
Technische Universität München
Fakultät für Informatik

Lehrstuhl III - Datenbanksysteme

Managing Shared Resource Pools for Enterprise Applications

Diplom-Informatiker Univ.
Daniel Jürgen Gmach

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. M. Bichler

Prüfer der Dissertation:
1. Univ.-Prof. A. Kemper, Ph.D.
2. Adj. Prof. J. A. Rolia, Ph.D.,

Carleton University, Ottawa / Kanada

Die Dissertation wurde am 17.09.2008 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 11.03.2009 angenommen.





Abstract

In the past, data centers typically consisted of a small number of large mainframes, each hosting
several application workloads. With the advent of distributed computing, new applications were
assigned to their own smaller servers. Capacity planners often anticipated application demands
years in advance and equipped each new server with sufficient capacity so that the workload
could grow into it. However, the explosive growth in enterprise computing has led to server
sprawl and today’s data centers are typically full of lightly utilized servers that incur greater man-
agement, facility, and power costs than necessary. Server virtualization technology now supports
the creation of shared resource pools of servers. Applications can be dynamically consolidated
onto servers in such pools thereby enabling a more efficient use of resources. However, there
are challenges that must be overcome before such efficiencies can be achieved. There may be
many workloads with differing demands; each physical server can only host a finite number of
workloads; and, each workload has capacity requirements that may frequently change based on
business needs. This thesis presents a comprehensive management approach for shared resource
pools that helps to enable the efficient use of server resources while managing the resource access
quality of service offered to workloads.

The management approach includes controllers that operate at three different levels. A work-
load placement controller globally allocates and consolidates workloads based on historical,
time-varying demands. However, chosen workload placements are based on past demands that
may not perfectly predict future demands. To improve efficiency and resource access quality of
service, a migration controller continuously observes current behavior and migrates workloads
between servers to decrease the duration of quality violations and adjust the number of servers
being used. Finally, each server has a workload management service that uses time-varying per-
workload metrics to locally optimize resource allocation on the server. Their aim is to manage
the resource access quality of service on servers between migrations.

A new resource pool simulator is developed that simulates application resource demands by
replaying historical resource demand traces captured from real enterprise environments. The
simulator enables the study of different management strategies. It models the placement of
workloads, simulates the competition for resources, causes controllers to execute according to
management policies, and dynamically adjusts placements and configurations.

A comprehensive case study using data derived from a real SAP hosting center concludes the
thesis. It addresses several important questions: What capacity savings are theoretically possible
from workload placement? What quality and capacity trade-off can be achieved from local and
global optimization? What quality can be achieved with per workload management? What are
the advantages of integrated controllers? How does the knowledge of workload demand patterns
improve the effectiveness of resource pool management? To answer these questions, the case
study evaluates management policies with regard to required capacity, power usage, resource
access quality of service, and management efficiency. The case study shows that fully integrated
controllers outperform the separate use of controllers and loose integrations.
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CHAPTER 1

Introduction

In the past, data centers typically consisted of a small number of large mainframes, each hosting
several application workloads. To control costs, capacity planning experts helped to ensure that
sufficient aggregate capacity was available just in time, as it was needed. With the advent of
distributed computing, new application workloads were typically assigned to their own smaller
servers. The incremental cost of capacity from smaller servers was much less expensive than
the incremental cost of capacity on mainframes. Capacity planners often anticipated application
demands years in advance and equipped each new server with sufficient capacity so that the
workload could grow into it.

However, the explosive growth in enterprise computing has led to server sprawl. Web ser-
vices, service oriented computing, and the trend towards software as a service further exacerbate
this server sprawl. Hence, today’s enterprise data centers are typically full of lightly utilized
servers. Andrzejak et al. (2002) studied load patterns of six data centers with approximately
1000 servers. They found that 80% of the servers exhibit resource utilization levels in the 30%
range. The mass of lightly utilized servers incurs greater human management, facility, power,
and cooling costs than necessary.

Virtualization techniques based on virtual machines now enable many application workloads
to share the resources of individual servers. These techniques are appropriate for hosting legacy
enterprise applications in pools of shared resources. Today, even common x86-based servers have
sufficient capacity to host several enterprise applications. This thesis presents a comprehensive
management approach for shared resource pools that helps to enable the efficient use of server
resources while managing the resource access quality of service offered to workloads.

The consolidation of workloads aims to minimize the number of resources, e. g., physical
servers, needed to support the workloads. It helps to achieve a greater system utilization resulting
in lower total cost of ownership as less physical servers are required. In addition to reducing
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costs, this can also lead to lower peak and average power requirements. Lowering peak power
usage may be important in some data centers if peak power cannot easily be increased. For large
enterprises, virtualization offers an ideal solution for server and application consolidation in an
on-demand utility. The primary motivations for enterprises to adopt such technologies are the
reduction of the overall costs of ownership, the increased flexibility, and the ability to quickly
repurpose server capacity to better meet the needs of the application workload owners.

However, there are challenges that must be overcome before such efficiencies can be achieved.
There may be many workloads with differing demands; each physical server can only host a finite
number of workloads; and, each workload has capacity requirements that may frequently change
based on business needs. Furthermore, applications participating in consolidation scenarios can
make complex demands on servers. For example, many enterprise applications operate contin-
uously, have unique time-varying demands, and have performance-oriented quality of service
(QoS) objectives.

The management approach that is introduced includes controllers that operate at three dif-
ferent levels. A workload placement controller globally allocates and consolidates workloads
based on historical, time-varying demands. However, chosen workload placements are based on
past demands that may not perfectly predict future demands. To improve efficiency and resource
access quality of service, a migration controller continuously observes current behavior and mi-
grates workloads between servers to decrease the duration of quality violations and adjust the
number of servers being used. Finally, each server has a workload management service that uses
time-varying per-workload metrics to locally optimize resource allocation on the server. Their
aim is to manage the resource access quality of service on servers between migrations.

The architecture of the resource pool, the characteristics of the application workloads, and
the desired quality of service for the workloads influence the management of the resource pool.
Hence, management controllers typically exhibit several configuration options, for example, in-
tervals in which they are applied, threshold levels defining their aggressiveness, and parameters
defining the maximum desired resource utilization levels of servers. For large IT environments,
it is hard to find the right management policies, i. e., the choice of the controllers that are inte-
grated and the best configuration of the chosen controllers. A trial-and-error approach with live
workloads and real hardware would be very risky and cost and time intensive.

To better assess the long-term impact of management policies, a new resource pool simu-
lator is introduced that simulates application resource demands by replaying historical resource
demand traces captured from real enterprise environments. The simulator enables the study of
different management policies. It models the placement of workloads, simulates the competition
for resources, causes controllers to execute according to management policies, and dynamically
adjusts placements and configurations. During the simulation process, the simulator collects
metrics that are used to compare the effectiveness of the policies. This helps administrators to
evaluate and fine-tune their management policies for resource pools in a time and cost effective
manner.

A comprehensive case study using four months of data derived from a real SAP hosting cen-
ter concludes the thesis. It addresses several important questions: What capacity savings are
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theoretically possible from managing workload placement? What quality and capacity trade-off
can be achieved from local and global optimization? What quality management can be achieved
with per-workload management? What are the advantages of integrated controllers? How does
the knowledge of workload demand patterns improve the effectiveness of resource pool man-
agement? To answer these questions, the case study uses the simulator to evaluate management
policies for two different resource pool configurations with regard to resource access quality of
service, power usage, utilization, and management efficiency. The case study shows that the fully
integrated controllers outperform the separate use of each controller and loose integrations.

The remainder of this section is structured as follows: Section 1.1 gives a brief overview
on server virtualization technologies. The comprehensive resource pool management approach
of this thesis is introduced in Section 1.2. Section 1.3 highlights the main contributions of this
thesis. Finally, an outline of the thesis is presented in Section 1.4.

1.1 Virtualization

In computer science, virtualization covers a wide range of technologies for the abstraction of
resources. Virtualization hides characteristics of computing resources from the users and appli-
cations and helps to let single resources appear as multiple resources or vice versa. For example,
a physical server can be virtualized as multiple virtual machines or multiple instances of an ap-
plication can appear as one virtual application.

The origin of server virtualization was in the 1960s where large mainframe servers were par-
titioned to allow the execution of multiple processes at the same time. During the 1980s and
1990s, the interest in server virtualization was low as client-server architectures replaced main-
frames with many common computer systems. However, in recent years, the virtualization of
x86-based servers rapidly gained significance as today’s common computer hardware is typi-
cally powerful enough to execute several applications in parallel.

Virtualization technology transforms the IT landscape and the way servers are used in data
centers. Virtualization products such as VMware (VMware, 2008g) and Xen (Barham et al.,
2003) are used to transform or “virtualize” the hardware resources of x86-based computers to
create fully functional virtual machines. This includes the CPUs, memory, network interface
cards (NICs), and hard disks. The virtual machine (VM) can run its own operating system and
applications just like a “real” computer.

Figure 1.1(a) shows how applications are hosted the traditional way. The physical server
runs the operating system and the application is executed within the operating system. Applica-
tions then access physical resources including CPUs, memory, NICs, and disks either directly or
through the operation system. Virtualization adds an additional layer of abstraction between the
operating system and the physical server. Figure 1.1(b) shows the architecture of a virtualized
server. The applications and operating systems are now executed in virtual machines instead of
physical servers and each virtual machine has its own virtual CPUs, memory, NICs, and disks.
In full virtualization environments, the applications and the operating systems are not aware of
being executed within a virtual machine.
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Figure 1.1: Executing Applications in Physical Servers and Virtual Machines

In recent years, the virtualization of x86-based servers and the virtualization solutions from
Xen and VMware in particular gained huge interest. Xen paravirtualizes physical servers. Para-
virtualization means that the guest operating system accesses the physical hardware via calls
to a hypervisor. The hypervisor virtualizes the CPUs, memory, NICs, and hard disks and con-
trols the allocation of physical resources to the virtual machines. Other important virtualization
approaches are full virtualization and hardware supported virtualization. VMware uses full vir-
tualization, i. e., the hypervisor translates operating system instructions on the fly. Hence, it does
not require any modifications of the guest operating system, which is not even aware of being
virtualized. However, full virtualization incurs higher overhead than paravirtualization. Hard-
ware supported virtualization introduces a new root mode on physical CPUs that enables the
efficient execution of unmodified guest operating systems. Examples for hardware virtualization
are HP nPar (2008) and IBM DLPAR (2008). Most modern x86-based CPUs support hardware
virtualization, too, for example, Intel Virtualization Technology (Intel VT, 2008) or AMD Virtu-

alization (AMD-V, 2008).
Virtualization removes the tight binding between applications and physical hosts. Live mi-

gration enables a virtual machine to move from one physical server to another with little or no in-
terruption to the application. Hence, applications can share a pool of physical servers. Figure 1.2
shows the architecture of a resource pool that hosts multiple applications in virtual machines.
Physical resources are virtualized creating a shared pool. The virtualization infrastructure then
allocates the virtual machines onto servers in the server pool. Furthermore, in most data centers,
disk images are attached via iSCSI to the physical servers. This allows the dynamic reattachment
of disks to other physical servers, which is a requirement for the live migration of the virtual ma-
chines. Live migration is described further in Section 1.1.2.

1.1.1 CPU and Memory Allocation to Virtual Machines

This section describes briefly how Xen and VMware ESX Server (VMware, 2008e) allocate CPU
and memory resources to virtual machines. Both virtualize physical x86-based servers.
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Figure 1.2: Virtualized Server Pool

Since version 3, Xen employs the credit scheduler (Xen Wiki, 2007) to allocate CPU cycles
to virtual machines. The Xen credit scheduler is a weight-based, fair-share CPU scheduler. It
implements a server wide accounting strategy to guarantee that each virtual machine receives its
fair share of CPU in each accounting cycle. Two parameters per virtual machine—CPU weight
and CPU cap—control the fine-tuning of the CPU allocation in Xen. Using the credit scheduler, a
virtual machine with twice the CPU weight of another will get twice as much CPU than the other
one. The CPU weights in Xen range from 1 to 65535 and the default value is 256. Additionally,
for each virtual machine a CPU cap can be specified. A virtual machine can only consume CPU
cycles up to its CPU cap, which is specified in percentages of one CPU. For example, a cap of
200 in Xen corresponds to two physical CPUs.

VMware uses a similar CPU scheduling strategy as Xen, which is presented in VMware
(2008a). For each virtual machine a shares value is defined that corresponds to the Xen CPU
weight and determines the shares of a CPU that a virtual machine can obtain. Analogously, a
virtual machine with twice the shares values of another will receive twice as much CPU than the
other one. VMware also allows capping the CPU usage with an upper limit and, additionally to
Xen, VMware supports the specification of a minimum amount of CPU that is guaranteed to a
virtual machine. If the virtual machine demands more CPU cycles, then the remaining demand
is satisfied according to the CPU shares parameter.

For memory allocation, Xen provides methods to adapt the physical memory assigned to each
virtual machine, but it does not adjust the assigned physical memory automatically. Administra-
tors specify lower and upper limits to control the minimum and maximum amount of physical
memory that can be assigned to virtual machines. Memory is assigned exclusively and workloads
cannot access the unused memory of other virtual machines. In Xen, the sum of the currently
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assigned memory needs to be less or equal than the physical memory of the server. This implies
that the sum of the minimum memory thresholds over all virtual machines needs to be less or
equal than the available memory of a physical server.

Typically, the management of the assigned memory is done either manually by administra-
tors or automatically by workload management services such as those described in Chapter 7.
Furthermore, we assume that workload placement controllers, as in Chapter 5, have sufficient
information to reconfigure the physical memory allocations of virtual machines when adjusting
workload placements.

The VMware ESX Server allows the over-commitment of memory. This means that the total
memory assigned to virtual machines can exceed the size of memory of a physical server. This
technology improves the effective use of physical memory because many applications exhibit
locality of reference effects for memory usage, i. e., not all the memory allocated is frequently
referenced and some applications have frequent periods of inactivity. According to Waldspurger
(2002) and VMware (2008b), the ESX Server automatically transfers unused memory from vir-
tual machines to other virtual machines that need access to more physical memory.

The ESX Server uses a balloon driver to implement the over-commitment of memory. The
balloon driver runs as a native program in each virtual machine. It is able to communicate
with the ESX server. If the server reclaims memory from the virtual machine, it instructs the
balloon driver to allocate more memory (inflating the balloon) and hence to increase the memory
pressure on the operating system. If memory in the virtual machine is scarce, the OS needs to
decide which memory pages to reclaim and, if necessary, which pages to swap to its own virtual
disk. The balloon driver communicates the physical page numbers of its allocated memory to
the ESX Server that reclaims the corresponding memory. Allocating memory back to the virtual
machine and deflating the memory balloon again decreases the memory pressure in the virtual
machine and increases the available memory for its applications.

The dynamic memory allocation approach of VMware considers reservation and shares pa-
rameters, which are used to preferentially allocate memory to important virtual machines. The
reserved amount of memory is guaranteed to virtual machines if they demand it. If several virtual
machines demand more memory than they have guaranteed, the remaining physical memory of
the server is allocated according to their weights.

The resource pool simulator mimics the resource scheduling strategies of Xen and VMware.
The implementation of the strategies is described in detail in Section 8.2.

1.1.2 Live Migration of Virtual Machines

All modern virtualization solutions support the live migration of virtual machines. Live migra-
tion means that virtual machines are migrated from one physical server to another without any
noticeable downtime. Hence, users that are currently interacting with applications in the virtual
machine are not disturbed by the migration. This section briefly summarizes the live migration
technique. A more detailed description can be found in Clark et al. (2005). The migration of
virtual machines requires that (1) its memory is copied to the new server, (2) disks become con-
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nected to the new server and are disconnected from the old server, and (3) network connections
to the virtual machine stay open.

The simplest way to copy the memory is to stop the virtual machine, copy the memory, and
restart it on the new server. However, the memory copy process would require a noticeable
amount of time and the network connections would be interrupted. Hence, for live migration
a more sophisticated memory transfer approach is necessary. Typically, virtualization solutions
pre-copy memory iteratively. In the first step, the complete memory is copied to the new server
and in following steps, the memory pages modified during the previous copy process are trans-
ferred again. The memory copy process limits network and CPU activity in order to ensure that
the migration process does not interfere too excessively with active applications. Especially in
the first steps, it copies memory with reduced bandwidth. For later steps that typically copy less
memory, it increases the bandwidth. After a small number of iteration steps, the virtual ma-
chine is stopped and the remaining dirty pages are copied to the new server. Upon completion, a
consistent, suspended copy of the virtual machine exists on both servers.

In virtualized server pools, disks are typically attached via a network, e. g., NAS or iSCSI.
In this scenario disk images of virtual machines need to be attached to the new server before
the execution is switched. As NAS and iSCSI disks are uniformly accessible from all physical
servers in the pool, the reattachment to the new server is straightforward.

Finally, the network connections need to be redirected to the virtual machine on the new
server. For this purpose, the virtual machine carries its virtual IP address with it and triggers an
ARP (address resolution protocol) reply advertising that the IP address has moved to the new
server.

Using the above concepts, modern virtualization products manage to migrate virtual ma-
chines without any noticeable downtime. The overall migration time mainly depends on the
amount of memory that needs to be copied to the new server and the available network band-
width. Section 8.1 describes how the resource pool simulator accounts for the additional CPU
overhead caused by copying the memory.

1.2 Workload Management at Different Time Scales

This work presents workload management services that control the resource pool at different
time scales. Figure 1.3 shows the three levels in the boxes in the middle: workload placement
management, migration management, and workload management.

Workload placement controllers globally manage the resource pool and consolidate work-
loads across the server pool at pre-defined time intervals or on demand. New workload place-
ments are determined based on either historical or synthetic workload traces. Allocating work-
loads based on recent demands follows the general idea that historic traces that capture past
application demands are representative of the future application behavior.

Though enterprise application workloads often have time-varying loads that behave accord-
ing to patterns (Gmach et al., 2007b), actual demands are statistical in nature and are likely to
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Figure 1.3: Workload Management Levels

differ from predictions. Therefore, to further improve the efficiency and application quality of
service, the workload placement controller can be integrated with a reactive workload migration

controller that monitors the current load on each server in the server pool and locally adapts the
workload placement. If a server is overloaded, it migrates workloads from the overloaded server
to less loaded servers. Additionally, a migration controller can free and shut down lightly utilized
servers.

The above management services use metrics collected from the physical servers to control
the infrastructure. Additionally, metrics gathered from inside the virtual machines can be used to
better manage the applications’ quality of service. Workload managers control the allocation of
resources on each physical server and maintain the workloads’ quality of service between migra-
tions. Workloads that are likely to miss their quality goal may receive a higher priority whereas
workloads that overachieve their QoS goals can be treated with a lower priority. Resources are
then allocated according to the priorities of the workloads.

Figure 1.3 shows how the different management levels can be characterized and categorized.
The management levels can be distinguished with respect to the time horizon in which they are
operating. Workload placement controllers typically operate in large intervals, e. g., a couple
of hours, days, or even weeks, and generate new workload placements that are valid for the
consecutive interval. They can also be applied to systems that are not supporting live migration
of workloads. In that case, the applications need to be stopped and migrated during maintenance
intervals. In contrast to that, migration controllers and workload managers continuously monitor
and control the workloads and servers.

Orthogonal to the time horizon, the management levels can be distinguished with respect to
the optimizations they make. Workload placement controllers globally optimize the allocation of
resources in the resource pool, whereas migration controllers locally adapt workload placements.
In contrast to that, workload management services control and optimize the resource allocation
of physical servers.
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Finally, controllers working on different levels of management must work together to ensure
appropriate resource access quality while making efficient use of the resource pool.

1.3 Contributions

This thesis provides four main contributions: (1) an automatic workload analysis service that
generates patterns describing the demand characteristics of workloads; (2) new management
controllers for the management of resource pools; (3) a resource pool simulator that allows the
efficient evaluation of management policies; and (4) a comprehensive case study that assesses
the impact of different management policies for a complex shared hosting environment scenario.
The list below shows the contributions of the thesis in more detail:

• A new, fully automated analysis technique is developed that analyzes historical workload
demand traces, extracts patterns, and recognizes whether a workload’s demands change
significantly over time. For the pattern extraction, the periodogram and autocorrelation
functions are used. Patterns support the generation of synthetic demand traces describing
the future resource demands of workloads.

• We present several new controllers. A best sharing greedy algorithm places workloads
iteratively onto the locally best matching server. It manages to produce dense workload
placements close to the optimum that is determined with an integer linear program. We
developed a proactive, fuzzy logic based migration controller that uses workload pattern
information to predict the future behavior of workloads. Furthermore, a workload man-
agement service is presented that uses an economic utility function to manage quality of
service. It dynamically prioritizes workloads according to their current SLA compliance.

• A new resource pool simulator is developed that simulates application resource demands
by replaying historical resource demand traces captured from real enterprise environments.
The simulator enables the study of different management strategies. It models the place-
ment of workloads, simulates the competition for resources, causes controllers to execute
according to management policies, and dynamically adjusts placements and configura-
tions. Management controllers are integrated via an open interface so that additional con-
trollers can be evaluated in the future. Furthermore, the simulator collects metrics to assess
the effectiveness of management policies.

• A comprehensive case study evaluates various management services and policies. New
management policies for adaptive, virtualized infrastructures are presented that integrate
controllers operating at three levels. Workload placement controllers globally consolidate
workloads onto servers in the pool. Workload migration controllers continuously monitor
utilization values and dynamically migrate workloads to mitigate overload and underload
conditions. In addition, on each physical server local workload management services man-
age per-workload quality of service by adapting the resource allocation. The case study



10 Introduction

demonstrates synergies of integrated workload management approaches, addresses and an-
swers several important questions on workload management, and provides guidelines for
the administration of virtualized server pools.
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1.4 Outline

The thesis is organized as follows:

Chapter 2 provides an overview of the related work.

Chapter 3 presents the metrics that are used in the case study to evaluate management policies
with regard to resource access quality of service, power usage, utilization, and management
efficiency.

Chapter 4 describes a demand prediction service that analyzes historical workload demand
traces and extracts workload demand patterns. The demand prediction service also rec-
ognizes whether a workload’s demands change significantly over time and generates syn-
thetic load traces that represent future demands for the workloads.

Chapter 5 presents workload placement controllers that aim to consolidate workloads onto a
pool of servers. It first defines the problem space using an integer linear program and then
shows two placement controllers: a best sharing greedy heuristic that iteratively allocates
workloads onto the locally best matching server and a genetic algorithm approach that uses
a first fit strategy to create a pool of valid placements and optimizes the placements using
a genetic algorithm.

Chapter 6 describes a migration controller that is based on a fuzzy logic engine. First, the ar-
chitecture of the controller is shown. Next, the chapter introduces the basics of fuzzy logic
and shows how the fuzzy logic is integrated into the controller. Finally, it demonstrates a
feed forward control approach that uses pattern information to predict future behavior in
order to react proactively on imminent critical situations.

Chapter 7 describes how workload management services locally manage quality of service by
optimizing the resource utilization on each server. The chapter first presents the architec-
ture of a workload management service. Next, a workload management service is shown
that adapts the resource allocation according to the demands of the workloads. Finally, the
chapter explains how differentiated quality of service can be provided.

Chapter 8 presents the resource pool simulator. First, the architecture of the resource pool sim-
ulator is explained. Next, the chapter describes the architecture of the simulated servers.
The aim of the simulated servers is to determine what fraction of the workloads’ demands
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can be satisfied. In particular, several scheduling strategies are implemented that mimic
the resource allocation in common virtualization solutions. After that, the provided inter-
faces for the integration of management services and the configuration parameters of the
simulator are described.

Chapter 9 presents the case study that addresses important questions for workload management
in virtualized server pools. It shows synergies of the integrated management controllers,
presents the trade-off between capacity and resource access quality, and provides guide-
lines for the management of virtualized server pools.

Chapter 10 summarizes the thesis and its main conclusions and presents an overview on future
work in this area.



CHAPTER 2

Related Work

This chapter provides an overview of related work. First, Section 2.1 considers workload analysis
and demand prediction, Then, Section 2.2 provides a short overview on control loops and system
management. The remainder of the chapter is structured according to the proposed management
levels. Sections 2.3 through 2.5 consider workload placement management, migration manage-
ment, and workload management, respectively. Section 2.6 describes related work comprising
several levels of resource pool management.

2.1 Demand Prediction and Workload Analysis

Techniques for short-term prediction often use approaches such as autoregressive (AR), autore-
gressive moving average (ARMA) (Box et al., 1994), or generalized autoregressive conditional
heteroscedasticity (GARCH) (Engle, 1982; Bollerslev, 1986) models. Dinda and O’Hallaron
(2000) apply linear models such as AR, moving average (MA), ARMA, and autoregressive in-
tegrated moving average (ARIMA) models for the short-term prediction of applications’ CPU
and runtime. They conclude that simple, practical models such as AR models are sufficient for
host load prediction on Unix systems and they recommend the use of AR(16) models. While
these approaches may be appropriate for the very short-term, predictions based on these models
quickly converge to the mean value of a demand trace for the time scales of hours or days that
are of interest in this work.

Vilalta et al. (2002) distinguish between long-term and short-term predictions. They show a
case study for the long-term prediction of performance variables where they apply classical time
series analysis. They also demonstrate case studies for the short-term prediction of abnormal
behavior and system events where they employ AR models and data mining techniques. Xu et al.

(2006) compare an adaptive controller with a predictive controller, which uses AR models to
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predict the resource utilization. They conclude that the predictive controller can deal with time-
varying demands in a more proactive way. However, the performance of the predictive controller
depends on the accuracy of the models.

Our approach for the extraction of workload demand patterns relies on classical time series
models as, for example, presented by Box et al. (1994). Formal time series methods for the
characterization of non-stationary behavior are presented by Hoogenboom and Lepreau (1993).
Hellerstein et al. (2001) combine time series analysis concepts with autoregressive models to
improve workload prediction accuracy. They use ANOVA (analysis of variance) to separate the
non-stationary and stationary behavior of historical traces.

While the earlier references focus on predicting demands, Cohen et al. (2004) aim to predict
service level violations. They present a probabilistic model based on tree-augmented Bayesian
networks (TAN) to identify combinations of resource metrics and compliances with service level
objectives in a three-tier Web service. Their results show that TAN models capture patterns of
performance behavior and provide insights into the causes of observed performance effects.

Several research groups focused on the characterization of workloads. Workload character-
ization studies of Internet, media, and data center workloads indicate that demands are highly
variable (Arlitt and Williamson, 1996; Krishnamurthy and Rolia, 1998; Andrzejak et al., 2002;
Cherkasova and Gupta, 2002). The “peak-to-mean” ratios may be an order of magnitude or
more. They conclude that it is not economical to over-provision systems using “peak” demands.
Rolia et al. (2004) state that workload demand traces of business applications often show clear
daily or weekly behavior. Various researchers, for example, Castellanos et al. (2005), have ex-
ploited the predictability of business applications, i. e., future load demands are often similar to
past demands, to improve the effectiveness of resource management.

2.2 Control Loops and System Management

According to Menasce (2003a), research has focused on two approaches to manage quality of
service of application workloads: analytical performance models and monitoring based systems.
Analytical performance models help to determine the required resource capacities needed to ac-
complish given service level objectives. Various research groups have considered control loops
that are based on queuing models, for example, Doyle et al. (2003), Urgaonkar et al. (2007,
2005), and Cunha et al. (2007).

Menasce (2003b) states that the prerequisite to develop queuing models is to understand and
characterize the workloads of the modeled applications. The quality of the managed system
then strongly depends on the accuracy of the available models. Unfortunately both, development
and maintenance of queuing models, are people intensive and hence entail high administrative
costs. One reason is that administrators need to fully understand the behavior of every single
application prior to deployment in order to create an accurate performance model. Furthermore,
models have to be updated when the characteristics of a workload change. Thus, according to
Urgaonkar et al. (2007) queuing model based systems have little applicability in highly transient
workload conditions. In this thesis, we focus on the administration of enterprise workloads that
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typically have complex structures and interact with various other applications and database sys-
tems. The performance behavior of these workloads may be unknown prior to deployment, e. g.,
administrators of a hosting center may not have detailed information about all running work-
loads. Due to the complexity and a possible lack of internal application details, the development
of accurate queuing models for enterprise workloads is difficult. Additionally, workload charac-
teristics of some enterprise applications change quite frequently, e. g., when business processes
change. The use of queuing models is beyond the scope of this thesis.

Most monitoring based approaches to manage the application quality of service implement
feedback control loops similar to those proposed by Hellerstein et al. (2004). The loops provide
self-management capabilities for distributed computing systems. Weikum et al. (2002) motivate
automatic tuning concepts in the database area and conclude that these should be based on the
paradigm of a feedback control loop consisting of three phases: observation, prediction, and
reaction. Braumandl et al. (2003) propose the application of a feedback control loop for QoS
management of query execution plans in distributed query processing systems. Actions like
alterNetServiceQuality, movePlan, useCompression, or increasePriority are triggered by a fuzzy
controller to enforce QoS parameters like query result quality, query execution time, and query
evaluation costs.

Rolia et al. (2000) describe adaptive Internet data centers where servers as resources are dy-
namically added and removed from applications. Ranjan et al. (2002) explore the impact on
capacity savings of implementing such an approach. There are many research projects that ex-
plore feedback oriented control approaches for resource pool management. Appleby et al. (2001)
propose Océano, an SLA-based management system. They also explore advantages of dynam-
ically changing the amount of resources assigned to each application. In contrast, we allow
the allocation of multiple workloads onto each physical server and consider resource sharing
effects. Chase et al. (2001) propose Muse, a resource management architecture that manages
energy and server resources. They economize power costs by running active servers near a con-
figured utilization threshold and by transitioning lightly loaded servers to low power idle states.
Furthermore, they introduce a utility function based on gains per delivered throughput to decide
how much resources will be allocated to each service.

2.3 Workload Placement Management

Server consolidation and resource pool management gained significant interest in enterprise en-
vironments as it helps to better utilize and manage systems. A consolidation analysis presented
in Andrzejak et al. (2002) packs existing server workloads onto a smaller number of servers us-
ing a bin-packing method based on integer linear programming. Their purpose is to evaluate
the resource saving potential of different resource pool environments, e. g., large multi-processor
servers or small servers with and without fast workload migration capability. The results show a
substantial opportunity for resource savings for all scenarios. However, the bin-packing method
is NP-complete for this problem, resulting in a computation intensive task. This makes the
method impractical for larger consolidation exercises and on-going capacity management.
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Urgaonkar et al. (2002) propose to limit the capacity requirement of an application workload
to a percentile of its demand when placing applications onto servers. This does not take into
account the impact of sustained performance degradation over time on user experience as our re-
quired capacity definition does. Rolia et al. (2002, 2004) define the resource access probability Θ
and restrict the duration of epochs where demand exceeds supply for the capacity planning pro-
cess. Rolia et al. (2003) present a capacity management tool that uses a first fit genetic algorithm
approach for the consolidation of workloads and compare it with a linear program approach. An
enhanced version of the capacity management tool is considered in Section 5.1.3. We go beyond
that and consider multiple quality metrics for the resource pool management.

Rolia et al. (2005) and Cherkasova and Rolia (2006) look at classes of service. They ap-
plied trace-based methods to support capacity planning exercises for resource pools and what-if
analysis in the assignment of workloads to consolidated servers.

Bichler et al. (2006) propose decision models that are based on binary programs for capacity
planning. They consider a static and a dynamic server allocation scenario. For the static alloca-
tion scenario, they compare placements from the binary program with placements from a first fit
greedy heuristic and found that the greedy heuristic required an equal number of servers in one
of four cases. In the other three cases, it required one server more. Scheduling workload migra-
tions in the dynamic server allocation scenario helps to further reduce the number of required
servers. However, for bigger resource pools, the binary program might not be able to calculate
new placements within acceptable time periods.

There are now commercial tools (HP, 2008; IBM, 2008; TeamQuest, 2008; VMware, 2008c)
that employ trace-based methods to support server consolidation exercises, load balancing, on-
going capacity planning, and the simulation of workload placements to help IT administrators
in improving server utilization. We believe the workload placement controllers we employ have
advantages over other workload placement controllers described above. They address issues in-
cluding classes of service and placement constraints and the genetic algorithm based workload
placement controller is able to minimize migrations over successive control intervals.

There is a new research direction that has emerged from studying server consolidation work-
loads using a multicore server design, for example, Jerger et al. (2007) and Marty and Hill (2007).
The authors show, across a variety of shared cache configurations, that a commercial workload’s
memory behavior can be affected in unexpected ways by other workloads. In this work, we do
not consider the impact of cache sharing, while it is an interesting direction for future research.

2.4 Migration Management

Virtualization platforms such as Xen (Clark et al., 2005) and VMware (VMware, 2008f) now
provide the ability to dynamically migrate virtual machines from one physical machine to an-
other without interrupting application execution. This is often referred to as “live” migration.
The applications only incur extremely short interruptions ranging from tens of milliseconds to a
second. Migration management can be used to improve resource sharing by dynamically consol-
idating workloads.
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The concept of live migrations has been exploited in the area of Grid computing. For ex-
ample, Sundararaj et al. (2005), Grit et al. (2006), and Ruth et al. (2006) use virtual machine
migration for the dynamic resource allocation in Grid environments. They consider physical
multi-domain infrastructures and present solutions to provide virtual computation environments.
A migration controller is used to place jobs and migrate them as needed to achieve greater re-
source efficiency.

A migration controller for virtualized resource pools is proposed by Khanna et al. (2006).
Their controllers monitor key performance metrics and migrate virtual machines in order to con-
solidate servers and maintain acceptable application performance levels. Analogously to our
approach, the decision making process of their controller is separated into several consecutive
steps. First, it chooses the physical server to remove a virtual machine, then it selects the virtual
machine, and finally, it chooses the target server for the migration. In contrast to our work, they
are not considering time-varying workload demands for workload consolidation and migration
exercises.

