
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Kommunikationsnetze

Fachgebiet Medientechnik

Video Multicast in Peer-to-Peer
Networks

Francisco de Asís López Fuentes

Vollständiger Abdruck der von der Fakultät Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Klaus Diepold
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Eckehard Steinbach

2. apl. Prof. Dr.-Ing. habil. Walter Stechele

Die Dissertation wurde am 05.08.2008 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 07.01.2009 angenom-
men.

ii

Video Multicast in Peer-to-Peer Networks

Francisco de Asís López Fuentes

January 31, 2009

To Iliana, Ingrid and Magnolia

Acknowledgments

I am very grateful to my advisor Prof. Dr.-Ing. Eckehard Steinbach who guided my research
and shared his ideas and insights during these years. I appreciate his time, support, and
advices given by my work. This doctoral thesis would never have been possible without his
support, guidance and professional attitude.

I would also like to thank Prof. Dr.-Ing. Walter Stechele for accepting to be the second
examiner of this thesis and Prof. Dr.-Ing. Klaus Diepold for heading the committee.

During my stay at the Technische Universität München (TUM) I had the pleasure to interact
with the members of the Media Technology Group (MTG) and Lehrstuhl für Kommunika-
tionsnetze (LKN). A research group with diversity and high motivation. I want to thank
to all them. Especially, the collaboration and discussions with Shoaib Khan, Wei Tu, Dr.-
Ing. Ingo Bauermann and Peter Hinterseer was always very fruitful. I would like to thank
Dr.-Ing. Martin Maier, for all the technical support at LKN.

This research was partially supported by the Consejo Nacional de Ciencia y Tecnologia
(CONACyT) of Mexico since October 1, 2003 until March 31, 2008, and by the Deutscher
Akademischer Austausch Dienst (DAAD) since April 1, 2008 until September 30, 2008. A
German course was sponsored by DAAD between April 1, 2003 to September 30, 2003.

Gracias a mi familia y amigos por su apoyo y comprensión en todo momento. A mi padres
por la formación que ellos me dieron. A mi esposa Iliana por toda su paciencia durante el
desarrollo de este trabajo y a mis hijas Ingrid y Magnolia Nicole por toda felicidad que ellas
nos han traido. A mis hermanos, suegros y cuñados por su motivación y apoyo.

Munich, July 2008

Francisco de Asís López Fuentes

v

vi

Abstract

Peer-to-peer (P2P) video streaming is a promising solution to enable efficient video distribu-
tion over the Internet. The nodes or peers in this type of system can take the role of both a
server and of a client at the same time. During video distribution each peer acts as a relay
node contributing it upload capacity. This thesis focuses on a specific topic known as P2P
Video Multicast within the P2P streaming area. The contribution of this thesis is to present
network-adaptive techniques and novel architectures which improve the video delivery in
terms of end-to-end delay, scalability and video quality for different scenarios. The pro-
posed architectures are supported by an analytical framework, extensive simulations and
evaluations in real-world scenarios using the PlanetLab overlay testbed.

Kurzfassung

Peer-to-Peer (P2P) Video Streaming ist ein vielversprechender Ansatz, um eine effiziente
Verteilung von Videos über das Internet zu ermöglichen. Die beteiligten Netzknoten können
gleichzeitig die Rolle eines Servers oder eines Clients übernehmen. Während der Videoüber-
tragung agiert jeder Peer als Relais-Knoten und trägt seine Upload-Kapazität bei. Diese
Arbeit beschäftigt sich mit P2P Video Multicast, welches einen Teilbereich von P2P Video-
Streaming darstellt. Der Hauptbeitrag der Arbeit besteht in neuen Architekturen und adap-
tiven Methoden, die die Videoübertragung hinsichtlich Ende-zu-Ende-Verzögernung, Skalier-
barkeit und Videoqualität in verschiedenen Szenarien verbessert. Die vorgeschlagenen Ar-
chitekturen werden sowohl analytisch, durch umfangreiche Simulationen, sowie durch eine
Implementierung im weltumspannenden Overlay-Netz PlanetLab evaluiert und validiert.

vii

viii

Contents

List of Figures xiii

List of Tables xvii

Abbreviations and Acronyms xix

Notation xxi

1. Introduction 1
1.1. Motivation for Media Delivery on Peer-to-Peer Networks 1
1.2. Contributions . 2
1.3. Organization . 4
1.4. Performance Metrics . 4

2. Background in Media Delivery 7
2.1. Media Representation . 7
2.2. Media Compression . 8

2.2.1. H.264/AVC Video Coding . 8
2.2.2. Scalable Video Coding . 9
2.2.3. H.264/SVC Scalable Video Coding Extension 9

2.3. Digital Video Formats . 10
2.4. Media Applications . 11
2.5. Media Delivery . 12

2.5.1. Communication Modes . 12
2.5.2. Media Delivery Modes . 12
2.5.3. Protocols for Media Streaming . 13

2.6. Delivery Infrastructures . 14
2.6.1. IP-Multicast . 14
2.6.2. Content Delivery Network . 15
2.6.3. Application Layer Multicast (ALM) . 15
2.6.4. P2P Networks . 16

2.7. Chapter Summary . 22

3. State of the Art in Overlay-based Distribution 23
3.1. Introduction . 24

3.1.1. Tree-based P2P Streaming . 25
3.1.2. Forest-based Overlay . 25
3.1.3. Mesh-based Overlay . 26

3.2. Application of Tree-based Overlay for Media Streaming 27
3.2.1. ZigZag . 27

3.3. Application of Forest-based Overlays for Media Streaming 27

ix

Contents

3.3.1. SplitStream . 28
3.3.2. Dagster . 28
3.3.3. M-ary Trees . 29

3.4. Application of Mesh-based Overlays for Media Streaming 30
3.4.1. Mutualcast . 30

3.5. Hybrid Tree/Mesh Overlay . 35
3.6. Multi-Source Multicast . 35
3.7. A Global Testbed: PlanetLab . 36

3.7.1. Mutualcast Implementation and Evaluation 36
3.8. Research Challenges . 37
3.9. Chapter Summary . 38

4. Hierarchical Collaborative Multicast 39
4.1. Introduction . 39
4.2. Description . 40
4.3. Cluster Organization . 42

4.3.1. Cluster Formation . 42
4.3.2. Flow Control Mechanism . 44
4.3.3. Caching Mechanism . 44
4.3.4. Redistribution Mechanism between Clusters 46

4.4. Simulation . 49
4.5. Implementation . 50
4.6. Evaluation . 52
4.7. Chapter Summary . 56

5. Multi-Source Video Multicast 59
5.1. Description . 61
5.2. Throughput-based Analysis . 62

5.2.1. Sources with Joint Rate Allocation for Different Rate Streams 62
5.2.2. Sources with Joint Rate Allocation for Same Rate Streams 65
5.2.3. Sources with Independent Rate Allocation for Same Rate Streams . . . 68
5.2.4. Sources with Independent Rate Allocation for Different Rate Streams . 71

5.3. PSNR-based Analysis . 72
5.3.1. Sources with Joint Rate Allocation for Different Video Quality Streams 73
5.3.2. Sources with Joint Rate Allocation for Same Video Quality Streams . . 74
5.3.3. Sources with Independent Rate Allocation for Same Rate Streams . . . 77
5.3.4. Sources with Independent Rate Allocation for Different Video Quality

Streams . 78
5.4. Simulation . 79

5.4.1. Throughput-based Simulation . 79
5.4.2. PSNR-based Simulation . 82

5.5. Implementation and Evaluation . 85
5.5.1. Implementation . 85
5.5.2. Evaluation . 87

5.6. Chapter Summary . 90

6. M-ary Tree-based Video Multicast 93

x

Contents

6.1. Motivation . 94
6.2. System Architecture . 95

6.2.1. Building a Collection of m-ary Trees . 97
6.2.2. Example . 98

6.3. Simulation Results . 101
6.4. Planet Implementation and Evaluation . 103

6.4.1. Case 1: Throughput among All Participating Peers is Similar 105
6.4.2. Case 2: Delivery Delay when the Throughput between the Source and

a Subsets of Peers is Highly Heterogeneous 106
6.4.3. Case 3: Delivery Delay when the Throughput between the Subsets of

Peers is Weak . 107
6.5. Chapter Summary . 109

7. Conclusions and Future Work 111
7.1. Conclusions . 111
7.2. Limitations . 113
7.3. Future Work . 113

A. Appendix 117
A.1. Simulation for Multi-source video Multicast . 117

A.1.1. Results for Throughput-based Simulation 117
A.1.2. Results for PSNR-based Simulation . 119

A.2. Experiments based on Scalable Video Coding 121

Bibliography 125

xi

Contents

xii

List of Figures

2.1. Different distribution schemes: a). Unicast, b). Broadcast, c). Multicast. . . . 12
2.2. IP Multicast . 14
2.3. Application Layer Multicast . 16
2.4. P2P Overlay Architecture . 17
2.5. A comparison among the different unstructured P2P architectures. a). Cen-

tralized P2P, b). Pure P2P, c). Hybrid P2P . 18

3.1. A comparison between: a) tree-based overlay, b) forest-based overlay, and c)
mesh-based overlay . 24

3.2. Example of an m-ary tree for 12 nodes . 29
3.3. Example of a complete m-ary tree for m = 3 30
3.4. Mutualcast content distribution network . 31
3.5. Participating peers in the Mutualcast scheme 32
3.6. Mutualcast example and its translation into a linear program for throughput

maximization . 34
3.7. Mutualcast throughput measurements: a) throughput of the source, b)- d)

throughput of the requesting peers. 37

4.1. Hierarchical Collaborative Multicast architecture for 15 peers organized in
clusters of size 3 . 41

4.2. Zone organization during cluster formation. a). Proximity constraints are not
considered, b). Concentric rings are used . 43

4.3. Flow control mechanism . 45
4.4. Storage blocks . 46
4.5. Flow diagram for the storage process . 47
4.6. The operation flow of the forward link on requesting peer. 48
4.7. An example of the hierarchical collaborative multicast scheme for six request-

ing peers together with the corresponds linear program. The objective is to
maximize the overall throughput . 49

4.8. Overall throughput comparison for Mutualcast and Hierarchical Collabora-
tive Multicast . 50

4.9. Establishment of peer connections and cluster formation from the source’
perspective. 52

4.10. Establishment of connections on the requesting peer. 53
4.11. Packet distance comparison between Mutualcast and Hierarchical Collabora-

tive Multicast . 53
4.12. Organization of Planetlab nodes using Hierarchical Collaborative Multicast . 54
4.13. Dynamic load distribution in clusters . 55
4.14. Dynamic load distribution in Mutualcast . 56

xiii

List of Figures

4.15. Maximum delay comparison between Mutualcast and Hierarchical Collabo-
rative Multicast . 56

5.1. Proposed for multi-source multicast approach 61
5.2. A multi-source example with two sources and N1 requesting peers 63
5.3. Exhaustion of ∆S1 and ∆S2 . 66
5.4. An example of two sources with independent rate allocation and same rate

streams . 69
5.5. Enforcement of the same video quality for two different videos using scalable

video coding. a). Redistribution of layers, b). PSNR comparison 75
5.6. Adaptive rate control scheme for two sources 76
5.7. Linear program for the first scenario. The objective is to maximize the overall

throughput . 80
5.8. Overall throughput comparison for all cases 81
5.9. The first scenario is translated into a linear program for the maximization of

the aggregate video quality . 83
5.10. a). Overall PSNR comparison for all scenarios, b). Individual PSNR com-

parison for all scenarios . 85
5.11. Arrangement of PlanetLab nodes during the evaluation of multi-source video

multicast . 88
5.12. Throughput comparison of the multi-source approaches delivering two dif-

ferent videos. a). Sources with independent rate allocation, b). Sources using
an adaptive mechanism for joint rate allocation. 89

5.13. Receiver throughput comparison for the requesting peer located at University
of Oregon receiving two different videos. a). Independent rate allocation, b).
Joint rate allocation using an adaptive mechanism. 89

5.14. Rate allocation percentage for each source: a). Sources with independent rate
allocation, b). Sources using an adaptive mechanism for joint rate allocation. . 90

5.15. Throughput comparison for the case of identical videos using adaptive multi-
source multicast. a). Sources using an adaptive mechanism for joint rate allo-
cation, b). Sources with independent rate allocation. 91

6.1. Peers are located in several geographical locations during a multicast session 94
6.2. Mutualcast with same distance d (e.g., RTT) among peers 95
6.3. a). Illustration of the worst case distance for Mutualcast, b). m-ary tree-based

approach when block X5 from the source is delivered 96
6.4. Building a collection of m-ary trees. 97
6.5. Preliminary m-ary tree collection . 99
6.6. Reduced m-ary trees collection . 100
6.7. A reduced m-ary tree collection is translated into a linear program for through-

put maximization . 101
6.8. Overall throughput comparison . 102
6.9. Delay comparison between Mutualcast and multicast based on m-ary trees.

a). Maximum delay b). Average delay . 103
6.10. Delivery rate on each distribution tree . 103
6.11. PlanetLab nodes used in the USA and Europe to evaluate the proximity-aware

collaborative multicast scheme and the Mutualcast scheme 104

xiv

List of Figures

6.12. m-ary tree collection when all participating peers present a similar throughput 105
6.13. Delivery delay to distribute all blocks when the throughput among all peers

is similar. The source is located at Rice University 106
6.14. m-ary tree collection when the throughput between the source and a subset of

peers is highly heterogeneous . 107
6.15. Delivery delay to distribute all blocks to all peers when the throughput be-

tween the source and a subset of peers is highly heterogeneous. The source is
located at the MIT . 107

6.16. m-ary tree collection to evaluate the first experiment when throughput among
subsets of peers is weak. The source is located at the MIT 108

6.17. Delivery delays obtained from the first experiment when throughput among
subsets of peers is weak. Source is located at the MIT 108

6.18. m-ary tree collection to evaluate the second experiment when throughput
among subsets of peers is weak. The source is located at the MIT 109

6.19. Delivery delays obtained from the second experiment when throughput among
subsets of peers is weak. Source is located at the MIT 110

A.1. Example picture of the Mother and Daughter video sequence. 122
A.2. Example picture of the Foreman video sequence. 123

xv

List of Figures

xvi

List of Tables

3.1. The overall throughput Θ of Mutualcast . 34

5.1. PSNR and rate for video sequences . 82

6.1. Upload capacity Ci of the requesting peers and their proximity to the source.
the two right main columns show the normalized values (compare (6.1) and
(6.2)) . 99

A.1. Overall throughput Θ for sources with joint rate allocation and different rate
streams . 117

A.2. Overall throughput Θ for sources with joint rate allocation and same rate
streams . 118

A.3. Overall throughput Θ for sources with independent rate allocation and same
rate streams . 118

A.4. Overall throughput Θ for sources with independent rate allocation and differ-
ent rate streams . 119

A.5. PSNR for sources with joint rate allocation and different video quality streams 119
A.6. PSNR for sources with joint rate allocation and same rate streams 120
A.7. PSNR for sources with joint rate allocation after the PSNR enforcement 120
A.8. PSNR for independent sources with same rate streams 121
A.9. PSNR for independent sources with different video quality streams 121
A.10.PSNR and rate for Mother & Daughter sequence (1 BL and 1 EL) 122
A.11.PSNR and rate for Foreman sequence (1 BL and 1 EL) 122
A.12.PSNR and rate for Foreman sequence (1 BL and 2 EL) 123

xvii

List of Tables

xviii

Abbreviations and Acronyms

ALM Application Level Multicast

AVC Advanced Video Coding

CDN Content Delivery Networks

CIF Common Intermediate Format (352x288 pixels)

CSCW Computer-Supported Cooperative Work

CCIR International Radio Consultative Committee

DHT Distributed Hash Table

DSL Digital Subscriber Line

QCIF Quarter Common Intermediate Format (176x144 pixels)

JSVM Joint Scalable Video Model

IP Internet Protocol

ISP Internet Service Provider

ITU International Telecommunications Union

HDTV High-Definition Television

HTTP Hypertext Transfer Protocol

H.264/AVC Advanced Video Coding

LAN Local Area Network

LP Linear Programming

MDC Multiple Description Coding

MPDU Message Protocol Data Unit

MSE Mean Squared Error

MPEG Moving Pictures Expert Group

NS2 Network Simulator 2

NP No Polinomial

QoS Quality of Service

xix

Abbreviations and Acronyms

P2P Peer-to-Peer

PL PlanetLab

PSNR Peak Signal-to-Noise Ratio

RD Rate-Distortion

RTT Round Trip Time

TCP Transmission Control Protocol

UDP User Datagram Protocol

SVC Scalable Video Coding

VoIP Voice over IP

VCL Video Coding Layer

WLAN Wireless Local Area Network

WAN Wide Area Network

xx

Notation

N total number of vertices/nodes/peers in the considered overlay network

N1 total number of requesting peers in the considered overlay network

N2 total number of helper peers in the considered overlay network

BR amount of data that is sent from the source to N1 requesting peers for redistribution

BH amount of data that is sent from the source to N2 helper peers for redistribution

BD amount of data that is directly sent from the source to N1 requesting peers

CRi upload capacity of requesting peer Ri

CHi upload capacity of source Hi

CSi upload capacity of source Si

Θ overall throughput in the considered system

M number of sources in a multi-source system

m number of child peers in an m-ary tree or cluster

∆Si residual upload capacity of source Si

R coding rate of a video sequence

PSNR video distortion in dB

Cn
j normalized upload capacity for peer Rj

Dn
i (j) normalized distance between peers Ri and Rj

xxi

Notation

xxii

1. Introduction

For many years, video has been present as an important media of entertainment and com-
munication in the society. The recent advances of the Internet and computing technologies
have opened up new opportunities to multimedia applications, where video delivery and
streaming over the Internet has gained significant popularity. Currently, video playback
from on-line video or news site has become part of the daily life of most Internet users. This
fact has generated a technological and social revolution in media distribution and consump-
tion.

Despite recent advances, video streaming over the Internet still presents many challenges,
mainly due to the nature of the Internet, which is based on the best-effort packet transfer
concept where quality-of-service (QoS) is not provided and throughput and delay fluctua-
tions can easily lead to video playback interruptions. Media streaming systems are distinct
from file-sharing systems, in which a client has to download the entire file before using it.
In a media streaming session, the receiver can already consume the file while downloading.
This kind of multimedia application requires high data rate, low-latency and low packet lost
rate, which represent a significant challenge for the design of future network architectures.

1.1. Motivation for Media Delivery on Peer-to-Peer Networks

During the past years, streaming video over the Internet has received great attention from
academia and industry due to the growing demand of the users for video services. To this
end, several multimedia applications have been developed and different distribution archi-
tectures have been proposed. However, most media streaming applications are based on the
traditional client-server model which leads to limitations on the achievable performance.
Even the large streaming servers are not able to feed more than a few hundred streaming
sessions simultaneously. The streaming server is the single point of failure and the required
high rate network access is costly. In addition, the selection of the best streaming server
during a session is difficult.

Since the Napster advent in 1999, Peer-to-Peer (P2P) networks have experienced a tremen-
dous growth in popularity. This kind of networks has generated great interest in the research
community who find in these systems a fast and efficient way to deliver movies, music or
software files. In a P2P system, the users interact directly as a way to exchange their re-
sources and services through the Internet [7]. P2P systems maintain their independence
of the underlying physical network by using an overlay topology. In contrast to the client-
server model, in a P2P system each computer or peer can take the role of both a server and of
a client. P2P networks have several advantages over the traditional client-server approach,
due to their inherent scalability, distributed delivery process and flexibility, which facilitate
a broad spectrum of multimedia applications.

P2P overlay networks have become a promising solution for video streaming and many
P2P multimedia systems have been subsequently deployed, which include distributed file

1

1. Introduction

sharing, content distribution or multimedia sensor networks. However, P2P media stream-
ing still has many open issues that must be solved to achieve high and constant video quality,
as well as low initial latencies. To this end, new P2P media streaming applications are being
investigated and developed. This thesis explores one of these applications known as P2P
Video Multicast.

P2P Multicast is a solution that allows for the distribution of content to an audience without
the need for any special support from the network [10], and where the upload capacity of the
participating peers is only considered to forward the content. P2P Multicast uses a delivery
mechanism to distribute media content to the participating peers, which are self-organized
into an overlay structure. The overlay structure is based on a single tree, multiple or on
meshes, while the delivery protocol is used to manage the media streaming to each peer
via this overlay structure. Although, P2P Multicast is a promising technology to content
distribution in scenarios such as videoconferencing or IP-based TV, until now its potential
has been greatly limited by low video quality as a result of low throughput to the receivers.

The purpose of this thesis is to provide media streaming architectures which help to reduce
end-to-end delay, increase the scalability and enhance video quality. This work studies P2P
multicast for two different distribution problems, namely one-to-many content distribution
and many-to-many content distribution. This thesis investigates the benefits of proximity,
rate allocation and scalable video encoding to improve the performance of a P2P multicast
system. In particular, proximity issues are used to deal with the low latency video streaming
problem. Rate allocation strategies are used to reach a constant video quality between dif-
ferent videos from different sources. The importance of using scalable video coding through
layers scheduling is considered for video quality issues between heterogeneous users.

1.2. Contributions

The media streaming architectures studied in this work are inspired by the Mutualcast ap-
proach [49], which is an efficient mechanism for one-to-many content distribution that max-
imizes the overall throughput by exploiting the upload capacity of all participating peers. In
this work the Mutualcast approach is extended to a hierarchical and multi-source approach.
This thesis also proposes a multicast approach based on multiple m-ary trees as an alterna-
tive solution to the Mutualcast approach.

More specifically, this thesis makes the following contributions:

• Implementation of a Mutualcast prototype on the PlanetLab infrastructure which al-
lows to evaluate the Mutualcast performance in terms of overall throughput and end-
to-end delay using several PlanetLab nodes located in different sites around the world.

• A hierarchical collaborative multicast model which achieves shorter end-to-end deliv-
ery time, improved scalability at reduced resource consumption. The proposed scheme
involves cooperation among the participating peers which are organized into small
mesh clusters at each level of a single distribution tree. This model combines the ben-
efits from tree and mesh structures in order to reach a best possible performance in
terms of delay and scalability. From tree-based distribution, the hierarchical multicast
model has taken the idea of how to construct a single global tree structure to achieve

2

1.2. Contributions

scalability, while from mesh-based approaches, the fully-connected topology to build
small clusters at each level of the tree has been taken, taking advantage of the higher
transmission capacities among neighboring peers. Each peer inside a cluster is a re-
ceiving and forwarding peer at the same time. Due to the fact that the upload capacity
of all peers is also used, the bandwidth consumption from the source can be reduced.
An analytical study and an experimental prototype of the hierarchical collaborative
multicast model are presented. The experimental prototype is implemented over the
PlanetLab infrastructure in order to evaluate the performance of the proposed model in
real-world scenarios. The results from PlanetLab show that the proposed hierarchical
multicast approach achieves a good performance, short delivery time and scalability.

• A multi-source video multicast framework for video streaming over P2P networks,
which distributes multiple videos to all requesting peers exploiting full collaboration
among the participating peers. In this approach, each source distributes its own video
sequence while additionally forwarding video data received from other sources. A sin-
gle peer is selected to redistribute a particular video block to the peers which would
like to receive the videos. The goal is to maximize the overall throughput or alter-
natively the aggregate video quality of multiple concurrent streaming sessions. The
special cases of "same throughput" or "same video quality" for all streams are also
considered. The rate allocation and redistribution are formulated as an optimization
problem and the proposed framework is evaluated for three different scenarios. In the
first scenario, the rate allocation is jointly decided for all participating peers. In the
second, the rate allocation is also decided jointly, but additionally either same rate or
same video quality streams are enforced. In this scenario an adaptive mechanism is
introduced in each source in order to enforce the same video quality between different
video sequences. The third scenario assumes separate distribution for every source
which divides its upload capacity equally among the different video sequences. The
rate allocation is formulated as an optimization problem, and an analytical model is
developed. To validate the analytical framework with real world environments, an ex-
perimental prototype is implemented and evaluated on the PlanetLab infrastructure.
The experimental results validate the analytical analysis and show the superior perfor-
mance of joint rate allocation compared to independent allocation and the effectiveness
of the proposed framework.

• A multicast scheme based on multiple m-ary trees rooted at the source as an alternative
to the Mutualcast approach. The proposed scheme maximizes the overall throughput
while minimizing the end-to-end delay by exploiting the full upload capacities of the
participating peers and their proximity relationship. The delivery scheme is based on
cooperation between the source, the content-requesting peers and the helper peers.
The source splits the content into several blocks and feeds them into multiple m-ary
trees rooted at the source. Every peer contributes its upload capacity by being a for-
warding peer in at least one of the m-ary trees. An algorithm to build the collection
of m-ary trees is proposed. The proposed model is studied both analytically and by
means of extensive simulation. A prototype of the proposed model has been imple-
mented and evaluated over the PlanetLab infrastructure. The results obtained from
the experiments on PlanetLab validate the results obtained from simulation and show
that the proposed model achieves similar throughput as the best known solution in the
literature (Mutualcast) while at the same time reducing content delivery delay.

3

1. Introduction

The proposed schemes in this dissertation use a fixed network topology. However, differ-
ent bandwidth allocation strategies are proposed in order to effectively deal with dynamic
changes in the network condition, such as variations in the upload bandwidth, packet loss
and transmission jitter. These strategies are supported by the TCP protocol. All links be-
tween nodes are established using TCP connections. Desired characteristic, such as reliable
data delivery, flow-control and handling of node leave events are automatically been taken
care of by the TCP protocol. The proposed schemes are directly related to small-scale Appli-
cation Layer Multicast (ALM) approaches for scenarios where the number of participants is
typically small such as multi-party video conferencing or multiplayer gaming.

1.3. Organization

This thesis is organized as follows. Chapter 2 provides a brief overview of peer-to-peer net-
works, some basics of video streaming, content delivery and scalable video. In Chapter 3,
recent advances in the field of peer-to-peer streaming and multicast schemes are described.
This chapter also provides an overview of Mutualcast [49], which is the reference multi-
cast model used in this thesis. Chapter 4 focuses on the impact of end-to-end delay and
the scalability during the media delivery. A hierarchical multicast model which combines a
tree structure with small fully connected clusters is proposed to deal with these problems.
The performance of hierarchical multicast and Mutualcast are analyzed over a real-world
network. In Chapter 5, the Mutualcast approach is extended to a multi-source model to dis-
tribute different video sequences from multiple senders to multiple receivers using a fully
connected network. An adaptive mechanism based on scalable video coding is introduced to
reach a similar video quality between different video sequences. A description about the op-
erations of this particular mechanism is given. This chapter also gives a detailed throughput
and rate-distortion analysis for the proposed multi-source multicast model, and evaluates
its performance over a real-world wide-area network using the PlanetLab testbed. Chap-
ter 6 introduces a multicast model based on multiple m-ary trees rooted at the source as an
alternative solution to the Mutualcast approach. An algorithm to build the tree collection
is presented. This algorithm combines the proximity information between the requesting
peers with their upload capacity in order to obtain an optimal tree collection. Different tree
collections can reach the same optimal solution, where the overall throughput is maximized
while the end-to-end delay is reduced. An experimental prototype is implemented on Plan-
etLab in order to evaluate the performance of the proposed approach. Chapter 7, concludes
this thesis with a summary and some directions for future research.

This dissertation also includes an appendix. Appendix A contains additional information
about the different simulations for multi-source video multicast and the results obtained
from the JSVM (Joint Scalable Video Model) software which is used in this thesis to encode
the test sequences for the experiments.

1.4. Performance Metrics

As previously stated, video streaming has demanding throughput, delay and loss rate re-
quirements. For P2P video multicast, it is difficult to efficiently support video multicast
while satisfying quality requirements from the users. To become highly accepted by the

4

1.4. Performance Metrics

users, the P2P streaming systems should offer a high video quality, as well as low end-to-
end delay. Thus, the metrics of interest for the study of the P2P video multicast systems in
this thesis are: the maximum throughput reached by the system, which refers to the over-
all throughput, the time to actually download the video which refers to the delivery time
or end-to-end delay, and the peak signal-to-noise ratio (PSNR), which refers to the video
quality.

Overall throughput. One of the key performance metrics for a distribution system is the
throughput, which describe its capacity to support a given multimedia application. In [1]
the throughput is defined as the number of binary digits that the network is capable of
accepting and delivering per unit of time. The throughput also is sometimes called bit rate,
transfer rate or data rate. In the proposed architectures, the overall throughput is related to
the capacity of the network to achieve a certain distribution rate.

Delivery time. Delay is an important factor in the distribution of real-time video, because
video data must be played out continuously. Due to its nature, a peer-to-peer system often
needs to relay the packets along multi-hop paths to reach the end-users. This fact introduces
an additional delay in each hop, which increases the end-to-end delay particularly when the
links are congested. Delay variation also is a critical parameter, because the video frames
must be presented to the users at a constant rate [1], and any variation must be corrected
before displaying the video to the viewers.

Video quality. Video quality is a strong factor for user satisfaction. In this thesis, the peak
signal-to-noise ratio (PSNR) is used to evaluate the video quality. PSNR is the most widely
used objective video quality metric. A video sequence with a PSNR value between 30 and
40 dB usually is acceptable [75], while a video with a PSNR below 30 dB is typically quite
bad.

5

1. Introduction

6

2. Background in Media Delivery

Multimedia refers to information that uses a combination of different content forms such as
text, images, audio and video. Multimedia has experienced tremendous growth in the late
20th century and early 21st century, and it has become one of the most used terms in differ-
ent scientific, economic and technological fields. In the computing field, "digital multimedia
concerns with the computer-controlled integration of text, audio, still images, animation, video, and
interactive content forms, where each type of information is represented, stored, transmitted, and pro-
cessed digitally" [1]. This chapter describes the terms that are associated with media delivery
and present an overview about the different types of communication infrastructures that are
used to distribute multimedia content.

This chapter is organized in the following way:

• Media representation and compression
The key concepts of media representation and the compression standards used in this
dissertation are introduced. The most popular applications in the current multimedia
wave are identified.

• Media delivery
The different communication modes and protocols for media delivery are reviewed.
The different alternatives for media distribution such as IP Multicast, Content Dis-
tribution Networks and P2P networks are introduced. The benefits, challenges and
applications of P2P networks are discussed.

2.1. Media Representation

The presentation of the information in a multimedia system is controlled by computers,
which handle the information as a succession of binary digits. To this end, all type of in-
formation such as text, images, audio and video must be coded in bits to be represented
in a digital format. For the case of text, "a unit is a block of characters, where each character
is represented by a fixed number of bits known as codeword " [76]. Similarly, a digital image is
represented by a two-dimensional block, where each element is represented by a fixed num-
ber of bits. In contrast, analog signals of audio must be converted to digital format using
digitization techniques known as signal encoding. Similar to audio, a digital video can be
obtained from a analog signal by using signal encoder. However, currently a video also can
be obtained digital directly using a digital camera. All digital cameras use an image sensor
called CCD (charge-coupled device) with photosensitive surface, which "comprises a 2-D ar-
ray of sensors, each corresponding to one pixel, where the optical signal that reaches each sensor is
converted to an electronic signal" [75].

Generally, the produced digital signal from these applications has a relatively high rate,
which is measured in bit per seconds (bps). Due to these very high rates, these applica-
tions (uncompressed audio and video) consume a tremendous amount of storage and band-

7

2. Background in Media Delivery

width, which cannot be supported by the communication systems and compression tech-
niques must be used.

2.2. Media Compression

Compression is an important issue to be considered for digital media distribution, because it
helps to reduce the high resulting bit rate from the digital conversion to a level which can be
supported by the communication networks. Compression removes the inherent redundan-
cies in digitized audio and video signals in order to reduce the amount of data that needs to
be stored and transmitted. In the following, this study only concentrates on video compres-
sion. To this end, a considerable effort has been realized during the last three decades for
the development of video compression techniques. Thus, different standards for video com-
pression such as H.261 [166], MPEG-1 [168], H.262 (MPEG-2) [169], H.263 [167] and MPEG-4
[170], have been developed. A recent video compression standard is H.264/AVC [171]. The
results presented in this dissertation are based on the video coding standard H.264 and one
of its extensions known as Scalable Video Coding (SVC) project [177]. A brief overview
about the H.264/MPEG4-AVC and H.264/SVC standards will be given in the next sections.

2.2.1. H.264/AVC Video Coding

H.264/Advanced Video Coding (commonly referred to as H.264/AVC) is the newest video
coding standard in the series of international video coding standards developed by the
ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group [171].
The standardization of H.264/AVC, also called MPEG-4/Advanced Video Coding was com-
pleted in May of 2003 [173].

H.264/AVC offers a wide range of bit rates, frame rates and spatial resolutions, making it
very versatile and guaranteeing its functionality for diverse applications [172], [175] such as
broadcast over various types of networks, interactive or serial storage, video on demand or
multimedia streaming. To provide flexibility and customizability for heterogeneous applica-
tions and networks, H.264/AVC integrates a Video Coding Layer (VCL), which represents
the video data efficiently. The Network Abstraction Layer (NAL) formats the VCL to make
it compatible with different transport layers and storage devices and provides the necessary
header information in an appropriate format [171].

In comparison to the MPEG-2 standard, H.264/AVC achieves on average a bit rate reduc-
tion of up to a 50% for the same level of perceived video quality [172]. This gain results
by combining a number of new features introduced by H.264/AVC, which allow it to com-
press video much more effectively than previous standards. Such key features include a
better motion-compensated prediction with multiple reference frames for prediction, vari-
able block-size motion compensation with finer granularity, spatial intra coding prediction
capacity, 4x4 integer transform, content-adaptive in-loop deblocking filter and improved en-
tropy coding [172].

A detailed description of H.264/AVC can be found in [171], [173], [174], [172], [175]. Addi-
tionally, a reference software implementation of H.264 is freely available in [105].

8

2.2. Media Compression

2.2.2. Scalable Video Coding

The capability of recovering important image or video information by decoding only parts
of a compressed bit stream is known as scalability [75]. Using scalable video coding (SVC),
parts of a video stream can be removed and the resulting substream forms another valid
video stream for some target decoder. This substream represents the source content with a
reconstruction quality that is less than quality of the complete original video stream but is
high when considering the lower quantity of remaining data [178]. Currently, the heteroge-
neous networks is catching on and appears to be the trend in which networks will converge
in the future. Under this conditions, SVC emerges as a valuable solution to easily adapt the
coding speed to the different transmission rates and physical devices.

SVC represents the video into one base layer (BL) and one or more enhancement layers (EL),
where each EL cumulatively upgrades the video quality contributed by the BL. In essence,
SVC encodes the video once, into a compressed bit-stream. Each of the different users can
now extract just the right amount of data from this common video stream, depending on
the network conditions or device type. The main constraint is that to decode a particular
enhancement layer, the BL and all the lower enhancement layers are required.

The usual forms of scalability are quality, spatial and temporal scalability. Quality scalabil-
ity is more commonly known as SNR scalability. In SNR scalability, the video is represented
by different layers varying in the level of perceptual quality. Here, decoding the base layer
provides a low-quality of the reconstructed video. However, the resulting quality of the
reconstructed video is increased by decoding the enhancement layers. In spatial scalability,
the BL and the EL usually use different spatial image resolutions (resolution of the EL higher
than that of the BL), making it possible for devices which have limits on their screen size (eg.
PDAs), to be able to receive the video, by receiving the layer with a lower resolution. Fi-
nally, temporal scalability enables different temporal resolutions, or frame rates to represent
the same video. This solution allows users with slower data links to access the same video
content, but with slower speeds.

In general, each form of scalability provides multiple video representations in different
resolutions, and each video representation has different importance and bandwidth require-
ments. The base layer (BL) is more important than the enhanced layers. Due to the coarser
quality of the base layer, the base layer needs less transmission bandwidth. In contrast, the
enhanced layers require more transmission bandwidth due to their finer quality. Scalable
Video Coding has been used by various video streaming systems [218], [157], [146] to pro-
vide video quality under variable network conditions.

2.2.3. H.264/SVC Scalable Video Coding Extension

H.264/AVC is now a well established video coding standard and several derivative stan-
dardization projects are emerging from it. Motivated by the significant improvements intro-
duced by the H.264/AVC standard, the Joint Video Team (JVT) of the ITU-T VCEG and
the ISO/IEC MPEG have standardized a Scalable Video Coding (SVC) extension of the
H.264/AVC standard [176], [177]. H.264/SVC retains most of the existing features of the
H.264/AVC, and adds new components to support the temporal, spatial and quality scala-
bility. In fact, the base layer of the H.264/SVC bit-stream is compatible with the H.264/AVC
standard and can be decoded by a regular AVC decoder. H.264/SVC has achieved signif-

9

2. Background in Media Delivery

icant improvements in coding efficiency with an increased degree of supported scalability
relative to the scalable profiles of prior video coding standards.

H.264/SVC introduces new tools which reduce the loss in coding efficiency compared to
single-layer coding. Schwarz et al. state the following features as the most important inno-
vations of H.264/SVC [178]:

• "A hierarchical prediction structure which provides temporal scalability with several layers
while improving the coding efficiency and increasing the effectiveness of quality and spatial
scalable coding".
• "Mechanisms for inter-layer prediction of macroblock modes, motion, and residual in order to

improve the coding efficiency for spatial scalable and quality scalable coding".
• "Introduction of the key pictures concept, in oder to adjust a suitable tradeoff between drift

[179] and enhancement layer coding efficiency for hierarchical prediction structures".
• "A single motion compensation loop provides a decoder complexity close to single-layer coding

for spatial and SNR scalability".
• "A modified decoding process which allows a lossless and low-complexity rewriting of a SNR

scalable bit stream into a bit stream that conforms to a non-scalable H.264/AVC profile".

Based on these innovations, H.264/SVC reaches a competitive rate-distortion performance
while only requiring a single motion compensation loop at the decoder side. Temporal scal-
ability is achieved using a hierarchical prediction structure [178]. The data corresponding to
non-reference frames or pictures are removed from the bitstream. Hence the base layer, the
one at the lowest temporal resolution is composed of only the key pictures or the key frames.
For supporting spatial scalable coding, SVC follows the conventional approach of multilayer
coding used by the previous standards. SNR scalability is enabled by performing residual
quantization. The base layer of the SNR scalable stream is encoded using transform coding
as for the H.264/AVC standard. This makes the obtained base layer compatible with the
AVC standard. For the enhancement layers, the quantization error between the base layer
and the original video is re-quantized, with greater precision by decreasing the quantization
step size [181]. This is done by lowering the quantization parameter (QP) of the encoder.
The newly constructed enhancement layer in combination with the base layer form the new
base layer for the next higher enhancement layer, and afterwards the process is repeated.
The refinement information is sent using progressive refinement (PR) slices. Each PR slice
represents a particular amount of refinement and can be truncated arbitrarily. The received
portion of the PR slice provides the improvement in the video quality.

The reference software to implement the H.264/SVC standard is the Joint Scalable Video
Model (JSVM) reference software. A version of the JSVM software, written in C++ is freely
available, and it can be accessed from a CVS server set up at the Rheinisch-Westfälische
Technische Hochschule (RWTH) Aachen [182].

More detailed information about H.264/SVC can be found in [176], [178], [179], [180], [177].

2.3. Digital Video Formats

For many years now, digitization of video has been used in television studios, and sev-
eral conversion processes between different video formats have been defined. In order to

10

2.4. Media Applications

standardize these processes, the International Telecommunication Union - Radiocommuni-
cations Branch (ITU-R) developed the Recommendation CCIR-601 (BT.601) [183], which de-
fines a standard for the digitization of video pictures. The original digitization format used
in Recommendation CCIR-601 is the 4:2:2 format. Based on the 4:2:2 format, a number of
variant formats such as 4:2:0 or the HDTV format have been derived [76]. In addition to
CCIR-601, other digital video formats have been defined for use in other application fields
such as video telephony, videoconferencing, and high definition TV (HDTV). The Common
Intermediate Format, known as CIF, was introduced by the International Telecommunica-
tions Union - Telecommunication sector (ITU-T) for videoconferencing applications over
ISDN/Internet. This format has about half the resolution of BT.601(4:2:0 format) in both
horizontal and vertical dimensions (352x288 pixels). The quarter CIF (QCIF) has been de-
fined for videophone and similar application. QCIF has been derived from the CIF and has
half the spatial resolution of CIF in both horizontal and vertical directions (176x144 pixels).
In this dissertation, the CIF and QCIF formats are used in the experiments. For example, the
spatial scalability uses the QCIF (176x144 pixels) format to encode the base layer, while the
enhancement layers are encoded by using the CIF (352x288 pixels) format.

2.4. Media Applications

There are several applications that involve multimedia. Some of these applications can be in-
terpersonal and interactive communications such as telephony or videoconferencing, while
others can be entertainment applications such as video on demand or television. In some of
these applications just a single type of media (e.g., speech, image, text or video) is involved,
while in others two or more types of media can be integrated together (e.g. videophone).
Interactive applications, such as videophone and videoconferencing, require that the media
be captured and encoded in real-time. In many non-interactive applications media content
is pre-encoded and stored for later enjoying. In these cases, the media may be stored lo-
cally or remotely. Examples of local storage include video DVD and music CD, while an
example of remote storage is video streaming over the Internet. Here, a real-time encoding
is not required and a more efficient encoding can be enabled (e.g., DVD content). However,
pre-encoded media has a limited flexibility, because it can not be significantly adapted to
channels that support different bit rates or to clients that support different display capabili-
ties [73]. On the other hand, some non-interactive applications, such as the live broadcast of
a sporting event, may also require real-time encoding. Recently, the most visible services in
the new multimedia wave are:

Voice over IP (VoIP) is an application for the transmission of voice through the Internet
or other packet-switched networks. Voice over IP also is known as IP telephony. Similar
to a data transfer application, the telephone signals are carried over the Internet as digital
signals reduced in rate by a speech compression technique. A successful VoIP application
based on P2P technology is Skype [20]. Although VoIP implementations are enjoying high
popularity, they face several challenges such as latency, jitter, available bandwidth, packet
loss and security.

