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Abstract—We prove convexity of the sum-power constrained
mean square error (MSE) region in case of two single-antenna
users communicating with a multi-antenna base station. Due to
the MSE duality this holds both for the vector broadcast channel
and the dual multiple access channel. Increasing the number of
users to more than two, we show by means of a simple counter-
example that the resulting MSE region is not necessarily convex
any longer, even under the assumption of single-antenna users. In
conjunction with our former observation that the two user MSE
region is not necessarily convex for two multi-antenna users, this
extends and corrects the hitherto existing notion of the MSE
region geometry.

I. INTRODUCTION

Up to now, only few contributions on the geometrical

structure of the mean square error region exist. In [1], the

authors show that the multi-user MIMO MSE region is convex

under fixed transmit and receive beamforming vectors both

for linear and nonlinear preprocessing. Obviously, a larger

set of MSE tuples can be achieved by means of adaptive

transmit and receive beamformers. For this extended setup

only the two user case has been investigated so far. Utilizing

matrix inequalities of matrix-convex functions, the authors

in [2] prove that the two user multi-antenna MSE region

cannot exhibit a nonconvex dent between two feasible MSE

points connected by a line segment with −45◦ slope. From

this observation, they claim that the MSE region is convex.

For convexity, however, all possible slopes would have to be

checked. As a matter of fact, a channel realization exhibiting

a nonconvex MSE region with two multi-antenna users has

been observed in [3] disproving the convexity theorem in

[2]. A multi-carrier system where several single-antenna users

communicate with a single-antenna base station has been

investigated in [4]. There, the complementary MSE region

of parallel broadcast channels is shown to be not necessarily

convex. Since the system under consideration in [4] can be

recast into a block diagonal MIMO broadcast channel, the

authors of [4] conclude that the two user multi-antenna MSE

region cannot be convex in general which again contradicts

the theorem in [2]. So far, no distinct statements on convexity

of the MSE region depending on the number of users and

antennas per user are available in case of adaptive transmit

and receive beamformers.

Some applications for which the geometry of the MSE

region is of interest are for example the stream priorization

according to buffer states or queue states by means of the

weighted sum-MSE minimization, cf. [5]. Here, suboptimum

transmit and receive filters are derived by repeatedly switching

between the downlink and the dual uplink in combination with

a geometric program solver for a reasonable power allocation.

Balancing is considered in [6] where the weights of a weighted

sum-MSE minimization are adapted until certain MSE ratios

hold. Exploiting the relationship between the derivative of the

the mutual information and the minimum mean square error,

Christensen et al. tackle the weighted sum-rate maximization

utilizing results from a weighted sum-MSE minimization,

see [7]. However, convexity of the MSE region is the cru-

cial point for the proper functionality of above applications

since nonconvexity may for example prevent convergence of

iterative algorithms. Finally, the MSE ε achieved with MMSE

receivers is tightly related to the maximum SINR via

SINR =
1

ε
− 1, (1)

and hence, also to the data rate R via the simple relation

R = − log2 ε. (2)

Summing up, all this clearly motivates a detailed investigation.

In this paper, we extend the hitherto existing notion of the

MSE region geometry. The single antenna case with two users

is covered in Section II whereas statements on the convexity

of the MSE region for three or more single-antenna users are

presented in Section III. Finally, a conjecture on the convexity

of the multi-antenna two user case is given in Section IV, and

detailed proofs for the theorems and corollaries are attached

in Appendices A–C for the sake of readability.

II. CONVEXITY FOR TWO SINGLE-ANTENNA USERS

In this section we present statements on the geometry of

the MSE region of two single-antenna users. For this setup,

convexity can always be shown:

Theorem II.1: The MSE region of two single-antenna users

is convex both in the multiple-access channel and in the vector

broadcast channel.

Proof: See Appendix A.

For the most important part of the boundary of the two user

MSE region (see Fig. 1) there is a functional relationship

ε2 = g(ε1) (3)



between the two users’ MSEs ε1 and ε2. If the channel vectors

h1 and h2 describing the transmission from both users to the

base station in the dual MAC are not colinear, the function g
is strictly convex, otherwise, it is affine:

Corollary II.1. The function g : ε1 7→ ε2 = g(ε1) describing

the efficient set of the MSE region is strictly convex if h1 and

h2 are not colinear. Otherwise, g is affine.

Proof: See Appendix B.

