the following way: When all tadpoles appearing in any self-energy diagram
contributing to Πnotad are removed, the remaining diagram is still 1PI. All contributions to Πnotad
that do contain tadpoles can be generated from such diagrams by adding tadpoles at the vertices.
Summing over the number of tadpoles attached to each vertex is equivalent to replacing the vertices
according to

− iV (k)(φ(x))→−iexp
(

1
2

Ghf (x,x)
d2

dφ 2

)
V (k)(φ(x)) =−iV (k)(φ(x)) , (C.11)

which can be seen from a Taylor expansion of the exponential. The term of order L corresponds to L
tadpoles. It remains to be shown that the diagrams are generated with the correct symmetry factors.
Let F be a Feynman diagram contributing to Πnotad and let F/γ be the unique diagram obtained by
removing all tadpoles from F with γ = {γ1, . . . ,γl}, l ≥ 2, the unique set of tadpoles contained at
the vertices 1, . . . , l of F . Then F/γ ∈ ΠNoTad and F/γ has the same number of vertices as F since
F does not contain any tadpole-insertions. Due to the exponential in eq. (C.11) the tadpoles γi are
generated with correct symmetry factors N(γi). Furthermore,F/γ ∈ΠNoTad has the correct symmetry
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factor N(F/γ). However, there can be several possibilities how to attach the tadpoles in γ to F/γ

leading to the same diagram F . Let K(F) be the number of these possibilities. Then it is to be shown
that

K(F) · 1
N(F/γ) ∏

l
i=1 N(γi)

F =
1

N(F)
F , (C.12)

where F denotes the diagram F without symmetry factor, and N(·) ≡ |S(·)| denotes the symmetry
factor equal to the order of the symmetry group S(·) of a given diagram. Thus eq. (C.12) is equivalent
to

K(F) =

∣∣∣∣∣S(F/γ)⊗
l

∏
i=1

S(γi)

∣∣∣∣∣ / |S(F)| . (C.13)

Since S(F) is a subgroup of S(F/γ)⊗∏
l
i=1 S(γi) the expression on the right-hand side of eq. (C.13)

is an integer and equal to the order of the set of co-sets S(F/γ)⊗∏
l
i=1 S(γi)/S(F). Each co-set

corresponds to one of the possible attachments counted by K(F) [61].
Altogether, it is found that Πnotad(x,y) is equal to the sum of all 1PI Feynman diagrams with two
external lines, internal lines representing the Hartree-Fock propagator Ghf (x,y), dressed vertices

−iV (k)(φ(x)) obtained from the derivatives of the auxiliary potential, and without any tadpoles.

In the second step, it is shown that Γnotad[φ ] ≡ Γexact[φ ]−Γtad [φ ] can analogously be expressed in
terms of 1PI Feynman diagrams with propagator Ghf (x,y), dressed vertices −iV (k)(φ(x)), without
external lines and without any tadpoles. Therefore, it will first be shown that the Feynman diagrams
contributing to Γnotad[φ ] are neither “multi-bubble” diagrams (see section 4.1.2) nor carry tadpole-
insertions when formulated in terms of the propagator Ghf (x,y) and classical vertices −iV (k)(φ(x)).
Second, the remaining tadpoles are resummed by replacing the classical vertices by the dressed ver-
tices according to the rule (C.11).
Using the parameterization (3.26) of the exact 2PI effective action, and eq. (C.9) for Γtad [φ ], one finds

Γnotad[φ ] =
i
2

Tr ln(1−ΠnotadGhf )+
i
2

TrΠnotadG+ Γ̃2[φ ,Ghf ] , (C.14)

where

Γ̃2[φ ,Ghf ] = Γ2[φ ,G]−Γ2,hf [φ ,Ghf ]−Tr
δΓ2,hf [φ ,Ghf ]

δGhf

(
G−Ghf

)
. (C.15)

Here, Γ2[φ ,G] denotes the exact 2PI functional evaluated with the exact propagator, and Γ2,hf [φ ,Ghf ]
denotes the Hartree-Fock truncation (4.8) of the 2PI functional, which resums the multi-bubble dia-
grams, evaluated with the Hartree-Fock propagator.
An expansion of Γnotad[φ ] in terms of 1PI Feynman diagrams with propagator Ghf (x,y) and classical
vertices −iV (k)(φ(x)) is obtained from eq. (C.14) by Taylor expanding the logarithm in the first term
on the right-hand side in powers of ΠnotadGhf and by inserting the Schwinger-Dyson sum

G = Ghf

∞

∑
n=0

(ΠnotadGhf )n ≡ Ghf +∆G , (C.16)

for the exact propagator. Then multi-bubble diagrams or diagrams carrying tadpole-insertions could
arise in eq. (C.14) from the following terms:

(i) The linear term in the expansion of i
2 Tr ln(1−ΠnotadGhf ) in powers of ΠnotadGhf .

(ii) The linear term in the expansion of i
2 TrΠnotadG in powers of ΠnotadGhf .
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(iii) Diagrams contributing to Πnotad which carry tadpole-insertions.

(iv) Diagrams contributing to Γ̃2[φ ,Ghf ].

The contributions from (i) and (ii) cancel, and (iii) cannot occur as was shown in the first step of
the derivation. In order to investigate (iv), the 2PI functional Γ2[φ ,G] ≡ Γ2,hf [φ ,G]+ Γ2,notad[φ ,G]
is split into a Hartree-Fock part containing (local) multi-bubble diagrams evaluated with the exact
propagator and a non-local part. Inserting eq. (C.16) into the former yields

Γ2,hf [φ ,G] = Γ2,hf [φ ,Ghf ] + Tr
δΓ2,hf [φ ,Ghf ]

δGhf
∆G + O (∆G)2 .

Multi-bubble diagrams arise from the first term on the right-hand side and diagrams carrying tadpole
insertions from the second. However, precisely those are cancelled in the expression for Γ̃2[φ ,Ghf ],
which can be seen from eq. (C.15). Thus Γnotad[φ ] does not contain multi-bubble diagrams or dia-
grams carrying tadpole-insertions when formulated in terms of the propagator Ghf (x,y) and classical
vertices −iV (k)(φ(x)).
Similar to self-energy diagrams, any 1PI Feynman diagram without external lines can be decomposed
into a 2PI skeleton diagram without external lines and a set of self-energy sub-diagrams which are
attached to the internal lines of the skeleton as insertions. However, in contrast to the self-energy di-
agrams, this decomposition is not unique. Therefore, it is important to check that every 1PI Feynman
diagram without tadpole-insertions contributes exactly once to Γnotad[φ ], i.e. that no over-counting
occurs. The argument is analogous to the expansion of the 2PI effective action in terms of perturba-
tive Feynman diagrams [37]. The three contributions on the right-hand side of eq. (C.14) count every
diagram with a multiplicity factor nc, −nl , and ns respectively, where nc is the number of circles, nl
the number of lines in circles and ns the number of skeletons of a given 1PI diagram without external
lines, as defined in Ref. [37]. Due to the relation nc−nl +ns = 1 [37] every diagram is counted once.
Any diagram F contributing to Γnotad[φ ] can be composed from a unique 1PI diagram without any
tadpoles F/γ by attaching tadpoles γ = {γ1, . . . ,γl}, l ≥ 2, at the l vertices of F/γ . Thus, it follows
analogously to the first step of the derivation that F can be generated with correct symmetry factor
from the diagram F/γ formulated with dressed vertices −V (k)(φ), by expanding the exponential in
eq. (C.11). Due to the uniqueness of F/γ for any F ∈ Γnotad[φ ] no over-counting can occur here.
Since also F/γ ∈ Γnotad[φ ], all 1PI diagrams without any tadpoles are included in Γnotad[φ ].
Finally, it is found that iΓnotad[φ ] is equal to the sum of all 1PI Feynman diagrams with internal
lines representing the Hartree-Fock propagator Ghf (x,y), with no external lines, with dressed vertices

−V (k)(φ) derived from the auxiliary potential (C.7), and without any tadpoles.



Appendix D

Quantum Fields in and out of
Equilibrium

D.1 Thermal Quantum Field Theory

Thermal quantum field theory describes quantum fields in thermal equilibrium. In section D.1.1,
two alternative representations of the density matrix element of the thermal density matrix within
perturbation theory are reviewed. Furthermore, in section D.1.2 an equation of motion for the full
thermal propagator is derived from the 2PI effective action formulated on the thermal time path.

