m INSTITUT FUR INFORMATIK ‘
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Forschungs- und Lehreinheit I
Angewandte Softwaretechnik

A Domain-Independent Framework
for Intelligent Recommendations
Based on Machine Learning

Jorn David

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen

Universitidt Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Johann Schlichter

Priifer der Dissertation: 1. Univ.-Prof. Bernd Briigge, Ph.D.

2. Univ.-Prof. Dr. Dr. h.c. Wilfried Brauer, em.
(schriftliche Beurteilung)
TUM Junior Fellow Dr. Riko Jacob
(miindliche Priifung)

Die Dissertation wurde am 16.10.2008 bei der Technischen Universitiat Miinchen

eingereicht und durch die Fakultit fiir Informatik am 28.04.2009 angenommen.

Acknowledgements

I would like to thank Prof. Bernd Briigge, Ph.D. for his great support, recommenda-
tions, and visions with regard to my research at the intersection of software enginee-
ring and machine learning. This dissertation would not have been possible without
his enduring commitment and mentorship. Especially, the frequent review meetings
with Prof. Briigge in the last half-year of my doctoral studentship contributed a lot
to the success of this dissertation.

I wish to thank Prof. Dr. Dr. h.c. Wilfried Brauer for his in-depth review of
my dissertation and his early support of my work on neural information proces-
sing. Furthermore, I thank Jonas Helming, Maximilian Kogel, Walid Maalej, and
Michael Nagel for the hands-on research collaboration. Finally, I am grateful to all
my colleagues from the Chair of Applied Software Engineering and in particular
to Monika Markl, Helma Schneider, and Uta Weber (Center for Digital Technology
and Management, CDTM) for their organizational support.

Erklarung

Ich versichere, dass ich diese Arbeit selbstindig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

Miinchen, 25. Mai 2009 Jorn David

Abstract

Intelligent recommendation is an abstract concept that comprises machine learn-
ing functions like clustering, classification, and prediction. Recommendation sys-
tems based on machine learning methods assist the user in decision-making pro-
cesses and automate information processing steps like the classification of artifacts.
Recommendation techniques such as collaborative and content-based filtering are
mainly applied in the areas of e-Commerce and web navigation. Many recommen-
dation systems are realized by symbolic methods like association rule mining or by
rule-based mechanisms. These methods insufficiently support content-based knowl-
edge representation and heterogeneous domain knowledge, so that predictive infor-
mation is not exploited. On the one hand, this negatively affects the recommenda-
tion accuracy and on the other hand does not allow for computing recommendations
for new contents by means of generalization. The software engineering community
has started to investigate the applicability of methods from artificial intelligence in
the areas of knowledge management and software development. An example of het-
erogeneous software knowledge in the area of knowledge management is an Issue
that may comprise a textual description, an ordinal priority attribute and a boolean
status flag (isResolved). Another possibility is to use fuzzy set methods, which
come along, however, with the incapability to provide combined classification and
prediction functionality. Finally, statistical methods (non-symbolic) for numerical
prediction mostly assume a certain probability distribution of the variable of interest
which may negatively affect the prediction accuracy.

In this dissertation we propose a hybrid approach consisting of connectionist
and symbolic methods, which combines the benefits of both methodologies and
in addition offers a high generalization capability, flexibility, and robustness. The
hybrid approach is especially suited for domains like knowledge management and
software engineering, since software development processes are based on incom-
plete and continuously changing information.

Our approach is first discussed from a theoretical perspective, where the pecu-
liarities of both research areas, the symbolic on the one hand and the connectionist
on the other hand, are analyzed. This is followed by a description of the functional
requirements for a generic and domain-independent machine learning framework.
From these requirements, we conclude that for the computation of intelligent recom-
mendations, machine learning by statistical algorithms as used in neural networks is
preferable over symbolic algorithms. These non-symbolic methods must be capable
of processing structured and symbolic knowledge to be useful for a generic frame-
work, which is a key capability of symbolic methods. The newly developed frame-
work for machine learning called SYMBOCONN also supports symbolic knowledge,
however it is based on a connectionist learning algorithm.

To represent knowledge from these different domains, the SYMBOCONN frame-
work uses a generic graph-based knowledge model that represents both content and

structure. Due to its generic learning capability, which is based on an abstract data
structure in form of node sequences, SYMBOCONN is independent from concrete
application domains. The core of the framework is a new variant of recurrent neural
networks which we call Modular Recurrent Neural Network (MRNN). An MRNN
operates like a dynamic system by explicitly modeling a logical timeline, which
enables the systematic processing of structured knowledge. In order to enhance the
exploitation of textual contents in the aforementioned domains, the MRNN is com-
bined with Latent Semantic Indexing (LSI), which optimizes the text representation
and enables content-based classification and prediction in the case of unstructured
textual contents as well.

The framework was applied to datasets from real-life projects as well as to
benchmarking datasets from several sources. In particular, we demonstrate its appli-
cability by case studies in the areas of navigation recommendation, design pattern
discovery, change impact analysis, and time series prediction. Within the scope of
an industrial case study on time series prediction, the MRNN achieved a forecast
accuracy about 10% higher than that provided by traditional statistical methods.

Zusammenfassung

Intelligente Empfehlungen dienen der Benutzerunterstiitzung und werden durch Me-
thoden des maschinellen Lernens realisiert. So genannte Empfehlungssysteme —
basierend auf den Funktionalitdten Clustering, Klassifikation und Prognose — unter-
stiitzen den Benutzer bei der Entscheidungsfindung und automatisieren Wissensver-
arbeitungsschritte wie die Klassifikation von Artefakten. Empfehlungsmechanismen
wie kollaboratives und inhaltsbasiertes Filtern werden hauptsichlich in den Berei-
chen e-Commerce und Web-Navigation angewendet. Viele dieser Systeme werden
durch symbolische Methoden wie dem Mining von Assoziationsregeln bzw. durch
regelbasierte Mechanismen im Allgemeinen realisiert. Diese unterstiitzen inhaltsba-
sierte Wissensreprasentationen und heterogenes Doménenwissen nur mangelhaft,
so dass potentiell niitzliche und préidiktive Informationen nicht verwertet werden
konnen. Dies wirkt sich zum einen negativ auf die Empfehlungsgenauigkeit aus
und zum anderen konnen neue Inhalte nicht durch Generalisierung beurteilt wer-
den. Die Softwaretechnik hat damit begonnen, die Nutzbarkeit von Methoden der
kiinstlichen Intelligenz fiir das Wissensmanagement sowie fiir den Bereich der Soft-
wareentwicklung zu untersuchen. Ein Beispiel fiir ein doménenspezifisches Objekt
aus dem Bereich der Softwaretechnik ist eine offene Fragestellung (Issue), die eine
textuelle Beschreibung, ein ordinales Prioritétsattribut und einen booleschen Sta-
tusindikator (z.B. istGelost) enthilt. Eine andere Moglichkeit besteht darin, nicht-
symbolische Fuzzy-Set Methoden zu verwenden, die allerdings Klassifikations- und
Prognoseaufgaben nicht gemeinsam behandeln konnen. Nicht-symbolische, stati-
stische Methoden hingegen setzen fiir die numerische Prognose meist bestimmte
Wahrscheinlichkeitsverteilungen der zu prognostizierenden Variablen voraus, die
sich wiederum negativ auf die Prognosegenauigkeit auswirken konnen.

Deswegen schlagen wir einen hybriden Ansatz vor, bestehend aus konnektioni-
stischen und symbolischen Methoden, der die Vorteile beider Methoden vereint und
dartiber hinaus hohe Generalisierungsfahigkeit, Flexibilitdt und Robustheit besitzt.
Der hybride Ansatz ist besonders fiir den Bereich der Softwaretechnik geeignet, da
Softwareentwicklung im Allgemeinen auf unvollstdndiger und sich stidndig dndern-
der Information basiert.

Zunichst wird der hybride Ansatzes vom theoretischen Standpunkt aus disku-
tiert, wobei die Besonderheiten beider Forschungszweige, die der symbolischen
Methoden einerseits und die der konnektionistischen Methoden andererseits, ein-
gehend betrachtet und analysiert werden. Die anschliessende Formulierung der An-
forderungen an ein moglichst generisches und doméinenunabhingiges Rahmenwerk
fiir maschinelles Lernen stellt einen eigenstindigen Beitrag dieser Dissertation dar.

Aus den ermittelten Anforderungen schliessen wir, dass zur Erzeugung von in-
telligenten Empfehlungen statistische Algorithmen, wie sie z.B. in neuronalen Netz-
werken verwendet werden, den rein symbolischen Algorithmen vorzuziehen sind.

Allerdings miissen die nicht-symbolischen Methoden die Fahigkeit besitzen, struk-
turiertes und symbolisches Wissen zu verarbeiten, um fiir ein generisches Rahmen-
werk von Nutzen zu sein.

Das neuentwickelte Rahmenwerk fiir maschinelles Lernen namens SYMBO-
CONN kann auch symbolisches Wissen verarbeiten, basiert jedoch auf einem kon-
nektionistischen Lernalgorithmus. Das SYMBOCONN Rahmenwerk benutzt ein ge-
nerisches graph-basiertes Wissensmodell, das sowohl Inhalt als auch Struktur ab-
bildet, um Dominenwissen in unterschiedlichen Formen und in unterschiedlichem
Detailgrad zu reprisentieren. Die generische Lernfahigkeit des Rahmenwerks wird
durch die zugrundeliegende abstrakte Datenstruktur in Form von Knotensequenzen
ermdglicht, so dass SYMBOCONN weitgehend unabhiingig von konkreten Anwen-
dungsdomiinen ist.

Der Kern des Rahmenwerks ist eine neuartige Variante eines rekurrenten neu-
ronalen Netzes, die wir mit Modulares Rekurrentes Neuronales Netzwerk (MRNN)
bezeichnen. Ein MRNN arbeitet wie ein dynamisches System, indem es mittels ei-
ner expliziten Zustandsschicht eine logische Zeit bereitstellt, die die systematische
Verarbeitung von strukturiertem Wissen ermoglicht. Um die Unterstiitzung von tex-
tuellen Inhalten in den vorgenannten Doménen zu verbessern, wird das MRNN
mit Latenter Semantischer Indizierung (LSI) kombiniert, die die Textreprasenta-
tion durch Redundanzbeseitigung optimiert und eine inhaltsbasierte Klassifikati-
on und Vorhersage auch im Fall von Inhalten in Form von unstrukturiertem Text
ermoglicht.

Das Rahmenwerk wurde auf Datensétze aus realen Projekten sowie auf Bench-
mark-Datensitze angewandt, die aus verschiedensten Dominen stammen. Insbe-
sondere demonstrieren wir dessen Anwendbarkeit durch Fallstudien in den Be-
reichen Navigationsempfehlung, Entwurfsmuster-Erkennung, Analyse von Ande-
rungsauswirkungen sowie Zeitreihenprognose. In einer industriebezogenen Fallstu-
die erreichte das MRNN eine um ca. 10% hohere Prognosegiite als traditionelle
statistische Methoden.

Contents

Abstract

Zusammenfassung

Typographical Conventions

1 Introduction

3

1.1
1.2

Contents
Scope of the Dissertation

The Symbolic and the Connectionist Paradigm of Al

2.1
2.2
2.3
24
2.5
2.6

The Symbol System Hypothesis and Formal Logics
Connectionism and the Symbol Grounding Problem
Applying Connectionist Models to Symbolic Domains
Knowledge Representation and Knowledge-Based Disciplines

Principles of Machine Learning
Existing Recommendation Concepts
2.6.1 Intelligent Tutoring Systems
2.6.2 Content-Based and Collaborative Filtering
2.6.3 Case-BasedReasoning

Machine Learning Concepts and Fundamentals of SymboConn

3.1

3.2
33
34

Framework Requirements
3.1.1 Functional Requirements
3.1.1.1 Learning By Example
3.1.1.2 Generalization Capability
3.1.1.3 Learning Types and Inheritance Hierarchies . . .
3.1.1.4 Being Able to Incorporate Context
3.1.1.5 Processing of Heterogeneous Knowledge
3.1.2 Nonfunctional Requirements
Knowledge Model of SymboConn
Functional Model of SymboConn
Framework Architecture

11
12
14

17
19
23
26
29
34
39
40
41
42

6 CONTENTS
4 Machine Learning and the Framework Engine 71
4.1 Fundamentals of Neural Networks 71
4.1.1 History of Neural Networks 72
4.1.2 Feed-Forward Neural Networks 73
4.1.3 Further Types of Neural Networks 74

4.2 Neural Networks between Computational Intelligence and Informa-
tionTheory 77
4.3 Evaluation Criteria for the Framework’s Machine Learning Engine . 85
4.4 The Modular Recurrent Neural Network 90
4.4.1 Recurrent Dynamics, 91
4.4.2 Processing of Variable Node Sequences 93
4.4.3 Modified Backpropagation Training Algorithm 94
443.1 ForwardPass. 96
4432 BackwardPass. 97
4.44 Experiment: Illustration of Intelligent Learning 102
4.5 Conclusion 106
5 Connectionist Learning of Symbolic Structures 109
5.1 Incorporating Domain Knowledge in Form of Rules 110
5.2 Type Representation and Type Hierarchies 117
5.3 Spread Spectrum Based Classification 121
5.3.1 Encoding of Node Types Using Spread Spectrum 123
5.3.2 Classification by Despreading 124
5.4 Rule Recognition Despite Heavy Noise 127
5.5 Holistic Learning of Structured Symbolic Contents 131
5.5.1 Generating RAAM-Representations Using the MRNN . . . 135
5.5.2 Hybrid Structure Transformation System 139
5.5.3 Structure Transform Prediction 141
56 Conclusion 143
6 Application to Knowledge Engineering and Software Development 145
6.1 Classification of Software Development Artifacts 148
6.1.1 Evaluation 149
6.1.1.1 Activity Classification 151
6.1.1.2 Status Classification 155
6.1.2 Better Than Guessing? 157
6.2 Change Impact Analysis, 158
6.2.1 Change Impact Analysis on Graph-Structured Data 163
6.2.2 Recommending Software Changes 166
6.3 Design Pattern Discovery 171
6.3.1 Classification Based on Decision Trees 171
6.3.2 ComplexTypes 177
6.3.3 Symbolic Representation of Design Patterns 179

6.3.4 Design Advice Upon Complex Design Patterns 180

CONTENTS 7

6.3.4.1 Recognition of the Template Pattern 186
6.3.4.2 Recognition of the Observer Pattern 187
6.3.5 Evaluation 189
6.3.5.1 Classification of Unknown System Models 189
6.3.5.2 Transforming an Adapter Pattern into a Compos-
itePattern L L. 190
6.3.5.3 Generalization to Novel Complexity 195
6.3.6 Advantages & Disadvantages of the Connectionist Approach 198
6.4 Conclusion 200
7 Navigation Recommendation 203
7.1 Required Data Mining Techniques 204
7.1.1 TextMining 204
7.1.2 Association Rule Mining 206
7.2 Existing Recommendation Approaches 211
7.3 Knowledge Representation for Navigation Recommendation 214
7.4 Navigation Recommendation in SymboConn 217
7.4.1 Adapting Principles from Content-Based and Collaborative
Filtering 220
7.4.2 Control Flow of Navigation Recommendation 222
7.5 Case Study: Web Navigation 224
7.6 Conclusion 231
8 Time Series Prediction 233
8.1 Stochastic Processes and Time Series 234
8.2 Covariance and Stationarity 237
8.3 Statistical Models for Time Series 239
8.3.1 Moving Average Process MA) 242
8.3.2 Autoregressive Process (AR) 243
833 ARMAProcesso 243
8.3.4 Exponential Smoothing 244
8.4 Neural Networks Applied to Time Series Prediction 245
8.4.1 MRNN Implementing Exponential Smoothing (ES) 248
8.4.2 Connectionist Implementation of Autoregressive Processes . 249
8.5 Application to Business Forecasting 251
8.5.1 Applied Time Series Analysis 251
8.5.2 Quantitative Results, 257
8.6 Conclusion 260
9 Conclusions 263
9.1 Contributions 264
92 FutureWork 267
9.2.1 Activity Classification Based on User Behavior 267

9.2.2 Further Applications in Software Engineering 269

8 CONTENTS
A Framework Extensions and Details 271
A.1 Future Implementation 271
A.1.1 Decoupling of Domain-Specific Subsystems. 271

A.1.2 Extensions of the Framework Functionality 273

A.1.2.1 Output-Input Refeeding for Navigation Sequences 273

A.1.2.2 Combining Text and Association Rule Mining . . 274

A.2 Technical Issues in Training the Framework Engine 275
A.2.1 Limitations of Connectionist Learning 276

A.2.2 Implicit Weighting of the Input Nodes 278

A.2.3 Processing Arbitrarily Dimensioned Vector Sequences . . . 279

A.2.4 Principal Component Analysis 280

List of Figures 283
List of Tables 291
List of Algorithms 293
List of Abbreviations 295
Bibliography 299
Index 323

TYPOGRAPHICAL CONVENTIONS 9

Typographical Conventions Throughout this dissertation we use the following
conventions:

Citations are given in a comprehensive form (e.g. [ABCO8]), indicating the
first three authors (e.g. Alpha, Beta, Caesar) of an article by capital letters
followed by the year of publication (2008). If a “*” appears in the citation,
then more than three authors have contributed (e.g. [ABM™*00]). In case of
a single author, the first letter of his last name is written in capitals, followed
by two further lower case letters (e.g. [Cal03]).

Related work is given in form of inline citations wherever needed, instead of
reporting existing research in a monolithic block at the beginning or end of a
chapter.

We use the Unified Modeling Language (UML) for the illustration of con-
cepts and for modeling of software components. UML diagrams are also em-
ployed to clarify concepts from machine learning and knowledge discovery.
All UML diagrams were drawn with the CASE tool ENTERPRISE ARCHI-
TECT 6.0.

Typewriter style is used for classes and objects in software models.

Algorithms are given in pseudo-code and are printed in boxes, using the LA-
TEX packages algpseudocode and algorithm.

Technical terms are written in italics when they appear the first time.
Important concepts are emphasized using bold font.

Upper capitals are used for product names, such as APACHE LUCENE.

Chapter 1

Introduction

Intelligent recommendation assists the user with decision-making processes in order
to cope with information overload and to focus on relevant entities. In this disser-
tation, intelligent recommendation is understood in the broad sense. Any system
that learns from history data to produce non-trivial and potentially useful recom-
mendations is considered as an intelligent recommendation system. An intelligent
recommendation is computed based on empirical data, either given in symbolic or
numerical form, and generalizes the given facts. Such a recommendation includes a
prior learning process that enables the generalization in the first place and thus goes
beyond simple table-lookups.

Intelligent recommendation can be realized by machine learning methods, if
empirical values or experiences gathered from past user or system behavior is avail-
able. This dissertation uses methods from artificial intelligence, especially machine
learning, in order to support knowledge-driven processes. Knowledge workers
[SS05, ABMT00] need to be provided with rich, context-sensitive and proactive
support to solve knowledge-intensive tasks and to cope with the information over-
load [Tof70]. The problem of information overload can be defined as an oversupply
of pieces of information regarding a certain problem, which hampers or prevents
the user from making proper decisions. This issue is increased by a low signal-
to-noise ratio [LMO06] as well as by incomplete and inconsistent information. The
information overload can be mitigated by helping the user to retrieve preferred in-
formation first. The developed recommendation system provides decision support
for arbitrary knowledge-based domains and combines aspects of content-based and
collaborative recommendation.

Recommendation techniques such as collaborative filtering are mainly applied
in the areas of e-Commerce and web navigation [RV97, SKKRO1, GNP05, HZCO5,
X7Z705]. Many of these recommendation systems are realized by symbolic and
rule-based methods such as association rule mining or semantic web technologies
such as description logic. Usually heterogeneous application data represented by
categorical, metric or textual attributes cannot be integrated into these symbolic
machine learning algorithms. Their low ability to deal with fuzzy or incomplete
information and the resulting lack of recommendation robustness constitutes a main

11

12 CHAPTER 1. INTRODUCTION

criticism. Due to these deficiencies of symbolic methods, we propose the use of
a hybrid approach consisting of connectionist and symbolic methods that unifies
different machine learning functions and knowledge representations. Classification
and prediction are supported in a content-based and structure-sensitive way.

We will show that a more sophisticated recommendation functionality can be
achieved by exploiting both content and structure of the underlying knowledge
base. So far, there are hardly any connectionist systems that provide recommen-
dation functionality. As reported by Nasraoui et al. [NP04], by combining aspects
of content-based and collaborative filtering, the connectionist approach is able to
achieve a higher recommendation accuracy than most of the mentioned traditional
methods.

1.1 Contents

This dissertation is organized as follows. In the first part (chapter 1 to 5) we describe
the machine learning concepts that are used throughout this dissertation and that are
prototypically realized in the framework.

Chapter 2, The Symbolic and the Connectionist Paradigm, gives a theoretical
overview over the symbolic and connectionist paradigms, in particular their foun-
dations and their ways of knowledge representation. The basic principles of sym-
bolic systems are introduced by means of Newell and Simon’s well-known Physical
Symbol System Hypothesis [NS76], which is contrasted with the connectionist ap-
proach. We also give a short overview of machine learning and its most important
aspects.

In Chapter 3, Machine Learning Concepts and Fundamentals of SymboConn,
we describe the requirements and a functional model of the machine learning engine
that is able to deal with symbolic or structured knowledge such as graphs of software
artifacts. Furthermore, we report on the state-of-art in intelligent recommendation
including the used knowledge representation and provided functionality. Based on
these findings, we define the abstract knowledge model as well as the functional
model and the system design of an architecture for a machine learning framework
together with its application domains.

In Chapter 4, Connectionist Machine Learning, the core algorithms for train-
ing the Modular Recurrent Neural Network (MRNN) are formalized. Furthermore,
the general capability of the technique to accomplish the machine learning tasks
classification and prediction is measured and evaluated by domain-independent test
scenarios!.

In Chapter 5, Connectionist Learning of Symbolic Contents, we describe how
the machine learning engine of SYMBOCONN is applied to structured contents.
We make those contents machine learnable by employing the theory of formal lan-
guages according to the Chomsky hierarchy. Therefore a grammatical representa-

'The particular aspects of the developed machine learning functionality are validated in each
chapter.

CHAPTER 1. INTRODUCTION 13

tion of rule-based domain knowledge is given, which is then incorporated into the
framework engine. In particular, we apply the rule-based representation to soft-
ware design pattern that are recognized within UML class diagrams presented to
the machine learning engine.

Chapters 6 to 8 focus on the application of the hybrid machine learning ap-
proach to knowledge-driven problems. The SYMBOCONN framework is applied to
the domains knowledge engineering and software development, navigation recom-
mendation, as well as time series prediction.

In Chapter 6, Knowledge Engineering and Software Development, we demon-
strate the benefits of the SYMBOCONN framework in three areas of software engi-
neering. First, we present an approach to the automatic classification of software
development artifacts according to their activity and relevance, which is important
for project management. Subsequently, we present two forms of change impact
analysis implemented into SYMBOCONN: the first variant operates on a training set
of change packages, the second variant uses a graph of software artifacts. Finally,
we demonstrate the capability of the SYMBOCONN framework to process structural
knowledge in form of design patterns.

In Chapter 7, Navigation Recommendation, the prediction functionality of the
framework is applied to user navigations. At first, the basic data mining techniques
required for a connectionist recommendation system are introduced. 7ext mining
and association rule mining are described with a focus on the navigation recom-
mendation domain. Actual navigations on knowledge graphs reflecting the brows-
ing behavior and interests of users are captured and taken as training patterns for
the MRNN. Cohesive nodes sequences are then learned by the MRNN in a super-
vised training process. As a result, yet unknown user navigations are supported by
a recommendation of the subsequent nodes.

In Chapter 8, Time Series Prediction, the basic theory of time series is described
and we then demonstrate that the MRNN machine learning engine contains two tra-
ditionally isolated regression methods, stemming from statistics, as special cases.
The SYMBOCONN framework is applied to non-symbolic but real-valued time se-
ries, which are predicted depending on their past realizations. The application to
time series prediction demonstrates the universality of the framework, since time
series prediction is typically done by statistical methods. A case study on demand
planning of a large telecommunication company is presented, which shows that the
sales figures of product lines from telecommunication can be forecasted with higher
accuracy than with statistical methods.

Chapter 9 summarizes the contributions of this dissertation and gives an outlook
of future work such as user behavior-based activity classification.

Appendix A.1 describes our plans to extend and advance the SYMBOCONN?
framework. Finally, several technical issues in training the framework engine can
be found in appendix A.2.

ZNot to be mistaken for SYMCONA Hybrid Symbolic/Connectionist System for Word Sense Dis-
ambiguation, which was a system in the field of natural language processing (NLP) [WMO97].

14 CHAPTER 1. INTRODUCTION

1.2 Scope of the Dissertation

Intelligent recommendation is an abstract concept for several machine learning
functions like classification, clustering, and prediction. An intelligent recommen-
dation engine is based on methods from data mining and makes use of context
information for computing a recommendation proactively provided to the user. In
this sense, intelligent recommendation systems are similar to search algorithms,
since these systems help users to discover entities they might not have found by
themselves. The difference to search algorithms is that no matching of single infor-
mation pieces, for example the comparison of object values in the nodes of a search
tree to determine the further search direction, is done.

The framework presented in this dissertation is different from systems that try
to simulate human intelligence [Xia06] in terms of the Turing test. SYMBOCONN
neither simulates human intelligence nor imitates human behavior, which is a goal
of strong artificial intelligence. The framework uses neural networks as a fuzzy
optimization method and thus belongs to the branch of weak artificial intelligence.

A unique feature of the developed framework is its applicability to almost ar-
bitrary domains. Therefore it is particularly not an application, component, nor a
coordination® framework, although there is a similarity to the type of class frame-
works. These frameworks integrate classes and methods that provide support for
a broad application area at a certain abstraction level. The notion of a framework
does not mean that the development of new machine learning methods is facilitated,
but that machine learning functions are already provided.

The framework is also different from an Intelligent Tutoring System (ITS), since
it does not follow a predefined syllabus and does not provide a pedagogical compo-
nent. Intelligent tutoring systems usually model a teacher-student relation, which is
not supported. Intelligent tutoring systems also focus on the way of interaction with
the user to enable human learning, which is not a goal of the work at hand.

This dissertation does not address the area of e-Commerce either, which focuses
on the relationships between consumer and trader as well as between consumer and
product. Recommendation systems are being used by an increasing number of e-
Commerce portals to help consumers find products to purchase. An example is the
use of computational intelligence for adaptive lesson presentation in a web-based
learning environment, as presented by Papanikolaou et al. [PMGO00].

Finally, the framework does not represent an Agent-Based System. Intelligent
agents that autonomously act in a given environment in order to achieve user-defined
goals are not considered. Deliberative agent architectures are based on principles of
symbolic artificial intelligence and hold a symbolic representation of their environ-
ment, thus decisions are made by symbolic reasoning. Deliberative agents are those
which base their actions on the predicted actions of other agents [SV97]. They con-
tain an explicitly represented, symbolic model of the world, in which decisions on
actions to be performed are made via logical reasoning, based on pattern matching
and symbol manipulation. Although symbol structures should be processable by

3Device interaction, interoperability

CHAPTER 1. INTRODUCTION 15

the SYMBOCONN framework, reasoning is not performed symbolically, but statis-
tically.

Chapter 2

The Symbolic and the Connectionist
Paradigm of Artificial Intelligence

Research in artificial intelligence has always dealt with symbolic methods on the
one hand and with connectionist methods on the other hand. Symbolic or rule-based
information processing as accomplished by expert systems benefits from strict sys-
tematicity and high interpretability. Symbols are arbitrary because their shape is
unrelated to their meaning', but they can be arranged in meaningful symbolic struc-
tures like grammar rules for natural or formal languages. According to Fodor, sys-
tematicity [NvG94, J.97, BNOO, CBB*01, Aiz05] is the property that a system of
representations has if each of the symbols it contains occurs with the same semantic
value as a constituent of many different hosts [J.97]. To obtain a more formal defi-
nition, we adapted another formulation of systematicity — the systematicity schema
— from van Gelder et al. [VGN94]:

For every system .S, and any given representation ¢ of type 7', there is some set
Mg p of “structurally related” representations such that S is capable of processing
all and only the representations in Mg 7. More precisely, structurally related means
that there is an equivalence relation ~ := {(s,¢) : 3f : T — T,s — t} tying to-
gether the representations in Mg . An example in natural language is being able to
process? both the expression s :=*“brown triangle and black square” and ¢ :=*“black
triangle and brown square”. In this example, the operation f is the commutation of
adjectives.

Usually two types of systematicity are distinguished, systematicity of represen-
tation and systematicity of inference. If a system is not only able to represent a term
Yy := pu; ... uy,, but can also represent the substituted term® pu; (2 /ty) . .. u,(z/t,),
x € FV(y), then it supports a systematic representation of symbolic knowledge.

From the perspective of inference, systematicity describes the capability of gen-
erating new symbolic facts from given ones. For example, a system lacks system-
aticity of inference, if it can infer P from the formula F} := P A Q A R, but cannot

A symbol is nothing without its creator, who provides the symbol with a meaning. [Cal03]
2If the system S is a human, processing means understanding the given expression.
3The free variable z is substituted by the term ¢; in each subterm w;, i = 1,...,n.

17

18 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

infer P from the sub-formula F5 := P A () [Din92]. Such a behavior is not system-
atic, since the truth value of formula F} is determined by the truth value of each sub-
formula, P, () and R. If P A Q A R is true under the interpretation /, semantically
denoted by (P A Q A R)! = max{P!, Q! R} = 1, then also each of its compo-
nents must be true, P/ = Q! = R’ = 1. From the syntactical perspective, there is
an inference rule called A-elimination that allows to derive P both from P A () and
P A Q A R. In this example, the system does not provide this kind of systematicity,
but might only have memorized one example (P A Q A R) - P. Systematicity is
clearly distinguishable from (syntactic) consistency VA : I' = (A A —A), which
can be reduced to I' = —L. In the given example, consistency only claims that
the formula (P A Q) A =(P A Q) is not derivable from I'. In contrast to system-
aticity, consistency does not imply the validity of the inference rule A-elimination,
which states that whenever formula P A () is derivable, also P and () are separately
derivable: ' (PA Q)= (I'F P) & (I'F Q).

In the above-mentioned sense, every logical calculus that provides a deduction
relation - is inherently systematic. As opposed to the symbolic paradigm, connec-
tionist information processing does not provide an inherent systematicity. However,
in chapter 2 and 3 we will show that the connectionist (subsymbolic) counterpart of
systematicity of inference is the generalization capability [GLZ04, HamO1]. From
our point of view, the main difference between both concepts is that systematicity
of inference works deductively and generalization capability is meant inductively.
Unfortunately, in literature both notions are used in many different and often incon-
sistent ways [Phi96, HH97, NS93, J.97].

Besides generalization, high flexibility and robustness in information process-
ing are further advantages of the connectionist methods, which have been per-
ceived as cardinal weaknesses of symbolic methods [JPSS99, CF]. Neither of these
paradigms can sufficiently solve problems like recognizing recurring patterns, ig-
noring irrelevant information, using given knowledge to draw new conclusions, or
being capable of building abstractions. The article Artificial Intelligence: Technol-
ogy with a Future [BBKO2] boils down the applicability of both methodologies to
the following rule of thumb:

“If we have more knowledge than data, then “hard” operators are proper*. Al-

ternatively, if we have more data than knowledge, then fuzzy or neural operators
are more adequate.”
Recently, the integration of connectionist and symbolic methods has been addressed
by many researchers [DOPO8, RAPWBO06, Sed06, HBG05, HHS04]. One impor-
tant aspect of the dichotomy of symbolism and connectionism [FGVO0I1, PowOl,
JPSS99] is that symbolic methods provide a deductive inference mechanism while
the connectionist methods represent the inductive equivalent.

In predicate logic, there are two central deductive inference mechanisms, the
modus ponens (mp) inference rule and the deduction theorem. The modus ponens is

“Here, the “hard” operators are symbolic inference rules that hold a discrete definition and value
space.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 19

a classical form of syllogism® that uses an inference rule for drawing a conclusion C'
from a premise B. The syntactical version of the deduction theorem (I'U{B} I- C)
= (I' H B — () states that an assumption B can always be eliminated by intro-
ducing an implication. If C' is inferable from the existing set of formulas I together
with B, then B — C can be deduced without the assumption. If furthermore B is
inferable, denoted as I' = B, then C' can be deduced by a single application of the
modus ponens rule.

By contrast, neural networks learn from examples, which is an inherently in-
ductive process. If B and C' mostly occur together and C' also appears without
coexistence of B, then the network generates the rule B~C' — which must not be
interpreted logically.

Combining aspects from the connectionist and symbolic paradigm is a main
goal of this work. We argue that for intelligent recommendation, the combination of
connectionist and symbolic aspects of artificial intelligence is superior to applying
each of them individually. In the following sections, this claim is discussed by
clarifying how systematicity — a widely accepted key requirement for intelligent
behavior — is achieved by both paradigms.

2.1 The Symbol System Hypothesis and Formal Log-
ics

The Physical Symbol System Hypothesis® was first postulated by Newell and Si-
mon: it assumes that a comprehensive structure of symbols, which represents the
“world knowledge”, together with operations on these structures should enable ma-
chines to process data like humans: “A physical symbol system has the necessary
and sufficient means of general intelligent action.” [NS76]. This statement aims at
formal systems — a more well-known notion for physical symbol system — and claims
that the behavior of artificial systems should be goal-oriented, domain-independent,
and therefore also adaptable. General intelligent behavior is still a visionary sce-
nario, because artificial intelligence can so far be realized on a restricted and spe-
cific domain at best [Cal03]. In this dissertation, a domain represents the entirety
of knowledge within an area of expertise as well as the typical activities in that
area. Especially formal systems are only able to operate on restricted domains of
knowledge with a restricted set of operations.

Furthermore their power and expressivity are restricted by the Godel Incom-
pleteness Theorem. In 1931, Kurt Godel showed that every formal system which
contains a theory of the natural numbers’ is either contradictory or incomplete. A
consequence of this theorem is that a formal system cannot be used for proving its
own consistency®.

3Syllogism is a deductive form of logical inference or a way of conclusion in natural language.
®In “Computer Science as Empirical Inquiry: Symbols and Search” [NS76].

"The Peano Axioms are such a theory, for example.

8Consistency means that no contradictory axioms or propositions exist in I', that is, I' I/ L.

20 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

Formal systems as formalized by mathematical logic are a strictly symbolic
form of knowledge representation and processing that provide a calculus to ver-
ify the consistency of propositions and to infer new knowledge by mostly deductive
inference rules. Knowledge is tightly bound to the semantics of logical formulas,
which is a mapping from symbol names to objects of the domain of discourse®. A
characteristic feature of logic is its strict distinction between syntax and semantics,
that is, the syntactical terms and operations are completely independent from any
content or meaning.

Predicate logic is a formal system that allows the generation of new propositions
via inference rules such as the modus ponens or unification'®, which is a form of
substitution of variables by ferms. If a proposition A is syntactically deducible from
the set of valid propositions I, formally I' - A, it belongs to the deductive closure'!
{A € FORgry: I' = A} of I' and is accepted as another valid proposition.

To substantiate the symbol system hypothesis and to formalize the principle
of compositionality, a representative and well-known mathematical logic has to be
defined.

Definition 2.1.1: First Order Logic (FOL), Predicate Logic
The predicate logic or first order logic is a formal system with the following com-
ponents [Buc07]:

1. A set of basic logical symbols LS that consists of the following elements:
(a) L (falsum), — (negation), A (conjunction), V (disjunction), — (implica-
tion)
(b) V (all quantor), 3 (existential quantor)
(c) ~ (equals)

2. A formal language £, which is a set of symbols p € £, LN LS = (.

3. An L-structure M is a pair M = (D, (p™M),cr), where D is the discourse
domain or the universe and (p™),¢. is a family of the following form:

(@) pM C D" =D x ... x Dis a relation, if p = R is an n-ary relational
symbol.

(b) pM : D" — Dis afunction, if p = f is an n-ary functional symbol and
n > 1.

(c) p™M € D is an object from the discourse domain, if p is a constant
(n=0).

The set of individuals that are being dealt with by quantified predicates P, Yz € DP(z).

0Unification is a syntactical concept based on the substitution of free variables in terms and is an
important principal of logic programming. Logic programming languages like Prolog unify terms
by instantiating their free variables, as shown by the following example. The terms ¢ = (z, vy, f(a))
and ¢ = (p,q,r) are unified to equivalent expressions o(¢) =~ o(¢), when z ~ p, y ~ ¢ and
f(a) = r by the substitution o.

1See definition 2.1.2.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 21

Definition 2.1.2: FOL Syntax
The central syntactical concept of predicate logic are £-terms, which are induc-
tively defined as follows:

1. Each variable v, vo, . .. is an L-term.

2. If ty,ts,...,t, are L-terms, then also the string ftits...t, is an L-term,
where f is an n-ary function symbol (n > 1).

3. Forn =0, f € L is a function symbol of arity 0, which is a constant and
thus also an £-term.

Based on these L£-terms, the set /'O R of formulas can be inductively defined:

o Rtyty...1,, L and = t,t, are prime formulas (atomic), where R is an n-ary
relational symbol and ¢4, to, ..., t, are L-terms.

e If A and B are formulas, then —A, AA B, AV Band A — B are also
formulas.

e If Ais aformula and x is a variable, then 32 A and Vx A are also formulas.

These definitions point out what is meant by compositionality in general and con-
catenative compositionality in particular.

The semantics of the predicate logic are imposed by an interpretation Z =
(M, n), which consists of a structure M and a mapping 7 : Var — D from the set
of variables (Var N £ = () to the objects of the discourse domain. An example of
a logical expression is the implication A — B, whose semantics can be described
by a truth table as represented by table 2.1. The truth value of a complex formula is
reduced to a combination of the truth values of its single components. Vice versa,
the truth value of a complex expression is uniquely determined by the truth values
of the sub-expressions and by the operators that combine them. We refer to this
principle as semantic compositionality.

(A= B [B'=0] B'=1 |
Al=0 1
Al=1

Table 2.1: Exemplary truth function for the logical implication A — B for propositional
and predicate logic (first order). A mapping 7 : Var — D is an allocation of the variables
x,Y, 2, ... to the objects of the discourse domain D. A boolean or truth function W
FOR — {0, 1} assigns a truth value “0” (false) or “1” (true) to a formula of the given
language, for example W_, (A!, B!) = max{1 — A, Bf}. A pair I := (M, n) is called a
model for the formula, if the formula becomes true under that interpretation, M = (A —
B)[n & (A— B! =1.

On the syntactical level, terms and formulas are nothing other than character
strings, which are uniquely decomposable according to the following lemma.

22 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

Lemma 2.1.1: Unique Decomposability If ¢,,....¢,,,u,...,u, are terms with
the constraint ¢;...%¢,, = u;...u,, then we have t;, = u; for: = 1,...,n and
m =n.

Proof 2.1.1: The lemma of unique decomposability is proven by induction over the
length n of the composed term us . . . u,.

Itis t, = pty...ts,uy = pliy ... 0, with arity #(p) = k. This means that the
two shorter symbol sequences without the k-ary function symbol p are equal again:
ti...tyto.. . tm = Uy...0xUs ... u,. Using the induction hypothesis 5. ..t, =
Us . ..Uy, We conclude that m = n, fj = q; forj = 1,...,kand t; = u, for
1=2,...,n.

Symbols and symbol structures are separated from their meaning and can be con-
catenated purely syntactically to compose symbolic expressions, which is a require-
ment for constructing general intelligent behavior according to the symbol system
hypothesis. The lemma of unique decomposability 2.1.1 tells us that the symbol
concatenation is unique and invertible.

The crux of this lemma is that concatenative compositionality of symbols is not
needed to provide systematicity. Compositionality of symbols is a crucial claim
of the symbol system hypothesis for general intelligent behavior. The hypothesis
is hardly doubted in literature, but compositionality does not necessarily have to
be discrete and concatenative. As a counter-example, we quote the distributed but
systematic representations created by so-called Recursive Autoassociative Memory
(RAAM) networks, which are elaborated upon in chapter 4 (section 5.5). These
recurrent networks can be used for encoding concatenative symbol structures like
the term ftit, ..., defined by Def. 2.1.2, where ¢;, + = 1,...,n are subterms.
The created internal'? representation is neither a concatenation of subterms nor a
direct mapping of subterms to units of the neural network. In fact, a distributed and
non-compositional representation of the composite term is computed, which can be
inverted to regain the constituents f, ¢, %o, ...,t,. We see that systematic processes
can be conceived without using concatenative principles, which is in favor of con-
nectionist methods and allows to realize the claim for (symbolic) systematicity of
the symbol system hypothesis in a connectionist manner.

Another interpretation of the symbol system hypothesis focuses on the search
aspect of intelligent behavior and is called Heuristic Search Hypothesis [NS76].
Heuristic search is a possible solution to decision and optimization problems like
computing the shortest connection between two nodes in a graph, but also provides
a way of defining intelligent behavior. The difference between uninformed and
informed search in their constraining effect on the search space can be interpreted
as the degree of intelligence of a system. The more intelligent a search system is,
the lesser the actually scanned fraction of the search space and the bigger the part
excluded from the search. There are about 35 possible moves and about 50 moves on

12The numeric knowledge representation created in the hidden units of a neural network is often
called internal representation.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 23

average per game and player, which results in a number of 359+ search tree nodes,

of which normally only about 10*° nodes represent valid moves. Chess'* computers
for example successfully constrain the branching factor of the exponential move
space to compute the next move. The degree of restriction depends on the search
strategy implemented by a cost function, which defines the quality of individual
moves and their expected impact for the chess player and the opponent (Minimax-
strategy).

Many problems can be modeled as informed or uninformed search problems,
including those that do not look like search problems. An algebraic transforma-
tion of an equation to isolate the variable of interest can be seen as a search tree
of branching factor one, which is, in fact, a linear sequence of symbol (structure)
manipulations. Each state of the equation from the original form to the target form'#
represents a symbol structure, which is an element of the search space consisting
of correct and incorrect symbolic equations [NS76], with respect to a given alge-
braic problem. If the distribution of these symbolic problem solutions is completely
random and there is no information criterion (cf. section 4.2) to order the solutions,
then no intelligent problem solving is possible since all solutions have to be checked
by trial and error. The degree of order of the solution space can be measured by the
entropy [NS76], which is a measure from information theory described and clas-
sified in section 4.2. Any order or pattern of the symbol structures in the solution
space can be used to conduct an informed search for the correct solution and thus
facilitates intelligent behavior. This order or pattern can be induced by a similarity
measure or a distance function upon the search space, which indicates similar and
dissimilar problem solutions. In the context of intelligent recommendation, prob-
lem solutions are mainly produced by classification and prediction, which make
extensive use of distance measurements upon the recommended entities.

2.2 Connectionism and the Symbol Grounding Prob-
lem

The main benefits of connectionist models are computational robustness, inher-
ent context-representation and high generalization capabilities. In connectionism,
knowledge is represented in a distributed way and new knowledge is generated by
the cooperation of many interconnected units. Hybrid techniques composed both
of symbolic and connectionist methods belong to the class of Hybrid Intelligent
Systems (HIS) [ANOO, VS07] and have recently enjoyed great popularity. Neu-
ral networks, fuzzy and probabilistic methods can be applied to problems that are
hardly-understood but well-observed — such as the classification of diseases and
molecules in bioinformatics using gene expression data [BDDO3].

The connectionist paradigm!® defines information processing as the result of

13A chess game can be solved by a form of perfect search that is totally informed.
14The variable of interest was successfully isolated.
5The connectionist paradigm is also called subsymbolic paradigm.

24 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

the interaction of many small and simple units (neurons). A connectionist system
is an abstract model which interprets information numerically and which does not
depend on the concrete implementation by a neural network, for example. Neural
networks are universally applicable to every problem that can semantically be rep-
resented by a functional mapping f : X — Y. Thus, they can also be trained to
syntactically process symbolic expressions defined by propositional logics. Niklas-
son and Sharkey [NS93], for example, taught a neural network to apply the rules of
de Morgan to atomic symbols P and Q):

—(PVQ)=-QAN-P 2.1)
~(PAQ)=-QV—P, (2.2)

These rules were generalized by the connectionist system to transform expressions
where P and () are simple, non-atomic formulas for themselves. Niklasson’s result
indeed showed that structure can potentially be represented without symbols. Allen
Newell, one of the founders of symbolic systems, also formulated a connecting
thought: “There must exist a neural (biological) level of organization that supports
a symbol structure's.” [AP06]

This is exactly what is provided by neural networks, though of course not in
a biological but in a computational sense. Neural networks as implementors of
recommendation functionality are not biologically motivated in this work; however,
analogies to biology were extensively given in the 1980s [GWW91] and biological
models are still used as archetypes for artificial neural networks [Par02, NNOO1].

Knowledge Representation in Symbolism and Connectionism Any knowl-
edge can be represented by symbols, but since symbols are arbitrary, they have to
be grounded in the domain of discourse!’, which is the carrier of the cognitive pro-
cesses to be performed. The concept of symbol grounding proposed by Harnad
[Har43] (symbol grounding problem [TFO05]) takes into account that symbols have
to be anchored in the external world, that is grounding them in non-symbolic ob-
jects, in order to be useful for cognitive processes. This is not a trivial task at all,
since it raises the question of how knowledge about specific objects or concepts
should be packaged to be transferable and applicable in different contexts. Making
knowledge transferable to other uses is crucial for general intelligent behavior of
an artificial system. But if we want to package this knowledge, we face the sec-
ond question: where is the boundary of knowledge about a specific subject such
as coffee? Can we obtain a complete and exchangeable package of (logical) facts
on a subject of interest [Cal03]? The so-called Terminological Box (T-Box) used
in description logics [ST07, SSS91] or ontologies provides concept definitions and
concept axioms to state facts on arbitrary subjects. Knowledge is specified in a con-
ceptional form by a knowledge tokenization comparable to the syntax of predicate

16“The notion that intelligence requires the use and manipulation of symbols, and that humans are
therefore symbol systems, has been very influential in artificial intelligence.” [AP06].
17A subset of the real world and its objects.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 25

logics presented in definition 2.1.1. The following example gives naive definitions
and axioms on the real-world object coffee within its different contexts.

Coffee = CoffeeBeans A HotWater
CupOfCoffee = Coffee A disFilledIn Cup
CanOfCoffee = Coffee A disFilledIn Can
Coffee « Cafe A disFilledIn (Cup Vv Can)
Cafe = Company A dsells Coffee

Of course, this T-Box on coffee is not complete and even partially confusing, since
a Cafe is a synonym for Coffee, if it is filled in a cup or a can. The last concept
definition states that a Cafe is a company, but does not tell whether it might be filled
in a bin or not.

The symbol grounding problem is often underestimated by representatives of the
symbolic branch of artificial intelligence. In symbolism, the symbols are isolated
in the form of context-free information units in order to use them as constituents
of more complex structures that are uniquely decomposable according to lemma
2.1.1. Symbols are “independent of their specific physical realizations” and thus
create an “autonomous symbolic level” [Har43] that works strictly systematically.
Symbolic variables are grounded in the domain of interest by the variable allocation
1 : Var — D defined in section 2.1. We see that there is an ambivalence between
grounding of symbol systems and independence of syntax from semantics.

The symbol grounding problem could be solved by combining context-sensitive
with context-independent knowledge representations. To understand the following
connectionist approach, a basic knowledge of the composition of neural networks
is required, which is presented in section 4.1.2. According to Sharkey et al. [SJ94],
the hidden unit activations of a feed-forward neural network can be considered as
context-sensitive representation, while the network weights serve as context-free
representation. Instantiated with the example above, a more comprehensive defini-
tion of coffee like

Coffee = Beverage A dmadeBy (CoffeeBeans A HotWater) A ...

is learned and stored by the set of weights between the input units and the hidden
units. For all possible contexts such as JisFilledIn X the same stimulating signal is
sent along these input weights, which results in a context-free representation of
coffee.

Symbol Manipulation Besides the question of knowledge representation and
its systematicity, we have to consider the manipulation of symbol structures to con-
struct an intelligent recommendation system, which is the systematicity of infer-
ence. An example is the application of the distributive law on a set of variables
Var ={a,b,c,...}. The mapping a * (b + ¢) — a * b+ a * c describes a structure
transformation in the sense of the symbol system hypothesis using two binary func-
tion symbols +, * € L. A possible semantics could be realized by an interpretation
based on the natural numbers, I = (M,n),n: Var — N, M = (N, 4y, *y,0,1)

26 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

with the usual addition and multiplication. This interpretation already goes beyond
the mere symbol manipulation and does not necessarily have to be addressed by a
systematic symbol processing system. The systematicity of inference is a purely
syntactical capability that can also be realized by connectionist models.

A hybrid solution to such a symbol manipulation can be built on the connection-
ist structure representations created by Recursive Autoassociative Memory (RAAM)
networks. The distribution of the binary operators over the variables is determined
by the distributive law, which can be implemented by an ensemble of RAAM and
standard feed-forward neural networks as elaborated on in section 5.5. An alterna-
tive are so-called Holographic Reduced Representations (HRR) that also provide
a distributed representation for structural knowledge by circular convolution and
correlation of high-dimensional feature vectors [Pla03, Neu0O].

Both connectionist models achieve a similar computational systematicity than
direct symbol manipulations as done by formal systems. However, compared to the
large-scale capabilities of symbolic structure manipulation like logical inference,
their systematicity is still underdeveloped. From the connectionist perspective, a
hybrid intelligent system means a connectionist model that behaves as symbol and
structure processor and which develops an “understanding” of the composed knowl-
edge tokens by symbol grounding. The symbols used are anchored in the distributed
representations, which are robust against noise and uncertainty and can be learned
from examples. Thus a central issue of this dissertation is the treatment of sym-
bolic and structured knowledge such as graph-based data or productions of formal
grammars by connectionist models.

2.3 Applying Connectionist Models to Typically Sym-
bolic Domains

Wherever strict verification of computational results is dispensable and validation
based on tests and empirical studies is sufficient, neural connectionist model can
often achieve higher performance than symbolic techniques. We will empirically
show that connectionist models are appropriate to especially process structured
knowledge like trees and graphs. This is especially shown for the concrete prac-
tices navigation recommendation and change impact analysis in this dissertation,
without loosing the capability to accomplish statistical tasks like time series predic-
tion. Therefore the developed connectionist model must be sufficiently flexible to
deal both with symbolic and non-symbolic knowledge.

The inherent problem of purely symbolic techniques like expert systems is their
disembodied abstractness in interaction with the real world, that is, the employed
symbols are not grounded in objects of the real world. Symbolic systems are often
tailored to only one application and therefore inflexible with respect to other appli-
cations. They are confined to infer new facts by applying inference rules to the fact
base from the respective application. Moreover, they are generally not designed to
allow exceptions from the anticipated facts (left rule sides); this is required, how-

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 27

ever, for dealing with uncertain and incomplete information. Therefore symbolic
systems are not adequate for commonsense reasoning'® [Mue06] either, but rather
connectionist systems are expected to gain those humanoid capabilities.

Rule-Based Systems versus Neural Networks Classification of objects can
be accomplished by a fixed set of (discrete) decision criteria, which have to be
defined by domain experts. For example, in the medical domain diagnosis rules are
defined in order to classify the symptoms of a patient according to known diseases.
If the specified criteria are not significant or misleading for the basic population of
patients, the classification performance of the expert system will be insufficient or at
least suboptimal. The following simplified rule illustrates symbolic reasoning used
in expert systems.

If (fever AND (headache OR stomachache) AND
"difficulty in swallowing’)
Then Scarlet Fever

By contrast, a neural network is able to learn the characteristics of each object
group from a set of training examples. The deciding object attributes, such as the
patient’s symptoms, are taken into account and these attributes are implicitly and
automatically weighted according to their significance for the classification task.
Insignificant attributes that provide a low information gain'® are low-weighted while
significant attributes are assigned to higher weights. The classification approach by
a conventional neural network is illustrated by figure 2.1. When the application

Disease:
Scarlet fever

Figure 2.1: Connectionist disease classification by means of a feed-forward neural network
that processes the diagnosed patient symptoms.

domain changes, the connectionist classifier can be incrementally retrained. Thus,
the domain experts are freed from defining valid classification criteria that may even
change rapidly, which leads to a reduced effort of maintaining the diagnosis system.

One example of a rule-based system in the context of the semantic web is the
TEAM project [TEAQ9]. There, association rule mining is used to automatically
discover behavior rules concerning the activities of software developers. The re-
sulting rules are encoded in Semantic Web Rule Language (SWRL), which is a
semantic web standard for defining domain specific rules. Thus, ontology-based

18Reasoning methods that exhibit the features of human thinking.
19See formula 4.6 in chapter 4.

28 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

rules are used to represent control knowledge and to dynamically fire the conse-
quent parts of the rules when the incidence of their antecedents is sensed.

Going beyond rule-based systems, one possibility of integrating symbolism and
connectionism is to equip logic with neural components and to realize logical in-
ference by these augmented components [KAO1]. Lamb et al. present the lan-
guage of a connectionist temporal logic of knowledge (CTLK) together with a tem-
poral algorithm that translates CTLK theories into ensembles of neural networks
[DGLO6]. The neural components provide fuzzy inference based on fuzzy premises
that replace the strictly logical in the case of the modus ponens inference rule
{B, B — C} F C, for example. The premise B = fever A (headache \/ stom-
achache) may be only partially fulfilled, denoted by -, which may cause a partially
applicable consequence C. Not only the constituents might be partially fulfilled,
which is expressed by a fuzzy implication — that corresponds to the confidence of
an association rule elaborated on in section 7.1.2.

The second possibility to construct a hybrid system is to integrate symbolic ca-
pabilities into connectionist systems®° [BGC98, AS97]. For example, a rule-based
system incorporates prior domain knowledge as a set of if-then rules that can be
learned by a neural network?!. The great advantage of rule incorporation is that
each constituent of a diagnosis rule By,..., B, — C4,...,C,, can be endowed
with a content-based representation. The meaning of the domain objects can be
encoded in the rules’ variables by including their textual, categorical or metric con-
tent in the connectionist training process. This is similar to the variable allocation
n : Var — D of first order logic defined in section 2.1. Each further rule that is
added by experts contributes to the similarity-based understanding of the domain,
which allows the expert system to handle gradual rules of the form the MORE x
is A, the MORE y is B [Amy03]. These are explicitly supported by a connection-
ist representation Bl, e Bn = C’l, e ém of rules, which also enables a gradual
compliance of their left sides B, . .., B, that consist of several constituents.

Another study on connectionist models supporting symbolic rules was con-
ducted by Prentzas et al., who proposed an explicit combination of neural networks
and production rules called neurules [HPO1]. Figure 2.2 shows a connectionist ada-
line unit that represents an if-then rule with a composite antecedent.

We follow the second approach of connectionist models with symbolic capabil-
ities that are applied to practical problems.

20Ultsch and Korus [UK95] provide an overview about the integration of neural networks with
knowledge-based systems.

2l Also, the inverse process of extracting explicit rules from the trained neural network is possible
in principle [ZJCO03].

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 29

(sfo) if C1 (s1y),
Cy (sfy),

C, (sty)
then D

(a)

Figure 2.2: (a) Form of a neurule, (b) Corresponding adaline unit. Source: [HPO1]

2.4 Knowledge Representation and Knowledge-Based
Disciplines

Knowledge Management is the discipline of organizing knowledge into manage-
able pieces in order to solve knowledge-driven problems. Knowledge is systemati-
cally created, shared, and applied to achieve the goals of a company or an organiza-
tion. Thereby, the knowledge base of an organization is exploited and manipulated
by knowledge managers, and the contained information is enriched by imposing
structure and annotations by means of metadata at authoring time or retrospectively.
Knowledge managers significantly contribute to the success of the knowledge man-
agement process, for example, by determining what information is worth sharing
across the organization.

The term knowledge is overloaded with several meanings. Software engineer-
ing knowledge is primarily represented in the form of system models like use-case
specifications or system architectures. Graph-based notations similar to semantic
networks are widely used to represent knowledge about a software system. For ex-
ample, the Unified Modeling Language (UML) formulates aspects of software sys-
tems as abstract models that are highly structured and thus can be learned syntacti-
cally (grammar rules) and semantically (types). Furthermore, taxonomies are used
to describe the type-relations between classes as inheritance hierarchies. Lately,
ontology-based conceptualizations have emerged offering an alternative to specify
software engineering knowledge [CRP06]. Compared to traditional software mod-
eling, ontologies enable deductive reasoning over classes and their associations, for
example, which are expressed as concept definitions and relations.

Knowledge Engineering addresses the building, maintaining and development
of knowledge-based systems such as intranet portals of larger organizations. These
systems are based on structured knowledge that has to be acquired and inserted into
knowledge bases, depending on the intended functionalities operating on the knowl-
edge. Thus, in contrast to knowledge management, the system development is the
main focus in knowledge engineering. Semantic Wikis and standardized metadata
added to web pages, as defined by the Dublin Core (DC) initiative, have emerged

30 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

from knowledge engineering. The Dublin Core characterizes every document by
a common set of 15 properties, which is widely used for annotating web pages.
However, metadata approaches suffer from a lack of semantics and machine inter-
pretability.

Knowledge Discovery in Databases (KDD) is an umbrella term for process
consisting of a set of activities in the context of data mining. Starting with a database
of potentially useful data, the KDD process comprises the activities feature selec-
tion, data preprocessing, transformation, data mining, and evaluation/interpreta-
tion. Knowledge is acquired from raw datasets in the form of patterns or regulari-
ties by aggregation, classification, clustering, correlation- and dependency-analysis,
filtering, and others. As in statistics, the significance of these patterns provides
information about their validity. High significance of an observation means low
probability of being caused by coincidence. In general, KDD is defined as the pro-
cess of the (semi-) automatic extraction of knowledge from large amounts of data
[FPSS96], which is

e statistically valid (significant)
e yet unknown (not externalized)
e and potentially useful for specific applications.

The area of knowledge discovery comprises machine learning, statistics, and databases.
Prominent methodologies such as text and web mining, clustering or ranking al-
gorithms (Google Page Rank, cf. section 7.2) belong to the overlapping field of
machine learning and statistics.

Knowledge Representation and Processing Techniques Knowledge repre-
sentation means the specification of knowledge by formal or informal languages,
to be usable by humans and especially by machines. The choice of an appropri-
ate knowledge representation is the key to achieving intelligent behavior. Often,
a heuristic search can be avoided or strongly pruned just by choosing the right
knowledge representation. This section highlights the different possibilities of rep-
resenting knowledge in a machine-processable and -learnable way in the disciplines
software engineering, data mining, knowledge management, and logics. In each of
these disciplines, the appropriate knowledge representation is the first step towards
a problem solution.

Take the problem of correctly parenthesized (arithmetical) expressions, for ex-
ample. We want to implement the convention that each opened parenthesis has to be
closed again. Assume that we would like to create a well-defined?? representation of
the parenthesized expressions. One possibility is to specify the allowable constructs
with a Chomsky 2-grammar. The context-free language £ = {(...” ...)" | n € N}
can be used to specify the expressions in parentheses and the corresponding gram-
mar productions could be of the following form, beginning with the start symbol

22Independent from a concrete representative.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 31

S:
A = B|A+B 2.3)
B = S|B-S (2.4)
S = ai|ag]...|ag|(A) (2.5)

A simpler and more intuitive solution is to introduce a ternary tree-based knowl-
edge structure like that depicted by the examples of figure 2.3. In this case, the
parentheses are implicitly represented by the position or level of a node in the tree.
For humans, a ternary tree is simpler and easier to understand than the grammar

a, + a;

Figure 2.3: Two concrete arithmetical expressions that require the correct insertion of
parentheses. The use of parentheses can be omitted when leveraging an appropriate tree
representation.

productions and still checks for the balancing constraint of opening and closing of
parentheses.

There are several questions concerned with the representation of machine-pro-
cessable knowledge, as for example whether a general purpose or a specific rep-
resentation is required, or if the knowledge is represented in a declarative or a
procedural way. Declarative knowledge is explicit and may be stated in the form
of semantic nets, logics or declarative languages such as the resource description
framework (RDF). An example of a declarative statement is a SQL* database query,
which formalizes the result of the computation by operators on database tables and
by attribute-value pairs, but does not specify the algorithm that actually computes
the result. Procedural knowledge focuses on problem solving processes that deter-
mine how a certain result is computed or derived. New knowledge is the outcome of
a knowledge manipulation process that can be given by production rules of formal
grammars, for instance, which transform symbolic knowledge by sequential rule
application. Thus, procedural knowledge representation is implicit and hidden in
the work processes or algorithms (tacit).

Figure 2.4 gives an overview about the various forms of knowledge representa-
tion.

Taxonomies represent hierarchically ordered categories that do not provide ad-
ditional relations between categories besides their hierarchical position.

2Structured Query Language.

32 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

Thesaurus, Glossary
Controlled Vocabulary, Few Relations
(Special case of SN)

Taxonomies
Hierarchical Categorization

TopicMaps

Ontologles —_— \ / / Navigation, Search, Metadata Exchange

Conceptualization

Knowledge
\\
Extended Semantic Networks (SN)
ER-Model Machine-Reading, Knowledge Sharing

Data Modeling

UML2.0 Predicate FuzzysSets
Data and Logics Modeling Uncertainty

Behavior Inferencing

Figure 2.4: Forms of knowledge representation together with their fields of application.
Based on [Str03].

A Thesaurus extends the sub-concept-relation in taxonomies by a set of prede-
fined relations such as similar-to or synonym-for between concepts, while instances
are not supported.

An Entity Relationship-Model (ER) provides a formal description or concep-
tualization of a data model of the real world. Usually, a graphical notation consisting
of entities, relationships, and attributes is used.

The Unified Modeling Language (UML) offers a spectrum of notations [BD04]
to capture knowledge about three different aspects of a system:

e Describe system functionality from the user’s point of view with use case
diagrams.

e Describe system concepts and their relationships in different levels of abstrac-
tion with class, object and deployment diagrams.

e Interaction, activity and state diagrams can be used to represent the behavioral
aspects of the system.

Uncertain knowledge can be modeled by Fuzzy Sets, which can be considered
as an extension of multi-valued logics. Fuzzy elements are members of several sets
to a certain degree, determined by a real-valued membership function m. A fuzzy
set is a pair (A, m) where Aisasetand m : A — [0,1]. For each x € A, m(x)
represents the grade of membership of x. This allows for fuzzy premises that are the
basis for drawing graded conclusions.

The Topic Maps standard [GMOS] supports modeling of domain knowledge in
the form of associated topics and facilitates structuring of existing knowledge. Con-
crete occurrences are linked to the identified topics and take the role of examples or
instances; for example, as a set of web pages that address the same topic.

The most established formal Logics are propositional logics, description log-
ics, first order logics, and higher order logics, which are distinguished by their

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 33

underlying languages that determine their expressiveness (listed in ascending or-
der). Logics with sufficient expressiveness, like description logics or first-order
predicate logics, allow for reasoning both over instances and classes. In case of
description logics (DL), for example, knowledge representation is twofold: the
concepts are encapsulated in the terminological box and their instances are com-
prised by the assertional box. The knowledge base is the collection of concepts
and assertions on instances (facts) like (John, Paul) : hasFather. ALC is the
prototypical description logic, whose language is inductively defined by Flyrc =
L|T[=Farc|Fare M Fare|Fare U FarelFare © Fare|3R Farc|VR Fare.

An Ontology represents a formal specification for domain-specific knowledge
that allows for automatic reasoning over concepts as well as instances. Being the
fundament for logical reasoners such as Racer or Pellet [CP08] differentiates ontolo-
gies from mere modeling languages like UML. Ontologies are a powerful formalism
for structured knowledge, since they fulfill important requirements like richness,
quality of information, dealing with incompleteness and ambiguity, varying level of
formality, and applicability to existing environments. In terms of expressive power,
description logics such as OWL DL used to specify ontologies are closer to first-
order logics than languages used to model databases. For this reason, ontologies are
said to be at the “semantic” level, whereas database schema are models of data at
the “logical” or “physical” level [GruO8].

The chosen representation language should at least meet the following require-
ments to be useful for building an intelligent recommendation system.

e The language has to be concise to enable fast and manageable information
processing. There is a trade-off between human-understandable and concise
languages. The XML markup language, for example, provides a higher un-
derstandability at the cost of conciseness.

e The expressiveness of the language must be high enough to formulate all
propositions that may appear in the domain of discourse**. The Chomsky
hierarchy can be used to determine the expressiveness of a formal language
[SchO1].

e In case of symbolic information processing by logics, for example, the repre-
sentation language should be suitable for applying an inference mechanism,
which derives new knowledge from valid facts. An example is the meta-
language of predicate logic, which defines functional and relational symbols
of any arity (cf. definition 2.1.1). The fact base of the discourse domain is
extended by inference, which can be realized by a tableau calculus as in the
case of description logic [STO7].

As opposed to symbolic knowledge representation, connectionist representations
work numerically. The internal representation of a connectionist model is able to
capture the full information content of the respective domain objects with a low

24The objects across which the quantifiers of a formal theory may range.

34 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

degree of redundancy, which is important for the inductive generalization of the in-
corporated knowledge. Information can even be compressed by appropriate neural
architectures, which will be shown in section 4.2 and 5.5.

2.5 Principles of Machine Learning

Knowledge-based systems, which operate on structured and unstructured data, should
be automatically analyzed, mined, and finally generalized by machine learning algo-
rithms. In this sense, machine learning algorithms can be considered as services for
knowledge-based systems. Figure 2.5 shows an overview of these services. The ser-

Functions of Knowledge-Based Systems

Share &
Disseminate
Knowledge

Organizing

Knowledge

Classifying
(Inductive)

—_—————— -,

«extend» 0 Z2%--
A . «extend»
.

~ .
«extend»~~_

-,

Filtering
Knowledge

Recommending
Knowledge

Predicting
(Inductive)

e
tend»_.~~
«extena»_ Checking for

z d
4 . -7
% «include»

(«include»

Analyzing
Correlations
(Statistical)

Consistency

Discov ering
Knowledge

Inferring Logically \«extend»

e (Deductiv e)
«include»

Figure 2.5: Use case diagram showing top-level services provided and used by knowledge-
based systems.

vices Classifying, Clustering, Predicting, Inferring Logically, and Analyzing Cor-
relations are classical tasks of machine learning, logic, and statistics, which extend
the basic functionality of knowledge-based systems like Organizing, Filtering, and
Sharing knowledge among a user group or an organization. In the following, we
elaborate on those services that will be realized by the SYMBOCONN framework.

Machine learning systems learn from examples, that is, they discover regulari-
ties in given datasets and are able to deal with unknown data showing similar regu-
larities. Thus, the examples — called the training set — are not only memorized, but
the discovered regularities can be transferred onto unseen data. The generalization
from these examples is an inherently inductive process.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 35

From a mathematical perspective, learning means the optimization of an error
or a fitness function, which is realized as supervised, unsupervised or reinforce-
ment learning. Supervised learning assumes the existence of a virtual teacher who
knows the target values to be approximated. By contrast, unsupervised learning
does not require a specific learning target. Instead, characteristic groups of objects
called clusters contained in the training set are autonomously determined based
on a similarity measure or a kernel function K(Z,y) :=<h(Z), h(y)> on feature
vectors 7,/ € R?, where h is a non-linear mapping R¢ — H into a usually higher-
dimensional feature space H. Kernels are scalar products on feature vectors rep-
resenting domain objects, which can be computed efficiently even for high dimen-
sional vectors [Bor0Q7].

Reinforcement learning is similar to natural conditioning and is often employed
in agent-based systems by means of a reward function. There are further learn-
ing types such as transduction, which is inference from specific training cases to
specific test cases, or meta learning®, that are not within the scope of this disser-
tation. Supervised and unsupervised learning are the foundation for the services
classification, clustering, and prediction, shown in figure 2.5, which we define in
the following?®.

Definition 2.5.1: Classification

Classification is a surjective mapping {01, ...,0,} =: D — {C,...,C.}, n >>
r, that assigns the objects o; € D to appropriate classes C;, j = 1,...,r, which are
discrete. A classifier K realizes the mapping K : D — C' from objects to classes.

Definition 2.5.2: Clustering

Clustering is a mapping {o1,...,0,} =: D — CL C P(D) from the domain to
a partitioning C'L = {53, S, ..., S} of the domain consisting of not necessarily
disjoint subsets S; of domain objects. Clustering is based on unsupervised learning.
In comparison to classification, the classes are not determined, but are discovered
in a self-learning process. The goal is to minimize the sum of distances between
objects within the same cluster for all objects in the domain. The compactness
TD(C) of a cluster C' is computed by the sum of the distances between all cluster
objects and its centroid pc. The Euclidean distance is often chosen as distance
measure.

k
1
He = %;01‘, 0; € C, ‘C’:k

k k

TD(C) = > d(oi,uc)* = (lo; — pcll,)®

=1 =1

ZInformally spoken, meta learning means learning to learn. An exemplary meta-algorithm is
AdaBoost, which performs an iterative optimization upon a series of classifiers.

26We use the term classification for a mapping from objects to a finite number of groups. The
value space of prediction may be innumerable like the set of real values R.

36 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

The quality QC' of a clustering consisting of several clusters {C, ..., C,} is given
by

0C =Y TD(C),
=1

which sums up the degree of compactness 7'D(C;) of each cluster C;. There are
several different clustering types such as nearest neighbor clustering, density-based
clustering or, more recently, Hough-based clustering?’ [ABD*08]. Density-based
clustering applies a local cluster criterion: “Clusters are regarded as regions in the
data space in which the objects are dense, and which are separated by regions of
low object density (noise). These regions may have an arbitrary shape and the
points inside a region may be arbitrarily distributed” [Kri00]. More formally, a data
point is called core object, if it is situated in a dense region of the underlying feature
space |N(o)| > minPts, N.(o) ={p € O : d(o,p) < €} for a metrics d

Definition 2.5.3: Prediction

Prediction is a mapping P : D™ — D", m,n € N from history sequences to target
sequences of domain objects o := (f1,..., fq) with feature values f; € F;. The
object features F; that span the feature space [} X ... X [y are also allowed to be
continuous F; = R, ¢ = 1,...,d, which is required for the prediction of numerical
time series, for example.

Classification and prediction are closely related because classification can be inter-
preted as a subclass of prediction: to classify an object means to predict its class,
which is a categorical or ordinal quantity. This relationship is shown in figure 2.6,
which also illustrates other associations between functions on different types of
knowledge and the responsible disciplines and research areas. Software engineering
depends on knowledge engineering, since the creation of software systems requires
a knowledge creation and management process. Especially during software devel-
opment, knowledge management techniques are used, for example, to streamline
the planned and unplanned communication of the project participants.

Inferring Logically Logics provide a further traditional formalism and calcu-
lus to represent and process knowledge symbolically. Based on the given syntax
and logical calculus, different inference types are supported, while most of these

?
are reducible to the consistency check I' U { A} F L with respect to a given set of
formulas I". The subsumption check tests whether a given concept B?® is subsumed
by another concept C, formally denoted by B — C', which can be done by assum-

?

ing the opposite and checking for contradiction I' U { B A =C'} - L. Realization
is the computation of all instance-concept relations in the domain, that is, for each
instance its membership of one or several concepts (classes) is determined.

27 A form of subspace clustering.
8B is the subordinate concept.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 37

dependson

Knowledge F-Z» Sofware Statistics Knowledge
Engineering Engineering 8 Discovery in
uses Databases
_______________________________ = (KDD)
uses __.--" al Y
creates ___.--=""
__,-—"‘\ fodlizedBy Machine Logics
Learning
Knowledge Know ledge-- realizedBy
Management Based System
Techniques
realizedBy ﬂ /1\
? A realizedBy realizedBy realizedBy
¢ \ :
Correlation Prediction Clustering M~ Classification Logical
Analysis [Inference
SubsumptionCheck ConsistencyCheck Realization

reducibleTo

Figure 2.6: UML class diagram illustrating the associations and dependencies between
functions of knowledge-based systems and the responsible disciplines relevant for this dis-
sertation. Classification is both a concept of machine learning (inductive classification,
non-symbolic) and of logic (deductive classification, symbolic), where the classification in
logics is the computation of the subsumption graph that represents the concept taxonomy.

Correlation analysis 1s the pairwise computation of the correlation coefficient
(cf. section 8.3, formula 8.13) based on the observations of the potentially relevant
features. The aim is to discover functional dependencies between metrical or ordinal
features, as for example, the impact of the marketing expenses on the disposal of a
certain product, which are both time series.

Many activities from knowledge management such as organizing (clustering, ag-
gregation) or categorizing (classification) demand for the introduced machine learn-
ing functions to add value to existing (information) services. Figure 2.7 provides
an overview of machine learning and inference mechanisms, which are related to
each other from the perspective of statistics (data, significance) and logics (symbols,
inference rules). Ideally, these functions should be applicable to any kind of infor-
mation — independent from the associated domain and especially independent from
the form of its representation. Chapter 3 defines the requirements of SYMBOCONN,
which assure that the provided machine learning functions are indeed this general.

In the following section, we focus on existing techniques that provide intelligent
recommendation, which is an umbrella term for several inference and generalization
methods as shown in figure 2.7. In particular, intelligent tutoring systems, content-
based/collaborative filtering, and case-based reasoning are described. These rec-
ommendation concepts serve as the starting point for developing the SYMBOCONN
machine learning framework.

38 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

Machine Learning Logical Inference

Inductive

H
H
kN
Training Generalization T
|
P
i
.

/] ? \ Intalligent

Unsupervised Supervised Reinforcement com endatlon /7% A %

Prediction Classification SubstitutionRule ProofBy c?utradicrion

ZP S
clustering | || e =pend /

A R ’

ModusPonens ModusTollens
e.g. Prediction of Conti n\ous Discrete eg
freal-valued) Recommendation
Time Series of Web Pages

Figure 2.7: Machine learning, inference, and their interrelations expressed by specification
inheritance. Generalization is an inductive form of knowledge generation and specializa-
tion is a deductive one. A ForAlllntroduction A — VYx A works inductively and is bound
to a variable condition x ¢ FV(A), where F'V is the set of free variables of a term.
The different inference rules SubstitutionRule Alx1/t1, ..., xn/ts], 1, ..., 20 ¢ FV(A),
ProofByContradiction I' U {=A} -+ L = I" = A, ModusPonens {B, B — C} - C, and
ModusTollens {A — B, =B} F —A conclude from universal to individual formulas. The
ModusTollens inference rule is also known as Contraposition. Prediction and Classification
are generalizing machine learning functions that usually operate non-symbolically but nu-
merically — as opposed to logics. Intelligent Recommendation is an abstract functionality
that can be realized by different machine learning functions.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 39

2.6 Existing Recommendation Concepts

There are many specific recommendation solutions tailored to a specific domain
of recommendation. However, there are only a few standard methods offering in-
telligent recommendations, and these provide limited functionality or operate on
a highly restricted domain. Their limitation either manifests itself in the types of
supported recommendations or in the types of processable knowledge. Our focus
is on domain-independent recommendation frameworks, which conceptually unify
existing recommendation approaches.

Zan and his colleagues [HZCO05] describe a domain-independent® recommen-
dation framework based on probabilistic relational models, which are an exten-
sion of Bayesian networks. In this framework, links between products and con-
sumers are modeled as conditional probabilities, and the complete probabilistic
relational model is determined by the conditional probability distributions of all
network nodes. Another example for intelligent recommendation is the work of
Symeonidis et al., who developed an agent-based recommendation framework that
focuses on Enterprise Resource Planning (ERP) systems [SCKMO05]. This multi-
agent framework is claimed to be reconfigurable, adaptive and cost efficient and
works as a plugin on top of existing ERP software. The work of Chen et al. is even
more specific, since it supports only obtaining IT certifications from a collection of
approximately 200 to 400 computer-related certifications (e-Learning) [YWCO02].

In the field of forecast applications, Moreno et al. proposed a computational
hybrid system based on neural-fuzzy techniques and intelligent software agents
[JMDOOQ07]. Moreno uses neural networks to forecast temporal series describing
the development of prices on the electricity market. For the prediction of a metric
dependent variable called contracting level (variable to be predicted), a so-called
Fuzzy Inference System developed by Moreno et al. combines the three indepen-
dent input variables price difference, risk disposition and financial capacity defined
by static formulas. However, the developed toolbox of neural networks, fuzzy-logic,
and software agents does not represent a unified framework.

We see that isolated connectionist methods are again mainly applied to tradi-
tional fields such as time series prediction. As opposed to an ensemble of iso-
lated machine learning methods, we propose a single recommendation engine that
is capable of learning from arbitrary independent variables whose realizations are
packed into sequences of multi-represented objects, as defined in section 3.2. No
fault-prone and static calculation rule for risk or price variables should be used, as
was done by Moreno, but the underlying classification or prediction function should
be learned from the training samples.

Before focusing on the details of this engine and the associated framework
called SYMBOCONN, we describe three state-of-the-art techniques that provide
intelligent recommendations, namely Intelligent Tutoring Systems, Content-Based

297an et al. call their framework “unified”, without clearly defining this term. In contrast, the
related concept of domain independence is formulated as a nonfunctional requirement for the SYM-
BOCONN framework in section 3.1.2.

40 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

and Collaborative Filtering, as well as Case-Based Reasoning.

2.6.1 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) or intelligent teaching systems are an approach
to apply artificial intelligence to education. An ITS is any computer system that
provides customized instruction or feedback to students on a constraint knowledge
domain without human assistance. These systems are capable of interpreting their
subject area and use problem solving techniques tailored to the respective teaching
domain [IACO06, Rot97]. An intelligent tutoring system normally consists of three
modules, which are described briefly:

o Expert/Domain Module
The expert module holds the content of the curriculum and the common
sense knowledge. The expert module usually contains a comprehensive case
database. Normally, the formally represented knowledge is linked to an in-
ference engine that enables the system to draw conclusions and to generate
feedback.

o Tutor Module
The tutor module is the pedagogical component that communicates the ex-
pert knowledge to the student and makes use of several knowledge transfer
strategies. This module is based on the archetype of a human tutor who takes
corrective actions in case of discrepancies between expected and observed be-
havior of the student. Students learn from the intelligent tutoring system by
solving posed problems, while being provided with help from the tutor mod-
ule which also fulfills a pedagogical function. After submitting a solution for
a certain task, the system performs a diagnosis based on the differences of the
reference solution and that of the student one and gives individual feedback
to the student.

o Communication Module
This module implements the presentation layer of the system and is respon-
sible for the interaction with the student. Furthermore, the students’ inputs
are converted to the knowledge representation used by the expert module and
vice versa.

