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IV

Si tu veux construire un bateau, ne rassemble pas des hommes pour
aller chercher du bois, préparer des outils, répartir les tâches, alléger le
travail mais enseigne aux gens la nostalgie de l’infini de la mer.

If you want to build a ship, don’t drum up people to collect wood and
don’t assign them tasks and work, but rather teach them to long for the
endless immensity of the sea.

Wenn Du ein Schiff bauen willst, so trommle nicht Männer zusammen,
um Holz zu beschaffen, Werkzeuge vorzubereiten, die Arbeit einzuteilen
und Aufgaben zu vergeben, sondern lehre die Männer die Sehnsucht nach
dem endlosen weiten Meer.

accredited to Antoine de Saint-Exupéry
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Abstract

Set-valued force laws are commonly used in multi-body simulations for modeling
constraints. Here, contacts implying structural variance are of special interest since
these might induce jumps to the system velocities. The current work extends and
applies the methods developed for rigid body systems to the simulation of flexible
systems: particularly the discretization of a flexible continuum with spatial discrete
contacts in mind is addressed. Thereby, special systems allow for minimal coordinate
representations. Numerical methods and program algorithms are presented aside.
Closing up examples span the field form academic systems up to the modeling of
industrial component assemblies.

Kurzfassung

In der Mehrkörpersimulation werden mengenwertige Kraftgesetze zur Beschreibung
von Nebenbedingungen verwendet. Hierbei sind insbesondere Bindungen von Inter-
esse, die zu Strukturvarianzen führen und somit Sprünge in den Systemgeschwindig-
keiten bewirken können. Die vorliegende Arbeit erweitert die für Starrkörpersysteme
entwickelten Methoden auf die Simulation von flexiblen Mehrkörpersystemen: ins-
besondere die Diskretisierung eines flexiblen Kontinuums vor dem Hintergrund orts-
diskreter Kontakte wird diskutiert. Dabei erlauben spezielle Systeme eine Formulie-
rung in Minimalkoordinaten. Begleitend werden Fragen der Numerik und Programm-
Algorithmik behandelt. Die abschließenden Beispiele erstrecken sich von einfachen
akademischen Systemen bis hin zur Modellierung industrieller Baugruppen.





1 Introduction

Multi-body simulation, mainly being devoted to the dynamics of machinery, is an im-
portant method of computational engineering. The increasing complexity of techni-
cal systems raises the demand for highly sophisticated simulations. This is reflected
directly by the development during the last decades: both theory and numerics for
multi-body system (MBS) modeling are subject of intensive research. Thereby, the
description of structural flexibilities as well as the inclusion of arbitrary contact sit-
uations form self-contained working fields of great importance. Concurrently, the
description of flexible bodies as well as the investigation of systems with contacts
find their way into commercial simulation environments but usually are of limited
applicability when regarding both simultaneously but excluding contact flexibility.

1.1 Problem Formulation

Classically, MBS were conceived as systems of rigid bodies undergoing large spa-
tial motion. The resulting mathematical models are commonly nonlinear. The
bodies are coupled by interaction forces describing joints, discrete flexible elements
like springs and dampers or active subsystems of control. Partly, kinematic con-
straints can be regarded without evaluating force laws by the use of an adapted
parametrization for tree structured systems. In setting up the simulation model by
these standard elements of multi-body simulation and applying additional loads and
boundary conditions, even complex system designs can be investigated concerning
the long-term dynamical behavior.

The incorporation of structural flexibilities in MBS is the consequent extension to
technical systems where the overall dynamics is significantly influenced by the defor-
mations of single bodies. Since the beginning, models superposing small deflections
relatively to the rigid body motion have been used. This intuitive enhancement of
the rigid body approach offers a highly structured mathematical model of high com-
putational performance and furthermore good physical interpretability. To capture
more details and to allow for the description of material and further geometrical
nonlinearities, more sophisticated models were derived partly in co-evolution with
modern techniques of nonlinear finite element theory. Nevertheless, flexible MBS
should be distinguished from simulations aiming for highly detailed descriptions of
local phenomena like it is often the ambition in structural finite element simulations.
Due to the desired long-term analysis, flexible MBS must always make a compromise
between detailed modeling and the overall performance of the entire simulation even
in spite of the continuous growth of computational power.
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Since the beginning of multi-body simulation, the description of constraints within
the systems’ kinematics is a central topic. Constraints can for example trace back to
joints between bodies, giving a bilateral connection, or even collision scenarios with
attachment and separation. In this context, set-valued descriptions for constraints
are of special importance: providing exact kinematic compliance but introducing re-
action forces that can not be formulated as explicit functions of the state, they lead
to differential algebraic equations probably supplemented by inequality relations.
One example can be a revolute joint exchanging arbitrarily high forces between the
connected bodies and requesting unitary motion of the joined body axes. This corre-
sponds to the limit case of an infinitely stiff flexibility connecting the bodies. For a
closing contact between two bodies, additional considerations are requested to allow
for the instantaneous adaption of the relative velocity: this leads to a jump of the
system velocities. Due to the high technical relevance, also friction is of immense
interest in multi-body simulations. For systems with stick-slip phenomena, the corre-
sponding Coulomb friction is described by inequality conditions for the tangential
contact reactions and kinematics depending upon the normal load. The resulting
mathematical models must be evaluated considering additional impact conditions
for closing contacts. Recently, special methodical and numerical approaches have
been developed successfully. However, the contributions to the numerical simula-
tions of multi-body systems with set-valued force laws so far address mainly rigid
body systems only.

The formulation of flexible MBS with set-valued force laws including impacts raises
additional aspects to concern. Usually MBS model contacts spatially discrete: this
has to be captured by the spatial discretization of a flexible body. At the same time,
the discretization has influence on the solution of multi-contact situations and the
efficiency of the simulation. So far, these points are addressed only insufficiently
in literature. Beyond, neither research nor commercial multi-body simulation soft-
ware include general frameworks for the combination of rigid and flexible MBS with
spatial rigid contact situations including dry friction.

1.2 Literature Survey

Speaking of a self-contained research field, multi-body simulation is comparatively
new. Nevertheless, the literature is tremendous, though at this point only a small
and in no way comprehensive selection can be presented. Aiming for this comprehen-
sive review, Schiehlen [49] provides an encyclopedic article on the roots, progress
and perspectives giving about 200 references capturing many of the specialized fields
of multi-body simulation.

General Descriptions

Only some prominent contributions to the field of MBS and simulation shall be
mentioned. By the way, it is noteworthy that the term “multi-body” is by no means
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general in the sense that also the spellings “multibody”, “multi body” are widely
used with the same meaning. Still, the central definitions are common.

Magnus [40] hosted the first IUTAM symposium on multi-body dynamics in 1977
with many contributions to rotor dynamics. Pfeiffer [44] focuses on theory and
application for systems of rigid bodies but also gives extensions to moving frame of
reference modeling for flexible bodies. From the broad field of multi-body dynam-
ics, Ulbrich [60] emphasizes machine and rotor dynamics, Schiehlen [49] names
vehicle dynamics, robotics and aerospace being most prominent. The definition of
MBS given in the introduction of this thesis is according to these authors work.

While giving strong emphasis on flexible sub-systems, the book [56] of Shabana
starts with a profound introduction to rigid body dynamics including various para-
metrizations for the spatial rotation. Thereafter, the central point is the description
of flexible structural elements. This work is continued by his contributions concern-
ing the absolute nodal coordinate formulation. Collecting selected presentations of
the ECCOMAS Thematic Conference in Multibody Dynamics 2003, Ambrósio [4]
provides an overview on the current research activity.

Flexible Systems

The term flexible MBS refers to systems holding deformable bodies with internal
dynamics. Being of prime importance, elastic systems are limited to fully reversible
deformation behavior and build their oldest and largest subgroup. A very profound
review concerning theory and application of flexible MBS is given by Wasfy and
Noor [62]. Including more than 850 references on the entire field, the authors
provide a systematical classification of floating, co-rotational and inertial frame of
reference approaches. Naming inputs from other fields of continuum mechanics, espe-
cially finite element techniques, important similarities as well as differences between
the concepts are described.

Starting in the late 1960s, the moving frame of reference models are the native exten-
sion of the rigid body assumptions towards systems with small relative deflections.
In their book [10], Bremer and Pfeiffer concentrate the knowledge in this field:
especially the possibility for perfect modal decoupling, the well structured properties
of the mass matrices and a sharp frequency range, which is set by the modes used
for modeling, are valuable providing high numerical efficiency.

Almost contemporaneously to the moving frame of reference models, co-rotational
formulations came up for structural finite element simulations. In 1977, Belytsch-
ko and Schwer [7] published a formulation for beams based on specific frames
of reference for each element. As mentioned by Wasfy and Noor, this work is
continued up to now: Crisfield et al. [14] derive a model for geometrical large
deformations of spatial beam systems. Similarly being influenced by structural finite
element techniques, Géradin and Cardona [26] follow the updated Lagrangian
approach for the development of finite elements allowing for large rotations on the
level of single elements.
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Shabana [54] defines a framework for flexible systems with recursive kinematics and
introduces the absolute nodal coordinate formulation (ANCF). The ANCF is among
the inertial frame finite element formulations and leads to correct description of large
rotations intrinsically. Additionally, his book [56] captures moving frame of reference
descriptions. The first ANCF formulation for a planar Euler-Bernoulli beam
is given by Shabana [55]. Starting with a review on existing ANCF formulations,
Gerstmayr [27] provides extensions towards elasto-plastic material behavior.

Impact and Non-Smooth Dynamics

Among the contributions devoted to impact mechanics, a differentiation is needed
whether the description includes jumps in the system velocities induced by rigid
contact modeling or a regularization of the contact conditions preserves smoothness
of the velocities. While the current work refers to the first definition to characterize
non-smooth dynamics, also contributions devoted to flexible contact modeling must
be mentioned: both approaches significantly contribute to the overall understanding
of contact physics and modeling.

A hybrid approach for the simulation of contact situations is used by Eberhard [15]
switching between multi-body simulation for the long-term investigation and de-
tailed finite element simulation for analyzing contact situations: this embeds local
flexibility within the finite element part resolving impact restitutions for the overall
behavior. Based on this work, Ebrahimi [16] describes contacts of complex shaped
deformable bodies: he partly resumes rigid contact approaches and also extends the
Polygonal Contact Model of Hippmann [35, 36] which describes local flexibility for
contacting rigid bodies based on a thin layer theory. Utilizing real experiments as
well as multi-scale simulations in finite element and multi-body tools, Seifried [53]
analyzes a flexible rod with longitudinal impacts to gain interpretations for geometry
and material dependency of the contact dynamics in multi-body simulations.

Spanning from the mathematical formulation to real system applications of rigid
impact modeling, Brogliato et al. [11] provide more than 200 references. Also
accompanied by many references, the book [12] of Brogliato gives a profound
introduction to non-smooth multi-body dynamics described by set-valued force laws.
A coherent formulation for impacts including planar Coulomb friction is provided
by Pfeiffer and Glocker [45] and Glocker [29], whereas contact force laws
are formulated and evaluated in form of linear complementary problems (LCP).

While the physical interpretation of set-valued force laws is quite clear, the numerical
methods for contact treatment and time integration rise additional tasks compared
to ordinary differential equations. Lately, Acary and Brogliato [1] provide an
extensive discussion on modern numeric methods for non-smooth systems.
The first time-stepping algorithm was formulated by Moreau [42] incorporating
the equations for planar frictional impacts within the time discretization. Providing
formulations on position and on velocity level for the solution of the constraints,
Stiegelmayr [57] also includes spatial friction. The work of Jean [38] is of special
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interest for stiff mechanical problems since an implicit rule of high stability is used
for time integration. Very recently, Studer [58] comprehensively reviews existing
integration rules for non-smooth systems. He generalizes the linear time-stepping
schemes and constructs rules for time-step adjustment and higher-order integration
for impact-free phases.
Alart and Curnier [2] introduce a constraint formulation by proximal functions
as alternative with better solvability compared to LCPs. On this mathematical
basis, Förg [19] develops iterative solvers for the constraint problem. For academic
and industrial applications he shows the capability for the efficient simulation even
of high-dimensional dependent contact situations and spatial friction.

Applications

Applications combining flexible multi-body descriptions with non-smooth dynam-
ical behavior arise from all fields of machine dynamics: embedded in an compact
overview, Zander et al. [66] name academic examples as well as instances of indus-
trial relevance like cam-shaft drives and continuous variable transmissions (CVT).

The behavior of a flexible beam in impact situations is investigated numerically by
Zander et al. [65]. The classic benchmark of a rigid beam rocking on two point
obstacles is extended toward structural flexibility. Based on numerical investigation,
an interpretation of the restitution coefficient for purely rigid setups is sketched.
Ginzinger et al. [28] investigate concepts for the control of a rotor mounted
eccentrically on a flexible shaft by means of simulation and experiment. Implying
a rigid contact between shaft and the actuated auxiliary bearing, the simulation of
the system also needs to regard impact dynamical behavior.

Aiming to take advantage of the non-smooth system character, Welge-Lüssen [63]
models and controls an under-actuated manipulator. Due to the significant influence
on the system dynamics, the flexibility of single components is described within the
simulations. Real experiments are used for model validation. Bachmayer et
al. [5] develop optimal control trajectories for elastic robots by means of computer
simulations. The model for the investigated rack feeder comprises flexible and rigid
components connected by bilateral sliding contacts.

Engelhardt [17] investigates the dynamics of cam-shaft and timing drives of com-
bustion engines. The deformations of the shafts are of minor magnitude despite
of the impacts of rollers, permitting the use of rigid body models. In contrast,
the dynamics of the elastic valve-spring with self-contact is of significant influence
on the overall behavior. Geier [25] simulates a push-belt CVT with transient
planar motion using large deformation finite elements provided by Zander and
Ulbrich [68]. The belt is composed of flexible steel rings guiding rigid elements,
whereas the intermediate contacts are modeled rigidly including friction. The work
is validated by real system measurements. To allow for the extension of the CVT
model towards spatial dynamics, Schindler et al. [51] enhances the beam model
and additionally regards spatial contact situations.
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1.3 Aspects and Outline

The literature provides many contributions to both the description of flexible subsys-
tems and rigid contact treatment in multi-body simulations. Nevertheless, especially
the rigid modeling of sliding contacts or impacts on flexible systems is only rarely
addressed. The present work discusses aspects of the formulation of flexible MBS in
presence of set-valued force laws for discrete contacts: the discretization of the flexi-
ble continuum should respect the local character of the contact model. Constraints
involving flexible bodies are regarded in two ways: the general description includ-
ing unilateral contact complements the free body equations of motion by constraint
equations. Additionally, strategies for an analytic reduction of the system are re-
garded for special configurations. The modular concept of multi-body simulations
is attended in all steps.

Chapter 2 provides an introduction to the mathematical formulation of systems
with non-smooth dynamics. Initially, the Hamilton principle and the Lagrange
equations are discussed with constrained and non-smooth systems in mind: energy
principles are often used to derive equations for the dynamics of continua. Based on
a general interpretation of the contact kinematics, single-valued and set-valued force
laws describe contact interactions between the bodies being involved. The chapter
closes with a brief overview on numerics for non-smooth MBS.

The derivation of the discrete equations for a flexible system is discussed in chapter 3
with an introduction to the continuous analytic description. Especially the local
character of impacts is discussed: the non-continuity of the velocity fields with
respect to time also occurs regarding the location. For contact situations, this
spatial focus should be preserved by the discretization of the continuum. For the
kinematics of a contact, a unitary description of the flexible structure uses the
discretization performed for the internal dynamics; independent contour descriptions
provide additionally continuous shapes for arbitrary bodies.

Chapter 4 addresses the reduction of bilateral constrained systems using re-para-
metrizations and projections. A relative kinematic description of tree-structured
system is provided giving compact equations of motion. The projection equations
describing systems by means of redundant coordinate sets are of similar character:
the overall system size and therewith the numerical effort can be reduced.

A numerical framework specialized on the simulation of flexible systems with rigid
contacts is shown in chapter 5: concepts and experiences for the time integration, the
solution of the constraints and for finding of possible contact points are presented.

Finally, chapter 6 gives examples showing the capabilities of the methodologies.
Provided are simple academic setups like the woodpecker toy up to complex multi-
contact situations for the simulation of industrial systems, here a push-belt CVT.
All simulations are performed within the MBSim-software1 package, which holds a
module for non-smooth flexible MBS resulting from the present work.

1 Abbreviation for Multi-Body Simulation Software: http://mbsim.berlios.de. This was ini-
tiated by Förg [19] and is developed with colleagues at the Institute of Applied Mechanics.

http://mbsim.berlios.de


2 Non-Smooth Multi-Body Systems

Fundamental contributions were made in the past decades to the theoretical and
numerical framework for multi-body systems (MBS): descriptions for arbitrary rigid
body motion, flexible bodies and all kinds of interactions including kinematic re-
strictions were developed. One focus of present work is on systems with algebraic
constraints including inequalities describing unilateral contacts. It is well known in
multi-body dynamics that single-valued approximations for arbitrary contacts pre-
serve the smooth character of the system’s velocities, as do all bilateral constraints
implying smooth surfaces in case of relative motion. In contrast, set-valued laws for
unilateral contacts and friction yield impact behavior leading to jumps within the
system’s velocities: the resulting dynamics is said to be non-smooth.

The current chapter briefly resumes investigations devoted to the description of non-
smooth MBS; for more profound information refer to the cited literature. Even these
works mainly address the dynamics of rigid body systems, the general mathematical
framework can be applied to all hybrid MBS: all mathematical formulations include
differential equations of motion and constraint relations. In section 2.1 the governing
equations of motion for constrained systems are developed. An introductive preface
is devoted to the principles of analytical mechanics which are often used for the
development of the equations for flexible systems. The kinematics of contacts, being
a special part of the overall system kinematics, is briefly discussed in section 2.2.
Section 2.3 introduces single- and set-valued force laws for contacts also giving a
short description of modern formulations based on projection-functions. Finally,
section 2.4 provides a brief overview on the numerics for non-smooth MBS.

2.1 Equations of Motion

For developing the differential equations describing the dynamics of a mechanical
system, two basically different concepts can be followed: variational methods, based
on energy or power considerations, are used in Lagrangian/analytical mechanics;
dynamical force and momentum equilibrium conditions with additional transforma-
tions are referred to as Newtonian/synthetical methods. These formulations are
equivalent – but not necessarily of the same effort of work for deriving the equations
of motion1 – and can be transfered to another, see Marsden and Ratiu [41].

1 To the belief of the author, non of these formalisms can a-priori be said to be superior com-
pared to the others for all applications. It is a fact that a specific mechanical problem might
be easier to describe by one formalism, but this does not yield a general predominance of this
formalism in all fields.
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Taking the procedural method of Förg [19], equations of motion for smooth transi-
tion are derived in a first step and extended to non-smoothness subsequently. This
can also be seen on the background of the historical development in mechanics, where
non-smooth dynamics is an extension to classical smooth dynamics and compara-
tively new. Amongst others Pfeiffer and Glocker [45] define the characteristic
of non-smooth dynamics: jumps occur in the system velocities due to discrete im-
pact events. The equations for smooth dynamics are used as basis for developing
equations for the non-smooth behavior represented by measure differential equa-
tions, compare for example the work of Brogliato [12]. In agreement with others,
Huber and Ulbrich [37] and Zander and Ulbrich [68] have shown lately in
practical applications that this framework is not limited to rigid bodies but can also
be used for any hybrid MBS.

2.1.1 Energetic Principles

Within the present work, Lagrange equations are used for the development of
the equations of motion. Being a classical representative of analytical mechanics,
they can be developed from Hamilton’s fundamental considerations of least action,
proclaiming an energetic optimality of motion. The Hamilton principle gives a
powerful mathematical basis to a large manifold of dynamic systems not only for
flexible solids but also for fluid-dynamics, relativistic extensions and many more.
Detailed explanations on the Hamilton principle and the associated development
of the (Euler)-Lagrange equations are given by Marsden and Ratiu [41]. Less
profound concerning the principles of dynamics but more illustrative to read are the
books of Géradin and Cardona [26] and Shabana [56], both being devoted
mainly to the systematic description of flexible MBS.

The system shall be described by the discrete generalized coordinates q = q(t) ∈ IRn

(generalized positions) and generalized velocities u = d q
d t

= q̇ both being function of
the time t and spanning the n-dimensional configuration space of the system2. The
dimension n of q is called the number of degrees of freedom, which will be used even
for constraint systems with this meaning. If no constraints are present for the system,
q are minimal coordinates. Using the associated Lagrange functional L = L(q,u) ,
which for mechanical systems is kinetic minus potential energy (L = T − V ), the
Hamilton-principle utilizes the variation δ on the action integral to claim least
action for a change between fixed start- and endpoints q0 = q(t0) and q1 = q(t1) :

δ

t1∫

t0

(L+W )dt = 0 (2.1)

The Lagrangian L exclusively depends on the positions and the velocities: this
reflects that the dynamics of the systems is uniquely defined by the state (qT ,uT )T .
For generalizations to systems with L explicitly being function of time t refer to the

2 The more general form q̇ = Tu with T = T (q) can be found in publications (e.g. [19, 22]) but
is unusual in flexible MBS. The dot ˙(ξ) marks the total time derivative of ξ within this work.
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literature. The virtual work δW = δqTQ is performed by the generalized forces Q
due to the variation δq represented in configuration space. This accounts for loads
not being included in L , especially dissipations and external loads.

The adaption to fields ϕ ∈ F(IR3) in the linear function space on IR3 replacing the
discrete coordinates q is straight forward, see Marsden and Ratiu [41]. With
the associated velocity field ω = ϕ̇ , the Lagrange density L(ϕ,ω) is evaluated.
While the deformation of flexible bodies is described by fields ϕ, usually no exact
solution for these can be found. Approximations based on ansatz-functions are used
to discretize the field problem to a problem in the finite set q , which is the central
topic of section 3.3. Therefore, the equations discussed at this point are formulated
for discrete states only.

Systems in Minimal Coordinate Representation In a first step, only holonomic
systems are regarded with all constraints being implicitly fulfilled by the adapted
choice of the state variables (qT ,uT )T . Assuming at this point velocities u being
smooth with respect to time, variational calculus yields – in form of a first step of
analysis – the (Euler)-Lagrange equations of second type

d

d t

(

∂ L

∂ u

)T

−

(

∂ L

∂ q

)T

= Q ∈ IRn (2.2)

as equivalent formulation of the optimality stated by equation (2.1); for a detailed
derivation see again [41]3. Hence, the requirements concerning continuity of the
kinematic quantities q and u – the velocities undergo jumps within non-smooth
mechanics – are higher in equation (2.2) than for equation (2.1). The Hamilton-
principle therefore might also be used as initial point to contact mechanical problems
including non-smooth dynamics intrinsically.

For mechanical systems the kinetic energy T = T (q,u) is a positive definite quadra-
tic function in the system’s velocities u . The potential V = V (q) does not depend
on the velocities u . With these, equation (2.2) can be rewritten:

d

d t

(

∂ T

∂ u

)T

−

(

∂ T

∂ q

)T

+

(

∂ V

∂ q

)T

= Q

(

∂2 T

∂ u2

)T
du

d t
+

(

∂2 T

∂ u ∂ q

)T

u−

(

∂ T

∂ q

)T

+

(

∂ V

∂ q

)T

= Q

Mu̇ = h (2.3)

Due to the special form of T , the mass matrixM = M (q) = (∂2 T/∂ u2 ) is positive
definite and symmetric. The generalized force vector h = h(q,u) holds all smooth
external, internal and gyroscopic forces. In particular, h also holds reactions of

3 Marsden/Ratiu provide an interesting historic detail: in 1834, Hamilton not Lagrange,
who worked on variational calculus some years earlier, showed equivalence for (2.1) and (2.2).
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contacts described by single-valued force laws representing for example flexible con-
tacts, see section 2.3. The structure of the second order differential equations (2.3),
holding linear relations between the accelerations u̇ and the loads through the mass
matrix, is the same for all dynamic systems in mechanics; specializations for exam-
ple for rigid bodies can be given together with interpretations of single terms. When
using the Lagrange equations for the derivation of the equations of motion, the
main tasks are setting up kinematic descriptions, leading to the kinetic energy T ,
and evaluating the constitutive laws giving rise to the potentials V .

The work δWi of the generalized force Qi with the virtual variation δq corresponds
to the force F i in physical representation with the compatible virtual variation δri
of the point of force application:

δWi = QTi δq = F Ti δri = F Ti
∂ ri
∂ q

δq (2.4)

The respective generalized force

Qi =

(

∂ ri
∂ q

)T

F i =

(

∂ ṙi
∂ u

)T

F i = JTT,i F i

uses the Jacobi-matrix JT,i of translations representing the linear transformation
between physical and generalized translational velocities. Proposing the equality of
power committed by a torque Ri with virtual variation δΩ of angular velocity, the
generalized load Qi due to a torque is developed analogously4:

δPi = RTi δΩ = QTi δu → Qi =

(

∂Ωi
∂ u

)T

Ri = JTR,iRi (2.5)

Here, JR,i is the Jacobi-matrix of rotations. The cumulated load vector Q =
∑

iQi
is the sum of all projected loads Qi not contributing to the Lagrangian L.

