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ABSTRACT 
In the classical methods for blind channel identification 
(Subspace method, TXK, XBM) [l, 2, 31, the addi- 
tive noise is assumed to be spatially white or known to 
within a multiplicative scalar. When the noise is non- 
white (colored or correlated) but has a known covari- 
ance matrix, we can still handle the problem through 
prewhitening. However, there are no techniques presently 
available to deal with completely unknown noise fields. 
It is well known that when the noise covariance matrix 
is unknown, the channel parameters may be grossly in- 
accurate. In this paper, we assume the noise spatially 
correlated, and we apply this assumption for blind chan- 
nel identification. We estimate the noise covariance 
matrix without any assumption except its structure 
which is assumed to be a band-Toeplitz matrix. The 
performance evaluation of the developed method and 
its comparison to the modified subspace approach (MSS) 
[4] are presented. 

1. INTRODUCTION 

One common problem in signal transmission through 
any channel is the additive noise. In general, additive 
noise is generated internally by components such as re- 
sistors, and solid-state devices used to implement the 
communication system. This is sometimes called ther- 
mal noise or Johnson noise. Other sources of noise and 
interference may arise externally to the system, such 
as interference from the other users. When such noise 
and interference occupy the same frequency band at the 
desired signal, its effect can be minimized by proper de- 
sign of the transmitted signal and its demodulator at 
the receiver. The effects of noise may be minimized by 
increasing the power in the transmitted signal. How- 
ever, equipment and other practical constraints limit 
the power level in the transmitted signal [5 ] .  
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The classical model used in communication systems 
supposes on the one hand that the power of the noise 
is identical on each sensor, and on the other hand that 
there is no noise space/time correlation. However, this 
situation is seldom met, which involve a clear degra- 
dation of the performances of the subspace methods. 
Here, we recall some well-known methods which treat 
the noise problem in array processing for direction-of- 
arrival estimation. In fact, in recent years, there has 
been a growing interest in the problem of techniques 
with the objective of decreasing the signal to noise ra- 
tio resolution threshold or the spatially colored noise 
[6, 7, 8, 9, lo]. The ambient noise is unknown in prac- 
tice, therefore modeling or its estimation are necessary. 
The methods developed for this problem are very few 
and there are no definitive solution. There are some 
practical methods; in [ll] two methods are obtained by 
optimization of criterion and by using AR or ARMA 
modeling of noise. In [7] the spatial correlation matrix 
of noise is modeled by the known Bessel functions. As 
in [6] the ambient noise covariance matrix is modeled by 
a sum of hermitian matrices known up to multiplicative 
scalar. In [8] this estimate is obtained by measuring the 
array covariance matrix when no signals are present. 
This procedure assumes that the noise is not changing 
in function of time, which is not fulfilled in several do- 
main applications. Another possibility [8] arises when 
the correlation structure is known to be invariant un- 
der a translation or rotation. The so-called differencing 
covariance technique can be then applied to reduce the 
noise influence. In this method, two identical trans- 
lated and/or rotated measurements of the array covari- 
ance matrix are required and assumes the invariance of 
the noise covariance matrix, while the source signals 
change between the two measurements. The estimate 
noise covariance matrix is eliminated by a simple sub- 
traction. Furthermore, this method cannot be applied 
when the source covariance matrix satisfies the same 
invariance property or when only one measurement is 



available. In [7] a particular modeling structure noise 
covariance matrix, which takes into account the charac- 
teristic noise relative to its origins, is given. Recently, 
a maximum posteriori approach (MAP) has been de- 
veloped in [lo]; this method can only be applied in the 
case of a linear array. In (91, the method called "In- 
strumental Variable" (IV) is used to reduce the noise 
without estimated it; this estimator considers that the 
noise is temporally independent. One technique based 
to the MDL criterion has been developed in [12] for de- 
tection and localization of the signals in the presence 
of unknown noise; this estimator is asymptotically bi- 
ased [12]. However, the study of the noise for blind 
channel identification is very limited. In [4], a modi- 
fied subspace method (MSS) for blind identification in 
the presence of unknown correlated noise has been pre- 
sented, indeed one use some matrices, for a time lag 
when the noise is absent. The object of this correspon- 
dence is to improve the blind channel identification in 
the presence of a correlated noise by whitening the re- 
ceived data. The noise is assumed spatially correlated. 
The structure of the paper is as follows. In the sec- 
tion 11, we present the studied problem and in section 
111, we describe the noise covariance matrix model used 
in this study and its estimation by the proposed algo- 
rithm, we apply the noise estimation for blind channel 
identification using the subspace method. We present, 
in the section IV, some simulation results and perfor- 
mance comparisons. 