III. NONCONVEXITY EXAMPLE FOR MORE THAN TWO

SINGLE-ANTENNA USERS

Although the MSE region is convex for two single-antenna

users, this property may get lost when adding an additional

user, even if he is equipped with only a single antenna:

Theorem III.1: The three user MSE region of both the vector

broadcast channel and the multiple-access channel is not

necessarily convex.

Proof: For the proof, we present a simple example in Ap-

pendix C where the line segment connecting two feasible MSE

triples lies outside the MSE region. A further confirmation of

Theorem III.1 results from the observation, that the weighted

sum-MSE minimization has more than one local minimum,

see Appendix C.

Nonconvexity implies for example that not every point of

the MSE efficient set can be achieved by means of the

weighted sum-MSE minimization technique. Balancing ap-

proaches based on the weighted sum-MSE minimization al-

gorithm hence may fail to achieve the desired MSE ratios,

cf. [3]. Instead they are prone to oscillations. The following

theorem covers the case when (three or) more than three users

are present in the system:

Theorem III.2: The MSE region of more than two users may

be nonconvex both in the vector broadcast channel and in the

multiple-access channel.

Proof: The three user case has already been shown in

Theorem III.1. For more than three users, the MSE region is

a multi-dimensional manifold. However, setting the powers of

those users to p4 = . . . = pK = 0, the intersection of this man-

ifold with the K −3 hyperplane(s) pi = 0, i ∈ {4, . . . , K}, is
again a three-dimensional manifold which may have the same

geometry as the manifold of the three user case. Hence, the

MSE region may be nonconvex for more than three users as

well.

IV. CONJECTURE ON THE CONVEXITY OF THE

MULTI-ANTENNA TWO USER CASE

A counter-example to convexity of the MSE region when

multi-antenna users are involved has been shown in [3], where

two users each equipped with two antennas communicate
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Fig. 1. MSE ε2 of user 2 depending on MSE ε1 of user 1.

with a multi-antenna base-station. Similarly, the multi-carrier

single-antenna system in [4] can be recast into a multi-antenna

MIMO broadcast channel system where again nonconvexity

was observed. Following the idea in the proof of Theo-

rem III.2, the MSE region of two or more than two users

may be nonconvex as soon as two multi-antenna users are

present. Proving convexity for the case of one single-antenna

user and one multi-antenna user turns out to be difficult

since a parametrization of the lower left boundary of the

feasible MSE region is not known, points on this boundary

are obtained by limits of iterative algorithms. Nonetheless,

extensive simulation results bring us to the conjecture that the

MSE region of one single antenna user and one multi-antenna

user is convex.

APPENDIX A

PROOF OF THEOREM II.1

Because of the MSE duality between the vector BC [8] and

the MAC in [9], [6], [10], it suffices to prove convexity in

the MAC which is easier to handle. Fig. 1 shows the basic

characteristics of the two user MSE region for single-antenna

users. Here, the MSEs ε1 and ε2 of both users are upper

bounded by 1 since MMSE receivers are assumed. Allowing

for other receiver types does not bring any reasonable gain

since only MSE-pairs where at least one entry may lie above 1
would arise. Under the assumption of MMSE receivers, the

right part of the boundary of the MSE region is obtained when

user one does not transmit any data to the base station at

all and user two varies its transmit power from zero to PTx.

Similarly, the upper part of the boundary is reached when user

two does not transmit at all whereas user one varies its transmit

power from zero to PTx. Evidently, the most interesting part

of the boundary is the lower left one, where the sum of

both transmit powers equals the maximum available power

PTx. MSE pairs lying on this boundary feature the functional

relationship ε2 = g(ε1), where the domain and the image of

g are the sets [εmin,1, 1] and [εmin,2, 1], respectively. When less

than the total transmit power PTx is consumed, points are

achieved that are element of the interior of the MSE region.

As a conclusion, convexity of the set of feasible MSE points

corresponds to convexity of the function g relating the MSE



ε1 of user one to the MSE ε2 of user two on the lower left

boundary of the MSE region. In the following, we show that

∂2ε2

∂ε2
1

=
∂2g(ε1)

∂ε2
1

≥ 0 (4)

holds which immediately implies convexity of g.
Unfortunately, a direct functional relationship between ε2

and ε1 is not available. Instead, the two MSEs ε1 and ε2

are parametrized by the transmit power of one of them, for

example by the transmit power p ∈ D = [0, PTx] of user one:

ε1 = f1(p), ε2 = f2(p).