Systems with Holonomic Bilateral Constraints So far, the equations are de-
veloped for minimal coordinates q and velocities u implicitly fulfilling all system
constraints. If the system is limited in a way that no minimal coordinates can or
shall be constructed during the model setup, constraint equations need to be in-
cluded within the system equations. For the extension towards l holonomic bilateral
constraints gB = gB(q,t) = 0 ∈ IRl , the augmented Lagrange functional

L = L(q,u,λB) = T − V − gTBλB (2.6)

is used within the Hamilton principle (2.1). The independent Lagrange multipli-
ers λB = λB(t) can be seen as extension (qT ,uT )T → (qT ,uT ,λTB)T ∈ IR2n+l of the
state ensuring the constraints’ validity. The equations of motion again are derived

4 Commonly, the symbol “M” is used for torques. This shall be reserved for the mass ma-
trix M within this work, so R will be used for torques in physical representation.
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by evaluation of the principle (2.1) in analogy to equation (2.2):

d

d t

(

∂ (T − V )

∂ u

)T

−

(

∂ (T − V )

∂ q

)T

−

(

∂ gB
∂ q

)T

︸ ︷︷ ︸

WB

λB = Q ∈ IRn (2.7a)

gB = 0 ∈ IRl (2.7b)

These are n differential equations of system dynamics plus l algebraic equations
describing the constraints5. The Lagrange multipliers λB ∈ IRl are projected into
configuration space by the generalized force directions W B of bilateral constraints
and can take arbitrary values ensuring gB = 0, see section 2.3.2. Therefore, the
formulation of a bilateral constraint is set-valued: only the implicit formulation (2.7)
can be given for λB but no function explicitly depending on the system state.

Systems with Unilateral Constraints and Impacts Within this work, non-smooth
dynamics is characterized by jumps within the system velocities due to impacts. This
cuts off the general differentiability of u and therefore effects the variational calcu-
lations performed on the kinetic energy T during the evaluation of the Hamilton
principle (2.1). Similarly, the constraint reactions must be adapted to a conforming
representation of discrete impact percussions: both is addressed in the following
section 2.1.2. In advance, approaches for the evaluation of the principle (2.1) consid-
ering non-smoothness and a transfer to the principle of d’Alembert are referred.

Restricted to conservative systems with collisions being perfectly elastic and friction-
less, Panagiotopoulos [43] and Brogliato [12] independently give formulations
utilizing Hamilton’s principle for the derivation of equations of motion including
impacts: an explicit differentiation is introduced between impacts and smooth tran-
sitions within the variational framework. The constraint reactions are not included
explicitly but accounted for within the impact conditions imposing conservation of
tangential momentum and total energy (only perfect elastic and frictionless impacts
are regarded). Fetecau et al. [18] derive a similar formulation and use it for a
time discretization based on the action integral (2.1). Additionally, they sketch the
extension to dissipative impacts.

Unilateral inequality constraints gU = gU(q,t) ≥ 0 describing normal contact condi-
tions can be included in the Lagrangian (2.6) like the bilateral relations. Sorting
between times of smooth transitions and discrete times of impacts, specific equations
describing the system dynamics are derived. The Hamilton principle (2.1) again

5 At this point, a reference and comparison to constrained optimization theory might be useful:
The Hamilton principle (2.1) claims critical work for state changes: in other words opti-
mality. The additional term used for augmentation of the Lagrangian (2.6) is known from
optimization with respect to equality constraints. In the following, the equations of motion
include inequality constraints and are similar to the Karush-Kuhn-Tucker conditions and
the Lagrange multiplier rule from optimization theory, see e.g. [8, 13] and [29].
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is evaluated using Lagrange equations:

Mu̇ = h+Wλ , W =





(

∂ gB
∂ q

)T

,

(

∂ gU
∂ q

)T


 (2.8a)

gB = 0 (2.8b)

gU ≥ 0 , λU ≥ 0 , λTUgU = 0 (2.8c)

These equations with the constraint reactions λ = (λTB,λ
T
U)T describe smooth parts

of motion only. For the times of closing contacts, additional impact laws are needed
inducing jumps in the system velocities: these laws must at least ensure post-impact
validity of the constraint equations (2.8b) and (2.8c) and are topic of section 2.3.2.
The complementarity (gU ≥ 0,λU ≥ 0,λTUgU = 0) is requested since only active
closed contacts imply positive Lagrange multipliers λU . For a profound discussion
of the theoretical framework including additional references see Brogliato [12].

Providing equations similar to (2.2), Funk [24] develops the Lagrange formalism
starting form d’Alembert principle of vanishing virtual work in the formulation
of Lagrange. Right from the start he regards non-smoothness for the generalized
velocities and the constraint reactions by introducing the different measures dt, du
and dP :

d

(

∂ T

∂ u

)T

−

(

∂ (T − V )

∂ q

)T

dt = dP +Qdt (2.9)

The constraint reactions dP in the configuration space include discrete percussions
of non-smoothness. The following section extends the equations (2.8) of motion
towards the measure differential equations (2.9) and gives interpretations.

2.1.2 Measure Differential Equations of Motion

The previous section mainly was formulated for the assumption of the system ve-
locities u being smooth in time, so the classic acceleration du/dt was limited for
all times. However, it is the basic characteristic of non-smooth dynamical systems
that jumps occur in u, see amongst others Pfeiffer and Glocker [45]: these
can result for example from closing contacts.

As previously mentioned, these effects can be described by the equations (2.8) for
smooth transitions while the closing gN,j = 0 with ġN,j < 0 of at least one contact j
must be formulated separately. Therefor, the set MS of times ti ∈ MS of all non-
smooth transitions is defined: for these times, additional impact laws are needed. A
more suitable way is the reformulation of the equations of motion in form of measure
differential equations, compare Moreau [42], Brogliato [12] and Glocker [29].
Besides being more compact, the reading of and calculus with the reformed equations
is close to the classic differential equations of motion. Additionally they are well
suited for the construction of numerical time integration schemes, see for example
the work of Förg [19, 22] and Studer [58].
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u̇

u+ − u−

Figure 2.1: Decomposition of the velocity in smooth and non-smooth parts

To allow for non-smoothness in the velocities, the acceleration measure

du = u̇dt+ (u+ − u−)dη (2.10)

is introduced being the sum of the continuous part u̇ dt of smooth dynamics and
discrete jumps (u+−u−)dη . The continuous part holds the classic and bounded ac-
celeration u̇ as density with respect to time weighted by the Lebesgue measure dt .
The discontinuous part is the difference of the limits of the velocities,

u± = lim
ε→0±

u(t+ ε) ,

weighted by the sum of the Dirac delta distributions dδi at the times of disconti-
nuities ti ∈MS :

dη =
∑

i

dδi , dδi = dδ(t− ti) =







∞ if t = ti

0 if t 6= ti
,

∞∫

−∞

dδi = 1 (2.11)

The integrals over a finite time span [t0; t1] and over a discrete point in time [t0; t0]

t1∫

t0

du = u+
1 − u

−

0 ,

t0∫

t0

du = u+
0 − u

−

0 =







0 if t0 6∈ MS
∆u 6= 0 if t0 ∈MS

(2.12)

can be evaluated without extra regard of non-smooth events within the bounds of
integration. Figure 2.1 illustrates this decomposition of the non-smooth velocities
into its smooth parts and discrete jumps for a scalar velocity u.

While jumps occur in the velocities at impact times ti ∈ MS , the values u+ and
u− are still bounded. Since the impact time is assumed to be discrete, the systems
positions q remain constant during the impact with infinite length:

t0∫

t0

udt = q+
0 − q

−

0 = 0 ∀ t0 (2.13)

The generalized coordinates q are C0 smooth with respect to time. The mass ma-
trix M = M(q) depends on q only and therefore is constant during impact. De-
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pending on q and u , both being of bounded magnitude for all times t, the integral

t0∫

t0

hdt = 0 ∀ t0 (2.14)

on the generalized forces h vanishes for all discrete times t0 including impacts.

The velocities can be discontinuous and so must be the corresponding reactions
of constraints introducing these non-continuities. In analogy to the acceleration
measure, the Lagrange multipliers of the constraints are reformulated:

dΛ = λdt+Λdη (2.15)

The constraints imply smooth forces λ associated to the persistence and the non-
impulsive opening of contacts as well as the discrete impulsive reaction percussions Λ
due to collisions and discrete excitations at the impact times ti ∈ MS .

The measures of accelerations (2.10) and reactions (2.15) are used to extend the
equations of motion (2.8a) of a bi- and unilateral constrained system towards im-
pacts:

M du = h dt+WdΛ (2.16)

This result is similar to equation (2.9) using the measures introduced and decompos-
ing the constraint reactions dP = WdΛ by use of the generalized force directionsW .
It is shown in the literature that equation (2.16) formulates the non-smooth dynam-
ics of MBS including holonomic and non-holonomic, bi- and unilateral constraints
with friction, see for example again Brogliato [12].

Considering the Dirac delta (2.11) allows for the decomposition of equation (2.16)
for interpretation: implicitly formulated are the classical equations of motion

M u̇ = h+Wλ ∀ t 6∈ MS (2.17)

for a constrained system with smooth dynamics as well as the impact equations

M i (u
+
i − u

−

i ) = W iΛi ∀ ti ∈MS , (2.18)

both with so-far unknown reactions λ and Λ, respectively. Additional constraint
and impact laws connecting feasible reactions and kinematics are necessary for the
evaluation of equations (2.17) and (2.18), see section 2.3.2.
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2.2 Kinematics of Constraints

In the previous section discrete constraints were introduced restricting the motion of
the system by means of limits for kinematic functions. For mechanical systems, these
constraints may represent joints or contacts between different bodies. A restriction
can be bilateral – a persisting connection which is always active – or unilateral – a
contact that may be open or close, active or inactive. The respective force laws
are described in the following section 2.3. Regarding point-to-point interactions
only exchanging discrete reactions, a unitary framework for the contact kinematics
represented by the distance functions g can be formulated, see for example Förg
et al. [22]. With g representing relative distances and rotations, the associated
constraint reactions λ can be interpreted directly as forces or moments, see for
example Pfeiffer and Glocker [45].

Within this section, the kinematic functions g of holonomic and γ of non-holonomic
constraints are analyzed. For both, the associated generalized force directions W
are developed: these are needed for the formulation of the equations (2.16) of mo-
tion. The distance functions of the holonomic bi- and unilateral constraints are
collected in the vector gN = (gTB,g

T
U)T of normal distance functions. In analogy,

the velocities γN = (γTB,γ
T
U)T are taken into account for non-holonomic constraints.

For a better readability, only one contact with the associated function gN or γN is
regarded. Additionally, the relative velocities ġN and ġT in normal and tangential di-
rections are analyzed for contacts, whereas the tangential components are provided
in advance to impose additional tangential reactions in section 2.3.

The Holonomic Constraint A holonomic constraint restricts directly the positions
of the contributing bodies and therefore the generalized coordinates q . In general
the associated kinematic function takes the form

gN = gN(q,t) . (2.19)

In case of an explicit dependency on the time t , the associated bilateral constraint
is called rheonom, else scleronom. This property is taken to the total differential

dgN =
∂ gN
∂ q

dq +
∂ gN
∂ t

dt = W T
Ndq + wNdt (2.20)

of the gap function (2.19), where wN = wN(q,t) is equal to zero in case of a scle-
ronomic constraint. The matrix WN = WN(q,t) is the column in the matrix of
generalized force directions of equation (2.16) associated to the constraint.

The Point-to-Point Contact Within the context of dynamics, constraints may
arise of contact situations, for example relative guidance or collision configura-
tions: the contact between two bodies K(1) and K(2) restricts their relative motion6.

6 The number in parentheses put in upper index refers to the body the value is assigned to.
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gN

K(1)

K(2)

C(1)

C(2)

r
(1)
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r
(2)
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n(1)

n(2)

t
(1)
1

t
(2)
1

t
(1)
2

t
(2)
2

Figure 2.2: Contact kinematics with relative distance gN of colliding bodies

Thereby, one of the bodies can also be understood as part of the environment not
having own degrees of freedom. In case of a relative motion of the contacting bodies,
the evaluation of equation (2.19) implies the identification of the points C(i) with

positions r(i)
OC = r

(i)
OC(q(i),t) on each contour that correspond to minimal distance,

see figure 2.2. For the points C(i) of minimal distance the necessary conditions

(

T (i)
)T (

r
(2)
OC − r

(1)
OC

)

= 0 ∀ i ∈ 1,2 (2.21)

need to be fulfilled (see e.g. [45]). For a spatial problem T (i) = T (i)(q(i),t) = (t1,t2)
(i)

holds the tangent directions to the body’s contour at the point C(i) , respectively.
One unique tangential direction is defined for each body in a planar configuration.

Having identified the points r(i)
OC, the minimal gap distance is

gN =
(

n(2)
)T

(r(2)
OC − r

(1)
OC) with

∥
∥
∥n(2)

∥
∥
∥ = 1 . (2.22)

The normal n(2) = n(2)(q,t) = −n(1) on body (2) points in contrary direction to
the normal on body (1). In analogy to the bodies’ normals the tangents are defined
as T (2) = −T (1) . Positive values of the gap distance gN denote separation. For an
active contact gN = 0 , the relative normal and tangential velocities

ġN =
(

n(2)
)T

(v(2)
C − v

(1)
C ) =

(

nT (JCu+ v̄)
)(2)

+
(

nT (JCu+ v̄)
)(1)

ġT = γT =
(

T (2)
)T

(v(2)
C − v

(1)
C ) =

(

T T (JCu+ v̄)
)(2)

+
(

T T (JCu+ v̄)
)(1)

with the velocity v(i)
C = ṙ

(i)
C = J

(i)
C u

(i) + v̄(i) of the contact point C(i) are needed for

the formulation of the constraints’ force laws. Here, J (i)
C = J

(i)
C (q,t) = (∂ rC/∂ q )(i)

is the Jacobi matrix of translations for point C(i) giving linear transformations
between physical and configuration space of body (i). A rheonomic dependency is
expressed by v̄(i) = v̄(i)(q,t) 6= 0 for at least one contact partner. This can be
induced by a kinematic excitation of the body explicitly prescribing the motion.
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Defining the extended Jacobi matrix Ĵ
(i)

C = ∂ r
(i)
C /∂ q on the entire configuration

space with q = (. . . ,(q(i))T ,(q(i+1))T , . . . )T allows for a resorting of the equations
above and interpretation of the terms of the total differential (2.20):

ġN =
(

n(2)
)T
(

Ĵ
(2)

C u+ v̄(2)
)

+
(

n(1)
)T
(

Ĵ
(1)

C u+ v̄(1)
)

=
((

n(2)
)T
Ĵ

(2)

C +
(

n(1)
)T
Ĵ

(1)

C

)

u +
(

n(2)
)T
v̄(2) +

(

n(1)
)T
v̄(1)

= W T
Nu + wN (2.23a)

ġT =
(

T (2)
)T
(

Ĵ
(2)

C u+ v̄(2)
)

+
(

T (1)
)T
(

Ĵ
(1)

C u+ v̄(1)
)

=
((

T (2)
)T
Ĵ

(2)

C +
(

T (1)
)T
Ĵ

(1)

C

)

u +
(

T (2)
)T
v̄(2) +

(

T (1)
)T
v̄(1)

= W T
Tu + wT (2.23b)

For a normal contact with the Lagrange multiplier dΛN , the normal n(1) repre-
sents the direction in physical space of the reaction on body (1). Corresponding to
Newton’s third law of reciprocal actions, n(2) = −n(1) is the force direction on
body (2). This reciprocal interaction is projected to the configuration space by the
generalized force directions WN via the Jacobi-matrices. The force directions W T

of the tangential reactions in frictional contacts are composed analogously.

An Example Figure 2.3(a) shows a planar rigid two bar mechanism: each joint Ci
is subjected to a unilateral constraint with the ground y = 0. The joint positions

rOC1 = l1






cos(ϕ1)
sin(ϕ1)

0




 , rOC2 = rOC1 + l2






cos(ϕ2)
sin(ϕ2)

0






in physical space depend on the generalized coordinates q = (ϕ1,ϕ2)T . The ground

x

y

z
O

n(ground)

C1

C2

ϕ1

ϕ2

l1

l2

gN,1

gN,2

(a) System configuration

ϕ1

ϕ2

g
N
,1

=
con

st.

g
N
,2 =

const.

gN,1 < 0

gN,2 < 0 WN,2

(b) Contour plot of gN,i with l2/l1 = 3/2;
unfeasible regions gN,i < 0 in gray

Figure 2.3: Example: two bar link mechanism with unilateral constraints
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surface is characterized by the normal n(ground) = n = −(0,1,0)T and an arbitrary
point on the x-axis, for simplicity the origin O. Therewith the distances write

gN =

(

gN,1
gN,2

)

=

(

−nTrOC1

−nTrOC2

)

=

(

l1 sin(ϕ1)
l1 sin(ϕ1) + l2 sin(ϕ2)

)

.

Figure 2.3(b) shows a contour plot of both constraint functions gN,i for a length
ratio l2/l1 = 3/2 of the rods. Regions gN,i < 0 being unfeasible due to the unilateral
constraints are marked with gray filling. The normal relative velocities for both
contacts are:

ġN =

(

nT ṙOC1

nT ṙOC2

)

=

(

l1 cos(ϕ1) 0
l1 cos(ϕ1) l2 cos(ϕ2)

)

u = W T
Nu

Exemplary, a selected generalized force direction WN,2 of contact 2 implying the
point C2 is depicted in figure 2.3(b) for zero gap distance gN,2 = 0 .

The Non-Holonomic Constraint A non-holonomic constraint imposes a non-inte-
grable restriction on the systems velocities u that can not be substituted by a
corresponding formulation only in q and t . Since literature does not mention any
contrary examples of technical relevance, the associated constraint function

γN = γN(q,u,t) = W T
Nu+ wN (2.24)

is assumed to be linear in u. Again, WN = WN(q,t) holds columns of the matrix
of generalized force directions in equation (2.16). Like for the holonomic case, WN

is composed of directions of motion in physical space and Jacobi matrices project-
ing into the configuration space of the associated bodies. A rheonomic constraint
implies an explicit time dependency wN = wN(q,t) whereas this term vanishes for
a scleronomic constraint. A comparison to the equations (2.23a) and (2.23b) shows
that every active holonomic constraint incorporates a hidden but integrable part of
the form (2.24). This allows for a unified formulation of all active constraints on
velocity level. Thereby the activity, for example of a unilateral holonomic contact,
needs to be decided on position level preliminary.

A classic instance implying a bilateral non-holonomic constraint is a wheel rolling ide-
ally on a surface and without slipping: while the position and direction of the wheel
on the surface are free (together being the generalized coordinates), the motion is
limited to rolling with compatible rotational and translational velocities. Förg [19]
mentions an one-way overrunning clutch – like it is used in the free-wheel mecha-
nism of a bicycle – as example for a non-holonomic unilateral constraint: the driving
velocity of the crank and the rotational velocity of the wheel are bound unilateral
in pedaling direction, whereby this one-directional functionality is not influenced by
the absolute positions of the crank and the wheel.
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2.3 Contact Force Laws

The computation of the accelerations u̇ in equation (2.17) and the post-impact
velocities u+

i in equation (2.18) requires the knowledge of the unknown contact
reactions λ and Λi, respectively. Therefore, additional laws are needed describing
admissible combinations of contact reactions dΛ with the kinematics g of holonomic
and γ of non-holonomic contacts described in the previous section. Again, only a
single contact is discussed for the reason of a better readability.

All contacts between bodies in the system are modeled point-to-point. The kine-
matic assumptions made during the development of the equations of motion, like
the rigid body assumption, are kept unchanged. To give an example, the cross-
section of a beam modeled using Euler-Bernoulli theory remains rigid in the
directions normal to the local beam axis. The kinematic relations of section 2.2 are
used for the evaluation of both single- and set-valued laws for the contact forces.

Several strategies devoted to contacts can be found within the multi-body literature,
whereas two fundamentally different mathematical concepts are used: on the one
hand, single-valued force laws formulate the reactions functionally depending upon
the contact kinematics. The alternative approach using set-valued laws aims for the
exact compliance of the dynamic evolution with the restrictions for both bilateral
and unilateral constraints.

In many cases, friction is of high technical relevance for the contact dynamics. Not
being a direct result of the kinematic restriction in normal direction, Coulomb fric-
tion is introduced additionally for both bilateral and unilateral contacts: depending
on the normal reaction, friction reactions are evaluated acting in the tangential
directions of the contact.

2.3.1 Single-Valued Force Laws

The reaction force λ, which may be the normal component of a bilateral or a unilat-
eral contact as well as the tangential component, can be introduced as function

λ = λ(g,ġ,t) , λ = λ(γ,t) (2.25)

of the respective contact kinematics. The reaction therefore is a function of the
state q and u. Motivations may arise form opposed intentions:
The stiffness of a specific contact may be relevant for the overall dynamics of the
system, raising the necessity to be represented during modeling. For example, a
Hertzian contact is described by contact reactions being a function of the normal
penetration gN . Contrasting this physical motivation, penalty strategies can be
used for the approximation of constraints whereas the restrictions on the kinematic
function will not be kept exactly. The systems equations are charged with reactions
depending on the violation of the constraint. Therefore, especially for varying loads
arbitrary violations may occur within the constrained magnitudes.
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To minimize the violation compared to an ideal constraint, high stiffness ∂ λ/∂ g
and high damping ∂ λ/∂ ġ might be necessary, possibly leading to numerical diffi-
culties during time integration7. Moreover, the definition and parametrization of
relation (2.25) for a specific problem in general is non-trivial and introduces addi-
tional modeling coefficients: these might be hard to gain during model build-up and
imply additional uncertainties.

For reactions λ according to equation (2.25), the forces are limited at times ti ∈MS
of impacts (compare to generalized forces h, eqn. (2.14) on page 14) and can be
evaluated explicitly. The reaction force

QC = Wλ (2.26)

in configuration space is included as part of the generalized forces h. Contacts with
single-valued formulations do not contribute to the impulsive reactions and therefore
do not induce jumps in the velocities. For this reason, after this section λ in all nota-
tions will refer exclusively to set-valued force laws assuming that contributions (2.26)
to h are already regarded.

A huge variety of formulations exists, often highly specialized to single problems.
Two references shall be named here: to model the distribution of contact reactions,
Hippmann [35, 36] describes a superposed contact elasticity for colliding rigid bodies
using the elastic foundation model for thin layers. Géradin and Cardona [26]
introduce penalization strategies to impose approximations for constraints. In the
following, standard linear formulations for bilateral and unilateral contacts as well
as a regularized friction law are briefly presented.

Linear Flexible Bilateral Contact For a bilateral contact, the regularized linear
formulation of the contact force uses the stiffness c and the damping d :

λB = −(cgB + dġB)

The resulting force law is displayed for zero relative velocity ġB = 0 and varying
constraint violations gB in figure 2.4(a).

Linear Flexible Unilateral Contact Like for the bilateral contact, the stiffness c
and the damping d are used to formulate the contact force

λU =







0 ∀ gU ≥ 0

max(0,− (cgU + dġU)) ∀ gU < 0

depending linearly on the kinematic magnitudes gU and ġU . Negative contact forces
are prevented in order to avoid adhesion effects for contacts opening fast. Fig-
ure 2.4(b) shows the resulting force law for the relative velocity ġU = 0 .

7 For numeric algorithms stiffness can be defined as a high gradient of the contact reaction
with respect to the state of the system and therefore also includes physical damping.
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+µ|λN |

−µ|λN |

vref

(c) Planar Coulomb friction

Figure 2.4: Linear force laws for bi- and unilateral contacts and regularized friction

Regularized Coulomb Friction The force of a single frictional contact is decom-
posed to a normal component λN ∈ {λB,λU} with arbitrary bi- or unilateral contact
law and – depending in dimension on planar or spatial character – tangential compo-
nents λT in friction direction. A classic form of regularization for Coulomb friction
uses the inverse tangent function, allowing for a functional evaluation:

λT = −
2µ

π
atan

(

‖γT‖

vref

)

γT
‖γT‖

|λN |

The additional regularization parameter vref can be used to fit the reaction behavior
for low tangential velocities γT , whereas the tangential reaction always is zero for
vanishing relative motion. The coefficient µ represents dry friction at high relative
velocities. For the planar case giving one tangential direction, the resulting force
depending on the relative tangential velocity γT is depicted in figure 2.4(c).

2.3.2 Set-Valued Force Laws

If no discrete flexibility is added between the contacting bodies, a rigid contact
corresponds to an algebraic constraint. This implies additional relations to the
system, whereas Lagrange multipliers are used as new independent variables, see
section 2.1. These multipliers dΛ take values ensuring the validity of the constraints
in combination with the equations of motion. The setN represents all constraints:

(dΛ,q,u,t) ∈N (2.27)

In contrast to regularized contact laws, no additional parameters except restitution
coefficients are introduced by modeling exact constraint conditions. For bilateral
constraints this formalism is well known: see for example Marsden and Ratiu [41]
and Géradin and Cardona [26]. Amongst others, Pfeiffer and Glocker [45]
extend this concept to unilateral and frictional contacts. Leine and Glocker [39]
and Studer [58] additionally provide non-standard models for spatial Coulomb-
Contensou- and Stribeck-friction.