Intelligent tutoring systems focus on the interaction with the user and usually
pursue a teaching strategy. There are model-tracing tutor systems, which contin-
uously track students’ progress and “keep(s) them within a specified tolerance of
an acceptable solution path” [Fre00]. The SYMBOCONN framework also assists
the user, but does not maintain a relationship between the user and the system. In
fact, one of the design goals of SYMBOCONN is domain independence. We call
an intelligent tutoring system domain independent if the knowledge encoded in the
teaching model can be reused in different domains.

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 41

In general, three different types of knowledge are incorporated into an intelligent
tutoring system:

e Domain Knowledge
The domain model contains a description of the knowledge or behaviors that
represent expertise in the subject to be taught. SYMBOCONN does not hold
prior domain-specific knowledge but incorporates knowledge from empirical
data, that is, from training examples.

e Knowledge about the students and their behavior
An intelligent tutoring system creates profiles about the student including in-
formation about knowledge gaps and their individual problem solving strate-
gies. SYMBOCONN also addresses this aspect in the form of user-dependent
navigation or preference histories, but not in an explicit descriptive form as
often given by profiles.

e Knowledge about teaching strategies

Socratic, problem-based, task-based, or exploratory strategies are important
types of teaching strategies. A socratic teaching strategy is a method that
fosters insights of the student by clever questioning. Another example of a
teaching strategy is to provide additional information on a false answer to a
question or to pose an easier question. SYMBOCONN is not endowed with
teaching strategies but with two different learning strategies, supervised and
unsupervised, which determine whether machine learning is carried out with
a virtual teacher or not.

Intelligent tutoring systems have been developed to substitute human instructors
and thus to reduce the overall teaching costs of educational institutes. Their appli-
cation has so far basically been limited to several United States high schools and
military training for the U.S. Navy.

2.6.2 Content-Based and Collaborative Filtering

Content-based and collaborative filtering are two recommendation techniques which
support exploration and retrieval of potentially relevant information or entities by
personalized recommendations. For content-based filtering, recommendations are
based on the user’s profile captured from their past buying or navigation behavior
and the focused objects. Items to be recommended are determined by a similarity
computation between item properties and user preferences. For content-based fil-
tering, no comparison of individual user preferences with those of other users (user
groups) is done. Usually, the user profile is nothing but a collection of weighted
keywords to describe the user’s interests. These profiles are the result of statistical
analyses, in the simplest case obtained by counting the number of item accesses.

In content-based filtering systems, content of known items is used to recommend
new items to the users [PNO2]. Collaborative filtering is designed to work even

42 CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al

if no item content is available at all, which we call a symbolic approach in this
dissertation.

Collaborative filtering is a deductive inference technique drawing conclusions
for an individual user from a group of users. The captured preference patterns from
a representative user group are instantiated and applied to a single user. Thereby,
collaborative filtering systems also rely on user profiles and similarity-based profile
matching, while sometimes also taking into account the user’s social environment
(demographic filtering). The underlying assumption of collaboration is that similar
profiles of different users suggest similar buying or navigation behavior. The calcu-
lated prediction for single users also considers their individual behavior and is thus
not merely an average of all user behaviors. The individual tailoring of recommen-
dations for a single user conditioned by similar group interests is characteristic for
collaborative filtering systems, such as the article recommendation mechanism used
by Amazon [LSYO03].

In both filtering techniques, user profiles are updated dynamically based on
feedback information from the user, who agrees or disagrees with the provided
recommendations. There are hybrid concepts that try to combine the benefits of
both fundamental approaches. An example is the MARSYAS framework for music
recommendation by Kamps and his colleagues [SK05]. They developed a hybrid
system by first using collaborative methods to create clusters of songs and then us-
ing the features extracted from the song descriptions for a content-based — and thus
more fine-grained — recommendation. Another technique is demographic filtering
using demographic attributes such as gender, age or area code. This is based on the
assumption that users’ preferences are dependent on their provenance or parentage.

Different machine learning methods can be chosen to realize the recommenda-
tion techniques in particular. Recommendations can be computed by probabilistic
methods like Bayesian networks, association rule mining, clustering (e.g. k-means)
or nearest neighbor algorithms. An example for collaborative filtering is the item
recommendation used by Amazon [LSYO03], which assumes similar buying behav-
ior within groups of customers. Content-based filtering systems adapt their recom-
mendations to the users’ characteristics, for example, their goals, tasks, and interests
that are determined from observed behavior.

2.6.3 Case-Based Reasoning

Case-Based Reasoning (CBR) is another application of artificial intelligence whose
main operating principle is conclusion by analogy. Case-based reasoning can be
described with a sequential process model consisting of four phases:

1. Retrieve
The most similar case compared to the posed problem is searched in the case
memory, which is a database of solved problems. Thus a similarity measure
has to be defined on the feature space representing the available cases.

2. Reuse

CHAPTER 2. THE SYMBOLIC AND THE CONNECTIONIST PARADIGM OF Al 43

The most similar solution is taken as a first approximation of the solution to
the new problem.

3. Revise
The determined basic solution is adapted to the requirements of the new prob-
lem where applicable.

4. Retain
Each solved case is stored in the case database for future requests, which
automatically augments the experience and performance of the system.

An example of a case-based reasoning system is the Experience Factory [BCR],
which gathers experience in a software project and generalizes the acquired knowl-
edge in order to make it applicable to other software projects. This feature is also
supported by the SYMBOCONN framework through its generalization capability.
The experience factory likewise implements the retain-phase of case-based reason-
ing, which supports the project organization by managing the produced experience
[BCR]. Gained experience is packaged for further reuse, comparable to the growing
case memory or to retraining the SYMBOCONN engine with new domain informa-
tion.

Case-based reasoning systems are usually employed for customer support, prod-
uct consultancy, and e-Commerce. Similar to connectionist systems, a number of
existing cases is collected and stored in the case memory to provide useful problem
solutions. If the stored cases are not statistically significant, then failures of con-
clusion by analogy are the rule. Case-based reasoning systems rely on anecdotal
evidence, which is a relatively weak form of inference, since no logical inference
rules or statistical correlations are used to produce solutions.

Chapter 3

Machine Learning Concepts and
Fundamentals of SymboConn

SYMBOCONN is a connectionist machine learning framework that supports learn-
ing from both symbolic and non-symbolic knowledge structures. Thereby, new do-
mains and new problems can be addressed, which has heretofore not been possible
by neural network based systems. This is possible because the machine learning
engine does not distinguish between rule-based and empirical knowledge, but can
incorporate knowledge that is heterogeneous both in content and structure.

In this chapter, the requirements, the knowledge model and the machine learn-
ing concepts of SYMBOCONN are defined independently from a concrete applica-
tion domain. This is feasible due to the generic knowledge model based on abstract
node sequences, and a flexible machine learning engine of the SYMBOCONN frame-
work. Classification and prediction are realized by a sequence processing recurrent
neural network which is the backbone of the framework. The framework also allows
connectionist processing of symbolic knowledge.

3.1 Framework Requirements

A generic machine learning framework has to include classification, clustering, and
prediction as defined in the last chapter. These functions can be used in a wide range
of applications, from product positioning over document classification to sales pre-
diction. Such a framework also requires a strong learning capability and gener-
alization capability, two tightly coupled concepts. The connectionist approach to
learning means trying to discover the correlations within the training data by nu-
merical methods, in particular by neural training algorithms. Successful learning of
the correlations between the features of the dataset is the crucial precondition for
generalizing from the trained examples.

45

46 MACHINE LEARNING CONCEPTS OF SYMBOCONN

3.1.1 Functional Requirements

The functional requirements for SYMBOCONN are based on the machine learning
concepts introduced in section 2.5. These are independent of the implementation,
such that both symbolic and connectionist techniques can be employed to realize
them.

Humans generally learn more efficiently and effectively when studying exam-
ples instead of abstract descriptions [FleO1]. Machine learning relies on this finding,
which leads us to the first functional requirement learning by example. A second
requirement is generalization capability, which is defined by a five-stage hierarchy.
This hierarchy can be used to classify the generalization capability of any system
that involves a learning and reasoning process. Additional functional requirements
are learning typed knowledge and context-sensitivity. Finally, the SYMBOCONN
framework must be capable of processing heterogeneous contents and structures,
which is addressed by the functional requirement processing of heterogeneous data.
In the following, we elaborate on each of these requirements.

3.1.1.1 Learning By Example

Learning by example is a form of observational learning [KSHOS8], which applies
both to supervised and unsupervised machine learning. As mentioned in the begin-
ning of this dissertation, if we have more data than knowledge, then learning by
example is required. Learning by example is especially useful when no systematic
domain knowledge, for example in the form of logical facts like I - A or rules like
'+ (A — B),is available. Examples are instances of problem solutions. Instead of
learning the underlying formation rule of parenthesized expressions, we can learn
the composition of expressions in parentheses by studying a set of problem solu-
tions {(a), (a(b)), (a(a(b(c)))), (((a))), - --}.

In a company setting, this might be the case when new business processes are in-
troduced or information is acquired from new sources, which are structurally differ-
ent. Thus, learning by example is essential for domain engineering, where new pro-
cesses should be supported solely by observing their perceivable activities. Domain
engineering [Bor03] means building a generic framework that can be employed for
various applications in the same domain. It is a methodology that originally comes
from product line management and consists of the phases domain analysis, domain
design and domain implementation. During domain analysis, the commonalities
and dependencies of the domain that hold across different applications in the do-
main are collected, which defines abstractions that can be used in the application.
Subsequently, the domain design focuses on designing a generic system architecture
[Bor03] that is extensible and application-independent.

3.1.1.2 Generalization Capability

Another requirement is the generalization capability, which is first considered from
a symbolic perspective. The capability to generalize acquired knowledge is defined

MACHINE LEARNING CONCEPTS OF SYMBOCONN 47

in terms of a hierarchy similar to the Chomsky hierarchy of formal language types.
The generalization capability is categorized in a declarative way by formulating the
expected system output as reference value for each hierarchy level. This hierarchy
especially aims at generalizing symbolic knowledge structured in a systematic and
compositional manner, e.g. by grammar productions. A similar issue is the use of
abstractions when modeling a software system. The generalization capability allows
us to find higher abstraction levels to suppress details and to manage complexity.

A machine learning system can be characterized by the generalization hierarchy
initially defined by Niklasson and van Gelder [NvG94]. The definition of the hier-
archy is based on elements as the smallest entities of the domain and consists of five
levels described in the following.

We use the distributive law' from algebra to illustrate the different levels of
symbolic generalization. This law applied to structures of increasing complexity
that describe a term transformation in the form of the expression input|term| —
target[term]. More formally, the terms consist of atomic elements or complex
subterms that are combined by the binary operators “-”” and “4”. Thereby, the dis-
tributive law characterizes the distribution of these binary operators over the con-
stituents of the underlying term. The distributive law is learned from examples over
the alphabet ¥ = {b, ¢, d, (,)}.

On the lowest level of the generalization hierarchy, called Level 0 or memo-
rization, no novel terms are presented and therefore no generalization takes place.
Knowledge acquired by training can only be recalled, so every presented term ap-
pears in the training set. At this level the system simply works as a memory and
does not provide intelligent capabilities — that is, the system is only able to repro-
duce the learned knowledge and its structure. If b- (c+d) — b-c+b-d was learned,
then b - ¢ + b - d is computed when b - (¢ + d) is presented to a Level O learning
system.

A Level 1 learning system generalizes to novel combinations of elements in
the comprising term, after having seen all existing elements in their syntactically al-
lowed positions. The elements in the terms keep their previous syntactical positions,
meaning that they have already been trained in the positions of the novel term, but
not in the new combination with other elements. The following exemplary training
set with four expressions clarifies the meaning of level 1 generalization.

Training set:

a-(b+c¢) — a-b+a-c
a-(c+b) — a-ct+a-b
b-(a+c) — b-a+tb-c
c-(b+a) — c-b+c-a

"The distributive law, which is required for mathematical structures like fields or vector spaces,
characterizes the distribution of the binary operators “-” and “+” over the elements of the underlying
expression.

48 MACHINE LEARNING CONCEPTS OF SYMBOCONN

From this training set, a new combination of elements can be found: N :=b- (¢ +
a) — b-c+ b- a; this expression contains elements that have already appeared
in the given position by themselves, but not in this specific combination with other
elements.

When the term on the left side of the new expression [V is presented, a Level 1
learning system is expected to generate the correct right side term. In other words,
if this transformation is achieved, the machine learning system has a generalization
capability of Level 1.

To reach Level 2, the system has to generalize to novel positions of elements
in the terms, since not all syntactically allowed positions occur in the training set.
The work of Hadley et al. [HH97] describes a connectionist system that can assign
appropriate meaning representations to novel sentences, where nouns appear in new
positions: “During training, two-thirds of all nouns are presented only in a single
syntactic position (either as grammatical subject or object). Yet, during testing, the
network correctly interprets thousands of sentences containing those nouns in novel
positions.”

To formalize this kind of generalization, elements associated by the operators
and “4” are again transformed according to the distributive law.

[I3RA)

Training set:

b-(c+d) — b-c+b-d
b-(d+c) — b-d+b-c
c-(b+d) — c-b+ec-d

After providing this training set, the machine learning system is given the term
d - (b + c¢), which is composed of the same elements, but at new positions. In fact,
the symbol d has never appeared as first factor in the training set. If the correct target
term d - b+ d - c is inferred, then this corresponds to a generalization capability of
Level 2.

A Level 3 machine learning system can transform terms whose elements have
not been part of the training set. Novel or unseen elements are treated by general-
ization based on the known elements, for example, by similarity.

Training set:

Ay = [b-(c+d) — b-c+b-d]
Ay = [c-(b+d) — c-b+c-d]
Ay :=[d-(b+¢c) — d-b+d-c]

If the system succeeds to correctly handle inputs like a - (b + ¢),a - (c + d),. ..
over the extended alphabet ¥ = {a,b,c,d, (,),¢, f,g,...} D %, then the machine
learning system exhibits a Level 3 generalization capability.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 49

Level 4 generalization can abstract from compositional terms used in the train-
ing set towards novel and higher complexity, which is a very difficult task to ac-
complish for a machine learning system. From the perspective of logics, Level 4
allows to substitute the free variables by arbitrary ferms, which hold their own struc-
ture. The challenging task for a Level 4 system is to correctly apply the distributive
law to the input terms of the following structures of higher complexity. Given the
inputs

(b+c¢) - (c+d)
Cc - ((b1b2)+<d1d2)),

the terms (b+¢) - ¢+ (b+¢) - dand ¢ - (by - b) + ¢ - (d; - dg) can be inferred.
Here the atomic elements b and d (terminal symbols) are substituted by complex
subterms that are composed by the operations “-” or “+4” over the same alphabet.
Now the resulting terms of Level 3 can be presented to the system once more. Thus,
the Level 4 machine learning system has reduced the term complexity by one level,
which allows to employ an ensemble of systems of different levels concurrently.

A Level 5§ machine learning system combines the Level 3 and 4 capabilities so
that a generalization to novel elements in structures (terms) of higher complexity
is applied. This level is basically equal to Level 4, but new elements like “a” also
may appear in the structures of higher complexity, disjoint from the elements in the
training set.

The capability of generalizing to novel elements (Level 3) is essential for in-
telligent recommendation. This capability can be interpreted as a type general-
ization, which is important to obtain a higher systematicity of inference. Gen-
eralization capability is closely related to systematicity of inference described in
chapter 2, since both concepts enable the generation of new knowledge facts from
given ones. Based on the training set {loves(Alex, Johanna), loves(Johanna, Alex),
loves(Thomas, Monika), loves(Monika, Thomas), loves(Max, Barbara)}, a weak
systematic system? could derive loves(Barbara, Max) by generalization, for exam-
ple. However, a system with higher generalization capability could generalize to
loves(Male, Female) or loves(Female, Male). This form of generalization was al-
ready achieved by Niklasson et al. [NvG94] by means of a RAAM? network (see
also section 5.5) applied to expressions from propositional logics. A Holographic
Reduced Representations (HRR) approach by Neumann [NeuOO] was also able to
provide Level 3 generalization capability.

In terms of logics, the placeholder variables b, ¢, d that occur in the transfor-
mation expressions A; are its free variables F'V (A, U Ay U A3) = {b, ¢, d}, since
they are not bound by any logical quantor. Thus, free variables can be substituted
by arbitrary variables, while the distributive transformation rule is still valid. This
is exactly the degree of abstraction that should be achieved by the machine learn-
ing system at generalization Level 3. According to Neumann [NeuOO0], to achieve

ZExample derived from [Cal03], p.217.
3Recursive Auto-Associative Memory.

50 MACHINE LEARNING CONCEPTS OF SYMBOCONN

Level 3 generalization, elements that fill the same roles in the structures should have
similar representations. Representations of atomic symbols are usually constructed
by unary encoding, which means that for n symbols each symbol is assigned to an
n-dimensional unit vector that is orthogonal to all others ([NvG94]).

An even more fine-grained approach than terms of typeless symbols is to support
taxonomical knowledge, which is arranged in a hierarchy of types.

3.1.1.3 Learning Types and Inheritance Hierarchies

The requirement fype learning aims at categories among the data to be processed.
Without types, the framework cannot meaningfully support taxonomical knowledge
used in the analysis phase of software development or in ontology engineering.
In the following, we extend the learning and generalization requirement to typed
knowledge, where the types can either be predetermined in the form of fixed object
categories, or are empirically discovered by clustering as defined in section 2.5.

In addition to learning of types or categories, the SYMBOCONN system must
also be able to incorporate types that are classified by an inheritance hierarchy. That
is, it must be able to recognize subtypes of more general types in terms of subsets
Ap C A1 C ... C Ag C D of the domain D. In symbolic systems, for example,
this simple form of specialization and generalization can be expressed by a logical
implication A, — Aj_1, which means that if an object o is instance of a subclass
Ag, 0 € Ay, then it is also instance of the corresponding A;,_; superclass, o € A;_;.
In description logics the notation A = Aj;_; is common, which emphasizes the
subset property.

3.1.1.4 Being Able to Incorporate Context (Context-Sensitivity)

The generalization hierarchy presented above was based on the transformation of
symbolic phrases. From the perspective of symbol manipulation, the requirement
of context-sensitivity means transforming or substituting input phrases dependent
on the context. More formally, the context-sensitive rule a« By — «/3~ substitutes
the variable B only in the context* of being enclosed by « and ~, which must be
learnable by the machine learning engine.

From a more general point of view, context should sufficiently characterize the
situation of a system by means of relevant and perceivable information. This in-
formation enables the dynamic adaption of the system to the new situation at run
time. In case of systems that directly interact with the real world, environmental
conditions such as temperature, air pressure or light conditions are often considered
as context. A system is called context-sensitive if it supplies the user with different
information or services depending on the respective context.

An example’ for context-sensitivity represented in natural language is the fol-
lowing: assume a learner reads the sentence “They ate rice with chopsticks”. If

‘BeV,a,f,yve(VUD)*
SDerived from [Cal03].

MACHINE LEARNING CONCEPTS OF SYMBOCONN 51

the learner has no idea what a chopstick is, he could assume chopsticks are either
food or cutlery. The next sentence is “The chopsticks together with the rest of the
cutlery were placed in the dish washer”. Now that the interpretation of chopsticks
has changed, the learner can assume that these are a sort of cutlery. This conclusion
was inferred from the context of the first sentence.

According to this example, a context can determine or clarify the meaning of
an ambiguous concept. This fact also applies to software development, where the
current working context of a developer reveals a lot of information about his task
[HMO3].

3.1.1.5 Processing of Heterogeneous Knowledge

Knowledge bases of different domains often represent knowledge in different ways.
The resulting heterogeneity is characterized by domain objects of different types
and by the heterogeneous topologies of different knowledge bases. Thus, the SYM-
BOCONN framework and especially its machine learning engine must also be able
to process node sequences whose nodes carry different types of information. An ex-
ample for heterogeneous knowledge is a tree with varying branching factor, which
may describe a software design pattern. The tree is shown as a class diagram in
figure 3.1.

Figure 3.1: UML class diagram showing a tree-structure of three levels with varying
branching factor. The aggregation that belongs to class A consists of four constituents
Al to A4, while the root class R comprises only two classes.

Processing of Arbitrary Node Sequences Conventional neural networks can-
not process input or target sequences of varying size. Since the SYMBOCONN
system provides classification and prediction for many different domains, it has
to support variable node sequences x;_,..., Ty > Yipis .- Yeyms TiyYj €V
with arbitrary k£ and m. This property differentiates the SYMBOCONN engine
from conventional neural networks with static topology. Moreover, handling of
knowledge nodes with completely different information content must be supported,
that is to process node representation vectors 7; = (z;,,...,24,) € R% or g; =

52 MACHINE LEARNING CONCEPTS OF SYMBOCONN

Yjr»-- -1 Ya;) € R% with arbitrary dimensionality d; # d;. This is necessary be-
cause domain objects of different types can be characterized by a different number
of key-value pairs.

Integration of Previous Knowledge A persistent argument by critics of con-
nectionism is that, in their opinion, including previous knowledge into connec-
tionist models is not possible. Since this is indeed an important aspect of intelli-
gent recommendation, the system must support the integration of previous knowl-
edge in symbolic form. Domain knowledge which is given by logical or math-
ematical rules like the distributive law (cf. section 3.3) should be incorporated
as previous knowledge. Domain-specific rules should be definable in the form of
Rule = (Antecedent = Consequent) beforehand (cf. definition 3.2.3 of section
3.2). In the case of software development such a rule could be

HighPrioTask,SeriousErrorOccurs
= WriteBugReport,InformChiefProgrammer

When the system observes a sequence of actions, the user’s navigation history
that matches the antecedent of a rule, its consequent part should automatically be
fired. This part of the rule might, for example, correspond to a prescribed sequence
of actions to be executed by the user as a counter measure, when an error was
detected before.

3.1.2 Nonfunctional Requirements

Two nonfunctional requirements of the framework are extensibility and domain-
independence. Extensibility is crucial for the support of domain engineering, which
means building a generic process architecture that can be employed for various
applications in the same domain. Domain-independence goes beyond domain en-
gineering, since its goal is to provide machine learning capabilities for recurring
problems such as classification of unseen entities across yet unknown domains.
The nonfunctional qualities regarding execution and evolution of the SYMBOCONN
framework either stem from the targeted application domains or are derived from
existing recommendation systems.

Since domains with high-level security requirements are out of the scope of
this dissertation, nonfunctional requirements like reliability, availability, security
or safety are not discussed here.

Independence From Concrete Application Domains The developed frame-
work must support all basic machine learning capabilities, which should be appli-
cable to any kind of knowledge — independent of the form of its representation.
Therefore, the machine learning system must be able to process generic and com-
plex data structures such as sequences of graph nodes.

More than it is required of domain engineering, the SYMBOCONN framework
has to support several domains, that is, it must comply with nonfunctional require-
ments coming from different domains as well as with different forms of knowledge

MACHINE LEARNING CONCEPTS OF SYMBOCONN 53

representation that may even change over time. For example, prediction of naviga-
tions and prediction of time series are two completely different application areas.
The first is often represented by unstructured and human-understandable text doc-
uments, while the second is a time-indexed and vector-valued series of numeric
values®. Therefore, the SYMBOCONN framework uses service adapters, which map
the relevant knowledge fragments onto node representations that can be composed
to sequences and then processed by the machine learning engine.

Robustness and Fault Tolerance A system is robust if it continues to oper-
ate despite abnormalities in input, calculations, etc.. The SYMBOCONN framework
must be robust, since a machine learning system that is trained by example is always
confronted with empirical datasets consisting of possibly uncertain or inconsistent
training examples. From the perspective of statistics, a statistical test is robust if it
still performs well in case its assumptions are violated; for example, if the true data
distribution (e.g. exponential) is different from the assumed one (e.g. normal). In
terms of connectionist systems, high fault tolerance is often called graceful degra-
dation [BA91]. For example, distorted, incomplete or erroneous input data must not
cause a total failure of the inference capability.

Machine learning of software development activities requires an especially high
degree of robustness and fault tolerance because software engineers produce error-
afflicted or incomplete work products during the many phases of a software project.
For example, the analysis object model of a system does not specify all attributes
and operations required for the final implementation. Still, the machine learning
system should be able to learn structures from these incomplete artifacts.

In fact, it should even be able to learn from inconsistent artifacts. For instance,
design patterns are often used in a wrong way by beginners. When a class diagram
is supposed to contain a directed association from class A to B, but the software
developer draws an undirected association, the artifact is incomplete. If the associ-
ation points from class B to A, then we have the case of an inconsistent artifact.

Response Time of Recommendation Finally, the system should offer ad-hoc
recommendations, especially for navigation recommendation on artifacts such as
text documents. The recommendation should be computed efficiently and displayed
immediately to support interactivity with the user. Training of the system is not
time-critical, because training activities can be scheduled offline.

®Realizations of time series are also stored as sequences of multi-represented objects (see section
3.2), because a time-indexed vector is structurally equal to a document representation vector.

54 MACHINE LEARNING CONCEPTS OF SYMBOCONN

3.2 Knowledge Model of SymboConn

The knowledge model of the SYMBOCONN framework considers both content and
structure of the respective domain knowledge. To support heterogeneous domain
knowledge, the content as well as the structure representation must be very flexi-
ble. Domain knowledge is stored in the form of different data types and may be
unstructured, semi-structured or fully structured. Part of the core of the SYMBO-
CONN framework is a graph-based knowledge model, whose nodes represent the
domain knowledge by means of multi-represented objects. We have chosen a graph
of multi-represented nodes as knowledge model of the framework, because this is
one of the most generic knowledge structures that can be implemented [BCEROS].
Graphs with different types of nodes as well as links are commonly called semantic
graphs [BCEROS].

Abstract Knowledge Base The knowledge base of SYMBOCONN is defined
as a graph G = (V| E). Its nodes V' stand for domain objects, that is V' can be
identified with the set of domain objects D, and the edges F are directed or undi-
rected associations between them, which may be labeled. There are different types
of knowledge nodes with different kinds of content, depending on the represented
domain object. Since the content of a knowledge node is freely composable, such a
node can either provide a rich representation’ [MG05, Kim02, MB0O] of a domain
object or a limited representation in the form of an atomic identifier, which can even
be meaningless if no domain content is available. A rich representation consists of
contents ranging from informal to formal characters [BSKO05], as shown in figure
3.2. A generic graph node provides several basic attributes like Name and Identifier

Images

English
Text

Figure 3.2: Layered model of a rich representation [BSK05], which can be based on an
ontology defining the available features (attributes). In this model, associations between
features are defined by the ontology and the declared features are filled with formal or
informal contents illustrated by the outer model layers.

7“The collection of all these descriptors forms a rich representation of the object.” [MGO0S5]

MACHINE LEARNING CONCEPTS OF SYMBOCONN 55

as well as domain-specific attributes that store domain content. Nodes can be asso-
ciated by node sequences, independent from their payload, which may differ from
node to node.

Definition 3.2.1: Node Sequence

A node sequence is an ordered series of nodes v; € V consisting of a history and
target part (v1vs . .. Ug) — (Ug11Vk42 - - - Ukm). Such a sequence can be interpreted
as a word over the alphabet of nodes V. Sequences of nodes are still meaningful
even if when the single nodes do not contain any domain content. In this case,
however, only their sequence structure is of interest.

An example of node sequences with multi-represented objects in the knowledge
graph is depicted in figure 3.3.

Following the classification of knowledge representation methods in section 2.4,
the SYMBOCONN knowledge model is a light-weight variant of a semantic net-
work, since the relationships between the nodes do not have to be specified. When
structure-sensitive applications such as change impact analysis [ZWDZ04, BA96,
GROS5] are treated, the link types are important and have to be included. When nav-
igation recommendation is addressed, the links between different visited nodes are
implicit or largely not available.

Nodes in the form of Multi-Represented Objects Data objects are becoming
increasingly complex in data mining and machine learning applications [AKPSO05].
Multi-representation is a concept to address the manifold contents carried by com-
plex domain objects, that is a multi-represented object captures several aspects of
a single domain object. This corresponds to the concept of aggregation in object-
oriented modeling. The aspects are called features in the field of knowledge discov-
ery, which is equivalent to attribute or dimension. An example is the encapsulation
of all biometric features of a person like voice pattern, image and finger print, by a
single multi-represented object.

Definition 3.2.2: Multi-Represented Object

Multi-represented (MR) objects take the role of nodes in the SYMBOCONN frame-
work and are elements of a multi-dimensional feature space: 0o = (fi,..., f4) €
(Fy X ... x F;) =: F, where F; is a feature. Not all f; need to be known, since
modern machine learning algorithms are able to deal with incomplete data. Four
feature types are supported:

e Textual Feature. Unstructured text that often appears in description at-
tributes is supported in a content-based way by the framework. It is processed
and learned based on a vector space model (see section 7.3) that is computed
by counting keyterms per text unit.

e Metric Feature. By means of a mathematical metrics, distances can be com-
puted upon metric feature values. This requires that the object features span
a metric space equipped with a metrics d : F' x F' — R, which fulfills the
following conditions for z,y, z € F:

56 MACHINE LEARNING CONCEPTS OF SYMBOCONN

’2 ™

Figure 3.3: Knowledge Graph of Multi-Represented (MR) objects as introduced in defini-
tion 3.2.2. Multi-represented means that each object can be represented by a different set
of features and their values, which is indicated by the different node shadings in the figure.
Each node is identified by an unique label ident;. Node sequences are ordered selections
of nodes from the knowledge graph, thus they can be considered as subgraphs plus an order
imposed by their identifiers.

Condition 1. and 2. together guarantee the positive definiteness of the metrics.

e Ordinal Feature. The values of an ordinal feature F; are ordered according
to a total ordering, which means that any two elements from F' are always
comparable. Although it is not a strict order, a partial order < on a set [’ al-
lows for comparing any two elements and = is characterized by the following
conditions:

1. a < a, VYa € F (reflexivity)
2.a=bANb=c—a=c¢ Va,b,c € F (transitivity)
3.axbAb=a—a=0b, Va,b € F (anti-symmetry)
o Categorical Feature®. Since no order is given among categorical feature
values, no metrics can be defined upon them. An example in programming

languages are enumeration attributes which represent categorical features.
The type Boolean is a two-valued subtype of the categorical feature type.

The usage of feature types to describe complex objects is illustrated in table 3.1.
Each feature type requires its own treatment with respect to its possible value range

8 Another denomination for these features is Nominal.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 57

MR-Object Type | Feature,[Type] | Feature;[Type] Feature;[Type]
Requirement Name[Txt] Description[Txt] ..
Issue Name[Txt] Description[Txt] IsResolved[Bool.] Prio[Ordinal]
KPI Name[Txt] Indicator[Metric]
Picture Name[Txt] Caption[Txt] Histogram[Metric[]]
Web page URL[Txt] Head[Txt] Body[Txt]

Table 3.1: Meta model showing the multi-representation of objects by different features.
Each row defines the feature set of an object, which can have a different number of features,
depending on the object type. The available feature types are: Textual, Metric, Boolean (a
subtype of Categorical), Ordinal and Categorical.

and the appropriate data normalization to be applied during data preprocessing.
Metric features require other scaling and encoding functions than textual features,
and so the straight forward data normalization done by many statistical and data
mining tools is not possible when dealing with features of fundamentally different
types.

A concrete multi-represented object according to table 3.1 above would be an is-
sue (“DBIssue_0001”, “Solving the bug in the ODBC database connection”, false,
8). Another example of a multi-represented object is a Key Performance Indica-
tor (KPI) like (“Overall Equipment Effectiveness”, 83%), which is often used in
industry. In order to meet the requirements of the knowledge representation in the
application domain, multi-represented objects can be represented as a container of
attribute-value pairs. The configuration of the used feature set can even change
within the same discourse domain, to represent, for example, informal documents
about functional requirements on the one hand and a more formal use case on the
other hand.

Multi-represented objects can be employed for all types of knowledge and all
domains in the SYMBOCONN framework, since they provide a rich representation
for application domain objects. In case of navigation recommendation, an example
for a rich representation is the inclusion of the content of a web page, instead of
reducing the page to its symbolic URL address as unique identifier. The approach
of rich representations opens up more information that can be incorporated into the
machine learning process.

Inconsistency and redundancy are the hazards that may occur due to contra-
dicting or overlapping feature values of different features, which describe the same
object. Inconsistency has to be avoided in particular to successfully perform any
type of inference. Neural network and fuzzy-based approaches cope best with in-
consistent information; thus, the framework has a connectionist engine.

A further issue addressed by the SYMBOCONN framework is comparability
[AKPSO5] among the different value ranges of different features. Two features
that are both metric might apparently hold completely different value ranges, such
as the duration of a development activity and the probability of a change in a use

58 MACHINE LEARNING CONCEPTS OF SYMBOCONN

case. The implemented data scaling procedures individually scale each feature to
the value range [1, 0].

Definition 3.2.3: Content-Based Rule

A content-based (CB) rule, as opposed to a fuzzy or symbolic rule, is a rule of the
form “IF A THEN C”, where A and C are node sequences, thatis, A,C' € V*. What
is special in this case is that the contained entities v € V' are (multi-) represented
by their content(s) stemming from the application domain — as opposed to purely
symbolic rule constituents. Therefore, content-based rule is hybrid, defining both
content and structure in a very generic way.

CBRule = (Antecedent = Consequent)
Antecedent = V*
Consequent = V~*

Content-based rules are a superclass of type-0 rules from the Chomsky hierarchy,
since they have the same structure o — 3, a;, 3 € Var* and expressivity, but further
include domain contents carried by their nodes.

Definition 3.2.4: Training pattern, Training set

A training pattern for the neural network consists of two node sequences and is
represented as a generic pair <input — target>, where input,target € V. This
sequential structure holds for every application domain, since unordered node sets
can be ordered by a fixed order convention to become node sequences. An input
or target sequence must not be empty, but may consist of only one node, as in case
of classification, where the respective class is represented by a single target node
(class label). The training set is the totality of all training patterns.

Definition 3.2.5: Network Training

During network training, the specified functional mapping between the input and
target sequence is established for each training pattern. Since training is a numerical
optimization (cf. section 4.4.3), the deviation between the expected output and the
current output is iteratively minimized. This minimization requires an appropriate
supervised training algorithm both for classification and prediction. Supervised
means that there are target sequences for each input sequence, which determine the
expected output. Therefore, all node sequences have to consist of input and target
subsequences, which make up the training set.

Definition 3.2.6: Sequence Prediction

Sequence prediction is a mapping P : V* — V* from history sequences to target
sequences of nodes. Again, the nodes stand for arbitrary multi-represented objects.
The represented object features F; are also allowed to be continuous F; € R, ¢ =
1,...,d as in the case of traditional time series prediction.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 59

Definition 3.2.7: Operative Application

When operatively applying the system, the training phase has already been accom-
plished and input sequences that did not participate in the training set are fed into
the system in order to be classified or to induce a sequence prediction.

60 MACHINE LEARNING CONCEPTS OF SYMBOCONN

3.3 Functional Model of SymboConn

The SYMBOCONN framework provides the domain-independent functions Net-

work Training, Classification, Clustering, and Prediction as depicted in figure
34.

SymboConn Framework - Functional Model

Classification ~ f------= Generalization
«include»

Symbolic Generalization

SymboConn Use'

Prediction |l _____
«extend»

>0
/)

Exponential Smoothing

N

«include» «extend»,

Network Training

Sequence Prediction

Figure 3.4: Use case diagram of the main functions offered to framework users such as
experts in the respective application domain.

Classification as defined in Def. 2.5.1 assigns unknown objects to categories,
after the classifier has been trained on labeled objects.

Clustering as defined in Def. 2.5.2 groups objects together that are similar
according to a certain distance measure and is of minor interest for the recommen-
dation framework. Clustering operates on the given data set only, without using a
training set, since no further objects are produced or to be assessed.

Prediction (see Def. 2.5.3) and its variant Sequence Prediction (see Def. 3.2.6)
enable the forecast of numerical variables (e.g. time seriesprediction) and the rec-
ommendation of a sequence of domain objects respectively. Viewed from the sym-
bolic perspective, Classification and Prediction require a generalization capability
of Level 3.

The use case Symbolic Generalization is an extension of the use case Gener-
alization and was precisely described by the different symbolic transformations of
an input structure to a target structure, which were assigned to the levels of the gen-
eralization hierarchy defined in section 3.1.1.2. To be useful for various application
purposes, the classification and prediction functionality requires a high generaliza-
tion capability, since objects that are not contained in the training set are to be

MACHINE LEARNING CONCEPTS OF SYMBOCONN 61

classified and sequences of domain objects or numerical values are to be predicted.
In analogy to the symbolic generalization hierarchy of section 3.1.1.2, at least Level
3 generalization is needed in this case.

Exponential Smoothing is a traditional statistical prediction technique, which
is subsumed® by the SYMBOCONN machine learning engine.

Successful Network Training as defined in Def. 3.2.5 is the precondition for
providing good Generalization, and therefore it is also required for Classification,
Prediction, and their extensions.

Figure 3.5 shows the generic training phase and operative application of the
framework as an activity diagram. The main activities during training are data pre-
processing, setting up the training set, and executing the training algorithm. During
the operative application, a sequence of input nodes is transformed to numerical
input patterns, which are fed into the trained machine learning engine. Then, a se-
quence of output nodes that is of length one for classification and of arbitrary length
for sequence prediction is generated. In case of Classification, only the class label
is predicted, and in case of Prediction, the output represents the future development
of a time series, for example, where the time index corresponds with the number of
output nodes. The dynamical model divided into a training and an application phase

Building the Training Set
oo

Training the MRNN on the
Training Set

Data Preprocessing
oo

Preprocessing and Training

datast
soatasoicy Input-Target Set of Training Untrained MRNN Trained MRNN
Knowledge Base Node Sequence Patterns
Map /

/

Sequence of Predicted
Nodes

Predicting a Sequence of
Output Nodes

Sequence of
. > Input Nodes

Transformation to
Input Pattern
oo

Operative Application (fast)

Figure 3.5: Activity diagram showing the training phase and the operative application
defined by Def. 3.2.5 as upper and lower swimlane.

as shown in figure 3.5 covers the use cases Classification, Prediction and their ex-
tensions, which are typically expected from a machine learning system. Combined
with the multi-represented knowledge nodes that can be composed to meaningful
node sequences in the respective domain, a variety of possible applications arises.

°For the configuration of the SYMBOCONN engine to provide exponential smoothing, see section
8.3.4.

62 MACHINE LEARNING CONCEPTS OF SYMBOCONN

The degree of intelligence of a machine learning system is mainly characterized
by its ability to generalize acquired knowledge. The use case Generalization ad-
dresses the abstract functional requirement generalization capability, which can be
interpreted from a symbolic and a statistical point of view. In statistics, the term
generalization is not very firmly established; instead, the corresponding concept of
extrapolation is used for assessing a statistical process beyond its asserted scope. An
example are countings of votes, where the in-advance estimation of the final elec-
tion result is achieved by extrapolation of representative sample measurements. An
extrapolation method for time series prediction is exponential smoothing shown as
use case in figure 3.4, which is used when no formation rule or systematics such as a
linear or periodic trend can be discovered in the time series. Exponential smoothing
is elaborated on in chapter 8 (Time Series Prediction).

3.4 Framework Architecture

The SYMBOCONN framework is a knowledge-based system that supports knowl-
edge acquisition and discovery activities in a specific target domain like navigation
recommendation and software development. It is not a knowledge-based system in
the traditional sense that aims at extending and querying knowledge bases. Instead,
SYMBOCONN is a methodology for performing automatic knowledge acquisition
without making domain knowledge explicit'” — it is made applicable. Since soft-
ware development is a knowledge acquisition activity, it is automatically supported
by the framework.

The overall architecture of our approach is shown in figure 3.6. The framework
layer contains the SYMBOCONN framework, which is the basis for the service layer.
The service layer potentially provides several different domain-specific or domain-
independent services, three of which are elaborated in this dissertation. These are
Classification, Sequence Prediction, and Time Series Prediction. The specific
services house several applications such as Navigation Recommendation or Stock
Price Prediction, which are comprised by the application layer. Assessing the im-
pact of artifact changes under consideration of their structural neighborhood within
the knowledge graph is another application of the SYMBOCONN framework, called
Change Impact Analysis.

The SYMBOCONN framework is divided into four major non-hierarchical sub-
systems called ConnectionistCore, KnowledgeConnector, Control, and FrontEnd
that cover the core functionality, and one minor subsystem called Util. Figure
3.7 shows the system decomposition of the SYMBOCONN framework into these
subsystems. The non-hierarchical decomposition of the framework was chosen to
decouple the Machine Learning Engine from the knowledge representation and
the control flow, which is strongly required to provide domain independence. The

'"Domain knowledge could be elicited from a trained neural network by a reverse-engineering
approach [ZJC03, MWMO03, UK95]. Thereby, the incorporated knowledge is made explicit by a
transformation into fuzzy rules.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 63

Activity || Design || Molecule | | Navigation || Change Stock Logistics

Application Classifi- || Pattern | | Classifi- Recomm- Impact Price Fore-

Layer cation Advise cation endation ||Analysis || Prediction cast

i e Sequence Time Series .
SEvice Classification L o 7| Clustering

Layer Prediction Prediction
Framework ; MRN.N ;

Layer Machine Learning Engine

SymboConn Framework

Figure 3.6: Three-layered application architecture of the SYMBOCONN framework with
flexible MRNN Machine Learning Engine as foundation for different domains which in
turn house several applications. Both the domain and the application layer are extensible.

framework architecture follows the model-view-control architectural pattern.

The model component of the framework is the ConnectionistCore subsystem
that contains the Machine Learning Engine, which is again decomposed into three
layers that consist of computational units called NeuronRecords. The utility sub-
system Util provides preprocessing functionality like data scaling and data trans-
formations, linear algebra computations (for example an implementation of the
Principal Component Analysis) (PCA), and input/output functionality. The util-
ity package also contains the database connectivity and basic reporting functions
via graphical charts.

The Control subsystem in figure 3.7 is responsible for the global control flow
of all provided functions shown in figure 3.4, such as training the currently cho-
sen neural network or calling the prediction function on the trained network. The
neural network is trained by a separate TrainingThread, which is executed concur-
rently with the main application. This thread is in turn controlled by the so-called
TrainingAgent, another thread responsible for dynamically adjusting the training
parameters like learning rate or momentum. Multithreading is necessary because
training a neural network is an often tedious process that needs to be observed and
controlled either manually or automatically by a software agent, whose role is taken
by the TrainingAgent implementation in this case.

Observers like the standard graphical user interface can register at the MetaCon-
troller in order to be notified about the most important events such as the training
progress or the current system state. The most important framework functions can
be accessed externally through a Controllnterface.

The ControlLogic subsystem is part of the Control subsystem and provides a
facade to encapsulate all public services that are accessible from outside. The de-

64 MACHINE LEARNING CONCEPTS OF SYMBOCONN

SymboConn Framework
ConnectionistCore KnowledgeConnector

MRNN -
NodeRepresentation TextMining
s ------
MLP
AssociationRuleMining DesignAdvise

R 7

.

Control

«facade» StateMachine
ControlLogic

FrontEnd util

Figure 3.7: System decomposition of the SYMBOCONN framework as UML com-
ponent diagram. The framework is decomposed into the four major subsystems
ConnectionistCore, KnowledgeConnector, Control, and FrontEnd. Util is a minor sub-
system responsible for database access and reporting.

etacades
ControlLogic

==control== Cortroller athreads athreads
TrainingThread Gemerfchget

+ iction(): vaid

+ fimeSarissPrediction() : vaid e uno :void + stariStopAgent(boolean) : vaid

+ lsadNetstaten veid + getAgentStatuz) : boolsan

+ saweNetStater) : void + o unvoid W‘

+ genericHistT argetSequTraing : vaid el

+ designadvisarTrainingd) : vaid ﬁ}

+ discardTrainingRun() : void e

+ retrainHistTargetSequo - void TrainingAgent

+ generateFaresastChart) waid 1 N
+ stadTrainingProsess) : vaid
+ stopTrainingProsess) : void
+ pauseTrziningProcessD) : void

MetaCortraller -eurrentState |+ rasumeTrainingProsess void
. applicationArea: Sting 7

+ A0 tStater) - Stat
getCunentState() : State \\& autilityr [P

ob b java.util Obsenable
gl R =l IdleState PredictioninProgressState TrainingInProgress State

arealizen

Singlefor

Figure 3.8: Control subsystem containing the ControlLogic subsystem, which is a facade
for the services provided by Control, as well as the StateMachine subsystem.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 65

tailed design of the ControlLogic is shown in figure 3.8. State transitions within the
subsystem are based on a state machine that delegates function calls to the respon-
sible components depending on the current state of the SYMBOCONN framework.
This way, the same abstract function calls can result in different domain-dependent
processes. For example, when the prediction functionality is called via the Con-
trolLogic facade, the expected result depends on the concrete application of the
target domain in terms of the application architecture in figure 3.6. In case of time
series prediction, the final output is a sequence of numerical values, while for navi-
gation recommendation, the output represents a sequence of recommended knowl-
edge nodes such as documents. In any case, the predicted sequences consist of
NodeRepresent objects.

The KnowledgeConnector subsystem in figure 3.7 connects the different domain-
specific knowledge representations and controls the creation of numeric training
patterns from abstract and domain-independent node sequences. Figure 3.9 shows
a more detailed design. Encoding and decoding of symbolic data is delegated by

KnowledgeConnector

SymbolicDataHandler EnDeCoder

encodeBinary() : void
encodeUnary() : void
encodeSpreadSpectrum() : void

/ decodeSequencePrediction() : NodeRepresent[]

+ encodeNodeRepresent() : void
+ generateTrainingPatternFromSequence() : TrainingPattern[]

+ o+ 4+ o+

TextMining AssociationRuleMining DesignAdvise
B e | || ARMiner
[§ + Textindexer =)
+ VectorSpaceModel
KWLManager
!
i
\:/ NodeRepresentation
y
+history
HistoryTargetSequence
DA Y < 1.% NodeRepresent
- confidence: double
+target| # name: String
K> # ident: String
1.7|# vectorSpaceModel: double[]
%7 # id: int

Rule

Figure 3.9: The KnowledgeConnector subsystem is crucial for the knowledge represen-
tation in SYMBOCONN, since it enables the processing of symbolic and non-symbolic in-
formation. Furthermore, it contains several supplemental subsystems for text mining, asso-
ciation rule mining, and design pattern advise.

the control object KWLBaseConnector to the realizing classes like EnDeCoder
or SymbolicDataHandler. The KnowledgeConnector component principally en-
ables the Machine Learning Engine to learn heterogeneous knowledge structures

66 MACHINE LEARNING CONCEPTS OF SYMBOCONN

(sequences or trees) with their node contents. Furthermore, it contains the subpack-
ages NodeRepresentation, TextMining, AssociationRuleMining, and DesignAd-
vise.

The subsystem NodeRepresentation in figure 3.9 provides the abstract repre-
sentation of a knowledge node, which is a single constituent of a node sequence.
The superclass NodeRepresent is the basic unit of information processed by the
neural network. Each domain extends the abstract node definition by its specific
knowledge representation. For instance, the service Navigation Recommendation
requires a text unit representation, which holds the textual content of documents in
a machine-processable form (DocumentRepresent). Implementation inheritance
is used to integrate the domain-specific knowledge representations. MultiRepre-

sentedODbject is the abstraction of a multi-represented object as defined in section
3.2.

+history

Rule frr—————————— NodeRepresent
i i)
KnowledgeConnector:
HistoryTargetSequence : “Harged <] MetricVectorRepresent
y Pyl

] W\\\\
DocumentRepresent ﬁ t GrammarVariableRepresent

MultiRepresentedOhject

AsscciationRuleltemRepresent

Figure 3.10: NodeRepresentation subsystem using implementation inheritance to integrate
the domain-specific knowledge representation.

The subsystem TextMining provides a handle for processing knowledge nodes
that contain unstructured text (cf. section 3.2), for example, a text document as
part of a document base. The significance of a certain keyterm can be analyzed
via different metrics from text mining like the Term Frequency - Inverse Document
Frequency (TF-IDF). Related to mining of raw text, the subsystem Association-
RuleMining is responsible for discovering co-occurring keyterms in a text base.
Thus, associated concepts lead to association rules, which potentially serve to link
related documents in terms of their content.

The DesignAdvise subsystem shown in figure 3.7 is a supplemental and domain-
specific package that defines several software design patterns in machine process-
able form; that is, patterns are transformed into typed grammar rules, which are
considered in section 6.3. Additionally, the Design Advise subsystem is responsible
for the rule-based recognition of design patterns in class diagrams that are repre-
sented in XMI language.

The KWLBaseManager control object offers functions that parse externally de-
fined regular, context-free or context-sensitive rules to incorporate structured prior
knowledge (class Rule). These are directly learned by the framework engine in the
form Ay ... Ay — By ...B,, A;, B; € (¥ UV) as defined in section 3.2.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 67

DesignAdvise

Flaceholder for a class
diagram to be FPatferniepresent
clazzified

buildRules]) : Wector<Rule>
orderRules™ector<Rule=])

create SubelassClassRulel) : Rule
create SubclassAbstrClaz=Rule) : Rule
create SubelassFlatClazssRuled : Rule
craateFlatClassSubelazzRule) : Rule
creataClassFlatClassRulal) : Rule
i e creata TClaz=TRuled : Rulse

=
ruleSet: UEdDI<RV createTEpsilonRule() : Rule

Model 2 Classify [:

ruleSet: Vector<Rulax

o+ F o+ o+ o+

Adapter Pattern EridgePattefn CO\TPOSHEPE‘HEF“
ruleSet: VectomRL}w{ T o Veci{o;mum . ruleéﬁt: VectorsRules
Templste Pattern Ob=erwver Pattern FacadePattern
ruleSet: Wector<Rule> - rnuleSet: WectorzRulex - ruleSet Wectar<Rule=

Figure 3.11: DesignAdvise subsystem that defines several software design patterns by a
rule-based representation.

The ConnectionistCore subsystem, whose detailed design is shown in figure
3.12, provides the implementation of the framework engine and consists of two
self-contained types of neural networks:

e The Modular Recurrent Neural Network (MRNN) as central class of the
MRNN subsystem is the most modern and universal network in the SYM-
BOCONN framework, which resembles the behavior of a dynamic system as
defined in section 4.4.1. The recurrent network is a composition of Neuron-
Records that form the HiddenStateLayer, denoted by S in section 4.4.1. The
HistoryTargetSequence of the KnowledgeConnector subsystem (see figure
3.7) is the central knowledge structure that is converted to a training pattern
and finally processed by the MRNN.

The Self-Organizing Map (SOM) clusters objects into similar groups, which
can be employed for learning and recognizing the type of user behavior, for
example.

e The Multilayer Perceptron (MLP) is a standard feed-forward network with an
arbitrary number of hidden layers. As predecessor of the MRNN, the MLP
subsystem represents a separate implementation of a neural network that can
be used as an alternative framework engine. It is trained by a conventional
backpropagation algorithm (without backpropagation through time) and is
composed of NeuronLayers which in turn are composed of Neurons. The
MLP can be used both for classification and prediction tasks and might be
easier to train on traditional applications, such as image recognition or time
series prediction, than the MRNN.

68 MACHINE LEARNING CONCEPTS OF SYMBOCONN

m

ConrmecfiorisiMode! RAAM DyramicSysfen
HiddenStatelayer MNeurcnRecord
wrealizes-. «realizes
/«;ealize» size: int - stateVector double[]
+ prediction) : vaid (L + computeState(doublef], double[ly: double]]
1 14+ training() : void + computeQutput]): doublef]
+ getlD):int
hRHHN + zigmoidFunction : double
! + =zigmoidFirstDerivation) : double
1 |+ computeMewilieights)
SelfOrganizingMap A Traininghlgorithnr
+ initSOMQ - vaid + traininglteration() : woid Het State wattifacts =]
+ batchTraining() : weoid . weighthatrid: double] [SerializedHetState
- weighthatrizB: double]][]
- weighthdatri=C: daublef]
EackPropagationThroughTime Quasi Hewton Quickpropagation
+ traininglteration) : woid + traininglteration) : void + traininglterationd : vaid
MLF
5 Multi Layer Perceptron MeuronLayer Neuron
wredlizes
+ batehTraining() : void % 3 > 1.7
ConnectionisiMode! i &
InputLayer HiddenLzwer OutputLayer

Figure 3.12: The ConnectionistCore subsystem contains all connectionist components
offered by the SYMBOCONN framework layer.

Only a few implementations of advanced neural networks are freely available. Due
to the complexity of implementation and application, there are mainly very simple
neural network algorithms on the market for data mining and machine learning, like
those of Microsoft [Mic05].

The FrontEnd subsystem basically offers supervision functionality for the semi-
automatic training of the neural network engine. The training process can be inter-
vened by the actor in real-time in order to adjust the learning rate, or to stop training
when the model error starts to rise again, for example. The subsystem components
are shown in figure 3.13. The MainGUI works as an observer of the control objects
MetaController and Controller from the subsystems ControlLogic and Control
following the observer pattern. Thus, the view is updated by notification each time
a significant event occurs within the control objects.

MACHINE LEARNING CONCEPTS OF SYMBOCONN 69

FrontEnd
Observer
wrealizes
X wsignals
-emorDisplay | TrainingErrarManitar
ﬁ""\
MainGUl
ChartProcessor ForecastChart
2l
creates ™
ChartFactory ReferenceChart
creates

Figure 3.13: FrontEnd subsystem implementing the user front end that provides access to
the learning and recommendation functionality.

SYMBOCONN uses four external Commercial-off-the-Shelf (COTS) components
to realize text indexing, graphical output, XML processing, and persistence, namely
APACHELUCENE, JFREECHART, JDOM, and MYSQL. Figure 3.14 shows the
mapping of the COTS components to the existing subsystems of the framework.

TextMining

alibrarys
Apachelucens

DesignAdvise

alibranss
JooM

]

g

alibrane «tablen
JFreeChart MySQLOR

Figure 3.14: External COTS components are contained in the SYMBOCONN subsystems
TextMining, DesignAdvise, and Util.

Chapter 4

Machine Learning and the
Framework Engine

In the previous chapters, we have presented the motivation for a symbolic-connectio-
nist machine learning framework and introduced its overall architecture.

In this chapter, we present the fundamentals of neural networks together with
several typical network types. We then elaborate on the meaning of information
theory to machine learning, which leads us to the rationale for employing a neural
network as the machine learning engine of SYMBOCONN. Finally, we describe the
structure of the newly developed machine learning engine and its training algorithm
in detail.

Connectionist machine learning as a variant of machine learning in general is
mainly characterized by its heuristic training algorithms and by learning from ob-
servations. A generic and intuitive definition of connectionist learning might be
the following: learning takes place if the system is able to recognize regularities or
patterns in a set of examples and to separate them from the irregularities. The regu-
larities are either extracted in form of patterns, statistical or symbolic rules, or they
are implicitly acquired by a connectionist system, which incorporates and directly
applies them without being rendered explicit.

This chapter begins with a definition of connectionist models and gives an over-
view of typical neural networks. Subsequently, the meaning of the concepts (con-
nectionist) learning and information is formatively described both from a practi-
cal and a theoretical perspective. Finally, the design and training algorithm of the
MRNN framework engine are explained in detail.

4.1 Fundamentals of Neural Networks

Understanding the origin of artificial neural networks helps to understand modern
connectionist models, which are much more powerful than the first neural struc-
tures developed by McCulloch and Pitt. Especially the training algorithms and
the network topologies have made significant advances to overcome computational

71

72 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

barriers, which earlier had prevented connectionist systems from solving nonlinear
problems, for example.

4.1.1 History of Neural Networks

The research area of neural networks did not originally emanate from classical com-
puter science or its predecessors. Artificial neural networks were inspired by the hu-
man brain and were mostly created by cognitive scientists and neurophysiologists
to simulate the brain structure as well as to gain experience about human knowl-
edge representation and processing. Neural networks go back to the year 1943,
when McCulloch and Pitt developed the McCulloch-Pitt-Cell [MP43], the first neu-
ral network to realize a logical NAND-gate. This neuron model is a threshold-based
unit that processes inhibitory and stimulating binary input signals 44, ...,%, and
T1,...,%,. If the sum of all stimulating input signals) ' | z; exceeds a given
threshold, then the McCulloch-Pitt-Cell outputs a “1”. This model is biologically
motivated by the human brain, where the signal transition occurs at the synapses if
the stimuli propagated from the dendrites are high enough.

In 1949, Donald Hebb formulated a hypothesis concerning the learning process
in nervous systems, called the Hebb learning rule. A fundamental observation be-
hind this rule was that connections between human neurocytes — a nerve cell of any
kind — are strengthened when they are repeatedly activated. Hebb’s finding was
followed up by the early rise of connectionism in the years from about 1955 until
1969. The development of the first artificial neural networks and Hebb’s findings
resulted in the prominent perceptron model of Frank Rosenblatt in 1962.

Marvin Minsky and Seymour Papert showed in 1969 that one-layered percep-
trons cannot model a logical XOR function, since the XOR-problem is not linearly
separable. Thus, a whole class of nonlinear problems could not be solved at this
time, which led to a general decline of the interest in connectionist systems. In the
calm years from 19609 till 1985, several further connectionist models were devel-
oped, such as those of Kohonen (unsupervised training, Kohonen network) in 1972
and of Hopfield (auto-associative memory) in 1982.

When David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams pub-
lished their work on the backpropagation algorithm based on gradient descent to
train neural networks with arbitrarily many layers in 1986 [RHW86], Minsky’s
XOR-problem from 1969 was finally solved. This milestone in connectionist re-
search gave rise to a renaissance of research and application of neural networks that
started in the middle of the 1980s and has not ceased until today. At the beginning
of this era, Charles Rosenberg demonstrated the first neural network for speech syn-
thesis called NETtalk, which was published in his paper “Parallel Networks that
Learn to Pronounce English Text” in 1987 [SR87]. The developed three-layered
feed-forward network was trained on a corpus of 20,000 English words together
with their correct phonemes. The training process was captured on an audio file!,

Lnttp:/fwww.cnl.salk.edu/ParallelNetsPronounce/nettalk.mp3

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 73

which reminds us of a small child learning to pronounce its first phrases.

Recent research focuses on recurrent neural networks and neuro-fuzzy systems.
This has led to the emerging discipline of computational intelligence, which com-
prises all techniques that aim at creating intelligent behavior based on numerical
methods.

4.1.2 Feed-Forward Neural Networks

Definition 4.1.1: Feed-Forward Neural Network

A neural network is a composition of atomic units — the neurons. Neurons are
simple information processors, which possess a limited computation capability that
is characterized by a rule like a weighted sum for combining the input signals and
an activation rule for computing an output signal — usually by an activation function.
These neurons are interconnected within a collective network, which is the carrier
for the forward and backward signal propagation from the input layer through the
hidden layer(s) to the target layer. The network topology defines which neurons are
connected to each other, if there are recurrent connections, and how many neurons
are contained in a layer.

This definition of connecting layers and neurons motivates the nomenclature Con-
nectionism in contrast to Symbolism. A typical model of a feed-forward neural
network is depicted in figure 4.1. An impressive feature of neural networks traces

Hidden

Figure 4.1: Example of a Multilayer Perceptron (MLP) with input, hidden, and output
layer consisting of 3, 4, and 2 neurons. The feed-forward topology only allows a forward
information flow through the network. The S-shaped pictogram symbolizes the sigmoid
activation function in each neuron of the hidden and output layer. Neurons of different
layers are connected by weights w;;.

back to their connectionist structure. Although single network neurons have only a
very limited computation capability, the neural network as an aggregation of many
of those interconnected units is able to solve complex tasks.

In modern neural network architectures, the neurons play a subordinate role,
since they do not have to be modeled explicitly. The connections between the neu-

74 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

rons in the input and hidden layer of the network in figure 4.1 is now usually repre-
sented by a weight matrix (I7;;); jen. An external input is fed into the input layer as
a real-valued vector &, which is propagated forward through the network weights.

Xy

i
Xy

Wi
X Whai

Figure 4.2: Dynamic model of the basic signal processing by a single neuron. ¥ is the
weighted sum of all input signals propagated through the weighted connections to a single
neuron, f is a linear or nonlinear activation function, applied to this weighted sum (f(X)).

Definition 4.1.2: Network Activation, Activation Function

The activation function f of a neuron is applied to the weighted sum) w;;x; of all
incoming signals z; in order to activate the neuron, which means to produce an ac-
tivation or an activated state. The activation function may be linear or nonlinear, but
for higher expressivity and computational power, f is often chosen to be nonlinear,

for example f(x) = tanh(z) or as sigmoid function f(z) = m.

4.1.3 Further Types of Neural Networks

Artificial neural networks are computational models based on mostly numeric algo-
rithms for training and application. Here, only the most important and well-known
network types are mentioned in order to compare them with the proprietary Mod-
ular Recurrent Neural Network (MRNN) used as framework engine. The existing
classes of neural networks technically vary in the activation functions, the training
algorithms, the type of data to be processed, as well as in the network topology
including the employed connectivity. Furthermore, they can be distinguished by
their application purpose, which might be data compression, clustering, classifi-
cation (with the variants pattern recognition and outlier detection), prediction, or
simulation.

Feed-Forward Neural Network, Multilayer Perceptron This network type was
already discussed in the previous section.

Recursive Auto-Associative Memory (RAAM) Another important type of neu-
ral network for structure processing is the Recursive Auto-Associative Memory,
which is extensively elaborated upon in section 5.5.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 75

Recurrent Neural Networks (RNN) Recurrent neural networks are a subclass of
neural networks characterized by recurrent connections between their units [Gra08].
These typically form a directed cycle, while common feed-forward networks do
not allow any cycles. The behavior of RNNs is usually modeled and analyzed by
dynamical systems theory [MWHOI1, Str94].

The Jordan network [CSSMS89] is one of the first recurrent networks. Recur-
rent networks are especially used to learn sequences, for example, when words of a
formal language represented as sequences of symbols need to be processed. Thus,
the signals are not only sent in forward direction but also fed back to the hidden or
input layer by recurrent connections.

Simple Recurrent Networks (SRN), also called Elman Networks?, feed the
hidden activations back to the input layer. Thereby, the network contains a tempo-

Output | —

Fixed
v_ﬁConnection

Hidden | |

\ Context Units

Input [[

¥,

Figure 4.3: Schema of an Elman network with recurrent connections that feed the hidden
activations back the input layer, which serves as context for the next external input (training
example).

ral memory, which is required to learn context-free’ grammars, for example. The
network topology is illustrated by figure 4.3.

A Hopfield network is a recurrent and auto-associative connectionist model
that works like a memory. There is no target pattern to be learned; only the in-
put pattern is transformed into an internal representation, comparable to the one of
RAAM networks. Trained patterns can be recalled even if they are incomplete or
noisy. The Hopfield net is mainly characterized by its recurrent mode of operation.
Given a certain fixed input pattern, the generated output pattern is repeatedly fed
back as new input pattern until the network state converges. The state s; of each

2 According to their inventor Jeffrey L. Elman.

3The term context is overloaded here, since context in terms of the Chomsky hierarchy means
even more than in the notion of context units. Context-sensitive grammars are far more difficult to
learn.

76 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

network unit is updated by

netj = ZSZ"[UZ']‘ (41)
i=1
{+L¢fnajzo

, 4.2)
—1, if net; <0

Sj

Figure 4.4 shows a small exemplary Hopfield network. No conventional training

e

Rg{a}

Figure 4.4: Hopfield network consisting of four fully interconnected units without reflexive
connections. For each component of the input vector Z, illustrated by the horizontal arrows
from left to right, there is a unit in the Hopfield network. (From Wikimedia Commons,
Image copyright: GNU Free Documentation License)

takes place in Hopfield networks, since the weight matrix I required to store an
input pattern is directly determined from the input vector z:

w=2zlz

During operation, only one unit is updated at each adaption step, which operates on
the single weight matrix WW.

Self-Organizing Feature Maps (SOM) This type of a neural network is also
known as Kohonen network and is typically used for data clustering. It serves for
learning and internally representing a set of numeric feature vectors. The input data
space is aggregated by a set of so-called profotypes that are representatives of differ-
ent aspects of the training set [Cal03]. Thus, the main purpose of Kohonen networks
is to cluster and bundle the input data (cluster analysis). This is done automatically
by an unsupervised learning algorithm, which does not require a parameter speci-
fying the number of supposed data groups in advance.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 77

Radial Basis Function Networks (RBF) The class of Radial Basis Function net-
works can be used to solve the same problems as feed-forward networks trained
by backpropagation. Like conventional feed-forward networks, they are especially
capable of approximating any mathematical function.

net; = [|7 — |,

= [Z(l‘z —wi)!]VP, j=1,...,m 4

i=1

The radial basis functions reside in the hidden layer of the network and are applied
to the network input (formula 4.4), which is computed by formula 4.3. Usually,
the norm is chosen as Euclidean distance (p = 2) and the radial basis function is
realized by a Gaussian function.

o(r) = exp(—r - net?) 4.4)

As opposed to the first mapping between input and hidden layer, the mapping from

Output y

Linear weights

Radial basis
functions

Weights

Input x

Figure 4.5: Exemplary topology of a Radial Basis Function network consisting of three
layers.

the hidden to the output layer is linear. The different layers are shown in figure 4.5.

4.2 Neural Networks between Computational Intelli-
gence and Information Theory

In order to determine a machine learning engine that best fulfills the requirements
for a generic and domain-independent machine learning framework, this section
touches upon several areas of expertise like information theory and statistics that
are highly relevant for connectionist and symbolic machine learning.

78 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

Neural networks that use supervised or unsupervised training algorithms* be-
long to the field of machine learning employed by the field of computational in-
telligence. Computational intelligence is a recent subarea of artificial intelligence
consisting of artificial neural networks, neuro-fuzzy systems, and evolutionary com-
puting (e.g. genetic algorithms), which relies on optimization algorithms and fuzzy
knowledge representation. Neuro-fuzzy-systems are hybrids of neural networks and
fuzzy rules, which can be interpreted as a system of fuzzy rules generated by neu-
ral learning of training data. The main concepts of computational intelligence are
learning (optimization), adaptation, and evolution.

Neural networks provide an algorithmic implementation of adaptivity, since
they can adapt their behavior according to changes in the application domain, which
become manifest in the training set. Furthermore, neural networks as non-parametric
models do not follow any predetermined data distribution, as shall be explained in
section 4.3. Thus, the adaption of the network weights is emergent, that is, induced
by the respective environment. Evolution, which is not covered by SYMBOCONN,
is a principle of genetic algorithms and is a generic term for mechanisms such as
reproduction, mutation, recombination, and natural selection. Genetic algorithms
are related to neural networks since they can be used to automatically determine a
network topology that best fits the domain problem to be learned.

When building a connectionist model to solve a classification or prediction prob-
lem, the discipline of information theory is involved. This is due to the questions of
knowledge representation® and input-output encoding, which both play important
roles in the model building process. In section 4.2, the information content of the
chosen representation is especially considered, which can be measured in Shannon
indicating the minimal number of bits required to encode a message (detailed in
section 4.2).

Figure 4.6 illustrates the functionalities and relationships of neural networks
regarding computational intelligence, information theory, and machine learning in
general. It is proven that neural networks with one hidden layer and nonlinear acti-
vation function (e.g. logistic function, tanh) are at least as powerful and expressive
as a Turing Machine [SS92, AJ96]. Some argue that connectionism even enables a
higher form of computability, due to its distributed knowledge representation that
enables computational parallelism in the neurons [Bou97].

The further relationships of connectionist models to other topics shown in figure
4.6 are explained in the following.

Connectionist Models and Data Compression The process of machine learn-
ing can inherently be seen as compression; at the same time, machine learning
provides the functionality of data compression. Any auto-associative network can
accomplish data compression tasks with an arbitrary compression rate, which im-

“The class of Reinforcement Learning (RL) algorithms is possible as well, but is of minor impor-
tance for connectionist models. Reinforcement Learning is often used to teach autonomous agents
to perform optimal actions.

3 As described in section 2.4.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 79

Probability Theory,

Information Theory)~ Statistics

P s
— —— - &
7 0
- Data C - P
Encoding ata Compression ™ (0" e

Creating simple Prefix-Free Shannon-/
and concise knowledge Huffman-Code

representations - Q
______ ! Lo -=" FAS

T —=w N\ TTTTT ;&’

- i R\

& .o
Spread Spectrum - ~ 9\/@0\‘-’)
— /
Information Gal - :
Process Gain Prediction Js

- NN,(MJRNN, | \1achine Learning

=]

]

i

Fuzzy Systems /
(Neuro-Fuzzy, Fuzzy Sets) //

\Cnmp‘l:ltational Intelliggnee"

1
1

1

1

1

1

' -
I Entropy -

: of Information

1

1

1 -

1

1

Godel Incompleteness

Evolutionary
.. Algorithms

Figure 4.6: Machine learning, information theory, computational intelligence, and their
interrelations. The solid line stands for a provided functionality, while the dotted line
indicates a given dependency between different knowledge areas (in form or content).
(M)RNN stands for (Modular) Recurrent Neural Network and RAAM means Recur-
sive Auto-Associative Memory, which is a special neural network for processing of tree-

structured data.

80 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

plies the degree of data loss. Figure 4.7 shows an appropriate connectionist setup
for the compression of an arbitrary feature vector. A multi-layer perceptron (MLP)

04, %, -, ;)

ENCODING

INPUT Layer |

@«

0, %, -, ;)

Figure 4.7: Auto-associative network that encodes and decodes a given feature vector
(1,2, ...,2,). The compressed version (21, x2, ..., xk), k < n, is pending at the hidden
layer, which is called compression layer here.

with one hidden layer as well as identical input and output layer is able to compress
numerical data by auto-association. The data compression is enforced by mapping
the input vector onto a copy of itself at the output (target) layer, while using a lower
dimensionality for the hidden (compression) layer. Associating a vector with a copy
of itself is called auto-association; there is a whole class of auto-associative neural
networks. The auto-associative mapping can be trained by a backpropagation algo-
rithm as usual. After completion of the training process, the activation of the hidden
layer makes up the compressed representation of the original input vector.

A special form of an auto-associative network that is able to represent and com-
press structured data is the Recursive Auto-Associative Memory (RAAM). RAAMs
create a fixed-length representation of tree structures with arbitrary branching fac-
tors and thus perform (lossy) data compression (for further details see section 5.5).

Decision Trees Decision trees are a popular method to classify metric or cat-
egorical data. They achieve a comparatively high classification accuracy and the
result is easier to interpret than in most other classification methods, but they tend
to overfitting and require many training examples. In software engineering, decision
trees have been used for software decision analysis and support [Tre07], for clas-
sifying incomplete software project data [TCLO6], or for classifying the expected
project risk [HLCO6].

In terms of classification by decision trees, the Information Gain (1G) is a
measure or information criterion indicating the pureness (purity measure) of a set
of training objects concerning their membership with respect to the classes C' =

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 81

{C1,...,C.}. Ttis depicted as subtitle of the bubble Information Measure in figure
4.6 and can be computed by means of the entropy formally defined as follows.

Definition 4.2.1: Entropy and Information Gain

H(X): == P(X =2z) log,P(X = z)
=1
N (4.5)
bit
== pi-log,p; |)
— symbol

=H(Y)-) P)-HY|X =z (4.6)

zeX
The information gain 7/G(X) is interpreted as the entropy reduction after the split

CheckinWithout Profession Type
Update (ChkWoUpd)
1 no

Dipl.dnf. 32 Expert ChkWoUpd

2 yes Dipl.-nf. 45 Expert
3 no Dipl.-Math. 26 Expert
230
4 yes Student 21 -
5 ves Dipl.-Oec. 29 -)] &3] 4,5} 2
Type = Expert Type =Beginner Type = Expert

Figure 4.8: Exemplary data table and corresponding decision tree for the classification of
software developers according to the types beginner and expert. The tree is not optimized
and the value space of the attribute Age is arbitrarily partitioned by the threshold 30.

by the random variable X, which implies that the information gain is complemen-
tary to the entropy in some respects. H (Y| X) is the conditional entropy after the
split by a discrete attribute X, which takes m different values and thus partitions
the training set into m subsets. Figure 4.8 gives an exemplary decision tree together
with the underlying dataset.

An optimal decision tree does not come out of nothing — in general it takes
exponential effort to determine an optimal decision tree according to a particular
information criterion. A popular means for computing an optimal decision tree is
the C4.5 algorithm [Qui93]. It is well-known that decision trees are susceptible to
overfitting, which is the strong adaption to the training examples at the expense of
the generalization performance. In section 6.3, both decision trees and the connec-
tionist framework engine are employed to discover design patterns in class diagrams
by classification.

82 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

From an information-theoretical perspective, machine learning can also be con-
sidered as lossless compression. This is because a compact description of a message
or information leverages its systematics. The inherent systematics need to be under-
stood and exploited to generate a shorter description than given by writing out the
uncompressed information. This means that regularities within a message of length
m enable a more concise encoding of length m. < m. An example are words over
the alphabet {0, 1}, like w = 001001011101001111..., |w| =: m, which consist
of arbitrary symbols at the first and second position but always contain a “1” at the
third position, that is w;, moq 3 = 1. Such a regularity allows to encode the words

by only m, = %m + c bits, where c is the constant number of bits to express the
regularity “Every third symbol is a “1””, formally encoded by rule 4.7:
S = AB,
A= (0[1) 4.7)
B=1AB

By contrast, a random sequence with the probability distribution P(“0*) = % =
P(“1¢) is not compressible, since the production rules do not hold in this case.
Determining when to put a “1” requires representing each of the m symbols of the
message.

Machine learning attempts to elicit the regularities of a training set and to ex-
ploit them. A totally random sequence of symbols cannot be learned in terms
of generalization, but can only be memorized. Since such a sequence is com-
pletely non-deterministic, it holds the maximal entropy H,,.,. In case of words
w = 001001011101001111 following rule 4.7, a neural network learns that every
third symbol is a “1”, while it is already sufficient that the majority of the training

patterns conforms with the production rule.

Entropy of Information In chapter 2, the technical term entropy was intro-
duced in the context of the symbol system hypothesis. By defining the entropy in
the context of computational intelligence and machine learning, the relationship of
symbol systems, information theory, and connectionist machine learning is concep-
tually established in this section.

Whenever the entropy of a natural or artificial space is high, then its degree of
order is low, and thus the prospect of creating intelligent behavior by using informed
search is low as well. Now, the antagonism between learnability and randomness is
pointed out by defining the entropy from the original information theoretic and sta-
tistical perspective. Shannon [Sha48] defined the entropy as the information content
carried by a discrete random variable X as a function® X : Q — Z. The entropy
H(X) of the random variable can be considered as the mean information content of
a symbol that stems from a fixed alphabet Z = {z1,...,2,}.

SIn probability theory €2 is the event space. A real-valued random variable 1) is a function 1) :
Q—R.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 83

The maximal entropy H,,.. is achieved when all symbols appear with the same
probability p; = ... =p, = % meaning that they follow a uniform distribution of
the underlying alphabet.

vxy .. HX) g~ logyp
H (X) o Hmaw(X) a ;pl - 1Og2n S ! (48)
H*(X) is the normalized variant of formula 4.5, which is computed by means of the
maximal entropy H,,..(X). To compute the entropy of an information source X,
which is formally represented by a random variable, the probability distribution over
the alphabet Z must be known. H (X)) represents the expected information content
of a symbol from the alphabet, which is the actual information content weighted
by the frequency of its occurrence. If a single symbol with probability p; actually
appears, that is X = z;, then it can be considered to be chosen from a hypothetical
set of -- equally probable events. Thus, log,(,-) = —log, p; bits are required to
distinguish between these possible events. The higher the probability of a symbol,
the lower its corresponding information content.

The entropy H is used for the so-called entropy encoding and the required num-
ber of bits b to encode a word w € Z* over the alphabet Z is calculated by means
of formula 4.5. A word w of length |w| = m can be represented by b = m - H(X)
bits approximately.

Definition 4.2.2: Kolmogorov Complexity

The Kolmogorov complexity (K -complexity) [Sch95] is an algorithmic complexity
measure that is not computable but can only be approximated by an upper bound.
The K -complexity can be interpreted as an inherent and absolute property of strings,
which monotonically increases with the length |w| of the string w. K(w) is the
length (binary) of the shortest program p runnable on a universal Turing machine
U, which outputs the string w (writing w on the band). The length of the program is
measured by the number of bits needed to represent the program.

K(w) = mini|p||U(p) = w} (4.9)
Kw) < |wl+c¢ (4.10)
Vniw: Kw) > n (4.11)

Formula 4.10 states that a program obviously does not have to be longer, except
a constant, than the message to be encoded itself. Finally, formula 4.11 expresses
the unboundedness of the K -complexity. The higher the randomness of a string
w, which results in lower periodicities and regularities, the harder it is to compress
w, and thus the higher is its Kolmogorov complexity K (w). The K-complexity
does not make any statements regarding the runtime complexity of the described
program.

Both concepts from information theory, Shannon’s entropy and the Kolmogorov
complexity, measure the information content of a message represented as a string.

84 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

The entropy from Shannon quantifies the expected information content based on a
probability distribution, while the /K'-complexity quantifies the actual information
content of a given string by the length of a generating program.

Against this information-theoretical backdrop, the crucial question is whether a
so-called Minimum Description Language (MDL) is appropriate for encoding in-
formation that is processed with a neural network. The MDL method encodes a
message with the minimum number of bits b on average and therefore realizes the
minimal entropy. Alternatively, there are further encoding methods such as unary
or binary encoding that do not realize a minimal description of a given message, but
show benefits in discriminating between different symbols of the alphabet Z. We
will distinguish four different encoding schemas called

e Unary Encoding. The unary encoding approach assigns each symbol to be
encoded to an orthogonal bit vector with a “1” at the i'* component, (0,0,
..,0,1,0,...,0).

e Binary Encoding. n symbols can be encoded by n vectors each consisting of
[log, n| bits.

e Entropy Encoding. Encoding by a Minimum Description Language (MDL)
such as Huffmann Encoding by prefix-free codes [Huf52].

e Spread Spectrum Encoding. A different information encoding that does not
compress, but pumps up the given information, is called spread spectrum en-
coding and is typically used for multiplexing in signal transmission technol-
ogy. The data spreading approach imposes artificial redundancy and requires
a prior fundamental encoding such as unary or binary encoding. We have
adapted the spread spectrum technique to improve the classification capabil-
ities of the SYMBOCONN framework, but this mechanism can be integrated
into many classification processes.