Entertainment content distribution over Internet. With the advances in digital media and
Internet, people experience video and audio contents on the Web. This fact has generated
a technological revolution in video distribution and various systems to improve content

11

2. Background in Media Delivery

distribution have been proposed. However, video distribution on the web still has several
challenges such as quality, security, reach and costs.

Videoconferencing is an example where multiple type of media can be integrated together.
Videoconferencing often involves a group of people at each participating site, and it can be
bi-party and multi-party. For example, during a virtual seminar, speech, video and electronic
documents are integrated and transmitted to a remote group. In contrast, the information
from a remote group may integrate speech and video or just speech.

2.5. Media Delivery

2.5.1. Communication Modes

The typical communication modes in today’s communication networks can be classified as:
unicast, broadcast and multicast. Figure 2.1 illustrates these communication schemes.

Sender peer

Pool of peers

a)

Sender peer

Pool of peers

b)

Sender peer

Pool of peers

c)

Figure 2.1.: Different distribution schemes: a). Unicast, b). Broadcast, c). Multicast.

Unicast represents a common communication form between two entities. Unicast commu-
nication also is known as point-to-point or one-to-one communication. Unicast communi-
cation can be simplex, half-duplex or duplex. Telephone conversations and video streaming
over the Internet [73] are typical unicast examples.

Broadcast means that the information emitted from a source will be received by all the other
devices connected at the same network. Broadcast probably represents the most popular
communication scheme due to its wide usage in broadcast television.

Multicast is similar to broadcast except that the information emitted from a source is only
received by a specific group of nodes in the network, which is called a multicast group.
Multicast is an alternative to unicast that reduces the network traffic and optimizes the server
resources [72]. Multicast is a one-to-many communication scheme, while broadcast is an
one-to-all communication. Videoconferencing is a multicast example, where a predefined
group of devices/computers are involved to receive the same content.

2.5.2. Media Delivery Modes

Media streams can be transmitted in two different modes: download mode and streaming
mode.

12

2.5. Media Delivery

Media delivery based on file download

In the download mode, the users have to download the entire media file before playing it
back. Video download is similar to a file download, which allows to use established delivery
mechanisms such as TCP or FTP [73]. However, the media files generally are very large files
which require long transfer times and large storage capacities. The download mode requires
patience from the users, who have to wait until the entire video has been downloaded before
it can be viewed. Download also offers reduced flexibility, because the users must download
the entire video before deciding if it is the wanted video.

Media delivery based on streaming

In contrast, in the media streaming mode, the receiver can already consume the media file
while part of it is being received and decoded. In others words, media streaming allows
us to reduce the delay between the start of delivery and the beginning of playback at the
viewer. This delay usually is in the order of 5-15 seconds [73]. On the other hand, since only
a small portion of the video is stored by the viewer during media streaming, the require-
ments of storage are low. However, video streaming is sensitive to the delay, because the
video packets must arrive at the receiver before their playout deadlines [75]. Thus, media
streaming typically requires high data rate, low-latency, or high throughput in order to offer
video quality to the viewers. This is challenging since today’s Internet does not provide any
Quality of Service (QoS) guarantees to video streaming [74]. Additionally, the current Inter-
net has limitations to efficiently support multicast video while providing service flexibility
to users with different QoS requirements.

2.5.3. Protocols for Media Streaming

In this section, an overview about the most important Internet protocols for media streaming
is presented. Specifically, the study describes the transport-layer protocols known as UDP
and TCP, and how the media streaming is affected in both protocols. A detailed revision of
the protocol stack for media streaming can be found in [76], [75].

Current streaming services use the User Datagram Protocol (UDP) which allows predictable
and reduced delay, but it does not guarantee packet delivery.

TCP presents a number of important advantages for media streaming such as rate con-
trol and guaranteed delivery. TCP rate control has proven stability and scalability while
the guaranteed delivery is achieved via retransmission. On the other hand, TCP has some
practical difficulties of long delay and instantaneous fluctuations [73]. The long delay in-
troduced by the TCP retransmission is unacceptable for real-time video applications with
stringent delivery time. However, it is not always the case. For example, for Internet video
streaming and broadcast applications, the allowed delay can be relaxed to few seconds and
several retransmissions can be allowed [75].

Recently, "TCP-friendly" that avoids congestion similar to TCP, but without the instanta-
neous fluctuations has been proposed in [184], [185]. TCP-friendly rate control can coexist
with other TCP-based applications and has more predictable stability and scalability proper-
ties compared to previously deployed control schemes. However, TCP-friendly rate control
inherits from TCP characteristics such as the dependence of round-trip time for transmission
that are unacceptable for media streaming. A detailed information about the TCP-friendly

13

2. Background in Media Delivery

congestion control is given in [186].

The video streaming architectures proposed in this dissertation are based on TCP, in order
to take advantage of its suitable flow control and congestion control mechanisms.

2.6. Delivery Infrastructures

Media streaming over the Internet has gained significant popularity in recent years due to
the continuous increase in network access speed of the end-users. In this section, the main
media delivery infrastructures such as IP-Multicast, Content Delivery Networks, Applica-
tion Layer Multicast, and P2P Networks are introduced.

2.6.1. IP-Multicast

IP Multicast was proposed by Deering [81], as an efficient solution for one-to-many con-
tent dissemination. Multicast presents a better efficiency than unicast due to its reduced
transmission overhead on the sender and the network, which reduces the delivery time for
content distribution. A unicast-based distribution alternative requires that the source sends
an individual stream to each end-user, which is critical for high-bandwidth applications,
such as video, where large portion of bandwidth for a single stream is required. IP Multicast
reduces traffic by simultaneously distributing a single copy to potentially thousands of end-
users, while the multicast packets are replicated in the network by routers [83]. Different
applications such as videoconferencing, distance learning and news are based on multicast
technology. Figure 2.2 shows how data is distributed from a source to several end-users
using IP multicast. Here, a multicast distribution tree is formed by a tree whose root is the
source of the multicast tree and whose branches form a spanning tree through the network
to the end-users [83]. This tree is known as shortest path tree because the shortest paths
through the network are used.

Router 1

Router 2

End-host 1 (Source) End-host 2

End-host 3

End-host 4

Figure 2.2.: IP Multicast

IP multicast has shown to be an efficient and high performance technology for data delivery
from a source to a large number of receivers. Unfortunately, IP multicast has not been fully
deployed in today’s Internet. Some reason for this are:

14

2.6. Delivery Infrastructures

• Its deployment requires router support from all ISPs (Internet service providers), which
implicates substantial modifications of the Internet infrastructure.

• New issues associated with network control and management [85] such as end-to-end
reliability and flow and congestion control.

Thus, the deployment of IP Multicast has been limited to local area networks, individual
campuses, and a handful of ISPs only [84]. To face these challenges, different alternative IP
multicast approaches have been proposed [88], [89], [90]. Although these solutions simplify
IP multicast implementation and improve the network management, they still maintain the
router dependency. Recently, new IP Multicast [84], [86], [87] approaches have been pro-
posed to provide multicast service on the Internet using native IP Multicast. Most of these
solutions build IP multicast "islands", which are connected with each other using unicast
tunnels.

On the other hand, IP multicast presents specific challenges to streaming media systems
such as heterogeneity and more restricted choice for error control. Heterogeneity mainly
originates because different receivers experience different channel conditions, while restricted
choice for error control is because the retransmission in IP multicast is limited due to scala-
bility issues [73].

2.6.2. Content Delivery Network

In today’s Internet, one-to-many media streaming applications are based on the traditional
client-server model of Content Delivery Networks (CDN), and commercial solutions such
as Akami [78], Limelight Networks, VitalStream and other are offered via a CDN system.
A CDN is formed by content servers networked together across the Internet, which cooper-
ate with each other to transparently distribute content to end-users. Typically, the content
servers are located near the users, in order to be able to serve the requested content rapidly
[79]. The content servers in the CDN are connected to content providers via an internal
network, which is used to transfer content from providers to content servers.

However, the CDN approach faces a number of problems such as single point of failure and
costly access to high rate networks. Also, even the large streaming servers are not able to
feed more than a few hundred streaming sessions simultaneously. Additionally, the selection
of the best streaming server in a CDN during a session is difficult. These constrains limit the
CDN’s performance.

2.6.3. Application Layer Multicast (ALM)

In recent years, many researchers have chosen to use application-level solutions as an al-
ternative to implement multicast [85], [91], [92]. In Application-Layer Multicast (ALM), all
multicast tasks are implemented at the end-hosts exclusively while the network infrastruc-
ture is maintained. Figure 2.3 depicts an example ALM, where the numbers indicate the link
delays.

End system multicast is present in systems where all functionality is pushed to the end
hosts actually participating in the multicast group [77]. An example of this type of systems
are the P2P network. An overview about P2P networks will be given in the next section.

15

2. Background in Media Delivery

Router 1

Router 2

End-host 1 (Source) End-host 2

End-host 3 End-host 4

10

5

5

5

5

20

10

10

Figure 2.3.: Application Layer Multicast

A drawback in the ALM system is its performance penalty associated with dynamic and
heterogeneous Internet environments [77], because the performance is affected by the loca-
tions and stability of the end-users.

2.6.4. P2P Networks

2.6.4.1. Basic Principles

Since the Napster [2] advent in 1999, a new wave of P2P network architectures such as
Gnutella [3], KazaA [5], BitTorrent [8] and many others have been deployed. Currently, the
P2P networks generate an important portion of the Internet traffic. According to the Cisco
study forecasts [6], the P2P networks traffic represented up to 62 percent of all Internet traffic
in 2006. This trend is not expected to decrease over the next years. Instead, the Cisco report
considers that the P2P traffic will increase from 1,330 petabytes per month in 2006 to 5,270
petabytes per month in 2011. The Peer-to-Peer paradigm has been a very attractive topic for
many researcher from different areas such as networking, distributed systems, complexity
theory, databases and others. Therefore, the Peer-to-Peer concept is quite broad and a con-
siderable number of different definitions of "Peer-to-Peer" are found in the literature [9], [7],
[24], [27], [25].

A P2P communication infrastructure is formed by a group of nodes located in a physical
network. These nodes build a network abstraction on top of the physical network known as
an overlay network, which is independent of the underlying physical network. Figure 2.4
shows this scenario [7], [17]. The overlay network is established by each P2P system through
TCP or HTTP connections. Due to the abstraction layer TCP protocol stack, the physical
connections are not reflected by the overlay network. The overlay network builds logical
tunnels between pairs of nodes [11], in order to implement its own routing mechanism to
transport its messages.

In the traditional client-server model two types of nodes are employed: clients and servers.
In this context, clients only request services and the server only provides the clients with
the appropriate service. A server can accept several requests, process them, and return the
requested contents to the clients. In today’s Internet, the clients include web browsers, online
chat clients and email clients, while the servers typically are web servers, ftp servers and mail

16

2.6. Delivery Infrastructures

P2P Overlay Network

Internet
(Physical infrastructure)

Underlaying
links

Overlay
links

Figure 2.4.: P2P Overlay Architecture

servers. In contrast, in the P2P systems, no dedicated infrastructure is required. Dedicated
servers and clients do not exist because each peer can take the role of both a server and
of a client at the same time. An important advantage of peer-to-peer systems is that all
available resources are provided by the peers. During media distribution, peers contribute
their resources to relay the media to others. Thus, as a new peer arrives to the P2P system,
the demand is increased, but the overall capacity too. This is not possible in a client-server
model with a fixed number of servers.

2.6.4.2. P2P Classification

Currently, P2P systems are classified mainly into two categories: unstructured and struc-
tured. This classification is based on how the nodes in the overlay structure are connected to
each other.

Most unstructured P2P systems are considered as the first generation of P2P systems, which
were used to share and to store files. An unstructured P2P network is formed when the log-
ical links among participating nodes are established randomly. These systems are designed
more specifically for heterogeneous and distributed environments [15], where maintaining
strict restrictions on control data placement and the network topology is not possible. In an
unstructured network, the queries have to be flooded through the network, which causes
a high amount of traffic in the network. Unstructured systems can be further divided in
[17]: centralized P2P, pure P2P and hybrid P2P. Figure 2.5 shows the architectures for these
different unstructured P2P approaches.

In centralized systems such as Napster [2] a central directory server exists. This central
server is responsible for answering the queries. Hence, all the query traffic is directed to it.
On the other hand, in a pure P2P system all peers are equal and no peer holds any permanent
information about which objects are stored where. No directory with the data of the peers
which are a part of the network exists. Examples of this architecture is Gnutella 0.4 [3] and
FreeNet [19]. Finally, a hybrid architecture attempts to strike a balance between the accuracy
of the centralized architecture and the lower load of the pure architecture. The Gnutella v0.6
[23], JXTA [21], FastTrack [18], KaZaA [5], or Skype [20] are example of hybrid architectures.

17

2. Background in Media Delivery

b)a)

Central server

Pool of peers

c)

Figure 2.5.: A comparison among the different unstructured P2P architectures. a). Centralized P2P,
b). Pure P2P, c). Hybrid P2P

Structured P2P systems represent the second generation of P2P systems [13]. These systems
are structured because they maintain a close coupling between the network topology and
the location of data via a hash table (DHT). Ratnasamy et al. [14] define a hash table as
"a data structure that efficiently maps ’keys’ onto ’values’ and serves as a core building block in
the implementation of software systems". In fact, the hash table is used to precisely define the
data placement and lookup operations. In these systems, each peer acts as a server for a
subset of values, which can be data items or pointers to where data is available [27]. A DHT
mechanism is responsible to handle peers joining/leaving the overlay. This DHT mechanism
should be fully distributed in order to avoid a single point of failure or bottlenecks. A routing
table with links to a small subset of peers is maintained in each peer. Then, these links can
be used to construct the overlay network, which usually follows a regular topology such as
ring, tree, mesh, or hypercube [27], [26]. Chord [4], Pastry [12], Tapestry [13] and CAN [14]
are some well know examples of structured systems. All these approaches are based on hash
tables and they fundamentally only use a different routing mechanism. Structured systems
show superior scalability and reliability compared to unstructured systems. On the other
hand, a disadvantage of structured P2P systems is their high dependence on the network
dynamic, which hinders to maintain a required structure for efficiently routing messages
[9], [17]. A detailed comparison between structured and unstructured is discussed in [16].

2.6.4.3. Benefits of P2P Networks

P2P systems are different to traditional client-server model. The main benefits of P2P net-
works are:

Decentralization. In a traditional client-server model, the information is concentrated in a
central server, which distributes the information to clients through a network. In contrast,
a decentralized system distributes its resources among several nodes in the system. Decen-
tralization is a key feature in P2P networks that must be considered when the systems and
applications are designed. Decentralization increases autonomy.

Cost reduction. In contrast to the centralized systems, the P2P systems provide structure
to spread the cost over all participating peers [31]. In a file-sharing systems such as Napster
or Gnutella, the file storage cost are shared among different peers. Thus, the P2P paradigm
can have a positive impact in the business process because the costs are reduced and the

18

2.6. Delivery Infrastructures

productivity is increased.

Resource aggregation. Due to its decentralized nature, the P2P networks can support the
aggregation of resources. Each peer in the P2P system contributes additional resources such
as upload capacity, processing power or storage capacity, which is not possible in a client-
server architecture. Large applications such as computer-intensive simulations can obtain
enormous benefits from resource aggregation, because additional processing power and
storage capacity from other peers is available [31]. Resource aggregation also benefits mul-
ticast applications [48], [49], because each requesting peers contributes its upload capacity
to redistribute the streamed content to other peers on the same network, thereby helping
to reduce the load of the server. Performance is strongly associated to resource aggrega-
tion. Performance in a system based on client-server model is affected when the number
of clients is increased. In contrast, performance is improved in the P2P systems by aggre-
gating resources such as computing power, distributed storage or upload capacity from all
participating peers. However, this performance may be limited when a central server coor-
dinates all peers (e.g., Napster) or when excessive traffic is generated by using flooding (e.g.,
Gnutella). To optimize performance in P2P systems different solutions such as hierarchical
coordination [67], replication [65], caching [66] and intelligent routing [69], [68] have been
proposed.

Scalability is the ability of a system to handle an amount of work without a considerable
impact on its performance. Different types of scalability such as structural scalability and
load scalability are defined in [59]. Bondi defines the structural scalability as "the ability of a
system to expand its structure without modifying its architecture and load scalability as the ability
of a system to perform graceful as the offered traffic is increased". Schemes based on a central
server present limited scalability mainly caused by the amount of centralized operations
that need to be performed [7]. Although, scalability is improved in decentralized systems, it
plays an important role when the P2P systems are designed. In the P2P networks, scalability
can be measured using parameters as the number of users in the system (load scalability) or
the number of nodes within the system (structural scalability) [31]. Napster shows a better
scalability than the system based on client-server model, because in Napster the music files
are directly downloaded from the peers that possess the requested content. However, pure
P2P systems do not scale well, because its search is based on a flooding mechanism [27],
which increases the traffic as the number of users increases.

Dynamism. P2P systems have a topology with highly dynamic behavior, where the peers
enter and leave the network at any time. This implies that resources such as power com-
puting, data or store capacity are highly variable. P2P environments fit particularly those
distributed applications with highly dynamic environment such as instant messaging or
distributed computing [7], which cannot be supported in a centralized environment. Dy-
namism is related with the ad-hoc connectivity of P2P system.

Fault resilience. Due to the decentralized nature of P2P systems, no central point of failure
exist, and the vulnerability of the network as a whole is very small [17]. Nevertheless, P2P
networks still face failures associated with disconnections, unreachable peer, partitions and
peer failures. An active collaboration among the still connected peers is desirable to face
the presence of such failures [7]. To this end, different collaboration strategies such as re-
lays node [44], replication [64], popularity [70] and grid computing solutions [71] have been
proposed.

19

2. Background in Media Delivery

Self-organization. The term self-organization is used in different areas of science with
different meaning [61], and it has no general accepted definition in the literature. Self-
organization allows the internal organization of a system, without being controlled by an
external entity. A self-organization system has inherent features such as emergent behavior,
adaptability, robustness[62], and it shows a high level of scalability. Self-organization is re-
quired in the P2P systems to minimize the need for configuration due to scalability, highly
dynamic environments, fault resilience and cost of ownership [7], [63]. Examples of systems
and products that address self-organization are Oceanstore [64] and Pastry [12].

Anonymity. In a computer system, anonymity allows users to exchange resources while
preserving their privacy and remaining anonymous. Pfitzmann et al. [60] classify the anonymity
between each communicating pair as sender anonymity, receiver anonymity and mutual
anonymity. Anonymity is difficult to ensure in a centralized system, because all clients
typically have been identified before to receive a service. One goal of P2P systems is to
allow anonymity, and a particular type of P2P system called anonymous P2P has emerged
in recent years. In these systems, the users are anonymous by default to service providers.
FreeNet [19] represents an example of how anonymity can be implemented into P2P net-
works. Anonymity can be enforced in a multicast system by creating a special group formed
for parties who wish to preserve their privacy and remain anonymous [7].

2.6.4.4. P2P Applications

Since the Napster advent in 1999, a significant number of P2P applications have been de-
veloped. The main drivers are the technological advances achieved in the today’s personal
computers and the continuous increase in network access speed of the end-users. Thus, P2P
applications have become a large category, which have been categorized by some authors
into major areas such as file sharing, collaboration and distributed computing [9], [7], [31],
[17], [33]. In the following, an overview about these categorizations and the potential of P2P
networks for media streaming delivery is discussed.

File sharing. File sharing can be seen as a form of content distribution [33], [7]. In fact, con-
tent storage and exchange have been the first applications based on P2P technology. These
applications were introduced by Napster, and have become one of the areas where the P2P
networks have shown a great popularity. Several content sharing applications such as eMule
[22], KaZaA [5] and BitTorrent [8] still represent an important traffic portion in today’s In-
ternet.

Distributed computing. Distributed computing is a term used to indicate that different
parts of a program run simultaneously on different computers, which are communicated
with a network. During the last years, the grid computing concept [34] has been developed
as an alternative for large scale simulations and data analyses. The term grid refers to an
infrastructure that allows for the global integration of computation-intensive resources such
as supercomputer clusters and storage systems, which are managed by different institutions
around the world. Computing grid is a concept that can be seen as distributed computing
[42]. The Genome@Home [35] and BOINC (Berkeley Open Infrastructure for Network Com-
puting) [37] projects are examples of distributed computing applications. In Genome@Home
the design of the large numbers of protein sequences is supported by distributed computing
[36], while BOINC developed as an extension from the Seti@Home project [38], [40], [39],
is a platform for public-resource distributed computing [41]. Although grid systems inte-

20

2.6. Delivery Infrastructures

grate more powerful resources and show a more stable environment than the typical P2P
systems [43], P2P technology represents a potential solution for the grid applications. This
assumption is based on the fact that P2P technology takes advantage of the processing power
available on the peers. Thus, a large computational job can be divided into many small inde-
pendent parts, which are distributed across multiple computers. The combined processing
power of peers helps to obtain faster completion time in comparison to the traditional sys-
tems. After this, the small results are integrated into the final solution.

Collaboration. Collaborating computing is an application category where individuals or
teams in different geographic locations interact with one another through computation tools
to share, modify, or jointly produce data and information. The collaborative applications
range from online games to shared applications that can be used in business, educational,
and design environments. Generally, these applications are based on events [7]. Thus, when
a change occurs at one node (e.g., a modification introduced by a person), an event is gener-
ated and sent to all participating nodes. Groove [44], BSCW [45](Basic Support Cooperative
Work) and Ocules CO [46],[47] are examples of collaborative applications over the Internet.
Examples of collaboration for content distribution are proposed in [48],[49], [93]. In these
cases, the requesting peers cooperate with each other to distribute content. Due to its ad-
hoc nature, the P2P paradigm represents a valuable technology for user-level collaborative
applications. However, these applications have stringent requirements about security and
integrity [31], [7], which are formidable challenges.

Media streaming. In recent years, media streaming over the Internet has become possible,
in large part due to the development of new computing technology, compression standards,
high-capacity storage devices and the increase in network access speed of the end-users [74].
This fact has generated an increasing demand for multimedia services on the web, which has
received tremendous attention from academia and industry. Thus, different video streaming
applications for live streaming or video on demand services have emerged as valuable tools
to improve communication. Streaming video applications have had a strong impact in differ-
ent scenarios such as videoconferencing distribution, news distribution or event broadcast.
P2P paradigm has become a promising solution for video streaming, because it offers char-
acteristics which cannot be provided by the client-server model. P2P networks do not have
a single point of failure, the upload capacity is shared among all peers, the bottlenecks are
avoided, the contents can be shared by all participating peers, and they provide scalability.
Subsequently, many P2P media streaming systems such as ZigZag [28], CoolStreaming [51]
or Mutualcast [49], have been developed. A detailed revision of these systems is given in
Chapter 3. Recently, a new media streaming application called P2PTV has been proposed as
an alternative to IPTV. P2PTV combines P2P technology with Internet TV, which constitutes
an important progress of large-scale P2P streaming. Many different P2PTV applications such
as SopCast [52], PPLive [53], PPStream [54] have appeared on the Internet. Although P2P
networks are at the moment one of the most valuable infrastructures to distribute media
streaming, the P2P technology still has many open issues that must be solved to achieve
high and constant video quality. To this end, new P2P media streaming applications are
being investigated and developed. This thesis explores one of the media streaming applica-
tions known as P2P Video Multicast.

21

2. Background in Media Delivery

2.7. Chapter Summary

Multimedia content delivery over the Internet has gained popularity during the past years.
However, the expansion of these multimedia services has been limited due to lack of net-
work infrastructure or unacceptable video quality. This fact motivated the need for new
compression standards and networks infrastructures. In this chapter different key concepts
about media compression and delivery infrastructures have been discussed. Specifically,
the most recently standards for video compression are discusses. Thus, a brief summary of
video compression standards H.264/AVC and H264/SVC is presented. H.264/SVC is an
emerging standard that introduces new tools which reduce the loss in coding compared to
single-layer coding. Furthermore, different video formats such as CIF and QCIF has been
derived from the original recommendation CCIR-601 developed by ITU-R. CIF and QCIF
formats are used by the architectures presented in this dissertation.

Video can be delivered to the users via video streaming mode or video download. Video
delivery based on streaming presents the best performance, with respect to video delivery
based on download, because when using video streaming the receiver can already consume
the media file while part of it is being received and decoded. In addition, video streaming
helps to save bandwidth and storage capacity.

Delivery infrastructures play an important role for the efficient content distribution over
the Internet. IP Multicast has been proposed as an efficient solution for one-to-many con-
tent dissemination. However, deployment of IP Multicast is not widely available in today’s
Internet. Due to this problem, many researchers have chosen to use application-level so-
lutions as an alternative to implement multicast. In Application-Layer Multicast (ALM),
all multicast tasks are implemented at the end-hosts exclusively while the network infras-
tructure is maintained. Recently, P2P networks have emerged as a valuable infrastructure
for media streaming. This chapter concludes with an introduction to the P2P networks.
The main applications and benefits of P2P networks have been discussed. File sharing, dis-
tributed computing, collaboration and content distribution are some applications of the P2P
networks. P2P networks are a valuable architecture for media streaming distribution, but
media streaming over P2P networks still have many open issues such as scalability, delay
and video quality that must be solved before to achieve a total acceptation.

22

3. State of the Art in Overlay-based Distribution

In recent years many people from academia and industry have been interested in how to
efficiently distribute video from one sender to many viewers, and different systems such
as CoolStreaming [51], CoopNet [48] and others have been proposed and developed. Al-
though IP Multicast has been proposed as an efficient solution for one-to-many content dis-
semination, several reasons such as routers migration, complexity of the protocol and a poor
interoperability with existing services [197] have limited its widespread deployment in to-
day’s Internet. In such circumstances, many researchers have chosen to use application-level
multicast (ALM) solutions [91] as an attractive alternative to IP Multicast for content distri-
bution. Application-level multicast is ideal in systems where all functionality is pushed to
the end hosts such as in the P2P networks. The main goal of a P2P multicast system is
to maximize delivered overall quality and the overall throughput associated with content
distribution to a group of viewers. This chapter explores the benefits of the overlay P2P
networks for multicast services and study their categorizations from the point of view of its
network topology. A brief summary of the existing P2P streaming applications according to
this classification is presented. The chapter ends with an overview of existing works about
multi-source multicast.

This chapter is organized as follows:

• Introduction
The main challenges to build overlay P2P networks are discussed. Based on the overlay
network structure, the overlay P2P systems can be classified as tree-based, forest-based
and meshed-based [150], [151], [221]. An overview of these categories is provided.
• Tree-based overlay for media streaming

A tree-based overlay is built using a single distribution tree rooted at the source. In
this section, a media streaming model based on a single multicast tree: ZigZag [28] is
discussed.
• Forest-based overlay for media streaming

The forest-based overlay takes the idea from end-system multicast [92] and expands it
by organizing the requesting peers into multiple trees [97], [217]. This section gives a
brief revision of SplitStream [110] and Dagster [51] which are media streaming models
based on multiple trees.
• Mesh-based overlay for media streaming

In a mesh-based P2P overlay approach, the participating peers form a connected mesh
and employ a delivery strategy based on swarming [97]. An example of a mesh-based
overlay is Mutualcast [49], which is an efficient mechanism for content distribution in
the P2P networks. A detailed revision of Mutualcast is given.
• Multi-Source Multicast

A promising approach to maximizing delivery quality to a group of requesting peers
is to allow the peers to receive content from multiple sources [108], [93]. This section

23

3. State of the Art in Overlay-based Distribution

focuses on the existing works on various aspects of multi-source multicast.

The contributions in this chapter are:

1. A revision of the different P2P overlay structures used for media streaming delivery.

2. Implementation and test of a Mutualcast prototype on the PlanetLab infrastructure to
evaluate the Mutualcast performance under real world conditions.

3.1. Introduction

A P2P media delivery system involves two important components: an overlay network and
a content delivery mechanism [108]. An overlay network is constructed over the under-
lying physical IP network [58] using a mechanism that determines how the peers are con-
nected. The content delivery mechanism is responsible for streaming the content to each
peer through the overlay network.

An overlay P2P multicast mainly presents the following advantages over IP multicast:

1. No router support is required.

2. More flexibility and adaptability to diverse requirements from the applications [27].

Zheng et al. [27] state that to construct and maintain an efficient overlay P2P network,
mainly three problems should be considered. The first question is related to the P2P net-
work architecture, and defines what topology is used to build the overlay network. The
second question concerns network management and how the participating peers in the mul-
ticast group are managed, especially when the users present heterogeneous capacities and
behaviors. The third problem is related to adaptability of the overlay network to route and
schedule media data in an Internet environment whose links have an unpredictable behav-
ior. Several solutions have been proposed to address these issues.

Three main types of overlay P2P topologies are considered for providing P2P multicast
[108], [58], [101]: tree-based topology, forest-based topology and mesh topology. These
topologies are illustrated in Figure 3.1. In the following, a brief survey of these overlay
P2P classifications is given.

b)

S

Pool of peers

R3

R1

R2

T 1

T
2

c)

S

Pool of peers

R3

R1

R2

T2
T 1

T3

a)

S

Pool of peers

R1

R2

R3

T1

Figure 3.1.: A comparison between: a) tree-based overlay, b) forest-based overlay, and c) mesh-based
overlay

24

3.1. Introduction

3.1.1. Tree-based P2P Streaming

In the tree-based approach, an overlay construction mechanism organizes participating peers
into a single tree whose root is located at the source node. The participating peers are orga-
nized as interior nodes or leaf nodes into a single tree. In Figure 3.1a, the source S sends the
data to requesting peer R1, which forwards the data to requesting peers R2 and R3. Then,
a video stream in this configuration is basically pushed from a parent router to their chil-
dren routers along a well-defined route. Thus, in Figure 3.1a the upload capacity of peer R1

is used by the multicast tree for content distribution, while the upload capacity of the leaf
peersR2 andR3 is not used. Although a tree approach probably represents the most effective
distribution structure in term of bandwidth and delay optimization [109], this configuration
has an inherent drawback because all the burden generated by forwarding multicast mes-
sages is carried out by a relative small number of interior nodes.

A tree structure for data distribution works well when the interior nodes are dedicated
infrastructure routers as is the case for IP multicast. However, tree configuration has an
additional problem in application-level multicast, where all functionality is pushed to the
end-users and many of these participating peers may not have the network capacity and
availability required of an interior node in high-bandwidth multicast applications [110]. This
situation is shown in Figure 2.3, where end-host 2 contributes its upload capacity to forward
the received content to end-host 4, while the number of copies emitted by the source is
reduced. Compared with naive unicast, an efficient distribution scheme can be obtained
without changes to routers, because all routing tasks are pushed to the end-users. However,
the availability and capacity of end-host 2 must be considered before in order to make an
intelligent construction of overlay trees and obtain a better performance of the multicast
system.

3.1.2. Forest-based Overlay

In a cooperative environment such as P2P networks, the participating peers contribute re-
sources proportional to the benefits they obtain from the system. Specifically, in application-
layer multicast, the peers expect that the forwarding load will be shared among all partici-
pants [110]. However, multicast based on a single tree does not match well with these coop-
eration expectations, because the forwarding multicast traffic is carried by a small number
of interior peers, while the upload capacities of a large number of leaf peers is not used.
This is a critical problem for applications with high-bandwidth requirements such as video
or bulk file distribution, because many interior nodes in the multicast tree may not have the
required upload capacity. To face these challenges, a forest-based overlay architecture for
media streaming has been proposed. A forest-based overlay organizes participating peers
into multiple trees [58], and distributes the forwarding load among them in an efficient man-
ner. In a forest-based overlay, each peer determines a proper number of trees to join based
on its upload capacity. Figure 3.1b shows an example of a forest-based overlay. Here, partic-
ipating peers are organized into multiple trees. To this end, each peer is placed as an internal
node in at least one tree and as a leaf node in other trees. In Figure 3.1b, source S stripes its
content and distribute the stripes using two separate multicast trees T1 and T2. Each internal
node in each distribution tree forwards any received stripe to all of their child nodes. Thus,
the tree construction algorithm represents an important component of the forest-based P2P

25

3. State of the Art in Overlay-based Distribution

streaming approach. A strategy based on multiple trees minimizes the effect of churn [97]
and optimizes the usage of available resources in the system. However, the determination of
the number of required trees to maximize the overall throughput is an open problem [126].

An alternative to maximizing the overall throughput is to generate and combine all trees for
all co-existing sessions in the overlay network in order to determine the optimal multicast
tree collection. To this end, the source splits the content into blocks and assigns only a block
to each peer for its redelivery. Every peer generates all possible trees to deliver its block to the
rest of the requesting peers. If all the blocks are distributed in a parallel way several sessions
coexist at the same time and all these trees generated in each node need to be combined.
Thus, given n nodes, first all multicast trees are generated in every node using the Cayley’s
formula [132] and encoded using Prüfer’s coding [127], [133]. Second, all multicast trees
generated from all the participating nodes are combined. Third, the maximum throughput
for every tree collection can be obtained using linear programming [106]. The results show
that for 4 nodes (with upload capacity in kbps of 100, 200, 300 and 400) there are 6766 optimal
tree collections with an overall throughput of 333.33 kbps. Only the case of 3 and 4 nodes is
simulated, because the number of combinations grows exponentially. For n = 3, 4, 5, 6, the
number of combination is 27, 65536, 30517578125 and 4.738E+18, respectively. Thus, finding
an optimal collection of multicast trees is considered a NP-hard problem [49]. Additionally,
to determine on the fly which is the optimal tree used by each node to redistribute its block
within 6766 combinations is a hard task, because some nodes can use a binary tree, while
others use a chain. A detailed version of these experiments is given in [128].

3.1.3. Mesh-based Overlay

Although in a forest-based overlay, a peer can join different multicast trees and receive data
from different sources, they still continue to receive a given strip from a single sender, re-
sulting in the same problem like the case of a single tree [92], [58]. These limitations have
motivated a new approach known as mesh overlay networks, which is an approach inspired
by BitTorrent [8], [118] or Bullet [112]. Figure 3.1b, presents an example mesh-based overlay.
A mesh-based overlay is formed by participating peers via random connections, where each
peer (except the source) tries to maintain a certain number of parent peers and also serves a
specific number of child peers using a swarming mechanism for content delivery [95]. In a
mesh-based overlay, a peer can concurrently receive data from different senders, each con-
tributing a portion of its upload capacity. Additionally, the requesting peers can send and
also receive data from each other.

The data delivery strategy for a mesh-based overlay and for a forest-based overlay is very
different, because video data in an mesh-based overlay is available in multiple neighboring
peers, and a node has to pull data to avoid significant redundancies while the data in a forest-
based overlay is pushed from a parent peer to many child peers. Chu et al. [92], states that
a good mesh has the following two properties: First, "the quality of the path between any pair
of members is comparable to the quality of the unicast path between that pair of members". Second,
"each member has a limited number of neighbors in the mesh". Here, delay and bandwidth are
referred to as the application metrics, while a limited number of neighbors in the mesh helps
to maintain a low overhead in the mesh.

Due to the dynamic and unpredictable behavior of peers, the main challenge of a mesh-
based overlay is how to select the proper senders [58] and how to cooperate and schedule

26

3.2. Application of Tree-based Overlay for Media Streaming

the received data in the requesting peers. Recently, considerable research effort about mesh-
based P2P video streaming systems has been made. In [116], the authors exploit a strategy
based on buffer maps to monitor network-wide quality. Carra et al. [111] present a method-
ology based on stochastic graph theory for mesh overlay streaming systems, and show that
mesh-based overlays are very robust to failures and provide bounds on the receiving de-
lay. Magharei et al. in [97] realize a detailed comparative study between mesh-based and
multiple-tree-based approaches for live P2P streaming.

3.2. Application of Tree-based Overlay for Media Streaming

During the last years, several application-level multicast systems, e.g., Overcast [10], CAN
[14], NICE [91], Bayeux [113] based on a single multicast tree have been proposed. A repre-
sentative media streaming system based on a single tree is Zig-Zag [28]. In the following, a
brief introduction to this system is given.

3.2.1. ZigZag

In ZigZag, the receivers are organized into a hierarchy of clusters and the multicast tree is
built over this hierarchy using a set of connectivity rules called C-rules [28]. Each cluster has
two heads, the first head is responsible for monitoring the memberships of the clusters, while
the second head or associated-head is responsible for transmitting the content to cluster
members. This organization allows for a continuous service during a failure, because in case
the associate-head departs, the head can assign a new associate-head quickly. Initially, when
the number of peers is small, they are organized into one cluster only. The organization
will grow or shrink as new peers join or leave. ZigZag builds the multicast tree based on
this administrative organization and following the three C-rules [28]. The first rule states
that "a peer, when at its highest layer, neither has a link out nor a link in", while the second rule
defines that "non-head members of a cluster must receive the content directly from its associate-
head" and the third rule states that "the associate-head of a cluster, except for the server, must
get the content directly from a foreign". The procedure to map peers into the administrative
organization and the C-rules are the main contributions of this system. In [28] the ZigZag
system is simulated for a set of 5000 clients under no failure and failure scenarios. Each
cluster has between 5 and 15 peers, and all peers forward the content to no more than 13
other peers. The authors compare the performance between ZigZag and NICE [91], which
is a P2P streaming solution based on an hierarchical arrangement of clusters. The results
show that ZigZag has a maximum degree only half of the maximum degree of NICE, which
means that ZigZag exhibits a less bottleneck than NICE. ZigZag and NICE are compared
using other metrics such as control overhead, join overhead, failure overhead and link stress.
The results show that ZigZag presents the best performance for most of the metrics.

3.3. Application of Forest-based Overlays for Media Streaming

Several application-level multicast systems based on the forest approach can be found in
the literature. CopNet [48], SplitStream [110] and Dagster are examples of forest-based P2P
streaming systems. The section presents a brief overview of SplitStream and Dagster.

27

3. State of the Art in Overlay-based Distribution

3.3.1. SplitStream

SplitStream is an example for an efficient cooperative distribution scheme, because it dis-
tributes the forwarding load among the participating peers. To this end, SplitStream intro-
duces the idea of multiple trees. SplitStream splits the content and distributes the striped
data using separate muticast trees. Here, a decentralized scheme is used to construct a forest
of multicast trees from a single source. Peers join as many trees as the number of stripes
they wish to receive, and they specify an upper bound on the number of stripes they are
willing to forward [110]. Thus, the key challenge in SplitStream is to efficiently construct a
forest of multicast trees such that the forwarding load can be spread across all participating
peers, subject to the upload capacity constraints of the participating nodes in a decentral-
ized, scalable, and self-organizing manner. In order to balance the forwarding load among
all the nodes, SplitStream accommodates nodes with different network capacities and asym-
metric bandwidth on the inbound and outbound network paths, such that an interior node
in one tree is a leaf node in all the remaining trees. Thus, ideally, any given peer is an interior
node in only one tree and its departure can cause the temporary loss of at most one of the
stripes. Multiple trees combined with appropriate data encoding such as multiple descrip-
tion coding (MDC) help to mitigate the effects of node failure and sudden node departure,
allowing an improved robustness of SplitStream. SplitStream bases its design on Pastry [12]
and Scribe [115], which are a structured P2P overlay network and a scalable application-
level multicast system, respectively. From Scribe, SplitStream adopts the idea of using a
separate multicast tree for each of the k stripes, while from Pastry, it has taken the properties
of routing to construct trees with disjoint sets of interior nodes. However, SplitStream fails to
utilize the full upload capacity of all the participating peers in the multicast group, limiting
the maximum overall throughput.

3.3.2. Dagster

Dagster [55] has been proposed as an end-host multicast scheme for delivering non-interactive
media, which addresses issues of heterogeneity, transience of peers and cooperation. Dag-
ster has three distinct features [55]:

1. The requesting peers are organized into an overlay based on a directed cyclic graph
(DAG) [121]. Thus a peer can receive content from two or more parents, improving the
system robustness.

2. Since peers receive media data from multiple peers with different bit-rates, the peers
transcode the received media data before forwarding it to other peers.

3. An incentive system is used in order to encourage peers to share their upload capac-
ity. The incentives are based on "(a) lower service rejection probability" and (b) "lower
disruption probability".

To construct the overlay DAG, the author defines four rules: monotonically decreasing bit
rate, equal bit-rate from parents, preemption, and continuous service. Based on these rules,
the overlay DAG construction is realized in five main steps. To enable media streaming from
multiple parents to a single peer, Dagster uses a coding method known as multiple state
encoding. Dagster has a dynamic reconfiguration, because it allows that peers periodically
probe the source to search for a better parent so that donations from newer peers can be fully
utilized [55]. The performance of Dagster is compared with Best Fit algorithm [56]. Best Fit

28

3.3. Application of Forest-based Overlays for Media Streaming

inserts a newly arrival peer into a parent with largest available bandwidth, and rejects a peer
if there does not exist a parent with enough bandwidth to satisfy the required bandwidth.
The rejection rate is used as metric to compare both strategies. The results show that Dagster
achieves a rejection rate less than 10 percent of the clients, while the Best Fit rejection rate
is around 50 percent. Others metrics evaluated by Dagster are the diameter of the graph,
donation level, and optimal number of parents. Diameter of the graph refers to hops away
from the source. A lower diameter is desirable for media streaming in order to reduce the
probability of service disruption and fluctuation. Dagster is promising in this sense, because
it presents a lower diameter of graph and reduced average level of nodes. Dagster shows
that there is a clear relationship between the level of a peer and its donated upload capacity
when the peer is contributor-aware. An important finding in Dagster is the reduced number
of parents required. The author suggests that three parents for each node is enough to reach
an acceptable frame rate if one of the parents has failed. Although Dagster is a promising
media streaming architecture, its topology still needs to be improved in terms of link stress
and stretch.