Wood et al. (2007) present Sandpiper, a system that automates the task of monitoring virtual
machine performance, detecting hotspots, and initiating any necessary migrations. Sandpiper im-
plements heuristic algorithms to determine which virtual machine to migrate from an overloaded
server, where to migrate it, and the resource allocation for the virtual machine on the target
server. Sandpiper implements a black-box approach that is fully OS- and application-agnostic
and a gray-box approach that exploits OS- and application-level statistics. Sandpiper is closest to
the feedback based migration controller presented in this thesis though they implement different
migration heuristics.

Hyser et al. (2007) employ an autonomic controller to dynamically manage the mapping of
virtual machines onto physical servers in a resource pool. The proposed controller prototype fol-
lows a load balancing policy, which tries to keep loads on all physical servers close to the overall
load average. The controller uses a simulated annealing algorithm to generate new placements
starting from the current placement. In contrast to our migration management controllers, their
approach triggers multiple migrations to balance the workloads.

Poladian et al. (2007) present an approach to self-adaptation, which they call anticipatory
configuration. They leverage predictions of future resource availability to improve utility for the
user over the duration of the task. Their focus lies on how to express the resource availability
prediction, how to combine predictions from multiple sources, and how to leverage predictions
continuously while improving utility to the user. They use dynamic programming algorithms to
determine the placements and migrations for the next maintenance interval.

Finally, there are commercial tools that implement migration controllers. For example,
VMware’s Distributed Resource Scheduler (DRS) (VMware, 2008d) uses live migrations to per-
form automated load balancing in response to CPU and memory pressure. DRS uses a user
space application to monitor memory usage similar to Sandpiper, but unlike Sandpiper, it does
not utilize application logs to respond directly to potential application service level violations or
to improve placement decisions.
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2.5 Workload Management

Workload management services locally control the resource allocation on physical servers and
manage resource access quality of the workloads. There are currently two main directions how
workload managers provide differentiated quality of service. The first direction is to control the
number of requests to applications and the second direction is to control the allocation of physical
resources.

There exists substantial research following the first direction. Bhatti and Friedrich (1999)
present WebQoS, an architecture for supporting server quality of service. WebQoS supports
distinct performance levels for different classes of users through classification, admission con-
trol, and request scheduling. Welsh et al. (2001) propose SEDA, an architecture for scalable
Internet services that uses request admission control to degrade services when resource demand
exceeds supply. Pradhan et al. (2002) propose an observation-based approach for self-managing
Web servers that can adapt to workload changes while maintaining the QoS requirements of
different QoS classes. They use an incoming request queue scheduler and a share-based CPU
scheduler to control the resource demands. The idea of the algorithm is to borrow shares from
over-provisioned classes to balance the most underweighted classes.

More complex applications have also been considered in literature. Elnikety et al. (2004)
and Porter and Katz (2006) present an admission control and request scheduling concept for e-
commerce Web sites, which is implemented as a proxy between the Web service and the database.
Kounev et al. (2007) use online performance models for autonomic QoS-aware resource man-
agement in grid computing. Their work focuses on achieving stable behavior and acceptable
response times in case of resource deficiencies.

Furthermore, there exists a lot of work in the domain of real-time database management
systems that process transactions with firm time constraints. Typically, the performance objective
is to minimize the number of transactions that miss their deadlines. Abbott and Garcia-Molina
(1988a,b) and Pang et al. (1995) use deadlines to assign critical system resources, for example,
CPU, locks, and I/O, to individual requests in the database systems. Diao et al. (2002) propose
fuzzy logic for admission control to maximize profits based on service level agreements.

Urgaonkar et al. (2007) present an approach that allows prioritizing requests of certain cus-
tomers in order to achieve SLA class based service differentiation. Krompass et al. (2006, 2007)
enhance this approach and propose a dynamic workload management concept for large data
warehouses that controls the execution of individual queries based on service level objectives.
They employ an admission control to limit the number of simultaneously executed queries and
an execution control engine that supervises the execution of the queries.

Schroeder et al. (2006a) employ an external scheduler to control the processing order of re-
quests in order to maintain response time requirements. They suggest an external queue manage-
ment system where queries are scheduled based on QoS requirements and monitored execution
times. The admission control employs work from Schroeder et al. (2006b) where the number
of simultaneously executed database transactions is adjusted using a feedback control loop that
considers the available physical resources. However, solutions that control the number of simul-
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taneously executed requests or queries in order to achieve QoS are typically application specific.
This thesis follows the second direction for the provision of differentiated quality of service

where workload management services control the assignment of physical resources to the appli-
cations. Typically, these solutions rely on either resource control mechanism such as presented
in Banga et al. (1999) or virtualization environments such as VMware or Xen. Both concepts
provide mechanisms to achieve isolation and fine-grained resource management.

Zhang et al. (2005) advocate the use of self-adaptation by applications in the virtual ma-
chines themselves based on feedback about resource usage and availability. Their “friendly VM”
approach delegates the regulation of resource usage to the applications.

Liu et al. (2005) propose an adaptive controller for resource allocation in virtualized server
pools. They employ a feedback control algorithm to dynamically adjust the resource allocation
of virtual machines such that the hosted applications achieve their desired performance levels.
Padala et al. (2007) extended the dynamic resource allocation approach for multitier applications
that consist of components distributed in different virtual machines. For this, they employ a local
controller for each virtual machine and a global controller that determines whether the requested
CPU entitlements can be satisfied, and if not, decides the final resource entitlements based on
given QoS metrics. The local controllers use control theory. They collect resource utilization
values from virtual machines and adjusts the resource allocations of virtual machines such that
the new utilizations will converge to the desired utilization values. For example, if a workload
consumed 0.3 of a physical CPU and the desired utilization is 75% then the controller will adapt
the CPU allocation towards 0.4 of a CPU.

Soror et al. (2008) present a workload controller for database management systems. It auto-
matically configures multiple virtual machines that are all running database systems. The con-
troller uses information on the anticipated database workloads and relies on the cost model of
the query analyzer of the database system. The cost model helps to predict the database perfor-
mance under different resource allocations. Based on these predictions, it determines appropriate
configurations for the virtual machines.

Most virtualization products also provide workload management tools to control the applica-
tion performance. For example IBM z/OS workload manager (IBM WLM, 2008) and the HP-UX
workload manager (HP-UX WLM, 2008) support user defined performance goals and priorities.
They employ rule-based controllers that automatically adapt the virtual machines’ resource allo-
cation according to the user defined goals. SmartPeak (2008) delivers a workload management
product that dynamically controls processor, virtual and physical memory, and network band-
width usage in order to improve quality of service and consolidate workloads.

2.6 Integrated Resource Pool Management

This thesis proposes a comprehensive resource pool management approach integrating con-
trollers operating at three levels. A similar approach is presented by Zhu et al. (2008). The
1000 Islands project aims to provide integrated capacity and workload management for the next
generation data centers. The authors evaluate an integration policy for different controllers and
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report on some real system measurements. In addition, this work also analyzes workload char-
acteristics, considers additional proactive controllers to better manage quality of service, and
exploits novel QoS metrics for comparing the impact of different management policies.

Other examples of multi-level resource management are also in the literature. For example,
Bennani and Menasce (2005) present application environments managed by local controllers that
add and remove servers during runtime and by a global controller that computes new configu-
rations in configurable control intervals. For each application environment, they calculate the
number of required servers using predictive performance models. In contrast to their work, we
consider the allocation of several workloads to each physical server.

Xu et al. (2007) propose a two-level resource management system with local controllers at
the virtual-container level and a global controller at the resource-pool level. The local con-
trollers use fuzzy logic to estimate the resources needed by an applications workload. The global
controller then decides on the resource requests of the local controllers trying to avoid SLA vio-
lations. In contrast, we propose three levels of resource management and consider time-varying
demand traces of the workloads.

A new batch computing service is presented by Grit et al. (2007) that executes batch jobs
within isolated virtual workspaces. They suggest separating resource management and job man-
agement to achieve more efficient resource sharing.

Raghavendra et al. (2008) integrate sophisticated aspects of power and performance manage-
ment for resource pools. They present a simulation study that optimizes with respect to power
while minimizing the impact on performance. The results from their simulations suggest that
between 3% and 5% of workload CPU demand units are not satisfied for integrated controllers
with their approach. Unsatisfied demands are not carried forward in their simulation. With our
resource pool simulation approach, we carry forward demands and focus more on per-workload
quality metrics that characterize epochs of sustained overload. With our experiments, more than
99.9% of workload demands were satisfied for all cases. Raghavendra et al. (2008) conclude that
3% to 5% performance degradation is acceptable to save power. We concur, but suggest this is
only true in exceptional circumstances when access to power is degraded. Otherwise, workload
quality of service must be maintained to satisfy business objectives.

A previous publication (Gmach et al., 2008a) proposed a similar integration of three con-
trollers to maintain application’s quality of service. The approach focuses on the management of
enterprise applications in non-virtualized environments. The use of management controllers is
restricted by the flexibility of the applications and the non-virtualized environment. In this the-
sis, applications are executed in virtual machines in resource pools that support virtual machine
migration. This thesis explores the scenario where resource pool management does not include
application self-adaptation.

Many research groups have worked on different aspects of resource pool management. As
shown above, there are some similar control approaches in literature. However, this thesis is the
first to explore the relationships among the approaches in such detail.



CHAPTER 3

Metrics for Capacity Management

Metrics define a way to measure and quantitatively assess quality criteria. Typically, the mea-
surements are based on a given time interval that is expressed with fixed or sliding windows.
The metrics presented in this chapter are used for two purposes: (1) they denote the required
capacity in the workload placement process and (2) they allow a comparison of the effectiveness
of workload management policies.

This chapter is structured as follows: Section 3.1 introduces the fixed and sliding window
approaches that are used to express metrics. In Section 3.2 service level agreements (SLAs) are
introduced. An SLA is a contract between a service provider and customer based on metrics.
Various metrics can be used to express the desired quality of service levels. Section 3.3 defines
metrics used in this thesis to assess resource access quality, power efficiency, resource utilization,
and management efficiency. Subsequently, Section 3.4 explores the correlation between quality
metrics and required capacity and, finally, the crucial points of this chapter are summarized in
Section 3.5.

Some of the metric definitions have been previously published in Gmach et al. (2007a),
Gmach et al. (2007b); and Gmach et al. (2008b).

3.1 Fixed and Sliding Window Traces

Consider one capacity attribute, for example, CPU cycles or physical memory. A workload’s
trace of demands, L, is defined as N contiguously measured demand values for the attribute for
intervals of constant duration d. Let tn be the time that corresponds to interval n in L and let
l(tn) be the measured demand in units of capacity. Then, the demand trace can be written as
L = (l (tn))0≤n≤N . The definitions for required capacity rely on fixed and sliding windows of
intervals:
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Figure 3.1: Fixed and Sliding Window Trace Approach: s = 5, d = 1

• A fixed window trace with c contiguous intervals per window with window duration s =

c ·d is defined as L(F,s) =
(

l(F,s) (tn)
)

0≤n≤N/c
, where l(F,s)(tn) is the average demand over

the window (l (tm))n·c≤m<(n+1)·c of duration s.

• A sliding window trace with c contiguous intervals per window of window duration s = c ·d

is defined as L(S,s) =
(

l(S,s) (tn)
)

0≤n≤N−c
, where l(S,s)(tn) is the average demand over the

window (l (tm))n≤m<(n+c) of duration s.

Figure 3.1 illustrates the fixed and sliding window approaches. In the example, a load trace
L consists of per minute data, i. e., d = 1. Both approaches use a window size s of 5 minutes.
The fixed window trace results in a per 5 minute workload trace where each value represents the
average demand within the 5 minutes (see Figure 3.1(a)). Figure 3.1(b) shows the sliding window
trace that still is a per minute demand trace. Each demand value represents the average demand
over the corresponding 5 minute interval. The grey boxes in Figure 3.1(b) represent the average
demand value in the sliding window trace and the white box around a grey one represents the
five demand values that are incorporated into the average demand.

The following sections use these definitions for fixed and sliding window traces to define
figures of merit.

3.2 Service Level Agreements

Service level agreements (SLAs) are IT service contracts that specify the minimum quality of
service levels for a delivered service and the obligations that exist between the provider and the
customer. Service providers negotiate the SLAs with the customers. SLAs constitute the price
for hosting the service, the sizing of the service (e. g., the maximum request rate), the required
quality of service, and the penalties for failing the assured QoS levels. They typically include
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one or more QoS levels for a service. For more information on service level agreements see
Buco et al. (2004).

A QoS level in this thesis denotes a percentile constraint for the desired quality and a penalty
or a reduction of the customer’s payment if the quality fails to meet the constraint. Typically, a
percentile constraint demands that a certain percentage of requests is processed within a given
time interval. The percentile constraint can be defined using either fixed or sliding windows.

If the service provider fails a QoS level, a penalty is due. A maximum penalty may limit the
costs that are due for violating the percentile constraints. For example, a utility computing SLA
may specify that a penalty of 1000$ is due for every 2 percentage points under-fulfillment of a
metric value, that the maximum penalty is limited to 2000$, and that QoS levels are evaluated at
the end of each month. This implies that no penalties are due if at the end of the evaluation period
more than 98% of all requests fulfilled their response time. 1000$ are due if the proportion of
timely requests is between 96% and 98%, and 2000$ are due if it is below 96%.

3.3 Figures of Merit

This section presents several metrics that are used to compare the results of different management
policies. The metrics can be defined upon fixed or sliding windows. In particular, metrics for
resource access quality, power efficiency, utilization, and management efficiency are defined in
the following paragraphs.

Some of the following definitions rely on the concept of a unit of capacity. The magnitude
of the unit is arbitrary, but it must be used in a consistent manner to express resource demands
and the capacity of resources. For processors, a unit of capacity is defined as one CPU share that
denotes one percentage of utilization of a processor with a clock rate of 1 GHz. A scale factor
f is used to scale the capacity requirements between servers with different processor speeds or
architectures.1 For example, a server with n processors and a clock rate of 2 GHz would have a
scale factor of 2 and thus 2 ·n hundred CPU shares. For memory, a unit of capacity is defined as
1 MB. Similarly, units of demand for other capacity attributes can be defined. The utilization of
a capacity attribute is defined as demand divided by supply over some time interval.

3.3.1 Resource Access Quality: Violation Penalties

The quality metric violation penalties is based on the number of successive intervals where a
workload’s demands are not fully satisfied and the expected impact on the customer. Longer
epochs of unsatisfied demand incur greater penalty values, as they are more likely to be perceived
by those using applications. For example, if service performance has been degraded for up to 5
minutes, customers would start to notice. If the service is degraded for more than 5 minutes, then

1We note that such factors are only approximate. The calculation of more precise scale factors is beyond the
scope of this thesis.
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customers may start to call the service provider and complain. Therefore, larger degradations in
service must cause greater penalties.

The quality of the delivered service depends on how much the service is degraded. If demands
greatly exceed allocated resources, then the utility of the service suffers more than if demands
are almost satisfied. Thus, for each bursty interval, a penalty weight wpen is defined that is
based on the expected impact of the degraded quality on the customer. The penalty value pen

for a violation with i successive overloaded measurement intervals is defined as pen = i2 ·wpen.
Weight functions for CPU and memory used in this thesis are given below. The sum of penalty
values over all workloads over all violations defines the violation penalty for the metric. This
approach is used for both CPU and memory.

Regarding CPU, the impact of degraded service on a customer is expressed through estima-
tions of the average service response time. The average response time behavior for a service
is modeled using an M/M/k-based queuing model (Kleinrock, 1975)2. Given a server with k

processors and a utilization u, then according to Rolia (1992), the average response time r that
corresponds to a single unit of demand can be estimated as r = 1/(1−uk).

Let ua, ud < 1 be the actual and desired CPU utilization for a violation interval, and ra and rd

be the corresponding estimated actual average response time and desired average response time
per unit of demand. The weight for the CPU penalty wCPU

pen is defined as the expected average
response time increase 1− rd/ra, equivalently:

wCPU
pen = 1−

1−uk
a

1−uk
d

The value of wCPU
pen is between zero and one as the observed utilization during a violation is

higher than the expected utilization. Additionally, for a utilization of 100%, the weight is set to
wCPU

pen = 1. The violation penalty for a bursty interval with i successive measurement intervals
with overloaded CPU is then defined as penCPU

w = i2 ·wCPU
pen .

Regarding the memory allocation, the response time increase depends on the memory page
hit ratio hr. Zipf distributions for memory accesses appear to be common in a large number of
settings, so that this model is generally applicable. For example, many studies indicate that file
accesses in web workloads follow Zipf-like popularity distribution, i. e., the probability px of a
request to the xth most popular object is proportional to 1/xα for some parameter α . In this case,
given a memory size l and an allocated amount of memory l̂, according to Doyle et al. (2003)
the hit ratio for web workloads is estimated by:

hr =
1− l̂(1−α)

1− l(1−α)

Then, the response time is modeled as linearly proportional to the page miss ratio 1− hr. Con-
sequently, the utility of the service is estimated as 1− hr and the weight for memory penalties

2We note that not all workloads exhibit an M/M/k-like behavior for CPU access. In the case that deeper knowl-
edge of workload behavior is available, more sophisticated models can be used.
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is defined as wMem
pen = 1− hr. In the simulation environment, the hit ratio for a workload is es-

timated as its percentage of satisfied memory demands in bytes. The weighted memory penalty
for a violation with i successive measurement intervals with overloaded memory is then defined
as penMem

w = i2 ·wMem
pen .

To summarize, the CPU and memory violation penalties reflect two factors: the length of the
bursty interval and the severity of the violation. The severity of the violation is captured by a
weight function. Two weight functions were introduced, but others could be employed as well.

3.3.2 Resource Access Quality: Resource Access Probability

This quality metric identifies the resource access probability, which we define according to
Rolia et al. (2003). The resource access probability Θ is specified as the probability that a unit
of demand will be satisfied upon demand, and hence not propagated. This expresses that with a
probability of Θ, resource demands are satisfied. The value Θ can be used to support capacity
planning for workloads (Cherkasova and Rolia, 2006). Let A be the number of workload traces
under consideration. Each trace consists of W weeks of observations with T intervals per day
as measured every d minutes. Without loss of generality, the notion of a week is used as a time
period for service level agreements. Other time periods could also be used. Time of day captures
the diurnal nature of interactive enterprise workloads (e. g., those used directly by end users); we
note that some time intervals may be more heavily loaded than others. For 5 minute measurement
intervals, a day comprises T = 288 intervals. We denote each interval using an index 1≤ t ≤ T .
Each day x of the seven days of the week has an observation for each interval t. Each observation
has a measured value for each of the capacity attributes considered in the analysis.

To define Θ, consider one attribute that has a capacity limit of R units of demand. Let Dw,x,t

be the sum of the demands upon the attribute by the A workloads for week w, day x, and interval
t. R is the available capacity. Then, Θ is defined as:

Θ =
W

min
w=1

T

min
t=1

∑7
x=1 min(Dw,x,t , R)

∑7
x=1 Dw,x,t

The minimum of Dw,x,t and R is the satisfied demand for one interval. For every week and
interval per day the aggregated resource access probability over the seven days per week is cal-
culated. Then, Θ is reported as the minimum resource access probability received any week for
any of the T intervals per day.

3.3.3 Resource Access Quality: Resource Compliance Ratio

The resource compliance ratio cr measures the resource access quality for a workload. It is
defined by the percentage of intervals where—considering all capacity attributes—all demands
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of a workload are satisfied. The metric cr is defined as:

cr =
number of intervals with all demands satisfied

total number of intervals

3.3.4 Power Efficiency: Minimum, Maximum, and Average Watts per In-

terval

Each server h has a minimum power usage ph
idle, in Watts, that corresponds to the server having

idle CPUs, and a maximum power usage ph
busy that corresponds to 100% CPU utilization. The

power ph(tn) used by a server h at the measurement interval tn is estimated as

ph(tn) = ph
idle +uh(tn) · (ph

busy− ph
idle)

where uh(tn) is the CPU utilization of the server h at time tn. The linear model for the estimation
of the power usage is derived from Economou et al. (2006). They propose a linear model with
several factors like CPU, memory, and network activity. The total power consumption of the
infrastructure at time tn is defined as:

P(tn) = ∑
h∈H

ηh(tn) · p
h(tn), with

ηh(tn) =

{

1, server h is running at time tn

0, server h is shut down at time tn

In the simulation environment, a server is considered to be turned off when no workload is
assigned to it. The system neglects resources required for booting and shutting down servers.
The maximum Watts per interval for a period [t1, tN ] is then defined as Pmax = maxN

n=1 P(tn).
Similarly, the minimum power usage is defined as Pmin = minN

n=1 P(tn) and the average Watts per
interval as:

P̄ =
∑N

n=1 P(tn)

N

3.3.5 Utilization: Minimum, Maximum, and Average Number of Servers

The minimum, maximum, and average number of servers for a policy is used to compare the
overall impact of a management policy on capacity needed for the resource pool infrastructure.
The maximum number of servers affects the purchase costs of the infrastructure.

3.3.6 Utilization: Server CPU Hours Used and Server CPU Hours Idle

The total server CPU hours used corresponds to the sum of the per-workload demands including
migration overhead. Total server idle CPU hours is the sum of idle CPU hours for servers that
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have workloads assigned to them. Thus, the server idle CPU hours metric shows how much CPU
capacity is not used on the active servers.

The sum of the CPU hours idle and the CPU hours used results in the CPU hours total, which
is the total number of CPU hours of all active servers. The fraction of the CPU hours used and
the CPU hours total is the average utilization over all servers for the experiment. The resource
pool simulator that is presented in Chapter 8 defines a server as active if at least one workload is
assigned to it.

Normalized values are defined with respect to the total demand of the workloads as specified
in the workload demand traces. Note that if normalized server CPU hours used is equal to 1.1
and normalized server CPU hours idle is equal to 1.4, then this indicates a migration overhead of
10% and corresponds to an average CPU utilization of 44%.

3.3.7 Management Efficiency: Number of Migrations

The number of migrations is the sum of migrations caused by the workload placement and work-
load migration controllers. A smaller number of migrations is preferable as it results in lower
migration overheads and a lower risk of migration failures.

3.4 Required Capacity

The quality metrics presented above are used to define the required capacity. For example, in
the experiments the amount of resources needed is scaled in a way such that the achieved qual-
ity reaches the required quality level. Furthermore, the time horizon of the metric has a huge
influence on the resulting value. We distinguish between fixed and sliding window approaches.

3.4.1 Fixed Windows and Probabilities

Fixed windows provide an intuitive way to express constraints on required capacity. With this ap-
proach, server pool administrators may state multiple simultaneous constraints for fixed windows
with different sizes. Consider Z constraints of the form (si,Ui,Pi), for i = 1, . . . ,Z, where:

• si, a fixed window with ci intervals of duration d so that si = ci ·d,

• Ui, a limit on the percentage of utilization of capacity for a window,

• Pi, the percentage of windows permitted to have utilizations that exceed Ui.

Then the required capacity is solved such that the tightest constraint is satisfied. For example,
let: s0 = 30 minutes, U0 = 100%, and P0 = 100%; and s1 = 5 minutes, U1 = 100%, and P1 = 95%.
The first constraint captures the intuitive requirement that the demand for capacity should not
exceed supply for too long, e. g., 30 minutes. The second constraint limits how often demand
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is permitted to exceed supply at a shorter timescale, e. g., 5 minutes. This limits the impact of
overbooking on application workloads at shorter timescales.

A deficiency of this approach is that it does not clearly bind the impact on any demand that
is not satisfied in an interval. For example, for those 5 minute intervals where demand exceeds
supply, there is no limit on how much greater demand was than supply. Furthermore, as a fixed
window approach, the result for required capacity will depend on which interval starts the first
fixed window.

3.4.2 Simple Sliding Window

Our simple sliding window definition for required capacity defines the required capacity for a
capacity attribute as the minimum number of units of capacity needed so that demand for capacity
does not exceed the supply of capacity for more than an overload epoch s as expressed in minutes.
If a unit of demand is unsatisfied because demand exceeds supply, i. e., an overload occurs, then
that unit of demand propagates forward in time until there is available capacity to satisfy the
demand. For a performance critical environment, s may be chosen as 0, which means all demand
must always be satisfied. For a more typical data center, where service levels may be monitored
on an hourly basis, s = 30 minutes may be a reasonable value. The required capacity is reported
as the smallest capacity such that no epoch has demand greater than supply for more than s

minutes at a time. This is a sliding window approach where the overload epoch is defined as the
window duration s.

3.4.3 Quality and Required Capacity

Required capacity is defined subject to the constraint that the quality metrics, which are pre-
sented in Section 3.3, are fulfilled. The workload placement process uses the resource access
probability to determine the required capacity and the workload placement. This directly relates
the definition of required capacity to its impact on workload demands. With this definition, a re-
source pool operator would offer both an overload limit s and a resource access probability Θ that
a unit of demand will be satisfied upon demand, and hence not propagated. The Θ value bounds
the impact of overload conditions on units of demand by application workloads to 1−Θ. During
workload placement exercises, the workload placement controller aims to place workloads such
that the overload limit s and Θ constraints are both satisfied.

Furthermore, let R′ be the required capacity for an attribute. The required capacity R′ is the
smallest capacity value, R′ ≤ R, to offer a probability Θ′ such that Θ′ ≥ Θ and those demands
that are not satisfied upon request, Dw,x,t −R′ > 0, are satisfied within the overload epoch of s

minutes.
The primary advantage of this approach for workload placement over the fixed window ap-

proach is that demand not satisfied within an interval is modeled as propagated to the next inter-
val. Compared to the simple sliding window approach, the overload conditions are defined with
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respect to units of demand that are not satisfied rather than a simple number of contiguous over-
load epochs. Cherkasova and Rolia (2006) showed that such a value for Θ can be used to decide
scheduler settings for workload managers that support two priorities of service. The approach
can be used to automatically partition a workload’s demands across the two scheduling priorities
to manage the risks of resource sharing on a per-workload basis. The higher priority can be used
as a guaranteed class of service and the lower priority as a class of service that offers capacity
with a statistical guarantee of Θ.

3.5 Summary

This chapter presented the concept of fixed and sliding windows traces that help to define the
metrics. It introduced service level agreements that constitute the negotiated quality require-
ments for the workloads. Next, several metrics were described that are used in this thesis to
assess resource access quality, power efficiency, utilization, and management efficiency of work-
load placement policies. Chapter 9 uses the metrics to evaluate the experiments with respect to
resource access quality for workloads, required capacity to host the workloads, and management
efficiency of the controllers.





CHAPTER 4

Workload Demand Prediction

This chapter describes a demand prediction service. The purpose of the service is to use histor-
ical workload trace information to support capacity and workload management. The workload
demand prediction service has several features: (1) to decide on a workload’s demand pattern;
(2) to recognize whether a workload’s demands change significantly over time; (3) to support
the generation of synthetic demand traces that represent future demands for each workload, e. g.,
demands for several weeks or months into the future, to support capacity planning exercises; and,
(4) to provide a convenient model that can be used to support forecasting exercises.

Workload demand patterns are used to describe the workloads’ behavior. They are impor-
tant for the workload placement. Traditionally, a workload placement controller uses historic
workload traces based on the assumption that a good allocation for the past is a suitable one for
the future. Regarding the near future, this works quite well, but deeper knowledge of workload
behavior is necessary to calculate an allocation and the required capacities for longer periods
into the future. For example, suppose a resource instance is running two workloads with cyclical
behavior, one of them exhibits a peak every 3 days and the other one every 5 days. By looking at
the last two weeks, a workload placement controller might not anticipate a clash of the two peaks
and, thus, predict insufficient capacity. If the service uses patterns to predict the workload’s de-
mands, it will notice that these two workloads clash every fifteen days and place the workloads
accordingly.

The remainder of this chapter is structured as follows: Section 4.1 presents the pattern detec-
tion process and the extraction of patterns. Then, the analysis of long-term trends in the work-
loads’ demand traces is shown in Section 4.2. Next, Section 4.3 presents different approaches
for the generation of synthetic workload traces. After that, an approach to recognize changes
in the historical demand traces is shown in Section 4.4. In Section 4.5, the demand prediction
service integrates calendar information, e. g., knowledge on holidays, to improve the accuracy of
synthetic demand traces. Finally, Section 4.6 summarizes the chapter.
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Figure 4.1: Three Week Workload Demand Trace

Parts of the approach for the extraction of workload demand patterns and the generation of
synthetic demand traces have been previously published in Gmach et al. (2008a, 2007b, 2005b)
and Nicolescu et al. (2007).

4.1 Extraction of Workload Demand Patterns

This section describes the methods developed for deducing patterns, assessing their quality, and
classifying patterns with regard to quality. Furthermore, a method is presented to assess the
similarity among occurrences of a pattern.

4.1.1 Pattern Analysis

Given a historic workload trace L = (l (tn))1≤n≤N , which is represented by N contiguous demand
values l (tn), a demand pattern P = (p(tm))1≤m≤M,M≤N/2 with M contiguous demand values
p(tm) is extracted with the assumption that the workload has a cyclic behavior. This assumption
is evaluated later in the classification phase. According to a classical additive component model,
a time series consists of a trend component, a cyclical component, and a remainder, e. g., charac-
terizing the influence of noise. The trend is a monotonic function, modeling an overall upward
or downward change in demand.

The process for extracting a representative demand pattern from a workload is illustrated in
Figures 4.1 to 4.4. Figure 4.1, illustrates a three week workload CPU demand trace with a public
holiday during the second week. Additionally, on the following Friday the arising load is much
lower compared to other workdays as many employees have taken the day off.



4.1 Extraction of Workload Demand Patterns 33

0

2e+12

4e+12

6e+12

8e+12

1e+13

1.2e+13

1.4e+13

1.6e+13

0 1 2 3 4 5 6 7 8 9 10 11

In
te

ns
it

y

Wavelength in Days

Figure 4.2: Periodogram of Workload

The analysis starts by identifying the cyclical component that describes the periodic charac-
teristics of the workload. To determine the yet unknown duration M of the pattern, an evaluation
of the workload’s periodogram function is conducted as shown in Figure 4.2. A Fourier trans-
formation gives an overlay of harmonics for the time-varying magnitude of demand. For more
details on Fourier transformation see Cooley and Tukey (1965). The periodogram shows the in-
tensity I, with which a harmonic of a wavelength λ is present in the workload. I(λ ) is defined
as:

I (λ ) =
1
N
·

[

N

∑
i=1

(

l(ti)− l̄
)

cos2πλ i

]2

+
1
N
·

[

N

∑
i=1

(

l(ti)− l̄
)

sin2πλ i

]2

with λ ∈ R
+ and l̄ being the mean value of the trace L. The most dominant frequencies provide

information about the duration of a potential pattern. Intuitively, if the periodogram function has
a local maximum at λ > 0, then it is likely that there exists a representative pattern of length
λ . In general, it is not the case that the wavelength with the global maximum, named maxI , is
most representative. Thus, a set Λ = {λ1, . . . ,λk} of local maxima positions with I(λi) > maxI

2 for
every 1 ≤ i ≤ k is determined. For instance, the periodogram in Figure 4.2 exhibits two strong
local maxima. The first maximum proposes a wavelength of 1 day and the second maximum
proposes one at 7 days.

In addition to the periodogram, the autocorrelation function for the workload demand trace
is calculated. The autocorrelation ρ̂ (g) for lags g with g ∈ N,g < N is defined as

ρ̂ (g) =
σ̂ (g)

σ̂ (0)
, with σ̂ (g) =

1
N

N−g

∑
i=1

(

l (ti)− l̄
)(

l (ti+g)− l̄
)

with σ̂ (g) being the autocovariance function for a lag g. For further details on the autocorrelation
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Figure 4.3: Autocorrelation of Workload

function see Box et al. (1994). Figure 4.3 shows the autocorrelation function for the workload. It
describes dependencies within the workload curve, i. e., the similarity between the workload and
the workload shifted by a lag g. A high value ρ for the autocorrelation at lag g denotes that the
workload curve shifted by g looks similar to the original one. Thus, if the autocorrelation shows
local extrema at multiples of a lag g, it is a strong indicator that there exists a temporal depen-
dency of length g. In the same way as with the periodogram, a set of hypotheses {λk+1, . . . ,λk+h}
of significant local extreme positions is determined and added to the set Λ.

Workloads from enterprise data centers typically show a periodicity that is a multiple of
hours, days, weeks, and so forth. Due to unavoidable computational inaccuracies and influences
of irregular events and noise, the wavelengths in Λ can diverge slightly from these typical peri-
ods. Thus, the pattern extraction service performs a comparison to calendar specific periods and
determines the best matching multiple of hours, days, and weeks for every wavelength candidate
λi and augments Λ with the calendar based wavelengths so that they are also considered.

In the second step, the best candidate wavelength λ ′ from the λi ∈ Λ is selected. For each λi,
the average magnitude for ρ at multiples of λi is computed. For example, if λi = 1 day, then the
average of ρi from observations at lags of one day is taken. If λi = 7 days, then the average of ρi

from observations at lags of seven days is taken. If the workload exhibits a pattern with length λi,
then the workload after shifting it by multiples of λi is similar to itself and thus the autocorrelation
function exhibits high values at the lags {v ·λi | v ∈ N+}. The average magnitude ρ̄i is a measure
of similarity among cyclic repetitions in demand for λi. For our example in Figure 4.3, λ ′ = 7
days has the highest average magnitude ρ̄ ′ as compared to other values for λi and is recognized
as the best pattern length. This implies that the pattern length is M = 2016 intervals1 of duration

1There are 288 five minutes intervals per day.
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Figure 4.4: Extracted Pattern for Workload

d = 5 minutes. We note that the pattern extraction service only considers wavelengths less than
half of the length of the original workload demand trace because a possible pattern should at least
appear twice in the demand trace.