The spread spectrum encoding does exactly the opposite of a minimum de-
scription language, since the binary representation of a piece of information is
systematically blown up by well-defined redundancy. The information to en-
code is spread onto a multiple of its original length. This redundancy makes
it less vulnerable to noise and transmission errors. The obtained process gain
enables a higher classification accuracy, which is expressed as a relationship
(solid line) between information theory and classification in figure 4.6. The
detailed spread spectrum process is described in section 5.3.

e ZIP Encoding. On a higher abstraction level, ZIP encoding is an established
lossless compression algorithm based on Huffman encoding and the LZ77
and LZ78 dictionary coders.

An illustration of these encoding variants is given by an exemplary look-up ta-
ble 4.1. Regarding the network weights, we know that a minimum description
length encoding is beneficial for the generalization capability of a neural network

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 85

Term | Unary Encoding | Binary Encoding | Huffman Code
“u” (1,0,0,0,0) (0,0,1) (0,0
“v” (0,1,0,0,0) (0,1,0) 0,1)
“w” (0,0,1,0,0) (0,1,1) (1,0,0)
“x” (0,0,0,1,0) (1,0,0) (1,0,1)
“y” (0,0,0,0,1) (1,0,1) (1,1

Term | Spread Spectrum Encoding | ZIP Encoding
“u” (0,0,1,1,1,0) (...)
“v” (0,1,0,1,0,1) (...)
“w” (0,1,1,1,0,0) (...)
“x” (1,0,0,0,1,1) (...)
“y” (1,0,1,0,1,0) (...)

Table 4.1: Exemplary look-up table that contains different representations of symbols from
an arbitrary alphabet. The Huffman encoding as a Minimum Description Language uses bit
vectors of different lengths that reflect the frequencies of the symbols in their instantiation.
The depicted spread spectrum codes were computed by an xor-operation of the binary codes
with the spreading sequence (0, 1) here.

[HvC93, HZ96]. For input information encoding on the other hand, less literature
is available and less empirical facts are known. However, it is well-known that
pattern recognition works better if the data holds low redundancy and consists of
independent parts.

Since the primary goal of information encoding in this dissertation is not a max-
imal data compression but the creation of an optimal knowledge representation for
neural information processing, the most compact representation does not have to be
the best. Unary encoding is usually preferred with respect to binary encoding, due
to the reduced error probability when distinguishing between different code words,
which differ in less components if they are represented in unary form. In case of
neural information processing, the neural network can specialize in the activation of
only one output node. We will see that the output encoding plays an important role
in neural information processing, as it directly effects the robustness and accuracy
of the classification of domain objects represented by feature vectors, for example.

Having seen the classification of neural networks within the context of infor-
mation theoretical, statistical and machine learning methods, we now analyze the
advantages and disadvantages of a connectionist framework engine in detail.

4.3 Evaluation Criteria for the Framework’s Machine
Learning Engine
Combining the connectionist and symbolic paradigms is a main focus of this dis-

sertation. Since neural networks are universally applicable to a high extent, all of
the framework’s machine learning tasks, namely clustering, classification, and pre-

86 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

diction, can be realized by appropriate network types. Their universality is a strong
argument for an inclusion in a generic machine learning framework. Furthermore,
neural networks are able to learn from examples and can handle noisy, incomplete
and uncertain information. Handling of imperfect information is required, for in-
stance, when processing real (non-synthetic) time series, which are usually affected
by inaccurate or missing measurements.

Parametric versus Non-Parametric In comparison to parametric statistical
methods, connectionist models do not hypothesize a specific underlying probability
model. The model that explains the observed data is only based on the observa-
tions, which means that no fixed type of probability distribution, like a normal or
exponential distribution, is assumed in advance. From the statistical point of view,
neural networks are just like Bayes classifiers in that they represent non-parametric
models [Was07]. Under the assumption that a certain metric feature)M realized by
the observations in a given dataset is normally distributed, a parametric classifica-
tion model can be built. If it is exponentially distributed, the generated prediction is
likely to be misleading or at least distorted.

Of course, concrete neural network models are also determined by a set of pa-
rameters such as the network weights w;; € R, but there are no prior parameters
like the expected value 4 or the variance o of a preconditioned normal distribu-
tion NV (u,o?), for example. This means that neural networks support arbitrarily
distributed observations by building a non-parametric and nonlinear model that best
fits the observed data.

As mentioned, a Bayes classifier like Naive Bayes, which is a probabilistic
method based on the Bayesian theorem, does not assume a fixed probability dis-
tribution, either. Unfortunately, the Naive Bayes classifier makes the restrictive
assumption that the features M; are stochastically independent. This means that on
a probability space (£2, B = B(R™),P), the joint probability of these features re-
maining in certain value ranges equals the product of the single probabilities, more
formally:

P(My € L AMy € L A...AM, € I|C;) = [[P(M; € LICy), (4.12)

i=1

I; = [a;,bi] € BY, a; < b;, a;,b; € R, j =1,...,r, where C} is the respective
object class. The object classification is then obtained by applying the Bayesian
theorem with the total probability in the denominator of equation 4.13:

P(C,)P(M, € I, A... A M, € L|C;)
P(My e L AN...ANM, € 1,)
_ PCH T, P(M; € L|C))
> i i P(M; € 1] C)

This is a disadvantage compared to neural network classifiers that are free from this

P(CjIMye L N...ANM, €1,) =
4.13)

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 87

assumption of independence.

In any case, this simplification does not imply a failure of the Bayesian clas-
sification in general. In many spam filters, the Naive Bayes technique works very
well for recognizing junk emails. However, there are also cases that require to
consider stochastic dependencies, for example in the field of change impact anal-
ysis. The change probabilities of software artifacts should be learnable and repre-
sentable by the machine learning engine. Let A;:= “Design goal Use modal dia-
logues is changed” and As:= “Sequence diagram Notify actor about malfunction is
changed” with the prior probabilities P(A;) = 0.05, P(Ay) = 0.15 and P(As|A;) =
“lizist) — 0.45, which means that Ay is conditioned by Ay, P(As|Ay) # P(4,). A
Naive Bayes classifier would not be capable of modeling these dependencies, which
are critical for change impact analysis. Furthermore the SYMBOCONN framework
must also be able to accomplish prediction tasks without employing a separate pre-
diction engine, and so a bare classifier without prediction functionality is not suffi-
cient.

Nonlinearity A further requirement that aims at the universality aspect of
the framework is that most of the appearing domain-specific problems should be
learnable, which means fitting the provided classification or prediction model to
the respective problem should be feasible for a possibly large class of problems.
Since neural networks can also model nonlinear problems such as the discrete XOR-
problem, they displace methods that are restricted, for example, to a small class of
linear problems.

In a geometric interpretation, there is no plane in R? that contains the four points
{(0,0,0), (0,1,1), (1,0,1), (1,1,0)} > (x,y, 2), as visualized by figure 4.9. This
is equivalent to the classification problem with the two classes “0” and “1” and the
class assignment C; = {(0,0), (1,1)} and Cy = {(0,1),(1,0)}. Only a nonlinear
hypercurve like the depicted Gaussian curve is able to separate both classes prop-
erly.

Any classifier that is based on a linear discrimination function like a hyper-
plane’ will fail to model the XOR-problem, which is clarified by figure 4.9. The
first perceptron models that consisted of only one layer were not able to solve these
problems, but modern neural networks with at least three layers trained by back-
propagation are able to model those nonlinear functions.

Another method that can also be employed for trend estimation and prediction
of time series is linear regression. It is a common misbelief that linear regression
(see section 8.3) cannot model nonlinear problems. Linear regression means that
the regression is nonlinear with respect to the regression coefficients, but not that
the outcome of the regression function has to be linear. Consequently, the XOR-
problem can be modeled by linear regression using a sinoidal transformation of the
independent variables x and y (multivariate regression).

"For the purposes of this dissertation a hyperplane is defined as a (d-1)-dimensional subset of the
standard vector space (R?, +, -), thus it is a generalization of a plane as a geometric object. It can be
spanned by d-1 linear independent vectors & € R

88 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

Figure 4.9: Three-dimensional illustration of the XOR-problem. The function values
f(z,y) € [0,1] of the binary XOR-function are indicated by steep shoulders along the
z-axis. The shifted nonlinear Gaussian hypercurve covers all four points (0,0, 0), (0,1, 1),
(1,0,1) and (1, 1,0). There is no plane — generated by a linear function — that covers these
four points, thus non-linearity is required.

Another, more recent method is the Support Vector Machine originally used to
model binary classification problems with two target classes. SVMs compute a so-
called maximum margin hyperplane (MMH) that defines the class boundary with
the highest possible discrimination between the two object classes. The MHH is
determined by the support vectors only, which are a subset of the training data set
that lies close to the class boundary. In general, SVMs achieve high classification
accuracies comparable to neural classifiers.

Robustness Regarding Fuzzy and Incomplete Information A further cri-
terion to be fulfilled by the employed machine learning algorithm is the ability to
deal with fuzzy or incomplete information as described in section 3.1.2, because
the framework especially focuses on knowledge and software engineering. The
required robustness is, amongst others, enabled by fuzzy (numeric) knowledge rep-
resentation and processing, which are intrinsic properties of connectionist models.
There already exist techniques that rely on fuzzy logic to deal with vague knowl-
edge. Xiaowei presented a multi-agent recommendation system that simulates hu-
man intelligence to provide recommendation to users [Xia06]. The recommenda-
tion system is based on fuzzy user profiles, fuzzy filtering and recommendation
agents. Xiaowei claims that the results of a case study showed that it “is more
convenient for users to find computer programs of their interest with the proposed
recommendation system”.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

&9

Technique Non-Linearity | Robustness | Classification | Prediction
Decision Tree ++ — ++ —
Linear Regression + + + ++
Naive Bayes -8 + ++ -
Neural Network ++ +++ +++ ++
Support Vector Machine ++° ++ +++ +10
Technique Interpretability (Negative) Constraints
Decision Tree +++ Exponential number of training examples
Linear Regression + Linear combination of regression coefficients
Naive Bayes + Features assumed to be independent
Neural Network —— Determination of the topology
Support Vector Machine — Determination of a kernel function

Table 4.2: Evaluation matrix comparing several fundamental techniques from machine
learning and statistics. Non-Linearity means that domain problems can still be addressed,
which are either nonlinearly separable in case of classification or are described by a nonlin-
ear function in case of prediction. Robustness is a nonfunctional requirement from section
3.1.2 and is both required for classification and prediction. Interpretability is meant as the
ability to expose and explain the results of classification or prediction, which is very high
in case of decision trees, for instance. Constraints are restrictions in the application of the
technique. The maximum rating is +++, the minimum is ———.

In comparison to symbolic systems, neural networks still work properly even
if a substantial part of their connectivity is malformed or destroyed. This fact was
already observed by Rosenberg in his speech synthesis system NETtalk in 1987.
After making random changes of varying size to the weights, the network was still
able to accomplish the speech synthesis task: “Random perturbations of the weights
uniformly distributed on the interval [—0.5,0.5] had little effect on the performance
of the network, and degradation was gradual with increasing damage.” [SR87]

The noise-robustness of the SYMBOCONN machine learning engine (MRNN)
was elaborated on in [DavO8b] when it was applied to the classification of a dataset
of molecules. In the presence of interfering noise up to a degree of 25.0%, a clas-
sification accuracy of 75.9% was achieved, which demonstrates the high robustness
of the framework engine.

There are also symbolic techniques which are able to deal with incomplete sym-
bolic information. Handling incomplete and changing rule-based knowledge means
that the correctness of a drawn conclusion may vary over time or that it only re-
mains true when its conditions (antecedent) are properly adjusted. Non-monotonic
reasoning is a branch of computational logics that allows to revise conclusions that
have been drawn based on uncertain propositions. This form of reasoning with
uncertainty is enabled by non-monotonic logics based on rationality and plausibil-
ity rather than on truth and valid conclusions like in monotonic logics. Monotony
is given when a formula A inferable from a theory 7" (a set of closed formulas),
T + A, stays inferable for all theories 7" that include 7, 7" O T. By contrast,
in non-monotonic logics, a new fact B added to the theory 77 = 7' U {B} may
invalidate the set of hitherto inferable formulas. Therefore non-monotonic reason-

90 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

ing is also called defeasible reasoning, since conclusions or assumptions that have
been made can be revised in light of new evidence. In this way, non-monotonic rea-
soning can deal with uncertain and changing symbolic knowledge and conclusions
are drawn by non-monotonic inference rules. Nevertheless, non-monotonic logics
as a deductive inference technique are not capable of learning by example, which
disqualifies them with respect to the universality requirement.

Table 4.2 sums up the strengths and weaknesses of the discussed machine learn-
ing techniques. The advantages speak for using a generic neural network as frame-
work engine in order to meet the identified framework requirements, in particular
the universality requirement.

4.4 The Modular Recurrent Neural Network

The Modular Recurrent Neural Network (MRNN) serves as core engine for the
SYMBOCONN framework, as shown by the framework architecture depicted in fig-
ure 3.6 in the previous chapter. Figure 4.10 illustrates the topology and the informa-
tion flow of the three-layered recurrent neural network. An important characteristic

A @ Neural Prediction /
Neuron Records TargetNodes

k,"’-h‘::::::::}_ ________ C C
EB B> St-1> B> S >B B Hidden State Layer
A A A

Figure 4.10: Schematic topology of the modular recurrent neural network MRNN used in
SYMBOCONN. The arrows indicate the internal state transition §; — Sy that takes place
in the hidden layer. The forward propagation phase is from left to right. The triangle Z;
is the external input vector at time ¢, 4,1 is the correspondingly predicted output vector.
The letters A, B and C' denote weight matrices. For classification as opposed to sequence
prediction, only one output unit ¢,y is used.

of the recurrent network design is its inherent temporal memory. Due to the tempo-
rally unfolded network topology [NZ99], the MRNN can learn the sequential struc-
ture of a set of node sequences. Thus, the logical order of the nodes is explicitly
modeled in the hidden state layer 5;_y, . .., S;1n_1. Since there are no branches in
the hidden layer, a linear discrete timeline T = (t-k, t-k+1, ..., t,t + 1,... t+m),
k,t,m € N is modeled, and thus the structural or temporal dimension of the input
and output data is explicit, as opposed to feed-forward networks like the multilayer
perceptron. This is necessary in order to represent and process time-indexed data

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 91

such as time series for trend prediction or forecast. Moreover, the representation
of structured information like software artifact graphs for the Design Pattern Ad-
viser or Change Impact Analysis (see figure 3.6) require a sequential order of their
constituents.

The block arrows depicted in figure 4.10 are called neuron records'? and serve
both as hidden and as context units, because §;_; provides a context for the recur-
sive computation of the subsequent hidden state s;. Thereby, one input vector &; or
output vector ;1 corresponds to one node of the knowledge graph defined in sec-
tion 3.2. The target sequence ;. 1, - . . , Y;+m (neural prediction) is computed based
on the history sequence T;_y, ..., Z;. The neuron records for m > 0 that result in
the sequence of target nodes represent the autonomous part of the network, where
external inputs x; are no longer available. In this segment of the topology, the net-
work is not triggered by external inputs anymore, but its internal state is propagated
autonomously, resulting in a momentum.

The modular composition of the network can also be represented as a UML
diagram, which is presented in figure 4.11.

Hidden StateLayer NeuronRecord

MRMNN

Figure 4.11: UML representation of the Modular Recurrent Neural Network (MRNN).
Each hidden state §; as shown in figure 4.10 is realized by a NeuronRecord. The num-
ber k+m of NeuronRecords is determined by the length of the history sequence and the
prediction horizon, which is the number of target nodes.

4.4.1 Recurrent Dynamics

The technical design of the MRNN is defined by the following recurrent model of
forward propagation. A is a R"™*% B is a R and C is a R%*" matrix. d; is
the dimensionality of the input space X and d, is the dimensionality of the output
space Y (feature spaces). h = dim(5;), (i = t-k, ..., t+m) is the dimensionality of
the (hidden) state layer S. h is independent from d; and ds and its concrete value
is determined at runtime by stepwise reduction from an initial value, as long as the
training process does not stagnate (and therefore sufficient network resources are
still provided). The same three matrix instances A, B and C are reused in every
neuron record of the network, which correspond to the constituents (indexed by

2NeuronRecords represent a virtual aggregation of conventional neurons, which are not explicit
in the composition of the MRNN. A NeuronRecord is an abstraction of several neurons.

92 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

t € T) of the training pattern.

f(BO+ AZ,), T=t—k
g, = f(BSro1 + AZ), t—k <7 <t (4.14)
f(Bngl)v T>1
G, = f(C5), VYreT (4.15)
Giri Y G, —1,....m 4.16)

As introduced above, 5; € S denotes the internal state at the discrete time step t. The
state layer consists of all these states and is the backbone for learning history-target
sequences as well as for predicting target nodes during the operative application.
The crucial recurrent equation 4.14 combines an external input &; with the previ-
ous state 5;_; to the subsequent state 5}, which indirectly depends on all foregoing

external inputs T;_y, ..., T; 1 and internal states S; g, ..., S;_1. In case of super-
vised network training, the target symbols ;. 1, . . ., Y;+m are known, while in case
of actual prediction, the output sequence 0;y1, . .., 0r1p, 1S computed solely based

on the respective inputs (equation 4.15). Here, the activations function is chosen as

sigmoid function f(z) = m, which provides an established nonlinear input

transformation'>.

The mathematical concept of dynamic systems introduced in the following is
useful to formalize the state transition behavior of recurrent neural networks like
the MRNN.

Definition 4.4.1: Dynamic System

A dynamic system is a mathematical model for time-dependent processes. It can be
formalized as a triple (S, T, ®) with @ : S xT — S, where S is the State- or Phase
spaceand T = Z = {...,—2,—1,0,1,2,...} is a discrete timeline. The system
always holds a current state s; € S and takes an element ¢ € 7" from the timeline
to proceed to the next state s, € .S via the transition function ®. Furthermore, ®
fulfills the following semigroup properties with the neutral element 0 € 7', written
in prefix-notation:

O(s,0) = s
O(D(s,t),u) = D(s,t+u)

The first equation represents the group property as identity function in the first ar-
gument: the system state does not change after O time steps. The second equation
is the semigroup-property that describes a state transition of ¢ 4+ u time steps, which
has the same effect as two separate transitions of time lags ¢ and u. The intermedi-
ate state s’ := ®(s, t) is reached after the first ¢ steps, a further transition of u steps
leads to the final state s” := ®(s,t + u).

The MRNN as core engine of the framework implements a dynamic system M RN N :

13 Alternatively other activation functions like f = tanh or radial basis functions can be used.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 93

S x X — S, while, in general, few neural networks behave like dynamic systems
[ADESO2]. The class of feed-forward networks is not able to implement a dynamic
system; this is mainly due to the lack of recurrent connections. But exactly this
dynamic system property, which is realized by the recurrent state layer, enables
explicit systematicity when processing structured knowledge. Structures such as
grammar rules or navigation sequences are composed of single constituents that
can be directly fed into the MRNN.

The MRNN is trained with a modified Backpropagation Through Time (BPTT)
algorithm [Cal03] (p. 52 et sqq.) that is able to process variably dimensional vectors
Z; and ¥, ,,,. There are no further external inputs after ¢, since the observed history
sequence is exhausted. For t+1, t+2, ... the network propagates activations only
through its hidden layer. The hidden temporal representation by the MRNN’s state
layer enables theoretically infinite long prediction sequences, since the MRNN pos-
sesses a continuous internal state layer [GSWO05]. Thereby, the current state (5})en
is repeatedly propagated through the state transition matrix B, even when external
inputs 7; are no longer available.

4.4.2 Processing of Variable Node Sequences

Training patterns of varying length are a challenge to connectionist models, as
standard feed-forward networks with fixed topology cannot directly process input
and target sequences of varying length. In general, the topology of a neural net-
work determines the structure of the patterns that can be processed and vice versa.
This means that a variably sized input pattern consisting of £ single components
Z1, ..., T implies a network with & input records (or neurons in the terminology of
standard networks). The network will be trained on this pattern structure, such that
its topology is already predetermined. As a consequence, further patterns can only
be processed if they hold the same structure.

The case is exactly converse with regard to the MRNN, since the heteroge-
neous training patterns determine the particular structure of the neural network.
A non-static network topology allows to dynamically vary the size of the hidden
state layer (the number of comprised neuron records) as shown by figure 4.10 in
the previous section. When applied to navigation recommendation, for example,
not only sequences of the trained length should be processable, but also variably
long history sequences have to be exploited to predict the most likely target se-
quence. In order to process variably long node sequences of the form (Z;_y, ..., Z,
Yit1, - - - » Yem)kmen as part of the same training set, the neural network has to adapt
to the number of history and target nodes in a single sequence at runtime. During
one training epoch'®, the network adapts at runtime to the individual structure of the
respective node sequence with its history and target part. Depending on the current
input pattern length, which corresponds to the length of the past user navigation for
instance, the network adapts to the given length and propagates the input vectors

A training epoch is a single training cycle through all patterns contained in the training set.

94 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

through the hidden layer.

Due to the modular design of the MRNN model, it is not only possible to treat
variably long training sequences, but even to handle arbitrarily dimensioned input
and target vectors (see appendix A.2.3).

4.4.3 Modified Backpropagation Training Algorithm

Different types of training algorithms like supervised, unsupervised, reinforcement,
etc., as introduced in section 2.5, can be employed to train neural networks. For
classification and prediction tasks, supervised training is used to determine a set
of network weights that best models the domain-specific problem. The oldest and
most simple learning principle for neural networks is Hebb learning, which was
formulated by Donald Hebb in 1949 [Heb49].

Aw;; =105 ; 4.17)

As depicted in figure 4.12, the network weight w;; between neuron ¢ and j is adapted
based on the learning rate 7, the signal coming from neuron ¢, and the output o; of
neuron j, called activation o; = f(net;). The underlying idea is that neurons which
are often activated together (the neuron “fires”) establish a stronger connection be-
tween them, expressed by the amount of the respective network weight!'>. Both
the input signal z; and the activation o; contribute to the magnitude of the weight
adaption.

A more modern and effective learning rule is the Delta rule, which is also known
as Widrow-Hoff rule

Awij =1 (t; = 0;) - f'(net;) - s, (4.18)
——
9

where [is the activation function as defined by Def. 4.1.2. The weight change
is dependent on the error value d;, which is the backpropagated deviation between
expected output and actual output. A high error leads to a bigger weight adaption
in order to reduce the output deviation in the next forward propagation. In case of
a linear activation function, the derivation factor f’(net;) in formula 4.18 can be
omitted. Since the ¢;, j = 1,...,n are the learning targets that serve as reference
values, the delta rule is used by the class of supervised training algorithms.

The algorithm used in the SYMBOCONN framework for training the MRNN
is a variant of the established Backpropagation Through Time (BPTT) [RHWS86]
algorithm and makes use of the Delta rule. It incorporates a few novel properties
that enable the training of a modular RNN which operates on multi-dimensional
data at each time step and is able to train the network despite missing inputs or
targets at certain time steps. Furthermore, the whole forward pass of our algorithm
is based on matrix operations, which are computationally more elegant and easier

13«what fires together, wires together”.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 95

Figure 4.12: Two neurons 4 and j interacting via a direct connection, whose weight w;;
can be adjusted according to the Hebbian learning rule or the Delta rule.

to understand than multi-indices referring to single neurons. These and some minor
properties advance the standard BPTT algorithm.

In fact, the SYMBOCONN framework allows for plugging in'¢ several training
algorithms as subclasses of the abstract class TrainingAlgorithm which is shown
in figure 4.13. Typically, the algorithm implementation is shielded from the access
of the client, which is the Controller from subsystem Control in this case. Three

TrainingAlgorithm

1.t traininglteration() : void
MRNN / Z%
BackPropagationThroughTime QuasiNew ton Quickpropagation

+ traininglteration() : void + traininglteration() : void + traininglteration() : void

Figure 4.13: Generic plug-in architecture for training algorithms. QuasiNewton and
QuickPropagation are alternative training algorithms that can be used to train the MRNN.
They are more efficient in theory.

algorithms with different characteristics concerning memory and time efficiency are
available in the SYMBOCONN framework, which all were adapted to the modular
structure of the MRNN. Another training algorithm which was not implemented but
could be used to train the MRNN is Real-Time Recurrent Learning (RTRL) [WZ89].
For all applications studied in this dissertation, the modified BPTT algorithm was
employed, since the best results were achieved with this nonlinear and iterative
optimization method.

Like many stochastic problems, network training is an optimization problem that
is solved by a variant of the Least Squares (LS) method. This method minimizes
the difference between the observed output ¢ and the expected output ¢ of a model

16This structure partially follows the Strategy design pattern, which is described in section 6.3.5.

96 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

function F, 0 = F(Z). The functional'” L to be minimized has the general form

n

L: F(Z) — Z(yi — F(2:))” =) (i — 01)° (4.19)

i=1

In comparison to the classical least square method, the model function F' is realized
by a neural network here, which makes the optimization process more complex
because [’ is nonlinear.

Adapted to the case of a recurrent neural network that realizes this model func-
tion, the situation becomes even more complex, because the timeline 7' has to
be considered as well, meaning that the optimization also depends on the time-
dependent input'® x(7) and state s(7) for all steps 7 € T

Independent of the length £ of the history sequence or the length m of the tar-
get sequence, the weight matrices A, B and C are continuously adjusted'® in the
training process, because they are reused at each time step 7. This implies that there
are exactly three matrix instances for the training of all variably long sequences,
independent of the respective time step. As described by Hinton et al. [JH92], it
is important to favor simpler network topologies with less weights to obtain a high
generalization capability, which can be accomplished by weight sharing. Penalty
terms that penalize the emergence of big weight values and foster weights close to
zero are another way of reducing complexity.

4.4.3.1 Forward Pass

We now describe how the computation of the complete forward propagation is car-
ried out. Firstly, we recall the network topology by figure 4.14, which serves as
basis for the computation of the formulas 4.20 to 4.25.

s 4
>:._k > B.. B>ASM> B>AS. > B.. B
A A A

Figure 4.14: Copy of figure 4.10 recalling the three-layered structure of the MRNN. The
block arrows indicate the internal state transition 8y — S;y1. ¥ is the external input vector
at time ¢, 4} 11 is the correspondingly predicted output vector.

The parameters to optimize are the network weights w;’\f e M € {AB,C}

177, is called a functional, because it is a function that takes functions as arguments.
8Corresponding to the length of the processed node sequence.
19The continuous weight adaption is called online training, as opposed to a batch training mode.

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 97

of the three time-invariant weight matrices>°, whose horizontal and vertical dimen-
sionalities row (M), col(M) are determined by the network topology.

B Z;lilwl(]A) xi(T)a T:t—]{?
netg-)(T) - Z?Q wz((]A) z;i(T) + Z?:l wz(jB) si(t—1),t—k<71<t
E?:lwif)si(7_1)7 t+1<7<t+m,
Jj=1...,h (4.20)
si(t) = fnet??(r)), j=1,....h 4.21)
h
”etgc)(T) = sz(f Vsi(r), j=1,....d (4.22)
=1
0i(r) = flnet\ (7)), j=1,....d (4.23)
1 &
Ey(r) = 5D (u;(r) = 0;(7))* (4.24)
j=1
t+m
E = > Y Eln) (4.25)
peTS T=t+1

The formulas 4.20 to 4.25 describe the complete forward propagation computed by
the MRNN, detailing the matrix notation used in formula 4.14. Furthermore, the
time is explicitly denoted by the free variable 7. The j-th net input neth) (1) of the
hidden layer component indexed by 7 is computed as a result of the external input
and the previous state s;(7—1). For the first external input Z,_y, there is no previous
internal state yet, and after 7 = ¢, the forward propagation is solely computed as
a continuation of the current internal state s(7). Thereby, the global error function
E on the whole training set 7'S is to be minimized, where 0'is the observed output
and ¥/ is the target vector at a single time step 7 € 1". The local error function E, is
summed over all m target nodes of a single pattern p (see Def. 3.2.4 in chapter 3)

and the factor % is set in order to simplify the computation of the first derivative®'.

4.4.3.2 Backward Pass

The chain rule of differentiation is especially important for the computation of the
single weight adjustments in each of the three network layers. Since the error or
objective function E := E,(M) : R** — R, a = row(M), b = col(M) should
be minimized, we are interested in its first derivative with respect to the network
weights, VE = (2£. 9L DE) iy € M.

Owir’ Owiz’ " " "7 OQwgy

20.M i an upper index that indicates the concerned weight matrix M € {A, B, C}.

= F, is minimized, then also F, is minimized.
2lyf éEp d, then also F, d

98 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

B A B
Et—lzf(netHB) netf _Zi:xiwij +Zsiwij

Figure 4.15: Assignment of the formulas to the schematic network topology for one time
step of the forward propagation phase. The external input signal & at time ¢ is fed in through

the matrix A first, f(z) = m is the used sigmoid activation function.

Definition 4.4.2: Chain Rule of Differentiation
The gradient of the error function E is computed as function of the weights.

OE _ OE Jo; Onet;
8wij N 80]' anetj Gwij

(4.26)

The chain rule is needed because £, is no direct function of the weights w;;, but the
weights serve as input for two constituent functions, namely net and 6 = f(net).
Since the activation function f is the logistic function, its first derivative simplifies
to an easily computable term:

(M)

af _ efnetj
8net§-M) (1+ e_”et?@)?
1 4 ety 1
(et (14 ety
1 1 4.27)
- —net(-M> (1 N —net(-M) >
(I+e ™%) (14+e7% ")

= f(net™) (1 = f(net™))
. Sj(]_—Sj), M:B,]:1,,h
S loj(1—0j), M=C, j=1,...,d

The specialty of our training algorithm is the backpropagation of the gradient
information through the whole network to the proper entries of all three matrices,

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 99

while the size of the network is completely variable. Thereby, the nonlinear acti-
vation function f has to be passed in reverse direction, depicted in figure 4.16 and
4.17. The derivative of the local error function F, to the weight matrix C'is given

Cc Cc
<st xk {B..B <St-1 <B < S <B ..B <St+m 1<
A A A

Figure 4.16: The depicted block arrows in reverse direction show the backward infor-
mation propagation. A forward pass is followed by a backward pass during training,
which is called Backpropagation Through Time (BPTT) characterized by the state transi-
tiont — ¢t — 1.

by
0E, 42
. 22y —0p) F(neti?) s, (4.28)
w: - S ~ J/
iJ 500
J

The error backpropagation starts at the output layer, where 6(°) is sent back
through the matrix C' at first:

570 = WD =M (et?)m), G=1.dp (@429)

da
Ny = Y 6w, j=1,....h (4.30)
k=1

The error for a hidden record 3, is composed of both the external error §(“)(7)
and the error §(7)(7+1) to be backpropagated from the subsequent? hidden record
S;11. Before the error of each component of the hidden layer can be computed, the
external error 6°(7) and the error of the subsequent state 5,1 have to be available.
¢(M) is the internal error after backpropagation of the external error ™) through

22 Previous in terms of backpropagation, subsequent in terms of forward propagation.

100 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

the respective matrix M as done in formula 4.30 and 4.31.

h

Py = Yo+, i=1,..0 (4.31)
k=1
0, T=t+m

5(r) = Pt @) [6P() + V)], t<r<t4m 432)
fnet? () 7 (7). Tt

Figure 4.17 clarifies the error flow through the network, depending on the respec-
tive matrix and on the time step t. For 7 = t-k, t-k+1, ..., t-1 there is no target

5 =(y,-0,)f (net”)

(B

ZS,CBW,V.B +Zé‘kcw,qc
k k
8 = F (et 35

@ 35 @+ 0w,

Figure 4.17: Assignment of the (error) gradient computation formulas to the schematic

network topology for one time step. The reversed block arrows show the backpropagation of

the output deviation (y; — o;) from the expected output (target) through the weight matrices
(c)) _

C and B. The first derivation of the activation function at the output layer is f’(net J

0j(1 = 0j).

available, thus the error (5J(-B) (7) consists only of the backpropagated error €7 (1) as
expressed by the third case 7 < t of formula 4.32. The error 6?) is computed under
consideration of the sigmoid function f in each record of the hidden layer and will
be required for adapting the weight matrices A and B later on. Similar to the direct

computation of the external error (), the first derivative f’ (neth)) = ‘9tf(5 of f
net
J

is needed here. The backpropagation principle of formula 4.31 and 4.32 is crucial to
the whole backpropagation procedure which allows to distribute the external error
across the activation functions and across arbitrarily many hidden layers (here we
have only one, represented by the matrix B). The weighted sum net®)(7) of the
input vector ', and the previous state vector 5,_; propagated through the matrix
A and B, respectively, has to be stored during the forward propagation. Now it is

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 101

required for the computation of the gradient information ¢ J(.B) in formula 4.32.

Due to the analytically unknown error function £ defined by formula 4.25 and
the nonlinear transformation in the network, it is not possible to give a solution
to the optimization problem in a closed form. The network weights have to be
approximated iteratively by gradient descent.

Weight Adaption Due to the different weight matrices A, B and (', a separate
adaption has to be computed for each matrix. Time indices (7) are omitted where
they are equal for all participating terms. During the backpropagation procedure,
the output matrix C' is first adapted by means of the corresponding gradient ggf):

c
8net§) 422
8ngc) '
() 4.33)
<@ 8Ep 4.26 ’ ©) 8n€tj 4.
95 = @ —(y; — o)) f (netj)w
) iJ
- _550) Siy
where: = 1,...,h, 7 = 1,...,ds and s; takes the role of the external input in the

delta rule 4.18. Normally, the gradient of a function &£ : R" — R is a column
vector with n entries; however, here the gradient has two indices corresponding
to the weight matrix that determines the value of £,. The gradient GP) (1) of the
hidden layer is computed by

g(B)(T) _ OEy(7) 4.26 0E, 0o, 3net§-3)
Y ow® 905 9net?® ou® 434
:—5]5(7'—1—1)&(7‘), i,j=1,...,h

Finally, the error §(*) for the input matrix A has to be computed based on the
error of the hidden layer (%) at the same time step 7:

onet'®
I 2 g, i=1,....d, (4.35)
ow'Y
ij
A OF, 426, 4.32 B ,
gj : = aw(i) = —(5]()(7') T)= 1, ceey h (436)
]

The weights of all three matrices have to be adjusted contrarily to the gradient di-
rection, since the minimum of the error function should be approached:
Awi? = —gi (4.37)

ol = wd A", Vi g, YM € {A,B,C} (4.38)

¥)

102 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

The magnitude of weight change is controlled by the learning rate € [0, 1], re-
sulting in the adapted weight w(). All matrices are adapted immediately at each
time step 7 of the same tralmng pattern p, which is called online learning mode.
Depending on the learning rate, the error decreases monotonically or the training
progress is interwoven by momentary hazards of increased training error £. Figure
4.18 shows the temporal development of the vector-valued training error with its
single error components as colored curves.

Delta Charting - Error kraces
MidDewv: 0,147 Batch runs p.s.: 4.672589
MaxDew: 0.02593247 RelDev: 14, 7857% [42309]

Actual inputftarget lengths
N |1 3 ouT

Figure 4.18: Visualization of the training process showing the temporal development of
the vector-valued training error. The single error curves stand for the do-many different
error components [y;(7) — 0;(7)], 7 = 1,...,da, 7 > t in the output layer, averaged over
T.

4.4.4 Experiment: Illustration of Intelligent Learning

In this section, we demonstrate the learning capability of the SYMBOCONN ma-
chine learning engine (MRNN), especially its ability of learning to ignore insignif-
icant information. We use a learning task with two degrees of difficulty to illustrate
what connectionist learning means in practice.

The difficulty of connectionist machine learning tasks and the time required
to learn them (training speed) are correlated. In general, their relationship is not
proportional, but all practical evaluations of the MRNN done for this dissertation
showed a strong dependence of both magnitudes. The harder the task, the more
time is required for convergence of the current network output with respect to the
expected output, which also applies to the learning tasks discussed below. Thus the
different degrees of difficulty were also reflected in the training behavior.

The following scenario is derived from a classification aimed at a biological
dataset, which was accomplished by the SYMBOCONN framework [DavO8b]. The
connectionist classifier was applied to the publicly available MUSK?2 classification
benchmark - a pharmaceutical dataset of molecule data. These molecules can be

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 103

considered as multi-represented objects as defined in section 3.2 and are to be di-
vided into two distinct classes “0” and “1”. The task is to identify the significant
information contained in the training examples that determines whether a given
molecule belongs to class “0” or “1”. The class label indicates whether a molecule
has the phenotypical musk property or whether it is non-musk?. These molecules,
of which 39 are judged by human experts to be musks and the remaining 63 are
judged to be non-musks, appear in 6,598 different conformations. In molecular bi-
ology or biochemistry a conformation is a structural arrangement which determines
the molecule’s shape by the kind of folding. The molecules are described by 166
attributes that are used to build a straight-forward feature vector representation:

—

Ty = (21,. .., T162, 331637---,3516@)7 r€R (4.39)

Vv Vv
f1to f162 f163 to f166

The attributes f1 to f162 are distances that are measured in hundredths of Angstroms,
while the remaining attributes are categorical.

During the evaluation of this case study, we found an interesting characteriza-
tion of connectionist learning and its self-learning capabilities. We conducted two
learning tasks of different complexity that were both accomplished by the SYMBO-
CONN engine without being taught where to “search” for the relevant information
to classify the molecules.

The Easy Classification Task The training examples for the neural network
consist of two input nodes and one target node, which represents the respective
class membership. The input sequence is heterogeneous, since its first node directly
carries the relevant class information encoded by two bits, while its second node
represents the molecule information. Thus the first input node and the target node
are identical. For example, the first input node states that the molecule is a musk
and the second input node carries the feature values (f; = 49, fo = 11,..., figs =
—191, fie6 = 42).

Only for this scenario, the system was implicitly told the correct class of the
respective molecule by an additional input node. For the actual classification task
performed in [DavO8b], the class label was obviously not fed in as input, but had
to be predicted by the system. However, this experiment evaluates the capability
of learning the significant information for correctly classifying molecules. The sys-
tem is provided with both the class label and the feature values of the molecule.
The corresponding training data is shown in figure 4.19. The classification task is
easy since the class label that should be predicted by the network is fed in as an
additional input besides the feature values of the respective molecule. Hence, the
task degenerates to recognizing that the correct class information to be predicted is
always contained in the first node of the input sequence, while ignoring the second

B “Musk odor is a specific and clearly identifiable sensation, although the mechanisms underlying
it are poorly understood. Musk odor is determined almost entirely by steric (i.e., “molecular shape”)
effects (Ohloff, 1986).” [DJILLP94].

104 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

class-
label [Uj

r N
[0} s 42
St-1 St 1 -191
-142
l | -75
11
class- molecule 49
label feature vector \ J

Figure 4.19: Training setup of the MRNN Figure 4.20: Corresponding to figure 4.19,
for the learning experiment (easy task) de- the second input node is the vector repre-
scribed in this paragraph. The network sentation of an exemplary molecule. Both
topology (see section 4.4) corresponds to the first input vector and the target vector

the training examples that consist of twoin- carry the same information (0, 1) — the class
put nodes and one target node. label of the current molecule.
node.

During the training phase, the MRNN indeed focused on the first input node that
directly replicates the class information of the target node and completely ignored
the second input node, which is the optimal problem solution. Since the first node
explicitly states the class label of an object, while the feature values only indirectly
and partially determine the object’s class, the MRNN focused on the decisive piece
of information. It has learned from the empirical data that the second information
unit, which is even of 83-fold vector dimensionality (166 = 83 - 2) compared to
the first node, is completely irrelevant here and can thus be ignored for the deter-
mination of the object class. The non-trivial achievement of the neural network
is that it autonomously identified the significance without being told which piece
of information is decisive. On the contrary, the network was even biased with the
superfluous high-dimensional second feature vector.

The Hard Classification Task In the second part of the learning experiment,
the class information is not fed into the network as a separate input node, but is
integrated into the molecule feature vector f This is achieved by spreading the
object type (class) information onto the feature vector of the multi-represented ob-
ject via the function spr (see also section 5.3). This xor-convolution of type and
feature value information makes it difficult to extract the type information from
the vector representation d, since this requires high systematicity. Both class la-
bels “0”:= ¢; = (0,1) and “1”:= & = (1,0) are encoded by vectors of the same

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 105

length, such that there is no possibility of differentiating between the classes upon
distinct code lengths. For the harder learning task, an exemplary training pattern
input — target for the MRNN is of the following shape:

[d := spr(binary(quantize(f)),&)] — & (4.40)
5
spr((0,0,1,0),(1,0)) ¥ (1,1,0,1,0,0,1,0) +— (1,0) (4.41)

After quantizing the numerical feature vectors (lossy transformation with quanti-
zation factor ¢) and converting the discretized result to binary vectors, these were
spread with the class information ¢; or ¢; respectively. After each numeric fea-
ture value was quantized into a range of ¢ = 8 ordinal features, these were binary
encoded into log, 8 = 3 bits. For a numerical feature f; with the value range
[0, 50], the following mappings would be conducted, for example: (f; = 5.5) — 0,
(f2=23.7) 4, (fs = 49.5) — 7, etc.

Finally, the obtained binary vector b was spread (convoluted) with the unique
class information?* &;. The dimensionality of the final vector d is calculated based
on the original feature vector f as follows: dim(d) = (dim(f) - log, q) - dim(?).
The useless information in form of the vector b can be interpreted as noise that is
imposed on the class information in a systematic way. Figure 4.21 visualizes both
the network topology and the vector representation.

After accomplishing the training phase, untrained molecules should again be
classified. Therefore, these objects are assigned to the correct class label by spread-
ing their feature vector with the respective type code vector, as done before for the
training examples. They are now fed into the network and the classification ac-
curacy is measured for all test samples. The MRNN successfully discovered the
convoluted type information from the feature values. One hundred percent of the
test objects were classified properly, even if the type information is xored in this
systematic way (see spreading function) with the objects’ feature values.

This finding may be quite astonishing to the reader, because the connectionist
system achieves better results than learning the training examples by rote. Rote
learning is a learning technique which avoids the understanding of a subject and
instead focuses on memorization [CV08]. Doing better than learning by rote, that is
providing a certain generalization capability, is commonly expected from connec-
tionist systems and can be understood as intelligent behavior according to chapter
1. In the present learning scenario, the network is not told which information is reli-
able in determining the correct object class with a certainty of one hundred percent.
Hence, the proper information selection was self-learned by the MRNN. This form
of intelligent behavior even contradicts the usual notion of “garbage in — garbage
out” [SJOO] to some extent, since the network not only picks the relevant vector
components, but even recognizes the systematicity of the xor-operator when com-
bining the useless transformed feature vector b with the decisive bit sequence ¢,

24Encoded by a spreading code in terms of section 5.3.

106 CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE

P
— o
S A

class-

label T

0

0

1

1

0

0

0

1

Molecule feature 1

vector with

class information) L
Figure 4.22: Vector representation 7; :=

d of molecule features that was discretized

Figure 4.21: Training setup with single in-
and digitized first and then xor-ed with the

put node that carries both the feature values
class information 7,41 = (0, 1), resulting

in a dimensionality of dim(%;) = 2324.
The setup corresponds to figure 4.21.

and the class information of the respective
molecule.

© = 1, 2. Thus, it could be proposed that the connectionist system is smarter than
required for usual supervised learning.

These two experimental tasks show that the connectionist model indeed pos-
sesses an “intelligent” learning capability as defined in the very beginning of this
chapter: the system succeeds in recognizing regularities or patterns in a set of ex-
amples and separates them from the irregularities. In this case, the irregularities
are given by the quantized and binary vector b, resulting from the feature vector f
which is not necessary for predicting the correct class label. This requires consider-
able systematicity from the connectionist system, which provides further evidence
for the connectionist capability of systematic processing discussed in chapter 2.

4.5 Conclusion

In this chapter, we introduced neural networks as a connectionist machine learning
method. We defined the basic architecture of a feed-forward network and we gave
an overview of further network types. In a short excursion to information theory,
we presented the role of information and its representation, which was classified by
concepts such as the information entropy or the Kolmogorov complexity. Subse-
quently, we discussed the rationale for a connectionist framework engine and the
benefits of neural networks and other machine learning techniques.

Furthermore, the design of the SYMBOCONN framework core, the Modular Re-

CHAPTER 4. MACHINE LEARNING AND THE FRAMEWORK ENGINE 107

current Neural Network (MRNN) and its training algorithm were described, which
represent the backbone of the connectionist learning capability. Finally, connec-
tionist learning was illustrated from the practical point of view by a learning exper-
iment based on the classification of molecule data. The goal of this experiment was
to make the machine learning engine distinguish between significant and insignif-
icant information in a self-learning process, which clearly showed the capabilities
of connectionist machine learning.

Chapter 5

Connectionist Learning of Symbolic
Structures

The SYMBOCONN framework described in chapter 3 must be able to process struc-
tured symbolic knowledge and thereby provide a degree of systematicity. Compo-
sitional structures that are composed of simple or complex entities can be described
by formal grammars. In order to open up structured contents to connectionist mod-
els, we make these contents machine learnable by employing the theory of formal
languages according to the Chomsky hierarchy [SchOl1]. For this purpose, a trans-
formation into a grammatical formulation is required.

In the first step of developing connectionist-symbolic capabilities, the context-
free grammar productions are composed of symbolic constituents which do not con-
tain actual domain content, such as textual or numerical attribute values.

In a second step, the context-free Chomsky grammars are extended by a typing
mechanism, which overcomes the limitations of untyped grammars and enables to
consider simple and complex types. Formal grammars are often untyped; for ex-
ample, the Chomsky hierarchy defines grammar productions whose variables and
terminal symbols are not assigned to certain categories (types). By contrast, cat-
egorical or typed grammars are often used in (computer) linguistics and natural
language processing, where the constituents of the productions are assigned to cate-
gories such as noun, verb or adjective [Lam61, Wes00] (see also syntactic structure
tree, phrase structure grammar). The grammar rules to be learned by the SYM-
BOCONN engine can be advanced to content-based rules as described in section
3.2. For this purpose, the atomic symbols are substituted by multi-represented ob-
jects that reflect actual domain contents in addition to the structure reflected by the
grammar. The resulting semantically rich complex structures are learnable by the
framework and are especially suitable to describe knowledge from the disciplines
of software and knowledge engineering.

We introduce a spread spectrum encoding technique that improves the robust-
ness of connectionist classification against noise — in the case of structured data
as well, for example, in UML diagrams. At the end of this chapter, a connec-
tionist technique is presented that enables to represent and transform non-flat but

109

110 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

tree-shaped knowledge structures. By learning to holistically transform symbolic
expressions according to the distributive law, we demonstrate a realization of the
generalization hierarchy presented in section 3.1.1.2. Providing different levels of
generalization is a major functional requirement of the SYMBOCONN framework.
A specific topology and training configuration turns the MRNN into a Recursive
Auto-Associative Memory (RAAM), a special neural network for holistic process-
ing of recursively nested structures. That is, the SYMBOCONN framework supports
RAAM networks as special configurations of the more generic MRNN. Its mod-
ular composition enables the reproduction of a RAAM network by presenting the
training patterns in a prescribed order.

In software engineering, holistic processing is useful to represent tree-shaped
knowledge such as class hierarchies or to incorporate — by machine learning — model
transformations on tree- or graph-based structures such as class diagrams according
to given design patterns.

5.1 Incorporating Domain Knowledge in Form of
Rules

Symbolic knowledge is often represented in the form of logics or rules, while rules
can be viewed as a special case of logics since they mainly correspond to a log-
ical implication A — B. Rule-based domain knowledge represents a pillar of
knowledge-based disciplines and applications, which is comprehensible and trace-
able, at least on a smaller scale.

Rule-based systems, which are also referred to as knowledge-based systems,
have been the standard approach to intelligent symbolic information processing,
as demonstrated by Newell and Simon in their original work on “Human Problem
Solving” [NS72]. An early system was MYCIN, which was based on a relatively
simple inference engine with a knowledge base of less than 1,000 rules. It was
augmented by a numerical uncertainty model [SB75]. Further prominent expert
systems were XCON [BVO89, Svi90] and XSEL [MMS89].

A significant problem of expert systems is that they must be constantly updated
with new information. A further disadvantage of a rule-based approach to an intelli-
gent system which can operate on different domains is that the knowledge is gener-
ally too broad and diverse to be represented completely. Thus, either the considered
rule set is too narrow to cover all relevant domain problems or the rule set becomes
large and, as a result, impossible to maintain. An even worse case presents itself
when knowledge is not readily available or is difficult to elicit from humans due
to cognitive or organizational limitations. If knowledge was successfully elicited,
then the question of whether the conclusions given by the domain experts — the con-
sequent part of a rule — are valid or how they can be validated, arises. So-called
knowledge engineers, who conduct or support the knowledge extraction process
and have to be kept available for updates of the rule-base, are required. Again, the
maintenance of the corpus of rules, of which some are frequently and others less

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 111

frequently used, represents a significant challenge.

For these and other reasons, the development and commercial application of ex-
pert systems came to a halt in the 1980s. But the field of rule-based systems has
never declined [Dur96]. In fact, it experienced a revival in the form of the Seman-
tic Web initiative, which advanced the symbolic approach to artificial intelligence.
Still, rules are an important component of the symbolic knowledge-representation
and reasoning process. For example, the Semantic Web Rule Language (SWRL) is
a semantic web standard for defining domain-specific rules.

Due to the described importance of symbolic knowledge, the functionality of
rule learning must be integrated into the SYMBOCONN framework. The framework
must be able to incorporate domain knowledge in the form of rules. Often, a small
set of rules is enough to train the neural network and to acquire a basic understand-
ing of the domain. Based on this prior knowledge, the target domain is further
discovered by learning from examples, that is, learning from empirical data and not
from symbolic rules. This step represents a fuzzyfication, since the observational
knowledge can partially contradict the learned rules. Finally, to close the process of
knowledge acquisition, the hybrid rule-based and empirical knowledge will again
be elicited from the machine learning engine. The inverse process of extracting
rules from the trained neural network is possible in principle [ZJC03] and should
be addressed by the SYMBOCONN framework in scope of future work. In the fol-
lowing, we will see that the MRNN machine learning engine facilitates the rule
extraction process, since its topology corresponds to the structure of context-free or
context-sensitive rules.

We introduce the use of formal grammars to explicitly specify structured knowl-
edge in a formal and hence machine-learnable way. Compositional structures that
are composed of simple and complex entities can be described by formal grammars.
Thus, knowledge which is represented in semantically rich complex structures, as
for example, the models in software development are, becomes learnable by the
SYMBOCONN framework.

Definition 5.1.1: Context-Free Rule
Let X be the alphabet of terminal symbols (lowercase letters) and V' the set of vari-
ables or non-terminal symbols, V' N ¥ = () (capital letters). Context-free grammars
consist of production rules of the form

A—-ay...opn, A€V o€ (ZUV) (5.1)

Thereby, the left rule sides always consist of a single variable A € V), while the
right sides may contain terminal symbols or variables o; € > U V.

Recurrent neural networks have already been applied to incorporate context-
free grammars and shown to be capable of classifying or predicting words w € L
of the generated language L. These words are sequences of terminal symbols of
the underlying alphabet >.. Different types of RNNs like Elman’s Simple Recurrent
Network (SRN) or Jordan Nets were utilized to classify words in terms of member-
shipw € Lorw ¢ L — the so-called word problem [SchO1] (cf. section 5.1). The

112 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

SYMBOCONN framework should be able to learn symbolic information schemas
such as document grammars either by example or by directly learning the rule cor-
pus. As an example, a structured document is depicted in figure 5.1, which is valid
with respect to a certain context-free grammar. Thus, the document is an instance of
the grammar. With regard to the implicit multiplicities for the elements <7R> and

=TABLE=

=TBODY =

=TDr=
Shady Grove @eulian) (Overthe _Rl\-'er,) (— Darian)
Charlie

=TO= =TO=

Figure 5.1: Graphical representation of an instance of the HTML-Table schema (grammar).
Source: http://www.w3.0rg/TR/DOM-Level-2-Core/introduction.html.

<TD>, the exemplary table definition in figure 5.1 is an instance of the following
grammar with additional auxiliary variables V; € V, 1 =1, 2:

P:={
<TABLE > = <TBODY >,
<TBODY > = Vi,
Vi = <TR>V,
Vi = ¢
<TR> = V,
Vo = <TD >V,
Vo = ¢
<TD > = {ShadyGrove, Aeolian, OvertheRiver, Dorian}

}

Definition 5.1.2: Context-Sensitive Rule
The context-sensitive rule

aBy — afy, BeV, ap,ye(VUI) (5.2)
substitutes the variable B only in the context of being enclosed by « and ~.

Even a context-sensitive rule can theoretically be recognized by neural networks
with the appropriate learning algorithm. The expressiveness of context-sensitive

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 113

grammars is high, which, in practice, makes it quite difficult to learn context-
sensitive grammars. Consider the context-sensitive rule « By — /37y, which allows
a mapping of B to 3 only in the context of o and . Despite its high expressiveness,
such a rule is learnable by the MRNN, since the network possesses three layers,
two of them being endowed with a nonlinear activation function. The appropriate
topology for this task is shown in figure 5.2. The structure of the recurrent neural
network adapts to the structure of the rule. In the case of multilayer perceptrons
with feed-forward propagation, the data is usually fitted to the network topology,
which is not feasible for rule-based knowledge.

Figure 5.2: Topology of the SYMBOCONN machine learning engine for context-sensitive
learning of the production aB~y — «af37v. The variable B is substituted by the terminal
symbol 3 only in the context of being enclosed by « and ~.

Learning context-free and context-sensitive expert rules is not a simple task for
neural networks and not all network types are appropriate for this task. An actual
example of domain knowledge which is represented and processed in the form of
context-sensitive If . .. Then . . . rules is knowledge about business processes, which
can be formalized by decision tables and decision rules. Many insurance companies
and banks use this representation to describe the conditions and actions of their
business processes.

Figure 5.3 shows an incomplete but consistent decision table as could be used
to describe a business process in a bank.

Consistency 1s implicitly guaranteed by a connectionist realization, since non-
functional mappings of conditions to actions cannot be learned by neural networks
as explained by section A.2.1. The shown table is incomplete, since the rules for
four combinations of conditions are missing. What happens if the credit line is ex-
ceeded, the payment behavior is not blameless, and the overdrawn amount is below
EUR 500,-? Thatis, Y N Y ~ 7, since for this combination of conditions, there
is no corresponding action in the decision table 5.3. Connectionist incorporation of
business rules provides the chance to handle combinations of rule conditions that
have not been given by the decision table, if the conditions and actions are repre-
sented in a content-based manner by means of content-based rules as defined in
section 3.2. This is a generalization task of Level 1 or 2 according to the hierarchy
of section 3.1.1.2, because either the realizations of the conditions appear in new
combinations, or they occur in new syntactical positions. The example Y N Y — 7

114 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

Decision Table for Cashing Checks “
Y

Credit line exceeded? Y Y Y
Conditions Payment behavior blameless? Y Y N o
Exceedance < EUR 500,- ? Y N = Y
Cash the check X X X
Actions Don'‘t cash the check X
Present new conditions X

Figure 5.3: Exemplary and simplified decision table for the business process cash check
of a bank. The table is incomplete, since not all 23 = 8 combinations of the given binary
conditions are defined as antecedent part of a rule. Legend: Y = Yes, N = No, - = irrelevant,
X = execute action.

requires Level 1 generalization, since the realization N’ of the second condition
has already appeared at the second position, but not in this combination.

The generalization performance of the system could easily be measured by train-
ing the MRNN on incomplete decision tables, while the corresponding complete
tables are available for testing. With a representative and comprehensive dataset, an
acceptable generalization rate is likely to be achieved, since Level 1 or 2 general-
ization are significantly easier tasks than handling novel entities (Level 3).

Another technique for representing domain knowledge with rules is the Seman-
tic Web Rule Language mentioned above. These rules are specified in XML syntax
and can be integrated into the reasoning process based on description logic! and
OWL-ontologies (Web Ontology Language), thus becoming executable. In general,
content that is represented according to the XML standard can be indirectly learned
by the framework, since it can automatically be transformed to a set of formal gram-
mar rules. Normally this would imply an information loss, because element anno-
tations like XML attributes® cannot be considered by the grammar. Its variables and
terminal symbols only stand for XML elements, while the additional information
given by the attributes is not representable by conventional grammar rules, since
they only define the content structure. Again, the content-based rules introduced
in section 3.2 provide a solution to this problem by integrating an arbitrary set of
attribute values into the rule constituents using multi-represented objects.

In the next section, we address the recognition of rules that are relevant for the
business rule scenario; for example, by means of the Reber grammar, which is often
used to determine a system’s capability of learning a context-free grammar.

'There are the description logic (DL) standards OWL Lite, OWL DL, and OWL Full [SWMO04].
2XML attributes enable the consideration of numbered multiplicities, for example.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 115

Learning the Reber Grammar The Reber grammar Ggey, is a regular grammar
defined by a set of productions that generate all words of the corresponding lan-
guage L(Ggep). These productions can be expressed by a deterministic Finite State
Machine with anonymous or unnamed states in a complete way, which is shown
in figure 5.4. The automaton is deterministic because there is no node that has an

Figure 5.4: Deterministic finite state automaton for the Reber grammar. The determinism

enforces that there is no transition a, which leads to different states 2/, 2" fa : 2 = 2/ &
a _n

z=2".

ambiguous transition via the same symbol to more than one node (state). The pro-
ductions of the Reber grammar can be extracted from this automaton.

PReber = {

b=tT
b=np, P
T=sT
T=sX
X=uxP
X=sF (5.3)
P=tP
P=uvV
V=pX
V=uFE
E=e

}

Note that these rules are ambiguous and cannot be learned in the given form,
since they represent a relation, but not a functional mapping, as stated in section
A.2.1. For example, the start symbol b is either followed by the symbol ¢ or p,
which is deterministic in terms of the subsequent states 7' or P, but there are two
possible transitions that leave state B. Regular or context-free grammars may con-
tain several productions with the same left side, which contradicts the functional
mapping realized by a recurrent neural network. In this case, the grammar is called

116 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

ambiguous.

The Reber grammar can, however, be learned by example, which is presented
in the following. Therefore, it is sufficient to train a recurrent neural network in the
way that it behaves like a Finite State Automaton (FSA) (cf. [CF00]). An FSA as
depicted in figure 5.4 can only generate or respectively accept the regular languages
L3, according to the Chomsky-hierarchy. These are generated by the grammars of
type three in this hierarchy, whose regular production rules are the least expressive
ones, but are nevertheless sufficient to describe all relevant node sequences on the
abstract knowledge base. Formal grammars are also useful for modeling user navi-
gations on a graph. For instance, loop detection can be formalized as a special word
classification problem: 3 > x € N, w = pt'v. This repetition of the symbol ¢
corresponds to a cycle at the node with a reflexive connection via ¢ in figure 5.4.

While structured knowledge exists in many application domains, its building
rules are not explicit. This form of tacit knowledge is often hidden in the form of
individual expertise of domain experts; however, one can benefit from this proce-
dural knowledge by incorporation from examples. The Reber automaton could be
used to represent procedural knowledge?®, since its states could be mapped to states
and activities of an activity diagram, and its transitions would correspond to the
branching conditions, for example.

Assuming that a machine should be constructed which decides if a word is con-
form with the Reber grammar or not, and this machine succeeds with high proba-
bility, then learning by example is an adequate means which does not require in-
formation about the explicit grammar productions. Samples of Reber-conform and
non-conform words are given in table 5.1. Now, the MRNN should decide whether
these words stem from the Reber grammar or not, which is a binary classification
task also known as the word problem.

Word Length | Reber-conform
“btsxse” 6 yes
“btsssxse” 8 yes
“btsssxs” 7 no

Table 5.1: Words of different lengths generated by the Reber automaton depicted in figure
5.4.

Word Problem: Classifying Words w.r.t. Reber-Conformity The classifi-
cation task was conducted especially to assess the learning and generalization power
of the Modular Recurrent Neural Network (MRNN) in the SYMBOCONN frame-
work. The network was trained on 1,000 words of average length 8.2 — split into 500
Reber-conform words and 500 arbitrary non-Reber-conform words. Then, 10,000
further test words were generated according to the Reber Grammar [CSSM89].
These were processed by the MRNN; 99.71% of the positive and negative samples

3Procedural knowledge is also called control knowledge.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 117

of the Reber grammar, which had not been presented in training, were properly
classified.

Completion of Partial Reber Sentences Differing from the decision whether
words stem from a certain grammar or not, the completion task aims at reading a
partial word and predicting the missing subsequent symbols in order to produce a
complete word according to the given grammar. More formally, the completion
task is to continue the symbol sequence w = a; ...ax, a; € X, for a given partial
word W, w = ww, such that the predicted sequence of subsequent symbols & =
Q11 - - - Ay 18 also conform with the rules of the grammar.

The results for the completion of 1,010 partial Reber words are presented in ta-
ble 5.2, both for the immediate prediction and for the stepwise prediction technique.
The average length of the input parts & of these test words was + >~ | ;| = 5.75.

n

While the prediction accuracy could have been further improved, the goal of this

Prediction technique | Test set size | Properly continued [%]
Immediate 1,010 74.26
Stepwise 1,010 97.23

Table 5.2: Results of partial word completion according to the Reber grammar. Two dif-
ferent prediction techniques are distinguished and their performance is compared in terms
of prediction accuracy. Compared to the immediate prediction, the stepwise mode refeeds
the one-step output osy1 as input x; for the next one-step prediction. The hidden layer di-
mension was set to h = 25, the remaining training error was F = 9.23%, since we did not
remove all ambiguous training patterns (relational mapping).

test was to show that the MRNN is able to learn a grammar from only few exam-
ples and then works effectively on a comparatively large and unseen test set. Only
160 Reber-conform input-target pairs were trained, which was sufficient for prop-
erly continuing 982 words out of a test set of 1,010 words @ (97.23%) in stepwise
prediction mode. Both prediction modes are further explained and illustrated in
appendix A.1.2.1.

In addition to incorporating conventional grammar productions, the SYMBO-
CONN framework also supports typed grammars. Usually, formal grammars G =
(V, %, P, S) are type free in the way that their variables V' € V and terminal sym-
bols o € X are not assigned to types that group them according to their similarities.
This extension of symbolic knowledge representation, which should be learnable
by the SYMBOCONN framework, is addressed in the next section.

5.2 Type Representation and Type Hierarchies

To the best of our knowledge, processing typed symbolic structures by means of
connectionist models like recurrent neural networks is a novel contribution of this
dissertation. The additional capability of type learning is built on top of the MRNN

118 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

and opens up new perspectives in machine learning of symbolic constructs such as
UML class diagrams, for example.

Knowledge nodes are assigned to types by a typing function u : 'V — C,
which is a mapping from the node space to the type or class space. The set C' =
{C1,Cs, ..., C,}is composed of concrete types C; that can be considered as classes
of homogeneous instances. The node set V' is partitioned into sets C;, such that the
union of all instances | J; C; = V is the definition space of x. An example of a
concrete type C; is text document or XML element in terms of the XML schema
definition (XMLS) [Fal04].

In order to deal with object types, the sequence-learning MRNN is extended by
classification capabilities. Symbols or symbol structures are represented as nodes v;
or subgraphs (V' E’), V! C V| E' C E, respectively, and are learned as sequences
of typed nodes with given types p(v;). Inference of new knowledge is conducted
as classification of unknown and untyped objects or whole structures built of these
objects (e.g. subgraphs such as class diagrams), where the expected output is the
respective type label. In other words, when a yet unseen structure is presented to
the neural network in the form of the left side of a grammar rule, the most likely
type of that structure (complex type, cf. section 6.3.2) is classified* according to the
given class labels {1,...,7}.

Type Hierarchies Beyond the learning of flat types, the machine learning system
should also support types that are arranged in an inheritance hierarchy. Therefore
whole inheritance or type hierarchies are treated, which arrange the types to be
learned in a subsumption relation. The system must be able to recognize subtypes
of more general types in terms of subsets A, C Ay_; C ... C Ag C D of the
domain. The series (A, Ax_1, ..., Ap) can be identified with the general type set
C ={Cy,Cy,...,C,},but C does not provide an order. Let <g on C' be the subtype
relation, where C; <g C; means that C} is subtype of C;.

The knowledge of discourse can also be considered from a set-theoretic point
of view with D being the set of all domain objects. Types are mapped onto not
necessarily disjoint sets C;, C; C D, which are also called concepts or classes of
the domain. The example in figure 5.5 shows the types A;, Ay, A3, B C D (cf.
section 2.1), which are subtypes of the domain D.

The given type taxonomy is realized by prefix-based sub-typing, which is a novel
encoding schema for typed contents. Types are mapped to binary spreading codes
of different lengths that are arranged in a code tree, which is isomorphic to the type
taxonomy.

For connectionist learning of type hierarchies, the concept of orthogonal spread-
ing codes is employed in a novel way. As described in section 5.3.1, spreading codes
are used to spread the input vectors onto the shared state space.

*Compare Maximum Likelihood Classifier.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 119

Figure 5.5: Set-theoretic interpretation of symbol types. The object x € V, which is
numerically represented by a vector Z, is an instance of the set A; as well as of the set B.
Therefore, its type is a subtype of both super types A1 and B (A1 ¢ B, B ¢ A1), which is
called multiple inheritance.

AbstractClass

Class / \‘IOnhierarch

Class

SubCIass/\ T/ \S
TN N T T

Figure 5.6: Prefix-based type taxonomy exemplarily labeled with generic classes (types) of
an UML model, further discussed in section 6.3. The subordinate types Class and Nonhier-
archClass of level 2 determine the code prefix of all subsequent child nodes. Obviously,
there remains a degree of freedom in assigning symbols to codes, since only the correct
mapping of inheritance relations to cross-correlating codes has to be preserved.

120 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

Correlation properties For separation of different node types, which are each
assigned to unique code sequences, it is necessary to consider the correlation prop-
erties of such codes.

Definition 5.2.1: Autocorrelation
Correlation of a bipolar sequence ¢ of N elements with all phase shifts n of itself.

| N
Zc c[m + n]

m:

ﬁl

—_

A spreading code ¢ holds a good autocorrelation if its inner product ®zz(0) with
itself is high and ®zz(n) is low for all shifts n = 1... N-1 [Kii04].

Definition 5.2.2: Cross-correlation
Correlation of two sequences ¢ and d, while d is shifted /V times.

1 N
Oz g (n :ﬁzc dlm +nl,

m=1

n = 0..N-1, c[i] € {—1, 1}. For good separation properties between different types
C;, Cj, the respective spreading codes ¢; and ¢; must possess a low cross-correlation
value @z 7 (n) for all shifts n = 1... N-1. If their cross-correlation is zero, then
these codes are said to be fully orthogonal.

In signal transmission, good autocorrelation is essential for achieving synchro-
nization between sender and receiver. Here, it is useful for recognizing the length of
the employed spreading code in the decoding phase, since codes of different lengths
are allowed for different types.

We use the Orthogonal Variable Spreading Factor (OVSF) method for creating
type codes for the nodes from V. For separation of a high number of different
object classes, these are assigned to unique OVSF codes, which hold appropriate
correlation properties [Kii04] and can be generated recursively via a tree schema as
shown in figure 5.7.

The inheritance hierarchy is mapped onto OVSF codes that show distinct cross-
correlation properties among each other. The cross-correlation among OVSF codes
of the same level is actually zero, ®z ¢z (n) = 0,7 # j, i,j = 1,...,7, n =
0,..., N-1, which makes them fully orthogonal. In contrast, codes of different
levels on the same path from the root node hold non-zero cross-correlations and are
thus appropriate for expressing the type-to-subtype relationships. A type A; and
all of its subtypes A; C A; are represented by spreading codes ¢/ = (c;1, ...,
¢i;) and all E]-T = (Cijs -+ Cixgs Cj,(M+1)s - - - Cj(2),)) always coincide in the first
A; components; that is, all ¢; have a common prefix that expresses their similarity.
In other words, all code pairs (parent,child) in one branch from the root of the
taxonomy hold a cross-correlation of 1, while type codes of different branches but
of the same length are fully orthogonal.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 121

1,1,1,1,1,1,11

1,1,1,1,1,-1,-1,-1
1,1,-1,-1,1,1,-1,-1
1,1,-1,-1,-1,-1,11

1,-1,1-1,1,-1,1,1

1,-1,1-1,-1,1,-11

1,1,-1,1,-1,1,1,1

Figure 5.7: Recursive generation schema for OVSF codes in bipolar denotation [Kii04].
Codes that stand in a direct or indirect father-son relationship such as C2, 1, C'4,2 and C8, 3
can be mapped onto the type hierarchy of figure 5.6.

When processed with a neural network, codes with coincidences in \; compo-
nents (prefix) lead to the same activations in the);-dimensional subspace R C
S = R", \; < h of the hidden state space S. Accordingly, symbolic data spread
by these common-prefix codes also causes similar activations when propagated
through the network. Thus, the prefix-based type encoding facilitates meaning-
ful representation of nodes standing in an inheritance relation, which expresses the
degree of compliance between the father and the child node.

In the following section, we introduce a novel classification mechanism based
on the MRNN and on error-correcting output coding, which is robust against fuzzy
or incompletely represented information. We develop this robust classification tech-
nique both to recognize fuzzy business rules and to classify incomplete software
design patterns.

5.3 Spread Spectrum Based Classification

Many knowledge-driven and domain-specific problems such as speech and hand-
writing recognition, biometric identification, credit scoring, document classifica-
tion, or design pattern recognition can be turned into statistical classification prob-
lems O := {0y, ..., 0.} — {C4, ..., C,} =: C by partitioning the domain ob-
jects o, € O into appropriate classes C; € C. A classification mechanism must
be robust and capable of handling fuzzy, incomplete, and partially incorrect data,
which may result from incomplete and inaccurate sensor measurements. Multi-
represented objects should be reliably classified even when affected by high extents

122 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

of noise. The field of knowledge discovery in databases already provides a variety
of techniques for noise robust clustering in high-dimensional spaces and in their
arbitrary subspaces, which are either based on similarity, density or subspace hy-
perplanes [ABD*08, ABK*07, YW04, CW99, FK96]. By contrast, noise robust
classification is mainly found in speech recognition [RSS*T07, XTDLO06], but not as
a general purpose application. However, there exists a need for noise robust classi-
fication methods. An example of this is learning and recognition of fuzzy business
rules [Yag08] which is relevant to software development and knowledge manage-
ment, in particular. In these areas, there are semi-formal or formal rules within the
different development activities. For example, whenever a developer submits a new
version of the program files in his local working directory to the repository, he must
have accomplished an update operation before.

The central idea of the encoding and decoding algorithm presented in this sec-
tion is to boost the classification accuracy and robustness by an approved and noise-
resistant method from signal transmission (spread spectrum), which is adapted to
the SYMBOCONN machine learning engine. Our technique transforms the output
space into a higher dimensional space that eventually serves for the object clas-
sification. This idea was already employed in a similar way by Error-Correcting
Output Coding (ECOC) [Gha00, Liu06]. Error-correcting codes have, for example,
been used with decision trees and neural networks for classification tasks by Di-
ettrich et al. [DK95]. Berger [Ber99] improved the classification of unstructured
text using ECOC. The voting that is performed among the multiple classifiers in the
case of ECOC corresponds to the despreading step of our new encoding technique,
which also determines the class that matches best with the computed output signal.
Compared to these error-correction approaches, we do not solve k-class supervised
learning problems by training multiple 2-class classifiers. Instead, only one instance
of the MRNN is trained upon the whole training set. The insertion of redundancy
is similar to adding parity information for error recognition in binary sequences as
done by Cyclic Redundancy Check (CRC) or Hamming codes. The strong benefit
of our adaption of this technique is the achievable degree of discrimination between
all existing classes C;, Cy, j # k. As a consequence, the correct class j(7;) = C}
can be determined with higher probability after the despreading process.

According to Diettrich et al., ECOC reduces both bias and variance of the used
classification model. In contrast to the bias, the related concepts noise and variance
represent unsystematic errors. A systematic error of a classifier is its deviation
from the correct class label for all objects of the definition space, which — in the
systematic case — is not random but follows a certain probability distribution.

For example, the residuals resulting from a least square optimization may still
contain information, while noise as an unsystematic error does not. The variance of
a classifier appears when classifying unseen instances from the test set with a certain
misclassification rate. Similar to error-correcting output codes, the spread spec-
trum technique also reduces bias and variance of the classification model, which
was underpinned by the higher generalization performance on benchmark datasets
[Dav08b].

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 123

The spread spectrum technique [And97] stemming from mobile communica-
tion, spreads data over a wide bandwidth for transmission via the air interface
[KFM"02]. The spread spectrum mechanism is characterized by a wideband trans-
mission of signals®, which is very robust against external interferences and noise.
We exploit this mechanism for the precise discrimination between classes.

In a variant, the Direct Sequence Spread Spectrum (DSSS) technology [And97],
all transmissions share a common carrier channel, which is furthermore exposed to
environmental noise and various interferences. We can detect a parallel between the
h-dimensional internal state layer of the MRNN that serves as state transition space
S C R" and the carrier medium in mobile communication.

In contrast to wireless signal transmission, the signal to be transmitted is inten-
tionally changed by the forward propagation of the recurrent neural network (cf.
formula 4.14) in order to match the desired target class ((Z;) € C represented by
Y;+1. In terms of mobile communication, the sent signal carries the attribute val-
ues of the respective object Z; € R to be mapped onto its known class ().
This has to be learned during the training phase by minimizing the Euclidean dis-

tance ||0y4+1 — Yit1]|,- All input sequences z;_y, . . ., Z; are propagated through the
recurrent state layer Sy g, ..., Sy, ..., Sy, in forward direction. Subsequently, the
deviations from the targets ¥;.1, ..., y;+m to be learned by the MRNN are sent

backwards. In case of object classification, the input-target sequences degenerate to
input-target pairs (7, — ¥;41) € T'S, where T'S is the training set.

Given an input object Z;, the associated class or type u(z;) € C should be
recognized, given by the typing function it : O — C'. In the operative classification
phase, the received signal has to be decoded to the correct class u(%;) € C. This
information is drawn from the spread output vector 0;,; (observed output), which
has dimensionality dim(d;.1) < ds. After having used the targets ;.1 = f(C§))
(see formula 4.14, section 4.4.1) for network training, d5 is only an upper bound on
the output dimensionality, since we allow variably dimensional vectors as encoding
of the class labels. Therefore, the question is how to recover the class information
from the output signal. A solution to this issue will be given by the despreading
mechanism described in section 5.3.2.

5.3.1 Encoding of Node Types Using Spread Spectrum

The spread spectrum encoding of a target class label C; € C, r(C;) = b =
biby...b,, b; € {0,1} is performed by applying an XOR-operation to the basic
encoding (unary) of C;. That is, b is XORed with a fixed binary code — the so-called
spreading code®, which imposes well-defined redundancy on the code vector b. We
chose Barker codes [Fak96] of different lengths as spreading sequences of the form
c=cicy...cn, ¢ €{0,1}, L = X-m, X € N, where)\ is the spreading factor
and L is the overall length of the resulting code.

>Utilized by Code Division Multiple Access (CDMA) in the UMTS standard.
%Also called chipping or spreading sequence.

124 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

Definition 5.3.1: Spreading Process

The spreading process is defined by the function spr, which convolutes an arbitrary
bit vector b — that represents the object class, for example — with a well-defined
spreading code c.

spr(g, ¢) = xor(by, c1), xor(by,ca),. .., xor(by,cy),
zor(by, c1), xor(by, ca),. .., zor (b, cy),

5.4
zor(by, c1), ,xor(by, cy)

The resulting code is a bit string of length n\; the xor-expressions are separated
by commas to distinguish their concatenation from a multiplication. An example
of spreading and despreading is provided in the next section. The spread spectrum
technique is imposed as additional encoding to improve the type classification for
the computed output signal 0; 1. Each class label C; is assigned to an own spreading
sequence ¢; such that all instances g, € C; of the same class are encoded by ¢;.

5.3.2 Classification by Despreading

The data spreading in the form of an additional encoding causes redundancy, the
amount of which depends on the fixed spreading factor A € N and thus reduces
the computational efficiency. On the other side, the obtained process gain justifies
the insertion of redundancy. The process gain PG, which is shown in figure 5.8, is
defined as

carrier bandwidth

PG := 10 logo(

)[db] (5.5)

in formation bandwidth

and is measured in decibel [Kii04]. When employed in terms of neural processing,
the bandwidth is measured as the number of bits used to encode a class C;, that is
the dimensionality of the spread target vector %, 1.

Definition 5.3.2: Despreading Process
Let 0 := 0,11 = (0102 . .. 04,) be the observed output vector, L < d

' A
Oa(z) = {07 Z{S€x> (5.6)

O (x) serves for digitalization of the numeric output signal, for the following equa-

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 125

Direct sequence De-spreading
PSD '"‘e’_'e“":“’e transmission with DSSS signal ,reduces power of _
signa interference interference
DSSS signal s
» Interferenc

frequency frequency

Figure 5.8: Visualization of the result of spreading and despreading and the obtained pro-
cess gain in the analogy of signal transmission. The process gain becomes manifest in the
amplitude of the despread signal in the right chart. PSD is the Power Spectral Density that
specifies the power of a signal in an infinitesimal frequency band. The integral over all
frequency proportions gives the power of the signal.

tions A will be set to 0.5 and the shortform 0(x) := 0y 5(z) is used.

despr(0,¢) =

zor(0(o1),c1), wor(0(os),ca), ... ,zor(0(oy),cy),
zor(f(oxs1),¢1), ... ,xor(0(02y), cr),

(5.7
zor(0(0(mn-1)n+1), €1), zor(0(o(m-1)r)+2): C2); - - -, xor(f(or), c)

= 7,79,...,7, Ti€{0,1}

The despreading is done A-blockwise, because each block 7(;.x)41 - . . T(k41).x Of the
spread output vector corresponds to a single bit of the original unspread representa-
tion.

Definition 5.3.3: Classification Certainty

The uniqueness of the decoding with respect to the original bit is considered as the
distance of the prediction from the maximal entropy, where a clear decision can be
made neither for O nor for 1. The relative classification certainty cert for the k-th
decoded bit is given by the distance from the mean value minV (minimum number
of votes required for a “17).

k-
bitSumlk] = > oom (5.8)
i=((k—1)-A)+1
be = Opiny (bitSumlk]), (5.9)

minV = %, ked{l,...,n}

1 n
:— —_—) —_—) .1
cert = — kg |bit Sum[k] — minV| (5.10)

126 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

The farther the result is separated from this mean value, which represents the max-
imal entropy where no decision can be made either for O or 1, the more unique the
decoding is.

The relative classification certainty for a consensus 00...0 or 11...1 of all 7; in
a A-block corresponds to a certainty of 100% for the bit b, to decode as by = 0
or by, = 1, respectively. Since different spreading codes ¢;, ¢; may have different
lengths \; # \;, the number of minimum votes min} varies, but still does not
influence the classification certainty of formula 5.10. Different code lengths are
allowed, because the minimal number n = [log, |C'|] of bits to represent all classes
in the respective dataset is fixed and known a priori.