3.3.3. M-ary Trees

This section introduces a special type of tree known as m-ary tree, in which every node has
m or fewer children [133]. An m-ary tree is also sometimes known as a k-tree, N-ary tree, or
a d-ary tree. A rooted tree is an m-ary tree if each internal node has no more thanm children.
Figure 3.2 shows an example of an m-ary tree with m = 3 for 12 nodes.

R

1 2 3

6 754 8

9 10 11

T0
T1

T2

T

Figure 3.2.: Example of an m-ary tree for 12 nodes

Thus, an m-ary tree T is a finite set of nodes with the following properties [129], [130]:
1. it is either empty T = 0 with degree 0; or
2. consists of a distinguished node (the root R) together with an ordered m-tuple of sub-

trees, each of which is an m-ary tree, such that T = (R, T0, ..., TN−1) and degree N.
The empty trees are called external nodes or leaves, while the non-empty trees are called
internal nodes [130].

A roted tree is a complete m-ary tree if each internal node has exactly m-children. Figure
3.2 shows an example of a complete m-ary tree for m = 3.

Additional properties of m-ary trees are [135], [130], [131]:
• For m = 2, the m-ary tree corresponds to a binary tree.

29

3. State of the Art in Overlay-based Distribution

R

1 2 3

7 1054 128 9 13

T0 T1
T2

T

6

Figure 3.3.: Example of a complete m-ary tree for m = 3

• An m-ary tree is full if each internal node has m children.

• An m-ary tree is balanced if all external nodes or leaves l fall on the same level or two
adjacent levels.

• An m-ary tree is complete if all external nodes or leaves l lie at the same level.

• The maximum number of external nodes or leaves in an m-ary tree of height h is at
most mh

• A complete m-ary tree with i internal nodes contains N = m(i) + 1 nodes.

• A complete m-ary tree with N nodes has i = (N − 1)/m internal nodes and l =
(m−1)(N+1)

m external nodes or leaves.

Several applications of m-ary trees are found in the scientific literature. Gessel and Seo [134]
present a refinement of Cayley’s formula for trees using m-ary trees. In computer science,
m-ary trees are used to analyze the structure of computer programs [130] in order to improve
external sorting [136] or searching [137], [138]. In [123], a collection of modified m-ary trees
is used as a strategy to reduce the end-to-end delay during content distribution.

3.4. Application of Mesh-based Overlays for Media Streaming

Inspired by BitTorrent [8], several mesh-based overlays for massive parallel content distri-
bution among peers such as CoolStreaming [51], PPlive [53], Bullet [112], VMesh [117] and
Pulse [114] have been proposed. A framework for small-scale application-layer multicast
inspired by mesh-based overlays is Mutualcast [49].

3.4.1. Mutualcast

Mutualcast is as an efficient mechanism for one-to-many content distribution. Compared
with previous multicast approaches, Mutualcast achieves the maximum overall throughput
by fully exploiting the upload capacity of the peers.

Description

Mutualcast uses a fixed network topology and allows that peers with different capabilities
distribute a different amount of content. Li et al. state three distinct features for Mutualcast
[49]:

30

3.4. Application of Mesh-based Overlays for Media Streaming

1. "Mutualcast splits the to-be-distributed content (e.g. a file or media stream), into many small
blocks, and distributes each block separately".

2. "Each block of content is assigned to a single peer for redelivery."
3. "Mutualcast employs an optimal bandwidth allocation strategy, which is implemented via re-

distribution queues between the source and the requesting peers."
In Mutualcast, the content redistribution is realized by the requesting peers, helper peers

or even the source itself. Mutualcast employs an optimal bandwidth allocation strategy in
order to effectively deal with dynamic changes in the network condition, such as variations
in the upload bandwidth, packet loss and transmission jitter.

The basic distribution framework of Mutualcast is shown in Figure 3.4, for one source S,
three requesting peers R1, R2, R3 and one helper peer H1.

R1

S

1

5

2 3

4

6

7

8

8 8

R2 R3

H1

Figure 3.4.: Mutualcast content distribution network

In this scheme, the peers R1, R2, R3 request a copy of the content from the source S, while
helper peer H1 only contributes its upload capacity to help distributing the content to the
other peers. When a block is assigned to requesting peers R1, R2 and R3 for redistribution
(e.g., blocks 1, 2, 3 and 4), the block is first sent by the source to the peer in charge, which then
forwards the block to the other two requesting peers. The helper peers are not interested in
receiving the videos and just contribute their resources during distribution. When the block
is assigned to helper peer H1 for redistribution (e.g., blocks 5, 6 and 7), the block is first sent
by the source to the helper peerH1, which forwards the block to the other three peers. When
the source has abundant upload capacity, it may also choose to directly distribute the block
(e.g., block 8) to each requesting peer R1, R2, R3. Thus, Mutualcast uses three distribution
routes to distribute content [49]:

1. Through requesting peers,
2. Through helper peers, and
3. Directly from the source.

Mutualcast chops the content into a number of small blocks for distribution and assigns
each block to a certain node for redistribution. The number of blocks assigned to a peer is
proportional to its upload capacity. Mutualcast assumes that the upload capacity of each
peer is the only constraint, which is an assumption motivated by the fact that peers usually

31

3. State of the Art in Overlay-based Distribution

have larger download capacity than upload capacity (e.g. DSL lines) on the Internet. Mu-
tualcast sets the size of these blocks as 1KB, in order be able to send each block as a single
packet over the network.

In Mutualcast, the connections between peers are established using TCP. Mutualcast lever-
ages several benefits from TCP such as flow control, reliable data delivery and node leave
events. Additionally, the TCP buffers are the redistribution queues, which solves the prob-
lem of establishing buffer queues to send content among peers and to control the speed of
distribution between them.

Analytical Framework

[49] presents an analytical framework for Mutualcast which will be briefly reproduced in the
following and later extended. The analysis assumes that the Mutualcast scheme is formed
by a source S of upload capacity CS , N1 requesting peers denoted as Ri with upload capac-
ity CRi , and N2 helper peers Hi with upload capacity CHi . The participating peers for the
Mutualcast scheme are shown in Figure 3.5. For Mutualcast, the exhaustion of the source

S

H1 HN2
R1 RN1

S: Source with upload capacity CS

N1: Content requesting peers R1…RN1
with upload capacity CRi

N2: Helper peers H1…HN2
with upload capacity CHi

Figure 3.5.: Participating peers in the Mutualcast scheme

upload capacity is given by:

BR +BH +N1BD =
N1∑
i=1

BRi +
N2∑
i=1

BHi +N1BD (3.1)

The first term represents the amount of data that is sent from the source to the N1 content
requesting peers for redistribution. The second term corresponds to the data being sent from
the source to theN2 helper peers and the last term represents the block of video dataBD that
is directly sent to the N1 content requesting peers. BRi is limited by the upload capacity CRi

BRi =
CRi

N1 − 1
(3.2)

and represents the content that has to be redistributed to the N − 1 other content requesting
peers. Similarly, for the helper peers, BHi is limited by the upload capacity CHi

BHi =
CHi

N1
. (3.3)

32

3.4. Application of Mesh-based Overlays for Media Streaming

then BR and BH are obtained as

BR =
N1∑
i=1

BRi =
N1∑
i=1

CRi

N1 − 1
=

N1

N1 − 1
1
N1

N1∑
i=1

CRi =
N1

N1 − 1
CR (3.4)

BH =
N2∑
i=1

BHi =
N2∑
i=1

CHi

N1
=
N2

N1

1
N2

N2∑
i=1

CHi =
N2

N1
CH (3.5)

Where CR and CH are the mean upload capacities of the N1 requesting peers and the N2

helper peers, respectively. The Mutualcast distribution throughput Θ, which represents the
amount of content sent to the requesting peers per second is defined as

Θ =

CS for CS ≤ (BR +BH)

BR +BH + (CS−BR−BH)
N1

for CS > (BR +BH)
(3.6)

When a special case with no helper nodes (N2 = 0) is considered, (3.6) reduces to:

Θ =

CS for CS ≤ BR

BR + (CS−BR)
N1

for CS > BR

(3.7)

where the overall throughput Θ for CS > BR can also be written as

Θ = N1
(N1−1)CR +

CS−
N1

(N1−1)
CR

N1
= N1

(N1−1)CR − CR
(N1−1) + CS

N1
= CR + CS

N1

(3.8)

Simulation

Similar to [49], Mutualcast is evaluated in terms of overall throughput and linear program-
ming is used to maximize the overall throughput. Linear programming [107], [204] has been
successfully used as an optimization tool by other authors [106], [119], [120]. A set of five
peers is used, where peer S acts as the source and the four peers R1, R2, R3 and R4 work as
requesting peers. The upload capacity of the participating peers CS , CR1 , CR2 CR3 and CR4

in kbps is 1000, 750, 1000, 750, and 500, respectively. Helper peers are not considered in this
example. Figure 3.6 shows this mutualcast setup and its translation into a linear program
for throughput maximization.

In Figure 3.6, the source splits the content into five blocks. The blocks X1 to X4 are dis-
tributed from the source to the requesting peers through other peers, while the block X5

is distributed from the source to each requesting peer directly. This example assumes that
the source has an upload capacity of 1000 kbps. In the linear program (Figure 3.6 b), the first
constraintX1 +X2 +X3 +X4 +4X5 ≤ 1000 kbps considers the upload capacity of the source,
which has to deliver one block to each requesting peer R1, R2, R3 and R4, and additionally
sends the block X5 to every peer directly. The other constraints consider the upload capacity
of the requesting peers R1, R2, R3 and R4, which redistribute the received blocks X1, X2, X3

and X4, respectively to the rest of peers in the mutualcast group. The solution gives a maxi-
mum throughput of 1000 kbps, while the size of the blocks in kbits isX1 = 250, X2 = 333.33,

33

3. State of the Art in Overlay-based Distribution

X1
S

R1

R4

R3
R2

X1

X1
X1

X2

S

X2

X2

X2

R1

R2

R3

R4

X5

S

R1 R2 R3 R4

X5 X5

X5

X3

S

R1

R4

R3
R2

X3
X3

X3

S

R1

R2

R3

R4

X4

X4

X4
X4 Maximize

Θ = X1 + X2 + X3 + X4 + X5
subject to
X1 + X2 + X3 + X4 + 4X5 <= 1000
3X1 <= 750
3X2 <= 1000
3X3 <= 750
3X4 <= 500

Linear Program:

Figure 3.6.: Mutualcast example and its translation into a linear program for throughput maximiza-
tion

X3 = 250, X4 = 166.66 and X5 = 0, respectively. All constraints ensure that the limit of the
capacity of the source and the requesting peers are not exceeded.

Four different examples using different upload capacities for the source and the requesting
peers are evaluated. The results are summarized in Table 3.1.

Table 3.1.: The overall throughput Θ of Mutualcast

CS CR1 CR2 CR3 CR4 Throughput
(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

500 250 1000 500 1000 500
1000 750 1000 500 1000 1000
500 500 200 500 250 487.5
1000 500 750 500 750 875

In the first two examples, BR > CS , then θ is given by the first part of (3.7), and θ become
same as CS . In contrast, in the last two examples, BR < CS , then θ is given by the second
part of (3.7).

Limitations

However Mutualcast incurs performance penalties because, depending on the locations of
peers, packets are likely to travel along sub-optimal paths, and packets may traverse the
same links multiple times. Thus, proximity and delay are important issues to be considered.
Since all nodes in Mutualcast are fully connected, the scalability also is limited.

34

3.5. Hybrid Tree/Mesh Overlay

Extensions

Mutualcast has been extended in several works [140], [139]. In [139], Mutualcast is used for
a multi-party real-time audio conferencing system. To this end, the peers form a fully con-
nected group and during the conference, every peer takes turn to mix and redeliver the com-
pressed audio. The audio is split into frames, which are mixed and redelivered by the peers.
Each peer can redeliver a number of frames proportional to its upload capacity. Huang et al.
[140] propose an adaptive rate control scheme for streaming media in Mutualcast. This ap-
proach uses multiple bit rates to gracefully adjust the common quality received at all peers.

3.5. Hybrid Tree/Mesh Overlay

Recently, new hybrid overlay ALM structures have been proposed. These hybrid tree/mesh
overlays combine the advantages of tree-based and mesh-based approaches for media de-
livery. Examples of hybrid overlays are MeshTree [122], mTreebone [109] and hierarchical
collaborative multicast [50]. Because the full knowledge of the network topology in a dis-
tributed environment is not available, a solution based on greedy often leads to overlay
ALM structures that are inefficiently structured.MeshTree address the greedy problem. To
this end, MeshTree introduces two key ideas [122]. First, the overlay structure must contain
a low cost tree which connects nodes that are topologically close together. This tree rooted
at the source is called the backbone tree. Second, shortcut links must be added on top of the
tree in order to improve the delay of the backbone tree. This creates a mesh overlay, which
is degree-bounded based on the individual peers’ capacity. Similar to MeshTree, mTreebone
uses a backbone tree, but it is constructed over a set of static peers. These static peers orga-
nized with others form a mesh overlay, which facilitates to accommodate dynamic peers and
fully explore the available capacity between peers. Here, the main challenge is to identify
the static peers. To this end, the authors use an age threshold-based method to identify the
static peers and design the backbone tree. Hierarchical collaborative multicast uses a single
tree and forms small clusters in each peer. Chapter 4 gives a detailed review of this scheme.

3.6. Multi-Source Multicast

Multi-source P2P multicast applications recently have been used for collaborative environ-
ments such as conferencing, multi-player games or content distribution services [161], [163],
[162]. The classical tree solution for multicast schemes shows limitations such as failure node
fragility or additional delay when it is used in a multi-source context [112]. An additional
limitation for tree solutions is the limited collaboration among all peers. On the other hand,
the emerging P2P overlays known as unstructured and structured overlay show limitations
for multi-source multicast such as scalability [141], large overhead [143] or complex protocols
[142]. In [11] a new technique called Unstructured Multi-source Multicast is presented. This
solution builds and maintains multicast distribution trees from many sources on top of an
unstructured base overlay. The model deals with some limitations in the unstructured P2P
overlay such as scalability and large overhead. The authors in [94] introduce a distributed
video streaming framework, which shows the benefits of video streaming from multiple
servers to a single receiver. In [144], a P2P media streaming model is proposed that involves

35

3. State of the Art in Overlay-based Distribution

multiple sending peers in one streaming session, which uses a tomography-based sender
selection protocol to optimize the quality at the receivers. Recently, the authors in [103] and
[145] have proposed new approaches for content distribution from multiple sources to a sin-
gle receiver. While in [103] the authors present and evaluate an algorithm for the optimal
bit allocation in combination with scalable video techniques for distributed streaming en-
vironments, in [145] the authors exploit the similar source concept to significantly improve
the download time of a file from multiple sources to one receiver. All these solutions are
only partially collaborative because the collaboration among the sources is not considered.
In [146], PALS (P2P Adaptive Layered Streaming) is presented as a receiver-driven coordina-
tion mechanism for quality adaptive streaming from multiple congestion controlled sender
peers to a single receiver.

3.7. A Global Testbed: PlanetLab

An effective way to design, evaluate, and deploy geographical distributed network services
is to use a global testbed [154]. However, conventional testbeds do not support a dual use
from researchers that want to develop new applications and clients that want to use these
applications. To deal with these issues, PlanetLab has been proposed as a promising overlay-
based testbed. PlanetLab is designed under the following principles [154]:

• "Services should be able to run continuously and access a slice of the overlay’s resources",
• "Control over resources should be distributed",
• "Overlay management services should be unbundled and run in their own slices", and

• "APIs should be designed to promote application development".

How PlanetLab realizes the distributed virtualization and unbundled management is de-
scribed in [155]. Since July 2002 hundreds of users have used PlanetLab for a wide range
of services such as content distribution networks [158], [159], routing and multicast overlay
[92], [93], [50], P2P-based video streaming [157], [51]. Currently, PlanetLab [153] consists of
843 machines, hosted at 422 sites, spanning over more than 30 countries. In [156] the authors
report their experience building PlanetLab over the last years. In September 2006, a project
called OneLab [160] has been started in Europe. OneLab manages the European part of the
PlanetLab platform, and operates in close cooperation with the PlanetLab team.

3.7.1. Mutualcast Implementation and Evaluation

A Mutualcast prototype has been implemented and evaluated on PlanetLab. The imple-
mentation includes a sender module run by the source peer and a receiver module run
by each of the requesting peers. Mutualcast implementation is based on the TCP proto-
col, which manages the sending and receiving buffers and the redistribution queues in all
participating peers. To evaluate the performance of Mutualcast on PlanetLab, a small multi-
cast group formed by four PlanetLab nodes is selected. The source is located at University of
Pittsburg (planetlab2.cs.pitt.edu), while the requesting peers are located at University Col-
lege London-UCL (planetlab1.net.research.org.uk), Worcester Polytechnic Institute-WPI (75-
130-96-13.static.oxfr.ma.charter.com) and Universidad Técnica de Lisboa-UTL (planetlab-
2.tagus.ist.utl.pt). The source broadcasts a media file of 11 MB to all the requesting peers.

36

3.8. Research Challenges

The experiments demonstrate the capability and flexibility of the Mutualcast approach. The
throughput of the source and the three requesting peers are shown in Figure 3.7 a)-d). The
horizontal axes represent the time during the first 30 seconds. The throughput of the source
represents its sending rate, while the throughput of the requesting peers represents their
reception rate. The requesting peers receive packets based on their redistribution capacity,
which is limited by their upload capacity. In the experiment, the throughput of the source
and the requesting peers are changing every second in response to the network changes.
This adaptation allows that Mutualcast assigns more blocks to peers with better network
conditions at the time.

Worcester PI

0
100
200
300
400
500
600
700
800

3 6 9 12 15 18 21 24 27 30

Time (sec)

Th
ro

ug
hp

ut
 (k

bp
s)

a) b)

Source: Pittsburgh

0
200
400
600

800
1000

1200
1400

1600
1800

3 6 9 12 15 18 21 24 27 30

Time (sec)

Th
ro

ug
hp

ut
 (k

bp
s)

c) d)

Lisboa-UT

0

50

100

150

200

250

3 6 9 12 15 18 21 24 27 30

Time (sec)

Th
ro

ug
hp

ut
 (k

bp
s)

UCL

0

100

200

300

400

500

600

700

3 6 9 12 15 18 21 24 27 30

Time (sec)

Th
ro

ug
hp

ut
 (k

bp
s)

Figure 3.7.: Mutualcast throughput measurements: a) throughput of the source, b)- d) throughput
of the requesting peers.

3.8. Research Challenges

Although significant advances in P2P media streaming have been made in recent years, there
are still many open issues. Yiu et al. [164] identify the problem of locating supplying peers
and maintaining content delivery paths as the two major challenges in providing P2P me-
dia streaming. These challenges are presented due to the dynamic nature of the peers. In
a P2P system, a supplying peer might suddenly leave or crash, and the requesting peers
need to find new supplying peers. Additionally, peers have limited bandwidth capacities,
and often multiple peers are also required in distributed streaming systems [94], [165]. An-
other important challenge in P2P media streaming is the heterogeneity of the underlying IP

37

3. State of the Art in Overlay-based Distribution

networks [58]. This heterogeneity is mainly introduced by the heterogeneous receivers and
asymmetric access capacities. Download and upload capacities of the peers are asymmetric,
because the peers usually have larger download capacity than upload capacity (e.g. DSL
lines). Download capacity decides the receiving capacity for each individual peers, while
the upload capacity decides the total available capacity for the system. These characteristics
may generate random packet-losses in the network or at the buffers of the peers when the
access bandwidth of a peer or the sum of all supplying peers are less than the average bit rate
required by the video stream [58]. Video streaming has certain requirements on bandwidth,
packet loss, and packet delay. However, under this situation a P2P system does not provide
any guaranteed support to video streaming services [125], and new solutions to satisfy strin-
gent quality requirements must be investigated. A promising solution to this problem is to
provide self-adaptive QoS for each individual peer according to the current network con-
ditions, while the total upload capacity of all peers is fully utilized [58]. To this end, some
issues such as content aware media data organization, priority-based media data delivery,
QoS adaptive multi-source and layered media data scheduling should be addressed. On
the other hand, Mutualcast [49] is proposed as an efficient multicast mechanism for content
distribution from one source to multiple requesting peers. However, Mutualcast concen-
trates on improving the overall throughput, and does not consider the Rate-Distortion per-
formance of video delivery. The Mutualcast concept can be extended to multiples sources in
order to obtain an optimal solution that maximizes the overall throughput or alternatively
the overall video quality as will be shown later in this thesis.

3.9. Chapter Summary

This chapter has introduced the benefits of overlay P2P networks for multicast services and
their different categorizations. From the point of view of their network topology the overlay
P2P networks have been categorized as: Tree-based overlay, forest-based overlay and mesh-
based overlay. The main advantages and disadvantages for each approach were discussed.
Based on these concepts, several P2P media streaming systems have been developed. Some
existing P2P streaming applications according to this classification such as ZigZag, Split-
Stream and Dagster have been discussed in the chapter. The m-ary tree concept is intro-
duced as an alternative to create distribution schemes. Specially, the chapter has presented a
detailed revision about Mutualcast which is the reference model in this dissertation. The Mu-
tualcast revision presents an analytical framework for this model and its simulation based
on linear programming. The study also includes the Mutualcast evaluation in the Planet-
Lab testbed. PlanetLab is a overlay-based testbed, which has been proposed to evaluate and
deploy geographical distributed network services.

Recently, new hybrid overlay ALM structures have been proposed. These hybrid tree/mesh
overlays combine the advantages of tree-based and mesh-based approaches for media de-
livery. Some examples of these hybrid structures were also discussed in the chapter. Due to
the growing number of Internet users, some applications require multi-source multicast sup-
port. Multi-source multicast is present in collaborative environments such as videoconfer-
encing, multi-player games or content distribution services. The chapter gives an overview
of existing works about multi-source multicast. The chapter ends with a short discussion
about the main research challenges in the P2P media streaming field.

38

4. Hierarchical Collaborative Multicast

4.1. Introduction

Mutualcast maximizes the overall throughput by exploiting the upload capacity of all par-
ticipating peers. A drawback of using a fully-connected network is that the number of con-
nections is proportional to n2 because each peer has to forward its received blocks from
the source to all other peers. Mesh-based approaches also have high control overhead due
to data scheduling and limitations for delay sensitive applications when the participating
peers are located in different geographical locations. This chapter presents hierarchical col-
laborative multicast [50], an ALM scheme that is inspired by Mutualcast and tree-based
approaches. On the one hand, Mutualcast has been shown to provably maximize the overall
throughput during a multicast session, while on the other hand tree architectures introduce
lower end-to-end delay, are more scalable and are easier to maintain. A hierarchical struc-
ture has the advantage of high scalability. The main motivation is to design an ALM scheme
that can achieve shorter end-to-end delivery time, improved scalability and low resource
consumption. Thus, hierarchical collaborative multicast adopts a tree structure as the global
structure but incorporates small mesh clusters on each level of the single distribution tree.
Clusters are an elementary unit of a hierarchical architecture, which involves one source
peer and several requesting peers. The peers inside a cluster are fully connected. Each peer
inside a cluster is a receiving and forwarding peer at the same time. Due to the fact that
the upload capacity of all peers is also used, the bandwidth consumption from the source
can be reduced. The performance of the proposed approach is compared with Mutualcast
[49] using PlanetLab. The results show that the proposed scheme achieves a better perfor-
mance in terms of transfer time than Mutualcast as well as a reduced memory usage in each
forwarding peer.

This chapter is organized in the following way:

• Description
In this section, the Mutualcast scheme is extended to a hierarchical concept. The de-
sign of a novel hierarchical collaborative multicast approach is introduced and its dif-
ferences with respect to other multicast approches are explained.

• Clusters Organization
The requesting peers are organized into clusters, which are allocated into a distribution
tree. Flow control and caching mechanisms are proposed to distribute the content
between a cluster head and its cluster child. The Mutualcast redistribution mechanism
must be adapted a content redistribution based on hierarchical clustering.

• Simulation
The distribution problem is formulated as an optimization problem and the model is
translated to a linear programming problem for throughput maximization. The per-
formance of the hierarchical collaborative multicast approach is simulated in terms of

39

4. Hierarchical Collaborative Multicast

throughput.
• Implementation

This section explains the implementation of an experimental prototype of the hierarchi-
cal collaborative multicast approach. The performance of a hierarchical collaborative
multicast prototype is evaluated in the local network of the Institute of Communication
Networks (LKN) at the Technische Universität München (TUM). To verify the proto-
type performance in a wide-area network, the PlanetLab infrastructure is used. The
performance of the proposed approach is compared with the performance of Mutual-
cast in terms of throughput and delay.

The contributions in this chapter are:
1. A hierarchical collaborative multicast approach, where the global distribution scheme

organizes the requesting peers into small meshed clusters hierarchically located on
each level of a single distribution tree. The approach aims at improving the scalability
and delay of Mutualcast.

2. The formulation of rate allocation as an optimization problem with objective functions
that maximize the throughput of the system by exhausting the upload capacity of all
participating peers including the source. The optimization problem is translated into
a linear program which is solved using optimization techniques.

3. An experimental prototype of the hierarchical collaborative multicast scheme, and its
evaluation and comparison with the Mutualcast approach. Both approaches are eval-
uated in a local network and using the PlanetLab infrastructure.

4.2. Description

Mutualcast [49] is a scheme designed for small-scale overlay multicast applications that
achieves the maximum possible overall throughput during a multicast session by exploiting
the upload capacity of all participating peers. Although Mutualcast maximizes the through-
put, it provides limited scalability and does not control the delivery time. The main moti-
vation behind hierarchical collaborative multicast is to improve scalability issues in Mutu-
alcast. On the other hand, the multicast-tree based content distribution has been shown to
have high scalability and low delay, but the upload capacity of all participating peers is typ-
ically not fully exhausted. For example, NICE [91] adopts hierarchical clustering to achieve
reduced transmission delay in a large-scale network, however, NICE fails to utilize the full
upload capacity of all the participating nodes in the multicast group, limiting the maximum
overall throughput. Hierarchical Collaborative Multicast has some similarity to NICE and
Mutualcast. More specifically, it combines the best concepts from both approaches. From
NICE, hierarchical collaborative multicast has taken the idea of how to construct the distri-
bution tree in order to gain scalability, while from Mutualcast it has taken the fully-connected
topology to maximize the overall throughput and the efficient adaptability to bandwidth
variations of individual peers. The proposed approach differs from Mutualcast in that it
uses clusters allocated in a unique distribution tree rooted at the source node. The hierarchi-
cal collaborative multicast structure is shown in Figure 4.1.

Each node in a cluster can potentially become the source node of new cluster. Therefore,
the structure inside one cluster is fixed while the global structure is flexible. In each cluster a

40

4.2. Description

2

1

3

12

10

118
9

7

5
6

4

S

14
15

13

Level 1

Level 2

Level 3

Cluster 1

Cluster 2 Cluster 3 Cluster 4

Cluster 5

Figure 4.1.: Hierarchical Collaborative Multicast architecture for 15 peers organized in clusters of
size 3

fully connected topology as in Mutualcast is built, but considering proximity information. In
this work the Round-Trip Time (RTT) between two peers is used as proximity information to
build the local clusters. In Figure 4.1, the peers 1, 2 and 3 form the cluster with the highest hi-
erarchy level (cluster 1) in the multicast session. In this cluster, each peer forwards its blocks
received from the source to the rest of the peers within the same cluster, while receiving the
rest of the blocks from them. Peers in the same cluster have a bidirectional communication
among them. Parallelly, each peer in the first cluster acts as a source for a new cluster lo-
cated on the second level of the hierarchical structure. Thus, peer 1 is a forwarding peer of
cluster 1 and a source peer of cluster 2 (which is formed by peers 7, 8 and 9) at the same
time. Peers 2 and 3 can also extend their own clusters. Cluster 2 is denoted as a child-cluster
of peer 1. The communication between peers located in the first cluster and the requesting
peers clustering on a second level is unidirectional. In other words, in the hierarchical ap-
proach, the blocks are distributed from one cluster to another, from top to bottom. Using
local cluster, the peers can greatly benefit from the capacity of other neighboring requesting
peers via local collaboration while the number of connections is reduced in comparison to a
fully connected overlay topology.

In a fully connected network as Mutualcast, a logical link from each peer to every other
peer is established. The number of required links K is computed as

K = N2
1 (4.1)

where N1 is the number of requesting peers.
For a distribution tree with balanced clusters with the same number of peers in each one,

the number of required links K is given by

K = N1 ∗m (4.2)

where m is the number of peers in the local clusters.

41

4. Hierarchical Collaborative Multicast

For example, given a multicast group with 15 requesting peers, hierarchical collaborative
multicast forms a small and balanced cluster of size 3 in each level of the hierarchical struc-
ture and 45 links are only required to distribute all the blocks. In contrast to the proposed
approach, using Mutualcast, the overlay network is formed with 225 connections. Thus, the
hierarchical approach shows better scalability than the Mutualcast approach.

4.3. Cluster Organization

4.3.1. Cluster Formation

Clustering has received considerable attention during the past few years in the scientific
community [189], [191], [193], [196], [219]. Complex networks such a social networks or the
World Wide Web exhibit a high degree of clustering and scale-free [189], [192]. Ravasz and
Barabási show in [190] that these two characteristics are the result of a hierarchical orga-
nization, implying that small groups of nodes organize in a hierarchical manner into large
groups, while maintaining a scale-free topology. Indeed, many complex networks are modu-
lar because in these networks groups of nodes exist that are highly interconnected with each
other, but have few links to nodes outside of the group to which they belong to. Perhaps one
of the clearest examples of complex networks are P2P networks. The hierarchical collabo-
rative multicast scheme assumes that clusters with high interconnected nodes combine into
each other in a hierarchical network.

Hierarchical collaborative multicast first forms a hierarchical structure and then evolves
into meshed clusters. In hierarchical mode, data must be distributed from one cluster to
another, from top to bottom. A peer may belong to two clusters located on different layers
of a hierarchical tree.

The requesting peers form a small cluster with their neighbors based on a proximity policy.
Each cluster is represented by a "cluster head", while the other nodes close to the cluster
head are integrated into the cluster. Figure 4.2 shows zone-based organization for the source
and a cluster head.

The clustering strategy has some similarity to clustering algorithms presented in [194], [219]
and [195]. In Figure 4.2 a) clusters are formed without considering proximity constraints,
and peers located in distant regions can be interconnected to each other. However, high
delays may be introduced in these types of clustering. In Figure 4.2 b), concentric rings are
used to define different zones associated with a peer. The size of zones is based on Round
Trip Time (RTT). Any peer sees the rest of the system as a set of concentric rings. Thus, the
source can select some requesting peers for the top cluster from its closest rings. These peers
selected by the source become the cluster head of other clusters or sub-clusters and form
their associated zones. In addition, the clustering strategy associates a weight with each
peer, which is defined by its upload capacity.

The clustering formation also has some similarity to k-means clustering [200], [199] because
it divides the set of peers into L regions such that the proximity relative to the cluster head
(centroids of the clusters) is minimized. However, the hierarchical clustering is different
from k-means clustering because the number of clusters is not chosen before the procedure
starts. The regionsLwork as landmarks for the geographical location of the peers, in order to
avoid that peers distant to each other, but with the same proximity to the source, be assigned

42

4.3. Cluster Organization

S

R1

R2

R3

R4

R6

R5

R1

R2

R3

R4

R6

R5

Zo
ne

 0

Zone 1

Zone 2

Zone 3

S Peer R1:

Zone 0
Zone 1

a) b)
Figure 4.2.: Zone organization during cluster formation. a). Proximity constraints are not consid-
ered, b). Concentric rings are used

to the same cluster.

The hierarchical clustering strategy works as follows:

1. The source S calculates its proximity to each requesting peer based on the round trip
time (RTT).

2. Based on its upload capacity CS , the source S determines a number of peers to feed
directly.

3. Sources define a set of regions L to be used as landmarks.

4. The source selects a peer as cluster head based on the following rules:

• cluster head is the peer with the largest upload capacity CRi in a defined region

• cluster head has an acceptable proximity with the source

• high connectivity and acceptable proximity between the cluster head and a po-
tential group of requesting peers

5. Selected peers are fully connected to each other.

6. Each cluster head repeats step 1 to 6 until all requesting peers are clustered.

A source peer is the head of its cluster in each level. The number of levels and the number
of peers clustered into each cluster depend on the upload capacity of the source (or head
peer) and allowed delay constraints. These values are used as threshold values to determine
when the procedure stops. The number of final clusters, or peers within each cluster is not
known ahead of time.

To better utilize the upload capacity of the requesting peers and to obtain reduced delays,
peers with higher upload capacity should be placed into clusters located in superior levels,
while peers with lower upload capacity should be placed into clusters located further down
the tree.

43

4. Hierarchical Collaborative Multicast

4.3.2. Flow Control Mechanism

In a multicast system, the most precious resource is the upload capacity of the source, where
the content originates. This dissertation assumes that the upload capacity of each peer is
the only constraint. This assumption is motived by the fact that peers usually have larger
download capacity than upload capacity (e.g. DSL lines) on the Internet. Thus, the flow
control mechanism is based on the upload capacity of the source and the requesting peers.
Initially, the source does not know the upload bandwidth of all requesting peers. Under
this scenario, the source cannot send content to all peers as quickly as possible. The reasons
are the following. First, if the download capacity of a peer is much greater than its upload
capacity, the packets may be overstocked, and this peer must take more and more space
to store packets in the memory. Second, a peer may have a much broader upload capacity
and forwards the packets immediately, and mostly it waits for the packets from the other
peers. For example, the source sends packet 301 to peer R1 and packet 302 to peer R2. Peer
R2 has abundant upload capacity, while R1 has a scarce upload capacity. Peer R2 forwards
packet 302 to the other peers immediately, and is still waiting for the packet 101, which was
previously received by peer R1. So, peer R2 must also store packets in the range from 102 to
302 in memory and cannot play the content from packet 101 even it has received packet 302
already.

To deal with this problem, the flow control mechanism assumes that a peer does not read
packets from the source link, if one of the forwarding buffers is full. This scenario is shown
in Figure 4.3. Here, the forwarding buffers of node R1 to R2 and R3 are full. The peer R1

stops reading packets from source S. Then the sending buffer of the source to the peer R1

will also be full soon, and the source will not load packets to this buffer any more. On the
other hand, the peers R2 and R3 have large upload capacity and are reading packets from
their sockets very quickly. Thus, the source can rapidly load packets to its other two sending
buffers and send them to the peers R2 and R3. Following the sequence number of packets
in the buffers, the source sends packets much faster to peers R2 and R3 than to peer R1. If
each forwarding buffer is still available for more packets, the corresponding bit in the socket
related to source will be set in descriptor, which will be checked by the source. If the bit is
still set, the peer will read data from the socket of the connection from the source until the
whole packet has been received. Then, this packet will be put into each buffer of the forward
link, to be forwarded to other peers in the same cluster. The payload of this packet is stored
in the memory block.

4.3.3. Caching Mechanism

In hierarchical collaborative multicast, the requesting peers need to efficiently store the pay-
loads of the packets received from the source and other peers in the same cluster. To this
end, a caching mechanism must store contents in separate storage according to the ID of the
source and the requesting peers, which is labeled in the header of the packet. The design
assumes that there is enough space to store the content. In each peer, the payload of the
packets should be sorted by sequence number and stored continuously. However, two prob-
lems are present: media streaming size is unknown and the packets are arriving out of order
from different peers.

Arrays can solve these problems. They are a standard solution used for storing data. An

44

4.3. Cluster Organization

R1

S

R3
R2

30
3

31
0

31
8

31
6

32
0

32
2

321
319

317

295 287
279

295 287 279

R1

R2

R3

Bufers

Buffer size = 3 KB

Block size = 1 KB

Source

Figure 4.3.: Flow control mechanism

array is a structure consisting of a group of elements that are accessed by indexing [202],
[203]. This allows for very fast access because the code can do a little jump quickly to any
location in the array, and the elements are all grouped together so they tend to be in memory
at the same time [201]. However, the size of the array must be fixed and predefined before
distribution, and is impossible to extend its size later. On the other hand, in a list, there is no
fast way to access the N-th element, but the size is easy to append, which means the size does
not need to be predefined before the distribution. In hierarchical collaborative multicast, the
size of the content is unknown and an array can be used to store the packets according to
the sequence number that is specified in the packet header. Thus it is not suitable for storing
large size content. Multimedia streaming is played frame by frame, as soon as each frame is
completely received, it can be read out of the buffer for playback, and the space of this frame
in the memory can be released. Furthermore, the order of the incoming packets depends
on the upload bandwidth of the redistributing peers, and is most probably out of order. The
size of the buffer should be dynamic in order to optimize the efficiency of the memory usage.

Figure 4.4 shows how the arrays and double-linked lists are employed to store the received
packets.

When using double-linked lists, a block can be inserted or removed in the middle of the list,
or added at the beginning or the end. After removing or inserting that block, the linked-list
should be reconnected, and the size or the index updated if necessary. In addition, the size
of the list can be specified or unlimited. This mechanism minimizes the usage of memory
space, and it is suitable for application of playing the stream during receiving.

In a cluster, each requesting peer receives packets from the source (via a direct link) and
other members in the same cluster (via forwarding links), which have different upload ca-
pacity. The packet distance shows the difference of performance between these routes in

45

4. Hierarchical Collaborative Multicast

block 1 block 2 Block 6

0 1 2 3 4 5 6 7

0

8

16

24

32

40

48

56

Packet 38
(1KB)

block 3

Figure 4.4.: Storage blocks

terms of memory usage. A large packet distance indicates that a packet must wait a long
time in the memory before it can be forwarded. So, the larger the packet distance, the larger
the memory usage in each peer.

The flowchart in Figure 4.5 illustrates the algorithm of storing packets in the storage blocks.
Once a new packet is received, the peer checks first the sequence number that is specified
in the packet header, then determines the position of the packet inside the block. Although
at the source the packets are distributed in order for the requesting peers, the packets are
received via different links and due to the different network capacity, they typically arrive
out of order. If the specific block does not exist, the peer creates a new block, and adds it at
the correct position within the double-linked list. After storing the packet the peer checks
whether this block is full. If the counter is equal to the number of packets defined for this
block, then the block is full and its index must be checked. If the index of the current full
block is the smallest, then, this block is the first block of the list (or the previous blocks have
been removed), and the data in this block can be read out. After this, this block can be
removed from the list, and the peer sets the index of the next block as the smallest.

4.3.4. Redistribution Mechanism between Clusters

In hierarchical collaborative multicast, each requesting peer receives packets from the source
and from the other peers in the same cluster. Each peer forwards the packets received from
the source to the other requesting peers in the same cluster. If the requesting peers are cluster
heads then they redistribute the received blocks to their child-clusters.

A redistribution to the children after the whole content has been received is not feasible,
because the playing time difference (redistribution delay) between two levels become too

46

4.3. Cluster Organization

block exists?

new packet

No Create new block

Yes

is the last packet?

send end flag

Yes

No

is this block full?

Yes

read block
out of storage

all content has
been received?

No

No

Yes

end

store packet in block

Figure 4.5.: Flow diagram for the storage process

large and the nodes need too much space to store the content. Furthermore, the last level
peers experience excessive delay before they can start playing the content (potentially in the
order of minutes or even hours). The required time Trc to download all content to the top
cluster from the source is given by

Trc =
content size

Θ
(4.3)

where Θ represents the overall throughput of the system.

In contrast, the redistribution mechanism approach based on streaming avoid large deliv-
ery delays between clusters, and allows that the cluster heads stream the content to their
child-clusters as soon as a block is ready. In this case, the delivery delay is given by

Trb =
block size

Θ
(4.4)

again, Θ represents the overall throughput of the system.

47

4. Hierarchical Collaborative Multicast

From 4.4, it becomes obvious that playout delay becomes much shorter using block dis-
tribution, because the size of a storage block will typically be much smaller than the whole
content.

Similar to Mutualcast [49], hierarchical collaborative multicast uses redistribution queues
to handle anomalies such as packet loss and network congestion during content distribution.
The flow chart for the forward link is shown in Figure 4.6. In this scheme, a peer removes
in each iterative loop a data block from the incoming link, and copies this block onto the
outgoing links connecting all the other requesting peers. The next block from the incoming
link is not removed until the last data block has been successfully copied onto all delivery
links. This forwarding scheme is used by a peer to redistribute the block received from the
source to all the other peers in its cluster. If the peer is a cluster head, then the peer collects
the blocks from all peers in the top cluster and sends these blocks to its child cluster as a
source peer. Thus, in order to reduce the content receiving delay between a cluster head and
its child-peers, the cluster head peer should send the content via the forwarding link after
receiving some blocks instead of receiving all content from its parent peer or the root source.

is forward link empty?

No

wait for a new
block

Yes

was the block
successfully copied?

No

Yes

Remove a block from
the forward link

Copy the block onto the
delivery link of all the

other requesting peers
wait to finish the

copy process

is there a child-cluster?
No

Yes

Peer acts as a
source peer

Figure 4.6.: The operation flow of the forward link on requesting peer.

The delivery links of the requesting peers are the same as in Mutualcast. A block can arrive
from other peers into the same cluster or from the source. Blocks to be redelivered to the
other requesting peers have a higher priority than the blocks to be consumed in the local
peer.

48

4.4. Simulation

4.4. Simulation

In this section, the proposed framework is simulated using linear programming. The simu-
lation evaluates the hierarchical collaborative multicast scheme and Mutualcast in terms of
the maximum possible throughput. The set is formed by 7 participating peers, where peer
S acts as the source peer and the rest of the peers R1 to R6 are requesting peers. The upload
capacity of the source varies from 400 to 1100 kbps, while the upload capacity of the peers
BR1 , BR2 , BR3 , BR4 , BR5 and BR6 in kbps are 1150, 1300, 150, 300, 150, and 300, respectively.
Helper peers are not considered in this example. In order to maximize the overall through-
put, the simulation considers that video sequences can be split in several parts or blocks.
The assumptions are translated into a linear program which is shown in Figure 4.7.

