
Techniques for Property Preservation in the Development of
Real-Time Systems

Jewgenij Botaschanjan





Institut für Informatik
der Technischen Universität München

Techniques for Property Preservation in the
Development of Real-Time Systems

Jewgenij Botaschanjan

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Alois Knoll

Die Dissertation wurde am 26.06.2008 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 11.11.2008 angenommen.





Abstract

A   of real-time systems is the existence of constraints concerning
timeliness. Most real-time systems are reactive, i.e., they react to events or changes in their

environment. Additionally, the tasks enjoined on systems from the reactive domain are often in-
herently safety-critical. By this, ensuring the correctness of these systems has high significance.
Model-based development has been recognized as a promising approach for the mastering of
the inherent complexity of reactive systems. While it has successfully come into use at the ad-
vanced stages like implementation, for its continuous employment in the course of development
additional research has to be done. The methodical mastery of real-time requirements and the
preservation of system behavior throughout different steps of the model-based development pro-
cess are the key factors for constructing reactive real-time systems which are conform to their
time and functional requirements and meet the real stakeholders’ needs.

This thesis examines both the problem of modeling, verification, and validation of real-time
requirements as well as the problem of behavioral preservation in the context of model-based
computer-aided development of reactive real-time systems.

On the one hand, the time behavior must be expressible within the specification language. On
the other hand, the high complexity of reactive systems demands for a separation of concerns
and modularization of the specifications along different aspects of functional and time behavior.
For the formal modeling of demanded system behavior a denotational framework is presented
which is able to capture and interrelate both time and functional requirements. The framework
is applicable in the early phases of development where the “unstructured” specification consists
of a number of constraints on the system and/or on its environment as well as in the subsequent
phases where the system borders are determined and the system’s functionality is partitioned
and structured, e.g., by components. Using this framework time constraints can be analyzed
respective consistency and completeness. Moreover, they can be formally related to and dis-
tributed over functional components. By this, the framework establishes the time behavior as an



independent but integrated view on the system under development. In particular, based on this
framework a taxonomy of time requirements was created and formalized.

Application logic models belong to the first artifacts which are settled in the solution space.
These models serve as a starting point for the developed property-preserving transformation pro-
cess which results in a deployed system. The process is based on concrete modeling paradigms
for application logic, clustered task architecture, and time-triggered deployment platform which
are described within a mathematical framework which allows the logical characterization of op-
erational models. For transitions from the application logic to the task architecture and from the
task architecture to the deployed system synthesis procedures are presented and their correct-
ness, i.e., property preservation, is formally proved. Finally, the operational models are mapped
to the denotational specification formalism from above. By this, they can be verified in regard
to the fulfillment of time and functional specifications.



Zusammenfassung

E  E von Echtzeitsystemen ist die Existenz von Pünktlichkeits-
und Rechtzeitigkeits-Anforderungen. Die meisten Echtzeitsysteme sind reaktiv, d.h., sie

reagieren auf externe Ereignisse oder Änderungen in ihrer Umgebung. Die Aufgaben, die
diese Systeme erfüllen müssen, sind oft inhärent sicherheitskritisch. Daher hat die Sicher-
stellung der Korrektheit solcher Systeme eine hohe Priorität. Modellbasierte Entwicklung ist
ein vielversprechender Ansatz um die Komplexität reaktiver Systeme zu beherrschen. Der
Einsatz der modellbasierten Methode in den fortgeschrittenen Phasen der Entwicklung, wie
Implementierung, erwies sich als fruchtbar. Jedoch für einen kontinuierlichen Einsatz im
Laufe des gesamten Entwicklungsprozesses, bedarf es einer Weiterentwicklung dieser Methode.
Methodische Beherrschung der Echtzeitanforderungen und die Erhaltung des Systemverhaltens
zwischen verschiedenen Phasen eines modellbasierten Entwicklungsprozesses, sind die Schlüs-
selfaktoren für die Konstruktion reaktiver Echtzeitsysteme, die konform zu ihren zeitlichen und
funktionalen Anforderungen sind und die eigentlichen Bedürfnisse aller Interessengruppen er-
füllen.

Die vorliegende Arbeit untersucht sowohl das Problem der Modellierung, Validierung und Veri-
fikation von Echtzeitanforderungen als auch das Problem der Eigenschaftserhaltung im Rahmen
der modellbasierten rechnergestützten Entwicklung reaktiver Echtzeitsysteme.

Einerseits muss das Zeitverhalten in einer Spezifikationssprache ausdrückbar sein. Anderer-
seits erfordert die hohe Komplexität reaktiver Echtzeitsysteme die Aufteilung und Modular-
isierung von Spezifikationen entlang verschiedener funktionaler und zeitlicher Aspekte. Für
die formale Modellierung des geforderten Systemverhaltens ist ein denotationaler Formalismus
präsentiert, welcher in der Lage ist, funktionale und zeitliche Anforderungen zu erfassen und
zueinander in Beziehung zu setzen. Der Formalismus ist für die Anwendung in den frühen En-
twicklungsphasen gestaltet, in welchen eine unstrukturierte Spezifikation, bestehend aus einer
Anzahl von Anforderungen an das System und/oder an seine Umgebung, existiert; sowie für die
Anwendung in den nachfolgenden Phasen, in welchen die Systemgrenzen bereits abgesteckt sind



und die Funktionalität des Systems partitioniert und strukturiert ist, beispielsweise durch Kom-
ponenten. Mit Hilfe des Formalismus können zeitliche Anforderungen bezüglich Konsistenz
und Vollständigkeit analysiert werden. Außerdem können die Anforderungen über eine Kompo-
nentenarchitektur verteilt und den einzelnen Komponenten zugewiesen werden. Dadurch wird
das Zeitverhalten als eine unabhängige jedoch integrierte Sicht auf das zu entwickelnde System
etabliert. Insbesondere wurde mit Hilfe dieses Formalismus eine Taxonomie der Echtzeitan-
forderungen erstellt und formalisiert.

Modelle der Anwendungslogik gehören zu den ersten Artefakten, die im Lösungsraum ange-
siedelt sind. Diese Modelle dienen als der Ausgangspunkt für das von uns entwickelte eigen-
schaftserhaltende Übergangsverfahren, welches in einem integrierten System mündet. Das Ver-
fahren basiert auf den Modellierungsparadigmen für die Anwendungslogik, Task-Architektur
und zeit-gesteuerte Zielplattform. Diese wurden innerhalb eines mathematischen Rahmenwerks
erstellt, welches die logische Charakterisierung der operationalen Modelle erlaubt. Für die
Übergänge von der Anwendungslogik zur Task-Architektur sowie von der Task-Architektur zum
integrierten System wurden spezielle Synthese-Verfahren entwickelt und deren Korrektheit im
Sinne von Eigenschaftserhaltung formal nachgewiesen. Schließlich wurden operationale Mod-
elle auf den oben vorgestellten denotationalen Formalismus abgebildet. Dadurch können diese
auf die Konformität zu funktionalen und Echtzeitanforderungen überprüft werden.



Danksagung

I  Z möchte ich die Gelegenheit nutzen und all denjenigen zu danken, die zu erfol-
greichen Fertigstellung dieser Arbeit beigetragen haben. An erster Stelle möchte ich meinem

Doktorvater, Professor Manfred Broy, dafür danken, dass er mich in seine Forschungsgruppe
aufgenommen hat, und mir während der Erstellung dieser Arbeit sowie während der Projektar-
beit mit Rat und Tat zur Seite stand. Ferner geht mein Dank an Professor Alois Knoll dafür, dass
er das Zweitgutachten übernommen hat.

Das AutoF Task Modell, ein wesentlicher Teil vorliegender Arbeit, ist im Rahmen des
Verisoft Automotive Projekts entstanden. Ich möchte mich an dieser Stelle bei dem gesamten
Verisoft Team an der TU München bedanken für die vielen interessanten Diskussionen und An-
regungen.

Mein Dank geht an Iain Bester, Alexander Harhurin, Leonid Kof und Doris Wild dafür, dass sie
die beschwerliche Aufgabe des Korrekturlesens meiner Arbeit auf sich genommen haben.

Meiner Frau Diana und meinen Kindern Nikita, Valeria und Arthur, sowie meinen Eltern Larissa
und Vladimir Botaschanjan möchte ich für die Unterstützung in jeder Phase dieser Arbeit und
für viel Geduld, die sie während dieser Zeit aufbringen mussten, danken.





Contents

1 Introduction 1
1.1 Model-Based Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Notion of Time in the Model-Based Development . . . . . . . . . . . . . 4
1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Specification of Time Constraints 13
2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Specification of Reactive Real-Time Systems . . . . . . . . . . . . . . . . . . 16

2.2.1 Timed Events and Timed Traces . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Operations on Timed Traces . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Semantic Domain of Timed Systems . . . . . . . . . . . . . . . . . . . 22
2.2.4 Composite Timed Events and Observations . . . . . . . . . . . . . . . 24
2.2.5 Metric Temporal Logic for Timed Traces . . . . . . . . . . . . . . . . 27

2.3 A Formal Model for Time Requirements . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Important Occurrence Patterns . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Important Time Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 Low-Level Time Constraints . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.4 Timed Behavior Specification . . . . . . . . . . . . . . . . . . . . . . 42

2.4 CPS Case Study (con’ed ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Analysis of Time Constraints 53
3.1 Quality and Conformance Assurance During Development . . . . . . . . . . . 54

3.1.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Consistency and Completeness . . . . . . . . . . . . . . . . . . . . . . 59

i



Contents

3.1.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 A Formal Model for System Specification . . . . . . . . . . . . . . . . . . . . 66

3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Causality, Composition, and Refinement . . . . . . . . . . . . . . . . . 67
3.2.3 From Time Constraints to Component Specification . . . . . . . . . . . 68

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 From Application Logic to Task Model 73
4.1 Operational Semantics for Reactive Systems . . . . . . . . . . . . . . . . . . . 76

4.1.1 Variable Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 State Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 From Runs to Trace Semantics . . . . . . . . . . . . . . . . . . . . . . 79
4.1.4 Modeling Composite Systems with STS . . . . . . . . . . . . . . . . . 80
4.1.5 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.6 STS for Technical Systems . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Modeling Application Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Description Techniques in AutoF . . . . . . . . . . . . . . . . . . 90
4.2.2 AutoF Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Clustering Application Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 A Reference Task Model . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 AutoF Task Model (AFTM) . . . . . . . . . . . . . . . . . . . . . 100

4.4 From AutoF to AFTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2 AutoF Task Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 From CASE Tools to Integrated Systems 115
5.1 Time-Triggered Deployment Platform . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 OSEKtime & FlexRay: An Informal Introduction . . . . . . . . . . . . 117
5.1.2 Time-Triggered Execution: OSEKtime . . . . . . . . . . . . . . . . . 119
5.1.3 Time-Triggered Communication: FlexRay . . . . . . . . . . . . . . . . 123

5.2 Propety Preserving Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 Mapping AFTM to OSEKtime/FlexRay . . . . . . . . . . . . . . . . . 125
5.2.2 Scheduler Synthesis Procedure . . . . . . . . . . . . . . . . . . . . . . 127
5.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Conclusions 137
6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ii



Contents

A Auxiliary Definitions and Proofs 143
A.1 Definitions and Proofs for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 143
A.2 Definitions and Proofs for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 149

iii





1
Introduction

T         as well as reasoning about their cor-
rectness are important and well-established research areas in computer science. The level

of maturity individual formal modeling and verification techniques have achieved makes them
applicable in the development of industrial-size systems. This motivates a trend in software
engineering which aims at the integration of formal methods into development processes. On
the other hand, in practice more and more safety-critical tasks are committed to software-based
systems. The size and complexity of these embedded systems, e.g., applied in vehicles or air-
craft, is growing exponentially [Bro06a, SZ06, Gri03]. One needs to guarantee the correctness
of such systems, since a failure while performing a safety-critical task could lead to catastrophic
results (e.g., cf. [Lan97]). These circumstances suggest the integration of formal methods and
verification techniques into the development process of embedded systems.

Embedded systems are designed for a continuous interaction with their environment. Therefore,
they have to react when they observe certain environment events. In other words, the system
gets active if it perceives, e.g., through sensors, or by receiving a signal over a transmission link,
that a certain event has happened in the environment. The system reacts to this event, using e.g.,
actuators or sending a response message through a bus line. Thus, this kind of systems is also
called reactive systems. Reactive systems are constructed for an in principle infinite repetition
of their activities. This fact distinguishes them from “classical” programs, which are started,
run to completion and terminate. This fact also motivates the need for special formal models
of reactive systems. Another particularity of reactive embedded systems is that they monitor
and manipulate physical processes. In physical processes, events are stretched over time. Thus,
often reactive systems have not only to react correctly, but also to react in time. This class of
systems is called real-time systems.

In the present thesis we study how the time behavior of reactive real-time systems can be mod-
eled and analyzed throughout their development and how the correctness of this behavior can be
ensured. For this purpose, we provide formal models applicable at different development stages
and describe methods which provably preserve the time and functional system behavior during
the transition from one model to another. More precisely, we define formal models for specifica-

1



CHAPTER 1. INTRODUCTION

tion of time behavior and for the realization of their (functional) behavior. We instantiate these
models for specification, design and implementation paradigms, which are applied during the
development of embedded systems. In particular, we formalize time constraints, which are typi-
cally used to describe the real-time behavior; we provide formal models of a CASE-tool design
paradigm, of a task architecture concept, and of a time-triggered deployment platform. By this,
we cover the phases of requirements engineering, design and implementation/deployment in the
development process of embedded real-time systems. In every development stage our concern
is to ensure the property preservation during the transition to the succeeding one. Thus, we for-
mulate assumptions which, e.g., a task architecture must discharge in order to provably preserve
the behavior of the design model. We also provide formal proofs of the property preservation
under these assumptions.

Outline. We give a short overview of model-based development, as a promising development
paradigm for the integration of formal models and methods in Section 1.1. Then, in Section 1.2
we set the notion of time into the context model-based development processes and discuss how
the time behavior can be incorporated as an independent, but yet integrated model-based view
on the system. Section 1.3 describes the contributions and the structure of the present thesis.
Finally, in Section 1.4 we introduce two case studies, which were used for the evaluation of our
results. They serve as running examples throughout this thesis.

1.1 Model-Based Development

The advantages of using models in systems engineering are indisputable. Models enable to build
views on and abstractions of systems. In other words, models allow to consider certain aspects
like application logic, while fading out others, like package structure, technical platform, or
physical distribution of the system components. Another promising perspective provided by
models is the possibility of formal analysis. Its prerequisite is the formal foundation of the
applied models. The benefits the application of formal analysis brings along are:

• the provability of system correctness,
• improved early detection of inconsistencies, e.g., in the specification and design artifacts,

as well as
• the possibility to remove ambiguities from these artifacts, which are often contained in the

informal textual or graphical descriptions.

Model-based development is widely recognized as a method of choice for efficient and safe
design of computing systems. Development processes referred to as model-based provide
the ability to represent requirements, specifications, and designs using (graphical) domain-
specific languages [SPHP02b]. As discussed above, the assignment of mathematical meaning
to the domain-specific languages, i.e., the definition of formal semantics of applied modeling
paradigms, allows to verify created models and, provided the semantics is operational, to sim-
ulate the resulting behavior for validation purposes. Coupled with increasingly sophisticated
code generation technology (researched in the literature [ABG95, HRR91, GEB03, BS01b] and

2



1.1. MODEL-BASED DEVELOPMENT

established in the commercial tools, like TargetLink1 or Real-Time Workshop2) model-based
development aims at elevating the level of abstraction at which systems are designed, analyzed,
validated, coded, and tested. Further on, formally-founded model-based development permits to
structure functional and non-functional descriptions of the system along multiple concerns (or
aspects), to integrate them to complete system descriptions, and to establish tracing between the
elements of different models and views. Finally, model-based development is also concerned
with providing automated support to software engineering. Over the last years, CASE tools, like
MATLAB/Simulink3, Rose RT4, StateMate5, or ASCET-SD6 became established instruments
for the design of embedded systems, e.g., in the domains of automotive and avionics.

An important issue, for the formal-foundation of model-based development as well as for the
introduction of verification into the model-based development, is the integration of different
models. Vertical integration relates products of different development phases, like implementa-
tion and design models, while horizontal integration answers the question about the interrela-
tionship of different views and fragments of the system produced during the same development
phase, e.g., the dependencies between different subsystems, relations between functional and
non-functional requirements, etc. The goal of integration is to preserve the properties proved
to hold for individual models. For functional properties the vertical integration can be consid-
ered as a refinement relation: The realization of some functionality refines the corresponding
requirement if the behaviors the realization can show are contained in the behaviors permitted
by the requirement. The horizontal integration is handled by the notion of composition: The
correct functioning of a particular subsystem or component often relies on assumptions about
the behavior of its environment, which consists of further components. Thus, the component,
provided that its environment operates according to the assumptions, must give back certain
guarantees about its own behavior to the environment. The composition expresses, when and
how the assumptions and guaranties of different components fit.

We are interested in modeling and analyzing the time behavior on different stages of the model-
based development process of reactive real-time systems. Thus, we present models which are
able to capture the specified time behavior, and integrate them horizontally and vertically with
other models of the system, like logical, or technical design, and implementation/deployment
solution. By this, we install time behavior as a separate, but yet integrated view on the system.

In practice, the vision of computer-aided model-based development sketched above, is realized
in relatively narrow functional domains and at advanced stages of development. The CASE tools
listed in the previous paragraphs incorporate isolated applications of the ideas of the model-
based approach, and provide no concepts for integration with artifacts from preceding and sub-
sequent development steps [BBC+03]. In the current thesis we present a model stack consisting
of a CASE tool model for logical design, task architecture model for technical design and a
programmer’s model of a time-triggered distributed deployment platform. Every stack layer is

1see http://www.dspace.com (20.06.2008)
2see http://www.mathworks.com/products/rtw (20.06.2008)
3see http://www.mathworks.com/products/simulink (20.06.2008)
4see http://www-01.ibm.com/software/rational (20.06.2008)
5see http://modeling.telelogic.com/modeling/products/statemate (20.06.2008)
6see http://de.etasgroup.com/products/ascet (20.06.2008)

3

http://www.dspace.com
http://www.mathworks.com/products/rtw
http://www.mathworks.com/products/simulink
http://www-01.ibm.com/software/rational
http://modeling.telelogic.com/modeling/products/statemate
http://de.etasgroup.com/products/ascet


CHAPTER 1. INTRODUCTION

integrated with others in the sense that conformance conditions are provided, which ensure that
the upper layer is vertically integrated with the lower ones. In [BGH+06] we have shown how
our task architecture model can be emulated by the aforementioned CASE tool. The transi-
tion from the task architecture model to the deployed system was prototypical realized for the
concrete time-triggered platform via code generation in the scope of the Verisoft Automotive7

project. By this, the evidence of feasibility of the envisioned model stack was furnished. Finally,
the operational models from the stack can be mapped to the denotational time behavior specifi-
cation, described in the previous paragraph. By this, we facilitate the model-based development
starting with a formal requirements specification up to the deployed system.

The next section contains the description of the reference model-based development process
we rely on. The emphasis of the description lies on the notion and role of time in different
development phases.

1.2 The Notion of Time in the Model-Based Development

The overall design flow of the model-based development process, which will be discussed next,
is sketched in Figure 1.1. The artifacts are mapped to their respective time domains. The fig-
ure abstracts from the iterations in the development, e.g., it hides feedback and rollback loops
between artifacts away. The process reflects the typical activities and their order during the
industrial development of embedded systems [BFG+08, SZ06].

The system specification is by convention subdivided into functional and time behavior require-
ments. The latter class is a subclass of the so-called performance requirements. The former
requirements class serves as an input for the design phase, where the logical and task archi-
tectures emerge. Thereby, the task architecture clusters the artifacts of the logical architecture,
typically components or classes, by deployable units (tasks). The task architecture, time be-
havior requirements, as well as the model of the target deployment platform serve as inputs for
building the analytical task model (ATM). This model serves as the basis for the schedulability
analysis. Finally, the tasks from the task architecture are deployed on the target platform using
the results of the schedulability analysis documented by ATM. In the remainder of this section
we give a more detailed description of the artifacts from Figure 1.1 and transitions between them
in especial consideration of time behavior.

Normally, development projects start with the requirements engineering phase, which aims at
creating specification of the system under development. Specifications usually provide a number
of constraints on the time behavior of the real-time system under construction. More precisely,
they demand a number of functions or features to be realized. These functions are causally or-
dered by user cases, which document the data- and control-dependencies between them. One
of the actors in these use-case scenarios is the environment of the system (which can consist
of several further systems or human users). The data- and control-flow through the interface to
the environment is often constrained respecting its timing. By this, the time constraints refer
to the end-to-end behavior visible to the environment of the system. Moreover, the behavior of

7see http://www.verisoft.de and http://www4.in.tum.de/~verisoft/automotive (20.06.2008)

4

http://www.verisoft.de
http://www4.in.tum.de/~verisoft/automotive


1.2. THE NOTION OF TIME IN THE MODEL-BASED DEVELOPMENT

Time

Requirements

Functional

Requirements

Logical

Architecture

Logical
Time

Task

Architecture
ATM

Time
Real−

Time
Real− Deployed

System

Figure 1.1: Design Flow & Time Domains

the environment itself underlies certain time constraints, which are also documented in speci-
fications. In the majority of cases, the time constraints are not exact but rather define certain
tolerance bounds in which the actual time behavior of the realized system must lie. In other
words, there may exist a refinement relationship between the time behavior of the specification
and the corresponding implementation.

A common classification criterion of a time constraint is the observable effect of its miss by
the system. In this context, there exists a distinction between soft real-time and hard real-time
constraints. Missing a hard real-time constraint can lead to catastrophic consequences, like
damage to equipment, loss of money, or even injury to human lives. Violation of soft real-time
constraints merely decreases the performance of the system. In this thesis we will address solely
hard real-time constraints. By analogy with functional requirements we can denounce a system
which misses some hard real-time constraint as an invalid realization of the specification.

5



CHAPTER 1. INTRODUCTION

The timing of both specification and implementation is described in the physical time units
(typically in the order of magnitude of milli- or microseconds). In other words, the real-time
axis must be used to model the time behavior of artifacts from these phases. In between, i.e.,
during the design phase other modeling paradigms come to use. In order to cope with the
complexity, they provide modularization concepts to the developers, like components, classes,
modules, etc. and – either implicitly or explicitly – models of computation which compose these
modules. Models of computation are defined upon abstractions about the actual behavior of the
system. Examples are concurrent execution, global clock, instantaneous computation, zero- or
unit-delay communication, atomicity of actions, lossless communication links, and so on. These
are extremely useful abstractions, which allow to simplify the description of the application
logic, to make it platform independent and by this portable, and, finally, to reduce the state
space and facilitate the application of formal analysis techniques. For the same purposes design
paradigms are often based upon logical-time axes. There, the progress of time is expressed in
special artificial units, like ticks, transition steps, coefficients of a global natural-valued clock,
or (partial-)ordered events.

With regard to the real-time behavior the combination of the model-based approach with formal
verification brings an interesting challenge: The real-time requirements are expressed using the
physical time. In contrast, as Figure 1.1 suggests the functional requirements are realized in
the settings of logical time. At the end of this process the made up models have to be trans-
ferred from CASE-tools (via code and wrapper generation as well as schedule synthesis) to a
deployment platform. By this, their time behavior is dictated by the physical clocks again and
can be validated with respect to the fulfillment of time requirements. By the latter change of the
underlying model of computation the overall behavior of the deployed system can deviate from
the behavior of the application logic in the execution semantics of a CASE-tool. This surely
reduces the utility of the verification effort put on the pure application logic. The aggravating
circumstance for the above scenario is the well-known curve [Boe81], which shows the cost of
a bug fix in relation to the point in time of its detection. The curve grows exponentially.

In order to improve this situation, several approaches [BJ05, IM07, Dam05] suggest to spread
and descriptively assign the time behavior to the design artifacts. This allows to analyze the sat-
isfaction of time requirements already for particular design solutions, under the assumption that
the implementations of design artifacts will comply with their assigned time (sub-)requirements.

The authors of [BJ05] propose a necessary condition for the realizability of a timing model:
All time requirements should be met under the assumption of maximal parallelism. In fact if
every function has a set of dedicated resources which it can use exclusively (e.g., processor,
memory, communication link to everyone of its partners, etc.) and provided the communica-
tion takes no time, it should be possible to find a solution which meets all time requirements.
Otherwise, the time specification is contradictory. Obviously, this condition is not sufficient,
thus, more elaborate models must be created. The analytical models must perceive the tar-
get deployment platform as well as the functional dependencies between the design artifacts.
Thereby, the classical scheduling-theory [Jos01, LL73, TBW94] as well as more recent ap-
proaches [BJ05, Pop00, AFM+03] make different simplifying assumptions about both the plat-

6



1.3. CONTRIBUTIONS AND OUTLINE

form and the application logic. However, they do not answer the question, how these assump-
tions can be discharges by their concrete counterparts?

The collection of assumptions incorporated by different schedulability analysis approaches is
called a task model. A justification for a task model is the fact that in most cases the target
deployment platform consists of already existing technical solutions, like OSes, buses, etc.,
which can consider different relationships between functions only to some extent. For exam-
ple, time-triggered OSes, like OSEKtime, can activate their applications on timer events only.
The causal relationships between functions cannot be explicitly established in OSEKtime. Thus,
correct-by-construction approaches, which provide programmer’s models for implementation of
reactive systems, like [BBG+08, HHK03, Hon98, STY03, BW95], incorporate a limited set of
inter-application relationships and communication pattern. However, if we consult our envi-
sioned development process in Figure 1.1, we see that their starting point is the task architecture
or implementation. This brings us back to the problem from above: How can simplifying as-
sumptions of the task model be discharged by the application logic?

One possible solution is to delegate the verification to the task architecture. Approaches,
like [BRS04, BGH+06], provide tool support and give methodological guidelines for the tran-
sition from the application logic (also called logical architecture or design model) to the task
architecture, but do not guarantee property preservation during this procedure. Another ap-
proach which goes in the same direction can be found in [BBG+08]. There, the authors have
formally proved that the (temporal) properties of any application modeled using a special de-
sign paradigm, called AutoF Task Model (AFTM), are preserved after the deployment on a
distributed time-triggered platform using a special schedule synthesis algorithm. We will learn
more about the results presented in that paper in the remainder of this thesis. Another answer
to the above question is to ensure the property preservation during both transitions: from ap-
plication architecture to task architecture and from task architecture to deployed system. Such
property-preserving procedure is one of the main contributions of the present work.

In these settings four interesting investigation fields naturally arise:

(1) How can real-time requirements be analyzed respecting their consistency?

(2) How can real-time requirements be mapped to a design model and distributed over its
artifacts (components, classes, etc.)?

(3) How can a design model be analyzed in respect of fulfillment of time requirements in the
view of different time axes?

(4) How can a design model be mapped to a technical platform, without loss of functional or
real-time properties of this model?

The present thesis answers these questions, as stated in the following section.

1.3 Contributions and Outline

In the current section we give a brief overview of the material presented in the remainder of this
thesis. It is partly based on our contributions in [BBG+08, BGH+06, BKKS05, BJ05, BRS04].

7



CHAPTER 1. INTRODUCTION

The thesis consists of four major chapters which handle three major topics identified in the
previous sections: (1) specification and verification of time behavior, as well as the preservation
of time and functional behavior during (2) design and (3) deployment.

Chapter 2 presents a denotational framework for modeling and analyzing time requirements.
It provides an interval-based temporal logic, which allows the formalization of time and func-
tional requirements. Using this temporal logic, a taxonomy of time constraints, e.g., response
time, inter-arrival time etc., which are typically found in specification and design documents, is
formalized. Furthermore, the chapter provides flexible and powerful mechanisms for building
timed behavior specifications out of individual time constraints and functional requirements.

In Chapter 3 the notion of refinement of time behavior is introduced. Using refinement, a number
of operations on time constraints, which usually have to be performed during the development
process, are formalized. In particular, Chapter 3 offers mechanisms for decomposition of time
requirements, derivation of further implicit requirements, and distribution of requirements over
component networks. Further on, the relationships between time and functional requirements as
well as between unstructured collections of time requirements and individual component specifi-
cations are written down formally. The relationships describe precisely, e.g., what consequences
a refinement of a time requirement will have on the corresponding component specification and
vice versa. This allows to establish time behavior as a separate view on the system, which is
fully integrated with the other views, like the behavioral or architectural view. The changes
executed on this view are pursuable to the rest of the system model and vice versa.

The mapping of time requirements to the component architecture described above preserves
the descriptive style commonly used in the specifications. However, a substantial class of de-
sign paradigms are based on operational semantics. Operational description of system behavior
enables automatic or schematic transition from design to implementation. For example, most
CASE tools allow code generation out of their models. Chapter 4 presents an automata-based
formalism, called state transition system (STS) [BP99, PP05], for the description of system be-
havior. By use of STSs we formalize the semantics of a CASE tool called AutoF8 [HSE97].
The tool describes the system model by a set of communicating Mealy machines. Their transi-
tion functions produce infinite sequences of states. Different machines are composed using the
global clock and parallel execution. The composition constructs the global system step. This
step is the measurement unit of the logical time axis of AutoF. However, it does not mean
much for the real-time behavior of the system, since its real-time length should utmost vary for
different transitions, when run on the target hardware. This motivated us to group transition
steps between a request and a corresponding response for every AutoF machine. Such a
unit of system execution is more meaningful for the analysis of time behavior, since it can be
associated with the functional and real-time requirements, which relate inputs and outputs of the
system. The grouping is achieved by the transformation of AutoF models to a novel task
architecture paradigm called AutoF Task Model (AFTM) [BGH+06, BBG+08]. The further
contribution of Chapter 4 is the correctness proof of that transformation under certain assump-
tions. Finally, the STS formalism is mapped to the denotational framework from Chapter 2.

8see http://autofocus.in.tum.de and http://www4.in.tum.de/~af2 (20.06.2008)

8

http://autofocus.in.tum.de
http://www4.in.tum.de/~af2


1.4. CASE STUDIES

This allows conformance checks between time and functional specifications and their respective
realizations.

Another purpose of AFTM is to prepare the system for the subsequent deployment. The abstrac-
tions incorporated into design paradigms, like AutoF or AFTM must be broken down for
the implementation. For one-processor deployment targets the execution becomes sequential,
or interleaved, the communication takes time etc. Thus, it is not obvious at all that properties
proved to hold for a design model will still be true for the implementation. This concerns both
functional and time behavior. In order to be able to reason about property preservation we need
a formal model of the target platform of the system and a relation between the different time
axes, described above. In Chapter 5 we describe the property-preserving deployment of sys-
tems modeled in AFTM to distributed time-triggered platforms, in particular, to a network of
nodes connected by a time-triggered bus FlexRay9 [Fle04] with a time-triggered OS OSEK-
time10 [OSE01b] running on each of them. We provide STS models of FlexRay and OSEKtime
and a synthesis procedure, which correctly deploys AFTM models on that target platform. We
prove the correctness in a simulation theorem. These results would not be possible for arbitrary
application logic models from AutoF. AFTM was explicitly designed to support property-
preserving deployment.

The summary of the thesis as well as the discussion of possible directions of future work are
given in Chapter 6. Finally, Appendix A contains auxiliary definitions, propositions, and proofs
used in ordinary Chapters 2 and 4.

1.4 Case Studies

For the illustration of the presented concepts and solutions we use two case studies: Car Periph-
ery Supervision (CPS) System and Emergency Call (eCall) which are described in the following
paragraphs.

Case Study 1: Car Periphery Supervision (CPS)

CPS stands for car periphery supervision system and is specified in [KR02]. The study exhibits
some typical properties of targeted systems (in this case from the automotive domain), such as
real-time requirements, distribution and resource constraints. The tasks enjoined on CPS are
in parts safety-critical: the system has to react to critical situations, which may lead to a road
accident (crash). By this, the correctness of the CPS system is a high-prioritized task.

CPS is supposed to be the basis for different driver assistance services, such as parking assis-
tance, pre-crash detection, blind spot supervision, lane change assistant, etc. The CPS system is
sending radar pulses out into the surrounding environment of the car and receives and processes
the echoes which are reflected from objects in the environment (cf. Figure 1.2). For this purpose

9see http://www.flexray.com (20.06.2008)
10see http://www.osek-vdx.org (20.06.2008)

9

http://www.flexray.com
http://www.osek-vdx.org


CHAPTER 1. INTRODUCTION

the system can operate up to six sensors at the same time. The sensors are located at different
positions in the vehicle. The range of the sensors under consideration is 0 to 7 m. Depending on
number, position and relative velocity of the objects, CPS communicates with the airbag system,
the belt tensioner, and a human machine interface (HMI). A number of real-time requirements
are stated for the CPS system. On the top-level black-box view these are:

(R1) CPS must send the collision data to the airbag ECU (electronic control unit), through
the collision object interface (COI). The data must be delivered at least 10 ms before a
predicted collision.

(R2) A further task of CPS is to activate the belt tensioner via the belt tensioner interface (BTI)
in case of a predicted collision. The activation must take place at least 110 ms before the
predicted time of collision.

These requirements bind the distance between an event issued by the system either to the airbag
or to the belt tensioner and the possible collision.

Figure 1.2: Context of the CPS System from [KR02]

Case Study 2: Emergency Call (eCall)

According to the proposal by the European Commission [Eur03], an automated emergency call
should become mandatory in all new cars as of 2009. The application itself is simple enough to
be sketched in a few paragraphs, but it still possesses typical properties of embedded software.
By this we mean that it is a safety-critical application distributed over several electronic control
units (ECUs), whose correct functionality not only depends on the correctness of the application
itself but also on the correctness of a real-time OS and a real-time bus.

10



1.4. CASE STUDIES

We model the eCall as a system consisting of 3 sub-systems, namely: a GPS navigation system,
a mobile phone, and the actual emergency call application. External information (e.g. the crash
sensor, the GPS signals) is considered to be a part of the environment. According to [Eur03],
these components interact as follows: The navigation system sends periodically the vehicle’s
coordinates to the emergency call application so that it always possesses the latest coordinates.
The crash sensor sends periodically the current crash status to the emergency call application. If
a crash is detected, the emergency call application initiates the eCall by prompting the mobile
phone to establish a connection to the emergency center. As soon as the mobile phone reports
an open connection, the application transmits the coordinates to the mobile phone. After the
coordinates have been successfully sent, the application orders the mobile phone to close the
connection. The emergency call is finished as soon as the connection is successfully closed. If
the radio link breaks down during the emergency call, the whole procedure is repeated from the
initiation step.

11



CHAPTER 1. INTRODUCTION

12



2
Specification of Time Constraints

This chapter provides a formal denotational framework, which allows to specify the time behav-
ior of reactive systems. The framework consists of a first-order quantitative linear temporal logic
which is defined over the domain of timed traces. Using this logic time requirements put on the
system under development can be written down formally. We use this framework to define a
taxonomy of low-level time requirements – primitives often used to describe the time behavior
on the level of technical systems. We also show how to compose individual requirements to
specifications.

Contents
2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Specification of Reactive Real-Time Systems . . . . . . . . . . . . . . . . 16
2.3 A Formal Model for Time Requirements . . . . . . . . . . . . . . . . . . 31
2.4 CPS Case Study (con’ed) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

A     has not only to realize the demanded functionality
correctly but also to fulfill a number of real-time constraints. The system’s reaction con-

forming to the functional specification, but produced at a wrong time (either too late or too
early) can lead to harmful, undesirable results. The aggravating circumstance for a large class
of reactive systems is the safety-critical character of their activities. In these settings the correct
realization of both their functional and their real-time requirements is of a particular importance.

The real-time constraints are dictated by properties of the environment, which has to be moni-
tored and/or controlled by reactive systems. These properties are firstly based on physical laws,
and secondly on protocols and commitments between different control units. The systems have
to note changes within the environment in time and react/act within fixed delays.

The time behavior of the environment, as a part of the problem space, is studied, negotiated and
captured during the requirements engineering process. The outcomes, i.e., the time constraints,
are documented in the system specification. These constraints, available at the early stages of
the development process, are important criteria for the acceptance of the system and should be
analyzed for correctness as well as used to guide the system design.

On the other hand, the analysis of the actual run-time behavior of embedded systems needs
primarily tight estimations of best case execution time (BCET) and worst case execution time
(WCET). These can be achieved only at the late development phases, when the machine-code
of the application is deployed on the target platform. A discovered inconsistency within the
demanded time behavior or a miss of a demanded time constraint during the final stages of the
development process often lead to an expensive and time-intensive redesign.

This motivates the modeling of the demanded time behavior as an explicit view on the sys-
tem already at the early phases, like specification or design. The justification of design for the
fulfillment of time constraints aims at

• reducing the possibility of mismatch with the requirements,
• localizing the cost of final verification/validation,
• localizing/guiding the possible refactoring measures.

In order to achieve the listed goals, the time behavior model should be formally founded and
support the notions of composition and refinement. These are preliminaries for the integration
of time behavior with other aspects of the system, like the behavioral and architectural views.

Contributions and Outline. Mathematical preliminaries are covered by Section 2.1. In Sec-
tion 2.2 we present a formal framework based on the domain of timed traces. Timed traces order
the messages by the time of their occurrence. Certain occurrence and timing pattern constitute
hierarchical timed events. The events are hierarchical in the sense that they are built by relating
sub-events to each other. The formalism, we use to express relations between (sub-)events is a
variant of metric temporal logic (MTL) [Koy90]. It allows to express causal relationships be-
tween events and to constrain their timing. Furthermore, we extend MTL by arbitrary predicates
on the domain of timed traces in order to express more elaborate properties/events.

14



2.1. MATHEMATICAL PRELIMINARIES

Using the introduced framework we define in Section 2.3 a taxonomy of low-level (or system-
level) time requirements or constraints, well-established for the description of real-time behavior
on the level of logical design and implementation. Members of this taxonomy like the response-
time constraint or the period constraint are also commonly found in specifications. At the end
of the section we compose time requirements to timed behavior specifications by embedding
them into contexts. A context describes in which situations a requirement must hold. By this,
it allows to isolate the time behavior from its functional embedding and offers a flexible and
powerful mechanism for the reasoning about time requirements.

Finally, the CPS case study introduced in Section 1.4 illustrates the presented concepts through-
out this chapter and, in particular, in Section 2.4.

2.1 Mathematical Preliminaries

In this section we give basic mathematical definitions that will be used as the foundations of
our work. If f is a function then we denote by dom( f ) and rag( f ) the domain and range of f ,
respectively. We also use a more concise notation dom. f and rag. f . Given a function f and a
subset of its domain D ⊆ dom. f , we denote the restriction of the domain of f to D by f dD which
is defined by the formula(

dom.( f dD) = dom. f ∩D
)
∧

(
∀d ∈ dom.( f dD) : ( f dD).d = f .d

)
.

We observe the commutativity of domain restriction: f dD1dD2 = f dD2dD1 = f dD1∩D2 .

Intervals

Time is modeled by elements from a time domain T. We expect (T,≤) to be a linear ordered
set (cf. Definition A.2). This linear order constitutes the time-line within the time domain. In
our work, we are interested in infinite non-negative time domains with a least element, such as
the discrete domain of naturals (N) and the dense domains of non-negative rationals (Q≥0) and
non-negative reals (R≥0).

We abbreviate T∪ {∞} by T∞ and T \ {0} by T+ and assume the usual properties of ∞, namely
that for all t ∈ T, t <∞ and t +∞ =∞+ t =∞− t =∞. The time intervals over T are defined as
conventional intervals, for example [t0, t1) def

= {t ∈ T | t0 ≤ t < t1}. Therefore “degenerate” intervals,
like [a,b] with a > b or [a,a) are considered as empty sets. By [T] ⊆ ℘(T) we denote the set of all
right- and/or left-closed/open intervals in the time domain T. We assume for that the numbering
systems of interval bounds match with the time domain of the interval they build; e.g., for
t0, t1 ∈ R≥0, (t0, t1] ∈ [R≥0] and for t0, t1 ∈ N, [t0, t1] ∈ [N].

The arithmetic operations + and − on intervals are defined by their point-wise application and
yield intervals again. Formally, for I1, I2 ∈ [T∞] we define binary operations + : [T∞]× [T∞] 7→
[T∞] and − : [T∞]× [T∞] 7→ [T∞] in infix notation as

I1 + I2
def
= {t1 + t2 | t1 ∈ I1∧ t2 ∈ I2} and I1− I2

def
= {t | ∃t2 ∈ I2 : t2 + t ∈ I1}.

15



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

For t ∈ T and I ∈ [T∞] we abbreviate [t, t]+ I by t+ I and [t, t]− I, I− [t, t] by t− I, I− t, respectively.
By this, t + I and I− t are point-wise shifts of I by t, and t− I is a reflection of I around t. Further
on, we define t ∼ I for ∼ ∈ {<,≤,=,≥,>}, t ∈ T, and I ∈ [T∞] as the conjunction of point-wise
comparisons, i.e., t ∼ I

def
⇔ ∀t′ ∈ I : t ∼ t′. By this, in particular, t = [t, t]. A comparison with an

empty interval yields always true; and the above arithmetical operations applied on an empty set
return an empty set again. Finally, the length of an interval I ∈ [T∞] is denoted by #I.

Streams

The following definitions of streams and operations on streams are taken from [BS01a]. Let M
be an arbitrary not empty set of messages. A stream over M is a finite or infinite sequence of
elements from M. M∗/M∞ denotes the set of finite/infinite streams over M, respectively. The set
of finite streams also includes an empty stream, that we write as 〈〉. A non-empty finite stream
of length n is denoted by 〈m1 . . .mn〉 ∈ M∗, an infinite stream is denoted by 〈m1 . . . 〉 ∈ M∞. The
set of all streams is denoted by Mω = M∗∪M∞.

Remark 2.1 (Notational conventions). In the present thesis we borrow the convention from,
e.g., [BS01a] and indicate infinite streams by superscript “∞”, and the union of finite and in-
finite streams by ω-superscript. Most works from the formal verification community (e.g., cf.
[GTTW02]) use the opposite notation: infinite streams are denoted with ω, the union of finite
and infinite streams with∞. ◦

For a stream σ ∈ Mω, #σ stands for its length. Further on, σ.n with n ∈ N+ is the nth element of
σ. σ.n is a member of M.

The concatenation of streams is defined by a binary operator^: Mω ×Mω 7→ Mω in infix no-
tation. The concatenation of two stream produces a stream, which contains the messages of the
first operand at the beginning followed by the messages of the second operand. Formally, for all
σ1,σ2 ∈ Mω and k ∈ N+

(σ1^σ2).k def
=

σ1.k if 1 ≤ k ≤ #σ1,
σ2.(k−#σ1) if #σ1 < k ≤ #σ1 + #σ2.

In accordance with the above definition if #σ1 =∞ then σ1^σ2 = σ1. The length of σ1^σ2 is
#(σ1^σ2) = #σ1 + #σ2.

2.2 Specification of Reactive Real-Time Systems

The notion of streams from the previous section permits to capture the order of message occur-
rence but lacks of timing information, i.e., no information is available when a certain message
was observed. Thus, within a stream-based system model it is possible to reason about the
causality of messages but impossible to specify or check the timeliness of their occurrence.
This motivated us to enrich the stream-based FOCUS formalism from [BS01a] by timed traces

16



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

which are presented in Section 2.2.1. Section 2.2.2 contains a number of useful operations on
timed traces which are intensely used in the remainder of the current chapter as well as in Chap-
ters 3 and 4. The trace-based semantic domain of reactive real-time systems is presented in
Section 2.2.3. Based on this semantic domain composite timed events and a qualitative temporal
logic are defined in Sections 2.2.4 and 2.2.5, respectively. By this, reactive real-time systems
can be specified by imposing timing and causal constraints on timed events.

2.2.1 Timed Events and Timed Traces

Besides the order in which the messages appear, the time of their occurrence is relevant for
the real-time systems. Thus, we define the domain of timed events A

def
= M∗ × T. An event

(〈m1 . . .mn〉, t) ∈A consists of a finite sequence of events from M, which occurs in time t ∈ T.

For a pair of timed events (σ1, t1), (σ2, t2) ∈A we define the equality and precedence by

(σ1, t1) = (σ2, t2) iff σ1 = σ2 and t1 = t2,

(σ1, t1) < (σ2, t2) iff t1 < t2,

respectively. By this, the ≤-relation defined as

(σ1, t1) ≤ (σ2, t2)
def
⇔ (σ1, t1) < (σ2, t2)∨ (σ1, t1) = (σ2, t2)

becomes a partial order on A according to Definition A.1, i.e., it is reflexive, transitive, and
antisymmetric.

In order to access one of both components which build the tuple of a timed event, we introduce
projections λ : A 7→ M∗ and φ : A 7→ T defined as

λ
(
(σ, t)

) def
= σ and φ

(
(σ, t)

) def
= t,

respectively.

For the time components of sets of timed events we identify extremal points by
φglb,φlub : ℘(A) 7→ T∞. Intuitively, φglb(A)/φlub(A) return points in time of the earliest/latest
observation in A ⊆A, respectively. Formally, we define

φglb(A) def
=

glb{φ(a) | a ∈ A} if A , ∅,
∞, o.w.,

φlub(A) def
=

lub{φ(a) | a ∈ A} if A , ∅,
0, o.w.,

where glb/lub stand for greatest lower/least upper bound, and are defined in A.3/A.4, respec-
tively. We say that the interval [φglb(A),φlub(A)] is the observation frame, or time window of A.
By the above definitions this interval is empty if and only if A is empty too: [∞,0] = ∅. Oth-
erwise, it contours the timing distribution of observed events. We also lift the definition of the
φ-function for sets of timed events by defining

φ(A) def
= {φ(a) | a ∈ A}.

17



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

We can now proceed to the definition of timed traces also called timed observations. Intuitively,
a set of timed events is called a timed trace if the observation it contains is complete and unique.
For instance, in the time domain of naturals the set {(σ1,2), (σ2,3), (σ3,4)} is a timed trace, but
neither the incomplete set of observations {(σ1,2), (σ3,4)} nor the not-unique set of observations
{(σ1,2), (σ2,3), (σ′2,3), (σ3,4)} comprise timed traces. This intuition is formally captured by the
following definition.

Definition 2.1 (Observation/timed trace). A timed trace or observation is a set τ ⊆A, for which
the following two properties hold

(1) Order completeness: ∀a1,a2 ∈ τ : a1 ≤ a2∨a2 ≤ a1
(2) Observation completeness: φ(τ) ∈ [T], i.e., the observation frame of τ is an interval in
T. ^

The first property states that the order of events in a trace is total. By this, we exclude event
sets which contain different messages observed at the same time. The second property demands
the trace to be complete within its observation frame. It is mainly motivated by the fact, that
observing the absence of events can also be a crucial information for a real-time system. An
observation {(〈〉, t1), (〈m〉, t2), (〈〉, t3)} contains more information than {(〈m〉, t2)}. Another reason
of a more technical nature is that it allows to subdivide or filter traces without loss of information
about their observation frames. For the φ-function applied on a timed trace τ holds #φ(τ) = #τ.
Moreover, (φglb(τ),φlub(τ)) ⊆ φ(τ) ⊆ [φglb(τ),φlub(τ)]. If, e.g., φglb(τ) ∈ φ(τ) and φlub(τ) < φ(τ),
we obtain φ(τ) = [φglb(τ),φlub(τ)).