The overall certainty measure - >~ | cert[k] provides a tool for deciding be-

tween multiple matches, indicating the same original binary representation b =
biby ... by, br € {0,1}. In this case, the type C; with the highest certainty is
chosen, which usually leads with a high certainty advance regarding alternatively
matching types.

Figure 5.9 illustrates the complete despreading process, starting with the unclas-
sified feature vector as input for the MRNN, the network prediction, and the sub-
sequent digital despreading process. The downstreamed despreading through the

Classification mechanism — Interpretation via Despreading

A o Integrator, | (1,0) Class Predicted Class
Computing bit sums| it Decision| | Lookup-Table >
{e.g. Design Patiern
T (1,1,1,1,0,0,0,0) or Current Activity
e = or Molecule Type)
Spreading N i
sequence » XOR | Despreading

0,1,01,1,0,1,0)
Integrator | Digitalization
e.g. (0.002, 0.99, 0.0004, 0.99, 0.99, 0.002, 0.98, 0.002)
Spread representation

of a target class for a
> sl—k> > St >> S¢ > Internal State layer ~ SPreading code of length 4

{0.05, 0.57, .., 0.26, 0.98

External Input Vector
dim(x,) = d,

Figure 5.9: Schematic processing steps and gates required to despread the predicted nu-
merical output signal 6; 1. During the classification phase, the MRNN is fed with a domain-
specific input vector to be classified, as for example with the representation of a class di-
agram, of an observed user behavior, or of a molecule. The predicted output signal 0y 1
contains the class information that is reconstructed by the classification mechanism in the
white box.

various xor-gates is repeated for all existing object classes. Thus, the output signal

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 127

is despread with all spreading codes and each result is compared with the lookup-
table that holds the basic encodings (unary) of all object classes C. If there is exactly
one match Cj;; € C, then this class label is returned. Otherwise, it may be the case
that none, one, or several of the despread sequences match one symbol from the
lookup-table. Then, the most probable class label is predicted, which is determined
by the certainty computed via formula 5.10. The certainty measure usually enables a

clear decision between multiple decodings b, by, b, = b\b, .. V., by, € {0,1},
ble. = .. . The following despreading example will illustrate the used formulas.

Despreading Example When the network predicts the output vector o' = (0.01,
0.9998, 0.00035, 0.9999, 0.9997, 0.0023, 0.9998, 0.0022), this vector is digitized by the
heaviside function 5.6 at first: 0fo 13 = (0,1,0,1,1,0,1,0). Then, 0y 1 is despread
with each of the existing spreading codes that represent the object classes.

despr((0,1,0,1,1,0,1,0), (1,0,0,1))
Z (1,1,0,0,0,0,1,1)

5]/_/ H?/_/

despr((0,1,0,1,1,0,1,0), (1,0,1,0))
2 (1,1,1,1,0,0,0,0)

N N——

1 0

Here a 100% certainty for class C5 is reached by despreading with the spreading
code ¢, while the first code ¢; does not allow a unique decoding at all (0% cer-
tainty). Thus, the classification is unique, a final table-lookup in table 5.3 revealing
the predicted class label. The removal of the prior imposed redundancy results in

Class | Basic encoding | Spreading code
Ch b1=(0,1) c1=(1,0,1,0)
Cs bo=(1,0) G,=(1,0,0,1)

Table 5.3: Lookup-table containing the basic encoding and the assigned spreading codes
that are unique for each class.

the main advantage of the spread spectrum technique, which is robustness against
external interferences like noise blurring the input data. These effects are “spread
out” (minimized) by the despreading process, which is also shown by the evaluation
in the following section.

5.4 Rule Recognition Despite Heavy Noise

The inherent structure of a document can explicitly be specified by a grammar in a
formal and hence machine-learnable way. Valid XML-based data is formed accord-
ing to the rules of a context-free grammar (e.g. specified as Document Type Defini-
tion (DTD) or XML Schema Definition (XSD)). In this symbolic pattern recognition

128 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

scenario, the rules of such a typed grammar are learned after a transformation to
a context-sensitive form. In order to assess the structure as well as the type learn-
ing performance of the system, both functionalities are validated on the basis of an
XML document as instance of the document grammar (. Thus, the concrete task
is to continue a sentence from the defined language L(G) according to the rules of
GG. Both the node name and its type should hereby be recognized by the classifier
under the influence of different noise levels.

The grammar chosen for the evaluation is part of the S1000D specification for
technical publications [TecO5]. These rules were derived from an XML document,
a so-called Data Module, which formally describes the content of a self-contained
technical issue enriched with meta information. An excerpt of this exemplary gram-
mar is given by the following productions.

20-CFG rule set = {
avee = modelic, sdc, chapnum, section, subsect, subject, discode, discodev, incode, incodev, item-
loc;
brexref = refdm;
content = descript;
descript = para0;
dmaddres = dmc, dmtitle, issno, issdate, language;
dmc = avee;
dmodule = idstatus, content;
figure = title, graphic;
idstatus = dmaddres, status;

status = security, rpc, orig, applic, brexref, qa;

Ten of the twenty learned context-free productions are listed, the first rule hav-
ing the longest target sequence of eleven symbols to be learned and recognized
correctly — even under the influence of noise on the left side variables. The left rule
sides always consist of a single variable A € V, the right sides may contain terminal
symbols or variables o; € > U V. The variables and terminal symbols are parti-
tioned into four classes, the XML elements containing integer values are grouped
to the type Cy=XMLSimpleElement_Int = {chapnum, section, subsect, subject, dis-
code}, for example. Based on this grammar, the capability of the SYMBOCONN
framework to learn typed context-free rules and to recognize them after distortion
is evaluated in the following. Therefore the SYMBOCONN framework is faced with
the following recognition and classification task. The trained machine learning en-
gine is presented with a distorted representation of a left side variable, dmodule,
for example. Based on that input, the engine should recognize the corresponding
right side, in this case “idstatus, content”, whose variables should furthermore be
properly classified: p("idstatus’) = u('content’) = XMLComplexElement.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 129

Simple Type Encoding The performance of the complex and non-intuitive
spread spectrum process for encoding the variable type information should be com-
pared with a straightforward approach. However, such a benchmark does not yet
exist, because connectionist type learning is a new issue. Therefore, we imple-
mented the following simple type encoding mechanism. A fixed intercept (1,...,7)
of the node representation (1, ...,d) is reserved for the node type, r < d, d :=
min(dy, ds) — comparable with a further type attribute for each node in the underly-
ing knowledge base.

The simple approach unary encodes the d, := 7 considered classes by ds-
dimensional target vectors ¢, where (y; = 1 Ay; = 0, Vj # i) & p(2) = C,.
In this case the classification of the input object Z via the output vector 0 := 0,1 is
achieved by selecting the maximum component 0,,4,: 1(Z) = Crisz < Opmaz =
max{oy,...,04,}

Spread Spectrum Based Type Encoding The introduced simple type encod-
ing is less powerful than the spread spectrum classification variant. To demonstrate
this, we compared it with the spread spectrum based typing. Thereby, the main
assessment criteria was robustness against noise in terms of absolute prediction ac-
curacy on all rules of the learned grammar. The exemplary context-free grammar
used for training the neural network consisted of twenty rules (20-CFG rule set),
which contained four different types of symbols, namely

{C1 = XMLElementRepresent, Co = XMLComplexElement,
C3 = XMLSimpleElement, Cy = XMLSimpleElement Int},

which were encoded by explicitly associated Barker codes [Fak96]. The alphabet
Y. contained 41 symbols, which are mapped to bit vectors of length 6 = [log, 41
by binary encoding. An exemplary training pattern for the spread spectrum mode is
of the following form:

figure — title, graphic (5.11)

This context-free rule is transformed to a training pattern by component-wise basic
encoding of the grammar symbols and by additionally encoding their types with the
spreading function.

SpT‘((1a0a0313130)) (1,17()’ 1))
—_— ——
Basic Encoding’ figure’ Barker Code, u(’ figure’)
— spr((0,1,0,0,1,0),(1,1,1,0)), spr((0,0,0,1,1,0), (1,1,1,0))
N —— N——

Basic Enc. wu('title’) Basic Enc. w(’graphic’)

Thereby, spr is the spreading function defined in section 5.3.1, so that the re-
sulting pattern is a typed production with the symbol types (' figure’) = XML-
ComplexElement and p('title’) = XMLSimpleElement = (' graphic’) both spread
by the same spreading code (1,1, 1,0). The spreading process computes one 24-bit

130 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

(6 - 4) left-side vector and two 24-bit right-side vectors. Since we are dealing with
a context-free grammar, all input patterns consist of a single symbol in vector rep-
resentation, while the length of the target patterns that correspond to the right sides
of the productions may vary.

The reference value for measuring the accuracy is the number of right-side vari-
ables s := Zle m; of the p grammar rules A; = B;1Bys ... Bjy,,, which is s = 46
for the conducted evaluation. For each left-side variable A;, the prediction of the
corresponding right-side variables are checked, based on each target node B;;. In
order to achieve an accuracy of 100%, all s right-side variables have to be predicted
correctly.

Table 5.4 shows the results of the evaluation process for different degrees of
imposed uniformly distributed noise and different spreading factors. White noise’
n interferes with the binary input pattern by adding a random value to each bit of
the spread vector d (cf. formula 5.4): d; + n;, d; € {0,1}, n; € [0.0, (n - 1.0)],
n € {25%,50%, 75%,95%}, for example, (1,1,1,0,1,0,0,0,1,0) is blurred to
(1.34,0.71,1.05,-0.23,1.49,-0.17,0.15,0.39,1.09,-0.05).

Variant Accuracy [%] of Spread Spectrum prediction for uniform noise n
n=0% n<25% n<50% n<75% n<95%
A={5,15} A={5,15} A=5 A={10,15} =5 A = {10, 15} A=5 A=15
Node & Type 95.65 95.65 82.61 95.65 89.13 95.65 86.96 93.48

Accuracy [%] of Unary Encoding prediction for uniform noise n

n=0% n<25% n<50% n<75% n<95%
Node 89.13 89.13 78.26 36.96 36.96
Type 95.65 95.65 95.65 84.78 78.26

Table 5.4: Comparison of the average classification accuracy for the rule-recognition and
classification of right-side grammar symbols (target nodes) based on the 20-CFG rule set
for different noise levels. For all predictions, the neural network was trained up to a residual
training error of 3.6%. Since for the spread spectrum technique (with spreading factor X\)
node and type prediction are intrinsically tied together, there is only one combined value for
the accuracy.

In the case of spread spectrum learning, sequence and type prediction are one
compound task only, since the respective node type is encoded in the spread node
representation, while for the unary encoding approach, two separate tasks have to
be fulfilled.

The grammar learning scenario demands the generalization capability of the
neural network when presented with noisy input structures, whose target parts have
to be recovered. In this case, there is no separation between training and test set
as in conventional evaluations of classifiers, since the achievement is the successful

"Formally defined by Def. 8.2.4.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 131

training and the recognition of symbols and their types under heavy noise, and not
the classification of unseen entities.

The extensibility of the simple unary encoding technique is also far smaller than
that by leveraging spread spectrum based classification, since each new type to be
integrated requires a further vector dimension. Thus, the increment £ — £k + 1
of the typing intercept 1, ..., k implies an increment of the whole feature vector’s
dimensionality ¥ € R%, d — d + 1. Such an incidence would require a retraining
of all learned rules, since each node is thereby affected, which would be a signifi-
cant drawback for a practical application. This is not the case for the spread spec-
trum based classification which only requires another spreading code. The already
trained rules remain unchanged.

In summarizing the rule recognition scenario, we demonstrated that arbitrarily
structured and typed contents can be learned and classified by the connectionist sys-
tem. The MRNN succeeded in learning the document grammar and in recovering
all target sequences of different length, when the symbol on the left rule side was
presented. The results clearly indicate the high robustness of the spread spectrum
based classification, which is nearly unaffected by an increasing noise level. Sum-
ming up the accuracy for all noise levels and taking the results for A=15, the spread
spectrum technique holds an overall accuracy of 95.2% and thus outperforms the
simple approach that only holds an average accuracy of 78.0%. It is remarkable
that even long target sequences of 11 nodes as in the case of the first grammar rule
“avee = ...” are correctly predicted under heavy noise of almost 100%.

5.5 Holistic Learning of Structured Symbolic Con-
tents

In the last sections, we have introduced grammar rules as one form of symbolic
and structured knowledge representation, and have furthermore shown how they
can be learned by the SYMBOCONN framework. As an augmentation, tree-shaped
knowledge such as work breakdown structures [Hau03] should also be represented
and learned with connectionist methods. Holism is the doctrine of entireness, which
is originally a philosophical concept [Sch36, Smu38]. In computer science, holism
represents an important pillar for the combination of symbolism and connectionism.
The downside of holism is the lack of traceability, which means that the ensemble is
not completely explicable by all of its parts®. This phenomenon is called emergence.

There are several forms of holism, such as structural or semantical holism. From
the perspective of structural holism, the elements of a domain reveal themselves
only by their reciprocal relationships. Semantical holism claims that the meaning
of a phrase in a natural language cannot be determined on its own, but only by
considering the language-specific context.

8 A well-known and common characterization of holism is that “an ensemble is more than the
sum of its parts”.

132 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

Due to the importance of holism, especially in the case of structure encoding,
connectionist methods must be able to support holistic representations: “A conse-
quence of the connectionist approach to artificial intelligence is the requirement for
structured data to be encoded into fixed width vector representations.” [MV03]

This requirement can be fulfilled by a holistic representation’ of compositional
symbol structures. Holistic computation is a mechanism that builds a fixed-width
representation of a compositional structure, while using each representation unit
(e.g. a neuron) for all constituents of the structure to be encoded. When only one
representation unit is changed, the whole encoded structure is affected — not only
some of its components. Thus, symbol structures can be manipulated holistically,
a decomposition being necessary neither for locating nor for accessing their con-
stituents.

Recursive Auto-Associative Memory (RAAM) Recursive Auto-Associative
Memory networks represent a bridge between connectionist and symbolic systems
[MLPOO] and are often applied to the field of natural language processing. These
networks are able to process symbolic structures represented by trees with a fixed
branching factor. Such a tree is generated by a set of phrase structure rules that
are a type of formal grammar [CPB97] focusing on natural languages. The phrases
are recursively composed by the RAAM in order to produce a compressed internal
representation.

Both tree structures as well as sequences of terminal symbols and variables can
be recursively encoded by RAAMs. The sequentially controlled presentation of the
symbolic constituents to the network enables learning of complex symbolic struc-
tures. RAAMs create a fixed-width and lossy description of arbitrary tree structures
which hides the details of the structure like the leaves of a tree. The created encod-
ing is holistically represented, since the compressed representation can be used to
classify complex structures without decomposing them beforehand. This technique
is comparable to the look at a map from a wide angle where the details are not
visible, but still available in a latent form. By looking at the map as a whole, hu-
mans can classify the respective map segment, considering its details without ever
zooming in on the map [NeuOl1].

Any tree-structured knowledge, which is given as a subgraph of the knowledge
model defined in section 3.2, for example, can theoretically be transformed into
a holistical representation while keeping its structure. The produced fixed-width
RAAM-representation works as a fingerprint of the fine-grained and unfolded struc-
ture and is used for the following main purposes:

e Compression (maybe lossy) and decompression of compositional symbolic
structures to and from a fixed-width representation.

e Training of a connectionist classifier on the compressed representations to
quickly classify compressed structures without decomposing them. An ex-

°In connectionism this term if often used as synonym for distributed representations.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 133

ample is the holistical recognition of design patterns as an alternative to the
approach presented in section 6.3. The correct tree-structured design patterns
are recursively encoded into a RAAM-representation that is hence learned
by a classifier. On the other hand, class diagrams that contain unknown de-
sign patterns are also compressed to a RAAM-representation, the classifier
holistically recognizing their structure and similarity with the original design
patterns. This procedure is very similar to the human way of recognizing and
understanding design patterns — not by parsing each of their constituents but
by looking at the structure as a whole.

e Direct structure transformation based on the compressed representations
from a source structure to a target structure. An example is the transformation
of active into passive sentences given in natural language.

Realization of RAAMs The SYMBOCONN framework supports RAAM net-
works as special configurations of the more generic MRNN. Its modular composi-
tion enables the reproduction of a RAAM network by setting appropriate input and
target dimensionalities and presenting the training patterns in a prescribed order.
Compositional structures as defined by the composite design pattern [GHIV95] that
correspond to unbalanced trees with leaf nodes at different levels can be adequately
expressed by a RAAM-representation. After completing the RAAM encoding pro-
cess, the whole structure is holistically represented in a compound entity.

Aubyn and Davey [SAD97] applied a RAAM to encode rules of variable struc-
ture and content into a flat representation that can be fed into a conventional feed-
forward network. The latter processed the holistically represented, context-free pro-
ductions to perform simple operations upon bit strings. Thereby, the output of the
RAAM was used as input for the downstreamed connectionist rule applicator, which
interpreted the flattened rules as control information.

Chalmers also [Cha90] demonstrated the applicability of connectionist models
to compositional structures. In his case, syntactic transformations were performed
by a hybrid connectionist architecture consisting of a RAAM and a feed-forward
network:

e A RAAM network encodes tree-shaped structures of variable length in a rep-
resentation of fixed length [CPB97].

e A transformation network transforms the RAAM-encoded holistic represen-
tation into the target model again represented as RAAM-vector of fixed length.

e Finally, the transformed model is decoded in such a way that the tree structure
is unfolded and the single constituents are regained.

Chalmers already successfully applied this setup to the transformation of active into
passive sentences of natural language. The used sentences were quite simple, since
the maximum depth of the representing trees was two and their valence (branching
factor) was fixed to three.

134 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

A more recent approach called Scaling Connectionist Compositional Represen-
tations by Flackett et. al [FTLO04] in 2004 tried to scale up RAAM en- and decoding
to larger real-world datasets. The scalability is still a weakness of holistic compu-
tation, such that often only toy examples of structure encodings and decodings can
be accomplished.

In general, there are many extensions of conventional RAAMs, like Sequen-
tial RAAMs (SRAAM) [LHO3], Labeling RAAMs (LRAAM) [SS94] or Bi-coded
RAAMs (BRAAM) [AD99], which try to improve the efficiency of the RAAM en-
coding process or to extend its applicability. In particular, these approaches aim at
fewer training epochs, smaller hidden layers required for the internal representation,
improved ability to represent long-term time dependencies in the input data and the
reduction of the cumulative error effect during decoding [AD99].

Structure Encoding The central principle of encoding and decoding compo-
sitional structures with RAAMs is recursion. Assume the term (a; + ag) - (b +
(c1 + ¢2)) should be represented by a compressed internal representation, then it
is reasonable to first construct the corresponding operator tree to reveal the term
structure, which is depicted by figure 5.10. The encoding process starts with the

¢ t ¢

Figure 5.10: Ternary operator tree (valence 3) of depth 3 corresponding to the term (a; +
az) - (b+ (c1 + e2)).

right-most subtree (¢; + ¢2) with the tree terminal symbols ¢;, + and ¢y, which
are compressed into the internal representation (c¢; + ¢3)’ by auto-associating them.
This means that they are used both as input and target pattern for training the RAAM
network. The encoding is recursive, since in the next step the resulting code vec-
tor (c; + ¢2)’ is again encoded, this time together with the symbols b and + of the
next tree level. This process is recursively repeated until the root of the tree has
been reached, which is encoded as ternary composition of its previously encoded
children. The whole proceeding is schematically illustrated by figure 5.11.

The encoding of each n-ary tree can be formalized by simultaneous recursion
using the n-ary constructor cons,, that takes n subtrees as arguments. The following
inductive definition of the operator ()" gives the construction rule for the RAAM-
representation A := (A, Ay, ..., A,) of a tree with arbitrary depth, which consists
of the subtrees A;, Ao, ..., A,.

(a) = a (5.12)
(A1, Ag, ... A = cons,((A1), (Ad), ..., (A)) (5.13)

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 135

[: | [(b+e)’ |

[(@(b+c)) |

[: | [(b*c)* |

Figure 5.11: Schematic topology of a three-layered RAAM network. At first, the term
(b + ¢) is compressed to (b + ¢)’ by training the RAAM with the same input and target
(auto-association). In a second step, this compressed vector of fixed length is combined
with the uncompressed terminal symbols - and a of the higher level, which finally results in
the holistic representation (a - (b + ¢)’)’ of the entire term.

The basis case holds for any terminal symbol a, which is atomic and therefore
encoded by itself. The constructor cons, : [(R?)" := (R? x ... x R?)] — R is
practically realized by the auto-associative training procedure of the MRNN using
the same input and target sequence (A;)’, (Az2)', ..., (A,) of length n, respectively,
as illustrated by figure 5.11 (see also section 4.2). From a theoretical point of view,
the operator ()" can be formulated according to the schema of primitive recursion.

f(A,0) = A (5.14)
FAD) = h(f(A,d—1), f(As,d—1),.... f(Ay,d—1)) (5.15)

The function f is called with the total tree depth d := depth(A), which can be
computed by a monadic primitive recursive function depth in turn. In this schema,
h represents the constructor cons,, and the subtrees are encoded by simultaneous
recursion via f.

5.5.1 Generating RAAM-Representations Using the MRNN

During the training phase, the internal representations denoted by (-)’ change con-
tinuously, since the internal representations of their constituents are subject to change,
as well. For instance, when the internal representation (b + ¢)’ changes during the
first training epoch, the comprising structure a- (b+c)’ is also affected by the change
in its right-most subtree (b+ ¢)’. Learning under these circumstances is called mov-
ing target learning [GK96], where only the vectors standing for the terminal sym-
bols remain stable. In order to generate the training set for the RAAM, an auxiliary
data structure is required, which supports the recursive bottom-up construction of
the training samples, starting with the terminal symbols. It is not really surprising
that such a data structure is once more a tree of adequate depth and valence which
stores the current internal representations represented as inner tree nodes. For en-
coding a structured term, the corresponding operator tree of the form given in figure
5.12 is traversed beginning at its leaves. Note that the tree does not have to be

136 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

N

b + ¢

Figure 5.12: Ternary operator tree representation of the expression a - (b + ¢).

balanced, thus the training starts with the leaves at the bottom level.

RN

A B

VAN

A1 A2

A4

Figure 5.13: UML class diagram showing a tree-structure of three levels with varying
branching factor corresponding to figure 5.14. The aggregation that belongs to class A
consists of four constituents A1 to A4, while the root class R comprises only two classes.

Conventional RAAMs lack the capability of processing trees with variable va-
lence, that is, parent nodes with different numbers of children. The MRNN is able
to take the role of a RAAM and to work as a recurrent auto associator. Due to its
modular design, the MRNN can even solve the problem of varying valence so that
heterogeneous subtrees can be learned at the same time. Although dealing with
varying tree valence is a contribution on its own to research in RAAMs, this is ac-
tually necessary for learning the structure of heterogeneous knowledge fragments
(subgraphs) as they especially appear in software engineering. Figure 5.13 shows
an UML class diagram representing an aggregation hierarchy with the root class
R. The MRNN is capable of encoding such tree structures with varying branching
factor, which is shown in the corresponding figure 5.14.

Training with Simultaneous Update There are several heuristics to treat
the challenging moving target effect during training [SP0O3]. This effect is due
to the recursive encoding process and always appears when computing RAAM-
representations of structured knowledge. We chose the variant that requires a dy-
namic update of the training set (see Variant III. in [SP03]), since the training can
be started with the full training set right from the beginning without the need for
two different training phases. The current internal representations of level 1 that

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 137

hAbbdh Ab
)T LI 13 X)X EH REDTE T3 T

AALAA - AL

Figure 5.14: In this example, the MRNN auto-associates the elements that take part in an
aggregation relationship as depicted by figure 5.13. The compressed result A participates

again in another aggregation of two elements, which requires a flexible network topology
that adapts to the respective branching factor. Finally, R is holistically represented as the
hidden state s; after finishing the training with the same network weights for both aggrega-
tions.

are computed from the terminal symbols at leaf level O are substituted in all higher
levels after each training epoch, where they participate in the encoding of the su-
perordinate structures again. We compared the simultaneous update with a training
approach using static RAAM-representations for the reused subtrees (see Variant I.
in [SP03]), which is less accurate than dynamic RAAM-representations. The static
approach was outperformed by the approach with simultaneous update both in terms
of manageability and speed of convergence.
The proceeding of the recursive training process is expressed by table 5.5.

Term Instance RAAM Representation | Depth
(b1 +b2) (b1 + b1)’ 1
a - (b1 + 52) (a . (bl + 52)/)/ 2
(a+ (b1+b2))-c) | ((a+(b1+b2)) -c) 3

Table 5.5: Table showing the syntactical form of exemplary ternary terms and their encoded
RAAM-representations (’) formulated in infix-notation.

Structure Decoding Structure decoding is a top-down process that is almost
a one-to-one inversion of the bottom-up composition described before. A com-
pressed representation is directly fed into the the hidden layer of the network, and
is propagated to the output layer, where the child nodes of the subordinate level are
recovered. For each of these decoded output symbols, a decision rule determines
whether the current output is already a terminal symbol or still a composed structure
that has to be refed into the hidden layer for a further decomposition. This decision
can be realized by an additional bit working as structure-indicator, which is rep-
resented by the function is7erminal in the pseudocode algorithm 1. Being able to
refeed the structured output to the hidden layer as done in the recursive call of the

138 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

Figure 5.15: The compressed fixed-width term representation (a - (b+ ¢)’) is decomposed
into its constituents by the RAAM decoder. Therefore, it is fed into the hidden layer and is

propagated to the output layer.

Algorithm 1 Recursive decoding algorithm to unfold the inherent structure of RAAM-
representations. A “I>”-symbol indicates a comment.
function DECODEINTERNALREPR(double[] internalReprioDecode, int treeValence)
decodedSequence «— raam.decode(internal ReprToDecode, treeV alence),
for {i = 0;i < treeValence; i — i+ 1} do > Depth-first search.
outputVector < decodedSequencelil;
resolvedCode « resolvePredictedSymbol(outputV ector);
resolvedSymbol « null;
if isTerminal(resolvedC'ode) then > Resolving the final terminal symbol.
resolvedSymbol «— lookUpSymbol(resolvedCode);
else > Recursive call of the decoding function upon the output.
decodelnternalRepr(resolvedCode, treeV alence);
end if
end for
return resolvedSymbol;
end function

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 139

decoding algorithm, requires that the output and hidden representation are of equal
width. Since the RAAM is an auto associator, the input, hidden, and output vec-
tors hold the same dimensionality, which is reflected by the produced fixed-width
representations.

5.5.2 Hybrid Structure Transformation System

In the following sections, we demonstrate that the SYMBOCONN framework is ca-
pable of higher level generalization in the case of symbolic knowledge. The un-
balanced tree that was compressed by the RAAM in the previous section should
be transformed according to the distributive law as shown by figure 5.16. There-
fore, a hybrid connectionist system, which comprises both a RAAM network and
a conventional neural network for the intended structure transformation, is set up.
The training and application of the whole hybrid system is complex, since different
network types and different training sets are involved in a prescribed order. Due

Figure 5.16: Tree-based representation of the distributive law as structure transformation
applied to operator trees.

to the modularity of the SYMBOCONN engine, both types of neural networks can
be realized by the MRNN, when configured appropriately. Two different instances
of the MRNN realize the holistic encoding and decoding functionality — with the
MRNN working as RAAM - as well as the transformation functionality as shown
in figures 5.17 and 5.18.

RAAM Transformation
Network
%3 <
\\ //
«realize» «realize»
MRNN

Figure 5.17: The MRNN network realizes both the required Recursive Auto-Associative
Memory (RAAM) and the transformation network.

When an unseen compositional structure instance should be transformed, it must
first be translated into an internal fixed-width RAAM-representation. This step is

140 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

accomplished by creating a training set which only consists of the respective struc-
ture instance. The RAAM Encoder is then trained on this 1-element set until a
remaining error of the same magnitude as for the structure instances encoded in the
actual training phase (cf. previous section).

At this point, the hidden activation of the encoding RAAM network is taken
as fixed-width input vector for the transformation network, which has already been
trained and is ready to predict the hidden representation of the corresponding target
structure. Finally, the predicted fixed-width activation becomes the input of the
trained RAAM Decoder network that aims at properly unfolding the corresponding
target structure. Therefore, the transformed vector (unseen) is fed as activation into
the hidden layer of the decoder network, and the recursive decoding procedure is
executed until it ends up in the predicted terminal symbols of the target structure.

Transformation
@) | mp [(@b) +(ac)) |

Network

* \ 4

RAAM RAAM
Encoder Decoder

* \ 4

b + ¢

Source Structure Target Structure

Figure 5.18: Hybrid architecture for structure transformations based on two RAAMs and
one transformer network that are all realized by the MRNN.

Each source structure has to be encoded by the RAAM in order to obtain a fixed-
width vector'®, which is the input part of a single training pattern for the transforma-
tion network. The target part of that pattern is again computed by RAAM-encoding
the target structure. Thus, two encoding operations are required to generate one pair
of RAAM-representations that serves as a single training pattern for the Transfor-
mation Network.

There are two possibilities to realize the encoding and decoding by the MRNN
operating in RAAM-mode, shown by the rectangles on the left and right side of
figure 5.18 named RAAM Encoder and RAAM Decoder. First, one RAAM in-
stance can be trained on all structure samples such as (a - b) + (a - ¢), b- (¢ + d) or
(b-c) + (b- d), no matter if these are source or target structures. In this case, only
one instance is required that is responsible both for en- and decoding of the hidden
representations processed by the transformation network.

10Representing the hidden network activation s;, see section 4.4.

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 141

Second, two separate RAAM network instances are used, one for encoding and
one for decoding. This time, the encoder network is only trained on the input struc-
tures and the decoder network is only used for decoding the target structures of the
transformation. While both variants are admissible, the second one is usually eas-
ier to train, since each network has to process a less complex training set, and the
encoder and decoder networks can be trained in parallel.

5.5.3 Structure Transform Prediction

In this section, the generalization hierarchy presented in section 3.1.1.2 is realized
by the SYMBOCONN engine configured as RAAM network. We realize this gen-
eralization hierarchy by the hybrid architecture presented in the previous section.
This theoretical application of our symbolic-connectionist architecture as part of
SYMBOCONN supports the title of this dissertation, which emphasizes the duality
of symbolic and connectionist information processing.

The difficult task of realizing the different levels of the hierarchy based on the
leading example of the distributive law serves as theoretical proof of concept of the
symbolic-connectionist learning and prediction capabilities of SYMBOCONN pre-
sented in section 3.3. We skip the rather trivial memorization functionality (Level
0), as well as Level 1, and start with generalization of Level 2. The application of
the distributive law should be generalized both to elements in new syntactical po-
sitions and to completely new elements. The transformation of symbolic structures
can be interpreted as a model transformation in terms of software engineering, since
it can be used to describe the transformation of “bad design” into “good design” ac-
cording to well-known conventions or design patterns. Figure 5.19 illustrates such
a transformation using the Bridge pattern. The presented model transformation

Abstraction Abstraction Implementor

? =T X

RefAbstr Concrimpl1 Concrimpl2 [~=| Concrimpl3 RefAbstr Concrimpl1 Concrimpl2 Concrimpl3

Figure 5.19: Transforming a delegation-based model with three concrete implementors
into an easy-maintainable model according to the Bridge pattern.

can be formulated as a common training pattern original M odel — target Model
learnable by the SYMBOCONN framework, where both models are holistically rep-
resented.

Generalization Level 2 Elements that occur in novel positions within the term
to be transformed should be treated properly by the hybrid transformation system

142 CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

according to Level 2 of the hierarchy defined in section 3.1.1.2.
b-(c+d) — b-c+b-d (5.16)

During the evaluation, the hybrid structure transform system was presented with the
left sides of 1,000 untrained expressions of the form 5.16. In about 960 cases, the
system succeeded in generating the correct target structure, which corresponds to a
generalization rate of 96.0%.

Generalization Level 3 We recall the training set from chapter 3:

a-(b+c) — a-b+a-c
a-(c+b) — a-c+a-b
b-(a+c) — b-a+b-c
c-(b+a) — c-b+c-a

From this training set, a new combination of elements can be found: N :=b- (¢ +
a) — b-c+ b a; This term only contains elements that have already appeared in
the given position for themselves, but not in this combination with other elements.
Again we used a test set of 1,000 instances for evaluating the generalization rate in
this difficult test case. The system accomplished the task with a generalization rate
of 72.5%.

Generalization Level 4 Referring to Level 4 of the hierarchy, structure in-
stances of higher complexity should be correctly transformed. Once more, the en-
coding process begins with the subtrees of highest depth.

b- ((01 + Cz) + (dl + dg)) — b- (Cl + Cg) + b- (dl + dg) (517)

For example, the subtrees of highest depth are (¢; + ¢2) and (d; + d) in the case
of test pattern 5.17. The three terminal symbols ¢y, + and ¢, are compressed to the
internal representation (c; + ¢)’ by auto-associating them in the first logical step
of RAAM training. The same is done for the triple (dy, +, d3), which is combined
with the first triple (cy, +, ¢2) in the final logical step. Due to their interdependency,
these three compositions are trained simultaneously and iteratively till the training
error drops to an acceptable level. Unfortunately, we could not complete the evalu-
ation of generalization Level 4 yet, since we were caught up in technical problems
training the hybrid architecture shown in figure 5.18. We are confident of solving
this problem in future work and the generalization results will be handed in later.
However, the presented connectionist realization of symbol manipulation serves
as an example of how connectionist systems can be composed to provide explicit
systematicity. We saw that connectionist generalization capability is not only an ab-
stract concept, but can be systematically defined, especially in the case of symbolic
knowledge. Due to the generality of the presented scenario and the flexibility of the

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES 143

hybrid transformation architecture, a concrete instantiation in one of the addressed
domains should be feasible and is to be done in future work.

For example, in the field of software development, distributed representations
can be used to learn process knowledge and to detect deviations between a given
process model and the actual process execution according to best practice. In soft-
ware engineering and agile development, project participants often ignore parts of
the given process model bit by bit, so that after a while, the development process
must be synchronized to adhere to the given process model. This could be done by
learning a process model with all of its activities and sub-activities in the form of
a possibly unbalanced tree, where the tree nodes represent the process activities —
may be in form of a rich representation. A deviation from the process can be recog-
nized by RAAM-learning the activities as they were actually carried out and apply-
ing an additional standard neural classifier on the computed RAAM-representation.
The same concept is applicable to design patterns, which can also be incorporated
into a RAAM-representation. Apart from software engineering, Hammerton has
already substantiated the reconstruction of faded structures using RAAM networks
in his paper “Holistic Computation: Reconstructing a muddled concept” [Ham97],
which refers to the recognition and recovery of displaced structures.

5.6 Conclusion

In this chapter, we dealt with learning of compositional and typed (symbolic) con-
tents. The SYMBOCONN framework is able to learn regular and context-free gram-
mars even in the case of fuzzy rule constituents. This capability is useful to integrate
prior domain knowledge or to learn structural knowledge such as design pattern
definitions. In the case of business rules, robustness in recognizing left rule sides
serves for handling incomplete decision tables with missing combinations of rule
conditions.

There are many scenarios that do not allow to determine the value of a condi-
tion, which is part of the antecedent part of a business rule. The reason is often
incomplete or contradictory information, which can be interpreted as noise upon
the rule conditions that has been shown to be properly handled by the MRNN. The
novel spread spectrum based classification mechanism enables the MRNN to ro-
bustly learn typed formal grammars describing structured contents or processes. In
conclusion, we developed three main functionalities and integrated them into the
SYMBOCONN framework:

1. Structure Learning
The SYMBOCONN framework is able to learn arbitrary symbolic sequences
such as context-free or context-sensitive production rules, which can be used
to represent business rules or to describe the structure of XML documents,
for example.

2. Rule Recognition and Classification in face of Heavy Noise

144

CHAPTER 5. CONNECTIONIST LEARNING OF SYMBOLIC STRUCTURES

Heterogeneous rules composed of entities of different types can be learned
and recognized by the neural network. Therefore, the SYMBOCONN frame-
work is capable of classifying incomplete or blurred knowledge structures
such as fuzzy business rules. Besides rule incorporation, the framework can
be used to robustly classify multi-represented objects described by a set of
feature values, as demonstrated in the case of molecule data. The high clas-
sification robustness is achieved by SYMBOCONN with the integration of a
new data spreading mechanism, which is borrowed from state-of-art code
multiplexing in mobile communication and is adapted to neural information
processing. This spreading mechanism provides a bias and variance reduction
and is a variant of error-correcting codes.

. Holistic Representation and Transformation of Symbolic Structures

In the last section, the encoding of compositional symbol structures by con-
nectionist methods was discussed and realized by means of the SYMBOCONN
framework. So-called holistic representations are used to represent symbolic
systematics by recursive auto associative neural networks (RAAMs). Sym-
bol structures can be manipulated holistically without the need to decompose
them, neither for locating nor accessing their constituents. Finally, elaborat-
ing on holistic transformation capability served as proof of concept of the
generalization functionality defined in section 3.3.

Chapter 6

Application to Knowledge
Engineering and Software
Development

Software engineering involves a number of development activities such as analysis,
design, implementation, and testing. During these activities, developers produce
knowledge that describes different system aspects. For instance, a use-case spec-
ification is a system model describing a particular system functionality. A system
architecture describes the knowledge about the components of the system and their
relationships.

Traditionally, knowledge in software engineering is represented by rationale
and system knowledge. Rationale is knowledge describing all significant decisions
in a software project. It can be interpreted as meta system knowledge of the con-
text in which design decisions were made [BD04]. Stakeholders such as project
managers and developers generate knowledge about the system during its construc-
tion in the form of planned and unplanned communication regarding the elicited
requirements, functionalities or bug fixes to be implemented. Unplanned commu-
nication includes requests for clarification, requests for change (RFC), and issue
resolution. Each development activity requires knowledge about dependent activi-
ties from other work packages, which is delivered by supporting workflows such as
project management. Rationale concepts like issues or decisions help to externalize
the rationale that finally leads to a team decision'. The justification for a decision
can be attached to specific artifacts as contextual information. According to Dutoit
et al. [DMMPO6](p. 91), rationale can be considered as a time-indexed sequence
of elements visited during the developers’ interaction with the system. Those se-
quences can be mapped onto SYMBOCONN node sequences that can be directly
processed by the MRNN.

System knowledge is traditionally split up into a functional model, a structural
model, and a dynamic model (cf. Rumbaugh [J.R90]). These models are work prod-
ucts that result from development activities usually accompanied by management

'Messages can be harvested in order to discover key issues within the project communication.

145

146 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

activities, especially in the case of complex projects such as distributed multi-team
projects.

In the last decade, the trend of applying methods from artificial intelligence (Al)
to the field of software engineering can be observed both in industry and academia.
A capital reason for applying Al methods to knowledge-based areas is the increas-
ing amount of rich information that becomes available during ongoing projects or
by postmortem reviews [BD04] — both for successful and unsuccessful software
projects. The amount and diversity of knowledge required by software engineer-
ing activities decrease the disability and ineffectiveness of current techniques for
managing this knowledge. For these reasons, the application of machine learning to
software engineering topics is considered to be increasingly relevant in the medium
term.

Methods from Al such as fuzzy-logic models, decision and regression trees (cf.
section 4.2), neural networks or case-based reasoning (cf. section 2.6.3) provide
the means to mitigate this problem. Many research contributions that propose the
prediction of the project success [SmiO7], the project costs [She05, Pea97, Wil94],
the project duration and so on. Especially cost and effort estimation are supported
by two separate classes of methods, namely algorithmic models and machine learn-
ing. The trend of employing such methods is supported by providers of empirical
software engineering data like the PROMISE Repository of Software Engineering
Databases [SSMO5], which is a collection of publicly available datasets and tools
to serve researchers in building Predictive Software Models (PSMs).

The Rationale-based Uniform Software Engineering model (RUSE) [Wol07] is
a graph-based knowledge model that integrates system models, collaboration arti-
facts, and organizational models in a uniform way [BDWO06]. RUSE is used as the
underlying knowledge model of the CASE tool UNICASE (also called SYSIPHUS),
which supports the usage of rationale. The nodes in the project graph, as shown in
figure 6.1, are called model elements and all modifications ever made to them are
comprehensively captured. Links between entities are also represented by model
elements; thus, they are made explicit as nodes themselves and links are assigned
to a certain link type. UNICASE will serve as a provider of structured data for the
SYMBOCONN framework.

The SYMBOCONN framework benefits from this graph-based knowledge model,
since both content and structure are represented across all activities of the software
development process — no matter which process model is employed [Hel08]. These
activities produce cohesive artifacts which are directly mapped to node sequences
in terms of the SYMBOCONN framework. Potentially, any observed software de-
velopment process can be modeled and learned in form of node sequences by the
MRNN for accomplishing either classification or prediction tasks.

We have chosen three areas in software engineering, in which we demonstrate
the benefits of the SYMBOCONN framework. In section 6.1, we present an ap-
proach to the automatic classification of software artifacts, which can be used as
a foundation for software metrics and is especially important for project manage-
ment. This classification technique based on the SYMBOCONN framework gen-

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 147

Sysiphus Graph

— annotates
ModelElement
A
Link

i

Collaboration
System Models Ariiicts
SystemModel [—Amlol'r‘auu;\
:

[]
Contrained | = 1
iy Comment ‘ Issue
= 3 | —
Leaf Composite | ~, B i &
Section Section DesignGoal Option Criteria
| Class H UseCase H TestCase

filters

Organizational
Model

Document

B

1
Actionltem |1 | OrganizationalUnit

1

‘ I ‘ Team Participant

= Criterion

Element

Nonfunction
Requirement

Figure 6.1: The project graph includes system models, collaboration artifacts, and the
organizational model. Source: Dutoit et al. [BDWO06].

erates knowledge about structure, since the activity classification can be used to
identify a work breakdown structure. For example, tasks as constituents of the
work breakdown structure are automatically classified according to their develop-
ment activity, such that these tasks can be assigned to development teams by the
project management®. This is especially useful for turning an empirical develop-
ment process into an activity-oriented one such as the Rationale Unified Process
(RUP). Time-dependent information elicited from the development artifacts can ad-
ditionally be used to assign the predicted activities to the different RUP phases.

In section 6.2, we apply SYMBOCONN to reason about causality. In particu-
lar, we show how causality can be addressed by change impact analysis, which is
concerned with learning the impact of changes in model elements by a set of train-
ing examples. We present two forms of change impact analysis implemented into
SYMBOCONN: the first variant operates on a training set of change packages, the
second variant uses the knowledge graph directly.

In section 6.3, we demonstrate the capability of the SYMBOCONN framework
to process structural knowledge in form of design patterns. Design patterns are
instances of structured knowledge, which are learned and discovered by the MRNN
based on a grammar representation. The capability of learning and recognizing
patterns is not restricted to software design patterns but can be extended to any
patterns represented by subgraphs. The grammar productions are finally mapped
onto pairs of node sequences (v;,,...,v;,) — (vj,,...,v;,) € (V™ x V") again,
which may be aggregated in order to describe the whole pattern.

In chapter 7, SYMBOCONN is applied to procedural knowledge providing nav-
igation recommendation. This form of knowledge is also called process or control
knowledge, since it can be used to describe the control flow of a predefined process.
An example for procedural knowledge is the sequence of steps that an expert sys-

2Which is itself a development activity.

148 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

tem takes in the derivation of a conclusion®. Compared to knowledge of causality,
functional knowledge is modeled by ordered node sequences (vq, vy, ..., v,) € V"
instead of pairs of sets.

All of these applications benefit from an underlying project graph as given by the
RUSE model shown in figure 6.1, which provides rich and interrelated knowledge
fragments. Nevertheless, the machine learning functionality can also be applied
to raw log data, instances of which are not linked together in form of a project
graph of model elements. In this case, SYMBOCONN can be used to incorporate the
tacit relationships between artifacts implicitly by learning from a set of examples —
similar to association rule mining.

6.1 Classification of Software Development Artifacts

Software projects produce a variety of artifacts as outcome of different development
activities, for example, use cases, components in system design, or action items in
project management. These artifacts consist of a number of attributes; for exam-
ple, a functional requirement could consist of a name and a description. Additional
information is contained in associations between artifacts, e.g. when one require-
ment refines another requirement, or an action item is annotated with the task to
be accomplished. Artifacts can be classified according to these attributes, e.g. the
type or the priority of a certain requirement [SSLO8]. We call them classification
attributes. Classifications according to attributes of interest can be used as a foun-
dation for metrics and analysis; Mockus [Moc08], for example, uses the attributes
state and resolution of bug reports. Scrum [htt07] uses burn-down charts, which are
based on the attribute status of ToDo items.

This type of classification relies on the availability and up-to-dateness of the
classification attributes. However, up-to-date and available classification attributes
are sometimes difficult to obtain. This can be the case when the need for a clas-
sification attribute was not anticipated and the attribute values were therefore not
captured at artifact creation time. For example, one wishes to analyze the progress
of different software engineering activities (e.g. requirements analysis), but the cap-
tured tasks are not categorized by activities. Furthermore, some attributes might not
be entered appropriately by users. For example, we observed a significant number
of users who are reluctant to close irrelevant tasks. An artifact becomes irrelevant
in the following cases: 1) it is outdated, meaning that its due date has passed. 2) It
does not contribute to the achievement of the project goals any longer or its priority
has been downgraded to minor importance.

The process of manually completing and updating information that is required
later on is often difficult to implement. Thus there are approaches that try to auto-
matically classify artifacts. Hyatt and his colleagues [WRH97] developed an early
life cycle tool for assessing requirements that are specified in natural language. The

3Procedural knowledge must not be constraint to algorithms only, since SYMBOCONN also sup-
ports fuzzy node sequences, which are accompanied by a degree of uncertainty.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 149

tool searches the requirement specification document for terms that have been iden-
tified as quality indicators before and indicates, which statements need to be im-
proved.

We employ the SYMBOCONN framework in combination with RUSE [Wol07]
to automatically classify software engineering artifacts. This technique offers three
major benefits compared to existing approaches: 1) It is capable of handling fuzzy,
incomplete and partially incorrect data, which may result from incomplete and inac-
curate user input. 2) It provides traceability between software engineering artifacts,
which generates additional input information for the classification mechanism and
therefore improves the quality of the classification result [PLDOS, LM98]. 3) It is
able to process different types of artifacts within the same classification task. Even
more, SYMBOCONN is highly extensible with respect to additional artifacts. Thus
our approach can be reused for classification problems in different projects regard-
ing various types of software artifacts. One particular type of software artifact is an

parnant

assignedTo

Actionitem " Organizational Unit
+Name: 5tring
el . | +Description: String

+DueDate: Date
+CreationDate: Date
+Activity: Enumeration

+Status: Boolean —|Tei‘ Person
1
creator
annotates
—1>| Modelelement <}—
2N
Requirement Class

Figure 6.2: Class diagram showing the detailed ActionItem model adapted from [Wol07].

action item, which represents a task in RUSE. As shown in figure 6.2, an Action-
Item consists of six attributes as well as five different links between Actionltem
and other ModelElements. All information except CreationDate has to be entered
manually by the developer or the project planner. Table 6.1 shows an overview of
the six relevant attributes, table 6.2 shows the five links of interest.

6.1.1 Evaluation

The developed classification of model-based software development data based on
a recurrent neural network is a new approach at the intersection of software engi-
neering and machine learning. To evaluate the feasibility and performance of our
approach, we conducted two classification experiments.

150 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Attribute Meaning
Name A short and unique name for the represented task.
Description A detailed description of the task.
DueDate The deadline for the completion of the task, if there is one.
CreationDate The date where the task was created in the system.

This attribute is set automatically.

Activity Classifies an Actionltem according to the
software engineering activity it originated from.
In our case, the considered activities are:
Analysis, System Design, Object Design,
Implementation, Testing, Project Management.

Status Determines if the corresponding task is still
in progress or already done, that is, irrelevant.

Table 6.1: Description of the attributes of an ActionItem.

Attribute Meaning

parent Link to a parent task. That is, a task that can be
broken down to this child and other children.

child Link to child tasks.

assignedTo Link to a person or a team
the task is assigned to.

creator Link to a person or a team,
which is the creator of the task.

annotates Link to the object of the task,
e.g. a requirement the task refers to.

Table 6.2: Description of the links between an Actionltem and other ModelElements.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 151

The first one is to classify action items according to the activity in which they
were formulated. In the second experiment, SYMBOCONN is employed to classify
the status of Actionltems; that is, the machine learning engine decides whether they
are still under examination or already completed.

The SYMBOCONN activity- and status-classification is independent from the
concrete life cycle model. To show the feasibility and performance of the SYM-
BOCONN classification, we selected a real-world project with a particular life cycle
model. This project used the activities Analysis, System Design, Object Design, Im-
plementation, Testing, and Project Management. We used five-fold cross-validation
to evaluate the performance of the SYMBOCONN classification. The performance
was measured in terms of precision and recall, which are the standard metrics to
assess the quality of a multi-class classifier.

The project was called DOLLI (Distributed Online Logistics and Location In-
frastructure) [Dol07] and was carried out as a cooperation between the Technical
University of Munich and the Munich Airport. The objective of DOLLI was to
improve the airport’s existing tracking and locating capabilities and to integrate all
available location data into a central database; thereby, luggage tracking and dis-
patching of service personal as well as a 3D visualization of the aggregated data
should be supported. More than 50 developers worked on the project for about five
months. Their efforts resulted in a comprehensive project model consisting of about
15.000 model elements. The DOLLI project and the involved data collection were
supported by the UNICASE tool [BDWO06].

6.1.1.1 Activity Classification

In the first experiment, we added a new classification attribute Activity to the model
element Actionltem. This classification attribute served as target feature for the su-
pervised training of the SYMBOCONN machine learning engine. The project first
followed a variant of a Unified Process for 4 months. The development activities
were executed sequentially in the first part of the project. For the remainder of the
project, the developers followed the Scrum methodology [htt07]. All Actionltems
created during the project were manually classified into the predefined development
activities. Figure 6.3 illustrates the development of open Actionltems over the
project time classified by activity. The empirical dataset clearly showed an overlap-
ping of these activities. In addition, it can be observed, that in the second part of the
project, there was a significant rise of Analysis- and Implementation-related action
items. Table 6.3 shows the distribution of Actionltems. Note that the ActionItems
were rarely classified as belonging to 7Testing and Project Management activities.
As mentioned, the Actionltems were classified manually by the project partici-
pants. However, during the project, the requirement for an automatic classification
arose for three reasons: (1) The manual input of the activity attribute was intru-
sive for the project participants as they had no obvious benefit from entering this
information. It was necessary to continuously motivate the developers to fill out

152 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

160

140

Number of
Open 120
Actionltems

100 T =

80

PN
—P“\%_l"_

)) —

AN -
20 :
r" o N
0 anta ‘ J : : ,"-ﬂ : WA ;
7.10.07 27.10.07 16.11.07 6.12.07 26.12.07 15.1.08 4.2.08 24.2.08 15.3.08 4.4.08

= Analysis System Design === :Object Design = = = Implementation Testing Projekt Management

Figure 6.3: Number of open Actionltems managed in the DOLLI project, broken down
by activity. Beginning from February 24th, the Scrum-oriented phase reveals itself by a
momentary peak in the relative number of open Actionltems — especially in the activities
Analysis and Implementation.

the activity attribute*. (2) Actionltems arising in meetings also need to be auto-
matically classified according to their activity. This is especially important for the
automatic capture of Actionltems using word spotting techniques. (3) In our case
study, we started to work in a sequential- and activity-oriented approach and then
switched to a more agile and Scrum-oriented process. In future projects, we plan to
perform such a process shift also in converse order. Hence, when following an agile
process, the Actionltems will not be classified by their activity. An automatic clas-
sification would help to retrospectively add this information whenever the process
is turned into an activity-oriented process.

For an automatic classification, we trained the SYMBOCONN framework with
data from the DOLLI project. The following paragraph describes the technical setup
of the training patterns learned by the MRNN and reports on the results of the
activity classification.

Training Data Representation For each of the 684 Actionltems, 13 attributes
are captured in the UNICASE tool at the time of creation. These are Name, Team,
Activity, State, DueDate, OrganizationalUnit, Description, Parent Actionltem,
ChildActionltems, Annotatables, URLElements, Attachments and Creation-
Date. The attributes of the Actionltems to be classified by the MRNN are described
by 26 to 2536 feature dimensions, depending on the respective representation tech-
nique. As an example, a minimal training pattern with only two input attributes

4This is a common issue of research approaches, which need additional information to be cap-
tured.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 153

Activity Number of ActionItems
Analysis 258
System Design 158
Object Design 58
Implementation 202
Testing 7
Project Management 1
Total 684

Table 6.3: Distribution of Actionltems according to the activity they were assigned to by
the project participants. The activities testing and project management were rarely assigned.
We assume that project management tasks were mostly managed in the team wikis, whereas
comprehensive testing was not in the scope of the DOLLI project.

results in the following straight-forward feature vector representation.

ft = (\(L‘l, e ,J?kll, \xkﬁ-l? Ce ,l’k%) — £CL1, e ,0,6), (61)

Team CreationDate Yet1

where z; € R, a; € {0,1}. Categorical attributes such as Team or Organization-
alUnit are encoded in a unary form, that is, each symbol to be encoded is assigned
to an orthogonal bit vector with a “1” at the i*" component, (0,0, ...,0,1,0,...,0).
Numerical (metric) attributes such as CreationDate (relative point of time with re-
spect to the beginning of the project measured in days) are assigned to a fixed-width
intercept of the whole feature vector, for example, a numerical value is scaled to the
range [0, 1] and the respective value is replicated 10 times (as often as the width
of the other attributes’ representations). Even if a single feature dimension would
suffice to represent a numerical value, due to balance reasons, the value is replicated
in order to achieve the same weight than other types of represented attributes (e.g.
categorical).

The training and test patterns both hold the form input — target used in ex-
pression 6.1, while the test patterns were excluded from MRNN training. Five-fold
cross-validation was used to obtain significant accuracy measurements, therefore
the 684 objects were divided into 5 disjoint test sets. The standard measures preci-
sion and recall to assess the quality of a classifier were computed according to the
following formulas:

Recall, = 12€ G1K(0) = CO)}] 62)
|Cil
[{o € Ki[K(0) = C(0)}|

Precision; = (6.3)
| K|

154 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Ci, i = 1,...,7 is the i class in the set of classes C' = {C},...,C,} and K; is
the set of objects that were predicted to belong to class C;. K (o) € C is the clas-
sification of object o predicted by the machine learning engine. The classification
K (0) of unseen objects is compared with their actual class membership C'(0). The
precision and recall values are weighted with the size «; := |C;| of each class by a
weighted sum precision = Y ;| % - precision;, n = Y ., o, analogously for the
recall.

Variant Input Attributes LSI Measure Precision Recall F-Measure A
1 Team, DueDate, - Mean 76.83 77.37 77.10 7.48
CreationDate Variation [75.11-78.93] [74.51-79.21] [74.81-79.07]
2 Name, Description No Mean 50.78 53.73 52.21 1.58

Variation [44.93-56.27] [48.51-57.84] [46.65 - 57.05]

3 Name, Description Yes! Mean 48.71 52.37 50.47 10.27
Variation [42.67 - 54.46] [46.32-58.52] [44.42-56.42]

4 All except Activity ~ Yes? Mean 80.64 80.38 80.51 7.60
Variation [78.03 - 84.28] [76.47 - 83.70] [77.24 - 83.99]

'LSI using 02 = 0.65.
2LSI using 02 = 0.35.

Table 6.4: Average classification accuracy measured in terms of Precision and Recall for
684 Actionltems after 5-fold cross-validation. The measure Variation indicates the range
of the obtained accuracy values over the 5 individual test sets used for cross-validation.
For all predictions, the network was trained until a residual error of A. Best accuracy
is in bold, the F-Measure is a weighted mean of Precision and Recall: F-Measure =
i,fg;ﬁfﬁ’jr g:sgllll . If Latent Semantic Indexing (LSI) was used (only applicable in case
of textual attributes), 35% and 65% of the variance o2 in the training set were kept, re-
spectively. This implies that the dimensions corresponding to the 35% or 65% smallest

eigenvalues, were discarded.

Table 6.4 shows the results of the evaluation process, which depend on the
choice of attributes included in the training process (column Input Attributes). We
see that the attribute CreationDate is highly significant for the classification of the
activity that produced the respective artifact.

During the training phase, the machine learning engine is faced with incomplete
data, for example, the values of the DueDate attribute are missing in 68.44% of
the training examples. However, the MRNN machine learning engine is capable of
handling fuzzy, incomplete and partially incorrect data. The MRNN coped with the
incomplete attribute values, as shown by the evaluation variants 1 and 2 in table 6.4.
Due to the additional DueDate attribute in variant 2, the accuracy could be slightly
improved and stabilized (smaller variation) — despite the majority of missing Due-
Date values.

In case of variant 2, the training error cannot be reduced as much as for variant
3 or 4, since the mapping from the input attributes to the classification attribute Ac-
tivity is less unique than in the other cases. This is due to the lower discrimination

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 155

provided by the attributes Team (categorical), DueDate and CreationDate (both
numerical), which do not always uniquely determine the activity an artifact orig-
inated from. Since the neural network realizes a functional mapping, the training
error does not vanish completely.

For activity classification, overfitting [KADO1] occurs very early when using
textual attributes, such that the training procedure has to be stopped quite early. For
example, reducing the training error to an amount of 3.14% leads to a 4.8% lower
classification accuracy on unseen objects (generalization) than accepting a training
error of 7.93% in case of variant 4.

The good classification result when using the attributes CreationDate and Team
(variants 1,2,5, and 6) shows that certain periods of time in the project existed, in
which certain teams worked in a specific activity.

The evaluation variants 3 and 4 showed that it is possible to classify Action-
Items even without any time-related information, but in this case, the results are less
accurate in an unproportional manner. Surprisingly, variant 4 using the advanced
text representation LSI provides a slightly lower classification accuracy (0 = 1.74)
than variant 3 without using LSI and is considered to represent a statistical outlier.
One reason for this might be the significantly higher training error A of variant 4,
which is a sign of the less unique input-target (class) mapping that was more diffi-
cult to learn. The effect of hindered training progress in the case of latent semantic
indexing is due to the lossy transformation (02> = 0.65) of the input information,
which discards both redundant information and information used to distinguish the
artifact class. Normally, the improved representation (less redundant and more com-
pressed) overcompensates the negative effect of loosing information which is usable
for the class distinction.

6.1.1.2 Status Classification

All Actionltems in the DOLLI project were classified manually according to their
status, which can be either open or closed. Figure 6.4 shows the distribution of
open Actionltems over time. After the process shift from a sequentially oriented
software life cycle model to an agile life cycle model, we observed that a large
number of Actionltems was neither touched (read or changed) nor closed until
the end of the project. A survey among the project participants revealed that 81%
of these Actionltems were either irrelevant or were attached to a task which was
already closed.

This implies that the respective Actionltems should have been closed, too. Again,
an automatic classification approach can support the user to mark these objects as
irrelevant. In contrast to the classification of the artifact activity, the classification
according to the status is a visible benefit to the project participants: the mecha-
nism determines Actionltems, which are most likely irrelevant, and recommends
to close or to delete them.

To gather trainings cases for our experiments, we used the change-based SCM
approach [Koe08] to recreate the state of the DOLLI project before the process shift

156 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Fraction of
Open 1,00
Actionitems

0,00
07.10.2007 27.10.2007 16.11.2007 06.12.2007 26.12.2007 15.01.2008 04.02.2008 24.02.2008 15.03.2008 04.04.2008

Figure 6.4: Fraction of open Actionltems with respect to the total number of Actionltems
managed in the DOLLI project. Beginning from February 24th, the Scrum-oriented phase
is revealed by a momentary peak in the relative number of open Actionltems.

to Scrum was done. As training set, we chose Actionltems which were not yet
closed at this state. We then determined which Actionltems had not been closed
until the end of the project. Under the assumption that all of the chosen Action-
Items, which had not been closed at the end of the project, were irrelevant, we
accordingly set the classification attribute Irrelevant of each Actionltem. As op-
posed to the activity classification with a target space consisting of six classes, the
binary classification of the artifact status explicitly considers the development of an
artifact over time, that is, the individual artifact history or life cycle.

For the classification of the artifact status, we again used a network topology
with a hidden layer dimension of A = 30. Compared to the multi-class activity
classification, the classification of the Actionltem status even shows a higher ten-
dency to overfitting. To avoid an overadaption with respect to the training set, for
each cross-validation we used a small auxiliary test set during training to check the
current quality of the classification model. When the classification error on this test
set started to rise, the training process was cut off. This is the reason for the higher
level of the residual training error denoted by A in table 6.5.

Compared to the first experiment, status classification should only be used to
provide the user with a recommendation, as it is not acceptable to wrongly classify
an Actionltem as irrelevant (alpha error). For the purpose of recommendation, the
given precision is sufficient to effectively support project participants. As shown in
table 6.5, LSI had a positive effect on the classification accuracy, which is demon-
strated by comparing variant three and four in table 6.5.

An interesting observation we made during the evaluation of the experimental
data was the role of the attribute DueDate. One could expect that a defined and
prompt DueDate tends to Actionltems which are not irrelevant and vice versa.
However, we found out that the attribute DueDate had even a negative effect on
the precision. To discover the reason behind that anomaly, we trained the MRNN
only with the DueDate information without any further attributes. Due to the miss-

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 157

Variant Input Attributes LSI Measure Precision Recall F-Measure A

1 Team, Activity, - Mean 74.30 71.20 72.65 22.01
CreationDate Variation [65.09 - 83.33] [58.33-83.33] [61.53-83.33]

2 Team, Activity, - Mean 72.06 68.66 70.27 19.41
CreationDate, DueDate Variation [59.35-84.72] [54.17-83.33] [56.64 - 84.02]

3 All Attributes No Mean 78.18 75.36 76.74 12.33
Variation [69.63 - 86.67] [66.67 - 83.33] [68.12 - 84.97]

4 All Attributes Yes! Mean 81.13 80.47 80.79 22.87
Variation [67.71-89.47] [70.83-87.50] [69.24 - 88.48]

5 All Attributes Yes? Mean 85.49 82.14 83.72 16.31
except DueDate Variation [78.19-92.71] [73.91-91.67] [75.99 - 92.18]

'LSI using 02 = 0.65.
2LSI using 02 = 0.85.

Table 6.5: Average accuracy for the classification of the artifact status Irrelevant after
5-fold cross-validation. All values are given in percent [%], best accuracy is in bold.

ing values of the DueDate attribute in 54.24% of the training cases used for status
classification, the training error stagnated on a high level of about A = 24%, be-
cause of the lack of information that could be used to distinguish and classify the
respective Actionltems. This fact alone is not the reason for the repressed classifi-
cation accuracy, since the neural classifier can deal with incomplete information, if
further attributes are available. The main problem was that the DueDate attribute
imposed contradicting time information. This means, for example, that there are
9 Actionltems which have the same DueDate value of 80 days since the first day
of the project. However, in the first case they are irrelevant (5), while in the other
case not (4). Of course, such ambiguous information is misleading and counterpro-
ductive for the classification (non-dichotomous or non-disjoint Actionltem distri-
bution) and should be discarded. It argues for the robustness of the MRNN, that the
classification accuracy is not even more distorted by the DueDate attribute.

6.1.2 Better Than Guessing?

In the previous section, we evaluated the performance of the SYMBOCONN frame-
work, which is considerably high. But which practical benefit does this classifi-
cation have, or in other words, how difficult is the activity classification task for
humans? To figure this out, we conducted an experiment with developers, who
should classify Actionltems according to their activity by hand. We chose three
persons with different degrees of expertise in the project: The Informed Outsider
knew the RUSE model and the information about the DOLLI project provided in
this paper. The Knowledgeable Observer worked part-time in the DOLLI project as
a teaching assistant. The Expert played a central role as an active project participant
in DOLLI. We chose a layered single sample of n = 70 Actionltems from the basic

158 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Expertise Precision Recall F-Measure
Informed Outsider 38.07 32.86 35.27
Knowledgeable Observer 50.17 41.43 45.38
Expert 61.35 51.43 55.95

Table 6.6: Evaluation of the ability of humans to classify Actionltems. Three persons
with different degrees of expertise and insight into the software project were compared.

population of N = 684 Actionltems to obtain significant results’. We conducted a
random selection in groups, so that the class distribution of the objects in the sample
was proportional to that in the basic population.

As shown in table 6.6, the quality of the classification significantly increases
with the project-related expertise of the interviewee. Nevertheless, even the Expert
was by far not able to match the classification accuracy of the machine learning
system.

The demonstrated classification of software artifacts can be used as a foundation
for software metrics and is especially important for project management. It enables
the creation of knowledge about structure, since the activity classification can be
employed to identify a work breakdown structure. In section 6.3, we show another
application of the SYMBOCONN framework to structural knowledge, in particu-
lar, to design patterns. The following section demonstrates how the SYMBOCONN
framework can be applied to causal knowledge of change, which is important pre-
dict the impact of changes in software projects with many interdependent artifacts.

6.2 Change Impact Analysis

As software systems become increasingly large and complex, the need increases to
predict and control the effects of software changes [BA96]. Change impact analysis
is an increasingly important activity of the change management process for handling
change requests. Change impact analysis primarily concerns itself with determin-
ing which (software) entities of a system affect each other. During many software
development activities, such as requirements elicitation or testing, change occurs
frequently and its impact is generally not isolated to the source artifact, so that it is
necessary to assess the impact of change. According to the chaos theory regarding
nonlinear dynamical systems (dynamical system, cf. definition 4.4.1), the impact
of a small local change may cause an exponential growth in the system’s starting
conditions and therefore lead to chaotic behavior. In a figurative sense, this also
holds for software development to some extent, as almost every software developer

>The minimal sample size of 7,,,;, > 30 was met, which is the precondition for the samples’
mean values to be normally distributed; though, in our case, there is only one sample and thus a
meaningful distribution of several samples [vdL08, HEK99] does not exist.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 159

with sufficient experience will agree. Thus, facing change and estimating its impact
is essential in modern software engineering. Facing change is also a basic principle
of agile methods [Amb06], which consider change to be omnipresent®. Change is
not the exception and not an outlier’ of the regular activity, but is envisioned by the
development life cycle.

In the change management process described by the activity chart in figure 6.5,
a request for change is created when existing software artifacts need to be changed.
Besides determining the technical feasibility of the requested change, its costs and
benefits have to be assessed, as well. Thus the Analyze Change Request segment
of the change management process assesses the extent of the change; this activity
is typically called change impact analysis and is addressed by the SYMBOCONN
framework. During change impact analysis, the impact is analyzed in detail by

[

2

«

<

s Require N

w equire New E OB rohl

= Functionality
8

2

E‘ Request Change

s

€

o

=

-

]

o

8 Change Impact Analysis
2 oo
] Determine Technical

g Feasibility

<

o Determine Costs and
] Benefits

2>

£

Evaluate Change
(by Change
Comittee)

Figure 6.5: Activity diagram showing an excerpt of the change management process that
clarifies the role of change impact analysis.

determining which other entities are affected by the change. Change propagation
[HHO4, Han97] represents the sequence of changes required to other entities of
the software system to ensure their consistency after a particular entity is changed.
Change propagation also proposes the locations in the project graph, where the
corresponding changes are to be made.

% “When the winds of change blow hard enough, even the most trivial things can be turned into
deadly projectiles.”
7In terms of data mining, an outlier is a deviation from the typical object distribution.

160 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Definition 6.2.1: Change-Impact Relation

The causality of changes, which is the relation between cause and impact, can
formally be described as a partial order induced by the binary relation Ry C
P(V) x P(V) of change-impact dependency.

A change-impact pair ({c1, 2, ..., em}, {i1,09,...,in}) € Ror, myn € Nis an
element of the transitive relation on the power set of the artifact space (represented
by nodes v € V' of the SYMBOCONN knowledge model). The left hand side of this
relation® represents one or many changes of software artifacts that have an impact
on one or many other software artifacts.

The structural context of changed model elements in the graph should be ex-
ploited by machine learning equipped with an appropriate structural knowledge
representation. Figure 6.6 illustrates the change of an artifact, which is captured to-
gether with its local neighborhood in the project graph. In order to generate training

Change Impact

Figure 6.6: Structure-sensitive change of a model element ¢, which refers to other artifacts
i1, 12, and ¢3. Thus the local change is propagated from c to i1, i2, and ¢3. The changed
artifact and its impact are learned under consideration of the local neighborhood of the
changed and impacted software artifacts in the graph.

examples for the SYMBOCONN engine, the changed artifact is considered together
with its direct neighbors (linked via a single edge) in the graph. This subgraph is se-
rialized and results in an input pattern for the MRNN. The model elements affected
by the change are also captured together with their neighboring elements in form of
the target subgraph; this target subgraph is serialized as a single target pattern. A
structure-to-structure mapping has a higher potential to cover all aspects of cause
and impact relationships than only considering isolated artifact changes.

Graph Serialization There are several methods stemming from knowledge
discovery and discrete mathematics for the representation, comparison and search
of graphs; these are used either for graph mining or for heuristic search, like the
Warshal or Dijkstra algorithm. Graph nodes and links have to be serialized in the

8The change-impact relation Rcr can be compared with Lamport’s happened-before relation
a — b that is also transitive [Lam78]. a — b and b — c implies a — c. If @ — b, where a and b
are events of the same process, then a occurred before b. As opposed to Ry, the happened-before
relation imposes a logical time and must not be interpreted causally.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 161

form of SYMBOCONN node sequences in order to be processable by the recurrent
neural network. The literature on graph mining and representation often uses a
triple-based approach in order to represent graph-structured knowledge [YHO?2].

In SYMBOCONN, a triple is of the form (node;,link-type;j,node;), which rep-
resents two graph nodes as well as their connecting link. Thus, a subgraph is a set
of triples transformed to an input pattern and mapped onto the subgraph of affected
elements, which is also represented by a set of triples. Such a triple is considered
as one node of the SYMBOCONN knowledge model (cf. section 3) and is realized
by a multi-represented object with three complex features. The smallest structural
entity, namely two nodes from the graph of figure 6.6 together with their connecting
edge, are aggregated by one multi-represented object.

Unlike the rule-based design pattern representation, we have chosen an explicit
representation of the graph links for change impact analysis. Since the links are also
model elements, they carry important information such as the link type (createdBy,
blockedBy, subclassOf, etc.) that should be directly bound to the source and target
node and be incorporated into the machine learning process. Finally, a set of triples
representing the change has to be mapped to a set of triples that stand for the im-
pact. Both sets have to be transformed into ordered sequences that can directly be
processed by the MRNN.

Change impact analysis is especially useful when traditional project and risk
management approaches fail to assess the consequences of requested change pack-
ages in a timely fashion, due to lacking experience or expertise on the part of the
project participants. Thus, change impact analysis is also related to the field of risk
management [LSKO04], since changes to sensitive software artifacts paired with an
unfavorable timing imply risks for current development activities or even for the
whole project. Risk is consensually interpreted as the rate of change multiplied by
its impact or severity [GRO5]. The risk graph depicted by figure 6.7 illustrates the
different zones of danger resulting from the combination of change rate and change
impact.

Traditional change management for software development supports the process-
ing of changes and enables their traceability. In this dissertation, the SYMBOCONN
framework uses history information [Per96] in the form of change logs to assess
the impact of future changes. By applying this empirical variant of change impact
analysis to software projects, the following benefits can be attained.

e Preventing Incomplete Change. Guidance of programmers by observing
their working set and recommending related artifacts to prevent errors result-
ing from incomplete changes.

¢ Pinpointing Entity Coupling. Pointing out the implicit coupling of entities
which is undetectable by conventional program analysis [ZWDZ04].

e Cost and Time Metrics. Cost and time metrics based on the result of change
impact analysis can quantify the change impact for supporting a go/no-go
decision of the change committee.

162 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

c

g

= probable
3

8

e

[+]

= seldom
=

§]
I unthinkable
o

insignificant minor criical catastrophic

Measure of Damages

Figure 6.7: Risk graph showing three different risk zones. The green zone represents
the acceptable range, while the red zone is unacceptable. The orange one is the so-called
ALARP-range, which means As Low As Reasonably Practicable. The ALARP-range is
flexible and may differ from institution to institution, depending on the sensitivity and ma-
turity of the respective practice.

e Enrichment of Burn-Down Charts. Burn-down or Gantt charts that reflect
the development progress can be enriched by grouping the results of change
impact analysis according to the features to be implemented in the software
release. The indicated change propagation caused by a feature implementa-
tion can help to improve the timely delivery of the desired product function-
ality and quality. At each stage of the development process, the apparently
required changes of the current promotion can be confronted with the pre-
dicted time and resource constraints. Expensive changes to subsystems can
be avoided.

e Enabling Traceability of Changes Across Software Models. From the his-
tory of a project and with the help of traceability, change propagation can be
traced across different system models, such as class diagrams and use case di-
agrams, which reveals inter-model dependencies. On this basis, inter-model
links can be categorized according to their probability to frequently propagate
changes, which is useful to set up appropriate tool support for these change
paths.

In this section, we exploit change information with the SYMBOCONN framework
in order to recommend corresponding changes in accordance with the expected im-
pacts.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 163

6.2.1 Change Impact Analysis on Graph-Structured Data

In this section, we briefly present the principle of structure-based change prediction,
while the evaluation of the technique will be carried out in future work within the
scope of the DOLLI project [Dol07], which develops a tracking- and service system
and was introduced in section 6.2.2.

The proposed change impact analysis is based on the UNICASE project graph
shown in figure 6.1. The nodes in this graph are called model elements and all
modifications applied to them are captured in a central repository. So-called inter-
model links between Actors and Use Cases, or between Use Cases and Classes may
propagate changes in one element even to elements of other models. The CASE
tool user is able to follow these links forward and backward in order to assess the
potential impact of a requirements change, or to validate the test results against a
set of requirements. For example, a requirement change may affect a use case or a
class diagram.

This task is automated by the SYMBOCONN framework, considering model el-
ement changes both in content and structure. This approach to change impact anal-
ysis may also detect link types that frequently propagate inter-model changes and
are thus traceability links.

The project graph lays the foundations for structure-sensitive change impact
analysis, as opposed to a content-based change analysis, which is merely based on
repository transactions like those employed in section 6.2.2. UNICASE, for exam-
ple, provides uniform mechanisms to trace changes to impacted design, implemen-
tation, or test elements in forward and backward direction, which is the precondition
for a comprehensive change impact analysis.

Purely Structural Graph Representation Motivated by frequent subgraph
mining [KKO1], which is an extension of association rule mining and serves to dis-
cover structurally similar or equal subgraphs, an equivalence class of subgraphs is
introduced. For consistency reasons, structurally equal subgraphs must be mapped
to the same sequence of multi-represented objects learned by the MRNN, which
can be achieved by canonical labeling [KK01, KKO2]. A canonical label C'L is an
isomorphism-invariant normal form of a graph; thus, several distinct but isomorphic
graphs are assigned to the same label. If two graphs (G; and GG} result in the same
canonical label, then they belong to the same isomorphism class:

where CL : {V,E} — 220"V = {u,... 0.}, n = |V|, E is the set of
links (edges) in the change graph, and X is the alphabet of existing link type codes.
Figure 6.8 shows a graph of typed nodes and links that is subject of change. For
this example, the link type alphabet is ¥ = {0, 1,2, 3}, since a missing link is
encoded by “0”. The technical benefit of the canonical labeling consists in providing
a well-defined transformation of isomorphic subgraphs to a unique code string that

164 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Figure 6.8: Exemplary change graphs G and G’ consisting of the one-step neighbors of
change node v3. Node vs of type C is changed in its structural embedding in the graph. In
the change impact analysis of SYMBOCONN, all graph nodes vy, . . . , v4 are only considered
by their type like A=Requirement, B=UseCase or C'=Actor, but not as unique instances.
The link types could be identified with associations like 1 = createdBy, 2 = blockedBy, or
3 = changedBy.

stands for all graphs from the same isomorphism class. Canonical labeling was
implemented into the SYMBOCONN framework for being capable of processing
semantic graphs (see also section 3.2) such as the one in figure 6.8.

In the first step of canonical labeling, the adjacency matrix of the subgraph to
be serialized is computed, which contains the link types encoded as integers; this is
shown by the matrices 6.5.

AABC BAAC

0211 0201
2001 , 2001 (6.5)
M=1100 3 M=1000 3

0130 1130

For n different nodes, n! adjacency matrices are created and for each of them the
upper triangular matrix is first read out column-wise and then row-wise. The result-
ing integer strings are sorted lexicographically, the lowest string being the desired
canonical label. For the matrix M in expression 6.5, the resulting string is

CL(G) = 210113 :

length :%(n2fn): % (16—4)=6

which is one of 24 strings. The remaining 23 strings represent the other permu-
tations of the node labels while preserving the graph structure. One isomorphism
class consists of the different graphs arising from the permutations of the node la-
bels of a specific change graph. Thus, the isomorphism class is determined by the
structure of the graph, and not by its node labels. The class representative could be
described in words by “there are two nodes of degree 2 and type A that are con-
nected by a link of type 2. Both of these nodes are also connected to another node
of degree 3 and type C by links of type 1...”. In figure 6.8, graphs GG and G’ are not

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 165

isomorphic to each other, that is, G; 2 G, since CL(G) # CL(G") = 200113.

Content- and Structure-Based Graph Representation This form of graph
representation is required to support change impact analysis in CASE tools, if they
provide views onto the relevant subgraphs that enable the consideration of different
levels of detail concerning the node or link type. For example, during a change
impact analysis, one might want to ignore fine-grained node types (model element
types) such as NonfunctionalRequirement or DesignGoal and, instead, only con-
sider three types of nodes — Issues, Requirements, and Activities. Assume we are
only interested in the influence of requirement changes on the duration of project
activities, for example. In this case, coarse-grained node filtering results in several
nodes of the same type (label), illustrated by figure 6.9. Now, the only remaining

Figure 6.9: Excerpt of a project graph that was filtered according to the node types Issues
(D), Requirements (R), and Activities (A) denoted as labels. Different link types were also
filtered out here. The change in the marked requirement results in changes in two project
activities with the same parent node.

fact is that the changed requirement is linked to another requirement, as well as to
two annotations, which completely describes the relevant causal subgraph — regard-
less of its link types. Other filtering strategies lead to other node type partitions
regarding the change and impact graphs. Then, nodes that have been of distinct
types before filtering may afterwards be mapped onto the same type. To still obtain
a fixed order of the triples that have to be transformed into SYMBOCONN node se-
quences, the graph nodes (model elements) are sorted by their degree® first and, in
case of ambiguity, by their labels in a second step. The same applies to the order
within the triples of the form (node;,link-type;;,node;).