The chosen value for the pattern length of M intervals is used to calculate the pattern P =
(p(tm))1≤m≤M for the workload. First, we define occurrences for the pattern and then define
the pattern’s demand values p(tm). Given M, the workload L is divided into N/M complete
occurrences and possibly one partial occurrence. Let O be the occurrences of the pattern for
o≤ N/M +1. Thus, occurrence o is a subtrace of the trace L with values lo(tm) = l (tm+o·M) for
each 1≤ m≤M. For every interval tm in the pattern, a weighted average p(tm) for the interval is
calculated using intervals tm from the occurrences O of the pattern. We define a weight for each
occurrence o and interval m as:

wo,m =
lo(tm)

Σo′∈Olo′(tm)

With these weights the weighted average demand for each interval tm is computed as p(tm) =

∑o∈O wo,m · l
o(tm). The weighted average emphasizes the importance of larger values over smaller

values for capacity management. The upper diagram in Figure 4.4 shows the pattern and one
occurrence of the pattern. The curves closely resemble one another. The lower diagram demon-
strates the differences between the workload demands and the estimated demands in the pattern.
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Positive values state that the pattern is underestimating the demands whereas a negative value
indicates intervals where the pattern overestimates demands.

The pattern extraction approach works analogously for other resources. Figure 4.5 shows the
corresponding memory demand trace for the CPU trace in Figure 4.1. The pattern extraction
technique determines that the memory trace also exhibits a strong weekly pattern. Figure 4.6
shows the extracted pattern and compares the pattern with the analyzed historical demand trace.
Again, the curves closely resemble one another. The differences between the demand and the
pattern values are less than 10% of the workload demands.

4.1.2 Quality and Classification

The classification phase decides which workloads have periodic behavior. The classification is
based on two measures for the quality of the pattern. The first measure is ρ̄ ′ from Section 4.1.1.
Larger values for ρ̄ ′ imply a better quality of fit. The second measure characterizes the difference
between occurrences o ∈ O and the pattern. The difference is computed as the average absolute
error

ζ =
∑1≤m≤M,o | p(tm)− lo(tm) |

N

between the original workload and the pattern P. Smaller differences suggest a better quality of
the pattern.

To classify the quality of patterns for a large number of workloads, we employ a k means

cluster algorithm, which was presented in Hartigan and Wong (1979), with clustering attributes
ζ and ρ̄ ′. The algorithm partitions the patterns into three groups that are interpreted as having
strong, medium, or weak patterns. Weak patterns are not regarded as having a periodic pattern
because no clear cycle could be deduced for the trace. This may be due to changes in the work-
load’s behavior during the analysis period or because the pattern has a duration greater than half
the analysis period.

4.1.3 Similarity of Behavior for Pattern Occurrences

We expect a certain amount of variation in demands among occurrences of a pattern. These
may be due to random user behavior, holidays, etc.. However, larger variations may reflect a
repurposing of a server or a change in business conditions that affects capacity management. If
demands have clearly changed, atypical occurrences may be ignored when estimating trends for
demand or only the most recent occurrences may be used when estimating future workloads. In
this section, an automated test is presented to recognize whether there are significant differences
between occurrences of a pattern.

The test is designed to highlight extreme differences in load behavior. It compares two oc-
currences at a time. For an occurrence o, we define a difference for time interval tm as

p(tm)− lo(tm)

max{p(tm); lo(tm)}
,
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Figure 4.5: Three Week Memory Demand Trace for Workload
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Week 1 Week 2 Week 3

Week 1 - 181 69
Week 2 181 - 171
Week 3 69 171 -

Table 4.1: Minutes per Day of Extreme Differences in Load Behavior

which is the relative difference between the demand value in the workload pattern and the ob-
served demand value of the workload trace related to the maximum of both demands. The dif-
ferences for 1 ≤ m ≤ M express the variation of the occurrence o with respect to the pattern.
Using the above definition for the difference values, they range from -100% to 100% and differ-
ences in the range (−10%,10%] are deemed to be inconsequential from a resource pool capac-
ity management perspective. Thus, they are partitioned into three buckets that have the ranges
[−100%,−10%],(−10%,10%],(10%,100%], respectively. The right and left buckets define ex-

treme differences from the pattern. Two occurrences are deemed as similar by the approach if
they have similar numbers of observations in each bucket.

The approach is motivated by the Chi-square test, which is presented in Chakravarti et al.

(1967). A Chi-square test can be used to determine whether a pair of occurrences, o and o′, have
statistically similar numbers of observations per bucket. However, we have found that interpret-
ing the computed Chi-square statistic is problematic. The value of the statistic is sensitive to the
number of observations in the right and left buckets and the interpretation of the value depends
on pattern lengths. Instead, we choose to consider the sum of the absolute differences in counts
for the left and right buckets. This sum tells us whether the occurrences differ from the pattern
in a similar way. The sum is a count of intervals and can be expressed in terms of the number of
minutes per day when the occurrences have extreme differences in behavior from the pattern.

Table 4.1 gives the resulting minutes per day differences in extreme load behavior as com-
puted for the workload in Figure 4.1. Weeks 1 and 3 have differences in extreme behavior of
approximately 69 minutes per day. Week 2 differs from the other weeks. It has differences in
extreme behavior of 181 and 171 minutes per day as compared with week 1 and week 3, respec-
tively. This is likely due to the holiday that occurred in week 2. In the case study of Chapter 9,
we consider the impact of alternative values for a threshold that decides whether a pair of occur-
rences differs significantly in behavior.

4.2 Analysis of the Trend

To characterize a trend of the workload, the aggregate demand difference of each occurrence
of the pattern from the original workload L is calculated. Let bo

m be the difference between the
patterns’ expected value for demand p(tm) and the actual demand lo(tm) for interval tm in the
occurrence o. We define bo as the average demand difference of occurrence o with M demand
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values with respect to the pattern P as

bo =
∑M

m=1(p(tm)− lo(tm))

M
.

The value bo denotes the average error between the pattern and an occurrence o∈O. These values
help to determine the long-term trend of the workload. We define the trend τ as the gradient of
the linear least squares fit through the values bo for the occurrences o ∈ O as ordered by time.
For more details on linear least squares fit see Draper and Smith (1998). The trend τ estimates
the change of demand over time with respect to the pattern.

4.3 Generation of Synthetic Workload Demand Traces and

Forecasting

This section considers a process for generating a synthetic trace to represent a future workload
demand trace L′ for some time period in the future. Typically, traces are generated to represent
demands for a time period that is several weeks or months into the future. Our goals for a
synthetic trace are to capture the highs and lows of demand, to capture contiguous sequences of
demand, and to reflect the distribution of demands. These are critical for modeling a workload’s
ability to share resource capacity with other workloads and to model required capacity for the
workload. Furthermore, the approach must be able to introduce an observed trend or forecast
information. The generation of an occurrence o′ for L′ relies on the historical pattern occurrences
O. Each value lo′(tm) is calculated based on the corresponding tm values from O using one of the
following strategies. The following enumeration presents different strategies to derive synthetic
workload traces. For each strategy, the pros and cons are discussed.

Average value. The value lo′(tm) is the average of the corresponding tm values from all occur-
rences o ∈ O. The average strategy minimizes the average error between the historical
workload trace and the synthetic workload trace that is calculated for the same time pe-
riod. It accurately describes the average behavior of the workload trace but it also averages
out the highs and lows of demand and, thus, is less suitable for capacity planning and
workload placement.

Maximum value. The value lo′(tm) is the maximum of the corresponding tm values from all
occurrences o ∈ O. This conservative strategy generally over-estimates the resource usage
and is very sensitive to extreme outliers. It can be applied to very important services where
no loss of quality can be accepted.

Weighted average value. The weighted average strategy emphasizes the higher importance of
high demands compared to low demands in the capacity and workload placement process.
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Thus, the weighted average value is defined as

lo′(tm) =
∑o∈O lo(tm)2

∑o∈O lo(tm)
,

where the resource demands themselves are used as the weights. The resulting synthetic
workload is capturing the highs of demand and it is well approximating the behavior of the
workload. Thus, the weighted average strategy is used to quantify the cyclic behavior of
the workloads. In addition, this strategy is also suitable for capacity planning and workload
placement although it tends to average out the lows of demand.

Random Blocks. A value lo′(tm) is chosen randomly from the corresponding tm values from O.
Given a sufficiently large number of future occurrences O′, the same time-varying distribu-
tion of demands as in O will be obtained. This strategy provides a synthetic workload that
captures the lows and highs of demand in a representative way. To better model burstiness
in demand, sequences of contiguous demands in the trace, L must be taken into account.
The random block strategy accomplishes this by randomly selecting blocks of b intervals
tm, tm+1, . . . , tm+b at a time from the occurrences O. In this way, the synthetically generated
traces have contiguous sequences of demand that are similar to the historical trace.

In the capacity management process, the analysis steps can be repeated using multiple
randomly generated instances of L′ to better characterize the range of potential behavior
for the overall system. Multiple instances can better characterize interactions in demands
among multiple workloads.

Furthermore, workload demand traces may exhibit a trend τ that needs to be reflected in the
synthetic workload traces. For the sequence of historical pattern occurrences, demand values are
normalized so that the trend is removed with respect to the last occurrence before constructing
O′. This allows to forecast demands for synthetic traces based on τ and time into the future. Ac-
cording to an additive model, for each future occurrence o′, an absolute value τ ·∆o is computed
and added to each demand value in the occurrence o′. ∆o is the time period the forecast lies in
the future divided by the length of an occurrence. The further o′ is into the future the greater the
change with respect to the historical data, assuming τ is not zero.

Finally, a workload pattern P provides a convenient way to express what-if-scenarios and
business forecasts that are not observable to us from historic data. Suppose we have a pattern
P with O occurrences and we require a change to the pattern. Then, it is possible to express a
change once with respect to P rather than once for each of the possibly many occurrences.

4.4 Recognizing Changes in Workload Behavior

As discussed in Section 4.1.3, a workload demand prediction service needs to recognize when
there are significant differences in a workload’s pattern occurrences. Significant differences may
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Figure 4.7: Changes to the Workload’s Demands

cause a pattern to be classified as weak. Even worse, the pattern might not accurately repre-
sent the workloads’ behavior for the near future, as it is strongly influenced by the workload’s
trace before its behavior changed. This section presents an approach that detects such changes
automatically. If a workload’s historical trace exhibits a significant change, then the workload
demand prediction service reanalyzes the most recent part of the workload trace, i. e., a fraction
of the trace starting at the time where the workload changed its characteristic.

The approach is illustrated using an example presented in Figure 4.7. The figure shows a
12 week workload demand trace for a workload classified as having a weak pattern. Visual
inspection of the demand trace shows clear discontinuities in behavior in week 8 and 9 and it
appears that the workload has a different pattern before and after the changes. A more detailed
look at the quality of the found pattern strengthens the impression. Figure 4.8 shows a plus-minus
cumulative distribution function (CDF) for variability of differences in demand with respect to
the overall pattern for each of the 12 weeks. The pattern chosen for this workload is heavily
influenced by the first 7 weeks of the workload. Thus, the errors for the first 7 weeks are much
smaller than the errors for the latter 5 weeks. The figure shows that there are large differences in
the tails of the differences in demand with respect to the pattern.

For the automatic determination of such changes in behavior, the differences between the pat-
tern and the pattern occurrences are inspected and grouped into three buckets: the middle bucket
contains the number of measurements where the pattern matches the occurrence by plus or minus
10%. The left bucket contains the measurements where the pattern underestimates utilization by
more than 10% and accordingly the right buckets contains the measurements where utilization
is overestimated by more than 10%. The left and right buckets are containing the measurements
with extreme differences from the pattern. In the following, this is called extremely different load
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Figure 4.8: Variability of Differences in Demand with Respect to Pattern

behavior. Table 4.2 is showing how many minutes per day the pattern matches the occurrences
and how many minutes per day the workload is exhibiting an extremely different load behavior.
It is obvious that the pattern is not matching the occurrences very well as the workload is showing
extremely different load behavior for more than 518 minutes (i. e., approximately 8 hours and 40
minutes) per day for all weeks. Furthermore, the pattern represents the workload accurately for
at least 827 minutes per day in the first 7 weeks compared to a maximum of 303 minutes per day
in the last 4 weeks.

Next, the similarity of behavior for pairs of pattern occurrences is calculated using the tech-
nique presented in Section 4.1.3. The resulting minutes per day differences in extremely different
load behavior for the occurrences with respect to week 1 are shown in Table 4.3. The table shows
that weeks 1 through 7 have differences between 22 and 93 minutes per day. The average dif-
ference for these weeks is approximately 45 minutes per day. The latter 5 weeks are having
differences of 4 or more hours per day.

The demand prediction service uses thresholds for the differences in extremely different load
behavior to determine whether occurrences are similar or not. Considering the differences in
extremely different load behavior in Table 4.3, it will recognize that the workload changed its
behavior in week 8. Hence, it will remove the first 7 weeks from the historical workload trace
and re-analyze the last 5 weeks.

4.5 Using Calendar Information for Workload Prediction

Observations of historical demand traces from user interactive workloads show that demand val-
ues measured at holidays differ from demands measured at regular workdays. For example,
Figure 4.1 shows a CPU demand trace over 3 weeks. There is a public holiday in the second
week on Thursday. The observed CPU demands on the holiday are much lower than for regular
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Week [-100%, -10%] (-10%, 10%] (10%, 100%]

Week 1 33.571 827.857 578.571
Week 2 15.714 921.429 502.857
Week 3 15.714 850.000 574.286
Week 4 18.571 890.000 531.429
Week 5 14.286 826.429 599.286
Week 6 14.286 850.714 575.000
Week 7 11.429 835.714 592.857
Week 8 19.286 612.857 807.857
Week 9 170.714 16.429 1,252.857
Week 10 340.000 213.571 886.429
Week 11 340.714 303.571 795.714
Week 12 391.429 300.000 748.571

Table 4.2: Differences Between the Pattern and the Occurrences in Minutes per Day

workdays and the trace fragment for the holiday is comparable to a trace for a weekend day.
The corresponding memory demand trace for the workload is shown in Figure 4.5. Similarly,
the memory trace does not exhibit a peak during holidays. But, in contrast to CPU demands, the
memory demands stay at the level of the previous day and are thus much higher than for weekend
days.

These irregularities disrupt the cyclic behavior of the workloads and hence bias the process
to determine the pattern length. They also influence the workload analysis, the pattern extraction
process, and the generation of synthetic workloads.

To increase the pattern quality, in a preprocessing step such calendar-based irregularities are
removed from the historical workload demand traces and replaced with fitting demand values
from regular workdays. For this, a suitable workday is determined. Assuming cyclic behavior of
the workload, an adjacent workday is applicable. Thus, the preprocessing approach first tries to
use demands from the previous day for the replacement. If the previous day is another holiday
or a weekend day, then it will try to use the next subsequent day that is a regular workday. The
demand values in the workload trace that have been measured on the holiday then are replaced
with corresponding demand values of the determined adjacent workday.

Afterwards, the adjusted workload demand traces are used for the workload analysis and the
pattern detection process. These traces contain no perturbing bias caused by holidays that may
otherwise influence the analysis process.

Week 1 – 7 Week 8 Week 9 Week 10 – 12

Week 1 22 – 93 243 811 524 – 614

Table 4.3: Range of Minutes per Day of Differences in Extremely Different Load Behavior
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4.6 Summary

This chapter introduced an automated method to analyze historical workload demand traces and
to generate synthetic traces that represent the future behavior of workloads. It uses the autocor-
relation and periodogram function to determine a cyclic behavior of the workloads, for example
weekly trends. Furthermore, a method for the calculation of a possible long-term trend is pre-
sented. The long-term and the pattern information are then used to generate synthetic workload
traces that describe the workload’s time-varying resource demands.

The workload placement controllers that are presented in Chapter 5 can use synthetic demand
traces in order to anticipate future resource demands of the workloads. Section 9.4.3 of the case
study evaluates the use of synthetic workload traces for the workload placement management. It
addresses the impact of the length of the analyzed historical traces and the influence of calendar
information on the effectiveness of workload placement management.

Finally, the workload migration controller presented in Chapter 6 uses workload patterns to
predict resource demands into the near future. This enables the migration controller to control the
resource pool proactively. The effect of using synthetic workloads instead of historical demand
traces for the dynamic management of resource pools is evaluated in Section 9.3.2 of the case
study.



CHAPTER 5

Workload Placement Management

This chapter presents several workload placement algorithms that intelligently allocate work-
loads onto servers. The algorithms use either historical or synthetic workload demand traces to
consolidate a number of workloads onto a smaller number of physical servers in a resource pool.
Of course, past demands are not perfectly predicting future demands, thus every now and then
real demands will exceed the estimated demands resulting in poor resource access quality for
the affected workloads. To improve quality, a headroom of unallocated capacity may be used to
cushion the effects of unforeseen demand peaks.

This chapter is structured as follows: Section 5.1 presents three workload placement ap-
proaches. The first approach is based on a linear program that formally defines the problem and
calculates near optimal placements regarding historical workload traces. Unfortunately, the linear
approach is very computing intensive and thus not applicable for larger problem spaces. Then,
a best sharing greedy approach that iteratively places workloads onto the most suitable server
in each step is presented. Finally, a genetic algorithm is described for allocating the workloads.
Subsequently, Section 5.2 introduces an approach that adds capacity headroom onto servers to
improve resource access quality. The headroom can be a fixed size or its size can be adaptively
adjusted according to the quality measured in the last workload placement interval. Next, Sec-
tion 5.3 describes an approach for balancing workloads across servers to reduce quality issues.
Finally, Section 5.4 concludes the chapter and poses questions regarding workload placement
policies.

The genetic algorithm approach for the workload placement has been previously published in
Gmach et al. (2008b) and an earlier version of the best sharing greedy approach for the workload
placement was presented in Gmach et al. (2008a).
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5.1 Workload Consolidation

This section presents several approaches for the workload placement and discusses how robust
the different techniques are with respect to violations of assumptions. All approaches are using
workload traces to calculate the workload placement and the required capacity. The workload
traces can be regarded as (1) historical traces or (2) synthetically generated traces. For case (1),
it is assumed that the workloads will behave in a similar way as they did in the past. For case (2),
synthetic workload traces (see Section 4.3) are generated based on historical information.

The goal of the workload placement controller is to create a workload-to-hardware allocation
that uses fewest resources while satisfying QoS constraints. It aims at avoiding idle as well as
overload situations. A prerequisite for the workload placement controller is knowledge about
the workloads’ characteristics. The main idea is to find workloads that share resources well with
regard to the placement constraints. For this, workloads with complementary demand character-
istics are allocated onto the same hardware. Furthermore, the workload placement approach has
to take the different levels of workload flexibility into account. For example, some workloads
are bound to dedicated servers or they cannot migrate to other servers during runtime.

Let H denote the set of available servers and A the set of workloads. Then, the problem
space for finding the optimal workload placement is card(H)card(A). Finding the optimal work-
load placement is an NP-complete problem that can be reduced to the bin packing problem.
Coffman Jr. et al. (1997) present a definition and several approximation algorithms for the bin

packing problem. The runtime to find the optimal solution would be O
(

card(H)card(A)
)

, which

is not feasible for the number of servers and workloads used in today’s infrastructures. Hence,
this section also presents heuristics to find good allocations.

The following subsection describes the workload consolidation problem with a mixed integer
linear program. Subsequent subsections present two heuristic approaches: a best sharing greedy
heuristic and a genetic algorithm to consolidate workloads onto servers.

5.1.1 Linear Programming Approach

This section defines the workload placement problem using an 0-1 integer linear program (0-1
ILP). The linear program calculates a placement for a given set of workloads onto a given set of
physical servers, such that the number of required servers is minimized. Furthermore, the ILP
supports the approach of controlled overbooking. That means, administrators can specify the
maximum allowed amount of CPU and memory overbooking.

The description of the linear program is shown below. First, the program variables, indices,
and constants are described. Second, the objective function is presented and third, the constraints
of the integer linear program are depicted. The following sets and constants are used to define
the integer linear program:

• H denotes the index set of all physical servers.
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• A denotes the index set of all workloads that need to be allocated onto servers.

• ti denotes the ith measurement in the historic workload trace. The index i is between 0 and
N, the length of the demand trace.

• R
(c)
h denotes the available CPU capacity of server h.

• R
(m)
h denotes the available memory capacity of server h.

• U (c) ∈ (0,1] denotes the maximum utilization threshold for CPU capacity. For example, a
value of 0.8 indicates a headroom of 20%.

• U (m) ∈ (0,1] denotes the maximum utilization threshold for memory capacity.

• l
(c)
a (ti) represents the CPU demand of workload a at the ith measurement in the historical

workload trace.

• l
(m)
a (ti) represents the memory demand of workload a at the ith measurement in the histor-

ical workload trace.

• Y (c) controls the maximum allowed amount of CPU overbooking per physical server and
measurement interval. In case of overbooking, unsatisfied demands are not carried forward
into the next measurement interval.

• Y (m) controls the maximum allowed amount of memory overbooking per physical server
and measurement interval.

Furthermore, the linear program uses the following variables:

• va,h ∈ {0,1} denotes the placement of workload a. An assignment of 1 for va,h indicates
that the workload with index a is placed onto the physical server with index h. A value of
0 indicates that no such placement is made.

• yh ∈{0,1} indicates whether a physical server h is used for the placement of the workloads.
A value of 1 denotes that the server is used for the placement whereas a value of 0 enforces
that the server is not hosting any workloads.

The objective function of the integer linear program is to minimize the number of required servers
to place all workloads. Hence, the ILP minimizes the sum of all yh variables.

Minimize ∑
h∈H

yh (5.1)

Furthermore, the objective function of the integer linear program is minimized with respect to
the following constraints:
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• The sum of demands over all instances of a workload must equal the demands of the
workload. For the 0-1 integer linear program, this constraint enforces that the workload is
assigned to exactly one physical server.

∀a∈A : ∑
h∈H

va,h = 1 (5.2)

• A physical server that hosts at least one workload needs to be active. |A| denotes the total
number of considered workloads. Theoretically, an active host can host all workloads.

∀h∈H : ∑
a∈A

va,h ≤ |A| · yh (5.3)

• For each server, the total CPU demand for all assigned workloads must not exceed the
target utilization of the physical server by more than the defined amount of overbooking.
This constraint is enforced for every measurement interval.

∀1≤i≤N ,∀h∈H : ∑
a∈A

(

va,h · l
(c)
a (ti)

)

−Y (c) ≤U (c) ·R
(c)
h (5.4)

• For each server, the total memory demand for all assigned workloads must not exceed the
target utilization of the physical server by more than the defined amount of overbooking.
This constraint is enforced for every measurement interval.

∀1≤i≤N ,∀h∈H : ∑
a∈A

(

va,h · l
(m)
a (ti)

)

−Y (m) ≤U (m) ·R
(m)
h (5.5)

Finally, the variables of the integer linear program are bound to the domain 0,1.

∀a∈A,∀h∈H : va,h ∈ {0,1} (5.6)

∀h∈H : yh ∈ {0,1} (5.7)

The size of the integer linear program depends on the total number of workloads |A|, the
total number of physical servers |H|, and the number of measurement points N. Then, the above
linear program has |A| · |H|+ |H| variables and 2 · |H| ·N + |A|+ |H| inequalities that express the
constraints.

In order to decrease the computational complexity, the integer linear program is relaxed such
that workloads can be separated into several instances and the instances can be allocated onto
different servers. We note that the separation into several instances is unlikely to be feasible for
most workloads. Furthermore, when splitting a workload into several instances, the aggregated
demand of all instances would typically be higher than its original demand. The relaxed ILP
is neglecting this additional overhead. However, it provides a lower bound for the number of
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required physical hosts and serves as a baseline for the evaluation of the effectiveness of workload
placement control heuristics.

To obtain the relaxed integer linear program, the Constraint 5.6 is replaced with the following
constraint:

∀a∈A,∀h∈H : 0≤ va,h ≤ 1 (5.8)

Then, Constraint 5.2 still enforces that the sum of the instance demands equals the total
demand of the workload. Now, multiple instances of a service can be executed on different
servers and the fraction of demand that occurs at each instance can be controlled by a parameter.
For example, a value of va,h = 0.5 indicates that an instance of workload a is executed on server
h and 50 percent of the workload demands are handled by this instance.

The relaxed ILP still contains |H| integer variables but it allows the calculation of workload
placements for realistic scenarios. Section 9.2.3 of the case study uses the relaxed ILP to evaluate
how densely workload placement algorithms can consolidate the workloads.

5.1.2 Best Sharing Greedy Algorithm

Unfortunately, the integer linear programming approach is not suitable to find placement solu-
tions for realistic problem sizes. Thus, a simple but very efficient heuristic to determine good
and robust workload placements is presented in this section. The heuristic is based on a greedy
algorithm that iteratively places each workload onto the most appropriate server. The aim of the
heuristic is to consolidate workloads in order to reduce the resources needed in a resource pool.
Figure 5.1 shows the pseudo code for the best sharing greedy algorithm.

In a first step, the heuristic estimates the minimum number of servers needed. For this,
it sums up the demands over all workloads for each measurement interval and determines the
total demands ∑a∈A l(tn) for all 1 ≤ n ≤ N. Figure 5.2 shows the aggregated CPU and memory
demands of three example workloads a1,a2, and a3. Then, the maximum demand over time is
divided by the capacity of one server and the smallest integer number greater or equal to that
number states a lower bound for the number of physical servers that are needed. The heuristic
determines a minimum number of required servers for each capacity attribute that is considered
and picks the biggest number as the overall minimum number of servers needed. Let x be the
estimate for the minimum number of servers needed. In the above example, at least two servers
are needed to provide enough CPU capacity and again at least two servers are needed to provide
enough memory capacity. Thus, the minimum number of servers needed is two.

Next, the heuristic orders the workloads according to their priority in decreasing order. Work-
loads within the same priority class are ordered according to their resource demands such that
workloads with higher resource demands are allocated first. The heuristic is initialized by adding
x servers to the set of servers used and placing the first x workloads onto the x servers (see lines 5
to 9). After the initialization, the heuristic iteratively allocates the remaining workloads onto the
servers.
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input : set of workloads A, set of available servers H.
output: placement of all workloads in A.
x←− estimate at minimum number of servers needed;1

initialize Ĥ←− /0 ; // initialize set of used servers2

initialize Â←− A ; // initialize set of remaining workloads3

sort workloads in Â ordered by priority and resource demands;4

for i←− 1 to x do5

take first workload a ∈ Â;6

place workload a onto server h ∈ H \ Ĥ;7

Â←− Â\{a};8

Ĥ←− Ĥ ∪{h};9

forall a ∈ Â do10

if at least one server in Ĥ exists that provides enough free resources for a then11

place workload a onto server h that provides enough free resources and minimizes12

∆(a,h);
else if exists server h ∈ H \ Ĥ then13

Ĥ←− Ĥ ∪{h};14

place workload a onto server h;15

else16

place workload a onto server h ∈ Ĥ that is expected to become least overloaded;17

Figure 5.1: Algorithm for Best Sharing Greedy Placement of the Workloads
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Figure 5.2: Initial Number of Servers Needed
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For every capacity attribute k, for example, CPU and memory, an allocation threshold Uk

is specified that determines an upper bound for the resource utilization, e. g., the maximum per-
centage of processor load or memory consumption. A server provides enough capacity to host a
workload if—after the allocation of the additional workload—the expected resource utilization
stays below the allocation thresholds for each regarded resource.

The following description for an iterative step of the heuristic assumes that some workloads
have already been assigned to the used servers Ĥ and that the next workload to be deployed is
a ∈ Â. Let t1, . . . , tN denote the time period for which a placement has to be calculated. The
load induced by a is described by the load trace

(

lk
a(tn)

)

1≤n≤N
, which can be either a historical

or a synthetic workload trace. For the cost function, the best sharing greedy algorithm uses the
fraction of resource utilization uk

a,h(tn) = lk
a(tn)/Rk

h to represent the workload demands where Rk
h

is the available capacity of resource k on server h. Analogously,
(

uk
h(tn)

)

1≤n≤N
represents the

relative total demand of all workloads that are currently allocated to server h. For the placement
of workload a, the heuristic only regards servers that provide enough resources for a, i. e., the
maximum resource utilization of the server is expected to be lower than the allocation threshold
for each capacity attribute. If there is more than one server providing enough resources for work-
load a, then the placement of a depends on the increase of the maximum resource consumption
(see line 12 in Figure 5.1). The increase of the maximum utilization when allocating workload a

on server h is estimated by:

∆(a,h)= max
1≤n≤N, k∈K

(

uk
h(tn)+uk

a,h(tn)
)

− max
1≤n≤N, k∈K

(

uk
h(tn)

)

,

where K denotes the set of considered capacity attributes, for example, CPU and memory. The
equation is minimized for the so-called best-match-server. The strategy to choose the best-
match-server tries to keep the increase of the utilization peaks low. It tends to place workloads
that share resources well together onto servers.

Figure 5.3 illustrates the evaluation of the best-match-server for workload a. It shows two
servers, h1 and h2, that are available. In the example, both servers exhibit enough free CPU and
memory capacity to host a. Hence, the load increase is evaluated for both servers. The load
increase ∆(a,h1) for server h1 is lower than ∆(a,h2), so that h1 is chosen as the best candidate
for the placement of workload a. If none of the involved servers has enough resources left
to host workload a without being expected overloaded, the heuristic tries to add an additional
server to the set of used servers and allocates a to this server. If all available servers are already
used and all of them are expected to become overloaded when additionally hosting workload a,
then the heuristic allows the overbooking of resources and chooses the server with the minimal
exceedance of the allocation threshold (see line 17 in Figure 5.1). If the algorithm needs to
overbook resources, it reports that resources are overloaded on the server.
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Figure 5.3: Calculating Best Matches

5.1.3 Genetic Algorithm

In addition to the best fit greedy algorithm, a genetic algorithm approach for the workload place-
ment controller is evaluated in the case study in Chapter 9. The approach uses a capacity man-
agement tool that is presented in Rolia et al. (2005) and Rolia et al. (2003). The tool is based
on the genetic algorithm approach of Deb et al. (2000). It supports two separate optimization
objectives: (1) the consolidation of workloads in order to economize resources and (2) balancing
workloads across a set of servers according to their time-varying demands. The latter aim is also
called load leveling and reduces the likelihood for a lack of resources that may cause service
level violations.

The genetic algorithm supports the controlled overbooking of capacity, i. e., the required
capacity for workloads on a server may be higher than the available capacity of the server for
some intervals. The resource access probability metric, which is presented in Section 3.3.2, is
used to define the controlled overbooking such that the resulting workload placement achieves
the given resource access probability when applied to the given workload traces.

The following paragraphs briefly describe the genetic algorithm approach that is employed
for the workload consolidation. The objective in the workload consolidation process is to min-
imize the number of servers needed. A workload placement is expressed by its genome, which
is a vector of length |A|. Each entry of the vector contains the number of the server where the
corresponding workload is allocated to. The genetic algorithm is initialized with a pool of valid
placements (genomes). A placement is valid if the resource access probability defined in Sec-
tion 3.3.2 is satisfied for all servers.
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To find initial workload placements, the genetic algorithm approach uses a simple first fit
greedy heuristic. It starts with sorting the workloads according to their demands in decreasing
order. Then, it iteratively places each workload onto the first server that provides enough ca-
pacity. If none of the available servers can host the workload, then it adds an additional server
and places the workload onto it. The capacity management tool uses the first fit greedy heuristic
multiple times to generate an initial pool of genomes for the genetic algorithm.

The genetic algorithm approach then conducts mutations and crossover routines to derive
new genomes. The mutation routines try to reduce the number of servers used and the crossover
routines perturb existing genomes to introduce randomness into the search. The genetic algo-
rithm terminates after a given number of generations and returns the best assignment observed
so far.

In this thesis, an enhanced version of the capacity management tool is employed to better
support the workload placement controller paradigm. The enhancement exploits multi-objective
functionality offered by the genetic algorithm approach from Deb et al. (2000). Instead of simply
finding the smallest number of servers needed to support a set of workloads, the placement
controller now also evaluates solutions according to a second simultaneous objective. The second
objective aims to minimize the number of changes to the current workload placement. When
invoking the controller, an additional parameter specifies a target for the number of workloads
that are desirable to migrate. Limiting the number of migrations limits the migration overhead
and reduces the risk of incurring a migration failure. If it is possible to find a solution with
fewer or equal migrations than desired, then the controller reports the workload placement that
needs the smallest number of servers and requires the desired number or fewer of migrations. If
more changes are needed to find a solution, it reports a solution that has the smallest number of
changes to find a feasible solution.

5.2 Adaptive Headroom

The linear program, the best sharing workload placement, and the genetic workload placement
controller support the specification of an upper resource utilization threshold for each type of
capacity attribute. The thresholds define a headroom for each capacity attribute on a server that
should be unused as long as the workloads behave as expected. Whenever workloads on a server
demand more resources than expected, there exists a small buffer, i. e., the headroom, before
demands exceed supply and unsatisfied demands are carried forward. The workload placement
algorithms allocate workloads onto servers such that the maximum utilization of the server for
each capacity attribute stays below the utilization threshold.

An enhancement of the static headroom is the adaptive headroom. A workload placement
controller that employs the adaptive headroom approach analyzes the achieved resource access
quality for the most recent placement control intervals and determines an appropriate headroom
for the current workload placement. The quality we consider is the bursty interval metric from
Section 3.3.1. For each capacity attribute, the controller determines a headroom depending on
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the penalties observed in previous placement control intervals. Additionally, upper and lower
bounds are specified for the adaptive headroom. For example, the headroom for CPU may have
a lower bound of 0% and an upper bound of 30% of the total available CPU capacity.