D.1.1 Thermal State

A statistical ensemble in a thermal state at temperature T = 1/β is described by the density matrix

ρ =
1
Z

exp(−βH) ,

where the partition function Z is chosen such that Trρ = 1 [124, 135, 136]. The interaction terms
contained in the full Hamiltonian H lead to the presence of higher correlations and make the thermal
state a highly non-Gaussian state. In contrast to any generic nonequilibrium density matrix, the
thermal density matrix has the property to lead to correlation functions which are invariant under time
translations [104,136]. This means that the thermal state indeed describes an ensemble in equilibrium.
The exponential appearing in the thermal density matrix can be interpreted as the full time-evolution
operator exp(−itH) evaluated for the imaginary time t = −iβ . Accordingly, the matrix element of
the thermal density matrix (see eq. (6.7)) can be written as a path integral over field configurations
ϕ(x) with time argument on a time contour I running along the imaginary axis from t = 0 to t =
−iβ [49]. Alternatively, the matrix element can be represented by a Taylor expansion in terms of
thermal correlation functions α th

n (x1, . . . ,xn) as in eqs. (7.1,7.2).

〈ϕ+,0 |ρ|ϕ−,0〉 =



ϕ(−iβ ,x)=ϕ+(x)∫
ϕ(0,x)=ϕ−(x)

Dϕ exp
(

i
∫

I
d4xL(x)

)
C+I ,

exp

(
i

∞

∑
n=0

α
th
12···nϕ1ϕ2 · · ·ϕn

)
C+α ,

(D.1)

where the short-hand notation from eq. (3.34) applies. Thus, for the thermal state, there exist two
possibilities how to calculate thermal correlation functions: Either by extending the closed real-time
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path C in the generating functional (6.7) by the imaginary path I (“C+I ”), or by keeping the closed
real-time contour C in the generating functional (6.7) and inserting the thermal initial correlations
α th

n (x1, . . . ,xn) (“C+ α ”). Within perturbation theory, the latter can be obtained from a perturbative
expansion of the thermal density matrix element. Since extensive use of both formulations is made,
both are reviewed here.

Thermal time contour C+I

By using the path integral representation of the thermal density matrix, a path integral representation
of the generating functional for the thermal state can be obtained by concatenating the time contours
C and I (the derivation is analogous to the steps leading from eq. (6.7) to eq. (6.19)),

Zβ [J] = Tr
(

ρ TC+I

[
exp
(

i
∫

C+I
d4xJ(x)Φ(x)

)])
=
∫
Dϕ exp

(
i
∫

C+I
d4x {L(x)+ J(x)ϕ(x)}

)
.

The part of the time path along the imaginary axis prepares the system in a thermal state at the initial
time tinit = 0 and is characteristic for thermal equilibrium, whereas the part of the time path along
the real axis yields the time-evolution of the system. For calculations in thermal equilibrium, it is
sometimes convenient to use a pure imaginary time formalism by setting tmax = 0 such that only the
path I contributes. However, here the real-time evolution of correlation functions (with a finite initial
time) is of interest, in which case the full thermal time path is required.
The time arguments of the thermal propagator can also be attached to the thermal time path, and,
using the time-ordering operator TC+I , it reads

Gth(x,y) = 〈TC+I Φ(x)Φ(y)〉−〈Φ(x)〉〈Φ(y)〉 = −
δ 2 lnZβ [J]
δJ(x)δJ(y)

∣∣∣∣∣
J=0

. (D.2)

The thermal propagator evaluated with imaginary time arguments fulfills the relation

Gth(−iτ,x,0,y) = Gth(0,x,−i(β − τ),y) for 0≤ τ ≤ β ,

i.e. it is periodic with period β , which can be seen using cyclic invariance of the trace,

Tr
(

e−βH
Φ(−iτ,x)Φ(0,y)

)
= Tr

(
e−βHeτH

Φ(0,x)e−τH
Φ(0,y)

)
= Tr

(
e−τH

Φ(0,y)e−(β−τ)H
Φ(0,x)

)
= Tr

(
e−βH

Φ(−i(β − τ),y)Φ(0,x)
)

.

Due to time-translation invariance, the thermal field expectation value is constant in time. Thermal n-
point correlation functions can be calculated by taking the nth derivative of the generating functional
Zβ [J] with respect to the external source J(x).

Closed real-time contour with thermal initial correlations C+α

Alternatively, one can describe the generating functional for thermal correlation functions without
reference to imaginary times by inserting the representation of the thermal density matrix element in
the second line of eq. (D.1) into the generating functional (6.7). For this approach, it is required to
calculate the thermal correlation functions α th

n (x1, . . . ,xn) explicitly. This requires to match the two
formulations of the thermal density matrix element in eq. (D.1).
For an interacting theory, the thermal density matrix element cannot be calculated exactly. However, it
can be expanded perturbatively [49], starting from the density matrix ρ0 = 1

Z0
exp(−βH0) containing
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the free Hamiltonian H0, which is quadratic in the field, such that the path integral in eq. (D.1) can be
performed,

〈ϕ+,0 |ρ0|ϕ−,0〉=N0 exp
[

iS0[φ0]
]

=N0 exp
[

i
∫

I
d4x
(

1
2
(∂φ0)2− 1

2
m2

φ
2
0

)]
.

Here N0 is a normalization factor which is independent of ϕ±, and φ0(x) is the solution of the free
equation of motion δS0/δφ = (−2−m2)φ0 = 0 on I subject to the boundary conditions

φ0(0,x) = φ0(0−,x) = ϕ−(x) and φ0(−iβ ,x) = φ0(0+,x) = ϕ+(x) .

The solution is uniquely determined, and, in spatial momentum space, given by

φ0(−iτ,k) =
sinh(ωkτ)
sinh(ωkβ )

ϕ+(k)+
sinh(ωk(β − τ))

sinh(ωkβ )
ϕ−(k) , (D.3)

where ω2
k = m2 +k2. The exponent of the free thermal density matrix element is quadratic in φ0.

Therefore, it describes a Gaussian initial state. Using the explicit form of φ0(−iτ,k), it can be written
as in eq. (D.25) with

ξ
2
k =

nBE(ωk)+ 1
2

ωk
, ηk = 0,

σ2
k

4ξ 4
k

= ω
2
k where nBE(ωk) =

1
eβωk −1

. (D.4)

The full thermal initial correlations can be obtained by perturbing the full Hamiltonian H around H0,

〈ϕ+,0 |ρ|ϕ−,0〉= exp
[
iF [φ0]

]
, iF [φ0] = lnN + iS0[φ0]+ iFint [φ0] ,

where N is a normalization factor, iS0[φ0] is the free contribution and iFint [φ0] is the sum of all
connected Feynman diagrams with vertices

iδ 4Sint/δφ
4 =−iλδI(x1− x2)δI(x1− x3)δI(x1− x4) = ,

which are integrated over the imaginary contour I , denoted by the empty circle. The boundary
conditions of the path integral (D.1) are formally taken into account by the field “expectation” value

φ0(−iτ,k) = , (D.5)

along the imaginary contour I , as well as the propagator

D0(−iτ,−iτ ′,k) = (D.6)

=
sinh(ωkτ)sinh(ωk(β − τ ′))Θ(τ ′− τ)+ sinh(ωkτ ′)sinh(ωk(β − τ))Θ(τ− τ ′)

ωk sinh(ωkβ )
,

which is the Greens function for solutions of the free equation of motion that vanish at the boundaries
τ = 0,β , denoted by the dotted line. To first order in λ , iFint [φ0] is given by

iFint [φ0] = + O(λ 2)

=
−iλ
4!