Representing Changes in the Graph Structure In order to capture structural
changes in the project graph such as the removal of a model element, as well, we
optionally consider two change graphs instead of a single one as the input pattern

9The number of incoming and outgoing links.

166 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

for the neural network.

(CSG1,CSGy) — 1SG
CSGy = (i1, (i)1, 51), (2, (id)2, J2), - -5 (s (35)ms Jm)
CSGy = (i1, (if)1, 1), (i2, (i5)2,52), -5 (in, (£f)n, Jn)
ISG = (ki, (kD1, 1), (Ko, (KD)2,12), ..., (K, (KD);, 1),

where the source node i and target node j; linked by (ij); are ordered accord-
ing to their degree within one triple and across triples: deg(ix) < deg(jx), k =
1,...,max(m,n) and deg(j1) < deg(j2) < ... < deg(Jmax(mmn))- If this order-
rule does not produce unambiguousness, then the nodes are additionally sorted by
their label as mentioned before. The change subgraph C'SG is a snapshot of the
structural situation before the change and C'SGs, is the snapshot after the respective
change, both of which are mapped to the impact subgraph /SG during the training
phase. This way, the removal or addition of a node can be detected by machine
learning!?; this would not be possible if only a single change graph is considered.

Beyond learning the structure of changes, the SYMBOCONN framework even
has the capability of learning structural changes that lead to a change in the content
of the impact subgraph (effect). An example is the addition of a new actor to a use
case, which requires a description of the actor in the use case model. This change
in the model is hidden behind the triple components, such as (ks,(kl)s, l2) modified
to (k?g,(kl)Q, l3) within the I.SG, for example. To learn the correlations between
change and impact graphs by the MRNN, a set of training patterns of the form
(CSG,,CSGy) — 1SG is used.

Causal relationships are often not explicit and are thus not represented in the
knowledge graph that determines the structure of the available project knowledge.
Therefore, in the following section, we apply the change impact analysis of the
SYMBOCONN framework to software artifacts that are not linked by an explicit
graph structure, but which show an implicit coupling through their occurrence within
the same checkin transactions.

6.2.2 Recommending Software Changes

In this section, we present the results of our approach to content-based change im-
pact analysis, which were already discussed in detail in [Dav08c]. The central
goal of recommending software changes is to predict software artifacts that are
frequently changed together by a developer due to their explicit or latent interde-
pendencies. The software repository receives a set of artifact changes within one
commit transaction. This implicit knowledge of interdependent changes can be ex-
ploited in order to recommend likely further changes, given a set of already changed
artifacts.

10The technique of employing two subgraphs can also be used to represent structural changes on
the impact side, of course.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 167

Developers deal with a work package of a software project and complete each
of their working steps with a checkin operation on the artifact repository. A Con-
figuration Management aggregate (CM aggregate) [BD04], or shortly commit set,
is a composite of configuration items that are checked in within the same reposi-
tory transaction. The software developers’ working focuses should be learned from
their interaction with the artifact repository by means of learning by example. The
working focus of a developer is considered as the union of all commit sets within
the time frame 7'. In particular, two distinct tasks are to be solved by learning from
the repository transaction data.

1. Recommending further changes: Guiding a beginner or an experienced
programmer who is unfamiliar with a certain subsystem and its configura-
tion items. When a developer is working on a programming task, relevant
software artifacts such as documentation, UML diagrams, code, multimedia
files, etc. that might require corresponding changes should be proactively

recommended: “Programmers who changed these artifacts also changed..”
[ZWDZ04].

2. Generalization: The connectionist system should go beyond the state-of-art
in guiding programmers, which is mostly based on symbolic association rules.
The recommendation of related artifacts should even work for completely
unlearned configuration items, which have not been under version control at
the time of training. Based on their textual and conceptual similarity, the
neural network provides a content-based assessment of unseen artifacts.

The procedure for recommending software changes is very similar to the navi-
gation recommendation functionality introduced before, since many settings, such
as the structure of the training patterns, hold for both applications. In the case
of navigation recommendation, the recommended subjects are web pages or docu-
ments, while in change impact analysis, they are software artifacts changed together
with high probability. Again, a hybrid approach based on Latent Semantic Indexing
(LSI) and on the Modular Recurrent Neural Network (MRNN) is used to recom-
mend software development artifacts; that is, predicting a sequence of configuration
items that were checked in together. In both cases, textual attributes of the entities
to be predicted are analyzed and transformed by LSI, as described in section 7.3.

As opposed to related approaches to repository mining, which are mostly based
on symbolic methods like Association Rule Mining, our connectionist method is
able to generalize to unseen artifacts. Compared to association rule mining, which
is a purely symbolic approach operating on atomic artifact identifiers, our connec-
tionist technique — paired with text mining methods — is able to incorporate actual
content into the learning and recommendation process. The association rule mining
approach often used in related work [ZWDZ04] is, in principle, not able to assess
changes or visits of new artifacts, since their (latent) semantics are ignored by the
symbolic representation'.

"We did not address source code fragments, as did Zimmermann et al. [ZWDZ04], but focused

168 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

The combination of neural networks with Latent Semantic Indexing is a new and
promising approach to change impact analysis, which has hardly been investigated
so far [SLD96, DDF90].

Navigation and artifact recommendation as well as change impact analysis are
highly relevant areas of research [GHJ98, CMO03, ZWDZ04]. In “Mining Version
Histories to Guide Software Changes”, Zimmermann et al. [ZWDZ04] applied
association rule mining to the analysis of artifact changes that frequently occur to-
gether and thus are empirically related to each other. The current sifuation of a
software developer is considered as a set of file changes that is used for mining as-
sociation rules with a corresponding antecedent part on the fly (only on demand).
The consequent parts of length one of all matching rules are ranked by confidence
and are presented to the user. The implementation was carried out as an Eclipse
plugin, so that the recommendations appear as a list in an integrated window of the
development environment.

The industrial paper [SLWO07] demonstrates the use of the Singular Value De-
composition (SVD) to analyze the changes in software project files that occur to-
gether. These are counted in a quadratic frequency matrix, which is then decom-
posed by Singular Value Decomposition in order to obtain the significances of the
association clusters. These clusters indicate the strength of the associations be-
tween files. As in the work at hand, a frequency matrix of keyterms and text units
is computed and analyzed by SVD (only as preprocessing), which is a powerful
method for removing redundancy and for eliciting the correlated latent concepts
from an empirical dataset.

In [ZWDZ04], the recommendation of software artifacts or web pages, respec-
tively, is based on association rule mining. Thus, useful predictive information in
the form of artifact contents is given away when relying solely on symbolic items
without consulting the similarity between artifacts. This drawback can be avoided
by considering a rich representation of the visited entities, instead of reducing them
to meaningless unique identifiers.

In the following case study, the technique was applied to three publicly available
datasets from the PROMISE Repository of Software Engineering Databases.

Case Study: Exploiting Repository Transaction Data The change recommen-
dation technique described in this chapter was applied to repositories of version-
ing data from three independent projects, namely Nickle, XFree86, and X.org'?.
The used datasets stem from the PROMISE Repository of Software Engineering
Databases [SSMO5], which is a collection of publicly available datasets and tools
to serve researchers in building predictive software models. Massey [Mas05] has
logged and analyzed the publicly available CVS archives of these projects resulting
in datasets with the same structure for different projects, so that we could conduct a
uniform evaluation for the three projects.

on versioned files in general, which are distinguished by type as listed in table 7.2.
Phttp:/{nickle.org, xfree86, x }.org

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 169

The value of the attribute FilePath is to be predicted by the SYMBOCONN frame-
work, which is considered as a change recommendation for this item. The file names
as suffix of the attribute FilePath take values such as “INSTALL-X.org” or “Make-
file” (see table 7.2). FilePath is the only text-based attribute of the CVS transaction
data and its values are considered as text units in terms of section 7.3 for con-
structing the vector space model. The remainder of the attributes, such as external
(boolean, author is different from submitting person), are mostly nominal and thus
do not provide the possibility of computing similarity among their discrete values.
The metric attributes lines_added and lines_removed proved to be hardly signifi-
cant and were thus excluded. Table 7.2 shows the schema of the logged repository
transactions.

The commit records were grouped according to their checkin dates, thereby
obtaining sets of artifacts that were checked in by a specific author at the respective
point of time. The contents of each CM aggregate were split into input and target
sequences, one pair making up a single training pattern for the neural network.

FileType FilePath AuthorID | Revision Commit Date
“code” “config/imake/imake.c” 1 2.0 “2004-04-03 22:26:20”
“devel-doc” “INSTALL-X.org” 1 1.6 “2005-02-11 03:02:53”
“doc” “config/cf/Fresco.tmpl” 1 1.2 “2005-02-11 03:02:53”
“unknown” “LABEL” 2 1.2 “2003-07-09 15:27:23”

Table 6.7: Excerpt of the data schema of the repository transactions from the XFree86
project, concerning the committed configuration items with some of their attributes.

For our case study we chose arbitrary subsets of 2,970 to 5,350 commit actions
by up to 39 anonymous developers, depending on the respective project: Nickle,
XFree86, or X.org. The generalization accuracy for the target attribute FilePath
was evaluated by arbitrary test sets with different numbers of configuration items
from the three projects. The repository transaction data was arbitrarily split up into
a training set of g and a test set of % of the relevant commit actions by interleaving
(taking each 8" pattern). Since no internal order is specified on the CM aggregates,
the artifacts of one commit set C' are represented by the possible combinations of or-
dered input and target sequences making up one training pattern (input +— target).

We trained the network on up to 455 training patterns resulting from a basic
set of 3,000 commits. The MRNN learns the committed items as subsequences
of the form (C' D (itemf,,item,, ... item{) — itemS), where the target se-
quence only consists of one item. Despite the relatively short sequences of 3.3
configuration items per CM aggregate on average (min 1, max 34), we use a neural
network for predicting related software artifacts because of its generalization capa-
bility [Sch97], which reveals its effect when visiting unseen artifacts that were not
part of the training sequences.

A successful recommendation is given if a set of items H := {item,,, item,,,
..., item;, } C C that was not trained before is presented, and if the network pre-
dicts one or several items of the complementary set 7' := C'\ {item,, , item,,, ...,
item;,, }. In general, all items v € H of the input set are presented and one or

170 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

several items v € T of the target subset are expected as correct recommendation,
which counts as a hit and is summed over all test cases.

The singular value decomposition of the term-document matrix successfully dis-
covered the latent semantic concepts of the textual attribute FilePath and thus op-
timized the term-frequency based bag-of-words approach. The FilePath attribute
indicates the relative path of the configuration item within the versioned project.
We were able to reduce the vector space dimensionality to d} = d; — k = 159 by

= 7 while loosing only 1.06% of the variance in the XFree86 training set, which
represents a nearly lossless transform. This was possible because high-dimensional
bag-of-words vectors are usually sparse, that is, they contain many 0O-entries. More
formally, the term-document matrix M € R®*IVI (d; is the number of keyterms in
the knowledge base) does not have full rank, but only rank(M) = d; — k. We did
not conduct an actual dimension reduction with information loss by £ > 7, because
any removal of further dimensions led to a significant downgrade of the prediction
accuracy'®.

Before presenting the quantitative results of our recommendation technique, we
show two exemplary item recommendations generated from partially unseen com-
mit histories of the XFree86 project. Both recommendations were validated by
hand, using appropriate queries on the transaction database.

e [input, 1 target item: config/cf/xfree86.cf — config/cf/xf86site.def
The item config/cf/xf86site.def was predicted due to its conceptual similarity
to the input item config/cf/xfree86.cf residing in the same subdirectory con-
fig/cf, which is detected by LSI-based text mining.

e 2 input, I target item: Makefile.std, registry — Imakefile
In this case, the item Imakefile of type build was recommended to be changed,
since the neural network had learned that checking in the items Makefile.std
and registry mostly implies checking in the Imakefile, as well.

The target items in all test sets could be inferred with a maximal accuracy of 72.72%
in the case of the X.org project. For the Nickle dataset, we achieved an accuracy of
61.29%, compared to 69.23% for the XFree86 dataset. Note that the residual train-
ing error could not be minimized completely (relative training error 0.25% < § <
0.75%) and still might leave room for improvement. In order to avoid overfitting,
we did not strive for a perfect mapping of all training sequences.

The significance of all results is quite high, since the dependent variable FilePath
can take 167 (XFree86) to 1047 (X.org) different values, depending on the project.
Assuming an equal distribution of these values, guessing a single target item based
on a given set of committed X.org project items would result in an average hit
probability of 1/1047 = 0.096%.

We think that even better results would be achieved in the presence of more
meaningful and more predictive attributes than the path of a software artifact, which
does not offer a variety of meaningful keyterms to form a broad basis for textual

3The smallest kept singular value o159 = 0.999 ~ %01 was still significant (X.org).

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 171

similarity. The lack of rich content in the FilePath attribute, whose values mostly
consist of only one to three terms (e.g. “config”, “cf”, and “xfree86.cf”), provides
less predictive information compared to richer multi-represented domain objects.
To summarize, the case study demonstrates that the connectionist LSI-approach
achieves a significantly higher recommendation precision than existing methods
based on association rule mining. Even for unseen artifacts our approach still pro-
vides a precision of up to 72.7% on the given datasets. This means that for 72.7%
of the presented test patterns a correct change recommendation was generated. One
reason for these results is the inclusion of domain content by the attributes FileType,

FilePath, AuthorID, and Revision that is exploited as predictive information.

6.3 Design Pattern Discovery

Machine learning can support modeling activities in software engineering by recog-
nition and recommendation of potential design patterns during analysis. Software
design patterns were originally defined by Gamma et. al: “Design patterns are par-
tial solutions to common problems, such as separating an interface from a number
of possible implementations. A design pattern is composed of a small number of
classes that, through delegation and inheritance, provide a robust and modifiable
solution.” [BD04, GHIV95].

Modeling activities are facilitated by design patterns, which are templates to
solve well-known design problems. They often improve a software system in terms
of expandability, simplicity or reusability. “In the course of development, software
engineers build many different models of the system and of the application domain.”
[BDO04]. The impacts of design patterns on software development have been empir-
ically analyzed by means of criteria established by Guhneuc and Khomh [GKO7].

In the following, the SYMBOCONN classification capability — additionally im-
proved by the introduced spread spectrum mechanism — is applied to the recognition
of design patterns. Malformed or partial design patterns, which have been learned
according to their original definition but are presented in noisy or incomplete form,
should be reliably recognized in the operative phase. Design patterns can be hidden
in complex class diagrams, which do not necessarily provide an indication of where
to start the discovery process. This is primarily a weakness of purely symbolic
pattern discovery methods that handle software classes as variables of grammar
productions, as accomplished by Costagliola et al. in “Design Pattern Recovery
by Visual Language Parsing” [CDLD"05]. The holistic [Cha90] neural network
approach considers class diagrams as a whole and therefore avoids this problem in
principle.

6.3.1 C(lassification Based on Decision Trees

Before developing a symbolic-connectionist method for design pattern discovery,
a preliminary but also simple alternative is given, which has not been presented

172 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

so far. In this section, we adapt the approved information-theoretic method of de-
cision trees for the discovery of design patterns. Table 6.8 defines several design
patterns by the number of contained Aggregation, Composition, Inheritance, and
Association relationships. These frequency attributes are used as naive heuristics to
construct a decision tree for classifying class diagrams according to the contained
design patterns. As demonstrated by figure 6.10, an initial decision tree is computed
that serves for classifying an unknown class diagram.

ID | #Aggregation | #Composition | #Inheritance | #Association DP

A 0 0 1 1 Adapter
B 1 0 3 0 Bridge
C 0 1 1 0 Composite
o 1 0 2 0 Observer
P 0 0 2 1 Proxy

Table 6.8: Naive definition of several design patterns (DP) based on the number (#) of
contained Aggregation, Composition, Inheritance, and Association relationships.

The building of a decision tree by recursively splitting the respective dataset is
completed when all leaf nodes stand for the instances of a single class and thus are
homogeneous. Figure 6.10 and 6.11 both depict decision trees for the same design
pattern classification problem, but only the second tree is optimal with respect to
the entropy information criterion. The first split by the attribute Inheritance results
in a higher information gain than a first split by the attribute Aggregation (Aggr).
The reason for this is the created partitioning, which is purer when split based on
the question of how many Inheritance (Inh) relationships exist in the class diagram.
A split according to the number of inheritance relationships results in one homo-
geneous leaf node for Inh = 4 at once, isolating two realizations of the Bridge
pattern. The remaining three child nodes have to be split further.

At the root of decision tree 6.10, the design patterns DP = {A, B,C, O, P}
already show different prior frequencies; thus, the entropy of D P is not maximal,
since we approximate the prior probabilities of single design patterns in the basic
population of class diagrams by the given frequencies. The assumption of D rep-
resenting the basic population leads to the following probability approximations:
P(A) = 2, P(B) = &, P(C) = 3, P(O) = 2 and P(P) = 5. Formula 6.6
defines the conditional entropy of the two random variables X and Y, which gives
the uncertainty of Y when X is already known.

HY|X)=> P@)H(Y|X =) (6.6)

Apparently, it holds H(Y'|X) = H(Y), if X and Y are uncorrelated.
The information gain given by formula 6.7 can be interpreted as the decrease of

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 173

ID | #Aggregation | #Composition | #Inheritance | #Association DP

1 0 0 1 1 Adapter
2 1 0 1 3 Adapter
3 0 1 1 2 Adapter
4 2 1 1 4 Adapter
5 1 1 2 3 Adapter
6 1 0 3 0 Bridge
7 1 1 4 0 Bridge
8 2 1 4 2 Bridge
9 0 2 1 0 Composite
10 0 1 2 2 Composite
11 1 2 2 1 Composite
12 1 2 2 4 Composite
13 1 2 3 3 Composite
14 1 0 2 0 Observer
15 1 1 2 0 Observer
16 1 0 3 1 Observer
17 0 0 2 1 Proxy
18 1 0 2 2 Proxy
19 0 0 2 3 Proxy
20 0 1 3 1 Proxy

Table 6.9: Exemplary dataset D containing realizations of several class diagrams that con-
tain (at least) one concrete design pattern (DP). The descriptive attributes stem from the
schema defined by table 6.8.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

174

L=v# 1=0# =0# |=9# |=d# 1=0# b=di#t ‘1=0#

-
-

1=0# ‘1=8#

-

d# | on 1=vE 1=V#

1=a# L=V#

O ‘T=0# T=V# -
L C=d#t 1=0# UL

65166
L=a# L=V Z uope m_w v 5

L=d# ‘€=0# ‘€=

L =0# ‘T=Vi#

A
€=d# ‘T=D# ‘T=V#
Y=d# ‘€=0i# ‘G=0# ‘¢=9# ‘G=Vi#

Figure 6.10: Decision tree for the naive classification of class diagrams according to the

predefined design patterns Adapter, Bridge, Composite, Observer, and Proxy. The number

of relationships of the respective type 1" at each decision node is given by the notation

“#T

_nn

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 175

the uncertainty H(Y") after a split by the attribute X.

IG(X) = H(Y) — H(Y|X)

ZIP’ H(Y|X =) ©.7)

Following this, we will exemplarily compute the information gain when splitting
the dataset D of table 6.9 by the attribute Aggregation at first, which is represented
by the root node of the decision tree 6.10. Therefore, the (absolute) entropy of the
instances contained by the dataset D before any split needs to be calculated.

_ &al, ol
H(D) =~ Z|D|1g D]

5 5 3 3 5 5 (6.8)
= (2 log, — logs = 1+ 2 1o, =
(50 1082 55 + 5g 1082 55 T 5 1082 5
3 3 4 4
= log, = log,) a2 2.9
+ 50 1082 55 + 5g 1082 5) ¥ 2.29

Subsequently, the conditional entropy values for all realizations of the variable
Aggr must be determined.

2

C;
H(D|Aggr =0) Z ‘|D]‘
i=0
2 2 2 3. 3 (6.9)
(7 log, = 7 7 10g2 - + 7 log, ?)
~ 1.56
H(D|Aggr =1) = ...~223 (6.10)
H(D|Aggr=2) = ...=1.0 (6.11)
Aggr
IG(D|Aggr) = Z | |D| H(D|Aggr = i)
7 11 9 (6.12)
=229 — 1. — 2.2 — - 1.
9 (20 56+ 55223+ 55 0)
~ 0.413

We see that the information gain /G(Aggr) for the first split of the whole dataset
by the ternary attribute Aggregation amounts to 0.413, which is quite low. Now, we
compute the information gain for another split attribute, the 4-valued Inheritance,

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

176

1=0# 1=G# |=V# |=d# 1=0# |=d#t |=0# |=d#

0 1=0#" 1=8#
‘SO
1=0#

Ot “€=Di# ‘1=V#

b=d# “1=0i# "V =0i# ‘| =a#

€=d# ‘= b=d# ‘1=0#

b=dit ‘1 =0#

b=di#t ‘|=V# ="

1=0# C=Vi# C=V#

Y=d# ‘€=0# ‘G=D0# ‘c=8# ‘G=V#

L=0# V=Vt

Figure 6.11: Optimal decision tree for the same classification problem as addressed by the

suboptimal decision tree of figure 6.10.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 177

for example.

4 .
IG(D|Inh) = H(D) =) _ %H(Dunh =)
=1

9 9 (6.13)

5 4
=229 —(—-0.722+ — - 1. — - 2. — - 0.
9 (20 0.7 +20 89—|—20 0—1—20 0.0)
~ (.854

The result is rather illustrative, since the information gained by the split attribute
Inheritance amounts to more than double of that gained by Aggregation. The
split of the tree root by the inheritance attribute leads to an information gain of
IG(D|Inh) = 0.854, while a split by the attribute Aggregation only attains a gain
of IG(D|Aggr) = 0.413. The first split of the second tree is more discriminative
and leads to a 5-9-4-2 partitioning, which has a lower entropy than the 7-11-2 par-
titioning from the first tree — additionally considering the degree of homogeneity in
the created child nodes.

It is intuitively feasible that the second decision tree provides the better problem
solution, since the Bridge design pattern 5 can, in several cases, be directly clas-
sified by a single decision starting from the root, and the patterns A and C' require
only one additional decision in the best case. The total number of decisions to be
made for classifying all instances of the dataset D according to the five design pat-
terns amounts to 9 4+ 15 + 3 = 27 (left, middle and right subtree) in the case of the
first tree, while the second tree only requires 4 + 18 4+ 1 = 23 decisions.

To obtain the globally optimal decision tree for this small design pattern dis-
covery problem, an exponential number of information gain computations has to be
accomplished. In addition to the information gain, an optimal choice of the respec-
tive split attribute can be computed using the Gini Index criterion [RS04]. Building
an optimal decision tree requires splitting the root by all possible attributes and
computing the information criteria such as the information gain or the Gini index
each time. When the split with the highest information gain or the lowest Gini in-
dex is found, the same procedure is recursively repeated at the next tree level for the
remaining attributes, and so on.

Some drawbacks of decision trees include their tendency towards overfitting and
the high number of required training examples due to their exponential number of
leaf nodes. The created decision trees, including the optimal one, will show a low
generalization capability when applied to unseen class diagrams, since most of their
leaf nodes are supported by only one class diagram instance, which is far too little.

In the following section, we introduce a symbolic encoding schema for aggre-
gated types, advancing the typing function y defined in section 5.3.

6.3.2 Complex Types

A complex type is an aggregation of simple node types that are used to formally
represent a software design pattern, consisting of several pattern constituents such

178 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

as classes or associations. Thus, a complex type is represented as a sequence of
simple types

fe: (CxC...xC)— Z,|Z|=|C|". (6.14)

(& J
-~

kx

The k-ary typing function i is used for assigning a complex type z to a struc-
ture that consists of k& already typed nodes. For example, a design pattern that
captures the meaning of a special class diagram consisting of % classes (types) rep-
resents such a z € Z. For the exemplary case of software design patterns, the
assigned spreading codes [Fak96] are shown in figure 6.12. An instance of the

FacadePattern

1,1,1,0,0,0,1,0,0,1,0

AN

AdapterPattern GenericType = CompositePattern
— @ — @,1,1,0,01,0
AN

1,1,1,1,1,0,0,1,1,0,1,0,1

BridgePattern

Figure 6.12: Barker spreading codes of different lengths for discriminating among the non-
hierarchical target types z to be classified by the MRNN. Here, each type code encodes the
name of a characteristic software design pattern shown as node label in the graph. This
class-label allocation is arbitrary but fixed, so OVSF-codes (cf. section 5.2) could also be
used again.

multi-dimensional domain C' x C'... x C of the function p; can be seen in the
signature of the respective complex type. This signature is learned by the neural
network in the following input — target form:

r[(Ar = an . oagy), - (A= agn .oagr)] — spr(é;, &) (6.15)

Each component (.. = ..) of the input pattern describes the relationship between
two classes of the respective class diagram by a context-free rule. The function r
substitutes each symbol by its code vector through a hash table and subsequently
sorts the resulting vector series by a predefined order. The function spr of formula
5.4 spreads a canonical basis vector €; as unary encoding (also called orthogonal
encoding) of the target type z with the assigned spreading code. The entire result of
expression 6.15 represents a final training pattern <input — target> for the neural
network.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 179

6.3.3 Symbolic Representation of Design Patterns

In the case of symbolic-connectionist machine learning of software design patterns,
these patterns are formalized and typed by a context-free grammar together with
the typing mechanism presented in section 5.2. In order to illustrate the preprocess-
ing steps for obtaining a training set that contains the design patterns to be learned,
the transformation of an exemplary design pattern into a machine-processable rep-
resentation is demonstrated. The Bridge pattern depicted in figure 6.13 is mainly
characterized by an aggregation and several inheritance relationships. It is meant
to “decouple an abstraction from its implementation so that the two can vary inde-
pendently* [GHIV95]. Thus, the Bridge pattern leads to the following grammar

Abstraction Implementor
K>
RefAbstr Concrimpl1 Concrimpl2

Figure 6.13: Bridge pattern with abstract Implementor class and refining implementations.

productions, which are incorporated by the neural network:

RefAbstr = Abstraction (6.16)
Abstraction = T (6.17)
T = Implementor T (6.18)

T = ¢ (6.19)
ConcrImpll = Implementor (6.20)
ConcrImpl2 = Implementor, (6.21)

where p(Ref Abstr) <g p(Abstraction), p(ConcrImpl;) <s p(Implementor),
1 = 1,2, where “<g” is again the subtype-relation. The regular rules 6.18 and 6.19
are artificially introduced in order to generate 1..* Implementor classes required by
the aggregation relationship. The number of required production rules to describe
the Bridge pattern is p = 6 and the number of comprised symbols is £ = 13. Each
symbol is encoded according to the code tree of figure 5.6. Except the one-to-many
relation between Abstraction and Implementor expressed by rule 6.18 and 6.19,
each directed association is determined by one context-free production.

Now, the new spread spectrum classification technique defined in section 5.3
is applied to software design patterns based on their structural characteristics. The
MRNN serves as classifier /X with the signature

K: R™xR™ x ... xR™) R4 m,; d; <d, (6.22)

180 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

keN,j€{l,...,|Z]}, that maps a sequence of heterogeneous node vectors onto a
type representation vector. Thereby, the type C; € C to be classified is represented
by the spread target vector 711 € R%, where d; = n-dim(¢;) =n-\j;,n =|C|in
the case of unary type encoding.

A design pattern is modeled as a complex type consisting of production rules,
which represent the relationships between the involved classes. The following com-
plex rule stands for the Adapter pattern (AP) depicted in figure 6.14:

r[(SubClass = AbstrClass), (SubClass = NonhierarchClass)]
— spr((0,1,0,0), (1,1,1,0,1))

AP basicenc. AP spreading code

The production symbols are substituted by their codes and the right side is spread

AbstractClass

i

SubClass NonhierarchClass

Figure 6.14: Adapter pattern with abstract superclass AbstractClass and directed associa-
tion between SubClass (Adapter) and NonhierarchClass (Adaptee). The client that accesses
the superclass is omitted here.

to obtain the final training pattern:

((1,1,1,1) = (1)), ((1,1,1,1) = (1,0)) (6.23)
— spr((0,1,0,0), (1,1,1,0,1))

(1,1,1,1),(1),(1,1,1,1), (1,0) (6.24)
—(1,1,1,0,1,0,0,0,1,0,1,1,1,0,1,1,1,1,0,1)

All codes are taken from the prefix-based code tree depicted in figure 5.6; the design

pattern codes stem from figure 6.12. The decomposition of the single context-free
rules implies that only one complex rule of the resolved form 6.24 is learned by the
MRNN for each design pattern, instead of learning all single rules.

6.3.4 Design Advice Upon Complex Design Patterns

For the recognition of more complex design patterns such as the Template or the
Observer Pattern, it is no longer sufficient anymore to consider only classes and the
associations between them, ignoring methods and attributes. This issue is addressed

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 181

in the next sections. Furthermore, the question of how to turn the developed pattern
recognition technique into an actual design adviser arises. On top of the classifica-
tion functionality presented in the previous sections, such an adviser should indicate
which classes and associations belong to the respective design pattern or have a high
significance for them.

The proposed DesignAdviser is a subsystem consisting of four major compo-
nents:

1. Design Pattern Representation
Each design pattern supported by SYMBOCONN has its internal rule-based
representation as depicted by figure 6.17:
AdapterPatternRepresent, BridgePatternRepresent, CompositePattern-
Represent, FacadePatternRepresent, TemplatePatternRepresent, Obser-
verPatternRepresent, and StrategyPatternRepresent.

2. XMI Analyzer (XML Metadata Interchange)
The XMIAnalyzer imports and parses exported class diagrams in the XMI
format. Therefore, it walks through the serialized system model along its
associations and analyzes their source and target entities.

3. Source Code Analyzer
The source code is only analyzed when the hypothesis for a Template Pattern
was not discarded during the analysis of the XMI representation of the class
diagram by the XMIAnalyzer. In this case, the code may be scanned for
actual method calls within a template method, for example. At the time of
writing this document, the source code analyzer was not yet implemented.

4. Prediction Interpreter

The PredictionInterpreter actually carries out the discovery of design pat-
terns within a given class diagram and invokes the rule checking by the XMI-
Analyzer, if needed. Furthermore, the interpreter has access to the neural
network engine MRNN in order to repeat predictions with varying subsets of
the original class diagram. This is necessary for determining which classes
are indicators for the predicted design patterns and their certainties (cf. para-
graph Identifying Design Pattern Constituents).

Figure 6.15 shows the DesignAdviser subsystem. The abstract class PatternRep-
resent is the software representation of a design pattern; concrete patterns are de-
fined as extensions. All supported design patterns are converted into a machine-
processable form; that is, these patterns are transformed into typed grammar rules,
which is elaborated upon in section 6.3. Figure 6.17 shows all software design
patterns supported by the implemented prototype.

Intermediate Representation by XMI The rule-based intermediate represen-
tation of SYMBOCONN matches the standardized schema language representation

182 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

PatternRepresent XMIAnalyzer

fillSpreadingCodeTable() : void
buildRules() : Vector<Rule>
orderRules() : Vector<Rule>
getSubclassClassRule() : void
getSubclassAbstrClassRule() : void
getSubclassFlatClassRule() : void
getFlatClassSubclassRule() : void
getClassFlatClassRule() : void

| + interpretClassDiagram(Vector<Rule>)

|
CodeAnalyzer

+ JavaParser
+ SourceCodeAnalyzer

parseXMIFile() : void

extractRulesFromXMI() : Vector<Rule>
checkObserverPattemHypothesis() : boolean
checkTemplatePatternHypothesis() : boolean

+ 4+ o+ o+

+ o+ o+ o+ o+ o+ o+ o+

Predictioninterpreter

Figure 6.15: DesignAdviser subsystem consisting of the components PatternRepresent,
XMTIAnalyzer, CodeAnalyzer, and PredictionInterpreter.

Desian Advi XMI Intermediate Rule-Based
eEs)l(?n Gviser Representation Checking of
EnsIons | of Class Diagrams || Pattern Conditions
Middleware Rule-Based Design

Pattern Representation

Symbolic

MRNN | SymboConn Framework e

Figure 6.16: Modular architecture of the DesignAdviser component of SYMBOCONN
that is based on the connectionist framework engine, but is extended by a symbolic middle-
ware layer ensuring interoperability with CASE tools and enabling rule-based checking of
elimination criteria for design pattern hypotheses.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 183

of class diagrams used by most of the available CASE tools, hence fostering in-
teroperability with these. Since design patterns are usually denoted in UML, the
graph-based class diagrams (source model of transformation) are transformed into
a grammatical representation (target model). The desired target model is a set of
productions that can be directly processed by the SYMBOCONN framework. For-
tunately, extensive research has already been conducted on uni- and bi-directional
model transformations involving UML and the schema languages XMI and XSD.
Certain CASE tools allow to directly export XMI documents from UML diagrams,
as accomplished by the commercial product Enterprise Architect'*. A system model
represented by XMI is closest to the required target model, since we are interested
in the structural relations (associations) and methods of the class diagram. Source
code is not addressed by an XMI representation; however, an in-depth source code
analysis is not required for the majority of design patterns. If source code analysis is
needed, as in the case of the Observer Pattern, an additional mechanism addressing
source code has to be downstreamed, as presented in section 6.3.4.

Identifying Design Pattern Constituents As mentioned in the beginning of this
section, holistic classification of structural patterns induces a lack of traceability
with respect to the identification of those class diagram elements that are respon-
sible for the “winner pattern” of the accomplished classification. The MRNN is
usually a sequence processor, which means that an order on the node sequences
representing the single components of a design pattern, which are transformed into
numerical training patterns, is assumed. For design pattern discovery based on a
rule-based representation, an order of these rules is undesirable, because this recalls
the problem of multiple starting symbols normally attached to symbolic methods.
To avoid this effect, the rules in the input sequence that are fed into the MRNN
are rotated, as described in the appendix A.2.2. Hence, the classification result is
an average over all k-1 phase shifts, which corresponds to the number of external
inputs ¥y g, T4_gi1,-- ., T Minus one.

Since a neural network generates a distributed representation of the learned pat-
terns, it is generally a difficult task to determine the single constituents of an input
pattern which are responsible for the classification output that corresponds to the
recognized design pattern. The central idea is to decrease the input node sequence
(and thereby the corresponding input pattern) rule by rule, as long as the predicted
class, which is a design pattern here, does not change. For each input sequence, the
neural classification is computed as long as the originally classified design pattern
is still assessed to be the most probable. When this kind of backtracking technique
is fully developed, an integration into a CASE tool would be useful for highlighting
the responsible classes in the respective class diagram.

The SourceCodeAnalyzer component is responsible for the rule-based recogni-
tion of design patterns that require a source code analysis.

4http://www.sparxsystems.com.

184 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Placeholder for a class
diagram to be
classified

PatternRepresent

buildRules() : Vector<Rule>
orderRules(Vector<Rule>)
createSubclassClassRule() : Rule
createSubclassAbstrClassRule() : Rule
createSubclassFlatClassRule() : Rule
createFlatClassSubclassRule() : Rule
createClassFlatClassRule() : Rule
Sraleoiiatiem createTClassTRule() : Rule

- ruleSet: Vector<Rule> /V create TEpsilonRule() : Rule

X A4 RR

Model2Classify [:

- ruleSet: Vector<Rule>

b+ o+ o+ o+ o+ o+ o+

AdapterPattern Bridgepam/n CsvposiﬁePattern

- ruleSet: \/ectur<R% - ruleSet: Ve910r<RuIe> - ruleéet: Vector<Rule>
TemplatePattern ObserverPattern FacadePattern

- ruleSet: Vector<Rule> - ruleSet: Vector<Rule>| [- ruleSet: Vector<Rule>

Figure 6.17: Extendable class representation of the supported design patterns that are all
subclasses of an abstract PatternRepresent class. All concrete design patterns are children
of the abstract PatternRepresent class, which provides methods for generating the rule-
based internal representation of the respective pattern. Model2Classify is a placeholder for
the that is dynamically filled with the concrete classes and relations of the diagram to be
classified. The common attribute ruleSet is not pulled out as superclass attribute in order to
emphasize that each concrete design pattern has its specific rule set. Further design patterns
that should be recognized can be defined and plugged-in by using the buildRules method
of the superclass.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 185

Control Flow of Design Pattern Learning and Classification Again, the con-
trol flow 1s divided into a preprocessing and training phase on the one hand and the
subsequent operative phase on the other hand. In the first phase, an internal rep-
resentation of all design patterns is generated, which is basically a set of grammar
productions. Subsequently, these are transformed to the final vector-valued training
patterns that can be learned by the MRNN.

When employing the trained system, the classification process begins with an
unknown UML class diagram. The class diagram to be classified is assumed to
follow yet unknown design patterns and is therefore exported as a standardized XMI
1.0 document. Then, it is fed into the system as an XMI file and is parsed by the
XMIAnalyzer component. The XMIAnalyzer analyzes this file and for each pair
of associated classes, an internal context-free grammar rule is built. The resulting
set of rules is transformed to input patterns according to the left side of formula 6.22
in section 6.3, so that the MRNN classifier can numerically process them. Figure
6.18 shows the control flow of the whole design pattern discovery process.

Define Set of Design Setof Set of Training
% Patterns to be learned Productions Patterns
I
2 Vv
2
«
Generate Internal . Train MRNN on
= Grammar Representation GenePra::eTralmng Context-Free Productions
g oo atterns OO oo
e
N MRNN trained
VA
rA
' UML Class Diagram Parse System Search XMI model for
Model as XMI Strategy, Template or
Observer Pattern
Hypothesis ©<
Export as XMI document Generate/Internal X
. Grammar Répresentation [Behavioral Pattem]
o° [Structural Pattem]
3
°
% Trainin o osdet:f [Discarded due to Structural Mismatch]
2 Patterns o L=Iocuctons} [Positive Indication]
[
&
5 : Verify Hypothesis for s
Classification of the %gn_ Behavioral Pattern, [Eontimed orrejected)
Model optionally by source code
oo Ordered By analysis
Certainty

Figure 6.18: Activity diagram showing the training and application of the design pattern
discovery process as upper and lower swimlane.

186 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

6.3.4.1 Recognition of the Template Pattern

The representation of the template pattern, belonging to the group of behavioral pat-
terns, is different from the four purely structural design patterns Composite, Bridge,
Adapter and Facade. The template pattern is employed when several subclasses
share the same algorithm but differ regarding the specific realization, which is of-
ten relevant, for example, in the implementation of software frameworks. Since
common process steps should not be duplicated in the subclasses, these are sourced
out and placed in the abstract superclass to define the abstract control flow of the
procedure.

Hence, a mechanism is required to access the fine-grained representation of
model elements within class diagrams. For this purpose, an XMI export of UML
class diagrams from a standard CASE tool is conducted. The XMIAnalyzer parses
this XML file and provides methods to create the internal production rule based rep-
resentation of a class diagram defined in section 6.3. The serialization of an UML
class diagram as XMI comprises method declarations as well as other required meta
information, e.g. whether a class is abstract or not, the direction of associations, or
the name of the encompassing subsystem.

When the MRNN prediction indicates a high certainty for the template pattern at
least one inheritance relation with an abstract superclass exists, the XMIAnalyzer
is invoked to search for identical method declarations in all classes participating in
the inheritance relations. This proceeding can be considered as a beam search, since
the prediction by the neural network reduces the number of cases which demand for
an actual search for the template pattern. Since the neural prediction is a search with
linear time-complexity O(n) in the number of classes n = |V/|, this is a heuristic
method to decide whether a full search of all associations in the diagram should be
conducted. Therefore, the actual search has a linear time complexity O(m) in the
number of generalizations m = |Ey,| in the class diagram, which is less than or
equal to the number of all associations since Fy., C E.

To satisfy the criteria of the template pattern, there has to be one additional
non-abstract method in the superclass, called remplate method, which invokes the
methods implemented in the concrete subclasses. If this template method does not
exist, the TP-hypothesis is discarded. Since the abstract superclass calls the generic
implementation-invariant steps of the procedure, the template method must not be
missing in the superclass. Figures 6.19 and 6.20 show the difference between an
incomplete and a complete template pattern. The logical expert rule or heuristics
for the Template Pattern (TP) is

TP :=3xy,xsisa(xe, x1) A Imy, mg hasMethod(zy,my) A hasMethod(xs, ms)
NisAbstract(xzy) NisAbstract(my) A —isAbstract(ms)

A equal Signature(my, ms)

(6.25)

This strong indicator solidifies the TP-hypothesis in the following way: it is unlikely

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 187

AbstractClass
AbstractClass + templateMethod() : void
+ step1(): void
+ step1(): void + step2(): void
+ step2(): void + step3(): void
+ step3() : void
+ doSomething(): void Zﬁ

Z% ConcreteClass

ConcreteClass

+ step1(): void
+ sep1(): void + step2(): vo?d
+ sep2(): void + step3(): void
+ step3(): void

Figure 6.20: Structurally complete Template
Figure 6.19: Incomplete Template pattern pattern with template method in the super-
due to missing template method in the ab- cJags, which calls the abstract methods stepl,
stract superclass. step2, step3d representing sequential work
steps.

to find identical method signatures in two or more classes, these methods being
abstract in the superclass and non-abstract in the subclasses, without a template
pattern being on hand in the respective model.

More formally, we claim that the posterior probability P(=TemplPatt|T P) for
a false positive that satisfies the criteria of the TP-hypothesis without a template
pattern actually being existent, is very low.

The complementary probability P(Templ Patt|T P) for the positive case does not
turn zero if the probability of the condition P(7'P) > 0 is non-zero, due to the fact
that T'P is a required condition"® for the presence of a template pattern. The actual
method call in the body of the template method

public void templateMethod() { ... stepl(); ... step2(); ... step3(); ... },

which is mandatory for a complete template pattern, is not represented by a
class diagram. For simplicity reasons, no program code should be processed by
the DesignAdviser at first, so that the content of the template method cannot be
considered. However, due to the low probability of a false positive, the resulting
incompleteness of information has an empirically marginal impact. The sensitivity
of the test, which is the probability P(T'P|TemplPatt), remains unaffected by this
limitation and is constantly 1.

6.3.4.2 Recognition of the Observer Pattern

The Observer Pattern — sometimes also known as publish/subscribe pattern —is also
a behavioral pattern which designs an indirect communication between subjects and

SHowever, T'P is not a sufficient condition.

188 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

their observers. It can also be used for event handling, especially in combination
with the architectural pattern Model-View-Control, since it facilitates a loose cou-
pling between the model and the view.

To recognize the observer pattern without a loss of generality, it is essential to
allow arbitrary method names for the registration of the Observer. In the observer
pattern of figure 6.21, these methods are called attach and detach, but they could
also be denoted as subscribe and unsubscribe. Furthermore, the abstract Observer

Subject Observer

+ attach(Observer) : void 2| + update() : void
detach(Observer) : void
+ notify() : void

i

ConcreteSubject

+

ConcreteObserver

- subjectState: State +subject

- observerState: State

+ getState(): State

+ setState(State) : void fpeatetaeid

Figure 6.21: Observer Pattern with its typical division into abstract Subject and Observer,
which are both realized by concrete implementors.

is required to provide a public update method that can be accessed by the abstract
subject after the concrete subject has notified a change via the public notify method.
The existence of these methods is essential and supports the hypothesis for an ob-
server pattern. A violation of one of these constraints leads to a rejection of the
hypothesis; thus, each constraint has to be checked either in the XMI class diagram
representation or in the source code. This is either the task of the XMIAnalyzer
component or of the SourceCodeAnalyzer.

The observer pattern exists in a few variants that differ in the way of communi-
cation between subject(s) and observer(s). There are push and pull communication
paradigms'®. Since the subject should not know about the individual information
needs of its observers, it cannot decide which observer requires which subset of
the updated information. This is to be considered especially in push communica-
tion mode, where the subject emits the update information regardless of whether the
particular observer needs the whole update or not. In pull communication mode, the
observers are only notified that a change has occurred; they are responsible them-
selves for pulling the required information via the getState method of the Con-
creteSubject. The latter mode is to be preferred when vast amounts of data, such
as BLOBs!” or multimedia files, should be transmitted.

6Hybrid notification.
" Binary Large Object.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 189

6.3.5 Evaluation

The generalization capability of the neural classifier was tested with different frag-
ments of well-known design patterns which held characteristic relationships like the
widely used aggregation link, but missed some aspects of the original design pat-
tern. In this way, the system cannot exclusively rely on the learned pattern structure
but has to generalize the pattern fragment in order to determine the nearest neigh-
bor among the known design patterns. Furthermore, the presented fragments offer
the chance to evaluate the design advise functionality by pointing to the elements
missing to complete the design pattern.

6.3.5.1 Classification of Unknown System Models

In this section, different class diagrams are processed and the contained design pat-
terns should be discovered by the framework to evaluate the provided generalization
capability. Thereby, each result is classified according to the abstract generalization
hierarchy of section 3.3.

The basic use case for the classification of a class diagram that follows a yet
unknown design pattern is depicted in figure 6.22. The proceeding corresponds to

Classify system model

SoftwareEngineer
(Beginner)

|
I
1
’ 1 \
I
I

«include» «include» <<Inc|ud\e»
’ ;

Despread and
decode numeric
output signal

Propagate
encoded represent.
through MRNN

Encode rule-based
representation

Figure 6.22: Use case for the classification of a system model.

the lower swimlane of figure 6.18. First the unknown class diagram is transformed
to a set of context-free productions which is numerically encoded and spread by
the spread spectrum technique. Then, the numeric output is computed by a single
forward propagation through the network; finally, the output vector is despread and
its distance to the known pattern representations is determined.

Example 6.3.1: Partial Composite Pattern

Assume that the system was trained on the exact form of the Adapter, Bridge and
Composite design pattern. Now a scenario, in which a class diagram as a mixture
of these design patterns is presented to the classifier, is considered and depicted in

190 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

figure 6.23. Although the used classes were already part of the training set, this
was only in the form of constituents of different patterns. The NonhierarchClass
is part of the Adapter pattern, while Class and Subclass appear both in Bridge
and Composite pattern. Hence, there are no new elements, but the known classes
participate in different associations which require generalization to novel element
positions.

Class

I

SubClass NonhierarchClass

Figure 6.23: Partial Composite pattern with non-abstract (non-italic) superclass Class and
missing inheritance between Class and composite class NonhierarchClass.

The partial design pattern of figure 6.23 was classified to be a Composite pattern
with an average certainty of 70.3%, while Bridge and Adapter pattern were ranked
second (54.5%) and third (43.8%), which is indeed correct. When the class diagram
is changed towards the original Composite pattern by setting the abstract property
of Class and introducing inheritance between Class and NonhierarchClass, the cer-
tainty increases to 78.1%.

New methodologies are often tested by applying them to their own concepts.
Therefore, the design pattern discovery is self-applied to the ConnectionistModels
subsystem described in section 4.4.3.

Example 6.3.2: Strategy Pattern

The class diagram corresponding to the abstract training algorithm architecture
shown in figure 6.24 is presented to the classifier. This class diagram partially re-
sembles the strategy pattern excluding the missing client class usually accessing the
Context class, whose role is taken by the MRNN here.

The strategy pattern is both related to the bridge and to the template pattern, since all
of them provide abstract definitions of a concept or an algorithm as well as concrete
implementations. This similarity is also reflected in the classification result of table
6.10, which foremost indicates a strong compliance with the strategy pattern that
still precedes the similar patterns Bridge and Template.

6.3.5.2 Transforming an Adapter Pattern into a Composite Pattern

In this section, we illustrate the strength of the connectionist approach to design pat-
tern discovery by means of a classification scenario aiming at toy class diagrams.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 191

TrainingAlgorithm

<o

1t traininglteration() : void

A~ N

BackPropagationThroughTime QuasiNew ton Quickpropagation

MRNN

+ traininglteration() : void + traininglteration() : void + traininglteration() : void

Figure 6.24: Generic plug-in architecture for training algorithms partially resembling the

strategy pattern.
Rank | Design Pattern | Certainty [%]
1 Strategy 66.67
2 Bridge 60.95
3 Template 58.33
4 Facade 53.33

Table 6.10: Classification result for the TrainingAlgorithm class diagram of figure 6.24
including the independent certainties for each detected pattern. The neural network was
trained on the six original design patterns Adapter, Bridge, Composite, Facade, Strategy,
and Template till a residual error of 0.03%.

Dealing with incomplete and partially incorrect knowledge requires fuzzy knowl-
edge representation instead of purely symbolic methods. This is made especially
apparent by the following stepwise classification of toy examples. For this purpose,
the MRNN was trained on four design patterns: Composite, Adapter, Bridge and
Facade. These were jointly and successfully learned up to a relative training error
of 0.03%. Now, we show a concrete classification scenario in which a software en-
gineer adds new model elements in each design step, thereby transforming an initial
class diagram into an adapter pattern and, subsequently, into a composite pattern.
Starting with two classes, the scenario incrementally leads through several stages
of an analysis object model, while the respective system model is classified by the
connectionist classifier in each step. Even slight changes in the class diagrams will
result in observable changes of the computed certainties for the classified design
pattern candidates.

Starting from Scratch Figure 6.25 shows an initial classification task in the
form of a class diagram consisting of only two classes. The classification result
of figure 6.26 favors the Adapter pattern here, since this is the only pattern that
comprises such a structure with a directed association.

192 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

80.00% 1——75,00%

70,00%

60,00% 57,149

58,33%
Class Class s0.00%
40,00%
30,00%
20,00%
10,00%
Figure 6.25: Initial design consisting of 0.00% ‘

Adapter Facade Bridge Composite

two associated classes on the same hierar-

chy level.
Figure 6.26: Classification result indicat-

ing a tendency towards the adapter pattern,
since this pattern is the most similar.

Partial Adapter Pattern Except for the missing abstractness of the superclass
(Class, this system model represents the original Adapter pattern. Small imponder-
abilities like the increased certainty of the Bridge pattern (78.57% oppposed to
67.86%) compared to the previous scenario have to be accepted when employing
fuzzy connectionist techniques.

100,00%

91,66%
90,00% ||
o
Class 80,00% 78,57%
70,00%
60,00%
50,00% ||
40,00%
31,25%
30,00%
SubClass NonhierarchClass 20,00%
< 10,00%
0,00%
0,00%
Adapter Bridge Composite Facade

Figure 6.27: Class diagram that almost Fjgure 6.28: Certainty distribution with a
corresponds to the adapter pattern (Sce-

nario Partial Adapter Pattern).

maximal value for the adapter pattern. The
bridge pattern follows up as false positive
here.

Mixture of Adapter and Bridge Pattern The third scenario illustrated by fig-
ure 6.29 adds a superclass and an aggregation to the initial diagram. This situation
leaves a lot of room for interpretation by the classifier, since many design patterns
have to be considered closely. Hence, the certainties for the three most probable
design pattern Composite, Bridge, and Adapter are more closely aligned. Still, the
similarity to the Composite pattern is highest, since for its completion mainly an
inheritance relation is missing and the association between SubClass and Nonhier-

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 193

archClass is out of place. The present aggregation relationship provides strong
evidence for either the Composite or the Bridge pattern, which is reflected by the
bar chart 6.30. Finally, the Facade pattern is rather unlikely in this constellation,
because the classical star schema starting from the Facade class, which would be
the SubClass in this case, is not at hand here.

40,00%
35,00%

35,00% 33,57%
31,66%
30,00%
Class 25.00%
21,66%
20,00%
15,00%
*

% 10,00%
5,00%
SubClass NonhierarchClass 0.00%

Composite Bridge Adapter Facade

Figure 6.30: This class constellation re-
Figure 6.29: Class diagram showing the sults in a high information entropy with re-
scenario Mixture of Adapter and Bridge spect to the classification certainty that im-
Pattern. plies low preference for a specific pattern.
Only the facade pattern is disqualified to a
certain degree.

Partial Composite Pattern The fourth scenario represents a strong shift to-
wards the Composite pattern, which is also expressed by the results in diagram 6.32.
The Facade pattern is nearly discarded, while elements of both Adapter and Bridge
pattern are contained in the class diagram 6.31; these make for similar certainties
of about 42%.

Penultimate Transformation Step: Making Superclass abstract The next
to last snap-shot of the changing class diagram shows a nearly complete composite
pattern. The only change, compared to the previous scenario, is the abstract su-
perclass, which prevents an instantiation when actually implemented. Adding the
abstractness property again results in a higher probability (about 10% increase) of
the composite pattern, as is shown by figure 6.34.

Complete Composite Pattern Compared to the previous scenario, the final
system model depicted by figure 6.35 holds a further inheritance relationship be-
tween the composite class and the superclass. This is the final state of the stepwise
transformation towards the composite pattern, resulting in a classification certainty
of 89.06% for the Composite structure. The connectionist classifier provides a dis-
crimination degree of almost 6 =50% compared to the second probable candidate

194 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Class

—

SubClass

NonhierarchClass

Figure 6.31: Generic class diagram show-
ing elements of Composite, Bridge, and
Adapter pattern that imply a strong ten-
dency towards the composite pattern (Sce-
nario Partial Composite Pattern).

Class
<<abstract>>
SubClass NonhierarchClass

Figure 6.33: Nearly completed compos-
ite pattern still missing the inheritance be-
tween Class and NonhierarchClass.

90,00%

80,00% 78,13%

70,00%

60,00%

50,00%

42,86% 41,66%
40,00%
30,00%
20,00%
10,00% GE
Composite Adapter Bridge Facade

Figure 6.32: The degree of similarity to
the original shape of the composite pattern
is about 36% higher than to adpater and
bridge pattern.

100,00%

90,00% 87,50%
80,00%
70,00%
60,00%
50,89%
50,00%
40,00%
30,00%
20,83%
20,00%
10,00%
0,00%
0,00%
Composite Bridge Adapter Facade

Figure 6.34: The higher compliance with
the original composite pattern leads to an
increase of the respective certainty of al-
most 10%.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 195

and furthermore completely excludes the Facade pattern from the set of possible
pattern candidates.

100,00%

90.00% 88,75%
,00%

Class 80.00%
<<abstract>> 70,00%
60,00%
52,14%

e 50,00%
40,00%

30,00% 25,00%

SubClass SubClass 20,00% =]
10,00%
0,00%

0,00%

Composite Bridge Adapter Facade

Figure 6.35: Complete Composite pattern ~ Figure 6.36: Final classification result
with abstract superclass (Scenario Com- with maximal certainty for the composite
plete Composite Pattern). pattern. As in the step before, the facade

pattern hypothesis is completely discarded.

To fully exploit the strength of the connectionist methodology for classifying
incomplete or partially incorrect design patterns, the classifier should be trained on
a corpus of actual class diagrams, representing imperfect instances of the original
design pattern definitions. Only in this sense, learning by example is performed,
which is far more suitable for training a connectionist system than learning only
the pure pattern definitions without concrete occurrences. In further work, the tech-
nique will be evaluated by a full benchmark for design pattern discovery in order to
determine the scalability of our approach, as well as its precision and recall.

6.3.5.3 Generalization to Novel Complexity

Connectionist methods represent the structure of a design pattern in a holistic way
distributed across their interconnected neurons. This internal representation par-
tially solves the problem of interleaved and hidden design patterns, which is demon-
strated by the class diagram in figure 6.37. Thereby, the task is to classify a pattern
conglomerate with classes that participate in different design patterns. For exam-
ple, the Implementor class is both part of the Bridge and of the Adapter pattern.
The difficulty consists in seeing, which patterns occur to which extent in the entire
system model. As becomes apparent from two different aspects, this class diagram
exhibits novel complexity with respect to the less complex patterns that have been
discovered before:

1. Number of Elements
The number of classes (9) exceeds the number of classes participating in each
of the trained design patterns, where the maximal number is given by the
Bridge pattern (5).

196 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

Implementor Abstraction
<
Concrimpl1 Concrimpl2 RefAbstr
NonhierarchClass

T
«delegate» «delegate» «delegate»

Service1 Service2 Service3

Figure 6.37: Conglomerate of three design patterns. The class Implementor participates
in the Adapter pattern as the Adapter’s target (client interface) and in the Bridge pattern
as implementation interface. Furthermore, there is a partial Facade pattern based on the
delegations from the Facade class ConcrImpl?2 to the entity classes Servicel till Service3.

2. Structural Relationships
The class Concrlmpl2 is involved in the Bridge as well as in the Facade
pattern. Altogether, this class participates in four relations, one inheritance
relationship and three directed associations. Furthermore, the Implementor
superclass is also part of two design patterns (Adapter and Bridge).

Obviously, novel complexity requires a much higher generalization ability than
varying element positions.

The MRNN has succeeded in recovering the correct pattern and provides a de-
gree of certainty for each detected class. The Bridge pattern was assessed to be
superior in this class diagram with a certainty of 56.1%, as shown by the classifica-
tion results in table 6.11. The connectionist classifier was able to handle multiple
patterns within a single class diagram, which is demonstrated by the non-exclusive
classification'® of both Bridge and Adapter pattern with high certainties. In the case
of the Facade pattern, the stereotype delegate was not represented in the typed for-
mal grammar, while the direction of associations plays an important role in learning
pattern semantics. If this simple evidence for a Facade pattern needs to be avoided,
one would additionally have to claim an exclusive invocation of the Facade class
from other system components as single point of access; however, considering as-
sociated system components is out of scope, here.

The consideration of structural properties alone has already led to a high gen-
eralization ability of the classifier. The Composite pattern was clearly rejected by
assigning a certainty of only 3.1%; thus, no false positives were found. We note that

8 Therefore, the certainties must not be forced to sum up to 100%.

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 197

Rank | Design Pattern | Certainty Spread Spectrum [%]
1 Bridge 56.1
2 Adapter 50.0
3 Facade 38.8
4 Composite 3.1

Table 6.11: Classification result for the pattern conglomerate of figure 6.37 including the
independent certainties for each detected pattern. The neural network was trained up to
a residual error of 0.03% on the four correct pattern definitions, but has never seen this
conglomerate of classes nor a class diagram of more than five classes during training.

the certainty calculation of formula 5.10 in section 5.3.2 is very conservative and
hence leads to moderate certainty values below 100%. Its expressiveness is given
by the distance between two subsequently ranked classes. This distance is a result
of the despreading and its process gain, which is PG'pgcade = 1010gy, % = 10.41db
for the Facade pattern encoding, for example. The signal amplification in the range
of 7.0 — 11.1 db entails an advantage over the non-spread classification. The result

Rank | Design Pattern | Certainty - Unary [%]
1 Bridge 31.2
2 Adapter 30.8
3 Facade 18.4
4 Composite 13.6

Table 6.12: Classification result for the pattern conglomerate based on the simple unary
type encoding without data spreading. The classifier was trained in the same manner until
stagnation with a residual error of 0.05%. The result distinguishes less accurately between
correct, partially correct and incorrect types (Composite is a false positive here).

for the classifier without spread spectrum extension is less accurate, as shown in
table 6.12. The simple encoding approach fails to disqualify the Composite pattern
on the basis of the absent inheritance u(Abstraction) <g p(Implementor). More-
over, it suffers from a far fuzzier classification with lower discrimination between
the fully and partially detected patterns. The predominant Bridge pattern is only
classified with 17.6% advance compared to the non-occurring Composite pattern,
while the spread spectrum-enabled classification results in a very strong difference
of 53.0%.

The recognition of unseen structures as an instance of one or several design
patterns requires a generalization capability of level 4 according to the hierarchy
presented in section 3.1.1.2. The SYMBOCONN framework generalizes to novel
complexity in this case, since a conglomerate of three design patterns consisting of
nine classes was never present in the training set.

198 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

6.3.6 Advantages and Disadvantages of the Connectionist Ap-
proach

The symbolic-connectionist approach to design pattern recognition realized by the

SYMBOCONN framework implies several advantages over a purely symbolic ap-

proach. A precondition for these advantages is the provision of an implicit similar-
ity measure sim : Z X Z — R:

S 2 (056, Xa) — 053, X))
m - dg

L 51 (05(X01) = 0;(X))?

dy ’

sim(Xl,Xg) =1-

(6.26)

m

dg;«éO,mZI

X1,Xy € Z D DP among all class diagrams as superset of all supported design
patterns D P (Z is the space of complex types). Due to this similarity measure, the
symbolic-connectionist approach possesses the following benefits:

e Discovery of Incomplete Design Patterns Based on Similarity
The nearest neighbor of an unknown class diagram is computed based on
similarity by formula 6.26; thus, diagrams that resemble an incomplete design
pattern can also be interpreted by the system. The certainty cert of a class
diagram X to contain a design pattern Y is computed based on sim and the
most similar design pattern Y, out of the trained patterns D P, which serves
as a reference:

Yiaz(X) = arg 1;relit))lg{swn()(, Y)} (6.27)
da 2
2 (0:/(X) — 0;(Yiaz
cert(X) = 1— 2521(05(X) = 0, (Y : (6.28)
dy
where o; € [0,1], j = 1,...,ds. Moreover, the certainty gives a useful as-

sessment of the system’s confidence in the provided classification by looking
at the difference dx y+ := cert(X) - maxycpp\y;,., 15tm(Y’,Y)} to the second
likely design pattern Y”. If the difference is high, then the respective design
pattern is likely to be classified properly.

In the case of missing elements or associations (model elements), the sym-
bolic approach will fail to recognize the most similar pattern, leaving out use-
ful information for domain experts or software developers who are unaware of
this. Related work such as “Design Pattern Detection Using Similarity Scor-
ing” from Tsantalis et al. [TCSHO6] show that similarity-based approaches
are very promising. In this article, the pattern structure of class diagrams
is represented by association graphs, generalization graphs, abstract classes
graphs, etc. which are described by corresponding matrices.

e Dealing with Pattern Overlapping and Multiple Starting Symbols
Overlapping patterns and multiple starting symbols are primarily a problem

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 199

of symbolic methods such as LR-Parsing [CDLD"05]. Holistic methods are
less affected by overlapping design patterns and by the question of where to
begin the discovery, since the class diagram is not parsed symbol by symbol
but from a global perspective. The holistic view onto the class diagram is
comparable to the wide-angle look at a picture. Its meaning is not realized by
taking a locally restricted view at the details and by moving from one picture
segment to the other, but by comprehensively perceiving all of its aspects such
as structure, color, and proportions, at once.

e Linear Time-Complexity

The spread spectrum-enabled classification used for design pattern recogni-
tion is efficient, since, in principle, the despreading step itself can be per-
formed in O(|C|) = O(r), where r is the number of classes — in comparison
to s, := ».._,|C;| as the number of instances in all classes of the given
dataset (r << s,).

Furthermore, the number N, of weighted sum (Zle Twii), wi; € M €
{A,B,C}, d € {di,dy} computations in the (trained) neural network to
compute the classification increases linearly in d;. The growth is depen-
dent on the fixed dimension h of the hidden state layer, which is constant:
Neomp = h-di +h-dy = h-(di + (Apas - 7)). The factor A, is the
length of the longest assigned spreading code. As described in section 5.3.1,
ds = Apmaz - 7 18 the upper bound on the number of required bits to represent
all target classes. The despreading process of figure 5.9, which itself requires
dy = Mg - T cOmputations, has to be performed r times, once for each class.
Thus, the entire complexity to classify an input sequence is

O((Neomp + dz) - r) = O((h(dy + dg) + dy) - 7)
= O([hd1 + (h + 1>d2] . 7’)

constgerms O((dl + dg) . T)
= O(dyr + Apaa?),

since the constant h determines the network resources and is largely inde-
pendent of the object representation (with dimensionality d;). Compared to a
nearest neighbor approach, the term s, for calculating all neighbor distances
is omitted, while the factor r is added to the complexity and ds becomes
Amaz-times bigger.

However, there are also drawbacks of the connectionist approach to design pat-
tern recovery. We present three main weaknesses:

o Sensitivity of the training error and the hidden layer dimension
The amount of the remaining error £/ = ZpET ¢ E) (bias) according to section
4.4.3 after training the neural network almost until convergence has an impact
on the classification result. The sensitivity of the classification result to the
network bias depends on the respective machine learning task, its difficulty,

200 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

and the provided training samples. This is typical for neural networks, which
partially buy their capability of processing fuzzy and incomplete data with
a manual decision when to stop the training process. Moreover, the hidden
layer dimension has a certain influence on the classification result.

e Low traceability and rationale of the classification
This is a consequence of the holistic and distributed representation that takes
into account the class diagram structures a whole. This drawback is addressed
and diminished by the technique proposed in section 6.3.4, where the respon-
sible elements for the respective classification are traced back by a work-
around.

e Recognizing multiple instances of one design pattern
Several instances of the same design pattern within one class diagram cannot
be recognized yet, because the number of existent classes and their associa-
tions is not taken into account during training. Instead, concrete classes are
reduced to proxy types such as Class, AbstractClass, or SubClass.

Due to the complementary weaknesses and strengths of the symbolic and the con-
nectionist approaches, we think it is advisable to aim for a hybrid system that uses
a connectionist engine for discovering incomplete and partially malformed design
patterns, as well as a symbolic component. The latter provides symbolic representa-
tions for structural patterns and supports rule-based approval or rejection of design
pattern candidates in advance, as done by De Lucia et. al [CDLD*06, DLDGRO7].

6.4 Conclusion

In the first part of this chapter, we applied the SYMBOCONN framework to the
classification of software development artifacts. We demonstrated that the MRNN
machine learning engine is able to classify complex artifacts, which may even be
afflicted with fuzzy, incomplete, or partially incorrect attributes. In particular, the
SYMBOCONN framework succeeded in classifying action items according to the
development activities in which they were formulated. Furthermore, we classified
the status of action items; that is, to decide whether they are still under examina-
tion or already irrelevant. Five-fold cross-validation of both applications resulted
in classification accuracies of 80.51% (six categories) and 83.72% (two categories),
respectively. In future work, we will also classify the status of Actionltems, that is,
deciding whether they are still under examination or already irrelevant. Addition-
ally, the spread spectrum technique will be used to further improve the accuracy of
the activity classification (cf. section 5.3).

Secondly, we introduced a connectionist approach to change impact analysis,
which covers two variants: a structure- and content-based as well as a purely content-
based one. As decision support service, our change impact analysis allows an ad hoc
overview on the impacts of planned changes during an ongoing project. The first

APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT 201

variant considers changes upon graph-structured data, whose impacts are structure-
sensitive and cannot be predicted, for example, from changes in attribute-value pairs
of software artifacts alone. This hybrid structural and content-based change impact
analysis integrated into SYMBOCONN has not been applied yet, but will be used
within UNICASE-projects in future work. Thus we could not evaluate the impact
prediction accuracy yet, since software project data has not been available therefor
so far.

Within the scope of the second variant, the SYMBOCONN framework was used
for semantic learning and prediction of co-occurring artifact changes. The MRNN
was trained on the cohesive items of configuration management aggregates in a
supervised manner, leading to a recommendation system that fulfills the following
tasks:

e Preventing Incomplete Change. Guidance of programmers by observing
their working set and recommending related artifacts in order to prevent errors
resulting from incomplete changes.

o Inference of Related Artifacts. The learned dependencies among the items of
each commit set are exploited by the MRNN, which generalizes onto unseen
histories of committed software artifacts and thus even provides advice for
newly added artifacts.

For both functionalities, a knowledge representation based on Latent Semantic In-
dexing of text attributes builds the foundation for semantic recommendation. The
evaluation was conducted by three independent datasets from the PROMISE Repos-
itory of Software Engineering Databases and revealed a total prediction precision
for partially unseen artifact sets of 67.75% (maximum of 72.72% for the XFree86
project), based on a result space of 167 to 1047 different artifacts. Compared to
existing methods based on association rule mining, whose authors report precision
values of about 26% to 50% [ZWDZ04], the connectionist approach achieves a
higher accuracy even when applied to untrained item sets, which is not possible
with symbolic techniques at all. Unfortunately, there exists no one-to-one compa-
rability with Zimmermann, since the evaluations used different projects'®. Another
reference value is provided by the evaluation of the NavTracks algorithm based
on the logged navigation pathways of three developers, conducted by Singer et al.
[SES05], which led to a precision of about 29%.

Finally, we developed a robust connectionist classification aimed at structured
and typed contents — especially design patterns. This classification is again based on
the MRNN, which is able to learn context-sensitive production rules that represent
structured contents. Therefore the grammars’ symbolic entities, such as terminal
symbols and variables, are arranged in the form of an input sequence representing,
for example, a specific design pattern. To recapitulate, we developed two main
functionalities that were wholly integrated into the MRNN:

19The trial to obtain the original dataset from Zimmermann [ZWDZ04] failed.

202 APPLICATION TO KNOWLEDGE ENG. AND SOFTWARE DEVELOPMENT

1. Structure and Type Learning
The capability of learning arbitrary sequences of typed nodes, such as the left
and right hand sides of context-free or context-sensitive production rules.

2. Discovery of Design Patterns in Class Diagrams
Totally heterogeneous knowledge structures containing instances of different
types can be interpreted by the neural network. The MRNN is further able
to classify partial or distorted knowledge structures, as well, such as design
pattern fragments; this is done according to the learned complex type.

The proposed classification technique is efficient, since the computational effort for
a classification only linearly increases in the size of the class diagram. The major
effort has to be accomplished during the training phase.

Chapter 7

Navigation Recommendation

Navigation recommendation is a form of user assistance that assists the user with
the search for relevant artifacts or the exploration of an artifact space. Normally
users prefer or require certain types of artifacts such as documents, multimedia
items, etc., while disliking or ignoring others. The users exhibit individual behav-
1ors when traversing the navigation space, driven by different information needs and
intended tasks. In the narrower sense, a navigation is a path of nodes in the appli-
cation domain. However, navigation recommendation is not restricted to paths, but
can also be applied to sets of articles in e-Commerce or to sequences of actions as
part of a certain business process, for example. From a technical point of view, nav-
igation recommendation is a generalization to new elements, which corresponds to
level 3 generalization according to the generalization hierarchy presented in section
3.1.1.2.

Navigation recommendation systems are a special type of information filtering
systems. Information filtering deals with the retrieval of relevant products, services
or information selected from a large collection that the user is likely to find inter-
esting or useful. Thus, recommendation can be modeled as a classification task
that distinguishes between potentially relevant and irrelevant entities. The field of
recommendation systems is mainly determined by information filtering methods
such as collaborative and content-based filtering, whose functionalities are covered
by the connectionist machine learning framework. Content-based and collaborative
filters, as well as similar techniques described in section 7.1, currently represent best
practice solutions for recommendation functionality, as is also repeatedly claimed
in literature [ALJ].

In this chapter, we demonstrate that a better recommendation capability includ-
ing relationships can be achieved by exploiting both content and structure of the
underlying knowledge base. So far, there are hardly any connectionist systems that
provide recommendation functionality. By combining aspects of content-based and
collaborative filtering, the connectionist approach is able to achieve a higher rec-
ommendation accuracy than most of the mentioned traditional methods; this was
reported by Nasraoui et al. [NP0O4]. The combination of a recurrent neural network
and latent semantic indexing is a novel and promising hybrid approach, as shown

203

204 CHAPTER 7. NAVIGATION RECOMMENDATION

by the navigation and artifact recommendation in section 7.2. To improve the rec-
ommendation capability even further, the support of the entity contents is enhanced
by latent semantic indexing, which elicits the latent semantics from textual contents
as described in sections 7.3.

Intelligent navigation recommendation can improve the quality of knowledge
portals and information services provided via intranets and the internet. There are
numerous overlapping techniques that realize navigation recommendation, such as
web user session clustering, web page clustering, association rule mining [AS94],
or frequent navigational path mining.

The main purpose of all recommendation systems is to discover the underlying
functional interests that lead to common navigational activity among several users.
Thereby the central problem is to provide generic navigation recommendation on
nodes of a knowledge graph. Actual navigations on these graphs, which reflect the
browsing behavior and interests of many users, are captured and taken as training
patterns for the Modular Recurrent Neural Network (MRNN). Cohesive nodes se-
quences are learned by the MRNN in a supervised training process. We suggest
a hybrid approach based on Latent Semantic Indexing (LSI) and machine learning
methods to provide navigation recommendation. The neural network generalizes
the observed navigation histories to proactively guide beginners through a sequence
of web pages, for instance.

7.1 Required Data Mining Techniques

Exploiting intrinsically associated and unstructured contents for navigation recom-
mendation requires methods from data mining, which are able to discover and
represent potentially useful knowledge and patterns. Being intrinsically associ-
ated means that similar or complementary contents coexist without being explic-
itly linked by semantic relationships. This problem can be addressed by Associa-
tion Rule Mining (ARM), which discovers intrinsic associations between symbolic
contents, such as items in a shopping cart, and makes them explicit in form of
association rules. The carrier of the associated entities are unstructured text docu-
ments organized in a knowledge base that represents the domain of discourse. Two
fundamental data mining techniques for different kinds of knowledge, textual and
symbolic, are introduced here, since both of them are used and extended by the
SYMBOCONN framework.

7.1.1 Text Mining

Text mining is a subarea of the knowledge discovery process introduced earlier
(see section 2.4), aiming at unstructured or low-structured textual data. The main
purposes of text mining are, among others [B603]:

e Analysis of content and structure of text documents. Frequency measures
are computed for each document and for each comprised term in order to

CHAPTER 7. NAVIGATION RECOMMENDATION 205

numerically represent the document base and to compute the significance of
all keyterms. This process is described in section 7.1.1.

e Usage analysis of a set of text documents as described in section 7.1.2.

e Analysis of the link structure of a set of text documents. This is often called
web mining and one method is the popular Page Rank algorithm introduced
in section 7.2.

In the case of text mining, each node in the knowledge graph that stands for unstruc-
tured text has to be transformed into a multi-represented object (see Def. 3.2.2, 3.2).
The framework engine operates only on the content representation of each node
and is hence decoupled from their symbolic and unsubstantial identifiers within the
knowledge base.

Document Representation Using a Vector Space Model For each knowledge
node a feature vector 7; € R? is computed. In the case of textual content, we apply
well-known text mining methodologies for computing a low-redundancy numerical
representation — including stemming and stop-word lists'. Stemming is the process
of reducing inflected or derived words to their stem (root form). Stemming aims at
natural languages, especially English, which can even be stemmed algorithmically
(Porter-Stemmer algorithm [Por80]). Tokens that are contained in the respective list
of stopwords are removed and not considered for text mining, especially meaning-
less terms such as articles or sometimes pronouns.

By means of the term frequency — inverse document frequency (TF-IDF) we
now give a procedure that computes a characteristical vector for each document
in the knowledge base KB={doc, ..., doc,} by rating the relevance of all existing
keywords via the following measures.

Definition 7.1.1: Term and Document Ratios

df (t;) = et (7.1)
tf(t;, doc) == % (7.2)

. L n(t;,doc) |KB|
tf-idf(ti, doc) := 5= ey Toestal (7.3)

where ¢ = 1, ..., m runs over all terms in the entire knowledge base. The document
frequency df (t;) counts the number of documents that contain a term ¢; related to
the number n of existing documents in a certain knowledge base KB. The measure
n(t, doc) counts the frequency of occurrence of a term ¢; in a single document doc.
The term frequency tf(t;, doc) gives the relative frequency of a term ¢; within a
single document doc. As stated in formula 7.3, TF-IDF is composed of the formulas
7.1 and 7.2, while inverting the document frequency.

'The preprocessing steps stemming and stop-word removal are realized by the Apache Lucene
indexing and search framework?.

206 CHAPTER 7. NAVIGATION RECOMMENDATION

The idea behind TF-IDF is to assign a higher relevance to terms that occur often
within a single document. At the same time terms, which appear less often in the
entire repository KB, are rated higher. The reason is that globally frequent terms
are not valuable for differentiating between the documents doc, . . . , doc,, because
they are contained in most of these documents.

To be useful for the SYMBOCONN framework, a fixed number d of most sig-
nificant terms has to be selected that is less than the total number n;,; of occurring
terms in KB. Thus, a global term significance measure is required, which rates terms
according to their occurrences in all documents of KB.

An adequate way to determine the globally most relevant terms is to compute
the TF-IDF measure for all documents in KB. Then the term ¢,,,, with maximum
t f idf value is identified and, in case of ambiguity, the maximal number of all term
occurrences maxy, 4o t f (t;, doc) in the entire knowledge base is also calculated.

Definition 7.1.2: Globally Significant Terms
Let ¢, 1 := tynas, Which results from expression 7.5:

T, =) ; .
ma {arg Jax Z tfidf (t;, doc)} (7.4)
doceKB
tmar = arg max tf(t;, doc) (7.5)
fi€lmaz doceKB

Expression 7.5 is evaluated d times, while the most relevant term %, ; is globally
removed from KB by a pop-operation each time, then the second relevant term is
determined and so on.

Now, the feature vector v; that describes a document is locally computed by
the TF-IDF of the d globally most significant terms for the respective document
doc € KB:

Uy = (tfadf (t, 1, doc), tf_idf (t,o,doc), ... tfidf (t,q,doc)). (7.6)

This computation is different from the common bag-of-words approach based on
TF-IDF, since we represent each document by the d < ny, globally top-ranked
terms that are locally rated via tf _idf (¢, ;, doc). This global vector space model
[SWY75] captures the semantics of each document and enables the MRNN to uni-
formly learn the complete textual content of a knowledge base.

7.1.2 Association Rule Mining

Association rule mining (ARM) is a data mining technique usually applied to large
databases that contain sets of co-occurring items. This technique originally was
first introduced by Argawal, Imielinski, and Swami [AIS93], who used it market
basket analysis. Its goal is to discover buying patterns of the form “85% of the
transactions that contained purchasing diapers also contained purchasing beer”.
Such probabilistic rules can then be used for decision support systems regarding

CHAPTER 7. NAVIGATION RECOMMENDATION 207

price promotion or store layout. Figure 7.1 shows the functioning of ARM from a
blackbox perspective, receiving item sets as input and providing discovered rules as
output.

Set-Based Rules

Item sets [support, confidence]

{AC} ASSOCIATION {At — {C} 166%, 100%]
Y A} — {E} [66%, 66%]

{ABCE}, | mup RULE -p |

{AD,E}, MINING {A.C} — {E} 133%, 33%]

Figure 7.1: Blackbox view of association rule mining with generic input and output repre-
sentation that is applicable to many different domains and their problems.

Recently, association rule mining has also been applied to software engineering,
in particular to mining of version histories to guide software changes [ZWDZ04].
When a developer works on a programming task, relevant software artifacts such
as documents, source code, multimedia files, etc. that might require correspond-
ing changes, can be proactively recommended: “Programmers who changed these
artifacts also changed ...”.

The ARM technique based on the apriori algorithm [SON95] has been imple-
mented and integrated into the SYMBOCONN framework as a symbolic data mining
technique. It was used for the following purposes:

e The TEAM project [TEA09] on knowledge management in software engi-
neering uses the ARM implementation of SYMBOCONN as one component
of rule-based activity classification and user assistance regarding software
developers. Further details on activity classification in general were given in
section 6.1.

e Navigation Recommendation

— Symbolic realization of navigation recommendation by association rule
mining, section 7.2.