The adaptive headroom service uses a rule-based system to determine adjustments to the
headroom. Administrators can define rules that specify how the current headroom will be ad-
justed depending on the measured penalties for the most recent placement intervals. A simple
example set of rules for the adaptation of the CPU headroom is shown below. For better read-
ability, the rules are presented in pseudo code:

IF penalty(prev 1) ≥ 1000 THEN increase headroom by 10%

IF penalty(prev 1) ≥ 10 AND penalty(prev 1) < 1000

THEN increase headroom by 5%

IF penalty(prev 1) = 0 AND penalty(prev 2) ≥ 200

THEN decrease headroom by 5%

IF penalty(prev 1) < 0 AND penalty(prev 2) < 200

THEN decrease headroom by 10%

The variable penalty(prev i) denotes the occurred penalties in the ith placement inter-
val before the current one. The first rule specifies that if the penalty value in the last placement
interval is above or equal to 1000, then the headroom should be increased by 10% of the capacity
of a server. If only a smaller penalty bigger than 10 occurred, then it should be increased by 5%.
If the adaptive headroom service observed no penalties in the last workload placement interval,
it should try to decrease the headroom to economize resources again. Depending on the penalties
in the workload placement interval before last, the headroom should be decreased by 5% or 10%.
We note that rules only change the size of a headroom within its boundaries, which have been
0% and 30% in this example.

5.3 Workload Balancing

The workload balancing approach is an alternative to the headroom concept. Instead of adding
a headroom to each server, this policy adds some additional servers to the system and balances
the workloads across them. The approach consists of two sequential steps. In the first step, it
determines the number of servers needed for hosting all workloads using one of the proposed
workload placement controllers. In the second step, it adds an administrator given number of
servers in order to provide additional capacity. Then, it uses the load leveling capability of the
capacity management tool from Rolia et al. (2005) to balance the workloads across all servers
so that each server is loaded nearly equally. The new balanced workload placement is used for
the next management interval. With the balancing approach, the additionally provided capacity
is distributed over all servers. Hence, each physical server in the resulting server pool exhibits a
similar amount of free capacity that helps to handle situations with unexpected high demands.
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5.4 Summary

The chapter introduced the concept of consolidating a set of workloads onto a set of physical
servers in order to determine good global workload placements. The workload placement pro-
cess faces two opposed objectives: (1) high utilization of the resources, which is aligned with
lower total cost of ownership; and, (2) optimal resource access quality of the workloads, i. e.,
all workload demands can be satisfied by the infrastructure. The chapter defined the workload
placement problem using a 0-1 integer linear program and, subsequently, presented a best shar-
ing greedy algorithm and a genetic algorithm that efficiently calculate near optimal workload
placements. Finally, it showed two approaches to increase the QoS of the executed workloads.
The headroom approach allocates workloads onto a set of servers such that the expected server
utilizations stay below administrator given thresholds. As an enhancement, the adaptive head-
room approach dynamically adjusts the utilization thresholds according to previously observed
quality metrics. The workload balancing approach adds some additional servers to the server
pool and balances all workloads across the pool.

Concerning the workload placement process, the following factors are expected to have an
impact on the resource access quality of workloads and on the required capacity:

• the choice of the workload placement algorithm;

• the interval between which new workload placements are calculated and applied;

• the choice of historical or synthetic workloads. In case of historical workloads traces, the
parts of a historical trace that are used;

• the policy for headroom; and,

• the workload balancing policy.

These factors are addressed in the case study in Chapter 9. Section 9.2 evaluates the theoretical
capacity savings that are possible from workload placement. For this purpose, the study varies
the workload placement interval and analyzes how dense different algorithms can consolidate the
workloads onto servers.

Section 9.4 evaluates the global workload placement process under realistic assumptions. It
shows the impact of the workload traces that are used to represent the workloads’ demands and
addresses the question whether metadata, for example, calendar information, helps to improve
workload placement. The section also evaluates the impact of headroom and workload balancing
approaches on the resource access quality and on the required capacity.





CHAPTER 6

Migration Management

Workload placement controllers consolidate workloads for the next placement interval based
on historical information. Unfortunately, past demand values do not perfectly predict future
workload demands. Thus, every now and then resource demands will exceed the supply of
resource capacity. The migration management controller recognizes situations when demand
exceeds supply and applies dynamic adaptations, e. g., migrating a workload from an overloaded
server to a less loaded server, to better satisfy the workloads’ quality of service.

This chapter describes a migration management controller that improves resource access
quality by recognizing overload and idle situations. It alleviates critical situations through mi-
grating workloads. For this, it continuously monitors all servers and workloads in a server pool.
Whenever it recognizes a critical situation, like a failure or resource shortage, it employs a fuzzy
logic based controller that determines proper actions to remedy the critical situation.

Section 6.1 describes the architecture of the migration management controller. This con-
troller implements a feedback control loop that is based on three steps: (1) monitoring of the
managed infrastructure, (2) determining proper reactions through a decision making process, and
(3) adapting the infrastructure correspondingly. The description of the advisor policies, which
specify when a server is overloaded or idle, follows in Section 6.2. Section 6.3 introduces the
basics of fuzzy logic. The fuzzy controllers that are implemented in the migration management
controller and their interactions are described in Section 6.4. Section 6.5 enhances the migration
management controller to react proactively. For this, autoregressive models or patterns describ-
ing the demand characteristics of the workloads are used to predict critical situations in the near
future. For example, this enables the migration management controller to avoid predictable re-
source shortages by adjusting the workload placement in advance. Finally, a summary of the
chapter is presented in Section 6.6.

A former version of the feedback controller approach is previously published in Seltzsam
(2005), Seltzsam et al. (2006), and Gmach et al. (2008a). In these publications, the fuzzy con-
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Figure 6.1: Architecture of the Migration Controller Framework

troller manages enterprise services that can be replicated and migrated. Enhancements of the
fuzzy controller to react proactively are published in Gmach et al. (2005a).

6.1 Architecture of the Migration Management Controller

The architecture of the migration management framework is shown in Figure 6.1. The migration
management controller requests measurements from monitors through the server pool API that
implements the API of the HP virtual machine management pack (HP VMM, 2008). The server
pool API is presented in Section 8.3.

The advisor gathers monitoring data from every workload and server in the server pool and
maintains an up-to-date view of the server pool.1 It recognizes critical situations according to
policies, which are presented in Section 6.2. Critical situations are then reported to a verification

system.
Short load peaks are quite common in real systems and immediate reactions to these peaks

might lead to an unstable system. Thus, the verification system observes the monitoring data for
a tunable period of time (watch time). If the advisor policy still fires using the average values for
the data during the observation period, then the fuzzy controller module is triggered.

The fuzzy controller applies actions through the server pool API to alleviate critical situations.
For example, if a CPU overload on a server is detected, the controller can migrate services from
the overloaded server to currently less loaded servers. The controller also reacts to failures,

1Figure 6.1 only shows load monitors responsible for the servers. For simplicity of the illustration, workloads
running on the servers and their monitors are omitted.
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imminent QoS violations, and idle situations. The fuzzy controller module is presented in more
detail in Section 6.4.

The monitoring buffer stores the most recent measurement data and supports the verification
system with historical information.

6.2 Advisor Policies

Policies define when a server or the complete server pool is regarded overloaded or idle. The
specification for servers is done on a per class of server basis. A class of server represents all
servers that are assembled with identical or very similar hardware. The migration manager deems
servers within one class as equally powerful.

The current implementation of the advisor handles four critical situations: a server is over-
loaded; a server is idle; the server pool is overloaded; and the server pool is idle.2 Critical
situations are defined by policies that comprise disjunctions and/or conjunctions of resource
utilization or QoS thresholds. The example below shows a policy defining a critical overload
situation for servers of the class blade.

<serverType id="blade">

<overloaded watchTime="2">

<or>

<metric key="advisorDescription.CpuMetric" unit="%"

critical="above" threshold="85"/>

<metric key="advisorDescription.MemoryMetric" unit="%"

critical="above" threshold="90"/>

</or>

</overloaded>

</serverType>

This policy considers a blade server as overloaded if the average CPU utilization during the
last two intervals exceeds 85% or the memory utilization exceeds 90%, respectively.

According to the given policy, the advisor monitors the performance of the servers. If a
server exhibits a current utilization above 85% for CPU or 90% for memory, it will initiate
the verification system to observe the load situation of the server. The verification system then
monitors the server for two measurement intervals. Hence, after the next measurement interval,
the verification system will check whether the average utilization values for the two intervals still
exceed the thresholds and if so, it will trigger the fuzzy controller.

The attribute key specifies the fully qualified class name of a metric under consideration. The
migration controller supports the integration of multiple metrics.

2We note that multiple critical situations can appear simultaneously. The fuzzy controller handles critical situa-
tions for the server pool first.
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6.3 Fuzzy Controller Theory

In general, fuzzy controllers are special expert systems based on fuzzy logic (Klir and Yuan,
1994). As shown in Figure 6.2, a fuzzy controller is a classical feedback controller that manages a
resource pool by iterating through three steps: (1) for all input variables, crisp values representing
relevant conditions of the controlled infrastructure are calculated. The crisp values are then
converted into appropriate fuzzy sets (input variables) in the fuzzification step. (2) The fuzzified
values are used by the inference engine to evaluate the fuzzy rule base. And, (3) the resulting
fuzzy sets (output variables) are converted into a vector of crisp values during the defuzzification
step. The defuzzified values represent the actions that the fuzzy controller uses to control the
infrastructure.

Fuzzy controllers are used in control problems for which it is difficult or even impossible
to construct precise mathematical models. In the area of self-organizing infrastructures, these
difficulties stem from inherent non-linearities, the time-varying nature of the workloads to be
controlled, and the complexity of the heterogeneous server pools.

There are three reasons why we chose the fuzzy controller approach: (1) the fuzzy controller
can manage arbitrary workloads and servers. Furthermore, it does not need complete knowl-
edge about the infrastructure it manages. (2) The server pool can be managed using intuitive
rules, which are based on the knowledge of an experienced human operator. (3) The controller
can be extended incrementally by providing additional monitors and advisors and, if necessary,
additional special-purpose rules.

Fuzzy logic is the theory of fuzzy sets devised by Zadeh (1965). The membership grade of
elements of fuzzy sets ranges from 0 to 1 and is defined by a membership function. Let X be an
ordinary (i. e., crisp) set, then

F = {(x,µF (x)) | x ∈ X} with µF : X → [0,1]

is a fuzzy set in X . The membership function µF maps elements of X into real numbers in [0,1].
A larger (truth) value denotes a higher membership grade.

Linguistic variables are variables whose states are fuzzy sets. These sets represent linguis-

tic terms. A linguistic variable is characterized by its name, a set of linguistic terms, and a
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membership function for each linguistic term. In general, the membership functions can take
arbitrary trapezoid shapes. The shape can be used as an optimization parameter to tune the fuzzy
controller. Figure 6.3 shows an example for the linguistic variable cpuLoad and the assigned
trapezoid membership functions for the three linguistic terms low, medium, and high.

During the fuzzification phase, the crisp values of the measurements (e. g., CPU load of a
server) are mapped to the corresponding linguistic input variables (e. g., cpuLoad) by calculat-
ing membership rates using the membership functions of the linguistic variables. For example,
according to Figure 6.3, a host having a measured CPU load l = 0.2 (20%) has 0.6 low, 0.2
medium, and 0 high cpuLoad.

In the inference phase, the rule base is evaluated using the fuzzified measurements. Typical
fuzzy controllers have a few rules. The ones used to implement the migration manager comprise
about 1 to 3 rules each. The inference phase is demonstrated with the following two exam-
ple rules for a fuzzy controller. The rules are used to determine an appropriate server where a
workload should be migrated.

IF cpuLoad IS low AND ( workloadsOnServer IS few OR

workloadsOnServer IS some )

THEN server IS perfect

IF workloadsOnServer IS none THEN server IS ok

In the above example, cpuLoad and workloadsOnServer denote linguistic input variables whereas
server denotes an output variable. The linguistic variable workloadsOnServer represents the
number of workloads that are currently running on a server. In the simulation environment,
servers that have no workloads assigned are assumed to be offline. The first sample rule states
that an already running server with low CPU utilization and only few or some workloads as-
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signed is perfect to host an additional workload.3 The second rule denotes that it is ok to start a
currently unused server to host the workload. Together, these rules specify that already running
servers with free capacity should be preferred if available.

Conjunctions of truth values in the antecedent of a rule are evaluated using the minimum func-
tion. Analogously, disjunctions are evaluated using the maximum function. Given a server that
exhibits a CPU load of l = 0.2 and hosts x workloads, the membership grades for the linguistic
variable cpuLoad are µlow(l) = 0.6, µmedium(l) = 0.2 and µhigh(l) = 0. We assume for this exam-
ple that the membership grades for the linguistic variable workloadsOnServer are µnone(x) = 0,
µ f ew(x) = 0.4, µsome(x) = 1.0 and µmany(x) = 0.1. Thus, the truth value of the antecedent of the
first rule evaluates to min(0.6,max(0.4,1.0)) = 0.6 and of the second rule to 0.

In classical logic, the consequent of an implication is true if the antecedent evaluates to true.
This implication is not applicable for fuzzy logic because the truth value of the antecedent is a
real number between 0 and 1. Thus, there are several different inference functions proposed in
the literature for fuzzy logic inference. We use the popular max-min inference function. Using
this function, the linguistic term specified in the consequent of a rule (e. g., perfect) is clipped off
at a height corresponding to the degree of truth of the rule’s antecedent. After rule evaluation, all
fuzzy sets referring to the same output variable are combined using the fuzzy union operation:

µA∪B(x) = max(µA (x) ,µB (x)) for all x ∈ X

The combined fuzzy set is the result of the inference step. During the defuzzification phase, a
crisp output value is calculated from the fuzzy set that results from the inference phase. There are
several defuzzification methods described in literature. We use the established maximum method
that determines the smallest value at which the maximum truth value occurs as result.

3This rule is simplified for illustration purposes. We note that the utilization of other resources such as memory,
are also considered in the rules used in the case study.
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Figure 6.5: Interaction of the Fuzzy Controllers

Figure 6.4 shows the linguistic variable server and its membership functions ok and perfect.
Regarding the example, the membership function ok is clipped at zero and the membership func-
tion perfect is clipped at 0.6. This leads to the clipped fuzzy set indicated in the figure. The crisp
value for the applicability of the server is then 0.6, i. e., the server is applicable for hosting the
workload to a degree of 0.6.

6.4 Fuzzy Controller for Migration Management

The migration management controller comprises several fuzzy controllers that handle the differ-
ent situations. This enables the controller to maintain the infrastructure on different abstraction
levels, for example, on a per-server and the overall server pool level. For ease of administra-
tion, fuzzy controllers are also assembled in a sequence. For example, the first fuzzy controller
determines a service on an overloaded server that should be migrated. Then, the second fuzzy
controller determines a suitable new server for this workload. The following subsections demon-
strate the integration of the fuzzy logic for the server and the server pool management.

6.4.1 Maintaining Servers

The migration management controller monitors each server in the server pool. If an advisor
detects a critical situation, for example, an overloaded or idle server, it triggers the fuzzy con-
troller that is in charge for the discovered situation. Figure 6.5 shows the interaction of the two
fuzzy logic based controllers selection of workload and action and selection of a server. If the
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first fuzzy controller cannot find a suitable action for a workload on the server, the migration
management controller fails to handle the critical situation and produces a warning to the admin-
istrators. Otherwise, it chooses an action and triggers the second fuzzy controller if the action
requires a target server. For example, the migration action needs a server where the workload
should be migrated. The second fuzzy controller then determines an appropriate server and trig-
gers the action. If it fails to find a suitable server for the action, the migration management
controller tries to continue the process with another possible action that was suggested by the
first fuzzy controller.

After rearranging workloads, the involved workloads and servers are protected for a certain
time, i. e., they are excluded from further actions for an administrator given period (protection
time). The protection mode prevents the server pool from oscillation, i. e., moving workloads
back and forth.

Selecting Workload and Action

In Figure 6.6, the process for the selection of a workload and action is demonstrated with a
flowchart diagram. In the selection process, the fuzzy controller determines and evaluates possi-
ble actions for every workload on the server. For each possible action, the migration management
controller verifies that the action will not violate any given constraint. Then, all remaining ac-
tions are collected in a list and ordered by their applicability. Finally, the controller chooses the
best action to remedy the critical situation. The following text describes how the fuzzy controller
selects an action.
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Variable Description

serverCpuLoad CPU load of the server in percent
serverMemLoad memory load of the server in percent
serverCapacity performance index of the server
workloadsOnServer number of workloads running on a server
workloadCpuLoad CPU load that the workload consumes on the server in percent
workloadMemLoad memory load that the workload consumes on the server in percent

Table 6.1: Input Variables for Action-Selection

Variable Description

start starting of a workload
stop stopping of a workload
pause pause a workload
resume resume a workload
scaleUp migration of a workload to a more powerful host
scaleDown migration of a workload to a less powerful host
move migration of a workload to another host

Table 6.2: Output Variables for Action-Selection

First, the input variables of the fuzzy controller are initialized. Table 6.1 shows the input
variables of the controller that selects a workload and action. All variables of the fuzzy con-
troller regarding CPU or memory load are set to the arithmetic means of the load values during
the workload and server specific watch time. The other variables are initialized using current
measurements or available metadata, e. g., for serverCapacity indicating the size of a server.

Since the action-selection process depends on the critical situation, the controller is able
to handle dedicated rule bases for different critical situations. Concerning the maintenance of
servers, the current implementation distinguishes between two critical situations: serverOver-

loaded, and serverIdle. Further, the controller facilitates dynamic adaptations. For example,
administrators can add workload-specific rule bases for mission critical workloads, e. g., to favor
powerful servers for these workloads. A rule base typically comprises a couple of rules. The
fuzzy controller evaluates the appropriate rule base and calculates crisp values for the output
variables. Table 6.2 shows the output variables. These output variables represent the actions
executed by the controller to control the infrastructure.

The fuzzy controller only considers actions that do not violate any given constraint, e. g., it
can be desired that two workloads are not running on the same server. Thus, a migration from
one of the workloads onto the server that is currently hosting the other workload is not allowed.
Alternatively, a workload can require servers with a certain capacity or characteristics. These
constraints are defined using a declarative XML language. The result of the fuzzy controller is
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Variable Description

serverCpuLoad CPU load on the server as average load over all CPUs in percent
serverMemLoad memory load on the server in percent
serverCapacity performance index of the server
workloadsOnServer number of workloads on the server
expectedWorkloadCpuLoad expected CPU load on the server that the workload will consume

in percent
expectedWorkloadMemLoad expected memory load on the server that the workload will con-

sume in percent

Table 6.3: Input Variables for Server-Selection

a list of actions along with their ratings between 0% and 100%. These ratings determine the
applicability of the actions in the current situation. The fuzzy controller is executed for each
workload running on the server. All possible actions of all workloads are then collected in a
list. Afterwards, the actions are sorted by their applicability in descending order. Actions whose
applicability value is lower than an administrator-controlled minimum threshold are discarded.

Server-Selection Process

In the case of a move, scale-up, or scale-down, an appropriate target server where the action
should take place must be chosen. The selection of a server proceeds analogously to the selection
of an action. First, a list of all possible servers is determined. For each server that is not in
protection mode, the fuzzy controller is executed with the input variables initialized to the current
values. Table 6.3 shows the input variables for the server-selection.

Since the server-selection process depends on the action, the controller is able to handle
different rule bases for different actions. With the rules, it determines how suitable a possible
server is. In the defuzzification phase, the controller then calculates a crisp value for every
possible server in the server pool. These are ordered according to their applicability and the most
applicable one is selected.

After the server-selection process, all information for the execution of the action is deter-
mined. Then, the migration management controller applies the chosen action through the server
pool API. Afterwards, it protects the workload and the target server from further actions.

6.4.2 Maintaining the Server Pool

The process for maintaining the overall server pool is analogous to the maintenance of each host.
The migration management controller currently handles two critical situations: poolOverload

and poolIdle that are defined through administrator given policies. If the controller determines
a critical situation regarding the overall server pool, it uses the fuzzy controller to evaluate each
server in the pool. For example, if the migration management controller detects a poolIdle sit-
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uation, it might search for a suitable server that can be turned off temporarily. The linguistic
input variables of the fuzzy controller in the server-selection process are the average CPU load
(poolCpuLoad) and the average memory load (poolMemLoad) of all servers in the server pool,
the server CPU load (serverCpuLoad), the server memory load (serverMemLoad), the server
capacity (serverCapacity), and the number of workloads on the server (workloadsOnServer).
Possible actions in the current implementation are starting (startServer) and stopping a server
(stopServer).

The stopServer action requires the migration of all workloads that are currently executed on
the corresponding server. Hence, for each workload on the server, a second fuzzy controller de-
termines an appropriate new server. If the migration controller manages to migrate all workloads
to other servers, it will finally stop the server.

6.5 Feed Forward Control

Traditional feedback controllers are extremely effective in managing systems when the input
values are behaving continuously, i. e., new monitored values are quite close to previous ones. In
such environments, feedback controllers typically have some time to react because the servers
do not change their status from a not critical into a critical situation too quickly. However,
they have troubles if the measured values are very volatile because their reactions might be
too late. Furthermore, current measurement values alone are not providing much information
for the future behavior in volatile environments. For example, consider a migration controller
maintaining a server for which administrators configured a watch time of 10 minutes. This
implies, if the load increases rapidly from a low CPU load to 100% within seconds, that the
server stays overloaded for at least 10 minutes before the migration controller will trigger an
action that could mitigate the critical situation.

Figure 6.7(a) shows the total CPU utilization of a server hosting a couple of workloads from
user interactive services. As expected, in the morning at 7 AM when users start to work, the
load produced by the workloads increases rapidly. This increase quickly leads the server into
an overload situation. In the example, a server is assumed overloaded if its CPU load is above
80%. The migration management controller detects the critical situation at time t1 and starts
watching the resource utilization until t2. After verifying the overload situation, the controller
reacts and migrates a workload away. Then, it takes some more time until the total load of the
server drops again because some of the workloads’ demands have been carried forward during
the verification interval. These demands additionally burden the server for some time. Hence,
the CPU load stays above 80% until t3 resulting in a total overload epoch from t1 till t3. During
this epoch, workloads running on that server exhibit poor performance.4

Empirical studies show that most enterprise applications exhibit periodic load behavior. This
knowledge is used to predict demands into the near future. The workload demand prediction

4We note that the durations in Figure 6.7(a) and 6.7(b) are stretched for illustration purposes. In real systems,
the watch time typically is in the range of several minutes or seconds.
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Figure 6.7: Standard and Proactive Controller

enables the migration management controller to anticipate predictable changes in the workloads’
behavior. In particular, it uses knowledge on the workloads’ behavior to predict their demands
into the future. With the predicted workload demands, the controller can estimate the future
resource utilization of the servers and thus administrate the system proactively. Such a controller
is called feed forward controller. It triggers actions before critical situations actually appear.
Hence, critical situations that are caused by predictable changes in workloads’ demands can be
avoided. This leads to an improved overall QoS as less critical situations occur, which cause poor
workload performance. Figure 6.7(b) shows the CPU load situation for the same server. Now, a
proactive controller manages the system and migrates one workload away before the CPU load
actually arises on the server. By migrating a workload off the server early enough, the controller
manages to avoid the overload situation.

6.5.1 Short-term Workload Prediction

This section presents two approaches for the short-term prediction of workload demands. The
first one uses an autoregressive (AR) model to predict workload demands into the near future.
Unfortunately, AR models tend to converge to the mean when predicting several intervals into
the future. The second approach uses the demand prediction service from Chapter 4 to predict
future server utilization.

Short-term Demand Prediction Using AR Models

To be able to react proactively, the migration controller requires knowledge on workload de-
mands for the near future. Linear models such as autoregressive (AR), moving average (MA), au-



6.5 Feed Forward Control 69

06:00 Time

CPU Shares

00:00 12:00 18:00

)(tp

(a) Extracted Load Pattern

06:00 Time

CPU Load

00:00 12:00

80%

100%

)(tl

it Kit

(b) Workload Demand Prediction

Figure 6.8: Using Patterns to Predict Future Workload Demands

toregressive moving average (ARMA), and autoregressive integrated moving average (ARIMA)
models are a common approach for short-term prediction. Dinda and O’Hallaron (2000) evaluate
the prediction accuracy of linear models when predicting the host load on Unix systems. They
conclude that simple, practical models such as AR models are sufficient for host load predic-
tion and they recommend the use of AR(16) models. The parameter p of AR(p) models denotes
the number of considered coefficients. Using more coefficients, the predictions tend to be more
accurate, but also the likelihood of unstable models increases. Unstable model means that the
model generally fits the first few observations, but fails to fit the remaining observations. For
more information on AR(p) models we refer to Dinda and O’Hallaron (2000).

For each workload, the proactive controller that is based on autoregressive models requests
the historical workload traces and applies an AR(16) model. If the model is stable, the AR(16)
model is used to predict a demand value for the next measurement interval. Otherwise, the
last observed demand value is used as future demand. The predicted workload demands allow
the calculation of the future resource utilization for the servers under the assumption that the
workloads remain on their servers. The migration controller is then initialized with the current
and predicted utilization values for each server.

Short-term Demand Prediction Using Patterns

This approach uses patterns that describe the workloads’ time-varying behavior to predict the
demands of the managed workloads into the near future. The pattern extraction technique is
described in Section 4.1. Figure 6.8(a) shows a typical CPU load pattern for an enterprise work-
load, where load increases in the morning and reaches peaks in the morning, before midday, and
in the evening before users leave off work. Figure 6.8(b) demonstrates the controller’s view at
time ti. The solid line exhibits the CPU load of the monitored workload for the last intervals.
The proactive controller predicts the workload demands for the next K intervals and considers
the expected demands additionally to historic demands. The dotted line in the figure represents
the expected future CPU demand of the server.
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Future workload demands are estimated under the assumption that no action, such as for
example, a migration or pause action, is executed on the workload. Then, for each workload a

on the server, the future demand values are the corresponding demand values l′a(ti+k) from the
synthetic workload trace. The value l′a(ti) denotes the demand in the synthetic workload trace for
interval ti. The calculation of the synthetic workload demand trace, which is based on workload
patterns, is described in Section 4.3. Optionally, the future demand values can be corrected using
the following equation:

l′′a (ti+k) = la (ti)+
(

l′a (ti+k)− l′a (ti)
)

, for 1≤ k ≤ K

If the demands in the synthetic workload trace match the observed demands of the workload, then
the currently observed demand value la(ti) equals l′a(ti). However, in real systems the expected
demands sometimes vary from the real occurring values. Thus, the prediction service corrects the
demands in the synthetic workload traces with the currently observed demands. The estimated
demand value l′′a (ti+k) for the future interval ti+k is then calculated by adding the expected change
in the workload’s demand l′a(ti+k)− l′a(ti) for the next k intervals to la(ti). Finally, the demands for
all workloads a running on a server are summed-up to receive the expected resource utilization
l′′(ti+k),1≤ k ≤ K of the server for the near future.

6.5.2 Reacting Proactively

The proactive migration controller predicts workload demands for the near future and reacts if
a critical situation either occurs or is predicted for the near future. Therefore, the interval K

should be chosen carefully. If the prediction horizon K is too short, the reactions are probably
too late. Thus, some critical situations will still occur. If the interval K is very long, then
(1) the predicted demand values are more inaccurate, (2) the assumption that no actions are
executed on the workload is likely not to hold, and (3) the proactive controller reacts very early
and potentially wastes resources. A good value of K is the duration that passes from the detection
of a critical situation until the action shows effect. Thus, K should be set to the watch time plus
some additional time that elapses during the execution of the action.

If the proactive migration management controller predicts a critical situation, it determines
an appropriate action. Of course, it also uses the predicted workload behavior for the decision
making process to select the most appropriate action regarding the current situation and the near
future. Figure 6.9 shows an example where the proactive controller decides at time ti to which
server a workload should be migrated. To improve its management efficiency, the proactive
controller predicts the resource utilization of the server for the future intervals [ti+1, ti+K]. Fig-
ure 6.9(a) shows the expected CPU usage of server h1 when migrating the workload to server
h1 and Figure 6.9(b) shows the expected usage for server h2. In both figures, the bright grey
area represents the CPU load caused by other workloads on the server and the dark grey area
is the expected additional CPU load that the workload will consume on the server. If the fuzzy
controller only considers current or previous demand values, it will choose server h1 because it
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Figure 6.9: Server Selection for the Migration of a Workload

is currently less heavily loaded than server h2. When considering future demands, this decision
is suboptimal as the load caused by other workloads on server h1 increases and h1 will become
overloaded. If the migration controller considers the current and forecasted demands, it will
make decisions based on the expected resource utilization for the near future. In this example, a
proactive controller will choose server h2 for the migration.

6.6 Summary

This chapter introduced a workload migration controller that dynamically controls the server
pool. The controller continuously monitors the load situation on each server and reacts to critical
situations by migrating workloads. It uses fuzzy logic to determine actions that help to alleviate
overload or idle situations. Furthermore, a feed forward controller was presented that predicts the
future resource utilization by either using AR models or pattern information. Predictions on the
future resource demands enable the controller to proactively react on imminent critical situations
and hence to prevent them.

Concerning the workload migration controller, the following factors are expected to have an
impact on the workloads’ resource access quality and required capacity:

• the CPU and memory thresholds to define overload situations;

• the CPU and memory thresholds to define idle situations; and,

• the choice of feedback or feed forward control.

The factors above are considered in Section 9.3 of the case study. The section evaluates the
impact of different policies for CPU and memory thresholds on the trade-off between quality and
capacity. Furthermore, it investigates the advantages of proactive server pool management.





CHAPTER 7

Workload Management

Workload management services control the local assignment of physical resources to workloads
on a per-server basis. The following workload management strategies are considered in the
thesis: allocation of resources according to the demands of the workloads and allocation of
resources according to service level agreements.

The chapter is structured as follows: Section 7.1 shows the architecture of workload manage-
ment services. Then, Section 7.2 presents a workload management service that weights work-
loads according to their expected demands in order to give each workload the same chance to
satisfy its demands. Subsequently, two management services that provide differentiated quality
of service according to service level agreements are presented in Section 7.3. The first man-
agement service statically prioritizes workloads depending on their SLA class. Workloads with
higher priority can obtain more resources than workloads with lower priority. The second work-
load management service uses an economic utility function to dynamically prioritize workloads
according to their current SLA compliance. Workloads that are likely to fail their current QoS
level receive increased priorities while workloads that are overachieving on their service levels
receive lower priorities. Finally, Section 7.4 concludes the chapter and poses questions to be
addressed regarding workload management policies.

Gmach et al. (2008a) consider a similar approach where requests to a database system are
scheduled according to dynamically calculated priorities. Section 7.3.2 adapts the approach and
allocates resources to workloads according to current workload demands and SLA compliance.

7.1 Architecture of Workload Management Services

The right box of Figure 7.1 shows the architecture of the workload management service. The left
box denotes a physical server, which is hosting several virtual machines. Each service is executed



74 Workload Management

Physical Server

VM Monitors

VM Management

Workload Management Service

Prioritize

 Workloads

Adjust 

Allocation

of Resources

Virtual 

Machine for 

Workload a1

Virtual 

Machine for 

Workload an

...

Workload

Management

API Supervise SLA 

Compliance

...

Figure 7.1: Architecture of the Workload Management Service

in its own virtual machine. Thus, the resource demand of a virtual machine corresponds to the
workload of the service it supports. The figure also shows that physical servers provide a mon-
itoring service and a VM management service. The VM management service allows adjusting
the configuration of virtual machines during runtime.

The Workload management service communicates with the VM monitor and the VM man-
agement service on the physical server through the workload management API. The workload
management API provides access to the current resource demands and utilization values. Addi-
tionally, it provides methods to adjust the configuration of the virtual machines. The resource
allocation of workloads is changed by adapting the configuration of the corresponding virtual
machines. Currently, methods for adjusting the CPU weight, the CPU cap, and the physical
memory of a virtual machine are implemented. The scheduler then allocates resources to the
workloads according to the virtual machine configurations. The implementation of the weight-
based scheduler is described in more detail in Section 8.2.1. It simulates the credit scheduler of
Xen (Xen Wiki, 2007) and the VMware scheduler, that both consider a CPU weight and cap for
the allocation of resources.

Workload management services implement a feedback control loop for the local optimization
of the resource allocation on the physical server. They periodically request the current resource
utilization from the physical servers, and the workload demands and SLA compliances from the
virtual machines in order to determine the new weights of the workloads.

The workload manager changes the CPU weights of virtual machines to adjust the CPU allo-
cation. Furthermore, the workload management service monitors the memory utilization of each
workload. Typically, each virtual machine has more physical memory assigned than its workload
is expected to demand. This additional memory headroom helps to absorb unexpected peaks in
memory demand. A workload management service continuously monitors the memory utiliza-
tion of each virtual machine that is executed on the server. It adjusts the memory allocation of
a virtual machine if its memory utilization differs from the expected utilization by more than an
administrator given percentage y. The factor y specifies how aggressively the workload manage-
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ment service adjusts the memory sizes of the virtual machines in both directions according to the
demands of the workloads.

If free memory of a virtual machine decreases below y percent of the desired headroom, the
workload management service tries to increase the assigned memory of the virtual machine such
that the headroom again matches the desired headroom. Furthermore, the workload management
service reduces the physical memory of a virtual machine if the amount of free memory exceeds
the desired headroom by more than (100−y) percent. For example, a value of y = 100% adjusts
the memory allocation in each management interval, whereas a factor of 0% just updates the
memory allocation if the VM actually uses all of its allocated memory or free memory exceeds
twice the desired headroom.