∫
I

d4x
{

3D0(x,x)2 +6φ0(x)2D0(x,x)+φ0(x)4} + O(λ 2) .
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The field-independent diagrams, like the first one above, can be absorbed into the normalization N .
The perturbative expansions of the thermal initial correlations α th

n are obtained by the n-th functional
derivative with respect to the field,

iα th
n (x1, . . . ,xn) =

(
δ iF [φ0]

δϕε1(x1) · · ·δϕεn(xn)

∣∣∣∣
φ0=0

)
δC(x0

1−0ε1) · · ·δC(x0
n−0εn) ,

to which all diagrams with n insertions of φ0 contribute. Here, it can explicitly be seen that the initial
correlations are supported only at the initial time, as required. Formally, the functional derivative
corresponds to replacing the field insertions by (distinguishable) external lines in the diagrammatic
expansion of iFint [φ0] according to

φ0(−iτ,k) 7→ ∆0(−iτ,x0,k) ≡ sinh(ωkτ)
sinh(ωkβ )

δC(x0−0+)+
sinh(ωk(β − τ))

sinh(ωkβ )
δC(x0−0−)

≡ ∆
+
0 (−iτ,k)δC(x0−0+)+∆

−
0 (−iτ,k)δC(x0−0−)

7→ . (D.7)

For example, the thermal four-point initial correlation function obtained from the fourth derivative of
iFint [φ0] is

iα th
4 (x1,x2,x3,x4) = −iλ

∫
I
d4v∆0(v,x1)∆0(v,x2)∆0(v,x3)∆0(v,x4)+O(λ 2)

= + O(λ 2) , (D.8)

where ∆0(v,x) =
∫ d3k
(2π)3 e+ik(v−x) ∆0(v0,x0,k) for v0 ∈ I,z0 ∈ C. Switching again to momentum

space, an explicit expression for the leading contribution to the perturbative thermal initial four-point
correlation function is obtained,

iα th,ε1,ε2,ε3,ε4
4 (k1,k2,k3,k4) =

= −λ

∫
β

0
dτ ∆

ε1
0 (−iτ,k1)∆ε2

0 (−iτ,k2)∆ε3
0 (−iτ,k3)∆ε4

0 (−iτ,k4) + O(λ 2) .

For example, for ε1 = ε2 = ε3 = ε4 = + or −,

iα th,++++
4 (k1,k2,k3,k4) = iα th,−−−−

4 (k1,k2,k3,k4) =

= −λ

∫
β

0
dτ

sinh(ωk1τ)
sinh(ωk1β )

sinh(ωk2τ)
sinh(ωk2β )

sinh(ωk3τ)
sinh(ωk3β )

sinh(ωk4τ)
sinh(ωk4β )

+ O(λ 2)

→ −λ

ωk1 +ωk2 +ωk3 +ωk4

+ O(λ 2) for β → ∞ . (D.9)

The last line represents the zero-temperature limit. The correlations with mixed upper indices vanish
in the zero-temperature limit, as required for a pure initial state. Altogether, a diagrammatic expansion
of the matrix element of the thermal density matrix in terms of perturbative Feynman diagrams has
been developed as suggested in Ref. [49]. This allows to explicitly calculate thermal correlation
functions order by order in the quartic coupling constant. The lowest-order perturbative result (D.8)
may be compared to the nonperturbative 2PI result (7.67).
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D.1.2 Nonperturbative Thermal 2PI Propagator on the Thermal Time Path

In this section an equation of motion for the full thermal propagator is derived from the stationarity
condition of the 2PI effective action formulated on the thermal time path C+I . This self-consistent
equation of motion is the analogon of the Kadanoff-Baym equation on the closed real-time path C.
The classical thermal propagator defined on C+I is (φ(x)≡ φ = const. in equilibrium)

iG−1
0,th(x,y) =

(
−2x−m2− λ

2
φ

2
)

δC+I(x− y) for x0,y0 ∈ C+I . (D.10)

The full thermal propagator is determined by the equation of motion derived from the 2PI effective
action defined on the thermal time contour C+I , which is given by the self-consistent Schwinger-
Dyson equation

G−1
th (x,y) = G−1

0,th(x,y)−Πth(x,y) for x0,y0 ∈ C+I . (D.11)

The thermal propagator can be decomposed into the statistical propagator and the spectral function,

Gth(x,y) = GF(x,y)− i
2

sgnC+I(x0− y0)Gρ(x,y) for x0,y0 ∈ C+I , (D.12)

where sgnC+I(x0− y0) is the signum function defined on the path C+I . It is equal to +1 if x0

corresponds to a “later” time than y0 along the time path, where “later” refers to the time-ordering
operator TC+I . In particular, all times on the imaginary branch I are “later” than all times on the
antichronological branch C−, and these are “later” than all times on the chronological branch C+.
The thermal self-energy can be decomposed similarly as in eqs. (D.42, D.44),

Πth(x,y) = −iΠloc
th (x)δC+I(x− y)+Π

nl
th(x,y) ,

Π
nl
th(x,y) = ΠF(x,y)− i

2
sgnC+I(x0− y0)Πρ(x,y) ,

=
(−iλ )2

2
φ

2Gth(x,y)2 +
(−iλ )2

6
Gth(x,y)3 (D.13)

M2
th = m2 +

λ

2
φ

2 +Π
loc
th (x) = m2 +

λ

2
φ

2 +
λ

2
Gth(x,x) ,

where in the third line, as an example, the 2PI-O(λ 2) approximation is given (see section D.2).
This approximation coincides with the setting-sun approximation for vanishing field expectation
value. The thermal effective mass M2

th is time-independent in equilibrium. Convolving the ther-
mal Schwinger-Dyson equation with G−1

th yields an equation of motion for the thermal propagator on
the thermal time path C+I(

2x +M2
th
)

Gth(x,y) =−iδC+I(x− y)− i
∫

C+I
d4zΠ

nl
th(x,z)Gth(z,y) . (D.14)

Each of the two time arguments of the propagator can either be real or imaginary, which yields four
combinations GCC

th , GCI
th , GIC

th , GII
th . The equation of motion evaluated for two real arguments yields

an equation for GCC
th , etc. The four equations of motion for GCC

th , GCI
th , GIC

th and GII
th are coupled due

to the contour integral on the right hand side. For example, the equation for GCC
th is,

(
2x +M2

th
)

GCC
th (x,y) = −iδC(x− y)− i

∫
C
d4zΠ

CC
th (x,z)GCC

th (z,y)

−i
∫

I
d4zΠ

CI
th (x,z)GIC

th (z,y) . (D.15)
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Similar to the Kadanoff-Baym equations on the closed real-time contour, the upper equation can
be decomposed into an equation for the thermal statistical propagator GCC

F and the thermal spectral
function GCC

ρ ,(
2x +M2

th
)

GCC
F (x,y) =

∫ y0

0
d4zΠ

CC
F (x,z)GCC

ρ (z,y)

−
∫ x0

0
d4zΠ

CC
ρ (x,z)GCC

F (z,y) (D.16)

−
∫

β

0
dτ

∫
d3zΠ

CI
th (x,(−iτ,z))GIC

th ((−iτ,z),y) ,

(
2x +M2

th
)

GCC
ρ (x,y) =

∫ y0

x0

d4zΠ
CC
ρ (x,z)GCC

ρ (z,y) .

For the propagators GIC
th , GCI

th and GII
th one finds analogously(

2x +M2
th
)

GIC
th (x,y) =

∫ y0

0
d4zΠ

IC
th (x,z)GCC

ρ (z,y)

−
∫

β

0
dτ

∫
d3zΠ

II
th (x,(−iτ,z))GIC

th ((−iτ,z),y) ,

(
2x +M2

th
)

GCI
th (x,y) = −

∫ x0

0
d4zΠ

CC
ρ (x,z)GCI

th (z,y) (D.17)

−
∫

β

0
dτ

∫
d3zΠ

CI
th (x,(−iτ,z))GII

th ((−iτ,z),y) ,(
2x +M2

th
)

GII
th (x,y) = − iδI(x− y)

−
∫

β

0
dτ

∫
d3zΠ

II
th (x,(−iτ,z))GII

th ((−iτ,z),y) .

The equation of motion for the purely imaginary-time propagator is independent of the other equa-
tions, which is an reflection of causality. Since thermal correlations are invariant under space and
time translations, it is convenient to switch to momentum space. In addition to the spatial Fourier
transform (D.48), a temporal Fourier transformation can be performed for all times which lie on the
imaginary part I of the thermal time contour,

Gth(x0,y0,k) =
∫

d3xe−ik(x−y) Gth(x0,x,y0,y)

GII
th (k0,k) =

∫
β

0
dτ e−ik0(τ−τ ′) GII

th (−iτ,−iτ ′,k) , (D.18)

GIC
th (k0,y0,k) =

∫
β

0
dτ e−ik0τ GII

th (−iτ,y0,k) ,

and analogously for GCI
th . Since the thermal propagator is periodic on the finite interval I , it is

sufficient to know its Fourier transform for the Matsubara frequencies

k0 = ωn =
2π

T
n = 2πβn, n = 0,±1,±2, . . . .