Remark 2.2 (From timed events to timed traces). Provided some A ∈ ℘(A) fulfills the first prop-
erty, in order to fulfill the second one, it can be complemented by events of the form (〈〉, t)
for all points in time t, for which no events in A exist. For example, a set of timed events
{(σ1,1), (σ3,3), (σ4,4)} defined over the time domain N can be complemented to a timed trace
by adding the timed event (〈〉,2). ◦

Remark 2.3 (Timed traces vs. timed words). The notation of “classical” timed words, as ex-
pected, for example, by timed automata [AD94], is more concise. It includes non-empty events
only, assuming that at the other points in time (either outside, or inside the observation frame),
nothing has happened. We can easily switch from timed traces to timed words, by filtering out
all empty events. The transition in the opposite direction is not trivial1. By this, model checking
approaches for timed automata [Yov98] can be also applied to specifications based on timed
traces. ◦

The continuous progress is an essential property of physical time. On the other hand, in the
domains with the dense order, like R≥0, one can specify a timed trace with infinitely many
messages observed within a finite time interval. Such time behavior is called Zeno’s paradox.
A comparable behavior within a discrete time domain, like N, is an observation of an infinite
sequence of messages at some point in time: (〈m1m2 . . . 〉, t). Such an observation was excluded

1One could imagine some special events serving as bonding points, without any further semantic meaning, but this
would complicate the formalism.

18



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

within our settings by the definition of the domain A. In order to exclude it also in the dense
case, we provide the following definition.

Definition 2.2 (Non-Zeno timed trace/observation). An observation according to Definition 2.1
τ over the time domain T is called non-Zeno if and only if for any t ∈ T the set

{a ∈ τ | φ(a) < t∧λ(a) , 〈〉} is finite. ^

By this definition we allow only finitely many non-empty events to happen within any finite
interval of time. This is automatically guaranteed if there exists a minimal resolution δ of timed
observations, stating that for any pair of non-empty events a1, a2 must hold |φ(a1)−φ(a2)| > δ.

Remark 2.4 (Another definition of non-Zenoness). An alternative definition of non-Zenoness
which is more appropriate for hybrid systems is given by the finite variability condition. This
condition demands that the message values change only finitely often in finite intervals. In other
words, every finite interval can be completely segmented into finitely many disjoint sub-intervals
which are mapped to the same message in each case. Given a trace which is non-Zeno according
to Definition 2.2, we can transform it to a non-Zeno trace according to this alternative definition
by remapping every point in time in which an empty message is observed to the right-most non-
empty message which has happened earlier. If there is no such message, the time point remains
mapped to the empty message. The translation in the opposite direction is only possible if we
demand that the above partition into sub-intervals yields solely intervals which are left-closed
(and, consequently, right-open). ◦

The set of all non-Zeno timed traces is denoted by TiTr ⊆ ℘(A). The set of full non-Zeno timed
observations is denoted by TiTrκ and contains all observations, which cover the whole time
domain. Formally:

∀τ ∈ TiTr : τ ∈ TiTrκ
def
⇔ φ(τ) = T.

We can easily show that every single timed event from A builds a non-Zeno timed trace, i.e.,
A ⊆ TiTr.

In the rest of this thesis we will consider non-Zeno traces only and thus omit the term “non-Zeno”
in the subsequent discussion. In the next section we will lift operations on streams from [BS01a]
and Section 2.1 for timed traces.

CPS Case Study (con’ed). The CPS system is designed to recognize events which may
happen in the future and to react to them within sufficient time budgets. The environment of
the system consists of a number of moving objects. Every object at a given measurement time
is characterized by its relative velocity v, angle to the x-axis θ ∈ [0,90], and distance to the
vehicle d (cf. Figure 2.1). We model this information as a content of a message mobj

def
= (v, θ,d).

Distributed over the real-valued time axis, this information builds a timed observation from the
set TiTrobj ⊆ ℘(M∗obj ×R≥0), where Mobj denotes the set of object messages mobj. In accordance
with the timed trace semantics, one point in time contains a finite sequence of mobj-messages.
This reflects the fact that several objects can be observed at the same time.

19



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

vehicle

se
n

so
rs

x

θ1

θ2

v2

d2

v1
d1

CPS

Figure 2.1: An Illustration of the CPS System in Action

2.2.2 Operations on Timed Traces

We can identify timed traces from TiTr with total functions with a subset of T as their domains:
∪i∈T([0, i] 7→ M∗)∪ (T 7→ M∗). They are functions due to the property one and total due to the
property two of Definition 2.1. This allows us to identify the event, which has occurred at t ∈ T
in a trace τ ∈ TiTr, by a function application τ(t). To improve the readability of formulas we
often write τ.t instead of τ(t). τ.t is defined only if t ∈ φ(τ). The length of τ is denoted by #τ. It
is∞ for infinite traces.

A timed trace τ′ is a subtrace of τ ∈ TiTr, written as τ′ def
= τ|I for some interval I ∈ [T∞] if and

only if

φ(τ′) =
(
φglb(τ) + I

)
∩φ(τ) and ∀t ∈ φ(τ′) : τ′.t = τ.t.

If the relative interval I lies outside the observation frame of τ (i.e., φ(τ′) = ∅), we obtain τ|I = ∅
and by this the empty set is the subtrace of any trace. We also note that for all n ≥ #τ, τ|[0,n] = τ.
Special cases are a suffix and a prefix of length n (n ∈T∞) of a timed trace, defined as τ↑n

def
= τ|[n,∞)

and τ↓n
def
= τ|[0,n], respectively. We also define the weak forms of prefix and suffix operators as

τ↓un
def
= τ|[0,n) and τ↑tn

def
= τ|(n,∞), respectively.

Besides accessing messages observed at a given point in time, we would also like to obtain the
nth non-empty message and to count the overall number of non-empty messages in a trace. This
makes especially sense for non-Zeno traces, since there, at every arbitrary but fixed t ∈ T only
finitely many non-empty events can be observed. For these purposes for all τ ∈ TiTr, a ∈A, and
i ∈ N we define the functions len : TiTr 7→ N∞ and nth : TiTr×N 7→A as

len(τ) def
= |τ \ ({〈〉}×T)|,

nth(τ, i) = a
def
⇔ a ∈ τ∧λ(a) , 〈〉∧ len(τ↓φ(a)−φglb(τ)) = i.

20



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

nth(τ, i) is only defined for i ≤ len(τ). The parameter of the prefix operator in nth’s definition
yields a prefix which ends exactly at time φ(a). In that prefix the number of non-empty messages
must be i.

The concatenation of timed traces τ1^τ2 is defined if and only if the time line of the second
trace continues the time line of the first one. Formally:

τ1^τ2
def
=

τ1∪τ2 if
(
φ(τ1)∪φ(τ2)

)
∈ [T∞] and φ(τ1)∩φ(τ2) = ∅,

∅, o.w.

It is easy to see that (τ↓n)^(τ↑tn) = (τ↓un)^(τ↑n) = τ.

Notation Informal Meaning

M∗ set of finite streams over message set M
M∞ set of infinite streams over message set M
Mω set of streams over message set M

〈〉 empty stream
〈m1 . . .mn〉 finite stream consisting, in this order, of messages m1 through mn

〈m1 . . . 〉 infinite stream
σ.n nth element of stream σ

#σ length of stream σ

σ1^σ2 concatenation of streams σ1 and σ2

T time domain (typically, N, Q≥0, or R≥0)
[T] interval set in time domain T
A domain of timed events (M∗×T)
TiTr domain of non-Zeno timed traces/observations (TiTr ⊆ ℘(A))
TiTrκ domain of full non-Zeno timed traces/observations (TiTrκ ⊆ TiTr)

a1 ≤ a2 timed event a2 was observed not earlier than timed event a1
λ(a) contents (a finite message stream) of timed event a
φ(a) time stamp of timed event a
φ(τ) observation frame of timed trace τ
φglb(τ)/φlub(τ) earliest/latest observation time in timed trace τ
τ.n finite message stream observed at time n in timed trace τ
#τ length of timed trace τ
τ|I subtrace of τ – events observed in τ in time interval φglb(τ) + I

τ↓n/τ↓un prefix of τ which ends at/immediately before time φglb(τ) + n
τ↑n/τ↑tn suffix of τ which starts at/immediately after time φglb(τ) + n
len(τ) amount of non-empty messages in timed trace τ
nth(τ, i) ith non-empty message in timed trace τ
τ1^τ2 concatenation of timed traces τ1 and τ2

Table 2.1: Streams & Timed Traces Notation

21



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

Table 2.1 serves as a quick reference for the sets and operations defined for streams and timed
traces in Sections 2.1, 2.2.1, and 2.2.2.

2.2.3 Semantic Domain of Timed Systems

According to the FOCUS framework [BS01a], the system is a set of components connected to
each other and to environment by directed and typed channels from the set C. Every channel
c ∈ C has an assigned type ty(c) ∈ ℘(M∗) of messages it transports and a direction, in which
these messages flow. The channel type is described by the set of all messages which can be
sent through the channel. The interaction between components takes place solely through their
channels. The direction of a channel designates the sender and the receiver component. A
component can be specified either by a network of further components or by a total relation2

from input to output communication histories. In this context we speak about a composite and
elementary component, respectively. The framework is compositional, i.e., the behavior of a
composite component is completely described by the behaviors of its constituting subcompo-
nents combined by a uniform composition operator. We will learn more of these concepts the
next chapter in Section 3.2. In the present section we introduce the semantic domain of timed
systems on which all contributions of this thesis are based. The integral part of that semantic
domain is the timed channel valuation which is defined next.

Valuations of channels from C by messages from the set M observed using the time domain T
are mappings C 7→ TiTr. For t ∈ T, channel c ∈ C, and a valuation τ : C 7→ TiTr (with TiTr ⊆
℘(M∗×T)), the observation at a given point in time t ∈ T is τ.t ∈ {C 7→ M∗} and the observation
on a particular channel c ∈C is τ.c ∈ TiTr. The observed message sequence on c at t is τ.t.c ∈ M∗

or, equally, τ.c.t ∈ M∗.

For further reasoning about reactive real-time systems we need special kinds of channel valua-
tions. These are introduced by the following definition.

Definition 2.3 (Timed channel valuations). For a channel set C, a set of messages M, and a time
domain T, the channel valuation τ : C 7→ TiTr is called type-correct if and only if

∀c ∈C : ∀t ∈ φ(τ.c) : τ.c.t ∈ ty(c).

τ is called simultaneous if and only if

∀c1,c2 ∈C : φ(τ.c1) = φ(τ.c2).

The set of all simultaneous type-correct channel valuations is denoted by ~C ⊆ (C 7→ TiTr).
The set of all full type-correct channel valuations is denoted by ~Cκ ⊆ (C 7→ TiTrκ). The set
of all simultaneous type-correct mappings of channels to singular events from A is denoted
by ~CA ⊆ (C 7→A). ^

We observe that by the definition of TiTrκ, ~Cκ contains simultaneous valuations only and thus,
~Cκ ⊆ ~C. Moreover, since timed events are a special case of timed traces, i.e., A ⊆ TiTr, the

2The relation is total in the sense that it is defined for every input.

22



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

definitions of type-correctness and simultaneity are also applicable to ~CA. Simultaneous singular
events a ∈ ~CA map channels to events which have happened at the same time. Finally, given
a subset of C, D ⊆ C, by applying the restriction operator to the domain of τ we obtain the
valuations of channels from D only, i.e., τdD ∈ ~D.

The time window of a simultaneous valuation τ from ~C is denoted by φ(τ) and defined as φ(τ.c)
of any c ∈C. Other operations over timed traces introduced in Section 2.2.2 are lifted for simul-
taneous channel valuations in a straight-forward way by applying them channel-wise (cf. Defini-
tion A.5). In the rest of this thesis we will consider simultaneous and type-correct observations
only and thus omit the terms “simultaneous” and “type-correct” in the following discussion.

Reactive systems, which are the main concern of presented work, are designed to run infinitely
long. Thus, we describe the semantics of a component (or system) with the channel set C over
the messages from M and time domain T by elements from ℘(~Cκ). The existence of more than
one element in the semantic domain for one system indicates its non-determinism.

Remark 2.5 (Discrete time vs. dense time). According to the above definition, the semantic
domain of reactive systems is parametrized by the time domain. In Section 1.2 we have dis-
cussed domains different development phases are usually operating with. However, the problem
of choosing the proper time domain has additional aspects: The analytical models of the system
on different development stages become easier to verify if their underlying time domain is iso-
morphic with a set of natural numbers. This reduces the state space of these models a makes the
verification techniques developed for untimed systems applicable. Concrete, for our formalism
of choice a discrete time domain reduces the concepts presented here to a special variant, called
“timed” FOCUS (cf. [BS01a]). The question about the adequacy of discrete-time models for
real-time systems and the significance of their analysis results is often answered by different
researchers with the argument that discrete-time models are good enough for all practical pur-
poses, provided the unit of time is small enough. Justification for the use of dense-time models
for the specification and analysis of real-time systems is given in Chapter 2 of [Alu92]. The main
argument is that, so far, there exists no method to figure out the appropriate level of granularity
(e.g., to figure out the time unit, which is “small enough”). The author of [Alu92] argues that a
method, which finds the appropriate granularity level, should be at least as complex as the direct
analysis within the dense-time domain. Another important argument against the discretization
is that the granularity level depends on all time constraints put on the system. This violates the
compositional reasoning about the system: in discrete-time domain a component has to be spec-
ified in a way, which respects the speed of other possibly independent parts of the system. Thus,
we retain the possibility to choose a dense-time domain, as the central feature of our model. ◦

Table 2.2 summarizes sets and operations for timed channel valuations defined in the current
section.

CPS Case Study (con’ed). As shown in Figure 1.2, page 10, the CPS obtains object infor-
mation using 2n channels (n input and n output ones), where n ∈ N+ is the number of sensors.
Additionally, the system sends data to airbag and belt tensioner. In order to keep our CPS model
simple, we fade out communication links to the human-machine interface: this part of the system

23



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

Notation Informal Meaning

~C domain of simultaneous type-correct timed channel valuations (C 7→ TiTr)
~Cκ domain of full type-correct timed channel valuations (~Cκ ⊆ ~C)
~CA domain of simultaneous type-correct timed event valuations (~C 7→A)
℘(~Cκ) domain of reactive systems

τ.c timed trace mapped to channel c (c ∈C and τ ∈ ~C)
τ.t observation at time t (t ∈ T)
τ.c.t/τ.t.c observation (finite message stream) at time t on channel c (t ∈ T, c ∈C, τ ∈ ~C)

All operations on timed traces from Table 2.1 (page 21) apply to timed channel valua-
tions (cf. Definition A.5).

Table 2.2: Timed Channel Valuations Notation

functionality can be considered as non-safety-critical and imposes no hard real-time constraints.
By this, the channel set of the CPS system consists of 2n + 2 channels:

CCPS
def
= {c(1)

Pulse, . . . ,c
(n)
Pulse,c

(1)
Echos, . . . ,c

(n)
Echos,cBTI,cCOI},

where c(i)
Pulse and c(i)

Echos stand for request and response channels to the vehicle’s environment,
respectively, and cCOI and cBTI – for communication links to the airbag and belt tensioner, respec-
tively.

We model all channels except of environment echos as signals. A signal is either present (de-
noted by 〈>〉) or not (denoted by an empty sequence 〈〉). This representation is sufficient to
describe time requirements of the CPS system. More formally, the channel types are

ty(c(i)
Pulse)

def
= {〈〉, 〈>〉} for all i ∈ [1,n],

ty(c(i)
Echos)

def
= M∗obj for all i ∈ [1,n],

ty(cBTI)
def
= {〈〉, 〈>〉},

ty(cCOI)
def
= {〈〉, 〈>〉}.

2.2.4 Composite Timed Events and Observations

In the previous section we have defined the system behavior as a set of observations. An ob-
servation consists of a sequence of timed events. However, apart from singular events specifi-
cations often refer to composite observations, like the arrival of certain combination of different
signals on different channels within a certain time window. In our specification framework we
model composite observations as time intervals in which certain events are observed. Further on,
specifications relate composite observations to each other. They demand, for example, that the
observation eA must always be followed by the observation eB within a fixed delay d. In terms
of our specification framework this means that for any trace from the set, which constitutes the

24



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

system behavior, must hold: If it contains the observation eA as a subtrace then it also contains
the observation eB after eA not earlier than d. In general, there exist thirteen possible relation
types (or alignments) between a pair of intervals (cf. [All83]); however, in the present work we
are interested in event-based specification. Thus, we generalize the notion of event as a point in
time, where a certain composite observation was made within a certain timed trace. By relating
these events to each other, hierarchical composite events and observations emerge. In the rest of
this section we formalize these ideas. However, let us first illustrate the above considerations by
the following small example.

Example 2.1. Consider the triggering condition of an airbag which, roughly speaking, consists
of three parts [MA95]:

(1) A frontal collision has occurred.

(2) The angle of impact is within a “window” typically around thirty degrees either side of
the vehicle’s center line.

(3) The deceleration forces produced are at least equal to those produced when the car collides
head-on with an immovable barrier at approximately 25 km/h.

This information is brought together by several sensors and ECUs (electronic control units)
which monitor the environment of the vehicle and produce corresponding events. Thus, the
fulfillment of above conditions is naturally modeled by an observation of corresponding events
on a number of channels (e.g., one channel per sensor or ECU) within a fixed time window. This
composite observation can be represented by a composite airbag-trigger-condition event which
happens at the same time with the observation of the last constituting sub-event. Consequently,
this event should be followed within a certain time interval by an airbag-firing event which can
be in turn related to further events. For instance, the distance between the actual collision time
and the firing time is crucial to the overall correctness of the airbag system and must be also
constrained by the airbag specification. ◦

We model (composite) timed observations by unary predicates e1,e2, . . . over the channel set
valuations called timed observation predicates. Their domain is the set of mappings to timed
traces: ei ∈ ℘(~C). The singular observation or timed trace τ ∈ ~C as introduced in Definition 2.1
and generalized for channel valuations by Definition 2.3 is a special case of a composite obser-
vation predicate: e = {τ}. Also, the singular events can be considered as observation predicates,
i.e., a ∈ ~CA ⊆ ~C is a unary predicate and a mapping to timed traces at the same time. Albeit of
these special cases, the main purpose of composite observation predicates is to describe valid
periods of system’s life.

As discussed above, specifications relate different composite observations to each other. In
order to model these relations in our specification framework, we need to answer the following
question: Given a finite or infinite timed observation τ ∈ ~C and a timed observation predicate e ⊆
~C, when (i.e., at what points in time t1, t2, . . . ∈ T) was e observed in τ? We provide two different
modalities on observations to answer this question: e∃↓ and e∃↑. Their formal definitions are:

e∃↓ def
= {(τ, t) | ∃u ∈ T : τ|[u,t] ∈ e} and e∃↑ def

= {(τ, t) | ∃u ∈ T∞ : τ|[t,u) ∈ e},

25



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

respectively. The .∃↓-interpretation allows to express the fact, that e was observed in τ at time t. It
is feasible for the formal specification of real-time systems because most of them cannot predict
the future, and thus cannot judge if an observation has happened or not before they observe
it completely. In our airbag example, the airbag-trigger-condition observation has happened
when all its constituting sub-events are observed. The complete observation of infinite traces
is, of course, impossible, thus we interpret them as invariants, which always hold along some
execution paths. For invariants the starting point is crucial and this is expressed by the second
interpretation (.∃↑). For the airbag model it makes sense to assume that if the airbag has deployed,
its controller will not change its state anymore; however, the point in time when the airbag was
observed in the deployed state for the first time is crucial for the correctness of the airbag system;
in fact, the timeliness of the deployment is the matter of life and death for the person sitting in
front of it [MA95]. The above modalities constitute the generalized notion of a composite timed
event or timed property A as timed-trace/point-in-time-pairs, formally, A ⊆ ~C×T.

Singular events can be satisfied by a trace and a point in time only if they have happened exactly
at that time, i.e., for all A ⊆ ~CA we obtain A∃↓ = A∃↑ = {(τ,φ(a)) | a ∈ A∧ φ(a) ∈ φ(τ)}, i.e., e
can directly speak about satisfaction of A by some trace τ at t ∈ φ(τ). We can also conclude that
if A is satisfied by some (τ, t) then so does its subset {a ∈ A | φ(a) = t} with mappings to events
happened at time t.

Besides the both mappings from observations to event presented above, we also need to reason
about the whole prefixes or suffixes of the system behavior. For these purposes we define a
further pair of modalities:

e↓ def
= {(τ, t) | τ↓t ∈ e} and e↑ def

= {(τ, t) | τ↑t ∈ e},

A timed trace τ satisfies e↓/e↑ at time t only if its prefix/suffix is contained in e, respectively.

We are now able to map observations to events. However, we are still unable to construct ob-
servations out of events, i.e., to relate (composite) events to each other. In order to be able
to do this, we define a metric temporal logic over ~C in the next section. The formulas of this
logic have timed events and observation predicates as atomic propositions and are semantically
defined over the domain of sets of valuations themselves.

CPS Case Study (con’ed). For our CPS case study we define the observation predicate
ePC ⊆ TiTrobj which contains observations which begin with an environment-object-observation
list and end at the time of the earliest potential crash under the assumption that the velocity and
angle of the objects will not change over time:

ePC
def
=

{
τ | crash

(
τ.(minφ(τ))

)
=

(
maxφ(τ)

)}
,

where crash : M∗obj 7→ R≥0 is defined as

crash(〈〉) def
= ∞,

crash(〈m(1)
obj . . .m

(n)
obj〉)

def
= min

1≤i≤n


m(i)

obj.d

m(i)
obj.v·cosm(i)

obj.θ
if m(i)

obj.θ < 90 and m(i)
obj.v , 0,

∞, o.w.

26



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

The crash-function expresses that at every given point in time the CPS system is interested in
the object with the most urgent collision prognosis.

By e∃↑PC we obtain the set of all predicted collisions and can relate them to the activations of airbag
and belt tensioner. e∃↓PC consists of environment-object-observation events which occur during
different lifelines of a vehicle. e↓PC is satisfiable only at time of the first predicted collision, and
e↑PC is satisfiable only for the points in time, in which no collision is predicted, or for the points
in time within finite traces where the crash was predicted correctly.

2.2.5 Metric Temporal Logic for Timed Traces

Temporal logic is the formalism commonly used to express relations between events. While
pure temporal logic, like LTL [Pnu77], is intended to capture causality relationships, its various
extensions enrich it by additional timing constraints. These logics are referred to as quantitative
temporal logics. [BMN00] gives an overview of temporal logics specially tailored for real-time
system specification. Moreover, [BMN00] provides a taxonomy of classification criteria for
quantitative temporal logics. Among these criteria are:

order of temporal logic This is the order of the classical logic on which the temporal logic is
constructed. Typical examples are propositional and first-order logics.

temporal domain structure There exists a distinction between linear and branching temporal
logics. Intuitively, linear temporal logics (e.g., LTL) are defined over sets of system exe-
cutions, while branching temporal logics (e.g., CTL [CES83]) – over trees, which describe
for every system state the sets of possible predecessor and successor states.

fundamental entity of logic The basic way to characterize a temporal logic is whether it uses
points or intervals to model time. Point-based temporal logics express relationships among
events in terms of points, and define intervals as a connected points set. Time durations
are expressed by using quantification over time.

Interval temporal logics are more expressive, since they are capable of describing obser-
vations during time intervals, and a single time instant is represented by a singular interval
[d,d]. Interval-based logics usually present specific operators to express the relationships
between intervals (e.g., the thirteen interval alignments from [All83]), and/or operators for
combining intervals (e.g., the chop operator ϕCψ, which partitions intervals in two sub-
intervals fulfilling ϕ and ψ, respectively), or operators to specify the interval boundaries
on the basis of the truth of predicates (cf. previous section).

metric for time The presence of a metric for time distinguishes the quantitative temporal logics
(e.g., MTL [Koy90]) from the qualitative ones (e.g., LTL, CTL). In a qualitative tempo-
ral logic only predecessor/successor relationships between events can be expressed. On
the other hand, quantitative temporal logics can also express distances between events or
durations of observations.

time implicit/explicit Time in temporal logics can be defined in an implicit or explicit manner.
In implicit models of time, the meaning of formulas depends on the evaluation time, and

27



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

this remains implicit in the formula (e.g., LTL, CTL, MTL). In explicit time models, time
is represented by a special variable (e.g., RTL [JMS88]).

Here, we present a variation of the metric temporal logic (MTL) [Koy90] defined over the do-
main of timed valuations introduced in Section 2.2.3. According to the classification criteria
described above, our semantics of MTL yields a quantitative linear first-order temporal logic
which is interval based and time implicit.

Syntax and Semantics of MTL

In the previous section we introduced two different interpretations for the satisfaction of timed
events by observations, which are convenient for real-time specifications: A timed event happens
during an observation at a certain point in time, and an event represents the occurrence of a
composite observation, which has happened/will happen at a certain point in time during another
observation. Both of these interpretations and transitions between them, have to be captured by
a formalism designed for the description of timed specifications.

The syntax of MTL written in extended Backus-Naur Form (BNF) is:

ϕF tt | A | e∃↓ | e∃↑ | e↓ | e↑ | ϕ∧ϕ | ¬ϕ | ϕUI ϕ | ϕSI ϕ

Here, A and e stand for symbolic names which are mapped to the respective semantic meanings
A ⊆ ~CA and e ⊆ ~C. We map MTL formulas to their semantic meanings using the predicate
(τ, t) |= ϕ. It is inductively defined for a trace τ ∈ ~C, a point in time t ∈ T, an observation predicate
e ⊆ ~C, a singular event A ⊆ ~CA, and formulas ϕ,ϕ1,ϕ2, as following:

• (τ, t) |= tt iff t ∈ φ(τ),

• (τ, t) |= A iff t ∈ φ(τ) and τ.t ∈ A,

• (τ, t) |= e↓ iff τ↓t ∈ e,

• (τ, t) |= e↑ iff τ↑t ∈ e,

• (τ, t) |= e∃↓ iff ∃u ∈ T : τ|[u,t] ∈ e,

• (τ, t) |= e∃↑ iff ∃u ∈ T∞ : τ|[t,u) ∈ e,

• (τ, t) |= ϕ1∧ϕ2 iff (τ, t) |= ϕ1 and (τ, t) |= ϕ2,

• (τ, t) |= ¬ϕ (or, equally (τ, t) 6|= ϕ) iff not (τ, t) |= ϕ,

• (τ, t) |= ϕ1 UI ϕ2 iff exists t′ ∈ φ(τ), s.t. (τ, t′) |= ϕ2 and t′− t ∈ I′ and ∀t′′ ∈ t + I′ : t′′ < t′⇒
(τ, t′′) |= ϕ1, where I′ = I \ {∞}3,

• (τ, t) |= ϕ1 SI ϕ2 iff exists t′ ∈ φ(τ), s.t. (τ, t′) |= ϕ2 and t− t′ ∈ I′ and ∀t′′ ∈ t− I′ : t′ < t′′⇒
(τ, t′′) |= ϕ1, where I′ = I \ {∞}3,

The following explanations omit previously discussed .∃↑, .∃↓, .↑, .↓, and A modalities, cf. Sec-
tion 2.2.4 for details.

3By this trick we omit additional case distinctions for interval parameters of the form [n,∞] or (n,∞].

28



2.2. SPECIFICATION OF REACTIVE REAL-TIME SYSTEMS

We abbreviate (τ, t) 6|= tt by (τ, t) |= ff. Please note that for any t holds: ({C 7→ 〈〉}, t) |= ff. The se-
mantics of a formula ϕ is a set of timed observation and point in time pairs. Thus, an observation
τ ∈ ~C satisfies an MTL formula at a given point in time t ∈ T if and only if (τ, t) is the member of
the corresponding set. We say that ϕ was observed or has happened in τ at t.4 The conjunction
and negation on formulas can be seen as intersection and subtraction from subset of ℘(~C×T) in
the set-theoretical sense, respectively.

ff
def
≡ ¬tt

ϕ1∨ϕ2
def
≡ ¬(¬ϕ1∧¬ϕ2)

ϕ1→ ϕ2
def
≡ ¬ϕ1∨ϕ2

ϕ1↔ ϕ2
def
≡ (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1)

ϕ1 Uϕ2
def
≡ ϕ1 U[0,∞) ϕ2

ϕ1 Sϕ2
def
≡ ϕ1 S[0,∞) ϕ2

^Iϕ
def
≡ tt UI ϕ

�Iϕ
def
≡ ¬^I¬ϕ

^ϕ
def
≡ ^[0,∞)ϕ

�ϕ
def
≡ �[0,∞)ϕ

_Iϕ
def
≡ tt SI ϕ

�Iϕ
def
≡ ¬_I¬ϕ

_ϕ
def
≡ _[0,∞)ϕ

�ϕ
def
≡ �[0,∞)ϕ

Table 2.3: Derived MTL Modalities

A timed trace satisfies a formula with the timed until-modality (U(.)) if and only if it fulfills the
left sub-formula starting from glb I up to some point in time t, which still lies within I; and at
this point, the right sub-formula is satisfied. The past can be referenced by the since-modality
(S(.)) which is defined analogously to until, but from the current point in a timed trace backward.

Given a formula ϕ and a trace τ, τ |= ϕ if and only if (τ,φglb(τ)) |= ϕ. ϕ is called satisfiable if
there exists a timed trace τ ∈ ~C such that τ |= ϕ. ϕ is called valid (or tautology) if it is satisfiable
by all timed observations from ~C (denoted by |= ϕ). Finally, we define the equivalence relation
on MTL formulas as (

ϕ ≡ ψ
) def
⇔

(
∀τ ∈ ~C, t ∈ T : (τ, t) |= ϕ⇔ (τ, t) |= ψ

)
.

Further useful derived abbreviations are listed in Table 2.3. Among others we define untimed
versions of until and since modalities, timed and untimed “finally ϕ” (also called “eventually
ϕ”) and “globally ϕ”, denoted by ^ and �, respectively, as well as their past counterparts: the
“once”-operator _ and the past-version of globally-operator �. Figure 2.2 gives a graphical
illustration of some more involved MTL modalities.

Remark 2.6 (Alternative semantics for MTL). Our definitions of the until and since modalities
from above deviate from their semantics typically found in the literature (cf. [AH92, BMN00]
for comprehensive surveys on real-time and quantitative logics). In approaches listed there, the
first formula has to be satisfied for all points in time starting from the current one, not from the
earliest one within I. However, we can easily represent these definitions using our semantics by

ϕU′I ψ
def
≡ (�[0,glb I]\Iϕ)∧ (ϕUIψ) and ϕS′I ψ

def
≡ (�[0,glb I]\Iϕ)∧ (ϕSIψ).

4Although for the .∃↑/.↑-modalities the description “will be observed”, or “will happen” is more appropriate.

29



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

τ :
t

[
t + min I

ϕ ϕ · · · · · ·ϕ ψ

]
t + max I

(a) (τ, t) |= ϕUI ψ

τ : [
t−max I

ψ ϕ · · · · · ·ϕ

]
t−min I

ϕ

t

(b) (τ, t) |= ϕSI ψ

τ :
t

[
t + min I

ϕ

]
t + max I

(c) (τ, t) |= ^Iϕ

τ : [
t−max I

ϕ

]
t−min I t

(d) (τ, t) |= _Iϕ

τ :
t

[
t + min I

ϕ ϕ · · · · · ·ϕ

]
t + max I

ϕ

(e) (τ, t) |= �Iϕ

τ : [
t−max I

ϕ ϕ · · · · · ·ϕ

]
t−min I

ϕ

t

(f) (τ, t) |= �Iϕ

Figure 2.2: An Illustration of Selected MTL Modalities

The transition in the opposite direction is also possible. The reason for this choice of semantics
is its effect on the definition of �(.)- and �(.)-modalities: they allow us to express distances
between events more naturally. For example, ϕ→ �(0,b]¬ϕ would always yield “false” if �I has
been defined using U′I. In our semantics this is not the case. ◦

^I(ϕ∨ψ) ≡ ^Iϕ∨^Iψ (∗ ^I distributive over ∨ ∗) (2.1a)

�I(ϕ∧ψ) ≡ �Iϕ∧�Iψ (∗ �I distributive over ∧ ∗) (2.1b)

^Iϕ∨^Jϕ ≡ ^I∪Jϕ if (I∪ J) ∈ [T∞] (∗ interval arithmetic for ^I ∗) (2.1c)

�Iϕ∧�Jϕ ≡ �I∪Jϕ if (I∪ J) ∈ [T∞] (∗ interval arithmetic for �I ∗) (2.1d)

¬�Iϕ ≡ ^I¬ϕ (∗ duality of ^I and �I ∗) (2.1e)

¬(ϕUIψ) ≡
(
¬ψUI (¬ϕ∧¬ψ)

)
∨�I¬ψ (∗ negation of UI ∗) (2.1f)

(e1∩ e2)l ≡ el1∧ el2 (∗ l ∈ {↓,↑} distributive over ∧ ∗) (2.1g)

(¬e)l ≡ ¬(el) (∗ l ∈ {↓,↑} commutative with ¬ ∗) (2.1h)

Table 2.4: Useful MTL Equivalences

A variety of well-known results about the properties of different temporal logic operators can be
transferred into the presented semantic domain. Table 2.4 summarizes the most important ones.
Their correctness is proved in Proposition A.1.

30



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

2.3 A Formal Model for Time Requirements

Specifications define use cases of the system and constrain their time behavior. The high-level
time requirements define the observable time behavior of certain functions without referencing
any implementation details. In order to ensure their fulfillment by the implementation, the high-
level requirements have to be broken down to the level of technical systems. While a big variety
of different high-level time requirements are imaginable, the technical systems operate with a
limited set of of established concepts for time behavior, like latency, WCET, response time, etc.
In this context we speak about low-level requirements. The current section assigns a formal
meaning to these concepts and shows how they can be composed to consistent specifications.

Formally, a time requirement r is a (composite) timed event, modeled by an MTL formula, over
some semantic domain ~C, i.e., r ⊆ ~C×T. By this, r incorporates and relates both functional and
time constraints. We discuss this circumstance in the subsequent paragraphs.

Time vs. Causality

According to [Fle83]:

“Causality denotes a necessary relationship between one event (called cause) and
another event (called effect) which is the direct consequence (result) of the first.”

The causality relationships between events often build the foundation for the time behavior of
a system. In fact, a statement that A2 must follow A1 within some time window implies that
A1 is eventually followed by A2. By this, the specification of time behavior can be seen as
the strengthening of causality constraints. This fact also explains the existence of numerous
extensions of temporal logic by different notions of real-time (cf. [EMSS92] for a survey on this
topic).

On the other hand, constraints on distances between events, without any further considerations
of their relative order, are clearly orthogonal to the causality. This brings us to the question
whether the approach chosen here, namely the embedding of time constraints into temporal
operators, is really feasible? Can a system specification be subdivided into pure temporal and
timed parts, whose conjunction yields the original specification again? Surely these questions
can be answered in favor of the alternative approach for certain subclasses of temporal formulas,
e.g., for

�
∧

i

(
ϕ(i)

1 XXX(i)
I ϕ

(i)
2
)
,

where for all i, ϕ(i)
1 and ϕ(i)

2 contain no timed modalities and XXX(i)
I ∈ {UI,SI}. Here, by use of the

commutativity of ∧ and the distributivity of � and ∧ (cf. Property (2.1b)) we could partition ev-
ery conjunct into timed and causal parts and group them to pure causal and pure time properties.
However, in general case such a partition is not possible, due to the non-distributivity of the tem-
poral modalities “until” and “since”. Intuitively, the outer modalities in the formula define the
context, in which the inner sub-formulas should be true. Bringing (parts of) these sub-formulas

31



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

out of the context, in the most cases, leads to an unjustified strengthening of the specification.
Let us illustrate the above considerations by the following example.

Example 2.2 (Causal context for time constraints). We define a distance constraint between
events specified by formulas ϕ1 and ϕ2 by

d(ϕ1,ϕ2, I)
def
≡ �

(
ϕ1→ (^Iϕ2∨_Iϕ2)

)
∧�

(
ϕ2→ (^Iϕ1∨_Iϕ1)

)
.

Now consider the following requirement: “In the mode m1 the system must react to any request q
by issuing the response p within I units of time.” Let em1, eq and ep characterize the observations
of the mode change, request and response, respectively. We also need the notion of switch to
some other mode5: em2. Then, using the MTL framework, introduced so far, we can formalize
the above requirement as:

r
def
≡ �

(
e∃↓m1→

(
(e∃↓q → ^I e

∃↓
p ) U e∃↓m2

))
.

Now compare this formalization with the conjunction of its untimed version and the distance
event:

r′
def
≡ �

(
e∃↓m1→

(
(e∃↓q → ^e∃↓p ) U e∃↓m2

))
∧d(e∃↓q ,e∃↓p , I).

We can show that |= r′ → r, but the implication in the opposite direction does not hold. It is
common sense not to over-constrain specifications. Thus, we consider the r-constraint to be
more preferable. ◦

After this rationale of our design choices, we can now proceed to the formal definition of low-
level time requirements. They are described in Section 2.3.3. However, before this we define
a number of important occurrence patterns in Section 2.3.1 and important time patterns in Sec-
tion 2.3.2, which serve as the basic building blocks of the time constraints. At the end of the
current section (in 2.3.4) we combine time requirements to time specifications. For this purpose
we introduce functional contexts of requirements, A context defines, when associated require-
ments must hold. For instance, using contexts it is possible to state that a certain requirement is
an invariant of the system (must always hold), or that it must hold in certain operational modes
only. By this, we can isolate time requirements from their functional embedding.

2.3.1 Important Occurrence Patterns

Besides the causality which is the main concern of classical temporal logics, a further important
class of (untimed) relations between events is the relative number of their occurrences. In-
formally, these relations express that within any observation of an arbitrary but finite length the
number of observed instances of event A1 and the number of observed instances of event A2 stand
in a certain relation to each other. An especially important relationship form the aforementioned
class is the one-to-one correspondence between events. It is described and formalized in the rest

5Alternatively we could model the operating mode as an interval event, i.e., an event which evaluates to true in
every point in time in which the system is in the mode m1.

32



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

of this section and will be used as a building block in the formalization of time requirements in
Section 2.3.3.

When a specification imposes a certain constraint on the occurrence of a pair of events, a ques-
tion naturally arises, whether this constraint must be fulfilled for every individual event pair
or not. For example, the requirement “a request A1 must be always followed by the response
A2 within the time window [min,max]” does not answer the question, whether there can exist
further occurrences of A2 either within the specified time window or even outside. However,
in most cases, spontaneous or redundant responses are not a desired feature. This information,
which often remains implicit in informal requirements documents, has to be made explicit in
formal models, since it permits to deduce more elaborate statements concerning the consistency
and completeness of the specification model (cf. Sections 3.1.2 and 3.1.3 in the next chapter).

In order to be able to reason about the observation numbers of events, we denote the set of all
atomic events happened in the trace τ during time interval I ∈ [T∞] at which the formula ϕ is
satisfied by sat(ϕ,τ, I). It is formally defined as:

sat(ϕ,τ, I) def
= {(τ.t, t) | t ∈

(
I∩φ(τ)

)
∧ (τ, t) |= ϕ}.

Please note that the interval parameter in the above definition defines the absolute time window.
Then, |sat(ϕ,τ, I)| is the observation number of ϕ in τ during I. Given two events A1 and A2
we are able to describe observation predicates which satisfy some predicate on A1’s and A2’s
occurrences p : N∞×N∞ 7→ B by

e(A1,A2) def
=

{
τ | p

(
|sat(A1, τ,φ(τ))|, |sat(A2, τ,φ(τ))|

)}
.

Using the above preliminaries, we define two predicates, whose conjunction will forbid the
occurrence number of one event to exceed or under-run the occurrence number of the other at
any time. Formally, for ϕ1,ϕ2 and d ∈ T∞, we define

creq(ϕ1,ϕ2)
def
≡ �{τ | |sat(ϕ1, τ,φ(τ))| ≥ |sat(ϕ2, τ,φ(τ))|}↓, (2.2a)

cres(ϕ1,ϕ2,d)
def
≡ �^[d,d]{τ | |sat(ϕ1, τ,φ(τ)−d)| ≤ |sat(ϕ2, τ,φ(τ))|}↓. (2.2b)

The predicate creq(A1,A2) permits only runs, where for any prefix the number of occurrences of
A1 (“requests”) exceeds the number of occurrences of A2 (“responses”), i.e., it disallows sponta-
neous or multiple responses. The second predicate cres demands that any time an instance of A1
should be followed by an instance of A2 within at most d time units, i.e., it forbids unanswered
requests. The constraint creq(A1,A2)∧ cres(A1,A2,d) yields a one-to-one correspondence be-
tween event pairs. This is proved by the next proposition.

Lemma 2.1 (One-to-one correspondence of events). Given a pair of events A1,A2 ∈ ℘(~C×T)
and an event distance d ∈ T∞. Then, provided

(τ, t) |= creq(A1,A2)∧ cres(A1,A2,d)

holds for some τ ∈ ~C and t ∈ φ(τ),

33



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

(1) for every point in time t1 ≤ t in which (τ, t1) |= A1 there exists a point in time t2 such that
t1 ≤ t2 ≤ t1 + d and (τ, t2) |= A2, and

(2) for every t2 ≤ t + d where (τ, t2) |= A2 there exists t1 ≥ t2−d in which (τ, t1) |= A1.

Proof. Suppose there exists some point in time t1, where (τ, t1) |= A1 and there is no t2 ∈ [t1, t1 +

d], such that (τ, t2) |= A2, then the number of instances of A2 does not change for any point in
this interval and we obtain

(τ, t1) |= creq(A1,A2)∧ cres(A1,A2,d)
⇒ (∗ definitions of creq and cres, above assumption ∗)
|sat(A1, τ, [0, t1])| ≥ |sat(A2, τ, [0, t1])| ∧ |sat(A1, τ, [0, t1])| ≤ |sat(A2, τ, [0, t1])|

⇔

|sat(A1, τ, [0, t1])| = |sat(A2, τ, [0, t1])|

Now we must consider two cases: t1 = φglb(τ) and t1 > φglb(τ). In the first case we immediately
obtain a contradiction, since the number of A1 instances is at least one and, according to the
assumption made at the beginning, the number of A2 instances has to be zero. In the second
case, we can consider the subtrace τ|[0,t1). The following holds for it:

|sat(A1, τ, [0, t1))| < |sat(A2, τ, [0, t1))|.

And this contradicts the fact that any prefix of τ satisfies creq(A1,A2).

The opposite direction for some instance of A2 goes analogously. Thus, due to the monotony of
timed traces, both properties hold for τ and t. �

The nature of a one-to-one correspondence has the transitivity as one of its consequences. This
property is used in the next chapter for the forward and backward propagation of time con-
straints.

Lemma 2.2 (Transitivity of creq and cres). For any A1,A2,A3 ∈ ℘(~C×T) and d1,d2 ∈ T(
creq(A1,A2)∧ creq(A2,A3)

)
⇒ creq(A1,A3), (2.3a)(

cres(A1,A2,d1)∧ cres(A2,A3,d2)
)
⇒ cres(A1,A3,d1 + d2). (2.3b)

Proof. The transitivity of creq (Property (2.3a)) follows immediately from the transitivity of ≤.
For cres we obtain

(τ, t) |= cres(A1,A2,d1)∧ cres(A2,A3,d2)
⇔ (∗ definition of cres ∗)

∀t1, t2 ∈ [0, t]∩φ(τ) : |sat(A1, τ, [0, t1−d1])| ≤ |sat(A2, τ, [0, t1])|

∧ |sat(A2, τ, [0, t2−d2])| ≤ |sat(A3, τ, [0, t2])|

We fix t1 = max{φglb(τ), t2−d2}. Then, due to the definition of the suffix-operator “↑(.)” we have

τ↑t1 = τ↑t2−d2

34



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

and thus we obtain Property (2.3a) by the following

⇒

∀t2 ∈ [0, t]∩φ(τ) : |sat(A1, τ, [0, t2−d1−d2])| ≤ |sat(A2, τ, [0, t2−d2])|

∧ |sat(A2, τ, [0, t2−d2])| ≤ |sat(A3, τ, [0, t2])|
⇔

∀t2 ∈ [0, t]∩φ(τ) : |sat(A1, τ, [0, t2−d1−d2])| ≤ |sat(A3, τ, [0, t2])|
⇔ (∗ definition of cres ∗)

(τ, t) ∈ cres(A1,A3,d1 + d2) �

2.3.2 Important Time Patterns

The building blocks of time requirements, which are presented in the next section, are causal
relations between events parametrized by relative time intervals. The general scheme for these
relations is: Provided the event A1 has happened at time t then the event A2 must happen/must
not happen within t + I/t− I.6 The four cases resulting from this scheme are formalized below.
In particular, in our settings of timed traces we present the notions of the bounded response
and the minimal separation. These patterns were originally identified in [MP95] as important
time properties and cover the both variants for the forwards-directed case “t + I” contained in the
scheme. Here, we present slightly more general versions of these properties. We also introduce
the respective inverse patterns which correspond to the t− I-case – the bounded request and the
minimal displacement. Finally, due to the asymmetry between A1 and A2 in the scheme from
above, for the formalization of requirements which do not demand a particular order of events
we also will require the combination of bounded response and request – the bounded distance.

• Bounded response: A1 should be followed by A2 not earlier than glb I and no later than
lub I time units

br(A1,A2, I)
def
≡ A1→ ^IA2. (2.4a)

• The symmetrical pattern is the bounded request, stating that a response is always preceded
by a request within a certain time-span

bq(A1,A2, I)
def
≡ A2→ _IA1. (2.4b)

• Bounded distance demands that A2 must occur at some distance from A1 without stating
anything about their order

bd(A1,A2, I)
def
≡ br(A1,A2, I)∨bq(A2,A1, I). (2.4c)

We can simplify the definition of bd to A1→ (^IA2∨_IA2).

6Though, for the case t− I the expressions “must have happened/must not have happened” are more suitable.

35



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

• (Weak) minimal separation: No A2 can occur earlier than d time units after an occurrence
of A1

msω(A1,A2,d)
def
≡

A1→ �(0,d)¬A2 if d > 0,
tt, o.w.,

(2.4d)

ms(A1,A2,d)
def
≡ A1→ �[0,d)¬A2. (2.4e)

The weak version of constraint allows A2 to occur simultaneous with A1. This is espe-
cially useful, when different occurrences of the same event have to be related. Contrary,
ms(A,A,d) yields “false” for any d.

• We call the converse pattern of the minimal separation, the minimal displacement and
define it as

md(A1,A2,d)
def
≡

(
�[0,d]¬A1

)
→ A2. (2.4f)

The property holds if A2 occurs as soon as no A1 was observed d time units long.

2.3.3 Low-Level Time Constraints

The current section contains description and formalization of low-level time constraints. Time
constraints are an integral part of requirements documents of reactive real-time systems. For a
better classification and integration with other requirement types, we sort time constraints pre-
sented in this section into the taxonomy of requirements from [Gli07]. In that work the author
compares and unifies the variety of different definitions of the term “non-functional require-
ment”; and it is a general consensus that time constraints belong to this requirements class. The
taxonomy of [Gli07] extended by time constraints and relationships between them is visualized
in Figure 2.3. It contains the following hierarchy of requirement types:

• On the first level, requirements are partitioned according to their respective purpose into
project, system, and process requirements. The taxonomy of [Gli07] and the present thesis
primary concentrate on the requirements put on the system.

• On the next level, system requirements are partitioned into functional requirements, at-
tributes, and constraints. Constraints are requirements that constrain the solution space
beyond what is necessary for meeting the given functional and performance requirements.
Attributes gather requirements which are related either to the system as a whole (for
instance, maintainability requirements) or to individual functional requirements (for in-
stance, performance requirements).

• On the third level, attributes are partitioned into performance requirements and (further)
specific quality requirements. Examples for specific quality requirements are usability,
reliability, security, maintainability, etc. The performance requirements build the anchor-
age point of our taxonomy of the low-level time requirements, which are typically used to
describe the time behavior of technical systems. It encompasses jitter, deadline, period,
offset, synchrony, and timeouts. In the rest of this section every requirement type is given
along with its formalization in our MTL framework.

36



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

The dashed arrows in Figure 2.3 denote the relationships between different requirement types.
An arrow from concept “A” to concept “B” expresses that B is based on A. This relationship
between functional and time requirements has already been discussed at the beginning of this
section. It can be generalized for all performance requirements. The concept “jitter” which is
described next is inherent to all other types of time requirements.