We can conclude that user two has to transmit with power

PTx − p in order to utilize the complete power budget. In

conjunction with MMSE receivers, the mean square error of

user one reads as

ε1 = f1(p) = 1 − phH
1 X−1(p)h1 > 0, (5)

with the positive definite covariance matrix of the received

signal

X(p) = σ2
ηIN + ph1h

H
1 + (PTx − p)h2h

H
2 (6)

and σ2
η > 0 represents the variance of the noise at every

antenna element. Similarly, the MSE of user two is denoted

by

ε2 = f2(p) = 1 − (PTx−p)hH
2 X−1(p)h2 > 0. (7)

Combining (5), (7), and (6), the function f1 turns out to be

strictly monotonically decreasing in p, i.e.,

ε̇1 :=
∂f1(p)

∂p
< 0 ∀p ∈ D, (8)

whereas f2 is strictly monotonically increasing in p:

ε̇2 :=
∂f2(p)

∂p
> 0 ∀p ∈ D. (9)

From (8) and (9), pseudo-convexity of g already follows.

Before validating (4), we compute the first derivative:

∂g(ε1)

∂ε1
=

∂f2(p)
∂p

∂f1(p)
∂p

∣

∣

∣

∣

∣

p=f
−1

1
(ε1)

. (10)

Note that f−1
1 (ε1) denotes the inverse function of f1 which

exists due to (8). Differentiating (10) again with respect to ε1

yields

∂2g(ε2)

∂ε2
1

=
∂

∂ε1

(

∂f2(p)
∂p

∂f1(p)
∂p

∣

∣

∣

∣

∣

p=f
−1

1
(ε1)

)

=

(

∂

∂p

∂f2(p)
∂p

∂f1(p)
∂p

)∣

∣

∣

∣

∣

p=f
−1

1
(ε1)

·
∂f−1

1 (ε1)

∂ε1

=
ε̈2ε̇1 − ε̈1ε̇2

(ε̇1)
2

∣

∣

∣

∣

∣

p=f
−1

1
(ε1)

·
1

ε̇1|p=f
−1

1
(ε1)

=
ε̈2ε̇1 − ε̈1ε̇2

(ε̇1)
3

∣

∣

∣

∣

∣

p=f
−1

1
(ε1)

.

(11)

Since f−1
1 maps from [εmin,1, 1] to D, and since ε̇1 < 0 holds

∀p ∈ D, the function g is convex iff [see (11) and cond. (4)]

ε̈2ε̇1 − ε̈1ε̇2 ≤ 0 ⇔ g is convex. (12)

For notational brevity, we introduce the two substitutions

ai,j = hH
i X−1(p)hj and bi,j = hH

i X−2(p)hj , (13)

which satisfy ai,j = a∗

j,i and bi,j = b∗j,i. Making use of

∂X−1(p)

∂p
= −X−1(p)

∂X(p)

∂p
X−1(p),

the first derivatives with respect to p in (8) and (9) can be

shown to equal

ε̇1 = −σ2
ηb1,1 − PTx|a1,2|

2,

ε̇2 = +σ2
ηb2,2 + PTx|a1,2|

2,
(14)

respectively. Differentiating (14) again w.r.t. p, we obtain

ε̈1 = 2σ2
η[a1,1b1,1 −ℜ{a1,2b2,1}] + 2PTx|a1,2|

2(a1,1 − a2,2),

ε̈2 = 2σ2
η[a2,2b2,2 −ℜ{a2,1b1,2}] + 2PTx|a1,2|

2(a2,2 − a1,1).

Inserting (14) and the last two equations into (12) and applying

ℜ{a2,1b1,2} = ℜ{a1,2b2,1} results in

ε̈2ε̇1 − ε̈1ε̇2 =

2σ2
ηPTx|a1,2|

2 [2ℜ{a1,2b2,1} − a2,2b1,1 − a1,1b2,2]

+ 2σ4
ηb1,1 (ℜ{a1,2b2,1} − a1,1b2,2)

+ 2σ4
ηb2,2 (ℜ{a1,2b2,1} − a2,2b1,1) .

(15)

In order to prove that (15) is not positive to fulfill the convexity

requirement in (12), we will reveal that all three summands

in (15) are not positive.

For the first summand, this turns out to be very easy:

Noticing that ai,i > 0 and bi,i > 0, the first summand in

(15) is nonpositive if

4ℜ2{a2,1b1,2} ≤ (a2,2b1,1 + a1,1b2,2)
2. (16)

Clearly, we can upper bound the real part by the magnitude

and apply the Cauchy-Schwarz-inequality with (13) to bound

the magnitude:

4ℜ2{a2,1b1,2} ≤ 4|a2,1b1,2|
2 ≤ 4a2,2a1,1b1,1b2,2. (17)

Validating the inequality

(a2,2b1,1 + a1,1b2,2)
2 ≥ 4a2,2a1,1b1,1b2,2

⇔ (a2,2b1,1 − a1,1b2,2)
2 ≥ 0

leads in conjunction with (17) to the conclusion that (16) is

fulfilled, i.e., the first summand in (15) is nonpositive.