Since closing unilateral or frictional contacts in set-valued descriptions induce discon-
tinuities within the velocities, additional impact laws need to be established besides
the force laws for persisting or opening contacts. The current section closes with the
modern formulation of the force laws for rigid contacts using projection functions.
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Force Laws for Smooth Transitions

For the smooth transitions between impacts, set-valued relations connect admissi-
ble kinematics g respectively γ to the associated reactions λ in form of equality and
inequality expressions. The constraints might influence each other: therefore, the re-
actions can only be evaluated together with the systems entire set of equations (2.16)
including all set-valued restrictions.

Bilateral Constraint A bilateral contact on positions level implies a bilateral holo-
nomic constraint allowing for arbitrary reactions to ensure the kinematic validity:

gB = 0, λB ∈ IR (2.28)

Figure 2.5(a) visualizes this force law. Similarly, the force law

γB = 0, λB ∈ IR

represents a non-holonomic bilateral constraint. As stated for equation (2.24), every
holonomic bilateral constraint (2.28) implies a constraint on velocity level using the
normal velocity γB = ġB .

Unilateral Constraint The unilateral contact also allows for detachment leading
to in-activity of the kinematic restriction. The associated holonomic unilateral con-
straint is given by the Signorini-Fichera-condition

gU ≥ 0, λU ≥ 0, gUλU = 0 . (2.29)

The respective force law is shown in figure 2.5(b). In analogy,

γU ≥ 0, λU ≥ 0, γUλU = 0

describes a non-holonomic unilateral constraint. A reformulation of equation (2.29)
on velocity level additionally requires the differentiation between closed active con-
tacts gU = 0 and open contacts gU > 0 with λU = 0 .

Coulomb Friction For both bi- and unilateral constraints Coulomb friction is
considered, capturing most of the dry friction effects of technical relevance, especially
stick-slip transitions. Like for the regularized formulation, the contact reaction
comprises the normal component λN ∈ {λB,λU} and tangential components λT .
Using the relative tangential velocity γT , Coulomb’s friction law is given by

γT = 0 ⇒‖λT‖ ≤ µ|λN | (2.30a)

γT 6= 0 ⇒ λT = −µ
γT
‖γT‖

|λN | . (2.30b)

Figure 2.5(c) depicts Coulomb’s friction law for the planar case.
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Figure 2.5: Set-valued force laws for bi- and unilateral constraints and friction

Impact Laws

As shown in section 2.1, rigid contacts induce the exchange of discrete impulses Λi:
a closing contact may imply a discontinuity in the velocities in contrast to per-
sisting and detaching contacts. The impact of a specific contact may effect all
other constraints, the bilateral as well as the unilateral ones. The impact laws for
times ti ∈MS connect the impulsive percussion Λi of a single contact with admissi-
ble after-impact kinematics ġ+ or γ+ . They are formulated on the level of velocities
and impulses to supplement the impact equation (2.18), page 14.

Bilateral Constraint The impact law for a bilateral contact is given by

ġ+
B = 0, ΛB ∈ IR (2.31)

for the holonomic case and ensures that relation (2.28) is not violated after collisions.
Analogously, the post-impact validity of a non-holonomic constraint is ensured by

γ+
B = 0, ΛB ∈ IR .

Unilateral Constraint For a unilateral contact on position level, reversibility is con-
sidered within the impact. Therefor, the normal relative velocity is interpolated:

˙̄g
+
U = εU ġ

−

U + ġ+
U (2.32)

The restitution coefficient 0 ≤ εU ≤ 1 allows to choose an impact behavior between
fully plastic and fully elastic for the normal direction. With the contact being closed
at impact time, Newton’s impact law can be formulated as

˙̄g
+
U ≥ 0, ΛU ≥ 0, ˙̄g

+
U ΛU = 0 . (2.33)

With εU = 0, equations (2.32) and (2.33) represent the minimum requirement of
non-penetration after impact. They are equivalent to the unilateral constraint (2.29)
which is valid for smooth transitions. The impact law

γ+
U ≥ 0, ΛU ≥ 0, γ+

U ΛU = 0

holds for the non-holonomic unilateral constraint.
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Coulomb friction For active normal contacts (gN = 0) with the associated normal
reaction ΛN ∈ {ΛB,ΛU} , Coulomb’s friction law is imposed:

‖ΛT‖ ≤ µ|ΛN | if γ+
T= 0 (2.34a)

ΛT = −
γ+
T

∥
∥
∥γ+
T

∥
∥
∥

µ|ΛN | if γ+
T 6= 0 (2.34b)

Pfeiffer and Glocker [45] also provide extensions to tangential reversibility.

Formulation based on Projection Equations

The set-valued formulation (dΛ,q,u,t) ∈ N of the contact and impact laws (2.28)
to (2.34) are self-evident from the mechanical point of view but not suitable for the
numerical computation. Convex analysis offers a more appropriate formulation, see
Rockafellar [48] and Alart and Curnier [2]: the proximal point

proxC(x) = arg min
x∗∈C
‖x− x∗‖ , x ∈ IRn

to a convex set C is the element x∗ of C that minimizes the norm ‖x− x∗‖ for a
given argument x. Figure 2.6 illustrates the projection using the Euclidean norm.
With the convex sets for bilateral, unilateral and frictional contacts

CB = {x ; x ⋚ 0} , CU = {x ; x ≥ 0} , CT (y) = {x ; ‖x‖ ≤ µy}

the relations (2.28) to (2.34) take the fixed-point equation form

λB = proxCB(λB − r gB), ΛB = proxCB(ΛB − r ġ
+
B), (2.35a)

λU = proxCU (λU − r gU), ΛU = proxCU (ΛU − r ˙̄g+
U ), (2.35b)

λT = proxCT (λN )(λT − r γT ), ΛT = proxCT (ΛN )(ΛT − r γ
+
T ) . (2.35c)

The variable r > 0 is an independent auxiliary parameter for each contact that does
not influence the exact solution. The optimal choice of r with respect to numerical
efficiency and stability of the solution scheme is discussed by Förg et al. [21]. Ad-
ditionally, Förg [19] gives a comprehensive explanation of the formulation (2.35).

x1 = proxC(x1)

x2

proxC(x2)

C

Figure 2.6: Illustration of the proximal function



2.4 Numerical Methods for Non-Smooth Systems 25

2.4 Numerical Methods for Non-Smooth Systems

Sophisticated computational methods have been established for non-smooth me-
chanics opening up a wide range of academic and industrial applications. However,
the adaptability of these methods is still limited, raising the need for ongoing re-
search. Recently, Acary and Brogliato [1] provided a comprehensive overview
on modern numerical methods. In order to integrate non-smooth multi-body systems
in time, two different approaches for the numerical solution can be distinguished:
event-driven and time-stepping schemes.

Event-Driven Integration Schemes Event-driven schemes detect changes of the
constraints, for example closing of unilateral contacts or stick-slip transitions, and
resolve the exact transition times, see Acary and Brogliato [1] and Pfeiffer
and Glocker [45]. The smooth transitions between the events can be simulated
with arbitrary schemes for differential algebraic systems, giving access to higher order
time integration. For every event like an impact, the integration is interrupted and
additional laws must be evaluated explicitly. While the general procedure of event-
driven methods is known, the particular implementation depends on the underlying
integrator: the treatment of constraints and the root finding mechanism for event
detection play a crucial role within this context. Förg et al. [20] discuss these
topics and provide a comparison to a time-stepping scheme.

Time-Stepping Integration Schemes Time-stepping schemes are based on a time
discretization of the system dynamics including all constraints: the concept allows
for a unitary treatment of impacts and persisting contacts without an explicit dif-
ferentiation. After the introduction in the late 1980s by Moreau [42], subsequent
contributions to the algorithms were made by many researchers. Lately, Studer [58]
presented augmented time-stepping methods extending the time discretization from
usually constant time step sizes towards step size control. He also provides a broad
overview on nowadays wide variety of time-stepping schemes. In the beginning,
rigid unilateral constraints were formulated as linear complementarity problems. In
modern methods efficient iterative solvers for the proximal point equations (2.35) re-
placed the direct LCP solvers. Embedded in the semi-explicit time-stepping scheme
of Förg [19], this is briefly discussed bellow. Using the same strategies for the con-
straint solution, section 5.1 presents an A-stable implicit scheme in more detail.

Time-Integration To allow for an unitary treatment, all active constraints are for-
mulated and solved on velocity level: holonomic unilateral contacts need to be sorted
by activity gi ≤ 0 or inactivity gi > 0 . As provided in equations (2.23) and (2.24),
pages 17 f, the velocities γa = (W a)

T
u+wa of all active constraints (index a) are

linear combinations of the generalized velocities. The discretization is performed
with a constant time step size ∆t . A single integration step l → l + 1 is outlined:

1. Compute the new generalized positions ql+1 = ql + ul∆t .
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2. Compute the distances gl+1
U = gU(ql+1,tl+1) of all unilateral contacts.

3. Compute the index set {i : gl+1
U,i ≤ 0} of active unilateral contacts, governing

the activity of the respective normal and tangential reactions.

4. Compute the generalized velocities by solving the discretized equations of mo-
tion considering velocities γa of all active holonomic and non-holonomic con-
straints on velocity level:

ul+1 = ul +
(

M l+1
)−1 (

ĥl+1 ∆t+W l+1
a Λl+1

a

)

, (2.36a)

γl+1
a = γa(u

l+1,ql+1,tl+1) , (2.36b)

Λl+1
a = proj(γl+1

a ,Λl+1
a ) . (2.36c)

Here, the half-explicit evaluation ĥl+1 = h(ul,ql+1,tl+1) is used to increase
numerical stability. The function proj comprises the projection functions of
equations (2.35) for bilateral and unilateral constraints as well as friction.

The crucial point in solving (2.36) is to find a feasible combination Λl+1
a and ul+1.

Solution of Constraint Equations The system (2.36) can be reduced analytically
to a relation between the constraint velocities γl+1

a and the reactions Λl+1
a : inserting

equation (2.36a) to a linear expansion of the constraint velocities (2.36b) gives

γl+1
a =

(

W l+1
a

)T (

M l+1
)−1

W l+1
a Λl+1

a +
(

W l+1
a

)T
[

ul +
(

M l+1
)−1

ĥl+1 ∆t
]

+wl+1
a

= Gl+1
a Λl+1

a + bl+1
a (2.37)

depending on the known ql+1, ul and tl+1. Using this result again for the projection
equation (2.36c) results in a non-smooth nonlinear equation to be solved for the
constraint reactions Λl+1

a . The matrix Gl+1
a of projected inertias holds the effective

masses in the directions of the set-valued force laws. Förg [19] develops various
efficient schemes for the solution of this fix-point equation, whereas the properties
of Gl+1

a have strong influence on the convergence of the numerical algorithms: fixed-
point iteration schemes need a diagonal dominant matrix Gl+1

a reflecting a weak
mutual coupling of contacts. Reformulating the fixed-point equation, a numerical
root-finding can be utilized, for example a Newton-scheme. For overdetermined
contact configurations Gl+1

a is not regular; techniques like pseudo-inversion provide
solutions but weaken convergence speeds. For flexible multi-body systems practical
experience shows root-finding to be most suitable for solving the contact problem.

Comparison While the event-driven integration is very accurate, the detection of
events can be time consuming: this approach mainly is used for systems with few
transitions in the contact situations. The advantage of the time-stepping approach
is that no event detection is necessary. However, common time-discretizations use
single step schemes with constant size and only provide first order approximations.
Consequently the step size is limited to ensure stability and the required accuracy.
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Multi-Body Systems

Within the current chapter, a framework for the derivation of discrete equations of
motion for flexible bodies is outlined. While the methods and results presented
within this chapter are suitable for arbitrary flexible bodies, a flexible Euler-
Bernoulli beam with small planar deflections and elongations is utilized as an
example throughout the chapter. Detailed models for a wide range of structural
elements and bodies can be found in the literature. A focus is set on the discretiza-
tion on the background of constraint dynamics, especially contact and non-smooth
impact situations.

In section 3.1, the analytic framework for the description of the dynamics of a
flexible body is presented including kinematics and constitutive laws. Section 3.2
discusses the character of non-smooth events within a flexible continuum: in case
of an impact, a discontinuity occurs with respect to time – like it is known for rigid
body systems – but also with respect to the location within the velocity field of the
continuum. Nevertheless, the constitutive laws describing the distributions of inter-
nal forces are assumed to remain unchanged within this work: no discontinuities
of the displacement field like cracks are regarded. Section 3.3 addresses the spatial
discretization of the deformation fields by discrete finite sets. A special focus is
set on the influence of the discretization on the approximation of spatially discrete
events. Specialties within the contact kinematics of flexible bodies are addressed in
section 3.4. Concluding, section 3.5 gives aspects concerning computer implementa-
tions. To allow for a better readability, the equations of motion within this chapter
will mostly be written for smooth transitions. The generalization including impacts
is known from the previous chapter.

3.1 Analytical Framework

The formulation of the equations representing the dynamics of a body, either being
rigid or flexible, takes two compulsory steps: kinematics and kinetics, see for ex-
ample Shabana [56]. The motion of the continuum is described using kinematic
assumptions. Based on these, kinetics states constitutive laws connecting motion
and reactions: partial differential equations of motion are formulated describing
the dynamics of the system. A wide range of models for flexible continua can be
found in literature, see section 1.2. Within the current section, a slender Euler-
Bernoulli beam with elongation is used as an example to discuss the derivation
of the describing equations.
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3.1.1 Continuum Kinematics

The task of kinematics is to provide a unitary description of the positions, the
velocities and the accelerations for all points of the body. This geometric aspect of
motion is developed in several steps: a location description is introduced allowing
for the unique identification of the points within the continuum. Depending on the
geometry and the loads of the body, kinematic assumptions are proclaimed giving
restrictions to the modeled deformations. Based on these, fields are introduced
describing the motion of all material points.

Location Description

For the description of the location, two fundamentally different concepts can be fol-
lowed, see figure 3.1 and Gross et al. [31], Bathe [6]: associating the descriptor
to a fixed point in space with material moving relatively is known as Euler de-
scription. In contrast, the association of an algebraic variable to a moving material
element dm leads to Lagrange description. Also mixed forms of both are used
for special applications. Whereas the Euler description is widely used within fluid
dynamic simulations, the Lagrangian parametrization is commonly used for solid
mechanics, intrinsically allowing to trace the motion of specific material points.

Euler Description The frame of reference for the Euler description is inertially
fixed. The constant coordinate S0 therefore describes an spatially fixed reference,
depicted as grey slice in figure 3.1(a) using a scalar coordinate S0 for the beam
structure. The mass element dm∗ being associated to the position S is changing
with material dm moving through with velocity Ṡ = Ṡ(S,t) . Thus, the substantial
derivative d

d t
of a material bound quantity X, for example representing the position

of the mass element, must be built with respect to the material velocity:

X = X(S,t) (3.1a)

Ẋ =
dX

d t
=
∂X

∂ t
+
∂X

∂ S
Ṡ (3.1b)

Figure 3.1(a) decomposes the position r = r0 +rt into the constant part r0 = r0(S0)
and the time variant deflection rt = rt(S0,t). Classically the Euler description is
used in fluid dynamics referring to inertially fixed control volumes. Using prescribed
constant reference paths of motion, this description can also be used successfully for
solid mechanical problems with geometrically small deflections. Funk [24] simulates
elastic belt drives with constant transmission ratios based on this approach.

Lagrange Description As depicted in figure 3.1(b), each material element dm is
identified by a specific coordinate s for the Lagrange description. For the planar
beam example, a scalar value s0 always refers to the same material point with time-
variant position r = r(s0,t) . The material bound quantity X can be expressed in
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Figure 3.1: Parameterization for descriptions of positions r

terms of the time t and the constant position s . The substantial derivative can be
evaluated directly:

X = X(s = const.,t) (3.2a)

Ẋ =
dX

d t
=
∂X

∂ t
= Ẋ(s,t) (3.2b)

The frame of reference for the Lagrange coordinate s with reference point K
is moved and deformed with the body. Usually, a coordinate associated to the
undeformed length of the body is used. Utilizing the example of the beam of relaxed
length l, s ∈ [0,l] always represents the domain of the body.

Following the Lagrange description, the evaluation of kinematic and kinetic quan-
tities is performed in the following sections. This is in analogy to the body-fixed
frames used for rigid bodies and floating frame of reference models for flexible bodies.
Moreover, systems with large deflections are included.

The kinematic description of a continuum uses fields depending on the time t and the
independent algebraic variable s which is not part of the transient state but used
for its description. The dimension of s correlates with the dimensionality of the
body, which is defined by the kinematic assumptions: for one dimensional continua
like cables, rods, beams and so on, a material point can be addressed by one scalar
position. Plates and shells are described by two coordinates, for spatial models three
are needed according to the three spatial directions.

Kinematic Assumptions

The most general kinematic formulation allows for independent motion of all mate-
rial elements dm = ρ dV of volume dV in all spatial directions. Then, the positions

r = r(s,t) ∈ IR3 (3.3)

are described by field variables r ∈ F(IR3) originating form the infinite space of
functions depending upon the Lagrange coordinate s. Preserving the generality,
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Figure 3.2: Continuum kinematics: flexible beam with small deformations

only the compatibility equations ensuring a unique relation between displacement
and strain field are to be fulfilled, compare to standard literature for continuum
mechanics. Total derivation with respect to time gives rise to the velocity ṙ = d r

d t

and acceleration r̈ = d2 r
d t2

of the mass element.

Depending on the specific problem, assumptions concerning the motion can be intro-
duced to reduce the dimension and complexity of the describing equations. Postulat-
ing maximum restrictions in form of constant relative distance of the material points,
the rigid body assumption concentrates the kinematic description of the body to a
reference point and spatial rotations, see Pfeiffer [44] or Shabana [56].

To give an example, the Euler-Bernoulli assumptions for planar slender beams
with superposed longitudinal deformations are used within this chapter. For details
refer to standard literature of mechanics, for example Hibbeler [34]. A beam is
characterized by one dimension – namely the axis defining the local s-direction –
being of significantly higher order of magnitude than the two other local dimensions,
compare figure 3.2. Usually, a ratio of ten to one between length and cross-sectional
dimensions is given as limit for validity. The central assumptions are: the cross-
section of the beam remains planar and is always normal on the neutral fiber. All
magnitudes depend uniquely on the time and the scalar position s. The shear
deformation is negligible small.

The position of the mass element dm = ρAds with the cross sectional area A = A(s)
and the mass density ρ = ρ(s) is represented by a location on the neutral fiber of the
Euler-Bernoulli beam. For small deflections with respect to the inertial frame I
of reference1 and for linearized deformations, this fiber is described by

Ir = Ir (ϕ) = (s+ wx , 0 , wz)
T . (3.4)

The independent relative displacements wx = wx(s,t) and wz = wz(s,t) express the
longitudinal and transversal deformation and form the vector ϕ = (s + wx,wz)T of
position fields, compare to figure 3.2. The derivative dwz/d s = w′z approximates the
slope ψ ≈ −w′z of the beam2. The velocity and acceleration at the position s are

I ṙ = (ẇx , 0 , ẇz)
T and I r̈ = (ẅx , 0 , ẅz)

T . (3.5)

Equation (3.4) describes the spatial position of the mass element with two kinematic
degrees of freedom. For the constitution of relations between strain and stress in

1 The base for the coordinate representation of a vector is marked with a lower left index.
2 In this work, (ξ)′ marks the total derivative of ξ with respect to the Lagrange coordinate s.
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the following section, the local deformation measures ε = ε(s,t) for strain due to
elongation and κ = κ(s,t) for curvature due to bending are provided:

ε = w′x , κ ≈ w′′z (3.6)

Thereby, the assumption of small deformations allows for the approximation of the
curvature by the second derivative of the bending line wz.

In section 4.2.3, local moving frames of reference will be used in combination with
the Euler-Bernoulli theory for modeling planar beams undergoing geometrically
large deformations. There, further additional kinematic assumptions used for the
description are explained in detail.

3.1.2 Constitutive Laws and Kinetics

While the description of the motion can be developed deductively, the coupling of
deformations and internal reactions is described by constitutive relations. These are
laws of everyday experience but can not be proven. In the same way, Newton’s
second law “forces equal accelerations” is a postulation that properly fits reality.

Constitutive Deformation Laws

The connection between deformations and the internal reactions of the body are
proposed by constitutive laws. A classic example is Hooke’s law for linear elastic
material: in the spatial case, a linear relation between strains and stresses is declared
by the fourth-order tensor of elasticity. For most homogeneous technical materials
with elastic behavior, this tensor can be parametrized by two scalars. Standard lit-
erature of continuum mechanics comprehensively addresses the topic of elasticity.

The internal stresses and strains need to be analyzed in correspondence to the kine-
matic assumptions: for the straight Euler-Bernoulli beam with longitudinal
load, the force N = N(ε(s)) =

∫

A σsdA and the moment R = R(κ(s)) =
∫

A σszdA
are the section loads at the position s parametrizing the linear distribution of the
normal stress σs , see figure 3.3(a). To formulate relations between deformations and
section loads based on energy expressions3, the incremental of the work density

dW̄ = Ndε −Rdκ (3.7)

is associated to the deformation increments dε and dκ of the element ds. The work

W̄ =
dW

d s
=

ε∫

0

Ndε̃ −

κ∫

0

Rdκ̃ (3.8)

is performed during the deformation of the beam element ds.

3 Since shear deformations are neglected, no work is performed by shear forces.
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x

z
s

px(s) pz(s)

N

R

N

R

(a) Loads on flexible beam

ds

dm = Aρds pxds

N N + dN = N + ∂ N
∂ s

ds

(b) Axial loads on infinite element

Figure 3.3: Kinetic magnitudes on the beam

Within this thesis, only elastic material behavior is regarded. Amongst others, Am-
brósio and Nikravesh [3] and recently Gerstmayr [27] provide extensions of
flexible multi-body systems to irreversible material behavior.

For purely elastic material behavior, W̄ necessarily is a function of the state of
strain only, expressed by the elongation ε and the curvature κ for the present beam
example. This requests independence of the load history and only can be provided
if equation (3.7) is the total differential of the work density (3.8). Hooke’s law of
linear elasticity, here formulated for beams, fulfills these criteria:

N = EAε (3.9a)

R = −EIκ (3.9b)

The modulus of elasticity E is a scalar material constant. As a result of the kinematic
assumptions, the moment of inertia I = I(s) =

∫

A z
2dÃ is introduced during integra-

tion over the cross sectional area A = A(s) . The work density W̄ = V̄elast = dVelast

d s

provides the density function of the elastic deformation potential Velast of the entire
beam. Introducing the equations (3.9) in (3.8), the density of the elastic potential
takes the form

V̄elast =

ε∫

0

EAε̃dε̃+

κ∫

0

EIκ̃dκ̃ =
1

2
EAε2 +

1

2
EIκ2 =

dVelast

d s
(3.10)

being the positive quadratic potential of the deformation state.

Kinetics

The kinetic considerations for a system connect the kinematics – providing positions,
velocities and accelerations – to the internal and external loads. The resulting
equations of motion describe the time evolution of the system. As it is discussed
in section 2.1, different methodological approaches can be used for the preparation:
two of these shall be sketched briefly.

Elementary Equilibrium The constitution of force and momentum equilibria for an
infinite mass element dm of the body yields directly the partial differential equations
of motion. For initiating the kinematic considerations, especially the d’Alembert
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principle in the formulation of Lagrange gives a powerful framework projecting
the kinematic and constitutive descriptions as well as the external loads into the fea-
sible space of motion, see for example Shabana [56]. The approach of elementary
equilibrium directly instates the dynamic load balance by the evaluation of differen-
tial equality based on the kinematic and kinetic assumptions established previously.
In addition to the differential equations, boundary conditions for the field variables
need to be established. Separate appropriate considerations are needed for every
elemental kinematic freedom.

Figure 3.3(b) illustrates exemplary the longitudinal components of the load balance
for the element ds of the flexible beam, see for example Gross et al. [31] or
Shabana [56]. The displacements and the section loads at both ends of the beam
build the boundary conditions for the partial differential equation.

Variational Formulation In contrast to the elemental equilibrium, the Hamil-
ton principle (2.1), page 8, can be used in an adaption to fields to formulate equi-
librium conditions on the entire body K, compare to Schwertassek and Wall-
rapp [52]. For this, the kinetic energy

T =
∫

K

1

2
ṙT ṙdm (3.11)

of the body K is introduced. Using integration by parts for the evaluation of the
principle (2.1), the integral on the variation of the kinetic energy (3.11) writes

t1∫

t0

δTdt = −

t1∫

t0

∫

K

r̈T δrdmdt+





∫

K

ṙT δrdm





t1

t0

. (3.12)

Due to the invariance of r0 and r1, compare page 8 f, the second summand vanishes.
The first term holds the classic accelerations of the mass element dm and is similar
to the results derived utilizing the d’Alembert principle.