Requirement

Project
Requirement

System
Requirement

Functional
Requirement

Attribute

Performance
Requirement

Jitter
Requirement

Deadline
Requirement

Period
Requirement

Offset/Delay
Requirement

Distance/

Synchrony
Requirement

Timeout
Requirement

Specific Quality
Requirement

Constraint

Process
Requirement

Figure 2.3: A Taxonomy of Requirements

Jitter

Jitter is an inherent part of any (hard) real-time behavior. Due to the non-determinism of hard-
ware and input-dependent behavior of software, it is, in most cases, impossible to work with
exact execution times for the operations of the system. Hardware solutions, like pipelines and
caches, are designed to increase the average throughput of processors, but make the estimation
of exact timing of operations difficult [FHL+01]. Depending on the values of the current inputs
and the operation mode, the control flow within a software system may differ and thus require
different amount of computing time. Finally, in the distributed systems, priority- or event-based
communication protocols, like the one established in the CAN-buses, increase the level of un-
certainty about the arrival time of events, since their latencies cannot be guaranteed. By the
combination of the above factors and due to the fine resolution of time requirements, which are
often expressed in hundreds or tens of microseconds, a real-time embedded system must operate
within certain tolerance bounds for the actions of its environment.

37



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

We model jitter using the interval indexes of the modal operators introduced above. An interval
I ∈ [T∞] expresses, that an event must happen in at least glb I and at most lub I units of time,
relative to the actual position in the trace. It does not state anything about occurrences of this
event outside of I, nor anything about the exact number of occurrences during I. Please note that
this approach also does not exclude the exact time case, which can be modeled by use of the
singular intervals: [n,n].

Deadline

Deadline or response time is a time span, in which a system has to react to a certain (external)
stimulus. Thus, it can be specified using the bounded response formula introduced above:

r(A1,A2, I)
def
≡ br(A1,A2, I). (2.5a)

With �r(A1,A2, I) we obtain a timed version of the “leads-to” operator, known from many spec-
ification approaches, like UNITY [Cha88], TLA [Lam94], etc.

The r-requirement guarantees that an input event A1 is followed by an output event A2 within
a certain time interval. However, this requirement does not prohibit the system to react (possi-
bly spontaneous) with the same output without the preceding input event A1. Quite often it is
feasible to prohibit this possibility, i.e., to state that every A2 is preceded by A1:

r′(A1,A2, I)
def
≡ br(A1,A2, I)∧bq(A1,A2, I).

If we look at the above definitions carefully, we notice that neither r, nor r′ can guarantee, that
there exists exactly one request for every response and vice versa. Consider, for example, a pair
of events from A2, which lie within an interval I relative to some event from A1. A trace including
this situation satisfies both above formulas. One possibility to prohibit this, is to demand that the
minimal separation between any pair of A1 or A2 events exceeds I, i.e., the jitter lies under the
period of both event types. However, such a constraint is not always justifiable. For the general
case we define the following constraint.

ru(A1,A2, I)
def
≡ br(A1,A2, I)∧bq(A1,A2, I)

∧ creq(A1,A2)∧ cres(A1,A2, lub I). (2.5b)

The inverse property for response time is the request time, which states that if a response has
happened, it must have been preceded by request. Formally, for a request event A1, a response
event A2, and an interval I we define request time constraint q as:

q(A1,A2, I)
def
≡ bq(A1,A2, I). (2.6)

Period

A period or inter-arrival time of events constraints times of their repetitious occurrence. The
arrival pattern allows to designate events as periodic and sporadic ones. The periodic events

38



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

occur within an interval I ∈ [T+], i.e., the time span between two subsequent instances of an
event is not zero and finite. The sporadic events define only the lower bound of the period:
I ∈ [T∞ \ {0}], which must be also greater than zero. Both constraint types are formalized by the
following definitions.

ip(A, I)
def
≡ msω(A,A,glb I)∧br(A,A, I), (2.7a)

is(A, I)
def
≡ msω(A,A,glb I). (2.7b)

ip models periodic and is sporadic events. Once a periodic event has happened, it must reoccur
within the specified time window. This is not demanded for sporadic events. By this, we per-
mit sporadic events to occur finite number of times within infinite timed observations. If this
property is not desired one could also use the ip-constraint to specify sporadic events.

Another common scheme used to specify periodicity enjoins for an event A a period of p ∈ T and
a jitter of j ∈ T, with 2 j < p. The interpretation is that A must/will occur once in every interval
[k · p− j,k · p + j], for all k ∈ N. This form of inter-arrival time requirement for some involved
event A can be described as

ip(A, p, j)
def
≡ �

{
τ | |sat(A, τ,φ(τ))| ∈ [max{0,

⌊
#τ−2 j

p

⌋
},

⌈
#τ+ 2 j

p

⌉
]
}↓. (2.7c)

Informally, the definition of ip(A, p, j) is satisfied by timed traces in which at any time the actual
number of observed A-events deviates from their demanded occurrence number by at most the
specified jitter.

The constraints from above do not state anything about the occurrence of the first instance of the
event A. In fact, they evaluate to true for any A-free trace. As for sporadic events, in general,
there is no need to demand that A must eventually happen. For instance, a crash-event does not
have to happen during every lifeline of a vehicle. As for periodic events, it is not only feasible
to make a statement that A must happen (^A), but also to specify the time of its first occurrence.
This will be the topic of the next paragraph devoted to offsets of events.

Offset and Delay

The offset or delay of an event A specifies the time of its first occurrence. This can be either
an absolute point in time or a distance from some other event, like an operation-mode change.
In the second case offset relates some event with the first occurrence of A after that event. The
offsets become crucial for several causally related events, since their relative offsets influence
the delays in the data and control flow and by this the top-level time behavior, like end-to-end
response times. Formally, we model offsets by providing the following constraint:

o(A0,A, l)
def
≡ ms(A0,A, l). (2.8a)

By this, the offset constraint of l ∈ T on an event A relative to an event A0 disallows A to occur
in τ within any time interval t + [0, l), where (τ, t) |= A0, if 0 < l and evaluates to true, otherwise.
For the absolute point-in-time constraints we set A0 = {A ∈ ~CA | φ(A) = 0}; whereas, this solution

39



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

works for observations which start by 0 only, i.e., for any τ ∈ ~C with 0 < φ(τ), o(A0,A, l) will
always yield “true”. Since timed traces which belong to our semantic domain are full, the above
solution for the absolute-offset constraints is sufficient.

The o-constraint does not state anything about the actual point in time, when the first event
observation should happen. In order to be able to require that the first A should happen exactly
at time t0 + l we provide the following constraint.

oe(A0,A, l)
def
≡ ms(A0,A, l)∧br(A0,A, [l, l]). (2.8b)

Next, we discuss three different approaches to consider offset of an event A within a formal timed
specification. First of all, we can state the offset explicitly as an individual part of specification
using the o-constraint from above, provided this information is available. The remaining two
interpretations of offset assume that there is no explicit information about the first occurrence
time points of A available.

An obvious treatment of the missing offset is to allow arbitrary finite offsets. For a given timed
trace τ ∈ ~C and the earliest point in time t ∈ φ(τ) such that (τ, t) |= A we build an equivalence class

PR(τ, t,A) def
= {τ′^τ | τ′ ∈ ~C∧#τ′ <∞∧∀t′ < t : (τ′^τ, t′) 6|= A}

and take τ as its representative member7. Then, τ fulfills a period constraint i(A, I) if and only if
any member of its equivalence class does so. Further on, τwith (τ, t) |= A1∨A2 for the smallest t ∈
φ(τ) fulfills a response time requirement r(A1,A2, I) and a request time requirement q(A1,A2,J)
if and only if any member of the equivalence class PR(τ, t,A1 ∨A2) does so. This is explained
by the fact that the period, response and request time constraints introduced above are left-prefix
monotone.

Finally, for a given period constraint ip(A, I), a further feasible interpretation restricts the prefix
length of a member of the equivalence class PR(τ, t,A) by the maximal allowed separation, i.e.,
for all (τ′^τ) ∈ PR(τ, t,A) holds #((τ′^τ)↓ut) < lub I. Intuitively, this means that valid observa-
tions must fulfill the period constraint at any time. In other words, if we wait long enough (for
at most lub I units of time) we must observe at least one instance of A. Formally, we can model
this by adding the constraint

r({τ ∈ ~C}↑,A, [0,glb I]∪ I)

to the specification.

Distance and Synchrony

The response time requirements constrain not only the distance between events, but also the
order of their occurrence. However, this is not always required. There exist events which have
to occur simultaneously (within a certain tolerance bound I) without any prescribed order. For
instance, warning lights must flash nearly simultaneously, but the order of their flashes does not
matter. For this purpose we define the distance constraint, which states that if A1 was observed at

7Since τ = ∅^τ, holds τ ∈ PR(τ, t,A).

40



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

some point in time, there must exist an A2-instance either before or after that time. The same is
true for any observation of A2. The distance between event pairs is bounded by I. We redefine the
d-formula introduced in the example at the beginning of Section 2.3 using the bounded distance
predicate from Section 2.3.2 and obtain the sc-requirement.

sc(A1,A2, I)
def
≡ bd(A1,A2, I)∧bd(A2,A1, I). (2.9)

Timeout

The above requirement types describe the normal-case behavior. In other words, the behavior of
the system provided its environment fulfills certain assumptions. However, the environments of
embedded systems are not always reliable. Thus, operation in exceptional situations should be a
part of system specification. For time requirements these exceptions are often expressed by use
of timeouts. A timeout of d ∈ T means that a certain condition was not fulfilled for a time d. We
formalize this intuition by

tmo(A1,A2,A3,d)
def
≡ bq(A1,A3, [d,d])∧md(A2,A3,d). (2.10)

The event A2 typically represents the expected reaction of the environment to event A1, If the
system was waiting for A2 for at least d units of time up to now, then A3 is the exception handling
of the system for this case.

Worst/Best Case Execution Time and Latency

Time constraints do not always reference to events explicitly. For example, the worst or best
case execution time (WCET /BCET) of a function specify distance between its activation and
suspension. The activation can be modeled as an event coming from the environment. For
suspension there are two feasible options: it is either an environment event (e.g., an external
interrupt), which preempts the execution by activating the OS dispatcher or it is a (composite)
event initiated by the function/task itself. In the latter case the task causes an (internal) interrupt,
which requests the scheduler to suspend it. Modeling of such events demands for a detailed
model of the technical infrastructure of the system.

Another important example is the latency of some signal on the bus, which describes the trans-
port duration of this signal through a communication line, in other words, the distance between
the writing of a value into the send buffer on the producer side and its availability for the receiver
side. Again, modeling availability of a message must rely on a sophisticated model of the bus
system.

Without an underlying model of the technical infrastructure, there is neither a possibility to
model BCET/WCET or latency formally, nor a possibility to relate them to other requirements,
like response time, offset, etc. For example, the relation between a WCET constraint for some
function and a response time requirement, which must be fulfilled by this function, is not ob-
vious, since in general the communication points of this function with its environment do not

41



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

have to coincide with the time points of its activation and suspension. Without any further as-
sumptions about technical infrastructure, the minimal response time can exceed WCET or the
maximal response time can be less than BCET.

Analogous problems emerge by modeling the latency. A number of technical factors, like higher-
prioritized events combined with event-triggered dispatching, time-triggered scheduling, context
switch times, or polling intervals, induce additional delays into the data- and control-flow. Thus,
not only the upper but also the lower bound of the actual delay may lie over the maximal latency.
One may think that the lower bound of a latency constraint must be smaller than the minimal
specified delay, but this also does not have to be true. A constraint which requires an offset I is
fulfilled by a system with the actual offset of J, provided J ⊆ I. Thus, the minimal latency can be
greater than the demanded minimal offset, but has to be smaller then the actual one. In the next
chapter we will discuss and formally define when the actual time behavior satisfies the specified
one (cf. Section 3.1.1).

In general, technical models of OS and bus systems are not available/considered on the level
of logical or functional specification, hence there is no possibility to describe constraints, like
BCET/WCET or latency, directly within the formal specification. Further on, these constraints
reference to implementation details, i.e., their actual impact on the system can only be concluded
from the specifics of the technical realization. Thus, the constraints of such kind restrict directly
the solution space (the realization) for a system, rather than its problem space (the specification).
Chapter 5 demonstrates how the assumptions about the execution time of tasks and the commu-
nication latencies can be incorporated into a simulation proof between a task architecture and a
technical platform.

Provided there exist formal models of OS and bus system, latency becomes response time of the
bus system and BCET/WCET lower and upper bounds for the time span between release and
suspension of some technical component minus the preemption times in between.

2.3.4 Timed Behavior Specification

The above requirement types constitute the low-level time behavior specification of reactive
systems. This specification together with further functional requirements has to be fulfilled by
the design and implementation of the system. Example 2.2 at the beginning of Section 2.3 has
demonstrated that the functional and time specifications are closely interrelated: The functional
requirements formulate conditions under which the time requirements must be fulfilled and vice
versa. For example, the operation mode can trigger a specific response time requirement and a
timeout can change the operation mode. The combination of functional and time requirements of
the system p is captured by the timed behavior specification SpecT,Mp ⊆ ~Cκ. It is defined by use of
timed events in the time domain T over the message set M as a subset of allowed full valuations
of the system channels C. In the future, we will omit the superscripts and the subscript where the
time domain, the message set, and the system identifier are clear from the context or irrelevant.
We recall that the timed event or time property is defined as a subset of ~C×T. Thus, we can
formally relate these both concepts, i.e., define when a specification fulfills a property.

42



2.3. A FORMAL MODEL FOR TIME REQUIREMENTS

Coming back to Example 2.2, it is not feasible to assume that the different time requirements
defined so far, will be valid during the whole lifeline of the system. Merely, under certain
conditions, there will be phases, in which some time requirements have to be fulfilled, and others
– not. Thus, for a given time requirement r we define the context C in which it must be fulfilled.
Contexts contain infinite as well as finite parts of specifications. The intuitive interpretation
of a time requirement/context pair for a given specification is, that the specification fulfills the
requirement if and only if the requirement holds at every point in time which lies within the
context. The following definition puts this idea in concrete terms.

Definition 2.4 (Context and satisfaction of time requirements). For a given specification Spec ⊆
~Cκ, a time requirement r ⊆ ~C×T, and a context C ⊆ ~Cκ× [T∞], the specification Spec fulfills the
requirement r in the context C, denoted by Spec |=C r if and only if

∀τ ∈ Spec, I ∈ [T∞] : (τ, I) ∈ C⇒ (τ,glb I) |= �[0,#I) r.

We call C non-trivial context for Spec if and only if ∃(τ, I) ∈ C : τ ∈ Spec∧ I , ∅. ^

The context C(Spec) def
= {(τ,φ(τ)) | τ ∈ Spec} contains the whole specification Spec and any prop-

erty fulfilled by Spec in C(Spec) is the invariant of this specification. In an empty context every
property becomes a tautology, i.e., it holds |=∅ r for any r. Please also note that the second
parameter of the context defines the fulfillment scope of some requirement r in absolute values,
while the parameters of timed operators in r define the scope relative to the current evaluation
point.

Finally, we note that from Property (2.1d) in Table 2.4 (page 30) follows: the set of all satisfiable
properties in some context C does not change if we replace (τ, I1) ∈ C and (τ, I2) ∈ C with I1∩ I2 ,
∅ by (τ, I1 ∪ I2). The converse replacement is also possible. By this, we obtain an equivalence
relation on contexts.

Context Construction

Technically, a context of some requirement r can be derived from three further MTL properties
ψ1, ψ2, and ψ3, whereas ψ1 marks the beginning and ψ2 the end points of the intervals in C; ψ3
describes the properties of the interval in-between. Formally:

C(ψ1,ψ2,ψ3) def
=

{
(τ, I) | (τ,glb I) |= ψ1∧

(
lub I <∞⇒ (τ, lub I) |= ψ2

)
∧ (τ,glb I) |= �(0,#I)ψ3

}
.

Then, r put in its context yields the property ψ1 →
(
r Uψ2 ∨�(r∧ψ3)

)
. For instance, provided

|= ψ3↔¬ψ2 holds, the term on the right-hand side of the implication is known under the name
weak until or unless. It means that r holds for as long as ψ2 does not hold, even forever if
necessary. Five context types which are commonly used in requirements specifications are de-
scribed in [DAC98]. Table 2.5 demonstrates that they all can be formalized using the scheme
from above. Every line of the table contains an informal description along with the parameter
values for the corresponding C(ψ1,ψ2,ψ3)-context. By changing the interval bounds, in which
ψ3 must hold, e.g., to [0,#I), (0,#I], or [0,#I], we obtain further useful context types.

43



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

Parameter

Context Type ψ1 ψ2 ψ3

“globally” tt ff tt
“before A” tt A ff

“after A” A ff tt
“between A1 and A2” A1 A2 ff

“after A1 until A2” A1 A2 ¬A2

Table 2.5: C(ψ1,ψ2,ψ3)-Formalization of Context Types from [DAC98]

Context Combination

Within the settings of our formal trace-based framework, specifications are build by a number
of requirement/context pairs. Thus, the scope of a particular requirement is bounded by its
context. In order to be able to reason about consistency and completeness of specifications we
need to identify situations where the individual requirements can potentially interfere. These are
exactly all points in time in which their contexts intersect. In these time points the conjunction of
requirements must hold. In inconsistent specifications this may result in unsatisfiable formulas.
Finally, this conjunction can also be used as the premise in the derivation process of further
implicit requirements. In the rest of this section we introduce the notion of context combination
which answers the question, given two requirement/context pairs (r1,C1) and (r2,C2), in which
context holds their composition r1∧ r2?

Definition 2.5 (Combination of contexts). Given a specification Spec ⊆ ~Cκ, and a pair of con-
texts C1,C2 ⊆ ~Cκ × [T∞], The combined context of C1 and C2 is denoted by C1 7C2 and defined
as

C1 7C2
def
= {(τ, I1∩ I2) | (τ, I1) ∈ C1∧ (τ, I2) ∈ C2}. ^

The context combination is associative, commutative and idempotent. The next proposition
demonstrates the correctness of the above definition: it states that if a specification satisfies
two requirements within their respective contexts than it also satisfies the conjunction of these
requirements within the combined context.

Proposition 2.1 (Composition of requirement/context pairs). Given a specification Spec ⊆ ~Cκ,
two requirements r1,r2 ⊆ ~C×T, and a pair of contexts C1,C2 ⊆ ~Cκ × [T∞], then(

(Spec |=C1 r1)∧ (Spec |=C2 r2)
)
⇒ Spec |=C17C2 r1∧ r2.

Proof. For a trace/time point pair (τ, t) such that

τ ∈ Spec, (τ, t) |=C1 r1, and (τ, t) |=C2 r2

holds, there must exist intervals I1, I2 such that

(τ, I1) ∈ C1, (τ, I2) ∈ C2, and t ∈ I1∩ I2.

Finally by the definition of the context combination: (τ, I1∩ I2) ∈ C1 7C2. �

44



2.4. CPS CASE STUDY (CON’ED)

Figure 2.4: Structure of the CPS System from [KR02]

2.4 CPS Case Study (con’ed)

The specification of the CPS includes a number of different constraint types presented above. We
have already met two of them in Section 1.4. They clearly belong to response time constraints.
These and further requirements are formalized in the current section using our trace-based spec-
ification framework. We denote events for the activation of the airbag and belt tensioner through
the COI and BTI interface, respectively, by ACOI and ABTI , respectively. Now we can state both
time requirements from the list above formally, as

rR1
def
≡ r(ACOI ,e

∃↑

PC, [10,∞)) and rR2
def
≡ r(ABTI ,e

∃↑

PC, [110,∞)).

We immediately see that these constraints are insufficient: A criterion is missing, which states
when a situation becomes critical. The intervals of the response time requirements are un-
bounded on the right side and allow the CPS system to activate airbag and belt tensioner, as
soon as it registers an approaching object. On the other hand, since the sense of sight of the sen-
sors is finite (bounded to 7 m in our case), there indeed exists an upper bound for the response
time requirements from above: It is the maximal measurement distance ds_max = 7 m divided by
the minimal measurable positive relative velocity vs_min, minus a minimal latency εl_min between

45



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

the discovery of an object by the sensors and issuing of the COI and BTI signals by the CPS.
Thus, we can reformulate the requirements from above, as

rR1
def
≡ r(ACOI ,e

∃↑

PC,
[
10,

ds_max

vs_min
− εl_min

)
) and rR2

def
≡ r(ABTI ,e

∃↑

PC,
[
110,

ds_max

vs_min
− εl_min

)
).

This upper bound for the system response is further refined by additional requirements intro-
duced below.

Next, we zoom to a more detailed view on the CPS system. It is depicted in Figure 2.4. The
system consists of one central electronic processing unit (ECU) and up to six sensors connected
to it via designated direct wires. The sensors can operate in two different modes: DMode and CV-

Mode. Additionally, DMode has two sub-modes with different supervision range. It can amount
either to 2 or 7 m. In the CVMode the system checks for approaching objects in the range from
1.41 to 0.69 m (see below). The modes and transitions between them are depicted in Figure 2.5.
They are triggered by the ECU, which can issue DScan and CVMeasurement commands. The op-
erating modes reflect the criticality of the situation in the environment of the vehicle. DMode

is the normal-case behavior of the system. When an object approaches too fast and/or enters a
critical region, the systems switches to CVMode. In the CVMode (i.e., as the response to CVMea-

surement command) sensors produce a series of measurements. If no crash has occurred, the
system switches back to DMode. Immediately after switching back one short range scan (2 m)
is performed in order to ensure that another objects closely following the originally tracked one
are detected quickly. Afterwards, the system proceeds with the normal 7-m-distance scans.

CVMode

DMode (7 m)DMode (2 m)

DScan
CVMeasurement

DScan D
S

can

Figure 2.5: Operational Mode Transition Diagram of CPS

The operational modes build the contexts of different time requirements put on the CPS system.
DMode and CVMode are triggered by events from

AMode
def
= {DScan(2),DScan(7),CVMeasurement}×R≥0.

For example, in a given run starting from (〈DScan(2)〉, t1)-message and until the first
(〈CVMeasurement〉, t2)-message (t1 < t2) the system remains in DMode mode. AMode is partitioned
into two (disjoint) subsets

ADScan
def
= {DScan(2),DScan(7)}×R≥0 and ACVMeasurement

def
= {CVMeasurement}×R≥0,

46



2.4. CPS CASE STUDY (CON’ED)

which contain switches to DMode and CVMode, respectively.

We construct contexts CDMode and CCVMode using the scheme presented at the end of Section 2.3.3
(on page 42), i.e.,

CDMode
def
=

{
(τ, I) | (τ,glb I) |= ADScan(2)∧

(
lub I <∞⇒ (τ, lub I) |= ACVMeasurement

)
∧ (τ,glb I) |= �(0,#I)¬ACVMeasurement

}
,

CCVMode
def
=

{
(τ, I) | (τ,glb I) |= ACVMeasurement∧

(
lub I <∞⇒ (τ, lub I) |= ADScan

)
∧ (τ,glb I) |= �(0,#I)¬ADScan

}
,

whereas ADScan(2) contains 2-m-distance scans only. By this, the pure functional requirements
on modes and mode changes illustrated in Figure 2.5 are incorporated into contexts of time
requirements which must hold in these modes. These requirements grouped by their respective
embedding mode context are described and formalized next.

DMode Requirements

Following requirements have to hold in DMode.

(R3) As the response on the DScan-command, the sensor sends information about at most eight
objects observed in the environment denoted as the OneDObjList-response in Figure 2.4.
The response time on the DScan-command must lie between 3 and 4.5 ms.

(R4) In the normal case, the ECU is operating sensors in DMode mode by sending out DScan

commands every 15 ms to all sensors.

Both formal requirements presented below must hold in the context CDScan. The formal model
for the first requirement is the following response-time constraint

rR3
def
≡ ru(ADScan,Aobj, [3,4.5]),

where Aobj
def
= M[0,8]

obj ×R≥0 is the set of timed observations of at most eight objects, i.e., M[0,8]
obj

def
=

{σ ∈ M∗obj | #σ ≤ 8}.

The requirement R4 is formalized using a periodic inter-arrival time constraint:

rR4
def
≡ ip(ADScan, [15,15]).

CVMode Requirements

The Velocity-message on the data-flow link from sensor to ECU depicted in Figure 2.4 refers
to the CVMode-behavior. In the CVMode the sensor starts to deliver a time series of velocity
measurements, with the maximal length of ten. A series lasts as long as an object steadily
approaches the vehicle and is observed within specific distance ranges. The CPS specification
subdivides the distance of 1.41 m before the vehicle in 9 disjoint, decreasing segments (distance
ranges) of equal length. Every measurement in the series is associated with a distance range

47



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

in which an object should be located. If no object is found in this area a zero is sent to ECU
and the measurement sequence terminates. Following two additional constraints supplement the
specification of the time behavior of the CPS system in the CVMode.

(R5) When an object on collision course needs less than 30 ms before it will undercut the
1.41-m distance, ECU must start to operate sensors in CVMode.

(R6) The measurement sequence in the CVMode is terminated by 0. It is terminated either after
nine “real” velocity measurements, or if no object enters the next distance range within
25 ms.

The below formalization of requirements assumes CCVMode as context. The first requirement is
formalized as follows: Using the same scheme as for the definition of the ePC-observation, we
define the observation e1.41m which captures observations starting with an object-measurement
event Aobj ∈ M∗obj×R≥0 and ending at time of predicted passing through of object’s registered in
Aobj the 1.41-m mark. Formally,

e1.41m
def
=

{
τ | pre_crash

(
τ.(minφ(τ))

)
=

(
maxφ(τ)

)}
,

where pre_crash : M∗obj 7→ R≥0 is defined as

pre_crash(〈〉) def
= ∞,

pre_crash(〈m(1)
obj . . .m

(n)
obj〉)

def
= min

1≤i≤n


m(i)

obj.d−1.41

m(i)
obj.v·cosm(i)

obj.θ
if m(i)

obj.θ < 90, m(i)
obj.v , 0, and

m(i)
obj.d ≥ 1.41

∞, o.w.

Then,

rR5
def
≡ ru(ACVMeasurement,e

∃↑

1.41m, (0,30)).

For the formalization of the second requirement form the above list define the set of velocity
measurement events Avel

def
= Q1

+ ×R≥0, where Q1
+ stands for a set of positive rational-number

sequences of length one: Q1
+

def
= {〈q〉 | q ∈ Q+}. Further on, let Avel(0) def

= {0}1 ×R≥0 be the termi-
nating 0-velocity event. Then, the second time requirement in the CVMode can be modeled using
a timeout constraint:

rR6
def
≡ tmo(Avel,Avel,Avel(0),25).

2.5 Related Work

The present chapter contributed to several topics of software engineering and formal methods
research, namely formal models for real-time and reactive behavior, formalization of require-
ments specifications, as well as cataloging of real-time requirements. The obtained results are
compared with the existing works grouped by the respective topic below.

48



2.5. RELATED WORK

Specification Formalisms for Reactivity and Real-Time

Over the years, a variety of formalisms for the specification of reactive and real-time systems
were proposed (cf. [Car02, Jos01] for surveys on this topic). Among them temporal logic-based
approaches play a prominent role. This is explained by the fact that a number of important
causal properties (cf. [MP95, MP92]) can be concisely formulated and efficiently verified (cf.
[CGP99]) using temporal logic. In the last years, temporal logic has found wide acceptance for
specifying and verifying real-life hardware and software systems.

The point-based quantitative temporal logic MTL [Koy90] was extended by durations in [LH95].
However, that extension does not allow to relate intervals to each other, its propose is rather to
express that some property holds for a certain time. This makes the logic from [LH95] applicable
for the specification of hybrid systems, but does not facilitates the event-based specification
which is commonly used to reason about the behavior of reactive real-time systems without
analog parts.

Our notion of intervals corresponds to the ideas incorporated in Real-Time Logic
(RTL) [JMS88]. In RTL, using a special notation, the beginning and the end of non-
instantaneous observations can be explicitly referenced in the formulas. “The main problem
with RTL is the fact that absolute system time is referenced, with a low level of abstraction,
leading to very complex formulas required to describe the system” [BMN00].

The duration, or interval concept of [LH95] is similar to the one of Duration Calculus
(DC) [ZCA91]. DC is a requirements specification language that allows concise expression
of properties about duration of signals and a calculus to reason about these durations. DC al-
lows the expression of safety properties only, and there is hardly any program verification theory
based on it [LH95]. Also, as argued above the concept of duration used in DC is not appropriate
to reason about the systems from the semantic domain we are dealing with.

Further important class of formal specification approaches build the automata-based ones. In the
context of requirements engineering it is rather questionable if an operational, implementation-
close formalism is an adequate means to document requirements. However, analytical models
based on automata are an effective instrument for the analysis and the validation (by simulation)
of specifications. The automata-based approaches which are conceptually close to the results
presented here are the models of timed automata [AD94] and timed I/O automata [KLSV06].
The relation to these models and our approach resembles the relation between sequence charts
and finite automata (e.g., cf. [Krü00]): They provide complementary views on the system and
are appropriate to reasoning about the system behavior at different stages of development.

Formal Foundation in Requirements Engineering

The definition of formal semantics for requirement specifications is not new. This idea goes
back to the 4-variable model from [PM95] that proposes to specify a system in a black-box
manner by means of mathematical functions. These functions describe the relations between
variables of the considered system and its environment. The functions have real-valued domains
and ranges and, thus, the approach is capable to specify the real-time behavior. In contrast to

49



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

our work, this approach offers neither a method to specify single requirements modularly nor to
refine, or decompose them8 and therefore it is not able to support the scalability necessary for
the state-of-the-art systems and cannot be integrated into a model-based development process.

A reference model for requirements and specifications called functional documentation model
presented in [GGJZ00] is based on the Church’s higher order logic. Analogously to the 4-
variable model, it subdivides the requirements specification into four types of phenomena.
They can be either system or environment controlled and either visible or invisible to the sys-
tem/environment. The deficits of the 4-variable-model approach also apply here: the authors do
not provide the concepts of modularization and refinement.

The SCR* method and tool set [HBGL95] can be seen as a variant of the 4-variable model. It
proposes to model the system specification as an automaton which reads and writes variables of
the four types identified in [PM95]. The deficits of SCR* are its a-priori discretized system step
and a rather coarse-grained modularity concept: Every subsystem has to be completely described
by three tables: condition table, event table, and mode-transition table. In [Hei95] SCR* was
extended by the notion of real-time. This was done in an ad-hoc manner by associating every
event with a time stamp (similar to the timed-word model of timed automata). No concepts for
the reasoning about durations or non-instantaneous composite observations were provided.

A number of approaches which extract (formal) models out of specifications mainly deal with
functional requirements. Approaches, like KAOS [vL03] or Albert II [HD98], address the time
requirements as annotations or as a temporal logic formulas, operating in terms of logical system
steps. We have already discussed in Section 2.2.3 that such an a-priori discretization cannot
be justified offhand in the early requirements engineering phases. In contrast, the presented
approach allows the system engineer to capture and model the timing information explicitly as
well as to relate it to design and implementation artifacts, like components, channels, schedules,
tasks, etc.

Classification of Real-Time Requirements

Over the years, different approaches to classification of system properties were proposed in the
literature. They can be roughly subdivided into three categories:

(1) Verification-oriented classifications distinguish properties according to the different proof
methodologies, which are needed to reason about their fulfillment. An important example
is liveness/safety distinction presented first in [Lam77].

(2) Another category build classifications which are guided by the capabilities of the applied
specification formalism. For example, [MP95] presents a taxonomy of properties which
is based on the syntactic structure of LTL and MTL.

(3) The last category comprises approaches which gather and order patterns frequently oc-
curring in practice. This is also the origin of the taxonomy form Section 2.3.3. Thus, we
compare our contribution with other approaches from this category below.

8Refinement and decomposition for our framework are introduced in the next chapter.

50



2.6. SUMMARY

[KC05] presents a repository of specification patterns for real-time requirements. The pattern
template is borrowed from [DAC98], where a system of specification patterns for temporal (un-
timed) system properties is presented. A pattern from [KC05] includes amongst others

• the context of the property (one of five from Table 2.5, page 44),
• formalizations of the property in three different quantitative temporal logics, and
• its textual description in structured English.

All three temporal logics used in [KC05] are propositional and, thus, properties which can be
documented by that approach are restricted to the subset expressible using propositional interval-
and state-oriented temporal logics. By this, a number of important requirement types, like time-
out, synchrony, offset, or recurrence specified by a period/jitter pair are missing in the cata-
log of [KC05]. A further unclear aspect of that approach is the co-action of several property
specifications, or, more generally, the relation between patterns and other system artifacts, like
components, classes, etc.

In [LvL02] the KAOS approach is extended by a taxonomy of goal patterns for the goal-oriented
specification. Goal-oriented requirements engineering refers to the use of goals during this phase
of development. Goals are objectives the system under development must achieve. Goals are
formulated in terms of statements which may refer to functional or non-functional properties and
range from high-level concerns to lower-level ones. The goal patterns presented in [LvL02] are
clearly too low-level: they correspond rather to our building blocks presented in Sections 2.3.1
and 2.3.2. The approach also does not support embedding of requirements into different con-
texts.

2.6 Summary

We have presented a mathematical framework for specification and analysis of time requirements
of reactive systems. The framework provides a possibility to precisely describe the desired time
behavior and formally integrate it within a formal specification. We have based our treatments
on a rigorous system model that captures the communication flow observed on the system border
through channels over time. The model can be parametrized by different discrete or continuous
time domains. This system model is adequate for the black-box specification of all kinds of
reactive (real-time) systems.

Within the system model we have introduced the notion of timed events and observations as the
central modeling primitives which are used to reason about reactive real-time systems. These
primitives served as a basis for the definition of the semantics of an MTL derivative – a quantita-
tive first-order interval-based linear temporal logic. Using this logic different causal and timing
relationships between timed observations were formalized.

The above contributions coalesced into a taxonomy of low-level time requirements. It allows to
work with the primitives of timed behavior specification used on the level of technical systems.
These primitives, in particular, end-to-end latencies (response times) and periods, also often

51



CHAPTER 2. SPECIFICATION OF TIME CONSTRAINTS

appear in specification documents. Hence, the members of this taxonomy can be used as building
blocks for the creation of formal system specifications at different stages of development.

The process of formalization using predefined specification patterns is also facilitated by the
notion of timed behavior specification introduced in the current chapter. The specification em-
beds its time requirements into associated contexts. This allows to specify real-time behavior
during distinguished periods of system execution and to relate time behavior with further sys-
tem requirements. In particular we have shown how contexts can be constructed using further
MTL constraints and how a common context of two requirement/context-pairs, i.e., the context
in which both requirements must hold, can be calculated.

This treatment of time behavior prepares the ground for the investigation of the methodical
usage of time requirements and specifications in the subsequent chapters of this thesis. In par-
ticular, it allows us to study refinement notions for time requirements, to formalize consistency
and completeness conditions on collections of requirements, and to guide the transition from
“unstructured”, global black-box view on the system to individual component specifications.

52



3
Analysis of Time Constraints

In the previous chapter we have defined the notions of time requirements and timed behavior
specification using a formal trace-based framework. In the current chapter, on the basis of this
framework, we provide a number of formally founded analysis and transformation methods
which aim at ensuring the correctness and increasing the quality of specification documents and
other artifacts created during the system development. These methods comprise the refinement
of time behavior, formal consistency and completeness checks, and correct distribution of time
requirements over component networks. Finally, we introduce the notion of structured timed
behavior specification, and formally relate the behavioral and structural views on the system.

Contents
3.1 Quality and Conformance Assurance During Development . . . . . . . . 54
3.2 A Formal Model for System Specification . . . . . . . . . . . . . . . . . . 66
3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

53



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

A  , writing formal specifications helps engineers to clearly define their problems,
goals, and solutions. The clarity that this activity produces is a benefit in itself. However,

the ultimate purpose of formal models is the application of formal analysis techniques which
promises even greater evidence of the correctness of specification documents as well as of the
whole system. Generally, the correctness refers to the consistency and completeness of the
specification itself and to the conformance of system’s design and implementation to its spec-
ification. These both types of correctness are the central concerns of the current chapter. The
general analysis and transformation methods for time behavior presented here are instantiated
for the members of the time-requirements taxonomy from the last chapter.

Contributions and Outline. During the development time specifications are involved into
different quality and conformance assurance activities. For these purposes Section 3.1 offers a
number of methods and mechanisms. In particular, it deals

• with formulation of consistency constraints between time requirements,
• with distribution of time requirements over different design and implementation artifacts,
• with derivation of new time requirements from the set of existing ones, as well as
• with the refinement of time requirements and specifications.

All these operations are formally founded and designed to facilitate the construction of reactive
systems with the time behavior which satisfies the specification and meets the actual stakehold-
ers’ needs.

Section 3.2 treats the transition from unstructured to structured specifications. The universe of
timed traces defines the semantic domain of our denotational system model. While the unstruc-
tured specifications can be seen as a conjunction of constraints or predicates over this universe,
the structured specifications consist of a number of interconnected components which make as-
sumptions about the timed traces they obtain as inputs and guarantee certain timed traces as the
corresponding outputs. Structured specifications impose an asymmetry in the treatment of input
and output traces. For the formal description of structured specifications we use the FOCUS for-
malism [BS01a] carried over to our trace-based domain. The relationship between unstructured
and structured specifications is defined formally at the end of Section 3.2. This relationship per-
mits the independent, but yet tightly integrated and, by this, property preserving development of
both structured component specification and (unstructured) timed behavior specification.

3.1 Quality and Conformance Assurance During Development

In the previous chapter we have defined the notion of individual time constraints and embedded
them into functional contexts of formal requirements specifications. The requirements specifi-
cation and, in particular, time constraints are involved into different activities carried out dur-
ing the development process. These activities are mostly (1) the quality assurance measures,
which analyze the specifications regarding their consistency and completeness, as well as (2) the
conformance checks of artifacts created in the subsequent development phases, e.g., does the
implementation satisfies the specification. Further important class of activities aims at deriving

54



3.1. QUALITY AND CONFORMANCE ASSURANCE DURING DEVELOPMENT

requirements for particular subsystems or components. Thereby, the task of the system engi-
neer is to formulate requirements on the individual components of the system in a way which
guarantees the conformance of the whole system to the original requirements specification.

The current section delivers the formal foundation for the aforementioned activities. Sec-
tion 3.1.1 introduces refinement as a notion of conformance in the development process. In
particular, for our time constraints from previous section we specify, what changes in the time
behavior are valid refinement steps. Section 3.1.2 deals with the two main quality attributes of
specifications: consistency and completeness. Thereby, the emphasis lies on the derivation of
further constrains from a set of existing ones. Finally, Section 3.1.3 describes methods for the
decomposition of time constraints. By this, we are able to distribute time constrains over system
components. In that section we also investigate when different time requirements influence each
other. In other words, we decompose requirement specification into change-insensitive parts.
This is of especial interest for the bounding of verification and validation efforts – in the case of
a change in the specification only dependent requirements have to be reconsidered.

3.1.1 Refinement

The notion of refinement captures formally the dependency between different artifacts originat-
ing from a top-down development process. The main idea behind refinement is the consideration
of the system development as a restriction of the set of possible satisfactory solutions (permitted
by the specification) until only one solution (implementation) is left. From a more bottom-up
perspective, refinement is the relation in which a valid design or implementation must stand to
the specification of the system, i.e.,– their formal acceptance criterion. The next definition intro-
duces abstraction/refinement relation for specifications, individual requirements, and contexts.

Definition 3.1 (Refinement of time properties and specifications). Given two specifications
Spec0,Spec1 ⊆

~Cκ, then Spec1 refines Spec0 or Spec0 abstracts Spec1, denoted by Spec1 Spec0
if and only if Spec1 ⊆ Spec0.

Given two time requirements r0,r1 ⊆ ~C × T, then r1 refines r0 or r0 abstracts r1, denoted by
r1 r0 if and only if r1 ⊆ r0.

Given contexts C0,C1 ⊆ ~Cκ × [T∞], then C1 refines C0 or C0 abstracts C1, denoted by C1 � C0 if
and only if

∀(τ, I) ∈ C1 : ∀t ∈ I : ∃(τ,J) ∈ C0 : t ∈ J. ^

The refinement notions of specifications and time requirements inherit reflexivity, transitivity,
and antisymmetry directly from set inclusion. By refinement of contexts we decrease the length
of time spans and/or the amount of observations in which some time requirement must hold.
Next, we prove that the fulfillment of a requirement/context-pair is monotone respective specifi-
cation refinement.

Corollary 3.1 (Property preservation during specification refinement). Given two specifications
Spec0,Spec1 ⊆

~Cκ, a requirement r ⊆ ~C ×T, and a context C ⊆ ~Cκ × [T∞]. If Spec0 |=C r and
Spec1 Spec0, then

Spec1 |=C r.

55



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

Proof. Follows directly from the subset relation between Spec1 and Spec0. �

On the level of MTL formulas the refinement relation between a pair of requirements corre-
sponds to an implication. Formally, given a pair of time requirements r0 and r1 which are for-
mulated using the MTL formulas ϕ0 and ϕ1, respectively, then r1 r0 if and only if |= ϕ1→ ϕ0,
i.e., if the MTL formula ϕ1 → ϕ0 is a tautology. Thus, in order to improve readability we will
abbreviate the above relation on MTL formulas by ϕ1 ϕ0.

Refinement of Time

As usual, our emphasis lies on the refinement of time behavior. It can be restricted by changing
the interval parameters of timed modalities. In fact, this is an important class of refinement
relations in the development of real-time systems: In practice, it is mostly impossible to enforce
the time behavior in a top-down manner – the time behavior of the implementation will almost
surely deviate from the specified one. Thus, it is important to determine exactly when the actual
time behavior satisfies the time specification. The following rules define when a change in time
parameters is a sound refinement step in all possible contexts. These rules can be used for
bottom-up conformance checks during development.

Lemma 3.1 (Interval refinement in MTL). Given a pair of formulas ϕ1,ϕ0 such that ϕ1 ϕ0
and two intervals I,J ∈ [T∞] such that I ⊆ J, then the following relations hold

XXXIϕ0fXXXJϕ1, where XXX ∈ {�,�},

YYY Iϕ1 YYYJϕ0, where YYY ∈ {^,_}.

Proof. Here, we prove the lemma for the future modalities only. Proofs for the past modalities
go analogously.

From the predicate calculus we know that |= ψ1 ∨ψ2 ← ψ1 and |= ψ1 ∧ψ2 → ψ1 and by this
ψ1∨ψ2fψ1 and ψ1∧ψ2 ψ1. Further on, let I1, I2 ∈ [T∞] be intervals such that I1∪ I2 = J \ I.
Then, using Property (2.1d) from Table 2.4 (page 30) we obtain

�Jϕ1 ≡ �I1 ϕ1∧�Iϕ1∧�I2 ϕ1.

Due to Property (2.1c) from the same table, we have

^I1 ϕ0∨^Iϕ0∨^I2 ϕ0 ≡ ^Jϕ0.

Next we need to show that �Iϕ1 �Iϕ0 and ^Jϕ0 ^Jϕ1 hold. The semantics of the formula
�Iϕ1 is the set {

(τ, t) | ∀t′ ∈ φ(τ)∩ (t + I) : (τ, t′) |= ϕ1
}
.

Traces with time points which satisfy ^Jϕ0 are gathered by the set{
(τ, t) | ∃t′ ∈ φ(τ)∩ (t + J) : (τ, t′) |= ϕ0

}
.

We obtain set inclusion in both cases and due to the transitivity of the refinement relation we are
done. �

56



3.1. QUALITY AND CONFORMANCE ASSURANCE DURING DEVELOPMENT

Based on Lemma 3.1 we define refinement relations between different constraints introduced
in Section 2.3. This allows us to justify formally when relaxing or tightening the time budgets
of real-time requirements (i.e., their time-interval parameters) results in a refinement step. Ta-
bles 3.1 and 3.2 summarize the results proved by the next propositions. Every table line contains
a pair of constraints of the same type which stand in the abstraction/refinement relation to each
other provided the corresponding condition shown in the last column is fulfilled.

Nr. Abstraction Refinement Condition

1 cres(ϕ1,ϕ2,d1) cres(ϕ1,ϕ2,d2) d1 ≥ d2
2 br(ϕ1,ϕ2, I1) br(ϕ1,ϕ2, I2) I1 ⊇ I2
3 bq(ϕ1,ϕ2, I1) bq(ϕ1,ϕ2, I2) I1 ⊇ I2
4 bd(ϕ1,ϕ2, I1) bd(ϕ1,ϕ2, I2) I1 ⊇ I2
5 msω(ϕ1,ϕ2, t1) msω(ϕ1,ϕ2, t2) t1 ≤ t2
6 ms(ϕ1,ϕ2, t1) ms(ϕ1,ϕ2, t2) t1 ≤ t2
7 md(ϕ1,ϕ2, t1) md(ϕ1,ϕ2, t2) t1 ≥ t2

Table 3.1: Interval Refinement Rules for Building Blocks

Lemma 3.2 (Interval refinement of building blocks). Given two formulas ϕ1,ϕ2, two intervals
I1, I2 ∈ [T∞] and di ∈ T, ti ∈ T∞ with i ∈ {1,2}, for every line of Table 3.1 the expression in the
middle column is a refinement of the expression in the left column provided the condition in the
right column holds.

Proof. Table rows 2-4 and 6 follow directly from Lemma 3.1. The remaining three properties
are shown next.

d1 ≥ d2⇒
(
cres(ϕ1,ϕ2,d2) cres(ϕ1,ϕ2,d1)

)
: First we observe that cres(ϕ,ϕ,d) is true for any

ϕ and d ∈T∞. Then, we can rewrite cres(ϕ1,ϕ2,d2) as cres(ϕ1,ϕ2,d2)∧cres(ϕ2,ϕ2,d1−d2)
and apply Lemma 2.2.

t1 ≤ t2⇒
(
msω(ϕ1,ϕ2, t2) msω(ϕ1,ϕ2, t1)

)
: In the case 0 < t1 the first part of Lemma 3.1 ap-

plies. Otherwise, this case follows from the fact that tt is the most abstract formula in
MTL.

t1 ≥ t2⇒
(
md(ϕ1,ϕ2, t2) md(ϕ1,ϕ2, t1)

)
: Due to our closed-world semantics for MTL formu-

las ψ1, ψ2 holds (ψ1 ψ2)⇔
(
(¬ψ1)f (¬ψ2)

)
. Thus, the property follows from the first

part of Lemma 3.1. �

Proposition 3.2 (Interval refinement of time requirements). Given two formulas ϕ1,ϕ2, two
intervals I1, I2 ∈ [T∞], and p, ji, li ∈ T with 2 ji < p for all i ∈ {1,2}, for every line of Table 3.2 the
expression in the middle column is a refinement of the expression in the left column provided the
condition in the right column holds.

Proof. The table rows 1-7 and 9-10 are direct consequences of Lemma 3.2. The remaining
property is

j1 ≥ j2⇒
(
ip(ϕ1, p, j2) ip(ϕ1, p, j1)

)
.