Nonpositivity of the second summand in (15) is resembled

by the inequality

ℜ

{

a1,2

a1,1

b2,1

b2,2

}

≤ 1. (18)

To prove (18) we explicitly have to exploit the structure of

X(p) in (6) which makes the proof longer than the one for



the first summand. Interestingly, the real part operator in (18) is

redundant as its argument turns out to be real-valued. Applying

the matrix inversion lemma several times, we get

a1,2

a1,1
=

σ2
ηhH

1 h2

σ2
η‖h1‖2

2 + d(PTx−p)
, (19)

with the substitution

d = ‖h1‖
2
2‖h2‖

2
2−|hH

1 h2|
2 ≥ 0. (20)

Applying several times the matrix inversion lemma as for the

first fraction, the second fraction in (18) can be expressed as

b2,1

b2,2
=

hH
2 h1

[

σ4
η − p(PTx−p)d

]

σ4
η‖h2‖2

2 + dp(2σ2
η + p‖h1‖2

2)
. (21)

Multiplying (19) by (21) yields the real-valued expression

b2,1a1,2

a1,1b2,2
=

σ6
η|h

H
1 h2|

2 − c1

σ6
η‖h1‖2

2‖h2‖2
2 + c2

∈ R

with the two substitutions

c1 = σ2
η|h

H
1 h2|

2pd(PTx − p) ≥ 0,

c2 =
[

σ2
η‖h1‖

2
2 + d(PTx − p)

]

dp
(

2σ2
η + p‖h1‖

2
2

)

+ σ4
η‖h2‖

2
2d(PTx − p) ≥ 0.

Since both c1 and c2 are nonnegative, we find

b2,1a1,2

a1,1b2,2
≤

σ6
η|h

H
1 h2|

2

σ6
η‖h1‖2

2‖h2‖2
2

as an upper bound from which (18) directly follows due to

the Cauchy-Schwarz-inequality. Thus, the nonpositivity of the

second summand in (15) is proven.

Finally, the nonpositivity of the third summand in (15) is

shown by the same reasoning as for the second summand:

ℜ

{

a1,2

a2,2

b2,1

b1,1

}

≤ 1 (22)

is deduced from

b2,1a1,2

a2,2b1,1
=

σ6
η|h

H
1 h2|

2 − d1

σ6
η‖h1‖2

2‖h2‖2
2 + d2

∈ R,

where di follows from ci by interchanging indices and powers:

d1 = c1,

d2 =
(

σ2
η‖h2‖

2
2 + dp

)

d(PTx − p)
[

2σ2
η + (PTx − p)‖h2‖

2
2

]

+ σ4
η‖h1‖

2
2dp ≥ 0.

As all three summands in (15) are nonpositive, the inequality

in (12) is satisfied and the proof for the convexity of the MSE

region is complete.

APPENDIX B

PROOF OF COROLLARY II.1

If the inequality in (12) is strict for all p ∈ D, g is strictly

convex. Excluding equality in (12) therefore ensures that g is

strictly convex. The difference in (15) is zero if and only if all

three summands are zero since each summand is nonpositive.

In order to let the first summand vanish, the Cauchy-Schwarz-

inequality in (17) has to be fulfilled with equality. To this end,

h1 and h2 have to be colinear which also fulfills (16) with

equality. If both channel vectors are colinear, d = 0 results

from (20) and the variables c1, c2, d1, and d2 are zero as well.

Obviously, (18) holds with equality and the last two summands

in (15) vanish. Thus, we have shown that if the two channel

vectors h1 and h2 are not colinear, then the function g is

strictly convex. Additionally, if both vectors are colinear, g
has curvature zero for all powers p ∈ D. As a consequence, g
is affine. In the latter case, we have the relationship

g(ε1) = −ε1
|α|2+|α|2γ‖h1‖

2
2

1 + |α|2γ‖h1‖2
2

+ 1 +
|α|2

1 + |α|2γ‖h1‖2
2

, (23)

where γ = PTx/σ2
η denotes the transmit SNR, h2 = αh1, and

ε1 ∈ [εmin,1, 1] with

εmin,1 =
1

1 + γ‖h1‖2
2

. (24)

APPENDIX C

PROOF OF THEOREM III.1

A nonconvex three user MSE region can for example be

obtained by the channel matrix

H = [h1, h2, h3] =

[

1 0 1
0 1 1

]

(25)

and a transmit power PTx = 10. In this case, the base station

is equipped with N = 2 antennas, and the channel vector

h3 is the sum of h1 and h2. Note that the base station has

fewer antennas than users are present in the system in this

special case. Nonconvexity of the MSE region can also be

and has been observed when the channel vectors of all users

are linearly independent (N ≥ K must hold then). If the

MSE region was convex, the line segment between every two

feasible MSE triples would have to be a subset of the region.