For the further evaluation, the elastic Euler-Bernoulli beam described by the
fields ϕ is discussed, see equation (3.4). In accordance with the kinematic assump-
tions for the beam with endpoints at s = 0 and s = l, compare to equations (3.5),
the kinetic energy and its variation with respect to δϕ = (δwx,δwz)T write:

T =
1

2

l∫

0

(ρA ẇ2
x +ρA ẇ2

z )ds (3.13a)

δT =−
l∫

0

(ρA ẅxδwx+ρA ẅzδwz)ds (3.13b)

The elastic potential Velast =
∫ l

0 V̄ ds of the beam, equation (3.10), is expressed in
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terms of the deformations wx and wz , see equation (3.6):

Velast =
1

2

l∫

0

(

EAε2 + EI κ2
)

ds =
1

2

l∫

0

(

EA (w′x)
2 + EI (w′′z)

2
)

ds (3.14)

Using integration by parts with respect to the position s, the variation δVelast is
evaluated with the independent kinematic variations δwx, δwz and δw′z :

δVelast =

l∫

0

(EAw′xδw
′

x + EI w′′zδw
′′

z )ds

= −

l∫

0

((EAw′x)
′δwx + (EI w′′z )

′δw′z)ds

+ [(EAw′x)δwx + (EI w′′z )δw
′

z]
l
0

= −

l∫

0

((EAw′x)
′δwx − (EI w′′z )

′′δwz)ds

+ [(EAw′x)δwx + (EI w′′z )δw
′

z − (EI w′′z)
′δwz]

l
0 (3.15)

Whereas the integral part holds terms of the classical beam equations, which are
partial differentials of fourth order, the second part of the right hand side contributes
to the boundary conditions of the fields and their spatial derivatives.

The variation δW = δWp + δWb of the external work accounts for the distributed
volume loads px = px(s) and pz = pz(s) , compare figure 3.3(a), and the discrete
forces F 0,l = (Fx,0,Fz)T0,l and torques R0,l = (0,Ry,0)T0,l at the beam’s boundaries
s = 0 and s = l. The associated variations

δ Ir = ( δwx , 0 , δwz )T , δψ = ( 0 , − δw′z , 0 )T (3.16)

of the translational and angular position are used to formulate the contributions to
δW with the separation δWb = δWF + δWR:

δWp =

l∫

0

(pxδwx + pzδwz)ds (3.17a)

δWF = [Fxδwx + Fzδwz]
l
0 , δWR = [−Ryδw

′

z]
l

0 (3.17b)

To finalize the beam example, equations (3.13b), (3.15) and (3.17) are collected
for the evaluation of the Hamilton principle (2.1) with L = T − V . Sorting for
different variations δwx, δwz and δw′z leads to

t1∫

t0







l∫

0

(

ρAẅx − (EAw′x)
′ − px

ρAẅz + (EIw′′z )
′′ − pz

)T(

δwx
δwz

)

ds +






EAw′x + Fx
(EIw′′z )

′ − Fz
EIw′′z − Ry






T




δwx
δwz
δw′z






∣
∣
∣
∣
∣
∣
∣
∣

l

0







dt = 0 .

Since the variations are arbitrary but respect the kinematic boundary conditions, the
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integral on the body K with s ∈ [0,l] and the boundary expressions must vanish inde-
pendently. The integrand yields one equation of motion for each component of ϕ:

ρA ẅx − (EAw′x)
′ − px = 0 (3.18a)

ρA ẅz + (EI w′′z )
′′ − pz = 0 (3.18b)

The first is the equation of longitudinal waves in a flexible rod, the second equation
describes the bending dynamics. The respective boundary conditions, being a mixed
form of Dirichlet and Neumann boundary conditions, are:

[(EAw′x + Fx)δwx]
l
0 = 0 (3.19a)

[((EI w′′z )
′ − Fz)δwz]

l
0 = 0 , [(EI w′′z −Ry)δw

′

z]
l
0 = 0 (3.19b)

The results are independent of the use of a variational formulation or elementary
equilibrium considerations and exactly represent the kinematic assumptions in com-
bination with the constitutive laws. For the general case, they are coupled nonlinear
partial differential equations.

3.2 Remarks on Time and Local Continuity

In section 2.1.2, the discrete velocities u were formulated with respect to non-smooth
characteristics allowing for jumps: these non-continuities were caused by discrete
percussions Λi. For a rigid body, a jump in the velocity parameters u describes an
immediate jump of the velocities for all points of the body.

In contrast, the previous section 3.1 assumed smoothness of all field variables ϕ
including their derivatives with respect to time t and location s. For an exact
description of impacts, this assumption now is contradicted: an impact on a flexible
structure at the position si induces a jump within the velocity field u(s,t) . For a
percussion at si, this situation is depicted for the transversal velocity uz of a beam
in figure 3.4. Assuming initially zero velocity of the structure at all positions, the
post-impact velocity field at impact time ti ∈MS

u+
z (s)

∣
∣
∣
t=ti

=







ui if s = si

0 everywhere else

can be expressed with a non-zero discrete velocity ui . The non-continuity with re-

u+
z

ssi

ui

Λi

Figure 3.4: Non-smooth velocity field resulting from discrete impact Λi
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spect to time of the system’s velocities, which is known from impacting rigid body
systems (compare to literature on non-smooth/impact dynamics and section 2.1),
also occurs within the velocity-field of the flexible structure. For the analytic descrip-
tion of flexible bodies, this effect needs to be described within the parametrization of
the fields. Discussing a longitudinal percussion on a flexible rod, Glocker [30] and
Wriggers [64] each give physical interpretations without solving the continuous
problem analytically: for the exact solution, the contact condition takes the mathe-
matical form of a fully plastic impact. Thereby, perfect reversibility is included by
the structural flexibility and a vanishing mass fraction involved in the impact.

In analogy to the invariance (2.13) of the discrete positions q during impact events
for discrete systems, see page 13, the displacement fields of a flexible continuum are
continuous with respect to time and location even for discontinuous velocity-fields.
Nevertheless, high gradients of deformations can evolve probably overstressing the
underlying material laws. A general analytic theory for non-smooth dynamics of flex-
ible bodies must allow for the description of velocity fields being non-continuous with
respect to time and location. Thereby, the following points need to be addressed:

• the times of impacts are not known a priori; neither are the locations and the
number of discontinuities within the fields

• after an impact, the induced non-continuity travels through the structure as
impulsive wave and needs to be described; the wave speed – also known as
sound-propagation velocity – is a function of the continuum parameters like
modulus of elasticity, mass density or also cross section area and inertia

• in case the constitutive laws include velocity fields, for example to model ma-
terial damping, the validity may be lost since the velocity fields might become
non-differentiable with respect to locations

With numerous references, section 2.1 presented measure differential equations for
the description of discrete non-smooth systems. Following Brogliato [12], the
theory of distributions, which was used successfully for discrete non-smooth sys-
tems, might possibly be extended towards the analytic description of non-smooth
transitions within flexible structures. Frémond [23] provides a brief theoretical dis-
cussion of non-smooth velocity fields. A field formulation of the Hamilton-principle
for non-smooth events is sketched by Panagiotopoulos [43].

Commonly and within this work, discrete approximations in time and space are used
for the simulation of flexible dynamic systems. Mostly based on weak formulation,
all these approximations using discrete masses and forces blur discrete events with
respect to both time and location via the ansatz-functions used for the discretiza-
tion. To sharpen the spatial model resolution, refinements are needed especially
at positions with high gradients of the discretized fields like positions of impacts,
see Wriggers [64]. The non-continuity with respect to time can be formulated as
described in chapter 2 for the spatially discretized system.
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3.3 Discretization of Flexible Bodies with

Discontinuities

The partial differential equations together with the boundary conditions presented
in section 3.1 exactly describe the dynamics of the flexible structure in the sense
of the modeling assumptions. The solution gives the continuous fields ϕ ∈ F(IRl)
originating form the infinite linear space of functions for l kinematic freedoms of the
differential element. These analytical solutions can be developed only for some very
special cases like the vibration of a string or longitudinal elastic waves of a linear
rod. In general a discretization is needed to allow for a numerical computation:
structural motions are approximated by a finite set of ansatz-functions describing
the fields by discrete degrees of freedom q depending on time only.

After establishing the mathematical methods, common discretization and special de-
mands for rigid contact formulations on flexible structures are discussed in this sec-
tion. The simulation of multi-body systems usually focuses on long-term dynamics,
at least in sense of local structural frequencies. Since the spatial and the frequency
resolution of the discretization are closely connected – the finer the discretization
the higher the structural frequencies captured, see for example Bathe [6] – a high
local resolution increases the frequency range of the overall model but diminishes
speeds for numerical time integration. Hence, spatial localized effects like discrete
contacts often are discretized comparatively coarse in flexible multi-body systems.

3.3.1 Discretization

Spanning a finite set within the space F of functions, the discretization approxi-
mates the exact solution of infinite dimension by a combination of ansatz-functions,
reducing the continuous problem to a set of discrete counterparts. For a general
spatial continuum, the field r = r(s,t) ∈ F(IR3) of deformations is described by the
postulated ansatz-function r̂ :

r ≈ r̂(s,q) ∈ IR3 (3.20)

These are also called shape functions and explicitly depend on the position s and the
discrete degrees of freedom q = q(t) ∈ IRn implying the implicit time dependency of
r̂. To guarantee compatibility with the kinematics of the original field r, the ansatz-
functions need to fulfill at least the kinematic boundary conditions. Differentiation
of (3.20) with respect to time leads to the approximation for the velocity field

ṙ ≈
d r̂

d t
=
∂ r̂

∂ q
q̇ = Ĵ ru (3.21)

with the discrete velocities u = q̇ and the Jacobi matrix Ĵ r = Ĵ r(s,q) ∈ IR3×n .

Imposing the discretization on the partial differential equations of motion leads
to a set of ordinary differential equations with the dimension n of the generalized
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velocities u. For doing so, two approaches with different basic concepts can be used
leading to similar results: the Ritz- and the Galerkin-method.

Both methods are discussed on the basis of the exemplary Euler-Bernoulli beam:
here, the longitudinal and transversal deformations are approximated by the linear
combination

(

wx
wz

)

≈

(

ŵx(q,s)
ŵz(q,s)

)

=

(

w̄x
w̄z

)

q . (3.22)

The ansatz respects the kinematic independency of elongation and bending by the
special form of the functions

w̄x = w̄x(s)=(w̄x1(s),w̄x2(s), . . . ,0 ,0 , . . . )

w̄z = w̄z(s)=(0 ,0 , . . . ,w̄z1(s),w̄z2(s), . . . )

associating each degree of freedom qi to either elongation or bending deformation.
The functions w̄ij incorporate the spatial dependency and therefore need to be com-
patible with the boundary conditions (3.19). Introducing (3.22) in equation (3.4),
page 30, provides the cross-sectional position r̂. Ansatz (3.22) yields the velocities

(

ẇx
ẇz

)

≈

(

w̄x
w̄z

)

u = J̄Tu (3.23)

with the Jacobi matrix J̄T = J̄T (s) of translations being a function of s only.

The Ritz-Method

The Ritz-method derives the discretized equations of motion by directly utilizing
the variational formulation which is equivalent to the partial differential equations.
This formulation provided by the Hamilton principle is solved by the Euler-
Lagrange equations (2.2), see section 2.1.1. In section 3.1, these equations were
evaluated in terms of deformation fields to derive the partial differential equations of
motion of the continuum. Now, the functional L = T −V as well as additional loads
are expressed by the approximations (3.20) and (3.21). The Euler-Lagrange
equations then are evaluated in terms of the discrete degrees of freedom q.

Ritz [47] proposed the method for calculating the deflection wz of plates. Using
the linear form wz ≈ w̄

T
z q with w̄z = w̄z(s) for the approximation of the deforma-

tion, he was able to estimate wz by a finite set of weighted ansatz-functions. Ritz
concluded (but did not approve by himself) that the approach provides convergence
for increasing numbers of shape functions which means finer discretizations.

Starting with the definition for the exact kinetic energy (3.11), page 33, of an arbi-
trary system, the introduction of the approximation (3.21) for the velocity yields

T =
1

2

∫

K

(Ĵ ru)T (Ĵ ru)dm =
1

2
uT

∫

K

Ĵ
T

r Ĵ rdm u =
1

2
uTM u . (3.24)
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The position dependency in the Jacobi matrix Ĵ r of translations, equation (3.21), is
evaluated during integration over the body K . Hence, the mass matrix M = M (q)
is function of the generalized positions only.

For the example of the Euler-Bernoulli beam with ansatz (3.23), the specialized
form (3.13a) of the kinetic energy, see page 33, has the discretized approximation

T =
1

2

l∫

0

(

ρA (w̄xu)T (w̄xu) + ρA (w̄zu)T (w̄zu)
)

ds

=
1

2
uT

l∫

0

(

ρA w̄Tx w̄x + ρA w̄Tz w̄z
)

ds u =
1

2
uTM u (3.25)

with the constant mass matrix M . In analogy, the deformation potential (3.14),
page 34, for the linear elastic behavior of the beam is approximated by

V =
1

2

l∫

0

(

EA (w̄′xq)T (w̄′xq) + EI (w̄′′zq)T (w̄′′zq)
)

ds

=
1

2
qT

l∫

0

(

EA (w̄′x)
T w̄′x + EI (w̄′′z)

T w̄′′z

)

ds q =
1

2
qTKRq . (3.26)

Due to the kinematic assumption of linear deformations, the linear material law
and the linear ansatz (3.22), the potential is a quadratic form with the constant
symmetric matrix KR of stiffness4. In general KR might depend upon q.

The variational formulation involving only the Lagrangian L leads to the homoge-
neous differential equation for a continuum without dissipation or external loads. To
include these, the variational work (3.17), page 34, is evaluated with the discretiza-
tion (3.22). Considering the equivalence of work expressed in terms of configuration
or physical space, see page 10, leads to the respective generalized forces:

δW = δWp + δWF + δWR = δqT
(

Qp +QF +QR
)

. (3.27)

The variations of the translational position and the rotational velocity

δr̄ = δ






ŵx
0
ŵz




 =






w̄x
0
w̄z




 δq =J̄T δq (3.28a)

δΩ̄ = δ






0
− ˙̂w′z

0




=






0
−w̄′z

0




 δu=J̄Rδu (3.28b)

give rise to the Jacobi matrices J̄T = J̄T (s) and J̄R = J̄R(s) of translation and
rotation (for angular velocity δΩy = −δẇ′z see page 30). The generalized force Qp

4 The indices R and later G denote specific results of Ritz- and Galerkin-method.
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holding the projection of the distributed loads px and pz results from introducing
the variation of the deformation field in the variational work (3.17a), page 34:

δWp =

l∫

0

(δqT w̄Tx px + δqT w̄Tz pz)ds = δqTQp . (3.29)

The virtual work (3.17b) performed by the discrete forces F i = (Fx,i,0,Fz,i)T and
torques Ri = (0,Ry,i,0)T is extended from boundary loads to loads applied at arbi-
trary positions si within the body leading to the generalized forces QFi and QRi :

δWFi = δqT w̄Tx
∣
∣
∣
si
Fx,i + δqT w̄Tz

∣
∣
∣
si
Fz,i= δqTQFi (3.30a)

δWRi = δqT (−w̄′z)
T
∣
∣
∣
si
Ry,i = δqTQRi (3.30b)

Entering the kinetic energy (3.25), the elastic potential (3.26) and the additional
loads (3.27) into the Euler-Lagrange equation (2.2), page 9, leads to the differ-
ential equation describing the beam dynamics by means of the discretization:

l∫

0

(

ρA w̄Tx w̄x + ρA w̄Tz w̄z
)

ds u̇ +

l∫

0

(

EA (w̄′x)
T w̄′x + EI (w̄′′z)

T w̄′′z

)

ds q =

l∫

0

(

w̄Tx px + w̄Tz pz
)

ds + (3.31)

∑

i

(

w̄TxFx + w̄Tz Fz − (w̄′z)
TRy

)∣
∣
∣
si

Mu̇+KRq = hext,R (3.32)

These are equations in the discrete degrees of freedom q and u. The vector hext,R

holds the projection of all loads not contributing to the potential V .

Weighted Residuals and the Galerkin-Method

From the historical perspective, the Galerkin method can be motivated by the
weighted residual techniques, see Bathe [6]: take D(s) to be the residual express-
ing the noncompliance of the discretization compared to the exact solution of the
partial differential equation. Formulating a general weighted residual technique, the
variational integral

∫

K

δyTDds
!

= 0 (3.33)

with arbitrary test-functions y is claimed to vanish. This corresponds to a weak
formulation and posterior discretization of the partial differential equation. Further-
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more it equals the minimization of the mean square error induced by the approxi-
mation. The number of independent parameters in the test-function must equal the
dimension n of q used for discretization. The Galerkin method starts with the
weak form of the partial differential equation: introducing the ansatz (3.20), which
simultaneously is used as test-function, leads to the discretized equation.

Inserting the ansatz (3.22) with the corresponding velocities (3.23) and accelerations
to the exact equation (3.18) of the Euler-Bernoulli beam yields the residual form

ρA w̄xu̇− (EA w̄′x)
′q − px = Dx (3.34a)

ρA w̄zu̇+ (EI w̄′′z)
′′q − pz = Dz (3.34b)

of the differential equation. The residual D = D(s) = (Dx,Dz)T comprises the
discretization error compared to the original partial differential equation.

To evaluate equation (3.33) of weighted residuals for the beam, the free variation

δy =

(

w̄x
w̄z

)

δa with a ∈ IRn (3.35)

based on the ansatz-functions w̄x and w̄z but with arbitrary parameters a is defined.
Multiplying the equations (3.34) with δy and integrating over the whole body gives
the weighted residual which are required to vanish:

δaT
l∫

0

(

w̄Tx , w̄
T
z

)




ρA w̄xu̇− (EA w̄′x)

′q − px

ρA w̄zu̇+ (EI w̄′′z)
′′q − pz



 ds = 0

These equations must hold for arbitrary variations δa and lead to the differential
equations in the discrete parameters q and u:

l∫

0

(

ρA w̄Tx w̄x + ρA w̄Tz w̄z
)

ds u̇ +

l∫

0

(

−w̄Tx (EA w̄′x)
′ + w̄Tz (EI w̄′′z)

′′
)

ds q =

l∫

0

(

w̄Tx px + w̄Tz pz
)

ds (3.36)

Mu̇+KGq = hext,G (3.37)

The matrix KG is the stiffness matrix, hext,G holds the projection of the volume
loads px and pz. Involving higher spatial derivatives, the Galerkin-method re-
quests ansatz functions being differentiable continuously more often than the Ritz-
method. To get optimal results, the ansatz function should fulfill the complete
boundary conditions (3.19) also including the kinetic ones, see for example Schw-
ertassek and Wallrapp [52]. Non-compliance can lead to large errors in the
internal continuum forces and therefore to large approximation errors. This is ad-
dressed briefly in the following comparison.



42 3 Flexible Bodies in Non-Smooth Multi-Body Systems

Equivalence of Ritz- and Galerkin-Method

In the previous two sections, the Ritz- and the Galerkin-method both were in-
troduced for developing discretized equations of motion: the continuum dynamics
is approximated by means of ansatz-functions. For this purpose, both utilize varia-
tional forms of vanishing value, either being motivated physically by the Hamilton
principle and solved by Euler-Lagrange equations or motivated mathematically
by vanishing residuals in weak form.

For the following comparison of the respective equations of motion (3.31) and (3.36)
of the Euler-Bernoulli beam, the same shape functions w̄i are assumed for
Ritz- and Galerkin-method. Being requested by the Galerkin-method, this
ansatz needs to fulfill the kinematic and the kinetic boundary conditions. Ad hoc,
the compliance of the mass matrices M and the projections of the volume loads px
and pz can be seen. To discuss the remaining terms, the second summand of the
left hand side of the Galerkin equation of motion (3.36) is transformed in analogy
to the integration by parts used for the variation (3.15) of the exact analytic elastic
potential, compare to page 34:

l∫

0

(

−w̄Tx (EA w̄′x)
′ + w̄Tz (EI w̄′′z)

′′
)

ds q

=

l∫

0

(

(w̄′x)
T (EA w̄′x) + (w̄′′z)

T (EI w̄′′z)
)

ds q −
[

w̄Tx (EA w̄′x) + (w̄′z)
T (EI w̄′′z)− w̄

T
z (EI w̄′′z)

′
]l

0
q

=

l∫

0

(

(w̄′x)
T (EA w̄′x) + (w̄′′z)

T (EI w̄′′z)
)

ds q −
[

w̄TxN − (w̄′z)
TRy + w̄TzQ

]l

0

Hereby, the constitutive material law (3.9) of the beam, page 32, is used together
with the relation for transversal section forces Q = dR

d s
= −(EIw′′)′ in slender beams,

see for example Hibbeler [34]. According to the kinetic boundary conditions, N , Q
and R of both ends are the respective external loads. To minimize the approximation
errors these must be captured by the ansatz for the Galerkin-method and should
be regarded as external loads in the Ritz-method pursuant to equation (3.30).

Concluding, the Ritz-method has the advantage that the order of differentiability
of the ansatz functions is “half” that required of the Galerkin-method. Both
methods provide equal results when similar ansatz functions and equal levels of
information concerning deformation and boundary conditions as well as loads are
used. Nevertheless, the definition of the kinetic boundary conditions for general
multi-purpose models like finite elements is not trivial. While both kinetic and
kinematic boundary conditions need to be fulfilled for the Galerkin-method, the
appropriate form used for Ritz-method need not to satisfy the kinetic ones and so
is easier to set up.
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3.3.2 Common Formulations

While the previous section provides the formalism for generating discrete equations
of motion for known ansatz functions, the crucial point of defining these shape func-
tions for the approximation still must be addressed. It is quite obvious that the qual-
ity of the approximation significantly is influenced by the selection of these functions.
In case of locally defined constraints and impacts on the continuum – what especially
is regarded within this work – special considerations during modeling should aim
for preserving the locality of the contact behavior: this is discussed in detail in the
following section 3.3.3. The current section briefly introduces the selection of ansatz
functions commonly used for flexible multi-body systems. Thereby, solely the longi-
tudinal deformation of the flexible beam according to equation (3.18b), page 35, is
used as example with clamping at s = 0 and with free end s = l , see figure 3.5(a).

Considering flexible multi-body systems, a differentiation must be set whether a stan-
dard element of structural mechanics, like beams or shells, or a body of complex
geometry shall be described. While a primitive structure can be completely formu-
lated with high efficiency within the MBS itself, the latter usually are discretized by
external pre-processes like structural finite element programs. For standard struc-
tural elements, the definition of shape functions is discussed in the following. Finally,
the use of an external pre-process is briefly addressed.

Modal Discretization Free of excitations, an elastic body performs deformations
in its natural modes with associated eigenfrequencies giving steady state dynamics.
Commonly known for the clamped-free elastic rod, a separation of variables gives
the analytic solution for the modes being the harmonic series

w̄xi = sin
(

i
π

2l
s
)

with i = 1,2, . . . ,n, . . . ,∞ , (3.38)

see for example Gross et al. [31]. Using the first n modal deformations as ansatz

x

l
s

wx(s,t)

(a) Clamped-free flexible rod

x

wx
w̄x1w̄xiw̄xn

(b) Modal shape functions

x

wx

w̄x0 w̄x1 w̄xi w̄xn

s1 si sn

(c) Finite element discretization

Figure 3.5: Shape functions for the longitudinal deformation of a flexible rod
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functions, what implicates the n lower frequency responses, sharply defines the fre-
quency range of the model. Figure 3.5(b) depicts the natural modes for the longi-
tudinal displacement wx of the clamped-free elastic rod. When no analytic solution
for the natural modes can be found, for example for bodies with complex geometry
or coupled nonlinear partial differential equations, an finite element pre-process can
provide approximative shapes for the use in a modal approach.

The mass matrix and the stiffness matrix of a linear model, which does not account
for large rigid body rotations, take diagonal form. Using an infinite number of
ansatz functions (3.38), arbitrary excitations including the exact solutions and even
singular jumps can be represented, compare to standard mathematical literature.
Concurrently spatial smoothness of the shape functions can be guaranteed since the
deformation modes are continuously differentiable infinite times.

Since the method is based on an eigenvalue analysis of the system, it is limited to
small deflective systems described relatively to one frame of reference for the entire
structure. When this frame of reference is moving to account for large rigid body
motions, the coupling between rigid body motion and deformations leads to addi-
tional non-diagonal entries in the mass matrix. These comprise a dependency on
the generalized position q which can be expressed by rotational transformation ma-
trices. A general presentation of the methodological framework is given by Bremer
and Pfeiffer [10] and Shabana [56]. Due to the closeness of the modeling to the
effects regarded, this method is of very wide propagation especially since often only
small deflections are regarded for flexible multi-body systems. A selective modeling,
for the present example only of longitudinal deformations, is intrinsically provided
and can be used to minimize the model size. Structural elements, mostly beams, are
available in modal discretizations in many of the commercial simulation tools. For
systems with structural variance like closing unilateral contacts or contacts with rel-
ative tangential motion, no constant modes can be identified. A weak approximation
may result using non-complying forms for systems with a modified structure.

Finite Element Discretization The finite element method can be motivated by
two different intentions leading to the same result. One is to use ansatz functions
having values unequal to zero only in a sub-domain Ki, i ∈ {1, . . . ,n} of the entire
body K = ∪iKi. At least the smoothness requirements of the Ritz-method must
be regarded on K for all shape functions. The alternative intuition is dividing the
entire domain K into n sub-volumes Ki of primitive geometry. Approximations
then are developed on the level of one uncoupled finite element Ki. The global
solution is gained after reassembling all elements to the overall model. Therefore,
compatibility of the displacement fields is required at the finite element boundaries
to ensure connectivity and satisfy smoothness requirements.