57



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

Nr. Abstraction Refinement Condition

1 r(ϕ1,ϕ2, I1) r(ϕ1,ϕ2, I2) I1 ⊇ I2
2 ru(ϕ1,ϕ2, I1) ru(ϕ1,ϕ2, I2) I1 ⊇ I2
3 q(ϕ1,ϕ2, I1) q(ϕ1,ϕ2, I2) I1 ⊇ I2
4 ip(ϕ1, I1) ip(ϕ1, I2) I1 ⊇ I2
5 is(ϕ1, I1) is(ϕ1, I2) glb I1 ≤ glb I2
6 ip(ϕ1, p, j1) ip(ϕ1, p, j2) j1 ≥ j2
7 o(ϕ1,ϕ2, l1) o(ϕ1,ϕ2, l2) l1 ≤ l2
8 oe(ϕ1,ϕ2, l1) oe(ϕ1,ϕ2, l2) l1 = l2
9 sc(ϕ1,ϕ2, I1) sc(ϕ1,ϕ2, I2) I1 ⊇ I2
10 tmo(ϕ1,ϕ2,ϕ3,d1) tmo(ϕ1,ϕ2,ϕ3,d2) d1 ≥ d2

Table 3.2: Interval Refinement Rules for Time Constraints

Let the premise of the above implication hold and (τ, t) |= ip(ϕ1, p, j2) for some τ ∈ ~C and t ∈ T.
Then, holds

(τ, t) |= ip(ϕ1, p, j2)
⇔ (∗ definition of ip ∗)

(τ, t) |= �
{
τ | |sat(ϕ1, τ,φ(τ))| ∈ [max{0,

⌊#τ−2 j2
p

⌋
},
⌈ #τ+2 j2

p

⌉
]
}↓

⇔ (∗ definition of �, semantics of �(.), .↓ ∗)
∀t′ ≤ t : τ↓t′ ∈

{
τ | |sat(ϕ1, τ,φ(τ))| ∈ [max{0,

⌊#τ−2 j2
p

⌋
},
⌈ #τ+2 j2

p

⌉
]
}

Further on, due to the premise hold⌊
#τ−2 j2

p

⌋
≤

⌊
#τ−2 j1

p

⌋
and

⌈
#τ+ 2 j2

p

⌉
≥

⌈
#τ+ 2 j1

p

⌉
,

and thus,

[max{0,
⌊
#τ−2 j2

p

⌋
},

⌈
#τ+ 2 j2

p

⌉
] ⊆ [max{0,

⌊
#τ−2 j1

p

⌋
},

⌈
#τ+ 2 j1

p

⌉
].

By this, the set-comprehension condition of the ip(ϕ1, p, j1)-constraint is weaker and we can
conclude that (τ, t) |= ip(ϕ1, p, j1). �

During refinement of contexts the number of times a requirement must be fulfilled decreases.
By this, the number of different specifications which fulfill a given requirement in some context
is increased by context refinement. The relation between the refinement of a time requirement
and its fulfillment by a specification is reciprocal: the specification fulfills a refined requirement
if it fulfills a more abstract one, i.e., the number of specifications which fulfill a requirement is
greater then the number of specifications fulfilling one of its refinements. These relationships
between refinements of specifications, contexts, and time requirements are captured formally by
the following proposition.

58



3.1. QUALITY AND CONFORMANCE ASSURANCE DURING DEVELOPMENT

Proposition 3.3 (Property preservation during property/context refinement). Given a specifi-
cation Spec ⊆ ~Cκ, two requirements r0,r1 ⊆ ~C × T such that r1 r0 and a pair of contexts
C0,C1 ⊆ ~Cκ × [T∞] such that C1 � C0. Then,

Spec |=C0 r1⇒ Spec |=C1 r0.

Proof. Due to the refinement relation between C0 and C1 for every (τ, I) ∈ C1 there is a (τ,J) ∈
C0 such that I ⊆ J. Thus, by applying Lemma 3.1 to the definition of the |=(.)-relation we are
done. �

The above proposition provides us conditions under which we can modify given time require-
ments or derive further time requirements so that they remain satisfied by the specification.
Proposition 3.2 gives us a mechanism to perform such transformations and derivations on our
low-level time requirements. A number of useful transformation and derivation steps are de-
scribed in Sections 3.1.2 and 3.1.3.

We are now able to state formally, when a requirement/context pair refines another one respect-
ing a given specification.

Corollary 3.4 (Refinement invariance re context composition). Given four requirements
r1,r′1,r2,r′2 ⊆ ~C ×T, and four contexts, C1,C

′
1,C2,C

′
2 ⊆

~Cκ × [T∞]. Then, provided r′i ri and
C′i � Ci for all i ∈ {1,2}, the following holds for any specification Spec ⊆ ~Cκ(

(Spec |=C1 r′1)∧ (Spec |=C2 r′2)
)
⇒ Spec |=C′17C′2

r1∧ r2.

Proof. By Proposition 2.1 we obtain(
(Spec |=C1 r′1)∧ (Spec |=C2 r′2)

)
⇒ Spec |=C17C2 r′1∧ r′2.

Because (C′1 7C′2) � (C1 7C2) and (r′1∧ r′2) (r1∧ r2) we can apply Proposition 3.3. �

Remark 3.1 (Refinement for Operational Semantics). In Chapters 4 and 5 we are respectively
dealing with operational design and implementation models. For the formalism applied there,
the notion of refinement coincides with the simulation relation [Mil71] (cf. Definition A.6). The
same also applies to the temporal logic – if a specification SpecA, which simulates a specification
SpecB, satisfies a property, then so does SpecB (cf. the proof in [CGP99]). ◦

3.1.2 Consistency and Completeness

Consistency and completeness are primary quality attributes that specifications must exhibit. In
our settings the consistency can be represented as the existence of at least one element from
℘(~Cκ), which satisfies all requirements in their respective contexts. Formally, a given set R =

{(r1,C1), (r2,C2), . . . } defined over the channels from C can be characterized by the set of fulfilling
specifications:

Spec(R) def
= {Spec ⊆ ~Cκ | ∀(r,C) ∈ R : Spec |=C r}.

59



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

An obvious way to define R’s consistency is to demand that Spec(R) , ∅. However, Spec(R)
can contain specifications which trivially satisfy some requirements by disjointness to their re-
spective contexts; in other words, for any (r1,C1), (r2,C2) a specification Spec ∈ Spec(R) could
contain solely traces which are either in C1 or in C2 but not in both contexts. In order to rule out
this case, the consistency definition can be strengthened to ConsSpec(R) , ∅, where

ConsSpec(R) def
= Spec(R)∩{Spec ⊆ ~Cκ | ∀R′ ⊆ R : 7(r,C)∈R′C is non-trivial for Spec}.

The completeness is not an obvious issue: It is primary defined from the customer’s point
of view, i.e., the specification is complete if it addresses all features desired by the cus-
tomer [Poh07]. According to this definition the completeness can only be validated, not for-
mally formulated or verified. Other reasonable interpretation of the term “completeness” is the
absence of implicit requirements. A set of constraints can imply further constraints, which may
be of importance for subsequent development steps, e.g., design and implementation. Of course,
there may be infinitely many possible constraints and the question to which extent the require-
ments have to be made explicit is of methodological nature. An answer lies beyond the scope
of the present work, but we will provide a mathematical framework for the formal derivation of
some interesting types of constraints from existing specifications, with emphasis lying on time
behavior.

In general, if we prove for a set of requirements R that it implies some further requirement
r we can add (r,7(r,C)∈RC) to the set R, without changing the corresponding set of satisfying
specifications.

Sporadic Events

If no information about periodicity of an event is provided by the specification, the event can be
seen as sporadic. The only information, needed for its formal specification, is the minimal sep-
aration between consecutive event instances. This separation must be greater than zero, since,
otherwise, there is no possibility of distinguishing between the particular instances. Our assump-
tion here is that the resolution chosen for the time scale is sufficient to order the instances of any
event A totally in every observation. In fact for a dense-time domain, like non-negative reals, one
should either exclude the possibility of multiple event observations, or explicitly define a new
composite event, which captures a sequence of messages from A, in order to deal with arriving
request vectors, which result in series of responses. Our semantics explicitly facilitates the latter
solution, which we have already met in the formal model of the CPS study (cf. Section 2.4).

For a given specification Spec ⊆ ~Cκ we define the minimal inter-arrival time of some (sporadic)
event A as the length of the shortest distance between A’s occurrences. Formally,

dA
def
= min{t2− t1 | t1 < t2∧τ ∈ Spec∧ (τ, t1) |= A∧ (τ, t2) |= A}.

Then, it holds per construction for an arbitrary context C

Spec |=C is(A, [dA,∞)).

60



3.1. QUALITY AND CONFORMANCE ASSURANCE DURING DEVELOPMENT

The same procedure can be lifted for the sets of specifications by calculating dA over all speci-
fications in the set. Then, by introducing (is(A, [dA,∞)),C) into the set of requirements does not
change the set of specifications they describe. Moreover, provided C combined with the other
contexts from requirements set R is non-trivial for all Spec ∈ Spec(R), the consistency of the
specification is preserved, i.e., ConsSpec(R) = ConsSpec(R∪{(is(A, [dA,∞)),C)}).

Period Propagation

The periodic behavior of the system formulated as an ip- or is-requirement on its outputs along
with a response time requirement can be propagated backwards to the input behavior, which has
to be guaranteed by the environment. This is also possible the other way around: for a given
frequency of an input event and a response time, to derive the expected period of the output.
However, in both cases an additional condition is needed, which states that the system cannot
produce outputs without corresponding inputs or ignore some inputs. The one-to-one correspon-
dence between inputs and outputs, as introduced in Section 2.3.1, is a feasible requirement for
the most systems, which often stays implicit in the specifications. Thus, in the following we
will work with ru-constraints (cf. Section 2.3.2). The following proposition states the formal
relationships between events, as discussed above.

Proposition 3.5 (Period propagation). Given events A1,A2 ∈ ℘(~C ×T) and a pair of intervals
I1, I2 ∈ [T∞] with glb I1 ≥ #I2, the following two properties hold

is(A1, I1)∧ ru(A1,A2, I2)⇒ is(A2, I3), (3.1a)

is(A2, I1)∧ ru(A1,A2, I2)⇒ is(A1, I3), (3.1b)

where I3 = [glb I1−#I2, lub I1 + #I2].

Proof. Here, we prove (3.1a); Property (3.1b) is symmetrical and its proof goes analogously.
Given two (infinite) sequences a1,a2, . . . ,b1,b2, . . . ∈ T such that for any i

• ai/bi is the point in time of the ith occurrence of A1/A2, respectively,
• according to the premise of the first implication, ai+1−ai ∈ I1 and bi−ai ∈ I2.

We show that the relation between any pair of successive occurrences of A2 belongs to I3, i.e.,
bi+1−bi ∈ I3 for any i. Let ni = glb Ii and xi = lub Ii for all i ∈ {1,2,3}, then both points from the
above result in the following inequality system

n1 ≤ ai+1−ai ≤ x1
n2 ≤ bi−ai ≤ x2
n2 ≤ bi+1−ai+1 ≤ x2

⇒ (∗ subtract the second line from the third ∗){
n1 ≤ ai+1−ai ≤ x1

n2− x2 ≤ bi+1−ai+1− (bi−ai) ≤ x2−n2
⇒ (∗ add the first line to the second ∗)

n2− x2 + n1 ≤ bi+1−bi ≤ x2−n2 + x1

⇔

n3 ≤ bi+1−bi ≤ x3 �

61



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

We note that in the case of exact time constraints for response times, the input and output periods
remain the same. Moreover, if the response time is bigger than the period, the order of responses
can change, i.e., in this case the sequence b1,b2, . . . is not monotonically increasing. As shown
by the next corollary, the same results can be obtained for periodic events.

Corollary 3.6 (Period propagation 2). Given events A1,A2 ∈ ℘(~C×T) and a pair of intervals
I1, I2 ∈ [T∞] with glb I1 ≥ #I2, the following two properties hold

ip(A1, I1)∧ ru(A1,A2, I2)⇒ ip(A2, I3), (3.2a)

ip(A2, I1)∧ ru(A1,A2, I2)⇒ ip(A1, I3), (3.2b)

where I3 = [glb I1−#I2, lub I1 + #I2].

Proof. We show the first property, the proof for the second one goes analogously. According to
definitions of is and ip it holds

ip(A1, I1) ≡ is(A1, I1)∧br(A1,A1, I1) and ip(A2, I3) ≡ is(A2, I3)∧br(A2,A2, I3).

Moreover, since I1 ⊆ I3 we can apply Lemma 3.2:

br(A1,A1, I1)⇒ br(A1,A1, I3).

Then, we prove Property (3.2a) using Proposition 3.5:

ip(A1, I1)∧ ru(A1,A2, I2)⇒ ip(A2, I3)
⇐ (∗ definitions of is, ip, predicate calculus ∗)(

is(A1, I1)∧ ru(A1,A2, I2)⇒ is(A2, I3)
)
∧

(
br(A1,A1, I1)⇒ br(A1,A1, I3)

)
⇔ (∗ Lemma 3.2, Proposition 3.5 ∗)

true �

A direct consequence of the both propositions from above is that the type of the period constraint
(periodic/sporadic) is preserved by the forward and backward propagation of input/output-event
periods by response-time requirements.

CPS Case Study (con’ed). In the previous chapter, in Section 2.4, we have met period and
response time requirements put on a sensor of the CPS system in the DMode:

(R3) The response time on the DScan-command must lie within [3,4.5] ms, and

(R4) the DScan-command is sent out every 15 ms.

Using the propagation proposition introduced above, we can deduce the period of the sensor
responses to the ECU, and add the following requirement to the CPS specification:

rR7
def
≡ ip(Aobj, [13.5,16.5]).

rR7 is embedded into the context CDScan.

62



3.1. QUALITY AND CONFORMANCE ASSURANCE DURING DEVELOPMENT

3.1.3 Decomposition

Time requirements are formulated for the visible behavior of the whole system. The user is
interested, for example, that a request to the system and its reaction to this request lie within a
certain time span. However, often, the answer on a request is the result of an interplay of several
(possibly distributed) components, the system is built of. Thus, the time constraint has somehow
to be broken down and distributed between the constituents of the system. Thereby, the original
constraint should not be violated.

Another topic of this section is decomposition of specifications in change-insensitive parts. This
type of decomposition is useful for bordering of verification and validation effort in a case of a
change in requirements.

Partitioning Response Time

Given a response requirement r(A1,A2, I), a system architecture, which can be seen as a directed
graph with components as nodes and channels as directed edges, we want to answer the question,
what is a valid partition of r over the component network.

For a response time requirement r(As,Ae, I), a compatible response chain of length n (1 < n) is
a conjunction of response requirements rc =

∧
i∈[1,n] ri such that for any pair ri and ri+1 (i < n)

holds:

ri ≡ r(Ai−1,Ai, Ii) and ri+1 ≡ r(Ai,Ai+1, Ii+1),

with

A0 = As, An = Ae, and I =
∑

i∈[1,n]

Ii.

By RCn(As,Ae, I) we denote the set of all possible chains of length n for r(As,Ae, I). For n = 1
we define RC1(As,Ae, I)

def
= {r(As,Ae, I)}.

Proposition 3.7 (Correctness of response time partition). For a response requirement
r(As,Ae, I), a context C, n ∈ N+, and any response chain rc ∈ RCn(As,Ae, I), holds for any
(τ, t) ∈ ~C×T

(τ, t) |=C

∧
r∈rc

r⇒ (τ, t) |=C r(As,Ae, I).

Proof. The case n = 1 is trivial. For 1 < n holds:

(τ, t) |=C

∧
r∈rc

r⇔ (τ, t) |=C r(As,A2, I1)∧

 ∧
1<i<n

r(Ai,Ai+1, Ii)

∧ r(An,Ae, In).

Then, the statement of the proposition follows immediately from the transitivity of response time
requirements. �

63



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

Remark 3.2 (Combining refinement and decomposition). Combined with the notion of re-
finement from Section 3.1.1 we can weaken the definition of response time chains and allow∑

i∈[1,n] Ii to be a subset of I. Then, every response time chain would refine the original response
time requirement. ◦

For contexts of a response time chain of length n must hold 7i∈[1,n]Ci = C. This can be achieved
by defining for every rk = r(Ak−1,Ak, Ik) (k ∈ [1,n])

Ck
def
= {(τ, I′) | (τ, I) ∈ C∧ I′ = I+

∑
i∈[1,k)

Ii}.

Then, the sets of satisfying specifications which contains (r(A1,A2, I),C) does not change if we
add the requirements from the response time chain to it.

Independent Requirements

Changes in requirement specification at different stages of development are a common challenge
in today’s practice of system development. The reasons for changes are manifold [Poh07]: First
of all, the stakeholders can change their mind concerning the problem that the system has to
solve. Second, the detected inconsistencies in the specification, either as the result of its analysis
or during subsequent development phases. A common source of the latter inconsistencies are
implicit technical constraints, which we have already discussed in Section 2.3.2 in the paragraphs
about BCET/WCET and latency on page 41, – in general, they cannot be fully considered during
the analysis phase.

While changing a particular requirement (or adding a new one), in order to omit an inconsistent
specification its consistency with the rest of requirements must be checked (again). In order to
bound the effort in this case, we introduce the notion of independent time constraints, whose
satisfaction by specifications is independent from each other.

We can identify two reasons of independence: the requirements must hold in disjoint contexts
and/or they constrain disjoint sets of channels. In order to identify which parts of a specification
are constrained by some time requirement we define the constraint scope scop(r,C)⊆C of a time
requirement r. Informally, a channel belongs to a scope of r if and only if r constraints the set
of possible valuations on this channel. Formally,

c ∈ scop(r,C)
def
⇔ {τ | τ |=C r} = ∅

∨∃τ :
{
τ′d{c} | (τ′dC\{c} = τdC\{c})∧ (τ′ |=C r)

}
(
−→
{c}.

Please note that by this definition, as expected, scop(tt,C) = ∅ and scop(ff,C) = C. It is important
to note, what kind of channels are declared out of scope by the scop-predicate: Compared with
syntactic filtering, tautologies, like P(τ.c)∨¬P(τ.c), do not come into scop(r,C). In the case of
implications, e.g., P(τ.c1)→ Q(τ.c2), both c1 and c2 are considered to be constrained by r. Now
we can define the independence formally.

64



3.1. QUALITY AND CONFORMANCE ASSURANCE DURING DEVELOPMENT

Definition 3.2 (Independence of time requirements). Given two requirement/context pairs
(r1,C1), (r2,C2) ⊆ (~C×T)× (~Cκ × [T∞]). Then, we say that (r1,C1) is independent (satisfiable)
from (r2,C2) if and only if

scop(r1,C1)∩ scop(r2,C2) = ∅ or C1 7C2 = ∅. ^

The notion of independence is symmetric. Using it we can ensure that, e.g., the procedure of in-
troducing a new constraint/context pair (r,C) into a set of specifications described by constraints
R = {(r1,C1), (r2,C2), . . . } must check the consistency between (r,C) and a subset of R, which
contains dependent constraints only. Then, provided both (r,C) and R are satisfiable, the set
R′ = R∪{(r,C)} is satisfiable too. In other words, R′ is consistent and thus, there exists a system,
which fulfills all constraints from R′. Such procedure can surely bound the overall effort. The
above considerations are formally underpinned by the following proposition.

Proposition 3.8 (Independence of satisfiability). Given two independent satisfiable require-
ment/context pairs (r1,C1), (r2,C2) ⊆ (~C×T)× (~Cκ × [T∞]), then

∃Spec ⊆ ~Cκ : (Spec , ∅)∧ (Spec |=C1 r1)∧ (Spec |=C2 r2).

Proof. We construct Spec as the intersection of the sets of traces satisfying r1/r2:

Spec def
=

⋂
i∈{1,2}

{τ ∈ ~Cκ | τ |=Ci ri}.

In order to show that Spec is not empty, we consider both conditions from definition of indepen-
dence:

• If scop(r1,C1)∩ scop(r2,C2) = ∅ then r1 and r2 constrain different channels. Further on, it
holds for all τ,τ′ ∈ ~C and i ∈ {1,2}

τ′dscop(ri,Ci) = τdscop(ri,Ci)⇒
(
τ |=Ci ri⇔ τ′ |=Ci ri

)
.

Thus, there exists a trace τ such that

∃τ′ : τdscop(r1,C1) = τ′dscop(r1,C1)∧τ
′ |=C1 r1,

and

∃τ′′ : τdscop(r2,C2) = τ′′dscop(r2,C2)∧τ
′′ |=C2 r2,

and τ is present in both intersected sets.

• If the contexts are disjoint, i.e., C1 7 C2 = ∅, there exists a trace τ, which satisfies r1 at
∪(τ,I)∈C1I and r2 at ∪(τ,I)∈C2I, since these sets are also disjoint. �

65



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

3.2 A Formal Model for System Specification

In the previous sections we were working directly on the semantic domain of reactive systems.
This view on the system as an unstructured set of predicates is surely justified at the early stages,
like analysis and documentation phases of requirements engineering. At that time only loose
collection of requirements is available. However, later on in the development process, as more
elaborate models of the system come into being, which structure and group the system func-
tionality by different artifacts, like components, features, or packages, it makes sense to assign
the time behavior to particular functional artifacts of these models [BJ05, Dam05]. This way it
becomes possible to distribute the time constraints as certain obligations on the time behavior of
particular artifacts, which have to be fulfilled by their respective implementations and, composed
together, are conform to the original overall time requirements.

In the context of the vision sketched above, here, we provide a mechanism which allows to
relate a time requirement and a component specification formally. In other words, we answer
the question, when a component satisfies a time requirement.

Section 3.2.1 introduces the system model of structured component specifications. It resem-
bles the idea of the FOCUS framework [Bro97, BS01a] in the settings of the domain of timed
traces. Based on this system model we introduce in Section 3.2.2 composition and refinement
of components. Finally, Section 3.2.3 shows the transition from individual time requirements
to structured component specifications and relates the both notions of refinement: refinement of
time behavior specifications and components refinement.

3.2.1 System Model

In Section 2.2.3 we have defined a timed system, or timed component, which communicates
through directed typed channels from the set C sending and receiving messages from the set M∗

with time stamps from the time domain T as a member of ℘(~Cκ). We now provide mathematical
means to describe the syntactic and semantic views on the systems or components within this
system model. The essential novelty is the distinction and different treatment of input and output
channel types.

The black-box specification of a component p with channels C over message set M and time
domain T is a tuple p = (I,O,F) with C def

= I∪O and I∩O = ∅. Here, I, O determine the syntactic
interface of p and the total relation F defines the semantics of p. The syntactic interface consists
of a set of input channels I and a set of output channels O. Each channel c ∈ C has an assigned
type ty(c) ∈ ℘(M∗). ty is a partition of M∗ into different message types. Thus, a type is described
by a set of message sequences.

The black-box behavior of a component is described by the relation

F : ~Iκ 7→ (~Oκ 7→ B),

which maps complete input histories to the sets of complete output histories. Thus, we also
call F relational component specification or I/O behavior. When two histories ι ∈~I and o ∈ ~O

66



3.2. A FORMAL MODEL FOR SYSTEM SPECIFICATION

satisfy F, we write F(ι,o), or F.ι.o for short. F(ι) or F.ι stands for (a set of) all satisfying output
histories of ι, in other words, we abbreviate {o | F.ι.o} by F.ι. Several output behaviors from ~Oκ

that satisfy F.ι for some ι ∈~Iκ model non-determinism.

3.2.2 Causality, Composition, and Refinement

Here, we present the notions of causality, composition, and refinement for the relational compo-
nent specifications from the previous section. The causality or time guardedness in the settings
of FOCUS refers in the first place to the relation between inputs and outputs. At every point
in time, it allows outputs to be dependent from previous inputs only. This asymmetry between
inputs and outputs is captured by the following definition.

Definition 3.3 (Time guardedness, strong causality). The relational component specification
F : ~Iκ 7→ (~Oκ 7→ B) is called time guarded or strong causal if

∃δ ∈ T+ : ∀t ∈ T, ι1, ι2 ∈~Iκ : ι1↓t = ι2↓t⇒ (F.ι1)↓t+δ = (F.ι2)↓t+δ. ^

The consequence of time guardedness is that the relation F is either always false or total, i.e.,
for any ι ∈~Iκ, there exists at least one o ∈ ~Oκ such that F.ι.o. In the following we deal with the
latter case only.

The composition is defined for compatible relational component specifications only. It is well-
defined in the sense that it yields a relational component specification again [BS01a]. The no-
tions of compatibility and composition are introduced next.

Definition 3.4 (Compatibility and composition of timed components). Given two subsystems
p1 = (I1,O1,F1) and p2 = (I2,O2,F2) with the corresponding channel type mappings tyi : (Ii ∪

Oi) 7→ ℘(M∗) for i ∈ {1,2}. Then, we call p1 and p2 compatible if and only if

• they do not share any input and output channels: I1∩ I2 = ∅ and O1∩O2 = ∅,
• the homonymous channels have the same type: ∀c ∈C : ty1(c) = ty2(c),

where C = (I1∪ I2)∩ (O1∪O2). The composition of two compatible systems is denoted by

p def
= p1⊗ p2 = (I,O,F1⊗F2).

The syntactical interface of p is

I def
= (I1∪ I2) \ (O1∪O2), O def

= (O1∪O2) \ (I1∪ I2).

The semantics of p is described by F1⊗F2 : I 7→ (O 7→ B) as follows

(F1⊗F2).(τdI).(τdO)
def
⇔ F1.(τdI1).(τdO1)∧F2.(τdI2).(τdO2). ^

The homonymous input/output channels disappear from the syntactical interface of the com-
posed system. In the description of the system I/O behavior F1 ⊗ F2 the affected channels are
existentially quantified.

Finally, we define the refinement relation between relational component specifications as the set
inclusion between outputs for every input.

67



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

Definition 3.5 (Property refinement). Given a pair of relational specifications F0,F1 : ~Iκ 7→
(~Oκ 7→ B). We say that F1 is a property refinement of F0, denoted by F1 F0 if and only if

∀ι ∈~Iκ,o ∈ ~Oκ : F1.ι.o⇒ F0.ι.o

holds. ^

We also write p1 p0 if p0 = (I,O,F0), p1 = (I,O,F1), and F1 F0. It is easy to see that
the refinement relation is transitive and reflexive. Please also note that, in general, refinement
as introduced above does not guarantee the preservation of time guardedness. However, in the
rest of this thesis we will be dealing with time guarded specifications only. In particular, we
expect the input totality of F1, i.e., that for all ι ∈~Iκ, F1.ι , ∅. If F1 is input total, then so is
F0. Finally, the composition operator ⊗ is monotonic with respect to the property refinement
relation [BS01a], i.e.,

(
(Fc

1 Fa
1)∧ (Fc

2 Fa
2)

)
⇒

(
(Fc

1⊗Fc
2) (Fa

1 ⊗Fa
2)

)
.

3.2.3 From Time Constraints to Component Specification

In the current section we formally relate a component as defined above and a time requirement,
i.e., we define when the component satisfies the requirement. Moreover, we define when a
change in time requirements produces a valid refinement step on the level of system components.
In Section 3.1 we have met a number of transformation and derivation rules for timed behavior
specifications. Given a time requirement/context pair (r,C) and a component p = (I,O,F) which
realizes (r,C) and provided r constraints channels from I only (scop(r,C) ⊆ I), we answer the
question, when a change of (r,C) is a valid refinement step from p’s perspective. In particular,
we formally show that the refinement of r, r1 r, is not a valid refinement step for p, i.e., it
cannot be guaranteed that p satisfies (r1,C). In contrast, the abstraction of r can be satisfied by
a component p1 such that p1 p. Such results allow us to work directly with time constraints,
e.g., by applying methods from Section 3.1, and still to have the ability to evaluate the impact
on the overall component-based specification, i.e., to produce valid refinements of the whole
system model. This constitutes the time behavior as an independent but still integrated view on
the system.

The basic scheme for deriving a relational, time-guarded component specification out of an
untimed stream-based specification is described in [BK98]. It can be easily carried over to the
timed domain. The resulting component is described in the A/G style (assumption/guarantee, cf.
[Bro94, Pan90, MC81]), so that the liveness and safety specification parts of both the guarantee
of the component and assumptions about the environment appear as separate predicates. Along
the lines of [BK98], for a given timed property r ⊆ ~C×T and a context C⊆ ~Cκ×[T∞] we construct

68



3.2. A FORMAL MODEL FOR SYSTEM SPECIFICATION

the corresponding component p(r,C) = (I,O,F(r,C)) with disjoint I,O ⊆ C, as follows: For all
ι ∈~Iκ,o ∈ ~Oκ holds

F(r,C).ι.o
def
⇔

(
(∃τ ∈ ~C : τdI = ι∧τ |=C r)⇒ (∃τ ∈ ~C : τdI = ι∧τdO = o∧τ |=C r)

)
∧

(
∀t ∈ T : ∃δ ∈ T :

(∃τ ∈ ~C : ι↓t = (τdI)↓t ∧τ |=C r)

⇒ (∃τ ∈ ~C : ι↓t = (τdI)↓t ∧o↓t+δ = (τdO)↓t+δ∧τ |=C r)
)
.

The interpretation of the first conjunct is that a component has to fulfill a time requirement only
for those traces, in which the valuation of input channels of F(r,C) can be satisfied by (r,C).
Since time guarded components do not control their inputs1, F(r,C) is not responsible for unsat-
isfiable input valuations. The second conjunct says that every prefix, which has a continuation
satisfying (r,C), should also have a continuation, which satisfies F(r,C). By this, the second
conjunct treats also behaviors, not captured by the first one, namely traces, which satisfy the
requirement only up to a certain finite point in time. On its part the second conjunct is too weak
for full (i.e., infinite) traces satisfying (r,C), in these cases the first conjunct applies.

Then, a relational component specification F fulfills a time requirement r in context C, denoted
by F |=C r if and only if

F |=C r
def
⇔ F F(r,C). (3.3)

By this, definition we immediately obtain property preservation during the property refinement.
This fact is captured by the following corollary.

Corollary 3.9 (|=(.)-relation monotony re property refinement). For any F1,F0 : ~Iκ 7→ (~Oκ 7→ B),
r ⊆ ~C×T and C ⊆ ~Cκ × [T∞]. Provided I,O ⊆C and I∩O = ∅, then

F0 |=C r∧F1 F0⇒ F1 |=C r.

Proof. Follows directly from the transitivity of refinement relation. �

There exist two ways to refine a specification written in A/G-style: The assumption can be
relaxed, and/or the guarantee can be strengthened. We express this intuition by defining the
following relation between requirement/context-pairs. It is defined relative to the directions
of the channels in I and O: The weakening of the component’s assumption corresponds to the
increase of the number of different satisfying valuations from~Iκ. The strengthening of guarantee,
corresponds to the reduction of satisfying valuations from ~Oκ, which were satisfiable in the
original requirement.

(r1,C1)
(I,O)
  (r0,C0)

def
⇔ {τdI | τ |=C1 r1} ⊇ {τdI | τ |=C0 r0}

∧∀ι ∈~Iκ : ι ∈ {τdI | τ |=C1 r0}

⇒ {τdO | τdI = ι∧τ |=C1 r1} ⊆ {τdO | τdI = ι∧τ |=C0 r0}.

1We do not allow self-loops, thus a component cannot guarantee anything about its own future inputs.

69



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

Please note that the
((.),(.))
  -relation can be both a refinement and an abstraction relation between a

pair of timed properties. It is easy to prove that
((.),(.))
  is reflexive and transitive. In the remainder

of this section, we study when the relation holds for our low-level requirements. The following

proposition shows the equivalence between the
((.),(.))
  -relation and the property refinement.

Proposition 3.10 (Relation between
((.),(.))
  and ). For any r1,r0 ⊆ ~C×T, C1,C0 ⊆ ~Cκ× [T∞], and

I,O ⊆C (I∩O = ∅):

(r1,C1)
(I,O)
  (r0,C0)⇔ F(r1,C1) F(r0,C0).

Proof. We note that for any r the definition of F(r,C) can be rewritten using the set comprehen-
sion as follows

F(r,C).ι.o⇔
(
ι ∈ {τdI | τ |= r}

)
⇒

(
o ∈ {τdO | τdI = ι∧τ |= r}

)
∧ ∀t ∈ T : ∃δ ∈ T :

(
ι|t ∈ {(τdI)|t | τ |= r}

)
⇒

(
o|t+δ ∈ {(τdO)|t+δ | (τdI)|t = ι|t ∧τ |= r}

)
for all ι ∈~Iκ,o ∈ ~Oκ. By this, F(r1,C1) F(r0,C0) if and only if the set in the premise of F(r1,C1)
is bigger, or the set in the conclusion of F(r1,C1) is smaller for valid input valuations then the
respective sets in the definition of F(r0,C0) (or both). By this, we immediately obtain implication
in both directions. �

We are now able to formulate the following result: If a component realizes some timed property

then it realizes all timed properties, which stand in a
((.),(.))
  -relation to it.

Corollary 3.11 (Satisfiability preservation re
((.),(.))
  -relation). For any F : ~Iκ 7→ (~Oκ 7→ B), r1,r0 ⊆

~C×T, C1,C0 ⊆ ~Cκ × [T∞], and I,O ⊆C (I∩O = ∅):

F |=C1 r1∧ (r1,C1)
(I,O)
  (r0,C0)⇒ F |=C0 r0.

Proof. Follows from Proposition 3.10 and the transitivity of the refinement relation. �

If we compare the above result with the refinement relations between low-level time require-

ments listed in Table 3.2 on page 58, we see that, e.g., provided the relation ip(A1, I1)
(I,O)
  ip(A1, I2)

between a pair of inter-arrival time requirements holds, if I2 ⊆ I1, then ip(A1, I1) ip(A1, I2) and
ip(A1, I1)f ip(A1, I2), otherwise. This corresponds to the intuition that a refinement of a compo-
nent is only allowed to realize more relaxed time requirements on its inputs and more stringent
ones on its outputs.

By Corollary 3.9 we know that the refinement of component specification preserves the satis-
faction of time properties. Corollary 3.11 guarantees that a change of time properties which

is faithful to the
((.),(.))
  -relation, preserves the satisfaction by component specification. In other

words, the time and functional aspects of the system behavior can evolve independently, pro-
vided certain verifiable conditions are not violated.

70



3.3. RELATED WORK

3.3 Related Work

Below we compare our contributions with related approaches concerning the two main topics of
the present chapter.

Analysis of Real-Time Requirements

To our knowledge there is not much work on the systematized and formally-founded defect
detection for the real-time behavior on the level of requirements.

As a classical precursor to the formal analysis methods from Section 3.1, in [JLHM91] a set of
criteria is defined to help find errors in software requirements specifications. Based on these cri-
teria, analysis procedures for a state-machine-based modeling language are defined. Using this
language analytical models of real-time process-control software requirements can be described
formally. The criteria and methods from [JLHM91] are rather specific to the domain of process
control and to the applied automata-based formalism.

The same critique also applies to the consistency checks supported by the SCR* tool set (cf.
[HBGL95] as well as Section 2.5 for the description of SCR*). Moreover, these checks are able
to demonstrate that a SCR specification is well-formed, but cannot be used to derive further
requirements.

In the formal-methods community various verification techniques for real-time behavior, for-
malized using quantitative temporal logic, are proposed. They reach from model-checking al-
gorithms to deductive systems (cf. [BMN00] for an overview). Deductive systems offer a set of
axioms and deduction rules. Given a set of propositions, it is possible to check by the use of
deduction rules whether other propositions are a logical consequence of the former set. These
systems are usually purely syntax-deductive. On the one hand, this fact easies their computer-
supported application; on the other hand, they operate with syntactical constructs of the logic
and thus are too low-level compared with the derivation rules presented here.

From Unstructured to Structured Specifications

The transition from unstructured to structured specifications within the (untimed) FOCUS for-
malism is treated in [BK98]. There, unstructured specifications are represented by interaction
interfaces. Similarly to the notion of specification from Section 2.3.4, an interaction interface
describes the mutual interaction between two or more components by a number of allowed val-
uations of a channel set by infinite message streams (cf. Definitions in Section 2.1). The authors
provide a transition procedure from interaction interfaces to untimed FOCUS components. This
procedure was adapted for our trace-based semantics in Section 3.2.3. However, the approach
of [BK98] pursues a pure top-down view on the system development and thus, does not consider
the evolution of the unstructured specification in parallel with structured ones but rather treats it
as an intermediate disposable product on the way to the component-based (structured) specifica-
tion. By contrast, we believe that the unstructured specification and especially the unstructured

71



CHAPTER 3. ANALYSIS OF TIME CONSTRAINTS

timed behavior specification is an independent artifact of the development and has to be aligned
to and compared with different (structured) solutions created during the successive development
steps. Thus, we relate refinement operators of unstructured and structured specifications at the
end of Section 3.2.3.

3.4 Summary

In the current chapter, we have enriched the specification framework from Chapter 2 by formally
founded analysis and transformation methods with the goal to involve the models created using
our denotational formalism into quality- and conformance-assurance activities carried out during
development.

We see the application areas of the proposed framework in the analysis phases of requirements
engineering, design, implementation, and deployment of reactive real-time systems. The devel-
opment during the requirements engineering usually begins with a collection of requirements,
the system should realize. These requirements, grouped by use cases, build the basis of an un-
structured timed behavior specification. Modeled within our framework, this specification can
be analyzed with respect to its consistency and completeness.

During the subsequent development steps different (mostly operational) component- or function-
based models of the system under construction arise. The corresponding denotational analytical
models can be checked for fulfillment of the previously developed unstructured or structured
time specification. For this purpose in the next chapter, we will map an operational design
formalism to the semantic domain of real-time systems from Section 2.2.3 (cf. Section 4.1.3 and
also [BP99]). Then, the fulfillment can be shown by proving the refinement relation between
design and specification models.

Moreover, we presented methods for the distribution of time requirements over particular com-
ponents of design, or implementation models in a consistent manner. By this, more detailed
structured timed behavior specifications arise. Thus, during the deployment, where the actual
time behavior of the realized system can be estimated with a higher degree of confidence, the
time behavior obligations of single components or functions can be discharged by their im-
plementations. Provided this was accomplished successfully, the overall time behavior of the
system is provably fulfilled by the overall implementation. Otherwise, these exist two options:
either another partition of time requirements exists, which is fulfilled by the particular time be-
haviors, or the time specification is missed by the implementation. Both results can be produced
using the presented framework, its decomposition theorems, and refinement relation.

72



4
From Application Logic to Task Model

In this chapter we provide an automata-based model, which allows us to describe systems in an
operational style. The model is instantiated for the semantics of the CASE tool called AutoF
and for its novel extension called AutoF Task Model (AFTM). AFTM is more appropriate
for schedulability analysis as well as for subsequent deployment, which is the topic of Chapter 5.
The relationship between AutoF and AFTM models regrading property preservation is also
covered by the current chapter.

Contents
4.1 Operational Semantics for Reactive Systems . . . . . . . . . . . . . . . . 76
4.2 Modeling Application Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Clustering Application Logic . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 From AutoF to AFTM . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

73



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

I   we have given a formal characterization when certain manipulations on
the model result in a valid refinement step. The topic of this chapter as well as of Chapter 5

is to present a constructive transformation approach, which provably preserves properties of the
system. The approach includes transition from pure application logic to function clusters, which
group the functions of the application logic and wrap them, so that their subsequent distribution
over time and space (i.e., deployment) does not change the overall application behavior. We
discuss the property preservation of the clustering process at the end of the current chapter and
the property preservation during deployment – in Chapter 5.

Using our approach models of application logic of distributed reactive real-time systems can
be created independently from their deployment platform. Afterwards, they can be clustered
to tasks, distributed and deployed onto a network of computation nodes in a way which prov-
ably preserves the original behavior of the application logic on a platform-independent level.
Thereby, our main design directive was to provide the maximum amount of flexibility to the
system engineers using our approach. This includes the flexible mapping of application logic
components to tasks, consideration of established OS-, middle-ware- and bus-protocol-standards
as deployment platform, and the flexibility in the distribution of tasks over nodes and schedule
slots. Technically this is realized by formulating a number of constraints which have to be sat-
isfied by clustering and deployment solutions. If this is the case, the property preservation is
guaranteed. These constraints can be checked automatically for any solution created by the sys-
tem engineer. In the next paragraphs we discuss the relevance of our approach to the practice of
embedded systems design.

The separation of application logic and its technical realization is a promising approach pursued
by umpteen emerging approaches, like AUTOSAR1 [HSF+04], and CASE-tools, like StateM-
ate2 [HLN+90] or Rose-RT3. To the benefits of such separation belongs the improved porta-
bility of the models. This is an important quality attribute for embedded software, since the
heterogeneity in the domain of embedded hardware controllers is rather high and their innova-
tion cycles are rather short. Another motivating factor is the great number of different com-
munication protocols, like FlexRay [Fle04], CAN [ISO94], TTCan4 [FMHH01], ByteFlight5,
TTP/C6 [KG94], MOST7, etc., designed for the inter-node communication in the embedded
systems domain. Thus, the independence respective changes in the technical infrastructure, fa-
cilitates the reuse of the application logic. Moreover, the abstraction from technical details of the
system provides a more concise and clear view on the system logic, and partitions the state space
of the system into logical and technical parts. This allows the application of compositional ver-
ification techniques and makes the formal verification of industrial-size systems by the modern
state-of-the-art methods, like model checking, SAT-solving, or theorem proving more feasible.
Finally, the correctness proofs for a certain platform can be reused for the overall correctness

1see http://www.autosar.de (20.06.2008)
2see http://modeling.telelogic.com/modeling/products/statemate (20.06.2008)
3see http://www-01.ibm.com/software/rational (20.06.2008)
4see http://www.ttcan.com (20.06.2008)
5see http://www.byteflight.com (20.06.2008)
6see http://www.vmars.tuwien.ac.at/projects/ttp/ttpc.html (20.06.2008)
7see http://www.mostnet.de (20.06.2008)

74

http://www.autosar.de
http://modeling.telelogic.com/modeling/products/statemate
http://www-01.ibm.com/software/rational
http://www.ttcan.com
http://www.byteflight.com
http://www.vmars.tuwien.ac.at/projects/ttp/ttpc.html
http://www.mostnet.de


of several systems, whose application logic has to be deployed on this platform. The same also
applies for a particular application logic with different platforms as deployment target.

The defiances of the separation approach constitute the low budgets for available computation re-
sources, like RAM, PROM, or CPU frequency. This is dictated by the will to bring the costs per
unit down, since in many domains the embedded systems are integrated into the mass-production
goods. The consequence of this are the code-optimizations which target to optimize the appli-
cation code for a specific platform. However, the increasing complexity and safety-criticality
of embedded systems from the domains, like automotive or avionics, performed a change in
the strategies of the enterprises in the last years [SZ06, Gri03, PBKS07]. The emerging stan-
dards for time-triggered OSes (OSEKtime [OSE01b]), time-triggered buses (FlexRay, TTP/C,
TTCan) as well as for middle-ware abstraction layers (AUTOSAR [HSF+04], MetaH [Hon98])
aim at reducing the complexity, by making the time behavior of the systems more predictable
and realizing the separation, which we described above. Inevitably this goes at the expense of
performance, but is a strongly needed trade-off in the face of exponentially growing amount of
software, e.g., in the automotive domain.

Contributions and Outline. In the present chapter, in Section 4.1, we provide the formal
foundation of an automata-based framework, which is suitable to formalize execution and com-
munication semantics of different CASE tool paradigms as well as of different technical plat-
forms. Within this framework, a system is modeled as a set of communicating Mealy machines.
The actual communication and computation semantics is incorporated into the composition op-
erator which, together with constituting machines, determines the overall system behavior. We
instantiate this framework for the semantics of a CASE tool called AutoF in Section 4.2 and
for the semantics of AutoF Task Model (AFTM), a novel extension of AutoF tailored
to facilitate deployment, in Section 4.3.

AutoF tool [HSE97] described in Section 4.2 is well suited for the component-based design
of reactive systems. Its formalization serves as a starting point for the subsequent transforma-
tions towards a deployed system. As an intermediate step on this way we introduce AFTM in
Section 4.3. It was realized on the basis of AutoF tool as described in [BGH+06]. AFTM
models consist of tasks, which group and adapt the components of the application logics mod-
eled in AutoF. AFTM was designed as an abstraction of application logic models, which
is adequate for both subsequent development activities according to our reference process from
Figure 1.1: schedulability analysis and deployment. As a rationale of this claim Section 4.3
contains the description and categorization of the main aspects and characteristics of scheduling
approaches and programmer’s models of deployment platforms.

Finally, Section 4.4 treats the property preservation during the transition from AutoF to
AFTM. There, we provide a special synthesis algorithm, which allows flexible distribution of
AutoF components over tasks: a task can cluster several components and one task step
can correspond to a finite run of these components. The correctness of the synthesis algorithm
is shown by proving a special simulation relation between AutoF components and AFTM
tasks.

75



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

4.1 Operational Semantics for Reactive Systems

We give the logical characterization of the operational-style description of the system behavior
using state transition systems (STS) adapted from [BP99] and [PP05]. After the definition of
the semantic domain in Section 4.1.1, we introduce the STS formalism in Section 4.1.2, and
map STSs to the denotational domain of real-time systems from Chapter 2 in Section 4.1.3.
Afterwards, the parallel composition and refinement of STSs are defined and their properties
are proved in 4.1.4 and 4.1.5, respectively. Finally, a variant of STS, which is more suitable to
describe technical systems is introduced in 4.1.6.

4.1.1 Variable Valuations

An STS works on a set of variables, which is disjoint partitioned into input, output and local
variable subsets. Each variable has a type and can be mapped to one value of this type. In every
step an STS changes the values of its local and output variables according to the values of its
input and local variables. The notion of a variable and its valuation is fixed by the following
definition.

Definition 4.1 (Variables and their valuations). A variable v is a symbolic name from the name-
space universe VAR. VAR′ is the universe of primed variable names, whereas VAR assumed to
contain unprimed names only, i.e., VAR∩VAR′ = ∅.

The type of a variable is a subset of the set of message sequences M∗, so it is described by all
permitted valuations of the variable (its valuation domain). The function ty(v) ∈ ℘(M∗) maps
every v ∈ VAR∪VAR′ to its type.

Given a variable set V ⊆ VAR the variable set valuation α : V 7→ M∗maps every variable name
from V to a value. The valuation α of the set V is called type correct if and only if

∀v ∈ V : α.v ∈ ty(v).

The set of all type correct valuations of a variable set V is denoted by Λ(V).

If v ∈ VAR is a variable, then priming yields a new variable v′ ∈ VAR′. The same applies for
sets of unprimed variables V ⊆ VAR: the set V ′ ⊆ VAR′ is built by adding a prime sign to every
variable name in V: V ′ def

= {v′ | v ∈ V}. For a valuation α over V, α′ stands for a valuation of V ′

such that
∀v ∈ V : α.v = α′.v′.

Analogously, we define the un-priming operation, which works in the opposite direction, i.e.,
maps its argument from VAR′ to VAR. ^

Given two not necessarily disjoint variable sets V,W ⊆ VAR∪VAR′, two type-correct valuations
α ∈Λ(V) and β ∈Λ(W), α and β agree on some common subset U ⊆ V ∩W, denoted by α U

= β if
they map every variable from U to the same value:

α
U
= β

def
⇔∀v ∈ U : α.v = β.v.

76



4.1. OPERATIONAL SEMANTICS FOR REACTIVE SYSTEMS

A natural extension compares sets of valuations: A U
=B if and only if

∀α ∈ A : ∃β ∈B : α U
= β and ∀β ∈B : ∃α ∈ A : α U

= β.

In the next section we will describe STSs by means of assertions. An assertion is a logical
formula Ψ defined over a set of free variables free.Ψ ⊆ VAR∪VAR′. A valuation α satisfies the
assertion Ψ if Ψ evaluates to true when all its free variables v ∈ free.Ψ are replaced by α.v: We
write α ` Ψ. If an assertion Ψ contains both, primed and unprimed variables, we write α,β′ ` Ψ

if it is satisfied by a pair of valuations for unprimed/primed variables from α/β′, respectively.
Alternatively, we also write α ` Ψ for α ∈ Λ(V ∪V ′).

4.1.2 State Transition Systems

We can now proceed to the definition of state transition systems. An STS over the message
set M is described by a 6-tuple S(M) def

= (I,O,L,I, δ,dε). By V def
= I ∪O∪ L we denote the set of

variables (V ⊆ VAR), which is built by mutual disjoint subsets of input (I), output (O) and local
(L) variables. The type system of V is defined over (sequences of) M. In the following discussion
we will omit the parameter M in the definitions of STSs if the message set is unimportant or clear
from the context. A state of the system is a type-correct valuation of V , i.e., an element from
Λ(V). I is an assertion characterizing the initial states of the system. δ is a set of transition
assertions and dε is a special complementing transition which makes STSs input-enabled. The
rest of this section gives a detailed description of the elements from S’s tuple and introduces
auxiliary functions and predicates which will be used for the reasoning about STSs in the rest of
this chapter as well as in Chapter 5.