The inverse Fourier transformation with respect to the imaginary time is thus given by the discrete
Fourier sum

GII
th (−iτ,−iτ ′,k) = T ∑

n
eiωn(τ−τ ′) GII

th (ωn,k) ,

GIC
th (−iτ,y0,k) = T ∑

n
eiωnτ GIC

th (ωn,y0,k) . (D.19)
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By applying the Fourier transformation to the last equation in (D.17), the nonperturbative Schwinger-
Dyson equation for the full thermal Matsubara propagator is obtained(

ω
2
n +k2 +M2

th
)

GII
th (ωn,k) = 1−Π

II
th (ωn,k)GII

th (ωn,k) , (D.20)

where
∫ β

0 dτ(−iδI(−iτ− iτ ′)) = 1 was used.

D.2 Nonequilibrium Quantum Field Theory

Within nonequilibrium quantum field theory, nonperturbative approximations of the full effective ac-
tion based on the 2PI formalism [66] can be used to describe the quantum equilibration process [27].
In contrast to this, perturbative approximations based on the usual (1PI) effective action cannot de-
scribe thermalization even for arbitrarily small couplings λ due to secular behaviour [27]. This means
that the perturbative approximation fails for late times λ t & 1. The derivation of the 2PI effective ac-
tion for ensembles out of equilibrium and the resulting Kadanoff-Baym equations, which describe the
time-evolution of the full connected two-point correlation function, is reviewed below for Gaussian
initial states. For an introduction to nonequilibrium quantum field theory, it is referred to Ref. [27].
As was shown in section 6.1, the information about the initial state enters via the matrix element
of the density matrix describing the statistical ensemble at some initial time tinit ≡ 0, which can
be characterized by an infinite set of initial n-point correlation functions αn(x1, . . . ,xn) according to
eqs. (7.1,7.2). In the following, the form of these initial correlations is discussed for two special
classes of initial states.

D.2.1 Pure Initial States

If the complete statistical ensemble is in a definite state |ψ〉 in Hilbert space (pure initial state), the
density matrix has the form ρ = |ψ〉〈ψ|. In this case, the density matrix element (7.1) is of the form

〈ϕ+,0 |ρ|ϕ−,0〉= 〈ϕ+,0 |ψ〉〈ψ|ϕ−,0〉 ≡ exp
(
iFψ [ϕ+]

)
exp
(
−iF∗ψ [ϕ−]

)
, (D.21)

where exp
(
iFψ [ϕ]

)
≡ 〈ϕ,0|ψ〉. Thus, for a pure initial state the functional defined in eq. (7.1) splits

up into two separate contributions, where the first one depends only on ϕ+(x) = ϕ(0+,x) and the
second one depends only on ϕ−(x) = ϕ(0−,x),

F [ϕ] = Fψ [ϕ+]− iF∗ψ [ϕ−] . (D.22)

The coefficients of the Taylor expansion (7.2) thus cannot contain any mixed terms with respect to
the upper indices for a pure initial state,

αn(x1, . . . ,xn) = α
++ ···+
n (x1, . . . ,xn)δ+(x0

1) · · ·δ+(x0
n)

+α
−−···−
n (x1, . . . ,xn)δ−(x0

1) · · ·δ−(x0
n) . (D.23)

D.2.2 Gaussian Initial States

A Gaussian initial state is characterized by the absence of higher correlations,

αn(x1, . . . ,xn) = 0 for n≥ 3 (Gaussian initial state) . (D.24)

The most general Gaussian initial state can thus be parameterized as

〈ϕ+,0 |ρ|ϕ−,0〉= exp
(

i
{

α0 +
∫

d3xα
ε
0 (x)ϕε(x)+

1
2

∫
d3xd3yϕε1(x)αε1ε2

2 (x,y)ϕε2(y)
})

.
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For an initial state which is invariant under spatial translations, it is convenient to switch to spatial
momentum space and use αε

1 (x) = αε
1 = const and α

ε1ε2
2 (x,y) =

∫ d3k
(2π)3 eik(x−y) α

ε1ε2
2 (k),

〈ϕ+,0 |ρ|ϕ−,0〉= exp
(

i
{

α0 +α
ε
0 ϕε(0)+

1
2

∫ d3k
(2π)3 ϕε1(k)αε1ε2

2 (k)ϕε2(−k)
})

. (D.25)

Due to the Hermiticity of the density matrix, the initial correlations have to fulfill the relations α
+
1 =

−α
−
1
∗, α

++
2 =−α

−−
2
∗, and α

+−
2 =−α

−+
2
∗. Within real scalar theory, the initial correlations α

ε1,...,εn
n

may additionally be chosen to be totally symmetric in the upper indices. For a Gaussian initial state,
this is equivalent to α

+−
2 = α

−+
2 . Thus, αε

1 (x) and α
ε1ε2
2 (x,y) can be described by two and three

real-valued functions, respectively1. One may completely parameterize these independent degrees
of freedom of the Gaussian state by the initial expectation values of the field operator and of its
conjugate [27],

φ(x)|x0=0 = Tr
(

ρ Φ(x)
)∣∣∣∣

x0=0
, φ̇(x)|x0=0 = Tr

(
ρ ∂x0Φ(x)

)∣∣∣∣
x0=0

, (D.26)

together with the initial values of the three real correlation functions

G(x,y)|x0=y0=0 =
{

Tr
(

ρ Φ(x)Φ(y)
)
−φ(x)φ(y)

}∣∣∣∣
x0=y0=0

,

(∂x0 +∂y0)G(x,y)
∣∣
x0=y0=0 =

{
Tr
(

ρ

[
Φ(x)∂y0Φ(y)+∂x0Φ(x)Φ(y)

])
(D.27)

−
(
φ(x)φ̇(y)+ φ̇(x)φ(y)

)}∣∣
x0=y0=0 ,

∂x0∂y0G(x,y)
∣∣
x0=y0=0 =

{
Tr
(
ρ ∂x0Φ(x)∂y0Φ(y)

)
− φ̇(x)φ̇(y)

}∣∣
x0=y0=0 .

The relations between the upper initial conditions for the one- and two-point function and the density
matrix (D.25) are obtained by evaluating the Gaussian integrals [27]. For an initial state which is
invariant under spatial translations, one obtains

φ(x)|x0=0 =
∫
Dϕ ϕ(x)〈ϕ,0 |ρ|ϕ,0〉= ξ

2
k=0 ∑

ε=±
iαε

1 , (D.28)

φ̇(x)|x0=0 =
∫
Dϕ

−i∂
∂ϕ(x)

〈
ϕ,0 |ρ|ϕ ′,0

〉∣∣∣∣
ϕ ′=ϕ

=
1
2i

(
∑

ε=±
ε iαε

1 +2iηk=0 ξk=0 ∑
ε=±

iαε
1

)
.

Setting G(x,y) =
∫ d3k

(2π)3 eik(x−y) G(x0,y0,k), one obtains similarly

G(x0,y0,k)
∣∣
x0=y0=0 = ξ

2
k ,

(∂x0 +∂y0)G(x0,y0,k)
∣∣
x0=y0=0 = 2ηkξk , (D.29)

∂x0∂y0G(x0,y0,k)
∣∣
x0=y0=0 = η

2
k +

σ2
k

4ξ 2
k

,

with

1/ξ
2
k = − ∑

ε j=±
iαε1ε2

2 (k) ,

1The constant α0 is determined by the normalization condition Trρ = 1 of the density matrix.



D.2. Nonequilibrium Quantum Field Theory 159

Figure D.1: Diagrams contributing to iΓ2[φ ,G] at two- and three-loop order with less than three
vertices (2PI-O(λ 2)-approximation).

2iηk/ξk = ∑
ε j=±

ε1iαε1ε2
2 (k) = ∑

ε j=±
ε2iαε1ε2

2 (k) ,

σ
2
k/ξ

2
k = − ∑

ε j=±
ε1ε2iαε1ε2

2 (k) .

(D.30)

From eq. (D.23) it can be seen that the Gaussian density matrix (D.25) describes a pure initial state if
ηk = 0 and σ2

k = 1.