If the workload management service discovers a workload that needs more additional mem-
ory than the physical server is able to offer currently, then it degrades workloads with lower
priorities and reassigns physical memory from low priority workloads to high priority work-
loads. Following an economic model, the workload management service will degrade workloads
with the lowest priority first in order to satisfy memory demands of high priority workloads.
For example, a high priority workload demands 100 MB of additional memory but the server
is just able to offer 40 MB of additional memory. Then, the remaining 60 MB are taken from
the workload that exhibits the lowest priority of all workloads that have at least 60 MB memory
assigned.1

7.2 Adjusting Weights According to Demands

In virtualization environments that employ a weight-based scheduling strategy, bigger workloads
are penalized as it is more difficult for them to get all their demands satisfied than for smaller
ones. This discrimination is removed by the demand-based workload management strategy. It
adjusts the CPU weights according to the expected demands such that all workloads have an
equal chance to get all their demands satisfied. Hence, this workload manager simulates the
existence of a demand-based, fair-share CPU scheduler.

Furthermore, the workload management service adapts the memory allocation of the physical
server. As each workload has the same priority, it does not degrade workloads, i. e., steel physical
memory from workloads.

7.3 Providing Differentiated Service

Typically, service providers offer different classes of quality of service (QoS) and negotiate ser-

vice level agreements (SLA) with their customers. For more information on SLAs see Sec-

1To steal the memory from one workload is the extreme case. That is why we consider this policy in our case
study. Alternatively, the workload manager could steal a little memory from all low priority workloads according
to their priority. Steeling physical memory requires technologies such as the balloon driver, which is introduced in
Section 1.1.1.
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tion 3.2. Higher QoS assurances are typically expressed with higher penalties for breaking them.
Hence, workloads that are offering services with high penalties have a higher impact on the ser-
vice provider’s profit than workloads with low penalties. Of course, this impact needs to be
reflected in the assignment of the resources in order to maximize the service provider’s profit.
Most common workload management services assign static priorities to the workloads according
to their SLA classes as described in Section 7.3.1. In addition to the static prioritization approach,
a second approach is developed that uses a utility function to prioritize workloads dynamically
based on their current SLA compliances. The dynamic prioritization approach is presented in
Section 7.3.2.

7.3.1 Static Prioritization of Workloads

The workload management service can assign static priorities to the workloads that are currently
running on the server. In this scenario, a workload’s priority depends on the SLA class it be-
longs to. The workload management service then configures the CPU weights of the associated
virtual machines according to the static priorities of the workloads. Assuming the weight-based
scheduler, a workload with twice the CPU weight of another will receive twice as much CPU—if
needed—than the other one. Furthermore, the service adapts the memory allocation based on the
current demands and favors workloads with higher priority.

7.3.2 Dynamic Prioritization based on SLA Compliance

Service level agreements typically include several QoS levels for a service. As mentioned in
Section 3.2, a QoS level in this thesis denotes a percentile constraint for the desired quality
and a penalty if the quality fails to meet the constraint. In practice, many SLA agreements for
workloads do not require 100% fulfillment ratios. These typically expect a metric to exceed a
threshold at a high percentage of the time. In other words, the workload is allowed to miss the
metric at some percentage of the time without penalizing the service provider. From an economic
point of view, it is sometimes reasonable to degrade high priority workloads if workloads with
lower priority are likely to fail their QoS levels.

Workload management services based on static prioritization of the workloads tend to over-
provision high priority workloads. Consequently, workloads with low priorities suffer from re-
source deficits resulting in bad QoS and accrued penalties for these workloads. This section
presents an approach for dynamically adjusting workload priorities from multiple SLA classes to
manage penalties. The section describes how individual priorities for workloads are calculated
in the dynamic prioritization scenario.

Penalties are represented using a stepwise function. Figure 7.2 visualizes the example SLA
from Section 3.2. A step in the SLA penalty function marks a QoS level and denotes the ad-
ditional penalties for missing the corresponding percentile constraint. Thick black lines in the
figure indicate the penalty function. In the figure, the resource compliance ratio metric from
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Figure 7.2: Dynamic Prioritization of Workloads

Section 3.3 is used to express quality of service. The compliance ratios cri denote the boundaries
of the steps. In the example, they are cr0 = 100%, cr1 = 98%, and cr2 = 96%.

The dynamically calculated priority for a workload is covering two different economic as-
pects: imminent costs and marginal gain. Imminent costs model the risk of missing the current
QoS level. The closer the resource compliance ratio gets to the next lower threshold, the higher is
the probability that the workload quality will drop to the next lower QoS level if the workload’s
demands will not be satisfied in the next few intervals. The imminent cost function expresses
this probability. It is defined with a decreasing polynomial function of an administrator given
degree deg that equals the penalties for missing the current QoS level at the lower boundary of
the current QoS level and is zero at the upper boundary. Figure 7.2 shows a current service level
compliance cr′ = 0.965. Consequently, the workload currently just fulfills QoS level 2. The
imminent costs are indicated by the decreasing polynomial functions. Given a compliance ratio
cr′ = 0.965 and utility functions with polynomial degree 2, the imminent costs of the workload
are set to approximate 560.

The marginal gain function is modeling the chance to achieve the next higher service level
again through fulfilling the service level agreements in the next few intervals. If the next higher
QoS level comes into reach, the priority of the workload increases. The marginal gain function
and the imminent cost function are defined similarly, but the marginal gain function uses an
increasing polynomial function. In the figure, the current compliance ratio cr′ of the workload
is comparatively far away from the next higher boundary cr1 resulting in a low marginal gain of
about 60.

If the service level compliance ratio of a workload approaches the lower boundary of the
current QoS level, then the risk of failing the current level is high in comparison to the chance
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that the workload reaches its next higher QoS level. Consequently, imminent costs dominate
the marginal gain. Analogously, marginal gain dominates the imminent costs if the workloads’
compliance ratio approaches the upper boundary of the current QoS level. Hence, the current
priority of the workload is defined as the maximum of imminent costs and marginal gains. In the
given example, the current priority of the workload is max{560,60}= 560.

The degrees of the imminent costs and the marginal gain functions constitute the dynamic
and static influence on prioritization. A high degree strengthens the dynamic influence and a low
degree weakens the dynamic influence. In case of a very high degree, the compliance ratios of
all workloads tend to approach the next lower QoS threshold closely. Hence, the risk of falling
into the next lower QoS level is rather high for all workloads, including the important ones. If
the polynomial degree deg is small, high priority workloads tend to keep some distance to their
next lower compliance thresholds and if deg even approximates zero, the dynamic prioritization
approach approximates the static prioritization approach.

7.4 Summary

This chapter focused on local resource management for each host and presented three work-
load management approaches. The first approach sets the weights according to the expected
demands in order to give each workload an equal chance to satisfy its demands. The other two
workload management services prioritize workloads in order to provide differentiated quality of
service. Every now and then demand exceeds supply and not all workload demands can be fully
satisfied. In these situations, the workload manager uses an economic model to decide which
workloads are currently less important and should be degraded in order to provide sufficient re-
sources to more important workloads. The economic model is based on service level agreements
and penalties for missing QoS levels. The second workload management service statically pri-
oritizes workloads according to their SLAs. This approach is commonly used in literature but it
tends to over-provision high priority workloads. Consequently, workloads with lower priorities
suffer from resource deficits resulting in bad QoS and accrued penalties. Thus, a third approach
is presented that dynamically prioritizes workloads according to their current SLA compliance
ratios. Workloads that are highly endangered to miss their current QoS level are favored over
workloads that overachieve their current QoS level.

Concerning workload management services, several factors are expected to have an impact
on the workloads’ resource access quality. The following questions are addressed in the case
study in Section 9.6:

• What is the impact of dynamically adjusting resource allocation according to the current
demands?

• Can workload management services help to provide differentiated quality of service?

• What are the advantages of the dynamic prioritization approach?



CHAPTER 8

Resource Pool Simulator

This chapter presents a flexible resource pool simulator that takes historical demand traces ob-
served from real enterprise workloads to emulate the resource pool behavior. The simulator is
used in Chapter 9 to evaluate the impact of management policies.

Workloads are allocated on simulated hosts and a simulated scheduler determines what frac-
tion of the workloads’ demand is satisfied in each interval. A central pool sensor gathers mea-
sures of satisfied demands and makes them available to management services. Management
services control the simulation by adjusting the workload placement and the configuration of the
corresponding virtual machines.

This chapter is structured as follows: Section 8.1 presents the architecture of the resource
pool simulator and explains the simulation process. Section 8.2 describes the simulated hosts
in more detail and introduces several resource scheduling approaches that approximate resource
scheduling strategies of existing virtualization environments. Subsequently, interfaces for the
integration of management services that maintain the workload allocation of all workloads across
the server pool and for the integration of local workload management services, which locally
optimize the resource allocation on each server, are presented in Section 8.3. Section 8.4 gives
an example of the configuration of the resource pool simulator A summary of the chapter is
presented in Section 8.5.

8.1 Architecture of the Resource Pool Simulator

The main goal in the design of the resource pool simulator is flexibility. This includes the ability
to integrate different historical workloads, to simulate different server pool configurations, and to
integrate multiple management services. The architecture of the simulator is shown in Figure 8.1.
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Figure 8.1: Architecture of the Resource Pool Simulator

The data loader module retrieves historical workload demand traces from an archive and
inserts them into the trace buffer, which is implemented as a synchronous ring buffer. Hence,
the ring buffer decouples the data loading process from the simulation process and increases the
performance of the resource pool simulator. Furthermore, it permits the pre-loading of data. The
current implementation of the data loader requests historical demand traces of real enterprise
resource planning applications from a database using JDBC. Of course, other data loaders can
be integrated into the system to gather data from various sources.

In order to ensure interactive responsiveness, a maximum target utilization of less than 100%
is desired. For interactive workloads, typically a maximum utilization of 0.66 is desired as above
this utilization the response times of workloads increase strongly. Section 3.3.1 shows formulas
for the estimation of response times with respect to the current utilization of the server. The data
loader scales the CPU demands in the historical workload traces with a given factor to reflect a
target CPU allocation. For example, a scale factor of 1.5 corresponds to a target utilization of
0.66.

Before starting the actual simulation, the resource pool simulator initializes the server pool.
The server pool comprises a central pool sensor, a central pool actuator, and the simulated servers
that are generated according to a description file. Appendix A.2 gives description files for ho-
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mogeneous blade pool and server pool environments that are considered in the case study in
Chapter 9. A server description file specifies the included classes of servers. Each class has a
list of unique names for servers that have the same hardware configuration with respect to the
numbers of processors, processor speeds, physical memory size, and network bandwidth. The
simulator engine then generates a simulated server for each specified server name.

Each simulated server pool has a central pool sensor. For each server in the pool, the sensor
collects the utilization values and for each workload, it collects the satisfied resource demands.
The collected values are stored in the demand buffer. Additionally, the sensor makes the time-
varying information about the satisfied demands available to management controllers via an open
interface, called server pool API. The interface enables the integration of different controllers
with the simulator without recompiling its code. The central pool sensor also uses the demand
buffer to persistently store the simulation process and the metrics defined in Chapter 3. Different
management policies cause different behaviors that can be observed through these metrics. Fi-
nally, a central pool actuator enables management services to trigger adaptations to the workload
allocation table and virtual machine configurations via the server pool API.

The router orchestrates the simulation. For each simulation step, it pulls the resource de-
mands for all workloads for the next measurement interval from the trace buffer. It then uses
the workload allocation table, which specifies for each workload the simulated host on which
it is currently running plus the configuration of the corresponding virtual machine, to direct the
workload demands to the corresponding server. Each simulated server uses a scheduler that de-
termines how much of the workload demand is and is not satisfied. The architecture of simulated
servers and the implemented scheduling strategies are described in Section 8.2 in more detail.

After the central pool sensor receives all demand values, it triggers the integrated manage-
ment services to start their next management cycle. The management services then request ac-
cumulated metrics and demand traces and make decisions about whether to cause workloads to
migrate from one server to another or to adjust the configuration of virtual machines. These
adaptations are initiated by calls from the management service to the central pool actuator via
the server pool API. The adjusted workload allocation table reflects the impact of the migration
and configuration changes in the next simulated time interval.

Figure 8.1 shows two integrated management services, a workload placement controller de-
scribed in Chapter 5 and a workload migration controller described in Chapter 6. For the man-
agement services, the resource pool simulator is transparent as they are just interacting with the
simulator via the server pool API. The only exception is that they need to provide a method to
invoke the management service when its simulated measurement data is available.

Many virtualization platforms incur virtualization overhead. The virtualization overhead de-
pends on the type of the virtualization and its implementation specifics. A migration requires
the memory of a virtual machine to be copied from the source server to a target server. Typi-
cally, the “amount” of CPU overhead is directly proportional to the “amount” of I/O processing
(Cherkasova and Gardner, 2005; Gupta et al., 2006). Supporting a migration causes CPU load
on both the source and target servers. The simulator reflects this migration overhead in the fol-
lowing way. For each workload that migrates, a CPU overhead is added to the source and target
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servers. The overhead is proportional to the estimated transfer time based on the memory size
of the virtual machine and the network interface card bandwidth. It is added to the source and
target servers over a number of intervals that corresponds to the transfer time.

We assume that no more than half of the bandwidth available is used for management pur-
poses, e. g., one of two management network interface cards. For example, if a workload has
12 GB memory size and the network interface is 1Gb/s then the additional CPU time used for
migrating the workload is (Cmigr · 12 GB)/1 Gb/s, where Cmigr is the coefficient of migration
overhead. The sensitivity to CPU overhead is investigated in the case study in Section 9.2.1.

8.2 Simulated Servers

The resource pool simulator emulates the resource demands for each workload and determines
the utilization of each server in the resource pool. The architecture of a simulated server is
shown in Figure 8.2. Each server comprises a simulated scheduler that determines for each
workload the satisfied demands based on the current virtual machine configurations. Satisfied
demands are either equal or less than the requested workload demands. If the server provides
sufficient resources, then the satisfied demands equal the requested demands. Otherwise, for
some workloads just a fraction of the requested demands is satisfied. The simulator can be
configured to carry unsatisfied demands forward. If unsatisfied demands are carried forward,
then the simulator adds them to the workload’s demand in the next measurement interval. This
ensures that simulations with different policies perform the same amount of simulated work.
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To account for differences in the allocation of resources between various virtualization so-
lutions, the simulator supports the integration of different schedulers. Currently, two different
scheduling strategies for CPU and two for memory are implemented. The scheduling strategies
are explained in the Subsections 8.2.1 through 8.2.4.

Furthermore, each simulated server has a VM management component, that maintains the
configuration of the virtual machines on the server. Workload management services, which are
presented in Chapter 7, can change the CPU weights, CPU caps, and memory size of virtual
machines via the workload management API. The workload management API is presented in
Section 8.3. VM monitors provide the satisfied demand values of the last measurement interval
to the workload management services.

8.2.1 Fair-Share CPU Scheduler Based on Weights

This section describes the weight-based, fair-share CPU scheduler, which is the default CPU
scheduling approach for this thesis. The implementation of the scheduler mimics the resource al-
location strategy of the Xen credit scheduler and the VMware CPU scheduler that are introduced
in Section 1.1.1. With the fair-share CPU scheduler based on weights, resource allocation is
guided by virtual machine CPU weights and caps. The CPU weights determine the CPU shares
that a workload can receive. For example, a virtual machine with twice the CPU weight of an-
other one will get twice as many CPU shares over a time interval. Furthermore, CPU caps limit
the maximum CPU consumption for each virtual machine. The CPU scheduler of VMware also
supports the specification of a CPU weight, which they call CPU shares, and a cap, which is
called limit. It then analogously allocates CPU cycles according to the defined CPU shares and
limits.

The simulator’s implementation of the weight-based CPU scheduler assumes that the CPU
demands of all workloads for the next measurement interval are requested at the start of the
measurement interval. It uses an algorithm that iteratively determines the satisfied demands of
the workloads until either all demands are satisfied or all available resources are allocated. The
algorithm is explained with the following example. Consider four virtual machines A1, A2, A3,
and A4 with demands l(A1) = 700, l(A2) = 1400, l(A3) = 800, and l(A4) = 50 CPU shares that
run on a server that offers 2410 shares for the simulated measurement interval. The workload
demands are not capped and the weights are weight(A1) = 1, weight(A2) = 2, weight(A3) = 4,
and weight(A4) = 1. The sum of the workload demands indicates that on the server demands
exceeds supply and, hence, not all requested CPU shares can be satisfied.

Table 8.1 lists the demand and available resource values for each iteration step of the al-
gorithm, which is initialized with the demand values of the workloads. Initially, the available
resources on the server equal the capacity of the server. Step 0 in the table shows the initial
values. Then, in each step, the algorithm allocates resources to the workloads according to their
weights until one of the workloads’ demands is fully satisfied or all available resources are al-
located. In the latter case, the algorithm stops and reports the allocated resources. Otherwise, it
calculates the new remaining demands for all workloads. In the following iteration step, it only
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Step Remaining Demands Available Resources

A1 A2 A3 A4

0 700 1400 800 50 2410
1 650 1300 600 – 2010
2 500 1000 – – 960
3 180 360 – – 0

Table 8.1: Allocating Demands According to the Weight-Based CPU Scheduler.

considers workloads with further demands. The iteration ends when either all workload demands
are satisfied or all available resources are allocated.

In the first iteration step, the algorithm determines that workload A4 with a demand of 50
shares is the first to satisfy its demands. Workload A1 has the same weight, so it also receives
50 shares. Workload A2 will receive twice as many shares and workload A3 four times as many.
Thus, after the first iteration step the new remaining demands are 650 for A1, 1300 for A2, and 600
for A3. All demands from workload A4 are satisfied and, hence, workload A4 is not considered
anymore. Subtracting the assigned resources, the server has 2010 more shares to allocate in the
simulated time interval.

For the next step, workload A3 is the workload that first gets all demands satisfied. According
to the CPU weights, workload A1 receives 150 shares and workload A2 300 shares in the same
time. Hence, after the second step, their remaining demands are 500 and 1000, respectively and
the server still provides 960 more shares. In the third step, the algorithm determines that the
remaining resources are not sufficient to fully satisfy one workload demand. Thus, it allocates
the remaining resources according to the workloads’ weights. In this example, workload A1 has
a weight of 1 and A2 of 2. Thus, workloads A1 receives 320 shares and workload A2 640 shares
resulting in unsatisfied demands of 180 and 360 for workload A1 and A2, respectively. After
the third step, all resources are allocated and the algorithm stops. The satisfied demands for the
workloads A1, A2, A3, and A4 are 520, 1040, 800, and 50, respectively.

The fair-share scheduler based on weights allocates CPU cycles according to the weights of
the workloads. This implies that equally weighted workloads with bigger demands are more
likely to have unsatisfied demands than smaller workloads. Hence, administrators typically con-
figure virtual machines of bigger workloads with higher weights. The weight-based CPU sched-
uler is the default CPU scheduler implementation used for the case study of Chapter 9.

8.2.2 Fair-Share CPU Scheduler Based on Demands

This section defines an alternative demand-based implementation for the CPU scheduler. The
fair-share CPU scheduler based on demands schedules the workloads’ demands such that each
workload gets the same fraction of its demands satisfied. It simulates a fair-share scheduler that
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automatically adapts the CPU weights of the virtual machines according to their current demands.
Hence, each workload has the same probability of receiving all its demands, regardless of its size.

Consider the example of Section 8.2.1. Four virtual machines A1, A2, A3, and A4 with the
demands l(A1) = 700, l(A2) = 1400, l(A3) = 800, and l(A4) = 50 CPU shares are running on a
server offering 2410 shares in a simulated measurement interval. The total demand for all work-
loads adds up to 2950 shares. Thus, only 2410/2950 = 81.69% of the workload demands can
be satisfied on this server. Using the demand-based CPU scheduling approach this implies that
each workload gets 81.69% of its demands satisfied, resulting in 571.86 shares for A1, 1143.73
for A2, 653.56 for A3, and 40.85 for A4.

The implementation of the demand-based CPU scheduler does not regard the CPU weights
of the virtual machines. An enhancement of the scheduler could also consider the CPU weights
and, hence, allocate the CPU cycles according to the actual demands and weights of the virtual
machines.

8.2.3 Fixed Allocation of Memory

This section describes a basic memory management approach implemented by the resource pool
simulator. The fixed allocation of memory approach mimics the memory management of Xen that
is presented in Section 1.1.1. The assigned memory of each virtual machine is not adjusted auto-
matically by the simulated server. Of course, integrated workload managers can adapt the size of
the allocated physical memory by triggering changes to the configuration of the corresponding
virtual machines via the workload management API.

Physical memory is then allocated to virtual machines according to their configurations, in-
dependent of the actual demands of the workloads. If a workload demands less memory than the
virtual machine has assigned, then the remaining memory is unused. If a workload demands more
memory than its virtual machine has currently assigned, then some of the memory demands are
satisfied using swap space. This lowers the service quality because swap space performs worse
than real physical memory. In the experiments, such an interval is regarded as busy interval
and the workload receives a quality penalty depending on the unsatisfied memory demands. A
description of the penalties for bursty intervals is presented in Section 3.3.1.

8.2.4 Dynamic Allocation of Memory

This section describes the default memory management approach implemented by the resource
pool simulator. The dynamic allocation of memory approach mimics the automatic memory
management concept that is implemented in VMware ESX Server. The VMware memory man-
agement strategy is introduced in Section 1.1.1.

The dynamic allocation approach assumes that for each virtual machine a reserved memory
size and a weight is specified. In the first step, for each workload the memory demands are
satisfied up to the reserved memory size. Next, the unused memory of the server is calculated as
the total available memory minus the already allocated memory. In the second step, all workloads
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are determined that demand more memory than they have reserved. The remaining memory of
the server is then allocated to these workloads according to the weights of their virtual machines.1

The allocation strategy follows the algorithm for the weight-based CPU scheduling described in
Section 8.2.1.

Again, if memory demands of a workload are not fully satisfied, then the quality of the
workload is expected to suffer and, hence, the workload will be penalized with a penalty for the
bursty interval. A description of the penalties for bursty intervals is presented in Section 3.3.1.

The dynamic memory management approach is the default approach for the memory alloca-
tion in the simulation studies, as we expect most virtualization environments to support dynamic
memory management in the future. These are expected to automatically transfer physical mem-
ory between virtual machines based on current demands and priorities.

8.3 Interfaces for the Integration of Management Services

The resource pool simulator provides an interface that allows management services to moni-
tor and control the resource utilization in the server pool. In the following, the interface is
called server pool API. The workload placement and workload migration controllers presented
in Chapter 5 and 6 are integrated via the server pool API, which enables interactions with the
central pool sensor and actuator of the maintained server pool. The server pool API is geared
to the management service interface that HP offered in its virtual management pack (HP VMM,
2008). It provides methods to fetch accumulated metrics. The current implementations of the
management services mentioned above use methods to retrieve:

• an aggregated view on the performance of a server;

• an aggregated view on the performance of a virtual machine;

• a trace containing the last performance measurements of a host;

• a trace containing the last performance measurements of a virtual machine;

• a list of all servers in the server pool;

• a list of all known virtual machines in the server pool;

• configuration details of a virtual machine;

• capacity characteristics of a server;

• the simulation time; and,

1We note that in real systems there might occur some overhead caused by the virtual machine management ser-
vices that enable the memory transfer. The dynamic allocation approach neglects this overhead and fully distributes
the memory across the workloads.
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• the duration d between measurement intervals.

Before a management service can use the server pool API, it needs to login into the resource
pool and receive a token, which later is passed with every server pool API call identifying the
management service. Additionally, the server pool API provides methods to control the workload
placement and the configuration of the virtual machines. These methods allow management
services to:

• migrate a virtual machine to another server;

• reshuffle the workloads according to a new workload placement; and,

• execute other management services.

The last method allows management services to trigger other management services. For ex-
ample, the migration controller might trigger the workload placement controller to consolidate
workloads if the average utilization regarding all servers is too low.

The resource pool simulator provides a second interface for the integration of workload man-
agers that are maintaining the resource allocation within a server on a per-workload basis. The
workload management API provides methods to:

• retrieve performance values of virtual machines for the last measurement interval;

• retrieve capacity characteristics of the server;

• adapt the CPU and memory weight of a virtual machine;

• adapt the CPU cap of a virtual machine; and,

• adapt the assigned memory of a virtual machine.

The interface allows workload managers to interact with simulated servers and to control the
local resource allocation on the server. The current implementations of workload management
services adjust the virtual machine configuration based on the performance and metric values.

A list of the methods for both interfaces, the server pool API and the workload management
API, is shown in Appendix B which shows the syntax and a short description of each method.

8.4 Configuration of the Resource Pool Simulator

The resource pool simulator allows the integration of multiple implementations of the data loader
module, scheduling strategies, and management services that are dynamically loaded. Different
implementations might require different policies and configuration files. Hence, the resource
pool simulator is configured through several configuration files. The main configuration file of
the resource pool simulator is the simulatorConfig.xml file that describes which components,
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management services, and configuration files are used for a simulation run. The dynamic inte-
gration of multiple implementations and configuration files provides an end-to-end flexibility of
the simulator. The simulatorConfig.xml file specifies:

• the data loader that is used;

• the main policies for the simulation;

• the initial placement of the workload;

• the configuration of the simulated hosts; and,

• the configuration of the server pool.

In the following paragraphs, each part of the simulatorConfig.xml file is shown together with a
short description.

<DataLoader>

<ClassName>com.sim.dl.vmstatDataLoader</ClassName>

<ConfigFile>config/dataLoader/dataLoader.xml</ConfigFile>

</DataLoader>

The data loader part of the main configuration file specifies the data loader component that re-
trieves historical workload traces and stores them in the ring buffer of the resource pool simulator.
During the initialization phase of a simulation run, the simulator dynamically loads the specified
class using the dynamic class loading feature of the Java Virtual Machine (Liang and Bracha,
1998). Hence, additional components can be added to the simulator without adjusting and re-
compiling its code. The simulator requires that each data loader implementation implements the
runnable interface and a constructor that takes two arguments: the first String parameter contains
the file name of the data loader configuration file and the second one is a reference to the trace
buffer.

<Simulation>

<GranularityInMinutes>5</GranularityInMinutes>

<SimulationWarmupStartDay>20060328</SimulationWarmupStartDay>

<SimulationStartDay>20060408</SimulationStartDay>

<SimulationEndDay>20060630</SimulationEndDay>

<CpuScaleFactor>1.5</CpuScaleFactor>

<MigrationOverheadFactor>0.5</MigrationOverheadFactor>

<DefaultHeadroomPolicy>config/headroom.xml

</DefaultHeadroomPolicy>

</Simulation>

The simulation part of the configuration file constitutes the major policies of a simulation run. It
specifies the data granularity, i. e., the duration between the measurements, and the start and end
time of a simulation run. In the above example configuration, the resource pool simulator will
simulate workload demands from April, 8th until June, 30th in 5 minute steps.
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Furthermore, a CPU scale factor is specified that scales CPU demands in the historical traces
to reflect a target CPU allocation. The overhead factor determines the additional CPU load for
migrating a workload from a source to a target server. The migration overhead is introduced
in Section 8.1. Eventually, the configuration file containing the default policies for the head-
room management is specified. This file constitutes the desired headroom for servers and virtual
machines. It may also contain rules for the adaptive headroom management (see Section 5.2).

<RoutingTable>

<FileName>config/routingtable.xml</FileName>

</RoutingTable>

The routing table part constitutes the initial workload placement for a simulation run. Further-
more, it contains the initial configuration of the corresponding virtual machines and the affiliation
of servers to server pools. In the case study, an identical workload placement is used at the be-
ginning for all runs that are simulating the same hardware environment. The initial placement is
determined such that all demands can be satisfied for the first workload placement interval.

<SimulatedHosts>

<HostDescriptionsFile>config/hostDescriptions.xml

</HostDescriptionsFile>

<WorkloadManager>

<ClassName>com.wm.DynamicCPUPriorityWM</ClassName>

<ConfigFile>config/workloadManager/workloadManager.properties

</ConfigFile>

</WorkloadManager>

<Scheduler carryForward="true" autoMemoryMgmt="true">

com.sim.scheduler.FairShareWeights</Scheduler>

</SimulatedHosts>

The simulated hosts description part specifies the simulated servers. It references the description
file that constitutes the unique identifiers and the characteristics of the simulated servers. Sample
description files for the server and the blade pool environment are shown in Appendix A.2.

The integration of a workload management service is optional. The example configuration
integrates the workload management service presented in Section 7.3.2 that dynamically prior-
itizes the workloads according to their current SLA compliance. The policies for the workload
manager are configured in the workloadManager.properties file. Each workload manager needs
to implement a constructor that takes two String parameters: the first contains the unique iden-
tifier of the managed server and the second denotes the given configuration file. Additionally,
the workload manager needs to implement the WorkloadManagementInterface that enforces a
process() method which is called by the server for each simulation step to adjust allocations
before the satisfied demand values are calculated by the scheduler.

Additionally, the configuration file states a scheduling strategy. In the above configuration,
the weight-based CPU scheduler is integrated. Unsatisfied CPU demands are carried forward to
the next measurement interval and the dynamic memory management approach is used.
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<ServerPools>

<Buffersize>6048</Buffersize>

<ServerPool serverPoolId="pool1">

<ManagementService>

<ClassName>com.mas.autoglobe.AutoGlobeController

</ClassName>

<ConfigFile>config/fc/fc.properties</ConfigFile>

</ManagementService>

<ManagementService>

<ClassName>com.mas.wpGreedy.WpGreedy</ClassName>

<ConfigFile>config/wp/placement.properties</ConfigFile>

<Interval>48</Interval>

</ManagementService>

</ServerPool>

</ServerPools>

Finally, the server pool part describes the simulated server pools and states the integrated man-
agement services. In the example configuration, one server pool is simulated that is continuously
controlled by a migration controller. Additionally, every 4 hours (48 5 minute intervals) a work-
load placement controller consolidates the workloads in the pool.

The Buffersize entry denotes the length of the satisfied demands traces that are stored in the
demand buffer of the central server pool sensor. A size of 6048 indicates that demands for the
last 3 weeks are stored. Hence, management services can request up to 3 weeks of historical data
in the simulation run.

Next, for each server pool, a list of management services is specified. These are dynamically
integrated into the resource pool simulator. Similar to workload manager, each service needs
to implement a constructor that takes three parameters. The first parameter denotes the unique
identifier of the server pool, the second one references the server pool, and the third contains
the name of the configuration file. Furthermore, each management service needs to implement
the ManagingServiceInterface that contains a process() method. This method is used to
trigger the management service. The optional interval entry specifies the duration in which the
server pool triggers the management service. If not specified, then the service is triggered every
simulated interval.

8.5 Summary

This chapter introduced the resource pool simulator that is used in the case study of Chapter 9
to evaluate and compare different management policies for server pools. The simulator allows
the simulation of various servers organized in server pools that host multiple enterprise applica-
tion workloads. For each simulated server, a scheduler calculates the satisfied demands of the
executed workloads. The measurements are forwarded to the management controllers that then
dynamically re-configure the configuration of the pool.
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The chapter considered different scheduling approaches that are used in practice. Modern
virtualization environments like VMware and Xen follow a weight-based CPU and memory al-
location strategy. Furthermore, VMware can automatically manage the physical memory allo-
cation. Hence, the fair-share CPU scheduler based on weights and the dynamic allocation of
memory approach are chosen as default scheduler implementations for the case study of Chap-
ter 9. Additionally, results using other scheduling strategies are given in Section 9.5.

Finally, the simulator supports the integration of additional new management services. They
need to implement a constructor and a process() method. The simulator dynamically loads
the integrated components according to their class specifications in the configuration file. The
services can then use the management interfaces to obtain configuration and monitoring infor-
mation regarding the server pool.





CHAPTER 9

Case Study

The case study aims to answer several important questions for managing workloads in virtualized
resource pools:

• What capacity savings are theoretically possible from managing workload placement?

• What capacity reductions can be achieved from local optimizations for workload place-
ment?

• What capacity reductions can be achieved from global optimizations for workload place-
ment?

• What advantages can be achieved from workload management?

• What are the advantages of the integrating workload placement, workload migration, and
workload management controllers?

There are many workload management factors that can influence capacity requirements and qual-
ity. To keep the study tractable, experiments have been organized according to Figure 9.1. The
plan structures the experiments and poses fundamental questions for hosting workloads in vir-
tualized server pools. The resource pool simulator of Chapter 8 is used along with historical
workload traces to conduct multiple what-if scenarios in order to gain insights into resource pool
management. A description of the historical traces and the simulated server pools is given in
Section 9.1. Then, Sections 9.2 to 9.7 present the experiments among with their results. All ex-
periments assume that each workload is executed within its own virtual machine. Many virtual
machines can share a host and unless otherwise noted, all virtual machines have equally weighted
access to the host’s resources.

Figure 9.1 shows the plan for the experiments. The questions are addressed from top to
bottom. Experiments addressing important sub-questions are shown on the right side of the
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diagram. The assumptions for the experiments are varying. Hence, the left part of the figure lists
the assumptions that are valid for the corresponding experiments on the right.

First, Section 9.2 addresses the question what capacity savings are possible from managing

workload placement. It investigates the sensitivity of the results to the choice of the migration
overhead that is described in Section 8.1. Then, it assesses the resource savings from regularly
reshuffling all workloads across the pool and decides upon an appropriate control interval for
the workload placement management. Furthermore, the section evaluates how densely different
placement algorithms consolidate the workloads onto servers. In this section, perfect knowledge
of future demands is assumed to decide upon ideal workload placements. The results achieved
with perfect knowledge of future demands serve as baseline for capacity and quality that is strived
for when deriving management policies.