I must be satisfiable by at least one valuation of V and it is allowed to constrain output and local
variables only, i.e., the set of possible initial inputs is not constrained by I. Formally,

∃α ∈ Λ(V) : α ` I and ∀α,β ∈ Λ(V) : α L∪O
= β⇒

(
α ` I⇔ β ` I

)
. (4.1)

Transitions of the system are contained in the finite set δ. Each transition is an assertion over
a subset of V ∪V ′, i.e., the free variables of any transition d ∈ δ must fulfill: free.d ⊆ V ∪V ′.
The unprimed variables describe the current system state, while the primed ones constrain the
valuations in the successor state. The variables from V ∪V ′, which are not in free.d are not
subject to any restrictions, i.e., they are permitted to have arbitrary (type-correct) valuations.

Every transition (including dε) is an assertion which fires depending on the inputs and on the
internal system state (values of local variables); and it is allowed to modify the local and output
variables only, i.e., for all d ∈ δ∪{dε}

∀α,β ∈ Λ(V ∪V ′) :
(
α

I∪L
= β∧α

L′∪O′
= β

)
⇒

(
(α ` d)⇔ (β ` d)

)
. (4.2)

Please note that since V and V ′ are disjoint, the transition domain Λ(V∪V ′) is the same as Λ(V)×
Λ(V ′). By Constraint (4.2) we disallow an STS to constrain its own future inputs, and enforce
the separation between the local state and the outputs. In this context we call the members of I
external variables and the members of L∪O controlled variables.

77



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

In a single transition step the system can process a finite sequence of inputs and produce a finite
sequence of outputs. A single transition assertions can comprise several successor states with
differently valuated controlled variables. By this, non-determinism can be modeled.

In order to be able to reason about STS transition steps and valuation sequences which they
produce we define the set Succ(α,δ) ⊆ Λ(V) which contains all successor valuations reachable
from the valuation α ∈ Λ(V) using the transitions from δ. Formally,

Succ(α,δ) def
= {β ∈ Λ(V) | ∃d ∈ δ : α,β′ ` d}.

If a transition d ∈ δ is enabled (can be fired) in some state α, we state that Succ(α, {d}) , ∅;
otherwise, this set is empty. As a natural extension of the above set, we lift its domain to sets of
valuations by defining

Succ(A, δ) def
=

⋃
α∈A

Succ(α,δ) for A ⊆ Λ(V).

The last member of the STS tuple is a special transition denoted by dε. It is called the idle-loop
transition or the idle loop for short. In the course of this chapter, we also emphasize the special
meaning of idle loops by referring to the members of δ using the term “non-idle transitions”.
Idle loop can be taken in any state if and only if no other transition is enabled. Formally,

∀α ∈ Λ(V) : Succ(α, {dε}) , ∅ ⇔ Succ(α,δ) = ∅. (4.3)

By this constraint STSs become input-enabled, i.e., they can react to any unforeseen input in a
predefined uniform manner. Typically dε should complement the input behavior of the STS and
do not alter its internal state (i.e., the valuation of variables from L). In other words, it should
offer the possibility to remain in any state of the STS for an arbitrary long time. We will meet
similar definitions for idle loops in different computational models, which are formalized in the
remainder of this thesis using the STS framework.

Remark 4.1 (A weaker definition of input-enabledness). An alternative approach to define
input-enabledness is to demand the existence of an enabled transition in any reachable valuation
state. However, this is not sufficient for the preservation of input-enabledness upon composi-
tion. ◦

We map the behavior of the STS S to the semantic domain from Section 4.1.1 – a subset of
Λ(V)×Λ(V) – by

{(α,β) ∈ Λ(V)×Λ(V) | α,β′ `
∨

d∈δ∪{dε}

d}.

The definition of idle loop (Constraint (4.3)) ensures that it is fired only if no regular transition
is enabled, i.e., no “useful” work can be done. We can now define the language described by an
STS.

Definition 4.2 (STS runs). The run of an STS S = (I,O,L,I, δ,dε) is an infinite sequence of timed
valuations ρ = 〈α0α1α2 . . . 〉, where

α0 ` I and ∀i ∈ N : αi+1 ∈ Succ(αi, δ∪{dε}).

78



4.1. OPERATIONAL SEMANTICS FOR REACTIVE SYSTEMS

The ith valuation in the run ρ (i ∈ N) is denoted by ρ(i) or ρ.i for short. The set of all runs of S

is denoted by 〈〈S〉〉. ^

We extend our notion of equality over a variable set ( (.)
=) for runs. A pair of runs ρ1 and ρ2

consisting of valuations over the sets V1 and V2, respectively coincide on a certain common
subset U ⊆ V1 ∩V2, denoted by ρ1

U
= ρ2, if and only if ∀i ∈ N : ρ1.i

U
= ρ2.i. For two sets of runs

R1 and R2, we define
(.)
⊆ and (.)

= as

R1
V
⊆ R2

def
= ∀ρ1 ∈ R1 : ∃ρ2 ∈ R2 : ρ1

V
= ρ2,

R1
V
= R2

def
= R1

V
⊆ R2∧R1

V
⊇ R2.

In order to improve the readability we will sometimes access the components of an STS S =

(I,O,L,I, δ,dε) by S.I, S.I, S.δ, etc. We will also refer to the set of its variables by S.V .

4.1.3 From Runs to Trace Semantics

STS offers means to realize the behavior reactive real-time systems. In this context an important
question arises if the realization is a valid refinement of the requirements specification. In order
to be able to answer this question, we relate the operational semantics of STSs to denotational-
style description of timed systems from Chapters 2 and 3. For any system run ρ ∈ 〈〈S〉〉 we can
easily construct a congruent timed trace τρ ∈

−−−→
I∪Oκ in the time domain of naturals by mapping

every valuation to its index number, i.e.,

∀c ∈ I∪O : τρ.c
def
=

{
(ρ.i(c), i) | i ∈ N

}
.

The following definitions generalize the transition from runs to traces for arbitrary time domains.
We allow arbitrary distribution of messages over the time line, provided it preserves the original
(untimed) order. The (finite) time span between adjacent messages within a timed trace is filled
with empty timed events. Thus, we need to distinguish between empty valuations within runs
(i.e., valuations which map all variables to 〈〉) and non-empty ones. For this purpose we define
the following auxiliary functions. is_ne(α,U) ∈ {0,1} returns 0 if the parameter valuation α ∈
Λ(V) contains empty valuations of variables from U ⊆ V and 1, otherwise. Formally,

∀α ∈ Λ(V),U ⊆ V : is_ne(α,U) def
=

1 if ∃v ∈ U : α.v , 〈〉,
0, o.w.

Next, analogous to the nth(τ, i)-function from Section 2.2.2 which returns the ith non-empty
timed event from the timed trace τ, we define the partial function ith : 〈〈S〉〉×N 7→ M∗ such that
ith(ρ, i) returns the ith non-empty valuation from ρ if exists. Formally,

∀ρ ∈ 〈〈S〉〉, i,n ∈ N : ith(ρ, i) = ρ.n
def
⇔ is_ne(ρ.n, I∪O) = 1∧ i =

∑
k∈[0,n]

is_ne(ρ.k, I∪O).

The ith non-empty valuation has the index n in which the number of non-empty valuations
occurred in the run so far is equal to i. By the next definition we characterize every STS by the
corresponding timed behavior specification.

79



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

Definition 4.3 (From runs to traces). Given the STS S = (I,O,L,I, δ,dε) and the time domain T,
the set of timed observations S permitted in T is defined as

PTS
def
=

{
τ ∈
−−−→
I∪Oκ | ∃ρ ∈ 〈〈S〉〉 : ∀i ∈ N : nth(τ, i) I∪O

= ith(ρ, i)
}
,

where the equality between an atomic observation A ∈
−→
C1

A and a variable valuation α ∈ Λ(C2)
over the given common identifier subset C ⊆C1∩C2 is defined as(

A C
= α

) def
=

(
∀c ∈C : A.c = α.c

)
. ^

By this definition we allow arbitrary but finite delays between state changes of automata. We
do not allow desynchronization of variable valuations, e.g., by the sequentialization of inputs
and/or outputs of the system. The reason is that we cannot guarantee offhand the preservation
of system behavior in this case. This is however a direct consequence of deployment of several
tasks on the same computation node: they are executed sequentially and the order they produce
their outputs and consume their inputs becomes linear. Section 4.4 and Chapter 5 are devoted to
this problem.

As a consequence of input-enabledness of STSs, PT
S

is a total relation in the sense that for every
input trace ι ∈~Iκ there exists a trace τ ∈ PT

S
such that ι = τdI . By this, we can construct the black-

box abstraction of the STS S = (I,O,L,I, δ,dε) in the time domain T by p(S,T) def
= (I,O,FT

S
) (cf.

Section 3.2.1), where

∀τ ∈
−−−→
I∪Oκ : FTS .(τdI).(τdO)

def
⇔ τ ∈ PTS.

Since, according to the STS semantics there is always a delay of at least one transition step
between an input and the corresponding output, p(S,T) is time guarded (cf. Definition 3.3).

4.1.4 Modeling Composite Systems with STS

The data exchange between STS automata is performed using homonymous input/output vari-
able pairs. These variable pairs are regarded as new local variables of the composed system.
By this, the communication between composed machines can be interpreted as information hid-
ing or existential quantification. The communication is not instantaneous, but delayed by one
transition step. This preserves the strict causality. The communication semantics is incorpo-
rated into the notion of composition, which is introduced next. First of all we fix the syntactical
compatibility of STS automata, then we define formally the composition of compatible STSs.

Definition 4.4 (Compatibility and composition of STS). A pair of STSs Si = (Ii,Oi,Li,Ii, δi,dεi )
with the corresponding variable type mappings tyi ⊆ Vi ×℘(M∗) for i ∈ {1,2} are compatible if
and only if

(1) they do not share any output or local variables,
(2) no automaton may modify the local variables and read inputs of the another one, and
(3) the homonymous variables have the same type.

80



4.1. OPERATIONAL SEMANTICS FOR REACTIVE SYSTEMS

Formally, must hold

V1∩V2 = (I1∪ I2)∩ (O1∪O2) and ∀v ∈ (V1∩V2) : ty1(v) = ty2(v).

Provided S1 and S2 are compatible, we denote their composition by S = S1 ‖ S2, where S
def
=

(I,O,L,I, δ,dε) is an STS with the syntactical interface

I def
= (I1∪ I2) \ (O1∪O2), O def

= (O1∪O2) \ (I1∪ I2), L def
= L1∪L2∪ (V1∩V2).

The semantics of S is given by

I
def
= I1∧ I2,

δ
def
= {d1∧d2 | d1 ∈ δ1∪{dε1}∧d2 ∈ δ2∪{dε2}} \ {(d

ε
1 ∧dε2)},

dε def
= dε1 ∧dε2. ^

S1

S2

(I1 ∪ I2) ∩ (O1 ∪O2)

I2 \ O1 O2 \ I1

I1 \ O2 O1 \ I2

Figure 4.1: Composition of STSs (S1 ‖S2)

Please note that compatible components are only allowed to share input/output variable pairs,
i.e., to communicate with each other (cf. Figure 4.1). The input/output pairs become local vari-
ables of the resulting composite automaton. The internal state of the composed STSs remains
encapsulated. Furthermore, the involved STSs may not modify the same output variables, or
read the same inputs. By the former fact we prevent the possible conflicts in the output valua-
tions already at the syntactical level. The latter restriction allows us to combine associativity of
the composition operator, which is shown below, with the possibility of information hiding.

Remark 4.2 (One-to-one vs. one-to-n vs. one-to-∗ communication). By allowing broadcast to
an arbitrary number of receivers, the interface of the composite system becomes a union of
input and output variables of all its subsystems. This contradicts to the modularity, which a
composition operator should exhibit: In order to support modular, compositional, and distributed
development of STS models the internal implementation details of composite systems, like the

81



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

data flow between their constituting subsystems, should be hidden from the outer-world behind
a well-defined interface.

The broadcast to a fixed number of receivers is a useful abbreviation of a fixed number of out-
put variables, which have the same valuations in every reachable system sate. This description
provides an indication of how the bounded broadcast can be implemented within the STS frame-
work. ◦

The conjunctions in the definition of the composite initial-state assertion and the transition set
imply that in the composite automaton S any initial state and any transition step are only allowed
if the valuations of homonymous variables of S1 and S2 (i.e., V1 ∩V2) coincide. If neither S1,
nor S2 can react to a certain combined input α ∈ Λ(V1∪V2), the idle-loop transition is fired.

The remainder of this section contains proofs of important properties of the introduced com-
position operator. First, we show that the composition of two compatible STSs yields an STS
again.

Proposition 4.1 (Well-definedness of composition). Given a pair of compatible STSs
S1 = (I1,O1,L1,I1, δ1,dε1) and S2 = (I2,O2,L2,I2, δ2,dε2), their composition S = S1 ‖ S2 =

(I,O,L,I, δ,dε) yields an STS again, i.e., its variable sets are disjoint and it fulfills Proper-
ties (4.1), (4.2) and (4.3) from Section 4.1.2.

Also, S has a non-empty set of behaviors: 〈〈S〉〉 , ∅.

Proof. Let V def
= I∪L∪O and Vi

def
= Ii∪Li∪Oi for i ∈ {1,2}.

• The disjointness of I, L, and O is obvious.

• The Property (4.1) demands the existence of at least one satisfying valuation and disallows
to constrain possible valuations of input variables by initial state assertion.

(1) Thus, the first property I has to fulfill is ∃α ∈ Λ(V) : α ` I. Since S1, S2 are valid
STSs, there exist some αi ∈Λ(Vi), which fulfill the respective Ii with i ∈ {1,2} and the
satisfaction of Ii does not depend on the valuation of the respective Ii sets. W.l.o.g.
we define α as a valuation, which satisfies α

L1∪O1
= α1 and α

L2∪O2
= α2. The valuations

of variables from I remain unconstrained. This definition is unambiguous, because
(L1∪O1)∩ (L2∪O2) = ∅ and (I1∪L1)∩ (I2∪L2) = ∅. By this,

α ` I1∧α ` I2 ⇔ α ` I1∧ I2 ⇔ α ` I.

(2) The second property of I is ∀α,β ∈ Λ(V) : α L∪O
= β ⇒

(
α ` I ⇔ β ` I

)
. Let α be

defined as in the previous point and the implication premise hold, i.e., α L∪O
= β. By

this, β is constrained on the same variables as α, and it holds β
L1∪O1
= α

L1∪O1
= α1 and

β
L2∪O2
= α

L2∪O2
= α2. Thus, we obtain (α ` I1∧ I2)⇔ (β ` I1∧ I2).

• Property (4.2) states that no transition in δ∪{dε} can choose its inputs or constrain previous
outputs

∀d ∈ δ∪{dε},α,β ∈ Λ(V ∪V ′) :
(
α

I∪L
= β∧α

L′∪O′
= β

)
⇒

(
(α ` d)⇔ (β ` d)

)
.

82



4.1. OPERATIONAL SEMANTICS FOR REACTIVE SYSTEMS

Assuming that α I∪L
= β and α L′∪O′

= β holds for some α,β ∈ Λ(V ∪V ′), we need to consider
two symmetrical cases. Thus, we will prove that provided there is some d ∈ δ∪{dε} such
that α ` d, then also β ` d. The proof of the other direction is analogous and thus omitted
here.

By definition of composition we need to show that there exist di ∈ δi∪{dεi } (i ∈ {1,2}) such
that β ` d1 ∧ d2, or equally that β ` d1 and β ` d2. Again, due to the symmetry of both
conjuncts, we will show only the first one, i.e., that β ` d1.

Let α1
V1∪V′1
= α and β1

V1∪V′1
= β, then β1

I1∪L1
= α1 and β1

L′1∪O′1
= α1, and the following property

holds: α1 ` d1 ⇔ β1 ` d1. The left-hand side of this logical equivalence is true, since the
transition d1, with α ` d1 ∧ d2 is in δ1 ∪ {dε1} and α1 fixes all variables from free.d1 the
same way, as α does. Thus, β1 ` d1. Since the relation between β1 and β is the same as
between α1 and α, by similar reasoning we obtain β ` d1, and we are done in this case. As
mentioned above, the other cases go analogously.

• The input-enabledness, expressed in Property (4.3) is proved by the following deduction
chain

∀α ∈ Λ(V) : Succ(α, {dε}) , ∅ ⇔ Succ(α,δ) = ∅

⇐ (∗ Definition 4.4, definition of Succ, predicate calculus ∗)
∀α ∈ Λ(V) :

(
Succ(α, {dε1}) , ∅∧Succ(α, {dε2}) , ∅

)
⇔ Succ(α,δ) = ∅

⇐ (∗ definition of Succ, predicate calculus ∗)
∀α1 ∈ Λ(V1),α2 ∈ Λ(V2) : α1

V1∩V2
= α2⇒

((
Succ(α1, {dε1}) , ∅∧Succ(α2, {dε2}) , ∅

)
⇔

(
Succ(α1, δ1) = ∅∧Succ(α2, δ2) = ∅

))
⇐ (∗ Property (4.3) for S1 and S2, predicate calculus ∗)

true

• Finally, the property that 〈〈S〉〉 is not empty immediately follows from the input-
enabledness of S, proved above. �

The next result guarantees the property preservation upon composition. The composition oper-
ator preserves the (subsets of) runs of its operands. This results delivers the formal foundation
behind the methodological meaning of component-based development: the behavior of an indi-
vidual component is not changed but rather constrained by the composition.

Proposition 4.2 (Language inclusion and composition). Given a pair of compatible STSs S1 =

(I1,O1,L1,I1, δ1,dε1) and S2 = (I2,O2,L2,I2, δ2,dε2), the following relations hold:

〈〈S1 ‖S2〉〉
V1
⊆ 〈〈S1〉〉 and 〈〈S1 ‖S2〉〉

V2
⊆ 〈〈S2〉〉,

where Vi
def
= Ii∪Li∪Oi for i ∈ {1,2}.

83



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

Proof. Let S1 ‖S2
def
= S = (I,O,L,I, δ,dε), with V def

= I∪L∪O. We will show that every ρ ∈ 〈〈S〉〉 is
also in 〈〈S1〉〉. The remaining case is symmetrical. In accordance with Definition 4.2 we need to
show that

ρ.0 ` I⇒ ρ.0 ` I1, (4.4a)

∀i ∈ N : ρ.(i + 1) ∈ Succ(ρ.i, δ∪{dε})

⇒∃β1 ∈ Succ(ρ.i, δ1∪{dε}) : ρ.(i + 1)
V1
= β1. (4.4b)

• Property (4.4a) trivially holds by the definition of composition of initial valuations: I⇒ I1.

• Due to the definition of STS and Proposition 4.1, both dε and dε1 are enabled if and only if
there are no enabled transitions in δ and δ1, respectively. Thus, we obtain two sub-goals
for Property (4.4b).

ρ.(i + 1) ∈ Succ(ρ.i, δ): In this case the property follows from the fact that every d ∈ δ has
the form d1∧d2 with di ∈ δi∪{dεi } (i ∈ {1,2}) and constrains more variables from V1
than d1 does, namely the variables from the set I1∩O2. Thus, α ` d⇒ α ` d1 holds
for any α ∈Λ(V∪V ′) and by expanding the definition of Succ in (4.4b) and replacing
β1 by ρ.(i + 1) we obtain

∃d ∈ δ : ρ.i,
(
ρ.(i + 1)

)′
` d⇒∃d1 ∈ δ1∪{dε1} : ρ.i,

(
ρ.(i + 1)

)′
` d1

⇔ (∗ predicate calculus ∗)
∀d ∈ δ : ∃d1 ∈ δ1∪{dε1} :

(
ρ.i,

(
ρ.(i + 1)

)′
` d⇒ ρ.i,

(
ρ.(i + 1)

)′
` d1

)
which is true.

ρ.i, (ρ.i + 1)′ ` dε: From to Definition 4.4 we can follow that if dε = dε1∧dε2 is enabled then
so is dε1. This proofs the Goal (4.4b) also for this case. �

The modularity in the development process of reactive systems using the STS formalism is
facilitated by the next results, which show the associativity and commutativity of the STS com-
position.

Corollary 4.3 (Properties of composition). The composition operator “‖” is commutative and
associative, i.e., for pairwise compatible STSs S1, S2 and S3 with V1∩V2∩V3 = ∅ holds

S1 ‖S2 = S2 ‖S1 and (S1 ‖S2) ‖S3 = S1 ‖ (S2 ‖S3).

Proof. Commutativity is obvious since STSs are treated symmetrically in the definition of com-
position.

The associativity of the syntactical interface follows from the fact that no “broadcast” is allowed
by the definition of compatibility and the additional condition V1∩V2∩V3 = ∅, i.e., no variable
can be read or written by more than one STS at the same time. By this, the interface of the com-
posite STS remains the same regardless of the composition order. Finally, the associativity of the
composite behavior definition follows from the fact that the set-theoretic and logical operations
used in that definition are associative and commutative.8 �

8The definition of δ in 4.4 can be reformulated as {d1∧d2 | d1 ∈ δ1∪{dε1}∧d2 ∈ δ2}∪{d1∧d2 | d1 ∈ δ1∧d2 ∈ δ2∪{dε2}}.

84



4.1. OPERATIONAL SEMANTICS FOR REACTIVE SYSTEMS

Finally, we show the equality between the composition of black-box and white-box behaviors of
the same STS automata. This result facilitates modular verification – every requirement satisfied
by an STS automaton remains satisfied in the composition. Modularity in the verification is
an important issue, since the modern verification techniques suffer under the infamous state-
explosion problem. Thus, a specification formalism, which allows to bound the verification
effort and guarantees the preservation of the proved properties is an important prerequisite for
the establishment of formal verification as a quality assurance technique of software engineering.

Proposition 4.4 (Black-box behavior and composition). Given a pair of compatible STSs S1
and S2 with at least one common variable and a time domain T, then for the corresponding
black-box abstractions of S1 and S2 and for the black-box abstraction of their STS composition
holds

FTS1‖S2
= FTS1

⊗FTS2
.

Proof. Let Si be defined as Si = (Ii,Oi,Li,Ii, δi,dεi ) with Vi = Ii ∪ Li ∪Oi (i ∈ {1,2}) such that
V1∩V2 , ∅. Let S1 ‖S2 = (I,O,L,I, δ,dε) with V = I ∪ L∪O be the STS composition of S1 and
S2. Finally, let the corresponding black-box abstractions of Si be p(Si,T) = (Ii,Oi,FTSi

) (i ∈ {1,2})
and the black-box abstraction of S1 ‖S2 – p(S1 ‖S2,T) = (I,O,FT

S1‖S2
). We show the proposition

by proving set inclusion in both directions.

“⊇”: From definition of the ⊗-operator (cf. Definition 3.4) we know that every trace from FT
S1
⊗

FT
S2

restricted to the respective variable set is also contained in FT
S1

and in FT
S2

. Formally,

for all τ ∈
−−−→
I∪Oκ if (FT

S1
⊗FT

S2
).(τdI).(τdO), then FT

S1
.(τdI1).(τdO1) and FT

S2
.(τdI2).(τdO2) and,

thus, τ ∈ PT
S1

and τ ∈ PT
S2

. Moreover, due to Definition 4.3 there exist a pair of runs ρ1

and ρ2 from 〈〈S1〉〉 and 〈〈S2〉〉, respectively such that for all i ∈N, nth(τ, i)
I1∪O1
= ith(ρ1, i) and

nth(τ, i)
I2∪O2
= ith(ρ2, i). Thus, in every point ρ1 and ρ2 coincide on the valuations of shared

variables (since STSs are compatible, their common variables build the set (I1∪ I2)∩(O1∪

O2)). Due to the assumption that there exists at least one common variable, we conclude
that for all i ∈ N, ith(ρ1, i)

V1∩V2
= ith(ρ2, i). By this, due to the definition of ‖-composition,

there exists ρ ∈ 〈〈S1 ‖S2〉〉, with ρ
I1∪O1
= ρ1 and ρ

I2∪O2
= ρ2. Finally, we obtain τ ∈ PT

S1‖S2
and,

thus, FT
S1‖S2

.(τdI).(τdO).

“⊆”: For every trace τ ∈
−−−→
I∪Oκ such that FT

S1‖S2
.(τdI).(τdO) and, consequently, τ ∈ PT

S1‖S2
, there

exist a run ρ ∈ 〈〈S1 ‖S2〉〉 such that for all i ∈ N, nth(τ, i) I∪O
= ith(ρ, i). From Proposition 4.2

we know that a corresponding restriction of ρ to V1/V2 belongs to 〈〈S1〉〉/〈〈S2〉〉, respec-
tively. Let ρ1 ∈ 〈〈S1〉〉 and ρ2 ∈ 〈〈S2〉〉 be these restrictions, then there exist corresponding
traces τ1 ∈ P

T
S1

and τ2 ∈ P
T
S2

such that for all i ∈ N, nth(τ1, i)
I1∪O1
= ith(ρ1, i)

I1∪O1
= ith(ρ, i) and

nth(τ2, i)
I2∪O2
= ith(ρ2, i)

I2∪O2
= ith(ρ, i). By this, hold FT

S1
.(τdI1).(τdO1) and FT

S2
.(τdI2).(τdO2) and

thus, in accordance with Definition 3.4, (FT
S1
⊗FT

S2
).(τdI).(τdO). �

Remark 4.3 (Composition and strict causality). In order to check the fulfillment of time require-
ments by STS automata, we can map the automata to their respective behaviors within the trace
domain and use the results from Section 3.2.3 for the subsequent verification. All those results

85



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

have the strict causality of components as a prerequisite (cf. Definition 3.3). As argued in Sec-
tion 4.1.3 due to Property (4.2) timed behavior specifications which represent single STSs have
this property. It is easy to show that the STS composition operator preserves the strict causal-
ity, i.e., given a pair of compatible STSs S1 and S2 and a time domain T, then FT

S1‖S2
is strict

causal. This follows directly from the well-definedness of the STS composition operator (shown
by Proposition 4.1). ◦

4.1.5 Refinement

In line with the denotational framework from Chapters 2 and 3 we model valid development steps
in a top-down manner by ensuring the refinement relation between their respective outcomes.
Using the notion of runs from Section 4.1.3 we can define the refinement relation between STSs
as a language inclusion.

Definition 4.5 (Refinement of STSs). An STS S1 is a refinement of an STS S0, denoted by
S1 S0 if and only if

V0 ⊆ V1 and 〈〈S1〉〉
V0
⊆ 〈〈S0〉〉,

where V0/V1 is a variable set of S0/S1, respectively. ^

By the above definition we allow the refinement to have a bigger state space than the corre-
sponding abstraction. However, the possible runs on common variables are more restricted by
the refinement. We can interpret this by stating that any variable v from V1 \V0 is not constrained
by S0, i.e., in every state of S0 it is allowed to have an arbitrary type-correct valuation. Thus, we
obtain a subset relation as the definition of refinement. By this, the reflexivity and transitivity of
STS refinement are obvious. Further on, we trivially obtain the following relationship between
refinement and composition.

Corollary 4.5 (Refinement monotony re composition). Given two STS pairs (Sa
1,S

c
1) and (Sa

2,S
c
2)

such that Sc
1 and Sc

2 are compatible and Sa
i fSc

i for i ∈ {1,2}. Then,

(Sa
1 ‖S

a
2)f (Sc

1 ‖S
c
2).

Proof. Due to Definition 4.5, Sa
1 and Sa

2 are compatible either. Then, the property follows from
Definitions 4.4, 4.5 and Proposition 4.2. �

From the methodological point of view the compositionality of refinement is very impor-
tant [Bro98], since it enables to independently refine the individual components without affecting
the satisfaction of global properties by the whole system.

In the rest of this thesis we show the property preservation by proving simulation relations. A
simulation relation between STSs is defined in A.6. We have already argued in Section 3.1.1
that the definitions of refinement and simulation relation coincide for operational formalisms,

86



4.1. OPERATIONAL SEMANTICS FOR REACTIVE SYSTEMS

like STS. In fact, for two STSs S0 and S1 such that S1 S0, holds I1 ⇒ I0 and for all states
α ∈ Λ(V1) reachable in S1

Succ(α,δ1)
V0
⊆ Succ(α,δ0).

Thus, we can easily show that S0 simulates S1 by constructing a corresponding simulation rela-
tion. Vice versa, if S0 simulates S1 then S1 refines S0.

4.1.6 STS for Technical Systems

The concepts, like the encapsulation of the internal state, the strong causality (i.e., a unit-length
delay in the synchronization between outputs and inputs), as well as the parallel execution are
well-established and useful abstractions for the design and the implementation of the reactive
distributed systems. On the other hand, the actual application code is deployed onto a technical
infrastructure, which uses quite different execution (scheduling) policies and communication
mechanisms. In general, it can directly manipulate the “internal” state of the application, it
can exhibit behaviors, in which the sending and receiving applications stay desynchronized for
several system steps and it cannot always execute several applications in parallel. In other words,
the composition semantics do not match. Moreover, the composition is partly dictated by the
deployed components themselves: The components get assigned priorities or fixed activation
times and by this parametrize their composition. Thus, this type of composition is in general not
associative. The current section is devoted to the problem how technical systems can be modeled
using the STS framework.

Scheduled STS

The task of proving property preservation between a model, e.g., an instance of a certain de-
sign paradigm and its realization (a technical system parametrized with the application code)
demands for a formal representation of both composition paradigms within the same formal
framework. In the present thesis STS is our formalism of choice. We define a scheduled STS sys-
tem of n application automata S1, . . . ,Sn by an STS Sch

def
= (I,O,L,I, δch,dε). Let CI

def
= ∪i∈[1,n]Ii,

CO
def
= ∪i∈[1,n]Oi, CL

def
= ∪i∈[1,n]Li and CV

def
= CI ∪CL ∪CO. Then, the following constraints must

hold for Sch:

Sch.V ⊇CV , Sch.O∩ (CI \CO) = ∅, Sch.I∩ (CO \CI) = ∅.

The first formula states that the state space of Sch cannot downsize. Both remaining constraints
disallow variables to change their “direction”. The scheduled automaton itself is allowed to have
its own local state space as well as additional input and output variables. It is also allowed to
hide the input and output variables of its constituents in its local state space as well as to make
the local variables accessible by the environment. As argued above, in general we cannot state
anything about the relation between the behavior of system constituents and the overall behavior
of the composed system. The same is true for the initial states. However, we will define a
number of scheduled STS systems, which respect the original transition functions, they are built
of.

87



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

The STSs S1, . . . ,Sn need not to be (pairwise) compatible, nor the communication between them
has to happen delayed by exactly one system step. The regulation of possible write conflicts,
casting of mismatching variable types, artificially disjoining of overlapping state spaces, and the
maintenance of discontinued data-flow links is left to the semantics of their scheduled composi-
tion. However, type casts lie beyond the scope of the presented work, thus in the rest of the thesis
we will combine STSs which are at least type compatible. A pair of STSs is type compatible if
and only if they fulfill the third property of the compatibility notion from Definition 4.4, i.e., all
homonymous variable pairs have the same type.

Describing Complex Technical Systems

Next we provide renaming as a mechanism, which allows to decouple state spaces as well as
certain data-flow dependencies. The assertion Ψ[w/v] is generated out of the assertion Ψ by
replacing the variables v,v′ ∈ free.Ψ by the variables w and w′, respectively. The variables must
have the same type. For a given STS S = (I,O,L,I, δ,dε), a variable v ∈ V def

= I ∪ L∪O, and the
equally typed new variable w (i.e., ty(v) = ty(w) and w < V) we define the STS

S[w/v] def
= (I,O,L,I[w/v], δ,dε[w/v])

with V def
= I∪O∪L as

∀X ∈ {I,L,O} : X def
=

(X \ {v})∪{w} if v ∈ X,
X, o.w.,

δ
def
= {d[w/v] | d ∈ δ}.

We lift the renaming operations for the sets of variables for assertions and STSs by Ψ[vw/v]v∈U

and S[vw/v]v∈U , respectively. The operations are defined as the subsequent renaming of every
v ∈ U by vw. They are defined only if U ⊆ V , {vw | v ∈ U}∩V = ∅, and ∀v ∈ U : ty(v) = ty(vw).

The behavior of technical systems is rather complex. In order to make their formalization by
scheduled STSs more comprehensible, we will split the description of their transition steps in
several transition segments. For this purpose we define compound transitions. A compound
transition has the form d1 ◦d2, where d1 and d2 are assertions over a variable set V def

= I ] L]O
and their combination is defined as

∀α,β ∈ Λ(V) : α,β′ ` d1 ◦d2
def
⇔∃γ ∈ Λ(V) : (α,γ′ ` d1)∧ (γ,β′ ` d2). (4.5)

Please note that d1 is allowed to constrain primed input variables and d2 unprimed output vari-
ables. Their combination can still satisfy Condition (4.2), since the primed variables of d1 and
the unprimed variables of d2 describe the intermediate states of compound transition.

Two Simple Scheduled STS Models

In the remainder of this section we present two simple scheduled systems for n pairwise com-
patible STS automata S1, . . . ,Sn without broadcast variables, i.e., for all i, j,k ∈ [1,n] holds

88



4.2. MODELING APPLICATION LOGIC

Vi ∩ V j ∩ Vk = ∅. Let S = S1 ‖ · · · ‖ Sn
def
= (I,O,L,I, δ,dε) be their parallel composition. Then,

the STS
Schpar def

= S

corresponds to the parallel composition. This means that the parallel composition form Sec-
tion 4.1.4 is a special case of the scheduled one. Further on, the STS

Schint def
=

(
I,O,L,I, δch,dε

)
with

δch
def
=

⋃
i∈[1,n]

{
di∧

∧
j∈[1,n]\{i}

dεj | di ∈ δi
}

expresses the interleaved composition semantics, where in any state exactly one component is
allowed to make a non-idle transition.

To summarize the current section, we defined a formal framework, which allows logical charac-
terization of the operational-style description of system behavior. In the remainder of this thesis
this framework will be instantiated several times with different modeling paradigms, which come
into use at different development phases of reactive systems. The common mathematical foun-
dation given by the STS framework allows us to show refinement relations between different
modeling paradigms in form of simulation theorems.

4.2 Modeling Application Logic

In the line with the authors of [SPHP02a] we believe that

“the model-based development is a paradigm for system development that besides
the use of (graphical) domain-specific languages includes explicit and operational
descriptions of the relevant entities that occur during development. . . ”

However, we add a substantial amendment to this definition, namely that aspects of the system,
which cannot be modeled by the operational semantics in certain development phases, e.g.,
the time behavior during the design, can be formulated in a denotational style, provided the
integration with the rest of the system model is formally well-defined and well-founded. Our
STS formalism allows to describe the operational semantics of reactive systems and is linked to
their denotational domain presented in Chapter 2 (cf. Sections 4.1.3 and 4.1.4). This link allows
to assign time behavior to particular STS automata. Thus, STS fits the extended definition of
model-based development and will be used in the rest of this thesis to describe artifacts of our
reference development process from Chapter 1. In particular the current section presents the
semantics of the CASE tool AutoF [HSE97]. As argued by Schätz et al. in [SPHP02a,
SPHP02b], this tool suffices the original definition listed in the quotation above and is formally
founded by a restricted version of untimed FOCUS. Consequently, AutoF can be extended
to fit our definition from above.

89



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

AutoF is designed for the graphical specification of reactive systems. The tool employs
a formal time-synchronous operational semantics. That formal semantics permits the simula-
tion of created models [HMR+98], their export to verification tools, like model checkers, SAT-
solvers, theorem provers, etc. [PS99], as well as the generation of production code (e.g., ANSI C,
Java, or Ada Code), cf. [Slo98, BHL+02]. With its graphical specification language, AutoF
supports different views on the system, namely structure, behavior, interaction and data-type
view. The formal semantics of the tool integrates these views in a concise and unambiguous
way. This section gives a rather short introduction to AutoF. A more detailed description of
AutoF and its diagram types can be found in [HSE97, BBR+05]. After an informal intro-
duction in 4.2.1, the STS semantic of the AutoF design paradigm is given in Section 4.2.2.

4.2.1 Description Techniques in AutoF

Besides the time behavior, structure (also called architecture), functional behavior and data types
are important views on a system. AutoF provides special diagram types for the specification
of these views and integrates them to the overall system model using a certain computation and
communication paradigm. All these ingredients are presented next.

Figure 4.2: The Component Architecture in AutoF (SSD) of the eCall Study

Structural View: System Structure Diagrams (SSDs)

A system in AutoF is modeled by a network of components, graphically denoted as rectan-
gles. Figure 4.2 shows the SSD of the emergency call application model (cf. Section 1.4). The
communication interface of a component is defined by a set of typed directed ports. There are
input and output ports, represented by empty and solid circles, respectively. The components
communicate via typed channels, which connect input and output port pairs of matching types.
Components networks are specified using the so called system structure diagrams (SSDs). A
component can be refined by a further component network. This results in a hierarchy of SSDs.
By this, in a white-box view of a refined component, ports not connected to any sub-component

90



4.2. MODELING APPLICATION LOGIC

represent an interface to the rest of the world. These ports have counterparts in the black-box
view with an opposite direction, e.g., solid circles in Figure 4.2, which represent output ports
not assigned to a component become empty cycles, i.e., input ports in the black-box view of
the component, specified by the SSD from the picture. The leaf components in the component
hierarchy have assigned state space and behavior, described by state transition diagrams.

Figure 4.3: State Transition Diagram (STD) of MobilePhone from eCall Study

Behavioral View: State Transition Diagrams (STDs)

The behavior of a leaf component is defined by an extended I/O automaton [LT89]. It is based
upon a set of control states, local variables and transitions. Graphically (cf. Figure 4.3), control
states are denoted by ellipses and transitions by arrowed arcs. A black dot on the left side of an
ellipse denotes an initial control state. For arcs with the same ellipse as source and destination
the arrow head is omitted in the diagram.

An STD automaton is completely defined by its set of control states, the set of local variables
along with their respective types, the initial state (of both control state and local variables), and
the transition relation. The specification of a transition consists of four elements9:

pre-condition Transition precondition (a Boolean expression referring to local variables of the
automaton and the ports of the corresponding component).

input patterns Input pattern that shows what message must be available on which port in order
that the transition is triggered.

output patterns Output pattern that shows what message is written to which port as a result of
this transition.

post-condition Transition post-condition (a Boolean expression referring to local variables of
the automaton and the ports of the corresponding component).

9In order to improve the comprehensibility, the transitions in Figure 4.3 are decorated with symbolic labels, not
their assigned specifications.

91



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

A transition can be fired in some state if the input ports specified in the input patterns have re-
ceived the necessary input messages and the pre-condition is satisfied. The transition outputs
data to output ports according to the output patterns, changes the local variables according to
the post-condition, and puts the automaton into the next control state. Every of the four tran-
sition components from above are specified by a functional language expression (see below).
A transition specification can contain special temporary variables, which are typically declared
using type inference and pattern matching in the input patterns and have the scope bounded by
one transition. The consistency mechanisms of AutoF ensure that the name space of these
variables is disjoint with the names of local variables and ports, i.e., the scope overlay is not an
issue in AutoF.

Example 4.1 (Specification of an AutoF transition). The transition with label ReceivedNo-

CloseConnection from Figure 4.3 has the form:

(x != close_connection):
connection_control?x:
connection_status!data_sending_ok,idle!Present

It is fired if it gets a signal different from close_connection on port connection_control and sends
the data_sending_ok signal through port connection_status and the Present signal via port idle. The
postcondition is empty. x is the temporary variable of the transition. ◦

The AutoF automata are input-enabled – an idle-loop transition is implicitly10 defined for
every control state. It is fired only if no other transition is enabled in the current state. We will
learn more about the behavior of AutoF (idle-loop) transitions in the course of defining the
AutoF semantics (cf. Section 4.2.2).

Data-Type View: Data Type Definitions (DTDs)

AutoF models may be extended by user-defined data-type and function definitions in a
Gofer-like ([Jon93]) functional language. The corresponding text documents are called data type
definitions (DTDs). The symbolic function and data type names declared in these documents
are referenced in the definitions of transitions, channels, ports, and variables.

Computation and Communication Semantics

AutoF components perform their computation steps simultaneously, driven by a global
clock. Every computation step consists of two phases: First, a component reads values on
the input ports and computes new values for local variables and output ports. After the time tick
new values are copied to the output ports, where they can be accessed immediately via the input
ports of connected components and the cycle is repeated. This results in a time-synchronous
communication scheme with buffer size one.
10The idle loops are not shown in STDs.

92



4.2. MODELING APPLICATION LOGIC

Remark 4.4 (Further view). The redundant view on the system not mentioned here is the in-
teraction view, implemented in AutoF by the use of extended event traces (EETs). EETs
capture exemplary simulation runs of the system in form of an extended version of sequence
chart diagrams. ◦

eCall Case Study (con’ed). Figure 4.2 shows the SSD of the eCall application, which is
introduced in Section 1.4. It consists of four components, namely

GPS determines the current coordinates of the vehicle and sends them to the CoordSaver compo-
nent.

CoordSaver keeps the vehicle’s position and sends it to the mobile phone upon the corresponding
command from the eCallLogic component.

eCallLogic initiates an emergency-call procedure if a crash has happened. This is done in the co-
operation with the MobilePhone component. The wireless-link for crash-data transmission
can break at any stage of the emergency call procedure – in these cases eCallLogic resumes
the procedure until the transmission succeeds.

MobilePhone establishes the wireless-connection with the remote operator and sends data
through it. Thereby, it is controlled by the eCallLogic and reports the status (i.e., accom-
plished/canceled) of every operation to this component. The STD of the MobilePhone com-
ponent is shown in Figure 4.3.

4.2.2 AutoF Semantics

This section describes the operational semantics of the AutoF CASE tool using our STS
framework. We have made a number of simplifications in its definition.

• First of all, we observe that the component hierarchy built by SSDs is pure syntactic sugar:
every hierarchical model can be flattened without any consequences to its behavior.

• Secondly, we will model the AutoF behavior as a sequence of atomic transition steps.
We will not investigate how the state changes performed by these transitions are actually
computed. From Section 4.2.1 we know that the firing of a transition in AutoF cor-
responds to the evaluation of a functional language expression. However, the behavior of
transitions could be also realized, e.g., by ANSI C programs, – this is insignificant for the
semantic model presented below. This fact explicitly enables to reason about the preser-
vation of system behavior during the transition from a CASE tool model to the production
code, under the assumption that the behavior of particular transitions remains the same
(cf. Chapter 5 for a more in-depth discussion of this topic).

• Finally, we will not mention some special features of AutoF, like transition prioriti-
zation or special acyclic zero-delay channels, since they would groundless complicate the
discussion.

We represent an AutoF (leaf) component as an STS Saf def
= (I,O,L,I,R, δaf,dε), which has

exactly one input/output variable for each input/output port, respectively. We will also refer to

93



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

the elements from I/O as input /output port variables, respectively, and to the STS itself as Auto-
F STS (component). The type of every port variable has a special bottom-value, denoted
by ⊥, which encodes the absence of the actual signal. The local variables and the control state
comprise the internal state of the STS component L, whereas we model the control state as a
designated local variable with the set of all control states as its type domain. The initial state of
the automaton corresponds to the initial state of the STS and fulfills Constraint (4.1).

In the initial state of an AutoF component no outputs are present. We express this by the
following constraint on the initial state assertion of Saf

∀α ∈ Λ(V) : α ` I⇒∀v ∈ O : α.v = ⊥. (4.6)

A light deviation from the STS communication semantics defined in Section 4.1.4 is the “flush”-
semantics of AutoF input ports: An AutoF automaton produces a new output on every
step on some of its output ports. The output may also depend from valuations of some of its input
ports only. If no actual output is foreseen in some transition on some port, the⊥-value is sent out.
By this, the old valuations of connected input ports are replaced by ⊥ (“flushed”), signalizing
the absence of input for the next system step. For these reasons we represent the “native” Auto-
F transition system by a set of predicates R. Every of its elements r ∈ R represents one
AutoF transition and it holds free.r ⊆ I ∪ L∪ L′∪O′. For instance, the transition presented
in Example 4.1 constrains the output variables connection_status and idle and is dependent from
the input variable connection_control, i.e.,

free.rReceivedNoCloseConnection = {connection_control,connection_status′, idle′}.

Then, we define the AutoF STS transition system as a set δaf which contains for every
AutoF transition r ∈ R a corresponding transition d ∈ δaf such that the following holds:

• For the valuations of primed and unprimed variables from free.r d and r behave equiva-
lently.

• The primed output variables not mentioned in r, i.e., the variables from the set O′ \ free.r,
are reset in d and the primed local variables from L′ \ free.r keep their values.

Formally, we define the following property:

∀α ∈ Λ(V ∪V ′) : α ` d
def
⇔ (α ` r)∧

∧
l′∈L′\free.r

α.l′ = α.l∧
∧

o′∈O′\free.r

α.o′ = ⊥. (4.7)

For all d ∈ δaf there exists r ∈ R such that Property (4.7) holds, and for all r ∈ R there exists
d ∈ δaf for which (4.7) holds, too. Please note that δaf can be built out of the original set R fully
schematically, by just binding the unconstrained variables in every AutoF transition to the
respective ⊥-/previous values. We assume that all transitions from R and by this all transitions
from δaf fulfill Property (4.2).

The idle loop in AutoF is defined as the complement of the regular transitions. It preserves
the valuations of local variables and resets the output variables to ⊥. This guarantees that the

94



4.3. CLUSTERING APPLICATION LOGIC

valuation of every connected input variable was generated exactly one system step ago. Formally
for all α,β ∈ Λ(V),

α,β′ ` dε
def
⇔

(
∀γ ∈ Λ(V) : α,γ′ ` ¬

∨
d∈δaf

d
)
∧

∧
v∈L

α.v = β.v∧
∧
v∈O

β.v = ⊥.

It is easy to see that Saf is well-defined. In particular, it satisfies Properties (4.1)-(4.3).

AutoF Composition

An AutoF model is a network of interconnected AutoF components. Accordingly, we
define AutoF STS model Schaf as a scheduled STS system parametrized by n pairwise com-
patible AutoF STS components. The channels are modeled as expected by homonymous
output/input variable pairs. The components run in parallel and thus we compose AutoF
components using the parallel composition from Definition 4.4:

Schaf def
= Schpar.

4.3 Clustering Application Logic

Clustering of the functionality is an intermediate step on the way from the model of pure appli-
cation logic to the deployed system. The clustering process pursues several goals and applies
different (heuristic) methods to achieve them. For example, strongly dependent components are
grouped together in order to localize and by this reduce the inter-task communication and co-
ordination effort. On the other hand, clustering can be done only to an extent, which allows
to meet all time constraints imposed on the system by its specification. Thus, another heuris-
tic groups functions with the similar activation rates together. There exist a number of further
heuristic methods and best-practices, which help the system engineer to find an acceptable solu-
tion. In the present thesis we leave her alone with this problem, since it is highly application- and
platform-dependent. We rather concentrate our attention on conditions, which every clustering
and deployment solution has to fulfill in order to preserve the properties of the application logic.

Recalling our design process depicted in Figure 1.1, page 5, the artifact produced by the cluster-
ing process is called task architecture (TA). It serves as an input for two subsequent activities:
the schedulability analysis and the deployment. These activities and the ultimate goal to ensure
the property preservation between application logic and their respective outcomes induce further
requirements on an adequate modeling paradigm for TA. Beyond a simple grouping facility, the
responsibilities of TA are twofold:

• It must allow to describe the modeled system on the level of abstraction, expected by the
different analytical schedulability techniques.

• The deployable units also known as tasks must be produced out of the TA model, e.g., by
code and wrapper generation and subsequent compilation.