Linear Program:

Cluster 2

SS

R1

Cluster 1

X1, X
3 X

2 , X
3

Cluster 3

X2

X2X2

X1 X1

X1

R2

R3 R4 R6R5

X 1,
X 3

X
2 , X

3
X

2 , X
3

Maximize
Θ = X1 + X2 + X3

subject to
X1 + X2 + 2X3 ≤ 1000
2X1 + X2 + 2X3 ≤ 1150
X1+ 2X2 + 2X3 ≤ 1300
X1 ≤ 150
X2 ≤ 300
X1 ≤ 150
X2 ≤ 300
0 ≤ X1, 0 ≤ X2, 0 ≤ X3,

Figure 4.7.: An example of the hierarchical collaborative multicast scheme for six requesting peers
together with the corresponds linear program. The objective is to maximize the overall throughput

In Figure 4.7, the first constraint X1 + X2 + 2X3 ≤ 1000 represents the upload capacity of
source S, which has to deliver the blocks X1, X2 to the requesting peers R1 and R2, respec-
tively. Source S exhausts its upload capacity by delivering a block X3 directly to peer R1

and R2. The requesting peers R1 and R2 form the first cluster in the first level of the distri-
bution tree. The second constraint 2X1 + X2 + 2X3 ≤ 750 represents the upload capacity
of requesting peer R1, which has to redeliver the block X1 to peer R2 and R3, block X2 to
peer R4, and block X3 to peer R3 and R4. Similarly, exhaustion of the upload capacity of
requesting peer R2 is represented by the third constraint. The fourth to seventh constraints
represent the contribution of the requesting peers R3, R4, R5 and R6, respectively, who re-
distribute their received block in the local clusters. The constraints 0 ≤ X1 to 0 ≤ X3, enforce
that negative block sizes are not allowed. To solve the linear program, the Mathematica 5.0
software packet was used. The solution gives a maximum throughput of 725 kbps, while
the rate of the blocks in kbps is X1 = 150, X2 = 300 and X3 = 275, respectively. Here, if the
block size is zero, it means that no block is transmitted on this link. To compare the Hierar-
chical Collaborative Multicast scheme to Mutualcast, the participating peers are organized
into a Mutualcast scheme, and the assumptions are translated into a linear program. Thus,
the source sends blocks X1 to X6 to requesting peers R1 to R6 for redistribution, while block
X7 is directly sent to each requesting peer. Mutualcast leads to a maximum throughput of
725 kbps,while the rate of the blocks in kbps is X1 = 230, X2 = 260, X3 = 30, X4 = 60,

49

4. Hierarchical Collaborative Multicast

X5 = 30, X6 = 60, X7 = 75. The results show that the hierarchical collaborative multicast
scheme achieves the same overall throughput as Mutualcast, while the upload capacity of
the source and all requesting peers is fully exhausted. After this, the upload capacity of the
source S1 is varied from 400 to 1100 kbps, while the upload capacity of the requesting peers
is maintained. The results from Mutualcast and the hierarchical collaborative multicast are
summarized and compared in Figure 4.8.

600

675
725725

675
625

575
525

475

400

741,66725708,33

500

400

691,6

0

100
200

300

400

500
600

700

800

400 500 600 700 800 900 1000 1100
Source Capacity (kbps)

O
ve

ra
ll

Th
ro

ug
hp

ut
 (k

bp
s)

Hierarchical Collaborative Multicast Mutualcast

Figure 4.8.: Overall throughput comparison for Mutualcast and Hierarchical Collaborative Multi-
cast

Figure 4.8 shows that Hierarchical Collaborative Multicast reaches an overall throughput
lower than Mutualcast when the upload capacity of the source S varies from 500 kbps to
900 kbps, because the upload capacity of the source cannot be used optimally. However,
when the upload capacity of source S is 1000 kbps, the overall throughput reached by both
schemes is identical, because the upload capacity of the source and all peers is fully ex-
hausted. When the upload capacity of S is 400 kbps both schemes reach the same overall
throughput, because the source is fully exhausted in both cases. Finally, if the upload capac-
ity of the source S continues to grow above 1000 kbps, Hierarchical Collaborative Multicast
reaches an overall throughput lower that Mutualcast. This is because in Hierarchical Col-
laborative Multicast the upload capacity of the cluster heads R1 and R2 has been exhausted
and they cannot redistribute more blocks to their child-clusters. Then, source S cannot be ex-
hausted and Hierarchical Collaborative Multicast cannot reach the same overall throughput
as Mutualcast.

4.5. Implementation

The proposed hierarchical collaborative multicast scheme has been implemented using Linux
and C/C++. Similar to Mutualcast, all links between nodes are established using TCP con-
nections. Desired characteristic, such as reliable data delivery, flow-control and handling
of node leave events are automatically been taken care of by the TCP protocol. In both ap-
proaches, all the peers (except the root source) send and receive packets at the same time,
and the distribution of blocks among the requesting peers is implemented using threads. In
computer term, a thread is a "lightweight" process, which is smaller, faster and more ma-

50

4.5. Implementation

neuverable than a traditional process [205]. In this work, the threads are used in order to
ensure distribution and storage without delay. Each node runs 3 threads in parallel: send-
ing, receiving and measurement. According to the task of each peer in the system, they are
classified as source, requesting peer or cluster head.

A "sender" module runs at the root source, which is located at the top in Figure 4.1. This
module does not receive any content, and sends content only. The sender module includes
two threads. The first thread called source thread delivers content, while the second thread,
called measurement thread measures the upload throughput. The sender thread performs the
initialization of the source and delivers the content to the requesting peers after the clus-
ter has been established. Meanwhile, measurement thread starts measuring the upload
throughput until it receives an asynchronous ending message from the sender thread. A
"receiver" module runs on every requesting peer, which has no child-cluster. This request
module has only one thread, which receives and forwards the content received from the
source to the rest of the peers in its cluster. A cluster head peer works as a requesting peer
and server peer. To this end, a "cluster head" module is run by each cluster head peer. The
cluster head module combines "sender" and "receiver" modules. Thus, three threads called
source thread, requesting thread and measurement thread are enabled in each cluster head.
The communication between threads in provided by the redistribution queue. The request-
ing thread puts the storage blocks into the queue and the source thread redistributes them
to the child-cluster one by one.

To run the protocol, initially, the source starts listening on a pre-defined port and waits for
the socket connection request. Then, each requesting peer establishes a connection with the
source. The source copies the IP address and listening port of every requesting peer and
sends this information to all requesting peers. The flow diagram in Figure 4.9 shows the
steps followed by the source during the system initialization.

The cluster initialization takes place in the very beginning, in order to define the hierarchi-
cal collaborative structure to be used. To this end, each requesting peer uses the IP address
and Round Trip Time (RTT) to calculate its proximity to the rest of the requesting peers.
The local clusters can be organized by combining proximity information with information
about the upload capacity of the peers. Each peer starts a new thread, which listens and
waits to establish the forward link for transferring content between two peers. All peers
maintain a list of all peers in the cluster. So the forwarding connection could be established
very quickly. The flowchart in Figure 4.10 shows the establishment of a connection on a re-
questing peer. After the initialization of the forward link, an initialization finished signal is
received from the source indicating that the cluster is initialized and all links are ready for
content distribution. Then, the source and the requesting peers begin the data transfer.

The source has a connection to each requesting peer, and a sending buffer is associated to
each connection by the source. In these sending buffers, the source loads packets from its
hard disk and sends these packets through TCP connections. After the blocks are received
at each requesting peer, it forwards the block to the rest of the peers in the cluster. If the
requesting peer is a cluster head, it organizes the received blocks and forwards them to its
child-cluster. For this task, the requesting peers check each forwarding buffer. If forwarding
buffer is still available for more packets, the source or cluster head will be informed via the
socket descriptor. The source checks this information and the next packet is put into each
buffer of the forward links.

51

4. Hierarchical Collaborative Multicast

Weak up

Copy IP address and listening
port of the requesting peers

Listen to requests from peers

Send IP list to all
requesting peers

are m peers connected
into top cluster?

is the requesting peer a
candidate peer?

No Assign peer into
bottom clusters

Yes

accept peer into top cluster

No

Yes

“initialization
ready” signal has been

received?

No

Yes

wait for botton
clusters

formation

All connections established

Figure 4.9.: Establishment of peer connections and cluster formation from the source’ perspective.

In the implementation, the block size is set to 1KB, so each block can be sent using a single
TCP/IP packet. The buffer size is set to 3 KB, which corresponds to 3 packets. A loading
pointer indicates how many packets remain in the buffer and how much space is available.

4.6. Evaluation

The performance of a hierarchical collaborative multicast prototype has been evaluated in
the local network of the Institute of Communication Networks at the Technische Universität
München and in the PlanetLab [153] infrastructure. For both infrastructures, the proposed
approach and the Mutualcast approach have been compared in terms of delivery delay.

The delivery times between Mutualcast and the proposed approach are measured making
extensive tests in the local network. The obtained measurements from the local network are
very similar between for both schemes, due to the high capacity and homogeneity of the
participating peers. In addition, the experiments compare the resource consumption (mem-
ory usage) between Mutualcast and hierarchical collaborative multicast by broadcasting a
media file of 11 MB from the source to all requesting peers. The results are shown in Figure
4.11.

52

4.6. Evaluation

Is the cluster ready?

is a cluster head?
No Connect to its

head cluster
Yes

Connect its child-cluster

No

Yes

“initialization ready” signal
to the source

All connections established

Create forward link

Send request to source

Receive IP list from
the source

Connect to other peers
in the cluster

Figure 4.10.: Establishment of connections on the requesting peer.

0

20

40

60

80

100

120

1 10 19 28 37 46 55 64 73 82 91 100 109

Number of Packet

Pa
ck

et
 d

is
ta

nc
e

Hierarchical Collaborative Multicast
Mutualcast

x100

Figure 4.11.: Packet distance comparison between Mutualcast and Hierarchical Collaborative Mul-
ticast

53

4. Hierarchical Collaborative Multicast

The memory usage is determined by the packet distance, which indicates the memory space
required in each peer to forward the blocks received from the source to the rest of the request-
ing peers. The larger the packet distance, the larger the memory usage in each forwarding
peer. The results show that for the same bandwidth capacity among all requesting peers,
Mutualcast shows a bigger distance than Hierarchical Collaborative Multicast. Therefore,
Mutualcast needs a greater usage of memory in each forwarding peer than the proposed
approach.

For the experiments on PlanetLab, a simple and small multicast group formed by 10 Plan-
etLab nodes is selected. The tested scheme is shown in Figure 4.12. In the experiments,
the source is located at University of Pittsburg (planetlab2.cs.pitt.edu), while the first level
cluster in the hierarchical structure is formed by PlanetLab nodes located at University Col-
lege London-UCL (planetlab1.net.research.org.uk), Worcester Polytechnic Institute-WPI (75-
130-96-13.static.oxfr.ma.charter.com) and Laboratory of Computer Sciences, Paris 6-UPMC
(planetlab-01.lip6.fr). Two child-clusters are built on the second level. The first child-cluster
which is formed by PlanetLab nodes located in the Northeast of the United States (Mas-
sachussetts Institute of Technology (planetlab7.csail.mit.edu), University of Toronto (pl2.csl.
utoronto.ca) and University of Chicago (planetlab3.cs.uchicago.edu) is connected to the WPI
PlanetLab node, while the second child-cluster which is formed by PlanetLab nodes located
in Poland Warsaw-UT(planetlab3.mini.pw.edu.pl), Wroclaw-UT (planetlab1.ci.pwr.wroc.pl),
and TP-Warsaw (planetlab1.warsaw.rd.tp.pl) is connected to the UCL PlanetLab node. Then,
the source broadcasts a media file of 1.5 MB using both schemes to all the requesting peers.

PlanetLab nodes:
Source peer (S):
S - University of Pittsburgh (planetlab2.cs.pitt.edu)
Requesting peers:
R1 - Worcester Polytechnic Institute

(75-130-96-13.static.oxfr.ma.charter.com)
R2 - University of Chicago (planetlab3.cs.uchicago.edu)
R3 - Massachussetts Institute of Technology (planetlab7.csail.mit.edu)
R4 - University of Toronto (pl2.csl.utoronto.ca)
R5 - LIP6 - Université Pierre et Marie Curie (planetlab-01.lip6.fr)
R6 - University College London - UCL (planetlab1.net.research.org.uk)
R7 - Wroclaw University of Technology (planetlab1.ci.pwr.wroc.pl)
R8 - TP-RD-Warsaw (planetlab1.warsaw.rd.tp.pl)
R9 - Warsaw University of Technology (planetlab3.mini.pw.edu.pl)

R2

R3
R4

R5

R6

R1

R7

R8

R9

S

Cluster 2

Cluster 3

Cluster 1

Distribution from the source to each peer directly

Redistribution inside the clusters

Redistribution through distribution tree

Figure 4.12.: Organization of Planetlab nodes using Hierarchical Collaborative Multicast

The first experiment on PlanetLab evaluates the adaptability of the hierarchical collabora-

54

4.6. Evaluation

tive multicast scheme to the bandwidth variation of the peers. Figure 4.13 shows how the
source fits the content distribution to the peers based on their available capacity. The peers
are organized into three clusters located on different levels through the distribution tree.
Thus, each peer in the first cluster (WPI, UCL and LIP6) receives and forwards a part of the
broadcasted file from the source based on its throughput. WPI receives and forwards 31.9
% of the total file, while UCL and UTL receive and forward 35.2 %, and 31.9 % of the total
file, respectively. Similarly, in the first (cluster 2) and second (cluster 3) child-clusters, each
requesting peer receives and forwards a part of the broadcasted file from its parent peer. In
cluster 2, MIT receives and forwards 38.4% of the total file, while UChicago and UToronto
receive and forward 33.2% and 28%, respectively. In cluster 3, TP-Warsau receives and for-
wards 24 % of the total file, while Wroclaw-UT 49.4% and Warsaw-UT 26.6 %, respectively.
In each cluster, the number of blocks to be distributed to each peer are dynamically adapted
considering its changing upload capacity.

Cluster 1 (level 1) Cluster 2 (level 2) Cluster 3 (level 2)

35,2
31,9

32,9

20

25

30

35

40

45

50

55

WPI UCL LIP6

Pe
rc

en
ta

ge
 o

f r
ed

is
tr

ib
ut

ed
 fi

le

38,4

33,2

28,4

20

25

30

35

40

45

50

55

MIT UChicago UToronto

Pe
rc

en
ta

ge
 o

f r
ed

is
tr

ib
ut

ed
 fi

le

24
26,6

49,4

20

25

30

35

40

45

50

55

TP-Warsaw Wroclaw-UT Warsaw-UT

Pe
rc

en
ta

ge
 o

f r
ed

is
tr

ib
ut

ed
 fi

le

Figure 4.13.: Dynamic load distribution in clusters

In contrast, using Mutualcast, the load distribution among the nodes is very unbalanced.
Mutualcast distributes a number of blocks to each peer based on its upload capacity in order
to obtain uniform content distribution. However, some peers do not contribute with enough
upload capacity or the connection is very slow. The load distribution for the same peers
using Mutualcast is illustrated in Figure 4.14. Here is shown how two PlanetLab nodes
located in Poland (TP-Warsaw and Wroclaw-UT) receive a reduced number of data blocks
(percentage of received file) compared to nodes located in the Northeast of the United States.

The second set of experiments evaluates Hierarchical Collaborative Multicast and Mutual-
cast in terms of delivery delay. In the experiments, the scheme with the smallest delivery
delay is assumed to present the best overall performance. The maximum delay for both
approaches during the delivery of 1.5 MB is shown in Figure 4.15.

In contrast to the measurements realized in the local network, the Mutualcast and Hier-
archical Collaborative Multicast have different performances on PlanetLab, due to the het-
erogeneity of the participating peers. The results show that when the proposed approach
is used, the maximum delay is smaller in comparison to Mutualcast for the most of the re-
questing peers. Using the proposed approach the average delay is reduced by around 40%
with respect to Mutualcast.

This improvement first is attributed to the fact that the source is close to the cluster at the
highest level of the hierarchy. Thus, the throughput between the source and this subset
of requesting peers is larger than the throughput between the source and the rest of the
requesting peers. The second fact is that using a hierarchical approach, the peers in the local

55

4. Hierarchical Collaborative Multicast

13,5

9,3

15,4 15,2

1,4

3,9

13,2
14,7

12,9

0
2

4
6

8
10
12
14

16
18

W
PI

U
C

L

LI
P6 M
IT

U
ch

ic
ag

o

U
to

ro
nt

o

TP
-

W
ar

sa
w

W
ro

cl
aw

-
U

T

W
ar

sa
w

-
U

T

Pe
rc

en
ta

ge
 o

f r
ed

is
tr

ib
ut

ed
 fi

le

Figure 4.14.: Dynamic load distribution in Mutualcast

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

W
PI

U
C

L

LI
P6 M
IT

U
ch

ic
ag

o

U
to

ro
nt

o

Po
le

n

Po
le

n

W
ar

sa
w

M
ax

im
um

 D
el

ay
 (s

ec
)

Mutualcast HierarchicalAverage Delay:
Mutualcast = 23,8 sec
Hierarchical = 15,8 sec

Figure 4.15.: Maximum delay comparison between Mutualcast and Hierarchical Collaborative Mul-
ticast

clusters avoid the connection to distant peers into the overlay topology, while when using
Mutualcast all the requesting peers are fully connected. Another important contribution of
hierarchical collaborative multicast is the clustering and load distribution among peers with
similar performance and proximity.

4.7. Chapter Summary

In this chapter, a Hierarchical Collaborative Multicast scheme for video delivery from one
source to multiple receivers using Peer-to-Peer (P2P) networks has been proposed and eval-
uated. Tree and mesh structures are combined for video delivery.

Hierarchical Collaborative Multicast organizes all nodes as a scalable distribution tree. Re-
questing peers are organized into small meshed clusters, which are hierarchically located
through a unique distribution tree. Content is distributed from the root source to every peer

56

4.7. Chapter Summary

through the tree. If a requesting peer has a child-cluster, then this peer is called a cluster-head
peer. A cluster head peer and its child-peers comprise a distribution cluster. The hierarchical
clustering is based on the upload capacity of the requesting peers and their mutual proxim-
ity. In each cluster, all the participating peers are fully interconnected, and they are in fact
receivers and senders at the same time.

The source chops the content into many packets and sends each packet to a single peer.
Then the peer exchanges the received packets among the rest of the peers to obtain the whole
content. The implementation utilizes sending and forwarding buffers, a storage block and
dynamic adaptive distribution mechanism in order to maximize the throughput, minimize
the memory usage and redistribution delay between nodes of different levels in the distri-
bution tree.

The local network of the Institute of Communication Networks (LKN) and the PlanetLab
[153] infrastructure are used to evaluate the performance of the hierarchical collaborative
multicast scheme. In both infrastructures, the performance of the proposed scheme has been
compared with the Mutualcast performance. The results show the superior performance
of hierarchical collaborative multicast compared to Mutualcast. Specifically, the proposed
scheme presents a better load distribution, a reduced average delay and a reduced memory
usage.

57

4. Hierarchical Collaborative Multicast

58

5. Multi-Source Video Multicast

In this chapter, a novel approach for video delivery from multiple sources to multiple re-
ceivers in P2P networks is introduced. The source peers, the requesting peers and additional
helper peers are considered as participating peers. The approach assumes that all request-
ing peers and all sources need to receive all videos. The helper peers are not interested in
receiving the videos and just contribute their resources during distribution. The proposed
approach is inspired by Mutualcast [49], which is an efficient mechanism for one-to-many
content distribution that maximizes the overall throughput by exploiting the upload capac-
ity of all participating peers. The Mutualcast scheme is extended from one source to multiple
sources and the optimal rate allocation for multi-source streaming applications is investi-
gated.

In the scheme proposed in [93], each source distributes its own video sequence and addi-
tionally forwards blocks of video received from other sources to the rest of the requesting
peers. How much the source can redistribute depends on the available upload capacity. At
the same time, each requesting peer forwards the blocks directly received from a source to
the rest of the peers. Again, the amount of redistributed content depends on the peers up-
load capacity. The optimal rate allocation among multiple streaming sessions is determined
and the effectiveness of the proposed scheme is evaluated for four different scenarios. In the
first scenario, the rate allocation is jointly decided for all participating peers. In the second
scenario, the rate allocation is also decided jointly, but additionally either same rate or same
video quality streams are enforced. In the third scenario, separate rate allocation for every
source and same rate streams are assumed. In this case, the upload capacities of the sources
are divided equally among the different video streams. The fourth scenario also considers
sources with independent rate allocation, but for different rate streams. Again, the upload
capacities of the sources are divided equally among the different video streams. The analysis
assumes that the upload capacity of each peer is the only constraint, which is an assumption
motivated by the fact that peers usually have larger download capacity than upload capacity
(e.g. DSL lines) on the Internet. Each sources splits its video into many small blocks, and
delivers each block separately. The analysis also assumes that all participating peers have
heterogeneous upload capacities and may store different number of video blocks. Exhaust-
ing the upload capacity of each peer leads to the best system performance, which becomes
reflected by maximum throughput or best possible video quality.

This chapter is organized in the following way:

• Description
The section starts by declaring the motivation for this work. In particular, how the
Mutualcast approach can be extended to multi-source scenarios such as multi-party
videoconferencing is discussed. Then, the multi-source framework is introduced and
its principle design is described.
• Analytical model

An analytical framework for the multi-source video multicast scheme is presented.

59

5. Multi-Source Video Multicast

The proposed scheme is analyzed in terms of throughput maximization and Rate-
Distortion optimization.

• Adaptive rate allocation mechanism

Here, an adaptive rate allocation algorithm is introduced, which enforces either same
rate or same video quality streams in the overall system.

• Simulation

To simulate the performance of the multi-source multicast approach, the distribution
problem is formulated as an optimization problem [188] [107] and translated into a
linear programming problem, which is solved using standard optimization techniques.
The performance of the proposed approach is simulated in terms of throughput and
video quality (PSNR).

• Implementation and evaluation

In this section, the implementation of an experimental prototype of the proposed multi-
source multicast approach is described. The performance of the prototype has been
evaluated in a local network and in the PlanetLab infrastructure. The performance of
the proposed approach has been compared to a multi-source multicast scheme with
independent rate allocation in terms of throughput, PSNR, and delay for all video
streams.

The author’s research contributions in this chapter are:

1. A multi-source multicast model, targeted for video streaming environments that in-
herently have multiple senders. The model assumes that the senders simultaneously
stream different video sequences to multiple receivers. This includes one source re-
ceiving the videos from the other sources.

2. An analytical framework for the proposed multi-source video multicast approach,
which is divided in throughput-based optimization and Rate-Distortion-based opti-
mization (video quality). The formulation of rate allocation as an optimization prob-
lem with objective functions that either maximize the throughput or the video quality
of the system by exhausting the upload capacity of each peer. The optimization prob-
lem is translated into a linear program which is solved using common optimization
techniques.

3. An adaptive rate allocation mechanism for the multi-source scheme that adjusts the
transmission rates for both sources in order to enforce either same rate or same video
quality streams in the system.

4. An experimental prototype of the multi-source multicast approach, and its implemen-
tation on the PlanetLab infrastructure to evaluate its performance for different sce-
narios: sources with joint rate allocation for arbitrary rates or arbitrary video quality
streams, sources with joint rate allocation for same rate or same video quality streams,
and sources with independent rate allocation.

In this work, sources that perform a joint rate allocation decision during a streaming session
are referred to as sources with joint rate allocation. On the other hand, sources that work
separately, for which their upload capacities are divided equally among the different video
streams are referred to as sources with independent rate allocation. The results obtained
from extensive simulations and experiments on PlanetLab validate the analytical study and

60

5.1. Description

the effectiveness of the multi-source multicast model, and show the superior performance of
joint rate allocation compared to independent rate allocation.

5.1. Description

This section provides an overview of the proposed multi-source video multicast model. The
solution builds on top of Mutualcast. The proposed approach differs from previous multi-
source multicast approaches in that it uses a fixed network topology where all the participat-
ing peers are fully interconnected, including the sources. Also different to previous work,
the solution performs a joint rate allocation decision considering the upload capacities of all
participating peers. The proposed model is illustrated in Figure 5.1 for two source peers,
two requesting peers and one helper peer.

X4, X5

X
3

H1

S2

Y4, Y5

Y 1,Y
5,

X 4

X
2 , X

5, Y
4

Y1,Y2,Y3,Y4, Y5

X3

X 1,
X 5,

Y 4

Y 2,
 Y

5,
 X

4

Y
3

R2R1

S1

X1, X2, X3, X4, X5

X2, Y2

X3, Y3

X 2Y2

Y3

Y1

X 1

X1, Y1 X3, Y3

Figure 5.1.: Proposed for multi-source multicast approach

In this example, the peers S1 and S2 are the sources, which contain the video sequences X
and Y to be distributed among all participating peers, while peers R1, R2 are the requesting
peers, and peer H1 is a helper peer. The peer H1 does not request the videos, nevertheless,
it contributes its upload capacity to help distributing the videos to the other peers. Here, all
the peers are in fact receivers and senders at the same time, as it is for instance the case in
a multipoint video conferencing scenario. Each requesting peer forwards a received video
block to the other requesting peers and the other source peers. Each source splits the original
content into small blocks and one unique peer is selected to distribute a block to the rest of
the peers. For this example, the source S1 divides the video X into the blocks X1 to X5,
while the source S2 divides the video Y into the blocks Y1 to Y5. Because the proposed
approach is based on collaboration among sources, each source distributes its own video
while additionally forwarding the block of video received from the other source to the rest
of the requesting peers. At the same time, each requesting peer forwards the blocks directly
received from a source to the rest of the participating peers. Thus, the blocks (X1, Y1), and
(X2, Y2) are assigned to the requesting peersR1 andR2, respectively, while the block (X3, Y3)

61

5. Multi-Source Video Multicast

is assigned to the helper peer H1, the block X4 is assigned to the source peer S2 and block
Y4 is assigned to the source peer S1 for distribution. Peers with different upload capacity
distribute a different amount of content. The block size assigned to each requesting peer is
proportional to its upload capacity. When the source peers have abundant upload resources,
each source additionally sends one block directly to the video receiving peers. To illustrate
such a case, Figure 5.1 shows that source S1 directly sends block X5 to each peer and source
S2 directly sends block Y5 to each peer. Thus, source S1 sends one block to each participating
peer for redistribution, one block in parallel to all requesting peers, and forwards one block
of the video Y received from the source S2 to each requesting peerRi. The source S2 behaves
similar as source S1, but in a complementary way. It sends the video Y and forwards the
video block X4. Each requesting peer forwards the blocks received from the sources S1

and S2 to the other requesting peers and the other sources, e.g., peer R1 receives the blocks
X1 and X5 from source S1 and the block Y1 and Y5 from the source S2. After this peer R1

forwards the blockX1 and Y1 to the rest of the participating peers except to the source where
the block was originally generated and the helper peer H1. The blocks X3 and Y3 are sent by
the sources S1 and S2, respectively to the helper peer H1, which forwards the blocks to all
participating peers except to the source where the block was originally generated.

5.2. Throughput-based Analysis

The analytical study of the multi-source multicast model is divided in two parts. The first
part corresponds to the throughput-based analysis, which is studied in this section. The
second part corresponding to the video quality analysis is studied in the next section.

The throughput-based analysis of the multi-source multicast model is realized for four sce-
narios:

1. Sources with joint rate allocation for different rate streams,

2. Sources with joint rate allocation for same rate streams,

3. Sources with independent rate allocation for same rate streams.

4. Sources with independent rate allocation for different rate streams.

In each scenario, a particular case and the general case are analyzed. The particular case
considers two sources and N1 requesting peers, while the general case considers M sources,
N1 requesting peers, and N2 helper peers.

5.2.1. Sources with Joint Rate Allocation for Different Rate Streams

In the first scenario, the rate allocation is jointly decided for all participating peers. All par-
ticipating peers are fully connected and all of them need to receive all videos. In order to
maximize the overall throughput, video sequences with different rate are allowed.

A. Particular Case

The particular case for this scenario considers two sources and N1 requesting peers Ri.
Source S1 and S2 have an upload capacityCS1 andCS2 , respectively, and the content-requesting

62

5.2. Throughput-based Analysis

S1

RN1R1

Source S1 with upload capacity CS1

Source S2 with upload capacity CS2

Content requesting peers R1,…,RN1
with upload capacity CRi

, i = 1, …, N1

S2

1
2SB

1
1RB 1

DB 2
1RB 2

DB
2
DB

2
1SB

1
DB,

2
DB,

Figure 5.2.: A multi-source example with two sources and N1 requesting peers

peers Ri have upload capacity CRi . The case for two sources and N1 requesting peers is il-
lustrated in Figure 5.2.

The exhaustion of the upload capacity of source S1 is given as

CS1 =
N1∑
i=1

B1
Ri

+B1
S2

+ (N1 + 1)B1
D +N1B

2
S1

(5.1)

The first term in (5.1) represents the amount of data being sent from the source S1 to the
requesting peers for redistribution. B1

S2
is the amount of data being sent from source S1 to

source S2 for redistribution. (N1 + 1)B1
D stands for the upload capacity needed to directly

send a video block from source S1 to theN1 requesting peers and the other source S2. N1B
2
S1

is the upload capacity that is needed at source S1 to redistribute a block received from S2.
Similarly, the exhaustion of the upload capacity of source S2 is achieved for

CS2 =
N1∑
i=1

B2
Ri

+B2
S1

+ (N1 + 1)B2
D +N1B

1
S2

(5.2)

B1
Ri

+B2
Ri

is limited by the upload capacity CRi .

B1
Ri

+B2
Ri

=
CRi

(N1 − 1) + 1
=
CRi

N1
(5.3)

The denominator in (5.3) reflects the fact that the content has to be redistributed to the other
N1 − 1 requesting peers and the other source. Then, BR becomes

BR =
N1∑
i=1

B1
Ri

+
N1∑
i=1

B2
Ri

=
N1∑
i=1

(B1
Ri

+B2
Ri

) =
N1∑
i=1

CRi

N1
=

1
N1

N1∑
i=1

CRi = CR (5.4)

If the sum of the two source upload capacities is smaller than the mean upload capacity of
the requesting peers, the throughput Θ is limited by CS1 + CS2 :

63

5. Multi-Source Video Multicast

Θ = CS1 + CS2 for CS1 + CS2 < BR = CR (5.5)

If the sum of CS1 and CS2 is larger than CR additional throughput can be achieved. Two
additional distribution routes are distinguished:

1. Source S1 redelivers B2
S1

from source S2 and hence an additional upload capacity of
N1B

2
S1

is required. Similarly, if source S2 redelivers B1
S2

from S1 an additional upload
capacity of N1B

1
S2

is required at source S2.
2. Direct delivery of data to all requesting peers which requires an additional upload

capacity at source S1 of (N1 + 1)B1
D. Similarly, (N1 + 1)B2

D is required at source S2.

These two alternatives put the same total burden on the sources ifB1
D = B1

S2
andB2

D = B1
S2

.
Then, direct delivery to N1 + 1 peers can be selected. Thus, if CS1 + CS2 > BR = CR the
achievable throughput Θ is:

Θ = BR +
(CS1 + CS2 −BR)

(N1 + 1)
(5.6)

Therefore, the distribution throughput Θ for the multi-source scheme using two sources is:

Θ =

CS1 + CS2 for CS1 + CS2 ≤ BR

BR + (CS1
+CS2

−BR)

N1+1 for CS1 + CS2 > BR

(5.7)

B. General Case
For the general case M sources, N1 requesting peers Ri and N2 helper peers Hi are con-

sidered. Source Si sends video data blocks to all requesting peers, all helper peers and all
other sources for redistribution. Additionally, if enough upload capacity is available, a video
data block Bi

D is directly sent to all other sources and the requesting peers. Exhausting the
upload capacities of sources S1, . . . , SM is achieved if

CSj =
N1∑
i=1

Bj
Ri

+
N2∑
i=1

Bj
Hi

+
M∑

i=1,i 6=j

Bj
Si

+ (N1 + (M − 1))Bj
D (5.8)

Similar to (5.7), the distribution throughput Θ for the multi-source scheme with M sources,
N1 requesting peers Ri and N2 helper peers Hi can be written as:

Θ =

∑M

i=1CSi for
∑M

i=1CSi ≤ BR +BH

BR +BH +
∑M

i=1 CSi
−(BR+BH)

N1+M−1 for
∑M

i=1CSi > BR +BH

(5.9)

with the contribution BR from the requesting peers Ri

BR =
N1∑
i=1

B1
Ri

+ . . .+
N1∑
i=1

Bj
Ri

+ . . .+
N1∑
i=1

BM
Ri

=
N1∑
i=1

(B1
Ri

+ . . .+BM
Ri

) (5.10)

=
N1∑
i=1

CRi

N1 +M − 2
=

N1

N1 +M − 2
CR

64

5.2. Throughput-based Analysis

and, the contribution BH from the helper peers Hi

BH =
N2∑
i=1

B1
Hi

+ . . .+
N2∑
i=1

BM
Hi

=
N2∑
i=1

(B1
Hi

+ . . .+BM
Hi

) (5.11)

=
N2∑
i=1

CHi

N1 +M − 1
=

N2

N1 +M − 1
CH

For M = 1 in (5.9) the Mutualcast result in (3.6) is obtained as a special case. For M = 2 and
N2 = 0 the result in (5.7) is obtained.

In this scenario, each peer assigns a different portion of its upload capacity to each video,
in order to maximize the overall throughput. Thus, the individual throughputs Θi cannot
be uniquely computed, because several sets of optimal individual throughputs can be com-
bined to achieve the maximum overall throughput in the system. For example, the maxi-
mum overall throughput of 500 kbps using two sources, can be achieved if the individual
throughputs Θ1 and Θ2 are 300 kbps and 200 kbps, respectively. However, the same max-
imum overall throughput can be achieved if Θ1 and Θ2 are 216.65 kbps and 283.35 kbps,
respectively. Both individual values for Θ1 and Θ2 aim to maximize the overall throughput,
but each individual throughput Θi has a set of different optimal values. Furthermore, the up-
load capacity of the requesting peers could be exhausted by forwarding one video sequence
only, while the other video sequences are forwarded by the rest of the sources. For this sce-
nario of sources with joint rate allocation there are typically several solutions to assign the
rate, which maximize the overall throughput. The set of optimal individual throughputs Θ1

that maximize the overall throughput can be obtained via linear programming. This solution
is shown in Section 5.4.

5.2.2. Sources with Joint Rate Allocation for Same Rate Streams

Different sources may have different upload capacities during a video streaming session and
the videos may be streamed at different rates. Therefore, a requesting peer may receive at
the same time a video with high quality while a second video is received with low quality.
In order to deal with this issue, the second scenario again jointly decides the rate allocation
for all participating peers, but additionally enforces same rate streams.

A. Particular Case
The particular case considers two sources which distribute two different video sequences

to N1 requesting peers. The case assumes that both videos are distributed with same rate
Θ1 = Θ2. The source upload to the content requesting peers Ri for redistribution from the
source S1 is

B1
R =

N1∑
i=1

B1
Ri

(5.12)

while the source upload to the content requesting peersRi for redistribution from the source
S2 is

B2
R =

N1∑
i=1

B2
Ri

(5.13)

65

5. Multi-Source Video Multicast

Assuming that B1
Ri

= B2
Ri

, BR is obtained similar to (5.4)

BR = B1
R +B2

R =
N1∑
i=1

(B1
Ri

+B2
Ri

) =
N1∑
i=1

2B1
Ri

=
N1∑
i=1

CRi

N1
=

1
N1

N1∑
i=1

CRi = CR (5.14)

The distribution throughput for the two videos now becomes

Θ1,2 = min(CS1 , CS2) for min(CS1 , CS2) ≤ BR

2
(5.15)

If min(CS1 , CS2) > BR
2 , then either source S1 or source S2 or both S1 and S2 are not ex-

hausted and they have the residual upload capacities ∆S1 and ∆S2.

∆S1 = CS1 −
BR

2
(5.16)

∆S2 = CS2 −
BR

2
(5.17)

In order to maximize the overall throughput, the system must exhaust the upload capacity
of both sources. The exhaustion of the sources S1 and S2 is illustrated in Figure 5.3. Here,

S1

RN1R1

S2∆S1 ∆S2

11
2

, SD BB

22
1

, SD BB

1
DB

1
DB2

DB
2
DB

2
1SB

2
1SB

1
2SB

1
2SB

Figure 5.3.: Exhaustion of ∆S1 and ∆S2

B1
D represents the video block directly sent from the source S1 toN1 requesting peersRi and

the source S2. B1
S2

represents the video block sent by the source S1 to the source S2, which
forwards the block to all requesting peers Ri. B2

D represents the video block directly sent
from the source S2 to N1 requesting peers and the source S1, and B2

S1
represents the video

block sent by the source S2 to the source S1, which forwards the block to all requesting peers
Ri. The exhaustion of ∆S1 and ∆S2 is given by

(N1 + 1)B1
D +N1B

2
S1

+B1
S2

= ∆S1

(N1 + 1)B2
D +N1B

1
S2

+B2
S1

= ∆S2
(5.18)

with the same rate constraint B1
D + B1

S2
= B2

D + B2
S1

= ∆Θ1 = ∆Θ2. This leads to an
optimization problem, which mathematically can be formulated as:

Maximize ∆Θ1 = ∆Θ2 = B1
D +B1

S2
= B2

D +B2
S1

(5.19)
subject to

(N1 + 1)B1
D +N1B

2
S1

+B1
S2
≤ ∆S1

(N1 + 1)B2
D +N1B

1
S2

+B2
S1
≤ ∆S2

66

5.2. Throughput-based Analysis

The objective in (5.19) is to find the optimal rate allocation that maximizes the additional
throughput ∆Θ1 and ∆Θ2, while enforcing the same rate for both videos. The linear opti-
mization problem can be solved using efficient linear programming (LP) solvers [107], in a
similar way as it is proposed in [106]. Then, the overall throughput Θ is

Θ = Θ1 + Θ2 (5.20)

where Θ1 = Θ2 = B1
R
2 + ∆Θ1 = B2

R
2 + ∆Θ2.

A special case for ∆Θ1 and ∆Θ2 is obtained when ∆S1 > ∆S2 and more specifically ∆S1 ≥
(2N1 + 1)∆S2, then

∆Θ1 = ∆Θ2 = ∆S2 (5.21)

Similarly for ∆S2 ≥ (2N1 + 1)∆S1,

∆Θ1 = ∆Θ2 = ∆S1 (5.22)

B. General Case
To extend the second scenario to its general case, M sources, N1 requesting peers Ri, and
N2 helper peers Hi are considered. Again, helper peers just contribute their upload capacity
during distribution and they are not interested in receiving the videos. The case assumes
that the distribution throughput for all M sources is the same:

Θ1 = . . . = Θj = . . . = ΘM (5.23)

The source upload to the content requesting peers and the helper peers for redistribution
from the source Sj is

N1∑
i=1

Bj
Ri

+
N2∑
i=1

Bj
Hi

(5.24)

Assuming that B1
Ri

= . . . = Bj
Ri

= . . . = BM
Ri

and B1
Hi

= . . . = Bj
Hi

= . . . = BM
Hi

, then

BR =
N1∑
i=1

(B1
Ri

+ ...+Bj
Ri

+ ...+BM
Ri

) =
N1∑
i=1

M ∗B1
Ri

= CR (5.25)

and

BH =
N2∑
i=1

(B1
Hi

+ ...+Bj
Hi

+ ...+BM
Hi

) =
N2∑
i=1

M ∗B1
Hi

= CH (5.26)

Then, Θ1,...,M = min(CS1 , . . . , CSM
) for min(CS1 , . . . , CSM

) ≤ (BR+BH)
M .

If min(CS1 , . . . , CSM
) > (BR+BH)

M , then sources S1, . . . , SM are not exhausted and they have
a residual upload capacity ∆Sj

∆Sj = CSj −
BR +BH

M
j = 1, . . . ,M (5.27)

Then, the exhaustion of ∆S1, . . . ,∆SM is given by

(N1 +M − 1)Bj
D +

M∑
i=1,i 6=j

Bj
Si

+ (N1 +M − 2)
M∑

i=1,i 6=j

Bj
Si

= ∆Sj (5.28)

67

5. Multi-Source Video Multicast

with
B1

D +B1
S2

+ . . .+B1
SM

= . . . = Bj
D +Bj

S1
+ . . .+Bj

Sj−1
+Bj

Sj+1
+ . . .+Bj

SM

= . . . = BM
D +BM

S1
+ . . .+BM

SM−1
= ∆Θ1 = . . . = ∆Θj = . . . = ∆ΘM

Bj
D represents the video block directly sent from the source Sj to all N1 requesting peers Ri

and the other M − 1 sources Si. B
j
Si

represents the video block sent by the source Sj to the
source Si, which forwards the block to N1 requesting peers Ri and M − 2 sources Si. ∆Θ is
the additional throughput, which becomes

∆Θ =
M∑
i=1

∆Θi (5.29)

The overall throughput is then given as

Θ = M ∗Θj + ∆Θ (5.30)

The problem can be transformed to the following equivalent optimization problem

Maximize ∆Θ1 = . . . = ∆Θj = . . . = ∆ΘM (5.31)
subject to

(N1 +M − 1)Bj
D +

M∑
i=1,i 6=j

Bj
Si

+ (N1 +M − 2)
M∑

i=1,i 6=j

Bj
Si
≤ ∆Sj (5.32)

for all j = 1, . . . ,M.

The objective in (5.31) is to find the optimal rate allocation that maximizes the additional
throughput ∆Θ1 to ∆ΘM , while enforcing the same rate for all videos. The constraints in
(5.32) ensure that the limits on the upload capacity of the senders are not exceeded. This
optimization problem can be solved efficiently using common optimization techniques such
as the simplex method [107].