The more elements are used, the finer a finite element discretization becomes: like
for the modal approach, convergence is ensured since the exact solution including
non-continuous solutions can be represented using an infinite number of elements.
Still, all elements are formulated with the same ansatz functions. Even though
only a linear finite element formulation is discussed below, arbitrary mathematical
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descriptions including nonlinearity in positions and global coordinates can be defined
analogously. For a comprehensive introduction including many specific formulations
of elements see Bathe [6].

For the longitudinal deformation of a flexible rod, the element Ki is defined at
positions si−1 ≤ s < si . According to the Ritz-method, at least C1 smoothness
is required for the shape functions on the entire K except for singular positions
like the element boundaries. This is provided by piecewise linear functions. The
element of length li = si − si−1 implies the nodal displacements ai1 = ŵx(si−1) and
ai2 = ŵx(si) of the boundary sections. The unified formulation uses the normalized
local position ξi = s−si−1

li
within the element. Constant strain εi = (w̄∗xi)

′ = ai2−ai1
li

is assumed leading to the linear deformation field

w̄∗xi =







ai1(1− ξi) + ai2ξi for 0 ≤ ξi ≤ 1

0 everywhere else
. (3.39)

This approximation ensures connectivity since adjacent elements describe equal dis-
placements at their common boundary. Using a mesh of n elements introduces n+1
independent nodal displacements qi = ŵx(si) . Sorting for components of the gener-
alized degrees of freedom q = (. . . ,qi, . . . )T yields the triangular ansatz functions

w̄xi =







0 if s < si−1
s−si−1

li
if si−1 ≤ s < si

si+1−s
li+1

if si ≤ s < si+1

0 if si+1 ≤ s

(3.40)

defined globally. These are shown in figure 3.5(c) for equal element sizes li . The
boundary condition wx(s = 0) due to rigid clamping is regarded by not introducing
the ansatz w̄x0 and the associated q0 , what is depicted by a dashed line.

The absolute nodal coordinate formulation (ANCF) of Shabana [56] is among the
nonlinear large deformation finite element approaches. Based on a subdivision of the
body’s domain, finite elements are formulated with interpolations being nonlinear
in the algebraic position variables s but linear in q. Strain measures are performed
either in moving frames of reference attached to specific elements or referring to the
inertial frame. For an overview on ANCF element formulations see Gerstmayr [27].
Also providing large deflection capabilities, a co-rotational formulation assigning own
frames of reference to each finite element is developed within a redundant coordinate
formulation in section 4.2. There, one aim is to keep the physical interpretability of
the deformation-force-relations at a level of the modal approaches.

Subdividing the domain to finite elements offers the possibility of local mesh refine-
ments. Even though an increased accuracy for example at contact positions can be
achieved, no dynamic mesh adaption is regarded within this thesis. For this work,
contact situations are regarded with changing positions which are a priori unknown.
Dynamic mesh-refinement and reduction back to coarser meshes is topic of active
research and offers high theoretical and numerical challenges, see Wriggers [64].
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External Pre-Processes Aside from developing the mathematical model “by hand”
according to section 3.3.1 with specifically designed shape functions, external pre-
processes can be used to define the discrete model for a flexible body. Most common
is to use structural finite element analyses for example for systems of complex geome-
try or exceptional parameter distributions: the nontrivial evaluation of the integrals
defining the mass matrix and the generalized force vector, compare equations (3.31)
and (3.36), is performed by external programs. The result is reduced to an abstract
set of coordinates q, a mass matrix M and a representation of internal forces h,
which often are described linear in q using a constant stiffness matrix. See for ex-
ample Shabana [56] for a complete presentation of the procedures necessary to
embed the models gained in a finite element code within the multi-body simulation
including large reference motion. The approach is provided in several commercial
tools including the required interfaces: since during the development of a new tech-
nical product construction data often is processed in finite element environments for
strength analysis this approach offers stringent further data processing as well as
high working efficiency.

In contrast to the modal and the finite element approach, discretizations built by
external pre-processors usually do not offer continuous geometric shape informations
for the body. Interactions then are defined implying special key nodes i with discrete
position ri and Jacobi matrix J i . To allow not only for interactions with these
discrete points but for contacts with relative motion on the body, supplementary
interpolation rules will be sketched in section 3.4 providing a continuous shape.

3.3.3 Contact and Discontinuity

Of the methods mentioned previously, the modal and the finite element discretization
are compared regarding contact situations. At this, the instantaneous reaction of the
flexible structure is the central point: rigid contacts are assumed to be point-to-point
interactions without spatial expansion. Locally separate contacts to one structure
are uncoupled kinematically due to the distributed flexibility in between. The local
character of contacts should be preserved by the discretization with respect to the
kinematic assumptions and should not be blurred over wide regions; the decoupling
of separate contacts should be reflected by the discretization. As will be discussed
below, kinematic couplings are introduced by the ansatz functions used. Locality is
requested not only for reasons of better numerical performance: a weak coupling of
different contacts is displayed by a strong diagonal character of the effective mass
matrix G = W TM−1W of contacts, equation (2.37) on page 26, what provides
better solvability of the contact problem. Moreover, the physical interpretation of
the short time reaction corresponds to the disturbance or sound propagation velocity
within the continuum, which in reality is of finite value. This transient behavior must
be displayed by the internal flexible dynamics.

Regarding the locality of the approximation, two extremal variants of shape function
definitions are presented: the modal approach reflects the steady state dynamics of
the entire structure with fixed setup whereas the finite element approach allows for a
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flexible rod
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(a) Setup of contact situation
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(b) Contact reactions

Figure 3.6: Contact situation between rigid bodies and flexible rod

high localization. Models described by external pre-processes will show a behavior in
between, depending upon steps of modal reduction and shape interpolations possibly
performed during model preparation.

Figure 3.6 depicts the contact situation that is used for the comparison of the dis-
cretizations: the rod of figure 3.5(a) with longitudinal flexibility is used with constant
cross section A and constant density ρ. It is charged by the reactions Λ = (Λ1,Λ2)T

representing rigid contacts: at s1 = l
2
, rigid body (1) is fixated; at s2 = l rigid

body (2) impacts. Since these bodies do not directly influence the internal dynam-
ics of the flexible rod or its discrete approximation, the rigid bodies are entirely
represented by their respective contact interactions Λi with the rod.

Assuming initial zero velocities for the rod, only the discrete time of impact is
regarded. The discrete post-impact velocities of the flexible rod write according to
the impact equation (2.18), page 14:

u+ = M−1WΛ (3.41)

For the evaluation, the mass matrix M and the generalized force directions W
are needed depending upon the ansatz functions used. The generalized force vec-
tor h does not influence to instantaneous post-impact behavior. Equation (3.18a),
page 35, describes the time and spatial continuous behavior of the rod that needs
to be discretized. The contact kinematics of flexible bodies is addressed in detail
in the following section 3.4. Here, the generalized force directions associated to the
Lagrange-multipliers Λ are gained according to equation (2.23a), page 17, using
the Jacobi matrices J̄T , equation (3.23) on page 38, of the contact points s1 and
s2 with the contact normal n = −bx = (−1,0,0)T :

W = (W ∗(s = l/2),W ∗(s = l)) with W ∗ = J̄
T
Tn

Inserting the post-impact velocities (3.41) to the modal and finite element discretiza-
tions (3.38) and (3.40) provides the spatial continuous approximations

˙̂w+
x = ˙̂w+

x (s) = w̄xu
+ (3.42)

for the velocity field respectively. This function reflects the instantaneous reaction
of the discretized model. The idealized percussions Λm = (1,0)T on the mid-point
and Λe = (0,1)T on the free end are used to investigate the kinematic interference
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between the respective post-impact velocity fields ˙̂w+
x . When solving the contact

problem, the reactionsΛ are determined in such a way that the kinematic constraints
are fulfilled at the discrete points of contact. To allow for the following comparison
and discussion, ˙̂w+

x are normalized to the amplitude ‘1’ at the contact position.

Modal Discretization A discretization with the n lower frequency modes using
the ansatz (3.38) leads to components Mij = Aρl

∫ 1
0 sin(iπ

2
ξ) sin(j π

2
ξ)dξ of the mass

matrix. Due to the orthogonality of the ansatz functions, the mass matrix

M = Aρl









1
2

0 · · · 0
0 1

2
0

...
. . .

...
0 0 · · · 1

2









∈ IRn×n

is diagonal. The matrix of generalized force directions

W = −

(

sin(π
4
) , . . . , sin(iπ

4
) , . . .

sin(π
2
) , . . . , sin(iπ

2
) , . . .

)T

∈ IRn×2

holds entries alternating with the mode number i and being the modal responses w̄xi
at the respective contact positions. For n = 32 and n = 8 modes, figures 3.7 and 3.8
display in dashed lines the normalized responses to the percussions Λm (fig. 3.7(a)
and 3.8(a)) and Λe (fig. 3.7(b) and 3.8(b)) according to equations (3.41) to (3.42).

Finite Element Discretization Using n uniform linear finite elements with the
ansatz functions (3.40) for n degrees of freedom, whereas wx(0) = 0 is respected by
exclusion of q0, see equation (3.40) on page 45, yields the tridiagonal mass matrix

M =
Aρl

6n














4 1 0 · · · 0 0
1 4 1 · · · 0 0
0 1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 1
0 0 0 · · · 1 2














∈ IRn×n

commonly known, see Bathe [6]. The generalized force directions depend upon the
inner elemental representation ξ of the contact position s1 = l/2 within the element
effected by the mid-point contact:

W = −

(

0 · · · 0 1− ξ ξ 0 · · · 0 0
0 · · · 0 0 0 0 · · · 0 1

)T

∈ IRn×2 with ξ ∈ [0; 1]

Having only single entries unequal to zero reflects the spatial subdivision into el-
ements: only degrees of freedom associated to the elements being involved into
contact are affected directly. Using n = 32 respectively n = 8 nodal degrees of
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Figure 3.7: Normalized responses for modal and local shape functions with n = 32
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Figure 3.8: Normalized responses for modal and local shape functions with n = 8

freedom (for both: ξ = 1), figures 3.7 and 3.8 depict in solid lines the responses ˙̂w+
x

to the percussions Λm (fig. 3.7(a) and 3.8(a)) and Λe (fig. 3.7(b) and 3.8(b)).

Comparison Figures 3.7 and 3.8 show the post-impact velocity fields for the modal
and the finite element discretization. It is quite obvious that finite elements give the
better localization of the spatially discrete contact situation: the mean local decline
is stronger. Even though both approaches converge to a spatial discrete response for
infinitely fine discretizations, both introduce a kinematic coupling over the entire
body K being an undesired trade-of. The coupling of the contact positions s1 and
s2 can be seen by non-vanishing amplitudes for excitation of the respective opposite
position. Thereby the mean amplitudes using a finite element discretization are
lower than for the modal approach. This is taken into the effective mass matrix G
of contacts, equation (2.37) on page 26, in form of a stronger diagonal dominance.
For a single finite element of the elastic rod, the kinematic coupling can be seen in
a single row Aρl

6n
(4,1) of the mass matrix which directly couples the accelerations of

adjacent elemental nodes. The spatial decline in ˙̂w+
x is governed by the corresponding

entries in the inverse mass matrix and correlates with the number of elements in
between the point of reaction application and the point regarded.
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Even though this discussion is based on the simple example of longitudinal flexibility,
the results are equal for models with more complex internal dynamics: the inherent
kinematic coupling of a model is represented by the mass matrix M and the general-
ized force directions W , which both are directly results of the ansatz functions used.
For contact simulations, the ansatz functions should emphasize the local aspect to
allow for a decoupling of multi-contact situations. Additionally, a mass lumping
technique applied on the mass matrix might help in contact simulations providing
a diagonal form for finite elements and thereby complete kinematic decoupling.

3.4 Contact Kinematics of Flexible Systems

Flexible bodies are deformable and therefore hold time-variant contours. Based on
the kinematic assumptions of section 3.1, a finite dimensional approximation for
the dynamics was derived in the previous section. For the description of contact
situations, the body’s kinematics is needed again, see section 2.2: utilizing the ap-
proximation for the shape, positions and velocities of potential contact points need to
be evaluated. Establishing the necessary conditions for contact leads to the relative
gap distances and velocities of contacts. Some special aspects of contact kinematics,
especially the contour definition, are addressed within the current section.

3.4.1 Contour Description

Regarding contact situations with relative motion on the surfaces, additional con-
siderations concerning the smoothness of the approximation for the contours are
necessary: Glocker [29] mentions impacts without collision when contacting sur-
faces offer only insufficient local smoothness less C2. Assume a rigid body sliding
bilaterally constrained on the shapes depicted in figure 3.9: obviously, an impact
occurs when reaching the corner C of shape 3.9(a) being piecewise linear. When
sliding through the joining point O of the attached opposed arcs 3.9(b), the instan-
taneous reverse of the rotation must be interpreted as impact. Therefore, shape
functions used for the discretization of undeformed smooth flexible contours should
offer sufficiently smooth differentiability also for deformed configurations.

For the derivation of the discretized model, two conceptually different approaches
were shown in the previous section: models derived with known shape functions
for the kinematic fields and abstract models from other simulation tools like for

α 6= π

C

(a) Sharpe corner

r1

r2

O

(b) Attached arcs

Figure 3.9: Examples for planar contours with smoothness less C2
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Figure 3.10: Contact kinematics of the Euler-Bernoulli beam

example finite element programs. While the first hold the shape description for a
unitary contact modeling, interactions to models of external pre-processes usually
are restricted to discrete points. Based on these points, continuous contours can be
modeled subsequently by additional interpolations.

Unitary Shape Functions In section 3.1.1, kinematic assumptions for the contin-
uum were introduced. With respect to the discretization applied in section 3.3,
the entire continuous description of the body’s surfaces is provided in a unitary way:
both inner dynamics and contact description can be evaluated using the same spatial
approximations (3.20), page 37.

Figure 3.10 shows the kinematics of a cross section for the Euler-Bernoulli beam
example according to figure 3.2, page 30. Using the kinematic description (3.4),
page 30, gives the local tangent direction to the beam

It = It (s) =
∂ Ir/∂ s

|∂ Ir/∂ s |
= IbKx

defining the local Kx-axis of the coordinate system associated to the cross section at
position s. For small deflections this can also be parametrized using the slope ψ, see
page 30. The planar system performs motions within a plane parametrized by the bi-
normal IbKy = (0,1,0)T . Therefore, the contour normal is In = IbKz = IbKx× IbKy
leading to the attendant coordinate system K given by the transformation matrix

AIK = AIK(s,q) =
(

IbKx , IbKy , IbKz
)

(3.43)

with respect to the inertial system I.

In spite of starting with the special example, the following derivation is presented
in a general form for arbitrary slender structures also undergoing large deflections,
whereas special simplifications for the Euler-Bernoulli beam are not exploited.
The position of the surface point C with respect to the cross-sectional system K is

KrAC = (0,0,− h)T = const. , see figure 3.10. The inertial position of the point C

IrOC = IrOA +AIK KrAC with IrOA = IrOA (s,q) (3.44)

holds the position IrOA of the neutral fiber and rotations AIK of the cross section.
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Referring to equation (2.20) and the relative velocities (2.23), pages 15 ff, the ve-
locities of the contour points are needed for the contact kinematics. Therefor, the
rotational velocity of the cross section is derived as screw-symmetric product5

IΩ̃ = ȦIKA
T
IK , IΩ = JRu (3.45)

see for example Shabana [56] or Ulbrich [60], and is a linear combination of the
generalized velocities u and the structure’s Jacobi matrix JR = JR(s) of rotations.
Building the total derivative of the position (3.44) gives

IvC =
∂ IrIA
∂ q

u+ ȦIK KrAC = JTu+ IΩ̃ AIK KrAC = (JT − I r̃AC JR)u (3.46)

with JT = JT (s,q) being the Jacobi matrix of translations for the neutral fiber and

IrAC = AIK KrAC depending on the coordinates q via the transformation withAIK .
Inserting the velocity (3.46) to the equations leading to the contact velocities (2.23),
page 17, yields the generalized force directions WN and W T based on the approxi-
mation (3.20) used for the discretization of the system dynamics. Thereby the shape
is described consistently for the entire mechanical model of the flexible structure.

Independent Contour Interpolations When using external pre-processes like fi-
nite element codes for the definition of the flexible model, the interactions usually
are restricted to discrete points whereas the continuous shape information is lost.
With a subsequent interpolation based on the discrete interaction points, shapes
can be constructed utilizing arbitrary approaches of computational geometry, see
for example the book [46] of Piegl and Tiller. Additionally, if the approxima-
tion used for the dynamics is known but does not provide contours being sufficiently
smooth, a further interpolation for the description of the deformed shape can be
used for contact kinematics. The contact formulation based on the discretization of
the internal dynamics shown in the previous section is the special case using unitary
shape functions.

Every model for the dynamics of a body provides positions and velocities

IrPi = IrPi (q) (3.47a)

IvPi =
∂ IrPi
∂ q

u= JPiu (3.47b)

for discrete points Pi of interactions depending upon the generalized positions q and
velocities u. The point IrPi is the most primitive contour and can be used directly for
spatially discrete contact applications. For models with linear dynamics, the Jacobi
matrix JPi is constant and equation (3.47a) simplifies to IrPi = IrP0i + JPiq with
a constant undeformed reference position IrP0i .

Many formulations in computational geometry, for example nonuniform rational B-
splines (NURBS), use interpolations which are linear in the positions IrPi of the

5 The operator ξ̃ gives the antisymmetric matrix so that ξ̃a = ξ × a equals the cross product.
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Figure 3.11: Examples for independent contour interpolations

reference points but nonlinear in the contour parameter s defining the interpola-
tion, see again [46]. The continuous shape is defined by reference points i with the
associated weights Ni = Ni(s) only depending on s:

Ir =
∑

i

Ni IrPi (3.48)

Derivation with respect to time gives the velocity of the surface points

Iv =
∑

i

Ni IvPi =
∑

i

(NJP )iu = JCu (3.49)

being linear combinations of the nodal velocities (3.47b) and accordingly of the
body’s generalized velocities u. Due to this linearity, which originates form the
interpolation (3.48), the Jacobi matrix JC = JC(s) is the linear combination of
the nodal Jacobi matrices using the weights Ni depending on the position s.

Associated with the position (3.48) are the tangential directions

Iti =
∂ Ir/∂ si
|∂ Ir/∂ si |

.

In case of a spatial surface, the contour normal n = t1 × t2 is the cross product of
the tangential directions. For one-dimensional contours the second tangent is substi-
tuted by the binormal of the description. Like for every shape description, inserting
the velocities (3.49) holding the associated Jacobian JC into the relative contact
velocities (2.23), page 17, yields the force directions for contact description.

Figure 3.11 depicts two examples: the bilinear interpolation 3.11(a) is based on four
cornering nodes. Smooth differentiability is provided only within the surface: for
a sliding motion to an adjacent bilinear surface, the non-smooth impact situation
discussed for figure 3.9(a) may occur at the common edge. Figure 3.11(b) exemplary
depicts differences between deformations due to a discrete load for a reduced model
with shape interpolation and the original fine finite element mesh.

Applying additional interpolated contours offers the possibility of arbitrary shape
descriptions for the contact kinematics. The interpolations do not need to be spe-
cialized to demands of the discretization of the equations of motion but can deal
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with the requirements of contact problems: these are efficiency and robustness for
contact point finding as well as smooth surface description. Thereby, interpolations
possibly leading to high oscillations like for example high order polynomials should
be avoided. The inconsistency between the discretizations of the equations of mo-
tion and the contact surface leads – like every discretization – to approximation
errors: these need to be regarded during modeling and can be reduced using fine
interpolations and sophisticated techniques of computational geometry.

3.4.2 Contact Conditions

With the continuous shape established in the previous section for all modeling ap-
proaches, only some aspects of contact point finding shall be mentioned in addition
to section 2.2. Due to the transient shape, a flexible contour can not a priori be
known to be convex or concave. Therefore the number of solutions for the contour
positions s(i) of the necessary contact condition (2.21), page 16,

(

T (i)
)T (

r
(2)
OC − r

(1)
OC

)

= 0 ∀ i ∈ 1,2

is in general unknown for a contact situation of the bodies (1) and (2). The contour

points r(i)
OC = r

(i)
OC(s(i),q(i)) as well as the tangent matrices T (i) = T (i)(s(i),q(i)) are

functions of the body’s generalized coordinates respectively.

Figure 3.12(a) illustrates condition (2.21) for the example of a planar beam struc-
ture (1) with scalar contour parameter s and a point obstacle (2). Configurations
leading to different numbers p of solutions for the same deformation state of the
beam are depicted in figure 3.12(b). In case of multiple solutions, the solution giv-
ing the absolute minimal gap distance gN , equation (2.22) on page 16, between the
obstacle and the corresponding point on the structure has to be chosen. Robust nu-
meric algorithms for finding the corresponding contact points are briefly discussed
in section 5.2.

point obstacle

beam structure

s

gN

r
(1)
OC

r
(2)
OC

t(1)

−n(1)

(a) Contact geometry

point obstacle

normal on structure

p = 0 p = 1 p = 2

(b) Contact configurations leading to different numbers p
of extremal relative distances

Figure 3.12: Contact situations for beam structure
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3.5 Remarks on Implementation

For performing numerical simulations, the models derived according to the current
chapter need to be implemented in a software environment. Some concluding re-
marks aiming for an object-orientation motivated by the physical structure of the
systems shall help the readers own work. The remarks refer to the development of
the module for flexible bodies in the MBSim software package written in C++ and
especially to the class BodyFlexible. This base class provides central functionality
for the specific implementation of special models.

As shown in the literature and in the previous sections of this thesis, the dynamics of
a single body (i) in a multi-body system can be decomposed into parts of uncoupled
internal dynamics and interactions k with the surrounding applied at discrete body
points sk. Sorting according to this, the equations of motion of the body (i) write

M (i)du(i) − h
(i)
intdt = h

(i)
extdt+W (i)dΛ =

∑

k

J
(i)
k

[(

F

R

)

dt+

(

f

m

)

dΛ

]

k

. (3.50)

The terms on the left depend exclusively on the state q(i) and u(i) of the body it-
self. Generalized forces due to the uncoupled dynamics of the body are represented
by h(i)

int , single-valued interactions of flexible contacts and applied loads are collected
in h(i)

ext . The interactions are projected from physical into configuration space by the
Jacobi matrix J (i)

k = J (i)(sk) = (JTk,JRk)(i) associated to the point sk of applica-
tion. The Jacobian exclusively depends on the coordinates q(i) and the position sk
and holds translational and rotational parts. The evaluation of interactions includ-
ing additional loads can be separated from the body implementation: forces F and
torques R with single-valued force laws as well as the normalized direction matri-
ces f and m of translational and rotational set-valued interactions are provided by
modules evaluating the kinematics of the interaction points. Thereby, a set-valued
interaction k imposes the Lagrange multipliers dΛk to the MBS.

Time Integration

Multi-Body System

tl → tl+1

overall management

Mdu = hdt+WdΛ

n m

Body (i)
evaluation of body-specific magnitudes; projec-

tion of functional loads giving h
(i)
ext

; projection

of force directions to W
(i)

q(i),u(i); M (i),h(i),W (i)

interface k

c×
J

(i)
k ; rk,Ak,vk,Ωk

Interaction j
evaluation of associated kinematics; speci-
fy single-valued forces and force directions

s
(i)
k ; F ,R,f ,m

Figure 3.13: Diagram of the object structure according to equation (3.50)
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Figure 3.13 illustrates the responsibilities within a multi-body system as realized in
MBSim. Components which can be encapsulated apart from modeling and software
realization for the specific body are shaded in gray: the overall MBS comprehends
all bodies and interactions and is connected to the time integration algorithm. This
includes the solution of constrained systems. Not depicted are further MBS elements
like for example control devices.
During evaluation of the current state, the body (i) provides the mass matrix M (i) ,
the generalized force vector h(i) and the generalized reaction directions W (i) . For
a flexible body, the model-specific implementation for the mass matrix M (i), the
vector h(i)

int and the Jacobi matrices J (i)
k are evaluated. Centrally implemented for

all flexible bodies in the class BodyFlexible, the generalized forces and directions

h(i) = h
(i)
int +

∑

k

[

J (i)

(

F

R

)]

k

and W (i) =
∑

k

[

J (i)

(

f

m

)]

k

are synthesized.
The inertial loads F k and Rk and the directions f k and mk are defined by separate
modules accounting for the interaction k specifically. These evaluate the respective
body kinematics which is specific to single models: for the material point sk, the
inertial position Ir

(i)
k = Ir

(i)
k (sk) and orientation (AIC)(i)

k = (AIC)(i)
k (sk) need to

be provided by the body. In case of relative motion of contacting surfaces, the
position is processed during the search of the contact points s(i)

k on both bodies and

calculation of the distance gN . The velocities Iv
(i)
k = J

(i)
Tku

(i) and IΩ
(i)
k = J

(i)
Rku

(i)

are linear projections of the generalized velocities u(i) by the Jacobi matrices of
translation and rotation.



4 Analytic System Reduction

The previous chapters provide methods for the description of dynamic systems with
constraints. Among these, the holonomic bilateral contact takes a special role of high
technical relevance: it restricts the positions and motions of the associated bodies
relative to each other for all states. As previously discussed, bilateral constraints
can be imposed by associated constraint functions and Lagrange multipliers. Al-
ternatively, a specialized parametrization of the kinematics might be used implicitly
fulfilling restrictions and resulting in equations of motion free of these constraints.
This can be achieved either by an adopted choice of the generalized coordinates dur-
ing model formulation or by a subsequent transformation of the free-body equations
of motion to a reduced coordinate set. The resulting equations use less degrees of
freedom than for the equivalent bilateral constrained system.