D.2.3 2PI Effective Action for Gaussian Initial States

As has been discussed in section 6.1, the 2PI effective action formulated on the closed real-time path
C can be parameterized in the standard form [66]

Γ[φ ,G] = S[φ ]+
i
2

Tr lnG−1 +
i
2

Tr
(
G−1

0 G
)
+Γ2[φ ,G] , (D.31)

for a nonequilibrium ensemble which is characterized by a Gaussian initial state. While the derivation
of Kadanoff-Baym equations discussed in section 6.1 has been restricted to the setting-sun approxi-
mation, the general derivation is reviewed here. The general form of the Kadanoff-Baym equations
includes also a non-vanishing field expectation value φ(x).
Within λΦ4/4!-theory, the inverse classical propagator is given by

iG−1
0 (x,y)≡ δ 2S[φ ]

δφ(x)δφ(y)
=
(
−2x−m2− λ

2
φ(x)2

)
δC(x− y) . (D.32)

The functional iΓ2[φ ,G] is the sum of all two particle irreducible (2PI) Feynman diagrams with lines
given by the full propagator G(x,y) and without external lines [66]. The vertices of the graphs con-
tained in iΓ2[φ ,G] are given by the third and fourth derivatives of the classical action S[φ ],

=
iδ 4S[φ ]

δφ(x1) . . .δφ(x4)
= −iλδC(x1− x2)δC(x2− x3)δC(x3− x4) ,

=
iδ 3S[φ ]

δφ(x1) . . .δφ(x3)
= −iλφ(x1)δC(x1− x2)δC(x2− x3) . (D.33)

The initial one- and two-point correlation functions parameterizing the Gaussian initial density ma-
trix (D.25) do not appear explicitly in the 2PI effective action, which is a peculiarity of the Gaus-
sian initial state. Instead, the initial state enters via the initial conditions for the one- and two-point
functions φ(x), ∂x0φ(x), G(x,y), (∂x0 + ∂y0)G(x,y) and ∂x0∂y0G(x,y) at x0 = y0 = 0 (see eqs. (D.28)
and (D.29)).
The two- and three-loop contributions to iΓ2[φ ,G] with less than three vertices are (see figure D.1),

iΓ2[φ ,G] =
−iλ

8

∫
C
d4xG(x,x)2 +

(−iλ )2

12

∫
C
d4xd4yφ(x)G(x,y)3

φ(y)

+
(−iλ )2

48

∫
C
d4xd4yG(x,y)4 +O(λ 3) . (D.34)
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Figure D.2: Diagrams contributing to the self-energy Π(x,y) at two- and three-loop order with less
than three vertices (2PI-O(λ 2)-approximation).

The 2PI-O(λ 2)-approximation of iΓ2[φ ,G] coincides with the setting-sun approximation for vanish-
ing field expectation value.

Equation of motion for the full propagator

The equation of motion for the full propagator is obtained from evaluating the functional derivative
δΓ[φ ,G]/δG(x,y) = −K(x,y)/2 of the 2PI effective action (see eq. (3.24)) using the parameteriza-
tion (D.31),

G−1(x,y) = G−1
0 (x,y)−Π(x,y)− iK(x,y) , (D.35)

where, for generality, the bilocal source K(x,y) was included, and the self-energy Π(x,y) was intro-
duced, which is defined as

Π(x,y)≡ 2iδΓ2[φ ,G]
δG(y,x)

. (D.36)

In 2PI-O(λ 2)-approximation, the self energy can be calculated using eq. (D.34),

Π(x,y) =
−iλ

2
G(x,x)δC(x− y)+

(−iλ )2

2
φ(x)G(x,y)2

φ(y)+
(−iλ )2

6
G(x,y)3 +O(λ 3) . (D.37)

Since the diagrams contributing to the self-energy Π(x,y) contain the full propagator G(x,y), the
“gap equation” (D.35) is an intrinsically non-perturbative equation for the two-point function. It
can be compared to the usual perturbative Schwinger-Dyson equation, which has a similar form as
eq. (D.35). However, in the perturbative case, the self-energy is evaluated using the perturbative
propagator G0(x,y). In contrast to the perturbative case, the gap equation (D.35) which determines
the full propagator may be viewed as a self-consistent Schwinger-Dyson equation. It is precisely
this self-consistency of the 2PI formalism, which leads to well-behaved nonequilibrium evolution
equations for the two-point function, in contrast to perturbative approaches which suffer from the
secularity problem [27]. The bilocal source K(x,y) may be split into two parts,

K(x,y) = α2(x,y)+Kext(x,y) , (D.38)

where the first contribution stems from the initial two-point correlations encoded in the source α2(x,y),
and the second contribution is an additional external bilocal source term. In a physical situation the
bilocal external source vanishes, Kext(x,y) = 0, such that K(x,y) is only supported at initial times
x0 = y0 = 0. This source term fixes the initial condition for the propagator at x0 = y0 = 0.

D.2.4 Kadanoff-Baym Equations for Gaussian Initial States

The Kadanoff-Baym equations for the two-point function are obtained by multiplying the equation of
motion (D.35), G−1(x,z) = G−1

0 (x,z)−Π(x,z)− iα2(x,z), with G(z,y) and integrating over z,(
2x +m2 +

λ

2
φ(x)2

)
G(x,y) =−iδC(x− y)− i

∫
C
d4z(Π(x,z)+ iα2(x,z))G(z,y) , (D.39)
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where the inverse classical propagator G−1
0 from eq. (D.32) was inserted. It is useful to decompose the

two-point function into the statistical propagator GF(x,y) and the spectral function Gρ(x,y), which
are defined via the anticommutator and commutator of the field operator, respectively,

GF(x,y) =
1
2
〈 [Φ(x),Φ(y)]+ 〉−〈Φ(x)〉〈Φ(y)〉 ,

Gρ(x,y) = i〈 [Φ(x),Φ(y)]− 〉 , (D.40)

such that the Schwinger-Keldysh propagator can be written in the form

G(x,y) = GF(x,y)− i
2

sgnC(x0− y0)Gρ(x,y) . (D.41)

Furthermore, the self-energy contains local and non-local parts,

Π(x,y) =−iΠloc(x)δC(x− y)+Πnon−loc(x,y) . (D.42)

The local part can be included in an effective, time-dependent mass term

M(x)2 = m2 +
λ

2
φ

2(x)+Πloc(x) = m2 +
λ

2
φ

2(x)+
λ

2
G(x,x) , (D.43)

and the non-local part can be split into statistical and spectral components, similar to the propagator,

Πnon−loc(x,y) = ΠF(x,y)− i
2

sgnC(x0− y0)Πρ(x,y) . (D.44)

In 2PI-O(λ 2)-approximation, the non-local self-energies are given by

ΠF(x,y) =
(−iλ )2

2
φ(x)

(
GF(x,y)2− 1

4
Gρ(x,y)2

)
φ(y)

+
(−iλ )2

6

(
GF(x,y)3− 3

4
GF(x,y)Gρ(x,y)2

)
+O(λ 3) ,

Πρ(x,y) =
(−iλ )2

2
φ(x)

(
2GF(x,y)Gρ(x,y)

)
φ(y) (D.45)

+
(−iλ )2

6

(
3GF(x,y)2Gρ(x,y)− 1

4
Gρ(x,y)3

)
+O(λ 3) .

Using the equal-time commutation relations (3.2) of the quantum field gives

Gρ(x,y)
∣∣
x0=y0 = 0, ∂x0Gρ(x,y)

∣∣
x0=y0 = δ

(3)(x−y). (D.46)

With the help of these relations, it is found that

∂
2
x0G(x,y) = ∂

2
x0GF(x,y)− i

2
sgnC(x0− y0)∂

2
x0Gρ(x,y)

− iδC(x0− y0)∂x0Gρ(x,y)− i∂x0

[
δC(x0− y0)Gρ(x,y)

]
= ∂

2
x0GF(x,y)− i

2
sgnC(x0− y0)∂

2
x0Gρ(x,y)− iδC(x0− y0)δ (3)(x−y) .