Similar to the first scenario, each peer has a wide freedom to assign a different portion of
its upload capacity to each video, in order to achieve the same throughput for all video se-
quences. Thus, the individual throughputs Θi cannot be computed by a specific equation,
and a set of optimal individual throughputs can be combined to achieve the same through-
put for different video sequences.

5.2.3. Sources with Independent Rate Allocation for Same Rate Streams

The third scenario considers the case where the sources work separately with independent
rate allocation and the same rate for all videos is enforced. This scenario also assumes
that the sources and the requesting peers distribute their upload capacities in an equal way
among all different video sequences. This means that coordination between the sources is
not happening and excess capacity of a source cannot be exhausted by other sources.

A. Particular Case
For the particular case, two sources and N1 requesting peers Ri are considered. The case

assumes that two videos are distributed from the sources and that all requesting peers and

68

5.2. Throughput-based Analysis

both sources need to receive all videos. The case also assumes that all peers distribute their
upload capacities equally among all video sequences as shown in Figure 5.4. In other words,
two separate and independent Mutualcast distributions run in parallel. Since same rate
streams are delivered, the distribution throughput for both sources is the same, i.e, Θ1 = Θ2.

BR

Upload capacity CS1
of source S1

S1

BR

S2

Upload capacity CS2
of source S2

CS2
/ 2

(reserved for X)
CS1

/ 2
(reserved for X)

R1 RN1

Redistribution to both sources
and (N1 - 1) requesting peers

Upload capacity CR1
of requesting peer R1 Upload capacity CRN1

of requesting peer RN1

CR1
/ 2 CRN1

/2

∆2
1SB1

2SB

CS1
/ 2

(reserved for Y)
CS2

/ 2
(reserved for Y)

1
1)1(DBN + 2

1)1(DBN +

2
1 1SBN 1

1 2SBN

Redistribution to both sources
and (N1 - 1) requesting peers

CR1
/ 2

reserved
for X

reserved
for Y

reserved
for Y

reserved
for X

CRN1
/2

Figure 5.4.: An example of two sources with independent rate allocation and same rate streams

Figure 5.4 shows how the sources S1 and S2 divide their upload capacity in two parts for
delivery of the videos X and Y . The source upload to the requesting peers for redistribution
from the source S1 and S2 is given by (5.12) and (5.13), respectively.

Assuming thatB1
Ri

= B2
Ri

, and dividing the upload capacity of the requesting peers CRi by
two, BR is obtained similar to (5.4)

BR =
N1∑
i=1

(B1
Ri

+B2
Ri

) =
N1∑
i=1

2 ∗B1
Ri

=
∑N1

i=1CRi

2 ∗N1
=
CR

2
(5.33)

If CS1
2 ≤ BR, then the overall throughput Θ is limited by CS1

2 . On the other hand, if CS1
2 >

BR the upload capacity of source S1 allocated to video X is not exhausted and a data block
B1

S2
defined as

B1
S2

=
CS2

2 ∗N1
(5.34)

69

5. Multi-Source Video Multicast

is sent to the source S2 for redistribution toN1 requesting peers. Additionally, one blockB1
D

is directly sent to each requesting peer and source S2. Since both sources are independent, a
coordination between both sources is not happening and the remaining capacity of a source
cannot be exhausted by the other source. Thus, the residual upload capacity ∆ in source S2

cannot be used by the source S1 and the source S2 is not exhausted. Therefore, the individual
maximum throughput for the first video sequence can be written as

Θ1 =

CS1
2 for CS1

2 ≤ BR

BR +B1
S2

+
CS1

2
−(BR+B1

S2
)

N1+1 for CS1
2 > BR

(5.35)

Similarly, the individual maximum throughput for the second video sequence can be writ-
ten as

Θ2 =

CS2
2 for CS2

2 ≤ BR

BR +B2
S1

+
CS2

2
−(BR+B2

S1
)

N1+1 for CS2
2 > BR

(5.36)

with B2
S1

= CS1
2∗N1

.
Similar to the second scenario, the third scenario enforces the same rate for all videos. In

this case, the overall throughput becomes

Θ = 2 ∗min(Θ1,Θ2) (5.37)

this means that the overall throughput is limited by the source with the smallest upload ca-
pacity.

B. General Case
To extend the third scenario with independent rate allocation to its general case, M sources
Si, N1 requesting peers Ri and N2 helper peers Hi are considered. The case assumes that M
separate Mutualcast distributions run in parallel and the distribution rate for all the sources
is the same Θ1 = . . . = Θj = . . . = ΘM . The case also assumes that all peers distribute
their upload capacities in an equal way among all different video sequences. The individual
maximum throughput for each video can be written as

Θj =

CSj

M for
CSj

M ≤ (BR +BH +Bj
S)

BR +BH +Bj
S +

CSj
M
−(BR+BH+Bj

S)

(N1+M−1) for
CSj

M > BR +BH +Bj
S

(5.38)

with Bj
S =

∑M
i=1,i 6=j B

j
Si

, and the contribution Bj
Si

from the other sources Si

Bj
Si

=
CSi

M(N1 +M − 2)
for i = 1, . . . ,M, i 6= j (5.39)

the contribution BR from the requesting peers

BR =
∑N1

i=1CRi

M(N1 +M − 2)
(5.40)

70

5.2. Throughput-based Analysis

and the contribution BH from the helper peers

BH =
∑N2

i=1CHi

M(N1 +M − 1)
(5.41)

Similar to the second scenario the same rate for all videos is enforced. In this case, the overall
throughput becomes

Θ = M ∗min(Θ1, . . . ,ΘM) (5.42)

Again, the maximum overall throughput is limited by the source with the smallest upload
capacity in the system. Or in other words, the source with the smallest value in (5.38) deter-
mines the rate of all videos. Typically, not all sources will be exhausted with respect to their
upload capacity.

5.2.4. Sources with Independent Rate Allocation for Different Rate Streams

Similar to the third scenario, the fourth scenario considers the case where the sources work
separately with independent rate allocation, but this time without enforcing the same rate
for all videos.

A. Particular Case
The particular case considers two sources and N1 requesting peers Ri. Two videos are

distributed from the sources and all requesting peers and both sources need to receive all
videos. The case also assumes that all peers distribute their upload capacities in an equal
way among both video sequences, similar to two separate Mutualcast schemes running in
parallel. However, contrary to the third scenario, here both video sequences can have dif-
ferent rates. In this case, the individual throughputs for the first video and second video
are calculated by using (5.35) and (5.36), respectively. Since this scenario does not enforce
same rate videos, Θ1 and Θ2 can be different and the sources can maximize the distribution
of their videos exhausting their upload capacity completely. Thus, the overall throughput
becomes

Θ = Θ1 + Θ2 (5.43)

Here, the overall throughput is the sum of both individual throughputs, because the con-
straint Θ1 = Θ2 has been removed. Thus, each source can exhaust half of its upload capacity
assigned to its local video. However, since both sources are independent, a coordination
between them does not exist and the remaining capacity of the second half of their upload
capacity cannot be exhausted by the other source. This problem is present when both sources
have different upload capacity.

B. General Case
To extend the fourth scenario with independent rate allocation to its general case,M sources
Si, N1 requesting peers Ri and N2 helper peers Hi are considered. The individual maximum
throughput for each video can be computed by (5.38). Since this case does not enforce same
rate videos, the individual throughputs can be different and the overall throughput becomes

Θ =
M∑

j=1

Θj (5.44)

71

5. Multi-Source Video Multicast

The sources can send different rate videos and each source can fully exhaust its upload ca-
pacity assigned to its local video. However, a portion of its upload capacity assigned to the
other videos cannot be exhausted due to the lack of coordination among the sources.

5.3. PSNR-based Analysis

An alternative to throughput maximization is to maximize the overall end-to-end video
quality for all delivered videos. In this section, end-to-end video quality maximization for
all delivered videos is studied. The peak signal-to-noise ratio (PSNR) is used as a measure
of video quality. In [104], two models have been developed for the sequence level rate-
distortion (R-D) performance of predictive video source encoding. Both models require very
limited amount of empirical data, namely three pairs of rate and distortion, in order to set
up the model parameters. Experimental validations using H.264/AVC encoded video test
sequences report high accuracy of these two proposed models. The R-D model from [104]
that is adopted in this analysis relates the PSNR of a video sequence to the encoding rate R
as

PSNR(R) = a+ b

√
R

c
(1− c

R
) (5.45)

where the parameter tuple (a, b, c) can be obtained by measuring three pairs of rate and
distortion. The analysis uses H.264/AVC JM reference software version 12 [105] and selects
three different quantization parameters to obtain three pairs of PSNR and rate for a specific
video sequence. In the proposed framework the coding rate Ri for the video of source Si

is defined by the throughput Θi. Thus, the maximum overall PSNR is proportional to the
maximum overall throughput reached. The overall end-to-end video quality of all delivered
videos in the framework is given by

PSNRtotal =
M∑
i=1

(PSNRi) (5.46)

where M is the number of distributed videos (sources) in the P2P network.
Similar as in the throughput-based analysis, four scenarios are considered for PSNR-based

resource allocation:

1. Sources with joint rate allocation for different video quality streams,
2. Sources with joint rate allocation for same video quality streams,
3. Sources with independent rate allocation for same rate streams,
4. Sources with independent rate allocation for different video quality streams.

For each scenario a particular case and the general case are analyzed. The particular case
considers two sources and N1 requesting peers Ri, while the general case considers M
sources Si, N1 requesting peers Ri and N2 helper peers Hi. In the third and fourth scenario,
the sources are independent, and the coordination among all sources in order to enforce the
same PSNR for all videos is not possible. Therefore, in these scenarios, the analysis focuses
on maximizing the video quality when the streams have same or different rate.

72

5.3. PSNR-based Analysis

5.3.1. Sources with Joint Rate Allocation for Different Video Quality Streams

In the first scenario, the sum of PSNR for all video sequences is maximized without enforc-
ing the same quality for all sequences.

A. Particular Case
The particular case assumes that each video has a different D − R function and hence a

different PSNR at the same rate. The PSNR1 for the first video sequence transmitted from
source S1 is

PSNR1 = a1 + b1

√
R1

c1
(1− c1

R1
) (5.47)

where R1 = Θ1.
The PSNR2 for the the second video, which is transmitted from source S2 is

PSNR2 = a2 + b2

√
R2

c2
(1− c2

R2
) (5.48)

where R2 = Θ2. The case assumes that in general R1 6= R2.
Given the upload capacity exhaustion for source S1 in (5.1), the upload capacity exhaustion

for source S2 in (5.2), and the upload contribution from the requesting peers Ri in (5.4), the
maximization of the accumulated PSNR leads to an optimization problem, which can be
expressed as

Maximize
2∑

i=1

(PSNRi) (5.49)

subject to
N1∑
i=1

B1
Ri

+B1
S2

+ (N1 + 1)B1
D +N1B

2
S1
≤ CS1

N1∑
i=1

B2
Ri

+B2
S1

+ (N1 + 1)B2
D +N1B

1
S2
≤ CS2 (5.50)

B1
R1

+ . . .+Bj
R1

+ . . .+BM
R1
≤ CR1

...
...

B1
RN1

+ . . .+Bj
RN1

+ . . .+BM
RN1
≤ CRN1

The objective function in (5.49) maximizes the sum of the individual PSNR values. The
first and second constraints in (5.50) ensure that the limit of the capacity of the sources S1

and S2 are not exceeded, while the last N1 constraints ensure that the number of bits re-
distributed by the requesting peers R1 to RN1 do not exceed their upload capacities. This
optimization problem can be solved using linear programming.

73

5. Multi-Source Video Multicast

B. General Case
To extend the first PSNR scenario to its general case, M sources Si, N1 requesting peers
Ri and N2 helper peers Hi are considered. The case assumes that each video has a different
PSNR versus rate function

PSNR1 = a1 + b1

√
R1
c1

(1− c1
R1

)
...

...

PSNRj = aj + bj

√
Rj

cj
(1− cj

Rj
)

...
...

PSNRM = aM + bM

√
RM
cM

(1− cM
RM

)

(5.51)

The upload capacity exhaustion requirement for the sources S1 to SM is given by (5.8),
while the upload contribution from the requesting peersRi is given by (5.10) and the upload
capacity contribution from the helper peersHi is given by (5.11). Mathematically, the overall
PSNR maximization can be formulated as

Maximize
M∑
i=1

(PSNRi) (5.52)

subject to
N1∑
i=1

Bj
Ri

+
N2∑
i=1

Bj
Hi

+
M∑

i=1,i 6=j

Bj
Si

+ (N1 + (M − 1))Bj
D ≤ CSj

for all j = 1, . . . ,M.
M∑
i=1

Bi
R1
≤ CR1 ; . . . ;

M∑
i=1

Bi
RN1
≤ CRN1

M∑
i=1

Bi
H1
≤ CH1 ; . . . ;

M∑
i=1

Bi
HN2
≤ CHN2

(5.53)

The objective function in (5.52) maximizes the sum of PSNR for all videos. The constraints
(5.53) ensure that the limit of the upload capacities of the sources, the requesting peers and
the helper peers are not exceeded. Again, linear programming is used to solve this optimiza-
tion problem.

5.3.2. Sources with Joint Rate Allocation for Same Video Quality Streams

The second scenario assumes that the sources jointly decide the rate allocation for all partic-
ipating peers, but additionally enforces the same video quality for all video streams.

A. Particular Case
The particular case considers two sources (S1 and S2) distributing two different video se-

quences with same PSNR. Initially, the rates Ri generated by both sources are assumed

74

5.3. PSNR-based Analysis

to be identical. The upload requirement for source S1 is then given by (5.1), while the total
upload requirement for source S2 is given by (5.2). The upload contribution from the re-
questing peers is given by (5.4). The individual PSNRs for the videos 1 and 2 are given by
(5.47) and (5.48), respectively. Here, PSNR1 and PSNR2 are computed using the rates R1

and R2, respectively. The sum of PSNRs is given by (5.46), where M is set to 2. In this case,
the overall PSNR is maximized for two different video sequences using (5.49), but enforc-
ing the same rate for both videos (R1 = R2). The enforcement can be realized by adding
the constraint R1 = R2 in (5.50). The same quality for all videos is obtained if they have the
same RD-function. However, when the same rate for all video sequences is not enough to
obtain a similar video quality among them, a same PSNR need to be enforced. The PSNR
enforcement is possible, when the sources have abundant upload capacity. To this end, the
broadcast links in each source are manipulated, and the rate of the sequence with the largest
rate is reduced using a rate allocation mechanism. In the following, a description of this
adaptive mechanism to control the rate allocation between the sources is given.

The goal of the adaptive rate control scheme is to effectively use the available upload ca-
pacity from each source to deliver a homogeneous video quality for all streams. To this end,
each source schedules the distribution according to the ratio of the video bit rates. The mech-
anism assumes that the quality requirements are known. Then, a number of layers to reach
this quality level are determined for each video in each source using scalable video coding.
Determining the number of layers and the coding rate for two different video sequences is
illustrated in Figure 5.5.

PSNR(dB)

Rate

Video 2

Video 1

BL

BL

EL2 EL4

R1
V1 = BL

R1
V2 = BL

R2
V1 = BL +2 EL R2

V2 = BL + 4EL

BL = Base Layer
EL = Enhancement Layer
V1 = Video 1
V2 = Video 2

Time

Rate

Video 1 Video 2Video 1 Video 2

Case 1 Case 2

Video 1 Video 2

Case 3

BL BL

3EL 2EL

4EL

Rate (V1) = Rate (V2)
PSNR (V1) = 45 dB
PSNR (V2) = 38 dB
PSNR (V1) ≠ PSNR (V2)

PSNR (V1) = 40 dB
PSNR (V2) = 40 dB
PSNR (V1) = PSNR (V2)
Rate (V1) ≠ Rate (V2)

R1

R2

R3

R4

R5

BL = Base Layer
EL = Enhancement Layer
V1 = Video 1
V2 = Video 2

a) b)

40

30

20

Figure 5.5.: Enforcement of the same video quality for two different videos using scalable video
coding. a). Redistribution of layers, b). PSNR comparison

In Figure 5.5 a), the sources send the base layer of their videos in Case 1. In Case 2, both
sources send three enhancement layers of their videos, and the rate R4 for both sequences is
the same. The example assumes that video 1 and video 2 are different and they have been
encoded with different bit rates. Thus, using the rate R4 for both videos, a PSNR of 45 dB
and 38 dB for video 1 and video 2, are obtained respectively. In order to enforce the same
PSNR for both sequences scalable video coding is used in Case 3. Then, the source 1 sends

75

5. Multi-Source Video Multicast

two enhancement layer of video 1, while the source 2 sends four enhancement layer of video
2. Figure 5.5 b) shows how both videos sequences can reach the same PSNR using different
number of enhancement layers and different rate.

Once the number of required layers and the coding rate are known in each source and
before starting the distribution, the sources exchange the coding rate of their videos. Each
source computes a local distribution ratio k using these coding rates. The case considers
M = 2. This ratio is used in each source to determine the number of required packets for
each video. In an ideal situation it is desirable that the throughput is the same as the play-
back bit rate of the videos in order to obtain a short initial waiting time and a minimal size
of buffers. In contrast, if the upload capacity of the sources is not enough to satisfy the re-
quested throughput, the initial time and the buffer usage is increased. Additionally, when
different videos are distributed from different sources, the sources need to synchronize the
playback of the videos and adapt their upload allocation for the distribution, so that all
videos can be received with adaptive throughput and have similar initial waiting time or
video quality. The sources use the distribution ratio to adapt the distribution throughput of
streams and each source can schedule the number of packets to distribute from itself and
the number of packet to distribute from the other sources. Thus, the number of distributed
packets for each video is proportional to its coding rate. In the proposed mechanism, the dis-
tribution ratios are fixed, however, the amount of distributed packets is variable according
to the available upload capacity of the sources or the network performance. The distribution
ratio is used to manipulate all delivery links in each source.

The rate control mechanism using two sources (S1 and S2) and two requesting peers (R1

and R2) is shown in Figure 5.6. Here, sources S1 and S2 distribute video X and video Y ,
respectively. Video X and Y have a coding rate R1 and R2, respectively.

n1

n
2 , q

2

R2

S2

q2 Video Y

R1

S1

Video X
n1 q1

q
1 , n

1

kS1 = R2/R1

n2 q2

kS2 = R1/R2
q
1 , n

1 q 2,
n 2

Figure 5.6.: Adaptive rate control scheme for two sources

The distribution ratios for the sources S1 and S2 are computed as

kS1 =
R2

R1
(5.54)

and
kS2 =

R1

R2
, (5.55)

respectively.

76

5.3. PSNR-based Analysis

Each source distributes packets of its local video and redistributes the packets received from
the other source. Thus, source S1 distributes n1 packets of videoX to all peers, including the
source S2, while redistributing q1 packets of video Y from S2 to each requesting peer. Source
S1 uses the ratio kS1 to obtain a distribution proportion between q1 and n1 such that

q1 = dn1 ∗ kS1e (5.56)

Source S2 distributes q2 packets of video Y to all peers, including the source S1, while
redistributing n2 packets of video X from S1 to each requesting peer. Source S2 uses the
ratio kS2 to obtain a distribution proportion between n2 and q2, such that

n2 = dq2 ∗ kS2e (5.57)

B. General Case
To extend the analysis toM sources withN1 requesting peers andN2 helper peers, the gen-

eral case assumes that the total upload requirement for sources S1 to SM is given by (5.8),
the upload capacity contribution from requesting peers is given by (5.10) and the upload ca-
pacity contribution from the helper peers is given by (5.11). Each video sequence generated
from each source shows a different PSNR versus rate function (see (5.51)). However, in this
scenario all rates Ri for all M sources are identical. Thus, R1 to RM can be computed by di-
viding the maximum overall throughput Θ between M . PSNR1 to PSNRM are calculated
using the values of R1 to RM respectively. The sum of PSNRs is given by (5.46). Similar
to the particular case, when the same rate for all video sequences is not enough to obtain a
similar video quality among them, a same PSNR need to be enforced using the rate alloca-
tion mechanism. For multiple source, each source computes different distribution ratios for
its local video sequences and the different video sequences to be redistributed from other
sources. This leads to a combinatorial optimization problem.

5.3.3. Sources with Independent Rate Allocation for Same Rate Streams

The third scenario considers the case where the sources work separately with independent
rate allocation and same rate for all videos. The third scenario assumes that the sources
distribute their upload capacities equally among all video sequences. The scenario also as-
sumes that all requesting peers and helper peers divide their upload capacity equally among
all video sequences. Since all sources are independent, the coordination among the sources
to enforce the same PSNR for all videos is not possible. However, the same rate can be
enforced, which would lead to similar video quality for similar video sequences.

A. Particular Case
The particular case considers two sources (S1 and S2) distributing two different video se-

quences and assumes that the ratesRi generated by both sources are identical. The particular
case assumes that the upload capacity of the sources and the requesting peers is divided by
two, in order to assign the same upload capacity for both videos.

77

5. Multi-Source Video Multicast

Sources S1 and S2 distribute two different video sequences with different PSNR. Since
both sources distribute both videos with the same rate Ri, the case assumes that the rate Ri

for both sources is limited by the capacity of the smallest source in the system. Thus,

R1 = R2 =
Θ
2

(5.58)

where Θ is given by (5.37).
The PSNRs for video sequence 1 and 2, are given by (5.47) and (5.48), respectively, and the

total PSNR is computed by (5.46), where M is set to 2. Although the coordination between
both sources is not possible, enforcing same rate leads to similar PSNR for similar videos.

B. General Case
To extend the third scenario to its general form,M sources withN1 requesting peers andN2

helper peers are considered. The case assumes that all ratesRi for allM sources are identical
and all participating peers equally divide their upload capacity among all videos.

Since all sources distribute all videos with the same rate Ri, the rate Ri for all sources is
limited by the capacity of the weakest source in the system. Thus,

R1 = . . . = Rj = . . . = RM =
Θ
M

(5.59)

where Θj is given by (5.42).
Each video sequence generated from each source displays a different PSNR, which is com-

puted by (5.51), and the sum of PSNRs is computed by (5.46). Similar to the particular case,
if all distributed videos have approximately the same D − R function, the same rate Ri for
all videos can be enforced in order to obtain similar video quality.

5.3.4. Sources with Independent Rate Allocation for Different Video Quality
Streams

The fourth scenario considers the case where the sources work separately with indepen-
dent rate allocation and different rate streams. In other words, the scenario does not enforce
the same rate for all videos, and assumes that all sources distribute their upload capacities
equally among all video sequences. The scenario also assumes that all requesting peers and
helper peers divide their upload capacity equally among all sequences. Coordination among
the sources to enforce the same PSNR for all videos is not possible. In other words, the re-
maining capacities of a source cannot be exhausted by the other sources.

A. Particular case
The particular case considers two sources (S1 and S2) distributing two different video se-

quences to N1 requesting peers. The particular case assumes that the rate Ri for the videos
are different, and that the upload capacity of the sources and the requesting peers is divided
by two, in order to assign the same upload capacity for both videos.

The individual PSNR for videos 1 and 2 is computed by (5.47) and (5.48), respectively,
where R1 = Θ1 and R2 = Θ2. Throughput Θ1 and Θ2 is computed by (5.35) and (5.36),
respectively. The total overall PSNR represents the sum of the individual PSNRs, which is

78

5.4. Simulation

given by (5.46), where M is set to 2.

B. General case
To extend the fourth scenario to its general form, M sources with N1 requesting peers and
N2 helper peers are considered. The case assumes that the sources, the requesting peers and
helper peers equally divide their upload capacity among all transmitted videos.

Each video sequence generated from each source displays a different PSNR, which is com-
puted by (5.51). The individual rates Ri for each video are given by the individual through-
put Θi, where the individual throughput Θi for each video sequences is computed by (5.38).
Then, R1 = Θ1,. . . ,Rj = Θj ,. . . ,RM = ΘM . The total PSNR represents the sum of all indi-
vidual PSNRs, and it is computed by (5.46).

5.4. Simulation

5.4.1. Throughput-based Simulation

In this section, the proposed framework is evaluated using linear programming. The first
part of the simulation evaluates the framework in terms of overall throughput, and linear
programming is used to maximize the overall throughput. In order to simulate the analytical
framework presented in Section 5.2, the following scenarios are considered:

1. Sources with joint rate allocation for different rate streams,

2. Sources with joint rate allocation for same rate streams,

3. Sources with independent rate allocation for same rate streams,

4. Sources with independent rate allocation for different rate streams.

For all cases, a set of 5 participating peers are used, where two peers S1 and S2 act as sources
and three peers R1, R2 and R3 are requesting peers. The upload capacity of the participating
peers CS1 , CS2 , CR1 , CR2 and CR3 in kbps is 300, 600, 500, 300, and 300, respectively. Helper
peers are not considered in this example.

In the first scenario, the rate allocation is jointly decided for all participating sources and
requesting peers. In order to maximize the overall throughput, this scenario considers that
video sequences X and Y can have a different rate. The assumptions are translated into
a linear program which is shown in Figure 5.7. Here, each source contributes its upload
capacity not only to distribute its original content, but also the blocks received from the
other source.

The first constraint X1 +X2 +X3 +X4 + 4X5 + 3Y4 ≤ 300 represents the upload capacity of
source S1, which has to deliver the blocks X1, X2 and X3 to the requesting peers R1, R2, and
R3, respectively. Source S1 exhausts its upload capacity by sending a block X4 to source S2

for redistribution to all requesting peers, by delivering a blockX5 directly to each requesting
peer and source S2 and by redistributing block Y4 received from source S2 to each requesting
peer. Each requesting peer receives one block of X and Y from the sources S1 and S2, and
the upload capacity of each requesting peer is exhausted by redistributing the blocks to the
rest of the requesting peers and one source. Similar to the first constraint in Figure 5.7, the
second constraint represents how the upload capacity of the source S2 is exhausted. The

79

5. Multi-Source Video Multicast

Maximize
Θ = X1 + X2 + X3 + X4 + X5 + Y1 + Y2 + Y3 + Y4 + Y5
subject to
X1 + X2 + X3 + X4 + 4X5 + 3Y4 ≤ 300 ,
Y1 + Y2 + Y3 + Y4 + 4Y5 + 3X4 ≤ 600 ,
3X1 + 3Y1 ≤ 500,
3X2 + 3Y2 ≤ 300,
3X3 + 3Y3 ≤ 300,
0 ≤ X1, 0 ≤ Y1, 0 ≤ X2, 0 ≤ Y2, 0 ≤ X3, 0 ≤ Y3,
0 ≤ X4, 0 ≤ Y4, 0 ≤ X5, 0 ≤ Y5,

Figure 5.7.: Linear program for the first scenario. The objective is to maximize the overall throughput

third, fourth and fifth constraints represent the contribution of the requesting peers R1, R2

and R3, respectively. The constraints 0 ≤ X1 to 0 ≤ Y5, mean that negative block sizes are
not allowed. Here, if the block size is zero, it means that no block is transmitted on this
link. To solve the linear program, the Mathematica 5.0 software packet is used. The solution
gives a maximum throughput of 500 kbps, while the rate of the blocks in kbps is X1 = 83.33,
X2 = 50, X3 = 50, X4 = 116.67, X5 = 0, Y1 = 83.33, Y2 = 50, Y3 = 50, Y4 = 0, and Y5 = 16.67,
respectively. The rate of the sequences X and Y are 300 kbps and 200 kbps, respectively.
In this case, the best overall throughput can be achieved and the upload capacity of both
sources and all requesting peers is fully exhausted. However, the video sequences X and Y
have different rate and hence most likely different quality.

In the second scenario, the rate allocation is also decided jointly for all participating peers,
but additionally, the same rate for video sequencesX and Y is enforced. The resulting linear
program is similar to the previous case, except that now the linear program assumes that
X1 + X2 + X3 + X4 + X5 = Y1 + Y2 + Y3 + Y4 + Y5. The solution gives again a maximum
throughput of 500 kbps, while the rate of the blocks in kbps isX1 = 83.33, X2 = 50, X3 = 50,
X4 = 66.66, X5 = 0, Y1 = 83.33, Y2 = 50, Y3 = 50, Y4 = 16.66 and Y5 = 50, respectively. Now,
the rate of the two sequences X and Y is 250 kbps and hence balanced. In this case, the best
overall throughput can be achieved, the upload capacity of both sources and all requesting
peers is fully exhausted, and the sequences X and Y have the same rate.

The third scenario considers independent rate allocation for every source. The sources
equally divide their upload capacity between videos X and Y . Thus, for the delivery of
each sequence, the upload capacity in each source is divided by two. Each requesting peer
also divides its upload capacity equally between both sequences. Additionally, the scenario
assumes that both videos have the same rate. The assumptions translated to a linear program
are similar the assumptions shown in Figure 5.7, but now all upload capacities are divided
by 2. For example, the upload capacity of source S1, which is 300 kbps, is represented as
X1 + X2 + X3 + X4 + 4X5 ≤ 300 ∗ 0.5 and 3Y4 ≤ 300 ∗ 0.5. Additionally, the constraint
X1 +X2 +X3 +X4 +X5 = Y1 +Y2 +Y3 +Y4 +Y5, which enforces the same rate between both
videos is added. The solution after solving the resulting linear program gives a maximum
throughput of 300 kbps, while the rate of the blocks in kbps is X1 = 83.33, X2 = 50, X3 =
16.66, X4 = 0, X5 = 0, Y1 = 83.33, Y2 = 50, Y3 = 16.66, Y4 = 0, Y5 = 0, respectively. The
size of the sequences X and Y are balanced with 150 kbps, but the maximum throughput is

80

5.4. Simulation

smaller than for the first and second scenario.
The fourth scenario considers independent rate allocation for every source, but this time

the videos can have different rates. The fourth scenario assumes that the sources divide their
upload capacity equally between videos X and Y . Thus, for the delivery of each sequence,
the upload capacity in each source is divided by two. Each requesting peer also divides
its upload capacity equally between both video sequences. The assumptions translated to
a linear program are similar to Figure 5.7, but all upload capacities are divided by 2. For
example, the upload capacity of source S1, which is 300 kbps, is represented as X1 + X2 +
X3 +X4 + 4X5 ≤ 300 ∗ 0.5 and 3Y4 ≤ 300 ∗ 0.5. In this case, no constraint to enforce the same
rate between both videos is considered. The solution gives a maximum throughput of 400
kbps, while the rate of the blocks in kbps isX1 = 83.33,X2 = 50,X3 = 16.67,X4 = 0,X5 = 0,
Y1 = 83.33, Y2 = 50, Y3 = 50, Y4 = 50, and Y5 = 16.67, respectively. The rate of the sequences
X and Y are 150 kbps and 250 kbps, respectively. The fourth scenario presents a better
overall throughput than the third scenario with independent sources for same rate streams.
This is because in the fourth scenario, the sources uses different rate streams, and they can
carry out a best allocation of their upload capacity. However, the overall throughput in this
scenario is smaller than the overall throughput obtained by the first and second scenarios.
This is because both sources are independent, and the coordination between them is not
possible. Thus, the remaining capacities of a source cannot be exhausted by the other source.

To compare how the four simulated scenarios works in the multi-source video multicast
framework, the simulations are extended by varying the upload capacity of the source S1

from 200 to 900 kbps, while the upload capacity of the source S2 and the requesting peers is
maintained. Figure 5.8 shows these results.

0

100

200

300

400

500

600

700

200 300 400 500 600 700 800 900

Upload capacity S1 (kbps)

O
ve

ra
ll

th
ro

ug
hp

ut
 (k

bp
s)

Scenario1 Scenario2 Scenario3 Scenario4

Scenario 1: Sources with joint rate allocation for different rate streams
Scenario 2: Sources with joint rate allocation for same rate streams
Scenario 3: Sources with independent rate allocation for same rate streams
Scenario 4: Sources with independent rate allocation for different rate streams

Upload capacity S2 = 600 kbps

Figure 5.8.: Overall throughput comparison for all cases

The results show that the sources with joint rate allocation for same rate streams achieves
the same maximum overall throughput as the sources with joint rate allocation for different
rate streams, when an optimal bandwidth allocation is found. Contrary, the sources with in-

81

5. Multi-Source Video Multicast

dependent rate allocation achieves an overall throughput smaller than the sources with joint
rate allocation. In the independent sources with same rate streams, the throughput is limited
by the upload capacity of the weakest source. On the other hand, since both sources are in-
dependent, the coordination between them is not possible and the remaining capacities of a
source cannot be exhausted by other sources. However, one can also see that all approaches
lead to identical throughput when both sources have the same upload capacity. Appendix A
contains additional information about the different experiments conduced for these scenar-
ios. The results obtained in the different simulations confirm the obtained results using the
set of equations given in the throughput-based analytical framework in Section 5.2.

5.4.2. PSNR-based Simulation

The second part of the simulation evaluates the framework in terms of aggregate video qual-
ity. To measure video quality, the peak signal-to-noise ratio (PSNR) is used. PSNR is the
most widely used objective video quality metric. A video sequence with a PSNR value
between 30 and 40 dB usually is acceptable, while a video with a PSNR below 30 dB is
typically quite bad [93]. To evaluate the framework in terms of video quality, the model is
fitted in (5.45) for each video sequence. Here, the test sequences ’Foreman’ and ’Mother and
Daughter’ (M & D) are used. The three R-D pairs used to fit the model in (5.45) are shown
in Table 5.1.

Table 5.1.: PSNR and rate for video sequences
Sequences PSNR/rate (dB/kbps) PSNR/rate (dB/kbps) PSNR/rate (dB/kbps)
Foreman 29.41/42 41.23/510 45.7/1017
M & D 35.28/42 45.03/510 48.81/1017

The R-D pairs shown in Table 5.1 are used to calculate the corresponding coefficients a, b
and c, which are used to parametrize the R-D function. The resulting R-D models for the
two test sequences are as follows:

Foreman: (a = 36.44, b = 4.75 and c = 197.97)

PSNR(R1) = 36.44 + 4.75

√
R1

197.97
(1− 197.97

R1
) (5.60)

Mother and Daughter: (a = 44.34, b = 4.05 and c = 425.18)

PSNR(R2) = 44.34 + 4.05

√
R2

425.18
(1− 425.18

R2
) (5.61)

Similar to the throughput-based simulation, the PSNR-based analytical framework is sim-
ulated for four different scenarios:

1. Sources with joint rate allocation for different video quality streams,
2. Sources with joint rate allocation for same video quality streams,
3. Sources with independent rate allocation for same rate streams,

82

5.4. Simulation

4. Sources with independent rate allocation for different video quality streams.

A set of 5 participating peers is considered, where the two peers S1 and S2 act as sources
while the three peers R1, R2 and R3 are requesting peers. To maximize the sum of PSNR
of both video sequences, the same upload capacity settings for each participating peer as in
the previous section is assumed. The system performance based on overall video quality is
defined by (5.46), where M is set to 2.

The first scenario maximizes the sum of PSNR, while the PSNR for both videos can be
different. The assumptions are translated into the linear program shown in Figure 5.9.

PSNR1 = 36.44 + 4.75*Sqrt[(R1/197.97)]*(1 - 197.97/R1);
PSNR2 = 44.34 + 4.05*Sqrt[(R2/425.18)]*(1 - 425.18/R2);
R1 = X1 + X2 + X3 + X4 + X5;
R2 = Y1 + Y2 + Y3 + Y4 + Y5;
Maximize:

PSNR1 + PSNR2
subject to:
X1 + X2 + X3 + X4 + 4X5 + 3Y4 ≤ 300,
Y1 + Y2 + Y3 + Y4 + 4Y5 + 3X4 ≤ 600 ,
3X1 + 3Y1 ≤ 500,
3X2 + 3Y2 ≤ 300,
3X3 + 3Y3 ≤ 300,
0 ≤ X1, 0 ≤ Y1, 0 ≤ X2, 0 ≤ Y2, 0 ≤ X3, 0 ≤ Y3, 0 ≤ X4, 0 ≤ Y4, 0 ≤ X5, 0 ≤ Y5

Figure 5.9.: The first scenario is translated into a linear program for the maximization of the aggre-
gate video quality

The set of constraints defined in the linear program are the same as in Figure 5.7. The linear
program is solved using Mathematica 5.0. The solution maximizes the sum of PSNR to be
79.75 dB, while the rates of the blocks in kbps are X1 = 83.33, X2 = 50, X3 = 50, X4 = 75.53,
X5 = 6.68, Y1 = 83.33, Y2 = 50, Y3 = 50, Y4 = 4.79 and Y5 = 46.31, respectively. The rate
of the sequences X and Y are 265.5 kbps and 234.5 kbps, respectively. The PSNR values of
the first and second sequence in dB are 37.85 and 41.90, respectively. The upload capacity of
all peers is exhausted and the video quality of the two streams differs significantly.

The second scenario assumes that the sequences generated in each source have the same
PSNR. Initially, the scenario uses the results obtained when the rates of the two sequences
X and Y are identical. The assumptions are translated into a linear program as is illustrated
in Figure 5.9, but adding the constraint X1 +X2 +X3 +4 +X5 = Y1 +Y2 +Y3 +Y4 +Y5. Thus,
the description of the linear program for the interconnected sources with balanced video
sequences is similar to the previous case, except that sequences X and Y have the same rate.
The solution leads to a sum of PSNR of 79.71 dB, while the rates in kbps are X1 = 83.33,
X2 = 50, X3 = 50, X4 = 57.18, X5 = 9.47, Y1 = 83.33, Y2 = 50, Y3 = 50, Y4 = 7.18,
Y5 = 59.47 respectively. The rate for both sequences is 250 kbps, and the PSNR values of
the first and second sequence in dB are 37.55 and 42.16, respectively. The resulting overall
reception quality is close to the optimal quality PSNR obtained by the multi-source scheme
with different video quality, which represents the best overall PSNR in the framework,

83

5. Multi-Source Video Multicast

however the individual video quality for both videos is different. Then, the same PSNR for
both sequences needs to be enforced. To this end, source S2 doesn’t send block Y4 to source
S1, to avoid exhausting the upload capacity of S1 during the distribution of this block. Also,
block Y5 is not sent by the source S2 in order to use this upload capacity to send the block X4

to all requesting peers. After this, the PSNR values of the first and second sequence in dB
are 38.44 and 41.21, respectively. The sum of PSNR is 79.66 dB. This result shows that the
overall quality is reduced, but both sequences tend to reach more similar PSNR. The first
sequence cannot reach the same PSNR as the second sequence, because the upload capacity
of S1 has been exhausted and the rate cannot be further increased. If exactly the same video
quality is to be obtained, the rate of the second sequence would now have to be reduced
which, however, would lead to a waste of available resources as the upload capacities would
not be fully exhausted. Thus, the same PSNR for all video sequences can be only achieved
when the sources have enough upload capacity.

The third scenario evaluates the overall video quality when the sources have independent
rate allocation and the rate for both videos is the same. This scenario assumes that the
sources distribute their upload capacities equally for videos X and Y . We also assume that
each requesting peer divides its upload capacity equally to both videos, and translate all
constraints into a linear program. When solving the corresponding linear program, a sum
of PSNR of 75.05 dB is obtained. The rate of the blocks in kbps is X1 = 21.53, X2 = 34.46,
X3 = 8.98, X4 = 85.01, X5 = 0, Y1 = 59.36, Y2 = 44.73, Y3 = 14.75, Y4 = 31.07 and
Y5 = 0.068, respectively. The rate of the sequences X and Y is balanced with 150 kbps and
the first and second sequence have a PSNR of 35.12 dB and 39.93 dB, respectively, but the
aggregate PSNR is smaller when compared to the previous cases.

The fourth scenario evaluates the overall video quality when the sources work with inde-
pendent rate allocation and the PSNR for both videos are different. Similar to the third
scenario, the sources distribute their upload capacities equally for videos X and Y . The sce-
nario also assumes that each requesting peer divides its upload capacity equally between
both videos, but the same PSNR for both videos does not need to be enforced in this sce-
nario. The assumptions translated to a linear program are similar to Figure 5.9, but the
upload capacity of the sources and requesting peers is divided by 2. When solving the corre-
sponding linear program, a sum of PSNR of 75.05 dB is obtained. The rate of the sequences
X and Y is 150 kbps and 200 kbps, respectively. The first and second videos have a PSNR
of 35.14 dB and 42.16 dB, respectively, while the total PSNR is 77.30 dB. The fourth scenario
presents better PSNRs than the third scenario. However, the PSNR is smaller than the
PSNR obtained in the first and second scenarios.

Similar to the throughput-based comparison, the PSNR-based model is compared for the
four introduced scenarios for a set of five participating peers. The upload capacity of the
participating peers are the same as in the throughput-based comparison. The upload capac-
ity of the source S1 is varied from 200 to 900 kbps, while the upload capacity of the source
S2 and the requesting peers is maintained. Figure 5.10a compares the overall video quality
for the evaluated scenarios. Here, the overall PSNR for the multi-source scheme with same
video quality is shown after the PSNR enforcement has been made. The results show that
when the source S1 is weak (e.g., 200 kbps), the PSNR enforcement is not possible, because
the maximum rate reached by sequence X is identical to the upload capacity of S1. The
results also show that the multi-source scheme with same video quality achieves an overall
video quality close to the multi-source scheme with different video quality, but not equally.