— Connectionist and content-based realization of navigation recommenda-
tion leveraged by mining the associations between keyterms in unstruc-
tured text. The resulting technique is a combination of text and associ-
ation rule mining, which makes up a preprocessing to obtain a content-
based training set for the neural network engine of SYMBOCONN (see
also appendix A.1.2.2).

e Recommending Software Changes
Recommending further changes to guide software developers can be realized
by association rule mining as done by Zimmermann et al. [ZWDZ04]. ARM

208

CHAPTER 7. NAVIGATION RECOMMENDATION

is simpler but less powerful than the competing connectionist technique. Fur-
thermore, ARM is relatively simple to implement and especially easy to use,
which nominates it for a universal plug&play-like data mining technique.

ARM works upon unordered sets and not upon ordered sequences, which is a
fundamental premise and constraint of this technique. The following terminology
defines the fundamental concepts of association rule mining [B603].

Items I = {iy,ia,...,0y}: The set of all existing items each represented by a
unique symbol.

Itemset X C I: A subset of the globally available items, e.g. a shopping
cart of goods to be bought. For facilitating the mining process, the items are
ordered lexicographically, (1, za,...,z,) Withzy < 29 < ... < 7, . A
k-itemset is an itemset containing k items x1, . . . , T.

Transaction T = (tid, X): Each transaction is a 2-tuple consisting of a tid
and an itemset X.

The Cover of an itemset X is the set of transactions 7" that contain X:
cover(X) = {tid|(tid, X7) € D, X C Xr}.

The Frequency of an itemset X in the database D is the probability of its oc-
currence within a transaction T’ € D: frequency(X) = 22X _ p(x),

|D]
where support(X) = |cover(X)|.

Itemsets X € D that satisfy a given frequency threshold ¢, frequency(X) >
t, t € [0,1], are of special interest.

All of these concepts are typically measured by means of a transaction database,
which represents the dataset to be analyzed, as shown in table 7.1.

Starting out with these fundamental concepts, there are two main problems ad-
dressed by ARM:

1.

2.

Mining of Frequent Itemsets

There are (‘ﬂ) -many k-itemsets that all have to be checked for minimum sup-
port in case of a naive approach to itemset mining. Thus the total costs sum
up to O(Zlkil ('Q)) = O(2/1—1). Frequent itemset mining is formally stated
as function a) in algorithm 2.

Association rule mining

e An association rule is an implication of the form X = Y, X NY = &.
X is the rule’s body, Y is the head.

e The Support of an association rule A = X =- Y is computed based on
the support of (frequent) itemsets:
supp(A) = supp(X UY).

CHAPTER 7. NAVIGATION RECOMMENDATION 209

Itemset Frequency
{A} 0.25
{B} 0.5
. TID Itemset
(A5 025 L | {4BDE}
(B, F) 05 2 {C.D, B}
- 3 {B,D,E,F,G,H}
: 4 (F,G,H,I,J}
{A,B,C} 0.05
{C,D,E} 0.03
{A,B,D,E} 0.01

Table 7.1: Example of a database of items that appeared together in common transactions,
for example, articles bought together. The left table gives the frequencies of several 1-, 2-,
3-, and 4-itemsets. The right table contains itemsets of different size that were accessed
within transactions (buying articles) of domain users.

e Confidence of an associationrule A = X = Y: conf(A) = %.

The confidence can also be interpreted as conditional probability of the
rule’s head: P(Y|X) = P]I(ng), P(X) # 0. The desired minimal confi-
dence is set by domain experts before starting the frequent itemset min-

ing.

The problem of association rule mining is superimposed on frequent itemset
mining and is formally stated as function b) in algorithm 2.

Both problems are solved by the ARM implementation of the SYMBOCONN frame-
work.

Mining Association Rules Based on the discovered k-itemsets, which are fre-
quent in the underlying database, association rules A of the form

A=Y =X-Y) (1.7)

are computed, where the minus operator signifies the difference between sets (“\”).
Only rules with the desired minimal confidence are considered. The confidence
conf(A) can be calculated in the following simple way:

~supp(Y U(X —Y)) supp(X)
conf(4) = supp(Y') ~ supp(Y)’ 79

Apriori Algorithm To solve the frequent itemset problem in a more efficient way
than checking each k-itemset X = {(z1,23,...,2%)} for k = 1,...,m regarding

210 CHAPTER 7. NAVIGATION RECOMMENDATION

its support (a total of 2™ — 1 evaluations), a dynamic programming approach is car-
ried out. This technique is known as the apriori algorithm for ARM, which exploits
a monotony property. The monotony property states that all supersets X’ of an item-
set X, X C X', cannot be frequent, if X is not frequent. This property narrows the
search space significantly and thus speeds up the computation of frequent itemsets.
The constrained search space corresponds to the set of candidate itemsets, whose
support has to be computed. Algorithm 2 provides a pseudocode formulation of the
apriori algorithm.

Algorithm 2 Pseudo code formulation of the apriori algorithm, which consists of two
main functions: a) mining frequent itemsets and b) compute association rules.
function APRIORI_ARM(database D, double minSupp, double minCon f)
CSy «+ computeFrequentOneltemsets(minSupp);
FSiotal < {0},
RES — {};
for(k=2k<m;k—k+1)do
C'Sy < generateCandidateSet(C'S_1); > Join based on the (k-1) candidates.
CS), + removeNonFrequentltemsets(k — 1, minSupp); > Pruning of invalid
candidates.
F'Sy, « computeFrequentltemsets(C'Sy, minSupp);
FSiotar + FStotar U F'Sk;

end for > Compute association rules based on frequent itemsets.
for (i = 150 < |FSotarl; i — i+ 1) do
Y — FSiotal [Z],

for G =1;5 < (");5—j+1)do
Choose subset Y C X;
Split X into body and head: A := (Y = X —Y));

supp(X).
confa « supp(Y)’

if confqa > minConf then
RES «— RESUA;
end if
end for
end for
return RES)
end function

The frequent 1-itemsets are directly computed by the procedures contained in
the Apache Lucene library, since these frequencies are exactly the document fre-
quencies df (t;) as introduced in section 7.1.1. Besides the apriori algorithm, there
are also other algorithms for association rule mining such as Eclat [Zak00] and
Eclat 1l [LZZZ05], which choose a depth-first search for frequent k-itemsets in-
stead of completing all itemsets of size k first before proceeding to the next tree
level k+1.

CHAPTER 7. NAVIGATION RECOMMENDATION 211

7.2 Existing Recommendation Approaches

Since the connectionist approach to navigation recommendation uses principles of
content-based and collaborative filtering techniques, we describe relevant research
findings in these areas. In addition, there are already commercial products like the
Navigation Predictor [Int07] that claim to generate real-time recommendations for
products that are most relevant to the customer.

Symbolic Recommendation Based on Association Rule Mining The function-
ality of navigation recommendation can solely be realized by employing association
rule mining without using a connectionist prediction model. Fu and his colleagues
have attempted to exploit the tacit knowledge incorporated in the navigation his-
tory of web users [BFHOO]. They propose an information recommendation system
called SurfLen, which suggests interesting web pages to users. The underlying data
mining technique is association rule mining, which is used to discover frequent 2-
itemsets containing web page URLs like {{p,p1},{p,p2},- .., {p. pn}}. When the
user is reading page p, then the associated pages {pi,...,p,} are recommended.
Hence, the items stand for URLs here, itemsets being ranked by an intersection
measure
Tank(Ui, SJ) = |UZ N S]l

between users’ browsing histories U; = {p1, ..., p,} and mined frequent itemsets
S; = {p},...,pl,}. The best k itemsets according to the rank-measure are rec-
ommended when the current browsing history matches one of the stored ones. The
software architecture of the recommendation system is depicted in figure 7.2. Such

" IE (usern)

SurfLen Client SurfLen Client

———p 4=

Connection Manager

v

SurfLen Recommendation Engine

— ——>
Data Manager Association Rules Generator

IE {user 1)

Figure 7.2: The client-server architecture of the SurfLen recommendation system.

a symbolic approach cannot incorporate the semantics of the entities to be recom-
mended, since the content of the web pages is not considered by the URL-based
representation. No similarity measure is implied on web pages either. This de-
ficiency can be solved by considering a rich representation of artifacts instead of

212 CHAPTER 7. NAVIGATION RECOMMENDATION

reducing them to meaningless identifiers. The danger of recommending mislead-
ing symbolic associations can be avoided by considering the meaning of the visited
nodes (e.g. web pages or text documents), for example by means of their textual
content. The work at hand addresses this problem by multi-represented objects that
incorporate textual descriptions or other attributes.

Navigation Recommendation by a Connectionist Architecture A central prob-
lem of association rule mining, especially on sparse web data, is the difficulty of set-
ting suitable support and confidence thresholds to yield reliable and complete web
usage rules. So far, there are hardly any connectionist methods that accomplish nav-
igation recommendation; one of the few approaches is the paper “A Connectionist
Approach to Accurate Web Recommendations based on a Committee of Predictors”
[NPO4]. Taking a closer look at the purpose of neural networks in this concept,
we see that they are used for profile-based URL recommendation. The architecture
of this connectionist system is rigid, since unlike in our MRNN-based approach, a
fixed number of input and output URLs are required for network training, which
renders the session sizes static. The proposed recommendation process consists of

URL Recornmmendations S-ss

Cutput
layer

Hidden
laver

Input
layer

Sub-session (ss8)

Figure 7.3: Two-step recommendation process based on 20 user profiles and on an ensem-
ble of 20 specialized back-propagation neural networks (MLPs).

two integral steps as depicted by figure 7.3. First, both the highest cosine similar-
ity between all sub sessions and the static profile vectors are computed. After a
blackbox indexing activity, the indexing result is fed into each of the 20 individual
back-propagation neural networks, which have been trained on profile-specific sub
session-to-URL mappings before. The 20 profile-specific URL-predictor multilayer
perceptrons have to recommend further web pages not yet contained in a single user
session. Since the URLSs of the web pages were not learned in a content-based way

CHAPTER 7. NAVIGATION RECOMMENDATION 213

and no completely unseen pages had to be handled (as is the case in the study using
the SYMBOCONN framework, which is presented in section 7.5), neither the results
nor the underlying datasets are comparable. The committee of predictors called
accomplished the recommendation task with a precision of 74.2% on average.

Structural Recommendation — Google PageRank Internet search engines re-
quire a ranking mechanism to prioritize the results consisting of a vast amount of
retrieved keyword hits. One very popular ranking algorithm that considers the struc-
ture of the navigation space (interlinked nodes) is PageRank, named for its inventor
Lawrence Page [BP98]. This algorithm is based on a directed graph G = (V, E) as
a model for the internet and its purpose is to assess the relevancy of web pages.
The distinctive feature of PageRank is conducting a theoretically infinite ran-
dom walk on the graph, which finally reflects the prestige of the visited websites
represented by graph nodes. The prestige is the state probability of a certain node

Figure 7.4: Exemplary directed and non-symmetric graph consisting of three websites.

in iteration ¢ of the random walk. The asymmetrical adjacency matrix A describes
the edges of the strongly connected graph, taking into account their direction. A
so-called random-surfer starts at an arbitrary node and navigates according to the
transition probabilities A'[u, v], which are the entries of the normalized adjacency
matrix A’.

Example 7.2.1: Random Walk Graph

011 03 3
A=11 0 0 A=1100
010 010
The normalization A'[u, v] = ZZ‘[Z,[Z] 77 is performed row-wise in order to induce a

probability measure P : F — R with the o-algebra F = P(V), {u} € F, Pu] :=
P({u}) € [0,1].

In a further step, the following recursive transition equations are applied to com-
pute the probability vector plus, usg, . .., u,](t) of the pages u;, ¢ = 1,...,n at time

214 CHAPTER 7. NAVIGATION RECOMMENDATION

t. Plu)(t) is the random surfer’s probability of visiting page v € V' at time t.

1
(0 = — 7.9
p(0) V] (7.9)
pt)y = ATpt—-1) (7.10)

t—o0

The uniform distribution computed by formula 7.9 serves as initial node probability,
which depends on the number of nodes in the graph. The computation normally
converges after a decent number of so-called power iterations defined by equation
7.10. The iterative probability computation is similar to the forward propagation
of signals in the recurrent layer of the MRNN. In the case of example 7.2.1, the
final probabilities approach Plu| = 0.4, P[v] = 0.4, P[w] = 0.2 for t — oo. This
behavior can already be observed after about 30 iterations.

If the random surfer ends up on a page without any outgoing links, then a page
among the remaining ones is picked randomly as next browsing target. In light of
the performed random walk, web pages can be classified according to two types
of graph nodes, called authority and hub, which are characterized by the number
of incoming and outgoing links. A good authority is linked by many hubs and a
good hub refers to many authorities. In example 7.2.1, v represents a hub and » an

P

- "“\._\

& e
o_—

Figure 7.5: An authority is a web page that Figure 7.6: A hub is a web page that holds
is referred to by many web pages. many outgoing links to other web pages.

authority. w is neither hub nor authority, coherently resulting in the lowest stopover
probability P[w] = 0.2, which is often denoted as score of a web page.

7.3 Knowledge Representation for Navigation Rec-
ommendation

In chapter 3, the knowledge model of SYMBOCONN was defined, including the
notion of multi-represented objects. In the case of navigation recommendation,
the multi-representation is tailored to the content of the nodes to be learned and
recommended. Either, the nodes are taken as atomic symbols merely possessing
unique names such as URLs, called symbolic node representation below, or the
nodes provide textual content to be considered by a text mining approach.

CHAPTER 7. NAVIGATION RECOMMENDATION 215

Symbolic Node Representation Symbolic node representation solely relies
on the string-based naming schema used by the knowledge base to administer its
entities — comparable to a directory of files. This syntactical approach follows the
paradigm of collaborative filtering and is far easier to implement and computation-
ally less complex than a full text representation; it might still provide an acceptable
recommendation accuracy in the individual case.

A unary encoding approach maps a node identifier v; — (0,0, ...,0,1,0,...,0)
to an orthogonal bit vector with a “1” at the i** component, but does not consider any
content of the knowledge nodes at all — if available. Compared to a binary encoding
of all node identifiers that requires [log, n| bits to represent n = |V| nodes, the
unary encoding provides a much better discrimination between the represented node
IDs by its strictly orthogonal vectors. This simple approach unarily encodes n-many
nodes by n-many n-dimensional vectors 71, . . . , Z,,. The purely symbolic approach
is comparable to the URL-based navigation recommendation by association rule
mining, described in section 7.2.

Rich Representation Based on Text Mining Navigation recommendation
may be enhanced by text mining capabilities, because the navigation space often
provides rich textual contents for machine learning and enable to apply the general-
ization capability of the connectionist system.

According to the vector space model presented in section 7.1.1, a feature vector
7; € R? is computed for each knowledge node v;. A simple way of obtaining a
vector space model [SWY75] is to count the keyterms for each text unit, creating
so-called bag-of-words vectors. These vectors can be arranged in a term-document
matrix M of keyword frequencies per text unit (e.g. sentences, paragraphs, sections,
documents). The entry M; ; denotes the frequency of occurrence for term 4 in text
unit j, which is the textual content of a node in the knowledge graph.

When applying this text mining approach to unstructured text in order to ob-
tain a knowledge representation for neural processing, several lingual and statistical
problems remain:

e Synonymy: Synonymy is the phenomenon of several distinct words holding
the same linguistic meaning.

e Polysemy: Polysemy describes the phenomenon, that the same expression
has different meanings in different linguistic contexts; polysemy is contrary
to synonymy.

e No VSM-term orthogonality: The vector space model (VSM) used to numer-
ically describe text documents makes the implicit assumption of uncorrelated
terms by assigning each of them to a single vector space dimension. This as-
sumption does not hold for natural languages in general. Linguistic constructs
such as “change management” are not only composed of the independent
terms “change” and “management” that would be represented by independent

216 CHAPTER 7. NAVIGATION RECOMMENDATION

dimensions, but are highly correlated when they occur together in a text docu-
ment. Mathematically spoken, the probabilities for the event A; that the word
“change” occurs, and the event A, that the word “management” occurs are not
stochastically independent: P((),;; 4;) # [[;c, P(4;), T ={1,...,k}.

Refinement by Latent Semantic Indexing The vector space model can be
refined by applying Latent Semantic Indexing (LSI) [DDF190] to the set of ob-
tained feature vectors {Z1,...,,}, which determines the inherent key concepts
characterizing all d-dimensional feature vectors ;. LSI is capable of dealing with
problems such as polysemy and synonymy by analyzing the latent semantics of
interdependent concepts. As an advanced text analysis method, LSI is employed
on top of the term-document matrix M; ; discovering the correlations between text
units and the contained terms. The matrix is decomposed by Singular Value De-
composition (SVD), which is a generalization of the Principal Component Analysis
(PCA). While PCA compares equal objects by setting up a quadratic and symmet-
ric matrix, SVD is able to analyze the relations between terms and text units by a
non-quadratic matrix.

Based on SVD, we reduce the dimensionality and thereby the redundancy of
the term-document matrix M, which is usually sparse. The matrix is decomposed
M = UDWT into two orthonormal matrices U and W and one diagonal matrix
D. This decomposition is called diagonalization. After diagonalizing the matrix

M, the singular values o; = D;; in the diagonal of the matrix D reveal the in-
significant dimensions to be discarded. The k least informative dimensions with
singular values 04_j, 04_k+1, - - ., 0, are ignored by the transformation to a (d-k)-

dimensional subspace. The result are feature vectors Z; € R?~* that represent the
content of a node v; € V':

= (W W, W), (7.12)

where WZT], i=1,...,d-k, 5 =1,...,|V] are the entries of the transposed right-
singular matrix. The dimension-reduced document representation based on the sub-
space R?~* represents an input source of higher quality for connectionist prediction
by the MRNN, since it provides a lower rank approximation of the original vec-
tor set. Generally, the high-dimensional bag-of-words vectors are sparse; that is to
say, they contain many 0-entries. More formally spoken, the term-document matrix
M e R™IVI (m is the number of keyterms in the knowledge base) does not have
full rank, but only rank(M) = m — k. In this case, even a dimension reduction
without information loss can be accomplished, keeping nearly the whole variance
of the original vector set. The practical benefits of SVD, the increased input quality
for neural processing, and the existence of lossless lower rank transformations, are
empirically shown in section 7.5.

The benefit of latent semantic indexing applied to raw text is the transformation
7.12 of the original term frequency vectors into a more meaningful and — in addition
— more compact representation. The resulting feature vectors are less noisy than the

CHAPTER 7. NAVIGATION RECOMMENDATION 217

original data, capturing the latent association between the terms and documents.

Carthy and his colleagues also used the SVD technique in the field of intelli-
gent recommendation [SCDO05]. They developed an intelligent online recommen-
dation system, which uses a Singular Value Decomposition-Collaborative Filtering
(SVD-CF) method to represent the latent associations between users and recom-
mended items while reducing the dimensionality of the user-item space. Their
approach demonstrates the adequacy of SVD-based techniques for recommenda-
tion tasks concerning associations between two sorts of entities, like customers and
products or terms and documents. Similarly, the SVD-based rich representation of
SYMBOCONN also exploits the latent associations between terms and the items to
be recommended, which are, for example, web pages in the case study presented in
section .

7.4 Navigation Recommendation in SymboConn

When users navigate in an associative way by performing sequences of navigation
operations to solve a knowledge-driven problem [SS05], their behavior is observed
by the SYMBOCONN framework and modeled as a navigation through the graph.
The navigation recommendation technique presented in this section is an extended
version of [Dav08a] and applies to beginners, advanced learners and domain ex-
perts.

In SYMBOCONN, the goal of navigation recommendation is to proactively pre-
dict a sequence of relevant nodes based on the observation of the user navigation
on the knowledge graph. These target nodes are predicted to be associated most
strongly with the history sequence of observed nodes. The abstract model of the
respective knowledge base uses the graph defined in section 3.2, but this time in the
shape of an unbalanced tree with arbitrary valence and nodes of possibly different
types, as shown in figure 7.7.

Multi-Represented
(MR) Objects Training Set = {

& o am By A,,..,A, —>B B
Navigation Histor 2 aqs = Na bys =+ Pb s
Ay A Al

1 m\/_; Ceps s Co = Dyyy oo Dy
Q . O Ee.p ==y Eem — Ff1’ ey ana
Predicted Target Sequence
Am \\ \\ B1: -y Bn }

Figure 7.7: Exemplary navigation history together with the predicted target sequence on a
tree-shaped knowledge base. The nodes may be of different types, for example, p(A1) =
T3. Nodes without a type label 77,75, . .. are considered as untyped.

Since, in general, no behavioral rules are available which reveal the browsing

218 CHAPTER 7. NAVIGATION RECOMMENDATION

behavior of users on the knowledge base in form of explicit control knowledge,
learning from examples is the only way of incorporating knowledge about the users
and the application domain. The interests and expertise of users become partially
manifest in their navigation behavior on the respective knowledge base. The users
implicitly reveal their interests and furthermore produce new associations by actu-
ally using the system.

Before navigation recommendations can be generated, the system has to be
trained on observed navigations through learning by example (see the requirement
introduced in section 3.1.1.1). Assume that the system has learned the relationship
between history and target sequences on a knowledge graph by supervised training.
Now, a navigation sequence generated by a beginner consisting of yet unseen nodes,

Navigation Recommendation - Operational Mode

Navigate Through
Knowledge Base

Generate

/ \ navigation
sequences

\ Recommendation Request target
- . recommendation
Expert Navigate on{hesve nodes Beginner

T~

Define Cohesive
Navigation

Figure 7.8: Use case diagram showing the operational mode of navigation recommendation
in SYMBOCONN. The third use case, which can only be executed by an expert user, can be
interpreted as programming by example, where the user plays the role of a teacher.

is presented to the system. In this case, the SYMBOCONN framework provides two
forms of recommendations, which are condensed in the use case Proactive Recom-
mendation in figure 7.8:

1. Recognition and Recovery: When presenting a navigation history to the MRNN
which equals the history part of a learned training pattern, its farget part can
be fully recovered. An example that can be widely interpreted as naviga-
tion recommendation are the working steps that an expert technician performs
when confronted with a malfunctioning thermostat. The fault diagnosis rep-
resents the history part and the repair actions to be carried out represent the
target part.

2. Generalization: A virtually unknown sequence of navigation operations is
fed into the MRNN, which is able to predict the target nodes most likely

CHAPTER 7. NAVIGATION RECOMMENDATION 219

related. An example is the recommendation of related pages in a documen-
tation. When presented with an unseen documentation page, the SYMBO-
CONN recommendation engine is able to recommend (using LSI) a sequence
of pages that contain related explanations on the same topic, but with the
use of synonymical terms. Such a recommendation cannot be provided by a
simple full-text search.

Expert-Defined Associations Users might adopt different roles, such as be-
ginner or expert, with characteristic degrees of knowledge demand and provision,
as described by the use case diagram of figure 7.8. In terms of end-user program-
ming [EUDO2], experienced users should be able to define cohesive navigations by
visiting nodes that semantically belong together due to their conceptual similarity.
Expert-defined navigations, denoted by the use case Define Cohesive Navigation
in figure 7.8, allow for the direct insertion of domain knowledge into the recom-
mendation engine. The user notifies the SYMBOCONN framework to capture the
current navigation with explicit history and target part, which is then added to the
set of navigation sequences to be learned (training set).

The great benefit of expert-defined node associations is their multiplier effect,
which only evolves from the proposed connectionist realization of a content-based?
machine learning system. Other users of the information system benefit from this
kind of programming by example* by following analogous procedures in new nav-
igation scenarios. Since the content of each node participating in the captured
navigation is considered as multi-represented object (see also section 3.2) by the
connectionist approach, its latent semantics are also learned with respect to other
nodes. Thus by means of a structural and content-based similarity of history node
sequences, supported by the sequential state layer of the MRNN, unseen but similar
history sequences can be assessed and carried forward. Metaphorically speaking,
each meaningful and cohesive navigation sequence that was explicitly defined by
a knowledgeable user has a multiplying effect on the domain understanding of the
neural network, since the exemplified content correlation “emits” onto untrained
contents.

The usual and more unobtrusive way of learning from users is to automatically
trace and incorporate the navigation behavior of experts, without requiring them to
explicitly declare cohesive navigation sequences. However, a beginner should not
explicitly define a navigation due to his lack of domain knowledge; nevertheless,
beginners are traced by the system in order to be proactively assisted with recom-
mendations of potentially relevant target nodes. An expert on a specific domain
might lack expertise in foreign domains and thus might behave like a beginner or
an informed outsider needing to be assisted in this case.

3The collaborative aspect is of minor relevance here.
4 Also called programming by demonstration.

220 CHAPTER 7. NAVIGATION RECOMMENDATION

7.4.1 Adapting Principles from Content-Based and Collabora-
tive Filtering

The connectionist approach to learning of user navigations benefits both from as-
pects of content-based and of collaborative filtering. As introduced in section 1.2,
content-based filtering exclusively takes into account the preferred entities of a sin-
gle user and analyzes® their content for similarity-based recommendations.

Instead of considering the carried content, most collaborative filtering systems
solely rely on symbolic relationships: the node content is neglected and the rela-
tionships between nodes are reduced to the fact that a set of users has visited sets
of symbols, like the URL identifiers of web pages. These systems compute the
recommendation for the current user based on the degree of compliance of his in-
terest profile with the profiles of all other users, assuming that this coincidence also
holds for further nodes. The class diagram in figure 7.9 shows the combination of
content-based and collaborative filtering.

Content-Based Collaborative
Filtering Filtering
SymboConn
Navigation

Recommendation

Figure 7.9: Multiple specification inheritance from content-based and collaborative fil-
tering combining the advantages of both methods. The SYMBOCONN framework learns
both the node contents (such as the titles of web pages or even their content) as well as
user-to-node relations.

When the navigation behavior of more than one user is learned, the connectionist
machine learning transcends the purely content-based approach and additionally be-
comes collaborative. The SYMBOCONN framework learns both the node contents,
such as the titles of web pages or even their content, as well as user-to-node rela-
tions. The question to be resolved is whether the neural network can benefit from
the integration of other users’ preferences when predicting the subsequent nodes
based on the previously visited ones, which is empirically answered in section 7.5.

Since collaborative filtering is also tailored to the individual user, we need a
mechanism to bind the user to his specific navigation sequences. Therefore each
navigation sequence is contextualized with the respective user, which allows for
tailored navigation recommendations that may deviate from the mean user prefer-
ences. Users who have visited the same subset of nodes so far may vary in the

By Latent Semantic Indexing (LSI).

CHAPTER 7. NAVIGATION RECOMMENDATION 221

subsequently visited nodes. Therefore, a representation of each user together with
the visited nodes is learned in the contextualized learning mode.

This contextualization is especially useful in guaranteeing a unique mapping of
visited nodes to target nodes, which makes for a consistent training set according
to condition A.2.1 explained in the appendix A.2.1. Otherwise, many ambiguous
navigation sequences would have to be removed from the training set in order to
obtain an unambiguous functional mapping of navigation sequences learnable by
the MRNN. For this reason, the mappings of visited and recommended nodes are
tailored to the respective user resulting in user-specific and thus context-sensitive
node mappings; this allows to consider a broader set of unambiguous navigation
sequences. Navigations with equal history but different target parts have to be ex-
cluded from training in the case of the context-free mode. They can be consid-
ered, however, when using the additional context nodes that guarantee the required
uniqueness.

For the contextualized learning of navigation sequences, it is necessary to train
a recurrent neural network on the productions of a context-sensitive grammar G; of
type 1, according to the Chomsky-hierarchy [SchO1]. Context-sensitive rules like
aB~y = afy can be recognized by neural networks with the appropriate learn-
ing algorithm. Without contexualization, functional associations like node;
nodey, 7 # k would have to be substituted by relational associations in the sense
that a visited node; maps to nodey, for user u;, but maps to node; for user us:

uy : nodej +— nodey

up 1 node; > node

Since this is not a functional mapping, it is not representable by the MRNN. On the
other hand, relational associations of the form (node; — {nodey, node;}) are not
desired either, because user u; should not be presented with node; and user uy not
with nodey. A solution to this problem is given by the proposed contexualization
with the user identities, which corresponds to the functional requirement of context-
sensitivity (cf. section 3.1.1.4) and is therefore supported by the SYMBOCONN
framework. The user identities provide a navigation-context for the determination
of the target nodes to be recommended upon the knowledge graph:

Content-based filtering becomes collaborative by exploiting the user identity as
navigation context.

Adding the respective user ID as an atomic node (without content) to the be-
ginning of the history results in two functional and hence unambiguous mappings
(u1,node;) — nodey, and (uz, node;) — node;, which are illustrated by figure 7.10.
These contextualized training patterns can be expressed by context-sensitive pro-
ductions

(u1,node;) = nodey, uy,us € X, nodej, nodey €V,

where X is terminal alphabet and V' is the set of variables. The usage of multi-
represented nodes as described in section 3.2 allows to treat users as nodes with a
single categorical attribute that represents their identity. These inherently heteroge-

222 CHAPTER 7. NAVIGATION RECOMMENDATION

Pattern 1 Pattern 2 Contextualized pattern 1 Contextualized pattern 2

<node_j> <node_k> <node_j> <node_k>

A A A A
OIS TH I ILY
A A AA AA

<node_j> <node_j> <user_a> <node_j> <user_a> <node_j>

Figure 7.10: Contextualization of two training patterns for navigation recommendation
shown together with the corresponding network topology. The pairs of correlated nodes
(node;,nodej) and (node;, nodey,) are contextualized from the left by the respective user
identity.

neous training sequences can only be processed due to the modular architecture of
the MRNN, which enables joint learning of different node types.

Independent from the decision of whether using a content-based representation
or a symbolic one, navigation sequences of many users can be learned indepen-
dently from the behavior of the individual user. We denote this variant as context-
free learning. In the context-free learning approach, a median navigation behavior
of all considered users is incorporated into the SYMBOCONN recommendation en-
gine, while ignoring possibly given user-to-navigation mappings that represent the
visited nodes for each user. Navigation sequences are not bound to specific users,
but are representative of all of them. The content of the visited nodes is carried by
multi-represented objects as defined in section 3.2. Users are either represented by
arbitrary symbols that do not carry any information — as in the following case study
—, or they are described by profiles consisting of name-value pairs, for example.

An advantage of context-free learning is its higher extensibility regarding fur-
ther users. If new users should be provided with recommendations which have not
been hitherto represented in the training set of navigation sequences, the uncontex-
tualized prediction model can be used without adoption. In the case of symbolic
user identities, this extensibility does not apply to contextualized navigations: since
the user identities are not represented in a content-based way, a new user identity
does not stand in any relationship to the trained set of user behaviors and thus cannot
be assessed by means of similarity to already incorporated behaviors.

7.4.2 Control Flow of Navigation Recommendation

The abstract control flow of navigation recommendation integrates all the activities
and techniques presented in the previous paragraphs into a cohesive machine learn-
ing process applicable to text-based and non-textual knowledge bases. The activity
diagram depicted in figure 7.11 illustrates the dynamic model of generic learning

CHAPTER 7. NAVIGATION RECOMMENDATION 223

and recommendation in an arbitrary domain. The upper swimlane shows the activ-

=]

«datastore»
Indexed TXT-
Know ledge Base

Indexing the

TXT-Knowledge Base
oo

[Rich Representation] Z

Feature Selection
«datastore»

[Symbolic Representation] Knowledge Base

Building LSI-based
document representation
oo

Unary Encoding of
Node Idents

Higher Discrimination, Slowlier Traintag

[Lower Discrimination, Faster Training]

Binary Encoding of Internally
Node Idents Represented
Nodes

Association Rule
Mining (ARM)
o0

[No navigations observed]

Preprocessing and Training (time intensive)

[input-target mapping available]

Untrained MRNN Training the MRNN on Building the Training Set Input-Target
Training Set TS o Node Sequence
oo S
Map

a S

weights randomly Trained MRNN Set of Training :
initialized %@ Patterns TS Must be given by
—— observation or

generated from
ARM

N\

Predicting a Sequence of\
Target Nodes

Sequence of
. = Visited Nodes

Transformation to
Input Pattern
OO

Sequence of
Potentially Relevant
Nodes

Operative Application (fast)

Figure 7.11: Activity diagram for navigation recommendation on the knowledge graph,
either based on symbolic or rich content representation.

ities, decisions and work products required for preprocessing the data and training
the system. The lower swimlane represents the actual recommendation process after
the system is already trained.

During preprocessing and training, several expert decisions concerning the type
of knowledge representation have to be made and the adequate encoding technique.
Feature Selection is the activity of deciding which features or attributes within
the existing data schema contribute significantly to an ex-post prediction of the
observed target sequence (observed variables in terms of statistics); that is, these

224 CHAPTER 7. NAVIGATION RECOMMENDATION

features explain the target sequence and are called predictor variables. The node
representation as defined in 3.2 is set up in a symbolic or rich way, which both call
for different preprocessing and data encoding activities. In each case, the resulting
work product Internally Represented Nodes represents the basis for Building the
Training Set.

If no navigations can be captured beforehand, an initial training set (Input-
Target Node Sequence Map) can be generated by the combination of text and
association rule mining in order to enable a preliminary training of the system — as
described in the appendix A.1.2.2.

If there is no content-based information, the symbolic representation is applied;
that is, the payload of all nodes is null and only their name or identifier is taken into
account. An example is a sequence of visited URLs, which represent meaningless
but unique identifiers. In this case, observed navigations must be available to build
the training set because there is no similarity measure between nodes to derive se-
quences of related nodes. Both symbolic and rich knowledge representation result
in sequences of input and target nodes that make up the training set for supervised
training.

The operative application of the system shown in the lower swimlane of figure
7.11 is triggered by the observation of a user navigation manifesting itself as a node
sequence, which is transformed to a single input pattern for the neural network. The
MRNN is fed with a sequence of preprocessed input vectors and predicts the most
probable target sequence. The resulting work product is a list of recommended tar-
get nodes to be visited by the user. This recommendation requires a generalization
of Level 3 (cf. section 3.1.1.2), since new nodes may be observed in the application
phase.

7.5 Case Study: Web Navigation

In this section, we apply the connectionist recommendation technique described in
the beginning of section 7.4 to a publicly available dataset of web page navigations
based on representative log files. Figure 7.12 shows a prototypical user front-end for
receiving recommendations and defining cohesive navigations according to the use
cases of figure 7.8. After visiting a fixed but definable number of documents, the
system computes a recommendation of an arbitrary number of related documents
with decreasing relevancy estimates.

Microsoft logged web access data relating to its portal www.microsoft.com by
sampling and processing the server log files, resulting in 32,700 user navigations on
329 different web pages [BHKO98, WIO1] involving different topics called Vroots.
The data reflects the usage of the internet portal by 38,000 anonymous, randomly
selected users. For each of these users, the set of all visited web pages within one
week was stored as the user’s navigation. In the terminology of the SYMBOCONN
framework, such a navigation is a node sequence and the nodes represent Vroots.
Unfortunately, the given web log data has two deficiencies:

CHAPTER 7. NAVIGATION RECOMMENDATION 225

B SYMBOCONN - Navigation Recommendation Client
Menu
Manual |
=9 15 ~| =215 ~
- @ 2426.h0 - @ 2426.h0 Performing Maintenance Tasks || User Interface
- @ 2427.hb @ 2427.hb
- [® 2428.hh Depending onyour rale in the AME, you will re The Wiring llluminator user interface is divide
- 2429.h0 - 2428.h0 multi-document area on the right. A menu ba
® 243000 ® 2430.00 » How to Use the IETM
- @ 2431.hh - 2431.hh « What is Wiring llluminatar? Interact with the graphic to view additional inf
- W 243200 - 4 243200 « How to Perform Damage Evaluation and
@ 2433.h0 @ 2433.H0 . o Tas) the IETM
" ow to Suspend Tasks in the
® 24340 ® 243hhh . P i ; o i i
- @ 2435.h0 - 2435.h0 « How to Review Wiring Infarmatian
- @ 2436.hk - # 2436.hk « How to Perfarm Memory Inspections A""a"'lE""“""B”"“hi\ i Lt \ew
-~ ® 2437.h0 -~ 2437.h Madsl: ARCRAFT
@ 74380 @ 74380 « How to Initiate a TPDR Tall not
® 2439.h0 # 2439.h + What is a Bookmark? B:f':ln .
n indle pat no.”
- : :::T-:E : :::T-:E « What are [ETM Dialog Baxes?
. 2442 htt . 2442 b « What are the IETM Graphic Displays? L L F3Pin List View
’ ’ [RUSA26 Wic| From ReDe
- 2443.00 - 4 2443.hb Refes: = EF-HO9E - 16
- @ 2444.hh - 2444.hh T6P-HO0%8 | I6P-HOO9E - 1
- @ 2445.hh -~ 2445.hh Pin; D ontext Viel
- @ 294650 - 2446.h0 g
- @ 2447.hb ¥ - a8 2447.hbh ¥ Note: all fielgs case-sensitive 23 wire Diagam V]
< | & < | & —
[ok | conca |V|ew Bu
Current histary Current target - _l
E—— = Clear I Browse...
2444 hitm = —_—
2 < | 3 |
Conkral Expert advice Mentor recommendation
Step Target Type Certainty Target steps
f 2445, htrm DocurnentRepresent) 2
452 . htm DocumentRepresent 95.25%
Show araph
.
33
1.C. David - Infarmation Systems, Neura Camputing (c) 2003-2008

Figure 7.12: Prototypical user front-end of the SYMBOCONN framework for navigation
recommendation. The two browser frames display the current page in the navigation history
(2428.htm) and the recommended target page (2445.htm), respectively [Boe06]. In this
case, two documentation pages with the titles “Performing Maintenance Tasks” and “User
Interface” are in focus of the user — guided by the recommendation engine. The Mentor
recommendation frame displays the recommended documents together with a degree of
Certainty, which can be interpreted as a relevancy estimate. This snapshot shows the 2-step
recommendation result (7arget steps = 2) after having observed a 3-step navigation history
(History steps = 3). The recommended objects of type DocumentRepresent are clickable
and are thereupon shown in the right browser frame.

226 CHAPTER 7. NAVIGATION RECOMMENDATION

e The order of the web page visits within one user navigation is not apparent
from the record-based dataset; thus, the navigations represent node sets in-
stead of node sequences.

e Only the title of the visited web page (Vroot) is available, but not its actual
content. This is reminiscent of collaborative filtering, where only the identi-
ties of the user and the visited node are considered, while the nodes’ content
is neglected.

Page titles like “MS Office” or “Professional Developers Series” are the Vroots of an
access case and are considered as text units in terms of section 7.3 for constructing
the vector space model. Table 7.2 and 7.3 show the schema of the captured web
access data. The visited nodes are modeled as multi-represented objects with two

VrootID Web Page Title URL Suffix
1287 “International AutoRoute” “/autoroute”
1215 “For Developers Only Info” “/developer”
1083 “MS Access Support” “/msaccesssupport”
1026 “Internet Site Construction for Developers” “/sitebuilder”

Table 7.2: Excerpt of the web data used in this case study. The table shows the existent
web page topics together with their relative address.

CaselD VrootID Number of Nodes
10127 {1081, 1082, 1040, 1001, 1018, 1083} 6
12879 {1026, 1041} 2
13999 {1008, 1020, 1003, 1018,1004, 1215} 6
14000 | {1008,1027,1123,1007,1026,1172,1004} 7

Table 7.3: Case-to-Vroot mapping concerning the observed navigations of 38,000 anony-
mous users. A single case consists of one ore more web page visits shown in the column
VrootID.

textual attributes Web Page Title and URL suffix®.

Evaluation An evaluation of the trained prediction model should substantiate
the assumption that user preferences can be incorporated from the contents of the
web pages logged in the navigation histories (content-based). Learning the prefer-
ences of other users as well (collaborative aspect) should result in a superior rec-
ommendation performance to that of learning only the navigations of a single user
who is isolated from others. Secondly, we evaluate the introduced contextualized
learning in direct comparison to the uncontextualized variant on the same test cases.

In addition to these two variants of recommendation, the two proposed knowl-
edge representations are individually considered with regard to the input and output

Type Textual Feature in definition 3.2.2.

CHAPTER 7. NAVIGATION RECOMMENDATION 227

space of the network, resulting in a total of six competing variants in scope of this
evaluation. We compare the symbolic prediction model with the text mining based
model. The web page access data is split up into an arbitrary training set of about
2,500 cases and a test set of 1,250 cases for evaluating the generalization capability
of the SYMBOCONN framework. Since no visitation order is specified for the user
navigations, the visited web pages are learned pair-wise with a fixed length three
of the history and length one of the target sequence, respectively. The different
training patterns resulting from a single navigation case (of one user) like {1081,
1082, 1040, 1001, 1002} are given by the possible combinations of ordered input
and target sequences with the predefined lengths.

Thus, the MRNN was trained on navigation sequences such as (1081, 1082,
1040 — 1001) or (1082, 1040, 1001 — 1002), where the integers in each sequence
identify a single web page and their Vroots are represented using latent semantic
indexing. After training the system up to a final training error in the range of 0.15%
< E < 1.0%, about 80% of the navigation sequences could be successfully recov-
ered on average when using the learned history sequences’.

In the ex-post evaluation, a set of visited nodes not used for training is presented
to the network, where the associated target nodes are known for each user and are
expected as navigation recommendation by the MRNN. A successful recommen-
dation is given if a web page visit from the exemplary subset H := {1081, 1082,
1040} C T'C of a single test case, e.g. TC' := {1081, 1082, 1040, 1001, 1018,
1083}, is presented and the network predicts one node of the complementary set
T := {1001, 1018, 1083}. In general, one node v € H is presented and one node
v €T =TC\ H of the target subset is expected as correct recommendation, which
counts as a hit and is summed over all test cases®.

Despite of the relatively short training sequences of 2.83 nodes on average (min
1, max 35), we use the MRNN as sequence predictor because of its approved gener-
alization capability [Dav08c, Sch97], which reveals its effect when visiting unseen
artifacts that were not part of the training sequences — at least in the case of content-
based node representation. This is superior to association rule mining which is
only able to discover association rules such as (node;, node; — nodey), which
can be used for a static recommendation of nodey, when the navigation history
(node;, node;) was observed. Due to the symbolic approach, no deviations from
the history part of the discovered rule are allowed. As a consequence, adding a
node with index A to the history, resulting in the sequence (nodey, node;, node;),
would not trigger the desired recommendation of nodey,.

The recommendation accuracy was calculated by formula 7.13:

n |pred;|

- Z |p7‘ed | 2 Z Z (Za,(pred), A= {targetij, 1<j<m}.(7.13)

=1 j5=1

"We did not strive for a perfect training of all sequences in order to avoid overfitting [KADO1],
which diminishes the generalization capability upon unseen entities.
8Wong et al. [WSPO1] refer to H as the problem and to T as the solution part of a test case.

228 CHAPTER 7. NAVIGATION RECOMMENDATION

pred; = (pred;,,...,pred;) is the sequence of predicted nodes based on the his-
tory of the i'" test case and Z(z) is an indicator function that returns 1 if z is in
the set A, otherwise 0. The order of the prediction is not considered, which is in
accordance with the set-based navigation cases.

The consideration of a broad basic population of navigations is crucial for the
predictability of single user navigation operations, as assumed in the beginning of
this section. To test this hypothesis, we first trained the system on the largest nav-
igation case (case ID 40310) of the MS web log dataset only, which reflects the
behavior of a single user by 35 page visits. Secondly, we used about 1,000 arbi-
trary training cases in order to resemble collaborative filtering. In both cases, the
prediction accuracy was only measured on untrained patterns generated from the
same case with the ID 40310. The result favors collaborative training: in the first
case, not a single recommendation out of 12 test patterns is correct, since the few
training examples (23) are not sufficient to assess this user’s navigation behavior. In
the second case, 12.5% of the presented test histories were exploited by the MRNN
and led to correct recommendations, that is, the target parts of these test patterns
were predicted properly. This result illustrates the impact of the collaborative as-
pect: Unobserved navigation operations of a single user can actually be assessed
and continued by exploiting the behavior of a whole group of users’.

Of course, this generalization was only possible due to the content-based train-
ing mode enhanced by LSI. For this case study, the vector space dimensionality
could be reduced to only d' = d — k = 253 by k£ = 41 while keeping more than
99.98% of the variance in the training set (nearly lossless transform). An actual
dimension reduction with information loss by £ > 41 was not conducted, because
any removal of further dimensions led to a significant downgrade of the prediction
accuracy'®. Unlike real documents, the web page titles do not offer a variety of
meaningful keyterms that form a basis for document similarity, but are often ar-
bitrary symbols like “Windows Family of OSs”, “isapi” or “regwiz” (registration
wizard). This lack of content leaves further potential of the LSI method unused,
which can, however, be exploited in other applications of the SYMBOCONN navi-
gation recommendation.

In the context-free learning mode, navigation histories are not bound to specific
users, but nevertheless representative for all users. As shown in table 7.4, the SYM-
BOCONN framework is able to deal with sequences of unseen web pages!!. Without
contextualization but with the support of the LSI representation for both input and
output space, the best recommendation accuracy of 35.57% was achieved.

Thus the singular value decomposition of the term-document matrix succeeds
in discovering the latent semantic concepts and optimizes the text representation.
The highest prediction accuracy of all proposed methods was achieved when using

°The recommendation upon unseen nodes can be considered as a statistical inference — an out-
of-sample prediction (see also chapter 8, page 233).

10The smallest kept singular value oa53 = 0.205 = %01 was still significant, since keeping the
corresponding feature space dimension improved the prediction accuracy.

T An unseen web page has never been presented to the neural network during training.

CHAPTER 7. NAVIGATION RECOMMENDATION 229

LSI without contextualization, as shown by table 7.4. The global LSI vector space
model enables the MRNN to capture the latent concepts of the whole text base and
thus leverages the best prediction results.

In contrast to context-free learning, the described contextualized learning still
considers the textual content by latent semantic indexing; however, it addition-
ally binds the user identity to a specific navigation history. The expected benefit
of contextualized learning is that the machine learning engine also considers the
individual users and tailors the recommendation according to their past behavior
(content-based filtering). This extends the mere incorporation of mean user prefer-
ences based on an average of all users’ interests (collaborative filtering).

Unfortunately, the precision on average suffers from the contextualization, as
listed in table 7.4. The contextualized prediction based on LSI that considers the
respective user is ranked second with 30.05% accuracy on average. Context-free
recommendation works slightly better than the contextualized counterpart for all
evaluated training configurations. We conjecture that the reason for this empirical
fact is the lack of explicit information about user preferences (user profiles), since
users are only represented by symbols.

Accuracy [%] | Rich Representation | Contextualized Learning
Input \ Output
35.57 yes yes no
33.50 yes yes yes
28.99 yes no no
26.60 yes no yes
27.13 no no no
23.94 no no yes

Table 7.4: Prediction accuracy for the application of SYMBOCONN to the recommendation
of msn.com web pages. The accuracy was determined using an arbitrary test set of 1,250
untrained web navigations with histories of length three. The column Rich Representation
indicates whether the textual node descriptions were included in the training process — sep-
arately for the input and output space; that is, the nodes of the input and target sequences
were either represented in the content-based way (yes) involving Latent Semantic Indexing
(LSD) or in the symbolic way (no). The combination of symbolic input nodes and content-
based target nodes is not reasonable and was therefore excluded from the evaluation. In
the case of symbolic representation, the node names have been numerically represented by
unary encoding. All evaluations are based on a hidden layer dimension of i = 35.

For recommendations based on symbolic node representation, the target nodes
in all test sets could be inferred with an accuracy of 27.13% without contextualiza-
tion and 23.94% in the case of contextualized learning. Thus, the simpler recom-
mendation model, which is only built of sequences of node identifiers, is inferior to
the content-based recommendation model that takes into account the textual content
by latent semantic indexing. The performance advance of LSI of more than 8% is
significant here, due to the low expressiveness of the web page titles that are not

230 CHAPTER 7. NAVIGATION RECOMMENDATION

rich in content and thus prevent an even higher level of recommendation accuracy.

Surprisingly, the Microsoft dataset allowed for a higher prediction accuracy
when shortening the navigation histories of the training examples to the length one,
so that the prediction model becomes comparable to a Markov model of order one.
This means that the prediction of the next node only depends on the previous node
and not on the whole navigation history, which is known as Markov property:

P(Y = 0t+1’X = ﬂft) =]P’(Y = 0t+l|Xt =04, Xi 1 = Tp1,- ., Xy = -Tt—k)>

where o;,; is the network prediction (see section 4.4.1), Y is a random variable
standing for the correct node to be recommended and X, ..., X; j represent the
variables for the actually visited nodes, respectively. By contrary, in the case study
at hand, the additional history nodes serving as content-based navigation context
even corrupt the prediction accuracy. If 0,14 is the correct target node to be recom-
mended, the longer history decreases the success probability:

P(Y = Ot+1|X = .Tt) >]P)(Y == 0t+1’Xt = Tty ... 7Xt—k‘ = .Tt_k).

According to table 7.5, the target nodes of 1,250 test sets could be inferred with
an accuracy of 50.00%, which is 14.43% higher than for histories consisting of three
nodes. Hence, for the web log dataset, learning context-free navigations works bet-
ter than considering longer navigation histories. This is empirical evidence that only

] Accuracy [%] \ Rich Representation \ Contextualized Learning ‘

50.00 yes no
46.59 yes yes
48.94 no no
44.44 no yes

Table 7.5: Prediction accuracy for the application of SYMBOCONN to the recommendation
of msn.com web pages. The accuracy was determined using an arbitrary test set of 1,250
untrained web navigations with histories of length one. Similar to table 7.4, the column
Rich Representation indicates whether textual node descriptions have been used. Since the
best results were obtained before when representing both input and output space by the LSI-
based text mining approach, the individual distinction between them has been omitted here.
In the case of symbolic representation, the node names have been numerically represented
by unary encoding. All evaluations are based on a hidden layer dimension of i = 35.

holds for the evaluated dataset and cannot be generalized. Otherwise, all navigation
patterns with a history part x; r,x; k.1, ..., 2; longer than one could be always
cut off except for the last node z; — loosing context-sensitivity with respect to the
preceding nodes. Such a simplification obviously does not allow for a meaningful
navigation recommendation.

CHAPTER 7. NAVIGATION RECOMMENDATION 231

Results From Other Recommendation Techniques There are two compara-
ble navigation recommendation approaches, namely NavTracks and Intention Mod-
eling for Web Navigation.

The NavTracks approach keeps track of the navigation history of software de-
velopers by forming associations between related files, as described by Singer et
al. [SESO5]. Its symbolic algorithm is based on navigation events and constructs
associations between visited nodes. In the case study conducted by Singer, the navi-
gation patterns of three users performing their everyday software maintenance tasks
were captured. The NAVTRACKS algorithm achieved an accuracy of 29% on aver-
age; that is, the next file was correctly recommended in 29% of the presented event
streams, respectively.

The n-gram model approach from Sun and his colleagues is based on frequent
substrings of the entire navigation path in order to predict further user navigation
[SCWMO2]. The last n node visits are considered by computing and maximiz-
ing products of conditional probabilities. In the best case, the provided perfor-
mance amounts to about 37% based on a dataset of NASA web server logs (NASA
Kennedy Space Center web server logs [SCWMO02]). The specialty of this approach
is the computation of the maximum probability of the entire navigation path. Like
the SYMBOCONN framework, the n-gram model is not only capable of one-step pre-
dictions, but can even predict theoretically infinite sequences of hyperlinks, which
is achieved by a global optimization. Sun and his colleagues consider this as an ad-
vantage, because the user is not misled to a local optimum due to the unconsidered
remaining navigation space.

The performance'? reached by the SYMBOCONN framework is, in the best case,
both higher than the one of NAVTRACKS and of the n-gram recommendation con-
ducted by Sun et al..

7.6 Conclusion

In this chapter, we introduced a recommendation engine based on the SYMBOCONN
framework. This engine enables the learning of variably long node sequences on
graph-based and domain-specific knowledge repositories. The navigation behavior
of different users is modeled as a path through the graph that can be described by the
rules of a formal grammar. The MRNN network is trained on navigation sequences
in a supervised manner. Nodes that carry textual contents are provided with la-
tent semantics by utilizing text mining methodologies, which extract the significant
latent concepts from unstructured text.

The navigation recommendation system fulfills two main tasks. The first one
is Learning and Recovering of Navigation Sequences on graph-based knowledge
bases. Arbitrary navigations in form of node sequences can be learned by the SYM-
BOCONN framework. During the operational application of the trained MRNN, the

2In appendix A.1.2.1, a technical method for improving the prediction accuracy for prediction
horizons of more than one target node is given.

232 CHAPTER 7. NAVIGATION RECOMMENDATION

incorporated target sequences are recovered and proactively recommended when a
learned navigation history has been recognized.

The second task is the Recommendation of Node Sequences According to the
Users’ Preferences. Under consideration of the multiple node contents, the learned
user preferences are exploited by the MRNN, which generalizes onto unseen nav-
igation histories. We compared different knowledge representations for navigation
recommendation based on the SYMBOCONN framework engine: Symbolic versus
rich node representation and context-free versus contextualized learning.

To evaluate our approach, we conducted a case study based on Microsoft web
log data. The most sophisticated model with text representation by latent semantic
indexing (LSI) achieved the best prediction accuracy of 35.57% on a test set of
1,250 navigation patterns. A simpler model based on symbolic prediction provided
a prediction accuracy of 27.13% at maximum. Thereby, each navigation pattern
consisted of three history nodes and one target node.

The results for latent semantic recommendation are promising, since more than
every third node that was recommended in the evaluation matched the users’ inter-
ests for navigation histories of length three'?. Surprisingly, the performance could
be significantly increased to 50.00% when using shorter histories of length one, so
that every second node was recommended properly.

BIn light of the sparse content of the Microsoft dataset, the achieved performance on unseen web
pages shows the generalization capability of the SYMBOCONN framework.

Chapter 8

Time Series Prediction

In this chapter, we demonstrate the applicability and power of the SYMBOCONN
framework in the area of time series prediction. We show that the MRNN recom-
mendation engine subsumes two statistical regression methods. In the first part from
section 8.1 to 8.3, we present the basic theory of time series required to compare the
connectionist engine of SYMBOCONN with established statistical prediction tech-
niques.

In section 8.4 and 8.5, the framework is applied to non-symbolic but real-valued
economical data, which mostly takes the form of time series. Time series are the ba-
sic representation used for predicting financial and economical data that varies over
time. The field of time series prediction is considered to be of significant industrial
relevance [Inv08]; it is, however, completely unrelated to the domains treated earlier
and thus underpins the domain independence of the developed framework.

In general, forecasting generates an estimation of a future state of a time-depen-
dent process using mathematical and non-mathematical methods. We use the term
prediction for the forecast of a dependent variable based on one or many indepen-
dent variables (predictors) using mathematical methods. A principal element of
every prediction is an analysis of the past development of the variable of interest.
To a certain extent, the predictors correlate with the dependent variable and their
correlation in the past should enable a prediction of the dependent variable’s future
development. The past and present realizations of the predictors are known when
computing the prediction.

In contrast to classification, the value space for the quantitative prediction of
time series is usually continuous. If time series are afflicted with coincidence or un-
certainty, they are commonly considered to be the representation of stochastic pro-
cesses that follow certain probability distributions. The realizations of real-valued
time series reflecting the underlying stochastic process are learned, and their future
realizations are predicted by SYMBOCONN. The machine learning-based prediction
is compared with a choice of statistical techniques such as autoregressive models or
exponential smoothing.

Besides quantitative time series prediction, there are also decision problems
which can be supported with a qualitative trend prediction. An example is the

233

234 CHAPTER 8. TIME SERIES PREDICTION

short-term decision problem of whether the stock price increases or decreases in the
course of the next day [Sch89] — given the open-high-low-close data (OHLC) of
the previous days. This task is formally equivalent to a binary classification, which
can be solved by methods such as linear discriminant analysis [McL04] — stemming
from the intersection of machine learning and statistics.

Another subject of time series analysis out of scope of this chapter are simula-
tions of stochastic processes, which must not be misunderstood as predictions. As
opposed to prediction, simulation tries to resemble a random process with its intrin-
sic characteristics most appropriately. Simulation is not meant for an extrapolation
of the process beyond the observed period, which would represent a prediction of
its future realizations (out-of-sample). In this chapter, we show that the generic ma-
chine learning functionality of SYMBOCONN can also be applied to the prediction'
of time series.

There exists a strong correspondence between statistical methods for modeling
time series and the modular recurrent neural network used as the framework engine.
In section 8.4, we point out that the MRNN subsumes existing statistical methods
for time series analysis and prediction, as indicated by figure 8.1. The RNN, a

Exponential Autoregressive
Smoothing Process AR(1)
3 «
«realize» «realize»
MRNN

Figure 8.1: The abstract statistical techniques Exponential Smoothing and Autoregression
of order one can be realized by the MRNN, due to its generic and recurrent composition.

predecessor of the MRNN, has already been used and evaluated in an industrial
environment for a large telecommunication company in 2005. These results are
presented in section 8.5.2. Furthermore, we conducted a direct comparison of the
status quo MRNN framework engine with statistical methods on real-world time
series from that company.

8.1 Stochastic Processes and Time Series

Before introducing the statistical and connectionist prediction of continuous vari-
ables, their structure must be formalized. The theory of stochastic processes is a
discipline of probability theory, which elaborates on the structure and characteris-
tics of random variables v : 2 — R, such as continuity, differentiability, or mea-
surability. These formal concepts are subject to a broad stochastic analysis, which

Y“Prediction is very difficult, especially if it’s about the future.” - Niels Bohr.

CHAPTER 8. TIME SERIES PREDICTION 235

is based on measurable mappings (such as random variables) on probability spaces
(Q, F,P), where € is an event space, F is a sigma algebra, and IP is a probability
measure.

In contrast to this, time series analysis and prediction is considered as a statis-
tical discipline, which uses the same model for time series as is used for stochastic
processes. However, time series prediction focuses on practical modeling of time
series in order to simulate the underlying process or to predict their future realiza-
tions?. This data-driven approach tries to fit time series models to given, temporally
ordered feature vectors in order to predict their future development. Only the latter
area is in the scope of this chapter, in which the MRNN is used to model and to
predict time series as an alternative to traditional statistical methods.

Definition 8.1.1: Stochastic Process
A stochastic process Z is a family of time-dependent random variables * on an event
space (2 into a state space S: Z(t): Q — S, t € T:

Z=A{Z(t),teT}

A stochastic process can be seen as a function of two variables, Z;(w) := Z(w, 1),
w € €. In many cases, the state space .S is identified with the continuum R.

There are continuous and discrete stochastic processes, so that the corresponding
timeline is either 7' = (—oo,00) or T =Z ={...,—2,—-1,0,1,2,...}.

Definition 8.1.2: Time Series
A time series { X (¢) };er can be decomposed into a trend component m(t), a peri-

odic component (seasonal) s(t), and a stochastic component Y (t), which is often
given by white noise (see Def. 8.2.4, [Pru05]).

X(t)=m(t)+s@t)+Y(t),teT

These components may be instantiated several times for a single process; for exam-
ple, if two seasonal effects — a short term and a long term one — are observed. Thus,
a time series is modeled as an additive superimposition of statistical sub-processes®.

This generic decomposition can be applied to all types of time series and is visu-
alized in figure 8.2. We give an example for a time series model from the field of
financial mathematics.

Example 8.1.1: Simplified Stock Price X (¢)

X(t) = X(0) 4 e®? (8.1)

2The observations or measurements of a stochastic process.

*More formally, Z is defined on a measure space (€2, F, i) with values in a measurable space
(S, F"). It is claimed that Z; : w — Z;(w) is F-F'-measurable for all ¢ € T

“In case of absence of one or several components, these are formally represented by the constant
null-function fy(t) = 0, V.

236 CHAPTER 8. TIME SERIES PREDICTION

Stochastic
Process

+Concept of Probability Theory

+Concept of Statigtics «realize»

TimeSeries

0::7 ?0..“ 0.

TrendComg S 1Comg StochasticComponent

Figure 8.2: Decomposition of a time series into a trend component, a seasonal component,
and a stochastic component.

log X(t) = logzog+ (b-t)+Y (), (X(0):=mx) (8.2)
Y(t) = logX(t) — (logxo+b-1t), (8.3)

where b is the constant trend, X (0) is the initial value and Y'(¢) is the stochastic
component. Y (¢) represents the stochastic deviation of the stock price from the
predisposed development given by the trend component e(**). Equation 8.1 is log-
arithmized to the log-linear equation 8.2, since the following requirements on the
distribution of the stochastic component should be met:

Y(t) ~ N(0,0%) (8.4)
Y(t)—-Y(s) ~ N(0,0%(t—s)), Vst s<t (8.5)

The stochastic component of the log-linear model is normally distributed with time-
dependent variance o*(t). Moreover, formula 8.5 states that increments of the
stochastic component are variance-stationary (see section 8.2).

The goal of time series prediction is to construct unbiased estimators for the fu-
ture realizations ¥, 1, Y19, - . . of a time series Y, whose past realizations ¥, . . ., Y
are known. The bias of an estimator represents its systematic error, meaning the de-
viation from the actual process parameter § € © C R". Unbiased signifies that the
expectancy of the estimator equals the true parameter value, at least when the size
of the data sample approaches infinity (asymptotically unbiased). The entire risk
of an erroneous prediction should be minimized, which is equivalent to minimizing
the mean error squares MSE = L 5"(9; — y;)? of the prediction deviations. MSE
is the estimator for the mean squared error M S FE, which is defined as follows.

Definition 8.1.3: Mean Squared ErrorA(MSE), Bias
The mean squared error of an estimator # with respect to the actual process param-

CHAPTER 8. TIME SERIES PREDICTION 237

eter 6, which is to be estimated, is defined as

MSEy(0) : =E((0 — 0)?)
= Var(f) + Bias(9,0)?

Bias(0,0) :=E(6) — 0

The process parameter § = (0y,...,6,) € O stems from a multi-dimensional pa-
rameter space ©, since a stochastic process is determined by a whole set of unary
parameters in general.

In the case of time series, § determines the usually unknown stochastic process
Y (0), which generates the time series y, . . . , y;. As opposed to the variance Var(0)
of the estimator 6, the bias is the degree of systematic error in the estimation pro-
cess”.

The goal of most statistical methods is not to generate accurate predictions for
each single point in time (point predictions), since this is not possible for non-
deterministic processes in general. Such a proceeding always implies risking a
higher mean squared error for the predicted period.

The higher the variance Var[Y (t)] of the underlying random process Y (), the
higher the risk [,(Y'(t) — Y (t))?dt of a misclassification or misprediction®. The
formal properties of the variance of stochastic processes, which are important for

building an appropriate prediction model, are discussed in the next section.

8.2 Covariance and Stationarity

Covariance and autocovariance are central characteristics of stochastic processes in
general, but are especially important for the analysis of time series. The autocovari-
ance function is often used to determine periodicities or the signal-to-noise ratio of
time series. Furthermore, the validity of a prediction model can be examined by
analyzing its residuals with respect to their autocorrelation, which is the normalized
autocovariance.

Definition 8.2.1: Covariance Function
The covariance of two random variables X and Y is defined as

Cov(X,Y) = E[(X - E[X])(Y — E[Y])]

This definition requires X and Y to be quadratically integrable, meaning that both
E[X?] and E[Y?] must exist, that is, E[X?] < oo and E[Y?] < oo.

5 A bias can be caused by a random error ¢; with an expected value of Ele;] # 0, which distorts
the realizations of the dependent variables.
%In the continuous case.

238 CHAPTER 8. TIME SERIES PREDICTION

Definition 8.2.2: Stationarity

A stochastic process which has the same expected value and the same variance at
all points in time ¢ € T'is called stationary. Covariance-stationarity is given if there
is a unary function r(.), so that holds:

Cov((X(s),X(t) = r(ls—t|),teT
R(h) = Cov((X(s),X(s+h)),VseZ (8.6)

If stationarity is given, the prior unknown unary function r can be identified with
the covariance R(h) for the time lag h; thus, the second variable ¢ of the covariance
function can be omitted. In the case of stationarity, the covariance only depends on
the absolute difference |s — t| = h of the two points of time s and ¢, which is called
time lag. Therefore, the dependency of X (s) and X (¢), h = |t — s| is equal for all
realizations of the random variable X with the same time lag h.

Stationarity is one of the most important properties of time-indexed processes
which enables to transform a time series X (¢) to a new centered time series X (t) —
E[X (t)] with E[X () —E[X (¢)]] = 0. Many economic time series are not stationary,
but most statistical methods assume stationarity as a precondition for their applica-
bility. Two non-stationary time series may seem to strongly correlate, relying on
a first analysis using the squared correlation coefficient R?, due to a common lin-
ear trend. After removing the linear trend by a 1-fold differentiation, the two time
series may not be correlated any longer. This effect is called spurious regression
(see also [Has03]). Building statistical prediction models upon non-stationary time
series can be misleading, since the generated predictions are often distorted.

In the following, we define the autocovariance and declare its properties, which
are applied to the case study in section 8.5.1 to analyze the provided real-world time
series.

Definition 8.2.3: Autocovariance Function 1R

R(s,t) = E[(X(s) — p)(X(t) - o) (8.7)
(X() =W)Xt +h) —p), siteT (8.8)

=

=
I
=

where 1 = E[X (¢)]. R(h) determines the covariance in the case of a stationary time
series X (), otherwise R(s,) has to be applied. The autocovariance function R(h)
has the following properties:

Property 8.2.1: Autocovariance

Var[X(t)] = R(0) (8.9)
R(-t) = R(t) (8.10)
IR(t)] < R(0),VteT (8.11)

The Cauchy-Schwarz’s inequality Cov(X,Y) < /Var(X) - Var(Y) is used to
prove equation 8.11, the remaining properties being trivial.

CHAPTER 8. TIME SERIES PREDICTION 239

Order_History
250.000 1D)IFF(Order_Histol'y

200,000 A/\Jq{\/\

150.000—
100.000

50.000—

-50.000+

Figure 8.3: Non-stationary time series (top) of the incoming orders concerning an indus-
trial product together with its stationary pendant (bottom) for a period of 180 days. Empiri-
cal stationarity with respect to the expectation was achieved by computing the difference of
first order of the original time series by computing X'(¢t) = X(t) — X(t — 1), t € T.

Proof 8.2.1: (Equation 8.11)

[R(1)] = |Cov(X(s), X (s + 1))| < |\/Var(X(s)) - Var(X(s + 1))
= [Var(X(s))| = R(0)

(8.12)

(*): A shift of the random variable by ¢ does not change the variance.

Definition 8.2.4: White Noise
White noise is the classical example of a stationary stochastic process.

Y ={Y(t), t € T}, Y(t)independent, E[Y (t)] = 0.

White noise is an elementary model for the construction of further types of time
series, which itself is stationary and centered with the covariance function R(0) =
o®and R(t) =0, Vt # 0.

8.3 Statistical Models for Time Series

In practice, the process that generates a time series is mostly unknown and only
some of its realizations are available for analysis. Often one has to assume that

240 CHAPTER 8. TIME SERIES PREDICTION

a selected sample of these realizations is representative for predicting the future
development of the time series.

The development of a dependent variable Y (target variable, variable of inter-
est) can be predicted using one or several explaining predictor variables. For an
accurate prediction, the predictor variables and the dependent variable have to be
significantly correlated in the observed past. The degree of correlation can be de-
termined by the correlation coefficient p by Pearson

E[(X — E[X])(Y — E[Y])] _ Cov(X,Y)

0x0y O0x0y

where ox =+/Var[X] is the standard deviation of the variable X . For two concrete
realizations 7 and ¥, the correlation coefficient p(X,Y’) can be determined by the
estimator 7z = p(X,Y) = %&W’ where s, and s, are the estimators
for the standard deviations. To determine the correlation of two time series X (¢)
and Y'(t), the cross-correlation p(X (¢),Y (¢t + h)) is computed for the time shifts
h=—k,...,—1,0,1,...,k (cf. Def. 5.2.2).

The development of a time series can also be predicted based solely on itself and
without any predictor variables, which we call endogenous prediction. This method
can be used if predictor variables X1, ..., X, are not or only partially available, if
they are assessed to be unreliable, or if their correlation with the dependent variable
Cov(X;,Y) < 7,1=1,...,nis below some threshold 7 and thus too marginal.
Then, the future development of the time series can only be explained by its own
history as done by exponential smoothing.

Regression Regression is a statistical analysis mechanism that aims at actually
discovering the correlation between a dependent variable Y = (Y3,...,Y,) € R"
(multivariate case), which is typically metric, and a multi-dimensional variable
X = (Xy,...,X;n), whose components X;, ¢ = 1,...,m are stochastically inde-
pendent. In a deterministic setting, the predictors X1, ..., X, are instead assumed
to be linearly independent’.

There are several linear and nonlinear regression models which can be used to
model the realizations of a time series {Y (¢) | t € T'}. The purpose of regression
models m ; is to explain the dependency between the predictors and the realizations
Y (t) of the time series, so that the mean squared error ﬁ YY) —mg(X, 1)),

I C T is possibly minimized. Therefore, the regression coefficient 5 eER* keN
has to be determined, which can be achieved by computing the null of the first
derivation of the M SE. In the case of time series prediction, the realizations can
be split into a known history part Y (0), Y (1),...,Y (t) and a future part, Y (ty +
1),Y(to+2),...,Y(to+), which is to be predicted by the regression model. The
constant y is called the forecast horizon [BFOO02].

It must not be possible to express any predictor as a linear combination of the others.

CHAPTER 8. TIME SERIES PREDICTION 241

Linear Regression Models (LRM) There are deterministic and stochastic re-
gression models that can be solved linearly. We give an example of a deterministic
linear regression model which is only dependent on the time, but not on any further
independent variables X;,7 =1,...,m.

Example 8.3.1: Polynomial Trend

A polynomial regression model is linear with respect to the coefficients (3;, which
have to be determined in order to fit the polynomial of the variable ¢ to the time
series.

k
mg(t)=> Bt teT (8.14)
=1

Polynomial regression should be performed hierarchically, in such a way that each
increment in the power of the time variable is only accepted as a new model if the
new one significantly improves the fit to the observations measured by the M SE.
Usually, the predictors t°,¢!,¢2, ... are highly correlated to each other, hence their
coefficients [3; must not be assumed to be linearly independent.

Polynomials are often not flexible enough to capture the trend of certain classes
of phenomena, as shown by the following example. The order history of an indus-
trial product and two regression models are drawn in the same chart in figure 8.4.

250000,00
Number of &
Sold Units S
200000,00 @22
KA
O,
150000,00{ g;b .os/b&@/ & ﬁl@ °
L — & %, ———— o _®glo |
0%/@ Sy 00 o g’g
Pal % P & &9\ . %
100000004 ® ° S
b 5
o\,
\

50000 T T r
0 50 100 150 200

Figure 8.4: Scatter plot of the number of sold units of an industrial product indexed by time
on a day-scale. The two polynomials of degree one (green, solid) and two (blue, dashed)
overlayed onto the scattered points are both incapable of explaining the whole variance of
the given realizations of the underlying stochastic process.

Nonlinear Regression Models (NRM) Although many scientific and engi-
neering processes can be described well with the use of linear models, there are
many other processes which are inherently nonlinear. An example of these are
autoregressive processes that exponentially propagate the regression parameter «,
which determines the influence of the past.

242 CHAPTER 8. TIME SERIES PREDICTION

Nonlinear regression must not be misunderstood as a regression model such as
Y =a+ B - X+ B+ X%+ 5+ X3, which is only nonlinear in the dependent
variable X. Such a model can be analytically solved by a transformation into a
multiple linear regression problem Y.,y = o+ 31 - X1 + (2 - Xo + (3 - X5 with
the new variables X; := X, X, := X? and X3 := X?. Actual nonlinear regression
models are nonlinear in their parameters and are therefore difficult to solve; their
solution has to be computed by numerical optimization algorithms. The following
generic model of a nonlinear random process can be taken as a foundation for all
nonlinear regression models.

Definition 8.3.1: Nonlinear Random Process

X(t) = m(t)+e(t), teT, m(.)eM
M = {m,(t),teT,yeTl}

M is called model space and I' represents the parameter space. The regression
function m.,(t) depends nonlinearly on the regression coefficient . Alternatively,
the notation m(~,t) is used, since the function is differentiated with respect to
during the parameter estimation, based on given observations.

Both classes of regression, linear and nonlinear, are used to determine the pa-
rameters of the respective time series model. Of all statistical techniques, non-
linear regression models are most similar to the connectionist way of time series
processing, which also uses a nonlinear relationship between the parameters, the
independent variables (input data), and the dependent variables (target data). In the
following, we present established models for stochastic processes used also for time
series. Given the realizations of such a process, these models can be fitfed to the
data by linear regression. After this parameter estimation, they can be used for the
prediction of future realizations.

8.3.1 Moving Average Process (MA)

A moving average process is the result of a white noise process by a filtration, that
is, the MA-process is obtained by a linear combination of a sequence of white noise
realizations with filter weights (b;),;er € R.

Definition 8.3.2: MA-process of order ¢ (MA(q))
q
X(t)=Yt)+> bY(t—j),teT
j=1

Moving average processes are often used as smoothing models in the financial sec-
tor, since they can, for example, represent smoothed series of stock prices. The
development of commercial papers is often described by several moving average
views, e.g. MA(38), MA(200) — indexed by days [DekO08].

CHAPTER 8. TIME SERIES PREDICTION 243

The MA(g)-process is stationary with expectation E[X (¢)] = 0, since it is de-
fined as a linear combination of white noise. If the white noise components Y (¢-¢),
Y (t-g+1), ..., Y(t-1) are seen as external shocks, then they take 1 < i < ¢ time
steps to fade away.

Figure 8.5 and 8.6 show how an MA(5)-process is generated from white noise.

L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Figure 8.5: 500 realizations of white Figure 8.6: MA(5)-process of white
noise Y'(¢) that spread around the ex- noise Y'(¢) corresponding to figure 8.5
pected value E[Y (¢)] = 0. with identical weights b;, Vj =1,...,5.

8.3.2 Autoregressive Process (AR)

An autoregressive process at time t is defined as the sum of its p preceding values
plus a stochastic component Y (¢). In contrast to moving average processes, an AR
process is deterministically dependent on its own history, which implies that earlier
(white) noise terms Y (¢ — k), k > 0, are reproduced in the present.

Definition 8.3.3: AR-process of order p (AR(p))

Zaj HN+Y(@),teT

8.3.3 ARMA Process

The Autoregressive Moving Average (ARMA) process is the sum of an auto regres-
sive component and a moving average component.

Definition 8.3.4: ARMA -process of order p, ¢ (ARMA(p, q))

Zaj +ZbY teT

244 CHAPTER 8. TIME SERIES PREDICTION

The ARMA model is frequently used for the purpose of modeling economical and
financial time series, and as a foundation for their prediction. If the time series to be
modeled is not stationary or shows non-seasonal trends, then ARIMA models that
perform an additional differentiation of order i of the non-stationary time series®
should be used. After differentiation, the time series can be explained by an usual
ARMA(p, q¢) model, which is combined to an ARIMA(p, ¢, ¢) model.

Concrete ARMA models are estimated by nonlinear regression, that is, the ap-
propriate coefficients a; and b;, 7 = 1,...,p, j = 1,...,¢, are determined by
numerical optimization algorithms.

8.3.4 Exponential Smoothing

An important extrapolation method stemming from time series prediction is expo-
nential smoothing, which is used when the respective time series does not show any
systematics that could be directly modeled, but rather behaves chaotically. Such
systematics may be a linear trend or a seasonal component, for example. The future
realizations of a time series are predicted using its past values, assuming that there is
an auto-dependency®. Exponential smoothing is an endogenous technique, because
the time series Y is continued with no means of external predictors X explaining its
behavior due to their correlation p(X, Y') with Y. Given a time series xg, 1, . . . , Ty,
the exponential smoothing technique is defined as follows:

i = axr+ (1 —a)r) (8.15)
t—1

= QZ(l —a)m_ i+ (1—a)zy, 0<a<l. (8.16)
i=0

x; 1s the arbitrarily definable starting value of the smoothed time series at the fixed
point of time ¢ = 0 that is normally chosen as the first observed value, z{ := z.
By unfolding the recursion, as done by equation 8.16, the smoothed value z; is
computed. The smoothing factor o determines the impact of the past values; for o =
1, no smoothing is done and the predicted value equals the currently observed value.
This appears to be reasonable: if no information about the process systematics is
available, the best prediction of the future realization x;,; is the present observation.

The factor o can be fixed in advance, e.g. 0.2 < a < 0.3, or it is deter-

—

mined by an additional optimization process with respect to the estimation M SE =
2 Zf;é(xj —x;)%,t > 0, of the mean squared error of the smoothed past values and
the actual past values. The first prediction of the unknown value x;, is provided by
the smoothed value z}, which is computed based on the last available observation
x¢. In order to extend the forecast horizon to more than one step, the predicted value
is taken as a new observation by setting x;11 := z; subsequently, formula 8.18 is
applied again.

8See also section 8.5.1 for a practical example of differentiation.
%A random walk process, for example, does not fulfill this assumption.

CHAPTER 8. TIME SERIES PREDICTION 245

Exponential smoothing has already been used for warehousing and demand
planning [Bec03]. The swiss army, for example, applied this method for the predic-
tion of the number of required rifles in the subsequent year, based on the develop-
ment of the previous years.

There are further time series models from econometrics that are relevant for the
prediction of financial derivatives, for example, which are not detailed in this chap-
ter. ARCH (Autoregressive Conditional Heteroscedasticity) and GARCH (General-
ized ARCH) are linear models [HAMOS] which address the problem of time-variant
process variance o*(t), meaning that the variance changes over time. This het-
eroscedasticity often applies to financial derivatives and their underlyings. Besides
statistical methods, neural networks are also able to model time series with condi-
tional variance [SDD99]. In the following section, we especially apply the machine
learning engine of SYMBOCONN to the prediction of time series — also to those
showing heteroscedastic developments.

8.4 Neural Networks Applied to Time Series Predic-
tion

Both connectionist and statistical methods can be used for business forecasting,
and especially for time series prediction. The connectionist approach to time series
prediction is similar to the statistical approach, because the series of past values
is considered as a noisy signal which can be cleaned and continued into the fu-
ture [Kra91] by a neural network. During the training phase, the structure of the
underlying stochastic process is either learned by means of exogenous predictors
(regressors) that correlate with the dependent variable, or by the endogenous dy-
namics of the process itself. During neural information processing, a cleaning of
the signal from its noise portions is performed, partially or fully masking out the
noisy and redundant information by inhibitory network weights.