The subsequent sections do not assume perfect knowledge. The future resource demands
of workloads are unknown. Thus, management services need to use either historical demand
values or synthetic workload traces (see Chapter 4) to control the resource pool. Nevertheless, all
simulation runs start with an initial workload placement such that workload demands are satisfied
for the first 4 hours. All simulations simulating the same server pool are started with an identical
workload placement. Section 9.3 investigates what capacity reductions can be achieved from

local optimizations for workload placement. It employs the migration controller from Chapter 6
to manage the resource pool. Quality, performance, capacity, and power consumption metrics are
evaluated to show the trade-off between quality and capacity and to assess benefits of proactive
workload management.

Then, Section 9.4 addresses the question whether it makes sense to globally optimize work-
load placement. For this, workload placement controllers (see Chapter 5) are employed with
different headroom policies. The section investigates the trade-off between resource access qual-
ity and capacity concerning workload placement controllers in more detail. It also illuminates
whether prediction knowledge of the future resource demands and specific calendar information
can help. Finally, it evaluates synergies between a workload placement and migration controller
and shows the impact of limiting the number of migrations.

Next, Section 9.5 evaluates the effectiveness of the workload placement and migration man-
agement services in virtualized environments that follow other CPU and memory allocation mod-

els. It simulates virtualized server pools that allocate the CPU and memory resources according
to the fair-share CPU scheduler based on weights and the fixed allocation of memory approach
as presented in Section 8.2. These results are compared with those from the default assumptions
and serve as a baseline for the workload manager that adjusts the weights according to the last
observed demands.

Section 9.6 addresses what quality improvements can be achieved from workload manage-

ment. It first investigates whether management with respect to quality can be improved by a
workload management service that adjusts the resource allocation weights of the virtual ma-
chines according to the last observed demands. After that, the section evaluates how effectively
differentiated quality of service with respect to service level agreements can be provided. To
provide differentiated quality of service, the workload managers control the resource allocation
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on the physical server according to the importance of the workloads. In addition to static prioriti-
zation, the effect of a policy is investigated that dynamically adjusts the weights of the workloads
based on their current quality.

Then, Section 9.7 evaluates advantages of the integrated controller approach. For this, the
workload placement, workload migration, and workload management service are jointly manag-
ing the resource pool. It presents scenarios that integrate the management services and shows the
impact on resource pool behavior.

Finally, Section 9.8 concludes the chapter and highlights the most important results of the
case study.

9.1 Historical Workloads and Simulated Resource Pools

This section describes the historical workload traces that are used to evaluate the effectiveness of
management policies in the remainder of the case study. The 4 months of real-world workload
demand traces for 138 SAP enterprise applications were obtained from a data center that special-
izes in hosting enterprise applications such as customer relationship management applications
for small and medium sized businesses. Each workload was hosted on its own server so we use
resource demand measurements for a server to characterize the workload’s demand trace. The
measurements were originally recorded using vmstat. Traces capture average CPU and mem-
ory usage as recorded every 5 minutes for a four month interval. The resource pool simulator
operates on this data walking forward in successive 5 minute intervals. The last 12 weeks of
the real-world demand traces are used for the actual simulation and the first month is initially
loaded in the simulation runs to fill the demand buffer of the central pool sensor. This enables the
integrated management services to access prior demand values at the start of a simulation run.

The workloads typically required between two and eight virtual CPUs and had memory sizes
between 6GB and 32GB. The average memory size over all workloads was close to 10 GB,
but one workload had a peak memory requirement of 57GB. An analysis of the 138 enterprise
workload traces shows that the average CPU utilization over the 12 weeks period over all servers
is 23%. As many of the workloads are interactive enterprise workloads, a maximum utilization
of 0.66 is desired to ensure interactive responsiveness. Hence, CPU demands in the historical
workload traces are scaled with a factor of 1.5 to achieve a target utilization of 0.66. Section 3.3.1
shows formulas to estimate response times for a workload based on the current utilization of the
server. The use of the scale factor in the resource pool simulator is described in Section 8.1.
Quality metrics are then reported with respect to these allocations.

A more detailed characterization of the workload demand traces is given in Section 9.1.1.
Section 9.1.2 specifies the configuration of the simulated resource pool infrastructures.

9.1.1 Workload Characteristics

The use of virtualization technology enables the creation of shared server pools where multiple
application workloads share each server in the pool. Understanding the nature of enterprise
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Figure 9.2: Top Percentile of CPU Demand for Applications under Study
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Figure 9.3: Top Percentile of Memory Demand for Applications under Study
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workloads is crucial to enable the proper design and provision of current and future services in
such pools.

Existing studies of internet and media workloads, for example, Arlitt and Williamson (1996)
and Cherkasova and Gupta (2002), indicate that client demands are highly variable (“peak-to-
mean” ratios may be an order of magnitude or more), and that it is not economical to over-
provision the system using “peak” demands. Do enterprise workloads exhibit similar properties?
This section presents results that illustrate the peak-to-mean behavior for 138 enterprise applica-
tion workloads. Understanding of burstiness for enterprise workloads can help to choose the right
trade-off between the application quality of service and resource pool capacity requirements. The
section analyzes burstiness and access patterns of the enterprise application workloads under
study. It shows percentiles of demands, the maximum durations for contiguous demands beyond
the 99th percentile, and a representative demand trace for an interactive enterprise application.

Figure 9.2 gives the percentiles of CPU demand for the 138 applications over the period of
four months. The illustrated demands are normalized as a percentage with respect to their peak
values. Several curves are shown that illustrate the 99th, 97th, and 95th percentile of demand as
well as the mean demand. The workloads are ordered by the 99th percentile for clarity. The
figure shows that more than half of all studied workloads have a small percentage of points that
are very large with respect to their remaining demands. The left-most 60 workloads have their
top 3% of demand values between 10 and 2 times higher than the remaining demands in the
trace. Furthermore, more than half of the workloads observe a mean demand less than 30% of
the peak demand. These curves show the bursty nature of demands for most of the enterprise
applications under study. Consolidating such bursty workloads onto a smaller number of more
powerful servers is likely to reduce the CPU capacity needed to support the workloads.

The corresponding percentiles for the memory demands of the 138 applications are shown
in Figure 9.3. Again, the illustrated demands are normalized as percentage with respect to the
peak memory demand. The curves show that the average memory demand of an application is
closer to its peak demand than it is observed for CPU demand. 45% of the workloads exhibit a
mean demand above 80% of their peak demands. Thus, in a memory bound infrastructure, the
potential resource savings from resource sharing are expected to be smaller than in CPU bound
systems.

An additional and complementary property for a workload is the maximum duration of
its contiguous application demands. While short bursts in demand may not significantly im-
pact a workload’s users, a system must be provisioned to handle sustained bursts of high de-
mand. However, if an application’s contiguous demands above the 99th percentile of demand
are never longer than a few minutes then it may be economical to support the application’s 99th

percentile of demand and allow the remaining bursts to be served with degraded performance
(Cherkasova and Rolia, 2006). Figure 9.4 presents the results of analyzing the maximum du-
ration of bursts of CPU demands for the workloads. It shows the duration of each workload’s
longest burst in CPU demand that is greater than its corresponding 99th percentile of demand.
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Figure 9.4: Longest Busy Periods above 99th Percentile of Demand for Studied Applications.

The figure shows that:

• 83.3% of the workloads have sustained bursts in CPU demand that last more than 15 min-
utes; and,

• 60% of the workloads have sustained bursts in CPU demand that last more than 30 minutes.

These are significant bursts that could impact an end user’s perception of performance. A similar
analysis for memory demands shows that:

• 97.8% of the workloads have sustained bursts in memory demand that last more than 15
minutes; and,

• 93.5% of the workloads have sustained bursts in memory demand that last more than 30
minutes.

The numbers show that the length of the bursts matters. This justifies the use of the quality metric
that takes into account the number of successive intervals where a workload’s demands are not
satisfied.

The analysis also shows that the CPU demands are much more variable than memory de-
mands. CPU demands fluctuate with user load. Memory demands tend to increase then periodi-
cally decrease due to some form of memory garbage collection. For the applications in our case
study, garbage collection appeared to occur each weekend. Figure 9.5 illustrates the behavior
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Figure 9.5: CPU and Memory Demands for a User Interactive Workload

of a typical workload. The CPU demand trace indicates that there are strong peaks in the CPU
demand for each workday. For the nights and for weekend and holidays the CPU demand is
on average less than 10% of the peak demand. The memory trace also exhibits peaks for every
workday. In contrast to CPU, memory demands during the night are close to the peak demands
during daytime. This indicates that the enterprise applications tend to buffer as much as possible
and do not trigger a daily process to clear their buffers.

An analysis of the variability of the enterprise workload traces shows that CPU demands
change more than memory demands. Over all workloads, CPU demands between two contiguous
measurements differ on average by 6.26% of the corresponding peak value. For memory, the
average change is just 0.13%. Hence, for the memory metric, the current observed demand value
is a better prediction of the next demand value than for the CPU metric.

Finally, an analysis of the patterns from the workload demand prediction service is conducted.
Figure 9.6 gives a summary of the pattern lengths for the 138 workloads. The pattern analysis
discovered patterns with lengths between three hours and seven weeks:

• 67.6% of the workloads exhibit a weekly behavior; and,

• 15.8% of the workloads exhibit a daily behavior.

To summarize, this section has shown that there are significant bursts in resource demands of
the workloads and that there is a greater opportunity for CPU sharing than for memory sharing.
A workload pattern analysis shows that most of the enterprise workloads exhibit strong weekly
or daily patterns for CPU usage. Memory usage tends to increase over a week then decrease
suddenly.
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Figure 9.6: Lengths of Workload Demand Patterns

9.1.2 Simulated Server Pools

The case study considers two different resource pool configurations:

• Blades pool consists of blades having 8 x 2.4-GHz processor cores, 64 GB of memory,
and two dual 1 Gb/s Ethernet network interface cards for network traffic and virtualization
management traffic, respectively. Each blade consumes 378 Watts when idle and 560 Watts
when it is fully utilized.

• Server pool consists of servers having 8 x 2.93-GHz processor cores, 128 GB of memory,
and two dual 10 Gb/s Ethernet network interface cards for network traffic and virtualization
management traffic, respectively. A server consumes 695 Watts when idle and 1013 Watts
when it is fully utilized.

The power values for the blades include enclosure switching and fan power. Neither of these
estimates includes the power for external switching. Appendix A.2 shows the configuration files
of the resource pool simulator for the presented resource pools.

For each migration, the memory of the virtual machine needs to be copied from the source to
the target server. Hence, the number of migrations that a resource pool can handle depends on the
memory sizes of the virtual machines to migrate and the available network bandwidth. Assuming
that only half the bandwidth is used for a migration, then servers in the server pool can transfer
128 GB in close to 205 seconds. We note that for live migrations, some memory pages need to
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be copied more than once resulting in more than 128 GB to transfer when migrating all virtual
machines. However, even if not desirable, theoretically it is possible for the server pool to migrate
all virtual machines within a 5 minute interval. The situation differs for the blade pool as blades
are only connected through a 1 Gb/s Ethernet network. Assuming that only half the bandwidth is
used for migrations then the blades are just able to transfer 18.75 GB in 5 minutes. This implies
that less than a third of the total memory of a blade can be copied to another blade server in 5
minutes. Hence, in the blade pool scenario, it is not possible to migrate all virtual machines every
5 minutes. Within simulation runs, the simulated migrations take as long as necessary to transfer
the memory of all initiated migrations.

9.2 Capacity Savings From Workload Placement

This section evaluates what capacity savings are possible by managing workload placement.
The sensitivity of the results to the choice of the CPU overhead when migrating workloads is
investigated in Section 9.2.1. Next, Section 9.2.2 shows the theoretical possible savings with
respect to the intervals at which workloads are reshuffled and consolidated. Finally, Section 9.2.3
assesses how densely different workload placement algorithms consolidate the workloads onto
servers.

All experiments in this section assume perfect knowledge of future demands. This means
that workload placement controllers use future demand traces to decide on ideal workload place-
ments. The results achieved with perfect knowledge serve as a baseline for capacity and quality
for experiments in the subsequent sections where future demands are not known in advance.

In the simulations, CPU demands are scheduled using the weight-based CPU scheduler from
Section 8.2.1 and unsatisfied CPU demands are carried forward to the next measurement inter-
val. The physical memory of the server is assumed to be dynamically allocated as described in
Section 8.2.4.

9.2.1 Impact of the Migration Overhead

This section considers the impact of CPU overhead caused by live migrations on required CPU
capacity and on CPU violation penalty per hour. The concept of live migration is introduced
Section 1.1.2 and the resource pool simulator considers migration overhead as presented in Sec-
tion 8.1. We do not focus on memory violation penalties, as these values are typically small.

To evaluate the impact of the additional CPU overhead caused by I/O processing during the
workload migrations, the best sharing workload placement controller introduced in Section 5.1.2
is employed with a 4 hour control interval. Workloads migrate at the end of each control interval.
The choice of the best sharing controller and the 4 hours placement interval is explained in the
following two subsections.

Table 9.1 shows several different metrics for the server pool environment using migration
overhead coefficient Cmigr varied from 0 to 2. The migration overhead coefficient is described in
Section 8.1. The metrics include the number of CPU hours that are required to migrate work-
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Overhead Overhead CPU Violation Penalties Per

Factor in CPU Hours % of Total Demand Hour Caused by Overhead

0.0 0.0 0.00 0.00
0.25 73.4 0.05 0.01
0.5 146.8 0.10 0.04
0.75 220.3 0.15 0.12
1.0 293.7 0.20 0.32
1.5 440.5 0.30 1.23
2.0 587.4 0.40 2.90

Table 9.1: Impact of Migration Overhead for the Server Pool

Overhead Overhead CPU Violation Penalties Per

Factor in CPU Hours % of Total Demand Hour Caused by Overhead

0.0 0.0 0.00 0.00
0.25 915.3 0.50 0.04
0.5 1830.5 1.01 0.65
0.75 2745.8 1.51 3.31
1.0 3661.0 2.01 8.36
1.5 5491.5 3.02 28.42
2.0 7321.4 4.03 62.77

Table 9.2: Impact of Migration Overhead for the Blades Pool

loads. The metrics are given as totals for the three months and as a percent of the total CPU de-
mand for all workloads. Furthermore, the average CPU violation penalties per hour are shown.
As the workload placement controller has perfect knowledge on future demands, all violation
penalties are caused by CPU demands incurred during migrations.

A higher migration overhead requires more CPU resources. The number of CPU hours that
are required for workload migrations grows linearly with Cmigr. For servers it is rather negligible
compared to the total demands of the workloads. Even for the unrealistic high overhead factor of
2.0, the CPU overhead for migrations is just 0.4% of the total workload CPU demand. The CPU
violation penalties grow dramatically with the migration overhead. However, we find that CPU
violation penalties are acceptable for migration overhead factors less or equal to 1.

Table 9.2 shows the corresponding results for the blade pool. Migrations have a bigger impact
for blades as these are connected through 1 Gb/s network interface cards. Compared to the server
based pool, the memory transfer then takes ten times as long. However, the incurred violation
penalties for the blade pool might still be acceptable up to an overhead factor of 0.5. For Cmigr≥ 1
the number of quality violations clearly increases.
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Figure 9.7: Varying the Workload Placement Interval for the Server Pool

In general, we find our results to be insensitive to values of Cmigr in the range between 0.0
to 0.5. We choose Cmigr = 0.5 used during a workload migration for the remainder of the study.
This value is not unreasonable because the network interface cards that are considered support
TCP/IP offloading capabilities. There are many reports suggesting that such cards can be driven
to 10Gbps bidirectional bandwidth while using 50% or less of a CPU, for example, NetXen
(2008).

9.2.2 Workload Placement Interval

This section evaluates the impact of the choice of the workload placement interval. The con-
ducted experiments use the best sharing workload placement controller to periodically consoli-
date the 138 workloads onto servers in the resource pool. Again, the workload placement con-
troller has perfect knowledge of the future, for a given time period, and chooses the next place-
ment such that each server is able to satisfy the CPU and memory demands of its workloads. It
gives an upper bound for the potential capacity savings from consolidating workloads at different
time scales. This bound is used later in the case study to determine how well different policies,
that do not have perfect knowledge, perform compared to the ideal case.

Figure 9.7 shows the results of a simulation where the workload placement controller is used
to periodically consolidate the 138 workloads to a small number of servers in the resource pool.
For this scenario and a given time period, the workload placement controller chooses a placement
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Interval Duration Total Number Average Number

5 Minute 1090 13 per Day
10 Minute 161 1.9 per Day
15 Minute 14 1.2 per Week
20 Minute 3 1 per Month

Table 9.3: CPU Quality Violations for the 4 Hour Placement Interval Using Servers

such that each server is able to satisfy the peak of its workload CPU and memory demands. The
figure shows the impact on capacity requirements of using the workload placement controller
once at the start of the three months, and for cases with a control interval of 4 weeks, 1 week, 1
day, 4 hours, 1 hour, 15 minutes, and 5 minutes. Three metrics are presented for each simulation
run. The number of required CPUs per hour is equal to the sum of required CPU capacity
to satisfy the workloads demands, migration overhead, and the idle CPUs. The average CPU
violation penalties and number of migrations per hour is shown on the right y-axis of the figure.

The figure shows that reallocating workloads every 4 hours captures most of the capacity
savings that can be achieved, i. e., with regard to reallocation every 5 minutes. On average,
the 4 hour placement interval required 60.4 CPUs (36%) less than the initial rearrangement only

scenario—that does not migrate workloads—and just 12.3 CPUs (12.9%) more than the 5 minute
one. Furthermore, it provided a nearly perfect CPU quality with an hourly CPU violation penalty
value of 0.41. The incurred violation penalties are caused by migration overhead, which, even in
the ideal scenario, is not considered by the workload placement controller when deciding work-
load placements. The figure also shows that as the placement interval drops to the hourly, fifteen
minute, and five minute levels, the number of migrations per hour increases proportionally. This
result was expected, as most workloads are likely to be reassigned. Furthermore, the resulting
migration overheads increase the CPU quality violation penalties. Table 9.3 gives a more detailed
breakdown of the violations for the 4 hour control interval case.

Table 9.4 shows the minimum, maximum, and average number of servers required during the
three months. Servers that are not required for the a control interval are temporarily switched-off.
The 4 hour scenario required a peak of 19 servers. All the other scenarios also had peaks between
19 and 21 servers. However, reallocating workloads every 4 hours lowered the minimum number
of servers to 9, whereas all longer placement intervals at least required 16 servers. The average
number of servers for the 4 hour case was just 12.6% higher than for the 5 minutes case, whereas
the 1-day scenario already required 44.5% more servers on average. Furthermore, in the 4 hours
simulation the workload placement controller triggered on average 31.4 migrations per hour.

The distribution of the simulated power consumption in Watts is shown in Figure 9.8. We
note that the power consumption of the 5 minutes, 15 minutes, 1 hour, and 4 hour scenarios
are pretty close to each other. For workload placement intervals longer than 1 day, significantly

1We note that the hourly CPU violation penalty value is so small that it cannot be identified in the picture.
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Interval Numer of Required Servers

Minimum Maximum Average

Initial Rearrangement Only 21 21 21.0
4 Weeks 20 21 20.3
1 Week 18 20 18.8
1 Day 16 19 17.2
4 Hours 9 19 13.4
1 Hour 9 19 12.4
15 Minutes 8 19 12.0
5 Minutes 8 19 11.9

Table 9.4: Required Servers with Respect to Workload Placement Interval
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Figure 9.9: Varying the Workload Placement Interval for the Blades Pool

more servers are used resulting in higher power consumption. Furthermore, the figure indicates
that differences in the minimum amount of required power are larger than differences in the
peak power consumption, as smaller placement intervals allow more servers to be temporarily
switched-off.

Figure 9.9 shows the corresponding results of simulations using the blades resource pool.
Again, the 4 hour workload placement interval provides a good trade-off between capacity and
quality. On average, it requires just 6.2 CPUs (3.4%) more than the 5 minute case and provides
an hourly CPU quality of 0.65. Reducing the placement interval to less than 4 hours is not
providing noticeable savings in capacity. Table 9.5 shows that the 5 minutes, 15 minutes, 1 hour,
and 4 hours simulations require nearly the same number of blades.

Concerning power consumption (see Figure 9.10) for the blades pool, the 5 minute simulation
consumes more power than the 4 hour simulation even though the workloads are packed more
densely and fewer servers are used on average. The reason is that reallocating workloads every 5
minutes significantly increases the number of migrations and hence the migration overhead and
power consumption. Furthermore, the power consumption curves for the 15 minutes, 1 hour and
4 hour case closely resemble each other.

With regard to resource savings, short placement intervals exhibit the most resource savings.
However, reshuffling workloads for every measurement interval entails significant management
and migration overhead. Thus, it is less applicable for real systems. Concerning the results
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Interval Numer of Required Servers

Minimum Maximum Average

Initial Rearrangement Only 31 31 31.0
4 Weeks 29 30 29.3
1 Week 26 29 27.5
1 Day 20 28 24.8
4 Hours 17 28 23.2
1 Hour 16 27 22.7
15 Minutes 16 27 22.5
5 Minutes 16 27 22.5

Table 9.5: Required Blades with Respect to Workload Placement Interval
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Figure 9.10: Power Consumption for Blades Assuming Perfect Knowledge
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Figure 9.11: Required Capacity Using First Fit + Genetic Algorithm Versus Best Sharing Greedy
Placement Algorithm Using Servers

for the blades and server pool, reshuffling workloads every 4 hours provides a good trade-off
between capacity savings and overhead for the given workloads. Hence, for the remainder of the
study 4 hours are chosen as workload placement interval.

9.2.3 Workload Placement Algorithm

This section evaluates how densely different workload placement algorithms consolidate work-
loads onto servers. For this, workloads are reallocated assuming perfect knowledge of future
demands at the start of each control interval, e. g., 4 hours. Figure 9.11 compares the best shar-
ing greedy algorithm (BS Greedy) with the genetic algorithm that uses a first fit heuristic to find
a pool of initial workload placements (FF + GA). Both algorithms are described in Section 5.1.
The genetic algorithm is configured to generate 20 placements using a first fit greedy approach
and to apply the genetic solving algorithm stopping after 25 iterations.2 In each control interval,
all workloads are reshuffled and consolidated onto the server pool assuming perfect knowledge
on future demands.

2The genetic algorithm approach is configured according to recommendations from the developers of the capacity
management tool used.
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Interval Best Sharing Greedy FF + Genetic Algorithm

Avg [s] Total [s] Avg [s] Total [s]

Initial Rearrangement Only 32.6 425 721 1243
4 Weeks 8.3 416 274 1330
1 Week 2.1 380 142 2374
1 Day 0.3 924 29.5 3373
4 Hours 0.09 1969 9.8 7439
1 Hour 0.04 6822 6.8 22033
15 Minutes 0.04 25064 5.9 78064
5 Minutes 0.03 70858 5.5 206671

Table 9.6: Calculation Times for Workload Placements Using Servers

The figure shows for each experiment the required CPUs in relation to the total CPU de-
mand for all workloads. For example, the best sharing greedy approach applied every 4 hours
required in total 216864 CPU hours. Of the 216864 CPU hours 148971.5 CPU hours were re-
quired to satisfy the workloads’ demands, 146.5 CPU hours stemmed from migration overheads,
and 67746 CPU hours remained idle. In total, the CPU overhead adds up to 45.6% and the
average utilization of servers in the resource pool is close to 69%. This suggests that we were
able to allocate an average of 69% of each server’s CPU resources. As already mentioned in
Section 9.2.2, the utilization decreases with longer placement intervals. Furthermore, for short
placements intervals the differences between the best sharing greedy algorithm and the genetic
algorithm are rather small. For longer intervals, the best sharing greedy algorithm outperforms
the genetic algorithm and generates denser workload placements. For the 4 hour interval, the
genetic algorithm required on average 5.2% more servers than the best sharing greedy algorithm.

Table 9.6 shows the average execution times for the two placement controllers. For intervals
longer than 4 hours, the calculation time of both algorithms grows linearly with the length of
the used historical workload traces. Furthermore, the table presents the total time required for
each simulation. Although the average time to calculate one placement is lower for short control
intervals the total time of a simulation run increases rapidly, as the placement controller needs to
be invoked more often. For example, for the 5 minutes experiments it is invoked 24192 times.
Comparing both placement controllers, the genetic algorithm needs longer than the best sharing
greedy approach. The time differences range from a factor of 20 times for long intervals up to 180
times more for short intervals. Especially for short placement intervals, the best sharing greedy
approach is extremely fast. One reason why the genetic algorithm approach needs more time is
that it computes a required capacity value that requires many iterations for a binary search. It
also supports the notion of classes of service. These features are not exploited in this study but
cause significant more computation.

Next, we evaluate how densely the best sharing greedy algorithm consolidates workloads
compared to optimal placement. For this, the 504 workload placements that are calculated dur-
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Best Sharing Greedy Relaxed ILP

Number of Workload Placements 301 301
Minumum Number of Required Servers 9 9
Maximum Number of Required Servers 19 18
Average Number of Required Servers 13.58 13.29

Table 9.7: Comparing Best Sharing Greedy Algorithm with Relaxed ILP Using Servers

ing a 4 hour simulation run are compared to placements determined with the relaxed integer
linear program from Section 5.1.1. The tool lpsolve (lpsolve, 2007)—an open source mixed inte-
ger linear programming solver under the GNU LPGL license—is used to solve the relaxed ILPs.
As the problem space (up to 19 integer variables for the servers, 138 workloads, and 48 measure-
ments per workload trace) is large for ILPs, the calculation of an optimal workload placement
was stopped after 30 minutes. Due to the time restriction for only 301 out of the 504 control
intervals optimal placements could be found.

Table 9.7 compares the 301 workload placements of the ILP with the corresponding place-
ments of the best sharing greedy approach. It shows the minimum, maximum, and average
numbers of required servers. On average, the relaxed ILP required 0.29 servers less than the
greedy approach. An inspection of the results showed, that 213 of the 301 placements required
the same number of servers. For 88 workload placements, the relaxed ILP required one server
less. We note that the relaxed ILP allows the distribution of individual workloads onto multiple
servers and hence some of the solutions found are not feasibly in practice. Thus, if only con-
sidering valid placements the number of required servers from the ILP may be even closer best
sharing greedy algorithm. However, we conclude that the best sharing greedy approach produces
dense workload placements very close to the optimum.

Figure 9.12 shows CPU demand for the experiments using a blade based resource pool.
Again, the best sharing greedy algorithm produces denser placements than the genetic algorithm
resulting in less required capacity. For the 4 hour case, the average utilization of the resource
pool over the three months is close 50%. Furthermore, the 5 minute case exhibits tremendous
migration overhead. The system is highly overloaded because workloads are continuously being
migrated.

A comparison of the server and the blade configuration shows that the server pool is able to
utilize CPU more efficiently than the blade pool. This outcome is due to the server configuration
having twice the memory, i. e., 128GB instead of 64GB. The case study uses traces from SAP
applications and SAP applications are very memory-intensive. Servers with larger memory sizes
enable the consolidation of more applications to a smaller number of servers. The blade config-
uration is memory limited and hence is less able to make full use of its CPU capacity, i. e., the
average CPU utilization for the 4 hour control interval is only close to 47%. While the impact of
migration on CPU quality is lower and the CPU utilization is higher for the server pool than for
the blade pool, Figure 9.8 and 9.10 show that more power is needed for the server pool. From the
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Figure 9.12: Required Capacity Using First Fit + Genetic Algorithm Versus Best Sharing Greedy
Placement Algorithm Using Blades

perspectives of efficiency and quality, the server based pool has an advantage. However, blades
appear to have a power advantage.

From a workload placement point of view, the server based resource pool is more interesting
than the blade based pool because both resources are limiting the number of workloads that can
be hosted by one server. In contrast to that, the blade pool is memory bound and memory is less
variable than CPU, easier to predict, and provides less sharing advantages. Hence, the following
sections use the server based resource pool to evaluate management policies for the controllers.

9.3 Migration Management—Local Optimizations

This section evaluates what capacity reductions can be achieved with the migration controller
from Chapter 6. The use of a workload migration controller alone is most typical of the literature,
for example, Raghavendra et al. (2008) and Wood et al. (2007). First, Section 9.3.1 evaluates
the trade-off between resource access quality, required capacity, and management efficiency by
varying the thresholds of the migration controller. It focuses mainly on the trade-off between
quality and capacity and derives a curve showing what quality–capacity trade-off is possible with
a feedback based migration controller. Afterwards, Section 9.3.2 assesses benefits of proactive
migration controllers in comparison to traditional feedback controllers.
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9.3.1 Workload Migration Controller Thresholds

Most approaches for a self-managing resource pools employ a rule-based feedback controller
that continuously monitors the pool and migrates workloads if critical overload or idle situa-
tions are detected. This section evaluates the efficiency of such dynamic migration solutions.
The experiments start with an ideal workload placement for the first 4 hours and use the fuzzy
logic based migration controller from Section 6.4 to maintain the resource access quality of the
workloads. The advisor module of the controller is configured as follows: It triggers the fuzzy
controller if either a server is overloaded or the system is lightly utilized. A server is considered
overloaded if the CPU or memory utilization exceeds a given threshold. In that case, it triggers
the fuzzy controller that tries to migrate one workload from the concerned server to a less loaded
one. Furthermore, the advisor deems a server pool lightly utilized, if the average CPU and mem-
ory utilization over all servers fall below their given thresholds. In this case, the fuzzy controller
chooses the least loaded server, migrates all of its workloads to other servers, and shuts down the
server.

To evaluate the impact of the feedback controller, the following levels for the thresholds are
considered:

• A: The CPU threshold defining overloaded servers varies from 80%, 85%, 90%, 95%, and
99% CPU utilization.

• B: The memory threshold defining overloaded servers varies from 80%, 85%, 90%, 95%,
and 99% memory utilization.

• C: The CPU threshold defining a lightly utilized resource pool 30%, 40%, 50%, and 60%
average CPU utilization of the server pool.

• D: The memory threshold defining a lightly utilized resource pool varies from 30%, 40%,
50%, 60%, 70%, and 80% average memory utilization of the server pool.

A three months simulation is conducted for each factor level combination resulting in a total
number of 600 experiments. For easier reference, the factors are labeled from A to D. Fig-
ures 9.13(a) to 9.13(d) illustrate the achieved trade-offs between required capacity and CPU
quality violation penalties. For each simulation, a point is drawn denoting the required capacity
and achieved resource access quality. Normalized capacity is the total required CPU capacity of
the simulation divided by the total required CPU capacity of the ideal, 4 hour workload placement
experiment from Section 9.2.2, i. e., a normalized capacity of 1 resembles an ideal exploitation of
CPU resources. The CPU resource access quality is measured using the violation penalty metric
from Section 3.3.1. We note, that all simulations had an almost perfect memory access quality,
as memory is less variable and thus easier to maintain for the migration controller.

The results of the 600 simulations indicate that there is a strong relation between required
capacity and achieved resource access quality. The more capacity is available to the workloads,
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(a) Varying the CPU Overload Threshold
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(b) Varying Memory Overload Threshold
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Figure 9.13: Quality Versus Required Capacity Using Different Threshold Levels
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Figure 9.14: Migrations Versus Required Resources Using Different CPU Overload Thresholds

the better is the resource access quality, as the average utilization of the servers is typically
lower. The four figures show the same results. However, each figure considers one factor and
categorizes the points according to its levels.

Figure 9.13(a) shows the impact of the CPU overload threshold. Considering the results
that required a capacity between 1.4 and 1.7, a clear trend is obvious. The simulations with
higher CPU overload thresholds achieved better quality–capacity trade-offs than ones with lower
thresholds. Considering experiments with a normalized capacity value of less than 1.4, CPU
overload thresholds of 85%, 90%, and 95% are superior. Next, Figure 9.13(b) shows that, as
expected, the memory overload threshold has no apparent impact on the CPU violation penalties
and the required capacity. CPU and memory idle thresholds are considered in Figure 9.13(c) and
9.13(d). They indicate a strong relation between the idle thresholds and the achieved quality–
capacity trade-off, respectively. Lower thresholds required less capacity than higher ones but
incurred higher violation penalties.

The Figure 9.14 shows the relationship between the required capacity and the achieved re-
source access quality. In order to save capacity, the migration controller needs to remove servers
aggressively resulting in a large number of migrations. Furthermore, if the idle and overload
thresholds are close to each other, a thrashing behavior of the system can be observed as the
migrations per hour increase dramatically for lower normalized capacity values. Remember that
simulations configured with higher CPU and memory idle thresholds typically required less ca-
pacity. For example, the results on the left-most parabolic curve are from simulations using a
CPU idle threshold of 60% and a memory threshold of 80%. For these, the average number of
migrations per hour varies between 6.9 and 68.2 depending on the CPU and memory overload
thresholds used.

Figure 9.15 indicates a linear correlation between resource access quality and the number of
triggered migrations. The migration controller triggered fewer migrations in simulations with
lower violation penalties. In particular for the experiments with lower violation penalties per
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Figure 9.15: Migrations Versus Quality Using Different CPU Overload Thresholds

hour than 8, the number of migrations is influenced by the CPU overload threshold, as for higher
CPU overload thresholds the controller triggered fewer migrations.

However, a visual inspection of the impact of each factor on the quality–capacity trade-off is
challenging. Thus, Analysis of Variance (ANOVA) models are considered to explore the impact
of the factors on CPU access quality and required capacity. More information on ANOVA models
can be found in Jain (1991). An ANOVA model captures the effects of factor levels such as
different values for thresholds on a metric, e. g., on the CPU violation penalty or CPU capacity
metric. Each factor level has a numerical effect on the metric. The sum of each factor’s effects
adds to zero. The effect is defined as the difference between the overall mean value for the metric
over all combinations of factor levels and the numerical impact of the factor level on the metric
with respect to the overall mean value. Similarly, interactions between factor levels also have
effects. An analysis of variance considers the sum of squares of effects. The sums of squares are
variations for the metric. The analysis quantifies the impact of factors and interactions between
factors on the total variation over all combinations of factor levels. When the assumptions of the
ANOVA modeling approach hold, a statistical F-test can be used to determine which factors and
interactions between factors have a statistically significant impact on the metric and to quantify
the impact.