84

5.5. Implementation and Evaluation

This is because the first scheme redistributes its video quality in a similar PSNR between
sequences X and Y . On the other hand, the multi-source scheme with independent rate al-
location shows a smaller sum of PSNR, because the video quality is limited by the upload
capacity of the weaker source. However, all approaches lead to similar overall PSNR when
both sources have the same upload capacity.

a) b)
Scenario 1: Sources with joint rate allocation for different video quality streams
Scenario 2: Sources with joint rate allocation for same video quality streams
Scenario 3: Sources with independent rate allocation for same rate streams
Scenario 4: Sources with independent rate allocation for different video quality streams

70

72

74

76

78

80

82

84

200 300 400 500 600 700 800 900

Capacity of the source S1 (kbps)

PS
N

R
 (d

B
)

PSNRtotal (Scenario 1)

PSNRtotal (Scenario 2)

PSNRtotal (Scenario 3)
PSNRtotal (Scenario 4)

32

34

36

38

40

42

44

200 300 400 500 600 700 800 900

Capacity of the source S1 (kbps)

PS
N

R
 (d

B
)

PSNR1 (Scenario 1)
PSNR2 (Scenario 1)
PSNR1 (Scenario 2)
PSNR2 (Scenario 2)
PSNR1 (Scenario 3)
PSNR2 (Scenario 3)
PSNR1 (Scenario 4)
PSNR2 (Scenario 4)

Figure 5.10.: a). Overall PSNR comparison for all scenarios, b). Individual PSNR comparison
for all scenarios

Figure 5.10b compares the individual PSNR of each video sequence for each scenario. The
individual PSNRs obtained from the multi-source scheme with same video quality present
the best video quality balance for both video sequences. In contrast, the individual PSNRs
obtained for the multi-source scheme with independent rate allocation are less balanced.
For this specific example, the PSNR enforcement is required because the video sequences
are very different, however, when the video sequences from different sources are similar a
strategy based on same rate may be enough to obtain a similar video quality for all video
sequences in all participating peers.

The results obtained in the PSNR simulations agree with the obtained results using the set
of equations given in the PSNR-based analytical framework. Appendix A contains addi-
tional information about the different experiments conduced for these scenarios.

5.5. Implementation and Evaluation

5.5.1. Implementation

A prototype collaborative multi-source multicast has been implemented in order to evaluate
its performance in real world scenarios. The implementation runs on Linux and consists of
different programs written in the C/C++ language. The implementation includes a server

85

5. Multi-Source Video Multicast

module run by the source peers and a receiver module run by each requesting peer. Both
modules have been enabled with a sender/receiver mode. Similar to MutualCast, in the
implementation all links among the participating peers are established using TCP connec-
tions. Desired characteristics such as reliable data delivery, flow-control and handling of
node leave events are automatically been taken care of by the TCP protocol. In the imple-
mented prototype, all the participating peers receive all videos. This includes one source
receiving the videos from other sources. In each source, the server module distributes the
local video, while redistributing a part of video received from other sources, and receives
other parts of videos from the requesting peers for its playback.

Each requesting peer runs a receiver module which receives the video blocks from the
sources for its playback and forwards these blocks to the rest of the requesting peers and
the sources that need to receive this content. In this collaborative way, all participating peers
are sending and receiving at the same time. The distribution of blocks among the partici-
pating peers is implemented using threads. Threads are used in order to ensure distribution
and storage without delay. Each source peer sets up the following threads:

• a sending thread to distribute own content to the requesting peers,

• a receiving thread to receive content from the sources and forward the data to the other
peers (source is acting as receiving peer),

• a second receiving thread to receive the forwarded blocks form the other peers,

• a storing thread to read the blocks from storage,

• a measuring thread to perform the different measurements during the streaming ses-
sion.

On the other hand, each requesting peer has the following threads:

• a receiving thread to receive data from the sources and forward the data to the other
peers

• a second receiving thread to receive the forwarded blocks form the other peers,

• a storing thread to read the blocks from storage,

• a measuring thread to made the different measurements during the streaming session.

During a streaming session, the sending thread, receiving thread and measuring thread are
concurrently running in each peer. To run the prototype, initially, the source starts listening
on a pre-defined port and waits for the socket connection request. Then, each requesting
peer establishes a connection with the source. The source copies the IP address and listen-
ing port of every requesting peer and sends this information to all requesting peers. After
this, each peer starts a new thread, which listens and waits to establish the forward link for
transferring content between two peers. All peers maintain a list of all peers in the multicast
group. So the forwarding connection could be established very quickly. After the initializa-
tion of the forward link, all links are ready for content distribution. Then, the sources and
the requesting peers begin the data transfer. After the blocks are received at each requesting
peer or in each source, the blocks are forwarded to the rest of the participating peers. During
the implementation, the block size is set to 1 KB, so each block can be sent using a single
TCP/IP packet.

The distribution of the different videos is concurrently realized in each source by blocking
and unblocking its distribution and redistribution queues until the videos have been dis-

86

5.5. Implementation and Evaluation

tributed. Because the mechanism calculates the ratio of the video bit rates only once before
the start of the distribution, additional overhead generated by exchanging throughput in-
formation between the sources is avoided. Therefore, the solution allows that the upload
capacity of the sources is only used to distribute the videos. If the upload capacity of peers
R1 and R2 changes, additional signals are of course required.

5.5.2. Evaluation

To verify the performance of the proposed scheme, an experimental prototype with two
source peers and two requesting peers has been implemented. Two scenarios are evaluated:

1. Sources with independent rate allocation for different rate streams

2. Sources with joint rate allocation for same rate streams or alternatively same video
quality streams

The first scenario shows the performance of the multi-source multicast scheme implemented
in sources without coordination, while the second scenario shows the performance of the
proposed multi-source multicast scheme using an adaptive mechanism to control the rate
allocation between the sources.

Both scenarios are evaluated in terms of throughput, PSNR, and delay for all video streams.
The adaptive multi-source multicast is based on a joint rate allocation decision and an adap-
tive rate mechanism that concurrently controls the bit rate for both sources. The independent
rate allocation approach represents the case where the sources individually optimize their
local upload capacity without coordination. The performance of the collaborative multi-
sources multicast prototype has been evaluated in the PlanetLab infrastructure [153]. The
first scenario introduced in Section 5.4, which corresponds to the joint rate allocation for dif-
ferent rate streams or different video quality streams is not implemented because this case
represents an ideal situation where the upload capacity of every peer is exactly known and
the download capacity of every node is infinite.

The videos sequences used to evaluate both approaches in the PlanetLab infrastructure
are: Mother and Daughter, and Foreman. The short Foreman sequence is concatenated to
a long test sequence with 3000 frames. The same is done with the Mother and Daughter
sequence. Both video streams are encoded with the JSVM software [182] with the same
video quality (PSNR) around 42 dB, but using different encoding rate and different num-
ber of layers for each sequence. To achieve this video quality the Foreman sequence needs
a bit rate of 1600 kbps, which is obtained by using one base layer and two enhancement
layers. The Mother and Daughter sequence is encoded at 230 kbps using one base layer
and one enhancement layer. Both videos have the same duration (60 seconds), but the size
of the Foreman and Mother and Daughter files are 10 MB and 1.5 MB, respectively. After
this, a simple and small multicast group formed by four PlanetLab nodes is selected. The
test multi-source framework is composed of two source peers (S1 and S2) and two request-
ing peers (R1 and R2). Helper peers are not considered in these experiments. The tested
scheme is shown in Figure 5.11. The source S1 is located at Massachusetts Institute of Tech-
nology (planetlab7.csail.mit.edu), while the source S2 is located at University of Puerto Rico
(node2.planetlab.uprr.pr). The requesting peers R1 and R2 are located at University of Ore-
gon (planetlab2.cs.uregon.edu) and Stanford University (planet1.scs.stanford.edu), respec-
tively. All the participating PlanetLab nodes are fully interconnected, including the sources

87

5. Multi-Source Video Multicast

nodes. In the first set of experiments, the adaptive multicast approach is evaluated in terms
of delay for the two different videos. To this end, the two test videos with the same PSNR
are allocated as video 1 and video 2 at the sources S1 and S2, respectively. After this, the
initial rates in the prototype multi-source multicast are fixed to 230 kbps and 1600 kbps for
sources S1 and S2, respectively. Mother and Daugther video is located at source S1, while
Foreman video is located at source S2 Then, both sources deliver their video files to all par-
ticipating peers, including the sources.

PlanetLab Nodes:

M.I.T: planetlab7.csail.mit.edu
Puerto Rico: node2.planetlab.uprr. pr
Oregon: planetlab2.cs.uregon.edu
Stanford: planet1.scs.stanford.edu

Source 2 (video 2)
Requesting peers

Source 1 (video 1)

Redistribution
Direct distribution

University
of Oregon

Stanford
University

M.I.T

University
of Puerto
Rico

Figure 5.11.: Arrangement of PlanetLab nodes during the evaluation of multi-source video multicast

Figure 5.12 shows the resulting throughput for both videos obtained from the experiments
on PlanetLab. Figure 5.12 a) shows the video throughput obtained from the multi-source
multicast with independent rate allocation, while the obtained throughput for both videos
when using an adaptive mechanism for joint rate allocation introduced in section ?? is shown
in Figure 5.12 b).

The results show that when adaptive rate mechanism is used, the difference between the
delivery delays for both videos is greatly reduced in comparison to sources with indepen-
dent rate allocation. In other words, the adaptive rate control allows us to integrate more
collaboration between the sources in order to achieve a similar PSNR quality for all video
sequences. The average throughput is used to recalculate the PSNR with JSVM software,
obtaining PSNR values of 43.4 dB and 43.9 dB for Foreman and Mother and Daughter, re-
spectively. Appendix A contains additional information about these experiments.

Figure 5.13 compares the throughput for the multi-source approach and the multi-source
approach using independent rate allocation for the requesting peer located at University of
Oregon. The results show that when the proposed approach is used, the requesting peer
receives both videos in a more similar duration than when using independent sources.

Figure 5.14 a) shows how the sources with independent rate allocation tend to distribute
their upload capacity equally between both sequences. Contrary, in Figure 5.14 b), the adap-
tive rate control greatly enforces the rate allocation in each source in order to assign more
upload capacity to the video with higher bit rate (Foreman video), while the upload capacity
allocation for the video with lower bit rate (Mother and Daughter) is reduced.

88

5.5. Implementation and Evaluation

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Time(sec)

Th
ro

ug
hp

ut
(M

bp
s)

Video1 throughput = 0.5554 Mbps
Video2 throughput = 2.4417 Mbps

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time(sec)

Th
ro

ug
hp

ut
(M

bp
s)

Video1 throughput = 1.1581 Mbps
Video2 throughput = 1.6829 Mbps

a) b)

Figure 5.12.: Throughput comparison of the multi-source approaches delivering two different videos.
a). Sources with independent rate allocation, b). Sources using an adaptive mechanism for joint rate
allocation.

0 10 20 30 40 50
0

1

2

3

4

5

6

Time(sec)

Th
ro

ug
hp

ut
(M

bp
s)

Video1 (Mother and Daugther)
Video2 (Foreman)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Time(sec)

Th
ro

ug
hp

ut
(M

bp
s)

Video1 (Mother and Daughter
Video2 (Foreman)

a) b)

Figure 5.13.: Receiver throughput comparison for the requesting peer located at University of Oregon
receiving two different videos. a). Independent rate allocation, b). Joint rate allocation using an
adaptive mechanism.

In the second set of experiments, both sources distribute the same video (e.g. Foreman) and
the adaptive control mechanism must enforce the same throughput for both video sequences
in order to distribute both videos with the same quality (PSNR). Figure 5.15a) shows the
performance of adaptive multi-source multicast when two identical videos sequences are
multicast to all peers. The results show that a similar throughput of around 1.3 Mbps is
achieved for both videos, therefore both videos are delivered with a similar PSNR to all
peers. Contrary, the multi-source multicast with independent rate allocation does not always
reach the same throughput for both sequences, because its performance is affected by the
heterogeneous upload capacity of the sources or the dynamic behaviour of the network (see
Figure 5.15b)).

89

5. Multi-Source Video Multicast

a) b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time(sec)

Pe
rc

en
ta

ge
(1

00
%

)
Rate allocation for source S1 (M.I.T)

Video1 (Mother and Daughter)
Video2 (Foreman)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time(sec)

P
er

ce
nt

ag
e(

10
0%

)

Rate allocation for source S1 (M.I.T)

Video1 (Mother and Daughter)
Video2 (Foreman)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time(sec)

P
er

ce
nt

ag
e(

10
0%

)

Rate allocation for source S2 (UPR)

Video1 (Mother and Daughter)
Video2 (Foreman)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time(sec)

Pe
rc

en
ta

ge
(1

00
%

)

Rate allocation for source S2 (UPR)

Video1 (Mother and Daughter)
Video2 (Foreman)

Figure 5.14.: Rate allocation percentage for each source: a). Sources with independent rate allocation,
b). Sources using an adaptive mechanism for joint rate allocation.

5.6. Chapter Summary

In this chapter, a novel approach for video streaming from multiple sources to multiple re-
ceivers in Peer-to-Peer (P2P) networks has been proposed and evaluated. The proposed
scheme is suited for collaborative streaming environments, where the system inherently has
multiple senders and video sequences and similar video quality is desired. In multi-source
video multicast, all the participating peers are fully interconnected, and they are in fact re-
ceivers and senders at the same time. For the proposed approach, an analytical framework
is developed for four different scenarios: sources with joint rate allocation for different rate
or video quality streams, sources with joint rate allocation for same rate or video quality
streams, sources with independent rate allocation for same rate streams, sources with inde-
pendent rate allocation for different rate streams. In the analysis, the rate allocation problem
is formulated as an optimization problem with an objective function that either maximizes
the throughput or the aggregate video quality of the system.

The optimization problem is solved using linear programming for four different scenarios.

90

5.6. Chapter Summary

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

Time(sec)

Th
ro

ug
hp

ut
(M

bp
s)

Video1 throughput = 1.2331 Mbps
Video2 throughput = 1.3229 Mbps

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(sec)

Th
ro

ug
hp

ut
(M

bp
s)

Video1 throughput = 2.1609 Mbps
Video2 throughput = 1.3122 Mbps

a) b)
Figure 5.15.: Throughput comparison for the case of identical videos using adaptive multi-source
multicast. a). Sources using an adaptive mechanism for joint rate allocation, b). Sources with inde-
pendent rate allocation.

The results from extensive simulations show that multiple-source multicast with joint rate
allocation achieves an optimal performance in terms of overall throughput. Furthermore,
the PSNR enforcement helps us to balance the video quality of all video streams received
by the participating peers. Its performance is similar to the maximum possible performance,
and better than the performance achieved by the multi-source multicast with independent
rate allocation.

Additionally, the chapter presents an adaptive mechanism, which compares the bit rate re-
quirements for each delivered video in order to enforce the rate allocation in each source. The
adaptive mechanism has been integrated in the multi-source multicast model to evaluate the
performance of the sources with joint rate allocation on PlanetLab. To compare the perfor-
mance of the adaptive mechanism, a multi-source model for sources with independent rate
allocation also has been evaluated on PlanetLab. The results show that the adaptive multi-
source multicast provides a better rate adaptation in each source for different or same video
sequences in comparison to sources with independent rate allocation.

91

5. Multi-Source Video Multicast

92

6. M-ary Tree-based Video Multicast

In this chapter an alternative solution based on multiple m-ary trees is proposed. The so-
lution builds multiple m-ary trees in which the upload capacities of the peers are fully ex-
ploited and proximity issues are explicitly considered. In m-ary tree-based video multicast,
the m-ary trees are rooted at the source and they always maintain a height of two levels from
the root in order to avoid deep structures. The source splits the content into blocks and dis-
tributes every block separately by using a collection of m-ary trees. Every participating peer
can receive one or more data blocks directly from the source. After this, every peer forwards
the data block to its children in the corresponding m-ary tree. All peers contribute with
their full upload capacity by being a forwarding peer in at least one of the m-ary trees. The
goal of m-ary tree-based multicast is to maximize the overall throughput, while minimizing
end-to-end delay by considering peer proximity issues during a multicast session.

The obtained m-ary tree collection is different to the tree collection used by Mutualcast be-
cause this scheme avoids that a single peer has to forward its received blocks from the source
to all peers in the fully connected topology. Hence, the worst case delay encountered in Mu-
tualcast does not apply to this scheme. The performance of the proposed scheme is deter-
mined using linear programming. Additionally, a prototype m-ary tree-based multicast has
been evaluated in the PlanetLab infrastructure [153]. The performance of m-ary tree-based
multicast has been compared with Mutualcast, which is the best known scheme in terms
of maximizing overall throughput. The results show that the proposed scheme achieves an
overall throughput similar to fully connected schemes such as Mutualcast, while maintain-
ing a reduced end-to-end delay.

This chapter is organized in the following way:
• Motivation

The chapter starts by declaring the motivation and introduces an approach based on
m-ary trees. In particular, proximity issues are discussed and how the Mutualcast ap-
proach can be affected when the participating peers are located in different geograph-
ical regions. Then, the concept of the m-ary tree based and proximity-aware approach
is introduced.
• System Architecture

Here, the approach is presented and the algorithm to build the collection of m-ary trees
for a multicast session is described.
• Analytical Model

A mathematical model for Application Layer Multicast based on multiple m-ary trees
is developed which utilize the full upload capacities of all participating peers in order
to maximize the overall throughput.
• Simulation

To simulate the performance of the proposed scheme, the distribution problem is for-
mulated as an optimization problem and translated into a linear program, which can

93

6. M-ary Tree-based Video Multicast

be solved using efficient optimization techniques.

• PlanetLab Implementation
The implementation of m-ary tree-based video multicast on PlanetLab is described,
and extensive experimental evaluations of the proposed scheme are presented.

The author’s research contributions in this chapter are:

1. A cooperative multicast model based on a collection of m-ary trees which achieves
an overall throughput similar to fully connected schemes such as Mutualcast, while
maintaining a reduced end-to-end delay.

2. An algorithm to obtain a near optimal m-ary tree collection rooted at the source which
exploits the full upload capacity of all participating peers in combination with their
proximity information during a multicast session.

3. A mathematical model for a proximity-aware collaborative Multicast and its formula-
tion as an optimization problem to be solved using linear programming.

4. An implementation and real evaluation of an proximity-aware collaborative Multicast
based on m-ary trees using the PlanetLab wide-are testbed, and its comparison with
the Mutualcast performance.

6.1. Motivation

Peers can greatly benefit from the capacity of other requesting peers via collaboration, and
hence the need to collaborate for multicast applications in large-scale and heterogeneous
environments. Mutualcast is a fulling collaborative scheme, which engages as many peers
as possible and uses their full upload capacities in order to maximize the overall through-
put. However, the participating peers are typically in different geographical locations, such
as is shown in Figure 6.1. Although Mutualcast achieves the maximum possible multicast
throughput in P2P networks with constrained upload capacities, it does not address prox-
imity issues.

Figure 6.1.: Peers are located in several geographical locations during a multicast session

94

6.2. System Architecture

M-ary Tree-based Video Multicast is inspired by Mutualcast, and it is extended by adding
proximity information. In this work the Round-Trip-Time (RTT) between two peers is used
as proximity information. In Mutualcast, the source assigns each block of content to a single
peer for redelivery. Each peer redelivers its assigned block to the rest of the requesting peers.
In this case, the distribution tree has two levels from the source for each data block. Thus,
when all requesting peers have the same proximity among them, all blocks are delivered
within the same time to all peers. The number of requesting peers in the multicast group is
denoted as N1. This case is shown in Figure 6.2 where the source S distributes the blocks
X1 to X4 to four requesting peers Ri. The distance d (the proximity measure) among them is
assumed to be identical.

1 2

3 4

X1 X2

X3 X4

d d

d

d d

d

d
d

d

d

R1 R2

R3 R4

S

X4

Figure 6.2.: Mutualcast with same distance d (e.g., RTT) among peers

Mutualcast does not control the delivery time. This is because each peer forwards its block
to all other peers without considering that these peers may be distant from it. On the con-
trary, the proposed approach distributes a block through two or more peers, but they evalu-
ate the peer proximity before forwarding their blocks to the rest of the peers. The basic idea
is illustrated in Figure 6.3 using one source and five requesting peersRi. The distance among
peers is indicated by d, while Xi indicates the block management in each peer. Peers R1 and
R2 have a distance of d from the source. Peers R3 and R4 have a distance of 2d from the
source. Peer R5 is 3d away. The worst case distance occurs when block X5 from the source is
delivered through peer R5 to peer R4. In Figure 6.3 a), block X5 travels a maximum distance
of 8d when the Mutualcast approach is used. On the other hand, Figure 6.3 b) shows that
when the proposed approach is used block X5 encounters at most a distance of 5d during
delivery from the source to all the requesting peers. How to build the collection of m-ary
trees that achieves the previously described improved worst case distance is explained in
the following section.

6.2. System Architecture

The design assumes that the source and all requesting peers collaborate by contributing their
upload capacity. Asymmetric network access speeds (e.g. DSL) are also assumed and hence
the upload capacity is considered to be the limiting resource. Each peer can contribute to
the data distribution in one or more m-ary trees. Similar to Mutualcast, the source splits
the content into blocks. After this, the system builds a collection of m-ary trees over which

95

6. M-ary Tree-based Video Multicast

b)

d
d d d d

X5

24 1 3 5R2R4 R1 R3 R5

X3,X2

S

X5

X5 X5

X5X1,X4X2,X3

a)

d d dd d4 2 1 3 5SR4 R2 R1 R3 R5

X5

X5

X5

X2 X1

X3

X5

X5

X4

Figure 6.3.: a). Illustration of the worst case distance for Mutualcast, b). m-ary tree-based approach
when block X5 from the source is delivered

the source delivers the content blocks. Every peer receives one or more data blocks from
the source. Initially, peers with large upload capacity are used as forwarding peers, while
peers with small upload capacity are placed as leaves in most multicast trees within the
tree collection. When the remaining upload capacity of the best peers is small, they become
leaves in the remaining trees.

The design assumes that the source knows the IP address and the upload capacity of all
peers. Additionally, the distance among peers is assumed to be known. In this case, the
distance measure is the round-trip time (RTT). For each participating peer Rj the upload
capacity Cj is stored in list C = C1, . . . , Cj , . . . , CN1 while the distance Di(j) between peers
Ri and Rj is stored in list Di = Di(1), . . . , Di(j), . . . , Di(N1). For each peer Rj , every peer Ri

calculates the normalized distance as

Dn
i (j) =

Di(j)
maxDi(j)∈D(i){Di(j)}

(6.1)

where 0 < Dn
i (j) ≤ 1

The normalized upload capacity Cn
j for every peer Rj is computed as

Cn
j =

Dj

maxCj∈C{Cj}
(6.2)

where 0 < Cn
i (j) ≤ 1

The normalized distance values Dn
i (j) and the normalized upload capacity values Cn

j are
stored in lists Dn

i = {Dn
i (1), . . . , Dn

i (j), . . . , Dn
i (N1) and Cn = {Cn

1 , . . . , C
n
i , . . . , C

n
N1
}, re-

spectively. These lists will be used by the tree-construction algorithm to select peers. Peers
with high Cn

j and low Dn
i (j) have a high preference to be selected. A preliminary delivery

rate (PDR) is used to approximately determine how many times a peer can be used as a
forwarding peer in different distribution trees. The PDR is computed as

96

6.2. System Architecture

PDR =

∑N1
j=1Cj

N1(N1 −m)
(6.3)

where N1 > m.
N1 is the number of requesting peers in the multicast group and m is the number of peers

directly connected to the root of an m-ary tree. The denominator of (6.3) represents the
number of leaf peers being served by the forwarding peers in the set of distribution trees. In
every tree there are (N1 −m) leaf nodes. Hence, the number of leaf peers in a set of m-ary
trees, where the number of trees is the same as the number of requesting peers, is equal to
N1(N1 −m).

6.2.1. Building a Collection of m-ary Trees

The proposed approach is based on a heuristic construction of m-ary trees where all the
participating peers collaborate with their upload capacity and their proximity information.
Figure 6.3 depicts the algorithm to build the m-ary tree collection.

extract PDR*m

is new PDR required?
No

Yes

B

is peer exhausted?

Yes

No

A

C

end

are there identical trees? No

Yes

is Ti = N1?
No

Yes

eliminate identical tree

D

h=2, Ti=0, N1

Assign m children to selected peer

compute m

Compute and n
jC)(jD n

i

Compute PDR

are selected peers = m?

Select peer

Yes

No

Next peer Ri

Yes

No

No

is the largest ?n
jC

is the smaller ?)(jDn
i

Yes

Create a tree Ti

A

B

C D

Figure 6.4.: Building a collection of m-ary trees.

Initially, the number of distribution trees to be obtained is identical to the number of re-
questing peers N1. To avoid deep structures the height h of the m-ary trees is fixed to two

97

6. M-ary Tree-based Video Multicast

levels. Thus, the maximum number of requesting peers in each m-ary tree is m(m+ 1). As-
suming that the number of requesting peers in the multicast group N1 is known, the source
determines the degree m to be used as

m = d1
2

√
4N1 + 1− 1

2
e (6.4)

After this, the source selectsm children as the forwarding peers for each distribution tree Ti.
The algorithm to select forwarding peers works as follows. The source calculates Dn

i (j) and
Cn

j in (6.1) and (6.2) for each peer and the preliminary delivery rate PDR in (6.3). The source
selects the m peers with the largest normalized upload capacities Cn

j to be the forwarding
peers in the first m-ary tree. The (N1 −m) leaf peers are assigned to the forwarding peers
based on the proximity information. At mostm leaf peers can be assigned to one forwarding
peer. If the number of leaf peers is smaller than m2, then the assignment of leaf peers is
additionally balanced to avoid exhausting one peer in one tree. For every leaf node, the
source then subtracts one time the PDR from the upload capacity of the forwarding peers.
Selected peers are used as forwarding peers in several distribution trees until their remaining
upload capacity is no longer sufficient for building the next tree. The source then selects the
next peer with the largest Cn

j from Cn which has not yet been used. When the next best peer
has an upload capacity less than its number of children times PDR, the source calculates a
new PDR which is obtained by dividing the peer’s upload capacity between the number
of leaf peers that it must feed. After this, the source uses this peer and exhausts the peer’s
upload capacity. Finally, when all peers have been used, but the m-ary tree collection is still
not completed, the source reconsiders the peers that have still not been exhausted but this
time using the most recent PDR value. In every step, when there are more than m peers
with the same upload capacity, the source begins by selecting the m closest peers to it.

Out of the m closest peers, each peer distributes the received block to those who still have
not received the same block from another forwarding peer in the distribution tree. The selec-
tion of these children is based on their proximity in order to avoid adding long delay. This
helps us to reduce the end-to-end delay. The collection is completed when the number of
obtained m-ary trees is equal to the number of peers N1. After this, identical m-ary trees
are detected and deleted in order to obtain a reduced m-ary tree collection. A reduced m-
ary tree collection allows us to reduce the number of blocks to be sent by the source and to
increase their size. Once the reduced m-ary tree collection is obtained, linear programming
(LP) can be used to compute the optimum block sizes that maximize the throughput Θ of the
distribution tree collection. As explained later in this chapter, the set of multicast trees with
their node upload capacities are translated to decision variables and constraints of a linear
program. The delivery latency is the end-to-end delay from the source to the receivers. The
delay minimization has already been taken care of during tree construction.

6.2.2. Example

This section illustrates the algorithm described in the last section with an example. The
example assumes a multicast group with seven requesting peers Ri and a sender S. The
upload capacity Ci of the requesting peers Ri and their distance from the source is given in
Table 6.1.

98

6.2. System Architecture

Table 6.1.: Upload capacity Ci of the requesting peers and their proximity to the source. the two right
main columns show the normalized values (compare (6.1) and (6.2))

Ri Ci Dsource(j) Cn
j Dn

source(j)
(kbps) (ms)

1 100 1495 0.2 0.633
2 500 2361 1.0 1.0
3 300 1716 0.6 0.726
4 400 1731 0.8 0.733
5 200 913 0.4 0.386
6 300 1200 0.6 0.508
7 200 390 0.4 0.165

The distances (RTT) among the requesting peers and to the source are obtained from the
network coordinates model proposed in [212] with data acquired from CAIDA’s Skitter
project [213]. Initially, based on the number of requesting peers, seven m-ary trees are cre-
ated to distribute the seven blocks X1 to X7. Using (6.1) and (6.2), each peer and the source
normalize the upload capacity and distance for every participating peer. Table 6.1 shows the
normalized upload capacities and distances for the source only, but a similar operation is
realized for each peer. Thus, the details for the rest of the peers is skipped. The PDR and m
values for the source are calculated from (6.3) and (6.4) to be 71.4 kbps and 3, respectively.
Since the intention is to build m-ary trees which are balanced as much as possible, then in
the example, distribution trees with one forwarding peer feeding two leaf peers and two
forwarding peers feeding one leaf peer each are obtained. In Figure 6.5, R2, R4 and R6 are
used as forwarding peers in the first m-ary tree to distribute block X1.

X1 S

R2 R4 R6

R1 R7R5R3

X2 S

R2 R4 R6

R1 R7R5R3

X3 S

R2 R4 R6

R1 R7R5R3

X4 S

R4 R2 R6

R3 R7R5R1

X5 S

R3 R7 R5

R6 R2R1R4

X6
S

R3 R7 R5

R6 R2R1R4

X7 S

R1 R7 R5

R3 R2R6R4

Figure 6.5.: Preliminary m-ary tree collection

This is because peers R2, R4 and R6 have the largest upload capacities in the multicast
group. Although peers R6 and R3 have the same upload capacity, R6 is preferred because it

99

6. M-ary Tree-based Video Multicast

has a smaller normalized distance to the source than peer R3. The rest of the nodes receive
block X1 from the closest forwarding peer. Thus, peer R2 selects peers R3 and R5 as its two
closest leaf peers to forward block X1, while R6 and R4 sends block X1 to peers R7 and
R1, respectively. The remaining upload capacity of R2, R4, and R6, becomes 357.2 kbps,
328.6 kbps and 218.6 kbps, respectively. Comparing the remaining peer upload capacity to
the PDR, the source determines that peers R2, R4 and R6 can still be used as forwarding
peers in three additional distribution trees. In the fourth distribution tree, the capacity of
R2 is exhausted, while the available capacity of R4 and R6 is reduced to 43 kbps and 14.4
kbps respectively, which is smaller than PDR. Therefore, R4 and R6 cannot be used in
another distribution tree for the time being. Now, the source determines that peers R3, R5

and R7 can be used as the next forwarding peers in the fifth and sixth distribution trees.
Afterwards, the remaining upload capacity of peers R3, R5 and R7 becomes 14.4 kbps, 57.2
kbps and 57.2 kbps, respectively. Because the remaining upload capacity in these peers is
smaller than PDR, they cannot be used in another distribution tree for now. The source
then selects the next peer not yet used, which is peer R1. However, this peer has a capacity
less than 2 ∗ PDR and thus in order to use this peer as forwarding peer, the source must
adjust the PDR to half the capacity of the peer. After this, the source exhausts the capacity
of the peer. Once all peers have been used as forwarding peers in at least one distribution
tree, but the number of obtained m-ary trees is still different from the number of nodes, the
remaining upload capacity of peers R5 and R7 need to be exhausted using the new PDR.
The source then selects R1, R5 and R7 as forwarding peers in this last distribution tree. Each
forwarding peer sends their received block(s) to their closest leaf peers. The obtained m-ary
tree collection is shown in Figure 6.5. Figure 6.5 shows how the source uses the same m-ary
tree structure for the delivery of blocks X1, X2 and X3. The same situation holds for blocks
X5 and X6. Here, duplicate trees can be eliminated in order to obtain a reduced m-ary tree
collection, and the source now can distribute its content using four m-ary trees only. Each
distribution tree delivers a specific block to all requesting peers. The resulting reduced tree
collection is shown in Figure 6.6.

X1 S

R2 R4 R6

R1 R7R5R3

X2 S

R4 R2 R6

R3 R7R5R1

X3 S

R3 R7 R5

R6 R2R1R4

X4 S

R1 R7 R5

R3 R2R6R4

Figure 6.6.: Reduced m-ary trees collection

The maximum throughput of the tree collection and the size of the blocks are determined

100

6.3. Simulation Results

using linear programming. Figure 6.7 shows the reduced m-ary tree collection from Figure
6.6 translated into a linear program.

Maximize
Θ = X1 + X2 + X3 + X4 + X5

subject to
c1: 3X1+3X2+3X3+3X4+7X5 <= 2000
c2: 2X4 <= 100.0
c3: 2X1+X2 <= 500.0
c4: 2X3 <= 300.0
c5: X1+2X2 <= 400.0
c6: X3+X4 <= 200.0
c7: X1+X2 <= 300
c8: X3+X4 <= 200

Figure 6.7.: A reduced m-ary tree collection is translated into a linear program for throughput maxi-
mization

The source splits the content into five blocks. The blocks X1 to X4 are distributed from the
source to the requesting peers through four m-ary trees, while the block X5 is distributed
from the source to each requesting peer directly. This example assumes that the source has
an upload capacity of 2000 kbps. The first constraint 3X1+3X2+3X3+3X4+7X5 ≤ 2000 kbps
considers the upload capacity of the source, which has to deliver three blocks to every m-ary
tree and additionally sends the block X5 to every peer directly. The rest of the constraints
consider the upload capacity of the requesting peers R1, R2, R3, R4, R5, R6 and R7. The
solution gives a maximum throughput of 571.4 kbps, while the size of the blocks in kbits is
X1 = 200, X2 = 150, X3 = 50, X4 = 100 and X5 = 71.42, respectively.

For this specific example, the solution reaches the same maximum throughput as Mutu-
alcast. However, this is not always the case since a heuristic approach is used to find a
near-optimal solution. Calculating the optimal set of multicast trees on the fly is a hard task,
because an exact solution requires to evaluate all possible combinations for all co-existing
sessions in the overlay network and the number of combinations and constraints grows ex-
ponentially with the number of participating peers.

Because the collection of m-ary trees is based on heuristics an exact solution is not always
possible. However, the study found through extensive simulations that in cases when bal-
anced m-ary trees are used and the source capacity is abundant the proposed approach can
achieve an overall throughput identical to the maximum throughput given by Mutualcast.

6.3. Simulation Results

The approach is evaluated in terms of overall throughput and delivery latency. The maxi-
mum overall throughput is computed using linear programming as explained in the previ-
ous section. The maximum required time so that all the nodes receive all data blocks is ob-
tained too. The results obtained with the proposed approach are compared with the results
when using the Mutualcast approach. Different cases are simulated for multicast groups
with 6, 7 and 10 requesting peers. In every case, the source capacity is varied from 1000 to

101

6. M-ary Tree-based Video Multicast

6000 kbps, while the upload capacity of each requesting peer is fixed. Heterogeneous upload
capacities and proximity relationships are used for every peer in the different cases. The up-
load capacity of the requesting peers R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 in kbps is
100, 500, 300, 400, 200, 300, 200, 400, 300 and 100, respectively. The round trip times between
peers and the source are obtained from [212] and [213]. Helper peers Hi are not considered
in this example. A comparison between m-ary trees rooted at the source and Mutualcast in
terms of overall throughput for theses cases is shown in Figure 6.8.

428

571

1142

1000

714

857 857

1000

1142

714

571

333

0

200

400

600

800

1000

1200

1000 2000 3000 4000 5000 6000

Source capacity (Kbps)

O
ve

ra
ll

Th
ro

ug
hp

ut
 (K

bp
s) Mutualcast

 m-ary trees

Figure 6.8.: Overall throughput comparison

The results show that for a heterogeneous multicast group, the m-ary trees based approach
achieves almost the same overall throughput as the Mutualcast approach. Both approaches
consider that the source S has enough capacity and it can distribute extra content blocks di-
rectly to all requesting peers Ri. Both approaches lead to identical throughput if the source
capacity has enough upload capacity. The proposed approach and the Mutualcast approach
are compared in terms of delivery latency. Delivery latencies achieved by the proposed
approach and Mutualcast are compared in Figures 6.9. Figure 6.9a) shows the maximum
delivery delay by the proposed approach and the Mutualcast approach for the delivery of
all content blocks to all requesting peers in the multicast group. This delay is determined by
the slowest distribution tree. The results show that when the m-ary trees based approach is
used, the maximum end-to-end delay is smaller in comparison to Mutualcast. This improve-
ment is attributed to the fact that the algorithm based on m-ary trees avoids deep structures
and incorporates proximity information into the overlay topology. Figure 6.9b) shows the
average delivery time for all blocks for all peers. This delay is the sum of the maximum
end-to-end delay in each distribution tree divided by the number of distribution trees. The
approach based on m-ary trees rooted at the source shows a better average end-to-end delay
than the Mutualcast approach.

Finally, the delivery rate achieved by each distribution tree in the proposed scheme and
the Mutualcast scheme is evaluated during a multicast session. For this comparison, a set of
six peers and a source capacity of 1000 kbps is considered. Here, both evaluated approaches
achieve the same overall throughput. The evaluation assumes that each blockXi is delivered
by a distribution tree. The results are shown in Figure 6.10. For both approaches, the blocks
X1 toX5 within the square represent the blocks delivered by each distribution tree, while the

102

6.4. Planet Implementation and Evaluation

a) b)

3161 3173 3122
3310

3795 3799

0

500

1000

1500

2000

2500

3000

3500

4000

Mutualcast
(6 peers)

m-ary_trees
(6 peers)

Mutualcast
(7 peers)

m-ary_trees
(7 peers)

Mutualcast
(10 peers)

m-ary_trees
(10 peers)

En
d-

to
-E

nd
 D

el
ay

 (m
s)

2673

2437

2312

2656 2654

2460

2100

2200

2300

2400

2500

2600

2700

2800

Mutualcast
(6 peers)

m-ary_trees
(6 peers)

Mutualcast
(7 peers)

m-ary_trees
(7 peers)

Mutualcast
(10 peers)

m-ary_trees
(10 peers)

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Figure 6.9.: Delay comparison between Mutualcast and multicast based on m-ary trees. a). Maxi-
mum delay b). Average delay

block X7 is delivered by the source to each requesting peer directly. While in the proposed
approach the source splits the total content in five blocks, Mutualcast requires to use an
extra blockX6. This is because in Mutualcast each blockXi is assigned to one single node for
redelivery. The results show that both models use different delivery rates in each distribution
tree to maximize the overall throughput. Most distribution trees in the proposed approach
allow a bigger delivery rate than Mutualcast during a multicast session. This is because
the proposed approach uses fewer blocks but with a bigger size by distributing via five
distribution m-ary trees only, while Mutualcast uses six distribution trees.

20

60

80

40

60

107
100

50

100 100

17

50

150

0

20

40

60

80

100

120

140

160

X1 X2 X3 X4 X5 X6 X7

ID_Block

D
el

iv
er

y
R

at
e

(K
bp

s)

Mutualcast m-ary trees

Figure 6.10.: Delivery rate on each distribution tree

6.4. Planet Implementation and Evaluation

The performance of a prototype proximity-aware collaborative multicast based on m-ary
trees has been evaluated in the PlanetLab infrastructure. The implementation runs over
Linux and consists of different programs written in C/C++ language. In the PlanetLab ex-
periments, the m-ary tree-based multicast scheme is compared to the Mutualcast scheme

103

6. M-ary Tree-based Video Multicast

and the performance is evaluated in terms of delivery delay. The evaluation assumes that
the scheme with the smallest delivery time presents the best overall performance. Similar
to [49], the implementation is based on the TCP protocol and uses a reduced number of
requesting peers in the multicast group. The following cases are evaluated:

1. Throughput among all participating (source and requesting) peers is similar.
2. Throughput between the source and some subset of peers is highly heterogeneous.
3. Throughput among subsets of peers is weak.

In all these cases, a scenario with 6 requesting peers is considered. The selected sites to
evaluate the different cases are shown in Figure 6.11. Fixed tree structures are considered to
evaluate the m-ary tree-based multicast scheme and the Mutualcast scheme. The evaluation
uses fixed structures for both schemes.

INRIA1 and 2

CESNET

DIKU

MIT: Massachusetts Institute of Technology (planetlab7.csail.mit.edu)
UCSB: University of California, Santa Barbara (planet1.cs.ucsb.edu)
USCD: University of california, San Diego, (planetlab3.ucsd.edu)
HP-PA: Hewlett-Packard Labs (pli1-pa-3.hpl.hp.com)
DIKU: University of Copenhagen (planetlab2.diku.dk)
BROWN: Brown University (mercury.cs.brown.edu)
BOSTON1: Boston University (planetlab-01.bu.edu)
BOSTON2: Boston University (planetlab-02.bu.edu)
RICE: Rice University (ricepl-1.cs.rice.edu)
INRIA1: INRIA Labs in Sophia-Antipolis (planetlab1.inria.fr)
INRIA2: INRIA Labs in Sophia-Antipolis (planetlab2.inria.fr)
CESNET: Czech Education and Research Network (planetlab1.cesnet.cz)

BOSTON1 and 2

UCSD

UCSB

HP-PA
BROWN

RICE

MIT

Figure 6.11.: PlanetLab nodes used in the USA and Europe to evaluate the proximity-aware collabo-
rative multicast scheme and the Mutualcast scheme

In the experiments, the source distributes 60 frames of an MPEG2 video, which are obtained
from a video file by using the SID video cutter and splitter software [214]. The Mutualcast
scheme uses 6 blocks to distribute 60 frames to the requesting peers by allocating 10 frames
in each block, while m-ary tree-based multicast uses 3 blocks to distribute 60 frames to the
requesting peers by allocating 20 frames in each block. The average size of the blocks in
Mutualcast is 67 KB, while in the proposed scheme the average size of the blocks is 130 KB.
The experiment assumes that the blocks are small media files and then they are broadcasted
via the m-ary tree-based multicast approach or the Mutualcast approach from the source to
all requesting peers. Here, the measurements are based on the required time to distribute
these blocks to all peers unlike to the results presented in the previous section and in [123]
which are based on the Round-Trip Time (RTT) only.

104

6.4. Planet Implementation and Evaluation

During the implementation on PlanetLab, the program runs the following protocol: First,
each requesting peer requests the same video from the source. The source copies the IP
address of every requesting peer and sends all IP addresses to all requesting peers. Using
this information, the source and each requesting peer obtains the RTT by performing a PING
among all participating peers. The source sends a video block to every requesting peer. After
the blocks are received at each requesting peer, each requesting peers forwards the blocks
to its leaf peers in a parallel way. The Mutualcast implementation on PlanetLab is similar,
but each requesting peer receives one block only, and the received block is forwarded to
all other participating peers in the multicast group. In both approaches, the distribution of
blocks among the requesting peers is implemented using threads. In parallel, each peer runs
a thread for each requesting peer to which it must forward the received blocks.