95



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

In both cases the property preservation must be ensured; otherwise, it can happen that the results
of the schedulability analysis are of no significance for the deployed system and/or the behavior
of the deployed system deviates from the behavior of the application logic in an undesired man-
ner. We will discuss the determining factors for the design of a TA paradigm in the following
paragraphs.

ready

running suspended

start

preempt

terminate

activate

(a) OSEK OS (the Basic Version).

preempted

running suspended

resume

preempt

terminate

activate

(b) OSEKtime OS.

Figure 4.4: Task State Models

The goal of the schedulability analysis is, given a task model, a set of real-time constraints and
a description of the deployment platform, to find a valid schedule. A schedule is called valid
if it meets all real-time constraints for a given set of tasks run on the given deployment plat-
form. The task model expected by the schedulability analysis approaches, is an abstraction of
the actual system behavior, which simplifies the state space of the function clusters (tasks) as
well as their input and output behavior. The reason for this is that the operating systems and bus
protocols cannot differentiate arbitrary complicated task activation conditions and communica-
tion schemes. The event-triggered run-time environments are usually able to recognize at most
the presence of certain signals. The time-triggered systems react even only to one kind of input
events – timeouts, which come from their own timers. Normally, the operating systems are also
not aware of different internal states of their tasks. They rather operate with simplified task state
models, e.g., cf. the task state models of OSEK [OSE01a] and OSEKtime [OSE01b] depicted
in Figure 4.4. The transition function of these models is realized by a set of interrupt service
routines (ISRs), provided by these OSes. Every state of a task state model is an abstraction of a
set of the actual states which can be reached by a task.

The above discussion shows that both the technical systems and the analytical schedulability
models work with abstractions of the actual behavior of their tasks. In this context one ques-
tion naturally arises: Do these abstractions match? The problem of correct transition from a
concrete application model and deployment platform behavior to an analytical abstract model
is not covered by any approach so far. The usage of “stand-alone” formalisms, like timed au-
tomata [AD94, FKPY07], holds a risk of the wrong reproduction of an original problem without
a possibility to guarantee the correctness of or to discover a deviation in its abstract representa-
tion.

Thus, in the face of our goal to guarantee property preservation in every development step, we
must ensure that, on the one hand, the TA model respects the communication and computation

96



4.3. CLUSTERING APPLICATION LOGIC

principles incorporated in technical systems. On the other hand, it must embed and adapt the
application logic in a way, which does not alter its behavior.

In the next section we present a reference task model, which captures the simplified notion of the
application and platform behavior, different schedulability techniques and technical platforms
rely on. Afterwards, in Section 4.3.2 we present a TA model called AFTM. It takes the above
considerations into account and instantiates the reference task model from Section 4.3.1.

4.3.1 A Reference Task Model

Different task models which can be found in the literature (cf. [SAÅ+04, Liu00, Fer03, Jos01,
HSF+04]), use slightly different vocabularies to describe and systematize the concepts real-
time systems are working with. This section gives a short introduction of these concepts with
emphasis lying on the behavior of the task model, rather than its timing constraints.

A task is a portion of system functionality technical systems can deal with. During a lifeline
of the system this functionality is executed by the platform in a (potentially infinite) series of
finite runs, called jobs. We can see a job as an instance of a task: it is the time and functional
behavior a task exhibits for certain inputs and internal state. Tasks and their jobs may have
parameters, such as deadline, worst case execution time, etc., as well as release or activation
conditions, which describe when a task can be activated. Besides its tasks a technical platform
is also characterized by a resource model, which describes the resources available to the tasks,
and a scheduling algorithm, which determines the order of their execution. These aspects of task
models are the topic of the next paragraphs.

Information Sources

An important aspect of a task model is the source the different information about the system
comes from. We identify the time behavior specification, the application logic, the deployment
platform, and the schedulability method itself as the main sources. The time constraints come,
clearly, from the time specification, while the task activation conditions as well as the data and
control flow models are extracted from the application logic. The deployment platform delivers
the information about the supported scheduling strategies and, communication mechanisms, as
well as context switch, and interrupt handling times. Among the outcomes of the schedulability
analysis are the priorities of the individual tasks, as well as their start times. Certain task model
parameters have mixed sources. For example, the WCET is usually obtained from the analysis
of the application logic executed on the deployment platform.

Task Parameters and Timing Constraints

Task parameters can be assigned either to a task or to a job. An assignment of a parameter to a
task makes it invariant for all jobs of this task. In contrast, the assignment to a job makes the
parameter run-time dependent.

97



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

The most important task parameters are best- and worst-case execution time. The tight estima-
tion of BCET and WCET for various hardware architectures is a non-trivial task and a wide
area of research (cf. [WEE+08] for a comprehensive state-of-the-art and state-of-the-practice
overview of tools and methods developed and applied in this area). Further parameters of tasks,
like period or deadline, clearly correspond to the low-level time constraints, presented in Sec-
tion 2.3.2. The refinement and decomposition methods from Chapter 3 allow to assign these
constraints to individual tasks. Another parameter specific for a particular scheduling algorithm,
like task start times, priorities, or communication schedules can be subsequently added by the
system engineer after the analysis.

Activation Conditions

The classical literature distinguishes three types of task activation patterns, namely periodic,
aperiodic, and sporadic patterns. Periodic tasks are activated repeatedly at regular time intervals.
For instance, temperature monitoring in the vehicle cabin is a typical periodic task. Many real-
time systems are required to respond to external events. Usually only the minimal inter-arrival
time of these events is known. This is usually carried out by aperiodic and sporadic tasks of
the system. These tasks are activated on certain input situations. The difference between both
task types is that sporadic tasks have a hard deadline, while the aperiodic ones have a soft or
no deadline. For example, an engine control task that activates the ignition is usually realized
as a sporadic task whose activation time is dependent on piston position and crankshaft angular
velocity. An example for aperiodic task is a task processing the input of human users.

During every activation a task consumes certain inputs and produces certain outputs. The inputs
are made available by further tasks and/or environment and the outputs in turn are expected in-
puts of the environment/other tasks. Regardless of its activation type, a task should be activated,
in a situation (or at a point in time), when all inputs, which it needs to produce outputs, are
present11.

The information about the expected inputs of the tasks is made explicit by the so called task or
precedence graphs. The nodes in these graphs are tasks or jobs and the edges are causal depen-
dencies (data and control flow) between them. Every node is attributed by an activation condi-
tion, also called precedence constraint. It describes either the input state of the task [HHK03], or
the state of the predecessor tasks [Pop00], i.e., the tasks which according to the precedence graph
deliver inputs must complete their execution before the current task can be activated. Clearly,
the latter type of activation condition is the special case of the former one: The interrupt used by
a task to suspend itself can be seen as an mandatory input for its successors. In the next section
we will present a TA paradigm, which makes the above activation type distinction obsolete.

As discussed in the previous section, most scheduling approaches abstract from the concrete
input-dependent task behavior (cf., e.g., approaches from [Jos01] or [Pop00]). They are dealing
with the presence or absence of inputs, rather then with the actual message they contain. This
allows to consider inputs and outputs of tasks as signals: a signal is either present or not. In

11The absence of some expected input at a certain point in time, is also a valuable information, which can be
considered during the production of next outputs of the task.

98



4.3. CLUSTERING APPLICATION LOGIC

order to capture activation conditions, we define the abstract task interface (ATI) as a set of
input variable subsets ATI ⊆ ℘(I). Every subset ic ∈ ATI documents the activation condition of
the task, i.e., which input signals have to be “present” or in terms of our STS framework which
input variables have to be non-⊥, in order the task can produce meaningful results. Special cases
are ATIAND = {I}, ATIOR = {{v} | v ∈ I}, and ATI> = ℘(I). The first case requires all inputs to
be present, for the second one suffices the presence of at least one signal, finally, the third case
permits the arbitrary input behavior of a task.

Resource Model

Tasks have active and passive resources at their disposition. The most important active resources
are processors, on which the tasks are executed, and transmission links which exchange data
between processors. Processors and links build the topology of the target deployment platform,
which can be represented by a graph, the so called physical system architecture [SZ06], with
processors as nodes and transmission links as edges.

To the passive resources belong mutexes, semaphores, shared libraries, etc. Often these re-
sources are serially reusable. This means that only one job can use each unit of resource at once.
As a consequence, tasks often need to wait for the availability of a resource. This waiting time,
also called blocking time, of course, flows into the overall response time of a task and compli-
cates the timing analysis of real-time systems. Another, consequence is the infamous priority
inversion problem: A lower priority task can prevent a higher prioritized one from running by
locking certain resource, which they both use.

Scheduling Policies

The scheduling theory is a well-established branch of computer science and operations research.
It describes and analyzes scheduling policies. Scheduling policies are sets of rules which, at any
time, determine the order of task execution. In the literature, scheduling policies are classified
according the following criteria:

preemptive vs. non-preemptive A non-preemptive task, once started, must be run to com-
pletion without any further interruption. A preemptive task, can be interrupted by another
task with a higher priority.

off-line vs. on-line Off-line scheduling policies rely on scheduling tables which are computed
before execution time. In contrast, on-line schedulers decide at execution time which task
will be activated next.

static vs. dynamic In dynamic scheduling policies priorities of tasks change at execution
time; priorities are fixed in the case of static scheduling policies.

There exist a number of scheduling policies, like rate monotonic scheduling (RMS), earliest
deadline first (EDF), round-robin scheduling, etc. We refer, e.g., to [Liu00] or [SAÅ+04] for
further particulars of scheduling theory and its policies.

99



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

4.3.2 AutoF Task Model (AFTM)

In order to instantiate the reference task model presented above information from different
sources has to be brought together. One of the sources is the requirements specification which
we treated in Chapter 2, another one concerning the activation and precedence constraints comes
from the application model. This section presents a realization of this aspect of the reference
task model from above. It is called AutoF Task Model (AFTM for short) and has a formal
semantics defined within our STS framework.

As a task architecture paradigm for model-based development of reactive real-time systems,
we suggest to model the clustered functionality of the system at the level of communicating
tasks, the AutoF tasks. In [BGH+06] it is shown how the intended behavior of AutoF
Task Model can be implemented using AutoF components and the composition operator of
AutoF, i.e., how the semantics of AFTM can be emulated by the semantics of AutoF.

AutoF Tasks

We subdivide the run-time of a task in three phases. First, the task checks if all needed inputs are
present, then if this is the case it makes its computations, and, finally, it writes its outputs. If the
task cannot run in the given input state, it remains in the same state. No communication happens
during the second phase, which usually needs more time than the other two. By ensuring that the
reading (checking of inputs) and writing are atomic actions, which cannot be interrupted by the
execution of other tasks, we can arbitrary interleave the task with other activities of the system
without any impact on the results it will produce.

Another peculiarity of our task notion are explicit activation conditions associated with every
individual task. In the previous section we described two different definitions of task activation
conditions: A task is either activated after all/some of its predecessors complete their execu-
tion, or if a certain input situation emerges. Due to the run-time behavior of AutoF tasks
described in the previous paragraph, the former type of activation condition becomes a special
case of the latter one: Outputs of a task stay invisible for the outer world before it completes its
execution. By this, the precedence constraints, expressed in terms of inputs dependencies can be
translated for the schedulability methods, which work with task completion constraints, without
a deformation of the original scheduling problem.

In AFTM we distinguish three different kinds of tasks: AND-, OR - and >-tasks. In terms
of our reference model from above every AutoF task realizes one of the following three
abstract task interfaces: ATIAND, ATIOR, or ATI>. The function ATI(Saft) describes the ATI type
of every task Saft in an AFTM model. For any task Saft and a given system state α the predicate
runnable(Saft,α) evaluates to true if and only if the activation condition of this task is satisfied
by α:

runnable(Saft,α) def
= {v ∈ I | α.v , ⊥} ∈ ATI(Saft).

The input-enabledness of our STS automata has nice composition properties, but makes it com-
plicated to express assumptions about the environment of the system. The solution is to model
the environment explicitly by special >-tasks. These tasks are always runnable and active. This

100



4.3. CLUSTERING APPLICATION LOGIC

expresses the fact that the environment runs in parallel to the system. As discussed above, an
AND-task may run only if all of its inputs are present, while for the activation of an OR -task
the presence of a non-empty subset is sufficient.

The “flush” semantics of AutoF is a convenient means to model the inter-component com-
munication in the models of application logic. It ensures that the age of an input message is
exactly one, i.e., it was sent out in the last simulation step. However, in the technical systems
the messages remain in the communication buffers until they are replaced by the next messages.
We speak about a “keep” semantics in this case. Thus, if an AutoF task does not produce
an output on a certain variable, it keeps its previous value.

Next we present the STS-based AutoF task semantics, which incorporates the ideas of the
above informal introduction. Formally, an AutoF task (also called AFTM task) is an STS
Saft def

= (I,O,L,I,R, δaft,dε).

In order to realize the keep semantics we need to store the past inputs. We realize this by a subset
of dedicated local variables LI ⊆ L such that LI = {vl | v ∈ I} holds, i.e., there is exactly one local
variable in LI for every input variable from I.

In the initial state no outputs are produced and no inputs were previously received, thus we
demand I to satisfy the following constraint

∀α ∈ Λ(V) : α ` I⇒∀v ∈ (LI ∪O) : α.v = ⊥. (4.8)

Similar to the definition of the AutoF semantics, in AFTM task STSs we model the indi-
vidual transitions in a black-box manner. Thus, R denotes a set of “original” transitions, which
encode the actual transformations carried out by the task. We assume that all transitions in R do
not contain variables from LI , i.e., ∀r ∈ R : free.r∩ LI = ∅ and that all transitions satisfy Prop-
erty (4.2). δaft complements the behavior of R by removing underspecification in a schematic
way, and installs the AFTM communication semantics, which is described next in more detail.

While a task is not runnable all non-⊥ inputs it receives are kept until the input state of the task
satisfies its activation condition. A runnable task processes its inputs and flushes its input vari-
ables. This behavior reproduces the consumption of inputs by tasks run on a technical system:
In every run an AFTM task reads its inputs once at the beginning. During its further execution,
or while it is suspended new inputs may arrive. These inputs are gathered but not consumed by
the task. They are considered by the task first at its next execution. On the other hand, the inputs
already consumed by a task should not be kept in the system. Such inputs must disappear before
the next run of this task. This naturally happens if a new input arrives – it always overwrites the
old one. However, in the case that no input was produces the AFTM semantics ensures that the
old inputs are overwritten with ⊥. Exactly as in the AutoF semantics, the special message
⊥ is interpreted as the absence of a message. In other words, AutoF tasks obtain the ability
to notice the absence of certain inputs. Before we define the behavior of AutoF tasks, we fix
the current input of a task in the state α ∈ Λ(V) by the valuation function afTI(α) ∈ Λ(I), which
is defined as

∀v ∈ I : afTI(α).v def
=

α.v if α.v , ⊥,
α.vl, o.w.

(4.9)

101



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

We characterize the set δaft by transitions which are built up of two segments, along the task
execution phases described at the beginning of this section. Thus, for every transition r ∈ R we
define an AutoF task transition d ∈ δaft as d def

= drd ◦ dwt. The first segment of d reads the
inputs and checks if the task is runnable. The second transition segment executes r, preserves
the local variables and flushes outputs unconstrained by r, and, finally, flushes the local copies
of input variables, since they are already consumed by the task. Formally for all α,β ∈ Λ(V),

α,β′ ` drd def
⇔ runnable(Saft,afTI(α))∧β V\I

= α∧β
I
= afTI(α), (4.10a)

α,β′ ` dwt def
⇔ (α,β′ ` r)∧∀v′ ∈ ((L′ \L′I) \ free.r) : β.v = α.v

∧∀v′ ∈ (L′I ∪ (O′ \ free.r)) : β.v = ⊥. (4.10b)

Please note that neither drd nor dwt are valid transitions in sense of Property (4.2), but their
combination defined by (4.5) yields a valid transition.

If the task is not runnable, solely the idle-loop transition is enabled. The idle-loop transition
does not alter valuations of the local variables, flushes the output variables, and stores the actual
inputs in LI . It is defined for all α,β ∈ Λ(V) as

α,β′ ` dε
def
⇔

(
∀γ ∈ Λ(V) : α,γ′ ` ¬

∨
d∈δaft

d
)

∧β
L\LI
= α∧∀v ∈ O : β.v = ⊥∧∀v ∈ I : β.vl = afTI(α).v.

Please note that for the definition of dε it does not play any role, whether the output valuations
are reset to ⊥, or preserved – according to Equations (4.8) and (4.10b) their valuations will be
⊥ anyway. By these definitions we ensure that ¬runnable(Saft,afTI(α))⇒ Succ(α,δaft) = ∅. We
also observe that Saft is well-defined and fulfills Properties (4.1)-(4.3).

AFTM Composition

The scheduled AFTM system Schaftm executes all AutoF tasks in parallel if and only if they
are pairwise compatible, i.e.,

Schaftm def
= Schpar.

To sum up, AFTM starts its tasks with output variables and local input copies flushed. In every
step only runnable tasks make a regular transition step. The remaining tasks fire their idle loops
and gather current inputs until they become runnable. Runnable tasks flush consumed inputs. If
a task produces no output on a certain variable, it indicates this fact to its communication partner
by resetting its value to ⊥. From this description we can conclude that there must either exist
unbounded input variables, or at least one >-task in the AFTM model in order it can exhibit a
behavior, which contains non-idle transition steps. This can be interpreted as: the AFTM models
are started by environment.

eCall Case Study (con’ed). The AFTM semantics defined above can be emulated by the
AutoF semantics from Section 4.2.2. The structure of an AFTM task in AutoF is shown

102



4.4. FROM AUTOFOCUS TO AFTM

(a) The Task Architecture.

(b) The Internal Structure of EmergencyCallTask.

Figure 4.5: AutoF Task Model of the eCall Study.

in Figure 4.5b for the emergency-call task. The application logic is contained in the component
LogicEC. It is surrounded by buffers, which gather the inputs (InputBufferEC) and outputs (Output-

BufferEC) of the task during its execution or while it is idle. The component inputCheckEC realizes
the runnable-predicate for this task – it decides to activate the task logic depending on the state
in the input buffer. The task architecture of the eCall system is shown in Figure 4.5a. It con-
sists of three tasks. The distribution of the four components from the AutoF component
architecture (cf. Figure 4.2) to the AFTM tasks is described in the next section. For a more
detailed description of the realization of the task architecture in AutoF we refer the reader
to [BGH+06].

4.4 From AutoF to AFTM

In this section we discuss the transition from the pure application logic modeled in AutoF
to an AFTM system. First, let us recapitulate and compare the properties of both modeling
paradigms. The communication between AutoF tasks is a continuous flow of messages or,
in terms of our STS formalism, – a continuous flow of input/output valuations. The messages
must be consumed immediately after their arrival; otherwise, they are lost (flushed in the next
communication round). In AFTM the messages are gathered by the receiving task. It consumes
its inputs only if all inputs necessary for the computation are present. Messages can get lost only
if they are overwritten by other non-⊥ messages.

We aim at clustering n AutoF components by one AFTM task. This degree of freedom
allows the developer not to align the design of application logic respective of possible clustering
or deployment strategies. Methodologically it is an important issue, since the logical time has no
direct correspondence to the physical time: Consider, for example, two AutoF components

103



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

S
af
A and S

af
B . S

af
A is realized in a way, that it needs two transition steps in order to react to a certain

request. In contrast, S
af
B makes on every request only one step before the answer is produced. If

we realize both components as separate tasks and deploy them, their response times will not nec-
essarily preserve this relation. We have discussed and explained this phenomenon already, e.g.,
cf. Section 2.3.2. One possible solution for this problem is a constructive method, which always
enforces the synchronization even between independent tasks after every logical system step on
the deployment platform. This surely leads to over-constrained and inefficient implementations.
Another one is a restrictive method, which demands to portion the functionality in a way, which
produces components with a uniform response delay (e.g., delay one) only. We will discuss
the disadvantages of such restriction in the next paragraph. In the present thesis we pursue an
alternative approach, which allows us to capsule functionality arbitrarily and to reason about the
causal dependencies of created tasks, without considering their logical execution times.

A commonality of AutoF and AFTM is their time-synchronous lockstep semantics. This
fact suggests the establishing of a one-to-one correspondence between system steps in Auto-
F and AFTM. However, this would substantially restrict the design of the application logic
as well as the number of possible clustering solutions. Provided, for example, the functionality
of one task is realized by a network of AutoF components. Then, a response this task must
produce on a certain request is not necessarily delayed by exactly one AutoF step. The clus-
tering of the component networks results in tasks with internal communication links which, in
accordance to our strict causal communication semantics, generate delays between a request and
a corresponding response. In other words, given an AFTM task, which is realized by a network
of AutoF components, then an external input of this task and the corresponding external
output may lie more than one system step away from each other. This delay is also not necessar-
ily bounded by the length of the data paths in the network – inputs may induce an intertwined
data exchange between the internal AutoF components before the corresponding output is
produced.

To sum up, the above considerations motivated us to establish an n-to-one relationship between
AutoF components and tasks, as well as between AutoF and AFTM transition steps. A
consequence of this decision is that a synchronized step of two AutoF tasks may correspond
to the transition sequences of different length on the level of their respective “realizations” by
AutoF component networks. In AFTM composition these sequences are aligned. In other
words, the AFTM model runs in lockstep: every of its steps lasts as long as needed by the
longest sequence. Meanwhile, the tasks which are ready with their execution stop and wait.
This solution synchronizes the inter-task communication and allows to reason about precedence
constraints of tasks without considering their logical execution times.

In Section 4.4.1 we give a precise mathematical problem statement of the property-preserving
transition from AutoF to AFTM. In Section 4.4.2 we present a procedure that performs this
transition and prove its correctness.

eCall Case Study (con’ed). The task architecture of the eCall system shown in Figure 4.5a
consists of three tasks, which capture the application logic of the GPS module, of the emergency
call itself, and of the mobile phone, respectively. Table 4.1 shows how the four components

104



4.4. FROM AUTOFOCUS TO AFTM

Component Task

GPS GPSTask

CoordSaver EmergencyCallTask

eCallLogic

MobilePhone MobilePhoneTask

Table 4.1: Component to Task Mapping for the eCall System

which build the application logic of the eCall system (shown in Figure 4.2) are distributed over
its tasks.

4.4.1 Problem Statement

Due to the input-enabledness of STS automata every valuation of input variables can be accepted
by any AutoF component or AFTM task. However, the clustering process should ensure
that the desired outputs are produced as a response on specific inputs. These input/output pairs
are documented in the abstract component interface, ACI(Saf ) ⊆ ℘(I)×℘(O), of the AutoF
component Saf . A task realizes, or obeys the abstract component interface ACI(Saf ) only if
holds: The task makes a non-idle transition step only if there exists a pair (ic,oc) ∈ ACI such that

(1) the valuations of input variables from ic ⊆ I are non-⊥ in the current state,
(2) produced output contains non-⊥ valuations of output variables from oc ⊆ O, and
(3) produced valuations of output variables from O \oc are ⊥.

Obviously, the abstract task interface introduced in Section 4.3.1 is a projection of the abstract
component interface on its first element.

We formulate the clustering problem as follows: Given an AutoF STS Saf =

(I,O,Laf ,Iaf ,Raf , δaf,dεaf ) and an abstract component interface ACI(Saf ), we want to construct
an AFTM task STS Saft = (I,O,Laft,Iaft,Raft, δaft,dεaft), with Vaft ⊇ Vaf , which obeys ACI(Saf )
and stands in a weak simulation relation (cf. Definition A.6) to Saf . As discussed in the previous
section, the simulation relation is allowed to relate finite run prefixes of Saf to the individual
transitions of Saft. In the next paragraphs we will formally define this simulation relation.

Remark 4.5. The one-to-one mapping between AutoF components and AFTM tasks is not a
deficit of the presented approach and does not contradict to the n-to-one relation advocated in the
previous section. The AutoF composition, which is equivalent to the parallel composition
of STS and thus fulfills Proposition 4.1, allows us to cluster several AutoF components on
one AFTM task and consider the composite AutoF STS in respect of simulation by the
corresponding AFTM task. ◦

105



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

First, let us define the concatenation of variable valuations. For a given valuation pair α,β ∈
Λ(V), we define a new valuation α^β ∈ Λ(V) as the concatenation of valuations from α and β
and the removal of ⊥-values for every variable from V . Formally,

∀v ∈ V : (α^β).v def
=


⊥ if α.v = β.v = ⊥,
α.v if α.v , ⊥ and β.v = ⊥,
β.v if α.v = ⊥ and β.v , ⊥,
α.v^β.v, o.w.

Next, we define the equivalence class of runs, which are equal up to “stuttering”, i.e., idle loop
steps. Since idle loops in AutoF and AFTM do not produce outputs and do not change
the local state, they perfectly reproduce the notion of stuttering as introduced in [Lam83] for
the specification approach TLA: the set of all possible behaviors after a stutter step (idle loop)
remains the same. In order to define the above equivalence class formally, we mark the sequences
of idle loops in runs by a special strict monotone indexing function η : N 7→ N∞. η(0) def

= 0, and
for any run ρ and index i ∈ N, states from the interval [η(i),η(i + 1)− 1) enable the idle-loop
transition only; formally,

∀ j ∈ [η(i),η(i + 1)−1) : ρ. j, (ρ. j + 1)′ ` dε.

If a non-idle transition is fired in state η(i), we define η(i + 1) def
= η(i) + 1 and the above interval

becomes empty. If a finite run prefix of length η(i) is continued by an infinite sequence of idle
loops, η maps all indexes starting with i+1 to∞. The representative element of a stuttering class
is a run ρ without idle-loop transitions, i.e., ∀i ∈ N : ¬(ρ.i, (ρ.i + 1)′ ` dε) or, equally, {η(i) | i ∈
N} = N for ρ. A run ρ belongs to the class of ρ, denoted by ρ ∈ IF(ρ,dε) if and only if

ρ ∈ IF(ρ,dε)
def
⇔∃η ∈ (N 7→ N∞) : η(0) = 0

∧∀i ∈ N : η(i + 1) <∞⇒ ρ.i L∪O
= ρ.η(i)∧ρ.i I

= ρ.η(i + 1)−1.

We denote the stutter reduction of a runs set R by SF(R,dε). It consists of stuttering-free runs,
to whose equivalence classes the runs from R belong. Formally,

SF(R,dε) def
= {ρ | R∩ IF(ρ,dε) , ∅}.

For the complete set of AFTM task runs it holds SF(〈〈Saft〉〉,dεaft) ⊆ 〈〈S
aft〉〉. In fact, we can easily

prove that every run in 〈〈Saft〉〉 belongs to some equivalence class, whose representative element is
also in 〈〈Saft〉〉 and, vice versa, – for any stutter-free run ρ from 〈〈Saft〉〉 it holds IF(ρ,dε) ⊆ 〈〈Saft〉〉.

In order to define the simulation relation between components and tasks formally we define
a special function, which relates every task step to the corresponding sequence of component
steps. An AFTM task run ρ ∈ SF(〈〈Saft〉〉,dεaft) is related to an AutoF component run ρ ∈

〈〈Saf 〉〉, denoted by ρ ⊂∼ ρ if and only if there exists a strict monotonic indexing function µ : N 7→N
with µ(0) = 0 and for all i ∈ N+:

afTI(ρ.i) I
= ρ.µ(i)^.. .^ρ.(µ(i + 1)−1),

ρ.i Laf
= ρ.µ(i),

ρ.i O
= ρ.(µ(i−1) + 1)^.. .^ρ.µ(i).

(4.11)

106



4.4. FROM AUTOFOCUS TO AFTM

Mapping µ permits us to combine several AutoF transitions to one AFTM transition. Two
valuation states are in the simulation relation according to µ if

(1) their common local states are equal,
(2) the concatenation of outputs produced so far by the AutoF component since the pre-

vious state in the simulation are equal to the outputs of the AFTM task, and
(3) the concatenation of future inputs of the AutoF component up to the next simulation

state are equal to the input valuations from the task state.

For example, the mapping with the property ∀k ∈ N : µ(k) = k, establishes a one-to-one relation-
ship between the members of both transition sets. We extend the definition of ⊂∼ for the whole
Saf and Saft as follows

Saft ⊂∼ Saf def
= ∀ρ ∈ SF(〈〈Saft〉〉,dεaft) : ∃ρ ∈ 〈〈Saf 〉〉,µ ∈ (N 7→ N) : ρ ⊂∼ ρ.

Then, for Saf and ACI(Saf ) the synthesis problem is to produce Saft such that the following two
conditions are satisfied:

Saft ⊂∼ Saf and ∀d ∈ δaft : ∀α,β ∈ Λ(Vaft) : α,β′ ` d⇔ iconf (Saf ,α,β), (4.12)

where the predicate iconf checks if a pair of states is conform to the interface definition:

∀α,β ∈ Λ(Vaft) : iconf (Saf ,α,β)
def
⇔

(
{v ∈ I | α.v , ⊥}, {v ∈ O | β.v , ⊥}

)
∈ ACI(Saf ).

The simulation relation defined above relates every idle-loop-free run of the AFTM task to a
condensed run of the AutoF component. The “condensation” of AutoF runs, i.e., the
removal of⊥ values allows to group in principle unbounded sequences of idle-loops produced by
the AutoF component and to relate this equivalence class of partial AutoF behaviors to
one AFTM transition step. The idle loops of AFTM task are also excluded from the simulation
relation. Thereby, our working hypothesis is that no useful work is done by components or tasks
during idle loops and the simulation between respective idle-loop-free representatives captures
the most important properties which are worth to be preserved.

4.4.2 AutoF Task Synthesis

In order to synthesize Saft we are looking for the run prefixes of Saf , in which a specified input is
processed and the corresponding output is produced. Thereby, the individual variable valuations,
which belong to the input and output pair from the task interface, can be arbitrary serialized, i.e.,
spread over several AutoF simulation steps, and no other outputs may be produced during
that run prefix. In order to obtain a finite-state STS, we bound the length of prefixes in the above
construction. This constraint is realistic in the settings of embedded systems since they have to
be realized on platforms short for available memory resources. The rest of the current section
contains the formalization of this idea as well as proofs of its correctness.

First, we define the n-bounded transitive closure (n ∈ N+) of a transition set δ:

δn def
=

⋃
k≤n

{d1^.. .^dk | d1, . . . ,dk ∈ δ},

107



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

where n ∈ N and for all d1,d2 ∈ δ, d1^d2 is a new transition defined as

d1^d2
def
= {(α,β′) | ∃α1,α2,α3 ∈ Λ(V) : α1,α

′
2 ` d1∧α2,α

′
3 ` d2

∧α
Laf
= α1∧β

Laf
= α3∧α

I
= α1^α2∧β

O
= α2^α3}.

The transition d1^d2 starts from the current state described in d1 and terminates in the successor
state reachable by d2. All outputs made by d1 and d2 are concatenated outputs of d1^d2 (modulo
⊥s). Please note that the concatenation on transition defined that way is associative. Provided
the variable types are finite then δn is finite either.

We define the AFTM task STS Saft = (I,O,Laft,Iaft,Raft, δaft,dεaft) as a task built as described in
Section 4.3.2 over the set of transition predicates Raft and the abstract task interface ATI(Saft).
Raft and ATI(Saft) are synthesized as follows

Raft def
= {d ∈ δafn | ∃n ∈ N : ∀α,β ∈ Λ(Vaf ) : α,β′ ` d⇔ iconf (Saf ,α,β)},

ATI(Saft) def
= {ic | (ic,oc) ∈ ACI(Saf )}.

Please note that we can define Raft over δaf because it complements its original AutoF
transitions by ⊥s for unconstrained outputs and preserves the valuations of unconstrained lo-
cal variables. Empty messages are eliminated during the construction of the transitive closure
and the unconstrained local variables also do not change their values according to the AFTM
semantics.

We say that the AutoF component Saf is n-compatible to the abstract component interface
ACI(Saf ) if and only if the set of native transitions Raft synthesized using the scheme from above
is not empty.

By the next proposition we show that Simulation Relation (4.12) holds for every AutoF
component and a synthesized AFTM task.

Proposition 4.6 (Property preservation during AFTM task synthesis). For a given AutoF
component Saf = (I,O,Laf ,Iaf ,Raf , δaf,dεaf ), an interface ACI(Saf ) and an AFTM task Saft =

(I,O,Laft,Iaft,Raft, δaft,dεaft) synthesized using the procedure from above holds Simulation Re-
lation (4.12).

Proof. In order to show the simulation two properties have to be proved.

Saft ⊂∼ Saf : Let ρ be an arbitrary run from SF(〈〈Saft〉〉,dεaft), then we must construct a run ρ ∈ 〈〈Saf 〉〉

such that ρ ⊂∼ ρ. We do this by induction over the prefix length i ∈ N of ρ. Since the initial

states of Saf and Saft are the same for Vaf , we can define ρ.0 = ρ.µ(0) Vaf
= ρ.0.

For the induction step suppose for some i ∈ N there is µ(i) ≥ i such that ρ.i and ρ.µ(i) are
related according to (4.11). Then, since idle loops are never fired in ρ, it holds

∃d ∈ δaft : ρ.i, (ρ.i + 1)′ ` d.

Every regular transition of Saft is based on some original transition predicate r from Raft. r
in turn is built by a concatenated sequence d1^.. .^dk with 1 ≤ k ≤ n of Saf ’s transitions.

108



4.4. FROM AUTOFOCUS TO AFTM

Let k be the length of this sequence, then we set µ(i + 1) def
= µ(i) + k + 1 and define the

valuation states of ρ in the interval (µ(i),µ(i + 1)] as

∀m ∈ [1,k] : ρ.µ(i) + m, (ρ.µ(i) + m + 1)′ ` dm.

By this, we obtain the fulfillment of the second and the third lines in Simulation Rela-
tion (4.12), i.e., local variables and outputs of ρ.i + 1 are equal to the current local vari-
ables and past outputs in ρ.µ(i+1), respectively. The relation between inputs of ρ.i+1 and
future inputs between ρ.µ(i+1) and ρ.µ(i+2) follows from Property (4.2), i.e., AutoF
components cannot constraint their future inputs. By this, the first line of the simulation
relation can be proved for arbitrary µ(i + 2) > µ(i + 1).

∀d ∈ δaft : ∀α,β ∈ Λ(V) : α,β′ ` d⇔ iconf (Saf ,α,β): The task interface of Saft was defined as the
projection of ACI(Saf ) on input variables. Thus, this property follows from the definition
of AFTM task behavior in (4.10). �

The crucial point in the above proof is the fact that we simulate any sequence of idle-loop
transitions in AFTM by the same state in AutoF. The reason for this is that an input not
mentioned in the abstract component interface can be potentially (partially) accepted by Auto-
F. This would then lead to a new local valuation state in AutoF.

We still need to show that the simulation relation we defined for individual AutoF compo-
nents and tasks is monotonic respective AutoF and AFTM composition. In the following
proposition we show this for the case of two components and two tasks. The general case for n
components/tasks follows then from the associativity of the parallel composition used for both,
AutoF and AFTM composition operators.

Proposition 4.7 (Correctness of AutoF task generation). Given two compatible AutoF
components S

af
0 , S

af
1 and two compatible AFTM tasks S

aft
0 , S

aft
1 such that S

aft
i
⊂∼ S

af
i for i ∈ {0,1},

then holds Schaftm ⊂∼ Schaf , where Schaf is the AutoF composition of S
af
0 and S

af
1 and Schaftm

the AFTM composition of S
aft
0 and S

aft
1 .

Proof. Both modeling paradigms compose their components/tasks using the parallel composi-
tion operator. Thus, we can use Proposition 4.2 and conclude in both cases that

〈〈Schaftm〉〉
Vaft

i
⊆ 〈〈S

aft
i 〉〉 and 〈〈Schaf 〉〉

Vaf
i
⊆ 〈〈S

af
i 〉〉,

where Vaf
i and Vaft

i are the variable sets of S
af
i and S

aft
i , respectively, and i ∈ {0,1}. Then, form

the above subset relation follows

SF(〈〈Schaftm〉〉,dεaftm)
Vaft

i
⊆ SF(〈〈Saft

i 〉〉,d
ε
afti

),

where dεafti
, dεaftm are the idle-loop transitions of S

aft
i , Schaftm, respectively, with i ∈ {0,1}. And

thus, Schaftm ⊂∼ S
af
i

12 for all i ∈ {0,1}.

12The ⊂∼-relation is well-defined for every STS pair S0, S1 only if V0 ⊇ V1. This is surely the case for Schaftm and
S

af
i .

109



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

Suppose, there exists some ρ ∈ SF(〈〈Schaftm〉〉,dεaftm) such that there is no ρ ∈ 〈〈Schaf 〉〉 with ρ ⊂∼ ρ.

There must exist some ρi ∈ 〈〈S
af
i 〉〉 which is not in 〈〈Schaf 〉〉13 with ρ ⊂∼ ρi. Then, in ρi there

exists a pair of adjacent valuation states for which no unifiable transition of S
af
|i−1| exists. This

can only happen if the shared output variable valuations of S
af
i in the first state, or the shared

input variable valuations of S
af
i in the second state, cannot be accepted, or produced by S

af
|i−1|,

respectively. These shared variables coincide in both compositions (of AutoF and of AFTM)
and become local in both cases. Thus, according to the definition of the ⊂∼-relation they must be
equal in every AFTM state. Since S

aft
i
⊂∼ S

af
i , we know that both transition sets produce the same

sequences of local variables, i.e., 〈〈Saf
i 〉〉

Laf
= 〈〈S

aft
i 〉〉. Thus, the valuations unifiable in the AFTM

composition are also unifiable in the AutoF composition and we obtain a contradiction. �

The drawback of the presented method is that the n-compatibility of a pair of AutoF com-
ponents to their respective abstract component interfaces does not guarantee that the AFTM
composition of synthesized AutoF tasks exhibits behaviors different from pure idle-loop
runs. Thus, we propose to apply the presented task synthesis algorithm iteratively until the com-
mon prefix length is found or the size of the model (e.g., in terms of data volume, which has
to be exchanged between tasks) becomes impractical for the deployment on the target platform.
This procedure exploits the fact that the n-compatibility implies also the n + 1-compatibility.

4.5 Related Work

In the following we compare contributions presented in this chapter with related approaches
from different fields of research and practice: We compare our STS framework with its direct
precursors; we survey different clustering and deployment approaches provided by commercial
CASE tools and proposed in the computer science research community; and we compare AFTM
with existing task architecture models.

State Transition Systems

Different versions of the STS formalism are presented in [PP05] and [BP99]. The authors
of [PP05] are interested in refactoring of automata behaviors. Thus, they deal with isolated
STSs only and do not define the composition or refinement for this formalism. The main topic
of [BP99] is the transition from operational automata models to denotational black-box specifi-
cations. There, the STS variables range over streams of values, i.e., in every transition step they
extend the own valuation history. The composition operator presented in [BP99] corresponds to
the interleaved composition Schint from Section 4.1.6 with additional fairness constraints.

13In other words, there is no run in 〈〈Schaf 〉〉 which coincides with ρ on Vaf
i .

110



4.5. RELATED WORK

Task Architecture Models

The system behavior realized by AFTM is inspired by Henzinger’s Giotto approach [HHK03].
The Giotto tasks, realized in C, are also activated only if all needed inputs are available. Their
outputs are issued after the time of their worst case execution is elapsed. In order to provide such
behavior, Giotto installs a low-level system driver, called E-machine, which takes over the role
of input and output check during the run-time. However, in contrast to the presented approach,
the data and control flow, which serves as an input for schedule synthesis, are extracted in a
rather ad hoc manner, e.g., it cannot be proven, that they correspond to the actual behavior of the
C-code tasks. For the AutoF Task Model these dependencies are made explicit and checked
for their correctness. Furthermore, no additional middleware like the E-machine is needed in the
presented work. This fact leaves more liberties for the subsequent deployment procedure and
extends the set of possible platforms which are suited for the deployment of AutoF tasks.

Clustering and Deployment Approaches

As noted in [BBC+03], in CASE tools typically used for model-based software development
in the automotive domain, like MATLAB/Simulink, Rose RT, AutoF, there is no explicit
deployment concept. In other tools, like ASCET-SD or Cierto VCC, there is an ability to build
a deployment model for one node only. However, these tools allow the modeling of the systems
only on a very low level of abstraction. The application of such tools in the early design phases
would lead to unnecessary over-specification.

AUTOSAR [HSF+04] (AUTomotive Open System Architecture) pursuits the goal of reducing
the growing complexity of the electrical/electronic systems in vehicles. For this purpose it tries
to reduce the platform dependencies of the automotive applications by defining a uniform syn-
tactic interface for the inter-process communication. In terms of AUTOSAR an atomic soft-
ware component is a system, which can be deployed on exactly one ECU (electronic control
unit). Software components consist of primitive functions, called runnables, which can be ar-
bitrary clustered to tasks on that ECU. No adaptation support is provided by the AUTOSAR
approach for the clustering process. The software components of AUTOSAR communicate
through the so-called Virtual Functional Bus (VFB) – a uniform syntactical communication in-
terface –, which connects different platform-specific Run Time Environments (RTEs). An RTE
wraps the software components and realizes the communication primitives of the VFB for a
specific platform. At the moment, AUTOSAR is clearly implementation oriented. There is no
development process based on it. In this sense, a promising approach would be to integrate our
clustering and deployment procedures with AUTOSAR’s architectural and run-time models.

The MetaH approach [Hon98] stems from the domain of avionics and flight control. It provides
an architectural description language (ADL), which allows to describe software and hardware
components of the system in a uniform manner. Software components are realized in Ada pro-
gramming language. Moreover, the MetaH tool set provides the possibility of user-guided map-
ping of software to hardware components, i.e., an interactive tool-supported deployment proce-
dure. A further part of MetaH is the MetaH Execution Environment, which is a combination

111



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

of a Real-Time Operating System (RTOS) and a run-time environment for Ada programs. The
run-time environment executes Ada byte code and provides communication primitives for inter-
process communication. Analogous to AUTOSAR, this pragmatic approach lacks of property-
preservation evidence during deployment and the flexibility in the derivation of clustering solu-
tions.

A number of approaches aim at preservation of system behavior during the transition between
different computational models (cf. [Gir05] for a survey). The most prominent representative
is the GALS approach of [BCG99]. GALS stands for Globally Asynchronous, Locally Syn-
chronous and occupies with the problem of distributing time-synchronous models over an asyn-
chronous network in a way which preserves their behavior. For this purpose [BCG99] formulates
two properties which components of the system have to satisfy: endochrony and isochrony. If
this is the case, the GALS approach guarantees property preservation. Compared with our task
synthesis procedure, GALS pursuits a slightly different goal: Simulation Relation (4.12) pro-
duces a Locally Asynchronous, Globally Synchronous (LAGS) relationship between AutoF
and AFTM models. In other words, every AutoF run sequence which is mapped to one
AFTM step is desynchronized in AFTM, but the overall AFTM system runs in synchronous
lockstep. It is a promising direction for future work to define sufficient and necessary conditions
for LAGS which resemble endochrony and isochrony in GALS.

4.6 Summary

The contribution of this chapter can be subdivided into four main topics. Firstly, a generic
automata-based framework is presented. It allows us to logically characterize the behavior of
reactive systems and facilitates their component-based development, validation, and verification.
Using STS the individual components can be specified and composed to overall systems by the
formally defined composition operator. The operational semantics permits the validation of STS
models by simulation. Finally, the logical characterization allows the verification of the systems
specified in STS by techniques, like model checking, SAT-, and constraint solving, etc. The STS
framework is embedded into the domain of reactive real-time systems from Chapter 2. Thus,
in particular, the functionality modeled in STS can be checked respecting fulfillment of time
constraints. Finally, the notion of STS refinement is introduced, which allows us to show the
property preservation throughout the development process.

Secondly, the STS framework served as a formal foundation of CASE tool-supported model-
based development of reactive systems. In particular, STS was instantiated by a concrete se-
mantic specification scheme, which describes the behavior of the CASE tool AutoF. This
scheme delivered a formal foundation for the development of application logic with AutoF
and the starting point for the subsequent transformations of application-logic models towards
deployed systems.

As an intermediate step towards a deployed system, serves the task architecture model. Thus,
thirdly, the properties of TA were presented as a part of a reference task model. After that
the novel TA called AFTM is introduced and characterized within the STS framework. AFTM

112



4.6. SUMMARY

can be integrated into the aforementioned reference task model. It serves as a basis for both
schedulability analysis as well as for code- and wrapper-generation for the target deployment
platform.

Finally, fourthly, a transition procedure from an AutoF application logic model to an AFTM
model was presented, and the property preservation of this procedure was proved. For a given
AutoF model, clustering function of its components to tasks, and description of task acti-
vation conditions (abstract component interfaces) the presented approach generates a task archi-
tecture which respects the activation conditions and establishes a simulation relation between a
subset of the original application-logic behavior and the task architecture.

To sum up, we have covered the transition from the logical architecture to the task architecture
and prepared the basis for the subsequent step, according to our development process from
Figure 1.1 (page 5). This step, i.e., the deployment, is the topic of the next chapter.

113



CHAPTER 4. FROM APPLICATION LOGIC TO TASK MODEL

114



5
From CASE Tools to Integrated Systems

Based on the STS framework, we have established in the previous chapter, we introduce the
formal model of a time-triggered distributed platform. It consists of a time-triggered bus (Flex-
Ray), which connects nodes running a time-triggered OS (OSEKtime). Further on, we describe a
special schedule and wrapper synthesis algorithms, which ensure the preservation of behavior of
AFTM models deployed on this platform. Finally, we prove the correctness of these algorithms.

Contents
5.1 Time-Triggered Deployment Platform . . . . . . . . . . . . . . . . . . . . 117
5.2 Propety Preserving Deployment . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

115



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

T   C 4    , which has to be deployed, i.e., has
to be distributed over the nodes of the target platform. Then, for individual nodes bus and

OS schedules have to be synthesized. Further on, the function clusters have to be wrapped
again, in order to use the available communication primitives, provided by the middle-ware on
the particular nodes and in order to adapt the functionality for the new execution environment.
In order to be able to guarantee the preservation of properties, proved to hold for the application
logic, we need to

(1) formalize the (abstract) behavioral models of the target platform (technical infrastructure),
(2) formulate the assumptions under which the property preservation is guaranteed to hold,
(3) prove the simulation relation between the task architecture model from the CASE tool

(AFTM) and the model of the technical infrastructure, and
(4) discharge the assumptions from step (2) for the concrete application code.

The benefit of such procedure is, that for a fixed target platform steps (1)-(3) have to be ac-
complished once. Their results may be reused for the deployment of any application, which is
modeled in AFTM. Another advantage is the possibility to automate schedule synthesis, since
one of the constituents of the assumptions from step (2) is the formulation of the shapeliness of
schedules. Every schedule, which obeys to them, is permissible and preserves the behavior of
the deployed system.

To the disadvantages of the above procedure belong the potentially unnecessary strong con-
straints on subsystems, and/or on schedules, which may be avoided in certain cases. This can
result in efficiency penalties for some applications. It is out of the scope of the present thesis
to judge if these penalties are acceptable or not, since this is a highly application- and domain-
dependent issue.

Contributions and Outline. The enumeration from above lists exactly the topics treated in
the present chapter. We will exercise the sketched procedure for representatives of the time-
triggered platform family, namely for the time-triggered OS OSEKtime [OSE01b] and the time-
triggered bus FlexRay [Fle04]. Both of them are upcoming standards in the automotive industry.
So, our target platform is a FlexRay network consisting of nodes with OSEKtime running on
each of them. The STS models of OSEKtime and FlexRay as well as of their combination are
given in Section 5.1. The procedure for schedule and wrapper synthesis, the constraints the
AFTM models must fulfill, and the correctness proof of that procedure are given in Section 5.2.

The presented results were first published in [BBG+08]. Further on, in the scope of the
Verisoft Automotive project1 the AFTM, FlexRay, and OSEKtime models were formalized in
Isabelle [NPW02], and substantial parts of the proof from Section 5.2 were carried out using this
interactive theorem prover. Moreover, step (4) from the list above was exercised in Isabelle on
the AFTM model of the eCall case study.