The assumptions of an ANOVA are:

• the effects of factors are additive;

• uncontrolled or unexplained experimental variations, which are grouped as experimental
errors, are independent of other sources of variation;

• variance of experimental errors is homogeneous; and,

• experimental errors follow a Normal distribution.
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Figure 9.16: Quantile–Quantile Plot of the CPU Access Quality Error Distribution

First, the assumptions of the ANOVA model are validated using visual and statistical tests.
For the considered experiments, an additive impact of the factors on the metrics is assumed. The
experiments are fully controlled, experimental errors are defined as higher order interactions,
which from a detailed analysis have small effects. Figure 9.16 uses a quantile–quantile plot to
visualize the distribution of the error values of the CPU violation penalties model. It suggests that
the errors are normally distributed, as they closely resemble the diagonal line that corresponds to
a Normal distribution. Only a few outliers of extreme error values lie further apart.

The results of a Kolmogorov-Smirnov test (K-S test) for the 600 errors resulted in a D-value
of 0.0627, which concludes that the error values are Normally distributed with α = 0.01. How-
ever, after removing the ten largest of the 600 errors, the K-S test indicates that the remaining 590
errors are Normally distributed with significance α = 0.2. This suggests that 20% of randomly
generated Normally distributed data sets will have a greater difference from the Normal distri-
bution than the experiment’s error data. Hence, we conclude that the error values are Normally
distributed and the ANOVA model can be applied.

The equation in Figure 9.17 shows the employed ANOVA model for the CPU access quality.
The vectors α , β , γ , and δ model the impact of levels of the factors A, B, C, and D, respectively.
The model states that a metric, e. g., CPU violation penalty, is equal to a mean value over all
experiments µ plus an effect that is due to each factor’s level plus an effect that is due to pair-
wise interactions for factors, e. g., the ith threshold for CPU overload and the kth threshold for
CPU underload. The error term ε includes the effects of higher level interactions, i. e., three and
four factor interactions.

The average incurred violation penalties over all simulations equals to µ = 3880.84, which
corresponds to an hourly violation penalty of 1.93. The vector α shows that if the CPU overload
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Violation Penalties = µ +αi +β j + γk +δl +(αβ )i j +(αγ)ik +(αδ )il +(βγ) jk +(βδ ) jl +(γδ )kl + ε,

with µ = 3880.84,

α = (342.98,−225.30,−257.89,−38.71,178.92) ,

β = (6.43,−31.45,41.64,−28.09,11.47) ,

γ = (−3411.05,−1196.24,1147.48,3459.81) ,

δ = (−3804.53,−3688.66,−2545.32,−160.71,3655.17,6544.05) ,

αβ =













95.66 3.41 −29.72 −42.03 −27.31
134.99 3.88 −89.66 44.65 −93.86
28.46 34.72 −38.36 −65.69 40.87

−147.42 −17.09 29.47 95.28 39.77
−111.69 −24.91 128.28 −32.21 40.53













,

αγ =













−264.63 15.1 −150.86 400.4
183.56 −4.21 −162.25 −17.1
276.83 110.34 −50.06 −337.11
13.56 4.12 136.38 −154.06

−209.31 −125.35 226.79 107.87













,

αδ =













−371.74 −335.34 79.11 451.5 87.44 89.03
204.27 233.57 199.23 51.6 −242.09 −446.58
254.53 265.47 82.29 −91.3 −153.7 −357.28
82.98 30.37 −105.23 −131.01 −7.28 130.17

−170.03 −194.07 −255.4 −280.79 315.64 584.66













,

βγ =













11.82 15.04 24.8 −51.65
6.09 45.55 −68.46 16.82

−19.29 −54.22 4.44 69.08
34.45 −18.3 14.93 −31.08
−33.06 11.93 24.29 −3.16













,

βδ =













29.92 42.32 56.57 76.7 22.82 −228.34
31.76 34.7 27.22 −75.31 34.71 −53.08
−45.54 −56.15 −90.56 7.42 45.86 138.97

11.31 12.02 29.97 24.66 −60.88 −17.08
−27.45 −32.89 −23.21 −33.46 −42.51 159.53













,

γδ =









3411.05 3329.4 2541.51 278.99 −3336.03 −6224.92
1196.24 1201.85 1293.18 831.42 −966.86 −3555.82
−1147.48 −1114.13 −766.12 250.78 1941.09 835.86
−3459.81 −3417.12 −3068.56 −1361.19 2361.8 8944.87









,

i ∈ {80,85,90,95,99}, j ∈ {80,85,90,95,99},

k ∈ {30,40,50,60}, and l ∈ {30,40,50,60,70,80}

Figure 9.17: Impact of the Factor Levels on CPU Access Quality
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Source SS SS in % df MS F-Value crit. Value Conclusion

A 32209681.51 0.17 4 8052420.4 50.17 2.39 significant
B 442121.295 0 4 110530.3 0.689 2.39 not significant
C 3952996127 20.96 3 1317665376 8209.6 2.623 significant
D 9077000224 48.13 5 1815400045 11310.6 2.232 significant
AB 2997478.692 0.02 16 187342.4 1.167 1.664 not significant
AC 20512290.59 0.11 12 1709357.5 10.65 1.772 significant
AD 37595874.98 0.2 20 1879793.7 11.712 1.592 significant
BC 701390.6922 0 12 58449.2 0.364 1.772 not significant
BD 2969997.892 0.02 20 148499.9 0.925 1.592 not significant
CD 5653318689 29.98 15 376887913 2348.2 1.687 significant
Error 78325016.26 0.41 488 160502.1

Total: 18859068891 100 599

Table 9.8: ANOVA Table for CPU Access Quality

threshold closely approaches 100%, then the violation penalty increases. However, a low CPU
overload threshold of 80% also increases the violation penalty by 342.98 due to thrashing behav-
ior of the controller. Furthermore, higher CPU and memory thresholds for defining underloaded
resource pools caused higher violation penalties than lower thresholds. The biggest interactions
exist between levels of the factor C and D. A closer inspection of the first two lines of matrix
γδ reveals that the entries closely equal the opposite values of factor C and hence eliminate the
impact of the CPU idle threshold. This explains that low memory idle thresholds of 30% or 40%
dominate the CPU threshold and hence the choice of the CPU idle threshold has no effect. Fur-
thermore, the first line shows that a low CPU idle threshold of 30% mostly eliminates the effect
of the choice of the memory idle threshold.

Next, Table 9.8 gives the results of an Analysis of Variance (ANOVA) for the CPU access
quality. The column Source identifies the factor and factor interactions. The columns SS and
SS in % denote the source’s sum of squares of effects as an absolute value and as a percentage
of the total SS over all sources. The number of degrees of statistical freedom that contribute
to the SS are shown in column df and MS denotes the mean square value, which is the SS for
a source divided by its number of degrees of freedom. Furthermore, the computed F-Value for
the mean square value is presented, which in the comparison with the critical value (crit. Value)

determines whether a source has statistically significant impact on the metric. Critical F-Values
are taken from tables that can be found in Jain (1991).

The table shows that factors C and D, the CPU and memory thresholds for defining under-
loaded servers, and their interaction explains 99% of the variation in violation penalties over the
600 experiments. Interestingly, factors A and B, thresholds for overloaded CPU and memory,
had little impact on quality. This is likely because the thresholds that define underloading have
a sustained impact on the number of servers used. The overload thresholds react to bursts in de-
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Figure 9.18: Quantile–Quantile Plot of the Capacity Error Distribution

mands. However, when bursts arrive they often surpass the threshold regardless of the threshold
level that is chosen. The table also shows that the impact of the error values is only 0.41%.

Next, the impact of the migration controller thresholds on the required CPU capacity is eval-
uated with an ANOVA model. The quantile–quantile plot of the error values for the capacity is
shown in Figure 9.18. Again, the errors closely resemble the diagonal line indicating that the
errors are normally distributed. For CPU capacity, the K-S test yields a D-value D = 0.0491
suggesting that the 600 errors are normally distributed with a significance level α = 0.1.

The equation in Figure 9.19 shows the resulting ANOVA model for impact of the considered
factor levels on the total required CPU hours for the 3 months. On average, the simulations
required a capacity of µ = 309436 CPU hours. Furthermore, low CPU and memory thresholds
defining lightly utilized resource pools increase the required capacity. For example, a memory
idle threshold of 30% required on average 73122.12 more CPU hours than a threshold of 80%.

Table 9.9 gives the results of an ANOVA for the factors regarding the CPU capacity. Factor D,
the memory threshold for defining underloaded servers, has an even larger impact on capacity
than on CPU violation penalty. Again, factors C and D and their interaction explain nearly
all, 97%, of the variation. Recognizing underload conditions is clearly an important aspect for
policies to manage resource pools.

The achieved resource access quality and required capacity is likely to be workload and re-
source pool specific. However, such models can help administrators to choose optimal migration
controller thresholds for given resource pool configurations and workloads.

The results of the 600 simulations are again illustrated in Figure 9.20 as small black dots.
Each of the 600 simulations represents a combination of factor levels. A Pareto-optimal set
of simulation runs is illustrated using a red line. These combinations of factor levels provided
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Capacity = µ +αi +β j + γk +δl+

(αβ )i j +(αγ)ik +(αδ )il +(βγ) jk +(βδ ) jl +(γδ )kl + ε,

with µ = 309436.28,

α = (7744.67,4268.68,−225.84,−4156.03,−7631.48) ,

β = (695.62,727.66,−417.66,−471.55,−534.07) ,

γ = (19969.69,1015.75,−8950.89,−12034.55) ,

δ = (38373.88,25479.99,9493.88,−9731.45,−28868.06,−34748.24) ,

αβ =













−641.01 218.62 −156.48 252.5 326.37
−268.83 178.54 38.81 76.84 −25.37

566.53 −1026.99 368.67 65.89 25.9
−400.11 965.4 −114.22 −224.38 −226.68

743.42 −335.57 −136.77 −170.85 −100.23













,

αγ =













1696.63 −496.29 −546.81 −653.53
974.21 −251.71 −394.13 −328.37
−199.82 161.46 3.99 34.38
−824.18 422.65 240.41 161.13
−1646.84 163.9 696.54 786.4













,

αδ =













4684.91 2452.6 2348.18 −3869.93 −3242.75 −2373.01
2478.09 1994.88 1144.46 −2120.24 −1925.96 −1571.22
181.14 −265.26 74.62 340.91 −112.94 −218.47

−2186.53 −2038.4 −1328.62 2144.41 1913.55 1495.59
−5157.61 −2143.82 −2238.64 3504.86 3368.1 2667.11













,

βγ =













−653.08 −413.33 245.89 820.52
−70.74 −173.33 99.56 144.52
−25.55 224.21 −99.99 −98.67
371.83 184.82 −148.52 −408.13
377.54 177.64 −96.94 −458.24













,

βδ =













−2008.71 −801.72 −395.64 −338.31 290.94 3253.44
1222.71 −4.66 −321.42 −628.82 −512.34 244.53
102.83 205.93 240.71 286.7 43.75 −879.91
310.33 282.02 253.27 297.19 109.54 −1252.35
372.84 318.43 223.08 383.24 68.12 −1365.71













,

γδ =









−19969.69 −13444.97 −12179.23 2958.28 18377.72 24257.89
−1015.75 −2907.03 −2312.92 −2594.63 2803.48 6026.85

8950.89 6615.99 5773.38 −1103.21 −9450.31 −10786.75
12034.55 9736.01 8718.77 739.56 −11730.89 −19498









,

i ∈ {80,85,90,95,99}, j ∈ {80,85,90,95,99},

k ∈ {30,40,50,60}, and l ∈ {30,40,50,60,70,80}

Figure 9.19: Influence of the Factor Levels on the Required Capacity
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Source SS SS in % df MS F-Value crit. Value Conclusion

A 18451760914 2.95 4 4612940228 1689.8 2.39 significant
B 203448728.4 0.03 4 50862182.1 18.632 2.39 significant
C 93715380384 14.97 3 31238460128 11443.3 2.623 significant
D 4.34742E+11 69.44 5 86948493051 31851.1 2.232 significant
AB 101095635.3 0.02 16 6318477.208 2.315 1.664 significant
AC 299339472.5 0.05 12 24944956.04 9.138 1.772 significant
AD 3502757297 0.56 20 175137864.9 64.157 1.592 significant
BC 66662589.3 0.01 12 5555215.775 2.035 1.772 significant
BD 462381183 0.07 20 23119059.15 8.469 1.592 significant
CD 73166116866 11.69 15 4877741124 1786.8 1.687 significant
Error 1332165080 0.21 488 2729846.476

Total: 6.26044E+11 100 599

Table 9.9: ANOVA Table for Required Capacity
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Figure 9.20: Chosen Combinations of Thresholds for Further Experiments
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A: CPU Overload B: Memory Overload C: CPU Idle D: Memory Idle

99% 99% 60% 80%
90% 95% 60% 80%
99% 99% 50% 80%
90% 95% 50% 80%
90% 90% 50% 70%
99% 95% 40% 80%
85% 99% 40% 80%
99% 95% 40% 60%
99% 90% 30% 80%
99% 99% 40% 40%

Table 9.10: Migration Controller Thresholds for Ten Pareto-Optimal Cases

lowest CPU violation penalty and/or the lowest normalized CPU capacity. Ten of the Pareto-
optimal combinations are chosen representing the best behaviors of the migration controller and
serve as a baseline for the remainder of the case study. A data center operator could choose any
one of these as a best behavior depending on the quality versus capacity trade-off desirable for
the workloads. Migration controller thresholds for the ten cases are given in Table 9.10.

Furthermore, results from simulations applying the workload placement controller in differ-
ent intervals (see Section 9.2.2) are depicted as a perfect knowledge baseline. From Figure 9.20,
as expected, as workloads are consolidated more tightly, the CPU violation penalty increases.
The shape of this curve is likely to be workload specific and reflects the inherent randomness
present in workload demands.

9.3.2 Prediction of the Future Behavior

This section evaluates the proactive migration controller from Section 6.5. The migration con-
troller is initialized with the current load values and predictions for next measurement interval.
Three approaches for the workload prediction are evaluated:

• Proactive MC Using AR(16) derives for each workload and resource type an AR(16) model
from the workload trace for the previous 2 days and uses the model to predict the demand
value for the next 5 minutes.

• Proactive MC Using Patterns applies the workload demand prediction service from Chap-
ter 4 to analyze the workload traces of the last 21 days. For each workload, it predicts a
synthetic trace of resource demands for the next 7 days. The controller then takes the syn-
thetic workload traces as input. After 7 days, the workload analysis is repeated providing
a new synthetic workload trace for the subsequent week.
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Figure 9.21: Impact of Prediction of Future Behavior for the Server Pool

• Proactive MC Using Corrected Patterns differs from the Proactive MC Using Patterns pol-
icy such that predictions for the next measurement values are corrected with the currently
observed demand values as described in Section 6.5.1.

Figure 9.21 illustrates the achieved quality–capacity trade-offs for the above policies. The
results of the chosen experiments from Figure 9.20 serve as baseline, which is indicated by a red
line. The proactive controller based on the AR(16) performs worse than the reactive controller.
In most simulations, it increased quality slightly but it also increased the required capacity. Bet-
ter results are achieved by exploiting pattern information. Both, patterns and corrected patterns
provide advantages. The corrected patterns required slightly less capacity than uncorrected pat-
terns, which overestimate demands on weekend days for some workloads with a daily pattern.
Corrected patterns capture the lower actual demands on weekend days for these workloads re-
sulting in less required capacity. However, at the start of the next work week, corrected patterns
tend to underestimate the actual demands until they are adjusted again. Hence, corrected patterns
incurred slightly higher violation penalties than uncorrected patterns.

9.4 Workload Placement—Global Optimizations

This section evaluates the impact of global workload placement on resource pool management.
First, the workload placement controller is applied to consolidate workloads in fixed control in-
tervals. Section 9.4.1 investigates the effect of different headroom policies for CPU and memory.
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Then Section 9.4.2 evaluates whether specific calendar knowledge can help to improve the ef-
ficiency of the workload placement controller. The impact of synthetic workload traces on the
workload placement process is considered Section 9.4.3. Finally, in Section 9.4.4 the workload
placement controller is integrated with the migration controller.

9.4.1 Tuning the Workload Placement

To evaluate the impact of the maximum allocation thresholds, the best sharing greedy place-
ment controller is used to reallocate workloads at the start of each 4 hour control interval. The
placement controller uses historical demand trace information from the previous week that cor-
responds to the next control interval. In this way, it periodically re-computes a globally efficient
workload placement. The choice of the best sharing greedy placement controller and the 4 hour
control interval is explained in Section 9.2. Furthermore, we use the default WP Hist 7 Days

policy as derived in Section 9.4.2.
The placement controller consolidates servers to a given CPU utilization threshold U (c) and

memory utilization threshold U (m). To assess the impact of the thresholds, both are varied from
75% to 100% in 5% percent steps resulting in a total number of 36 simulations. For each simu-
lation, a small black dot is drawn in Figure 9.22. In general, we found that an identical threshold
for CPU and memory achieved a good quality–capacity trade-off. These results are indicated by
red squares in the figure. The percentages next to the squares denote the utilization thresholds
U (c) and U (m) of the experiment. The results show that headroom clearly improves the resource
access quality but also increases the required capacity.

Furthermore, the figure shows results of the adaptive headroom policy from Section 5.2.
This policy adapts the consolidation thresholds according to the violation penalties that occurred
during the last control interval. For all simulations, the minimum threshold level for CPU and
memory utilization is set to 70%. The maximum level for memory utilization is set to 100%.
Simulations are conducted varying the maximum level for the CPU utilization between 75%
and 100%. The figure shows that adaptive headroom policies achieved better quality–capacity
trade-offs than fixed headroom.

Finally, results from simulations using the workload balancing approach from Section 5.3 are
shown in the figure. This approach first determines the number of required servers if consolidat-
ing workloads up to 100% resource utilization on the servers. Then, it adds a given number of
servers to the required ones and balances workloads across all servers. Results from adding 1 up
to 6 servers are shown. They indicate that the balancing approach performs similar to the fixed
headroom approach. However, the fixed headroom or adaptive headroom policies allow a more
fine-grained tuning than the balancing approach.

For all simulations, the workload placement controller triggered approximately 30 migrations
per hour, which corresponds to a reallocation of all workloads every 4 hours. As expected, the
number of migrations is independent of the choice of the headroom policy. The maximum num-
ber of servers that is required to host all workloads varied between 19 and 26 for all simulations.
When using the adaptive headroom approach, the simulations required a maximum number of
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Figure 9.22: Trade-off Between Quality and Capacity for the Workload Placement Controller
Using Different Headroom Strategies

servers between 23 and 26.

9.4.2 Calendar Information

This section evaluates whether specific calendar information can help to improve the workload
placement process. The workload placement controller uses historical workload demand traces
to compute a more effective workload placement for the next control interval. However, the
quality and capacity strongly depends on the considered traces. A good placement can only be
generated if the traces accurately represent future workload demands. To assess the impact of
the demand traces the following policies are considered:

• WP React: The workload placement controller uses demand traces of the most recent 4
hours for the workload placement.

• WP Hist x Days: The workload placement controller uses demand traces corresponding to
the next control interval from the previous x days. It follows the assumption that workloads
exhibit a daily behavior.

For each policy, six simulations are conducted using a fixed headroom from 75% to 100%.
Figure 9.23(a) shows the resulting CPU quality–capacity trade-offs when applying the workload
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Figure 9.23: Impact of Considered Demand Traces
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Figure 9.24: Impact of Calendar Information on Workload Placement

placement controller with the above workload traces. As expected, the React policy frequently
underestimates the required CPU capacity and hence suffers huge violation penalties. The WP

Hist 3 Days policy even performs worse. A close inspection of the incurred violation penalties
revealed that the required capacity is underestimated on the first day of each work week.

Employing a historical policy that uses traces of the most recent 5 or 7 days performs best,
whereas WP Hist 14 days already tends to require more capacity. We recommend the WP Hist

7 Days policy as it best reflects the daily and weekly behavior of the workloads and hence
is most likely appropriate for workloads that have daily or weekly patterns in their demands.
Figure 9.23(b) shows the corresponding memory quality–capacity trade-offs of the simulations.
Again the WP Hist 7 Days performs best, but the differences with respect to the React policy
are smaller, as memory demands are less variable, i. e., recent memory demand values are better
predicting future memory demands.

Furthermore, specific calendar information on holidays and weekends can be used to improve
the workload placements. Figure 9.24 compares the following policies:

• WP Hist 7 Days: policy from the previous experiment serves a baseline.

• WP Hist 7 Workdays: distinguishes between workdays and non workdays, i. e., weekend
days and holidays. For the workload placement process, traces from the most recent,
corresponding 7 days are used. For example, if the controller calculates a placement for a
workday, then just the previous 7 workdays are considered.
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• WP Hist-Week 5 Days: assumes a weekly behavior of the workloads and uses correspond-
ing traces from the previous 5 weeks, e. g., if a placement for a Monday is calculated then
just traces from the last 5 Mondays are considered.

Figure 9.24 shows that holiday and weekend information helps to increase the resource access
quality and to reduce the required capacity as compared to WP Hist 7 Days. The WP Hist-Week

5 Days does not provide advantage over the WP Hist 7 Workdays policy.

9.4.3 Using Synthetic Workload Traces

Instead of historical workload traces, synthetic demand traces can be generated and used for the
workload placement process. This section evaluates the impact of synthetic workload demand
traces. These are generated using the demand prediction service from Chapter 4. For the ex-
periments, the best sharing greedy approach is applied every 4 hours with equal thresholds for
maximum CPU and memory utilization that are varied between 75% and 100%. We consider the
following policies to generate synthetic workload demand traces:

• WP ST(x), RB 7: The workload demand prediction service analyzes historical workload
traces of the last x days and predicts a synthetic demand trace for the next week. Seven
instances of synthetic demand traces are generated using the random block policy from
Section 4.3.

• WP ST-Cal(x), RB 7: In contrast to the above policy, calendar information is used to re-
move irregularities from the historical demand traces prior to workload analysis as de-
scribed in Section 4.5.

Figure 9.25 compares the synthetic workload trace based policies from above with WP Hist

7 Days. The WP ST(x), RB 7 policies achieved the best results when analyzing the most recent
21 days. As expected, just analyzing the most recent 14 days performs worse than considering
the most recent 21 days, as not enough information is available to detect longer patterns. Inter-
estingly, analyzing more than three weeks does not help either. When analyzing longer historical
workload traces, the probability increases that a workload changes its behavior during the con-
sidered period and affects the pattern detection process. Finally, removing irregularities based on
additional calendar information achieves better quality–capacity trade-offs.

For the considered workloads, the WP Hist 7 Days policy outperforms the synthetic trace
based approaches. The is understandable, as WP Hist 7 Days perfectly captures repetitive de-
mands for workloads that exhibit either a daily or weekly behavior. According to the analysis
in Section 9.1 this is true for 83.4% of the considered workloads. However, we note that the
synthetic workload trace approach is generally applicable, whereas the historical policy just con-
siders daily or weekly behavior of the workloads. The synthetic traces may be more appropriate
for longer term capacity planning, as in Gmach et al. (2007b).
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Figure 9.25: Impact of Synthetic Workload Traces for the Workload Placement Process

9.4.4 Integrated Workload Placement and Workload Migration Controller

This section considers the impact of integrated workload placement and workload migration con-
troller policies for managing the resource pool. It evaluates whether a reactive migration con-
troller or a workload placement controller alone is adequate for resource pool management and
whether the integration of controllers provides compelling benefits. The following management
policies are employed:

• MC: The migration controller is used alone;

• WP: The workload placement controller operates periodically alone;

• MC + WP: The workload placement controller operates periodically with the migration
controller operating in parallel;

• MC + WP on Demand: The migration controller is enhanced to invoke the workload place-
ment controller on demand to consolidate workloads whenever the servers being used are
lightly utilized; and,

• MC + WP + WP on Demand: The workload placement controller operates periodically
and the migration controller is enhanced to invoke the workload placement controller on
demand to consolidate workloads whenever the servers being used are lightly utilized.
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The MC policy corresponds to the Pareto-optimal set of experiments shown in Figure 9.20.
Furthermore, the workload placement controller uses the WP Hist 7 Days policy presented in
Section 9.4.2.

The MC + WP policy implements the MC and WP policies in parallel, i. e., the workload
placement controller is executed for each 4 hour control interval to compute a more effective
workload placement for the next control interval. Within such an interval, the migration con-
troller, independently, migrates workloads to alleviate overload and underload situations as they
occur. The MC + WP on Demand policy integrates the placement and migration controllers in a
special way. Instead of running the workload placement controller after each workload placement
control interval, the migration controller uses the workload placement algorithm to consolidate
the workloads whenever servers being used are lightly utilized. Finally, the MC + WP + WP

on Demand policy is the same as MC + WP on Demand policy but also invokes the workload
placement controller after every 4 hour control interval to periodically provide a globally efficient
workload placement.

The management policies are applied for ten simulations corresponding to the ten Pareto-
optimal sets of migration controller threshold values from Figure 9.20 in Section 9.3.1. Fig-
ures 9.26 and 9.27 show simulation results for the baseline cases and the integrated workload
management policies. The CPU metrics are discussed first followed by the memory and migra-
tion metrics.

The MC policy does very well as a starting point. Figure 9.26(a) shows that when using
approximately 8% more CPU capacity than the ideal case there is a CPU violation penalty per
hour of 12.6. As the migration controller becomes less aggressive at consolidating workloads,
i. e., using 50% more CPU capacity than the ideal case, the penalty drops to nearly zero.

The workload placement controller policy (WP) does not use the migration controller. It
operates with a control interval of four hours and consolidates to a given CPU and memory
utilization, which is varied between 75% and 100%. In the figure, the 100% case is omitted
to better plot the results. It incurred hourly CPU violation penalties of 84. The WP policy
does well when the resource pool is over-provisioned because there is little likelihood of a CPU
violation penalty. As the workloads become more consolidated, the CPU violation penalty per
hour increases dramatically.

The MC + WP policy is able to achieve much better CPU quality than either MC or WP

alone while using much less CPU capacity. The periodic application of the workload placement
controller globally optimizes the CPU usage for the resource pool. The migration controller alone
does not attempt to do this. This policy and subsequent policies permit the workload placement
controller to consolidate workloads onto servers using up to 100% CPU and memory utilization.

The MC + WP on Demand policy invokes the workload placement controller to consolidate
the workloads whenever the resource pool is lightly loaded. It behaves better than the migration
controller alone but not as well as MC + WP because it does not periodically provide for a global
optimization of CPU usage for the resource pool.

Finally, MC + WP + WP on Demand provides very good results from both a capacity and
violation penalty point of view. It is able to achieve nearly ideal CPU violation penalties while



132 Case Study

0

5

10

15

20

25

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
P

U
V

io
la

ti
on

P
en

al
ti

es
P

er
H

ou
r

Normalized Capacity

MC
WP

MC + WP
MC + WP on Demand

MC + WP + WP on Demand

(a) Achieved CPU Quality–Capacity Trade-offs

0

0.5

1

1.5

2

2.5

3

3.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

M
em

or
y

V
io

la
ti

on
P

en
al

ti
es

P
er

H
ou

r

Normalized Capacity

MC
WP

MC + WP
MC + WP on Demand

MC + WP + WP on Demand

(b) Achieved Memory Quality–Capacity Trade-offs

Figure 9.26: Comparison of Different Management Policies
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Figure 9.27: Number of Triggered Migrations Using Different Management Policies

requiring only 10% to 20% more CPU capacity than the ideal case. We also note that the CPU
violation penalties for this approach are less sensitive to migration controller threshold values.

Figure 9.26(b) shows the capacity versus quality trade-off for the memory metric. All of the
cases provide for very low memory violation penalties except for the WP policy, which has no
ability to react to the case where the demand for memory exceeds the supply of memory. As a
result WP incurs violations with many measurement intervals and hence large violation penalties.

Figure 9.27 shows the number of migrations for the different policies. For each policy, the
figure shows the minimum, first quartile3, median, third quartile and maximum number of migra-
tions for the ten baseline cases. The workload placement controller causes more migrations than
the migration controller alone. The on-demand policies cause significantly more migrations.
However, these policies also result in the most significant capacity savings with low violation
penalties.

9.4.5 Constraining Migrations For Workload Placement

This section applies a new multi-objective approach for the genetic algorithm based workload
placement controller, as described in Section 5.1.3. The approach constrains the number of
migrations that the workload placement controller is permitted to recommend. Fewer migrations
will cause lower migration overheads but also reduces the opportunity for consolidation. To

3The first and third quartile refer to the 25 and 75 percentiles.



134 Case Study

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

MC MC +
WP +

WP on Demand

MC + WP +
WP on Demand

<50%

MC + WP +

WP on Demand
<15%

MC + WP +
WP on Demand

<5%

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

C
ap

ac
it

y

C
P

U
V

io
la

ti
on

P
en

al
ti

es
/M

ig
ra

ti
on

s
pe

r
H

ou
r

Allowed Migrations for Workload Placement in %

Nomalized Capacity
CPU Violation Penalties

Migrations
116.6

Figure 9.28: Constrained Migrations

evaluate the benefits of the approach we compare capacity, quality violations and migrations
between the MC policy, which does not use the workload placement controller, and the MC +

WP + WP on Demand policy. Figure 9.28 shows the results.
In the figure, we vary the percentage of workloads that it is desirable for the workload place-

ment controller to migrate from 100%, i.e., no constraint on migrations, down to 5%. The results
show that introducing the constraint causes much fewer migrations. Without a limit, the av-
erage number of migrations every hour was 116.6 for the MC + WP + WP on Demand case.
This value is nearly 50 times larger than the number of migrations for the MC policy. With a
50% constraint, the migrations per hour drops below 12. With a 15% constraint, the number
of migrations drops to 10.5 per hour using slightly less capacity as the MC case and yielding a
significantly lower quality violation value. With a 5% constraint, the capacity increases slightly
beyond the MC case because there are fewer gains from consolidation but the quality violation
value decreases to nearly zero. This is achieved with the average number of migrations per hour
being only four times greater than for the MC case. The peak number of migrations per hour for
the unconstrained, 50%, 15%, and 5% cases are 1477, 231, 147, and 132, respectively.

9.5 Effect of CPU and Memory Allocation Model

The simulations in the previous sections used the fair-share CPU scheduler based on weights.
Furthermore, memory was allocated according to the dynamic allocation of memory approach.



9.5 Effect of CPU and Memory Allocation Model 135

0

2

4

6

8

10

12

14

16

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
P

U
V

io
la

ti
on

P
en

al
ti

es
P

er
H

ou
r

Normalized Capacity

MC – WB-FS, DA
MC – DB-FS, DA
MC – DB-FS, FA

Figure 9.29: CPU Quality Versus Capacity for Different Allocation Models Using MC Alone

The different scheduling approaches for CPU and memory are described in detail in Section 8.2.
This section evaluates the impact of different CPU and memory allocation approaches for the
simulated servers. It considers a fair-share CPU scheduler based on demands, which allocates
resources such that each workload gets the same share of its demands satisfied. Furthermore, the
fixed allocation of memory approach is considered where the virtualization infrastructure does
not adapt memory allocations on servers automatically.

Figure 9.29 shows the impact of different CPU and memory allocation models on the achieved
trade-off between CPU quality and capacity when applying the migration controller alone. The
following scenarios are considered:

• MC – WB-FS, DA: The physical servers schedule CPU demands according to the weight-
based (WB), fair-share (FS) CPU scheduler. The assigned memory is automatically adapted
according to the current demands, i. e., the dynamic allocation (DA) of memory.

• MC – DB-FS, DA: The physical servers schedule CPU demands according to the demand-
based (DB), fair-share CPU scheduler. The assigned memory is automatically adapted
according to the current demands.

• MC – DB-FS, FA: The physical servers schedule CPU demands according to the demand-
based, fair-share CPU scheduler. Furthermore, the fixed allocation (FA) of memory ap-
proach is applied, i. e., the allocated memory is not adapted automatically.
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Figure 9.29 shows that total incurred CPU violation penalties are similar for the weight-based
and the demand-based CPU scheduling approach. We note that memory penalties are not affected
by the CPU scheduling approach and are close to zero for all simulations.

We now consider the fixed allocation of memory approach. For the FA approach, the migra-
tion controller maintains the CPU and memory utilization of physical servers. It is not consid-
ering the memory utilization within the virtual machines. Hence, the migration controller is not
adjusting the memory allocation of virtual machines. This results in a fixed amount of memory
being assigned to each virtual machine for the three months. The memory assignment follows
from the initial workload placement, which reflects memory demands for the first 4 hours of
the simulation. As expected, huge memory violation penalties occurred in the simulations indi-
cating that many workloads are highly degraded over long periods. Furthermore, as shown in
Figure 9.29, due to the fixed allocation of memory for virtual machines, even more aggressive
memory thresholds for the migration controller cannot reduce the normalized required capacity
to less than 1.3. We note that integrating a workload manager helps to improve resource access
quality as shown in the Section 9.6.

Next, the impact of the CPU and memory allocation model is evaluated for simulations using
the workload placement controller alone. For this, the simulator employs the workload placement
controller every 4 hours to globally optimize the CPU and memory usage for the resource pool.
Furthermore, instead of reserving a memory headroom on the server that can be shared across all
workloads, a headroom is allocated to each virtual machine, i. e., each virtual machine gets x%
more memory assigned than the corresponding workload is expected to require. The headrooms
per virtual machine are varied from 0% to 25% in 5% steps resulting in six simulations per policy.
The results are shown in Figure 9.30.