2. PROBLEM FORMULATION 

Consider L FIR channels driven by a common source. 
The output vector of the ith channel can be written as: 

ri(k) = N ( ~ ) s ( I c )  + ni(k), (1) 
where, ri(k) is the output sequence of the ith chan- 
nel, Si(k) is the input sequence and ni(k) is the noise 
sequence on the ith channel. 
rj(k) = [rj(k) ri(k + I) ... r i ( k  + N - I)], 
~ ( k )  = [ ~ ( k  - M )  
ni(k) = [ni(k) ni(k + 1) ... ni(k + N - l)]. 

~ ( k  - M + 1) ... ~ ( k  + M - l)], 

. .  I i  ... 
) ... h,  

where, h f )  is the impulse response of the ith channel, 
M is the maximum order of the L channels and N is 
the width of the temporal window. 7di) is of dimension 
( N  x ( N + M ) ) .  

Then we have, 

r(k) = %(IC) + n(k), (2) 

The matrix 31 is known as the ( L N  x (N+ M)) filtering 
matrix, which has the full rank (N + M) under the 
following assumptions: the L channels do not share a 
common zero and N 2 (M + 1). 
The blind identification problem is to find 31 from the 
sequence, 

{r(k) for IC = 1,2, ..., K )  

The subspace method [l] exploits the sample covariance 
matrix of all channel outputs: I' = E [rr+], 

I' = - xr(k)r+(k) ,  where K is the number of sam- 

ples and + denotes the conjugate transpose. Assume 
that the signals and the additive noise are independent, 
stationary and ergodic zero mean complex valued ran- 
dom processes, and as K becomes large, this matrix 
has the asymptotical structure: I' = 31I',31+ + I?,,, 
with I',, = E Inn+] the noise covariance matrix and 
re = E [ss+] is the signal covariance matrix. 
The goal of blind channel identification and equaliza- 
tion is to identify 31 (channel identification) and to es- 
timate s ( k )  from r(k) (channel equalization). 
The subspace blind channel identification procedure [l] 
consists on the estimation of the ( L N  x 1) vector h 
of channel coefficients from the observation vector. In- 
deed, this approach is based on the eigendecomposition 
of the data covariance matrix, 

l K  

k=l K 

The subspace method yigds an estimate '6 of Z by 
solving the equation: U$% = 0 ,  in a least square sense 
(where % is subject to the same structure as 31). This 
estimate is uniquely (up to a constant scalar) equal to 
'ti. n o m  [l], we have: 

(3) Ui31 = h+U,, = 0, 

with U,, is the ( L ( M +  1) x (N+  M)) matrix obtained 
by stacking the L filtering matrices U;". 
U,, = [U,!iO)T...U,!i'-l)T] T, where, 
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blindly, 3.1 from the "clean" obtained matrix [XI ' ,X+]  
using the subspace method [ l ] .  

3. BLIND NOISE ESTIMATION (BNE) 
1' 

and h = [L("), ..., f i ( L - l ) ] ,  with h(i) = [,I, ..., h a ]  , 
The optimization system derived in [l] is: , 

h 

h = arg min h+U,,h, 
llhll=1 

(4) 

where, 

i=l 

is the filtering noise projection matrix. 
The noise is assumed Gaussian, complex and spatially 
correlated. Its real and imaginary part are supposed 
independents, Gaussian with, E[nl] = 0, E[nlnF] = 0, 
and E[nlnt] = I?,. I', is the noise covariance ma- 
trix, the superscripts "*" and "+" denote conjugate 
and conjugate transpose, respectively. We consider the 
noise covariance matrix is band, defined by: 

0, for  I i - m I > K  
r n ( i , m ) =  pi ,  for ( i - m l <  K a n d i # m  { uf ,  for i = m  

Where p; = + jp i ,  i = I , .  . . , K, pi are complex vari- 
ables, j 2  = -1, v2 are the noise variance at each re- 
ceiver, and K is the spatially noise correlation length. 