Using this relation along with the integration rules on the closed real-time path (see appendix F),
the real and causal Kadanoff-Baym equations are finally obtained from inserting the decomposi-
tions (D.41, D.42, D.44) of the propagator and the self-energy into the equation of motion (D.39),(

2x +M2(x)
)

GF(x,y) =
∫ y0

0
d4zΠF(x,z)Gρ(z,y)−

∫ x0

0
d4zΠρ(x,z)GF(z,y) ,

(
2x +M2(x)

)
Gρ(x,y) =

∫ y0

x0

d4zΠρ(x,z)Gρ(z,y) . (D.47)
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The Kadanoff-Baym equations split into two coupled integro-differential equations for GF(x,y) and
Gρ(x,y). For a system with spatial translation invariance it is convenient to perform a Fourier trans-
formation with respect to the relative spatial coordinate (x−y),

G(x0,y0,k) =
∫

d3xe−ik(x−y) G(x,y) , (D.48)

and similarly for Π(x,y). For isotropic systems the propagator G(x0,y0,k) depends only on the
absolute value |k| of the spatial momentum k. The Kadanoff-Baym equations in the upper form
have been used successfully as a basis to study quantum fields far from equilibrium during the last
decade [2, 25, 32, 123, 142] (see also section 6.1). In section 7.1 a generalization of these equations
for general initial states which may contain non-Gaussian initial correlations is discussed.
Note that the two-point source α2(x,y) has been dropped, since it vanishes for x0 > 0. However,
it fixes the initial conditions for the statistical propagator GF(x,y) at x0 = y0 = 0, see eq. (D.29).
The initial conditions for the spectral function Gρ(x,y) are fixed by eq. (D.46) obtained from the
equal-time commutation relations (3.2),

GF(x0,y0,k)
∣∣
x0=y0=0 = ξ

2
k ,

∂x0GF(x0,y0,k)
∣∣
x0=y0=0 = ηkξk, (D.49)

∂x0∂y0GF(x0,y0,k)
∣∣
x0=y0=0 = η

2
k +

σ2
k

4ξ 2
k

,

Gρ(x0,y0,k)
∣∣
x0=y0=0 = 0,

∂x0Gρ(x0,y0,k)
∣∣
x0=y0=0 = 1 , (D.50)

∂x0∂y0Gρ(x0,y0,k)
∣∣
x0=y0=0 = 0 .

The first derivatives with respect to y0 are related to the first derivatives with respect to x0 in the
second and fifth line due to the symmetry property GF(x,y) = GF(y,x) and the antisymmetry property
Gρ(x,y) = −Gρ(y,x), which follow directly from the definition (D.40). A physical interpretation of
the initial conditions for the statistical propagator GF(x,y) can be obtained by parameterizing it in
terms of the initial effective particle- and energy number densities (6.17),

ξ
2
k =

n(t = 0,k)+ 1
2

ω(t = 0,k)
, ηk = 0,

σ2
k

4ξ 4
k

= ω
2(t = 0,k) . (D.51)

The “memory integrals” on the right hand side of the Kadanoff-Baym equations imply that the time-
evolution of G(x,y) near the point (x0,y0) in the x0-y0-plane depends on the value of the propagator
G(u,v) during the entire history 0 < u0 < x0, 0 < v0 < y0 from the initial time tinit = 0 on. The
“memory integrals” turn out to be crucial for the successful description of the quantum thermalization
process [32].



Appendix E

Nonperturbative Renormalization
Techniques

Truncations of the 2PI effective action yield self-consistent and nonperturbative approximations to
the equations of motion for the two-point correlation function. These equations contain ultraviolet
divergences, which commonly occurs in relativistic quantum field theory. However, due to their
self-consistent structure, the isolation and removal of divergences requires much more sophisticated
techniques for these equations compared to perturbative calculations. The proper renormalization
requires nonperturbative techniques, which have been formulated recently [28, 29, 37, 174, 175] for
systems in thermal equilibrium and at zero temperature. It has been found that approximations based
on systematic (e.g. loop) truncations of the 2PI functional are indeed renormalizable, and that the
vacuum counterterms are sufficient to remove all divergences at finite temperature. The determination
of the vacuum counterterms by solving self-consistent equations for the two- and four-point functions
will be discussed in the following based on Refs. [28, 29].

E.1 Renormalization of the 2PI Effective Action

It is convenient to split the action into a free and an interaction part,

S0[φ ] =
∫

d4x
(

1
2
(∂φ)2− 1

2
m2

Bφ
2
)

, Sint [φ ] =−
∫

d4x
λB

4!
φ(x)4 , (E.1)

such that the 2PI Effective Action can be written as

Γ[φ ,G] = S0[φ ]+
i
2

Tr lnG−1 +
i
2

TrG−1
0 G+Γint [φ ,G] , (E.2)

where iG−1
0 (x,y) = (−2x−m2

B)δ (x− y) is the free perturbative propagator, and

Γint [φ ,G] = Sint [φ ]+
1
2

Tr
∂ 2Sint

∂φ∂φ
G+Γ2[φ ,G] . (E.3)

Here iΓ2[φ ,G] is the sum of all 2PI vacuum diagrams with lines representing the full propagator
G(x,y). The equations of motion for the field expectation value and the full propagator are obtained
from the stationarity conditions (3.25) of the 2PI effective action. For the full propagator G(x,y), the
equation of motion takes the form of a self-consistent Schwinger-Dyson equation1,

G−1(x,y) = G−1
0 (x,y)−Π(x,y) , (E.4)

1 The Schwinger-Dyson equation can equivalently be written in the two forms G−1 = G−1
0 − 2iδΓint/δG = G−1

0 −
2iδΓ2/δG. The latter corresponds to eq. (3.29). Here, the first form is more convenient.
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where the self-energy is given by Π(x,y) = 2i δΓint [φ ,G]
δG(y,x) .

Definition of counterterms

For the purpose of renormalization, the action is rewritten by rescaling the field φ and splitting the
bare mass mB and coupling λB into a renormalized part and a counterterm, respectively,

φR = Z−1/2
φ , Zm2

B = m2
R +δm2, Z2

λB = λR +δλ . (E.5)

The action expressed in terms of renormalized quantities can be written as

SR[φR] = S[φ ] = S0,R[φR]+Sint [φR]λB→λR+δλ +
1
2

∫
xy

φR iδG−1
0 φR , (E.6)

with the renormalized free action

S0,R[φR] =
∫

d4x
(

1
2
(∂φR)2− 1

2
m2

Rφ
2
R

)
, (E.7)

and a contribution containing the counterterms δZ = Z − 1 and δm2 of the form iδG−1
0 (x,y) =

(−δZ2x−δm2)δ (x−y). Similarly, the 2PI effective action can be expressed in terms of the rescaled
field expectation value φR = Z−1/2φ and the rescaled full propagator GR = Z−1G,

ΓR[φR,GR] = Γ[φ ,G] = S0,R[φR]+
i
2

Tr lnG−1
R +

i
2

TrG−1
0,RGR +Γ

R
int [φR,GR] , (E.8)

where iG−1
0,R(x,y) = (−2x−m2

R)δ (x− y) is the renormalized free perturbative propagator, and

Γ
R
int [φR,GR] =

1
2

∫
xy

φR iδG−1
0 φR +

i
2

TrδG−1
0 GR +Γint [φR,GR]λB→λR+δλ . (E.9)

To derive the last relation, Γint [φ ,G] = Γint [φR,GR]λ→λR+δλ was used. For each 2PI vacuum diagram
contributing to Γint [φ ,G] this follows from the relation 4V = 2P+E between the number of vertices
V , the number of propagators P, and the number of field expectation values E.

E.1.1 Divergences and Counterterms in 2PI Kernels

Due to the self-consistent nature of the 2PI formalism the structure of the Schwinger-Dyson equa-
tions determining the complete propagator is inherently nonperturbative, and corresponds to the
resummation of an infinite set of perturbative diagrams [37]. As a consequence, the renormaliza-
tion of approximations based on truncations of the 2PI functional is highly nontrivial. It has been
shown [28, 37, 174, 175] recently that systematic truncations indeed lead to renormalizable approx-
imations. Besides the divergences which can be identified and subtracted via the BPHZ construc-
tion [38, 113, 191], the divergent contributions hidden in the nonperturbative propagator have to be
accounted for in a way compatible with the self-consistent structure of the Schwinger-Dyson equa-
tions (see section 6.2).

E.1.2 Parameterization of the Renormalized 2PI Effective Action

In order to renormalize the 2PI effective action completely, counterterms which cancel all types of
divergences indicated above have to be included. For a given truncation of the 2PI functional, it can
be necessary to keep only some parts of the full counterterms which are appropriate for the considered
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δZ2, δm2
2 δZ0, δm2

0

Figure E.1: Diagrams containing mass and field counterterms.

approximation. Thus, the counterterms which appear in different places may be different parts of the
full counterterms. Here, a parameterization of the renormalized 2PI effective action is used following
Ref. [28],

Γ
R
int [φR,GR] =

1
2

∫
xy

φR iδG−1
0,2φR +

i
2

TrδG−1
0,0GR +Γint [φR,GR]λB→λR+δλi , (E.10)

where the mass- and wavefunction renormalization counterterms are given by (see figure E.1),

iδG−1
0,2(x,y) = (−δZ22x−δm2

2)δ (x− y) ,

iδG−1
0,0(x,y) = (−δZ02x−δm2

0)δ (x− y) . (E.11)

The coupling counterterms δλi are chosen in the following way (see figure E.2),

Γint [φR,GR]λB→λR+δλi = −λR +δλ4

4!