Figure 9.30(a) compares the impact of fair-share CPU scheduler based on weights (WP –

WB-FS) with the one based on demands (WP – DB-FS). The demand-based, fair-share CPU
scheduler incurred much higher penalties than WP – DB-FS. This is because in epochs where
demands exceed supply all workloads are degraded. These epochs may last up to 4 hours before
the workload placement controller is invoked again.

Figure 9.31 shows the incurred CPU violation penalties per hour for each workload with
regard to its average CPU demand. The weight-based CPU scheduler with equal weights per
workload tends to discriminate against bigger workloads, as smaller workloads receive the same
amount of CPU within a time period and hence are more likely to get their demands satisfied first.
Thus, when demand exceeds supply bigger workloads tend to incur higher penalties as shown
in Figure 9.31(a). In contrast to that, assuming a demand-based, fair-share CPU scheduler, all
workloads incur similar penalties whenever demand exceeds supply (see Figure 9.31(b)).

The impact of the chosen memory allocation model on the achieved memory access quality is
substantial as Figure 9.30(b) shows. The fixed memory allocation model (WP – FA) incurs huge
memory violation penalties when no additional memory is assigned to the virtual machines.
Small headrooms improve the memory access quality significantly but the incurred penalties
are still higher than employing the dynamic memory allocation model (WP – DA), which auto-
matically adapts the memory allocation according to the current demands. Hence, it manages to
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Figure 9.30: Effect of CPU and Memory Allocation Model on WP Alone
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Figure 9.31: CPU Violation Penalties per Workload With Regard to Average Workload Demand

absorb most memory violations even if no memory headroom is assigned on the physical servers.

We note that the choice of the CPU and memory allocation model had no effect on the number
of migrations and on the peak number of required servers. Next, Section 9.6 evaluates how
workload management services can improve the management of resource access quality through
adjusting the CPU and memory allocation on the physical servers.

9.6 Workload Management—Per-Workload Metrics

At the time of writing, currently available virtualization solutions do not automatically adapt per
virtual machine resource allocations. This section evaluates whether the integration of work-
load managers that locally manage resource allocations to virtual machines can help to manage
workload quality of service.

Section 9.6.1 investigates whether management with respect to quality can be improved by
a workload management service that adjusts the allocation weights according to the most recent
observed demands. Section 9.6.2 evaluates how effectively workload management services can
provide differentiated quality of service.

For the simulations in this section, the workload management service is applied in combina-
tion with a workload placement controller that globally optimizes the resource allocation every
4 hours. Between the 4 hour control intervals, the workload management service manages the
resource allocation to the virtual machines on each physical server.
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9.6.1 Adjusting Weights According to Demands

This section evaluates the impact of a workload management service that adjusts the CPU and
memory allocation according to the workload demands as described in Section 7.2. For the simu-
lations, the weight-based, fair-share CPU scheduler and the fixed allocation of memory approach
is used. The best sharing greedy algorithm acts as a workload placement controller to reshuf-
fle workloads every 4 hours thereby periodically optimizing resource utilization. WP + WM

(Demand) – WB-FS in Figure 9.32(a) represents the results when employing the workload man-
agement service in combination with the workload placement controller. Furthermore, results of
the WP – WB-FS and WP – DB-FS simulations from Figure 9.30(a) are drawn as a baseline.

Figure 9.32(a) shows that applying the workload management service does not significantly
reduce the overall CPU access quality compared to the WP – WB-FS simulation. However, it
stops the discrimination against workloads with bigger demands. This can be seen by comparing
Figure 9.31(a) with Figure 9.33. The figures show the CPU violation penalties per hour incurred
by each workload in relation to its average demand.

Figure 9.32(b) shows the trade-offs between memory access quality and capacity. Results of
the WP – FA and WP – DA simulations from Figure 9.30(b) again serve as a baseline. The inte-
gration of the demand-based workload management service significantly improves the memory
access quality compared to employing the workload placement controller alone (WP – FA) for
virtualization environments that follow the fixed memory allocation approach. It even achieves
quality–capacity trade-offs close to the WP – DA scenario where physical servers automatically
adapt the memory allocation of virtual machines according to the current memory demands.

9.6.2 Multiple Classes of Service

Many service providers offer different classes of quality of service according to service level
agreements negotiated with the customers. This section evaluates whether workload managers
can help to provide differentiated service for this study. The 138 workloads are grouped into
three classes: gold, silver, and bronze with 30, 40, and 68 workloads, respectively. We note that
the workloads are grouped such that the average value of the per-workload peak demands for
each group is roughly equal. Gold workloads receive a priority twice that of silver workloads,
which themselves get a priority twice that of bronze workloads.

All simulations in this section cause the workload placement controller to globally optimize
the resource utilization every 4 hours. The placement controller is configured to consolidate
workloads up to 100% CPU and memory utilization. Furthermore, simulated servers use the
weight-based, fair-share CPU scheduler and follow the dynamic memory allocation approach.
Section 9.4.1 showed that this policy incurred substantial CPU violation penalties per hour, close
to 84. During the overload epochs, where demand exceeds supply, the workload manager de-
grades some services in order to keep the overall SLA penalties low. We use the resource com-
pliance ratio metric from Section 3.3.3 to define the desired quality of service levels of the service
level agreements.
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Figure 9.32: WP + WM Managing Resource Allocation on the Servers According to Demands
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Figure 9.33: CPU Violation Penalties per Workload With Regard to its Average Demand for WP

+ WM (Demand) – WB-FS

Results from four simulation runs are presented to assess the impact of providing differenti-
ated service. In the first simulation, each workload is weighted equally. The second simulation
employs a workload manager that statically prioritizes workloads according to their SLA class.
The last two simulations employ a workload management service that dynamically prioritizes the
workloads based on an economic utility function as presented in Section 7.3.2. The utility func-
tions are derived from the following SLAs: For bronze workloads, a penalty of 100$ is due for
every percentage point under-fulfillment of the compliance ratio measured at the end of the three
simulated months. For silver workloads, the penalty for every percentage point under-fulfillment
is 200$ and for gold workloads it is 400$.4 Two simulations are presented using different poly-
nomial degrees for the utility functions. The first one uses quadratic functions and the second
simulation employs functions with a polynomial degree of 6.

Figures 9.34(a) to 9.34(d) show the impact of the workload management services on the
resource compliance ratio metric from Section 3.3.3. For each workload the achieved compliance
ratio is shown. Compliance ratios are ordered non-increasingly and grouped by their workloads’
SLA class.

Figure 9.34(a) shows the achieved compliance ratios per workload if each workload is equally
weighted. As expected, the compliance ratios are similarly distributed for each class of work-
loads. Eight gold workloads miss the desired compliance ratio of 99%, one even falls below the
97% level. Summing up the penalties for the gold, silver, and bronze workloads, this leads to
penalties of 8200$. The gold class alone incurred penalties of 4800$.

Introducing differentiated service significantly improves the compliance ratios for high pri-
ority workloads, as Figure 9.34(b) shows. Recall that the weights for gold, silver, and bronze
workloads exhibit the relation 4:2:1, respectively. With using these weights for prioritization,

4We note that the results depend on the ratio of the penalty values. The magnitude has been chosen for illustrative
purposes.
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only one gold workload falls below the desired 99% level. However, the improved quality of
gold workloads is achieved through the degradation of many lower prioritized workloads. The
figure shows that 10 bronze workloads only achieved the 97% compliance ratio and 9 more only
a 98% level. Bronze workloads alone incurred penalty costs of 2900$. The total penalties for
all workloads sum up to 4900$, which is a reduction close to 40% of the scenario using equal
weights for all workloads.

Figure 9.34(c) shows the achieved compliance ratios when applying a workload management
service that dynamically prioritizes the workloads. The quadratic function helps to reduce the
total penalties to 3500$. All gold workloads except one obtain the 99% compliance ratio level.
However, workloads do not overachieve their SLA levels compared to the static prioritization
scenario. This helps to improve the resource access quality for silver and bronze workloads.
Now all bronze workloads obtain the 98% level but 19 bronze workloads still fall below a 99%
compliance ratio.

Using utility functions with polynomial degree of 6 emphasizes the dynamic influence of
the weights. Figure 9.34(d) shows that gold and silver workloads are overachieving the 99%
compliance ratio level less often. This helps low priority workloads to improve their quality.
Now, only one silver and 14 bronze workloads miss the desired 99% compliance ratio level. The
total penalties for all workloads are 1700$, which is 79.3% less than in the scenario using equal
weights and 65.3% less than in the scenario using static weights for the workloads.

Figure 9.35 shows the corresponding per-workload CPU violation penalties for the four sim-
ulations. The figure indicates that the impact of the different workload management policies on
the CPU violation penalty is consistent to the impact on the compliance ratio metric.

Figure 9.35(a) shows that the CPU violation penalties are again similarly distributed for each
class of workloads if each workload is equally weighted. Employing differentiated service and
using higher weights for more important workloads helps to reduce the CPU violation penal-
ties of high priority workloads but increases the penalties for low priority workloads, as Fig-
ure 9.35(b) shows. Dynamic prioritization of the workloads (see Figure 9.35(c) and 9.35(d))
helps to provide differentiated quality of service without reducing the quality of low priority
workloads too much. Considering the overall CPU violation penalties per hour, the simulation
using equal weights for all workloads achieved the best quality with a penalty value per hour of
84. The CPU violation penalties per hour for the static prioritization, the dynamic prioritization

with polynomial degree 2, and the dynamic prioritization with polynomial degree 6 scenarios
were 103.2, 87.3, and 116.2, respectively. Hence, we conclude that applying a workload man-
agement service can help to provide differentiated quality of service.

9.7 Integrated Controllers

This section considers the integration of different resource pool controllers for today’s virtual-
ization solutions. Typically, these virtualized environments provide interfaces for the adaptation
of the CPU and memory allocation, but they are not adapting them automatically. To simulate
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Figure 9.35: Incurred CPU Violation Penalties for Each Workload
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that behavior, the weight-based, fair-share CPU scheduler and the fixed allocation of memory
approach is employed. Policies that have provided the best quality versus capacity trade-offs are
selected for analysis. The following management policies are considered:

• WP-A: The workload placement controller operates periodically alone. It uses the adap-
tive headroom policy and consolidates workloads up to a 95% CPU and 100% memory
utilization on the physical servers depending on the quality observed in the last control
interval. To improve the workloads’ memory access quality, each virtual machine gets 5%
more physical memory assigned than its workload is expected to demand. Furthermore,
the number of migrations is limited to 15%.

• MC-P: The proactive migration controller is employed alone. The values for the CPU
overload, memory overload, CPU idle, and memory idle thresholds are 99%, 95%, 40%,
and 60%, respectively, which corresponds to one of the ten Pareto-optimal cases from
Table 9.10.

• MC-P + WP-A + WP-A-OD: The workload placement controller operates periodically
every 4 hours and the migration controller invokes the workload placement controller on
demand to consolidate workloads whenever the servers being used are lightly utilized. The
migration controller and the workload placement controller use the same policies as in
scenarios where they are employed alone.

• WP-A + WM: The workload placement controller uses the same policies as in the WP-

A scenario. Additionally, a workload management service manages quality between the
4 hour placement intervals. The workload management service dynamically prioritizes
workloads using utility functions with a polynomial degree of 6 as shown in Section 9.6.2.
Furthermore, the workload manager adapts the memory allocation such that each virtual
machine offers 5% more memory to its workload than the workload is expected to demand.

• MC-P + WM: The workload migration controller is employed using the same policies as
in the MC-P scenario. Additionally, a workload management service manages the resource
access quality. For the workload management service the same policies are applied as in
the WP-A + WM scenario.

• MC-P + WP-A + WP-A-OD + WM: This scenario integrates all three controllers. The
workload placement and the migration controller use the same policies as in the MC-P +

WP-A + WP-A-OD scenario. Additionally, a workload manager is employed to manage
quality using the policies described in the WP-A + WM scenario.

Figure 9.36(a) visualizes the results of the above scenarios. For each simulation, it shows the
required normalized capacity, the incurred CPU and memory violation penalties, and the number
of migrations. As expected, the three simulations without a workload management service incur
high memory penalties. The isolated use of the migration controller (MC-P) incurred the highest
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Figure 9.36: Integration of Workload Placement Controller, Workload Migration Controller, and
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memory violation penalties, as the migration controller is not adapting the memory configuration
of the virtual machines. Hence, each workload just has access to the physical memory that is
initially assigned to the corresponding virtual machine. The integration of a workload placement
controller reduces the incurred memory violation penalties as it regularly adapts the memory
assignment of each virtual machine to the expected memory demand of its workload plus 5%.
However, the incurred memory violation penalties per hour are still 147.5. The CPU violation
penalties per hour are 1.19 for the WP-A scenario and almost perfect for the MC-P and MC-P +

WP-A + WP-A-OD scenarios.
The integration of a workload management service significantly improves the memory access

quality for all three scenarios. Memory violation penalties for WP-A + WM per hour are 7.7. For
MC-P + WM they are 0.18 and for the fully integrated policy of all three controllers (MC-P

+ WP-A + WP-A-OD + WM) they are 0.82. The CPU access quality for the fully integrated
policy is almost perfect. It incurred a CPU violation penalty per hour close to 0.13, which is only
slightly more than for the MC-P policy alone with 0.016. With the integration of the workload
management service, the migration controller dynamically varies memory sizes and is able to
consolidate workloads more densely. This results in higher CPU violation penalties. Considering
both CPU and memory violation penalties, the best results are achieved with the fully integrated
policy of three controllers. Furthermore, this policy just required 32.5% more capacity than the
4 hour ideal case. All other scenarios required between 33.4% and 56.0% more capacity than the
ideal case. MC-P + WP-A + WP-A-OD + WM required between 15 and 22 servers to host all
workloads. To manage quality it triggered on average 9.9 migrations per hour, which is slightly
more than in the other simulations.

The achieved resource compliance ratio per workload for the fully integrated controller sce-
nario is shown in Figure 9.36(b). All gold workloads achieved a desired compliance ratio 99% or
higher. However, two silver and two bronze workloads fell below the 99% compliance ratio level.
We note that the figure shows the compliance ratio for CPU and memory access. A more detailed
analysis of the silver workload that exhibited the worst compliance ratio (98.25%) revealed that
insufficient memory of the virtual machine was the reason. The workload manager is configured
to adapt the memory size of each virtual machine such that a headroom of 5% is available to the
workload. If memory demands increase by more than 5% within one measurement interval then
it is likely that not all demands of the workload can be satisfied. This happens 424 times for
the considered workload. The average unsatisfied memory demands in these situations consti-
tuted 1.28% of the total demand. Hence, a slightly bigger memory headroom for this workload
would have helped to increase the resource access quality. We note that all CPU demands of the
workload were satisfied immediately.

Figure 9.37 shows the corresponding results of simulations using the blades resource pool.
Again, the fully integrated approach of three controllers outperformed the separate use of each
controller and loose integrations. It just incurred CPU violation penalties per hour of 0.32 and
memory violation penalties per hour of 4.72 while only requiring 27.9% more capacity than
the ideal case. To manage the blades resource pool, the controllers triggered on average 10.3
migrations per hour and required between 25 and 34 blades.
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Figure 9.37: Integration of Workload Placement Controller, Workload Migration Controller, and
Workload Management Service for the Blades Pool
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The achieved resource compliance ratio per workload for the fully integrated controller sce-
nario using the blades pool is shown in Figure 9.37(b). Again, all gold workloads achieved
a desired compliance ratio 99% or higher and only two silver and four bronze workloads fell
below the 99% compliance ratio level.

9.8 Summary and Conclusions

The case study chapter addressed important questions for workload management in virtualized
resource pools. For this, 138 historical load traces of real enterprise applications were used to
simulate workload demands. A detailed analysis of the historical workload traces showed that
there is huge potential for saving physical resources through workload consolidation and man-
agement. First, perfect knowledge on the future resource demands for the workloads is assumed
to examine the capacity savings theoretically possible from regular workload consolidation. Fur-
thermore, we demonstrated that the best sharing greedy placement algorithm and the first fit
genetic algorithm are able to consolidate workloads onto servers close to the optimum regarding
the number of required servers.

The case study evaluated what capacity savings can be achieved from local optimization.
Over 600 simulation experiments were conducted to evaluate the impact of combinations of mi-
gration controller threshold parameters. ANOVA models were developed to statistically quantify
the impact of the thresholds and ten Pareto-optimal combinations were chosen as a baseline to
further evaluate management policies.

Simulations results showed that workload patterns helped to improve the efficiency of a
proactive migration controller. Capacity reductions that could be achieved from global opti-
mizations were evaluated. For this, the impact of the consolidation thresholds, synthetic work-
load traces, and calendar information was assessed. We concluded that a historical policy us-
ing corresponding traces from the previous 7 days well captures daily and weekly trends and
hence achieves the best results for the considered workloads in the case study. Furthermore, the
case study showed that the fully integrated workload placement and migration controller out-
performed the separate use of each of the two controllers and loose integrations. Restricting
the number of migrations during the workload placement process further improves the resource
access quality and increases the management efficiency.

Furthermore, the case study evaluated the effect of the CPU and memory allocation model.
Considering different allocation models, the weight-based, fair-share CPU scheduler achieved
better overall CPU access quality whereas the demand-based, fair-share CPU scheduler provided
an equal chance to all workloads to fully satisfy their demands. As expected, the fixed allocation
of memory approach incurred significantly higher memory violation penalties. The case study
also showed that the integration of a workload management service helped to improve the mem-
ory access quality of the workloads. For example, the workload management service that adjusts
the weights according to the demands is able to achieve a fair distribution of the CPU in a sce-
nario using the weight-based, fair-share CPU scheduler without reducing the CPU access quality
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significantly. Furthermore, a workload management service helps to achieve a good memory
access quality for simulations following the fixed allocation of memory approach. Workload
management services can also provide differentiated quality of service. They successfully man-
age resource access quality whenever resource deficiencies occur.

Finally, the case study demonstrated that for today’s virtualization environments the fully
integrated approach of three controllers outperformed the separate use of each controller and
loose integrations. With just requiring 32.5% and 27.9% more resources than the ideal case for
the server and blades pool, respectively, they were able to achieve an almost perfect CPU and
memory access quality. To manage the resource pools, they only triggered ten migrations per
hour on average.



CHAPTER 10

Conclusion and Future Work

The thesis presented a comprehensive management approach for shared resource pools that helps
to enable the efficient use of server resources while managing the resource access quality of
service offered to workloads. We defined several metrics to quantitatively measure and assess
resource access quality, power efficiency, utilization, and management efficiency. The metrics
are used to evaluate experiments using different management policies in the case study. Fur-
thermore, a workload demand prediction service is presented that analyzes historical workload
demand traces, recognizes whether workload demands change significantly over time, and gen-
erates synthetic workload traces that represent the future behavior of workloads. The workload
analysis helps to improve the efficiency of management services.

The comprehensive management approach of this thesis includes workload placement con-
trollers, workload migration controllers, and workload management services. Workload place-
ment controllers globally allocate and consolidate workloads onto servers in a resource pool
based on resource demand traces. We presented three different implementations: a 0-1 inte-
ger linear program to model the allocation problem and to calculate optimal placements; a best
sharing greedy heuristic that iteratively allocates workloads onto the locally optimal server; and
a genetic algorithm that uses a first fit heuristic to generate a pool of initial placements. A
comparison of the three implementations showed that both heuristics produce dense workload
placements. Furthermore, the genetic algorithm supports the limitation of the number of changes
to the current workload placement, which limits the migration overhead and reduces the risk of
incurring a migration failure.

However, chosen workload placements are based on past demands that may not perfectly
predict future demands. To improve efficiency and resource access quality of service, a workload
migration controller continuously observes current behavior and migrates workloads between
servers to decrease the duration of quality violations. A migration controller was developed that



152 Conclusion and Future Work

uses fuzzy logic to control the load situation on the servers. It was enhanced to predict the future
behavior of the workloads and to proactively manage the resource pool.

The comprehensive management approach also includes workload management services that
locally monitor the resource utilization of each virtual machine on the physical servers. These
use per-workload metrics to locally optimize each server’s resource allocation. We presented a
workload management service that adjusts the resource allocations according to the demands of
the workloads in order to provide an equal chance to all workloads to get their demands fully
satisfied. Additionally, services were presented that enable the provision of differentiated quality
of service based on either static or dynamic prioritization. For the dynamic prioritization of
workloads, we introduced a utility function according to an economic model. The case study
showed that workload management services help to provide differentiated quality of service.

For the evaluation of different resource pool management policies, we developed a new re-
source pool simulator that simulates application resource demands by replaying historical re-
source demand traces captured from real enterprise environments. It models the placement of
workloads, simulates the competition for resources, causes controllers to execute according to
management policies, and dynamically adjusts placements and configurations. The simulator
supports the integration of additional new management controllers through given interfaces. It
can also be used by data center managers to evaluate the impact of various polices for their own
workloads and resource pool configurations in a time and cost effective manner.

Finally, a comprehensive case study was conducted that answered several important questions
on resource pool management. It showed that for the considered workloads 36% of the capacity
can theoretically be saved by rearranging workloads every 4 hours without reducing the resource
access quality when assuming perfect knowledge.

600 simulation experiments using different combinations of migration controller threshold
levels were conducted to evaluate the possible capacity savings from local optimizations. The
results showed a strong relationship between workloads’ resource access quality and required
capacity. Ten Pareto-optimal combinations were chosen as a baseline to further evaluate man-
agement policies.

Furthermore, capacity savings that can be achieved from global optimizations were evaluated.
For the considered workloads, a historical policy using corresponding traces from the previous
7 days well captured daily and weekly trends and hence achieved the best results. Restricting
the number of migrations during the workload placement process and integrating the workload
placement and migration controllers helped to further improve the resource access quality, reduce
required capacity, and increase the management efficiency.

We demonstrated that the proactive controller outperforms the traditional feedback controller
approach for the migration controller. For example, a simulation employing the proactive mi-
gration controller incurred CPU quality violation penalties per hour close to 5.6 while just using
11% more capacity than the ideal scenario. Using a similar amount of capacity, the feedback
controller approach incurred penalties per hour close to 10.

Workload management services allow to manage the resource access quality and enable the
provision of differentiated quality of service. Simulation results showed that the incurred penal-
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ties of the dynamic prioritization approach were 79.3% less than in the scenario using equal
weights and 65.3% less than in the static prioritization scenario.

Finally, the case study evaluated fully integrated scenarios using all three controllers. It
demonstrated that for today’s virtualization environments the fully integrated approach of three
controllers outperformed the separate use of each controller and loose integrations. For the server
pool, the workload placement controller alone required 33.7% more resources than the ideal case
and incurred CPU and memory violation penalties per hour close to 1.2 and 147.5, respectively.
The proactive migration controller managed to avoid most situations where the CPU demand
exceeds supply. Hence, the migration controller alone just incurred CPU violation penalties
per hour of 0.016. However, it required 56% more capacity than the ideal case and incurred
substantial memory violation penalties, as the migration controller is not managing the memory
assignment of virtual machines. In contrast to that, the fully integrated controllers required 32.5%
more resources than the ideal case and they were able to achieve an almost perfect CPU and
memory access quality per hour close to 0.13 and 0.82, respectively. For the blades pool, the
fully integrated controllers just required 27.9% more resources than the ideal case and achieved
a CPU and memory access quality per hour of 0.32 and 4.7, respectively. To manage the resource
pools, the fully integrated controllers triggered ten migrations per hour on average.

Ongoing work includes the evaluation of other instances of controllers and management poli-
cies. Furthermore, we will develop and evaluate management policies that react well in combi-
nation with larger classes of workloads and different kinds of simulated resource pool envi-
ronments, for example, heterogeneous resource pools. The sensitivity of different management
policies to simulated failures can be considered, too.

Furthermore, we plan to explore the relationship between the monitoring based approach and
approaches that take into account application response time metrics. It would be interesting to
see whether these approaches lead to useful new metrics or improvements to existing metrics of
interest.

Future work also includes a stronger integration of the workload management service and
the workload migration controller. For example, the workload management service can send
messages to the migration controller whenever resource deficiencies occur and workloads are
endangered to miss their desired quality of service levels. Finally, we plan to evaluate differ-
ent resource pool management strategies in scenarios where the number of available servers is
restricted.





APPENDIX A

Configuration Files for the Resource Pool Simulator

A.1 Main Configuration File of the Simulator

The following listing presents a sample configuration file for a simulation that integrates: the
workload placement controller based on the best sharing greedy algorithm; the fuzzy logic based
workload migration controller; and the workload management service using utility functions to
dynamically prioritize the workloads.

<SimulationConfig>

<DataLoader>

<ClassName>com.sim.dl.vmstatDataLoader</ClassName>

<ConfigFile>config/dataLoader/dataLoader.xml</ConfigFile>

</DataLoader>

<Simulation>

<GranularityInMinutes>5</GranularityInMinutes>

<SimulationWarmupStartDay>20060328</SimulationWarmupStartDay>

<SimulationStartDay>20060408</SimulationStartDay>

<SimulationEndDay>20060630</SimulationEndDay>

<CpuScaleFactor>1.5</CpuScaleFactor>

<MigrationOverheadFactor>0.5</MigrationOverheadFactor>

<DefaultHeadroomPolicy>config/headroom.xml</

DefaultHeadroomPolicy>

</Simulation>

<RoutingTable>

<FileName>config/routingtable.xml</FileName>

</RoutingTable>

<SimulatedHosts>

<HostDescriptionsFile>config/hostDescriptions.xml</

HostDescriptionsFile>
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<WorkloadManager>

<ClassName>com.wm.DynamicPriorityWorkloadManager</ClassName>

<ConfigFile>config/workloadManager/workloadManager.properties

</ConfigFile>

</WorkloadManager>

<Scheduler carryForward="true" autoMemoryMgmt="true">

com.sim.scheduler.FairShareWeights</Scheduler>

</SimulatedHosts>

<ServerPools>

<Buffersize>6500</Buffersize>

<ServerPool serverPoolId="pool1">

<ManagementService>

<ClassName>com.mas.autoglobe.AutoGlobeController</ClassName>

<ConfigFile>config/fc/fc.properties</ConfigFile>

</ManagementService>

<ManagementService>

<ClassName>com.mas.wpGreedy.WpGreedy</ClassName>

<ConfigFile>config/wp/placement.properties</ConfigFile>

<Interval>48</Interval>

</ManagementService>

</ServerPool>

</ServerPools>

A.2 Server Description Files

This appendix lists the description files for the two simulated environments that are used for
the case study. The listing shown below presents the description for the simulated servers in
the server based resource pool. The pool consists of 40 servers each having 8 CPUs with a
clockspeed of 2.93 GHz, 128 GB physical memory, and a 10 Gbit network interface card. The
power consumption for each physical server is denoted to 695 watts if it is idle up to 1013 watts
per hour if it is fully utilized.

<hostDescriptions xmlns:xsi=...>

<serverType id="DL580G5128GB8">

<serverList>

<name>Server0</name>

<name>Server1</name>

<name>Server2</name>

...

<name>Server39</name>

</serverList>

<typeName>DL580G5128GB Server</typeName>

<cpuMHz>2930</cpuMHz>

<numberOfCPUs>8</numberOfCPUs>

<osArchitecture>x86</osArchitecture>

<osName>Linux</osName>
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<osVersion>5.9</osVersion>

<physicalMemoryByte>134217728000</physicalMemoryByte>

<costFactor>61</costFactor>

<wattsIdle>695</wattsIdle>

<wattsFullUtil>1013</wattsFullUtil>

<networkBandwidthInGbps>10</networkBandwidthInGbps>

</serverType>

</hostDescriptions>

Additionally to the server environment, a blade based resource pool environment is simulated
in the case study. The description of the blades is shown below. Each blade has 8 CPUs with a
clockspeed of 2.4 GHz, 64 GB physical memory, and is connected with a 1Gib Ethernet network
card. A blade consumes 378 watts per hour in idle mode and 560 watt when it is fully loaded.

<hostDescriptions xmlns:xsi=...>

<serverType id="DL580G5128GB8">

<serverList>

<name>Server0</name>

<name>Server1</name>

<name>Server2</name>

...

<name>Server39</name>

</serverList>

<typeName>Enclosure4 Blade</typeName>

<cpuMHz>2400</cpuMHz>

<numberOfCPUs>8</numberOfCPUs>

<osArchitecture>x86</osArchitecture>

<osName>Linux</osName>

<osVersion>5.9</osVersion>

<physicalMemoryByte>68719476736</physicalMemoryByte>

<costFactor>20</costFactor>

<wattsIdle>378</wattsIdle>

<wattsFullUtil>560</wattsFullUtil>

<networkBandwidthInGbps>1</networkBandwidthInGbps>

</serverType>

</hostDescriptions>





APPENDIX B

Methods of the Management Interfaces

The resource pool simulator provides two interfaces for the integration of management con-
trollers. Controllers are managing the resource allocation in the server pool via the server pool

API. Additionally, workload management services locally control the resource allocation of the
simulated servers via the workload management API. This appendix introduces the methods of
the two interfaces.

B.1 Server Pool Interface to Management Services

The following listing presents the methods of the server pool API. The methods are used by the
management services to interact with the central pool sensor and actuator of the resource pool
simulator. The first parameter of the methods is the login token that is initially obtained through
the login method. Using the login method, a management service registers itself at the server
pool. The performance values for virtual machines and servers are comprised in PerfData objects.
The PerfData object contains amongst other fields the time stamp of the measurement, the
measured CPU load, the free memory, the total available memory, and the number of present
CPUs. Additionally, for virtual machines it contains the unique identifier of the physical server
on which the virtual machine is currently executed.

• public String login(String user, String password)

throws RemoteException, APIException;

The login method registers the management service at the central pool sensor and actuator.
It returns a token that is needed for further interactions.
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• public PerfData[] getCurrentHostPerformance(String token,

String host, int windowMinutes) throws RemoteException,

APIException;

Returns an aggregated view of the last performance measurements of the server and its
virtual machines, where host is the unique identifier of the server and windowMinutes
is the maximum number of minutes to look back.

• public PerfData getCurrentVmPerformance(String token,

String vm, int windowMinutes)

throws RemoteException, APIException;

Returns an aggregated view of the last performance measurements, where vm is the unique
identifier of the virtual machine and windowMinutes is the maximum number of min-
utes to look back.

• public String[] getHostIds(String token)

throws RemoteException, APIException;

Returns a list of all server identifiers that are currently registered at the server pool.

• public String[] getVmIds(String token) throws RemoteException,

APIException;

Returns a list of all workload identifiers that are currently executed in the server pool.

• public Host getHostDetails(String token, String host)

throws RemoteException, APIException;

Returns a Host object containing information on the server that corresponds to the identi-
fier specified with the host parameter. The object contains the identifier of the server, its
number of CPUs, the clockspeed of the CPUs, and its amount of physical memory.

• public Vm getVmDetails(String token, String vm)

throws RemoteException, APIException;

Returns a Vm object containing information on the virtual machine that corresponds to the
identifier specified with the vm parameter. The returned object contains the identifier of
the virtual machine, the identifier of the server on which it is currently executed, its CPU
weight, its CPU cap, and its currently allocated amount of physical memory.

• public PerfData[] getPerfData(String token, String source,

Date intervalStart, Date intervalEnd, String granularity)

throws RemoteException, APIException;
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The getPerfData method queries CPU and memory performance metrics for a server
or a virtual machine. The parameter source denotes the unique identifier of virtual
machine or server for which the historical workload trace is requested. The parameters
intervalStart, intervalEnd, and granularity specify the time and granu-
larity of the queried demand trace. If a virtual machine is specified, then it considers a
historical workload trace across moves.

• public int migrateVm(String token, String vm, String host)

throws RemoteException, APIException;

Migrates the virtual machine with the identifier specified in vm to the server that is specified
with the parameter host.

• public abstract void reallocateVms(String token,

Map<String, WorkloadPlacementInfo> newPlacement)

throws RemoteException, APIException;

This method re-allocates a set of workloads. The new workload placement is represented
with a map that contains for each workload identifier a WorkloadPlacementInfo object that
comprises the new server identifier, CPU weight, CPU cap, and allocated memory.

• public abstract void executeManagementService(String token,

String className, String configFile)

throws RemoteException, APIException;

This method invokes a management service that is specified by the className. The code
for the management service is dynamically loaded. The configuration file configFile
contains the configuration for the triggered management service. For example, the current
implementation of the fuzzy controller uses this method to trigger the workload placement
controller.

• public abstract int getMeasurementInterval(String token)

throws RemoteException, APIException;

This method returns the duration d between observations in the workload traces of the
simulation.

• public abstract long getCurrentSimulatedTime(String token)

throws RemoteException, APIException;

This method returns the current simulation time.
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B.2 Server Interface to Workload Management Services

The workload management API controls the communication between workload managers and
simulated servers. Workload management services can retrieve the most recent performance
metrics of the workloads running on the simulated server. Furthermore, they can adapt the con-
figurations of the virtual machines.

• public String login(String user, String password)

throws RemoteException, APIException;

The login method registers the workload management service at the simulated server. It
returns a token that is required for further interactions.

• public abstract PerfData getLastVMPerfData(String token,

String workloadID) throws RemoteException, APIException;

This method retrieves the most recent performance values of a workload for the last mea-
surement interval.

• public long getAvailablePhysicalMemoryByte(String token);

This method returns the available amount of physical memory of the managed server.

• public abstract void updateVMCPUWeight(String token,

String vmID, int cpuWeight);

This method changes the CPU weight of the virtual machine with the unique identifier
specified in vmID to the new value cpuWeight.

• public abstract void updateVMCPUCap(String token, String vmID,

int cpuCap);

This method changes the CPU cap of the virtual machine with the unique identifier speci-
fied in vmID to the new value cpuCap.

• public abstract void updateVMAssignedMemory(String token,

String vmID, long memoryInBytes);

This method changes the physical memory of the virtual machine with the unique identifier
specified in vmID to the new value memoryInBytes.
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