Two manners to give back observation covariance ma- 
trix a noise-free matrix: either by subtraction of the 
noise covariance matrix, HI','fl+ = I' - rn; then we 
have then a "clean" observation covariance matrix; how- 
ever, we can obtain a negative matrix if l?, is bad- 
estimated. 
Or by whitening; in this case we find again the classical 
model of communication systems (I';iI'l?Gi). How- 
ever, this processing is most robust but needs more 
computational load. 
Fkom the data matrix I' = 3.11's%++I'n, the goal of the 
first part of this paper is to estimate the noise covari- 
ance matrix I?,, and in the second part, we estimate, 

In many applications such as communication systems, 
it is reasonable to assume the correlation is decreasing 
along the receivers. That is a widely used model for 
a colored noise. The correlation rate p is decreasing 
when the distance between two receivers increases. 
In this study, we consider the noise covariance matrix 
band-Toeplitz with the diagonal values are decreasing, 
so-called decreasing band- Toeplitz. It is the unique as- 
sumption to estimate the noise covariance matrix. 
The BNE algorithm from the noise covariance matrix 
estimation is summarized in the following steps: 
Step 1: - Estimation and eigendecomposition of the re- 

ceived covariance matrix I'; I' = - rtrr, with T is 
T 

the number of independent realizations; ? = UAU+, 
where, A = d i u g [ A l , .  . . , A L N ] ,  and U = [UI, u2,. . . , U L N ] ;  

X i  and ui are the eigenvalues and the eigenvectors of 
the observation covariance matrix, respectively; 
- Initialization of the noise covariance matrix : rn = 0. 
Step 2: - Calculation of the matrix: WN+M = USA:", 
with us = [ul, u2, . . . , U N + & f ]  is the matrix of ( N + M )  
eigenvectors corresponding to the ( N + M )  eigenvalues, 
and As = diag[Al,. . . , X N + M ]  is the matrix of ( N + M )  
eigenvalues. 
- Calculation of the matrix: A = W N + M W L + ~ .  

Step 3: Calculation of: FL1) = K-band [e - A], with 

is the band noise covariance matrix at first iter- 
ation, and K-band[.] designates the matrix band with 
( K  + 1) is the bandwidth. 
Step 4 :  Eigendecomposition of the matrix: 

VAV+. The new matrices A and Fi2) are, again, es- 
timated in step 2 and step 3. These iterations are re- 
peated until the improvement of e$). 

6 l T  

t=l 

- F(l) = [ ,I 

Stop test: The algorithm is stopped when the distance 
between ff) and Ff+l) becomes less then soze value 
E. We define the distance between I'?) and I??'') as 
11 ?:+'I - lip, the Fkobenius norm of the matrix 

The estimate noise covariance matrix e, is obtained 
when the algorithm is stopped. 
The matrix F, is used to "denoise" the received data. 
In fact, the free-noise received covariance matrix is 
I' = I' - I', or I' = ( f n  a I'I', . This "clean" matrix -'---? - - -  - 
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is used to estimate the channel matrix. In order to evd- 
uate its performance, we apply the subspace method 
[l]. Indeed, Moulines et al. [l], showed that if the 
subchannels don't share common zeros, h is uniquely 
determined by the noise subspace U,, the subspace es- 
gmator is given b? 
h = arg min h+U,,h, where Gas is the filtering noise 

projection matrix estimated from the "clean" data co- 
variance matrix. This estimator does not require the 
knowledge of the source covariance as long as rS > 0. 
We also compare our result to the modified subspace 
(MSS) method [4]. 

llhll=l 

4. PERFORMANCE EVALUATION 

To demonstrate the efficiency of the proposed algo- 
rithm, some computer simulations have been conducted. 
In the following simulations, we take the parameters 
described in [l], in fact the number of virtual channels 
is L = 4; the width of the temporal window is N = 10; 
the degree of the IS1 is M = 4, the channel coefficients 
are given by [I]: 

~~ 

h3 

0.417-0.030j 
1 

0.873-0.145j 
O.ZSStO.369j 
-0.049+0.161j 

Table 1: Four virtual complex channels. 