A relative parametrization of the kinematic values often gives an intuitive way to un-
constrained dynamics. In section 4.1, an abstract general formulation for a relative
kinematic description is set up for tree-structured systems. The free-body equations
are transformed to minimal coordinate representations with analytic evaluation of
the constraint equations. The framework afterwards is applied to the description of
rigid bodies on a preceding flexible structure. For modeling a single body in redun-
dant coordinate sets, section 4.2 provides the adequate formulation along with two
attendant examples. Being necessarily constraint to provide a unitary description of
the system, the redundant modeling leads to similar structures of the equations as
for relative kinematics. For a single finite element the easy access to the equations
of motion in one coordinate set and the coupling to adjacent elements provided
intrinsically for a second parametrization can be a motivation for this approach.

4.1 Relative Kinematics

In the previous chapter the kinematic parametrization referred directly to an inertial
system. For bodies moving relatively constrained to each other, a redundancy in the
kinematic description can be avoided by referring to the preceding bodies: for tree
structured systems, the joint coordinates provide an intuitive success to realize this
relative kinematic approach. Taking advantage of the tree structure provides mini-
mal dimension for the vector of generalized coordinates and can be used to construct
recursive algorithms of high efficiency for the solution of the system equations. Ini-
tially developed for rigid body systems, especially robots, see Vereshchagin [61]
and Brandl et al. [9], Bremer and Pfeiffer [10] and Shabana [54] extend
the joint coordinate approach to flexible multi-body systems. Förg [19] also gives
formulations for non-smooth dynamics of rigid tree-structured systems.
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In a first step, known equations of motion are assumed for the two bodies of rel-
ative kinematics. Using a re-parametrization of one body that implicitly fulfills
the constraint equations, the equations of motion are projected to a representation
free of the specific constraint. The framework is applied to the relative kinematic
description of rigid bodies on flexible structures.

4.1.1 General System Description

The uncoupled dynamics of the two bodies (i), i = 1,2 with relative motion is de-

scribed in terms of own independent sets of coordinates p(i) ∈ IRv
(i)

and veloci-
ties ṗ(i) used for the kinematic parametrization, forming v(i) degrees of freedom for
each body. For a rigid body, a native form of kinematic parametrization would
for example be the three spatial translations and three Kardan-angles. For the
following derivation, the equations of motion with the common form

M (1)p̈(1) = h(1) +W (1)λ(1) ∈ IRv
(1)

(4.1a)

M (2)p̈(2) = h(2) +W (2)λ(2) ∈ IRv
(2)

(4.1b)

are assumed to be known. The mass matrices M (i) = M (i)(p(i)) , the generalized
forces h(i) = h(i)(p(i),ṗ(i),t) and the generalized force directions W (i) = W (i)(p(i))
depend on the respective body-parameters p(i) and ṗ(i) exclusively.

For a tree structured system, exactly one predecessor can be identified for each body.
The inertial system is the reference for the first body called root. Opening a chain
that forms a closed loop at one connection and describing the removed kinematic
relation as bilateral constraint releases the remaining system tree-structured. As-
suming body (1) to be the root, the original parametrization p(1) provides a set of
minimal coordinates q(1) with n(1) = v(1) degrees of freedom:

p(1) = q(1) ∈ IRn
(1)

(4.2)

In contrast, the kinematic parameters of the subsequent body (2) need to be ex-
pressed involving the generalized coordinates q(1) of body (1) and own coordi-

nates q(2) ∈ IRn
(2)

describing the relative motion. Therewith, the positions

p(2) = p(2)(q(1),q(2)) = p(2)(q) ∈ IRv
(2)

(4.3)

of equation (4.1b) depend on all generalized coordinates q = ((q(1))T ,(q(2))T )T .

The velocities ṗ(i) and accelerations p̈(i) in equations (4.1) are gained by derivation
of the equations (4.2) and (4.3) with respect to time. Expressed in terms of the
generalized coordinates q, velocities u and accelerations u̇ these are:

ṗ(1) =
∂ p(1)

∂ q(1)
u(1) +

∂ p(1)

∂ q(2)
u(2) = (J11,J12)u = (E,0)u (4.4a)

p̈(1) = (J11,J12)u̇+ (J̇11,J̇12)u= (E,0)u̇ (4.4b)
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ṗ(2) =
∂ p(2)

∂ q(1)
u(1) +

∂ p(2)

∂ q(2)
u(2) = (J21,J22)u (4.4c)

p̈(2) = (J21,J22)u̇+ (J̇21,J̇22)u (4.4d)

The matrix E is the identity, J ij = J ij(q) are Jacobi matrices transforming from
the configuration space of body (j) to the space of the parameters p(i) of body (i).

Implicitly fulfilling the kinematic restrictions between the bodies (1) and (2), the
relative description provides validity of the respective bilateral constraint. Corre-
sponding to the Jourdain principle, see Pfeiffer [44], the mutual reactions re-
lated to this constraint do not contribute to the overall balance of virtual power: the
reactions do not occur when projecting into minimal configuration space. Inserting
the relations (4.4) to the original equations of motion (4.1) yields the equations of
the coupled system. The over-all Jacobi matrix J is used to define the resulting
generalized mass matrix, the vector of generalized forces and the generalized force
directions of the entire system:

J =

(

J11 J12

J21 J22

)

=

(

E 0

J21 J22

)

∈ IR(v1+v2)×(n1+n2) (4.5)

M = JT
(

M (1) 0

0 M (2)

)

J

h = JT
[(

h(1)

h(2)

)

−

(

M (1) 0

0 M (2)

)

J̇u

]

, W = JT
(

W (1)

W (2)

)

The generalized force vector h comprises projections of gyroscopic termsM (i)J̇ iju
(j)

due to the relative kinematic formulation. The entire system equations are

Mq̈ = h+Wλ (4.6)

with the reactions λ = ((λ(1))T ,(λ(2))T )T . In consequence of the system’s tree-
structure, the Jacobi matrix (4.5) is lower block-triangular. This reflects the for-
ward kinematic property: the motion of a body depends upon own parameters as
well as the state of the predecessors. The resulting equations of motion are:

(

M (1) + JT21M
(2)J21 JT21M

(2)J22

JT22M
(2)J21 JT22M

(2)J22

)(

u̇(1)

u̇(2)

)

=




h(1) +W (1)λ(1) + JT21

(

h(2) −M (2)(J̇21u
(1) + J̇22u

(2)) +W (2)λ(2)
)

JT22

(

h(2) −M (2)(J̇21u
(1) + J̇22u

(2)) +W (2)λ(2)
)





(4.7)

Due to the reduction to smaller parameter-sets and the kinematic structure, the
mass matrix M and the generalized force directions W are of dense structure. In-
terpreting (4.7) as equation of motion of a new root in sense of equation (4.1a),
multi-body trees can be build recursively. The projective Newton-Euler method
for rigid body systems is included in equation (4.7), compare to Ulbrich [60].
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Applying specific models to the equations (4.1), the recursive algorithms of Brandl
et al. [9] and Shabana [54] can be used for the solution of the system equations
also with extension to non-smooth dynamics provided by Förg [19]. Thereby, O(n)-
methods with computational effort proportional to the number n of bodies can be
constructed exploiting the kinematic forward property that occurs in the triangular
structure of the Jacobi matrix (4.5). The present work does not aim to reformulate
these recursive algorithms which can be taken from the referred literature.

4.1.2 Rigid Bodies on Flexible Structures

Being of high technical relevance, the kinematics of a rigid body (2) moving relatively
to a flexible parent body (1) is investigated. Examples can be a mass sliding on a
cable or the rigid elements of a push-belt CVT, which is studied in section 6.5.
Methods for deriving the equations of motion for a flexible body are provided in
chapter 3: the equations (4.1a) are assumed to be known. The Newton-Euler
equations describe spatial dynamics of the rigid body (2), see Ulbrich [60]. Refer-
ring to an arbitrary body-fixed reference point C , in general not being identical to
the center S of mass with relative position rCS , the equations of motion are:

(

mE mr̃SC
mr̃CS ΘC

)(2) (

aC
Ψ

)(2)

=

(

−mΩ̃
2
rCS + F C

−Ω̃ΘCΩ̃ +RC

)(2)

+W (2)λ (4.8a)

M (2)p̈(2) = h(2) +W (2)λ (4.8b)

The force F C and the moment RC are the resulting external loads with respect to C,
a

(2)
C ∈ IR3 and Ψ (2) = Ω̇(2) ∈ IR3 are the translational and rotational accelerations.

In order to gain constancy of the inertia tensor ΘC and therewith of the mass ma-
trixM (2) , the equations (4.8) usually refer to a moving frame K fixed to body (2).

Kinematics

To evaluate equation (4.8), the translational and rotational accelerations a(2)
C and

Ψ (2) need to be parametrized. Therefore, also the position r(2)
IC and the orientation

matrix A(2)
IK must be developed leading to translational and rotational velocities v(2)

C

and Ω(2). Since mainly terms related to body (2) are discussed in the following
paragraphs, the index (2) marking this relation will mostly be dropped except for
the minimal state variables q(2) and u(2) and Jacobi matrices J (2)

T and J (2)
R .

Adapting the classical approach of using joint coordinates for the relative kinematic
description, the material position s of the reference point C on the flexible body is
used as translational parameter of the rigid body1, compare to figure 4.1(a):

s = s0 + J (2)
T q

(2) , ṡ = J
(2)
T u

(2) (4.9)

1 Section 3.1.1 introduced the material coordinate s as an algebraic variable; therefore no time
derivatives occurred. Here, ṡ are rigid body velocities measured on the deformed reference.
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Figure 4.1: Relative kinematics of rigid body on a beam structure

The Jacobi-matrix J (2)
T = const. of translations refers to the structural directions

of the flexible body. The number of rows of J (2)
T is limited by the dimensionality of

the flexible structure, see section 3.1.1, whereas zero rows correspond to a constant
position s0 . The coordinate s coevally marks the time-varying contact position that
would be used for a bilateral description. Figure 4.1(a) depicts exemplary a flexible
beam structure with scalar relative position s. With the parametrization (4.9), the
minimal coordinates q(2) = ((qTT ,q

T
R)T )(2) and velocities u(2) = ((uTT ,u

T
R)T )(2) are

build by parts of translation and rotation with respective Jacobi-matrices. The
matrix of relative rotation APK = APK(q(2)) refers to the coordinate system P
of the preceding body: arbitrary descriptions including redundant parametrizations
can be used, see for example Geradin and Cardona [26].

Angular Position and Velocity The angular position of the rigid body is described
with respect to the coordinate system P provided by the predecessor at the joined
point C, see equation (3.43), page 51, with P replacing K. At the position s the
attendant system P is described by the transformation matrix AIP = AIP (s,q(1))
holding tangential and normal directions on the structure. Using the matrix APK
of relative rotation, the absolute rotational position of body (2) is

AIK = AIPAPK . (4.10)

The rotational velocity is derived as screw-symmetric product implying these trans-
formation matrices, see Pfeiffer [44] and Shabana [56]:

IΩ̃ = ȦIKA
T
IK = [ ȦIPAPK +AIP ȦPK ]ATIK

= [ ȦIPAPKAKPAPI+AIP ȦPKAKPAPI ]

= IΩ̃IP + IΩ̃PK

The component IΩIP describes the absolute motion of the moving frame P of refer-
ence, IΩPK is the relative rotational velocity of body (2) referring to P . According
to classic rigid body formalisms, the latter is parametrized with respect to the body
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fixed frame K by the matrix KJ
(2)
R = const. of rotation directions, see Förg [19]:

KΩPK = KJ
(2)
R u

(2) , IΩPK = AIK KΩPK

Due to the total differentiation ȦIP , the reference velocity IΩ̃IP = ȦIPA
T
IP holds

contributions with rates u(1) of changes in q(1) and parts with rates ṡ: decomposition
of these gives IΩIP = IΩC + IΩκ . The rotational velocity of the flexible body uses
the Jacobi matrix J (1)

R = J
(1)
R (q(1),s) of rotations, see equation (3.45) on page 52:

IΩC = J
(1)
R u

(1)

The component IΩκ = IΩκ (q(1),s,ṡ) holds rotations of the frame P due to trans-
lations of the rigid on the parent body: since AIP depends on the position s , a
variation ∆s of the relative position induces a variation ∆AIP . Figure 4.1(b) illus-
trates the variation K2 → K

∗
2 on a beam structure: the rotational velocities induced

by translations can be decomposed by single components si of the relative position
and are defined in analogy to the rotational velocity as screw product:

IΩ̃κ,i =
∂AIP
∂ si

ṡiA
T
IP = Iκ̃i ṡi with Iκ̃i =

∂AIP
∂ si

ATIP

Summing up the components i, the rotational velocity induced by ṡ is

IΩκ =
∑

i

IΩκ,i = IK ṡ with IK = ( . . . , Iκi , . . . ) ,

whereas the matrix IK = IK (q(1),s) holds the spatial curvatures of body (1).

Using the relations above, the rotational velocity of body (2) is:

IΩ = IΩC+IΩκ+IΩPK =J (1)
R u

(1) +
(

IK J
(2)
T +AIK KJ

(2)
R

)

u(2) (4.11a)

KΩ = AKI IΩ =ATIKJ
(1)
R u

(1)+
(

ATIK IKJ
(2)
T + KJ

(2)
R

)

u(2) (4.11b)

Translational Position and Velocity The point of reference C of the rigid body
is identical to the structural point described by s , compare figure 4.1:

IrOC = Ir
(1)
OC = Ir

(1)
OC (q(1),s) (4.12)

The translational velocity is the total derivative with respect to time:

IvC =
∂ IrOC
∂ q(1)

u(1) +
∂ IrOC
∂ s

ṡ = J
(1)
T u

(1) + IS J
(2)
T u

(2) (4.13a)

KvC = AKI Iv
(2)
C (4.13b)

The matrix IS = IS (q(1),s) = ∂ IrOC/∂ s holds the tangential directions on the
structure at s. Due to the deformations of the flexible structure in general these are
not of unit length. The columns of IS align with columns of AIP .
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Accelerations Using the rotational velocity (4.11a) referring to the inertial sys-
tem I, the angular acceleration is the total derivative with respect to time:

IΨ = J
(1)
R u̇

(1) + J̇
(1)

R u
(1)+

(

IKJ
(2)
T +AIK KJ

(2)
R

)

u̇(2) +
(

IK̇ J
(2)
T + ȦIK KJ

(2)
R

)

u(2)

The transformation to the system K utilizes AKIȦIK = AKI IΩ̃ AIK = KΩ̃ :

KΨ = AKIJ
(1)
R u̇

(1) +AKIJ̇
(1)

R u
(1)+

(

AKI IK J
(2)
T + KJ

(2)
R

)

u̇(2) +
(

AKI IK̇ J
(2)
T + KΩ̃

(2)
KJ

(2)
R

)

u(2) (4.14)

Analogously, the translational acceleration is the derivate of equation (4.13a):

IaC = J
(1)
T u̇

(1) + J̇
(1)

T u
(1) + IS J

(2)
T u̇

(2) + IṠ J
(2)
T u

(2)

KaC = AKI IaC (4.15)

Assuming at least C2 smoothness of the flexible body shape, the time derivative of

IS can be computed by permutation of the order of differentiation:

IṠ =
∂2
IrOC

∂ q(1) ∂ s
u(1) +

∂2
IrOC

∂ s2
ṡ =

∂ IvC
∂ s

The velocity IvC of the reference point, equation (4.13a), accounts for ṡ.

Projection

To evaluate the equations for the rigid body on its flexible predecessor, the frame-
work developed in section 4.1.1 is employed. Due to the tree structure, the flexible
body is parametrized by own independent coordinates: equations (4.4) hold with
J11 = E and J12 = 0. Based on the positions (4.10) and (4.12), velocities (4.11b)
and (4.13b) and accelerations (4.14) and (4.15), all depending on the cumulative
generalized coordinates q = ((q(1))T ,(q(2))T )T and velocities u = ((u(1))T ,(u(2))T )T ,
the Jacobi matrices

J21 =

(

AKI J
(1)
T

AKI J
(1)
R

)

, J̇21 =




AKI J̇

(1)

T

AKI J̇
(1)

R





J22 =

(

AKI IS J
(2)
T

AKI IKJ
(2)
T + KJ

(2)
R

)

, J̇22 =

(

AKI IṠ J
(2)
T

AKI IK̇ J
(2)
T + KΩ̃ KJ

(2)
R

)

project between physical and configuration space of the rigid body (2). Using the
mass matrix M (2) , the force vector h(2) and the generalized force directions W (2)

of the equations (4.8) with reference to a body-fixed frame K, the over-all equations
of motion (4.7) of the bodies (1) and (2) can be assembled.
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4.2 The Redundant Coordinate Method

The selective modeling of different physical effects with an associated parametriza-
tion, for example of transversal and longitudinal dynamics of slender structures, is
one advantage of the classic floating frame of reference formulations. These advan-
tages are related to the describing set of minimal coordinates which provide equa-
tions of motion in a structured and compact form. As a drawback, these coordinates
in general can not be used for coupling different finite elements to represent one dis-
cretized structure without imposing equality constraints by Lagrange-multipliers.
Instead, a redundant coordinate set incorporating nodal degrees of freedom can be
introduced: the nodes are part of adjacent elements and therefore provide connectiv-
ity. Since the overall description must be unique, both sets are coupled by equality
conditions. The redundant coordinate method (RCM) uses transformations simi-
lar to the analytic reduction of bilateral constraints by utilizing relative kinematic
descriptions. The advantages of both parametrizations can be preserved when de-
veloping the equations of motion for a single finite element2.

In a first step, the mathematical formulation is prepared connecting two coordinate
sets used for one single element. Thereafter, two examples demonstrate the me-
thodical concept: a one-dimensional bar element is shown to describe the selection
of coordinates and the development of the equations of motion. Secondly, a finite
element for free planar motion of elastic beams is developed: through this model
the RCM was introduced by Zander and Ulbrich [68]. Even though only a bar
and a beam are discussed at this point, the proposed formalism is not restricted to
one dimensional structures.

4.2.1 Transformations between Coordinate Sets

Single Finite Element Using different redundant coordinate sets qi and qg for
the description of one element, both sets have to consistently describe all modeled
physical effects. In anticipation of the physical interpretation the indices i and g
denote sets used for internal dynamics and global couplings. The equation

0 = f (qi,qg) ∈ IRn (4.16)

states the interactive restriction incorporating the sets qi,qg ∈ IRn of n degrees of
freedom. Total derivation with respect to time yields relations for the velocities:

0 =
∂ f

∂ qi

ui +
∂ f

∂ qg

ug = Diui +Dgug (4.17)

Uniqueness and integrity of the description by the redundant sets is guaranteed if
the Jacobi matrices Di = Di(qi,qg) and Dg = Dg(qi,qg) are regular for all qi

2 Even though the same name is used here, the intension is different for classic finite element
formulations: starting from a segmentation of the body domain, local ansatz-functions define
approximations for the primitive parts called the finite elements, see page 44 ff.
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and qg. Then equation (4.16) is bĳective and an explicit form qi = f̃(qg) exists. If
found analytically, this explicit form should be used for implementation to avoid the
necessity of numerical root finding for the solution of the transformation (4.16).

With Di being regular, equation (4.17) is solved for the internal velocities

ui = J igug with J ig = −
(

D−1
i Dg

)

=
∂ qi

∂ qg

=
∂ ui

∂ ug

. (4.18)

The Jacobi matrix J ig describes the linear dependency between ui and ug common
for all relations between velocity representations. Further derivation yields

u̇i = J igu̇g + J̇ igug . (4.19)

The accelerations u̇i hold linear projections of the accelerations u̇g and gyroscopic
terms J̇ igug, compare to the relative kinematic equation (4.4), page 58. These re-
dundant kinematic values are needed for the evaluation of the equations of motion.

In terms of the internal coordinate set qi the equations of motion

M iu̇i = hi +W iλ (4.20)

of a single finite element are derived with the mass matrix M i = M i(qi) , the vector
of smooth forces hi(qi,ui,t) and the force directions W i = W i(qi) . Like for the
relative kinematic description, the contact forces λ only include constraints between
different physical bodies but no forces resulting from the coupling of adjacent finite
elements, see Jourdain-principle on page 59. Using equation (4.19), the equations
of motion (4.20) are transferred to the global coordinate set qg:

JTigM iJ ig
︸ ︷︷ ︸

Mg

u̇g = JTig

(

hi −M iJ̇ igug

)

︸ ︷︷ ︸

hg

+JTigW i
︸ ︷︷ ︸

W g

λ . (4.21)

This matches the projection (4.6), page 59, for a re-parametrization p = p(q) of a
single body. In order to evaluate the equations of motion, qi and ui are calculated
depending on qg and ug using equations (4.16) and (4.18). Knowing M i, hi and
W i of equation (4.20), the global accelerations u̇g result of equation (4.21).

Finite Element Assembly For a structure discretized by finite elements, the global
coordinate set q(j)

g of a single element j is a subset of all coordinates qs ∈ IRm :

q(j)
g = B(j)qs with B(j) ∈ IRn×m (4.22)

The selection matrix B(j) of full row rank holds ‘0’ and a single ‘1’ entry per row;
the most simple structure is B(j) = (0, . . . ,E, . . . ,0) representing local incremental
order of the elemental coordinates. One node may be associated to different elements
leading to overlapping of different q(j)

g , compare to finite element discretization
page 44 f. Processing the structure’s coordinates qs in relations (4.16) and (4.18)
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of the element j equals the selection of the associated parameters q(j)
g and the

subsequent transformation. The constraint relations are:

0 = f̂ (q(j)
i ,qs) = f (j)(q(j)

i ,B(j)q(j)
s )

u
(j)
i = J

(j)
is us with J

(j)
is =

∂ q
(j)
i

∂ qs

= J
(j)
ig B

(j)

The Jacobi-matrix J is holds structured zero entries according to B(j) , J (j)
ig is the

Jacobian for the single finite element according to equation (4.18)

According to section 3.3.2, the equations of motion for the entire structure discretized
by finite elements is gained by summation of the contributions of all elements:

∑

j

(

JTisM iJ is

)(j)

︸ ︷︷ ︸

Ms

u̇s =
∑

j

(

JTis

(

hi −M iJ̇ isus

))(j)

︸ ︷︷ ︸

hs

+
∑

j

(

JTis W i

)(j)

︸ ︷︷ ︸

W s

λ (4.23)

To minimize the computational effort, the implementation should use index-scanning
in the Jacobi matrices J (j)

is to utilize the sparse structure induced by B(j): opera-
tions on zero-entries can be avoided efficiently. Due to the structure of the Jacobi-
matrices, the mass matrix M s always has a band diagonal structure.

4.2.2 A One-Dimensional Example

A bar element with constant cross-sectional properties, as it was instantiated in
section 3.3.2, page 43, is studied to demonstrate the advances of the proclaimed
method. The element is formulated assuming homogeneous strain parametrized by
two internal and two global degrees of freedom which are illustrated in figure 4.2.

The global position xS of the center of mass and the elastic strain ε are chosen as in-
ternal coordinates qi = (xS,ε)T . In difference to classic finite element approaches for
small deformations – where usually nodal displacements are used as discrete degrees
of freedom – the global positions x1 and x2 form the global coordinates qg = (x1,x2)T .
According to figure 4.2, the equality constraint (4.16) takes the form

0 =

(

xS −
1
2
(x2 + x1)

l0 (1 + ε)− (x2 − x1)

)

An explicit expression for qi can be given, leading to the Jacobian (4.18):

qi =

(
1
2
(x1 + x2)

1
l0

(x2 − x1)− 1

)

, J ig =

(
1
2

1
2

− 1
l0

1
l0

)

Since J ig is constant, J̇ ig is zero.
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x x1 x2xS

(1 + ε) l0

s

Figure 4.2: One-dimensional example with redundant coordinates

Depending on qi and ui , the position wx(qi,s) and velocity ẇx(qi,ui,s) of a cross
section at the position s ∈ [− l0

2
, l0

2
] within the element are formulated:

wx = xS + (1 + ε) s , ẇx = ẋS + ε̇ s

Therewith, the kinetic and potential energies of the element are

T =
1

2
ρA

l0/2∫

−l0/2

(ẇx(s))
2ds and V =

1

2
EA

l0/2∫

−l0/2

ε2ds .

Here, A is the area of the cross section, ρ gives the density of the material and E
the modulus of elasticity. Evaluating the Lagrange equations (2.2), page 9, yields
the mass matrix and the generalized force vector for the internal coordinates:

M i =

(

m 0

0 ml20
12

)

, hi =

(

0
−EAl0 ε

)

Evaluating the transformation (4.21) with the specified terms leads to the global
forms of the mass matrix and the force vector for a single finite element:

M g = m

(
1
3

1
6

1
6

1
3

)

, hg =
EA

l0

(

(x2 − x1 − l0)
−(x2 − x1 − l0)

)

Except for using global positions instead of displacements, these are the well-known
results for the bar element, see Bathe [6]. Even though this is a linear problem,
the internal forms of the mass matrix and the force vector are more compact than
the global equivalents. If nonlinearities occur for example due to large deformations,
gyroscopic effects or the coupling of longitudinal and transversal deformations of
a beam, the difference in complexity between an internal and a global formulation
increases rapidly. Using the proclaimed method especially the multiple occurrence of
equal terms like (x2−x1− l0) can be reduced leading to less computational effort.