∫
x
φ

4
R(x)− λR +δλ2

4

∫
x
φ

2
R(x)GR(x,x)

− λR +δλ0

8

∫
x
G2

R(x,x)+ γR[φR,GR] , (E.12)

where γR[φR,GR] stands for the contributions from nonlocal diagrams, which just contain the BPHZ
counterterms to the appropriate order.

δλ4 δλ2 δλ0

Figure E.2: Local diagrams containing coupling counterterms.

E.2 Renormalization of 2PI Kernels

The counterterms are determined by imposing renormalization conditions for the two- and four-point
functions. Therefore, the two-point kernels

ΠR(x,y) =
2iδΓR

int

δGR(y,x)
, ΠR(x,y) =

iδ 2ΓR
int

δφR(x)δφR(y)
, (E.13)

are defined, in terms of which the renormalized Schwinger-Dyson equation for the full propagator
GR(x,y) can be expressed as

G−1
R (x,y) = G−1

0,R(x,y)−ΠR(x,y) . (E.14)
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Furthermore, the four-point kernels

Λ(x,y,u,v) =
4δ 2Γint

δG(x,y)δG(u,v)
, Λ(x,y,u,v) =

2δ 3Γint

δφ(x)δφ(y)δG(u,v)
, (E.15)

are defined. Due to the self-consistent structure of the 2PI formalism, the four-point kernels Λ and Λ

do only contribute to the complete n-point functions via the resummed kernels V and V , which are
solutions of the Bethe-Salpeter equations [28],

V (x,y,u,v) = Λ(x,y,u,v)+
i
2

∫
abcd

Λ(x,y,a,b)G(a,c)G(d,b)V (c,d,u,v) ,

(E.16)

V (x,y,u,v) = Λ(x,y,u,v)+
i
2

∫
abcd

V (x,y,a,b)G(a,c)G(d,b)Λ(c,d,u,v) .

The solutions of the Bethe-Salpeter equations can formally be obtained by an iteration, which yields a
resummation of ladder diagrams, where the ladder steps are given by the kernel Λ, and the connections
of the steps are given by the complete propagator G. Note that the nonperturbative renormalization of
the four-point kernels can formally be understood as being built up of two steps. First, the divergences
contained in the diagrammatic contributions to the kernels Λ and Λ are subtracted via an appropriate
choice of BPHZ counterterms δλ BPHZ

0 and δλ BPHZ
2 , respectively. Second, the additional divergences

appearing in the renormalized solutions V R ≡ Z2V and VR ≡ Z2V of the Bethe-Salpeter equation are
removed by additional counterterms ∆λ0 and ∆λ2, such that the complete counterterms are given by
the sum, δλ0 = δλ BPHZ

0 +∆λ0 and δλ2 = δλ BPHZ
2 +∆λ2. In practice, the full counterterms δλ0 and

δλ2 can be determined in one step by imposing a renormalization condition on the kernels V R and VR.

Renormalization conditions

For the vacuum theory it is most convenient to work in Euclidean momentum space qµ = (iq0,q) by
performing a Fourier transformation and a Wick rotation along the q0-axis. The Euclidean propagator
is given by

G(x,y) =
∫

q
e−iq(x−y)G(q) ,

and the four-point kernel in momentum space is given by

(2π)4
δ

(4)(p1 + p2 + p3 + p4)Λ(p1, p2, p3, p4) =
∫

x1x2x3x4

ei∑n pnxnΛ(x1,x2,x3,x4) .

An analogous transformation holds for the other four-point functions.
The renormalization conditions can be imposed at an arbitrary subtraction point q̃ in momentum
space. However, it is important that the same point is used consistently for all 2PI kernels,

ΠR(q = q̃) = ΠR(q = q̃) = 0 ,

d
dq2 ΠR(q = q̃) =

d
dq2 ΠR(q = q̃) = 0 , (E.17)

V R(pi = q̃) = VR(pi = q̃) = Γ
(4)
R (pi = q̃) = −λR .

Especially, the renormalization conditions for the kernels V R and VR coincide with the one for the
four-point function Γ

(4)
R ≡ Z2Γ(4),

Γ
(4)(x,y,u,v) =

d4Γ[φ ,G[φ ]]
dφ(x)dφ(y)dφ(u)dφ(v)

, (E.18)
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where G[φ ] denotes the solution of the Schwinger-Dyson equation (E.4) for a given field configuration
φ(x). The renormalization conditions for ΠR are equivalent to the conditions

G−1
R (q = q̃) = q̃2 +m2

R ,
d

dq2 G−1
R (q = q̃) = +1 , (E.19)

for the complete propagator. The seven conditions (E.17) determine the counterterms δm2
0, δZ0,

δm2
2, δZ2, δλ0, δλ2 and δλ4. A simplification occurs for approximations where all contributions

to ΠR(x,y) and ΠR(x,y) are identical. In this case, also the corresponding counterterms agree,
δm2

0 = δm2
2, δZ0 = δZ2 and δλ0 = δλ2. In the following, the subtraction point will be chosen at

zero momentum, q̃ = 0. Another interesting choice is q̃2 = −m2
R, which corresponds to the on-shell

renormalization scheme.

E.3 Two Loop Approximation

The 2PI two-loop approximation corresponds to a Hartree-Fock approximation, and can be used to
check the nonperturbative renormalization procedure explicitly. It corresponds to a truncation of
the 2PI functional where only the local two-loop O(λ ) contributions are retained, in which case
eqs. (E.8), (E.10) and (E.12) with γR(φR,GR) ≡ 0 define the renormalized 2PI effective action com-
pletely. Furthermore, the symmetric phase with vanishing field expectation value φ = 0 is considered.
In this case, the 2PI two-point kernels ΠR(x,y) and ΠR(x,y) are given by

ΠR(x,y) = −i
(

δZ02x +δm2
0 +

λR +δλ0

2
GR(x,x)

)
δ (x− y) ,

ΠR(x,y) = −i
(

δZ22x +δm2
2 +

λR +δλ2

2
GR(x,x)

)
δ (x− y) , (E.20)

and the 2PI four-point kernels are given by

Z2
Λ(x,y,u,v) = −(λR +δλ0)δ (x− y)δ (x−u)δ (x− v) ,

Z2
Λ(x,y,u,v) = −(λR +δλ2)δ (x− y)δ (x−u)δ (x− v) , (E.21)

Z2
Γ

(4)(x,y,u,v) = −(λR +δλ4−3δλ0)δ (x− y)δ (x−u)δ (x− v) .

Since the kernels ΠR(x,y) and ΠR(x,y) have an identical structure, the renormalization conditions
(E.17) can be satisfied by identical counterterms, i.e. δm2

0 = δm2
2, δZ0 = δZ2 and δλ0 = δλ2.

From eq. (E.20) the renormalized Schwinger-Dyson equation (E.14) in two-loop approximation in
Euclidean momentum space is obtained,

G−1
R (k) = k2 +m2

R +δZ0k2 +δm2
0 +

λR +δλ0

2

∫
q

GR(q) .

Using the renormalization conditions for the propagator (E.19) immediately yields the mass- and field
counterterms

δZ0 = 0 , δm2
0 =−λR +δλ0

2

∫
q

GR(q) , (E.22)

and the complete propagator in two-loop approximation is simply given by

G−1
R (k) = G−1(k) = k2 +m2

R . (E.23)
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In order to determine the coupling counterterm, the Schwinger-Dyson equation has to be supple-
mented by the Bethe-Salpeter equation (E.16) in two-loop approximation,

V R(p1, p2, p3, p4) =−(λR +δλ0)−
λR +δλ0

2

∫
q

GR(q+ p1 + p2)GR(q)V R(q+ p1 + p2,−q, p3, p4) ,

which is obtained by inserting the two-loop 2PI kernel from eq. (E.21) into eq. (E.16), and performing
a Fourier transformation. For the determination of the counterterm, it suffices to solve this equation
for VR(k)≡−V R(k,−k,0,0),

VR(k) = λR +δλ0−
λR +δλ0

2

∫
q

G2
R(q)VR(q) . (E.24)

Obviously, this equation has a constant solution VR(k) = VR(0) = λR, where the last equality follows
from the renormalization condition for V R in eq. (E.17). Thus, the Bethe-Salpeter equation in two-
loop approximation reduces to an algebraic equation for the counterterm δλ0. It is most convenient
to rewrite the Bethe-Salpeter equation and eq. (E.22) in terms of Z = 1+δZ0 and the bare quantities
λB = Z−2(λR +δλ0) and m2

B = Z−1(m2
R +δm2

0),

Z = 1 ,

m2
B = m2

R−
λB

2

∫
q

G(q) , (E.25)

λ
−1
B = λ

−1
R −

∫
q

G2(q) .