For all evaluated cases, exhaustive measurements have been realized and average values
are considered. The cases compare the maximum and average delays between the m-ary
tree-based multicast approach and the Mutualcast approach.

6.4.1. Case 1: Throughput among All Participating Peers is Similar

The first case evaluates the multicast approach based on m-ary trees and the Mutualcast
approach in terms of delivery time when the throughput between the source and all peers
is similar. The source is located at Rice University (ricepl-1.cs.rice.edu) while the set of re-
questing peers is formed by PlanetLab nodes located at the University of California, Santa
Barbara-UCSB (planet1.cs.ucsb.edu), Brown University (mercury.cs.brown.edu), University
of California, San Diego-UCSD (planetlab3.ucsd.edu), Hewlett-Packard Labs (HP-PA) in
Palo Alto (pli1-pa-3.hpl.hp.com) and Boston University (planetlab-01.bu.edu (BOSTON1)
and planetlab-02.bu.edu (BOSTON2)). A sub-set of requesting peers is formed in California,
while another subset is formed on the east coast of the United States (Brown University and
Boston University). Boston University has two hosts as requesting peers, while the rest of
the sites have a host as requesting peer only. Using the algorithm detailed in Section 6.2.1,
the blocks X1 to X3 are distributed through three distribution m-ary trees as is shown in
Figure 6.12.

S

RICE

UCSD
BOSTON1

UCSB HP -PA BROWNBOSTON2

X1 S

RICE

UCSB

BOSTON2

UCSD HP -PA BROWNBOSTON1

X2

BOSTON2

S

RICE

HP -PA
BROWN

UCSB UCSD BOSTON1

X3

Figure 6.12.: m-ary tree collection when all participating peers present a similar throughput

Using this m-ary tree collection and the Mutualcast scheme, extensive measurements on
PlanetLab have been realized. Figure 6.13 compares the maximum delay between the pro-
posed approach and the Mutualcast approach to distribute all content blocks to all request-
ing peers. The maximum delay is determined by the slowest distribution tree, while the
average delay is the sum of the maximum end-to-end delay in each requesting peer divided
by the number of requesting peers.

105

6. M-ary Tree-based Video Multicast

Average delay:
Mutualcast = 3.85 sec
m-ary trees collection = 3.95 sec

4,41

3,723,833,71
3,59

3,84 3,853,73

4,47
4,013,93 3,72

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

HP-PA UCSD UCSB BOSTON1 BOSTON2 BROWN

M
ax

im
um

 d
el

iv
er

y
de

la
y

(s
ec

) Mutualcast m-ary trees

Figure 6.13.: Delivery delay to distribute all blocks when the throughput among all peers is similar.
The source is located at Rice University

The results show that in most of the measurements, Mutualcast presents better distribution
times than the scheme based on m-ary trees. The maximum delays in Mutualcast are reduced
between 5% and 15% compared to the scheme based on m-ary trees. This is because in this
scheme the size of the blocks sent by the source is twice as large as in Mutualcast, thus
creating a bottleneck at this point. Hence, in spite of the delivery times among peers in
m-ary tree-based multicast being smaller than in Mutualcast, the final distributed times are
larger. For this case, the Mutualcast solution is better than the scheme based on m-ary trees.

6.4.2. Case 2: Delivery Delay when the Throughput between the Source and a
Subsets of Peers is Highly Heterogeneous

The second case evaluates the delivery time when the throughput between the source and a
subset of requesting peers is highly heterogeneous. To this end, an m-ary tree collection sim-
ilar to the previous case is considered, but the source is located in the geographical region
of a subset. Just like the previous case, there are two subsets of requesting peers, each in a
specific geographical region such as California and the east coast of the United States. In this
experiment, the source is a PlanetLab node hosted at the Massachusetts Institute of Technol-
ogy - MIT (planetlab7.csail.mit.edu) located at the east coast. Therefore, the source is close
to PlanetLab nodes at Brown University (mercury.cs.brown.edu (BROWN)) and Boston Uni-
versity (planetlab-01.bu.edu (BOSTON1) and planetlab-02.bu.edu (BOSTON2)). The result-
ing arrangement is shown in Figure 6.14. This arrangement has been used to make extensive
measurements on PlanetLab.

Figure 6.15 compares the delivery delay by m-ary tree-based multicast and Mutualcast for
delivery of all content blocks to all requesting peers in the multicast group.

The results show that when the proposed approach is used, the maximum delivery time is
smaller in comparison to Mutualcast. Using m-ary tree based multicast the maximum de-
livery time is reduced by 30% with respect to Mutualcast in sample 3. This improvement is
attributed first to the fact that the source is close to a subset of requesting peers on the Plan-

106

6.4. Planet Implementation and Evaluation

S

MIT

UCSD
BOSTON1

UCSB HP -PA BROWNBOSTON2

X1 S

MIT

UCSB

BOSTON2

UCSD HP-PA BROWNBOSTON1

X2

BOSTON2

S

MIT

HP -PA
BROWN

UCSB UCSD BOSTON1

X3

Figure 6.14.: m-ary tree collection when the throughput between the source and a subset of peers is
highly heterogeneous

Average delay:
Mutualcast = 6.72 sec
m-ary trees collection = 5.03 sec

7,2
6,68 6,94

5,87
6,39

7,25

5,11 5,05 5,14 5,08 4,92 4,92

0

1

2

3

4

5

6

7

8

HP-PA UCSD UCSB BOSTON1 BOSTON2 BROWN

M
ax

im
um

 d
el

iv
er

y
de

la
y

(s
ec

)

Mutualcast m-ary trees

Figure 6.15.: Delivery delay to distribute all blocks to all peers when the throughput between the
source and a subset of peers is highly heterogeneous. The source is located at the MIT

etLab infrastructure. Thus, the throughput between the source and a subset of requesting
peers is larger than the throughput among the requesting peers. The second fact is that the
algorithm based on m-ary trees incorporates proximity information into the overlay topol-
ogy avoiding the communication between distant peers. When this case is present in a P2P
based multicast session, the approach based on m-ary trees performs better than the Mutu-
alcast approach in terms of delivery times.

6.4.3. Case 3: Delivery Delay when the Throughput between the Subsets of
Peers is Weak

The third case evaluates the delivery time when the throughput between the subsets of re-
questing peers is weak. To evaluate the third case, the experiments use PlanetLab nodes
hosted in the USA and Central Europe. A subset of requesting peers are hosted on dif-
ferent PlanetLab nodes located in the California region, specifically at UC Santa Barbara
(planet1.cs.ucsb.edu (UCSB)), UC San Diego (planetlab3.ucsd.edu (UCSD)) and HP Labs in
Palo Alto (planetlab3.ucsd.edu (HP-PA)), while the second subset of requesting peers located
in Central Europe is deployed on PlanetLab nodes hosted at INRIA Labs in Sophia-Antipolis
(planetlab1.inria.fr (INRIA1) and planetlab1.inria.fr (INRIA2)), Czech Education and Re-

107

6. M-ary Tree-based Video Multicast

search Network (planetlab1.cesnet.cz (CESNET)) and University of Copenhagen (planet-
lab2.diku.dk (DIKU1)). In this case two sets of experiments are realized. In the first exper-
iment, PlanetLab nodes located in different sites are used, while in the second experiment
two used PlanetLab nodes are located in the same site (e.g. planetlab1.inria.fr (INRIA1) and
planetlab1.inria.fr (INRIA2)). In the first experiment, the m-ary tree collection used to run
both approaches is shown in Figure 6.16. Three m-ary trees are used to distribute the blocks
X1 to X3 from the source to each requesting peer.

S

MIT

UCSD

INRIA

UCSB HP -PA CESNETDIKU

X1 S

MIT

UCSB
DIKU

UCSD HP-PA CESNETINRIA

X2

DIKU

S

MIT

HP -PA
CESNET

UCSB UCSD INRIA

X3

Figure 6.16.: m-ary tree collection to evaluate the first experiment when throughput among subsets
of peers is weak. The source is located at the MIT

Figure 6.17 compares the maximum delays between the proposed approach and Mutualcast
with data obtained from extensive evaluations.

Average delay:
Mutualcast = 7.92 sec
m-ary trees collection = 7.64 sec

7,78 7,58 7,56

9,9

6,65

8,46
9,51

6,23 6,4 6,3

8,98
8,08

0

2

4

6

8

10

12

HP-PA UCSD UCSB DIKU CESNET INRIA1

M
ax

im
um

 d
el

iv
er

y
de

la
y

(s
ec

) Mutualcast m-ary trees

Figure 6.17.: Delivery delays obtained from the first experiment when throughput among subsets of
peers is weak. Source is located at the MIT

In the first experiment, the results show that when there are six requesting peers deployed
in the USA and Europe and balanced m-ary trees (3 peers in the USA and 3 peers in Europe)
in the multicast group are used, the proposed scheme reaches smaller delivery times than
the Mutualcast scheme in most of the peers. For example, using m-ary tree-based multicast
the maximum delay is reduced by 6% with respect to Mutualcast. This is because the links
to the INRIA PlanetLab node (planetlab1.inria.fr) are working very slowly. Additionally, m-
ary tree-based multicast reaches a better average delay than Mutualcast in all samples. This
means that most of the requesting peers obtain the content blocks more quickly using the

108

6.5. Chapter Summary

scheme based on m-ary trees. Also, Figure 6.17 shows that the proposed approach reduces
the delivery times by about 25% compared to Mutualcast for the peers deployed in Califor-
nia. This improvement is attributed to the fact that the algorithm divides the multicast group
in two subsets and the requesting peers in California are not affected by delay introduced
from some slow peers in Europe.

For the second experiment, a subset of three requesting peers is deployed on different Plan-
etLab nodes hosted in California as in the previous experiments. The rest of the requesting
peers are deployed in Central Europe, specifically two peers run in PlanetLab nodes (plan-
etlab1.inria.fr and planetlab2.inria.fr) hosted in INRIA while one peer runs on a CESNET’s
PlanetLab node (planetlab1.cesnet.cz). The m-ary tree collection used to distribute the blocks
X1 to X3 from the source to each requesting peer is shown in Figure 6.18.

S

MIT

UCSD

INRIA1

UCSB HP -PA CESNETINRIA2

X1 S

MIT

UCSB
INRIA2

UCSD HP -PA CESNETINRIA1

X2

INRIA2

S

MIT

HP -PA
CESNET

UCSB UCSD INRIA1

X3

Figure 6.18.: m-ary tree collection to evaluate the second experiment when throughput among subsets
of peers is weak. The source is located at the MIT

The maximum delays between the proposed scheme and the Mutualcast are compared in
Figure 6.19. Similar to the first experiment in this case, the results in the second experi-
ment show that m-ary tree based multicast presents better end-to-end delays than Mutual-
cast. However, in the second experiment the difference between the delivery times in both
schemes is larger. The results show that when using m-ary tree-based multicast the max-
imum delay is reduced by 27% with respect to Mutualcast. In all samples, the proposed
approach reaches a better average delay than the Mutualcast approach. Also, using the pro-
posed approach most of the peers in both regions obtain all content blocks with smaller
delivery time than using the Mutualcast approach. This improvement is attributed to the
fact that m-ary tree-based multicast avoids to use weak links among the requesting peers,
using the strong links among peers only. For this case, the approach based on m-ary trees
leads to lower delivery times than Mutualcast.

6.5. Chapter Summary

Finding a good tree topology that maximizes the overall throughput and limits delivery de-
lay is critical in delay sensitive multicast applications. In this chapter, a content distribution
approach based on m-ary trees has been proposed and evaluated.

The heuristic tree construction approach generates a collection of m-ary trees rooted at the
source by combining the full upload capacities of all participating nodes and their proximity
relationship based on round trip time (RTT). In the proposed model, all the requesting peers
collaborate as relay peers in at least one tree, while their full upload capacity is exhausted.

109

6. M-ary Tree-based Video Multicast

Average delay:
Mutualcast = 9.56 sec
m-ary trees collection = 7.23 sec

8,74

10,67

8,66
9,94

11,76

7,61
6,36 6,18 6,32

7,7
8,63 8,19

0

2

4

6

8

10

12

14

HP-PA UCSD UCSB INRIA1 INRIA2 CESNET

M
ax

im
um

 d
el

iv
er

y
tim

e
(s

ec
)

Mutualcast m-ary trees

Figure 6.19.: Delivery delays obtained from the second experiment when throughput among subsets
of peers is weak. Source is located at the MIT

M-ary based video multicast aims to maximize the overall throughput while the maximum
delay is reduced. To this end, the resulting m-ary tree collection is formulated as an opti-
mization problem with an objective function that maximizes the throughput. Because the
proposed solution is based on heuristic techniques, an exact solution is not always possi-
ble and an analytical framework is not required. The optimization problem is solved using
linear programming

The m-ary tree based video multicast scheme is compared with the Mutualcast scheme
which achieves the maximum possible throughput, but potentially leads to large delivery
delays. For both approaches, extensive simulations were realized. The results show that for
a heterogeneous multicast group, the proposed m-ary trees based approach achieves almost
the same overall throughput as the Mutualcast approach, but a smaller delivery time.

Both approaches have been evaluated on PlanetLab using PlanetLab nodes deployed on
different parts of the globe for different cases. Due to the dynamic behavior of PlanetLab, an
exact measurement of the peers upload capacity is not possible. For this reason, the imple-
mentation uses the throughput among the participating peers, which results from sending
a flow of a certain size divided by its duration, as an estimate for the upload capacity. Us-
ing the initial throughput, the source can send blocks of different size to each requesting
peer. The results demonstrate that the multicast scheme based on m-ary trees presents a
smaller end-to-end delay than Mutualcast. In addition, the proposed scheme avoids a fully-
connected topology, while maintaining a scalable structure.

110

7. Conclusions and Future Work

7.1. Conclusions

Currently, many video delivery technologies such as unicast, broadcast and multicast exist.
Broadcast video is an ideal technology to distribute a limited number of video streams to
a very large audience. In contrast, multicast allows that the receiver get the desired con-
tent, while a significant large number of streams can be available [198]. Multicast also is
motivated by the need to support one-to-many and many-to-many applications. However,
several challenges such as routers migration and restricted connectivity have limited its
widespread deployment in today’s Internet [197]. Recently, P2P technology has emerged
as a valuable infrastructure for video delivery to a very large audience.

This dissertation addresses issues of video multicast over P2P networks. In this disserta-
tion, P2P networks have been selected as the distribution infrastructure because these net-
works do not require a special network infrastructure, are easy to deploy, and participants
share their upload capacity for video delivery to other participants. Unfortunately, a num-
ber of technical challenges must be solved before P2P video multicast becomes viable [215],
[164], [216]. In Chapter 2 and Chapter 3, conceptual issues related to media delivery and the
state of the art in overlay-based distribution were discussed.

This dissertation addresses different challenges of video streaming over P2P networks such
as low delay and video quality. The aim of this research work was to develop architectures
for media streaming delivery. In the proposed solutions, multicast is addressed for one-
to-many and many-to-many applications. Different parts of a video streaming architecture
were investigated, but mainly, the work focuses on encoding and transport issues. The en-
coding rate has a relevant importance in video streaming systems with limited throughput,
because a suitable encoding rate allows us to achieve sufficient video quality in these sys-
tems. These benefits are evaluated for multi-source multicast systems. The media streaming
architectures proposed in this dissertation are inspired by Mutualcast [49], which is an effi-
cient mechanism for one-to-many content distribution that maximizes the overall through-
put by exploiting the upload capacity of all participating peers. The Mutualcast approach is
extended to a hierarchical approach and a multi-source approach. Similar to Mutualcast, the
proposed schemes are tailored to the small-scale ALM approaches.

A central contribution of this thesis is muti-source video multicast presented in Chapter
5. Multi-source multicast is a novel framework for video streaming from multiple sources
to multiple receivers in Peer-to-Peer (P2P) networks. In multi-source video multicast, the
goal is to maximize the overall throughput or alternatively the aggregate video quality of
multiple concurrent streaming sessions. To this end, an analytical model for the novel multi-
source video multicast scheme has been presented and it is backed up by numerical experi-
ments. The analytical model studies the multi-source multicast system in terms of through-
put and PSNR for four different scenarios. The rate allocation problem in the multi-source
multicast model has been formulated as an optimization problem with an objective function

111

7. Conclusions and Future Work

to maximize the overall throughput or alternatively the aggregate video quality. The analyt-
ical evaluation shows that sources with joint rate allocation present a superior performance
than sources with independent rate allocation. Results obtained from extensive simulations
based on linear programming validate the analytical framework and show the effectiveness
of the proposed multi-source video multicast scheme. Furthermore, the PSNR enforcement
helps us to balance the video quality of all video streams received by the participating peers.
To enforce the same PSNR for different videos, the sources must adaptively control their
links. To this end, an adaptive mechanism has been integrated to the multi-source video
multicast system. The adaptive mechanism compares the bit rate requirements for each de-
livered video in order to enforce the rate allocation in each source. Scalable video coding is
used to adjust the same video quality among different video sequences from heterogeneous
sources. However, the same PSNR for all videos can be achieved when the sources have
enough upload capacity. The proposed scheme has been evaluated and compared with a
multi-source scheme with independent rate allocation on PlanetLab. The results show that
an adaptive framework provides a better rate adaptation in each source for different or same
video sequences in comparison to sources with independent rate allocation and different
rate streams. The proposed multi-source video multicast scheme is suited for collaborative
streaming environments, where the system inherently has multiple senders and video se-
quences and similar video quality is desired.

Low delay is very important for delay sensitives applications. A video streaming system
reaches low delivery time and high scalability by using hierarchical distribution structures
as it is shown in Chapter 4. To achieve very low latencies, hierarchical collaborative multicast
organizes all peers into small hierarchical clusters through a distribution tree. Hierarchical
collaborative multicast has been evaluated and compared with Mutualcast on PlanetLab.
Compared with Mutualcast, hierarchical collaborative multicast provides a lower delivery
time and reaches a better scalability maintaining a reduced number of connections.

Mutualcast, Multi-source video multicast and hierarchical collaborative multicast are solu-
tion for media delivery based on fully meshed overlay networks. Another alternative for
media delivery are forest-based approaches. In general, a media streaming system based
on trees has reduced delivery time. However, finding a good tree topology that maximizes
the overall throughput and limits delivery delay is critical in delay sensitive multicast ap-
plications. To this end, a content distribution approach based on m-ary trees in Chapter
6 is proposed and evaluated . The proposed approach is compared with the Mutualcast
scheme which achieves the maximum possible throughput, but potentially leads to large
delivery delays. A heuristic tree construction approach generates a collection of m-ary trees
rooted at the source by combining the full upload capacities of all participating nodes and
their proximity relationship. The results obtained from PlanetLab demonstrate that the pro-
posed multicast scheme provides a good balance between reduced end-to-end delay and
maximum overall throughput while maintaining a scalable structure by avoiding a fully-
connected topology.

All video streaming architectures proposed in this dissertation have been implemented and
evaluated in a real scenario. To this end, the local network of the Institute of Communication
Networks (LKN) and the PlanetLab infrastructure have been used. PlanetLab allows us to

112

7.2. Limitations

evaluate prototypes in a wide-area network.
Some computational problems are hard, and some of them were faced during the research

phase. For example, finding the optimal combination that maximizes the overall throughput
of multiple trees [49], [206] or choosing the optimal clustering assignment are NP-hard prob-
lems [195], [206]. To deal with these NP-hard problems different solutions based on heuristic
algorithms were proposed.

7.2. Limitations

Although the proposed schemes introduce novel ideas for media delivery, they mainly have
the following limitations:

First, similar to Mutalcast, all the multicast models proposed in this dissertation are based
on fixed topology, which is defined before to begining of the content delivery. A fixed topol-
ogy policy is usually not affordable within P2P networks, because new peers cannot be in-
corporate to the multicast group during a multicast session.

Second, the links between peers in the multicast schemes were established via TCP as in
the Mutualcast approach. In special for the distribution schemes studied in this disserta-
tion, TCP offers several advantages as send and receive buffers, flow control, and reliable
data delivery and control congestion. However, TCP mechanisms may introduce long de-
livery times and widely varying throughput, which are not suitable for real-time streaming
applications.

7.3. Future Work

The popularity of media streaming over P2P networks is growing during last years, and
these systems will continue being an interesting research topic in the near future. Several
open issues are still to be addressed in these systems. Furthermore, a large number of mul-
timedia applications require support for video multicast. The work presented in this disser-
tation can be extended in many directions:

Dynamic environment
In general, the fixed topology of the media streaming architectures proposed in this disser-

tation are not prepared for very dynamic environments, where the requesting peers dynam-
ically join or leave the multicast group.

For dynamic environments, the hierarchical collaborative multicast system could integrate
dynamic clustering into its hierarchical structure, where the requesting peers or helper peers
join or leave the multicast group. Furthermore, the clusters formation process is a NP-hard
problem [195], [206], and new and more efficient clustering algorithms are always desirable.

Media streaming architectures based on UDP
During the development of this dissertation, some experiments with a Mutualcast scheme

based on UDP (User Datagram Protocol) have been realized. In these experiments, Mutu-
alcast based on UDP achieves a better throughput than Mutualcast based on TCP. A flow

113

7. Conclusions and Future Work

control mechanism was implemented in order to replace the TCP flow control mechanism.

For the future work, an extension of the media streaming architectures proposed in this
dissertation to UDP is recommended. This argument is based on the fact that TCP introduce
delays that are unacceptable for real-time applications with stringent delay requirements.
In media streaming architectures based on UDP, reliability issues must be reached adding
redundant information in the original message stream by using some FEC (Forward Error
Correction) technique.

Scalable video coding

In scalable video coding the source encodes the data stream into a base layer and several
enhancement layers. The layers can be combined at the receiver to provide progressive
refinement. In multi-source video multicast, scalable video coding (H.264/SVC) has been
used to adapt the same video quality for different videos distributed from different sources
to multiple requesting peers. Results show benefits by using scalable video coding. For
the future work, the incorporation of scalable video coding techniques to the hierarchical
collaborative and m-ary tree-based models presented in this dissertation is recommended.

In scalable video, each layer has different priority and its own minimum bit rate. There-
fore, in order to achieve various video quality, upload capacity can be allocated to transmit
different layers. Thus, peers with different upload capacity can receive different layers. For
example, in hierarchical collaborative multicast, peers allocated into top clusters can receive
a larger number of layers than peers allocated into inferior clusters. As the base layer plays
an important role in the video quality, the system should make sure that the base layer is
delivered to all requesting peers in the multicast group. For the enhancement layers, the
system would consider that they could strongly depend of the quality level required by each
peer.

An alternative solution to be implemented in the proposed architectures in this work is
Multiple description coding (MDC).

The evaluation of all new media streaming architectures on PlanetLab is recommended,
because PlanetLab allows us to evaluate the performance in a wide-are network and under
real-world conditions.

Network coding

Network coding was proposed by Ahlswede et al. in [207]. During this research period,
the benefits of network coding in the multicast systems were investigated. Using network
coding, the broadcast capacity between a source and a set of requesting peers can always
be achieved, but the intermediate peers must code their input packets to produce output
packets [49].

Although a considerable theoretical work about network coding has been realized during
last years, a limited number of practical systems (e.g. Avalanche [208], Practical network
coding [209]) has been implemented. Currently, the scientific community discuss about the
benefits of network coding in P2P networks [210] and several issues are still open.

For example, in network coding, data must be encoded at intermediate node, which means
that total encoding overhead will be constantly increasing as the data travels through the
network. Speed at which the data can be encoded and decoded is very important during

114

7.3. Future Work

content distribution, but it has been not considered in previous network coding research.
On other hand, network coding for multi-source multicast networks [222] represents more
interesting challenges than that for single source multicast networks. Future work can be
realized in this direction.

Security and content protection
Some media streaming delivery systems require to protect the contents to be distributed

over the Internet. However, most P2P networks do not provide Digital Right Management
(DRM), which allows us to illegally share copyright contents from these systems. For the
future work, integrating Digital Rights Management with the P2P-based media streaming
architectures proposed in this dissertation is recommended. How the content to be shared in
the P2P network can be identified is a key issue in a content distribution system. Although
DRM and P2P networks are technologies of the Internet era, an integration between both
technologies has received a limited attention [211]. Incorporation of DRM mechanisms into
P2P networks represents an valuable opportunity to provide reliable content protection in
the media streaming systems.

115

7. Conclusions and Future Work

116

A. Appendix

A.1. Simulation for Multi-source video Multicast

This section presents detailed results from the simulations for the multi-source video mul-
ticast presented in Chapter 5. Results presented in this appendix are based on throughput
and video quality (PSNR).

For all cases, a set of 5 participating peers is used, where two peers S1 and S2 act as sources
and three peers R1, R2 and R3 are the requesting peers. The upload capacity of the partici-
pating peersCS2 ,CR1 ,CR2 andCR3 in kbps is 600, 500, 300, and 300, respectively. The upload
capacity CS1 of the source S1 is varied from 200 to 900 kbps. Helper peers are not considered
in this example. The tested video sequences are: Foreman and Mother and Daughter.

A.1.1. Results for Throughput-based Simulation

Scenarios for simulation based on throughput are:
1. Sources with joint rate allocation for different rate streams,
2. Sources with joint rate allocation for same rate streams,
3. Sources with independent rate allocation for same rate streams,
4. Sources with independent rate allocation for different rate streams.

A.1.1.1. Sources with Joint Rate Allocation for Different Rate Streams

The results obtained from the simulations for sources with joint rate allocation and different
rate streams are summarized in Table A.1.

Table A.1.: Overall throughput Θ for sources with joint rate allocation and different rate streams

CS1 CS2 Θ X Y
(kbps) (kbps) (kbps) (kbps) (kbps)

200 600 475 179.15 291.81
300 600 500 216.65 283.32
400 600 525 233.32 291.66
500 600 550 279.22 270.78
600 600 575 278.83 296.17
700 600 600 289.24 310.76
800 600 625 299.67 325.33
900 600 650 310.06 339.94

117

A. Appendix

A.1.1.2. Sources with Joint Rate Allocation for Same Rate Streams

The results obtained from the simulations for sources with joint rate allocation and same rate
streams are summarized in Table A.2.

Table A.2.: Overall throughput Θ for sources with joint rate allocation and same rate streams

CS1 CS2 Θ X Y
(kbps) (kbps) (kbps) (kbps) (kbps)

200 600 400 200 200
300 600 500 250 250
400 600 525 262.5 262.5
500 600 550 275 275
600 600 575 287.5 287.5
700 600 600 300 300
800 600 625 312.5 312.5
900 600 650 325 325

A.1.1.3. Sources with Independent Rate Allocation for Same Rate Streams

The results obtained from the simulations for sources with joint rate allocation and same rate
streams are summarized in Table A.3.

Table A.3.: Overall throughput Θ for sources with independent rate allocation and same rate streams

CS1 CS2 Θ X Y
(kbps) (kbps) (kbps) (kbps) (kbps)

200 600 200 100 100
300 600 300 150 150
400 600 400 200 200
500 600 500 250 250
600 600 575 287.5 287.5
700 600 600 300 300
800 600 600 300 300
900 600 600 300 300

A.1.1.4. Sources with Independent Rate Allocation for Different Rate Streams

The results obtained from the simulations for sources with joint rate allocation and same rate
streams are summarized in Table A.4.

118

A.1. Simulation for Multi-source video Multicast

Table A.4.: Overall throughput Θ for sources with independent rate allocation and different rate
streams

CS1 CS2 Θ X Y
(kbps) (kbps) (kbps) (kbps) (kbps)

200 600 337.5 100 237.5
300 600 400 150 250
400 600 462.5 200 262.5
500 600 525 250 275
600 600 575 287.5 287.5
700 600 600 300 300
800 600 612.5 312.5 300
900 600 625 325 300

A.1.2. Results for PSNR-based Simulation

Scenarios for simulation based on video quality (PSNR):

1. Sources with joint rate allocation for different video quality streams,

2. Sources with joint rate allocation for same video quality streams,

3. Sources with independent rate allocation for same rate streams,

4. Sources with independent rate allocation for different video quality streams.

A.1.2.1. Sources with Joint Rate Allocation for Different Video Quality Streams

The resulting PSNR from the simulations for sources with joint rate allocation and different
rate streams are summarized in Table A.5.

Table A.5.: PSNR for sources with joint rate allocation and different video quality streams

CS1 CS2 PSNR PSNR1 PSNR2 X Y Θ
(kbps) (kbps) (dB) (dB) (dB) (kbps) (kbps) (kbps)

200 600 79.05 36.49 42.56 200 275 475
300 600 79.73 37.84 41.89 265.5 234.5 500
400 600 80.17 38.10 42.07 280.2 244.8 525
500 600 80.59 38.35 42.24 295 255 550
600 600 80.99 38.58 42.41 309.7 265.3 575
700 600 81.38 38.81 42.57 324.6 275.4 600
800 600 81.75 39.03 42.72 339.6 285.4 625
900 600 82.10 39.25 42.85 354.7 295.3 650

Although the best overall throughput can be achieved and the upload capacity of both
sources and requesting peers is fully exhausted, the sequences X and Y have different rates.

119

A. Appendix

A.1.2.2. Sources with Joint Rate Allocation for Same Video Quality Streams

The resulting PSNR from the simulations for sources with joint rate allocation and same
rate streams are summarized in Table A.6. The resulting PSNRs for video sequences X and
Y are very different.

Table A.6.: PSNR for sources with joint rate allocation and same rate streams

CS1 CS2 PSNR PSNR1 PSNR2 X Y Θ
(kbps) (kbps) (dB) (dB) (dB) (kbps) (kbps) (kbps)

200 600 77.70 36.49 41.21 200 200 400
300 600 79.71 37.55 42.16 250 250 500
400 600 80.15 37.78 42.36 262.5 262.5 525
500 600 80.56 38.00 42.56 275 275 550
600 600 80.97 38.22 42.75 287.5 287.5 575
700 600 81.35 38.43 42.92 300 300 600
800 600 81.72 38.63 43.09 312.5 312.5 625
900 600 82.07 38.82 43.25 325 325 650

On the other hand, Table A.7 shows the resulting PSNRe after the PSNR enforcement
have been made. Videos sequences with a similar PSNR are obtained, although their indi-
vidual rates are different. The results show that when the source S1 is 200 kbps, the PSNR
enforcement is not possible, because the maximum rate reached by sequence X is identical
to the upload capacity of S1.

Table A.7.: PSNR for sources with joint rate allocation after the PSNR enforcement

CS1 CS2 PSNRe PSNRe1 PSNRe2 X Y Θ
(kbps) (kbps) (dB) (dB) (dB) (kbps) (kbps) (kbps)

200 600 79.05 36.49 42.56 200 275 475
300 600 79.66 38.44 41.21 300 200 500
400 600 79.46 39.54 39.91 375.33 149.66 525
500 600 79.80 39.86 39.94 399.5 150.5 550
600 600 80.27 40.05 40.22 415 160 575
700 600 80.77 40.18 40.59 426.33 173.67 600
800 600 81.22 40.34 40.88 439.33 185.67 625
900 600 81.53 40.60 40.93 462.33 187.66 650

A.1.2.3. Sources with Independent Rate Allocation for Same Rate Streams

The resulting PSNR from the simulations for sources with independent rate allocation and
same rate streams are summarized in Table A.8.

120

A.2. Experiments based on Scalable Video Coding

Table A.8.: PSNR for independent sources with same rate streams

CS1 CS2 PSNR PSNR1 PSNR2 X Y Θ
(kbps) (kbps) (dB) (dB) (dB) (kbps) (kbps) (kbps)

200 600 71.08 33.13 37.95 100 100 200
300 600 75.06 35.12 39.93 150 150 300
400 600 77.72 36.49 41.22 200 200 400
500 600 79.73 37.55 42.16 250 250 500
600 600 80.98 38.24 42.74 287.5 287.5 575
700 600 81.36 38.43 42.93 300 300 600
800 600 81.36 38.43 42.92 300 300 600
900 600 81.36 38.43 42.92 300 300 600

A.1.2.4. Sources with Independent Rate Allocation for Different Video Quality
Streams

The resulting PSNR from the simulations for sources with independent rate allocation and
different video quality streams are summarized in Table A.9.

Table A.9.: PSNR for independent sources with different video quality streams

CS1 CS2 PSNR PSNR1 PSNR2 X Y Θ
(kbps) (kbps) dB dB (dB) (kbps) (kbps) (kbps)

200 600 75.11 33.16 41.95 100 237.5 237.5
300 600 77.30 35.14 42.16 150 200 350
400 600 78.87 36.51 42.36 200 262.5 462.5
500 600 80.13 37.57 42.56 250 275 525
600 600 80.98 38.24 42.74 287.5 287.5 575
700 600 81.36 38.44 42.92 300 300 600
800 600 81.56 38.64 42.92 312.5 300 612.5
900 600 81.75 38.83 42.92 325 300 625

A.2. Experiments based on Scalable Video Coding

This section presents the results from enforcing the same video quality for two different
video sequences introduced in Chapter 5. In this case, scalable video coding is used in the
adaptive multi-source scheme to achieve an identical video quality for both sequences. The
Foreman and Daughter and Mother sequences are used as test sequences, and both are en-
coded using the JSVM software version 9.1 [182].

Mother and Daughter sequence (Figure A.1) is captured with a fixed camera and shows
two persons in the foreground. A person is talking, while the other persona is fixed. The
encoding uses these parameters:

121

A. Appendix

Figure A.1.: Example picture of the Mother and Daughter video sequence.

• Spatial resolution: CIF (352 x 288)

• Temporal resolution: 30 frames per second

• Number of frames: 3000 frames

Table A.10 shows the resulting PSNR and rate for this sequence when one base layer (BL)
and one enhancement layer (EL) are encoded.

Table A.10.: PSNR and rate for Mother & Daughter sequence (1 BL and 1 EL)
Layer Rate (kbps) Y-PSNR (dB) U-PSNR (dB) V-PSNR (dB)

0 98.57 39.8212 44.5891 45.4647
1 285.35 42.0363 45.5846 46.6068

Foreman sequences (Figure A.2) is captured by a mobile device, and shows a man talking
in a construction site. The encoding uses these parameters:

• Spatial resolution: CIF (352 x 288)

• Temporal resolution: 30 frames per second

• Number of frames: 3000 frames

First, the Foreman sequence is encoded using one base layer and one enhancement layer
only. The resulting PSNR and rate are shown in Table A.11.

Table A.11.: PSNR and rate for Foreman sequence (1 BL and 1 EL)
Layer Rate (kbps) Y-PSNR (dB) U-PSNR (dB) V-PSNR (dB)

0 273.9408 36.3277 41.3289 43.0568
1 627.4880 39.0984 43.6449 46.2311

122

A.2. Experiments based on Scalable Video Coding

Figure A.2.: Example picture of the Foreman video sequence.

The resulting PSNR is smaller than the resulting PSNR from the Mother & Daughter se-
quence. Then a second enhancement layer must be encoded. Table A.12 shows the resulting
PSNR and rate for the Foreman video sequence when one base layers and two enhancement
layer are encoded.

Table A.12.: PSNR and rate for Foreman sequence (1 BL and 2 EL)
Layer Rate (kbps) Y-PSNR (dB) U-PSNR (dB) V-PSNR (dB)

0 273.9408 36.3277 41.3289 43.0568
1 627.4880 39.0984 43.6449 46.2311
2 1501.8048 42.0139 45.6061 47.8623

Now, both video sequences have a very similar PSNR.

123

A. Appendix

124

Bibliography

[1] F. Fluckiger, "Understanding Networked Multimedia, applications and technology,"
Prentice Hall 1995.

[2] Napster Inc. Napster homepage. http://www.napster.com/, seen on 02.2008.

[3] Gnutella 0.4. http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf, seen
on 02.2008.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnana, "Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications," in the Proc. of the ACM
SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, pp. 149-160, San Diego, CA, USA, August 2001.

[5] KaZaA file sharing network. KaZaA homepage. http://www.kazaa.com/, seen on
02.2008.

[6] Global IP Traffic Forecast and Methodology, 2006-2011, Cisco White paper, updated
January 14, 2008.

[7] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, B. Richard, S. Rolling, and Z. Xu,
"Peer-to-Peer Computing," Technical Report HPL-2002-57R1, HP Laboratories, 2002.

[8] B. Cohen, "Incentives Build Robustness in BitTorrent," in the Proc. of the 1st Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

[9] S. Androutsellis-Theotokis and D. Spinellis, "A Survey of Peer-to-Peer Content Dis-
tribution Technologies," in ACM Computing Surveys, Vol. 36, Num. 4, pp. 335-371,
December 2004.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole Jr., "Overcast:
Reliable Multicasting with an Overlay Network," in Proc. of the 4th Symposium on
Operating System Design and Implementation (OSDI’00), pp. 197-212, San Diego, CA,
USA, October 2000.

[11] M. Ripeanu, I. Foster, A. Iamnitchi, and A. Rogers, "In Search for Simplicity: A Self-
Organizing Multi-Source Multicast Overlay," in Proc. of the 1st IEEE International
Conference (SASO’07), pp. 371-374, Boston, MA, USA, July 2007.

[12] A. Rowstron and P. Druschel, "Pastry: Scalable, Distributed Object Location and Rout-
ing for Large-Scale Peer-to-Peer Systems," in Proc. of the IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), pp. 329-350, Heidelberg, Ger-
many, November, 2001.

[13] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, "Tapestry: An Infrastructure for Fault-
Tolerant Wide-Area Location and Routing," Technical Report UCB/CSD-01-1141, Uni-
versity of California at Berkeley, Computer Science Department, 2001.

[14] S. Ratnassamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A Scalable Content-
Addressable Network," in the Proc. of the ACM SIGCOMM 2001 Conference on Ap-

125

Bibliography

plications, Technologies, Architectures, and Protocols for Computer Communication,
pp. 161-172, San Diego, CA, USA, August 2001.

[15] J. Li and S. Vuong, "An Efficient Clustered Architecture for P2P Networks," in Proc. of
the 18th International Conference on Advanced Information Networking and Appli-
cations (AINA’04), pp. 278-283, Vol.1, Fukuoka, Japan, March 2004.

[16] M. Castro, M. Costa, and A. Rowstron, "Peer-to-Peer Overlays: structured, unstruc-
tured, or both?," Technical Report MSR-TR-2004-73, Microsoft Research, 2004.

[17] Schollmeier Rüdiger, "Signaling and Networking in Unstructured Peer-to-Peer Net-
works," PhD Thesis, Technische Universität München (TUM), Munich, Germany, April
2005.

[18] FastTrack Peer-to-Peer technology company. FastTrack homepage.
http://www.fasttrack.nu/, seen on 02.2008.

[19] The Free Network Project. http://freenetproject.org/, seen on 02.2008.

[20] Skype homepage. http://www.skype.com/, seen on 02.2008.

[21] JXTA homepage. http://www.jxta.org, seen on 02.2008.

[22] Emule homepage. http://www.emule-project.net/home, seen on 02.2008.

[23] Gnutella 0.6, "RFC-Gnutella 0.6". http://rfc-gnutella.sourceforge.net/src/rfc-0
_6draft.html, June 2002, seen on 02.2008.

[24] R. Schollmeier, "A Definition of Peer-to-Peer Networking for the Classification of Peer-
to-Peer Architectures and Applications," in Proc. of the First International Conference
on Peer-to-Peer Computing, pp. 101-102, Linköping, Sweden, August 2001.

[25] J. De Boever, "Peer-to-Peer Networks as a Distribution and Publishing Model," in Proc.
of the 11th International Conference on Electronic Publishing (ELPUB2007), pp. 175-
188, Vienna, Austria, June 2007.

[26] H. Shen, C. Z. Xu and G. Chen, "Cycloid: A Constant-Degree and Lookup-Efficient
P2P Overlay Network," in Proc. of the 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS’04), pp. 195-216, Santa Fe, NM, USA, April 2004.

[27] W. Zheng, X. Liu, S. Shi, J. Hu, and H. Dong, "Peer-to-Peer: A Technique Perspective,"
in Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-
Peer Networks, Auerbach Publications, pp. 587-588, 2006.

[28] D. A. Tran, K. A. Hua, and T. T. Do, "A Peer-to-Peer Architecture for Media Streaming,"
in IEEE Journal on Selected Areas in Communication, Special Issue on Advances in
Overlay Networks, Vol.22 Num.1, pp. 121-133, January 2004.

[29] S. Khan, R. Schollmeier, and E. Steinbach, "A Performance Comparison of Multiple
Description Video Streaming in Peer-to-Peer and Content Delivery Networks," in Proc.
of the IEEE International Conference on Multimedia and Expo (ICME’04), pp. 503-506,
Taipei, Taiwan, June 2004.

[30] K. Aberer, "P-grid: A self-organizing access structure for P2P information systems," in
Proc. of the International Conference on Cooperative Information Systems, Vol. 2172,
pp. 179-194, Trento, Italy, September 2001.

[31] G. Moro, A. M. Ouksel, and C. Sartori, "Agents and Peer-to-Peer Computing: A
Promising Combination of Paradigms," in Proc. of the Agents and Peer-to-Peer Com-
puting, Vol. 2530/2008, pp. 15-28, Bologna, Italy, July 2002.

126

[32] L. G. A. Sung, N. Ahmed, R. Blanco, H. Li, M. A. Soliman, and D. Hadaller, "A Survey
of Data Management in Peer-to-Peer Systems," Technical Report CS-2006-18, Univer-
sity of Waterloo, June 2006.

[33] D. Barkai, "Technologies for Sharing and Collaborating on the Net," in Proc. of the First
International Conference on Peer-to-Peer Computing, pp. 13-28, Linköping, Sweden,
August 2001.