1see http://www.verisoft.de and http://www4.in.tum.de/~verisoft/automotive (20.06.2008)

116

http://www.verisoft.de
http://www4.in.tum.de/~verisoft/automotive


5.1. TIME-TRIGGERED DEPLOYMENT PLATFORM

5.1 Time-Triggered Deployment Platform

To master the inherent complexity of systems embedded in vehicles, the automotive industry
came up with a number of standards based on the time-triggered paradigm [KG94]. They allow
the realization of distributed systems with predictable time behavior, making them an appropri-
ate deployment target for safety-critical real-time systems. In a time-triggered system actions
are executed at predefined points in time. Further on, time-triggered communication protocols
provide, using time synchronization, a global time base for the distributed communication part-
ners. Thus, by combining time-triggered OS and communication system a deterministic system
behavior with guaranteed response times can be achieved.

After an introduction of both standards and their combination in Section 5.1.1, we present their
STS semantics in Sections 5.1.2 and 5.1.3.

5.1.1 OSEKtime & FlexRay: An Informal Introduction

Here, we give an informal introduction for the technologies designated to be the deployment
target of our approach (OSEKtime OS and FlexRay bus). Their formalization is the topic of the
subsequent section.

We also list simplifications we have made in the modeling of OSEKtime and FlexRay. The
justification of these simplifications is that we are providing a programmer’s model for these
technical systems. From this perspective solutions, like several bus lines, redundant message
transfer, or clock synchronization mechanisms, become transparent. Another reason is that in
the combination of both technologies certain features become obsolete. For instance, the fault-
tolerance mechanisms provided by the communication layer of OSEKtime and redundant Flex-
Ray transmission links both aim at reducing the probability of incorrect message transfer. It is
most likely that only one of these technologies will be applied at once.

OSEKtime OS

OSEKtime [OSE01b] is an OSEK/VDX2 open operating system standard of the European au-
tomotive industry. OSEKtime OS supports cyclic fixed-time scheduling and provides a fault-
tolerant communication mechanism.

An OSEKtime schedule defines when within a so-called scheduling round the dispatcher acti-
vates a user process. If another process is currently running at the scheduled activation time, it
is preempted until the activated process has completed its computation. Thereafter the execu-
tion of the preempted process is resumed again. The task-state model of OSEKtime is shown
in Figure 4.4b (page 96). In addition, OSEKtime monitors the deadlines of the processes, i.e.,
at predefined points within the scheduling round a process must have finished its computation;
otherwise, an error hook is executed. The round-based scheduling procedure is repeated perpet-
ually. All rounds have equal length and the scheduling tables for all rounds are the same.

2see http://www.osek-vdx.org (20.06.2008)

117

http://www.osek-vdx.org


CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

FTCom [OSE01c] is the fault-tolerant communication layer of OSEKtime that provides a num-
ber of primitives for the interprocess communication. Messages kept in FTCom are uniquely
identified by their IDs. For every message ID FTCom realizes a buffer of length one. Appli-
cations send or receive messages by invoking the communication primitives ttSend and ttRecv,
respectively, which are also provided by FTCom.

For the scope of this chapter we use the following simplifications compared to the OSEKtime OS
standard:

• Every task is activated exactly once per scheduling round.

• The execution times of tasks do not overlap with each other, i.e., every task is scheduled
after the worst-case execution time of the predecessor task. By this, we exclude preemp-
tion.

• The replication and RDA (Replica Determinate Agreement) [OSE01c] mechanisms of the
FTCom are not used.

FlexRay Bus

FlexRay [Con03, Fle04] is a communication solution for safety-critical real-time automotive
applications. It has been developed by FlexRay Consortium3. It is a static time division multi-
plexing network protocol that supports clock synchronization.

The static message transmission mode of FlexRay is based on FlexRay rounds consisting of
a constant number of time slices of the same length, so called slots. A node can broadcast
messages to other nodes within these slots. There can be at most one sender per slot.

For the STS model presented below several aspects of FlexRay are transparent as well:

• We use only a simple clock synchronization and FlexRay start-up algorithm. In other
words, we consider the clock drift to be negligible.

• The model does not contain bus guardians [Con03] that protect channels on the physi-
cal layer from interference caused by communication that is not aligned with FlexRay
schedules, e.g., from bubbling idiots.

• Only the static segment of the communication cycle of FlexRay is used, as we are mainly
interested in time-triggered systems.

• Only one FlexRay channel is contained in the model, i.e., the redundancy caused by sev-
eral channels is transparent to the application tasks.

Time-Triggered Architecture

The combination of the time-triggered OS and the time-triggered bus allows for synchronization
of the computations and the communication. This is done by synchronizing the local clock with
the help of FlexRay and by setting the length of the OSEKtime scheduling round to be a multiple

3see http://www.flexray.com (20.06.2008)

118

http://www.flexray.com


5.1. TIME-TRIGGERED DEPLOYMENT PLATFORM

of the length of the FlexRay round. A unit of computation is then also one FlexRay slot. We
denote the round length expressed in slots by rl.

The following design decisions were made for the combination of FlexRay and OSEKtime.

• Every task computation takes at most one scheduling slot.

• Both, the scheduling and the FlexRay slots have the same length.

• Both, the scheduling and the FlexRay rounds have the same length.

E
m

erg
en

cy
 C

all

M
o

b
ile P

h
o

n
e

FTCom

FlexRay controller

OSEKtime OS

FlexRay controller

FTCom

OSEKtime OS

G
P

S

...

E
C

U
 2

E
C

U
 1

2

Guardian

Bus

Guardian

Bus

1

Figure 5.1: Target Deployment Platform Architecture

These restrictions of our model preserve the idea of time-triggered communication and compu-
tation, and thus do not restrict the applicability of the presented ideas to real systems. Figure 5.1
shows an sample network with three tasks of the eCall system deployed on two OSEKtime ECUs
(electronic control units) connected by a double-redundant FlexRay link.

5.1.2 Time-Triggered Execution: OSEKtime

The formal model of OSEKtime OS is given by a special scheduled STS, which composes
OSEKtime tasks according to the specification in [OSE01b].

OSEKtime Tasks

According to the standard [OSE01b, OSE01c] OSEKtime tasks communicate using special
primitives: ttSend writes a message and ttRecv reads a message. The messages are kept in a spe-
cial buffer of the FTCom middle-ware. Unlike the ports in AutoF/AFTM and input/output
variables in STS, there are no constraints on reading or writing of FTCom entries: in fact, one
OSEKtime task is allowed to read and write the same entry. In order to construct the STS
Sot def

= (I,O,L,I,Rot, δott,dε) for an OSEKtime task we gather the entries mentioned in all ttRecv-
statements of a task in the set R and all entries from ttSend-statements in S . The variables from

119



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

the intersection of both sets can be both read and written by the component. However, according
to the definition of STS these sets have to be disjoint, thus we add common variables to the local
variable set.4 We define

I def
= R \S , O def

= S \R, L ⊇ R∩S .

The task to make the valuations of the variables from R∩S visible to other tasks is incumbent on
the scheduled STS system, which models the behavior of OSEKtime OS. It is introduced later in
this section. To the set of local variables L also belong the variables used in the implementation
of the OSEKtime task. We assume that they are disjoint to the set of FTCom-entries.

In the initial state of an OSEKtime task all controllable FTCom variables have to be set to ⊥:

∀α ∈ Λ(V) : α ` I⇒∀v ∈ (R∪S ) \ I : α.v = ⊥. (5.1)

Similar to the AutoF and AFTM models we assume that the “original” functionality of an
OSEKtime task is described by a set of predicates from Rot. Every predicate captures a state
change of certain variables between an activation of the task and an invocation of a special
ttFinished system call, which returns the control back to the operating system and sets the task
into suspended state (cf. Figure 4.4b on page 96). Like in the AFTM semantics, the values of the
remaining output variables are not flushed. After the outputs are issued and the control is given
over to the dispatcher the state of the OSEKtime task does not change (modulo valuations in
R∪S ) until the next activation of the task. Thus, the transition set δott from the Sot tuple is built
of transitions which in pairs with corresponding members of Rot fulfill the following constraint.

∀α ∈ Λ(V ∪V ′) : α ` d
def
⇔ (α ` r)∧∀v′ ∈ (L′∪O′) \ free.r : α.v′ = α.v. (5.2)

More precisely, for every d ∈ δott there exists r ∈ Rot such that (5.2) holds and vice versa for
every r ∈ Rot there exists d ∈ δott, for which Property (5.2) is satisfied.

The idle-loop of OSEKtime is defined for all α,β ∈ Λ(V) as the complement of δott, which
preserves the state of controllable variables:

α,β′ ` dε
def
⇔

(
∀γ ∈ Λ(V) : α,γ′ ` ¬

∨
d∈δott

d
)
∧ (∀v ∈ L∪O : β.v = α.v). (5.3)

Remark 5.1. In the rest of this chapter we will deploy AutoF task STSs, which are not
allowed to have self-loops. Thus, we can assume that their realization as OSEKtime tasks will
have no homonymous input/output variables, i.e., R∩ S = ∅. However, in order to retain the
generality of our formal OSEKtime model, we will also address this special case in the definition
of the OSEKtime composition below. ◦

Idle Task. A special type of OSEKtime tasks is the idle task. It is executed when no regular
task needs to run. Thus, it can carry out lower prioritized activities, when free resources are
available. For example, the OSEKtime OS specification [OSE01b] proposes to start an instance
of OSEK OS [OSE01a] as an idle task. An idle task is suspended as soon as a regular task needs
to be activated. We denote the idle task by Sot

idle and assume that it does not interact with regular
tasks. In other words, their state spaces (including the input and output variables) are disjoint.

4A local STS variable can be seen a self-loop channel: in every step the STS automaton sends its new value to itself.

120



5.1. TIME-TRIGGERED DEPLOYMENT PLATFORM

OSEKtime Composition

The scheduled STS for OSEKtime parametrized by n tasks Sot
1 , . . . ,S

ot
n with

Sot
i

def
= (Ii,Oi,Li,Ii,R

ot
i , δotti,dεi ) for all i ∈ [1,n]

and an idle task

Sot
idle

def
= (In+1,On+1,Ln+1,In+1,R

ot
n+1, δottn+1,dεn+1)

is denoted by Schot def
= (I,O,L,I, δot,dε). For the tasks we expect a weak version of pairwise

compatibility: The tasks have to be mutually type compatible (cf. Section 4.1.6), and the local
variables besides the self-loop variables from Ri∪S i have to be disjoint. However, nothing can
be assumed about the communication flow between tasks, i.e., tasks can share any input, output,
or local FTCom variable.

The set of local variables L consists of three parts:

• The set of FTCom entries FT ⊂ L. Any input or output variable of any task belongs to FT .
Thus, FTCom provides the only interface for the inter-task communication. Formally,⋃

i∈[1,n+1]

(Ri∪S i) ⊆ FT .

• The local variables of building STSs remain in the set of local variables of Schot:⋃
i∈[1,n+1]

Li ⊂ L.

• The counter for the current slot s ∈ L. W.l.o.g. we assume that s < FT ∪
⋃

i∈[1,n+1] Li. The
slot counter is incremented modulo round length rl, i.e., ty(s) = {i ∈ N | 0 ≤ i < rl}.

OSEKtime communicates with its environment through hardware buffers, which are provided by
the controllers of the physical node, it runs on. We assume that for every peripheral device (e.g., a
bus link or a directly connected sensor) there exists exactly one controller, which provides buffers
for reading and for writing messages. For our programmer’s model it is adequate to model
buffers of every controller as input/output variables of OSEKtime STS. Every variable is typed
with the whole valuation domain (M∗), i.e., every message can be sent through every controller.
This solution abstracts from common procedures accomplished by FTCom and/or controllers
during the inter-node communication, like packing/unpacking messages or splitting/merging
them in the case if the hardware buffers are either smaller or bigger than the FTCom entries.
This design decision is sustainable because those procedures are transparent for the application
tasks.

For the rest of this thesis we will work with computation nodes, which are equipped with a Flex-
Ray controller. An OSEKtime system has to copy values from FTCom to its output variables and
from input variables to FTCom. This task is carried out by the FlexRay device driver according

121



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

to the global communication schedule. By this, we model the FlexRay buffer in OSEKtime by
one input and one output variable:

frbin ∈ I and frbout ∈ O.

For every scheduled OSEKtime STS Schot we need a schedule for its tasks, a (global) commu-
nication schedule, which determines slots, in which the node is allowed to send as well as a
mapping from the current slot number to an FTCom entry, whose message is transported on the
bus at this time. This information is kept in the following functions.

nxtexe : [0,rl) 7→ [1,n + 1],

nxtcom : [0,rl) 7→ B,

mapcom : [0,rl) 7→ VAR.

In every slot s the task with the number nxtexe(s) is executed. The task with the number n + 1 is
the idle task. It is scheduled in every free slot. By this, nxtexe is a total function.

If nxtcom(s) is true in slot s, the message mapcom(s) ∈ FT is transported (e.g., copied into frbout).
Otherwise, the value of frbin is copied into the FTCom entry mapcom(s). Intuitively, this means
that in one slot a node can either send or receive a message through FlexRay, but not both. We
assume that for every slot there exists a variable whose value is scheduled for sending over bus.
By this, the communication map mapcom is a total function. However, if we restrict its range to
FT , it needs not to be total. This expresses the fact that not all messages transported by the bus
are addressed to the subsystem, deployed on the considered OSEKtime node.

The initial state of the OSEKtime system is described by the following predicate. The slot
counter is set to 0 and the FlexRay output buffer is set to ⊥. Further on, due to Constraint (5.1)
which every initial condition of an OSEKtime task has to fulfill, the task-controllable variables
from FT are set to ⊥ as well. Additionally, it must be ensured that the non-task-controllable
FT-entries also obtain the ⊥-valuation:

∀α ∈ Λ(V) : α ` I
def
⇔

(
α `

∧
i∈[1,n]

Ii
)
∧α.s = 0∧α.frbout = ⊥∧∀v ∈ FT : α.v = ⊥. (5.4)

Every transition in the set δot is built by the composition of a computation transition dexe and
a communication transition dcom. Thus, ∀d ∈ δot : d def

= dcom ◦ dexe with the parts defined for all
α ∈ Λ(V ∪V ′) as following:

α ` dexe def
⇔ ∃dloc ∈ δottnxtexe(α.s)∪{dεnxtexe(α.s)} : α ` dloc

∧∀i ∈ [1,n] : i , nxtexe(α.s)⇒∀v ∈ (Li∪Oi) \Vnxtexe(α.s) : α.v′ = α.v

∧α.frbin′ = α.frbin∧α.frbout′ = α.frbout ∧α.s′ = α.s,

(5.5a)

α ` dcom def
⇔ α.s′ = α.s + 1 mod rl

∧∀v ∈ FT : α.v′ =

α.frbin if v = mapcom(α.s),
α.v, o.w.

∧α.frbout′ =

α.mapcom(α.s) if nxtcom(α.s′),
α.frbout, o.w.

(5.5b)

122



5.1. TIME-TRIGGERED DEPLOYMENT PLATFORM

dexe executes the task scheduled for the current slot according to the scheduling table in nxtexe.
Since the idle-loop of a task is defined as a complement of the transition set, Property (4.3) is
not violated, i.e., the idle-loop is only fired if nothing useful can be done for the current input.
All other tasks do not change their states.

dcom increases the slot counter modulo round length, and copies the message in the FlexRay
input buffer to the corresponding FTCom entry. Finally, if the node may send in the next Flex-
Ray slot, the message to be sent is copied into the FlexRay output buffer. If the node sends
some FTCom entry on the bus, we assume that it also receives this entry. This is ensured by the
FlexRay bus protocol, described in the next section.

Please note that the last line of Equation (5.5a) does not violate Property (4.2) on page 77, which
states that a transition cannot constrain input valuations in the next state. The reason is that the
valuations of primed variables, which satisfy dexe, describe an intermediate automaton state. The
final successor state is given by dcom.

The idle-loop transition of OSEKtime is never fired. This is explained by the fact that there
exists an ordinary transition for every input valuation. Thus, in order to fulfill Property (4.2) we
define dε def

= ff.

5.1.3 Time-Triggered Communication: FlexRay

Next we would like to compose OSEKtime nodes from the last section using the FlexRay pro-
tocol. We formalize this by the scheduled FlexRay STS SchOF def

= (I,O,L,I, δof,dε). Given n
scheduled OSEKtime STSs Schot

1 , . . . ,Schot
n with

Schot
i

def
= (Ii,Oi,Li,Ii, δoti,dεi ), Vi

def
= Ii∪Li∪Oi,

pair-wise disjoint variable sets, and associated scheduling functions nxtexe
i , nxtcom

i , and mapcom
i

for all i ∈ [1,n], we compose them to SchOF by imposing following constraint on the global
communication schedule:

∀s ∈ [0,rl), i, j ∈ [1,n] : i , j⇒¬
(
nxtcom

i (s)∧nxtcom
j (s)

)
. (5.6)

This constraint formally captures the fact that in each slot at most one node is allowed to send.
Constraint (5.6) allows us to unite all communication schedules in an unambiguous way. We
define the global communication schedule function nxtFR : [0,rl) 7→ [0,n] as

∀s ∈ [0,rl) :
(
∀i ∈ [1,n] : nxtFR(s) = i

def
⇔ nxtcom

i (s)
)

∧
(
nxtFR(s) = 0

def
⇔¬

∨
i∈[1,n]

nxtcom
i (s)

)
. (5.7)

If no node sends a message in a certain slot, we set nxtFR to 0.

Remark 5.2 (Combining FlexRay systems). This special case nxtFR(s) = 0 does not indicate the
absence of communication, but rather marks communication that does not concern the current

123



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

system. The semantics of OSEKtime ensures that this communication does not influence the
system behavior. By this, we could define mechanisms for the combination of several com-
munication networks which use the same physical link to a further scheduled FlexRay STS.
However, this would go beyond the scope of the present thesis. Thus, we simply leave this case
underspecified in the semantics definition bellow. ◦

The local variables of the FlexRay STS contain all input and output buffers as well as all local
variables of OSEKtime STSs. Please note that the fact that the scheduled OSEKtime STSs have
pairwise disjoint variable sets implies that the names of their FTCom entries are disjoint also. We
will take care of this fact in the section on adaptation and wrapper generation (5.2.3). Formally,
holds ⋃

i∈[1,n]

(
Li∪{frbin

i , frbout
i }

)
⊆ L.

The initial state of the OSEKtime/FlexRay system is simply described by the conjunction of the
initial states of all OSEKtime subsystems,

∀α ∈ Λ(V) : α ` I
def
⇔ α `

∧
i∈[1,n]

Ii. (5.8)

Every transition in the set δof makes a transition step for every OSEKtime subsystem Schot
i and

broadcasts the value from the FlexRay output buffer of the node, which is allowed to send ac-
cording to the communication schedule, to the input variables of all OSEKtime notes. Formally,
for all d ∈ δof holds

∀α ∈ Λ(V ∪V ′) : α ` d
def
⇔ ∀i ∈ [1,n] : ∃di ∈ δoti : α ` di

∧nxtFR(α.s) > 0⇒∀i ∈ [1,n] : α.frbin
i
′
= α.frbout

nxtFR(α.s) (5.9)

Finally, the idle-loop transition is defined as dε def
= ∧i∈[1,n]dεi = ff.

5.2 Propety Preserving Deployment

The problem we are dealing with in the next sections is: Given n pairwise compatible AutoF
task STSs S

aft
1 , . . . ,S

aft
n with S

aft
i

def
= (Ii,Li,Oi,I

aft
i ,R

aft
i , δafti,d

aftε
i ) for all i ∈ [1,n] and n pairwise

compatible OSEKtime task STSs Sot
1 , . . . ,S

ot
n with Sot

i
def
= (Ii,Li,Oi,I

ot
i ,R

ot
i , δotti,dotε

i ) for all i ∈
[1,n] such that they stand in a pairwise refinement relation to each other:

∀i ∈ [1,n] : S
aft
i  Sot

i .

How can we build the scheduled OSEKtime/FlexRay STS

SchOF = (IOF,LOF,OOF,IOF, δof,dOFε),

which provably refines the scheduled AFTM STS

Schaftm = (Iaftm,Laftm,Oaftm,Iaftm, δaftm,daftmε),

124



5.2. PROPETY PRESERVING DEPLOYMENT

both built out of the corresponding AutoF/OSEKtime tasks? We will answer this question in
three steps. Firstly, we describe a mapping from a network of AutoF tasks (AFTM model)
to a network of nodes running OSEKtime and connected by FlexRay (cf. Section 5.2.1). Sec-
ondly, in Section 5.2.2 we provide a schedule synthesis algorithm, which preserves the original
behavior of AFTM models in a given OSEKtime/FlexRay network and for a given mapping on
it. Finally, in Section 5.2.3 we adapt AutoF tasks for their new run-time environment and
prove the property preservation between the AFTM model and the deployed system.

Remark 5.3 (Correctness of generated task code). The refinement relation between individual
AFTM and OSEKtime tasks can be achieved using code generators of AutoF mentioned
in Section 4.2. In order to ensure the correctness of code generation without proving the cor-
rectness of the code generator, the well-known technique called translation validation [PSS98]
can be applied. The correctness of an AutoF task relies on the correctness of individual
transition steps of the underlying I/O automaton. Their correctness can be guaranteed by gener-
ating assertions for every piece of code which implements an individual transition step. These
assertions have to be proved for the real code.

The procedure sketched above was applied to the eCall study in the scope of the Verisoft Au-
tomotive project. Therefore, C-code and assertions ware generated automatically out of the
AFTM model of the emergency call. Afterwards, the assertions were discharged for the eCall
code using the Hoare-logic verification environment of the Isabelle prover [Sch06]. ◦

5.2.1 Mapping AFTM to OSEKtime/FlexRay

The outcome of this section is a deployment function, which captures information needed to
initialize an OSEKtime/FlexRay network by an AFTM model. More precisely, it describes the
data-flow network of the AFTM model on an OSEKtime/FlexRay platform. There, the nodes are
simulated by corresponding OSEKtime tasks, ports by FTCom entries and channels by FlexRay
slots. This function gives us a possibility to describe and reason about deployment solutions.

As described as the beginning of Section 5.2, AFTM tasks are replaced by OSEKtime tasks,
which stand in the abstraction/refinement-relation to each other. Thus, the remaining con-
stituents of a deployment solution are

• a distribution of AFTM tasks over an OSEKtime/FlexRay network,
• a mapping of AutoF ports to FTCom entries, and
• a mapping of AutoF channels to sending slots.

These mappings underlie certain constraints. In fact we want to deal with deployment functions
only, which map all tasks, channels and ports in an unambiguous way. In this context we speak
about valid deployment functions – these are functions, which fulfill all constraints listed below.

Distribution

Given n pairwise compatible OSEKtime task STSs Sot
1 , . . . ,S

ot
n and m OSEKtime OS nodes

Schot
1 , . . . ,Schot

m , we use the total surjective function depl : [1,n] 7→ [1,m] to map every task to

125



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

a node. Thus, every scheduled OSEKtime STS Schot
j with j ∈ [1,m] is built over a task set

{Sot
i | depl(i) = j}. Because depl is surjective, this set is not empty for any j.

Remark 5.4 (Coexistence with another systems). By the definition of depl we do not disallow
the presence of alien functionality (e.g., non-AFTM tasks deployed on the same OSEKtime
nodes). We just ensure that every of n tasks is uniquely assigned to one of m nodes and every
node obtains at least one task. For reasons of simplicity we assume that the presence of alien
functionality does not influence the behavior of the system. On the one hand, this is guaranteed
by the resource management mechanisms of OSEKtime and FlexRay, on the other hand, we
demand that FTCom entries which belong to the system are never modified by alien tasks. ◦

The identifier number of the task i ∈ [1,n] on the node depl(i) is defined by locid(i). In other
words, the mapping locid transforms task indexes from the interval [1,n] to the local numbering
on each node.

Scheduling and Communication

In order to be able to reason about scheduling of particular AFTM tasks, we define here the
global computation and communication schedules. Moreover, we describe additional constraints
on communication schedules of a valid deployment function. For these purposes we make the
following auxiliary definitions. We define the set of all external variables, i.e., variables which
must be sent through the bus as

EXT def
= {v | ∃i, j ∈ [1,n] : depl(i) , depl( j)∧ v ∈ (Ii∩O j)}∪ Iaftm∪Oaftm.

We recall that Iaftm and Oaftm are the input and output variables, respectively, in the AFTM com-
position of the tasks S

aft
1 , . . . ,S

aft
n . EXT contains all input/output variable pairs, which belong to

the tasks deployed on different nodes and all variables, which are sent to/received from environ-
ment. Further on, we gather the set of all remaining variables in INT def

= Vaftm \EXT , where Vaftm

is the set of all variables in the AFTM composition.

Following constraints must hold for any valid deployment function. We demand that every
input/output variable, which must be sent over the bus, is mapped to a separate sending slot. All
other variables may not be mapped to any slot:

{mapcom(s) | s ∈ [0,rl)} ⊇ EXT and {mapcom(s) | s ∈ [0,rl)}∩ INT = ∅. (5.10)

Moreover, the predicates nxtcom on every node must provide send slots for every output variable
sent over FlexRay and must disallow writing on the bus, when inputs are transferred:

∀s ∈ [0,rl), i ∈ [1,n] : nxtcom
depl(i)(s)⇔ mapcom(s) ∈ Oi. (5.11)

126



5.2. PROPETY PRESERVING DEPLOYMENT

Finally, we introduce two functions, which are inverse to the scheduling functions of
OSEKtime/FlexRay. We define schdexe : [1,n] 7→ [0,rl) and schdcom : VAR 7→ [0,rl) such that
for all s ∈ [0rl) and i ∈ [1,n]

schdexe(i) = s
def
⇔ nxtexe

depl(i)(s) = locid(i),

∀v ∈ EXT : schdcom(v) = s
def
⇔

mapcom(s) = v if v ∈ Iaftm,
∃i ∈ [1,n] : nxtexe

depl(i)(s) = locid(i)∧ v ∈ Oi, o.w.

We demand schdexe to be total and injective for all tasks mapped to the same node:

∀i, j ∈ [1,n] : (depl(i) = depl( j)∧ i , j)⇒ schdexe(i) , schdexe( j).

Thus, every task is scheduled exactly once at a unique slot number.

The function schdcom maps every input/output variable to the slot, when it is updated by the
next value: If the variable is an external input variable, this is the slot when it is transported
on the bus. Otherwise, it is the slot when the variable is produced. Since every task is allowed
to produce in one step several outputs (on different output variables), the function schdcom can
potentially map multiple local variables to the same slot.

5.2.2 Scheduler Synthesis Procedure

In the previous section we have provided means to describe deployment functions, which map
AFTM models to OSEKtime/FlexRay networks. The constraints, which every valid deployment
function must fulfill, ensure that all tasks are deployed unambiguously and the data-flow be-
tween the tasks is recreated correctly. In this section we describe the conditions, which all valid
deployment functions must satisfy, in order to preserve the behavior of the AFTM model. These
conditions address OSEKtime and FlexRay schedules. Thus, in the following we describe the
scheduler synthesis procedures for both constituents of our target platform.

Example 5.1. We will illustrate introduced concepts using the example from Figure 5.2a. It
is designed to exhibit the most interesting causal relations between tasks. There, the circles
denote OR -tasks, the rectangles AND-tasks, and the diamond denotes the environment (>-task).
Directed edges stand for the data flow between tasks (homonymous input/output variable pairs).
For the reasons of simplicity, we assume that if two tasks are connected by an edge, they share
exactly one variable. ◦

OSEKtime Schedule Synthesis

To simulate AFTM by a deployed system a scheduling constraint is necessary: If a task sends
its outputs through FlexRay, the FlexRay transfer must be scheduled after the producing task.
Formally,

∀i ∈ [1,n],v ∈ (Oi∩EXT) : schdexe(i) < schdcom(v). (5.12)

127



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

S6

S1 S2

S3

S4

S5

(a)

Slot Node 1 Node 2 Communication

0 (S6, S1)
1 S1 (S6, S2)
2 (S1, S2)
3 S2
4 (S2, S3)
5 S3 (S2, S1)
6 (S3, S4)
7 S4
8 (S4, S5)
9 S5

(b)

HHH
HHHto

from
S6 S1 S2 S3 S4 S5

S1 1 - 1 - - 0
S2 1 0 - - 0 -
S3 - 1 1 - - -
S4 - - 1 1 - -
S5 - - - 1 1 -

(c)

Figure 5.2: AutoF Task Graph (a) with a Sample Schedule (b) and Delays (c)

Example 5.1 (con’ed). Assuming the tasks from Figure 5.2a are deployed on two nodes (S1,
S3, S5 on node 1 and S2, S4 on node 2), then Table 5.2b shows a sample schedule for these
tasks. The round length is 10. The unallocated computation slots can be used by other tasks
which do not belong to this task graph. The environment task is not deployed explicitly. It is
merely represented by the FlexRay slots for the input/output messages it produces/consumes.
The assumption is that the behavior of the environment task in AFTM and the real environment
(which can be realized by several nodes/tasks) are equivalent. ◦

Communication Schedule Synthesis

While an AFTM system is allowed to have arbitrary communication cycles (except for self-
loops), according to the OSEKtime specification, there exists only one cycle with the fixed length
of one round. For example, in AFTM the cycle between tasks S1, S3, and S5 from Figure 5.2a
means that the environment task S6 will send its output four times to S1 before the first input from

128



5.2. PROPETY PRESERVING DEPLOYMENT

S5 (together with the fifth one from S6 and the third one from S2) will arrive. In this context we
will speak about the age of an input: the number of messages arrived through a specific channel
so far. On the other hand, in the corresponding OSEKtime system, having a schedule in which
every task is scheduled exactly once (cf. Table 5.2b), the first input from S5 will be processed by
S1 together with the second input from S6. By this, a naïve deployment approach would lead to
deviations from the communication semantics established by AFTM.

This problem is mastered by installing delay buffers of length one on communication links in the
deployed system. They exactly simulate the communication semantics of AFTM. For a given
channel between two tasks Sot

i and Sot
j the communication has to be either delayed by one if

the data sent through this channel arrives before the task Sot
j is started, or the delay emerges

naturally, otherwise. By this, the set of all input delays delay : VAR 7→ B is defined for all input
variables by:

∀i ∈ [1,n] : ∀v ∈ Ii : delay(v) =

tt if schdcom(v) < schdexe(i),
ff, o.w.

(5.13)

As the result of the deployment, every task Sot
i gets |{v ∈ Ii | delay(v)}| dedicated buffers for its

corresponding inputs. Table 5.2c shows the buffer lengths for each channel from our example.
They are initialized with an ⊥. At the beginning of its activation the task reads its inputs from
FTCom (FT) and puts them into the corresponding buffer. The values which fall out of the buffer
are the actual inputs for the task logic.

(r, s) (0,1) (1,1) (2,1) (3,1) (4,1)

1. FT i(1)
6 ,⊥2,⊥5 i(2)

6 , i(1)
2 ,⊥5 i(3)

6 , i(2)
2 ,⊥5 i(4)

6 , i(3)
2 ,⊥5 i(5)

6 , i(4)
2 , i(1)

5

2.
(S6,S1)
(S2,S1)
(S5,S1)

i(1)
6
⊥2
−

i(2)
6

i(1)
2
−

i(3)
6

i(2)
2
−

i(4)
6

i(3)
2
−

i(5)
6

i(4)
2
−

3. inputs ⊥,⊥,⊥5 i(1)
6 ,⊥2,⊥5 i(2)

6 , i(1)
2 ,⊥5 i(3)

6 , i(2)
2 ,⊥5 i(4)

6 , i(3)
2 , i(1)

5

Table 5.1: Message/Input Buffer Content & Inputs of the Task S1

Example 5.1 (con’ed). The described behavior is illustrated by Figure 5.1 for the task S1 from
Figure 5.2a. There, the inputs for five invocations of the task according to the schedule from
Table 5.2b are listed. The time point of every invocation is denoted by a round number/slot
number-pair (r, s). The upper index denotes the age of an input, while the lower one is the index
of its producer. The absence of a message from the task Si is indicated by ⊥i. The first line
shows the content of the message buffer at the specified points in time. These values are inserted
into the buffers of S1, shown on the second line. The values, which fall out thereby, as well
as the input from the task S5 (for which no buffering is needed, cf. Table 5.2c), are the actual
inputs of S1, listed in line three. This demonstrates that with the help of these buffers the tasks
in AFTM and OSEKtime will work on consistent inputs. This statement will be proved as a part
of the simulation in Section 5.2.3. ◦

129



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

Remark 5.5 (Diversity vs. efficiency). The delay buffers slow down the data flow in the system.
Every message transfer lasts exactly one round. This solution is surely superfluous for appli-
cations with acyclic data flow dependencies. In these cases there always exists a sequentializa-
tion, which allows to establish slot-wise communication delays. On the other hand, forbidding
data-flow cycles would substantially constrain the set of deployable models and a buffer-free
deployment procedure would reduce the flexibility of the schedule synthesis. It depends on the
concrete application domain, which solution is more preferable. ◦

5.2.3 Simulation

From the previous sections we know that in general the behavior of AutoF tasks has to be
adapted before it can be deployed on an OSEKtime/FlexRay network in order to preserve its
behavior. The reasons are (1) the deviations in the communication and execution semantics and
(2) special communication primitives (e.g., ttRecv and ttSend), which have to be inserted instead
of shared input/output variables. This is done in the current section before the simulation proof
between AFTM and OSEKtime/FlexRay.

Wrapper and Code Generation

In order to incorporate the delay buffers introduced above into the OSEKtime system, we have
two options: To modify the OSEKtime semantics or to wrap the original STS components.
Here, we choose the second one, because it promises a better integration with other (legacy)
subsystems.

For every OSEKtime task STS Sot = (I,L,O,Iot,Rot, δott,dotε) (V = I ∪ L∪O) with the set of
input variables, which have to be delayed, Q ⊆ I, we define a wrapped STS

W(Sot,Q) def
= (I,L∪Bq,O,Iw, δwott,dwε)

with the set of distinguished buffer variables:

Bq
def
= {vq | v ∈ Q} such that Bq∩V = ∅ and ∀v ∈ Q : ty(v) = ty(vq).

The initial state of W(Sot,Q) is defined for all α ∈ Λ(Vw), where Vw is the set of all variables of
the wrapped task, as

α ` Iw def
⇔ α ` Iot ∧∀vq ∈ Bq : α.vq = ⊥. (5.14)

Before we define the behavior of wrapped OSEKtime tasks, we will fix the current input of a
task in the state α ∈ Λ(Vw) by the valuation otTI(W(Sot,Q),α) ∈ Λ(I) defined as

∀v ∈ I : otTI(W(Sot,Q),α).v def
=

eti(Q,α).v if eti(Q,α).v , ⊥,
α.vl, o.w.,

(5.15a)

∀v ∈ I : eti(Q,α).v def
=

α.vq if v ∈ Q,
α.v, o.w.

(5.15b)

130



5.2. PROPETY PRESERVING DEPLOYMENT

where the variable vl ∈ LI is the local copy of the previous input, as defined in Section 4.3.2. The
valuation function returns the input, which comes either from a buffer variable vq (if exists) or
from an FTCom entry v if and only if this input is not ⊥. Otherwise, the old value stored in vl is
returned.

The wrapped component behaves the same way as the original STS with input values replaced
by the valuations from eti:

∀d ∈ δwott,α ∈ Λ(Vw∪Vw′) :

α ` d
def
⇔ ∃dloc ∈ δott,β ∈ Λ(V ∪V ′) : β ` dloc

∧β
I
= eti(Q,α)∧β L∪O

= α∧β
V′
= α

∧∀v ∈ Q : α.v′q = α.v.

The above definition consists of two parts: The first part describes the inputs and outputs of
the wrapped OSEKtime task. This is done as explained above. The second part defines the
successor states of additional local variables, introduced by the wrapper: The external inputs
from the FTCom are copied into the buffer variables.

Finally, the idle-loop yields the idle-loop of the OSEKtime task and preserves the values of all
new variables:

∀α ∈ Λ(Vw∪Vw′) : α ` dwε def
⇔ (α ` dotε)∧∀vq ∈ Bq : α.v′q = α.vq.

Remark 5.6 (Disjointness of physical state spaces). Another preliminary for the successful com-
position is the disjointness of variable sets of scheduled OSEKtime STSs. The communication
mechanism of AFTM via homonymous variables is now replaced by the scheduled OSEKtime
and FlexRay composition. While the tasks deployed on one OSEKtime node can share their
I/O state space (the FTCom buffer), the state space of physically distributed tasks gets natu-
rally disjoint and the valuations of the homonymous input/output-variables become occasionally
de-synchronized. The natural solution of this problem is the renaming of homonymous variable
pairs in all physically distributed tasks. For this purpose we can use the renaming mechanism for
STSs presented in Section 4.1.6. However, in order to keep the discussion and proofs simple, we
do not provide the formal foundation for the underpinning of this idea. We merely assume that
the refinement relation between OSEKtime and AFTM tasks and the (.)

=-relation consider these
necessary renamings, i.e., compare AFTM task variables with their corresponding uniquely re-
named counterparts in OSEKtime task. ◦

Simulation Proof

The subsequent theorem employs the following notation: for a given OSEKtime/FlexRay run
ρ ∈ 〈〈SchOF〉〉 we access the state at the beginning of the sth slot in the rth round (where s ∈ [0,rl)
and r ∈ N) by

ρ.(r, s) def
= ρ.(r · rl + s).

131



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

Further on, we define the increment and the decrement of a round/slot-pair as

(r, s) + 1 def
=

(r, s + 1) if s < rl−1,
(r + 1,0), o.w.

and (r, s)−1 def
=

(r, s−1) if 0 < s,
(r−1,rl−1), o.w.,

respectively.

Finally, given n AutoF and OSEKtime tasks S
aft
1 , . . . ,S

aft
n and Sot

1 , . . . ,S
ot
n such that S

aft
i  Sot

i
for every i ∈ [1,n], we denote the corresponding variable sets by Vi for every involved task pair
i. The same is done for the input, local, and output variable sets, which are denoted by Ii, Li,
and Oi, respectively. OSEKtime tasks wrapped according to the delay-predicate are denoted by
Wq(Sot

i ) and defined as

∀i ∈ [1,n] : Wq(Sot
i ) def

= W(Sot
i , {v ∈ Ii | delay(v)}).

Theorem 5.1 (Simulation: OSEKtime/FlexRay vs. AFTM). Given a scheduled AFTM system
Schaftm def

= (I,L,O,I, δaftm,dε) built over n pairwise compatible AutoF tasks S
aft
1 , . . . ,S

aft
n and

an OSEKtime/FlexRay system SchOF with round length rl ∈ N, parametrized by n pairwise com-
patible wrapped OSEKtime tasks deployed on m OSEKtime nodes

Wq(Sot
1 ), . . . ,Wq(Sot

n ) and Schot
1 , . . . ,Schot

m ,

respectively, and provided Sot
i  S

aft
i for all i ∈ [1,n], and given a valid deployment function,

described by mappings

depl : [1,n] 7→ [1,m], schdexe : [1,n] 7→ [0,rl), and schdcom : VAR 7→ [0,rl),

we prove that for every OSEKtime/FlexRay run ρOF ∈ 〈〈SchOF〉〉 there exists a run of AFTM
ρaftm ∈ 〈〈Schaftm〉〉 such that for all i ∈ [1,n] and r ∈ N the following simulation relation holds
between every pair of states

(
ρaftm.r,ρOF.(r,schdexe(i))

)
:

ρaftm.r
Li
= ρOF.(r,schdexe(i)), (5.16a)

ρaftm.r
Oi
= ρOF.(r,schdexe(i)), (5.16b)

afTI(ρaftm.r)
Ii
= otTI(Wq(Sot

i ),ρOF.(r,schdexe(i))). (5.16c)

Proof. The theorem is obviously true for the initial system states:

SchOF.I⇒ Schaftm.I

⇔ (∗ definition of Schaftm.I, Definition (5.8) ∗)
∧i∈[1,m]Schot

i .I⇒∧i∈[1,n]S
aft
i .I

⇐ (∗ Definitions (5.4), (5.14), (5.1), predicate calculus ∗)
∀α ∈ Λ(SchOF.V ∪SchOF.V ′) :

(
α ` ∧i∈[1,n]S

ot
i .I

)
∧∀w ∈

⋃
i∈[1,n]

(
{vq | v ∈ Ii∧delay(v)}∪Sot

i .FT
)

: α.w = ⊥⇒ α ` ∧i∈[1,n]S
aft
i .I

⇐ (∗ theorem assumption, definition of refinement, Definitions (4.1), (4.8) ∗)
true

132



5.2. PROPETY PRESERVING DEPLOYMENT

From that implication Properties (5.16a) and (5.16b) immediately follow. Property (5.16c) fol-
lows from the definitions of afTI- and otTI-functions and from the fact that according to the
above derivation chain all input and buffer variables in OSEKtime/FlexRay and AFTM are ini-
tialized with ⊥.

Induction Step. Let us assume that the simulation relation holds in some round r ∈N for some
task i ∈ [1,n]. We show that the AFTM system after one step simulates the OSEKtime/FlexRay
system after one round step again. Every following lemma has this induction assumption as a
premise.

Lemma 5.1 (Local state invariance for inactive tasks in OSEKtime/FlexRay). For all wrapped
OSEKtime tasks Wq(Sot

i ) with (i ∈ [1,n]) holds

ρOF.(r,schdexe(i)) + 1
WLi
= ρOF.(r + 1,schdexe(i)),

where WLi
def
= Li∪{vq | v ∈ Ii∧delay(v)} is the local state space of Wq(Sot

i ).

Proof. The local state of a task in OSEKtime/FlexRay is changed only once per round according
to the definition of the scheduling function in Section 5.2.2 and to the OSEKtime semantics given
by (5.5a) and (5.5b) in Section 5.1.2. �

Now we prove the theorem by considering different execution phases of the AFTM and
OSEKtime/FlexRay systems. Each of the following lemmas considers one part of the simu-
lation relation to be proved.

Lemma 5.2 (State equivalence of controllable variables). For every successor state

αot ∈ Succ(ρOF.(r,schdexe(i)), δotti)

of the OSEKtime task there exists a successor state of the corresponding AutoF task STS
αaft ∈ Succ(ρaftm.r, δafti) such that

αot Li
= αaft and αot Oi

= αaft.

Proof. This is a direct consequence of the induction hypotheses (5.16a) and (5.16b) and the
refinement relation between S

aft
i and Sot

i . �

Lemma 5.3 (Output equivalence). For all tasks S
aft
i (i ∈ [1,n]), for all their output variables v ∈

Oi, and for all slots (r, s) which lie in the interval[(
r,schdcom(v)

)
+ 1 :

(
r + 1,schdcom(v)

)]
the following predicate holds:

∃αaft ∈ Succ(ρaftm.r, δafti) : ρOF.(r, s).v = αaft.v.

133



CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

Proof. Due to the second conclusion of Lemma 5.2, and the semantics of OSEKtime and Flex-
Ray introduced in Sections 5.1.2 and 5.1.3, respectively, we have

∃αaft ∈ Succ(ρaftm.r, δafti) : ρOF.
(
r,schdexe(i)

)
+ 1.v = αaft.v.

Furthermore, Scheduling Constraint (5.12) ensures that the value will be transported to all nodes
before the end of the round r and will not be changed until the next broadcast according to
schdcom(v) �

Lemma 5.4 (Broadcast correctness). For any pair of tasks S
aft
i and S

aft
j with i, j ∈ [1,n] and a

common variable v ∈ Ii ∩O j holds: The valuation of v in step r + 1 is correctly broadcast in
OSEKtime/FlexRay:

∃α
aft
i ∈ Succ(ρaftm.r, δafti),α

aft
j ∈ Succ(ρaftm.r, δaft j) :

α
aft
i .v = α

aft
j .v =

ρOF.
(
r + 1,schdexe(i)

)
.vq if delay(v),

ρOF.
(
r + 1,schdexe(i)

)
.v, o.w.

Proof. We prove the right equation first. According to the distinction above we need to consider
two cases:

¬delay(v): In the case that the message is broadcast after the start of the task Sot
i , the following

obviously holds:(
r + 1,schdexe(i)

)
∈
[(

r,schdcom(v)
)
+ 1 :

(
r + 1,schdcom(v)

)]
.

Thus, according to Lemma 5.3 we obtain

∃α
aft
j ∈ Succ(ρaftm.r, δaft j) : αaft

j .v = ρOF.
(
r + 1,schdexe(i)

)
.v.

delay(v): In the case that the message is broadcast before the start of the corresponding task Sot
i

we have (
r,schdexe(i)

)
∈
[(

r,schdcom(v)
)
+ 1 :

(
r + 1,schdcom(v)

)]
And thus:

∃α
aft
j ∈ Succ(ρaftm.r, δaft j) : αaft

j .v = ρOF.
(
r + 1,schdexe(i)

)
.vq

⇔ (∗ since vq ∈WLi, Lemma 5.1 ∗)
∃α

aft
j ∈ Succ(ρaftm.r, δaft j) : αaft

j .v = ρOF.
(
r,schdexe(i)

)
+ 1.vq

⇐ (∗ definition of W(Sot,Q) ∗)
∃α

aft
j ∈ Succ(ρaftm.r, δaft j) : αaft

j .v = ρOF.
(
r,schdexe(i)

)
.v

⇐ (∗ Lemma 5.3 ∗)
∃α

aft
j ∈ Succ(ρaftm.r, δaft j) : αaft

j .v = ρOF.
(
r,schdcom(v)

)
+ 1.v

⇐ (∗ since v ∈ O j by Lemma 5.2 ∗)
true

134



5.3. RELATED WORK

We can move from α
aft
j to αaft

i in both cases, using Constraint (4.2) – it states that the future input
of an STS automaton cannot be constrained by its transition function and thus

∀α
aft
j ∈ Succ(ρaftm.r, δaft j) : ∃αaft

i ∈ Succ(ρaftm.r, δafti) : αaft
i .v = α

aft
j .v.

By this, the statement is true in both cases. �

To prove the theorem, we still need to move from a member of Succ(ρaftm.r, δafti) to ρaftm.(r +1).
The AFTM composition is defined as the parallel one. Thus, it is easy to see that for any task
S

aft
i (i ∈ [1,n]) the AFTM composition operator does not constraint any controllable variable.

Formally, let Ui
def
= Vi \∪ j∈[1,n]\{i}O j be this set, then

∀αaft ∈ Succ(ρaftm.k, δafti) : ∃αaftm ∈ Succ(ρaftm.k, δaftm) : αaft Ui
= αaftm. (5.17)

The above relation combined with Lemma 5.3 proves Property (5.16b) to hold in step r + 1.
Property (5.16a) is also proved by Property (5.17) combined with the first part of Lemma 5.2 and
the fact that according to the semantics of OSEKtime and FlexRay the local variables cannot be
manipulated by other tasks. The unconnected input variables, which are also part of Ui, satisfy
Property (5.16c) in step r + 1, since Scheduling Constraint (5.12) and the semantics of the task
wrapper guarantee that the (unconstrained) input is delivered to the OSEKtime task with the
same rate as in AFTM. Finally, for connected input variables Property (5.16c) holds in r + 1,
since according to the AFTM semantics for any valuation states of AFTM tasks which coincide
on homonymous variables, there always exists a valuation state in AFTM which combines the
both task states. That coincidence of common variables is the consequence of Lemma 5.4. Thus,
all members of Succ(ρaftm.r, δaftm) also exhibit this property. By this, Property (5.16c) holds also
for connected input variables. �

Simplified versions (cf. [BBG+08]) of AFTM, OSEKtime and FlexRay were formalized using
the interactive theorem prover Isabelle [NPW02] within the scope of the Verisoft Automotive
project5. Afterwards, the proofs of the substantial parts of the above theorem were accomplished.