These equations, together with eq. (E.23), form a closed set of equations for the determination of
the nonperturbative 2PI counterterms δm2

0 = δm2
2, δZ0 = δZ2 and δλ0 = δλ2 in two-loop approxi-

mation. It is understood that the momentum integrals are suitably regularized, e.g. by dimensional
or lattice regularization. Additionally, the counterterm δλ4 has to be determined by imposing the
renormalization condition (E.17) on the four-point function Γ(4) from eq. (E.21), yielding

δλ4 = 3δλ0 . (E.26)

E.4 Three Loop Approximation

The 2PI three-loop approximation includes non-local contributions, and therefore yields non-local
equations of motion for nonequilibrium initial conditions. This approximation has frequently been
used to study quantum dynamics far from equilibrium [1, 2, 25, 32, 142], and therefore the nonper-
turbative renormalization within this approximation is of interest. Truncating all diagrams which
contribute to the 2PI functional to more thanO(λ 2), the renormalized 2PI effective action is given by
eqs. (E.8), (E.10) and (E.12), where the non-local contributions are given by

iγR(φR,GR) =
(−iλR)2

12

∫
xy

φR(x)GR(x,y)3
φR(y) +

(−iλR)2

48

∫
xy

GR(x,y)4 . (E.27)

Thus, γR(φR,GR) contains diagrams up to three-loop order which are shown in figure E.3. Evaluating
the 2PI two-point kernels ΠR(x,y) and ΠR(x,y) using the definitions in eq. (E.13) for the symmetric
phase, φ = 0, yields

ΠR(x,y) = −i
(

δZ02x +δm2
0 +

λR +δλ0

2
GR(x,x)

)
δ (x− y)− λ 2

R

6
G3

R(x,y) ,

(E.28)

ΠR(x,y) = −i
(

δZ22x +δm2
2 +

λR +δλ2

2
GR(x,x)

)
δ (x− y)− λ 2

R

6
G3

R(x,y) .
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Figure E.3: Nonlocal diagrams contributing up to three-loop / 2PI-O(λ 2) order.

The 2PI four-point kernels defined in eqs. (E.15) and the four-point function given by eq. (E.18) in
three-loop approximation read,

Z2
Λ(x,y,u,v) = −(λR +δλ0)δ (x− y)δ (x−u)δ (x− v)+ iλ 2

RG2
R(x,y)δ (x− z)δ (y−w) ,

Z2
Λ(x,y,u,v) = −(λR +δλ2)δ (x− y)δ (x−u)δ (x− v)+ iλ 2

RG2
R(x,y)δ (x− z)δ (y−w) ,

Z2
Γ

(4)(x,y,u,v) = −(λR +δλ4)δ (x− y)δ (x−u)δ (x− v)+ (E.29)

+(V R−Z2
Λ)(x,y,u,v)+(V R−Z2

Λ)(x,u,y,v)+(V R−Z2
Λ)(x,v,u,y) .

As for the two-loop approximation, the two-point kernels ΠR(x,y) and ΠR(x,y) have an identical
structure, which implies that the renormalization conditions (E.17) can be satisfied by identical coun-
terterms, i.e. δm2

0 = δm2
2, δZ0 = δZ2 and δλ0 = δλ2, and that the four-point kernels Λ and Λ as

well as V and V coincide. From eq. (E.20) the renormalized Schwinger-Dyson equation (E.14) in
three-loop approximation in Euclidean momentum space is obtained,

G−1
R (k) = k2 +m2

R +δZ0k2 +δm2
0 +

λR +δλ0

2

∫
q

GR(q)

− λ 2
R

6

∫
pq

GR(p)GR(q)GR(k−q− p) . (E.30)

The Bethe-Salpeter equation in three-loop approximation is obtained analogously to the two-loop
case by inserting the three-loop 2PI kernel from eq. (E.29) into eq. (E.16). After performing a Fourier
transformation, the Bethe-Salpeter equation for the kernel VR(k)≡−V R(k,−k,0,0) reads2

VR(k) = λR +δλ0−λ
2
R

∫
q

GR(q)GR(k−q)− λR +δλ0

2

∫
q

G2
R(q)VR(q)

+
λ 2

R

2

∫
pq

GR(p)GR(k−q− p)G2
R(q)VR(q) . (E.31)

For a numerical solution it is convenient to rewrite the Bethe-Salpeter equation and the Schwinger-
Dyson equation in terms of Z = 1 + δZ0 and the bare quantities λB = Z−2(λR + δλ0) and m2

B =
Z−1(m2

R +δm2
0),

G−1(k) = k2 +m2
B +

λB

2

∫
q

G(q)

− Z−4λ 2
R

6

∫
pq

G(p)G(q)G(k−q− p) , (E.32)

V (k) = λB−Z−4
λ

2
R

∫
q

G(q)G(k−q)− λB

2

∫
q

G2(q)V (q)

+
Z−4λ 2

R

2

∫
pq

G(p)G(k−q− p)G2(q)V (q) . (E.33)

2 The kernel VR(q, p) defined in section 6.2 is related to the 4-point kernel via VR(q, p) = V R(q,−q,−p, p).
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The renormalization conditions (E.17) written in terms of G(k) and V (k) read

ZG−1(k = 0) = m2
R , Z

d
dq2 G−1(k = 0) = +1 , Z2V (k = 0) = λR . (E.34)

The Bethe-Salpeter equation (E.33) and the Schwinger-Dyson equation (E.32) together with the upper
renormalization conditions form a closed set of equations for the determination of the nonperturbative
2PI counterterms δm2

0 = δm2
2, δZ0 = δZ2 and δλ0 = δλ2 in three-loop approximation. Finally, the

counterterm δλ4 is determined by imposing the renormalization condition (E.17) on the four-point
function Γ(4) from eq. (E.29), yielding

δλ4 = 3δλ0−3λ
2
R

∫
q

G2
R(q) . (E.35)



Appendix F

Integrals on the Closed Real-Time Path

Nonequilibrium as well as thermal correlation functions can conveniently be calculated by attaching
the time arguments to the closed real-time contour C (see figure 6.1) and the imaginary time contour
I (see figure 6.4), respectively. In general, any time contour P is a complex valued curve, which can
be parameterized by a mapping tp : [a,b]→C, u 7→ tp(u), from a real interval into the complex plane.
The integral of a function f : C→ C along the time contour P is given by the curve integral,∫

P
dtp f (tp) =

b∫
a

du
dtp(u)

du
f (tp(u)) .

Furthermore, for space-time points xµ
p = (x0

p,x) with zero-component on the time contour P ,∫
P

d4x =
∫
P

dx0
p

∫
d3x ,

is defined. The signum function on a time contour P is defined as

sgnP(tp(u1)− tp(u2)) = sgn(u1−u2) =


+1 if u1 > u2 ,
0 if u1 = u2 ,
−1 if u1 < u2 ,

for u1,u2 ∈ [a,b].
Let f : R→ C be a continous function with time argument attached to the real axis. Then its integral
over the closed real-time path C vanishes, since the contributions from the chronological and the
antichronological parts cancel, ∫

C
dtc f (tc) = 0 .

For the derivation of the Kadanoff-Baym equations (6.15), the following relations, which involve the
signum function on the closed real-time path, are required,∫

C
dtc sgnC(t1− tc) f (tc) = 2

t1∫
t0

dt f (t) ,

∫
C
dtc sgnC(t1− tc)sgnC(tc− t3) f (tc) = 2sgnC(t1− t3)

t1∫
t3

dt f (t) .

Note that the upper relations are true irrespective of whether the times t1 and t3 belong to the chrono-
logical or the antichronological part of the closed real-time path. Therefore, the upper compact nota-
tion is unambiguous.
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