4.2.3 A Formulation for Planar Slender Beams

The formulation of beam finite elements with own floating frames of reference leads
to a co-rotational formulation and allows for geometrical large deformations of the
discretized structure. To gain compact forms of the equations of motion and to keep
the parametrization close to the described physical effects, a redundant coordinate
formulation is used: the internal coordinates describe the element dynamics in a com-
pact form of rigid body movement and superposed elastic deformations; the global
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coordinates hold the positions of both nodes at the element endpoints and selected
bending deflections. The planar element is based on the Bernoulli-hypothesis for
slender beams and includes longitudinal strain. The focus of the approximation is
set on the bending what prevails the deformation behavior.

This RCM formulation for planar slender beams was introduced by Zander and
Ulbrich in [68] and proofed to provide high computational performance in [67]. Ex-
act rigid body motion and geometrical large deformations are captured. Schindler
et al. [51] extend the planar beam model to full spatial motion.

Shape Functions and Elemental Coordinate Sets The element of undeformed
length l0 is described in two intervals I and II, see figure 4.3(a). For each interval a
specific coordinate system is used originated at the mid-point and aligned tangential
to the beams neutral fiber at the end nodes. The Lagrange coordinate s runs
along the local xI - and xII-axis and refers to positions within the element whereas
s = 0 marks the mid-point. The ansatz for the deformation is described in the two
intervals: two polynomials wI = wI(qi,s) and wII = wII(qi,s) are used as bending
shape functions of the element. Homogeneous strain is assumed within the element.
The internal degrees of freedom (DOF) qi are closely related to physical effects like
rigid body movement or bending:

qi =
(

xS, yS, ϕS
︸ ︷︷ ︸

rigid body DOFs

, ε̃, aI , βI , aII , βII
︸ ︷︷ ︸

elastic DOFs

)T

(4.24)

Apart from the directional strain ε̃, these coordinates are illustrated in figure 4.3(a):
the vector rS = (xS,yS)T parametrizes the translations of the center of mass and ϕS
is the angle of rotation in case of an undeformed shape. The directional strain ε̃ is
related to the node displacements in direction of the bases bx,i = bx,i(qi), i ∈ {I,II} .
The relative deflections and slopes at the nodes are described by aI , βI , aII and βII
and refer to the floating frames I and II of reference respectively.

The position r = r(qi,s) of the neutral fiber is described by

r = rS +

{

bx,I(1 + ε̃)s+ by,IwI for − l0
2
≤ s< 0

bx,II(1 + ε̃)s+ by,IIwII for 0≤ s≤ l0
2

. (4.25)

To approximately ensure C2-smoothness within the element, both shape functions wI
and wII are defined at s = 0 with equal radius of curvature RC and the reciprocal R′C
of the curvatures derivative with respect to s:

RC =
2l20

(−8aI − 8aII + 3(βI + βII)l0)

R′C =
l30

2(8aI − 8aII + 3(βII − βI)l0)

Therewith, the bending shape function w of the entire element is defined piecewise
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I

II

mid-point

s = 0

s = −l0/2

s ≥ 0

rS = (xS ,yS)T

ϕS

aI

aII

βI

βII

bx,I

by,I bx,II

by,II (a) Internal coordinate set

node 1

node 2

l0/4

l0/4

r1 = (x1,y1)T

r2 = (x2,y2)T

ϕ1

a1

ϕ2

b1
(b) Global coordinate set

Figure 4.3: Redundant coordinate sets of a single beam element

using the polynomials wI and wII of fourth order:

w =







wI = 2( 16aI−8aII−5βI l0+3βII l0)

l40
s4 + 1

R′c
s3 + 1

RC
s2 + βIs for s < 0

wII =2(−8aI+16aII+3βI l0−5βII l0)

l40
s4 + 1

R′c
s3 + 1

RC
s2 − βIIs for s ≥ 0

(4.26)

Due to the planar character of the model, the rotation matrixAIK of a cross section,
which is defined in analogy to equation (3.43), page 51, can be described by one
angle ϕ referring to the tangent on the deformed shape, compare to figure 4.3:

AIK = AIK(ϕ) with ϕ = ϕ(qi,s) =

{

ϕS − βI +w′I for s < 0

ϕS + βII+w′II for s ≥ 0
(4.27)

With equations (4.25) and (4.27), the Jacobi-matrices of translation and rotation

JT,i =
∂ r

∂ qi

and JR,i =
∂ ϕ

∂ qi

, (4.28)

are evaluated in terms of the internal coordinates for further development of the
equations of motion as well as for the projection of external loads and reactions.
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The global coordinate set

qg =
(

x1, y1, ϕ1
︸ ︷︷ ︸

node 1

, a1, b1
︸ ︷︷ ︸

element
internal DOFs

, x2, y2, ϕ2
︸ ︷︷ ︸

node 2

)T

(4.29)

holds the nodal coordinates of the element, both the positions and the angles. These
can be part of different adjacent elements and hence can be used for coupling of
different elements. Since the internal and the global coordinates have to be unique
and bĳective, the global coordinate set is supplemented by two internal degrees of
freedom a1 and b1 . These denote the relative beam deflection at the distance l0/4
from the nodes. Figure 4.3(b) illustrates the global coordinates.

The equality restriction (4.16) is set by eight independent equations for positions
and tangential angles connecting qi and qg and can be solved analytically. Using
the following abbreviations for sums and differences of coordinates

Sx = x1 + x2 , Sy = y1 + y2 , Sϕ = ϕ1 + ϕ2 , Sa = a1 + b1

Dx = x1 − x2 , Dy = y1 − y2 , Dϕ = ϕ1 − ϕ2 , Da = a1 − b1 ,

the explicit transformation generated by a computer algebra system reads:

qi = (xS, yS, ϕs, ε̃, aI , βI , aII , βII)
T = f̃(qg) =



































1
72

(

(64Sa − 5l0Dϕ) sin(Sϕ
2

) sec(Dϕ
2

) + 36
(

Sx +Dy tan(Dϕ
2

)
))

1
72

(

(64Sa − 5l0Dϕ) cos(Sϕ
2

) sec(Dϕ
2

) + 36
(

Sy −Dx tan(Dϕ
2

)
))

2(−8Da+l0Sϕ)+11 sec(
Dϕ

2
)

(

Dx sin(
Sϕ
2

)−Dy cos(
Sϕ
2

)

)

4l0

1−
36 sec(

Dϕ
2

)

(

Dx cos(
Sϕ
2

)+Dy sin(
Sϕ
2

)

)

−(64Sa−5Dϕl0) tan(
Dϕ

2
)

36l0

1
72

(

64Sa − 5Dϕl0 + 36 sec(Dϕ
2

)
(

Dx sin(Sϕ
2

)−Dy cos(Sϕ
2

)
))

−2(8Da+Dϕl0)+11 sec(
Dϕ

2
)

(

Dx sin(
Sϕ
2

)−Dy cos(
Sϕ
2

)

)

4l0

1
72

(

64Sa − 5Dϕl0 + 36 sec(Dϕ
2

)
(

Dy cos(Sϕ
2

)−Dx sin(Sϕ
2

)
))

2(8Da−Dϕl0)−11 sec(
Dϕ

2
)

(

Dx sin(
Sϕ
2

)−Dy cos(
Sϕ
2

)

)

4l0



































The unusual way to introduce two different coordinate systems, one at each end of
the element, provides this explicit instead of an implicit form.

Equations of Motion The equations of motion are derived using the Lagrange
formalism for a constrained system, equation (2.6), page 10. Therefor, the kinetic
energy T and the cumulative potential V need to be developed in terms of the
parameters qi . The slender beam is characterized by the cross section area A, the
moment of inertia I, the modulus of elasticity E and the density ρ .
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s

w

dw

ds

dlb

Figure 4.4: Length calculus for a curve

The kinetic energy of the Euler-Bernoulli beam only accounts for the translation
of the cross section; the rotational inertia of the differential elements is neglected
for slender structures. The kinetic energy (3.24), page 38, is evaluated under consid-
eration of the Jacobi-matrix JT,i of translations according to equation (4.28) and
leads to the mass matrix M i = M i(qi) related to the internal coordinates qi .

The potential V = Velast + Vgrav holds the elastic potential of deformations and the
gravitational potential. The physical strain ε and the curvatures κ are needed for
the constitutive laws of elasticity, see equation (3.9) on page 32. The strain measure
provided by ε̃ is incorrect for large bending deformations since it is based on the
nodal displacements in the directions bx,I and bx,II of the local coordinate systems.
For large deflections, the shape function w, equation (4.26), describes shapes with
lengths lb = lb(qi) significantly larger than for the unbended structure. Figure 4.4
illustrates the length calculation for a curve commonly known for sagging cables:

lb =

l0/2∫

−l0/2

√

1 + (w′)2ds ≈

l0/2∫

−l0/2

(

1 +
(w′)2

2

)

ds ≥ l0

The Taylor-expansion of the square-root is used to approximate the exact form
since an analytic integration can be given using the derivatives w′ of the shape
function. Comparing the length (1 + ε̃)lb described by the parametrization to the
deformed length (1 + ε)l0 of the element yields the physical strain ε:

(1 + ε)l0 = (1 + ε̃)lb ⇒ ε =
lb
l0

(1 + ε̃)− 1

The potential of elastic deformations accounts for elongation and bending, whereas
κ ≈ w′′ approximates the curvature of the deformed beam:

Velast =
1

2

l0/2∫

−l0/2

(

EAε2 + EI (w′′)2
)

ds

A homogeneous acceleration field g is accounted for by the gravitational potential

Vgrav = −ρA

l0/2∫

−l0/2

(

gT r
)

ds .

To project loads and constraint reactions, the generalized force directions W i result
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(xj ,yj ,ϕj)
node j

(xj+1,yj+1,ϕj+1)
node j + 1

aj bj

element j

Figure 4.5: Element j with part of the surrounding structure

of the Jacobi-matrix JT,i , equation (4.28), and the respective contact kinematics
according to section 2.2.

Assembly of Elements to a Discretized Structure Figure 4.5 shows the j-th
finite element and parts of the surrounding structure: the global coordinates q(j)

g of
the single element are part of the coordinates

qs =
(

. . .

coordinates q
(j)
g of the j-th element

︷ ︸︸ ︷

xj ,yj,ϕj ,aj,bj ,xj+1,yj+1,ϕj+1 . . .
)T

of the whole discretized body, see equation (4.22). Associating the nodal coordi-
nates (xj ,yj,ϕj) to adjacent elements provides structural connectivity.



5 Numerical Aspects

Even though this work is not devoted to the numerics of multi-body systems, a
numeric environment is needed to simulate the nonlinear and non-smooth systems.
The current chapter discusses briefly important aspects, giving a rough knowledge of
the numerical methods that are essential for setting up simulations for discontinuous
flexible MBS with contacts. Section 5.1 is devoted to implicit time-stepping: a scaled
linear implicit integration scheme offering A-stability is set up to complement the
semi-explicit scheme cited in section 2.4. Section 5.2 addresses the numerical part
of the contact kinematics evaluation: schemes are sketched for the search of contact
point pairs by means of pre-selection and numerical root-finding; thereby the global
validity of the numeric solution must be ensured.

5.1 Time Integration

For the simulation of a non-smooth dynamic system, the velocity-position relation
and the measure differential equation of motion (2.16), page 14,

(

dq
Mdu

)

=

(

udt
hdt+WdΛ

)

(5.1a)

need to be integrated under consideration of the constraints (2.27), page 21,

(dΛ,q,u,t) ∈N . (5.1b)

A numeric integration substitutes the time-continuous values by corresponding dis-
crete sets at the points {t0, . . . ,tl,tl+1, . . .} of evaluation1. Due to the good feasibility
for numerical algorithms, equality formulations by proximal functions nowadays are
used widely for the constraints (2.27)/(5.1b), see page 24 of section 2.3.2.

Event-driven and time-stepping schemes are mentioned in section 2.4 with references
to Acary and Brogliato [1] and Studer [58] for integrating the non-smooth
system (5.1). The efficient semi-explicit time-stepping scheme of Förg [21, 19] was
presented: performing a successive update, no time consuming solution of implicit
equations is needed. The evaluation ĥl+1 = h(ql+1,ul,tl+1) of the generalized forces
increases the stability of the scheme. Still the step-size ∆t used for integration
is limited by the maximum local eigenvalue of equation (5.1a). This reflects the
physical stiffness of the system by means of the spatial discretization: fine local

1 The upper index marks the time of evaluation.
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resolutions for flexible bodies decrease the critical step-sizes ∆tmax needed for stable
time integration with explicit integration schemes.

When using A-stable time discretizations, the time step sizes are not limited by the
spatial discretization to ensure stability for the simulation of flexible MBS. Together
with the semi-explicit time stepping scheme of section 2.4, the following A-stable
modified θ-method is used for the simulation of the examples in chapter 6.

Modified θ-Method Implicit formulations provide stable numerical integration.
Among these schemes, the θ-method with constant step size ∆t approves to be
robust and simple in implementation, see for example Hairer et al. [32, 33]. For
the ordinary differential problem ẋ = f(x) , x(0) = x0 , the method uses

∫ tl+1

tl
ẋdt ≈ xl+1 − xl = ∆t(1− θ)f(xl,tl) +∆t θ f(xl+1,tl+1) (5.2)

with θ ∈ [0,1] for the discrete step l → l + 1. Note that the evaluation is implicit
in the new xl+1 for θ 6= 0; explicit and implicit Euler-schemes are described by
θ = 0 and θ = 1. The trapezoidal rule with θ = 0.5 achieves second order accuracy.
Applied to linear systems, the scheme is A-stable for θ ≥ 0.5 (e.g. [33]).

The non-smooth contact dynamics method of Jean [38] is a linear adaption of the
θ-method (5.2) to the solution of the non-smooth system (5.1). A linear Taylor-
expansion is used to approximate the implicit evaluation of hl+1. Funk [24] gives a
detailed derivation and discussion including a stability analysis for the time integra-
tion. The scheme is modified to solve constraints on velocity level corresponding to
the time-stepping scheme in section 2.4: Förg [19] discusses the increased stability
of the constraint solution compared to methods on position level. The integrals of
the terms in equation (5.1a) are approximated as follows:

∫ tl+1

tl
dq ≈ ∆ql =ql+1 − ql

∫ tl+1

tl
udt ≈

(

(1− θ)ul + θul+1
)

∆t=
(

ul + θ∆ul
)

∆t

∫ tl+1

tl
Mdu ≈M l∆ul =M l(ul+1 − ul)

∫ tl+1

tl
hdt ≈

(

(1− θ)hl + θhl+1
)

∆t≈
(

hl + θ
∂ h

∂ q

∣
∣
∣
∣
∣
l

∆ql + θ
∂ h

∂ u

∣
∣
∣
∣
∣
l

∆ul + θ
∂ h

∂ t

∣
∣
∣
∣
∣
l

∆t

)

∆t

∫ tl+1

tl
WdΛ ≈W l

aΛ
l+1
a

Only contacts being active at the beginning tl of the time-step are taken into account,
denoted by the index a. Using ∆ql =

(

ul + θ∆ul
)

∆t , the continuous equation of
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motion is approximated by the discrete evolution

∆ul =
(

M̃ l
)−1

(

h̃
l
∆t+W lΛl+1

)

,

ql+1 = ql + (ul + θ∆ul)∆t , ul+1 = ul +∆ul

with the following abbreviations:

M̃ l = M l − θ
∂ h

∂ u

∣
∣
∣
∣
∣
l

∆t− θ2 ∂ h

∂ q

∣
∣
∣
∣
∣
l

∆t2 , h̃
l
= hl + θ

∂ h

∂ q

∣
∣
∣
∣
∣
l

ul∆t+ θ
∂ h

∂ t

∣
∣
∣
∣
∣
l

∆t

In analogy to section 2.4, a single integration step of the θ-method is outlined:

1. Compute the distances glU = gU(ql,tl) of all unilateral contacts.

2. Compute the index set {i : glU,i ≤ 0} of active unilateral contacts governing
the activity of the respective normal and tangential reactions. Note that a
bilateral constraint per definition is always active.

3. Compute the generalized velocities by solving the discretized equations of mo-
tion considering the velocities γa of all active constraints:

∆ul =
(

M̃ l
)−1

(

h̃
l
∆t+W lΛl+1

)

, (5.3a)

γl+1
a = γa(u

l+1,ql,tl+1) , (5.3b)

Λl+1
a = proj(γl+1

a ,Λl+1
a ) (5.3c)

The function proj comprises the projection functions of equations (2.35),
page 24, claiming compatibility (Λl+1

a ,ql,ul+1,tl+1) ∈ N for the active con-
straints at the end of the time-step.

4. Compute the new generalized positions ql+1 = ql + (ul + θ∆ul)∆t and the
new velocities ul+1 = ul +∆ul .

Again the crucial point is to find compatible reactions Λl+1
a and velocities ul+1 .

The algorithms of Förg [21, 19] are used: these form the numeric kernel of the MB-
Sim software package which is used as simulation platform for the present work.

Solution of Constraint Equations The discretization of the constraints (5.3c)
with (5.3b) is implicit in the velocities ul+1 and explicit in the positions ql. Us-
ing the equations (5.3a) and (2.24), page 18, the constraint velocities

γl+1
a =

(

W l
a

)T
ul+1 +wl+1

a

=
(

W l
a

)T (

M̃ l
)−1

W l
aΛ
l+1
a +

(

W l
a

)T
(

ul +
(

M̃ l
)−1

h̃
l
∆t
)

+wl+1
a

= GlaΛ
l+1
a + bl+1

a (5.4)

are gained by linear expansion as linear combination of the unknown constraint
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reactions Λl+1
a . The solution of the system (5.3) for the particular reactions is

reduced analytically to the solution of the non-smooth nonlinear equation

Λl+1
a = proj

(

GlaΛ
l+1
a + bl+1

a ,Λl+1
a

)

. (5.5)

Unlike for the semi-explicit formulation (2.36) with (2.37), page 26, the matrix Gla
in (5.5) not only holds projections of the inertias M l but also includes scaled con-
tributions of the derivatives ∂ h/∂ u |l and ∂ h/∂ q |l . These influence the solution
behavior of the iterative algorithms of Förg [21, 19]: neither symmetry nor diago-
nal dominance of Gla can be guaranteed; a possible kinematic decoupling of contacts
may be lost since kinetic couplings by single-valued force laws occur in Gla due to in
general outer-diagonal entries of ∂ h/∂ u |l and ∂ h/∂ q |l in M̃ l . The convergence
of fixed-point iterations is not ensured but in practical application usually regarded.
Like for the semi-explicit time-stepping formulation, root-finding schemes usually
provide the faster solution than fixed-point algorithms if convergence is achieved.

5.2 Contact Point Search

Evaluating the kinematics of a unilateral or a sliding bilateral contact implies the
detection of the points of minimal distance on the contacting surfaces, compare to
section 2.2. The solution of the condition (2.21), page 16,

(

T (i)
)T (

r
(2)
OC − r

(1)
OC

)

= 0 ∀ i ∈ 1,2

gives the contour points associated to extremal distance between colliding bodies
and is illustrated in the figures 2.2 and 3.12, pages 16 and 54. The solution is not
necessarily unique, compare to figure 3.12(b), especially since for flexible bodies
the contour can not be said a priori to be convex or concave. If solutions of equa-
tion (2.21) exist, the solution associated with the absolute minimal distance gN is
included and must be identified by comparisons.

Only in cases of primitive contour pairings like sphere to cone and mostly limited
to rigid bodies, the points of contact can be determined analytically what is most
efficient. Contrasting, for complex geometries including deformable bodies, the con-
tact points need to be determined numerically. Therefor, a hierarchical approach
is sketched: a bounding volume test for coarse pre-selection of possible regions of
contact and a subsequent root finding concerning the extremal condition above.

Bounding Volume Hierarchies Collision detection between bodies with large rel-
ative motion and complex geometries is subject of ongoing research. Teschner et
al. [59] give a profound overview on bounding volume methods in the context of
textile modeling: a hierarchy of primitive bounding volumes encloses the contacting
surfaces. Instead of testing the exact condition (2.21) directly, these bounding vol-
umes are analyzed for intersection analytically. Figure 5.1 shows a planar example
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box

flexible structure

element 1

element 2

element 3

element 4

(a) level 1

box

flexible structure

(b) level 2

box

flexible structure

element 3

(c) level 3

Figure 5.1: Example for a bounding volume hierarchy

using bounding circles: the box is enclosed by one circle without refinement, the
finite element discretization of the beam is used as intrinsic access to a three-level
hierarchy for the detection of the closest element 3. Starting at level 1, tests are
performed for refined hierarchy only in case of intersection. The algorithm identifies
all intersecting sub-volumes of the bounding volume hierarchy. Depending on the
required accuracy, these volumes with intersection directly represent the positions
of contact or are used to set up starting values for local numerical root-finding.

Hippmann [35, 36] provides the Polygonal Contact Model with collision detection
by hierarchical bounding volumes for rigid bodies of complex geometry. Using a
hierarchy of inertially aligned rectangles, he decreases computation times for contact
detection by magnitudes compared to the triangulation of all possible polygonal
pairings. This strategy is extended to flexible multi-body systems by Ebrahimi [16].
Also for shapes compound of several primitive elements for a single body, bounding
volume strategies can help to reduce significantly the computation times for the
evaluation of the contact kinematics.

Root-Finding Arbitrary numerical root-finding algorithms can be used for local
detection of the exact contact points. Special care is needed for configurations that
allow for singular situations and for jumps of the contour points of minimal distance:
two concentric circles are the classic example for a configuration with an infinite set
of solutions for condition (2.21). Figure 5.2 additionally illustrates the instantaneous

jump of the contact point C(2)
i on the contour for a point moving from r

(1)
1 via r(1)

2

to r(1)
3 . This must be regarded by the numerical algorithms.

r
(1)
1

r
(1)
2

r
(1)
3

C
(2)
1

C
(2)
2 ?

C
(2)
3

C
(2)
2 ?

Figure 5.2: Singular point r(1)
2 and jump in contact position C

(2)
i
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Figure 5.3: Schemes for numerical root-finding

Since classic root-finding schemes only test for a local solution, supplemental tests
are needed to ensure global validity: initial values for numeric schemes can originate
for example from bounding volume intersections or the solution of the last time-
step evaluation. Due to the smooth position evolution and small changes between
the steps of time integration, for bilateral contacts the last value suits best after a
compatible initialization at the beginning of the simulation. Figure 5.3 exemplary
illustrates a Newton-scheme and a regula falsi: for a circle and an eccentric point,
a local solution ϕ∗ of condition (2.21) is generated giving minimal distance.

The evaluation of tangents T (i) can cause high computational effort. A projection to
the moving undeformed frame of reference with the tangents T̃ (i) and the normal ñ
can be used for a fast computation on bodies with small deflections. Figure 5.4
depicts this for a beam and different points Pi: the approximated potential contact
points C̃(1)

i in general do not coincide with the exact points C(1)
i . Thus, the projec-

tion g̃N,i = ñT (r(1)

OC̃i
− rOPi) usually does not equal the minimal distance gN,i . Nev-

ertheless, a closed contact is indicated by gN,i = g̃N,i = 0 with coinciding points C̃(1)
i

and C(1)
i for the same sC,i. Only for closed contacts the correct distance gN , normals

and tangents are needed to evaluate the force directions W (i) and the force laws.

s
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Figure 5.4: Projections to undeformed reference



6 Examples

The models and concepts of the previous chapters are tested by means of numer-
ical simulations. Starting with simple setups, which partly are inspired by classic
examples for non-smooth rigid multi-body systems like the rocking rod, key-points
of the dynamic behavior of the systems are surveyed with a focus on contacts to
flexible bodies. Closing up, a continuous variable transmission forms a complex
multi-contact problem of industrial relevance. Animations for some examples can
be found at the homepage of the Institute of Applied Mechanics1.

All simulations are performed using MBSim: this multi-body simulation software
was initiated by Förg, see [19], and is complemented during the present work
by elements of flexible multi-body systems with rigid contact descriptions in mind.
The software accounts for classic rigid multi-body systems and formulates and solves
systems with set-valued and single-valued force laws.

6.1 Cantilever Beam with Impacts

The first example is a cantilever beam excited by a discrete impulse Λex , see fig-
ure 6.1. Due to the strong excitation, the beam bends with large deflections. The
amplitudes are limited on one side by an inertially fixed point obstacle.

Mechanical Setup Table 6.1 specifies the parameters of the planar gravity-free
system. The beam is discretized by eight redundant coordinate finite elements, see
section 4.2.3. Bilateral constraints regarding the translations r(s = 0) = const. and
the rotation ϕ(s = 0) = const. describe the inertial clamping of the left beam end.
Set-valued force laws model the frictionless rigid impacts and contacts between the
point obstacle and the beam at varying positions within the elements. The magni-
tude Λex of the impulse is chosen so that large bending deformations occur after the
initial excitation. The θ-time-stepping algorithm is used for time integration.