Correlations among different random variables, which cannot be discovered by
humans due to their multi-dimensional character or the vast amount of given realiza-
tions, should be exploited by our connectionist learning algorithm. In this chapter,
we only focus on out-of-sample predictions, meaning that all information used to
generate a prediction at time ¢ must be available until that point of time — no future
information may be assumed or used to build the prediction model [CWO05].

Multilayer Perceptron (MLP) The Multilayer Perceptron has already been suc-
cessfully applied to the prediction of business figures. Its rigid topology demands
for a moving time window approach in order to process time series of variable
length. The diagram in figure 8.7 illustrates the time series capturing process by
a moving time window that operates on the known history and pseudo-future data
providing the target values for training. In order to enable a plausible prediction of
the time series’ future values, the network must be trained with representative data
over a long time range, compared to the prediction horizon to be forecasted.

246 CHAPTER 8. TIME SERIES PREDICTION

Moving Past Present Future
window Target
DB-Input .:
»
06_2006 10_2006 time

Output

Figure 8.7: Schematic mapping of a time series to the input and target part of a training
pattern for the Multilayer Perceptron. The topology is chosen for a prediction horizon of
three steps based on a moving time window of 6 time steps.

The feed-forward architecture of the MLP without recurrent connections does
not allow to directly represent a time line as given by the hidden state layer of the
MRNN. In particular, an MLP does not implement a dynamic system as defined in
section 4.4 (see Def. 4.4.1). The temporal relation between the history and target
periods of a time series neither becomes manifest in the network topology of the
MLP nor in its output computation. Also the time lag between the last index of the
input sequence and the first index of the target sequence may be arbitrarily defined
to be more than one time step.

Modular Recurrent Neural Network When applying the MRNN to time series
prediction, the entities to be processed are time-indexed numerical vectors. The
notion of node sequences from section 3.2, while still being valid, is nonessential
here, because no symbolic data has to be transformed to a content-based feature
vector representation. Instead, the vectors are directly given as multi-dimensional
time series Z;_g, ..., Z;. The control flow of connectionist time series prediction,
which is structurally similar to that used for navigation recommendation, is depicted
by figure 8.8. Again, the machine learning process is split into a training and an
operative application phase.

CHAPTER 8. TIME SERIES PREDICTION 247

«datastore»
Feature Selection Database of Past
Business Figures
(Sales, etc.)
o Selection, Projection and
c 5 .
£ CLEEE O ELEEmA Set of <history, future>
s Serissiof Fastand Segments of a Time Series
= Pseudo-Future Vectors g
T OO
c
©
g \1
£
H :
(1 Set of Training Transformation
8 Patterns TS (Scaling, etc.)
S - oo
[
o
Untrained MRNN Training the MRNN on TS Trained MRNN
o0
7
History Segment Transformation to .
.% of a Time Series Input Pattern Predicting a Sequence of
- o0 Time-4ndexed Vectors
: v
®
K
a E .
2. Forecast Re Trans_formatlon
S (Descaling, etc.)
o Sequence
> DEqUSTICe)
®
8
(o]
Charts Generating Bar Charts
[o¥e)

Figure 8.8: Activity diagram illustrating the entire forecast process from training to pre-
diction of a time series’ future period.

248 CHAPTER 8. TIME SERIES PREDICTION

8.4.1 MRNN Implementing Exponential Smoothing (ES)

Least squares methods typically use the mean squared error of the estimations x;},
x{ as objective function for computing a prediction model. Since the modular
recurrent neural network has a flexible architecture and is based on a variant of the
least squares method, it can be used to learn the parameter « from the given real-
izations of a time series. Therefore, the weight matrix B is degenerated to a scalar
by setting B := (1 —) € R'!, while the remaining matrices A and C are fixed
to their arbitrary initialization. The instantiation of the MRNN to implement expo-
nential smoothing is given in figure 8.9, which illustrates the required configuration
and topology of the recurrent network.

The MRNN directly computes the exponential smoothing of the given time se-
ries (zy)eny Without learning from a set of examples, which would require many
realizations of the underlying random process X () — as was the case for the other
applications in this dissertation. Here, the training phase is used for optimizing
the smoothing factor «, because the actual smoothing function does not have to be
learned, but is given by the recurrent equation 8.18 beneath. The MRNN actually
implements the exponential smoothing method when configured according to the
following setup'®: A :=a, B := (1 —a),C :=I.

So =1-mp (8.17)
Sp T=ao Ty —|— (1—a)s;q (8.18)

= Ax; + id(Bs;_1)
o= 0, i=0,...,t (8.19)
fp = idyg (8.20)
feo = [l X0) = (Isiy —2,)? (8.21)

Since the state s;_;, which is interpreted as the estimation x; of x;, depends on the
current value of «, the activation function fc, also depends on «.. This activation

function in the output layer of the network plays the role of the error function MSE
defined above, which is minimized by setting the training targets 7; to zero. The
weight scalars A and B = 1 — A are linked in this setting, which additionally
constrains the possible weight space of the MRNN, besides the fixed assignment of
the output matrix to the identity matrix by C' := 1.

When the parameter « is adapted during the training phase, the current output
o; = (84_1 — 1;)? of fo changes. Fori = 0, ...t the outputs o; are minimized such
that o, > 7, := 0. The reason that the ES-process is called exponential is the

107 represents the identity matrix.

CHAPTER 8. TIME SERIES PREDICTION 249

VN NSV N N —

D333 3935
AA AAA A

Figure 8.9: Topology and weight configuration of the modular recurrent neural network
(MRNN) to implement the exponential smoothing method from statistics. The predicted

values S¢41, ..., St+m are computed without external inputs x; or targets 7¢. For t+1, {42,
., the external inputs are substituted by the respectively predicted (smoothed) values for
these future time steps.

decay in the contribution of its past values, which is exponential:

ss=a-x+ (1 —a)(a -z + (1 —a)si_9)
=afri+ (1 —)z + (1 —a)r o+ (1 —)z s +..]+ (1 —a)z

For (1 — a) < 1, the influence of the past exponentially decreases in ¢, which
clarifies the notion of an exponentially weighted moving average. The constraint
B := (1 — «) < 1is not mandatory for a time series modeled by the MRNN, since
in general, the weight scalar B € R'! or the norm max{ ”ﬁfﬂ”, Bv € R™ R" >
v # 0} of the weight matrix B € R™*" may be bigger than one, respectively.

Overall, the MRNN is more powerful than the classical exponential smoothing
method, since it completely subsumes the ES-process and furthermore automati-
cally optimizes the required parameter «, a feature which is not provided by the
original method.

8.4.2 Connectionist Implementation of Autoregressive Processes

In addition to exponential smoothing as a prediction technique, the MRNN can
also be set up to model an Autoregressive Process AR(1) of order one, which was
defined in section 8.3.2.

St = a-Si_1 + €
MRNN

(8.22)
B- “Sp_1 + X4

The optional second summand stems from a white noise process (¢;);cny With sta-
tionary expectation and variance (see section 8.2, Def. 8.2.4), which can be fed into
the network as external input at time . Normally, €, is an interference component

250 CHAPTER 8. TIME SERIES PREDICTION

contained in the observations as an extrinsic noise portion that is not part of the
actual random process to be modeled. In this case, no realizations of white noise
would be fed into the network as external input (z;);cn, but the input would be set
to zero (x; := 0). In this configuration, the recurrent network directly resembles an
autoregressive process of order 1.

To model AR processes of a higher order, we use the multi-layer perceptron
(MLP) of the SYMBOCONN framework, which allows for having different weights
to implicitly model time-dependent processes. Figure 8.10 shows a moving time
window approach based on a 2-layered feed-forward network. The number of input
units corresponds to the length of the time window, which in turn equals the order p
of the AR process. The parameter p must be determined during model building by
significance tests with varying past window sizes [FF98]; these tests determine the
explanatory power of the past realizations with regard to the future ones.

Patternt Pattern t-1

Output

...................

Figure 8.10: Topology and weight configuration for a 2-layered MLP network that resem-
bles an autoregressive (AR) process of order p. The depicted network is not recurrent, since
it holds a common feed-forward topology with a single output neuron. There is no recurrent
connection in the network, the dashed backward link only illustrates the shift of the input
pattern by one time step.

The patterns ¢-1 and ¢ of figure 8.10 are two subsequent samples of the training
set that are used to learn the network weights ay, as, . . ., a,. The white noise term y;
can be interpreted as an external error signal that is constantly fed into the network
via a fixed connection of weight 1. The depicted AR realization can be trained by
a conventional backpropagation algorithm which automatically approximates the
weights depending on the chosen window size. When used for prediction, the last p
observations x;_,, . .., x; are presented to the network, while the computed output
value ;1 represents the first predicted value. Further future values are obtained by
refeeding the last predicted value as last observation, while shifting the rest of the

CHAPTER 8. TIME SERIES PREDICTION 251

input sequence by one — this is similar to the recursive prediction accomplished by
exponential smoothing.

Both the realization of exponential smoothing and of autoregression shows that
the SYMBOCONN framework is able to subsume approved statistical methods for
time series analysis and prediction.

8.5 Application to Business Forecasting

Business forecasting has evolved into the practice of supply chain and asset man-
agement, especially in the case of manufacturing companies. Demand planning and
consensus forecast, which are sub-disciplines of supply chain management, rely on
statistical forecasting of the expected demand, as well as on consensus processes.
Demand planning coordinates the demand of the various business units which is
aggregated and submitted to the production facilities in regular intervals. The con-
sensus forecast is the mean of all forecasts given by analysts who consult the re-
spective company. In case of the telecommunication company supplied with our
decision support service, the coordination activities culminate in monthly decision
rounds of experts in demand planning, who require the prediction of the expected
customer orders to make their final decisions.

As mentioned in the beginning of this chapter, forecasting, seen from the sta-
tistical perspective, is the prediction of future realizations of a dependent variable
based on one or many explaining variables, which are also called predictors. This
type of forecasting was done for a large telecommunication company as a monthly
decision support service from January 2005 to September 2006. The ancestor of the
machine learning framework at hand, namely the recurrent neural network RNN,
was applied to the operative business forecasting at the telecommunication com-
pany in order to predict the aggregated number of units sold per product line on a
world-wide scale. The portfolio comprised several product lines of component parts
for fixed-network telecommunication infrastructures.

8.5.1 Applied Time Series Analysis

Time series analysis can be accomplished in the frequency-domain or in the time-
domain. In this chapter, we only use time-domain methods such as the analysis of
auto- and cross-correlations. Periodogram or spectral analyses could be employed
in a second step, which are out of scope of this chapter.

The prediction task at the telecommunication company was to machine learn
the order and planning history stored in a multi-dimensional data cube since the end
of 2002. The number of actual orders'' (I) for each month and each product line,
as well as the planned orders (P), served as predictor variables. The actual orders
turned out to be nearly equivalent to the actually sold units. Table 8.1 shows the

"ncoming orders from customers.

252 CHAPTER 8. TIME SERIES PREDICTION

schema of the time-indexed data that was processed for providing business fore-
casts.

Region | Country | Site | Plantitle Type Date Value
AME USA DET 868 Is (I) 12-2004 | xxx
EUROPE GER BSL 868 Plan (P) | 12-2004 | xxx
APAC HAW A 868 A 01-2005 | xxx
APAC HAW B 868 A 02-2005 | xxx
EMEA TH U 808 D 02-2005 | xxx
EMEA TH (0] 886 Plan (P) | 03-2005 | xxx

Table 8.1: Excerpt from the data schema of the worldwide sales figures of a large telecom-
munication company. “xxx” represents a placeholder due to nondisclosure agreements. The
column fype indicates the type of the sales figure, such as actual orders (Is) or planned value
according to different degrees of ripeness (A till F), which are a refinement of the Plan
magnitude. A plantitle is an abstraction for the subject of planning, such as a single product
or a product group.

There were two main reasons for applying connectionist methods to the business
forecast for the telecommunication company. First, the used statistical methods'?
did not succeed in improving or refining the by-hand planning. The second reason
was the assumed systematic over- or underplanning of the demand planning experts,
which was expected to be discovered and cleared by the neural network. Such a
systematic planning error is represented by the systematic part of the mean squared
error M S E, which is the bias of the prediction model.

If the mean squared error M SE(P) = E[(P — I)?] = Var|P] + Bias(P, I)?
of the by-hand demand planning not only consists of a random variance compo-
nent, but also of a Bias(P,I) # 0, then machine learning by neural networks can
implicitly retrieve the intrinsic correlation p(I(t), P(t)) between demand planning
and actually sold units. Thus, systematically incorrect planning of domain experts
can be exploited by connectionist methods in order to provide an improved predic-
tion of future sales figures. The systematic planning error, which can be discovered
from the measurable residuals'® 1(t) — P(t), may still contain useful information
both about the prediction model and the modeled process — as opposed to a random
error. The residuals represent the fraction of the process variance which cannot be
explained by the constructed model. For our case study, we compute the linear dif-
ferences d(t) = I(t) — P(t) for two exemplary product lines (plantitles), which are,
again, time series shown in figure 8.11 and 8.12.

Ideally, the residuals of a regression or prediction model should represent a
white noise process, which means they are assumed to be identically and indepen-
dently distributed (IID) with constant expectation and variance. If any systematics,
such as significant autocorrelation, remain in the residuals, the chosen model is not
able to explain the full variance of the dependent variable.

'2Probab1y, a moving average-based technique was used; there was no assured information on the
kind of prediction models used as decision support.
3In general, the difference between the predicted values and the observed values.

CHAPTER 8. TIME SERIES PREDICTION 253

100000,00~
200,00

50000 00

100,00

LinPlanErr
2

LinPlanErr

-100,00-|

-100000,00+

Figure 8.11: Linear planning error (non- Figure 8.12: Linear planning error for
squared) showing over- and underplanning plantitle 886. The variance is not constant
(residuals) based on the actual orders of over time, which is a sign for heteroscedas-
plantitle 868. ticity.

As shown, for example, in figure 8.11, the variance of the residuals for the
plantitles 868 and 886 is not constant over time, meaning that the residuals are
heteroscedastic [Ham94]. Heteroscedasticity of the error term violates the precon-
dition of many statistical techniques to operate on independently and identically
distributed observations. This was a further reason for applying the RNN as a re-
finement of the manual expert planning given by the time series P(t).

In the following, we present a qualitative analysis of the statistical properties of
the given time series I(¢) and P(t). We limit the analysis to the exemplary plantitle
886, while three different plantitles are considered for the quantitative evaluation.
To decide whether the planning time series P(t) should be used to build a prediction
model, its correlation coefficient with respect to I(¢) is computed, which reveals a
strong correlation of both time series p(/, P) = 0.807. Such a strong dependency
on a predictor variable is not very common in practical applications, such as busi-
ness forecasting, and fans the expectation of finding a sound prediction model. If
the coefficient p was below 0.3, for example, one would rather decide to exclude
the planning variable P from the prediction model. In this case, the orders time
series /(t) would have to be predicted endogenously, which means an extrapolation
beyond the known period without any predictors would have to be accomplished.

Another important aspect of the dependency between the planning and orders
time series is their cross-correlation. There may be a time lag / in the correlation
p(I(t), P(t+h)), t,h € N of planned and actual orders. For example, for h = —1,
p(I(t),P(t — 1)) > 7, the planned orders P(t) would follow the actual orders
I(t) with a delay of one month. We computed the cross-correlation of both time
series to discover such a dependency, which revealed that the highest correlation
is obtained for h = 0, ®; p(h) = p(I(t), P(t)) = 0.807. Thus, all shifts h =
—7,...—1,1,...,7 led to a lower correlation of both time series (highest cross-
correlation for h = 2: ®(I(t), P(t + 2)) = 0.481), meaning that they should be
processed in the unshifted form by the MRNN or by statistical methods.

254 CHAPTER 8. TIME SERIES PREDICTION

In the third step, the dependent variable /(¢) and the independent variables
should be tested for stationarity as defined in section 8.2, in order to determine
if statistical prediction models can be directly applied or whether the variables first
have to be transformed. Time series may show a deterministic or a stochastic trend,
sometimes even showing both, which have to be removed by appropriate transfor-
mations in advance. In time series analysis, two basic types of processes are distin-
guished: those growing over time and those randomly distributed around a constant
mean value.

The observed period of the time series (¢) describing the orders of plantitle 886
seems to grow in the long term, which can either be caused by a deterministic or by
a stochastic trend. A known deterministic trend (linear, quadratic, exponential) is
eliminated by analytical operations such as subtracting, taking the square root or the
logarithm, respectively. Stochastic trends can be removed by k-fold differentiation'*
of the time series.

In economics, the presence of both a deterministic and a stochastic trend is
unlikely, and is normally excluded by the various regression models. The following
mixed regression model stated in formula 8.23 will be the basis of the Dickey-Fuller
(DF) test for determining the type of time series, which is a so-called unit root test
[FHHO3]. The model consists of an autoregressive part X; and a deterministic trend
0 - t 4+ ~. The null hypothesis Hj of the DF-test assumes that the considered time
series is a non-stationary random walk process with drift. If H, is rejected, then
the alternative H; is assumed, indicating a trend-stationary process. The regression
equation is given by the following equivalent formulations

Y, = X, 4 B-t+d+y+m (8.23)
X, £>1

X, = J& Ay T Llca<1 (824
v e N(0,1), t=1

= AXt = (Oé — 1)<Xt,1), (825)

where AX,; := X; — X;_1, « is the influence of the past term, J is the linear trend
factor, + is the drift-generating constant (level) and 7, represents the stochastic error
component. The factor « is restricted to the unit circle, since |«| > 1 would result
in an explosive process that cannot be used to model the behavior of the considered
time series. Equation 8.25 is the reason why a random process, thatis o« — 1 = 0, is
also called difference-stationary.

The random variables ;, ¢ = 1,...,n are independent and identically dis-
tributed (IID) with expected value E[¢;] = 0 (centered) and variance Var[y;] = 1,
which are considered as white noise. The sum 25:1 o'~ .), represents a stochas-
tic trend generated by cumulation of the previous random variables. The stochastic
components 7, are the perturbation factors of the regression model; they represent

4Differentiation means computing the difference between realizations of different time indices,
but must not be misunderstood as the derivative of a function. Differentiations of an order greater
than k£ = 2 are unusual.

CHAPTER 8. TIME SERIES PREDICTION 255

the non-explainable variance of the stochastic process and are meant to be station-
ary.

To check the time series corresponding to plantitle 886 for (trend-) stationarity,
we use an alternative test called KPSS-test of Kwiatkowski, Phillips, Schmidt, and
Shin [HFO98]. The KPSS-test inverts the hypotheses of the DF-test, since the null
hypothesis Hj of the KPSS-test assumes stationarity. By means of a nonlinear least
squares optimization, we approximate the coefficients'> o, 3 and ~ and obtain the
following model I (t) for the orders time series of plantitle 886.

It):=Y, = X,+5.303 t—5.370 (8.26)
1042 X, 4, t>1
Xe = €0.491, t=1 (8.27)
P

The approximated value of & = 1.042 ~ 1 is a sign of a random process (o = 1).
The slight delta of &« — 1 = 0.042 is the result of approximation errors caused by
the nonlinearity in «; its mere positivity argues for a non-stationary process. This
first hint regarding the process type is formally checked by the Dickey-Fuller test
in the following. The test statistic 7, for the DF-test is based on the Dickey-Fuller
distribution [DF79], whose limit distribution is a composite of Wiener processes'®.

. 1—6&
\/‘32(2?:2 Y;f2—1>71’

where & is the estimated value for the parameter o and 6% = —5 >"" | (7); — E[)])?
is the variance estimator for the residuals 7; [FHHO3].

Only by looking at the chart in figure 8.13, we see that the variance of the
depicted process is not constant over time, but increases in the long term. This fact
rather argues for a stochastic trend generated by the time-dependent cumulation of a
white noise random variable. This is confirmed by the DF-test, since the test statistic
returned the value t3; = —0.740 (critical value DF = —3.41 to the significance
level 0.05). Thus trend-stationarity based on a non-integrated model according to
equation 8.23 with a < 1 is discarded by the test. If the covariance Cov(I(t), I(t +
h)) was equal for all ¢ and depended only on the time lag h, then (¢) would be
stationary. In this case, the test statistic would normally evaluate to t5; < —3.41.

When testing for stationarity, attention must be paid to autocorrelated residuals,
which can distort the significance level. To exclude this effect, we first calculate the
autocorrelation function (ACF) for the series of residuals 7;, ¢ = 1,...,n, which
shows that the deviations of the estimated values from the observed values are not
significantly autocorrelated, but widely independent from each other (white noise).

(8.28)

5The concrete regression model was computed with the computer algebra software Maple 11 by
means of the function NonlinearFit.

16 A Wiener process W is the standard model to describe a Brownian motion. W; has independent,
stationary and normally distributed increments: Wy — Wy ~ N (0, — s).

256 CHAPTER 8. TIME SERIES PREDICTION

Figure 8.13: Scatter plot of the realizations for t = 1,...,37 of the orders series I(¢) of
plantitle 886 together with the estimated regression model of formula 8.26.

The maximal autocorrelation amounts to R,.,q, = R;(6) = —0.322, while the
average ACF value is —0.047. This first check is confirmed by the Durbin-Watson
(DW) test [Ver04], which provides information whether the residuals tend to be
autocorrelated or not. The critical values for the test statistic 8.29 can be taken from
tables [UoSCCCO08] that give the lower and upper values for rejecting or accepting
the null hypothesis of non-autocorrelated residuals.

no(h _h)2
pw, = 2=)’ (8.29)
>ie1 1
For the regression of formula 8.23, the value of the test statistic amounts to DW3; =
1.973; thus, our hypothesis of a random walk process with drift, is valid.

As detected by the DS-test, the time series /() is not trend-stationary, but shows
a stochastic trend in its expected value!” and variance. The trend in the expected
value of I(t) can be removed by 1-fold differentiation, as depicted by figure 8.14.
Likewise, the plan time series P(¢) used as predictor variable shows both a trend
in expectation and variance. This behavior is typical for time series on industrial
products, since these normally follow a life cycle model that includes phase-in and
phase-out of the product line.

This type of process is also called difference stationary.

CHAPTER 8. TIME SERIES PREDICTION 257

— Orders
300+ CIFF{rders,1)

200

100

0

-100+

-200-

T T T T T T T T T
JUN AUG OCT DEC FEB APR JUN AUG OCT DEC FEB APF
2003 2003 2003 2003 2004 2004 2004 2004 2004 5

gn_
gu_
8
8
8
g
g
g
g
g

Figure 8.14: Plot of the time series I(¢) for plantitle 886 (top) together with its differen-
tiated pendant (bottom, 1-fold). We see that both time series still show a non-stationary
variance, while the empirical average value of the differentiated series is now nearly con-
stant.

8.5.2 Quantitative Results

The results of the operative prediction that were submitted to the telecommunication
company as a business intelligence service were quantified by an ex-post evaluation
for the year 2005; they are listed in table 8.2. At that time, a predecessor of the
MRNN, the RNN, had been especially developed to provide business forecasts.
Since the incoming orders planned by the experts were not only comparative values,
but also served as input features for the neural network, the connectionist prediction
is a matter of refinement here.

| Period of Time | Business Area | Experts Plan P(¢) | RNN | Delta |

01 - 06/2005 C 51.04 5931 | +8.27
01 - 06/2005 T 49.40 5251 | +3.11
07 - 12/2005 C 51.87 56.01 | +4.14
07 - 12/2005 T 42.23 54.89 | +12.66
[Total 48.64 [55.68 | +7.04

Table 8.2: Quantitative results of demand planning at a large telecommunication company
for the year 2005. The decision support service realized by the recurrent neural network
(RNN) is compared with the by-hand forecast of domain experts in terms of prediction
accuracy in percent. The result is distinguished by the respective business area — and is
averaged over all predicted product lines and all planning months.

258 CHAPTER 8. TIME SERIES PREDICTION

The previous generation of the modular recurrent network already achieved a
high generalization capability. The RNN enabled a forecast accuracy, which was,
on average, 7% higher than that accomplished by the domain experts, who were
leading in knowledge gained by informal communication and expertise acquired
by every day planning. We assume that the MRNN, as the advanced engine of the
SYMBOCONN framework, would have provided an even higher forecast quality. To
validate this hypothesis, in the following paragraph we compare the performance of
the MRNN with advanced statistical regression models on time series data obtained
from the telecommunication company.

Experimental Comparison of Statistical Regression and MRNN Prediction By
an ex-post analysis, the performance of statistical and connectionist prediction is
evaluated on real time series from demand planning, in order to assess their ade-
quacy for practical business forecasts. Both methodologies are compared on the
basis of three time series from different business areas of the telecommunication
company such as carrier and transport telecommunication infrastructure. The three
quantities to predict, which are again plantitles, represent the time-indexed planned
and actual orders (Plan and Is) of three different product lines named 868, 808, and
886.

Due to the highly non-continuous graphs of both planning and the orders time
series, which are reminiscent of the development of stock prices, simple statistical
models like polynomial regression models of first or second degree are dropped
from the candidate methods. A best fit straight line, for example, is not able to
explain the variance of the non-differentiable'® orders graph.

One strength of connectionist methods is their ability to process high dimen-
sional data sources, which also turned out to be an advantage in this case study. The
MRNN processed 383 to 479 input features that were mapped onto a single output
feature, the univariate time series (¢). The network exploited the fine-grained in-
formation given by the order and planning figures for each country according to the
column Country in table 8.1.

All values of the prediction accuracy P A are calculated according to the stan-
dard definition of the relative error with respect to the prediction p and the reference
value 7.

p—r
7|

PA(p,r) =1 . r#0 (8.30)

Statistical Analysis In the following, we analyze the statistical properties
such as stationarity, autocorrelation, etc., of the plantitle time series in order to
build an appropriate prediction model, which is directly compared with the MRNN
prediction. After 1-fold differentiation, the order time series of plantitle 868 is
modeled surprisingly well by an integrated autoregressive process of order one
(ARIMA(1,1,0)), as shown by the plot of figure 8.15. In contrast to this, exponential

18Here, the first derivative of the orders curve is meant.

CHAPTER 8. TIME SERIES PREDICTION 259

smoothing completely fails to model both the undifferentiated and the differentiated
time series /(¢); hence, an out-of-sample prediction is impossible. In the case of
MRNN prediction, differentiating the predictor and dependent time series was not
necessary, but was even counterproductive. Since it is not quite feasible to process

200.000

150.000

100.000

Number

50.000-

-50.000

Datum

Figure 8.15: Plot of the time series I(t) (red) for the plantitle 868 together with the
ARIMAC(1,1,0) prediction model (blue). The time line of the chart (x-axis) is divided into
an estimation and a prediction period left and right besides the vertical line.

383 predictors with an ARIMA model, the history of product sales was aggregated.
The aggregation was carried out based on the countries where the sales took place
and the type of planning distinguished by various degrees of ripeness. Table 8.3
shows the results of the MRNN prediction and the statistical prediction. The higher
performance achieved by the MRNN is an empirical evidence of its capability of
predicting multi-variate time series.

The second row of table 8.3 confirms the detected correlation between the plan-
ning and orders time series, since a prediction without the plan variable led to a
worse model and, consequently, to an inferior accuracy for the statistical and espe-
cially for the connectionist method. The Expert Modeler of the statistical software
SPSS' has chosen an Additive Winter model, instead of an ARIMA process, to
predict the orders time series in the case of plantitle 886. The additive winter model
is an extension of exponential smoothing including level, trend, and season parame-
ters. When using the Additive Winter model, the planning time series P(t) was not
employed as predictor due to its insufficient correlation with the orders time series
of p(I, P) = 0.557 in the estimation period.

SPSS is the Statistical Package for the Social Sciences with user interface and high-quality
graphical output in form of a variety of diagrams. It belongs to the field of predictive analytics and
is widely used for all kinds of statistical analyses.

260 CHAPTER 8. TIME SERIES PREDICTION

] Predictor \ Plantitle \ PA MRNN \ P A Statistical \ Stat. Model \

Plan (P) 868 70.53 63.65 ARIMA(1,1,0)
- 868 32.48 55.26 Add. Winter
Plan (P) 808 69.01 46.00 ARIMA(0,1,0)
- 808 56.13 55.75 Add. Winter
Plan (P) 886 76.32 64.02 ARIMA(1,1,2)
- 836 54.73 67.14 Add. Winter
[Total | [7071 | 6218 | |

Table 8.3: Accuracy PA of the connectionist MRNN prediction compared with the sta-
tistical prediction (ARIMA, Add. Winter) measured in percent for the prediction period
05-2005 until 02-2006. A “-” indicates that no predictor variable was used for that predic-
tion variant. The topology of the MRNN was configured for 9 history months mapped onto
1 future month using a hidden layer dimensionality of A = 15 (except for the prediction of
plantitle 886, where we chose h = 5). As opposed to the ARIMA prediction, the predictor
plan was not aggregated across the countries and the planning type, but was learned in bro-
ken down form by the MRNN. All used ARIMA models, which consist of auto regressive
and moving average terms, were set up without seasonal components.

We observed a significant trend in the correlation of /() and P(t), which in-
creases with the time on market of the respective product line within its life cycle.
If the correlation analysis is extended to the full time line of plantitle 886 (esti-
mation period plus out-of-sample period), the correlation coefficient increases to
p(I,P) = 0.738. At the time of a product’s market launch (phase-in), the experts
learn to deal with the new product and are still able to tune their planning actions;
this leads to a lower planning quality than in the middle or end of the product life
cycle, when the experts have gained more experience.

Figure 8.16 and 8.17 graphically compare both prediction models based on the
estimation and prediction periods for the orders time series of plantitle 886. For
training the MRNN, a validation set was harnessed, containing patterns that are not
used for training but for validating the current prediction model on the fly (during
the ongoing training process). Therefore, the strong adaption of the neural network
to the history series is interrupted by these validation targets at the points Mar. 04,
May 04, Aug. 04, Jan. 05, and Jun. 05, which were excluded from training. In
figure 8.17, the adaption curve for the first nine months is missing (Jun. 03 until
Feb. 04), since the MRNN was trained with a past window of nine months. In
consequence, the first trained target value was May 04 (Mar. 04 was part of the
validation set).

8.6 Conclusion

In this chapter, the SYMBOCONN framework was employed for time series predic-
tion, which is a traditional application area for neural networks in general — unlike

CHAPTER 8. TIME SERIES PREDICTION 261

300

300

| 250
200+ Il

200
[150+
100

100+

504

Figure 8.17: Plot of the estimation and
prediction of the MRNN (green) with re-
spect to the orders time series I(t) (red) for
the plantitle 886. The connectionist pre-
diction is almost 10% more accurate when
compared to the statistical one (left figure
8.16).

Figure 8.16: Plot of the estimation and
prediction periods regarding the orders time
series I(t) (red) for the plantitle 886 by the
Additive Winter model (blue) from statis-
tics. The vertical line divides the estimation
(left) from the prediction period (right).

the knowledge-based domains that were elaborated upon in the previous chapters.
In the first part, we introduced the theoretical fundamentals of time series mod-
eling, which were directly implemented and applied to real-world datasets in the
subsequent sections.

First, the predecessor of the MRNN, the RNN, was applied to datasets of the
telecommunication company in order to machine learn the orders and planning his-
tory. The RNN prediction was compared to the planning activities of the human
domain experts, who were leading in expertise and knowledge. The results of the
planning year 2005 show that our connectionist method provides an improvement in
prediction accuracy of more than 7% compared to human experts.Secondly, within
the scope of an industrial case study, the SYMBOCONN framework was compared
with advanced statistical prediction methods using an ex-post evaluation. The pre-
diction accuracy of the MRNN and of ARIMA as well as Additive Winter models
was measured based on a pseudo-future prediction period. The MRNN showed a
10% higher performance than the statistical methods and was, furthermore, much
more robust against non-stationarity in expectation and variance; hence, no prior
time series transformations, such as differentiation, were necessary.

Chapter 9

Conclusions

This dissertation addresses connectionist and symbolic machine learning focusing
on practically relevant applications mainly in the area of knowledge and software
engineering. As shown in this dissertation, symbolic methods contain deficien-
cies regarding intelligent recommendation — at least in knowledge-intensive areas
such as knowledge engineering or software development — which can be amelio-
rated by a hybrid approach. Symbolic machine learning methods, like associa-
tion rule mining, are unable to incorporate rich content represented by categori-
cal, metric, or textual attributes [Dav08c]. Recommendation systems realized by
symbolic rule-processors still lack important capabilities that prevent their broader
and more successful application. Amongst others, missing properties are function-
and domain-comprehensive applicability, handling incomplete, uncertain, heteroge-
neous, or changing knowledge as well as the ability to learn from examples.

Our hypothesis stated that, especially for intelligent recommendation, combin-
ing the connectionist and symbolic concepts is superior to applying each of them
individually. So far, most recommendation systems are based on symbolic con-
cepts like association rules [ZWDZ04]. We developed a framework for domain-
independent machine learning called SYMBOCONN which represents a new ap-
proach to intelligent recommendation. As integral constituent of this framework, we
employed a recurrent neural network to process heterogeneous information, which
can be symbolic or non-symbolic, as well as structured or unstructured. We ap-
plied this framework to new domains and to new problems, which have not been
addressed in a connectionist way before. Thereby we demonstrated that value can
be added to knowledge-driven processes [Deb00] by intelligent recommendations —
requiring only a basic data history to learn from.

However, the SYMBOCONN framework still lacks the ability to be seamlessly
integrated into a knowledge or software engineering process, in a way that it could
be operated by knowledgeable outsiders. Furthermore, the framework has to be
applied during an ongoing software project to empirically evaluate its actual useful-
ness for the different types of project participants, such as requirements engineers,
developers, or project managers.

The benefits of our hybrid symbolic-connectionist approach are confirmed by

263

264 CHAPTER 9. CONCLUSIONS

evaluations on concrete datasets. In the following, we present its main contributions
and the planned directions our research will take in the future.

9.1 Contributions

The SYMBOCONN framework developed in this dissertation is a contribution to
symbolic-connectionist processing in practical applications. The following con-
cepts and implemented functionalities represent the main contributions of this dis-
sertation.

Bringing Together Concepts from Software Development and Artificial In-
telligence The recent trend to support software development by methods taken
from artificial intelligence [BWO08, DD08, LKB06, Nav97] raises the problem of
an unambiguous and efficient communication between software engineers and re-
searchers in artificial intelligence. The terminology of both areas is often conflicting
and many technical terms are overloaded with different meanings. An example of
this is the usage of the term feature in both communities: when software engineers
use this term, they usually mean a functionality or a characteristic of a software
program. By contrast, those who deal with artificial intelligence mostly speak of an
attribute or a feature space dimension when using the term feature.

Against this background, we took another step to apply artificial intelligence
to knowledge-based systems and processes, while clearly distinguishing the con-
cepts of both worlds. This dissertation contributes to the understanding of concepts
from machine learning and knowledge discovery by people who work in the field
of software engineering. In a similar way, researchers in artificial intelligence are
familiarized with fundamental concepts from software engineering. Thereby, the
high potential of machine learning methods to solve knowledge- and software engi-
neering problems is highlighted.

Framework for Domain-Independent Machine Learning The “touchable”
outcome of this dissertation is a new machine learning framework named SYM-
BOCONN, which provides intelligent recommendations in various domains. This
framework is a meta-domain framework [EBO7] that provides functions and know!l-
edge structures required to conduct classification and prediction in general, without
a constraining focus on a specific application or even on a specific domain. Thus,
independence from concrete applications and from domains is one of the contribu-
tions of this dissertation. Therefore, this work goes beyond the scope of domain
frameworks that provide the generic control flow and service interface for a specific
problem domain, which is called a vertical slice [Pre97].

In terms of extensibility, SYMBOCONN can be classified as a blackbox frame-
work, because external systems that intend to use SYMBOCONN have to comply
with an interoperability interface SymboConnInterop and are integrated using del-
egation [BDO4]. The extensibility of the framework and its adequacy for domains

CHAPTER 9. CONCLUSIONS 265

yet unconsidered is specifically shown by including the separate domain of time
series prediction in chapter 8. Altogether, three different domains are considered
in this dissertation, making a fundamental contribution to applied machine learning
in each of these areas. The viability of the SYMBOCONN approach, based on the
modular recurrent neural network (MRNN) as framework engine, was empirically
shown.

The Modular Recurrent Neural Network (MRNN) The development of the
framework engine had already begun in 2004. At that time, predecessors of the
MRNN, namely a multi-layer perceptron (MLP) and a recurrent variant (RNN),
had been developed especially to provide business forecasts for a large telecommu-
nication company. Since 2006, the network was completely redesigned to fulfill the
requirements of the SYMBOCONN framework formulated in section 3.1.

An integral part of the MRNN is a new backpropagation algorithm tailored to
the modular structure of the neural network, which enables to process incomplete
and heterogeneous inputs and targets. Due to the flexibility of the network topology
and the new Backpropagation Through Time (BPTT) algorithm, it was possible to
realize and advance two different statistical prediction techniques using the MRNN.
These techniques, exponential smoothing and auto-regression, are subsumed by the
SYMBOCONN machine learning engine only by means of an appropriate configura-
tion of its topology and parameters. Thus, for time series applications, the SYMBO-
CONN framework can replace these statistical methods by a more generic prediction
mechanism.

Navigation Recommendation The field of navigation recommendation is pri-
marily addressed by content-based filtering and collaborative filtering. Both tech-
niques are combined by the hybrid navigation recommendation technique of the
SYMBOCONN framework. Still, recommending commercial products or learning
of consumer buying habits are not the focus of this dissertation and hence are not
instantiated as specific applications; however, they could be addressed in the future.

In the conducted case study on navigation recommendation based on Microsoft
web log data, the most sophisticated model with text representation based on latent
semantic indexing (LSI) achieved the best recommendation accuracy of 35.57% on
a test set of 1,250 navigation patterns [Dav08a]. The results for latent semantic
recommendation are promising, since more than every third recommended node
matched the users’ interests in the case of navigation histories of length three. The
performance could even be increased to 50.00% when using histories of length one,
instead.

Application to Knowledge Engineering and Software Development Devel-
oping software through an engineered process generates work products together
with considerable amounts of software development data, e.g. data produced by
planned and unplanned communication. Thus, system knowledge in the form of

266 CHAPTER 9. CONCLUSIONS

system models and meta knowledge of project stakeholders are potential targets of
machine learning.

In the first part of chapter 6, we demonstrated that the SYMBOCONN framework
is able to classify complex artifacts, which may even be afflicted with fuzzy, incom-
plete, or partially incorrect attributes. In particular, the SYMBOCONN framework
succeeded in classifying action items according to the development activities in
which they were formulated: the classification accuracy for six categories amounted
to an average of 80.51%. Furthermore, we classified the relevance of action items
for the accomplishment of the project with an accuracy of 83.72%.

Secondly, we introduced a connectionist approach to change impact analysis,
which considers changes upon graph-structured data whose impacts are structure-
sensitive and thus cannot solely be predicted, for example, from changes in attribute-
value pairs of software artifacts. Moreover, the SYMBOCONN framework was used
for content-based learning and for the prediction of co-occurring artifact changes.
The MRNN was trained on the cohesive configuration items of each CVS commit
set in a supervised manner in order to prevent incomplete changes and to recom-
mend related artifacts.

The evaluation conducted by three independent datasets from the PROMISE
Repository of Software Engineering Databases revealed an average prediction pre-
cision for partially unseen artifact sets of 67.75%, based on a result space of 167
to 1047 different artifacts. Compared to existing methods based on association rule
mining, whose authors report precision values of about 26% to 50% [ZWDZ04], our
connectionist approach achieves an even higher accuracy when applied to untrained
item sets. This is not possible with symbolic techniques at all.

Thirdly, we developed a robust connectionist classification aimed at structured
and typed contents. The created capability of structure and type learning was ap-
plied to the discovery of design patterns in class diagrams. The MRNN was also
able to classify partial or distorted design pattern instances within given class dia-
grams.

Transfer of the Spread Spectrum Information Encoding The crucial prob-
lem of any classification lies in the sharp discrimination between the existing classes
in the underlying feature space and, in determining the significant (discriminating)
features. For this reason, we adapted the spread spectrum method from signal trans-
mission technology to the classification of multi-represented objects!, which are en-
coded for neural processing by means of unique spreading sequences. The spread
spectrum technique originally stems from mobile communication and was first in-
vestigated around 1908. Data is spread over a wide bandwidth for transmission via
the air interface. The energy of the signal that was generated in a particular band-
width is deliberately spread in the frequency domain, resulting in a signal with a
wider bandwidth.

Originating from a completely different discipline, the abstract spread spectrum

Represented by feature vectors.

CHAPTER 9. CONCLUSIONS 267

principle can also improve the robustness and precision of classifiers. Spread spec-
trum encoding facilitates the classification through its process gain (see section
5.3.2), which results in a higher discrimination between different classes than in
the case of a classifier trained in the same way, but without data spreading. This
spreading mechanism provides a bias and variance reduction and is a variant of
error-correcting output coding [Gha00, Liu06].

The new technique was evaluated on the basis of sequence prediction and design
pattern classification. In both cases, a context-free and typed grammar was success-
fully learned by the network with integrated spread spectrum encoding. Compared
to a simpler type-encoding schema, the proposed solution was superior with respect
to robustness against noisy input sequences. We conjecture that its error-correcting
effect can be used to improve the robustness and accuracy of further connectionist
or statistical classifiers.

The contributions to navigation recommendation, as well as to knowledge engi-
neering and software development, are directly based on the symbolic-connectionist
machine learning capabilities which are provided by the SYMBOCONN framework.
By contrast, the spread spectrum contribution is self-contained and, in principle,
also applicable to non-connectionist classifiers.

9.2 Future Work

We believe that the potential of the SYMBOCONN framework will especially un-
fold in knowledge-driven and empirical domains, such as software development.
As mentioned in the beginning of this dissertation, the availability of empirical ev-
idence, while having low insight into the driving activities and processes behind an
artificial or natural system, calls for the employment of connectionist methods:

“If we have more knowledge than data, then "hard’ operators are proper*. Al-
ternatively, if we have more data than knowledge, then fuzzy or neural operators
are more adequate.” [BBKO02]

9.2.1 Activity Classification Based on User Behavior

As opposed to the static activity classification of artifacts presented above, the cur-
rent activity of the user of a development environment, or of a knowledge-based
system in general, can be determined by means of the generated stream of events;
this, again, is a classification task. An unordered set or a ordered sequence of events
should be assigned to a certain activity by a classifier K, K : {Ey, Es, ..., E,}
— {Ay, Ay, ..., A,}. Coding, testing, collaborating or debugging are seen as in-
teresting activities, for example. Since it is not known which sequences of events
are characteristic for a certain activity, we have to learn the regularities from given
examples. The project progress can be observed through the emitted events, which

2Here the ’hard’ operators are such as symbolic inference rules that hold a discrete definition and
value space.

268 CHAPTER 9. CONCLUSIONS

indicate transitions between different project phases, as well as the execution of
activities within those. The accomplished activities leave their mark as streams of
observable events that can be processed as node sequences by the MRNN. The be-
havior of software developers is often spontaneous, and not all produced events,
such as opening, reading and writing a document or committing source code to a
repository [Dav08c], are significant to their current activity — many of these events
merely represent outliers.

The work on event-based activity classification is not substantiated yet, requir-
ing further investigation by means of concrete project observations. Actual soft-
ware development data stemming from the European project on knowledge manage-
ment in software engineering called TEAM [TEAQ09] was not available during the
completion of this dissertation. However, the TEAM-infrastructure logging event
streams generated from software development activities already existed. There-
upon, the conceptual design of activity classification can be sketched out, which
consists of two decoupled phases:

1. Clustering

The event history has to be clustered in order to obtain the training cases
for the classifier. This can be done by density-based clustering in conjunc-
tion with a compactness measure on the resulting clusters that decides which
event to activity mappings {Ey, Es, ..., E,} — A;, i = 1,...,n represent
valid training cases. A density-based clustering algorithm like DBSCAN
[EKSX96] can be applied to the captured events. The predefined activi-
ties (classes) might be extended by further intermediate activities that have
been discovered during the clustering process (hierarchical clustering, den-
drogram).

2. Classification
After determining the existing classes of user activities by phase one, un-
known user behavior can be recognized through the interaction with the sys-
tem. The user-generated events are captured, preprocessed and subsequently
used for activity classification. The computed class probability for the respec-
tive event sequence is compared to all existing classes and mapped onto the
most similar class characteristic.

As introduced in section 4.1.3, there are types of neural networks that are capa-
ble of clustering data sets. The Self-Organizing Map (SOM), which is part of the
SYMBOCONN framework implementation, is able to cluster feature vectors.

The benefit of activity classification accomplished by the SYMBOCONN frame-
work is the order-sensitivity of the sequence processing machine learning engine.
The classification {Ey, ..., E,}* — {A;,..., A}, & > 1 depends on a whole
sequence of events, instead of depending only on isolated or unordered events; this
is appropriate to properly reflect the context-sensitive user behavior. Single events
are often not meaningful with respect to the determination of the current user activ-
ity. For example, first editing a source code file and then running the corresponding

CHAPTER 9. CONCLUSIONS 269

program in debug mode indicates a debugging activity, while the mere editing of
program code does not allow the conclusion that the developer is debugging.

9.2.2 Further Applications in Software Engineering

Model elements created during a software project can be automatically annotated
with quality criteria or characteristical attributes, whose values are assessed by
machine learning. Those criteria are represented by categorical, ordinal or met-
ric attributes like Feasible, Correct, Unambiguous, Testable, Modifiable, Complete,
Traceable, Concise, or Understandable. Having a completed project captured by
the CASE tool UNICASE available, the contained model elements have to be valu-
ated once by hand, according to the classification criteria in order to build a training
set for the SYMBOCONN framework. Then, the machine learning task is to classify
given model elements, such as requirements, regarding the chosen quality criterion,
based on their content and their neighborhood in the project graph. The surrounding
nodes indirectly provide information (e.g. the completeness of a requirement) about
the linked artifact. If a requirement deals with functionality, for example, it should
be associated with the respective use cases in the project graph. Therefore, the arti-
fact to be assessed is considered together with its direct neighbors in the graph. This
kind of structure-sensitive artifact classification, based on heterogeneous pieces of
information, extends the activity classification presented in section 6.1.

There are further possible applications of the SYMBOCONN framework for ex-
ploiting software development knowledge via the blackbox integration of SYMBO-
CoONN into the CASE tool UNICASE. One example is the prediction of burn-down
charts, which are a method of the agile project management methodology Scrum.
Burn-down charts reflect the project progress and the features to be implemented
for each planned release. The prediction of the remaining implementation time can
answer the question of whether the planned release will be on time, and whether it
will meet the functionality and quality requirements of the client.

270 CHAPTER 9. CONCLUSIONS

Appendix A

Framework Extensions and Details

In this supplemental chapter, three concrete improvements and extensions of the
framework implementation are outlined, which concern the object design on the
one hand and the functional model of SYMBOCONN on the other hand. Finally,
a few technical issues regarding the training of the machine learning engine are
mentioned.

A.1 Future Implementation

In this section, we provide a selection of concrete improvements currently being im-
plemented or to be implemented in future promotions of the SYMBOCONN frame-
work. The following section restructures the object model to improve the extensi-
bility of the framework.

A.1.1 Decoupling of Domain-Specific Subsystems

Since the SYMBOCONN framework should support the integration of further do-
mains, the coupling between the abstract node representation and the domain-specific
classes must not be strong. Unfortunately, the implementation inheritance, used in
the subsystem NodeRepresent depicted in figure A.1, introduces a certain coupling
along the type hierarchy. When the superclass NodeRepresent changes, all imple-
menting subclasses are affected, even if the change is not required by one or several
application domain implementations.

By using delegation instead of inheritance, this effect can be diminished or even
avoided. For each domain-specific set of subclasses encircled in figure A.1, an
adapter that performs the necessary conversions is defined. Using the Adapter Pat-
tern (cf. section 6.3), the domain-specific subsystems take the role of legacy sys-
tems. The refined model is represented by figure A.2. To make the framework truly
extensible, the architecture can be moved to the delegation variant in future work.

271

272 APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS

+history
Rule KoD>——— MultiRepresentedObject
KnowledgeConnector:: 1
HistoryTargetSequence +arget <—< MetricVectorRepresent
1.%
DocumentRepresent GrammarVariableRepresent
Actionltem AssociationRuleltemRepresent

Figure A.1: NodeRepresent subsystem using implementation inheritance to integrate the
application-specific representations.

+history
Rule K——————"— MultiRepresentedObject
1 AdapterTS
KnowledgeConnector:: 4 name: Sting
HistoryTargetSequence # ident Sting <)—
confidence: double +arget| 4 yectorSpaceModel: doublef]
< # id:int
1.
/ li TimeSeriesDomain
AdapterNR AdapterSE
MetricVectorRepresent
Nav ig: RecommendatfonDomain | SoftwareEngineeringDomain
DocumentRepresent AssociationRuleltemRepresent XMLElementRepresent GrammarVariableRepresent
coverSet: Set
+ getCover() : Set
XMLComplexElement XMLSimpleElement

Figure A.2: Delegation variant: NodeRepresent subsystem refined by a delegation mech-
anism via three adapter classes that decouple the domain-specific subsystems from the ab-
stract knowledge representation.

APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS 273

A.1.2 Extensions of the Framework Functionality
A.1.2.1 Output-Input Refeeding for Navigation Sequences

Refeeding of a one-step prediction output as input of the next single step prediction
is a method for improving accuracy in the case of context-free grammars. Let m
be the length of the node sequence to be predicted, which is also called the predic-
tion horizon. The MRNN is able to predict the whole sequence at once, due to its
modular composition that theoretically enables an infinite prediction horizon.

Figure A.3: Immediate prediction of the three subsequent symbols in a word of the Reber
language. The prediction takes to input symbols “b” and “¢” and continues this sequence
with three valid symbols “sxs”. The resulting training pattern is embedded in the required
topology of the MRNN. The generated partial Reber word is “btsxs”.

Alternatively, the target sequence can be predicted step-wise, that is, in m-many
single predictions of length one. Thereby, the respective output ¥, ; is re-fed as in-

put for the prediction of ;. ;1. The training setup required for stepwise prediction
is visualized in figure A.4.

A\ 4
™| ™| ®
A | A

2
SIS

Figure A.4: Four productions of the Reber grammar 5.3 in the form of training patterns
embedded in the respective topology of the MRNN. The previous output is fed into the
network as input of the subsequent prediction. The resulting partial Reber word is again
“btsxs”.

The refeeding technique has the strong advantage of implicitly correcting the
neural predictions at each time step. Since the prediction is, to some extent, always

274 APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS

an uncertain approximation of the unknown right side symbol, a code table lookup
has to be conducted in order to obtain the actual symbol from the numeric prediction
y;+1. The original encoding of the resolved symbol is then used as new input 7;,
of the subsequent prediction ;. o, instead of refeeding the fuzzy and unresolved
prediction ;1.

The effect that should thereby be avoided is comparable to the momentous accu-
mulation of rounding errors in a complex computation, which consists of sequential
computations each taking the previous result as own input.

Similar techniques are known from mobile communication, where transmitted
signals are freed from noise at intermediate stations before they are redirected.

A chain of single node recommendations can be derived by refeeding the pre-
vious recommendation ¥;,, as input Z;,; for the subsequent network prediction
y+2. The refeeding technique for navigation recommendation is only possible for
context-free productions (otherwise the context is lost) and is visualized by figure
A.5. Itis obvious that an infinite recommendation chain can be obtained by continu-

Pattern 1 Pattern 2 Pattern 3 Pattern 4

LIy
DI D YD B

AA AA A4 AA

<user_a> <vroot_ji> <user_a> <vroot_j> <user_a> <vroot_k> <user_a> <vroot_P>

Figure A.5: Stepwise prediction of the subsequent web page based on the previous predic-
tion.

ously refeeding the previous prediction as input for the next one. Such an arbitrarily
long sequence can also be generated at once (immediate prediction), without refeed-
ing, only by use of the hidden network layer S as depicted in figure A.6. In both
cases, the recommendation certainty declines with the length of the recommenda-
tion sequence. The question is whether the refeeding technique is superior to an
at-once prediction, due to its correction properties described before. In section 5.1,
we have seen the benefit of the refeeding technique compared to the direct comple-
tion (by prediction) of partial words from the Reber grammar.

A.1.2.2 Combining Text and Association Rule Mining

Navigation recommendation can be done either in a cold-start or a warm-start sce-
nario. In cold-start, the system comes from an untrained state and has not yet
learned any navigations. To provide recommendations, the information system has

APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS 275

<vroot j> <vroot_k> <vroot I> <vroot m>

A A A A

T T T T -
A

<vroot_i>

Figure A.6: At-once prediction of arbitrarily many sequential pages based only on the
current web page.

to first be used in order to capture actual navigations, since meaningful recommen-
dations require a critical mass mass of observed user behavior to learn from.

To provide warm-start capability without gathering a representative set of user
navigations, a means for discovering cohesive navigations is required. In addition
to capturing navigations with the help of the respective user, correlated node se-
quences can be automatically discovered by association rule mining (ARM) [AS94].
The precondition for applying this kind of preprocessing is that the nodes from the
navigation space carry textual contents.

This discovery approach does not focus on the whole document representation,
but instead aims at co-occurring keyterms in single documents. These terms mostly
stand in a semantical relation, since all analyzed text corpora stem from the same do-
main. We have adapted the well-known a priori algorithm for association rule min-
ing to this keyterm-association problem, which now computes frequent keyterm sets
of increasing size. Based on these sets, the cover of each frequently co-occurring
keyterm is identified, which is the non-empty set of documents containing these
terms. Finally, a mapping from association rules to document sequences is con-
ducted, which was also implemented in the SYMBOCONN framework. The result of
the ARM procedure is a set of document sequences containing cohesive keyterms.
Now, a warm-start scenario is enabled by training the system on this result set. The
cohesive node sequences discovered by ARM are used to equip the system with a
basic domain expertise that can be exploited by the user immediately, without any
latency period.

A.2 Technical Issues in Training the Framework En-
gine

There are several technical issues in the context of training the MRNN and neural
networks in general. At first, we explain some limitations of connectionist learning

276 APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS

that have been reported to occur in a similar way before.

A further peculiarity of recurrent neural networks concerns the implicit weight-
ing of the constituents of the input sequence, which is slightly unbalanced, while the
last aspect emphasizes the ability of the MRNN to process heterogeneous feature
vectors.

A.2.1 Limitations of Connectionist Learning

There are several limitations of connectionist learning, mainly concerning the kind
of data that is learnable by the framework engine. Long-term sequences and rela-
tional data cause problems such as decaying error flow and ambiguity of training
patterns during network training, which are explained in the following.

The Problem of Decaying Error Flow Hochreiter and Schmidhuber [Hoc91]
analyzed the error flow in recurrent neural networks trained with the conventional
backpropagation algorithm (BPTT) and came to the conclusion that the error flow
decays exponentially in relation to the modeled time line. This problem is illustrated
by the following, seemingly simple classification task. Only two symbolic input
sequences over the alphabet ¥ = {a, b, z1, z, . .., x,} should be mapped onto two
target classes “0” and “17:

ariry... T, +— 0 (A.1)
brize... .z, +— 1, (A.2)

where y; = 0 or y; = 1, respectively. The longer the time lag n between the first
symbol a or b, respectively, and the last symbol x,,, the harder the learning task.
The reason for this effect lies in the exponentially decreasing error flow during the
backpropagation phase, which especially reveals its effect for long input sequences
with n > 100. This limitation also applies to the MRNN in principle, as we checked
by using the given simple grammar.

Schmidhuber and his colleagues solved this problem with their Long Short-
Term Memory (LSTM) network [SH97], which possesses so-called constant error
carousels (CEC) that prevent the error flow from completely diminishing. The error
information is needed to adapt the network weights in order to match the desired
output. Thereby, especially the input units with the longest distances (here a and b)
to the source of the error flow at the target units (here y;) suffer most from the decay-
ing corrective information. So far, a component like the CEC has not been necessary
for the applications addressed by the SYMBOCONN framework, but might be part
of future work on the framework engine.

Learning Relational Data A far-reaching constraint of all neural networks is
their inability to directly learn mathematical relations, since they typically realize
functional mappings. Thus, neural networks can only learn mappings of objects
resembling a (partial) mathematical function, without the need for being injective

APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS 277

or surjective. An example is the function f : x — # f 1is neither injective nor

surjective on Q (e.g. Az € Q : —1 = f(x)), but it is still learnable by a neural
network, because all = are mapped to their uniquely determined image f(z).

If the network is meant to learn a binary relation {(z;,y;) € Dy X Dy | i €
I C{1,...,|D|}, j € JCA{L,...,|Da|},|D1| < |Ds|} in the valid training set
form {x; — v;}, the network training will definitely be unsuccessful and stagnate
on a high error level. The network will fail to minimize the training error, no matter
which training algorithm is used. This is intuitively plausible because neural net-
works are in principle deterministic information processors!. The figures A.7 and
A.8 show relational and functional mappings in the case of node sequences. The

Figure A.7: A relation is on hand if the
same entity is “mapped” onto two or more
different entities of the value space. In the
case of node sequences, the same history
sequence is mapped onto several target se-
quences, which cannot be learned by a neu-
ral network.

Figure A.8: A non-injective functional
mapping of two input sequences onto one
target sequence that resembles a mathemat-
ical function. Thus, one entity from the
definition space is only mapped to one en-
tity of the value space, which can easily be
learned.

training set is consistent if the following condition is met.
Condition A.2.1: Uniqueness of Training Patterns
Vyr,yp € Dy € Dy : (z = y1) A (z — y2),

where x, v, 92 are nodes of the definition space D; and value space D5, respec-
tively. Of course, z — y1 Ax — ys A ... AN x — vy, is not allowed either, but
this case directly follows from the case with two target variables. The uniqueness
condition A.2.1 is checked by the framework in the preprocessing phase.

The apparent problem of not being able to learn relational data can always be
solved by transforming the relation into a functional mapping. For example, the
relation {(a, b1), (a,bs), ..., (a,b,)} can be transformed into a training pattern a —
by, by, ..., b, with an input sequence of one node and a target sequence of n nodes.

Prediction Convergence When operatively applying (cf. Def. 3.2.5) the re-
current neural network to prediction problems, the behavior of the MRNN itself
for the predicted node sequence should be mathematically foreseeable. Due to the

'Except the random weight initialization and the presentation order of the training patterns.

278 APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS

generality of the network architecture, this is only conditionally applicable: is the
prediction converging or diverging?

In contrast to the training phase, an oscillating network behavior is not likely
to occur in the prediction phase with frozen weight matrices A,B,C = const.. The
prediction horizon, i.e., the number of reliably predictable target nodes mg, can
normally be recognized by means of the output behavior ;,,, which attains to a
steady state ij € R for m > mg, mg € N and m — oo in practice.

The autonomous part of the network dynamics without external inputs for ¢ <
7 < m, defined by the recurrent equation 4.14, determines the prediction conver-
gence. This equation can be written as composition

if unfolded over time. In theory, the operator (fB) : R" — R" (fB)(z) —
f(Bz), * € R" is not always a contraction which would converge to a fixpoint
§ € R" for m — oo, according to the Banach fixed-point theorem. If we tried
to show the convergence, the state transition would have to contract in the way
d(f(Bsy), f(BSi+1)) = d(S441,Sta2) < A-d(8,841), V€ T C N, 0 < A <
1, which is obviously not true ¥V B € "R", 3,,5,., and a metrics d. However,
a simplified form of prediction convergence, |7z — Ty|| < C|x — y||, can be
shown.

Proof A.2.1: Simplified Convergence

LetT := fB,f: S— S,S5 =R" sup,cq{f(x)} = 1. For T being a contraction

that converges to a fix point s, the constant C' has to be less than 1 for all z,y € S.
We can show a simplified form of convergence when choosing the transition

matrix B as identity matrix B := I. The sigmoidal activation function f(z) =

m with 0 < f(x) < 1, Vo € R" makes for a convergence

1 1
Hl—l—e‘x B 14+e¥

et —eY
l+e =) (1+ey)

|z =yl (A.3)

—|lz -yl < 0,Vz,ycR" (A4

o

Figure A.9 illustrates the inequality A.4 for the case of a one-dimensional state
layer S. In practice, the normalized input data and the smooth initialization of the
weight matrices, especially the matrix B, nevertheless fosters reaching a steady
state 5 € R" for m > my also for B being of non-canonical form. This fact was
also validated during our intensive work with the implementation of the recurrent
network.

A.2.2 TImplicit Weighting of the Input Nodes

Since the timely unfolded modular recurrent network is a sequence processor, there
is a minor shortcoming when processing unordered sets of input nodes. The MRNN

APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS 279

2

2
s
e

s
P
P

Z

-0.21

e

e

e

- 22

s

g

-0.44

it

0.6

Figure A.9: Visualization of the function of convergence c(x,y) based on the difference
of pairwise activations. The non-differentiable break that realizes the maximal value results
from the absolute value function.

tends to focus more strongly on the nearer history ..., Z; o, ¥; 1, 7; W.r.t. t than on
its more distant part Z;_j, T;_41, ... in order to explain the dependent variable?
yz+1. This effect of oddly weighted input units has already been described for other
types of recurrent neural networks by Hochreiter [Hoc91].

An example in which ordered input nodes are unwanted is the design pattern
recovery, elaborated upon in section 6.3. Since the MRNN processes the pattern
signature consisting of context-free rules as an ordered input sequence, a stronger
focus on the more recent rules (fed in at first) may occur, which is undesired. To
eliminate this order-dependency, the input sequence representing the design pattern
signature, for example, is rotated & times by &; — Z(;+1)mod(¢—k) in the classification
phase, and the final classification is the winning class averaged over k. This method
facilitates the classification and adds only a factor of k to the complexity, which
corresponds to the number of components in the class diagram to be classified.

A.2.3 Processing Arbitrarily Dimensioned Vector Sequences

In conventional neural network models with fixed topology, it is neither possible
to process variably long training patterns <T;_j,..., Ty — Yit1s-- -, Yrm> €
TS (training set) with free k£ and m, nor to process vectors z; € R% or Ui € R%
with arbitrary dimensionality d; # d}. Due to the modular design of the MRNN
model, it is not only possible to treat variably long training sequences, but even
to handle arbitrarily dimensioned input and target vectors. The functional require-
ment for the processing of heterogeneous data implies different vector dimension-

’In the case of classification, there is only one output signal indexed by ¢+1

280 APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS

alities, because different content types may lead to a different number of bits re-
quired for the encoding of multi-represented contents. In other words, feature
vectors representing different domain objects can belong to different subspaces
Ui CRY jel={1,2,...,n},dim(U;) <d,d € {dy,da} (cf. section 4.4.1). In
a concrete domain, it might hold Vi, j € I, i # 5 : U; € U;.

In the case of spread spectrum encoding, the type information is implicitly car-
ried by all components of the respective input or target vector ¥y , Uyrm. After
the forward propagation through the state layer S, the computed output vector
0r = (041,015, --,04 dQ)T must be related to the original node representation %},
which was fed into the neural network as training target. Due to the possibly differ-
ent dimensionality of nodes from different types, the original vector j; C 0; must
not have exploited the entire dimensionality of the state space .S.

This is also the case for the spread spectrum encoding, where the output di-
mensionality d := maxzep dim(Z) is set to the maximal dimensionality of all
multi-represented objects occurring in the domain D. Note that heterogeneously
dimensioned input vectors slightly hamper the error minimization process.

A.2.4 Principal Component Analysis

In this dissertation, the Principal Component Analysis (PCA) and its generaliza-
tion, the Singular Value Decomposition (SVD), are used for building a vector space
representation of unstructured text in terms of text mining. The general purpose
of the principal component analysis is to determine the principal components of a
set of vectors in RY. The original vector space is transformed into a new vector
space with another basis, which reveals the significance of the vector space features
via their characteristic eigenvalues. Therefore, the computation of the eigenvalues
and eigenvectors of a matrix M plays an important role in the PCA, which is first
explained.

Let ¢ be a linear mapping ¢ : R? — RY, o(F) := MZ and M a quadratic
matrix, then we consider the equation

o(F) = \¥, TeR% (A.5)

All vectors ¥ and scalars A, which fulfill equation A.5, are called eigenvectors and
eigenvalues of the matrix M, respectively. This means that the eigenvectors & do
not change their direction under the mapping ¢, but are transformed into a A-fold
multiple of them.

The null vector 0 also fulfills A.5, but this special case cannot be used for a
meaningful transformation of the set of feature vectors. In our case, M is the co-
variance matrix of all input vectors.

Mgy = (i — plai)) (x5 — p(x;)))
ZfeD[(xi - ﬁ ZfeD xl) ’ (xj o ﬁ Zi‘eD IJ)] (A.6)
D) ’

APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS 281

where 1 < 1,7 <d.
For computing the PCA, M has to be diagonalized in the following way

M=VTAV,
M OO - 0

where A is a diagonal matrix A2 : and V' = (¢,...,7;) consists
SN

of the eigenvectors of M written as column vectors v; =
Vid

The diagonalization is a well-known mathematical method which can be accom-

plished with JAMA® [HMW*05].

Existence of the diagonal matrix A. The existence of A is assured, because
the covariance matrix M to be diagonalized is always symmetric. The symmetry of
a matrix guarantees its diagonalizability (cf. [MW99], p. 215).

Summarizing the stated fundamentals, a set of feature vectors {Z'};cn can be
transformed into an equivalent vector-set {7 *},cy With a basis (7;)1<;<q of eigen-
vectors, also called principle components, which spans a new vector space. Hence,
the principal component transformation can be considered as a ‘shift’ of the orig-
inal Cartesian coordinate system or as a change of the generating vector system
(Vh,...,0), £* = Zle A;U;. In principle, this transformation does not lead to any
loss of information.

By applying the PCA, we want to create a new dimension-reduced subspace
U C RY*. The k-many least significant features with eigenvalues)\; are deter-
mined via their contribution to the information loss X2 given by

X? = Z \; (A.7)

Since X2 should be minimized, the k-many eigenvectors with the smallest corre-
sponding eigenvalues are discarded in order to obtain a new eigenvector matrix
V= (T1, ..., Uqp) € RIF, X2 represents the accompanying information loss by
removing k-many data dimensions.

Now, the eigenvector matrix V is used to transform the original feature vectors
into the new subspace U by a simple multiplication:

7 =V'g, je{l,...n}, §eU (A.8)

It is crucial to transpose the matrix V before developing the feature vectors ¥/; ac-

3JAMA is a basic linear algebra package for Java.

282 APPENDIX A. FRAMEWORK EXTENSIONS AND DETAILS

cording to this new basis of ([; otheryvise, the dimensions will not match.

The result is a set Y = {#, ..., yn} of transformed feature vectors, which hold
the dimensionality (d-k), where k is determined via a fixed threshold for the sum of
the remaining eigenvalues Z?: p+1 Ai- For latent semantic indexing, which is based
on a singular value decomposition as described in section 7.3, a lower bound of

o2 :=0.95, k = max{k | (10, \i) > 0%} could be chosen, for example.

List of Figures

2.1 Connectionist disease classification by means of a feed-forward neural
network. L

2.2 (a) Form of a neurule, (b) Corresponding adaline unit.

2.3 Two concrete arithmetical expressions that require the correct insertion of
parentheses. L. e e e e e e e

2.4 Forms of knowledge representation together with their fields of application.
2.5 Use case diagram showing top-level services provided and used by knowledge-

based systems. L. e e e e e
2.6 UML class diagram illustrating the associations and dependencies be-
tween functions of knowledge-based systems and the responsible disci-
plines relevant for this dissertation.
2.7 Machine learning, inference, and their interrelations expressed by specifi-
cation inheritance.o o0

3.1 UML class diagram showing a tree-structure of three levels with varying
branching factor. L e
3.2 Layered model of a rich representation, which can be based on an ontology
defining the available features.
3.3 Knowledge Graph of Multi-Represented (MR) objects.
3.4 Use case diagram of the main functions offered to framework users such
as experts in the respective application domain.
3.5 Activity diagram showing the training phase and the operative application
of the SYMBOCONN framework.
3.6 Three-layered application architecture of the SYMBOCONN framework
with flexible MRNN Machine Learning Engine.
3.7 System decomposition of the SYMBOCONN framework as UML compo-
nent diagram.o oL e e e e e e
3.8 Control subsystem containing the ControlLogic subsystem.
3.9 KnowledgeConnector subsystem.
3.10 NodeRepresentation subsystem using implementation inheritance to inte-
grate the domain-specific knowledge representation.
3.11 DesignAdvise subsystem that defines several software design patterns by
arule-based representation.o
3.12 ConnectionistCore subsystem.

283

31
32

34

67
68

284

LIST OF FIGURES

3.13 FrontEnd subsystem implementing the user front end that provides access
to the learning and recommendation functionality.
3.14 External COTS components used by the SYMBOCONN framework.

4.1 Example of a Multilayer Perceptron (MLP) with input, hidden, and output
layer consisting of 3,4, and 2 neurons.
4.2 Dynamic model of the basic signal processing by a single neuron.
4.3 Schema of an Elman network with recurrent connections that feed the
hidden activations back the inputlayer.
4.4 Hopfield network consisting of four fully interconnected units without re-
flexive connections.o o
4.5 Exemplary topology of a Radial Basis Function network consisting of
three layers. L.
4.6 Machine learning, information theory, computational intelligence, and their
interrelations. oL L L Lo
4.7 Auto-associative network that encodes and decodes a given feature vector.
4.8 Exemplary data table and corresponding decision tree for the classification
of software developers according to the types beginner and expert.
4.9 Three-dimensional illustration of the XOR-problem.
4.10 Schematic topology of the modular recurrent neural network MRNN used
In SYMBOCONN. o i i i e e e e e e e e e e e e e
4.11 UML representation of the Modular Recurrent Neural Network (MRNN). .
4.12 Two neurons interacting via a direct connection.
4.13 Generic plug-in architecture for training algorithms.
4.14 Copy of figure 4.10 recalling the three-layered structure of the MRNN. . .
4.15 Assignment of the formulas to the schematic network topology for one
time step of the forward propagation phase.
4.16 Backward information propagationinthe MRNN.
4.17 Assignment of the (error) gradient computation formulas to the schematic
network topology for one time step.
4.18 Visualization of the training process showing the temporal development
of the vector-valued training error.
4.19 Training setup of the MRNN for the learning experiment (easy task). . . .
4.20 Second input node carrying the vector representation of an exemplary
molecule (Corresponding to figure 4.19).
4.21 Training setup with single input node that carries both the feature values
and the class information of the respective molecule.
4.22 Vector representation &'y := d of molecule features.

5.1 Graphical representation of an instance of the HTML-Table schema.

5.2 Topology of the SYMBOCONN machine learning engine for context-sensitive
learning of the production aBy — af7.

5.3 Exemplary and simplified decision table for the business process cash
checkofabank.. o oo o

81
88

90
91
95
95
96

. 112

LIST OF FIGURES 285

54
5.5
5.6

5.7
5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

6.1

6.2
6.3

6.4

6.5

6.6
6.7

6.8

6.9

Deterministic finite state automaton for the Reber grammar. 115
Set-theoretic interpretation of symbol types. 119
Prefix-based type taxonomy exemplarily labeled with generic classes (types)
ofanUMLmodel. 119
Recursive generation schema for OVSF codes in bipolar denotation. . . . 121
Visualization of the result of spreading and despreading and the obtained
process gain in the analogy of signal transmission. 125
Schematic processing steps and gates required to despread the predicted
numerical output signal 0p 1.o e 126
Ternary operator tree (valence 3) of depth 3 corresponding to the term
(a14a2) - b+ (c1+¢2)) - v v o v e 134
Schematic topology of a three-layered RAAM network. 135
Ternary operator tree representation of the expressiona - (b+¢). 136

UML class diagram showing a tree-structure of three levels with varying
branching factor corresponding to figure 5.14. 136
MRNN auto-associating the elements that take part in an aggregation re-
lationship as depicted by figure 5.13. 137
The compressed fixed-width term representation (a - (b + ¢)’)’ is decom-
posed into its constituents by the RAAM decoder. 138
Tree-based representation of the distributive law as structure transforma-

tion applied to operatortrees. 139
MRNN network realizing both the required Recursive Auto-Associative
Memory (RAAM) and the transformation network. 139
Hybrid architecture for structure transformations based on two RAAMs
and one transformer network that are all realized by the MRNN. 140

Transforming a delegation-based model with three concrete implementors
into an easy-maintainable model according to the Bridge pattern. 141

Project graph including system models, collaboration artifacts, and orga-

nizational model. 147
Class diagram showing the detailed Actionltem model. 149
Number of open Actionltems managed in the DOLLI project, broken
downbyactivity. 152
Fraction of open Actionltems with respect to the total number of Actionltems
managed in the DOLLI project. 156
Activity diagram showing an excerpt of the change management process

that clarifies the role of change impact analysis. 159

Structure-sensitive change of a model element, which refers to other artifacts. 160
Risk graph showing three different risk zones. The green zone represents
the acceptable range, while the red zone is unacceptable. 162
Exemplary change graphs G and G’ consisting of the one-step neighbors
of changenodevs. 164
Excerpt of a project graph that was filtered according to the node types
Issues (I), Requirements (R), and Activities (A) denoted as labels. 165

286

LIST OF FIGURES

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22
6.23

6.24

6.25

6.26

6.27

6.28

6.29
6.30

Decision tree for the naive classification of class diagrams according to
the predefined design patterns Adapter, Bridge, Composite, Observer, and

Proxy. e e e e e e e 174
Optimal decision tree for the same classification problem as addressed by

the suboptimal decision tree of figure 6.10. 176
Barker spreading codes of different lengths for discriminating among the
non-hierarchical target types z to be classified by the MRNN. 178
Bridge pattern with abstract Implementor class and refining implementa-

HONS. . . . o o e e e e e e e e e e e e e 179
Adapter pattern with abstract superclass AbstractClass and directed asso-
ciation between SubClass (Adapter) and NonhierarchClass (Adaptee). . . 180
DesignAdviser subsystem consisting of the components PatternRepresent,
XMIAnalyzer, CodeAnalyzer, and PredictionInterpreter. 182
Modular architecture of the DesignAdviser component based on a con-
nectionist core engine. e e e e 182

Extendable class representation of the supported design patterns that are
all subclasses of an abstract PatternRepresent class. 184
Activity diagram showing the training and application of the design pat-
tern discovery process as upper and lower swimlane. 185
Incomplete Template pattern due to missing template method in the ab-
stract superclass. e e 187
Structurally complete Template pattern with template method in the super-
class, which calls the abstract methods stepl, step2, step3 representing

sequential work Steps.o e e 187
Observer Pattern with its typical division into abstract Subject and Ob-
server, which are both realized by concrete implementors. 188
Use case for the classification of a systemmodel. 189
Partial Composite pattern with non-abstract (non-italic) superclass Class
and missing inheritance. L Lo 190
Generic plug-in architecture for training algorithms partially resembling
the strategy pattern. e e 191
Initial design consisting of two associated classes on the same hierarchy
level. e 192
Classification result indicating a tendency towards the adapter pattern,
since this pattern is the most similar. 192
Class diagram that almost corresponds to the adapter pattern (Scenario
Partial Adapter Pattern). e 192
Certainty distribution with a maximal value for the adapter pattern. The
bridge pattern follows up as false positivehere. 192

Class diagram showing the scenario Mixture of Adapter and Bridge Pattern. 193
Class constellation resulting in a high information entropy with respect to
the classification certainty and thus implying low preference for a specific
PALtErN. v o e e e e e e e e e e e e e e e e 193

LIST OF FIGURES

287

6.31

6.32

6.33

6.34

6.35

6.36
6.37

7.1

7.2

7.3

7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12

8.1

8.2

8.3

Generic class diagram showing elements of Composite, Bridge, and Adapter
pattern that imply a strong tendency towards the composite pattern (Sce-
nario Partial Composite Pattern).
The degree of similarity to the original shape of the composite pattern is
about 36% higher than to adpater and bridge pattern.
Nearly completed composite pattern still missing the inheritance between
Class and NonhierarchClass.
The higher compliance with the original composite pattern leads to an
increase of the respective certainty of almost 10%.
Complete Composite pattern with abstract superclass (Scenario Complete
Composite Pattern).« v v i e e e e e e e e e e
Final classification result with maximal certainty for the composite pattern.
Conglomerate of three design patterns.

Blackbox view of association rule mining with generic input and output
representation that is applicable to many different domains and their prob-

The client-server architecture of the SurfLen recommendation system.
Two-step recommendation process based on 20 user profiles and on an
ensemble of 20 specialized back-propagation neural networks (MLPs). .
Exemplary directed and non-symmetric graph consisting of three websites.
An authority is a web page that is referred to by many web pages.

A hub is a web page that holds many outgoing links to other web pages.
Exemplary navigation history together with the predicted target sequence
on a tree-shaped knowledge base.
Use case diagram showing the operational mode of navigation recommen-
dationin SYMBOCONN.
Multiple specification inheritance from content-based and collaborative
filtering combining the advantages of both methods.
Contextualization of two training patterns for navigation recommendation
shown together with the corresponding network topology.
Activity diagram for navigation recommendation on the knowledge graph,
either based on symbolic or rich content representation.
Prototypical user front-end of the SYMBOCONN framework for navigation
recommendation. Lo oL e

The abstract statistical techniques Exponential Smoothing and Autoregres-
sion of order one can be realized by the MRNN, due to its generic and
recurrent COMpOSItion. oo e e e e e e e
Decomposition of a time series into a trend component, a seasonal com-
ponent, and a stochastic component. L.
Non-stationary time series (top) of the incoming orders concerning an in-
dustrial product together with its stationary pendant (bottom).