for all these simulations, the number of data samples 
used to estimate each h ranges from 100 to 1000 in 
steps of 100. 
The root mean-square error ( R M S E )  defined, below, 
is employed as a performance measure of the input es- 
timates: 
R M S E  = hJ+ E:, 11 Hi - H 112, where K is the 
number of trials (100 in our cases) and Hi is the esti- 
mate of the inputs from the ith trial. 
The signal to noise ratio (SNR) is defined as: 

S N R  = lOlog,, 4-2 EE!E$i" . We define the Frobenius 
norm of estimation error (EE) of the noise covariance 
matrix as:EE = I [  I' - (HI',Hf + I?,) 1 1 ~  . 
We compare the presented algorithm with the exist- 
ing methods such as the modified subspace approach 
(MSS) [4]. This comparison is based on the root mean 
square error of the channel matrix estimates. We recall, 
this approach in the following: Let r(T) = 3cJ(~)3c+ -t 
rn(T), where J(T) is the ( N  + M) x ( N  + M )  shift 
matrix. In [4], one assumes that I\,(T) = 0 as long 
as T 2 N .  Therefore, we have the relation r(T) = 
?fJ(~)?f+ for T 2 N .  At the time lag T = N, r ( N )  = 

R ( J ( N )  + J(N)+)'H+,  the matrix r ( N )  is used to es- 
timate the channel parameters. 
The Figures ( l a  and lb) present the root square-mean 
error (RMSE) of the parameters estimates for a band- 
Toeplitz noise covariance matrix and the Frobenius norm 
of estimation of error (EE) of the noise covariance ma- 
trix versus number of samples. 

Figure 1: (a) Root square-mean error (RMSE) of the parameters 
estimates (band-Toeplitz noise covariance matrix). (b) Frobenius 
norm of estimation of error (EE) of the noise covariance matrix 
(band-Toeplitz noise covariance matrix) versus number of samples 

In the case of a band noise covariance matrix with a 
correlation length K = 4, we have Figures (2a and 2b), 
versus S N R  between 0 dB to 16 dB. 

I B 

CnR I* 

Figure 2: (a) Root mean-square error of the parametere esti- 
mates (band-Toeplitz noise covariance matrix (K = 4)) versus 

SNR. (b) Fkobenius norm of the estimation of error (EE) of noise 
covariance matrix as a function of number of iterations. 

We study, the influence of the correlation length versus 
the error of the noise covariance matrix estimation Fig- 
ure (3a) and the channel parameters Figure (3b). In 
fact, the correlation length varies between K = 1 and 
K = 4, with S N R  = 3 dB. 
The normalized error ( N E )  is defined by, N E  = -1. 
We consider the noise covariance matrix band, and we 
estimate the normalized error and the Frobenius norm 
versus of different scenarios of the channel matrix (Fig- 
ures (4a and 4b). 
These simulations show that the processing which con- 
sists to first estimation of the noise covariance ma- 
trix and prewhitening the observation has many ad- 
vantages, is more efficient then the modified subspace 
(MSS) approach [4]. The use of the denoised subspace 
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Figure 3: (a) Root mean-square error of the parameters esti- 
mates versus correlation length. (b) fiobenius norm of the esti- 
mation of error (EE) of noise covariance matrix as a function of 
correlation length. 

e 

1 I 

Figure 4: (a) Normalized error (NE) of the parameters estimates 
versus scenarios of channel matrix when the noise covariance ma- 
trix is band. (b) Frobenius norm of the estimation of error (EE) of 
band noise covariance matrix as a function of scenarios of channel 
matrix. 

method presented in this paper becomes interesting in 
the case of low SNR and when the noise covariance 
matrix is band. When the length correlation increases, 
the interest of the estimation of the noise increases 
also. Several computer simulations confirm these con- 
clusions. 
This algorithm can be, also, applied, naturally, for 
other blind channel identification methods such as XBM, 
TXK ...[ 2, 31 disregard of the system type used. 

5. CONCLUSION 

To estimate, blindly, the noise than the channel param- 
eters, an algorithm was presented. We have considered 
a spatially correlated noise, with only the assumption 
that the matrix noise is band-Toeplitz, than by an iter- 
ative algorithm using the eigenstructure, we have esti- 
mated the noise parameters. In order to use a ”clean” 
data for the the estimation of the channel matrix, the 
estimated noise matrix was used for ”prewhitening” 
the observations. The subspace approach was, than, 
applied for the blind estimation of the channel param- 
eters. 
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