1 Institute of Applied Mechanics: http://www.amm.mw.tum.de/static/animations

point obstacle

Λex

l

l/2
3/4 l

l/10

Figure 6.1: Impact excited cantilever beam with point obstacle

http://www.amm.mw.tum.de/static/animations
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Table 6.1: Parameters of the cantilever beam

specification symbol value
modulus of elasticity E 2.2 · 1011 N/m2

mass density ρ 7.8 · 103 kg/m2

rod length l 1.0 m
cross sectional area A 100.0 · 10−6 m2

cross sectional moment of inertia I 8.333 · 10−12 m4

excitation impulse Λex 10.0 kg m/s

parameters of θ-time-stepper ∆t,θ 5 · 10−7s, 0.5
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Figure 6.2: Cantilever beam with point obstacle

Simulation Results The figures 6.2 plot the deformation history in form of de-
formed states at specific time intervals ∆tplot and selected point paths. Especially
the detail plot 6.2(b) captures the wave propagation after the initial impact at t = 0 s
and further dynamics up to the first impact at the obstacle at t ≈ 6.67 · 10−3 s. Due
to the impact, the entire frequency range of the beam model is excited leading to
high frequent oscillations of the normal distance gN between beam and obstacle, see
figure 6.3. Due to these vibration, the contact closes and re-attaches several times.
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Figure 6.3: Normal distance gN between beam and point obstacle

6.2 The Elastic Rocking Rod

The rocking rod displayed in figure 6.4 is a classic example for non-smooth rigid body
dynamics, see amongst others Pfeiffer and Glocker [45] and Förg [19]: falling
on two inertially fixed discrete obstacles, the rod rocks with impacts dissipating
system energy. It is quite consequent to use the rocking rod for testing rigid contact
and impact modeling on flexible multi-body systems. Moreover, a flexible model can
be used to identify restitution coefficients for the contacts of a rigid body model.

Mechanical Setup A planar model of the rocking rod is investigated, see fig-
ure 6.4(a): the rod is initialized in a free and undeformed situation with the height h
of the center of gravity above the level of the two pins 1 and 2. Table 6.2 defines
the parameters of the system used for simulations. In addition to the flexible model

g

h

a a

ϕ0

pin 1 pin 2

rod

center of gravity

(a) System parametrization for initial configuration

(b) Initial state (c) First impact

Figure 6.4: Elastic rocking rod
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Table 6.2: Parameters of the rocking rod

specification symbol value
modulus of elasticity E 2.1 · 109 N/m2 up to 2.1 · 1011 N/m2

mass density ρ 7.88 · 103 kg/m2

rod length l 0.8 m
cross sectional height and width h ,w 20.0 · 10−3 m, 80.0 · 10−3 m

cross sectional moment of inertia I = h3 w
12

half distance between point obstacles a 0.1 m
gravity g 9.81 m/s2

friction coefficient µ 0.3
initial values h 0.5 m

ϕ0 3.0◦

parameters of θ-integrator ∆t,θ 1 · 10−6s, 0.5
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Figure 6.5: Energy and normal distances for various discretizations, E = 2.1 · 1010 N/m2

discretized by RCM finite elements for beams, section 4.2.3, a rigid body model
is used for comparisons. All contacts are modeled rigid without impact restitution
and considering Coulomb-friction. The θ-time-stepping method is used to allow for
equal constant time-step size ∆t for all parameter sets and spatial discretizations.

Simulation Results In a first step, the influence of the spatial discretization on the
impact behavior is investigated. The second analysis compares models with different
specific stiffnesses parametrized by the modulus of elasticity E. Concluding remarks
glance at rigid body models with elastic impact modeling.

Refinement of the Spatial Discretization Models with one, two, four and eight fi-
nite elements (FE) are used for the rod with E = 2.1·1010 N/m2 . Figure 6.5 compares
the system energy, which is sum of the kinetic energy T and all potentials V , for the
various discretizations and the rigid body model: for all models, an instantaneous
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Figure 6.6: Frames of impact for rods with different modulus E of elasticity

energy loss is regarded with the closing of contacts, first at t ≈ 0.313 s on pin 1. For
a finite time span, vibration impacts occur in contact 1 until pin 2 gets in contact
leading to the second major discrete decay in the system energy. The normal dis-
tances gN,i of both contacts i are depicted for the rigid model and the discretization
using eight elements: contacts 1 and 2 close in quick succession. Unlike for the rigid
model, both contacts of the flexible rods reopen rather fast due to the structural
elasticity. The high frequent oscillations in the gap distances gN reflect the struc-
tural oscillations of the beam. Energy transfered to these elastic waves are lost for
the rigid body model because of the modeling assumptions.

The mass proportion involved in the impact via the projection G decreases with
refining the spatial discretization, compare to section 3.3.3: for the present model,
the normal post-impact conditions claim zero velocity for the projected masses G.
Consequently, the energy loss decreases for finer spatial discretization and has an
upper extremum set by the rigid model, see the decay of T + V in figure 6.5 at
t ≈ 0.313 s . Refining the spatial discretization concurrently increases the frequency
range of the model. For system frequencies in order of magnitude of the time step
size ∆t, an additional energy loss is regarded due to the implicit integration scheme.
The θ-time-stepping scheme ensures A-stability for arbitrary large ∆t but does not
resolve the high frequencies of the eight element model: the slight numerical dissipa-
tion can be seen for the total energy during the free flight phase t ∈ [0.34 s,0.53 s] .

Variation of Structural Stiffness Figure 6.6 depicts frames of the impact transi-
tion of the flexible model using 8 FE for various modulus E of elasticity. The beam
with E = 2.1 · 109 N/m2 deforms with large deflections and almost symmetric with
respect to the obstacles: the impact response is comparatively slow. It is obvious
that the stiffest model E = 2.1 · 1011 N/m2 gives the fastest response and smallest
deflections. For increasing structural stiffnesses, the changeover to classic rigid body
modeling lays at hands: the fast contact dynamics of very stiff bodies can be approx-
imated by non-vanishing restitution coefficients ε > 0: this can be used to control
both the energy loss and local rebound effects for rigid body contact situations.
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Zander et al. [65] investigate the approximation of structural flexibility by describ-
ing impacts for the rigid body model with a restitution coefficient: using numerical
optimization, ε is estimated by comparative simulations. With ε > 0 the contact
of the rigid model reopens instantaneously whereas the contact of the elastic body
model stays closed for a finite time span. This behavior can be interpreted as time
delay between both models and must be kept in mind when considering the overall
system behavior. Using real system experiments and detailed finite element model-
ing for substructures, Seifried [53] performs comprehensive investigations for the
identification and interpretation of restitution coefficients in multi-body systems.

6.3 The Woodpecker Toy

The woodpecker toy is a second example for non-smooth multi-body systems often
named in literature, see for example Pfeiffer [44] and Leine and Glocker [39].
Figure 6.7(a) depicts the woodpecker: hammering down the pole, the system uses
gravity as energy source and stick-slip effects between the guiding sleeve and the
pole as switch between free and constrained motion. With the sleeve sticking, the
spring forces the woodpecker back towards picking the pole.

Mechanical Setup A planar rigid model and two models comprising an elastic
pole – one regarding planar motion and one with spatial dynamics – are regarded.
For all models the bird and the sleeve are represented by rigid bodies. The spring
connecting the woodpecker to the sleeve, which comprises all planar or spatial de-
grees of freedom, is abstracted by a revolute joint with one relative freedom and
a discrete elasticity. Parameters for the model with a solid circular pole are given
in table 6.3 corresponding to figure 6.7(b). Rigid unilateral contacts are modeled
between the pole and the sleeve as well as between the pole and the picker, which is
reduced to a discrete point. A unitary coefficient µ of Coulomb-friction is assumed
for all contacts. The simulations are initialized with an upright undeformed pole, a
concentric sleeve and a horizontal bird. To start the system’s self-excitation, the bird
is released with the relative velocity ϕ̇wp,0 . Again, the θ-time-stepping is used.

For planar flexible modeling, the pole is discretized by eight RCM-finite elements,
section 4.2.3. The inertial clamping is described by bilateral constraints analogous
to the cantilever beam of example 6.1. The pole surface is reduced to a left and a
right planar curve: the rigid pole is described by inertially fixed straight lines, the
elastic according to the deformation approximations. The four projected corners
represent the sleeve’s hole for point-to-continuum contacts with the pole.

For the spatial configuration, the flexible pole is modeled by a spatial bending-
torsional beam using a finite-element formulation. Based on the Euler-Bernoulli
theory, small deformations with superposed torsion are accounted for. Contacts
occur between the picker and the pole as well as between the two circles defining
the sleeve and the deformed circular pole. To enforce the spatial character of the
system, the woodpecker is attached with the eccentricity e to the sleeve.
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(a) The woodpecker toy
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(b) Parametrization of woodpecker and sleeve

Figure 6.7: Model of the woodpecker-toy

Table 6.3: Parameters of the woodpecker model

specification symbol value
pole length L 0.5 m
pole radius rp 2.5 · 10−3 m
modulus of elasticity E 7.0 · 1010 N/m2

Poisson-ratio ν 0.3
mass density ρ 2.3 · 103 kg/m2

clearance γ 0.1 · 10−3 m
diameter sleeve Ds = 2rp + γ
height sleeve hs 6.0 · 10−3 m
mass sleeve ms 5.0 · 10−3 kg
inertia sleeve Js,1 = 2 Js,2 = Js,3 125.0 · 10−9 kgm2

distance joint ds 10.0 · 10−3 m
stiffness joint-spring cs 0.05 Nm
eccentricity of woodpecker e 1.0 · 10−3 m
distance center of gravity (COG) dw 14.0 · 10−3 m
mass woodpecker mw 60.0 · 10−3 kg
inertia woodpecker Jw,1 = 10 Jw,2 = Jw,3 12.0 · 10−6 kgm2

distance picker dp 20.0 · 10−3 m
hight picker hp 20.0 · 10−3 m
friction coefficient all contacts µ 0.15
gravity in pole direction g 9.81 m/s2

initial values ϕwp,0, ϕ̇wp,0 0.0, −π s−1

ywp,0 0.475 m
parameters of θ-integrator ∆t,θ 2.5 · 10−6s, 0.5
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Figure 6.9: Motion of the woodpecker toy: phase plots

Simulation Results Figure 6.8(a) displays the gap distance gN,p between the picker
and the pole for all simulations. It is evident that the rigid model gives periodic
results whereas amplitudes and intervals change during the woodpecker’s decent on
the elastic poles. Consistent results are plotted in figure 6.8(b) for the height ywp
of the planar models. The figures 6.9 show phase space diagrams for the relative
angle ϕwp between woodpecker and sleeve for the first three picking cycles: only the
rigid model ends up in a stable limit cycle (compare literature, e.g. [39]). The elastic-
ity of the pole leads to interferences between the dynamics of the woodpecker and of
the elastic structure: no stable limit cycle is reached on elastic poles. Moreover, the
characteristic frequencies of the model change with the varying position of the wood-
pecker on the pole, also causing small and large decent per cycle, see figure 6.8(b).
Like for the example 6.2 of the rocking rod, the flexible modeling results in a partly
elastic impact behavior: the re-opening velocity ġN,p of the picker contact is larger
than for the rigid model leading to a higher picking frequency (comp. fig. 6.8(a)).
Again, a restitution coefficient might be used for an adaption of the rigid model.

For the spatial configuration, the figures 6.10 show that the impact of the picker on
the pole – marked by the picker gap distance gN,p = 0 – induces rotations to both
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Figure 6.10: Torsional and tumbling motion induced by eccentric picking

the elastic pole and the woodpecker. Thereby, the torsion αp of the pole tip occurs
in high frequency oscillations. As a result of the spatial configuration, a tumbling
rotation motion αwp of the woodpecker around the vibrating pole occurs.

6.4 Elastic Bowl of Dice

Numerous rigid dice falling into an elastic bowl are the first example for a system
with numerous contacts to a flexible structure. The modeling of the bowl is per-
formed as idealization giving structures like an external pre-process. A subsequent
interpolation between nodes describes the continuous surface. The figures 6.11 show
a snap-shot of the falling dice and the bowl surface supported by 16 nodes.

(a) Cubes falling

x

y
z

node 3

node 1

node 2

node 4

(b) Elastic bowl surface

Figure 6.11: Cubes falling into an elastic bowl
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Table 6.4: Parameters of the bowl and dice

specification symbol value
nodal mass mn 1.0 kg
nodal stiffness kn 750.0 N/m

edge-length central square l 1.0 m
mass of dice md 0.1 kg
edge-length of dice ld 0.1 m

inertias of the dice J11 = J22 = J33 = ml2

6

friction coefficient for all contacts µ 0.3
gravity g 9.81 m/s2

time step size for semi-explicit integrator ∆t 5 · 10−5s

Mechanical Setup Parameters for the system are given in table 6.4: to concen-
trate on surface and contact description, identity matrices are used for mass- and
stiffness-matrix scaled by the nodal mass mn and stiffness kn. The surface is modeled
piecewise by bi-linear interpolations supported by four nodes each, see figure 6.11(b).
The central square has edge-length l. The 50 dice of mass md and edge-length ld are
released above the bowl with all contacts open. Two dice comprise the possibilities
for contacts between the twelve edges pairwise and of the eight corners to six faces
of each dice, giving 12 · 12 + 2 · 6 · 8 = 240 possible contact pairings. Including the
contacts to the surface segments of the bowl, the system comprises 297 600 possible
contacts between basic shape elements. Bounding sphere tests for all body pairings
reduce the computational effort to 1275 trivial preliminary tests: the exact contact
kinematics is evaluated only in case of intersection. All contacts are modeled rigid
regarding dry friction, the gravity direction is normal on the undeformed central
surface of the bowl. The simulation uses the semi-explicit time-stepping.

Simulation Results For the dice impacting on the bowl first, figure 6.12 displays
the gap distances gN,i of the corners. At the times of closing contacts (gN,i = 0
and ġN,i < 0 at approximately ti ∈ {0.08 s,0.1 s,0.11 s, . . .}), jumps occur for the
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vertical velocities ż of the four nodes supporting the central surface. The magnitude
of the impact is simultaneously distributed on all nodes whereas the nodal portions
are set by the interpolation weights according to the shape position, compare equa-
tion (3.49), page 53. The successive jumps in the velocities are related to closing
contacts of other dice. Residual vibrations remain during the time of simulation lead-
ing to ongoing changes of the contact situation and frictional dissipation. In spite
of the high number of up to na = 270 closed contacts – each comprising one normal
and two frictional set-valued reactions – the system can be simulated successfully.

6.5 Push-Belt Continuous Variable Transmission

Continuous variable transmissions (CVT) are used in automobiles to allow for run-
ning the engines at the optimal operation point for various driving speeds. A trans-
mission medium, either a belt or a chain, runs on pairs of conic sheaves being
mounted on the axes. Using a hydraulic actuation, the axial distances between the
sheaves can be varied causing a continuous change in the running radii and therewith
modification of the transmission ratio. Friction is utilized for the power submission
between the sheaves and the transmission medium.

Figure 6.14 shows the push-belt CVT manufactured by Bosch-VDT, Netherlands:
the belt is composed of two packages of elastic steel rings guiding approximately 400
steel elements, compare 6.14(b). Due to their minor thickness and high number,
these elements provide multi contact to the sheaves minimizing polygonal effects
commonly known for classic chains. Using the words of Schindler et al. [51] this
setup provides “A Non-Smooth Challenge” for multi-body simulations.

The modeling of the complete transmission system is beyond the scope of the present
work and topic of several successive thesis at the Institute of Applied Mechanics.
Only the aspect of modeling the push-belt assembly is regarded here: the guiding of
the rigid elements on the flexible ring-packages can either be abstracted by bilateral
constraints or by a relative kinematic description. Closing up, references are given
to comprehensive investigations covering the complete bush-belt CVT.

(a) Complete transmission (b) Belt composed of rings and elements

Figure 6.14: Push-belt continuous variable transmission
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reference fiber of flexible ring

cubic push-belt element
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d

h

corner

corner

line

Figure 6.15: Abstraction of the push-belt

Table 6.5: Parameters of the push-belt

specification symbol value
ring package circumference l 1.0 m
modulus of elasticity E 2.5 · 1010 N/m2

mass density ρ 2.5 · 103 kg/m2

cross sectional area A 25.0 · 10−6 m2

cross sectional moment of inertia I 50.0 · 10−12 m4

mass element m 25.0 · 10−3 kg
inertia element Jzz 0.840 · 10−6 kg m2

gravity g 9.81 m/s2

time step size for semi-explicit integrator ∆t 1 · 10−6s

Modeling the Ring-Package

The model is reduced to planar dynamics. Figure 6.15 shows an abstraction of the
original push-belt, compare figure 6.14(b): instead of describing the complex contact
geometry of the elements, plain cuboids are used. Contacts are described pairwise
between the two corners of one and the face represented by a line of the other cuboid.
Two different modeling approaches are studied for the bilateral constraint motion
of the elements on one virtual ring-package: either the absolute parametrization of
both the dynamics of the ring and the elements can be supplemented by constraint
equations; alternatively, the elements can be described with relative kinematics on
the ring, which is parametrized absolute, compare to section 4.1.2.

Mechanical Setup For both modeling approaches, 24 RCM finite elements are
used, see section 4.2.3, leading to ff = 120 degrees of freedom for the ring package.
Table 6.5 gives the parameters for the simulation. A belt with ne = 60 rigid elements
is investigated: the absolute parametrization needs f abs

e = 3ne = 180 degrees of
freedom for the elements, the relative description f rel

e = 2ne = 120. Additionally,
the modeling with bilateral constraints involves cabs

b = ne = 60 constraint equations
ensuring the guidance of the elements on the flexible ring.

The belt is simulated with unilateral frictionless rigid contacts in-between the el-
ements. For the simulation, one single element is translational fixated inertially:
gravity causes a swinging motion of the belt, see figure 6.16. Another element is
marked in different color for further considerations. The system is initialized in idle
state with equal distances between all elements on a circular ring. Note that the
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t = 0.00 s t = 0.12 s t = 0.25 s

Figure 6.16: Frames of the push-belt swinging under gravity
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Figure 6.17: Kinematic comparison of element parametrization

setup has an unrealistic large collected clearance between the elements, visible as
large gap in the right frame of figure 6.16. Time integration is performed using
semi-explicit time-stepping with equal step-size ∆t for both models.

Simulation Results Figure 6.16 shows the swinging motion around the fixated
element. Concurrently, the other elements slide along the guiding ring with contacts
closing impulsively. Good agreement can be seen for both modeling approaches
looking for example at the trajectory of the marked element, figure 6.17(a). The
relative kinematic description provides analytic compliance for all constraints; for
the bilateral constrained system figure 6.17(b) depicts small violations gN 6= 0 due
to numerical drift related to the marked element.

High numbers of up to na = 140 active contacts for the absolute parametrization
with bilateral constraints and na = 80 active contacts for the relative description
are plotted in figure 6.18(a): except for the inertial fixation giving two constraint
reactions, each of these contacts comprises one Lagrange multiplier. The proces-
sor time TCPU needed for simulation of the relative kinematic parametrization is
larger by 15% to 20% compared to the formulation using bilateral constraints, see
figure 6.18(b): this higher computational effort of the relative description is related
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to the higher accuracy. The time-stepping formulation gives only linear approx-
imation of the constraints evaluating only the Jacobi-matrices; in contrast, the
analytic evaluation of the sliding contact needs evaluation for example of curvatures
and time derivatives of the Jacobians being of highest computational effort. To
ensure accuracy, a stronger limitation on the time-step size ∆t being equal for both
approaches is set by the absolute parametrized model. In addition, the relative
kinematic description would allow for arbitrary numerical integration schemes for
ordinary differential equations when no other rigid contacts than the relative guiding
need to be described.

Industrial System

In his PhD-thesis [25] Geier develops a planar model for the transient behavior of
the push-belt CVT. The ring-packages are modeled elastic using the planar beam
model discussed within the current work. The guiding of the elements is described
by bilateral constraints; quasi-static deformations are regarded for the conic sheaves.
Reducing the model to approximately 1500 degrees of freedom, 3500 contact reac-
tions for impenetrability and friction need to be determined. A linear implicit Eu-
ler-scheme, what equals θ = 1 of the θ-time-stepping, is used for time integration.
A modular and mixed formulation allows for rigid as well as flexible contact models
including friction between all components. The model captures all important effects
and shows excellent agreement with measurements performed by Honda. Addition-
ally, Schindler et al. [50] validate the model by measurements of Bosch-VDT.

Further enhancement of this model towards three dimensional dynamics is provided
by Schindler et al. [51]. Especially the description of the ring-packages with spa-
tial large translational and rotational deflections is subject of intensive investigation.
An additional challenge arises with the complex spatial contact situations.
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The increasing request for detailed multi-body simulations includes demands for
rigid contact description on flexible bodies. While both rigid contact and flexible
body modeling are well established working fields that provide results efficiently also
in the context of industrial and high dimensional investigations, the description of
set-valued force laws applied to flexible bodies lacks for comprehensive studies. The
present work provides a framework for this application.

Referring to fundamental contributions in literature, a general mathematical basis
for the description of MBS including non-smooth characteristics is established in
chapter 2. An introductive discussion of variational approaches for dynamic systems
with unilateral constraints in mind prepares the application to flexible systems. The
modular derivation of the kinematic and the kinetic part of contacts later on allows
for a structured implementation in a simulation environment. The formulation by
proximal functions for the set-valued force laws – these represent the rigid contacts –
is utilized during time integration of the non-smooth dynamic systems.

Chapter 3 starts with resuming the framework commonly used for the description of
flexible MBS: kinematic and kinetic assumptions allow for the derivation of partial
differential equations describing the transient deformation behavior. Before the spa-
tial discretization is introduced, which is needed for most computational simulations,
the non-smooth characteristic is discussed in the context of a spatial continuum: a
time discrete jump in the velocity of a singular point concurrently induces a spatial
discrete discontinuity. Even tough this effect is blurred by every spatial discretiza-
tion, it needs to be regarded during the selection of proper shape functions. Here, op-
posite extremals are set by a modal and a finite element discretization: while the first
aims for representing the steady-state behavior of the entire body, the second yields
a local focus by spatial devision. Therefore, the modal approach is best suited for
fixed configurations without structural variance like closing contacts: only systems
with constant structure provide constant eigenforms. Contrasting, finite elements
preserve the local character of contact modeling also for sliding bilateral and uni-
lateral constraints but may only weakly approximate eigendynamics for very coarse
discretizations. Having established continuous shapes for the discretized flexible
bodies, the contact formulations of chapter 2 can be applied entirely. Thereby, for-
mulating a rigid contact means that the basic kinematic assumptions are preserved,
for example undeformable cross sections of a slender beam, and impenetrability is
regarded excluding contact flexibility.

Among the constraint formulations named within this thesis, the bilateral contact
is the only one that provides constant dimension of the minimal parametrization.
Simultaneously, it is of major relevance for many MBS simulations. In a first
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part, chapter 4 addresses the analytic incorporation of equality restrictions for tree-
structured systems: a rigid body on a flexible predecessor is discussed in detail. The
exact compliance for the constraint is accompanied by the need for evaluating the
entire nonlinear kinematic relations up to acceleration level.
Being of similar mathematical structure, a redundant parametrization of the body’s
kinematics can be used to allow for a selective modeling of special physical effects
with good computational performance. Here, a finite element formulation for beams
with large deflections is derived utilizing both connectivity of nodal coordinates and
effect-based modeling like for moving frame of reference formulations.

Some special aspects concerning the numerics of flexible MBS with contacts are
addressed in chapter 5. Implying contacts at velocity level, a scaled linear implicit
time-stepping integrator is formulated providing A-stability: the time-step size can
be chosen independent from the spatial discretization of flexible systems. During
simulation the contact kinematics implies the unitary identification of the pairing
potential contact points: a bounding volume hierarchy might be used for a reduction
of the computational effort by pre-selection and for capturing all regions of possible
interactions. This can complement root-finding algorithms in identifying the contact
points and ensure validity of the solutions.

Chapter 6 provides examples spanning from academic to industrial, from single to
multi-impact problems. Thereby, MBSim is used as simulation platform: the mod-
ule for flexible bodies results of the work presented within this thesis and provides
interfaces to further implementations of specific flexible body models.
As expected, impacts to flexible structures excite the entire modeled frequency range.
Concurrently, rigid body impacts show partly flexible characteristics due to the mod-
eled structural flexibility but depending upon the spatial discretization: the finer the
local resolution the lower are the instantaneous losses of kinetic energy for impacts;
instead local deformations occur rapidly. For the relative motion of masses applied
to a flexible body, shifts and interfaces in the characteristic frequencies and modes
of the system might result from the changes in the mass distribution. Using proper
time-integration schemes, even high dimensional problems with numerous contacts
can be simulated efficiently including flexible bodies.

Summing up, the present work shows the applicability of rigid contact formula-
tions including dry friction to flexible multi-body systems. This is of interest since
functional formulations like penalty approaches can be avoided: these tend to be
numerically stiff when decreasing mass ratios are included in contacts for refined
spatial discretizations. Nevertheless, the definition of the system is a crucial point,
especially the discretization of flexible components: systems with constant structure
allow for highly specialized model approaches; structure variance on flexible bodies,
like closing unilateral contacts or contacts with relative motion, yields the necessity
for modular modeling concepts as well as approximations with a sharp local focus.
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