Moreover, the weighted sum-MSE minimization with arbitrary

nonnegative weights w = [w1, . . . , wK ]T ≥ 0K , w 6= 0K

may have stationary points fulfilling the KKT conditions with

only one common value of the weighted minimization. In the

following, we show that these conditions are violated for the

channel in (25).

The weighted sum-MSE minimization reads as

minimize
p1,...,pK

K
∑

k=1

wkεk s.t.:

K
∑

k=1

pk ≤ PTx, pk ≥ 0 ∀k, (26)

where pk is the power with which user k transmits in the

uplink and the MSE of user k reads as

εk = 1 − pkhH
k X−1hk (27)

with the received signal covariance matrix

X = σ2
ηIN +

K
∑

ℓ=1

pℓhℓh
H
ℓ . (28)



The Lagrangian function associated to (26) reads as

L =

K
∑

k=1

wkεk + λ
(

K
∑

k=1

pk − PTx

)

−

K
∑

k=1

µkpk. (29)

Note that the Lagrangian multipliers λ and µ1, . . . , µK have

to be nonnegative real. If above Lagrangian L has stationary

points with different values for L, the underlying MSE region

is not convex since more than one hyperplane with normal

vector [w1, . . . , wK ]T locally supporting the MSE region

exists. The KKT conditions read as

hH
k X̌−1(wkX̌ − Š)X̌−1hk = λ̌ − µ̌k ∀k, (30)

p̌k ≥ 0 ∀k, (31)

p̌kµ̌k = 0 ∀k, (32)

µ̌k ≥ 0 ∀k, (33)

K
∑

k=1

p̌k ≤ PTx, (34)

λ̌
(

K
∑

k=1

p̌k − PTx

)

= 0, (35)

λ̌ ≥ 0, (36)

with the substitution

S =

K
∑

ℓ=1

wℓpℓhℓh
H
ℓ . (37)

Note that checked variables (̌·) are those which fulfill the KKT
conditions. Assuming a weight vector

w = [0.22, 0.54, 0.24]T, (38)

the weighted sum-MSE minimization (26) features two sta-

tionary points satisfying the KKT conditions (30)–(36) for the

channel vectors (25) and a transmit power PTx = 10. The first
set of primal and dual variables fulfilling the KKTs reads as

p̌(1) = [3.6753, 6.3247, 0]T, λ̌(1) = 0.0101,

µ̌1
(1) = µ̌2

(1) = 0, µ̌3
(1) = 0.0266,

(39)

and achieves a weighted sum-MSE
∑3

k=1 wkε̌k
(1) = 0.36078.

The second set of variables reads as

p̌(2) = [0, 7.0794, 2.9206]T, λ̌(2) = 0.0115,

µ̌1
(2) = 0.007, µ̌2

(2) = µ̌3
(2) = 0,

(40)

and obtains a slightly larger metric
∑3

k=1 wkε̌k
(2) = 0.3828.

The existence of two KKT points with different values alge-

braically proves the nonconvexity of the MSE region.

A geometrical proof is shown in Fig. 2, where the three-user

MSE region for the channel in (25) is plotted with PTx = 10.
The two KKT points in (39) and (40) achieve individual MSE

triples

ε̌(1) =
[

ε̌1
(1), ε̌2

(1), ε̌3
(1)
]T

= [0.2139, 0.1365, 1]T,

ε̌(2) =
[

ε̌1
(2), ε̌2

(2), ε̌3
(2)
]T

= [1, 0.1977, 0.2335]T.

(41)
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Fig. 2. Example of a nonconvex MSE region for K = 3 users. The line
segment connecting two feasible points lies outside the region.

However, the line segment connecting ε̌(1) and ε̌(2) does not

completely belong to the MSE region, it lies outside the region

and touches the boundary of the MSE region at ε̌(1) and ε̌(2).

Evidently, the MSE region cannot be convex.
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