5.3 Related Work

In this chapter we have presented a concept for separating verification of application logic and
infrastructure. The necessity of this separation is also argued for by the authors of [STY03].
They introduce a formal modeling framework and a methodology, addressing the analysis of
correct deployment and timing properties. The additional value of our task concept is the explicit
modeling of task dependencies and explicit statements about task activation conditions.

There also exist other approaches for the verification of distributed real-time software. [Rus99,
Rus02] present a framework for a systematic formal verification of time-triggered communica-
tion. That framework allows to prove a simulation relationship between an untimed synchronous

5see http://www.verisoft.de and http://www4.in.tum.de/~verisoft/automotive (20.06.2008)

135

http://www.verisoft.de
http://www4.in.tum.de/~verisoft/automotive


CHAPTER 5. FROM CASE TOOLS TO INTEGRATED SYSTEMS

system, consisting of a number of communicating components (“processors”) and its implemen-
tation based on a time-triggered communication system. However, that approach considers only
a one-to-one relationship between components and physical devices they run on, i.e. no OS,
and no sequentialization of component execution is taken into account. For current verification
issues as encountered in the automotive industry this approach is insufficient because it neglects
the current praxis of automotive software development: OS, bus and application logic are devel-
oped by different suppliers and therefore should be treated separately.

5.4 Summary

In this chapter we have covered the final step in the developed process, depicted in Figure 1.1 at
the beginning of this thesis: We have presented the transition from the task architecture to the
deployed system and proved the correctness of this step in the sense of property preservation.
This was accomplished for a time-triggered architecture as the target deployment platform and
AFTM from the previous chapter as the task architecture.

Using the STS framework presented in Chapter 4 we have defined the semantics of OSEK-
time operating system and FlexRay communication protocol. By integrating both STS models
we were able to describe a network of computation nodes connected by the FlexRay bus with
OSEKtime running on each of them. All created models constitute the programmer’s point of
view on the deployment platform. The integrated model can be parameterized by a set of tasks
and messages as well as by communication and computation schedules.

For the instantiation of the integrated OSEKtime/FlexRay platform by AFTM models a special
schedule synthesis algorithm was presented. It allows to distribute an AFTM model over a
network in a way that preserves the overall behavior of this model. The procedure demands for
special buffering wrappers around the particular tasks. The wrapper generation was described
also using the STS framework as a special scheduled STS parametrized with one AFTM task.

Finally, the simulation proof between AFTM and OSEKtime/FlexRay models was provided.
Major parts of this proof are already formalized and proved in the automated theorem prover
Isabelle [NPW02]. This is done in the Verisoft Automotive project. Other proofs carried out
within the scope of this project allowed to build a model stack, reaching from the gate-level up
to the CASE tool models. This stack provides a mathematical model for each level and states that
every level of the system can be simulated by the underlying one. In particular, this stack proves
that the programmer’s model presented here corresponds to the actual behavior of the technical
infrastructure. In a broader view, this theorem stack implies that the system modeled in a CASE
tool is simulated by the system running on the real hardware. Combined with the verification of
the model accomplished on the level of application logic in AutoF and translation validation
for the generated code, this yields a completely verified system.

136



6
Conclusions

In the preceding chapters we have studied the preservation of time and functional properties
along the development process. Here, we summarize the results of this thesis and give directions
for further work.

6.1 Thesis Summary

In the introduction of this thesis we set out to work towards property preservation during the
development of safety-critical reactive real-time systems. Thereby our focus lay on the time
behavior of these systems. In Section 1.2, we identified four interesting questions concerning its
modeling and preservation, namely

(1) How can real-time requirements be analyzed respecting their consistency?

(2) How can real-time requirements be mapped to a design model and distributed over its
artifacts (components, classes, etc.)?

(3) How can a design model be analyzed in respect of fulfillment of time requirements in the
view of different time axes?

(4) How can a design model be mapped to a technical platform, without loss of functional or
real-time properties of this model?

We offered answers to these questions in Chapters 2 through 5.

In Chapter 2 we introduced the semantic domain of reactive real-time systems and the speci-
fication language MTL which allows to specify real-time constraints on the systems from this
domain. Using MTL we formalized a taxonomy of low-level real-time requirements commonly
used to describe the behavior of reactive systems on the technical level. We also combined indi-
vidual requirements to specifications by embedding them into contexts. This withdrawal of time
requirements from their functional embedding established the time behavior as a special view
on the system which is yet integrated with the functional one.

137



CHAPTER 6. CONCLUSIONS

Using the denotational framework form Chapter 2, we presented a number of analysis and trans-
formation methods in Chapter 3 which can work with individual time requirements from our
taxonomy. The goal of Chapter 3 was to support the quality and conformance assurance mea-
sures during the system development and, in particular, to deliver answers to the questions one
and two from above. For these purposes, we defined the notion of refinement. Further on, we
provided rules for inference, dissipation, and distribution of requirements. Finally, we inves-
tigated the transition from unstructured set of requirements to system specification structured
by components. In order to facilitate this process we formulated a special relation which holds
when a component specification realizes a real-time requirement. Furthermore, in order to pre-
serve the time behavior requirements as an independent view, we formulated a special relation
between requirements. This relation allows to perform changes directly within the real-time-
requirements view which provably yield a correct refinement of the whole component-based
system specification.

In Chapter 4 we introduced the STS formalism, an automata-based framework for the realization
of reactive systems. The systems can be specified using STSs in a modular way using an asso-
ciative composition operator. A mapping to the domain of real-time systems allows to ensure
the compliance of the specification by the realization and, by this delivers an answer to the third
question from above. STS is designed for the formalization of design models as well as imple-
mentation models which include the behavior of technical systems. By this, reasoning about
property preservation during the transition from design to implementation can be done within
the same framework. We instantiated STS by the design model of the CASE tool AutoF.

In the same chapter we presented a reference task model, which describes and orders different
kinds of information needed for the adequate description of a deployment problem and solution.
We also explained how and why the actual behavior of the system is abstracted and simplified
within different task models. Within the scope of the reference task model we identified the
simplified model of application logic the technical systems and schedulability approaches can
deal with. This aspect of the task model, referenced as the task architecture model, was instan-
tiated by the AFTM modeling paradigm. The semantics of AFTM was formalized using the
STS framework. Finally, as the last contribution of Chapter 4, the transition from AutoF
to AFTM was described and the property preservation of this transition was proved. By this,
we are able to cluster and adapt application logic modeled in AutoF to a deployable AFTM
model without falsification of the intended behavior.

Chapter 5 contains the formal model of a time-triggered deployment platform, consisting of an
operating system OSEKtime and a communication protocol FlexRay. Both technical systems as
well as their combination were formalized using STSs. Further on, scheduling- and wrapper-
synthesis algorithms for AFTM models were presented. Provided a deployment solution satisfies
Scheduling Constraint (5.12), the deployed system preserves the behavior of the original AFTM
model in the sense that there exists a simulation relation between them. This was formally proved
at the end of Chapter 5. By this, Chapters 4 and 5 delivered an answer to the last question in the
list from above.

To sum up our contributions, the requirements on reactive real-time systems can be modeled
in the denotational semantic domain using the temporal logic developed in Chapter 2. Certain

138



6.2. OUTLOOK

common types of time requirements are already formalized and can be used as building blocks of
specifications. Individual requirements can be integrated in formal specifications using the flexi-
ble context embedding mechanism. It allows the separation of functional and timing concerns of
the system. Specifications can be formally analyzed in regard to their consistency and complete-
ness using the methods from Chapter 3. Moreover, specifications of individual sub-systems can
be derived using those methods. The presented denotational component-based specification for-
malism can be used as an analytical system model at different development stages of the system:
the mapping of the STS formalism to the semantic domain of reactive real-time systems allows
to create denotational models out of operational ones and to verify their conformance to require-
ments specification. In particular, this includes the possibility of conformance checks for time
requirements during design phase, in which logical-time axes are used. Time requirements can
be formally related to denotational component specifications, in a way which allows indepen-
dent but yet integrated development of both components and requirements. These contributions
constitute the time behavior as an independent but yet integrated view on the system throughout
development process.

The operational models of application logic, task architecture, and time-triggered deployment
platform are formally related by synthesis algorithms presented in Chapters 4 and 5. By this,
the actual realization of the system can be concentrated on the level of application logic – clus-
tering and deployment of application code can be done computer-aided in a schematic manner.
These results leverage the idea of model-based development from narrow, implementation-near
domains to a model stack reaching from application logic to an integrated system. Altogether,
the introduced model-based formally-founded approach facilitates the construction of correct
reactive real-time systems.

6.2 Outlook

Results presented in Chapters 2 through 5 serve as the foundation for future work of both prac-
tical and theoretical nature. For the ultimate goal of establishing the model-based development
of reactive real-time systems especially in the early phases the following points are of particular
interest.

Modeling Scheme for Time Requirements

In Chapter 2 we presented the semantic framework for the specification of time requirements.
Its purpose is to provide the foundation of a specification language. Besides the temporal logic
presented in that chapter, there exist a number of well-established graphical notation schemes
like use case diagrams or message sequence charts (MSC) which are suited for the capture of
requirements. Their foundation using the developed stream-based semantics as well as their
extension by timing annotations are promising investigation fields on the way to the tool support
for requirements engineering which is described below.

139



CHAPTER 6. CONCLUSIONS

A complementary work direction is the adaptation of one of the various structured-English ap-
proaches for the settings of our semantics, MTL syntax, and requirements taxonomy. These
approaches (e.g., [SACO02, Fuc00]) aim at generating explanations to the formulas using a
fixed English vocabulary subset and a number of sentence-structure rules.

Tool Support

Automation and computer-support of different tasks in software engineering are as important as
their foundation by formal methods. The combination of these two factors is the best way to
produce correct systems, fulfilling the customer’s needs, at affordable cost. AutoF tool is
used to emulate AFTM models, as shown in [BGH+06]; however, there is still no support for
the transformation and clustering of AutoF models by AFTM models. The affiliate tran-
sition towards the OSEKtime/FlexRay architecture is partially supported by the code generator
developed within the scope of the Verisoft Automotive project. However, computation and com-
munication schedules are still need to be created and checked for validity by hand.

The connection to available schedulability tools, like TIMES tool [AFM+03] or
SymTA/S [HJRE06], is a further important issue. This is also an important ingredient of the
extension of the presented deployment approach towards the support of event-triggered plat-
forms which is discussed below.

The automation and tool support for requirements engineering provided by commercially avail-
able tools are at their best restricted to the structuring of text [Bro06b]. The modeling approach
from Chapter 2 facilitates the documentation, analysis and validation of specifications based on
formal models and assisted by computer. For these purposes the following problems have to be
treated

(1) the existing CASE tools have to be extended by new modeling techniques, e.g., by the
aforementioned annotated MSCs or use cases,

(2) the existing system views like AutoF’s STDs have to be linked to or annotated by the
relevant time requirements, and

(3) the verification backends, e.g., model checker or theorem prover, have to support the rea-
soning within the semantic domain of reactive real-time systems from Section 2.2.3.

Further Deployment Platforms

So far, we were dealing with time-triggered technical architectures only. The next reasonable
step is to consider event-triggered deployment platforms, like OSEK OS [OSE01a] as an operat-
ing system or CAN bus [ISO94] as a communication protocol. The behavior of event-triggered
systems is less predictable respective time behavior; however, they often permit more efficient
solutions and, thus, event-triggered systems are often more preferable for applications where
cost concerns and legacy integration issues are more dominant compared to safety requirements.
Thus, event-triggered systems still play a prominent role for the bulk good manufactures, like
the automotive industry.

140



6.2. OUTLOOK

In the case of event-triggered systems the correctness of deployment solution can be either

• guaranteed under certain assumptions, e.g., about the maximal latency of messages on the
bus,
• guaranteed with a certain probability, e.g., under the assumption that a certain percentage

of messages is transmitted on the bus correctly and in time, or
• enforced by emulating a more predictable communication protocol, e.g., cf. [RB04,

BCG+02].

Another interesting challenge is to model heterogeneous systems, consisting of time- and event-
triggered parts. This situation is typical, e.g., for on-board networks in vehicles [SZ06]: Net-
works embedded in premium cars consist of up to 80 ECUs (electronic control units) running
different (time- and event-triggered) operating systems and connected by different types of trans-
mission links, like event-triggered CAN bus or time-triggered FlexRay. Apart from the inherent
complexity of real-world systems the problem of modeling and analyzing heterogeneous sys-
tems is also interesting from the theoretical point of view [HS07].

Finally, more elaborate deployment and clustering synthesis procedures would offer even more
flexibility during these development steps. In particular, the abstract component interface which
describes a valid AutoF component abstraction can be refined by dynamical aspects, e.g.,
by causal dependencies between the input/output presence combinations. This would allow to
establish certain communication protocols between AutoF tasks, like request-response, or
client-server. The deployment model can approach the reality by allowing task run-times of
more than one slot, or by modeling the data-loss during the inter-node communication as well
as the fault-tolerance mechanisms of the middle-ware which may cause additional unforeseen
delays in the communication.

Case Studies

Extended case studies of substantial size promise to give insight about the scalability and effi-
ciency of the presented techniques. In particular, the quantification of effort put into the creation
of formal requirements model must be compared with the actual quality improvement of the
resulting system and with the overall effort for ensuring the correctness.

Another potential field of investigation is the estimation of performance penalties entailed by
generic schedule and code generation schemes. The defensibleness of these penalties decides
about the applicability of the presented approach in practice.

141



CHAPTER 6. CONCLUSIONS

142



A
Auxiliary Definitions and Proofs

In Chapters 2 and 4 we have omitted some proofs and definitions for better readability of the
“main” text. In the following sections we make up for this omission.

A.1 Definitions and Proofs for Chapter 2

Definition A.1 (Partial order/partially ordered set (poset)). For a set S and a binary relation
� : S ×S written in infix notation, (S ,�) is a partial order, iff for all a,b,c ∈ S , we have that:

(1) a � a, (reflexivity)

(2) if a � b and b � a then a = b, (antisymmetry)

(3) if a � b and b � c then a � c. (transitivity)

A set with a partial order is called a partially ordered set (also called a poset). ^

Definition A.2 (Total/linear order). A partial order (S ,�) is called total or linear order, iff for
all a,b ∈ S holds:

a � b or b � a (totality). ^

Definition A.3 (Infimum/greatest lower bound (glb)). For a partial order (S ,�) and a subset
T ⊆ S , s ∈ S is called a lower bound of T iff

∀x ∈ T : s � x.

s is called a greatest lower bound, written s def
=

d
T or s def

= glbT iff

(1) s is a lower bound of T , and
(2) for all lower bounds s of T , s � s. ^

143



APPENDIX A. AUXILIARY DEFINITIONS AND PROOFS

Definition A.4 (Supremum/least upper bound (lub)). For a partial order (S ,�) and a subset
T ⊆ S , s ∈ S∞ is called an upper bound of T iff

∀x ∈ T : x � s.

s is called a least upper bound, written s def
=

⊔
T or s def

= lubT iff

(1) s is an upper bound of T , and
(2) for all upper bounds s of T , s � s. ^

Definition A.5 (Operations on timed channel valuations). Given simultaneous channel valua-
tions τ,τ′, τ′′ ∈ ~C of an arbitrary non-empty channel set C, a timed event a ∈ ~CA, an interval
I ∈ [T∞] from the timed domain T, and a natural number i ∈ N. We lift the definitions of opera-
tions introduced in Section 2.2.2 for timed channel valuations as follows:

#τ def
= #φ(τ),

τ′ = τ|I
def
⇔∀c ∈C : τ′.c = τ.c|I,

len(τ) def
= max

c∈C
len(τ.c),

nth(τ, i) = a
def
⇔

(
∀c ∈C : τ.(φ(a)).c = a.c

)
∧

(
φ(a) = min

c∈C
{φ(nth(τ.c, i)) | i ≤ len(τ.c)} if i ≤ len(τ),

τ′′ = τ^τ′
def
⇔∀c ∈C : τ′′.c = τ.c^τ′.c. ^

Proposition A.1 (Correctness of equivalencies in Table 2.4). For a pair of MTL formulas ϕ,ψ,
observation predicates e,e1,e2 ∈ ℘(~C), and a pair of intervals I,J ∈ [T∞] hold Properties (2.1a)
through (2.1h) listed on page 30 in Table 2.4.

Proof. For all τ ∈ ~C and t ∈ φ(τ) hold:

• Property (2.1a) holds due to the following derivation:

(τ, t) |= ^I(ϕ∨ψ)
⇔ (∗ definitions of ^(.) and ∨ ∗)

(τ, t) |= tt UI¬(¬ϕ∧¬ψ)
⇔ (∗ semantics of U(.), ¬, and ∧ ∗)

∃t′ ∈ φ(t) :
(
(τ, t′) |= ϕ∨ (τ, t′) |= ψ

)
∧ t′− t ∈ I

⇔ (∗ predicate calculus ∗)(
∃t′ ∈ φ(t) : (τ, t′) |= ϕ∧ t′− t ∈ I

)
∨

(
∃t′ ∈ φ(t) : (τ, t′) |= ψ∧ t′− t ∈ I

)
⇔ (∗ semantics of U(.), definition of ^(.) ∗)

(τ, t′) |= ^Iϕ∨ (τ, t′) |= ^Iψ
⇔ (∗ definition of ∨, semantics of ¬, ∧, predicate calculus ∗)

(τ, t′) |= ^Iϕ∨^Iψ

144



A.1. DEFINITIONS AND PROOFS FOR CHAPTER 2

• Property (2.1b) holds due to the following derivation:

(τ, t) |= �I(ϕ∧ψ)
⇔ (∗ definition of �(.), predicate calculus ∗)

(τ, t) |= ¬^I(¬ϕ∨¬ψ)
⇔ (∗ Property (2.1a) ∗)

(τ, t) |= ¬
(
^Iϕ∨^Iψ

)
⇔ (∗ definitions of �(.), ∧, predicate calculus ∗)

(τ, t) |= �Iϕ∧�Iψ

• Provided I∪ J is a valid interval, then we prove Property (2.1c) as follows:

(τ, t) |= ^I∪J(ϕ)
⇔ (∗ definition of ^(.) ∗)

(τ, t) |= tt UI∪J ϕ
⇔ (∗ semantics of U(.) ∗)

∃t′ ∈ φ(t) : (τ, t′) |= ϕ∧ t′− t ∈ I∪ J
⇔ (∗ set theory, predicate calculus ∗)(

∃t′ ∈ φ(t) : (τ, t′) |= ϕ∧ t′− t ∈ I
)
∨

(
∃t′ ∈ φ(t) : (τ, t′) |= ϕ∧ t′− t ∈ J

)
⇔ (∗ semantics of U(.), definition of ^(.) ∗)

(τ, t′) |= ^Iϕ∨ (τ, t′) |= ^Jϕ
⇔ (∗ definition of ∨, semantics of ¬, ∧, predicate calculus ∗)

(τ, t′) |= ^Iϕ∨^Jϕ

• Provided I∪ J is a valid interval, then we prove Property (2.1d) as follows:

(τ, t) |= �I∪J(ϕ)
⇔ (∗ definition of �(.) ∗)

(τ, t) |= ¬^I∪J¬ϕ
⇔ (∗ Property (2.1c) ∗)

(τ, t) |= ¬
(
^I¬ϕ∨^J¬ϕ

)
⇔ (∗ definitions of �(.), ∧, predicate calculus ∗)

(τ, t) |= �Iϕ∧�Jϕ

• Property (2.1e) which states that ¬�Iϕ = ^I¬ϕ holds follows directly from the definition
of the �(.)-modality.

145



APPENDIX A. AUXILIARY DEFINITIONS AND PROOFS

• Property (2.1f) holds due to the following derivation:

(τ, t) |=
(
¬ψUI (¬ϕ∧¬ψ)

)
∨�I¬ψ

⇔ (∗ semantics of U(.), ¬, definitions of �(.), ^(.) ∗)(
∃t′ ∈ φ(t) : (τ, t′) |= (¬ϕ∧¬ψ)∧ t′− t ∈ I∧∀t′′ ∈ t + I : t′′ < t′⇒ (τ, t′′) 6|= ψ

)
∨¬

(
∃t′ ∈ φ(t) : (τ, t′) |= ψ∧ t′− t ∈ I

)
⇔ (∗ predicate calculus ∗)

¬
((
∀t′ ∈ φ(t) : (τ, t′) |= (ϕ∨ψ)∨ t′− t < I∨∃t′′ ∈ t + I : t′′ < t′⇒ (τ, t′′) |= ψ

)
∧

(
∃t′ ∈ φ(t) : (τ, t′) |= ψ∧ t′− t ∈ I

))
⇔ (∗ renaming ∀-quantified t′ to t′′′, predicate calculus ∗)

¬
(
∃t′ ∈ φ(t) : (τ, t′) |= ψ∧ t′− t ∈ I

∧
(
∀t′′′ ∈ φ(t) : (τ, t′′′) |= (ϕ∨ψ)∨ t′′′− t < I∨∃t′′ ∈ t + I : t′′ < t′′′⇒ (τ, t′′) |= ψ

))
⇔ (∗ predicate calculus, interval arithmetic ∗)

¬
(
∃t′ ∈ φ(t) : (τ, t′) |= ψ∧ t′− t ∈ I

∧
(
∀t′′′ ∈ t + I : (τ, t′′′) |= (ϕ∨ψ)∨∃t′′ ∈ t + I : t′′ < t′′′⇒ (τ, t′′) |= ψ

))
The last conjunct follows from the first one when t′′′ = t′ or t′′′ > t′. Further on, if for a
given t′ with (τ, t′) |=ψ∧ t′− t ∈ I there exists some t ∈ t+ I such that t < t′ and (τ, t) |=ψ then
for all t′′′ ≥ t the last conjunct yields true, too. Thus, we can simplify the above logical
expression to:

¬
(
∃t′ ∈ φ(t) : (τ, t′) |= ψ∧ t′− t ∈ I∧∀t′′′ ∈ t + I : t′′′ < t′⇒ (τ, t′′′) |= ϕ

)
⇔ (∗ semantics of U(.), ¬ ∗)

(τ, t) |= ¬(ϕUIψ)

• Property (2.1g) holds since for any l ∈ {↓,↑}:

(τ, t) |= (e1∩ e2)l

⇔ (∗ semantics of ↓/↑ ∗)
τlt ∈ (e1∩ e2)

⇔ (∗ set theory, predicate calculus ∗)(
τlt ∈ e1

)
∧

(
τlt ∈ e2

)
⇔ (∗ semantics of ∧, ↓/↑ ∗)

(τ, t) |= (el1∧ el2)

• Property (2.1h) holds since for any l ∈ {↓,↑}:

(τ, t) |= (¬e)l

⇔ (∗ semantics of ↓/↑, ¬ ∗)
¬(τlt ∈ e)

⇔ (∗ semantics of ↓/↑, ¬ ∗)
(τ, t) |= ¬(el) �

146



A.2. DEFINITIONS AND PROOFS FOR CHAPTER 4

A.2 Definitions and Proofs for Chapter 4

Definition A.6 (Simulation on STSs). For two STS automata S1 = (I1,L1,O1,I1, δ1) and S2 =

(I2,L2,O2,I2, δ2) with V1 ⊇ V2, we say that a binary relation H ⊆ Λ(V1)×Λ(V2) is a simulation
relation [Mil71] between S1 and S2 iff for all α1 ∈ Λ(V1) and α2 ∈ Λ(V2) if (α1,α2) ∈ H then the
following conditions hold.

(1) α1
V2
= α2.

(2) ∀β1 ∈ Succ(α1, δ1) : ∃β2 ∈ Succ2(α2, δ2) : (β1,β2) ∈ H.

H is a weak simulation relation if we replace the second condition from above by the following.

∀n ∈ N : ∀β1 ∈ Succn(α1, δ1) : ∃k ∈ N : ∃β2 ∈ Succk(α2, δ2) : (β1,β2) ∈ H.

S2 simulates S1 if there exists a simulation relation H such that for every initial state α1 ` I1
there is an initial state α2 ` I2 for which (α1,α2) ∈ H. ^

147



APPENDIX A. AUXILIARY DEFINITIONS AND PROOFS

148



Bibliography

[ABG95] Pascalin Amagbégnon, Loïc Besnard, and Paul Le Guernic. Implementation of the data-
flow synchronous language signal. In PLDI ’95: Proceedings of the ACM SIGPLAN 1995
conference on Programming language design and implementation, pages 163–173, New
York, NY, USA, 1995. ACM.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[AFM+03] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times:
a tool for schedulability analysis and code generation of real-time systems. In Proceed-
ings of the 1st International Workshop on Formal Modeling and Analysis of Timed Systems,
FORMATS 2003, 2003.

[AH92] Rajeev Alur and Thomas A. Henzinger. Logics and models of real time: A survey. In
Proceedings of the Real-Time: Theory in Practice, REX Workshop, pages 74–106, London,
UK, 1992. Springer-Verlag.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[Alu92] Rajeev Alur. Techniques for automatic verification of real-time systems. PhD thesis, Depart-
ment of Computer Science, Stanford University, Stanford, CA, USA, 1992.

[BBC+03] P. Braun, M. Broy, M. V. Cengarle, J. Philipps, W. Prenninger, A. Pretschner, M. Rappl, and
R. Sandner. The automotive CASE, pages 211 – 228. Wiley, 2003.

[BBG+08] Jewgenij Botaschanjan, Manfred Broy, Alexander Gruler, Alexander Harhurin, Steffen
Knapp, Leonid Kof, Wolfgang Paul, and Maria Spichkova. On the correctness of upper
layers of automotive systems. Formal Aspects of Computing (FACS), 20(6):561–662, De-
cember 2008.

[BBR+05] Andreas Bauer, Manfred Broy, Jan Romberg, Bernhard Schätz, Peter Braun, Ulrich Freund,
Núria Mata, Robert Sandner, and Dirk Ziegenbein. AutoMoDe — notations, methods, and
tools for model-based development of automotive software. In Proceedings of the SAE 2005
World Congress, Detroit, MI, April 2005. Society of Automotive Engineers.

149



BIBLIOGRAPHY

[BCG99] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In J.C.M.
Baeten and S. Mauw, editors, Proceedings of CONCUR’99, Concurrency Theory, 10th In-
ternational Conference, volume 1664 of LNCS, pages 162–177. Springer, 1999.

[BCG+02] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P. Talpin, and S. Tripakis. A protocol
for loosely time-triggered architectures. In Proceedings of EMSOFT 2001. Springer-Verlag,
2002.

[BFG+08] Manfred Broy, Martin Feilkas, Johannes Grünbauer, Alexander Gruler, Alexander Harhurin,
Judith Hartmann, Birgit Penzenstadler, Bernhard Schätz, and Doris Wild. Umfassendes
architekturmodell für das engineering eingebetteter software-intensiver systeme. Technical
Report TUM-I0816, Technische Universität München, 06 2008.

[BGH+06] Jewgenij Botaschanjan, Alexander Gruler, Alexander Harhurin, Leonid Kof, Maria
Spichkova, and David Trachtenherz. Towards Modularized Verification of Distributed Time-
Triggered Systems. In Formal Methods 2006, McMaster University, Hamilton ON, Canada,
August 23 - 25, 2006.

[BHL+02] A. Blotz, F. Huber, H. Lötzbeyer, A. Pretschner, O. Slotosch, and H.-P. Zängerl. Model-
based software engineering and ada: Synergy for the development of safety-critical systems.
In Proc. Ada Deutschland Tagung, Jena, 2002.

[BJ05] Jewgenij Botaschanjan and Jan Jürjens. MoDeII: Modeling and Analyzing Time-
Constraints. In Proceedings of the 12th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems, ECBS. IEEE, 2005.

[BK98] Manfred Broy and Ingolf Krüger. Interaction Interfaces – Towards a scientific foundation of
a methodological usage of Message Sequence Charts. In J. Staples, M. G. Hinchey, Shaoy-
ing Liu Hinchey, and Shaoying Liu, editors, Formal Engineering Methods (ICFEM’98),
pages 2 – 15. IEEE Computer Society, 1998.

[BKKS05] J. Botaschanjan, L. Kof, Ch. Kühnel, and M. Spichkova. Towards Verified Automotive
Software. In ICSE, SEAS Workshop, St. Louis, Missouri, USA, May 21 2005.

[BMN00] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system specification. ACM
Comput. Surv., 32(1):12–42, 2000.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice-Hall, Upper Saddle River, NJ,
USA, 1981.

[BP99] M. Breitling and J. Philipps. Black box views of state machines. Technical Report TUM-
I9916, Institut für Informatik, Technische Universität München, 1999.

[Bro94] Manfred Broy. A Functional Rephrasing of the Assumption/Commitment Specification
Style. Technical Report TUM-I9417, Technische Universität München, 1994.

[Bro97] M. Broy. Refinement of Time. In M. Bertran and Th. Rus, editors, Transformation-Based
Reactive System Development, ARTS’97, number 1231 in LNCS, pages 44 – 63. TCS, 1997.

[Bro98] Manfred Broy. Compositional Refinement of Interactive Systems Modelled by Relations.
In International Symposium Compositionality, number 1536 in LNCS, pages 130 – 149.
Springer, 1998.

[Bro06a] Manfred Broy. Challenges in automotive software engineering. In Leon J. Osterweil, H. Di-
eter Rombach, and Mary Lou Soffa, editors, ICSE, pages 33–42. ACM, 2006.

[Bro06b] Manfred Broy. Requirements engineering as a key to holistic software quality. In Computer
and Information Sciences ISCIS 2006, volume Volume 4263/2006, pages 24–34. Springer
Berlin / Heidelberg, 2006.

150



BIBLIOGRAPHY

[BRS04] J. Botaschanjan, J. Romberg, and O. Slotosch. Formal Methods and Models for System De-
sign – A System Level Perspective, chapter MoDe: A Method for System-Level Architecture
Evaluation. Kluwer Academic Publishers, 2004.

[BS01a] M. Broy and K. Stølen. Specification and Development of Interactive Systems: Focus on
Streams, Interfaces, and Refinement. Springer, 2001.

[BS01b] Manfred Broy and Oscar Slotosch. From requirements to validated embedded systems. In
EMSOFT ’01: Proceedings of the First International Workshop on Embedded Software,
pages 51–65, London, UK, 2001. Springer-Verlag.

[BW95] A. Burns and A. Wellings. HRT-HOOD: A Structured Design Method for Hard Real-Time
Ada Systems. Elsevier Science, 1995.

[Car02] Jan Carlson. Languages and methods for specifying real-time systems. Technical report,
Mälardalen Real-Time Research Centre, Department of Computer Science and Engineering,
Mälardalen University, Sweden, August 2002.

[CES83] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state con-
current systems using temporal logic specifications: A practical approach. In Conference
Record of the Tenth Annual ACM Symposium on Principles of Programming Languages,
pages 117–126, Austin, Texas, January 24–26, 1983. ACM SIGACT-SIGPLAN.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[Cha88] K. Mani Chandy. Parallel program design: a foundation. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1988.

[Con03] FlexRay Consortium. FlexRay Overview. http://www.flexray.com/products/
protocol%20overview.pdf, 2003. accessed 15.12.2006.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification patterns
for finite-state verification. In FMSP ’98: Proceedings of the second workshop on Formal
methods in software practice, pages 7–15, New York, NY, USA, 1998. ACM.

[Dam05] Werner Damm. Controlling speculative design processes using rich component models. In
ACSD ’05: Proceedings of the Fifth International Conference on Application of Concurrency
to System Design, pages 118–119, Washington, DC, USA, 2005. IEEE Computer Society.

[EMSS92] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning.
Real-Time Syst., 4(4):331–352, 1992.

[Eur03] European Commission (DG Enterprise and DG Information Society). eSafety forum: Sum-
mary report 2003. Technical report, eSafety, March 2003.

[Fer03] E. Fersman. A generic approach to schedulability analysis of real-time systems. PhD thesis,
Uppsala University, 2003.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael
Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and precise
WCET determination for a real-life processor. In EMSOFT ’01: Proceedings of the First In-
ternational Workshop on Embedded Software, pages 469–485, London, UK, 2001. Springer-
Verlag.

[FKPY07] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedulability,
decidability and undecidability. Information and Computation, Volume 205(8):1149–1172,
August 2007.

[Fle83] S. B. Flexner, editor. Random House Webster’s Unabridged Dictionary. Random House,
Inc., second edition, 1983.

151

http://www.flexray.com/products/protocol%20overview.pdf
http://www.flexray.com/products/protocol%20overview.pdf


BIBLIOGRAPHY

[Fle04] FlexRay Consortium. FlexRay Communication System - Protocol Specification - Version 2.0,
2004.

[FMHH01] T. Führer, B. Müller, F. Hartwich, and R. Hugel. Time triggered CAN (TTCAN). In SAE
2001, Detroit, number 2001-01-0073 in SAE, 2001.

[Fuc00] Norbert E. Fuchs. Attempto controlled english. In WLP, pages 211–218, 2000.

[GEB03] Jinghong Guo, Stephen H. Edwards, and Dusan Borojevich. Comparison of dataflow ar-
chitecture and Real-Time Workshop Embedded Coder in power electronics system control
software design. In CPES 2003 Power Electronics Seminar and NSF/Industry Annual Re-
view, April 2003.

[GGJZ00] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A reference model for
requirements and specifications. IEEE Software, 17(3):37–43, 2000.

[Gir05] A. Girault. A survey of automatic distribution method for synchronous programs. In
F. Maraninchi, M. Pouzet, and V. Roy, editors, International Workshop on Synchronous
Languages, Applications and Programs, SLAP’05, ENTCS, Edinburgh, UK, April 2005.
Elsevier Science.

[Gli07] M. Glinz. On non-functional requirements. Requirements Engineering Conference, 2007.
RE ’07. 15th IEEE International, pages 21–26, 15-19 Oct. 2007.

[Gri03] Klaus Grimm. Software technology in an automotive company: major challenges. In ICSE
’03: Proceedings of the 25th International Conference on Software Engineering, pages 498–
503, Washington, DC, USA, 2003. IEEE Computer Society.

[GTTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics and Infinite
Games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[HBGL95] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. Scr: a toolset for specifying and analyz-
ing requirements. Computer Assurance, 1995. COMPASS ’95. ’Systems Integrity, Software
Safety and Process Security’. Proceedings of the Tenth Annual Conference on, pages 109–
122, Jun 1995.

[HD98] Patrick Heymans and Eric Dubois. Scenario-based techniques for supporting the elabora-
tion and the validation of formal requirements. Technical report, Technical Report of the
University of Namur, October 1998.

[Hei95] C. Heitmeyer. Requirements specifications for hybrid systems. In Proc. Workshop on Veri-
fication and Control of Hybrid Systems, pages 304–314, 1995.

[HHK03] Th. A. Henzinger, Ben. Horowitz, and Ch. M. Kirsch. Giotto: A time-triggered language for
embedded programming. Proceedings of the IEEE, 91:84–99, 2003.

[HJRE06] Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. A framework for modular analysis
and exploration of heterogeneous embedded systems. Real-Time Systems, 2006.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414, April 1990.

[HMR+98] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, and O. Slotosch. Tool supported
specification and simulation of distributed systems. In B. Krämer, N. Uchihira, P. Croll, and
S. Russo, editors, Proc. Intl. Symp. on Software Engineering for Parallel and Distributed
Systems, pages 155–164. IEEE, 1998.

[Hon98] Honeywell Technology Center. MetaH User’s Manual, 1998.

[HRR91] N. Halbwachs, P. Raymond, and C. Ratel. Generating Efficient Code from Data-Flow Pro-
grams. In J. Maluszyński and M. Wirsing, editors, Proceedings of the Third International

152



BIBLIOGRAPHY

Symposium on Programming Language Implementation and Logic Programming, number
528 in LNCS, pages 1–13207–218. Springer Verlag, 1991.

[HS07] Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded systems design.
Computer, 40(10):32–40, 2007.

[HSE97] F. Huber, B. Schätz, and G. Einert. Consistent Graphical Specification of Distributed
Systems. In Industrial Applications and Strengthened Foundations of Formal Methods
(FME’97), LNCS 1313, pages 122–141. Springer Verlag, 1997.

[HSF+04] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L. Maté,
K. Nishikawa, and T. Scharnhorst. AUTomotive Open System ARchitecture – an industry-
wide initiative to manage the complexity of emerging automotive E/E-architectures. In Pro-
ceed. Convergence 2004, International Congress on Transportation Electronics, Detroit, Oc-
tober 2004.

[IM07] James Ivers and Gabriel A. Moreno. Model-driven development with predictable quality.
In OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on Object oriented
programming systems and applications companion, pages 874–875, New York, NY, USA,
2007. ACM.

[ISO94] ISO: Int’l Organization for Standardization, Geneva. ISO 11898, Road Vehicles: Inter-
change of Digital Information-Controller Area Network (CAN) for High-speed Communica-
tion, 1994.

[JLHM91] Matthew S. Jaffe, Nancy G. Leveson, Mats Per Erik Heimdahl, and Bonnie E. Melhart.
Software requirements analysis for real-time process-control systems. IEEE Trans. Software
Eng., 1991.

[JMS88] Farnam Jahanian, Aloysius K. Mok, and Douglas A. Stuart. Formal specification of real-time
systems. Technical report, University of Texas at Austin, Austin, TX, USA, 1988.

[Jon93] M. P. Jones. An Introduction to Gofer, August 1993.

[Jos01] Mathai Joseph, editor. Real-time Systems: Specification, Verification and Analysis. Prentice
Hall, revised version with corrections edition, June 2001.

[KC05] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pages 372–381,
New York, NY, USA, 2005. ACM.

[KG94] Hermann Kopetz and Günter Grünsteidl. TTP — a protocol for fault-tolerant real-time sys-
tems. Computer, 27(1):14–23, 1994.

[KLSV06] D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. The Theory of Timed I/O Au-
tomata. Morgan & Claypool Publishers, 2006. Synthesis Lecture on Computer Science,
101pp, ISBN 159829010X.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Syst.,
2(4):255–299, 1990.

[KR02] Kowalewski and Rittel. Real-time service allocation for car periphery supervision. Technical
report, Robert Bosch GmbH. Research and Development – FV/SLD, 2002.

[Krü00] I. Krüger. Distributed System Design with Message Sequence Charts. PhD thesis, Technische
Universität München, 2000.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. on Software
Engineering, 2:125–143, March 1977.

[Lam83] L. Lamport. What good is temporal logic. In R. E. A. Mason, editor, Information Processing
83: Proceedings of the IFIP 9th World Congress, pages 657–668, 1983.

153



BIBLIOGRAPHY

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, 1994.

[Lan97] G. Le Lann. An analysis of the ariane 5 flight 501 failure-a system engineering perspective.
ecbs, 00:339, 1997.

[LH95] Yassine Lakhneche and Jozef Hooman. Metric temporal logic with durations. Theor. Com-
put. Sci., 138(1):169–199, 1995.

[Liu00] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.
[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-

time environment. Journal of the ACM, 20(1), 1973.
[LT89] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly,

2(3):219–246, 9 1989.
[LvL02] Emmanuel Letier and Axel van Lamsweerde. Deriving operational software specifications

from system goals. SIGSOFT Softw. Eng. Notes, 27(6):119–128, 2002.
[MA95] S.M. Mahmud and A.I. Alrabady. A new decision making algorithm for airbag control.

Vehicular Technology, IEEE Transactions on, 44(3):690–697, Aug 1995.
[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. Software Engineering, IEEE

Transactions on, SE-7(4):417–426, July 1981.
[Mil71] Robin Milner. An algebraic definition of simulation between programs. Technical report,

Stanford University, Stanford, CA, USA, 1971.
[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer, New York, 1992.
[MP95] Zohar Manna and Amir Pnueli. Models for reactivity. Acta Informatica, 30(7):609–678,

1995.
[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assis-

tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
[OSE01a] OSEK VDX consortium. OSEK/VDX Operating System Version 2.2, 2001.
[OSE01b] OSEK VDX consortium. OSEK/VDX Time-Triggered Operating Specification 1.0, 2001.
[OSE01c] OSEK/VDX. Fault-Tolerant Communication - Specification 1.0, 2001.
[Pan90] P. K. Pandya. Some comments on the assumption-commitment framework for compositional

verification of distributed programs. In REX workshop: Proceedings on Stepwise refinement
of distributed systems: models, formalisms, correctness, pages 622–640, New York, NY,
USA, 1990. Springer-Verlag New York, Inc.

[PBKS07] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Software
engineering for automotive systems: A roadmap. In FOSE ’07: 2007 Future of Software
Engineering, pages 55–71, Washington, DC, USA, 2007. IEEE Computer Society.

[PM95] David Lorge Parnas and Jan Madey. Functional documents for computer systems. Science
of Computer Programming, 25(1):41–61, 1995.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-
sium on the Foundations of Computer Science (FOCS-77), pages 46–57, Providence, Rhode
Island, October 31–November 2 1977. IEEE Computer Society Press.

[Poh07] Klaus Pohl. Requirements Engineering. Grundlagen, Prinzipien, Techniken. Dpunkt Verlag,
2007.

[Pop00] Paul Pop. Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time
Systems. PhD thesis, Institute of Technology, Linköping University, Linköping, Sweden,
2000.

154



BIBLIOGRAPHY

[PP05] Alexander Pretschner and Wolfgang Prenninger. Computing refactorings of behavior mod-
els. Model Driven Engineering Languages and Systems, pages 126–141, 2005.

[PS99] Jan Philipps and Oscar Slotosch. The quest for correct systems: Model checking of diagrams
and datatypes. In APSEC’99: Asian Pacific Software Engineering Conference, pages 449 –
458. IEEE Computer Society, 1999.

[PSS98] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 1384 of LNCS, 1998.

[RB04] J. Romberg and A. Bauer. Loose synchronization of event-triggered networks for distribution
of synchronous programs. In Proceedings 4th ACM International Conference on Embedded
Software, September 2004.

[Rus99] John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms.
IEEE Trans. Softw. Eng., 25(5):651–660, 1999.

[Rus02] John M. Rushby. An overview of formal verification for the time-triggered architecture.
In FTRTFT ’02: Proceedings of the 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 83–106, London, UK, 2002. Springer-Verlag.

[SAÅ+04] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan Burns,
Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real time
scheduling theory: A historical perspective. Real-Time Syst., 28(2-3):101–155, 2004.

[SACO02] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. Propel: an
approach supporting property elucidation. In ICSE’02: Proceedings of the 24th International
Conference on Software Engineering, pages 11–21, New York, NY, USA, 2002. ACM.

[Sch06] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München, 2006.

[Slo98] O. Slotosch. Overview over the project Quest. In Proc. of FM Trends 98, LNCS 1641.
Springer-Verlag, 1998.

[SPHP02a] Bernhard Schätz, Alexander Pretschner, Franz Huber, and Jan Philipps. Model-based devel-
opment. TUM-I 0204, Technische Universität München, May 2002.

[SPHP02b] Bernhard Schätz, Alexander Pretschner, Franz Huber, and Jan Philipps. Model-based de-
velopment of embedded systems. In J.-M. Bruel and Z. Bellahsene, editors, Advances in
Object-Oriented Information Systems. Springer, 2002.

[STY03] Joseph Sifakis, Stavros Tripakis, and Sergio Yovine. Building models of real-time systems
from application software. Proceedings of the IEEE, 91(1):100–111, 2003.

[SZ06] Jörg Schäuffele and Thomas Zurawka. Automotive Software Engineering. Vieweg Friedr. +

Sohn Ver, 2006.

[TBW94] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for analyzing fixed
priority hard real-time tasks. Real-Time Syst., 6(2):133–151, 1994.

[vL03] Axel van Lamsweerde. From system goals to software architecture. In M. Bernardo and
P. Inverardi, editors, Formal Methods for Software Architectures, LNCS 2804, pages 25–43.
Springer-Verlag, 2003.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem — overview of methods and survey of tools. Trans.
on Embedded Computing Sys., 7(3):1–53, 2008.

155



BIBLIOGRAPHY

[Yov98] Sergio Yovine. Model checking timed automata. In Lectures on Embedded Systems, Euro-
pean Educational Forum, School on Embedded Systems, pages 114–152, London, UK, 1998.
Springer-Verlag.

[ZCA91] Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing
Letters, 40(5):269–276, 1991.

156



List of Figures

1.1 Design Flow & Time Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Context of the CPS System from [KR02] . . . . . . . . . . . . . . . . . . . . . 10

2.1 An Illustration of the CPS System in Action . . . . . . . . . . . . . . . . . . . 20
2.2 An Illustration of Selected MTL Modalities . . . . . . . . . . . . . . . . . . . 30
2.3 A Taxonomy of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Structure of the CPS System from [KR02] . . . . . . . . . . . . . . . . . . . . 45
2.5 Operational Mode Transition Diagram of CPS . . . . . . . . . . . . . . . . . . 46

4.1 Composition of STSs (S1 ‖S2) . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 The Component Architecture in AutoF (SSD) of the eCall Study . . . . . . 90
4.3 State Transition Diagram (STD) of MobilePhone from eCall Study . . . . . . . . 91
4.4 Task State Models of OSEK OS and OSEKtime OS . . . . . . . . . . . . . . . 96

5.1 Target Deployment Platform Architecture . . . . . . . . . . . . . . . . . . . . 119
5.2 AutoF Task Graph with a Sample Schedule and Delays . . . . . . . . . . . 128

157



List of Figures

158



List of Tables

2.1 Streams & Timed Traces Notation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Timed Channel Valuations Notation . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Derived MTL Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Useful MTL Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 C(ψ1,ψ2,ψ3)-Formalization of Context Types from [DAC98] . . . . . . . . . . 44

3.1 Interval Refinement Rules for Building Blocks . . . . . . . . . . . . . . . . . . 57
3.2 Interval Refinement Rules for Time Constraints . . . . . . . . . . . . . . . . . 58

4.1 Component to Task Mapping for the eCall System . . . . . . . . . . . . . . . . 105

5.1 Message/Input Buffer Content & Inputs of the Task S1 . . . . . . . . . . . . . 129

159


	Introduction
	Model-Based Development
	The Notion of Time in the Model-Based Development
	Contributions and Outline
	Case Studies

	Specification of Time Constraints
	Mathematical Preliminaries
	Specification of Reactive Real-Time Systems
	Timed Events and Timed Traces
	Operations on Timed Traces
	Semantic Domain of Timed Systems
	Composite Timed Events and Observations
	Metric Temporal Logic for Timed Traces

	A Formal Model for Time Requirements
	Important Occurrence Patterns
	Important Time Patterns
	Low-Level Time Constraints
	Timed Behavior Specification

	CPS Case Study (con'ed)
	Related Work
	Summary

	Analysis of Time Constraints
	Quality and Conformance Assurance During Development
	Refinement
	Consistency and Completeness
	Decomposition

	A Formal Model for System Specification
	System Model
	Causality, Composition, and Refinement
	From Time Constraints to Component Specification

	Related Work
	Summary

	From Application Logic to Task Model
	Operational Semantics for Reactive Systems
	Variable Valuations
	State Transition Systems
	From Runs to Trace Semantics
	Modeling Composite Systems with STS
	Refinement
	STS for Technical Systems

	Modeling Application Logic
	Description Techniques in AutoFocus
	 AutoFocus Semantics

	Clustering Application Logic
	A Reference Task Model
	AutoFocus Task Model (AFTM)

	From AutoFocus to AFTM
	Problem Statement
	AutoFocus Task Synthesis

	Related Work
	Summary

	From CASE Tools to Integrated Systems
	Time-Triggered Deployment Platform
	OSEKtime & FlexRay: An Informal Introduction
	Time-Triggered Execution: OSEKtime
	Time-Triggered Communication: FlexRay

	Propety Preserving Deployment
	Mapping AFTM to OSEKtime/FlexRay
	Scheduler Synthesis Procedure
	Simulation

	Related Work
	Summary

	Conclusions
	Thesis Summary
	Outlook

	Auxiliary Definitions and Proofs
	Definitions and Proofs for Chapter 2
	Definitions and Proofs for Chapter 4

	Bibliography