207

. 211

. 212

213

. 214
. 214

288

LIST OF FIGURES

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

Al

A2

A3

A4

A5

A.6

Scatter plot of the number of sold units of an industrial product indexed
by timeonaday-scale. 241
500 realizations of white noise Y () that spread around the expected value
E[Y(#)]=0. . .« o o e 243
MA(5)-process of white noise Y (¢) corresponding to figure 8.5 with iden-
tical weights b;,Vj =1,...,5. 243
Schematic mapping of a time series to the input and target part of a training
pattern for the Multilayer Perceptron. 246

Activity diagram illustrating the entire forecast process from training to
prediction of a time series’ future period. 247
Topology and weight configuration of the modular recurrent neural net-

work (MRNN) to implement the exponential smoothing method from statis-

HCS. o v o o e e e e 249
Topology and weight configuration for a 2-layered MLP network that re-
sembles an autoregressive (AR) process of orderp. 250
Linear planning error (non-squared) showing over- and underplanning (re-
siduals) based on the actual orders of plantitle 868. 253
Linear planning error for plantitle 886. 253
Scatter plot of the realizations for ¢ = 1, ..., 37 of the orders series /()
of plantitle 886 together with the estimated regression model of formula
826. . . e 256
Plot of the time series /(t) for plantitle 886 together with its differentiated
pendant (1-fold). 257
Plot of the time series I(t) (red) for the plantitle 868 together with the
ARIMA(1,1,0) prediction model (blue). 259

Plot of the estimation and prediction periods regarding the orders time
series I(t) (red) for the plantitle 886 by the Additive Winter model (blue)

from statistics. 261
Plot of the estimation and prediction of the MRNN (green) with respect to
the orders time series (t) (red) for the plantitle 886. 261
NodeRepresent subsystem using implementation inheritance to integrate
the application-specific representations. 272
Delegation variant: NodeRepresent subsystem refined by a delegation

mechanism via three adapter classes that decouple the domain-specific

subsystems from the abstract knowledge representation. 272
Immediate prediction of the three subsequent symbols in a word of the
Reber language. Lo 273
Four productions of the Reber grammar 5.3 in the form of training patterns
embedded in the respective topology of the MRNN. 273
Stepwise prediction of the subsequent web page based on the previous
prediction. L e e e 274

At-once prediction of arbitrarily many sequential pages based only on the
currentwebpage. e e 275

LIST OF FIGURES 289

A.7 A relation is on hand if the same entity is “mapped” onto two or more

different entities of the value space. 277
A.8 A non-injective functional mapping of two input sequences onto one target
sequence that resembles a mathematical function. 277

A.9 Visualization of the function of convergence c¢(z,y) based on the differ-
ence of pairwise activations. 279

290 LIST OF FIGURES

List of Tables

2.1

3.1

4.1

4.2

5.1

5.2
53

54

5.5

6.1
6.2
6.3
6.4
6.5

6.6

6.7

Truth function for the logical implication. 21
Meta model showing the multi-representation of objects by different features. 57

Exemplary look-up table that contains different representations of sym-
bols from an arbitrary alphabet. 85

Evaluation matrix comparing several fundamental techniques from ma-
chine learning and statistics. L. 89

Words of different lengths generated by the Reber automaton depicted in
figure 5.4. L e 116
Results of partial word completion according to the Reber grammar. . . . 117
Lookup-table containing the basic encoding and the assigned spreading
codes that are unique foreachclass. 127
Comparison of the average classification accuracy for the rule-recognition
and classification of right-side grammar symbols (target nodes) based on

the 20-CFG rule set for different noise levels. 130
Table showing the syntactical form of exemplary ternary terms and their

encoded RAAM-representations (") formulated in infix-notation. 137
Description of the attributes of an Actionltem. 150

Description of the links between an ActionItem and other ModelElements. 150
Distribution of Actionltems according to the activity they were assigned

to by the project participants. 153
Average classification accuracy measured in terms of Precision and Recall
for 684 Actionltems after 5-fold cross-validation. 154
Average accuracy for the classification of the artifact status Irrelevant af-
ter 5-fold cross-validation., 157

Evaluation of the ability of humans to classify Actionltems. Three per-

sons with different degrees of expertise and insight into the software project
werecompared. Lo e e e e e e e e 158
Excerpt of the data schema of the repository transactions from the XFree86
project, concerning the committed configuration items with some of their
attributes. L L 169

292

LIST OF TABLES

6.8

6.9

6.10

6.11

6.12

7.1

7.2

7.3

7.4

7.5

8.1

8.2

8.3

Naive definition of several design patterns (DP) based on the number (#)
of contained Aggregation, Composition, Inheritance, and Association re-

lationships. 172
Exemplary dataset D containing realizations of several class diagrams that
contain (at least) one concrete design pattern (DP). 173
Classification result for the TrainingAlgorithm class diagram of figure
6.24 including the independent certainties for each detected pattern. . . . 191
Classification result for the pattern conglomerate of figure 6.37 including
the independent certainties for each detected pattern. 197
Classification result for the pattern conglomerate based on the simple unary
type encoding without data spreading. 197
Example of a database of items that appeared together in common trans-
actions, for example, articles bought together. 209
Excerpt of the web data used in this case study. The table shows the exis-
tent web page topics together with their relative address. 226
Case-to-Vroot mapping concerning the observed navigations of 38,000
ANONYMOUS USETS. + + « v v v e v e e e e e e e e e e e e e e e e e e 226

Prediction accuracy for the application of SYMBOCONN to the recom-
mendation of msn.com web pages. The accuracy was determined using
an arbitrary test set of 1,250 untrained web navigations with histories of
lengththree. L 229
Prediction accuracy for the application of SYMBOCONN to the recom-
mendation of msn.com web pages. The accuracy was determined using
an arbitrary test set of 1,250 untrained web navigations with histories of
lengthone. e 230

Excerpt from the data schema of the worldwide sales figures of a large
telecommunication company. e 252
Quantitative results of demand planning at a large telecommunication com-
pany for the year 2005.o 257
Accuracy PA of the connectionist MRNN prediction compared with the
statistical prediction (ARIMA, Add. Winter) measured in percent for the
prediction period 05-2005 until 02-2006. 260

List of Algorithms

1 Recursive decoding algorithm to unfold the inherent structure of RAAM-
FEPresentations. e e e e e e e e e e e e 138
2 Pseudo code formulation of the apriori algorithm. 210

293

294 LIST OF ALGORITHMS

List of Abbreviations

ACF Autocorrelation Function

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average
ARM Association Rule Mining

ARMA Autoregressive Moving Average

BPTT Backpropagation Through Time
BRAAM Bi-coded RAAM

CASE Computer-Aided Software Engineering
CB........... Content-Based

CBR Case-Based Reasoning

CEC Constant Error Carousel
CF........... Collaborative Filtering

CIA Change Impact Analysis

CM Configuration Management

COCOMO COnstructive COst MOdel

COTS Commercial-off-the-Shelf

CRC Cyclic Redundancy Check

CSG Change Subgraph

CTLK Connectionist Temporal Logic of Knowledge
CVS Concurrent Versions System
DC........... Dublin Core

DF-test Dickey-Fuller test

DL Description Logics

DOLLI Distributed Online Logistics and Location Infrastructure
DP........... Design Pattern

DSSS Direct Sequence Spread Spectrum
DTD Document Type Definition

DW-test Durbin-Watson test

ECOC Error-Correcting Output Coding

ERM Entity Relationship-Model
ERP.......... Enterprise Resource Planning

ES Exponential Smoothing

FOL First Order Logic

FSA Finite State Automaton

HRR Holographic Reduced Representations

295

296 LIST OF ABBREVIATIONS

HTML Hypertext Markup Language

IBIS Issue-Based Information System

IG Information Gain

I Independent and Identically Distributed
IR Information Retrieval

ISG Impact Subgraph

ITS Intelligent Tutoring System

KDD Knowledge Discovery in Databases
KE........... Knowledge Engineering

KM Knowledge Management

KPI Key Performance Indicator
KPSS-test Kwiatkowski, Phillips, Schmidt, and Shin test
LRAAM Labeling RAAM

LRM Linear Regression Model

LS Least Squares

LSI Latent Semantic Indexing

LSTM Long Short-Term Memory

MA Moving Average

MDL Minimum Description Language
MLP Multilayer Perceptron

MMH Maximum Margin Hyperplane

MR Multi-Represented

MRNN Modular Recurrent Neural Network
MSE Mean Squared Error

NAND Not AND

NLP Natural Language Processing

NRM Nonlinear Regression Model

ODBC Open Database Connectivity

OVSF Orthogonal Variable Spreading Factor
OWL Web Ontology Language

PCA Principal Component Analysis

PSM Predictive Software Model

RAAM Recursive Autoassociative Memory
RBF Radial Basis Function

RDF Resource Description Framework
RFC Requests For Change

RL Reinforcement Learning

RNN Recurrent Neural Network

RTRL Real-Time Recurrent Learning

RUSE Rational-based Uniform Software Engineering
SE Software Engineering

SOM Self-Organizing Map

SPSS Statistical Package for the Social Sciences

SRAAM Sequential RAAM

LIST OF ABBREVIATIONS 297

SRN Simple Recurrent Network

SVD Singular Value Decomposition

SVM Support Vector Machine

SWRL Semantic Web Rule Language

TF-IDF Term Frequency - Inverse Document Frequency
UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

XOR Exclusive OR

XSD XML Schema Definition

298 LIST OF ABBREVIATIONS

Bibliography

[ABD08]

[ABK*07]

[ABM*00]

[AD99]

[ADESO02]

[AIS93]

[A1z05]

Elke Achtert, Christian Bohm, Jorn David, Peer Kroger, and Arthur
Zimek. Noise Robust Clustering in Arbitrarily Oriented Subspaces.
In Proceedings of STAM Conference on Data Mining, SDM 08, Soci-
ety for Industrial and Applied Mathematics. Institute for Informatics,
Ludwig-Maximilians-Universitidt Miinchen, Germany, 2008.

Elke Achtert, Christian Bohm, H.-P. Kriegel, Peer Kroger, and
Arthur Zimek. Robust, complete, and efficient correlation cluster-
ing. In Proceedings of the 7th SIAM International Conference on
Data Mining (SDM), Minneapolis, MN. Institute for Informatics,
Ludwig-Maximilians-Universitdt Miinchen, Germany, 2007.

Andreas Abecker, Ansgar Bernardi, Heiko Maus, Michael Sintek,
and Claudia Wenzel. Information supply for business processes cou-
pling workflow with document analysis and information retrieval. In
Knowledge-Based Systems, Special Issue on Al in Knowledge Man-
agement, volume 13, pages 271-284, 2000.

M.J. Adamson and R.I. Damper. B-RAAM: A Connectionist Model
which Develops Holistic Internal Representations of Symbolic Struc-
tures. 11(1):41-71, 1999.

D. Al-Dabass, D. Evans, and S. Sivayoganathan. Intelligent System
Modelling and Simulation using Hybrid Recurrent Networks. In Sec-
ond international workshop on Intelligent systems design and appli-
cation, pages 23 — 28. Dynamic Publishers, Inc. Atlanta, GA, USA,
2002.

R. Agrawal, T. Imielinski, and A.N. Swami. Mining Association
Rules Between Sets of Items in Large Databases. In Proceedings of
the 1993 ACM SIGMOD International Conference on management
of data, Washington, D.C., pages 207-216, 1993.

Kenneth Aizawa. The Systematicity Arguments, Studies in Brain and
Mind. In Minds and Machines, volume 17, pages 357-360. Springer
Netherlands, 2005.

299

300

BIBLIOGRAPHY

[AJO6]

[AKPSO05]

[ALJ]

[AmbO06]

[AmyO03]

[ANOO]

[And97]

[APO6]

[AS94]

[AS97]

[BA91]

[BA9G]

Honkela T. Alander, J. and M. Jakobsson. Turing Machines are Re-
current Neural Networks. In STeP’96—Genes, Nets and Symbols,
pages 13-24. Symposium on Artificial Networks (Finnish Artificial
Intelligence Conference), Connection Science, 1996.

Elke Achtert, Hans-Peter Kriegel, Alexey Pryakhin, and Matthias
Schubert. Hierarchical Density-Based Clustering for Multi-
Represented Objects. In Workshop on Mining Complex Data
(MCD’05), ICDM, Houston, TX. Institute for Computer Science,
University of Munich, 2005.

Dan Ariely and John G. Lynch Jr. Learning by Collaborative and
Individual-Based Recommendation Agents. Technical report, Sloan
School of Management, MIT, Fuqua School of Business, Duke Uni-
versity.

Scott W. Ambler. The Object Primer: Agile Model-driven Develop-
ment with UML 2.0. Cambridge, 2006.

Bernard Amy. Neuro-Symbolic Hybrid System for Treatment of
Gradual Rules. In Neural Information Processing Letters and Re-
views, volume 1, 2003.

Ajith Abraham and Baikunth Nath. Hybrid Intelligent Systems De-
sign - A Review of a Decade of Research, 2000.

Carl Andren. Short PN Sequences for Direct Sequence Spread
Spectrum Radios. Harris Semiconductor Palm Bay, Florida,
http://www.sss-mag.com/pdf/shortpn.pdf, 1997.

Michael L Anderson and Donald R Perlis. Symbol Systems. Ency-
clopedia of Cognitive Science, John Wiley & Sons, 2006.

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for
Mining Association Rules. In Proc. of the 20th Int. Conf. Very Large
Data Bases, VLDB, Santiago, Chile, 1994.

Frederic Alexandre and Ron Sun. Connectionist-Symbolic Integra-
tion: From Unified to Hybrid Approaches. Lawrence Erlbaum Assoc
Inc, 1997.

W. Bechtel and A. Abrahamsen. Connectionism and the mind: An
introduction to parallel processing in networks. Blackwell, 1991.

S. Bohner and R Arnold. Software Change Impact Analysis. In Los
Alamitos, CA, pages 1-28. IEEE Computer Society Press, 1996.

BIBLIOGRAPHY 301

[BBKO2]

[BCEROS]

[BCR]

[BD04]

[BDDO3]

[BDWO06]

[Bec03]

[Ber99]

[BFHOO]

[BFO02]

Federico Barber, Vicente J. Botti, and Jana Koehler. Artifi-
cial Intelligence: Technology with a Future. UPGRADE - The
European Online Magazine for the IT Professional, 3(5), 2002.
http://www.upgrade-cepis.org.

Marc Barthelemy, Edmond Chowyz, and Tina Eliassi-Ra. Knowl-
edge Representation Issues in Semantic Graphs for Relationship De-
tection. In AAAI Spring Symposium, pages 91-98. AAAI Press,
2005.

Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. THE
EXPERIENCE FACTORY. Technical report, Institute for Advanced
Computer Studies, Department of Computer Science, University Of
Maryland.

Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software En-
gineering Using UML, Patterns, and Java. Prentice Hall, ISBN 0-
13-0471100, 2004.

D.P. Berrar, C.S. Downes, and W. Dubitzky. Multiclass Cancer Clas-
sification Using Gene Expression Profiling and Probabilistic Neural
Networks. In Pacific Symposium on Biocomputing, volume 8, pages
5-16, 2003.

B. Bruegge, A. H. Dutoit, and T. Wolf. Sysiphus: Enabling in formal
collaboration in global software development. In In Proceedings of

the First International Conference on Global Software Engineering,
2006.

Klaus Becker. Prognosesystem mit Modellen exponentieller
Glattung und Polynomen. Books on Demand Gmbh, 2003.

Adam Berger. Error-Correcting Output Coding for Text Classifica-
tion. In IJCAI’99: Workshop on machine learning for information
filtering, 1999.

Jay Budzik, Xiaobin Fu, and Kristian J. Hammond. Mining Navi-
gation History for Recommendation. In Proceedings of the 5th in-
ternational conference on Intelligent user interfaces, New Orleans,
Louisiana, United States, pages 106-112. ACM Press, New York,
NY, USA, 2000.

Charles S. Bosa, Philip Hans Fransesb, and Marius Ooms. Inflation,
forecast intervals and long memory regression models. In Interna-
tional Journal of Forecasting, volume 18, pages 243-264, 2002.

302

BIBLIOGRAPHY

[BGCI8]

[BHK9S]

[BNOO]

[B603]

[Boe06]

[Bor03]

[Bor07]

[Bou97]

[BP98]

[BSKO5]

[Buc07]

[BVO8&9]

Rafal Bogacz and Christophe Giraud-Carrier. BRAINN: A Con-
nectionist Approach to Symbolic Reasoning. In Proceedings of the
First International ICSC/IFAC Symposium on Neural Computation
(NC’98), 1998.

John S. Breese, David Heckerman, and Carl Kadie. Empirical Anal-
ysis of Predictive Algorithms for Collaborative Filtering. In Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI-98), pages 43-52, 1998.

Mikael Boden and Lars Niklasson. Semantic systematicity and con-
text in connectionist networks. In Connection science, volume 12,
pages 111-142, 2000.

Christian Bohm. Script ’Knowledge Discovery in Databases’. Tech-
nical report, 2003.

U.S. Navy Boeing. Automated Maintenance Environment (AME).
Outstart Evolution, 2006.

Alexander Borusan. Technische Informationssysteme - Domain En-
gineering. Technical report, Technische Universitit Berlin, Fraun-
hofer Institut Software- und Systemtechnik, 2003.

K.M. Borgwardt. Graph Kernels - PhD thesis. Technical report, In-
stitute for Mathematics, Ludwig-Maximilians-Universitit Miinchen,
Germany, 2007.

Andrew Boucher. Parallel Machines. In Minds and Machines, vol-
ume 7, pages 543-551, 1997.

Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In Computer Networks and ISDN
Systems, volume 30, pages 107-117, 1998.

Paul Buitelaar, Michael Sintek, and Malte Kiesel. Feature Represen-
tation for Cross-Lingual, Cross-Media Semantic Web Applications.
In Proceedings of the ISWC 2005 Workshop “SemAnnot”, Lecture
Notes in Computer Science, 2005.

Wilfried Buchholz. FEinfiihrung in die Mathematische Logik 1.
Technical report, Institute for Mathematics, Ludwig-Maximilians-
Universitidt Miinchen, Germany, 2007.

Barker, E. Virginia, and Dennis E. O’Connor. Expert Systems for
Configuration at Digital: XCON and Beyond. In Communications
of the ACM, volume 32, pages 298-312, 1989.

BIBLIOGRAPHY 303

[BWOS]

[Cal03]

[CBBT01]

[CDLD*05]

[CDLD*06]

[CF]

[CFOO0]

[Cha90]

[CMO3]

[CPO8]

Harald Brandl and Franz Wotawa. Test Case Generation from QR
Models. In Ngoc Thanh Nguyen, Leszek Borzemski, Adam Grzech,
and Moonis Ali, editors, New Frontiers in Applied Artificial Intelli-
gence, volume 5027 of LNAI, pages 235-244. Springer, 2008.

Robert Callan. Neuronale Netze im Klartext. In Pearson Studium,
2003.

Robert Cummins, James Blackmon, David Byrd, Pierre Poirier, Mar-
tin Roth, and Georg Schwarz. Systematicity and the Cognition of
Structured Domains. The Journal of Philosophy, 98(4):1-19, 2001.

Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia,
Carmine Gravino, and Michele Risi. Design Pattern Recovery by
Visual Language Parsing. In Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering, CSMR
05, 2005.

Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia,
Carmine Gravino, and Michele Risi. Case Studies of Visual Lan-
guage Based Design Patterns Recovery. In Proceedings of the Con-
ference on Software Maintenance and Reengineering, CSMR 06,
pages 165 — 174. IEEE Computer Society, Washington, DC, USA,
2006.

Richard Cooper and Bradley Franks. Constraints on Hybrid Symbol-
ic/Connectionist Models of Cognition: A Theoretical Analysis.

Rafael C. Carrasco and Mikel L. Forcada. Encoding Nondetermin-
istic Finite-State Tree Automata in Sigmoid Recursive Neural Net-
works. In Advances in Pattern Recognition: Joint IAPR Interna-
tional Workshops, SSPR 2000 and SPR 2000, Alicante, Spain, vol-
ume 1876/2000 of Lecture Notes in Computer Science, page 203.
Springer Berlin / Heidelberg, 2000.

David J. Chalmers. Syntactic Transformations on Distributed Rep-
resentations. In Connection Science, volume 2, pages 53—-62. Center
for Research on Concepts and Cognition, 1990.

Davor Cubranic and Gail C. Murphy. Hipikat: Recommending per-
tinent software development artifacts. In 25th International Confer-
ence on Software Engineering (ICSE’03), page 408 418, 2003.

LLC Clark & Parsia. Pellet: The Open Source OWL DL Reasoner,
2008.

304

BIBLIOGRAPHY

[CPB97]

[CRPO6]

[CSSM&9]

[CVO08]

[CWI9]

[CWO5]

[Dav08a]

[Dav08b]

[Dav08c]

[DDO08§]

[DDF+90]

Robert E. Callan and Dominic Palmer-Brown. (S)RAAM: An Ana-
Iytical Technique for Fast and Reliable Derivation of Connectionist
Symbol Structure Representations. volume 9, pages 139-160. Con-
nection Science, 1997.

Coral Calero, Francisco Ruiz, and Mario Piattini. Ontologies for
Software Engineering and Software Technology. Springer, 2006.

Axel Cleeremans, David Servan-Schreiber, and James L. McClel-
land. Finite State Automata and Simple Recurrent Networks. In
Neural Computation, volume 1, pages 372-381. Addision-Wesley,
Bonn, 1989.

Francesco Camastra and Alessandro Vinciarelli. Machine Learning
for Audio, Image and Video Analysis. In Advanced Information and
Knowledge Processing, pages 83—89. Springer London, 2008.

Jin-Liang Chen and Jung-Hua Wang. A New Robust Clustering Al-
gorithm - Density-Weighted Fuzzy C-means. volume 3, pages 90-94,
1999.

Todd E. Clarka and Kenneth D. West. Using out-of-sample mean
squared prediction errors to test the martingale difference hypothe-
sis. In NBER Technical Working Papers from National Bureau of
Economic Research, Inc, 2005.

Joern David. Navigation Recommendation On Knowledge Artifacts.
In Workshop “Agile Knowledge Sharing for Distributed Software
Teams”, Lecture Notes in Informatics, Munich. Springer, 2008.

Joern David. Noise Robust Classification Based On Spread Spec-
trum. In Submitted to the IEEE International Conference on Data
Mining (ICDM 08), Pisa, Italy, 2008.

Joern David. Recommending Software Artifacts From Repository
Transactions. In The Twenty First International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent
Systems (IEA/AIE 2008), LNAI 5027, pages 189-198. Springer-
Verlag Berlin Heidelberg, 2008.

C.W. Dawson and R.J. Dawson. An artificial intelligence approach
to software development management and planning. In WIT eLi-
brary. Witpress, 2008.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Richard
Harshman, and Thomas K. Landauer. Indexing by Latent Semantic
Analysis. volume 41, pages 391-407, 1990.

BIBLIOGRAPHY 305

[Deb00]

[Dek08]

[DF79]

[DGLO6]

[Din92]

[DJLLP94]

[DKO95]

[DLDGRO7]

[DMMPO6]

[Dol07]

[DOPOS]

[Dur96]

John Debenham. Supporting knowledge-driven processes in a multi-
agent process management system. In Proceedings of the 5th Interna-
tional Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology (PAAM 2000), 2000.

Deka. DekaStruktur: 4 ErtragPlus Inhaber-Anteile o.N., 2008.

D.A. Dickey and W.A. Fuller. Distribution of the Estimators for Au-
toregressive Time Series with a Unit Root. Journal of the American
Statistical Association, 74, pages 427-431, 1979.

Artur S. D’Avila Garcez and Lus C. Lamb. A Connectionist Com-
putational Model for Epistemic and Temporal Reasoning. In Neural
Computation, volume 18, pages 1711-1738, 2006.

John Dinsmore. The symbolic and connectionist paradigms: closing
the gap. Lawrence Erlbaum Associates, 1992.

T. G. Dietterich, A. Jain, R. H. Lathrop, and T. Lozano-Perez. A com-
parison of dynamic reposing and tangent distance for drug activity
prediction. In Advances in Neural Information Processing Systems,
San Mateo, CA, pages 216-223. Morgan Kaufmann, 1994.

Thomas G. Dietterich and Eun Bae Kong. Error-Correcting Output
Coding Corrects Bias and Variance. In International Conference on
Machine Learning, pages 313-321, 1995.

Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and
Michele Risi. A Two Phase Approach to Design Pattern Recovery.
In Proceedings of the 11th European Conference on Software Main-
tenance and Reengineering, CSMR 07, pages 297-306. IEEE Com-
puter Society, Washington, DC, USA, 2007.

Allen H. Dutoit, Raymond McCall, Ivan Mistrik, and Barbara Paech.
Rationale Management in Software Engineering. In Springer-Verlag,
Berlin Heidelberg Wien New York, 2006.

Distributed Online Logistics and Location Infrastructure (DOLLI),
http://wwwl.in.tum.de/static/dolli/, 2007.

Wilodzislaw Duch, Richard J. Oentaryo, and Michel Pasquier. Cog-
nitive Architectures: Where do we go from here? In The First Con-
ference on Artificial General Intelligence, 2008.

John Durkin. Parallel Machines. In IEEE Expert: Intelligent Sys-
tems and Their Applications, volume 11, pages 5663, 1996.

306

BIBLIOGRAPHY

[EBO7]

[EKSX96]

[EUD02]

[Fak96]

[FalO4]

[FF98]

[FGVO1]

[FHHO3]

[FK96]

[FleO1]

Matthew Easley and Elizabeth Bradley. Incorporating Engineering
Formalisms into Automated Model Builders. In Computational Dis-
covery of Scientific Knowledge, volume 4660/2007, pages 44-68.
Springer Berlin / Heidelberg, 2007.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A
Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proceedings of 2nd International Confer-
ence on Knowledge Discovery and Data Mining (KDD-96), 1996.

EUD-NET Network of Excellence on End-User Development, 2002.
http://giove.cnuce.cnr.it/eud-net.htm.

John Fakatselis.
Spread Spectrum Communication
http://www.qsl.net/n9zia/pdf/AN9633.pdf.
tersil Corporation, Melbourne, 1996.

Processing Gain for Direct Sequence
Systems and PRISM,
Technical report, In-

David C. Fallside. XML Schema Part 0: Primer Second Edition.
W3C Recommendation, http://www.w3.org/TR/xmlschema-0/, Oc-
tober 2004.

M. Feder and E. Federovski. Prediction of binary sequences using
finite memory. In IEEE International Symposium on Information
Theory, pages 137 —, 1998.

Pasquale Foggia, Roberto Genna, and Mario Vento. Symbolic vs.
Connectionist Learning: An Experimental Comparison in a Struc-
tured Domain. In IEEE Transactions on Knowledge and Data Engi-
neering, volume 13, pages 176 — 195. IEEE Educational Activities
Department, 2001.

Jiirgen Franke, Wolfgang Hérdle, and Christian Hafner. Einfiihrung
in die Statistik der Finanzmdrkte. 2003. http://www.xplore-
stat.de/ebooks/ebooks.html.

Hichem Frigui and Raghu Krishnapuram. A Robust Clustering Al-
gorithm Based on Competitive Agglomeration and Soft Rejection of
Outliers. In Proceedings of the 1996 Conference on Computer Vi-
sion and Pattern Recognition (CVPR ’96), page 550. IEEE Computer
Society, Washington, DC, USA, 1996.

Eric S. Fleischman. A cognitive model of learning from examples.
In Journal of Computing Sciences in Colleges archive, volume 16,
pages 302 — 303. Consortium for Computing Sciences in Colleges,
USA, 2001.

BIBLIOGRAPHY 307

[FPSS96]

[FreO0]

[FTLO4]

[Gha00]

[GHJ98]

[GHJVIS5]

[GK96]

[GKO7]

[GLZ04]

[GMO8]

[GNPOS5]

Fayyad, Piatetsky-Shapiro, and Smyth. In Lecture Notes in Com-
puter Science, 1996.

Reva Freedman. What is an Intelligent Tutoring System? 11(3):15—
16, 2000.

John C. Flackett, John Tait, and Guy Littlefair. Scaling Connection-
ist Compositional Representations. In Compositional Connection-
ism in Cognitive Science, 2004 AAAI Fall Symposium. Center for
Research on Concepts and Cognition, 2004.

Rayid Ghani. Using Error-Correcting Codes For Text Classification.
In Proceedings of ICML-00, 17th International Conference on Ma-
chine Learning, 2000.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical

coupling based on product release history. In International Confer-
ence on Software Maintenance (ICSM 98), 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

Christoph Goller and Andreas Kiichler. Learning Task-Dependent
Distributed Representations by Backpropagation Through Structure.
In Proceedings of the International Conference on Neural Networks
(ICNN-96), volume 1, 1996.

Yann-Gael Guhneuc and Foutse Khomh. Perception and Reality:
What are Design Patterns Good For? In Proceedings of the 11th
ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software (QAOOSE 2007), pages 20-26. University of Montreal,
Canada, 2007.

Miroslaw Galicki, Lutz Leistritz, and Bernhard Zwick. Improving
Generalization Capabilities of Dynamic Neural Networks. In Neu-
ral Computation, volume 16, pages 1253—1282. MIT Press Journals,
2004.

Lars Marius Garshol and Graham Moore. Topic Maps Data Model,
2008.

S. Ghita, W. Nejdl, and R. Paiu. Semantically Rich Recommenda-
tions in Social Networks for Sharing, Exchanging and Ranking Se-
mantic Context. In Proc. of the 4th International Semantic Web Con-
ference, pages 285-295, 2005.

308

BIBLIOGRAPHY

[GROS]

[Gra08]

[Gru08]

[GSWO5]

[GWWOI1]

[Ham94]

[Ham97]

[HamO1]

[HAMOS]

[Han97]

[Har43]

[Has03]

W. GleiBiner and Frank Romeike. Risikomanagement Umsetzung,
Werkzeuge, Risikobewertung. Haufe, 2005.

Alex Graves. Supervised Sequence Labelling with Recurrent Neural
Networks. Technical report, 2008.

Tom Gruber. Ontology. In Encyclopedia of Database Systems, Ling
Liu and M. Tamer Ozsu (Eds.). Springer-Verlag, 2008.

Faustino J. Gomez, Jiirgen Schmidhuber, and Daan Wierstra. Mod-
eling Systems with Internal State using Evolino. In Proc. of the 2005
conference on genetic and evolutionary computation (GECCO),
Washington, D. C., New York, USA, pages 1795-1802. ACM Press,
2005.

M. D. Garris, R. A. Wilkinson, and C. L. Wilson. Analysis of a bi-
ologically motivated neural network for character recognition. In
Proceedings of the conference on Analysis of neural network appli-
cations, Fairfax, Virginia, United States, pages 160-175, 1991.

J.D. Hamilton. Time Series Analysis. Princeton University Press,
1994.

James A. Hammerton. Holistic Computation: Reconstructing a mud-
dled concept. Technical report, University of Birmingham, 1997.

Barbara Hammer. On the Generalization Ability of Recurrent Net-
works. In Lecture Notes in Computer Science, Artificial Neural Net-
works ICANN 2001, volume 2130/2001, pages 731-736. Springer
Berlin / Heidelberg, 2001.

Karen Hovsepian, Peter C. Anselmo, and Subhasish Mazumdar. De-
tection and Prediction of Relative Clustered Volatility in Financial
Markets. In Fourth International Conference on Computational In-
telligence in Economics and Finance (CIEF 2005), Salt Lake City,
2005.

Jun Han. Supporting Impact Analysis and Change Propagation in
Software Engineering Environments. In Proceedings of the 8th Inter-
national Workshop on Software Technology and Engineering Prac-
tice (STEP 97). IEEE Computer Society, Washington, DC, USA,
1997.

S. Harnad. The symbol grounding problem. 42:335-346, 1943.

Uwe Hassler. Zeitabhdingige Volatilitit und instationdre Zeitreihen.
Wirtschaftsdienst, Wissenschaft Fiir Die Praxis, 2003.

BIBLIOGRAPHY 309

[Hau03]

[HBGOS]

[Heb49]

[HEK99]

[HelO8]

[HFO98]

[HH97]

[HHO4]

[HHS04]

[HLCO6]

[HMO3]

[HMW05]

Gregory T. Haugan. The Work Breakdown Structure in Government
Contracting. Management Concepts, 2003.

Pascal Hitzler, Sebastian Bader, and Artur Garcez. Ontology Learn-
ing as a Use-Case for Neural-Symbolic Integration. 2005.

D. Hebb. The Organization of Behavior: a neuropsychological ap-
proach. New York: Wiley, 1949.

Joachim Hartung, Birbel Elpelt, and Karl-Heinz Klosener. Statistik,
12. Auflage. Oldenbourg, 1999.

Jonas Helming. Integrating Software Lifecycle Models into a uni-
form Software Engineering Model. In Workshop “Integration von
heterogenen Werkzeugen im agilen Zeitalter (IntegrA 08)”, Lecture
Notes in Informatics. Springer, 2008.

Bart Hobijn, Philip Hans Franses, and Marius Ooms. Generaliza-
tions of the KPSS-test for Stationarity. In Econometric Institute Re-
port, number 9802/A, 1998.

Robert F. Hadley and Michael B. Hayward. Strong Semantic Sys-
tematicity from Hebbian Connectionist Learning. In Minds and Ma-
chines, volume 7, pages 1-37. Springer Netherlands, 1997.

Ahmed E. Hassan and Richard C. Holt. Predicting Change Prop-
agation in Software Systems. In Proceedings of the 20th IEEE In-

ternational Conference on Software Maintenance, pages 284 — 293.
IEEE, 2004.

Pascal Hitzler, Steffen Holldobler, and Anthony K. Seda. Logic
programs and connectionist networks. Journal of Applied Logic,
3(2):245-272, 2004.

Sun-Jen Huang, Chieh-Yi Lin, and Nan-Hsing Chiu. Fuzzy Deci-
sion Tree Approach for Embedding Risk Assessment Information into
Software Cost Estimation Model. In Journal of Information Science
and Engineering, volume 22, pages 297-313, 2006.

Andreas Henrich and Karlheinz Morgenroth. Supporting Collabora-
tive Software Development by Context-Aware Information Retrieval
Facilities. In 14th International Workshop on Database and Expert
Systems Applications, pages 249 — 253, 2003.

Joe Hicklin, Cleve Moler, Peter Webb, Ronald F. Boisvert, Bruce
Miller, Roldan Pozo, and Karin Remington. JAMA: A Java Matrix
Package. In The MathWorks and the National Institute of Standards
and Technology (NIST), 2005.

310

BIBLIOGRAPHY

[Hoc91]

[HPO1]

[htt07]
[Huf52]

[HvC93]

[HZ96]

[HZCO5]

[TACO6]

[Int07]

[InvO8]

[J.97]

[JH92]

[JMDOO07]

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Technical report, 1991.

Ioannis Hatzilygeroudis and Jim Prentzas. An Efficient Hybrid Rule
Based Inference Engine with Explanation Capability. In Proceedings
of the 14th International FLAIRS Conference, Key West, Florida,
2001.

http://www.scrumalliance.org. Scrum Alliance. 2007.

D.A. Huffman. A method for the construction of minimum-
redundancy codes. In Proceedings of the I.R.E., pages 1098-1102,
1952.

G. E. Hinton and D. van Camp. Keeping neural networks simple
by minimizing the description length of the weights. In Sixth ACM
Conference on Computational Learning Theory, Santa Cruz, 1993.

G.E. Hinton and R.S. Zemel. Minimizing description length in an
unsupervised neural network. In Sixth ACM Conference on Compu-
tational Learning Theory, Santa Cruz, 1996.

Zan Huang, Daniel D. Zeng, and Hsinchun Chen. A Uni-
fied Recommendation Framework Based on Probabilistic Rela-
tional Models. Social Science Research Network (SSRN), 2005.
http://ssrn.com/abstract=906513.

Mitsuru Ikeda, Kevin Ashlay, and Tak-Wai Chan. Intelligent Tutor-
ing Systems. In 8th International Conference, ITS 2006, Jhongli,
Taiwan. Lecture Notes in Computer Science , Vol. 4053, 2006.

Avail Intelligence. Navigation Predictor™, 2007.
http://www.avail.net/index.php.

Investolution. Probabilistic stock market forecasts, 2008.
http://www.investolution.com/DowJones.php.

Fodor J. Connectionism and the problem of systematicity (con-
tinued): why Smolensky’s solution still doesn’t work. Cognition,
62(1):109-119, 1997.

Nowlan. S. J. and G. E. Hinton. Simplifying neural networks by soft
weight sharing. In Neural Computation, volume 4, pages 173—-193,
1992.

C. Julin Moreno, A. Demetrio, and C. Ovalle. Computational Hy-
brid System based on Neural-Fuzzy Techniques & Intelligent Soft-
ware Agents to Assist Colombian Electricity Free Market. 3(2):111—
122, 2007.

BIBLIOGRAPHY 311

[JPSS99]

[J.R90]

[KAO1]

[KADO1]

[KFM*02]

[KimO2]

[KKO1]

[KKO02]

[Koe08]

[Kra91]

[Kr100]

Arun Jagota, Tony Plate, Lokendra Shastri, and Ron Sun. Connec-
tionist Symbol Processing: Dead or Alive? In Neural Comput-
ing Surveys 2, page 140, 1999. http://www.icsi.berkeley.edu/ jago-
ta/NCS.

W. Premerlani F. Eddy W. Lorensen J.Rumbaugh, M. Blaha. Object-
Oriented Modeling and Design. Prentice Hall, 1990.

Daniel Kustrin and Jim Austin. Connectionist Propositional
Logic, A Simple Correlation Matrix Memory Based Reasoning Sys-
tem. In Lecture Notes in Computer Science, Emergent Neural
Computational Architectures Based on Neuroscience : Towards
Neuroscience-Inspired Computing, volume 2036/2001, page 534.
Springer Berlin / Heidelberg, 2001.

Taghi M. Khoshgoftaar, Edward B. Allen, and Jianyu Deng. Con-
trolling Overfitting in Software Quality Models: Experiments with
Regression Trees and Classification. In Seventh International Soft-
ware Metrics Symposium (METRICS’01), 2001.

Stefan Kaiser, Uwe-Carsten Fiebig, Naoto Matoba, Andy Jeffries,
Marc de Courville, and Arne Svensson. Broadband Multi-Carrier
Based Air Interface. Technical report, WWRF/WG4/Subgroup on
New Air Interfaces, 2002.

Benjamin B. Kimia. Shape Representation for Image Retrieval. Im-
age Databases, April 2002. Print ISBN: 9780471321163, Online
ISBN: 9780471224631.

Michihiro Kuramochi and George Karypis. Frequent Subgraph Dis-
covery. In 1st IEEE Conference on Data Mining, ICDM, pages 313—
320, 2001.

Michihiro Kuramochi and George Karypis. An efficient algorithm
for discovering frequent subgraphs. In Technical report. Department
of Computer Science, University of Minnesota, 2002, 2002.

M. Koegel. Towards Software Configuration Management for Uni-
fied Models. In ICSE CVSM’08 Workshop Proceedings, pages 19—
24, 2008.

Klaus Peter Kratzer. Neuronale Netze. 1991.

Prof. Dr. Hans-Peter Kriegel. Institute for Infor-
matics, Ludwig-Maximilians-Universitét Miinchen,
Germany, 2000. http://www.dbs.informatik.uni-

muenchen.de/Forschung/KDD/Clustering/index.html.

312

BIBLIOGRAPHY

[KSHO8]

[Kii04]

[Lam61]

[Lam78]

[LHO3]

[Liu06]

[LKBO6]

[LM98]

[LMO6]

[LSKO04]

[LSYO03]

Jennifer A. Kaminski, Vladimir M. Sloutsky, and Andrew F. Heck-
lerl. The Advantage of Abstract Examples in Learning Math. In
Science 25, volume 320, pages 454 — 455, 2008.

Axel Kiipper. Mobile Communications 1, Multiplexing and Mod-
ulation, http://www.mobile.ifi.lmu.de/Vorlesungen/ss06 /mk/chap-
terd.pdf. Technical report, Mobile and Distributed Systems Group,
University of Munich, Germany, 2004.

Joachim Lambek. On the calculus of syntactic types - Structure of
Language and its mathematical aspects. In American Mathematical
Society, page 166 178, 1961.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. volume 21, pages 558-565. ACM, New York, NY,
USA, 1978.

Peter C.R. Lane and James B. Henderson. Towards Effective Pars-
ing with Neural Networks: Inherent Generalisations and Bounded
Resource Effects. 19(1-2):83-99, 2003.

Yang Liu. Using SVM and Error-correcting Codes for Multiclass
Dialog Act Classification in Meeting Corpus. In INTERSPEECH
2006 - ICSLP, 2006.

Mark Last, Abraham Kandel, and Horst Bunke. Artificial Intelli-
gence Methods In Software Testing. 2006.

Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge
Discovery and Data Mining. In The Springer International Series in
Engineering and Computer Science, volume 454, pages 1226-1238,
1998.

K. Lakshmi and S. Mukherjee. An Improved Feature Selection using
Maximized Signal to Noise Ratio Technique for TC. In Third Inter-
national Conference on Information Technology: New Generations
(ITNG), pages 541 — 546, 2006.

S. N. Lindstaedt, Koller S., and T. Krimer. Eine Wissensinfrastruktur
fiir Projektrisikomanagement - Identifikation und Management von
Wissensrisiken. In KnowTech 2004, 6. Konferenz zum Einsatz von
Knowledge Management in Wirtschaft und Verwaltung, Miinchen,
2004.

G. Linden, B. Smith, and J. York. Amazon.com recommendations:
Item-to-item collaborative filtering. In IEEE Internet Computing,
volume 4, 1, 2003.

BIBLIOGRAPHY 313

[LZZZ05]

[Mas05]

[MBO00]

[McL04]

[MGO5]

[Mic05]

[MLPOO]

[MM39]

[Moc08]

[MP43]

[Mue06]

[MVO03]

[MW99]

[MWHOI1]

Nan Lu, Jing-Zhou Zhou, Wang Zhe, and Chun-Guang Zhou. Re-
search on Association Rules Mining Algorithm With Item Con-
straints. In International Conference on Cyberworlds (CW’05),
pages 325-329, 2005.

Bart Massey. Nickle Repository Transaction Data, 2005. Computer
Science Dept., Portland State University, Portland, OR, USA.

L.M. MacKinnon and K.E. Brown. Context Separation Using Struc-
tured Knowledge Models For Reusable Interactive Computer As-
sisted Learning Resources. In 6th ERCIM Workshop “User Inter-
faces for All”, 2000.

G.J. McLachlan. Discriminant Analysis and Statistical Pattern
Recognition. Wiley-Interscience, 2004.

Xiaoxu Ma and W. Eric L. Grimson. Edge-based rich representation
for vehicle classification. In ICCV 05, 2005.

Microsoft. Microsoft Neural Network-Algorithmus (SSAS). 2005.
http://msdn2.microsoft.com/de-de/library/ms174941.aspx.

O. Melnik, S. Levy, and J. Pollack. RAAM for infinite context-free
languages. In Proceedings of the International Joint Conference on
Neural Networks, IJCNN, volume 5, pages 585-590, 2000.

W. Bruce MacDonald and Enid Mumford. XSEL’S progress: the
continuing journey of an expert system. 1989.

A. Mockus. Missing Data in Software Engineering. In Guide to
Advanced Empirical Software Engineering, pages 185-200, 2008.

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. 5:115-133, 1943.

Erik T. Mueller. Commonsense Reasoning. San Francisco: Morgan
Kaufmann, 2006.

R.C. Mintram and J. Vincent. A General Framework for the Trans-
formation of Structured Data into Vector Representations. In Pro-
ceeding in Applied Informatics, Innsbruck, Austria, 2003.

Gerhard Merziger and Thomas Wirth. Repetitorium der hoheren
Mathematik. In Binomi Verlag, ISBN 3-923 923-33-3, 1999.

Anthony N. Michel, Kaining Wang, and Bo Hu. Qualitative Theory
of Dynamical Systems: The Role of Stability Preserving Mappings.
2001.

314

BIBLIOGRAPHY

[MWMO3]

[Nav97]

[Neu0O0]

[NeuO1]

[NNOO1]

[NPO4]

[NS72]

[NS76]

[NS93]

[NvG94]

[NZ99]

[Par02]

[Pea97]

Kenneth McGarry, Stefan Wermter, and John MacIntyre. Hybrid
Neural Systems: From Simple Coupling to Fully Integrated Neural
Networks. 2(3):62-93, 2003.

Pavol Navrat. A Note On Using Artificial Intelligence Techniques in
Software Engineering, 1997.

Jane Neumann. Holistic Transformation of Holographic Reduced
Representations. In ECAI’00, 2000.

Jane Neumann. Holistic Processing of Hierarchical Structures in
Connectionist Networks. Technical report, University of Edinburgh,
2001.

Artificial Neural Networks and their Biological Motivation. In
NNets, 2001.

O. Nasraoui and M. Pavuluri. Complete this Puzzle: A Connectionist

Approach to Accurate Web Recommendations based on a Committee
of Predictors. 2004.

A Newell and H A. Simon. Human problem solving. Englewood
Cliffs, NJ: Prentice-Hall, 1972.

Allen Newell and Herbert A. Simon. Computer science as empiri-
cal inquiry: symbols and search. In Communications of the ACM,
volume 19, pages 113 — 126. ACM, New York, NY, USA, 1976.
http://www.rci.rutgers.edu/ cfs/472_html/AI_ SEARCH/PSS/PSSH1.html.

Lars Niklasson and Noel E. Sharkey. Systematicity and Generalisa-
tion in Connectionist Compositional Representations. 1993.

L.F. Niklasson and T. van Gelder. Can connectionist models exhibit
non-classical structure sensitivity? In Proceedings of the Sixteenth
Annual Conference of the Cognitive Society, Atlanta, Hillsdale, NJ,
pages 664-669. Lawrence Erlbaum Associates, 1994.

Ralph Neuneier and Hans-Georg Zimmermann. Neural Network Ar-
chitectures for the Modeling of Dynamic Systems. Technical report,
Siemens Corporate Technology, 1999.

Domenico Parisi. Increasing the Biological Inspiration of Neural
Networks. In NNets, volume 2486/2002, pages 243—252. Springer
Berlin / Heidelberg, 2002.

Annie R. Pearce. Cost-Based Risk Prediction and Identification of
Project Cost Drivers Using Artificial Neural Networks. Technical

report, School of Civil and Environmental Engineering, Georgia In-
stitute of Technology, Atlanta, GA 30332-0355 USA, 1997.

BIBLIOGRAPHY 315

[Per96]

[Phi96]

[Pla03]

[PLDOS5]

[PMGO0]

[PNO2]

[Por80]

[PowO1]

[Pre97]

[Pru05]

[Qui93]

[RAPWBO06]

[RHWS86]

System compositions and shared dependencies. In Software Config-
uration Management, volume 1167, pages 139-153. Springer Berlin
/ Heidelberg, 1996.

Steven Phillips. Connectionism and Systematicity. 1996.

Tony A. Plate. Holographic Reduced Representation: Distributed
Representation for Cognitive Structures. C S L I Publications, 2003.

H.C. Peng, F. Long, and C. Ding. Feature selection based on mutual
information: criteria of max-dependency, max-relevance, and min-
redundancy. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, volume 27, pages 1226-1238, 2005.

K.A. Papanikolaou, G.D. Magoulas, and M. Grigoriadou. A Con-
nectionist Approach for Supporting Personalized Learning in a Web-
based Learning Environment. In Lecture Notes in Computer Sci-
ence, Adaptive Hypermedia and Adaptive Web-based Systems, num-
ber 1892, pages 189-201, 2000.

Gabriela Policovl and Pavol Nvrat. Semantic Similarity in Content-
Based Filtering. In Lecture Notes in Computer Science, Advances in
Databases and Information Systems : 6th East European Conference,
ADBIS 2002, Bratislava, Slovakia, volume 2435/2002, pages 143—
180. Springer Berlin / Heidelberg, 2002.

M.FE. Porter. An algorithm for suffix stripping. Technical Report 3,
1980.

David M. W. Powers. Symbolism Versus Connectionism: an Intro-
duction. In Psycoloquy, volume 12, 2001.

Wolfgang Pree. Komponentenbasierte Softwareentwicklung mit
Frameworks. dpunkt, 1997.

Helmut Pruscha. Statistisches Methodenbuch. Springer Berlin Hei-
delberg New York, 2005.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers, 1993.

Peter Rawbone, Paschall de Paor, Andrew Ware, and Jim Barrett.
Interactive Causation: a Neurosymbolic Agent. In IC-Al, pages 51—
55, 2006.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning repre-
sentations by back-propagating errors. 323:533-536, 1986.

316

BIBLIOGRAPHY

[Rot97]

[RS04]

[RSST07]

[RV97]

[SADO97]

[SB75]

[SCDO05]

[Sch36]

[Sch&9]

[Sch95]

[Sch97]

[SchO1]

Daniela Rothenhofer. Ein Konzept fiir ein intelligentes Tutorsystem
zum Erlernen des Testens und Debugging paralleler Prozessysteme.
Herbert Utz Verlag Wissenschaft, 1997.

Laura Elena Raileanu and Kilian Stoffel. Theoretical Comparison
between the Gini Index and Information Gain Criteria. In Annals of
Mathematics and Artificial Intelligence, volume 41, pages 77 — 93.
Kluwer Academic Publishers, Hingham, MA, USA, 2004.

R. Rifkin, K. Schutte, M. Saad, J. Bouvrie, and J. Glass. Noise Ro-
bust Phonetic Classification with Linear Regularized Least Squares
and Second-Order Features. In IEEE International Conference,
ICASSP 2007 Proceedings on Acoustics, Speech and Signal Pro-
cessing, volume 4, 2007.

Paul Resnick and Hal R. Varian. Recommender systems. In Commu-
nications of the ACM, volume 40, pages 56 — 58. ACM New York,
NY, USA, 1997.

Michael St Aubyn and Neil Davey. Connectionist Rule Processing
Using Recursive Auto-Associative Memory. In ESANN °97 : Euro-
pean symposium on artificial neural networks, Bruges, 16-18 April,
1997.

EH Shortliffe and BG Buchanan. A model of inexact reasoning in
medicine. In Mathematical Biosciences, volume 23, pages 351-379,
1975.

Rosario Sotomayor, Joe Carthy, and John Dunnion. The Design and
Implementation of an Intelligent Online Recommender System. In
Mixed-Initiative Problem-Solving Assistants, Fall Symposium Se-
ries, AAAI Virginia, USA. AAAI Press, 2005.

Hans Schickling. Sinn und Grenze des aristotelischen Satzes: “Das
Ganze ist vor dem Teil”. 1936.

Schoneburg. Aktienkursprognose mit neuronalen Netzwerken. Com-
puterwoche 40, 1989.

Uwe Schoning. Perlen der Theoretischen Informatik. BI Wis-
senschaftsverlag, 1995.

Jirgen Schmidhuber. Discovering Neural Nets With Low Kol-
mogorov Complexity And High Generalization Capability. In Neural
Networks, volume 10, pages 857 — 873, 1997.

Uwe Schoning. Theoretische Informatik - kurzgefasst. Spektrum,
akademischer Verlag, 2001.

BIBLIOGRAPHY 317

[SCKMO5]

[SCWMO2]

[SDD99]

[Sed06]

[SESO5]

[SHO7]

[Sha48]

[She05]

[SJ94]

[SJOO]

[SKO5]

Andreas L. Symeonidis, Kyriakos C. Chatzidimitriou, Dionisis Ke-
hagias, and Pericles A. Mitkas. An Intelligent Recommendation
Framework for ERP Systems. In Artificial Intelligence and Appli-
cations, pages 715-720, 2005.

Xiaoming Sun, Zheng Chen, Liu Wenyin, and Wei-Ying Ma. Inten-
tion Modeling for Web Navigation. In Proceedings of the 11th World
Wide Web Conference (WWW), 2002.

Christian Schittenkopf, Georg Dorffner, and Engelbert J. Dockner.
Forecasting Time-dependent Conditional Densities: A Neural Net-
work Approach. In Systems and Modelling in Economics and Man-
agement Science, 1999.

Anthony Karel Seda. On the Integration of Connectionist and Logic-
Based Systems. In Electronic Notes in Theoretical Computer Sci-
ence, volume 161, pages 109-130, 2006.

Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks:
Supporting Navigation in Software Maintenance. In In Proceedings
of the International Conference on Software Maintenance, 2005.

Jiirgen Schmidhuber and Sepp Hochreiter. Long Short-Term Mem-
ory. In Neural Computation, volume 9, pages 1735-1780, 1997.

C.E. Shannon. A Mathematical Theory of Communication. In Bell
System Technical Journal, volume 27, pages 379-423, 623-656,
1948.

M. Shepperd. Evaluating software project prediction systems. In
Software Metrics, 11th IEEE International Symposium, page 2 pp.,
2005.

N.E. Sharkey and S.A. Jackson. Three Horns of the Representational
Trilemma. In V.Honovar and L.Uhr (Eds) Artificial Intelligence and
Neural Networks. Cambridge, MA: Academic Press, 1994.

Alan T. Schroeder Jr. Data mining with neural networks: Solving
business problems from application development to decision sup-
port. In Journal of the American Society for Information Science,
volume 48, pages 862 — 863. John Wiley & Sons, Inc., 2000.

Richard Stenzel and Thomas Kamps. Improving content-based sim-
ilarity measures by training a collaborative model. In 6th Inter-
national Conference on Music Information Retrieval, London, UK,
pages 264-271, 2005.

318

BIBLIOGRAPHY

[SKKRO1]

[SLD96]

[SLWO7]

[Smi07]

[Smu38]
[SONO95]

[SPO3]

[SR87]

[SS92]

[SS94]

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
Item-based Collaborative Filtering Recommendation Algorithms. In
The 10th International World Wide Web Conference (WWW10),
Hong Kong, pages 285-295, 2001.

I. Syu, S.D. Lang, and N. Deo. A neural network model for infor-
mation retrieval using latent semantic indexing. In ICNN 96, The
1996 IEEE International Conference on Neural Networks, volume 2,
pages 1318-1323, 1996.

Mark Sherriff, Mike Lake, and Laurie Williams. Empirical
Software Change Impact Analysis using Singular Value De-
composition. IBM, North Carolina State University, 2007.
ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2007/TR-
2007-13.pdf.

Darja Smite. Project Outcome Predictions: Risk Barometer Based
on Historical Data. In International Conference on Global Software
Engineering (ICGSEQ7), Munich, Germany. Riga Information Tech-
nology Institute, Latvia, 2007.

Jan Christiaan Smuts. Die holistische Welt. 1938.

Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe.
An Efficient Algorithm for Mining Association Rules in Large
Databases. In Proceedings of the 21th International Conference on
Very Large Data Bases, pages 432—444. Morgan Kaufmann Publish-
ers Inc., 1995.

Christin Seifert and Jan Parthey. Simulation Rekursiver Auto-
Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen
Backpropagation-Simulators. Technical report, Technische Univer-
sitdt Chemnitz, 2003. http://archiv.tu-chemnitz.de/pub/2003/0053.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel Networks
that Learn to Pronounce English Text. In Complex Systems, vol-
ume 1, pages 145-168, 1987.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational
power of neural nets. In Proceedings of the fifth annual workshop
on Computational learning theory, pages 440-449. ACM, New York,
USA, 1992.

A. Sperduti and A. Starita. On the access by content capabilities of
the LRAAM. In Proceedings of the International Joint Conference on
Neural Networks, IJCNN, IEEE World Congress on Computational
Intelligence, volume 2, pages 1143-1148, 1994.

BIBLIOGRAPHY 319

[SSO5]

[SSLO8]

[SSMO5]

[SSSO1]

[STO7]

[Stro4]

[StrO3]

[SVIT7]

[Svi90]

[SWMO04]

[SWYT75]

[TCLO6]

Roza Shkundina and Sven Schwarz. A Similarity Measure for Task
Contexts. In Proceedings of the Workshop Similarities - Processes -
Workflows in conjunction with the 6th International Conference on
Case-Based Reasoning, Chicago, 2005.

J. Singer, S.E. Sim, and T.C. Lethbridge. Software Engineering Data
Collection for Field Studies. In Guide to Advanced Empirical Soft-
ware Engineering, pages 9-34, 2008.

J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of
Software Engineering Databases. School of Information Technology
and Engineering, University of Ottawa, Canada, 2005.

Manfred Schmidt-Schaull and Gert Smolka. Attributive Concept De-
scriptions with Complements. Artificial Intelligence, 48:1-26, 1991.

Renate A. Schmidt and Dmitry Tishkovsky. Using Tableau to Decide
Expressive Description Logics with Role Negation. 2007.

S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry and Engineering. Westview Press,
1994.

Thomas Strang. Service-Interoperabilitit in Ubiquitous Computing
Umgebungen. 2003.

Peter Stone and Manuela Veloso. Multiagent Systems: A Survey
from a Machine Learning Perspective. Technical report, School of
Computer Science, Carnegie Mellon University, 1997.

John J. Sviokla. An Examination of the Impact of Expert Systems on
the Firm: The Case of XCON. In MIS Quarterly, volume 32, pages
127-142, 1990.

Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL
Web Ontology Language Guide, 2004.

G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for
Automatic Indexing. In Communications of the ACM, volume 18,
pages 613-620, 1975.

B. Twala, M. Cartwright, and G. Liebchen. Classifying Incom-
plete Software Engineering Data using Decision Trees: An Improved
Probabilistic Approach. In Software Engineering Applications, SEA
2006, Dallas, TX, USA. ACTA Press, 2006.

320

BIBLIOGRAPHY

[TCSHO6]

[TEAO09]

[TecO5]

[TFOS5]

[Tof70]

[Tre07]

[UK95]

[UoSCCCO08]

[vdLO8]

[Ver04]

[VGN94]

[VSO7]

[Was07]

Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides,
and Spyros T. Halkidis. Design Pattern Detection Using Similarity
Scoring. In IEEE Transactions on Software Engineering, volume 32,
pages 896-909, 2006.

TEAM - Tightening knowledge sharing in distributed software com-
munities by applying semantic technologies, 2006-2009. IST
PROJECT 35111 - Information Society Technologies (IST).

Technical Publications Specification Maintenance Group TPSMG.
International specification for technical publications utilizing a com-
mon source database, 2005. http://www.s1000d.org.

Mariarosaria Taddeo and Luciano Floridi. Solving the Symbol
Grounding Problem: a Critical Review of Fifteen Years of Re-
search. Journal of Experimental and Theoretical Artificial Intelli-
gence, 17(4):419-445, 2005.

Alvin Toffler. Future Shock. Random House, 1970.

Decision Analysis: Strategies for Decision Making, 2007.
http://www.treeage.com/learnMore/DecisionAnalysis.html.

Alfred Ultsch and Dieter Korus. Integration of Neural Networks with
Knowledge-Based Systems. In Proc. IEEE Int. Conf. Neural Net-
works, Perth/Australia, 1995.

Dept. of Health Services Policy University of South Carolina, Arnold
School of Public Health, Management Courses, and Curricula.
Durbin-Watson critical values, 2008.

Peter Michael von der Lippe. Grenzwertsditze, Gesetze der Grofien
Zahl(en). Technical report, 2008. Induktive Statistik.

Marno Verbeek. A Guide to Modern Econometrics, 2. ed. Chichester,
John Wiley & Sons, 2004.

Tim van Gelder and Lars Niklasson. Classicalism and Cognitive
Architecture. In Proceedings of the Sixteenth Annual Conference
of the Cognitive Science Society, Atlanta, Georgia, pages 905-909,
1994.

B. Vinayagasundaram and S.K. Srivatsa. Implementation of hybrid
software architecture for Artificial Intelligence System. IJCSNS In-
ternational Journal of Computer Science and Network Security, 7(1),
2007.

Larry Wasserman. All of Nonparametric Statistics. Springer, 2007.

BIBLIOGRAPHY 321

[Wes00]

[WIO1]

[Wil94]

[WMO97]

[Wol07]

[WRH97]

[WSPO1]

[WZ389]

[Xia06]

[XTDLO6]

[XZZ05]

[Yag08]

Marcus Wesselowski. Die koordinative Verbindung in der Kategori-
algrammatik. Technical report, Universitdt Osnabriick, 2000.

Sholom M. Weiss and Nitin Indurkhya. Lightweight Collaborative
Filtering Method for Binary-Encoded Data. In Principles of Data
Mining and Knowledge Discovery, Lecture Notes in Computer Sci-
ence, volume 2168/2001, pages 484—491. Springer Berlin / Heidel-
berg, 2001.

R.G. Williams. Development cost prediction. In IEE Colloquium on
Life Cycle Costing and the Business Plan, pages 4/1 — 4/4, 1994.

Xinyu Wu, Michael Mctear, and Piyush Ojha. SYMCONA Hybrid
Symbolic/Connectionist System for Word Sense Disambiguation. In
Applied Intelligence, pages 5-26. Springer Netherlands, 1997.

T. Wolf. Rationale-based Unified Software Engineering Model. In
Dissertation, Technische Universitit Miinchen, 2007.

W. Wilson, L. Rosenberg, and L. Hyatt. Automated Analysis of Re-
quirement Specifications. In Proceedings of the 19th International
Conference on Software Engineering, pages 161-171, 1997.

Cody Wong, Simon Shiu, and Sankar Pal. Mining fuzzy association
rules for web access case adaptation. 2001.

R. Williams and D. Zipser. Experimental analysis of the real-time
recurrent learning algorithm. 1(1):87-111, 1989.

Shi Xiaowei. An Intelligent Recommendation System Based On
Fuzzy Logic. In Informatics in Control, Automation and Robotics
I. Springer Netherlands, 2006.

Haitian Xu, Zheng-Hua Tan, Paul Dalsgaard, and Brge Lindberg.
Robust Speech Recognition From Noise-Type Based Feature Com-
pensation and Model Interpolation in a Multiple Model Framework.
In IEEE International Conference, ICASSP 2006 Proceedings on
Acoustics, Speech and Signal Processing, volume 1, 2006.

Guandong Xu, Yanchun Zhang, and Xiaofang Zhou. A Web Recom-
mendation Technique Based on Probabilistic Latent Semantic Anal-
ysis. In School of Computer Science and Mathematics, Victoria Uni-
versity, 2005.

Ronald Yager. Including Semantics and Probabilistic Uncertainty in
Business Rules Using Fuzzy Modeling and Dempster-Shafer Theory.
In AAAI 2008 Spring Symposium, Al Meets Business Rules and
Process Management, 2008.

322

BIBLIOGRAPHY

[YHO2]

[YWO04]

[YWCO02]

[Zak00]

[Z]CO3]

[ZWDZ04]

Xifeng Yan and Jiawei Han. gSpan: Graph-Based Substructure Pat-
tern Mining. In International Conference on Data Mining (ICDM),
2002.

Miin-Shen Yang and Kuo-Lung Wu. A Similarity-Based Robust
Clustering Method. volume 26, pages 434-448, 2004.

Heng-Li Yang, Chen-Shu Wang, and Mu-Yen Chen. A Personaliza-
tion Recommendation Framework of IT Certification e-Learning Sys-
tem. In Lecture Notes in Computer Science, Knowledge-Based In-
telligent Information and Engineering Systems, volume 4693/2007,
pages 50-57. Springer Berlin / Heidelberg, 2002.

M.J. Zaki. Scalable algorithms for association mining. In IEEE
Transactions on Knowledge and Data Engineering, volume 12, pages
372-390, 2000.

Z.-H. Zhou, Y. Jiang, and S.-F. Chen. Extracting Symbolic Rules
from Trained Neural Network Ensembles. 16(1):3—-15, 2003.

Thomas Zimmermann, Peter Weillgerber, Stephan Diehl, and An-
dreas Zeller. Mining Version Histories to Guide Software Changes.
In International Conference on Software Engineering (ICSE 2004),
2004.

Index

A
Accuracy, 85, 130, 131, 153, 154, 157,

Bag-of-words, 170, 206, 215, 216
Banach fixed-point theorem, 278

170, 200, 201, 229-231, 259, 266, Barker code, 123, 129

267,273
Action item, 148-152, 156, 157
Activation function, 73, 74, 78, 94, 98—
100, 113, 248, 278
Activity
-oriented, 147, 152
diagram, 61, 116, 222
Adaptive, 14, 39
Additive winter model, 259
Agile
development, 143
life cycle model, 155
process, 152
Antecedent, 28, 52, 89, 114, 143, 168
Application domain, 27, 45, 57, 58, 60,
78, 171,203, 218, 271
Apriori algorithm, 207, 210
Asset management, 251
Association rule mining, 13, 27, 42, 65,
148, 163, 167, 168, 171, 201,

204,207-212, 215, 224,227, 263,

266, 275
Auto
associative, 72, 75, 78, 80, 135
regressive, 233, 241, 243, 250, 254,
258
Autocorrelation, 120, 237, 252, 256, 258
function, 255

B
Backpropagation, 67, 72,77, 80, 87, 98—
101, 250, 265, 276

Basic population, 27, 158, 172, 228
Bayesian
classification, 87
network, 39, 42
theorem, 86
Beam search, 186
Behavior
browsing, 13, 204, 218
navigation, 41, 42, 218-220, 222, 228,
231
network, 278
user, 67, 126, 268, 275
Bias, 122, 144, 199, 236, 237, 252, 267
Blackbox, 207, 212, 264, 269
Bug report, 148
Burn-down chart, 148, 269

C
Canonical labeling, 163, 164
Capability
Generalization, 45
Learning, 45
CASE tool, 146, 163, 183, 186, 269
Cauchy-Schwarz inequality, 238
Causality, 147, 148
Change impact analysis, 13, 26, 55, 87,
147,159, 161, 163-166, 168, 200,
201, 266
Change propagation, 159
Chaos theory, 158
Chi-Square, 281
Classification, 12—14, 23, 27, 30, 35-37,

323

324 INDEX

39, 45, 51, 52, 55, 58, 60, 61, problem, 233

67, 74, 78, 80, 81, 84-90, 94, support, 11, 200, 206, 251, 252, 257
102, 103, 105, 107, 109, 116, table, 113, 114

118, 121-131, 143, 144, 146- tree, 81, 172, 175-177

149, 151, 152, 154-158, 171, 172, Decomposability, 22

174, 176, 179, 181, 183, 185, Deduction theorem, 18, 19

189-191, 193, 195-203, 207, 233, Deductive, 18-20, 29, 37, 38, 42, 90

234, 264, 266-269, 276, 279 Delegation, 141, 171, 264, 271, 272
accuracy, 80, 84, 89, 105, 122, 130, Demand planning, 245, 251, 252, 257,

154-158 258
certainty, 125, 126, 193 Dendrogram, 268
Clustering, 14, 30, 35-37, 42,45, 50,74, Dependent variable, 39, 170, 233, 240,
76, 85, 122, 204, 268 242,245, 251, 252, 254

Collaborative filtering, 11, 12, 37, 41, Design adviser, 181
42,203,215, 220, 226, 228,229, Design pattern, 13, 51, 65, 95, 121, 133,

265 143, 147, 161, 171-173, 177-
Commit set, 169, 201, 266 185, 189-192, 195, 198-202, 266,
Compositionality, 22 267,279

concatenative, 22 Adapter, 191, 192

semantic, 21 Bridge, 192, 194
Compression, 74, 78, 80, 82, 84, 85 Composite, 191, 193-195
Constant Error Carousels (CEC), 276 Facade, 193, 195
Content-based, 11, 12, 28, 37, 41, 42, Observer, 68, 188

55,58, 109, 113, 114, 163, 166, Strategy, 190, 191

167, 200, 201, 203, 207, 211, Template, 186, 187, 190

212, 219, 220, 222, 224, 226— Despreading, 122-127, 197, 199

230, 246, 265, 266 Diagonalization, 216, 281
Contextualization, 221, 228, 229 Dickey-Fuller test, 255
Contraction, 278 Differentiation, 97, 238, 244, 254, 256,
Correlation, 26, 30, 120, 219, 233, 240, 258, 261

244,252, 253, 259, 260 Discriminative, 177
Correlation coefficient, 37, 238, 240, 253, Drift, 254, 256

260 Durbin-Watson test, 256
Coupling, 161, 188, 271 Dynamic system, 67, 92, 93, 246
Covariance, 237-239, 280, 281
Critical E

mass, 275 Eigenvalue, 154, 280-282
value, 255 Eigenvector, 280, 281
Cross-correlation, 120, 240, 251, 253 Entropy, 23, 81-84, 106, 125, 126, 172,
175,177, 193
D Equivalence class, 163
Data cube, 251 Error
Decision mean squared, 236, 237, 240, 244,

making, 11 248, 252

INDEX

325

systematic, 122, 236, 237
Estimation, 62, 87, 146, 233, 237, 242,
244,248, 259, 260
period, 259, 260
Estimator, 236, 237, 255
Expected value, 86, 237, 238, 243, 254,
256
Explosive process, 254
Exponential smoothing, 61, 62, 233, 240,
244,248, 249, 251, 259, 265
External shock, 243
Extrapolation, 62, 234, 244, 253

F
F-Measure, 154, 157, 158
Feed-forward network, 67, 72, 106, 133,
250
Filtration, 242
Fixpoint, 278
Forecast, 2, 39, 60, 91, 233, 251, 252,
257,258
horizon, 240, 244
Forecasting, 233, 245, 251, 253
Formal
language, 20, 33, 47, 75
system, 19, 20
Fuzzy, 11, 14, 18, 23, 28, 32, 39, 57, 58,
62, 73, 78, 88, 121, 122, 143,
144, 146, 149, 154, 191, 192,
200, 266, 267, 274
Fuzzyfication, 111

G
Gaussian, 77, 87, 88
Generalization, 11, 18, 23, 34, 37, 47—
50, 61, 62, 81, 82, 87, 110, 113,
114, 116, 122, 139, 141, 142,
144, 155, 169, 190, 196, 198,
203, 216, 224, 228, 280
capability, 43, 45-49, 60, 62, 84, 96,
105, 130, 142, 169, 177, 189,
197, 215, 227, 232, 258
hierarchy, 47, 50, 60, 61, 110, 141,
189, 203
Gini Index, 177

Godel, 19
Grammar, 17, 29-31, 47, 66, 93, 109,
112,114-118,127-132, 147, 171,
179, 181, 185, 196, 221, 231,
267,273,276
Reber, 114, 274
Graph serialization, 160

H

Heteroscedasticity, 245, 253

Hidden state layer, 90, 93, 199, 246

Holism, 131

Holistic, 110, 132-135, 139, 144, 171,
183, 195, 199, 200, 328

Holographic Reduced Representation, 26,
49

Hopfield, 72

network, 76

Hybrid, 12, 13, 26, 28, 39, 42, 58, 111,
133, 139, 141-143, 167, 200, 201,
203, 204, 263, 265

I
Incompleteness Theorem, 19
Independent
domain-, 12, 19, 39, 60, 62, 65, 77,
263
stochastically, 86, 216, 240
Inductive, 18, 19, 34, 37, 38, 134
Inference, 17-20, 25, 26, 28, 33, 35-38,
40, 42, 43, 49, 53, 57, 90, 110,
228,267
Information
filtering, 203
gain, 27, 81, 172, 175, 177
overload, 11
theory, 23, 71, 77-79, 82-84, 106
Inheritance, 29, 38, 50, 66, 118-121, 171,
172, 177, 179, 186, 190, 192—
194, 196, 197, 220, 271, 272
Intelligence
artificial, 11, 14, 17, 19, 24, 25, 40,
42,78, 111, 132, 146, 264
computational, 14, 73, 78, 79, 82
human, 14, 88

326

INDEX

Intelligent
recommendation, 11, 23, 25, 33, 37,
39,49, 52,217, 263, 264
tutoring system, 40, 41
Inter-model link, 162, 163
Interpretation, 21
Isomorphism, 163, 164

K
Keyterm, 66, 275
Knowledge
base, 29, 33, 54, 110, 116, 129, 170,
203-206, 215-218
engineering, 13, 29, 30, 36, 109, 263,
267
model, 12, 45, 54, 55, 132, 146, 160,
161,214
representation, 12, 20, 22, 25, 30—
33, 40, 53, 55, 57, 62, 65, 66,
72, 78, 85, 88, 117, 131, 160,
191, 201, 215, 223, 224, 272
Knowledge Discovery in Databases, 30
Kohonen, 72
network, 72, 76
Kolmogorov, 83, 106

L
Latent semantic indexing, 155, 203, 204,
216, 227, 229, 232, 265, 282
Learning by example, 46, 90, 116, 167,
195, 218
Least squares, 95, 248, 255
Linear combination, 240, 242, 243
Log-linear, 236
Logic
Mathematical, 20
Predicate, 18, 20, 21, 33

M

Machine learning framework, 12, 37, 45,
71,77, 86, 203, 251, 264

Memorization, 47, 105, 141

Middleware, 182

Minimax-strategy, 23

Model

dynamic, 145, 222
functional, 12, 145, 271
Moving average, 242, 243, 249, 252,260
Multi-represented object, 55, 57, 66, 104,
161, 205, 219
Multi-variate, 259
Multilayer perceptron, 90

N
Naive Bayes, 86, 87, 89
Navigation
history, 211,217, 218, 225,227, 229-
232
recommendation, 147, 167, 203, 204,
207, 211, 212, 214, 215, 217,
218, 222, 223, 225, 227, 228,
230-232, 246, 265, 267, 274
space, 203, 213, 215, 231, 275
Neuron, 72-74, 91, 93, 94, 132, 250
Noise, 26, 36, 84, 89, 105, 109, 122,
123, 127-130
uniform, 130
white, 130, 235, 239, 242, 243, 249,
250, 252, 254, 255
Null hypothesis, 254-256

0]

Objective function, 97, 248

Ontology, 27, 29, 33, 50, 54

Operative application, 61, 92, 224, 246

Optimization, 14, 22, 35, 58, 78, 95, 96,
101, 122, 231, 242, 244, 255

Orthogonal Variable Spreading Factor, 120

Out-of-sample, 228, 245, 259

Outlier, 74, 155, 159

P

Periodogram, 251

Phase-in, 256, 260

Planning history, 251, 261

Polysemy, 215

Postmortem, 146

Power Spectral Density (PSD), 125

Precision, 151, 153, 154, 156, 171, 195,
201, 213, 229, 266, 267

INDEX 327

Prediction, 12-14, 23, 26, 35, 36, 39, Refinement, 216, 252, 253, 257
42, 45, 51, 53, 58-63, 65, 67, Regression, 13, 87, 89, 146, 233, 238,
74,78, 86, 87, 89-94, 117, 125, 240-242, 244,252, 254-256, 258,
126, 129, 130, 141, 146, 163, 265
170, 186, 201, 211, 216, 222, Release, 162, 269
223, 226-238, 240, 242, 244— Repository, 122, 163, 166, 167, 169, 206,

254,257-261, 264-267, 269, 273— 268
275,277,278 Representation
horizon, 273, 278 context-sensitive, 25
Predictive information, 168, 171 distributed, 26, 183, 200
Predictor variable, 253, 256, 260 document, 205
Principal Component Analysis, 63, 216, internal, 22, 33, 75, 132, 134, 135,
280 142, 184, 185, 195
Process gain, 84, 124, 125, 197, 267 rich, 54, 57, 143, 168, 211, 217
Project graph, 148, 159, 160, 163, 165, rule-based, 13, 67, 181, 183
269 symbolic, 14, 167, 224, 229, 230
Promotion, 162 text, 155, 215, 228, 232, 265
URL-based, 211
R Requirement
Radial Basis Function, 77 functional, 39, 46, 62, 110, 148, 221,
Random 279
process, 234,237,242, 248, 250, 254, nonfunctional, 39, 89
255 Residual, 122, 237, 252, 253, 255, 256
variable, 81-83, 230, 238, 239, 255 Reusability, 171
walk, 254 Robustness, 157, 267
Random walk process, 244, 256
Rationale, 71, 106, 145, 146, 200 S
Rationale Unified Process, 147 Scrum, 148, 151, 152, 156, 269
Real-Time Recurrent Learning (RTRL), Search
95 heuristic, 22
Realization, 13, 25, 39, 110, 113, 114, informed, 23
142, 172, 173, 175, 186, 207, uninformed, 23
219, 233-240, 242-245, 248, 250, Self-Organizing Map, 67, 268
251, 254, 256 Semantics, 20, 21, 25, 30, 167, 196, 204,
Reasoning, 14, 15,27, 29, 33, 37,42, 43, 206, 211, 216, 219, 231
46, 89,90, 111, 114, 146 Sequence
Recall, 96, 142, 151, 153, 154, 195 node, 55, 66, 93, 96, 183, 224, 273,
Recommendation system, 11, 13, 88, 201, 277
211,217, 231 processing, 45, 268
Recursive, 91, 134-137, 140, 144, 213, Serialization, 186, 325
251 Sigmoidal, 278
Recursive Autoassociative Memory, 22, Signal transmission, 84, 120, 122, 123,
26,49,74,75,79, 80, 110, 132~ 125, 266

143 Signature, 178, 179, 187, 279

328 INDEX
Significance 228
level, 255 Terminal symbol, 113, 135, 137, 138, 140,
test, 250 142, 201

Simulation, 74, 234

Singular Value Decomposition, 168, 216,

217,280
Software

development, 13, 36, 50-53, 62, 111,

122, 143, 146, 149, 158, 161,
167, 171, 200, 263-265, 267-
269

engineering, 29, 30, 80, 88, 110, 136,

Test statistic, 255, 256

Text mining, 65, 66, 167, 170, 204, 205,
214, 215, 227, 230, 231, 280

Time lag, 238, 246, 253, 255, 276

Time series, 13, 26, 36, 37, 39, 53, 58,
60-62, 65, 67, 86, 87, 91, 233—
242, 244249, 251-261, 265

Time-indexed, 53, 90, 145, 238, 246, 252,
258

141, 143, 145, 146, 148-150, 159, Topology, 51, 73-75, 77, 78, 89-91, 93,

171, 207, 263, 264, 268
metrics, 146, 158
Split attribute, 175, 177
Spreading code, 105, 120, 123, 124, 127,
129, 131, 178, 199
Standard deviation, 240
Stationarity, 238, 239, 254, 255, 258, 261
Steady state, 278
Stochastic process, 233, 235, 237-239,
241, 245
Stock price, 235, 242, 258
Stopword, 205
Structure
Symbol, 23, 24
Symbolic, 26
Subsymbolic, 18
Supply chain, 251
Support vector machine, 88, 89
Symbol
grounding, 24-26
manipulation, 14, 26, 50, 142
Symbol system hypothesis, 20, 22, 25,
82
Symbolic, 45
Synonymy, 215
Systematicity, 17-19, 22, 25, 26, 49, 93,
104-106, 109, 142

T
Tacit, 148
Term-document matrix, 170, 215, 216,

96-98, 100, 104, 105, 110, 111,
113, 135, 137, 156, 222, 245,
246, 248, 250, 260, 265, 273,
279
Traceability, 131, 149, 162, 183, 200
link, 163
Training
pattern, 58, 152, 169, 178, 180, 218,
246, 273, 277
set, 13, 58, 147, 154, 156, 169, 170,
179, 190, 197, 207, 219, 221,
222, 224, 227, 228, 250, 269,
277,279
Transformation
algebraic, 23
holistic, 144
lossy, 155
rule, 49
Triple, 92, 142, 161, 166
Turing test, 14

Underlying, 245
Unit root, 254
Univariate, 258

\"

Valence, 133-136, 217

Vector space model, 55, 169, 206, 215,
216, 226, 229

Versioning, 168

Vertical slice, 264

INDEX

329

A%
Wiener process, 255

X
XML element, 114, 128
XOR-problem, 72, 87, 88