[34] I. Foster, "The Grid: A New Infrastructure for 21st Century Science," Physics Today 55,
42-6, 2002.

[35] Genome@home homepage. http://genomeathome.stanford.edu/, seen on 02.2008.

[36] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande, "Folding@Home and
Genome@Home: Using distributed computing to tackle previously intractable prob-
lems in computational biology," in Computational Genomics, Richard Grant, editor,
Horizon Press 2003.

[37] BOINC homepage. http://boinc.berkeley.edu/, seen 02.2008.

[38] SETI@home homepage. http://setiathome.ssl.berkeley.edu/, seen on 02.2008.

[39] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, "SETI@home: an
experiment in public-resource computing," in Communications of the ACM, Vol. 45,
Issue 11, pp. 56-61, 2002.

[40] W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson, "A
new major SETI project based on project Serendip data and 100,000 personal comput-
ers," in Proc. of the 5th International Conference on Bioastronomy IAU Colloquium
No. 161. Capri, July 1996.

[41] D. P. Anderson, "BOINC: A System for Public-Resource Computing and Storage," in
Proc. of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04),
pp. 4-10, Pittsburgh, PA, USA, November 2004.

[42] V. Berstis, "Fundamentals of Grid Computing," IBM, 2003.

[43] I. Foster and A. Iamnitchi, "On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing," in Proc. of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), pp. 118-128, Berkeley, CA, USA, February 2003.

[44] Microsoft homepage. http://www.microsoft.com/technet/technetmag/issues/2006/
10/IntoTheGroove/

[45] BSCW homepage. http://public.bscw.de/bscw_help-4.3/english/

[46] Oculus Technology homepage. http://www.oculustech.com/co/co-tech-
overview.pdf

[47] Oculus Technology, "CO Technical Overview," White paper, 2001.

[48] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, "Distributing
Streaming Media Content Using Cooperative Networking," in Proc. of the 12th ACM
International Workshop on Network and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV’02), pp. 177-186, Miami, Florida, USA, May 2002.

[49] J. Li, P. A. Chou, and C. Zhang, "Mutualcast: An Efficient Mechanism for One-To-
Many Content Distribution," in Proc. of the ACM SIGCOMM ASIA Workshop, Beijing,
China, April 2005.

127

Bibliography

[50] F. A. López-Fuentes and E. Steinbach, "Collaborative Hierarchical Multicast," in Proc.
of the 15th ACM Multimedia Conference (ACM MM’07), pp. 763-766, Ausburg, Ger-
many, September 2007.

[51] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, "CoolStreaming/DONet: A Data-driven Over-
lay Network for Efficient Live Media Streaming," in Proc of the IEEE 24th INFOCOM,
Vol. 3, pp. 2102- 2111, Miami, FL, USA, March 2005.

[52] Sopcast homepage. http://www.sopcast.com, seen on 02.2008

[53] PPLive homepage. http://www.pplive.com/en/index.html, seen on 02.2008

[54] PPstream homepage. http://www.ppstream.cn/, seen on 02.2008

[55] W. T. Ooi, "Dagster: Contributor Aware End-Host Multicast for Media Streaming in
Heterogeneous Environment," in Proc. of the ACM/SPIE Multimedia Computing and
Networking Conference, Vol. 5680, pp. 77-90, San Jose CA, January 2005.

[56] Y. Guo, K. Suh, J. Kurose, and D. Towsley, "P2Cast: Peer-to-peer Patching Scheme for
VoD Service," in Proc. of the 12th international conference on World Wide Web, pp.
301-309, Budapest, Hungary, May 2003.

[57] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, "GnuStream: A P2P Media Streaming
System Prototype," in Proc. of the International Conference on Multimedia and Expo
(ICME’03), pp. 325-328, Baltimore, MD, USA, July 2003.

[58] W. Gao and L. Huo, "Challenges on Peer-to-Peer Live Media Streaming," in Proc. of
the International Workshop on Multimedia Content Analysis and Mining (MCAM’07),
Vol. 4577/2007, pp. 37-41, Weihai, China, June 2007.

[59] A. B. Bondi, "Characteristics of Scalability and Their Impact on Performance," in Proc.
of the Workshop on Software and Performance, pp. 195-203, Ottawa, Ontario, Canada,
September 2000.

[60] A. Pfitzmann and M. Waidner, "Networks Without User Observability - Design Op-
tions," in Proc. of the EUROCRYPT 1985, pp. 245-253, Linz, Austria, April 1985.

[61] C. Gershenson, "Design and Control of Self-Organizing Systems," PhD thesis, Vrije
Universiteit Brussel, Brussels, Belgium, May 2007.

[62] C. Prehofer and C. Bettstetter, "Self-Organization in Communication Networks: Prin-
ciples and Design Paradigms," in IEEE Communications Magazine, Feature Topic on
Advances in Self-Organizing Networks, Vol. 43, Num. 7, pp. 78-85, July 2005.

[63] J. Ledlie, J. M. Taylor, L. Serban, and M. Seltzer, "Self-Organization in Peer-to-Peer
Systems," in Proc. of the 10th workshop on ACM SIGOPS European workshop, pp.
125-132, Saint-Emilion, France, July 2000.

[64] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, R.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, "OceanStore: An Architec-
ture for Global-Scale Persistent Storage," in Proc. of the Ninth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’00), pp. 190-201, Cambridge, MA, USA, November 2000.

[65] E. Cohen and S. Shenker, "Replication Strategies in Unstructured Peer-to-Peer Net-
works," in Proc. of the ACM SIGCOMM’02, pp. 177-190, Pittsburgh, PA, USA, October
2002.

[66] B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, P. Keleher, and B. Silaghi, "Efficient

128

Peer-To-Peer Searches Using Result-Caching," in Proc. of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS’03), Vol. 2735/2003, pp. 225-236, Berkeley, CA,
USA, February 2003.

[67] B. Yang and H. Garcia-Molina, "Comparing Hybrid Peer-to-Peer Systems," The VLDB
Journal, pp. 561-570, September 2001.

[68] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne, "Finding Good Peers in the Peer-
to-Peer Networks," in Proc. of the International Parallel and Distributed Computing
Symposium (IPDPS’02), pp. 24-31, Ft. Lauderdale, FL, USA, April 2002.

[69] M. Li, W.-C. Lee, and A. Sivasubramaniam, "Semantic Small World: An Overlay Net-
work for Peer-to-Peer Search," in Proc. of the 12th IEEE International Conference on
Network Protocols (ICNP’04), pp. 228-238, Berlin, Germany, October 2004.

[70] S. Jagannathan and G. Pandurangan, "Stochastic Analysis of a Fault-Tolerant and
Bandwidth-Efficient P2P Network," Technical Report CSD TR-03-029, Purdue Univer-
sity, 2003.

[71] A. Grimshaw and W. A. Wulf, "The Legion Vision of a Worldwide Virtual Computer,"
in Communications of the ACM, Vol. 40, Num. 1, pp. 39-45, January 1997.

[72] C. Huitema, "Routing in the Internet," 1st edition, Prentic-Hall, New Jersey, 1995, 319
pages.

[73] J. G. Apostolopoulos, W. T. Tan, and S. J. Wee, "Video streaming: Concepts, Algo-
rithms, and Systems," Technical report HPL-2002-260, HP Laboratories Palo Alto, 2002.

[74] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, "Streaming Video over the
Internet: Approaches and Directions," in IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 11, Num. 3, pp. 282-300, March 2001.

[75] Y. Wang, J. Ostermann, and Y.-Q. Zhang, "Video Processing and Communications,"
Prentice Hill, 2002.

[76] F. Halsall, "Multimedia Communications, Applications, Networks, Protocols and Stan-
dards," Addison Wesley, 2001.

[77] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, "Enabling Conferencing Applications
on the Internet using an Overlay Multicast Architecture," in Proc. of the ACM SIG-
COMM’01, pp. 55-67, San Diego, CA, USA, August 2001.

[78] L. Kontothanassisy, R. Sitaramanz, J. Weinz, D. Hongz, R. Kleinberg, B. Mancusoz, D.
Shawz, and D. Stodolsky, "A Transport Layer for Live Streaming in a Content Delivery
Network," in Proc. of the IEEE, Vol. 92, Num. 9, pp. 1408-1419, September 2004.

[79] J. A. T. Kangasharju, "Internet Content Distribution," PhD Thesis, Nice Sophia Antipo-
lis University, Nice, France, April 2002.

[80] E. Setton, "Congestion-aware Video Streaming over Peer-to-Peer Networks," PhD The-
sis, Stanford University, Stanford, CA, USA, December 2006.

[81] S. E. Deering, "Multicast Routing in Internetwork and Extended LANs," in Proc. of the
ACM SIGCOMM’88, pp. 55-64, Stanford, CA, USA, August 1988.

[82] E. Setton, P. Baccichet, and B. Girod, "Peer-to-Peer Live Multicast: A Video Perspec-
tive," in Proc. of the IEEE, Vol. 96, Num. 1, pp. 25-38, January 2008.

[83] Cisco "Internetworking Technologies Handbook," Chapter 43, pp. 1-16.

129

Bibliography

[84] B. Zhang, W. Wang, S. Jamin, D. Massey, and L. Zhang, "Universal IP Multicast Deliv-
ery," in Computer Networks, Elsevier, Vol. 50, pp. 781-806, 2006.

[85] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, "ALMI: An Application Level
Multicast Infrastructure," in Proc. of the Third USENIX Symposium on Internet Tech-
nologies and Systems (USITS’01), pp. 49-60, San Francisco, CA, USA, March 2001.

[86] M. Brogle, D. Milic, and T. Braun, "Supporting IP Multicast Streaming Using Overlay
Networks," in Proc. of the International Conference on Heterogeneous Network for
Quality, Reliability, Security and Robustness, ACM Qshine’07, Vancouver, Canada,
August 2007.

[87] X. Jin, K.-L. Cheng, and S.-H. G. Chan, "Scalable Island Multicast for Peer-to-Peer
Streaming," in Advances in Multimedia vol. 2007, Article ID 78913, pp. 1-9, Hindawi
Publishing Corporation.

[88] A. Fei, J. Cui, M. Gerla, and M. Faloutsos, "Aggregated Multicast: an Approach to
Reduce Multicast State," in Proc. of the 6th Global Internet Symposium in Conjunction
with GLOBECOM’01, Vol. 3, pp. 1595-1599, San Antonio, TX, USA, November 2001.

[89] L. H. M. K. Costa, S. Fdida, and O.C.M.B. Duarte, "Hop by hop Multicast Routing Pro-
tocol," in Proc. of the ACM SIGCOMM’01, pp. 249-259, San Diego, CA, USA, August
2001.

[90] I. Stoica, T. S. E. Ng, and H. Zhang, "REUNITE: A Recursive Unicast Approach to
Multicast," in Proc. of the IEEE INFOCOM 2000, Vol. 3, pp. 1644-1653, Tel-Aviv, Israel,
March 2000.

[91] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, "Scalable Application Layer Mul-
ticast," in Proc. of the ACM SIGCOMM’02, pp. 205-217, Pittsburgh, PA, USA, August
2002.

[92] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, "A Case for End System Multicast," in IEEE
Journal on Selected Areas in Communications, Vol. 20, Num. 8, pp. 1456-1471, October
2002.

[93] F. A. López-Fuentes and E. Steinbach, "Multi-Source Video Multicast in Peer-to-Peer
Networks," In Proc. of the Fifth International Workshop on Hot Topics in Peer-to-Peer
Systems (HotP2P’07) held in conjunction with the 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS’08), pp. 1-8, Miami, FL, USA, April 2008.

[94] T. Nguyen and A. Zakhor, "Multiple Sender Distributed Video Streaming," in IEEE
Transactions on Multimedia, Vol. 6, Num. 2, pp. 315-326, April 2004.

[95] N. Magharei and R. Rejaie, "Understanding Mesh based Peer to Peer Streaming," in
Proc. of the 16th International Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV’06), Newport, RI, USA, May 2006.

[96] Z. Liu, H. Yu, D. Kundur, and M. Merabti, "On Peer-to-Peer Multimedia Content Ac-
cess and Distribution," in Proc. of the IEEE International Conference on Multimedia
and Expo (ICME’06), pp. 557-560, Toronto, Ontario, CA, July 2006.

[97] N. Magharei, R. Rejaie, and Y. Guo, "Mesh or Multiple-Tree: A Comparative Study of
Live P2P Streaming Approaches," in Proc. of the IEEE INFOCOM 2007, pp. 1424-1432,
Anchorage, Alaska, USA, May 2007.

[98] Y. Zhu and B. Li, "Correlation-aware Multimedia Content Distribution in Overlay Net-

130

works," in Proc. of the 30th Annual SPIE/ACM Conference on Multimedia Computing
and Networking, pp. 127-138 , San Jose, CA, USA, January 2006.

[99] J. Li, Y. Cui, and B. Chang, "PeerStreaming: design and implementation of an on-
demand distributed streaming system with digital rights management capabilities,"
in Multimedia Systems, Springer, Vol. 13, Num. 3, pp. 173-190, September 2007.

[100] G. Wang, S. Futemma, and E. Itakura, "Multiple Description Coding for Overlay Net-
work Streaming," in IEEE MultiMedia Volume 14, Issue 1, pp. 74-82, January 2007.

[101] S. Veńot and L. Yang, "Peer-to-Peer Media Streaming Application Survey," in Proc. of
the International Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2007), pp. 139-148, Papeete, French Polynesia, November
2007.

[102] E. Setton, J. Noh, and B. Girod, "Rate-Distortion Optimized Video Peer-to-Peer Mul-
ticast Streaming," in Proc. of the Workshop on Advances in Peer-to-Peer Multimedia
Streaming at ACM Multimedia’05, pp. 39-48, Singapore, Singapore, November 2005.

[103] M. Hefeeda, A. Habib, D. Xu, B. Bhagava, and B. Botev, "Collectcast: A Peer-to-Peer
Service for Media Streaming," in ACM/Springer Multimedia System Journal, Vol. 11,
Num. 5, pp. 68-81, November 2005.

[104] L. Choi, M. Ivrlac, E. Steinbach, and J. Nossek, "Sequence-level Models for Distortion-
Rate Behaviour," in Proc. of the IEEE ICIP 2005, Vol. 2, pp. 486-489, Genova, Italy,
September 2005.

[105] H.264/MPEG-4 AVC Reference Software http://iphone.hhi.de/suering/tml/

[106] M. Burger, T. Kielmann, and H. E. Bal, "Balanced Multicasting: High-throughput Com-
munication for Grid Applications," in Proc. of the ACM/IEEE Supercomputing, Seat-
tle, WA, USA, November 2005.

[107] S. G. Nash and A. Sofer, "Linear and Nonlinear Programming," McGraw-Hill Interna-
tional Editions 1996.

[108] N. Magharei and R. Rejaie, "Adaptive Receiver-Driven Streaming from Multiple
Senders," in ACM/Springer Multimedia Systems Journal 11, Num. 6, pp. 1-18, 2006.

[109] F. Wang, Y. Xiong, and J. Liu, "mTreebone: A Hybrid Tree/Mesh Overlay for
Application-Layer Live Video Multicast," in Proc. of the 27th International Conference
on Distributed Computing Systems (ICDCS’07), pp. 49-56, Toronto, Ontario, Canada,
June 2007.

[110] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, "Split-
Stream: High-Bandwidth Content Distribution in Cooperative Environments," in Proc.
of the 19th ACM Symposium on Operating System Principles, pp. 298-313, Bolton
Landing, NY, USA, October 2003.

[111] D. Carra, R. Lo Cigno, and E. W. Biersack, "Graph Based Analysis of Mesh Overlay
Streaming Systems," in IEEE Journal on Selected Areas in Communications, Vol. 25,
Num. 9, pp. 1667-1677, December 2007.

[112] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, "Bullet: High Bandwidth Data
Dissemination Using and Overlay Mesh," in Proc. of the 19th ACM Symposium on
Operating Systems Principles, pp. 282-297, Bolton Landing, NY, USA, October 2003.

[113] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz, "Bayeux: An Architecture

131

Bibliography

for Scalable and Fault-Tolerant Wide-Area Data Dissemination," in Proc. of the 11th In-
ternational Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV’01), pp. 11-20, Port Jefferson, NY, USA, June 2001.

[114] F. Pianese, D. Perino, J. Keller, and E. W. Biersack, "PULSE: an Adaptive, Incentive-
based, Unstructured P2P Live Streaming System," in IEEE Transactions on Multime-
dia, Special Issue on Content Storage and Delivery in Peer-to-Peer Networks, Vol. 9,
Num. 8, pp. 1645-1660, December 2007.

[115] M. Castro, P. Druschel, A. -M. Kermarrec, and A. Rowstron, "SCRIBE: A large-scale
and decentralized application-level multicast infrastructure," in IEEE Journal on Se-
lected Areas in Communications, Vol. 20, Num. 8, pp. 1489- 1499, October 2002.

[116] X. Hei, Y. Liu, and K. W. Ross, "Inferring Network-Wide Quality in P2P Live Streaming
Systems," in IEEE Journal on Selected Areas in Communications, Vol. 25, Num. 9, pp.
1640-1654, December 2007.

[117] W. -P. K. Yiu, X. Jin, and S.-H. G. Chan, "VMesh: Distributed Segment Storage for
Peer-to-Peer Interactive Video Streaming," in IEEE Journal on Selected Areas in Com-
munications, Vol. 25, Num. 9, pp. 1717-1731, December 2007.

[118] G. Wu and T. Chiueh, "How efficient is BitTorrent?," in Proc. of the 30th ACM/SPIE
Multimedia Computing Network (MMCN’06), San Jose, CA, USA, January 2006.

[119] X. Su and T. Wang, "Sequence of Linear Programming for Transmission of Fine-
Scalable Coded Content in Bandwidth-Limited Environments," in Multimedia Sys-
tems, Vol. 11, Num. 5, pp. 455-466, Springer Verlag, 2006.

[120] C. Hsu and M. Hefeeda, "Optimal Bit Allocation for Fine-grained Scalable Video Se-
quences in Distributed Streaming Environments," in Proc. of the 40th ACM/SPIE Mul-
timedia Computing and Networking (MMCN’07), San Jose, CA, USA, 2007.

[121] S. Pemmaraju and S. Skiena, "Computational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica," Cambridge University Press, 2003.

[122] S. -W. Tan, G. Waters, and J. Crawford, "MeshTree: Reliable Low Delay Degree-
bounded Multicast Overlays," in Proc. of the 11th International Conference on Parallel
and Distributed Systems (ICPADS’05), Vol. 2, pp. 565- 569, Fukuoka, Japan, July, 2005.

[123] F. A. López-Fuentes and E. Steinbach, "Proximity-Aware Collaborative Multicast for
Small P2P Communities," In Proc. of the Fourth International Workshop on Hot Top-
ics in Peer-to-Peer Systems (HotP2P’07) held in conjunction with the 21th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’07), pp. 1-8, Long
Beach, CA, USA, March 2007.

[124] F. A. López-Fuentes and E. Steinbach, "Architecture for Media Streaming Delivery
over P2P Networks," in Proc. of the IEEE Fifth International Symposium and School on
Advanced Distributed Systems (ISSADS’05), Vol. 3563/2005, pp. 72-82, Guadalajara,
Jalisco, Mexico, January 2005.

[125] D. Jurca, J. Chakareski, J. -P. Wagner, and P. Frossard, "Enabling Adaptive Video
Streaming in P2P Systems," in IEEE Communications Magazine, Vol. 45, Num. 6, pp.
108-114, June 2007.

[126] Y. Cui, B. Li, and K. Nahrstedt, "On Achieving Optimized Capacity Utilization in Ap-
plication Overlay Networks with Multiple Competing Sessions," in Proc. of the ACM

132

16th Symposium on Parallelism in Algorithms and Architectures (SPAA’04), pp. 160-
169, Barcelona, Spain, June 2004.

[127] H. Prüfer, "Neu Beweis eines Satzes über Permutationen," in Archiv für Mathematik
und Physik, Vol. 27, pp. 142-144, 1918.

[128] F. A. López-Fuentes and E. Steinbach, "Collaborative Content Distribution with Mul-
tipple Coexisting Sessions," Technical Report LKN-MTG-TR-04, München Technical
Universität, March, 2006.

[129] W. K. Grassmann and J. P.Tremblay, "Logical and Discrete Mathematics: A Computer
Science Perspective," Prentice Hall, 1996.

[130] B. R. Preiss, "Data Structures and Algorithms with Object-Oriented Design Patterns in
Java," John Wiley & Sons, 1999.

[131] J. A. Fill and R. P. Dobrow, "The Number of m-ary Search Trees on n Keys," in Combi-
natorics, Probability and Computing, Vol. 6, pp. 435-453, 1997.

[132] A. Cayley, "A Theorem on Trees," Quart. J. Math. 23, pp. 376-378, 1889.

[133] J. L. Gross and J. Yellen, "Graph Theory and its applications," Second Edition, Chap-
man & Hall/CRC.

[134] I. M. Gessel and S. Seo, "A Refinement of Cayley’s Formula for Trees," in the Electronic
Journal of Combinatorics, Vol. 11, Num. 2, pp. 1-23, February 2006.

[135] T. Koshy, "Discrete Mathematics with Applications," Second Edition, Elsevier Aca-
demic Press, 2007.

[136] F. L. Heller and A. L. Tharp, "The *M-ary Tree and *Ternary Hillsort," in Proc. of the
ACM 20th Annual Conference on Computer Science, pp. 41-48, Kansas City, MO, USA,
March 1992.

[137] L. Devroye, "On the height of random m-ary search trees," in Random Structures and
Algorithms, Vol. 1, pp. 191-203, 1990.

[138] B. Chauvin and N. Pouyanne, "m-ary Search Trees when m>26: A Strong Asymptotics
for the Space Requirements" in Random Structures and Algorithms, Vol 24, Num. 2,
pp. 133-154, 2004.

[139] J. Li, "MutualCast: A Serverless Peer-to-Peer Multiparty Real-Time Audio Conferenc-
ing System," in Proc. of the IEEE International Conference on Multimedia & Expo
(ICME’05), pp. 602-605, Amsterdam, The Netherlands, July 2005.

[140] C. Huang, P. A. Chou, J. Li, and C. Zhang, "Adaptive Peer-to-Peer Streaming with
MutualCast," in Journal of Zhejiang University SCIENCE A, Vol. 7, Num. 5, pp. 737-
748, April 2006.

[141] Y. Chawathe, "Scattercast: An Adaptable Broadcast Distribution Framework," in ACM
Multimedia Systems Journal Special Issues on Multimedia Distribution, Vol. 9, Num.
1, pp. 104-118, July 2003.

[142] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, and H. Zhang, "The Impact
of Heterogeneous Bandwidth Constraints on DHT Based Multicast Protocols," in Proc.
of the 4th International Workshop on Peer-to-Peer Systems (IPTPS’05), Vol. 3640/2005,
pp. 115-126, Ithaca, NY, USA, February 2005.

[143] M. Ripeanu, I. Foster, and A. Iamnitchi, "Mapping the Gnutella Network: Properties

133

Bibliography

of Large-Scale Peer-to-Peer Systems and Implications for System Design," in Internet
Computing Journal, Vol. 6, pp. 50-57, September 2002.

[144] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, "PROMISE: Peer-to-Peer
Media Streaming Using CollectCast," in Proc. of the ACM Multimedia’03, pp. 45-54,
Berkeley, CA, USA, November 2003.

[145] H. Pucha, D.G. Andersen, and M. Kaminsky, "Exploiting Similarity for Multi-Source
Downloads Using File Handprints," in Proc. of the 4th USENIX NSDI’07, pp. 15-28,
Cambridge, MA, April 2007.

[146] N. Magharei and R. Rejaie, "Adaptive Receiver-driven Streaming from Multiple
Senders," in ACM/Springer Multimedia Systems Journal 11, Num. 6, pp. 1-18, Juni
2006.

[147] Y. Cui and K. Klara Nahrstedt, "Layered Peer-to-Peer Streaming," in Proc. of the 13th
International Workshop on Network and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV’03), pp. 162-171, Monterey, California, June 2003.

[148] R. Cohen and G. Kempfer, "A Unicast-based Approach for Streaming Multicast" in
Proc. of the IEEE INFOCOM 2001, Vol 1, pp. 440-448, Anchorage, Alaska, USA, April
2001.

[149] M. S. Kim, S.S. Lam, and D.Y. Lee, "Optimal Distribution Tree for Internet Stream-
ing Media," in Proc. of the 23rd International Conference on Distributed Computing
Systems (ICDCS’03), Providence, RI, USA, May 2003.

[150] S. W. Tan, G. Waters, and J. Crawford, "A Survey and Performance Evaluation of Scal-
able Tree-based Application Layer Multicast Protocols," Technical Report No. 9-03,
University of Kent, 2003.

[151] A. El-Sayed, V. Roca, and L. Marthy, "A Survey of Proposals for an Alternative
Group Communication Service," in IEEE Network, Vol. 17, Issue 1, pp. 46- 51, Jan-
uary/February 2003.

[152] J. Liu, B. Li, and Y-Q. Zhang, "Adaptive Video Multicast over the Internet," in IEEE
Multimedia, Vol. 10, Issue 1, pp. 22-33, January/March 2003.

[153] PlanetLab homepage. http://planet-lab.org, seen on 03.2008

[154] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, "A Blueprint for Introducing Dis-
ruptive Technology into the Internet," in ACM SIGCOMM Computer Communication
Review, Vol. 33, Issue 1, pp. 59-64, January 2003.

[155] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak, "Operating System Support for Planetary-Scale Net-
work Services," in Proc. of the First Symposium on Networked Systems Design and
Implementation (NSDI’04), San Francisco, California, March 2004.

[156] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir, "Experiences Implementing Plan-
etLab," in Proc. of the 7th Symposium on Operating Systems Design and Implementa-
tion (OSDI’06), Seattle, WA, USA, November 2006.

[157] F. A. López-Fuentes and E. Steinbach, "Adaptive Multi-source Video Multicast," in
Proc. of the IEEE International Conference on Multimedia & Expo (ICME’08), pp. 457-
460, Hannover, Germany, June 2008

[158] L. Wang, K. S. Park, R. Pang, V. S. Pai, and L. Peterson, "Reliability and Security in

134

the CoDeeN Content Distribution Network," in Proc. of the USENIX’04, Boston, MA,
USA, June-July 2004.

[159] S. Ganguly, A. Saxena, S. Bhatnagar, and S. Banerjee, "Fast Replication in Content Dis-
tribution Overlays," in Proc. of the IEEE INFOCOM’05, Vol. 4, pp. 2246-2256, Miami,
FL, USA, March, 2005.

[160] One-Lab homepage. http://www.one-lab-2.org/ seen on 04.2008.

[161] S. Y. Lee, J. G. Lee, and C. Y. Choi, "Multi-Source Media Streaming for the Contents
Distribution in a P2P Network," in Proc. of the 5th Pacific Rim Conference on Mul-
timedia (PCM’04), Vol. 3333/2005, pp. 290-297, Tokyo, Japan, November-December
2004.

[162] S. Birrer, D. Lu, F. Bustamante, Y. Qiao, and P. Dinda, "FatNemo: Building a Resilient
Multi-source Multicast Fat-Tree," in Proc. of the Workshop on Web Content Caching
and Distribution, Vol. 3293/2004, pp. 182-196, Beijing, China, October 2004.

[163] J. Jia and Q. Zhang, "Shared Tree for Application-layer Multi-Source Multicast," in
Proc. of the IEEE GLOBECOM 2006, pp. 1-5, San Francisco, CA, USA, November-
December 2006.

[164] W. -K. K. Yiu, X. Jin, and S.-H.G. Chan, "Challenges and Approaches in Large-Scale
P2P Media Streaming," IEEE Multimedia, Vol. 14, Issue 2, pp. 50-59, April 2007.

[165] M. Hefeeda and C.-H. Hsu, "Rate-Distortion Optimized Streaming of Fine-Grained
Scalable Video Sequences," in ACM Transactions on Multimedia Computing, Commu-
nications and Applications (TOMCCAP), Vol. 4, Num. 1, Article 2, pp. 1-28, January
2008.

[166] ITU-T, "Video Codec for Audiovisual Services at 64 kbit/s," ITU-T Recommendation
H.261, Version 1: November 1990; Version 2: Mar. 1993.

[167] ITU-T, Video coding for low bit rate communication, ITUT Recommendation H.263;
version 1, Nov. 1995; version 2, January 1998; version 3, November 2000.

[168] ISO/IEC JTC 1, "Coding of Moving Pictures and Associated Audio for Digital Storage
Media at up to about 1.5 Mbit/s Part 2: Video," ISO/IEC 11172-2 (MPEG-1), March
1993.

[169] ITU-T and ISO/IEC JTC 1, "Generic Coding of Moving Pictures and Associated Audio
Information Part 2: Video," ITU-T Recommendation H.262 ISO/IEC 13818-2 (MPEG-
2), November 1994 (with several subsequent amendments).

[170] ISO/IEC JTC 1, "Coding of Audio-Visual Objects - part 2: Visual," ISO/IEC 14496-2
(MPEG-4 Part 2), January 1999 (with several subsequent amendments).

[171] T. Wiegand, G. J. Sullivan, G. Bjφntegaard, and A. Luthra, "Overview of the
H.264/AVC Video Coding Standard," in IEEE Transaction on Circuit and Systems for
Video Technology, Vol. 13, Num. 7, pp. 560-576, July 2003.

[172] D. Marpe, T. Wiegand, and G. J. Sullivan, "The H.264/MPEG4 Advanced Video Cod-
ing Standard and its Applications," in IEEE Communications Magazine, pp. 134-142,
August 2006.

[173] "Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Recommendation H.264/ISO/IEC 14 496-10 AVC)," in Joint Video
Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050, 2003.

135

Bibliography

[174] G. J. Sullivan, P. Topiwala, and A. Luthra, "The H.264/AVC Advanced Video Coding
Standard: Overview and Introduction to the Fidelity Range Extensions," in Proc. of
the 27th SPIE Conference on Applications of Digital Image Processing, Special Session
on Advanced in the New Emerging Standard: H.264/AVC, Vol. 5558 (2), pp. 454-474,
Denver, CO, USA, August 2004.

[175] I. Richardson, "An Overview of H.264 Advanced Video Coding," Vcodex white paper,
2007.

[176] H. Schwarz, D. Marpe, and T. Wiegand, "MCTF and Scalability Extension of
H.264/AVC," in Proc. of the Picture Coding Symposium (PCS), San Francisco, CA,
USA, December 2004.

[177] T. Wiegand, "Scalable Video model 3.0. Joint Video Team (JVT)," January 2005.

[178] H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video Coding Ex-
tension of the H.264/AVC Standard," in IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 17, No. 9, pp. 1103-1120, September 2007.

[179] J. R. Ohm, "Advances in Scalable Video Coding," in IEEE, Vol.93, No.1, pp. 42-56, Jan-
uary 2005.

[180] R. Schäfer, H. Schwarz, D. Marpe, T. Schierl, and T. Wiegand, "MCTF and Scalabil-
ity Extension of H.264/AVC and its Application to Video Transmission, Storage, and
Surveillance," in Proc. of the Visual Communications & Image Processing (VCIP’05),
July 2005.

[181] H. Schwarz, T. Hinz, D. Marpe, and T. Wiegand, "Constrained Inter-Layer Prediction
for Single-Loop Decoding in Spatial Scalability," in Proc. of the IEEE International
Conference on Image Processing, 2005. (ICIP’05), Vol. 2, pp. 870-873, Genova, Italy,
September 2005.

[182] Fraunhofer HHI homepage. http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-
Reference-Software.htm seen on 05.2008.

[183] ITU-R.BT.601-5, "Studio Encoding Parameters of Digital Television for Standard 4:3
and Wide-screen 16:9 Aspect Ratios," 1995 (formelly CCIR-601).

[184] S. Floyd and K. Fall, "Promotion the Use of End-to-end Congestion Control in the
Internet," in IEEE/ACM Transaction Networking, Vol. 7, Num.4, pp. 458-472, August
1999.

[185] J. Padhye et al., "Modeling TCP Reno Performance: A Simple Model and its Empirical
Validation," in IEEE/ACM Transaction Networking, Vol. 8, Num.2, pp. 133-145, April
2000.

[186] J. Widmer, R. Denda, and M. Mauve, "A Survey on TCP-Friendly Congestion Control,"
in IEEE Network, pp. 28-37, May/June 2001.

[187] X. Li, M. H. Ammar, and S. Paul, "Video Multicast over the Internet," in IEEE Network,
Vol. 13, March-April, pp.46-60, 1999.

[188] M. Gondran and M. Minoux, "Graph and Algorithms," John Wiley & Sons Ltd., 1984.

[189] R. Albert and A. L. Barabási, "Statistical Mechanics of Complex Networks," in Reviews
of Modern Physics, Vol. 74, pp. 47-97, January 2002.

[190] E. Ravasz and A. L. Barabási, "Hierarchical Organization in Complex Networks," in
Physical Rewiev E67. 026112, 2003.

136

[191] R. Xu and D. Wunsch, "Survey of Clustering Algorithm," IEEE Transactions on Neural
Networks, Vol. 6, Num. 3, pp. 645-678, May 2005.

[192] A. L. Barabási and E. Bonabeau, "Scale-free Networks," Scientific American, pp. 50-59,
May 2003.

[193] M. E. J. Newman, "The Structure and Function of Complex Networks," in SIAM Re-
view, Vol. 45, Issue 2, pp. 167-256, 2003.

[194] L. Mathy, R. Canonico, S. Simpson, and D. Hutchison, "Scalable Adaptive Hierarchi-
cal Clustering," in Proc. of the Second International IFIP-TC6 Networking Conference
(NETWORKING’02), pp. 1172-1177, Pisa, Italy, May 2002.

[195] S. Basagni, I. Chlamtac, and A. Farago, "A Generalized Clustering Algorithm for Peer-
to-Peer Networks," in Proc. of the Workshop on Algorithmic Aspects of Communica-
tion, Bologna, Italy, July 1997.

[196] K. Hammouda and M. Kamel, "HP2PC: Scalable Hierarchically-Distributed Peer-to-
Peer Clustering," in Proc. of the Seventh SIAM International Conference on Data Min-
ing (SDM07), Minneapolis, MN, April 2007.

[197] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, "Deployment Issues for the
IP Multicast Service and Architecture," in IEEE Network, Vol. 14, Num. 1, pp. 78-88,
January/February 2000.

[198] A. Ganjam and H. Zhang, "Internet Multicast Video Delivery," in Proceedings of the
IEEE, Vol. 93, Num. 1, pp. 159-170, January 2005.

[199] L. Jia, A. Bagirov, I. Ouveysi, and A. M. Rubinov, "Optimization based Clustering Al-
gorithms in Multicast Group Hierarchies," in Proc. of the Australian Telecommuni-
cations Networks and Applications Conference (ATNAC 2004), Melbourne Australia
2003.

[200] J. B. MacQueen, "Some Methods for classification and Analysis of Multivariate Ob-
servations," in Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Vol. 1, pp. 281-298, Berkeley, CA, USA, December 1965-January 1966.

[201] W. R. Stevens, B. Fenner, and A. M. Rudoff, "UNIX Network Programming," Vol. 1,
2003.

[202] N. Wirth, "Algorithms and Data Structure," Prentice Hall, 1985.

[203] A. V. Aho, J. Ullman, and J. E. Hopcroft, "Data structures and Algorithms," Addison
Wesley, 1983.

[204] W. L. Winston, "Operations Research: Applications and Algorithm," Duxbury Press,
1987.

[205] D. R. Butenhof, "Programming with POSIX threads," Addison Wesley Longman, 1997.

[206] M. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of
NP-Completeness," W.H. Freeman and Company, 1979.

[207] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, "Network Information Flow," in IEEE
Transactions on Information Theory, Vol. 46, Num. 4, pp. 1204-1216, July 2000.

[208] C. Gkantsidis and P. Rodriguez, "Network Coding for Large Scale Content Distribu-
tion," in Proc. of the IEEE INFOCOM’05, Vol. 4, pp. 2235-2245, Miami, FL, USA, March
2005.

137

Bibliography

[209] P. A. Chou, Y. Wu, and K. Jain, "Practical Network Coding," in Proc. of the 41st Aller-
ton Conference on Communications, Control and Computing, Urbana-Champaign, IL,
USA, October 2003.

[210] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan, "Can Network Coding Help in P2P
Networks," in Proc. of the Second Workshop of Network Coding, in conjunction with
WiOpt’06, Boston, MA, USA, April 2006.

[211] K. Chen and Q. Deng, "Legitimate Peer-to-Peer Content Distribution Network," in
Proc. of the Fifth International Conference on Grid and Cooperative Computing Work-
shops (GCCW’06), pp. 129-132, Changsha, Hunan, China, 21-23, October 2006.

[212] T. S. E. Ng and H. Zhang, "Predicting Internet Network Distance with Coordinates-
based Approaches," in Proc. of the IEEE INFOCOM’02, Vol. 1, pp. 170-179, New York,
NY, USA, June 2002.

[213] Cooperative Association for Internet Data Analysis (CAIDA) homepage.
http://www.caida.org. seen on 05.2008.

[214] SID video cutter and splitter software homepage. http://www.soundindepth.com
[215] J. Liu, S. G. Rao, and B. Li, "Opportunities and Challenges of Peer-to-Peer Internet

Video Broadcast," in Proceedings of the IEEE, Vol. 96, Num. 1, pp. 1-24, January 2008.
[216] S. Agarwal, "A Case Study of Large Scale P2P Video Multicast," in Proc. of the IEEE

International Conference on IP Multimedia Subsystems Architecture and Applications
(IMSAA07), Bangalore, India, December 2007.

[217] S. Birrer and F. E. Bustamante, "Magellan: Performance-based, Cooperative Multicast,"
in Proc. of the 10th International Workshop on Web Content Caching and Distribution
(WCW’05), pp. 133-143, Sophia Antipolis, France, September 2005.

[218] Q. Zhang, Q. Guo, Q. Ni, W. Zhu, and Y. -Q. Zhang, "Sender-Adaptive and Receiver-
Driven Layered Multicast for Scalable Video Over the Internet," in IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 15, Num. 4, April 2005.

[219] C. Liang, Y. Guo, and Y. Liu, "Hierarchically Clustered P2P Streaming System," in Proc.
of the IEEE GLOBECOM 2007, pp. 236-241, Washington, DC, USA, November 2007.

[220] X. -B. Liang, "Matrix Games in the Multicast Networks: Maximum Information
Flows With Network Switching," in IEEE Transactions on Information Theory, Vol.
52, Num.6, June 2006.

[221] Y. Liu, Y. Guo, and C. Liang, "A Survey on Peer-to-Peer Video Streaming Systems," in
Peer-to-Peer Network Applications, pp. 18-28, Vol. 1, Num. 1, March 2008.

[222] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, "Utility Maximization in Peer-
to-Peer Systems," in Proc. of the ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS 2008), pp. 169-180, An-
napolis, MD, USA, June, 2008.

138

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Notation
	Introduction
	Motivation for Media Delivery on Peer-to-Peer Networks
	Contributions
	Organization
	Performance Metrics

	Background in Media Delivery
	Media Representation
	Media Compression
	H.264/AVC Video Coding
	Scalable Video Coding
	H.264/SVC Scalable Video Coding Extension

	Digital Video Formats
	Media Applications
	Media Delivery
	Communication Modes
	Media Delivery Modes
	Protocols for Media Streaming

	Delivery Infrastructures
	IP-Multicast
	Content Delivery Network
	Application Layer Multicast (ALM)
	P2P Networks

	Chapter Summary

	State of the Art in Overlay-based Distribution
	Introduction
	Tree-based P2P Streaming
	Forest-based Overlay
	Mesh-based Overlay

	Application of Tree-based Overlay for Media Streaming
	ZigZag

	Application of Forest-based Overlays for Media Streaming
	SplitStream
	Dagster
	M-ary Trees

	Application of Mesh-based Overlays for Media Streaming
	Mutualcast

	Hybrid Tree/Mesh Overlay
	Multi-Source Multicast
	A Global Testbed: PlanetLab
	Mutualcast Implementation and Evaluation

	Research Challenges
	Chapter Summary

	Hierarchical Collaborative Multicast
	Introduction
	Description
	Cluster Organization
	Cluster Formation
	Flow Control Mechanism
	Caching Mechanism
	Redistribution Mechanism between Clusters

	Simulation
	Implementation
	Evaluation
	Chapter Summary

	Multi-Source Video Multicast
	Description
	Throughput-based Analysis
	Sources with Joint Rate Allocation for Different Rate Streams
	Sources with Joint Rate Allocation for Same Rate Streams
	Sources with Independent Rate Allocation for Same Rate Streams
	Sources with Independent Rate Allocation for Different Rate Streams

	PSNR-based Analysis
	Sources with Joint Rate Allocation for Different Video Quality Streams
	Sources with Joint Rate Allocation for Same Video Quality Streams
	Sources with Independent Rate Allocation for Same Rate Streams
	Sources with Independent Rate Allocation for Different Video Quality Streams

	Simulation
	Throughput-based Simulation
	PSNR-based Simulation

	Implementation and Evaluation
	Implementation
	Evaluation

	Chapter Summary

	M-ary Tree-based Video Multicast
	Motivation
	System Architecture
	Building a Collection of m-ary Trees
	Example

	Simulation Results
	Planet Implementation and Evaluation
	Case 1: Throughput among All Participating Peers is Similar
	Case 2: Delivery Delay when the Throughput between the Source and a Subsets of Peers is Highly Heterogeneous
	Case 3: Delivery Delay when the Throughput between the Subsets of Peers is Weak

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Limitations
	Future Work

	Appendix
	Simulation for Multi-source video Multicast
	Results for Throughput-based Simulation
	Results for PSNR-based Simulation

	Experiments based on Scalable Video Coding

	Bibliography

